instruction
stringclasses
3 values
input
stringlengths
33
307
output
stringlengths
66
248
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@Hyundai I registered at https://t.co/DcGIFSSe0Y and keep getting an error when trying to register my vehicle. https://t.co/lg5VL7vbx5" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Hyundai" STOCK: 01/02/2017 DATE: 139500.0
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Hyundai.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 01/02/2017 1_DAY_RETURN: 0.021505376344086 2_DAY_RETURN: 0.021505376344086 3_DAY_RETURN: 0.017921146953405 7_DAY_RETURN: 446549.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 01/02/2017 LAST_PRICE: 0.0 PX_VOLUME: 23.05 VOLATILITY_10D: 23.72 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Hyundai
Predicted 1_DAY_RETURN: 0.021505376344086 Predicted 2_DAY_RETURN: 0.021505376344086 Predicted 7_DAY_RETURN: 446549.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "#Garland Boycott. Resist. Impeach. @tribelaw @Lawrence @JeffBezos @amazon @googlecloud @Apple https://t.co/ffMfJQQO0J" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Amazon" STOCK: 01/02/2017 DATE: 832.35
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @amazon.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 01/02/2017 1_DAY_RETURN: -0.0023667928155223 2_DAY_RETURN: 0.0041088484411605 3_DAY_RETURN: 0.0050099116958009 7_DAY_RETURN: 3850181.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 01/02/2017 LAST_PRICE: -0.0106565747582146 PX_VOLUME: 14.201 VOLATILITY_10D: 16.989 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @amazon
Predicted 1_DAY_RETURN: -0.0023667928155223 Predicted 2_DAY_RETURN: 0.0041088484411605 Predicted 7_DAY_RETURN: 3850181.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@amazon Retweet for your chance to win @DearNorth Smoked Salmon Combo Pack! https://t.co/pkxIPQZbpA https://t.co/cABiYfAKFR #giveaway" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Amazon" STOCK: 01/02/2017 DATE: 832.35
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1.0 and the TextBlob polarity score is @amazon.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 01/02/2017 1_DAY_RETURN: -0.0023667928155223 2_DAY_RETURN: 0.0041088484411605 3_DAY_RETURN: 0.0050099116958009 7_DAY_RETURN: 3850181.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 01/02/2017 LAST_PRICE: -0.0106565747582146 PX_VOLUME: 14.201 VOLATILITY_10D: 16.989 VOLATILITY_30D: -1.0 LSTM_POLARITY: 1.0 TEXTBLOB_POLARITY: @amazon
Predicted 1_DAY_RETURN: -0.0023667928155223 Predicted 2_DAY_RETURN: 0.0041088484411605 Predicted 7_DAY_RETURN: 3850181.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Starbucks: We believe in acceptance, inclusivity, and humanity—for everyone. 💚 https://t.co/WTFJI7nmkB https://t.co/qufSIUpUHz " STOCK: Starbucks DATE: 01/02/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Starbucks 1_DAY_RETURN: 0.0244897959183673 2_DAY_RETURN: 0.0371057513914656 3_DAY_RETURN: 0.0411873840445268 7_DAY_RETURN: 0.0890538033395177
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Starbucks LAST_PRICE: 53.9 PX_VOLUME: 18796871.0 VOLATILITY_10D: 25.781 VOLATILITY_30D: 18.576 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0
Predicted 1_DAY_RETURN: 0.0244897959183673 Predicted 2_DAY_RETURN: 0.0371057513914656 Predicted 7_DAY_RETURN: 0.0890538033395177
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@McDonalds Everything else gives me the shits." STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "McDonald's" STOCK: 01/02/2017 DATE: 122.42
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @McDonalds.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 01/02/2017 1_DAY_RETURN: 0.004901159941186 2_DAY_RETURN: 0.0035941839568697 3_DAY_RETURN: -0.0051462179382453 7_DAY_RETURN: 3233576.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 01/02/2017 LAST_PRICE: 0.0012252899852964 PX_VOLUME: 7.607 VOLATILITY_10D: 9.573 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @McDonalds
Predicted 1_DAY_RETURN: 0.004901159941186 Predicted 2_DAY_RETURN: 0.0035941839568697 Predicted 7_DAY_RETURN: 3233576.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Starbucks: @ChristinaJReed We hired 8,800 veterans and military spouses toward a five-year goal to reach 10,000 by 2018. https://t.co/W… " STOCK: Starbucks DATE: 01/02/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is -0.1.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Starbucks 1_DAY_RETURN: 0.0244897959183673 2_DAY_RETURN: 0.0371057513914656 3_DAY_RETURN: 0.0411873840445268 7_DAY_RETURN: 0.0890538033395177
