instruction
stringclasses 3
values | input
stringlengths 33
307
| output
stringlengths 66
248
|
---|---|---|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: Starbucks 1_DAY_RETURN: 0.0244897959183673 2_DAY_RETURN: 0.0371057513914656 3_DAY_RETURN: 0.0411873840445268 7_DAY_RETURN: 0.0890538033395177
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: Starbucks LAST_PRICE: 53.9 PX_VOLUME: 18796871.0 VOLATILITY_10D: 25.781 VOLATILITY_30D: 18.576 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.2
|
Predicted 1_DAY_RETURN: 0.0244897959183673
Predicted 2_DAY_RETURN: 0.0371057513914656
Predicted 7_DAY_RETURN: 0.0890538033395177
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "@Starbucks And selling as much coffee as possible...." STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Starbucks" STOCK: 01/02/2017 DATE: 53.9
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.1 and the TextBlob polarity score is @Starbucks.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0371057513914656 2_DAY_RETURN: 0.0411873840445268 3_DAY_RETURN: 0.0890538033395177 7_DAY_RETURN: 18796871.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0244897959183673 PX_VOLUME: 25.781 VOLATILITY_10D: 18.576 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.1 TEXTBLOB_POLARITY: @Starbucks
|
Predicted 1_DAY_RETURN: 0.0371057513914656
Predicted 2_DAY_RETURN: 0.0411873840445268
Predicted 7_DAY_RETURN: 18796871.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @trvo512: are you fucking kidding me? @McDonalds https://t.co/YgNCoLqJhr" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "McDonald's" STOCK: 01/02/2017 DATE: 122.42
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.004901159941186 2_DAY_RETURN: 0.0035941839568697 3_DAY_RETURN: -0.0051462179382453 7_DAY_RETURN: 3233576.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0012252899852964 PX_VOLUME: 7.607 VOLATILITY_10D: 9.573 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds
|
Predicted 1_DAY_RETURN: 0.004901159941186
Predicted 2_DAY_RETURN: 0.0035941839568697
Predicted 7_DAY_RETURN: 3233576.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @Reuters: Only a third of Americans think Trump's travel ban will make them more safe https://t.co/wDBhBbGLXU https://t.co/tI01mEvqGF" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Reuters" STOCK: 01/02/2017 DATE: 49.0803
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.25 and the TextBlob polarity score is @Reuters.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0035900351057349 2_DAY_RETURN: 0.009425370260573 3_DAY_RETURN: 0.0177280904965943 7_DAY_RETURN: 693341.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0062835801737152 PX_VOLUME: 10.369000000000002 VOLATILITY_10D: 9.245 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.25 TEXTBLOB_POLARITY: @Reuters
|
Predicted 1_DAY_RETURN: 0.0035900351057349
Predicted 2_DAY_RETURN: 0.009425370260573
Predicted 7_DAY_RETURN: 693341.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @TMobile: @tjmasino Ooh, good suggestion! I gotta say, TLOP was my favorite album. Real Friends and Famous are 🙌 *ChanneyT https://t.co…
" STOCK: TMobile DATE: 01/02/2017
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.875.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: TMobile 1_DAY_RETURN: -0.0156496996522288 2_DAY_RETURN: -0.0336705659184317 3_DAY_RETURN: -0.0132785330382547 7_DAY_RETURN: -0.0398355991147644
|
The stock shows a consistent negative return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: TMobile LAST_PRICE: 63.26 PX_VOLUME: 8937496.0 VOLATILITY_10D: 31.18 VOLATILITY_30D: 25.996 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.875
|
Predicted 1_DAY_RETURN: -0.0156496996522288
Predicted 2_DAY_RETURN: -0.0336705659184317
Predicted 7_DAY_RETURN: -0.0398355991147644
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @trvo512: are you fucking kidding me? @McDonalds https://t.co/YgNCoLqJhr" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "McDonald's" STOCK: 01/02/2017 DATE: 122.42
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.004901159941186 2_DAY_RETURN: 0.0035941839568697 3_DAY_RETURN: -0.0051462179382453 7_DAY_RETURN: 3233576.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0012252899852964 PX_VOLUME: 7.607 VOLATILITY_10D: 9.573 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds
|
Predicted 1_DAY_RETURN: 0.004901159941186
Predicted 2_DAY_RETURN: 0.0035941839568697
Predicted 7_DAY_RETURN: 3233576.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "@SkyNewsBiz Just saw this on Amazon: ULTIMATE MATRIX COL 5D [Blu-ray] by Various for $62.83 https://t.co/IamKphjpDk via @amazon" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Amazon" STOCK: 01/02/2017 DATE: 832.35
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @amazon.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: -0.0023667928155223 2_DAY_RETURN: 0.0041088484411605 3_DAY_RETURN: 0.0050099116958009 7_DAY_RETURN: 3850181.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: -0.0106565747582146 PX_VOLUME: 14.201 VOLATILITY_10D: 16.989 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @amazon
|
Predicted 1_DAY_RETURN: -0.0023667928155223
Predicted 2_DAY_RETURN: 0.0041088484411605
