content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
#!/usr/bin/python3 # -*- coding: utf-8 -*- import copy import json import requests import pytz import time from inky.inky_uc8159 import Inky, DESATURATED_PALETTE from datetime import datetime from PIL import Image, ImageFont, ImageDraw import io import apikey import os import signal import RPi.GPIO as GPIO path = os.path.dirname(os.path.realpath(__file__)) ICON_SIZE = 100 TILE_WIDTH = 150 TILE_HEIGHT = 200 FONT_SIZE = 25 SPACE = 2 ROTATE = 0 # 180 = flip display USE_INKY = True SHOW_CLOCK = False SLEEP_TIME = 3600 colors = ['Black', 'White', 'Green', 'Blue', 'Red', 'Yellow', 'Orange'] percipitation_colour = colors[0] temprature_colour = colors[4] day_colour = colors[3] #BUTTONS = [5, 6, 16, 24] LABELS = ['A','B','C','D'] GPIO.setmode(GPIO.BCM) #GPIO.setup(Buttons, GPIO.IN, pull_up_down=GPIO.PUD_UP) #def handle_button(pin): # label = LABELS[BUTTONS.index(pin)] time_colour = colors[4] general_map = { 200: "thunderstorm.PNG8", 201: "thunderstorm.PNG8", 202: "thunderstorm.PNG8", 210: "lightning.PNG8", 211: "lightning.PNG8", 212: "lightning.PNG8", 221: "lightning.PNG8", 230: "thunderstorm.PNG8", 231: "thunderstorm.PNG8", 232: "thunderstorm.PNG8", 300: "sprinkle.PNG8", 301: "sprinkle.PNG8", 302: "rain.PNG8", 310: "rain-mix.PNG8", 311: "rain.PNG8", 312: "rain.PNG8", 313: "showers.PNG8", 314: "rain.PNG8", 321: "sprinkle.PNG8", 500: "sprinkle.PNG8", 501: "rain.PNG8", 502: "rain.PNG8", 503: "rain.PNG8", 504: "rain.PNG8", 511: "rain-mix.PNG8", 520: "showers.PNG8", 521: "showers.PNG8", 522: "showers.PNG8", 531: "storm-showers.PNG8", 600: "snow.PNG8", 601: "snow.PNG8", 602: "sleet.PNG8", 611: "rain-mix.PNG8", 612: "rain-mix.PNG8", 615: "rain-mix.PNG8", 616: "rain-mix.PNG8", 620: "rain-mix.PNG8", 621: "snow.PNG8", 622: "snow.PNG8", 701: "showers.PNG8", 711: "smoke.PNG8", 721: "day-haze.PNG8", 731: "dust.PNG8", 741: "fog.PNG8", 761: "dust.PNG8", 762: "dust.PNG8", 771: "cloudy-gusts.PNG8", 781: "tornado.PNG8", 800: "day-sunny.PNG8", 801: "cloudy-gusts.PNG8", 802: "cloudy-gusts.PNG8", 803: "cloudy-gusts.PNG8", 804: "cloudy.PNG8", 900: "tornado.PNG8", 901: "storm-showers.PNG8", 902: "hurricane.PNG8", 903: "snowflake-cold.PNG8", 904: "hot.PNG8", 905: "windy.PNG8", 906: "hail.PNG8", 957: "strong-wind.PNG8"} day_map = { 200: "day-thunderstorm.PNG8", 201: "day-thunderstorm.PNG8", 202: "day-thunderstorm.PNG8", 210: "day-lightning.PNG8", 211: "day-lightning.PNG8", 212: "day-lightning.PNG8", 221: "day-lightning.PNG8", 230: "day-thunderstorm.PNG8", 231: "day-thunderstorm.PNG8", 232: "day-thunderstorm.PNG8", 300: "day-sprinkle.PNG8", 301: "day-sprinkle.PNG8", 302: "day-rain.PNG8", 310: "day-rain.PNG8", 311: "day-rain.PNG8", 312: "day-rain.PNG8", 313: "day-rain.PNG8", 314: "day-rain.PNG8", 321: "day-sprinkle.PNG8", 500: "day-sprinkle.PNG8", 501: "day-rain.PNG8", 502: "day-rain.PNG8", 503: "day-rain.PNG8", 504: "day-rain.PNG8", 511: "day-rain-mix.PNG8", 520: "day-showers.PNG8", 521: "day-showers.PNG8", 522: "day-showers.PNG8", 531: "day-storm-showers.PNG8", 600: "day-snow.PNG8", 601: "day-sleet.PNG8", 602: "day-snow.PNG8", 611: "day-rain-mix.PNG8", 612: "day-rain-mix.PNG8", 615: "day-rain-mix.PNG8", 616: "day-rain-mix.PNG8", 620: "day-rain-mix.PNG8", 621: "day-snow.PNG8", 622: "day-snow.PNG8", 701: "day-showers.PNG8", 711: "smoke.PNG8", 721: "day-haze.PNG8", 731: "dust.PNG8", 741: "day-fog.PNG8", 761: "dust.PNG8", 762: "dust.PNG8", 781: "tornado.PNG8", 800: "day-sunny.PNG8", 801: "day-cloudy-gusts.PNG8", 802: "day-cloudy-gusts.PNG8", 803: "day-cloudy-gusts.PNG8", 804: "day-sunny-overcast.PNG8", 900: "tornado.PNG8", 902: "hurricane.PNG8", 903: "snowflake-cold.PNG8", 904: "hot.PNG8", 906: "day-hail.PNG8", 957: "strong-wind.PNG8"} night_map = { 200: "night-alt-thunderstorm.PNG8", 201: "night-alt-thunderstorm.PNG8", 202: "night-alt-thunderstorm.PNG8", 210: "night-alt-lightning.PNG8", 211: "night-alt-lightning.PNG8", 212: "night-alt-lightning.PNG8", 221: "night-alt-lightning.PNG8", 230: "night-alt-thunderstorm.PNG8", 231: "night-alt-thunderstorm.PNG8", 232: "night-alt-thunderstorm.PNG8", 300: "night-alt-sprinkle.PNG8", 301: "night-alt-sprinkle.PNG8", 302: "night-alt-rain.PNG8", 310: "night-alt-rain.PNG8", 311: "night-alt-rain.PNG8", 312: "night-alt-rain.PNG8", 313: "night-alt-rain.PNG8", 314: "night-alt-rain.PNG8", 321: "night-alt-sprinkle.PNG8", 500: "night-alt-sprinkle.PNG8", 501: "night-alt-rain.PNG8", 502: "night-alt-rain.PNG8", 503: "night-alt-rain.PNG8", 504: "night-alt-rain.PNG8", 511: "night-alt-rain-mix.PNG8", 520: "night-alt-showers.PNG8", 521: "night-alt-showers.PNG8", 522: "night-alt-showers.PNG8", 531: "night-alt-storm-showers.PNG8", 600: "night-alt-snow.PNG8", 601: "night-alt-sleet.PNG8", 602: "night-alt-snow.PNG8", 611: "night-alt-rain-mix.PNG8", 612: "night-alt-rain-mix.PNG8", 615: "night-alt-rain-mix.PNG8", 616: "night-alt-rain-mix.PNG8", 620: "night-alt-rain-mix.PNG8", 621: "night-alt-snow.PNG8", 622: "night-alt-snow.PNG8", 701: "night-alt-showers.PNG8", 711: "smoke.PNG8", 721: "day-haze.PNG8", 731: "dust.PNG8", 741: "night-fog.PNG8", 761: "dust.PNG8", 762: "dust.PNG8", 781: "tornado.PNG8", 800: "night-clear.PNG8", 801: "night-alt-cloudy-gusts.PNG8", 802: "night-alt-cloudy-gusts.PNG8", 803: "night-alt-cloudy-gusts.PNG8", 804: "night-alt-cloudy.PNG8", 900: "tornado.PNG8", 902: "hurricane.PNG8", 903: "snowflake-cold.PNG8", 904: "hot.PNG8", 906: "night-alt-hail.PNG8", 957: "strong-wind.PNG8"} class Day: def __init__(self, min, max, pop, id, sunrise, sunset, pressure, dt): self.min = int(min + 0.5) self.max = int(max + 0.5) self.pop = pop self.id = id self.sunrise = sunrise self.sunset = sunset self.pressure = pressure self.dt = dt def get_icon(name): return Image.open(name).convert("RGBA") def day_lists_not_identical(days, other_days): if (len(days) != len(other_days)): return True for i in range(len(days)): if (days[i].min != other_days[i].min): return True if (days[i].max != other_days[i].max): return True if (days[i].pop != other_days[i].pop): return True if (days[i].id != other_days[i].id): return True return True api_key = apikey.api_key if (api_key == "<your API key>"): print("You forgot to enter your API key") exit() lat = apikey.lat lon = apikey.lon url = "https://api.openweathermap.org/data/2.5/onecall?lat=%s&lon=%s&exclude=hourly&appid=%s&units=metric" % ( lat, lon, api_key) palette_colors = [(c[0] / 255.0, c[1] / 255.0, c[2] / 255.0) for c in DESATURATED_PALETTE[2:6] + [(0, 0, 0)]] tile_positions = [] for i in range(2): for j in range(4): tile_positions.append((j * TILE_WIDTH, i * TILE_HEIGHT)) inky_display = Inky() satuation = 0 y_top = int(inky_display.height) y_bottom = y_top + int(inky_display.height * (4.0 / 10.0)) font = ImageFont.truetype(path+ "/fonts/BungeeColor-Regular_colr_Windows.ttf", FONT_SIZE) old_days = [] while(True): try: response = requests.get(url) data = json.loads(response.text) except: None days = [] daily = data["daily"] for day in daily: min = day["temp"]["min"] max = day["temp"]["max"] pop = day["pop"] id = day["weather"][0]["id"] sunrise = int(day["sunrise"]) sunset = int(day["sunset"]) dt = int(day["dt"]) pressure = int(day["pressure"]) days.append(Day(min, max, pop, id, sunrise, sunset, pressure, dt)) #pressure = int(day["pressure"]) #print(day["pressure"]) if (day_lists_not_identical(days, old_days)): old_days = copy.deepcopy(days) img = Image.new("RGBA", inky_display.resolution, colors[1]) draw = ImageDraw.Draw(img) for i in range(8): name = path+"/icons/wi-" if (i == 0): t = int(time.time()) if (t < days[i].sunset): name += day_map[days[i].id] else: name += night_map[days[i].id] else: name += general_map[days[i].id] icon = get_icon(name) x = tile_positions[i][0] + (TILE_WIDTH - ICON_SIZE) // 2 y = tile_positions[i][1] img.paste(icon, (x, y)) text = str(int(100 * days[i].pop)) + "%" w, h = font.getsize(text) x = tile_positions[i][0] + (TILE_WIDTH - w) // 2 y = tile_positions[i][1] + ICON_SIZE + SPACE draw.text((x, y), text, percipitation_colour, font) text = str(days[i].min) + "°|" + str(days[i].max) + "°" w, h = font.getsize(text) x = tile_positions[i][0] + (TILE_WIDTH - w) // 2 y += FONT_SIZE draw.text((x, y), text, temprature_colour, font) press = str(days[i].pressure) text = str(press)+"hPa" w, h = font.getsize(text) x = tile_positions[i][0] + (TILE_WIDTH - w) // 2 y += FONT_SIZE draw.text((x, y), text, day_colour, font) ts = time.gmtime(days[i].dt) day_name = time.strftime("%a", ts) text = day_name w, h = font.getsize(text) x = tile_positions[i][0] + (TILE_WIDTH - w) // 2 y += FONT_SIZE draw.text((x, y), text, day_colour, font) img.rotate(180) if (SHOW_CLOCK == True): now = datetime.now() current_time = now.strftime("%H:%M") draw.text((245, 410), current_time, time_colour, font) if (USE_INKY): inky_display.set_border(colors[4]) inky_display.set_image(img.rotate(ROTATE), saturation=0) inky_display.show() else: img.show() time.sleep(SLEEP_TIME) print("loop")
28.917808
110
0.573283
[ "MIT" ]
vwillcox/Inky-Impression-Weather-Station
weather.py
10,557
Python
""" This module contains the cli functions. Split them out into separate files if required. """ import sys import os import subprocess import pickle from cheapskate_bal import balance as bal __collector__ = {'exe': "collect_3008", 'samp_rate': 2000} def csbal_process(): """ This method is run when the `csbal` script is called. can be used to check a single file (check balance state after adjusting) args are file stem, freq (Hz [rpm/60] float), samp_rate (data collector) """ args = sys.argv[1:] stem = args[0] freq = float(args[1]) samp_rate = float(args[2]) df = bal.read_data_files(stem, freq, samp_rate) bal.graph_data(df) bal.process_data(df, freq, samp_rate, True) def grab_data(tests, stem): for t in tests: msg, tag = t print("\n\n==================================") print(msg) print("start DUT now") input("Press Enter to start data capture...") cp = subprocess.run(["taskset", "-c", "3", "nice", "-20", __collector__['exe'], stem+tag], capture_output=True, universal_newlines=True) summary = cp.stdout.splitlines()[-5:] print(*summary,sep='\n') def batch_process(tests, stem, freq): results = [] for t in tests: tag = t[1] sr = __collector__['samp_rate'] df = bal.read_data_files(stem+tag, freq, sr) results.append(bal.process_data(df, freq, sr)) return results def csbal_single(): """ This method performs the whole process for a single plane balance Four data files are captured, and the results are emitted args are file stem, freq(Hz), shift angle of test mass (deg), test mass """ args = sys.argv[1:] if len(args) < 4: print("args are stem, freq, shift_ang, test_mass") stem = args[0] freq = float(args[1]) shift_ang = float(args[2]) tmass = float(args[3]) offset_1_ang = 360 offset_2_ang = 360 # these should not both be 0, as there is a div by their sum if len(args) > 5: offset_1_ang = float(args[4]) offset_2_ang = float(args[5]) # make sure the stem looks like a directory if stem[-1] != os.path.sep: stem = stem + os.path.sep tests = [('T0: initial unbalanced state', 't0'), ('T1: test mass at 0 deg ref', 't1'), ('T2: test mass at positive angle', 't2'), ('T3: test mass at negative angle', 't3'), ] grab_data(tests, stem) print("Processing captured data...") results = batch_process(tests, stem, freq) print("Balace Results:") bal.single_balance(results, tmass, shift_ang, offset_1_ang, offset_2_ang) def csbal_dual_init(): """ THis method performs the whole process for a dual plane balance Three files are captured and the results are emitted args are file stem, freq(Hz), shift angle of test mass (deg), test mass """ args = sys.argv[1:] if len(args) < 4: print("args are stem, freq, shift_ang, test_mass") stem = args[0] freq = float(args[1]) shift_ang = float(args[2]) tmass = float(args[3]) # make sure the stem looks like a directory if stem[-1] != os.path.sep: stem = stem + os.path.sep tests = [('T0: initial unbalanced state', 't0'), ('TA: test mass on bearing 1 at shift angle', 'ta'), ('TB: test mass on bearing 2 at shift angle', 'tb')] grab_data(tests, stem) print("Processing captured data...") results = batch_process(tests, stem, freq) print("Dual Plane Balance Results") influence, correction = bal.dual_compute_influence(results, tmass, shift_ang) # write the influence params to a file inf_file = stem+"influence" with open(inf_file, 'wb') as filehandle: pickle.dump(influence, filehandle) def csbal_dual_iter(): """ This method performs an iteration of dual plane balance, once the influence params are known. One file is captured and the results are emitted args are file stem, tag, freq """ args = sys.argv[1:] if len(args) < 3: print("args are: filestem, tag, freq") stem = args[0] tag = args[1] freq = float(args[2]) # make sure the stem looks like a directory if stem[-1] != os.path.sep: stem = stem + os.path.sep # get the influence from file influence = [] inf_file = stem+"influence" with open(inf_file, 'rb') as filehandle: influence = pickle.load(filehandle) tests = [('T(curr): initial unbalanced state', 't'+tag)] grab_data(tests, stem) print("Processing captured data...") results = batch_process(tests, stem, freq) print("Dual Plane Balance Results") correction = bal.dual_compute_weights(results, influence)
28.951807
98
0.620266
[ "Unlicense" ]
kevinpowell/balancer
cheapskate_bal/cheapskate_bal/cli.py
4,806
Python
from __future__ import absolute_import import os # test_settings.py works differently from # dev_settings.py/prod_settings.py; it actually is directly referenced # by the test suite as DJANGO_SETTINGS_MODULE and imports settings.py # directly and then hacks up the values that are different for the # test suite. As will be explained, this is kinda messy and probably # we'd be better off switching it to work more like dev_settings.py, # but for now, this is what we have. # # An important downside of the test_settings.py approach is that if we # want to change any settings that settings.py then computes # additional settings from (e.g. EXTERNAL_HOST), we need to do a hack # like the below line(s) before we import from settings, for # transmitting the value of EXTERNAL_HOST to dev_settings.py so that # it can be set there, at the right place in the settings.py flow. # Ick. if os.getenv("EXTERNAL_HOST") is None: os.environ["EXTERNAL_HOST"] = "testserver" from .settings import * # Used to clone DBs in backend tests. BACKEND_DATABASE_TEMPLATE = 'zulip_test_template' DATABASES["default"] = { "NAME": "zulip_test", "USER": "zulip_test", "PASSWORD": LOCAL_DATABASE_PASSWORD, "HOST": "localhost", "SCHEMA": "zulip", "ENGINE": "django.db.backends.postgresql_psycopg2", "TEST_NAME": "django_zulip_tests", "OPTIONS": {"connection_factory": TimeTrackingConnection}, } if USING_PGROONGA: # We need to have "pgroonga" schema before "pg_catalog" schema in # the PostgreSQL search path, because "pgroonga" schema overrides # the "@@" operator from "pg_catalog" schema, and "pg_catalog" # schema is searched first if not specified in the search path. # See also: http://www.postgresql.org/docs/current/static/runtime-config-client.html pg_options = '-c search_path=%(SCHEMA)s,zulip,public,pgroonga,pg_catalog' % \ DATABASES['default'] DATABASES['default']['OPTIONS']['options'] = pg_options if "TORNADO_SERVER" in os.environ: # This covers the Casper test suite case TORNADO_SERVER = os.environ["TORNADO_SERVER"] else: # This covers the backend test suite case TORNADO_SERVER = None CAMO_URI = 'https://external-content.zulipcdn.net/' CAMO_KEY = 'dummy' if "CASPER_TESTS" in os.environ: CASPER_TESTS = True # Decrease the get_updates timeout to 1 second. # This allows CasperJS to proceed quickly to the next test step. POLL_TIMEOUT = 1000 # Don't use the real message log for tests EVENT_LOG_DIR = '/tmp/zulip-test-event-log' # Print our emails rather than sending them EMAIL_BACKEND = 'django.core.mail.backends.locmem.EmailBackend' # The test suite uses EmailAuthBackend AUTHENTICATION_BACKENDS += ('zproject.backends.EmailAuthBackend',) # Configure Google Oauth2 GOOGLE_OAUTH2_CLIENT_ID = "test_client_id" # Makes testing LDAP backend require less mocking AUTH_LDAP_ALWAYS_UPDATE_USER = False TEST_SUITE = True RATE_LIMITING = False # Don't use rabbitmq from the test suite -- the user_profile_ids for # any generated queue elements won't match those being used by the # real app. USING_RABBITMQ = False # Disable the tutorial because it confuses the client tests. TUTORIAL_ENABLED = False # Disable use of memcached for caching CACHES['database'] = { 'BACKEND': 'django.core.cache.backends.dummy.DummyCache', 'LOCATION': 'zulip-database-test-cache', 'TIMEOUT': 3600, 'CONN_MAX_AGE': 600, 'OPTIONS': { 'MAX_ENTRIES': 100000 } } # Use production config from Webpack in tests if CASPER_TESTS: WEBPACK_FILE = 'webpack-stats-production.json' else: WEBPACK_FILE = os.path.join('var', 'webpack-stats-test.json') WEBPACK_LOADER['DEFAULT']['STATS_FILE'] = os.path.join(DEPLOY_ROOT, WEBPACK_FILE) if CASPER_TESTS: # Don't auto-restart Tornado server during casper tests AUTORELOAD = False REALMS_HAVE_SUBDOMAINS = True else: # Use local memory cache for backend tests. CACHES['default'] = { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache' } LOGGING['loggers']['zulip.requests']['level'] = 'CRITICAL' LOGGING['loggers']['zulip.management']['level'] = 'CRITICAL' LOGGING['loggers']['django.request'] = {'level': 'ERROR'} LOGGING['loggers']['fakeldap'] = {'level': 'ERROR'} # Enable file:/// hyperlink support by default in tests ENABLE_FILE_LINKS = True LOCAL_UPLOADS_DIR = 'var/test_uploads' S3_KEY = 'test-key' S3_SECRET_KEY = 'test-secret-key' S3_AUTH_UPLOADS_BUCKET = 'test-authed-bucket' # Test Custom TOS template rendering TERMS_OF_SERVICE = 'corporate/terms.md' INLINE_URL_EMBED_PREVIEW = False HOME_NOT_LOGGED_IN = '/login' LOGIN_URL = '/accounts/login' # By default will not send emails when login occurs. # Explicity set this to True within tests that must have this on. SEND_LOGIN_EMAILS = False GOOGLE_OAUTH2_CLIENT_ID = "id" GOOGLE_OAUTH2_CLIENT_SECRET = "secret" SOCIAL_AUTH_GITHUB_KEY = "key" SOCIAL_AUTH_GITHUB_SECRET = "secret"
34.213793
88
0.738359
[ "Apache-2.0" ]
JaneCeng/zulip
zproject/test_settings.py
4,961
Python
import json import os import signal import sys from zipfile import BadZipfile from zlib import error as zlib_error from defusedxml.common import DefusedXmlException import validator from validator import decorator from validator.chromemanifest import ChromeManifest from validator.opensearch import detect_opensearch from validator.rdf import RDFException, RDFParser from validator.typedetection import detect_type from validator.xpi import XPIManager from constants import (PACKAGE_ANY, PACKAGE_EXTENSION, PACKAGE_SEARCHPROV, PACKAGE_THEME) types = {0: 'Unknown', 1: 'Extension/Multi-Extension', 2: 'Full Theme', 3: 'Dictionary', 4: 'Language Pack', 5: 'Search Provider'} assumed_extensions = {'jar': PACKAGE_THEME, 'xml': PACKAGE_SEARCHPROV} def prepare_package(err, path, expectation=0, for_appversions=None, timeout=-1): """Prepares a file-based package for validation. timeout is the number of seconds before validation is aborted. If timeout is -1 then no timeout checking code will run. """ package = None try: # Test that the package actually exists. I consider this Tier 0 # since we may not even be dealing with a real file. if not os.path.isfile(path): err.error(('main', 'prepare_package', 'not_found'), 'The package could not be found') return # Pop the package extension. package_extension = os.path.splitext(path)[1] package_extension = package_extension.lower() def timeout_handler(signum, frame): raise validator.ValidationTimeout(timeout) if timeout != -1: signal.signal(signal.SIGALRM, timeout_handler) signal.setitimer(signal.ITIMER_REAL, timeout) if package_extension == '.xml': test_search(err, path, expectation) elif package_extension not in ('.xpi', '.jar'): err.error(('main', 'prepare_package', 'unrecognized'), 'The package is not of a recognized type.') else: package = open(path, 'rb') test_package(err, package, path, expectation, for_appversions) except validator.ValidationTimeout: err.system_error( msg_id='validation_timeout', message='Validation has timed out', signing_severity='high', description=('Validation was unable to complete in the allotted ' 'time. This is most likely due to the size or ' 'complexity of your add-on.', 'This timeout has been logged, but please consider ' 'filing an issue report here: http://mzl.la/1DG0sFd'), exc_info=sys.exc_info()) except Exception: err.system_error(exc_info=sys.exc_info()) finally: # Remove timers and signal handlers regardless of whether # we've completed successfully or the timer has fired. if timeout != -1: signal.setitimer(signal.ITIMER_REAL, 0) signal.signal(signal.SIGALRM, signal.SIG_DFL) if package: package.close() decorator.cleanup() def test_search(err, package, expectation=0): 'Tests the package to see if it is a search provider.' expected_search_provider = expectation in (PACKAGE_ANY, PACKAGE_SEARCHPROV) # If we're not expecting a search provider, warn the user and stop # testing it like a search provider. if not expected_search_provider: return err.warning(('main', 'test_search', 'extension'), 'Unexpected file extension.') # Is this a search provider? detect_opensearch(err, package, listed=err.get_resource('listed')) if expected_search_provider and not err.failed(): err.detected_type = PACKAGE_SEARCHPROV def test_package(err, file_, name, expectation=PACKAGE_ANY, for_appversions=None): 'Begins tests for the package.' # Load up a new instance of an XPI. try: package = XPIManager(file_, mode='r', name=name) has_package_json = 'package.json' in package has_manifest_json = 'manifest.json' in package has_install_rdf = 'install.rdf' in package # install.rdf? | package.json? | manifest.json? | error | use-file # Yes | No | No | No | install.rdf # Yes | Yes | No | No | install.rdf # Yes | No | Yes | No | install.rdf # No | No | Yes | No | manifest.json # No | No | No | Yes | install.rdf # No | Yes | No | No | package.json # No | No | Yes | Yes | install.rdf if has_package_json: _load_package_json(err, package, expectation) if has_manifest_json: _load_manifest_json(err, package, expectation) if has_install_rdf: _load_install_rdf(err, package, expectation) except IOError: # Die on this one because the file won't open. err.error(('main', 'test_package', 'unopenable'), 'The XPI could not be opened.') return except (BadZipfile, zlib_error): # Die if the zip file is corrupt. err.error(('submain', '_load_install_rdf', 'badzipfile'), error='Corrupt ZIP file', description='We were unable to decompress the zip file.') return if package.extension in assumed_extensions: assumed_type = assumed_extensions[package.extension] # Is the user expecting a different package type? if expectation not in (PACKAGE_ANY, assumed_type): err.error(('main', 'test_package', 'unexpected_type'), 'Unexpected package type (found theme)') test_inner_package(err, package, for_appversions) def _load_install_rdf(err, package, expectation): try: install_rdf = RDFParser(err, package.read('install.rdf')) except (RDFException, DefusedXmlException) as ex: if isinstance(ex, DefusedXmlException): url = 'https://pypi.python.org/pypi/defusedxml/0.3#attack-vectors' reason = 'Malicious XML was detected, see {0}.'.format(url) line = 0 else: reason = ('Try validating your RDF with the W3 validator: ' 'http://www.w3.org/RDF/Validator/.') line = ex.line() err.error( err_id=('main', 'test_package', 'parse_error'), error='Could not parse `install.rdf`.', description=('The RDF parser was unable to parse the ' 'install.rdf file included with this add-on.', reason), filename='install.rdf', line=line) return else: if install_rdf.rdf is None: err.error( err_id=('main', 'test_package', 'cannot_parse_installrdf'), error='Cannot read `install.rdf`', description='The install.rdf file could not be parsed.', filename='install.rdf') return else: err.save_resource('has_install_rdf', True, pushable=True) err.save_resource('install_rdf', install_rdf, pushable=True) # Load up the results of the type detection results = detect_type(err, install_rdf, package) if results is None: err.error( err_id=('main', 'test_package', 'undeterminable_type'), error='Unable to determine add-on type', description='The type detection algorithm could not determine ' 'the type of the add-on.') return else: err.detected_type = results # Compare the results of the low-level type detection to # that of the expectation and the assumption. if expectation not in (PACKAGE_ANY, results): err.warning( err_id=('main', 'test_package', 'extension_type_mismatch'), warning='Extension Type Mismatch', description=("We detected that the add-on's type does not match " 'the expected type.', 'Type "%s" expected, found "%s"' % (types[expectation], types[results]))) def _load_package_json(err, package, expectation): raw_package_json = package.read('package.json') try: package_json = json.loads(raw_package_json) except ValueError: err.error( err_id=('main', 'test_package', 'parse_error'), error='Could not parse `package.json`.', description='The JSON parser was unable to parse the ' 'package.json file included with this add-on.', filename='package.json') else: err.save_resource('has_package_json', True, pushable=True) err.save_resource('package_json', package_json, pushable=True) err.detected_type = PACKAGE_EXTENSION def _load_manifest_json(err, package, expectation): raw_manifest_json = package.read('manifest.json') try: manifest_json = json.loads(raw_manifest_json) except ValueError: err.error( err_id=('main', 'test_package', 'parse_error'), error='Could not parse `manifest.json`.', description='The JSON parser was unable to parse the ' 'manifest.json file included with this add-on.', filename='manifest.json') else: err.save_resource('has_manifest_json', True, pushable=True) err.save_resource('manifest_json', manifest_json, pushable=True) err.detected_type = PACKAGE_EXTENSION def populate_chrome_manifest(err, xpi_package): "Loads the chrome.manifest if it's present" if 'chrome.manifest' in xpi_package: chrome_data = xpi_package.read('chrome.manifest') chrome = ChromeManifest(chrome_data, 'chrome.manifest') chrome_recursion_buster = set() # Handle the case of manifests linked from the manifest. def get_linked_manifest(path, from_path, from_chrome, from_triple): if path in chrome_recursion_buster: err.warning( err_id=('submain', 'populate_chrome_manifest', 'recursion'), warning='Linked manifest recursion detected.', description='A chrome registration file links back to ' 'itself. This can cause a multitude of ' 'issues.', filename=path) return # Make sure the manifest is properly linked if path not in xpi_package: err.notice( err_id=('submain', 'populate_chrome_manifest', 'linkerr'), notice='Linked manifest could not be found.', description=('A linked manifest file could not be found ' 'in the package.', 'Path: %s' % path), filename=from_path, line=from_triple['line'], context=from_chrome.context) return chrome_recursion_buster.add(path) manifest = ChromeManifest(xpi_package.read(path), path) for triple in manifest.triples: yield triple if triple['subject'] == 'manifest': subpath = triple['predicate'] # If the path is relative, make it relative to the current # file. if not subpath.startswith('/'): subpath = '%s/%s' % ( '/'.join(path.split('/')[:-1]), subpath) subpath = subpath.lstrip('/') for subtriple in get_linked_manifest( subpath, path, manifest, triple): yield subtriple chrome_recursion_buster.discard(path) chrome_recursion_buster.add('chrome.manifest') # Search for linked manifests in the base manifest. for extra_manifest in chrome.get_triples(subject='manifest'): # When one is found, add its triples to our own. for triple in get_linked_manifest(extra_manifest['predicate'], 'chrome.manifest', chrome, extra_manifest): chrome.triples.append(triple) chrome_recursion_buster.discard('chrome.manifest') # Create a reference so we can get the chrome manifest later, but make # it pushable so we don't run chrome manifests in JAR files. err.save_resource('chrome.manifest', chrome, pushable=True) # Create a non-pushable reference for tests that need to access the # chrome manifest from within JAR files. err.save_resource('chrome.manifest_nopush', chrome, pushable=False) def test_inner_package(err, xpi_package, for_appversions=None): "Tests a package's inner content." populate_chrome_manifest(err, xpi_package) # Iterate through each tier. for tier in sorted(decorator.get_tiers()): # Let the error bundler know what tier we're on. err.set_tier(tier) # Iterate through each test of our detected type. for test in decorator.get_tests(tier, err.detected_type): # Test whether the test is app/version specific. if test['versions'] is not None: # If the test's version requirements don't apply to the add-on, # then skip the test. if not err.supports_version(test['versions']): continue # If the user's version requirements don't apply to the test or # to the add-on, then skip the test. if (for_appversions and not (err._compare_version(requirements=for_appversions, support=test['versions']) and err.supports_version(for_appversions))): continue # Save the version requirements to the error bundler. err.version_requirements = test['versions'] test_func = test['test'] if test['simple']: test_func(err) else: # Pass in: # - Error Bundler # - A copy of the package itself test_func(err, xpi_package) # Return any errors at the end of the tier if undetermined. if err.failed(fail_on_warnings=False) and not err.determined: err.unfinished = True err.discard_unused_messages(ending_tier=tier) return err # Return the results. return err
40.057292
79
0.575803
[ "BSD-3-Clause" ]
kumar303/amo-validator
validator/submain.py
15,382
Python
from flask import Flask, request, redirect, render_template, url_for, flash, jsonify import gridfs, random, uuid, os from flask_uploads import UploadSet, configure_uploads, IMAGES from flask_sqlalchemy import SQLAlchemy from sqlalchemy import desc from datetime import datetime app = Flask(__name__, static_url_path = '', static_folder = 'static', template_folder = 'templates') app.config['SECRET_KEY'] = 'big secrets' photos = UploadSet('photos', IMAGES) app.config['UPLOAD_FOLDER'] = 'images_store' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True # Database setup app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///database.db' db = SQLAlchemy(app) # SQL form items class PostItem(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(80), unique=False, nullable=False) storeItem = db.Column(db.String(80), unique=False, nullable=False) avalability = db.Column(db.String(80), unique=False, nullable=False) location = db.Column(db.String(80), unique=False, nullable=False) #time = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) def __repr__(self): return (id, name, storeItem, avalability, location) db.create_all() def get_posts(): query = [i.__dict__ for i in PostItem.query.all()] for item in query: del item['_sa_instance_state'] return query # Render webpages @app.route("/") def render_index(): return render_template("index.html", posts = get_posts()) @app.route('/about') def render_about(): return render_template('about.html') @app.route("/upload/", methods=['GET', 'POST']) def render_upload(): # Get form data if request.method == 'POST': # Check if the form is empty item = "" if '--------' == request.form.get('storeItem'): redirected = redirect(url_for('render_upload')) flash('Please select store item.') return redirected elif 'Other' == request.form.get('storeItem'): item = request.form.get('Other') else: item = request.form.get('storeItem') if None is request.form.get('radio'): redirected = redirect(url_for('render_upload')) flash('Please select an availability option.') return redirected if '' == request.form.get('Name'): redirected = redirect(url_for('render_upload')) flash('Please enter a name.') return redirected if '' == request.form.get('location'): redirected = redirect(url_for('render_upload')) flash('Please enter a location.') return redirected if '' == request.form.get('store'): redirected = redirect(url_for('render_upload')) flash('Please enter a store.') return redirected if 'photo' not in request.files: redirected = redirect(url_for('render_upload')) flash('Please upload a photo.') return redirected file = request.files['photo'] if '' == file.filename: redirected = redirect(url_for('render_upload')) flash('No photo selected') return redirected locationStr = request.form.get('location') + '-' + request.form.get('store') # Save to database post = PostItem(name = request.form.get('Name'), storeItem = item, avalability = request.form.get('radio'), location = locationStr) db.session.add(post) db.session.commit() # Save the photo in the upload folder photo = request.files['photo'] path = os.path.join(app.config['UPLOAD_FOLDER'], str(post.id)) photo.save(path) # Print test print(str(post.id) + post.storeItem + post.avalability) return redirect(url_for('render_index')) return render_template('upload.html') if __name__ == '__main__': app.run('0.0.0.0', 3000)
33.216667
139
0.62845
[ "MIT" ]
iSkytran/supplymedia
app.py
3,986
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- """Script to parse BSM event auditing files.""" import argparse import logging import sys from dtformats import bsm from dtformats import output_writers def Main(): """The main program function. Returns: bool: True if successful or False if not. """ argument_parser = argparse.ArgumentParser(description=( 'Extracts information from BSM event auditing files.')) argument_parser.add_argument( '-d', '--debug', dest='debug', action='store_true', default=False, help='enable debug output.') argument_parser.add_argument( 'source', nargs='?', action='store', metavar='PATH', default=None, help='path of the BSM event auditing file.') options = argument_parser.parse_args() if not options.source: print('Source file missing.') print('') argument_parser.print_help() print('') return False logging.basicConfig( level=logging.INFO, format='[%(levelname)s] %(message)s') output_writer = output_writers.StdoutWriter() try: output_writer.Open() except IOError as exception: print('Unable to open output writer with error: {0!s}'.format(exception)) print('') return False log_file = bsm.BSMEventAuditingFile( debug=options.debug, output_writer=output_writer) log_file.Open(options.source) print('BSM event auditing information:') print('') log_file.Close() output_writer.Close() return True if __name__ == '__main__': if not Main(): sys.exit(1) else: sys.exit(0)
21.830986
77
0.683226
[ "Apache-2.0" ]
jleaniz/dtformats
scripts/bsm.py
1,550
Python
#!/usr/bin/env python # -*- coding: utf8 -*- # ***************************************************************** # ** PTS -- Python Toolkit for working with SKIRT ** # ** © Astronomical Observatory, Ghent University ** # ***************************************************************** ## \package pts.magic.tools.masks Contains functions for dealing with two-dimensional masks. # ----------------------------------------------------------------- # Ensure Python 3 functionality from __future__ import absolute_import, division, print_function # Import standard modules import numpy as np # Import the relevant PTS classes and modules from . import regions # ----------------------------------------------------------------- def annuli_around(region, inner_factor, outer_factor, header, x_size, y_size): """ This function ... :param region: :param inner_factor: :param outer_factor: :param header: :param x_size: :param y_size: :return: """ # Create new regions for the background estimation around the stars inner_region = regions.expand(region, inner_factor) outer_region = regions.expand(region, outer_factor) # Create inner and outer masks inner_mask = regions.create_mask(inner_region, header, x_size, y_size) outer_mask = regions.create_mask(outer_region, header, x_size, y_size) # Create the mask mask = inner_mask | np.logical_not(outer_mask) # Return the mask return mask # ----------------------------------------------------------------- def masked_outside(region, header, x_size, y_size, expand_factor=1.0): """ This function ... :param region: :param header: :param x_size: :param y_size: :param expand_factor: :return: """ # Create a new region ... region = regions.expand(region, factor=expand_factor) # Create a mask from the region mask = np.logical_not(regions.create_mask(region, header, x_size, y_size)) # Return the mask return mask # ----------------------------------------------------------------- def create_disk_mask(x_size, y_size, x_center, y_center, radius): """ This function ... :param x_size: :param y_size: :param x_center: :param y_center: :param radius: :return: """ # Calculate which pixels should be masked y,x = np.ogrid[-y_center:y_size-y_center, -x_center:x_size-x_center] mask = x*x + y*y <= radius*radius # Return the mask return mask # ----------------------------------------------------------------- #def union(*args): # i wanted to do it this way, but didn't succeed ... def union(mask_a, mask_b): """ This function ... :param args: :return: """ return mask_a + mask_b # ----------------------------------------------------------------- #def intersection(*args): i wanted to do it this way, but didn't succeed ... def intersection(mask_a, mask_b): """ This function ... :param args: :return: """ return mask_a * mask_b # ----------------------------------------------------------------- def overlap(mask_a, mask_b): """ This function ... :param mask_a: :param mask_b: :return: """ return np.any(intersection(mask_a, mask_b)) # ----------------------------------------------------------------- def split_overlap(base_mask, test_mask, return_segments=False): """ This function takes all blobs in the base_mask and checks whether they overlap with the test_mask. The function returns two new masks, one mask with all the blobs that overlapped, and another with the blobs that did not overlap. :param base_mask: :param test_mask: :return: """ overlapping = np.zeros_like(base_mask, dtype=bool) not_overlapping = np.copy(base_mask) from photutils import detect_sources segments = detect_sources(base_mask.astype('float'), 0.5, 1).data overlap = intersection(segments, test_mask) # Check which indices are present in the overlap map possible = np.array(range(1, np.max(overlap) + 1)) present = np.in1d(possible, overlap) indices = possible[present] overlapping_segments = np.zeros_like(base_mask, dtype=int) not_overlapping_segments = np.copy(segments) # Remove the galaxies from the segmentation map for index in indices: blob = segments == index overlapping[blob] = True not_overlapping[blob] = False overlapping_segments[blob] = index not_overlapping_segments[blob] = 0 if return_segments: return overlapping, not_overlapping, overlapping_segments, not_overlapping_segments else: return overlapping, not_overlapping # -----------------------------------------------------------------
27.632184
111
0.56926
[ "MIT" ]
Stargrazer82301/CAAPR
CAAPR/CAAPR_AstroMagic/PTS/pts/magic/tools/masks.py
4,809
Python
import sys, math import numpy as np import Box2D from Box2D.b2 import (edgeShape, circleShape, fixtureDef, polygonShape, revoluteJointDef, contactListener) import gym from gym import spaces from gym.utils import colorize, seeding # This is simple 4-joints walker robot environment. # # There are two versions: # # - Normal, with slightly uneven terrain. # # - Hardcore with ladders, stumps, pitfalls. # # Reward is given for moving forward, total 300+ points up to the far end. If the robot falls, # it gets -100. Applying motor torque costs a small amount of points, more optimal agent # will get better score. # # Heuristic is provided for testing, it's also useful to get demonstrations to # learn from. To run heuristic: # # python gym/envs/box2d/bipedal_walker.py # # State consists of hull angle speed, angular velocity, horizontal speed, vertical speed, # position of joints and joints angular speed, legs contact with ground, and 10 lidar # rangefinder measurements to help to deal with the hardcore version. There's no coordinates # in the state vector. Lidar is less useful in normal version, but it works. # # To solve the game you need to get 300 points in 1600 time steps. # # To solve hardcore version you need 300 points in 2000 time steps. # # Created by Oleg Klimov. Licensed on the same terms as the rest of OpenAI Gym. FPS = 50 SCALE = 30.0 # affects how fast-paced the game is, forces should be adjusted as well MOTORS_TORQUE = 80 SPEED_HIP = 4 SPEED_KNEE = 6 LIDAR_RANGE = 160/SCALE INITIAL_RANDOM = 5 HULL_POLY =[ (-30,+9), (+6,+9), (+34,+1), (+34,-8), (-30,-8) ] LEG_DOWN = -8/SCALE LEG_W, LEG_H = 8/SCALE, 34/SCALE VIEWPORT_W = 600 VIEWPORT_H = 400 TERRAIN_STEP = 14/SCALE TERRAIN_LENGTH = 200 # in steps TERRAIN_HEIGHT = VIEWPORT_H/SCALE/4 TERRAIN_GRASS = 10 # low long are grass spots, in steps TERRAIN_STARTPAD = 20 # in steps FRICTION = 2.5 HULL_FD = fixtureDef( shape=polygonShape(vertices=[ (x/SCALE,y/SCALE) for x,y in HULL_POLY ]), density=5.0, friction=0.1, categoryBits=0x0020, maskBits=0x001, # collide only with ground restitution=0.0) # 0.99 bouncy LEG_FD = fixtureDef( shape=polygonShape(box=(LEG_W/2, LEG_H/2)), density=1.0, restitution=0.0, categoryBits=0x0020, maskBits=0x001) LOWER_FD = fixtureDef( shape=polygonShape(box=(0.8*LEG_W/2, LEG_H/2)), density=1.0, restitution=0.0, categoryBits=0x0020, maskBits=0x001) class ContactDetector(contactListener): def __init__(self, env): contactListener.__init__(self) self.env = env def BeginContact(self, contact): if self.env.hull==contact.fixtureA.body or self.env.hull==contact.fixtureB.body: self.env.game_over = True for leg in [self.env.legs[1], self.env.legs[3]]: if leg in [contact.fixtureA.body, contact.fixtureB.body]: leg.ground_contact = True def EndContact(self, contact): for leg in [self.env.legs[1], self.env.legs[3]]: if leg in [contact.fixtureA.body, contact.fixtureB.body]: leg.ground_contact = False class BipedalWalker(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second' : FPS } hardcore = False def __init__(self): self.seed() self.viewer = None self.world = Box2D.b2World() self.terrain = None self.hull = None self.prev_shaping = None self.fd_polygon = fixtureDef( shape = polygonShape(vertices= [(0, 0), (1, 0), (1, -1), (0, -1)]), friction = FRICTION) self.fd_edge = fixtureDef( shape = edgeShape(vertices= [(0, 0), (1, 1)]), friction = FRICTION, categoryBits=0x0001, ) self.reset() high = np.array([np.inf]*24) self.action_space = spaces.Box(np.array([-1,-1,-1,-1]), np.array([+1,+1,+1,+1])) self.observation_space = spaces.Box(-high, high) def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def _destroy(self): if not self.terrain: return self.world.contactListener = None for t in self.terrain: self.world.DestroyBody(t) self.terrain = [] self.world.DestroyBody(self.hull) self.hull = None for leg in self.legs: self.world.DestroyBody(leg) self.legs = [] self.joints = [] def _generate_terrain(self, hardcore): GRASS, STUMP, STAIRS, PIT, _STATES_ = range(5) state = GRASS velocity = 0.0 y = TERRAIN_HEIGHT counter = TERRAIN_STARTPAD oneshot = False self.terrain = [] self.terrain_x = [] self.terrain_y = [] for i in range(TERRAIN_LENGTH): x = i*TERRAIN_STEP self.terrain_x.append(x) if state==GRASS and not oneshot: velocity = 0.8*velocity + 0.01*np.sign(TERRAIN_HEIGHT - y) if i > TERRAIN_STARTPAD: velocity += self.np_random.uniform(-1, 1)/SCALE #1 y += velocity elif state==PIT and oneshot: counter = self.np_random.randint(3, 5) poly = [ (x, y), (x+TERRAIN_STEP, y), (x+TERRAIN_STEP, y-4*TERRAIN_STEP), (x, y-4*TERRAIN_STEP), ] self.fd_polygon.shape.vertices=poly t = self.world.CreateStaticBody( fixtures = self.fd_polygon) t.color1, t.color2 = (1,1,1), (0.6,0.6,0.6) self.terrain.append(t) self.fd_polygon.shape.vertices=[(p[0]+TERRAIN_STEP*counter,p[1]) for p in poly] t = self.world.CreateStaticBody( fixtures = self.fd_polygon) t.color1, t.color2 = (1,1,1), (0.6,0.6,0.6) self.terrain.append(t) counter += 2 original_y = y elif state==PIT and not oneshot: y = original_y if counter > 1: y -= 4*TERRAIN_STEP elif state==STUMP and oneshot: counter = self.np_random.randint(1, 3) poly = [ (x, y), (x+counter*TERRAIN_STEP, y), (x+counter*TERRAIN_STEP, y+counter*TERRAIN_STEP), (x, y+counter*TERRAIN_STEP), ] self.fd_polygon.shape.vertices=poly t = self.world.CreateStaticBody( fixtures = self.fd_polygon) t.color1, t.color2 = (1,1,1), (0.6,0.6,0.6) self.terrain.append(t) elif state==STAIRS and oneshot: stair_height = +1 if self.np_random.rand() > 0.5 else -1 stair_width = self.np_random.randint(4, 5) stair_steps = self.np_random.randint(3, 5) original_y = y for s in range(stair_steps): poly = [ (x+( s*stair_width)*TERRAIN_STEP, y+( s*stair_height)*TERRAIN_STEP), (x+((1+s)*stair_width)*TERRAIN_STEP, y+( s*stair_height)*TERRAIN_STEP), (x+((1+s)*stair_width)*TERRAIN_STEP, y+(-1+s*stair_height)*TERRAIN_STEP), (x+( s*stair_width)*TERRAIN_STEP, y+(-1+s*stair_height)*TERRAIN_STEP), ] self.fd_polygon.shape.vertices=poly t = self.world.CreateStaticBody( fixtures = self.fd_polygon) t.color1, t.color2 = (1,1,1), (0.6,0.6,0.6) self.terrain.append(t) counter = stair_steps*stair_width elif state==STAIRS and not oneshot: s = stair_steps*stair_width - counter - stair_height n = s/stair_width y = original_y + (n*stair_height)*TERRAIN_STEP oneshot = False self.terrain_y.append(y) counter -= 1 if counter==0: counter = self.np_random.randint(TERRAIN_GRASS/2, TERRAIN_GRASS) if state==GRASS and hardcore: state = self.np_random.randint(1, _STATES_) oneshot = True else: state = GRASS oneshot = True self.terrain_poly = [] for i in range(TERRAIN_LENGTH-1): poly = [ (self.terrain_x[i], self.terrain_y[i]), (self.terrain_x[i+1], self.terrain_y[i+1]) ] self.fd_edge.shape.vertices=poly t = self.world.CreateStaticBody( fixtures = self.fd_edge) color = (0.3, 1.0 if i%2==0 else 0.8, 0.3) t.color1 = color t.color2 = color self.terrain.append(t) color = (0.4, 0.6, 0.3) poly += [ (poly[1][0], 0), (poly[0][0], 0) ] self.terrain_poly.append( (poly, color) ) self.terrain.reverse() def _generate_clouds(self): # Sorry for the clouds, couldn't resist self.cloud_poly = [] for i in range(TERRAIN_LENGTH//20): x = self.np_random.uniform(0, TERRAIN_LENGTH)*TERRAIN_STEP y = VIEWPORT_H/SCALE*3/4 poly = [ (x+15*TERRAIN_STEP*math.sin(3.14*2*a/5)+self.np_random.uniform(0,5*TERRAIN_STEP), y+ 5*TERRAIN_STEP*math.cos(3.14*2*a/5)+self.np_random.uniform(0,5*TERRAIN_STEP) ) for a in range(5) ] x1 = min( [p[0] for p in poly] ) x2 = max( [p[0] for p in poly] ) self.cloud_poly.append( (poly,x1,x2) ) def reset(self): self._destroy() self.world.contactListener_bug_workaround = ContactDetector(self) self.world.contactListener = self.world.contactListener_bug_workaround self.game_over = False self.prev_shaping = None self.scroll = 0.0 self.lidar_render = 0 W = VIEWPORT_W/SCALE H = VIEWPORT_H/SCALE self._generate_terrain(self.hardcore) self._generate_clouds() init_x = TERRAIN_STEP*TERRAIN_STARTPAD/2 init_y = TERRAIN_HEIGHT+2*LEG_H self.hull = self.world.CreateDynamicBody( position = (init_x, init_y), fixtures = HULL_FD ) self.hull.color1 = (0.5,0.4,0.9) self.hull.color2 = (0.3,0.3,0.5) self.hull.ApplyForceToCenter((self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM), 0), True) self.legs = [] self.joints = [] for i in [-1,+1]: leg = self.world.CreateDynamicBody( position = (init_x, init_y - LEG_H/2 - LEG_DOWN), angle = (i*0.05), fixtures = LEG_FD ) leg.color1 = (0.6-i/10., 0.3-i/10., 0.5-i/10.) leg.color2 = (0.4-i/10., 0.2-i/10., 0.3-i/10.) rjd = revoluteJointDef( bodyA=self.hull, bodyB=leg, localAnchorA=(0, LEG_DOWN), localAnchorB=(0, LEG_H/2), enableMotor=True, enableLimit=True, maxMotorTorque=MOTORS_TORQUE, motorSpeed = i, lowerAngle = -0.8, upperAngle = 1.1, ) self.legs.append(leg) self.joints.append(self.world.CreateJoint(rjd)) lower = self.world.CreateDynamicBody( position = (init_x, init_y - LEG_H*3/2 - LEG_DOWN), angle = (i*0.05), fixtures = LOWER_FD ) lower.color1 = (0.6-i/10., 0.3-i/10., 0.5-i/10.) lower.color2 = (0.4-i/10., 0.2-i/10., 0.3-i/10.) rjd = revoluteJointDef( bodyA=leg, bodyB=lower, localAnchorA=(0, -LEG_H/2), localAnchorB=(0, LEG_H/2), enableMotor=True, enableLimit=True, maxMotorTorque=MOTORS_TORQUE, motorSpeed = 1, lowerAngle = -1.6, upperAngle = -0.1, ) lower.ground_contact = False self.legs.append(lower) self.joints.append(self.world.CreateJoint(rjd)) self.drawlist = self.terrain + self.legs + [self.hull] class LidarCallback(Box2D.b2.rayCastCallback): def ReportFixture(self, fixture, point, normal, fraction): if (fixture.filterData.categoryBits & 1) == 0: return 1 self.p2 = point self.fraction = fraction return 0 self.lidar = [LidarCallback() for _ in range(10)] return self.step(np.array([0,0,0,0]))[0] def step(self, action): #self.hull.ApplyForceToCenter((0, 20), True) -- Uncomment this to receive a bit of stability help control_speed = False # Should be easier as well if control_speed: self.joints[0].motorSpeed = float(SPEED_HIP * np.clip(action[0], -1, 1)) self.joints[1].motorSpeed = float(SPEED_KNEE * np.clip(action[1], -1, 1)) self.joints[2].motorSpeed = float(SPEED_HIP * np.clip(action[2], -1, 1)) self.joints[3].motorSpeed = float(SPEED_KNEE * np.clip(action[3], -1, 1)) else: self.joints[0].motorSpeed = float(SPEED_HIP * np.sign(action[0])) self.joints[0].maxMotorTorque = float(MOTORS_TORQUE * np.clip(np.abs(action[0]), 0, 1)) self.joints[1].motorSpeed = float(SPEED_KNEE * np.sign(action[1])) self.joints[1].maxMotorTorque = float(MOTORS_TORQUE * np.clip(np.abs(action[1]), 0, 1)) self.joints[2].motorSpeed = float(SPEED_HIP * np.sign(action[2])) self.joints[2].maxMotorTorque = float(MOTORS_TORQUE * np.clip(np.abs(action[2]), 0, 1)) self.joints[3].motorSpeed = float(SPEED_KNEE * np.sign(action[3])) self.joints[3].maxMotorTorque = float(MOTORS_TORQUE * np.clip(np.abs(action[3]), 0, 1)) self.world.Step(1.0/FPS, 6*30, 2*30) pos = self.hull.position vel = self.hull.linearVelocity for i in range(10): self.lidar[i].fraction = 1.0 self.lidar[i].p1 = pos self.lidar[i].p2 = ( pos[0] + math.sin(1.5*i/10.0)*LIDAR_RANGE, pos[1] - math.cos(1.5*i/10.0)*LIDAR_RANGE) self.world.RayCast(self.lidar[i], self.lidar[i].p1, self.lidar[i].p2) state = [ self.hull.angle, # Normal angles up to 0.5 here, but sure more is possible. 2.0*self.hull.angularVelocity/FPS, 0.3*vel.x*(VIEWPORT_W/SCALE)/FPS, # Normalized to get -1..1 range 0.3*vel.y*(VIEWPORT_H/SCALE)/FPS, self.joints[0].angle, # This will give 1.1 on high up, but it's still OK (and there should be spikes on hiting the ground, that's normal too) self.joints[0].speed / SPEED_HIP, self.joints[1].angle + 1.0, self.joints[1].speed / SPEED_KNEE, 1.0 if self.legs[1].ground_contact else 0.0, self.joints[2].angle, self.joints[2].speed / SPEED_HIP, self.joints[3].angle + 1.0, self.joints[3].speed / SPEED_KNEE, 1.0 if self.legs[3].ground_contact else 0.0 ] state += [l.fraction for l in self.lidar] assert len(state)==24 self.scroll = pos.x - VIEWPORT_W/SCALE/5 shaping = 130*pos[0]/SCALE # moving forward is a way to receive reward (normalized to get 300 on completion) shaping -= 5.0*abs(state[0]) # keep head straight, other than that and falling, any behavior is unpunished reward = 0 if self.prev_shaping is not None: reward = shaping - self.prev_shaping self.prev_shaping = shaping for a in action: reward -= 0.00035 * MOTORS_TORQUE * np.clip(np.abs(a), 0, 1) # normalized to about -50.0 using heuristic, more optimal agent should spend less done = False if self.game_over or pos[0] < 0: reward = -100 done = True if pos[0] > (TERRAIN_LENGTH-TERRAIN_GRASS)*TERRAIN_STEP: done = True return np.array(state), reward, done, {} def render(self, mode='human'): from gym.envs.classic_control import rendering if self.viewer is None: self.viewer = rendering.Viewer(VIEWPORT_W, VIEWPORT_H) self.viewer.set_bounds(self.scroll, VIEWPORT_W/SCALE + self.scroll, 0, VIEWPORT_H/SCALE) self.viewer.draw_polygon( [ (self.scroll, 0), (self.scroll+VIEWPORT_W/SCALE, 0), (self.scroll+VIEWPORT_W/SCALE, VIEWPORT_H/SCALE), (self.scroll, VIEWPORT_H/SCALE), ], color=(0.9, 0.9, 1.0) ) for poly,x1,x2 in self.cloud_poly: if x2 < self.scroll/2: continue if x1 > self.scroll/2 + VIEWPORT_W/SCALE: continue self.viewer.draw_polygon( [(p[0]+self.scroll/2, p[1]) for p in poly], color=(1,1,1)) for poly, color in self.terrain_poly: if poly[1][0] < self.scroll: continue if poly[0][0] > self.scroll + VIEWPORT_W/SCALE: continue self.viewer.draw_polygon(poly, color=color) self.lidar_render = (self.lidar_render+1) % 100 i = self.lidar_render if i < 2*len(self.lidar): l = self.lidar[i] if i < len(self.lidar) else self.lidar[len(self.lidar)-i-1] self.viewer.draw_polyline( [l.p1, l.p2], color=(1,0,0), linewidth=1 ) for obj in self.drawlist: for f in obj.fixtures: trans = f.body.transform if type(f.shape) is circleShape: t = rendering.Transform(translation=trans*f.shape.pos) self.viewer.draw_circle(f.shape.radius, 30, color=obj.color1).add_attr(t) self.viewer.draw_circle(f.shape.radius, 30, color=obj.color2, filled=False, linewidth=2).add_attr(t) else: path = [trans*v for v in f.shape.vertices] self.viewer.draw_polygon(path, color=obj.color1) path.append(path[0]) self.viewer.draw_polyline(path, color=obj.color2, linewidth=2) flagy1 = TERRAIN_HEIGHT flagy2 = flagy1 + 50/SCALE x = TERRAIN_STEP*3 self.viewer.draw_polyline( [(x, flagy1), (x, flagy2)], color=(0,0,0), linewidth=2 ) f = [(x, flagy2), (x, flagy2-10/SCALE), (x+25/SCALE, flagy2-5/SCALE)] self.viewer.draw_polygon(f, color=(0.9,0.2,0) ) self.viewer.draw_polyline(f + [f[0]], color=(0,0,0), linewidth=2 ) return self.viewer.render(return_rgb_array = mode=='rgb_array') def close(self): if self.viewer is not None: self.viewer.close() self.viewer = None class BipedalWalkerHardcore(BipedalWalker): hardcore = True if __name__=="__main__": # Heurisic: suboptimal, have no notion of balance. env = BipedalWalker() env.reset() steps = 0 total_reward = 0 a = np.array([0.0, 0.0, 0.0, 0.0]) STAY_ON_ONE_LEG, PUT_OTHER_DOWN, PUSH_OFF = 1,2,3 SPEED = 0.29 # Will fall forward on higher speed state = STAY_ON_ONE_LEG moving_leg = 0 supporting_leg = 1 - moving_leg SUPPORT_KNEE_ANGLE = +0.1 supporting_knee_angle = SUPPORT_KNEE_ANGLE while True: s, r, done, info = env.step(a) total_reward += r if steps % 20 == 0 or done: print("\naction " + str(["{:+0.2f}".format(x) for x in a])) print("step {} total_reward {:+0.2f}".format(steps, total_reward)) print("hull " + str(["{:+0.2f}".format(x) for x in s[0:4] ])) print("leg0 " + str(["{:+0.2f}".format(x) for x in s[4:9] ])) print("leg1 " + str(["{:+0.2f}".format(x) for x in s[9:14]])) steps += 1 contact0 = s[8] contact1 = s[13] moving_s_base = 4 + 5*moving_leg supporting_s_base = 4 + 5*supporting_leg hip_targ = [None,None] # -0.8 .. +1.1 knee_targ = [None,None] # -0.6 .. +0.9 hip_todo = [0.0, 0.0] knee_todo = [0.0, 0.0] if state==STAY_ON_ONE_LEG: hip_targ[moving_leg] = 1.1 knee_targ[moving_leg] = -0.6 supporting_knee_angle += 0.03 if s[2] > SPEED: supporting_knee_angle += 0.03 supporting_knee_angle = min( supporting_knee_angle, SUPPORT_KNEE_ANGLE ) knee_targ[supporting_leg] = supporting_knee_angle if s[supporting_s_base+0] < 0.10: # supporting leg is behind state = PUT_OTHER_DOWN if state==PUT_OTHER_DOWN: hip_targ[moving_leg] = +0.1 knee_targ[moving_leg] = SUPPORT_KNEE_ANGLE knee_targ[supporting_leg] = supporting_knee_angle if s[moving_s_base+4]: state = PUSH_OFF supporting_knee_angle = min( s[moving_s_base+2], SUPPORT_KNEE_ANGLE ) if state==PUSH_OFF: knee_targ[moving_leg] = supporting_knee_angle knee_targ[supporting_leg] = +1.0 if s[supporting_s_base+2] > 0.88 or s[2] > 1.2*SPEED: state = STAY_ON_ONE_LEG moving_leg = 1 - moving_leg supporting_leg = 1 - moving_leg if hip_targ[0]: hip_todo[0] = 0.9*(hip_targ[0] - s[4]) - 0.25*s[5] if hip_targ[1]: hip_todo[1] = 0.9*(hip_targ[1] - s[9]) - 0.25*s[10] if knee_targ[0]: knee_todo[0] = 4.0*(knee_targ[0] - s[6]) - 0.25*s[7] if knee_targ[1]: knee_todo[1] = 4.0*(knee_targ[1] - s[11]) - 0.25*s[12] hip_todo[0] -= 0.9*(0-s[0]) - 1.5*s[1] # PID to keep head strait hip_todo[1] -= 0.9*(0-s[0]) - 1.5*s[1] knee_todo[0] -= 15.0*s[3] # vertical speed, to damp oscillations knee_todo[1] -= 15.0*s[3] a[0] = hip_todo[0] a[1] = knee_todo[0] a[2] = hip_todo[1] a[3] = knee_todo[1] a = np.clip(0.5*a, -1.0, 1.0) env.render() if done: break
39.637457
155
0.542243
[ "MIT" ]
hbutsuak95/iv_rl
mbbl_envs/env/gym_env/box2d/walker.py
23,069
Python
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Handles all requests relating to volumes. """ import functools from eventlet import greenthread from cinder import exception from cinder import flags from cinder.openstack.common import cfg from cinder.image import glance from cinder.openstack.common import log as logging from cinder.openstack.common import rpc import cinder.policy from cinder.openstack.common import timeutils from cinder import quota from cinder.db import base volume_host_opt = cfg.BoolOpt('snapshot_same_host', default=True, help='Create volume from snapshot at the host where snapshot resides') FLAGS = flags.FLAGS FLAGS.register_opt(volume_host_opt) flags.DECLARE('storage_availability_zone', 'cinder.volume.manager') LOG = logging.getLogger(__name__) GB = 1048576 * 1024 def wrap_check_policy(func): """Check policy corresponding to the wrapped methods prior to execution This decorator requires the first 3 args of the wrapped function to be (self, context, volume) """ @functools.wraps(func) def wrapped(self, context, target_obj, *args, **kwargs): check_policy(context, func.__name__, target_obj) return func(self, context, target_obj, *args, **kwargs) return wrapped def check_policy(context, action, target_obj=None): target = { 'project_id': context.project_id, 'user_id': context.user_id, } target.update(target_obj or {}) _action = 'volume:%s' % action cinder.policy.enforce(context, _action, target) class API(base.Base): """API for interacting with the volume manager.""" def __init__(self, db_driver=None, image_service=None): self.image_service = (image_service or glance.get_default_image_service()) super(API, self).__init__(db_driver) def create(self, context, size, name, description, snapshot=None, image_id=None, volume_type=None, metadata=None, availability_zone=None): check_policy(context, 'create') if snapshot is not None: if snapshot['status'] != "available": msg = _("status must be available") raise exception.InvalidSnapshot(reason=msg) if not size: size = snapshot['volume_size'] snapshot_id = snapshot['id'] else: snapshot_id = None def as_int(s): try: return int(s) except ValueError: return s # tolerate size as stringified int size = as_int(size) if not isinstance(size, int) or size <= 0: msg = (_("Volume size '%s' must be an integer and greater than 0") % size) raise exception.InvalidInput(reason=msg) if quota.allowed_volumes(context, 1, size) < 1: pid = context.project_id LOG.warn(_("Quota exceeded for %(pid)s, tried to create" " %(size)sG volume") % locals()) raise exception.QuotaError(code="VolumeSizeTooLarge") if image_id: # check image existence image_meta = self.image_service.show(context, image_id) image_size_in_gb = int(image_meta['size']) / GB #check image size is not larger than volume size. if image_size_in_gb > size: msg = _('Size of specified image is larger than volume size.') raise exception.InvalidInput(reason=msg) if availability_zone is None: availability_zone = FLAGS.storage_availability_zone if volume_type is None: volume_type_id = None else: volume_type_id = volume_type.get('id', None) options = { 'size': size, 'user_id': context.user_id, 'project_id': context.project_id, 'snapshot_id': snapshot_id, 'availability_zone': availability_zone, 'status': "creating", 'attach_status': "detached", 'display_name': name, 'display_description': description, 'volume_type_id': volume_type_id, 'metadata': metadata, } volume = self.db.volume_create(context, options) rpc.cast(context, FLAGS.scheduler_topic, {"method": "create_volume", "args": {"topic": FLAGS.volume_topic, "volume_id": volume['id'], "snapshot_id": volume['snapshot_id'], "image_id": image_id}}) return volume def _cast_create_volume(self, context, volume_id, snapshot_id): # NOTE(Rongze Zhu): It is a simple solution for bug 1008866 # If snapshot_id is set, make the call create volume directly to # the volume host where the snapshot resides instead of passing it # through the scheduer. So snapshot can be copy to new volume. if snapshot_id and FLAGS.snapshot_same_host: snapshot_ref = self.db.snapshot_get(context, snapshot_id) src_volume_ref = self.db.volume_get(context, snapshot_ref['volume_id']) topic = rpc.queue_get_for(context, FLAGS.volume_topic, src_volume_ref['host']) rpc.cast(context, topic, {"method": "create_volume", "args": {"volume_id": volume_id, "snapshot_id": snapshot_id}}) else: rpc.cast(context, FLAGS.scheduler_topic, {"method": "create_volume", "args": {"topic": FLAGS.volume_topic, "volume_id": volume_id, "snapshot_id": snapshot_id}}) @wrap_check_policy def delete(self, context, volume): volume_id = volume['id'] if not volume['host']: # NOTE(vish): scheduling failed, so delete it self.db.volume_destroy(context, volume_id) return if volume['status'] not in ["available", "error"]: msg = _("Volume status must be available or error") raise exception.InvalidVolume(reason=msg) snapshots = self.db.snapshot_get_all_for_volume(context, volume_id) if len(snapshots): msg = _("Volume still has %d dependent snapshots") % len(snapshots) raise exception.InvalidVolume(reason=msg) now = timeutils.utcnow() self.db.volume_update(context, volume_id, {'status': 'deleting', 'terminated_at': now}) host = volume['host'] rpc.cast(context, rpc.queue_get_for(context, FLAGS.volume_topic, host), {"method": "delete_volume", "args": {"volume_id": volume_id}}) @wrap_check_policy def update(self, context, volume, fields): self.db.volume_update(context, volume['id'], fields) def get(self, context, volume_id): rv = self.db.volume_get(context, volume_id) volume = dict(rv.iteritems()) check_policy(context, 'get', volume) return volume def get_all(self, context, search_opts=None): check_policy(context, 'get_all') if search_opts is None: search_opts = {} if (context.is_admin and 'all_tenants' in search_opts): # Need to remove all_tenants to pass the filtering below. del search_opts['all_tenants'] volumes = self.db.volume_get_all(context) else: volumes = self.db.volume_get_all_by_project(context, context.project_id) if search_opts: LOG.debug(_("Searching by: %s") % str(search_opts)) def _check_metadata_match(volume, searchdict): volume_metadata = {} for i in volume.get('volume_metadata'): volume_metadata[i['key']] = i['value'] for k, v in searchdict.iteritems(): if (k not in volume_metadata.keys() or volume_metadata[k] != v): return False return True # search_option to filter_name mapping. filter_mapping = {'metadata': _check_metadata_match} result = [] for volume in volumes: # go over all filters in the list for opt, values in search_opts.iteritems(): try: filter_func = filter_mapping[opt] except KeyError: # no such filter - ignore it, go to next filter continue else: if filter_func(volume, values): result.append(volume) break volumes = result return volumes def get_snapshot(self, context, snapshot_id): check_policy(context, 'get_snapshot') rv = self.db.snapshot_get(context, snapshot_id) return dict(rv.iteritems()) def get_all_snapshots(self, context, search_opts=None): check_policy(context, 'get_all_snapshots') search_opts = search_opts or {} if (context.is_admin and 'all_tenants' in search_opts): # Need to remove all_tenants to pass the filtering below. del search_opts['all_tenants'] return self.db.snapshot_get_all(context) else: return self.db.snapshot_get_all_by_project(context, context.project_id) @wrap_check_policy def check_attach(self, context, volume): # TODO(vish): abstract status checking? if volume['status'] != "available": msg = _("status must be available") raise exception.InvalidVolume(reason=msg) if volume['attach_status'] == "attached": msg = _("already attached") raise exception.InvalidVolume(reason=msg) @wrap_check_policy def check_detach(self, context, volume): # TODO(vish): abstract status checking? if volume['status'] == "available": msg = _("already detached") raise exception.InvalidVolume(reason=msg) def remove_from_compute(self, context, volume, instance_id, host): """Remove volume from specified compute host.""" rpc.call(context, rpc.queue_get_for(context, FLAGS.compute_topic, host), {"method": "remove_volume_connection", "args": {'instance_id': instance_id, 'volume_id': volume['id']}}) @wrap_check_policy def reserve_volume(self, context, volume): self.update(context, volume, {"status": "attaching"}) @wrap_check_policy def unreserve_volume(self, context, volume): if volume['status'] == "attaching": self.update(context, volume, {"status": "available"}) @wrap_check_policy def attach(self, context, volume, instance_uuid, mountpoint): host = volume['host'] queue = rpc.queue_get_for(context, FLAGS.volume_topic, host) return rpc.call(context, queue, {"method": "attach_volume", "args": {"volume_id": volume['id'], "instance_uuid": instance_uuid, "mountpoint": mountpoint}}) @wrap_check_policy def detach(self, context, volume): host = volume['host'] queue = rpc.queue_get_for(context, FLAGS.volume_topic, host) return rpc.call(context, queue, {"method": "detach_volume", "args": {"volume_id": volume['id']}}) @wrap_check_policy def initialize_connection(self, context, volume, connector): host = volume['host'] queue = rpc.queue_get_for(context, FLAGS.volume_topic, host) return rpc.call(context, queue, {"method": "initialize_connection", "args": {"volume_id": volume['id'], "connector": connector}}) @wrap_check_policy def terminate_connection(self, context, volume, connector): self.unreserve_volume(context, volume) host = volume['host'] queue = rpc.queue_get_for(context, FLAGS.volume_topic, host) return rpc.call(context, queue, {"method": "terminate_connection", "args": {"volume_id": volume['id'], "connector": connector}}) def _create_snapshot(self, context, volume, name, description, force=False): check_policy(context, 'create_snapshot', volume) if ((not force) and (volume['status'] != "available")): msg = _("must be available") raise exception.InvalidVolume(reason=msg) options = { 'volume_id': volume['id'], 'user_id': context.user_id, 'project_id': context.project_id, 'status': "creating", 'progress': '0%', 'volume_size': volume['size'], 'display_name': name, 'display_description': description} snapshot = self.db.snapshot_create(context, options) host = volume['host'] rpc.cast(context, rpc.queue_get_for(context, FLAGS.volume_topic, host), {"method": "create_snapshot", "args": {"volume_id": volume['id'], "snapshot_id": snapshot['id']}}) return snapshot def create_snapshot(self, context, volume, name, description): return self._create_snapshot(context, volume, name, description, False) def create_snapshot_force(self, context, volume, name, description): return self._create_snapshot(context, volume, name, description, True) @wrap_check_policy def delete_snapshot(self, context, snapshot): if snapshot['status'] not in ["available", "error"]: msg = _("Volume Snapshot status must be available or error") raise exception.InvalidVolume(reason=msg) self.db.snapshot_update(context, snapshot['id'], {'status': 'deleting'}) volume = self.db.volume_get(context, snapshot['volume_id']) host = volume['host'] rpc.cast(context, rpc.queue_get_for(context, FLAGS.volume_topic, host), {"method": "delete_snapshot", "args": {"snapshot_id": snapshot['id']}}) @wrap_check_policy def get_volume_metadata(self, context, volume): """Get all metadata associated with a volume.""" rv = self.db.volume_metadata_get(context, volume['id']) return dict(rv.iteritems()) @wrap_check_policy def delete_volume_metadata(self, context, volume, key): """Delete the given metadata item from an volume.""" self.db.volume_metadata_delete(context, volume['id'], key) @wrap_check_policy def update_volume_metadata(self, context, volume, metadata, delete=False): """Updates or creates volume metadata. If delete is True, metadata items that are not specified in the `metadata` argument will be deleted. """ if delete: _metadata = metadata else: _metadata = self.get_volume_metadata(context, volume['id']) _metadata.update(metadata) self.db.volume_metadata_update(context, volume['id'], _metadata, True) return _metadata def get_volume_metadata_value(self, volume, key): """Get value of particular metadata key.""" metadata = volume.get('volume_metadata') if metadata: for i in volume['volume_metadata']: if i['key'] == key: return i['value'] return None def _check_volume_availability(self, context, volume, force): """Check if the volume can be used.""" if volume['status'] not in ['available', 'in-use']: msg = _('Volume status must be available/in-use.') raise exception.InvalidVolume(reason=msg) if not force and 'in-use' == volume['status']: msg = _('Volume status is in-use.') raise exception.InvalidVolume(reason=msg) @wrap_check_policy def copy_volume_to_image(self, context, volume, metadata, force): """Create a new image from the specified volume.""" self._check_volume_availability(context, volume, force) recv_metadata = self.image_service.create(context, metadata) self.update(context, volume, {'status': 'uploading'}) rpc.cast(context, rpc.queue_get_for(context, FLAGS.volume_topic, volume['host']), {"method": "copy_volume_to_image", "args": {"volume_id": volume['id'], "image_id": recv_metadata['id']}}) response = {"id": volume['id'], "updated_at": volume['updated_at'], "status": 'uploading', "display_description": volume['display_description'], "size": volume['size'], "volume_type": volume['volume_type'], "image_id": recv_metadata['id'], "container_format": recv_metadata['container_format'], "disk_format": recv_metadata['disk_format'], "image_name": recv_metadata.get('name', None) } return response
39.509474
79
0.577929
[ "Apache-2.0" ]
CiscoSystems/cinder-old
cinder/volume/api.py
18,767
Python
import logging from redlib.api.misc import Logger log = Logger(name='jekt') log.start('stdout', logging.DEBUG)
14.25
34
0.745614
[ "MIT" ]
amol9/jekt
jekt/logger.py
114
Python
""" See notebook 5 for example use of show_mri_sample() """ import glob import os import random import numpy as np import pandas as pd import torch from torch.utils.data import Dataset import matplotlib.pyplot as plt import cv2 import scipy.ndimage as ndimage def make_bg_transparent(im, bg_th=0.0, set_to_color=None): # create transparency alpha channel # convert image to RGBA if len(im.shape) == 3: alpha_c = (np.sum(im[:,:,:],axis=2) > bg_th).astype(im.dtype) c1,c2,c3 = cv2.split(im) else: alpha_c = (im[:,:] > bg_th).astype(im.dtype) c1,c2,c3 = im.copy(), im.copy(), im.copy() if set_to_color is not None: zeros = np.zeros_like(c1) if set_to_color == 'green': merged = np.stack([zeros,c2,zeros,alpha_c], axis=-1) elif set_to_color == 'red': merged = np.stack([c1,zeros,zeros,alpha_c], axis=-1) elif set_to_color == 'royalblue': merged = np.stack([c1,zeros,zeros,alpha_c], axis=-1) elif set_to_color == 'violet': merged = np.stack([c1,zeros,c3,alpha_c], axis=-1) elif set_to_color == 'yellow': merged = np.stack([c1,c2,zeros,alpha_c], axis=-1) else: merged = np.stack([c1,c2,c3,alpha_c], axis=-1) return merged def to_3d_points(im, th=1e-6, downsample=5): xs,ys,ds = [],[],[] if len(im.shape) == 4: im3d = np.sum(im,axis=3) else: im3d = im depth,width,height = im3d.shape step_vol = downsample**3 for x in range(0, width - downsample, downsample): for y in range(0, height - downsample, downsample): for d in range(0, depth - downsample, downsample): if (np.sum(im3d[d:d+downsample, x:x+downsample, y:y+downsample]) / step_vol) > th: xs.append(x + (downsample//2)) ys.append(y + (downsample//2)) ds.append(d + (downsample//2)) return np.array(xs), np.array(ys), np.array(ds) def adjust_saturation(img, sat_scale=0.3): hsv_im = cv2.cvtColor((img * 255).astype(np.uint8), cv2.COLOR_RGB2HSV) (h, s, v) = cv2.split(hsv_im) s = s*sat_scale s = np.clip(s,0,255) hsv_im = np.stack([h,s,v],axis=2).astype(np.uint8) return cv2.cvtColor(hsv_im, cv2.COLOR_HSV2RGB) / 255. def show_mri_sample(sample, pred_mask=None, pred_lbl=None, seg_downsample=None, save_fn=None): """ Plot sample in three projections """ plt.close('all') alpha=0.5 image_alpha=1.0 ims = sample['image'].numpy() means = sample['mean'].numpy() stds = sample['std'].numpy() segs = sample['segmentation'].numpy() if 'segmentation' in sample else None # add batch dims if missing if ims.ndim == 4: ims = np.expand_dims(ims, 0) means = np.expand_dims(means, 0) stds = np.expand_dims(stds, 0) if segs is not None: segs = np.expand_dims(segs, 0) n_images = len(ims) n_root = int(np.ceil(np.sqrt(n_images))) n_cols = n_root * 2 n_rows = n_root * 2 # special case fix to get with correct with small bs if n_images == 2: n_rows = 2 fig_scale = 2 f = plt.figure(figsize=(fig_scale*n_cols,fig_scale*n_rows)) # Read additional meta from batch brats_ids = [sample['BraTSID']] if n_images == 1 else sample['BraTSID'] labels = None if 'label' in sample: labels = [sample['label']] if n_images == 1 else sample['label'] def _subplot_index(index, row_off, col_off): startrow = (index * 2)//n_cols startcol = (index * 2)%n_cols return (2*startrow+row_off)*n_cols + (startcol + col_off) + 1 for index in range(n_images): im = ims[index] seg = segs[index] seg = np.swapaxes(seg, 0,3) # upsample seg back to original size if it has been downsampled if seg_downsample is not None: seg = seg.repeat(seg_downsample, axis=0).repeat(seg_downsample, axis=1).repeat(seg_downsample, axis=2) # Normalize images for visualization im = np.swapaxes(im, 0,3) # swap depth and chan axes im = (im * stds[index]) + means[index] title = f'BraTSID: {brats_ids[index]}' if labels is not None: title += f', GT-MGMT:{labels[index]}' if pred_lbl is not None: title += f'\nPred-MGMT:{float(pred_lbl[index][0]):.3f}' d,x,y,c = im.shape coronal_ax = f.add_subplot(n_rows,n_cols, _subplot_index(index,0,0)) coronal_ax.set_title(title + ' - coronal', fontsize=8) coronal_ax.imshow(make_bg_transparent(adjust_saturation(im[::-1,x//2,:,:])), alpha=image_alpha) sagittal_ax = f.add_subplot(n_rows,n_cols,_subplot_index(index,0,1)) sagittal_ax.set_title(title + ' - sagittal', fontsize=8) sagittal_ax.get_yaxis().set_visible(False) sagittal_ax.imshow(make_bg_transparent(adjust_saturation(im[::-1,:,y//2,:])), alpha=image_alpha) axial_ax = f.add_subplot(n_rows,n_cols,_subplot_index(index,1,0)) axial_ax.set_title(title + ' - axial', fontsize=8) axial_ax.imshow(make_bg_transparent(adjust_saturation(im[d//2,:,:,:])), alpha=image_alpha) proj_ax = f.add_subplot(n_rows, n_cols, _subplot_index(index,1,1), projection='3d') proj_ax.scatter(*to_3d_points(im), color='gray', alpha=0.015, s=5, depthshade=False) proj_ax.set_title(f'Green=GT-tumor, Red=Pred-tumor\n{title}', fontsize=6) proj_ax.set_xticks([]) proj_ax.set_yticks([]) proj_ax.set_zticks([]) if seg is not None: for seg_chan, color in zip(range(seg.shape[3]),['green']): coronal_ax.imshow(make_bg_transparent(seg[::-1,x//2,:,seg_chan], set_to_color=color), alpha=alpha) sagittal_ax.imshow(make_bg_transparent(seg[::-1,:,y//2,seg_chan], set_to_color=color), alpha=alpha) axial_ax.imshow(make_bg_transparent(seg[d//2,:,:,seg_chan], set_to_color=color), alpha=alpha) proj_ax.scatter(*to_3d_points(seg[:,:,:,seg_chan]), color=color, s=5, alpha=0.05) if pred_mask is not None: pred = np.swapaxes(pred_mask[index].cpu().numpy(), 0,3) pred = np.clip(pred, 0, 1.) # upsample seg back to original size if it has been downsampled if seg_downsample is not None: pred = pred.repeat(seg_downsample, axis=0).repeat(seg_downsample, axis=1).repeat(seg_downsample, axis=2) for seg_chan, color in zip(range(pred.shape[3]),['red']): coronal_ax.imshow(make_bg_transparent(pred[::-1,x//2,:, seg_chan], set_to_color=color, bg_th=0.5), alpha=alpha) sagittal_ax.imshow(make_bg_transparent(pred[::-1,:,y//2, seg_chan], set_to_color=color, bg_th=0.5), alpha=alpha) axial_ax.imshow(make_bg_transparent(pred[d//2,:,:, seg_chan], set_to_color=color, bg_th=0.5), alpha=alpha) proj_ax.scatter(*to_3d_points(pred[:,:,:,seg_chan], th=0.5), color=color, s=5, alpha=0.05) # draw axial lines coronal_ax.plot([0,x-1],[d//2,d//2],'--',color='white', linewidth=1) # coronal horizontal coronal_ax.plot([x//2,x//2],[0,d-1],'--',color='white', linewidth=1) # coronal vertical sagittal_ax.plot([0,y-1],[d//2,d//2],'--',color='white', linewidth=1) # sagittal horizontal sagittal_ax.plot([y//2,y//2],[0,d-1],'--',color='white', linewidth=1) # sagittal vertical axial_ax.plot([0,y-1],[x//2,x//2],'--',color='white', linewidth=1) # axial horizontal axial_ax.plot([x//2,x//2],[0,y-1],'--',color='white', linewidth=1) # axial vertical plt.subplots_adjust(left=0.00,top=1.,right=1.,bottom=0.00, wspace=0.15, hspace=0.15) bbox = f.get_window_extent().transformed(f.dpi_scale_trans.inverted()) width, height = bbox.width*f.dpi, bbox.height*f.dpi width *= 1.05 height *= 1.05 #if n_images == 2: # n_rows = 2 for row in range(0, n_rows,2): if n_images == 2 and row > 0: break for col in range(0, n_cols,2): different_color = (row//2) % 2 == (col//2) % 2 color = (1,1,1) if different_color else (0.8,0.8,0.8) f.patches.extend([ plt.Rectangle( (width * col / n_cols, height * (n_rows - row - 2) / n_rows), width / max(1,n_cols//2), height / max(1,n_rows//2), fill=True, color=color, zorder=-1, # below axes alpha=0.5, transform=None, figure=f) ]) if save_fn is not None: plt.savefig(save_fn, transparent=False) else: plt.show()
43.21256
128
0.585802
[ "MIT" ]
jpjuvo/RSNA-MICCAI-Brain-Tumor-Classification
src/seg_model_utils/visualization.py
8,945
Python
import glob import pandas as pd import os import datetime class DataMerge: def __init__(self, directory): self.directory = directory self.__data = self.get_data_from(self.directory) def date_to_int(self, dates): """ calculates number of days between 01/01/0001 and each date in dates date has format '%m/%d/%Y' :param dates: Pandas Series :return: list """ ret = [] for date in dates: date0 = datetime.datetime(year=1, month=1, day=1) datex = datetime.datetime.strptime(date, '%m/%d/%Y') ret.append((datex - date0).days) return ret def get_data_from(self, dir): files = glob.glob(f'{dir}/*') if files == []: raise f'directory {dir} does not contain any .csv file' data = None for file in files: if file == f'{dir}/merged_data.csv': continue if data is None: data = pd.read_csv(file) continue temp_data = pd.read_csv(file) temp_data = temp_data.dropna(axis=1) data = data.append(temp_data) data.drop_duplicates() data = data.sort_values('Date', ascending=False, key=self.date_to_int) data = data[: 408] data.to_csv(f"{dir}/merged_data.csv", index=False) return data def get_data(self): return self.__data
30.1875
78
0.562457
[ "MIT" ]
repeating/stock-analyzer
backend/data_merge.py
1,449
Python
import jax.numpy as np import matplotlib.pyplot as plt def plot(vi, X, target='vanishing', n=1000, scale=1.5, x_max=1.0, y_max=1.0, z_func=lambda x_, y_: 0.0, show=False, splitshow=False): nvars = X.shape[-1] if nvars == 2: _plot2d(vi, X, target=target, n=n, scale=scale, x_max=x_max, y_max=y_max, show=show, splitshow=splitshow) elif nvars == 3: _plot3d(vi, X, z_func, target=target, n=n, scale=scale, x_max=x_max, y_max=y_max, show=show, splitshow=splitshow) else: print(f'Cannot plot {nvars}-variate polynomials') def _plot2d(vi, X, target='vanishing', n=1000, scale=1.5, x_max=1.0, y_max=1.0, show=False, splitshow=False): ## set plot range m = np.mean(X, axis=0) x_max = y_max = np.max(np.abs(X)) # x = np.arange(-scale*x_max, scale*x_max, resolution) # y = np.arange(-scale*y_max, scale*y_max, resolution) x = np.linspace(-scale*x_max, scale*x_max, 50) y = np.linspace(-scale*y_max, scale*y_max, 50) Z1, Z2 = np.meshgrid(x, y) ## set plot setting npolys = 0 if target == 'vanishing': # npolys = sum([Gt.shape[-1] for Gt in vi.basis.vanishings()]) npolys = sum([Bt.n_vanishings() for Bt in vi.basis]) # npolys = sum([len(Gt) for Gt in vi.basis.vanishings()]) elif target == 'nonvanishing': npolys = sum([Bt.n_nonvanishings() for Bt in vi.basis]) colors = plt.cm.Dark2(np.linspace(0,1,8)) linestyles = ['solid','dashed','dashdot', 'dotted'] nfigs = min(npolys, n) for i in range(nfigs): f = lambda x_, y_: vi.evaluate(np.array([[x_,y_]]), target=target)[0,i] f = np.vectorize(f) plt.contour(Z1,Z2,f(Z1, Z2), levels=[0], colors=[colors[i%len(colors)]], linewidths=[1.], linestyles=[linestyles[i%4]]) if splitshow: plt.plot(X[:,0], X[:,1], 'o', mfc='none', alpha=0.8) plt.gca().set_aspect('equal', adjustable='box') plt.show() if not splitshow: plt.plot(X[:,0], X[:,1], 'o', mfc='none', alpha=0.8) plt.gca().set_aspect('equal', adjustable='box') # plt.savefig('graph_Z.pdf') if not splitshow and show: plt.show() def _plot3d(vi, X, z_func, target='vanishing', n=1000, scale=1.5, x_max=1.0, y_max=1.0, show=False, splitshow=False): ## set plot range m = np.mean(X, axis=0) x_max = y_max = np.max(np.abs(X)) x = np.linspace(-scale*x_max, scale*x_max, 50) y = np.linspace(-scale*y_max, scale*y_max, 50) Z1, Z2 = np.meshgrid(x, y) ## set plot setting npolys = 0 if target == 'vanishing': npolys = sum([np.asarray(Gt).shape[-1] for Gt in vi.basis.vanishings()]) # npolys = sum([len(Gt) for Gt in vi.basis.vanishings()]) elif target == 'nonvanishing': npolys = sum([np.asarray(Ft).shape[-1] for Ft in vi.basis.nonvanishings()]) else: print('unknown target: %s' % target) colors = plt.cm.Dark2(np.linspace(0,1,8)) linestyles = ['solid','dashed','dashdot', 'dotted'] nfigs = min(npolys, n) for i in range(nfigs): f = lambda x_, y_: vi.evaluate(np.array([[x_,y_, z_func(x_,y_)]]), target=target)[0,i] f = np.vectorize(f) plt.contour(Z1,Z2,f(Z1, Z2), levels=[0], colors=[colors[i%len(colors)]], linewidths=[1.], linestyles=[linestyles[i%4]]) if splitshow: plt.plot(X[:,0], X[:,1], 'o', mfc='none', alpha=0.8) plt.gca().set_aspect('equal', adjustable='box') plt.show() if not splitshow: plt.plot(X[:,0], X[:,1], 'o', mfc='none', alpha=0.8) plt.gca().set_aspect('equal', adjustable='box') # plt.savefig('graph_Z.pdf') if not splitshow and show: plt.show()
35.877358
127
0.576913
[ "MIT" ]
HiroshiKERA/monomial-agnostic-vanishing-ideal
mavi/jax/util/plot.py
3,803
Python
"""Code generation utilities""" from .utils import SchemaInfo, is_valid_identifier, indent_docstring, indent_arglist import textwrap import re class CodeSnippet(object): """Object whose repr() is a string of code""" def __init__(self, code): self.code = code def __repr__(self): return self.code def _get_args(info): """Return the list of args & kwds for building the __init__ function""" # TODO: - set additional properties correctly # - handle patternProperties etc. required = set() kwds = set() invalid_kwds = set() # TODO: specialize for anyOf/oneOf? if info.is_allOf(): # recursively call function on all children arginfo = [_get_args(child) for child in info.allOf] nonkeyword = all(args[0] for args in arginfo) required = set.union(set(), *(args[1] for args in arginfo)) kwds = set.union(set(), *(args[2] for args in arginfo)) kwds -= required invalid_kwds = set.union(set(), *(args[3] for args in arginfo)) additional = all(args[4] for args in arginfo) elif info.is_empty() or info.is_compound(): nonkeyword = True additional = True elif info.is_value(): nonkeyword = True additional=False elif info.is_object(): invalid_kwds = ({p for p in info.required if not is_valid_identifier(p)} | {p for p in info.properties if not is_valid_identifier(p)}) required = {p for p in info.required if is_valid_identifier(p)} kwds = {p for p in info.properties if is_valid_identifier(p)} kwds -= required nonkeyword = False additional = True #additional = info.additionalProperties or info.patternProperties else: raise ValueError("Schema object not understood") return (nonkeyword, required, kwds, invalid_kwds, additional) class SchemaGenerator(object): """Class that defines methods for generating code from schemas Parameters ---------- classname : string The name of the class to generate schema : dict The dictionary defining the schema class rootschema : dict (optional) The root schema for the class basename : string (default: "SchemaBase") The name of the base class to use in the class definition schemarepr : CodeSnippet or object, optional An object whose repr will be used in the place of the explicit schema. This can be useful, for example, when the generated code should reference a predefined schema object. The user must ensure that the schema within the evaluated code is identical to the schema used to generate the code. rootschemarepr : CodeSnippet or object, optional An object whose repr will be used in the place of the explicit root schema. """ schema_class_template = textwrap.dedent(''' class {classname}({basename}): """{docstring}""" _schema = {schema!r} _rootschema = {rootschema!r} {init_code} ''') init_template = textwrap.dedent(""" def __init__({arglist}): super({classname}, self).__init__({super_arglist}) """).lstrip() def _process_description(self, description): return description def __init__(self, classname, schema, rootschema=None, basename='SchemaBase', schemarepr=None, rootschemarepr=None, nodefault=()): self.classname = classname self.schema = schema self.rootschema = rootschema self.basename = basename self.schemarepr = schemarepr self.rootschemarepr = rootschemarepr self.nodefault = nodefault def schema_class(self): """Generate code for a schema class""" rootschema = self.rootschema if self.rootschema is not None else self.schema schemarepr = self.schemarepr if self.schemarepr is not None else self.schema rootschemarepr = self.rootschemarepr if rootschemarepr is None: if rootschema is self.schema: rootschemarepr = CodeSnippet('_schema') else: rootschemarepr = rootschema return self.schema_class_template.format( classname=self.classname, basename=self.basename, schema=schemarepr, rootschema=rootschemarepr, docstring=self.docstring(indent=4), init_code=self.init_code(indent=4) ) def docstring(self, indent=0): # TODO: add a general description at the top, derived from the schema. # for example, a non-object definition should list valid type, enum # values, etc. # TODO: use _get_args here for more information on allOf objects info = SchemaInfo(self.schema, self.rootschema) doc = ["{} schema wrapper".format(self.classname), '', info.medium_description] if info.description: doc += self._process_description( #remove condition description re.sub(r"\n\{\n(\n|.)*\n\}",'',info.description)).splitlines() if info.properties: nonkeyword, required, kwds, invalid_kwds, additional = _get_args(info) doc += ['', 'Attributes', '----------', ''] for prop in sorted(required) + sorted(kwds) + sorted(invalid_kwds): propinfo = info.properties[prop] doc += ["{} : {}".format(prop, propinfo.short_description), " {}".format(self._process_description(propinfo.description))] if len(doc) > 1: doc += [''] return indent_docstring(doc, indent_level=indent, width=100, lstrip=True) def init_code(self, indent=0): """Return code suitablde for the __init__ function of a Schema class""" info = SchemaInfo(self.schema, rootschema=self.rootschema) nonkeyword, required, kwds, invalid_kwds, additional =_get_args(info) nodefault=set(self.nodefault) required -= nodefault kwds -= nodefault args = ['self'] super_args = [] if nodefault: args.extend(sorted(nodefault)) elif nonkeyword: args.append('*args') super_args.append('*args') args.extend('{}=Undefined'.format(p) for p in sorted(required) + sorted(kwds)) super_args.extend('{0}={0}'.format(p) for p in sorted(nodefault) + sorted(required) + sorted(kwds)) if additional: args.append('**kwds') super_args.append('**kwds') arg_indent_level = 9 + indent super_arg_indent_level = 23 + len(self.classname) + indent initfunc = self.init_template.format(classname=self.classname, arglist=indent_arglist(args, indent_level=arg_indent_level), super_arglist=indent_arglist(super_args, indent_level=super_arg_indent_level)) if indent: initfunc = ('\n' + indent * ' ').join(initfunc.splitlines()) return initfunc
38.343915
123
0.611425
[ "BSD-3-Clause" ]
aladdingsw/altair
tools/schemapi/codegen.py
7,247
Python
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This module is largely a wrapper around `jaxlib` that performs version # checking on import. import jaxlib _minimum_jaxlib_version = (0, 1, 38) try: from jaxlib import version as jaxlib_version except: # jaxlib is too old to have version number. msg = 'This version of jax requires jaxlib version >= {}.' raise ImportError(msg.format('.'.join(map(str, _minimum_jaxlib_version)))) version = tuple(int(x) for x in jaxlib_version.__version__.split('.')) # Check the jaxlib version before importing anything else from jaxlib. def _check_jaxlib_version(): if version < _minimum_jaxlib_version: msg = 'jaxlib is version {}, but this version of jax requires version {}.' if version == (0, 1, 23): msg += ('\n\nA common cause of this error is that you installed jaxlib ' 'using pip, but your version of pip is too old to support ' 'manylinux2010 wheels. Try running:\n\n' 'pip install --upgrade pip\n' 'pip install --upgrade jax jaxlib\n') raise ValueError(msg.format('.'.join(map(str, version)), '.'.join(map(str, _minimum_jaxlib_version)))) _check_jaxlib_version() try: from jaxlib import tpu_client # pytype: disable=import-error except: tpu_client = None from jaxlib import xla_client from jaxlib import lapack from jaxlib import pytree from jaxlib import cusolver try: from jaxlib import cuda_prng except ImportError: cuda_prng = None
34.233333
80
0.709348
[ "ECL-2.0", "Apache-2.0" ]
Circletana/jax
jax/lib/__init__.py
2,054
Python
# -*- coding: utf-8 -*- """ @author:XuMing([email protected]) @description: """ import sys sys.path.append('..') from nlpcommon import stopwords if __name__ == '__main__': print(len(stopwords), stopwords)
16.230769
36
0.668246
[ "Apache-2.0" ]
shibing624/nlpcommon
examples/base_demo.py
211
Python
import wmi import speedtest_cli import threading import signal import os import json def testSpeed(urls): speedtest_cli.shutdown_event = threading.Event() signal.signal(signal.SIGINT, speedtest_cli.ctrl_c) print "Start to test download speed: " dlspeed = speedtest_cli.downloadSpeed(urls) dlspeed = (dlspeed / 1000 / 1000) print('Download: %0.2f M%s/s' % (dlspeed, 'B')) return dlspeed def setGateway(wmiObj, gateway): ip = '192.168.8.84' subnetmask = '255.255.255.0' configurations = wmiObj.Win32_NetworkAdapterConfiguration(Description="Realtek PCIe GBE Family Controller", IPEnabled=True) if len(configurations) == 0: print "No service available" return configuration = configurations[0] # ret = configuration.EnableStatic(IPAddress=[ip],SubnetMask=[subnetmask]) ret = configuration.SetGateways(DefaultIPGateway=[gateway]) return ret def checkGatewayStatus(urls): if not urls: urls = ["http://www.dynamsoft.com/assets/images/logo-index-dwt.png", "http://www.dynamsoft.com/assets/images/logo-index-dnt.png", "http://www.dynamsoft.com/assets/images/logo-index-ips.png", "http://www.codepool.biz/wp-content/uploads/2015/06/django_dwt.png", "http://www.codepool.biz/wp-content/uploads/2015/07/drag_element.png"] # Query current gateway wmiObj = wmi.WMI() sql = "select IPAddress,DefaultIPGateway from Win32_NetworkAdapterConfiguration where Description=\"Realtek PCIe GBE Family Controller\" and IPEnabled=TRUE" configurations = wmiObj.query(sql) currentGateway = None for configuration in configurations: currentGateway = configuration.DefaultIPGateway[0] print "IPAddress:", configuration.IPAddress[0], "DefaultIPGateway:", currentGateway dlspeed = testSpeed(urls) bestChoice = (currentGateway, dlspeed) print "Init choice: " + str(bestChoice) gateways = ["192.168.8.1", "192.168.8.2"] # define gateways settingReturn = 0 gateways.remove(currentGateway) for gateway in gateways: settingReturn = setGateway(wmiObj, gateway) if (settingReturn[0] != 0): print "Setting failed" return print "Set gateway: " + gateway dlspeed = testSpeed(urls) option = (gateway, dlspeed) print "Network option: " + str(option) if (option[1] > bestChoice[1]): bestChoice = option print "Best choice: " + str(bestChoice) setGateway(wmiObj, bestChoice[0]) try: input("Press any key to continue: ") except: print('Finished') def readConfigurationFile(): urls = None config = 'config.json' if os.path.exists(config): with open(config) as file: content = file.read() try: config_json = json.loads(content) urls = config_json['urls'] except: pass return urls def main(): urls = readConfigurationFile() checkGatewayStatus(urls) if __name__ == '__main__': main()
30.868687
338
0.66394
[ "Apache-2.0" ]
yushulx/switch-windows-gateway
network.py
3,056
Python
import pymysql.cursors from model.group import Group from model.contact import Contact class DbFixture: def __init__(self,host,name,user,password): self.host=host self.name=name self.user=user self.password=password self.connection=pymysql.connect(host=host ,database=name,user=user,password=password,autocommit=True) def get_group_list(self): list=[] cursor=self.connection.cursor() try: cursor.execute("select group_id,group_name,group_header,group_footer from group_list where deprecated='0000-00-00 00:00:00'") for row in cursor: (id,name,header,footer)=row list.append(Group(id=str(id),name=name,header=header,footer=footer)) finally: cursor.close() return list def get_contact_list(self): list=[] cursor=self.connection.cursor() try: cursor.execute("select id,firstname,lastname from addressbook where deprecated='0000-00-00 00:00:00'") for row in cursor: (id,firstname,lastname)=row list.append(Contact(id=str(id),firstname=firstname,lastname=lastname)) finally: cursor.close() return list def get_full_contact_list(self): list=[] cursor=self.connection.cursor() try: cursor.execute("select id,firstname,lastname,address, CONCAT (email ,email2,email3), CONCAT (home,mobile ,work, phone2) from addressbook where deprecated='0000-00-00 00:00:00'") for row in cursor: (id,firstname,lastname,adress,fullemail,fullpfone)=row list.append(Contact(id=str(id),firstname=firstname,lastname=lastname,all_emails_from_home_page=fullemail,all_phones_from_home_page=fullpfone,address=adress)) finally: cursor.close() return list def destroy(self): self.connection.close()
35.160714
190
0.639411
[ "Apache-2.0" ]
AnastasiiaAndronova/python_training
fixture/db.py
1,969
Python
from __future__ import absolute_import import os import json import redis ENV = os.getenv('ENV', 'local') if ENV == 'docker': rdb = redis.Redis(db=0, host='redis') else: rdb = redis.Redis(db=11) def emit(typ, **kwargs): kwargs['type'] = typ rdb.publish('actions', json.dumps(kwargs))
16.105263
46
0.656863
[ "MIT" ]
Craftzman7/rowboat
rowboat/redis.py
306
Python
#!/usr/bin/env python """ Copyright 2017-2018 Fizyr (https://fizyr.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import os import sys import cv2 import numpy as np from keras_retinanet.utils.transform import random_transform_generator from keras_retinanet.utils.visualization import draw_annotations, draw_boxes, draw_caption from keras_retinanet.utils.colors import label_color # Allow relative imports when being executed as script. if __name__ == "__main__" and __package__ is None: sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..')) import keras_retinanet.bin __package__ = "keras_maskrcnn.bin" # Change these to absolute imports if you copy this script outside the keras_retinanet package. from ..utils.visualization import draw_mask def create_generator(args): # create random transform generator for augmenting training data transform_generator = random_transform_generator( # min_rotation=-0.1, # max_rotation=0.1, # min_translation=(-0.1, -0.1), # max_translation=(0.1, 0.1), # min_shear=-0.1, # max_shear=0.1, # min_scaling=(0.9, 0.9), # max_scaling=(1.1, 1.1), flip_x_chance=0.5, # flip_y_chance=0.5, ) if args.dataset_type == 'coco': # import here to prevent unnecessary dependency on cocoapi from ..preprocessing.coco import CocoGenerator generator = CocoGenerator( args.coco_path, args.coco_set, transform_generator=transform_generator ) elif args.dataset_type == 'csv': from ..preprocessing.csv_generator import CSVGenerator generator = CSVGenerator( args.annotations, args.classes, transform_generator=transform_generator ) else: raise ValueError('Invalid data type received: {}'.format(args.dataset_type)) return generator def parse_args(args): parser = argparse.ArgumentParser(description='Debug script for a RetinaNet-MaskRCNN network.') subparsers = parser.add_subparsers(help='Arguments for specific dataset types.', dest='dataset_type') subparsers.required = True coco_parser = subparsers.add_parser('coco') coco_parser.add_argument('coco_path', help='Path to dataset directory (ie. /tmp/COCO).') coco_parser.add_argument('--coco-set', help='Name of the set to show (defaults to val2017).', default='val2017') csv_parser = subparsers.add_parser('csv') csv_parser.add_argument('annotations', help='Path to a CSV file containing annotations for evaluation.') csv_parser.add_argument('classes', help='Path to a CSV file containing class label mapping.') parser.add_argument('-l', '--loop', help='Loop forever, even if the dataset is exhausted.', action='store_true') parser.add_argument('--no-resize', help='Disable image resizing.', dest='resize', action='store_false') parser.add_argument('--anchors', help='Show positive anchors on the image.', action='store_true') parser.add_argument('--annotations', help='Show annotations on the image. Green annotations have anchors, red annotations don\'t and therefore don\'t contribute to training.', action='store_true') parser.add_argument('--masks', help='Show annotated masks on the image.', action='store_true') parser.add_argument('--random-transform', help='Randomly transform image and annotations.', action='store_true') return parser.parse_args(args) def run(generator, args): # display images, one at a time for i in range(generator.size()): # load the data image = generator.load_image(i) annotations, masks = generator.load_annotations(i) # apply random transformations if args.random_transform: image, annotations, masks = generator.random_transform_group_entry(image, annotations, masks) # resize the image and annotations if args.resize: image, image_scale = generator.resize_image(image) annotations[:, :4] *= image_scale for m in range(len(masks)): masks[m], _ = generator.resize_image(masks[m]) # draw anchors on the image if args.anchors: labels, _, anchors = generator.compute_anchor_targets(image.shape, annotations, generator.num_classes()) draw_boxes(image, anchors[np.max(labels, axis=1) == 1], (255, 255, 0), thickness=1) # draw annotations on the image if args.annotations: # draw annotations in red draw_annotations(image, annotations, color=(0, 0, 255), label_to_name=generator.label_to_name) # draw regressed anchors in green to override most red annotations # result is that annotations without anchors are red, with anchors are green labels, boxes, _ = generator.compute_anchor_targets(image.shape, annotations, generator.num_classes()) draw_boxes(image, boxes[np.max(labels, axis=1) == 1], (0, 255, 0)) # Draw masks over the image with random colours if args.masks: for m in range(len(masks)): # crop the mask with the related bbox size, and then draw them box = annotations[m, :4].astype(int) mask = masks[m][box[1]:box[3], box[0]:box[2]] draw_mask(image, box, mask, label_color(annotations[m, 4].astype(int))) # add the label caption caption = '{}'.format(generator.label_to_name(annotations[m, 4])) draw_caption(image, box, caption) cv2.imshow('Image', image) if cv2.waitKey() == ord('q'): return False return True def main(args=None): # parse arguments if args is None: args = sys.argv[1:] args = parse_args(args) # create the generator generator = create_generator(args) # create the display window cv2.namedWindow('Image', cv2.WINDOW_NORMAL) if args.loop: while run(generator, args): pass else: run(generator, args) if __name__ == '__main__': main()
39.152941
200
0.671575
[ "Apache-2.0" ]
alexFilin/keras-maskrcnn
keras_maskrcnn/bin/debug.py
6,656
Python
""" DataMeta DataMeta # noqa: E501 The version of the OpenAPI document: 1.4.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from datameta_client_lib.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) class StagedMetaDataSets(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'metadataset_ids': ([str],), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'metadataset_ids': 'metadatasetIds', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, metadataset_ids, *args, **kwargs): # noqa: E501 """StagedMetaDataSets - a model defined in OpenAPI Args: metadataset_ids ([str]): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.metadataset_ids = metadataset_ids for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
38.321637
110
0.584923
[ "Apache-2.0" ]
ghga-de/datameta-client-lib
datameta_client_lib/model/staged_meta_data_sets.py
6,553
Python
__author__ = 'anushabala' import sys sys.path.append('/usr1/home/rjoshi2/negotiation_personality/src/negotiation/bot/cocoa/src/basic/sessions')
36
106
0.819444
[ "Apache-2.0" ]
kingabzpro/DialoGraph_ICLR21
src/bot/cocoa/src/basic/sessions/__init__.py
144
Python