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Starbucks LAST_PRICE: 53.9 PX_VOLUME: 18796871.0 VOLATILITY_10D: 25.781 VOLATILITY_30D: 18.576 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: -0.1
Predicted 1_DAY_RETURN: 0.0244897959183673 Predicted 2_DAY_RETURN: 0.0371057513914656 Predicted 7_DAY_RETURN: 0.0890538033395177
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Check out Clarks Artisan Collection black leather heels sandals shoes womens size 7.5M #Clarks https://t.co/wubxsUM8yM via @eBay" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "eBay" STOCK: 01/02/2017 DATE: 32.18
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.16666666666666666 and the TextBlob polarity score is @eBay.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 01/02/2017 1_DAY_RETURN: -0.000310752019888 2_DAY_RETURN: 0.0102548166563082 3_DAY_RETURN: -0.0605966438781851 7_DAY_RETURN: 9700776.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 01/02/2017 LAST_PRICE: -0.0108763206960845 PX_VOLUME: 33.037 VOLATILITY_10D: 22.838 VOLATILITY_30D: -1.0 LSTM_POLARITY: -0.16666666666666666 TEXTBLOB_POLARITY: @eBay
Predicted 1_DAY_RETURN: -0.000310752019888 Predicted 2_DAY_RETURN: 0.0102548166563082 Predicted 7_DAY_RETURN: 9700776.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @geraldwolfe1: Hey @Starbucks ! How about hiring 10,000 unemployed Veterans! " STOCK: Starbucks DATE: 01/02/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Starbucks 1_DAY_RETURN: 0.0244897959183673 2_DAY_RETURN: 0.0371057513914656 3_DAY_RETURN: 0.0411873840445268 7_DAY_RETURN: 0.0890538033395177
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Starbucks LAST_PRICE: 53.9 PX_VOLUME: 18796871.0 VOLATILITY_10D: 25.781 VOLATILITY_30D: 18.576 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0
Predicted 1_DAY_RETURN: 0.0244897959183673 Predicted 2_DAY_RETURN: 0.0371057513914656 Predicted 7_DAY_RETURN: 0.0890538033395177
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@KelloggsUS I am choosing #TEAMSATURDAYENTRY" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Kellogg's" STOCK: 01/02/2017 DATE: 71.9
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @KelloggsUS.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 01/02/2017 1_DAY_RETURN: 0.0107093184979137 2_DAY_RETURN: 0.015299026425591 3_DAY_RETURN: 0.0057023643949929 7_DAY_RETURN: 1448570.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 01/02/2017 LAST_PRICE: 0.0112656467315714 PX_VOLUME: 11.203 VOLATILITY_10D: 9.553 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @KelloggsUS
Predicted 1_DAY_RETURN: 0.0107093184979137 Predicted 2_DAY_RETURN: 0.015299026425591 Predicted 7_DAY_RETURN: 1448570.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @pepsi: We’ve got @LadyGaga’s #PepsiHalftime show under the 🔬 and it’s looking 🔥🔥🔥. Check out this #BehindTheScenes 📹 👆of h… " STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Pepsi" STOCK: 01/02/2017 DATE: 103.01
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @pepsi.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 01/02/2017 1_DAY_RETURN: 0.0066013008445781 2_DAY_RETURN: 0.0045626638190466 3_DAY_RETURN: 0.015532472575478 7_DAY_RETURN: 3515578.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 01/02/2017 LAST_PRICE: 0.0074750024269488 PX_VOLUME: 9.724 VOLATILITY_10D: 8.722000000000001 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @pepsi
Predicted 1_DAY_RETURN: 0.0066013008445781 Predicted 2_DAY_RETURN: 0.0045626638190466 Predicted 7_DAY_RETURN: 3515578.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Pamela_Moore13: Hey, @Starbucks. Do you still support Hillary Clinton? Because these people support her.. #BoycottStarbucks… " STOCK: Starbucks DATE: 01/02/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Starbucks 1_DAY_RETURN: 0.0244897959183673 2_DAY_RETURN: 0.0371057513914656 3_DAY_RETURN: 0.0411873840445268 7_DAY_RETURN: 0.0890538033395177
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Starbucks LAST_PRICE: 53.9 PX_VOLUME: 18796871.0 VOLATILITY_10D: 25.781 VOLATILITY_30D: 18.576 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0
Predicted 1_DAY_RETURN: 0.0244897959183673 Predicted 2_DAY_RETURN: 0.0371057513914656 Predicted 7_DAY_RETURN: 0.0890538033395177
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Just saw this on Amazon: VORKE Z1 Amlogic S912 KODI 16.1 4K 3G DDR4/32G eMMC ... by Vorke for $99.99 https://t.co/JdHuIcurSX via @amazon" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Amazon" STOCK: 01/02/2017 DATE: 832.35