Predicted 7_DAY_RETURN: 3850181.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @Reuters: Only a third of Americans think Trump's travel ban will make them more safe https://t.co/wDBhBbGLXU https://t.co/tI01mEvqGF" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Reuters" STOCK: 01/02/2017 DATE: 49.0803
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.25 and the TextBlob polarity score is @Reuters.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0035900351057349 2_DAY_RETURN: 0.009425370260573 3_DAY_RETURN: 0.0177280904965943 7_DAY_RETURN: 693341.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0062835801737152 PX_VOLUME: 10.369000000000002 VOLATILITY_10D: 9.245 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.25 TEXTBLOB_POLARITY: @Reuters
|
Predicted 1_DAY_RETURN: 0.0035900351057349
Predicted 2_DAY_RETURN: 0.009425370260573
Predicted 7_DAY_RETURN: 693341.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "@Starbucks just make sure they make good drinks cause what I got today sucked. :(" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Starbucks" STOCK: 01/02/2017 DATE: 53.9
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.6 and the TextBlob polarity score is @Starbucks.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0371057513914656 2_DAY_RETURN: 0.0411873840445268 3_DAY_RETURN: 0.0890538033395177 7_DAY_RETURN: 18796871.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0244897959183673 PX_VOLUME: 25.781 VOLATILITY_10D: 18.576 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.6 TEXTBLOB_POLARITY: @Starbucks
|
Predicted 1_DAY_RETURN: 0.0371057513914656
Predicted 2_DAY_RETURN: 0.0411873840445268
Predicted 7_DAY_RETURN: 18796871.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @trvo512: are you fucking kidding me? @McDonalds https://t.co/YgNCoLqJhr" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "McDonald's" STOCK: 01/02/2017 DATE: 122.42
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.004901159941186 2_DAY_RETURN: 0.0035941839568697 3_DAY_RETURN: -0.0051462179382453 7_DAY_RETURN: 3233576.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0012252899852964 PX_VOLUME: 7.607 VOLATILITY_10D: 9.573 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds
|
Predicted 1_DAY_RETURN: 0.004901159941186
Predicted 2_DAY_RETURN: 0.0035941839568697
Predicted 7_DAY_RETURN: 3233576.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @Starbucks: We believe in acceptance, inclusivity, and humanity—for everyone. 💚
https://t.co/WTFJI7nmkB https://t.co/qufSIUpUHz
" STOCK: Starbucks DATE: 01/02/2017
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: Starbucks 1_DAY_RETURN: 0.0244897959183673 2_DAY_RETURN: 0.0371057513914656 3_DAY_RETURN: 0.0411873840445268 7_DAY_RETURN: 0.0890538033395177
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: Starbucks LAST_PRICE: 53.9 PX_VOLUME: 18796871.0 VOLATILITY_10D: 25.781 VOLATILITY_30D: 18.576 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0
|
Predicted 1_DAY_RETURN: 0.0244897959183673
Predicted 2_DAY_RETURN: 0.0371057513914656
Predicted 7_DAY_RETURN: 0.0890538033395177
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Check out Lane Bryant Shirt Green Cap Sleeve Pullover Blouse Polyester Plus Size 18/20 EUC #Blouse https://t.co/0Xu0GLroEr via @eBay" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "eBay" STOCK: 01/02/2017 DATE: 32.18
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.2 and the TextBlob polarity score is @eBay.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: -0.000310752019888 2_DAY_RETURN: 0.0102548166563082 3_DAY_RETURN: -0.0605966438781851 7_DAY_RETURN: 9700776.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: -0.0108763206960845 PX_VOLUME: 33.037 VOLATILITY_10D: 22.838 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.2 TEXTBLOB_POLARITY: @eBay
|
Predicted 1_DAY_RETURN: -0.000310752019888
Predicted 2_DAY_RETURN: 0.0102548166563082
Predicted 7_DAY_RETURN: 9700776.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "@Starbucks that's everyone except Americans. Deeds more than words @Starbucks" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Starbucks" STOCK: 01/02/2017 DATE: 53.9
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Starbucks.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.0371057513914656 2_DAY_RETURN: 0.0411873840445268 3_DAY_RETURN: 0.0890538033395177 7_DAY_RETURN: 18796871.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0244897959183673 PX_VOLUME: 25.781 VOLATILITY_10D: 18.576 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Starbucks
|
Predicted 1_DAY_RETURN: 0.0371057513914656
Predicted 2_DAY_RETURN: 0.0411873840445268
Predicted 7_DAY_RETURN: 18796871.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @trvo512: are you fucking kidding me? @McDonalds https://t.co/YgNCoLqJhr" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "McDonald's" STOCK: 01/02/2017 DATE: 122.42
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.004901159941186 2_DAY_RETURN: 0.0035941839568697 3_DAY_RETURN: -0.0051462179382453 7_DAY_RETURN: 3233576.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0012252899852964 PX_VOLUME: 7.607 VOLATILITY_10D: 9.573 VOLATILITY_30D: 1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds
|
Predicted 1_DAY_RETURN: 0.004901159941186
Predicted 2_DAY_RETURN: 0.0035941839568697
Predicted 7_DAY_RETURN: 3233576.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @JohnnyImbecile: @Reuters Or, don't watch #BannonsTool turn an important decision into a game show.
