content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
''' written by Emanuel Ramirez ([email protected]) ''' class LanguageFlagNotFound(Exception): pass class AlgorithmFlagNotFound(Exception): pass
20.625
59
0.721212
[ "MIT" ]
emanuel2718/algocli
algocli/errors.py
165
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- """Update handling.""" from __future__ import print_function, unicode_literals, absolute_import import re, time, os, threading, zipfile, tarfile try: # Python 2 # pylint:disable=import-error, no-name-in-module from urllib import quote, unquote from urlparse import urlparse except ImportError: # Python 3 # pylint:disable=import-error, no-name-in-module,ungrouped-imports from urllib.parse import quote, unquote, urlparse from .lnp import lnp from . import launcher, paths, download, log from .json_config import JSONConfiguration def updates_configured(): """Returns True if update checking have been configured.""" return prepare_updater() is not None def check_update(): """Checks for updates using the URL specified in PyLNP.json.""" if not updates_configured(): return if not lnp.userconfig.has_value('updateDays'): interval = lnp.config.get_value('updates/defaultInterval', -1) if interval != -1 and lnp.ui.on_request_update_permission(interval): next_update(interval) else: next_update(-1) if lnp.userconfig.get_value('updateDays', -1) == -1: return if lnp.userconfig.get_number('nextUpdate') < time.time(): t = threading.Thread(target=perform_update_check) t.daemon = True t.start() def perform_update_check(): """Performs the actual update check. Runs in a thread.""" # pylint:disable=bare-except prepare_updater() if lnp.updater.update_needed(): lnp.new_version = lnp.updater.get_version() lnp.ui.on_update_available() def prepare_updater(): """Returns an Updater object for the configured updater.""" if lnp.updater: return lnp.updater updaters = {'regex': RegexUpdater, 'json': JSONUpdater, 'dffd': DFFDUpdater} updater_id = lnp.config.get('updates/updateMethod', None) if updater_id is None: #TODO: Remove this after packs have had time to migrate log.w( 'Update method not configured in PyLNP.json! Will attempt to ' 'auto-detect. Please set this value correctly, auto-detection will ' 'go away eventually!') if lnp.config.get_string('updates/dffdID'): updater_id = 'dffd' log.w('Updater detected: dffd') elif lnp.config.get_string('updates/versionRegex'): updater_id = 'regex' log.w('Updater detected: regex') elif lnp.config.get_string('updates/versionJsonPath'): updater_id = 'json' log.w('Updater detected: json') else: log.w('Could not detect update method, updates will not work') return None elif updater_id == '' or not lnp.config.get('updates'): return None if updater_id not in updaters: log.e('Unknown update method: '+updater_id) return None lnp.updater = updaters[updater_id]() return lnp.updater def next_update(days): """Sets the next update check to occur in <days> days.""" lnp.userconfig['nextUpdate'] = (time.time() + days * 24 * 60 * 60) lnp.userconfig['updateDays'] = days lnp.save_config() def start_update(): """Launches a webbrowser to the specified update URL.""" launcher.open_url(lnp.updater.get_download_url()) def download_df_baseline(immediate=False): """Download the current version of DF from Bay12 Games to serve as a baseline, in LNP/Baselines/""" filename = lnp.df_info.get_archive_name() url = 'http://www.bay12games.com/dwarves/' + filename target = os.path.join(paths.get('baselines'), filename) queue_name = 'immediate' if immediate else 'baselines' download.download(queue_name, url, target) def direct_download_pack(): """Directly download a new version of the pack to the current BASEDIR""" url = lnp.updater.get_direct_url() fname = lnp.updater.get_direct_filename() target = os.path.join(lnp.BASEDIR, fname) download.download('updates', url, target, end_callback=extract_new_pack) def extract_new_pack(_, fname, bool_val): """Extract a downloaded new pack to a sibling dir of the current pack.""" exts = ('.zip', '.bz2', '.gz', '.7z', '.xz') if not bool_val or not any(fname.endswith(ext) for ext in exts): return None archive = os.path.join(lnp.BASEDIR, os.path.basename(fname)) return extract_archive(archive, os.path.join(lnp.BASEDIR, '..')) def extract_archive(fname, target): """Extract the archive fname to dir target, avoiding explosions.""" if zipfile.is_zipfile(fname): zf = zipfile.ZipFile(fname) namelist = zf.namelist() topdir = namelist[0].split(os.path.sep)[0] if not all(f.startswith(topdir) for f in namelist): target = os.path.join(target, os.path.basename(fname).split('.')[0]) zf.extractall(target) os.remove(fname) return True if tarfile.is_tarfile(fname): tf = tarfile.open(fname) namelist = tf.getmembers() topdir = namelist[0].split(os.path.sep)[0] if not all(f.startswith(topdir) for f in namelist): target = os.path.join(target, fname.split('.')[0]) tf.extractall(target) os.remove(fname) return True # TODO: support '*.xz' and '*.7z' files. return False #pylint: disable=attribute-defined-outside-init, no-self-use class Updater(object): """General class for checking for updates.""" def update_needed(self): """Checks if an update is necessary.""" self.text = download.download_str(self.get_check_url()) if self.text is None: log.e("Error checking for updates, could not download text") curr_version = lnp.config.get_string('updates/packVersion') if not curr_version: log.e("Current pack version is not set, cannot check for updates") return False return self.get_version() != curr_version def get_check_url(self): """Returns the URL used to check for updates.""" return lnp.config.get_string('updates/checkURL') def get_version(self): """Returns the version listed at the update URL. Must be overridden by subclasses.""" pass def get_download_url(self): """Returns a URL from which the user can download the update.""" return lnp.config.get_string('updates/downloadURL') def get_direct_url(self): """Returns a URL pointing directly to the update, for download by the program.""" return lnp.config.get_string('updates/directURL') def get_direct_filename(self): """Returns the filename that should be used for direct downloads.""" directFilename = lnp.config.get_string('updates/directFilename') if directFilename: return directFilename url_fragments = urlparse(self.get_direct_url()) return os.path.basename(unquote(url_fragments.path)) class RegexUpdater(Updater): """Updater class which uses regular expressions to locate the version (and optionally also the download URLs).""" def get_version(self): versionRegex = lnp.config.get_string('updates/versionRegex') if not versionRegex: log.e('Version regex not configured!') return re.search(versionRegex, self.text).group(1) def get_download_url(self): urlRegex = lnp.config.get_string('updates/downloadURLRegex') result = '' if urlRegex: result = re.search(urlRegex, self.text).group(1) if result: return result else: return super(RegexUpdater, self).get_download_url() def get_direct_url(self): urlRegex = lnp.config.get_string('updates/directURLRegex') result = '' if urlRegex: result = re.search(urlRegex, self.text).group(1) if result: return result else: return super(RegexUpdater, self).get_direct_url() class JSONUpdater(Updater): """Updater class which uses a JSON object to locate the version (and optionally also the download URLs).""" def get_version(self): self.json = JSONConfiguration.from_text(self.text) jsonPath = lnp.config.get_string('updates/versionJsonPath') if not jsonPath: log.e('JSON path to version not configured!') return self.json.get_string(jsonPath) def get_download_url(self): jsonPath = lnp.config.get_string('updates/downloadURLJsonPath') result = '' if jsonPath: result = self.json.get_string(jsonPath) if result: return result else: return super(JSONUpdater, self).get_download_url() def get_direct_url(self): jsonPath = lnp.config.get_string('updates/directURLJsonPath') result = '' if jsonPath: result = self.json.get_string(jsonPath) if result: return result else: return super(JSONUpdater, self).get_direct_url() def get_direct_filename(self): jsonPath = lnp.config.get_string('updates/directFilenameJsonPath') result = '' if jsonPath: result = self.json.get_string(jsonPath) if result: return result else: return super(JSONUpdater, self).get_direct_filename() class DFFDUpdater(Updater): """Updater class for DFFD-hosted downloads.""" def get_check_url(self): self.dffd_id = lnp.config.get_string('updates/dffdID') if not self.dffd_id: log.e('Field "updates/dffdID" must be set in PyLNP.json') return 'http://dffd.bay12games.com/file_data/{}.json'.format( self.dffd_id) def get_version(self): self.json = JSONConfiguration.from_text(self.text) return self.json.get_string('version') def get_download_url(self): return 'http://dffd.bay12games.com/file.php?id='+self.dffd_id def get_direct_url(self): result = 'http://dffd.bay12games.com/download.php?id={0}&f={1}' return result.format( self.dffd_id, quote(self.json.get_string('filename'))) def get_direct_filename(self): return self.json.get_string('filename')
37.89011
80
0.649072
[ "ISC" ]
McArcady/python-lnp
core/update.py
10,344
Python
import lightgbm as lgb import xgboost as xgb from sklearn.metrics import mean_squared_error, mean_absolute_error, explained_variance_score, r2_score from matplotlib import pyplot as plt import numpy as np import pandas as pd def compile_model(network): """ :param network dict: dictionary with network parameters :return: compiled model """ model = lgb.LGBMRegressor(num_leaves=network.get('num_leaves', 31), learning_rate=network.get('learning_rate', 0.1), n_estimators=network.get('n_estimators', 20), max_bin=network.get('max_bin', 1000), colsample_bytree=network.get('colsample_bytree', 0.5), subsample_for_bin=network.get('subsample_for_bin', 200000), boosting_type=network.get('boosting_type', 'gbdt'), num_iterations=network.get('num_iterations', 100), extra_trees=network.get('extra_trees', False), reg_sqrt= network.get('reg_sqrt', False), bagging_freq = network.get('bagging_freq', 1), bagging_fraction = network.get('bagging_fraction', 0.1)) return model def train_and_score(network, x_train, y_train, x_test, y_test): """ :param network dict: dictionary with network parameters :param x_train array: numpy array with features for traning :param y_train array: numpy array with labels for traning :param x_test array: numpy array with labels for test :param y_test array: numpy array with labels for test :return float: score """ model = compile_model(network) model.fit(x_train, y_train) y_pred = model.predict(np.array(x_test)) true = y_test pred = y_pred print(' R2 = ', r2_score(true, pred)) return r2_score(true, pred), model
35.927273
103
0.613866
[ "MIT" ]
EvanBagis/gb_rf_evolution
gb_rf_evolution/gb_train.py
1,976
Python
from datetime import datetime from pydantic.main import BaseModel from factory import db from utils.models import OrmBase from typing import List class Post(db.Model): __tablename__ = "post" id = db.Column(db.Integer, primary_key=True) text = db.Column(db.UnicodeText) created = db.Column(db.DateTime, default=datetime.utcnow) author_id = db.Column(db.Integer, db.ForeignKey("user.id")) def __repr__(self) -> str: return f"<Post {self.id}>" class PostCreate(BaseModel): text: str class PostResponse(OrmBase): text: str created: datetime author_id: int class PostResponseList(BaseModel): page: int pages: int total: int posts: List[PostResponse]
19.486486
63
0.699029
[ "BSD-3-Clause" ]
ThiNepo/neps-guide-flask-1
API_course/models/post.py
721
Python
from logging import getLogger from mpi4py import MPI logger = getLogger('om.mpi_ctrl') WORKTAG = 0 DIETAG = 1 class MpiMaster(object): def __init__(self, run_control, comm, rank, size): self.run_control = run_control self.comm = comm self.rank = rank self.size = size logger.info('Initialized MPI master: {}/{}', rank, size) def run(self): task_master = self.run_control._task_master status = MPI.Status() # Launch all tasks initially. if self.size > len(task_master.pending_tasks): logger.warning('MPI size > # of pending tasks, not sure what will happen') waiting_dests = list(range(1, self.size)[::-1]) # TODO: should handle exception in slave by consuming all data and issuing dies. # Farm out rest of work when a worker reports back that it's done. while True: try: task = task_master.get_next_pending() if not task: # There are tasks with unmet dependencies. waiting_dests.append(dest) logger.debug('appended waiting dests: {}', waiting_dests) except StopIteration: logger.debug('All tasks sent') break need_to_block = not waiting_dests or not task if need_to_block: # Block until notified of completion. rdata = self.comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=status) logger.info('Data received from {}', status.Get_source()) logger.debug('data: {}', rdata) if rdata['command'] == 'error': logger.error('Rank {} raised error', status.Get_source()) logger.error(rdata['msg']) raise Exception('Unrecoverable error') received_task = rdata['task'] # reconstituted via pickle. task_master.update_task(received_task.index, received_task.status) if task: if waiting_dests: # Clear backlog of waiting dests. logger.debug('pop waiting dests: {}', waiting_dests) dest = waiting_dests.pop() else: dest = status.Get_source() data = {'command': 'run_task', 'task': task} logger.info('Sending data to {}', dest) logger.debug('data: {}', data) self.comm.send(data, dest=dest, tag=WORKTAG) # We are done! Listen for final data responses. for dest in range(1, self.size - len(waiting_dests)): rdata = self.comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=status) if rdata['command'] == 'error': logger.error('Rank {} raised error', status.Get_source()) logger.error(rdata['msg']) raise Exception('Unrecoverable error') received_task = rdata['task'] # reconstituted via pickle. task_master.update_task(received_task.index, received_task.status) logger.info('Final data received from {}', status.Get_source()) logger.debug('data: {}', rdata) # Send all slaves a die command. for dest in range(1, self.size): data = {'command': 'die'} logger.info('Sending die to {}', dest) self.comm.send(data, dest=dest, tag=DIETAG) logger.info('Finished') class MpiSlave(object): def __init__(self, run_control, comm, rank, size): self.run_control = run_control self.comm = comm self.rank = rank self.size = size logger.info('Initialized MPI slave: {}/{}', rank, size) def listen(self): try: status = MPI.Status() while True: logger.debug('Waiting for data') data = self.comm.recv(source=0, tag=MPI.ANY_TAG, status=status) logger.debug('Received data: {}', data) if status.Get_tag() == DIETAG: break else: self.run_control.run_task(data['task']) data['task'].status = 'done' self.comm.send(data, dest=0, tag=WORKTAG) logger.debug('Finished') except Exception as e: logger.error(e) data = {'command': 'error', 'msg': str(e)} self.comm.send(data, dest=0, tag=WORKTAG) return
39.53913
93
0.548933
[ "Apache-2.0" ]
markmuetz/omnium
omnium/run_control/mpi_control.py
4,547
Python
# needs mayavi2 # run with ipython -wthread import networkx as nx import numpy as np from enthought.mayavi import mlab # some graphs to try #H=nx.krackhardt_kite_graph() #H=nx.Graph();H.add_edge('a','b');H.add_edge('a','c');H.add_edge('a','d') #H=nx.grid_2d_graph(4,5) H=nx.cycle_graph(20) # reorder nodes from 0,len(G)-1 G=nx.convert_node_labels_to_integers(H) # 3d spring layout pos=nx.spring_layout(G,dim=3) # numpy array of x,y,z positions in sorted node order xyz=np.array([pos[v] for v in sorted(G)]) # scalar colors scalars=np.array(list(G.nodes()))+5 mlab.figure(1, bgcolor=(0, 0, 0)) mlab.clf() pts = mlab.points3d(xyz[:,0], xyz[:,1], xyz[:,2], scalars, scale_factor=0.1, scale_mode='none', colormap='Blues', resolution=20) pts.mlab_source.dataset.lines = np.array(list(G.edges())) tube = mlab.pipeline.tube(pts, tube_radius=0.01) mlab.pipeline.surface(tube, color=(0.8, 0.8, 0.8)) mlab.savefig('mayavi2_spring.png') # mlab.show() # interactive window
29.026316
73
0.625567
[ "BSD-3-Clause" ]
AllenDowney/networkx
examples/3d_drawing/mayavi2_spring.py
1,103
Python
#!/usr/bin/env python import getopt import sys from coapthon.server.coap import CoAP from exampleresources import BasicResource, Long, Separate, Storage, Big, voidResource, XMLResource, ETAGResource, \ Child, \ MultipleEncodingResource, AdvancedResource, AdvancedResourceSeparate, DynamicResource __author__ = 'Giacomo Tanganelli' class CoAPServer(CoAP): def __init__(self, host, port, multicast=False): CoAP.__init__(self, (host, port), multicast) self.add_resource('basic/', BasicResource()) self.add_resource('storage/', Storage()) self.add_resource('separate/', Separate()) self.add_resource('long/', Long()) self.add_resource('big/', Big()) self.add_resource('void/', voidResource()) self.add_resource('xml/', XMLResource()) self.add_resource('encoding/', MultipleEncodingResource()) self.add_resource('etag/', ETAGResource()) self.add_resource('child/', Child()) self.add_resource('advanced/', AdvancedResource()) self.add_resource('advancedSeparate/', AdvancedResourceSeparate()) self.add_resource('dynamic/', DynamicResource()) print "CoAP Server start on " + host + ":" + str(port) print self.root.dump() def usage(): # pragma: no cover print "coapserver.py -i <ip address> -p <port>" def main(argv): # pragma: no cover ip = "0.0.0.0" port = 5683 multicast = False try: opts, args = getopt.getopt(argv, "hi:p:m", ["ip=", "port=", "multicast"]) except getopt.GetoptError: usage() sys.exit(2) for opt, arg in opts: if opt == '-h': usage() sys.exit() elif opt in ("-i", "--ip"): ip = arg elif opt in ("-p", "--port"): port = int(arg) elif opt in ("-m", "--multicast"): multicast = True server = CoAPServer(ip, port, multicast) try: server.listen(10) except KeyboardInterrupt: print "Server Shutdown" server.close() print "Exiting..." if __name__ == "__main__": # pragma: no cover main(sys.argv[1:])
32.173913
117
0.588739
[ "MIT" ]
Dalanke/CoAPthon
coapserver.py
2,220
Python
""" Prime Developer Trial No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v1 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from fds.sdk.QuotesAPIforDigitalPortals.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from fds.sdk.QuotesAPIforDigitalPortals.exceptions import ApiAttributeError def lazy_import(): from fds.sdk.QuotesAPIforDigitalPortals.model.prices_trading_schedule_event_list_data_filter import PricesTradingScheduleEventListDataFilter globals()['PricesTradingScheduleEventListDataFilter'] = PricesTradingScheduleEventListDataFilter class PricesTradingScheduleEventListData(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'id': (str,), # noqa: E501 'filter': (PricesTradingScheduleEventListDataFilter,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'id': 'id', # noqa: E501 'filter': 'filter', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, id, *args, **kwargs): # noqa: E501 """PricesTradingScheduleEventListData - a model defined in OpenAPI Args: id (str): Identifier of the notation. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) filter (PricesTradingScheduleEventListDataFilter): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.id = id for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, id, *args, **kwargs): # noqa: E501 """PricesTradingScheduleEventListData - a model defined in OpenAPI Args: id (str): Identifier of the notation. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) filter (PricesTradingScheduleEventListDataFilter): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.id = id for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
43.511029
144
0.581158
[ "Apache-2.0" ]
factset/enterprise-sdk
code/python/QuotesAPIforDigitalPortals/v2/fds/sdk/QuotesAPIforDigitalPortals/model/prices_trading_schedule_event_list_data.py
11,835
Python
#!/usr/bin/env python3 """Define public exports.""" __all__ = ["OutputFileExists", "InvalidDomain", "FileWriteError", "NoDomains"] class NoDomains(Exception): """Raise when no domains are passed to findcdn main.""" def __init__(self, error): """Instantiate super class with passed message.""" self.message = "No domains were passed!" super().__init__(self.message) class OutputFileExists(Exception): """Raise when file already exists when writing in findcdn.""" def __init__(self, outFile): """Instantiate super class with passed message with passed in filename.""" self.message = "A file with the name " + outFile + " already exists!" super().__init__(self.message) class InvalidDomain(Exception): """Raise when an invalid domain is inputted in findcnd.main().""" def __init__(self, item): """Instantiate super class with passed message with passed in item.""" self.message = item + " is not a valid domain in findcdn.main()" super().__init__(self.message) class FileWriteError(Exception): """Raise when there is a problem writing to a file in findcnd.""" def __init__(self, error): """Instantiate super class with passed message using passed in error.""" self.message = ( "The following error occurred in findcdn while file writing:\n" + repr(error) ) super().__init__(self.message)
33.136364
82
0.657064
[ "CC0-1.0" ]
Pascal-0x90/findCDN
src/findcdn/findcdn_err.py
1,458
Python
import pandas as pd from utils.config import Config import numpy as np import pandas as pd def fun_clean_categogy1(array, keyw1, index, BOW): compty = 0 c = 0 for elm in array: if elm == "oui" or elm == "parfois": BOW[c].append(keyw1[index]) compty += 1 c += 1 # print(compty) return BOW #Ajout des keywords de la catégorie 2 ATTENTION, ici j'ajoute tout le contenu des colonnes, donc il peut y avoir # une grande variété de mots qui sugissent à cause d'ici. De plus, ce sont souvent des mots composés ou des # séquences de mots. On peut envisager de ne sélectionner que le premier mot par exemple. def fun_clean_categogy2(array, BOW): compty = 0 c = 0 for elm in array: if not elm == "": if not BOW[c].__contains__(elm): BOW[c].append(elm) compty += 1 c += 1 # print(compty) return BOW def fun_clean_categogy3(array, keyw3, index, BOW, list_THR): compty = 0 c = 0 for elm in array: # print(elm) if not np.isnan(float(str(elm).replace(",", "."))): if float(str(elm).replace(",", ".")) > list_THR[index]: if not BOW[c].__contains__(elm): BOW[c].append(keyw3[index]) compty += 1 c += 1 print(compty) return BOW if __name__ == '__main__': # %% df = pd.read_csv(Config.csv_files[-1], sep=';', encoding='ISO-8859-1') df.columns # # d = {'col1': [1, 2], 'col2': [3, 4]} # df = pd.DataFrame(data=d) List_cat1 = ["difficulté endormisst", "fatigue au reveil", "hyperacousie", "surdité", "SDE", "vertiges", "depression", "anxiété"] #Keywords à associer aux colonnes de la catégorie 1 keyw1 = ["endormissement", "fatigue", "hyperacousie", "surdité", "somnolence", "vertige", "dépression", "anxiété"] List_cat2 = ["timbre acouphène", "type de douleurs", "type otalgie", "type de vertiges", "caractere particulier", "mode apparition"] List_cat3 = ["EVA depression", "epworth", "EVA anxiété", "EVA douleurs", "EVA hyperac", "EVA hypoac", "EVA Otalgie 1", "EVA SADAM", "EVA vertiges", "ISI", "score khalfa hyperacousie", "EVA concentration"] # Keywords à associer aux colonnes de la catégorie 3 keyw3 = ["dépression", "somnolence", "anxiété", "douleurs", "hyperacousie", "hypoacousie", "otalgie", "mâchoire", "vertige", "sommeil", "hyperacousie", "concentration"] # seuils de sélections à associer aux colonnes de la catégorie 3 List_THR = [5, 10, 5, 5, 5, 5, 4, 3, 3, 12, 20, 5] cat4 = ["intensité ac"] compt = 0 #Liste de mots clés associés à chaque patient. Une liste par patient BOW = [[] for i in range(len(df[df.columns[0]]))] #ajout des keywords de la categorie 1 à la liste des bag of words BOW for colname in List_cat1: # print(df[colname]) # show value before print(colname) BOW = fun_clean_categogy1(df[colname], keyw1, compt, BOW) compt += 1 # ajout des keywords de la categorie 2 à la liste des bag of words BOW compt=0 for colname in List_cat2: print(colname) BOW = fun_clean_categogy2(df[colname], BOW) compt += 1 # ajout des keywords de la categorie 3 à la liste des bag of words BOW compt=0 for colname in List_cat3: print(colname) BOW = fun_clean_categogy3(df[colname], keyw3, compt, BOW, List_THR) compt += 1 #Nettoyage des valeurs "NaN" copiées par erreur par la catégorie 2 for elm in BOW: if elm.__contains__(np.nan): elm.pop(elm.index(np.nan)) print(BOW[:200]) # petit extrait de la liste des bag of words BOW2=[] for elm in BOW: stri="" for st in elm: stri = stri + " " + st BOW2.append(stri) df2 = pd.DataFrame(BOW2) df2.to_csv('lettres_persanes.csv', sep=';', encoding='ISO-8859-1') print(df2)
33.625
120
0.596778
[ "MIT" ]
lkorczowski/cleandata
notebooks/template_preprocessing_columns.py
4,073
Python
import os import re import subprocess import tempfile def backups(destination, prefix): name_re = re.compile(r'^{}(?:\.[0-9]+)?$'.format(prefix)) def _key(name): return [int(char) if char.isdigit() else char for char in re.split(r'([0-9]+)', name)] paths = [] for name in sorted(os.listdir(destination), key=_key): path = os.path.join(destination, name) if os.path.isdir(path) and name_re.match(name): paths.append(path) return paths def rotate(paths): for _ in range(len(paths)): path = paths.pop() prefix, _, suffix = os.path.basename(path).partition('.') suffix = str(int(suffix or 0) + 1) rotated = os.path.join(os.path.dirname(path), prefix + '.' + suffix) os.rename(path, rotated) paths.insert(0, rotated) def sync(rsync, source, destination, link_dest=None, exclude=None): command = [rsync, '-v', '-a', '--no-D', '--delete', '--ignore-existing'] if link_dest: command.extend(['--link-dest', link_dest]) exclude = exclude or [] if exclude: command.extend([arg for path in exclude for arg in ['--exclude', path]]) if os.path.isdir(source) and source[-1] != os.path.sep: source += os.path.sep command.extend([source, destination]) subprocess.check_call(command) def touch(path, times=None): with open(path, 'a'): os.utime(path, times) def delete(rsync, directory): empty = tempfile.mkdtemp() + os.path.sep command = [rsync, '-v', '-r', '--delete', empty, directory] subprocess.check_call(command) os.rmdir(directory) os.rmdir(empty)
23.871429
80
0.60383
[ "MIT" ]
neuroid/poor-mans-time-machine
poor_mans_time_machine/__init__.py
1,671
Python
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import sphinx_rtd_theme from sphinx.domains.python import PythonDomain sys.path.insert(0, os.path.abspath('..')) from dival import __version__ # -- Project information ----------------------------------------------------- project = 'Deep Inversion Validation Library' copyright = ('2020, Johannes Leuschner, Maximilian Schmidt, ' 'Daniel Otero Baguer, David Erzmann') author = ('Johannes Leuschner, Maximilian Schmidt, ' 'Daniel Otero Baguer, David Erzmann') # The short X.Y version version = __version__ # The full version, including alpha/beta/rc tags release = '' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.todo', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.napoleon', 'sphinx_rtd_theme' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'DeepInversionValidationLibrarydoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'DeepInversionValidationLibrary.tex', 'Deep Inversion Validation Library Documentation', ('Johannes Leuschner, Maximilian Schmidt, ' 'Daniel Otero Baguer, David Erzmann'), 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'deepinversionvalidationlibrary', 'Deep Inversion Validation Library Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'DeepInversionValidationLibrary', 'Deep Inversion Validation Library Documentation', author, 'DeepInversionValidationLibrary', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration ------------------------------------------------- # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True autodoc_member_order = 'bysource' def skip(app, what, name, obj, would_skip, options): if name == "__init__": return False return would_skip class MyPythonDomain(PythonDomain): def find_obj(self, env, modname, classname, name, type, searchmode=0): orig_matches = PythonDomain.find_obj(self, env, modname, classname, name, type, searchmode) # longest match is supposed to be original definition return sorted(orig_matches, key=lambda m: len(m[0]))[-1:] def setup(app): app.connect("autodoc-skip-member", skip) app.add_domain(MyPythonDomain, override=True) app.add_css_file('css/custom.css')
31.072072
79
0.658307
[ "MIT" ]
MBaltz/dival
docs/conf.py
6,898
Python
import time import scipy.io.wavfile as wavfile import numpy as np import speech_recognition as sr import librosa import argparse import os from glob import glob from pydub import AudioSegment from pydub.silence import split_on_silence, detect_nonsilent from pydub.playback import play import pysrt import math import shutil def get_arguments(): parser = argparse.ArgumentParser() parser.add_argument('-v', '--video', type=str, required=True, help='Path to video *.mp4 file') parser.add_argument('-o', '--output', type=str, default='output/', help='Output file location') parser.add_argument('-l', '--lang', type=str, default='en', help='Language of the video file') arguments = parser.parse_args() return arguments def recognize(wav_filename, lang): data, s = librosa.load(wav_filename) librosa.output.write_wav('output/tmp.wav', data, s) y = (np.iinfo(np.int32).max * (data/np.abs(data).max())).astype(np.int32) wavfile.write('output/tmp_32.wav', s, y) r = sr.Recognizer() with sr.AudioFile('output/tmp_32.wav') as source: audio = r.record(source) print('Audio file has been loaded') try: result = r.recognize_google(audio, language = lang).lower() except sr.UnknownValueError: print("Failed to determine audio file") result = '' # finally: # os.remove(wav_filename) return result def get_audio(videofile, audiofile): os.system('ffmpeg -y -threads 4 -i {} -f wav -ab 192000 -vn {}'.format(videofile, audiofile)) def split_into_frames(audiofile, samplesLocation): os.system('rm {}/*'.format(samplesLocation)) time.sleep(2.0) data, sr = librosa.load(audiofile) duration = librosa.get_duration(data, sr) print('video duration, hours: {}'.format(duration/3600)) for i in range(0,int(duration-1),20): tmp_batch = data[(i)*sr:sr*(i+20)] librosa.output.write_wav('{}/{}.wav'.format(samplesLocation, chr(int(i/20)+65)), tmp_batch, sr) def separate_music_voice(audioFile, outputLocation): os.system('spleeter separate -i {} -p spleeter:2stems -o {}'.format(audioFile, outputLocation)) # Define a function to normalize a chunk to a target amplitude. def match_target_amplitude(aChunk, target_dBFS): ''' Normalize given audio chunk ''' change_in_dBFS = target_dBFS - aChunk.dBFS return aChunk.apply_gain(change_in_dBFS) def get_timestamp(duration): hr = math.floor(duration / 3600000) total_min = duration % 3600000 mins = math.floor(total_min / 60000) total_secs = total_min % 60000 secs = math.floor(total_secs / 1000) milisecs = total_min % 1000 return "{:02d}:{:02d}:{:02d},{:03d}".format(hr, mins, secs, milisecs) def gen_subtitle(wavFile, samplesLocation, srtFile, lang): srt_file = pysrt.SubRipFile() # Load your audio. print("loading wav file...") # song = AudioSegment.from_mp3("your_audio.mp3") #song = AudioSegment.from_wav("vocals.wav") song = AudioSegment.from_file(wavFile, format="wav") # play(song) dBFS = song.dBFS # Nonsilence track start and end positions. nonsilence = detect_nonsilent( song, min_silence_len = 500, silence_thresh = dBFS-16 ) file_count = len(nonsilence) print("Nonsilence chunk length {}".format(str(file_count))) # for [start, end] in nonsilence: # print("start: {0} end: {1}".format(get_timestamp(start), get_timestamp(end))) # Split track where the silence is 2 seconds or more and get chunks using # the imported function. print("Start spliting file...") chunks = split_on_silence( song, min_silence_len = 500, silence_thresh = dBFS-16, # optional keep_silence = 250 ) print("Spliting done..." + str(len(chunks))) # Process each chunk with your parameters for i, chunk in enumerate(chunks): # Create a silence chunk that's 0.5 seconds (or 500 ms) long for padding. silence_chunk = AudioSegment.silent(duration=1000) # Add the padding chunk to beginning and end of the entire chunk. audio_chunk = silence_chunk + chunk + silence_chunk # audio_chunk = chunk # Normalize the entire chunk. normalized_chunk = match_target_amplitude(audio_chunk, -20.0) # Export the audio chunk with new bitrate. starttime = nonsilence[i][0] endtime = nonsilence[i][1] print("\n>>{} of {}, Exporting {}chunk{}.wav start: {} end: {}".format(i, file_count, samplesLocation, i, starttime, endtime)) chunk_file_path = "{}chunk{}.wav".format(samplesLocation, str(i)) normalized_chunk.export( chunk_file_path, bitrate = "192k", format = "wav" ) time.sleep(2) print("Going to generete the dialogs of file {}".format(chunk_file_path)) dialogs = recognize(chunk_file_path, lang) print("{} file dialog is: {}".format(chunk_file_path, dialogs)) start_time = get_timestamp(starttime) end_time = get_timestamp(endtime) sub = pysrt.SubRipItem((i+1), start=start_time, end=end_time, text="{} {}".format(str(i+1), dialogs)) srt_file.append(sub) srt_file.save(srtFile) if __name__ == '__main__': outputLoc = 'output/' inputWaveFile = 'current.wav' vocals_file = 'current/vocals.wav' samples_location = 'samples/' srt_file = '.srt' start = time.time() args = get_arguments() outputLoc = args.output shutil.rmtree(outputLoc) time.sleep(2) os.makedirs(outputLoc, exist_ok=True) inputWaveFile = outputLoc + inputWaveFile vocals_file = outputLoc + vocals_file samples_location = outputLoc + samples_location os.makedirs(samples_location, exist_ok=True) srt_file = os.path.splitext(args.video)[0] + srt_file print('srt file will be {}'.format(srt_file)) time.sleep(2) get_audio(args.video, inputWaveFile) separate_music_voice(inputWaveFile, outputLoc) gen_subtitle(vocals_file, samples_location, srt_file, args.lang) end = time.time() print('elapsed time: {}'.format(end - start)) # shutil.rmtree(outputLoc)
33.352941
134
0.66362
[ "Apache-2.0" ]
whilemind/subtitle
src/subtitle.py
6,237
Python
""" Definition of TreeNode: class TreeNode: def __init__(self, val): self.val = val self.left, self.right = None, None """ class Solution: """ @param: root: The root of the binary search tree. @param: A: A TreeNode in a Binary. @param: B: A TreeNode in a Binary. @return: Return the least common ancestor(LCA) of the two nodes. """ def lowestCommonAncestor(self, root, A, B): if root is None or root is A or root is B: return root left = self.lowestCommonAncestor(root.left, A, B) right = self.lowestCommonAncestor(root.right, A, B) if left and right: return root if left: return left return right
25.310345
68
0.594005
[ "MIT" ]
ctc316/algorithm-python
Lintcode/Ladder_11_15_A/88. Lowest Common Ancestor of a Binary Tree.py
734
Python
import numpy as np from yt.utilities.on_demand_imports import _h5py as h5py from yt.funcs import \ mylog from yt.geometry.selection_routines import GridSelector from yt.utilities.io_handler import \ BaseIOHandler def _grid_dname(grid_id): return "/data/grid_%010i" % grid_id def _field_dname(grid_id, field_name): return "%s/%s" % (_grid_dname(grid_id), field_name) # TODO all particle bits were removed class IOHandlerGDFHDF5(BaseIOHandler): _dataset_type = "grid_data_format" _offset_string = 'data:offsets=0' _data_string = 'data:datatype=0' def _read_fluid_selection(self, chunks, selector, fields, size): from sys import version rv = {} chunks = list(chunks) if isinstance(selector, GridSelector): if not (len(chunks) == len(chunks[0].objs) == 1): raise RuntimeError grid = chunks[0].objs[0] h5f = h5py.File(grid.filename, mode='r') gds = h5f.get(_grid_dname(grid.id)) for ftype, fname in fields: if self.ds.field_ordering == 1: rv[(ftype, fname)] = gds.get(fname)[()].swapaxes(0, 2) else: rv[(ftype, fname)] = gds.get(fname)[()] h5f.close() return rv if size is None: size = sum((grid.count(selector) for chunk in chunks for grid in chunk.objs)) if any((ftype != "gdf" for ftype, fname in fields)): raise NotImplementedError for field in fields: ftype, fname = field fsize = size # check the dtype instead rv[field] = np.empty(fsize, dtype="float64") ngrids = sum(len(chunk.objs) for chunk in chunks) mylog.debug("Reading %s cells of %s fields in %s blocks", size, [fn for ft, fn in fields], ngrids) ind = 0 for chunk in chunks: fid = None for grid in chunk.objs: if grid.filename is None: continue if fid is None: if version < '3': fid = h5py.h5f.open(grid.filename,h5py.h5f.ACC_RDONLY) else: fid = h5py.h5f.open(bytes(grid.filename,'utf-8'),h5py.h5f.ACC_RDONLY) if self.ds.field_ordering == 1: # check the dtype instead data = np.empty(grid.ActiveDimensions[::-1], dtype="float64") data_view = data.swapaxes(0, 2) else: # check the dtype instead data_view = data = np.empty(grid.ActiveDimensions, dtype="float64") for field in fields: ftype, fname = field if version < '3': dg = h5py.h5d.open(fid, _field_dname(grid.id, fname)) else: dg = h5py.h5d.open(fid, bytes(_field_dname(grid.id, fname),'utf-8')) dg.read(h5py.h5s.ALL, h5py.h5s.ALL, data) # caches nd = grid.select(selector, data_view, rv[field], ind) ind += nd # I don't get that part, only last nd is added if fid is not None: fid.close() return rv
38.355556
93
0.514195
[ "BSD-3-Clause-Clear" ]
aemerick/yt
yt/frontends/gdf/io.py
3,452
Python
####################### # Dennis MUD # # telnet.py # # Copyright 2018-2021 # # Michael D. Reiley # ####################### # ********** # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # ********** # Parts of codebase borrowed from https://github.com/TKeesh/WebSocketChat import traceback from lib.logger import Logger from twisted.internet import protocol from twisted.protocols.basic import LineReceiver # Read the motd file. try: with open("motd.telnet.txt") as f: motd = f.read() except: motd = None class ServerProtocol(LineReceiver): def __init__(self, factory): self.factory = factory self.peer = None self._log = Logger("telnet") def connectionMade(self): p = self.transport.getPeer() self.peer = p.host + ':' + str(p.port) self.factory.register(self) self._log.info("Client connected: {peer}", peer=self.peer) if motd: self.factory.communicate(self.peer, motd.encode('utf-8')) def connectionLost(self, reason): self.factory.unregister(self) self._log.info("Client disconnected: {peer}", peer=self.peer) def lineReceived(self, line): # Don't log passwords. passcheck = line.split(b' ') if passcheck[0] == b'login' and len(passcheck) > 2: passcheck = b' '.join(passcheck[:2] + [b'********']) self._log.info("Client {peer} sending message: {line}", peer=self.peer, line=passcheck) elif passcheck[0] == b'register' and len(passcheck) > 2: passcheck = b' '.join(passcheck[:2] + [b'********']) self._log.info("Client {peer} sending message: {line}", peer=self.peer, line=passcheck) elif passcheck[0] == b'password' and len(passcheck) > 1: passcheck = b' '.join(passcheck[:1] + [b'********']) self._log.info("Client {peer} sending message: {line}", peer=self.peer, line=passcheck) else: self._log.info("Client {peer} sending message: {line}", peer=self.peer, line=line) # Try to decode the line. try: line = line.decode('utf-8') except: self._log.info("Discarded garbage line from {peer}", peer=self.peer) return # Did we receive the quit pseudo-command? if line == "quit": self.transport.loseConnection() return # Run the command while handling errors. try: self.factory.router.shell.command(self.factory.router[self.peer]["console"], line) except: self.factory.communicate(self.peer, traceback.format_exc().encode('utf-8')) self._log.error(traceback.format_exc()) class ServerFactory(protocol.Factory): def __init__(self, router, *args, **kwargs): self.router = router self.router.telnet_factory = self super(ServerFactory, self).__init__(*args) self.clients = [] def buildProtocol(self, addr): return ServerProtocol(self) def register(self, client): self.clients.append({'client-peer': client.peer, 'client': client}) self.router.register(client.peer, "telnet") def unregister(self, client): self.router.unregister(client.peer) for c in self.clients: if c['client-peer'] == client.peer: self.clients.remove(c) def communicate(self, peer, payload): client = None for c in self.clients: if c['client-peer'] == peer: client = c['client'] if client: # Telnet wants a CRLF instead of just an LF. Some clients require this to display properly. client.sendLine(payload.decode('utf-8').replace('\n', '\r\n').encode('utf-8'))
37.653543
103
0.628816
[ "MIT" ]
seisatsu/Dennis
lib/telnet.py
4,782
Python
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) # Data sets IRIS_TRAINING = os.path.join(os.path.dirname(__file__), "iris_training.csv") IRIS_TEST = os.path.join(os.path.dirname(__file__), "iris_test.csv") def main(unused_argv): # Load datasets. training_set = tf.contrib.learn.datasets.base.load_csv_with_header( filename=IRIS_TRAINING, target_dtype=np.int, features_dtype=np.float32) test_set = tf.contrib.learn.datasets.base.load_csv_with_header( filename=IRIS_TEST, target_dtype=np.int, features_dtype=np.float32) # Specify that all features have real-value data feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)] validation_monitor = tf.contrib.learn.monitors.ValidationMonitor( test_set.data, test_set.target, every_n_steps=50) # Build 3 layer DNN with 10, 20, 10 units respectively. # classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns, # hidden_units=[10, 20, 10], # n_classes=3, # model_dir="/tmp/iris_model") classifier = tf.contrib.learn.DNNClassifier( feature_columns=feature_columns, hidden_units=[10], n_classes=3, model_dir="/tmp/iris_model", config=tf.contrib.learn.RunConfig(save_checkpoints_secs=1)) # Fit model. # classifier.fit(x=training_set.data, # y=training_set.target, # steps=2000) classifier.fit(x=training_set.data, y=training_set.target, steps=2000, monitors=[validation_monitor]) # Evaluate accuracy. accuracy_score = classifier.evaluate(x=test_set.data, y=test_set.target)["accuracy"] print('Accuracy: {0:f}'.format(accuracy_score)) # Classify two new flower samples. new_samples = np.array( [[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=np.float32) y = list(classifier.predict(new_samples, as_iterable=True)) print('Predictions: {}'.format(str(y))) if __name__ == "__main__": tf.app.run()
35.716418
82
0.633514
[ "MIT" ]
yamamototakas/fxtrading
agents/tensorflow_iris.py
2,393
Python
# encoding: utf-8 """ @author: sherlock @contact: [email protected] """ import glob import re import os.path as osp from .bases import BaseImageDataset class Market1501(BaseImageDataset): """ Market1501 Reference: Zheng et al. Scalable Person Re-identification: A Benchmark. ICCV 2015. URL: http://www.liangzheng.org/Project/project_reid.html Dataset statistics: # identities: 1501 (+1 for background) # images: 12936 (train) + 3368 (query) + 15913 (gallery) """ dataset_dir = 'market1501' def __init__(self, root='/raid/home/zhihui/reid_strong_baseline/data/Market-1501-fixed/', verbose=True, **kwargs): super(Market1501, self).__init__() self.dataset_dir = root self.train_dir = osp.join(self.dataset_dir, 'bounding_box_train') self.query_dir = osp.join(self.dataset_dir, 'query') self.gallery_dir = osp.join(self.dataset_dir, 'bounding_box_test') self._check_before_run() train = self._process_dir(self.train_dir, relabel=True) query = self._process_dir(self.query_dir, relabel=False) gallery = self._process_dir(self.gallery_dir, relabel=False) if verbose: print("=> Market1501 loaded") self.print_dataset_statistics(train, query, gallery) self.train = train self.query = query self.gallery = gallery self.num_train_pids, self.num_train_imgs, self.num_train_cams = self.get_imagedata_info(self.train) self.num_query_pids, self.num_query_imgs, self.num_query_cams = self.get_imagedata_info(self.query) self.num_gallery_pids, self.num_gallery_imgs, self.num_gallery_cams = self.get_imagedata_info(self.gallery) def _process_dir(self, dir_path, relabel=False): img_paths = glob.glob(osp.join(dir_path, '*.jpg')) pattern = re.compile(r'([-\d]+)_c(\d)') pid_container = set() for img_path in img_paths: pid, _ = map(int, pattern.search(img_path).groups()) if pid == -1: continue # junk images are just ignored pid_container.add(pid) pid2label = {pid: label for label, pid in enumerate(pid_container)} dataset = [] for img_path in img_paths: pid, camid = map(int, pattern.search(img_path).groups()) if pid == -1: continue # junk images are just ignored assert 0 <= pid <= 1501 # pid == 0 means background assert 1 <= camid <= 6 camid -= 1 # index starts from 0 if relabel: pid = pid2label[pid] dataset.append((img_path, pid, camid)) return dataset
35.44
118
0.64936
[ "Apache-2.0" ]
moranxiachong/PersonReID-VAAL
data/datasets/market1501.py
2,658
Python
""" Django settings for pets_forum project. Generated by 'django-admin startproject' using Django 1.11.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'f9um$ll0_p4=p&p(iwkeu1hk+-en9c%q#@aul(n!7ecb^%z8x8' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'pets_forum.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'pets_forum.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
25.719008
91
0.696979
[ "MIT" ]
catnipoo/pets1
pets_forum/pets_forum/settings.py
3,112
Python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 30 03:08:17 2017 @author: aditya """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Nov 26 12:46:25 2017 @author: aditya """ import math import os from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf import numpy as np import matplotlib.pyplot as plt FLAGS = None MNIST_IMAGE_SIZE = 28 MNIST_IMAGE_PIXELS =28*28 OUTPUT_CLASSES = 10 Batch_Size = 100 LEARNING_RATE = 0.01 hiddenlayer_units =16 expno = "1" def deepnnwithrelu(images): #Code boorrowed from https://github.com/tensorflow/tensorflow/blob/r1.4/tensorflow/examples/tutorials/mnist/mnist.py with tf.name_scope('hiddenlayer1'): weights = tf.Variable( tf.truncated_normal([MNIST_IMAGE_PIXELS, hiddenlayer_units], stddev=1.0 / math.sqrt(float(MNIST_IMAGE_PIXELS))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases) # Hidden 2 with tf.name_scope('hiddenlayer2'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases) with tf.name_scope('hiddenlayer3'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden3 = tf.nn.relu(tf.matmul(hidden2, weights) + biases) with tf.name_scope('hiddenlayer4'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden4 = tf.nn.relu(tf.matmul(hidden3, weights) + biases) with tf.name_scope('hiddenlayer5'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden5 = tf.nn.relu(tf.matmul(hidden4, weights) + biases) with tf.name_scope('hiddenlayer6'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden6 = tf.nn.relu(tf.matmul(hidden5, weights) + biases) # Dropout - controls the complexity of the model, prevents co-adaptation of # features. # Map the 1024 features to 10 classes, one for each digit with tf.name_scope('finallayer'): W_fc2 = weight_variable([hiddenlayer_units, 10]) b_fc2 = bias_variable([10]) y_output = tf.matmul(hidden6, W_fc2) + b_fc2 return y_output def deepnnwithsigmoid(images): with tf.name_scope('hiddenlayer1'): weights = tf.Variable( tf.truncated_normal([MNIST_IMAGE_PIXELS, hiddenlayer_units], stddev=1.0 / math.sqrt(float(MNIST_IMAGE_PIXELS))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden1 = tf.nn.sigmoid(tf.matmul(images, weights) + biases) # Hidden 2 with tf.name_scope('hiddenlayer2'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden2 = tf.nn.sigmoid(tf.matmul(hidden1, weights) + biases) with tf.name_scope('hiddenlayer3'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden3 = tf.nn.sigmoid(tf.matmul(hidden2, weights) + biases) with tf.name_scope('hiddenlayer4'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden4 = tf.nn.sigmoid(tf.matmul(hidden3, weights) + biases) with tf.name_scope('hiddenlayer5'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden5 = tf.nn.sigmoid(tf.matmul(hidden4, weights) + biases) with tf.name_scope('hiddenlayer6'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden6 = tf.nn.sigmoid(tf.matmul(hidden5, weights) + biases) with tf.name_scope('finallayer'): W_fc2 = weight_variable([hiddenlayer_units, 10]) b_fc2 = bias_variable([10]) y_output = tf.matmul(hidden6, W_fc2) + b_fc2 return y_output def deepnnwithelu(images): with tf.name_scope('hiddenlayer1'): weights = tf.Variable( tf.truncated_normal([MNIST_IMAGE_PIXELS, hiddenlayer_units], stddev=1.0 / math.sqrt(float(MNIST_IMAGE_PIXELS))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden1 = tf.nn.elu(tf.matmul(images, weights) + biases) # Hidden 2 with tf.name_scope('hiddenlayer2'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden2 = tf.nn.elu(tf.matmul(hidden1, weights) + biases) with tf.name_scope('hiddenlayer3'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden3 = tf.nn.elu(tf.matmul(hidden2, weights) + biases) with tf.name_scope('hiddenlayer4'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden4 = tf.nn.elu(tf.matmul(hidden3, weights) + biases) with tf.name_scope('hiddenlayer5'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden5 = tf.nn.elu(tf.matmul(hidden4, weights) + biases) with tf.name_scope('hiddenlayer6'): weights = tf.Variable( tf.truncated_normal([hiddenlayer_units, hiddenlayer_units], stddev=1.0 / math.sqrt(float(hiddenlayer_units))), name='weights') biases = tf.Variable(tf.zeros([hiddenlayer_units]), name='biases') hidden6 = tf.nn.elu(tf.matmul(hidden5, weights) + biases) with tf.name_scope('finallayer'): W_fc2 = weight_variable([hiddenlayer_units, 10]) b_fc2 = bias_variable([10]) y_output = tf.matmul(hidden6, W_fc2) + b_fc2 return y_output # Code Borrowed from https://github.com/tensorflow/tensorflow/blob/r1.4/tensorflow/examples/tutorials/mnist/mnist_deep.py def weight_variable(shape): """weight_variable generates a weight variable of a given shape.""" initial = tf.truncated_normal(shape, stddev=0.1/math.sqrt(float(hiddenlayer_units))) return tf.Variable(initial) def bias_variable(shape): """bias_variable generates a bias variable of a given shape.""" initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def appstart(stri): # Import data mnist = input_data.read_data_sets("../Data/MNIST_data", one_hot=True) # Create the model x = tf.placeholder(tf.float32, [None, 784]) # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) # Build the graph for the deep net if(stri=="relu"): y_output = deepnnwithrelu(x) elif(stri=="elu"): y_output = deepnnwithelu(x) else: y_output = deepnnwithsigmoid(x) #Code Borrowed from https://github.com/tensorflow/tensorflow/blob/r1.4/tensorflow/examples/tutorials/mnist/mnist_deep.py with tf.name_scope('loss'): cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_output) cross_entropy = tf.reduce_mean(cross_entropy) with tf.name_scope('adam_optimizer'): train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) with tf.name_scope('accuracy'): correct_prediction = tf.equal(tf.argmax(y_output, 1), tf.argmax(y_, 1)) correct_prediction = tf.cast(correct_prediction, tf.float32) accuracy = tf.reduce_mean(correct_prediction) graph_location = "tfgraphs/"+expno print('Saving graph to: %s' % graph_location) train_writer = tf.summary.FileWriter(graph_location) train_writer.add_graph(tf.get_default_graph()) resultarray =[] iterarray=[] accarray=[] testaccarray = [] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1]}) testaccuracy = accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels}) #print('step %d, training accuracy %g' % (i, train_accuracy)) #print('test accuracy %g' %testaccuracy) iterarray.append(i) accarray.append(train_accuracy) testaccarray.append(testaccuracy) train_step.run(feed_dict={x: batch[0], y_: batch[1]}) resultarray.append(iterarray) resultarray.append(accarray) resultarray.append(testaccarray) return resultarray def progstart(): rarray =[] rarray.append(appstart("sigmoid")) rarray.append(appstart("relu")) rarray.append(appstart("elu")) if not os.path.exists('figures'): os.makedirs('figures') fig1 = plt.figure() axes1 = fig1.add_axes([0.1,0.1,0.8,0.8]) axes1.plot(rarray[0][0],rarray[0][1],'r') axes1.plot(rarray[0][0],rarray[1][1],'b') axes1.plot(rarray[0][0],rarray[2][1],'g') axes1.set_xlabel('Train Iterations') axes1.set_ylabel('Train accuracy') fig1.savefig('figures/'+expno+'_trainAccuracy.png') fig2 = plt.figure() axes2 = fig2.add_axes([0.1,0.1,0.8,0.8]) axes2.plot(rarray[0][0],rarray[0][2],'r') axes2.plot(rarray[0][0],rarray[1][2],'b') axes2.plot(rarray[0][0],rarray[2][2],'g') axes2.set_xlabel('Train Iterations') axes2.set_ylabel('Test accuracy') fig2.savefig('figures/'+expno+'_testAccuracy.png') plt.plot() progstart()
37.509146
121
0.636024
[ "MIT" ]
AdityaPrasadMishra/TensorflowPractice
FSL - Entire Project + Report/Final Project/Code/Exp1.py
12,303
Python
from os.path import join, dirname, abspath here = lambda *paths: join(dirname(abspath(__file__)), *paths) PROJECT_ROOT = here('..') root = lambda *paths: join(PROJECT_ROOT, *paths) DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', '[email protected]'), ) EMAIL_BACKEND = 'django.core.mail.backends.filebased.EmailBackend' EMAIL_FILE_PATH = here('tmp', 'app-mails') MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': ':memory:', # Or path to database file if using sqlite3. # The following settings are not used with sqlite3: 'USER': '', 'PASSWORD': '', 'HOST': '', # Empty for localhost through domain sockets or '127.0.0.1' for localhost through TCP. 'PORT': '', # Set to empty string for default. } } # Hosts/domain names that are valid for this site; required if DEBUG is False # See https://docs.djangoproject.com/en/1.5/ref/settings/#allowed-hosts ALLOWED_HOSTS = [] # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/var/www/example.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://example.com/media/", "http://media.example.com/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/var/www/example.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://example.com/static/", "http://static.example.com/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = '^1mo-5o90rn7nzy4fm94_=rtg-l9^x&tez8^9#1ktl4r6s_w^l' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'tests.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'tests.wsgi.application' TEMPLATES = { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, }, INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'django_outbox', # Uncomment the next line to enable the admin: # 'django.contrib.admin', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', ) SESSION_SERIALIZER = 'django.contrib.sessions.serializers.JSONSerializer' # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
33.319527
127
0.694193
[ "MIT" ]
mberingen/django-outbox
tests/settings.py
5,631
Python
from unittest.mock import MagicMock, patch, call from tagtrain import data from . import fake from tagtrain.tagtrain.tt_remove import Remove @patch('tagtrain.data.by_owner.remove_user_from_group') def test_unknown_group(remove_user_from_group): remove_user_from_group.side_effect = data.Group.DoesNotExist() app, reply, message, match = fake.create_all() Remove(app).run(reply, message, match) remove_user_from_group.assert_called_once_with('AuthorName', 'GroupName', 'MemberName') reply.append.assert_called_once_with('Group `GroupName` does not exist. Skipping.') @patch('tagtrain.data.by_owner.remove_user_from_group') def test_unknown_member(remove_user_from_group): remove_user_from_group.side_effect = data.Member.DoesNotExist() app, reply, message, match = fake.create_all() Remove(app).run(reply, message, match) remove_user_from_group.assert_called_once_with('AuthorName', 'GroupName', 'MemberName') reply.append.assert_called_once_with('`MemberName` is not a Member of Group `GroupName`. Skipping.') @patch('tagtrain.data.by_owner.remove_user_from_group') def test_good(remove_user_from_group): remove_user_from_group.return_value = fake.create_group(name='GroupName', member_count=99) app, reply, message, match = fake.create_all() Remove(app).run(reply, message, match) remove_user_from_group.assert_called_once_with('AuthorName', 'GroupName', 'MemberName') reply.append.assert_called_once_with('`MemberName` removed from Group `GroupName`, 99 total Members.') @patch('tagtrain.data.by_owner.remove_user_from_group') def test_good_no_members(remove_user_from_group): remove_user_from_group.return_value = fake.create_group(name='GroupName', member_count=0) app, reply, message, match = fake.create_all() Remove(app).run(reply, message, match) remove_user_from_group.assert_called_once_with('AuthorName', 'GroupName', 'MemberName') reply.append.assert_called_once_with('`MemberName` removed from Group `GroupName`, 0 total Members.')