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @amazon.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 01/02/2017 1_DAY_RETURN: -0.0023667928155223 2_DAY_RETURN: 0.0041088484411605 3_DAY_RETURN: 0.0050099116958009 7_DAY_RETURN: 3850181.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 01/02/2017 LAST_PRICE: -0.0106565747582146 PX_VOLUME: 14.201 VOLATILITY_10D: 16.989 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @amazon
Predicted 1_DAY_RETURN: -0.0023667928155223 Predicted 2_DAY_RETURN: 0.0041088484411605 Predicted 7_DAY_RETURN: 3850181.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @svo916: @Yahoo pls pull your ad from Breitbart, the #fakenews site trying to delegitimize news outlets like ur own… " STOCK: Yahoo DATE: 01/02/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is 0.0.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Yahoo 1_DAY_RETURN: 0.0 2_DAY_RETURN: 0.0 3_DAY_RETURN: -0.1045130641330166 7_DAY_RETURN: -0.1045130641330166
The stock shows a consistent negative return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Yahoo LAST_PRICE: 4.21 PX_VOLUME: 3000.0 VOLATILITY_10D: 85.12200000000001 VOLATILITY_30D: nan LSTM_POLARITY: -1 TEXTBLOB_POLARITY: 0.0
Predicted 1_DAY_RETURN: 0.0 Predicted 2_DAY_RETURN: 0.0 Predicted 7_DAY_RETURN: -0.1045130641330166
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Pence, Jordan's Abdullah discuss Islamic State, Syria, U.S. embassy in Israel: White House https://t.co/Cdd9GUL6FZ via @Reuters " STOCK: Reuters DATE: 01/02/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is 0.0.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Reuters 1_DAY_RETURN: 0.0062835801737152 2_DAY_RETURN: 0.0035900351057349 3_DAY_RETURN: 0.009425370260573 7_DAY_RETURN: 0.0177280904965943
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Reuters LAST_PRICE: 49.0803 PX_VOLUME: 693341.0 VOLATILITY_10D: 10.369000000000002 VOLATILITY_30D: 9.245 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: 0.0
Predicted 1_DAY_RETURN: 0.0062835801737152 Predicted 2_DAY_RETURN: 0.0035900351057349 Predicted 7_DAY_RETURN: 0.0177280904965943
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "I really can't justify @Starbucks expense. I will tell everyone to please spend their monies at @DunkinDonuts- rea… https://t.co/RwossvH6Vb" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Starbucks" STOCK: 01/02/2017 DATE: 53.9
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.2 and the TextBlob polarity score is @Starbucks.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 01/02/2017 1_DAY_RETURN: 0.0371057513914656 2_DAY_RETURN: 0.0411873840445268 3_DAY_RETURN: 0.0890538033395177 7_DAY_RETURN: 18796871.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 01/02/2017 LAST_PRICE: 0.0244897959183673 PX_VOLUME: 25.781 VOLATILITY_10D: 18.576 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.2 TEXTBLOB_POLARITY: @Starbucks
Predicted 1_DAY_RETURN: 0.0371057513914656 Predicted 2_DAY_RETURN: 0.0411873840445268 Predicted 7_DAY_RETURN: 18796871.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @EmoJoshy1: I really like what @pepsi is doing with Lady Gaga's countdown It's a look through her career.. From 'The Fame' to '… " STOCK: Pepsi DATE: 01/02/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.2.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Pepsi 1_DAY_RETURN: 0.0074750024269488 2_DAY_RETURN: 0.0066013008445781 3_DAY_RETURN: 0.0045626638190466 7_DAY_RETURN: 0.015532472575478
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Pepsi LAST_PRICE: 103.01 PX_VOLUME: 3515578.0 VOLATILITY_10D: 9.724 VOLATILITY_30D: 8.722000000000001 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.2
Predicted 1_DAY_RETURN: 0.0074750024269488 Predicted 2_DAY_RETURN: 0.0066013008445781 Predicted 7_DAY_RETURN: 0.015532472575478
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @EmoJoshy1: I really like what @pepsi is doing with Lady Gaga's countdown It's a look through her career.. From 'The Fame' to '… " STOCK: Pepsi DATE: 01/02/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.2.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Pepsi 1_DAY_RETURN: 0.0074750024269488 2_DAY_RETURN: 0.0066013008445781 3_DAY_RETURN: 0.0045626638190466 7_DAY_RETURN: 0.015532472575478
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Pepsi LAST_PRICE: 103.01 PX_VOLUME: 3515578.0 VOLATILITY_10D: 9.724 VOLATILITY_30D: 8.722000000000001 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.2
Predicted 1_DAY_RETURN: 0.0074750024269488 Predicted 2_DAY_RETURN: 0.0066013008445781 Predicted 7_DAY_RETURN: 0.015532472575478