" STOCK: Reuters DATE: 01/02/2017
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: Reuters 1_DAY_RETURN: 0.0062835801737152 2_DAY_RETURN: 0.0035900351057349 3_DAY_RETURN: 0.009425370260573 7_DAY_RETURN: 0.0177280904965943
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: Reuters LAST_PRICE: 49.0803 PX_VOLUME: 693341.0 VOLATILITY_10D: 10.369000000000002 VOLATILITY_30D: 9.245 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0
|
Predicted 1_DAY_RETURN: 0.0062835801737152
Predicted 2_DAY_RETURN: 0.0035900351057349
Predicted 7_DAY_RETURN: 0.0177280904965943
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @MarkSimoneNY: Hey @Starbucks, instead of hiring 10,000 refugees, how about hiring 10,000 veterans.
" STOCK: Starbucks DATE: 01/02/2017
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: Starbucks 1_DAY_RETURN: 0.0244897959183673 2_DAY_RETURN: 0.0371057513914656 3_DAY_RETURN: 0.0411873840445268 7_DAY_RETURN: 0.0890538033395177
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: Starbucks LAST_PRICE: 53.9 PX_VOLUME: 18796871.0 VOLATILITY_10D: 25.781 VOLATILITY_30D: 18.576 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0
|
Predicted 1_DAY_RETURN: 0.0244897959183673
Predicted 2_DAY_RETURN: 0.0371057513914656
Predicted 7_DAY_RETURN: 0.0890538033395177
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Check out Vintage Gripoix Glass Rhinestone Crescent Moon Arch Brooch Pin Gold Plated https://t.co/kEicQws9TT @eBay" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "eBay" STOCK: 01/02/2017 DATE: 32.18
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: -0.000310752019888 2_DAY_RETURN: 0.0102548166563082 3_DAY_RETURN: -0.0605966438781851 7_DAY_RETURN: 9700776.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: -0.0108763206960845 PX_VOLUME: 33.037 VOLATILITY_10D: 22.838 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @eBay
|
Predicted 1_DAY_RETURN: -0.000310752019888
Predicted 2_DAY_RETURN: 0.0102548166563082
Predicted 7_DAY_RETURN: 9700776.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @trvo512: are you fucking kidding me? @McDonalds https://t.co/YgNCoLqJhr" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "McDonald's" STOCK: 01/02/2017 DATE: 122.42
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.004901159941186 2_DAY_RETURN: 0.0035941839568697 3_DAY_RETURN: -0.0051462179382453 7_DAY_RETURN: 3233576.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0012252899852964 PX_VOLUME: 7.607 VOLATILITY_10D: 9.573 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds
|
Predicted 1_DAY_RETURN: 0.004901159941186
Predicted 2_DAY_RETURN: 0.0035941839568697
Predicted 7_DAY_RETURN: 3233576.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "RT @trvo512: are you fucking kidding me? @McDonalds https://t.co/YgNCoLqJhr" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
|
Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "McDonald's" STOCK: 01/02/2017 DATE: 122.42
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.6 and the TextBlob polarity score is @McDonalds.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: 01/02/2017 1_DAY_RETURN: 0.004901159941186 2_DAY_RETURN: 0.0035941839568697 3_DAY_RETURN: -0.0051462179382453 7_DAY_RETURN: 3233576.0
|
The stock shows a consistent positive return trend over the specified periods.
|
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
|
STOCK: 01/02/2017 LAST_PRICE: 0.0012252899852964 PX_VOLUME: 7.607 VOLATILITY_10D: 9.573 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.6 TEXTBLOB_POLARITY: @McDonalds
|
Predicted 1_DAY_RETURN: 0.004901159941186
Predicted 2_DAY_RETURN: 0.0035941839568697
Predicted 7_DAY_RETURN: 3233576.0
|
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
|
TWEET: "Check out Grey's Anatomy Scrubs Pants Blue Gray XL Lot Of 3 https://t.co/F3FOIMVqqq @eBay" STOCK: nan DATE: nan
|
Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
|
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
|
The stock shows a neutral return trend over the specified periods.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.