from pandac.PandaModules import * from toontown.toonbase.ToonBaseGlobal import * from direct.interval.IntervalGlobal import * from direct.task import Task from direct.directnotify import DirectNotifyGlobal from math import * from direct.distributed.ClockDelta import * from toontown.golf import GolfGlobals from toontown.shtiker.GolfPage import GolfTrophy class GolfRewardDialog: notify = directNotify.newCategory('GolfRewardDialog') def __init__(self, avIdList, trophyList, rankingsList, holeBestList, courseBestList, cupList, localAvId, tieBreakWinner, aimTimesList, endMovieCallback = None): self.avIdList = avIdList self.trophyList = trophyList self.rankingsList = rankingsList self.holeBestList = holeBestList self.courseBestList = courseBestList self.cupList = cupList self.tieBreakWinner = tieBreakWinner self.movie = None self.myPlace = 0 self.victory = None self.endMovieCallback = endMovieCallback self.aimTimesList = aimTimesList self.setup(localAvId) def calcTrophyTextListForOnePlayer(self, avId): retval = [] av = base.cr.doId2do.get(avId) if av and avId in self.avIdList: playerIndex = self.avIdList.index(avId) name = av.getName() for trophyIndex in xrange(len(self.trophyList[playerIndex])): wonTrophy = self.trophyList[playerIndex][trophyIndex] if wonTrophy: trophyName = TTLocalizer.GolfTrophyDescriptions[trophyIndex] text = TTLocalizer.GolfAvReceivesTrophy % {'name': name, 'award': trophyName} retval.append(text) return retval def calcCupTextListForAllPlayers(self, localAvId): retval = [] for cupPlayerIndex in xrange(len(self.avIdList)): if self.avIdList[cupPlayerIndex] != localAvId: av = base.cr.doId2do.get(self.avIdList[cupPlayerIndex]) name = '' if av: name = av.getName() cupIndex = 0 for cupIndex in xrange(len(self.cupList[cupPlayerIndex])): if self.cupList[cupPlayerIndex][cupIndex]: cupName = TTLocalizer.GolfCupDescriptions[cupIndex] text = TTLocalizer.GolfAvReceivesCup % {'name': name, 'cup': cupName} retval.append(text) for cupPlayerIndex in xrange(len(self.avIdList)): if self.avIdList[cupPlayerIndex] == localAvId: av = base.cr.doId2do.get(self.avIdList[cupPlayerIndex]) name = av.getName() cupIndex = 0 for cupIndex in xrange(len(self.cupList[cupPlayerIndex])): if self.cupList[cupPlayerIndex][cupIndex]: cupName = TTLocalizer.GolfCupDescriptions[cupIndex] text = TTLocalizer.GolfAvReceivesCup % {'name': name, 'cup': cupName} retval.append(text) return retval def calcRankings(self, localAvId): retval = [] self.notify.debug('aimTimesList=%s' % self.aimTimesList) for rank in xrange(len(self.rankingsList) + 1): for avIndex in xrange(len(self.avIdList)): if self.rankingsList[avIndex] == rank: name = ' ' av = base.cr.doId2do.get(self.avIdList[avIndex]) if av: name = av.getName() text = '%d. ' % rank + ' ' + name if GolfGlobals.TIME_TIE_BREAKER: time = self.aimTimesList[avIndex] minutes = int(time / 60) time -= minutes * 60 seconds = int(time) padding = (seconds < 10 and ['0'] or [''])[0] time -= seconds fraction = str(time)[2:4] fraction = fraction + '0' * (2 - len(fraction)) timeStr = "%d'%s%d''%s" % (minutes, padding, seconds, fraction) text += ' - ' + timeStr retval.append(text) if self.avIdList[avIndex] == localAvId: self.myPlace = rank return retval def calcHoleBestTextListForAllPlayers(self, localAvId): retval = [] if GolfGlobals.CalcOtherHoleBest: for hbPlayerIndex in xrange(len(self.avIdList)): if self.avIdList[hbPlayerIndex] != localAvId: av = base.cr.doId2do.get(self.avIdList[hbPlayerIndex]) name = av.getName() for hbIndex in xrange(len(self.holeBestList[hbPlayerIndex])): if self.holeBestList[hbPlayerIndex][hbIndex]: hbName = TTLocalizer.GolfHoleNames[hbIndex] text = TTLocalizer.GolfAvReceivesHoleBest % {'name': name, 'hole': hbName} retval.append(text) for hbPlayerIndex in xrange(len(self.avIdList)): if self.avIdList[hbPlayerIndex] == localAvId: av = base.cr.doId2do.get(self.avIdList[hbPlayerIndex]) name = av.getName() for hbIndex in xrange(len(self.holeBestList[hbPlayerIndex])): if self.holeBestList[hbPlayerIndex][hbIndex]: hbName = TTLocalizer.GolfHoleNames[hbIndex] text = TTLocalizer.GolfAvReceivesHoleBest % {'name': name, 'hole': hbName} retval.append(text) return retval def calcCourseBestTextListForAllPlayers(self, localAvId): retval = [] if GolfGlobals.CalcOtherCourseBest: for cbPlayerIndex in xrange(len(self.avIdList)): if self.avIdList[cbPlayerIndex] != localAvId: av = base.cr.doId2do.get(self.avIdList[cbPlayerIndex]) name = av.getName() for cbIndex in xrange(len(self.holeBestList[cbPlayerIndex])): if self.holeBestList[cbPlayerIndex][cbIndex]: cbName = TTLocalizer.GolfCourseNames[cbIndex] text = TTLocalizer.GolfAvReceivesCourseBest % {'name': name, 'course': cbName} retval.append(text) for cbPlayerIndex in xrange(len(self.avIdList)): if self.avIdList[cbPlayerIndex] == localAvId: av = base.cr.doId2do.get(self.avIdList[cbPlayerIndex]) name = av.getName() for cbIndex in xrange(len(self.courseBestList[cbPlayerIndex])): if self.courseBestList[cbPlayerIndex][cbIndex]: cbName = TTLocalizer.GolfCourseNames[cbIndex] text = TTLocalizer.GolfAvReceivesCourseBest % {'name': name, 'course': cbName} retval.append(text) return retval def createRewardMovie(self, localAvId): retval = Sequence(name='Reward sequence', autoPause=1) self.trophy = None def setTrophyLabelText(text, playerIndex, trophyIndex): self.rankLabel.hide() self.rewardLabel.hide() self.trophy = GolfTrophy(level=self.trophyList[playerIndex][trophyIndex], parent=self.trophyLabel, pos=(1.3, 0, -0.25)) self.trophy.setScale(0.65, 1, 0.65) self.trophy.show() self.trophyLabel['text'] = text def setRewardLabelText(text): self.rewardLabel.show() self.rankLabel.hide() self.trophyLabel.hide() if self.trophy: self.trophy.hide() self.rewardLabel['text'] = text def setRankLabelText(text): self.rankLabel.show() self.rewardLabel.hide() self.trophyLabel.hide() if self.trophy: self.trophy.hide() self.rankLabel['text'] = text if len(self.avIdList) > 1: self.victory = base.loader.loadSfx('phase_6/audio/sfx/KART_Applause_%d.ogg' % self.myPlace) self.victory.play() for avId in self.avIdList: if avId != localAvId: rewardTextList = self.calcTrophyTextListForOnePlayer(avId) trophyIndex = 0 for rewardText in rewardTextList: playerIndex = self.avIdList.index(avId) var = (rewardText, playerIndex, trophyIndex) oneTrophyIval = Parallel(Func(setTrophyLabelText, rewardText, playerIndex, trophyIndex), LerpColorScaleInterval(self.trophyLabel, 4, Vec4(1, 1, 1, 0), startColorScale=Vec4(1, 1, 1, 1), blendType='easeIn')) trophyIndex = trophyIndex + 1 retval.append(oneTrophyIval) rewardTextList = self.calcTrophyTextListForOnePlayer(localAvId) trophyIndex = 0 playerIndex = self.avIdList.index(localAvId) for rewardText in rewardTextList: if len(rewardTextList) > 0: var = (rewardText, playerIndex, trophyIndex) oneRewardIval = Parallel(Func(setTrophyLabelText, rewardText, playerIndex, trophyIndex), LerpColorScaleInterval(self.trophyLabel, 4, Vec4(1, 1, 1, 0), startColorScale=Vec4(1, 1, 1, 1), blendType='easeIn')) retval.append(oneRewardIval) rewardCupList = self.calcCupTextListForAllPlayers(localAvId) if len(rewardCupList) > 0: for rewardText in rewardCupList: oneCupIval = Parallel(Func(setRewardLabelText, rewardText), LerpColorScaleInterval(self.rewardLabel, 4, Vec4(1, 1, 1, 0), startColorScale=Vec4(1, 1, 1, 1), blendType='noBlend')) retval.append(oneCupIval) if self.tieBreakWinner: name = '' av = base.cr.doId2do.get(self.tieBreakWinner) if av: name = av.getName() if GolfGlobals.TIME_TIE_BREAKER: rewardText = TTLocalizer.GolfTimeTieBreakWinner % {'name': name} else: rewardText = TTLocalizer.GolfTieBreakWinner % {'name': name} randomWinnerIval = Parallel(Func(setRewardLabelText, rewardText), LerpColorScaleInterval(self.rewardLabel, 7, Vec4(1, 1, 1, 0), startColorScale=Vec4(1, 1, 1, 1), blendType='noBlend')) retval.append(randomWinnerIval) rankings = self.calcRankings(localAvId) rankText = TTLocalizer.GolfRanking + '\n' for rank in xrange(len(rankings)): rankText = rankText + rankings[rank] + '\n' oneRankIval = Parallel(Func(setRankLabelText, rankText), LerpColorScaleInterval(self.rankLabel, 8, Vec4(1, 1, 1, 1), startColorScale=Vec4(1, 1, 1, 1), blendType='easeIn')) retval.append(oneRankIval) rewardHoleList = self.calcHoleBestTextListForAllPlayers(localAvId) if len(rewardHoleList) > 0: for rewardText in rewardHoleList: oneHoleIval = Parallel(Func(setRewardLabelText, rewardText), LerpColorScaleInterval(self.rewardLabel, 8, Vec4(1, 1, 1, 0), startColorScale=Vec4(1, 1, 1, 1), blendType='easeIn')) retval.append(oneHoleIval) rewardCourseList = self.calcCourseBestTextListForAllPlayers(localAvId) if len(rewardCourseList) > 0: for rewardText in rewardCourseList: oneCourseIval = Parallel(Func(setRewardLabelText, rewardText), LerpColorScaleInterval(self.rewardLabel, 4, Vec4(1, 1, 1, 0), startColorScale=Vec4(1, 1, 1, 1), blendType='easeIn')) retval.append(oneCourseIval) if self.endMovieCallback: retval.append(Func(self.endMovieCallback)) return retval def setup(self, localAvId): self.rewardBoard = DirectFrame(parent=aspect2d, relief=None, geom=DGG.getDefaultDialogGeom(), geom_color=ToontownGlobals.GlobalDialogColor, geom_scale=(1.75, 1, 0.6), pos=(0, 0, -0.6)) self.rewardLabel = DirectLabel(parent=self.rewardBoard, relief=None, pos=(-0, 0, 0), text_align=TextNode.ACenter, text='', text_scale=0.05, text_wordwrap=30) self.rankLabel = DirectLabel(parent=self.rewardBoard, relief=None, pos=(-0, 0, 0.17), text_align=TextNode.ACenter, text='', text_scale=0.06) self.trophyLabel = DirectLabel(parent=self.rewardBoard, relief=None, pos=(-0.7, 0, 0.05), text_align=TextNode.ALeft, text='', text_scale=0.06, text_wordwrap=20) self.movie = self.createRewardMovie(localAvId) def delete(self): self.movie.pause() self.notify.debug('Movie is paused') self.rewardBoard.destroy() self.notify.debug('Reward board is destroyed') self.movie = None self.notify.debug('Movie is deleted') def getMovie(self): return self.movie
49.384328
225
0.583377
[ "Apache-2.0" ]
AnythingTechPro/Project-Altis
toontown/golf/GolfRewardDialog.py
13,235
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Gamma distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import distribution # pylint: disable=line-too-long from tensorflow.contrib.framework.python.framework import tensor_util as contrib_tensor_util # pylint: disable=line-too-long from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops class Gamma(distribution.Distribution): """The `Gamma` distribution with parameter alpha and beta. The parameters are the shape and inverse scale parameters alpha, beta. The PDF of this distribution is: ```pdf(x) = (beta^alpha)(x^(alpha-1))e^(-x*beta)/Gamma(alpha), x > 0``` and the CDF of this distribution is: ```cdf(x) = GammaInc(alpha, beta * x) / Gamma(alpha), x > 0``` where GammaInc is the incomplete lower Gamma function. Examples: ```python dist = Gamma(alpha=3.0, beta=2.0) dist2 = Gamma(alpha=[3.0, 4.0], beta=[2.0, 3.0]) ``` """ def __init__(self, alpha, beta, validate_args=True, allow_nan_stats=False, name="Gamma"): """Construct Gamma distributions with parameters `alpha` and `beta`. The parameters `alpha` and `beta` must be shaped in a way that supports broadcasting (e.g. `alpha + beta` is a valid operation). Args: alpha: Floating point tensor, the shape params of the distribution(s). alpha must contain only positive values. beta: Floating point tensor, the inverse scale params of the distribution(s). beta must contain only positive values. validate_args: Whether to assert that `a > 0, b > 0`, and that `x > 0` in the methods `prob(x)` and `log_prob(x)`. If `validate_args` is `False` and the inputs are invalid, correct behavior is not guaranteed. allow_nan_stats: Boolean, default `False`. If `False`, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. If `True`, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. name: The name to prepend to all ops created by this distribution. Raises: TypeError: if `alpha` and `beta` are different dtypes. """ self._allow_nan_stats = allow_nan_stats self._validate_args = validate_args with ops.name_scope(name, values=[alpha, beta]) as scope: self._name = scope with ops.control_dependencies([check_ops.assert_positive( alpha), check_ops.assert_positive(beta)] if validate_args else []): alpha = array_ops.identity(alpha, name="alpha") beta = array_ops.identity(beta, name="beta") contrib_tensor_util.assert_same_float_dtype((alpha, beta)) self._broadcast_tensor = alpha + beta self._get_batch_shape = self._broadcast_tensor.get_shape() self._get_event_shape = tensor_shape.TensorShape([]) self._alpha = alpha self._beta = beta @property def allow_nan_stats(self): """Boolean describing behavior when a stat is undefined for batch member.""" return self._allow_nan_stats @property def validate_args(self): """Boolean describing behavior on invalid input.""" return self._validate_args @property def name(self): """Name to prepend to all ops.""" return self._name @property def dtype(self): """dtype of samples from this distribution.""" return self._alpha.dtype @property def alpha(self): """Shape parameter.""" return self._alpha @property def beta(self): """Inverse scale parameter.""" return self._beta def batch_shape(self, name="batch_shape"): """Batch dimensions of this instance as a 1-D int32 `Tensor`. The product of the dimensions of the `batch_shape` is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: `Tensor` `batch_shape` """ with ops.name_scope(self.name): with ops.name_scope(name, values=[self._broadcast_tensor]): return array_ops.shape(self._broadcast_tensor) def get_batch_shape(self): """`TensorShape` available at graph construction time. Same meaning as `batch_shape`. May be only partially defined. Returns: `TensorShape` object. """ return self._get_batch_shape def event_shape(self, name="event_shape"): """Shape of a sample from a single distribution as a 1-D int32 `Tensor`. Args: name: name to give to the op Returns: `Tensor` `event_shape` """ with ops.name_scope(self.name): with ops.name_scope(name): return constant_op.constant([], dtype=dtypes.int32) def get_event_shape(self): """`TensorShape` available at graph construction time. Same meaning as `event_shape`. May be only partially defined. Returns: `TensorShape` object. """ return self._get_event_shape def mean(self, name="mean"): """Mean of each batch member.""" with ops.name_scope(self.name): with ops.name_scope(name, values=[self._alpha, self._beta]): return self._alpha / self._beta def mode(self, name="mode"): """Mode of each batch member. The mode of a gamma distribution is `(alpha - 1) / beta` when `alpha > 1`, and `NaN` otherwise. If `self.allow_nan_stats` is `False`, an exception will be raised rather than returning `NaN`. Args: name: A name to give this op. Returns: The mode for every batch member, a `Tensor` with same `dtype` as self. """ alpha = self._alpha beta = self._beta with ops.name_scope(self.name): with ops.name_scope(name, values=[alpha, beta]): mode_if_defined = (alpha - 1.0) / beta if self.allow_nan_stats: alpha_ge_1 = alpha >= 1.0 nan = np.nan * self._ones() return math_ops.select(alpha_ge_1, mode_if_defined, nan) else: one = constant_op.constant(1.0, dtype=self.dtype) return control_flow_ops.with_dependencies( [check_ops.assert_less( one, alpha, message="mode not defined for components of alpha <= 1" )], mode_if_defined) def variance(self, name="variance"): """Variance of each batch member.""" with ops.name_scope(self.name): with ops.name_scope(name, values=[self._alpha, self._beta]): return self._alpha / math_ops.square(self._beta) def std(self, name="std"): """Standard deviation of this distribution.""" with ops.name_scope(self.name): with ops.name_scope(name, values=[self._alpha, self._beta]): return math_ops.sqrt(self._alpha) / self._beta def log_prob(self, x, name="log_prob"): """Log prob of observations in `x` under these Gamma distribution(s). Args: x: tensor of dtype `dtype`, must be broadcastable with `alpha` and `beta`. name: The name to give this op. Returns: log_prob: tensor of dtype `dtype`, the log-PDFs of `x`. Raises: TypeError: if `x` and `alpha` are different dtypes. """ with ops.name_scope(self.name): with ops.name_scope(name, values=[self._alpha, self._beta, x]): alpha = self._alpha beta = self._beta x = ops.convert_to_tensor(x) x = control_flow_ops.with_dependencies([check_ops.assert_positive(x)] if self.validate_args else [], x) contrib_tensor_util.assert_same_float_dtype(tensors=[x,], dtype=self.dtype) return (alpha * math_ops.log(beta) + (alpha - 1) * math_ops.log(x) - beta * x - math_ops.lgamma(self._alpha)) def prob(self, x, name="prob"): """Pdf of observations in `x` under these Gamma distribution(s). Args: x: tensor of dtype `dtype`, must be broadcastable with `alpha` and `beta`. name: The name to give this op. Returns: prob: tensor of dtype `dtype`, the PDFs of `x` Raises: TypeError: if `x` and `alpha` are different dtypes. """ return super(Gamma, self).prob(x, name) def log_cdf(self, x, name="log_cdf"): """Log CDF of observations `x` under these Gamma distribution(s). Args: x: tensor of dtype `dtype`, must be broadcastable with `alpha` and `beta`. name: The name to give this op. Returns: log_cdf: tensor of dtype `dtype`, the log-CDFs of `x`. """ with ops.name_scope(self.name): with ops.name_scope(name, values=[self._alpha, self._beta, x]): x = ops.convert_to_tensor(x) x = control_flow_ops.with_dependencies([check_ops.assert_positive(x)] if self.validate_args else [], x) contrib_tensor_util.assert_same_float_dtype(tensors=[x,], dtype=self.dtype) # Note that igamma returns the regularized incomplete gamma function, # which is what we want for the CDF. return math_ops.log(math_ops.igamma(self._alpha, self._beta * x)) def cdf(self, x, name="cdf"): """CDF of observations `x` under these Gamma distribution(s). Args: x: tensor of dtype `dtype`, must be broadcastable with `alpha` and `beta`. name: The name to give this op. Returns: cdf: tensor of dtype `dtype`, the CDFs of `x`. """ with ops.name_scope(self.name): with ops.name_scope(name, values=[self._alpha, self._beta, x]): return math_ops.igamma(self._alpha, self._beta * x) def entropy(self, name="entropy"): """The entropy of Gamma distribution(s). This is defined to be ``` entropy = alpha - log(beta) + log(Gamma(alpha)) + (1-alpha)digamma(alpha) ``` where digamma(alpha) is the digamma function. Args: name: The name to give this op. Returns: entropy: tensor of dtype `dtype`, the entropy. """ with ops.name_scope(self.name): with ops.name_scope(name, values=[self.alpha, self._beta]): alpha = self._alpha beta = self._beta return (alpha - math_ops.log(beta) + math_ops.lgamma(alpha) + (1 - alpha) * math_ops.digamma(alpha)) def sample_n(self, n, seed=None, name="sample_n"): """Draws `n` samples from the Gamma distribution(s). See the doc for tf.random_gamma for further detail. Args: n: Python integer, the number of observations to sample from each distribution. seed: Python integer, the random seed for this operation. name: Optional name for the operation. Returns: samples: a `Tensor` of shape `(n,) + self.batch_shape + self.event_shape` with values of type `self.dtype`. """ with ops.name_scope(self.name, values=[n, self.alpha, self._beta]): return random_ops.random_gamma([n], self.alpha, beta=self._beta, dtype=self.dtype, seed=seed, name=name) @property def is_reparameterized(self): return False def _ones(self): return array_ops.ones_like(self._alpha + self._beta, dtype=self.dtype) @property def is_continuous(self): return True
34.059621
125
0.643539
[ "Apache-2.0" ]
enrewen1/tf
tensorflow/contrib/distributions/python/ops/gamma.py
12,568
Python
if _use_time: _end_time = datetime.utcnow().timestamp() res.update({'_gatewayTime': {'start': _start_time, 'end': _end_time, 'duration': _end_time-_start_time}})
56.333333
109
0.710059
[ "Apache-2.0" ]
AlexRogalskiy/bumblebee
packages/api/resources/python-templates/time-end.py
169
Python
from django.conf.urls import url from .views import ( TableListAPIView, SalePointTableListAPIView ) urlpatterns = [ url(r'^$', TableListAPIView.as_view(), name='api-table-list'), url(r'^sale-point/(?P<pk>[0-9]+)$', SalePointTableListAPIView.as_view(), name='api-sale_point-table'), ]
19.529412
44
0.629518
[ "BSD-3-Clause" ]
glosoftgroup/restaurant
saleor/api/table/urls.py
332
Python
from recipe_scrapers.purelypope import PurelyPope from tests import ScraperTest class TestPurelyPopeScraper(ScraperTest): scraper_class = PurelyPope def test_host(self): self.assertEqual("purelypope.com", self.harvester_class.host()) def test_canonical_url(self): self.assertEqual( "https://purelypope.com/sweet-chili-brussel-sprouts/", self.harvester_class.canonical_url(), ) def test_title(self): self.assertEqual(self.harvester_class.title(), "Sweet Chili Brussel Sprouts") def test_yields(self): self.assertEqual("4 serving(s)", self.harvester_class.yields()) def test_image(self): self.assertEqual( "https://purelypope.com/wp-content/uploads/2020/05/IMG_5412-1-150x150.jpg", self.harvester_class.image(), ) def test_ingredients(self): self.assertCountEqual( [ "2 cups brussel sprouts, stems removed & cut in half", "2 tbsp coconut aminos", "1 tbsp sriracha", "1/2 tbsp maple syrup", "1 tsp sesame oil", "Everything bagel seasoning or sesame seeds, to top", ], self.harvester_class.ingredients(), ) def test_instructions(self): return self.assertEqual( "Instructions\n\nBrussel Sprout Time!\n\nPreheat oven to 350 degrees.\nWhisk the sauce (coconut aminos, sriracha, maple syrup & sesame oil) together in a large bowl.\nToss in brussel sprouts and coat mixture evenly over the brussels.\nRoast for 30 minutes.\nTurn oven to broil for 2-3 minutes to crisp (watch carefully to not burn.)\nTop with everything or sesame seeds.", self.harvester_class.instructions(), )
37.5625
384
0.642263
[ "MIT" ]
AlexRogalskiy/recipe-scrapers
tests/test_purelypope.py
1,803
Python
from types import SimpleNamespace fields = SimpleNamespace( id='id', name='name', data_query='data_query') analysis_properties = { fields.name: { 'description': 'Name of analysis.', 'type': 'string', }, fields.data_query: { 'description': 'Lucene query string used to retrieve entities ' 'to analyze.', 'type': 'string', 'default': '*', }, } analysis_spec = { 'type': 'object', 'required': [fields.name, fields.data_query], 'properties': analysis_properties, } analysis = { 'type': 'object', 'properties': { fields.id: { 'type': 'integer', 'description': 'Unique integer identifying the analysis.', }, **analysis_properties, }, }
21.540541
71
0.548306
[ "MIT" ]
cvisionai/tator
main/schema/components/analysis.py
797
Python
import logging import sys from abc import ABC, abstractmethod logger = logging.getLogger(__name__) class PaddownException(Exception): pass class Paddown(ABC): @abstractmethod def has_valid_padding(self, ciphertext: bytes) -> bool: """ Override this method and send off the ciphertext to check for valid padding. :param bytes ciphertext: The ciphertext to check, send this to your padding oracle. :rtype: True for valid padding, False otherwise. """ raise PaddownException("Not implemented") def __init__(self, ciphertext: bytes, blocksize: int = 16): if not isinstance(ciphertext, bytes): raise Exception(f"Ciphertext {type(ciphertext)} not an instance of {bytes}") self.ciphertext = ciphertext self.blocksize = blocksize def find_c_prime_at_index(self, ciphertext: bytearray, index: int): if not isinstance(ciphertext, bytearray): raise PaddownException(f"ciphertext not an instance of {bytearray}") # Replace ciphertext at index with a guessed byte ciphertext_temp = ciphertext for c_prime in range(256): ciphertext_temp[index] = c_prime if self.has_valid_padding(ciphertext_temp): return c_prime raise PaddownException(f"No valid padding found, is .has_valid_padding(...) implemented correctly?") def decrypt_block(self, c_i): if not isinstance(c_i, bytearray): raise PaddownException(f"block c_i not an instance of {bytearray}") c_previous = bytearray(b"\x00" * self.blocksize) intermediate = bytearray(b"\x00" * self.blocksize) for i in range(self.blocksize): self.progress_bar(i, self.blocksize - 1, "Decrypting ") for j in range(i): c_previous[(self.blocksize - 1) - j] = intermediate[(self.blocksize - 1) - j] ^ (i + 1) c_prime = self.find_c_prime_at_index(c_previous + c_i, (self.blocksize - 1) - i) intermediate[(self.blocksize - 1) - i] = c_prime ^ (i + 1) logger.debug(f"intermediate: {[hex(x)[2:] for x in intermediate]}") return intermediate def get_intermediate(self, ciphertext) -> bytes: key = b"" blocks = len(ciphertext) // self.blocksize # Iterate blocks last to first for i in range(blocks): block_start = len(ciphertext) - (i + 1) * self.blocksize block_end = len(ciphertext) - (i * self.blocksize) key = self.decrypt_block(ciphertext[block_start:block_end]) + key return key def decrypt(self) -> bytes: logger.debug(f"Ciphertext length: {len(self.ciphertext)}") logger.debug(f"Blocks to decrypt: {len(self.ciphertext) // self.blocksize}") # Convert self.ciphertext to mutable bytearray self.ciphertext = bytearray(self.ciphertext) key = self.get_intermediate(self.ciphertext) plaintext = bytearray() for i in range(len(self.ciphertext) - self.blocksize): b = self.ciphertext[i] ^ key[i + self.blocksize] plaintext += (b).to_bytes(1, byteorder="big") print("\n") # print variable on new line from progress bar return plaintext def progress_bar(self, i, total_length, post_text): n_bar = 100 # size of progress bar j = i / total_length sys.stdout.write("\r") sys.stdout.write(f"[{'#' * int(n_bar * j):{n_bar}s}] {int(100 * j)}% {post_text}") sys.stdout.flush()
38.673913
108
0.632378
[ "MIT" ]
MarvinKweyu/PadDown
paddown.py
3,558
Python
from functools import wraps def multiply_by(multiplier): def decorator(func): @wraps(func) def wrapper(*args, **kwargs): func_name = func.__name__ print(f'Calling "{func_name}({args[0]}, {args[1]})" function') print(f'"{func_name}" function is multiplied by {multiplier}') result = func(*args, **kwargs) * multiplier print(f'Result equals to {result}') return result return wrapper return decorator @multiply_by(multiplier=3) def add(a, b): return a + b add(2, 3)
24.083333
74
0.588235
[ "Apache-2.0" ]
vyahello/python-decorators-cheetsheet
materials/decorator_with_args.py
578
Python
""" WSGI config for CongressionalRecord project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. """ import os # We defer to a DJANGO_SETTINGS_MODULE already in the environment. This breaks # if running multiple sites in the same mod_wsgi process. To fix this, use # mod_wsgi daemon mode with each site in its own daemon process, or use # os.environ["DJANGO_SETTINGS_MODULE"] = "CongressionalRecord.settings" os.environ.setdefault("DJANGO_SETTINGS_MODULE", "CongressionalRecord.settings") # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. from django.core.wsgi import get_wsgi_application application = get_wsgi_application() # Apply WSGI middleware here. # from helloworld.wsgi import HelloWorldApplication # application = HelloWorldApplication(application)
44.181818
79
0.807956
[ "Apache-2.0" ]
kdunn926/eunomia-django
CongressionalRecord/wsgi.py
1,458
Python
"""Basic pyon logging (with or without container) NOTE: the functionality of this module has moved to ooi.logging.config. currently this module is maintained for API compatability, but is implemented using the new package. """ import logging from ooi.logging import config DEFAULT_LOGGING_PATHS = ['res/config/logging.yml', 'res/config/logging.local.yml'] logging_was_configured = False def configure_logging(logging_conf_paths, logging_config_override=None): """ Public call to configure and initialize logging. @param logging_conf_paths List of paths to logging config YML files (in read order) @param config_override Dict with config entries overriding files read """ global logging_was_configured logging_was_configured = True for path in logging_conf_paths: try: config.add_configuration(path) except Exception, e: print 'WARNING: could not load logging configuration file %s: %s' % (path, e) if logging_config_override: try: config.add_configuration(logging_config_override) except Exception,e: print 'WARNING: failed to apply logging override %r: %e' % (logging_config_override,e) # direct warnings mechanism to loggers logging.captureWarnings(True) def is_logging_configured(): """ allow caller to determine if logging has already been configured in this container """ global logging_was_configured return logging_was_configured or config.get_configuration()
37.487805
109
0.725439
[ "BSD-2-Clause" ]
ooici/pyon
pyon/core/log.py
1,537
Python
option='y' while option=='y': def fibo(n): a=0 b=1 for i in range(0,n): temp=a a=b b=temp+b return a print("Enter the limit of fibonacci series") num=int(input()) for c in range(0,num): print (fibo(c)) print("Do you want to continue?(y/n)") option=input() print('Thank you for using this programme')
21.05
49
0.489311
[ "MIT" ]
DheerajKN/Python-with-pygame
Fibonacci_Iteration.py
421
Python
"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. Original C++ source file: boosted_trees_ops.cc """ import collections as _collections import six as _six from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import errors as _errors from tensorflow.python.framework import tensor_shape as _tensor_shape from tensorflow.core.framework import op_def_pb2 as _op_def_pb2 # Needed to trigger the call to _set_call_cpp_shape_fn. from tensorflow.python.framework import common_shapes as _common_shapes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.tf_export import tf_export _boosted_trees_calculate_best_gains_per_feature_outputs = ["node_ids_list", "gains_list", "thresholds_list", "left_node_contribs_list", "right_node_contribs_list"] _BoostedTreesCalculateBestGainsPerFeatureOutput = _collections.namedtuple( "BoostedTreesCalculateBestGainsPerFeature", _boosted_trees_calculate_best_gains_per_feature_outputs) def boosted_trees_calculate_best_gains_per_feature(node_id_range, stats_summary_list, l1, l2, tree_complexity, min_node_weight, max_splits, name=None): r"""Calculates gains for each feature and returns the best possible split information for the feature. The split information is the best threshold (bucket id), gains and left/right node contributions per node for each feature. It is possible that not all nodes can be split on each feature. Hence, the list of possible nodes can differ between the features. Therefore, we return `node_ids_list` for each feature, containing the list of nodes that this feature can be used to split. In this manner, the output is the best split per features and per node, so that it needs to be combined later to produce the best split for each node (among all possible features). The length of output lists are all of the same length, `num_features`. The output shapes are compatible in a way that the first dimension of all tensors of all lists are the same and equal to the number of possible split nodes for each feature. Args: node_id_range: A `Tensor` of type `int32`. A Rank 1 tensor (shape=[2]) to specify the range [first, last) of node ids to process within `stats_summary_list`. The nodes are iterated between the two nodes specified by the tensor, as like `for node_id in range(node_id_range[0], node_id_range[1])` (Note that the last index node_id_range[1] is exclusive). stats_summary_list: A list of at least 1 `Tensor` objects with type `float32`. A list of Rank 3 tensor (#shape=[max_splits, bucket, 2]) for accumulated stats summary (gradient/hessian) per node per buckets for each feature. The first dimension of the tensor is the maximum number of splits, and thus not all elements of it will be used, but only the indexes specified by node_ids will be used. l1: A `Tensor` of type `float32`. l1 regularization factor on leaf weights, per instance based. l2: A `Tensor` of type `float32`. l2 regularization factor on leaf weights, per instance based. tree_complexity: A `Tensor` of type `float32`. adjustment to the gain, per leaf based. min_node_weight: A `Tensor` of type `float32`. mininum avg of hessians in a node before required for the node to be considered for splitting. max_splits: An `int` that is `>= 1`. the number of nodes that can be split in the whole tree. Used as a dimension of output tensors. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (node_ids_list, gains_list, thresholds_list, left_node_contribs_list, right_node_contribs_list). node_ids_list: A list with the same length as `stats_summary_list` of `Tensor` objects with type `int32`. gains_list: A list with the same length as `stats_summary_list` of `Tensor` objects with type `float32`. thresholds_list: A list with the same length as `stats_summary_list` of `Tensor` objects with type `int32`. left_node_contribs_list: A list with the same length as `stats_summary_list` of `Tensor` objects with type `float32`. right_node_contribs_list: A list with the same length as `stats_summary_list` of `Tensor` objects with type `float32`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if not isinstance(stats_summary_list, (list, tuple)): raise TypeError( "Expected list for 'stats_summary_list' argument to " "'boosted_trees_calculate_best_gains_per_feature' Op, not %r." % stats_summary_list) _attr_num_features = len(stats_summary_list) max_splits = _execute.make_int(max_splits, "max_splits") _, _, _op = _op_def_lib._apply_op_helper( "BoostedTreesCalculateBestGainsPerFeature", node_id_range=node_id_range, stats_summary_list=stats_summary_list, l1=l1, l2=l2, tree_complexity=tree_complexity, min_node_weight=min_node_weight, max_splits=max_splits, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("max_splits", _op.get_attr("max_splits"), "num_features", _op.get_attr("num_features")) _execute.record_gradient( "BoostedTreesCalculateBestGainsPerFeature", _inputs_flat, _attrs, _result, name) _result = [_result[:_attr_num_features]] + _result[_attr_num_features:] _result = _result[:1] + [_result[1:1 + _attr_num_features]] + _result[1 + _attr_num_features:] _result = _result[:2] + [_result[2:2 + _attr_num_features]] + _result[2 + _attr_num_features:] _result = _result[:3] + [_result[3:3 + _attr_num_features]] + _result[3 + _attr_num_features:] _result = _result[:4] + [_result[4:]] _result = _BoostedTreesCalculateBestGainsPerFeatureOutput._make(_result) return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BoostedTreesCalculateBestGainsPerFeature", name, _ctx._post_execution_callbacks, node_id_range, stats_summary_list, l1, l2, tree_complexity, min_node_weight, "max_splits", max_splits) _result = _BoostedTreesCalculateBestGainsPerFeatureOutput._make(_result) return _result except _core._FallbackException: return boosted_trees_calculate_best_gains_per_feature_eager_fallback( node_id_range, stats_summary_list, l1, l2, tree_complexity, min_node_weight, max_splits=max_splits, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def boosted_trees_calculate_best_gains_per_feature_eager_fallback(node_id_range, stats_summary_list, l1, l2, tree_complexity, min_node_weight, max_splits, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function boosted_trees_calculate_best_gains_per_feature """ _ctx = ctx if ctx else _context.context() if not isinstance(stats_summary_list, (list, tuple)): raise TypeError( "Expected list for 'stats_summary_list' argument to " "'boosted_trees_calculate_best_gains_per_feature' Op, not %r." % stats_summary_list) _attr_num_features = len(stats_summary_list) max_splits = _execute.make_int(max_splits, "max_splits") node_id_range = _ops.convert_to_tensor(node_id_range, _dtypes.int32) stats_summary_list = _ops.convert_n_to_tensor(stats_summary_list, _dtypes.float32) l1 = _ops.convert_to_tensor(l1, _dtypes.float32) l2 = _ops.convert_to_tensor(l2, _dtypes.float32) tree_complexity = _ops.convert_to_tensor(tree_complexity, _dtypes.float32) min_node_weight = _ops.convert_to_tensor(min_node_weight, _dtypes.float32) _inputs_flat = [node_id_range] + list(stats_summary_list) + [l1, l2, tree_complexity, min_node_weight] _attrs = ("max_splits", max_splits, "num_features", _attr_num_features) _result = _execute.execute(b"BoostedTreesCalculateBestGainsPerFeature", _attr_num_features + _attr_num_features + _attr_num_features + _attr_num_features + _attr_num_features, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "BoostedTreesCalculateBestGainsPerFeature", _inputs_flat, _attrs, _result, name) _result = [_result[:_attr_num_features]] + _result[_attr_num_features:] _result = _result[:1] + [_result[1:1 + _attr_num_features]] + _result[1 + _attr_num_features:] _result = _result[:2] + [_result[2:2 + _attr_num_features]] + _result[2 + _attr_num_features:] _result = _result[:3] + [_result[3:3 + _attr_num_features]] + _result[3 + _attr_num_features:] _result = _result[:4] + [_result[4:]] _result = _BoostedTreesCalculateBestGainsPerFeatureOutput._make(_result) return _result def boosted_trees_create_ensemble(tree_ensemble_handle, stamp_token, tree_ensemble_serialized, name=None): r"""Creates a tree ensemble model and returns a handle to it. Args: tree_ensemble_handle: A `Tensor` of type `resource`. Handle to the tree ensemble resource to be created. stamp_token: A `Tensor` of type `int64`. Token to use as the initial value of the resource stamp. tree_ensemble_serialized: A `Tensor` of type `string`. Serialized proto of the tree ensemble. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "BoostedTreesCreateEnsemble", tree_ensemble_handle=tree_ensemble_handle, stamp_token=stamp_token, tree_ensemble_serialized=tree_ensemble_serialized, name=name) return _op _result = None return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BoostedTreesCreateEnsemble", name, _ctx._post_execution_callbacks, tree_ensemble_handle, stamp_token, tree_ensemble_serialized) return _result except _core._FallbackException: return boosted_trees_create_ensemble_eager_fallback( tree_ensemble_handle, stamp_token, tree_ensemble_serialized, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def boosted_trees_create_ensemble_eager_fallback(tree_ensemble_handle, stamp_token, tree_ensemble_serialized, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function boosted_trees_create_ensemble """ _ctx = ctx if ctx else _context.context() tree_ensemble_handle = _ops.convert_to_tensor(tree_ensemble_handle, _dtypes.resource) stamp_token = _ops.convert_to_tensor(stamp_token, _dtypes.int64) tree_ensemble_serialized = _ops.convert_to_tensor(tree_ensemble_serialized, _dtypes.string) _inputs_flat = [tree_ensemble_handle, stamp_token, tree_ensemble_serialized] _attrs = None _result = _execute.execute(b"BoostedTreesCreateEnsemble", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result def boosted_trees_deserialize_ensemble(tree_ensemble_handle, stamp_token, tree_ensemble_serialized, name=None): r"""Deserializes a serialized tree ensemble config and replaces current tree ensemble. Args: tree_ensemble_handle: A `Tensor` of type `resource`. Handle to the tree ensemble. stamp_token: A `Tensor` of type `int64`. Token to use as the new value of the resource stamp. tree_ensemble_serialized: A `Tensor` of type `string`. Serialized proto of the ensemble. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "BoostedTreesDeserializeEnsemble", tree_ensemble_handle=tree_ensemble_handle, stamp_token=stamp_token, tree_ensemble_serialized=tree_ensemble_serialized, name=name) return _op _result = None return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BoostedTreesDeserializeEnsemble", name, _ctx._post_execution_callbacks, tree_ensemble_handle, stamp_token, tree_ensemble_serialized) return _result except _core._FallbackException: return boosted_trees_deserialize_ensemble_eager_fallback( tree_ensemble_handle, stamp_token, tree_ensemble_serialized, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def boosted_trees_deserialize_ensemble_eager_fallback(tree_ensemble_handle, stamp_token, tree_ensemble_serialized, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function boosted_trees_deserialize_ensemble """ _ctx = ctx if ctx else _context.context() tree_ensemble_handle = _ops.convert_to_tensor(tree_ensemble_handle, _dtypes.resource) stamp_token = _ops.convert_to_tensor(stamp_token, _dtypes.int64) tree_ensemble_serialized = _ops.convert_to_tensor(tree_ensemble_serialized, _dtypes.string) _inputs_flat = [tree_ensemble_handle, stamp_token, tree_ensemble_serialized] _attrs = None _result = _execute.execute(b"BoostedTreesDeserializeEnsemble", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result def boosted_trees_ensemble_resource_handle_op(container="", shared_name="", name=None): r"""Creates a handle to a BoostedTreesEnsembleResource Args: container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "BoostedTreesEnsembleResourceHandleOp", container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "BoostedTreesEnsembleResourceHandleOp", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BoostedTreesEnsembleResourceHandleOp", name, _ctx._post_execution_callbacks, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: return boosted_trees_ensemble_resource_handle_op_eager_fallback( container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def boosted_trees_ensemble_resource_handle_op_eager_fallback(container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function boosted_trees_ensemble_resource_handle_op """ _ctx = ctx if ctx else _context.context() if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("container", container, "shared_name", shared_name) _result = _execute.execute(b"BoostedTreesEnsembleResourceHandleOp", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "BoostedTreesEnsembleResourceHandleOp", _inputs_flat, _attrs, _result, name) _result, = _result return _result _boosted_trees_get_ensemble_states_outputs = ["stamp_token", "num_trees", "num_finalized_trees", "num_attempted_layers", "last_layer_nodes_range"] _BoostedTreesGetEnsembleStatesOutput = _collections.namedtuple( "BoostedTreesGetEnsembleStates", _boosted_trees_get_ensemble_states_outputs) def boosted_trees_get_ensemble_states(tree_ensemble_handle, name=None): r"""Retrieves the tree ensemble resource stamp token, number of trees and growing statistics. Args: tree_ensemble_handle: A `Tensor` of type `resource`. Handle to the tree ensemble. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (stamp_token, num_trees, num_finalized_trees, num_attempted_layers, last_layer_nodes_range). stamp_token: A `Tensor` of type `int64`. num_trees: A `Tensor` of type `int32`. num_finalized_trees: A `Tensor` of type `int32`. num_attempted_layers: A `Tensor` of type `int32`. last_layer_nodes_range: A `Tensor` of type `int32`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "BoostedTreesGetEnsembleStates", tree_ensemble_handle=tree_ensemble_handle, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "BoostedTreesGetEnsembleStates", _inputs_flat, _attrs, _result, name) _result = _BoostedTreesGetEnsembleStatesOutput._make(_result) return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BoostedTreesGetEnsembleStates", name, _ctx._post_execution_callbacks, tree_ensemble_handle) _result = _BoostedTreesGetEnsembleStatesOutput._make(_result) return _result except _core._FallbackException: return boosted_trees_get_ensemble_states_eager_fallback( tree_ensemble_handle, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def boosted_trees_get_ensemble_states_eager_fallback(tree_ensemble_handle, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function boosted_trees_get_ensemble_states """ _ctx = ctx if ctx else _context.context() tree_ensemble_handle = _ops.convert_to_tensor(tree_ensemble_handle, _dtypes.resource) _inputs_flat = [tree_ensemble_handle] _attrs = None _result = _execute.execute(b"BoostedTreesGetEnsembleStates", 5, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "BoostedTreesGetEnsembleStates", _inputs_flat, _attrs, _result, name) _result = _BoostedTreesGetEnsembleStatesOutput._make(_result) return _result def boosted_trees_make_stats_summary(node_ids, gradients, hessians, bucketized_features_list, max_splits, num_buckets, name=None): r"""Makes the summary of accumulated stats for the batch. The summary stats contains gradients and hessians accumulated into the corresponding node and bucket for each example. Args: node_ids: A `Tensor` of type `int32`. int32 Rank 1 Tensor containing node ids, which each example falls into for the requested layer. gradients: A `Tensor` of type `float32`. float32; Rank 2 Tensor (shape=[#examples, 1]) for gradients. hessians: A `Tensor` of type `float32`. float32; Rank 2 Tensor (shape=[#examples, 1]) for hessians. bucketized_features_list: A list of at least 1 `Tensor` objects with type `int32`. int32 list of Rank 1 Tensors, each containing the bucketized feature (for each feature column). max_splits: An `int` that is `>= 1`. int; the maximum number of splits possible in the whole tree. num_buckets: An `int` that is `>= 1`. int; equals to the maximum possible value of bucketized feature. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if not isinstance(bucketized_features_list, (list, tuple)): raise TypeError( "Expected list for 'bucketized_features_list' argument to " "'boosted_trees_make_stats_summary' Op, not %r." % bucketized_features_list) _attr_num_features = len(bucketized_features_list) max_splits = _execute.make_int(max_splits, "max_splits") num_buckets = _execute.make_int(num_buckets, "num_buckets") _, _, _op = _op_def_lib._apply_op_helper( "BoostedTreesMakeStatsSummary", node_ids=node_ids, gradients=gradients, hessians=hessians, bucketized_features_list=bucketized_features_list, max_splits=max_splits, num_buckets=num_buckets, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("max_splits", _op.get_attr("max_splits"), "num_buckets", _op.get_attr("num_buckets"), "num_features", _op.get_attr("num_features")) _execute.record_gradient( "BoostedTreesMakeStatsSummary", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BoostedTreesMakeStatsSummary", name, _ctx._post_execution_callbacks, node_ids, gradients, hessians, bucketized_features_list, "max_splits", max_splits, "num_buckets", num_buckets) return _result except _core._FallbackException: return boosted_trees_make_stats_summary_eager_fallback( node_ids, gradients, hessians, bucketized_features_list, max_splits=max_splits, num_buckets=num_buckets, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def boosted_trees_make_stats_summary_eager_fallback(node_ids, gradients, hessians, bucketized_features_list, max_splits, num_buckets, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function boosted_trees_make_stats_summary """ _ctx = ctx if ctx else _context.context() if not isinstance(bucketized_features_list, (list, tuple)): raise TypeError( "Expected list for 'bucketized_features_list' argument to " "'boosted_trees_make_stats_summary' Op, not %r." % bucketized_features_list) _attr_num_features = len(bucketized_features_list) max_splits = _execute.make_int(max_splits, "max_splits") num_buckets = _execute.make_int(num_buckets, "num_buckets") node_ids = _ops.convert_to_tensor(node_ids, _dtypes.int32) gradients = _ops.convert_to_tensor(gradients, _dtypes.float32) hessians = _ops.convert_to_tensor(hessians, _dtypes.float32) bucketized_features_list = _ops.convert_n_to_tensor(bucketized_features_list, _dtypes.int32) _inputs_flat = [node_ids, gradients, hessians] + list(bucketized_features_list) _attrs = ("max_splits", max_splits, "num_buckets", num_buckets, "num_features", _attr_num_features) _result = _execute.execute(b"BoostedTreesMakeStatsSummary", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "BoostedTreesMakeStatsSummary", _inputs_flat, _attrs, _result, name) _result, = _result return _result def boosted_trees_predict(tree_ensemble_handle, bucketized_features, logits_dimension, name=None): r"""Runs multiple additive regression ensemble predictors on input instances and computes the logits. It is designed to be used during prediction. It traverses all the trees and calculates the final score for each instance. Args: tree_ensemble_handle: A `Tensor` of type `resource`. bucketized_features: A list of at least 1 `Tensor` objects with type `int32`. A list of rank 1 Tensors containing bucket id for each feature. logits_dimension: An `int`. scalar, dimension of the logits, to be used for partial logits shape. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if not isinstance(bucketized_features, (list, tuple)): raise TypeError( "Expected list for 'bucketized_features' argument to " "'boosted_trees_predict' Op, not %r." % bucketized_features) _attr_num_bucketized_features = len(bucketized_features) logits_dimension = _execute.make_int(logits_dimension, "logits_dimension") _, _, _op = _op_def_lib._apply_op_helper( "BoostedTreesPredict", tree_ensemble_handle=tree_ensemble_handle, bucketized_features=bucketized_features, logits_dimension=logits_dimension, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("num_bucketized_features", _op.get_attr("num_bucketized_features"), "logits_dimension", _op.get_attr("logits_dimension")) _execute.record_gradient( "BoostedTreesPredict", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BoostedTreesPredict", name, _ctx._post_execution_callbacks, tree_ensemble_handle, bucketized_features, "logits_dimension", logits_dimension) return _result except _core._FallbackException: return boosted_trees_predict_eager_fallback( tree_ensemble_handle, bucketized_features, logits_dimension=logits_dimension, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def boosted_trees_predict_eager_fallback(tree_ensemble_handle, bucketized_features, logits_dimension, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function boosted_trees_predict """ _ctx = ctx if ctx else _context.context() if not isinstance(bucketized_features, (list, tuple)): raise TypeError( "Expected list for 'bucketized_features' argument to " "'boosted_trees_predict' Op, not %r." % bucketized_features) _attr_num_bucketized_features = len(bucketized_features) logits_dimension = _execute.make_int(logits_dimension, "logits_dimension") tree_ensemble_handle = _ops.convert_to_tensor(tree_ensemble_handle, _dtypes.resource) bucketized_features = _ops.convert_n_to_tensor(bucketized_features, _dtypes.int32) _inputs_flat = [tree_ensemble_handle] + list(bucketized_features) _attrs = ("num_bucketized_features", _attr_num_bucketized_features, "logits_dimension", logits_dimension) _result = _execute.execute(b"BoostedTreesPredict", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "BoostedTreesPredict", _inputs_flat, _attrs, _result, name) _result, = _result return _result _boosted_trees_serialize_ensemble_outputs = ["stamp_token", "tree_ensemble_serialized"] _BoostedTreesSerializeEnsembleOutput = _collections.namedtuple( "BoostedTreesSerializeEnsemble", _boosted_trees_serialize_ensemble_outputs) def boosted_trees_serialize_ensemble(tree_ensemble_handle, name=None): r"""Serializes the tree ensemble to a proto. Args: tree_ensemble_handle: A `Tensor` of type `resource`. Handle to the tree ensemble. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (stamp_token, tree_ensemble_serialized). stamp_token: A `Tensor` of type `int64`. tree_ensemble_serialized: A `Tensor` of type `string`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "BoostedTreesSerializeEnsemble", tree_ensemble_handle=tree_ensemble_handle, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "BoostedTreesSerializeEnsemble", _inputs_flat, _attrs, _result, name) _result = _BoostedTreesSerializeEnsembleOutput._make(_result) return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BoostedTreesSerializeEnsemble", name, _ctx._post_execution_callbacks, tree_ensemble_handle) _result = _BoostedTreesSerializeEnsembleOutput._make(_result) return _result except _core._FallbackException: return boosted_trees_serialize_ensemble_eager_fallback( tree_ensemble_handle, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def boosted_trees_serialize_ensemble_eager_fallback(tree_ensemble_handle, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function boosted_trees_serialize_ensemble """ _ctx = ctx if ctx else _context.context() tree_ensemble_handle = _ops.convert_to_tensor(tree_ensemble_handle, _dtypes.resource) _inputs_flat = [tree_ensemble_handle] _attrs = None _result = _execute.execute(b"BoostedTreesSerializeEnsemble", 2, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "BoostedTreesSerializeEnsemble", _inputs_flat, _attrs, _result, name) _result = _BoostedTreesSerializeEnsembleOutput._make(_result) return _result _boosted_trees_training_predict_outputs = ["partial_logits", "tree_ids", "node_ids"] _BoostedTreesTrainingPredictOutput = _collections.namedtuple( "BoostedTreesTrainingPredict", _boosted_trees_training_predict_outputs) def boosted_trees_training_predict(tree_ensemble_handle, cached_tree_ids, cached_node_ids, bucketized_features, logits_dimension, name=None): r"""Runs multiple additive regression ensemble predictors on input instances and computes the update to cached logits. It is designed to be used during training. It traverses the trees starting from cached tree id and cached node id and calculates the updates to be pushed to the cache. Args: tree_ensemble_handle: A `Tensor` of type `resource`. cached_tree_ids: A `Tensor` of type `int32`. Rank 1 Tensor containing cached tree ids which is the starting tree of prediction. cached_node_ids: A `Tensor` of type `int32`. Rank 1 Tensor containing cached node id which is the starting node of prediction. bucketized_features: A list of at least 1 `Tensor` objects with type `int32`. A list of rank 1 Tensors containing bucket id for each feature. logits_dimension: An `int`. scalar, dimension of the logits, to be used for partial logits shape. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (partial_logits, tree_ids, node_ids). partial_logits: A `Tensor` of type `float32`. tree_ids: A `Tensor` of type `int32`. node_ids: A `Tensor` of type `int32`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if not isinstance(bucketized_features, (list, tuple)): raise TypeError( "Expected list for 'bucketized_features' argument to " "'boosted_trees_training_predict' Op, not %r." % bucketized_features) _attr_num_bucketized_features = len(bucketized_features) logits_dimension = _execute.make_int(logits_dimension, "logits_dimension") _, _, _op = _op_def_lib._apply_op_helper( "BoostedTreesTrainingPredict", tree_ensemble_handle=tree_ensemble_handle, cached_tree_ids=cached_tree_ids, cached_node_ids=cached_node_ids, bucketized_features=bucketized_features, logits_dimension=logits_dimension, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("num_bucketized_features", _op.get_attr("num_bucketized_features"), "logits_dimension", _op.get_attr("logits_dimension")) _execute.record_gradient( "BoostedTreesTrainingPredict", _inputs_flat, _attrs, _result, name) _result = _BoostedTreesTrainingPredictOutput._make(_result) return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BoostedTreesTrainingPredict", name, _ctx._post_execution_callbacks, tree_ensemble_handle, cached_tree_ids, cached_node_ids, bucketized_features, "logits_dimension", logits_dimension) _result = _BoostedTreesTrainingPredictOutput._make(_result) return _result except _core._FallbackException: return boosted_trees_training_predict_eager_fallback( tree_ensemble_handle, cached_tree_ids, cached_node_ids, bucketized_features, logits_dimension=logits_dimension, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def boosted_trees_training_predict_eager_fallback(tree_ensemble_handle, cached_tree_ids, cached_node_ids, bucketized_features, logits_dimension, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function boosted_trees_training_predict """ _ctx = ctx if ctx else _context.context() if not isinstance(bucketized_features, (list, tuple)): raise TypeError( "Expected list for 'bucketized_features' argument to " "'boosted_trees_training_predict' Op, not %r." % bucketized_features) _attr_num_bucketized_features = len(bucketized_features) logits_dimension = _execute.make_int(logits_dimension, "logits_dimension") tree_ensemble_handle = _ops.convert_to_tensor(tree_ensemble_handle, _dtypes.resource) cached_tree_ids = _ops.convert_to_tensor(cached_tree_ids, _dtypes.int32) cached_node_ids = _ops.convert_to_tensor(cached_node_ids, _dtypes.int32) bucketized_features = _ops.convert_n_to_tensor(bucketized_features, _dtypes.int32) _inputs_flat = [tree_ensemble_handle, cached_tree_ids, cached_node_ids] + list(bucketized_features) _attrs = ("num_bucketized_features", _attr_num_bucketized_features, "logits_dimension", logits_dimension) _result = _execute.execute(b"BoostedTreesTrainingPredict", 3, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "BoostedTreesTrainingPredict", _inputs_flat, _attrs, _result, name) _result = _BoostedTreesTrainingPredictOutput._make(_result) return _result def boosted_trees_update_ensemble(tree_ensemble_handle, feature_ids, node_ids, gains, thresholds, left_node_contribs, right_node_contribs, max_depth, learning_rate, pruning_mode, name=None): r"""Updates the tree ensemble by either adding a layer to the last tree being grown or by starting a new tree. Args: tree_ensemble_handle: A `Tensor` of type `resource`. Handle to the ensemble variable. feature_ids: A `Tensor` of type `int32`. Rank 1 tensor with ids for each feature. This is the real id of the feature that will be used in the split. node_ids: A list of `Tensor` objects with type `int32`. List of rank 1 tensors representing the nodes for which this feature has a split. gains: A list with the same length as `node_ids` of `Tensor` objects with type `float32`. List of rank 1 tensors representing the gains for each of the feature's split. thresholds: A list with the same length as `node_ids` of `Tensor` objects with type `int32`. List of rank 1 tensors representing the thesholds for each of the feature's split. left_node_contribs: A list with the same length as `node_ids` of `Tensor` objects with type `float32`. List of rank 2 tensors with left leaf contribs for each of the feature's splits. Will be added to the previous node values to constitute the values of the left nodes. right_node_contribs: A list with the same length as `node_ids` of `Tensor` objects with type `float32`. List of rank 2 tensors with right leaf contribs for each of the feature's splits. Will be added to the previous node values to constitute the values of the right nodes. max_depth: A `Tensor` of type `int32`. Max depth of the tree to build. learning_rate: A `Tensor` of type `float32`. shrinkage const for each new tree. pruning_mode: An `int` that is `>= 0`. 0-No pruning, 1-Pre-pruning, 2-Post-pruning. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if not isinstance(node_ids, (list, tuple)): raise TypeError( "Expected list for 'node_ids' argument to " "'boosted_trees_update_ensemble' Op, not %r." % node_ids) _attr_num_features = len(node_ids) if not isinstance(gains, (list, tuple)): raise TypeError( "Expected list for 'gains' argument to " "'boosted_trees_update_ensemble' Op, not %r." % gains) if len(gains) != _attr_num_features: raise ValueError( "List argument 'gains' to 'boosted_trees_update_ensemble' Op with length %d " "must match length %d of argument 'node_ids'." % (len(gains), _attr_num_features)) if not isinstance(thresholds, (list, tuple)): raise TypeError( "Expected list for 'thresholds' argument to " "'boosted_trees_update_ensemble' Op, not %r." % thresholds) if len(thresholds) != _attr_num_features: raise ValueError( "List argument 'thresholds' to 'boosted_trees_update_ensemble' Op with length %d " "must match length %d of argument 'node_ids'." % (len(thresholds), _attr_num_features)) if not isinstance(left_node_contribs, (list, tuple)): raise TypeError( "Expected list for 'left_node_contribs' argument to " "'boosted_trees_update_ensemble' Op, not %r." % left_node_contribs) if len(left_node_contribs) != _attr_num_features: raise ValueError( "List argument 'left_node_contribs' to 'boosted_trees_update_ensemble' Op with length %d " "must match length %d of argument 'node_ids'." % (len(left_node_contribs), _attr_num_features)) if not isinstance(right_node_contribs, (list, tuple)): raise TypeError( "Expected list for 'right_node_contribs' argument to " "'boosted_trees_update_ensemble' Op, not %r." % right_node_contribs) if len(right_node_contribs) != _attr_num_features: raise ValueError( "List argument 'right_node_contribs' to 'boosted_trees_update_ensemble' Op with length %d " "must match length %d of argument 'node_ids'." % (len(right_node_contribs), _attr_num_features)) pruning_mode = _execute.make_int(pruning_mode, "pruning_mode") _, _, _op = _op_def_lib._apply_op_helper( "BoostedTreesUpdateEnsemble", tree_ensemble_handle=tree_ensemble_handle, feature_ids=feature_ids, node_ids=node_ids, gains=gains, thresholds=thresholds, left_node_contribs=left_node_contribs, right_node_contribs=right_node_contribs, max_depth=max_depth, learning_rate=learning_rate, pruning_mode=pruning_mode, name=name) return _op _result = None return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BoostedTreesUpdateEnsemble", name, _ctx._post_execution_callbacks, tree_ensemble_handle, feature_ids, node_ids, gains, thresholds, left_node_contribs, right_node_contribs, max_depth, learning_rate, "pruning_mode", pruning_mode) return _result except _core._FallbackException: return boosted_trees_update_ensemble_eager_fallback( tree_ensemble_handle, feature_ids, node_ids, gains, thresholds, left_node_contribs, right_node_contribs, max_depth, learning_rate, pruning_mode=pruning_mode, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def boosted_trees_update_ensemble_eager_fallback(tree_ensemble_handle, feature_ids, node_ids, gains, thresholds, left_node_contribs, right_node_contribs, max_depth, learning_rate, pruning_mode, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function boosted_trees_update_ensemble """ _ctx = ctx if ctx else _context.context() if not isinstance(node_ids, (list, tuple)): raise TypeError( "Expected list for 'node_ids' argument to " "'boosted_trees_update_ensemble' Op, not %r." % node_ids) _attr_num_features = len(node_ids) if not isinstance(gains, (list, tuple)): raise TypeError( "Expected list for 'gains' argument to " "'boosted_trees_update_ensemble' Op, not %r." % gains) if len(gains) != _attr_num_features: raise ValueError( "List argument 'gains' to 'boosted_trees_update_ensemble' Op with length %d " "must match length %d of argument 'node_ids'." % (len(gains), _attr_num_features)) if not isinstance(thresholds, (list, tuple)): raise TypeError( "Expected list for 'thresholds' argument to " "'boosted_trees_update_ensemble' Op, not %r." % thresholds) if len(thresholds) != _attr_num_features: raise ValueError( "List argument 'thresholds' to 'boosted_trees_update_ensemble' Op with length %d " "must match length %d of argument 'node_ids'." % (len(thresholds), _attr_num_features)) if not isinstance(left_node_contribs, (list, tuple)): raise TypeError( "Expected list for 'left_node_contribs' argument to " "'boosted_trees_update_ensemble' Op, not %r." % left_node_contribs) if len(left_node_contribs) != _attr_num_features: raise ValueError( "List argument 'left_node_contribs' to 'boosted_trees_update_ensemble' Op with length %d " "must match length %d of argument 'node_ids'." % (len(left_node_contribs), _attr_num_features)) if not isinstance(right_node_contribs, (list, tuple)): raise TypeError( "Expected list for 'right_node_contribs' argument to " "'boosted_trees_update_ensemble' Op, not %r." % right_node_contribs) if len(right_node_contribs) != _attr_num_features: raise ValueError( "List argument 'right_node_contribs' to 'boosted_trees_update_ensemble' Op with length %d " "must match length %d of argument 'node_ids'." % (len(right_node_contribs), _attr_num_features)) pruning_mode = _execute.make_int(pruning_mode, "pruning_mode") tree_ensemble_handle = _ops.convert_to_tensor(tree_ensemble_handle, _dtypes.resource) feature_ids = _ops.convert_to_tensor(feature_ids, _dtypes.int32) node_ids = _ops.convert_n_to_tensor(node_ids, _dtypes.int32) gains = _ops.convert_n_to_tensor(gains, _dtypes.float32) thresholds = _ops.convert_n_to_tensor(thresholds, _dtypes.int32) left_node_contribs = _ops.convert_n_to_tensor(left_node_contribs, _dtypes.float32) right_node_contribs = _ops.convert_n_to_tensor(right_node_contribs, _dtypes.float32) max_depth = _ops.convert_to_tensor(max_depth, _dtypes.int32) learning_rate = _ops.convert_to_tensor(learning_rate, _dtypes.float32) _inputs_flat = [tree_ensemble_handle, feature_ids] + list(node_ids) + list(gains) + list(thresholds) + list(left_node_contribs) + list(right_node_contribs) + [max_depth, learning_rate] _attrs = ("pruning_mode", pruning_mode, "num_features", _attr_num_features) _result = _execute.execute(b"BoostedTreesUpdateEnsemble", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result def is_boosted_trees_ensemble_initialized(tree_ensemble_handle, name=None): r"""Checks whether a tree ensemble has been initialized. Args: tree_ensemble_handle: A `Tensor` of type `resource`. Handle to the tree ensemble resouce. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "IsBoostedTreesEnsembleInitialized", tree_ensemble_handle=tree_ensemble_handle, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "IsBoostedTreesEnsembleInitialized", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "IsBoostedTreesEnsembleInitialized", name, _ctx._post_execution_callbacks, tree_ensemble_handle) return _result except _core._FallbackException: return is_boosted_trees_ensemble_initialized_eager_fallback( tree_ensemble_handle, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def is_boosted_trees_ensemble_initialized_eager_fallback(tree_ensemble_handle, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function is_boosted_trees_ensemble_initialized """ _ctx = ctx if ctx else _context.context() tree_ensemble_handle = _ops.convert_to_tensor(tree_ensemble_handle, _dtypes.resource) _inputs_flat = [tree_ensemble_handle] _attrs = None _result = _execute.execute(b"IsBoostedTreesEnsembleInitialized", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "IsBoostedTreesEnsembleInitialized", _inputs_flat, _attrs, _result, name) _result, = _result return _result def _InitOpDefLibrary(op_list_proto_bytes): op_list = _op_def_pb2.OpList() op_list.ParseFromString(op_list_proto_bytes) _op_def_registry.register_op_list(op_list) op_def_lib = _op_def_library.OpDefLibrary() op_def_lib.add_op_list(op_list) return op_def_lib # op { # name: "BoostedTreesCalculateBestGainsPerFeature" # input_arg { # name: "node_id_range" # type: DT_INT32 # } # input_arg { # name: "stats_summary_list" # type: DT_FLOAT # number_attr: "num_features" # } # input_arg { # name: "l1" # type: DT_FLOAT # } # input_arg { # name: "l2" # type: DT_FLOAT # } # input_arg { # name: "tree_complexity" # type: DT_FLOAT # } # input_arg { # name: "min_node_weight" # type: DT_FLOAT # } # output_arg { # name: "node_ids_list" # type: DT_INT32 # number_attr: "num_features" # } # output_arg { # name: "gains_list" # type: DT_FLOAT # number_attr: "num_features" # } # output_arg { # name: "thresholds_list" # type: DT_INT32 # number_attr: "num_features" # } # output_arg { # name: "left_node_contribs_list" # type: DT_FLOAT # number_attr: "num_features" # } # output_arg { # name: "right_node_contribs_list" # type: DT_FLOAT # number_attr: "num_features" # } # attr { # name: "max_splits" # type: "int" # has_minimum: true # minimum: 1 # } # attr { # name: "num_features" # type: "int" # has_minimum: true # minimum: 1 # } # } # op { # name: "BoostedTreesCreateEnsemble" # input_arg { # name: "tree_ensemble_handle" # type: DT_RESOURCE # } # input_arg { # name: "stamp_token" # type: DT_INT64 # } # input_arg { # name: "tree_ensemble_serialized" # type: DT_STRING # } # is_stateful: true # } # op { # name: "BoostedTreesDeserializeEnsemble" # input_arg { # name: "tree_ensemble_handle" # type: DT_RESOURCE # } # input_arg { # name: "stamp_token" # type: DT_INT64 # } # input_arg { # name: "tree_ensemble_serialized" # type: DT_STRING # } # is_stateful: true # } # op { # name: "BoostedTreesEnsembleResourceHandleOp" # output_arg { # name: "resource" # type: DT_RESOURCE # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "BoostedTreesGetEnsembleStates" # input_arg { # name: "tree_ensemble_handle" # type: DT_RESOURCE # } # output_arg { # name: "stamp_token" # type: DT_INT64 # } # output_arg { # name: "num_trees" # type: DT_INT32 # } # output_arg { # name: "num_finalized_trees" # type: DT_INT32 # } # output_arg { # name: "num_attempted_layers" # type: DT_INT32 # } # output_arg { # name: "last_layer_nodes_range" # type: DT_INT32 # } # is_stateful: true # } # op { # name: "BoostedTreesMakeStatsSummary" # input_arg { # name: "node_ids" # type: DT_INT32 # } # input_arg { # name: "gradients" # type: DT_FLOAT # } # input_arg { # name: "hessians" # type: DT_FLOAT # } # input_arg { # name: "bucketized_features_list" # type: DT_INT32 # number_attr: "num_features" # } # output_arg { # name: "stats_summary" # type: DT_FLOAT # } # attr { # name: "max_splits" # type: "int" # has_minimum: true # minimum: 1 # } # attr { # name: "num_buckets" # type: "int" # has_minimum: true # minimum: 1 # } # attr { # name: "num_features" # type: "int" # has_minimum: true # minimum: 1 # } # } # op { # name: "BoostedTreesPredict" # input_arg { # name: "tree_ensemble_handle" # type: DT_RESOURCE # } # input_arg { # name: "bucketized_features" # type: DT_INT32 # number_attr: "num_bucketized_features" # } # output_arg { # name: "logits" # type: DT_FLOAT # } # attr { # name: "num_bucketized_features" # type: "int" # has_minimum: true # minimum: 1 # } # attr { # name: "logits_dimension" # type: "int" # } # is_stateful: true # } # op { # name: "BoostedTreesSerializeEnsemble" # input_arg { # name: "tree_ensemble_handle" # type: DT_RESOURCE # } # output_arg { # name: "stamp_token" # type: DT_INT64 # } # output_arg { # name: "tree_ensemble_serialized" # type: DT_STRING # } # is_stateful: true # } # op { # name: "BoostedTreesTrainingPredict" # input_arg { # name: "tree_ensemble_handle" # type: DT_RESOURCE # } # input_arg { # name: "cached_tree_ids" # type: DT_INT32 # } # input_arg { # name: "cached_node_ids" # type: DT_INT32 # } # input_arg { # name: "bucketized_features" # type: DT_INT32 # number_attr: "num_bucketized_features" # } # output_arg { # name: "partial_logits" # type: DT_FLOAT # } # output_arg { # name: "tree_ids" # type: DT_INT32 # } # output_arg { # name: "node_ids" # type: DT_INT32 # } # attr { # name: "num_bucketized_features" # type: "int" # has_minimum: true # minimum: 1 # } # attr { # name: "logits_dimension" # type: "int" # } # is_stateful: true # } # op { # name: "BoostedTreesUpdateEnsemble" # input_arg { # name: "tree_ensemble_handle" # type: DT_RESOURCE # } # input_arg { # name: "feature_ids" # type: DT_INT32 # } # input_arg { # name: "node_ids" # type: DT_INT32 # number_attr: "num_features" # } # input_arg { # name: "gains" # type: DT_FLOAT # number_attr: "num_features" # } # input_arg { # name: "thresholds" # type: DT_INT32 # number_attr: "num_features" # } # input_arg { # name: "left_node_contribs" # type: DT_FLOAT # number_attr: "num_features" # } # input_arg { # name: "right_node_contribs" # type: DT_FLOAT # number_attr: "num_features" # } # input_arg { # name: "max_depth" # type: DT_INT32 # } # input_arg { # name: "learning_rate" # type: DT_FLOAT # } # attr { # name: "pruning_mode" # type: "int" # has_minimum: true # } # attr { # name: "num_features" # type: "int" # has_minimum: true # } # is_stateful: true # } # op { # name: "IsBoostedTreesEnsembleInitialized" # input_arg { # name: "tree_ensemble_handle" # type: DT_RESOURCE # } # output_arg { # name: "is_initialized" # type: DT_BOOL # } # is_stateful: true # } _op_def_lib = _InitOpDefLibrary(b"\n\206\003\n(BoostedTreesCalculateBestGainsPerFeature\022\021\n\rnode_id_range\030\003\022$\n\022stats_summary_list\030\001*\014num_features\022\006\n\002l1\030\001\022\006\n\002l2\030\001\022\023\n\017tree_complexity\030\001\022\023\n\017min_node_weight\030\001\032\037\n\rnode_ids_list\030\003*\014num_features\032\034\n\ngains_list\030\001*\014num_features\032!\n\017thresholds_list\030\003*\014num_features\032)\n\027left_node_contribs_list\030\001*\014num_features\032*\n\030right_node_contribs_list\030\001*\014num_features\"\025\n\nmax_splits\022\003int(\0010\001\"\027\n\014num_features\022\003int(\0010\001\nh\n\032BoostedTreesCreateEnsemble\022\030\n\024tree_ensemble_handle\030\024\022\017\n\013stamp_token\030\t\022\034\n\030tree_ensemble_serialized\030\007\210\001\001\nm\n\037BoostedTreesDeserializeEnsemble\022\030\n\024tree_ensemble_handle\030\024\022\017\n\013stamp_token\030\t\022\034\n\030tree_ensemble_serialized\030\007\210\001\001\nk\n$BoostedTreesEnsembleResourceHandleOp\032\014\n\010resource\030\024\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\253\001\n\035BoostedTreesGetEnsembleStates\022\030\n\024tree_ensemble_handle\030\024\032\017\n\013stamp_token\030\t\032\r\n\tnum_trees\030\003\032\027\n\023num_finalized_trees\030\003\032\030\n\024num_attempted_layers\030\003\032\032\n\026last_layer_nodes_range\030\003\210\001\001\n\320\001\n\034BoostedTreesMakeStatsSummary\022\014\n\010node_ids\030\003\022\r\n\tgradients\030\001\022\014\n\010hessians\030\001\022*\n\030bucketized_features_list\030\003*\014num_features\032\021\n\rstats_summary\030\001\"\025\n\nmax_splits\022\003int(\0010\001\"\026\n\013num_buckets\022\003int(\0010\001\"\027\n\014num_features\022\003int(\0010\001\n\255\001\n\023BoostedTreesPredict\022\030\n\024tree_ensemble_handle\030\024\0220\n\023bucketized_features\030\003*\027num_bucketized_features\032\n\n\006logits\030\001\"\"\n\027num_bucketized_features\022\003int(\0010\001\"\027\n\020logits_dimension\022\003int\210\001\001\nk\n\035BoostedTreesSerializeEnsemble\022\030\n\024tree_ensemble_handle\030\024\032\017\n\013stamp_token\030\t\032\034\n\030tree_ensemble_serialized\030\007\210\001\001\n\203\002\n\033BoostedTreesTrainingPredict\022\030\n\024tree_ensemble_handle\030\024\022\023\n\017cached_tree_ids\030\003\022\023\n\017cached_node_ids\030\003\0220\n\023bucketized_features\030\003*\027num_bucketized_features\032\022\n\016partial_logits\030\001\032\014\n\010tree_ids\030\003\032\014\n\010node_ids\030\003\"\"\n\027num_bucketized_features\022\003int(\0010\001\"\027\n\020logits_dimension\022\003int\210\001\001\n\272\002\n\032BoostedTreesUpdateEnsemble\022\030\n\024tree_ensemble_handle\030\024\022\017\n\013feature_ids\030\003\022\032\n\010node_ids\030\003*\014num_features\022\027\n\005gains\030\001*\014num_features\022\034\n\nthresholds\030\003*\014num_features\022$\n\022left_node_contribs\030\001*\014num_features\022%\n\023right_node_contribs\030\001*\014num_features\022\r\n\tmax_depth\030\003\022\021\n\rlearning_rate\030\001\"\025\n\014pruning_mode\022\003int(\001\"\025\n\014num_features\022\003int(\001\210\001\001\nT\n!IsBoostedTreesEnsembleInitialized\022\030\n\024tree_ensemble_handle\030\024\032\022\n\016is_initialized\030\n\210\001\001")
42.777778
3,324
0.716153
[ "MIT" ]
Con-Mi/lambda-packs
Keras_tensorflow_nightly/source2.7/tensorflow/python/ops/gen_boosted_trees_ops.py
58,905
Python
#!/usr/bin/env python """JIP module that handles job profiles. A job profile contains all compute-cluster and execution related meta-data of a job, such as the number of threads reserved for the job or the time limit. Profiles can be named and stored in the user configuration. In addition, hierarchical updates of profiles can be applied. For example, a default profile can be loaded from the configuration. This profile can then be refined by a pipeline script or command line options. This enable you to start with a *hard-coded* profile in your tool implementation and then gradually modify and change the profile when the tool is embedded in another pipeline or from the command line at execution or submission time. .. note:: Please note that the interpretation of some of the profiles properties depends on the cluster implementation. The following properties are supported by a profile and can be maintained and updated. General properties ------------------ The following properties are considered *general* and usually always used and interpreted, independent of where and how you execute the tool or pipeline: name You can assign an arbitrary name to your profiles. This name will be used either as a job name, if the profile is applied to a tool, or as a pipeline name if applied to a pipeline. prefix A name prefix that is applied to all embedded jobs. This can be useful if, in a pipeline context, you want to allow your tool to take their own name, but you want to prefix all tools that are part of a single pipeline. threads The number of threads or compute slots allocated by the execution. Although this property and its interpretation also depends on the cluster or grid implementation, this is considered a general property that is also considered when you execute a pipeline or tool outside of a compute grid. working_dir or dir The working directory for a job. This is initialized to the current working directory of the process that creates the profile. temp A boolean property that you can used to *mark* a job as temporary. Temporary jobs are treated specially in a pipeline execution. You can find more information about temporary jobs in the :class:`~jip.pipelines.Pipeline` documentation. env Dictionary that can be used to extend the jobs shell environment description Optional field that describes the profile and can be used to describe custom profiles in the user configuration Cluster/Grid specific properties -------------------------------- The following properties can be set or modified, but their interpretation depends on the cluster implementation and the capabilities of the cluster: tasks Number of tasks assigned to a single job tasks_per_node If multiple nodes are reserved by a single job, this is the number of tasks assigned to each node. nodes Number of nodes requested by the job queue The *queue* the job is sent to priority A priority assigned to a job environment The name of the *environment* assigned to a job. This is **not** the shell environment, but an arbitrary name that is used, for example, in the *Sun Grid Engine* implementation to identify the *parallel environment* the job is submitted to. account Name of the account for this job mem The memory limit for the job. This is stored here as a string and passed on *as is* to the cluster implementation time The time limit for the job. Here, the time limit is specified as a string and passed on to the cluster implementation *as is*. out Path to the ``stdout`` log file for this job log path to the ``stderr`` log file for this job err path to the ``stderr`` log file for this job extra This is an array that takes additional options that are used when the submission command is constructed. .. note:: Most of the """ import collections import fnmatch import re import os import json import logging import jip.utils from jip.templates import render_template log = logging.getLogger("jip.profile") #: global specs specs = None class Profile(object): """A Profile contains cluster and runtime specific information about a job. """ def __init__(self, name=None, threads=None, nodes=None, tasks=None, tasks_per_node=None, environment=None, time=None, queue=None, priority=None, log=None, out=None, account=None, mem=0, extra=None, profile=None, prefix=None, temp=False, _load=True, env=None, tool_name=None, working_dir=None, description=None, specs=None, _name=None, **kwargs): self._name = name if not _name else _name # render_template(name) self.environment = render_template(environment) self.nodes = render_template(nodes) self.threads = render_template(threads) self.tasks = render_template(tasks) self.tasks_per_node = render_template(tasks_per_node) self.profile = render_template(profile) self.queue = render_template(queue) self.time = render_template(time) self.mem = render_template(mem) self.priority = render_template(priority) self.log = log self.out = out self.account = render_template(account) self.prefix = render_template(prefix) self.description = description self.env = env self.temp = temp self.extra = extra self.tool_name = tool_name self.working_dir = working_dir if self.working_dir is None and kwargs.get('dir', None): self.working_dir = kwargs['dir'] self.specs = specs if specs else {} if profile is not None and _load: self.load(profile) def apply_to_pipeline(self, pipeline): """Apply this profile to the pipeline :param pipeline: the pipeline :type pipeline: :class:`jip.pipeline.Pipeline` """ for node in pipeline.nodes(): self.apply_to_node(node) def apply_to_node(self, node): # check if there is a matching spec for the node node_profile = self.specs.get(node.name, None) if not node_profile: node_profile = self.specs.get(node._name, None) # check via regexp for spec_name, spec in self.specs.iteritems(): if fnmatch.fnmatch(node.name, spec_name): #if re.match(spec_name, node.name): if not node_profile: node_profile = spec() else: node_profile.update(spec) if node_profile: node._job.update(node_profile) if node._pipeline_profile: node._pipeline_profile.update(node_profile) # apply global profile, don't overwrite node._job.update(self, overwrite=False) if node._pipeline_profile: node._pipeline_profile.update(self, overwrite=False) @property def err(self): """Set the jobs error log file :getter: access the jobs name :setter: set the jobs name :type: string """ return self.log @err.setter def err(self, value): self.log = value @property def dir(self): """Set the jobs working directory :getter: access the jobs working directory :setter: set the jobs working directory :type: string """ return self.working_dir @dir.setter def dir(self, value): self.working_dir = value @property def name(self): """Set the jobs name :getter: access the jobs name :setter: set the jobs name :type: string """ return self._name @name.setter def name(self, name): self._name = name def load(self, profile_name): """Set this profiles values to the values loaded from the profile stored under the given name. An exception is raised if no profile of that name could be found. :param profile_name: the name of the profile that will be loaded :type profile_name: string """ import jip profiles = jip.config.get('profiles', {}) if profile_name not in profiles: raise ValueError("Profile %s not found!" % profile_name) profile = profiles[profile_name] self.threads = profile.get('threads', self.threads) self.nodes = profile.get('nodes', self.nodes) self.tasks = profile.get('tasks', self.tasks) self.tasks_per_node = profile.get('tasks_per_node', self.tasks_per_node) self.environment = profile.get('environment', self.environment) self.time = profile.get('time', self.time) self.queue = profile.get('queue', self.queue) self.priority = profile.get('priority', self.priority) self.log = profile.get('log', self.log) self.out = profile.get('out', self.out) self.account = profile.get('account', self.account) self.mem = profile.get('mem', self.mem) self.extra = profile.get('extra', self.extra) self.env = profile.get('env', self.env) self.description = profile.get('description', self.description) def load_args(self, args): """Update this profile from the given dictionary of command line arguments. The argument names must match the profile attributes """ for k, v in args.iteritems(): k = re.sub("^-+", "", k) k = re.sub("-", "_", k) if v and hasattr(self, k): # check for multiple values for single in v.split(" "): tup = single.split("=") if len(tup) == 1: setattr(self, k, single) else: # find or create a spec for the given key spec_profile = self.specs.get(tup[0], Profile()) setattr(spec_profile, k, tup[1]) self.specs[tup[0]] = spec_profile def _render_job_name(self, job): ctx = {} for o in job.tool.options: ctx[o.name] = o name = job.name if not name: name = self.name if not name: name = job.tool.name return render_template( "%s%s" % ("" if not self.prefix else self.prefix, name), **ctx ) def _render(self, job, name): ctx = {} for o in job.tool.options: ctx[o.name] = o ctx['name'] = self.name ctx['job'] = self return render_template( "%s%s" % ("" if not self.prefix else self.prefix, name), **ctx ) def apply_overwrite(self, job): """Apply the profile and overwrite all settings that are set in this profile """ log.debug("Profiles | Overwriting job profile to %s", job) if self.name: job.name = self._render_job_name(job) if self.threads: job.threads = int(self.threads) if self.nodes is not None: job.nodes = self.nodes if self.tasks is not None: job.tasks = self.tasks if self.tasks_per_node is not None: job.tasks_per_node = self.tasks_per_node if self.environment is not None: job.environment = self.environment if self.queue is not None: job.queue = self.queue if self.priority is not None: job.priority = self.priority if self.time is not None: job.max_time = jip.utils.parse_time(self.time) if self.mem is not None: job.max_memory = jip.utils.parse_mem(self.mem) if self.log is not None: job.stderr = self._render(job, self.log) if self.out is not None: job.stdout = self._render(job, self.out) if self.account is not None: job.account = self.account if self.temp is not None: job.temp = self.temp if self.extra is not None: job.extra = self.extra if self.working_dir is not None: job.working_directory = os.path.abspath(self.working_dir) # make log files absolute if job.stdout and not job.stdout.startswith("/"): job.stdout = os.path.join(job.working_directory, job.stdout) if job.stderr and not job.stderr.startswith("/"): job.stderr = os.path.join(job.working_directory, job.stderr) # load environment if self.env: current = os.environ.copy() if job.env: current.update(job.env) rendered = {} for k, v in self.env.iteritems(): rendered[k] = render_template(v, **current) job.env.update(rendered) if hasattr(job, 'pipe_to'): for child in job.pipe_to: self.apply_overwrite(child) # check specs for spec_name, spec in self.specs.iteritems(): if fnmatch.fnmatch(job.name, spec_name): spec.apply_overwrite(job) def apply(self, job, pipeline=False, overwrite=False): """Apply this profile to the given job.""" log.debug("Profiles | Applying job profile to %s", job) if overwrite: self.apply_overwrite(job) return # set the job name or the pipeline name # if this is a job or a pipeline if not pipeline: job.name = self._render_job_name(job) elif self.name is not None: log.info("Apply pipeline name to job: %s %s", job, self.name) job.pipeline = self._render(job, self.name) if self.threads and job.threads is None: job.threads = int(self.threads) if self.nodes is not None and job.nodes is None: job.nodes = self.nodes if self.tasks is not None and job.tasks is None: job.tasks = self.tasks if self.tasks_per_node is not None and job.tasts_per_node is None: job.tasks_per_node = self.tasks_per_node if self.environment is not None and job.environment is None: job.environment = self.environment if self.queue is not None and job.queue is None: job.queue = self.queue if self.priority is not None and job.priority is None: job.priority = self.priority if self.time is not None and job.max_time is None: job.max_time = jip.utils.parse_time(self.time) if self.mem is not None: if job.max_memory is None: job.max_memory = 0 job.max_memory += jip.utils.parse_mem(self.mem) if self.log is not None and job.stderr is None: job.stderr = self._render(job, self.log) if self.out is not None and job.stdout is None: job.stdout = self._render(job, self.out) if self.account is not None and job.account is None: job.account = self.account if self.temp is not None and job.temp is None: job.temp = self.temp if self.extra is not None and job.extra is None: job.extra = self.extra if self.working_dir is not None and job.working_directory is None: job.working_directory = os.path.abspath(self.working_dir) # make log files absolute if job.stdout and not job.stdout.startswith("/"): job.stdout = os.path.join(job.working_directory, job.stdout) if job.stderr and not job.stderr.startswith("/"): job.stderr = os.path.join(job.working_directory, job.stderr) # load environment if self.env: current = os.environ.copy() if job.env: current.update(job.env) rendered = {} for k, v in self.env.iteritems(): rendered[k] = render_template(v, **current) job.env.update(rendered) if hasattr(job, 'pipe_to'): for child in job.pipe_to: self.apply(child) def update(self, profile, overwrite=True): """Update this profile from a given profile. All values that are not None in the other profile are applied to this profile :param profile: the other profile :type profile: :class:`Profile` :param overwrite: if True, value will be set regardless. Otherwise, the new value will only be applied if the old value is None """ attrs = ["environment", "nodes", "threads", "tasks", "tasks_per_node", "queue", "time", "mem", "priority", "log", "out", "account", "prefix", "env", "temp", "extra", "working_dir"] for attr in attrs: other = profile.__getattribute__(attr) if other is not None and (overwrite or self.__getattribute__(attr) is None): setattr(self, attr, other) def merge(self, master): """Merge this profile with the given master profile. Currently this merges the working directory of jobs :param master: the master profile """ self.working_dir = master.working_dir if self.working_dir is None\ else self.working_dir def __call__(self, name=None, threads=None, nodes=None, tasks=None, tasks_per_node=None, environment=None, time=None, queue=None, priority=None, log=None, out=None, err=None, account=None, mem=None, profile=None, prefix=None, temp=None, extra=None, dir=None, description=None, env=None): clone = self.__class__( name=name if name is not None else self._name, threads=threads if threads is not None else self.threads, tasks=tasks if tasks is not None else self.tasks, tasks_per_node=tasks_per_node if tasks_per_node is not None else self.tasks_per_node, environment=environment if environment is not None else self.environment, env=env if env is not None else self.env, nodes=nodes if nodes is not None else self.nodes, profile=profile if profile is not None else self.profile, queue=queue if queue is not None else self.queue, time=time if time is not None else self.time, priority=priority if priority is not None else self.priority, log=log if log is not None else (err if err is not None else self.log), out=out if out is not None else self.out, account=account if account is not None else self.account, mem=mem if mem is not None else self.mem, prefix=prefix if prefix is not None else self.prefix, temp=temp if temp is not None else self.temp, extra=extra if extra is not None else self.extra, working_dir=dir if dir is not None else self.working_dir, description=description if description is not None else self.description, _load=False ) for name, spec in self.specs.iteritems(): clone.specs[name] = spec() return clone def __repr__(self): return str(vars(self)) @classmethod def from_job(cls, job): """Create a profile based on a given job. All properties are set according to the given job, except the jobs temp state, which will be kept unmodified. :param job: the job :returns: new profile generated from the job """ profile = cls() profile.threads = job.threads if job.threads > 0 else None profile.nodes = job.nodes profile.tasks = job.tasks profile.tasts_per_node = job.tasks_per_node profile.environment = job.environment profile.queue = job.queue profile.priority = job.priority profile.time = job.max_time profile.mem = job.max_memory profile.log = job.stderr profile.out = job.stdout profile.account = job.account profile.extra = job.extra profile.working_dir = job.working_directory profile.env = job.env return profile @classmethod def from_file(cls, file_name): """Load a profile from a json file :param file_name: the name of the input file """ with open(file_name) as of: try: data = json.load(of) except ValueError: log.error("Malformed json file %s", file_name) raise jip.ValidationError('jip.profiles', "Malformed json file %s" % (file_name)) return cls.from_dict(data) @classmethod def from_dict(cls, data): """Load a profile from a dictionary""" profile = cls() # apply all the params for k, v in data.iteritems(): if k != 'jobs': profile.__setattr__(k, v) if "jobs" in data: for name, spec in data["jobs"].iteritems(): profile.specs[name] = cls.from_dict(spec) return profile def get(name='default', tool=None): """Load a profile by name. If tool is specified, the specs are searched to the tool and if found, the specs are applied. """ # check the name for specs s = name.split(' ') p = Profile() for ss in s: tup = ss.split("=") if len(tup) == 1: # update global l = Profile(profile=tup[0]) p.update(l) else: # update or create spec spec = p.specs.get(tup[0], Profile()) spec.update(Profile(profile=tup[1])) p.specs[tup[0]] = spec return p def get_specs(path=None): """Load specs form default locations and then update from specs in given path if specified. :param path: optional path to an additional spec file """ def load_json(jf): with open(jf) as of: try: data = json.load(of) except ValueError: log.error("Malformed json file %s", jf) raise jip.ValidationError('jip.profiles', "Malformed json file %s" % (jf)) return data global specs cwd = os.path.join(os.getcwd(), "jip.specs") home = os.path.join(os.getenv("HOME", ""), ".jip/jip.specs") specs = {} if os.path.exists(home): specs = _update(specs, load_json(home)) if os.path.exists(cwd): specs = _update(specs, load_json(cwd)) if path and os.path.exists(path): specs = _update(specs, load_json(path)) return specs def _update(config, other): for k, v in other.iteritems(): if isinstance(v, collections.Mapping): r = _update(config.get(k, {}), v) config[k] = r else: config[k] = other[k] return config
37.154088
97
0.596445
[ "BSD-3-Clause" ]
VDBWRAIR/pyjip
jip/profiles.py
23,630
Python
#!/usr/bin/env python # Copyright 2016 Intel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os repository_tags = """ ======================== Team and repository tags ======================== .. image:: https://governance.openstack.org/tc/badges/syntribos.svg :target: https://governance.openstack.org/tc/reference/tags/index.html .. image:: https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat :target: https://docs.openstack.org/syntribos/latest/ .. image:: https://img.shields.io/pypi/v/syntribos.svg :target: https://pypi.python.org/pypi/syntribos/ .. image:: https://img.shields.io/pypi/pyversions/syntribos.svg :target: https://pypi.python.org/pypi/syntribos/ .. image:: https://img.shields.io/pypi/wheel/syntribos.svg :target: https://pypi.python.org/pypi/syntribos/ .. image:: https://img.shields.io/irc/%23openstack-security.png :target: https://webchat.freenode.net/?channels=openstack-security """ def find_docs(): """Yields files as per the whitelist.""" loc = "../doc/source/{}.rst" whitelist = [ "about", "installation", "configuration", "commands", "running", "logging", "test-anatomy", "unittests", "contributing"] for fname in whitelist: fpath = loc.format(fname) if os.path.isfile(fpath): yield fpath def concat_docs(): """Concatinates files yielded by the generator `find_docs`.""" file_path = os.path.dirname(os.path.realpath(__file__)) head, tail = os.path.split(file_path) outfile = head + "/README.rst" if not os.path.isfile(outfile): print("../README.rst not found, exiting!") exit(1) with open(outfile, 'w') as readme_handle: readme_handle.write(repository_tags) for doc in find_docs(): with open(doc, 'r') as doc_handle: for line in doc_handle: readme_handle.write(line) readme_handle.write("\n") if __name__ == '__main__': """Generate README.rst from docs.""" concat_docs() print("\nREADME.rst created!\n")
31.987805
78
0.65345
[ "Apache-2.0" ]
abdullahzamanbabar/syntribos
scripts/readme.py
2,623
Python