38.622642
106
0.778701
[ "MIT" ]
c17r/TagTrain
tests/tagtrain/test_remove.py
2,047
Python
# Copyright 2015 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from neutron_lib.callbacks import events as callbacks_events from neutron_lib.callbacks import registry as callbacks_registry from neutron_lib.callbacks import resources as callbacks_resources from neutron_lib import constants import testtools from neutron.agent.common import ovs_lib from neutron.agent.common import utils from neutron.agent import firewall from neutron.agent.linux.openvswitch_firewall import constants as ovsfw_consts from neutron.agent.linux.openvswitch_firewall import exceptions from neutron.agent.linux.openvswitch_firewall import firewall as ovsfw from neutron.common import constants as n_const from neutron.plugins.ml2.drivers.openvswitch.agent.common import constants \ as ovs_consts from neutron.plugins.ml2.drivers.openvswitch.agent.openflow.ovs_ofctl \ import ovs_bridge from neutron.tests import base TESTING_VLAN_TAG = 1 def create_ofport(port_dict): ovs_port = mock.Mock(vif_mac='00:00:00:00:00:00', ofport=1, port_name="port-name") return ovsfw.OFPort(port_dict, ovs_port, vlan_tag=TESTING_VLAN_TAG) class TestCreateRegNumbers(base.BaseTestCase): def test_no_registers_defined(self): flow = {'foo': 'bar'} ovsfw.create_reg_numbers(flow) self.assertEqual({'foo': 'bar'}, flow) def test_all_registers_defined(self): flow = {'foo': 'bar', 'reg_port': 1, 'reg_net': 2, 'reg_remote_group': 3} expected_flow = {'foo': 'bar', 'reg{:d}'.format(ovsfw_consts.REG_PORT): 1, 'reg{:d}'.format(ovsfw_consts.REG_NET): 2, 'reg{:d}'.format(ovsfw_consts.REG_REMOTE_GROUP): 3} ovsfw.create_reg_numbers(flow) self.assertEqual(expected_flow, flow) class TestSecurityGroup(base.BaseTestCase): def setUp(self): super(TestSecurityGroup, self).setUp() self.sg = ovsfw.SecurityGroup('123') self.sg.members = {'type': [1, 2, 3, 4]} def test_update_rules_split(self): rules = [ {'foo': 'bar', 'rule': 'all'}, {'bar': 'foo'}, {'remote_group_id': '123456', 'foo': 'bar'}] expected_raw_rules = [{'foo': 'bar', 'rule': 'all'}, {'bar': 'foo'}] expected_remote_rules = [{'remote_group_id': '123456', 'foo': 'bar'}] self.sg.update_rules(rules) self.assertEqual(expected_raw_rules, self.sg.raw_rules) self.assertEqual(expected_remote_rules, self.sg.remote_rules) def test_update_rules_protocols(self): rules = [ {'foo': 'bar', 'protocol': constants.PROTO_NAME_ICMP, 'ethertype': constants.IPv4}, {'foo': 'bar', 'protocol': constants.PROTO_NAME_ICMP, 'ethertype': constants.IPv6}, {'foo': 'bar', 'protocol': constants.PROTO_NAME_IPV6_ICMP_LEGACY, 'ethertype': constants.IPv6}, {'foo': 'bar', 'protocol': constants.PROTO_NAME_TCP}, {'foo': 'bar', 'protocol': '94'}, {'foo': 'bar', 'protocol': 'baz'}, {'foo': 'no_proto'}] self.sg.update_rules(rules) self.assertEqual({'foo': 'no_proto'}, self.sg.raw_rules.pop()) protos = [rule['protocol'] for rule in self.sg.raw_rules] self.assertEqual([constants.PROTO_NUM_ICMP, constants.PROTO_NUM_IPV6_ICMP, constants.PROTO_NUM_IPV6_ICMP, constants.PROTO_NUM_TCP, 94, 'baz'], protos) def test_get_ethertype_filtered_addresses(self): addresses = self.sg.get_ethertype_filtered_addresses('type') expected_addresses = [1, 2, 3, 4] self.assertEqual(expected_addresses, addresses) class TestOFPort(base.BaseTestCase): def setUp(self): super(TestOFPort, self).setUp() self.ipv4_addresses = ['10.0.0.1', '192.168.0.1'] self.ipv6_addresses = ['fe80::f816:3eff:fe2e:1'] port_dict = {'device': 1, 'fixed_ips': self.ipv4_addresses + self.ipv6_addresses} self.port = create_ofport(port_dict) def test_ipv4_address(self): ipv4_addresses = self.port.ipv4_addresses self.assertEqual(self.ipv4_addresses, ipv4_addresses) def test_ipv6_address(self): ipv6_addresses = self.port.ipv6_addresses self.assertEqual(self.ipv6_addresses, ipv6_addresses) def test__get_allowed_pairs(self): port = { 'allowed_address_pairs': [ {'mac_address': 'foo', 'ip_address': '10.0.0.1'}, {'mac_address': 'bar', 'ip_address': '192.168.0.1'}, {'mac_address': 'qux', 'ip_address': '169.254.0.0/16'}, {'mac_address': 'baz', 'ip_address': '2003::f'}, ]} allowed_pairs_v4 = ovsfw.OFPort._get_allowed_pairs(port, version=4) allowed_pairs_v6 = ovsfw.OFPort._get_allowed_pairs(port, version=6) expected_aap_v4 = {('foo', '10.0.0.1'), ('bar', '192.168.0.1'), ('qux', '169.254.0.0/16')} expected_aap_v6 = {('baz', '2003::f')} self.assertEqual(expected_aap_v4, allowed_pairs_v4) self.assertEqual(expected_aap_v6, allowed_pairs_v6) def test__get_allowed_pairs_empty(self): port = {} allowed_pairs = ovsfw.OFPort._get_allowed_pairs(port, version=4) self.assertFalse(allowed_pairs) def test_update(self): old_port_dict = self.port.neutron_port_dict new_port_dict = old_port_dict.copy() added_ips = [1, 2, 3] new_port_dict.update({ 'fixed_ips': added_ips, 'allowed_address_pairs': [ {'mac_address': '00:00:00:00:00:01', 'ip_address': '192.168.0.1'}, {'mac_address': '00:00:00:00:00:01', 'ip_address': '2003::f'}], }) self.port.update(new_port_dict) self.assertEqual(new_port_dict, self.port.neutron_port_dict) self.assertIsNot(new_port_dict, self.port.neutron_port_dict) self.assertEqual(added_ips, self.port.fixed_ips) self.assertEqual({('00:00:00:00:00:01', '192.168.0.1')}, self.port.allowed_pairs_v4) self.assertIn(('00:00:00:00:00:01', '2003::f'), self.port.allowed_pairs_v6) class TestSGPortMap(base.BaseTestCase): def setUp(self): super(TestSGPortMap, self).setUp() self.map = ovsfw.SGPortMap() def test_get_or_create_sg_existing_sg(self): self.map.sec_groups['id'] = mock.sentinel sg = self.map.get_or_create_sg('id') self.assertIs(mock.sentinel, sg) def test_get_or_create_sg_nonexisting_sg(self): with mock.patch.object(ovsfw, 'SecurityGroup') as sg_mock: sg = self.map.get_or_create_sg('id') self.assertEqual(sg_mock.return_value, sg) def _check_port(self, port_id, expected_sg_ids): port = self.map.ports[port_id] expected_sgs = [self.map.sec_groups[sg_id] for sg_id in expected_sg_ids] self.assertEqual(port.sec_groups, expected_sgs) def _check_sg(self, sg_id, expected_port_ids): sg = self.map.sec_groups[sg_id] expected_ports = {self.map.ports[port_id] for port_id in expected_port_ids} self.assertEqual(sg.ports, expected_ports) def _create_ports_and_sgroups(self): sg_1 = ovsfw.SecurityGroup(1) sg_2 = ovsfw.SecurityGroup(2) sg_3 = ovsfw.SecurityGroup(3) port_a = create_ofport({'device': 'a'}) port_b = create_ofport({'device': 'b'}) self.map.ports = {'a': port_a, 'b': port_b} self.map.sec_groups = {1: sg_1, 2: sg_2, 3: sg_3} port_a.sec_groups = [sg_1, sg_2] port_b.sec_groups = [sg_2, sg_3] sg_1.ports = {port_a} sg_2.ports = {port_a, port_b} sg_3.ports = {port_b} def test_create_port(self): port = create_ofport({'device': 'a'}) sec_groups = ['1', '2'] port_dict = {'security_groups': sec_groups} self.map.create_port(port, port_dict) self._check_port('a', sec_groups) self._check_sg('1', ['a']) self._check_sg('2', ['a']) def test_update_port_sg_added(self): self._create_ports_and_sgroups() port_dict = {'security_groups': [1, 2, 3]} self.map.update_port(self.map.ports['b'], port_dict) self._check_port('a', [1, 2]) self._check_port('b', [1, 2, 3]) self._check_sg(1, ['a', 'b']) self._check_sg(2, ['a', 'b']) self._check_sg(3, ['b']) def test_update_port_sg_removed(self): self._create_ports_and_sgroups() port_dict = {'security_groups': [1]} self.map.update_port(self.map.ports['b'], port_dict) self._check_port('a', [1, 2]) self._check_port('b', [1]) self._check_sg(1, ['a', 'b']) self._check_sg(2, ['a']) self._check_sg(3, []) def test_remove_port(self): self._create_ports_and_sgroups() self.map.remove_port(self.map.ports['a']) self._check_port('b', [2, 3]) self._check_sg(1, []) self._check_sg(2, ['b']) self._check_sg(3, ['b']) self.assertNotIn('a', self.map.ports) def test_update_rules(self): """Just make sure it doesn't crash""" self.map.update_rules(1, []) def test_update_members(self): """Just make sure we doesn't crash""" self.map.update_members(1, []) class TestConjIdMap(base.BaseTestCase): def setUp(self): super(TestConjIdMap, self).setUp() self.conj_id_map = ovsfw.ConjIdMap() def test_get_conj_id(self): allocated = [] for direction in [firewall.EGRESS_DIRECTION, firewall.INGRESS_DIRECTION]: id_ = self.conj_id_map.get_conj_id( 'sg', 'remote', direction, constants.IPv4) allocated.append(id_) self.assertEqual(len(set(allocated)), 2) self.assertEqual(len(self.conj_id_map.id_map), 2) self.assertEqual(self.conj_id_map.get_conj_id( 'sg', 'remote', firewall.EGRESS_DIRECTION, constants.IPv4), allocated[0]) def test_get_conj_id_invalid(self): self.assertRaises(ValueError, self.conj_id_map.get_conj_id, 'sg', 'remote', 'invalid-direction', constants.IPv6) def test_delete_sg(self): test_data = [('sg1', 'sg1'), ('sg1', 'sg2')] ids = [] for sg_id, remote_sg_id in test_data: ids.append(self.conj_id_map.get_conj_id( sg_id, remote_sg_id, firewall.INGRESS_DIRECTION, constants.IPv6)) result = self.conj_id_map.delete_sg('sg1') self.assertIn(('sg1', ids[0]), result) self.assertIn(('sg2', ids[1]), result) self.assertFalse(self.conj_id_map.id_map) reallocated = self.conj_id_map.get_conj_id( 'sg-foo', 'sg-foo', firewall.INGRESS_DIRECTION, constants.IPv6) self.assertIn(reallocated, ids) class TestConjIPFlowManager(base.BaseTestCase): def setUp(self): super(TestConjIPFlowManager, self).setUp() self.driver = mock.Mock() self.manager = ovsfw.ConjIPFlowManager(self.driver) self.vlan_tag = 100 self.conj_id = 16 def test_update_flows_for_vlan(self): remote_group = self.driver.sg_port_map.get_sg.return_value remote_group.get_ethertype_filtered_addresses.return_value = [ '10.22.3.4'] with mock.patch.object(self.manager.conj_id_map, 'get_conj_id') as get_conj_id_mock: get_conj_id_mock.return_value = self.conj_id self.manager.add(self.vlan_tag, 'sg', 'remote_id', firewall.INGRESS_DIRECTION, constants.IPv4, 0) self.manager.add(self.vlan_tag, 'sg', 'remote_id', firewall.INGRESS_DIRECTION, constants.IPv4, 3) self.manager.update_flows_for_vlan(self.vlan_tag) self.assertEqual(self.driver._add_flow.call_args_list, [mock.call(actions='conjunction(16,1/2)', ct_state='+est-rel-rpl', dl_type=2048, nw_src='10.22.3.4/32', priority=70, reg_net=self.vlan_tag, table=82), mock.call(actions='conjunction(17,1/2)', ct_state='+new-est', dl_type=2048, nw_src='10.22.3.4/32', priority=70, reg_net=self.vlan_tag, table=82), mock.call(actions='conjunction(22,1/2)', ct_state='+est-rel-rpl', dl_type=2048, nw_src='10.22.3.4/32', priority=73, reg_net=self.vlan_tag, table=82), mock.call(actions='conjunction(23,1/2)', ct_state='+new-est', dl_type=2048, nw_src='10.22.3.4/32', priority=73, reg_net=self.vlan_tag, table=82)]) def test_sg_removed(self): with mock.patch.object(self.manager.conj_id_map, 'get_conj_id') as get_id_mock, \ mock.patch.object(self.manager.conj_id_map, 'delete_sg') as delete_sg_mock: get_id_mock.return_value = self.conj_id delete_sg_mock.return_value = [('remote_id', self.conj_id)] self.manager.add(self.vlan_tag, 'sg', 'remote_id', firewall.INGRESS_DIRECTION, constants.IPv4, 0) self.manager.flow_state[self.vlan_tag][( firewall.INGRESS_DIRECTION, constants.IPv4)] = { '10.22.3.4': [self.conj_id]} self.manager.sg_removed('sg') self.driver._add_flow.assert_not_called() self.driver.delete_flows_for_ip_addresses.assert_called_once_with( {'10.22.3.4'}, firewall.INGRESS_DIRECTION, constants.IPv4, self.vlan_tag) class FakeOVSPort(object): def __init__(self, name, port, mac): self.port_name = name self.ofport = port self.vif_mac = mac class TestOVSFirewallDriver(base.BaseTestCase): def setUp(self): super(TestOVSFirewallDriver, self).setUp() mock_bridge = mock.patch.object( ovs_lib, 'OVSBridge', autospec=True).start() self.firewall = ovsfw.OVSFirewallDriver(mock_bridge) self.mock_bridge = self.firewall.int_br self.mock_bridge.reset_mock() self.fake_ovs_port = FakeOVSPort('port', 1, '00:00:00:00:00:00') self.mock_bridge.br.get_vif_port_by_id.return_value = \ self.fake_ovs_port def _prepare_security_group(self): security_group_rules = [ {'ethertype': constants.IPv4, 'protocol': constants.PROTO_NAME_TCP, 'direction': firewall.INGRESS_DIRECTION, 'port_range_min': 123, 'port_range_max': 123}] self.firewall.update_security_group_rules(1, security_group_rules) security_group_rules = [ {'ethertype': constants.IPv4, 'protocol': constants.PROTO_NAME_UDP, 'direction': firewall.EGRESS_DIRECTION}, {'ethertype': constants.IPv6, 'protocol': constants.PROTO_NAME_TCP, 'remote_group_id': 2, 'direction': firewall.EGRESS_DIRECTION}] self.firewall.update_security_group_rules(2, security_group_rules) @property def port_ofport(self): return self.mock_bridge.br.get_vif_port_by_id.return_value.ofport @property def port_mac(self): return self.mock_bridge.br.get_vif_port_by_id.return_value.vif_mac def test_callbacks_registered(self): with mock.patch.object(callbacks_registry, "subscribe") as subscribe: firewall = ovsfw.OVSFirewallDriver(mock.MagicMock()) subscribe.assert_called_once_with( firewall._init_firewall_callback, callbacks_resources.AGENT, callbacks_events.OVS_RESTARTED) def test_initialize_bridge(self): br = self.firewall.initialize_bridge(self.mock_bridge) self.assertEqual(br, self.mock_bridge.deferred.return_value) def test__add_flow_dl_type_formatted_to_string(self): dl_type = 0x0800 self.firewall._add_flow(dl_type=dl_type) def test__add_flow_registers_are_replaced(self): self.firewall._add_flow(in_port=1, reg_port=1, reg_net=2) expected_calls = {'in_port': 1, 'reg{:d}'.format(ovsfw_consts.REG_PORT): 1, 'reg{:d}'.format(ovsfw_consts.REG_NET): 2} self.mock_bridge.br.add_flow.assert_called_once_with( **expected_calls) def test__drop_all_unmatched_flows(self): self.firewall._drop_all_unmatched_flows() expected_calls = [ mock.call(actions='drop', priority=0, table=ovs_consts.BASE_EGRESS_TABLE), mock.call(actions='drop', priority=0, table=ovs_consts.RULES_EGRESS_TABLE), mock.call(actions='drop', priority=0, table=ovs_consts.ACCEPT_OR_INGRESS_TABLE), mock.call(actions='drop', priority=0, table=ovs_consts.BASE_INGRESS_TABLE), mock.call(actions='drop', priority=0, table=ovs_consts.RULES_INGRESS_TABLE)] actual_calls = self.firewall.int_br.br.add_flow.call_args_list self.assertEqual(expected_calls, actual_calls) def test_get_or_create_ofport_non_existing(self): port_dict = { 'device': 'port-id', 'security_groups': [123, 456]} port = self.firewall.get_or_create_ofport(port_dict) sg1, sg2 = sorted( self.firewall.sg_port_map.sec_groups.values(), key=lambda x: x.id) self.assertIn(port, self.firewall.sg_port_map.ports.values()) self.assertEqual( sorted(port.sec_groups, key=lambda x: x.id), [sg1, sg2]) self.assertIn(port, sg1.ports) self.assertIn(port, sg2.ports) def test_get_or_create_ofport_existing(self): port_dict = { 'device': 'port-id', 'security_groups': [123, 456]} of_port = create_ofport(port_dict) self.firewall.sg_port_map.ports[of_port.id] = of_port port = self.firewall.get_or_create_ofport(port_dict) sg1, sg2 = sorted( self.firewall.sg_port_map.sec_groups.values(), key=lambda x: x.id) self.assertIs(of_port, port) self.assertIn(port, self.firewall.sg_port_map.ports.values()) self.assertEqual( sorted(port.sec_groups, key=lambda x: x.id), [sg1, sg2]) self.assertIn(port, sg1.ports) self.assertIn(port, sg2.ports) def test_get_or_create_ofport_changed(self): port_dict = { 'device': 'port-id', 'security_groups': [123, 456]} of_port = create_ofport(port_dict) self.firewall.sg_port_map.ports[of_port.id] = of_port fake_ovs_port = FakeOVSPort('port', 2, '00:00:00:00:00:00') self.mock_bridge.br.get_vif_port_by_id.return_value = \ fake_ovs_port port = self.firewall.get_or_create_ofport(port_dict) self.assertEqual(port.ofport, 2) def test_get_or_create_ofport_missing(self): port_dict = { 'device': 'port-id', 'security_groups': [123, 456]} self.mock_bridge.br.get_vif_port_by_id.return_value = None with testtools.ExpectedException(exceptions.OVSFWPortNotFound): self.firewall.get_or_create_ofport(port_dict) def test_get_or_create_ofport_missing_nocreate(self): port_dict = { 'device': 'port-id', 'security_groups': [123, 456]} self.mock_bridge.br.get_vif_port_by_id.return_value = None self.assertIsNone(self.firewall.get_ofport(port_dict)) self.assertFalse(self.mock_bridge.br.get_vif_port_by_id.called) def test_is_port_managed_managed_port(self): port_dict = {'device': 'port-id'} self.firewall.sg_port_map.ports[port_dict['device']] = object() is_managed = self.firewall.is_port_managed(port_dict) self.assertTrue(is_managed) def test_is_port_managed_not_managed_port(self): port_dict = {'device': 'port-id'} is_managed = self.firewall.is_port_managed(port_dict) self.assertFalse(is_managed) def test_prepare_port_filter(self): port_dict = {'device': 'port-id', 'security_groups': [1], 'fixed_ips': ["10.0.0.1"]} self._prepare_security_group() self.firewall.prepare_port_filter(port_dict) exp_egress_classifier = mock.call( actions='set_field:{:d}->reg5,set_field:{:d}->reg6,' 'resubmit(,{:d})'.format( self.port_ofport, TESTING_VLAN_TAG, ovs_consts.BASE_EGRESS_TABLE), in_port=self.port_ofport, priority=100, table=ovs_consts.TRANSIENT_TABLE) exp_ingress_classifier = mock.call( actions='set_field:{:d}->reg5,set_field:{:d}->reg6,' 'strip_vlan,resubmit(,{:d})'.format( self.port_ofport, TESTING_VLAN_TAG, ovs_consts.BASE_INGRESS_TABLE), dl_dst=self.port_mac, dl_vlan='0x%x' % TESTING_VLAN_TAG, priority=90, table=ovs_consts.TRANSIENT_TABLE) filter_rule = mock.call( actions='ct(commit,zone=NXM_NX_REG6[0..15]),' 'output:{:d},resubmit(,{:d})'.format( self.port_ofport, ovs_consts.ACCEPTED_INGRESS_TRAFFIC_TABLE), dl_type="0x{:04x}".format(n_const.ETHERTYPE_IP), nw_proto=constants.PROTO_NUM_TCP, priority=77, reg5=self.port_ofport, ct_state=ovsfw_consts.OF_STATE_NEW_NOT_ESTABLISHED, table=ovs_consts.RULES_INGRESS_TABLE, tcp_dst='0x007b') calls = self.mock_bridge.br.add_flow.call_args_list for call in exp_ingress_classifier, exp_egress_classifier, filter_rule: self.assertIn(call, calls) def test_prepare_port_filter_port_security_disabled(self): port_dict = {'device': 'port-id', 'security_groups': [1], 'port_security_enabled': False} self._prepare_security_group() with mock.patch.object( self.firewall, 'initialize_port_flows') as m_init_flows: self.firewall.prepare_port_filter(port_dict) self.assertFalse(m_init_flows.called) def test_prepare_port_filter_initialized_port(self): port_dict = {'device': 'port-id', 'security_groups': [1]} self._prepare_security_group() self.firewall.prepare_port_filter(port_dict) self.assertFalse(self.mock_bridge.br.delete_flows.called) self.firewall.prepare_port_filter(port_dict) self.assertTrue(self.mock_bridge.br.delete_flows.called) def test_update_port_filter(self): port_dict = {'device': 'port-id', 'security_groups': [1]} self._prepare_security_group() self.firewall.prepare_port_filter(port_dict) port_dict['security_groups'] = [2] self.mock_bridge.reset_mock() self.firewall.update_port_filter(port_dict) self.assertTrue(self.mock_bridge.br.delete_flows.called) conj_id = self.firewall.conj_ip_manager.conj_id_map.get_conj_id( 2, 2, firewall.EGRESS_DIRECTION, constants.IPv6) filter_rules = [mock.call( actions='resubmit(,{:d})'.format( ovs_consts.ACCEPT_OR_INGRESS_TABLE), dl_type="0x{:04x}".format(n_const.ETHERTYPE_IP), nw_proto=constants.PROTO_NUM_UDP, priority=77, ct_state=ovsfw_consts.OF_STATE_NEW_NOT_ESTABLISHED, reg5=self.port_ofport, table=ovs_consts.RULES_EGRESS_TABLE), mock.call( actions='conjunction({:d},2/2)'.format(conj_id + 6), ct_state=ovsfw_consts.OF_STATE_ESTABLISHED_NOT_REPLY, dl_type=mock.ANY, nw_proto=6, priority=73, reg5=self.port_ofport, table=ovs_consts.RULES_EGRESS_TABLE)] self.mock_bridge.br.add_flow.assert_has_calls( filter_rules, any_order=True) def test_update_port_filter_create_new_port_if_not_present(self): port_dict = {'device': 'port-id', 'security_groups': [1]} self._prepare_security_group() with mock.patch.object( self.firewall, 'prepare_port_filter' ) as prepare_mock, mock.patch.object( self.firewall, 'initialize_port_flows' ) as initialize_port_flows_mock, mock.patch.object( self.firewall, 'add_flows_from_rules' ) as add_flows_from_rules_mock: self.firewall.update_port_filter(port_dict) self.assertFalse(prepare_mock.called) self.assertFalse(self.mock_bridge.br.delete_flows.called) self.assertTrue(initialize_port_flows_mock.called) self.assertTrue(add_flows_from_rules_mock.called) def test_update_port_filter_port_security_disabled(self): port_dict = {'device': 'port-id', 'security_groups': [1]} self._prepare_security_group() self.firewall.prepare_port_filter(port_dict) port_dict['port_security_enabled'] = False self.firewall.update_port_filter(port_dict) self.assertTrue(self.mock_bridge.br.delete_flows.called) def test_update_port_filter_applies_added_flows(self): """Check flows are applied right after _set_flows is called.""" port_dict = {'device': 'port-id', 'security_groups': [1]} self._prepare_security_group() self.firewall.prepare_port_filter(port_dict) with self.firewall.defer_apply(): self.firewall.update_port_filter(port_dict) self.assertEqual(2, self.mock_bridge.apply_flows.call_count) def test_remove_port_filter(self): port_dict = {'device': 'port-id', 'security_groups': [1]} self._prepare_security_group() self.firewall.prepare_port_filter(port_dict) self.firewall.remove_port_filter(port_dict) self.assertTrue(self.mock_bridge.br.delete_flows.called) self.assertIn(1, self.firewall.sg_to_delete) def test_remove_port_filter_port_security_disabled(self): port_dict = {'device': 'port-id', 'security_groups': [1]} self.firewall.remove_port_filter(port_dict) self.assertFalse(self.mock_bridge.br.delete_flows.called) def test_update_security_group_rules(self): """Just make sure it doesn't crash""" new_rules = [ {'ethertype': constants.IPv4, 'direction': firewall.INGRESS_DIRECTION, 'protocol': constants.PROTO_NAME_ICMP}, {'ethertype': constants.IPv4, 'direction': firewall.EGRESS_DIRECTION, 'remote_group_id': 2}] self.firewall.update_security_group_rules(1, new_rules) def test_update_security_group_members(self): """Just make sure it doesn't crash""" new_members = {constants.IPv4: [1, 2, 3, 4]} self.firewall.update_security_group_members(2, new_members) def test__cleanup_stale_sg(self): self._prepare_security_group() self.firewall.sg_to_delete = {1} with mock.patch.object(self.firewall.conj_ip_manager, 'sg_removed') as sg_removed_mock,\ mock.patch.object(self.firewall.sg_port_map, 'delete_sg') as delete_sg_mock: self.firewall._cleanup_stale_sg() sg_removed_mock.assert_called_once_with(1) delete_sg_mock.assert_called_once_with(1) def test_get_ovs_port(self): ovs_port = self.firewall.get_ovs_port('port_id') self.assertEqual(self.fake_ovs_port, ovs_port) def test_get_ovs_port_non_existent(self): self.mock_bridge.br.get_vif_port_by_id.return_value = None with testtools.ExpectedException(exceptions.OVSFWPortNotFound): self.firewall.get_ovs_port('port_id') def test__initialize_egress_no_port_security_sends_to_egress(self): self.mock_bridge.br.db_get_val.return_value = {'tag': TESTING_VLAN_TAG} self.firewall._initialize_egress_no_port_security('port_id') expected_call = mock.call( table=ovs_consts.TRANSIENT_TABLE, priority=100, in_port=self.fake_ovs_port.ofport, actions='set_field:%d->reg%d,' 'set_field:%d->reg%d,' 'resubmit(,%d)' % ( self.fake_ovs_port.ofport, ovsfw_consts.REG_PORT, TESTING_VLAN_TAG, ovsfw_consts.REG_NET, ovs_consts.ACCEPT_OR_INGRESS_TABLE) ) calls = self.mock_bridge.br.add_flow.call_args_list self.assertIn(expected_call, calls) def test__initialize_egress_no_port_security_no_tag(self): self.mock_bridge.br.db_get_val.return_value = {} self.firewall._initialize_egress_no_port_security('port_id') self.assertFalse(self.mock_bridge.br.add_flow.called) def test__remove_egress_no_port_security_deletes_flow(self): self.mock_bridge.br.db_get_val.return_value = {'tag': TESTING_VLAN_TAG} self.firewall.sg_port_map.unfiltered['port_id'] = 1 self.firewall._remove_egress_no_port_security('port_id') expected_call = mock.call( table=ovs_consts.TRANSIENT_TABLE, in_port=self.fake_ovs_port.ofport, ) calls = self.mock_bridge.br.delete_flows.call_args_list self.assertIn(expected_call, calls) def test__remove_egress_no_port_security_non_existing_port(self): with testtools.ExpectedException(exceptions.OVSFWPortNotHandled): self.firewall._remove_egress_no_port_security('foo') def test_process_trusted_ports_caches_port_id(self): self.firewall.process_trusted_ports(['port_id']) self.assertIn('port_id', self.firewall.sg_port_map.unfiltered) def test_process_trusted_ports_port_not_found(self): """Check that exception is not propagated outside.""" self.mock_bridge.br.get_vif_port_by_id.return_value = None self.firewall.process_trusted_ports(['port_id']) # Processing should have failed so port is not cached self.assertNotIn('port_id', self.firewall.sg_port_map.unfiltered) def test_remove_trusted_ports_clears_cached_port_id(self): self.firewall.sg_port_map.unfiltered['port_id'] = 1 self.firewall.remove_trusted_ports(['port_id']) self.assertNotIn('port_id', self.firewall.sg_port_map.unfiltered) def test_remove_trusted_ports_not_managed_port(self): """Check that exception is not propagated outside.""" self.firewall.remove_trusted_ports(['port_id']) class TestCookieContext(base.BaseTestCase): def setUp(self): super(TestCookieContext, self).setUp() # Don't attempt to connect to ovsdb mock.patch('neutron.agent.ovsdb.api.from_config').start() # Don't trigger iptables -> ovsfw migration mock.patch( 'neutron.agent.linux.openvswitch_firewall.iptables.Helper').start() self.execute = mock.patch.object( utils, "execute", spec=utils.execute).start() bridge = ovs_bridge.OVSAgentBridge('foo') mock.patch.object( ovsfw.OVSFirewallDriver, 'initialize_bridge', return_value=bridge.deferred( full_ordered=True, use_bundle=True)).start() self.firewall = ovsfw.OVSFirewallDriver(bridge) # Remove calls from firewall initialization self.execute.reset_mock() def test_cookie_is_different_in_context(self): default_cookie = self.firewall.int_br.br.default_cookie with self.firewall.update_cookie_context(): self.firewall._add_flow(actions='drop') update_cookie = self.firewall._update_cookie self.firewall._add_flow(actions='drop') expected_calls = [ mock.call( mock.ANY, process_input='hard_timeout=0,idle_timeout=0,priority=1,' 'cookie=%d,actions=drop' % cookie, run_as_root=mock.ANY, ) for cookie in (update_cookie, default_cookie) ] self.execute.assert_has_calls(expected_calls) def test_context_cookie_is_not_left_as_used(self): with self.firewall.update_cookie_context(): update_cookie = self.firewall._update_cookie self.assertNotIn( update_cookie, self.firewall.int_br.br._reserved_cookies)
42.929024
79
0.630953
[ "Apache-2.0" ]
mmidolesov2/neutron
neutron/tests/unit/agent/linux/openvswitch_firewall/test_firewall.py
33,871
Python
""" Test Sermin config module """ from sermin.config.module import Registry, Namespace, Setting, settings from sermin.config.utils import parse_args from .utils import SafeTestCase class SettingsTest(SafeTestCase): def setUp(self): self.old_settings = settings._namespaces settings._clear() def tearDown(self): settings.__dict__['_namespaces'] = self.old_settings def test_settings_exists(self): self.assertIsInstance(settings, Registry) def test_create_namespace(self): settings.test = 'Test settings' self.assertIsInstance(settings.test, Namespace) self.assertEqual(settings.test._label, 'Test settings') def test_create_setting(self): settings.test = 'Test settings' settings.test.setting = Setting('Test setting') self.assertIsInstance(settings.test._settings['setting'], Setting) self.assertEqual( settings.test._settings['setting'].label, 'Test setting', ) self.assertEqual(settings.test.setting, None) def test_set_setting(self): settings.test = 'Test settings' settings.test.setting = Setting('Test setting') settings.test.setting = 'Testing' self.assertEqual(settings.test.setting, 'Testing') def test_cannot_redefine_namespace(self): settings.test = 'Test settings' with self.assertRaisesRegexp( ValueError, r'^Namespaces cannot be redefined$', ): settings.test = 'Second assignment' def test_cannot_redefine_setting(self): settings.test = 'Test settings' settings.test.setting = Setting('Test setting') with self.assertRaisesRegexp( ValueError, r'^Settings cannot be redefined$', ): settings.test.setting = Setting('Second assignment') def test_setting_evaluates_bool(self): settings.test = 'Test settings' settings.test.setting = Setting('Test') settings.test.setting = False self.assertTrue(type(settings.test.setting), bool) self.assertFalse(settings.test.setting) class ParseArgsTest(SafeTestCase): def test_empty(self): unnamed, named = parse_args('') self.assertIsInstance(unnamed, list) self.assertIsInstance(named, dict) self.assertEqual(len(unnamed), 0) self.assertEqual(len(named), 0)
33.676056
74
0.670849
[ "BSD-3-Clause" ]
radiac/sermin
tests/test_config.py
2,391
Python
import numpy as np from rafiki.constants import TaskType def ensemble_predictions(predictions_list, predict_label_mappings, task): # TODO: Better ensembling of predictions based on `predict_label_mapping` & `task` of models if len(predictions_list) == 0 or len(predictions_list[0]) == 0: return [] # By default, just return some trial's predictions index = 0 predictions = predictions_list[index] predict_label_mapping = predict_label_mappings[index] if task == TaskType.IMAGE_CLASSIFICATION: # Map probabilities to most probable label pred_indices = np.argmax(predictions, axis=1) predictions = [predict_label_mapping[str(i)] for i in pred_indices] return predictions
33.772727
96
0.725437
[ "Apache-2.0" ]
zlheui/rafiki
rafiki/predictor/ensemble.py
743
Python
"""Auto-generated file, do not edit by hand. EC metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_EC = PhoneMetadata(id='EC', country_code=None, international_prefix=None, general_desc=PhoneNumberDesc(national_number_pattern='[19]\\d{2}', possible_number_pattern='\\d{3}'), toll_free=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), premium_rate=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), emergency=PhoneNumberDesc(national_number_pattern='1(?:0[12]|12)|911', possible_number_pattern='\\d{3}', example_number='911'), short_code=PhoneNumberDesc(national_number_pattern='1(?:0[12]|12)|911', possible_number_pattern='\\d{3}', example_number='911'), standard_rate=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), carrier_specific=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), short_data=True)
76.384615
132
0.784491
[ "Apache-2.0" ]
CygnusNetworks/python-phonenumbers
python/phonenumbers/shortdata/region_EC.py
993
Python
import django_filters from django_filters import DateFilter from .models import Pet class PetFilter(django_filters.FilterSet): # name = django_filters.CharFilter(lookup_expr='iexact') start_date = DateFilter(field_name = "age", lookup_expr='gte') #greater or equal to end_date = DateFilter(field_name = "age", lookup_expr='lte') #less or equal to class Meta: model = Pet fields = ['age', 'pet_type','breed','size', 'sex' ,'vaccinated', 'castrated','dewormed','vulnerable', ] exclude = ['age']
38.4
87
0.640625
[ "MIT" ]
Me-Adota/website
pets/filters.py
576
Python
import pytest from app import crud from app.schemas import EpisodeCreate from app.schemas.episode import EpisodeSearch from app.tests.utils import random_segment def test_get_episode(db): ep_in = EpisodeCreate(name="ep1", air_date="2022-03-04", segment=random_segment()) ep = crud.episode.create(db, ep_in) assert crud.episode.get(db, ep.id) def test_get_multi_episode(db): ep_in = EpisodeCreate(name="ep11", air_date="2022-03-04", segment=random_segment()) crud.episode.create(db, ep_in) ep_in = EpisodeCreate(name="ep12", air_date="2022-03-04", segment=random_segment()) crud.episode.create(db, ep_in) assert len(crud.episode.get_multi(db)) == 2 @pytest.mark.parametrize( "test_input,expected", [ ({"air_date__lte": "2022-03-01"}, 1), ({"air_date__gte": "2022-04-01"}, 4), ({"air_date__gte": "2022-03-01", "air_date__lte": "2022-05-01"}, 3), ], ) def test_date_search_episode(db, setup, test_input, expected): obj_in = EpisodeSearch(**test_input) assert len(crud.episode.search(db, obj_in)) == expected @pytest.mark.parametrize( "test_input,expected", [ ({"name__icontains": "Nibelheim"}, 0), ({"name__icontains": "Midgar"}, 1), ({"name__icontains": "mId"}, 1), ({"name__icontains": "GaR"}, 1), ], ) def test_name_search_episode(db, setup, test_input, expected): obj_in = EpisodeSearch(**test_input) assert len(crud.episode.search(db, obj_in)) == expected @pytest.mark.parametrize( "test_input,expected", [ ({"segment": "s01e15"}, 0), ({"segment": "S01e01"}, 1), ], ) def test_segment_search_episode(db, setup, test_input, expected): obj_in = EpisodeSearch(**test_input) assert len(crud.episode.search(db, obj_in)) == expected
29.129032
87
0.662237
[ "MIT" ]
flsworld/comment-rick-n-morty
backend/app/tests/unit/crud/test_episode.py
1,806
Python
# coding:utf-8 import sys import codecs from pathlib import Path from collections import defaultdict MAIN_PATH = Path(__file__).absolute().parent.parent.parent sys.path.insert(0, str(MAIN_PATH)) from log import log_info as _info from log import log_error as _error from log import print_process as _process class Vertex(object): def __init__(self, value): self.value = value def __eq__(self, other): return self.value == other.value def __str__(self): return str(self.value) def __lt__(self, other): return self.value < other.value def __hash__(self): return hash(self.value) class Graph(object): def __init__(self): self.graph = defaultdict(list) def addEdge(self, u, v): self.graph[u].append(v) # for saving the nodes which have no outgoing arc if v not in self.graph.keys(): self.graph[v] = [] def DFSSearchInner(self, u, explored_list): explored_list[u] = True self.cache.append(u) for v in self.graph[u]: if not explored_list[v]: self.DFSSearchInner(v, explored_list) def DFSSearch(self, u): explored_list = {} for v in self.graph.keys(): explored_list[v] = False self.cache = [] self.DFSSearchInner(u, explored_list) return self.cache def SCCSearch(self, v_sorted): self.t = 0 self.finish_time = {} explored_list = {} for v in self.graph.keys(): explored_list[v] = False leaders = {} for v in v_sorted: if not explored_list[v]: leaders[v] = [] self.SCCSearch_DFS(v, explored_list, leaders[v]) return self.finish_time, leaders def SCCSearch_DFS(self, v, explored_list, leaders): explored_list[v] = True for u in self.graph[v]: if not explored_list[u]: leaders.append(u) self.SCCSearch_DFS(u, explored_list, leaders) self.t += 1 self.finish_time[v] = self.t def readFile(path): _info('Start building graph...') graph = Graph() with codecs.open(path, 'r', 'utf-8') as file: data = file.read().split('\n') for line in data: line_split = line.split(' ') u, other = line_split[0], line_split[1:] u_obj = Vertex(u) for v in other: v_obj = Vertex(v) graph.addEdge(u_obj, v_obj) _info('Finish building graph...') return graph def reverseGraph(graph): v_unsorted = list(graph.graph.keys()) v_sorted = sorted(v_unsorted, reverse=True) # reverse the graph graph_rev = Graph() for v in v_unsorted: for u in graph.graph[v]: graph_rev.addEdge(u, v) return graph_rev, v_sorted if __name__ == '__main__': graph = readFile('test_scc.txt') # sanity check _info('Check the graph:') cache = graph.DFSSearch(Vertex('b')) for v in cache: print(v, end=' ') _info('Finish checking!', head='\n INFO') # reverse the graph _info('Reverse the graph...') graph_rev, v_sorted = reverseGraph(graph) # sanity check _info('Check the graph:') cache = graph_rev.DFSSearch(Vertex('a')) for v in cache: print(v, end=' ') _info('Finish checking!', head='\n INFO') # find SCCs finish_time, _ = graph_rev.SCCSearch(v_sorted) v_2nd_pass = reversed([v for v, _ in finish_time.items()]) _info('Start finding SCCs...') _, leaders = graph.SCCSearch(v_2nd_pass) for k in leaders.keys(): print(k) _info('Result:') for key, value in leaders.items(): print(key) for v in value: print(v) print()
23.466216
60
0.644976
[ "Apache-2.0" ]
KnightZhang625/Stanford_Algorithm
Course_2/Week_01/3_SCC.py
3,473
Python
d = set() for i in range(int(input())): I = input().split('-> ') if len(I) == 1: d.add(I[1]) continue a, k = I for aa in a.split(): if aa not in d: print(i + 1) exit() d.add(k) print('correct')
15.266667
29
0.475983
[ "CC0-1.0" ]
terror/CompetitiveProgramming
kattis/proofs.py
229
Python
#!/usr/bin/env python from multipledispatch import dispatch as Override import rospy import threading from std_msgs.msg import Float64 from araig_msgs.msg import BoolStamped from base_classes.base_calculator import BaseCalculator """Compare data from one topic with one param pub_list = {"out_bool": "BoolStamped"} sub_list = {"in_float": "Float64"} rosparam inherit Base, only modify compare function""" class compParam(BaseCalculator): _pub_topic = "/out_bool" _sub_topic = "/in_float" def __init__(self, sub_dict = {_sub_topic: Float64}, pub_dict = {_pub_topic: BoolStamped}, rosparam = None, tolerance = 0, rate = None): if rosparam == None: rospy.logerr(rospy.get_name() + ": Please provide rosparam") else: self.compare_param = rosparam self.tolerance = tolerance super(compParam, self).__init__( sub_dict = sub_dict, pub_dict = pub_dict, rate = rate) @Override() def calculate(self): with BaseCalculator.LOCK[self._sub_topic]: current_vel = BaseCalculator.MSG[self._sub_topic] flag_test_ready = True if current_vel == None: flag_test_ready = False if flag_test_ready == True: msg = self.PubDict[self._pub_topic]() msg.header.stamp = rospy.Time.now() if abs(self.compare_param - current_vel.data) <= self.tolerance: msg.data = True else: msg.data = False self.PubDiag[self._pub_topic].publish(msg)
29.553571
76
0.610876
[ "Apache-2.0" ]
ipa-kut/araig_test_stack
araig_calculators/src/comparators/comp_param.py
1,655
Python
from deadfroglib import * import Image import math # set up the colors BLACK = 0xff000000 WHITE = 0xffffffff im = Image.open("willow.bmp") imOut = Image.new(im.mode, im.size) graph3d = CreateGraph3d() minA = 1000 maxA = -1000 minB = 1000 maxB = -1000 minC = 1000 maxC = -1000 err = 0.0 for y in range(im.size[1]): for x in range(im.size[0]): (r, g, b) = im.getpixel((x, y)) # ya = round(0.299*r + 0.587*g + 0.114*b) # cb = round(128 - 0.168736*r - 0.331264*g + 0.5*b) # cr = round(128 + 0.5*r - 0.418688*g - 0.081312*b) # ya = round( r + g + b) # cb = round( r - g) # cr = round( r + g - 2*b) ya = round((+0.61333*r + 0.58095*g + 0.53509*b) * 0.575) cb = round((-0.32762*r + 0.80357*g - 0.49693*b) * 0.575) + 128 cr = round((+0.71868*r - 0.12948*g - 0.68318*b) * 0.575) + 128 # {{0.61333, 0.58095, 0.53509}, {-0.32762, 0.80357, -0.49693}, {0.71868, -0.12948, -0.68318}} if ya < minA: minA = ya if ya > maxA: maxA = ya if cr < minB: minB = cr if cr > maxB: maxB = cr if cb < minC: minC = cb if cb > maxC: maxC = cb # Invert Y Cr Cb r2 = ya + 1.402 * (cr - 128) g2 = ya - 0.34414 * (cb - 128) - 0.71414 * (cr - 128) b2 = ya + 1.772 * (cb - 128) # # Invert custom colour space # cr -= 128 # cb -= 128 # ya /= 0.575 # cr /= 0.575 # cb /= 0.575 # r2 = 0.61333 * ya - 0.32762 * cb + 0.71868 * cr # g2 = 0.58095 * ya + 0.80357 * cb - 0.12948 * cr # b2 = 0.53509 * ya - 0.49693 * cb - 0.68318 * cr # if r != r2 or g != g2 or b != b2: # print "%5.2f %5.2f %5.2f" % (r,g,b) # print "%5.2f %5.2f %5.2f" % (r2,g2,b2) # print # Calc RMS error for this pixel err += math.sqrt((r - round(r2)) ** 2 + (g - round(g2)) ** 2 + (b - round(b2)) ** 2) col = (r << 16) + (g << 8) + b # Graph3dAddPoint(graph3d, ya-128, cr, cb, col) # print "%6.2f %6.2f %6.2f" % (ya, cr, cb) Graph3dAddPoint(graph3d, r-128, g-128, b-128, col) imOut.putpixel((x,y), (int(ya), int(cr), int(cb))) imOut.save("foo.bmp") print "Min:", minA, minB, minC print "Max:", maxA, maxB, maxC #Graph3dAddPoint(graph3d, -128, -128, -128, WHITE) #Graph3dAddPoint(graph3d, 128, 128, 128, WHITE) print "err", err / (im.size[0] * im.size[1]) # set up the window screenw = 600 screenh = 600 win = CreateWin(500, 50, screenw, screenh, True, '3d plot') input = win.contents.inputManager.contents font = CreateTextRenderer("Fixedsys", 8, True) dist = 730.0 zoom = 800.0 rotX = 0.0 rotZ = 0.0 cx = screenw / 2 cy = screenh / 2 while not win.contents.windowClosed and input.keys[KEY_ESC] == 0: bmp = AdvanceWin(win) ClearBitmap(bmp, WHITE) if input.lmb: if input.keys[KEY_SHIFT]: cx += input.mouseVelX cy += input.mouseVelY else: rotX -= float(input.mouseVelY) * 0.01 rotZ += float(input.mouseVelX) * 0.01 #rotZ += 0.03 zoom *= 1.0 + (input.mouseVelZ * 0.05) Graph3dRender(graph3d, bmp, cx, cy, dist, zoom, BLACK, rotX, rotZ) DrawTextSimple(font, BLACK, bmp, screenw - 100, 5, str(win.contents.fps)) RectFill(bmp, 0, screenh - 40, 230, 40, WHITE) DrawTextSimple(font, BLACK, bmp, 10, screenh - 35, "Hold left mouse to rotate") DrawTextSimple(font, BLACK, bmp, 10, screenh - 20, "Mouse wheel to zoom")
29.87395
100
0.52602
[ "MIT" ]
abainbridge/deadfrog-lib
python/graph3d.py
3,555
Python
# Copyright (c) OpenMMLab. All rights reserved. log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=10, metric='mAP', key_indicator='AP') optimizer = dict( type='Adam', lr=5e-4, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 210 log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) # model settings model = dict( type='TopDown', pretrained='https://download.openmmlab.com/mmpose/' 'pretrain_models/hrnet_w32-36af842e.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256))), ), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=32, out_channels=channel_cfg['num_output_channels'], num_deconv_layers=0, extra=dict(final_conv_kernel=1, ), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file='data/coco/person_detection_results/' 'COCO_val2017_detections_AP_H_56_person.json', ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] test_pipeline = val_pipeline data_root = 'data/coco' data = dict( samples_per_gpu=64, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=32), test_dataloader=dict(samples_per_gpu=32), train=dict( type='TopDownCocoDataset', ann_file=f'{data_root}/annotations/person_keypoints_train2017.json', img_prefix=f'{data_root}/train2017/', data_cfg=data_cfg, pipeline=train_pipeline), val=dict( type='TopDownCocoDataset', ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', img_prefix=f'{data_root}/val2017/', data_cfg=data_cfg, pipeline=val_pipeline), test=dict( type='TopDownCocoDataset', ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', img_prefix=f'{data_root}/val2017/', data_cfg=data_cfg, pipeline=val_pipeline), )
28.810345
79
0.591063
[ "Apache-2.0" ]
CCODING04/mmaction2
demo/hrnet_w32_coco_256x192.py
5,013
Python
import codecs from xml.sax.saxutils import quoteattr, escape __all__ = ['XMLWriter'] ESCAPE_ENTITIES = { '\r': '&#13;' } class XMLWriter(object): def __init__(self, stream, namespace_manager, encoding=None, decl=1, extra_ns=None): encoding = encoding or 'utf-8' encoder, decoder, stream_reader, stream_writer = \ codecs.lookup(encoding) self.stream = stream = stream_writer(stream) if decl: stream.write('<?xml version="1.0" encoding="%s"?>' % encoding) self.element_stack = [] self.nm = namespace_manager self.extra_ns = extra_ns or {} self.closed = True def __get_indent(self): return " " * len(self.element_stack) indent = property(__get_indent) def __close_start_tag(self): if not self.closed: # TODO: self.closed = True self.stream.write(">") def push(self, uri): self.__close_start_tag() write = self.stream.write write("\n") write(self.indent) write("<%s" % self.qname(uri)) self.element_stack.append(uri) self.closed = False self.parent = False def pop(self, uri=None): top = self.element_stack.pop() if uri: assert uri == top write = self.stream.write if not self.closed: self.closed = True write("/>") else: if self.parent: write("\n") write(self.indent) write("</%s>" % self.qname(top)) self.parent = True def element(self, uri, content, attributes={}): """Utility method for adding a complete simple element""" self.push(uri) for k, v in attributes.iteritems(): self.attribute(k, v) self.text(content) self.pop() def namespaces(self, namespaces=None): if not namespaces: namespaces = self.nm.namespaces() write = self.stream.write write("\n") for prefix, namespace in namespaces: if prefix: write(' xmlns:%s="%s"\n' % (prefix, namespace)) # Allow user-provided namespace bindings to prevail elif prefix not in self.extra_ns: write(' xmlns="%s"\n' % namespace) for prefix, namespace in self.extra_ns.items(): if prefix: write(' xmlns:%s="%s"\n' % (prefix, namespace)) else: write(' xmlns="%s"\n' % namespace) def attribute(self, uri, value): write = self.stream.write write(" %s=%s" % (self.qname(uri), quoteattr(value))) def text(self, text): self.__close_start_tag() if "<" in text and ">" in text and not "]]>" in text: self.stream.write("<![CDATA[") self.stream.write(text) self.stream.write("]]>") else: self.stream.write(escape(text, ESCAPE_ENTITIES)) def qname(self, uri): """Compute qname for a uri using our extra namespaces, or the given namespace manager""" for pre, ns in self.extra_ns.items(): if uri.startswith(ns): if pre != "": return ":".join(pre, uri[len(ns):]) else: return uri[len(ns):] return self.nm.qname(uri)
30.594595
74
0.535925
[ "Apache-2.0" ]
27theworldinurhand/schemaorg
lib/rdflib/plugins/serializers/xmlwriter.py
3,396
Python
from tests.conftest import log_in def test_logout_auth_user(test_client): """ GIVEN a flask app WHEN an authorized user logs out THEN check that the user was logged out successfully """ log_in(test_client) response = test_client.get("auth/logout", follow_redirects=True) assert response.status_code == 200 # assert b"<!-- index.html -->" in response.data # Removed -- COVID assert b"You have been logged out." in response.data def test_logout_anon_user(test_client): """ GIVEN a flask app WHEN an anon user attemps to log out THEN check that a message flashes informing them that they are already logged out. """ response = test_client.get("auth/logout", follow_redirects=True) assert response.status_code == 200 # assert b"<!-- index.html -->" in response.data # Removed -- COVID assert b"You were not, and still are not, logged in." in response.data
34.518519
86
0.697425
[ "MIT" ]
KGB33/Wedding-Website
tests/test_auth/test_logout.py
932
Python
def demo(): """Output: ---------⌝ ---------- ----?????- ---------- ---------- --!!!----- --!!!----- ---------- ---------- ⌞--------- """ n = 10 # Construction is easy: grid = {} # Assignment is easy: grid[(0, 0)] = "⌞" grid[(n - 1, n - 1)] = "⌝" # Helper functions that just work on the dictionary: fill(grid, "!", start=(2, 3), stop=(5, 5)) fill(grid, "?", start=(4, 7), stop=(9, 8)) print(stringify(grid, n)) def fill(grid: dict, value: str, start=(0, 0), stop=(0, 0)): """Using product allows for flatter loops.""" from itertools import product for coord in product(range(start[0], stop[0]), range(start[1], stop[1])): grid[coord] = value def stringify(grid: dict, n: int) -> str: """Stringify with (0, 0) in the lower-left corner.""" rows = [] for y in reversed(range(n)): row = [] for x in range(n): value = grid.get((x, y), "-") row.append(value) rows.append(row) return "\n".join("".join(row) for row in rows) if __name__ == "__main__": demo()
20.745455
77
0.45837
[ "MIT" ]
ssangervasi/examples
examples/grids/python/grid.py
1,149
Python
# coding: utf-8 """ Apteco API An API to allow access to Apteco Marketing Suite resources # noqa: E501 The version of the OpenAPI document: v2 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class Selection(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'ancestor_counts': 'bool', 'record_set': 'RecordSet', 'rule': 'Rule', 'rfv': 'RFV', 'n_per': 'NPer', 'top_n': 'TopN', 'limits': 'Limits', 'table_name': 'str', 'name': 'str' } attribute_map = { 'ancestor_counts': 'ancestorCounts', 'record_set': 'recordSet', 'rule': 'rule', 'rfv': 'rfv', 'n_per': 'nPer', 'top_n': 'topN', 'limits': 'limits', 'table_name': 'tableName', 'name': 'name' } def __init__(self, ancestor_counts=None, record_set=None, rule=None, rfv=None, n_per=None, top_n=None, limits=None, table_name=None, name=None): # noqa: E501 """Selection - a model defined in OpenAPI""" # noqa: E501 self._ancestor_counts = None self._record_set = None self._rule = None self._rfv = None self._n_per = None self._top_n = None self._limits = None self._table_name = None self._name = None self.discriminator = None if ancestor_counts is not None: self.ancestor_counts = ancestor_counts if record_set is not None: self.record_set = record_set if rule is not None: self.rule = rule if rfv is not None: self.rfv = rfv if n_per is not None: self.n_per = n_per if top_n is not None: self.top_n = top_n if limits is not None: self.limits = limits self.table_name = table_name if name is not None: self.name = name @property def ancestor_counts(self): """Gets the ancestor_counts of this Selection. # noqa: E501 :return: The ancestor_counts of this Selection. # noqa: E501 :rtype: bool """ return self._ancestor_counts @ancestor_counts.setter def ancestor_counts(self, ancestor_counts): """Sets the ancestor_counts of this Selection. :param ancestor_counts: The ancestor_counts of this Selection. # noqa: E501 :type: bool """ self._ancestor_counts = ancestor_counts @property def record_set(self): """Gets the record_set of this Selection. # noqa: E501 :return: The record_set of this Selection. # noqa: E501 :rtype: RecordSet """ return self._record_set @record_set.setter def record_set(self, record_set): """Sets the record_set of this Selection. :param record_set: The record_set of this Selection. # noqa: E501 :type: RecordSet """ self._record_set = record_set @property def rule(self): """Gets the rule of this Selection. # noqa: E501 :return: The rule of this Selection. # noqa: E501 :rtype: Rule """ return self._rule @rule.setter def rule(self, rule): """Sets the rule of this Selection. :param rule: The rule of this Selection. # noqa: E501 :type: Rule """ self._rule = rule @property def rfv(self): """Gets the rfv of this Selection. # noqa: E501 :return: The rfv of this Selection. # noqa: E501 :rtype: RFV """ return self._rfv @rfv.setter def rfv(self, rfv): """Sets the rfv of this Selection. :param rfv: The rfv of this Selection. # noqa: E501 :type: RFV """ self._rfv = rfv @property def n_per(self): """Gets the n_per of this Selection. # noqa: E501 :return: The n_per of this Selection. # noqa: E501 :rtype: NPer """ return self._n_per @n_per.setter def n_per(self, n_per): """Sets the n_per of this Selection. :param n_per: The n_per of this Selection. # noqa: E501 :type: NPer """ self._n_per = n_per @property def top_n(self): """Gets the top_n of this Selection. # noqa: E501 :return: The top_n of this Selection. # noqa: E501 :rtype: TopN """ return self._top_n @top_n.setter def top_n(self, top_n): """Sets the top_n of this Selection. :param top_n: The top_n of this Selection. # noqa: E501 :type: TopN """ self._top_n = top_n @property def limits(self): """Gets the limits of this Selection. # noqa: E501 :return: The limits of this Selection. # noqa: E501 :rtype: Limits """ return self._limits @limits.setter def limits(self, limits): """Sets the limits of this Selection. :param limits: The limits of this Selection. # noqa: E501 :type: Limits """ self._limits = limits @property def table_name(self): """Gets the table_name of this Selection. # noqa: E501 :return: The table_name of this Selection. # noqa: E501 :rtype: str """ return self._table_name @table_name.setter def table_name(self, table_name): """Sets the table_name of this Selection. :param table_name: The table_name of this Selection. # noqa: E501 :type: str """ if table_name is None: raise ValueError("Invalid value for `table_name`, must not be `None`") # noqa: E501 self._table_name = table_name @property def name(self): """Gets the name of this Selection. # noqa: E501 :return: The name of this Selection. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this Selection. :param name: The name of this Selection. # noqa: E501 :type: str """ self._name = name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Selection): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
24.885449
162
0.553496
[ "Apache-2.0" ]
Apteco/apteco-api
apteco_api/models/selection.py
8,038
Python
