instruction
stringclasses 3
values | input
stringlengths 33
307
| output
stringlengths 66
248
|
---|---|---|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @eBay | Predicted 1_DAY_RETURN: 0.021363493559535
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: 9469076.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @Reuters: About 900 State Department officials sign dissent memo: source https://t.co/zu0dEj3wpL" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters | Predicted 1_DAY_RETURN: 0.0031221716708478
Predicted 2_DAY_RETURN: 0.0031221716708478
Predicted 7_DAY_RETURN: 547029.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @trvo512: are you fucking kidding me? @McDonalds https://t.co/YgNCoLqJhr" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "McDonald's" STOCK: 31/01/2017 DATE: 122.57 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.002365994941666 2_DAY_RETURN: 0.002365994941666 3_DAY_RETURN: -0.0124010769356285 7_DAY_RETURN: 3733323.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0036713714612058 PX_VOLUME: 7.972 VOLATILITY_10D: 9.585 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds | Predicted 1_DAY_RETURN: 0.002365994941666
Predicted 2_DAY_RETURN: 0.002365994941666
Predicted 7_DAY_RETURN: 3733323.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "As a dedicated @Honda owner, I urge you to please not allow your advertising on hateful websites. @slpng_giants https://t.co/slkQfxIfTR
" STOCK: Honda DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is 0.0. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: Honda 1_DAY_RETURN: 0.0289341600236197 2_DAY_RETURN: 0.0286389134927664 3_DAY_RETURN: 0.0286389134927664 7_DAY_RETURN: -0.0035429583702391 | The stock shows a consistent negative return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: Honda LAST_PRICE: 3387.0 PX_VOLUME: 5979200.0 VOLATILITY_10D: 29.817 VOLATILITY_30D: 25.796 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: 0.0 | Predicted 1_DAY_RETURN: 0.0289341600236197
Predicted 2_DAY_RETURN: 0.0286389134927664
Predicted 7_DAY_RETURN: -0.0035429583702391 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @Aavaiz: @Tesco transfer me 10,000 club card points and you can have it back https://t.co/rw5Us3PqUX
" STOCK: Tesco DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: Tesco 1_DAY_RETURN: 0.0164439876670093 2_DAY_RETURN: 0.0614080164439877 3_DAY_RETURN: 0.0614080164439877 7_DAY_RETURN: -0.0125899280575539 | The stock shows a consistent negative return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: Tesco LAST_PRICE: 194.6 PX_VOLUME: 79257504.0 VOLATILITY_10D: 60.469 VOLATILITY_30D: 39.887 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0 | Predicted 1_DAY_RETURN: 0.0164439876670093
Predicted 2_DAY_RETURN: 0.0614080164439877
Predicted 7_DAY_RETURN: -0.0125899280575539 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "@ReutersOpinion @Reuters @taniakaras what did it taste like when you licked one of their asses?" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters | Predicted 1_DAY_RETURN: 0.0031221716708478
Predicted 2_DAY_RETURN: 0.0031221716708478
Predicted 7_DAY_RETURN: 547029.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @Disney: Rediscover the timeless tale of #BeautyAndTheBeast March 17. Tickets are now available: https://t.co/S6wwuIfygP https://t.co/uY…" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Disney" STOCK: 31/01/2017 DATE: 110.65 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Disney. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: -0.0122006326253954 2_DAY_RETURN: -0.0122006326253954 3_DAY_RETURN: -0.0248531405332128 7_DAY_RETURN: 8485838.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0026208766380478 PX_VOLUME: 12.229 VOLATILITY_10D: 12.982 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Disney | Predicted 1_DAY_RETURN: -0.0122006326253954
Predicted 2_DAY_RETURN: -0.0122006326253954
Predicted 7_DAY_RETURN: 8485838.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @Reuters: About 900 State Department officials sign dissent memo: source https://t.co/zu0dEj3wpL" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters | Predicted 1_DAY_RETURN: 0.0031221716708478
Predicted 2_DAY_RETURN: 0.0031221716708478
Predicted 7_DAY_RETURN: 547029.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @mtt516: Debbie Mumm Embroidered Sheet Set Twin Hot Cocoa Snowman https://t.co/5SIdSM5exD via @eBay" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.25 and the TextBlob polarity score is @eBay. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.25 TEXTBLOB_POLARITY: @eBay | Predicted 1_DAY_RETURN: 0.021363493559535
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: 9469076.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "@Reuters Goid for them!" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters | Predicted 1_DAY_RETURN: 0.0031221716708478
Predicted 2_DAY_RETURN: 0.0031221716708478
Predicted 7_DAY_RETURN: 547029.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Check out USMC Tie Clip with Eagle Globe and Anchor by Hilborn & Hamburger #HillbornHamburger https://t.co/5ebTiMe9q1 via @eBay" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @eBay | Predicted 1_DAY_RETURN: 0.021363493559535
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: 9469076.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @PlaysTrumpCard: today I learned that @DunkinDonuts has great coffee at a better price than @Starbucks.