# -*- coding: utf-8 -*- """ Benchmark Results Updated: 18.02.2022 (6618fa3c36b0c9f3a9d7a21bcdb00bf4fd258ee8)) ------------------------------------------------------------------------------------------ | Model | Batch Size | Epochs | KNN Test Accuracy | Time | Peak GPU Usage | ------------------------------------------------------------------------------------------ | BarlowTwins | 128 | 200 | 0.835 | 193.4 Min | 2.2 GByte | | BYOL | 128 | 200 | 0.872 | 217.0 Min | 2.3 GByte | | DINO | 128 | 200 | 0.868 | 220.7 Min | 2.3 GByte | | Moco | 128 | 200 | 0.838 | 229.5 Min | 2.3 GByte | | NNCLR | 128 | 200 | 0.838 | 198.7 Min | 2.2 GByte | | SimCLR | 128 | 200 | 0.822 | 182.7 Min | 2.2 GByte | | SimSiam | 128 | 200 | 0.779 | 182.6 Min | 2.3 GByte | | SwaV | 128 | 200 | 0.806 | 182.4 Min | 2.2 GByte | ------------------------------------------------------------------------------------------ | BarlowTwins | 512 | 200 | 0.827 | 160.7 Min | 7.5 GByte | | BYOL | 512 | 200 | 0.872 | 188.5 Min | 7.7 GByte | | DINO | 512 | 200 | 0.862 | 191.1 Min | 7.5 GByte | | Moco (*) | 512 | 200 | 0.850 | 196.8 Min | 7.8 GByte | | NNCLR (*) | 512 | 200 | 0.836 | 164.7 Min | 7.6 GByte | | SimCLR | 512 | 200 | 0.828 | 158.2 Min | 7.5 GByte | | SimSiam | 512 | 200 | 0.814 | 159.0 Min | 7.6 GByte | | SwaV | 512 | 200 | 0.833 | 158.4 Min | 7.5 GByte | ------------------------------------------------------------------------------------------ | BarlowTwins | 512 | 800 | 0.857 | 641.5 Min | 7.5 GByte | | BYOL | 512 | 800 | 0.911 | 754.2 Min | 7.8 GByte | | DINO | 512 | 800 | 0.884 | 765.5 Min | 7.6 GByte | | Moco (*) | 512 | 800 | 0.900 | 787.7 Min | 7.8 GByte | | NNCLR (*) | 512 | 800 | 0.896 | 659.2 Min | 7.6 GByte | | SimCLR | 512 | 800 | 0.875 | 632.5 Min | 7.5 GByte | | SimSiam | 512 | 800 | 0.906 | 636.5 Min | 7.6 GByte | | SwaV | 512 | 800 | 0.881 | 634.9 Min | 7.5 GByte | ------------------------------------------------------------------------------------------ (*): Increased size of memory bank from 4096 to 8192 to avoid too quickly changing memory bank due to larger batch size. The benchmarks were created on a single NVIDIA RTX A6000. Note that this benchmark also supports a multi-GPU setup. If you run it on a system with multiple GPUs make sure that you kill all the processes when killing the application. Due to the way we setup this benchmark the distributed processes might continue the benchmark if one of the nodes is killed. If you know how to fix this don't hesitate to create an issue or PR :) """ import copy import os import time import lightly import numpy as np import pytorch_lightning as pl import torch import torch.nn as nn import torchvision from lightly.models import modules from lightly.models.modules import heads from lightly.models import utils from lightly.utils import BenchmarkModule from pytorch_lightning.loggers import TensorBoardLogger logs_root_dir = os.path.join(os.getcwd(), 'benchmark_logs') # set max_epochs to 800 for long run (takes around 10h on a single V100) max_epochs = 1 num_workers = 8 knn_k = 200 knn_t = 0.1 classes = 10 # Set to True to enable Distributed Data Parallel training. distributed = True # Set to True to enable Synchronized Batch Norm (requires distributed=True). # If enabled the batch norm is calculated over all gpus, otherwise the batch # norm is only calculated from samples on the same gpu. sync_batchnorm = False # Set to True to gather features from all gpus before calculating # the loss (requires distributed=True). # If enabled then the loss on every gpu is calculated with features from all # gpus, otherwise only features from the same gpu are used. gather_distributed = True # benchmark n_runs = 1 # optional, increase to create multiple runs and report mean + std batch_size = 512 lr_factor = batch_size / 128 # scales the learning rate linearly with batch size # use a GPU if available #gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0 gpus = 4 if torch.cuda.is_available() else 0 print(gpus) if distributed: distributed_backend = 'ddp' # reduce batch size for distributed training batch_size = batch_size // gpus else: distributed_backend = None # limit to single gpu if not using distributed training gpus = min(gpus, 1) # Adapted from our MoCo Tutorial on CIFAR-10 # # Replace the path with the location of your CIFAR-10 dataset. # We assume we have a train folder with subfolders # for each class and .png images inside. # # You can download `CIFAR-10 in folders from kaggle # <https://www.kaggle.com/swaroopkml/cifar10-pngs-in-folders>`_. # The dataset structure should be like this: # cifar10/train/ # L airplane/ # L 10008_airplane.png # L ... # L automobile/ # L bird/ # L cat/ # L deer/ # L dog/ # L frog/ # L horse/ # L ship/ # L truck/ path_to_train = './data/cifar10/train/' path_to_test = './data/cifar10/test/' # Use SimCLR augmentations, additionally, disable blur for cifar10 collate_fn = lightly.data.SimCLRCollateFunction( input_size=32, gaussian_blur=0., ) # Multi crop augmentation for SwAV, additionally, disable blur for cifar10 swav_collate_fn = lightly.data.SwaVCollateFunction( crop_sizes=[32], crop_counts=[2], # 2 crops @ 32x32px crop_min_scales=[0.14], gaussian_blur=0, ) # Multi crop augmentation for DINO, additionally, disable blur for cifar10 dino_collate_fn = lightly.data.DINOCollateFunction( global_crop_size=32, n_local_views=0, gaussian_blur=(0, 0, 0), ) # No additional augmentations for the test set test_transforms = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( mean=lightly.data.collate.imagenet_normalize['mean'], std=lightly.data.collate.imagenet_normalize['std'], ) ]) dataset_train_ssl = lightly.data.LightlyDataset( input_dir=path_to_train ) # we use test transformations for getting the feature for kNN on train data dataset_train_kNN = lightly.data.LightlyDataset( input_dir=path_to_train, transform=test_transforms ) dataset_test = lightly.data.LightlyDataset( input_dir=path_to_test, transform=test_transforms ) def get_data_loaders(batch_size: int, model): """Helper method to create dataloaders for ssl, kNN train and kNN test Args: batch_size: Desired batch size for all dataloaders """ col_fn = collate_fn if isinstance(model, SwaVModel): col_fn = swav_collate_fn elif isinstance(model, DINOModel): col_fn = dino_collate_fn dataloader_train_ssl = torch.utils.data.DataLoader( dataset_train_ssl, batch_size=batch_size, shuffle=True, collate_fn=col_fn, drop_last=True, num_workers=num_workers ) dataloader_train_kNN = torch.utils.data.DataLoader( dataset_train_kNN, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=num_workers ) dataloader_test = torch.utils.data.DataLoader( dataset_test, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=num_workers ) return dataloader_train_ssl, dataloader_train_kNN, dataloader_test class MocoModel(BenchmarkModule): def __init__(self, dataloader_kNN, num_classes): super().__init__(dataloader_kNN, num_classes) # create a ResNet backbone and remove the classification head num_splits = 0 if sync_batchnorm else 8 resnet = lightly.models.ResNetGenerator('resnet-18', num_splits=num_splits) self.backbone = nn.Sequential( *list(resnet.children())[:-1], nn.AdaptiveAvgPool2d(1) ) # create a moco model based on ResNet self.projection_head = heads.MoCoProjectionHead(512, 512, 128) self.backbone_momentum = copy.deepcopy(self.backbone) self.projection_head_momentum = copy.deepcopy(self.projection_head) utils.deactivate_requires_grad(self.backbone_momentum) utils.deactivate_requires_grad(self.projection_head_momentum) # create our loss with the optional memory bank self.criterion = lightly.loss.NTXentLoss( temperature=0.1, memory_bank_size=4096, ) def forward(self, x): x = self.backbone(x).flatten(start_dim=1) return self.projection_head(x) def training_step(self, batch, batch_idx): (x0, x1), _, _ = batch # update momentum utils.update_momentum(self.backbone, self.backbone_momentum, 0.99) utils.update_momentum(self.projection_head, self.projection_head_momentum, 0.99) def step(x0_, x1_): x1_, shuffle = utils.batch_shuffle(x1_, distributed=distributed) x0_ = self.backbone(x0_).flatten(start_dim=1) x0_ = self.projection_head(x0_) x1_ = self.backbone_momentum(x1_).flatten(start_dim=1) x1_ = self.projection_head_momentum(x1_) x1_ = utils.batch_unshuffle(x1_, shuffle, distributed=distributed) return x0_, x1_ # We use a symmetric loss (model trains faster at little compute overhead) # https://colab.research.google.com/github/facebookresearch/moco/blob/colab-notebook/colab/moco_cifar10_demo.ipynb loss_1 = self.criterion(*step(x0, x1)) loss_2 = self.criterion(*step(x1, x0)) loss = 0.5 * (loss_1 + loss_2) self.log('train_loss_ssl', loss) return loss def configure_optimizers(self): params = list(self.backbone.parameters()) + list(self.projection_head.parameters()) optim = torch.optim.SGD( params, lr=6e-2 * lr_factor, momentum=0.9, weight_decay=5e-4, ) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, max_epochs) return [optim], [scheduler] class SimCLRModel(BenchmarkModule): def __init__(self, dataloader_kNN, num_classes): super().__init__(dataloader_kNN, num_classes) # create a ResNet backbone and remove the classification head resnet = lightly.models.ResNetGenerator('resnet-18') self.backbone = nn.Sequential( *list(resnet.children())[:-1], nn.AdaptiveAvgPool2d(1) ) self.projection_head = heads.SimCLRProjectionHead(512, 512, 128) self.criterion = lightly.loss.NTXentLoss() def forward(self, x): x = self.backbone(x).flatten(start_dim=1) z = self.projection_head(x) return z def training_step(self, batch, batch_index): (x0, x1), _, _ = batch z0 = self.forward(x0) z1 = self.forward(x1) loss = self.criterion(z0, z1) self.log('train_loss_ssl', loss) return loss def configure_optimizers(self): optim = torch.optim.SGD( self.parameters(), lr=6e-2 * lr_factor, momentum=0.9, weight_decay=5e-4 ) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, max_epochs) return [optim], [scheduler] class SimSiamModel(BenchmarkModule): def __init__(self, dataloader_kNN, num_classes): super().__init__(dataloader_kNN, num_classes) # create a ResNet backbone and remove the classification head resnet = lightly.models.ResNetGenerator('resnet-18') self.backbone = nn.Sequential( *list(resnet.children())[:-1], nn.AdaptiveAvgPool2d(1) ) self.prediction_head = heads.SimSiamPredictionHead(2048, 512, 2048) # use a 2-layer projection head for cifar10 as described in the paper self.projection_head = heads.ProjectionHead([ ( 512, 2048, nn.BatchNorm1d(2048), nn.ReLU(inplace=True) ), ( 2048, 2048, nn.BatchNorm1d(2048), None ) ]) self.criterion = lightly.loss.NegativeCosineSimilarity() def forward(self, x): f = self.backbone(x).flatten(start_dim=1) z = self.projection_head(f) p = self.prediction_head(z) z = z.detach() return z, p def training_step(self, batch, batch_idx): (x0, x1), _, _ = batch z0, p0 = self.forward(x0) z1, p1 = self.forward(x1) loss = 0.5 * (self.criterion(z0, p1) + self.criterion(z1, p0)) self.log('train_loss_ssl', loss) return loss def configure_optimizers(self): optim = torch.optim.SGD( self.parameters(), lr=6e-2, # no lr-scaling, results in better training stability momentum=0.9, weight_decay=5e-4 ) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, max_epochs) return [optim], [scheduler] class BarlowTwinsModel(BenchmarkModule): def __init__(self, dataloader_kNN, num_classes): super().__init__(dataloader_kNN, num_classes) # create a ResNet backbone and remove the classification head resnet = lightly.models.ResNetGenerator('resnet-18') self.backbone = nn.Sequential( *list(resnet.children())[:-1], nn.AdaptiveAvgPool2d(1) ) # use a 2-layer projection head for cifar10 as described in the paper self.projection_head = heads.ProjectionHead([ ( 512, 2048, nn.BatchNorm1d(2048), nn.ReLU(inplace=True) ), ( 2048, 2048, None, None ) ]) self.criterion = lightly.loss.BarlowTwinsLoss(gather_distributed=gather_distributed) def forward(self, x): x = self.backbone(x).flatten(start_dim=1) z = self.projection_head(x) return z def training_step(self, batch, batch_index): (x0, x1), _, _ = batch z0 = self.forward(x0) z1 = self.forward(x1) loss = self.criterion(z0, z1) self.log('train_loss_ssl', loss) return loss def configure_optimizers(self): optim = torch.optim.SGD( self.parameters(), lr=6e-2 * lr_factor, momentum=0.9, weight_decay=5e-4 ) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, max_epochs) return [optim], [scheduler] class BYOLModel(BenchmarkModule): def __init__(self, dataloader_kNN, num_classes): super().__init__(dataloader_kNN, num_classes) # create a ResNet backbone and remove the classification head resnet = lightly.models.ResNetGenerator('resnet-18') self.backbone = nn.Sequential( *list(resnet.children())[:-1], nn.AdaptiveAvgPool2d(1) ) # create a byol model based on ResNet self.projection_head = heads.BYOLProjectionHead(512, 1024, 256) self.prediction_head = heads.BYOLProjectionHead(256, 1024, 256) self.backbone_momentum = copy.deepcopy(self.backbone) self.projection_head_momentum = copy.deepcopy(self.projection_head) utils.deactivate_requires_grad(self.backbone_momentum) utils.deactivate_requires_grad(self.projection_head_momentum) self.criterion = lightly.loss.NegativeCosineSimilarity() def forward(self, x): y = self.backbone(x).flatten(start_dim=1) z = self.projection_head(y) p = self.prediction_head(z) return p def forward_momentum(self, x): y = self.backbone_momentum(x).flatten(start_dim=1) z = self.projection_head_momentum(y) z = z.detach() return z def training_step(self, batch, batch_idx): utils.update_momentum(self.backbone, self.backbone_momentum, m=0.99) utils.update_momentum(self.projection_head, self.projection_head_momentum, m=0.99) (x0, x1), _, _ = batch p0 = self.forward(x0) z0 = self.forward_momentum(x0) p1 = self.forward(x1) z1 = self.forward_momentum(x1) loss = 0.5 * (self.criterion(p0, z1) + self.criterion(p1, z0)) self.log('train_loss_ssl', loss) return loss def configure_optimizers(self): params = list(self.backbone.parameters()) \ + list(self.projection_head.parameters()) \ + list(self.prediction_head.parameters()) optim = torch.optim.SGD( params, lr=6e-2 * lr_factor, momentum=0.9, weight_decay=5e-4, ) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, max_epochs) return [optim], [scheduler] class SwaVModel(BenchmarkModule): def __init__(self, dataloader_kNN, num_classes): super().__init__(dataloader_kNN, num_classes) # create a ResNet backbone and remove the classification head resnet = lightly.models.ResNetGenerator('resnet-18') self.backbone = nn.Sequential( *list(resnet.children())[:-1], nn.AdaptiveAvgPool2d(1) ) self.projection_head = heads.SwaVProjectionHead(512, 512, 128) self.prototypes = heads.SwaVPrototypes(128, 512) # use 512 prototypes self.criterion = lightly.loss.SwaVLoss(sinkhorn_gather_distributed=gather_distributed) def forward(self, x): x = self.backbone(x).flatten(start_dim=1) x = self.projection_head(x) x = nn.functional.normalize(x, dim=1, p=2) return self.prototypes(x) def training_step(self, batch, batch_idx): # normalize the prototypes so they are on the unit sphere self.prototypes.normalize() # the multi-crop dataloader returns a list of image crops where the # first two items are the high resolution crops and the rest are low # resolution crops multi_crops, _, _ = batch multi_crop_features = [self.forward(x) for x in multi_crops] # split list of crop features into high and low resolution high_resolution_features = multi_crop_features[:2] low_resolution_features = multi_crop_features[2:] # calculate the SwaV loss loss = self.criterion( high_resolution_features, low_resolution_features ) self.log('train_loss_ssl', loss) return loss def configure_optimizers(self): optim = torch.optim.Adam( self.parameters(), lr=1e-3 * lr_factor, weight_decay=1e-6, ) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, max_epochs) return [optim], [scheduler] class NNCLRModel(BenchmarkModule): def __init__(self, dataloader_kNN, num_classes): super().__init__(dataloader_kNN, num_classes) # create a ResNet backbone and remove the classification head resnet = lightly.models.ResNetGenerator('resnet-18') self.backbone = nn.Sequential( *list(resnet.children())[:-1], nn.AdaptiveAvgPool2d(1) ) self.prediction_head = heads.NNCLRPredictionHead(256, 4096, 256) # use only a 2-layer projection head for cifar10 self.projection_head = heads.ProjectionHead([ ( 512, 2048, nn.BatchNorm1d(2048), nn.ReLU(inplace=True) ), ( 2048, 256, nn.BatchNorm1d(256), None ) ]) self.criterion = lightly.loss.NTXentLoss() self.memory_bank = modules.NNMemoryBankModule(size=4096) def forward(self, x): y = self.backbone(x).flatten(start_dim=1) z = self.projection_head(y) p = self.prediction_head(z) z = z.detach() return z, p def training_step(self, batch, batch_idx): (x0, x1), _, _ = batch z0, p0 = self.forward(x0) z1, p1 = self.forward(x1) z0 = self.memory_bank(z0, update=False) z1 = self.memory_bank(z1, update=True) loss = 0.5 * (self.criterion(z0, p1) + self.criterion(z1, p0)) return loss def configure_optimizers(self): optim = torch.optim.SGD( self.parameters(), lr=6e-2 * lr_factor, momentum=0.9, weight_decay=5e-4, ) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, max_epochs) return [optim], [scheduler] class DINOModel(BenchmarkModule): def __init__(self, dataloader_kNN, num_classes): super().__init__(dataloader_kNN, num_classes) # create a ResNet backbone and remove the classification head resnet = lightly.models.ResNetGenerator('resnet-18') self.backbone = nn.Sequential( *list(resnet.children())[:-1], nn.AdaptiveAvgPool2d(1) ) self.head = self._build_projection_head() self.teacher_backbone = copy.deepcopy(self.backbone) self.teacher_head = self._build_projection_head() utils.deactivate_requires_grad(self.teacher_backbone) utils.deactivate_requires_grad(self.teacher_head) self.criterion = lightly.loss.DINOLoss(output_dim=2048) def _build_projection_head(self): head = heads.DINOProjectionHead(512, 2048, 256, 2048, batch_norm=True) # use only 2 layers for cifar10 head.layers = heads.ProjectionHead([ (512, 2048, nn.BatchNorm1d(2048), nn.GELU()), (2048, 256, None, None), ]).layers return head def forward(self, x): y = self.backbone(x).flatten(start_dim=1) z = self.head(y) return z def forward_teacher(self, x): y = self.teacher_backbone(x).flatten(start_dim=1) z = self.teacher_head(y) return z def training_step(self, batch, batch_idx): utils.update_momentum(self.backbone, self.teacher_backbone, m=0.99) utils.update_momentum(self.head, self.teacher_head, m=0.99) views, _, _ = batch views = [view.to(self.device) for view in views] global_views = views[:2] teacher_out = [self.forward_teacher(view) for view in global_views] student_out = [self.forward(view) for view in views] loss = self.criterion(teacher_out, student_out, epoch=self.current_epoch) self.log('train_loss_ssl', loss) return loss def configure_optimizers(self): param = list(self.backbone.parameters()) \ + list(self.head.parameters()) optim = torch.optim.SGD( param, lr=6e-2 * lr_factor, momentum=0.9, weight_decay=5e-4, ) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, max_epochs) return [optim], [scheduler] models = [ BarlowTwinsModel, BYOLModel, DINOModel, MocoModel, NNCLRModel, SimCLRModel, SimSiamModel, SwaVModel, ] bench_results = dict() experiment_version = None # loop through configurations and train models for BenchmarkModel in models: runs = [] model_name = BenchmarkModel.__name__.replace('Model', '') for seed in range(n_runs): pl.seed_everything(seed) dataloader_train_ssl, dataloader_train_kNN, dataloader_test = get_data_loaders( batch_size=batch_size, model=BenchmarkModel, ) benchmark_model = BenchmarkModel(dataloader_train_kNN, classes) # Save logs to: {CWD}/benchmark_logs/cifar10/{experiment_version}/{model_name}/ # If multiple runs are specified a subdirectory for each run is created. sub_dir = model_name if n_runs <= 1 else f'{model_name}/run{seed}' logger = TensorBoardLogger( save_dir=os.path.join(logs_root_dir, 'cifar10'), name='', sub_dir=sub_dir, version=experiment_version, ) if experiment_version is None: # Save results of all models under same version directory experiment_version = logger.version checkpoint_callback = pl.callbacks.ModelCheckpoint( dirpath=os.path.join(logger.log_dir, 'checkpoints') ) trainer = pl.Trainer( max_epochs=max_epochs, gpus=gpus, default_root_dir=logs_root_dir, strategy=distributed_backend, sync_batchnorm=sync_batchnorm, logger=logger, callbacks=[checkpoint_callback] ) start = time.time() trainer.fit( benchmark_model, train_dataloaders=dataloader_train_ssl, val_dataloaders=dataloader_test ) end = time.time() run = { 'model': model_name, 'batch_size': batch_size, 'epochs': max_epochs, 'max_accuracy': benchmark_model.max_accuracy, 'runtime': end - start, 'gpu_memory_usage': torch.cuda.max_memory_allocated(), 'seed': seed, } runs.append(run) print(run) # delete model and trainer + free up cuda memory del benchmark_model del trainer torch.cuda.reset_peak_memory_stats() torch.cuda.empty_cache() bench_results[model_name] = runs # print results table header = ( f"| {'Model':<13} | {'Batch Size':>10} | {'Epochs':>6} " f"| {'KNN Test Accuracy':>18} | {'Time':>10} | {'Peak GPU Usage':>14} |" ) print('-' * len(header)) print(header) print('-' * len(header)) for model, results in bench_results.items(): runtime = np.array([result['runtime'] for result in results]) runtime = runtime.mean() / 60 # convert to min accuracy = np.array([result['max_accuracy'] for result in results]) gpu_memory_usage = np.array([result['gpu_memory_usage'] for result in results]) gpu_memory_usage = gpu_memory_usage.max() / (1024**3) # convert to gbyte if len(accuracy) > 1: accuracy_msg = f"{accuracy.mean():>8.3f} +- {accuracy.std():>4.3f}" else: accuracy_msg = f"{accuracy.mean():>18.3f}" print( f"| {model:<13} | {batch_size:>10} | {max_epochs:>6} " f"| {accuracy_msg} | {runtime:>6.1f} Min " f"| {gpu_memory_usage:>8.1f} GByte |", flush=True ) print('-' * len(header))
36.265252
122
0.602289
[ "MIT" ]
dczifra/lightly
docs/source/getting_started/benchmarks/cifar10_benchmark.py
27,350
Python
from core.models import Item, Listing, PromoCode, Address, UserProfile from core.zipcode import zipcodes from datetime import datetime, timedelta from decimal import * from django import forms from django.core.files.base import ContentFile from django.core.files.images import get_image_dimensions from io import BytesIO from PIL import Image class ItemListingForm(forms.ModelForm): title = forms.CharField(widget=forms.TextInput(attrs={'class': 'validate'}), label="Title", max_length=100) description = forms.CharField(widget=forms.Textarea(attrs={'class': 'materialize-textarea validate'}), label="Description") category = forms.ChoiceField(widget=forms.Select(attrs={'class': 'form-control'}), choices=Item.CATEGORY_CHOICES) price = forms.DecimalField(widget=forms.NumberInput(attrs={'class': 'validate', 'onchange': 'change()'}), label='Buy now price') zipcode = forms.IntegerField(widget=forms.NumberInput(attrs={'class': 'validate'}), label='Pickup zipcode') # For image cropping purposes crop_x = forms.IntegerField(widget=forms.NumberInput(attrs={'class': 'crop-params'})) crop_y = forms.IntegerField(widget=forms.NumberInput(attrs={'class': 'crop-params'})) crop_height = forms.IntegerField(widget=forms.NumberInput(attrs={'class': 'crop-params'})) crop_width = forms.IntegerField(widget=forms.NumberInput(attrs={'class': 'crop-params'})) # Make sure starting offer is at least $5.00 def clean_price(self): price = self.cleaned_data['price'] if price < 5: raise forms.ValidationError("The minimum price is $5.00.") return price # Make sure a category is chosen def clean_category(self): category = self.cleaned_data['category'] if category is '0': raise forms.ValidationError("You must choose a category for your item.") return category # Make sure shipping zip code is one we deliver to def clean_zipcode(self): zip_code = self.cleaned_data['zipcode'] if zip_code not in zipcodes(): raise forms.ValidationError("Unfortunately, Circa is not yet available in that zip code.") return zip_code def clean_crop_width(self): width = int(self.cleaned_data['crop_width']) height = int(self.cleaned_data['crop_height']) if width < 450 or height < 450: raise forms.ValidationError("Your cropped image must be at least 450 by 450.") if width != height: raise forms.ValidationError("Width and height must match.") return width def __init__(self, *args, **kwargs): self.seller = kwargs.pop('seller') super().__init__(*args, **kwargs) def save(self, commit=True): item = super().save(commit=False) self.process_image(item) listing = Listing.objects.create( price=self.cleaned_data['price'], zipcode=self.cleaned_data['zipcode'] ) item.listing = listing item.seller = self.seller item.save() return item def process_image(self, item): image = Image.open(item.photo) left = int(self.cleaned_data['crop_x']) top = int(self.cleaned_data['crop_y']) width = int(self.cleaned_data['crop_width']) height = int(self.cleaned_data['crop_height']) box = (left, top, left+width, top+height) image = image.crop(box) f = BytesIO() try: image.save(f, format='jpeg') s = f.getvalue() item.photo.save(item.photo.name, ContentFile(s)) finally: f.close() class Meta: model = Item fields = {'title', 'description', 'category', 'photo'} class PromoForm(forms.Form): code = forms.CharField() def __init__(self, *args, **kwargs): self.user = kwargs.pop('user') # Grabs current user self.listing = kwargs.pop('listing') # Grabs listing super(PromoForm, self).__init__(*args, **kwargs) def clean_code(self): found = False promo_code = self.cleaned_data['code'] if PromoCode.objects.all().count() == 0: raise forms.ValidationError("Sorry, that code isn't valid.") codes = PromoCode.objects.all() for promotional_code in codes: if promotional_code.code == promo_code: if promotional_code.redeemed: raise forms.ValidationError("Sorry, promo code already used.") elif promotional_code.user != self.user: raise forms.ValidationError("Sorry, that's not your code!") else: found = True break if not found: raise forms.ValidationError("Sorry, that code is not valid.") return promo_code def save(self): promo = PromoCode.objects.filter(code=self.cleaned_data['code'])[0] promo.listing = self.listing promo.save() self.listing.save() class AddressForm(forms.Form): address_line_1 = forms.CharField() address_line_2 = forms.CharField(required=False) city = forms.CharField() # Must be changed when we branch to different states! state = forms.CharField(widget=forms.HiddenInput()) INITIAL_STATE = 'GA' zipcode = forms.CharField() special_instructions = forms.CharField(required=False) def __init__(self, *args, **kwargs): self.user = kwargs.pop('user') super().__init__(*args, **kwargs) def save(self): if not hasattr(self.user, 'userprofile'): UserProfile.objects.create(user=self.user) address = Address.objects.create( address_line_1=self.cleaned_data['address_line_1'], address_line_2=self.cleaned_data['address_line_2'], city=self.cleaned_data['city'], state=self.cleaned_data['state'], zipcode=self.cleaned_data['zipcode'], special_instructions=self.cleaned_data['special_instructions'] ) self.user.userprofile.address = address self.user.userprofile.save() class EditListingForm(forms.Form): # Information for Item title = forms.CharField(widget=forms.TextInput(attrs={'class': 'validate'}), label="Title", max_length=100) description = forms.CharField(widget=forms.Textarea(attrs={'class': 'materialize-textarea validate'}), label="Description") category = forms.ChoiceField(widget=forms.Select(attrs={'class': 'form-control'}), choices=Item.CATEGORY_CHOICES) # Information for Listing price = forms.DecimalField(widget=forms.NumberInput(attrs={'class': 'validate'})) zipcode = forms.IntegerField(widget=forms.NumberInput(attrs={'class': 'validate'}), label='Pickup zipcode') def __init__(self, *args, **kwargs): self.listing = kwargs.pop('listing') # Grabs current listing super(EditListingForm, self).__init__(*args, **kwargs) # Make sure starting offer is at least $5.00, and that no offers have yet been made def clean_price(self): price = Decimal(self.cleaned_data['price']) if price < 5: raise forms.ValidationError("The minimum price is $5.00.") return price # Make sure a category is chosen def clean_category(self): category = self.cleaned_data['category'] if category is '0': raise forms.ValidationError("You must choose a category for your item.") return category # make sure shipping zip code is one we deliver to def clean_zipcode(self): zip_code = self.cleaned_data['zipcode'] if zip_code not in zipcodes(): raise forms.ValidationError("Unfortunately, Circa is not yet available in that zip code.") return zip_code def save(self): self.listing.item.title = self.cleaned_data['title'] self.listing.item.description = self.cleaned_data['description'] self.listing.item.category = self.cleaned_data['category'] self.listing.price = self.cleaned_data['price'] self.listing.zipcode = self.cleaned_data['zipcode'] self.listing.item.save() self.listing.save() # This is a special form used to get a user's email if they did not provide one via Facebook class EmailRequestForm(forms.Form): email = forms.EmailField()
38.442478
118
0.626727
[ "MIT" ]
gnarizzy/circa
circa/core/forms.py
8,688
Python
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from parlai.core.teachers import FbDeprecatedDialogTeacher from .build import build from parlai.utils.data import DatatypeHelper import copy import os def _path(opt, filtered): # Build the data if it doesn't exist. build(opt) dt = opt['datatype'].split(':')[0] return os.path.join(opt['datapath'], 'CornellMovie', dt + filtered + '.txt') class DefaultTeacher(FbDeprecatedDialogTeacher): def __init__(self, opt, shared=None): opt = copy.deepcopy(opt) opt['datafile'] = _path(opt, '') opt['cands_datafile'] = opt['datafile'] self.fold = DatatypeHelper.fold(opt['datatype']) super().__init__(opt, shared) def num_examples(self): if self.fold == 'train': return 133125 elif self.fold == 'valid': return 16759 elif self.fold == 'test': return 16611 def num_episodes(self): if self.fold == 'train': return 66478 elif self.fold == 'valid': return 8310 elif self.fold == 'test': return 8309 class DoubleTeacher(DefaultTeacher): """ This version creates text-label pairs from the perspective of both speakers. """ def num_examples(self): if self.fold == 'train': return 176975 elif self.fold == 'valid': return 22349 elif self.fold == 'test': return 22013 def num_episodes(self): if self.fold == 'train': return 102401 elif self.fold == 'valid': return 12806 elif self.fold == 'test': return 12790 def _rebuild(self, entries): new_list = [] if len(entries) > 0: # add all ( y_t => x_(t+1) ) pairs new_list.extend( [ (entries[i][1][0], [entries[i + 1][0]]) for i in range(len(entries) - 1) ] ) return new_list def _is_valid(self, entry): if entry[0] == '' or entry[1] is None: return False return True def setup_data(self, path): """ Adds additional perspectives. For example, in the conversation: x1 y1 x2 y2 x3 Creates the additional dialog: y1 x2 y2 x3 """ # this shows conversations in both directions alternate = [] for entry, new in super().setup_data(path): if new: for i, e in enumerate(self._rebuild(alternate)): if self._is_valid(e): yield e, i == 0 alternate.clear() alternate.append(entry) if self._is_valid(entry): yield entry, new if alternate: for i, e in enumerate(self._rebuild(alternate)): if self._is_valid(e): yield e, i == 0
28.716814
81
0.522342
[ "Apache-2.0" ]
GuillaumeLeclerc/cortx
doc/integrations/pytorch/parlai/tasks/cornell_movie/agents.py
3,245
Python
a = int(input()) b = int(input()) c = int(input()) p = 0 s = 0 p = ( a + b + c ) / 2 s = ( p * ( p - a ) * ( p - b ) * ( p - c ) ) ** 0.5 print( s );
16
53
0.325
[ "MIT" ]
Cet500/PyLib
PyCourse/test_1-12-1.py
160
Python
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from nose.tools import eq_, assert_raises from socorrolib.lib import MissingArgumentError from socorro.external.postgresql.field import Field from .unittestbase import PostgreSQLTestCase class IntegrationTestField(PostgreSQLTestCase): '''Test socorro.external.postgresql.field.Field class. ''' def setUp(self): super(IntegrationTestField, self).setUp() cursor = self.connection.cursor() cursor.execute(''' INSERT INTO data_dictionary (raw_field, transforms, product) VALUES ( 'field1', '{}', 'WaterWolf' ), ( 'field2', '{"processor": "some notes"}', 'WaterWolf' ); ''') self.connection.commit() def tearDown(self): '''Clean up the database, delete tables and functions. ''' cursor = self.connection.cursor() cursor.execute(''' TRUNCATE data_dictionary CASCADE ''') self.connection.commit() super(IntegrationTestField, self).tearDown() def test_get(self): api = Field(config=self.config) # expect a result res = api.get(name='field1') res_expected = { 'name': 'field1', 'transforms': {}, 'product': 'WaterWolf' } eq_(res, res_expected) # expect a result res = api.get(name='field2') res_expected = { 'name': 'field2', 'transforms': {'processor': 'some notes'}, 'product': 'WaterWolf' } eq_(res, res_expected) # expect no result res = api.get(name='i-do-not-exist') res_expected = { 'name': None, 'transforms': None, 'product': None } eq_(res, res_expected) # expect a failure assert_raises(MissingArgumentError, api.get)
26.634146
69
0.547161
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
Acidburn0zzz/socorro
socorro/unittest/external/postgresql/test_field.py
2,184
Python
import mock import unittest from symstore import command_line class TestMain(unittest.TestCase): """ test main() """ Z_ARGV = ["prog", "-z", "store_path", "file"] @mock.patch("symstore.cab.compression_supported", False) @mock.patch("sys.stderr") def test_compression_not_supported(self, stderr): with mock.patch("sys.argv", self.Z_ARGV): self.assertRaises(SystemExit, command_line.main) stderr.write.assert_called_once_with( "gcab module not available, compression not supported\n")
26.47619
69
0.67446
[ "MIT" ]
2js855/symstore
tests/unit/test_command_line.py
556
Python
from .products import Products
30
30
0.866667
[ "MIT" ]
GG31/openfood-graphql-api
src/products/__init__.py
30
Python
''' Custom interpolation methods for representing approximations to functions. It also includes wrapper classes to enforce standard methods across classes. Each interpolation class must have a distance() method that compares itself to another instance; this is used in HARK.core's solve() method to check for solution convergence. The interpolator classes currently in this module inherit their distance method from HARKobject. ''' from __future__ import division, print_function from __future__ import absolute_import from builtins import range import numpy as np from .core import HARKobject from copy import deepcopy def _isscalar(x): ''' Check whether x is if a scalar type, or 0-dim. Parameters ---------- x : anything An input to be checked for scalar-ness. Returns ------- is_scalar : boolean True if the input is a scalar, False otherwise. ''' return np.isscalar(x) or hasattr(x, 'shape') and x.shape == () class HARKinterpolator1D(HARKobject): ''' A wrapper class for 1D interpolation methods in HARK. ''' distance_criteria = [] def __call__(self,x): ''' Evaluates the interpolated function at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. Returns ------- y : np.array or float The interpolated function evaluated at x: y = f(x), with the same shape as x. ''' z = np.asarray(x) return (self._evaluate(z.flatten())).reshape(z.shape) def derivative(self,x): ''' Evaluates the derivative of the interpolated function at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. Returns ------- dydx : np.array or float The interpolated function's first derivative evaluated at x: dydx = f'(x), with the same shape as x. ''' z = np.asarray(x) return (self._der(z.flatten())).reshape(z.shape) def eval_with_derivative(self,x): ''' Evaluates the interpolated function and its derivative at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. Returns ------- y : np.array or float The interpolated function evaluated at x: y = f(x), with the same shape as x. dydx : np.array or float The interpolated function's first derivative evaluated at x: dydx = f'(x), with the same shape as x. ''' z = np.asarray(x) y, dydx = self._evalAndDer(z.flatten()) return y.reshape(z.shape), dydx.reshape(z.shape) def _evaluate(self,x): ''' Interpolated function evaluator, to be defined in subclasses. ''' raise NotImplementedError() def _der(self,x): ''' Interpolated function derivative evaluator, to be defined in subclasses. ''' raise NotImplementedError() def _evalAndDer(self,x): ''' Interpolated function and derivative evaluator, to be defined in subclasses. ''' raise NotImplementedError() class HARKinterpolator2D(HARKobject): ''' A wrapper class for 2D interpolation methods in HARK. ''' distance_criteria = [] def __call__(self,x,y): ''' Evaluates the interpolated function at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. Returns ------- fxy : np.array or float The interpolated function evaluated at x,y: fxy = f(x,y), with the same shape as x and y. ''' xa = np.asarray(x) ya = np.asarray(y) return (self._evaluate(xa.flatten(),ya.flatten())).reshape(xa.shape) def derivativeX(self,x,y): ''' Evaluates the partial derivative of interpolated function with respect to x (the first argument) at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. Returns ------- dfdx : np.array or float The derivative of the interpolated function with respect to x, eval- uated at x,y: dfdx = f_x(x,y), with the same shape as x and y. ''' xa = np.asarray(x) ya = np.asarray(y) return (self._derX(xa.flatten(),ya.flatten())).reshape(xa.shape) def derivativeY(self,x,y): ''' Evaluates the partial derivative of interpolated function with respect to y (the second argument) at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. Returns ------- dfdy : np.array or float The derivative of the interpolated function with respect to y, eval- uated at x,y: dfdx = f_y(x,y), with the same shape as x and y. ''' xa = np.asarray(x) ya = np.asarray(y) return (self._derY(xa.flatten(),ya.flatten())).reshape(xa.shape) def _evaluate(self,x,y): ''' Interpolated function evaluator, to be defined in subclasses. ''' raise NotImplementedError() def _derX(self,x,y): ''' Interpolated function x-derivative evaluator, to be defined in subclasses. ''' raise NotImplementedError() def _derY(self,x,y): ''' Interpolated function y-derivative evaluator, to be defined in subclasses. ''' raise NotImplementedError() class HARKinterpolator3D(HARKobject): ''' A wrapper class for 3D interpolation methods in HARK. ''' distance_criteria = [] def __call__(self,x,y,z): ''' Evaluates the interpolated function at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. Returns ------- fxyz : np.array or float The interpolated function evaluated at x,y,z: fxyz = f(x,y,z), with the same shape as x, y, and z. ''' xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return (self._evaluate(xa.flatten(),ya.flatten(),za.flatten())).reshape(xa.shape) def derivativeX(self,x,y,z): ''' Evaluates the partial derivative of the interpolated function with respect to x (the first argument) at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. Returns ------- dfdx : np.array or float The derivative with respect to x of the interpolated function evaluated at x,y,z: dfdx = f_x(x,y,z), with the same shape as x, y, and z. ''' xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return (self._derX(xa.flatten(),ya.flatten(),za.flatten())).reshape(xa.shape) def derivativeY(self,x,y,z): ''' Evaluates the partial derivative of the interpolated function with respect to y (the second argument) at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. Returns ------- dfdy : np.array or float The derivative with respect to y of the interpolated function evaluated at x,y,z: dfdy = f_y(x,y,z), with the same shape as x, y, and z. ''' xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return (self._derY(xa.flatten(),ya.flatten(),za.flatten())).reshape(xa.shape) def derivativeZ(self,x,y,z): ''' Evaluates the partial derivative of the interpolated function with respect to z (the third argument) at the given input. Parameters ---------- x : np.array or float Real values to be evaluated in the interpolated function. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as x. Returns ------- dfdz : np.array or float The derivative with respect to z of the interpolated function evaluated at x,y,z: dfdz = f_z(x,y,z), with the same shape as x, y, and z. ''' xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return (self._derZ(xa.flatten(),ya.flatten(),za.flatten())).reshape(xa.shape) def _evaluate(self,x,y,z): ''' Interpolated function evaluator, to be defined in subclasses. ''' raise NotImplementedError() def _derX(self,x,y,z): ''' Interpolated function x-derivative evaluator, to be defined in subclasses. ''' raise NotImplementedError() def _derY(self,x,y,z): ''' Interpolated function y-derivative evaluator, to be defined in subclasses. ''' raise NotImplementedError() def _derZ(self,x,y,z): ''' Interpolated function y-derivative evaluator, to be defined in subclasses. ''' raise NotImplementedError() class HARKinterpolator4D(HARKobject): ''' A wrapper class for 4D interpolation methods in HARK. ''' distance_criteria = [] def __call__(self,w,x,y,z): ''' Evaluates the interpolated function at the given input. Parameters ---------- w : np.array or float Real values to be evaluated in the interpolated function. x : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. Returns ------- fwxyz : np.array or float The interpolated function evaluated at w,x,y,z: fwxyz = f(w,x,y,z), with the same shape as w, x, y, and z. ''' wa = np.asarray(w) xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return (self._evaluate(wa.flatten(),xa.flatten(),ya.flatten(),za.flatten())).reshape(wa.shape) def derivativeW(self,w,x,y,z): ''' Evaluates the partial derivative with respect to w (the first argument) of the interpolated function at the given input. Parameters ---------- w : np.array or float Real values to be evaluated in the interpolated function. x : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. Returns ------- dfdw : np.array or float The derivative with respect to w of the interpolated function eval- uated at w,x,y,z: dfdw = f_w(w,x,y,z), with the same shape as inputs. ''' wa = np.asarray(w) xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return (self._derW(wa.flatten(),xa.flatten(),ya.flatten(),za.flatten())).reshape(wa.shape) def derivativeX(self,w,x,y,z): ''' Evaluates the partial derivative with respect to x (the second argument) of the interpolated function at the given input. Parameters ---------- w : np.array or float Real values to be evaluated in the interpolated function. x : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. Returns ------- dfdx : np.array or float The derivative with respect to x of the interpolated function eval- uated at w,x,y,z: dfdx = f_x(w,x,y,z), with the same shape as inputs. ''' wa = np.asarray(w) xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return (self._derX(wa.flatten(),xa.flatten(),ya.flatten(),za.flatten())).reshape(wa.shape) def derivativeY(self,w,x,y,z): ''' Evaluates the partial derivative with respect to y (the third argument) of the interpolated function at the given input. Parameters ---------- w : np.array or float Real values to be evaluated in the interpolated function. x : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. Returns ------- dfdy : np.array or float The derivative with respect to y of the interpolated function eval- uated at w,x,y,z: dfdy = f_y(w,x,y,z), with the same shape as inputs. ''' wa = np.asarray(w) xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return (self._derY(wa.flatten(),xa.flatten(),ya.flatten(),za.flatten())).reshape(wa.shape) def derivativeZ(self,w,x,y,z): ''' Evaluates the partial derivative with respect to z (the fourth argument) of the interpolated function at the given input. Parameters ---------- w : np.array or float Real values to be evaluated in the interpolated function. x : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. y : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. z : np.array or float Real values to be evaluated in the interpolated function; must be the same size as w. Returns ------- dfdz : np.array or float The derivative with respect to z of the interpolated function eval- uated at w,x,y,z: dfdz = f_z(w,x,y,z), with the same shape as inputs. ''' wa = np.asarray(w) xa = np.asarray(x) ya = np.asarray(y) za = np.asarray(z) return (self._derZ(wa.flatten(),xa.flatten(),ya.flatten(),za.flatten())).reshape(wa.shape) def _evaluate(self,w,x,y,z): ''' Interpolated function evaluator, to be defined in subclasses. ''' raise NotImplementedError() def _derW(self,w,x,y,z): ''' Interpolated function w-derivative evaluator, to be defined in subclasses. ''' raise NotImplementedError() def _derX(self,w,x,y,z): ''' Interpolated function w-derivative evaluator, to be defined in subclasses. ''' raise NotImplementedError() def _derY(self,w,x,y,z): ''' Interpolated function w-derivative evaluator, to be defined in subclasses. ''' raise NotImplementedError() def _derZ(self,w,x,y,z): ''' Interpolated function w-derivative evaluator, to be defined in subclasses. ''' raise NotImplementedError() class IdentityFunction(HARKobject): ''' A fairly trivial interpolator that simply returns one of its arguments. Useful for avoiding numeric error in extreme cases. ''' distance_criteria = ['i_dim'] def __init__(self,i_dim=0,n_dims=1): ''' Constructor for a new IdentityFunction. Parameters ---------- i_dim : int Index of the dimension on which the identity is defined. f(*x) = x[i] n_dims : int Total number of input dimensions for this function. Returns ------- None ''' self.i_dim = i_dim self.n_dims = n_dims def __call__(self,*args): ''' Evaluate the identity function. ''' return args[self.i_dim] def derivative(self,*args): ''' Returns the derivative of the function with respect to the first dimension. ''' if self.i_dim == 0: return np.ones_like(*args[0]) else: return np.zeros_like(*args[0]) def derivativeX(self,*args): ''' Returns the derivative of the function with respect to the X dimension. This is the first input whenever n_dims < 4 and the second input otherwise. ''' if self.n_dims >= 4: j = 1 else: j = 0 if self.i_dim == j: return np.ones_like(*args[0]) else: return np.zeros_like(*args[0]) def derivativeY(self,*args): ''' Returns the derivative of the function with respect to the Y dimension. This is the second input whenever n_dims < 4 and the third input otherwise. ''' if self.n_dims >= 4: j = 2 else: j = 1 if self.i_dim == j: return np.ones_like(*args[0]) else: return np.zeros_like(*args[0]) def derivativeZ(self,*args): ''' Returns the derivative of the function with respect to the Z dimension. This is the third input whenever n_dims < 4 and the fourth input otherwise. ''' if self.n_dims >= 4: j = 3 else: j = 2 if self.i_dim == j: return np.ones_like(*args[0]) else: return np.zeros_like(*args[0]) def derivativeW(self,*args): ''' Returns the derivative of the function with respect to the W dimension. This should only exist when n_dims >= 4. ''' if self.n_dims >= 4: j = 0 else: assert False, "Derivative with respect to W can't be called when n_dims < 4!" if self.i_dim == j: return np.ones_like(*args[0]) else: return np.zeros_like(*args[0]) class ConstantFunction(HARKobject): ''' A class for representing trivial functions that return the same real output for any input. This is convenient for models where an object might be a (non-trivial) function, but in some variations that object is just a constant number. Rather than needing to make a (Bi/Tri/Quad)- LinearInterpolation with trivial state grids and the same f_value in every entry, ConstantFunction allows the user to quickly make a constant/trivial function. This comes up, e.g., in models with endogenous pricing of insurance contracts; a contract's premium might depend on some state variables of the individual, but in some variations the premium of a contract is just a number. ''' convergence_criteria = ['value'] def __init__(self,value): ''' Make a new ConstantFunction object. Parameters ---------- value : float The constant value that the function returns. Returns ------- None ''' self.value = float(value) def __call__(self,*args): ''' Evaluate the constant function. The first input must exist and should be an array. Returns an array of identical shape to args[0] (if it exists). ''' if len(args) > 0: # If there is at least one argument, return appropriately sized array if _isscalar(args[0]): return self.value else: shape = args[0].shape return self.value*np.ones(shape) else: # Otherwise, return a single instance of the constant value return self.value def _der(self,*args): ''' Evaluate the derivative of the function. The first input must exist and should be an array. Returns an array of identical shape to args[0] (if it exists). This is an array of zeros. ''' if len(args) > 0: if _isscalar(args[0]): return 0.0 else: shape = args[0].shape return np.zeros(shape) else: return 0.0 # All other derivatives are also zero everywhere, so these methods just point to derivative derivative = _der derivativeX = derivative derivativeY = derivative derivativeZ = derivative derivativeW = derivative derivativeXX= derivative class LinearInterp(HARKinterpolator1D): ''' A "from scratch" 1D linear interpolation class. Allows for linear or decay extrapolation (approaching a limiting linear function from below). ''' distance_criteria = ['x_list','y_list'] def __init__(self,x_list,y_list,intercept_limit=None,slope_limit=None,lower_extrap=False): ''' The interpolation constructor to make a new linear spline interpolation. Parameters ---------- x_list : np.array List of x values composing the grid. y_list : np.array List of y values, representing f(x) at the points in x_list. intercept_limit : float Intercept of limiting linear function. slope_limit : float Slope of limiting linear function. lower_extrap : boolean Indicator for whether lower extrapolation is allowed. False means f(x) = NaN for x < min(x_list); True means linear extrapolation. Returns ------- new instance of LinearInterp NOTE: When no input is given for the limiting linear function, linear extrapolation is used above the highest gridpoint. ''' # Make the basic linear spline interpolation self.x_list = np.array(x_list) self.y_list = np.array(y_list) self.lower_extrap = lower_extrap self.x_n = self.x_list.size # Make a decay extrapolation if intercept_limit is not None and slope_limit is not None: slope_at_top = (y_list[-1] - y_list[-2])/(x_list[-1] - x_list[-2]) level_diff = intercept_limit + slope_limit*x_list[-1] - y_list[-1] slope_diff = slope_limit - slope_at_top self.decay_extrap_A = level_diff self.decay_extrap_B = -slope_diff/level_diff self.intercept_limit = intercept_limit self.slope_limit = slope_limit self.decay_extrap = True else: self.decay_extrap = False def _evalOrDer(self,x,_eval,_Der): ''' Returns the level and/or first derivative of the function at each value in x. Only called internally by HARKinterpolator1D.eval_and_der (etc). Parameters ---------- x_list : scalar or np.array Set of points where we want to evlauate the interpolated function and/or its derivative.. _eval : boolean Indicator for whether to evalute the level of the interpolated function. _Der : boolean Indicator for whether to evaluate the derivative of the interpolated function. Returns ------- A list including the level and/or derivative of the interpolated function where requested. ''' i = np.maximum(np.searchsorted(self.x_list[:-1],x),1) alpha = (x-self.x_list[i-1])/(self.x_list[i]-self.x_list[i-1]) if _eval: y = (1.-alpha)*self.y_list[i-1] + alpha*self.y_list[i] if _Der: dydx = (self.y_list[i] - self.y_list[i-1])/(self.x_list[i] - self.x_list[i-1]) if not self.lower_extrap: below_lower_bound = x < self.x_list[0] if _eval: y[below_lower_bound] = np.nan if _Der: dydx[below_lower_bound] = np.nan if self.decay_extrap: above_upper_bound = x > self.x_list[-1] x_temp = x[above_upper_bound] - self.x_list[-1] if _eval: y[above_upper_bound] = self.intercept_limit + \ self.slope_limit*x[above_upper_bound] - \ self.decay_extrap_A*np.exp(-self.decay_extrap_B*x_temp) if _Der: dydx[above_upper_bound] = self.slope_limit + \ self.decay_extrap_B*self.decay_extrap_A*\ np.exp(-self.decay_extrap_B*x_temp) output = [] if _eval: output += [y,] if _Der: output += [dydx,] return output def _evaluate(self,x,return_indices = False): ''' Returns the level of the interpolated function at each value in x. Only called internally by HARKinterpolator1D.__call__ (etc). ''' return self._evalOrDer(x,True,False)[0] def _der(self,x): ''' Returns the first derivative of the interpolated function at each value in x. Only called internally by HARKinterpolator1D.derivative (etc). ''' return self._evalOrDer(x,False,True)[0] def _evalAndDer(self,x): ''' Returns the level and first derivative of the function at each value in x. Only called internally by HARKinterpolator1D.eval_and_der (etc). ''' y,dydx = self._evalOrDer(x,True,True) return y,dydx class CubicInterp(HARKinterpolator1D): ''' An interpolating function using piecewise cubic splines. Matches level and slope of 1D function at gridpoints, smoothly interpolating in between. Extrapolation above highest gridpoint approaches a limiting linear function if desired (linear extrapolation also enabled.) ''' distance_criteria = ['x_list','y_list','dydx_list'] def __init__(self,x_list,y_list,dydx_list,intercept_limit=None,slope_limit=None,lower_extrap=False): ''' The interpolation constructor to make a new cubic spline interpolation. Parameters ---------- x_list : np.array List of x values composing the grid. y_list : np.array List of y values, representing f(x) at the points in x_list. dydx_list : np.array List of dydx values, representing f'(x) at the points in x_list intercept_limit : float Intercept of limiting linear function. slope_limit : float Slope of limiting linear function. lower_extrap : boolean Indicator for whether lower extrapolation is allowed. False means f(x) = NaN for x < min(x_list); True means linear extrapolation. Returns ------- new instance of CubicInterp NOTE: When no input is given for the limiting linear function, linear extrapolation is used above the highest gridpoint. ''' self.x_list = np.asarray(x_list) self.y_list = np.asarray(y_list) self.dydx_list = np.asarray(dydx_list) self.n = len(x_list) # Define lower extrapolation as linear function (or just NaN) if lower_extrap: self.coeffs = [[y_list[0],dydx_list[0],0,0]] else: self.coeffs = [[np.nan,np.nan,np.nan,np.nan]] # Calculate interpolation coefficients on segments mapped to [0,1] for i in range(self.n-1): x0 = x_list[i] y0 = y_list[i] x1 = x_list[i+1] y1 = y_list[i+1] Span = x1 - x0 dydx0 = dydx_list[i]*Span dydx1 = dydx_list[i+1]*Span temp = [y0, dydx0, 3*(y1 - y0) - 2*dydx0 - dydx1, 2*(y0 - y1) + dydx0 + dydx1]; self.coeffs.append(temp) # Calculate extrapolation coefficients as a decay toward limiting function y = mx+b if slope_limit is None and intercept_limit is None: slope_limit = dydx_list[-1] intercept_limit = y_list[-1] - slope_limit*x_list[-1] gap = slope_limit*x1 + intercept_limit - y1 slope = slope_limit - dydx_list[self.n-1] if (gap != 0) and (slope <= 0): temp = [intercept_limit, slope_limit, gap, slope/gap] elif slope > 0: temp = [intercept_limit, slope_limit, 0, 0] # fixing a problem when slope is positive else: temp = [intercept_limit, slope_limit, gap, 0] self.coeffs.append(temp) self.coeffs = np.array(self.coeffs) def _evaluate(self,x): ''' Returns the level of the interpolated function at each value in x. Only called internally by HARKinterpolator1D.__call__ (etc). ''' if _isscalar(x): pos = np.searchsorted(self.x_list,x) if pos == 0: y = self.coeffs[0,0] + self.coeffs[0,1]*(x - self.x_list[0]) elif (pos < self.n): alpha = (x - self.x_list[pos-1])/(self.x_list[pos] - self.x_list[pos-1]) y = self.coeffs[pos,0] + alpha*(self.coeffs[pos,1] + alpha*(self.coeffs[pos,2] + alpha*self.coeffs[pos,3])) else: alpha = x - self.x_list[self.n-1] y = self.coeffs[pos,0] + x*self.coeffs[pos,1] - self.coeffs[pos,2]*np.exp(alpha*self.coeffs[pos,3]) else: m = len(x) pos = np.searchsorted(self.x_list,x) y = np.zeros(m) if y.size > 0: out_bot = pos == 0 out_top = pos == self.n in_bnds = np.logical_not(np.logical_or(out_bot, out_top)) # Do the "in bounds" evaluation points i = pos[in_bnds] coeffs_in = self.coeffs[i,:] alpha = (x[in_bnds] - self.x_list[i-1])/(self.x_list[i] - self.x_list[i-1]) y[in_bnds] = coeffs_in[:,0] + alpha*(coeffs_in[:,1] + alpha*(coeffs_in[:,2] + alpha*coeffs_in[:,3])) # Do the "out of bounds" evaluation points y[out_bot] = self.coeffs[0,0] + self.coeffs[0,1]*(x[out_bot] - self.x_list[0]) alpha = x[out_top] - self.x_list[self.n-1] y[out_top] = self.coeffs[self.n,0] + x[out_top]*self.coeffs[self.n,1] - self.coeffs[self.n,2]*np.exp(alpha*self.coeffs[self.n,3]) return y def _der(self,x): ''' Returns the first derivative of the interpolated function at each value in x. Only called internally by HARKinterpolator1D.derivative (etc). ''' if _isscalar(x): pos = np.searchsorted(self.x_list,x) if pos == 0: dydx = self.coeffs[0,1] elif (pos < self.n): alpha = (x - self.x_list[pos-1])/(self.x_list[pos] - self.x_list[pos-1]) dydx = (self.coeffs[pos,1] + alpha*(2*self.coeffs[pos,2] + alpha*3*self.coeffs[pos,3]))/(self.x_list[pos] - self.x_list[pos-1]) else: alpha = x - self.x_list[self.n-1] dydx = self.coeffs[pos,1] - self.coeffs[pos,2]*self.coeffs[pos,3]*np.exp(alpha*self.coeffs[pos,3]) else: m = len(x) pos = np.searchsorted(self.x_list,x) dydx = np.zeros(m) if dydx.size > 0: out_bot = pos == 0 out_top = pos == self.n in_bnds = np.logical_not(np.logical_or(out_bot, out_top)) # Do the "in bounds" evaluation points i = pos[in_bnds] coeffs_in = self.coeffs[i,:] alpha = (x[in_bnds] - self.x_list[i-1])/(self.x_list[i] - self.x_list[i-1]) dydx[in_bnds] = (coeffs_in[:,1] + alpha*(2*coeffs_in[:,2] + alpha*3*coeffs_in[:,3]))/(self.x_list[i] - self.x_list[i-1]) # Do the "out of bounds" evaluation points dydx[out_bot] = self.coeffs[0,1] alpha = x[out_top] - self.x_list[self.n-1] dydx[out_top] = self.coeffs[self.n,1] - self.coeffs[self.n,2]*self.coeffs[self.n,3]*np.exp(alpha*self.coeffs[self.n,3]) return dydx def _evalAndDer(self,x): ''' Returns the level and first derivative of the function at each value in x. Only called internally by HARKinterpolator1D.eval_and_der (etc). ''' if _isscalar(x): pos = np.searchsorted(self.x_list,x) if pos == 0: y = self.coeffs[0,0] + self.coeffs[0,1]*(x - self.x_list[0]) dydx = self.coeffs[0,1] elif (pos < self.n): alpha = (x - self.x_list[pos-1])/(self.x_list[pos] - self.x_list[pos-1]) y = self.coeffs[pos,0] + alpha*(self.coeffs[pos,1] + alpha*(self.coeffs[pos,2] + alpha*self.coeffs[pos,3])) dydx = (self.coeffs[pos,1] + alpha*(2*self.coeffs[pos,2] + alpha*3*self.coeffs[pos,3]))/(self.x_list[pos] - self.x_list[pos-1]) else: alpha = x - self.x_list[self.n-1] y = self.coeffs[pos,0] + x*self.coeffs[pos,1] - self.coeffs[pos,2]*np.exp(alpha*self.coeffs[pos,3]) dydx = self.coeffs[pos,1] - self.coeffs[pos,2]*self.coeffs[pos,3]*np.exp(alpha*self.coeffs[pos,3]) else: m = len(x) pos = np.searchsorted(self.x_list,x) y = np.zeros(m) dydx = np.zeros(m) if y.size > 0: out_bot = pos == 0 out_top = pos == self.n in_bnds = np.logical_not(np.logical_or(out_bot, out_top)) # Do the "in bounds" evaluation points i = pos[in_bnds] coeffs_in = self.coeffs[i,:] alpha = (x[in_bnds] - self.x_list[i-1])/(self.x_list[i] - self.x_list[i-1]) y[in_bnds] = coeffs_in[:,0] + alpha*(coeffs_in[:,1] + alpha*(coeffs_in[:,2] + alpha*coeffs_in[:,3])) dydx[in_bnds] = (coeffs_in[:,1] + alpha*(2*coeffs_in[:,2] + alpha*3*coeffs_in[:,3]))/(self.x_list[i] - self.x_list[i-1]) # Do the "out of bounds" evaluation points y[out_bot] = self.coeffs[0,0] + self.coeffs[0,1]*(x[out_bot] - self.x_list[0]) dydx[out_bot] = self.coeffs[0,1] alpha = x[out_top] - self.x_list[self.n-1] y[out_top] = self.coeffs[self.n,0] + x[out_top]*self.coeffs[self.n,1] - self.coeffs[self.n,2]*np.exp(alpha*self.coeffs[self.n,3]) dydx[out_top] = self.coeffs[self.n,1] - self.coeffs[self.n,2]*self.coeffs[self.n,3]*np.exp(alpha*self.coeffs[self.n,3]) return y, dydx class BilinearInterp(HARKinterpolator2D): ''' Bilinear full (or tensor) grid interpolation of a function f(x,y). ''' distance_criteria = ['x_list','y_list','f_values'] def __init__(self,f_values,x_list,y_list,xSearchFunc=None,ySearchFunc=None): ''' Constructor to make a new bilinear interpolation. Parameters ---------- f_values : numpy.array An array of size (x_n,y_n) such that f_values[i,j] = f(x_list[i],y_list[j]) x_list : numpy.array An array of x values, with length designated x_n. y_list : numpy.array An array of y values, with length designated y_n. xSearchFunc : function An optional function that returns the reference location for x values: indices = xSearchFunc(x_list,x). Default is np.searchsorted ySearchFunc : function An optional function that returns the reference location for y values: indices = ySearchFunc(y_list,y). Default is np.searchsorted Returns ------- new instance of BilinearInterp ''' self.f_values = f_values self.x_list = x_list self.y_list = y_list self.x_n = x_list.size self.y_n = y_list.size if xSearchFunc is None: xSearchFunc = np.searchsorted if ySearchFunc is None: ySearchFunc = np.searchsorted self.xSearchFunc = xSearchFunc self.ySearchFunc = ySearchFunc def _evaluate(self,x,y): ''' Returns the level of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.__call__ (etc). ''' if _isscalar(x): x_pos = max(min(self.xSearchFunc(self.x_list,x),self.x_n-1),1) y_pos = max(min(self.ySearchFunc(self.y_list,y),self.y_n-1),1) else: x_pos = self.xSearchFunc(self.x_list,x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = self.ySearchFunc(self.y_list,y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n-1] = self.y_n-1 alpha = (x - self.x_list[x_pos-1])/(self.x_list[x_pos] - self.x_list[x_pos-1]) beta = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) f = ( (1-alpha)*(1-beta)*self.f_values[x_pos-1,y_pos-1] + (1-alpha)*beta*self.f_values[x_pos-1,y_pos] + alpha*(1-beta)*self.f_values[x_pos,y_pos-1] + alpha*beta*self.f_values[x_pos,y_pos]) return f def _derX(self,x,y): ''' Returns the derivative with respect to x of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.derivativeX. ''' if _isscalar(x): x_pos = max(min(self.xSearchFunc(self.x_list,x),self.x_n-1),1) y_pos = max(min(self.ySearchFunc(self.y_list,y),self.y_n-1),1) else: x_pos = self.xSearchFunc(self.x_list,x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = self.ySearchFunc(self.y_list,y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n-1] = self.y_n-1 beta = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) dfdx = ( ((1-beta)*self.f_values[x_pos,y_pos-1] + beta*self.f_values[x_pos,y_pos]) - ((1-beta)*self.f_values[x_pos-1,y_pos-1] + beta*self.f_values[x_pos-1,y_pos]))/(self.x_list[x_pos] - self.x_list[x_pos-1]) return dfdx def _derY(self,x,y): ''' Returns the derivative with respect to y of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.derivativeY. ''' if _isscalar(x): x_pos = max(min(self.xSearchFunc(self.x_list,x),self.x_n-1),1) y_pos = max(min(self.ySearchFunc(self.y_list,y),self.y_n-1),1) else: x_pos = self.xSearchFunc(self.x_list,x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = self.ySearchFunc(self.y_list,y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n-1] = self.y_n-1 alpha = (x - self.x_list[x_pos-1])/(self.x_list[x_pos] - self.x_list[x_pos-1]) dfdy = ( ((1-alpha)*self.f_values[x_pos-1,y_pos] + alpha*self.f_values[x_pos,y_pos]) - ((1-alpha)*self.f_values[x_pos-1,y_pos-1] + alpha*self.f_values[x_pos,y_pos-1]))/(self.y_list[y_pos] - self.y_list[y_pos-1]) return dfdy class TrilinearInterp(HARKinterpolator3D): ''' Trilinear full (or tensor) grid interpolation of a function f(x,y,z). ''' distance_criteria = ['f_values','x_list','y_list','z_list'] def __init__(self,f_values,x_list,y_list,z_list,xSearchFunc=None,ySearchFunc=None,zSearchFunc=None): ''' Constructor to make a new trilinear interpolation. Parameters ---------- f_values : numpy.array An array of size (x_n,y_n,z_n) such that f_values[i,j,k] = f(x_list[i],y_list[j],z_list[k]) x_list : numpy.array An array of x values, with length designated x_n. y_list : numpy.array An array of y values, with length designated y_n. z_list : numpy.array An array of z values, with length designated z_n. xSearchFunc : function An optional function that returns the reference location for x values: indices = xSearchFunc(x_list,x). Default is np.searchsorted ySearchFunc : function An optional function that returns the reference location for y values: indices = ySearchFunc(y_list,y). Default is np.searchsorted zSearchFunc : function An optional function that returns the reference location for z values: indices = zSearchFunc(z_list,z). Default is np.searchsorted Returns ------- new instance of TrilinearInterp ''' self.f_values = f_values self.x_list = x_list self.y_list = y_list self.z_list = z_list self.x_n = x_list.size self.y_n = y_list.size self.z_n = z_list.size if xSearchFunc is None: xSearchFunc = np.searchsorted if ySearchFunc is None: ySearchFunc = np.searchsorted if zSearchFunc is None: zSearchFunc = np.searchsorted self.xSearchFunc = xSearchFunc self.ySearchFunc = ySearchFunc self.zSearchFunc = zSearchFunc def _evaluate(self,x,y,z): ''' Returns the level of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.__call__ (etc). ''' if _isscalar(x): x_pos = max(min(self.xSearchFunc(self.x_list,x),self.x_n-1),1) y_pos = max(min(self.ySearchFunc(self.y_list,y),self.y_n-1),1) z_pos = max(min(self.zSearchFunc(self.z_list,z),self.z_n-1),1) else: x_pos = self.xSearchFunc(self.x_list,x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = self.ySearchFunc(self.y_list,y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n-1] = self.y_n-1 z_pos = self.zSearchFunc(self.z_list,z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n-1] = self.z_n-1 alpha = (x - self.x_list[x_pos-1])/(self.x_list[x_pos] - self.x_list[x_pos-1]) beta = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) gamma = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) f = ( (1-alpha)*(1-beta)*(1-gamma)*self.f_values[x_pos-1,y_pos-1,z_pos-1] + (1-alpha)*(1-beta)*gamma*self.f_values[x_pos-1,y_pos-1,z_pos] + (1-alpha)*beta*(1-gamma)*self.f_values[x_pos-1,y_pos,z_pos-1] + (1-alpha)*beta*gamma*self.f_values[x_pos-1,y_pos,z_pos] + alpha*(1-beta)*(1-gamma)*self.f_values[x_pos,y_pos-1,z_pos-1] + alpha*(1-beta)*gamma*self.f_values[x_pos,y_pos-1,z_pos] + alpha*beta*(1-gamma)*self.f_values[x_pos,y_pos,z_pos-1] + alpha*beta*gamma*self.f_values[x_pos,y_pos,z_pos]) return f def _derX(self,x,y,z): ''' Returns the derivative with respect to x of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeX. ''' if _isscalar(x): x_pos = max(min(self.xSearchFunc(self.x_list,x),self.x_n-1),1) y_pos = max(min(self.ySearchFunc(self.y_list,y),self.y_n-1),1) z_pos = max(min(self.zSearchFunc(self.z_list,z),self.z_n-1),1) else: x_pos = self.xSearchFunc(self.x_list,x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = self.ySearchFunc(self.y_list,y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n-1] = self.y_n-1 z_pos = self.zSearchFunc(self.z_list,z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n-1] = self.z_n-1 beta = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) gamma = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) dfdx = ( ( (1-beta)*(1-gamma)*self.f_values[x_pos,y_pos-1,z_pos-1] + (1-beta)*gamma*self.f_values[x_pos,y_pos-1,z_pos] + beta*(1-gamma)*self.f_values[x_pos,y_pos,z_pos-1] + beta*gamma*self.f_values[x_pos,y_pos,z_pos]) - ( (1-beta)*(1-gamma)*self.f_values[x_pos-1,y_pos-1,z_pos-1] + (1-beta)*gamma*self.f_values[x_pos-1,y_pos-1,z_pos] + beta*(1-gamma)*self.f_values[x_pos-1,y_pos,z_pos-1] + beta*gamma*self.f_values[x_pos-1,y_pos,z_pos]))/(self.x_list[x_pos] - self.x_list[x_pos-1]) return dfdx def _derY(self,x,y,z): ''' Returns the derivative with respect to y of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeY. ''' if _isscalar(x): x_pos = max(min(self.xSearchFunc(self.x_list,x),self.x_n-1),1) y_pos = max(min(self.ySearchFunc(self.y_list,y),self.y_n-1),1) z_pos = max(min(self.zSearchFunc(self.z_list,z),self.z_n-1),1) else: x_pos = self.xSearchFunc(self.x_list,x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = self.ySearchFunc(self.y_list,y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n-1] = self.y_n-1 z_pos = self.zSearchFunc(self.z_list,z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n-1] = self.z_n-1 alpha = (x - self.x_list[x_pos-1])/(self.x_list[x_pos] - self.x_list[x_pos-1]) gamma = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) dfdy = ( ( (1-alpha)*(1-gamma)*self.f_values[x_pos-1,y_pos,z_pos-1] + (1-alpha)*gamma*self.f_values[x_pos-1,y_pos,z_pos] + alpha*(1-gamma)*self.f_values[x_pos,y_pos,z_pos-1] + alpha*gamma*self.f_values[x_pos,y_pos,z_pos]) - ( (1-alpha)*(1-gamma)*self.f_values[x_pos-1,y_pos-1,z_pos-1] + (1-alpha)*gamma*self.f_values[x_pos-1,y_pos-1,z_pos] + alpha*(1-gamma)*self.f_values[x_pos,y_pos-1,z_pos-1] + alpha*gamma*self.f_values[x_pos,y_pos-1,z_pos]))/(self.y_list[y_pos] - self.y_list[y_pos-1]) return dfdy def _derZ(self,x,y,z): ''' Returns the derivative with respect to z of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeZ. ''' if _isscalar(x): x_pos = max(min(self.xSearchFunc(self.x_list,x),self.x_n-1),1) y_pos = max(min(self.ySearchFunc(self.y_list,y),self.y_n-1),1) z_pos = max(min(self.zSearchFunc(self.z_list,z),self.z_n-1),1) else: x_pos = self.xSearchFunc(self.x_list,x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = self.ySearchFunc(self.y_list,y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n-1] = self.y_n-1 z_pos = self.zSearchFunc(self.z_list,z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n-1] = self.z_n-1 alpha = (x - self.x_list[x_pos-1])/(self.x_list[x_pos] - self.x_list[x_pos-1]) beta = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) dfdz = ( ( (1-alpha)*(1-beta)*self.f_values[x_pos-1,y_pos-1,z_pos] + (1-alpha)*beta*self.f_values[x_pos-1,y_pos,z_pos] + alpha*(1-beta)*self.f_values[x_pos,y_pos-1,z_pos] + alpha*beta*self.f_values[x_pos,y_pos,z_pos]) - ( (1-alpha)*(1-beta)*self.f_values[x_pos-1,y_pos-1,z_pos-1] + (1-alpha)*beta*self.f_values[x_pos-1,y_pos,z_pos-1] + alpha*(1-beta)*self.f_values[x_pos,y_pos-1,z_pos-1] + alpha*beta*self.f_values[x_pos,y_pos,z_pos-1]))/(self.z_list[z_pos] - self.z_list[z_pos-1]) return dfdz class QuadlinearInterp(HARKinterpolator4D): ''' Quadlinear full (or tensor) grid interpolation of a function f(w,x,y,z). ''' distance_criteria = ['f_values','w_list','x_list','y_list','z_list'] def __init__(self,f_values,w_list,x_list,y_list,z_list,wSearchFunc=None,xSearchFunc=None,ySearchFunc=None,zSearchFunc=None): ''' Constructor to make a new quadlinear interpolation. Parameters ---------- f_values : numpy.array An array of size (w_n,x_n,y_n,z_n) such that f_values[i,j,k,l] = f(w_list[i],x_list[j],y_list[k],z_list[l]) w_list : numpy.array An array of x values, with length designated w_n. x_list : numpy.array An array of x values, with length designated x_n. y_list : numpy.array An array of y values, with length designated y_n. z_list : numpy.array An array of z values, with length designated z_n. wSearchFunc : function An optional function that returns the reference location for w values: indices = wSearchFunc(w_list,w). Default is np.searchsorted xSearchFunc : function An optional function that returns the reference location for x values: indices = xSearchFunc(x_list,x). Default is np.searchsorted ySearchFunc : function An optional function that returns the reference location for y values: indices = ySearchFunc(y_list,y). Default is np.searchsorted zSearchFunc : function An optional function that returns the reference location for z values: indices = zSearchFunc(z_list,z). Default is np.searchsorted Returns ------- new instance of QuadlinearInterp ''' self.f_values = f_values self.w_list = w_list self.x_list = x_list self.y_list = y_list self.z_list = z_list self.w_n = w_list.size self.x_n = x_list.size self.y_n = y_list.size self.z_n = z_list.size if wSearchFunc is None: wSearchFunc = np.searchsorted if xSearchFunc is None: xSearchFunc = np.searchsorted if ySearchFunc is None: ySearchFunc = np.searchsorted if zSearchFunc is None: zSearchFunc = np.searchsorted self.wSearchFunc = wSearchFunc self.xSearchFunc = xSearchFunc self.ySearchFunc = ySearchFunc self.zSearchFunc = zSearchFunc def _evaluate(self,w,x,y,z): ''' Returns the level of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator4D.__call__ (etc). ''' if _isscalar(w): w_pos = max(min(self.wSearchFunc(self.w_list,w),self.w_n-1),1) x_pos = max(min(self.xSearchFunc(self.x_list,x),self.x_n-1),1) y_pos = max(min(self.ySearchFunc(self.y_list,y),self.y_n-1),1) z_pos = max(min(self.zSearchFunc(self.z_list,z),self.z_n-1),1) else: w_pos = self.wSearchFunc(self.w_list,w) w_pos[w_pos < 1] = 1 w_pos[w_pos > self.w_n-1] = self.w_n-1 x_pos = self.xSearchFunc(self.x_list,x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = self.ySearchFunc(self.y_list,y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n-1] = self.y_n-1 z_pos = self.zSearchFunc(self.z_list,z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n-1] = self.z_n-1 i = w_pos # for convenience j = x_pos k = y_pos l = z_pos alpha = (w - self.w_list[i-1])/(self.w_list[i] - self.w_list[i-1]) beta = (x - self.x_list[j-1])/(self.x_list[j] - self.x_list[j-1]) gamma = (y - self.y_list[k-1])/(self.y_list[k] - self.y_list[k-1]) delta = (z - self.z_list[l-1])/(self.z_list[l] - self.z_list[l-1]) f = ( (1-alpha)*((1-beta)*((1-gamma)*(1-delta)*self.f_values[i-1,j-1,k-1,l-1] + (1-gamma)*delta*self.f_values[i-1,j-1,k-1,l] + gamma*(1-delta)*self.f_values[i-1,j-1,k,l-1] + gamma*delta*self.f_values[i-1,j-1,k,l]) + beta*((1-gamma)*(1-delta)*self.f_values[i-1,j,k-1,l-1] + (1-gamma)*delta*self.f_values[i-1,j,k-1,l] + gamma*(1-delta)*self.f_values[i-1,j,k,l-1] + gamma*delta*self.f_values[i-1,j,k,l])) + alpha*((1-beta)*((1-gamma)*(1-delta)*self.f_values[i,j-1,k-1,l-1] + (1-gamma)*delta*self.f_values[i,j-1,k-1,l] + gamma*(1-delta)*self.f_values[i,j-1,k,l-1] + gamma*delta*self.f_values[i,j-1,k,l]) + beta*((1-gamma)*(1-delta)*self.f_values[i,j,k-1,l-1] + (1-gamma)*delta*self.f_values[i,j,k-1,l] + gamma*(1-delta)*self.f_values[i,j,k,l-1] + gamma*delta*self.f_values[i,j,k,l]))) return f def _derW(self,w,x,y,z): ''' Returns the derivative with respect to w of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeW. ''' if _isscalar(w): w_pos = max(min(self.wSearchFunc(self.w_list,w),self.w_n-1),1) x_pos = max(min(self.xSearchFunc(self.x_list,x),self.x_n-1),1) y_pos = max(min(self.ySearchFunc(self.y_list,y),self.y_n-1),1) z_pos = max(min(self.zSearchFunc(self.z_list,z),self.z_n-1),1) else: w_pos = self.wSearchFunc(self.w_list,w) w_pos[w_pos < 1] = 1 w_pos[w_pos > self.w_n-1] = self.w_n-1 x_pos = self.xSearchFunc(self.x_list,x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = self.ySearchFunc(self.y_list,y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n-1] = self.y_n-1 z_pos = self.zSearchFunc(self.z_list,z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n-1] = self.z_n-1 i = w_pos # for convenience j = x_pos k = y_pos l = z_pos beta = (x - self.x_list[j-1])/(self.x_list[j] - self.x_list[j-1]) gamma = (y - self.y_list[k-1])/(self.y_list[k] - self.y_list[k-1]) delta = (z - self.z_list[l-1])/(self.z_list[l] - self.z_list[l-1]) dfdw = ( ( (1-beta)*(1-gamma)*(1-delta)*self.f_values[i,j-1,k-1,l-1] + (1-beta)*(1-gamma)*delta*self.f_values[i,j-1,k-1,l] + (1-beta)*gamma*(1-delta)*self.f_values[i,j-1,k,l-1] + (1-beta)*gamma*delta*self.f_values[i,j-1,k,l] + beta*(1-gamma)*(1-delta)*self.f_values[i,j,k-1,l-1] + beta*(1-gamma)*delta*self.f_values[i,j,k-1,l] + beta*gamma*(1-delta)*self.f_values[i,j,k,l-1] + beta*gamma*delta*self.f_values[i,j,k,l] ) - ( (1-beta)*(1-gamma)*(1-delta)*self.f_values[i-1,j-1,k-1,l-1] + (1-beta)*(1-gamma)*delta*self.f_values[i-1,j-1,k-1,l] + (1-beta)*gamma*(1-delta)*self.f_values[i-1,j-1,k,l-1] + (1-beta)*gamma*delta*self.f_values[i-1,j-1,k,l] + beta*(1-gamma)*(1-delta)*self.f_values[i-1,j,k-1,l-1] + beta*(1-gamma)*delta*self.f_values[i-1,j,k-1,l] + beta*gamma*(1-delta)*self.f_values[i-1,j,k,l-1] + beta*gamma*delta*self.f_values[i-1,j,k,l] ) )/(self.w_list[i] - self.w_list[i-1]) return dfdw def _derX(self,w,x,y,z): ''' Returns the derivative with respect to x of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeX. ''' if _isscalar(w): w_pos = max(min(self.wSearchFunc(self.w_list,w),self.w_n-1),1) x_pos = max(min(self.xSearchFunc(self.x_list,x),self.x_n-1),1) y_pos = max(min(self.ySearchFunc(self.y_list,y),self.y_n-1),1) z_pos = max(min(self.zSearchFunc(self.z_list,z),self.z_n-1),1) else: w_pos = self.wSearchFunc(self.w_list,w) w_pos[w_pos < 1] = 1 w_pos[w_pos > self.w_n-1] = self.w_n-1 x_pos = self.xSearchFunc(self.x_list,x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = self.ySearchFunc(self.y_list,y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n-1] = self.y_n-1 z_pos = self.zSearchFunc(self.z_list,z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n-1] = self.z_n-1 i = w_pos # for convenience j = x_pos k = y_pos l = z_pos alpha = (w - self.w_list[i-1])/(self.w_list[i] - self.w_list[i-1]) gamma = (y - self.y_list[k-1])/(self.y_list[k] - self.y_list[k-1]) delta = (z - self.z_list[l-1])/(self.z_list[l] - self.z_list[l-1]) dfdx = ( ( (1-alpha)*(1-gamma)*(1-delta)*self.f_values[i-1,j,k-1,l-1] + (1-alpha)*(1-gamma)*delta*self.f_values[i-1,j,k-1,l] + (1-alpha)*gamma*(1-delta)*self.f_values[i-1,j,k,l-1] + (1-alpha)*gamma*delta*self.f_values[i-1,j,k,l] + alpha*(1-gamma)*(1-delta)*self.f_values[i,j,k-1,l-1] + alpha*(1-gamma)*delta*self.f_values[i,j,k-1,l] + alpha*gamma*(1-delta)*self.f_values[i,j,k,l-1] + alpha*gamma*delta*self.f_values[i,j,k,l] ) - ( (1-alpha)*(1-gamma)*(1-delta)*self.f_values[i-1,j-1,k-1,l-1] + (1-alpha)*(1-gamma)*delta*self.f_values[i-1,j-1,k-1,l] + (1-alpha)*gamma*(1-delta)*self.f_values[i-1,j-1,k,l-1] + (1-alpha)*gamma*delta*self.f_values[i-1,j-1,k,l] + alpha*(1-gamma)*(1-delta)*self.f_values[i,j-1,k-1,l-1] + alpha*(1-gamma)*delta*self.f_values[i,j-1,k-1,l] + alpha*gamma*(1-delta)*self.f_values[i,j-1,k,l-1] + alpha*gamma*delta*self.f_values[i,j-1,k,l] ) )/(self.x_list[j] - self.x_list[j-1]) return dfdx def _derY(self,w,x,y,z): ''' Returns the derivative with respect to y of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeY. ''' if _isscalar(w): w_pos = max(min(self.wSearchFunc(self.w_list,w),self.w_n-1),1) x_pos = max(min(self.xSearchFunc(self.x_list,x),self.x_n-1),1) y_pos = max(min(self.ySearchFunc(self.y_list,y),self.y_n-1),1) z_pos = max(min(self.zSearchFunc(self.z_list,z),self.z_n-1),1) else: w_pos = self.wSearchFunc(self.w_list,w) w_pos[w_pos < 1] = 1 w_pos[w_pos > self.w_n-1] = self.w_n-1 x_pos = self.xSearchFunc(self.x_list,x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = self.ySearchFunc(self.y_list,y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n-1] = self.y_n-1 z_pos = self.zSearchFunc(self.z_list,z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n-1] = self.z_n-1 i = w_pos # for convenience j = x_pos k = y_pos l = z_pos alpha = (w - self.w_list[i-1])/(self.w_list[i] - self.w_list[i-1]) beta = (x - self.x_list[j-1])/(self.x_list[j] - self.x_list[j-1]) delta = (z - self.z_list[l-1])/(self.z_list[l] - self.z_list[l-1]) dfdy = ( ( (1-alpha)*(1-beta)*(1-delta)*self.f_values[i-1,j-1,k,l-1] + (1-alpha)*(1-beta)*delta*self.f_values[i-1,j-1,k,l] + (1-alpha)*beta*(1-delta)*self.f_values[i-1,j,k,l-1] + (1-alpha)*beta*delta*self.f_values[i-1,j,k,l] + alpha*(1-beta)*(1-delta)*self.f_values[i,j-1,k,l-1] + alpha*(1-beta)*delta*self.f_values[i,j-1,k,l] + alpha*beta*(1-delta)*self.f_values[i,j,k,l-1] + alpha*beta*delta*self.f_values[i,j,k,l] ) - ( (1-alpha)*(1-beta)*(1-delta)*self.f_values[i-1,j-1,k-1,l-1] + (1-alpha)*(1-beta)*delta*self.f_values[i-1,j-1,k-1,l] + (1-alpha)*beta*(1-delta)*self.f_values[i-1,j,k-1,l-1] + (1-alpha)*beta*delta*self.f_values[i-1,j,k-1,l] + alpha*(1-beta)*(1-delta)*self.f_values[i,j-1,k-1,l-1] + alpha*(1-beta)*delta*self.f_values[i,j-1,k-1,l] + alpha*beta*(1-delta)*self.f_values[i,j,k-1,l-1] + alpha*beta*delta*self.f_values[i,j,k-1,l] ) )/(self.y_list[k] - self.y_list[k-1]) return dfdy def _derZ(self,w,x,y,z): ''' Returns the derivative with respect to z of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeZ. ''' if _isscalar(w): w_pos = max(min(self.wSearchFunc(self.w_list,w),self.w_n-1),1) x_pos = max(min(self.xSearchFunc(self.x_list,x),self.x_n-1),1) y_pos = max(min(self.ySearchFunc(self.y_list,y),self.y_n-1),1) z_pos = max(min(self.zSearchFunc(self.z_list,z),self.z_n-1),1) else: w_pos = self.wSearchFunc(self.w_list,w) w_pos[w_pos < 1] = 1 w_pos[w_pos > self.w_n-1] = self.w_n-1 x_pos = self.xSearchFunc(self.x_list,x) x_pos[x_pos < 1] = 1 x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = self.ySearchFunc(self.y_list,y) y_pos[y_pos < 1] = 1 y_pos[y_pos > self.y_n-1] = self.y_n-1 z_pos = self.zSearchFunc(self.z_list,z) z_pos[z_pos < 1] = 1 z_pos[z_pos > self.z_n-1] = self.z_n-1 i = w_pos # for convenience j = x_pos k = y_pos l = z_pos alpha = (w - self.w_list[i-1])/(self.w_list[i] - self.w_list[i-1]) beta = (x - self.x_list[j-1])/(self.x_list[j] - self.x_list[j-1]) gamma = (y - self.y_list[k-1])/(self.y_list[k] - self.y_list[k-1]) dfdz = ( ( (1-alpha)*(1-beta)*(1-gamma)*self.f_values[i-1,j-1,k-1,l] + (1-alpha)*(1-beta)*gamma*self.f_values[i-1,j-1,k,l] + (1-alpha)*beta*(1-gamma)*self.f_values[i-1,j,k-1,l] + (1-alpha)*beta*gamma*self.f_values[i-1,j,k,l] + alpha*(1-beta)*(1-gamma)*self.f_values[i,j-1,k-1,l] + alpha*(1-beta)*gamma*self.f_values[i,j-1,k,l] + alpha*beta*(1-gamma)*self.f_values[i,j,k-1,l] + alpha*beta*gamma*self.f_values[i,j,k,l] ) - ( (1-alpha)*(1-beta)*(1-gamma)*self.f_values[i-1,j-1,k-1,l-1] + (1-alpha)*(1-beta)*gamma*self.f_values[i-1,j-1,k,l-1] + (1-alpha)*beta*(1-gamma)*self.f_values[i-1,j,k-1,l-1] + (1-alpha)*beta*gamma*self.f_values[i-1,j,k,l-1] + alpha*(1-beta)*(1-gamma)*self.f_values[i,j-1,k-1,l-1] + alpha*(1-beta)*gamma*self.f_values[i,j-1,k,l-1] + alpha*beta*(1-gamma)*self.f_values[i,j,k-1,l-1] + alpha*beta*gamma*self.f_values[i,j,k,l-1] ) )/(self.z_list[l] - self.z_list[l-1]) return dfdz class LowerEnvelope(HARKinterpolator1D): ''' The lower envelope of a finite set of 1D functions, each of which can be of any class that has the methods __call__, derivative, and eval_with_derivative. Generally: it combines HARKinterpolator1Ds. ''' distance_criteria = ['functions'] def __init__(self,*functions): ''' Constructor to make a new lower envelope iterpolation. Parameters ---------- *functions : function Any number of real functions; often instances of HARKinterpolator1D Returns ------- new instance of LowerEnvelope ''' self.functions = [] for function in functions: self.functions.append(function) self.funcCount = len(self.functions) def _evaluate(self,x): ''' Returns the level of the function at each value in x as the minimum among all of the functions. Only called internally by HARKinterpolator1D.__call__. ''' if _isscalar(x): y = np.nanmin([f(x) for f in self.functions]) else: m = len(x) fx = np.zeros((m,self.funcCount)) for j in range(self.funcCount): fx[:,j] = self.functions[j](x) y = np.nanmin(fx,axis=1) return y def _der(self,x): ''' Returns the first derivative of the function at each value in x. Only called internally by HARKinterpolator1D.derivative. ''' y,dydx = self.eval_with_derivative(x) return dydx # Sadly, this is the fastest / most convenient way... def _evalAndDer(self,x): ''' Returns the level and first derivative of the function at each value in x. Only called internally by HARKinterpolator1D.eval_and_der. ''' m = len(x) fx = np.zeros((m,self.funcCount)) for j in range(self.funcCount): fx[:,j] = self.functions[j](x) fx[np.isnan(fx)] = np.inf i = np.argmin(fx,axis=1) y = fx[np.arange(m),i] dydx = np.zeros_like(y) for j in range(self.funcCount): c = i == j dydx[c] = self.functions[j].derivative(x[c]) return y,dydx class UpperEnvelope(HARKinterpolator1D): ''' The upper envelope of a finite set of 1D functions, each of which can be of any class that has the methods __call__, derivative, and eval_with_derivative. Generally: it combines HARKinterpolator1Ds. ''' distance_criteria = ['functions'] def __init__(self,*functions): ''' Constructor to make a new upper envelope iterpolation. Parameters ---------- *functions : function Any number of real functions; often instances of HARKinterpolator1D Returns ------- new instance of UpperEnvelope ''' self.functions = [] for function in functions: self.functions.append(function) self.funcCount = len(self.functions) def _evaluate(self,x): ''' Returns the level of the function at each value in x as the maximum among all of the functions. Only called internally by HARKinterpolator1D.__call__. ''' if _isscalar(x): y = np.nanmax([f(x) for f in self.functions]) else: m = len(x) fx = np.zeros((m,self.funcCount)) for j in range(self.funcCount): fx[:,j] = self.functions[j](x) y = np.nanmax(fx,axis=1) return y def _der(self,x): ''' Returns the first derivative of the function at each value in x. Only called internally by HARKinterpolator1D.derivative. ''' y,dydx = self.eval_with_derivative(x) return dydx # Sadly, this is the fastest / most convenient way... def _evalAndDer(self,x): ''' Returns the level and first derivative of the function at each value in x. Only called internally by HARKinterpolator1D.eval_and_der. ''' m = len(x) fx = np.zeros((m,self.funcCount)) for j in range(self.funcCount): fx[:,j] = self.functions[j](x) fx[np.isnan(fx)] = np.inf i = np.argmax(fx,axis=1) y = fx[np.arange(m),i] dydx = np.zeros_like(y) for j in range(self.funcCount): c = i == j dydx[c] = self.functions[j].derivative(x[c]) return y,dydx class LowerEnvelope2D(HARKinterpolator2D): ''' The lower envelope of a finite set of 2D functions, each of which can be of any class that has the methods __call__, derivativeX, and derivativeY. Generally: it combines HARKinterpolator2Ds. ''' distance_criteria = ['functions'] def __init__(self,*functions): ''' Constructor to make a new lower envelope iterpolation. Parameters ---------- *functions : function Any number of real functions; often instances of HARKinterpolator2D Returns ------- new instance of LowerEnvelope2D ''' self.functions = [] for function in functions: self.functions.append(function) self.funcCount = len(self.functions) def _evaluate(self,x,y): ''' Returns the level of the function at each value in (x,y) as the minimum among all of the functions. Only called internally by HARKinterpolator2D.__call__. ''' if _isscalar(x): f = np.nanmin([f(x,y) for f in self.functions]) else: m = len(x) temp = np.zeros((m,self.funcCount)) for j in range(self.funcCount): temp[:,j] = self.functions[j](x,y) f = np.nanmin(temp,axis=1) return f def _derX(self,x,y): ''' Returns the first derivative of the function with respect to X at each value in (x,y). Only called internally by HARKinterpolator2D._derX. ''' m = len(x) temp = np.zeros((m,self.funcCount)) for j in range(self.funcCount): temp[:,j] = self.functions[j](x,y) temp[np.isnan(temp)] = np.inf i = np.argmin(temp,axis=1) dfdx = np.zeros_like(x) for j in range(self.funcCount): c = i == j dfdx[c] = self.functions[j].derivativeX(x[c],y[c]) return dfdx def _derY(self,x,y): ''' Returns the first derivative of the function with respect to Y at each value in (x,y). Only called internally by HARKinterpolator2D._derY. ''' m = len(x) temp = np.zeros((m,self.funcCount)) for j in range(self.funcCount): temp[:,j] = self.functions[j](x,y) temp[np.isnan(temp)] = np.inf i = np.argmin(temp,axis=1) y = temp[np.arange(m),i] dfdy = np.zeros_like(x) for j in range(self.funcCount): c = i == j dfdy[c] = self.functions[j].derivativeY(x[c],y[c]) return dfdy class LowerEnvelope3D(HARKinterpolator3D): ''' The lower envelope of a finite set of 3D functions, each of which can be of any class that has the methods __call__, derivativeX, derivativeY, and derivativeZ. Generally: it combines HARKinterpolator2Ds. ''' distance_criteria = ['functions'] def __init__(self,*functions): ''' Constructor to make a new lower envelope iterpolation. Parameters ---------- *functions : function Any number of real functions; often instances of HARKinterpolator3D Returns ------- None ''' self.functions = [] for function in functions: self.functions.append(function) self.funcCount = len(self.functions) def _evaluate(self,x,y,z): ''' Returns the level of the function at each value in (x,y,z) as the minimum among all of the functions. Only called internally by HARKinterpolator3D.__call__. ''' if _isscalar(x): f = np.nanmin([f(x,y,z) for f in self.functions]) else: m = len(x) temp = np.zeros((m,self.funcCount)) for j in range(self.funcCount): temp[:,j] = self.functions[j](x,y,z) f = np.nanmin(temp,axis=1) return f def _derX(self,x,y,z): ''' Returns the first derivative of the function with respect to X at each value in (x,y,z). Only called internally by HARKinterpolator3D._derX. ''' m = len(x) temp = np.zeros((m,self.funcCount)) for j in range(self.funcCount): temp[:,j] = self.functions[j](x,y,z) temp[np.isnan(temp)] = np.inf i = np.argmin(temp,axis=1) dfdx = np.zeros_like(x) for j in range(self.funcCount): c = i == j dfdx[c] = self.functions[j].derivativeX(x[c],y[c],z[c]) return dfdx def _derY(self,x,y,z): ''' Returns the first derivative of the function with respect to Y at each value in (x,y,z). Only called internally by HARKinterpolator3D._derY. ''' m = len(x) temp = np.zeros((m,self.funcCount)) for j in range(self.funcCount): temp[:,j] = self.functions[j](x,y,z) temp[np.isnan(temp)] = np.inf i = np.argmin(temp,axis=1) y = temp[np.arange(m),i] dfdy = np.zeros_like(x) for j in range(self.funcCount): c = i == j dfdy[c] = self.functions[j].derivativeY(x[c],y[c],z[c]) return dfdy def _derZ(self,x,y,z): ''' Returns the first derivative of the function with respect to Z at each value in (x,y,z). Only called internally by HARKinterpolator3D._derZ. ''' m = len(x) temp = np.zeros((m,self.funcCount)) for j in range(self.funcCount): temp[:,j] = self.functions[j](x,y,z) temp[np.isnan(temp)] = np.inf i = np.argmin(temp,axis=1) y = temp[np.arange(m),i] dfdz = np.zeros_like(x) for j in range(self.funcCount): c = i == j dfdz[c] = self.functions[j].derivativeZ(x[c],y[c],z[c]) return dfdz class VariableLowerBoundFunc2D(HARKobject): ''' A class for representing a function with two real inputs whose lower bound in the first input depends on the second input. Useful for managing curved natural borrowing constraints, as occurs in the persistent shocks model. ''' distance_criteria = ['func','lowerBound'] def __init__(self,func,lowerBound): ''' Make a new instance of VariableLowerBoundFunc2D. Parameters ---------- func : function A function f: (R_+ x R) --> R representing the function of interest shifted by its lower bound in the first input. lowerBound : function The lower bound in the first input of the function of interest, as a function of the second input. Returns ------- None ''' self.func = func self.lowerBound = lowerBound def __call__(self,x,y): ''' Evaluate the function at given state space points. Parameters ---------- x : np.array First input values. y : np.array Second input values; should be of same shape as x. Returns ------- f_out : np.array Function evaluated at (x,y), of same shape as inputs. ''' xShift = self.lowerBound(y) f_out = self.func(x-xShift,y) return f_out def derivativeX(self,x,y): ''' Evaluate the first derivative with respect to x of the function at given state space points. Parameters ---------- x : np.array First input values. y : np.array Second input values; should be of same shape as x. Returns ------- dfdx_out : np.array First derivative of function with respect to the first input, evaluated at (x,y), of same shape as inputs. ''' xShift = self.lowerBound(y) dfdx_out = self.func.derivativeX(x-xShift,y) return dfdx_out def derivativeY(self,x,y): ''' Evaluate the first derivative with respect to y of the function at given state space points. Parameters ---------- x : np.array First input values. y : np.array Second input values; should be of same shape as x. Returns ------- dfdy_out : np.array First derivative of function with respect to the second input, evaluated at (x,y), of same shape as inputs. ''' xShift,xShiftDer = self.lowerBound.eval_with_derivative(y) dfdy_out = self.func.derivativeY(x-xShift,y) - xShiftDer*self.func.derivativeX(x-xShift,y) return dfdy_out class VariableLowerBoundFunc3D(HARKobject): ''' A class for representing a function with three real inputs whose lower bound in the first input depends on the second input. Useful for managing curved natural borrowing constraints. ''' distance_criteria = ['func','lowerBound'] def __init__(self,func,lowerBound): ''' Make a new instance of VariableLowerBoundFunc3D. Parameters ---------- func : function A function f: (R_+ x R^2) --> R representing the function of interest shifted by its lower bound in the first input. lowerBound : function The lower bound in the first input of the function of interest, as a function of the second input. Returns ------- None ''' self.func = func self.lowerBound = lowerBound def __call__(self,x,y,z): ''' Evaluate the function at given state space points. Parameters ---------- x : np.array First input values. y : np.array Second input values; should be of same shape as x. z : np.array Third input values; should be of same shape as x. Returns ------- f_out : np.array Function evaluated at (x,y,z), of same shape as inputs. ''' xShift = self.lowerBound(y) f_out = self.func(x-xShift,y,z) return f_out def derivativeX(self,x,y,z): ''' Evaluate the first derivative with respect to x of the function at given state space points. Parameters ---------- x : np.array First input values. y : np.array Second input values; should be of same shape as x. z : np.array Third input values; should be of same shape as x. Returns ------- dfdx_out : np.array First derivative of function with respect to the first input, evaluated at (x,y,z), of same shape as inputs. ''' xShift = self.lowerBound(y) dfdx_out = self.func.derivativeX(x-xShift,y,z) return dfdx_out def derivativeY(self,x,y,z): ''' Evaluate the first derivative with respect to y of the function at given state space points. Parameters ---------- x : np.array First input values. y : np.array Second input values; should be of same shape as x. z : np.array Third input values; should be of same shape as x. Returns ------- dfdy_out : np.array First derivative of function with respect to the second input, evaluated at (x,y,z), of same shape as inputs. ''' xShift,xShiftDer = self.lowerBound.eval_with_derivative(y) dfdy_out = self.func.derivativeY(x-xShift,y,z) - \ xShiftDer*self.func.derivativeX(x-xShift,y,z) return dfdy_out def derivativeZ(self,x,y,z): ''' Evaluate the first derivative with respect to z of the function at given state space points. Parameters ---------- x : np.array First input values. y : np.array Second input values; should be of same shape as x. z : np.array Third input values; should be of same shape as x. Returns ------- dfdz_out : np.array First derivative of function with respect to the third input, evaluated at (x,y,z), of same shape as inputs. ''' xShift = self.lowerBound(y) dfdz_out = self.func.derivativeZ(x-xShift,y,z) return dfdz_out class LinearInterpOnInterp1D(HARKinterpolator2D): ''' A 2D interpolator that linearly interpolates among a list of 1D interpolators. ''' distance_criteria = ['xInterpolators','y_list'] def __init__(self,xInterpolators,y_values): ''' Constructor for the class, generating an approximation to a function of the form f(x,y) using interpolations over f(x,y_0) for a fixed grid of y_0 values. Parameters ---------- xInterpolators : [HARKinterpolator1D] A list of 1D interpolations over the x variable. The nth element of xInterpolators represents f(x,y_values[n]). y_values: numpy.array An array of y values equal in length to xInterpolators. Returns ------- new instance of LinearInterpOnInterp1D ''' self.xInterpolators = xInterpolators self.y_list = y_values self.y_n = y_values.size def _evaluate(self,x,y): ''' Returns the level of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.__call__ (etc). ''' if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) alpha = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) f = (1-alpha)*self.xInterpolators[y_pos-1](x) + alpha*self.xInterpolators[y_pos](x) else: m = len(x) y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 f = np.zeros(m) + np.nan if y.size > 0: for i in range(1,self.y_n): c = y_pos == i if np.any(c): alpha = (y[c] - self.y_list[i-1])/(self.y_list[i] - self.y_list[i-1]) f[c] = (1-alpha)*self.xInterpolators[i-1](x[c]) + alpha*self.xInterpolators[i](x[c]) return f def _derX(self,x,y): ''' Returns the derivative with respect to x of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.derivativeX. ''' if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) alpha = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) dfdx = (1-alpha)*self.xInterpolators[y_pos-1]._der(x) + alpha*self.xInterpolators[y_pos]._der(x) else: m = len(x) y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 dfdx = np.zeros(m) + np.nan if y.size > 0: for i in range(1,self.y_n): c = y_pos == i if np.any(c): alpha = (y[c] - self.y_list[i-1])/(self.y_list[i] - self.y_list[i-1]) dfdx[c] = (1-alpha)*self.xInterpolators[i-1]._der(x[c]) + alpha*self.xInterpolators[i]._der(x[c]) return dfdx def _derY(self,x,y): ''' Returns the derivative with respect to y of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.derivativeY. ''' if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) dfdy = (self.xInterpolators[y_pos](x) - self.xInterpolators[y_pos-1](x))/(self.y_list[y_pos] - self.y_list[y_pos-1]) else: m = len(x) y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 dfdy = np.zeros(m) + np.nan if y.size > 0: for i in range(1,self.y_n): c = y_pos == i if np.any(c): dfdy[c] = (self.xInterpolators[i](x[c]) - self.xInterpolators[i-1](x[c]))/(self.y_list[i] - self.y_list[i-1]) return dfdy class BilinearInterpOnInterp1D(HARKinterpolator3D): ''' A 3D interpolator that bilinearly interpolates among a list of lists of 1D interpolators. ''' distance_criteria = ['xInterpolators','y_list','z_list'] def __init__(self,xInterpolators,y_values,z_values): ''' Constructor for the class, generating an approximation to a function of the form f(x,y,z) using interpolations over f(x,y_0,z_0) for a fixed grid of y_0 and z_0 values. Parameters ---------- xInterpolators : [[HARKinterpolator1D]] A list of lists of 1D interpolations over the x variable. The i,j-th element of xInterpolators represents f(x,y_values[i],z_values[j]). y_values: numpy.array An array of y values equal in length to xInterpolators. z_values: numpy.array An array of z values equal in length to xInterpolators[0]. Returns ------- new instance of BilinearInterpOnInterp1D ''' self.xInterpolators = xInterpolators self.y_list = y_values self.y_n = y_values.size self.z_list = z_values self.z_n = z_values.size def _evaluate(self,x,y,z): ''' Returns the level of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.__call__ (etc). ''' if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) alpha = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) beta = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) f = ((1-alpha)*(1-beta)*self.xInterpolators[y_pos-1][z_pos-1](x) + (1-alpha)*beta*self.xInterpolators[y_pos-1][z_pos](x) + alpha*(1-beta)*self.xInterpolators[y_pos][z_pos-1](x) + alpha*beta*self.xInterpolators[y_pos][z_pos](x)) else: m = len(x) y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 f = np.zeros(m) + np.nan for i in range(1,self.y_n): for j in range(1,self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): alpha = (y[c] - self.y_list[i-1])/(self.y_list[i] - self.y_list[i-1]) beta = (z[c] - self.z_list[j-1])/(self.z_list[j] - self.z_list[j-1]) f[c] = ( (1-alpha)*(1-beta)*self.xInterpolators[i-1][j-1](x[c]) + (1-alpha)*beta*self.xInterpolators[i-1][j](x[c]) + alpha*(1-beta)*self.xInterpolators[i][j-1](x[c]) + alpha*beta*self.xInterpolators[i][j](x[c])) return f def _derX(self,x,y,z): ''' Returns the derivative with respect to x of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeX. ''' if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) alpha = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) beta = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) dfdx = ((1-alpha)*(1-beta)*self.xInterpolators[y_pos-1][z_pos-1]._der(x) + (1-alpha)*beta*self.xInterpolators[y_pos-1][z_pos]._der(x) + alpha*(1-beta)*self.xInterpolators[y_pos][z_pos-1]._der(x) + alpha*beta*self.xInterpolators[y_pos][z_pos]._der(x)) else: m = len(x) y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 dfdx = np.zeros(m) + np.nan for i in range(1,self.y_n): for j in range(1,self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): alpha = (y[c] - self.y_list[i-1])/(self.y_list[i] - self.y_list[i-1]) beta = (z[c] - self.z_list[j-1])/(self.z_list[j] - self.z_list[j-1]) dfdx[c] = ( (1-alpha)*(1-beta)*self.xInterpolators[i-1][j-1]._der(x[c]) + (1-alpha)*beta*self.xInterpolators[i-1][j]._der(x[c]) + alpha*(1-beta)*self.xInterpolators[i][j-1]._der(x[c]) + alpha*beta*self.xInterpolators[i][j]._der(x[c])) return dfdx def _derY(self,x,y,z): ''' Returns the derivative with respect to y of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeY. ''' if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) beta = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) dfdy = (((1-beta)*self.xInterpolators[y_pos][z_pos-1](x) + beta*self.xInterpolators[y_pos][z_pos](x)) - ((1-beta)*self.xInterpolators[y_pos-1][z_pos-1](x) + beta*self.xInterpolators[y_pos-1][z_pos](x)))/(self.y_list[y_pos] - self.y_list[y_pos-1]) else: m = len(x) y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 dfdy = np.zeros(m) + np.nan for i in range(1,self.y_n): for j in range(1,self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): beta = (z[c] - self.z_list[j-1])/(self.z_list[j] - self.z_list[j-1]) dfdy[c] = (((1-beta)*self.xInterpolators[i][j-1](x[c]) + beta*self.xInterpolators[i][j](x[c])) - ((1-beta)*self.xInterpolators[i-1][j-1](x[c]) + beta*self.xInterpolators[i-1][j](x[c])))/(self.y_list[i] - self.y_list[i-1]) return dfdy def _derZ(self,x,y,z): ''' Returns the derivative with respect to z of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeZ. ''' if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) alpha = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) dfdz = (((1-alpha)*self.xInterpolators[y_pos-1][z_pos](x) + alpha*self.xInterpolators[y_pos][z_pos](x)) - ((1-alpha)*self.xInterpolators[y_pos-1][z_pos-1](x) + alpha*self.xInterpolators[y_pos][z_pos-1](x)))/(self.z_list[z_pos] - self.z_list[z_pos-1]) else: m = len(x) y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 dfdz = np.zeros(m) + np.nan for i in range(1,self.y_n): for j in range(1,self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): alpha = (y[c] - self.y_list[i-1])/(self.y_list[i] - self.y_list[i-1]) dfdz[c] = (((1-alpha)*self.xInterpolators[i-1][j](x[c]) + alpha*self.xInterpolators[i][j](x[c])) - ((1-alpha)*self.xInterpolators[i-1][j-1](x[c]) + alpha*self.xInterpolators[i][j-1](x[c])))/(self.z_list[j] - self.z_list[j-1]) return dfdz class TrilinearInterpOnInterp1D(HARKinterpolator4D): ''' A 4D interpolator that trilinearly interpolates among a list of lists of 1D interpolators. ''' distance_criteria = ['wInterpolators','x_list','y_list','z_list'] def __init__(self,wInterpolators,x_values,y_values,z_values): ''' Constructor for the class, generating an approximation to a function of the form f(w,x,y,z) using interpolations over f(w,x_0,y_0,z_0) for a fixed grid of y_0 and z_0 values. Parameters ---------- wInterpolators : [[[HARKinterpolator1D]]] A list of lists of lists of 1D interpolations over the x variable. The i,j,k-th element of wInterpolators represents f(w,x_values[i],y_values[j],z_values[k]). x_values: numpy.array An array of x values equal in length to wInterpolators. y_values: numpy.array An array of y values equal in length to wInterpolators[0]. z_values: numpy.array An array of z values equal in length to wInterpolators[0][0] Returns ------- new instance of TrilinearInterpOnInterp1D ''' self.wInterpolators = wInterpolators self.x_list = x_values self.x_n = x_values.size self.y_list = y_values self.y_n = y_values.size self.z_list = z_values self.z_n = z_values.size def _evaluate(self,w,x,y,z): ''' Returns the level of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.