""" mavDynamics - this file implements the dynamic equations of motion for MAV - use unit quaternion for the attitude state part of mavPySim - Beard & McLain, PUP, 2012 - Update history: 12/20/2018 - RWB 2/24/2020 """ import sys sys.path.append('..') import numpy as np # load message types from message_types.msg_state import msgState import parameters.aerosonde_parameters as MAV from tools.rotations import Quaternion2Rotation, Quaternion2Euler, skew, quat_prod import mavsim_python_chap5_model_coef as chap5 class mavDynamics: def __init__(self, Ts): self._ts_simulation = Ts # set initial states based on parameter file # _state is the 13x1 internal state of the aircraft that is being propagated: # _state = [pn, pe, pd, u, v, w, e0, e1, e2, e3, p, q, r] # We will also need a variety of other elements that are functions of the _state and the wind. # self.true_state is a 19x1 vector that is estimated and used by the autopilot to control the aircraft: # true_state = [pn, pe, h, Va, alpha, beta, phi, theta, chi, p, q, r, Vg, wn, we, psi, gyro_bx, gyro_by, gyro_bz] self._state = np.array([[MAV.pn0], # (0) [MAV.pe0], # (1) [MAV.pd0], # (2) [MAV.u0], # (3) [MAV.v0], # (4) [MAV.w0], # (5) [MAV.e0], # (6) [MAV.e1], # (7) [MAV.e2], # (8) [MAV.e3], # (9) [MAV.p0], # (10) [MAV.q0], # (11) [MAV.r0]]) # (12) # store wind data for fast recall since it is used at various points in simulation self._wind = np.array([[0.], [0.], [0.]]) # wind in NED frame in meters/sec self._update_velocity_data() # store forces to avoid recalculation in the sensors function self._forces = np.array([[], [], []]) ur = self._state.item(3) vr = self._state.item(4) wr = self._state.item(5) self._Va = np.sqrt(ur**2 + vr**2 + wr**2) self._alpha = np.arctan2(wr,ur) self._beta = np.arcsin(vr/self._Va) # initialize true_state message self.true_state = msgState() ################################### # public functions def update(self, delta, wind): """ Integrate the differential equations defining dynamics, update sensors delta = (delta_a, delta_e, delta_r, delta_t) are the control inputs wind is the wind vector in inertial coordinates Ts is the time step between function calls. """ # get forces and moments acting on rigid bod forces_moments = self._forces_moments(delta) # Integrate ODE using Runge-Kutta RK4 algorithm time_step = self._ts_simulation k1 = self._derivatives(self._state, forces_moments) k2 = self._derivatives(self._state + time_step/2.*k1, forces_moments) k3 = self._derivatives(self._state + time_step/2.*k2, forces_moments) k4 = self._derivatives(self._state + time_step*k3, forces_moments) self._state += time_step/6 * (k1 + 2*k2 + 2*k3 + k4) # normalize the quaternion e0 = self._state.item(6) e1 = self._state.item(7) e2 = self._state.item(8) e3 = self._state.item(9) normE = np.sqrt(e0**2+e1**2+e2**2+e3**2) self._state[6][0] = self._state.item(6)/normE self._state[7][0] = self._state.item(7)/normE self._state[8][0] = self._state.item(8)/normE self._state[9][0] = self._state.item(9)/normE # update the airspeed, angle of attack, and side slip angles using new state self._update_velocity_data(wind) # update the message class for the true state self._update_true_state() def external_set_state(self, new_state): self._state = new_state ################################### # private functions def _derivatives(self, x, u): """ for the dynamics xdot = f(x, u), returns fdot(x, u) """ # Get force, moment (torque) f_b = u[:3] m_b = u[3:] # Get position, velocity, quaternion (rotation), angular velocity r_i = x[:3] # wrt to i-frame v_b = x[3:6] # wrt to i-frame q_ib = x[6:10] # for rotation b to i-frame w_b = x[10:] # wrt to b-frame # Normalize quat. -> rotation q_ib = q_ib/np.linalg.norm(q_ib) # normalize R_ib = Quaternion2Rotation(q_ib) # Compute equations of motion # d/dt(r_i) rdot_i = R_ib @ v_b # d/dt(v_b) vdot_b = (1/MAV.mass)*f_b-skew(w_b) @ v_b # d/dt(q_ib) wq_ib = np.zeros((4,1)) wq_ib[1:] = w_b qdot_ib = 0.5 * quat_prod(wq_ib, q_ib) wt_b = skew(w_b) # d/dt(w_b) wdot_b = np.linalg.inv(MAV.J) @ (m_b - (wt_b @ (MAV.J @ w_b))) x_out = np.concatenate([rdot_i,vdot_b,qdot_ib,np.array(wdot_b)],axis = 0) return x_out def _update_velocity_data(self, wind=np.zeros((6,1))): steady_state = wind[0:3] gust = wind[3:6] ur = self._state.item(3) - steady_state[0] - gust[0] vr = self._state.item(4) - steady_state[1] - gust[1] wr = self._state.item(5) - steady_state[2] - gust[2] self._Va = np.sqrt(ur**2 + vr**2 + wr**2) self._alpha = np.arctan2(wr,ur) self._beta = np.arcsin(vr/self._Va) def thrust_from_prop(self, delta_t): # compute thrust and torque due to propeller (See addendum by McLain) # map delta_t throttle command (0 to 1) into motor input voltage V_in = MAV.V_max * delta_t KQ = MAV.KQ # Quadratic formula to solve for motor speed a = MAV.C_Q0 * MAV.rho * np.power(MAV.D_prop, 5) / ((2. * np.pi )**2 ) b = (MAV.C_Q1 * MAV.rho * np.power(MAV.D_prop, 4) / (2.*np.pi)) * self._Va + KQ**2/MAV.R_motor c = MAV.C_Q2 * MAV.rho * np.power(MAV.D_prop, 3) * self._Va**2 - (KQ / MAV.R_motor ) * V_in + KQ * MAV.i0 # Consider only positive root Omega_op = (-b + np.sqrt(b**2 - 4*a* c)) / (2. * a ) # compute advance ratio J_op = 2 * np.pi * self._Va / (Omega_op * MAV.D_prop) # compute nondimensionalized coefficients of thrust and torque C_T = MAV.C_T2 * J_op **2 + MAV.C_T1 * J_op + MAV.C_T0 C_Q = MAV.C_Q2 * J_op **2 + MAV.C_Q1 * J_op + MAV.C_Q0 # add thrust and torque due to propeller n = Omega_op / (2 * np.pi ) fx = MAV.rho * n**2 * np.power(MAV.D_prop, 4) * C_T Mx = -MAV.rho * n**2 * np.power(MAV.D_prop, 5) * C_Q return fx,Mx def sigma(self,alpha): # pseudo sigmoid functions with cutoff +- alpha_0, returns coef btw 0 and 1 a1 = -MAV.M * (alpha - MAV.alpha0) a2 = MAV.M * (alpha + MAV.alpha0) sigma_alpha = (1 + np.exp(a1)+np.exp(a2)) / ((1+np.exp(a1))*(1+np.exp(a2))) return sigma_alpha def CL(self,alpha): CL0 = MAV.C_L_0 CLA = MAV.C_L_alpha sigma_alpha = self.sigma(alpha) # returns lift coefficient using eq 4.9 CL_alpha = (1-sigma_alpha)*(CL0 + CLA*alpha) + sigma_alpha*(2*np.sign(alpha)*np.sin(alpha)**2 * np.cos(alpha)) return CL_alpha def CD(self,alpha): # returns drag coefficient using eq 4.11 CD_alpha = MAV.C_D_p + (MAV.C_L_0 + MAV.C_L_alpha*alpha)**2/(np.pi*MAV.e*MAV.AR) return CD_alpha def Cx(self,alpha): return -self.CD(alpha)*np.cos(alpha) + self.CL(alpha)*np.sin(alpha) def Cx_q(self,alpha): return -MAV.C_D_q*np.cos(alpha) + MAV.C_L_q*np.sin(alpha) def Cx_deltae(self,alpha): return -MAV.C_D_delta_e*np.cos(alpha) + MAV.C_L_delta_e*np.sin(alpha) def Cz(self,alpha): return -self.CD(alpha)*np.sin(alpha)-self.CL(alpha)*np.cos(alpha) def Cz_q(self,alpha): return -MAV.C_D_q*np.sin(alpha)-MAV.C_L_q*np.cos(alpha) def Cz_deltae(self,alpha): return -MAV.C_D_delta_e*np.sin(alpha)-MAV.C_L_delta_e*np.cos(alpha) def _forces_moments(self, delta): """ return the forces on the UAV based on the state, wind, and control surfaces :param delta: np.matrix(delta_e, delta_a, delta_r, delta_t) :return: Forces and Moments on the UAV np.matrix(Fx, Fy, Fz, Ml, Mn, Mm) """ phi, theta, psi = Quaternion2Euler(self._state[6:10]) p = self._state.item(10) q = self._state.item(11) r = self._state.item(12) delta_e = delta.item(0) delta_a = delta.item(1) delta_r = delta.item(2) delta_t = delta.item(3) # Gravitational Components of Force, Moments = 0 mg = MAV.mass*MAV.gravity fx_grav = -mg*np.sin(theta) fy_grav = mg* np.cos(theta) * np.sin(phi) fz_grav = mg* np.cos(theta) * np.cos(phi) # Thrust Components of Force and Moments fx_thrust,Mx_thrust = self.thrust_from_prop(delta_t) fy_thrust = 0 fz_thrust = 0 My_thrust = 0 Mz_thrust = 0 # Aerodynamic Components of Forces and Moments b = MAV.b cyp = MAV.C_Y_p cyr = MAV.C_Y_r cydeltaa = MAV.C_Y_delta_a cydeltar = MAV.C_Y_delta_r aero_coef = 0.5*MAV.rho*self._Va**2*MAV.S_wing fx_aero = aero_coef * (self.Cx(self._alpha) + self.Cx_q(self._alpha)*MAV.c/(2*self._Va)*q + self.Cx_deltae(self._alpha)*delta_e) fy_aero = aero_coef * (MAV.C_Y_0 + MAV.C_Y_beta*self._beta + MAV.C_Y_p*b/(2*self._Va)*p + cyr * b/(2*self._Va)*r + cydeltaa * delta_a + cydeltar* delta_r) fz_aero = aero_coef * (self.Cz(self._alpha) + self.Cz_q(self._alpha)*MAV.c/(2*self._Va)*q + self.Cz_deltae(self._alpha)*delta_e) Mx_aero = aero_coef * MAV.b * (MAV.C_ell_0 + MAV.C_ell_beta*self._beta + MAV.C_ell_p*b/(2*self._Va)*p + MAV.C_ell_r*b/(2*self._Va)*r + MAV.C_ell_delta_a*delta_a + MAV.C_ell_delta_r*delta_r) My_aero = aero_coef * MAV.c * (MAV.C_m_0 + MAV.C_m_alpha*self._alpha + MAV.C_m_q*MAV.c/(2*self._Va)*q + MAV.C_m_delta_e*delta_e) Mz_aero = aero_coef * MAV.b * (MAV.C_n_0 + MAV.C_n_beta*self._beta + MAV.C_n_p*MAV.b/(2*self._Va)*p + MAV.C_n_r*MAV.b/(2*self._Va)*r + MAV.C_n_delta_a*delta_a + MAV.C_n_delta_r*delta_r) fx = fx_grav + fx_aero + fx_thrust fy = fy_grav + fy_aero + fy_thrust fz = fz_grav + fz_aero + fz_thrust # print('fx = ',fx) # print('fy = ',fy) # print('fz = ',fz) Mx = Mx_aero + Mx_thrust My = My_aero + My_thrust Mz = Mz_aero + Mz_thrust # print('Mx = ',Mx) # print('My = ',My) # print('Mz = ',Mz) self._forces[0] = fx self._forces[1] = fy self._forces[2] = fz fm = np.reshape(np.array([fx, fy, fz, Mx, My, Mz]),[6,1]) return fm def _update_true_state(self): # update the class structure for the true state: # [pn, pe, h, Va, alpha, beta, phi, theta, chi, p, q, r, Vg, wn, we, psi, gyro_bx, gyro_by, gyro_bz] phi, theta, psi = Quaternion2Euler(self._state[6:10]) pdot = Quaternion2Rotation(self._state[6:10]) @ self._state[3:6] self.true_state.pn = self._state.item(0) self.true_state.pe = self._state.item(1) self.true_state.h = -self._state.item(2) self.true_state.Va = self._Va self.true_state.alpha = self._alpha self.true_state.beta = self._beta self.true_state.phi = phi self.true_state.theta = theta self.true_state.psi = psi self.true_state.Vg = np.linalg.norm(pdot) self.true_state.gamma = np.arcsin(pdot.item(2) / self.true_state.Vg) self.true_state.chi = np.arctan2(pdot.item(1), pdot.item(0)) self.true_state.p = self._state.item(10) self.true_state.q = self._state.item(11) self.true_state.r = self._state.item(12) self.true_state.wn = self._wind.item(0) self.true_state.we = self._wind.item(1)
41.55298
197
0.563073
[ "MIT" ]
donnel2-cooper/drone_control
Lectures/MAV_Dynamics/mav_dynamics.py
12,549
Python
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. # ============================================================================== from .kernel import NativeKernel from ....variables import Variable from ....variables import PositiveTransformation from .....util.customop import broadcast_to_w_samples class Bias(NativeKernel): """ Bias kernel, which produces a constant value for every entries of the covariance matrix. .. math:: k(x,y) = \\sigma^2 :param input_dim: the number of dimensions of the kernel. (The total number of active dimensions). :type input_dim: int :param variance: the initial value for the variance parameter. :type variance: float or MXNet NDArray :param name: the name of the kernel. The name is used to access kernel parameters. :type name: str :param active_dims: The dimensions of the inputs that are taken for the covariance matrix computation. (default: None, taking all the dimensions). :type active_dims: [int] or None :param dtype: the data type for float point numbers. :type dtype: numpy.float32 or numpy.float64 :param ctx: the mxnet context (default: None/current context). :type ctx: None or mxnet.cpu or mxnet.gpu """ broadcastable = True def __init__(self, input_dim, variance=1., name='bias', active_dims=None, dtype=None, ctx=None): super(Bias, self).__init__(input_dim=input_dim, name=name, active_dims=active_dims, dtype=dtype, ctx=ctx) if not isinstance(variance, Variable): variance = Variable(shape=(1,), transformation=PositiveTransformation(), initial_value=variance) self.variance = variance def _compute_K(self, F, X, variance, X2=None): """ The internal interface for the actual covariance matrix computation. :param F: MXNet computation type <mx.sym, mx.nd>. :param X: the first set of inputs to the kernel. :type X: MXNet NDArray or MXNet Symbol :param X2: (optional) the second set of arguments to the kernel. If X2 is None, this computes a square covariance matrix of X. In other words, X2 is internally treated as X. :type X2: MXNet NDArray or MXNet Symbol :param variance: the variance parameter. :type variance: MXNet NDArray or MXNet Symbol :return: The covariance matrix. :rtype: MXNet NDArray or MXNet Symbol """ if X2 is None: X2 = X return broadcast_to_w_samples(F, variance, X.shape[:-1] + (X2.shape[-2],)) def _compute_Kdiag(self, F, X, variance): """ The internal interface for the actual computation for the diagonal. :param F: MXNet computation type <mx.sym, mx.nd>. :param X: the first set of inputs to the kernel. :type X: MXNet NDArray or MXNet Symbol :param variance: the variance parameter. :type variance: MXNet NDArray or MXNet Symbol :return: The covariance matrix. :rtype: MXNet NDArray or MXNet Symbol """ return broadcast_to_w_samples(F, variance, X.shape[:-1]) class White(NativeKernel): """ White kernel, which produces a constant value for the diagonal of the covariance matrix. .. math:: K = \\sigma^2 I :param input_dim: the number of dimensions of the kernel. (The total number of active dimensions). :type input_dim: int :param variance: the initial value for the variance parameter. :type variance: float or MXNet NDArray :param name: the name of the kernel. The name is used to access kernel parameters. :type name: str :param active_dims: The dimensions of the inputs that are taken for the covariance matrix computation. (default: None, taking all the dimensions). :type active_dims: [int] or None :param dtype: the data type for float point numbers. :type dtype: numpy.float32 or numpy.float64 :param ctx: the mxnet context (default: None/current context). :type ctx: None or mxnet.cpu or mxnet.gpu """ broadcastable = True def __init__(self, input_dim, variance=1., name='white', active_dims=None, dtype=None, ctx=None): super(White, self).__init__(input_dim=input_dim, name=name, active_dims=active_dims, dtype=dtype, ctx=ctx) if not isinstance(variance, Variable): variance = Variable(shape=(1,), transformation=PositiveTransformation(), initial_value=variance) self.variance = variance def _compute_K(self, F, X, variance, X2=None): """ The internal interface for the actual covariance matrix computation. :param F: MXNet computation type <mx.sym, mx.nd> :param X: the first set of inputs to the kernel. :type X: MXNet NDArray or MXNet Symbol :param X2: (optional) the second set of arguments to the kernel. If X2 is None, this computes a square covariance matrix of X. In other words, X2 is internally treated as X. :type X2: MXNet NDArray or MXNet Symbol :param variance: the variance parameter. :type variance: MXNet NDArray or MXNet Symbol :return: The covariance matrix. :rtype: MXNet NDArray or MXNet Symbol """ if X2 is None: Imat = F.eye(N=X.shape[-2:-1][0], ctx=self.ctx, dtype=self.dtype) Imat = broadcast_to_w_samples(F, Imat, X.shape[:-1] + X.shape[-2:-1], False) return Imat * broadcast_to_w_samples(F, variance, X.shape[:-1] + X.shape[-2:-1]) else: return F.zeros(shape=X.shape[:-1] + X2.shape[-2:-1], ctx=self.ctx, dtype=self.dtype) def _compute_Kdiag(self, F, X, variance): """ The internal interface for the actual computation for the diagonal of the covariance matrix. :param F: MXNet computation type <mx.sym, mx.nd>. :param X: the first set of inputs to the kernel. :type X: MXNet NDArray or MXNet Symbol :param variance: the variance parameter. :type variance: MXNet NDArray or MXNet Symbol :return: The covariance matrix. :rtype: MXNet NDArray or MXNet Symbol """ return broadcast_to_w_samples(F, variance, X.shape[:-1])
43.878788
110
0.618785
[ "Apache-2.0" ]
DerrickGXD/MXFusion
mxfusion/components/distributions/gp/kernels/static.py
7,240
Python
from typing import Any import tensorflow as tf from .tf_util import scope_name as get_scope_name def absolute_scope_name(relative_scope_name): """Appends parent scope name to `relative_scope_name`""" base = get_scope_name() if len(base) > 0: base += '/' return base + relative_scope_name def _infer_scope_name(self, scope_name): return scope_name if scope_name is not None else type(self).__name__ infer_rel_scope_name = _infer_scope_name def infer_abs_scope_name(self, scope_name: str = None): scope_name = infer_rel_scope_name(self, scope_name) return absolute_scope_name(scope_name) class Scope(object): def __init__(self, scope_name: str, obj: Any = None): self.rel = self.abs = None self.setup(scope_name, obj) def setup(self, scope_name: str, obj: Any = None): if scope_name is None: assert obj is not None, 'Must provide either scope_name or a reference object to infer scope_name' scope_name = type(obj).__name__ self.rel = scope_name self.abs = absolute_scope_name(self.rel) def make_unique(self, graph=None): if graph is None: graph = tf.get_default_graph() self.rel = graph.unique_name(self.rel) self.setup(self.rel) @property def exact_rel_pattern(self) -> str: return self.abs + '/' @property def exact_abs_pattern(self) -> str: return '^' + self.abs + '/' class UninitializedScope(Scope): # noinspection PyMissingConstructor def __init__(self): pass def __getattribute__(self, item): raise AttributeError('The scope is only available after you call super constructor __init__.\n' 'Alternatively, manually setup the scope with self.setup_scope(scope_name)')
26.190476
101
0.747879
[ "MIT" ]
SandBlox/sandblox
sandblox/util/scope.py
1,650
Python
n = input("Enter your name: ") l = len(n) print("The name enther is ", n, "and its length is ", l)
24.75
56
0.606061
[ "Unlicense" ]
GalliWare/UNISA-studies
INF1511/Chapter3/string1.py
99
Python
# coding: utf-8 """ Copyright 2016 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Ref: https://github.com/swagger-api/swagger-codegen """ from pprint import pformat from six import iteritems import re import json from ..utils import sanitize_for_serialization class TextBotFlowLaunchResponse(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ TextBotFlowLaunchResponse - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'id': 'str' } self.attribute_map = { 'id': 'id' } self._id = None @property def id(self): """ Gets the id of this TextBotFlowLaunchResponse. The session ID of the bot flow, used to send to subsequent turn requests :return: The id of this TextBotFlowLaunchResponse. :rtype: str """ return self._id @id.setter def id(self, id): """ Sets the id of this TextBotFlowLaunchResponse. The session ID of the bot flow, used to send to subsequent turn requests :param id: The id of this TextBotFlowLaunchResponse. :type: str """ self._id = id def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_json(self): """ Returns the model as raw JSON """ return json.dumps(sanitize_for_serialization(self.to_dict())) def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
27.816794
80
0.568332
[ "MIT" ]
MyPureCloud/platform-client-sdk-python
build/PureCloudPlatformClientV2/models/text_bot_flow_launch_response.py
3,644
Python
# Generated by Django 3.1.2 on 2020-10-29 20:54 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Quote', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.TextField()), ('author', models.CharField(max_length=512)), ], ), migrations.CreateModel( name='ScrapyItem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('unique_id', models.CharField(max_length=100, null=True)), ('data', models.TextField()), ('date', models.DateTimeField(default=django.utils.timezone.now)), ], ), ]
30.060606
114
0.561492
[ "Apache-2.0" ]
alinbal/enterspeedcrawler
crawler/migrations/0001_initial.py
992
Python
from django.db import models from django.utils.translation import gettext_lazy as _ from oscar.apps.offer.abstract_models import AbstractConditionalOffer, AbstractBenefit from oscar.core.loading import get_class class ConditionalOffer(AbstractConditionalOffer): SITE, FLASH_SALE, VOUCHER, USER, SESSION = "Site", "Flash Sale", "Voucher", "User", "Session" TYPE_CHOICES = ( (SITE, _("Site offer - available to all users")), (FLASH_SALE, _("Flash Sale offer - short-term discount for the specific product")), (VOUCHER, _("Voucher offer - only available after entering the appropriate voucher code")), (USER, _("User offer - available to certain types of user")), (SESSION, _("Session offer - temporary offer, available for a user for the duration of their session")), ) offer_type = models.CharField(_("Type"), choices=TYPE_CHOICES, default=SITE, max_length=128) class Benefit(AbstractBenefit): PERCENTAGE, FIXED, MULTIBUY, FIXED_PRICE, FIXED_PER_PRODUCT = ( "Percentage", "Absolute", "Multibuy", "Fixed price", "Fixed per product") SHIPPING_PERCENTAGE, SHIPPING_ABSOLUTE, SHIPPING_FIXED_PRICE = ( 'Shipping percentage', 'Shipping absolute', 'Shipping fixed price') TYPE_CHOICES = ( (PERCENTAGE, _("Discount is a percentage off of the product's value")), (FIXED, _("Discount is a fixed amount off of the product's value")), (FIXED_PER_PRODUCT, _("Discount is a fixed amount off of each product's value that match condition")), (MULTIBUY, _("Discount is to give the cheapest product for free")), (FIXED_PRICE, _("Get the products that meet the condition for a fixed price")), (SHIPPING_ABSOLUTE, _("Discount is a fixed amount of the shipping cost")), (SHIPPING_FIXED_PRICE, _("Get shipping for a fixed price")), (SHIPPING_PERCENTAGE, _("Discount is a percentage off of the shipping" " cost")), ) type = models.CharField(_("Type"), max_length=128, choices=TYPE_CHOICES, blank=True) def apply_to_product(self, price): if self.type in [self.PERCENTAGE, self.FIXED_PRICE, self.FIXED_PER_PRODUCT]: return self.proxy().apply_to_product(price) @property def proxy_map(self): custom_proxy_map = super().proxy_map custom_proxy_map[self.PERCENTAGE] = get_class('offer.benefits', 'CustomPercentageDiscountBenefit') custom_proxy_map[self.FIXED_PRICE] = get_class('offer.benefits', 'CustomFixedPriceBenefit') custom_proxy_map[self.FIXED_PER_PRODUCT] = get_class( 'offer.benefits', 'CustomAbsoluteDiscountPerProductBenefit' ) return custom_proxy_map from oscar.apps.offer.models import * # noqa isort:skip from .benefits import * # noqa isort:skip
48.982759
112
0.693066
[ "BSD-3-Clause" ]
Bastilla123/shop2
sandbox/offer/models.py
2,841
Python
"""Metadata State Manager.""" import asyncio import logging from typing import Dict, List, Optional, Set, Tuple, Type from pydantic import ValidationError from astoria.common.components import StateManager from astoria.common.disks import DiskInfo, DiskType, DiskUUID from astoria.common.ipc import ( MetadataManagerMessage, MetadataSetManagerRequest, RequestResponse, ) from astoria.common.metadata import Metadata from astoria.common.mixins.disk_handler import DiskHandlerMixin from .metadata_cache import MetadataCache from .metadata_disk_lifecycle import ( AbstractMetadataDiskLifecycle, MetadataDiskLifecycle, UsercodeDiskLifecycle, ) LOGGER = logging.getLogger(__name__) class MetadataManager(DiskHandlerMixin, StateManager[MetadataManagerMessage]): """Astoria Metadata State Manager.""" name = "astmetad" dependencies = ["astdiskd"] DISK_TYPE_LIFECYCLE_MAP: Dict[DiskType, Type[AbstractMetadataDiskLifecycle]] = { DiskType.USERCODE: UsercodeDiskLifecycle, DiskType.METADATA: MetadataDiskLifecycle, } DISK_TYPE_OVERRIDE_MAP: Dict[DiskType, Set[str]] = { DiskType.USERCODE: { "usercode_entrypoint", "wifi_ssid", "wifi_psk", "wifi_region", "wifi_enabled", }, DiskType.METADATA: { "arena", "zone", "mode", "marker_offset", "game_timeout", "wifi_enabled", }, } MUTABLE_ATTRS_BY_REQUEST: Set[str] = {"arena", "zone", "mode"} CACHED_ATTRS: Set[str] = {"wifi_ssid", "wifi_psk", "wifi_region"} def _init(self) -> None: self._lifecycles: Dict[DiskType, Optional[AbstractMetadataDiskLifecycle]] = { disk_type: None for disk_type in self.DISK_TYPE_LIFECYCLE_MAP } self._cache = MetadataCache( self.CACHED_ATTRS, cache_path=self.config.system.cache_dir / "astmetad-metadata.json", ) self._cur_disks: Dict[DiskUUID, DiskInfo] = {} self._mqtt.subscribe("astdiskd", self.handle_astdiskd_disk_info_message) self._requested_data: Dict[str, str] = {} self._register_request( "mutate", MetadataSetManagerRequest, self.handle_mutation_request, ) @property def offline_status(self) -> MetadataManagerMessage: """ Status to publish when the manager goes offline. This status should ensure that any other components relying on this data go into a safe state. """ return MetadataManagerMessage( status=MetadataManagerMessage.Status.STOPPED, metadata=Metadata.init(self.config), ) async def main(self) -> None: """Main routine for astmetad.""" self.update_status() # Wait whilst the program is running. await self.wait_loop() for uuid, info in self._cur_disks.items(): asyncio.ensure_future(self.handle_disk_removal(uuid, info)) async def handle_disk_insertion(self, uuid: DiskUUID, disk_info: DiskInfo) -> None: """Handle a disk insertion.""" LOGGER.debug(f"Disk inserted: {uuid} ({disk_info.disk_type})") for disk_type, lifecycle_class in self.DISK_TYPE_LIFECYCLE_MAP.items(): if disk_info.disk_type is disk_type: LOGGER.info( f"{disk_type.name} disk {uuid} is mounted" f" at {disk_info.mount_path}", ) if self._lifecycles[disk_type] is None: LOGGER.debug(f"Starting lifecycle for {uuid}") self._lifecycles[disk_type] = lifecycle_class( uuid, disk_info, self.config, ) self.update_status() else: LOGGER.warn( "Cannot use metadata, there is already a lifecycle present.", ) async def handle_disk_removal(self, uuid: DiskUUID, disk_info: DiskInfo) -> None: """Handle a disk removal.""" LOGGER.debug(f"Disk removed: {uuid} ({disk_info.disk_type})") for disk_type, lifecycle_class in self.DISK_TYPE_LIFECYCLE_MAP.items(): if disk_info.disk_type is disk_type: LOGGER.info(f"Metadata disk {uuid} removed ({disk_info.mount_path})") lifecycle = self._lifecycles[disk_type] if lifecycle is not None and lifecycle._uuid == disk_info.uuid: self._lifecycles[disk_type] = None self.update_status() async def handle_mutation_request( self, request: MetadataSetManagerRequest, ) -> RequestResponse: """Handle a request to mutate metadata.""" if request.attr not in self.MUTABLE_ATTRS_BY_REQUEST: return RequestResponse( uuid=request.uuid, success=False, reason=f"{request.attr} is not a mutable attribute", ) if len(request.value) == 0: # Stop mutating the attr if it is empty. try: del self._requested_data[request.attr] LOGGER.info(f"{request.attr} override has been removed by request") self.update_status() except KeyError: pass else: # Store the old value, just in case we need to set it back. if request.attr in self._requested_data: old_value = self._requested_data[request.attr] else: old_value = None # Attempt to update the data, reset it if it is invalid. try: self._requested_data[request.attr] = request.value self.update_status() LOGGER.info( f"{request.attr} has been overridden to {request.value} by request", ) except ValidationError as e: # Set the requested data back to the old value if old_value is not None: self._requested_data[request.attr] = old_value LOGGER.warning(f"Unable to set {request.attr} to {request.value}.") LOGGER.warning(str(e)) return RequestResponse( uuid=request.uuid, success=False, reason=f"{request.value} is not a valid value for {request.attr}", ) return RequestResponse( uuid=request.uuid, success=True, ) def get_current_metadata(self) -> Metadata: """ Calculate the current metadata. Takes the default, static metadata based on the config and system information. It then overlays data from other sources in a priority order, whereby each source has a set of permitted attributes in the metadata that can be overridden. """ # Metadata sources in priority order. metadata_sources: List[Tuple[Set[str], Dict[str, str]]] = [ (self.CACHED_ATTRS, self._cache.data), (self.MUTABLE_ATTRS_BY_REQUEST, self._requested_data), ] for disk_type, val in self._lifecycles.items(): if val is not None: # Add disk-based metadata source if it is present. metadata_sources.append( ( self.DISK_TYPE_OVERRIDE_MAP[disk_type], val.diff_data, ), ) metadata = Metadata.init(self.config) for permitted_attrs, diff_data in metadata_sources: for k, v in diff_data.items(): if k in permitted_attrs: metadata.__setattr__(k, v) else: LOGGER.warning( f"There was an attempt to mutate {k}, but it was not permitted.", ) # Update the cache with the new values. for key in self.CACHED_ATTRS: self._cache.update_cached_attr(key, metadata.__getattribute__(key)) return metadata def update_status(self) -> None: """Update the status of the manager.""" self.status = MetadataManagerMessage( status=MetadataManagerMessage.Status.RUNNING, metadata=self.get_current_metadata(), )
37.070175
89
0.591103
[ "MIT" ]
trickeydan/astoria
astoria/astmetad/metadata_manager.py
8,452
Python
from temboo.Library.Utilities.Authentication.OAuth2.FinalizeOAuth import FinalizeOAuth, FinalizeOAuthInputSet, FinalizeOAuthResultSet, FinalizeOAuthChoreographyExecution from temboo.Library.Utilities.Authentication.OAuth2.InitializeOAuth import InitializeOAuth, InitializeOAuthInputSet, InitializeOAuthResultSet, InitializeOAuthChoreographyExecution from temboo.Library.Utilities.Authentication.OAuth2.RefreshToken import RefreshToken, RefreshTokenInputSet, RefreshTokenResultSet, RefreshTokenChoreographyExecution
128.75
179
0.912621
[ "Apache-2.0" ]
lupyuen/RaspberryPiImage
home/pi/GrovePi/Software/Python/others/temboo/Library/Utilities/Authentication/OAuth2/__init__.py
515
Python
# # This file is part of the PyMeasure package. # # Copyright (c) 2013-2021 PyMeasure Developers # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import logging from logging import Handler from .Qt import QtCore log = logging.getLogger(__name__) log.addHandler(logging.NullHandler()) class LogHandler(Handler): # Class Emitter is added to keep compatibility with PySide2 # 1. Signal needs to be class attribute of a QObject subclass # 2. logging Handler emit method clashes with QObject emit method # 3. As a consequence, the LogHandler cannot inherit both from # Handler and QObject # 4. A new utility class Emitter subclass of QObject is # introduced to handle record Signal and workaround the problem class Emitter(QtCore.QObject): record = QtCore.QSignal(object) def __init__(self): super().__init__() self.emitter = self.Emitter() def connect(self, *args, **kwargs): return self.emitter.record.connect(*args, **kwargs) def emit(self, record): self.emitter.record.emit(self.format(record))
38.127273
79
0.745351
[ "MIT" ]
Bruyant/pymeasure
pymeasure/display/log.py
2,097
Python
from django import forms from sme_uniforme_apps.proponentes.models import Anexo class AnexoForm(forms.ModelForm): def __init__(self, *args, **kwargs): super(AnexoForm, self).__init__(*args, **kwargs) self.fields['tipo_documento'].required = True class Meta: model = Anexo fields = '__all__'
22.4
56
0.675595
[ "MIT" ]
prefeiturasp/SME-PortalUniforme-BackEnd
sme_uniforme_apps/proponentes/models/forms.py
336
Python
import re import setuptools import setuptools.command.develop import setuptools.command.install import subprocess import sys try: result = subprocess.run( [sys.executable, "-m", "pip", "show", "pkg_utils"], check=True, capture_output=True) match = re.search(r'\nVersion: (.*?)\n', result.stdout.decode(), re.DOTALL) assert match and tuple(match.group(1).split('.')) >= ('0', '0', '5') except (subprocess.CalledProcessError, AssertionError): subprocess.run( [sys.executable, "-m", "pip", "install", "-U", "pkg_utils"], check=True) import os import pkg_utils name = 'biosimulators_ginsim' dirname = os.path.dirname(__file__) # get package metadata md = pkg_utils.get_package_metadata(dirname, name) # install package setuptools.setup( name=name, version=md.version, description=("BioSimulators-compliant command-line interface to " "the GINsim simulation program."), long_description=md.long_description, url="https://github.com/biosimulators/Biosimulators_GINsim", download_url="https://github.com/biosimulators/Biosimulators_GINsim", author='BioSimulators Team', author_email="[email protected]", license="MIT", keywords=[ 'systems biology', 'computational biology', 'logical model', 'numerical simulation', 'BioSimulators', 'SBML', 'SED-ML', 'COMBINE', 'OMEX', 'GINsim', ], packages=setuptools.find_packages(exclude=['tests', 'tests.*']), install_requires=md.install_requires, extras_require=md.extras_require, tests_require=md.tests_require, dependency_links=md.dependency_links, classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Topic :: Scientific/Engineering :: Bio-Informatics', ], entry_points={ 'console_scripts': [ 'biosimulators-ginsim = biosimulators_ginsim.__main__:main', ], }, )
30.441176
79
0.653623
[ "MIT" ]
biosimulators/Biosimulators_GINsim
setup.py
2,070
Python
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ # DO SOME OS-WISE PATCHES import datetime as _datetime import os as _os import platform as _platform import signal as _signal import sys as _sys import types as _types from google.protobuf.internal import api_implementation as _api_implementation if _api_implementation._default_implementation_type != 'cpp': import warnings as _warnings _warnings.warn( ''' You are using Python protobuf backend, not the C++ version, which is much faster. This is often due to C++ implementation failed to compile while installing Protobuf - You are using in Python 3.9 (https://github.com/jina-ai/jina/issues/1801) - You are using on architecture other than x86_64/armv6/armv7 - You installation is broken, try `pip install --force protobuf` - You have C++ backend but you shut it down, try `export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=cpp` ''', RuntimeWarning, ) if _sys.version_info < (3, 7, 0) or _sys.version_info >= (3, 10, 0): raise OSError(f'Jina requires Python 3.7/3.8/3.9, but yours is {_sys.version_info}') if _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method _set_start_method('fork') # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # Underscore variables shared globally __copyright__ = "Copyright (c) 2020 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '1.0.10' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.0.78' __uptime__ = _datetime.datetime.now().isoformat() # update on MacOS # 1. clean this tuple, # 2. grep -rohEI --exclude-dir=jina/hub --exclude-dir=tests --include \*.py "\'JINA_.*?\'" jina | sort -u | sed "s/$/,/g" # 3. copy all lines EXCEPT the first (which is the grep command in the last line) __jina_env__ = ( 'JINA_ARRAY_QUANT', 'JINA_BINARY_DELIMITER', 'JINA_CONTRIB_MODULE', 'JINA_CONTRIB_MODULE_IS_LOADING', 'JINA_CONTROL_PORT', 'JINA_DEFAULT_HOST', 'JINA_DISABLE_UVLOOP', 'JINA_EXECUTOR_WORKDIR', 'JINA_FULL_CLI', 'JINA_IPC_SOCK_TMP', 'JINA_LOG_CONFIG', 'JINA_LOG_ID', 'JINA_LOG_LEVEL', 'JINA_LOG_NO_COLOR', 'JINA_LOG_WORKSPACE', 'JINA_POD_NAME', 'JINA_RAISE_ERROR_EARLY', 'JINA_RANDOM_PORTS', 'JINA_RANDOM_PORT_MAX', 'JINA_RANDOM_PORT_MIN', 'JINA_SOCKET_HWM', 'JINA_VCS_VERSION', 'JINA_WARN_UNNAMED', 'JINA_WORKSPACE', ) __default_host__ = _os.environ.get('JINA_DEFAULT_HOST', '0.0.0.0') __ready_msg__ = 'ready and listening' __stop_msg__ = 'terminated' __binary_delimiter__ = _os.environ.get( 'JINA_BINARY_DELIMITER', '460841a0a8a430ae25d9ad7c1f048c57' ).encode() __root_dir__ = _os.path.dirname(_os.path.abspath(__file__)) _names_with_underscore = [ '__version__', '__copyright__', '__license__', '__proto_version__', '__default_host__', '__ready_msg__', '__stop_msg__', '__binary_delimiter__', '__jina_env__', '__uptime__', '__root_dir__', ] # Primitive data type, # note, they must be loaded BEFORE all executors/drivers/... to avoid cyclic imports from jina.types.ndarray.generic import NdArray from jina.types.request import Request, Response from jina.types.message import Message from jina.types.querylang import QueryLang from jina.types.document import Document from jina.types.document.multimodal import MultimodalDocument from jina.types.sets import DocumentSet, QueryLangSet # ADD GLOBAL NAMESPACE VARIABLES JINA_GLOBAL = _types.SimpleNamespace() import jina.importer as _ji # driver first, as executor may contain driver _ji.import_classes('jina.drivers', show_import_table=False, import_once=True) _ji.import_classes('jina.executors', show_import_table=False, import_once=True) _ji.import_classes('jina.hub', show_import_table=False, import_once=True) _signal.signal(_signal.SIGINT, _signal.default_int_handler) def _set_nofile(nofile_atleast=4096): """ sets nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. """ try: import resource as res except ImportError: # Windows res = None from .logging import default_logger if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft default_logger.debug(f'setting soft & hard ulimit -n {soft} {hard}') try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft default_logger.warning( f'trouble with max limit, retrying with soft,hard {soft},{hard}' ) res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: default_logger.warning('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) default_logger.debug(f'ulimit -n soft,hard: {soft} {hard}') return soft, hard _set_nofile() # Flow from jina.flow import Flow from jina.flow.asyncio import AsyncFlow # Client from jina.clients import Client from jina.clients.asyncio import AsyncClient # Executor from jina.executors import BaseExecutor as Executor from jina.executors.classifiers import BaseClassifier as Classifier from jina.executors.crafters import BaseCrafter as Crafter from jina.executors.encoders import BaseEncoder as Encoder from jina.executors.evaluators import BaseEvaluator as Evaluator from jina.executors.indexers import BaseIndexer as Indexer from jina.executors.rankers import BaseRanker as Ranker from jina.executors.segmenters import BaseSegmenter as Segmenter __all__ = [_s for _s in dir() if not _s.startswith('_')] __all__.extend([_s for _s in _names_with_underscore])
32.363636
122
0.724571
[ "Apache-2.0" ]
bsherifi/jina
jina/__init__.py
6,764
Python
import unittest from CsvReader import CsvReader from Calculator import MyCalculator class MyTestCase(unittest.TestCase): def setUp(self) -> None: self.calculator = MyCalculator() def test_instantiate_calculator(self): self.assertIsInstance(self.calculator, MyCalculator) def test_addition(self): test_data = CsvReader('src/csv/TestAddition.csv').data for row in test_data: result = float(row['Result']) self.assertEqual(self.calculator.add(row['Value 1'], row['Value 2']), result) self.assertEqual(self.calculator.result, int(row['Result'])) def test_subtraction(self): test_data = CsvReader('src/csv/TestSubtraction.csv').data for row in test_data: result = float(row['Result']) self.assertEqual(self.calculator.subtract(row['Value 1'], row['Value 2']), result) self.assertEqual(self.calculator.result, int(row['Result'])) def test_multiplication(self): test_data = CsvReader('src/csv/TestMultiplication.csv').data for row in test_data: result = float(row['Result']) self.assertEqual(self.calculator.multiply(row['Value 1'], row['Value 2']), result) self.assertEqual(self.calculator.result, int(row['Result'])) def test_division(self): test_data = CsvReader('src/csv/TestDivision.csv').data for row in test_data: result = float(row['Result']) self.assertAlmostEqual(self.calculator.divide(row['Value 1'], row['Value 2']), result) self.assertAlmostEqual(self.calculator.result, float(row['Result'])) def test_square(self): test_data = CsvReader('src/csv/TestSquare.csv').data for row in test_data: result = float(row['Result']) self.assertEqual(self.calculator.square(row['Value 1']), result) self.assertEqual(self.calculator.result, int(row['Result'])) def test_square_root(self): test_data = CsvReader('src/csv/TestSquareRoot.csv').data for row in test_data: result = float(row['Result']) self.assertAlmostEqual(self.calculator.square_root(row['Value 1']), result) self.assertAlmostEqual(self.calculator.result, float(row['Result'])) if __name__ == '__main__': unittest.main()
40.586207
98
0.649108
[ "MIT" ]
jimishapatel/Calculator
src/CalculatorTest.py
2,354
Python
from niaaml.classifiers.classifier import Classifier from niaaml.utilities import MinMax from niaaml.utilities import ParameterDefinition from sklearn.ensemble import RandomForestClassifier as RF import numpy as np import warnings from sklearn.exceptions import ChangedBehaviorWarning, ConvergenceWarning, DataConversionWarning, DataDimensionalityWarning, EfficiencyWarning, FitFailedWarning, NonBLASDotWarning, UndefinedMetricWarning __all__ = ['RandomForest'] class RandomForest(Classifier): r"""Implementation of random forest classifier. Date: 2020 Author: Luka Pečnik License: MIT Reference: Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001. Documentation: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html See Also: * :class:`niaaml.classifiers.Classifier` """ Name = 'Random Forest Classifier' def __init__(self, **kwargs): r"""Initialize RandomForestClassifier instance. """ warnings.filterwarnings(action='ignore', category=ChangedBehaviorWarning) warnings.filterwarnings(action='ignore', category=ConvergenceWarning) warnings.filterwarnings(action='ignore', category=DataConversionWarning) warnings.filterwarnings(action='ignore', category=DataDimensionalityWarning) warnings.filterwarnings(action='ignore', category=EfficiencyWarning) warnings.filterwarnings(action='ignore', category=FitFailedWarning) warnings.filterwarnings(action='ignore', category=NonBLASDotWarning) warnings.filterwarnings(action='ignore', category=UndefinedMetricWarning) self._params = dict( n_estimators = ParameterDefinition(MinMax(min=10, max=111), np.uint) ) self.__random_forest_classifier = RF() def set_parameters(self, **kwargs): r"""Set the parameters/arguments of the algorithm. """ self.__random_forest_classifier.set_params(**kwargs) def fit(self, x, y, **kwargs): r"""Fit RandomForestClassifier. Arguments: x (pandas.core.frame.DataFrame): n samples to classify. y (pandas.core.series.Series): n classes of the samples in the x array. Returns: None """ self.__random_forest_classifier.fit(x, y) def predict(self, x, **kwargs): r"""Predict class for each sample (row) in x. Arguments: x (pandas.core.frame.DataFrame): n samples to classify. Returns: pandas.core.series.Series: n predicted classes. """ return self.__random_forest_classifier.predict(x) def to_string(self): r"""User friendly representation of the object. Returns: str: User friendly representation of the object. """ return Classifier.to_string(self).format(name=self.Name, args=self._parameters_to_string(self.__random_forest_classifier.get_params()))
35.290698
203
0.691269
[ "MIT" ]
adi3/NiaAML
niaaml/classifiers/random_forest.py
3,040
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class PrivateEndpointConnectionsOperations(object): """PrivateEndpointConnectionsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.iothub.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name, # type: str resource_name, # type: str **kwargs # type: Any ): # type: (...) -> List["_models.PrivateEndpointConnection"] """List private endpoint connections. List private endpoint connection properties. :param resource_group_name: The name of the resource group that contains the IoT hub. :type resource_group_name: str :param resource_name: The name of the IoT hub. :type resource_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of PrivateEndpointConnection, or the result of cls(response) :rtype: list[~azure.mgmt.iothub.models.PrivateEndpointConnection] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.PrivateEndpointConnection"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'resourceName': self._serialize.url("resource_name", resource_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorDetails, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('[PrivateEndpointConnection]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Devices/iotHubs/{resourceName}/privateEndpointConnections'} # type: ignore def get( self, resource_group_name, # type: str resource_name, # type: str private_endpoint_connection_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.PrivateEndpointConnection" """Get private endpoint connection. Get private endpoint connection properties. :param resource_group_name: The name of the resource group that contains the IoT hub. :type resource_group_name: str :param resource_name: The name of the IoT hub. :type resource_name: str :param private_endpoint_connection_name: The name of the private endpoint connection. :type private_endpoint_connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: PrivateEndpointConnection, or the result of cls(response) :rtype: ~azure.mgmt.iothub.models.PrivateEndpointConnection :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'resourceName': self._serialize.url("resource_name", resource_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorDetails, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Devices/iotHubs/{resourceName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore def _update_initial( self, resource_group_name, # type: str resource_name, # type: str private_endpoint_connection_name, # type: str private_endpoint_connection, # type: "_models.PrivateEndpointConnection" **kwargs # type: Any ): # type: (...) -> "_models.PrivateEndpointConnection" cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'resourceName': self._serialize.url("resource_name", resource_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(private_endpoint_connection, 'PrivateEndpointConnection') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorDetails, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Devices/iotHubs/{resourceName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore def begin_update( self, resource_group_name, # type: str resource_name, # type: str private_endpoint_connection_name, # type: str private_endpoint_connection, # type: "_models.PrivateEndpointConnection" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.PrivateEndpointConnection"] """Update private endpoint connection. Update the status of a private endpoint connection with the specified name. :param resource_group_name: The name of the resource group that contains the IoT hub. :type resource_group_name: str :param resource_name: The name of the IoT hub. :type resource_name: str :param private_endpoint_connection_name: The name of the private endpoint connection. :type private_endpoint_connection_name: str :param private_endpoint_connection: The private endpoint connection with updated properties. :type private_endpoint_connection: ~azure.mgmt.iothub.models.PrivateEndpointConnection :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either PrivateEndpointConnection or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.iothub.models.PrivateEndpointConnection] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnection"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_initial( resource_group_name=resource_group_name, resource_name=resource_name, private_endpoint_connection_name=private_endpoint_connection_name, private_endpoint_connection=private_endpoint_connection, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'resourceName': self._serialize.url("resource_name", resource_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Devices/iotHubs/{resourceName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore def _delete_initial( self, resource_group_name, # type: str resource_name, # type: str private_endpoint_connection_name, # type: str **kwargs # type: Any ): # type: (...) -> Optional["_models.PrivateEndpointConnection"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.PrivateEndpointConnection"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'resourceName': self._serialize.url("resource_name", resource_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorDetails, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Devices/iotHubs/{resourceName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str resource_name, # type: str private_endpoint_connection_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller["_models.PrivateEndpointConnection"] """Delete private endpoint connection. Delete private endpoint connection with the specified name. :param resource_group_name: The name of the resource group that contains the IoT hub. :type resource_group_name: str :param resource_name: The name of the IoT hub. :type resource_name: str :param private_endpoint_connection_name: The name of the private endpoint connection. :type private_endpoint_connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either PrivateEndpointConnection or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.iothub.models.PrivateEndpointConnection] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnection"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, resource_name=resource_name, private_endpoint_connection_name=private_endpoint_connection_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'resourceName': self._serialize.url("resource_name", resource_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Devices/iotHubs/{resourceName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore
51.14094
234
0.684821
[ "MIT" ]
4thel00z/microsoft-crap-that-doesnt-work
sdk/iothub/azure-mgmt-iothub/azure/mgmt/iothub/v2020_03_01/operations/_private_endpoint_connections_operations.py
22,860
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017/8/25 22:42 # @Author : Tom.lee # @Site : # @File : mysql_lock.py # @Software: PyCharm """ 通过MySQL实现分布式锁服务 """ import MySQLdb import logging import time FORMAT_STR = '%(asctime)s -%(module)s:%(filename)s-L%(lineno)d-%(levelname)s: %(message)s' logger = logging.getLogger() logger.setLevel(logging.DEBUG) formatter = logging.Formatter(FORMAT_STR) handler = logging.StreamHandler() handler.setFormatter(formatter) logger.addHandler(handler) logging.info("Current log level is : %s", logging.getLevelName(logger.getEffectiveLevel())) class MySqlLock(object): LOCK_SQL = "SELECT get_lock('{key}', {timeout}) FROM dual" UNLOCK_SQL = "SELECT release_lock('{key}') FROM dual" def __init__(self, lock_key=None, *args, **kwargs): """ :param lock_key: :param args: 参数与MySQLdb初始化参数一致. :param kwargs: 参数与MySQLdb初始化参数一致. host='localhost' user='test' passwd='test' db='test' """ self.__db = MySQLdb.connect(*args, **kwargs) self.lock_key = lock_key or '7ab18906739e4662ac01e69f5ebb7352' def _execute(self, sql): """ MySQL数据库操作 :param sql: :return: (1L,) --> tuple """ res = (-1,) cursor = self.__db.cursor() try: cursor.execute(sql) if cursor.rowcount != 1: logging.error("Multiple rows returned in mysql lock function.") else: res = cursor.fetchone() except Exception, ex: logging.error("执行SQL\"%s\" 失败! 异常信息: %s", sql, str(ex)) finally: cursor.close() return res def lock(self, timeout): """ MySQL数据库加锁 :param timeout: 超时时间 :return: """ # 加锁操作 lk = self._execute(self.LOCK_SQL.format(key=self.lock_key, timeout=timeout)) if lk[0] == 0: logging.debug("锁'%s'已经被创建.", self.lock_key) return False elif lk[0] == 1: logging.debug("创建锁'%s'." % self.lock_key) return True else: logging.error("获取锁失败!") return None def unlock(self): """ 释放MySQL锁. :return: """ # 释放操作 uk = self._execute(self.UNLOCK_SQL.format(key=self.lock_key)) if uk[0] == 0: logging.debug("释放锁'%s'失败(该锁被其他进程持有)" % self.lock_key) return False elif uk[0] == 1: logging.debug("释放锁'%s'." % self.lock_key) return True else: logging.error("锁'%s'不存在." % self.lock_key) return None if __name__ == "__main__": l = MySqlLock(host='localhost', user='root', passwd='root', db='iaasms') ret = l.lock(15) if not ret: logging.error("获取锁失败,退出!") quit() time.sleep(15) # 模拟跨进程的同步操作! # raise Exception('模拟操作异常,mysql会自动释放该进程持有的锁.') # TODO something print 'hello ok!' l.unlock()
26.808696
91
0.543951
[ "MIT" ]
2581676612/python
contributed_modules/mysql/mysqldb_/mysql_lock.py
3,349
Python
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT from __future__ import unicode_literals from ..arithmetic import AddScalarVolumes def test_AddScalarVolumes_inputs(): input_map = dict(args=dict(argstr='%s', ), environ=dict(nohash=True, usedefault=True, ), ignore_exception=dict(nohash=True, usedefault=True, ), inputVolume1=dict(argstr='%s', position=-3, ), inputVolume2=dict(argstr='%s', position=-2, ), order=dict(argstr='--order %s', ), outputVolume=dict(argstr='%s', hash_files=False, position=-1, ), terminal_output=dict(nohash=True, ), ) inputs = AddScalarVolumes.input_spec() for key, metadata in list(input_map.items()): for metakey, value in list(metadata.items()): assert getattr(inputs.traits()[key], metakey) == value def test_AddScalarVolumes_outputs(): output_map = dict(outputVolume=dict(position=-1, ), ) outputs = AddScalarVolumes.output_spec() for key, metadata in list(output_map.items()): for metakey, value in list(metadata.items()): assert getattr(outputs.traits()[key], metakey) == value
25.695652
67
0.6489
[ "Apache-2.0" ]
lighthall-lab/nipype-legacy
nipype/interfaces/slicer/filtering/tests/test_auto_AddScalarVolumes.py
1,182
Python
import dfstools as dt import sys if __name__ == "__main__": print(sys.version) print(sys.executable) print("---pecanCookies Demo---") print("Loading into dataframe from csv...", '\n') data_list = dt.load_csv_to_df() print("identifing relationships by column content....", '\n') relationship_list = dt.find_related_cols_by_content(data_list) print("printing relationships....", '\n') print(relationship_list)
26.352941
66
0.683036
[ "Apache-2.0" ]
Jsostmann/comp410_summer2020
peacn_cookies_sprint_one.py
448
Python