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @EmoJoshy1: I really like what @pepsi is doing with Lady Gaga's countdown It's a look through her career.. From 'The Fame' to '… " STOCK: Pepsi DATE: 01/02/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.2.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Pepsi 1_DAY_RETURN: 0.0074750024269488 2_DAY_RETURN: 0.0066013008445781 3_DAY_RETURN: 0.0045626638190466 7_DAY_RETURN: 0.015532472575478
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Pepsi LAST_PRICE: 103.01 PX_VOLUME: 3515578.0 VOLATILITY_10D: 9.724 VOLATILITY_30D: 8.722000000000001 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.2
Predicted 1_DAY_RETURN: 0.0074750024269488 Predicted 2_DAY_RETURN: 0.0066013008445781 Predicted 7_DAY_RETURN: 0.015532472575478
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @EmoJoshy1: I really like what @pepsi is doing with Lady Gaga's countdown It's a look through her career.. From 'The Fame' to '… " STOCK: Pepsi DATE: 01/02/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.2.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Pepsi 1_DAY_RETURN: 0.0074750024269488 2_DAY_RETURN: 0.0066013008445781 3_DAY_RETURN: 0.0045626638190466 7_DAY_RETURN: 0.015532472575478
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Pepsi LAST_PRICE: 103.01 PX_VOLUME: 3515578.0 VOLATILITY_10D: 9.724 VOLATILITY_30D: 8.722000000000001 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.2
Predicted 1_DAY_RETURN: 0.0074750024269488 Predicted 2_DAY_RETURN: 0.0066013008445781 Predicted 7_DAY_RETURN: 0.015532472575478
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @EmoJoshy1: I really like what @pepsi is doing with Lady Gaga's countdown It's a look through her career.. From 'The Fame' to '… " STOCK: Pepsi DATE: 01/02/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.2.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Pepsi 1_DAY_RETURN: 0.0074750024269488 2_DAY_RETURN: 0.0066013008445781 3_DAY_RETURN: 0.0045626638190466 7_DAY_RETURN: 0.015532472575478
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Pepsi LAST_PRICE: 103.01 PX_VOLUME: 3515578.0 VOLATILITY_10D: 9.724 VOLATILITY_30D: 8.722000000000001 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.2
Predicted 1_DAY_RETURN: 0.0074750024269488 Predicted 2_DAY_RETURN: 0.0066013008445781 Predicted 7_DAY_RETURN: 0.015532472575478
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @Reuters: About 900 State Department officials sign protest memo: source https://t.co/Rhlh4OVE9G https://t.co/CiOCvaVK6N" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Reuters" STOCK: 01/02/2017 DATE: 49.0803
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: 01/02/2017 1_DAY_RETURN: 0.0035900351057349 2_DAY_RETURN: 0.009425370260573 3_DAY_RETURN: 0.0177280904965943 7_DAY_RETURN: 693341.0
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: 01/02/2017 LAST_PRICE: 0.0062835801737152 PX_VOLUME: 10.369000000000002 VOLATILITY_10D: 9.245 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters
Predicted 1_DAY_RETURN: 0.0035900351057349 Predicted 2_DAY_RETURN: 0.009425370260573 Predicted 7_DAY_RETURN: 693341.0
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "RT @EmoJoshy1: I really like what @pepsi is doing with Lady Gaga's countdown It's a look through her career.. From 'The Fame' to '… " STOCK: Pepsi DATE: 01/02/2017
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.2.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: Pepsi 1_DAY_RETURN: 0.0074750024269488 2_DAY_RETURN: 0.0066013008445781 3_DAY_RETURN: 0.0045626638190466 7_DAY_RETURN: 0.015532472575478
The stock shows a consistent positive return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: Pepsi LAST_PRICE: 103.01 PX_VOLUME: 3515578.0 VOLATILITY_10D: 9.724 VOLATILITY_30D: 8.722000000000001 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.2
Predicted 1_DAY_RETURN: 0.0074750024269488 Predicted 2_DAY_RETURN: 0.0066013008445781 Predicted 7_DAY_RETURN: 0.015532472575478
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "@CarlyELehwald @Starbucksnews @Starbucks when you see a veteran on the street tomorrow please tell him that" STOCK: nan DATE: nan
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan.
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends.
STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan
The stock shows a neutral return trend over the specified periods.
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN.
STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan
Predicted 1_DAY_RETURN: nan Predicted 2_DAY_RETURN: nan Predicted 7_DAY_RETURN: nan
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned.
TWEET: "Starbucks" STOCK: 01/02/2017 DATE: 53.9
Sentiment: (Provide sentiment here) Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Starbucks.