__call__ (etc). ''' if _isscalar(w): x_pos = max(min(np.searchsorted(self.x_list,x),self.x_n-1),1) y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) alpha = (x - self.x_list[x_pos-1])/(self.x_list[x_pos] - self.x_list[x_pos-1]) beta = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) gamma = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) f = ( (1-alpha)*(1-beta)*(1-gamma)*self.wInterpolators[x_pos-1][y_pos-1][z_pos-1](w) + (1-alpha)*(1-beta)*gamma*self.wInterpolators[x_pos-1][y_pos-1][z_pos](w) + (1-alpha)*beta*(1-gamma)*self.wInterpolators[x_pos-1][y_pos][z_pos-1](w) + (1-alpha)*beta*gamma*self.wInterpolators[x_pos-1][y_pos][z_pos](w) + alpha*(1-beta)*(1-gamma)*self.wInterpolators[x_pos][y_pos-1][z_pos-1](w) + alpha*(1-beta)*gamma*self.wInterpolators[x_pos][y_pos-1][z_pos](w) + alpha*beta*(1-gamma)*self.wInterpolators[x_pos][y_pos][z_pos-1](w) + alpha*beta*gamma*self.wInterpolators[x_pos][y_pos][z_pos](w)) else: m = len(x) x_pos = np.searchsorted(self.x_list,x) x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 f = np.zeros(m) + np.nan for i in range(1,self.x_n): for j in range(1,self.y_n): for k in range(1,self.z_n): c = np.logical_and(np.logical_and(i == x_pos, j == y_pos),k == z_pos) if np.any(c): alpha = (x[c] - self.x_list[i-1])/(self.x_list[i] - self.x_list[i-1]) beta = (y[c] - self.y_list[j-1])/(self.y_list[j] - self.y_list[j-1]) gamma = (z[c] - self.z_list[k-1])/(self.z_list[k] - self.z_list[k-1]) f[c] = ( (1-alpha)*(1-beta)*(1-gamma)*self.wInterpolators[i-1][j-1][k-1](w[c]) + (1-alpha)*(1-beta)*gamma*self.wInterpolators[i-1][j-1][k](w[c]) + (1-alpha)*beta*(1-gamma)*self.wInterpolators[i-1][j][k-1](w[c]) + (1-alpha)*beta*gamma*self.wInterpolators[i-1][j][k](w[c]) + alpha*(1-beta)*(1-gamma)*self.wInterpolators[i][j-1][k-1](w[c]) + alpha*(1-beta)*gamma*self.wInterpolators[i][j-1][k](w[c]) + alpha*beta*(1-gamma)*self.wInterpolators[i][j][k-1](w[c]) + alpha*beta*gamma*self.wInterpolators[i][j][k](w[c])) return f def _derW(self,w,x,y,z): ''' Returns the derivative with respect to w of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeW. ''' if _isscalar(w): x_pos = max(min(np.searchsorted(self.x_list,x),self.x_n-1),1) y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) alpha = (x - self.x_list[x_pos-1])/(self.x_list[x_pos] - self.x_list[x_pos-1]) beta = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) gamma = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) dfdw = ( (1-alpha)*(1-beta)*(1-gamma)*self.wInterpolators[x_pos-1][y_pos-1][z_pos-1]._der(w) + (1-alpha)*(1-beta)*gamma*self.wInterpolators[x_pos-1][y_pos-1][z_pos]._der(w) + (1-alpha)*beta*(1-gamma)*self.wInterpolators[x_pos-1][y_pos][z_pos-1]._der(w) + (1-alpha)*beta*gamma*self.wInterpolators[x_pos-1][y_pos][z_pos]._der(w) + alpha*(1-beta)*(1-gamma)*self.wInterpolators[x_pos][y_pos-1][z_pos-1]._der(w) + alpha*(1-beta)*gamma*self.wInterpolators[x_pos][y_pos-1][z_pos]._der(w) + alpha*beta*(1-gamma)*self.wInterpolators[x_pos][y_pos][z_pos-1]._der(w) + alpha*beta*gamma*self.wInterpolators[x_pos][y_pos][z_pos]._der(w)) else: m = len(x) x_pos = np.searchsorted(self.x_list,x) x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 dfdw = np.zeros(m) + np.nan for i in range(1,self.x_n): for j in range(1,self.y_n): for k in range(1,self.z_n): c = np.logical_and(np.logical_and(i == x_pos, j == y_pos),k == z_pos) if np.any(c): alpha = (x[c] - self.x_list[i-1])/(self.x_list[i] - self.x_list[i-1]) beta = (y[c] - self.y_list[j-1])/(self.y_list[j] - self.y_list[j-1]) gamma = (z[c] - self.z_list[k-1])/(self.z_list[k] - self.z_list[k-1]) dfdw[c] = ( (1-alpha)*(1-beta)*(1-gamma)*self.wInterpolators[i-1][j-1][k-1]._der(w[c]) + (1-alpha)*(1-beta)*gamma*self.wInterpolators[i-1][j-1][k]._der(w[c]) + (1-alpha)*beta*(1-gamma)*self.wInterpolators[i-1][j][k-1]._der(w[c]) + (1-alpha)*beta*gamma*self.wInterpolators[i-1][j][k]._der(w[c]) + alpha*(1-beta)*(1-gamma)*self.wInterpolators[i][j-1][k-1]._der(w[c]) + alpha*(1-beta)*gamma*self.wInterpolators[i][j-1][k]._der(w[c]) + alpha*beta*(1-gamma)*self.wInterpolators[i][j][k-1]._der(w[c]) + alpha*beta*gamma*self.wInterpolators[i][j][k]._der(w[c])) return dfdw def _derX(self,w,x,y,z): ''' Returns the derivative with respect to x of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeX. ''' if _isscalar(w): x_pos = max(min(np.searchsorted(self.x_list,x),self.x_n-1),1) y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) beta = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) gamma = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) dfdx = ( ((1-beta)*(1-gamma)*self.wInterpolators[x_pos][y_pos-1][z_pos-1](w) + (1-beta)*gamma*self.wInterpolators[x_pos][y_pos-1][z_pos](w) + beta*(1-gamma)*self.wInterpolators[x_pos][y_pos][z_pos-1](w) + beta*gamma*self.wInterpolators[x_pos][y_pos][z_pos](w)) - ((1-beta)*(1-gamma)*self.wInterpolators[x_pos-1][y_pos-1][z_pos-1](w) + (1-beta)*gamma*self.wInterpolators[x_pos-1][y_pos-1][z_pos](w) + beta*(1-gamma)*self.wInterpolators[x_pos-1][y_pos][z_pos-1](w) + beta*gamma*self.wInterpolators[x_pos-1][y_pos][z_pos](w)))/(self.x_list[x_pos] - self.x_list[x_pos-1]) else: m = len(x) x_pos = np.searchsorted(self.x_list,x) x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 dfdx = np.zeros(m) + np.nan for i in range(1,self.x_n): for j in range(1,self.y_n): for k in range(1,self.z_n): c = np.logical_and(np.logical_and(i == x_pos, j == y_pos),k == z_pos) if np.any(c): beta = (y[c] - self.y_list[j-1])/(self.y_list[j] - self.y_list[j-1]) gamma = (z[c] - self.z_list[k-1])/(self.z_list[k] - self.z_list[k-1]) dfdx[c] = ( ((1-beta)*(1-gamma)*self.wInterpolators[i][j-1][k-1](w[c]) + (1-beta)*gamma*self.wInterpolators[i][j-1][k](w[c]) + beta*(1-gamma)*self.wInterpolators[i][j][k-1](w[c]) + beta*gamma*self.wInterpolators[i][j][k](w[c])) - ((1-beta)*(1-gamma)*self.wInterpolators[i-1][j-1][k-1](w[c]) + (1-beta)*gamma*self.wInterpolators[i-1][j-1][k](w[c]) + beta*(1-gamma)*self.wInterpolators[i-1][j][k-1](w[c]) + beta*gamma*self.wInterpolators[i-1][j][k](w[c])))/(self.x_list[i] - self.x_list[i-1]) return dfdx def _derY(self,w,x,y,z): ''' Returns the derivative with respect to y of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeY. ''' if _isscalar(w): x_pos = max(min(np.searchsorted(self.x_list,x),self.x_n-1),1) y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) alpha = (x - self.x_list[x_pos-1])/(self.y_list[x_pos] - self.x_list[x_pos-1]) gamma = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) dfdy = ( ((1-alpha)*(1-gamma)*self.wInterpolators[x_pos-1][y_pos][z_pos-1](w) + (1-alpha)*gamma*self.wInterpolators[x_pos-1][y_pos][z_pos](w) + alpha*(1-gamma)*self.wInterpolators[x_pos][y_pos][z_pos-1](w) + alpha*gamma*self.wInterpolators[x_pos][y_pos][z_pos](w)) - ((1-alpha)*(1-gamma)*self.wInterpolators[x_pos-1][y_pos-1][z_pos-1](w) + (1-alpha)*gamma*self.wInterpolators[x_pos-1][y_pos-1][z_pos](w) + alpha*(1-gamma)*self.wInterpolators[x_pos][y_pos-1][z_pos-1](w) + alpha*gamma*self.wInterpolators[x_pos][y_pos-1][z_pos](w)))/(self.y_list[y_pos] - self.y_list[y_pos-1]) else: m = len(x) x_pos = np.searchsorted(self.x_list,x) x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 dfdy = np.zeros(m) + np.nan for i in range(1,self.x_n): for j in range(1,self.y_n): for k in range(1,self.z_n): c = np.logical_and(np.logical_and(i == x_pos, j == y_pos),k == z_pos) if np.any(c): alpha = (x[c] - self.x_list[i-1])/(self.x_list[i] - self.x_list[i-1]) gamma = (z[c] - self.z_list[k-1])/(self.z_list[k] - self.z_list[k-1]) dfdy[c] = ( ((1-alpha)*(1-gamma)*self.wInterpolators[i-1][j][k-1](w[c]) + (1-alpha)*gamma*self.wInterpolators[i-1][j][k](w[c]) + alpha*(1-gamma)*self.wInterpolators[i][j][k-1](w[c]) + alpha*gamma*self.wInterpolators[i][j][k](w[c])) - ((1-alpha)*(1-gamma)*self.wInterpolators[i-1][j-1][k-1](w[c]) + (1-alpha)*gamma*self.wInterpolators[i-1][j-1][k](w[c]) + alpha*(1-gamma)*self.wInterpolators[i][j-1][k-1](w[c]) + alpha*gamma*self.wInterpolators[i][j-1][k](w[c])))/(self.y_list[j] - self.y_list[j-1]) return dfdy def _derZ(self,w,x,y,z): ''' Returns the derivative with respect to z of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeZ. ''' if _isscalar(w): x_pos = max(min(np.searchsorted(self.x_list,x),self.x_n-1),1) y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) alpha = (x - self.x_list[x_pos-1])/(self.y_list[x_pos] - self.x_list[x_pos-1]) beta = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) dfdz = ( ((1-alpha)*(1-beta)*self.wInterpolators[x_pos-1][y_pos-1][z_pos](w) + (1-alpha)*beta*self.wInterpolators[x_pos-1][y_pos][z_pos](w) + alpha*(1-beta)*self.wInterpolators[x_pos][y_pos-1][z_pos](w) + alpha*beta*self.wInterpolators[x_pos][y_pos][z_pos](w)) - ((1-alpha)*(1-beta)*self.wInterpolators[x_pos-1][y_pos-1][z_pos-1](w) + (1-alpha)*beta*self.wInterpolators[x_pos-1][y_pos][z_pos-1](w) + alpha*(1-beta)*self.wInterpolators[x_pos][y_pos-1][z_pos-1](w) + alpha*beta*self.wInterpolators[x_pos][y_pos][z_pos-1](w)))/(self.z_list[z_pos] - self.z_list[z_pos-1]) else: m = len(x) x_pos = np.searchsorted(self.x_list,x) x_pos[x_pos > self.x_n-1] = self.x_n-1 y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 dfdz = np.zeros(m) + np.nan for i in range(1,self.x_n): for j in range(1,self.y_n): for k in range(1,self.z_n): c = np.logical_and(np.logical_and(i == x_pos, j == y_pos),k == z_pos) if np.any(c): alpha = (x[c] - self.x_list[i-1])/(self.x_list[i] - self.x_list[i-1]) beta = (y[c] - self.y_list[j-1])/(self.y_list[j] - self.y_list[j-1]) dfdz[c] = ( ((1-alpha)*(1-beta)*self.wInterpolators[i-1][j-1][k](w[c]) + (1-alpha)*beta*self.wInterpolators[i-1][j][k](w[c]) + alpha*(1-beta)*self.wInterpolators[i][j-1][k](w[c]) + alpha*beta*self.wInterpolators[i][j][k](w[c])) - ((1-alpha)*(1-beta)*self.wInterpolators[i-1][j-1][k-1](w[c]) + (1-alpha)*beta*self.wInterpolators[i-1][j][k-1](w[c]) + alpha*(1-beta)*self.wInterpolators[i][j-1][k-1](w[c]) + alpha*beta*self.wInterpolators[i][j][k-1](w[c])))/(self.z_list[k] - self.z_list[k-1]) return dfdz class LinearInterpOnInterp2D(HARKinterpolator3D): ''' A 3D interpolation method that linearly interpolates between "layers" of arbitrary 2D interpolations. Useful for models with two endogenous state variables and one exogenous state variable when solving with the endogenous grid method. NOTE: should not be used if an exogenous 3D grid is used, will be significantly slower than TrilinearInterp. ''' distance_criteria = ['xyInterpolators','z_list'] def __init__(self,xyInterpolators,z_values): ''' Constructor for the class, generating an approximation to a function of the form f(x,y,z) using interpolations over f(x,y,z_0) for a fixed grid of z_0 values. Parameters ---------- xyInterpolators : [HARKinterpolator2D] A list of 2D interpolations over the x and y variables. The nth element of xyInterpolators represents f(x,y,z_values[n]). z_values: numpy.array An array of z values equal in length to xyInterpolators. Returns ------- new instance of LinearInterpOnInterp2D ''' self.xyInterpolators = xyInterpolators self.z_list = z_values self.z_n = z_values.size def _evaluate(self,x,y,z): ''' Returns the level of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.__call__ (etc). ''' if _isscalar(x): z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) alpha = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) f = (1-alpha)*self.xyInterpolators[z_pos-1](x,y) + alpha*self.xyInterpolators[z_pos](x,y) else: m = len(x) z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 f = np.zeros(m) + np.nan if x.size > 0: for i in range(1,self.z_n): c = z_pos == i if np.any(c): alpha = (z[c] - self.z_list[i-1])/(self.z_list[i] - self.z_list[i-1]) f[c] = (1-alpha)*self.xyInterpolators[i-1](x[c],y[c]) + alpha*self.xyInterpolators[i](x[c],y[c]) return f def _derX(self,x,y,z): ''' Returns the derivative with respect to x of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeX. ''' if _isscalar(x): z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) alpha = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) dfdx = (1-alpha)*self.xyInterpolators[z_pos-1].derivativeX(x,y) + alpha*self.xyInterpolators[z_pos].derivativeX(x,y) else: m = len(x) z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 dfdx = np.zeros(m) + np.nan if x.size > 0: for i in range(1,self.z_n): c = z_pos == i if np.any(c): alpha = (z[c] - self.z_list[i-1])/(self.z_list[i] - self.z_list[i-1]) dfdx[c] = (1-alpha)*self.xyInterpolators[i-1].derivativeX(x[c],y[c]) + alpha*self.xyInterpolators[i].derivativeX(x[c],y[c]) return dfdx def _derY(self,x,y,z): ''' Returns the derivative with respect to y of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeY. ''' if _isscalar(x): z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) alpha = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) dfdy = (1-alpha)*self.xyInterpolators[z_pos-1].derivativeY(x,y) + alpha*self.xyInterpolators[z_pos].derivativeY(x,y) else: m = len(x) z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 dfdy = np.zeros(m) + np.nan if x.size > 0: for i in range(1,self.z_n): c = z_pos == i if np.any(c): alpha = (z[c] - self.z_list[i-1])/(self.z_list[i] - self.z_list[i-1]) dfdy[c] = (1-alpha)*self.xyInterpolators[i-1].derivativeY(x[c],y[c]) + alpha*self.xyInterpolators[i].derivativeY(x[c],y[c]) return dfdy def _derZ(self,x,y,z): ''' Returns the derivative with respect to z of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator3D.derivativeZ. ''' if _isscalar(x): z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) dfdz = (self.xyInterpolators[z_pos].derivativeX(x,y) - self.xyInterpolators[z_pos-1].derivativeX(x,y))/(self.z_list[z_pos] - self.z_list[z_pos-1]) else: m = len(x) z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 dfdz = np.zeros(m) + np.nan if x.size > 0: for i in range(1,self.z_n): c = z_pos == i if np.any(c): dfdz[c] = (self.xyInterpolators[i](x[c],y[c]) - self.xyInterpolators[i-1](x[c],y[c]))/(self.z_list[i] - self.z_list[i-1]) return dfdz class BilinearInterpOnInterp2D(HARKinterpolator4D): ''' A 4D interpolation method that bilinearly interpolates among "layers" of arbitrary 2D interpolations. Useful for models with two endogenous state variables and two exogenous state variables when solving with the endogenous grid method. NOTE: should not be used if an exogenous 4D grid is used, will be significantly slower than QuadlinearInterp. ''' distance_criteria = ['wxInterpolators','y_list','z_list'] def __init__(self,wxInterpolators,y_values,z_values): ''' Constructor for the class, generating an approximation to a function of the form f(w,x,y,z) using interpolations over f(w,x,y_0,z_0) for a fixed grid of y_0 and z_0 values. Parameters ---------- wxInterpolators : [[HARKinterpolator2D]] A list of lists of 2D interpolations over the w and x variables. The i,j-th element of wxInterpolators represents f(w,x,y_values[i],z_values[j]). y_values: numpy.array An array of y values equal in length to wxInterpolators. z_values: numpy.array An array of z values equal in length to wxInterpolators[0]. Returns ------- new instance of BilinearInterpOnInterp2D ''' self.wxInterpolators = wxInterpolators self.y_list = y_values self.y_n = y_values.size self.z_list = z_values self.z_n = z_values.size def _evaluate(self,w,x,y,z): ''' Returns the level of the interpolated function at each value in x,y,z. Only called internally by HARKinterpolator4D.__call__ (etc). ''' if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) alpha = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) beta = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) f = ((1-alpha)*(1-beta)*self.wxInterpolators[y_pos-1][z_pos-1](w,x) + (1-alpha)*beta*self.wxInterpolators[y_pos-1][z_pos](w,x) + alpha*(1-beta)*self.wxInterpolators[y_pos][z_pos-1](w,x) + alpha*beta*self.wxInterpolators[y_pos][z_pos](w,x)) else: m = len(x) y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 f = np.zeros(m) + np.nan for i in range(1,self.y_n): for j in range(1,self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): alpha = (y[c] - self.y_list[i-1])/(self.y_list[i] - self.y_list[i-1]) beta = (z[c] - self.z_list[j-1])/(self.z_list[j] - self.z_list[j-1]) f[c] = ( (1-alpha)*(1-beta)*self.wxInterpolators[i-1][j-1](w[c],x[c]) + (1-alpha)*beta*self.wxInterpolators[i-1][j](w[c],x[c]) + alpha*(1-beta)*self.wxInterpolators[i][j-1](w[c],x[c]) + alpha*beta*self.wxInterpolators[i][j](w[c],x[c])) return f def _derW(self,w,x,y,z): ''' Returns the derivative with respect to w of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeW. ''' # This may look strange, as we call the derivativeX() method to get the # derivative with respect to w, but that's just a quirk of 4D interpolations # beginning with w rather than x. The derivative wrt the first dimension # of an element of wxInterpolators is the w-derivative of the main function. if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) alpha = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) beta = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) dfdw = ((1-alpha)*(1-beta)*self.wxInterpolators[y_pos-1][z_pos-1].derivativeX(w,x) + (1-alpha)*beta*self.wxInterpolators[y_pos-1][z_pos].derivativeX(w,x) + alpha*(1-beta)*self.wxInterpolators[y_pos][z_pos-1].derivativeX(w,x) + alpha*beta*self.wxInterpolators[y_pos][z_pos].derivativeX(w,x)) else: m = len(x) y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 dfdw = np.zeros(m) + np.nan for i in range(1,self.y_n): for j in range(1,self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): alpha = (y[c] - self.y_list[i-1])/(self.y_list[i] - self.y_list[i-1]) beta = (z[c] - self.z_list[j-1])/(self.z_list[j] - self.z_list[j-1]) dfdw[c] = ( (1-alpha)*(1-beta)*self.wxInterpolators[i-1][j-1].derivativeX(w[c],x[c]) + (1-alpha)*beta*self.wxInterpolators[i-1][j].derivativeX(w[c],x[c]) + alpha*(1-beta)*self.wxInterpolators[i][j-1].derivativeX(w[c],x[c]) + alpha*beta*self.wxInterpolators[i][j].derivativeX(w[c],x[c])) return dfdw def _derX(self,w,x,y,z): ''' Returns the derivative with respect to x of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeX. ''' # This may look strange, as we call the derivativeY() method to get the # derivative with respect to x, but that's just a quirk of 4D interpolations # beginning with w rather than x. The derivative wrt the second dimension # of an element of wxInterpolators is the x-derivative of the main function. if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) alpha = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) beta = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) dfdx = ((1-alpha)*(1-beta)*self.wxInterpolators[y_pos-1][z_pos-1].derivativeY(w,x) + (1-alpha)*beta*self.wxInterpolators[y_pos-1][z_pos].derivativeY(w,x) + alpha*(1-beta)*self.wxInterpolators[y_pos][z_pos-1].derivativeY(w,x) + alpha*beta*self.wxInterpolators[y_pos][z_pos].derivativeY(w,x)) else: m = len(x) y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 dfdx = np.zeros(m) + np.nan for i in range(1,self.y_n): for j in range(1,self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): alpha = (y[c] - self.y_list[i-1])/(self.y_list[i] - self.y_list[i-1]) beta = (z[c] - self.z_list[j-1])/(self.z_list[j] - self.z_list[j-1]) dfdx[c] = ( (1-alpha)*(1-beta)*self.wxInterpolators[i-1][j-1].derivativeY(w[c],x[c]) + (1-alpha)*beta*self.wxInterpolators[i-1][j].derivativeY(w[c],x[c]) + alpha*(1-beta)*self.wxInterpolators[i][j-1].derivativeY(w[c],x[c]) + alpha*beta*self.wxInterpolators[i][j].derivativeY(w[c],x[c])) return dfdx def _derY(self,w,x,y,z): ''' Returns the derivative with respect to y of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeY. ''' if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) beta = (z - self.z_list[z_pos-1])/(self.z_list[z_pos] - self.z_list[z_pos-1]) dfdy = (((1-beta)*self.wxInterpolators[y_pos][z_pos-1](w,x) + beta*self.wxInterpolators[y_pos][z_pos](w,x)) - ((1-beta)*self.wxInterpolators[y_pos-1][z_pos-1](w,x) + beta*self.wxInterpolators[y_pos-1][z_pos](w,x)))/(self.y_list[y_pos] - self.y_list[y_pos-1]) else: m = len(x) y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 dfdy = np.zeros(m) + np.nan for i in range(1,self.y_n): for j in range(1,self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): beta = (z[c] - self.z_list[j-1])/(self.z_list[j] - self.z_list[j-1]) dfdy[c] = (((1-beta)*self.wxInterpolators[i][j-1](w[c],x[c]) + beta*self.wxInterpolators[i][j](w[c],x[c])) - ((1-beta)*self.wxInterpolators[i-1][j-1](w[c],x[c]) + beta*self.wxInterpolators[i-1][j](w[c],x[c])))/(self.y_list[i] - self.y_list[i-1]) return dfdy def _derZ(self,w,x,y,z): ''' Returns the derivative with respect to z of the interpolated function at each value in w,x,y,z. Only called internally by HARKinterpolator4D.derivativeZ. ''' if _isscalar(x): y_pos = max(min(np.searchsorted(self.y_list,y),self.y_n-1),1) z_pos = max(min(np.searchsorted(self.z_list,z),self.z_n-1),1) alpha = (y - self.y_list[y_pos-1])/(self.y_list[y_pos] - self.y_list[y_pos-1]) dfdz = (((1-alpha)*self.wxInterpolators[y_pos-1][z_pos](w,x) + alpha*self.wxInterpolators[y_pos][z_pos](w,x)) - ((1-alpha)*self.wxInterpolators[y_pos-1][z_pos-1](w,x) + alpha*self.wxInterpolators[y_pos][z_pos-1](w,x)))/(self.z_list[z_pos] - self.z_list[z_pos-1]) else: m = len(x) y_pos = np.searchsorted(self.y_list,y) y_pos[y_pos > self.y_n-1] = self.y_n-1 y_pos[y_pos < 1] = 1 z_pos = np.searchsorted(self.z_list,z) z_pos[z_pos > self.z_n-1] = self.z_n-1 z_pos[z_pos < 1] = 1 dfdz = np.zeros(m) + np.nan for i in range(1,self.y_n): for j in range(1,self.z_n): c = np.logical_and(i == y_pos, j == z_pos) if np.any(c): alpha = (y[c] - self.y_list[i-1])/(self.y_list[i] - self.y_list[i-1]) dfdz[c] = (((1-alpha)*self.wxInterpolators[i-1][j](w[c],x[c]) + alpha*self.wxInterpolators[i][j](w[c],x[c])) - ((1-alpha)*self.wxInterpolators[i-1][j-1](w[c],x[c]) + alpha*self.wxInterpolators[i][j-1](w[c],x[c])))/(self.z_list[j] - self.z_list[j-1]) return dfdz class Curvilinear2DInterp(HARKinterpolator2D): ''' A 2D interpolation method for curvilinear or "warped grid" interpolation, as in White (2015). Used for models with two endogenous states that are solved with the endogenous grid method. ''' distance_criteria = ['f_values','x_values','y_values'] def __init__(self,f_values,x_values,y_values): ''' Constructor for 2D curvilinear interpolation for a function f(x,y) Parameters ---------- f_values: numpy.array A 2D array of function values such that f_values[i,j] = f(x_values[i,j],y_values[i,j]). x_values: numpy.array A 2D array of x values of the same size as f_values. y_values: numpy.array A 2D array of y values of the same size as f_values. Returns ------- new instance of Curvilinear2DInterp ''' self.f_values = f_values self.x_values = x_values self.y_values = y_values my_shape = f_values.shape self.x_n = my_shape[0] self.y_n = my_shape[1] self.updatePolarity() def updatePolarity(self): ''' Fills in the polarity attribute of the interpolation, determining whether the "plus" (True) or "minus" (False) solution of the system of equations should be used for each sector. Needs to be called in __init__. Parameters ---------- none Returns ------- none ''' # Grab a point known to be inside each sector: the midway point between # the lower left and upper right vertex of each sector x_temp = 0.5*(self.x_values[0:(self.x_n-1),0:(self.y_n-1)] + self.x_values[1:self.x_n,1:self.y_n]) y_temp = 0.5*(self.y_values[0:(self.x_n-1),0:(self.y_n-1)] + self.y_values[1:self.x_n,1:self.y_n]) size = (self.x_n-1)*(self.y_n-1) x_temp = np.reshape(x_temp,size) y_temp = np.reshape(y_temp,size) y_pos = np.tile(np.arange(0,self.y_n-1),self.x_n-1) x_pos = np.reshape(np.tile(np.arange(0,self.x_n-1),(self.y_n-1,1)).transpose(),size) # Set the polarity of all sectors to "plus", then test each sector self.polarity = np.ones((self.x_n-1,self.y_n-1),dtype=bool) alpha, beta = self.findCoords(x_temp,y_temp,x_pos,y_pos) polarity = np.logical_and( np.logical_and(alpha > 0, alpha < 1), np.logical_and(beta > 0, beta < 1)) # Update polarity: if (alpha,beta) not in the unit square, then that # sector must use the "minus" solution instead self.polarity = np.reshape(polarity,(self.x_n-1,self.y_n-1)) def findSector(self,x,y): ''' Finds the quadrilateral "sector" for each (x,y) point in the input. Only called as a subroutine of _evaluate(). Parameters ---------- x : np.array Values whose sector should be found. y : np.array Values whose sector should be found. Should be same size as x. Returns ------- x_pos : np.array Sector x-coordinates for each point of the input, of the same size. y_pos : np.array Sector y-coordinates for each point of the input, of the same size. ''' # Initialize the sector guess m = x.size x_pos_guess = (np.ones(m)*self.x_n/2).astype(int) y_pos_guess = (np.ones(m)*self.y_n/2).astype(int) # Define a function that checks whether a set of points violates a linear # boundary defined by (x_bound_1,y_bound_1) and (x_bound_2,y_bound_2), # where the latter is *COUNTER CLOCKWISE* from the former. Returns # 1 if the point is outside the boundary and 0 otherwise. violationCheck = lambda x_check,y_check,x_bound_1,y_bound_1,x_bound_2,y_bound_2 : ( (y_bound_2 - y_bound_1)*x_check - (x_bound_2 - x_bound_1)*y_check > x_bound_1*y_bound_2 - y_bound_1*x_bound_2 ) + 0 # Identify the correct sector for each point to be evaluated these = np.ones(m,dtype=bool) max_loops = self.x_n + self.y_n loops = 0 while np.any(these) and loops < max_loops: # Get coordinates for the four vertices: (xA,yA),...,(xD,yD) x_temp = x[these] y_temp = y[these] xA = self.x_values[x_pos_guess[these],y_pos_guess[these]] xB = self.x_values[x_pos_guess[these]+1,y_pos_guess[these]] xC = self.x_values[x_pos_guess[these],y_pos_guess[these]+1] xD = self.x_values[x_pos_guess[these]+1,y_pos_guess[these]+1] yA = self.y_values[x_pos_guess[these],y_pos_guess[these]] yB = self.y_values[x_pos_guess[these]+1,y_pos_guess[these]] yC = self.y_values[x_pos_guess[these],y_pos_guess[these]+1] yD = self.y_values[x_pos_guess[these]+1,y_pos_guess[these]+1] # Check the "bounding box" for the sector: is this guess plausible? move_down = (y_temp < np.minimum(yA,yB)) + 0 move_right = (x_temp > np.maximum(xB,xD)) + 0 move_up = (y_temp > np.maximum(yC,yD)) + 0 move_left = (x_temp < np.minimum(xA,xC)) + 0 # Check which boundaries are violated (and thus where to look next) c = (move_down + move_right + move_up + move_left) == 0 move_down[c] = violationCheck(x_temp[c],y_temp[c],xA[c],yA[c],xB[c],yB[c]) move_right[c] = violationCheck(x_temp[c],y_temp[c],xB[c],yB[c],xD[c],yD[c]) move_up[c] = violationCheck(x_temp[c],y_temp[c],xD[c],yD[c],xC[c],yC[c]) move_left[c] = violationCheck(x_temp[c],y_temp[c],xC[c],yC[c],xA[c],yA[c]) # Update the sector guess based on the violations x_pos_next = x_pos_guess[these] - move_left + move_right x_pos_next[x_pos_next < 0] = 0 x_pos_next[x_pos_next > (self.x_n-2)] = self.x_n-2 y_pos_next = y_pos_guess[these] - move_down + move_up y_pos_next[y_pos_next < 0] = 0 y_pos_next[y_pos_next > (self.y_n-2)] = self.y_n-2 # Check which sectors have not changed, and mark them as complete no_move = np.array(np.logical_and(x_pos_guess[these] == x_pos_next, y_pos_guess[these] == y_pos_next)) x_pos_guess[these] = x_pos_next y_pos_guess[these] = y_pos_next temp = these.nonzero() these[temp[0][no_move]] = False # Move to the next iteration of the search loops += 1 # Return the output x_pos = x_pos_guess y_pos = y_pos_guess return x_pos, y_pos def findCoords(self,x,y,x_pos,y_pos): ''' Calculates the relative coordinates (alpha,beta) for each point (x,y), given the sectors (x_pos,y_pos) in which they reside. Only called as a subroutine of __call__(). Parameters ---------- x : np.array Values whose sector should be found. y : np.array Values whose sector should be found. Should be same size as x. x_pos : np.array Sector x-coordinates for each point in (x,y), of the same size. y_pos : np.array Sector y-coordinates for each point in (x,y), of the same size. Returns ------- alpha : np.array Relative "horizontal" position of the input in their respective sectors. beta : np.array Relative "vertical" position of the input in their respective sectors. ''' # Calculate relative coordinates in the sector for each point xA = self.x_values[x_pos,y_pos] xB = self.x_values[x_pos+1,y_pos] xC = self.x_values[x_pos,y_pos+1] xD = self.x_values[x_pos+1,y_pos+1] yA = self.y_values[x_pos,y_pos] yB = self.y_values[x_pos+1,y_pos] yC = self.y_values[x_pos,y_pos+1] yD = self.y_values[x_pos+1,y_pos+1] polarity = 2.0*self.polarity[x_pos,y_pos] - 1.0 a = xA b = (xB-xA) c = (xC-xA) d = (xA-xB-xC+xD) e = yA f = (yB-yA) g = (yC-yA) h = (yA-yB-yC+yD) denom = (d*g-h*c) mu = (h*b-d*f)/denom tau = (h*(a-x) - d*(e-y))/denom zeta = a - x + c*tau eta = b + c*mu + d*tau theta = d*mu alpha = (-eta + polarity*np.sqrt(eta**2.0 - 4.0*zeta*theta))/(2.0*theta) beta = mu*alpha + tau # Alternate method if there are sectors that are "too regular" z = np.logical_or(np.isnan(alpha),np.isnan(beta)) # These points weren't able to identify coordinates if np.any(z): these = np.isclose(f/b,(yD-yC)/(xD-xC)) # iso-beta lines have equal slope if np.any(these): kappa = f[these]/b[these] int_bot = yA[these] - kappa*xA[these] int_top = yC[these] - kappa*xC[these] int_these = y[these] - kappa*x[these] beta_temp = (int_these-int_bot)/(int_top-int_bot) x_left = beta_temp*xC[these] + (1.0-beta_temp)*xA[these] x_right = beta_temp*xD[these] + (1.0-beta_temp)*xB[these] alpha_temp= (x[these]-x_left)/(x_right-x_left) beta[these] = beta_temp alpha[these] = alpha_temp #print(np.sum(np.isclose(g/c,(yD-yB)/(xD-xB)))) return alpha, beta def _evaluate(self,x,y): ''' Returns the level of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.__call__ (etc). ''' x_pos, y_pos = self.findSector(x,y) alpha, beta = self.findCoords(x,y,x_pos,y_pos) # Calculate the function at each point using bilinear interpolation f = ( (1-alpha)*(1-beta)*self.f_values[x_pos,y_pos] + (1-alpha)*beta*self.f_values[x_pos,y_pos+1] + alpha*(1-beta)*self.f_values[x_pos+1,y_pos] + alpha*beta*self.f_values[x_pos+1,y_pos+1]) return f def _derX(self,x,y): ''' Returns the derivative with respect to x of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.derivativeX. ''' x_pos, y_pos = self.findSector(x,y) alpha, beta = self.findCoords(x,y,x_pos,y_pos) # Get four corners data for each point xA = self.x_values[x_pos,y_pos] xB = self.x_values[x_pos+1,y_pos] xC = self.x_values[x_pos,y_pos+1] xD = self.x_values[x_pos+1,y_pos+1] yA = self.y_values[x_pos,y_pos] yB = self.y_values[x_pos+1,y_pos] yC = self.y_values[x_pos,y_pos+1] yD = self.y_values[x_pos+1,y_pos+1] fA = self.f_values[x_pos,y_pos] fB = self.f_values[x_pos+1,y_pos] fC = self.f_values[x_pos,y_pos+1] fD = self.f_values[x_pos+1,y_pos+1] # Calculate components of the alpha,beta --> x,y delta translation matrix alpha_x = (1-beta)*(xB-xA) + beta*(xD-xC) alpha_y = (1-beta)*(yB-yA) + beta*(yD-yC) beta_x = (1-alpha)*(xC-xA) + alpha*(xD-xB) beta_y = (1-alpha)*(yC-yA) + alpha*(yD-yB) # Invert the delta translation matrix into x,y --> alpha,beta det = alpha_x*beta_y - beta_x*alpha_y x_alpha = beta_y/det x_beta = -alpha_y/det # Calculate the derivative of f w.r.t. alpha and beta dfda = (1-beta)*(fB-fA) + beta*(fD-fC) dfdb = (1-alpha)*(fC-fA) + alpha*(fD-fB) # Calculate the derivative with respect to x (and return it) dfdx = x_alpha*dfda + x_beta*dfdb return dfdx def _derY(self,x,y): ''' Returns the derivative with respect to y of the interpolated function at each value in x,y. Only called internally by HARKinterpolator2D.derivativeX. ''' x_pos, y_pos = self.findSector(x,y) alpha, beta = self.findCoords(x,y,x_pos,y_pos) # Get four corners data for each point xA = self.x_values[x_pos,y_pos] xB = self.x_values[x_pos+1,y_pos] xC = self.x_values[x_pos,y_pos+1] xD = self.x_values[x_pos+1,y_pos+1] yA = self.y_values[x_pos,y_pos] yB = self.y_values[x_pos+1,y_pos] yC = self.y_values[x_pos,y_pos+1] yD = self.y_values[x_pos+1,y_pos+1] fA = self.f_values[x_pos,y_pos] fB = self.f_values[x_pos+1,y_pos] fC = self.f_values[x_pos,y_pos+1] fD = self.f_values[x_pos+1,y_pos+1] # Calculate components of the alpha,beta --> x,y delta translation matrix alpha_x = (1-beta)*(xB-xA) + beta*(xD-xC) alpha_y = (1-beta)*(yB-yA) + beta*(yD-yC) beta_x = (1-alpha)*(xC-xA) + alpha*(xD-xB) beta_y = (1-alpha)*(yC-yA) + alpha*(yD-yB) # Invert the delta translation matrix into x,y --> alpha,beta det = alpha_x*beta_y - beta_x*alpha_y y_alpha = -beta_x/det y_beta = alpha_x/det # Calculate the derivative of f w.r.t. alpha and beta dfda = (1-beta)*(fB-fA) + beta*(fD-fC) dfdb = (1-alpha)*(fC-fA) + alpha*(fD-fB) # Calculate the derivative with respect to x (and return it) dfdy = y_alpha*dfda + y_beta*dfdb return dfdy ############################################################################### ## Functions used in discrete choice models with T1EV taste shocks ############ ############################################################################### def calcLogSumChoiceProbs(Vals, sigma): ''' Returns the final optimal value and choice probabilities given the choice specific value functions `Vals`. Probabilities are degenerate if sigma == 0.0. Parameters ---------- Vals : [numpy.array] A numpy.array that holds choice specific values at common grid points. sigma : float A number that controls the variance of the taste shocks Returns ------- V : [numpy.array] A numpy.array that holds the integrated value function. P : [numpy.array] A numpy.array that holds the discrete choice probabilities ''' # Assumes that NaNs have been replaced by -numpy.inf or similar if sigma == 0.0: # We could construct a linear index here and use unravel_index. Pflat = np.argmax(Vals, axis=0) V = np.zeros(Vals[0].shape) Probs = np.zeros(Vals.shape) for i in range(Vals.shape[0]): optimalIndices = Pflat == i V[optimalIndices] = Vals[i][optimalIndices] Probs[i][optimalIndices] = 1 return V, Probs # else we have a taste shock maxV = np.max(Vals, axis=0) # calculate maxV+sigma*log(sum_i=1^J exp((V[i]-maxV))/sigma) sumexp = np.sum(np.exp((Vals-maxV)/sigma), axis=0) LogSumV = np.log(sumexp) LogSumV = maxV + sigma*LogSumV Probs = np.exp((Vals-LogSumV)/sigma) return LogSumV, Probs def calcChoiceProbs(Vals, sigma): ''' Returns the choice probabilities given the choice specific value functions `Vals`. Probabilities are degenerate if sigma == 0.0. Parameters ---------- Vals : [numpy.array] A numpy.array that holds choice specific values at common grid points. sigma : float A number that controls the variance of the taste shocks Returns ------- Probs : [numpy.array] A numpy.array that holds the discrete choice probabilities ''' # Assumes that NaNs have been replaced by -numpy.inf or similar if sigma == 0.0: # We could construct a linear index here and use unravel_index. Pflat = np.argmax(Vals, axis=0) Probs = np.zeros(Vals.shape) for i in range(Vals.shape[0]): Probs[i][Pflat==i] = 1 return Probs maxV = np.max(Vals, axis=0) Probs = np.divide(np.exp((Vals-maxV)/sigma), np.sum(np.exp((Vals-maxV)/sigma), axis=0)) return Probs def calcLogSum(Vals, sigma): ''' Returns the optimal value given the choice specific value functions Vals. Parameters ---------- Vals : [numpy.array] A numpy.array that holds choice specific values at common grid points. sigma : float A number that controls the variance of the taste shocks Returns ------- V : [numpy.array] A numpy.array that holds the integrated value function. ''' # Assumes that NaNs have been replaced by -numpy.inf or similar if sigma == 0.0: # We could construct a linear index here and use unravel_index. V = np.amax(Vals, axis=0) return V # else we have a taste shock maxV = np.max(Vals, axis=0) # calculate maxV+sigma*log(sum_i=1^J exp((V[i]-maxV))/sigma) sumexp = np.sum(np.exp((Vals-maxV)/sigma), axis=0) LogSumV = np.log(sumexp) LogSumV = maxV + sigma*LogSumV return LogSumV def main(): print("Sorry, HARK.interpolation doesn't actually do much on its own.") print("To see some examples of its interpolation methods in action, look at any") print("of the model modules in /ConsumptionSavingModel. In the future, running") print("this module will show examples of each interpolation class.") from time import clock import matplotlib.pyplot as plt RNG = np.random.RandomState(123) if False: x = np.linspace(1,20,39) y = np.log(x) dydx = 1.0/x f = CubicInterp(x,y,dydx) x_test = np.linspace(0,30,200) y_test = f(x_test) plt.plot(x_test,y_test) plt.show() if False: f = lambda x,y : 3.0*x**2.0 + x*y + 4.0*y**2.0 dfdx = lambda x,y : 6.0*x + y dfdy = lambda x,y : x + 8.0*y y_list = np.linspace(0,5,100,dtype=float) xInterpolators = [] xInterpolators_alt = [] for y in y_list: this_x_list = np.sort((RNG.rand(100)*5.0)) this_interpolation = LinearInterp(this_x_list,f(this_x_list,y*np.ones(this_x_list.size))) that_interpolation = CubicInterp(this_x_list,f(this_x_list,y*np.ones(this_x_list.size)),dfdx(this_x_list,y*np.ones(this_x_list.size))) xInterpolators.append(this_interpolation) xInterpolators_alt.append(that_interpolation) g = LinearInterpOnInterp1D(xInterpolators,y_list) h = LinearInterpOnInterp1D(xInterpolators_alt,y_list) rand_x = RNG.rand(100)*5.0 rand_y = RNG.rand(100)*5.0 z = (f(rand_x,rand_y) - g(rand_x,rand_y))/f(rand_x,rand_y) q = (dfdx(rand_x,rand_y) - g.derivativeX(rand_x,rand_y))/dfdx(rand_x,rand_y) r = (dfdy(rand_x,rand_y) - g.derivativeY(rand_x,rand_y))/dfdy(rand_x,rand_y) #print(z) #print(q) #print(r) z = (f(rand_x,rand_y) - g(rand_x,rand_y))/f(rand_x,rand_y) q = (dfdx(rand_x,rand_y) - g.derivativeX(rand_x,rand_y))/dfdx(rand_x,rand_y) r = (dfdy(rand_x,rand_y) - g.derivativeY(rand_x,rand_y))/dfdy(rand_x,rand_y) print(z) #print(q) #print(r) if False: f = lambda x,y,z : 3.0*x**2.0 + x*y + 4.0*y**2.0 - 5*z**2.0 + 1.5*x*z dfdx = lambda x,y,z : 6.0*x + y + 1.5*z dfdy = lambda x,y,z : x + 8.0*y dfdz = lambda x,y,z : -10.0*z + 1.5*x y_list = np.linspace(0,5,51,dtype=float) z_list = np.linspace(0,5,51,dtype=float) xInterpolators = [] for y in y_list: temp = [] for z in z_list: this_x_list = np.sort((RNG.rand(100)*5.0)) this_interpolation = LinearInterp(this_x_list,f(this_x_list,y*np.ones(this_x_list.size),z*np.ones(this_x_list.size))) temp.append(this_interpolation) xInterpolators.append(deepcopy(temp)) g = BilinearInterpOnInterp1D(xInterpolators,y_list,z_list) rand_x = RNG.rand(1000)*5.0 rand_y = RNG.rand(1000)*5.0 rand_z = RNG.rand(1000)*5.0 z = (f(rand_x,rand_y,rand_z) - g(rand_x,rand_y,rand_z))/f(rand_x,rand_y,rand_z) q = (dfdx(rand_x,rand_y,rand_z) - g.derivativeX(rand_x,rand_y,rand_z))/dfdx(rand_x,rand_y,rand_z) r = (dfdy(rand_x,rand_y,rand_z) - g.derivativeY(rand_x,rand_y,rand_z))/dfdy(rand_x,rand_y,rand_z) p = (dfdz(rand_x,rand_y,rand_z) - g.derivativeZ(rand_x,rand_y,rand_z))/dfdz(rand_x,rand_y,rand_z) z.sort() if False: f = lambda w,x,y,z : 4.0*w*z - 2.5*w*x + w*y + 6.0*x*y - 10.0*x*z + 3.0*y*z - 7.0*z + 4.0*x + 2.0*y - 5.0*w dfdw = lambda w,x,y,z : 4.0*z - 2.5*x + y - 5.0 dfdx = lambda w,x,y,z : -2.5*w + 6.0*y - 10.0*z + 4.0 dfdy = lambda w,x,y,z : w + 6.0*x + 3.0*z + 2.0 dfdz = lambda w,x,y,z : 4.0*w - 10.0*x + 3.0*y - 7 x_list = np.linspace(0,5,16,dtype=float) y_list = np.linspace(0,5,16,dtype=float) z_list = np.linspace(0,5,16,dtype=float) wInterpolators = [] for x in x_list: temp = [] for y in y_list: temptemp = [] for z in z_list: this_w_list = np.sort((RNG.rand(16)*5.0)) this_interpolation = LinearInterp(this_w_list,f(this_w_list,x*np.ones(this_w_list.size),y*np.ones(this_w_list.size),z*np.ones(this_w_list.size))) temptemp.append(this_interpolation) temp.append(deepcopy(temptemp)) wInterpolators.append(deepcopy(temp)) g = TrilinearInterpOnInterp1D(wInterpolators,x_list,y_list,z_list) N = 20000 rand_w = RNG.rand(N)*5.0 rand_x = RNG.rand(N)*5.0 rand_y = RNG.rand(N)*5.0 rand_z = RNG.rand(N)*5.0 t_start = clock() z = (f(rand_w,rand_x,rand_y,rand_z) - g(rand_w,rand_x,rand_y,rand_z))/f(rand_w,rand_x,rand_y,rand_z) q = (dfdw(rand_w,rand_x,rand_y,rand_z) - g.derivativeW(rand_w,rand_x,rand_y,rand_z))/dfdw(rand_w,rand_x,rand_y,rand_z) r = (dfdx(rand_w,rand_x,rand_y,rand_z) - g.derivativeX(rand_w,rand_x,rand_y,rand_z))/dfdx(rand_w,rand_x,rand_y,rand_z) p = (dfdy(rand_w,rand_x,rand_y,rand_z) - g.derivativeY(rand_w,rand_x,rand_y,rand_z))/dfdy(rand_w,rand_x,rand_y,rand_z) s = (dfdz(rand_w,rand_x,rand_y,rand_z) - g.derivativeZ(rand_w,rand_x,rand_y,rand_z))/dfdz(rand_w,rand_x,rand_y,rand_z) t_end = clock() z.sort() print(z) print(t_end-t_start) if False: f = lambda x,y : 3.0*x**2.0 + x*y + 4.0*y**2.0 dfdx = lambda x,y : 6.0*x + y dfdy = lambda x,y : x + 8.0*y x_list = np.linspace(0,5,101,dtype=float) y_list = np.linspace(0,5,101,dtype=float) x_temp,y_temp = np.meshgrid(x_list,y_list,indexing='ij') g = BilinearInterp(f(x_temp,y_temp),x_list,y_list) rand_x = RNG.rand(100)*5.0 rand_y = RNG.rand(100)*5.0 z = (f(rand_x,rand_y) - g(rand_x,rand_y))/f(rand_x,rand_y) q = (f(x_temp,y_temp) - g(x_temp,y_temp))/f(x_temp,y_temp) #print(z) #print(q) if False: f = lambda x,y,z : 3.0*x**2.0 + x*y + 4.0*y**2.0 - 5*z**2.0 + 1.5*x*z dfdx = lambda x,y,z : 6.0*x + y + 1.5*z dfdy = lambda x,y,z : x + 8.0*y dfdz = lambda x,y,z : -10.0*z + 1.5*x x_list = np.linspace(0,5,11,dtype=float) y_list = np.linspace(0,5,11,dtype=float) z_list = np.linspace(0,5,101,dtype=float) x_temp,y_temp,z_temp = np.meshgrid(x_list,y_list,z_list,indexing='ij') g = TrilinearInterp(f(x_temp,y_temp,z_temp),x_list,y_list,z_list) rand_x = RNG.rand(1000)*5.0 rand_y = RNG.rand(1000)*5.0 rand_z = RNG.rand(1000)*5.0 z = (f(rand_x,rand_y,rand_z) - g(rand_x,rand_y,rand_z))/f(rand_x,rand_y,rand_z) q = (dfdx(rand_x,rand_y,rand_z) - g.derivativeX(rand_x,rand_y,rand_z))/dfdx(rand_x,rand_y,rand_z) r = (dfdy(rand_x,rand_y,rand_z) - g.derivativeY(rand_x,rand_y,rand_z))/dfdy(rand_x,rand_y,rand_z) p = (dfdz(rand_x,rand_y,rand_z) - g.derivativeZ(rand_x,rand_y,rand_z))/dfdz(rand_x,rand_y,rand_z) p.sort() plt.plot(p) if False: f = lambda w,x,y,z : 4.0*w*z - 2.5*w*x + w*y + 6.0*x*y - 10.0*x*z + 3.0*y*z - 7.0*z + 4.0*x + 2.0*y - 5.0*w dfdw = lambda w,x,y,z : 4.0*z - 2.5*x + y - 5.0 dfdx = lambda w,x,y,z : -2.5*w + 6.0*y - 10.0*z + 4.0 dfdy = lambda w,x,y,z : w + 6.0*x + 3.0*z + 2.0 dfdz = lambda w,x,y,z : 4.0*w - 10.0*x + 3.0*y - 7 w_list = np.linspace(0,5,16,dtype=float) x_list = np.linspace(0,5,16,dtype=float) y_list = np.linspace(0,5,16,dtype=float) z_list = np.linspace(0,5,16,dtype=float) w_temp,x_temp,y_temp,z_temp = np.meshgrid(w_list,x_list,y_list,z_list,indexing='ij') mySearch = lambda trash,x : np.floor(x/5*32).astype(int) g = QuadlinearInterp(f(w_temp,x_temp,y_temp,z_temp),w_list,x_list,y_list,z_list) N = 1000000 rand_w = RNG.rand(N)*5.0 rand_x = RNG.rand(N)*5.0 rand_y = RNG.rand(N)*5.0 rand_z = RNG.rand(N)*5.0 t_start = clock() z = (f(rand_w,rand_x,rand_y,rand_z) - g(rand_w,rand_x,rand_y,rand_z))/f(rand_w,rand_x,rand_y,rand_z) t_end = clock() #print(z) print(t_end-t_start) if False: f = lambda x,y : 3.0*x**2.0 + x*y + 4.0*y**2.0 dfdx = lambda x,y : 6.0*x + y dfdy = lambda x,y : x + 8.0*y warp_factor = 0.01 x_list = np.linspace(0,5,71,dtype=float) y_list = np.linspace(0,5,51,dtype=float) x_temp,y_temp = np.meshgrid(x_list,y_list,indexing='ij') x_adj = x_temp + warp_factor*(RNG.rand(x_list.size,y_list.size) - 0.5) y_adj = y_temp + warp_factor*(RNG.rand(x_list.size,y_list.size) - 0.5) g = Curvilinear2DInterp(f(x_adj,y_adj),x_adj,y_adj) rand_x = RNG.rand(1000)*5.0 rand_y = RNG.rand(1000)*5.0 t_start = clock() z = (f(rand_x,rand_y) - g(rand_x,rand_y))/f(rand_x,rand_y) q = (dfdx(rand_x,rand_y) - g.derivativeX(rand_x,rand_y))/dfdx(rand_x,rand_y) r = (dfdy(rand_x,rand_y) - g.derivativeY(rand_x,rand_y))/dfdy(rand_x,rand_y) t_end = clock() z.sort() q.sort() r.sort() #print(z) print(t_end-t_start) if False: f = lambda x,y,z : 3.0*x**2.0 + x*y + 4.0*y**2.0 - 5*z**2.0 + 1.5*x*z dfdx = lambda x,y,z : 6.0*x + y + 1.5*z dfdy = lambda x,y,z : x + 8.0*y dfdz = lambda x,y,z : -10.0*z + 1.5*x warp_factor = 0.01 x_list = np.linspace(0,5,11,dtype=float) y_list = np.linspace(0,5,11,dtype=float) z_list = np.linspace(0,5,101,dtype=float) x_temp,y_temp = np.meshgrid(x_list,y_list,indexing='ij') xyInterpolators = [] for j in range(z_list.size): x_adj = x_temp + warp_factor*(RNG.rand(x_list.size,y_list.size) - 0.5) y_adj = y_temp + warp_factor*(RNG.rand(x_list.size,y_list.size) - 0.5) z_temp = z_list[j]*np.ones(x_adj.shape) thisInterp = Curvilinear2DInterp(f(x_adj,y_adj,z_temp),x_adj,y_adj) xyInterpolators.append(thisInterp) g = LinearInterpOnInterp2D(xyInterpolators,z_list) N = 1000 rand_x = RNG.rand(N)*5.0 rand_y = RNG.rand(N)*5.0 rand_z = RNG.rand(N)*5.0 z = (f(rand_x,rand_y,rand_z) - g(rand_x,rand_y,rand_z))/f(rand_x,rand_y,rand_z) p = (dfdz(rand_x,rand_y,rand_z) - g.derivativeZ(rand_x,rand_y,rand_z))/dfdz(rand_x,rand_y,rand_z) p.sort() plt.plot(p) if False: f = lambda w,x,y,z : 4.0*w*z - 2.5*w*x + w*y + 6.0*x*y - 10.0*x*z + 3.0*y*z - 7.0*z + 4.0*x + 2.0*y - 5.0*w dfdw = lambda w,x,y,z : 4.0*z - 2.5*x + y - 5.0 dfdx = lambda w,x,y,z : -2.5*w + 6.0*y - 10.0*z + 4.0 dfdy = lambda w,x,y,z : w + 6.0*x + 3.0*z + 2.0 dfdz = lambda w,x,y,z : 4.0*w - 10.0*x + 3.0*y - 7 warp_factor = 0.1 w_list = np.linspace(0,5,16,dtype=float) x_list = np.linspace(0,5,16,dtype=float) y_list = np.linspace(0,5,16,dtype=float) z_list = np.linspace(0,5,16,dtype=float) w_temp,x_temp = np.meshgrid(w_list,x_list,indexing='ij') wxInterpolators = [] for i in range(y_list.size): temp = [] for j in range(z_list.size): w_adj = w_temp + warp_factor*(RNG.rand(w_list.size,x_list.size) - 0.5) x_adj = x_temp + warp_factor*(RNG.rand(w_list.size,x_list.size) - 0.5) y_temp = y_list[i]*np.ones(w_adj.shape) z_temp = z_list[j]*np.ones(w_adj.shape) thisInterp = Curvilinear2DInterp(f(w_adj,x_adj,y_temp,z_temp),w_adj,x_adj) temp.append(thisInterp) wxInterpolators.append(temp) g = BilinearInterpOnInterp2D(wxInterpolators,y_list,z_list) N = 1000000 rand_w = RNG.rand(N)*5.0 rand_x = RNG.rand(N)*5.0 rand_y = RNG.rand(N)*5.0 rand_z = RNG.rand(N)*5.0 t_start = clock() z = (f(rand_w,rand_x,rand_y,rand_z) - g(rand_w,rand_x,rand_y,rand_z))/f(rand_w,rand_x,rand_y,rand_z) t_end = clock() z.sort() print(z) print(t_end-t_start) if __name__ == '__main__': main()
42.357162
173
0.561754
[ "Apache-2.0" ]
cohenimhuji/HARK
HARK/interpolation.py
159,390
Python
from django import forms from .models import Reclamacao,Login,Comentario from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User class CadastraReclamacaoForm(forms.ModelForm): def __init__(self, *args, **kwargs): super(CadastraReclamacaoForm,self).__init__(*args, **kwargs) self.fields['titulo'].required = True self.fields['bairro'].required = True self.fields['rua'].required = True self.fields['descricao'].required = True self.fields['foto'].required = False class Meta: model = Reclamacao fields = ('titulo','bairro','rua','descricao', 'foto',) class LoginUsuarioForm(forms.ModelForm): class Meta: model = Login fields = ('username','password',) widgets = { 'password': forms.PasswordInput(), } class SignUpForm(UserCreationForm): cpf = forms.CharField(max_length=11, required=True) bairro = forms.CharField(max_length=30, required=True) email = forms.EmailField(max_length=254, help_text='Required. Inform a valid email address.') class Meta: model = User fields = ('username', 'cpf', 'bairro', 'email', 'password1', 'password2', ) #class CadastraForum(forms.ModelForm): # class Meta: # model = Forum # fields = ('text',) class RegistroDeComentarioForm(forms.ModelForm): def __init__(self, *args, **kwargs): super(RegistroDeComentarioForm,self).__init__(*args, **kwargs) self.fields['text1'].required = True class Meta: model = Comentario fields = ('text1',)
33.040816
97
0.657196
[ "MIT" ]
WesleyVitor/ReclamaCaico
Application/ReclamaCaicoProject/ReclamaCaicoApp/forms.py
1,619
Python
# coding: utf-8 from django.conf.urls import url from api_v1 import views urlpatterns = [ url(r'^register/$', views.register), url(r'^login/$', views.login), url(r'^images/$', views.images), url(r'^reccomend/$', views.reccomend), url(r'^user_post/$', views.get_user_post), ] # api viewer (debug用) from rest_framework import routers from .views import UserViewSet, TokenViewSet, ImageViewSet, PostViewSet, FavoriteViewSet router = routers.DefaultRouter() router.register(r'user', UserViewSet) router.register(r'token', TokenViewSet) router.register(r'image', ImageViewSet) router.register(r'post', PostViewSet) # router.register(r'favorite', FavoriteViewSet)
30.909091
88
0.738235
[ "MIT" ]
Utree/TRAGRAM
server/project/api_v1/urls.py
682
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.0.6320, generator: {generator}) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.core.exceptions import HttpResponseError import msrest.serialization class ResponseBase(msrest.serialization.Model): """ResponseBase. :param type: :type type: str """ _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, } def __init__( self, **kwargs ): super(ResponseBase, self).__init__(**kwargs) self.type = kwargs.get('type', None) class Identifiable(ResponseBase): """Defines the identity of a resource. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str """ _validation = { 'id': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, } def __init__( self, **kwargs ): super(Identifiable, self).__init__(**kwargs) self.id = None class Response(Identifiable): """Defines a response. All schemas that could be returned at the root of a response should inherit from this. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, } def __init__( self, **kwargs ): super(Response, self).__init__(**kwargs) self.web_search_url = None class Answer(Response): """Answer. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar follow_up_queries: :vartype follow_up_queries: list[~web_search_client.models.Query] """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'follow_up_queries': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'follow_up_queries': {'key': 'followUpQueries', 'type': '[Query]'}, } def __init__( self, **kwargs ): super(Answer, self).__init__(**kwargs) self.follow_up_queries = None class Thing(Response): """Thing. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar name: The name of the thing represented by this object. :vartype name: str :ivar url: The URL to get more information about the thing represented by this object. :vartype url: str :ivar image: Defines an image. :vartype image: ~web_search_client.models.ImageObject :ivar description: A short description of the item. :vartype description: str :ivar bing_id: An ID that uniquely identifies this item. :vartype bing_id: str """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'name': {'readonly': True}, 'url': {'readonly': True}, 'image': {'readonly': True}, 'description': {'readonly': True}, 'bing_id': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'image': {'key': 'image', 'type': 'ImageObject'}, 'description': {'key': 'description', 'type': 'str'}, 'bing_id': {'key': 'bingId', 'type': 'str'}, } def __init__( self, **kwargs ): super(Thing, self).__init__(**kwargs) self.name = None self.url = None self.image = None self.description = None self.bing_id = None class CreativeWork(Thing): """CreativeWork. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar name: The name of the thing represented by this object. :vartype name: str :ivar url: The URL to get more information about the thing represented by this object. :vartype url: str :ivar image: Defines an image. :vartype image: ~web_search_client.models.ImageObject :ivar description: A short description of the item. :vartype description: str :ivar bing_id: An ID that uniquely identifies this item. :vartype bing_id: str :ivar thumbnail_url: The URL to a thumbnail of the item. :vartype thumbnail_url: str :ivar provider: The source of the creative work. :vartype provider: list[~web_search_client.models.Thing] :ivar text: :vartype text: str """ _validation = { 'id': {'readonly': True}, 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'name': {'readonly': True}, 'url': {'readonly': True}, 'image': {'readonly': True}, 'description': {'readonly': True}, 'bing_id': {'readonly': True}, 'thumbnail_url': {'readonly': True}, 'provider': {'readonly': True}, 'text': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'image': {'key': 'image', 'type': 'ImageObject'}, 'description': {'key': 'description', 'type': 'str'}, 'bing_id': {'key': 'bingId', 'type': 'str'}, 'thumbnail_url': {'key': 'thumbnailUrl', 'type': 'str'}, 'provider': {'key': 'provider', 'type': '[Thing]'}, 'text': {'key': 'text', 'type': 'str'}, } def __init__( self, **kwargs ): super(CreativeWork, self).__init__(**kwargs) self.thumbnail_url = None self.provider = None self.text = None class Article(CreativeWork): """Article. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar name: The name of the thing represented by this object. :vartype name: str :ivar url: The URL to get more information about the thing represented by this object. :vartype url: str :ivar image: Defines an image. :vartype image: ~web_search_client.models.ImageObject :ivar description: A short description of the item. :vartype description: str :ivar bing_id: An ID that uniquely identifies this item. :vartype bing_id: str :ivar thumbnail_url: The URL to a thumbnail of the item. :vartype thumbnail_url: str :ivar provider: The source of the creative work. :vartype provider: list[~web_search_client.models.Thing] :ivar text: :vartype text: str :ivar word_count: The number of words in the text of the Article. :vartype word_count: int """ _validation = { 'id': {'readonly': True}, 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'name': {'readonly': True}, 'url': {'readonly': True}, 'image': {'readonly': True}, 'description': {'readonly': True}, 'bing_id': {'readonly': True}, 'thumbnail_url': {'readonly': True}, 'provider': {'readonly': True}, 'text': {'readonly': True}, 'word_count': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'image': {'key': 'image', 'type': 'ImageObject'}, 'description': {'key': 'description', 'type': 'str'}, 'bing_id': {'key': 'bingId', 'type': 'str'}, 'thumbnail_url': {'key': 'thumbnailUrl', 'type': 'str'}, 'provider': {'key': 'provider', 'type': '[Thing]'}, 'text': {'key': 'text', 'type': 'str'}, 'word_count': {'key': 'wordCount', 'type': 'int'}, } def __init__( self, **kwargs ): super(Article, self).__init__(**kwargs) self.word_count = None class Computation(Answer): """Defines an expression and its answer. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar follow_up_queries: :vartype follow_up_queries: list[~web_search_client.models.Query] :param expression: Required. The math or conversion expression. If the query contains a request to convert units of measure (for example, meters to feet), this field contains the from units and value contains the to units. If the query contains a mathematical expression such as 2+2, this field contains the expression and value contains the answer. Note that mathematical expressions may be normalized. For example, if the query was sqrt(4^2+8^2), the normalized expression may be sqrt((4^2)+(8^2)). If the user's query is a math question and the textDecorations query parameter is set to true, the expression string may include formatting markers. For example, if the user's query is log(2), the normalized expression includes the subscript markers. For more information, see Hit Highlighting. :type expression: str :param value: Required. The expression's answer. :type value: str """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'follow_up_queries': {'readonly': True}, 'expression': {'required': True}, 'value': {'required': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'follow_up_queries': {'key': 'followUpQueries', 'type': '[Query]'}, 'expression': {'key': 'expression', 'type': 'str'}, 'value': {'key': 'value', 'type': 'str'}, } def __init__( self, **kwargs ): super(Computation, self).__init__(**kwargs) self.expression = kwargs['expression'] self.value = kwargs['value'] class Error(msrest.serialization.Model): """Defines the error that occurred. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param code: Required. The error code that identifies the category of error. Possible values include: "None", "ServerError", "InvalidRequest", "RateLimitExceeded", "InvalidAuthorization", "InsufficientAuthorization". Default value: "None". :type code: str or ~web_search_client.models.ErrorCode :ivar sub_code: The error code that further helps to identify the error. Possible values include: "UnexpectedError", "ResourceError", "NotImplemented", "ParameterMissing", "ParameterInvalidValue", "HttpNotAllowed", "Blocked", "AuthorizationMissing", "AuthorizationRedundancy", "AuthorizationDisabled", "AuthorizationExpired". :vartype sub_code: str or ~web_search_client.models.ErrorSubCode :param message: Required. A description of the error. :type message: str :ivar more_details: A description that provides additional information about the error. :vartype more_details: str :ivar parameter: The parameter in the request that caused the error. :vartype parameter: str :ivar value: The parameter's value in the request that was not valid. :vartype value: str """ _validation = { 'code': {'required': True}, 'sub_code': {'readonly': True}, 'message': {'required': True}, 'more_details': {'readonly': True}, 'parameter': {'readonly': True}, 'value': {'readonly': True}, } _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'sub_code': {'key': 'subCode', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'more_details': {'key': 'moreDetails', 'type': 'str'}, 'parameter': {'key': 'parameter', 'type': 'str'}, 'value': {'key': 'value', 'type': 'str'}, } def __init__( self, **kwargs ): super(Error, self).__init__(**kwargs) self.code = kwargs.get('code', "None") self.sub_code = None self.message = kwargs['message'] self.more_details = None self.parameter = None self.value = None class ErrorResponse(Response): """The top-level response that represents a failed request. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :param errors: Required. A list of errors that describe the reasons why the request failed. :type errors: list[~web_search_client.models.Error] """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'errors': {'required': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'errors': {'key': 'errors', 'type': '[Error]'}, } def __init__( self, **kwargs ): super(ErrorResponse, self).__init__(**kwargs) self.errors = kwargs['errors'] class MediaObject(CreativeWork): """MediaObject. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar name: The name of the thing represented by this object. :vartype name: str :ivar url: The URL to get more information about the thing represented by this object. :vartype url: str :ivar image: Defines an image. :vartype image: ~web_search_client.models.ImageObject :ivar description: A short description of the item. :vartype description: str :ivar bing_id: An ID that uniquely identifies this item. :vartype bing_id: str :ivar thumbnail_url: The URL to a thumbnail of the item. :vartype thumbnail_url: str :ivar provider: The source of the creative work. :vartype provider: list[~web_search_client.models.Thing] :ivar text: :vartype text: str :ivar content_url: Original URL to retrieve the source (file) for the media object (e.g the source URL for the image). :vartype content_url: str :ivar host_page_url: URL of the page that hosts the media object. :vartype host_page_url: str :ivar width: The width of the source media object, in pixels. :vartype width: int :ivar height: The height of the source media object, in pixels. :vartype height: int """ _validation = { 'id': {'readonly': True}, 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'name': {'readonly': True}, 'url': {'readonly': True}, 'image': {'readonly': True}, 'description': {'readonly': True}, 'bing_id': {'readonly': True}, 'thumbnail_url': {'readonly': True}, 'provider': {'readonly': True}, 'text': {'readonly': True}, 'content_url': {'readonly': True}, 'host_page_url': {'readonly': True}, 'width': {'readonly': True}, 'height': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'image': {'key': 'image', 'type': 'ImageObject'}, 'description': {'key': 'description', 'type': 'str'}, 'bing_id': {'key': 'bingId', 'type': 'str'}, 'thumbnail_url': {'key': 'thumbnailUrl', 'type': 'str'}, 'provider': {'key': 'provider', 'type': '[Thing]'}, 'text': {'key': 'text', 'type': 'str'}, 'content_url': {'key': 'contentUrl', 'type': 'str'}, 'host_page_url': {'key': 'hostPageUrl', 'type': 'str'}, 'width': {'key': 'width', 'type': 'int'}, 'height': {'key': 'height', 'type': 'int'}, } def __init__( self, **kwargs ): super(MediaObject, self).__init__(**kwargs) self.content_url = None self.host_page_url = None self.width = None self.height = None class ImageObject(MediaObject): """Defines an image. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar name: The name of the thing represented by this object. :vartype name: str :ivar url: The URL to get more information about the thing represented by this object. :vartype url: str :ivar image: Defines an image. :vartype image: ~web_search_client.models.ImageObject :ivar description: A short description of the item. :vartype description: str :ivar bing_id: An ID that uniquely identifies this item. :vartype bing_id: str :ivar thumbnail_url: The URL to a thumbnail of the item. :vartype thumbnail_url: str :ivar provider: The source of the creative work. :vartype provider: list[~web_search_client.models.Thing] :ivar text: :vartype text: str :ivar content_url: Original URL to retrieve the source (file) for the media object (e.g the source URL for the image). :vartype content_url: str :ivar host_page_url: URL of the page that hosts the media object. :vartype host_page_url: str :ivar width: The width of the source media object, in pixels. :vartype width: int :ivar height: The height of the source media object, in pixels. :vartype height: int :ivar thumbnail: The URL to a thumbnail of the image. :vartype thumbnail: ~web_search_client.models.ImageObject """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'name': {'readonly': True}, 'url': {'readonly': True}, 'image': {'readonly': True}, 'description': {'readonly': True}, 'bing_id': {'readonly': True}, 'thumbnail_url': {'readonly': True}, 'provider': {'readonly': True}, 'text': {'readonly': True}, 'content_url': {'readonly': True}, 'host_page_url': {'readonly': True}, 'width': {'readonly': True}, 'height': {'readonly': True}, 'thumbnail': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'image': {'key': 'image', 'type': 'ImageObject'}, 'description': {'key': 'description', 'type': 'str'}, 'bing_id': {'key': 'bingId', 'type': 'str'}, 'thumbnail_url': {'key': 'thumbnailUrl', 'type': 'str'}, 'provider': {'key': 'provider', 'type': '[Thing]'}, 'text': {'key': 'text', 'type': 'str'}, 'content_url': {'key': 'contentUrl', 'type': 'str'}, 'host_page_url': {'key': 'hostPageUrl', 'type': 'str'}, 'width': {'key': 'width', 'type': 'int'}, 'height': {'key': 'height', 'type': 'int'}, 'thumbnail': {'key': 'thumbnail', 'type': 'ImageObject'}, } def __init__( self, **kwargs ): super(ImageObject, self).__init__(**kwargs) self.thumbnail = None class SearchResultsAnswer(Answer): """SearchResultsAnswer. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar follow_up_queries: :vartype follow_up_queries: list[~web_search_client.models.Query] :ivar query_context: Defines the query context that Bing used for the request. :vartype query_context: ~web_search_client.models.QueryContext :ivar total_estimated_matches: The estimated number of webpages that are relevant to the query. Use this number along with the count and offset query parameters to page the results. :vartype total_estimated_matches: long :ivar is_family_friendly: :vartype is_family_friendly: bool """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'follow_up_queries': {'readonly': True}, 'query_context': {'readonly': True}, 'total_estimated_matches': {'readonly': True}, 'is_family_friendly': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'follow_up_queries': {'key': 'followUpQueries', 'type': '[Query]'}, 'query_context': {'key': 'queryContext', 'type': 'QueryContext'}, 'total_estimated_matches': {'key': 'totalEstimatedMatches', 'type': 'long'}, 'is_family_friendly': {'key': 'isFamilyFriendly', 'type': 'bool'}, } def __init__( self, **kwargs ): super(SearchResultsAnswer, self).__init__(**kwargs) self.query_context = None self.total_estimated_matches = None self.is_family_friendly = None class Images(SearchResultsAnswer): """Defines an image answer. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar follow_up_queries: :vartype follow_up_queries: list[~web_search_client.models.Query] :ivar query_context: Defines the query context that Bing used for the request. :vartype query_context: ~web_search_client.models.QueryContext :ivar total_estimated_matches: The estimated number of webpages that are relevant to the query. Use this number along with the count and offset query parameters to page the results. :vartype total_estimated_matches: long :ivar is_family_friendly: :vartype is_family_friendly: bool :ivar next_offset: :vartype next_offset: int :param value: Required. A list of image objects that are relevant to the query. If there are no results, the List is empty. :type value: list[~web_search_client.models.ImageObject] :ivar query_expansions: :vartype query_expansions: list[~web_search_client.models.Query] :ivar similar_terms: :vartype similar_terms: list[~web_search_client.models.Query] :ivar related_searches: :vartype related_searches: list[~web_search_client.models.Query] """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'follow_up_queries': {'readonly': True}, 'query_context': {'readonly': True}, 'total_estimated_matches': {'readonly': True}, 'is_family_friendly': {'readonly': True}, 'next_offset': {'readonly': True}, 'value': {'required': True}, 'query_expansions': {'readonly': True}, 'similar_terms': {'readonly': True}, 'related_searches': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'follow_up_queries': {'key': 'followUpQueries', 'type': '[Query]'}, 'query_context': {'key': 'queryContext', 'type': 'QueryContext'}, 'total_estimated_matches': {'key': 'totalEstimatedMatches', 'type': 'long'}, 'is_family_friendly': {'key': 'isFamilyFriendly', 'type': 'bool'}, 'next_offset': {'key': 'nextOffset', 'type': 'int'}, 'value': {'key': 'value', 'type': '[ImageObject]'}, 'query_expansions': {'key': 'queryExpansions', 'type': '[Query]'}, 'similar_terms': {'key': 'similarTerms', 'type': '[Query]'}, 'related_searches': {'key': 'relatedSearches', 'type': '[Query]'}, } def __init__( self, **kwargs ): super(Images, self).__init__(**kwargs) self.next_offset = None self.value = kwargs['value'] self.query_expansions = None self.similar_terms = None self.related_searches = None class Intangible(Thing): """Intangible. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar name: The name of the thing represented by this object. :vartype name: str :ivar url: The URL to get more information about the thing represented by this object. :vartype url: str :ivar image: Defines an image. :vartype image: ~web_search_client.models.ImageObject :ivar description: A short description of the item. :vartype description: str :ivar bing_id: An ID that uniquely identifies this item. :vartype bing_id: str """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'name': {'readonly': True}, 'url': {'readonly': True}, 'image': {'readonly': True}, 'description': {'readonly': True}, 'bing_id': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'image': {'key': 'image', 'type': 'ImageObject'}, 'description': {'key': 'description', 'type': 'str'}, 'bing_id': {'key': 'bingId', 'type': 'str'}, } def __init__( self, **kwargs ): super(Intangible, self).__init__(**kwargs) class News(SearchResultsAnswer): """Defines a news answer. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar follow_up_queries: :vartype follow_up_queries: list[~web_search_client.models.Query] :ivar query_context: Defines the query context that Bing used for the request. :vartype query_context: ~web_search_client.models.QueryContext :ivar total_estimated_matches: The estimated number of webpages that are relevant to the query. Use this number along with the count and offset query parameters to page the results. :vartype total_estimated_matches: long :ivar is_family_friendly: :vartype is_family_friendly: bool :param value: Required. An array of NewsArticle objects that contain information about news articles that are relevant to the query. If there are no results to return for the request, the array is empty. :type value: list[~web_search_client.models.Article] :ivar location: :vartype location: str """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'follow_up_queries': {'readonly': True}, 'query_context': {'readonly': True}, 'total_estimated_matches': {'readonly': True}, 'is_family_friendly': {'readonly': True}, 'value': {'required': True}, 'location': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'follow_up_queries': {'key': 'followUpQueries', 'type': '[Query]'}, 'query_context': {'key': 'queryContext', 'type': 'QueryContext'}, 'total_estimated_matches': {'key': 'totalEstimatedMatches', 'type': 'long'}, 'is_family_friendly': {'key': 'isFamilyFriendly', 'type': 'bool'}, 'value': {'key': 'value', 'type': '[Article]'}, 'location': {'key': 'location', 'type': 'str'}, } def __init__( self, **kwargs ): super(News, self).__init__(**kwargs) self.value = kwargs['value'] self.location = None class NewsArticle(Article): """Defines a news article. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar name: The name of the thing represented by this object. :vartype name: str :ivar url: The URL to get more information about the thing represented by this object. :vartype url: str :ivar image: Defines an image. :vartype image: ~web_search_client.models.ImageObject :ivar description: A short description of the item. :vartype description: str :ivar bing_id: An ID that uniquely identifies this item. :vartype bing_id: str :ivar thumbnail_url: The URL to a thumbnail of the item. :vartype thumbnail_url: str :ivar provider: The source of the creative work. :vartype provider: list[~web_search_client.models.Thing] :ivar text: :vartype text: str :ivar word_count: The number of words in the text of the Article. :vartype word_count: int """ _validation = { 'id': {'readonly': True}, 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'name': {'readonly': True}, 'url': {'readonly': True}, 'image': {'readonly': True}, 'description': {'readonly': True}, 'bing_id': {'readonly': True}, 'thumbnail_url': {'readonly': True}, 'provider': {'readonly': True}, 'text': {'readonly': True}, 'word_count': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'image': {'key': 'image', 'type': 'ImageObject'}, 'description': {'key': 'description', 'type': 'str'}, 'bing_id': {'key': 'bingId', 'type': 'str'}, 'thumbnail_url': {'key': 'thumbnailUrl', 'type': 'str'}, 'provider': {'key': 'provider', 'type': '[Thing]'}, 'text': {'key': 'text', 'type': 'str'}, 'word_count': {'key': 'wordCount', 'type': 'int'}, } def __init__( self, **kwargs ): super(NewsArticle, self).__init__(**kwargs) class Places(SearchResultsAnswer): """Defines a local entity answer. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar follow_up_queries: :vartype follow_up_queries: list[~web_search_client.models.Query] :ivar query_context: Defines the query context that Bing used for the request. :vartype query_context: ~web_search_client.models.QueryContext :ivar total_estimated_matches: The estimated number of webpages that are relevant to the query. Use this number along with the count and offset query parameters to page the results. :vartype total_estimated_matches: long :ivar is_family_friendly: :vartype is_family_friendly: bool :param value: Required. A list of local entities, such as restaurants or hotels. :type value: list[~web_search_client.models.Thing] """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'follow_up_queries': {'readonly': True}, 'query_context': {'readonly': True}, 'total_estimated_matches': {'readonly': True}, 'is_family_friendly': {'readonly': True}, 'value': {'required': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'follow_up_queries': {'key': 'followUpQueries', 'type': '[Query]'}, 'query_context': {'key': 'queryContext', 'type': 'QueryContext'}, 'total_estimated_matches': {'key': 'totalEstimatedMatches', 'type': 'long'}, 'is_family_friendly': {'key': 'isFamilyFriendly', 'type': 'bool'}, 'value': {'key': 'value', 'type': '[Thing]'}, } def __init__( self, **kwargs ): super(Places, self).__init__(**kwargs) self.value = kwargs['value'] class Query(msrest.serialization.Model): """Defines a search query. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param text: Required. The query string. Use this string as the query term in a new search request. :type text: str :ivar display_text: The display version of the query term. This version of the query term may contain special characters that highlight the search term found in the query string. The string contains the highlighting characters only if the query enabled hit highlighting. :vartype display_text: str :ivar web_search_url: The URL that takes the user to the Bing search results page for the query.Only related search results include this field. :vartype web_search_url: str :ivar search_link: :vartype search_link: str :ivar thumbnail: Defines an image. :vartype thumbnail: ~web_search_client.models.ImageObject """ _validation = { 'text': {'required': True}, 'display_text': {'readonly': True}, 'web_search_url': {'readonly': True}, 'search_link': {'readonly': True}, 'thumbnail': {'readonly': True}, } _attribute_map = { 'text': {'key': 'text', 'type': 'str'}, 'display_text': {'key': 'displayText', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'search_link': {'key': 'searchLink', 'type': 'str'}, 'thumbnail': {'key': 'thumbnail', 'type': 'ImageObject'}, } def __init__( self, **kwargs ): super(Query, self).__init__(**kwargs) self.text = kwargs['text'] self.display_text = None self.web_search_url = None self.search_link = None self.thumbnail = None class QueryContext(msrest.serialization.Model): """Defines the query context that Bing used for the request. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param original_query: Required. The query string as specified in the request. :type original_query: str :ivar altered_query: The query string used by Bing to perform the query. Bing uses the altered query string if the original query string contained spelling mistakes. For example, if the query string is "saling downwind", the altered query string will be "sailing downwind". This field is included only if the original query string contains a spelling mistake. :vartype altered_query: str :ivar alteration_override_query: The query string to use to force Bing to use the original string. For example, if the query string is "saling downwind", the override query string will be "+saling downwind". Remember to encode the query string which results in "%2Bsaling+downwind". This field is included only if the original query string contains a spelling mistake. :vartype alteration_override_query: str :ivar adult_intent: A Boolean value that indicates whether the specified query has adult intent. The value is true if the query has adult intent; otherwise, false. :vartype adult_intent: bool :ivar ask_user_for_location: A Boolean value that indicates whether Bing requires the user's location to provide accurate results. If you specified the user's location by using the X-MSEdge-ClientIP and X-Search-Location headers, you can ignore this field. For location aware queries, such as "today's weather" or "restaurants near me" that need the user's location to provide accurate results, this field is set to true. For location aware queries that include the location (for example, "Seattle weather"), this field is set to false. This field is also set to false for queries that are not location aware, such as "best sellers". :vartype ask_user_for_location: bool :ivar is_transactional: :vartype is_transactional: bool """ _validation = { 'original_query': {'required': True}, 'altered_query': {'readonly': True}, 'alteration_override_query': {'readonly': True}, 'adult_intent': {'readonly': True}, 'ask_user_for_location': {'readonly': True}, 'is_transactional': {'readonly': True}, } _attribute_map = { 'original_query': {'key': 'originalQuery', 'type': 'str'}, 'altered_query': {'key': 'alteredQuery', 'type': 'str'}, 'alteration_override_query': {'key': 'alterationOverrideQuery', 'type': 'str'}, 'adult_intent': {'key': 'adultIntent', 'type': 'bool'}, 'ask_user_for_location': {'key': 'askUserForLocation', 'type': 'bool'}, 'is_transactional': {'key': 'isTransactional', 'type': 'bool'}, } def __init__( self, **kwargs ): super(QueryContext, self).__init__(**kwargs) self.original_query = kwargs['original_query'] self.altered_query = None self.alteration_override_query = None self.adult_intent = None self.ask_user_for_location = None self.is_transactional = None class RankingGroup(msrest.serialization.Model): """Defines a search results group, such as mainline. All required parameters must be populated in order to send to Azure. :param items: Required. A list of search result items to display in the group. :type items: list[~web_search_client.models.RankingItem] """ _validation = { 'items': {'required': True}, } _attribute_map = { 'items': {'key': 'items', 'type': '[RankingItem]'}, } def __init__( self, **kwargs ): super(RankingGroup, self).__init__(**kwargs) self.items = kwargs['items'] class RankingItem(msrest.serialization.Model): """Defines a search result item to display. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param answer_type: Required. The answer that contains the item to display. Use the type to find the answer in the SearchResponse object. The type is the name of a SearchResponse field. Possible values include: "WebPages", "Images", "SpellSuggestions", "News", "RelatedSearches", "Videos", "Computation", "TimeZone". :type answer_type: str or ~web_search_client.models.AnswerType :ivar result_index: A zero-based index of the item in the answer.If the item does not include this field, display all items in the answer. For example, display all news articles in the News answer. :vartype result_index: int :ivar value: The ID that identifies either an answer to display or an item of an answer to display. If the ID identifies an answer, display all items of the answer. :vartype value: ~web_search_client.models.Identifiable :ivar html_index: :vartype html_index: int :ivar textual_index: :vartype textual_index: int :ivar screenshot_index: :vartype screenshot_index: int """ _validation = { 'answer_type': {'required': True}, 'result_index': {'readonly': True}, 'value': {'readonly': True}, 'html_index': {'readonly': True}, 'textual_index': {'readonly': True}, 'screenshot_index': {'readonly': True}, } _attribute_map = { 'answer_type': {'key': 'answerType', 'type': 'str'}, 'result_index': {'key': 'resultIndex', 'type': 'int'}, 'value': {'key': 'value', 'type': 'Identifiable'}, 'html_index': {'key': 'htmlIndex', 'type': 'int'}, 'textual_index': {'key': 'textualIndex', 'type': 'int'}, 'screenshot_index': {'key': 'screenshotIndex', 'type': 'int'}, } def __init__( self, **kwargs ): super(RankingItem, self).__init__(**kwargs) self.answer_type = kwargs['answer_type'] self.result_index = None self.value = None self.html_index = None self.textual_index = None self.screenshot_index = None class RankingResponse(msrest.serialization.Model): """Defines where on the search results page content should be placed and in what order. Variables are only populated by the server, and will be ignored when sending a request. :ivar pole: The search results that should be afforded the most visible treatment (for example, displayed above the mainline and sidebar). :vartype pole: ~web_search_client.models.RankingGroup :ivar mainline: The search results to display in the mainline. :vartype mainline: ~web_search_client.models.RankingGroup :ivar sidebar: The search results to display in the sidebar. :vartype sidebar: ~web_search_client.models.RankingGroup """ _validation = { 'pole': {'readonly': True}, 'mainline': {'readonly': True}, 'sidebar': {'readonly': True}, } _attribute_map = { 'pole': {'key': 'pole', 'type': 'RankingGroup'}, 'mainline': {'key': 'mainline', 'type': 'RankingGroup'}, 'sidebar': {'key': 'sidebar', 'type': 'RankingGroup'}, } def __init__( self, **kwargs ): super(RankingResponse, self).__init__(**kwargs) self.pole = None self.mainline = None self.sidebar = None class RelatedSearchesRelatedSearchAnswer(SearchResultsAnswer): """Defines a list of related queries made by others. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar follow_up_queries: :vartype follow_up_queries: list[~web_search_client.models.Query] :ivar query_context: Defines the query context that Bing used for the request. :vartype query_context: ~web_search_client.models.QueryContext :ivar total_estimated_matches: The estimated number of webpages that are relevant to the query. Use this number along with the count and offset query parameters to page the results. :vartype total_estimated_matches: long :ivar is_family_friendly: :vartype is_family_friendly: bool :param value: Required. A list of related queries that were made by others. :type value: list[~web_search_client.models.Query] """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'follow_up_queries': {'readonly': True}, 'query_context': {'readonly': True}, 'total_estimated_matches': {'readonly': True}, 'is_family_friendly': {'readonly': True}, 'value': {'required': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'follow_up_queries': {'key': 'followUpQueries', 'type': '[Query]'}, 'query_context': {'key': 'queryContext', 'type': 'QueryContext'}, 'total_estimated_matches': {'key': 'totalEstimatedMatches', 'type': 'long'}, 'is_family_friendly': {'key': 'isFamilyFriendly', 'type': 'bool'}, 'value': {'key': 'value', 'type': '[Query]'}, } def __init__( self, **kwargs ): super(RelatedSearchesRelatedSearchAnswer, self).__init__(**kwargs) self.value = kwargs['value'] class SearchResponse(Response): """Defines the top-level object that the response includes when the request succeeds. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar query_context: An object that contains the query string that Bing used for the request. This object contains the query string as entered by the user. It may also contain an altered query string that Bing used for the query if the query string contained a spelling mistake. :vartype query_context: ~web_search_client.models.QueryContext :ivar web_pages: A list of webpages that are relevant to the search query. :vartype web_pages: ~web_search_client.models.WebAnswer :ivar images: A list of images that are relevant to the search query. :vartype images: ~web_search_client.models.Images :ivar news: A list of news articles that are relevant to the search query. :vartype news: ~web_search_client.models.News :ivar related_searches: A list of related queries made by others. :vartype related_searches: ~web_search_client.models.RelatedSearchesRelatedSearchAnswer :ivar spell_suggestions: The query string that likely represents the user's intent. :vartype spell_suggestions: ~web_search_client.models.SpellSuggestions :ivar time_zone: The date and time of one or more geographic locations. :vartype time_zone: ~web_search_client.models.TimeZone :ivar videos: A list of videos that are relevant to the search query. :vartype videos: ~web_search_client.models.Videos :ivar computation: The answer to a math expression or units conversion expression. :vartype computation: ~web_search_client.models.Computation :ivar ranking_response: The order that Bing suggests that you display the search results in. :vartype ranking_response: ~web_search_client.models.RankingResponse """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'query_context': {'readonly': True}, 'web_pages': {'readonly': True}, 'images': {'readonly': True}, 'news': {'readonly': True}, 'related_searches': {'readonly': True}, 'spell_suggestions': {'readonly': True}, 'time_zone': {'readonly': True}, 'videos': {'readonly': True}, 'computation': {'readonly': True}, 'ranking_response': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'query_context': {'key': 'queryContext', 'type': 'QueryContext'}, 'web_pages': {'key': 'webPages', 'type': 'WebAnswer'}, 'images': {'key': 'images', 'type': 'Images'}, 'news': {'key': 'news', 'type': 'News'}, 'related_searches': {'key': 'relatedSearches', 'type': 'RelatedSearchesRelatedSearchAnswer'}, 'spell_suggestions': {'key': 'spellSuggestions', 'type': 'SpellSuggestions'}, 'time_zone': {'key': 'timeZone', 'type': 'TimeZone'}, 'videos': {'key': 'videos', 'type': 'Videos'}, 'computation': {'key': 'computation', 'type': 'Computation'}, 'ranking_response': {'key': 'rankingResponse', 'type': 'RankingResponse'}, } def __init__( self, **kwargs ): super(SearchResponse, self).__init__(**kwargs) self.query_context = None self.web_pages = None self.images = None self.news = None self.related_searches = None self.spell_suggestions = None self.time_zone = None self.videos = None self.computation = None self.ranking_response = None class SpellSuggestions(SearchResultsAnswer): """Defines a suggested query string that likely represents the user's intent. The search results include this response if Bing determines that the user may have intended to search for something different. For example, if the user searches for alon brown, Bing may determine that the user likely intended to search for Alton Brown instead (based on past searches by others of Alon Brown). Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar follow_up_queries: :vartype follow_up_queries: list[~web_search_client.models.Query] :ivar query_context: Defines the query context that Bing used for the request. :vartype query_context: ~web_search_client.models.QueryContext :ivar total_estimated_matches: The estimated number of webpages that are relevant to the query. Use this number along with the count and offset query parameters to page the results. :vartype total_estimated_matches: long :ivar is_family_friendly: :vartype is_family_friendly: bool :param value: Required. A list of suggested query strings that may represent the user's intention. The list contains only one Query object. :type value: list[~web_search_client.models.Query] """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'follow_up_queries': {'readonly': True}, 'query_context': {'readonly': True}, 'total_estimated_matches': {'readonly': True}, 'is_family_friendly': {'readonly': True}, 'value': {'required': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'follow_up_queries': {'key': 'followUpQueries', 'type': '[Query]'}, 'query_context': {'key': 'queryContext', 'type': 'QueryContext'}, 'total_estimated_matches': {'key': 'totalEstimatedMatches', 'type': 'long'}, 'is_family_friendly': {'key': 'isFamilyFriendly', 'type': 'bool'}, 'value': {'key': 'value', 'type': '[Query]'}, } def __init__( self, **kwargs ): super(SpellSuggestions, self).__init__(**kwargs) self.value = kwargs['value'] class StructuredValue(Thing): """StructuredValue. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar name: The name of the thing represented by this object. :vartype name: str :ivar url: The URL to get more information about the thing represented by this object. :vartype url: str :ivar image: Defines an image. :vartype image: ~web_search_client.models.ImageObject :ivar description: A short description of the item. :vartype description: str :ivar bing_id: An ID that uniquely identifies this item. :vartype bing_id: str """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'name': {'readonly': True}, 'url': {'readonly': True}, 'image': {'readonly': True}, 'description': {'readonly': True}, 'bing_id': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'image': {'key': 'image', 'type': 'ImageObject'}, 'description': {'key': 'description', 'type': 'str'}, 'bing_id': {'key': 'bingId', 'type': 'str'}, } def __init__( self, **kwargs ): super(StructuredValue, self).__init__(**kwargs) class TimeZone(SearchResultsAnswer): """Defines the data and time of one or more geographic locations. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar follow_up_queries: :vartype follow_up_queries: list[~web_search_client.models.Query] :ivar query_context: Defines the query context that Bing used for the request. :vartype query_context: ~web_search_client.models.QueryContext :ivar total_estimated_matches: The estimated number of webpages that are relevant to the query. Use this number along with the count and offset query parameters to page the results. :vartype total_estimated_matches: long :ivar is_family_friendly: :vartype is_family_friendly: bool :param primary_city_time: Required. The data and time, in UTC, of the geographic location specified in the query. If the query specified a specific geographic location (for example, a city), this object contains the name of the geographic location and the current date and time of the location, in UTC. If the query specified a general geographic location, such as a state or country, this object contains the date and time of the primary city or state found in the specified state or country. If the location contains additional time zones, the otherCityTimes field contains the data and time of cities or states located in the other time zones. :type primary_city_time: ~web_search_client.models.TimeZoneInformation :ivar other_city_times: A list of dates and times of nearby time zones. :vartype other_city_times: list[~web_search_client.models.TimeZoneInformation] """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'follow_up_queries': {'readonly': True}, 'query_context': {'readonly': True}, 'total_estimated_matches': {'readonly': True}, 'is_family_friendly': {'readonly': True}, 'primary_city_time': {'required': True}, 'other_city_times': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'follow_up_queries': {'key': 'followUpQueries', 'type': '[Query]'}, 'query_context': {'key': 'queryContext', 'type': 'QueryContext'}, 'total_estimated_matches': {'key': 'totalEstimatedMatches', 'type': 'long'}, 'is_family_friendly': {'key': 'isFamilyFriendly', 'type': 'bool'}, 'primary_city_time': {'key': 'primaryCityTime', 'type': 'TimeZoneInformation'}, 'other_city_times': {'key': 'otherCityTimes', 'type': '[TimeZoneInformation]'}, } def __init__( self, **kwargs ): super(TimeZone, self).__init__(**kwargs) self.primary_city_time = kwargs['primary_city_time'] self.other_city_times = None class TimeZoneInformation(msrest.serialization.Model): """Defines a date and time for a geographical location. All required parameters must be populated in order to send to Azure. :param location: Required. The name of the geographical location.For example, County; City; City, State; City, State, Country; or Time Zone. :type location: str :param time: Required. The data and time specified in the form, YYYY-MM-DDThh;mm:ss.ssssssZ. :type time: str :param utc_offset: Required. The offset from UTC. For example, UTC-7. :type utc_offset: str """ _validation = { 'location': {'required': True}, 'time': {'required': True}, 'utc_offset': {'required': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'time': {'key': 'time', 'type': 'str'}, 'utc_offset': {'key': 'utcOffset', 'type': 'str'}, } def __init__( self, **kwargs ): super(TimeZoneInformation, self).__init__(**kwargs) self.location = kwargs['location'] self.time = kwargs['time'] self.utc_offset = kwargs['utc_offset'] class VideoObject(MediaObject): """Defines a video object that is relevant to the query. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar name: The name of the thing represented by this object. :vartype name: str :ivar url: The URL to get more information about the thing represented by this object. :vartype url: str :ivar image: Defines an image. :vartype image: ~web_search_client.models.ImageObject :ivar description: A short description of the item. :vartype description: str :ivar bing_id: An ID that uniquely identifies this item. :vartype bing_id: str :ivar thumbnail_url: The URL to a thumbnail of the item. :vartype thumbnail_url: str :ivar provider: The source of the creative work. :vartype provider: list[~web_search_client.models.Thing] :ivar text: :vartype text: str :ivar content_url: Original URL to retrieve the source (file) for the media object (e.g the source URL for the image). :vartype content_url: str :ivar host_page_url: URL of the page that hosts the media object. :vartype host_page_url: str :ivar width: The width of the source media object, in pixels. :vartype width: int :ivar height: The height of the source media object, in pixels. :vartype height: int :ivar motion_thumbnail_url: :vartype motion_thumbnail_url: str :ivar motion_thumbnail_id: :vartype motion_thumbnail_id: str :ivar embed_html: :vartype embed_html: str :ivar allow_https_embed: :vartype allow_https_embed: bool :ivar view_count: :vartype view_count: int :ivar thumbnail: Defines an image. :vartype thumbnail: ~web_search_client.models.ImageObject :ivar video_id: :vartype video_id: str :ivar allow_mobile_embed: :vartype allow_mobile_embed: bool :ivar is_superfresh: :vartype is_superfresh: bool """ _validation = { 'id': {'readonly': True}, 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'name': {'readonly': True}, 'url': {'readonly': True}, 'image': {'readonly': True}, 'description': {'readonly': True}, 'bing_id': {'readonly': True}, 'thumbnail_url': {'readonly': True}, 'provider': {'readonly': True}, 'text': {'readonly': True}, 'content_url': {'readonly': True}, 'host_page_url': {'readonly': True}, 'width': {'readonly': True}, 'height': {'readonly': True}, 'motion_thumbnail_url': {'readonly': True}, 'motion_thumbnail_id': {'readonly': True}, 'embed_html': {'readonly': True}, 'allow_https_embed': {'readonly': True}, 'view_count': {'readonly': True}, 'thumbnail': {'readonly': True}, 'video_id': {'readonly': True}, 'allow_mobile_embed': {'readonly': True}, 'is_superfresh': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'image': {'key': 'image', 'type': 'ImageObject'}, 'description': {'key': 'description', 'type': 'str'}, 'bing_id': {'key': 'bingId', 'type': 'str'}, 'thumbnail_url': {'key': 'thumbnailUrl', 'type': 'str'}, 'provider': {'key': 'provider', 'type': '[Thing]'}, 'text': {'key': 'text', 'type': 'str'}, 'content_url': {'key': 'contentUrl', 'type': 'str'}, 'host_page_url': {'key': 'hostPageUrl', 'type': 'str'}, 'width': {'key': 'width', 'type': 'int'}, 'height': {'key': 'height', 'type': 'int'}, 'motion_thumbnail_url': {'key': 'motionThumbnailUrl', 'type': 'str'}, 'motion_thumbnail_id': {'key': 'motionThumbnailId', 'type': 'str'}, 'embed_html': {'key': 'embedHtml', 'type': 'str'}, 'allow_https_embed': {'key': 'allowHttpsEmbed', 'type': 'bool'}, 'view_count': {'key': 'viewCount', 'type': 'int'}, 'thumbnail': {'key': 'thumbnail', 'type': 'ImageObject'}, 'video_id': {'key': 'videoId', 'type': 'str'}, 'allow_mobile_embed': {'key': 'allowMobileEmbed', 'type': 'bool'}, 'is_superfresh': {'key': 'isSuperfresh', 'type': 'bool'}, } def __init__( self, **kwargs ): super(VideoObject, self).__init__(**kwargs) self.motion_thumbnail_url = None self.motion_thumbnail_id = None self.embed_html = None self.allow_https_embed = None self.view_count = None self.thumbnail = None self.video_id = None self.allow_mobile_embed = None self.is_superfresh = None class Videos(SearchResultsAnswer): """Defines a video answer. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar follow_up_queries: :vartype follow_up_queries: list[~web_search_client.models.Query] :ivar query_context: Defines the query context that Bing used for the request. :vartype query_context: ~web_search_client.models.QueryContext :ivar total_estimated_matches: The estimated number of webpages that are relevant to the query. Use this number along with the count and offset query parameters to page the results. :vartype total_estimated_matches: long :ivar is_family_friendly: :vartype is_family_friendly: bool :param value: Required. A list of video objects that are relevant to the query. :type value: list[~web_search_client.models.VideoObject] :ivar next_offset: :vartype next_offset: int :ivar query_expansions: :vartype query_expansions: list[~web_search_client.models.Query] :ivar related_searches: :vartype related_searches: list[~web_search_client.models.Query] """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'follow_up_queries': {'readonly': True}, 'query_context': {'readonly': True}, 'total_estimated_matches': {'readonly': True}, 'is_family_friendly': {'readonly': True}, 'value': {'required': True}, 'next_offset': {'readonly': True}, 'query_expansions': {'readonly': True}, 'related_searches': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'follow_up_queries': {'key': 'followUpQueries', 'type': '[Query]'}, 'query_context': {'key': 'queryContext', 'type': 'QueryContext'}, 'total_estimated_matches': {'key': 'totalEstimatedMatches', 'type': 'long'}, 'is_family_friendly': {'key': 'isFamilyFriendly', 'type': 'bool'}, 'value': {'key': 'value', 'type': '[VideoObject]'}, 'next_offset': {'key': 'nextOffset', 'type': 'int'}, 'query_expansions': {'key': 'queryExpansions', 'type': '[Query]'}, 'related_searches': {'key': 'relatedSearches', 'type': '[Query]'}, } def __init__( self, **kwargs ): super(Videos, self).__init__(**kwargs) self.value = kwargs['value'] self.next_offset = None self.query_expansions = None self.related_searches = None class WebAnswer(SearchResultsAnswer): """Defines a list of relevant webpage links. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar follow_up_queries: :vartype follow_up_queries: list[~web_search_client.models.Query] :ivar query_context: Defines the query context that Bing used for the request. :vartype query_context: ~web_search_client.models.QueryContext :ivar total_estimated_matches: The estimated number of webpages that are relevant to the query. Use this number along with the count and offset query parameters to page the results. :vartype total_estimated_matches: long :ivar is_family_friendly: :vartype is_family_friendly: bool :param value: Required. A list of webpages that are relevant to the query. :type value: list[~web_search_client.models.WebPage] :ivar some_results_removed: A Boolean value that indicates whether the response excluded some results from the answer. If Bing excluded some results, the value is true. :vartype some_results_removed: bool """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'follow_up_queries': {'readonly': True}, 'query_context': {'readonly': True}, 'total_estimated_matches': {'readonly': True}, 'is_family_friendly': {'readonly': True}, 'value': {'required': True}, 'some_results_removed': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'follow_up_queries': {'key': 'followUpQueries', 'type': '[Query]'}, 'query_context': {'key': 'queryContext', 'type': 'QueryContext'}, 'total_estimated_matches': {'key': 'totalEstimatedMatches', 'type': 'long'}, 'is_family_friendly': {'key': 'isFamilyFriendly', 'type': 'bool'}, 'value': {'key': 'value', 'type': '[WebPage]'}, 'some_results_removed': {'key': 'someResultsRemoved', 'type': 'bool'}, } def __init__( self, **kwargs ): super(WebAnswer, self).__init__(**kwargs) self.value = kwargs['value'] self.some_results_removed = None class WebGrouping(msrest.serialization.Model): """WebGrouping. You probably want to use the sub-classes and not this class directly. Known sub-classes are: . All required parameters must be populated in order to send to Azure. :param web_pages: Required. :type web_pages: list[~web_search_client.models.WebPage] :param type: Required. Constant filled by server. :type type: str """ _validation = { 'web_pages': {'required': True}, 'type': {'required': True}, } _attribute_map = { 'web_pages': {'key': 'webPages', 'type': '[WebPage]'}, 'type': {'key': '_type', 'type': 'str'}, } _subtype_map = { 'type': {} } def __init__( self, **kwargs ): super(WebGrouping, self).__init__(**kwargs) self.web_pages = kwargs['web_pages'] self.type = None # type: Optional[str] class WebMetaTag(msrest.serialization.Model): """Defines a webpage's metadata. Variables are only populated by the server, and will be ignored when sending a request. :ivar name: The metadata. :vartype name: str :ivar content: The name of the metadata. :vartype content: str """ _validation = { 'name': {'readonly': True}, 'content': {'readonly': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'content': {'key': 'content', 'type': 'str'}, } def __init__( self, **kwargs ): super(WebMetaTag, self).__init__(**kwargs) self.name = None self.content = None class WebPage(CreativeWork): """Defines a webpage that is relevant to the query. Variables are only populated by the server, and will be ignored when sending a request. :param type: :type type: str :ivar id: A String identifier. :vartype id: str :ivar web_search_url: The URL To Bing's search result for this item. :vartype web_search_url: str :ivar name: The name of the thing represented by this object. :vartype name: str :ivar url: The URL to get more information about the thing represented by this object. :vartype url: str :ivar image: Defines an image. :vartype image: ~web_search_client.models.ImageObject :ivar description: A short description of the item. :vartype description: str :ivar bing_id: An ID that uniquely identifies this item. :vartype bing_id: str :ivar thumbnail_url: The URL to a thumbnail of the item. :vartype thumbnail_url: str :ivar provider: The source of the creative work. :vartype provider: list[~web_search_client.models.Thing] :ivar text: :vartype text: str :ivar display_url: The display URL of the webpage. The URL is meant for display purposes only and is not well formed. :vartype display_url: str :ivar snippet: A snippet of text from the webpage that describes its contents. :vartype snippet: str :ivar deep_links: A list of links to related content that Bing found in the website that contains this webpage. The Webpage object in this context includes only the name, url, urlPingSuffix, and snippet fields. :vartype deep_links: list[~web_search_client.models.WebPage] :ivar date_last_crawled: The last time that Bing crawled the webpage. The date is in the form, YYYY-MM-DDTHH:MM:SS. For example, 2015-04-13T05:23:39. :vartype date_last_crawled: str :ivar search_tags: A list of search tags that the webpage owner specified on the webpage. The API returns only indexed search tags. The name field of the MetaTag object contains the indexed search tag. Search tags begin with search.* (for example, search.assetId). The content field contains the tag's value. :vartype search_tags: list[~web_search_client.models.WebMetaTag] :ivar primary_image_of_page: Defines an image. :vartype primary_image_of_page: ~web_search_client.models.ImageObject """ _validation = { 'id': {'readonly': True}, 'web_search_url': {'readonly': True}, 'name': {'readonly': True}, 'url': {'readonly': True}, 'image': {'readonly': True}, 'description': {'readonly': True}, 'bing_id': {'readonly': True}, 'thumbnail_url': {'readonly': True}, 'provider': {'readonly': True}, 'text': {'readonly': True}, 'display_url': {'readonly': True}, 'snippet': {'readonly': True}, 'deep_links': {'readonly': True}, 'date_last_crawled': {'readonly': True}, 'search_tags': {'readonly': True}, 'primary_image_of_page': {'readonly': True}, } _attribute_map = { 'type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'image': {'key': 'image', 'type': 'ImageObject'}, 'description': {'key': 'description', 'type': 'str'}, 'bing_id': {'key': 'bingId', 'type': 'str'}, 'thumbnail_url': {'key': 'thumbnailUrl', 'type': 'str'}, 'provider': {'key': 'provider', 'type': '[Thing]'}, 'text': {'key': 'text', 'type': 'str'}, 'display_url': {'key': 'displayUrl', 'type': 'str'}, 'snippet': {'key': 'snippet', 'type': 'str'}, 'deep_links': {'key': 'deepLinks', 'type': '[WebPage]'}, 'date_last_crawled': {'key': 'dateLastCrawled', 'type': 'str'}, 'search_tags': {'key': 'searchTags', 'type': '[WebMetaTag]'}, 'primary_image_of_page': {'key': 'primaryImageOfPage', 'type': 'ImageObject'}, } def __init__( self, **kwargs ): super(WebPage, self).__init__(**kwargs) self.display_url = None self.snippet = None self.deep_links = None self.date_last_crawled = None self.search_tags = None self.primary_image_of_page = None
38.298134
391
0.623508
[ "MIT" ]
EricLiclair/bing-search-sdk-for-python
sdk/WebSearch/web_search_client/models/_models.py
77,975
Python
from cudf._lib.nvtext.edit_distance import edit_distance, edit_distance_matrix from cudf._lib.nvtext.generate_ngrams import ( generate_character_ngrams, generate_ngrams, ) from cudf._lib.nvtext.ngrams_tokenize import ngrams_tokenize from cudf._lib.nvtext.normalize import normalize_characters, normalize_spaces from cudf._lib.nvtext.replace import filter_tokens, replace_tokens from cudf._lib.nvtext.stemmer import ( LetterType, is_letter, is_letter_multi, porter_stemmer_measure, ) from cudf._lib.nvtext.tokenize import ( _count_tokens_column, _count_tokens_scalar, _tokenize_column, _tokenize_scalar, character_tokenize, detokenize, ) from cudf._lib.strings.attributes import ( code_points, count_bytes, count_characters, ) from cudf._lib.strings.capitalize import capitalize, title, is_title from cudf._lib.strings.case import swapcase, to_lower, to_upper from cudf._lib.strings.char_types import ( filter_alphanum, is_alnum, is_alpha, is_decimal, is_digit, is_lower, is_numeric, is_space, is_upper, ) from cudf._lib.strings.combine import ( concatenate, join, join_lists_with_column, join_lists_with_scalar, ) from cudf._lib.strings.contains import contains_re, count_re, match_re from cudf._lib.strings.convert.convert_fixed_point import to_decimal from cudf._lib.strings.convert.convert_floats import is_float from cudf._lib.strings.convert.convert_integers import is_integer from cudf._lib.strings.convert.convert_urls import url_decode, url_encode from cudf._lib.strings.extract import extract from cudf._lib.strings.find import ( contains, contains_multiple, endswith, endswith_multiple, find, rfind, startswith, startswith_multiple, ) from cudf._lib.strings.findall import findall from cudf._lib.strings.json import get_json_object from cudf._lib.strings.padding import PadSide, center, ljust, pad, rjust, zfill from cudf._lib.strings.repeat import repeat_scalar, repeat_sequence from cudf._lib.strings.replace import ( insert, replace, replace_multi, slice_replace, ) from cudf._lib.strings.replace_re import ( replace_multi_re, replace_re, replace_with_backrefs, ) from cudf._lib.strings.split.partition import partition, rpartition from cudf._lib.strings.split.split import ( rsplit, rsplit_record, split, split_record, ) from cudf._lib.strings.strip import lstrip, rstrip, strip from cudf._lib.strings.substring import get, slice_from, slice_strings from cudf._lib.strings.translate import filter_characters, translate from cudf._lib.strings.wrap import wrap
29.898876
79
0.782413
[ "Apache-2.0" ]
HaoYang670/cudf