#coding:utf-8 # Chainer version 3.2 (use version 3.x) # # This is based on <https://raw.githubusercontent.com/chainer/chainer/v3/examples/mnist/train_mnist.py> # # This used mean_absolute_error as loss function. # Check version # Python 3.6.4 on win32 (Windows 10) # Chainer 3.2.0 # numpy 1.14.0 # matplotlib 2.1.1 from __future__ import print_function import argparse import chainer import chainer.functions as F import chainer.links as L from chainer import training, cuda from chainer.training import extensions from chainer.functions.loss.mean_squared_error import mean_squared_error from chainer.functions.loss.mean_absolute_error import mean_absolute_error from TM_dataset import * from plot_report_logscale import * class MLP(chainer.Chain): def __init__(self, n_units, n_out): super(MLP, self).__init__() with self.init_scope(): # the size of the inputs to each layer will be inferred self.l1 = L.Linear(None, n_units) # n_in -> n_units self.l2 = L.Linear(None, n_units) # n_units -> n_units self.l3 = L.Linear(None, n_units) # n_units -> n_units self.l4 = L.Linear(None, n_units) # n_units -> n_units self.l5 = L.Linear(None, n_out) # n_units -> n_out # set random seed as fix value, avoid different result every time np.random.seed(100) def __call__(self, x): h1 = F.relu(self.l1(x)) #F.sigmoid(self.l1(x)) h2 = F.relu(self.l2(h1)) #F.sigmoid(self.l2(h1)) h3 = F.relu(self.l3(h2)) #F.sigmoid(self.l3(h2)) h4 = F.relu(self.l4(h3)) #F.sigmoid(self.l4(h3)) return self.l5(h4) IN_CHANNELS =1 # input MONOCOLOR OUT_CHANNELS= 100 # Middle layer channels class CNN(chainer.Chain): # INPUT -> ((CONV -> RELU) -> POOL) ->((CONV -> RELU) -> POOL) -> ->((CONV -> RELU) -> POOL) -> FC def __init__(self, n_units, n_out, in_channels=IN_CHANNELS, out_channels=OUT_CHANNELS): super(CNN, self).__init__() with self.init_scope(): self.conv1=L.Convolution2D(in_channels, out_channels, (3,1) , pad=0) self.conv2=L.Convolution2D(out_channels, out_channels, (3,1) , pad=0) self.conv3=L.Convolution2D(out_channels, out_channels, (3,1) , pad=0) self.l1=L.Linear( None, n_out) # set random seed as fix value, avoid different result every time np.random.seed(100) def __call__(self, x): h1 = F.relu(self.conv1(x)) h2 = F.max_pooling_2d( h1, (2,1) ) h3 = F.relu(self.conv2(h2)) h4 = F.max_pooling_2d( h3, (2,1) ) h5 = F.relu(self.conv3(h4)) h6 = F.max_pooling_2d( h5, (2,1) ) y = self.l1(h6) return y def main(): parser = argparse.ArgumentParser(description='estimation from formant to vocal tube model parameter') parser.add_argument('--batchsize', '-b', type=int, default=100, help='Number of images in each mini-batch') parser.add_argument('--epoch', '-e', type=int, default=650, help='Number of sweeps over the dataset to train') parser.add_argument('--frequency', '-f', type=int, default=-1, help='Frequency of taking a snapshot') parser.add_argument('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU)') parser.add_argument('--out', '-o', default='result', help='Prefix Directory Name to output the result') parser.add_argument('--resume', '-r', default='', help='Resume the training from snapshot') parser.add_argument('--unit', '-u', type=int, default=100, help='Number of units') parser.add_argument('--noplot', dest='plot', action='store_false', help='Disable PlotReport extension') parser.add_argument('--delta', '-d', type=float, default=0.5, help='delta for length and area: for train') parser.add_argument('--delta_for_test', '-t', type=float, default=1.5, help='delta for length and area: for test') parser.add_argument('--model_type', '-m', default='MLP', help='choice MLP or CNN') args = parser.parse_args() print('GPU: {}'.format(args.gpu)) print('# unit: {}'.format(args.unit)) print('# Minibatch-size: {}'.format(args.batchsize)) print('# epoch: {}'.format(args.epoch)) # check model type if args.model_type == 'CNN': CNN_flag=True print('# CNN') else: CNN_flag=False print('# MLP') # Load dataset train = TM_DatsSet(args.delta, args.delta, CNN_flag) test = TM_DatsSet(args.delta_for_test, args.delta_for_test, CNN_flag) n_out= train.n_out out_dir= args.out + train.suffix_list print('# result directory: ', out_dir) # Set up a neural network to train # Classifier reports mean_absolute/squared_error loss and accuracy at everypha= # iteration, which will be used by the PrintReport extension below. # 損失の評価は独立事象ではないのでsoftmaxより距離の方が妥当かな # if CNN_flag: model = L.Classifier(CNN(args.unit, n_out), lossfun=mean_absolute_error) #mean_squared_error) else: model = L.Classifier(MLP(args.unit, n_out), lossfun=mean_absolute_error) #mean_squared_error) model.compute_accuracy= False # no need compute accuracy if args.gpu >= 0: # Make a specified GPU current chainer.cuda.get_device_from_id(args.gpu).use() model.to_gpu() # Copy the model to the GPU # Setup an optimizer optimizer = chainer.optimizers.Adam(alpha=0.001) #alpha=0.0001) optimizer.setup(model) train_iter = chainer.iterators.SerialIterator(train, args.batchsize) test_iter = chainer.iterators.SerialIterator(test, args.batchsize, repeat=False, shuffle=False) # Set up a trainer updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu) trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=out_dir) # Evaluate the model with the test dataset for each epoch trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu)) # Dump a computational graph from 'loss' variable at the first iteration # The "main" refers to the target link of the "main" optimizer. trainer.extend(extensions.dump_graph('main/loss')) # Take a snapshot for each specified epoch frequency = args.epoch if args.frequency == -1 else max(1, args.frequency) trainer.extend(extensions.snapshot(), trigger=(frequency, 'epoch')) # Write a log of evaluation statistics for each epoch trainer.extend(extensions.LogReport()) # Save two plot images to the result dir if args.plot and extensions.PlotReport.available(): trainer.extend( PlotReport2(['main/loss', 'validation/main/loss'], 'epoch', file_name='loss.png', LogScale=True)) # Print selected entries of the log to stdout # Here "main" refers to the target link of the "main" optimizer again, and # "validation" refers to the default name of the Evaluator extension. # Entries other than 'epoch' are reported by the Classifier link, called by # either the updater or the evaluator. trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'elapsed_time'])) # Print a progress bar to stdout trainer.extend(extensions.ProgressBar()) if args.resume: # Resume from a snapshot chainer.serializers.load_npz(args.resume, trainer) # Run the training trainer.run() # Accuracy rate print('checking accuracy rate... ') # transfer one by one data will take long time. It needs to improvement. c0=0 for loop in range(train.__len__()): x1=train.get_example(loop) if args.gpu >= 0: # gpu x_batch = cuda.cupy.asarray([x1[0]]) y_gpu=model.predictor(x_batch) y=cuda.to_cpu(y_gpu.data) else: # cpu x_batch = np.asarray([x1[0]]) y_cpu=model.predictor(x_batch) y=y_cpu.data[0] #print ('input ', x1[0] ) #print (' predicted ', y, '(', np.round(y) , ')', 'correct ', x1[1] ) # 正解率、周波数のindex[整数]を指すことを想定しているので、四捨五入して一致していればOKとした。 if np.round(y) == np.round(x1[1]): c0+= 1 print ('Accuracy rate (index is equal, ratio[%]) ', (c0 * 100.0 / train.__len__() ) ) if __name__ == '__main__': main()
38.562771
113
0.610126
[ "MIT" ]
shun60s/chainer-peak-detect
train.py
9,050
Python
""" Forward Chaining, K-Fold and Group K-Fold algorithms to split a given training dataset into train (X, y) and validation (Xcv, ycv) sets """ import numpy as np def split_train_val_forwardChaining(sequence, numInputs, numOutputs, numJumps): """ Returns sets to train and cross-validate a model using forward chaining technique Parameters: sequence (array) : Full training dataset numInputs (int) : Number of inputs X and Xcv used at each training and validation numOutputs (int) : Number of outputs y and ycv used at each training and validation numJumps (int) : Number of sequence samples to be ignored between (X,y) sets Returns: X (2D array) : Array of numInputs arrays used for training y (2D array) : Array of numOutputs arrays used for training Xcv (2D array) : Array of numInputs arrays used for cross-validation ycv (2D array) : Array of numOutputs arrays used for cross-validation """ X, y, Xcv, ycv = dict(), dict(), dict(), dict() j=2; # Tracks index of CV set at each train/val split # Iterate through all train/val splits while 1: start_ix=0; end_ix=0; startCv_ix=0; endCv_ix=0; X_it, y_it, Xcv_it, ycv_it = list(), list(), list(), list() i=0; # Index of individual training set at each train/val split # Iterate until index of individual training set is smaller than index of cv set while (i < j): ## TRAINING DATA start_ix = numJumps*i; end_ix = start_ix + numInputs; seq_x = sequence[start_ix:end_ix] X_it.append(seq_x) seq_y = sequence[end_ix:end_ix+numOutputs] y_it.append(seq_y) i+=1; # Once val data crosses time series length return if (((end_ix+numInputs)+numOutputs) > len(sequence)): break ## CROSS-VALIDATION DATA startCv_ix = end_ix; endCv_ix = end_ix + numInputs; seq_xcv = sequence[startCv_ix:endCv_ix] Xcv_it.append(seq_xcv) seq_ycv = sequence[endCv_ix:endCv_ix+numOutputs] ycv_it.append(seq_ycv) ## Add another train/val split X[j-2] = np.array(X_it) y[j-2] = np.array(y_it) Xcv[j-2] = np.array(Xcv_it) ycv[j-2] = np.array(ycv_it) j+=1; if (len(X)==0 or len(Xcv)==0): print("The sequence provided does not has size enough to populate the return arrays") return X, y, Xcv, ycv def split_train_val_kFold(sequence, numInputs, numOutputs, numJumps): """ Returns sets to train and cross-validate a model using K-Fold technique Parameters: sequence (array) : Full training dataset numInputs (int) : Number of inputs X and Xcv used at each training numOutputs (int) : Number of outputs y and ycv used at each training numJumps (int) : Number of sequence samples to be ignored between (X,y) sets Returns: X (2D array) : Array of numInputs arrays used for training y (2D array) : Array of numOutputs arrays used for training Xcv (2D array) : Array of numInputs arrays used for cross-validation ycv (2D array) : Array of numOutputs arrays used for cross-validation """ X, y, Xcv, ycv = dict(), dict(), dict(), dict() j=2; # Tracks index of CV set at each train/val split theEnd = 0; # Flag to terminate function # Iterate until val set falls outside time series length while 1: start_ix=0; end_ix=0; startCv_ix=0; endCv_ix=0; X_it, y_it, Xcv_it, ycv_it = list(), list(), list(), list() i=0; # Index of individual training set at each train/val split n=0; # Number of numJumps # Iterate through all train/val splits while 1: if (i != j): ## TRAINING DATA start_ix = endCv_ix + numJumps*n; end_ix = start_ix + numInputs; n +=1; # Leave train/val split loop once training data crosses time series length if end_ix+numOutputs > len(sequence): break; seq_x = sequence[start_ix:end_ix] X_it.append(seq_x) seq_y = sequence[end_ix:end_ix+numOutputs] y_it.append(seq_y) else: ## CROSS-VALIDATION DATA startCv_ix = end_ix; endCv_ix = end_ix + numInputs; n = 0; # Once val data crosses time series length exit tran/val split loop and return if endCv_ix+numOutputs > len(sequence): theEnd = 1; break; seq_xcv = sequence[startCv_ix:endCv_ix] Xcv_it.append(seq_xcv) seq_ycv = sequence[endCv_ix:endCv_ix+numOutputs] ycv_it.append(seq_ycv) i+=1; # Only add a train/val split if the time series length has not been crossed if (theEnd == 1): break ## Add another train/val split X[j-2] = np.array(X_it) y[j-2] = np.array(y_it) Xcv[j-2] = np.array(Xcv_it) ycv[j-2] = np.array(ycv_it) j+=1; if (len(X)==0 or len(Xcv)==0): print("The sequence provided does not has size enough to populate the return arrays") return X, y, Xcv, ycv def split_train_val_groupKFold(sequence, numInputs, numOutputs, numJumps): """ Returns sets to train and cross-validate a model using group K-Fold technique Parameters: sequence (array) : Full training dataset numInputs (int) : Number of inputs X and Xcv used at each training numOutputs (int) : Number of outputs y and ycv used at each training numJumps (int) : Number of sequence samples to be ignored between (X,y) sets Returns: X (2D array) : Array of numInputs arrays used for training y (2D array) : Array of numOutputs arrays used for training Xcv (2D array) : Array of numInputs arrays used for cross-validation ycv (2D array) : Array of numOutputs arrays used for cross-validation """ X, y, Xcv, ycv = dict(), dict(), dict(), dict() # Iterate through 5 train/val splits for j in np.arange(5): start_ix=0; end_ix=0; startCv_ix=0; endCv_ix=0; X_it, y_it, Xcv_it, ycv_it = list(), list(), list(), list() i=0; # Index of individual training set at each train/val split n=0; # Number of numJumps while 1: if ((i+1+j)%(5) != 0): # TRAINING DATA start_ix = endCv_ix + numJumps*n; end_ix = start_ix + numInputs; n+=1; # Leave train/val split loop once training data crosses time series length if end_ix+numOutputs > len(sequence)-1: break seq_x = sequence[start_ix:end_ix] X_it.append(seq_x) seq_y = sequence[end_ix:end_ix+numOutputs] y_it.append(seq_y) else: # CROSS-VALIDATION DATA startCv_ix = end_ix; endCv_ix = end_ix + numInputs; n=0; # Once val data crosses time series length return if ((endCv_ix+numOutputs) > len(sequence)): break seq_xcv = sequence[startCv_ix:endCv_ix] Xcv_it.append(seq_xcv) seq_ycv = sequence[endCv_ix:endCv_ix+numOutputs] ycv_it.append(seq_ycv) i+=1; ## Add another train/val split X[j] = np.array(X_it) y[j] = np.array(y_it) Xcv[j] = np.array(Xcv_it) ycv[j] = np.array(ycv_it) if (len(X)==0 or len(Xcv)==0): print("The sequence provided does not has size enough to populate the return arrays") return X, y, Xcv, ycv
37.681818
135
0.563088
[ "MIT" ]
DidierRLopes/TimeSeriesCrossValidation
tsxv/splitTrainVal.py
8,290
Python
import _plotly_utils.basevalidators class LinewidthValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="linewidth", parent_name="carpet.aaxis", **kwargs): super(LinewidthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), **kwargs, )
34.307692
86
0.656951
[ "MIT" ]
labaran1/plotly.py
packages/python/plotly/plotly/validators/carpet/aaxis/_linewidth.py
446
Python
from django.urls import path from . import views urlpatterns = [ path('list', views.list_view), path('add', views.add_view), ]
19.285714
34
0.681481
[ "MIT" ]
StevenYwch/CloudNote
note/urls.py
135
Python
# pass test import numpy as np def prepare_input(input_size): return [np.random.rand(input_size), np.random.rand(input_size)] def test_function(input_data): return np.convolve(input_data[0], input_data[1])
24
67
0.75463
[ "Apache-2.0" ]
Ashymad/praca.inz
tests/python/tests/conv/test.py
216
Python
# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of SpineNet model. X. Du, T-Y. Lin, P. Jin, G. Ghiasi, M. Tan, Y. Cui, Q. V. Le, X. Song SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization https://arxiv.org/abs/1912.05027 """ import math # Import libraries from absl import logging import tensorflow as tf from official.modeling import tf_utils from official.vision.beta.modeling.layers import nn_blocks from official.vision.beta.ops import spatial_transform_ops layers = tf.keras.layers FILTER_SIZE_MAP = { 1: 32, 2: 64, 3: 128, 4: 256, 5: 256, 6: 256, 7: 256, } # The fixed SpineNet architecture discovered by NAS. # Each element represents a specification of a building block: # (block_level, block_fn, (input_offset0, input_offset1), is_output). SPINENET_BLOCK_SPECS = [ (2, 'bottleneck', (0, 1), False), (4, 'residual', (0, 1), False), (3, 'bottleneck', (2, 3), False), (4, 'bottleneck', (2, 4), False), (6, 'residual', (3, 5), False), (4, 'bottleneck', (3, 5), False), (5, 'residual', (6, 7), False), (7, 'residual', (6, 8), False), (5, 'bottleneck', (8, 9), False), (5, 'bottleneck', (8, 10), False), (4, 'bottleneck', (5, 10), True), (3, 'bottleneck', (4, 10), True), (5, 'bottleneck', (7, 12), True), (7, 'bottleneck', (5, 14), True), (6, 'bottleneck', (12, 14), True), ] SCALING_MAP = { '49S': { 'endpoints_num_filters': 128, 'filter_size_scale': 0.65, 'resample_alpha': 0.5, 'block_repeats': 1, }, '49': { 'endpoints_num_filters': 256, 'filter_size_scale': 1.0, 'resample_alpha': 0.5, 'block_repeats': 1, }, '96': { 'endpoints_num_filters': 256, 'filter_size_scale': 1.0, 'resample_alpha': 0.5, 'block_repeats': 2, }, '143': { 'endpoints_num_filters': 256, 'filter_size_scale': 1.0, 'resample_alpha': 1.0, 'block_repeats': 3, }, '190': { 'endpoints_num_filters': 512, 'filter_size_scale': 1.3, 'resample_alpha': 1.0, 'block_repeats': 4, }, } class BlockSpec(object): """A container class that specifies the block configuration for SpineNet.""" def __init__(self, level, block_fn, input_offsets, is_output): self.level = level self.block_fn = block_fn self.input_offsets = input_offsets self.is_output = is_output def build_block_specs(block_specs=None): """Builds the list of BlockSpec objects for SpineNet.""" if not block_specs: block_specs = SPINENET_BLOCK_SPECS logging.info('Building SpineNet block specs: %s', block_specs) return [BlockSpec(*b) for b in block_specs] @tf.keras.utils.register_keras_serializable(package='Vision') class SpineNet(tf.keras.Model): """Class to build SpineNet models.""" def __init__(self, input_specs=tf.keras.layers.InputSpec(shape=[None, 640, 640, 3]), min_level=3, max_level=7, block_specs=build_block_specs(), endpoints_num_filters=256, resample_alpha=0.5, block_repeats=1, filter_size_scale=1.0, kernel_initializer='VarianceScaling', kernel_regularizer=None, bias_regularizer=None, activation='relu', use_sync_bn=False, norm_momentum=0.99, norm_epsilon=0.001, **kwargs): """SpineNet model.""" self._input_specs = input_specs self._min_level = min_level self._max_level = max_level self._block_specs = block_specs self._endpoints_num_filters = endpoints_num_filters self._resample_alpha = resample_alpha self._block_repeats = block_repeats self._filter_size_scale = filter_size_scale self._kernel_initializer = kernel_initializer self._kernel_regularizer = kernel_regularizer self._bias_regularizer = bias_regularizer self._activation = activation self._use_sync_bn = use_sync_bn self._norm_momentum = norm_momentum self._norm_epsilon = norm_epsilon if activation == 'relu': self._activation_fn = tf.nn.relu elif activation == 'swish': self._activation_fn = tf.nn.swish else: raise ValueError('Activation {} not implemented.'.format(activation)) self._init_block_fn = 'bottleneck' self._num_init_blocks = 2 if use_sync_bn: self._norm = layers.experimental.SyncBatchNormalization else: self._norm = layers.BatchNormalization if tf.keras.backend.image_data_format() == 'channels_last': self._bn_axis = -1 else: self._bn_axis = 1 # Build SpineNet. inputs = tf.keras.Input(shape=input_specs.shape[1:]) net = self._build_stem(inputs=inputs) net = self._build_scale_permuted_network( net=net, input_width=input_specs.shape[1]) endpoints = self._build_endpoints(net=net) self._output_specs = {l: endpoints[l].get_shape() for l in endpoints} super(SpineNet, self).__init__(inputs=inputs, outputs=endpoints) def _block_group(self, inputs, filters, strides, block_fn_cand, block_repeats=1, name='block_group'): """Creates one group of blocks for the SpineNet model.""" block_fn_candidates = { 'bottleneck': nn_blocks.BottleneckBlock, 'residual': nn_blocks.ResidualBlock, } block_fn = block_fn_candidates[block_fn_cand] _, _, _, num_filters = inputs.get_shape().as_list() if block_fn_cand == 'bottleneck': use_projection = not (num_filters == (filters * 4) and strides == 1) else: use_projection = not (num_filters == filters and strides == 1) x = block_fn( filters=filters, strides=strides, use_projection=use_projection, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer, activation=self._activation, use_sync_bn=self._use_sync_bn, norm_momentum=self._norm_momentum, norm_epsilon=self._norm_epsilon)( inputs) for _ in range(1, block_repeats): x = block_fn( filters=filters, strides=1, use_projection=False, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer, activation=self._activation, use_sync_bn=self._use_sync_bn, norm_momentum=self._norm_momentum, norm_epsilon=self._norm_epsilon)( x) return tf.identity(x, name=name) def _build_stem(self, inputs): """Build SpineNet stem.""" x = layers.Conv2D( filters=64, kernel_size=7, strides=2, use_bias=False, padding='same', kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer)( inputs) x = self._norm( axis=self._bn_axis, momentum=self._norm_momentum, epsilon=self._norm_epsilon)( x) x = tf_utils.get_activation(self._activation_fn)(x) x = layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x) net = [] # Build the initial level 2 blocks. for i in range(self._num_init_blocks): x = self._block_group( inputs=x, filters=int(FILTER_SIZE_MAP[2] * self._filter_size_scale), strides=1, block_fn_cand=self._init_block_fn, block_repeats=self._block_repeats, name='stem_block_{}'.format(i + 1)) net.append(x) return net def _build_scale_permuted_network(self, net, input_width, weighted_fusion=False): """Build scale-permuted network.""" net_sizes = [int(math.ceil(input_width / 2**2))] * len(net) net_block_fns = [self._init_block_fn] * len(net) num_outgoing_connections = [0] * len(net) endpoints = {} for i, block_spec in enumerate(self._block_specs): # Find out specs for the target block. target_width = int(math.ceil(input_width / 2**block_spec.level)) target_num_filters = int(FILTER_SIZE_MAP[block_spec.level] * self._filter_size_scale) target_block_fn = block_spec.block_fn # Resample then merge input0 and input1. parents = [] input0 = block_spec.input_offsets[0] input1 = block_spec.input_offsets[1] x0 = self._resample_with_alpha( inputs=net[input0], input_width=net_sizes[input0], input_block_fn=net_block_fns[input0], target_width=target_width, target_num_filters=target_num_filters, target_block_fn=target_block_fn, alpha=self._resample_alpha) parents.append(x0) num_outgoing_connections[input0] += 1 x1 = self._resample_with_alpha( inputs=net[input1], input_width=net_sizes[input1], input_block_fn=net_block_fns[input1], target_width=target_width, target_num_filters=target_num_filters, target_block_fn=target_block_fn, alpha=self._resample_alpha) parents.append(x1) num_outgoing_connections[input1] += 1 # Merge 0 outdegree blocks to the output block. if block_spec.is_output: for j, (j_feat, j_connections) in enumerate(zip(net, num_outgoing_connections)): if j_connections == 0 and (j_feat.shape[2] == target_width and j_feat.shape[3] == x0.shape[3]): parents.append(j_feat) num_outgoing_connections[j] += 1 # pylint: disable=g-direct-tensorflow-import if weighted_fusion: dtype = parents[0].dtype parent_weights = [ tf.nn.relu(tf.cast(tf.Variable(1.0, name='block{}_fusion{}'.format( i, j)), dtype=dtype)) for j in range(len(parents))] weights_sum = tf.add_n(parent_weights) parents = [ parents[i] * parent_weights[i] / (weights_sum + 0.0001) for i in range(len(parents)) ] # Fuse all parent nodes then build a new block. x = tf_utils.get_activation(self._activation_fn)(tf.add_n(parents)) x = self._block_group( inputs=x, filters=target_num_filters, strides=1, block_fn_cand=target_block_fn, block_repeats=self._block_repeats, name='scale_permuted_block_{}'.format(i + 1)) net.append(x) net_sizes.append(target_width) net_block_fns.append(target_block_fn) num_outgoing_connections.append(0) # Save output feats. if block_spec.is_output: if block_spec.level in endpoints: raise ValueError('Duplicate feats found for output level {}.'.format( block_spec.level)) if (block_spec.level < self._min_level or block_spec.level > self._max_level): raise ValueError('Output level is out of range [{}, {}]'.format( self._min_level, self._max_level)) endpoints[str(block_spec.level)] = x return endpoints def _build_endpoints(self, net): """Match filter size for endpoints before sharing conv layers.""" endpoints = {} for level in range(self._min_level, self._max_level + 1): x = layers.Conv2D( filters=self._endpoints_num_filters, kernel_size=1, strides=1, use_bias=False, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer)( net[str(level)]) x = self._norm( axis=self._bn_axis, momentum=self._norm_momentum, epsilon=self._norm_epsilon)( x) x = tf_utils.get_activation(self._activation_fn)(x) endpoints[str(level)] = x return endpoints def _resample_with_alpha(self, inputs, input_width, input_block_fn, target_width, target_num_filters, target_block_fn, alpha=0.5): """Match resolution and feature dimension.""" _, _, _, input_num_filters = inputs.get_shape().as_list() if input_block_fn == 'bottleneck': input_num_filters /= 4 new_num_filters = int(input_num_filters * alpha) x = layers.Conv2D( filters=new_num_filters, kernel_size=1, strides=1, use_bias=False, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer)( inputs) x = self._norm( axis=self._bn_axis, momentum=self._norm_momentum, epsilon=self._norm_epsilon)( x) x = tf_utils.get_activation(self._activation_fn)(x) # Spatial resampling. if input_width > target_width: x = layers.Conv2D( filters=new_num_filters, kernel_size=3, strides=2, padding='SAME', use_bias=False, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer)( x) x = self._norm( axis=self._bn_axis, momentum=self._norm_momentum, epsilon=self._norm_epsilon)( x) x = tf_utils.get_activation(self._activation_fn)(x) input_width /= 2 while input_width > target_width: x = layers.MaxPool2D(pool_size=3, strides=2, padding='SAME')(x) input_width /= 2 elif input_width < target_width: scale = target_width // input_width x = spatial_transform_ops.nearest_upsampling(x, scale=scale) # Last 1x1 conv to match filter size. if target_block_fn == 'bottleneck': target_num_filters *= 4 x = layers.Conv2D( filters=target_num_filters, kernel_size=1, strides=1, use_bias=False, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer)( x) x = self._norm( axis=self._bn_axis, momentum=self._norm_momentum, epsilon=self._norm_epsilon)( x) return x def get_config(self): config_dict = { 'min_level': self._min_level, 'max_level': self._max_level, 'endpoints_num_filters': self._endpoints_num_filters, 'resample_alpha': self._resample_alpha, 'block_repeats': self._block_repeats, 'filter_size_scale': self._filter_size_scale, 'kernel_initializer': self._kernel_initializer, 'kernel_regularizer': self._kernel_regularizer, 'bias_regularizer': self._bias_regularizer, 'activation': self._activation, 'use_sync_bn': self._use_sync_bn, 'norm_momentum': self._norm_momentum, 'norm_epsilon': self._norm_epsilon } return config_dict @classmethod def from_config(cls, config, custom_objects=None): return cls(**config) @property def output_specs(self): """A dict of {level: TensorShape} pairs for the model output.""" return self._output_specs
34.17119
80
0.625367
[ "Apache-2.0" ]
GPhilo/models
official/vision/beta/modeling/backbones/spinenet.py
16,368
Python
import logging import requests import moment import utils import time import json class weather(utils.utils): def message_callback(self,ch, method, properties, body): logging.info('messgae received weather') time.sleep(1) self.__get_weather(body) ch.basic_ack(delivery_tag=method.delivery_tag) # 执行完再ack消息 logging.info('weather messgae is ack on :'+str(moment.now())) def __get_weather(self,body): params = self.get_params(body) req = requests.get(params.request_url) data = json.loads(req.text) if(data['status'] == 200): wea = data['data']['forecast'][0] params.content='天气:'+wea['type']+' '+wea['high']+','+wea['low']+' '+wea['notice'] else: params.content='错误' self.notification(params) self.notification_to_zhouyu(params) def notification_to_zhouyu(self,params): url='http://push.devzhou.t.cn/Push/'+params.title+'/'+params.content+'?url='+params.red_url requests.get(url) logging.info('messgae send successfully')
31.342857
99
0.632634
[ "MIT" ]
hqs666666/python
Reptile/weather.py
1,119
Python
"""This module implements row model of Amazon.co.jp CSV.""" from dataclasses import dataclass from datetime import datetime from typing import ClassVar, Optional from zaimcsvconverter import CONFIG from zaimcsvconverter.file_csv_convert import FileCsvConvert from zaimcsvconverter.inputcsvformats import InputItemRow, InputItemRowData, InputRowFactory from zaimcsvconverter.models import FileCsvConvertId, Store, StoreRowData @dataclass class Amazon201911RowData(InputItemRowData): """This class implements data class for wrapping list of Amazon.co.jp CSV row model.""" # Reason: This implement depends on design of CSV. pylint: disable=too-many-instance-attributes ITEM_NAME_ENTIRE_ORDER: ClassVar[str] = "(注文全体)" ITEM_NAME_BILLING_TO_CREDIT_CARD: ClassVar[str] = "(クレジットカードへの請求)" ITEM_NAME_SHIPPING_HANDLING: ClassVar[str] = "(配送料・手数料)" _ordered_date: str order_id: str _item_name: str note: str _price: str _number: str _subtotal_price_item: str _total_order: str destination: str status: str billing_address: str billing_amount: str credit_card_billing_date: str credit_card_billing_amount: str credit_card_identity: str url_order_summary: str url_receipt: str url_item: str @property def date(self) -> datetime: return datetime.strptime(self._ordered_date, "%Y/%m/%d") @property def item_name(self) -> str: return self._item_name @property def price(self) -> Optional[int]: return None if self._price == "" else int(self._price) @property def number(self) -> Optional[int]: return None if self._number == "" else int(self._number) @property def total_order(self) -> Optional[int]: return None if self._total_order == "" else int(self._total_order) @property def subtotal_price_item(self) -> Optional[int]: return None if self._subtotal_price_item == "" else int(self._subtotal_price_item) @property def validate(self) -> bool: self.stock_error(lambda: self.date, f"Invalid ordered date. Ordered date = {self._ordered_date}") self.stock_error(lambda: self.price, f"Invalid price. Price = {self._price}") self.stock_error(lambda: self.number, f"Invalid number. Number = {self._number}") self.stock_error(lambda: self.total_order, f"Invalid total order. Total order = {self._total_order}") return super().validate @property def is_entire_order(self) -> bool: return ( self._item_name == self.ITEM_NAME_ENTIRE_ORDER and self.price is None and self.number is None and self.subtotal_price_item is None and self.total_order is not None and self.total_order > 0 and self.credit_card_billing_date == "" and self.credit_card_billing_amount == "" ) @property def is_billing_to_credit_card(self) -> bool: return ( self._item_name == self.ITEM_NAME_BILLING_TO_CREDIT_CARD and self.price is None and self.number is None and self.subtotal_price_item is None and self.total_order is None and self.credit_card_billing_date != "" and self.credit_card_billing_amount != "" ) @property def is_shipping_handling(self) -> bool: return ( self._item_name == self.ITEM_NAME_SHIPPING_HANDLING and self.price is None and self.number is None and self.subtotal_price_item is not None and self.total_order is None and self.credit_card_billing_date == "" and self.credit_card_billing_amount == "" ) @property def is_discount(self) -> bool: # Includes Amazon point return ( not self.is_entire_order and not self.is_billing_to_credit_card and not self.is_shipping_handling and self.total_order is not None and self.total_order < 0 ) @property def is_payment(self) -> bool: return ( not self.is_entire_order and not self.is_billing_to_credit_card and not self.is_shipping_handling and not self.is_discount and self.price is not None and self.price > 0 and self.number is not None and self.number > 0 ) @property def is_free_kindle(self) -> bool: return ( self.price == 0 and self.total_order == 0 and self.subtotal_price_item == 0 and self.destination == "" and self.status.startswith("デジタル注文:") and self.billing_amount == "0" and self.credit_card_billing_date == "" and self.credit_card_billing_amount == "" and self.credit_card_identity == "" ) class Amazon201911Row(InputItemRow): """This class implements row model of Amazon.co.jp CSV.""" def __init__(self, row_data: Amazon201911RowData): super().__init__(FileCsvConvert.AMAZON.value, row_data) self._store: Store = Store(FileCsvConvertId.AMAZON, StoreRowData("Amazon.co.jp", CONFIG.amazon.store_name_zaim)) @property def store(self) -> Store: return self._store class Amazon201911RowToSkip(Amazon201911Row): @property def is_row_to_skip(self) -> bool: return True class Amazon201911DiscountRow(Amazon201911Row): """This class implements row model of Amazon.co.jp CSV.""" def __init__(self, row_data: Amazon201911RowData): super().__init__(row_data) self._total_order: Optional[int] = row_data.total_order @property def total_order(self) -> int: if self._total_order is None: raise ValueError("Total order on discount row is not allowed empty.") return self._total_order @property def validate(self) -> bool: self.stock_error( lambda: self.total_order, f"Total order in discount row is required. Total order = {self._total_order}" ) return super().validate class Amazon201911ShippingHandlingRow(Amazon201911Row): """Row model of shipping / handling of Amazon.co.jp CSV.""" def __init__(self, row_data): super().__init__(row_data) self._subtotal_price_item: Optional[int] = row_data.subtotal_price_item @property def subtotal_price_item(self): if self._subtotal_price_item is None: raise ValueError("Subtotal price item on shipping handling row is not allowed empty.") return self._subtotal_price_item @property def validate(self) -> bool: self.stock_error( lambda: self.subtotal_price_item, "Subtotal price item in Shipping handling row is required. " f"Subtotal price item = {self.subtotal_price_item}", ) return super().validate class Amazon201911PaymentRow(Amazon201911Row): """This class implements row model of Amazon.co.jp CSV.""" def __init__(self, row_data: Amazon201911RowData): super().__init__(row_data) self._price: Optional[int] = row_data.price self._number: Optional[int] = row_data.number @property def price(self) -> int: if self._price is None: raise ValueError("Price on payment row is not allowed empty.") return self._price @property def number(self) -> int: if self._number is None: raise ValueError("Number on payment row is not allowed empty.") return self._number @property def validate(self) -> bool: self.stock_error(lambda: self.price, f"Price in payment row is required. Price = {self._price}") self.stock_error(lambda: self.number, f"Number in payment row is required. Number = {self._number}") return super().validate class Amazon201911RowFactory(InputRowFactory[Amazon201911RowData, Amazon201911Row]): """This class implements factory to create Amazon.co.jp CSV row instance.""" def create(self, input_row_data: Amazon201911RowData) -> Amazon201911Row: # @see https://github.com/furyutei/amzOrderHistoryFilter/issues/3#issuecomment-543645937 if input_row_data.is_billing_to_credit_card or input_row_data.is_free_kindle: return Amazon201911RowToSkip(input_row_data) if input_row_data.is_discount: return Amazon201911DiscountRow(input_row_data) if input_row_data.is_shipping_handling: return Amazon201911ShippingHandlingRow(input_row_data) if input_row_data.is_payment: return Amazon201911PaymentRow(input_row_data) raise ValueError( 'Cash flow kind is not supported. "' f'Order date = {input_row_data.date}, "' f'"item name = {input_row_data.item_name}' ) # pragma: no cover # Reason: This line is insurance for future development so process must be not able to reach
35.410156
120
0.661335
[ "MIT" ]
yukihiko-shinoda/zaim-csv-converter
zaimcsvconverter/inputcsvformats/amazon_201911.py
9,135
Python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # flake8: noqa # # AppDaemon documentation build configuration file, created by # sphinx-quickstart on Fri Aug 11 14:36:18 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) autodoc_mock_imports = ["iso8601", "dateutil"] sys.path.insert(0, os.path.abspath("..")) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ["sphinx.ext.autodoc", "sphinx.ext.napoleon"] autodoc_member_order = "bysource" # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # The master doctree document. master_doc = "index" # General information about the project. project = "AppDaemon" copyright = "2021, Andrew Cockburn" author = "Andrew Cockburn" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "4.0.7" # The full version, including alpha/beta/rc tags. release = "4.0.7" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build"] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "sphinx_rtd_theme" # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr' # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = "AppDaemondoc" # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, "AppDaemon.tex", "AppDaemon Documentation", "Andrew Cockburn", "manual",), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, "appdaemon", "AppDaemon Documentation", [author], 1)] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "AppDaemon", "AppDaemon Documentation", author, "AppDaemon", "Sandboxed python Apps for automation", "Miscellaneous", ), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # texinfo_no_detailmenu = False # omit class name during the generation of the doc add_module_names = False
32.043624
91
0.709708
[ "Apache-2.0" ]
ReneTode/appdaemon
docs/conf.py
9,549
Python
# -*- coding: utf-8 -*- import pytest from pyleecan.Classes.LamSlotMag import LamSlotMag from pyleecan.Classes.SlotM14 import SlotM14 from numpy import pi, exp, sqrt, angle from pyleecan.Methods.Slot.Slot.comp_height import comp_height from pyleecan.Methods.Slot.Slot.comp_surface import comp_surface from pyleecan.Methods.Slot.Slot.comp_angle_opening import comp_angle_opening from pyleecan.Methods.Slot.Slot.comp_height_active import comp_height_active from pyleecan.Methods.Slot.Slot.comp_surface_active import comp_surface_active from pyleecan.Methods import ParentMissingError Mag14_test = list() # Internal Slot inset lam = LamSlotMag(Rint=40e-3, Rext=90e-3, is_internal=True) lam.slot = SlotM14(Zs=4, W0=0.628, H0=0.02, Hmag=0.02, Wmag=0.628, Rtopm=0.04) Mag14_test.append( { "test_obj": lam, "Rmec": 90e-3, "S_exp": 0.0010048, "SA_exp": 9.022e-4, "Ao": 0.628, "H_exp": 0.02, "HA_exp": 0.02, } ) # Internal slot surface lam = LamSlotMag(Rint=40e-3, Rext=90e-3, is_internal=True) lam.slot = SlotM14(Zs=8, W0=0.628, H0=0, Hmag=0.02, Wmag=0.628, Rtopm=0.05) Mag14_test.append( { "test_obj": lam, "Rmec": 0.11, "S_exp": 0, "SA_exp": 1.1089e-3, "Ao": 0.628, "H_exp": 0, "HA_exp": 0.02, } ) # For AlmostEqual DELTA = 1e-4 @pytest.mark.METHODS class Test_Magnet_Type_14_meth(object): """unittest for MagnetType14 methods""" @pytest.mark.parametrize("test_dict", Mag14_test) def test_comp_surface(self, test_dict): """Check that the computation of the surface is correct""" test_obj = test_dict["test_obj"] result = test_obj.slot.comp_surface() a = result b = test_dict["S_exp"] msg = "Return " + str(a) + " expected " + str(b) assert a == pytest.approx(b, rel=DELTA), msg # Check that the analytical method returns the same result as the numerical one b = comp_surface(test_obj.slot) msg = "Return " + str(a) + " expected " + str(b) assert a == pytest.approx(b, rel=DELTA), msg @pytest.mark.parametrize("test_dict", Mag14_test) def test_comp_surface_active(self, test_dict): """Check that the computation of the active surface is correct""" test_obj = test_dict["test_obj"] result = test_obj.slot.comp_surface_active() a = result b = test_dict["SA_exp"] msg = "Return " + str(a) + " expected " + str(b) assert a == pytest.approx(b, rel=DELTA), msg # Check that the analytical method returns the same result as the numerical one b = comp_surface_active(test_obj.slot, Ndisc=1000) msg = "Return " + str(a) + " expected " + str(b) assert a == pytest.approx(b, rel=DELTA), msg @pytest.mark.parametrize("test_dict", Mag14_test) def test_comp_height(self, test_dict): """Check that the computation of the height is correct""" test_obj = test_dict["test_obj"] result = test_obj.slot.comp_height() a = result b = test_dict["H_exp"] msg = "Return " + str(a) + " expected " + str(b) assert a == pytest.approx(b, rel=DELTA), msg # Check that the analytical method returns the same result as the numerical one b = comp_height(test_obj.slot) msg = "Return " + str(a) + " expected " + str(b) assert a == pytest.approx(b, rel=DELTA), msg @pytest.mark.parametrize("test_dict", Mag14_test) def test_comp_height_active(self, test_dict): """Check that the computation of the active height is correct""" test_obj = test_dict["test_obj"] result = test_obj.slot.comp_height_active() a = result b = test_dict["HA_exp"] msg = "Return " + str(a) + " expected " + str(b) # assert a == pytest.approx(b, rel=DELTA), msg # Check that the analytical method returns the same result as the numerical one b = comp_height_active(test_obj.slot) msg = "Return " + str(a) + " expected " + str(b) assert a == pytest.approx(b, rel=DELTA), msg @pytest.mark.parametrize("test_dict", Mag14_test) def test_comp_angle_opening(self, test_dict): """Check that the computation of the average opening angle is correct""" test_obj = test_dict["test_obj"] a = test_obj.slot.comp_angle_opening() assert a == pytest.approx(test_dict["Ao"], rel=DELTA) # Check that the analytical method returns the same result as the numerical one b = comp_angle_opening(test_obj.slot) msg = "Return " + str(a) + " expected " + str(b) assert a == pytest.approx(b, rel=DELTA) @pytest.mark.parametrize("test_dict", Mag14_test) def test_comp_width_opening(self, test_dict): """Check that the computation of the average opening width is correct""" test_obj = test_dict["test_obj"] a = test_obj.slot.comp_width_opening() point_dict = test_obj.slot._comp_point_coordinate() assert a == pytest.approx(abs(point_dict["Z1"] - point_dict["Z4"]), rel=DELTA) @pytest.mark.parametrize("test_dict", Mag14_test) def test_comp_mec_radius(self, test_dict): """Check that the computation of the mechanical radius is correct""" test_obj = test_dict["test_obj"] a = test_obj.comp_radius_mec() assert a == pytest.approx(test_dict["Rmec"], rel=DELTA) @pytest.mark.parametrize("test_dict", Mag14_test) def test_comp_point_coordinate(self, test_dict): """Check that the point coordinates are correct""" test_obj = test_dict["test_obj"] point_dict = test_obj.slot._comp_point_coordinate() Z1 = point_dict["Z1"] Z2 = point_dict["Z2"] Z3 = point_dict["Z3"] Z4 = point_dict["Z4"] ZM0 = point_dict["ZM0"] ZM1 = point_dict["ZM1"] ZM2 = point_dict["ZM2"] ZM3 = point_dict["ZM3"] ZM4 = point_dict["ZM4"] W0 = test_obj.slot.W0 H0 = test_obj.slot.H0 Wmag = test_obj.slot.Wmag Hmag = test_obj.slot.Hmag Rbo = test_obj.get_Rbo() assert abs(Z1) == pytest.approx(Rbo, rel=DELTA) assert angle(Z1) == pytest.approx(-W0 / 2, rel=DELTA) assert abs(Z4) == pytest.approx(Rbo, rel=DELTA) assert angle(Z4) == pytest.approx(W0 / 2, rel=DELTA) if test_obj.is_internal: assert abs(Z2) == pytest.approx(Rbo - H0, rel=DELTA) assert abs(Z3) == pytest.approx(Rbo - H0, rel=DELTA) else: assert abs(Z3) == pytest.approx(Rbo + H0, rel=DELTA) assert abs(Z2) == pytest.approx(Rbo + H0, rel=DELTA) assert angle(Z2) == pytest.approx(-W0 / 2, rel=DELTA) assert angle(Z3) == pytest.approx(W0 / 2, rel=DELTA) assert angle(ZM1) == pytest.approx(angle(ZM2), rel=DELTA) assert angle(ZM1) == pytest.approx(-Wmag / 2, rel=DELTA) assert angle(ZM3) == pytest.approx(angle(ZM4), rel=DELTA) assert angle(ZM3) == pytest.approx(Wmag / 2, rel=DELTA) if test_obj.is_internal: assert ZM0 == pytest.approx(Rbo + Hmag - H0, rel=DELTA) else: assert ZM0 == pytest.approx(Rbo - Hmag + H0, rel=DELTA)
39.134409
87
0.629619
[ "Apache-2.0" ]
ajpina/pyleecan
Tests/Methods/Slot/test_SlotM14_meth.py
7,279
Python
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from heat.tests.v1_1 import fakes from heat.engine.resources import instance as instances from heat.engine.resources import nova_utils from heat.common import template_format from heat.engine import scheduler from heat.tests.common import HeatTestCase from heat.tests import utils nokey_template = ''' { "AWSTemplateFormatVersion" : "2010-09-09", "Description" : "NoKey Test", "Parameters" : {}, "Resources" : { "WebServer": { "Type": "AWS::EC2::Instance", "Properties": { "ImageId" : "foo", "InstanceType" : "m1.large", "UserData" : "some data" } } } } ''' class nokeyTest(HeatTestCase): def setUp(self): super(nokeyTest, self).setUp() self.fc = fakes.FakeClient() utils.setup_dummy_db() def test_nokey_create(self): stack_name = 'instance_create_test_nokey_stack' t = template_format.parse(nokey_template) stack = utils.parse_stack(t, stack_name=stack_name) t['Resources']['WebServer']['Properties']['ImageId'] = 'CentOS 5.2' t['Resources']['WebServer']['Properties']['InstanceType'] = \ '256 MB Server' instance = instances.Instance('create_instance_name', t['Resources']['WebServer'], stack) self.m.StubOutWithMock(instance, 'nova') instance.nova().MultipleTimes().AndReturn(self.fc) instance.t = instance.stack.resolve_runtime_data(instance.t) # need to resolve the template functions server_userdata = nova_utils.build_userdata( instance, instance.t['Properties']['UserData']) instance.mime_string = server_userdata self.m.StubOutWithMock(self.fc.servers, 'create') self.fc.servers.create( image=1, flavor=1, key_name=None, name=utils.PhysName(stack_name, instance.name), security_groups=None, userdata=server_userdata, scheduler_hints=None, meta=None, nics=None, availability_zone=None).AndReturn( self.fc.servers.list()[1]) self.m.ReplayAll() scheduler.TaskRunner(instance.create)()
34.121951
78
0.651894
[ "Apache-2.0" ]
citrix-openstack-build/heat
heat/tests/test_nokey.py
2,798
Python
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from six.moves import range import numpy as np import utool from ibeis.control import SQLDatabaseControl as sqldbc from ibeis.control._sql_helpers import _results_gen from os.path import join print, print_, printDBG, rrr, profile = utool.inject(__name__, '[TEST_SQL_NUMPY] ') # list of 10,000 chips with 3,000 features apeice. def grab_numpy_testdata(shape=(3e3, 128), dtype=np.uint8): ndata = utool.get_argval('--ndata', type_=int, default=2) print('[TEST] build ndata=%d numpy arrays with shape=%r' % (ndata, shape)) print(' * expected_memory(table_list) = %s' % utool.byte_str2(ndata * np.product(shape))) table_list = [np.empty(shape, dtype=dtype) for i in range(ndata)] print(' * memory+overhead(table_list) = %s' % utool.byte_str2(utool.get_object_size(table_list))) return table_list def TEST_SQL_NUMPY(): sqldb_fname = 'temp_test_sql_numpy.sqlite3' sqldb_dpath = utool.util_cplat.get_app_resource_dir('ibeis', 'testfiles') utool.ensuredir(sqldb_dpath) utool.util_path.remove_file(join(sqldb_dpath, sqldb_fname), dryrun=False) db = sqldbc.SQLDatabaseController(sqldb_dpath=sqldb_dpath, sqldb_fname=sqldb_fname) db.add_table('temp', [ ('temp_id', 'INTEGER PRIMARY KEY'), ('temp_hash', 'NUMPY'), ]) tt = utool.tic() feats_list = grab_numpy_testdata(shape=(3e3, 128), dtype=np.uint8) print(' * numpy.new time=%r sec' % utool.toc(tt)) print('[TEST] insert numpy arrays') tt = utool.tic() feats_iter = ((feats, ) for feats in feats_list) db.executemany(operation=''' INSERT INTO temp ( temp_hash ) VALUES (?) ''', params_iter=feats_iter) print(' * execute insert time=%r sec' % utool.toc(tt)) print('[TEST] save sql database') tt = utool.tic() #db.cur.commit() db.connection.commit() print(' * commit time=%r sec' % utool.toc(tt)) print('[TEST] read from sql database') tt = utool.tic() db.cur.execute('SELECT temp_hash FROM temp', []) print(' * execute select time=%r sec' % utool.toc(tt)) tt = utool.tic() result_list = _results_gen(db.cur) print(' * iter results time=%r sec' % utool.toc(tt)) print(' * memory(result_list) = %s' % utool.byte_str2(utool.get_object_size(result_list))) del result_list #print('[TEST] result_list=%r' % result_list) print('[TEST] dump sql database') tt = utool.tic() db.dump('temp.dump.txt') print(' * dump time=%r sec' % utool.toc(tt)) #with open('temp.dump.txt') as file_: # print(file_.read()) return locals() if __name__ == '__main__': import multiprocessing multiprocessing.freeze_support() # For win32 test_locals = utool.run_test(TEST_SQL_NUMPY) execstr = utool.execstr_dict(test_locals, 'test_locals') exec(execstr)
34.574713
101
0.655918
[ "Apache-2.0" ]
SU-ECE-17-7/ibeis
_broken/test_sql_numpy.py
3,008
Python