So thx for that Howard Schultz
#…
" STOCK: Starbucks DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.65. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: Starbucks 1_DAY_RETURN: 0.0123143788482433 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0162984425932632 7_DAY_RETURN: 0.0583122057225642 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: Starbucks LAST_PRICE: 55.22 PX_VOLUME: 14307985.0 VOLATILITY_10D: 23.916 VOLATILITY_30D: 17.298 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.65 | Predicted 1_DAY_RETURN: 0.0123143788482433
Predicted 2_DAY_RETURN: 0.0162984425932632
Predicted 7_DAY_RETURN: 0.0583122057225642 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @JerseyBabes: Check out Xbox Xbox 360 Burger King Pocketbike Racer Video Game Sealed https://t.co/5b7f6lAfvm @eBay" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.4 and the TextBlob polarity score is @eBay. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: 1.0 LSTM_POLARITY: -0.4 TEXTBLOB_POLARITY: @eBay | Predicted 1_DAY_RETURN: 0.021363493559535
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: 9469076.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "@MoeBandyMusic @eBay how many hats you have Moe." STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.5 and the TextBlob polarity score is @eBay. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.5 TEXTBLOB_POLARITY: @eBay | Predicted 1_DAY_RETURN: 0.021363493559535
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: 9469076.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @Lrihendry: Why would a coffee shop get political and risk losing half of their business? STUPID! @Starbucks #boycottstarbucks BUY @Dunk…" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Starbucks" STOCK: 31/01/2017 DATE: 55.22 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.08333333333333333 and the TextBlob polarity score is @Starbucks. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0162984425932632 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0583122057225642 7_DAY_RETURN: 14307985.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0123143788482433 PX_VOLUME: 23.916 VOLATILITY_10D: 17.298 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.08333333333333333 TEXTBLOB_POLARITY: @Starbucks | Predicted 1_DAY_RETURN: 0.0162984425932632
Predicted 2_DAY_RETURN: 0.0162984425932632
Predicted 7_DAY_RETURN: 14307985.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "A Big Kiss for You Valentines Day Gift and Care Package Gift Basket Dropshipp... https://t.co/6rAajz7TaG via @amazon" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Amazon" STOCK: 31/01/2017 DATE: 823.48 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @amazon. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0149244668965851 2_DAY_RETURN: 0.0149244668965851 3_DAY_RETURN: -0.0012629329188322 7_DAY_RETURN: 3137196.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0083790741730217 PX_VOLUME: 13.447 VOLATILITY_10D: 16.992 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @amazon | Predicted 1_DAY_RETURN: 0.0149244668965851
Predicted 2_DAY_RETURN: 0.0149244668965851
Predicted 7_DAY_RETURN: 3137196.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @Reuters: About 900 State Department officials sign dissent memo: source https://t.co/zu0dEj3wpL" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters | Predicted 1_DAY_RETURN: 0.0031221716708478
Predicted 2_DAY_RETURN: 0.0031221716708478
Predicted 7_DAY_RETURN: 547029.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @999Vincat: @netflix #BATB #NetflixSaveBatB Please consider beasties want this show as part of your original schedule.... what… " STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Netflix" STOCK: 31/01/2017 DATE: 140.71 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.375 and the TextBlob polarity score is @netflix. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0123658588586453 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: -0.0042640892616018 7_DAY_RETURN: 4411631.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.375 TEXTBLOB_POLARITY: @netflix | Predicted 1_DAY_RETURN: 0.0123658588586453
Predicted 2_DAY_RETURN: 0.0123658588586453
Predicted 7_DAY_RETURN: 4411631.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "@JulianDApostate @2ndTierFan @Reuters It is illegal to fire them for using the dissent pipeline. That's what it was created for." STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.5 and the TextBlob polarity score is @Reuters. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.