python/cudf/cudf/_lib/strings/__init__.py
2,661
Python
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyPytestRunner(PythonPackage): """Invoke py.test as distutils command with dependency resolution.""" homepage = "https://github.com/pytest-dev/pytest-runner" url = "https://pypi.io/packages/source/p/pytest-runner/pytest-runner-5.1.tar.gz" version('5.1', sha256='25a013c8d84f0ca60bb01bd11913a3bcab420f601f0f236de4423074af656e7a') version('2.11.1', sha256='983a31eab45e375240e250161a556163bc8d250edaba97960909338c273a89b3') depends_on('py-setuptools', type='build') depends_on('[email protected]:', type='build')
39.05
96
0.75032
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
JoshuaSBrown/spack
var/spack/repos/builtin/packages/py-pytest-runner/package.py
781
Python
""" OpenSpace Copyright (c) 2014-2018 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. This script traverses the file tree of OpenSpace and will check all files' include guards for correctness. At the moment this includes: * Correctness (file has a #ifndef. #define, and #endif lines) * Equality (using the same name for the #ifdef and #define) * Styling * no empty line between #ifndef and #define lines * Empty lines before and after #ifndef #define block * Files end with an empty line * Copyright header is correctly indented * Include guard correctly uses the filename * Include guard is all upper case * Correct usage of the name in the final comment of the file * Correct year of copyright notice * Naming convention * OpenSpace include guards start with OPENSPACE, Ghoul with GHOUL, module includes have the module name in it * The correct submodule is used * Checking for duplicates between all files * Checking that no file includes glm header directly * Checking whether any files starts with the UTF-8 Byte-order mark * Checking whether a file as empty-only lines * Checking whether the default assert macros are used anywhere instead of the ghoul_assert macro * Checking whether there are TABs in the file If this script is executed from the base directory of OpenSpace, no arguments need to be passed, otherwise the first and only argument has to point to the base directory. Thus, the default value of the first argument is '.' """ import fnmatch import glob import os import re import sys current_year = '2018' is_strict_mode = False is_silent_mode = False def get_ifndef_symbol(lines): index = [i for i,s in enumerate(lines) if '#ifndef ' in s] if len(index) == 0: return '', -1 result = re.search('#ifndef (.*)\n', lines[index[0]]) return result.group(1), index[0] def get_define_symbol(lines): index = [i for i,s in enumerate(lines) if '#define ' in s] if len(index) == 0: return '', -1 result = re.search('#define (.*)\n', lines[index[0]]) return result.group(1), index[0] def check_correctness(lines): ifndef_symbol, line_number = get_ifndef_symbol(lines) if line_number == -1: return 'No #ifndef in file' define_symbol, line_number = get_define_symbol(lines) if (line_number == -1): return 'No #define in file' index = [i for i,s in enumerate(lines) if '#endif' in s] if len(index) == 0: return 'No #endif in file' return '' def check_equality(lines): ifndef, _ = get_ifndef_symbol(lines) define, _ = get_define_symbol(lines) if ifndef == define: return '' else: return ifndef + ' ' + define def check_styling(lines): ifndef_symbol, ifndef_line = get_ifndef_symbol(lines) _, define_line = get_define_symbol(lines) if abs(ifndef_line - define_line) != 1: return '#ifndef and #define lines are not subsequent' if lines[ifndef_line - 1].strip() != '': return 'Preceding line is not empty' if lines[define_line + 1].strip() != '': return 'Following line is not empty' if not lines[-1][-1] in ['\n', '\r']: return 'Last line must end with a newline' for l in lines[2:23]: if l[0] != ' ': return 'Copyright header must be indented' if ifndef_symbol != ifndef_symbol.upper(): return 'Include guard is not all upper case' return '' def check_styling_filename(lines, filename): ifndef_symbol, _ = get_ifndef_symbol(lines) file = os.path.splitext(os.path.basename(filename))[0].upper() if not (file in ifndef_symbol or file in ifndef_symbol.replace('_', '')): return 'Malformed include guard: ' + ifndef_symbol + ' || ' + file def check_comment(lines): ifndef_symbol, _ = get_ifndef_symbol(lines) index = [i for i,s in enumerate(lines) if '#endif' in s] endif_line = lines[index[-1]].strip() if endif_line != '#endif // ' + ifndef_symbol: print(ifndef_symbol) print(endif_line) return '#endif line is not correctly formatted' else: return '' def check_copyright(lines): index = [i for i,s in enumerate(lines[0:23]) if 'Copyright' in s] if len(index) == 0: return 'No copyright header found' beginning_string = ' * Copyright (c) 2012-' # * Copyright (c) 2014- year = lines[index[0]][len(beginning_string) : len(beginning_string) + 4] if lines[index[0] + 1][0] != ' ': return 'Copyright header is not correctly indented' if year != current_year: return 'Out of date copyright notice ' + year + ' || ' + current_year return '' def check_byte_order_mark_character(lines): c = lines[0][0] if c == 'ï': return 'File contains UTF-8 byte mark order character' return '' def check_naming_convention_component(lines, component): ifndef_symbol, _ = get_ifndef_symbol(lines) component_part = ifndef_symbol[2:2 + len(component)] if component_part != component.upper(): return '#ifndef naming convention broken: ' + ifndef_symbol + ' || ' + component.upper() else: return '' def check_naming_convention_subcomponent(lines, component, file): ifndef_symbol, _ = get_ifndef_symbol(lines) if component == "ghoul" or component == "openspace_core": return subcomponent_part = ifndef_symbol[2 + len(component) + 1 :] subcomponent_part = subcomponent_part[: subcomponent_part.find('_')] path_part = file.split('/')[1] second_path_part = file.split('/')[2] if (path_part.upper() != subcomponent_part) and (second_path_part.upper() != subcomponent_part): return 'Subcomponent naming convention broken: ' + ifndef_symbol else: return '' def check_duplicates(lines, previousSymbols): ifndef_symbol, _ = get_ifndef_symbol(lines) if ifndef_symbol in previousSymbols: return False, ifndef_symbol else: return True, ifndef_symbol def check_glm_header(lines, file): Allowed_Files = [ 'ghoul/glm.h' ] for f in Allowed_Files: if f in file.replace('\\', '/'): return '' index = [i for i,s in enumerate(lines) if '#include <glm/glm.hpp>' in s or '#include "glm/glm.hpp>"' in s] if len(index) > 0: return 'File used wrong glm include. Use "#include <ghoul/glm.h>" instead' else: return '' def check_core_dependency(lines, component): if component != "openspace_core": return '' index = [i for i,s in enumerate(lines) if 'OPENSPACE_MODULE_' in s] if len(index) > 0: return lines[index[0]][:-1] else: return '' def check_using_namespace(lines): index = [i for i,s in enumerate(lines) if "using namespace" in s.strip()] if len(index) > 0: return lines[index[0]] else: return '' def check_end_of_line(lines): if lines[-1][-1] != '\n': return lines[-1][-1] else: return '' def check_empty_only_line(lines): # Disable this check in non-strict mode if not is_strict_mode: return '' index = [i + 1 for i, s in enumerate(lines) if s.translate({ord(c): None for c in '\n\r'}).isspace()] if len(index) > 0: return index else: return '' def check_assert_usage(lines): # _assert checks for both ghoul_assert and static_assert, which are both reasonable index = [i + 1 for i,s in enumerate(lines) if ('assert(' in s and not '_assert(' in s) and s.strip()[0:2] != '//'] if len(index) > 0: return index else: return ''; def check_line_length(lines): # Disable this check in non-strict mode if not is_strict_mode: return '' index = [i + 1 for i, s in enumerate(lines) if len(s) > (90 + 1)] if len(index) > 0: return index else: return '' def check_empty_character_at_end(lines): # Disable this check in non-strict mode if not is_strict_mode: return '' index = [i + 1 for i, s in enumerate(lines) if len(s) > 1 and s[-2] == ' ' and not s.strip() == ''] if len(index) > 0: return index else: return '' def check_for_tab(lines): index = [i + 1 for i, s in enumerate(lines) if '\t' in s] if len(index) > 0: return index else: return '' previousSymbols = {} def check_header_file(file, component): with open(file, 'r+', encoding="utf8") as f: lines = f.readlines() correctness = check_correctness(lines) if correctness: print(file, '\t', 'Correctness check failed', '\t', correctness) return equality = check_equality(lines) if equality: print(file, '\t', 'Equality check failed', '\t', equality) return styling = check_styling(lines) if styling: print(file, '\t', 'Styling check failed', '\t', styling) return styling_filename = check_styling_filename(lines, file) if styling_filename: print(file, '\t', 'Filename styling check failed', '\t', styling_filename) return comment = check_comment(lines) if comment: print(file, '\t', 'Comment check failed', '\t', comment) return copyright = check_copyright(lines) if copyright: print(file, '\t', 'Copyright check failed', '\t', copyright) return naming_component = check_naming_convention_component(lines, component) if naming_component: print(file, '\t', 'Naming convention broken', '\t', naming_component) return naming_subcomponent = check_naming_convention_subcomponent(lines, component, file) if naming_subcomponent: print(file, '\t', 'Naming convention broken', '\t', naming_subcomponent) return end_of_line = check_end_of_line(lines) if end_of_line: print(file, '\t', 'Last line does not contain a newline character: ', end_of_line) return duplicates, symbol = check_duplicates(lines, previousSymbols) if not duplicates: print(file, '\t', 'Duplicate include guard', symbol, 'first in', previousSymbols[symbol]) return else: previousSymbols[symbol] = file header = check_glm_header(lines, file) if header: print(file, '\t', 'Illegal glm header include', header) return core_dependency = check_core_dependency(lines, component) if core_dependency: print(file, '\t', 'Wrong dependency (core depends on module)', core_dependency) if (not 'ghoul_gl.h' in file): # ghoul_gl.h is allowed to use 'using namespace' to pull the gl namespace in using_namespaces = check_using_namespace(lines) if using_namespaces: print(file, '\t', 'Using namespace found in header file') bom = check_byte_order_mark_character(lines) if bom: print(file, '\t', 'Byte order mark failed:', bom) empty_only_lines = check_empty_only_line(lines) if empty_only_lines: print(file, '\t', 'Empty only line: ', empty_only_lines) line_length = check_line_length(lines) if line_length: print(file, '\t', 'Line length exceeded: ', line_length) empty_character_at_end = check_empty_character_at_end(lines) if empty_character_at_end: print(file, '\t', 'Empty character at end: ', empty_character_at_end) assert_usage = check_assert_usage(lines) if assert_usage: print(file, '\t', 'Wrong assert usage: ', assert_usage) tabs = check_for_tab(lines) if tabs: print(file, '\t', 'TABs found: ', tabs) def check_inline_file(file, component): with open(file, 'r+', encoding="utf8") as f: lines = f.readlines() copyright = check_copyright(lines) if copyright: print(file, '\t', 'Copyright check failed', '\t', copyright) header = check_glm_header(lines, file) if header: print(file, '\t', 'Illegal glm header include', header) core_dependency = check_core_dependency(lines, component) if core_dependency: print(file, '\t', 'Wrong dependency (core depends on module)', core_dependency) end_of_line = check_end_of_line(lines) if end_of_line: print(file, '\t', 'Last line does not contain a newline character: ', end_of_line) return bom = check_byte_order_mark_character(lines) if bom: print(file, '\t', 'Byte order mark failed:', bom) empty_only_lines = check_empty_only_line(lines) if empty_only_lines: print(file, '\t', 'Empty only line: ', empty_only_lines) line_length = check_line_length(lines) if line_length: print(file, '\t', 'Line length exceeded: ', line_length) if (not '_doc.inl' in file): # The _doc.inl files are allowed to use using namespace as they are inclued # from the cpp files and thus don't leak it using_namespaces = check_using_namespace(lines) if using_namespaces: print(file, '\t', 'Using namespace found in inline file') line_length = check_line_length(lines) if line_length: print(file, '\t', 'Line length exceeded: ', line_length) empty_character_at_end = check_empty_character_at_end(lines) if empty_character_at_end: print(file, '\t', 'Empty character at end: ', empty_character_at_end) assert_usage = check_assert_usage(lines) if assert_usage: print(file, '\t', 'Wrong assert usage: ', assert_usage) tabs = check_for_tab(lines) if tabs: print(file, '\t', 'TABs found: ', tabs) def check_source_file(file, component): with open(file, 'r+', encoding="utf8") as f: lines = f.readlines() header = check_glm_header(lines, file) if header: print(file, '\t', 'Illegal glm header include', header) core_dependency = check_core_dependency(lines, component) if core_dependency: print(file, '\t' 'Wrong core dependency', core_dependency) end_of_line = check_end_of_line(lines) if end_of_line: print(file, '\t', 'Last line does not contain a newline character: ', end_of_line) return copyright = check_copyright(lines) if copyright: print(file, '\t', 'Copyright check failed', '\t', copyright) bom = check_byte_order_mark_character(lines) if bom: print(file, '\t', 'Byte order mark failed:', bom) empty_only_lines = check_empty_only_line(lines) if empty_only_lines: print(file, '\t', 'Empty only line: ', empty_only_lines) line_length = check_line_length(lines) if line_length: print(file, '\t', 'Line length exceeded: ', line_length) empty_character_at_end = check_empty_character_at_end(lines) if empty_character_at_end: print(file, '\t', 'Empty character at end: ', empty_character_at_end) assert_usage = check_assert_usage(lines) if assert_usage: print(file, '\t', 'Wrong assert usage: ', assert_usage) tabs = check_for_tab(lines) if tabs: print(file, '\t', 'TABs found: ', tabs) def check_files(positiveList, negativeList, component, check_function): files = [] for p in positiveList: f = glob.glob(p, recursive=True) f = [fi.replace('\\', '/') for fi in f] files.extend(f) negativeFiles = [] for n in negativeList: f = glob.glob(n, recursive=True) f = [fi.replace('\\', '/') for fi in f] negativeFiles.extend(f) filtered_files = [f for f in files if f not in negativeFiles] for file in filtered_files: check_function(file, component) basePath = './' if len(sys.argv) > 1: if sys.argv[1] != "strict": basePath = sys.argv[1] + '/' for a in sys.argv: if a == "strict": is_strict_mode = True if a == "silent": is_silent_mode = True # Check header files if not is_silent_mode: print("Checking header files") print("=====================") check_files( [basePath + 'include/**/*.h'], [], 'openspace_core', check_header_file ) check_files( [basePath + 'apps/**/*.h'], [basePath + 'apps/**/ext/**/*.h'], 'openspace_app', check_header_file ) check_files( [basePath + 'modules/**/*.h'], [ basePath + 'modules/**/ext/**/*.h', basePath + 'modules/**/node_modules/**/*.h', basePath + 'modules/webbrowser/resource.h' ], 'openspace_module', check_header_file ) check_files( [basePath + 'ext/ghoul/include/**/*.h'], [], 'ghoul', check_header_file ) if not is_silent_mode: print("") print("Checking inline files") print("=====================") check_files( [basePath + 'include/**/*.inl'], [], 'openspace_core', check_inline_file ) check_files( [basePath + 'src/**/*.inl'], [], 'openspace_core', check_inline_file ) check_files( [basePath + 'apps/**/*.inl'], [basePath + 'apps/**/ext/**/*.inl'], 'openspace_app', check_inline_file ) check_files( [basePath + 'modules/**/*.inl'], [basePath + 'modules/**/ext/**/*.h'], 'openspace_module', check_inline_file ) check_files( [basePath + 'ext/ghoul/include/**/*.inl'], [], 'ghoul', check_inline_file ) if not is_silent_mode: print("") print("Checking source files") print("=====================") check_files( [basePath + 'src/**/*.cpp'], [], 'openspace_core', check_source_file ) check_files( [basePath + 'apps/**/*.cpp'], [basePath + 'apps/**/ext/**/*.cpp'], 'openspace_app', check_source_file ) check_files( [basePath + 'modules/**/*.cpp'], [basePath + 'modules/**/ext/**/*.cpp', basePath + 'modules/**/node_modules/**/*.cpp'], 'openspace_module', check_source_file ) check_files( [basePath + 'ext/ghoul/src/**/*.cpp'], [], 'ghoul', check_source_file )
28.542522
118
0.623857
[ "MIT" ]
nbartzokas/OpenSpace
support/coding/check_style_guide.py
19,467
Python
""" Training data and validation accuracy. """ # Author: Changyu Liu <[email protected]> # Last modified: 2018-07-06 # LICENSE: MIT import os import numpy as np import tensorflow as tf from PIL import Image import train_test_split import cnn N_CLASSES = 2 # dogs and cats IMG_W = 208 # resize the image, if the input image is too large, training will be very slow IMG_H = 208 BATCH_SIZE = 16 CAPACITY = 2000 MAX_STEP = 15000 # with current parameters, it is suggested to use learning rate<0.0001 learning_rate = 0.0001 def run_training(): # Set there directories . train_dir = './data/train/' logs_train_dir = './logs/train/' train, train_label = train_test_split.get_files(train_dir) train_batch, train_label_batch = train_test_split.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY) train_logits = cnn.inference(train_batch, BATCH_SIZE, N_CLASSES) train_loss = cnn.losses(train_logits, train_label_batch) train_op = cnn.training(train_loss, learning_rate) train__acc = cnn.evaluation(train_logits, train_label_batch) summary_op = tf.summary.merge_all() sess = tf.Session() train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph) saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) try: for step in np.arange(MAX_STEP): if coord.should_stop(): break _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc]) if step % 50 == 0: print( "Step {}, ".format(step), "train loss = {:.2f}, ".format(tra_loss), "train accuracy = {:.2f}%".format(tra_acc * 100.0)) summary_str = sess.run(summary_op) train_writer.add_summary(summary_str, step) if step % 2000 == 0 or (step + 1) == MAX_STEP: checkpoint_path = os.path.join(logs_train_dir, "model.ckpt") saver.save(sess, checkpoint_path, global_step=step) except tf.errors.OutOfRangeError: print("Done training -- epoch limit reached") finally: coord.request_stop() coord.join(threads) sess.close() def get_image(train): """ Randomly pick one image from training data ==================== Args: train: train data ==================== Return: image """ n = len(train) ind = np.random.randint(0, n) img_dir = train[ind] image = Image.open(img_dir) image = image.resize([208, 208]) image = np.array(image) return image def evaluate(): """ Test one image against the saved models and parameters """ # you need to change the directories to yours. train_dir = './data/train/' train, train_label = train_test_split.get_files(train_dir) image_array = get_image(train) with tf.Graph().as_default(): batch_size = 1 n_classes = 2 image = tf.cast(image_array, tf.float32) image = tf.image.per_image_standardization(image) image = tf.reshape(image, [1, 208, 208, 3]) logits = cnn.inference(image, batch_size, n_classes) logits = tf.nn.softmax(logits) X = tf.placeholder(tf.float32, shape=[208, 208, 3]) # you need to change the directories to yours. logs_train_dir = './logs/train/' saver = tf.train.Saver() with tf.Session() as sess: print("Reading checkpoints...") ckpt = tf.train.get_checkpoint_state(logs_train_dir) if ckpt and ckpt.model_checkpoint_path: global_step = ckpt.model_checkpoint_path.split( '/')[-1].split('-')[-1] saver.restore(sess, ckpt.model_checkpoint_path) print("Loading success, global_step is %s".format(global_step)) else: print("No checkpoint file found") prediction = sess.run(logits, feed_dict={X: image_array}) max_index = np.argmax(prediction) if max_index == 0: print("This is a cat with possibility {:.6f}".format( prediction[:, 0])) else: print("This is a dog with possibility {:.6f}".format( prediction[:, 1]))
31.686667
92
0.568062
[ "MIT" ]
GPUworkstation/tensorflow-project
cats_dogs/base.py
4,753
Python
import json #Try with python3 try: from urllib.request import urlopen, urlretrieve from urllib.request import urlretrieve #Else try python2 except: from urllib2 import urlopen from urllib import urlretrieve from os import path #User home folder homeFolder = path.expanduser("~") #Save pictures to a folder pictureLocation = homeFolder + "/Downloads/" def main(): ########Defining variables####### #URL in json format for latest wallpaper url = "http://www.bing.com/HPImageArchive.aspx?format=js&idx=0&n=1&mkt=en-US" getHighRes = 1 #Manually change the resolution in the url to 1920x1200. Change to 0 if url breaks. #Get json response from bing.com response = urlopen(url) #Trying python 3 try: output = response.readall().decode('utf-8') #Else trying python2 except: output = response.read() #Get json output data = json.loads(output) #Form image url from json output_url = "http://www.bing.com/" + data["images"][0]["url"] #Form 1920x1200 image from above url output_url_highres = output_url.replace("1080", "1200") #If higher resolution is preferred(default) if getHighRes == 1: #Use try block to catch any failure in getting the high res image try: process_url(output_url_highres) except: process_url(output_url) else: process_url(output_url) def process_url(image_url): if not check_url(image_url) == 1: #Get the filename of the new file from the url filename = pictureLocation + image_url.split('/')[-1] #Retrieve the image from the web and save it to desired location req = urlretrieve(image_url, filename) #Save the file path + filename to the output variable bingImage = path.abspath(filename) print(bingImage) else: raise Exception('bad url') def check_url(image_url): conn = urlopen(image_url) if not conn.getcode() == 200: return 1 main()
25.164706
103
0.624123
[ "MIT" ]
networkprogrammer/bing-wallpaper-for-mac
Bing Wallpaper/GetWallpaper.py
2,139
Python
import asyncio from collections import defaultdict from dataclasses import dataclass import json import logging import os import time from typing import Dict, Set from ray._private.utils import import_attr from ray.core.generated import runtime_env_agent_pb2 from ray.core.generated import runtime_env_agent_pb2_grpc from ray.core.generated import agent_manager_pb2 import ray.dashboard.utils as dashboard_utils import ray.dashboard.modules.runtime_env.runtime_env_consts \ as runtime_env_consts from ray.experimental.internal_kv import _internal_kv_initialized, \ _initialize_internal_kv from ray._private.ray_logging import setup_component_logger from ray._private.runtime_env.conda import CondaManager from ray._private.runtime_env.context import RuntimeEnvContext from ray._private.runtime_env.py_modules import PyModulesManager from ray._private.runtime_env.working_dir import WorkingDirManager from ray._private.runtime_env.container import ContainerManager from ray._private.runtime_env.plugin import decode_plugin_uri from ray._private.runtime_env.utils import RuntimeEnv logger = logging.getLogger(__name__) # TODO(edoakes): this is used for unit tests. We should replace it with a # better pluggability mechanism once available. SLEEP_FOR_TESTING_S = os.environ.get("RAY_RUNTIME_ENV_SLEEP_FOR_TESTING_S") @dataclass class CreatedEnvResult: # Whether or not the env was installed correctly. success: bool # If success is True, will be a serialized RuntimeEnvContext # If success is False, will be an error message. result: str class RuntimeEnvAgent(dashboard_utils.DashboardAgentModule, runtime_env_agent_pb2_grpc.RuntimeEnvServiceServicer): """An RPC server to create and delete runtime envs. Attributes: dashboard_agent: The DashboardAgent object contains global config. """ def __init__(self, dashboard_agent): super().__init__(dashboard_agent) self._runtime_env_dir = dashboard_agent.runtime_env_dir self._logging_params = dashboard_agent.logging_params self._per_job_logger_cache = dict() # Cache the results of creating envs to avoid repeatedly calling into # conda and other slow calls. self._env_cache: Dict[str, CreatedEnvResult] = dict() # Maps a serialized runtime env to a lock that is used # to prevent multiple concurrent installs of the same env. self._env_locks: Dict[str, asyncio.Lock] = dict() # Keeps track of the URIs contained within each env so we can # invalidate the env cache when a URI is deleted. # This is a temporary mechanism until we have per-URI caching. self._uris_to_envs: Dict[str, Set[str]] = defaultdict(set) # Initialize internal KV to be used by the working_dir setup code. _initialize_internal_kv(self._dashboard_agent.gcs_client) assert _internal_kv_initialized() self._conda_manager = CondaManager(self._runtime_env_dir) self._py_modules_manager = PyModulesManager(self._runtime_env_dir) self._working_dir_manager = WorkingDirManager(self._runtime_env_dir) self._container_manager = ContainerManager(dashboard_agent.temp_dir) def get_or_create_logger(self, job_id: bytes): job_id = job_id.decode() if job_id not in self._per_job_logger_cache: params = self._logging_params.copy() params["filename"] = f"runtime_env_setup-{job_id}.log" params["logger_name"] = f"runtime_env_{job_id}" per_job_logger = setup_component_logger(**params) self._per_job_logger_cache[job_id] = per_job_logger return self._per_job_logger_cache[job_id] async def CreateRuntimeEnv(self, request, context): async def _setup_runtime_env(serialized_runtime_env, serialized_allocated_resource_instances): # This function will be ran inside a thread def run_setup_with_logger(): runtime_env = RuntimeEnv( serialized_runtime_env=serialized_runtime_env) allocated_resource: dict = json.loads( serialized_allocated_resource_instances or "{}") # Use a separate logger for each job. per_job_logger = self.get_or_create_logger(request.job_id) # TODO(chenk008): Add log about allocated_resource to # avoid lint error. That will be moved to cgroup plugin. per_job_logger.debug(f"Worker has resource :" f"{allocated_resource}") context = RuntimeEnvContext(env_vars=runtime_env.env_vars()) self._conda_manager.setup( runtime_env, context, logger=per_job_logger) self._py_modules_manager.setup( runtime_env, context, logger=per_job_logger) self._working_dir_manager.setup( runtime_env, context, logger=per_job_logger) self._container_manager.setup( runtime_env, context, logger=per_job_logger) # Add the mapping of URIs -> the serialized environment to be # used for cache invalidation. if runtime_env.working_dir_uri(): uri = runtime_env.working_dir_uri() self._uris_to_envs[uri].add(serialized_runtime_env) if runtime_env.py_modules_uris(): for uri in runtime_env.py_modules_uris(): self._uris_to_envs[uri].add(serialized_runtime_env) if runtime_env.conda_uri(): uri = runtime_env.conda_uri() self._uris_to_envs[uri].add(serialized_runtime_env) if runtime_env.plugin_uris(): for uri in runtime_env.plugin_uris(): self._uris_to_envs[uri].add(serialized_runtime_env) # Run setup function from all the plugins for plugin_class_path, config in runtime_env.plugins(): logger.debug( f"Setting up runtime env plugin {plugin_class_path}") plugin_class = import_attr(plugin_class_path) # TODO(simon): implement uri support plugin_class.create("uri not implemented", json.loads(config), context) plugin_class.modify_context("uri not implemented", json.loads(config), context) return context loop = asyncio.get_event_loop() return await loop.run_in_executor(None, run_setup_with_logger) serialized_env = request.serialized_runtime_env if serialized_env not in self._env_locks: # async lock to prevent the same env being concurrently installed self._env_locks[serialized_env] = asyncio.Lock() async with self._env_locks[serialized_env]: if serialized_env in self._env_cache: serialized_context = self._env_cache[serialized_env] result = self._env_cache[serialized_env] if result.success: context = result.result logger.info("Runtime env already created successfully. " f"Env: {serialized_env}, context: {context}") return runtime_env_agent_pb2.CreateRuntimeEnvReply( status=agent_manager_pb2.AGENT_RPC_STATUS_OK, serialized_runtime_env_context=context) else: error_message = result.result logger.info("Runtime env already failed. " f"Env: {serialized_env}, err: {error_message}") return runtime_env_agent_pb2.CreateRuntimeEnvReply( status=agent_manager_pb2.AGENT_RPC_STATUS_FAILED, error_message=error_message) if SLEEP_FOR_TESTING_S: logger.info(f"Sleeping for {SLEEP_FOR_TESTING_S}s.") time.sleep(int(SLEEP_FOR_TESTING_S)) logger.info(f"Creating runtime env: {serialized_env}") runtime_env_context: RuntimeEnvContext = None error_message = None for _ in range(runtime_env_consts.RUNTIME_ENV_RETRY_TIMES): try: runtime_env_context = await _setup_runtime_env( serialized_env, request.serialized_allocated_resource_instances) break except Exception as ex: logger.exception("Runtime env creation failed.") error_message = str(ex) await asyncio.sleep( runtime_env_consts.RUNTIME_ENV_RETRY_INTERVAL_MS / 1000 ) if error_message: logger.error( "Runtime env creation failed for %d times, " "don't retry any more.", runtime_env_consts.RUNTIME_ENV_RETRY_TIMES) self._env_cache[serialized_env] = CreatedEnvResult( False, error_message) return runtime_env_agent_pb2.CreateRuntimeEnvReply( status=agent_manager_pb2.AGENT_RPC_STATUS_FAILED, error_message=error_message) serialized_context = runtime_env_context.serialize() self._env_cache[serialized_env] = CreatedEnvResult( True, serialized_context) logger.info( "Successfully created runtime env: %s, the context: %s", serialized_env, serialized_context) return runtime_env_agent_pb2.CreateRuntimeEnvReply( status=agent_manager_pb2.AGENT_RPC_STATUS_OK, serialized_runtime_env_context=serialized_context) async def DeleteURIs(self, request, context): logger.info(f"Got request to delete URIs: {request.uris}.") failed_uris = [] # URIs that we failed to delete. for plugin_uri in request.uris: plugin, uri = decode_plugin_uri(plugin_uri) # Invalidate the env cache for any envs that contain this URI. for env in self._uris_to_envs.get(uri, []): if env in self._env_cache: del self._env_cache[env] if plugin == "working_dir": if not self._working_dir_manager.delete_uri(uri): failed_uris.append(uri) elif plugin == "py_modules": if not self._py_modules_manager.delete_uri(uri): failed_uris.append(uri) elif plugin == "conda": if not self._conda_manager.delete_uri(uri): failed_uris.append(uri) else: raise ValueError( "RuntimeEnvAgent received DeleteURI request " f"for unsupported plugin {plugin}. URI: {uri}") if failed_uris: return runtime_env_agent_pb2.DeleteURIsReply( status=agent_manager_pb2.AGENT_RPC_STATUS_FAILED, error_message="Local files for URI(s) " f"{failed_uris} not found.") else: return runtime_env_agent_pb2.DeleteURIsReply( status=agent_manager_pb2.AGENT_RPC_STATUS_OK) async def run(self, server): runtime_env_agent_pb2_grpc.add_RuntimeEnvServiceServicer_to_server( self, server)
47.703252
79
0.633319
[ "Apache-2.0" ]
188xuhe/ray
dashboard/modules/runtime_env/runtime_env_agent.py
11,735
Python
# Copyright 2018-2022 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import streamlit as st st.text("This text is awesome!")
35.555556
74
0.760938
[ "Apache-2.0" ]
Aaryanverma/streamlit
e2e/scripts/st_text.py
640
Python
import os import logging import argparse from collections import Counter import pandas as pd import inflect import sys reload(sys) sys.setdefaultencoding('utf-8') _CATEGRORIES = [ 'Mini Briefs', 'Advances & Business', 'Concerns & Hype', 'Analysis & Policy', 'Expert Opinions & Discussion within the field', 'Explainers' ] if __name__ == "__main__": logging.getLogger().setLevel(logging.INFO) parser = argparse.ArgumentParser() parser.add_argument('--template_file', '-tf', type=str, default='digest_template.md') parser.add_argument('--digest_number', '-n', type=int, required=True) parser.add_argument('--input_csv', '-i', type=str, required=True) parser.add_argument('--output_md', '-o', type=str, required=True) parser.add_argument('--force_overwrite', '-f', action='store_true') args = parser.parse_args() n = args.digest_number p = inflect.engine() n_english = p.number_to_words(p.ordinal(n)) logging.info('Parsing for the {} digest'.format(n_english)) logging.info('Will save result to {}'.format(args.output_md)) if os.path.isfile(args.output_md): if not args.force_overwrite: raise ValueError('Cannot overwrite existing output file!') logging.info('Loading template from {}'.format(args.template_file)) with open(args.template_file, 'r') as f: md_template = f.read() logging.info('Reading {}'.format(args.input_csv)) articles_map = {c : [] for c in _CATEGRORIES} csv = pd.read_csv(args.input_csv) for row_num, row in csv.iterrows(): if not row['Type']: print() print('To which category does this article belong?') print() print(row['Name']) print() for i, c in enumerate(_CATEGRORIES): print('{}) {}'.format(i, c)) while True: try: print() c_idx = int(input('Category Number: ')) c = _CATEGRORIES[c_idx] break except: print('Please enter a valid category!') print() else: c = row['Type'] articles_map[c].append(row) logging.info('Populating content...') content = '' for c in _CATEGRORIES: items = articles_map[c] if len(items) > 0: content += '### {}\n'.format(c) content += '\n' for item in items: if c == 'Mini Briefs': content += '#### [{}]({})\n'.format(item['Name'], item['URL']) content += '\n' content += '<one-two paragraph brief>\n' else: content += '* [{}]({}) - {}\n'.format(item['Name'], item['URL'], item['Excerpt']) content += '\n' # remove the last two empty lines content = content[:-2] md = md_template.replace('$digest_number$', str(n)) \ .replace('$digest_number_english$', n_english) \ .replace('$content$', content) logging.info('Saving digest markdown...') with open(args.output_md, 'w') as f: f.write(md) logging.info('Done!')
31.142857
101
0.552905
[ "MIT" ]
jacky-liang/skynet-today
scripts/csv2md.py
3,270
Python
s = "Hey there! what should this string be?" # Length should be 20 print("Length of s = %d" % len(s[0:20])) # Index print("The first occurrence of the letter a = %d" % s.index("!")) # Count print("t occurs %d times" % s.count("t")) # Slicing the string into bits s1 = "hello world" print(s1[:1]) # splicing is exclusive print("|",s1[:s1.index(" ")],"|", sep="") # splicing is exclusive print("|",s1[s1.index(" "):s1.index(" ")],"|", sep="") # splicing is exclusive print("|",s1[s1.index(" ") + 1:],"|", sep="") # splicing is exclusive print("The first five characters are '%s'" % s[:5]) # Start to 5 print("The next five characters are '%s'" % s[5:10]) # 5 to 10 print("The thirteenth character is '%s'" % s[12]) # Just number 12 print("The characters with odd index are '%s'" %s[1::2]) #(0-based indexing) print("The last five characters are '%s'" % s[-5:]) # 5th-from-last to end print("Reverse the characteres are '%s'" % s[::-1]) # string reversed print("Reverse the characteres are '%s'" % s[::-2]) # reversed with odd index # uppercase print("String in uppercase: %s" % s.upper()) # Convert everything to lowercase print("String in lowercase: %s" % s.lower()) # Check how a string starts print("String starts with 'Str'.!", s.startswith("Str")) # Check how a string ends print("String ends with 'ome!'.!", s.endswith("ome!")) # Split print("Split the words of the string: %s" % s.split(" ")) # Check ranges x = 'b' print('a' <= x <= 'z') word_squares = ["ball", "area", "able", "lead", "lady"] step = 1 prefix = ''.join([word[step] for word in word_squares]) print("prefix ", prefix)
32.673469
78
0.630231
[ "MIT" ]
othonreyes/code_problems
python/python/basics/strings.py
1,601
Python
import os import pkgutil from pathlib import Path import pytest from click.testing import CliRunner from slotscheck.cli import root as cli from .conftest import EXAMPLES_DIR @pytest.fixture() def runner(): return CliRunner() @pytest.fixture(autouse=True) def set_cwd(request): os.chdir(EXAMPLES_DIR) yield os.chdir(request.config.invocation_dir) def test_no_inputs(runner: CliRunner): result = runner.invoke(cli, []) assert result.exit_code == 0 assert result.output == "No files or modules given. Nothing to do!\n" def test_module_doesnt_exist(runner: CliRunner): result = runner.invoke(cli, ["-m", "foo"]) assert result.exit_code == 1 assert result.output == ( "ERROR: Module 'foo' not found.\n\n" "See slotscheck.rtfd.io/en/latest/discovery.html\n" "for help resolving common import problems.\n" ) def test_path_doesnt_exist(runner: CliRunner): result = runner.invoke(cli, ["doesnt_exist"]) assert result.exit_code == 2 assert ( result.output == """\ Usage: slotscheck [OPTIONS] [FILES]... Try 'slotscheck --help' for help. Error: Invalid value for '[FILES]...': Path 'doesnt_exist' does not exist. """ ) def test_everything_ok(runner: CliRunner): result = runner.invoke(cli, ["-m", "module_ok"]) assert result.exit_code == 0 assert result.output == "All OK!\nScanned 6 module(s), 64 class(es).\n" def test_single_file_module(runner: CliRunner): result = runner.invoke( cli, ["-m", "module_singular"], catch_exceptions=False ) assert result.exit_code == 0 assert result.output == "All OK!\nScanned 1 module(s), 5 class(es).\n" def test_builtins(runner: CliRunner): result = runner.invoke(cli, ["-m", "builtins"]) assert result.exit_code == 0 def test_extension(runner: CliRunner): result = runner.invoke(cli, ["-m", "_pickle"]) assert result.exit_code == 0 assert result.output == ("All OK!\nScanned 1 module(s), 5 class(es).\n") def test_success_verbose(runner: CliRunner): result = runner.invoke( cli, ["-m", "module_ok", "-v"], catch_exceptions=False ) assert result.exit_code == 0 assert ( result.output == """\ All OK! stats: modules: 7 checked: 6 excluded: 1 skipped: 0 classes: 64 has slots: 44 no slots: 20 n/a: 0 """ ) def test_submodule(runner: CliRunner): result = runner.invoke( cli, ["-m", "module_ok.a.b"], catch_exceptions=False ) assert result.exit_code == 0 assert result.output == "All OK!\nScanned 4 module(s), 32 class(es).\n" def test_namespaced(runner: CliRunner): result = runner.invoke( cli, ["-m", "namespaced.module"], catch_exceptions=False ) assert result.exit_code == 0 assert result.output == "All OK!\nScanned 4 module(s), 1 class(es).\n" def test_multiple_modules(runner: CliRunner): result = runner.invoke( cli, ["-m", "module_singular", "-m", "module_ok", "-m", "namespaced"], catch_exceptions=False, ) assert result.exit_code == 0 assert result.output == "All OK!\nScanned 11 module(s), 70 class(es).\n" def test_multiple_paths(runner: CliRunner): result = runner.invoke( cli, [ str(EXAMPLES_DIR / "module_singular.py"), str(EXAMPLES_DIR / "module_ok/a/b/../b"), str(EXAMPLES_DIR / "namespaced/module/foo.py"), ], catch_exceptions=False, ) assert result.exit_code == 0 assert result.output == "All OK!\nScanned 8 module(s), 38 class(es).\n" def test_path_is_module_directory(runner: CliRunner): # let's define the path indirectly to ensure it works path = str(EXAMPLES_DIR / "module_ok/a/../") result = runner.invoke(cli, [path], catch_exceptions=False) assert result.exit_code == 0 assert result.output == "All OK!\nScanned 6 module(s), 64 class(es).\n" def test_cannot_pass_both_path_and_module(runner: CliRunner): result = runner.invoke(cli, ["module_ok", "-m", "click"]) assert result.exit_code == 2 assert ( result.output == "ERROR: Specify either FILES argument or `-m/--module` " "option, not both.\n" ) def test_errors_with_default_settings(runner: CliRunner): result = runner.invoke(cli, ["-m", "module_not_ok"]) assert result.exit_code == 1 assert ( result.output == """\ ERROR: 'module_not_ok.a.b:U' has slots but superclass does not. ERROR: 'module_not_ok.foo:S' has slots but superclass does not. ERROR: 'module_not_ok.foo:T' has slots but superclass does not. ERROR: 'module_not_ok.foo:U' has slots but superclass does not. ERROR: 'module_not_ok.foo:U.Ua' defines overlapping slots. ERROR: 'module_not_ok.foo:U.Ub' defines overlapping slots. ERROR: 'module_not_ok.foo:W' defines overlapping slots. ERROR: 'module_not_ok.foo:Z' has duplicate slots. ERROR: 'module_not_ok.foo:Za' defines overlapping slots. Oh no, found some problems! Scanned 4 module(s), 28 class(es). """ ) def test_errors_require_slots_subclass(runner: CliRunner): result = runner.invoke(cli, ["-m", "module_not_ok", "--require-subclass"]) assert result.exit_code == 1 assert ( result.output == """\ ERROR: 'module_not_ok.a.b:A' has no slots, but it could have. ERROR: 'module_not_ok.a.b:U' has slots but superclass does not. ERROR: 'module_not_ok.foo:A' has no slots, but it could have. ERROR: 'module_not_ok.foo:C' has no slots, but it could have. ERROR: 'module_not_ok.foo:R' has no slots, but it could have. ERROR: 'module_not_ok.foo:S' has slots but superclass does not. ERROR: 'module_not_ok.foo:T' has slots but superclass does not. ERROR: 'module_not_ok.foo:U' has slots but superclass does not. ERROR: 'module_not_ok.foo:U.Ua' defines overlapping slots. ERROR: 'module_not_ok.foo:U.Ub' defines overlapping slots. ERROR: 'module_not_ok.foo:W' defines overlapping slots. ERROR: 'module_not_ok.foo:Z' has duplicate slots. ERROR: 'module_not_ok.foo:Za' defines overlapping slots. Oh no, found some problems! Scanned 4 module(s), 28 class(es). """ ) def test_errors_disallow_nonslot_inherit(runner: CliRunner): result = runner.invoke( cli, ["-m", "module_not_ok", "--require-superclass"] ) assert result.exit_code == 1 assert ( result.output == """\ ERROR: 'module_not_ok.a.b:U' has slots but superclass does not. ERROR: 'module_not_ok.foo:S' has slots but superclass does not. ERROR: 'module_not_ok.foo:T' has slots but superclass does not. ERROR: 'module_not_ok.foo:U' has slots but superclass does not. ERROR: 'module_not_ok.foo:U.Ua' defines overlapping slots. ERROR: 'module_not_ok.foo:U.Ub' defines overlapping slots. ERROR: 'module_not_ok.foo:W' defines overlapping slots. ERROR: 'module_not_ok.foo:Z' has duplicate slots. ERROR: 'module_not_ok.foo:Za' defines overlapping slots. Oh no, found some problems! Scanned 4 module(s), 28 class(es). """ ) def test_errors_no_require_superclass(runner: CliRunner): result = runner.invoke( cli, ["-m", "module_not_ok", "--no-require-superclass"] ) assert result.exit_code == 1 assert ( result.output == """\ ERROR: 'module_not_ok.foo:U.Ua' defines overlapping slots. ERROR: 'module_not_ok.foo:U.Ub' defines overlapping slots. ERROR: 'module_not_ok.foo:W' defines overlapping slots. ERROR: 'module_not_ok.foo:Z' has duplicate slots. ERROR: 'module_not_ok.foo:Za' defines overlapping slots. Oh no, found some problems! Scanned 4 module(s), 28 class(es). """ ) def test_errors_with_exclude_classes(runner: CliRunner): result = runner.invoke( cli, ["-m", "module_not_ok", "--exclude-classes", "(foo:U$|:(W|S))"], ) assert result.exit_code == 1 assert ( result.output == """\ ERROR: 'module_not_ok.a.b:U' has slots but superclass does not. ERROR: 'module_not_ok.foo:T' has slots but superclass does not. ERROR: 'module_not_ok.foo:U.Ua' defines overlapping slots. ERROR: 'module_not_ok.foo:U.Ub' defines overlapping slots. ERROR: 'module_not_ok.foo:Z' has duplicate slots. ERROR: 'module_not_ok.foo:Za' defines overlapping slots. Oh no, found some problems! Scanned 4 module(s), 28 class(es). """ ) def test_errors_with_include_classes(runner: CliRunner): result = runner.invoke( cli, ["-m", "module_not_ok", "--include-classes", "(foo:.*a|:(W|S))"], ) assert result.exit_code == 1 assert ( result.output == """\ ERROR: 'module_not_ok.foo:S' has slots but superclass does not. ERROR: 'module_not_ok.foo:U.Ua' defines overlapping slots. ERROR: 'module_not_ok.foo:W' defines overlapping slots. ERROR: 'module_not_ok.foo:Za' defines overlapping slots. Oh no, found some problems! Scanned 4 module(s), 28 class(es). """ ) def test_errors_with_include_modules(runner: CliRunner): result = runner.invoke( cli, [ "-m", "module_not_ok", "--include-modules", "(module_not_ok$ | a)", ], ) assert result.exit_code == 1 assert ( result.output == """\ ERROR: 'module_not_ok.a.b:U' has slots but superclass does not. Oh no, found some problems! Scanned 3 module(s), 2 class(es). """ ) def test_ingores_given_module_completely(runner: CliRunner): result = runner.invoke( cli, [ "-m", "module_not_ok", "--include-modules", "nomatch", ], ) assert result.exit_code == 0 assert ( result.output == "Files or modules given, but filtered out by exclude/include. " "Nothing to do!\n" ) def test_module_not_ok_verbose(runner: CliRunner): result = runner.invoke(cli, ["-m", "module_not_ok", "-v"]) assert result.exit_code == 1 assert ( result.output == """\ ERROR: 'module_not_ok.a.b:U' has slots but superclass does not. Superclasses without slots: - 'module_not_ok.a.b:A' ERROR: 'module_not_ok.foo:S' has slots but superclass does not. Superclasses without slots: - 'module_not_ok.foo:R' ERROR: 'module_not_ok.foo:T' has slots but superclass does not. Superclasses without slots: - 'module_not_ok.foo:A' ERROR: 'module_not_ok.foo:U' has slots but superclass does not. Superclasses without slots: - 'module_not_ok.foo:L' - 'module_not_ok.foo:D' - 'module_not_ok.foo:C' ERROR: 'module_not_ok.foo:U.Ua' defines overlapping slots. Slots already defined in superclass: - 'w' (module_not_ok.foo:Q) ERROR: 'module_not_ok.foo:U.Ub' defines overlapping slots. Slots already defined in superclass: - 'w' (module_not_ok.foo:U.Ua) - 'w' (module_not_ok.foo:Q) ERROR: 'module_not_ok.foo:W' defines overlapping slots. Slots already defined in superclass: - 'p' (module_not_ok.foo:U) - 'v' (module_not_ok.foo:V) ERROR: 'module_not_ok.foo:Z' has duplicate slots. Duplicate slot names: - 'b' - 'c' ERROR: 'module_not_ok.foo:Za' defines overlapping slots. Slots already defined in superclass: - 'b' (module_not_ok.foo:Z) - 'c' (module_not_ok.foo:Z) Oh no, found some problems! stats: modules: 4 checked: 4 excluded: 0 skipped: 0 classes: 28 has slots: 21 no slots: 7 n/a: 0 """ ) def test_module_misc(runner: CliRunner): result = runner.invoke( cli, ["-m", "module_misc", "--no-strict-imports"], catch_exceptions=False, ) assert result.exit_code == 0 assert ( result.output == """\ NOTE: Failed to import 'module_misc.a.evil'. All OK! Scanned 18 module(s), 8 class(es). """ ) def test_module_exclude(runner: CliRunner): result = runner.invoke( cli, [ "-m", "module_misc", "--exclude-modules", "evil", "--no-strict-imports", ], catch_exceptions=False, ) assert result.exit_code == 0 assert ( result.output == """\ NOTE: Failed to import 'module_misc.a.b.__main__'. All OK! Scanned 16 module(s), 9 class(es). """ ) from module_misc import a # type: ignore assert not a.evil_was_imported def test_module_disallow_import_failures(runner: CliRunner): result = runner.invoke(cli, ["-m", "module_misc", "--strict-imports"]) assert result.exit_code == 1 assert ( result.output == """\ ERROR: Failed to import 'module_misc.a.evil'. Oh no, found some problems! Scanned 18 module(s), 8 class(es). """ ) def test_module_allow_import_failures(runner: CliRunner): result = runner.invoke(cli, ["-m", "module_misc", "--no-strict-imports"]) assert result.exit_code == 0 assert ( result.output == """\ NOTE: Failed to import 'module_misc.a.evil'. All OK! Scanned 18 module(s), 8 class(es). """ ) def test_finds_config(runner: CliRunner, mocker, tmpdir): (tmpdir / "myconf.toml").write_binary( b""" [tool.slotscheck] require-superclass = false """ ) mocker.patch( "slotscheck.config.find_config_file", return_value=Path(tmpdir / "myconf.toml"), ) result = runner.invoke(cli, ["-m", "module_not_ok"]) assert result.exit_code == 1 assert ( result.output == """\ ERROR: 'module_not_ok.foo:U.Ua' defines overlapping slots. ERROR: 'module_not_ok.foo:U.Ub' defines overlapping slots. ERROR: 'module_not_ok.foo:W' defines overlapping slots. ERROR: 'module_not_ok.foo:Z' has duplicate slots. ERROR: 'module_not_ok.foo:Za' defines overlapping slots. Oh no, found some problems! Scanned 4 module(s), 28 class(es). """ ) def test_given_config(runner: CliRunner, tmpdir): my_config = tmpdir / "myconf.toml" my_config.write_binary( b""" [tool.slotscheck] require-superclass = false """ ) result = runner.invoke( cli, ["-m", "module_not_ok", "--settings", str(my_config)], catch_exceptions=False, ) assert result.exit_code == 1 assert ( result.output == """\ ERROR: 'module_not_ok.foo:U.Ua' defines overlapping slots. ERROR: 'module_not_ok.foo:U.Ub' defines overlapping slots. ERROR: 'module_not_ok.foo:W' defines overlapping slots. ERROR: 'module_not_ok.foo:Z' has duplicate slots. ERROR: 'module_not_ok.foo:Za' defines overlapping slots. Oh no, found some problems! Scanned 4 module(s), 28 class(es). """ ) def test_ambiguous_import(runner: CliRunner): result = runner.invoke( cli, [str(EXAMPLES_DIR / "other/module_misc/a/b/c.py")], catch_exceptions=False, ) assert result.exit_code == 1 assert ( result.output == """\ Cannot check due to import ambiguity. The given files do not correspond with what would be imported: 'import module_misc.a.b.c' would load from: {} instead of: {} You may need to define $PYTHONPATH or run as 'python -m slotscheck' to ensure the correct files can be imported. See slotscheck.rtfd.io/en/latest/discovery.html for more information on why this happens and how to resolve it. """.format( pkgutil.get_loader( "module_misc.a.b.c" ).path, # type: ignore[union-attr] EXAMPLES_DIR / "other/module_misc/a/b/c.py", ) ) def test_ambiguous_import_excluded(runner: CliRunner): result = runner.invoke( cli, ["other/module_misc/a/b/c.py", "--exclude-modules", "module_misc"], catch_exceptions=False, ) assert result.exit_code == 0 assert ( result.output == """\ Files or modules given, but filtered out by exclude/include. Nothing to do! """ )
28.708333
78
0.650092
[ "MIT" ]
ariebovenberg/slotscheck
tests/src/test_cli.py
15,847
Python
from keras.utils import to_categorical import tensorflow as tf import pygame class pytennis: def __init__(self, fps = 50): self.net = Network(150,450,100,600) self.updateRewardA = 0 self.updateRewardB = 0 self.updateIter = 0 self.lossA = 0 self.lossB = 0 # Testing self.net = Network(150, 450, 100, 600) self.NetworkA = self.net.network(300, ysource=100, Ynew=600) # Network A self.NetworkB = self.net.network(200, ysource=600, Ynew=100) # Network B # NetworkA # display test plot of network A #sns.jointplot(NetworkA[0], NetworkA[1]) # display test plot of network B #sns.jointplot(NetworkB[0], NetworkB[1]) self.out = self.net.DefaultToPosition(250) self.lastxcoordinate = 350 pygame.init() self.BLACK = ( 0,0,0) self.myFontA = pygame.font.SysFont("Times New Roman", 25) self.myFontB = pygame.font.SysFont("Times New Roman", 25) self.myFontIter = pygame.font.SysFont('Times New Roman', 25) self.FPS = fps self.fpsClock = pygame.time.Clock() def setWindow(self): # set up the window self.DISPLAYSURF = pygame.display.set_mode((600, 700), 0, 32) pygame.display.set_caption('REINFORCEMENT LEARNING (Discrete Mathematics) - TABLE TENNIS') # set up the colors self.BLACK = ( 0,0,0) self.WHITE = (255, 255, 255) self.RED= (255,0,0) self.GREEN = ( 0, 255,0) self.BLUE = ( 0,0, 255) return def display(self): self.setWindow() self.DISPLAYSURF.fill(self.WHITE) pygame.draw.rect(self.DISPLAYSURF, self.GREEN, (150, 100, 300, 500)) pygame.draw.rect(self.DISPLAYSURF, self.RED, (150, 340, 300, 20)) pygame.draw.rect(self.DISPLAYSURF, self.BLACK, (0, 20, 600, 20)) pygame.draw.rect(self.DISPLAYSURF, self.BLACK, (0, 660, 600, 20)) return def reset(self): return def evaluate_state_from_last_coordinate(self, c): """ cmax: 450 cmin: 150 c definately will be between 150 and 450. state0 - (150 - 179) state1 - (180 - 209) state2 - (210 - 239) state3 - (240 - 269) state4 - (270 - 299) state5 - (300 - 329) state6 - (330 - 359) state7 - (360 - 389) state8 - (390 - 419) state9 - (420 - 450) """ if c >= 150 and c <=179: return 0 elif c >= 180 and c <= 209: return 1 elif c >=210 and c <= 239: return 2 elif c >=240 and c <= 269: return 3 elif c>= 270 and c<=299: return 4 elif c >= 300 and c <= 329: return 5 elif c >= 330 and c <= 359: return 6 elif c >= 360 and c <= 389: return 7 elif c >= 390 and c <= 419: return 8 elif c >= 420 and c <= 450: return 9 def evaluate_action(self, action, expectedState): if action == expectedState: return True else: return False def randomVal(self, action): """ cmax: 450 cmin: 150 c definately will be between 150 and 450. state0 - (150 - 179) state1 - (180 - 209) state2 - (210 - 239) state3 - (240 - 269) state4 - (270 - 299) state5 - (300 - 329) state6 - (330 - 359) state7 - (360 - 389) state8 - (390 - 419) state9 - (420 - 450) """ if action == 0: val = np.random.choice([i for i in range(150, 180)]) elif action == 1: val = np.random.choice([i for i in range(180, 210)]) elif action == 2: val = np.random.choice([i for i in range(210, 240)]) elif action == 3: val = np.random.choice([i for i in range(240, 270)]) elif action == 4: val = np.random.choice([i for i in range(270, 300)]) elif action == 5: val = np.random.choice([i for i in range(300, 330)]) elif action == 6: val = np.random.choice([i for i in range(330, 360)]) elif action == 7: val = np.random.choice([i for i in range(360, 390)]) elif action == 8: val = np.random.choice([i for i in range(390, 420)]) else: val = np.random.choice([i for i in range(420, 450)]) return val def stepA(self, action, count = 0): #playerA should play if count == 0: #playerax = lastxcoordinate self.NetworkA = self.net.network(self.lastxcoordinate, ysource = 100, Ynew = 600) #Network A self.out = self.net.DefaultToPosition(self.lastxcoordinate) #update lastxcoordinate self.bally = self.NetworkA[1][count] #here #self.playerax = self.out[count] self.playerbx = self.randomVal(action) # soundObj = pygame.mixer.Sound('sound/sound.wav') # soundObj.play() # time.sleep(0.4) # soundObj.stop() elif count == 49: self.ballx = self.NetworkA[0][count] self.bally = self.NetworkA[1][count] # move playerbx with respect to action self.playerbx = self.randomVal(action) else: self.ballx = self.NetworkA[0][count] self.bally = self.NetworkA[1][count] # move playerbx with respect to action # self.playerbx = self.randomVal(action) obs = self.evaluate_state_from_last_coordinate(int(self.ballx)) # last state of the ball reward = self.evaluate_action(action, obs) done = True info = '' return obs, reward, done, info def stepB(self, action, count): #playerB can play if count == 0: #playerbx = lastxcoordinate self.NetworkB = self.net.network(self.lastxcoordinate, ysource = 600, Ynew = 100) #Network B self.out = self.net.DefaultToPosition(self.lastxcoordinate) #update lastxcoordinate self.bally = self.NetworkB[1][count] #self.playerax = self.out[count] self.playerax = self.randomVal(action) # soundObj = pygame.mixer.Sound('sound/sound.wav') # soundObj.play() # time.sleep(0.4) # soundObj.stop() elif count ==49: self.ballx = self.NetworkA[0][count] self.bally = self.NetworkA[1][count] # move playerbx with respect to action self.playerbx = self.randomVal(action) else: self.ballx = self.NetworkB[0][count] self.bally = self.NetworkB[1][count] # self.playerbx = self.randomVal(action) obs = self.evaluate_state_from_last_coordinate(int(self.ballx)) # last state of the ball reward = self.evaluate_action(action, obs) done = True info = '' return obs, reward, done, info def computeLossA(self, reward): if reward == 0: self.lossA += 1 else: self.lossA += 0 return def computeLossB(self, reward): if reward == 0: self.lossB += 1 else: self.lossB += 0 return def render(self): # diplay team players self.PLAYERA = pygame.image.load('images/cap.jpg') self.PLAYERA = pygame.transform.scale(self.PLAYERA, (50, 50)) self.PLAYERB = pygame.image.load('images/cap.jpg') self.PLAYERB = pygame.transform.scale(self.PLAYERB, (50, 50)) self.ball = pygame.image.load('images/ball.png') self.ball = pygame.transform.scale(self.ball, (15, 15)) self.playerax = 150 self.playerbx = 250 self.ballx = 250 self.bally = 300 count = 0 nextplayer = 'A' #player A starts by playing with state 0 obs, reward, done, info = self.stepA(0) stateA = obs stateB = obs next_state = 0 iterations = 20000 iteration = 0 restart = False while iteration < iterations: self.display() self.randNumLabelA = self.myFontA.render('A (Win): '+str(self.updateRewardA) + ', A(loss): '+str(self.lossA), 1, self.BLACK) self.randNumLabelB = self.myFontB.render('B (Win): '+str(self.updateRewardB) + ', B(loss): '+ str(self.lossB), 1, self.BLACK) self.randNumLabelIter = self.myFontIter.render('Iterations: '+str(self.updateIter), 1, self.BLACK) if nextplayer == 'A': if count == 0: # Online DQN evaluates what to do q_valueA = AgentA.model.predict([stateA]) actionA = AgentA.epsilon_greedy(q_valueA, iteration) # Online DQN plays obs, reward, done, info = self.stepA(action = actionA, count = count) next_stateA = obs # Let's memorize what just happened AgentA.replay_memory.append((stateA, actionA, reward, next_stateA, 1.0 - done)) stateA = next_stateA else: # Online DQN evaluates what to do q_valueA = AgentA.model.predict([stateA]) actionA = AgentA.epsilon_greedy(q_valueA, iteration) # Online DQN plays obs, reward, done, info = self.stepA(action = actionA, count = count) next_stateA = obs # Let's memorize what just happened # AgentA.replay_memory.append((state, action, reward, next_state, 1.0 - done)) stateA = next_stateA count += 1 if count == 50: count = 0 self.updateRewardA += reward self.computeLossA(reward) #restart the game if player A fails to get the ball, and let B start the game if reward == 0: restart = True time.sleep(0.5) nextplayer = 'B' self.playerbx = self.ballx else: restart = False # Sample memories and use the target DQN to produce the target Q-Value X_state_val, X_action_val, rewards, X_next_state_val, continues = (AgentA.sample_memories(AgentA.batch_size)) next_q_values = AgentA.model.predict([X_next_state_val]) max_next_q_values = np.max(next_q_values, axis=1, keepdims=True) y_val = rewards + continues * AgentA.discount_rate * max_next_q_values # Train the online DQN AgentA.model.fit(X_state_val,tf.keras.utils.to_categorical(X_next_state_val, num_classes=10), verbose = 0) nextplayer = 'B' self.updateIter += 1 #evaluate A else: nextplayer = 'A' else: if count == 0: # Online DQN evaluates what to do q_valueB = AgentB.model.predict([stateB]) actionB = AgentB.epsilon_greedy(q_valueB, iteration) # Online DQN plays obs, reward, done, info = self.stepB(action = actionB, count = count) next_stateB = obs # Let's memorize what just happened AgentB.replay_memory.append((stateB, actionB, reward, next_stateB, 1.0 - done)) stateB = next_stateB else: # Online DQN evaluates what to do q_valueB = AgentB.model.predict([stateB]) actionB = AgentB.epsilon_greedy(q_valueB, iteration) # Online DQN plays obs, reward, done, info = self.stepB(action = actionB, count = count) next_stateB = obs # Let's memorize what just happened # AgentB.replay_memory.append((state, action, reward, next_state, 1.0 - done)) stateB = next_stateB count += 1 if count == 50: count = 0 self.updateRewardB += reward self.computeLossB(reward) #restart the game if player A fails to get the ball, and let B start the game if reward == 0: restart = True time.sleep(0.5) nextplayer = 'A' self.playerax = self.ballx else: restart = False # Sample memories and use the target DQN to produce the target Q-Value X_state_val, X_action_val, rewards, X_next_state_val, continues = (AgentB.sample_memories(AgentB.batch_size)) next_q_values = AgentB.model.predict([X_next_state_val]) max_next_q_values = np.max(next_q_values, axis=1, keepdims=True) y_val = rewards + continues * AgentB.discount_rate * max_next_q_values # Train the online DQN AgentB.model.fit(X_state_val,tf.keras.utils.to_categorical(X_next_state_val, num_classes=10), verbose = 0) nextplayer = 'A' self.updateIter += 1 #evaluate B else: nextplayer = 'B' count += 1 #CHECK BALL MOVEMENT self.DISPLAYSURF.blit(self.PLAYERA, (self.playerax, 50)) self.DISPLAYSURF.blit(self.PLAYERB, (self.playerbx, 600)) self.DISPLAYSURF.blit(self.ball, (self.ballx, self.bally)) self.DISPLAYSURF.blit(self.randNumLabelA, (300, 630)) self.DISPLAYSURF.blit(self.randNumLabelB, (300, 40)) self.DISPLAYSURF.blit(self.randNumLabelIter, (50, 40)) #update last coordinate self.lastxcoordinate = self.ballx pygame.display.update() self.fpsClock.tick(self.FPS) for event in pygame.event.get(): if event.type == QUIT: AgentA.model.save('AgentA.h5') AgentB.model.save('AgentB.h5') pygame.quit() sys.exit()
35.803653
137
0.491583
[ "Apache-2.0" ]
elishatofunmi/ReinEnv
pytennis/play.py
15,682
Python
""" Optuna example that optimizes a classifier configuration for cancer dataset using XGBoost. In this example, we optimize the validation accuracy of cancer detection using XGBoost. We optimize both the choice of booster model and their hyper parameters. We have following two ways to execute this example: (1) Execute this code directly. $ python xgboost_simple.py (2) Execute through CLI. $ STUDY_NAME=`optuna create-study --storage sqlite:///example.db` $ optuna study optimize xgboost_simple.py objective --n-trials=100 --study $STUDY_NAME \ --storage sqlite:///example.db """ from __future__ import division import numpy as np import sklearn.datasets import sklearn.metrics from sklearn.model_selection import train_test_split import xgboost as xgb import optuna # FYI: Objective functions can take additional arguments # (https://optuna.readthedocs.io/en/stable/faq.html#objective-func-additional-args). def objective(trial): (data, target) = sklearn.datasets.load_breast_cancer(return_X_y=True) train_x, test_x, train_y, test_y = train_test_split(data, target, test_size=0.25) dtrain = xgb.DMatrix(train_x, label=train_y) dtest = xgb.DMatrix(test_x, label=test_y) param = { 'silent': 1, 'objective': 'binary:logistic', 'booster': trial.suggest_categorical('booster', ['gbtree', 'gblinear', 'dart']), 'lambda': trial.suggest_loguniform('lambda', 1e-8, 1.0), 'alpha': trial.suggest_loguniform('alpha', 1e-8, 1.0) } if param['booster'] == 'gbtree' or param['booster'] == 'dart': param['max_depth'] = trial.suggest_int('max_depth', 1, 9) param['eta'] = trial.suggest_loguniform('eta', 1e-8, 1.0) param['gamma'] = trial.suggest_loguniform('gamma', 1e-8, 1.0) param['grow_policy'] = trial.suggest_categorical('grow_policy', ['depthwise', 'lossguide']) if param['booster'] == 'dart': param['sample_type'] = trial.suggest_categorical('sample_type', ['uniform', 'weighted']) param['normalize_type'] = trial.suggest_categorical('normalize_type', ['tree', 'forest']) param['rate_drop'] = trial.suggest_loguniform('rate_drop', 1e-8, 1.0) param['skip_drop'] = trial.suggest_loguniform('skip_drop', 1e-8, 1.0) bst = xgb.train(param, dtrain) preds = bst.predict(dtest) pred_labels = np.rint(preds) accuracy = sklearn.metrics.accuracy_score(test_y, pred_labels) return 1.0 - accuracy if __name__ == '__main__': study = optuna.create_study() study.optimize(objective, n_trials=100) print(study.best_trial)
36.605634
99
0.69873
[ "MIT" ]
AkihiroTajima/optuna
examples/xgboost_simple.py
2,599
Python
import re,sys class Instruction: def __init__(self,defn): m = re.match("^([A-Fa-f0-9\-\,]+)\s+\"(.*?)\"\s+(.*)$",defn) assert m is not None,"Bad line "+defn range = m.group(1) range = range+"-"+range if len(range) == 2 else range range = range+",1" if len(range) == 5 else range self.first = int(range[:2],16) self.last = int(range[3:5],16) self.step = int(range[-1],16) self.name = m.group(2).strip() self.code = m.group(3).strip() #print(defn,range,self.first,self.last,self.step,self.getOpcodes()) def getOpcodes(self): return range(self.first,self.last+self.step,self.step) def getMnemonics(self,opcode): base = self.name base = self.process(base,opcode) return base.lower() def getCode(self,opcode,type = "C"): base = self.process(self.code,opcode) if (opcode & 0xF0) == 0xC0: base = base + ";$CYCLES++" isFirst = True while base.find("$") >= 0: if isFirst: mWord = "$DF" isFirst = False else: m = re.search("(\$[A-Za-z]+)",base) mWord = m.group(1) if type == "C": base = base.replace(mWord,mWord[1:].upper()) elif type == "T": base = base.replace(mWord,"this."+mWord[1:].lower()) else: raise Exception() while base.find(";;") >= 0: base = base.replace(";;",";") if base[0] == ';': base = base[1:] return base def process(self,s,opc): s = s.replace("@R","{0:X}".format(opc & 0x0F)) s = s.replace("@P","{0:X}".format(opc & 0x07)) s = s.replace("@E","{0:X}".format((opc & 0x03)+1)) s = s.replace("@BRANCH","$R[$P] = ($R[$P] & 0xFF00) | $T8") s = s.replace("@LBRANCH","$R[$P] = $T16") s = s.replace("@FETCH16","$T16=$FETCH();$T16=($T16 << 8)|$FETCH()") s = s.replace("@LSKIP","$R[$P] = ($R[$P]+2) & 0xFFFF") if s[:4] == "@ADD": params = ["("+x+")" for x in s.strip()[5:-1].split(",")] s = "$T16 = "+("+".join(params))+";$D = $T16 & 0xFF;$DF = ($T16 >> 8) & 1" #print(s,params) #sys.exit(0) return s src = open("1802.def").readlines() src = [x if x.find("//") < 0 else x[:x.find("//")] for x in src] src = [x.replace("\t"," ").strip() for x in src] src = [x for x in src if x != ""] instructions = [ None ] * 256 for l in src: instr = Instruction(l) for opc in instr.getOpcodes(): assert instructions[opc] is None,"Duplicate opcode : "+l instructions[opc] = instr mList = ",".join(['"'+instructions[x].getMnemonics(x)+'"' for x in range(0,256)]) open("_1802_mnemonics.h","w").write("{ "+mList+ " };\n\n") h = open("_1802_case.h","w") for i in range(0,256): h.write("case 0x{0:02x}: /*** {1} ***/\n".format(i,instructions[i].getMnemonics(i))) h.write(" "+instructions[i].getCode(i,"C")+";break;\n") h.close() h = open("_1802_opcodes.ts","w") h.write("class CPU1802_Opcodes extends CPU1802_Base {\n\n") h.write("public getOpcodeList():Function[] {\n ") h.write(",".join("opcode_{0:02x}()".format(n) for n in range(0,256))) h.write("\n}\n\n") for i in range(0,256): h.write("private opcode_{0:02x}(): void {{ /*** {1} ***/\n".format(i,instructions[i].getMnemonics(i))) h.write(" "+instructions[i].getCode(i,"T")+";\n}\n") h.write("}\n") h.close() h = open("_1802_ports.h","w") for p in range(1,8): h.write("#ifndef INPUT{0}\n#define INPUT{0}() (0)\n#endif\n".format(p)) h.write("#ifndef OUTPUT{0}\n#define OUTPUT{0}(x) {{}}\n#endif\n".format(p)) for p in range(1,5): h.write("#ifndef EFLAG{0}\n#define EFLAG{0}() (0)\n#endif\n".format(p)) h.write("#ifndef UPDATEQ\n#define UPDATEQ(x) {{}}\n#endif\n".format(p)) h.close()
32.607477
103
0.580109
[ "MIT" ]
paulscottrobson/RCA-Cosmac-VIP-III
processor/generate.py
3,489
Python
from __future__ import absolute_import, division, print_function from glue.core.state_objects import State from glue.external.echo import CallbackProperty, keep_in_sync class AladinLiteLayerState(State): layer = CallbackProperty() visible = CallbackProperty(True) zorder = CallbackProperty(0) color = CallbackProperty() alpha = CallbackProperty() def __init__(self, **kwargs): super(AladinLiteLayerState, self).__init__(**kwargs) self._sync_color = None self._sync_alpha = None self.add_callback('layer', self._layer_changed) self._layer_changed() def _layer_changed(self): if self._sync_color is not None: self._sync_color.stop_syncing() if self._sync_alpha is not None: self._sync_alpha.stop_syncing() if self.layer is not None: self.color = self.layer.style.color self.alpha = self.layer.style.alpha self._sync_color = keep_in_sync(self, 'color', self.layer.style, 'color') self._sync_alpha = keep_in_sync(self, 'alpha', self.layer.style, 'alpha')
28.225
85
0.674934
[ "BSD-3-Clause" ]
glue-viz/glue-aladin
glue_aladin/layer_state.py
1,129
Python
"""Writes the given metrics in a csv.""" import numpy as np import os import pandas as pd import sys models_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(models_dir) from baseline_constants import CLIENT_ID_KEY, NUM_ROUND_KEY, NUM_SAMPLES_KEY COLUMN_NAMES = [ CLIENT_ID_KEY, NUM_ROUND_KEY, 'hierarchy', NUM_SAMPLES_KEY] def print_metrics( round_number, client_ids, metrics, hierarchies, num_samples, path): """Prints or appends the given metrics in a csv. The resulting dataframe is of the form: client_id, round_number, hierarchy, num_samples, metric1, metric2 twebbstack, 0, , 18, 0.5, 0.89 Args: round_number: Number of the round the metrics correspond to. If 0, then the file in path is overwritten. If not 0, we append to that file. client_ids: Ids of the clients. Not all ids must be in the following dicts. metrics: Dict keyed by client id. Each element is a dict of metrics for that client in the specified round. The dicts for all clients are expected to have the same set of keys. hierarchies: Dict keyed by client id. Each element is a list of hierarchies to which the client belongs. num_samples: Dict keyed by client id. Each element is the number of test samples for the client. """ columns = COLUMN_NAMES + get_metrics_names(metrics) client_data = pd.DataFrame(columns=columns) for i, c_id in enumerate(client_ids): current_client = { 'client_id': c_id, 'round_number': round_number, 'hierarchy': ','.join(hierarchies.get(c_id, [])), 'num_samples': num_samples.get(c_id, np.nan) } current_metrics = metrics.get(c_id, {}) for metric, metric_value in current_metrics.items(): current_client[metric] = metric_value client_data.loc[len(client_data)] = current_client mode = 'w' if round_number == 0 else 'a' print_dataframe(client_data, path, mode) def print_dataframe(df, path, mode='w'): """Writes the given dataframe in path as a csv""" header = mode == 'w' df.to_csv(path, mode=mode, header=header, index=False) def get_metrics_names(metrics): """Gets the names of the metrics. Args: metrics: Dict keyed by client id. Each element is a dict of metrics for that client in the specified round. The dicts for all clients are expected to have the same set of keys.""" if len(metrics) == 0: return [] metrics_dict = next(iter(metrics.values())) return list(metrics_dict.keys())
33.036145
83
0.651349
[ "BSD-2-Clause" ]
slowbull/leaf
models/metrics/writer.py
2,742
Python
/home/runner/.cache/pip/pool/3f/10/5e/0da870cfd442c4b93168f62f7eb1f09417d637dc6c7f4acefd6341907e
96
96
0.895833
[ "Apache-2.0" ]
035NotEnd/Vowel-Chacker
venv/lib/python3.8/site-packages/yapftests/reformatter_python3_test.py
96
Python
from math import log number = int(input()) base = input() if base == 'natural': print(f'{log(number):.2f}') else: print(f'{log(number , int(base)):.2f}')
15
43
0.593939
[ "MIT" ]
borisboychev/SoftUni
Python_Advanced_Softuni/Modules_Lab/venv/logarithm.py
165
Python
import numpy as np import pandas as pd import sys # can use sys to take command line arguments class Recommender(): ''' What is this class all about - write a really good doc string here ''' def __init__(self, ): ''' what do we need to start out our recommender system ''' def fit(self, ): ''' fit the recommender to your dataset and also have this save the results to pull from when you need to make predictions ''' def predict_rating(self, ): ''' makes predictions of a rating for a user on a movie-user combo ''' def make_recs(self,): ''' given a user id or a movie that an individual likes make recommendations ''' if __name__ == '__main__': # test different parts to make sure it works
23.416667
79
0.601423
[ "MIT" ]
43piRcubed/DSND_Term2
lessons/Recommendations/2_Matrix_Factorization_for_Recommendations/recommender_template.py
843
Python
import tensorflow as tf import sys sys.path.insert(0,'..') import vtrace_popart as vtrace nest = tf.contrib.framework.nest from .flags import * def compute_baseline_loss(advantages): # Loss for the baseline, summed over the time dimension. # Multiply by 0.5 to match the standard update rule: # d(loss) / d(baseline) = advantage return .5 * tf.reduce_sum(tf.square(advantages)) def compute_entropy_loss(logits): policy = tf.nn.softmax(logits) log_policy = tf.nn.log_softmax(logits) entropy_per_timestep = tf.reduce_sum(-policy * log_policy, axis=-1) return -tf.reduce_sum(entropy_per_timestep) def compute_policy_gradient_loss(logits, actions, advantages): cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=actions, logits=logits) advantages = tf.stop_gradient(advantages) policy_gradient_loss_per_timestep = cross_entropy * advantages return tf.reduce_sum(policy_gradient_loss_per_timestep) def build_learner(agent, env_outputs, agent_outputs, env_id): """Builds the learner loop. Args: agent: A snt.RNNCore module outputting `AgentOutput` named tuples, with an `unroll` call for computing the outputs for a whole trajectory. agent_state: The initial agent state for each sequence in the batch. env_outputs: A `StepOutput` namedtuple where each field is of shape [T+1, ...]. agent_outputs: An `AgentOutput` namedtuple where each field is of shape [T+1, ...]. Returns: A tuple of (done, infos, and environment frames) where the environment frames tensor causes an update. """ learner_outputs = agent.unroll(agent_outputs.action, env_outputs, env_id) # Use last baseline value (from the value function) to bootstrap. bootstrap_value = learner_outputs.un_normalized_vf[-1] # At this point, the environment outputs at time step `t` are the inputs that # lead to the learner_outputs at time step `t`. After the following shifting, # the actions in agent_outputs and learner_outputs at time step `t` is what # leads to the environment outputs at time step `t`. agent_outputs = nest.map_structure(lambda t: t[1:], agent_outputs) rewards, infos, done, _ = nest.map_structure( lambda t: t[1:], env_outputs) learner_outputs = nest.map_structure(lambda t: t[:-1], learner_outputs) if FLAGS.reward_clipping == 'abs_one': clipped_rewards = tf.clip_by_value(rewards, -1, 1) elif FLAGS.reward_clipping == 'soft_asymmetric': squeezed = tf.tanh(rewards / 5.0) # Negative rewards are given less weight than positive rewards. clipped_rewards = tf.where(rewards < 0, .3 * squeezed, squeezed) * 5. discounts = tf.to_float(~done) * FLAGS.discounting game_specific_mean = tf.gather(agent._mean, env_id) game_specific_std = tf.gather(agent._std, env_id) # Compute V-trace returns and weights. # Note, this is put on the CPU because it's faster than on GPU. It can be # improved further with XLA-compilation or with a custom TensorFlow operation. with tf.device('/cpu'): vtrace_returns = vtrace.from_logits( behaviour_policy_logits=agent_outputs.policy_logits, target_policy_logits=learner_outputs.policy_logits, actions=agent_outputs.action, discounts=discounts, rewards=clipped_rewards, un_normalized_values=learner_outputs.un_normalized_vf, normalized_values=learner_outputs.normalized_vf, mean=game_specific_mean, std=game_specific_std, bootstrap_value=bootstrap_value) # First term of equation (7) in (Hessel et al., 2018) normalized_vtrace = (vtrace_returns.vs - game_specific_mean) / game_specific_std normalized_vtrace = nest.map_structure(tf.stop_gradient, normalized_vtrace) # Compute loss as a weighted sum of the baseline loss, the policy gradient # loss and an entropy regularization term. total_loss = compute_policy_gradient_loss( learner_outputs.policy_logits, agent_outputs.action, vtrace_returns.pg_advantages) baseline_loss = compute_baseline_loss( normalized_vtrace - learner_outputs.normalized_vf) total_loss += FLAGS.baseline_cost * baseline_loss total_loss += FLAGS.entropy_cost * compute_entropy_loss( learner_outputs.policy_logits) # Optimization num_env_frames = tf.train.get_global_step() learning_rate = tf.train.polynomial_decay(FLAGS.learning_rate, num_env_frames, FLAGS.total_environment_frames, 0) optimizer = tf.train.RMSPropOptimizer(learning_rate, FLAGS.decay, FLAGS.momentum, FLAGS.epsilon) # Use reward clipping for atari games only if FLAGS.gradient_clipping > 0.0: variables = tf.trainable_variables() gradients = tf.gradients(total_loss, variables) gradients, _ = tf.clip_by_global_norm(gradients, FLAGS.gradient_clipping) train_op = optimizer.apply_gradients(zip(gradients, variables)) else: train_op = optimizer.minimize(total_loss) # Merge updating the network and environment frames into a single tensor. with tf.control_dependencies([train_op]): num_env_frames_and_train = num_env_frames.assign_add( FLAGS.batch_size * FLAGS.unroll_length) # Adding a few summaries. tf.summary.scalar('learning_rate', learning_rate) tf.summary.scalar('total_loss', total_loss) tf.summary.histogram('action', agent_outputs.action) # I'm not sure if it's really necessary to put this operation on the CPU. with tf.device('/cpu'): (mean, mean_squared) = (agent.update_moments(vtrace_returns.vs, env_id)) return (done, infos, num_env_frames_and_train) + (mean, mean_squared)
41.507353
82
0.740478
[ "Apache-2.0" ]
steffenvan/IMPALA-PopArt
popart/build_learner.py
5,645
Python
#!/usr/bin/python # Copyright (c) 2020, 2021 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_optimizer_recommendation_actions short_description: Perform actions on a Recommendation resource in Oracle Cloud Infrastructure description: - Perform actions on a Recommendation resource in Oracle Cloud Infrastructure - For I(action=bulk_apply), applies the specified recommendations to the resources. version_added: "2.9.0" author: Oracle (@oracle) options: recommendation_id: description: - The unique OCID associated with the recommendation. type: str aliases: ["id"] required: true resource_action_ids: description: - The unique OCIDs of the resource actions that recommendations are applied to. - This field is deprecated. type: list elements: str actions: description: - The unique resource actions that recommendations are applied to. type: list elements: dict suboptions: resource_action_id: description: - The unique OCIDs of the resource actions that recommendations are applied to. type: str required: true status: description: - The current status of the recommendation. type: str choices: - "PENDING" - "DISMISSED" - "POSTPONED" - "IMPLEMENTED" time_status_end: description: - The date and time the current status will change. The format is defined by RFC3339. - "For example, \\"The current `postponed` status of the resource action will end and change to `pending` on this date and time.\\"" type: str parameters: description: - "Additional parameter key-value pairs defining the resource action. For example:" - "`{\\"timeAmount\\": 15, \\"timeUnit\\": \\"seconds\\"}`" type: dict strategy_name: description: - The name of the strategy. type: str status: description: - The current status of the recommendation. type: str choices: - "PENDING" - "DISMISSED" - "POSTPONED" - "IMPLEMENTED" required: true time_status_end: description: - The date and time the current status will change. The format is defined by RFC3339. - "For example, \\"The current `postponed` status of the resource action will end and change to `pending` on this date and time.\\"" type: str action: description: - The action to perform on the Recommendation. type: str required: true choices: - "bulk_apply" extends_documentation_fragment: [ oracle.oci.oracle, oracle.oci.oracle_wait_options ] """ EXAMPLES = """ - name: Perform action bulk_apply on recommendation oci_optimizer_recommendation_actions: # required recommendation_id: "ocid1.recommendation.oc1..xxxxxxEXAMPLExxxxxx" status: PENDING action: bulk_apply # optional resource_action_ids: [ "null" ] actions: - # required resource_action_id: "ocid1.resourceaction.oc1..xxxxxxEXAMPLExxxxxx" # optional status: PENDING time_status_end: 2013-10-20T19:20:30+01:00 parameters: null strategy_name: strategy_name_example time_status_end: 2013-10-20T19:20:30+01:00 """ RETURN = """ recommendation: description: - Details of the Recommendation resource acted upon by the current operation returned: on success type: complex contains: id: description: - The unique OCID associated with the recommendation. returned: on success type: str sample: "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx" compartment_id: description: - The OCID of the tenancy. The tenancy is the root compartment. returned: on success type: str sample: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" category_id: description: - The unique OCID associated with the category. returned: on success type: str sample: "ocid1.category.oc1..xxxxxxEXAMPLExxxxxx" name: description: - The name assigned to the recommendation. returned: on success type: str sample: name_example description: description: - Text describing the recommendation. returned: on success type: str sample: description_example importance: description: - The level of importance assigned to the recommendation. returned: on success type: str sample: CRITICAL resource_counts: description: - An array of `ResourceCount` objects grouped by the status of the resource actions. returned: on success type: complex contains: status: description: - The recommendation status of the resource. returned: on success type: str sample: PENDING count: description: - The count of resources. returned: on success type: int sample: 56 lifecycle_state: description: - The recommendation's current state. returned: on success type: str sample: ACTIVE estimated_cost_saving: description: - The estimated cost savings, in dollars, for the recommendation. returned: on success type: float sample: 1.2 status: description: - The current status of the recommendation. returned: on success type: str sample: PENDING time_status_begin: description: - The date and time that the recommendation entered its current status. The format is defined by RFC3339. - "For example, \\"The status of the recommendation changed from `pending` to `current(ignored)` on this date and time.\\"" returned: on success type: str sample: "2013-10-20T19:20:30+01:00" time_status_end: description: - The date and time the current status will change. The format is defined by RFC3339. - "For example, \\"The current `postponed` status of the recommendation will end and change to `pending` on this date and time.\\"" returned: on success type: str sample: "2013-10-20T19:20:30+01:00" time_created: description: - The date and time the recommendation details were created, in the format defined by RFC3339. returned: on success type: str sample: "2020-08-25T21:10:29.600Z" time_updated: description: - The date and time the recommendation details were last updated, in the format defined by RFC3339. returned: on success type: str sample: "2020-08-25T21:10:29.600Z" supported_levels: description: - "" returned: on success type: complex contains: items: description: - The list of supported levels. returned: on success type: complex contains: name: description: - The name of the profile level. returned: on success type: str sample: name_example extended_metadata: description: - Additional metadata key/value pairs for the recommendation. - "For example:" - "`{\\"EstimatedSaving\\": \\"200\\"}`" returned: on success type: dict sample: {} sample: { "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx", "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "category_id": "ocid1.category.oc1..xxxxxxEXAMPLExxxxxx", "name": "name_example", "description": "description_example", "importance": "CRITICAL", "resource_counts": [{ "status": "PENDING", "count": 56 }], "lifecycle_state": "ACTIVE", "estimated_cost_saving": 1.2, "status": "PENDING", "time_status_begin": "2013-10-20T19:20:30+01:00", "time_status_end": "2013-10-20T19:20:30+01:00", "time_created": "2020-08-25T21:10:29.600Z", "time_updated": "2020-08-25T21:10:29.600Z", "supported_levels": { "items": [{ "name": "name_example" }] }, "extended_metadata": {} } """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import ( oci_common_utils, oci_wait_utils, ) from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIActionsHelperBase, get_custom_class, ) try: from oci.optimizer import OptimizerClient from oci.optimizer.models import BulkApplyRecommendationsDetails HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class RecommendationActionsHelperGen(OCIActionsHelperBase): """ Supported actions: bulk_apply """ @staticmethod def get_module_resource_id_param(): return "recommendation_id" def get_module_resource_id(self): return self.module.params.get("recommendation_id") def get_get_fn(self): return self.client.get_recommendation def get_resource(self): return oci_common_utils.call_with_backoff( self.client.get_recommendation, recommendation_id=self.module.params.get("recommendation_id"), ) def bulk_apply(self): action_details = oci_common_utils.convert_input_data_to_model_class( self.module.params, BulkApplyRecommendationsDetails ) return oci_wait_utils.call_and_wait( call_fn=self.client.bulk_apply_recommendations, call_fn_args=(), call_fn_kwargs=dict( recommendation_id=self.module.params.get("recommendation_id"), bulk_apply_recommendations_details=action_details, ), waiter_type=oci_wait_utils.WORK_REQUEST_WAITER_KEY, operation="{0}_{1}".format( self.module.params.get("action").upper(), oci_common_utils.ACTION_OPERATION_KEY, ), waiter_client=self.get_waiter_client(), resource_helper=self, wait_for_states=oci_common_utils.get_work_request_completed_states(), ) RecommendationActionsHelperCustom = get_custom_class( "RecommendationActionsHelperCustom" ) class ResourceHelper(RecommendationActionsHelperCustom, RecommendationActionsHelperGen): pass def main(): module_args = oci_common_utils.get_common_arg_spec( supports_create=False, supports_wait=True ) module_args.update( dict( recommendation_id=dict(aliases=["id"], type="str", required=True), resource_action_ids=dict(type="list", elements="str"), actions=dict( type="list", elements="dict", options=dict( resource_action_id=dict(type="str", required=True), status=dict( type="str", choices=["PENDING", "DISMISSED", "POSTPONED", "IMPLEMENTED"], ), time_status_end=dict(type="str"), parameters=dict(type="dict"), strategy_name=dict(type="str"), ), ), status=dict( type="str", required=True, choices=["PENDING", "DISMISSED", "POSTPONED", "IMPLEMENTED"], ), time_status_end=dict(type="str"), action=dict(type="str", required=True, choices=["bulk_apply"]), ) ) module = AnsibleModule(argument_spec=module_args, supports_check_mode=True) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module.") resource_helper = ResourceHelper( module=module, resource_type="recommendation", service_client_class=OptimizerClient, namespace="optimizer", ) result = resource_helper.perform_action(module.params.get("action")) module.exit_json(**result) if __name__ == "__main__": main()
34.591687
139
0.571742
[ "Apache-2.0" ]
sagar2938/oci-ansible-collection
plugins/modules/oci_optimizer_recommendation_actions.py
14,148
Python
#!/usr/bin/env python import os import sys if __name__ == "__main__": from django_secrets.startup import check check() os.environ['DJANGO_SETTINGS_MODULE'] = 'django_secrets.settings' try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django # noqa except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
32.185185
77
0.643268
[ "MIT" ]
kakulukia/django-secrets
manage.py
869
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017/7/31 上午10:21 # @Author : Matrix # @Github : https://github.com/blackmatrix7/ # @Blog : http://www.cnblogs.com/blackmatrix/ # @File : __init__.py.py # @Software: PyCharm from .huawei import SMSCenter __author__ = 'blackmatrix' if __name__ == '__main__': pass
21.666667
45
0.667692
[ "Apache-2.0" ]
blackmatrix7/iphone-hunter
sms/__init__.py
329
Python
from __future__ import unicode_literals import boto from boto.exception import BotoServerError from moto import mock_sns import sure # noqa @mock_sns def test_create_platform_application(): conn = boto.connect_sns() platform_application = conn.create_platform_application( name="my-application", platform="APNS", attributes={ "PlatformCredential": "platform_credential", "PlatformPrincipal": "platform_principal", }, ) application_arn = platform_application['CreatePlatformApplicationResponse']['CreatePlatformApplicationResult']['PlatformApplicationArn'] application_arn.should.equal('arn:aws:sns:us-east-1:123456789012:app/APNS/my-application') @mock_sns def test_get_platform_application_attributes(): conn = boto.connect_sns() platform_application = conn.create_platform_application( name="my-application", platform="APNS", attributes={ "PlatformCredential": "platform_credential", "PlatformPrincipal": "platform_principal", }, ) arn = platform_application['CreatePlatformApplicationResponse']['CreatePlatformApplicationResult']['PlatformApplicationArn'] attributes = conn.get_platform_application_attributes(arn)['GetPlatformApplicationAttributesResponse']['GetPlatformApplicationAttributesResult']['Attributes'] attributes.should.equal({ "PlatformCredential": "platform_credential", "PlatformPrincipal": "platform_principal", }) @mock_sns def test_get_missing_platform_application_attributes(): conn = boto.connect_sns() conn.get_platform_application_attributes.when.called_with("a-fake-arn").should.throw(BotoServerError) @mock_sns def test_set_platform_application_attributes(): conn = boto.connect_sns() platform_application = conn.create_platform_application( name="my-application", platform="APNS", attributes={ "PlatformCredential": "platform_credential", "PlatformPrincipal": "platform_principal", }, ) arn = platform_application['CreatePlatformApplicationResponse']['CreatePlatformApplicationResult']['PlatformApplicationArn'] conn.set_platform_application_attributes(arn, {"PlatformPrincipal": "other"} ) attributes = conn.get_platform_application_attributes(arn)['GetPlatformApplicationAttributesResponse']['GetPlatformApplicationAttributesResult']['Attributes'] attributes.should.equal({ "PlatformCredential": "platform_credential", "PlatformPrincipal": "other", }) @mock_sns def test_list_platform_applications(): conn = boto.connect_sns() conn.create_platform_application( name="application1", platform="APNS", ) conn.create_platform_application( name="application2", platform="APNS", ) applications_repsonse = conn.list_platform_applications() applications = applications_repsonse['ListPlatformApplicationsResponse']['ListPlatformApplicationsResult']['PlatformApplications'] applications.should.have.length_of(2) @mock_sns def test_delete_platform_application(): conn = boto.connect_sns() conn.create_platform_application( name="application1", platform="APNS", ) conn.create_platform_application( name="application2", platform="APNS", ) applications_repsonse = conn.list_platform_applications() applications = applications_repsonse['ListPlatformApplicationsResponse']['ListPlatformApplicationsResult']['PlatformApplications'] applications.should.have.length_of(2) application_arn = applications[0]['PlatformApplicationArn'] conn.delete_platform_application(application_arn) applications_repsonse = conn.list_platform_applications() applications = applications_repsonse['ListPlatformApplicationsResponse']['ListPlatformApplicationsResult']['PlatformApplications'] applications.should.have.length_of(1) @mock_sns def test_create_platform_endpoint(): conn = boto.connect_sns() platform_application = conn.create_platform_application( name="my-application", platform="APNS", ) application_arn = platform_application['CreatePlatformApplicationResponse']['CreatePlatformApplicationResult']['PlatformApplicationArn'] endpoint = conn.create_platform_endpoint( platform_application_arn=application_arn, token="some_unique_id", custom_user_data="some user data", attributes={ "Enabled": False, }, ) endpoint_arn = endpoint['CreatePlatformEndpointResponse']['CreatePlatformEndpointResult']['EndpointArn'] endpoint_arn.should.contain("arn:aws:sns:us-east-1:123456789012:endpoint/APNS/my-application/") @mock_sns def test_get_list_endpoints_by_platform_application(): conn = boto.connect_sns() platform_application = conn.create_platform_application( name="my-application", platform="APNS", ) application_arn = platform_application['CreatePlatformApplicationResponse']['CreatePlatformApplicationResult']['PlatformApplicationArn'] endpoint = conn.create_platform_endpoint( platform_application_arn=application_arn, token="some_unique_id", custom_user_data="some user data", attributes={ "CustomUserData": "some data", }, ) endpoint_arn = endpoint['CreatePlatformEndpointResponse']['CreatePlatformEndpointResult']['EndpointArn'] endpoint_list = conn.list_endpoints_by_platform_application( platform_application_arn=application_arn )['ListEndpointsByPlatformApplicationResponse']['ListEndpointsByPlatformApplicationResult']['Endpoints'] endpoint_list.should.have.length_of(1) endpoint_list[0]['Attributes']['CustomUserData'].should.equal('some data') endpoint_list[0]['EndpointArn'].should.equal(endpoint_arn) @mock_sns def test_get_endpoint_attributes(): conn = boto.connect_sns() platform_application = conn.create_platform_application( name="my-application", platform="APNS", ) application_arn = platform_application['CreatePlatformApplicationResponse']['CreatePlatformApplicationResult']['PlatformApplicationArn'] endpoint = conn.create_platform_endpoint( platform_application_arn=application_arn, token="some_unique_id", custom_user_data="some user data", attributes={ "Enabled": False, "CustomUserData": "some data", }, ) endpoint_arn = endpoint['CreatePlatformEndpointResponse']['CreatePlatformEndpointResult']['EndpointArn'] attributes = conn.get_endpoint_attributes(endpoint_arn)['GetEndpointAttributesResponse']['GetEndpointAttributesResult']['Attributes'] attributes.should.equal({ "Enabled": 'False', "CustomUserData": "some data", }) @mock_sns def test_get_missing_endpoint_attributes(): conn = boto.connect_sns() conn.get_endpoint_attributes.when.called_with("a-fake-arn").should.throw(BotoServerError) @mock_sns def test_set_endpoint_attributes(): conn = boto.connect_sns() platform_application = conn.create_platform_application( name="my-application", platform="APNS", ) application_arn = platform_application['CreatePlatformApplicationResponse']['CreatePlatformApplicationResult']['PlatformApplicationArn'] endpoint = conn.create_platform_endpoint( platform_application_arn=application_arn, token="some_unique_id", custom_user_data="some user data", attributes={ "Enabled": False, "CustomUserData": "some data", }, ) endpoint_arn = endpoint['CreatePlatformEndpointResponse']['CreatePlatformEndpointResult']['EndpointArn'] conn.set_endpoint_attributes(endpoint_arn, {"CustomUserData": "other data"} ) attributes = conn.get_endpoint_attributes(endpoint_arn)['GetEndpointAttributesResponse']['GetEndpointAttributesResult']['Attributes'] attributes.should.equal({ "Enabled": 'False', "CustomUserData": "other data", }) @mock_sns def test_delete_endpoint(): conn = boto.connect_sns() platform_application = conn.create_platform_application( name="my-application", platform="APNS", ) application_arn = platform_application['CreatePlatformApplicationResponse']['CreatePlatformApplicationResult']['PlatformApplicationArn'] endpoint = conn.create_platform_endpoint( platform_application_arn=application_arn, token="some_unique_id", custom_user_data="some user data", attributes={ "Enabled": False, "CustomUserData": "some data", }, ) endpoint_arn = endpoint['CreatePlatformEndpointResponse']['CreatePlatformEndpointResult']['EndpointArn'] endpoint_list = conn.list_endpoints_by_platform_application( platform_application_arn=application_arn )['ListEndpointsByPlatformApplicationResponse']['ListEndpointsByPlatformApplicationResult']['Endpoints'] endpoint_list.should.have.length_of(1) conn.delete_endpoint(endpoint_arn) endpoint_list = conn.list_endpoints_by_platform_application( platform_application_arn=application_arn )['ListEndpointsByPlatformApplicationResponse']['ListEndpointsByPlatformApplicationResult']['Endpoints'] endpoint_list.should.have.length_of(0) @mock_sns def test_publish_to_platform_endpoint(): conn = boto.connect_sns() platform_application = conn.create_platform_application( name="my-application", platform="APNS", ) application_arn = platform_application['CreatePlatformApplicationResponse']['CreatePlatformApplicationResult']['PlatformApplicationArn'] endpoint = conn.create_platform_endpoint( platform_application_arn=application_arn, token="some_unique_id", custom_user_data="some user data", attributes={ "Enabled": False, }, ) endpoint_arn = endpoint['CreatePlatformEndpointResponse']['CreatePlatformEndpointResult']['EndpointArn'] conn.publish(message="some message", message_structure="json", target_arn=endpoint_arn)
36.546429
162
0.731262
[ "Apache-2.0" ]
IlyaSukhanov/moto
tests/test_sns/test_application.py
10,233
Python
# -*- coding: utf-8 -*- # this file is released under public domain and you can use without limitations ######################################################################### ## Customize your APP title, subtitle and menus here ######################################################################### response.logo = A('Javelin',_class="brand",_href="/") response.title = request.application.replace('_',' ').title() ## read more at http://dev.w3.org/html5/markup/meta.name.html response.meta.author = 'Your Name <[email protected]>' response.meta.description = 'a cool new app' response.meta.keywords = 'web2py, python, framework' response.meta.generator = 'Web2py Web Framework' ## your http://google.com/analytics id response.google_analytics_id = None ######################################################################### ## this is the main application menu add/remove items as required ######################################################################### response.menu = [ (T('Home'), False, URL('default', 'index'), []) ] DEVELOPMENT_MENU = True ######################################################################### ## provide shortcuts for development. remove in production ######################################################################### def _(): # shortcuts app = request.application ctr = request.controller # useful links to internal and external resources response.menu += [ (SPAN('web2py', _class='highlighted'), False, 'http://web2py.com', [ (T('My Sites'), False, URL('admin', 'default', 'site')), (T('This App'), False, URL('admin', 'default', 'design/%s' % app), [ (T('Controller'), False, URL( 'admin', 'default', 'edit/%s/controllers/%s.py' % (app, ctr))), (T('View'), False, URL( 'admin', 'default', 'edit/%s/views/%s' % (app, response.view))), (T('Layout'), False, URL( 'admin', 'default', 'edit/%s/views/layout.html' % app)), (T('Stylesheet'), False, URL( 'admin', 'default', 'edit/%s/static/css/web2py.css' % app)), (T('DB Model'), False, URL( 'admin', 'default', 'edit/%s/models/db.py' % app)), (T('Menu Model'), False, URL( 'admin', 'default', 'edit/%s/models/menu.py' % app)), (T('Database'), False, URL(app, 'appadmin', 'index')), (T('Errors'), False, URL( 'admin', 'default', 'errors/' + app)), (T('About'), False, URL( 'admin', 'default', 'about/' + app)), ]), ('web2py.com', False, 'http://www.web2py.com', [ (T('Download'), False, 'http://www.web2py.com/examples/default/download'), (T('Support'), False, 'http://www.web2py.com/examples/default/support'), (T('Demo'), False, 'http://web2py.com/demo_admin'), (T('Quick Examples'), False, 'http://web2py.com/examples/default/examples'), (T('FAQ'), False, 'http://web2py.com/AlterEgo'), (T('Videos'), False, 'http://www.web2py.com/examples/default/videos/'), (T('Free Applications'), False, 'http://web2py.com/appliances'), (T('Plugins'), False, 'http://web2py.com/plugins'), (T('Layouts'), False, 'http://web2py.com/layouts'), (T('Recipes'), False, 'http://web2pyslices.com/'), (T('Semantic'), False, 'http://web2py.com/semantic'), ]), (T('Documentation'), False, 'http://www.web2py.com/book', [ (T('Preface'), False, 'http://www.web2py.com/book/default/chapter/00'), (T('Introduction'), False, 'http://www.web2py.com/book/default/chapter/01'), (T('Python'), False, 'http://www.web2py.com/book/default/chapter/02'), (T('Overview'), False, 'http://www.web2py.com/book/default/chapter/03'), (T('The Core'), False, 'http://www.web2py.com/book/default/chapter/04'), (T('The Views'), False, 'http://www.web2py.com/book/default/chapter/05'), (T('Database'), False, 'http://www.web2py.com/book/default/chapter/06'), (T('Forms and Validators'), False, 'http://www.web2py.com/book/default/chapter/07'), (T('Email and SMS'), False, 'http://www.web2py.com/book/default/chapter/08'), (T('Access Control'), False, 'http://www.web2py.com/book/default/chapter/09'), (T('Services'), False, 'http://www.web2py.com/book/default/chapter/10'), (T('Ajax Recipes'), False, 'http://www.web2py.com/book/default/chapter/11'), (T('Components and Plugins'), False, 'http://www.web2py.com/book/default/chapter/12'), (T('Deployment Recipes'), False, 'http://www.web2py.com/book/default/chapter/13'), (T('Other Recipes'), False, 'http://www.web2py.com/book/default/chapter/14'), (T('Buy this book'), False, 'http://stores.lulu.com/web2py'), ]), (T('Community'), False, None, [ (T('Groups'), False, 'http://www.web2py.com/examples/default/usergroups'), (T('Twitter'), False, 'http://twitter.com/web2py'), (T('Live Chat'), False, 'http://webchat.freenode.net/?channels=web2py'), ]), (T('Plugins'), False, None, [ ('plugin_wiki', False, 'http://web2py.com/examples/default/download'), (T('Other Plugins'), False, 'http://web2py.com/plugins'), (T('Layout Plugins'), False, 'http://web2py.com/layouts'), ]) ] )] if DEVELOPMENT_MENU: _() if "auth" in locals(): auth.wikimenu()
44.266187
79
0.478628
[ "BSD-3-Clause" ]
jjacobson93/javelin-web2py
applications/javelin/models/menu.py
6,153
Python