""" Tests for Markov Autoregression models Author: Chad Fulton License: BSD-3 """ import warnings import os import numpy as np from numpy.testing import assert_equal, assert_allclose import pandas as pd import pytest from statsmodels.tools import add_constant from statsmodels.tsa.regime_switching import markov_autoregression current_path = os.path.dirname(os.path.abspath(__file__)) rgnp = [2.59316421, 2.20217133, 0.45827562, 0.9687438, -0.24130757, 0.89647478, 2.05393219, 1.73353648, 0.93871289, -0.46477833, -0.80983406, -1.39763689, -0.39886093, 1.1918416, 1.45620048, 2.11808228, 1.08957863, 1.32390273, 0.87296367, -0.19773273, 0.45420215, 0.07221876, 1.1030364, 0.82097489, -0.05795795, 0.58447772, -1.56192672, -2.05041027, 0.53637183, 2.33676839, 2.34014559, 1.2339263, 1.8869648, -0.45920792, 0.84940469, 1.70139849, -0.28756312, 0.09594627, -0.86080289, 1.03447127, 1.23685944, 1.42004502, 2.22410631, 1.30210173, 1.03517699, 0.9253425, -0.16559951, 1.3444382, 1.37500131, 1.73222184, 0.71605635, 2.21032143, 0.85333031, 1.00238776, 0.42725441, 2.14368343, 1.43789184, 1.57959926, 2.27469826, 1.95962656, 0.25992399, 1.01946914, 0.49016398, 0.5636338, 0.5959546, 1.43082857, 0.56230122, 1.15388393, 1.68722844, 0.77438205, -0.09647045, 1.39600146, 0.13646798, 0.55223715, -0.39944872, -0.61671102, -0.08722561, 1.2101835, -0.90729755, 2.64916158, -0.0080694, 0.51111895, -0.00401437, 2.16821432, 1.92586732, 1.03504717, 1.85897219, 2.32004929, 0.25570789, -0.09855274, 0.89073682, -0.55896485, 0.28350255, -1.31155407, -0.88278776, -1.97454941, 1.01275265, 1.68264723, 1.38271284, 1.86073637, 0.4447377, 0.41449001, 0.99202275, 1.36283576, 1.59970522, 1.98845816, -0.25684232, 0.87786949, 3.1095655, 0.85324478, 1.23337317, 0.00314302, -0.09433369, 0.89883322, -0.19036628, 0.99772376, -2.39120054, 0.06649673, 1.26136017, 1.91637838, -0.3348029, 0.44207108, -1.40664911, -1.52129889, 0.29919869, -0.80197448, 0.15204792, 0.98585027, 2.13034606, 1.34397924, 1.61550522, 2.70930099, 1.24461412, 0.50835466, 0.14802167] rec = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] def test_predict(): # AR(1) without mean, k_regimes=2 endog = np.ones(10) with pytest.warns(FutureWarning): markov_autoregression.MarkovAutoregression( endog, k_regimes=2, order=1, trend='nc' ) mod = markov_autoregression.MarkovAutoregression( endog, k_regimes=2, order=1, trend='n') assert_equal(mod.nobs, 9) assert_equal(mod.endog, np.ones(9)) params = np.r_[0.5, 0.5, 1., 0.1, 0.5] mod_resid = mod._resid(params) resids = np.zeros((2, 2, mod.nobs)) # Resids when: S_{t} = 0 resids[0, :, :] = np.ones(9) - 0.1 * np.ones(9) assert_allclose(mod_resid[0, :, :], resids[0, :, :]) # Resids when: S_{t} = 1 resids[1, :, :] = np.ones(9) - 0.5 * np.ones(9) assert_allclose(mod_resid[1, :, :], resids[1, :, :]) # AR(1) with mean, k_regimes=2 endog = np.arange(10) mod = markov_autoregression.MarkovAutoregression( endog, k_regimes=2, order=1) assert_equal(mod.nobs, 9) assert_equal(mod.endog, np.arange(1, 10)) params = np.r_[0.5, 0.5, 2., 3., 1., 0.1, 0.5] mod_resid = mod._resid(params) resids = np.zeros((2, 2, mod.nobs)) # Resids when: S_t = 0, S_{t-1} = 0 resids[0, 0, :] = (np.arange(1, 10) - 2.) - 0.1 * (np.arange(9) - 2.) assert_allclose(mod_resid[0, 0, :], resids[0, 0, :]) # Resids when: S_t = 0, S_{t-1} = 1 resids[0, 1, :] = (np.arange(1, 10) - 2.) - 0.1 * (np.arange(9) - 3.) assert_allclose(mod_resid[0, 1, :], resids[0, 1, :]) # Resids when: S_t = 1, S_{t-1} = 0 resids[1, 0, :] = (np.arange(1, 10) - 3.) - 0.5 * (np.arange(9) - 2.) assert_allclose(mod_resid[1, 0, :], resids[1, 0, :]) # Resids when: S_t = 1, S_{t-1} = 1 resids[1, 1, :] = (np.arange(1, 10) - 3.) - 0.5 * (np.arange(9) - 3.) assert_allclose(mod_resid[1, 1, :], resids[1, 1, :]) # AR(2) with mean, k_regimes=3 endog = np.arange(10) mod = markov_autoregression.MarkovAutoregression( endog, k_regimes=3, order=2) assert_equal(mod.nobs, 8) assert_equal(mod.endog, np.arange(2, 10)) params = np.r_[[0.3] * 6, 2., 3., 4, 1., 0.1, 0.5, 0.8, -0.05, -0.25, -0.4] mod_resid = mod._resid(params) resids = np.zeros((3, 3, 3, mod.nobs)) # Resids when: S_t = 0, S_{t-1} = 0, S_{t-2} = 0 resids[0, 0, 0, :] = ( (np.arange(2, 10) - 2.) - 0.1 * (np.arange(1, 9) - 2.) - (-0.05) * (np.arange(8) - 2.)) assert_allclose(mod_resid[0, 0, 0, :], resids[0, 0, 0, :]) # Resids when: S_t = 1, S_{t-1} = 0, S_{t-2} = 0 resids[1, 0, 0, :] = ( (np.arange(2, 10) - 3.) - 0.5 * (np.arange(1, 9) - 2.) - (-0.25) * (np.arange(8) - 2.)) assert_allclose(mod_resid[1, 0, 0, :], resids[1, 0, 0, :]) # Resids when: S_t = 0, S_{t-1} = 2, S_{t-2} = 1 resids[0, 2, 1, :] = ( (np.arange(2, 10) - 2.) - 0.1 * (np.arange(1, 9) - 4.) - (-0.05) * (np.arange(8) - 3.)) assert_allclose(mod_resid[0, 2, 1, :], resids[0, 2, 1, :]) # AR(1) with mean + non-switching exog endog = np.arange(10) exog = np.r_[0.4, 5, 0.2, 1.2, -0.3, 2.5, 0.2, -0.7, 2., -1.1] mod = markov_autoregression.MarkovAutoregression( endog, k_regimes=2, order=1, exog=exog) assert_equal(mod.nobs, 9) assert_equal(mod.endog, np.arange(1, 10)) params = np.r_[0.5, 0.5, 2., 3., 1.5, 1., 0.1, 0.5] mod_resid = mod._resid(params) resids = np.zeros((2, 2, mod.nobs)) # Resids when: S_t = 0, S_{t-1} = 0 resids[0, 0, :] = ( (np.arange(1, 10) - 2. - 1.5 * exog[1:]) - 0.1 * (np.arange(9) - 2. - 1.5 * exog[:-1])) assert_allclose(mod_resid[0, 0, :], resids[0, 0, :]) # Resids when: S_t = 0, S_{t-1} = 1 resids[0, 1, :] = ( (np.arange(1, 10) - 2. - 1.5 * exog[1:]) - 0.1 * (np.arange(9) - 3. - 1.5 * exog[:-1])) assert_allclose(mod_resid[0, 1, :], resids[0, 1, :]) # Resids when: S_t = 1, S_{t-1} = 0 resids[1, 0, :] = ( (np.arange(1, 10) - 3. - 1.5 * exog[1:]) - 0.5 * (np.arange(9) - 2. - 1.5 * exog[:-1])) assert_allclose(mod_resid[1, 0, :], resids[1, 0, :]) # Resids when: S_t = 1, S_{t-1} = 1 resids[1, 1, :] = ( (np.arange(1, 10) - 3. - 1.5 * exog[1:]) - 0.5 * (np.arange(9) - 3. - 1.5 * exog[:-1])) assert_allclose(mod_resid[1, 1, :], resids[1, 1, :]) def test_conditional_loglikelihoods(): # AR(1) without mean, k_regimes=2, non-switching variance endog = np.ones(10) mod = markov_autoregression.MarkovAutoregression( endog, k_regimes=2, order=1) assert_equal(mod.nobs, 9) assert_equal(mod.endog, np.ones(9)) params = np.r_[0.5, 0.5, 2., 3., 2., 0.1, 0.5] resid = mod._resid(params) conditional_likelihoods = ( np.exp(-0.5 * resid**2 / 2) / np.sqrt(2 * np.pi * 2)) assert_allclose(mod._conditional_loglikelihoods(params), np.log(conditional_likelihoods)) # AR(1) without mean, k_regimes=3, switching variance endog = np.ones(10) mod = markov_autoregression.MarkovAutoregression( endog, k_regimes=3, order=1, switching_variance=True) assert_equal(mod.nobs, 9) assert_equal(mod.endog, np.ones(9)) params = np.r_[[0.3]*6, 2., 3., 4., 1.5, 3., 4.5, 0.1, 0.5, 0.8] mod_conditional_loglikelihoods = mod._conditional_loglikelihoods(params) conditional_likelihoods = mod._resid(params) # S_t = 0 conditional_likelihoods[0, :, :] = ( np.exp(-0.5 * conditional_likelihoods[0, :, :]**2 / 1.5) / np.sqrt(2 * np.pi * 1.5)) assert_allclose(mod_conditional_loglikelihoods[0, :, :], np.log(conditional_likelihoods[0, :, :])) # S_t = 1 conditional_likelihoods[1, :, :] = ( np.exp(-0.5 * conditional_likelihoods[1, :, :]**2 / 3.) / np.sqrt(2 * np.pi * 3.)) assert_allclose(mod_conditional_loglikelihoods[1, :, :], np.log(conditional_likelihoods[1, :, :])) # S_t = 2 conditional_likelihoods[2, :, :] = ( np.exp(-0.5 * conditional_likelihoods[2, :, :]**2 / 4.5) / np.sqrt(2 * np.pi * 4.5)) assert_allclose(mod_conditional_loglikelihoods[2, :, :], np.log(conditional_likelihoods[2, :, :])) class MarkovAutoregression(object): @classmethod def setup_class(cls, true, endog, atol=1e-5, rtol=1e-7, **kwargs): cls.model = markov_autoregression.MarkovAutoregression(endog, **kwargs) cls.true = true cls.result = cls.model.smooth(cls.true['params']) cls.atol = atol cls.rtol = rtol def test_llf(self): assert_allclose(self.result.llf, self.true['llf'], atol=self.atol, rtol=self.rtol) def test_fit(self, **kwargs): # Test fitting against Stata with warnings.catch_warnings(): warnings.simplefilter("ignore") res = self.model.fit(disp=False, **kwargs) assert_allclose(res.llf, self.true['llf_fit'], atol=self.atol, rtol=self.rtol) @pytest.mark.smoke def test_fit_em(self, **kwargs): # Test EM fitting (smoke test) res_em = self.model._fit_em(**kwargs) assert_allclose(res_em.llf, self.true['llf_fit_em'], atol=self.atol, rtol=self.rtol) hamilton_ar2_short_filtered_joint_probabilities = np.array([ [[[4.99506987e-02, 6.44048275e-04, 6.22227140e-05, 4.45756755e-06, 5.26645567e-07, 7.99846146e-07, 1.19425705e-05, 6.87762063e-03], [1.95930395e-02, 3.25884335e-04, 1.12955091e-04, 3.38537103e-04, 9.81927968e-06, 2.71696750e-05, 5.83828290e-03, 7.64261509e-02]], [[1.97113193e-03, 9.50372207e-05, 1.98390978e-04, 1.88188953e-06, 4.83449400e-07, 1.14872860e-05, 4.02918239e-06, 4.35015431e-04], [2.24870443e-02, 1.27331172e-03, 9.62155856e-03, 4.04178695e-03, 2.75516282e-04, 1.18179572e-02, 5.99778157e-02, 1.48149567e-01]]], [[[6.70912859e-02, 1.84223872e-02, 2.55621792e-04, 4.48500688e-05, 7.80481515e-05, 2.73734559e-06, 7.59835896e-06, 1.42930726e-03], [2.10053328e-02, 7.44036383e-03, 3.70388879e-04, 2.71878370e-03, 1.16152088e-03, 7.42182691e-05, 2.96490192e-03, 1.26774695e-02]], [[8.09335679e-02, 8.31016518e-02, 2.49149080e-02, 5.78825626e-04, 2.19019941e-03, 1.20179130e-03, 7.83659430e-05, 2.76363377e-03], [7.36967899e-01, 8.88697316e-01, 9.64463954e-01, 9.92270877e-01, 9.96283886e-01, 9.86863839e-01, 9.31117063e-01, 7.51241236e-01]]]]) hamilton_ar2_short_predicted_joint_probabilities = np.array([[ [[[1.20809334e-01, 3.76964436e-02, 4.86045844e-04, 4.69578023e-05, 3.36400588e-06, 3.97445190e-07, 6.03622290e-07, 9.01273552e-06], [3.92723623e-02, 1.47863379e-02, 2.45936108e-04, 8.52441571e-05, 2.55484811e-04, 7.41034525e-06, 2.05042201e-05, 4.40599447e-03]], [[4.99131230e-03, 1.48756005e-03, 7.17220245e-05, 1.49720314e-04, 1.42021122e-06, 3.64846209e-07, 8.66914462e-06, 3.04071516e-06], [4.70476003e-02, 1.69703652e-02, 9.60933974e-04, 7.26113047e-03, 3.05022748e-03, 2.07924699e-04, 8.91869322e-03, 4.52636381e-02]]], [[[4.99131230e-03, 6.43506069e-03, 1.76698327e-03, 2.45179642e-05, 4.30179435e-06, 7.48598845e-06, 2.62552503e-07, 7.28796600e-07], [1.62256192e-03, 2.01472650e-03, 7.13642497e-04, 3.55258493e-05, 2.60772139e-04, 1.11407276e-04, 7.11864528e-06, 2.84378568e-04]], [[5.97950448e-03, 7.76274317e-03, 7.97069493e-03, 2.38971340e-03, 5.55180599e-05, 2.10072977e-04, 1.15269812e-04, 7.51646942e-06], [5.63621989e-02, 7.06862760e-02, 8.52394030e-02, 9.25065601e-02, 9.51736612e-02, 9.55585689e-02, 9.46550451e-02, 8.93080931e-02]]]], [[[[3.92723623e-02, 1.22542551e-02, 1.58002431e-04, 1.52649118e-05, 1.09356167e-06, 1.29200377e-07, 1.96223855e-07, 2.92983500e-06], [1.27665503e-02, 4.80670161e-03, 7.99482261e-05, 2.77109335e-05, 8.30522919e-05, 2.40893443e-06, 6.66545485e-06, 1.43228843e-03]], [[1.62256192e-03, 4.83571884e-04, 2.33151963e-05, 4.86706634e-05, 4.61678312e-07, 1.18603191e-07, 2.81814142e-06, 9.88467229e-07], [1.52941031e-02, 5.51667911e-03, 3.12377744e-04, 2.36042810e-03, 9.91559466e-04, 6.75915830e-05, 2.89926399e-03, 1.47141776e-02]]], [[[4.70476003e-02, 6.06562252e-02, 1.66554040e-02, 2.31103828e-04, 4.05482745e-05, 7.05621631e-05, 2.47479309e-06, 6.86956236e-06], [1.52941031e-02, 1.89906063e-02, 6.72672133e-03, 3.34863029e-04, 2.45801156e-03, 1.05011361e-03, 6.70996238e-05, 2.68052335e-03]], [[5.63621989e-02, 7.31708248e-02, 7.51309569e-02, 2.25251946e-02, 5.23307566e-04, 1.98012644e-03, 1.08652148e-03, 7.08494735e-05], [5.31264334e-01, 6.66281623e-01, 8.03457913e-01, 8.71957394e-01, 8.97097216e-01, 9.00725317e-01, 8.92208794e-01, 8.41808970e-01]]]]]) hamilton_ar2_short_smoothed_joint_probabilities = np.array([ [[[1.29898189e-02, 1.66298475e-04, 1.29822987e-05, 9.95268382e-07, 1.84473346e-07, 7.18761267e-07, 1.69576494e-05, 6.87762063e-03], [5.09522472e-03, 8.41459714e-05, 2.35672254e-05, 7.55872505e-05, 3.43949612e-06, 2.44153330e-05, 8.28997024e-03, 7.64261509e-02]], [[5.90021731e-04, 2.55342733e-05, 4.50698224e-05, 5.30734135e-07, 1.80741761e-07, 1.11483792e-05, 5.98539007e-06, 4.35015431e-04], [6.73107901e-03, 3.42109009e-04, 2.18579464e-03, 1.13987259e-03, 1.03004157e-04, 1.14692946e-02, 8.90976350e-02, 1.48149567e-01]]], [[[6.34648123e-02, 1.79187451e-02, 2.37462147e-04, 3.55542558e-05, 7.63980455e-05, 2.90520820e-06, 8.17644492e-06, 1.42930726e-03], [1.98699352e-02, 7.23695477e-03, 3.44076057e-04, 2.15527721e-03, 1.13696383e-03, 7.87695658e-05, 3.19047276e-03, 1.26774695e-02]], [[8.81925054e-02, 8.33092133e-02, 2.51106301e-02, 5.81007470e-04, 2.19065072e-03, 1.20221350e-03, 7.56893839e-05, 2.76363377e-03], [8.03066603e-01, 8.90916999e-01, 9.72040418e-01, 9.96011175e-01, 9.96489179e-01, 9.87210535e-01, 8.99315113e-01, 7.51241236e-01]]]]) class TestHamiltonAR2Short(MarkovAutoregression): # This is just a set of regression tests @classmethod def setup_class(cls): true = { 'params': np.r_[0.754673, 0.095915, -0.358811, 1.163516, np.exp(-0.262658)**2, 0.013486, -0.057521], 'llf': -10.14066, 'llf_fit': -4.0523073, 'llf_fit_em': -8.885836 } super(TestHamiltonAR2Short, cls).setup_class( true, rgnp[-10:], k_regimes=2, order=2, switching_ar=False) def test_fit_em(self): with warnings.catch_warnings(): warnings.simplefilter("ignore") super(TestHamiltonAR2Short, self).test_fit_em() def test_filter_output(self, **kwargs): res = self.result # Filtered assert_allclose(res.filtered_joint_probabilities, hamilton_ar2_short_filtered_joint_probabilities) # Predicted desired = hamilton_ar2_short_predicted_joint_probabilities if desired.ndim > res.predicted_joint_probabilities.ndim: desired = desired.sum(axis=-2) assert_allclose(res.predicted_joint_probabilities, desired) def test_smoother_output(self, **kwargs): res = self.result # Filtered assert_allclose(res.filtered_joint_probabilities, hamilton_ar2_short_filtered_joint_probabilities) # Predicted desired = hamilton_ar2_short_predicted_joint_probabilities if desired.ndim > res.predicted_joint_probabilities.ndim: desired = desired.sum(axis=-2) assert_allclose(res.predicted_joint_probabilities, desired) # Smoothed, entry-by-entry assert_allclose( res.smoothed_joint_probabilities[..., -1], hamilton_ar2_short_smoothed_joint_probabilities[..., -1]) assert_allclose( res.smoothed_joint_probabilities[..., -2], hamilton_ar2_short_smoothed_joint_probabilities[..., -2]) assert_allclose( res.smoothed_joint_probabilities[..., -3], hamilton_ar2_short_smoothed_joint_probabilities[..., -3]) assert_allclose( res.smoothed_joint_probabilities[..., :-3], hamilton_ar2_short_smoothed_joint_probabilities[..., :-3]) hamilton_ar4_filtered = [ 0.776712, 0.949192, 0.996320, 0.990258, 0.940111, 0.537442, 0.140001, 0.008942, 0.048480, 0.614097, 0.910889, 0.995463, 0.979465, 0.992324, 0.984561, 0.751038, 0.776268, 0.522048, 0.814956, 0.821786, 0.472729, 0.673567, 0.029031, 0.001556, 0.433276, 0.985463, 0.995025, 0.966067, 0.998445, 0.801467, 0.960997, 0.996431, 0.461365, 0.199357, 0.027398, 0.703626, 0.946388, 0.985321, 0.998244, 0.989567, 0.984510, 0.986811, 0.793788, 0.973675, 0.984848, 0.990418, 0.918427, 0.998769, 0.977647, 0.978742, 0.927635, 0.998691, 0.988934, 0.991654, 0.999288, 0.999073, 0.918636, 0.987710, 0.966876, 0.910015, 0.826150, 0.969451, 0.844049, 0.941525, 0.993363, 0.949978, 0.615206, 0.970915, 0.787585, 0.707818, 0.200476, 0.050835, 0.140723, 0.809850, 0.086422, 0.990344, 0.785963, 0.817425, 0.659152, 0.996578, 0.992860, 0.948501, 0.996883, 0.999712, 0.906694, 0.725013, 0.963690, 0.386960, 0.241302, 0.009078, 0.015789, 0.000896, 0.541530, 0.928686, 0.953704, 0.992741, 0.935877, 0.918958, 0.977316, 0.987941, 0.987300, 0.996769, 0.645469, 0.921285, 0.999917, 0.949335, 0.968914, 0.886025, 0.777141, 0.904381, 0.368277, 0.607429, 0.002491, 0.227610, 0.871284, 0.987717, 0.288705, 0.512124, 0.030329, 0.005177, 0.256183, 0.020955, 0.051620, 0.549009, 0.991715, 0.987892, 0.995377, 0.999833, 0.993756, 0.956164, 0.927714] hamilton_ar4_smoothed = [ 0.968096, 0.991071, 0.998559, 0.958534, 0.540652, 0.072784, 0.010999, 0.006228, 0.172144, 0.898574, 0.989054, 0.998293, 0.986434, 0.993248, 0.976868, 0.858521, 0.847452, 0.675670, 0.596294, 0.165407, 0.035270, 0.127967, 0.007414, 0.004944, 0.815829, 0.998128, 0.998091, 0.993227, 0.999283, 0.921100, 0.977171, 0.971757, 0.124680, 0.063710, 0.114570, 0.954701, 0.994852, 0.997302, 0.999345, 0.995817, 0.996218, 0.994580, 0.933990, 0.996054, 0.998151, 0.996976, 0.971489, 0.999786, 0.997362, 0.996755, 0.993053, 0.999947, 0.998469, 0.997987, 0.999830, 0.999360, 0.953176, 0.992673, 0.975235, 0.938121, 0.946784, 0.986897, 0.905792, 0.969755, 0.995379, 0.914480, 0.772814, 0.931385, 0.541742, 0.394596, 0.063428, 0.027829, 0.124527, 0.286105, 0.069362, 0.995950, 0.961153, 0.962449, 0.945022, 0.999855, 0.998943, 0.980041, 0.999028, 0.999838, 0.863305, 0.607421, 0.575983, 0.013300, 0.007562, 0.000635, 0.001806, 0.002196, 0.803550, 0.972056, 0.984503, 0.998059, 0.985211, 0.988486, 0.994452, 0.994498, 0.998873, 0.999192, 0.870482, 0.976282, 0.999961, 0.984283, 0.973045, 0.786176, 0.403673, 0.275418, 0.115199, 0.257560, 0.004735, 0.493936, 0.907360, 0.873199, 0.052959, 0.076008, 0.001653, 0.000847, 0.062027, 0.021257, 0.219547, 0.955654, 0.999851, 0.997685, 0.998324, 0.999939, 0.996858, 0.969209, 0.927714] class TestHamiltonAR4(MarkovAutoregression): @classmethod def setup_class(cls): # Results from E-views: # Dependent variable followed by a list of switching regressors: # rgnp c # List of non-switching regressors: # ar(1) ar(2) ar(3) ar(4) # Do not check "Regime specific error variances" # Switching type: Markov # Number of Regimes: 2 # Probability regressors: # c # Method SWITCHREG # Sample 1951q1 1984q4 true = { 'params': np.r_[0.754673, 0.095915, -0.358811, 1.163516, np.exp(-0.262658)**2, 0.013486, -0.057521, -0.246983, -0.212923], 'llf': -181.26339, 'llf_fit': -181.26339, 'llf_fit_em': -183.85444, 'bse_oim': np.r_[.0965189, .0377362, .2645396, .0745187, np.nan, .1199942, .137663, .1069103, .1105311, ] } super(TestHamiltonAR4, cls).setup_class( true, rgnp, k_regimes=2, order=4, switching_ar=False) def test_filtered_regimes(self): res = self.result assert_equal(len(res.filtered_marginal_probabilities[:, 1]), self.model.nobs) assert_allclose(res.filtered_marginal_probabilities[:, 1], hamilton_ar4_filtered, atol=1e-5) def test_smoothed_regimes(self): res = self.result assert_equal(len(res.smoothed_marginal_probabilities[:, 1]), self.model.nobs) assert_allclose(res.smoothed_marginal_probabilities[:, 1], hamilton_ar4_smoothed, atol=1e-5) def test_bse(self): # Cannot compare middle element of bse because we estimate sigma^2 # rather than sigma bse = self.result.cov_params_approx.diagonal()**0.5 assert_allclose(bse[:4], self.true['bse_oim'][:4], atol=1e-6) assert_allclose(bse[6:], self.true['bse_oim'][6:], atol=1e-6) class TestHamiltonAR2Switch(MarkovAutoregression): # Results from Stata, see http://www.stata.com/manuals14/tsmswitch.pdf @classmethod def setup_class(cls): path = os.path.join(current_path, 'results', 'results_predict_rgnp.csv') results = pd.read_csv(path) true = { 'params': np.r_[.3812383, .3564492, -.0055216, 1.195482, .6677098**2, .3710719, .4621503, .7002937, -.3206652], 'llf': -179.32354, 'llf_fit': -179.38684, 'llf_fit_em': -184.99606, 'bse_oim': np.r_[.1424841, .0994742, .2057086, .1225987, np.nan, .1754383, .1652473, .187409, .1295937], 'smoothed0': results.iloc[3:]['switchar2_sm1'], 'smoothed1': results.iloc[3:]['switchar2_sm2'], 'predict0': results.iloc[3:]['switchar2_yhat1'], 'predict1': results.iloc[3:]['switchar2_yhat2'], 'predict_predicted': results.iloc[3:]['switchar2_pyhat'], 'predict_filtered': results.iloc[3:]['switchar2_fyhat'], 'predict_smoothed': results.iloc[3:]['switchar2_syhat'], } super(TestHamiltonAR2Switch, cls).setup_class( true, rgnp, k_regimes=2, order=2) def test_smoothed_marginal_probabilities(self): assert_allclose(self.result.smoothed_marginal_probabilities[:, 0], self.true['smoothed0'], atol=1e-6) assert_allclose(self.result.smoothed_marginal_probabilities[:, 1], self.true['smoothed1'], atol=1e-6) def test_predict(self): # Smoothed actual = self.model.predict( self.true['params'], probabilities='smoothed') assert_allclose(actual, self.true['predict_smoothed'], atol=1e-6) actual = self.model.predict( self.true['params'], probabilities=None) assert_allclose(actual, self.true['predict_smoothed'], atol=1e-6) actual = self.result.predict(probabilities='smoothed') assert_allclose(actual, self.true['predict_smoothed'], atol=1e-6) actual = self.result.predict(probabilities=None) assert_allclose(actual, self.true['predict_smoothed'], atol=1e-6) def test_bse(self): # Cannot compare middle element of bse because we estimate sigma^2 # rather than sigma bse = self.result.cov_params_approx.diagonal()**0.5 assert_allclose(bse[:4], self.true['bse_oim'][:4], atol=1e-7) assert_allclose(bse[6:], self.true['bse_oim'][6:], atol=1e-7) hamilton_ar1_switch_filtered = [ 0.840288, 0.730337, 0.900234, 0.596492, 0.921618, 0.983828, 0.959039, 0.898366, 0.477335, 0.251089, 0.049367, 0.386782, 0.942868, 0.965632, 0.982857, 0.897603, 0.946986, 0.916413, 0.640912, 0.849296, 0.778371, 0.954420, 0.929906, 0.723930, 0.891196, 0.061163, 0.004806, 0.977369, 0.997871, 0.977950, 0.896580, 0.963246, 0.430539, 0.906586, 0.974589, 0.514506, 0.683457, 0.276571, 0.956475, 0.966993, 0.971618, 0.987019, 0.916670, 0.921652, 0.930265, 0.655554, 0.965858, 0.964981, 0.976790, 0.868267, 0.983240, 0.852052, 0.919150, 0.854467, 0.987868, 0.935840, 0.958138, 0.979535, 0.956541, 0.716322, 0.919035, 0.866437, 0.899609, 0.914667, 0.976448, 0.867252, 0.953075, 0.977850, 0.884242, 0.688299, 0.968461, 0.737517, 0.870674, 0.559413, 0.380339, 0.582813, 0.941311, 0.240020, 0.999349, 0.619258, 0.828343, 0.729726, 0.991009, 0.966291, 0.899148, 0.970798, 0.977684, 0.695877, 0.637555, 0.915824, 0.434600, 0.771277, 0.113756, 0.144002, 0.008466, 0.994860, 0.993173, 0.961722, 0.978555, 0.789225, 0.836283, 0.940383, 0.968368, 0.974473, 0.980248, 0.518125, 0.904086, 0.993023, 0.802936, 0.920906, 0.685445, 0.666524, 0.923285, 0.643861, 0.938184, 0.008862, 0.945406, 0.990061, 0.991500, 0.486669, 0.805039, 0.089036, 0.025067, 0.863309, 0.352784, 0.733295, 0.928710, 0.984257, 0.926597, 0.959887, 0.984051, 0.872682, 0.824375, 0.780157] hamilton_ar1_switch_smoothed = [ 0.900074, 0.758232, 0.914068, 0.637248, 0.901951, 0.979905, 0.958935, 0.888641, 0.261602, 0.148761, 0.056919, 0.424396, 0.932184, 0.954962, 0.983958, 0.895595, 0.949519, 0.923473, 0.678898, 0.848793, 0.807294, 0.958868, 0.942936, 0.809137, 0.960892, 0.032947, 0.007127, 0.967967, 0.996551, 0.979278, 0.896181, 0.987462, 0.498965, 0.908803, 0.986893, 0.488720, 0.640492, 0.325552, 0.951996, 0.959703, 0.960914, 0.986989, 0.916779, 0.924570, 0.935348, 0.677118, 0.960749, 0.958966, 0.976974, 0.838045, 0.986562, 0.847774, 0.908866, 0.821110, 0.984965, 0.915302, 0.938196, 0.976518, 0.973780, 0.744159, 0.922006, 0.873292, 0.904035, 0.917547, 0.978559, 0.870915, 0.948420, 0.979747, 0.884791, 0.711085, 0.973235, 0.726311, 0.828305, 0.446642, 0.411135, 0.639357, 0.973151, 0.141707, 0.999805, 0.618207, 0.783239, 0.672193, 0.987618, 0.964655, 0.877390, 0.962437, 0.989002, 0.692689, 0.699370, 0.937934, 0.522535, 0.824567, 0.058746, 0.146549, 0.009864, 0.994072, 0.992084, 0.956945, 0.984297, 0.795926, 0.845698, 0.935364, 0.963285, 0.972767, 0.992168, 0.528278, 0.826349, 0.996574, 0.811431, 0.930873, 0.680756, 0.721072, 0.937977, 0.731879, 0.996745, 0.016121, 0.951187, 0.989820, 0.996968, 0.592477, 0.889144, 0.036015, 0.040084, 0.858128, 0.418984, 0.746265, 0.907990, 0.980984, 0.900449, 0.934741, 0.986807, 0.872818, 0.812080, 0.780157] class TestHamiltonAR1Switch(MarkovAutoregression): @classmethod def setup_class(cls): # Results from E-views: # Dependent variable followed by a list of switching regressors: # rgnp c ar(1) # List of non-switching regressors: <blank> # Do not check "Regime specific error variances" # Switching type: Markov # Number of Regimes: 2 # Probability regressors: # c # Method SWITCHREG # Sample 1951q1 1984q4 true = { 'params': np.r_[0.85472458, 0.53662099, 1.041419, -0.479157, np.exp(-0.231404)**2, 0.243128, 0.713029], 'llf': -186.7575, 'llf_fit': -186.7575, 'llf_fit_em': -189.25446 } super(TestHamiltonAR1Switch, cls).setup_class( true, rgnp, k_regimes=2, order=1) def test_filtered_regimes(self): assert_allclose(self.result.filtered_marginal_probabilities[:, 0], hamilton_ar1_switch_filtered, atol=1e-5) def test_smoothed_regimes(self): assert_allclose(self.result.smoothed_marginal_probabilities[:, 0], hamilton_ar1_switch_smoothed, atol=1e-5) def test_expected_durations(self): expected_durations = [6.883477, 1.863513] assert_allclose(self.result.expected_durations, expected_durations, atol=1e-5) hamilton_ar1_switch_tvtp_filtered = [ 0.999996, 0.999211, 0.999849, 0.996007, 0.999825, 0.999991, 0.999981, 0.999819, 0.041745, 0.001116, 1.74e-05, 0.000155, 0.999976, 0.999958, 0.999993, 0.999878, 0.999940, 0.999791, 0.996553, 0.999486, 0.998485, 0.999894, 0.999765, 0.997657, 0.999619, 0.002853, 1.09e-05, 0.999884, 0.999996, 0.999997, 0.999919, 0.999987, 0.989762, 0.999807, 0.999978, 0.050734, 0.010660, 0.000217, 0.006174, 0.999977, 0.999954, 0.999995, 0.999934, 0.999867, 0.999824, 0.996783, 0.999941, 0.999948, 0.999981, 0.999658, 0.999994, 0.999753, 0.999859, 0.999330, 0.999993, 0.999956, 0.999970, 0.999996, 0.999991, 0.998674, 0.999869, 0.999432, 0.999570, 0.999600, 0.999954, 0.999499, 0.999906, 0.999978, 0.999712, 0.997441, 0.999948, 0.998379, 0.999578, 0.994745, 0.045936, 0.006816, 0.027384, 0.000278, 1.000000, 0.996382, 0.999541, 0.998130, 0.999992, 0.999990, 0.999860, 0.999986, 0.999997, 0.998520, 0.997777, 0.999821, 0.033353, 0.011629, 6.95e-05, 4.52e-05, 2.04e-06, 0.999963, 0.999977, 0.999949, 0.999986, 0.999240, 0.999373, 0.999858, 0.999946, 0.999972, 0.999991, 0.994039, 0.999817, 0.999999, 0.999715, 0.999924, 0.997763, 0.997944, 0.999825, 0.996592, 0.695147, 0.000161, 0.999665, 0.999928, 0.999988, 0.992742, 0.374214, 0.001569, 2.16e-05, 0.000941, 4.32e-05, 0.000556, 0.999955, 0.999993, 0.999942, 0.999973, 0.999999, 0.999919, 0.999438, 0.998738] hamilton_ar1_switch_tvtp_smoothed = [ 0.999997, 0.999246, 0.999918, 0.996118, 0.999740, 0.999990, 0.999984, 0.999783, 0.035454, 0.000958, 1.53e-05, 0.000139, 0.999973, 0.999939, 0.999994, 0.999870, 0.999948, 0.999884, 0.997243, 0.999668, 0.998424, 0.999909, 0.999860, 0.998037, 0.999559, 0.002533, 1.16e-05, 0.999801, 0.999993, 0.999997, 0.999891, 0.999994, 0.990096, 0.999753, 0.999974, 0.048495, 0.009289, 0.000542, 0.005991, 0.999974, 0.999929, 0.999995, 0.999939, 0.999880, 0.999901, 0.996221, 0.999937, 0.999935, 0.999985, 0.999450, 0.999995, 0.999768, 0.999897, 0.998930, 0.999992, 0.999949, 0.999954, 0.999995, 0.999994, 0.998687, 0.999902, 0.999547, 0.999653, 0.999538, 0.999966, 0.999485, 0.999883, 0.999982, 0.999831, 0.996940, 0.999968, 0.998678, 0.999780, 0.993895, 0.055372, 0.020421, 0.022913, 0.000127, 1.000000, 0.997072, 0.999715, 0.996893, 0.999990, 0.999991, 0.999811, 0.999978, 0.999998, 0.999100, 0.997866, 0.999787, 0.034912, 0.009932, 5.91e-05, 3.99e-05, 1.77e-06, 0.999954, 0.999976, 0.999932, 0.999991, 0.999429, 0.999393, 0.999845, 0.999936, 0.999961, 0.999995, 0.994246, 0.999570, 1.000000, 0.999702, 0.999955, 0.998611, 0.998019, 0.999902, 0.998486, 0.673991, 0.000205, 0.999627, 0.999902, 0.999994, 0.993707, 0.338707, 0.001359, 2.36e-05, 0.000792, 4.47e-05, 0.000565, 0.999932, 0.999993, 0.999931, 0.999950, 0.999999, 0.999940, 0.999626, 0.998738] expected_durations = [ [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [1.223309, 1864.084], [1.223309, 1864.084], [1.223309, 1864.084], [1.223309, 1864.084], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [1.223309, 1864.084], [1.223309, 1864.084], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [1.223309, 1864.084], [1.223309, 1864.084], [1.223309, 1864.084], [1.223309, 1864.084], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [1.223309, 1864.084], [1.223309, 1864.084], [1.223309, 1864.084], [1.223309, 1864.084], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [1.223309, 1864.084], [1.223309, 1864.084], [1.223309, 1864.084], [1.223309, 1864.084], [1.223309, 1864.084], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [1.223309, 1864.084], [1.223309, 1864.084], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [1.223309, 1864.084], [1.223309, 1864.084], [1.223309, 1864.084], [1.223309, 1864.084], [1.223309, 1864.084], [1.223309, 1864.084], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391], [710.7573, 1.000391]] class TestHamiltonAR1SwitchTVTP(MarkovAutoregression): @classmethod def setup_class(cls): # Results from E-views: # Dependent variable followed by a list of switching regressors: # rgnp c ar(1) # List of non-switching regressors: <blank> # Do not check "Regime specific error variances" # Switching type: Markov # Number of Regimes: 2 # Probability regressors: # c recession # Method SWITCHREG # Sample 1951q1 1984q4 true = { 'params': np.r_[6.564923, 7.846371, -8.064123, -15.37636, 1.027190, -0.719760, np.exp(-0.217003)**2, 0.161489, 0.022536], 'llf': -163.914049, 'llf_fit': -161.786477, 'llf_fit_em': -163.914049 } exog_tvtp = np.c_[np.ones(len(rgnp)), rec] super(TestHamiltonAR1SwitchTVTP, cls).setup_class( true, rgnp, k_regimes=2, order=1, exog_tvtp=exog_tvtp) @pytest.mark.skip # TODO(ChadFulton): give reason for skip def test_fit_em(self): pass def test_filtered_regimes(self): assert_allclose(self.result.filtered_marginal_probabilities[:, 0], hamilton_ar1_switch_tvtp_filtered, atol=1e-5) def test_smoothed_regimes(self): assert_allclose(self.result.smoothed_marginal_probabilities[:, 0], hamilton_ar1_switch_tvtp_smoothed, atol=1e-5) def test_expected_durations(self): assert_allclose(self.result.expected_durations, expected_durations, rtol=1e-5, atol=1e-7) class TestFilardo(MarkovAutoregression): @classmethod def setup_class(cls): path = os.path.join(current_path, 'results', 'mar_filardo.csv') cls.mar_filardo = pd.read_csv(path) true = { 'params': np.r_[4.35941747, -1.6493936, 1.7702123, 0.9945672, 0.517298, -0.865888, np.exp(-0.362469)**2, 0.189474, 0.079344, 0.110944, 0.122251], 'llf': -586.5718, 'llf_fit': -586.5718, 'llf_fit_em': -586.5718 } endog = cls.mar_filardo['dlip'].iloc[1:].values exog_tvtp = add_constant( cls.mar_filardo['dmdlleading'].iloc[:-1].values) super(TestFilardo, cls).setup_class( true, endog, k_regimes=2, order=4, switching_ar=False, exog_tvtp=exog_tvtp) @pytest.mark.skip # TODO(ChadFulton): give reason for skip def test_fit(self, **kwargs): pass @pytest.mark.skip # TODO(ChadFulton): give reason for skip def test_fit_em(self): pass def test_filtered_regimes(self): assert_allclose(self.result.filtered_marginal_probabilities[:, 0], self.mar_filardo['filtered_0'].iloc[5:], atol=1e-5) def test_smoothed_regimes(self): assert_allclose(self.result.smoothed_marginal_probabilities[:, 0], self.mar_filardo['smoothed_0'].iloc[5:], atol=1e-5) def test_expected_durations(self): assert_allclose(self.result.expected_durations, self.mar_filardo[['duration0', 'duration1']].iloc[5:], rtol=1e-5, atol=1e-7) class TestFilardoPandas(MarkovAutoregression): @classmethod def setup_class(cls): path = os.path.join(current_path, 'results', 'mar_filardo.csv') cls.mar_filardo = pd.read_csv(path) cls.mar_filardo.index = pd.date_range('1948-02-01', '1991-04-01', freq='MS') true = { 'params': np.r_[4.35941747, -1.6493936, 1.7702123, 0.9945672, 0.517298, -0.865888, np.exp(-0.362469)**2, 0.189474, 0.079344, 0.110944, 0.122251], 'llf': -586.5718, 'llf_fit': -586.5718, 'llf_fit_em': -586.5718 } endog = cls.mar_filardo['dlip'].iloc[1:] exog_tvtp = add_constant( cls.mar_filardo['dmdlleading'].iloc[:-1]) super(TestFilardoPandas, cls).setup_class( true, endog, k_regimes=2, order=4, switching_ar=False, exog_tvtp=exog_tvtp) @pytest.mark.skip # TODO(ChadFulton): give reason for skip def test_fit(self, **kwargs): pass @pytest.mark.skip # TODO(ChadFulton): give reason for skip def test_fit_em(self): pass def test_filtered_regimes(self): assert_allclose(self.result.filtered_marginal_probabilities[0], self.mar_filardo['filtered_0'].iloc[5:], atol=1e-5) def test_smoothed_regimes(self): assert_allclose(self.result.smoothed_marginal_probabilities[0], self.mar_filardo['smoothed_0'].iloc[5:], atol=1e-5) def test_expected_durations(self): assert_allclose(self.result.expected_durations, self.mar_filardo[['duration0', 'duration1']].iloc[5:], rtol=1e-5, atol=1e-7)
45.644983
79
0.59401
[ "BSD-3-Clause" ]
AKSoo/statsmodels
statsmodels/tsa/regime_switching/tests/test_markov_autoregression.py
41,400
Python
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from LovaszSoftmax.pytorch.lovasz_losses import lovasz_hinge class SoftDiceLoss(nn.Module): def __init__(self): super(SoftDiceLoss, self).__init__() def forward(self, input, target): smooth = 1e-5 input = F.sigmoid(input) num = target.size(0) input = input.view(num, -1) target = target.view(num, -1) intersection = (input * target) score = (2. * intersection.sum(1) + smooth) / (input.sum(1) + target.sum(1) + smooth) score = 1 - score.sum() / num return score class BCEDiceLoss(nn.Module): def __init__(self): super(BCEDiceLoss, self).__init__() def forward(self, input, target): bce = F.binary_cross_entropy_with_logits(input, target) smooth = 1e-5 input = F.sigmoid(input) num = target.size(0) input = input.view(num, -1) target = target.view(num, -1) intersection = (input * target) dice = (2. * intersection.sum(1) + smooth) / (input.sum(1) + target.sum(1) + smooth) dice = 1 - dice.sum() / num return 0.5 * bce + 0.5 * dice class LovaszHingeLoss(nn.Module): def __init__(self): super(LovaszHingeLoss, self).__init__() def forward(self, input, target): input = input.squeeze(1) target = target.squeeze(1) loss = lovasz_hinge(input, target, per_image=True) return loss class DSVLovaszHingeLoss(nn.Module): def __init__(self): super(DSVLovaszHingeLoss, self).__init__() def forward(self, input, target): for i in range(target.shape[0]): if not torch.sum(target[i]).data.cpu().numpy() > 1: target[i] = -1 input = input.squeeze(1) target = target.squeeze(1) loss = lovasz_hinge(input, target, per_image=True, ignore=-1) return loss
28.705882
93
0.603996
[ "MIT" ]
4uiiurz1/kaggle-tgs-salt-identification-challenge
losses.py
1,952
Python
from inspect import cleandoc from setuptools import setup _version = {} exec(open('yamlschema/_version.py').read(), _version) setup( name = 'yamlschema', packages = ['yamlschema', 'yamlschema.test'], version = _version['__version__'], description = 'A schema validator for YAML files', author = 'Ashley Fisher', author_email = '[email protected]', url = 'https://github.com/Brightmd/yamlschema', keywords = ['yaml', 'schema'], classifiers = [], scripts = ['bin/yamlschema'], install_requires=cleandoc(''' click>=5.0,<8.0 jsonschema==2.6.0 ''').split() )
22.846154
53
0.6633
[ "MIT" ]
Brightmd/yamlschema
setup.py
594
Python
import tensorflow as tf # DISCLAIMER: # Parts of this code file were originally forked from # https://github.com/tkipf/gcn # which itself was very inspired by the keras package def masked_logit_cross_entropy(preds, labels, mask): """Logit cross-entropy loss with masking.""" loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=preds, labels=labels) loss = tf.reduce_sum(input_tensor=loss, axis=1) mask = tf.cast(mask, dtype=tf.float32) mask /= tf.maximum(tf.reduce_sum(input_tensor=mask), tf.constant([1.])) loss *= mask return tf.reduce_mean(input_tensor=loss) def masked_softmax_cross_entropy(preds, labels, mask): """Softmax cross-entropy loss with masking.""" loss = tf.nn.softmax_cross_entropy_with_logits(logits=preds, labels=tf.stop_gradient(labels)) mask = tf.cast(mask, dtype=tf.float32) mask /= tf.maximum(tf.reduce_sum(input_tensor=mask), tf.constant([1.])) loss *= mask return tf.reduce_mean(input_tensor=loss) def masked_l2(preds, actuals, mask): """L2 loss with masking.""" loss = tf.nn.l2_loss(preds, actuals) mask = tf.cast(mask, dtype=tf.float32) mask /= tf.reduce_mean(input_tensor=mask) loss *= mask return tf.reduce_mean(input_tensor=loss) def masked_accuracy(preds, labels, mask): """Accuracy with masking.""" correct_prediction = tf.equal(tf.argmax(input=preds, axis=1), tf.argmax(input=labels, axis=1)) accuracy_all = tf.cast(correct_prediction, tf.float32) mask = tf.cast(mask, dtype=tf.float32) mask /= tf.reduce_mean(input_tensor=mask) accuracy_all *= mask return tf.reduce_mean(input_tensor=accuracy_all)
41.04878
99
0.7041
[ "MIT" ]
gelareh1985/GraphSAGE
graphsage/metrics.py
1,683
Python
import requests import re import random import time from bs4 import BeautifulSoup import os import lpmysql import json def getindex(): url = 'http://freeget.co' headers = {'User-Agent': "Mozilla/5.0 (iPhone; CPU iPhone OS 9_1 like Mac OS X) AppleWebKit/601.1.46 (KHTML, like Gecko) Version/9.0 Mobile/13B143 Safari/601.1", "contentType":"text/html;charset=utf-8", # Accept:*/* # Accept-Encoding:gzip, deflate # Accept-Language:zh-CN,zh;q=0.8 # Connection:keep-alive } html = requests.get(url,headers=headers) ##这儿更改了一下(是不是发现 self 没见了?) print(html.content) print(dir(html)) print(html.headers) def getbtn(): url = 'http://freeget.co/video/extraction' headers = {'User-Agent': "Mozilla/5.0 (iPhone; CPU iPhone OS 9_1 like Mac OS X) AppleWebKit/601.1.46 (KHTML, like Gecko) Version/9.0 Mobile/13B143 Safari/601.1", "contentType":"text/html;charset=utf-8", # "X - CSRFToken":"1504169114##45f7200f8dba99432cc422ed552b3bbf3baff85b", "X - Requested - With": "XMLHttpRequest", # X - CSRFToken: 1504164180 ##fdbd5ae5ec0c76632937754c20e90c582f2f7c28 # X - Requested - With: XMLHttpRequest # Accept:*/* # Accept-Encoding:gzip, deflate # Accept-Language:zh-CN,zh;q=0.8 # Connection:keep-alive } payload = {"url":"1111111111111111111111111111111111111111111111","_csrf" : "1504169114##45f7200f8dba99432cc422ed552b3bbf3baff85b"} html = requests.post(url,headers=headers,data=payload) ##这儿更改了一下(是不是发现 self 没见了?) print(html.content) print(dir(html)) print(html.headers) # getindex() getbtn() # http://www.cnblogs.com/xwang/p/3757711.html # pythonrequests 设置CSRF # http://blog.csdn.net/u011061889/article/details/72904821
30.269841
165
0.635553
[ "BSD-2-Clause" ]
leifufeng/free91
freeget.py
1,983
Python
"""Python Interface for Residue-Residue Contact Predictions""" import os import sys from distutils.command.build import build from distutils.util import convert_path from setuptools import setup, Extension from Cython.Distutils import build_ext import numpy as np # ============================================================== # Setup.py command extensions # ============================================================== # Credits to http://stackoverflow.com/a/33181352 class BuildCommand(build): user_options = build.user_options + [ ("script-python-path=", None, "Path to Python interpreter to be included in the scripts") ] def initialize_options(self): build.initialize_options(self) self.script_python_path = None def finalize_options(self): build.finalize_options(self) def run(self): global script_python_path script_python_path = self.script_python_path build.run(self) # ============================================================== # Functions, functions, functions ... # ============================================================== def dependencies(): with open("requirements.txt", "r") as f_in: deps = f_in.read().splitlines() return deps def extensions(): exts = ["conkit/core/ext/c_contactmap.pyx", "conkit/core/ext/c_sequencefile.pyx", "conkit/misc/ext/c_bandwidth.pyx"] extensions = [] for ext in exts: extensions.append( Extension( ext.replace('/', '.').rsplit('.', 1)[0], [ext], include_dirs=[np.get_include()], )) return extensions def readme(): with open("README.rst", "r") as f_in: return f_in.read() def scripts(): extension = ".bat" if sys.platform.startswith("win") else "" header = "" if sys.platform.startswith("win") else "#!/bin/sh" bin_dir = "bin" command_dir = convert_path("conkit/command_line") scripts = [] for file in os.listdir(command_dir): if not file.startswith("_") and file.endswith(".py"): # Make sure we have a workable name f_name = os.path.basename(file).rsplit(".", 1)[0] for c in [".", "_"]: new_f_name = f_name.replace(c, "-") # Write the content of the script script = os.path.join(bin_dir, new_f_name + extension) with open(script, "w") as f_out: f_out.write(header + os.linesep) # BATCH file if sys.platform.startswith("win"): string = "@{0} -m conkit.command_line.{1} %*" # BASH file else: string = '{0} -m conkit.command_line.{1} "$@"' f_out.write(string.format(PYTHON_EXE, f_name) + os.linesep) os.chmod(script, 0o777) scripts.append(script) return scripts def version(): # Credits to http://stackoverflow.com/a/24517154 main_ns = {} ver_path = convert_path("conkit/version.py") with open(ver_path) as f_in: exec(f_in.read(), main_ns) return main_ns["__version__"] # ============================================================== # Determine the Python executable # ============================================================== PYTHON_EXE = None for arg in sys.argv: if arg[0:20] == "--script-python-path" and len(arg) == 20: option, value = arg, sys.argv[sys.argv.index(arg) + 1] PYTHON_EXE = value elif arg[0:20] == "--script-python-path" and arg[20] == "=": option, value = arg[:20], arg[21:] PYTHON_EXE = value if not PYTHON_EXE: PYTHON_EXE = sys.executable # ============================================================== # Define all the relevant options # ============================================================== AUTHOR = "Felix Simkovic" AUTHOR_EMAIL = "[email protected]" DESCRIPTION = __doc__.replace("\n", "") DEPENDENCIES = dependencies() EXT_MODULES = extensions() LICENSE = "BSD License" LONG_DESCRIPTION = readme() PACKAGE_DIR = "conkit" PACKAGE_NAME = "conkit" PLATFORMS = ["POSIX", "Mac OS", "Windows", "Unix"] SCRIPTS = scripts() URL = "http://www.conkit.org/en/latest/" VERSION = version() PACKAGES = [ "conkit", "conkit/applications", "conkit/command_line", "conkit/core", "conkit/core/ext", "conkit/io", "conkit/misc", "conkit/misc/ext", "conkit/plot", ] CLASSIFIERS = [ "Development Status :: 4 - Beta", "Intended Audience :: Science/Research", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Topic :: Scientific/Engineering :: Bio-Informatics", ] TEST_REQUIREMENTS = [ "codecov", "coverage", "pytest", "pytest-cov", "pytest-pep8", "pytest-helpers-namespace", ] setup( cmdclass={ 'build': BuildCommand, 'build_ext': build_ext, }, author=AUTHOR, author_email=AUTHOR_EMAIL, name=PACKAGE_NAME, description=DESCRIPTION, ext_modules=EXT_MODULES, include_dirs=[np.get_include()], long_description=LONG_DESCRIPTION, license=LICENSE, version=VERSION, url=URL, packages=PACKAGES, package_dir={PACKAGE_NAME: PACKAGE_DIR}, scripts=SCRIPTS, platforms=PLATFORMS, classifiers=CLASSIFIERS, install_requires=DEPENDENCIES, tests_require=TEST_REQUIREMENTS, setup_requires=['pytest-runner'], include_package_data=True, zip_safe=False, )
29.298969
120
0.567734
[ "BSD-3-Clause" ]
fsimkovic/cptbx
setup.py
5,684
Python
""" Django settings for mymedicalassistant project. Generated by 'django-admin startproject' using Django 3.1. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve(strict=True).parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'va(i+)gea_&5z@=q%_-d7&ezvkqhq9#$sq1_oco8k!n#2yl!7&' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'apptSchedule', 'clinicInformation', # 'medInformation', 'medSchedule', 'user', 'rest_framework', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mymedicalassistant.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR,'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mymedicalassistant.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' # STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static')] REST_FRAMEWORK = { 'DEFAULT_PERMISSION_CLASSES':[ 'rest_framework.permissions.AllowAny', ] } # ??????do we need this for all the models or just for the user models!!!?????? AUTH_USER_MODEL = 'user.CustomUser' LOGIN_REDIRECT_URL = 'home' LOGOUT_REDIRECT_URL = 'home'
25.631206
91
0.696458
[ "MIT" ]
MyMedicalAssistant/MyMedicalAssistant
mymedicalassistant/settings.py
3,614
Python
from deeplearning import logger, tf_util as U import tensorflow as tf from rl.runner import Runner from rl.vec_env.subproc_vec_env import SubprocVecEnv from collections import namedtuple import os, time class RLExperiment(U.Experiment): def load_env_fn(self): fname = os.path.join(self.logdir, 'checkpoints/env_fn.pkl') assert os.path.exists(fname), "No env function saved." return U.load(fname) def save_env_fn(self, env_fn): fname = os.path.join(self.logdir, 'checkpoints/env_fn.pkl') U.save(fname, env_fn) class OnlineRLAlgorithm(object): def __init__(self, logdir, env_fn, model_fn, nenv, rollout_length, batch_size, callback=None, runner_flags=[], **kwargs): self.exp = RLExperiment(logdir) self.exp.save_model_fn(model_fn) self.exp.save_env_fn(env_fn) logger.configure(os.path.join(logdir, 'logs'), ['stdout', 'log', 'json']) self.logdir = logdir self.batch_size = batch_size self.rollout_length = rollout_length self.args = namedtuple('Args', kwargs.keys())(**kwargs) self.nenv = nenv self.timesteps_per_step = self.nenv * self.rollout_length self.env = self._make_env(env_fn, nenv) self.actor = model_fn(self.env) self.actor.build('model', self.nenv, 1) self.loss = self._def_loss(model_fn, self.env) self.opt = self._def_opt(self.loss) self.opt.build('model', self.nenv, batch_size, reuse=tf.AUTO_REUSE) self.runner = Runner(self.env, self.actor, rollout_length, *runner_flags) self.callback = callback if callback is not None: assert callable(callback) self.init_session() self.load() def _make_env(self, env_fn, nenv): def make_env(rank): def _env(): return env_fn(rank) return _env return SubprocVecEnv([make_env(i) for i in range(nenv)]) def _def_loss(self, model_fn, env): """ returns a module for and the loss """ raise NotImplementedError def _def_opt(self, loss): """ returns a module for and the optimizer """ raise NotImplementedError def _before_step(self): pass def _process_rollout(self, rollout): raise NotImplementedError def _update_model(self, data): raise NotImplementedError def _after_step(self, rollout, data, update_out): pass def step(self): if self.callback is not None: self.callback(locals(), globals()) self._before_step() rollout = self.runner.rollout() self.t += self.timesteps_per_step data = self._process_rollout(rollout) outs = self._update_model(data) self._after_step(rollout, data, outs) def train(self, maxtimesteps=None, maxseconds=None, save_freq=None): assert maxtimesteps is not None or maxseconds is not None start_time = time.time() while True: if maxtimesteps is not None and self.t >= maxtimesteps: break if maxseconds is not None and time.time() - start_time >= maxtimesteps: break t = self.t self.step() if save_freq and t // save_freq != self.t // save_freq: self.save() self.save() def save(self): self.exp.save(self.t) def load(self, t=None): self.t = self.exp.load(t) def init_session(self): if tf.get_default_session() is None: U.make_session().__enter__() U.initialize() def close(self): if hasattr(self.env, 'close'): self.env.close() tf.get_default_session().__exit__(None, None, None) logger.reset() if __name__=='__main__': from deeplearning.layers import Adam, Placeholder from deeplearning.module import Module from rl.rl_module import Policy import tensorflow as tf import gym from rl import util class TestAlg(OnlineRLAlgorithm): def _def_loss(self, model_fn): class Ent(Module): def _build(self, inputs): return self.modules[0]._entropy return Ent('l', model_fn(self.env)) def _def_opt(self, loss): return Adam('opt', loss) def _before_step(self): logger.log("Before Step") def _process_rollout(self, rollout): return rollout.numpy() def _update_model(self, data): self.opt.update(util.swap01andflatten(data['obs'])) def _after_step(self, rollout, data, update_outs): logger.log("After Step") def model_fn(env): x = Placeholder(tf.float32, env.observation_space.shape, 'x') return Policy('pi', x, ac_space=env.action_space) def env_fn(rank): env = gym.make('CartPole-v1') env.seed(rank) return env alg = TestAlg('./test_logs', env_fn, model_fn, 2, 64, 64) alg.train(1024, save_freq=128)
30.190476
125
0.614353
[ "MIT" ]
cbschaff/nlimb
rl/algorithms/core.py
5,072
Python
import datetime import logging import time import dataset import discord import privatebinapi from discord.ext import commands from discord.ext.commands import Cog, Bot from discord_slash import cog_ext, SlashContext from discord_slash.model import SlashCommandPermissionType from discord_slash.utils.manage_commands import create_option, create_permission import utils.duration from cogs.commands import settings from utils import database from utils import embeds from utils.moderation import can_action_member from utils.record import record_usage # Enabling logs log = logging.getLogger(__name__) class MuteCog(Cog): """ Mute Cog """ def __init__(self, bot): self.bot = bot @staticmethod async def mute_member(ctx: SlashContext, member: discord.Member, reason: str, temporary: bool = False, end_time: float = None) -> None: role = discord.utils.get(ctx.guild.roles, id=settings.get_value("role_muted")) await member.add_roles(role, reason=reason) # Open a connection to the database. db = dataset.connect(database.get_db()) # Add the mute to the mod_log database. db["mod_logs"].insert(dict( user_id=member.id, mod_id=ctx.author.id, timestamp=int(time.time()), reason=reason, type="mute" )) # Occurs when the duration parameter in /mute is specified (tempmute). if temporary: db["timed_mod_actions"].insert(dict( user_id=member.id, mod_id=ctx.author.id, action_type="mute", reason=reason, start_time=datetime.datetime.now(tz=datetime.timezone.utc).timestamp(), end_time=end_time, is_done=False )) # Commit the changes to the database. db.commit() db.close() async def unmute_member(self, member: discord.Member, reason: str, ctx: SlashContext = None, guild: discord.Guild = None) -> None: guild = guild or ctx.guild moderator = ctx.author if ctx else self.bot.user # Removes "Muted" role from member. role = discord.utils.get(guild.roles, id=settings.get_value("role_muted")) await member.remove_roles(role, reason=reason) # Open a connection to the database. db = dataset.connect(database.get_db()) # Add the unmute to the mod_log database. db["mod_logs"].insert(dict( user_id=member.id, mod_id=moderator.id, timestamp=int(time.time()), reason=reason, type="unmute" )) tempmute_entry = db["timed_mod_actions"].find_one(user_id=member.id, is_done=False) if tempmute_entry: db["timed_mod_actions"].update(dict(id=tempmute_entry["id"], is_done=True), ["id"]) # Commit the changes to the database and close the connection. db.commit() db.close() @staticmethod async def is_user_muted(ctx: SlashContext, member: discord.Member) -> bool: if discord.utils.get(ctx.guild.roles, id=settings.get_value("role_muted")) in member.roles: return True return False @staticmethod async def send_muted_dm_embed(ctx: SlashContext, member: discord.Member, channel: discord.TextChannel, reason: str = None, duration: str = None) -> bool: if not duration: duration = "Indefinite" try: # In case user has DMs blocked. dm_channel = await member.create_dm() embed = embeds.make_embed( author=False, title=f"Uh-oh, you've been muted!", description="If you believe this was a mistake, contact staff.", color=0x8083b0 ) embed.add_field(name="Server:", value=f"[{ctx.guild}](https://discord.gg/piracy/)", inline=True) embed.add_field(name="Moderator:", value=ctx.author.mention, inline=True) embed.add_field(name="Length:", value=duration, inline=True) embed.add_field(name="Mute Channel:", value=channel.mention, inline=True) embed.add_field(name="Reason:", value=reason, inline=False) embed.set_image(url="https://i.imgur.com/840Q48l.gif") await dm_channel.send(embed=embed) return True except discord.HTTPException: return False async def send_unmuted_dm_embed(self, member: discord.Member, reason: str, ctx: SlashContext = None, guild: discord.Guild = None) -> bool: guild = guild or ctx.guild moderator = ctx.author if ctx else self.bot.user # Send member message telling them that they were unmuted and why. try: # In case user has DMs blocked. channel = await member.create_dm() embed = embeds.make_embed( author=False, title=f"Yay, you've been unmuted!", description="Review our server rules to avoid being actioned again in the future.", color=0x8a3ac5 ) embed.add_field(name="Server:", value=f"[{guild}](https://discord.gg/piracy/)", inline=True) embed.add_field(name="Moderator:", value=moderator.mention, inline=True) embed.add_field(name="Reason:", value=reason, inline=False) embed.set_image(url="https://i.imgur.com/U5Fvr2Y.gif") await channel.send(embed=embed) return True except discord.HTTPException: return False @staticmethod async def create_mute_channel(ctx: SlashContext, member: discord.Member, reason: str, duration: str = None): if not duration: duration = "Indefinite" # Create a channel in the category specified in settings. category = discord.utils.get(ctx.guild.categories, id=settings.get_value("category_tickets")) channel = await ctx.guild.create_text_channel(f"mute-{member.id}", category=category) # Give both the staff and the user perms to access the channel. await channel.set_permissions(discord.utils.get(ctx.guild.roles, id=settings.get_value("role_trial_mod")), read_messages=True) await channel.set_permissions(discord.utils.get(ctx.guild.roles, id=settings.get_value("role_staff")), read_messages=True) await channel.set_permissions(member, read_messages=True) # Create embed at the start of the channel letting the user know how long they're muted for and why. embed = embeds.make_embed(title="🤐 You were muted", description="If you have any questions or concerns about your mute, you may voice them here.") embed.add_field(name="User:", value=member.mention, inline=True) embed.add_field(name="Moderator:", value=ctx.author.mention, inline=True) embed.add_field(name="Length:", value=duration, inline=True) embed.add_field(name="Reason:", value=reason, inline=False) await channel.send(embed=embed) # Embed mentions don't count as a ping so this is a workaround to that. ping = await channel.send(member.mention) await ping.delete() return channel async def archive_mute_channel(self, user_id: int, reason: str = None, ctx: SlashContext = None, guild: int = None): # Discord caps embed fields at a ridiculously low character limit, avoids problems with future embeds. if not reason: reason = "No reason provided." # Discord caps embed fields at a ridiculously low character limit, avoids problems with future embeds. elif len(reason) > 512: await embeds.error_message(ctx=ctx, description="Reason must be less than 512 characters.") return guild = guild or ctx.guild category = discord.utils.get(guild.categories, id=settings.get_value("category_tickets")) mute_channel = discord.utils.get(category.channels, name=f"mute-{user_id}") # Open a connection to the database. db = dataset.connect(database.get_db()) # TODO: Get the mute reason by looking up the latest mute for the user and getting the reason column data. table = db["mod_logs"] # Gets the most recent mute for the user, sorted by descending (-) ID. mute_entry = table.find_one(user_id=user_id, type="mute", order_by="-id") unmute_entry = table.find_one(user_id=user_id, type="unmute", order_by="-id") mute_reason = mute_entry["reason"] muter = await self.bot.fetch_user(mute_entry["mod_id"]) unmuter = await self.bot.fetch_user(unmute_entry["mod_id"]) # Commit the changes to the database and close the connection. db.commit() db.close() # Get the member object of the ticket creator. member = await self.bot.fetch_user(user_id) # Initialize the PrivateBin message log string. message_log = ( f"Muted User: {member} ({member.id})\n\n" f"Muted By: {muter} ({muter.id})\n" f"Mute Reason: {mute_reason}\n\n" f"Unmuted By: {unmuter} ({unmuter.id})\n" f"Unmute Reason: {reason}\n\n" ) # Initialize a list of moderator IDs as a set for no duplicates. mod_list = set() # Add the original muting moderator to avoid a blank embed field if no one interacts. mod_list.add(muter) # Fetch the staff and trial mod role. role_staff = discord.utils.get(guild.roles, id=settings.get_value("role_staff")) role_trial_mod = discord.utils.get(guild.roles, id=settings.get_value("role_trial_mod")) # TODO: Implement so it gets the channel when the moderator is the bot # Loop through all messages in the ticket from old to new. async for message in mute_channel.history(oldest_first=True): # Ignore the bot replies. if not message.author.bot: # Time format is unnecessarily lengthy so trimming it down and keep the log go easier on the eyes. formatted_time = str(message.created_at).split(".")[-2] # Append the new messages to the current log as we loop. message_log += f"[{formatted_time}] {message.author}: {message.content}\n" # Iterates only through members that is still in the server. if isinstance(member, discord.Member): # If the messenger has either staff role or trial mod role, add their ID to the mod_list set. if role_staff in message.author.roles or role_trial_mod in message.author.roles: mod_list.add(message.author) # Dump message log to PrivateBin. This returns a dictionary, but only the url is needed for the embed. url = privatebinapi.send("https://bin.piracy.moe", text=message_log, expiration="never")["full_url"] # Get the amount of time elapsed since the user was muted. time_delta = datetime.datetime.utcnow() - mute_channel.created_at days = time_delta.days # Hours are the time delta in seconds divided by 3600. hours, remainder = divmod(time_delta.seconds, 3600) # Minutes are the hour remainder divided by 60. The minutes remainder are the seconds. minutes, seconds = divmod(remainder, 60) # String that will store the duration in a more digestible format. elapsed_time = "" duration = dict( days=days, hours=hours, minutes=minutes, seconds=seconds ) for time_unit in duration: # If the time value is 0, skip it. if duration[time_unit] == 0: continue # If the time value is 1, make the time unit into singular form. if duration[time_unit] == 1: elapsed_time += f"{duration[time_unit]} {time_unit[:-1]} " else: elapsed_time += f"{duration[time_unit]} {time_unit} " # Create the embed in #mute-log. embed = embeds.make_embed( title=f"{mute_channel.name} archived", thumbnail_url="https://i.imgur.com/A4c19BJ.png", color="blurple" ) embed.add_field(name="Muted User:", value=member.mention, inline=True) embed.add_field(name="Muted By:", value=muter.mention, inline=True) embed.add_field(name="Unmuted By:", value=unmuter.mention, inline=True) embed.add_field(name="Mute Reason:", value=mute_reason, inline=False) embed.add_field(name="Unmute Reason:", value=reason, inline=False) embed.add_field(name="Duration:", value=elapsed_time, inline=False) embed.add_field(name="Participating Moderators:", value=" ".join(mod.mention for mod in mod_list), inline=False) embed.add_field(name="Mute Log: ", value=url, inline=False) # Send the embed to #mute-log. mute_log = discord.utils.get(guild.channels, id=settings.get_value("channel_mute_log")) await mute_log.send(embed=embed) # Delete the mute channel. await mute_channel.delete() @commands.bot_has_permissions(manage_roles=True, send_messages=True) @commands.before_invoke(record_usage) @cog_ext.cog_slash( name="mute", description="Mutes a member in the server", guild_ids=[settings.get_value("guild_id")], options=[ create_option( name="member", description="The member that will be muted", option_type=6, required=True ), create_option( name="reason", description="The reason why the member is being muted", option_type=3, required=False ), create_option( name="duration", description="The length of time the user will be muted for", option_type=3, required=False ), ], default_permission=False, permissions={ settings.get_value("guild_id"): [ create_permission(settings.get_value("role_staff"), SlashCommandPermissionType.ROLE, True), create_permission(settings.get_value("role_trial_mod"), SlashCommandPermissionType.ROLE, True) ] } ) async def mute(self, ctx: SlashContext, member: discord.Member, duration: str = None, reason: str = None): """ Mutes member in guild. """ await ctx.defer() # If we received an int instead of a discord.Member, the user is not in the server. if not isinstance(member, discord.Member): await embeds.error_message(ctx=ctx, description=f"That user is not in the server.") return # Checks if invoker can action that member (self, bot, etc.) if not await can_action_member(bot=self.bot, ctx=ctx, member=member): await embeds.error_message(ctx=ctx, description=f"You cannot action {member.mention}.") return # Check if the user is muted already. if await self.is_user_muted(ctx=ctx, member=member): await embeds.error_message(ctx=ctx, description=f"{member.mention} is already muted.") return # Automatically default the reason string to N/A when the moderator does not provide a reason. if not reason: reason = "No reason provided." # Discord caps embed fields at a ridiculously low character limit, avoids problems with future embeds. elif len(reason) > 512: await embeds.error_message(ctx=ctx, description="Reason must be less than 512 characters.") return # If the duration is not specified, default it to a permanent mute. if not duration: # Start creating the embed that will be used to alert the moderator that the user was successfully muted. embed = embeds.make_embed( ctx=ctx, title=f"Muting member: {member.name}", description=f"{member.mention} was muted by {ctx.author.mention} for: {reason}", thumbnail_url="https://i.imgur.com/rHtYWIt.png", color="soft_red", ) # Create the mute channel in the Staff category. channel = await self.create_mute_channel(ctx=ctx, member=member, reason=reason) # Attempt to DM the user to let them know they were muted. if not await self.send_muted_dm_embed(ctx=ctx, member=member, channel=channel, reason=reason): embed.add_field(name="Notice:", value=f"Unable to message {member.mention} about this action. This can be caused by the user not being in the server, having DMs disabled, or having the bot blocked.") # Mutes the user and returns the embed letting the moderator know they were successfully muted. await self.mute_member(ctx=ctx, member=member, reason=reason) await ctx.send(embed=embed) return # Get the duration string for embed and mute end time for the specified duration. duration_string, mute_end_time = utils.duration.get_duration(duration=duration) # If the duration string is empty due to Regex not matching anything, send and error embed and return. if not duration_string: await embeds.error_message(ctx=ctx, description=f"Duration syntax: `#d#h#m#s` (day, hour, min, sec)\nYou can specify up to all four but you only need one.") return # Start creating the embed that will be used to alert the moderator that the user was successfully muted. embed = embeds.make_embed( ctx=ctx, title=f"Muting member: {member}", thumbnail_url="https://i.imgur.com/rHtYWIt.png", color="soft_red" ) embed.description = f"{member.mention} was muted by {ctx.author.mention} for: {reason}" embed.add_field(name="Duration:", value=duration_string, inline=False) # Create the mute channel in the Staff category. channel = await self.create_mute_channel(ctx=ctx, member=member, reason=reason, duration=duration_string) # Attempt to DM the user to let them know they were muted. if not await self.send_muted_dm_embed(ctx=ctx, member=member, channel=channel, reason=reason, duration=duration_string): embed.add_field(name="Notice:", value=f"Unable to message {member.mention} about this action. This can be caused by the user not being in the server, having DMs disabled, or having the bot blocked.") # Mutes the user and stores the unmute time in the database for the background task. await self.mute_member(ctx=ctx, member=member, reason=reason, temporary=True, end_time=mute_end_time.timestamp()) await ctx.send(embed=embed) @commands.bot_has_permissions(manage_roles=True, send_messages=True) @commands.before_invoke(record_usage) @cog_ext.cog_slash( name="unmute", description="Unmutes a member in the server", guild_ids=[settings.get_value("guild_id")], options=[ create_option( name="member", description="The member that will be unmuted", option_type=6, required=True ), create_option( name="reason", description="The reason why the member is being unmuted", option_type=3, required=False ), ], default_permission=False, permissions={ settings.get_value("guild_id"): [ create_permission(settings.get_value("role_staff"), SlashCommandPermissionType.ROLE, True), create_permission(settings.get_value("role_trial_mod"), SlashCommandPermissionType.ROLE, True) ] } ) async def unmute(self, ctx: SlashContext, member: discord.Member, reason: str = None): """ Unmutes member in guild. """ await ctx.defer() # If we received an int instead of a discord.Member, the user is not in the server. if not isinstance(member, discord.Member): await embeds.error_message(ctx=ctx, description=f"That user is not in the server.") return # Checks if invoker can action that member (self, bot, etc.) if not await can_action_member(bot=self.bot, ctx=ctx, member=member): await embeds.error_message(ctx=ctx, description=f"You cannot action {member.mention}.") return # Check if the user is not muted already. if not await self.is_user_muted(ctx=ctx, member=member): await embeds.error_message(ctx=ctx, description=f"{member.mention} is not muted.") return # Automatically default the reason string to N/A when the moderator does not provide a reason. if not reason: reason = "No reason provided." # Discord caps embed fields at a ridiculously low character limit, avoids problems with future embeds. elif len(reason) > 512: await embeds.error_message(ctx=ctx, description="Reason must be less than 512 characters.") return # Start creating the embed that will be used to alert the moderator that the user was successfully unmuted. embed = embeds.make_embed( ctx=ctx, title=f"Unmuting member: {member.name}", color="soft_green", thumbnail_url="https://i.imgur.com/W7DpUHC.png" ) embed.description = f"{member.mention} was unmuted by {ctx.author.mention} for: {reason}" # Unmutes the user and and archives the channel. Execution order is important here, otherwise the wrong unmuter will be used in the embed. await self.unmute_member(ctx=ctx, member=member, reason=reason) await self.archive_mute_channel(ctx=ctx, user_id=member.id, reason=reason) # Attempt to DM the user to let them and the mods know they were unmuted. if not await self.send_unmuted_dm_embed(ctx=ctx, member=member, reason=reason): embed.add_field(name="Notice:", value=f"Unable to message {member.mention} about this action. This can be caused by the user not being in the server, having DMs disabled, or having the bot blocked.") # If the mod sent the /unmute in the mute channel, this will cause a errors.NotFound 404. # We cannot send the embed and then archive the channel because that will cause a error.AlreadyResponded. try: await ctx.send(embed=embed) except discord.HTTPException: pass def setup(bot: Bot) -> None: """ Load the Mute cog. """ bot.add_cog(MuteCog(bot)) log.info("Commands loaded: mutes")
