instruction
stringclasses
3 values
input
stringlengths
33
307
output
stringlengths
66
248
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.41818181818181815 TEXTBLOB_POLARITY: @netflix
Predicted 1_DAY_RETURN: 0.0123658588586453 Predicted 2_DAY_RETURN: 0.0123658588586453 Predicted 7_DAY_RETURN: 4411631.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @MarkSimoneNY: Hey @Starbucks, instead of hiring 10,000 refugees, how about hiring 10,000 veterans. " STOCK: Starbucks DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Starbucks 1_DAY_RETURN: 0.0123143788482433 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0162984425932632 7_DAY_RETURN: 0.0583122057225642
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Starbucks LAST_PRICE: 55.22 PX_VOLUME: 14307985.0 VOLATILITY_10D: 23.916 VOLATILITY_30D: 17.298 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0
Predicted 1_DAY_RETURN: 0.0123143788482433 Predicted 2_DAY_RETURN: 0.0162984425932632 Predicted 7_DAY_RETURN: 0.0583122057225642
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @SandyAvila37: @netflix Pls make #BATB yours and continue VinCat´s magical journey #NetflixSaveBatB https://t.co/aKmjtg3mui" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Netflix" STOCK: 31/01/2017 DATE: 140.71
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.5 and the TextBlob polarity score is @netflix.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0123658588586453 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: -0.0042640892616018 7_DAY_RETURN: 4411631.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.5 TEXTBLOB_POLARITY: @netflix
Predicted 1_DAY_RETURN: 0.0123658588586453 Predicted 2_DAY_RETURN: 0.0123658588586453 Predicted 7_DAY_RETURN: 4411631.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@netflix #BATB  Adding this show to your original programming would make fans go completely berserk.… https://t.co/hF5HiEEINm" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Netflix" STOCK: 31/01/2017 DATE: 140.71
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.2375 and the TextBlob polarity score is @netflix.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0123658588586453 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: -0.0042640892616018 7_DAY_RETURN: 4411631.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.2375 TEXTBLOB_POLARITY: @netflix
Predicted 1_DAY_RETURN: 0.0123658588586453 Predicted 2_DAY_RETURN: 0.0123658588586453 Predicted 7_DAY_RETURN: 4411631.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Drops: yo fuck you @McDonalds https://t.co/NEUCDMBGMe" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "McDonald's" STOCK: 31/01/2017 DATE: 122.57
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.4 and the TextBlob polarity score is @McDonalds.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.002365994941666 2_DAY_RETURN: 0.002365994941666 3_DAY_RETURN: -0.0124010769356285 7_DAY_RETURN: 3733323.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0036713714612058 PX_VOLUME: 7.972 VOLATILITY_10D: 9.585 VOLATILITY_30D: 1.0 LSTM_POLARITY: -0.4 TEXTBLOB_POLARITY: @McDonalds
Predicted 1_DAY_RETURN: 0.002365994941666 Predicted 2_DAY_RETURN: 0.002365994941666 Predicted 7_DAY_RETURN: 3733323.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Check out Crime Beat: A Decade of Covering Cops and Killers by Michael Connelly 2006 Book https://t.co/ymiIq8Et4N via @eBay" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @eBay
Predicted 1_DAY_RETURN: 0.021363493559535 Predicted 2_DAY_RETURN: 0.021363493559535 Predicted 7_DAY_RETURN: 9469076.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Drops: yo fuck you @McDonalds https://t.co/NEUCDMBGMe" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "McDonald's" STOCK: 31/01/2017 DATE: 122.57
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.4 and the TextBlob polarity score is @McDonalds.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.002365994941666 2_DAY_RETURN: 0.002365994941666 3_DAY_RETURN: -0.0124010769356285 7_DAY_RETURN: 3733323.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0036713714612058 PX_VOLUME: 7.972 VOLATILITY_10D: 9.585 VOLATILITY_30D: 1.0 LSTM_POLARITY: -0.4 TEXTBLOB_POLARITY: @McDonalds
Predicted 1_DAY_RETURN: 0.002365994941666 Predicted 2_DAY_RETURN: 0.002365994941666 Predicted 7_DAY_RETURN: 3733323.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @57Veronica: @netflix @NetflixNL We watched a great S4 of Beauty and the Beast! It would be awesome if you could bring #BatB S5! Please…" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Netflix" STOCK: 31/01/2017 DATE: 140.71