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/cloud/videointelligence_v1/proto/video_intelligence.proto """Generated protocol buffer code.""" from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from google.api import client_pb2 as google_dot_api_dot_client__pb2 from google.api import field_behavior_pb2 as google_dot_api_dot_field__behavior__pb2 from google.longrunning import ( operations_pb2 as google_dot_longrunning_dot_operations__pb2, ) from google.protobuf import duration_pb2 as google_dot_protobuf_dot_duration__pb2 from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 from google.rpc import status_pb2 as google_dot_rpc_dot_status__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name="google/cloud/videointelligence_v1/proto/video_intelligence.proto", package="google.cloud.videointelligence.v1", syntax="proto3", serialized_options=b"\n%com.google.cloud.videointelligence.v1B\035VideoIntelligenceServiceProtoP\001ZRgoogle.golang.org/genproto/googleapis/cloud/videointelligence/v1;videointelligence\252\002!Google.Cloud.VideoIntelligence.V1\312\002!Google\\Cloud\\VideoIntelligence\\V1\352\002$Google::Cloud::VideoIntelligence::V1", create_key=_descriptor._internal_create_key, serialized_pb=b'\n@google/cloud/videointelligence_v1/proto/video_intelligence.proto\x12!google.cloud.videointelligence.v1\x1a\x1cgoogle/api/annotations.proto\x1a\x17google/api/client.proto\x1a\x1fgoogle/api/field_behavior.proto\x1a#google/longrunning/operations.proto\x1a\x1egoogle/protobuf/duration.proto\x1a\x1fgoogle/protobuf/timestamp.proto\x1a\x17google/rpc/status.proto"\xfe\x01\n\x14\x41nnotateVideoRequest\x12\x11\n\tinput_uri\x18\x01 \x01(\t\x12\x15\n\rinput_content\x18\x06 \x01(\x0c\x12\x41\n\x08\x66\x65\x61tures\x18\x02 \x03(\x0e\x32*.google.cloud.videointelligence.v1.FeatureB\x03\xe0\x41\x02\x12\x46\n\rvideo_context\x18\x03 \x01(\x0b\x32/.google.cloud.videointelligence.v1.VideoContext\x12\x17\n\noutput_uri\x18\x04 \x01(\tB\x03\xe0\x41\x01\x12\x18\n\x0blocation_id\x18\x05 \x01(\tB\x03\xe0\x41\x01"\xc1\x06\n\x0cVideoContext\x12\x41\n\x08segments\x18\x01 \x03(\x0b\x32/.google.cloud.videointelligence.v1.VideoSegment\x12W\n\x16label_detection_config\x18\x02 \x01(\x0b\x32\x37.google.cloud.videointelligence.v1.LabelDetectionConfig\x12\x62\n\x1cshot_change_detection_config\x18\x03 \x01(\x0b\x32<.google.cloud.videointelligence.v1.ShotChangeDetectionConfig\x12l\n!explicit_content_detection_config\x18\x04 \x01(\x0b\x32\x41.google.cloud.videointelligence.v1.ExplicitContentDetectionConfig\x12U\n\x15\x66\x61\x63\x65_detection_config\x18\x05 \x01(\x0b\x32\x36.google.cloud.videointelligence.v1.FaceDetectionConfig\x12\x61\n\x1bspeech_transcription_config\x18\x06 \x01(\x0b\x32<.google.cloud.videointelligence.v1.SpeechTranscriptionConfig\x12U\n\x15text_detection_config\x18\x08 \x01(\x0b\x32\x36.google.cloud.videointelligence.v1.TextDetectionConfig\x12Y\n\x17person_detection_config\x18\x0b \x01(\x0b\x32\x38.google.cloud.videointelligence.v1.PersonDetectionConfig\x12W\n\x16object_tracking_config\x18\r \x01(\x0b\x32\x37.google.cloud.videointelligence.v1.ObjectTrackingConfig"\xdd\x01\n\x14LabelDetectionConfig\x12S\n\x14label_detection_mode\x18\x01 \x01(\x0e\x32\x35.google.cloud.videointelligence.v1.LabelDetectionMode\x12\x19\n\x11stationary_camera\x18\x02 \x01(\x08\x12\r\n\x05model\x18\x03 \x01(\t\x12"\n\x1a\x66rame_confidence_threshold\x18\x04 \x01(\x02\x12"\n\x1avideo_confidence_threshold\x18\x05 \x01(\x02"*\n\x19ShotChangeDetectionConfig\x12\r\n\x05model\x18\x01 \x01(\t"%\n\x14ObjectTrackingConfig\x12\r\n\x05model\x18\x01 \x01(\t"`\n\x13\x46\x61\x63\x65\x44\x65tectionConfig\x12\r\n\x05model\x18\x01 \x01(\t\x12\x1e\n\x16include_bounding_boxes\x18\x02 \x01(\x08\x12\x1a\n\x12include_attributes\x18\x05 \x01(\x08"s\n\x15PersonDetectionConfig\x12\x1e\n\x16include_bounding_boxes\x18\x01 \x01(\x08\x12\x1e\n\x16include_pose_landmarks\x18\x02 \x01(\x08\x12\x1a\n\x12include_attributes\x18\x03 \x01(\x08"/\n\x1e\x45xplicitContentDetectionConfig\x12\r\n\x05model\x18\x01 \x01(\t"<\n\x13TextDetectionConfig\x12\x16\n\x0elanguage_hints\x18\x01 \x03(\t\x12\r\n\x05model\x18\x02 \x01(\t"x\n\x0cVideoSegment\x12\x34\n\x11start_time_offset\x18\x01 \x01(\x0b\x32\x19.google.protobuf.Duration\x12\x32\n\x0f\x65nd_time_offset\x18\x02 \x01(\x0b\x32\x19.google.protobuf.Duration"d\n\x0cLabelSegment\x12@\n\x07segment\x18\x01 \x01(\x0b\x32/.google.cloud.videointelligence.v1.VideoSegment\x12\x12\n\nconfidence\x18\x02 \x01(\x02"P\n\nLabelFrame\x12.\n\x0btime_offset\x18\x01 \x01(\x0b\x32\x19.google.protobuf.Duration\x12\x12\n\nconfidence\x18\x02 \x01(\x02"G\n\x06\x45ntity\x12\x11\n\tentity_id\x18\x01 \x01(\t\x12\x13\n\x0b\x64\x65scription\x18\x02 \x01(\t\x12\x15\n\rlanguage_code\x18\x03 \x01(\t"\xa5\x02\n\x0fLabelAnnotation\x12\x39\n\x06\x65ntity\x18\x01 \x01(\x0b\x32).google.cloud.videointelligence.v1.Entity\x12\x44\n\x11\x63\x61tegory_entities\x18\x02 \x03(\x0b\x32).google.cloud.videointelligence.v1.Entity\x12\x41\n\x08segments\x18\x03 \x03(\x0b\x32/.google.cloud.videointelligence.v1.LabelSegment\x12=\n\x06\x66rames\x18\x04 \x03(\x0b\x32-.google.cloud.videointelligence.v1.LabelFrame\x12\x0f\n\x07version\x18\x05 \x01(\t"\x95\x01\n\x14\x45xplicitContentFrame\x12.\n\x0btime_offset\x18\x01 \x01(\x0b\x32\x19.google.protobuf.Duration\x12M\n\x16pornography_likelihood\x18\x02 \x01(\x0e\x32-.google.cloud.videointelligence.v1.Likelihood"u\n\x19\x45xplicitContentAnnotation\x12G\n\x06\x66rames\x18\x01 \x03(\x0b\x32\x37.google.cloud.videointelligence.v1.ExplicitContentFrame\x12\x0f\n\x07version\x18\x02 \x01(\t"Q\n\x15NormalizedBoundingBox\x12\x0c\n\x04left\x18\x01 \x01(\x02\x12\x0b\n\x03top\x18\x02 \x01(\x02\x12\r\n\x05right\x18\x03 \x01(\x02\x12\x0e\n\x06\x62ottom\x18\x04 \x01(\x02"*\n\x17\x46\x61\x63\x65\x44\x65tectionAnnotation\x12\x0f\n\x07version\x18\x05 \x01(\t"f\n\x19PersonDetectionAnnotation\x12\x38\n\x06tracks\x18\x01 \x03(\x0b\x32(.google.cloud.videointelligence.v1.Track\x12\x0f\n\x07version\x18\x02 \x01(\t"O\n\x0b\x46\x61\x63\x65Segment\x12@\n\x07segment\x18\x01 \x01(\x0b\x32/.google.cloud.videointelligence.v1.VideoSegment"\x9c\x01\n\tFaceFrame\x12[\n\x19normalized_bounding_boxes\x18\x01 \x03(\x0b\x32\x38.google.cloud.videointelligence.v1.NormalizedBoundingBox\x12.\n\x0btime_offset\x18\x02 \x01(\x0b\x32\x19.google.protobuf.Duration:\x02\x18\x01"\xa7\x01\n\x0e\x46\x61\x63\x65\x41nnotation\x12\x11\n\tthumbnail\x18\x01 \x01(\x0c\x12@\n\x08segments\x18\x02 \x03(\x0b\x32..google.cloud.videointelligence.v1.FaceSegment\x12<\n\x06\x66rames\x18\x03 \x03(\x0b\x32,.google.cloud.videointelligence.v1.FaceFrame:\x02\x18\x01"\xba\x02\n\x11TimestampedObject\x12Y\n\x17normalized_bounding_box\x18\x01 \x01(\x0b\x32\x38.google.cloud.videointelligence.v1.NormalizedBoundingBox\x12.\n\x0btime_offset\x18\x02 \x01(\x0b\x32\x19.google.protobuf.Duration\x12M\n\nattributes\x18\x03 \x03(\x0b\x32\x34.google.cloud.videointelligence.v1.DetectedAttributeB\x03\xe0\x41\x01\x12K\n\tlandmarks\x18\x04 \x03(\x0b\x32\x33.google.cloud.videointelligence.v1.DetectedLandmarkB\x03\xe0\x41\x01"\x84\x02\n\x05Track\x12@\n\x07segment\x18\x01 \x01(\x0b\x32/.google.cloud.videointelligence.v1.VideoSegment\x12Q\n\x13timestamped_objects\x18\x02 \x03(\x0b\x32\x34.google.cloud.videointelligence.v1.TimestampedObject\x12M\n\nattributes\x18\x03 \x03(\x0b\x32\x34.google.cloud.videointelligence.v1.DetectedAttributeB\x03\xe0\x41\x01\x12\x17\n\nconfidence\x18\x04 \x01(\x02\x42\x03\xe0\x41\x01"D\n\x11\x44\x65tectedAttribute\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12\r\n\x05value\x18\x03 \x01(\t"x\n\x10\x44\x65tectedLandmark\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x42\n\x05point\x18\x02 \x01(\x0b\x32\x33.google.cloud.videointelligence.v1.NormalizedVertex\x12\x12\n\nconfidence\x18\x03 \x01(\x02"\xe9\n\n\x16VideoAnnotationResults\x12\x11\n\tinput_uri\x18\x01 \x01(\t\x12@\n\x07segment\x18\n \x01(\x0b\x32/.google.cloud.videointelligence.v1.VideoSegment\x12U\n\x19segment_label_annotations\x18\x02 \x03(\x0b\x32\x32.google.cloud.videointelligence.v1.LabelAnnotation\x12^\n"segment_presence_label_annotations\x18\x17 \x03(\x0b\x32\x32.google.cloud.videointelligence.v1.LabelAnnotation\x12R\n\x16shot_label_annotations\x18\x03 \x03(\x0b\x32\x32.google.cloud.videointelligence.v1.LabelAnnotation\x12[\n\x1fshot_presence_label_annotations\x18\x18 \x03(\x0b\x32\x32.google.cloud.videointelligence.v1.LabelAnnotation\x12S\n\x17\x66rame_label_annotations\x18\x04 \x03(\x0b\x32\x32.google.cloud.videointelligence.v1.LabelAnnotation\x12O\n\x10\x66\x61\x63\x65_annotations\x18\x05 \x03(\x0b\x32\x31.google.cloud.videointelligence.v1.FaceAnnotationB\x02\x18\x01\x12^\n\x1a\x66\x61\x63\x65_detection_annotations\x18\r \x03(\x0b\x32:.google.cloud.videointelligence.v1.FaceDetectionAnnotation\x12I\n\x10shot_annotations\x18\x06 \x03(\x0b\x32/.google.cloud.videointelligence.v1.VideoSegment\x12Y\n\x13\x65xplicit_annotation\x18\x07 \x01(\x0b\x32<.google.cloud.videointelligence.v1.ExplicitContentAnnotation\x12U\n\x15speech_transcriptions\x18\x0b \x03(\x0b\x32\x36.google.cloud.videointelligence.v1.SpeechTranscription\x12K\n\x10text_annotations\x18\x0c \x03(\x0b\x32\x31.google.cloud.videointelligence.v1.TextAnnotation\x12W\n\x12object_annotations\x18\x0e \x03(\x0b\x32;.google.cloud.videointelligence.v1.ObjectTrackingAnnotation\x12\x62\n\x1clogo_recognition_annotations\x18\x13 \x03(\x0b\x32<.google.cloud.videointelligence.v1.LogoRecognitionAnnotation\x12\x62\n\x1cperson_detection_annotations\x18\x14 \x03(\x0b\x32<.google.cloud.videointelligence.v1.PersonDetectionAnnotation\x12!\n\x05\x65rror\x18\t \x01(\x0b\x32\x12.google.rpc.Status"n\n\x15\x41nnotateVideoResponse\x12U\n\x12\x61nnotation_results\x18\x01 \x03(\x0b\x32\x39.google.cloud.videointelligence.v1.VideoAnnotationResults"\xa6\x02\n\x17VideoAnnotationProgress\x12\x11\n\tinput_uri\x18\x01 \x01(\t\x12\x18\n\x10progress_percent\x18\x02 \x01(\x05\x12.\n\nstart_time\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12/\n\x0bupdate_time\x18\x04 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12;\n\x07\x66\x65\x61ture\x18\x05 \x01(\x0e\x32*.google.cloud.videointelligence.v1.Feature\x12@\n\x07segment\x18\x06 \x01(\x0b\x32/.google.cloud.videointelligence.v1.VideoSegment"p\n\x15\x41nnotateVideoProgress\x12W\n\x13\x61nnotation_progress\x18\x01 \x03(\x0b\x32:.google.cloud.videointelligence.v1.VideoAnnotationProgress"\x81\x03\n\x19SpeechTranscriptionConfig\x12\x1a\n\rlanguage_code\x18\x01 \x01(\tB\x03\xe0\x41\x02\x12\x1d\n\x10max_alternatives\x18\x02 \x01(\x05\x42\x03\xe0\x41\x01\x12\x1d\n\x10\x66ilter_profanity\x18\x03 \x01(\x08\x42\x03\xe0\x41\x01\x12N\n\x0fspeech_contexts\x18\x04 \x03(\x0b\x32\x30.google.cloud.videointelligence.v1.SpeechContextB\x03\xe0\x41\x01\x12)\n\x1c\x65nable_automatic_punctuation\x18\x05 \x01(\x08\x42\x03\xe0\x41\x01\x12\x19\n\x0c\x61udio_tracks\x18\x06 \x03(\x05\x42\x03\xe0\x41\x01\x12\'\n\x1a\x65nable_speaker_diarization\x18\x07 \x01(\x08\x42\x03\xe0\x41\x01\x12&\n\x19\x64iarization_speaker_count\x18\x08 \x01(\x05\x42\x03\xe0\x41\x01\x12#\n\x16\x65nable_word_confidence\x18\t \x01(\x08\x42\x03\xe0\x41\x01"%\n\rSpeechContext\x12\x14\n\x07phrases\x18\x01 \x03(\tB\x03\xe0\x41\x01"\x88\x01\n\x13SpeechTranscription\x12U\n\x0c\x61lternatives\x18\x01 \x03(\x0b\x32?.google.cloud.videointelligence.v1.SpeechRecognitionAlternative\x12\x1a\n\rlanguage_code\x18\x02 \x01(\tB\x03\xe0\x41\x03"\x8c\x01\n\x1cSpeechRecognitionAlternative\x12\x12\n\ntranscript\x18\x01 \x01(\t\x12\x17\n\nconfidence\x18\x02 \x01(\x02\x42\x03\xe0\x41\x03\x12?\n\x05words\x18\x03 \x03(\x0b\x32+.google.cloud.videointelligence.v1.WordInfoB\x03\xe0\x41\x03"\xa7\x01\n\x08WordInfo\x12-\n\nstart_time\x18\x01 \x01(\x0b\x32\x19.google.protobuf.Duration\x12+\n\x08\x65nd_time\x18\x02 \x01(\x0b\x32\x19.google.protobuf.Duration\x12\x0c\n\x04word\x18\x03 \x01(\t\x12\x17\n\nconfidence\x18\x04 \x01(\x02\x42\x03\xe0\x41\x03\x12\x18\n\x0bspeaker_tag\x18\x05 \x01(\x05\x42\x03\xe0\x41\x03"(\n\x10NormalizedVertex\x12\t\n\x01x\x18\x01 \x01(\x02\x12\t\n\x01y\x18\x02 \x01(\x02"_\n\x16NormalizedBoundingPoly\x12\x45\n\x08vertices\x18\x01 \x03(\x0b\x32\x33.google.cloud.videointelligence.v1.NormalizedVertex"\xa1\x01\n\x0bTextSegment\x12@\n\x07segment\x18\x01 \x01(\x0b\x32/.google.cloud.videointelligence.v1.VideoSegment\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12<\n\x06\x66rames\x18\x03 \x03(\x0b\x32,.google.cloud.videointelligence.v1.TextFrame"\x94\x01\n\tTextFrame\x12W\n\x14rotated_bounding_box\x18\x01 \x01(\x0b\x32\x39.google.cloud.videointelligence.v1.NormalizedBoundingPoly\x12.\n\x0btime_offset\x18\x02 \x01(\x0b\x32\x19.google.protobuf.Duration"q\n\x0eTextAnnotation\x12\x0c\n\x04text\x18\x01 \x01(\t\x12@\n\x08segments\x18\x02 \x03(\x0b\x32..google.cloud.videointelligence.v1.TextSegment\x12\x0f\n\x07version\x18\x03 \x01(\t"\xa0\x01\n\x13ObjectTrackingFrame\x12Y\n\x17normalized_bounding_box\x18\x01 \x01(\x0b\x32\x38.google.cloud.videointelligence.v1.NormalizedBoundingBox\x12.\n\x0btime_offset\x18\x02 \x01(\x0b\x32\x19.google.protobuf.Duration"\xa8\x02\n\x18ObjectTrackingAnnotation\x12\x42\n\x07segment\x18\x03 \x01(\x0b\x32/.google.cloud.videointelligence.v1.VideoSegmentH\x00\x12\x12\n\x08track_id\x18\x05 \x01(\x03H\x00\x12\x39\n\x06\x65ntity\x18\x01 \x01(\x0b\x32).google.cloud.videointelligence.v1.Entity\x12\x12\n\nconfidence\x18\x04 \x01(\x02\x12\x46\n\x06\x66rames\x18\x02 \x03(\x0b\x32\x36.google.cloud.videointelligence.v1.ObjectTrackingFrame\x12\x0f\n\x07version\x18\x06 \x01(\tB\x0c\n\ntrack_info"\xd3\x01\n\x19LogoRecognitionAnnotation\x12\x39\n\x06\x65ntity\x18\x01 \x01(\x0b\x32).google.cloud.videointelligence.v1.Entity\x12\x38\n\x06tracks\x18\x02 \x03(\x0b\x32(.google.cloud.videointelligence.v1.Track\x12\x41\n\x08segments\x18\x03 \x03(\x0b\x32/.google.cloud.videointelligence.v1.VideoSegment*\xf5\x01\n\x07\x46\x65\x61ture\x12\x17\n\x13\x46\x45\x41TURE_UNSPECIFIED\x10\x00\x12\x13\n\x0fLABEL_DETECTION\x10\x01\x12\x19\n\x15SHOT_CHANGE_DETECTION\x10\x02\x12\x1e\n\x1a\x45XPLICIT_CONTENT_DETECTION\x10\x03\x12\x12\n\x0e\x46\x41\x43\x45_DETECTION\x10\x04\x12\x18\n\x14SPEECH_TRANSCRIPTION\x10\x06\x12\x12\n\x0eTEXT_DETECTION\x10\x07\x12\x13\n\x0fOBJECT_TRACKING\x10\t\x12\x14\n\x10LOGO_RECOGNITION\x10\x0c\x12\x14\n\x10PERSON_DETECTION\x10\x0e*r\n\x12LabelDetectionMode\x12$\n LABEL_DETECTION_MODE_UNSPECIFIED\x10\x00\x12\r\n\tSHOT_MODE\x10\x01\x12\x0e\n\nFRAME_MODE\x10\x02\x12\x17\n\x13SHOT_AND_FRAME_MODE\x10\x03*t\n\nLikelihood\x12\x1a\n\x16LIKELIHOOD_UNSPECIFIED\x10\x00\x12\x11\n\rVERY_UNLIKELY\x10\x01\x12\x0c\n\x08UNLIKELY\x10\x02\x12\x0c\n\x08POSSIBLE\x10\x03\x12\n\n\x06LIKELY\x10\x04\x12\x0f\n\x0bVERY_LIKELY\x10\x05\x32\xc0\x02\n\x18VideoIntelligenceService\x12\xcd\x01\n\rAnnotateVideo\x12\x37.google.cloud.videointelligence.v1.AnnotateVideoRequest\x1a\x1d.google.longrunning.Operation"d\x82\xd3\xe4\x93\x02\x18"\x13/v1/videos:annotate:\x01*\xda\x41\x12input_uri,features\xca\x41.\n\x15\x41nnotateVideoResponse\x12\x15\x41nnotateVideoProgress\x1aT\xca\x41 videointelligence.googleapis.com\xd2\x41.https://www.googleapis.com/auth/cloud-platformB\x8b\x02\n%com.google.cloud.videointelligence.v1B\x1dVideoIntelligenceServiceProtoP\x01ZRgoogle.golang.org/genproto/googleapis/cloud/videointelligence/v1;videointelligence\xaa\x02!Google.Cloud.VideoIntelligence.V1\xca\x02!Google\\Cloud\\VideoIntelligence\\V1\xea\x02$Google::Cloud::VideoIntelligence::V1b\x06proto3', dependencies=[ google_dot_api_dot_annotations__pb2.DESCRIPTOR, google_dot_api_dot_client__pb2.DESCRIPTOR, google_dot_api_dot_field__behavior__pb2.DESCRIPTOR, google_dot_longrunning_dot_operations__pb2.DESCRIPTOR, google_dot_protobuf_dot_duration__pb2.DESCRIPTOR, google_dot_protobuf_dot_timestamp__pb2.DESCRIPTOR, google_dot_rpc_dot_status__pb2.DESCRIPTOR, ], ) _FEATURE = _descriptor.EnumDescriptor( name="Feature", full_name="google.cloud.videointelligence.v1.Feature", filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name="FEATURE_UNSPECIFIED", index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="LABEL_DETECTION", index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="SHOT_CHANGE_DETECTION", index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="EXPLICIT_CONTENT_DETECTION", index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="FACE_DETECTION", index=4, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="SPEECH_TRANSCRIPTION", index=5, number=6, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="TEXT_DETECTION", index=6, number=7, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="OBJECT_TRACKING", index=7, number=9, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="LOGO_RECOGNITION", index=8, number=12, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="PERSON_DETECTION", index=9, number=14, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), ], containing_type=None, serialized_options=None, serialized_start=8439, serialized_end=8684, ) _sym_db.RegisterEnumDescriptor(_FEATURE) Feature = enum_type_wrapper.EnumTypeWrapper(_FEATURE) _LABELDETECTIONMODE = _descriptor.EnumDescriptor( name="LabelDetectionMode", full_name="google.cloud.videointelligence.v1.LabelDetectionMode", filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name="LABEL_DETECTION_MODE_UNSPECIFIED", index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="SHOT_MODE", index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="FRAME_MODE", index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="SHOT_AND_FRAME_MODE", index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), ], containing_type=None, serialized_options=None, serialized_start=8686, serialized_end=8800, ) _sym_db.RegisterEnumDescriptor(_LABELDETECTIONMODE) LabelDetectionMode = enum_type_wrapper.EnumTypeWrapper(_LABELDETECTIONMODE) _LIKELIHOOD = _descriptor.EnumDescriptor( name="Likelihood", full_name="google.cloud.videointelligence.v1.Likelihood", filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name="LIKELIHOOD_UNSPECIFIED", index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="VERY_UNLIKELY", index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="UNLIKELY", index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="POSSIBLE", index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="LIKELY", index=4, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="VERY_LIKELY", index=5, number=5, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), ], containing_type=None, serialized_options=None, serialized_start=8802, serialized_end=8918, ) _sym_db.RegisterEnumDescriptor(_LIKELIHOOD) Likelihood = enum_type_wrapper.EnumTypeWrapper(_LIKELIHOOD) FEATURE_UNSPECIFIED = 0 LABEL_DETECTION = 1 SHOT_CHANGE_DETECTION = 2 EXPLICIT_CONTENT_DETECTION = 3 FACE_DETECTION = 4 SPEECH_TRANSCRIPTION = 6 TEXT_DETECTION = 7 OBJECT_TRACKING = 9 LOGO_RECOGNITION = 12 PERSON_DETECTION = 14 LABEL_DETECTION_MODE_UNSPECIFIED = 0 SHOT_MODE = 1 FRAME_MODE = 2 SHOT_AND_FRAME_MODE = 3 LIKELIHOOD_UNSPECIFIED = 0 VERY_UNLIKELY = 1 UNLIKELY = 2 POSSIBLE = 3 LIKELY = 4 VERY_LIKELY = 5 _ANNOTATEVIDEOREQUEST = _descriptor.Descriptor( name="AnnotateVideoRequest", full_name="google.cloud.videointelligence.v1.AnnotateVideoRequest", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="input_uri", full_name="google.cloud.videointelligence.v1.AnnotateVideoRequest.input_uri", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="input_content", full_name="google.cloud.videointelligence.v1.AnnotateVideoRequest.input_content", index=1, number=6, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b"", message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="features", full_name="google.cloud.videointelligence.v1.AnnotateVideoRequest.features", index=2, number=2, type=14, cpp_type=8, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="video_context", full_name="google.cloud.videointelligence.v1.AnnotateVideoRequest.video_context", index=3, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="output_uri", full_name="google.cloud.videointelligence.v1.AnnotateVideoRequest.output_uri", index=4, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="location_id", full_name="google.cloud.videointelligence.v1.AnnotateVideoRequest.location_id", index=5, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=319, serialized_end=573, ) _VIDEOCONTEXT = _descriptor.Descriptor( name="VideoContext", full_name="google.cloud.videointelligence.v1.VideoContext", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="segments", full_name="google.cloud.videointelligence.v1.VideoContext.segments", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="label_detection_config", full_name="google.cloud.videointelligence.v1.VideoContext.label_detection_config", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="shot_change_detection_config", full_name="google.cloud.videointelligence.v1.VideoContext.shot_change_detection_config", index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="explicit_content_detection_config", full_name="google.cloud.videointelligence.v1.VideoContext.explicit_content_detection_config", index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="face_detection_config", full_name="google.cloud.videointelligence.v1.VideoContext.face_detection_config", index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="speech_transcription_config", full_name="google.cloud.videointelligence.v1.VideoContext.speech_transcription_config", index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="text_detection_config", full_name="google.cloud.videointelligence.v1.VideoContext.text_detection_config", index=6, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="person_detection_config", full_name="google.cloud.videointelligence.v1.VideoContext.person_detection_config", index=7, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="object_tracking_config", full_name="google.cloud.videointelligence.v1.VideoContext.object_tracking_config", index=8, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=576, serialized_end=1409, ) _LABELDETECTIONCONFIG = _descriptor.Descriptor( name="LabelDetectionConfig", full_name="google.cloud.videointelligence.v1.LabelDetectionConfig", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="label_detection_mode", full_name="google.cloud.videointelligence.v1.LabelDetectionConfig.label_detection_mode", index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="stationary_camera", full_name="google.cloud.videointelligence.v1.LabelDetectionConfig.stationary_camera", index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="model", full_name="google.cloud.videointelligence.v1.LabelDetectionConfig.model", index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="frame_confidence_threshold", full_name="google.cloud.videointelligence.v1.LabelDetectionConfig.frame_confidence_threshold", index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="video_confidence_threshold", full_name="google.cloud.videointelligence.v1.LabelDetectionConfig.video_confidence_threshold", index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1412, serialized_end=1633, ) _SHOTCHANGEDETECTIONCONFIG = _descriptor.Descriptor( name="ShotChangeDetectionConfig", full_name="google.cloud.videointelligence.v1.ShotChangeDetectionConfig", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="model", full_name="google.cloud.videointelligence.v1.ShotChangeDetectionConfig.model", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1635, serialized_end=1677, ) _OBJECTTRACKINGCONFIG = _descriptor.Descriptor( name="ObjectTrackingConfig", full_name="google.cloud.videointelligence.v1.ObjectTrackingConfig", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="model", full_name="google.cloud.videointelligence.v1.ObjectTrackingConfig.model", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1679, serialized_end=1716, ) _FACEDETECTIONCONFIG = _descriptor.Descriptor( name="FaceDetectionConfig", full_name="google.cloud.videointelligence.v1.FaceDetectionConfig", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="model", full_name="google.cloud.videointelligence.v1.FaceDetectionConfig.model", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="include_bounding_boxes", full_name="google.cloud.videointelligence.v1.FaceDetectionConfig.include_bounding_boxes", index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="include_attributes", full_name="google.cloud.videointelligence.v1.FaceDetectionConfig.include_attributes", index=2, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1718, serialized_end=1814, ) _PERSONDETECTIONCONFIG = _descriptor.Descriptor( name="PersonDetectionConfig", full_name="google.cloud.videointelligence.v1.PersonDetectionConfig", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="include_bounding_boxes", full_name="google.cloud.videointelligence.v1.PersonDetectionConfig.include_bounding_boxes", index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="include_pose_landmarks", full_name="google.cloud.videointelligence.v1.PersonDetectionConfig.include_pose_landmarks", index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="include_attributes", full_name="google.cloud.videointelligence.v1.PersonDetectionConfig.include_attributes", index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1816, serialized_end=1931, ) _EXPLICITCONTENTDETECTIONCONFIG = _descriptor.Descriptor( name="ExplicitContentDetectionConfig", full_name="google.cloud.videointelligence.v1.ExplicitContentDetectionConfig", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="model", full_name="google.cloud.videointelligence.v1.ExplicitContentDetectionConfig.model", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1933, serialized_end=1980, ) _TEXTDETECTIONCONFIG = _descriptor.Descriptor( name="TextDetectionConfig", full_name="google.cloud.videointelligence.v1.TextDetectionConfig", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="language_hints", full_name="google.cloud.videointelligence.v1.TextDetectionConfig.language_hints", index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="model", full_name="google.cloud.videointelligence.v1.TextDetectionConfig.model", index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1982, serialized_end=2042, ) _VIDEOSEGMENT = _descriptor.Descriptor( name="VideoSegment", full_name="google.cloud.videointelligence.v1.VideoSegment", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="start_time_offset", full_name="google.cloud.videointelligence.v1.VideoSegment.start_time_offset", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="end_time_offset", full_name="google.cloud.videointelligence.v1.VideoSegment.end_time_offset", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2044, serialized_end=2164, ) _LABELSEGMENT = _descriptor.Descriptor( name="LabelSegment", full_name="google.cloud.videointelligence.v1.LabelSegment", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="segment", full_name="google.cloud.videointelligence.v1.LabelSegment.segment", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="confidence", full_name="google.cloud.videointelligence.v1.LabelSegment.confidence", index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2166, serialized_end=2266, ) _LABELFRAME = _descriptor.Descriptor( name="LabelFrame", full_name="google.cloud.videointelligence.v1.LabelFrame", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="time_offset", full_name="google.cloud.videointelligence.v1.LabelFrame.time_offset", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="confidence", full_name="google.cloud.videointelligence.v1.LabelFrame.confidence", index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2268, serialized_end=2348, ) _ENTITY = _descriptor.Descriptor( name="Entity", full_name="google.cloud.videointelligence.v1.Entity", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="entity_id", full_name="google.cloud.videointelligence.v1.Entity.entity_id", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="description", full_name="google.cloud.videointelligence.v1.Entity.description", index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="language_code", full_name="google.cloud.videointelligence.v1.Entity.language_code", index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2350, serialized_end=2421, ) _LABELANNOTATION = _descriptor.Descriptor( name="LabelAnnotation", full_name="google.cloud.videointelligence.v1.LabelAnnotation", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="entity", full_name="google.cloud.videointelligence.v1.LabelAnnotation.entity", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="category_entities", full_name="google.cloud.videointelligence.v1.LabelAnnotation.category_entities", index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="segments", full_name="google.cloud.videointelligence.v1.LabelAnnotation.segments", index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="frames", full_name="google.cloud.videointelligence.v1.LabelAnnotation.frames", index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="version", full_name="google.cloud.videointelligence.v1.LabelAnnotation.version", index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2424, serialized_end=2717, ) _EXPLICITCONTENTFRAME = _descriptor.Descriptor( name="ExplicitContentFrame", full_name="google.cloud.videointelligence.v1.ExplicitContentFrame", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="time_offset", full_name="google.cloud.videointelligence.v1.ExplicitContentFrame.time_offset", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="pornography_likelihood", full_name="google.cloud.videointelligence.v1.ExplicitContentFrame.pornography_likelihood", index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2720, serialized_end=2869, ) _EXPLICITCONTENTANNOTATION = _descriptor.Descriptor( name="ExplicitContentAnnotation", full_name="google.cloud.videointelligence.v1.ExplicitContentAnnotation", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="frames", full_name="google.cloud.videointelligence.v1.ExplicitContentAnnotation.frames", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="version", full_name="google.cloud.videointelligence.v1.ExplicitContentAnnotation.version", index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2871, serialized_end=2988, ) _NORMALIZEDBOUNDINGBOX = _descriptor.Descriptor( name="NormalizedBoundingBox", full_name="google.cloud.videointelligence.v1.NormalizedBoundingBox", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="left", full_name="google.cloud.videointelligence.v1.NormalizedBoundingBox.left", index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="top", full_name="google.cloud.videointelligence.v1.NormalizedBoundingBox.top", index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="right", full_name="google.cloud.videointelligence.v1.NormalizedBoundingBox.right", index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="bottom", full_name="google.cloud.videointelligence.v1.NormalizedBoundingBox.bottom", index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2990, serialized_end=3071, ) _FACEDETECTIONANNOTATION = _descriptor.Descriptor( name="FaceDetectionAnnotation", full_name="google.cloud.videointelligence.v1.FaceDetectionAnnotation", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="version", full_name="google.cloud.videointelligence.v1.FaceDetectionAnnotation.version", index=0, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=3073, serialized_end=3115, ) _PERSONDETECTIONANNOTATION = _descriptor.Descriptor( name="PersonDetectionAnnotation", full_name="google.cloud.videointelligence.v1.PersonDetectionAnnotation", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="tracks", full_name="google.cloud.videointelligence.v1.PersonDetectionAnnotation.tracks", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="version", full_name="google.cloud.videointelligence.v1.PersonDetectionAnnotation.version", index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=3117, serialized_end=3219, ) _FACESEGMENT = _descriptor.Descriptor( name="FaceSegment", full_name="google.cloud.videointelligence.v1.FaceSegment", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="segment", full_name="google.cloud.videointelligence.v1.FaceSegment.segment", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=3221, serialized_end=3300, ) _FACEFRAME = _descriptor.Descriptor( name="FaceFrame", full_name="google.cloud.videointelligence.v1.FaceFrame", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="normalized_bounding_boxes", full_name="google.cloud.videointelligence.v1.FaceFrame.normalized_bounding_boxes", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="time_offset", full_name="google.cloud.videointelligence.v1.FaceFrame.time_offset", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=b"\030\001", is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=3303, serialized_end=3459, ) _FACEANNOTATION = _descriptor.Descriptor( name="FaceAnnotation", full_name="google.cloud.videointelligence.v1.FaceAnnotation", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="thumbnail", full_name="google.cloud.videointelligence.v1.FaceAnnotation.thumbnail", index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b"", message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="segments", full_name="google.cloud.videointelligence.v1.FaceAnnotation.segments", index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="frames", full_name="google.cloud.videointelligence.v1.FaceAnnotation.frames", index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=b"\030\001", is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=3462, serialized_end=3629, ) _TIMESTAMPEDOBJECT = _descriptor.Descriptor( name="TimestampedObject", full_name="google.cloud.videointelligence.v1.TimestampedObject", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="normalized_bounding_box", full_name="google.cloud.videointelligence.v1.TimestampedObject.normalized_bounding_box", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="time_offset", full_name="google.cloud.videointelligence.v1.TimestampedObject.time_offset", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="attributes", full_name="google.cloud.videointelligence.v1.TimestampedObject.attributes", index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="landmarks", full_name="google.cloud.videointelligence.v1.TimestampedObject.landmarks", index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=3632, serialized_end=3946, ) _TRACK = _descriptor.Descriptor( name="Track", full_name="google.cloud.videointelligence.v1.Track", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="segment", full_name="google.cloud.videointelligence.v1.Track.segment", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="timestamped_objects", full_name="google.cloud.videointelligence.v1.Track.timestamped_objects", index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="attributes", full_name="google.cloud.videointelligence.v1.Track.attributes", index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="confidence", full_name="google.cloud.videointelligence.v1.Track.confidence", index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=3949, serialized_end=4209, ) _DETECTEDATTRIBUTE = _descriptor.Descriptor( name="DetectedAttribute", full_name="google.cloud.videointelligence.v1.DetectedAttribute", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="name", full_name="google.cloud.videointelligence.v1.DetectedAttribute.name", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="confidence", full_name="google.cloud.videointelligence.v1.DetectedAttribute.confidence", index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="value", full_name="google.cloud.videointelligence.v1.DetectedAttribute.value", index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=4211, serialized_end=4279, ) _DETECTEDLANDMARK = _descriptor.Descriptor( name="DetectedLandmark", full_name="google.cloud.videointelligence.v1.DetectedLandmark", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="name", full_name="google.cloud.videointelligence.v1.DetectedLandmark.name", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="point", full_name="google.cloud.videointelligence.v1.DetectedLandmark.point", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="confidence", full_name="google.cloud.videointelligence.v1.DetectedLandmark.confidence", index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=4281, serialized_end=4401, ) _VIDEOANNOTATIONRESULTS = _descriptor.Descriptor( name="VideoAnnotationResults", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="input_uri", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.input_uri", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="segment", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.segment", index=1, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="segment_label_annotations", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.segment_label_annotations", index=2, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="segment_presence_label_annotations", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.segment_presence_label_annotations", index=3, number=23, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="shot_label_annotations", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.shot_label_annotations", index=4, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="shot_presence_label_annotations", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.shot_presence_label_annotations", index=5, number=24, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="frame_label_annotations", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.frame_label_annotations", index=6, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="face_annotations", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.face_annotations", index=7, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\030\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="face_detection_annotations", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.face_detection_annotations", index=8, number=13, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="shot_annotations", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.shot_annotations", index=9, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="explicit_annotation", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.explicit_annotation", index=10, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="speech_transcriptions", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.speech_transcriptions", index=11, number=11, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="text_annotations", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.text_annotations", index=12, number=12, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="object_annotations", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.object_annotations", index=13, number=14, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="logo_recognition_annotations", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.logo_recognition_annotations", index=14, number=19, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="person_detection_annotations", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.person_detection_annotations", index=15, number=20, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="error", full_name="google.cloud.videointelligence.v1.VideoAnnotationResults.error", index=16, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=4404, serialized_end=5789, ) _ANNOTATEVIDEORESPONSE = _descriptor.Descriptor( name="AnnotateVideoResponse", full_name="google.cloud.videointelligence.v1.AnnotateVideoResponse", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="annotation_results", full_name="google.cloud.videointelligence.v1.AnnotateVideoResponse.annotation_results", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=5791, serialized_end=5901, ) _VIDEOANNOTATIONPROGRESS = _descriptor.Descriptor( name="VideoAnnotationProgress", full_name="google.cloud.videointelligence.v1.VideoAnnotationProgress", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="input_uri", full_name="google.cloud.videointelligence.v1.VideoAnnotationProgress.input_uri", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="progress_percent", full_name="google.cloud.videointelligence.v1.VideoAnnotationProgress.progress_percent", index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="start_time", full_name="google.cloud.videointelligence.v1.VideoAnnotationProgress.start_time", index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="update_time", full_name="google.cloud.videointelligence.v1.VideoAnnotationProgress.update_time", index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="feature", full_name="google.cloud.videointelligence.v1.VideoAnnotationProgress.feature", index=4, number=5, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="segment", full_name="google.cloud.videointelligence.v1.VideoAnnotationProgress.segment", index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=5904, serialized_end=6198, ) _ANNOTATEVIDEOPROGRESS = _descriptor.Descriptor( name="AnnotateVideoProgress", full_name="google.cloud.videointelligence.v1.AnnotateVideoProgress", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="annotation_progress", full_name="google.cloud.videointelligence.v1.AnnotateVideoProgress.annotation_progress", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=6200, serialized_end=6312, ) _SPEECHTRANSCRIPTIONCONFIG = _descriptor.Descriptor( name="SpeechTranscriptionConfig", full_name="google.cloud.videointelligence.v1.SpeechTranscriptionConfig", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="language_code", full_name="google.cloud.videointelligence.v1.SpeechTranscriptionConfig.language_code", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="max_alternatives", full_name="google.cloud.videointelligence.v1.SpeechTranscriptionConfig.max_alternatives", index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="filter_profanity", full_name="google.cloud.videointelligence.v1.SpeechTranscriptionConfig.filter_profanity", index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="speech_contexts", full_name="google.cloud.videointelligence.v1.SpeechTranscriptionConfig.speech_contexts", index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="enable_automatic_punctuation", full_name="google.cloud.videointelligence.v1.SpeechTranscriptionConfig.enable_automatic_punctuation", index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="audio_tracks", full_name="google.cloud.videointelligence.v1.SpeechTranscriptionConfig.audio_tracks", index=5, number=6, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="enable_speaker_diarization", full_name="google.cloud.videointelligence.v1.SpeechTranscriptionConfig.enable_speaker_diarization", index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="diarization_speaker_count", full_name="google.cloud.videointelligence.v1.SpeechTranscriptionConfig.diarization_speaker_count", index=7, number=8, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="enable_word_confidence", full_name="google.cloud.videointelligence.v1.SpeechTranscriptionConfig.enable_word_confidence", index=8, number=9, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=6315, serialized_end=6700, ) _SPEECHCONTEXT = _descriptor.Descriptor( name="SpeechContext", full_name="google.cloud.videointelligence.v1.SpeechContext", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="phrases", full_name="google.cloud.videointelligence.v1.SpeechContext.phrases", index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\001", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=6702, serialized_end=6739, ) _SPEECHTRANSCRIPTION = _descriptor.Descriptor( name="SpeechTranscription", full_name="google.cloud.videointelligence.v1.SpeechTranscription", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="alternatives", full_name="google.cloud.videointelligence.v1.SpeechTranscription.alternatives", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="language_code", full_name="google.cloud.videointelligence.v1.SpeechTranscription.language_code", index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\003", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=6742, serialized_end=6878, ) _SPEECHRECOGNITIONALTERNATIVE = _descriptor.Descriptor( name="SpeechRecognitionAlternative", full_name="google.cloud.videointelligence.v1.SpeechRecognitionAlternative", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="transcript", full_name="google.cloud.videointelligence.v1.SpeechRecognitionAlternative.transcript", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="confidence", full_name="google.cloud.videointelligence.v1.SpeechRecognitionAlternative.confidence", index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\003", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="words", full_name="google.cloud.videointelligence.v1.SpeechRecognitionAlternative.words", index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\003", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=6881, serialized_end=7021, ) _WORDINFO = _descriptor.Descriptor( name="WordInfo", full_name="google.cloud.videointelligence.v1.WordInfo", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="start_time", full_name="google.cloud.videointelligence.v1.WordInfo.start_time", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="end_time", full_name="google.cloud.videointelligence.v1.WordInfo.end_time", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="word", full_name="google.cloud.videointelligence.v1.WordInfo.word", index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="confidence", full_name="google.cloud.videointelligence.v1.WordInfo.confidence", index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\003", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="speaker_tag", full_name="google.cloud.videointelligence.v1.WordInfo.speaker_tag", index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\003", file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=7024, serialized_end=7191, ) _NORMALIZEDVERTEX = _descriptor.Descriptor( name="NormalizedVertex", full_name="google.cloud.videointelligence.v1.NormalizedVertex", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="x", full_name="google.cloud.videointelligence.v1.NormalizedVertex.x", index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="y", full_name="google.cloud.videointelligence.v1.NormalizedVertex.y", index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=7193, serialized_end=7233, ) _NORMALIZEDBOUNDINGPOLY = _descriptor.Descriptor( name="NormalizedBoundingPoly", full_name="google.cloud.videointelligence.v1.NormalizedBoundingPoly", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="vertices", full_name="google.cloud.videointelligence.v1.NormalizedBoundingPoly.vertices", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=7235, serialized_end=7330, ) _TEXTSEGMENT = _descriptor.Descriptor( name="TextSegment", full_name="google.cloud.videointelligence.v1.TextSegment", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="segment", full_name="google.cloud.videointelligence.v1.TextSegment.segment", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="confidence", full_name="google.cloud.videointelligence.v1.TextSegment.confidence", index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="frames", full_name="google.cloud.videointelligence.v1.TextSegment.frames", index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=7333, serialized_end=7494, ) _TEXTFRAME = _descriptor.Descriptor( name="TextFrame", full_name="google.cloud.videointelligence.v1.TextFrame", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="rotated_bounding_box", full_name="google.cloud.videointelligence.v1.TextFrame.rotated_bounding_box", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="time_offset", full_name="google.cloud.videointelligence.v1.TextFrame.time_offset", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=7497, serialized_end=7645, ) _TEXTANNOTATION = _descriptor.Descriptor( name="TextAnnotation", full_name="google.cloud.videointelligence.v1.TextAnnotation", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="text", full_name="google.cloud.videointelligence.v1.TextAnnotation.text", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="segments", full_name="google.cloud.videointelligence.v1.TextAnnotation.segments", index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="version", full_name="google.cloud.videointelligence.v1.TextAnnotation.version", index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=7647, serialized_end=7760, ) _OBJECTTRACKINGFRAME = _descriptor.Descriptor( name="ObjectTrackingFrame", full_name="google.cloud.videointelligence.v1.ObjectTrackingFrame", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="normalized_bounding_box", full_name="google.cloud.videointelligence.v1.ObjectTrackingFrame.normalized_bounding_box", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="time_offset", full_name="google.cloud.videointelligence.v1.ObjectTrackingFrame.time_offset", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=7763, serialized_end=7923, ) _OBJECTTRACKINGANNOTATION = _descriptor.Descriptor( name="ObjectTrackingAnnotation", full_name="google.cloud.videointelligence.v1.ObjectTrackingAnnotation", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="segment", full_name="google.cloud.videointelligence.v1.ObjectTrackingAnnotation.segment", index=0, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="track_id", full_name="google.cloud.videointelligence.v1.ObjectTrackingAnnotation.track_id", index=1, number=5, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="entity", full_name="google.cloud.videointelligence.v1.ObjectTrackingAnnotation.entity", index=2, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="confidence", full_name="google.cloud.videointelligence.v1.ObjectTrackingAnnotation.confidence", index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="frames", full_name="google.cloud.videointelligence.v1.ObjectTrackingAnnotation.frames", index=4, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="version", full_name="google.cloud.videointelligence.v1.ObjectTrackingAnnotation.version", index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name="track_info", full_name="google.cloud.videointelligence.v1.ObjectTrackingAnnotation.track_info", index=0, containing_type=None, create_key=_descriptor._internal_create_key, fields=[], ), ], serialized_start=7926, serialized_end=8222, ) _LOGORECOGNITIONANNOTATION = _descriptor.Descriptor( name="LogoRecognitionAnnotation", full_name="google.cloud.videointelligence.v1.LogoRecognitionAnnotation", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="entity", full_name="google.cloud.videointelligence.v1.LogoRecognitionAnnotation.entity", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="tracks", full_name="google.cloud.videointelligence.v1.LogoRecognitionAnnotation.tracks", index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="segments", full_name="google.cloud.videointelligence.v1.LogoRecognitionAnnotation.segments", index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=8225, serialized_end=8436, ) _ANNOTATEVIDEOREQUEST.fields_by_name["features"].enum_type = _FEATURE _ANNOTATEVIDEOREQUEST.fields_by_name["video_context"].message_type = _VIDEOCONTEXT _VIDEOCONTEXT.fields_by_name["segments"].message_type = _VIDEOSEGMENT _VIDEOCONTEXT.fields_by_name[ "label_detection_config" ].message_type = _LABELDETECTIONCONFIG _VIDEOCONTEXT.fields_by_name[ "shot_change_detection_config" ].message_type = _SHOTCHANGEDETECTIONCONFIG _VIDEOCONTEXT.fields_by_name[ "explicit_content_detection_config" ].message_type = _EXPLICITCONTENTDETECTIONCONFIG _VIDEOCONTEXT.fields_by_name[ "face_detection_config" ].message_type = _FACEDETECTIONCONFIG _VIDEOCONTEXT.fields_by_name[ "speech_transcription_config" ].message_type = _SPEECHTRANSCRIPTIONCONFIG _VIDEOCONTEXT.fields_by_name[ "text_detection_config" ].message_type = _TEXTDETECTIONCONFIG _VIDEOCONTEXT.fields_by_name[ "person_detection_config" ].message_type = _PERSONDETECTIONCONFIG _VIDEOCONTEXT.fields_by_name[ "object_tracking_config" ].message_type = _OBJECTTRACKINGCONFIG _LABELDETECTIONCONFIG.fields_by_name[ "label_detection_mode" ].enum_type = _LABELDETECTIONMODE _VIDEOSEGMENT.fields_by_name[ "start_time_offset" ].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _VIDEOSEGMENT.fields_by_name[ "end_time_offset" ].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _LABELSEGMENT.fields_by_name["segment"].message_type = _VIDEOSEGMENT _LABELFRAME.fields_by_name[ "time_offset" ].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _LABELANNOTATION.fields_by_name["entity"].message_type = _ENTITY _LABELANNOTATION.fields_by_name["category_entities"].message_type = _ENTITY _LABELANNOTATION.fields_by_name["segments"].message_type = _LABELSEGMENT _LABELANNOTATION.fields_by_name["frames"].message_type = _LABELFRAME _EXPLICITCONTENTFRAME.fields_by_name[ "time_offset" ].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _EXPLICITCONTENTFRAME.fields_by_name["pornography_likelihood"].enum_type = _LIKELIHOOD _EXPLICITCONTENTANNOTATION.fields_by_name["frames"].message_type = _EXPLICITCONTENTFRAME _PERSONDETECTIONANNOTATION.fields_by_name["tracks"].message_type = _TRACK _FACESEGMENT.fields_by_name["segment"].message_type = _VIDEOSEGMENT _FACEFRAME.fields_by_name[ "normalized_bounding_boxes" ].message_type = _NORMALIZEDBOUNDINGBOX _FACEFRAME.fields_by_name[ "time_offset" ].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _FACEANNOTATION.fields_by_name["segments"].message_type = _FACESEGMENT _FACEANNOTATION.fields_by_name["frames"].message_type = _FACEFRAME _TIMESTAMPEDOBJECT.fields_by_name[ "normalized_bounding_box" ].message_type = _NORMALIZEDBOUNDINGBOX _TIMESTAMPEDOBJECT.fields_by_name[ "time_offset" ].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _TIMESTAMPEDOBJECT.fields_by_name["attributes"].message_type = _DETECTEDATTRIBUTE _TIMESTAMPEDOBJECT.fields_by_name["landmarks"].message_type = _DETECTEDLANDMARK _TRACK.fields_by_name["segment"].message_type = _VIDEOSEGMENT _TRACK.fields_by_name["timestamped_objects"].message_type = _TIMESTAMPEDOBJECT _TRACK.fields_by_name["attributes"].message_type = _DETECTEDATTRIBUTE _DETECTEDLANDMARK.fields_by_name["point"].message_type = _NORMALIZEDVERTEX _VIDEOANNOTATIONRESULTS.fields_by_name["segment"].message_type = _VIDEOSEGMENT _VIDEOANNOTATIONRESULTS.fields_by_name[ "segment_label_annotations" ].message_type = _LABELANNOTATION _VIDEOANNOTATIONRESULTS.fields_by_name[ "segment_presence_label_annotations" ].message_type = _LABELANNOTATION _VIDEOANNOTATIONRESULTS.fields_by_name[ "shot_label_annotations" ].message_type = _LABELANNOTATION _VIDEOANNOTATIONRESULTS.fields_by_name[ "shot_presence_label_annotations" ].message_type = _LABELANNOTATION _VIDEOANNOTATIONRESULTS.fields_by_name[ "frame_label_annotations" ].message_type = _LABELANNOTATION _VIDEOANNOTATIONRESULTS.fields_by_name[ "face_annotations" ].message_type = _FACEANNOTATION _VIDEOANNOTATIONRESULTS.fields_by_name[ "face_detection_annotations" ].message_type = _FACEDETECTIONANNOTATION _VIDEOANNOTATIONRESULTS.fields_by_name["shot_annotations"].message_type = _VIDEOSEGMENT _VIDEOANNOTATIONRESULTS.fields_by_name[ "explicit_annotation" ].message_type = _EXPLICITCONTENTANNOTATION _VIDEOANNOTATIONRESULTS.fields_by_name[ "speech_transcriptions" ].message_type = _SPEECHTRANSCRIPTION _VIDEOANNOTATIONRESULTS.fields_by_name[ "text_annotations" ].message_type = _TEXTANNOTATION _VIDEOANNOTATIONRESULTS.fields_by_name[ "object_annotations" ].message_type = _OBJECTTRACKINGANNOTATION _VIDEOANNOTATIONRESULTS.fields_by_name[ "logo_recognition_annotations" ].message_type = _LOGORECOGNITIONANNOTATION _VIDEOANNOTATIONRESULTS.fields_by_name[ "person_detection_annotations" ].message_type = _PERSONDETECTIONANNOTATION _VIDEOANNOTATIONRESULTS.fields_by_name[ "error" ].message_type = google_dot_rpc_dot_status__pb2._STATUS _ANNOTATEVIDEORESPONSE.fields_by_name[ "annotation_results" ].message_type = _VIDEOANNOTATIONRESULTS _VIDEOANNOTATIONPROGRESS.fields_by_name[ "start_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _VIDEOANNOTATIONPROGRESS.fields_by_name[ "update_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _VIDEOANNOTATIONPROGRESS.fields_by_name["feature"].enum_type = _FEATURE _VIDEOANNOTATIONPROGRESS.fields_by_name["segment"].message_type = _VIDEOSEGMENT _ANNOTATEVIDEOPROGRESS.fields_by_name[ "annotation_progress" ].message_type = _VIDEOANNOTATIONPROGRESS _SPEECHTRANSCRIPTIONCONFIG.fields_by_name[ "speech_contexts" ].message_type = _SPEECHCONTEXT _SPEECHTRANSCRIPTION.fields_by_name[ "alternatives" ].message_type = _SPEECHRECOGNITIONALTERNATIVE _SPEECHRECOGNITIONALTERNATIVE.fields_by_name["words"].message_type = _WORDINFO _WORDINFO.fields_by_name[ "start_time" ].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _WORDINFO.fields_by_name[ "end_time" ].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _NORMALIZEDBOUNDINGPOLY.fields_by_name["vertices"].message_type = _NORMALIZEDVERTEX _TEXTSEGMENT.fields_by_name["segment"].message_type = _VIDEOSEGMENT _TEXTSEGMENT.fields_by_name["frames"].message_type = _TEXTFRAME _TEXTFRAME.fields_by_name["rotated_bounding_box"].message_type = _NORMALIZEDBOUNDINGPOLY _TEXTFRAME.fields_by_name[ "time_offset" ].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _TEXTANNOTATION.fields_by_name["segments"].message_type = _TEXTSEGMENT _OBJECTTRACKINGFRAME.fields_by_name[ "normalized_bounding_box" ].message_type = _NORMALIZEDBOUNDINGBOX _OBJECTTRACKINGFRAME.fields_by_name[ "time_offset" ].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _OBJECTTRACKINGANNOTATION.fields_by_name["segment"].message_type = _VIDEOSEGMENT _OBJECTTRACKINGANNOTATION.fields_by_name["entity"].message_type = _ENTITY _OBJECTTRACKINGANNOTATION.fields_by_name["frames"].message_type = _OBJECTTRACKINGFRAME _OBJECTTRACKINGANNOTATION.oneofs_by_name["track_info"].fields.append( _OBJECTTRACKINGANNOTATION.fields_by_name["segment"] ) _OBJECTTRACKINGANNOTATION.fields_by_name[ "segment" ].containing_oneof = _OBJECTTRACKINGANNOTATION.oneofs_by_name["track_info"] _OBJECTTRACKINGANNOTATION.oneofs_by_name["track_info"].fields.append( _OBJECTTRACKINGANNOTATION.fields_by_name["track_id"] ) _OBJECTTRACKINGANNOTATION.fields_by_name[ "track_id" ].containing_oneof = _OBJECTTRACKINGANNOTATION.oneofs_by_name["track_info"] _LOGORECOGNITIONANNOTATION.fields_by_name["entity"].message_type = _ENTITY _LOGORECOGNITIONANNOTATION.fields_by_name["tracks"].message_type = _TRACK _LOGORECOGNITIONANNOTATION.fields_by_name["segments"].message_type = _VIDEOSEGMENT DESCRIPTOR.message_types_by_name["AnnotateVideoRequest"] = _ANNOTATEVIDEOREQUEST DESCRIPTOR.message_types_by_name["VideoContext"] = _VIDEOCONTEXT DESCRIPTOR.message_types_by_name["LabelDetectionConfig"] = _LABELDETECTIONCONFIG DESCRIPTOR.message_types_by_name[ "ShotChangeDetectionConfig" ] = _SHOTCHANGEDETECTIONCONFIG DESCRIPTOR.message_types_by_name["ObjectTrackingConfig"] = _OBJECTTRACKINGCONFIG DESCRIPTOR.message_types_by_name["FaceDetectionConfig"] = _FACEDETECTIONCONFIG DESCRIPTOR.message_types_by_name["PersonDetectionConfig"] = _PERSONDETECTIONCONFIG DESCRIPTOR.message_types_by_name[ "ExplicitContentDetectionConfig" ] = _EXPLICITCONTENTDETECTIONCONFIG DESCRIPTOR.message_types_by_name["TextDetectionConfig"] = _TEXTDETECTIONCONFIG DESCRIPTOR.message_types_by_name["VideoSegment"] = _VIDEOSEGMENT DESCRIPTOR.message_types_by_name["LabelSegment"] = _LABELSEGMENT DESCRIPTOR.message_types_by_name["LabelFrame"] = _LABELFRAME DESCRIPTOR.message_types_by_name["Entity"] = _ENTITY DESCRIPTOR.message_types_by_name["LabelAnnotation"] = _LABELANNOTATION DESCRIPTOR.message_types_by_name["ExplicitContentFrame"] = _EXPLICITCONTENTFRAME DESCRIPTOR.message_types_by_name[ "ExplicitContentAnnotation" ] = _EXPLICITCONTENTANNOTATION DESCRIPTOR.message_types_by_name["NormalizedBoundingBox"] = _NORMALIZEDBOUNDINGBOX DESCRIPTOR.message_types_by_name["FaceDetectionAnnotation"] = _FACEDETECTIONANNOTATION DESCRIPTOR.message_types_by_name[ "PersonDetectionAnnotation" ] = _PERSONDETECTIONANNOTATION DESCRIPTOR.message_types_by_name["FaceSegment"] = _FACESEGMENT DESCRIPTOR.message_types_by_name["FaceFrame"] = _FACEFRAME DESCRIPTOR.message_types_by_name["FaceAnnotation"] = _FACEANNOTATION DESCRIPTOR.message_types_by_name["TimestampedObject"] = _TIMESTAMPEDOBJECT DESCRIPTOR.message_types_by_name["Track"] = _TRACK DESCRIPTOR.message_types_by_name["DetectedAttribute"] = _DETECTEDATTRIBUTE DESCRIPTOR.message_types_by_name["DetectedLandmark"] = _DETECTEDLANDMARK DESCRIPTOR.message_types_by_name["VideoAnnotationResults"] = _VIDEOANNOTATIONRESULTS DESCRIPTOR.message_types_by_name["AnnotateVideoResponse"] = _ANNOTATEVIDEORESPONSE DESCRIPTOR.message_types_by_name["VideoAnnotationProgress"] = _VIDEOANNOTATIONPROGRESS DESCRIPTOR.message_types_by_name["AnnotateVideoProgress"] = _ANNOTATEVIDEOPROGRESS DESCRIPTOR.message_types_by_name[ "SpeechTranscriptionConfig" ] = _SPEECHTRANSCRIPTIONCONFIG DESCRIPTOR.message_types_by_name["SpeechContext"] = _SPEECHCONTEXT DESCRIPTOR.message_types_by_name["SpeechTranscription"] = _SPEECHTRANSCRIPTION DESCRIPTOR.message_types_by_name[ "SpeechRecognitionAlternative" ] = _SPEECHRECOGNITIONALTERNATIVE DESCRIPTOR.message_types_by_name["WordInfo"] = _WORDINFO DESCRIPTOR.message_types_by_name["NormalizedVertex"] = _NORMALIZEDVERTEX DESCRIPTOR.message_types_by_name["NormalizedBoundingPoly"] = _NORMALIZEDBOUNDINGPOLY DESCRIPTOR.message_types_by_name["TextSegment"] = _TEXTSEGMENT DESCRIPTOR.message_types_by_name["TextFrame"] = _TEXTFRAME DESCRIPTOR.message_types_by_name["TextAnnotation"] = _TEXTANNOTATION DESCRIPTOR.message_types_by_name["ObjectTrackingFrame"] = _OBJECTTRACKINGFRAME DESCRIPTOR.message_types_by_name["ObjectTrackingAnnotation"] = _OBJECTTRACKINGANNOTATION DESCRIPTOR.message_types_by_name[ "LogoRecognitionAnnotation" ] = _LOGORECOGNITIONANNOTATION DESCRIPTOR.enum_types_by_name["Feature"] = _FEATURE DESCRIPTOR.enum_types_by_name["LabelDetectionMode"] = _LABELDETECTIONMODE DESCRIPTOR.enum_types_by_name["Likelihood"] = _LIKELIHOOD _sym_db.RegisterFileDescriptor(DESCRIPTOR) AnnotateVideoRequest = _reflection.GeneratedProtocolMessageType( "AnnotateVideoRequest", (_message.Message,), { "DESCRIPTOR": _ANNOTATEVIDEOREQUEST, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Video annotation request. Attributes: input_uri: Input video location. Currently, only `Cloud Storage <https://cloud.google.com/storage/>`__ URIs are supported. URIs must be specified in the following format: ``gs://bucket- id/object-id`` (other URI formats return [google.rpc.Code.INVA LID_ARGUMENT][google.rpc.Code.INVALID_ARGUMENT]). For more information, see `Request URIs <https://cloud.google.com/storage/docs/request-endpoints>`__. To identify multiple videos, a video URI may include wildcards in the ``object-id``. Supported wildcards: ’*’ to match 0 or more characters; ‘?’ to match 1 character. If unset, the input video should be embedded in the request as ``input_content``. If set, ``input_content`` must be unset. input_content: The video data bytes. If unset, the input video(s) should be specified via the ``input_uri``. If set, ``input_uri`` must be unset. features: Required. Requested video annotation features. video_context: Additional video context and/or feature-specific parameters. output_uri: Optional. Location where the output (in JSON format) should be stored. Currently, only `Cloud Storage <https://cloud.google.com/storage/>`__ URIs are supported. These must be specified in the following format: ``gs://bucket-id/object-id`` (other URI formats return [google .rpc.Code.INVALID_ARGUMENT][google.rpc.Code.INVALID_ARGUMENT]) . For more information, see `Request URIs <https://cloud.google.com/storage/docs/request-endpoints>`__. location_id: Optional. Cloud region where annotation should take place. Supported cloud regions are: ``us-east1``, ``us-west1``, ``europe-west1``, ``asia-east1``. If no region is specified, the region will be determined based on video file location. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.AnnotateVideoRequest) }, ) _sym_db.RegisterMessage(AnnotateVideoRequest) VideoContext = _reflection.GeneratedProtocolMessageType( "VideoContext", (_message.Message,), { "DESCRIPTOR": _VIDEOCONTEXT, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Video context and/or feature-specific parameters. Attributes: segments: Video segments to annotate. The segments may overlap and are not required to be contiguous or span the whole video. If unspecified, each video is treated as a single segment. label_detection_config: Config for LABEL_DETECTION. shot_change_detection_config: Config for SHOT_CHANGE_DETECTION. explicit_content_detection_config: Config for EXPLICIT_CONTENT_DETECTION. face_detection_config: Config for FACE_DETECTION. speech_transcription_config: Config for SPEECH_TRANSCRIPTION. text_detection_config: Config for TEXT_DETECTION. person_detection_config: Config for PERSON_DETECTION. object_tracking_config: Config for OBJECT_TRACKING. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.VideoContext) }, ) _sym_db.RegisterMessage(VideoContext) LabelDetectionConfig = _reflection.GeneratedProtocolMessageType( "LabelDetectionConfig", (_message.Message,), { "DESCRIPTOR": _LABELDETECTIONCONFIG, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Config for LABEL_DETECTION. Attributes: label_detection_mode: What labels should be detected with LABEL_DETECTION, in addition to video-level labels or segment-level labels. If unspecified, defaults to ``SHOT_MODE``. stationary_camera: Whether the video has been shot from a stationary (i.e., non- moving) camera. When set to true, might improve detection accuracy for moving objects. Should be used with ``SHOT_AND_FRAME_MODE`` enabled. model: Model to use for label detection. Supported values: “builtin/stable” (the default if unset) and “builtin/latest”. frame_confidence_threshold: The confidence threshold we perform filtering on the labels from frame-level detection. If not set, it is set to 0.4 by default. The valid range for this threshold is [0.1, 0.9]. Any value set outside of this range will be clipped. Note: For best results, follow the default threshold. We will update the default threshold everytime when we release a new model. video_confidence_threshold: The confidence threshold we perform filtering on the labels from video-level and shot-level detections. If not set, it’s set to 0.3 by default. The valid range for this threshold is [0.1, 0.9]. Any value set outside of this range will be clipped. Note: For best results, follow the default threshold. We will update the default threshold everytime when we release a new model. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.LabelDetectionConfig) }, ) _sym_db.RegisterMessage(LabelDetectionConfig) ShotChangeDetectionConfig = _reflection.GeneratedProtocolMessageType( "ShotChangeDetectionConfig", (_message.Message,), { "DESCRIPTOR": _SHOTCHANGEDETECTIONCONFIG, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Config for SHOT_CHANGE_DETECTION. Attributes: model: Model to use for shot change detection. Supported values: “builtin/stable” (the default if unset) and “builtin/latest”. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.ShotChangeDetectionConfig) }, ) _sym_db.RegisterMessage(ShotChangeDetectionConfig) ObjectTrackingConfig = _reflection.GeneratedProtocolMessageType( "ObjectTrackingConfig", (_message.Message,), { "DESCRIPTOR": _OBJECTTRACKINGCONFIG, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Config for OBJECT_TRACKING. Attributes: model: Model to use for object tracking. Supported values: “builtin/stable” (the default if unset) and “builtin/latest”. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.ObjectTrackingConfig) }, ) _sym_db.RegisterMessage(ObjectTrackingConfig) FaceDetectionConfig = _reflection.GeneratedProtocolMessageType( "FaceDetectionConfig", (_message.Message,), { "DESCRIPTOR": _FACEDETECTIONCONFIG, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Config for FACE_DETECTION. Attributes: model: Model to use for face detection. Supported values: “builtin/stable” (the default if unset) and “builtin/latest”. include_bounding_boxes: Whether bounding boxes are included in the face annotation output. include_attributes: Whether to enable face attributes detection, such as glasses, dark_glasses, mouth_open etc. Ignored if ‘include_bounding_boxes’ is set to false. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.FaceDetectionConfig) }, ) _sym_db.RegisterMessage(FaceDetectionConfig) PersonDetectionConfig = _reflection.GeneratedProtocolMessageType( "PersonDetectionConfig", (_message.Message,), { "DESCRIPTOR": _PERSONDETECTIONCONFIG, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Config for PERSON_DETECTION. Attributes: include_bounding_boxes: Whether bounding boxes are included in the person detection annotation output. include_pose_landmarks: Whether to enable pose landmarks detection. Ignored if ‘include_bounding_boxes’ is set to false. include_attributes: Whether to enable person attributes detection, such as cloth color (black, blue, etc), type (coat, dress, etc), pattern (plain, floral, etc), hair, etc. Ignored if ‘include_bounding_boxes’ is set to false. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.PersonDetectionConfig) }, ) _sym_db.RegisterMessage(PersonDetectionConfig) ExplicitContentDetectionConfig = _reflection.GeneratedProtocolMessageType( "ExplicitContentDetectionConfig", (_message.Message,), { "DESCRIPTOR": _EXPLICITCONTENTDETECTIONCONFIG, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Config for EXPLICIT_CONTENT_DETECTION. Attributes: model: Model to use for explicit content detection. Supported values: “builtin/stable” (the default if unset) and “builtin/latest”. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.ExplicitContentDetectionConfig) }, ) _sym_db.RegisterMessage(ExplicitContentDetectionConfig) TextDetectionConfig = _reflection.GeneratedProtocolMessageType( "TextDetectionConfig", (_message.Message,), { "DESCRIPTOR": _TEXTDETECTIONCONFIG, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Config for TEXT_DETECTION. Attributes: language_hints: Language hint can be specified if the language to be detected is known a priori. It can increase the accuracy of the detection. Language hint must be language code in BCP-47 format. Automatic language detection is performed if no hint is provided. model: Model to use for text detection. Supported values: “builtin/stable” (the default if unset) and “builtin/latest”. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.TextDetectionConfig) }, ) _sym_db.RegisterMessage(TextDetectionConfig) VideoSegment = _reflection.GeneratedProtocolMessageType( "VideoSegment", (_message.Message,), { "DESCRIPTOR": _VIDEOSEGMENT, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Video segment. Attributes: start_time_offset: Time-offset, relative to the beginning of the video, corresponding to the start of the segment (inclusive). end_time_offset: Time-offset, relative to the beginning of the video, corresponding to the end of the segment (inclusive). """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.VideoSegment) }, ) _sym_db.RegisterMessage(VideoSegment) LabelSegment = _reflection.GeneratedProtocolMessageType( "LabelSegment", (_message.Message,), { "DESCRIPTOR": _LABELSEGMENT, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Video segment level annotation results for label detection. Attributes: segment: Video segment where a label was detected. confidence: Confidence that the label is accurate. Range: [0, 1]. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.LabelSegment) }, ) _sym_db.RegisterMessage(LabelSegment) LabelFrame = _reflection.GeneratedProtocolMessageType( "LabelFrame", (_message.Message,), { "DESCRIPTOR": _LABELFRAME, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Video frame level annotation results for label detection. Attributes: time_offset: Time-offset, relative to the beginning of the video, corresponding to the video frame for this location. confidence: Confidence that the label is accurate. Range: [0, 1]. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.LabelFrame) }, ) _sym_db.RegisterMessage(LabelFrame) Entity = _reflection.GeneratedProtocolMessageType( "Entity", (_message.Message,), { "DESCRIPTOR": _ENTITY, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Detected entity from video analysis. Attributes: entity_id: Opaque entity ID. Some IDs may be available in `Google Knowledge Graph Search API <https://developers.google.com/knowledge-graph/>`__. description: Textual description, e.g., ``Fixed-gear bicycle``. language_code: Language code for ``description`` in BCP-47 format. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.Entity) }, ) _sym_db.RegisterMessage(Entity) LabelAnnotation = _reflection.GeneratedProtocolMessageType( "LabelAnnotation", (_message.Message,), { "DESCRIPTOR": _LABELANNOTATION, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Label annotation. Attributes: entity: Detected entity. category_entities: Common categories for the detected entity. For example, when the label is ``Terrier``, the category is likely ``dog``. And in some cases there might be more than one categories e.g., ``Terrier`` could also be a ``pet``. segments: All video segments where a label was detected. frames: All video frames where a label was detected. version: Feature version. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.LabelAnnotation) }, ) _sym_db.RegisterMessage(LabelAnnotation) ExplicitContentFrame = _reflection.GeneratedProtocolMessageType( "ExplicitContentFrame", (_message.Message,), { "DESCRIPTOR": _EXPLICITCONTENTFRAME, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Video frame level annotation results for explicit content. Attributes: time_offset: Time-offset, relative to the beginning of the video, corresponding to the video frame for this location. pornography_likelihood: Likelihood of the pornography content.. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.ExplicitContentFrame) }, ) _sym_db.RegisterMessage(ExplicitContentFrame) ExplicitContentAnnotation = _reflection.GeneratedProtocolMessageType( "ExplicitContentAnnotation", (_message.Message,), { "DESCRIPTOR": _EXPLICITCONTENTANNOTATION, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Explicit content annotation (based on per-frame visual signals only). If no explicit content has been detected in a frame, no annotations are present for that frame. Attributes: frames: All video frames where explicit content was detected. version: Feature version. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.ExplicitContentAnnotation) }, ) _sym_db.RegisterMessage(ExplicitContentAnnotation) NormalizedBoundingBox = _reflection.GeneratedProtocolMessageType( "NormalizedBoundingBox", (_message.Message,), { "DESCRIPTOR": _NORMALIZEDBOUNDINGBOX, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Normalized bounding box. The normalized vertex coordinates are relative to the original image. Range: [0, 1]. Attributes: left: Left X coordinate. top: Top Y coordinate. right: Right X coordinate. bottom: Bottom Y coordinate. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.NormalizedBoundingBox) }, ) _sym_db.RegisterMessage(NormalizedBoundingBox) FaceDetectionAnnotation = _reflection.GeneratedProtocolMessageType( "FaceDetectionAnnotation", (_message.Message,), { "DESCRIPTOR": _FACEDETECTIONANNOTATION, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Face detection annotation. Attributes: version: Feature version. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.FaceDetectionAnnotation) }, ) _sym_db.RegisterMessage(FaceDetectionAnnotation) PersonDetectionAnnotation = _reflection.GeneratedProtocolMessageType( "PersonDetectionAnnotation", (_message.Message,), { "DESCRIPTOR": _PERSONDETECTIONANNOTATION, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Person detection annotation per video. Attributes: tracks: The detected tracks of a person. version: Feature version. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.PersonDetectionAnnotation) }, ) _sym_db.RegisterMessage(PersonDetectionAnnotation) FaceSegment = _reflection.GeneratedProtocolMessageType( "FaceSegment", (_message.Message,), { "DESCRIPTOR": _FACESEGMENT, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Video segment level annotation results for face detection. Attributes: segment: Video segment where a face was detected. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.FaceSegment) }, ) _sym_db.RegisterMessage(FaceSegment) FaceFrame = _reflection.GeneratedProtocolMessageType( "FaceFrame", (_message.Message,), { "DESCRIPTOR": _FACEFRAME, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Deprecated. No effect. Attributes: normalized_bounding_boxes: Normalized Bounding boxes in a frame. There can be more than one boxes if the same face is detected in multiple locations within the current frame. time_offset: Time-offset, relative to the beginning of the video, corresponding to the video frame for this location. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.FaceFrame) }, ) _sym_db.RegisterMessage(FaceFrame) FaceAnnotation = _reflection.GeneratedProtocolMessageType( "FaceAnnotation", (_message.Message,), { "DESCRIPTOR": _FACEANNOTATION, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Deprecated. No effect. Attributes: thumbnail: Thumbnail of a representative face view (in JPEG format). segments: All video segments where a face was detected. frames: All video frames where a face was detected. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.FaceAnnotation) }, ) _sym_db.RegisterMessage(FaceAnnotation) TimestampedObject = _reflection.GeneratedProtocolMessageType( "TimestampedObject", (_message.Message,), { "DESCRIPTOR": _TIMESTAMPEDOBJECT, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """For tracking related features. An object at time_offset with attributes, and located with normalized_bounding_box. Attributes: normalized_bounding_box: Normalized Bounding box in a frame, where the object is located. time_offset: Time-offset, relative to the beginning of the video, corresponding to the video frame for this object. attributes: Optional. The attributes of the object in the bounding box. landmarks: Optional. The detected landmarks. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.TimestampedObject) }, ) _sym_db.RegisterMessage(TimestampedObject) Track = _reflection.GeneratedProtocolMessageType( "Track", (_message.Message,), { "DESCRIPTOR": _TRACK, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """A track of an object instance. Attributes: segment: Video segment of a track. timestamped_objects: The object with timestamp and attributes per frame in the track. attributes: Optional. Attributes in the track level. confidence: Optional. The confidence score of the tracked object. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.Track) }, ) _sym_db.RegisterMessage(Track) DetectedAttribute = _reflection.GeneratedProtocolMessageType( "DetectedAttribute", (_message.Message,), { "DESCRIPTOR": _DETECTEDATTRIBUTE, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """A generic detected attribute represented by name in string format. Attributes: name: The name of the attribute, for example, glasses, dark_glasses, mouth_open. A full list of supported type names will be provided in the document. confidence: Detected attribute confidence. Range [0, 1]. value: Text value of the detection result. For example, the value for “HairColor” can be “black”, “blonde”, etc. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.DetectedAttribute) }, ) _sym_db.RegisterMessage(DetectedAttribute) DetectedLandmark = _reflection.GeneratedProtocolMessageType( "DetectedLandmark", (_message.Message,), { "DESCRIPTOR": _DETECTEDLANDMARK, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """A generic detected landmark represented by name in string format and a 2D location. Attributes: name: The name of this landmark, for example, left_hand, right_shoulder. point: The 2D point of the detected landmark using the normalized image coordindate system. The normalized coordinates have the range from 0 to 1. confidence: The confidence score of the detected landmark. Range [0, 1]. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.DetectedLandmark) }, ) _sym_db.RegisterMessage(DetectedLandmark) VideoAnnotationResults = _reflection.GeneratedProtocolMessageType( "VideoAnnotationResults", (_message.Message,), { "DESCRIPTOR": _VIDEOANNOTATIONRESULTS, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Annotation results for a single video. Attributes: input_uri: Video file location in `Cloud Storage <https://cloud.google.com/storage/>`__. segment: Video segment on which the annotation is run. segment_label_annotations: Topical label annotations on video level or user-specified segment level. There is exactly one element for each unique label. segment_presence_label_annotations: Presence label annotations on video level or user-specified segment level. There is exactly one element for each unique label. Compared to the existing topical ``segment_label_annotations``, this field presents more fine- grained, segment-level labels detected in video content and is made available only when the client sets ``LabelDetectionConfig.model`` to “builtin/latest” in the request. shot_label_annotations: Topical label annotations on shot level. There is exactly one element for each unique label. shot_presence_label_annotations: Presence label annotations on shot level. There is exactly one element for each unique label. Compared to the existing topical ``shot_label_annotations``, this field presents more fine-grained, shot-level labels detected in video content and is made available only when the client sets ``LabelDetectionConfig.model`` to “builtin/latest” in the request. frame_label_annotations: Label annotations on frame level. There is exactly one element for each unique label. face_annotations: Deprecated. Please use ``face_detection_annotations`` instead. face_detection_annotations: Face detection annotations. shot_annotations: Shot annotations. Each shot is represented as a video segment. explicit_annotation: Explicit content annotation. speech_transcriptions: Speech transcription. text_annotations: OCR text detection and tracking. Annotations for list of detected text snippets. Each will have list of frame information associated with it. object_annotations: Annotations for list of objects detected and tracked in video. logo_recognition_annotations: Annotations for list of logos detected, tracked and recognized in video. person_detection_annotations: Person detection annotations. error: If set, indicates an error. Note that for a single ``AnnotateVideoRequest`` some videos may succeed and some may fail. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.VideoAnnotationResults) }, ) _sym_db.RegisterMessage(VideoAnnotationResults) AnnotateVideoResponse = _reflection.GeneratedProtocolMessageType( "AnnotateVideoResponse", (_message.Message,), { "DESCRIPTOR": _ANNOTATEVIDEORESPONSE, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Video annotation response. Included in the ``response`` field of the ``Operation`` returned by the ``GetOperation`` call of the ``google::longrunning::Operations`` service. Attributes: annotation_results: Annotation results for all videos specified in ``AnnotateVideoRequest``. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.AnnotateVideoResponse) }, ) _sym_db.RegisterMessage(AnnotateVideoResponse) VideoAnnotationProgress = _reflection.GeneratedProtocolMessageType( "VideoAnnotationProgress", (_message.Message,), { "DESCRIPTOR": _VIDEOANNOTATIONPROGRESS, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Annotation progress for a single video. Attributes: input_uri: Video file location in `Cloud Storage <https://cloud.google.com/storage/>`__. progress_percent: Approximate percentage processed thus far. Guaranteed to be 100 when fully processed. start_time: Time when the request was received. update_time: Time of the most recent update. feature: Specifies which feature is being tracked if the request contains more than one feature. segment: Specifies which segment is being tracked if the request contains more than one segment. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.VideoAnnotationProgress) }, ) _sym_db.RegisterMessage(VideoAnnotationProgress) AnnotateVideoProgress = _reflection.GeneratedProtocolMessageType( "AnnotateVideoProgress", (_message.Message,), { "DESCRIPTOR": _ANNOTATEVIDEOPROGRESS, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Video annotation progress. Included in the ``metadata`` field of the ``Operation`` returned by the ``GetOperation`` call of the ``google::longrunning::Operations`` service. Attributes: annotation_progress: Progress metadata for all videos specified in ``AnnotateVideoRequest``. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.AnnotateVideoProgress) }, ) _sym_db.RegisterMessage(AnnotateVideoProgress) SpeechTranscriptionConfig = _reflection.GeneratedProtocolMessageType( "SpeechTranscriptionConfig", (_message.Message,), { "DESCRIPTOR": _SPEECHTRANSCRIPTIONCONFIG, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Config for SPEECH_TRANSCRIPTION. Attributes: language_code: Required. *Required* The language of the supplied audio as a `BCP-47 <https://www.rfc-editor.org/rfc/bcp/bcp47.txt>`__ language tag. Example: “en-US”. See `Language Support <https://cloud.google.com/speech/docs/languages>`__ for a list of the currently supported language codes. max_alternatives: Optional. Maximum number of recognition hypotheses to be returned. Specifically, the maximum number of ``SpeechRecognitionAlternative`` messages within each ``SpeechTranscription``. The server may return fewer than ``max_alternatives``. Valid values are ``0``-``30``. A value of ``0`` or ``1`` will return a maximum of one. If omitted, will return a maximum of one. filter_profanity: Optional. If set to ``true``, the server will attempt to filter out profanities, replacing all but the initial character in each filtered word with asterisks, e.g. "f***". If set to ``false`` or omitted, profanities won’t be filtered out. speech_contexts: Optional. A means to provide context to assist the speech recognition. enable_automatic_punctuation: Optional. If ‘true’, adds punctuation to recognition result hypotheses. This feature is only available in select languages. Setting this for requests in other languages has no effect at all. The default ‘false’ value does not add punctuation to result hypotheses. NOTE: “This is currently offered as an experimental service, complimentary to all users. In the future this may be exclusively available as a premium feature.” audio_tracks: Optional. For file formats, such as MXF or MKV, supporting multiple audio tracks, specify up to two tracks. Default: track 0. enable_speaker_diarization: Optional. If ‘true’, enables speaker detection for each recognized word in the top alternative of the recognition result using a speaker_tag provided in the WordInfo. Note: When this is true, we send all the words from the beginning of the audio for the top alternative in every consecutive response. This is done in order to improve our speaker tags as our models learn to identify the speakers in the conversation over time. diarization_speaker_count: Optional. If set, specifies the estimated number of speakers in the conversation. If not set, defaults to ‘2’. Ignored unless enable_speaker_diarization is set to true. enable_word_confidence: Optional. If ``true``, the top result includes a list of words and the confidence for those words. If ``false``, no word- level confidence information is returned. The default is ``false``. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.SpeechTranscriptionConfig) }, ) _sym_db.RegisterMessage(SpeechTranscriptionConfig) SpeechContext = _reflection.GeneratedProtocolMessageType( "SpeechContext", (_message.Message,), { "DESCRIPTOR": _SPEECHCONTEXT, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Provides “hints” to the speech recognizer to favor specific words and phrases in the results. Attributes: phrases: Optional. A list of strings containing words and phrases “hints” so that the speech recognition is more likely to recognize them. This can be used to improve the accuracy for specific words and phrases, for example, if specific commands are typically spoken by the user. This can also be used to add additional words to the vocabulary of the recognizer. See `usage limits <https://cloud.google.com/speech/limits#content>`__. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.SpeechContext) }, ) _sym_db.RegisterMessage(SpeechContext) SpeechTranscription = _reflection.GeneratedProtocolMessageType( "SpeechTranscription", (_message.Message,), { "DESCRIPTOR": _SPEECHTRANSCRIPTION, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """A speech recognition result corresponding to a portion of the audio. Attributes: alternatives: May contain one or more recognition hypotheses (up to the maximum specified in ``max_alternatives``). These alternatives are ordered in terms of accuracy, with the top (first) alternative being the most probable, as ranked by the recognizer. language_code: Output only. The `BCP-47 <https://www.rfc- editor.org/rfc/bcp/bcp47.txt>`__ language tag of the language in this result. This language code was detected to have the most likelihood of being spoken in the audio. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.SpeechTranscription) }, ) _sym_db.RegisterMessage(SpeechTranscription) SpeechRecognitionAlternative = _reflection.GeneratedProtocolMessageType( "SpeechRecognitionAlternative", (_message.Message,), { "DESCRIPTOR": _SPEECHRECOGNITIONALTERNATIVE, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Alternative hypotheses (a.k.a. n-best list). Attributes: transcript: Transcript text representing the words that the user spoke. confidence: Output only. The confidence estimate between 0.0 and 1.0. A higher number indicates an estimated greater likelihood that the recognized words are correct. This field is set only for the top alternative. This field is not guaranteed to be accurate and users should not rely on it to be always provided. The default of 0.0 is a sentinel value indicating ``confidence`` was not set. words: Output only. A list of word-specific information for each recognized word. Note: When ``enable_speaker_diarization`` is set to true, you will see all the words from the beginning of the audio. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.SpeechRecognitionAlternative) }, ) _sym_db.RegisterMessage(SpeechRecognitionAlternative) WordInfo = _reflection.GeneratedProtocolMessageType( "WordInfo", (_message.Message,), { "DESCRIPTOR": _WORDINFO, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Word-specific information for recognized words. Word information is only included in the response when certain request parameters are set, such as ``enable_word_time_offsets``. Attributes: start_time: Time offset relative to the beginning of the audio, and corresponding to the start of the spoken word. This field is only set if ``enable_word_time_offsets=true`` and only in the top hypothesis. This is an experimental feature and the accuracy of the time offset can vary. end_time: Time offset relative to the beginning of the audio, and corresponding to the end of the spoken word. This field is only set if ``enable_word_time_offsets=true`` and only in the top hypothesis. This is an experimental feature and the accuracy of the time offset can vary. word: The word corresponding to this set of information. confidence: Output only. The confidence estimate between 0.0 and 1.0. A higher number indicates an estimated greater likelihood that the recognized words are correct. This field is set only for the top alternative. This field is not guaranteed to be accurate and users should not rely on it to be always provided. The default of 0.0 is a sentinel value indicating ``confidence`` was not set. speaker_tag: Output only. A distinct integer value is assigned for every speaker within the audio. This field specifies which one of those speakers was detected to have spoken this word. Value ranges from 1 up to diarization_speaker_count, and is only set if speaker diarization is enabled. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.WordInfo) }, ) _sym_db.RegisterMessage(WordInfo) NormalizedVertex = _reflection.GeneratedProtocolMessageType( "NormalizedVertex", (_message.Message,), { "DESCRIPTOR": _NORMALIZEDVERTEX, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """X coordinate. Attributes: y: Y coordinate. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.NormalizedVertex) }, ) _sym_db.RegisterMessage(NormalizedVertex) NormalizedBoundingPoly = _reflection.GeneratedProtocolMessageType( "NormalizedBoundingPoly", (_message.Message,), { "DESCRIPTOR": _NORMALIZEDBOUNDINGPOLY, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Normalized bounding polygon for text (that might not be aligned with axis). Contains list of the corner points in clockwise order starting from top-left corner. For example, for a rectangular bounding box: When the text is horizontal it might look like: 0—-1 \| \| 3—-2 When it’s clockwise rotated 180 degrees around the top-left corner it becomes: 2—-3 \| \| 1—-0 and the vertex order will still be (0, 1, 2, 3). Note that values can be less than 0, or greater than 1 due to trignometric calculations for location of the box. Attributes: vertices: Normalized vertices of the bounding polygon. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.NormalizedBoundingPoly) }, ) _sym_db.RegisterMessage(NormalizedBoundingPoly) TextSegment = _reflection.GeneratedProtocolMessageType( "TextSegment", (_message.Message,), { "DESCRIPTOR": _TEXTSEGMENT, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Video segment level annotation results for text detection. Attributes: segment: Video segment where a text snippet was detected. confidence: Confidence for the track of detected text. It is calculated as the highest over all frames where OCR detected text appears. frames: Information related to the frames where OCR detected text appears. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.TextSegment) }, ) _sym_db.RegisterMessage(TextSegment) TextFrame = _reflection.GeneratedProtocolMessageType( "TextFrame", (_message.Message,), { "DESCRIPTOR": _TEXTFRAME, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Video frame level annotation results for text annotation (OCR). Contains information regarding timestamp and bounding box locations for the frames containing detected OCR text snippets. Attributes: rotated_bounding_box: Bounding polygon of the detected text for this frame. time_offset: Timestamp of this frame. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.TextFrame) }, ) _sym_db.RegisterMessage(TextFrame) TextAnnotation = _reflection.GeneratedProtocolMessageType( "TextAnnotation", (_message.Message,), { "DESCRIPTOR": _TEXTANNOTATION, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Annotations related to one detected OCR text snippet. This will contain the corresponding text, confidence value, and frame level information for each detection. Attributes: text: The detected text. segments: All video segments where OCR detected text appears. version: Feature version. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.TextAnnotation) }, ) _sym_db.RegisterMessage(TextAnnotation) ObjectTrackingFrame = _reflection.GeneratedProtocolMessageType( "ObjectTrackingFrame", (_message.Message,), { "DESCRIPTOR": _OBJECTTRACKINGFRAME, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Video frame level annotations for object detection and tracking. This field stores per frame location, time offset, and confidence. Attributes: normalized_bounding_box: The normalized bounding box location of this object track for the frame. time_offset: The timestamp of the frame in microseconds. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.ObjectTrackingFrame) }, ) _sym_db.RegisterMessage(ObjectTrackingFrame) ObjectTrackingAnnotation = _reflection.GeneratedProtocolMessageType( "ObjectTrackingAnnotation", (_message.Message,), { "DESCRIPTOR": _OBJECTTRACKINGANNOTATION, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Annotations corresponding to one tracked object. Attributes: track_info: Different representation of tracking info in non-streaming batch and streaming modes. segment: Non-streaming batch mode ONLY. Each object track corresponds to one video segment where it appears. track_id: Streaming mode ONLY. In streaming mode, we do not know the end time of a tracked object before it is completed. Hence, there is no VideoSegment info returned. Instead, we provide a unique identifiable integer track_id so that the customers can correlate the results of the ongoing ObjectTrackAnnotation of the same track_id over time. entity: Entity to specify the object category that this track is labeled as. confidence: Object category’s labeling confidence of this track. frames: Information corresponding to all frames where this object track appears. Non-streaming batch mode: it may be one or multiple ObjectTrackingFrame messages in frames. Streaming mode: it can only be one ObjectTrackingFrame message in frames. version: Feature version. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.ObjectTrackingAnnotation) }, ) _sym_db.RegisterMessage(ObjectTrackingAnnotation) LogoRecognitionAnnotation = _reflection.GeneratedProtocolMessageType( "LogoRecognitionAnnotation", (_message.Message,), { "DESCRIPTOR": _LOGORECOGNITIONANNOTATION, "__module__": "google.cloud.videointelligence_v1.proto.video_intelligence_pb2", "__doc__": """Annotation corresponding to one detected, tracked and recognized logo class. Attributes: entity: Entity category information to specify the logo class that all the logo tracks within this LogoRecognitionAnnotation are recognized as. tracks: All logo tracks where the recognized logo appears. Each track corresponds to one logo instance appearing in consecutive frames. segments: All video segments where the recognized logo appears. There might be multiple instances of the same logo class appearing in one VideoSegment. """, # @@protoc_insertion_point(class_scope:google.cloud.videointelligence.v1.LogoRecognitionAnnotation) }, ) _sym_db.RegisterMessage(LogoRecognitionAnnotation) DESCRIPTOR._options = None _ANNOTATEVIDEOREQUEST.fields_by_name["features"]._options = None _ANNOTATEVIDEOREQUEST.fields_by_name["output_uri"]._options = None _ANNOTATEVIDEOREQUEST.fields_by_name["location_id"]._options = None _FACEFRAME._options = None _FACEANNOTATION._options = None _TIMESTAMPEDOBJECT.fields_by_name["attributes"]._options = None _TIMESTAMPEDOBJECT.fields_by_name["landmarks"]._options = None _TRACK.fields_by_name["attributes"]._options = None _TRACK.fields_by_name["confidence"]._options = None _VIDEOANNOTATIONRESULTS.fields_by_name["face_annotations"]._options = None _SPEECHTRANSCRIPTIONCONFIG.fields_by_name["language_code"]._options = None _SPEECHTRANSCRIPTIONCONFIG.fields_by_name["max_alternatives"]._options = None _SPEECHTRANSCRIPTIONCONFIG.fields_by_name["filter_profanity"]._options = None _SPEECHTRANSCRIPTIONCONFIG.fields_by_name["speech_contexts"]._options = None _SPEECHTRANSCRIPTIONCONFIG.fields_by_name[ "enable_automatic_punctuation" ]._options = None _SPEECHTRANSCRIPTIONCONFIG.fields_by_name["audio_tracks"]._options = None _SPEECHTRANSCRIPTIONCONFIG.fields_by_name["enable_speaker_diarization"]._options = None _SPEECHTRANSCRIPTIONCONFIG.fields_by_name["diarization_speaker_count"]._options = None _SPEECHTRANSCRIPTIONCONFIG.fields_by_name["enable_word_confidence"]._options = None _SPEECHCONTEXT.fields_by_name["phrases"]._options = None _SPEECHTRANSCRIPTION.fields_by_name["language_code"]._options = None _SPEECHRECOGNITIONALTERNATIVE.fields_by_name["confidence"]._options = None _SPEECHRECOGNITIONALTERNATIVE.fields_by_name["words"]._options = None _WORDINFO.fields_by_name["confidence"]._options = None _WORDINFO.fields_by_name["speaker_tag"]._options = None _VIDEOINTELLIGENCESERVICE = _descriptor.ServiceDescriptor( name="VideoIntelligenceService", full_name="google.cloud.videointelligence.v1.VideoIntelligenceService", file=DESCRIPTOR, index=0, serialized_options=b"\312A videointelligence.googleapis.com\322A.https://www.googleapis.com/auth/cloud-platform", create_key=_descriptor._internal_create_key, serialized_start=8921, serialized_end=9241, methods=[ _descriptor.MethodDescriptor( name="AnnotateVideo", full_name="google.cloud.videointelligence.v1.VideoIntelligenceService.AnnotateVideo", index=0, containing_service=None, input_type=_ANNOTATEVIDEOREQUEST, output_type=google_dot_longrunning_dot_operations__pb2._OPERATION, serialized_options=b'\202\323\344\223\002\030"\023/v1/videos:annotate:\001*\332A\022input_uri,features\312A.\n\025AnnotateVideoResponse\022\025AnnotateVideoProgress', create_key=_descriptor._internal_create_key, ), ], ) _sym_db.RegisterServiceDescriptor(_VIDEOINTELLIGENCESERVICE) DESCRIPTOR.services_by_name["VideoIntelligenceService"] = _VIDEOINTELLIGENCESERVICE # @@protoc_insertion_point(module_scope)
36.169513
14,099
0.642526
[ "Apache-2.0" ]
danoscarmike/python-videointelligence
google/cloud/videointelligence_v1/proto/video_intelligence_pb2.py
197,079
Python
# Copyright 2019, A10 Networks # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from a10_octavia.db import repositories as repo from a10_octavia.db import api as db_apis from oslo_utils import uuidutils class VThunderDB(): def __init__(self, **kwargs): self.vthunder_repo = repo.VThunderRepository() def create_vthunder(self, project_id, device_name, username, password, ip_address, undercloud=None, axapi_version=30): if axapi_version == 2.1: axapi_version = 21 else: axapi_version = 30 amphora_id = uuidutils.generate_uuid() vthunder_id = uuidutils.generate_uuid() if undercloud == 'True' or undercloud == 'true': undercloud = True else: undercloud = False db_session = db_apis.get_session() vthunder = self.vthunder_repo.create(db_session, vthunder_id=vthunder_id, amphora_id=amphora_id, project_id=project_id, device_name=device_name, username=username, password=password, ip_address=ip_address, undercloud=undercloud, axapi_version=axapi_version) db_apis.close_session(db_session) print("vThunder entry created successfully.") def update_vthunder(self, id, project_id, device_name, username, password, ip_address, undercloud=None, axapi_version=30): if axapi_version == 2.1: axapi_version = 21 else: axapi_version = 30 if undercloud == 'True' or undercloud == 'true': undercloud = True else: undercloud = False db_session = db_apis.get_session() vthunder = self.vthunder_repo.update(db_session, id, project_id=project_id, device_name=device_name, username=username, password=password, ip_address=ip_address, undercloud=undercloud, axapi_version=axapi_version) db_apis.close_session(db_session) print("vThunder entry updated successfully.") def delete_vthunder(self, vthunderid): db_session = db_apis.get_session() vthunder = self.vthunder_repo.delete(db_session, id=vthunderid) db_apis.close_session(db_session) print("vThunder entry deleted successfully.")