47.488565
215
0.641012
[ "Unlicense" ]
y0usef-2E/chiya
cogs/commands/moderation/mutes.py
22,845
Python
# -*- coding: utf-8 -*- ### 기본 라이브러리 불러오기 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns ''' [Step 1] 데이터 준비 - read_csv() 함수로 자동차 연비 데이터셋 가져오기 ''' # CSV 파일을 데이터프레임으로 변환 df = pd.read_csv('./auto-mpg.csv', header=None) # 열 이름 지정 df.columns = ['mpg','cylinders','displacement','horsepower','weight', 'acceleration','model year','origin','name'] # 데이터 살펴보기 print(df.head()) print('\n') # IPython 디스플레이 설정 - 출력할 열의 개수 한도 늘리기 pd.set_option('display.max_columns', 10) print(df.head()) print('\n') ''' [Step 2] 데이터 탐색 ''' # 데이터 자료형 확인 print(df.info()) print('\n') # 데이터 통계 요약정보 확인 print(df.describe()) print('\n') # horsepower 열의 자료형 변경 (문자열 ->숫자) print(df['horsepower'].unique()) # horsepower 열의 고유값 확인 print('\n') df['horsepower'].replace('?', np.nan, inplace=True) # '?'을 np.nan으로 변경 df.dropna(subset=['horsepower'], axis=0, inplace=True) # 누락데이터 행을 삭제 df['horsepower'] = df['horsepower'].astype('float') # 문자열을 실수형으로 변환 print(df.describe()) # 데이터 통계 요약정보 확인 print('\n') ''' [Step 3] 속성(feature 또는 variable) 선택 ''' # 분석에 활용할 열(속성)을 선택 (연비, 실린더, 출력, 중량) ndf = df[['mpg', 'cylinders', 'horsepower', 'weight']] print(ndf.head()) print('\n') ### 종속 변수 Y인 "연비(mpg)"와 다른 변수 간의 선형관계를 그래프(산점도)로 확인 # Matplotlib으로 산점도 그리기 ndf.plot(kind='scatter', x='weight', y='mpg', c='coral', s=10, figsize=(10, 5)) plt.show() plt.close() # seaborn으로 산점도 그리기 fig = plt.figure(figsize=(10, 5)) ax1 = fig.add_subplot(1, 2, 1) ax2 = fig.add_subplot(1, 2, 2) sns.regplot(x='weight', y='mpg', data=ndf, ax=ax1) # 회귀선 표시 sns.regplot(x='weight', y='mpg', data=ndf, ax=ax2, fit_reg=False) #회귀선 미표시 plt.show() plt.close() # seaborn 조인트 그래프 - 산점도, 히스토그램 sns.jointplot(x='weight', y='mpg', data=ndf) # 회귀선 없음 sns.jointplot(x='weight', y='mpg', kind='reg', data=ndf) # 회귀선 표시 plt.show() plt.close() # seaborn pariplot으로 두 변수 간의 모든 경우의 수 그리기 sns.pairplot(ndf) plt.show() plt.close() ''' Step 4: 데이터셋 구분 - 훈련용(train data)/ 검증용(test data) ''' # 속성(변수) 선택 X=ndf[['weight']] #독립 변수 X y=ndf['mpg'] #종속 변수 Y # train data 와 test data로 구분(7:3 비율) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, #독립 변수 y, #종속 변수 test_size=0.3, #검증 30% random_state=10) #랜덤 추출 값 print('train data 개수: ', len(X_train)) print('test data 개수: ', len(X_test)) ''' Step 5: 단순회귀분석 모형 - sklearn 사용 ''' # sklearn 라이브러리에서 선형회귀분석 모듈 가져오기 from sklearn.linear_model import LinearRegression # 단순회귀분석 모형 객체 생성 lr = LinearRegression() # train data를 가지고 모형 학습 lr.fit(X_train, y_train) # 학습을 마친 모형에 test data를 적용하여 결정계수(R-제곱) 계산 r_square = lr.score(X_test, y_test) print(r_square) print('\n') # 회귀식의 기울기 print('기울기 a: ', lr.coef_) print('\n') # 회귀식의 y절편 print('y절편 b', lr.intercept_) print('\n') # 모형에 전체 X 데이터를 입력하여 예측한 값 y_hat을 실제 값 y와 비교 y_hat = lr.predict(X) plt.figure(figsize=(10, 5)) ax1 = sns.distplot(y, hist=False, label="y") ax2 = sns.distplot(y_hat, hist=False, label="y_hat", ax=ax1) plt.show() plt.close()
23.361702
80
0.595628
[ "MIT" ]
Adrian123K/pandas_ml
7.1_simple_linear_regression.py
4,174
Python
from datetime import datetime, timedelta as td import json import os import re from secrets import token_urlsafe from urllib.parse import urlencode from cron_descriptor import ExpressionDescriptor from croniter import croniter from django.conf import settings from django.contrib import messages from django.contrib.auth.decorators import login_required from django.core import signing from django.core.exceptions import PermissionDenied from django.db.models import Count from django.http import ( Http404, HttpResponse, HttpResponseBadRequest, HttpResponseForbidden, JsonResponse, ) from django.shortcuts import get_object_or_404, redirect, render from django.template.loader import get_template, render_to_string from django.urls import reverse from django.utils import timezone from django.views.decorators.csrf import csrf_exempt from django.views.decorators.http import require_POST from hc.accounts.models import Project, Member from hc.api.models import ( DEFAULT_GRACE, DEFAULT_TIMEOUT, MAX_DELTA, Channel, Check, Ping, Notification, ) from hc.api.transports import Telegram from hc.front.decorators import require_setting from hc.front import forms from hc.front.schemas import telegram_callback from hc.front.templatetags.hc_extras import ( num_down_title, down_title, sortchecks, site_hostname, site_scheme, ) from hc.lib import jsonschema from hc.lib.badges import get_badge_url import pytz from pytz.exceptions import UnknownTimeZoneError import requests VALID_SORT_VALUES = ("name", "-name", "last_ping", "-last_ping", "created") STATUS_TEXT_TMPL = get_template("front/log_status_text.html") LAST_PING_TMPL = get_template("front/last_ping_cell.html") EVENTS_TMPL = get_template("front/details_events.html") DOWNTIMES_TMPL = get_template("front/details_downtimes.html") def _tags_statuses(checks): tags, down, grace, num_down = {}, {}, {}, 0 for check in checks: status = check.get_status() if status == "down": num_down += 1 for tag in check.tags_list(): down[tag] = "down" elif status == "grace": for tag in check.tags_list(): grace[tag] = "grace" else: for tag in check.tags_list(): tags[tag] = "up" tags.update(grace) tags.update(down) return tags, num_down def _get_check_for_user(request, code): """ Return specified check if current user has access to it. """ assert request.user.is_authenticated check = get_object_or_404(Check.objects.select_related("project"), code=code) if request.user.is_superuser: return check, True if request.user.id == check.project.owner_id: return check, True membership = get_object_or_404(Member, project=check.project, user=request.user) return check, membership.rw def _get_rw_check_for_user(request, code): check, rw = _get_check_for_user(request, code) if not rw: raise PermissionDenied return check def _get_channel_for_user(request, code): """ Return specified channel if current user has access to it. """ assert request.user.is_authenticated channel = get_object_or_404(Channel.objects.select_related("project"), code=code) if request.user.is_superuser: return channel, True if request.user.id == channel.project.owner_id: return channel, True membership = get_object_or_404(Member, project=channel.project, user=request.user) return channel, membership.rw def _get_rw_channel_for_user(request, code): channel, rw = _get_channel_for_user(request, code) if not rw: raise PermissionDenied return channel def _get_project_for_user(request, project_code): """ Check access, return (project, rw) tuple. """ project = get_object_or_404(Project, code=project_code) if request.user.is_superuser: return project, True if request.user.id == project.owner_id: return project, True membership = get_object_or_404(Member, project=project, user=request.user) return project, membership.rw def _get_rw_project_for_user(request, project_code): """ Check access, return (project, rw) tuple. """ project, rw = _get_project_for_user(request, project_code) if not rw: raise PermissionDenied return project def _refresh_last_active_date(profile): """ Update last_active_date if it is more than a day old. """ now = timezone.now() if profile.last_active_date is None or (now - profile.last_active_date).days > 0: profile.last_active_date = now profile.save() @login_required def my_checks(request, code): _refresh_last_active_date(request.profile) project, rw = _get_project_for_user(request, code) if request.GET.get("sort") in VALID_SORT_VALUES: request.profile.sort = request.GET["sort"] request.profile.save() if request.session.get("last_project_id") != project.id: request.session["last_project_id"] = project.id q = Check.objects.filter(project=project) checks = list(q.prefetch_related("channel_set")) sortchecks(checks, request.profile.sort) tags_statuses, num_down = _tags_statuses(checks) pairs = list(tags_statuses.items()) pairs.sort(key=lambda pair: pair[0].lower()) channels = Channel.objects.filter(project=project) channels = list(channels.order_by("created")) hidden_checks = set() # Hide checks that don't match selected tags: selected_tags = set(request.GET.getlist("tag", [])) if selected_tags: for check in checks: if not selected_tags.issubset(check.tags_list()): hidden_checks.add(check) # Hide checks that don't match the search string: search = request.GET.get("search", "") if search: for check in checks: search_key = "%s\n%s" % (check.name.lower(), check.code) if search not in search_key: hidden_checks.add(check) # Do we need to show the "Last Duration" header? show_last_duration = False for check in checks: if check.clamped_last_duration(): show_last_duration = True break ctx = { "page": "checks", "rw": rw, "checks": checks, "channels": channels, "num_down": num_down, "tags": pairs, "ping_endpoint": settings.PING_ENDPOINT, "timezones": pytz.all_timezones, "project": project, "num_available": project.num_checks_available(), "sort": request.profile.sort, "selected_tags": selected_tags, "search": search, "hidden_checks": hidden_checks, "show_last_duration": show_last_duration, } return render(request, "front/my_checks.html", ctx) @login_required def status(request, code): _get_project_for_user(request, code) checks = list(Check.objects.filter(project__code=code)) details = [] for check in checks: ctx = {"check": check} details.append( { "code": str(check.code), "status": check.get_status(), "last_ping": LAST_PING_TMPL.render(ctx), "started": check.last_start is not None, } ) tags_statuses, num_down = _tags_statuses(checks) return JsonResponse( {"details": details, "tags": tags_statuses, "title": num_down_title(num_down)} ) @login_required @require_POST def switch_channel(request, code, channel_code): check = _get_rw_check_for_user(request, code) channel = get_object_or_404(Channel, code=channel_code) if channel.project_id != check.project_id: return HttpResponseBadRequest() if request.POST.get("state") == "on": channel.checks.add(check) else: channel.checks.remove(check) return HttpResponse() def index(request): if request.user.is_authenticated: projects = list(request.profile.projects()) ctx = { "page": "projects", "projects": projects, "last_project_id": request.session.get("last_project_id"), } return render(request, "front/projects.html", ctx) check = Check() ctx = { "page": "welcome", "check": check, "ping_url": check.url(), "enable_apprise": settings.APPRISE_ENABLED is True, "enable_call": settings.TWILIO_AUTH is not None, "enable_discord": settings.DISCORD_CLIENT_ID is not None, "enable_linenotify": settings.LINENOTIFY_CLIENT_ID is not None, "enable_matrix": settings.MATRIX_ACCESS_TOKEN is not None, "enable_pdc": settings.PD_VENDOR_KEY is not None, "enable_pushbullet": settings.PUSHBULLET_CLIENT_ID is not None, "enable_pushover": settings.PUSHOVER_API_TOKEN is not None, "enable_shell": settings.SHELL_ENABLED is True, "enable_slack_btn": settings.SLACK_CLIENT_ID is not None, "enable_sms": settings.TWILIO_AUTH is not None, "enable_telegram": settings.TELEGRAM_TOKEN is not None, "enable_trello": settings.TRELLO_APP_KEY is not None, "enable_whatsapp": settings.TWILIO_USE_WHATSAPP, "registration_open": settings.REGISTRATION_OPEN, } return render(request, "front/welcome.html", ctx) def dashboard(request): return render(request, "front/dashboard.html", {}) def serve_doc(request, doc="introduction"): # Filenames in /templates/docs/ consist of lowercase letters and underscores, # -- make sure we don't accept anything else if not re.match(r"^[a-z_]+$", doc): raise Http404("not found") path = os.path.join(settings.BASE_DIR, "templates/docs", doc + ".html") if not os.path.exists(path): raise Http404("not found") replaces = { "{{ default_timeout }}": str(int(DEFAULT_TIMEOUT.total_seconds())), "{{ default_grace }}": str(int(DEFAULT_GRACE.total_seconds())), "SITE_NAME": settings.SITE_NAME, "SITE_ROOT": settings.SITE_ROOT, "SITE_HOSTNAME": site_hostname(), "SITE_SCHEME": site_scheme(), "PING_ENDPOINT": settings.PING_ENDPOINT, "PING_URL": settings.PING_ENDPOINT + "your-uuid-here", "IMG_URL": os.path.join(settings.STATIC_URL, "img/docs"), } content = open(path, "r", encoding="utf-8").read() for placeholder, value in replaces.items(): content = content.replace(placeholder, value) ctx = { "page": "docs", "section": doc, "content": content, "first_line": content.split("\n")[0], } return render(request, "front/docs_single.html", ctx) def docs_cron(request): return render(request, "front/docs_cron.html", {}) @require_POST @login_required def add_check(request, code): project = _get_rw_project_for_user(request, code) if project.num_checks_available() <= 0: return HttpResponseBadRequest() check = Check(project=project) check.save() check.assign_all_channels() url = reverse("hc-details", args=[check.code]) return redirect(url + "?new") @require_POST @login_required def update_name(request, code): check = _get_rw_check_for_user(request, code) form = forms.NameTagsForm(request.POST) if form.is_valid(): check.name = form.cleaned_data["name"] check.tags = form.cleaned_data["tags"] check.desc = form.cleaned_data["desc"] check.save() if "/details/" in request.META.get("HTTP_REFERER", ""): return redirect("hc-details", code) return redirect("hc-checks", check.project.code) @require_POST @login_required def filtering_rules(request, code): check = _get_rw_check_for_user(request, code) form = forms.FilteringRulesForm(request.POST) if form.is_valid(): check.subject = form.cleaned_data["subject"] check.subject_fail = form.cleaned_data["subject_fail"] check.methods = form.cleaned_data["methods"] check.manual_resume = form.cleaned_data["manual_resume"] check.save() return redirect("hc-details", code) @require_POST @login_required def update_timeout(request, code): check = _get_rw_check_for_user(request, code) kind = request.POST.get("kind") if kind == "simple": form = forms.TimeoutForm(request.POST) if not form.is_valid(): return HttpResponseBadRequest() check.kind = "simple" check.timeout = form.cleaned_data["timeout"] check.grace = form.cleaned_data["grace"] elif kind == "cron": form = forms.CronForm(request.POST) if not form.is_valid(): return HttpResponseBadRequest() check.kind = "cron" check.schedule = form.cleaned_data["schedule"] check.tz = form.cleaned_data["tz"] check.grace = td(minutes=form.cleaned_data["grace"]) check.alert_after = check.going_down_after() if check.status == "up" and check.alert_after < timezone.now(): # Checks can flip from "up" to "down" state as a result of changing check's # schedule. We don't want to send notifications when changing schedule # interactively in the web UI. So we update the `alert_after` and `status` # fields here the same way as `sendalerts` would do, but without sending # an actual alert: check.alert_after = None check.status = "down" check.save() if "/details/" in request.META.get("HTTP_REFERER", ""): return redirect("hc-details", code) return redirect("hc-checks", check.project.code) @require_POST def cron_preview(request): schedule = request.POST.get("schedule", "") tz = request.POST.get("tz") ctx = {"tz": tz, "dates": []} try: zone = pytz.timezone(tz) now_local = timezone.localtime(timezone.now(), zone) if len(schedule.split()) != 5: raise ValueError() it = croniter(schedule, now_local) for i in range(0, 6): ctx["dates"].append(it.get_next(datetime)) ctx["desc"] = str(ExpressionDescriptor(schedule, use_24hour_time_format=True)) except UnknownTimeZoneError: ctx["bad_tz"] = True except: ctx["bad_schedule"] = True return render(request, "front/cron_preview.html", ctx) @login_required def ping_details(request, code, n=None): check, rw = _get_check_for_user(request, code) q = Ping.objects.filter(owner=check) if n: q = q.filter(n=n) try: ping = q.latest("created") except Ping.DoesNotExist: return render(request, "front/ping_details_not_found.html") ctx = {"check": check, "ping": ping} return render(request, "front/ping_details.html", ctx) @require_POST @login_required def pause(request, code): check = _get_rw_check_for_user(request, code) check.status = "paused" check.last_start = None check.alert_after = None check.save() # Don't redirect after an AJAX request: if request.META.get("HTTP_X_REQUESTED_WITH") == "XMLHttpRequest": return HttpResponse() return redirect("hc-details", code) @require_POST @login_required def resume(request, code): check = _get_rw_check_for_user(request, code) check.status = "new" check.last_start = None check.last_ping = None check.alert_after = None check.save() return redirect("hc-details", code) @require_POST @login_required def remove_check(request, code): check = _get_rw_check_for_user(request, code) project = check.project check.delete() return redirect("hc-checks", project.code) def _get_events(check, limit): pings = Ping.objects.filter(owner=check).order_by("-id")[:limit] pings = list(pings) prev = None for ping in reversed(pings): if ping.kind != "start" and prev and prev.kind == "start": delta = ping.created - prev.created if delta < MAX_DELTA: setattr(ping, "delta", delta) prev = ping alerts = [] if len(pings): cutoff = pings[-1].created alerts = Notification.objects.select_related("channel").filter( owner=check, check_status="down", created__gt=cutoff ) events = pings + list(alerts) events.sort(key=lambda el: el.created, reverse=True) return events @login_required def log(request, code): check, rw = _get_check_for_user(request, code) limit = check.project.owner_profile.ping_log_limit ctx = { "project": check.project, "check": check, "events": _get_events(check, limit), "limit": limit, "show_limit_notice": check.n_pings > limit and settings.USE_PAYMENTS, } return render(request, "front/log.html", ctx) @login_required def details(request, code): _refresh_last_active_date(request.profile) check, rw = _get_check_for_user(request, code) channels = Channel.objects.filter(project=check.project) channels = list(channels.order_by("created")) all_tags = set() q = Check.objects.filter(project=check.project).exclude(tags="") for tags in q.values_list("tags", flat=True): all_tags.update(tags.split(" ")) ctx = { "page": "details", "project": check.project, "check": check, "rw": rw, "channels": channels, "enabled_channels": list(check.channel_set.all()), "timezones": pytz.all_timezones, "downtimes": check.downtimes(months=3), "is_new": "new" in request.GET, "is_copied": "copied" in request.GET, "all_tags": " ".join(sorted(all_tags)), } return render(request, "front/details.html", ctx) @login_required def transfer(request, code): check = _get_rw_check_for_user(request, code) if request.method == "POST": target_project = _get_rw_project_for_user(request, request.POST["project"]) if target_project.num_checks_available() <= 0: return HttpResponseBadRequest() check.project = target_project check.save() check.assign_all_channels() messages.success(request, "Check transferred successfully!") return redirect("hc-details", code) ctx = {"check": check} return render(request, "front/transfer_modal.html", ctx) @require_POST @login_required def copy(request, code): check = _get_rw_check_for_user(request, code) if check.project.num_checks_available() <= 0: return HttpResponseBadRequest() new_name = check.name + " (copy)" # Make sure we don't exceed the 100 character db field limit: if len(new_name) > 100: new_name = check.name[:90] + "... (copy)" copied = Check(project=check.project) copied.name = new_name copied.desc, copied.tags = check.desc, check.tags copied.subject, copied.subject_fail = check.subject, check.subject_fail copied.methods = check.methods copied.manual_resume = check.manual_resume copied.kind = check.kind copied.timeout, copied.grace = check.timeout, check.grace copied.schedule, copied.tz = check.schedule, check.tz copied.save() copied.channel_set.add(*check.channel_set.all()) url = reverse("hc-details", args=[copied.code]) return redirect(url + "?copied") @login_required def status_single(request, code): check, rw = _get_check_for_user(request, code) status = check.get_status() events = _get_events(check, 20) updated = "1" if len(events): updated = str(events[0].created.timestamp()) doc = { "status": status, "status_text": STATUS_TEXT_TMPL.render({"check": check, "rw": rw}), "title": down_title(check), "updated": updated, } if updated != request.GET.get("u"): doc["events"] = EVENTS_TMPL.render({"check": check, "events": events}) doc["downtimes"] = DOWNTIMES_TMPL.render({"downtimes": check.downtimes(3)}) return JsonResponse(doc) @login_required def badges(request, code): project, rw = _get_project_for_user(request, code) tags = set() for check in Check.objects.filter(project=project): tags.update(check.tags_list()) sorted_tags = sorted(tags, key=lambda s: s.lower()) sorted_tags.append("*") # For the "overall status" badge key = project.badge_key urls = [] for tag in sorted_tags: urls.append( { "tag": tag, "svg": get_badge_url(key, tag), "svg3": get_badge_url(key, tag, with_late=True), "json": get_badge_url(key, tag, fmt="json"), "json3": get_badge_url(key, tag, fmt="json", with_late=True), "shields": get_badge_url(key, tag, fmt="shields"), "shields3": get_badge_url(key, tag, fmt="shields", with_late=True), } ) ctx = { "have_tags": len(urls) > 1, "page": "badges", "project": project, "badges": urls, } return render(request, "front/badges.html", ctx) @login_required def channels(request, code): project, rw = _get_project_for_user(request, code) if request.method == "POST": if not rw: return HttpResponseForbidden() code = request.POST["channel"] try: channel = Channel.objects.get(code=code) except Channel.DoesNotExist: return HttpResponseBadRequest() if channel.project_id != project.id: return HttpResponseForbidden() new_checks = [] for key in request.POST: if key.startswith("check-"): code = key[6:] try: check = Check.objects.get(code=code) except Check.DoesNotExist: return HttpResponseBadRequest() if check.project_id != project.id: return HttpResponseForbidden() new_checks.append(check) channel.checks.set(new_checks) return redirect("hc-channels", project.code) channels = Channel.objects.filter(project=project) channels = channels.order_by("created") channels = channels.annotate(n_checks=Count("checks")) ctx = { "page": "channels", "rw": rw, "project": project, "profile": project.owner_profile, "channels": channels, "enable_apprise": settings.APPRISE_ENABLED is True, "enable_call": settings.TWILIO_AUTH is not None, "enable_discord": settings.DISCORD_CLIENT_ID is not None, "enable_linenotify": settings.LINENOTIFY_CLIENT_ID is not None, "enable_matrix": settings.MATRIX_ACCESS_TOKEN is not None, "enable_pdc": settings.PD_VENDOR_KEY is not None, "enable_pushbullet": settings.PUSHBULLET_CLIENT_ID is not None, "enable_pushover": settings.PUSHOVER_API_TOKEN is not None, "enable_shell": settings.SHELL_ENABLED is True, "enable_slack_btn": settings.SLACK_CLIENT_ID is not None, "enable_sms": settings.TWILIO_AUTH is not None, "enable_telegram": settings.TELEGRAM_TOKEN is not None, "enable_trello": settings.TRELLO_APP_KEY is not None, "enable_whatsapp": settings.TWILIO_USE_WHATSAPP, "use_payments": settings.USE_PAYMENTS, } return render(request, "front/channels.html", ctx) @login_required def channel_checks(request, code): channel = _get_rw_channel_for_user(request, code) assigned = set(channel.checks.values_list("code", flat=True).distinct()) checks = Check.objects.filter(project=channel.project).order_by("created") ctx = {"checks": checks, "assigned": assigned, "channel": channel} return render(request, "front/channel_checks.html", ctx) @require_POST @login_required def update_channel_name(request, code): channel = _get_rw_channel_for_user(request, code) form = forms.ChannelNameForm(request.POST) if form.is_valid(): channel.name = form.cleaned_data["name"] channel.save() return redirect("hc-channels", channel.project.code) def verify_email(request, code, token): channel = get_object_or_404(Channel, code=code) if channel.make_token() == token: channel.email_verified = True channel.save() return render(request, "front/verify_email_success.html") return render(request, "bad_link.html") @csrf_exempt def unsubscribe_email(request, code, signed_token): # Some email servers open links in emails to check for malicious content. # To work around this, on GET requests we serve a confirmation form. # If the signature is at least 5 minutes old, we also include JS code to # auto-submit the form. ctx = {} if ":" in signed_token: signer = signing.TimestampSigner(salt="alerts") # First, check the signature without looking at the timestamp: try: token = signer.unsign(signed_token) except signing.BadSignature: return render(request, "bad_link.html") # Check if timestamp is older than 5 minutes: try: signer.unsign(signed_token, max_age=300) except signing.SignatureExpired: ctx["autosubmit"] = True else: token = signed_token channel = get_object_or_404(Channel, code=code, kind="email") if channel.make_token() != token: return render(request, "bad_link.html") if request.method != "POST": return render(request, "accounts/unsubscribe_submit.html", ctx) channel.delete() return render(request, "front/unsubscribe_success.html") @require_POST @login_required def send_test_notification(request, code): channel, rw = _get_channel_for_user(request, code) dummy = Check(name="TEST", status="down") dummy.last_ping = timezone.now() - td(days=1) dummy.n_pings = 42 if channel.kind == "webhook" and not channel.url_down: if channel.url_up: # If we don't have url_down, but do have have url_up then # send "TEST is UP" notification instead: dummy.status = "up" # Delete all older test notifications for this channel Notification.objects.filter(channel=channel, owner=None).delete() # Send the test notification error = channel.notify(dummy, is_test=True) if error: messages.warning(request, "Could not send a test notification. %s" % error) else: messages.success(request, "Test notification sent!") return redirect("hc-channels", channel.project.code) @require_POST @login_required def remove_channel(request, code): channel = _get_rw_channel_for_user(request, code) project = channel.project channel.delete() return redirect("hc-channels", project.code) @login_required def add_email(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddEmailForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="email") channel.value = json.dumps( { "value": form.cleaned_data["value"], "up": form.cleaned_data["up"], "down": form.cleaned_data["down"], } ) channel.save() channel.assign_all_checks() is_own_email = form.cleaned_data["value"] == request.user.email if is_own_email or not settings.EMAIL_USE_VERIFICATION: # If user is subscribing *their own* address # we can skip the verification step. # Additionally, in self-hosted setting, administator has the # option to disable the email verification step altogether. channel.email_verified = True channel.save() else: channel.send_verify_link() return redirect("hc-channels", project.code) else: form = forms.AddEmailForm() ctx = { "page": "channels", "project": project, "use_verification": settings.EMAIL_USE_VERIFICATION, "form": form, } return render(request, "integrations/add_email.html", ctx) @login_required def add_webhook(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.WebhookForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="webhook") channel.name = form.cleaned_data["name"] channel.value = form.get_value() channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) else: form = forms.WebhookForm() ctx = { "page": "channels", "project": project, "form": form, } return render(request, "integrations/webhook_form.html", ctx) @login_required def edit_webhook(request, code): channel = _get_rw_channel_for_user(request, code) if channel.kind != "webhook": return HttpResponseBadRequest() if request.method == "POST": form = forms.WebhookForm(request.POST) if form.is_valid(): channel.name = form.cleaned_data["name"] channel.value = form.get_value() channel.save() return redirect("hc-channels", channel.project.code) else: def flatten(d): return "\n".join("%s: %s" % pair for pair in d.items()) doc = json.loads(channel.value) doc["headers_down"] = flatten(doc["headers_down"]) doc["headers_up"] = flatten(doc["headers_up"]) doc["name"] = channel.name form = forms.WebhookForm(doc) ctx = { "page": "channels", "project": channel.project, "channel": channel, "form": form, } return render(request, "integrations/webhook_form.html", ctx) @require_setting("SHELL_ENABLED") @login_required def add_shell(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddShellForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="shell") channel.value = form.get_value() channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) else: form = forms.AddShellForm() ctx = { "page": "channels", "project": project, "form": form, } return render(request, "integrations/add_shell.html", ctx) @login_required def add_pd(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddPdForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="pd") channel.value = form.cleaned_data["value"] channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) else: form = forms.AddPdForm() ctx = {"page": "channels", "form": form} return render(request, "integrations/add_pd.html", ctx) @require_setting("PD_VENDOR_KEY") def pdc_help(request): ctx = {"page": "channels"} return render(request, "integrations/add_pdc.html", ctx) @require_setting("PD_VENDOR_KEY") @login_required def add_pdc(request, code): project = _get_rw_project_for_user(request, code) state = token_urlsafe() callback = settings.SITE_ROOT + reverse( "hc-add-pdc-complete", args=[project.code, state] ) connect_url = "https://connect.pagerduty.com/connect?" + urlencode( {"vendor": settings.PD_VENDOR_KEY, "callback": callback} ) ctx = {"page": "channels", "project": project, "connect_url": connect_url} request.session["pd"] = state return render(request, "integrations/add_pdc.html", ctx) @require_setting("PD_VENDOR_KEY") @login_required def add_pdc_complete(request, code, state): if "pd" not in request.session: return HttpResponseBadRequest() project = _get_rw_project_for_user(request, code) session_state = request.session.pop("pd") if session_state != state: return HttpResponseBadRequest() if request.GET.get("error") == "cancelled": messages.warning(request, "PagerDuty setup was cancelled.") return redirect("hc-channels", project.code) channel = Channel(kind="pd", project=project) channel.value = json.dumps( { "service_key": request.GET.get("service_key"), "account": request.GET.get("account"), } ) channel.save() channel.assign_all_checks() messages.success(request, "The PagerDuty integration has been added!") return redirect("hc-channels", project.code) @login_required def add_pagertree(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddUrlForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="pagertree") channel.value = form.cleaned_data["value"] channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) else: form = forms.AddUrlForm() ctx = {"page": "channels", "project": project, "form": form} return render(request, "integrations/add_pagertree.html", ctx) @login_required def add_slack(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddUrlForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="slack") channel.value = form.cleaned_data["value"] channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) else: form = forms.AddUrlForm() ctx = { "page": "channels", "form": form, } return render(request, "integrations/add_slack.html", ctx) @require_setting("SLACK_CLIENT_ID") def slack_help(request): ctx = {"page": "channels"} return render(request, "integrations/add_slack_btn.html", ctx) @require_setting("SLACK_CLIENT_ID") @login_required def add_slack_btn(request, code): project = _get_rw_project_for_user(request, code) state = token_urlsafe() authorize_url = "https://slack.com/oauth/v2/authorize?" + urlencode( { "scope": "incoming-webhook", "client_id": settings.SLACK_CLIENT_ID, "state": state, } ) ctx = { "project": project, "page": "channels", "authorize_url": authorize_url, } request.session["add_slack"] = (state, str(project.code)) return render(request, "integrations/add_slack_btn.html", ctx) @require_setting("SLACK_CLIENT_ID") @login_required def add_slack_complete(request): if "add_slack" not in request.session: return HttpResponseForbidden() state, code = request.session.pop("add_slack") project = _get_rw_project_for_user(request, code) if request.GET.get("error") == "access_denied": messages.warning(request, "Slack setup was cancelled.") return redirect("hc-channels", project.code) if request.GET.get("state") != state: return HttpResponseForbidden() result = requests.post( "https://slack.com/api/oauth.v2.access", { "client_id": settings.SLACK_CLIENT_ID, "client_secret": settings.SLACK_CLIENT_SECRET, "code": request.GET.get("code"), }, ) doc = result.json() if doc.get("ok"): channel = Channel(kind="slack", project=project) channel.value = result.text channel.save() channel.assign_all_checks() messages.success(request, "The Slack integration has been added!") else: s = doc.get("error") messages.warning(request, "Error message from slack: %s" % s) return redirect("hc-channels", project.code) @login_required def add_mattermost(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddUrlForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="mattermost") channel.value = form.cleaned_data["value"] channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) else: form = forms.AddUrlForm() ctx = {"page": "channels", "form": form, "project": project} return render(request, "integrations/add_mattermost.html", ctx) @require_setting("PUSHBULLET_CLIENT_ID") @login_required def add_pushbullet(request, code): project = _get_rw_project_for_user(request, code) state = token_urlsafe() authorize_url = "https://www.pushbullet.com/authorize?" + urlencode( { "client_id": settings.PUSHBULLET_CLIENT_ID, "redirect_uri": settings.SITE_ROOT + reverse(add_pushbullet_complete), "response_type": "code", "state": state, } ) ctx = { "page": "channels", "project": project, "authorize_url": authorize_url, } request.session["add_pushbullet"] = (state, str(project.code)) return render(request, "integrations/add_pushbullet.html", ctx) @require_setting("PUSHBULLET_CLIENT_ID") @login_required def add_pushbullet_complete(request): if "add_pushbullet" not in request.session: return HttpResponseForbidden() state, code = request.session.pop("add_pushbullet") project = _get_rw_project_for_user(request, code) if request.GET.get("error") == "access_denied": messages.warning(request, "Pushbullet setup was cancelled.") return redirect("hc-channels", project.code) if request.GET.get("state") != state: return HttpResponseForbidden() result = requests.post( "https://api.pushbullet.com/oauth2/token", { "client_id": settings.PUSHBULLET_CLIENT_ID, "client_secret": settings.PUSHBULLET_CLIENT_SECRET, "code": request.GET.get("code"), "grant_type": "authorization_code", }, ) doc = result.json() if "access_token" in doc: channel = Channel(kind="pushbullet", project=project) channel.value = doc["access_token"] channel.save() channel.assign_all_checks() messages.success(request, "The Pushbullet integration has been added!") else: messages.warning(request, "Something went wrong") return redirect("hc-channels", project.code) @require_setting("DISCORD_CLIENT_ID") @login_required def add_discord(request, code): project = _get_rw_project_for_user(request, code) state = token_urlsafe() auth_url = "https://discordapp.com/api/oauth2/authorize?" + urlencode( { "client_id": settings.DISCORD_CLIENT_ID, "scope": "webhook.incoming", "redirect_uri": settings.SITE_ROOT + reverse(add_discord_complete), "response_type": "code", "state": state, } ) ctx = {"page": "channels", "project": project, "authorize_url": auth_url} request.session["add_discord"] = (state, str(project.code)) return render(request, "integrations/add_discord.html", ctx) @require_setting("DISCORD_CLIENT_ID") @login_required def add_discord_complete(request): if "add_discord" not in request.session: return HttpResponseForbidden() state, code = request.session.pop("add_discord") project = _get_rw_project_for_user(request, code) if request.GET.get("error") == "access_denied": messages.warning(request, "Discord setup was cancelled.") return redirect("hc-channels", project.code) if request.GET.get("state") != state: return HttpResponseForbidden() result = requests.post( "https://discordapp.com/api/oauth2/token", { "client_id": settings.DISCORD_CLIENT_ID, "client_secret": settings.DISCORD_CLIENT_SECRET, "code": request.GET.get("code"), "grant_type": "authorization_code", "redirect_uri": settings.SITE_ROOT + reverse(add_discord_complete), }, ) doc = result.json() if "access_token" in doc: channel = Channel(kind="discord", project=project) channel.value = result.text channel.save() channel.assign_all_checks() messages.success(request, "The Discord integration has been added!") else: messages.warning(request, "Something went wrong.") return redirect("hc-channels", project.code) @require_setting("PUSHOVER_API_TOKEN") def pushover_help(request): ctx = {"page": "channels"} return render(request, "integrations/add_pushover_help.html", ctx) @require_setting("PUSHOVER_API_TOKEN") @login_required def add_pushover(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": state = token_urlsafe() failure_url = settings.SITE_ROOT + reverse("hc-channels", args=[project.code]) success_url = ( settings.SITE_ROOT + reverse("hc-add-pushover", args=[project.code]) + "?" + urlencode( { "state": state, "prio": request.POST.get("po_priority", "0"), "prio_up": request.POST.get("po_priority_up", "0"), } ) ) subscription_url = ( settings.PUSHOVER_SUBSCRIPTION_URL + "?" + urlencode({"success": success_url, "failure": failure_url}) ) request.session["pushover"] = state return redirect(subscription_url) # Handle successful subscriptions if "pushover_user_key" in request.GET: if "pushover" not in request.session: return HttpResponseForbidden() state = request.session.pop("pushover") if request.GET.get("state") != state: return HttpResponseForbidden() if request.GET.get("pushover_unsubscribed") == "1": # Unsubscription: delete all Pushover channels for this project Channel.objects.filter(project=project, kind="po").delete() return redirect("hc-channels", project.code) form = forms.AddPushoverForm(request.GET) if not form.is_valid(): return HttpResponseBadRequest() channel = Channel(project=project, kind="po") channel.value = form.get_value() channel.save() channel.assign_all_checks() messages.success(request, "The Pushover integration has been added!") return redirect("hc-channels", project.code) # Show Integration Settings form ctx = { "page": "channels", "project": project, "po_retry_delay": td(seconds=settings.PUSHOVER_EMERGENCY_RETRY_DELAY), "po_expiration": td(seconds=settings.PUSHOVER_EMERGENCY_EXPIRATION), } return render(request, "integrations/add_pushover.html", ctx) @login_required def add_opsgenie(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddOpsGenieForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="opsgenie") v = {"region": form.cleaned_data["region"], "key": form.cleaned_data["key"]} channel.value = json.dumps(v) channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) else: form = forms.AddOpsGenieForm() ctx = {"page": "channels", "project": project, "form": form} return render(request, "integrations/add_opsgenie.html", ctx) @login_required def add_victorops(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddUrlForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="victorops") channel.value = form.cleaned_data["value"] channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) else: form = forms.AddUrlForm() ctx = {"page": "channels", "project": project, "form": form} return render(request, "integrations/add_victorops.html", ctx) @login_required def add_zulip(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddZulipForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="zulip") channel.value = form.get_value() channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) else: form = forms.AddZulipForm() ctx = {"page": "channels", "project": project, "form": form} return render(request, "integrations/add_zulip.html", ctx) @csrf_exempt @require_POST def telegram_bot(request): try: doc = json.loads(request.body.decode()) jsonschema.validate(doc, telegram_callback) except ValueError: return HttpResponseBadRequest() except jsonschema.ValidationError: # We don't recognize the message format, but don't want Telegram # retrying this over and over again, so respond with 200 OK return HttpResponse() if "/start" not in doc["message"]["text"]: return HttpResponse() chat = doc["message"]["chat"] name = max(chat.get("title", ""), chat.get("username", "")) invite = render_to_string( "integrations/telegram_invite.html", {"qs": signing.dumps((chat["id"], chat["type"], name))}, ) Telegram.send(chat["id"], invite) return HttpResponse() @require_setting("TELEGRAM_TOKEN") def telegram_help(request): ctx = { "page": "channels", "bot_name": settings.TELEGRAM_BOT_NAME, } return render(request, "integrations/add_telegram.html", ctx) @require_setting("TELEGRAM_TOKEN") @login_required def add_telegram(request): chat_id, chat_type, chat_name = None, None, None qs = request.META["QUERY_STRING"] if qs: try: chat_id, chat_type, chat_name = signing.loads(qs, max_age=600) except signing.BadSignature: return render(request, "bad_link.html") if request.method == "POST": project = _get_rw_project_for_user(request, request.POST.get("project")) channel = Channel(project=project, kind="telegram") channel.value = json.dumps( {"id": chat_id, "type": chat_type, "name": chat_name} ) channel.save() channel.assign_all_checks() messages.success(request, "The Telegram integration has been added!") return redirect("hc-channels", project.code) ctx = { "page": "channels", "projects": request.profile.projects(), "chat_id": chat_id, "chat_type": chat_type, "chat_name": chat_name, "bot_name": settings.TELEGRAM_BOT_NAME, } return render(request, "integrations/add_telegram.html", ctx) @require_setting("TWILIO_AUTH") @login_required def add_sms(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddSmsForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="sms") channel.name = form.cleaned_data["label"] channel.value = json.dumps({"value": form.cleaned_data["value"]}) channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) else: form = forms.AddSmsForm() ctx = { "page": "channels", "project": project, "form": form, "profile": project.owner_profile, } return render(request, "integrations/add_sms.html", ctx) @require_setting("TWILIO_AUTH") @login_required def add_call(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddSmsForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="call") channel.name = form.cleaned_data["label"] channel.value = json.dumps({"value": form.cleaned_data["value"]}) channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) else: form = forms.AddSmsForm() ctx = { "page": "channels", "project": project, "form": form, "profile": project.owner_profile, } return render(request, "integrations/add_call.html", ctx) @require_setting("TWILIO_USE_WHATSAPP") @login_required def add_whatsapp(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddSmsForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="whatsapp") channel.name = form.cleaned_data["label"] channel.value = json.dumps( { "value": form.cleaned_data["value"], "up": form.cleaned_data["up"], "down": form.cleaned_data["down"], } ) channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) else: form = forms.AddSmsForm() ctx = { "page": "channels", "project": project, "form": form, "profile": project.owner_profile, } return render(request, "integrations/add_whatsapp.html", ctx) @require_setting("TRELLO_APP_KEY") @login_required def add_trello(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": channel = Channel(project=project, kind="trello") channel.value = request.POST["settings"] channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) return_url = settings.SITE_ROOT + reverse("hc-add-trello", args=[project.code]) authorize_url = "https://trello.com/1/authorize?" + urlencode( { "expiration": "never", "name": settings.SITE_NAME, "scope": "read,write", "response_type": "token", "key": settings.TRELLO_APP_KEY, "return_url": return_url, } ) ctx = { "page": "channels", "project": project, "authorize_url": authorize_url, } return render(request, "integrations/add_trello.html", ctx) @require_setting("MATRIX_ACCESS_TOKEN") @login_required def add_matrix(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddMatrixForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="matrix") channel.value = form.cleaned_data["room_id"] # If user supplied room alias instead of ID, use it as channel name alias = form.cleaned_data["alias"] if not alias.startswith("!"): channel.name = alias channel.save() channel.assign_all_checks() messages.success(request, "The Matrix integration has been added!") return redirect("hc-channels", project.code) else: form = forms.AddMatrixForm() ctx = { "page": "channels", "project": project, "form": form, "matrix_user_id": settings.MATRIX_USER_ID, } return render(request, "integrations/add_matrix.html", ctx) @require_setting("APPRISE_ENABLED") @login_required def add_apprise(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddAppriseForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="apprise") channel.value = form.cleaned_data["url"] channel.save() channel.assign_all_checks() messages.success(request, "The Apprise integration has been added!") return redirect("hc-channels", project.code) else: form = forms.AddAppriseForm() ctx = {"page": "channels", "project": project, "form": form} return render(request, "integrations/add_apprise.html", ctx) @require_setting("TRELLO_APP_KEY") @login_required @require_POST def trello_settings(request): token = request.POST.get("token") url = "https://api.trello.com/1/members/me/boards?" + urlencode( { "key": settings.TRELLO_APP_KEY, "token": token, "fields": "id,name", "lists": "open", "list_fields": "id,name", } ) r = requests.get(url) ctx = {"token": token, "data": r.json()} return render(request, "integrations/trello_settings.html", ctx) @login_required def add_msteams(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddUrlForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="msteams") channel.value = form.cleaned_data["value"] channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) else: form = forms.AddUrlForm() ctx = {"page": "channels", "project": project, "form": form} return render(request, "integrations/add_msteams.html", ctx) @login_required def add_prometheus(request, code): project, rw = _get_project_for_user(request, code) ctx = {"page": "channels", "project": project} return render(request, "integrations/add_prometheus.html", ctx) def metrics(request, code, key): if len(key) != 32: return HttpResponseBadRequest() q = Project.objects.filter(code=code, api_key_readonly=key) try: project = q.get() except Project.DoesNotExist: return HttpResponseForbidden() checks = Check.objects.filter(project_id=project.id).order_by("id") def esc(s): return s.replace("\\", "\\\\").replace('"', '\\"').replace("\n", "\\n") def output(checks): yield "# HELP hc_check_up Whether the check is currently up (1 for yes, 0 for no).\n" yield "# TYPE hc_check_up gauge\n" TMPL = """hc_check_up{name="%s", tags="%s", unique_key="%s"} %d\n""" for check in checks: value = 0 if check.get_status() == "down" else 1 yield TMPL % (esc(check.name), esc(check.tags), check.unique_key, value) tags_statuses, num_down = _tags_statuses(checks) yield "\n" yield "# HELP hc_tag_up Whether all checks with this tag are up (1 for yes, 0 for no).\n" yield "# TYPE hc_tag_up gauge\n" TMPL = """hc_tag_up{tag="%s"} %d\n""" for tag in sorted(tags_statuses): value = 0 if tags_statuses[tag] == "down" else 1 yield TMPL % (esc(tag), value) yield "\n" yield "# HELP hc_checks_total The total number of checks.\n" yield "# TYPE hc_checks_total gauge\n" yield "hc_checks_total %d\n" % len(checks) yield "\n" yield "# HELP hc_checks_down_total The number of checks currently down.\n" yield "# TYPE hc_checks_down_total gauge\n" yield "hc_checks_down_total %d\n" % num_down return HttpResponse(output(checks), content_type="text/plain") @login_required def add_spike(request, code): project = _get_rw_project_for_user(request, code) if request.method == "POST": form = forms.AddUrlForm(request.POST) if form.is_valid(): channel = Channel(project=project, kind="spike") channel.value = form.cleaned_data["value"] channel.save() channel.assign_all_checks() return redirect("hc-channels", project.code) else: form = forms.AddUrlForm() ctx = {"page": "channels", "project": project, "form": form} return render(request, "integrations/add_spike.html", ctx) @require_setting("LINENOTIFY_CLIENT_ID") @login_required def add_linenotify(request, code): project = _get_rw_project_for_user(request, code) state = token_urlsafe() authorize_url = " https://notify-bot.line.me/oauth/authorize?" + urlencode( { "client_id": settings.LINENOTIFY_CLIENT_ID, "redirect_uri": settings.SITE_ROOT + reverse(add_linenotify_complete), "response_type": "code", "state": state, "scope": "notify", } ) ctx = { "page": "channels", "project": project, "authorize_url": authorize_url, } request.session["add_linenotify"] = (state, str(project.code)) return render(request, "integrations/add_linenotify.html", ctx) @require_setting("LINENOTIFY_CLIENT_ID") @login_required def add_linenotify_complete(request): if "add_linenotify" not in request.session: return HttpResponseForbidden() state, code = request.session.pop("add_linenotify") if request.GET.get("state") != state: return HttpResponseForbidden() project = _get_rw_project_for_user(request, code) if request.GET.get("error") == "access_denied": messages.warning(request, "LINE Notify setup was cancelled.") return redirect("hc-channels", project.code) # Exchange code for access token result = requests.post( "https://notify-bot.line.me/oauth/token", { "grant_type": "authorization_code", "code": request.GET.get("code"), "redirect_uri": settings.SITE_ROOT + reverse(add_linenotify_complete), "client_id": settings.LINENOTIFY_CLIENT_ID, "client_secret": settings.LINENOTIFY_CLIENT_SECRET, }, ) doc = result.json() if doc.get("status") != 200: messages.warning(request, "Something went wrong.") return redirect("hc-channels", project.code) # Fetch notification target's name, will use it as channel name: token = doc["access_token"] result = requests.get( "https://notify-api.line.me/api/status", headers={"Authorization": "Bearer %s" % token}, ) doc = result.json() channel = Channel(kind="linenotify", project=project) channel.name = doc.get("target") channel.value = token channel.save() channel.assign_all_checks() messages.success(request, "The LINE Notify integration has been added!") return redirect("hc-channels", project.code) # Forks: add custom views after this line def stats(request): return render(request, "front/stats.html", {})