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1.0 and the TextBlob polarity score is @netflix.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0123658588586453 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: -0.0042640892616018 7_DAY_RETURN: 4411631.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: 1.0 LSTM_POLARITY: 1.0 TEXTBLOB_POLARITY: @netflix
Predicted 1_DAY_RETURN: 0.0123658588586453 Predicted 2_DAY_RETURN: 0.0123658588586453 Predicted 7_DAY_RETURN: 4411631.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @silkeklemm2batb: #BatB is such a fantastic show @netflix @netflixDE, pls add our beloved show 2 your orginal programming… " STOCK: Netflix DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.3666666666666667.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Netflix 1_DAY_RETURN: 0.0036244758723615 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: 0.0123658588586453 7_DAY_RETURN: -0.0042640892616018
The stock shows a consistent negative return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Netflix LAST_PRICE: 140.71 PX_VOLUME: 4411631.0 VOLATILITY_10D: 27.398000000000003 VOLATILITY_30D: 24.135 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.3666666666666667
Predicted 1_DAY_RETURN: 0.0036244758723615 Predicted 2_DAY_RETURN: 0.0123658588586453 Predicted 7_DAY_RETURN: -0.0042640892616018
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @netflix: Feeling the love this month. Here are a few of the things coming to Netflix in February. https://t.co/mE0PiKPRSk" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Netflix" STOCK: 31/01/2017 DATE: 140.71
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.5 and the TextBlob polarity score is @netflix.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0123658588586453 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: -0.0042640892616018 7_DAY_RETURN: 4411631.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.5 TEXTBLOB_POLARITY: @netflix
Predicted 1_DAY_RETURN: 0.0123658588586453 Predicted 2_DAY_RETURN: 0.0123658588586453 Predicted 7_DAY_RETURN: 4411631.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @57Veronica: @netflix 4 times PCA winner Beauty and the Beast deserves more seasons! Please give fan favorite #BatB a new home! #Netflix…" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Netflix" STOCK: 31/01/2017 DATE: 140.71
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.625 and the TextBlob polarity score is @netflix.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0123658588586453 2_DAY_RETURN: 0.0123658588586453 3_DAY_RETURN: -0.0042640892616018 7_DAY_RETURN: 4411631.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0036244758723615 PX_VOLUME: 27.398000000000003 VOLATILITY_10D: 24.135 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.625 TEXTBLOB_POLARITY: @netflix
Predicted 1_DAY_RETURN: 0.0123658588586453 Predicted 2_DAY_RETURN: 0.0123658588586453 Predicted 7_DAY_RETURN: 4411631.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @whatsurhurry: @amazon @johnnyrandle Amazon needs to take refugees from terror states home to meet the family and stay. Then they can ta…" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Amazon" STOCK: 31/01/2017 DATE: 823.48
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @amazon.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0149244668965851 2_DAY_RETURN: 0.0149244668965851 3_DAY_RETURN: -0.0012629329188322 7_DAY_RETURN: 3137196.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0083790741730217 PX_VOLUME: 13.447 VOLATILITY_10D: 16.992 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @amazon
Predicted 1_DAY_RETURN: 0.0149244668965851 Predicted 2_DAY_RETURN: 0.0149244668965851 Predicted 7_DAY_RETURN: 3137196.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Drops: yo fuck you @McDonalds https://t.co/NEUCDMBGMe" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "McDonald's" STOCK: 31/01/2017 DATE: 122.57
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.4 and the TextBlob polarity score is @McDonalds.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.002365994941666 2_DAY_RETURN: 0.002365994941666 3_DAY_RETURN: -0.0124010769356285 7_DAY_RETURN: 3733323.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0036713714612058 PX_VOLUME: 7.972 VOLATILITY_10D: 9.585 VOLATILITY_30D: 1.0 LSTM_POLARITY: -0.4 TEXTBLOB_POLARITY: @McDonalds