40.36
127
0.624711
[ "Apache-2.0" ]
richuc/a10-octavia
a10_octavia/controller/worker/tasks/a10_vthunder_db.py
3,027
Python
from __future__ import unicode_literals from nose.tools import assert_raises import datetime import boto import boto3 import sure # noqa from boto.exception import JSONResponseError from moto import mock_ec2 from moto.backends import get_model from moto.core.utils import iso_8601_datetime_with_milliseconds @mock_ec2 def test_request_spot_instances(): conn = boto3.client('ec2', 'us-east-1') vpc = conn.create_vpc(CidrBlock="10.0.0.0/8")['Vpc'] subnet = conn.create_subnet(VpcId=vpc['VpcId'], CidrBlock='10.0.0.0/16', AvailabilityZone='us-east-1a')['Subnet'] subnet_id = subnet['SubnetId'] conn = boto.connect_ec2() conn.create_security_group('group1', 'description') conn.create_security_group('group2', 'description') start = iso_8601_datetime_with_milliseconds(datetime.datetime(2013, 1, 1)) end = iso_8601_datetime_with_milliseconds(datetime.datetime(2013, 1, 2)) with assert_raises(JSONResponseError) as ex: request = conn.request_spot_instances( price=0.5, image_id='ami-abcd1234', count=1, type='one-time', valid_from=start, valid_until=end, launch_group="the-group", availability_zone_group='my-group', key_name="test", security_groups=['group1', 'group2'], user_data=b"some test data", instance_type='m1.small', placement='us-east-1c', kernel_id="test-kernel", ramdisk_id="test-ramdisk", monitoring_enabled=True, subnet_id=subnet_id, dry_run=True ) ex.exception.reason.should.equal('DryRunOperation') ex.exception.status.should.equal(400) ex.exception.message.should.equal('An error occurred (DryRunOperation) when calling the RequestSpotInstance operation: Request would have succeeded, but DryRun flag is set') request = conn.request_spot_instances( price=0.5, image_id='ami-abcd1234', count=1, type='one-time', valid_from=start, valid_until=end, launch_group="the-group", availability_zone_group='my-group', key_name="test", security_groups=['group1', 'group2'], user_data=b"some test data", instance_type='m1.small', placement='us-east-1c', kernel_id="test-kernel", ramdisk_id="test-ramdisk", monitoring_enabled=True, subnet_id=subnet_id, ) requests = conn.get_all_spot_instance_requests() requests.should.have.length_of(1) request = requests[0] request.state.should.equal("open") request.price.should.equal(0.5) request.launch_specification.image_id.should.equal('ami-abcd1234') request.type.should.equal('one-time') request.valid_from.should.equal(start) request.valid_until.should.equal(end) request.launch_group.should.equal("the-group") request.availability_zone_group.should.equal('my-group') request.launch_specification.key_name.should.equal("test") security_group_names = [group.name for group in request.launch_specification.groups] set(security_group_names).should.equal(set(['group1', 'group2'])) request.launch_specification.instance_type.should.equal('m1.small') request.launch_specification.placement.should.equal('us-east-1c') request.launch_specification.kernel.should.equal("test-kernel") request.launch_specification.ramdisk.should.equal("test-ramdisk") request.launch_specification.subnet_id.should.equal(subnet_id) @mock_ec2 def test_request_spot_instances_default_arguments(): """ Test that moto set the correct default arguments """ conn = boto.connect_ec2() request = conn.request_spot_instances( price=0.5, image_id='ami-abcd1234', ) requests = conn.get_all_spot_instance_requests() requests.should.have.length_of(1) request = requests[0] request.state.should.equal("open") request.price.should.equal(0.5) request.launch_specification.image_id.should.equal('ami-abcd1234') request.type.should.equal('one-time') request.valid_from.should.equal(None) request.valid_until.should.equal(None) request.launch_group.should.equal(None) request.availability_zone_group.should.equal(None) request.launch_specification.key_name.should.equal(None) security_group_names = [group.name for group in request.launch_specification.groups] security_group_names.should.equal(["default"]) request.launch_specification.instance_type.should.equal('m1.small') request.launch_specification.placement.should.equal(None) request.launch_specification.kernel.should.equal(None) request.launch_specification.ramdisk.should.equal(None) request.launch_specification.subnet_id.should.equal(None) @mock_ec2 def test_cancel_spot_instance_request(): conn = boto.connect_ec2() conn.request_spot_instances( price=0.5, image_id='ami-abcd1234', ) requests = conn.get_all_spot_instance_requests() requests.should.have.length_of(1) with assert_raises(JSONResponseError) as ex: conn.cancel_spot_instance_requests([requests[0].id], dry_run=True) ex.exception.reason.should.equal('DryRunOperation') ex.exception.status.should.equal(400) ex.exception.message.should.equal('An error occurred (DryRunOperation) when calling the CancelSpotInstance operation: Request would have succeeded, but DryRun flag is set') conn.cancel_spot_instance_requests([requests[0].id]) requests = conn.get_all_spot_instance_requests() requests.should.have.length_of(0) @mock_ec2 def test_request_spot_instances_fulfilled(): """ Test that moto correctly fullfills a spot instance request """ conn = boto.ec2.connect_to_region("us-east-1") request = conn.request_spot_instances( price=0.5, image_id='ami-abcd1234', ) requests = conn.get_all_spot_instance_requests() requests.should.have.length_of(1) request = requests[0] request.state.should.equal("open") get_model('SpotInstanceRequest')[0].state = 'active' requests = conn.get_all_spot_instance_requests() requests.should.have.length_of(1) request = requests[0] request.state.should.equal("active") @mock_ec2 def test_tag_spot_instance_request(): """ Test that moto correctly tags a spot instance request """ conn = boto.connect_ec2() request = conn.request_spot_instances( price=0.5, image_id='ami-abcd1234', ) request[0].add_tag('tag1', 'value1') request[0].add_tag('tag2', 'value2') requests = conn.get_all_spot_instance_requests() requests.should.have.length_of(1) request = requests[0] tag_dict = dict(request.tags) tag_dict.should.equal({'tag1': 'value1', 'tag2': 'value2'}) @mock_ec2 def test_get_all_spot_instance_requests_filtering(): """ Test that moto correctly filters spot instance requests """ conn = boto.connect_ec2() request1 = conn.request_spot_instances( price=0.5, image_id='ami-abcd1234', ) request2 = conn.request_spot_instances( price=0.5, image_id='ami-abcd1234', ) conn.request_spot_instances( price=0.5, image_id='ami-abcd1234', ) request1[0].add_tag('tag1', 'value1') request1[0].add_tag('tag2', 'value2') request2[0].add_tag('tag1', 'value1') request2[0].add_tag('tag2', 'wrong') requests = conn.get_all_spot_instance_requests(filters={'state': 'active'}) requests.should.have.length_of(0) requests = conn.get_all_spot_instance_requests(filters={'state': 'open'}) requests.should.have.length_of(3) requests = conn.get_all_spot_instance_requests(filters={'tag:tag1': 'value1'}) requests.should.have.length_of(2) requests = conn.get_all_spot_instance_requests(filters={'tag:tag1': 'value1', 'tag:tag2': 'value2'}) requests.should.have.length_of(1) @mock_ec2 def test_request_spot_instances_setting_instance_id(): conn = boto.ec2.connect_to_region("us-east-1") request = conn.request_spot_instances( price=0.5, image_id='ami-abcd1234') req = get_model('SpotInstanceRequest')[0] req.state = 'active' req.instance_id = 'i-12345678' request = conn.get_all_spot_instance_requests()[0] assert request.state == 'active' assert request.instance_id == 'i-12345678'
35.95614
177
0.723347
[ "Apache-2.0" ]
GoodRx/moto
tests/test_ec2/test_spot_instances.py
8,198
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from typing import Any, Optional, TYPE_CHECKING from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core import AsyncARMPipelineClient from azure.profiles import KnownProfiles, ProfileDefinition from azure.profiles.multiapiclient import MultiApiClientMixin from msrest import Deserializer, Serializer from ._configuration import ContainerRegistryManagementClientConfiguration if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials_async import AsyncTokenCredential class _SDKClient(object): def __init__(self, *args, **kwargs): """This is a fake class to support current implemetation of MultiApiClientMixin." Will be removed in final version of multiapi azure-core based client """ pass class ContainerRegistryManagementClient(MultiApiClientMixin, _SDKClient): """ContainerRegistryManagementClient. This ready contains multiple API versions, to help you deal with all of the Azure clouds (Azure Stack, Azure Government, Azure China, etc.). By default, it uses the latest API version available on public Azure. For production, you should stick to a particular api-version and/or profile. The profile sets a mapping between an operation group and its API version. The api-version parameter sets the default API version if the operation group is not described in the profile. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: The Microsoft Azure subscription ID. :type subscription_id: str :param api_version: API version to use if no profile is provided, or if missing in profile. :type api_version: str :param base_url: Service URL :type base_url: str :param profile: A profile definition, from KnownProfiles to dict. :type profile: azure.profiles.KnownProfiles :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. """ DEFAULT_API_VERSION = '2019-05-01' _PROFILE_TAG = "azure.mgmt.containerregistry.ContainerRegistryManagementClient" LATEST_PROFILE = ProfileDefinition({ _PROFILE_TAG: { None: DEFAULT_API_VERSION, 'build_steps': '2018-02-01-preview', 'build_tasks': '2018-02-01-preview', 'builds': '2018-02-01-preview', 'runs': '2019-04-01', 'tasks': '2019-04-01', }}, _PROFILE_TAG + " latest" ) def __init__( self, credential: "AsyncTokenCredential", subscription_id: str, api_version: Optional[str] = None, base_url: Optional[str] = None, profile: KnownProfiles = KnownProfiles.default, **kwargs # type: Any ) -> None: if not base_url: base_url = 'https://management.azure.com' self._config = ContainerRegistryManagementClientConfiguration(credential, subscription_id, **kwargs) self._client = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs) super(ContainerRegistryManagementClient, self).__init__( api_version=api_version, profile=profile ) @classmethod def _models_dict(cls, api_version): return {k: v for k, v in cls.models(api_version).__dict__.items() if isinstance(v, type)} @classmethod def models(cls, api_version=DEFAULT_API_VERSION): """Module depends on the API version: * 2017-03-01: :mod:`v2017_03_01.models<azure.mgmt.containerregistry.v2017_03_01.models>` * 2017-10-01: :mod:`v2017_10_01.models<azure.mgmt.containerregistry.v2017_10_01.models>` * 2018-02-01-preview: :mod:`v2018_02_01_preview.models<azure.mgmt.containerregistry.v2018_02_01_preview.models>` * 2018-09-01: :mod:`v2018_09_01.models<azure.mgmt.containerregistry.v2018_09_01.models>` * 2019-04-01: :mod:`v2019_04_01.models<azure.mgmt.containerregistry.v2019_04_01.models>` * 2019-05-01: :mod:`v2019_05_01.models<azure.mgmt.containerregistry.v2019_05_01.models>` * 2019-05-01-preview: :mod:`v2019_05_01_preview.models<azure.mgmt.containerregistry.v2019_05_01_preview.models>` * 2019-06-01-preview: :mod:`v2019_06_01_preview.models<azure.mgmt.containerregistry.v2019_06_01_preview.models>` * 2019-12-01-preview: :mod:`v2019_12_01_preview.models<azure.mgmt.containerregistry.v2019_12_01_preview.models>` * 2020-11-01-preview: :mod:`v2020_11_01_preview.models<azure.mgmt.containerregistry.v2020_11_01_preview.models>` * 2021-06-01-preview: :mod:`v2021_06_01_preview.models<azure.mgmt.containerregistry.v2021_06_01_preview.models>` * 2021-08-01-preview: :mod:`v2021_08_01_preview.models<azure.mgmt.containerregistry.v2021_08_01_preview.models>` """ if api_version == '2017-03-01': from ..v2017_03_01 import models return models elif api_version == '2017-10-01': from ..v2017_10_01 import models return models elif api_version == '2018-02-01-preview': from ..v2018_02_01_preview import models return models elif api_version == '2018-09-01': from ..v2018_09_01 import models return models elif api_version == '2019-04-01': from ..v2019_04_01 import models return models elif api_version == '2019-05-01': from ..v2019_05_01 import models return models elif api_version == '2019-05-01-preview': from ..v2019_05_01_preview import models return models elif api_version == '2019-06-01-preview': from ..v2019_06_01_preview import models return models elif api_version == '2019-12-01-preview': from ..v2019_12_01_preview import models return models elif api_version == '2020-11-01-preview': from ..v2020_11_01_preview import models return models elif api_version == '2021-06-01-preview': from ..v2021_06_01_preview import models return models elif api_version == '2021-08-01-preview': from ..v2021_08_01_preview import models return models raise ValueError("API version {} is not available".format(api_version)) @property def agent_pools(self): """Instance depends on the API version: * 2019-06-01-preview: :class:`AgentPoolsOperations<azure.mgmt.containerregistry.v2019_06_01_preview.aio.operations.AgentPoolsOperations>` """ api_version = self._get_api_version('agent_pools') if api_version == '2019-06-01-preview': from ..v2019_06_01_preview.aio.operations import AgentPoolsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'agent_pools'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def build_steps(self): """Instance depends on the API version: * 2018-02-01-preview: :class:`BuildStepsOperations<azure.mgmt.containerregistry.v2018_02_01_preview.aio.operations.BuildStepsOperations>` """ api_version = self._get_api_version('build_steps') if api_version == '2018-02-01-preview': from ..v2018_02_01_preview.aio.operations import BuildStepsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'build_steps'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def build_tasks(self): """Instance depends on the API version: * 2018-02-01-preview: :class:`BuildTasksOperations<azure.mgmt.containerregistry.v2018_02_01_preview.aio.operations.BuildTasksOperations>` """ api_version = self._get_api_version('build_tasks') if api_version == '2018-02-01-preview': from ..v2018_02_01_preview.aio.operations import BuildTasksOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'build_tasks'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def builds(self): """Instance depends on the API version: * 2018-02-01-preview: :class:`BuildsOperations<azure.mgmt.containerregistry.v2018_02_01_preview.aio.operations.BuildsOperations>` """ api_version = self._get_api_version('builds') if api_version == '2018-02-01-preview': from ..v2018_02_01_preview.aio.operations import BuildsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'builds'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def connected_registries(self): """Instance depends on the API version: * 2020-11-01-preview: :class:`ConnectedRegistriesOperations<azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.ConnectedRegistriesOperations>` * 2021-06-01-preview: :class:`ConnectedRegistriesOperations<azure.mgmt.containerregistry.v2021_06_01_preview.aio.operations.ConnectedRegistriesOperations>` * 2021-08-01-preview: :class:`ConnectedRegistriesOperations<azure.mgmt.containerregistry.v2021_08_01_preview.aio.operations.ConnectedRegistriesOperations>` """ api_version = self._get_api_version('connected_registries') if api_version == '2020-11-01-preview': from ..v2020_11_01_preview.aio.operations import ConnectedRegistriesOperations as OperationClass elif api_version == '2021-06-01-preview': from ..v2021_06_01_preview.aio.operations import ConnectedRegistriesOperations as OperationClass elif api_version == '2021-08-01-preview': from ..v2021_08_01_preview.aio.operations import ConnectedRegistriesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'connected_registries'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def export_pipelines(self): """Instance depends on the API version: * 2019-12-01-preview: :class:`ExportPipelinesOperations<azure.mgmt.containerregistry.v2019_12_01_preview.aio.operations.ExportPipelinesOperations>` * 2020-11-01-preview: :class:`ExportPipelinesOperations<azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.ExportPipelinesOperations>` * 2021-06-01-preview: :class:`ExportPipelinesOperations<azure.mgmt.containerregistry.v2021_06_01_preview.aio.operations.ExportPipelinesOperations>` * 2021-08-01-preview: :class:`ExportPipelinesOperations<azure.mgmt.containerregistry.v2021_08_01_preview.aio.operations.ExportPipelinesOperations>` """ api_version = self._get_api_version('export_pipelines') if api_version == '2019-12-01-preview': from ..v2019_12_01_preview.aio.operations import ExportPipelinesOperations as OperationClass elif api_version == '2020-11-01-preview': from ..v2020_11_01_preview.aio.operations import ExportPipelinesOperations as OperationClass elif api_version == '2021-06-01-preview': from ..v2021_06_01_preview.aio.operations import ExportPipelinesOperations as OperationClass elif api_version == '2021-08-01-preview': from ..v2021_08_01_preview.aio.operations import ExportPipelinesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'export_pipelines'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def import_pipelines(self): """Instance depends on the API version: * 2019-12-01-preview: :class:`ImportPipelinesOperations<azure.mgmt.containerregistry.v2019_12_01_preview.aio.operations.ImportPipelinesOperations>` * 2020-11-01-preview: :class:`ImportPipelinesOperations<azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.ImportPipelinesOperations>` * 2021-06-01-preview: :class:`ImportPipelinesOperations<azure.mgmt.containerregistry.v2021_06_01_preview.aio.operations.ImportPipelinesOperations>` * 2021-08-01-preview: :class:`ImportPipelinesOperations<azure.mgmt.containerregistry.v2021_08_01_preview.aio.operations.ImportPipelinesOperations>` """ api_version = self._get_api_version('import_pipelines') if api_version == '2019-12-01-preview': from ..v2019_12_01_preview.aio.operations import ImportPipelinesOperations as OperationClass elif api_version == '2020-11-01-preview': from ..v2020_11_01_preview.aio.operations import ImportPipelinesOperations as OperationClass elif api_version == '2021-06-01-preview': from ..v2021_06_01_preview.aio.operations import ImportPipelinesOperations as OperationClass elif api_version == '2021-08-01-preview': from ..v2021_08_01_preview.aio.operations import ImportPipelinesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'import_pipelines'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def operations(self): """Instance depends on the API version: * 2017-03-01: :class:`Operations<azure.mgmt.containerregistry.v2017_03_01.aio.operations.Operations>` * 2017-10-01: :class:`Operations<azure.mgmt.containerregistry.v2017_10_01.aio.operations.Operations>` * 2019-05-01: :class:`Operations<azure.mgmt.containerregistry.v2019_05_01.aio.operations.Operations>` * 2019-12-01-preview: :class:`Operations<azure.mgmt.containerregistry.v2019_12_01_preview.aio.operations.Operations>` * 2020-11-01-preview: :class:`Operations<azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.Operations>` * 2021-06-01-preview: :class:`Operations<azure.mgmt.containerregistry.v2021_06_01_preview.aio.operations.Operations>` * 2021-08-01-preview: :class:`Operations<azure.mgmt.containerregistry.v2021_08_01_preview.aio.operations.Operations>` """ api_version = self._get_api_version('operations') if api_version == '2017-03-01': from ..v2017_03_01.aio.operations import Operations as OperationClass elif api_version == '2017-10-01': from ..v2017_10_01.aio.operations import Operations as OperationClass elif api_version == '2019-05-01': from ..v2019_05_01.aio.operations import Operations as OperationClass elif api_version == '2019-12-01-preview': from ..v2019_12_01_preview.aio.operations import Operations as OperationClass elif api_version == '2020-11-01-preview': from ..v2020_11_01_preview.aio.operations import Operations as OperationClass elif api_version == '2021-06-01-preview': from ..v2021_06_01_preview.aio.operations import Operations as OperationClass elif api_version == '2021-08-01-preview': from ..v2021_08_01_preview.aio.operations import Operations as OperationClass else: raise ValueError("API version {} does not have operation group 'operations'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def pipeline_runs(self): """Instance depends on the API version: * 2019-12-01-preview: :class:`PipelineRunsOperations<azure.mgmt.containerregistry.v2019_12_01_preview.aio.operations.PipelineRunsOperations>` * 2020-11-01-preview: :class:`PipelineRunsOperations<azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.PipelineRunsOperations>` * 2021-06-01-preview: :class:`PipelineRunsOperations<azure.mgmt.containerregistry.v2021_06_01_preview.aio.operations.PipelineRunsOperations>` * 2021-08-01-preview: :class:`PipelineRunsOperations<azure.mgmt.containerregistry.v2021_08_01_preview.aio.operations.PipelineRunsOperations>` """ api_version = self._get_api_version('pipeline_runs') if api_version == '2019-12-01-preview': from ..v2019_12_01_preview.aio.operations import PipelineRunsOperations as OperationClass elif api_version == '2020-11-01-preview': from ..v2020_11_01_preview.aio.operations import PipelineRunsOperations as OperationClass elif api_version == '2021-06-01-preview': from ..v2021_06_01_preview.aio.operations import PipelineRunsOperations as OperationClass elif api_version == '2021-08-01-preview': from ..v2021_08_01_preview.aio.operations import PipelineRunsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'pipeline_runs'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def private_endpoint_connections(self): """Instance depends on the API version: * 2019-12-01-preview: :class:`PrivateEndpointConnectionsOperations<azure.mgmt.containerregistry.v2019_12_01_preview.aio.operations.PrivateEndpointConnectionsOperations>` * 2020-11-01-preview: :class:`PrivateEndpointConnectionsOperations<azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.PrivateEndpointConnectionsOperations>` * 2021-06-01-preview: :class:`PrivateEndpointConnectionsOperations<azure.mgmt.containerregistry.v2021_06_01_preview.aio.operations.PrivateEndpointConnectionsOperations>` * 2021-08-01-preview: :class:`PrivateEndpointConnectionsOperations<azure.mgmt.containerregistry.v2021_08_01_preview.aio.operations.PrivateEndpointConnectionsOperations>` """ api_version = self._get_api_version('private_endpoint_connections') if api_version == '2019-12-01-preview': from ..v2019_12_01_preview.aio.operations import PrivateEndpointConnectionsOperations as OperationClass elif api_version == '2020-11-01-preview': from ..v2020_11_01_preview.aio.operations import PrivateEndpointConnectionsOperations as OperationClass elif api_version == '2021-06-01-preview': from ..v2021_06_01_preview.aio.operations import PrivateEndpointConnectionsOperations as OperationClass elif api_version == '2021-08-01-preview': from ..v2021_08_01_preview.aio.operations import PrivateEndpointConnectionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'private_endpoint_connections'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def registries(self): """Instance depends on the API version: * 2017-03-01: :class:`RegistriesOperations<azure.mgmt.containerregistry.v2017_03_01.aio.operations.RegistriesOperations>` * 2017-10-01: :class:`RegistriesOperations<azure.mgmt.containerregistry.v2017_10_01.aio.operations.RegistriesOperations>` * 2018-02-01-preview: :class:`RegistriesOperations<azure.mgmt.containerregistry.v2018_02_01_preview.aio.operations.RegistriesOperations>` * 2018-09-01: :class:`RegistriesOperations<azure.mgmt.containerregistry.v2018_09_01.aio.operations.RegistriesOperations>` * 2019-04-01: :class:`RegistriesOperations<azure.mgmt.containerregistry.v2019_04_01.aio.operations.RegistriesOperations>` * 2019-05-01: :class:`RegistriesOperations<azure.mgmt.containerregistry.v2019_05_01.aio.operations.RegistriesOperations>` * 2019-05-01-preview: :class:`RegistriesOperations<azure.mgmt.containerregistry.v2019_05_01_preview.aio.operations.RegistriesOperations>` * 2019-06-01-preview: :class:`RegistriesOperations<azure.mgmt.containerregistry.v2019_06_01_preview.aio.operations.RegistriesOperations>` * 2019-12-01-preview: :class:`RegistriesOperations<azure.mgmt.containerregistry.v2019_12_01_preview.aio.operations.RegistriesOperations>` * 2020-11-01-preview: :class:`RegistriesOperations<azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.RegistriesOperations>` * 2021-06-01-preview: :class:`RegistriesOperations<azure.mgmt.containerregistry.v2021_06_01_preview.aio.operations.RegistriesOperations>` * 2021-08-01-preview: :class:`RegistriesOperations<azure.mgmt.containerregistry.v2021_08_01_preview.aio.operations.RegistriesOperations>` """ api_version = self._get_api_version('registries') if api_version == '2017-03-01': from ..v2017_03_01.aio.operations import RegistriesOperations as OperationClass elif api_version == '2017-10-01': from ..v2017_10_01.aio.operations import RegistriesOperations as OperationClass elif api_version == '2018-02-01-preview': from ..v2018_02_01_preview.aio.operations import RegistriesOperations as OperationClass elif api_version == '2018-09-01': from ..v2018_09_01.aio.operations import RegistriesOperations as OperationClass elif api_version == '2019-04-01': from ..v2019_04_01.aio.operations import RegistriesOperations as OperationClass elif api_version == '2019-05-01': from ..v2019_05_01.aio.operations import RegistriesOperations as OperationClass elif api_version == '2019-05-01-preview': from ..v2019_05_01_preview.aio.operations import RegistriesOperations as OperationClass elif api_version == '2019-06-01-preview': from ..v2019_06_01_preview.aio.operations import RegistriesOperations as OperationClass elif api_version == '2019-12-01-preview': from ..v2019_12_01_preview.aio.operations import RegistriesOperations as OperationClass elif api_version == '2020-11-01-preview': from ..v2020_11_01_preview.aio.operations import RegistriesOperations as OperationClass elif api_version == '2021-06-01-preview': from ..v2021_06_01_preview.aio.operations import RegistriesOperations as OperationClass elif api_version == '2021-08-01-preview': from ..v2021_08_01_preview.aio.operations import RegistriesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'registries'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def replications(self): """Instance depends on the API version: * 2017-10-01: :class:`ReplicationsOperations<azure.mgmt.containerregistry.v2017_10_01.aio.operations.ReplicationsOperations>` * 2019-05-01: :class:`ReplicationsOperations<azure.mgmt.containerregistry.v2019_05_01.aio.operations.ReplicationsOperations>` * 2019-12-01-preview: :class:`ReplicationsOperations<azure.mgmt.containerregistry.v2019_12_01_preview.aio.operations.ReplicationsOperations>` * 2020-11-01-preview: :class:`ReplicationsOperations<azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.ReplicationsOperations>` * 2021-06-01-preview: :class:`ReplicationsOperations<azure.mgmt.containerregistry.v2021_06_01_preview.aio.operations.ReplicationsOperations>` * 2021-08-01-preview: :class:`ReplicationsOperations<azure.mgmt.containerregistry.v2021_08_01_preview.aio.operations.ReplicationsOperations>` """ api_version = self._get_api_version('replications') if api_version == '2017-10-01': from ..v2017_10_01.aio.operations import ReplicationsOperations as OperationClass elif api_version == '2019-05-01': from ..v2019_05_01.aio.operations import ReplicationsOperations as OperationClass elif api_version == '2019-12-01-preview': from ..v2019_12_01_preview.aio.operations import ReplicationsOperations as OperationClass elif api_version == '2020-11-01-preview': from ..v2020_11_01_preview.aio.operations import ReplicationsOperations as OperationClass elif api_version == '2021-06-01-preview': from ..v2021_06_01_preview.aio.operations import ReplicationsOperations as OperationClass elif api_version == '2021-08-01-preview': from ..v2021_08_01_preview.aio.operations import ReplicationsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'replications'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def runs(self): """Instance depends on the API version: * 2018-09-01: :class:`RunsOperations<azure.mgmt.containerregistry.v2018_09_01.aio.operations.RunsOperations>` * 2019-04-01: :class:`RunsOperations<azure.mgmt.containerregistry.v2019_04_01.aio.operations.RunsOperations>` * 2019-06-01-preview: :class:`RunsOperations<azure.mgmt.containerregistry.v2019_06_01_preview.aio.operations.RunsOperations>` """ api_version = self._get_api_version('runs') if api_version == '2018-09-01': from ..v2018_09_01.aio.operations import RunsOperations as OperationClass elif api_version == '2019-04-01': from ..v2019_04_01.aio.operations import RunsOperations as OperationClass elif api_version == '2019-06-01-preview': from ..v2019_06_01_preview.aio.operations import RunsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'runs'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def scope_maps(self): """Instance depends on the API version: * 2019-05-01-preview: :class:`ScopeMapsOperations<azure.mgmt.containerregistry.v2019_05_01_preview.aio.operations.ScopeMapsOperations>` * 2020-11-01-preview: :class:`ScopeMapsOperations<azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.ScopeMapsOperations>` * 2021-06-01-preview: :class:`ScopeMapsOperations<azure.mgmt.containerregistry.v2021_06_01_preview.aio.operations.ScopeMapsOperations>` * 2021-08-01-preview: :class:`ScopeMapsOperations<azure.mgmt.containerregistry.v2021_08_01_preview.aio.operations.ScopeMapsOperations>` """ api_version = self._get_api_version('scope_maps') if api_version == '2019-05-01-preview': from ..v2019_05_01_preview.aio.operations import ScopeMapsOperations as OperationClass elif api_version == '2020-11-01-preview': from ..v2020_11_01_preview.aio.operations import ScopeMapsOperations as OperationClass elif api_version == '2021-06-01-preview': from ..v2021_06_01_preview.aio.operations import ScopeMapsOperations as OperationClass elif api_version == '2021-08-01-preview': from ..v2021_08_01_preview.aio.operations import ScopeMapsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'scope_maps'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def task_runs(self): """Instance depends on the API version: * 2019-06-01-preview: :class:`TaskRunsOperations<azure.mgmt.containerregistry.v2019_06_01_preview.aio.operations.TaskRunsOperations>` """ api_version = self._get_api_version('task_runs') if api_version == '2019-06-01-preview': from ..v2019_06_01_preview.aio.operations import TaskRunsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'task_runs'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def tasks(self): """Instance depends on the API version: * 2018-09-01: :class:`TasksOperations<azure.mgmt.containerregistry.v2018_09_01.aio.operations.TasksOperations>` * 2019-04-01: :class:`TasksOperations<azure.mgmt.containerregistry.v2019_04_01.aio.operations.TasksOperations>` * 2019-06-01-preview: :class:`TasksOperations<azure.mgmt.containerregistry.v2019_06_01_preview.aio.operations.TasksOperations>` """ api_version = self._get_api_version('tasks') if api_version == '2018-09-01': from ..v2018_09_01.aio.operations import TasksOperations as OperationClass elif api_version == '2019-04-01': from ..v2019_04_01.aio.operations import TasksOperations as OperationClass elif api_version == '2019-06-01-preview': from ..v2019_06_01_preview.aio.operations import TasksOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'tasks'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def tokens(self): """Instance depends on the API version: * 2019-05-01-preview: :class:`TokensOperations<azure.mgmt.containerregistry.v2019_05_01_preview.aio.operations.TokensOperations>` * 2020-11-01-preview: :class:`TokensOperations<azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.TokensOperations>` * 2021-06-01-preview: :class:`TokensOperations<azure.mgmt.containerregistry.v2021_06_01_preview.aio.operations.TokensOperations>` * 2021-08-01-preview: :class:`TokensOperations<azure.mgmt.containerregistry.v2021_08_01_preview.aio.operations.TokensOperations>` """ api_version = self._get_api_version('tokens') if api_version == '2019-05-01-preview': from ..v2019_05_01_preview.aio.operations import TokensOperations as OperationClass elif api_version == '2020-11-01-preview': from ..v2020_11_01_preview.aio.operations import TokensOperations as OperationClass elif api_version == '2021-06-01-preview': from ..v2021_06_01_preview.aio.operations import TokensOperations as OperationClass elif api_version == '2021-08-01-preview': from ..v2021_08_01_preview.aio.operations import TokensOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'tokens'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def webhooks(self): """Instance depends on the API version: * 2017-10-01: :class:`WebhooksOperations<azure.mgmt.containerregistry.v2017_10_01.aio.operations.WebhooksOperations>` * 2019-05-01: :class:`WebhooksOperations<azure.mgmt.containerregistry.v2019_05_01.aio.operations.WebhooksOperations>` * 2019-12-01-preview: :class:`WebhooksOperations<azure.mgmt.containerregistry.v2019_12_01_preview.aio.operations.WebhooksOperations>` * 2020-11-01-preview: :class:`WebhooksOperations<azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.WebhooksOperations>` * 2021-06-01-preview: :class:`WebhooksOperations<azure.mgmt.containerregistry.v2021_06_01_preview.aio.operations.WebhooksOperations>` * 2021-08-01-preview: :class:`WebhooksOperations<azure.mgmt.containerregistry.v2021_08_01_preview.aio.operations.WebhooksOperations>` """ api_version = self._get_api_version('webhooks') if api_version == '2017-10-01': from ..v2017_10_01.aio.operations import WebhooksOperations as OperationClass elif api_version == '2019-05-01': from ..v2019_05_01.aio.operations import WebhooksOperations as OperationClass elif api_version == '2019-12-01-preview': from ..v2019_12_01_preview.aio.operations import WebhooksOperations as OperationClass elif api_version == '2020-11-01-preview': from ..v2020_11_01_preview.aio.operations import WebhooksOperations as OperationClass elif api_version == '2021-06-01-preview': from ..v2021_06_01_preview.aio.operations import WebhooksOperations as OperationClass elif api_version == '2021-08-01-preview': from ..v2021_08_01_preview.aio.operations import WebhooksOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'webhooks'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) async def close(self): await self._client.close() async def __aenter__(self): await self._client.__aenter__() return self async def __aexit__(self, *exc_details): await self._client.__aexit__(*exc_details)
64.972325
180
0.721056
[ "MIT" ]
AFengKK/azure-sdk-for-python
sdk/containerregistry/azure-mgmt-containerregistry/azure/mgmt/containerregistry/aio/_container_registry_management_client.py
35,215
Python
from django.contrib.sites.shortcuts import get_current_site from django.template.loader import get_template from ...settings import STATIC_URL from ...order.models import DeliveryGroup, Order INVOICE_TEMPLATE = 'dashboard/order/pdf/invoice.html' PACKING_SLIP_TEMPLATE = 'dashboard/order/pdf/packing_slip.html' def get_statics_absolute_url(request): site = get_current_site(request) absolute_url = '%(protocol)s://%(domain)s%(static_url)s' % { 'protocol': 'https' if request.is_secure() else 'http', 'domain': site.domain, 'static_url': STATIC_URL, } return absolute_url def _create_pdf(rendered_template, absolute_url): from weasyprint import HTML pdf_file = (HTML(string=rendered_template, base_url=absolute_url) .write_pdf()) return pdf_file def create_invoice_pdf(order_pk, absolute_url): order = (Order.objects.prefetch_related( 'user', 'shipping_address', 'billing_address', 'voucher', 'groups').get( pk=order_pk)) shipping_methods = [ {'name': d.shipping_method_name, 'price': d.shipping_price} for d in order.groups.all()] ctx = {'order': order, 'shipping_methods': shipping_methods} rendered_template = get_template(INVOICE_TEMPLATE).render(ctx) pdf_file = _create_pdf(rendered_template, absolute_url) return pdf_file, order def create_packing_slip_pdf(group_pk, absolute_url): group = (DeliveryGroup.objects.prefetch_related( 'items', 'order', 'order__user', 'order__shipping_address', 'order__billing_address').get(pk=group_pk)) ctx = {'group': group} rendered_template = get_template(PACKING_SLIP_TEMPLATE).render(ctx) pdf_file = _create_pdf(rendered_template, absolute_url) return pdf_file, group
35.078431
71
0.718278
[ "BSD-3-Clause" ]
imran1234567/saleor
saleor/dashboard/order/utils.py
1,789
Python
import os import json import numpy as np import itertools import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Line3DCollection from mpl_toolkits import mplot3d def liver_dump_init(env, name = None): liver = {'x':[],'Fes':[],'Fis':[],'Ficp':[],'volume':[],'col_p_n':[],'crash':[]} liver['vtx'] = env.liver.x.copy() if name is not None: liver['name'] = name else: liver['name'] = f"_dt{env.timestep}_down_gm{env.liver.gamma}" return liver def liver_dump_step(liver,env): liver['x'].append(env.liver.x) liver['Fes'].append(env.liver.Fes) liver['Fis'].append(env.liver.Fis) liver['Ficp'].append(env.liver.Ficp) liver['volume'].append(np.round(env.liver.volumes6.sum() / env.liver.init_volume6.sum(),3)) liver['col_p_n'].append(len(env.liver.check_tet_aabb_collision(env.sg.x))) liver['crash'].append(env.liver.crash_flag) return liver def liver_dump(liver,ep = None): liver_save ={} liver_save['vtx'] = liver['vtx'].tolist() liver_save['x'] = np.array(liver['x']).tolist() liver_save['Fes'] = np.array(liver['Fes']).tolist() liver_save['Fis'] = np.array(liver['Fis']).tolist() liver_save['Ficp'] = np.array(liver['Ficp']).tolist() liver_save['volume'] = np.array(liver['volume']).tolist() liver_save['col_p_n']= np.array(liver['col_p_n']).tolist() liver_save['crash'] = np.array(liver['crash']).tolist() if ep is None: with open(os.path.join('liver_json',f"liver_record{liver['name']}.json"),'w') as f: json.dump(liver_save,f) else: with open(os.path.join('liver_json',f"liver_record_{int(ep)}.json"),'w') as f: json.dump(liver_save,f) def liver_dump_load(liver): vtx = np.array(liver['vtx']) x = np.array(liver['x']) Fes = np.array(liver['Fes']) Fis = np.array(liver['Fis']) Ficp = np.array(liver['Ficp']) volume = np.array(liver['volume']) col_p_n = np.array(liver['col_p_n']) crash = np.array(liver['crash']) return vtx, x, Fes, Fis, Ficp, volume, col_p_n, crash ''' temp: 1. collision_response_cotin 2. collision_response_self ''' def collision_response_cotin(pair,liver,past_p,current_p): # check bc_co for all surface tri_element # add dn to decide move_v_disp_dict = {} move_tri_indexs = [] flat_list = [item for sublist in list(pair.values()) for item in sublist] p_indexs = np.array(flat_list).reshape(-1) p_n = p_indexs.shape[0] ray = current_p[p_indexs]-past_p[p_indexs] ray = ray*(1/np.linalg.norm(ray,axis=-1))[:,None] # p_n x3 # compute ray and normal vector, d= ray,n=normal_vec dn = [email protected]_normal_vec.T # p_n x n_tri ap = liver.x[liver.tri_elements[:,0]][None,:] - past_p[p_indexs][:,None] # p_n x n_tri x 3 #choose first point as a apn = (ap * liver.tri_normal_vec[None,:]).sum(axis=-1) # p_n x n_tri x 3 -> p_n x n_tri ts = apn * (1/dn) # p_n x n_tri int_p = ts[:,:,None]*ray[:,None]+past_p[p_indexs][:,None] # p_n x n_tri x3 <- p_n x n_tri x1 * p_n x1 x3 + p_n x1 x3 # compute barycentric coordinates of intersection points v1 = liver.x[liver.tri_elements[:,1]]-liver.x[liver.tri_elements[:,0]] # n_tri x3 v2 = liver.x[liver.tri_elements[:,2]]-liver.x[liver.tri_elements[:,0]] tri_areax2 = np.linalg.norm(np.cross(v1,v2,axis=-1),axis=-1) # n_tri bc_temp = np.zeros((p_n,liver.n_tri,3,3,3)) bc_temp[:] = np.tile(liver.x[liver.tri_elements], 3).reshape(-1, 3, 3, 3).transpose(0, 2, 1, 3) # p_n x n_tri x 3area x 3ps x 3 for itemp in range(p_n): bc_temp[itemp, :, [0, 1, 2], [0, 1, 2]] = int_p[itemp] v1 = bc_temp[:, :, :, 1] - bc_temp[:, :, :, 0] # p_n x n_tri x 3area x 3xyz v2 = bc_temp[:, :, :, 2] - bc_temp[:, :, :, 0] areax2 = np.linalg.norm(np.cross(v1, v2, axis=-1), axis=-1) # p_n x n_tri x 3area bc_co = areax2 * (1.0 / tri_areax2)[np.newaxis, :, np.newaxis] # p_n x n_tri x 3area<- p_n x n_tri x 3area * 1 x n_tri x 3area for itemp in range(p_n): # check bc_co check1 = np.argwhere(abs(bc_co[itemp].sum(axis=-1) - 1) < 1e-3).flatten() # each p should have at least 1 check2 = np.argwhere(dn[itemp] < 0).flatten() psb_tri_index = np.intersect1d(check1,check2) # all possible tri_elements satisfies the bc_co and the negative normal vector if psb_tri_index.size!=0: psb_ts = ts[itemp,psb_tri_index] # n_psb_tri_index # if np.any(psb_ts<0): # raise ValueError("liver shape error") move_tri_index = psb_tri_index[psb_ts.argmin()] # only 1 the tri_elements should move move_t = current_p[p_indexs[itemp]] - int_p[itemp,move_tri_index] move_v_index_p = liver.tri_elements[move_tri_index] for ividx in move_v_index_p: # same points may move multiple times. if ividx not in move_v_disp_dict.keys(): move_v_disp_dict[ividx] = move_t # move_t put in for new vindex else:# compare move_t for old vindex if np.linalg.norm(np.c_[move_v_disp_dict[ividx],move_t].T,axis=-1).argmax() == 1 : # older move closer than new move_v_disp_dict[ividx] = move_t move_tri_indexs.append(move_tri_index.tolist()) print(move_tri_indexs) return move_v_disp_dict def collision_response_self(pair, liver, tool): # not so good when the deform is bigger # change to old fixed to test, problem still, try cotin methods new_vtx_delta = None move_tris = {} nv_aves = {} new_vtx_deltas = {} for key, value in pair.items(): new_vtx_delta = np.zeros(liver.x.shape) i_tet, p_index = int(key), np.array(value) p_n = p_index.shape[0] # find potential collpaision surface tri_element col_tri_index = np.argwhere(liver.tri_tet[:, 0] == i_tet).flatten() if col_tri_index.size == 0: raise ValueError( "Update time step too big, vertices skip the surface tetrahedron elements") col_tri_n = col_tri_index.shape[0] col_tri_nv = liver.tri_normal_vec[col_tri_index] col_tri_p = liver.x[liver.tri_elements[col_tri_index].T[0]] # chose the first points # compute nv_ave nv_ave = tool.vtx_normal_vec[p_index].sum(axis=0) nv_ave = nv_ave / np.linalg.norm(nv_ave) nv_aves[key] = nv_ave # compute ts and intersection points dn = nv_ave.dot(col_tri_nv.T) # col_tri_n ap = col_tri_p[np.newaxis, :] - tool.x[p_index, np.newaxis] # p_n x col_tri_n x 3 dotn = np.tile(col_tri_nv, p_n).reshape(-1, p_n, 3).transpose(1, 0, 2) apn = (ap * dotn).sum(axis=-1) # p_n x col_tri_n ts = apn * (1 / dn) # p_n x col_tri_n int_col_p = ts[:, :, np.newaxis] * nv_ave[np.newaxis, np.newaxis, :] \ + tool.vertices[p_index][:, np.newaxis, :] # p_n x col_tri_n x 1 * 1 x 1 x 3 + p_n x 1 x 3 # compute barycentric coordinates of intersection points tri_vertices = liver.x[liver.tri_elements[col_tri_index]] # n_tri x 3 x 3 v1 = tri_vertices[:, 1] - tri_vertices[:, 0] v2 = tri_vertices[:, 2] - tri_vertices[:, 0] tri_areax2 = np.linalg.norm(np.cross(v1, v2, axis=-1), axis=-1) # n_tri bc_temp = np.zeros((p_n, col_tri_n, 3, 3, 3)) bc_temp[:] = np.tile(tri_vertices, 3).reshape(-1, 3, 3, 3).transpose(0, 2, 1, 3) # p_n x col_tri_n x 3 x 3 x 3 for itemp in range(p_n): bc_temp[itemp, :, [0, 1, 2], [0, 1, 2]] = int_col_p[itemp] v1 = bc_temp[:, :, :, 1] - bc_temp[:, :, :, 0] # p_n x col_tri_n x 3area x 3xyz v2 = bc_temp[:, :, :, 2] - bc_temp[:, :, :, 0] areax2 = np.linalg.norm(np.cross(v1, v2, axis=-1), axis=-1) # p_n x col_tri_n x 3area bc_co = areax2 * (1.0 / tri_areax2)[np.newaxis, :, np.newaxis] # p_n x col_tri_n x 3area * 1 x col_tri_n x 3area = p_n x col_tri_n x 3area # Move tri to point with tmax check1 = np.argwhere(abs(bc_co.sum(axis=-1) - 1) < 1e-3) check2 = np.argwhere(dn < 0) inter_tri_index = np.intersect1d(check1[:, 1], check2) # find colliable surface tri_elements index # no colliable tri_elements if inter_tri_index.size == 0: the_best_tri = dn.argmin() # chose one of most collidable tri move_tri = liver.tri_elements[col_tri_index[the_best_tri]] tri_nv = liver.tri_normal_vec[col_tri_index[the_best_tri]].flatten() tri_vtx = liver.x[move_tri].reshape(3, 3) v = nv_ave - tri_nv # find a new direction, not so sharp as nv_ave v = v / np.linalg.norm(v) dn_t = v.dot(tri_nv) # 1 ap_t = tri_vtx[0] - tool.x[p_index] t_t = ap_t.dot(tri_nv) / dn_t move_t = t_t.min() new_vtx_delta[move_tri] += - move_t * v new_vtx_deltas.setdefault(key, []).append(new_vtx_delta) move_tris.setdefault(key, []).append(move_tri.flatten()) print(' None ',end='') else: # more than 1 colliable tri_elements if len(inter_tri_index) > 1: temp_delta = np.zeros((liver.x.shape[0], len(inter_tri_index))) # n_v * n_inter itemp = 0 for inter_tri_i in inter_tri_index: part_p_index = check1[ check1[:, 1] == inter_tri_i, 0] # p index of each tri_element that satisfies bc_co condition move_t = ts[part_p_index, inter_tri_i].min() move_tri = liver.tri_elements[col_tri_index[inter_tri_i]] temp_delta[move_tri, itemp] = - move_t # collect all possible move_t for all vertices move_tris.setdefault(key, []).append(move_tri.flatten()) itemp += 1 new_vtx_delta += temp_delta.max(axis=-1)[:, np.newaxis] * nv_ave[np.newaxis,:] # move with the maximal move_t new_vtx_deltas.setdefault(key, []).append(new_vtx_delta) print(' Multi ',end='') else: # only 1 colliable tri_elements move_t = ts[:, inter_tri_index].min() move_tri = liver.tri_elements[col_tri_index[inter_tri_index]] new_vtx_delta[move_tri] += -move_t * nv_ave new_vtx_deltas.setdefault(key, []).append(new_vtx_delta) move_tris.setdefault(key, []).append(move_tri.flatten()) print(' Single ',end='') return new_vtx_delta, move_tris, nv_aves, new_vtx_deltas ''' static methods: 1. lame_param 2. tri_mid_vec 3. rotation_matrix 4. flatten_list ''' def lame_param(E, v): la = E * v / (1 + v) / (1 - 2 * v) mu = E / 2 / (1 + v) return la, mu def tri_mid_vec(vertices, tri_elements): tri_vtx = vertices[tri_elements] tri_mid = tri_vtx.mean(axis=1) tri_normal_vec = np.cross(tri_vtx[:, 1] - tri_vtx[:, 0], tri_vtx[:, 2] - tri_vtx[:, 0]) tri_normal_vec = tri_normal_vec * (1.0 / np.linalg.norm(tri_normal_vec, axis=1))[:, np.newaxis] return tri_mid, tri_normal_vec def rotation_matrix(deg,axis='x'): rad = np.deg2rad(deg) s,c = np.sin(rad),np.cos(rad) if axis=='x': return np.array([ 1, 0, 0, 0, c, -s, 0, s, c]).reshape(-1,3) elif axis=='y': return np.array([ c, 0, s, 0, 1, 0, -s, 0, c]).reshape(-1,3) elif axis=='z': return np.array([ c, -s, 0, s, c, 0, 0, 0, 1]).reshape(-1,3) else: return np.ones((3,3)) # def flatten_list(l): # # not work well # for el in l: # if isinstance(el, Iterable) and not isinstance(el, (str, bytes)): # return flatten_list(el) # else: # return el ''' matplotlibe subplot 1. create_axs 2. draw_liver 3. draw_liver_tool ''' def create_axs(subplot_n,block=False,return_fig=False): r = int(np.floor(np.sqrt(subplot_n))) c = int(subplot_n/r) fig = plt.figure(figsize=plt.figaspect(0.5)) axs = {} for i in range(subplot_n): axs[i] = fig.add_subplot(r, c, i+1, projection='3d') if return_fig: return axs,fig return axs def draw_liver(liver,ax): ax.cla() ax = liver.plt_vtx(ax=ax) ax = liver.plt_x(ax=ax) plt_equal(ax) return ax def draw_liver_F(liver,axs,f_scl = 5e0): # Fes, Ficp, Fis+ displacement axs[0].cla() axs[0] = liver.plt_x(ax=axs[0]) axs[0] = liver.plt_Fes(vec_to_scl=f_scl,ax=axs[0]) plt_equal(axs[0]) axs[1].cla() axs[1] = liver.plt_x(ax=axs[1]) axs[1] = liver.plt_Ficp(vec_to_scl=f_scl,ax=axs[1]) plt_equal(axs[1]) axs[2].cla() axs[2] = liver.plt_vtx(ax=axs[2]) axs[2] = liver.plt_x(ax=axs[2]) axs[2] = liver.plt_Fis(vec_to_scl=f_scl,ax=axs[2]) plt_equal(axs[2]) return axs def draw_liver_tool(liver,sg,axs,f_scl=5e0): axs[0].cla() axs[0] = liver.plt_x(ax=axs[0]) axs[0] = liver.plt_tri_normal_vec(vec_scl=f_scl/2,ax=axs[0]) plt_equal(axs[0]) axs[1].cla() axs[1] = sg.plt_sg_x(ax=axs[1]) axs[1] = sg._plt_vtx_normal_vec(sg.x,vec_scl=f_scl/2,ax=axs[1]) plt_equal(axs[1]) axs[2].cla() axs[2] = liver.plt_x(ax=axs[2]) axs[2] = sg.plt_sg_x(ax=axs[2]) plt_equal(axs[2]) axs_l = {axs[3],axs[4],axs[5]} axs_l = draw_liver(liver,axs_l,f_scl=f_scl) axs[3],axs[4],axs[5] = axs_l[0],axs_l[1],axs_l[2] plt.draw()#plt.show(block=False) return axs ''' aabb 1. xyzminmax 2. _plt_AABB 3. plt_aabb_p ''' def xyzminmax(aabb): # xmin, ymin, zmin, xmax, ymax, zmax = aabb[0], aabb[1], aabb[2], aabb[3], aabb[4], aabb[5] return aabb[0], aabb[1], aabb[2], aabb[3], aabb[4], aabb[5] def plt_AABB(aabb, **kwargs): c_line = '#9467bd' c_p = '#e377c2' if 'c' in kwargs.keys(): colors = kwargs['c'] if type(colors) is list: c_line = colors[0] c_p = colors[1] elif type(colors) is str: c_line = colors ax = ax3d_handle(**kwargs) # aabb: 1x6, xmin, ymin, zmin, xmax, ymax, zmax xmin, ymin, zmin, xmax, ymax, zmax = xyzminmax(aabb) xyz = np.array([xmin, ymin, zmin, xmax, ymin, zmin, xmax, ymax, zmin, xmin, ymax, zmin, xmin, ymin, zmax, xmax, ymin, zmax, xmax, ymax, zmax, xmin, ymax, zmax]).reshape(-1, 3) line_segs = np.array([1, 2, 2, 3, 3, 4, 4, 1, 1, 5, 2, 6, 3, 7, 4, 8, 5, 6, 6, 7, 7, 8, 8, 5]).reshape(-1, 2) - 1 line_vt = np.hstack((xyz[line_segs[:, 0]], xyz[line_segs[:, 1]])).copy() lc = Line3DCollection(line_vt.reshape(-1, 2, 3), colors=c_line, linestyles='--') ax.add_collection(lc) ax.scatter(xyz[:, 0], xyz[:, 1], xyz[:, 2], marker='o', c=c_p) return ax def plt_aabb_p(aabb, p, **kwargs): ax = ax3d_handle(**kwargs) ax.scatter(p[0], p[1], p[2], c='#22D8C3') plt_AABB(aabb, ax=ax) return ax ''' ax handle 1. 1) plt_equal 2) plt_show_equal 3) set_axes_equal 4) _set_axes_radius 2. ax3d_handle 3. plt_tet 4. plt_tet_ps 5. plt_normal_vecs 6. plt_tri 7. plt_tri_ps ''' def plt_equal(ax,limits = None): ax.set_box_aspect((1, 1, 1)) # IMPORTANT - this is the new, key line set_axes_equal(ax,limits=limits) # IMPORTANT - this is also required def plt_show_equal(ax,block=False,limits = None): plt_equal(ax,limits=limits) plt.show(block=block) def set_axes_equal(ax: plt.Axes,limits = None): """Set 3D plot axes to equal scale. Make axes of 3D plot have equal scale so that spheres appear as spheres and cubes as cubes. Required since `ax.axis('equal')` and `ax.set_aspect('equal')` don't work on 3D. """ if limits is None: limits = np.array([ ax.get_xlim3d(), ax.get_ylim3d(), ax.get_zlim3d(), ]) origin = np.mean(limits, axis=1) radius = 0.5 * np.max(np.abs(limits[:, 1] - limits[:, 0])) _set_axes_radius(ax, origin, radius) def _set_axes_radius(ax, origin, radius): x, y, z = origin ax.set_xlim3d([x - radius, x + radius]) ax.set_ylim3d([y - radius, y + radius]) ax.set_zlim3d([z - radius, z + radius]) def ax3d_handle(return_fig=False,**kwargs): if 'ax' in kwargs: ax = kwargs['ax'] else: fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(projection='3d') if return_fig: return ax,fig return ax def plt_tet(vs, text_opt='off', **kwargs): ax = ax3d_handle(**kwargs) ax.scatter(vs[:, 0], vs[:, 1], vs[:, 2], c='#BCB6E3') if text_opt == "on": for i in range(4): ax.text(vs[i, 0], vs[i, 1], vs[i, 2], f'{i + 1}') line_order = np.array([1, 2, 1, 3, 1, 4, 2, 3, 2, 4, 3, 4]).reshape(-1, 2) - 1 line_vt = np.hstack((vs[line_order[:, 0]], vs[line_order[:, 1]])) lc = Line3DCollection(line_vt.reshape(-1, 2, 3), colors='#8A7BFB') ax.add_collection(lc) return ax def plt_tet_ps(vs, p, text_opt='off', **kwargs): p = np.array(p) ax = ax3d_handle(**kwargs) ax = plt_tet(vs, text_opt=text_opt, ax=ax) if len(p.shape) == 1: p = p.reshape(1, -1) ax.scatter(p[:, 0], p[:, 1], p[:, 2], c='#22D8C3') return ax def plt_normal_vecs(base_ps, vecs, scl=1, **kwargs): vesc_scl = vecs * scl ax = ax3d_handle(**kwargs) ax.scatter(base_ps[:, 0], base_ps[:, 1], base_ps[:, 2], c='#1D1788') ax.quiver(base_ps[:, 0], base_ps[:, 1], base_ps[:, 2], vesc_scl[:, 0], vesc_scl[:, 1], vesc_scl[:, 2], color='#7D75FE') return ax def plt_tet_ps_vecs(vs, p, vec, scl=1, text_opt = 'off', **kwargs): ax = ax3d_handle(**kwargs) ax = plt_tet_ps(vs, p, ax=ax, text_opt = text_opt) if len(p.shape) == 1: p = p.reshape(1, -1) if len(vec.shape) == 1: vec = vec.reshape(1, -1) ax = plt_normal_vecs(p, vec, scl=scl, ax=ax) return ax def plt_tri(vs, text_opt='off', **kwargs): ax = ax3d_handle(**kwargs) ax.scatter(vs[:, 0], vs[:, 1], vs[:, 2], c='#ff00ff') if text_opt == "on": for i in range(3): ax.text(vs[i, 0], vs[i, 1], vs[i, 2], f'{i + 1}') line_order = np.array([1, 2, 1, 3, 2, 3]).reshape(-1, 2) - 1 line_vt = np.hstack((vs[line_order[:, 0]], vs[line_order[:, 1]])) lc = Line3DCollection(line_vt.reshape(-1, 2, 3), colors='#9933ff') ax.add_collection(lc) return ax def plt_tri_ps(vs, p, text_opt='off', **kwargs): ax = ax3d_handle(**kwargs) ax = plt_tri(vs, text_opt=text_opt, ax=ax) if len(p.shape) == 1: p = p.reshape(1, -1) ax.scatter(p[:, 0], p[:, 1], p[:, 2], c='#22D8C3') return ax
40.867647
137
0.569886
[ "MIT" ]
Kexin-Wei/spinnup
env_pyrep/utils.py
19,453
Python
from django.db import models # Create your models here. class Message(models.Model): tab_name = models.TextField(max_length=50) text = models.TextField(max_length=300)
29.333333
46
0.761364
[ "MIT" ]
robocol-rem-u/ros_web_app_2
Robocol/testapp/Interfaz/models.py
176
Python
from a10sdk.common.A10BaseClass import A10BaseClass class AuthSamlIdp(A10BaseClass): """ :param remote_file: {"optional": true, "type": "string", "description": "Profile name for remote url", "format": "url"} :param use_mgmt_port: {"default": 0, "optional": true, "type": "number", "description": "Use management port as source port", "format": "flag"} :param verify_xml_signature: {"default": 0, "optional": true, "type": "number", "description": "Verify metadata's XML signature", "format": "flag"} :param saml_idp_name: {"description": "Metadata name", "format": "string", "minLength": 1, "optional": true, "maxLength": 63, "type": "string"} :param overwrite: {"default": 0, "optional": true, "type": "number", "description": "Overwrite existing file", "format": "flag"} :param DeviceProxy: The device proxy for REST operations and session handling. Refer to `common/device_proxy.py` Class Description:: SAML metadata of identity provider. Class auth-saml-idp supports CRUD Operations and inherits from `common/A10BaseClass`. This class is the `"PARENT"` class for this module.` URL for this object:: `https://<Hostname|Ip address>//axapi/v3/import/auth-saml-idp`. """ def __init__(self, **kwargs): self.ERROR_MSG = "" self.required=[] self.b_key = "auth-saml-idp" self.a10_url="/axapi/v3/import/auth-saml-idp" self.DeviceProxy = "" self.remote_file = "" self.use_mgmt_port = "" self.verify_xml_signature = "" self.saml_idp_name = "" self.overwrite = "" for keys, value in kwargs.items(): setattr(self,keys, value)
38.727273
151
0.642019
[ "Apache-2.0" ]
a10networks/a10sdk-python
a10sdk/core/A10_import/import_auth_saml_idp.py
1,704
Python
# coding: utf-8 """ Intersight REST API This is Intersight REST API OpenAPI spec version: 1.0.9-255 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class EquipmentChassis(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'account_moid': 'str', 'ancestors': 'list[MoBaseMoRef]', 'create_time': 'datetime', 'mod_time': 'datetime', 'moid': 'str', 'object_type': 'str', 'owners': 'list[str]', 'parent': 'MoBaseMoRef', 'tags': 'list[MoTag]', 'version_context': 'MoVersionContext', 'device_mo_id': 'str', 'dn': 'str', 'rn': 'str', 'model': 'str', 'revision': 'str', 'serial': 'str', 'vendor': 'str', 'blades': 'list[ComputeBladeRef]', 'fanmodules': 'list[EquipmentFanModuleRef]', 'ioms': 'list[EquipmentIoCardRef]', 'oper_state': 'str', 'psus': 'list[EquipmentPsuRef]', 'registered_device': 'AssetDeviceRegistrationRef', 'sasexpanders': 'list[StorageSasExpanderRef]', 'siocs': 'list[EquipmentSystemIoControllerRef]', 'storage_enclosures': 'list[StorageEnclosureRef]' } attribute_map = { 'account_moid': 'AccountMoid', 'ancestors': 'Ancestors', 'create_time': 'CreateTime', 'mod_time': 'ModTime', 'moid': 'Moid', 'object_type': 'ObjectType', 'owners': 'Owners', 'parent': 'Parent', 'tags': 'Tags', 'version_context': 'VersionContext', 'device_mo_id': 'DeviceMoId', 'dn': 'Dn', 'rn': 'Rn', 'model': 'Model', 'revision': 'Revision', 'serial': 'Serial', 'vendor': 'Vendor', 'blades': 'Blades', 'fanmodules': 'Fanmodules', 'ioms': 'Ioms', 'oper_state': 'OperState', 'psus': 'Psus', 'registered_device': 'RegisteredDevice', 'sasexpanders': 'Sasexpanders', 'siocs': 'Siocs', 'storage_enclosures': 'StorageEnclosures' } def __init__(self, account_moid=None, ancestors=None, create_time=None, mod_time=None, moid=None, object_type=None, owners=None, parent=None, tags=None, version_context=None, device_mo_id=None, dn=None, rn=None, model=None, revision=None, serial=None, vendor=None, blades=None, fanmodules=None, ioms=None, oper_state=None, psus=None, registered_device=None, sasexpanders=None, siocs=None, storage_enclosures=None): """ EquipmentChassis - a model defined in Swagger """ self._account_moid = None self._ancestors = None self._create_time = None self._mod_time = None self._moid = None self._object_type = None self._owners = None self._parent = None self._tags = None self._version_context = None self._device_mo_id = None self._dn = None self._rn = None self._model = None self._revision = None self._serial = None self._vendor = None self._blades = None self._fanmodules = None self._ioms = None self._oper_state = None self._psus = None self._registered_device = None self._sasexpanders = None self._siocs = None self._storage_enclosures = None if account_moid is not None: self.account_moid = account_moid if ancestors is not None: self.ancestors = ancestors if create_time is not None: self.create_time = create_time if mod_time is not None: self.mod_time = mod_time if moid is not None: self.moid = moid if object_type is not None: self.object_type = object_type if owners is not None: self.owners = owners if parent is not None: self.parent = parent if tags is not None: self.tags = tags if version_context is not None: self.version_context = version_context if device_mo_id is not None: self.device_mo_id = device_mo_id if dn is not None: self.dn = dn if rn is not None: self.rn = rn if model is not None: self.model = model if revision is not None: self.revision = revision if serial is not None: self.serial = serial if vendor is not None: self.vendor = vendor if blades is not None: self.blades = blades if fanmodules is not None: self.fanmodules = fanmodules if ioms is not None: self.ioms = ioms if oper_state is not None: self.oper_state = oper_state if psus is not None: self.psus = psus if registered_device is not None: self.registered_device = registered_device if sasexpanders is not None: self.sasexpanders = sasexpanders if siocs is not None: self.siocs = siocs if storage_enclosures is not None: self.storage_enclosures = storage_enclosures @property def account_moid(self): """ Gets the account_moid of this EquipmentChassis. The Account ID for this managed object. :return: The account_moid of this EquipmentChassis. :rtype: str """ return self._account_moid @account_moid.setter def account_moid(self, account_moid): """ Sets the account_moid of this EquipmentChassis. The Account ID for this managed object. :param account_moid: The account_moid of this EquipmentChassis. :type: str """ self._account_moid = account_moid @property def ancestors(self): """ Gets the ancestors of this EquipmentChassis. Ancestors is an array containing the MO references of the ancestors in the object containment hierarchy. :return: The ancestors of this EquipmentChassis. :rtype: list[MoBaseMoRef] """ return self._ancestors @ancestors.setter def ancestors(self, ancestors): """ Sets the ancestors of this EquipmentChassis. Ancestors is an array containing the MO references of the ancestors in the object containment hierarchy. :param ancestors: The ancestors of this EquipmentChassis. :type: list[MoBaseMoRef] """ self._ancestors = ancestors @property def create_time(self): """ Gets the create_time of this EquipmentChassis. The time when this managed object was created. :return: The create_time of this EquipmentChassis. :rtype: datetime """ return self._create_time @create_time.setter def create_time(self, create_time): """ Sets the create_time of this EquipmentChassis. The time when this managed object was created. :param create_time: The create_time of this EquipmentChassis. :type: datetime """ self._create_time = create_time @property def mod_time(self): """ Gets the mod_time of this EquipmentChassis. The time when this managed object was last modified. :return: The mod_time of this EquipmentChassis. :rtype: datetime """ return self._mod_time @mod_time.setter def mod_time(self, mod_time): """ Sets the mod_time of this EquipmentChassis. The time when this managed object was last modified. :param mod_time: The mod_time of this EquipmentChassis. :type: datetime """ self._mod_time = mod_time @property def moid(self): """ Gets the moid of this EquipmentChassis. A unique identifier of this Managed Object instance. :return: The moid of this EquipmentChassis. :rtype: str """ return self._moid @moid.setter def moid(self, moid): """ Sets the moid of this EquipmentChassis. A unique identifier of this Managed Object instance. :param moid: The moid of this EquipmentChassis. :type: str """ self._moid = moid @property def object_type(self): """ Gets the object_type of this EquipmentChassis. The fully-qualified type of this managed object, e.g. the class name. :return: The object_type of this EquipmentChassis. :rtype: str """ return self._object_type @object_type.setter def object_type(self, object_type): """ Sets the object_type of this EquipmentChassis. The fully-qualified type of this managed object, e.g. the class name. :param object_type: The object_type of this EquipmentChassis. :type: str """ self._object_type = object_type @property def owners(self): """ Gets the owners of this EquipmentChassis. An array of owners which represent effective ownership of this object. :return: The owners of this EquipmentChassis. :rtype: list[str] """ return self._owners @owners.setter def owners(self, owners): """ Sets the owners of this EquipmentChassis. An array of owners which represent effective ownership of this object. :param owners: The owners of this EquipmentChassis. :type: list[str] """ self._owners = owners @property def parent(self): """ Gets the parent of this EquipmentChassis. The direct ancestor of this managed object in the containment hierarchy. :return: The parent of this EquipmentChassis. :rtype: MoBaseMoRef """ return self._parent @parent.setter def parent(self, parent): """ Sets the parent of this EquipmentChassis. The direct ancestor of this managed object in the containment hierarchy. :param parent: The parent of this EquipmentChassis. :type: MoBaseMoRef """ self._parent = parent @property def tags(self): """ Gets the tags of this EquipmentChassis. An array of tags, which allow to add key, value meta-data to managed objects. :return: The tags of this EquipmentChassis. :rtype: list[MoTag] """ return self._tags @tags.setter def tags(self, tags): """ Sets the tags of this EquipmentChassis. An array of tags, which allow to add key, value meta-data to managed objects. :param tags: The tags of this EquipmentChassis. :type: list[MoTag] """ self._tags = tags @property def version_context(self): """ Gets the version_context of this EquipmentChassis. The versioning info for this managed object :return: The version_context of this EquipmentChassis. :rtype: MoVersionContext """ return self._version_context @version_context.setter def version_context(self, version_context): """ Sets the version_context of this EquipmentChassis. The versioning info for this managed object :param version_context: The version_context of this EquipmentChassis. :type: MoVersionContext """ self._version_context = version_context @property def device_mo_id(self): """ Gets the device_mo_id of this EquipmentChassis. :return: The device_mo_id of this EquipmentChassis. :rtype: str """ return self._device_mo_id @device_mo_id.setter def device_mo_id(self, device_mo_id): """ Sets the device_mo_id of this EquipmentChassis. :param device_mo_id: The device_mo_id of this EquipmentChassis. :type: str """ self._device_mo_id = device_mo_id @property def dn(self): """ Gets the dn of this EquipmentChassis. :return: The dn of this EquipmentChassis. :rtype: str """ return self._dn @dn.setter def dn(self, dn): """ Sets the dn of this EquipmentChassis. :param dn: The dn of this EquipmentChassis. :type: str """ self._dn = dn @property def rn(self): """ Gets the rn of this EquipmentChassis. :return: The rn of this EquipmentChassis. :rtype: str """ return self._rn @rn.setter def rn(self, rn): """ Sets the rn of this EquipmentChassis. :param rn: The rn of this EquipmentChassis. :type: str """ self._rn = rn @property def model(self): """ Gets the model of this EquipmentChassis. :return: The model of this EquipmentChassis. :rtype: str """ return self._model @model.setter def model(self, model): """ Sets the model of this EquipmentChassis. :param model: The model of this EquipmentChassis. :type: str """ self._model = model @property def revision(self): """ Gets the revision of this EquipmentChassis. :return: The revision of this EquipmentChassis. :rtype: str """ return self._revision @revision.setter def revision(self, revision): """ Sets the revision of this EquipmentChassis. :param revision: The revision of this EquipmentChassis. :type: str """ self._revision = revision @property def serial(self): """ Gets the serial of this EquipmentChassis. :return: The serial of this EquipmentChassis. :rtype: str """ return self._serial @serial.setter def serial(self, serial): """ Sets the serial of this EquipmentChassis. :param serial: The serial of this EquipmentChassis. :type: str """ self._serial = serial @property def vendor(self): """ Gets the vendor of this EquipmentChassis. :return: The vendor of this EquipmentChassis. :rtype: str """ return self._vendor @vendor.setter def vendor(self, vendor): """ Sets the vendor of this EquipmentChassis. :param vendor: The vendor of this EquipmentChassis. :type: str """ self._vendor = vendor @property def blades(self): """ Gets the blades of this EquipmentChassis. :return: The blades of this EquipmentChassis. :rtype: list[ComputeBladeRef] """ return self._blades @blades.setter def blades(self, blades): """ Sets the blades of this EquipmentChassis. :param blades: The blades of this EquipmentChassis. :type: list[ComputeBladeRef] """ self._blades = blades @property def fanmodules(self): """ Gets the fanmodules of this EquipmentChassis. :return: The fanmodules of this EquipmentChassis. :rtype: list[EquipmentFanModuleRef] """ return self._fanmodules @fanmodules.setter def fanmodules(self, fanmodules): """ Sets the fanmodules of this EquipmentChassis. :param fanmodules: The fanmodules of this EquipmentChassis. :type: list[EquipmentFanModuleRef] """ self._fanmodules = fanmodules @property def ioms(self): """ Gets the ioms of this EquipmentChassis. :return: The ioms of this EquipmentChassis. :rtype: list[EquipmentIoCardRef] """ return self._ioms @ioms.setter def ioms(self, ioms): """ Sets the ioms of this EquipmentChassis. :param ioms: The ioms of this EquipmentChassis. :type: list[EquipmentIoCardRef] """ self._ioms = ioms @property def oper_state(self): """ Gets the oper_state of this EquipmentChassis. :return: The oper_state of this EquipmentChassis. :rtype: str """ return self._oper_state @oper_state.setter def oper_state(self, oper_state): """ Sets the oper_state of this EquipmentChassis. :param oper_state: The oper_state of this EquipmentChassis. :type: str """ self._oper_state = oper_state @property def psus(self): """ Gets the psus of this EquipmentChassis. :return: The psus of this EquipmentChassis. :rtype: list[EquipmentPsuRef] """ return self._psus @psus.setter def psus(self, psus): """ Sets the psus of this EquipmentChassis. :param psus: The psus of this EquipmentChassis. :type: list[EquipmentPsuRef] """ self._psus = psus @property def registered_device(self): """ Gets the registered_device of this EquipmentChassis. :return: The registered_device of this EquipmentChassis. :rtype: AssetDeviceRegistrationRef """ return self._registered_device @registered_device.setter def registered_device(self, registered_device): """ Sets the registered_device of this EquipmentChassis. :param registered_device: The registered_device of this EquipmentChassis. :type: AssetDeviceRegistrationRef """ self._registered_device = registered_device @property def sasexpanders(self): """ Gets the sasexpanders of this EquipmentChassis. :return: The sasexpanders of this EquipmentChassis. :rtype: list[StorageSasExpanderRef] """ return self._sasexpanders @sasexpanders.setter def sasexpanders(self, sasexpanders): """ Sets the sasexpanders of this EquipmentChassis. :param sasexpanders: The sasexpanders of this EquipmentChassis. :type: list[StorageSasExpanderRef] """ self._sasexpanders = sasexpanders @property def siocs(self): """ Gets the siocs of this EquipmentChassis. :return: The siocs of this EquipmentChassis. :rtype: list[EquipmentSystemIoControllerRef] """ return self._siocs @siocs.setter def siocs(self, siocs): """ Sets the siocs of this EquipmentChassis. :param siocs: The siocs of this EquipmentChassis. :type: list[EquipmentSystemIoControllerRef] """ self._siocs = siocs @property def storage_enclosures(self): """ Gets the storage_enclosures of this EquipmentChassis. :return: The storage_enclosures of this EquipmentChassis. :rtype: list[StorageEnclosureRef] """ return self._storage_enclosures @storage_enclosures.setter def storage_enclosures(self, storage_enclosures): """ Sets the storage_enclosures of this EquipmentChassis. :param storage_enclosures: The storage_enclosures of this EquipmentChassis. :type: list[StorageEnclosureRef] """ self._storage_enclosures = storage_enclosures def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, EquipmentChassis): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
26.90806
418
0.589282
[ "Apache-2.0" ]
fdemello/intersight-python
intersight/models/equipment_chassis.py
21,365
Python
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'button_editor.ui' # # Created by: PyQt5 UI code generator 5.7 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName("Dialog") Dialog.resize(493, 380) self.verticalLayout = QtWidgets.QVBoxLayout(Dialog) self.verticalLayout.setObjectName("verticalLayout") self.scrollArea = QtWidgets.QScrollArea(Dialog) self.scrollArea.setWidgetResizable(True) self.scrollArea.setObjectName("scrollArea") self.scrollAreaWidgetContents = QtWidgets.QWidget() self.scrollAreaWidgetContents.setGeometry(QtCore.QRect(0, 0, 473, 327)) self.scrollAreaWidgetContents.setObjectName("scrollAreaWidgetContents") self.scrollArea.setWidget(self.scrollAreaWidgetContents) self.verticalLayout.addWidget(self.scrollArea) self.buttonBox = QtWidgets.QDialogButtonBox(Dialog) self.buttonBox.setOrientation(QtCore.Qt.Horizontal) self.buttonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Cancel|QtWidgets.QDialogButtonBox.Ok) self.buttonBox.setObjectName("buttonBox") self.verticalLayout.addWidget(self.buttonBox) self.retranslateUi(Dialog) self.buttonBox.accepted.connect(Dialog.accept) self.buttonBox.rejected.connect(Dialog.reject) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "Power Button Editor"))
42.175
106
0.733254
[ "MIT" ]
BoettigerLab/Hal2
storm_control/hal4000/illumination/button_editor_ui.py
1,687
Python
#!/usr/bin/env python # Copyright (c) 2005 Gavin E. Crooks <[email protected]> # # This software is distributed under the MIT Open Source License. # <http://www.opensource.org/licenses/mit-license.html> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import unittest from corebio import * from corebio._py3k import StringIO from corebio.seq import * from corebio.seq_io import * from test_corebio import * class test_table_io(unittest.TestCase): def test_read(self): f = StringIO(table_io.example) seqs = table_io.read(f) self.assertEqual(len(seqs), 10) self.assertEqual(seqs[2].name, "EC0003") self.assertEqual(len(seqs[1]), 50) def test_read_fail(self): f = StringIO(plain_io.example) # Wrong alphabet self.assertRaises(ValueError, table_io.read, f) def test_write_seq(self): f = StringIO(table_io.example) seqs = table_io.read(f) fout = StringIO() table_io.write(fout, seqs) fout.seek(0) seqs2 = table_io.read(fout) self.assertEqual(seqs, seqs2) if __name__ == '__main__': unittest.main()
33.507692
80
0.71258
[ "MIT" ]
javicorvi/weblogo_edited
test_corebio/test_table_io.py
2,178
Python
#!/usr/bin/env python # Copyright 2015 Rackspace, Inc # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from lib import script class DecomPort(script.TeethScript): use_ironic = True use_neutron = True def __init__(self): super(DecomPort, self).__init__( 'Utility for temporarily putting a node on the decom network.') self.add_ironic_node_arguments() self.add_argument('command', help='Run command', choices=['add', 'remove']) def run(self): uuid = self.get_argument('node_uuid') node = self.ironic_client.get_node(uuid) command = self.get_argument('command') if command == 'add': self.neutron_client.add_decom_port(node) elif command == 'remove': self.neutron_client.remove_decom_port(node) if __name__ == "__main__": DecomPort().run()
30.5625
78
0.655078
[ "Apache-2.0" ]
jayofdoom/onmetal-scripts
onmetal_scripts/decom_port.py
1,467
Python
""" File: weather_master.py Name: Claire Lin ----------------------- This program should implement a console program that asks weather data from user to compute the average, highest, lowest, cold days among the inputs. Output format should match what is shown in the sample run in the Assignment 2 Handout. """ EXIT = -100 def main(): """ To find the highest and lowest temperature, cold days and the average. """ print('stanCode \"Weather Master 4.0\"!') # my friend told me the maximum and minimum variable can set like this. maximum = -100000000 minimum = 100000000 total = 0 count = 0 cold_day = 0 while True: temperature = int(input('Next Temperature: (or '+str(EXIT) + ' to quit)? ')) # To jump out from the program when no temperature were entered. if temperature == EXIT and count == 0: print('No temperatures were entered.') break # To exclude the temperature not exist. if temperature > 90 or temperature < -100: print('>>> The temperature \"'+str(temperature)+'\" not exist, so we exclude and stop it.') break if temperature == EXIT: break else: count += 1 # count the total days. if temperature < 16: cold_day += 1 # count the cold days which temperature below 16. total += temperature # To plus all temperature. if temperature > maximum: maximum = temperature if temperature < minimum: minimum = temperature else: pass if count != 0: avg = total / count print("") print('Highest temperature = ' + str(maximum)) print('Lowest temperature = ' + str(minimum)) print('Average = '+str(avg)) print(str(cold_day) + ' cold day(s)') # For checking # print(total) # print(count) """ My note: This is the first try, when I debug I found the calculation logic is wrong. The first variable I type will disappear when it enter into the while loop. And the count of total days would include the EXIT constant. """ # if temperature == EXIT: # print('No temperatures were entered.') # # else: # while True: # # if temperature < 16: # # cold_day += 1 # # temperature = int(input('Next Temperature: (or '+str(EXIT) + ' to quit)? ')) # # # count the total days. # count += 1 # # if temperature == EXIT: # break # # total += temperature # if temperature > maximum: # maximum = temperature # elif temperature < minimum: # minimum = temperature # else: # pass # # avg = total / count # print('Highest temperature = ' + str(maximum)) # print('Lowest temperature = ' + str(minimum)) # print('Average = '+str(avg)) # print(str(cold_day) + ' cold day(s)') ###### DO NOT EDIT CODE BELOW THIS LINE ###### if __name__ == "__main__": main()
28.513274
103
0.543451
[ "MIT" ]
clairejrlin/stanCode_projects
stanCode_Projects/weather_master/weather_master.py
3,222
Python