30.955637
97
0.638785
[ "BSD-3-Clause" ]
srvz/healthchecks
hc/front/views.py
59,311
Python
# Copyright 2020 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union import numpy as np import torch from .utils import get_mask_edges, get_surface_distance def compute_average_surface_distance( seg_pred: Union[np.ndarray, torch.Tensor], seg_gt: Union[np.ndarray, torch.Tensor], label_idx: int, symmetric: bool = False, distance_metric: str = "euclidean", ): """ This function is used to compute the Average Surface Distance from `seg_pred` to `seg_gt` under the default setting. In addition, if sets ``symmetric = True``, the average symmetric surface distance between these two inputs will be returned. Args: seg_pred: first binary or labelfield image. seg_gt: second binary or labelfield image. label_idx: for labelfield images, convert to binary with `seg_pred = seg_pred == label_idx`. symmetric: if calculate the symmetric average surface distance between `seg_pred` and `seg_gt`. Defaults to ``False``. distance_metric: : [``"euclidean"``, ``"chessboard"``, ``"taxicab"``] the metric used to compute surface distance. Defaults to ``"euclidean"``. """ (edges_pred, edges_gt) = get_mask_edges(seg_pred, seg_gt, label_idx) surface_distance = get_surface_distance(edges_pred, edges_gt, label_idx, distance_metric=distance_metric) if surface_distance.shape == (0,): return np.inf avg_surface_distance = surface_distance.mean() if not symmetric: return avg_surface_distance surface_distance_2 = get_surface_distance(edges_gt, edges_pred, label_idx, distance_metric=distance_metric) if surface_distance_2.shape == (0,): return np.inf avg_surface_distance_2 = surface_distance_2.mean() return np.mean((avg_surface_distance, avg_surface_distance_2))
40.87931
111
0.724589
[ "Apache-2.0" ]
Alxaline/MONAI
monai/metrics/surface_distance.py
2,371
Python
""" This version considers task's datasets have equal number of labeled samples """ import os import json from collections import defaultdict import numpy as np from tensorboardX import SummaryWriter import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.autograd import grad as torch_grad import torch.optim as optim from torch.utils.data import DataLoader import torchvision from torchvision import transforms import util from util import in_feature_size import alpha_opt import data_loading as db from torch.optim import lr_scheduler class MTL_pairwise(object): def __init__(self, ft_extrctor_prp, hypoth_prp, discrm_prp, **kwargs): final_results = defaultdict() # ######################### argument definition ############### self.criterion = kwargs ['criterion'] self.c3_value = kwargs['c3'] self.grad_weight = kwargs['grad_weight'] self.img_size = kwargs['img_size'] self.num_chnnl = kwargs['chnnl'] self.lr = kwargs['lr'] self.momentum = kwargs['momentum'] self.epochs = kwargs['epochs'] num_tr_smpl = kwargs['tr_smpl'] num_test_smpl = kwargs['test_smpl'] self.trial = kwargs['Trials'] self.tsklist = kwargs['tsk_list'] self.num_tsk = len(self.tsklist) if self.criterion=='wasserstien': self.stp_sz_sch = 30 else: self.stp_sz_sch = 50 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.alpha = np.ones((self.num_tsk, self.num_tsk)) * (0.1 / (self.num_tsk - 1)) np.fill_diagonal(self.alpha, 0.9) self.wrdir = os.path.join(os.getcwd(), '_'.join( self.tsklist)+'_'+str(num_tr_smpl)+'_'+ str(self.epochs)+'_'+self.criterion, 'runs_'+str(self.c3_value)) try: os.makedirs(self.wrdir) except OSError: if not os.path.isdir(self.wrdir): raise with open(os.path.join(self.wrdir, 'info_itr_'+str(self.trial)+'.json'), 'a') as outfile: json.dump([ft_extrctor_prp,hypoth_prp,discrm_prp], outfile) json.dump(kwargs, outfile) # Constructing F -> H and F -> D self.FE = util.feature_extractor(ft_extrctor_prp).construct().to(self.device) print (self.FE) self.hypothesis = [util.classifier(hypoth_prp).to(self.device) for _ in range(self.num_tsk)] print (self.hypothesis[0]) self.discrm = {'{}{}'.format(i, j): util.classifier(discrm_prp).to(self.device)for i in range(self.num_tsk) for j in range(i + 1, self.num_tsk)} print (self.discrm['01']) all_parameters_h = sum([list(h.parameters()) for h in self.hypothesis], []) all_parameters_discrm = sum([list(self.discrm[d].parameters()) for d in self.discrm], []) self.optimizer = optim.SGD(list(self.FE.parameters()) + list(all_parameters_h) + list(all_parameters_discrm), lr=self.lr, momentum=self.momentum) self.scheduler = lr_scheduler.StepLR(self.optimizer, step_size=self.stp_sz_sch, gamma=0.5) train_loader, test_loader, validation_loader = db.data_loading(self.img_size, num_tr_smpl,num_test_smpl, self.tsklist ) self.writer = SummaryWriter(os.path.join(self.wrdir, 'itr'+str(self.trial))) Total_loss = [] for epoch in range(self.epochs): self.scheduler.step(epoch) whole_loss = self.model_fit(train_loader, epoch) Total_loss.append(whole_loss) tasks_trAcc = self.model_eval(train_loader, epoch, 'train') tasks_valAcc = self.model_eval(validation_loader, epoch, 'validation') tasks_teAcc = self.model_eval(test_loader, epoch, 'test') # if np.abs(np.mean(Total_loss[-5:-1]) - Total_loss[-1]) < 0.002 : # print('Stop learning, reach to a stable point at epoch {:d} with total loss {:.4f}'.format(epoch, # Total_loss[-1])) # break if 1.5*np.mean(Total_loss[-5:-1]) < Total_loss[-1]: print ('****** Increasing of training error') break final_results['alpha_c3_'+str(self.c3_value)] = (self.alpha).tolist() final_results['Tasks_val_Acc_c3_'+str(self.c3_value)] = (tasks_valAcc).tolist() final_results['Tasks_test_Acc_c3_' + str(self.c3_value) ] = (tasks_teAcc).tolist() final_results['Tasks_train_Acc_c3_'+str(self.c3_value)] = (tasks_trAcc).tolist() with open(os.path.join(self.wrdir, 'info_itr_'+str(self.trial)+'.json'), 'a') as outfile: json.dump(final_results, outfile) final_prmtr = defaultdict() final_prmtr['FE'] = self.FE.state_dict() for i,h in enumerate(self.hypothesis): final_prmtr['hypo'+str(i)] = h.state_dict() for k, D in self.discrm.items(): final_prmtr['dicrm'+k] = D.state_dict() torch.save(final_prmtr, os.path.join(self.wrdir, 'itr'+str(self.trial),'MTL_parameters.pt')) self.writer.close() def model_fit(self, data_loader, epoch): discrm_distnc_mtrx = np.zeros((self.num_tsk, self.num_tsk)) loss_mtrx_hypo_vlue = np.zeros((self.num_tsk, self.num_tsk)) weigh_loss_hypo_vlue, correct_hypo = np.zeros(self.num_tsk), np.zeros(self.num_tsk) Total_loss = 0 n_batch = 0 # set train mode self.FE.train() for t in range(self.num_tsk): self.hypothesis[t].train() for j in range(t + 1, self.num_tsk): self.discrm['{}{}'.format(t, j)].train() # ##### for tasks_batch in zip(*data_loader): Loss_1, Loss_2 = 0, 0 n_batch += 1 # data = (x,y) inputs = torch.cat([batch[0] for batch in tasks_batch]) btch_sz = len(tasks_batch[0][0]) targets = torch.cat([batch[1] for batch in tasks_batch]) # inputs = (x1,...,xT) targets = (y1,...,yT) inputs = inputs.to(self.device) targets = targets.to(self.device) features = self.FE(inputs) features = features.view(features.size(0), -1) for t in range(self.num_tsk): w = torch.tensor([np.tile(self.alpha[t, i], reps=len(data[0])) for i, data in enumerate(tasks_batch)], dtype=torch.float).view(-1) w = w.to(self.device) label_prob = self.hypothesis[t](features) pred = label_prob[t * (btch_sz):(t + 1) * btch_sz].argmax(dim=1, keepdim=True) correct_hypo[t] += ( (pred.eq(targets[t * btch_sz:(t + 1) * btch_sz].view_as(pred)).sum().item()) / btch_sz) hypo_loss = torch.mean(w * F.cross_entropy(label_prob, targets, reduction='none')) # definition of loss to be optimized Loss_1 += hypo_loss weigh_loss_hypo_vlue[t] += hypo_loss.item() loss_mtrx_hypo_vlue[t, :] += [F.cross_entropy(label_prob[j * (btch_sz):(j + 1) * btch_sz, :], targets[j * (btch_sz):(j + 1) * btch_sz], reduction='mean').item() for j in range(self.num_tsk)] for k in range(t + 1, self.num_tsk): # w = (alpha_{tk}+alpha_{kt}) assumption: matrix alpha is not symmetric alpha_domain = torch.tensor(self.alpha[t, k] + self.alpha[k, t], dtype=torch.float) alpha_domain = alpha_domain.to(self.device) if self.criterion =='h_divergence': domain_y = torch.cat([torch.ones(len(tasks_batch[t][0]), dtype=torch.float), torch.zeros(len(tasks_batch[k][0]), dtype=torch.float)]) # domain_x = torch.cat([tasks_batch[t-1][0], tasks_batch[k-1][0] ]) domain_y = domain_y.to(self.device) domain_features = torch.cat([features[t * btch_sz:(t + 1) * btch_sz], features[k * btch_sz:(k + 1) * btch_sz]]) domain_features = domain_features.view(domain_features.size(0), -1) domain_pred = self.discrm['{}{}'.format(t, k)](domain_features).squeeze() disc_loss = F.binary_cross_entropy(domain_pred, domain_y) # discriminator accuracy defines H-divergence domain_lbl = domain_pred >= 0.5 domain_lbl = domain_lbl.type(torch.cuda.FloatTensor) discrm_distnc_mtrx[t, k] += (domain_lbl.eq(domain_y).sum().item()) / len(domain_y) discrm_distnc_mtrx[k, t] = discrm_distnc_mtrx[t, k] print(discrm_distnc_mtrx[t, :]) elif self.criterion =='wasserstien': features_t = features[t * btch_sz:(t + 1) * btch_sz] features_t = features_t.view(features_t.size(0), -1) features_k = features[k * btch_sz:(k + 1) * btch_sz] features_k = features_k.view(features_k.size(0), -1) pred_k = self.discrm['{}{}'.format(t, k)](features_k).squeeze() pred_t = self.discrm['{}{}'.format(t, k)](features_t).squeeze() gradient_pntly=self.gradient_penalty(inputs[t * btch_sz:(t + 1) * btch_sz],inputs[k * btch_sz:(k + 1) * btch_sz], t, k) # critic loss ---> E(f(x)) - E(f(y)) + gamma* ||grad(f(x+y/2))-1|| disc_loss = (pred_t.mean() - pred_k.mean() ) + self.grad_weight *gradient_pntly # negative sign compute wasserstien distance discrm_distnc_mtrx[t, k] += -(pred_t.mean() - pred_k.mean()).item() discrm_distnc_mtrx[k, t] = discrm_distnc_mtrx[t, k] disc_loss = alpha_domain * disc_loss Loss_2 += disc_loss if n_batch % 500 == 0: grid_img = torchvision.utils.make_grid(inputs, nrow=5, padding=30) self.writer.add_image('result Image', grid_img) Loss = torch.mean(Loss_1) + Loss_2 * (1 / self.num_tsk) Total_loss += Loss.item() # loss formula for all tasks regarding the current batch self.optimizer.zero_grad() Loss.backward() self.optimizer.step() discrm_distnc_mtrx /= n_batch weigh_loss_hypo_vlue /= n_batch loss_mtrx_hypo_vlue /= n_batch correct_hypo /= n_batch Total_loss /= n_batch print('================== epoch {:d} ========'.format(epoch)) print('Final Total Loss {:.3f}'.format(Total_loss )) print('discriminator distance based on '+self.criterion +'\n'+ str(discrm_distnc_mtrx)) print(' hypothesis loss \n' + str(loss_mtrx_hypo_vlue)) print(' hypothesis accuracy \n' + str(correct_hypo * 100)) print('coefficient:',self.alpha) self.writer.add_scalars('MTL_total_loss', {'MTL_total_loss': Total_loss}, epoch) for t in range(self.num_tsk): # self.writer.add_scalars('task_' + str(t) + '/loss', {'loss_train': loss_mtrx_hypo_vlue[t, t]}, epoch) for j in range(self.num_tsk): if j != t: self.writer.add_scalars('task_' + str(t) + '/Discrm_distance', {'loss_D' + '_'.join([self.tsklist[t],self.tsklist[j]]): discrm_distnc_mtrx[t, j]}, epoch) self.writer.add_scalars('task_' + str(t) + '/alpha', {'alpha' + '_'.join([self.tsklist[t],self.tsklist[j]]): self.alpha[t, j]}, epoch) if epoch % 1 == 0: c_2, c_3 = 1 * np.ones(self.num_tsk), self.c3_value * np.ones(self.num_tsk) self.alpha = alpha_opt.min_alphacvx(self.alpha.T, c_2, c_3, loss_mtrx_hypo_vlue.T, discrm_distnc_mtrx.T) self.alpha = self.alpha.T return Total_loss def model_eval(self, data_loader, epoch, phase='test'): loss_hypo_vlue = np.zeros(self.num_tsk) correct_hypo = np.zeros(self.num_tsk) self.FE.eval() for t in range(self.num_tsk): n_batch_t = 0 self.hypothesis[t].eval() for j in range(t + 1, self.num_tsk): self.discrm['{}{}'.format(t, j)].eval() for inputs, targets in (data_loader[t]): n_batch_t += 1 inputs = inputs.to(self.device) targets = targets.to(self.device) features = self.FE(inputs) features = features.view(features.size(0), -1) label_prob = self.hypothesis[t](features) pred = label_prob.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct_hypo[t] += ((pred.eq(targets.view_as(pred)).sum().item()) / len(pred)) loss_hypo_vlue[t] += F.cross_entropy(label_prob, targets, reduction='mean').item() if n_batch_t % 100 == 0: grid_img = torchvision.utils.make_grid(inputs, nrow=5, padding=30) self.writer.add_image('result Image_' + phase, grid_img) loss_hypo_vlue[t] /= n_batch_t correct_hypo[t] /= n_batch_t self.writer.add_scalars('task_' + str(t) + '/loss', {'loss_' + phase: loss_hypo_vlue[t]}, epoch) self.writer.add_scalars('task_' + str(t) + '/Acc', {'Acc_' + phase: correct_hypo[t]}, epoch) print('\t === hypothesiz **' + phase + '** loss \n' + str(loss_hypo_vlue)) print('\t === hypothesiz **' + phase + '** accuracy \n' + str(correct_hypo * 100)) return correct_hypo def gradient_penalty(self, data_t, data_k, t, k): batch_size = data_k.size()[0] # Calculate interpolation theta = torch.rand(batch_size, 1, 1,1) theta = theta.expand_as(data_t) theta = theta.to(self.device) interpolated = theta * data_t + (1 - theta) * data_k # computing gradient w.r.t interplated sample interpolated = Variable(interpolated, requires_grad=True) interpolated = interpolated.to(self.device) features_intrpltd = self.FE(interpolated) features_intrpltd = features_intrpltd.view(features_intrpltd.size(0), -1) # Calculate probability of interpolated examples prob_interpolated = self.discrm['{}{}'.format(t, k)](features_intrpltd).squeeze() # Calculate gradients of probabilities with respect to examples gradients = torch_grad(outputs=prob_interpolated, inputs=interpolated, grad_outputs=torch.ones( prob_interpolated.size()).to(self.device), create_graph=True, retain_graph=True)[0] # Gradients have shape (batch_size, num_channels, img_width, img_height), # so flatten to easily take norm per example in batch gradients = gradients.view(batch_size, -1) # Derivatives of the gradient close to 0 can cause problems because of # the square root, so manually calculate norm and add epsilon gradients_norm = torch.sqrt(torch.sum(gradients ** 2, dim=1) + 1e-12) # Return gradient penalty return ((gradients_norm - 1) ** 2).mean() def main(): """"options for criterion is wasserstien, h_divergence""" # criterion = ['wasserstien', 'h_divergence'] itertn = 1 # for c3_value in [0.5, 0.2, 1]: c3_value = 0.5 for trial in range(1): args = {'img_size': 28, 'chnnl': 1, 'lr': 0.01, 'momentum': 0.9, 'epochs': 1, 'tr_smpl': 1000, 'test_smpl': 10000, 'tsk_list': ['mnist', 'svhn', 'm_mnist'], 'grad_weight': 1, 'Trials': trial, #'criterion': 'h_divergence', 'criterion': 'wasserstien', 'c3':c3_value} ft_extrctor_prp = {'layer1': {'conv': [1, 32, 5, 1, 2], 'elu': [], 'maxpool': [3, 2, 0]}, 'layer2': {'conv': [32, 64, 5, 1, 2], 'elu': [], 'maxpool': [3, 2, 0]}} hypoth_prp = { 'layer3': {'fc': [util.in_feature_size(ft_extrctor_prp, args['img_size']), 128], 'act_fn': 'elu'}, 'layer4': {'fc': [128, 10], 'act_fn': 'softmax'}} discrm_prp = {'reverse_gradient': {}, 'layer3': {'fc': [util.in_feature_size(ft_extrctor_prp, args['img_size']), 128], 'act_fn': 'elu'}, 'layer4': {'fc': [128, 1], 'act_fn': 'sigm'}} mtl = MTL_pairwise(ft_extrctor_prp, hypoth_prp, discrm_prp, **args) del mtl if __name__ == '__main__': main()
44.396419
161
0.556829
[ "MIT" ]
cjshui/AMTNN
MTL.py
17,359
Python
from django.test import TestCase class PollsViewsTestCase(TestCase): fixtures = ['polls_views_testdata.json'] def test_index(self): resp = self.client.get('/polls/') self.assertEqual(resp.status_code, 200) self.assertTrue('latest_poll_list' in resp.context) self.assertEqual([poll.pk for poll in resp.context['latest_poll_list']], [1]) def test_choices(self): resp = self.client.get('/polls/') self.assertEqual(resp.status_code, 200) self.assertTrue('latest_poll_list' in resp.context) self.assertEqual([poll.pk for poll in resp.context['latest_poll_list']], [1]) poll_1 = resp.context['latest_poll_list'][0] self.assertEqual(poll_1.question, 'Are you learning about testing in Django?') self.assertEqual(poll_1.choice_set.count(), 2) choices = poll_1.choice_set.all() self.assertEqual(choices[0].choice, 'Yes') self.assertEqual(choices[0].votes, 1) self.assertEqual(choices[1].choice, 'No') self.assertEqual(choices[1].votes, 0) def test_detail(self): resp = self.client.get('/polls/1/') self.assertEqual(resp.status_code, 200) self.assertEqual(resp.context['polls'].pk, 1) self.assertEqual(resp.context['polls'].question, 'Are you learning about testing in Django?') # Ensure that non-existent polls throw a 404. resp = self.client.get('/polls/2/') self.assertEqual(resp.status_code, 404)
41.583333
101
0.662659
[ "MIT" ]
nokiadev/django-tdd-dojo
tdd/polls/tests/test_fixtures.py
1,497
Python
""" Support for a local MQTT broker. For more details about this component, please refer to the documentation at https://home-assistant.io/components/mqtt/#use-the-embedded-broker """ import logging import tempfile from homeassistant.core import callback from homeassistant.components.mqtt import PROTOCOL_311 from homeassistant.const import EVENT_HOMEASSISTANT_STOP from homeassistant.util.async import run_coroutine_threadsafe REQUIREMENTS = ['hbmqtt==0.8'] DEPENDENCIES = ['http'] def start(hass, server_config): """Initialize MQTT Server.""" from hbmqtt.broker import Broker, BrokerException try: passwd = tempfile.NamedTemporaryFile() if server_config is None: server_config, client_config = generate_config(hass, passwd) else: client_config = None broker = Broker(server_config, hass.loop) run_coroutine_threadsafe(broker.start(), hass.loop).result() except BrokerException: logging.getLogger(__name__).exception('Error initializing MQTT server') return False, None finally: passwd.close() @callback def shutdown_mqtt_server(event): """Shut down the MQTT server.""" hass.async_add_job(broker.shutdown()) hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, shutdown_mqtt_server) return True, client_config def generate_config(hass, passwd): """Generate a configuration based on current Home Assistant instance.""" config = { 'listeners': { 'default': { 'max-connections': 50000, 'bind': '0.0.0.0:1883', 'type': 'tcp', }, 'ws-1': { 'bind': '0.0.0.0:8080', 'type': 'ws', }, }, 'auth': { 'allow-anonymous': hass.config.api.api_password is None }, 'plugins': ['auth_anonymous'], } if hass.config.api.api_password: username = 'homeassistant' password = hass.config.api.api_password # Encrypt with what hbmqtt uses to verify from passlib.apps import custom_app_context passwd.write( 'homeassistant:{}\n'.format( custom_app_context.encrypt( hass.config.api.api_password)).encode('utf-8')) passwd.flush() config['auth']['password-file'] = passwd.name config['plugins'].append('auth_file') else: username = None password = None client_config = ('localhost', 1883, username, password, None, PROTOCOL_311) return config, client_config
28.78022
79
0.628102
[ "MIT" ]
1Forward1Back/home-assistant
homeassistant/components/mqtt/server.py
2,619
Python
import pyos state = None app = None def buildAppEntry(a): cont = pyos.GUI.Container((0,0), color=state.getColorPalette().getColor("background"), width=app.ui.width-2, height=40) ic = a.getIcon() icon = None if ic != False: icon = pyos.GUI.Image((0,0), surface=a.getIcon()) else: icon = pyos.GUI.Image((0,0), surface=state.getIcons().getLoadedIcon("unknown")) title = pyos.GUI.Text((40, 10), a.title, state.getColorPalette().getColor("item"), 20) pauseBtn = pyos.GUI.Button((app.ui.width-100, 0), "Pause", state.getColorPalette().getColor("background"), state.getColorPalette().getColor("item"), 20, width=50, height=40, border=1, borderColor=state.getColorPalette().getColor("accent"), onClick=registerPauseClick, onClickData=(a, cont)) stopBtn = pyos.GUI.Button((app.ui.width-50, 0), "Stop", state.getColorPalette().getColor("background"), state.getColorPalette().getColor("item"), 20, width=50, height=40, border=1, borderColor=state.getColorPalette().getColor("accent"), onClick=registerStopClick, onClickData=(a, cont)) if a.thread.pause: pauseBtn.textComponent.text = "Resume" pauseBtn.refresh() if a.thread.stop or a.thread.firstRun: stopBtn.textComponent.text = "Start" pauseBtn.refresh() pauseBtn.textComponent.text = " - " pauseBtn.refresh() cont.addChild(icon) cont.addChild(title) cont.addChild(pauseBtn) cont.addChild(stopBtn) return cont def registerPauseClick(a, cont): pauseBtn = cont.getChildAt([app.ui.width-100,0]) if a.thread.stop or a.thread.firstRun: return if a.thread.pause: a.activate() pauseBtn.textComponent.text = "Pause" pauseBtn.refresh() else: a.deactivate(True) pauseBtn.textComponent.text = "Resume" pauseBtn.refresh() def registerStopClick(a, cont): pauseBtn = cont.getChildAt([app.ui.width-100,0]) stopBtn = cont.getChildAt([app.ui.width-50,0]) if a.thread.stop or a.thread.firstRun: a.activate() stopBtn.textComponent.text = "Stop" stopBtn.refresh() pauseBtn.textComponent.text = "Pause" pauseBtn.refresh() else: a.deactivate(False) stopBtn.textComponent.text = "Start" stopBtn.refresh() pauseBtn.textComponent.text = " - " pauseBtn.refresh() def loadList(): app.ui.clearChildren() appList = pyos.GUI.ListPagedContainer((0, 0), width=app.ui.width, height=app.ui.height, color=state.getColorPalette().getColor("background")) app.ui.addChild(appList) for a in state.getApplicationList().getApplicationList(): appList.addChild(buildAppEntry(a)) appList.goToPage() def onLoad(s, a): global state, app app = a state = s loadList() pyos.GUI.WarningDialog("This application modifies the state of other apps. Using it may result in data loss.").display()
39.688312
152
0.637435
[ "MIT" ]
furmada/PythonOS
apps/task-manager/__init__.py
3,056
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.test_util.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from google.protobuf import text_format from tensorflow.core.framework import graph_pb2 from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest from tensorflow.python.ops import constant_op from tensorflow.python.ops import logging_ops class TestUtilTest(test_util.TensorFlowTestCase): def test_assert_ops_in_graph(self): with self.test_session(): constant_op.constant(["hello", "taffy"], name="hello") test_util.assert_ops_in_graph({"hello": "Const"}, ops.get_default_graph()) self.assertRaises( ValueError, test_util.assert_ops_in_graph, {"bye": "Const"}, ops.get_default_graph()) self.assertRaises( ValueError, test_util.assert_ops_in_graph, {"hello": "Variable"}, ops.get_default_graph()) def test_assert_equal_graph_def(self): with tf.Graph().as_default() as g: def_empty = g.as_graph_def() tf.constant(5, name="five") tf.constant(7, name="seven") def_57 = g.as_graph_def() with tf.Graph().as_default() as g: tf.constant(7, name="seven") tf.constant(5, name="five") def_75 = g.as_graph_def() # Comparing strings is order dependent self.assertNotEqual(str(def_57), str(def_75)) # assert_equal_graph_def doesn't care about order tf.test.assert_equal_graph_def(def_57, def_75) # Compare two unequal graphs with self.assertRaisesRegexp(AssertionError, r"^Found unexpected node 'seven"): tf.test.assert_equal_graph_def(def_57, def_empty) def testIsGoogleCudaEnabled(self): # The test doesn't assert anything. It ensures the py wrapper # function is generated correctly. if test_util.IsGoogleCudaEnabled(): print("GoogleCuda is enabled") else: print("GoogleCuda is disabled") def testAssertProtoEqualsStr(self): graph_str = "node { name: 'w1' op: 'params' }" graph_def = graph_pb2.GraphDef() text_format.Merge(graph_str, graph_def) # test string based comparison self.assertProtoEquals(graph_str, graph_def) # test original comparison self.assertProtoEquals(graph_def, graph_def) def testNDArrayNear(self): a1 = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) a2 = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) a3 = np.array([[10.0, 20.0, 30.0], [40.0, 50.0, 60.0]]) self.assertTrue(self._NDArrayNear(a1, a2, 1e-5)) self.assertFalse(self._NDArrayNear(a1, a3, 1e-5)) def testCheckedThreadSucceeds(self): def noop(ev): ev.set() event_arg = threading.Event() self.assertFalse(event_arg.is_set()) t = self.checkedThread(target=noop, args=(event_arg,)) t.start() t.join() self.assertTrue(event_arg.is_set()) def testCheckedThreadFails(self): def err_func(): return 1 // 0 t = self.checkedThread(target=err_func) t.start() with self.assertRaises(self.failureException) as fe: t.join() self.assertTrue("integer division or modulo by zero" in str(fe.exception)) def testCheckedThreadWithWrongAssertionFails(self): x = 37 def err_func(): self.assertTrue(x < 10) t = self.checkedThread(target=err_func) t.start() with self.assertRaises(self.failureException) as fe: t.join() self.assertTrue("False is not true" in str(fe.exception)) def testMultipleThreadsWithOneFailure(self): def err_func(i): self.assertTrue(i != 7) threads = [self.checkedThread(target=err_func, args=(i,)) for i in range(10)] for t in threads: t.start() for i, t in enumerate(threads): if i == 7: with self.assertRaises(self.failureException): t.join() else: t.join() def _WeMustGoDeeper(self, msg): with self.assertRaisesOpError(msg): node_def = ops._NodeDef("op_type", "name") node_def_orig = ops._NodeDef("op_type_orig", "orig") op_orig = ops.Operation(node_def_orig, ops.get_default_graph()) op = ops.Operation(node_def, ops.get_default_graph(), original_op=op_orig) raise errors.UnauthenticatedError(node_def, op, "true_err") def testAssertRaisesOpErrorDoesNotPassMessageDueToLeakedStack(self): with self.assertRaises(AssertionError): self._WeMustGoDeeper("this_is_not_the_error_you_are_looking_for") self._WeMustGoDeeper("true_err") self._WeMustGoDeeper("name") self._WeMustGoDeeper("orig") def testAllCloseScalars(self): self.assertAllClose(7, 7 + 1e-8) with self.assertRaisesRegexp(AssertionError, r"Not equal to tolerance"): self.assertAllClose(7, 8) def testArrayNear(self): a = [1, 2] b = [1, 2, 5] with self.assertRaises(AssertionError): self.assertArrayNear(a, b, 0.001) a = [1, 2] b = [[1, 2], [3, 4]] with self.assertRaises(TypeError): self.assertArrayNear(a, b, 0.001) a = [1, 2] b = [1, 2] self.assertArrayNear(a, b, 0.001) def testForceGPU(self): with self.assertRaisesRegexp(errors.InvalidArgumentError, "Cannot assign a device to node"): with self.test_session(force_gpu=True): # this relies on us not having a GPU implementation for assert, which # seems sensible x = [True] y = [15] logging_ops.Assert(x, y).run() if __name__ == "__main__": googletest.main()
33.149485
80
0.679521
[ "Apache-2.0" ]
agrawalnishant/tensorflow
tensorflow/python/framework/test_util_test.py
6,431
Python
from baselines.deepq import models # noqa F401 from baselines.deepq.deepq_learner import DEEPQ # noqa F401 from baselines.deepq.deepq import learn # noqa F401 from baselines.deepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer # noqa F401 def wrap_atari_dqn(env): from baselines.common.atari_wrappers import wrap_deepmind return wrap_deepmind(env, frame_stack=True, scale=False)
44.888889
92
0.814356
[ "MIT" ]
RDaneelOlivav/baselines
baselines/deepq/__init__.py
404
Python
# Generated by Django 3.1.4 on 2020-12-07 19:08 from django.conf import settings import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=150, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), migrations.CreateModel( name='Agent', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Lead', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=20)), ('last_name', models.CharField(max_length=20)), ('age', models.IntegerField(default=0)), ('agent', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='leads.agent')), ], ), ]
59.25
329
0.643987
[ "MIT" ]
12345rana/getting-started-with-django
leads/migrations/0001_initial.py
3,792
Python
# Generated from decafJavier.g4 by ANTLR 4.9.2 # encoding: utf-8 from antlr4 import * from io import StringIO import sys if sys.version_info[1] > 5: from typing import TextIO else: from typing.io import TextIO def serializedATN(): with StringIO() as buf: buf.write("\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\3;") buf.write("\u0120\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7\t\7") buf.write("\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t\f\4\r\t\r\4\16") buf.write("\t\16\4\17\t\17\4\20\t\20\4\21\t\21\4\22\t\22\4\23\t\23") buf.write("\4\24\t\24\4\25\t\25\4\26\t\26\4\27\t\27\4\30\t\30\4\31") buf.write("\t\31\4\32\t\32\3\2\3\2\3\2\3\2\7\29\n\2\f\2\16\2<\13") buf.write("\2\3\2\7\2?\n\2\f\2\16\2B\13\2\3\2\3\2\3\3\3\3\3\3\3\3") buf.write("\3\3\3\3\3\3\7\3M\n\3\f\3\16\3P\13\3\3\3\3\3\3\4\3\4\3") buf.write("\4\3\4\7\4X\n\4\f\4\16\4[\13\4\3\4\3\4\3\5\3\5\3\5\3\5") buf.write("\3\5\3\6\3\6\5\6f\n\6\3\7\3\7\3\b\3\b\3\b\3\b\3\b\3\b") buf.write("\3\b\3\b\3\b\3\b\7\bt\n\b\f\b\16\bw\13\b\5\by\n\b\3\b") buf.write("\3\b\3\b\3\t\3\t\5\t\u0080\n\t\3\n\3\n\7\n\u0084\n\n\f") buf.write("\n\16\n\u0087\13\n\3\n\7\n\u008a\n\n\f\n\16\n\u008d\13") buf.write("\n\3\n\3\n\3\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13") buf.write("\3\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13\5\13\u00a2\n") buf.write("\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13") buf.write("\3\13\3\13\3\13\5\13\u00b1\n\13\3\13\3\13\3\13\3\13\5") buf.write("\13\u00b7\n\13\3\13\5\13\u00ba\n\13\3\13\3\13\3\13\3\13") buf.write("\5\13\u00c0\n\13\3\f\3\f\3\f\3\f\3\f\7\f\u00c7\n\f\f\f") buf.write("\16\f\u00ca\13\f\5\f\u00cc\n\f\3\f\3\f\3\r\3\r\3\r\3\r") buf.write("\3\r\3\r\3\r\3\r\3\r\3\r\3\r\7\r\u00db\n\r\f\r\16\r\u00de") buf.write("\13\r\5\r\u00e0\n\r\3\r\3\r\5\r\u00e4\n\r\3\16\3\16\3") buf.write("\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\5\16") buf.write("\u00f2\n\16\3\16\3\16\3\16\3\16\7\16\u00f8\n\16\f\16\16") buf.write("\16\u00fb\13\16\3\17\3\17\5\17\u00ff\n\17\3\20\3\20\5") buf.write("\20\u0103\n\20\3\21\3\21\3\22\3\22\3\23\3\23\3\24\3\24") buf.write("\3\25\3\25\3\25\5\25\u0110\n\25\3\26\3\26\3\26\3\26\5") buf.write("\26\u0116\n\26\3\27\3\27\3\30\3\30\3\31\3\31\3\32\3\32") buf.write("\3\32\2\3\32\33\2\4\6\b\n\f\16\20\22\24\26\30\32\34\36") buf.write(" \"$&(*,.\60\62\2\t\4\2\61\61\63\63\3\2%(\3\2,-\3\2\"") buf.write("#\3\2\35!\4\2\13\13\r\r\3\2)+\2\u012e\2\64\3\2\2\2\4E") buf.write("\3\2\2\2\6S\3\2\2\2\b^\3\2\2\2\ne\3\2\2\2\fg\3\2\2\2\16") buf.write("i\3\2\2\2\20\177\3\2\2\2\22\u0081\3\2\2\2\24\u00bf\3\2") buf.write("\2\2\26\u00c1\3\2\2\2\30\u00e3\3\2\2\2\32\u00f1\3\2\2") buf.write("\2\34\u00fe\3\2\2\2\36\u0102\3\2\2\2 \u0104\3\2\2\2\"") buf.write("\u0106\3\2\2\2$\u0108\3\2\2\2&\u010a\3\2\2\2(\u010f\3") buf.write("\2\2\2*\u0115\3\2\2\2,\u0117\3\2\2\2.\u0119\3\2\2\2\60") buf.write("\u011b\3\2\2\2\62\u011d\3\2\2\2\64\65\7\3\2\2\65\66\7") buf.write("\4\2\2\66:\7\24\2\2\679\5\6\4\28\67\3\2\2\29<\3\2\2\2") buf.write(":8\3\2\2\2:;\3\2\2\2;@\3\2\2\2<:\3\2\2\2=?\5\16\b\2>=") buf.write("\3\2\2\2?B\3\2\2\2@>\3\2\2\2@A\3\2\2\2AC\3\2\2\2B@\3\2") buf.write("\2\2CD\7\25\2\2D\3\3\2\2\2EF\5.\30\2FG\5\n\6\2GN\3\2\2") buf.write("\2HI\7\32\2\2IJ\5.\30\2JK\5\n\6\2KM\3\2\2\2LH\3\2\2\2") buf.write("MP\3\2\2\2NL\3\2\2\2NO\3\2\2\2OQ\3\2\2\2PN\3\2\2\2QR\7") buf.write("\23\2\2R\5\3\2\2\2ST\5.\30\2TY\5\n\6\2UV\7\32\2\2VX\5") buf.write("\n\6\2WU\3\2\2\2X[\3\2\2\2YW\3\2\2\2YZ\3\2\2\2Z\\\3\2") buf.write("\2\2[Y\3\2\2\2\\]\7\23\2\2]\7\3\2\2\2^_\7.\2\2_`\7\26") buf.write("\2\2`a\5 \21\2ab\7\27\2\2b\t\3\2\2\2cf\5\f\7\2df\5\b\5") buf.write("\2ec\3\2\2\2ed\3\2\2\2f\13\3\2\2\2gh\7.\2\2h\r\3\2\2\2") buf.write("ij\5\20\t\2jk\5\62\32\2kx\7\30\2\2lm\5.\30\2mn\5\f\7\2") buf.write("nu\3\2\2\2op\7\32\2\2pq\5.\30\2qr\5\f\7\2rt\3\2\2\2so") buf.write("\3\2\2\2tw\3\2\2\2us\3\2\2\2uv\3\2\2\2vy\3\2\2\2wu\3\2") buf.write("\2\2xl\3\2\2\2xy\3\2\2\2yz\3\2\2\2z{\7\31\2\2{|\5\22\n") buf.write("\2|\17\3\2\2\2}\u0080\5.\30\2~\u0080\7\21\2\2\177}\3\2") buf.write("\2\2\177~\3\2\2\2\u0080\21\3\2\2\2\u0081\u0085\7\24\2") buf.write("\2\u0082\u0084\5\4\3\2\u0083\u0082\3\2\2\2\u0084\u0087") buf.write("\3\2\2\2\u0085\u0083\3\2\2\2\u0085\u0086\3\2\2\2\u0086") buf.write("\u008b\3\2\2\2\u0087\u0085\3\2\2\2\u0088\u008a\5\24\13") buf.write("\2\u0089\u0088\3\2\2\2\u008a\u008d\3\2\2\2\u008b\u0089") buf.write("\3\2\2\2\u008b\u008c\3\2\2\2\u008c\u008e\3\2\2\2\u008d") buf.write("\u008b\3\2\2\2\u008e\u008f\7\25\2\2\u008f\23\3\2\2\2\u0090") buf.write("\u0091\5\34\17\2\u0091\u0092\5\60\31\2\u0092\u0093\5\32") buf.write("\16\2\u0093\u00c0\3\2\2\2\u0094\u0095\5\34\17\2\u0095") buf.write("\u0096\5\60\31\2\u0096\u0097\5\32\16\2\u0097\u0098\7\23") buf.write("\2\2\u0098\u00c0\3\2\2\2\u0099\u00c0\5\30\r\2\u009a\u009b") buf.write("\7\5\2\2\u009b\u009c\7\30\2\2\u009c\u009d\5\32\16\2\u009d") buf.write("\u009e\7\31\2\2\u009e\u00a1\5\22\n\2\u009f\u00a0\7\6\2") buf.write("\2\u00a0\u00a2\5\22\n\2\u00a1\u009f\3\2\2\2\u00a1\u00a2") buf.write("\3\2\2\2\u00a2\u00c0\3\2\2\2\u00a3\u00a4\5\f\7\2\u00a4") buf.write("\u00a5\7)\2\2\u00a5\u00a6\5\32\16\2\u00a6\u00a7\7\23\2") buf.write("\2\u00a7\u00c0\3\2\2\2\u00a8\u00a9\7\b\2\2\u00a9\u00aa") buf.write("\5\32\16\2\u00aa\u00ab\7\23\2\2\u00ab\u00c0\3\2\2\2\u00ac") buf.write("\u00ad\7\7\2\2\u00ad\u00b0\5\f\7\2\u00ae\u00af\7)\2\2") buf.write("\u00af\u00b1\5 \21\2\u00b0\u00ae\3\2\2\2\u00b0\u00b1\3") buf.write("\2\2\2\u00b1\u00b2\3\2\2\2\u00b2\u00b9\7\32\2\2\u00b3") buf.write("\u00b6\5\f\7\2\u00b4\u00b5\7)\2\2\u00b5\u00b7\5 \21\2") buf.write("\u00b6\u00b4\3\2\2\2\u00b6\u00b7\3\2\2\2\u00b7\u00ba\3") buf.write("\2\2\2\u00b8\u00ba\5 \21\2\u00b9\u00b3\3\2\2\2\u00b9\u00b8") buf.write("\3\2\2\2\u00ba\u00bb\3\2\2\2\u00bb\u00bc\5\22\n\2\u00bc") buf.write("\u00c0\3\2\2\2\u00bd\u00be\7\t\2\2\u00be\u00c0\7\23\2") buf.write("\2\u00bf\u0090\3\2\2\2\u00bf\u0094\3\2\2\2\u00bf\u0099") buf.write("\3\2\2\2\u00bf\u009a\3\2\2\2\u00bf\u00a3\3\2\2\2\u00bf") buf.write("\u00a8\3\2\2\2\u00bf\u00ac\3\2\2\2\u00bf\u00bd\3\2\2\2") buf.write("\u00c0\25\3\2\2\2\u00c1\u00c2\5\62\32\2\u00c2\u00cb\7") buf.write("\30\2\2\u00c3\u00c8\5\32\16\2\u00c4\u00c5\7\32\2\2\u00c5") buf.write("\u00c7\5\32\16\2\u00c6\u00c4\3\2\2\2\u00c7\u00ca\3\2\2") buf.write("\2\u00c8\u00c6\3\2\2\2\u00c8\u00c9\3\2\2\2\u00c9\u00cc") buf.write("\3\2\2\2\u00ca\u00c8\3\2\2\2\u00cb\u00c3\3\2\2\2\u00cb") buf.write("\u00cc\3\2\2\2\u00cc\u00cd\3\2\2\2\u00cd\u00ce\7\31\2") buf.write("\2\u00ce\27\3\2\2\2\u00cf\u00e4\5\26\f\2\u00d0\u00d1\5") buf.write("\26\f\2\u00d1\u00d2\7\23\2\2\u00d2\u00e4\3\2\2\2\u00d3") buf.write("\u00d4\7\22\2\2\u00d4\u00d5\7\30\2\2\u00d5\u00df\7\65") buf.write("\2\2\u00d6\u00d7\7\32\2\2\u00d7\u00dc\5\36\20\2\u00d8") buf.write("\u00d9\7\32\2\2\u00d9\u00db\5\36\20\2\u00da\u00d8\3\2") buf.write("\2\2\u00db\u00de\3\2\2\2\u00dc\u00da\3\2\2\2\u00dc\u00dd") buf.write("\3\2\2\2\u00dd\u00e0\3\2\2\2\u00de\u00dc\3\2\2\2\u00df") buf.write("\u00d6\3\2\2\2\u00df\u00e0\3\2\2\2\u00e0\u00e1\3\2\2\2") buf.write("\u00e1\u00e2\7\31\2\2\u00e2\u00e4\7\23\2\2\u00e3\u00cf") buf.write("\3\2\2\2\u00e3\u00d0\3\2\2\2\u00e3\u00d3\3\2\2\2\u00e4") buf.write("\31\3\2\2\2\u00e5\u00e6\b\16\1\2\u00e6\u00f2\5\34\17\2") buf.write("\u00e7\u00f2\5(\25\2\u00e8\u00e9\7\36\2\2\u00e9\u00f2") buf.write("\5\32\16\6\u00ea\u00f2\5\30\r\2\u00eb\u00ec\7$\2\2\u00ec") buf.write("\u00f2\5\32\16\4\u00ed\u00ee\7\30\2\2\u00ee\u00ef\5\32") buf.write("\16\2\u00ef\u00f0\7\31\2\2\u00f0\u00f2\3\2\2\2\u00f1\u00e5") buf.write("\3\2\2\2\u00f1\u00e7\3\2\2\2\u00f1\u00e8\3\2\2\2\u00f1") buf.write("\u00ea\3\2\2\2\u00f1\u00eb\3\2\2\2\u00f1\u00ed\3\2\2\2") buf.write("\u00f2\u00f9\3\2\2\2\u00f3\u00f4\f\7\2\2\u00f4\u00f5\5") buf.write("*\26\2\u00f5\u00f6\5\32\16\b\u00f6\u00f8\3\2\2\2\u00f7") buf.write("\u00f3\3\2\2\2\u00f8\u00fb\3\2\2\2\u00f9\u00f7\3\2\2\2") buf.write("\u00f9\u00fa\3\2\2\2\u00fa\33\3\2\2\2\u00fb\u00f9\3\2") buf.write("\2\2\u00fc\u00ff\5\f\7\2\u00fd\u00ff\5\b\5\2\u00fe\u00fc") buf.write("\3\2\2\2\u00fe\u00fd\3\2\2\2\u00ff\35\3\2\2\2\u0100\u0103") buf.write("\5\32\16\2\u0101\u0103\7\65\2\2\u0102\u0100\3\2\2\2\u0102") buf.write("\u0101\3\2\2\2\u0103\37\3\2\2\2\u0104\u0105\t\2\2\2\u0105") buf.write("!\3\2\2\2\u0106\u0107\t\3\2\2\u0107#\3\2\2\2\u0108\u0109") buf.write("\t\4\2\2\u0109%\3\2\2\2\u010a\u010b\t\5\2\2\u010b\'\3") buf.write("\2\2\2\u010c\u0110\5 \21\2\u010d\u0110\7\60\2\2\u010e") buf.write("\u0110\7\64\2\2\u010f\u010c\3\2\2\2\u010f\u010d\3\2\2") buf.write("\2\u010f\u010e\3\2\2\2\u0110)\3\2\2\2\u0111\u0116\5,\27") buf.write("\2\u0112\u0116\5\"\22\2\u0113\u0116\5$\23\2\u0114\u0116") buf.write("\5&\24\2\u0115\u0111\3\2\2\2\u0115\u0112\3\2\2\2\u0115") buf.write("\u0113\3\2\2\2\u0115\u0114\3\2\2\2\u0116+\3\2\2\2\u0117") buf.write("\u0118\t\6\2\2\u0118-\3\2\2\2\u0119\u011a\t\7\2\2\u011a") buf.write("/\3\2\2\2\u011b\u011c\t\b\2\2\u011c\61\3\2\2\2\u011d\u011e") buf.write("\7.\2\2\u011e\63\3\2\2\2\34:@NYeux\177\u0085\u008b\u00a1") buf.write("\u00b0\u00b6\u00b9\u00bf\u00c8\u00cb\u00dc\u00df\u00e3") buf.write("\u00f1\u00f9\u00fe\u0102\u010f\u0115") return buf.getvalue() class decafJavierParser ( Parser ): grammarFileName = "decafJavier.g4" atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] sharedContextCache = PredictionContextCache() literalNames = [ "<INVALID>", "'class'", "'Program'", "'if'", "'else'", "'for'", "'return'", "'break'", "'continue'", "'boolean'", "'char'", "'int'", "'string'", "'True'", "'False'", "'void'", "'callout'", "';'", "'{'", "'}'", "'['", "']'", "'('", "')'", "','", "'\"'", "'''", "'+'", "'-'", "'*'", "'/'", "'%'", "'&&'", "'||'", "'!'", "'>'", "'<'", "'>='", "'<='", "'='", "'+='", "'-='", "'=='", "'!='" ] symbolicNames = [ "<INVALID>", "CLASS", "PROGRAM", "IF", "ELSE", "FOR", "RETURN", "BREAK", "CONTINUE", "BOOLEAN", "CHAR", "INT", "STRING", "TRUE", "FALSE", "VOID", "CALLOUT", "SEMICOLON", "LCURLY", "RCURLY", "LSQUARE", "RSQUARE", "LROUND", "RROUND", "COMMA", "QUOTES", "APOSTROPHE", "ADD", "SUB", "MULTIPLY", "DIVIDE", "REMINDER", "AND", "OR", "NOT", "GREATER_OP", "LESS_OP", "GREATER_eq_op", "LESS_eq_op", "EQUAL_OP", "ADD_eq_op", "SUB_eq_op", "EQUALITY_OP", "UNEQUALITY_OP", "ID", "ALPHA", "CHAR_LITERAL", "DECIMAL_LITERAL", "DIGIT", "HEX_LITERAL", "BOOL_LITERAL", "STRING_LITERAL", "ALPHA_NUM", "HEX_DIGIT", "LINE_COMMENT", "COMMENT", "NEWLINE", "WHITESPACE" ] RULE_program = 0 RULE_vardeclr = 1 RULE_field_declr = 2 RULE_array_id = 3 RULE_field_var = 4 RULE_var_id = 5 RULE_method_declr = 6 RULE_return_type = 7 RULE_block = 8 RULE_statement = 9 RULE_method_call_inter = 10 RULE_method_call = 11 RULE_expr = 12 RULE_location = 13 RULE_callout_arg = 14 RULE_int_literal = 15 RULE_rel_op = 16 RULE_eq_op = 17 RULE_cond_op = 18 RULE_literal = 19 RULE_bin_op = 20 RULE_arith_op = 21 RULE_var_type = 22 RULE_assign_op = 23 RULE_method_name = 24 ruleNames = [ "program", "vardeclr", "field_declr", "array_id", "field_var", "var_id", "method_declr", "return_type", "block", "statement", "method_call_inter", "method_call", "expr", "location", "callout_arg", "int_literal", "rel_op", "eq_op", "cond_op", "literal", "bin_op", "arith_op", "var_type", "assign_op", "method_name" ] EOF = Token.EOF CLASS=1 PROGRAM=2 IF=3 ELSE=4 FOR=5 RETURN=6 BREAK=7 CONTINUE=8 BOOLEAN=9 CHAR=10 INT=11 STRING=12 TRUE=13 FALSE=14 VOID=15 CALLOUT=16 SEMICOLON=17 LCURLY=18 RCURLY=19 LSQUARE=20 RSQUARE=21 LROUND=22 RROUND=23 COMMA=24 QUOTES=25 APOSTROPHE=26 ADD=27 SUB=28 MULTIPLY=29 DIVIDE=30 REMINDER=31 AND=32 OR=33 NOT=34 GREATER_OP=35 LESS_OP=36 GREATER_eq_op=37 LESS_eq_op=38 EQUAL_OP=39 ADD_eq_op=40 SUB_eq_op=41 EQUALITY_OP=42 UNEQUALITY_OP=43 ID=44 ALPHA=45 CHAR_LITERAL=46 DECIMAL_LITERAL=47 DIGIT=48 HEX_LITERAL=49 BOOL_LITERAL=50 STRING_LITERAL=51 ALPHA_NUM=52 HEX_DIGIT=53 LINE_COMMENT=54 COMMENT=55 NEWLINE=56 WHITESPACE=57 def __init__(self, input:TokenStream, output:TextIO = sys.stdout): super().__init__(input, output) self.checkVersion("4.9.2") self._interp = ParserATNSimulator(self, self.atn, self.decisionsToDFA, self.sharedContextCache) self._predicates = None class ProgramContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def CLASS(self): return self.getToken(decafJavierParser.CLASS, 0) def PROGRAM(self): return self.getToken(decafJavierParser.PROGRAM, 0) def LCURLY(self): return self.getToken(decafJavierParser.LCURLY, 0) def RCURLY(self): return self.getToken(decafJavierParser.RCURLY, 0) def field_declr(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.Field_declrContext) else: return self.getTypedRuleContext(decafJavierParser.Field_declrContext,i) def method_declr(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.Method_declrContext) else: return self.getTypedRuleContext(decafJavierParser.Method_declrContext,i) def getRuleIndex(self): return decafJavierParser.RULE_program def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterProgram" ): listener.enterProgram(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitProgram" ): listener.exitProgram(self) def program(self): localctx = decafJavierParser.ProgramContext(self, self._ctx, self.state) self.enterRule(localctx, 0, self.RULE_program) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 50 self.match(decafJavierParser.CLASS) self.state = 51 self.match(decafJavierParser.PROGRAM) self.state = 52 self.match(decafJavierParser.LCURLY) self.state = 56 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,0,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: self.state = 53 self.field_declr() self.state = 58 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,0,self._ctx) self.state = 62 self._errHandler.sync(self) _la = self._input.LA(1) while (((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << decafJavierParser.BOOLEAN) | (1 << decafJavierParser.INT) | (1 << decafJavierParser.VOID))) != 0): self.state = 59 self.method_declr() self.state = 64 self._errHandler.sync(self) _la = self._input.LA(1) self.state = 65 self.match(decafJavierParser.RCURLY) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class VardeclrContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def SEMICOLON(self): return self.getToken(decafJavierParser.SEMICOLON, 0) def var_type(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.Var_typeContext) else: return self.getTypedRuleContext(decafJavierParser.Var_typeContext,i) def field_var(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.Field_varContext) else: return self.getTypedRuleContext(decafJavierParser.Field_varContext,i) def COMMA(self, i:int=None): if i is None: return self.getTokens(decafJavierParser.COMMA) else: return self.getToken(decafJavierParser.COMMA, i) def getRuleIndex(self): return decafJavierParser.RULE_vardeclr def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterVardeclr" ): listener.enterVardeclr(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitVardeclr" ): listener.exitVardeclr(self) def vardeclr(self): localctx = decafJavierParser.VardeclrContext(self, self._ctx, self.state) self.enterRule(localctx, 2, self.RULE_vardeclr) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 67 self.var_type() self.state = 68 self.field_var() self.state = 76 self._errHandler.sync(self) _la = self._input.LA(1) while _la==decafJavierParser.COMMA: self.state = 70 self.match(decafJavierParser.COMMA) self.state = 71 self.var_type() self.state = 72 self.field_var() self.state = 78 self._errHandler.sync(self) _la = self._input.LA(1) self.state = 79 self.match(decafJavierParser.SEMICOLON) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Field_declrContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def var_type(self): return self.getTypedRuleContext(decafJavierParser.Var_typeContext,0) def field_var(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.Field_varContext) else: return self.getTypedRuleContext(decafJavierParser.Field_varContext,i) def SEMICOLON(self): return self.getToken(decafJavierParser.SEMICOLON, 0) def COMMA(self, i:int=None): if i is None: return self.getTokens(decafJavierParser.COMMA) else: return self.getToken(decafJavierParser.COMMA, i) def getRuleIndex(self): return decafJavierParser.RULE_field_declr def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterField_declr" ): listener.enterField_declr(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitField_declr" ): listener.exitField_declr(self) def field_declr(self): localctx = decafJavierParser.Field_declrContext(self, self._ctx, self.state) self.enterRule(localctx, 4, self.RULE_field_declr) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 81 self.var_type() self.state = 82 self.field_var() self.state = 87 self._errHandler.sync(self) _la = self._input.LA(1) while _la==decafJavierParser.COMMA: self.state = 83 self.match(decafJavierParser.COMMA) self.state = 84 self.field_var() self.state = 89 self._errHandler.sync(self) _la = self._input.LA(1) self.state = 90 self.match(decafJavierParser.SEMICOLON) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Array_idContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ID(self): return self.getToken(decafJavierParser.ID, 0) def LSQUARE(self): return self.getToken(decafJavierParser.LSQUARE, 0) def int_literal(self): return self.getTypedRuleContext(decafJavierParser.Int_literalContext,0) def RSQUARE(self): return self.getToken(decafJavierParser.RSQUARE, 0) def getRuleIndex(self): return decafJavierParser.RULE_array_id def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterArray_id" ): listener.enterArray_id(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitArray_id" ): listener.exitArray_id(self) def array_id(self): localctx = decafJavierParser.Array_idContext(self, self._ctx, self.state) self.enterRule(localctx, 6, self.RULE_array_id) try: self.enterOuterAlt(localctx, 1) self.state = 92 self.match(decafJavierParser.ID) self.state = 93 self.match(decafJavierParser.LSQUARE) self.state = 94 self.int_literal() self.state = 95 self.match(decafJavierParser.RSQUARE) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Field_varContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def var_id(self): return self.getTypedRuleContext(decafJavierParser.Var_idContext,0) def array_id(self): return self.getTypedRuleContext(decafJavierParser.Array_idContext,0) def getRuleIndex(self): return decafJavierParser.RULE_field_var def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterField_var" ): listener.enterField_var(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitField_var" ): listener.exitField_var(self) def field_var(self): localctx = decafJavierParser.Field_varContext(self, self._ctx, self.state) self.enterRule(localctx, 8, self.RULE_field_var) try: self.state = 99 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,4,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 97 self.var_id() pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 98 self.array_id() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Var_idContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ID(self): return self.getToken(decafJavierParser.ID, 0) def getRuleIndex(self): return decafJavierParser.RULE_var_id def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterVar_id" ): listener.enterVar_id(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitVar_id" ): listener.exitVar_id(self) def var_id(self): localctx = decafJavierParser.Var_idContext(self, self._ctx, self.state) self.enterRule(localctx, 10, self.RULE_var_id) try: self.enterOuterAlt(localctx, 1) self.state = 101 self.match(decafJavierParser.ID) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Method_declrContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def return_type(self): return self.getTypedRuleContext(decafJavierParser.Return_typeContext,0) def method_name(self): return self.getTypedRuleContext(decafJavierParser.Method_nameContext,0) def LROUND(self): return self.getToken(decafJavierParser.LROUND, 0) def RROUND(self): return self.getToken(decafJavierParser.RROUND, 0) def block(self): return self.getTypedRuleContext(decafJavierParser.BlockContext,0) def var_type(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.Var_typeContext) else: return self.getTypedRuleContext(decafJavierParser.Var_typeContext,i) def var_id(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.Var_idContext) else: return self.getTypedRuleContext(decafJavierParser.Var_idContext,i) def COMMA(self, i:int=None): if i is None: return self.getTokens(decafJavierParser.COMMA) else: return self.getToken(decafJavierParser.COMMA, i) def