Predicted 1_DAY_RETURN: 0.002365994941666 Predicted 2_DAY_RETURN: 0.002365994941666 Predicted 7_DAY_RETURN: 3733323.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @trvo512: are you fucking kidding me? @McDonalds https://t.co/YgNCoLqJhr" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "McDonald's" STOCK: 31/01/2017 DATE: 122.57
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.002365994941666 2_DAY_RETURN: 0.002365994941666 3_DAY_RETURN: -0.0124010769356285 7_DAY_RETURN: 3733323.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0036713714612058 PX_VOLUME: 7.972 VOLATILITY_10D: 9.585 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds
Predicted 1_DAY_RETURN: 0.002365994941666 Predicted 2_DAY_RETURN: 0.002365994941666 Predicted 7_DAY_RETURN: 3733323.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "I just listed: 'French Kiss', for 3.00 via @amazon https://t.co/K0CJYscee3 " STOCK: Amazon DATE: 31/01/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Amazon 1_DAY_RETURN: 0.0083790741730217 2_DAY_RETURN: 0.0149244668965851 3_DAY_RETURN: 0.0149244668965851 7_DAY_RETURN: -0.0012629329188322
The stock shows a consistent negative return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Amazon LAST_PRICE: 823.48 PX_VOLUME: 3137196.0 VOLATILITY_10D: 13.447 VOLATILITY_30D: 16.992 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0
Predicted 1_DAY_RETURN: 0.0083790741730217 Predicted 2_DAY_RETURN: 0.0149244668965851 Predicted 7_DAY_RETURN: -0.0012629329188322
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@DonnieWahlberg @HomeDepot @Target @Petco love Lumpy❤" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Home Depot" STOCK: 31/01/2017 DATE: 137.58
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.5 and the TextBlob polarity score is @HomeDepot.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.005451373746184 2_DAY_RETURN: 0.005451373746184 3_DAY_RETURN: 0.0034888791975577 7_DAY_RETURN: 3227039.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0064689635121382 PX_VOLUME: 12.229 VOLATILITY_10D: 11.036 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.5 TEXTBLOB_POLARITY: @HomeDepot
Predicted 1_DAY_RETURN: 0.005451373746184 Predicted 2_DAY_RETURN: 0.005451373746184 Predicted 7_DAY_RETURN: 3227039.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Reuters: JUST IN: Roughly 900 State Department officials sign dissent memo critical of Trump immigration order - source. https://t.co/6…" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.05 and the TextBlob polarity score is @Reuters.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.05 TEXTBLOB_POLARITY: @Reuters
Predicted 1_DAY_RETURN: 0.0031221716708478 Predicted 2_DAY_RETURN: 0.0031221716708478 Predicted 7_DAY_RETURN: 547029.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: ".@realDonaldTrump tech relations sour over #ImmigrationBan at @Google @TeslaMotors @Amazon @Apple & more https://t.co/Ngqj0bdzQ2 @seanspicer" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Google" STOCK: 31/01/2017 DATE: 820.19
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Google.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0302856655165265 2_DAY_RETURN: 0.0302856655165265 3_DAY_RETURN: 0.0357721991245929 7_DAY_RETURN: 2020180.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0044379960740803 PX_VOLUME: 21.549 VOLATILITY_10D: 14.953 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Google
Predicted 1_DAY_RETURN: 0.0302856655165265 Predicted 2_DAY_RETURN: 0.0302856655165265 Predicted 7_DAY_RETURN: 2020180.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @creatorsarea: Healthy Hair Vitamins 60 Day Supply MD Formulated HSN-23 Hair Skin & Nails Vi... https://t.co/XZ15twkTp5 via @amazon" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Amazon" STOCK: 31/01/2017 DATE: 823.48
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.5 and the TextBlob polarity score is @amazon.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 31/01/2017 1_DAY_RETURN: 0.0149244668965851 2_DAY_RETURN: 0.0149244668965851 3_DAY_RETURN: -0.0012629329188322 7_DAY_RETURN: 3137196.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 31/01/2017 LAST_PRICE: 0.0083790741730217 PX_VOLUME: 13.447 VOLATILITY_10D: 16.992 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.5 TEXTBLOB_POLARITY: @amazon
Predicted 1_DAY_RETURN: 0.0149244668965851 Predicted 2_DAY_RETURN: 0.0149244668965851 Predicted 7_DAY_RETURN: 3137196.0