"""Module of sample legends for some commonly used geospatial datasets. """ import os import pkg_resources # Land Cover datasets in Earth Engine https://developers.google.com/earth-engine/datasets/tags/landcover builtin_legends = { # National Land Cover Database 2016 (NLCD2016) Legend https://www.mrlc.gov/data/legends/national-land-cover-database-2016-nlcd2016-legend 'NLCD': { '11 Open Water': '466b9f', '12 Perennial Ice/Snow': 'd1def8', '21 Developed, Open Space': 'dec5c5', '22 Developed, Low Intensity': 'd99282', '23 Developed, Medium Intensity': 'eb0000', '24 Developed High Intensity': 'ab0000', '31 Barren Land (Rock/Sand/Clay)': 'b3ac9f', '41 Deciduous Forest': '68ab5f', '42 Evergreen Forest': '1c5f2c', '43 Mixed Forest': 'b5c58f', '51 Dwarf Scrub': 'af963c', '52 Shrub/Scrub': 'ccb879', '71 Grassland/Herbaceous': 'dfdfc2', '72 Sedge/Herbaceous': 'd1d182', '73 Lichens': 'a3cc51', '74 Moss': '82ba9e', '81 Pasture/Hay': 'dcd939', '82 Cultivated Crops': 'ab6c28', '90 Woody Wetlands': 'b8d9eb', '95 Emergent Herbaceous Wetlands': '6c9fb8' }, # National Wetlands Inventory Legend: https://www.fws.gov/wetlands/data/Mapper-Wetlands-Legend.html 'NWI': { 'Freshwater- Forested and Shrub wetland': (0, 136, 55), 'Freshwater Emergent wetland': (127, 195, 28), 'Freshwater pond': (104, 140, 192), 'Estuarine and Marine wetland': (102, 194, 165), 'Riverine': (1, 144, 191), 'Lakes': (19, 0, 124), 'Estuarine and Marine Deepwater': (0, 124, 136), 'Other Freshwater wetland': (178, 134, 86) }, # MCD12Q1.051 Land Cover Type Yearly Global 500m https://developers.google.com/earth-engine/datasets/catalog/MODIS_051_MCD12Q1 'MODIS/051/MCD12Q1': { '0 Water': '1c0dff', '1 Evergreen needleleaf forest': '05450a', '2 Evergreen broadleaf forest': '086a10', '3 Deciduous needleleaf forest': '54a708', '4 Deciduous broadleaf forest': '78d203', '5 Mixed forest': '009900', '6 Closed shrublands': 'c6b044', '7 Open shrublands': 'dcd159', '8 Woody savannas': 'dade48', '9 Savannas': 'fbff13', '10 Grasslands': 'b6ff05', '11 Permanent wetlands': '27ff87', '12 Croplands': 'c24f44', '13 Urban and built-up': 'a5a5a5', '14 Cropland/natural vegetation mosaic': 'ff6d4c', '15 Snow and ice': '69fff8', '16 Barren or sparsely vegetated': 'f9ffa4', '254 Unclassified': 'ffffff' }, # GlobCover: Global Land Cover Map https://developers.google.com/earth-engine/datasets/catalog/ESA_GLOBCOVER_L4_200901_200912_V2_3 'GLOBCOVER': { '11 Post-flooding or irrigated croplands': 'aaefef', '14 Rainfed croplands': 'ffff63', '20 Mosaic cropland (50-70%) / vegetation (grassland, shrubland, forest) (20-50%)': 'dcef63', '30 Mosaic vegetation (grassland, shrubland, forest) (50-70%) / cropland (20-50%)': 'cdcd64', '40 Closed to open (>15%) broadleaved evergreen and/or semi-deciduous forest (>5m)': '006300', '50 Closed (>40%) broadleaved deciduous forest (>5m)': '009f00', '60 Open (15-40%) broadleaved deciduous forest (>5m)': 'aac700', '70 Closed (>40%) needleleaved evergreen forest (>5m)': '003b00', '90 Open (15-40%) needleleaved deciduous or evergreen forest (>5m)': '286300', '100 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m)': '788300', '110 Mosaic forest-shrubland (50-70%) / grassland (20-50%)': '8d9f00', '120 Mosaic grassland (50-70%) / forest-shrubland (20-50%)': 'bd9500', '130 Closed to open (>15%) shrubland (<5m)': '956300', '140 Closed to open (>15%) grassland': 'ffb431', '150 Sparse (>15%) vegetation (woody vegetation, shrubs, grassland)': 'ffebae', '160 Closed (>40%) broadleaved forest regularly flooded - Fresh water': '00785a', '170 Closed (>40%) broadleaved semi-deciduous and/or evergreen forest regularly flooded - saline water': '009578', '180 Closed to open (>15%) vegetation (grassland, shrubland, woody vegetation) on regularly flooded or waterlogged soil - fresh, brackish or saline water': '00dc83', '190 Artificial surfaces and associated areas (urban areas >50%) GLOBCOVER 2009': 'c31300', '200 Bare areas': 'fff5d6', '210 Water bodies': '0046c7', '220 Permanent snow and ice': 'ffffff', '230 Unclassified': '743411' }, # Global PALSAR-2/PALSAR Forest/Non-Forest Map https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_FNF 'JAXA/PALSAR': { '1 Forest': '006400', '2 Non-Forest': 'FEFF99', '3 Water': '0000FF' }, # MCD12Q1.006 MODIS Land Cover Type Yearly Global 500m https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD12Q1 'MODIS/006/MCD12Q1': { '1 Evergreen Needleleaf Forests: dominated by evergreen conifer trees (canopy >2m). Tree cover >60%.': '05450a', '2 Evergreen Broadleaf Forests: dominated by evergreen broadleaf and palmate trees (canopy >2m). Tree cover >60%.': '086a10', '3 Deciduous Needleleaf Forests: dominated by deciduous needleleaf (larch) trees (canopy >2m). Tree cover >60%.': '54a708', '4 Deciduous Broadleaf Forests: dominated by deciduous broadleaf trees (canopy >2m). Tree cover >60%.': '78d203', '5 Mixed Forests: dominated by neither deciduous nor evergreen (40-60% of each) tree type (canopy >2m). Tree cover >60%.': '009900', '6 Closed Shrublands: dominated by woody perennials (1-2m height) >60% cover.': 'c6b044', '7 Open Shrublands: dominated by woody perennials (1-2m height) 10-60% cover.': 'dcd159', '8 Woody Savannas: tree cover 30-60% (canopy >2m).': 'dade48', '9 Savannas: tree cover 10-30% (canopy >2m).': 'fbff13', '10 Grasslands: dominated by herbaceous annuals (<2m).': 'b6ff05', '11 Permanent Wetlands: permanently inundated lands with 30-60% water cover and >10% vegetated cover.': '27ff87', '12 Croplands: at least 60% of area is cultivated cropland.': 'c24f44', '13 Urban and Built-up Lands: at least 30% impervious surface area including building materials, asphalt and vehicles.': 'a5a5a5', '14 Cropland/Natural Vegetation Mosaics: mosaics of small-scale cultivation 40-60% with natural tree, shrub, or herbaceous vegetation.': 'ff6d4c', '15 Permanent Snow and Ice: at least 60% of area is covered by snow and ice for at least 10 months of the year.': '69fff8', '16 Barren: at least 60% of area is non-vegetated barren (sand, rock, soil) areas with less than 10% vegetation.': 'f9ffa4', '17 Water Bodies: at least 60% of area is covered by permanent water bodies.': '1c0dff' }, # Oxford MAP: Malaria Atlas Project Fractional International Geosphere-Biosphere Programme Landcover https://developers.google.com/earth-engine/datasets/catalog/Oxford_MAP_IGBP_Fractional_Landcover_5km_Annual 'Oxford': { '0 Water': '032f7e', '1 Evergreen_Needleleaf_Fores': '02740b', '2 Evergreen_Broadleaf_Forest': '02740b', '3 Deciduous_Needleleaf_Forest': '8cf502', '4 Deciduous_Broadleaf_Forest': '8cf502', '5 Mixed_Forest': 'a4da01', '6 Closed_Shrublands': 'ffbd05', '7 Open_Shrublands': 'ffbd05', '8 Woody_Savannas': '7a5a02', '9 Savannas': 'f0ff0f', '10 Grasslands': '869b36', '11 Permanent_Wetlands': '6091b4', '12 Croplands': 'ff4e4e', '13 Urban_and_Built-up': '999999', '14 Cropland_Natural_Vegetation_Mosaic': 'ff4e4e', '15 Snow_and_Ice': 'ffffff', '16 Barren_Or_Sparsely_Vegetated': 'feffc0', '17 Unclassified': '020202' }, # Canada AAFC Annual Crop Inventory https://developers.google.com/earth-engine/datasets/catalog/AAFC_ACI 'AAFC/ACI': { '10 Cloud': '000000', '20 Water': '3333ff', '30 Exposed Land and Barren': '996666', '34 Urban and Developed': 'cc6699', '35 Greenhouses': 'e1e1e1', '50 Shrubland': 'ffff00', '80 Wetland': '993399', '110 Grassland': 'cccc00', '120 Agriculture (undifferentiated)': 'cc6600', '122 Pasture and Forages': 'ffcc33', '130 Too Wet to be Seeded': '7899f6', '131 Fallow': 'ff9900', '132 Cereals': '660000', '133 Barley': 'dae31d', '134 Other Grains': 'd6cc00', '135 Millet': 'd2db25', '136 Oats': 'd1d52b', '137 Rye': 'cace32', '138 Spelt': 'c3c63a', '139 Triticale': 'b9bc44', '140 Wheat': 'a7b34d', '141 Switchgrass': 'b9c64e', '142 Sorghum': '999900', '145 Winter Wheat': '92a55b', '146 Spring Wheat': '809769', '147 Corn': 'ffff99', '148 Tobacco': '98887c', '149 Ginseng': '799b93', '150 Oilseeds': '5ea263', '151 Borage': '52ae77', '152 Camelina': '41bf7a', '153 Canola and Rapeseed': 'd6ff70', '154 Flaxseed': '8c8cff', '155 Mustard': 'd6cc00', '156 Safflower': 'ff7f00', '157 Sunflower': '315491', '158 Soybeans': 'cc9933', '160 Pulses': '896e43', '162 Peas': '8f6c3d', '167 Beans': '82654a', '174 Lentils': 'b85900', '175 Vegetables': 'b74b15', '176 Tomatoes': 'ff8a8a', '177 Potatoes': 'ffcccc', '178 Sugarbeets': '6f55ca', '179 Other Vegetables': 'ffccff', '180 Fruits': 'dc5424', '181 Berries': 'd05a30', '182 Blueberry': 'd20000', '183 Cranberry': 'cc0000', '185 Other Berry': 'dc3200', '188 Orchards': 'ff6666', '189 Other Fruits': 'c5453b', '190 Vineyards': '7442bd', '191 Hops': 'ffcccc', '192 Sod': 'b5fb05', '193 Herbs': 'ccff05', '194 Nursery': '07f98c', '195 Buckwheat': '00ffcc', '196 Canaryseed': 'cc33cc', '197 Hemp': '8e7672', '198 Vetch': 'b1954f', '199 Other Crops': '749a66', '200 Forest (undifferentiated)': '009900', '210 Coniferous': '006600', '220 Broadleaf': '00cc00', '230 Mixedwood': 'cc9900' }, # Copernicus CORINE Land Cover https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_CORINE_V20_100m 'COPERNICUS/CORINE/V20/100m': { '111 Artificial surfaces > Urban fabric > Continuous urban fabric': 'E6004D', '112 Artificial surfaces > Urban fabric > Discontinuous urban fabric': 'FF0000', '121 Artificial surfaces > Industrial, commercial, and transport units > Industrial or commercial units': 'CC4DF2', '122 Artificial surfaces > Industrial, commercial, and transport units > Road and rail networks and associated land': 'CC0000', '123 Artificial surfaces > Industrial, commercial, and transport units > Port areas': 'E6CCCC', '124 Artificial surfaces > Industrial, commercial, and transport units > Airports': 'E6CCE6', '131 Artificial surfaces > Mine, dump, and construction sites > Mineral extraction sites': 'A600CC', '132 Artificial surfaces > Mine, dump, and construction sites > Dump sites': 'A64DCC', '133 Artificial surfaces > Mine, dump, and construction sites > Construction sites': 'FF4DFF', '141 Artificial surfaces > Artificial, non-agricultural vegetated areas > Green urban areas': 'FFA6FF', '142 Artificial surfaces > Artificial, non-agricultural vegetated areas > Sport and leisure facilities': 'FFE6FF', '211 Agricultural areas > Arable land > Non-irrigated arable land': 'FFFFA8', '212 Agricultural areas > Arable land > Permanently irrigated land': 'FFFF00', '213 Agricultural areas > Arable land > Rice fields': 'E6E600', '221 Agricultural areas > Permanent crops > Vineyards': 'E68000', '222 Agricultural areas > Permanent crops > Fruit trees and berry plantations': 'F2A64D', '223 Agricultural areas > Permanent crops > Olive groves': 'E6A600', '231 Agricultural areas > Pastures > Pastures': 'E6E64D', '241 Agricultural areas > Heterogeneous agricultural areas > Annual crops associated with permanent crops': 'FFE6A6', '242 Agricultural areas > Heterogeneous agricultural areas > Complex cultivation patterns': 'FFE64D', '243 Agricultural areas > Heterogeneous agricultural areas > Land principally occupied by agriculture, with significant areas of natural vegetation': 'E6CC4D', '244 Agricultural areas > Heterogeneous agricultural areas > Agro-forestry areas': 'F2CCA6', '311 Forest and semi natural areas > Forests > Broad-leaved forest': '80FF00', '312 Forest and semi natural areas > Forests > Coniferous forest': '00A600', '313 Forest and semi natural areas > Forests > Mixed forest': '4DFF00', '321 Forest and semi natural areas > Scrub and/or herbaceous vegetation associations > Natural grasslands': 'CCF24D', '322 Forest and semi natural areas > Scrub and/or herbaceous vegetation associations > Moors and heathland': 'A6FF80', '323 Forest and semi natural areas > Scrub and/or herbaceous vegetation associations > Sclerophyllous vegetation': 'A6E64D', '324 Forest and semi natural areas > Scrub and/or herbaceous vegetation associations > Transitional woodland-shrub': 'A6F200', '331 Forest and semi natural areas > Open spaces with little or no vegetation > Beaches, dunes, sands': 'E6E6E6', '332 Forest and semi natural areas > Open spaces with little or no vegetation > Bare rocks': 'CCCCCC', '333 Forest and semi natural areas > Open spaces with little or no vegetation > Sparsely vegetated areas': 'CCFFCC', '334 Forest and semi natural areas > Open spaces with little or no vegetation > Burnt areas': '000000', '335 Forest and semi natural areas > Open spaces with little or no vegetation > Glaciers and perpetual snow': 'A6E6CC', '411 Wetlands > Inland wetlands > Inland marshes': 'A6A6FF', '412 Wetlands > Inland wetlands > Peat bogs': '4D4DFF', '421 Wetlands > Maritime wetlands > Salt marshes': 'CCCCFF', '422 Wetlands > Maritime wetlands > Salines': 'E6E6FF', '423 Wetlands > Maritime wetlands > Intertidal flats': 'A6A6E6', '511 Water bodies > Inland waters > Water courses': '00CCF2', '512 Water bodies > Inland waters > Water bodies': '80F2E6', '521 Water bodies > Marine waters > Coastal lagoons': '00FFA6', '522 Water bodies > Marine waters > Estuaries': 'A6FFE6', '523 Water bodies > Marine waters > Sea and ocean': 'E6F2FF' }, # Copernicus Global Land Cover Layers: CGLS-LC100 collection 2 https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V_Global 'COPERNICUS/Landcover/100m/Proba-V/Global': { '0 Unknown': '282828', '20 Shrubs. Woody perennial plants with persistent and woody stems and without any defined main stem being less than 5 m tall. The shrub foliage can be either evergreen or deciduous.': 'FFBB22', '30 Herbaceous vegetation. Plants without persistent stem or shoots above ground and lacking definite firm structure. Tree and shrub cover is less than 10 %.': 'FFFF4C', '40 Cultivated and managed vegetation / agriculture. Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single and multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type.': 'F096FF', '50 Urban / built up. Land covered by buildings and other man-made structures.': 'FA0000', '60 Bare / sparse vegetation. Lands with exposed soil, sand, or rocks and never has more than 10 % vegetated cover during any time of the year.': 'B4B4B4', '70 Snow and ice. Lands under snow or ice cover throughout the year.': 'F0F0F0', '80 Permanent water bodies. Lakes, reservoirs, and rivers. Can be either fresh or salt-water bodies.': '0032C8', '90 Herbaceous wetland. Lands with a permanent mixture of water and herbaceous or woody vegetation. The vegetation can be present in either salt, brackish, or fresh water.': '0096A0', '100 Moss and lichen.': 'FAE6A0', '111 Closed forest, evergreen needle leaf. Tree canopy >70 %, almost all needle leaf trees remain green all year. Canopy is never without green foliage.': '58481F', '112 Closed forest, evergreen broad leaf. Tree canopy >70 %, almost all broadleaf trees remain green year round. Canopy is never without green foliage.': '009900', '113 Closed forest, deciduous needle leaf. Tree canopy >70 %, consists of seasonal needle leaf tree communities with an annual cycle of leaf-on and leaf-off periods.': '70663E', '114 Closed forest, deciduous broad leaf. Tree canopy >70 %, consists of seasonal broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods.': '00CC00', '115 Closed forest, mixed.': '4E751F', '116 Closed forest, not matching any of the other definitions.': '007800', '121 Open forest, evergreen needle leaf. Top layer- trees 15-70 % and second layer- mixed of shrubs and grassland, almost all needle leaf trees remain green all year. Canopy is never without green foliage.': '666000', '122 Open forest, evergreen broad leaf. Top layer- trees 15-70 % and second layer- mixed of shrubs and grassland, almost all broadleaf trees remain green year round. Canopy is never without green foliage.': '8DB400', '123 Open forest, deciduous needle leaf. Top layer- trees 15-70 % and second layer- mixed of shrubs and grassland, consists of seasonal needle leaf tree communities with an annual cycle of leaf-on and leaf-off periods.': '8D7400', '124 Open forest, deciduous broad leaf. Top layer- trees 15-70 % and second layer- mixed of shrubs and grassland, consists of seasonal broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods.': 'A0DC00', '125 Open forest, mixed.': '929900', '126 Open forest, not matching any of the other definitions.': '648C00', '200 Oceans, seas. Can be either fresh or salt-water bodies.': '000080' }, # USDA NASS Cropland Data Layers https://developers.google.com/earth-engine/datasets/catalog/USDA_NASS_CDL 'USDA/NASS/CDL': { '1 Corn': 'ffd300', '2 Cotton': 'ff2626', '3 Rice': '00a8e2', '4 Sorghum': 'ff9e0a', '5 Soybeans': '267000', '6 Sunflower': 'ffff00', '10 Peanuts': '70a500', '11 Tobacco': '00af49', '12 Sweet Corn': 'dda50a', '13 Pop or Orn Corn': 'dda50a', '14 Mint': '7cd3ff', '21 Barley': 'e2007c', '22 Durum Wheat': '896054', '23 Spring Wheat': 'd8b56b', '24 Winter Wheat': 'a57000', '25 Other Small Grains': 'd69ebc', '26 Dbl Crop WinWht/Soybeans': '707000', '27 Rye': 'aa007c', '28 Oats': 'a05989', '29 Millet': '700049', '30 Speltz': 'd69ebc', '31 Canola': 'd1ff00', '32 Flaxseed': '7c99ff', '33 Safflower': 'd6d600', '34 Rape Seed': 'd1ff00', '35 Mustard': '00af49', '36 Alfalfa': 'ffa5e2', '37 Other Hay/Non Alfalfa': 'a5f28c', '38 Camelina': '00af49', '39 Buckwheat': 'd69ebc', '41 Sugarbeets': 'a800e2', '42 Dry Beans': 'a50000', '43 Potatoes': '702600', '44 Other Crops': '00af49', '45 Sugarcane': 'af7cff', '46 Sweet Potatoes': '702600', '47 Misc Vegs & Fruits': 'ff6666', '48 Watermelons': 'ff6666', '49 Onions': 'ffcc66', '50 Cucumbers': 'ff6666', '51 Chick Peas': '00af49', '52 Lentils': '00ddaf', '53 Peas': '54ff00', '54 Tomatoes': 'f2a377', '55 Caneberries': 'ff6666', '56 Hops': '00af49', '57 Herbs': '7cd3ff', '58 Clover/Wildflowers': 'e8bfff', '59 Sod/Grass Seed': 'afffdd', '60 Switchgrass': '00af49', '61 Fallow/Idle Cropland': 'bfbf77', '63 Forest': '93cc93', '64 Shrubland': 'c6d69e', '65 Barren': 'ccbfa3', '66 Cherries': 'ff00ff', '67 Peaches': 'ff8eaa', '68 Apples': 'ba004f', '69 Grapes': '704489', '70 Christmas Trees': '007777', '71 Other Tree Crops': 'af9970', '72 Citrus': 'ffff7c', '74 Pecans': 'b5705b', '75 Almonds': '00a582', '76 Walnuts': 'e8d6af', '77 Pears': 'af9970', '81 Clouds/No Data': 'f2f2f2', '82 Developed': '999999', '83 Water': '4970a3', '87 Wetlands': '7cafaf', '88 Nonag/Undefined': 'e8ffbf', '92 Aquaculture': '00ffff', '111 Open Water': '4970a3', '112 Perennial Ice/Snow': 'd3e2f9', '121 Developed/Open Space': '999999', '122 Developed/Low Intensity': '999999', '123 Developed/Med Intensity': '999999', '124 Developed/High Intensity': '999999', '131 Barren': 'ccbfa3', '141 Deciduous Forest': '93cc93', '142 Evergreen Forest': '93cc93', '143 Mixed Forest': '93cc93', '152 Shrubland': 'c6d69e', '176 Grassland/Pasture': 'e8ffbf', '190 Woody Wetlands': '7cafaf', '195 Herbaceous Wetlands': '7cafaf', '204 Pistachios': '00ff8c', '205 Triticale': 'd69ebc', '206 Carrots': 'ff6666', '207 Asparagus': 'ff6666', '208 Garlic': 'ff6666', '209 Cantaloupes': 'ff6666', '210 Prunes': 'ff8eaa', '211 Olives': '334933', '212 Oranges': 'e27026', '213 Honeydew Melons': 'ff6666', '214 Broccoli': 'ff6666', '216 Peppers': 'ff6666', '217 Pomegranates': 'af9970', '218 Nectarines': 'ff8eaa', '219 Greens': 'ff6666', '220 Plums': 'ff8eaa', '221 Strawberries': 'ff6666', '222 Squash': 'ff6666', '223 Apricots': 'ff8eaa', '224 Vetch': '00af49', '225 Dbl Crop WinWht/Corn': 'ffd300', '226 Dbl Crop Oats/Corn': 'ffd300', '227 Lettuce': 'ff6666', '229 Pumpkins': 'ff6666', '230 Dbl Crop Lettuce/Durum Wht': '896054', '231 Dbl Crop Lettuce/Cantaloupe': 'ff6666', '232 Dbl Crop Lettuce/Cotton': 'ff2626', '233 Dbl Crop Lettuce/Barley': 'e2007c', '234 Dbl Crop Durum Wht/Sorghum': 'ff9e0a', '235 Dbl Crop Barley/Sorghum': 'ff9e0a', '236 Dbl Crop WinWht/Sorghum': 'a57000', '237 Dbl Crop Barley/Corn': 'ffd300', '238 Dbl Crop WinWht/Cotton': 'a57000', '239 Dbl Crop Soybeans/Cotton': '267000', '240 Dbl Crop Soybeans/Oats': '267000', '241 Dbl Crop Corn/Soybeans': 'ffd300', '242 Blueberries': '000099', '243 Cabbage': 'ff6666', '244 Cauliflower': 'ff6666', '245 Celery': 'ff6666', '246 Radishes': 'ff6666', '247 Turnips': 'ff6666', '248 Eggplants': 'ff6666', '249 Gourds': 'ff6666', '250 Cranberries': 'ff6666', '254 Dbl Crop Barley/Soybeans': '267000' } } def ee_table_to_legend(in_table, out_file): """Converts an Earth Engine color table to a dictionary Args: in_table (str): The input file path (*.txt) to the Earth Engine color table. out_file (str): The output file path (*.txt) to the legend dictionary. """ pkg_dir = os.path.dirname( pkg_resources.resource_filename("geemap", "geemap.py")) ee_legend_table = os.path.join(pkg_dir, 'data/template/ee_legend_table.txt') if not os.path.exists(in_table): print('The class table does not exist.') out_file = os.path.abspath(out_file) if not os.path.exists(os.path.dirname(out_file)): os.makedirs(os.path.dirname(out_file)) legend_dict = {} with open(in_table) as f: lines = f.readlines() for index, line in enumerate(lines): if index > 0: items = line.split("\t") items = [item.strip() for item in items] color = items[1] key = items[0] + " " + items[2] legend_dict[key] = color out_lines = [] out_lines.append('{\n') for key in legend_dict.keys(): line = "\t'{}': '{}',\n".format(key,legend_dict[key]) out_lines.append(line) out_lines[-1] = out_lines[-1].rstrip()[:-1] + '\n' out_lines.append('}\n') with open(out_file, 'w') as f: f.writelines(out_lines)
53.958874
299
0.625216
[ "MIT" ]
GSRS/geemap
geemap/legends.py
24,929
Python
""" naivefit.py A NaiveFit follows the approach described in Crundall et al. (2019). NaiveFit begins with an initial guess provided by user of an N component fit. If no guess is provided, all provided stars are assumed to be members of one component. NaiveFit will perform an Expectation Maximisation on this N component fit until converged. Then NaiveFit will test increasing the compoennt count to N+1. This is done by for each component out of the N existing, substituting it for 2 similar components with slight age offsets, and running an EM fit. The result is N separate "N+1 component" fits. The best one will be compared to the "N component" fit using the Bayesian Information Criterion (BIC). If the BIC has improved, this "N+1 component fit" will be taken as the best fit so far. This process iterates until adding a component fails to yield a better fit. """ import numpy as np import os import sys import logging from distutils.dir_util import mkpath import random import uuid #~ from emcee.utils import MPIPool from multiprocessing import Pool from multiprocessing import cpu_count sys.path.insert(0, os.path.abspath('..')) from . import expectmax from . import readparam from . import tabletool from . import component from . import traceorbit # python3 throws FileNotFoundError that is essentially the same as IOError try: FileNotFoundError except NameError: FileNotFoundError = IOError def dummy_trace_orbit_func(loc, times=None): """ Purely for testing purposes Dummy trace orbit func to skip irrelevant computation A little constraint on age (since otherwise its a free floating parameter) """ if times is not None: if np.all(times > 1.): return loc + 1000. return loc def log_message(msg, symbol='.', surround=False): """Little formatting helper""" res = '{}{:^40}{}'.format(5 * symbol, msg, 5 * symbol) if surround: res = '\n{}\n{}\n{}'.format(50 * symbol, res, 50 * symbol) logging.info(res) class NaiveFit(object): """ Many arguments can be taken straight from the fit_pars dictionary, so no point explicitly looking for them. Description of parameters can be found in README.md along with their default values and whether they are required. """ # Internal filestems that Chronostar uses to store results throughout a fit # Should not be changed, otherwise Chronostar may struggle to retreive progress # from previous fits. final_comps_file = 'final_comps.npy' final_med_and_spans_file = 'final_med_and_spans.npy' final_memb_probs_file = 'final_membership.npy' # For detailed description of parameters, see the main README.md file # in parent directory. DEFAULT_FIT_PARS = { 'results_dir':'', # Output from dataprep, XYZUVW data, plus background overlaps # Can be a filename to a astropy table, or an actual table 'data_table':None, # Whether to look for dX, .. c_XY or X_error, .. corr_X_Y in # the column names 'historical_colnames':False, # Column name for stellar IDs. This is used at the end when generating # final fits table with IDs and membership probabilities. # This is optional. 'stellar_id_colname': None, # File name that points to a stored list of components, typically from # a previous fit. Some example filenames could be: # - 'some/prev/fit/final_comps.npy # - 'some/prev/fit/2/A/final_comps.npy # Alternatively, if you already have the list of components, just # provide them to `init_comps`. Don't do both. # 'init_comps_file':None, # TODO: Is this redundant with 'init_comps' 'init_comps':None, # One of these two are required if initialising a run with ncomps != 1 # One can also initialise a Chronostar run with memberships. # Array is [nstars, ncomps] float array # Each row should sum to 1. # Same as in 'final_membership.npy' # TODO: implement this in a way that info can be passed in from text file # e.g. a path to a file name # for now, can only be used from within a script, i.e. given a numpy # array object 'init_memb_probs':None, # Provide a string name that corresponds to a ComponentClass # An actual Component Class will be inserted into the paramter # dictionary to be passed into expectmax 'component':'sphere', 'max_comp_count':20, 'max_em_iterations':200, 'nthreads':1, # TODO: NOT IMPLEMENTED 'use_background':True, 'overwrite_prev_run':False, 'burnin':500, 'sampling_steps':1000, 'store_burnin_chains':False, 'ignore_stable_comps':True, # If loading parameters from text file, can provide strings: # - 'epicyclic' for epicyclic # - 'dummy_trace_orbit_func' for a trace orbit funciton that doens't do antyhing (for testing) # Alternativley, if building up parameter dictionary in a script, can # provide actual function. 'trace_orbit_func':traceorbit.trace_cartesian_orbit, # MZ # Specify what optimisation method in the maximisation step of # the EM algorithm to use. Default: emcee. Also available: # In principle any method from scipy.optimise.minimise, but # here we recommend Nelder-Mead (because the initialisation # with any additional arguments, e.g. Jacobian etc. is not # implemented in Chronostar). # 'emcee' | 'Nelder-Mead' 'optimisation_method': 'emcee', # Optimise components in parallel in expectmax.maximise. 'nprocess_ncomp': False, # Overwrite final results in a fits file 'overwrite_fits': False, # How to split group: in age or in space? 'split_group': 'age', 'par_log_file':'fit_pars.log', } def __init__(self, fit_pars): """ Parameters ---------- fit_pars : str -or- dictionary If a string, `fit_pars` should be a path to a parameter file which can be parsed by readparam.readParam, to construct a dictionary. Alternatively, an actual dictionary can be passed in. See README.md for a description of parameters. """ # Parse parameter file if required if type(fit_pars) is str: fit_pars = readparam.readParam(fit_pars, default_pars=self.DEFAULT_FIT_PARS) # Make a new dictionary, with priority given to contents of fit_pars self.fit_pars = dict(self.DEFAULT_FIT_PARS) self.fit_pars.update(fit_pars) assert type(self.fit_pars) is dict # MZ: Make sure 'par_log_file' is written into the results folder self.fit_pars['par_log_file'] = os.path.join(self.fit_pars['results_dir'], self.fit_pars['par_log_file']) # Data prep should already have been completed, so we simply build # the dictionary of arrays from the astropy table self.data_dict = tabletool.build_data_dict_from_table(self.fit_pars['data_table'], historical=self.fit_pars['historical_colnames']) # The NaiveFit approach is to assume starting with 1 component self.ncomps = 1 # Import suitable component class if self.fit_pars['component'] == 'sphere': self.Component = component.SphereComponent self.fit_pars['Component'] = component.SphereComponent elif self.fit_pars['component'] == 'ellip': self.Component = component.EllipComponent self.fit_pars['Component'] = component.EllipComponent else: raise UserWarning('Unknown (or missing) component parametrisation') # Check results directory is valid # If path exists, make a new results_directory with a random int if os.path.exists(self.fit_pars['results_dir']) and \ not self.fit_pars['overwrite_prev_run']: rdir = '{}_{}'.format(self.fit_pars['results_dir'].rstrip('/'), random.randint(0, 1000)) else: rdir = self.fit_pars['results_dir'] self.rdir = rdir.rstrip('/') + '/' mkpath(self.rdir) assert os.access(self.rdir, os.W_OK) # Log fit parameters, readparam.log_used_pars(self.fit_pars, default_pars=self.DEFAULT_FIT_PARS) # Now that results directory is set up, can set up log file logging.basicConfig(filename=self.rdir + 'log.log', level=logging.INFO) # Make some logs about how many iterations (+ other stuff) code can run for log_message(msg='Component count cap set to {}'.format( self.fit_pars['max_comp_count']), symbol='+', surround=True) log_message(msg='Iteration count cap set to {}'.format( self.fit_pars['max_em_iterations']), symbol='+', surround=True) print('printed') # Check nthreads does not exceed hardware if self.fit_pars['nthreads'] > cpu_count() - 1: raise UserWarning('Provided nthreads exceeds cpu count on this machine. ' 'Rememeber to leave one cpu free for master thread!') # MZ: If nthreads>1: create an MPIPool if self.fit_pars['nthreads']>1: #self.pool = MPIPool() log_message('pool = Pool(nthreads) = pool(%d)'%self.fit_pars['nthreads']) self.fit_pars['pool']=Pool(self.fit_pars['nthreads']) else: self.pool = None # ------------------------------------------------------------ # ----- SETTING UP RUN CUSTOMISATIONS ---------------------- # ------------------------------------------------------------ # Set up trace_orbit_func if self.fit_pars['trace_orbit_func'] == 'dummy_trace_orbit_func': self.fit_pars['trace_orbit_func'] = dummy_trace_orbit_func elif self.fit_pars['trace_orbit_func'] == 'epicyclic': log_message('trace_orbit: epicyclic') self.fit_pars['trace_orbit_func'] = traceorbit.trace_epicyclic_orbit else: self.fit_pars['trace_orbit_func'] = traceorbit.trace_cartesian_orbit if type(self.fit_pars['init_comps']) is str: self.fit_pars['init_comps'] = self.Component.load_raw_components( self.fit_pars['init_comps']) self.ncomps = len(self.fit_pars['init_comps']) print('Managed to load in init_comps from file') else: self.fit_pars['init_comps'] = None print("'Init comps' is initialised as none") # TODO: If initialising with membership probabilities, adjust self.ncomps def build_comps_from_chains(self, run_dir): """ Build compoennt objects from stored emcee chains and cooresponding lnprobs. Parameters ---------- run_dir: str Directory of an EM fit, which in the context of NaiveFit will be e.g. 'myfit/1', or 'myfit/2/A' Returns ------- comps: [Component] A list of components that correspond to the best fit from the run in question. """ logging.info('Component class has been modified, reconstructing ' 'from chain') comps = self.ncomps * [None] for i in range(self.ncomps): final_cdir = run_dir + 'final/comp{}/'.format(i) chain = np.load(final_cdir + 'final_chain.npy') lnprob = np.load(final_cdir + 'final_lnprob.npy') npars = len(self.Component.PARAMETER_FORMAT) best_ix = np.argmax(lnprob) best_pars = chain.reshape(-1, npars)[best_ix] comps[i] = self.Component(emcee_pars=best_pars) self.Component.store_raw_components( str(run_dir + 'final/' + self.final_comps_file), comps) return comps def log_score_comparison(self, prev, new): """ Purely a logging helper function. Log BIC comparisons. Parameters ---------- prev: dict A dictinoary of scores from the previous run with the following entries - bic: the Bayesian Information Criterion - lnlike : the log likelihood - lnpost : the log posterior new: dict A dictinoary of scores from the new run, with identical entries as `prev` Result ------ None """ if new['bic'] < prev['bic']: logging.info("Extra component has improved BIC...") logging.info( "New BIC: {} < Old BIC: {}".format(new['bic'], prev['bic'])) else: logging.info("Extra component has worsened BIC...") logging.info( "New BIC: {} > Old BIC: {}".format(new['bic'], prev['bic'])) logging.info("lnlike: {} | {}".format(new['lnlike'], prev['lnlike'])) logging.info("lnpost: {} | {}".format(new['lnpost'], prev['lnpost'])) def build_init_comps(self, prev_comps, split_comp_ix, prev_med_and_spans, memb_probs): """ Given a list of converged components from a N component fit, generate a list of N+1 components with which to initialise an EM run. This is done by taking the target component, `prev_comps[comp_ix]`, replacing it in the list of comps, by splitting it into two components with a lower and higher age, Parameters ---------- prev_comps : [N] list of Component objects List of components from the N component fit split_comp_ix : int The index of component which is to be split into two prev_med_and_spans : [ncomps,npars,3] np.array The median and spans of Return ------ init_comps: [N+1] list of Component objects Side effects ------------ Updates self.fit_pars['init_comps'] with a [N+1] list of Component objects """ target_comp = prev_comps[split_comp_ix] assert isinstance(target_comp, self.Component) # Decompose and replace the ith component with two new components # by using the 16th and 84th percentile ages from previous run if self.fit_pars['split_group']=='age': if self.fit_pars['optimisation_method']=='emcee': split_comps = target_comp.split_group_age( lo_age=prev_med_and_spans[split_comp_ix, -1, 1], hi_age=prev_med_and_spans[split_comp_ix, -1, 2]) elif self.fit_pars['optimisation_method']=='Nelder-Mead': age = target_comp.get_age() split_comps = target_comp.split_group_age( # TODO: Maybe even smaller change lo_age=0.8*age, hi_age=1.2*age) elif self.fit_pars['split_group']=='spatial': split_comps = target_comp.split_group_spatial(self.data_dict, memb_probs[:,split_comp_ix]) init_comps = list(prev_comps) init_comps.pop(split_comp_ix) init_comps.insert(split_comp_ix, split_comps[1]) init_comps.insert(split_comp_ix, split_comps[0]) return init_comps def run_em_unless_loadable(self, run_dir): """ Run and EM fit, but only if not loadable from a previous run """ try: # This fails when gradient descent is used and med_and_spans are not meaningful. try: med_and_spans = np.load(os.path.join(run_dir, 'final/', self.final_med_and_spans_file)) except ValueError: logging.info('med_and_spans not read. Presumably you are using gradient descent optimisation procedure?') med_and_spans = [None] memb_probs = np.load(os.path.join( run_dir, 'final/', self.final_memb_probs_file)) comps = self.Component.load_raw_components( str(os.path.join(run_dir, 'final/', self.final_comps_file))) logging.info('Loaded from previous run') # Handle case where Component class has been modified and can't # load the raw components except AttributeError: # TODO: check that the final chains looked for are guaranteed to be saved comps = self.build_comps_from_chains(run_dir) # Handle the case where files are missing, which means we must # perform the fit. #~ except (IOError, FileNotFoundError) as e: except IOError: comps, med_and_spans, memb_probs = \ expectmax.fit_many_comps(data=self.data_dict, ncomps=self.ncomps, rdir=run_dir, **self.fit_pars) # Since init_comps and init_memb_probs are only meant for one time uses # we clear them to avoid any future usage self.fit_pars['init_comps'] = None self.fit_pars['init_memb_probs'] = None return {'comps':comps, 'med_and_spans':med_and_spans, 'memb_probs':memb_probs} def iter_end_log(self, best_split_ix, prev_result, new_result): logging.info("Selected {} as best decomposition".format( chr(ord('A') + best_split_ix))) logging.info( "Turned\n{}".format(prev_result['comps'][best_split_ix].get_pars())) logging.info('with {} members'.format( prev_result['memb_probs'].sum(axis=0)[best_split_ix])) logging.info("into\n{}\n&\n{}".format( new_result['comps'][best_split_ix].get_pars(), new_result['comps'][best_split_ix + 1].get_pars(), )) logging.info('with {} and {} members'.format( new_result['memb_probs'].sum(axis=0)[best_split_ix], new_result['memb_probs'].sum(axis=0)[best_split_ix + 1], )) logging.info("for an overall membership breakdown\n{}".format( new_result['memb_probs'].sum(axis=0) )) def log_final_log(self, prev_result, prev_score): logging.info('Final best fits:') [logging.info(c.get_pars()) for c in prev_result['comps']] logging.info('Final age med and span:') if self.fit_pars['optimisation_method']=='emcee': [logging.info(row[-1]) for row in prev_result['med_and_spans']] logging.info('Membership distribution: {}'.format( prev_result['memb_probs'].sum(axis=0))) logging.info('Final membership:') logging.info('\n{}'.format(np.round(prev_result['memb_probs'] * 100))) logging.info('Final lnlikelihood: {}'.format(prev_score['lnlike'])) logging.info('Final lnposterior: {}'.format(prev_score['lnpost'])) logging.info('Final BIC: {}'.format(prev_score['bic'])) logging.info('#########################') logging.info('### END #################') logging.info('#########################') def calc_score(self, comps, memb_probs): """ Calculate global score of fit for comparison with future fits with different component counts Parameters ---------- :param comps: :param memb_probs: :return: TODO: Establish relevance of bg_ln_ols """ lnlike = expectmax.get_overall_lnlikelihood(self.data_dict, comps, old_memb_probs=memb_probs, # bg_ln_ols=bg_ln_ols, ) lnpost = expectmax.get_overall_lnlikelihood(self.data_dict, comps, # bg_ln_ols=bg_ln_ols, old_memb_probs=memb_probs, inc_posterior=True) bic = expectmax.calc_bic(self.data_dict, self.ncomps, lnlike, memb_probs=memb_probs, Component=self.Component) return {'bic':bic, 'lnlike':lnlike, 'lnpost':lnpost} def run_fit(self): """ Perform a fit (as described in Paper I) to a set of prepared data. Results are outputted as two dictionaries results = {'comps':best_fit, (list of components) 'med_and_spans':median and spans of model parameters, 'memb_probs': membership probability array (the standard one)} scores = {'bic': the bic, 'lnlike': log likelihood of that run, 'lnpost': log posterior of that run} """ log_message('Beginning Chronostar run', symbol='_', surround=True) # ------------------------------------------------------------ # ----- EXECUTE RUN ---------------------------------------- # ------------------------------------------------------------ if self.fit_pars['store_burnin_chains']: log_message(msg='Storing burnin chains', symbol='-') # ------------------------------------------------------------ # ----- STAGE 1: ESTABLISHING INITIAL FIT ----------- # ------------------------------------------------------------ # Handle special case of very first run # Either by fitting one component (default) or by using `init_comps` # to initialise the EM fit. # Check if not provided with init comps or membs if (self.fit_pars['init_comps'] is None) and (self.fit_pars['init_memb_probs'] is None): # NaiveFit doesn't know how to blindly intiialise runs with ncomps > 1 assert self.ncomps == 1, 'If no initialisation set, can only accept ncomp==1' # If no init conditions provided, assume all stars are members and begine # fit with 1 component. init_memb_probs = np.zeros((len(self.data_dict['means']), self.ncomps + self.fit_pars[ 'use_background'])) init_memb_probs[:, 0] = 1. # Otherwise, we must have been given an init_comps, or an init_memb_probs # to start things with else: log_message(msg='Initialising with init_comps or init_memb_probs with' '%i components'%self.ncomps, symbol='*', surround=True) pass log_message(msg='FITTING {} COMPONENT'.format(self.ncomps), symbol='*', surround=True) run_dir = self.rdir + '{}/'.format(self.ncomps) prev_result = self.run_em_unless_loadable(run_dir) prev_score = self.calc_score(prev_result['comps'], prev_result['memb_probs']) self.ncomps += 1 # ------------------------------------------------------------ # ----- STAGE 2: EXPLORE EXTRA COMPONENT BY DECOMPOSITION -- # ------------------------------------------------------------ # Calculate global score of fit for comparison with future fits with different # component counts # Begin iterative loop, each time trialing the incorporation of a new component while self.ncomps <= self.fit_pars['max_comp_count']: log_message(msg='FITTING {} COMPONENT'.format(self.ncomps), symbol='*', surround=True) all_results = [] all_scores = [] # Iteratively try subdividing each previous component # target_comp is the component we will split into two. # This will make a total of ncomps (the target comp split into 2, # plus the remaining components from prev_result['comps'] for i, target_comp in enumerate(prev_result['comps']): div_label = chr(ord('A') + i) run_dir = self.rdir + '{}/{}/'.format(self.ncomps, div_label) log_message(msg='Subdividing stage {}'.format(div_label), symbol='+', surround=True) mkpath(run_dir) self.fit_pars['init_comps'] = self.build_init_comps( prev_result['comps'], split_comp_ix=i, prev_med_and_spans=prev_result['med_and_spans'], memb_probs = prev_result['memb_probs']) result = self.run_em_unless_loadable(run_dir) all_results.append(result) score = self.calc_score(result['comps'], result['memb_probs']) all_scores.append(score) logging.info( 'Decomposition {} finished with \nBIC: {}\nlnlike: {}\n' 'lnpost: {}'.format( div_label, all_scores[-1]['bic'], all_scores[-1]['lnlike'], all_scores[-1]['lnpost'], )) # identify the best performing decomposition all_bics = [score['bic'] for score in all_scores] best_split_ix = np.nanargmin(all_bics) new_result = all_results[best_split_ix] new_score = all_scores[best_split_ix] self.iter_end_log(best_split_ix, prev_result=prev_result, new_result=new_result) # Check if the fit has improved self.log_score_comparison(new=new_score, prev=prev_score) if new_score['bic'] < prev_score['bic']: prev_score = new_score prev_result = new_result self.ncomps += 1 log_message(msg="Commencing {} component fit on {}{}".format( self.ncomps, self.ncomps - 1, chr(ord('A') + best_split_ix)), symbol='+' ) else: # WRITING THE FINAL RESULTS INTO FILES logging.info("... saving previous fit as best fit to data") self.Component.store_raw_components(self.rdir + self.final_comps_file, prev_result['comps']) np.save(self.rdir + self.final_med_and_spans_file, prev_result['med_and_spans']) np.save(self.rdir + self.final_memb_probs_file, prev_result['memb_probs']) np.save(self.rdir + 'final_likelihood_post_and_bic', prev_score) # Save components in fits file tabcomps = self.Component.convert_components_array_into_astropy_table(prev_result['comps']) if self.fit_pars['overwrite_fits']: tabcomps.write(os.path.join(self.rdir, 'final_comps_%d.fits'%len(prev_result['comps'])), overwrite=self.fit_pars['overwrite_fits']) else: filename_comps_fits_random = os.path.join(self.rdir, 'final_comps_%d_%s.fits'%(len(prev_result['comps']), str(uuid.uuid4().hex))) tabcomps.write(filename_comps_fits_random, overwrite=self.fit_pars['overwrite_fits']) # Save membership fits file try: if self.fit_pars['overwrite_fits']: tabletool.construct_an_astropy_table_with_gaia_ids_and_membership_probabilities(self.fit_pars['data_table'], prev_result['memb_probs'], prev_result['comps'], os.path.join(self.rdir, 'final_memberships_%d.fits'%len(prev_result['comps'])), get_background_overlaps=True, stellar_id_colname = self.fit_pars['stellar_id_colname'], overwrite_fits = self.fit_pars['overwrite_fits']) else: filename_memb_probs_fits_random = os.path.join(self.rdir, 'final_memberships_%d_%s.fits'%(len(prev_result['comps']), str(uuid.uuid4().hex))) tabletool.construct_an_astropy_table_with_gaia_ids_and_membership_probabilities(self.fit_pars['data_table'], prev_result['memb_probs'], prev_result['comps'], filename_memb_probs_fits_random, get_background_overlaps=True, stellar_id_colname = self.fit_pars['stellar_id_colname'], overwrite_fits = self.fit_pars['overwrite_fits']) except: logging.info("[WARNING] Couldn't print membership.fits file. Check column id.") self.log_final_log(prev_result, prev_score) break logging.info("Best fit:\n{}".format( [group.get_pars() for group in prev_result['comps']])) if self.ncomps >= self.fit_pars['max_comp_count']: log_message(msg='REACHED MAX COMP LIMIT', symbol='+', surround=True) return prev_result, prev_score
43.391111
399
0.583086
[ "MIT" ]
mikeireland/chronostar
chronostar/naivefit-bak.py
29,289
Python
from conans import ConanFile class libxbitset_conan(ConanFile): name = "libxbitset" version = "0.0.1" license = "Apache License Version 2.0" author = "Khalil Estell" url = "https://github.com/SJSU-Dev2/libxbitset" description = "Extension of std::bitset that includes multi-bit insertion and extraction and more" topics = ("bit manipulation", "bits", "hardware", "registers") exports_sources = "CMakeLists.txt", "include/*" no_copy_source = True def package(self): self.copy("*.hpp") def package_id(self): self.info.header_only()
29.7
102
0.66835
[ "Apache-2.0" ]
SJSU-Dev2/libxbitset
conanfile.py
594
Python
"""The token kinds currently recognized.""" from shivyc.tokens import TokenKind keyword_kinds = [] symbol_kinds = [] # Until function definition is ready, we define `main` as a hardcoded keyword main = TokenKind("main", keyword_kinds) bool_kw = TokenKind("_Bool", keyword_kinds) char_kw = TokenKind("char", keyword_kinds) short_kw = TokenKind("short", keyword_kinds) int_kw = TokenKind("int", keyword_kinds) long_kw = TokenKind("long", keyword_kinds) signed_kw = TokenKind("signed", keyword_kinds) unsigned_kw = TokenKind("unsigned", keyword_kinds) void_kw = TokenKind("void", keyword_kinds) return_kw = TokenKind("return", keyword_kinds) if_kw = TokenKind("if", keyword_kinds) else_kw = TokenKind("else", keyword_kinds) while_kw = TokenKind("while", keyword_kinds) for_kw = TokenKind("for", keyword_kinds) break_kw = TokenKind("break", keyword_kinds) continue_kw = TokenKind("continue", keyword_kinds) auto_kw = TokenKind("auto", keyword_kinds) static_kw = TokenKind("static", keyword_kinds) extern_kw = TokenKind("extern", keyword_kinds) struct_kw = TokenKind("struct", keyword_kinds) const_kw = TokenKind("const", keyword_kinds) plus = TokenKind("+", symbol_kinds) minus = TokenKind("-", symbol_kinds) star = TokenKind("*", symbol_kinds) slash = TokenKind("/", symbol_kinds) mod = TokenKind("%", symbol_kinds) incr = TokenKind("++", symbol_kinds) decr = TokenKind("--", symbol_kinds) equals = TokenKind("=", symbol_kinds) plusequals = TokenKind("+=", symbol_kinds) minusequals = TokenKind("-=", symbol_kinds) starequals = TokenKind("*=", symbol_kinds) divequals = TokenKind("/=", symbol_kinds) modequals = TokenKind("%=", symbol_kinds) twoequals = TokenKind("==", symbol_kinds) notequal = TokenKind("!=", symbol_kinds) bool_and = TokenKind("&&", symbol_kinds) bool_or = TokenKind("||", symbol_kinds) bool_not = TokenKind("!", symbol_kinds) lt = TokenKind("<", symbol_kinds) gt = TokenKind(">", symbol_kinds) ltoe = TokenKind("<=", symbol_kinds) gtoe = TokenKind(">=", symbol_kinds) amp = TokenKind("&", symbol_kinds) pound = TokenKind("#", symbol_kinds) dquote = TokenKind('"', symbol_kinds) squote = TokenKind("'", symbol_kinds) open_paren = TokenKind("(", symbol_kinds) close_paren = TokenKind(")", symbol_kinds) open_brack = TokenKind("{", symbol_kinds) close_brack = TokenKind("}", symbol_kinds) open_sq_brack = TokenKind("[", symbol_kinds) close_sq_brack = TokenKind("]", symbol_kinds) comma = TokenKind(",", symbol_kinds) semicolon = TokenKind(";", symbol_kinds) dot = TokenKind(".", symbol_kinds) arrow = TokenKind("->", symbol_kinds) identifier = TokenKind() number = TokenKind() string = TokenKind() char_string = TokenKind() include_file = TokenKind()
33.873418
77
0.7358
[ "MIT" ]
TBladen/ShivyC
shivyc/token_kinds.py
2,676
Python
# coding: utf-8 def get_dict_output_dir_to_parameters_ini_dump_filename(): import os dir_ = '.' output_dir_list = sorted([output_dir for output_dir in os.listdir(dir_) if output_dir.startswith('output')]) ret = {} for output_dir in output_dir_list: with open(os.path.join(output_dir, 'parameters_ini_filename')) as f: parameters_ini_filename = list(f)[0].rstrip() ret[output_dir] = parameters_ini_filename + '.dump' return ret dict_output_dir_to_parameters_ini_dump = get_dict_output_dir_to_parameters_ini_dump_filename() import finess.util import finess.params.util import finess.dim2 import generate_iniparams # q(:, :, i - 1): # * i = 1: mass # * i = 2: momentum-1 # * i = 3: momentum-2 # * i = 4: momentum-3 # * i = 5: energy # * i = 6: B1 # * i = 7: B2 # * i = 8: B3 import finess.viz.dim2 def L1_error_list(output_dir_list): global debug_B1_abs_error global debug_B2_abs_error global debug_B_perp, debug_B3, debug_u_perp, debug_u3 global debug_B_perp_rel_error, debug_B_perp_abs_error, debug_B_perp_exact global debug_u_perp_rel_error, debug_u_perp_abs_error, debug_u_perp_exact global debug_B3_rel_error, debug_B3_abs_error, debug_B3_exact global debug_u3_rel_error, debug_u3_abs_error, debug_u3_exact global debug_B3_rel_error_100, debug_u3_rel_error_100 global debug_tfinal global debug_B_plane_perp global debug_B_plane_perp_abs_error import finess.viz.dim2 error_list = [] for output_dir in output_dir_list: parameters_ini_dump_filename = dict_output_dir_to_parameters_ini_dump[output_dir] import os.path params = finess.params.util.read_params(os.path.join(output_dir, parameters_ini_dump_filename), generate_iniparams.parameter_list) xlow = params['grid', 'xlow'] xhigh = params['grid', 'xhigh'] ylow = params['grid', 'ylow'] yhigh = params['grid', 'yhigh'] mx = params['grid', 'mx'] my = params['grid', 'my'] dx = (xhigh - xlow) / float(mx) dy = (yhigh - ylow) / float(my) nout = params['finess', 'nout'] tfinal, q, aux = finess.dim2.read_qa(params, nout) debug_tfinal = tfinal print "tfinal: ", tfinal from numpy import sin, cos, sum, abs, pi, max angle = params['initial', 'angle'] X, Y = finess.viz.dim2.meshgrid(params) u3_exact = 0.1 * cos(2*pi * (X*cos(angle) + Y*sin(angle) + tfinal)) B3_exact = u3_exact u_perp_exact = 0.1 * sin(2*pi * (X * cos(angle) + Y * sin(angle) + tfinal) ) B_perp_exact = u_perp_exact rho_exact = 1.0 u1_exact = -u_perp_exact * sin(angle) u2_exact = u_perp_exact * cos(angle) B1_exact = 1.0 * cos(angle) - B_perp_exact * sin(angle) B2_exact = 1.0 * sin(angle) + B_perp_exact * cos(angle) rho = q[:, :, 1 - 1] u1 = q[:, :, 2 - 1] / q[:, :, 1 - 1] u2 = q[:, :, 3 - 1] / q[:, :, 1 - 1] u3 = q[:, :, 4 - 1] / q[:, :, 1 - 1] B1 = q[:, :, 6 - 1] B2 = q[:, :, 7 - 1] B3 = q[:, :, 8 - 1] u_perp = -u1 * sin(angle) + u2 * cos(angle) B_perp = -B1 * sin(angle) + B2 * cos(angle) L1_error_u_perp = sum(abs(u_perp - u_perp_exact)) L1_u_perp_exact = sum(abs(u_perp_exact)) # print "u_perp error: ", L1_error_u_perp / L1_u_perp_exact L1_error_u1 = sum(abs(u1 - u1_exact)) L1_u1_exact = sum(abs(u1_exact)) L1_error_u2 = sum(abs(u2 - u2_exact)) L1_u2_exact = sum(abs(u2_exact)) L1_error_u3 = sum(abs(u3 - u3_exact)) L1_u3_exact = sum(abs(u3_exact)) # print "u3 error: ", L1_error_u3 / L1_u3_exact L1_error_B_perp = sum(abs(B_perp - B_perp_exact)) L1_B_perp_exact = sum(abs(B_perp_exact)) # print "B_perp error: ", L1_error_B_perp / L1_B_perp_exact debug_B1_abs_error = abs(B1 - B1_exact) debug_B2_abs_error = abs(B2 - B2_exact) debug_B_perp_exact = B_perp_exact debug_B_perp_abs_error = abs(B_perp - B_perp_exact) debug_B_perp_rel_error = debug_B_perp_abs_error / abs(B_perp_exact) debug_u_perp_exact = u_perp_exact debug_u_perp_abs_error = abs(u_perp - u_perp_exact) debug_u_perp_rel_error = debug_u_perp_abs_error / abs(u_perp_exact) debug_B3_exact = B3_exact debug_B3_abs_error = abs(B3 - B3_exact) debug_B3_rel_error = debug_B3_abs_error / abs(B3_exact) debug_B3_rel_error_100 = debug_B3_rel_error * 100 debug_u3_exact = u3_exact debug_u3_abs_error = abs(u3 - u3_exact) debug_u3_rel_error = debug_u3_abs_error / abs(u3_exact) debug_u3_rel_error_100 = 100 * debug_u3_rel_error debug_B3 = B3 debug_B_perp = B_perp debug_B_plane_perp = ((B3 / 0.1)**2 + (B_perp / 0.1)**2) * 0.1 debug_B_plane_perp_abs_error = abs(debug_B_plane_perp - 0.1) L1_error_B3 = sum(abs(B3 - B3_exact)) L1_B3_exact = sum(abs(B3_exact)) # print "B3 error: ", L1_error_B3 / L1_B3_exact # delta = 0.25 * (L1_error_u_perp / L1_u_perp_exact + L1_error_u3 / L1_u3_exact + L1_error_B_perp / L1_B_perp_exact + L1_error_B3 / L1_B3_exact) # delta = 0.5 * (L1_error_B_perp / L1_B_perp_exact + L1_error_B3 / L1_B3_exact) # delta = 0.5 * (L1_error_u_perp / L1_u_perp_exact + L1_error_u3 / L1_u3_exact) #delta = max(abs(u3 - u3_exact)) #delta = max(abs(u1 - u1_exact)) #delta = max(abs(u2 - u2_exact)) #delta = max(abs(u3 - u3_exact)) #delta = max(abs(B1 - B1_exact)) #delta = max(abs(B2 - B2_exact)) #delta = max(abs(B3 - B3_exact)) delta = max(abs(rho - rho_exact)) #delta = L1_error_u1 / L1_u1_exact error_list.append(delta) return error_list def log2_adjacent_ratio(error_list): order_list = [] from numpy import log2 for i in range(len(error_list) - 1): order_list.append(log2(error_list[i] / error_list[i+1])) return order_list def L1_A_error_list(output_dir_list): from numpy import max global debug_A_abs_error import finess.viz.dim2 error_list = [] for output_dir in output_dir_list: parameters_ini_dump_filename = dict_output_dir_to_parameters_ini_dump[output_dir] import os.path params = finess.params.util.read_params(os.path.join(output_dir, parameters_ini_dump_filename), generate_iniparams.parameter_list) xlow = params['grid', 'xlow'] xhigh = params['grid', 'xhigh'] ylow = params['grid', 'ylow'] yhigh = params['grid', 'yhigh'] mx = params['grid', 'mx'] my = params['grid', 'my'] dx = (xhigh - xlow) / float(mx) dy = (yhigh - ylow) / float(my) nout = params['finess', 'nout'] tfinal, q, aux = finess.dim2.read_qa(params, nout) A = aux[:, :, 1 - 1] from numpy import allclose, sin, cos, sum, abs, pi angle = params['initial', 'angle'] X, Y = finess.viz.dim2.meshgrid(params) A_exact = -X * sin(angle) + Y * cos(angle) + 0.1 / (2 * pi) * cos(2*pi * (X*cos(angle) + Y*sin(angle) + tfinal)) debug_A_abs_error = abs(A - A_exact) L1_A_exact = sum(abs(A_exact)) L1_A_error = sum(abs(A - A_exact)) #delta = L1_A_error / L1_A_exact delta = max(abs(A - A_exact)) error_list.append(delta) return error_list #output_dir_list = ['output_1deg_%(i)02d' % {'i': i} for i in range(6)] #error_list = L1_error_list(output_dir_list) #order_list = log2_adjacent_ratio(error_list) #print order_list # # #output_dir_list = ['output_30deg_%(i)02d' % {'i': i} for i in range(6)] #error_list = L1_error_list(output_dir_list) #order_list = log2_adjacent_ratio(error_list) #print order_list # # ## In[140]: output_dir_list = ['output_30deg_%(i)02d' % {'i': i} for i in [0, 1, 2, 3, 4]] error_list = L1_error_list(output_dir_list) order_list = log2_adjacent_ratio(error_list) print 'rho' print order_list print error_list A_error_list = L1_A_error_list(output_dir_list) A_order_list = log2_adjacent_ratio(A_error_list) print 'A:' print A_order_list print A_error_list
34.271255
151
0.623036
[ "BSD-3-Clause" ]
dcseal/finess
apps/2d/mhd/rotated_alfven/convergence/convergence_study.py
8,465
Python
import logging import torch.nn as nn from . import arch as archs logger = logging.getLogger() def build_model(cfg_model): if cfg_model.get('pretrained', False): info = "=> building pre-trained model {}".format(cfg_model['arch']) model = archs.__dict__[cfg_model.arch](pretrained=True) in_features = model.fc.in_features model.fc = nn.Linear(in_features, cfg_model.num_classes) else: info = "=> building model {}".format(cfg_model.arch) model = archs.__dict__[cfg_model.arch](num_classes=cfg_model.num_classes) logger.info(info) return model
29.047619
81
0.685246
[ "Apache-2.0" ]
ChaseMonsterAway/vedacls
vedacls/models/builder.py
610
Python
from __future__ import print_function import click from openelex.base.cache import StateCache from .utils import default_state_options, print_files @click.command(name="cache.files", help="List files in state cache diretory") @default_state_options def files(state, datefilter=''): """List files in state cache diretory State is required. Optionally provide a date filter to limit results. NOTE: Cache must be populated in order to load data. """ cache = StateCache(state) files = cache.list_dir(datefilter) if files: print_files(files) else: msg = "No files found" if datefilter: msg += " using date filter: %s" % datefilter print(msg) @click.command(name='cache.clear', help="Delete files in state cache diretory") @default_state_options def clear(state, datefilter=''): """Delete files in state cache diretory State is required. Optionally provide a date filter to limit results. """ cache = StateCache(state) cache.clear(datefilter) def cache_discrepancy(self): pass
25.372093
79
0.695692
[ "MIT" ]
ColCarroll/openelections-core
openelex/tasks/cache.py
1,091
Python
from tzscan.tzscan_reward_calculator import test_tzscan_reward_calculator if __name__ == '__main__': test_tzscan_reward_calculator()
34.25
73
0.846715
[ "MIT" ]
Twente-Mining/tezos-reward-distributor
src/Test.py
137
Python
import os import sys # os.system('bash ./set_env.sh') PARALLEL = 1 # assuming a quad-core machine ATTRIBUTE = "organic_figure" os.environ['FONDUERHOME'] = '/home/xiuyuan/private/839/fonduer_new/839_fonduer/' os.environ['FONDUERDBNAME'] = ATTRIBUTE os.environ['SNORKELDB'] = 'postgres://postgres:112233@localhost:5432/' + os.environ['FONDUERDBNAME'] from fonduer import SnorkelSession session = SnorkelSession() from fonduer import candidate_subclass Org_Fig = candidate_subclass('Org_Fig', ['product','figure']) from fonduer import HTMLPreprocessor, OmniParser docs_path = os.environ['FONDUERHOME'] + 'tutorials/organic_synthesis_figures/data/html/' pdf_path = os.environ['FONDUERHOME'] + 'tutorials/organic_synthesis_figures/data/pdf/' max_docs = float(10) doc_preprocessor = HTMLPreprocessor(docs_path, max_docs=max_docs) corpus_parser = OmniParser(structural=True, lingual=True, visual=True, pdf_path=pdf_path, # flatten=['sup', 'sub', 'small'], # ignore=['italic', 'bold'], blacklist=['style', 'script', 'meta', 'noscript']) corpus_parser.apply(doc_preprocessor, parallelism=PARALLEL) from fonduer import Document # divide train/dev/test docs = session.query(Document).order_by(Document.name).all() ld = len(docs) train_docs = set() dev_docs = set() test_docs = set() splits = (1.0, 0.9) data = [(doc.name, doc) for doc in docs] data.sort(key=lambda x: x[0]) for i, (doc_name, doc) in enumerate(data): if i < splits[0] * ld: train_docs.add(doc) elif i < splits[1] * ld: dev_docs.add(doc) else: test_docs.add(doc) from pprint import pprint pprint([x.name for x in train_docs]) from fonduer.snorkel.matchers import RegexMatchSpan, RegexMatchSplitEach,\ DictionaryMatch, LambdaFunctionMatcher, Intersect, Union prefix_rgx = '(\(?((mono|bi|di|tri|tetra|hex|hept|oct|iso|a?cycl|poly).+)?(meth|carb|benz|fluoro|chloro|bromo|iodo|hydro(xy)?|amino|alk).+)' suffix_rgx = '(.+(ane|yl|adiene|atriene|yne|anol|anediol|anetriol|anone|acid|amine|xide|dine|(or?mone)|thiol)\)?)' dash_rgx = '((\w+\-|\(?)([a-z|\d]\'?\-)\w*)' comma_dash_rgx = '((\w+\-|\(?)([a-z|\d]\'?,[a-z|\d]\'?\-)\w*)' inorganic_rgx = '(([A-Z][a-z]?\d*\+?){2,})' org_rgx = '|'.join([prefix_rgx, suffix_rgx, dash_rgx, comma_dash_rgx, inorganic_rgx]) rgx_matcher = RegexMatchSplitEach(rgx = org_rgx, longest_match_only=False, ignore_case=False) blacklist = ['CAS', 'PDF', 'RSC', 'SAR', 'TEM'] prod_blacklist_lambda_matcher = LambdaFunctionMatcher(func=lambda x: x.text not in blacklist, ignore_case=False) blacklist_rgx = ['methods?.?'] prod_blacklist_rgx_lambda_matcher = LambdaFunctionMatcher( func=lambda x: all([re.match(r, x.text) is None for r in blacklist_rgx]), ignore_case=False) prod_matcher = Intersect(rgx_matcher, prod_blacklist_lambda_matcher) from fonduer import CandidateExtractor from fonduer.lf_helpers import * import re def candidate_filter(c): (organic, figure) = c if same_file(organic, figure): if mentionsFig(organic, figure) or mentionsOrg(figure, organic): return True from tutorials.organic_synthesis_figures.organic_spaces import OmniNgramsProd prod_ngrams = OmniNgramsProd(parts_by_doc=None, n_max=3) from fonduer.matchers import LambdaFunctionFigureMatcher import time def white_black_list_matcher(fig): # print("enter filter 1") # enter_time = time.time() white_list = ['synthesis', 'plausible'] black_list = ['spectra', 'x-ray', 'copyright', 'structur', 'application'] fig_desc = fig.figure.description.lower() in_white = in_black = False if any(fig_desc.find(v) >= 0 for v in white_list): in_white = True if any(fig_desc.find(v) >= 0 for v in black_list): in_black = True if in_black and (not in_white): # print('Filtered by f1!') return False # # print("{} has passed filter 1 in {} seconds!".format(fig.figure.name, time.time()-enter_time)) # elif in_black: # desc_wordlist = fig.figure.description.lower().split(' ') # if any(re.search(org_rgx, w) for w in desc_wordlist): return True # if not fig.figure.text == '': # orc_wordlist = fig.figure.text.lower().split('\n') # orc_wordlist = [w for w in orc_wordlist if not w == ''] # if any(re.search(org_rgx, w) for w in orc_wordlist): return True # # print('Filtered by f2! Removed!') # print(fig.figure.name + " " + fig.figure.description) # return False return True def contain_organic_matcher(fig): # print("{} has failed filter 1 in {} seconds!".format(fig.figure.name, time.time() - enter_time)) # filter 2 desc_wordlist = fig.figure.description.lower().split(' ') if any(re.search(org_rgx, w) for w in desc_wordlist): return True if not fig.figure.text == '': orc_wordlist = fig.figure.text.lower().split('\n') orc_wordlist = [w for w in orc_wordlist if not w == ''] if any(re.search(org_rgx, w) for w in orc_wordlist): return True # print('Filtered by f2! Removed!') # print(fig.figure.name + " " + fig.figure.description) return False fig_matcher1 = LambdaFunctionFigureMatcher(func=white_black_list_matcher) fig_matcher2 = LambdaFunctionFigureMatcher(func=contain_organic_matcher) fig_matcher = Union(fig_matcher1, fig_matcher2) # fig_matcher = LambdaFunctionFigureMatcher(func=white_black_list_matcher) from fonduer.candidates import OmniDetailedFigures figs = OmniDetailedFigures() # extract candidate candidate_extractor = CandidateExtractor(Org_Fig, [prod_ngrams, figs], [prod_matcher, fig_matcher], candidate_filter=candidate_filter) candidate_extractor.apply(train_docs, split=0, parallelism=PARALLEL) train_cands = session.query(Org_Fig).filter(Org_Fig.split == 0).all() print("Number of candidates:", len(train_cands)) # extract feature from fonduer import BatchFeatureAnnotator from fonduer.features.features import get_organic_image_feats featurizer = BatchFeatureAnnotator(Org_Fig, f=get_organic_image_feats) F_train = featurizer.apply(split=0, replace_key_set=True, parallelism=PARALLEL) F_train = featurizer.load_matrix(split=0) # load gold label from tutorials.organic_synthesis_figures.organic_utils import load_organic_labels gold_file = os.environ['FONDUERHOME'] + 'tutorials/organic_synthesis_figures/data/organic_gold.csv' load_organic_labels(session, Org_Fig, gold_file, ATTRIBUTE ,annotator_name='gold') # labeling function from fonduer.lf_helpers import * from fuzzywuzzy import fuzz import re def LF_fig_name_match(c): args = c.get_contexts() if len(args) != 2: raise NotImplementedError("Only handles binary candidates currently") product, img = args if img.name == '': return -1 else: return 0 def LF_text_desc_match(c): args = c.get_contexts() if len(args) != 2: raise NotImplementedError("Only handles binary candidates currently") product, img = args if fuzz.partial_ratio(product.text, img.description) >= 70: return 1 elif fuzz.partial_ratio(product.text, img.description) <= 40: return -1 else: return 0 def LF_ocr_text_match(c): args = c.get_contexts() if len(args) != 2: raise NotImplementedError("Only handles binary candidates currently") product, img = args ocr_wordlist = img.text.lower().split('\n') ocr_wordlist = [w for w in ocr_wordlist if not w == ''] for w in ocr_wordlist: if fuzz.partial_ratio(product.text, w) >= 90: return 1 return 0 def LF_text_lenth_match(c): args = c.get_contexts() if len(args) != 2: raise NotImplementedError("Only handles binary candidates currently") product, img = args return -1 if len(product.text) < 5 else 0 def LF_match_keywords(c): args = c.get_contexts() if len(args) != 2: raise NotImplementedError("Only handles binary candidates currently") organic, figure, = args keywords = ['synthesis', 'reaction', 'produce', 'yield', 'formation', 'approach'] return 1 if both_contain_keywords(organic, figure, keywords) else 0 def LF_match_page(c): args = c.get_contexts() if len(args) != 2: raise NotImplementedError("Only handles binary candidates currently") organic, figure, = args return 1 if is_same_org_fig_page(organic, figure) else 0 def LF_page_not_match(c): args = c.get_contexts() if len(args) != 2: raise NotImplementedError("Only handles binary candidates currently") organic, figure, = args if abs(max(organic.sentence.page) - figure.page) > 1 or abs(min(organic.sentence.page) - figure.page) > 1: return -1 else: return 0 def LF_pos_near(c): args = c.get_contexts() if len(args) != 2: raise NotImplementedError("Only handles binary candidates currently") organic, figure, = args return 1 if org_pos_near_fig(organic, figure) else 0 def LF_organic_compound(c): args = c.get_contexts() organic = args[0] result = re.search(org_rgx, organic.text) return 1 if result else 0 org_fig_lfs = [ LF_fig_name_match, LF_text_desc_match, LF_ocr_text_match, LF_text_lenth_match, LF_match_keywords, LF_match_page, LF_page_not_match, LF_pos_near, LF_organic_compound ] from fonduer import BatchLabelAnnotator labeler = BatchLabelAnnotator(Org_Fig, lfs = org_fig_lfs) L_train = labeler.apply(split=0, clear=True, parallelism=PARALLEL) print(L_train.shape) L_train.get_candidate(session, 0) from fonduer import GenerativeModel gen_model = GenerativeModel() gen_model.train(L_train, epochs=500, decay=0.9, step_size=0.001/L_train.shape[0], reg_param=0) train_marginals = gen_model.marginals(L_train) print(gen_model.weights.lf_accuracy) from fonduer import SparseLogisticRegression from fonduer import BatchFeatureAnnotator from fonduer.features.features import get_organic_image_feats ### load feature # featurizer = BatchFeatureAnnotator(Org_Fig, f=get_organic_image_feats) # F_train = featurizer.load_matrix(split=0) disc_model = SparseLogisticRegression() disc_model.train(F_train, train_marginals, n_epochs=200, lr=0.001) #Current we only predict on the training set test_candidates = [F_train.get_candidate(session, i) for i in range(F_train.shape[0])] test_score = disc_model.predictions(F_train) true_pred = [test_candidates[_] for _ in np.nditer(np.where(test_score > 0))]
33.625397
140
0.703078
[ "Apache-2.0" ]
leewaymay/839_fonduer
tutorials/organic_synthesis_figures/parse_organic_figures_xiuyuan.py
10,592
Python
"""Support for local control of entities by emulating a Philips Hue bridge.""" import logging from aiohttp import web import voluptuous as vol from homeassistant import util from homeassistant.const import EVENT_HOMEASSISTANT_START, EVENT_HOMEASSISTANT_STOP from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers.deprecation import get_deprecated import homeassistant.helpers.config_validation as cv from homeassistant.util.json import load_json, save_json from homeassistant.components.http import real_ip from .hue_api import ( HueUsernameView, HueAllLightsStateView, HueOneLightStateView, HueOneLightChangeView, HueGroupView, HueAllGroupsStateView, ) from .upnp import DescriptionXmlView, UPNPResponderThread DOMAIN = "emulated_hue" _LOGGER = logging.getLogger(__name__) NUMBERS_FILE = "emulated_hue_ids.json" CONF_ADVERTISE_IP = "advertise_ip" CONF_ADVERTISE_PORT = "advertise_port" CONF_ENTITIES = "entities" CONF_ENTITY_HIDDEN = "hidden" CONF_ENTITY_NAME = "name" CONF_EXPOSE_BY_DEFAULT = "expose_by_default" CONF_EXPOSED_DOMAINS = "exposed_domains" CONF_HOST_IP = "host_ip" CONF_LISTEN_PORT = "listen_port" CONF_OFF_MAPS_TO_ON_DOMAINS = "off_maps_to_on_domains" CONF_TYPE = "type" CONF_UPNP_BIND_MULTICAST = "upnp_bind_multicast" TYPE_ALEXA = "alexa" TYPE_GOOGLE = "google_home" DEFAULT_LISTEN_PORT = 8300 DEFAULT_UPNP_BIND_MULTICAST = True DEFAULT_OFF_MAPS_TO_ON_DOMAINS = ["script", "scene"] DEFAULT_EXPOSE_BY_DEFAULT = True DEFAULT_EXPOSED_DOMAINS = [ "switch", "light", "group", "input_boolean", "media_player", "fan", ] DEFAULT_TYPE = TYPE_GOOGLE CONFIG_ENTITY_SCHEMA = vol.Schema( { vol.Optional(CONF_ENTITY_NAME): cv.string, vol.Optional(CONF_ENTITY_HIDDEN): cv.boolean, } ) CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Optional(CONF_HOST_IP): cv.string, vol.Optional(CONF_LISTEN_PORT, default=DEFAULT_LISTEN_PORT): cv.port, vol.Optional(CONF_ADVERTISE_IP): cv.string, vol.Optional(CONF_ADVERTISE_PORT): cv.port, vol.Optional(CONF_UPNP_BIND_MULTICAST): cv.boolean, vol.Optional(CONF_OFF_MAPS_TO_ON_DOMAINS): cv.ensure_list, vol.Optional(CONF_EXPOSE_BY_DEFAULT): cv.boolean, vol.Optional(CONF_EXPOSED_DOMAINS): cv.ensure_list, vol.Optional(CONF_TYPE, default=DEFAULT_TYPE): vol.Any( TYPE_ALEXA, TYPE_GOOGLE ), vol.Optional(CONF_ENTITIES): vol.Schema( {cv.entity_id: CONFIG_ENTITY_SCHEMA} ), } ) }, extra=vol.ALLOW_EXTRA, ) ATTR_EMULATED_HUE = "emulated_hue" ATTR_EMULATED_HUE_NAME = "emulated_hue_name" ATTR_EMULATED_HUE_HIDDEN = "emulated_hue_hidden" async def async_setup(hass, yaml_config): """Activate the emulated_hue component.""" config = Config(hass, yaml_config.get(DOMAIN, {})) app = web.Application() app["hass"] = hass real_ip.setup_real_ip(app, False, []) # We misunderstood the startup signal. You're not allowed to change # anything during startup. Temp workaround. # pylint: disable=protected-access app._on_startup.freeze() await app.startup() runner = None site = None DescriptionXmlView(config).register(app, app.router) HueUsernameView().register(app, app.router) HueAllLightsStateView(config).register(app, app.router) HueOneLightStateView(config).register(app, app.router) HueOneLightChangeView(config).register(app, app.router) HueAllGroupsStateView(config).register(app, app.router) HueGroupView(config).register(app, app.router) upnp_listener = UPNPResponderThread( config.host_ip_addr, config.listen_port, config.upnp_bind_multicast, config.advertise_ip, config.advertise_port, ) async def stop_emulated_hue_bridge(event): """Stop the emulated hue bridge.""" upnp_listener.stop() if site: await site.stop() if runner: await runner.cleanup() async def start_emulated_hue_bridge(event): """Start the emulated hue bridge.""" upnp_listener.start() nonlocal site nonlocal runner runner = web.AppRunner(app) await runner.setup() site = web.TCPSite(runner, config.host_ip_addr, config.listen_port) try: await site.start() except OSError as error: _LOGGER.error( "Failed to create HTTP server at port %d: %s", config.listen_port, error ) else: hass.bus.async_listen_once( EVENT_HOMEASSISTANT_STOP, stop_emulated_hue_bridge ) hass.bus.async_listen_once(EVENT_HOMEASSISTANT_START, start_emulated_hue_bridge) return True class Config: """Hold configuration variables for the emulated hue bridge.""" def __init__(self, hass, conf): """Initialize the instance.""" self.hass = hass self.type = conf.get(CONF_TYPE) self.numbers = None self.cached_states = {} if self.type == TYPE_ALEXA: _LOGGER.warning( "Emulated Hue running in legacy mode because type has been " "specified. More info at https://goo.gl/M6tgz8" ) # Get the IP address that will be passed to the Echo during discovery self.host_ip_addr = conf.get(CONF_HOST_IP) if self.host_ip_addr is None: self.host_ip_addr = util.get_local_ip() _LOGGER.info( "Listen IP address not specified, auto-detected address is %s", self.host_ip_addr, ) # Get the port that the Hue bridge will listen on self.listen_port = conf.get(CONF_LISTEN_PORT) if not isinstance(self.listen_port, int): self.listen_port = DEFAULT_LISTEN_PORT _LOGGER.info( "Listen port not specified, defaulting to %s", self.listen_port ) # Get whether or not UPNP binds to multicast address (239.255.255.250) # or to the unicast address (host_ip_addr) self.upnp_bind_multicast = conf.get( CONF_UPNP_BIND_MULTICAST, DEFAULT_UPNP_BIND_MULTICAST ) # Get domains that cause both "on" and "off" commands to map to "on" # This is primarily useful for things like scenes or scripts, which # don't really have a concept of being off self.off_maps_to_on_domains = conf.get(CONF_OFF_MAPS_TO_ON_DOMAINS) if not isinstance(self.off_maps_to_on_domains, list): self.off_maps_to_on_domains = DEFAULT_OFF_MAPS_TO_ON_DOMAINS # Get whether or not entities should be exposed by default, or if only # explicitly marked ones will be exposed self.expose_by_default = conf.get( CONF_EXPOSE_BY_DEFAULT, DEFAULT_EXPOSE_BY_DEFAULT ) # Get domains that are exposed by default when expose_by_default is # True self.exposed_domains = conf.get(CONF_EXPOSED_DOMAINS, DEFAULT_EXPOSED_DOMAINS) # Calculated effective advertised IP and port for network isolation self.advertise_ip = conf.get(CONF_ADVERTISE_IP) or self.host_ip_addr self.advertise_port = conf.get(CONF_ADVERTISE_PORT) or self.listen_port self.entities = conf.get(CONF_ENTITIES, {}) def entity_id_to_number(self, entity_id): """Get a unique number for the entity id.""" if self.type == TYPE_ALEXA: return entity_id if self.numbers is None: self.numbers = _load_json(self.hass.config.path(NUMBERS_FILE)) # Google Home for number, ent_id in self.numbers.items(): if entity_id == ent_id: return number number = "1" if self.numbers: number = str(max(int(k) for k in self.numbers) + 1) self.numbers[number] = entity_id save_json(self.hass.config.path(NUMBERS_FILE), self.numbers) return number def number_to_entity_id(self, number): """Convert unique number to entity id.""" if self.type == TYPE_ALEXA: return number if self.numbers is None: self.numbers = _load_json(self.hass.config.path(NUMBERS_FILE)) # Google Home assert isinstance(number, str) return self.numbers.get(number) def get_entity_name(self, entity): """Get the name of an entity.""" if ( entity.entity_id in self.entities and CONF_ENTITY_NAME in self.entities[entity.entity_id] ): return self.entities[entity.entity_id][CONF_ENTITY_NAME] return entity.attributes.get(ATTR_EMULATED_HUE_NAME, entity.name) def is_entity_exposed(self, entity): """Determine if an entity should be exposed on the emulated bridge. Async friendly. """ if entity.attributes.get("view") is not None: # Ignore entities that are views return False domain = entity.domain.lower() explicit_expose = entity.attributes.get(ATTR_EMULATED_HUE, None) explicit_hidden = entity.attributes.get(ATTR_EMULATED_HUE_HIDDEN, None) if ( entity.entity_id in self.entities and CONF_ENTITY_HIDDEN in self.entities[entity.entity_id] ): explicit_hidden = self.entities[entity.entity_id][CONF_ENTITY_HIDDEN] if explicit_expose is True or explicit_hidden is False: expose = True elif explicit_expose is False or explicit_hidden is True: expose = False else: expose = None get_deprecated( entity.attributes, ATTR_EMULATED_HUE_HIDDEN, ATTR_EMULATED_HUE, None ) domain_exposed_by_default = ( self.expose_by_default and domain in self.exposed_domains ) # Expose an entity if the entity's domain is exposed by default and # the configuration doesn't explicitly exclude it from being # exposed, or if the entity is explicitly exposed is_default_exposed = domain_exposed_by_default and expose is not False return is_default_exposed or expose def _load_json(filename): """Wrapper, because we actually want to handle invalid json.""" try: return load_json(filename) except HomeAssistantError: pass return {}
33.432177
88
0.663144
[ "Apache-2.0" ]
0x00-0xFF/home-assistant
homeassistant/components/emulated_hue/__init__.py
10,598
Python
# coding: utf-8 """ ESMInterfaceTypeData.py The Clear BSD License Copyright (c) – 2016, NetApp, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of NetApp, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from pprint import pformat from six import iteritems class ESMInterfaceTypeData(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ ESMInterfaceTypeData - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'io_interface_type': 'str', # (required parameter) 'port_list': 'PortList' } self.attribute_map = { 'io_interface_type': 'ioInterfaceType', # (required parameter) 'port_list': 'portList' } self._io_interface_type = None self._port_list = None @property def io_interface_type(self): """ Gets the io_interface_type of this ESMInterfaceTypeData. This enumeration defines the different I/O interface types that may be reported as part of the configuration information associated with a controller. :return: The io_interface_type of this ESMInterfaceTypeData. :rtype: str :required/optional: required """ return self._io_interface_type @io_interface_type.setter def io_interface_type(self, io_interface_type): """ Sets the io_interface_type of this ESMInterfaceTypeData. This enumeration defines the different I/O interface types that may be reported as part of the configuration information associated with a controller. :param io_interface_type: The io_interface_type of this ESMInterfaceTypeData. :type: str """ allowed_values = ["notImplemented", "scsi", "fc", "sata", "sas", "iscsi", "ib", "fcoe", "nvmeof", "__UNDEFINED"] if io_interface_type not in allowed_values: raise ValueError( "Invalid value for `io_interface_type`, must be one of {0}" .format(allowed_values) ) self._io_interface_type = io_interface_type @property def port_list(self): """ Gets the port_list of this ESMInterfaceTypeData. A list of detailed information for each port. :return: The port_list of this ESMInterfaceTypeData. :rtype: PortList :required/optional: optional """ return self._port_list @port_list.setter def port_list(self, port_list): """ Sets the port_list of this ESMInterfaceTypeData. A list of detailed information for each port. :param port_list: The port_list of this ESMInterfaceTypeData. :type: PortList """ self._port_list = port_list def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ if self is None: return None return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if self is None or other is None: return None return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
38.506329
844
0.640368
[ "BSD-3-Clause-Clear" ]
NetApp/santricity-webapi-pythonsdk
netapp/santricity/models/symbol/esm_interface_type_data.py
6,086
Python
#!/usr/bin/python3 # # Copyright (C) 2011 Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Script for testing lock performance""" import os import sys import time import optparse import threading import resource from ganeti import locking def ParseOptions(): """Parses the command line options. In case of command line errors, it will show the usage and exit the program. @return: the options in a tuple """ parser = optparse.OptionParser() parser.add_option("-t", dest="thread_count", default=1, type="int", help="Number of threads", metavar="NUM") parser.add_option("-d", dest="duration", default=5, type="float", help="Duration", metavar="SECS") (opts, args) = parser.parse_args() if opts.thread_count < 1: parser.error("Number of threads must be at least 1") return (opts, args) class State(object): def __init__(self, thread_count): """Initializes this class. """ self.verify = [0 for _ in range(thread_count)] self.counts = [0 for _ in range(thread_count)] self.total_count = 0 def _Counter(lock, state, me): """Thread function for acquiring locks. """ counts = state.counts verify = state.verify while True: lock.acquire() try: verify[me] = 1 counts[me] += 1 state.total_count += 1 if state.total_count % 1000 == 0: sys.stdout.write(" %8d\r" % state.total_count) sys.stdout.flush() if sum(verify) != 1: print("Inconsistent state!") os._exit(1) # pylint: disable=W0212 verify[me] = 0 finally: lock.release() def main(): (opts, _) = ParseOptions() lock = locking.SharedLock("TestLock") state = State(opts.thread_count) lock.acquire(shared=0) try: for i in range(opts.thread_count): t = threading.Thread(target=_Counter, args=(lock, state, i)) t.setDaemon(True) t.start() start = time.clock() finally: lock.release() while True: if (time.clock() - start) > opts.duration: break time.sleep(0.1) # Make sure we get a consistent view lock.acquire(shared=0) lock_cputime = time.clock() - start res = resource.getrusage(resource.RUSAGE_SELF) print("Total number of acquisitions: %s" % state.total_count) print("Per-thread acquisitions:") for (i, count) in enumerate(state.counts): print(" Thread %s: %d (%0.1f%%)" % (i, count, (100.0 * count / state.total_count))) print("Benchmark CPU time: %0.3fs" % lock_cputime) print("Average time per lock acquisition: %0.5fms" % (1000.0 * lock_cputime / state.total_count)) print("Process:") print(" User time: %0.3fs" % res.ru_utime) print(" System time: %0.3fs" % res.ru_stime) print(" Total time: %0.3fs" % (res.ru_utime + res.ru_stime)) # Exit directly without attempting to clean up threads os._exit(0) # pylint: disable=W0212 if __name__ == "__main__": main()
27.180645
76
0.68431
[ "BSD-2-Clause" ]
RegioHelden/ganeti
test/py/lockperf.py
4,213
Python
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from ecl.compute import compute_service from ecl.compute.v2 import metadata from ecl import resource2 class Image(resource2.Resource, metadata.MetadataMixin): resource_key = 'image' resources_key = 'images' base_path = '/images' service = compute_service.ComputeService() # capabilities allow_get = True allow_delete = True allow_list = True _query_mapping = resource2.QueryParameters("server", "name", "status", "type", min_disk="minDisk", min_ram="minRam", changes_since="changes-since") # Properties #: Links pertaining to this image. This is a list of dictionaries, #: each including keys ``href`` and ``rel``, and optionally ``type``. links = resource2.Body('links') #: The name of this image. name = resource2.Body('name') #: Timestamp when the image was created. created_at = resource2.Body('created') #: Metadata pertaining to this image. *Type: dict* metadata = resource2.Body('metadata', type=dict) #: The mimimum disk size. *Type: int* min_disk = resource2.Body('minDisk', type=int) #: The minimum RAM size. *Type: int* min_ram = resource2.Body('minRam', type=int) #: If this image is still building, its progress is represented here. #: Once an image is created, progres will be 100. *Type: int* progress = resource2.Body('progress', type=int) #: The status of this image. status = resource2.Body('status') #: Timestamp when the image was updated. updated_at = resource2.Body('updated') #: Size of the image in bytes. *Type: int* size = resource2.Body('OS-EXT-IMG-SIZE:size', type=int) class ImageDetail(Image): base_path = '/images/detail' allow_get = False allow_delete = False allow_list = True
37.818182
77
0.647837
[ "Apache-2.0" ]
JiyeYu/eclsdk
ecl/compute/v2/image.py
2,496
Python
from os import environ from scrapy_heroku.poller import Psycopg2QueuePoller from scrapy_heroku.scheduler import Psycopg2SpiderScheduler from scrapyd.eggstorage import FilesystemEggStorage from scrapyd.environ import Environment from scrapyd.interfaces import (IEggStorage, IEnvironment, IPoller, ISpiderScheduler) from scrapyd.launcher import Launcher from scrapyd.website import Root from twisted.application.internet import TCPServer, TimerService from twisted.application.service import Application from twisted.python import log from twisted.web import server def application(config): app = Application("Scrapyd") http_port = int(environ.get('PORT', config.getint('http_port', 6800))) config.cp.set('scrapyd', 'database_url', environ.get('DATABASE_URL')) poller = Psycopg2QueuePoller(config) eggstorage = FilesystemEggStorage(config) scheduler = Psycopg2SpiderScheduler(config) environment = Environment(config) app.setComponent(IPoller, poller) app.setComponent(IEggStorage, eggstorage) app.setComponent(ISpiderScheduler, scheduler) app.setComponent(IEnvironment, environment) launcher = Launcher(config, app) timer = TimerService(5, poller.poll) webservice = TCPServer(http_port, server.Site(Root(config, app))) log.msg("Scrapyd web console available at http://localhost:%s/ (HEROKU)" % http_port) launcher.setServiceParent(app) timer.setServiceParent(app) webservice.setServiceParent(app) return app
35.697674
78
0.760912
[ "BSD-3-Clause" ]
esavara/scrapy-heroku
scrapy_heroku/app.py
1,535
Python
# -*- coding: utf-8 -*- """ Adjustment from the 2D version from Machine Learning & Simulation code and video: https://www.youtube.com/watch?v=ZUXmO4hu-20&list=LL&index=1&ab_channel=MachineLearning%26Simulation https://github.com/Ceyron/machine-learning-and-simulation/blob/main/english/simulation_scripts/lattice_boltzmann_method_python_jax.py by Bart Davids. Originally made in Google Colab: https://colab.research.google.com/drive/1F3EH9_2N3lkEpgQXOScR3lcQ6oqCARPk?usp=sharing Additional notes and figures for clarification can be found there. """ # Import dependancies import jax import jax.numpy as jnp import matplotlib.pyplot as plt import cmasher as cmr from tqdm import tqdm if __name__ == '__main__': # Enable 64bit JAX jax.config.update("jax_enable_x64", True) # Radius of the cylinder radius = 5.5 # Dimensions of domain ny = 50 nz = 60 nx = 300 KINEMATIC_VISCOSITY = 0.0025 HORIZONTAL_INFLOW_VELOCITY = 0.04 reynolds_number = (HORIZONTAL_INFLOW_VELOCITY * radius) / KINEMATIC_VISCOSITY RELAXATION_OMEGA = (1.0 / (3.0 * KINEMATIC_VISCOSITY + 0.5)) PLOT_EVERY_N_STEPS = 100 SKIP_FIRS_N_ITERATIONS = 5000 N_ITERATIONS = 20000 print('Reynolds number:', reynolds_number) # Define a mesh for the obstacle mask x = jnp.arange(nx) y = jnp.arange(ny) z = jnp.arange(nz) X, Y, Z = jnp.meshgrid(x, y, z, indexing="ij") cylinder = jnp.sqrt((X - nx//5)**2 + (Y - ny//2)**2) obstacle_mask = cylinder < radius # Show topview of the cylinder: plt.imshow(obstacle_mask[:, :, nz//2].T) plt.show() # Front view: plt.imshow(obstacle_mask[nx//5, :, :].T) plt.show() # Side View: plt.imshow(obstacle_mask[:, ny//2, :].T) plt.show() def get_density(discrete_velocities): density = jnp.sum(discrete_velocities, axis=-1) return density def get_macroscopic_velocities(discrete_velocities, density): return jnp.einsum("NMLQ,dQ->NMLd", discrete_velocities, LATTICE_VELOCITIES) / density[..., jnp.newaxis] def get_equilibrium_discrete_velocities(macroscopic_velocities, density): projected_discrete_velocities = jnp.einsum("dQ,NMLd->NMLQ", LATTICE_VELOCITIES, macroscopic_velocities) macroscopic_velocity_magnitude = jnp.linalg.norm(macroscopic_velocities, axis=-1, ord=2) equilibrium_discrete_velocities = (density[..., jnp.newaxis] * LATTICE_WEIGHTS[jnp.newaxis, jnp.newaxis, jnp.newaxis, :] * (1 + 3 * projected_discrete_velocities + 9/2 * projected_discrete_velocities**2 - 3/2 * macroscopic_velocity_magnitude[..., jnp.newaxis]**2)) return equilibrium_discrete_velocities N_DISCRETE_VELOCITIES = 19 # 3D lattice velocities and numbering used as in: # https://www.researchgate.net/publication/290158292_An_introduction_to_Lattice-Boltzmann_methods LATTICE_INDICES = jnp.array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18]) LATICE_VELOCITIES_X = jnp.array([ 0, 1, 0,-1, 0, 0, 0, 1,-1,-1, 1, 1,-1,-1, 1, 0, 0, 0, 0]) LATICE_VELOCITIES_Y = jnp.array([ 0, 0, 1, 0,-1, 0, 0, 1, 1,-1,-1, 0, 0, 0, 0, 1,-1,-1, 1]) LATICE_VELOCITIES_Z = jnp.array([ 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 0, 1, 1,-1,-1, 1, 1,-1,-1]) OPPOSITE_LATTICE_INDICES = jnp.array([ 0, 3, 4, 1, 2, 6, 5, 9,10, 7, 8,13,14,11,12,17,18,15,16]) LATTICE_VELOCITIES = jnp.array([LATICE_VELOCITIES_X, LATICE_VELOCITIES_Y, LATICE_VELOCITIES_Z]) LATTICE_WEIGHTS = jnp.array([# rest particle 1/3, # face-connected neighbors 1/18, 1/18, 1/18, 1/18, 1/18, 1/18, # edge-connected neighbors 1/36, 1/36, 1/36, 1/36, 1/36, 1/36, 1/36, 1/36, 1/36, 1/36, 1/36, 1/36]) # Velocity directions/planes RIGHT_VELOCITIES = jnp.array([1, 7, 10, 11, 14]) # LATICE_VELOCITIES_X = 1 LEFT_VELOCITIES = jnp.array([3, 8, 9, 12, 13]) # LATICE_VELOCITIES_X =-1 YZ_VELOCITIES = jnp.array([0, 2, 4, 5, 6, 15, 16, 17, 18]) # LATICE_VELOCITIES_X = 0 VELOCITY_PROFILE = jnp.zeros((nx, ny, nz, 3)) VELOCITY_PROFILE = VELOCITY_PROFILE.at[:, :, :, 0].set(HORIZONTAL_INFLOW_VELOCITY) discrete_velocities_prev = get_equilibrium_discrete_velocities(VELOCITY_PROFILE, jnp.ones((nx, ny, nz))) @jax.jit def update(discrete_velocities_prev): # (1) Prescribe the outflow BC on the right boundary. Flow can go out, but not back in. discrete_velocities_prev = discrete_velocities_prev.at[-1, :, :, LEFT_VELOCITIES].set(discrete_velocities_prev[-2, :, :, LEFT_VELOCITIES]) # (2) Determine macroscopic velocities density_prev = get_density(discrete_velocities_prev) macroscopic_velocities_prev = get_macroscopic_velocities( discrete_velocities_prev, density_prev) # (3) Prescribe Inflow Dirichlet BC using Zou/He scheme in 3D: # https://arxiv.org/pdf/0811.4593.pdf # https://terpconnect.umd.edu/~aydilek/papers/LB.pdf macroscopic_velocities_prev = macroscopic_velocities_prev.at[0, 1:-1, 1:-1, :].set(VELOCITY_PROFILE[0, 1:-1, 1:-1, :]) lateral_densities = get_density(jnp.transpose(discrete_velocities_prev[0, :, :, YZ_VELOCITIES], axes = (1, 2, 0))) left_densities = get_density(jnp.transpose(discrete_velocities_prev[0, :, :, LEFT_VELOCITIES], axes = (1, 2, 0))) density_prev = density_prev.at[0, :, :].set((lateral_densities + 2 * left_densities) / (1 - macroscopic_velocities_prev[0, :, :, 0])) # (4) Compute discrete Equilibria velocities equilibrium_discrete_velocities = get_equilibrium_discrete_velocities( macroscopic_velocities_prev, density_prev) # (3) Belongs to the Zou/He scheme discrete_velocities_prev =\ discrete_velocities_prev.at[0, :, :, RIGHT_VELOCITIES].set( equilibrium_discrete_velocities[0, :, :, RIGHT_VELOCITIES]) # (5) Collide according to BGK discrete_velocities_post_collision = (discrete_velocities_prev - RELAXATION_OMEGA * (discrete_velocities_prev - equilibrium_discrete_velocities)) # (6) Bounce-Back Boundary Conditions to enfore the no-slip for i in range(N_DISCRETE_VELOCITIES): discrete_velocities_post_collision = discrete_velocities_post_collision.at[obstacle_mask, LATTICE_INDICES[i]].set( discrete_velocities_prev[obstacle_mask, OPPOSITE_LATTICE_INDICES[i]]) # (7) Stream alongside lattice velocities discrete_velocities_streamed = discrete_velocities_post_collision for i in range(N_DISCRETE_VELOCITIES): discrete_velocities_streamed = discrete_velocities_streamed.at[:, :, :, i].set( jnp.roll( jnp.roll( jnp.roll( discrete_velocities_post_collision[:, :, :, i], LATTICE_VELOCITIES[0, i], axis = 0), LATTICE_VELOCITIES[1, i], axis = 1), LATTICE_VELOCITIES[2, i], axis = 2)) return discrete_velocities_streamed def run(discrete_velocities_prev): for i in tqdm(range(N_ITERATIONS)): discrete_velocities_next = update(discrete_velocities_prev) discrete_velocities_prev = discrete_velocities_next if i % PLOT_EVERY_N_STEPS == 0 and i > SKIP_FIRS_N_ITERATIONS - PLOT_EVERY_N_STEPS: density = get_density(discrete_velocities_next) macroscopic_velocities = get_macroscopic_velocities( discrete_velocities_next, density) print('\n', jnp.max(macroscopic_velocities)) velocity_magnitude = jnp.linalg.norm( macroscopic_velocities, axis=-1, ord=2) fig = plt.figure(figsize = (15, 3)) cont = plt.contourf(X[:, :, nz//2], Y[:, :, nz//2], jnp.flip(velocity_magnitude[:, :, nz//2], axis = 1), alpha=0.8, cmap=cmr.iceburn) plt.axis('scaled') plt.axis('off') plt.show() return run(discrete_velocities_prev)
45.912821
153
0.598235
[ "MIT" ]
bartdavids/machine-learning-and-simulation
english/simulation_scripts/D3Q19_lattice_boltzmann_method_python_jax.py
8,953
Python
__author__ = 'ialbert' from django.views.generic import DetailView, ListView, TemplateView, RedirectView, View from haystack.views import SearchView from haystack.forms import SearchForm from haystack.query import SearchQuerySet, AutoQuery from haystack.utils import Highlighter from django.conf import settings from biostar.server.views import BaseListMixin from ajax import ajax_error, ajax_success, ajax_error_wrapper, json_response from django.conf.urls import patterns from django.contrib.sitemaps import FlatPageSitemap, GenericSitemap from biostar.apps.posts.models import Post, Tag from biostar.apps.planet.models import BlogPost import logging logger = logging.getLogger(__name__) info_dict = { 'queryset': Post.objects.all(), } sitemaps = { 'flatpages': FlatPageSitemap, 'posts': GenericSitemap(info_dict, priority=0.6), } class SiteSearch(SearchView): extra_context = lambda x: dict(topic="search", page_title="Search") def slow_highlight(query, text): "Invoked only if the search backend does not support highlighting" highlight = Highlighter(query) value = highlight.highlight(text) return value def join_highlights(row): "Joins the highlighted text" if type(row.highlighted) is dict: return '' if not row.highlighted: return return '<br>'.join(x for x in row.highlighted) class Search(BaseListMixin): template_name = "search/search.html" paginate_by = settings.PAGINATE_BY context_object_name = "results" page_title = "Search" def get_queryset(self): self.q = self.request.GET.get('q', '') if not self.q: return [] content = AutoQuery(self.q) query = SearchQuerySet().filter(content=content).highlight()[:50] for row in query: if row is None: continue context = join_highlights(row) context = context or slow_highlight(query=self.q, text=row.content) row.context = context return query def get_context_data(self, **kwargs): context = super(Search, self).get_context_data(**kwargs) context['q'] = self.q return context def suggest_tags(request): "Returns suggested tags" tags = Tag.objects.all().order_by('-count')#[:10] data = settings.POST_TAG_LIST + [t.name for t in tags] data = filter(None, data) return json_response(data) #@ajax_error_wrapper def search_title(request): "Handles title searches" q = request.GET.get('q', '') content = AutoQuery(q) results = SearchQuerySet().filter(content=content).highlight()[:50] items = [] for row in results: try: ob = row.object # Why can this happen? if not ob: continue context = join_highlights(row) context = context or slow_highlight(query=q, text=row.content) text = "%s" % row.title items.append( dict(id=ob.get_absolute_url(), text=text, context=context, author=row.author, url=ob.get_absolute_url()), ) except Exception, exc: logger.error(content) logger.error(exc) pass payload = dict(items=items) return json_response(payload)
28.067797
93
0.658514
[ "MIT" ]
biostars/support.bioconductor.org
biostar/server/search.py
3,312
Python