getRuleIndex(self): return decafJavierParser.RULE_method_declr def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterMethod_declr" ): listener.enterMethod_declr(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitMethod_declr" ): listener.exitMethod_declr(self) def method_declr(self): localctx = decafJavierParser.Method_declrContext(self, self._ctx, self.state) self.enterRule(localctx, 12, self.RULE_method_declr) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 103 self.return_type() self.state = 104 self.method_name() self.state = 105 self.match(decafJavierParser.LROUND) self.state = 118 self._errHandler.sync(self) _la = self._input.LA(1) if _la==decafJavierParser.BOOLEAN or _la==decafJavierParser.INT: self.state = 106 self.var_type() self.state = 107 self.var_id() self.state = 115 self._errHandler.sync(self) _la = self._input.LA(1) while _la==decafJavierParser.COMMA: self.state = 109 self.match(decafJavierParser.COMMA) self.state = 110 self.var_type() self.state = 111 self.var_id() self.state = 117 self._errHandler.sync(self) _la = self._input.LA(1) self.state = 120 self.match(decafJavierParser.RROUND) self.state = 121 self.block() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Return_typeContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def var_type(self): return self.getTypedRuleContext(decafJavierParser.Var_typeContext,0) def VOID(self): return self.getToken(decafJavierParser.VOID, 0) def getRuleIndex(self): return decafJavierParser.RULE_return_type def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterReturn_type" ): listener.enterReturn_type(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitReturn_type" ): listener.exitReturn_type(self) def return_type(self): localctx = decafJavierParser.Return_typeContext(self, self._ctx, self.state) self.enterRule(localctx, 14, self.RULE_return_type) try: self.enterOuterAlt(localctx, 1) self.state = 125 self._errHandler.sync(self) token = self._input.LA(1) if token in [decafJavierParser.BOOLEAN, decafJavierParser.INT]: self.state = 123 self.var_type() pass elif token in [decafJavierParser.VOID]: self.state = 124 self.match(decafJavierParser.VOID) pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class BlockContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def LCURLY(self): return self.getToken(decafJavierParser.LCURLY, 0) def RCURLY(self): return self.getToken(decafJavierParser.RCURLY, 0) def vardeclr(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.VardeclrContext) else: return self.getTypedRuleContext(decafJavierParser.VardeclrContext,i) def statement(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.StatementContext) else: return self.getTypedRuleContext(decafJavierParser.StatementContext,i) def getRuleIndex(self): return decafJavierParser.RULE_block def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterBlock" ): listener.enterBlock(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitBlock" ): listener.exitBlock(self) def block(self): localctx = decafJavierParser.BlockContext(self, self._ctx, self.state) self.enterRule(localctx, 16, self.RULE_block) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 127 self.match(decafJavierParser.LCURLY) self.state = 131 self._errHandler.sync(self) _la = self._input.LA(1) while _la==decafJavierParser.BOOLEAN or _la==decafJavierParser.INT: self.state = 128 self.vardeclr() self.state = 133 self._errHandler.sync(self) _la = self._input.LA(1) self.state = 137 self._errHandler.sync(self) _la = self._input.LA(1) while (((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << decafJavierParser.IF) | (1 << decafJavierParser.FOR) | (1 << decafJavierParser.RETURN) | (1 << decafJavierParser.BREAK) | (1 << decafJavierParser.CALLOUT) | (1 << decafJavierParser.ID))) != 0): self.state = 134 self.statement() self.state = 139 self._errHandler.sync(self) _la = self._input.LA(1) self.state = 140 self.match(decafJavierParser.RCURLY) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class StatementContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def location(self): return self.getTypedRuleContext(decafJavierParser.LocationContext,0) def assign_op(self): return self.getTypedRuleContext(decafJavierParser.Assign_opContext,0) def expr(self): return self.getTypedRuleContext(decafJavierParser.ExprContext,0) def SEMICOLON(self): return self.getToken(decafJavierParser.SEMICOLON, 0) def method_call(self): return self.getTypedRuleContext(decafJavierParser.Method_callContext,0) def IF(self): return self.getToken(decafJavierParser.IF, 0) def LROUND(self): return self.getToken(decafJavierParser.LROUND, 0) def RROUND(self): return self.getToken(decafJavierParser.RROUND, 0) def block(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.BlockContext) else: return self.getTypedRuleContext(decafJavierParser.BlockContext,i) def ELSE(self): return self.getToken(decafJavierParser.ELSE, 0) def var_id(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.Var_idContext) else: return self.getTypedRuleContext(decafJavierParser.Var_idContext,i) def EQUAL_OP(self, i:int=None): if i is None: return self.getTokens(decafJavierParser.EQUAL_OP) else: return self.getToken(decafJavierParser.EQUAL_OP, i) def RETURN(self): return self.getToken(decafJavierParser.RETURN, 0) def FOR(self): return self.getToken(decafJavierParser.FOR, 0) def COMMA(self): return self.getToken(decafJavierParser.COMMA, 0) def int_literal(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.Int_literalContext) else: return self.getTypedRuleContext(decafJavierParser.Int_literalContext,i) def BREAK(self): return self.getToken(decafJavierParser.BREAK, 0) def getRuleIndex(self): return decafJavierParser.RULE_statement def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterStatement" ): listener.enterStatement(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitStatement" ): listener.exitStatement(self) def statement(self): localctx = decafJavierParser.StatementContext(self, self._ctx, self.state) self.enterRule(localctx, 18, self.RULE_statement) self._la = 0 # Token type try: self.state = 189 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,14,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 142 self.location() self.state = 143 self.assign_op() self.state = 144 self.expr(0) pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 146 self.location() self.state = 147 self.assign_op() self.state = 148 self.expr(0) self.state = 149 self.match(decafJavierParser.SEMICOLON) pass elif la_ == 3: self.enterOuterAlt(localctx, 3) self.state = 151 self.method_call() pass elif la_ == 4: self.enterOuterAlt(localctx, 4) self.state = 152 self.match(decafJavierParser.IF) self.state = 153 self.match(decafJavierParser.LROUND) self.state = 154 self.expr(0) self.state = 155 self.match(decafJavierParser.RROUND) self.state = 156 self.block() self.state = 159 self._errHandler.sync(self) _la = self._input.LA(1) if _la==decafJavierParser.ELSE: self.state = 157 self.match(decafJavierParser.ELSE) self.state = 158 self.block() pass elif la_ == 5: self.enterOuterAlt(localctx, 5) self.state = 161 self.var_id() self.state = 162 self.match(decafJavierParser.EQUAL_OP) self.state = 163 self.expr(0) self.state = 164 self.match(decafJavierParser.SEMICOLON) pass elif la_ == 6: self.enterOuterAlt(localctx, 6) self.state = 166 self.match(decafJavierParser.RETURN) self.state = 167 self.expr(0) self.state = 168 self.match(decafJavierParser.SEMICOLON) pass elif la_ == 7: self.enterOuterAlt(localctx, 7) self.state = 170 self.match(decafJavierParser.FOR) self.state = 171 self.var_id() self.state = 174 self._errHandler.sync(self) _la = self._input.LA(1) if _la==decafJavierParser.EQUAL_OP: self.state = 172 self.match(decafJavierParser.EQUAL_OP) self.state = 173 self.int_literal() self.state = 176 self.match(decafJavierParser.COMMA) self.state = 183 self._errHandler.sync(self) token = self._input.LA(1) if token in [decafJavierParser.ID]: self.state = 177 self.var_id() self.state = 180 self._errHandler.sync(self) _la = self._input.LA(1) if _la==decafJavierParser.EQUAL_OP: self.state = 178 self.match(decafJavierParser.EQUAL_OP) self.state = 179 self.int_literal() pass elif token in [decafJavierParser.DECIMAL_LITERAL, decafJavierParser.HEX_LITERAL]: self.state = 182 self.int_literal() pass else: raise NoViableAltException(self) self.state = 185 self.block() pass elif la_ == 8: self.enterOuterAlt(localctx, 8) self.state = 187 self.match(decafJavierParser.BREAK) self.state = 188 self.match(decafJavierParser.SEMICOLON) pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Method_call_interContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def method_name(self): return self.getTypedRuleContext(decafJavierParser.Method_nameContext,0) def LROUND(self): return self.getToken(decafJavierParser.LROUND, 0) def RROUND(self): return self.getToken(decafJavierParser.RROUND, 0) def expr(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.ExprContext) else: return self.getTypedRuleContext(decafJavierParser.ExprContext,i) def COMMA(self, i:int=None): if i is None: return self.getTokens(decafJavierParser.COMMA) else: return self.getToken(decafJavierParser.COMMA, i) def getRuleIndex(self): return decafJavierParser.RULE_method_call_inter def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterMethod_call_inter" ): listener.enterMethod_call_inter(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitMethod_call_inter" ): listener.exitMethod_call_inter(self) def method_call_inter(self): localctx = decafJavierParser.Method_call_interContext(self, self._ctx, self.state) self.enterRule(localctx, 20, self.RULE_method_call_inter) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 191 self.method_name() self.state = 192 self.match(decafJavierParser.LROUND) self.state = 201 self._errHandler.sync(self) _la = self._input.LA(1) if (((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << decafJavierParser.CALLOUT) | (1 << decafJavierParser.LROUND) | (1 << decafJavierParser.SUB) | (1 << decafJavierParser.NOT) | (1 << decafJavierParser.ID) | (1 << decafJavierParser.CHAR_LITERAL) | (1 << decafJavierParser.DECIMAL_LITERAL) | (1 << decafJavierParser.HEX_LITERAL) | (1 << decafJavierParser.BOOL_LITERAL))) != 0): self.state = 193 self.expr(0) self.state = 198 self._errHandler.sync(self) _la = self._input.LA(1) while _la==decafJavierParser.COMMA: self.state = 194 self.match(decafJavierParser.COMMA) self.state = 195 self.expr(0) self.state = 200 self._errHandler.sync(self) _la = self._input.LA(1) self.state = 203 self.match(decafJavierParser.RROUND) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Method_callContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def method_call_inter(self): return self.getTypedRuleContext(decafJavierParser.Method_call_interContext,0) def SEMICOLON(self): return self.getToken(decafJavierParser.SEMICOLON, 0) def CALLOUT(self): return self.getToken(decafJavierParser.CALLOUT, 0) def LROUND(self): return self.getToken(decafJavierParser.LROUND, 0) def STRING_LITERAL(self): return self.getToken(decafJavierParser.STRING_LITERAL, 0) def RROUND(self): return self.getToken(decafJavierParser.RROUND, 0) def COMMA(self, i:int=None): if i is None: return self.getTokens(decafJavierParser.COMMA) else: return self.getToken(decafJavierParser.COMMA, i) def callout_arg(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.Callout_argContext) else: return self.getTypedRuleContext(decafJavierParser.Callout_argContext,i) def getRuleIndex(self): return decafJavierParser.RULE_method_call def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterMethod_call" ): listener.enterMethod_call(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitMethod_call" ): listener.exitMethod_call(self) def method_call(self): localctx = decafJavierParser.Method_callContext(self, self._ctx, self.state) self.enterRule(localctx, 22, self.RULE_method_call) self._la = 0 # Token type try: self.state = 225 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,19,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 205 self.method_call_inter() pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 206 self.method_call_inter() self.state = 207 self.match(decafJavierParser.SEMICOLON) pass elif la_ == 3: self.enterOuterAlt(localctx, 3) self.state = 209 self.match(decafJavierParser.CALLOUT) self.state = 210 self.match(decafJavierParser.LROUND) self.state = 211 self.match(decafJavierParser.STRING_LITERAL) self.state = 221 self._errHandler.sync(self) _la = self._input.LA(1) if _la==decafJavierParser.COMMA: self.state = 212 self.match(decafJavierParser.COMMA) self.state = 213 self.callout_arg() self.state = 218 self._errHandler.sync(self) _la = self._input.LA(1) while _la==decafJavierParser.COMMA: self.state = 214 self.match(decafJavierParser.COMMA) self.state = 215 self.callout_arg() self.state = 220 self._errHandler.sync(self) _la = self._input.LA(1) self.state = 223 self.match(decafJavierParser.RROUND) self.state = 224 self.match(decafJavierParser.SEMICOLON) pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class ExprContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def location(self): return self.getTypedRuleContext(decafJavierParser.LocationContext,0) def literal(self): return self.getTypedRuleContext(decafJavierParser.LiteralContext,0) def SUB(self): return self.getToken(decafJavierParser.SUB, 0) def expr(self, i:int=None): if i is None: return self.getTypedRuleContexts(decafJavierParser.ExprContext) else: return self.getTypedRuleContext(decafJavierParser.ExprContext,i) def method_call(self): return self.getTypedRuleContext(decafJavierParser.Method_callContext,0) def NOT(self): return self.getToken(decafJavierParser.NOT, 0) def LROUND(self): return self.getToken(decafJavierParser.LROUND, 0) def RROUND(self): return self.getToken(decafJavierParser.RROUND, 0) def bin_op(self): return self.getTypedRuleContext(decafJavierParser.Bin_opContext,0) def getRuleIndex(self): return decafJavierParser.RULE_expr def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterExpr" ): listener.enterExpr(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitExpr" ): listener.exitExpr(self) def expr(self, _p:int=0): _parentctx = self._ctx _parentState = self.state localctx = decafJavierParser.ExprContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 24 self.enterRecursionRule(localctx, 24, self.RULE_expr, _p) try: self.enterOuterAlt(localctx, 1) self.state = 239 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,20,self._ctx) if la_ == 1: self.state = 228 self.location() pass elif la_ == 2: self.state = 229 self.literal() pass elif la_ == 3: self.state = 230 self.match(decafJavierParser.SUB) self.state = 231 self.expr(4) pass elif la_ == 4: self.state = 232 self.method_call() pass elif la_ == 5: self.state = 233 self.match(decafJavierParser.NOT) self.state = 234 self.expr(2) pass elif la_ == 6: self.state = 235 self.match(decafJavierParser.LROUND) self.state = 236 self.expr(0) self.state = 237 self.match(decafJavierParser.RROUND) pass self._ctx.stop = self._input.LT(-1) self.state = 247 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,21,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx localctx = decafJavierParser.ExprContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expr) self.state = 241 if not self.precpred(self._ctx, 5): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 5)") self.state = 242 self.bin_op() self.state = 243 self.expr(6) self.state = 249 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,21,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx class LocationContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def var_id(self): return self.getTypedRuleContext(decafJavierParser.Var_idContext,0) def array_id(self): return self.getTypedRuleContext(decafJavierParser.Array_idContext,0) def getRuleIndex(self): return decafJavierParser.RULE_location def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterLocation" ): listener.enterLocation(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitLocation" ): listener.exitLocation(self) def location(self): localctx = decafJavierParser.LocationContext(self, self._ctx, self.state) self.enterRule(localctx, 26, self.RULE_location) try: self.state = 252 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,22,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 250 self.var_id() pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 251 self.array_id() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Callout_argContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def expr(self): return self.getTypedRuleContext(decafJavierParser.ExprContext,0) def STRING_LITERAL(self): return self.getToken(decafJavierParser.STRING_LITERAL, 0) def getRuleIndex(self): return decafJavierParser.RULE_callout_arg def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCallout_arg" ): listener.enterCallout_arg(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCallout_arg" ): listener.exitCallout_arg(self) def callout_arg(self): localctx = decafJavierParser.Callout_argContext(self, self._ctx, self.state) self.enterRule(localctx, 28, self.RULE_callout_arg) try: self.state = 256 self._errHandler.sync(self) token = self._input.LA(1) if token in [decafJavierParser.CALLOUT, decafJavierParser.LROUND, decafJavierParser.SUB, decafJavierParser.NOT, decafJavierParser.ID, decafJavierParser.CHAR_LITERAL, decafJavierParser.DECIMAL_LITERAL, decafJavierParser.HEX_LITERAL, decafJavierParser.BOOL_LITERAL]: self.enterOuterAlt(localctx, 1) self.state = 254 self.expr(0) pass elif token in [decafJavierParser.STRING_LITERAL]: self.enterOuterAlt(localctx, 2) self.state = 255 self.match(decafJavierParser.STRING_LITERAL) pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Int_literalContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def DECIMAL_LITERAL(self): return self.getToken(decafJavierParser.DECIMAL_LITERAL, 0) def HEX_LITERAL(self): return self.getToken(decafJavierParser.HEX_LITERAL, 0) def getRuleIndex(self): return decafJavierParser.RULE_int_literal def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterInt_literal" ): listener.enterInt_literal(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitInt_literal" ): listener.exitInt_literal(self) def int_literal(self): localctx = decafJavierParser.Int_literalContext(self, self._ctx, self.state) self.enterRule(localctx, 30, self.RULE_int_literal) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 258 _la = self._input.LA(1) if not(_la==decafJavierParser.DECIMAL_LITERAL or _la==decafJavierParser.HEX_LITERAL): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Rel_opContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def GREATER_OP(self): return self.getToken(decafJavierParser.GREATER_OP, 0) def LESS_OP(self): return self.getToken(decafJavierParser.LESS_OP, 0) def LESS_eq_op(self): return self.getToken(decafJavierParser.LESS_eq_op, 0) def GREATER_eq_op(self): return self.getToken(decafJavierParser.GREATER_eq_op, 0) def getRuleIndex(self): return decafJavierParser.RULE_rel_op def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterRel_op" ): listener.enterRel_op(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitRel_op" ): listener.exitRel_op(self) def rel_op(self): localctx = decafJavierParser.Rel_opContext(self, self._ctx, self.state) self.enterRule(localctx, 32, self.RULE_rel_op) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 260 _la = self._input.LA(1) if not((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << decafJavierParser.GREATER_OP) | (1 << decafJavierParser.LESS_OP) | (1 << decafJavierParser.GREATER_eq_op) | (1 << decafJavierParser.LESS_eq_op))) != 0)): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Eq_opContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def EQUALITY_OP(self): return self.getToken(decafJavierParser.EQUALITY_OP, 0) def UNEQUALITY_OP(self): return self.getToken(decafJavierParser.UNEQUALITY_OP, 0) def getRuleIndex(self): return decafJavierParser.RULE_eq_op def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterEq_op" ): listener.enterEq_op(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitEq_op" ): listener.exitEq_op(self) def eq_op(self): localctx = decafJavierParser.Eq_opContext(self, self._ctx, self.state) self.enterRule(localctx, 34, self.RULE_eq_op) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 262 _la = self._input.LA(1) if not(_la==decafJavierParser.EQUALITY_OP or _la==decafJavierParser.UNEQUALITY_OP): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Cond_opContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def AND(self): return self.getToken(decafJavierParser.AND, 0) def OR(self): return self.getToken(decafJavierParser.OR, 0) def getRuleIndex(self): return decafJavierParser.RULE_cond_op def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCond_op" ): listener.enterCond_op(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCond_op" ): listener.exitCond_op(self) def cond_op(self): localctx = decafJavierParser.Cond_opContext(self, self._ctx, self.state) self.enterRule(localctx, 36, self.RULE_cond_op) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 264 _la = self._input.LA(1) if not(_la==decafJavierParser.AND or _la==decafJavierParser.OR): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class LiteralContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def int_literal(self): return self.getTypedRuleContext(decafJavierParser.Int_literalContext,0) def CHAR_LITERAL(self): return self.getToken(decafJavierParser.CHAR_LITERAL, 0) def BOOL_LITERAL(self): return self.getToken(decafJavierParser.BOOL_LITERAL, 0) def getRuleIndex(self): return decafJavierParser.RULE_literal def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterLiteral" ): listener.enterLiteral(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitLiteral" ): listener.exitLiteral(self) def literal(self): localctx = decafJavierParser.LiteralContext(self, self._ctx, self.state) self.enterRule(localctx, 38, self.RULE_literal) try: self.state = 269 self._errHandler.sync(self) token = self._input.LA(1) if token in [decafJavierParser.DECIMAL_LITERAL, decafJavierParser.HEX_LITERAL]: self.enterOuterAlt(localctx, 1) self.state = 266 self.int_literal() pass elif token in [decafJavierParser.CHAR_LITERAL]: self.enterOuterAlt(localctx, 2) self.state = 267 self.match(decafJavierParser.CHAR_LITERAL) pass elif token in [decafJavierParser.BOOL_LITERAL]: self.enterOuterAlt(localctx, 3) self.state = 268 self.match(decafJavierParser.BOOL_LITERAL) pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Bin_opContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def arith_op(self): return self.getTypedRuleContext(decafJavierParser.Arith_opContext,0) def rel_op(self): return self.getTypedRuleContext(decafJavierParser.Rel_opContext,0) def eq_op(self): return self.getTypedRuleContext(decafJavierParser.Eq_opContext,0) def cond_op(self): return self.getTypedRuleContext(decafJavierParser.Cond_opContext,0) def getRuleIndex(self): return decafJavierParser.RULE_bin_op def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterBin_op" ): listener.enterBin_op(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitBin_op" ): listener.exitBin_op(self) def bin_op(self): localctx = decafJavierParser.Bin_opContext(self, self._ctx, self.state) self.enterRule(localctx, 40, self.RULE_bin_op) try: self.state = 275 self._errHandler.sync(self) token = self._input.LA(1) if token in [decafJavierParser.ADD, decafJavierParser.SUB, decafJavierParser.MULTIPLY, decafJavierParser.DIVIDE, decafJavierParser.REMINDER]: self.enterOuterAlt(localctx, 1) self.state = 271 self.arith_op() pass elif token in [decafJavierParser.GREATER_OP, decafJavierParser.LESS_OP, decafJavierParser.GREATER_eq_op, decafJavierParser.LESS_eq_op]: self.enterOuterAlt(localctx, 2) self.state = 272 self.rel_op() pass elif token in [decafJavierParser.EQUALITY_OP, decafJavierParser.UNEQUALITY_OP]: self.enterOuterAlt(localctx, 3) self.state = 273 self.eq_op() pass elif token in [decafJavierParser.AND, decafJavierParser.OR]: self.enterOuterAlt(localctx, 4) self.state = 274 self.cond_op() pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Arith_opContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ADD(self): return self.getToken(decafJavierParser.ADD, 0) def SUB(self): return self.getToken(decafJavierParser.SUB, 0) def MULTIPLY(self): return self.getToken(decafJavierParser.MULTIPLY, 0) def DIVIDE(self): return self.getToken(decafJavierParser.DIVIDE, 0) def REMINDER(self): return self.getToken(decafJavierParser.REMINDER, 0) def getRuleIndex(self): return decafJavierParser.RULE_arith_op def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterArith_op" ): listener.enterArith_op(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitArith_op" ): listener.exitArith_op(self) def arith_op(self): localctx = decafJavierParser.Arith_opContext(self, self._ctx, self.state) self.enterRule(localctx, 42, self.RULE_arith_op) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 277 _la = self._input.LA(1) if not((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << decafJavierParser.ADD) | (1 << decafJavierParser.SUB) | (1 << decafJavierParser.MULTIPLY) | (1 << decafJavierParser.DIVIDE) | (1 << decafJavierParser.REMINDER))) != 0)): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Var_typeContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def INT(self): return self.getToken(decafJavierParser.INT, 0) def BOOLEAN(self): return self.getToken(decafJavierParser.BOOLEAN, 0) def getRuleIndex(self): return decafJavierParser.RULE_var_type def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterVar_type" ): listener.enterVar_type(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitVar_type" ): listener.exitVar_type(self) def var_type(self): localctx = decafJavierParser.Var_typeContext(self, self._ctx, self.state) self.enterRule(localctx, 44, self.RULE_var_type) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 279 _la = self._input.LA(1) if not(_la==decafJavierParser.BOOLEAN or _la==decafJavierParser.INT): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Assign_opContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def EQUAL_OP(self): return self.getToken(decafJavierParser.EQUAL_OP, 0) def ADD_eq_op(self): return self.getToken(decafJavierParser.ADD_eq_op, 0) def SUB_eq_op(self): return self.getToken(decafJavierParser.SUB_eq_op, 0) def getRuleIndex(self): return decafJavierParser.RULE_assign_op def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterAssign_op" ): listener.enterAssign_op(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitAssign_op" ): listener.exitAssign_op(self) def assign_op(self): localctx = decafJavierParser.Assign_opContext(self, self._ctx, self.state) self.enterRule(localctx, 46, self.RULE_assign_op) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 281 _la = self._input.LA(1) if not((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << decafJavierParser.EQUAL_OP) | (1 << decafJavierParser.ADD_eq_op) | (1 << decafJavierParser.SUB_eq_op))) != 0)): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class Method_nameContext(ParserRuleContext): __slots__ = 'parser' def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ID(self): return self.getToken(decafJavierParser.ID, 0) def getRuleIndex(self): return decafJavierParser.RULE_method_name def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterMethod_name" ): listener.enterMethod_name(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitMethod_name" ): listener.exitMethod_name(self) def method_name(self): localctx = decafJavierParser.Method_nameContext(self, self._ctx, self.state) self.enterRule(localctx, 48, self.RULE_method_name) try: self.enterOuterAlt(localctx, 1) self.state = 283 self.match(decafJavierParser.ID) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx def sempred(self, localctx:RuleContext, ruleIndex:int, predIndex:int): if self._predicates == None: self._predicates = dict() self._predicates[12] = self.expr_sempred pred = self._predicates.get(ruleIndex, None) if pred is None: raise Exception("No predicate with index:" + str(ruleIndex)) else: return pred(localctx, predIndex) def expr_sempred(self, localctx:ExprContext, predIndex:int): if predIndex == 0: return self.precpred(self._ctx, 5)
35.501364
385
0.575535
[ "MIT" ]
tej17584/compis_Proyecto1
Python3/decafJavierParser.py
78,103
Python
import numpy as np from dct_image_transform.dct import dct2 def reflection(image,axis=0): ''' 8x8のブロックごとに離散コサイン変換された画像(以下DCT画像)を鏡像変換する. Parameters ---------- image:幅と高さが8の倍数である画像を表す2次元配列. 8の倍数でない場合の動作は未定義. axis:変換する軸. defalutは`axis=0` Returns ------- `image`を鏡像変換したDCT画像を表す2次元配列を返す. `image`の値は変わらない. Examples -------- >>> import numpy as np >>> a = np.arange(64).reshape((8,8)) >>> a array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29, 30, 31], [32, 33, 34, 35, 36, 37, 38, 39], [40, 41, 42, 43, 44, 45, 46, 47], [48, 49, 50, 51, 52, 53, 54, 55], [56, 57, 58, 59, 60, 61, 62, 63]]) >>> dct_image_transform.reflection.reflection(a,axis=0) array([[ 5.77395663e-15, 1.00000000e+00, 2.00000000e+00, 3.00000000e+00, 4.00000000e+00, 5.00000000e+00, 6.00000000e+00, 7.00000000e+00], [-8.00000000e+00, -9.00000000e+00, -1.00000000e+01, -1.10000000e+01, -1.20000000e+01, -1.30000000e+01, -1.40000000e+01, -1.50000000e+01], [ 1.60000000e+01, 1.70000000e+01, 1.80000000e+01, 1.90000000e+01, 2.00000000e+01, 2.10000000e+01, 2.20000000e+01, 2.30000000e+01], [-2.40000000e+01, -2.50000000e+01, -2.60000000e+01, -2.70000000e+01, -2.80000000e+01, -2.90000000e+01, -3.00000000e+01, -3.10000000e+01], [ 3.20000000e+01, 3.30000000e+01, 3.40000000e+01, 3.50000000e+01, 3.60000000e+01, 3.70000000e+01, 3.80000000e+01, 3.90000000e+01], [-4.00000000e+01, -4.10000000e+01, -4.20000000e+01, -4.30000000e+01, -4.40000000e+01, -4.50000000e+01, -4.60000000e+01, -4.70000000e+01], [ 4.80000000e+01, 4.90000000e+01, 5.00000000e+01, 5.10000000e+01, 5.20000000e+01, 5.30000000e+01, 5.40000000e+01, 5.50000000e+01], [-5.60000000e+01, -5.70000000e+01, -5.80000000e+01, -5.90000000e+01, -6.00000000e+01, -6.10000000e+01, -6.20000000e+01, -6.30000000e+01]]) ''' R = np.zeros((8,8),dtype=np.float) for i in range(8): R[i,7-i] = 1 R = dct2(R) if axis == 0: return np.vstack(list(map(lambda m:np.dot(R,m),np.flip(np.vsplit(image,range(8,image.shape[1],8)),0)))) elif axis == 1: return np.hstack(list(map(lambda m:np.dot(m,R),np.flip(np.hsplit(image,range(8,image.shape[1],8)),0))))
40.984375
111
0.544034
[ "MIT" ]
kanpurin/dctimagetransform
dct_image_transform/reflection.py
2,823
Python
from __future__ import absolute_import from django.conf import settings import ujson from zproject.backends import password_auth_enabled, dev_auth_enabled, google_auth_enabled, github_auth_enabled def add_settings(request): realm = request.user.realm if hasattr(request.user, "realm") else None return { # We use the not_voyager variable name so that templates # will render even if the appropriate context is not provided # to the template 'not_voyager': not settings.VOYAGER, 'zulip_com': settings.ZULIP_COM, 'custom_logo_url': settings.CUSTOM_LOGO_URL, 'register_link_disabled': settings.REGISTER_LINK_DISABLED, 'show_oss_announcement': settings.SHOW_OSS_ANNOUNCEMENT, 'zulip_admin': settings.ZULIP_ADMINISTRATOR, 'login_url': settings.HOME_NOT_LOGGED_IN, 'only_sso': settings.ONLY_SSO, 'external_api_path': settings.EXTERNAL_API_PATH, 'external_api_uri': settings.EXTERNAL_API_URI, 'external_uri_scheme': settings.EXTERNAL_URI_SCHEME, 'api_site_required': settings.EXTERNAL_API_PATH != "api.zulip.com", 'email_integration_enabled': settings.EMAIL_GATEWAY_BOT != "", 'email_gateway_example': settings.EMAIL_GATEWAY_EXAMPLE, 'open_realm_creation': settings.OPEN_REALM_CREATION, 'password_auth_enabled': password_auth_enabled(realm), 'dev_auth_enabled': dev_auth_enabled(), 'google_auth_enabled': google_auth_enabled(), 'github_auth_enabled': github_auth_enabled(), 'development_environment': settings.DEVELOPMENT, } def add_metrics(request): return { 'dropboxAppKey': settings.DROPBOX_APP_KEY }
48.051282
111
0.664354
[ "Apache-2.0" ]
yicongwu/zulip
zerver/context_processors.py
1,874
Python
from ._base import * DEBUG = True
8.75
20
0.685714
[ "MIT" ]
AlexanderTN/Django-3-Web-Development-Cookbook-Fourth-Edition
ch01/myproject_docker/src/myproject/myproject/settings/dev.py
35
Python
# div.py def main(): bread = 10 # 열 개의 빵 people = int(input("몇 명? ")) print("1인당 빵의 수: ", bread / people) print("맛있게 드세요.") main()
15.8
39
0.481013
[ "MIT" ]
chiwoongMOON/202111PythonGrammarStudy
module/chapter14/div.py
194
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. """The setup script.""" import sys from setuptools import setup, find_packages if sys.version_info < (3, 7): print( "glean_parser requires at least Python 3.7", file=sys.stderr ) sys.exit(1) with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read() requirements = [ 'Click>=6.0', 'PyYAML>=3.13', 'jsonschema>=3.0.0', 'inflection>=0.3.1', 'Jinja2>=2.10', 'diskcache>=3.1.0', 'appdirs>=1.4.3' ] setup_requirements = ['pytest-runner', ] test_requirements = ['pytest', ] setup( author="Michael Droettboom", author_email='[email protected]', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'Natural Language :: English', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', ], description="Parser tools for Mozilla's glean telemetry", entry_points={ 'console_scripts': [ 'glean_parser=glean_parser.__main__:main', ], }, install_requires=requirements, long_description=readme + '\n\n' + history, include_package_data=True, keywords='glean_parser', name='glean_parser', packages=find_packages(include=['glean_parser']), setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, url='https://github.com/mozilla/glean_parser', version='0.23.1', zip_safe=False, )
25.069444
69
0.642659
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
mdboom/glean_parser
setup.py
1,805
Python
import taichi as ti from mpl_toolkits.mplot3d import Axes3D import os import math import numpy as np import random import cv2 import matplotlib.pyplot as plt import time import taichi as tc real = ti.f32 ti.set_default_fp(real) dim = 3 # this will be overwritten n_particles = 0 n_solid_particles = 0 n_actuators = 0 n_grid = 64 dx = 1 / n_grid inv_dx = 1 / dx dt = 2e-3 p_vol = 1 E = 10 # TODO: update mu = E la = E max_steps = 512 steps = 512 gravity = 10 target = [0.8, 0.2, 0.2] use_apic = False scalar = lambda: ti.var(dt=real) vec = lambda: ti.Vector(dim, dt=real) mat = lambda: ti.Matrix(dim, dim, dt=real) actuator_id = ti.global_var(ti.i32) particle_type = ti.global_var(ti.i32) x, v = vec(), vec() grid_v_in, grid_m_in = vec(), scalar() grid_v_out = vec() C, F = mat(), mat() screen = ti.Vector(3, dt=real) loss = scalar() n_sin_waves = 4 weights = scalar() bias = scalar() x_avg = vec() actuation = scalar() actuation_omega = 40 act_strength = 5 # ti.cfg.arch = ti.x86_64 # ti.cfg.use_llvm = True ti.cfg.arch = ti.cuda # ti.cfg.print_ir = True visualize_resolution = 256 @ti.layout def place(): ti.root.dense(ti.ij, (n_actuators, n_sin_waves)).place(weights) ti.root.dense(ti.i, n_actuators).place(bias) ti.root.dense(ti.ij, (max_steps, n_actuators)).place(actuation) ti.root.dense(ti.i, n_particles).place(actuator_id, particle_type) ti.root.dense(ti.l, max_steps).dense(ti.k, n_particles).place(x, v, C, F) ti.root.dense(ti.ijk, n_grid).place(grid_v_in, grid_m_in, grid_v_out) ti.root.place(loss, x_avg) ti.root.dense(ti.ij, (visualize_resolution, visualize_resolution)).place(screen) ti.root.lazy_grad() def zero_vec(): return [0.0, 0.0, 0.0] def zero_matrix(): return [zero_vec(), zero_vec(), zero_vec()] @ti.kernel def clear_grid(): for i, j, k in grid_m_in: grid_v_in[i, j, k] = [0, 0, 0] grid_m_in[i, j, k] = 0 grid_v_in.grad[i, j, k] = [0, 0, 0] grid_m_in.grad[i, j, k] = 0 grid_v_out.grad[i, j, k] = [0, 0, 0] @ti.kernel def clear_particle_grad(): # for all time steps and all particles for f, i in x: x.grad[f, i] = zero_vec() v.grad[f, i] = zero_vec() C.grad[f, i] = zero_matrix() F.grad[f, i] = zero_matrix() @ti.kernel def clear_actuation_grad(): for t, i in actuation: actuation[t, i] = 0.0 @ti.kernel def p2g(f: ti.i32): for p in range(0, n_particles): base = ti.cast(x[f, p] * inv_dx - 0.5, ti.i32) fx = x[f, p] * inv_dx - ti.cast(base, ti.i32) w = [0.5 * ti.sqr(1.5 - fx), 0.75 - ti.sqr(fx - 1), 0.5 * ti.sqr(fx - 0.5)] new_F = (ti.Matrix.diag(dim=dim, val=1) + dt * C[f, p]) @ F[f, p] J = ti.determinant(new_F) if particle_type[p] == 0: # fluid sqrtJ = ti.sqrt(J) # TODO: need pow(x, 1/3) new_F = ti.Matrix([[sqrtJ, 0, 0], [0, sqrtJ, 0], [0, 0, 1]]) F[f + 1, p] = new_F # r, s = ti.polar_decompose(new_F) act_id = actuator_id[p] act = actuation[f, ti.max(0, act_id)] * act_strength if act_id == -1: act = 0.0 # ti.print(act) A = ti.Matrix([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]) * act cauchy = ti.Matrix(zero_matrix()) mass = 0.0 ident = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] if particle_type[p] == 0: mass = 4 cauchy = ti.Matrix(ident) * (J - 1) * E else: mass = 1 cauchy = mu * (new_F @ ti.transposed(new_F)) + ti.Matrix(ident) * (la * ti.log(J) - mu) cauchy += new_F @ A @ ti.transposed(new_F) stress = -(dt * p_vol * 4 * inv_dx * inv_dx) * cauchy affine = stress + mass * C[f, p] for i in ti.static(range(3)): for j in ti.static(range(3)): for k in ti.static(range(3)): offset = ti.Vector([i, j, k]) dpos = (ti.cast(ti.Vector([i, j, k]), real) - fx) * dx weight = w[i](0) * w[j](1) * w[k](2) grid_v_in[base + offset].atomic_add( weight * (mass * v[f, p] + affine @ dpos)) grid_m_in[base + offset].atomic_add(weight * mass) bound = 3 coeff = 1.5 @ti.kernel def grid_op(): for i, j, k in grid_m_in: inv_m = 1 / (grid_m_in[i, j, k] + 1e-10) v_out = inv_m * grid_v_in[i, j, k] v_out[1] -= dt * gravity if i < bound and v_out[0] < 0: v_out[0] = 0 v_out[1] = 0 v_out[2] = 0 if i > n_grid - bound and v_out[0] > 0: v_out[0] = 0 v_out[1] = 0 v_out[2] = 0 if k < bound and v_out[2] < 0: v_out[0] = 0 v_out[1] = 0 v_out[2] = 0 if k > n_grid - bound and v_out[2] > 0: v_out[0] = 0 v_out[1] = 0 v_out[2] = 0 if j < bound and v_out[1] < 0: v_out[0] = 0 v_out[1] = 0 v_out[2] = 0 normal = ti.Vector([0.0, 1.0, 0.0]) lsq = ti.sqr(normal).sum() if lsq > 0.5: if ti.static(coeff < 0): v_out[0] = 0 v_out[1] = 0 v_out[2] = 0 else: lin = (ti.transposed(v_out) @ normal)(0) if lin < 0: vit = v_out - lin * normal lit = vit.norm() + 1e-10 if lit + coeff * lin <= 0: v_out[0] = 0 v_out[1] = 0 v_out[2] = 0 else: v_out = (1 + coeff * lin / lit) * vit if j > n_grid - bound and v_out[1] > 0: v_out[0] = 0 v_out[1] = 0 v_out[2] = 0 grid_v_out[i, j, k] = v_out @ti.kernel def g2p(f: ti.i32): for p in range(0, n_particles): base = ti.cast(x[f, p] * inv_dx - 0.5, ti.i32) fx = x[f, p] * inv_dx - ti.cast(base, real) w = [0.5 * ti.sqr(1.5 - fx), 0.75 - ti.sqr(fx - 1.0), 0.5 * ti.sqr(fx - 0.5)] new_v = ti.Vector(zero_vec()) new_C = ti.Matrix(zero_matrix()) for i in ti.static(range(3)): for j in ti.static(range(3)): for k in ti.static(range(3)): dpos = ti.cast(ti.Vector([i, j, k]), real) - fx g_v = grid_v_out[base(0) + i, base(1) + j, base(2) + k] weight = w[i](0) * w[j](1) * w[k](2) new_v += weight * g_v new_C += 4 * weight * ti.outer_product(g_v, dpos) * inv_dx v[f + 1, p] = new_v x[f + 1, p] = x[f, p] + dt * v[f + 1, p] C[f + 1, p] = new_C @ti.kernel def compute_actuation(t: ti.i32): for i in range(n_actuators): act = 0.0 for j in ti.static(range(n_sin_waves)): act += weights[i, j] * ti.sin( actuation_omega * t * dt + 2 * math.pi / n_sin_waves * j) act += bias[i] actuation[t, i] = ti.tanh(act) @ti.kernel def compute_x_avg(): for i in range(n_particles): contrib = 0.0 if particle_type[i] == 1: contrib = 1.0 / n_solid_particles x_avg[None].atomic_add(contrib * x[steps - 1, i]) @ti.kernel def compute_loss(): dist = x_avg[None][0] loss[None] = -dist def forward(total_steps=steps): # simulation for s in range(total_steps - 1): clear_grid() compute_actuation() p2g(s) grid_op() g2p(s) x_avg[None] = [0, 0, 0] compute_x_avg() compute_loss() return loss[None] def backward(): clear_particle_grad() compute_loss.grad() compute_x_avg.grad() for s in reversed(range(steps - 1)): # Since we do not store the grid history (to save space), we redo p2g and grid op clear_grid() p2g(s) grid_op() g2p.grad(s) grid_op.grad() p2g.grad(s) compute_actuation.grad() class Scene: def __init__(self): self.n_particles = 0 self.n_solid_particles = 0 self.x = [] self.actuator_id = [] self.particle_type = [] self.offset_x = 0 self.offset_y = 0 self.offset_z = 0 self.num_actuators = 0 def new_actuator(self): self.num_actuators += 1 global n_actuators n_actuators = self.num_actuators return self.num_actuators - 1 def add_rect(self, x, y, z, w, h, d, actuation, ptype=1): if ptype == 0: assert actuation == -1 global n_particles density = 3 w_count = int(w / dx * density) h_count = int(h / dx * density) d_count = int(d / dx * density) real_dx = w / w_count real_dy = h / h_count real_dz = d / d_count if ptype == 1: for i in range(w_count): for j in range(h_count): for k in range(d_count): self.x.append([x + (i + 0.5) * real_dx + self.offset_x, y + (j + 0.5) * real_dy + self.offset_y, z + (k + 0.5) * real_dz + self.offset_z]) self.actuator_id.append(actuation) self.particle_type.append(ptype) self.n_particles += 1 self.n_solid_particles += int(ptype == 1) if self.n_particles % 1000 == 0: print("num particles", self.n_particles) else: for i in range(w_count): for j in range(h_count): for k in range(d_count): self.x.append([x + random.random() * w + self.offset_x, y + random.random() * h + self.offset_y, z + random.random() * d + self.offset_z]) self.actuator_id.append(actuation) self.particle_type.append(ptype) self.n_particles += 1 self.n_solid_particles += int(ptype == 1) if self.n_particles % 1000 == 0: print("num particles", self.n_particles) def set_offset(self, x, y, z): self.offset_x = x self.offset_y = y self.offset_z = z def finalize(self): global n_particles, n_solid_particles n_particles = self.n_particles n_solid_particles = max(self.n_solid_particles, 1) print('n_particles', n_particles) print('n_solid', n_solid_particles) def set_n_actuators(self, n_act): global n_actuators n_actuators = n_act gui = tc.core.GUI("Differentiable MPM", tc.veci(1024, 1024)) canvas = gui.get_canvas() @ti.kernel def splat(t: ti.i32): for i in range(n_particles): pos = ti.cast(x[t, i] * visualize_resolution, ti.i32) screen[pos[0], pos[1]][0] += 0.1 res = [visualize_resolution, visualize_resolution] @ti.kernel def copy_back_and_clear(img: np.ndarray): for i in range(res[0]): for j in range(res[1]): coord = ((res[1] - 1 - j) * res[0] + i) * 3 for c in ti.static(range(3)): img[coord + c] = screen[i, j][2 - c] screen[i, j][2 - c] = 0 def robot(scene): block_size = 0.1 # scene.set_offset(0.1, 0.10, 0.3) scene.set_offset(0.1, 0.05, 0.3) def add_leg(x, y, z): for i in range(4): scene.add_rect(x + block_size / 2 * (i // 2), y + 0.7 * block_size / 2 * (i % 2), z, block_size / 2, 0.7 * block_size / 2, block_size, scene.new_actuator()) for i in range(4): add_leg(i // 2 * block_size * 2, 0.0, i % 2 * block_size * 2) for i in range(3): scene.add_rect(block_size * i, 0, block_size, block_size, block_size * 0.7, block_size, -1, 1) # scene.set_offset(0.1, 0.03, 0.3) scene.add_rect(0.1, 0.15, 0.1, 0.2, 0.05, 0.2, -1, 0) # scene. def main(): tc.set_gdb_trigger() # initialization scene = Scene() # fish(scene) robot(scene) # scene.add_rect(0.4, 0.4, 0.2, 0.1, 0.3, 0.1, -1, 1) scene.finalize() for i in range(n_actuators): for j in range(n_sin_waves): weights[i, j] = np.random.randn() * 0.01 for i in range(scene.n_particles): x[0, i] = scene.x[i] F[0, i] = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] actuator_id[i] = scene.actuator_id[i] particle_type[i] = scene.particle_type[i] fig = plt.figure() plt.ion() ax = fig.add_subplot(111, projection='3d') losses = [] for iter in range(501): ti.clear_all_gradients() l = forward() losses.append(l) loss.grad[None] = 1 backward() print('i=', iter, 'loss=', l) learning_rate = 10 for i in range(n_actuators): for j in range(n_sin_waves): # print(weights.grad[i, j]) weights[i, j] -= learning_rate * weights.grad[i, j] bias[i] -= learning_rate * bias.grad[i] if iter % 50 == 0: # visualize print("Dumping particles...") for s in range(7, steps, 2): def to255(x): return int(max(min(x * 255, 255), 0)) xs, ys, zs = [], [], [] us, vs, ws = [], [], [] cs = [] folder = 'mpm3d/iter{:04d}/'.format(iter) os.makedirs(folder, exist_ok=True) for i in range(n_particles): xs.append(x[s, i][0]) ys.append(x[s, i][1]) zs.append(x[s, i][2]) us.append(v[s, i][0]) vs.append(v[s, i][1]) ws.append(v[s, i][2]) if particle_type[i] == 0: # fluid r = 0.3 g = 0.3 b = 1.0 else: # neohookean if actuator_id[i] != -1: # actuated act = actuation[s, actuator_id[i]] * 0.5 r = 0.5 - act g = 0.5 - abs(act) b = 0.5 + act else: r, g, b = 0.4, 0.4, 0.4 color = to255(r) * 65536 + 256 * to255(g) + to255(b) cs.append(color) data = np.array(xs + ys + zs + us + vs + ws + cs, dtype=np.float32) data.tofile(open('{}/{:04}.bin'.format(folder, s), 'wb')) print("Particles dumped") if __name__ == '__main__': main()
26.364
162
0.553254
[ "MIT" ]
AnimatedRNG/taichi
examples/difftaichi/liquid.py
13,182
Python
#!/usr/bin/env python import sys last_pkt_num = -1 daystart_pkt_num = -1 daystart_recv_time = -1 daystart_hwrecv_time = -1 dayend_pkt_num = -1 dayend_recv_time = -1 dayend_hwrecv_time = -1 def process_line(line): global last_pkt_num global daystart_pkt_num, daystart_recv_time, daystart_hwrecv_time global dayend_pkt_num, dayend_recv_time, dayend_hwrecv_time parts = line.split() pkt_num = long(parts[1]) sent_time = long(parts[3]) recv_time = long(parts[5]) hw_recv_time = long(parts[7]) # read in the first line if (daystart_pkt_num == -1): last_pkt_num = pkt_num daystart_pkt_num = pkt_num daystart_recv_time = recv_time daystart_hwrecv_time = hw_recv_time dayend_pkt_num = pkt_num dayend_recv_time = recv_time dayend_hwrecv_time = hw_recv_time return # skip through the day, looking for a gap if (pkt_num == last_pkt_num + 1): last_pkt_num = pkt_num dayend_pkt_num = pkt_num dayend_recv_time = recv_time dayend_hwrecv_time = hw_recv_time return # we found a gap dstr = "D {} pkts long, {} us (utime), {} us (hw)".format( dayend_pkt_num - daystart_pkt_num, dayend_recv_time - daystart_recv_time, dayend_hwrecv_time - daystart_hwrecv_time) print(dstr) nstr = "\t\t\t\t\t\t\t\tN {} pkts long, {} us (utime), {} us (hw)".format( pkt_num - dayend_pkt_num, recv_time - dayend_recv_time, hw_recv_time - dayend_hwrecv_time) print(nstr) last_pkt_num = pkt_num daystart_pkt_num = pkt_num daystart_recv_time = recv_time daystart_hwrecv_time = hw_recv_time def main(argv): if (len(argv) == 1): fin = sys.stdin else: fin = open(argv[1]) while 1: try: line = fin.readline() except KeyboardInterrupt: break if not line: break process_line(line) if __name__ == "__main__": main(sys.argv)
22.910112
78
0.635606
[ "BSD-3-Clause" ]
gmporter/TritonVFN
src/scripts/process-loss-rate-output.py
2,039
Python
class Point: counter = [] def __init__(self, x=0, y=0): """Konstruktor punktu.""" self.x = x self.y = y def update(self, n): self.counter.append(n) p1 = Point(0,0) p2 = Point(1,1) p1.counter.append(1) p2.counter.append(3) p1.counter[0] = 2 print(p1.counter) print(p2.counter) p1.update(1) print(p1.counter) print(p2.counter)
16.217391
33
0.597855
[ "MIT" ]
wrutkowski1000/wizualizacja-danych
zadanka/l5zad4.py
373
Python
import discord from discord.ext import commands import json gamertags = 'gamer_tags.json' class Gamertag(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command() async def newtag(self, ctx): with open(gamertags, 'r') as in_file: data = json.load(in_file) author_id = str(ctx.message.author.id) if author_id in list(data.keys()): await ctx.send('This user already has a gamertag library') print('command aborted: id already exists') else: data[author_id] = {} with open(gamertags, 'w') as out_file: json.dump(data, out_file) await ctx.send('Created new library under this user') @commands.command() async def addtag(self, ctx, platform, tag): with open(gamertags, 'r') as in_file: data = json.load(in_file) author_id = str(ctx.message.author.id) data[author_id][platform.lower()] = tag with open(gamertags, 'w') as out_file: json.dump(data, out_file) @commands.command() async def viewtag(self, ctx, mention, platform): with open(gamertags, 'r') as in_file: data = json.load(in_file) if platform.lower() == 'all': tags = f'{mention}\'s' + ' Gamer Tags' for plat, tag in data[str(ctx.message.mentions[0].id).lower()].items(): tags += f'\n- {plat.capitalize()}: {tag}' await ctx.send(tags) else: await ctx.send(f'{mention}\'s {platform.capitalize()}: {data[str(ctx.message.mentions[0].id).lower()][platform.lower()]}') def setup(bot): bot.add_cog(Gamertag(bot))
32.75
134
0.586025
[ "MIT" ]
GeorgeD88/Insomniac
cogs/gamertag.py
1,703
Python
# -*- coding: utf8 -*- import json from activity.womail.womail import WoMail class DailySign(WoMail): def __init__(self, mobile, openId): super(DailySign, self).__init__(mobile, openId) self.session.headers.update({ # 'Origin': 'https://nyan.mail.wo.cn', 'Referer': 'https://nyan.mail.wo.cn/cn/sign/wap/index.html', 'User-Agent': 'Mozilla/5.0 (Linux; Android 8.1.0; MI 8 SE Build/OPM1.171019.019; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/78.0.3904.62 XWEB/2797 MMWEBSDK/20210501 Mobile Safari/537.36 MMWEBID/107 MicroMessenger/8.0.6.1900(0x28000635) Process/toolsmp WeChat/arm64 Weixin NetType/4G Language/zh_CN ABI/arm64', 'X-Requested-With': 'com.tencent.mm' # XMLHttpRequest }) self.message = '' def login(self): url = f'https://nyan.mail.wo.cn/cn/sign/index/index?mobile={self.mobile}&userName=&openId={self.openId}' self.session.get(url=url) print(self.session.cookies.get_dict()) def index(self): url = 'https://nyan.mail.wo.cn/cn/sign/wap/index.html' self.session.get(url=url) def userInfo(self): url = f'https://nyan.mail.wo.cn/cn/sign/index/userinfo.do?rand={self.randomNum}' resp = self.session.post(url=url) data = resp.json() try: print(json.dumps(data, indent=4, ensure_ascii=False)) return str(data['result']['lastDay']), str(data['result']['keepSign']) except: print(resp.text) def isLogin(self): url = f'https://nyan.mail.wo.cn/cn/sign/user/isLoginMail.do?rand={self.randomNum}' resp = self.session.post(url=url) print(resp.text) def check(self): url = f'https://nyan.mail.wo.cn/cn/sign/user/checkin.do?rand={self.randomNum}' resp = self.session.post(url=url) print(resp.text) def prizeDetail(self): url = f'https://nyan.mail.wo.cn/cn/sign/user/prizes.do?rand={self.randomNum}' resp = self.session.post(url=url) data = resp.json() if len(data['result']) > 3: data['result'] = data['result'][:3] print(json.dumps(data, indent=4, ensure_ascii=False)) def doTask(self, task_name): url = f'https://nyan.mail.wo.cn/cn/sign/user/doTask.do?rand={self.randomNum}' data = { 'taskName': task_name } resp = self.session.post(url=url, data=data) print(resp.text) def overTask(self): url = f'https://nyan.mail.wo.cn/cn/sign/user/overtask.do?rand={self.randomNum}' data = { 'taskLevel': '2' } resp = self.session.post(url=url, data=data) data = resp.json() print(json.dumps(data, indent=4, ensure_ascii=False)) result = [item['taskName'] for item in data['result']] # data = { # 'taskLevel': '1' # } return result def run(self): if int(self.now_date.replace('-', '')) > 20220228: return try: self.login() self.index() result = self.overTask() for task_name in ["loginmail", "clubactivity", "club"]: # , "download" if task_name in result: continue self.doTask(task_name) self.flushTime(1) else: print("积分签到任务已完成") lastDay, keepSign = self.userInfo() if keepSign == '21': print('跳过21天之后的打卡') self.message = '每日签到: 跳过21天之后的打卡' self.recordLog(self.message) return else: if self.now_date.replace('-', '') == lastDay: print("今日已打卡") return else: self.check() self.prizeDetail() lastDay, _ = self.userInfo() if self.now_date.replace('-', '') == lastDay: self.message = '每日签到: 已签到' else: self.message = '每日签到: 未签到' self.recordLog(self.message) except Exception as e: print(e) if __name__ == "__main__": pass
36.273504
340
0.545476
[ "MIT" ]
Blessingorz/UnicomDailyTask
activity/womail/dailyTask.py
4,340
Python
''' References: - An Outline of Set Theory, Henle ''' from . import fol class ElementSymbol(fol.ImproperSymbol): def __init__(self): fol.PrimitiveSymbol.__init__('∈') def symbol_type(self) -> str: return 'element of' @staticmethod def new() -> "ElementSymbol": return ElementSymbol()
17.368421
41
0.636364
[ "Unlicense" ]
jadnohra/connect
ddq_1/lang/set.py
332
Python
from flask import (Blueprint, Response, request, render_template) import json from flask_test import db from flask_test.schema import FORM_SCHEMA from flask_test.utils import row_as_json, list_as_json bp = Blueprint('list', __name__) @bp.route('/resource/<doc_type>', methods=['GET']) def get(doc_type): data = db.get_list(doc_type) if 'application/json' in request.headers.get('accept'): response = json.dumps(list_as_json(data)) return Response(response, mimetype="application/json") return render_template( 'list.html', items=data, doc_type=doc_type, fields=FORM_SCHEMA[doc_type], get_options=db.get_list )
28.583333
65
0.704082
[ "MIT" ]
barredterra/flask-test
flask_test/views/listview.py
686
Python