method_name
stringlengths 1
78
| method_body
stringlengths 3
9.66k
| full_code
stringlengths 31
10.7k
| docstring
stringlengths 4
4.74k
⌀ |
---|---|---|---|
embeddings | return self.embedding_function | @property
def embeddings(self) ->Embeddings:
return self.embedding_function | null |
get_navigable_strings | """Get all navigable strings from a BeautifulSoup element.
Args:
element: A BeautifulSoup element.
Returns:
A generator of strings.
"""
from bs4 import NavigableString, Tag
for child in cast(Tag, element).children:
if isinstance(child, Tag):
yield from get_navigable_strings(child)
elif isinstance(child, NavigableString):
if element.name == 'a' and (href := element.get('href')):
yield f'{child.strip()} ({href})'
else:
yield child.strip() | def get_navigable_strings(element: Any) ->Iterator[str]:
"""Get all navigable strings from a BeautifulSoup element.
Args:
element: A BeautifulSoup element.
Returns:
A generator of strings.
"""
from bs4 import NavigableString, Tag
for child in cast(Tag, element).children:
if isinstance(child, Tag):
yield from get_navigable_strings(child)
elif isinstance(child, NavigableString):
if element.name == 'a' and (href := element.get('href')):
yield f'{child.strip()} ({href})'
else:
yield child.strip() | Get all navigable strings from a BeautifulSoup element.
Args:
element: A BeautifulSoup element.
Returns:
A generator of strings. |
from_data | priority = None if data['priority'] is None else data['priority']['priority']
return cls(id=data['id'], name=data['name'], text_content=data[
'text_content'], description=data['description'], status=data['status']
['status'], creator_id=data['creator']['id'], creator_username=data[
'creator']['username'], creator_email=data['creator']['email'],
assignees=data['assignees'], watchers=data['watchers'], priority=
priority, due_date=data['due_date'], start_date=data['start_date'],
points=data['points'], team_id=data['team_id'], project_id=data[
'project']['id']) | @classmethod
def from_data(cls, data: Dict[str, Any]) ->'Task':
priority = None if data['priority'] is None else data['priority'][
'priority']
return cls(id=data['id'], name=data['name'], text_content=data[
'text_content'], description=data['description'], status=data[
'status']['status'], creator_id=data['creator']['id'],
creator_username=data['creator']['username'], creator_email=data[
'creator']['email'], assignees=data['assignees'], watchers=data[
'watchers'], priority=priority, due_date=data['due_date'],
start_date=data['start_date'], points=data['points'], team_id=data[
'team_id'], project_id=data['project']['id']) | null |
get_pydantic_field_names | """Get field names, including aliases, for a pydantic class.
Args:
pydantic_cls: Pydantic class."""
all_required_field_names = set()
for field in pydantic_cls.__fields__.values():
all_required_field_names.add(field.name)
if field.has_alias:
all_required_field_names.add(field.alias)
return all_required_field_names | def get_pydantic_field_names(pydantic_cls: Any) ->Set[str]:
"""Get field names, including aliases, for a pydantic class.
Args:
pydantic_cls: Pydantic class."""
all_required_field_names = set()
for field in pydantic_cls.__fields__.values():
all_required_field_names.add(field.name)
if field.has_alias:
all_required_field_names.add(field.alias)
return all_required_field_names | Get field names, including aliases, for a pydantic class.
Args:
pydantic_cls: Pydantic class. |
_get_llm_string | if self.is_lc_serializable():
params = {**kwargs, **{'stop': stop}}
param_string = str(sorted([(k, v) for k, v in params.items()]))
llm_string = dumps(self)
return llm_string + '---' + param_string
else:
params = self._get_invocation_params(stop=stop, **kwargs)
params = {**params, **kwargs}
return str(sorted([(k, v) for k, v in params.items()])) | def _get_llm_string(self, stop: Optional[List[str]]=None, **kwargs: Any) ->str:
if self.is_lc_serializable():
params = {**kwargs, **{'stop': stop}}
param_string = str(sorted([(k, v) for k, v in params.items()]))
llm_string = dumps(self)
return llm_string + '---' + param_string
else:
params = self._get_invocation_params(stop=stop, **kwargs)
params = {**params, **kwargs}
return str(sorted([(k, v) for k, v in params.items()])) | null |
import_pandas | """Import the pandas python package and raise an error if it is not installed."""
try:
import pandas
except ImportError:
raise ImportError(
'This callback manager requires the `pandas` python package installed. Please install it with `pip install pandas`'
)
return pandas | def import_pandas() ->Any:
"""Import the pandas python package and raise an error if it is not installed."""
try:
import pandas
except ImportError:
raise ImportError(
'This callback manager requires the `pandas` python package installed. Please install it with `pip install pandas`'
)
return pandas | Import the pandas python package and raise an error if it is not installed. |
_extract_query_params | """Extract the query params from the deserialized input."""
query_params = {}
for param in self.param_mapping.query_params:
if param in args:
query_params[param] = args.pop(param)
return query_params | def _extract_query_params(self, args: Dict[str, str]) ->Dict[str, str]:
"""Extract the query params from the deserialized input."""
query_params = {}
for param in self.param_mapping.query_params:
if param in args:
query_params[param] = args.pop(param)
return query_params | Extract the query params from the deserialized input. |
test_max_marginal_relevance_search | """Test max marginal relevance search."""
texts = ['foo', 'bar', 'baz']
docsearch = ElasticsearchStore.from_texts(texts, FakeEmbeddings(), **
elasticsearch_connection, index_name=index_name, strategy=
ElasticsearchStore.ExactRetrievalStrategy())
mmr_output = docsearch.max_marginal_relevance_search(texts[0], k=3, fetch_k=3)
sim_output = docsearch.similarity_search(texts[0], k=3)
assert mmr_output == sim_output
mmr_output = docsearch.max_marginal_relevance_search(texts[0], k=2, fetch_k=3)
assert len(mmr_output) == 2
assert mmr_output[0].page_content == texts[0]
assert mmr_output[1].page_content == texts[1]
mmr_output = docsearch.max_marginal_relevance_search(texts[0], k=2, fetch_k
=3, lambda_mult=0.1)
assert len(mmr_output) == 2
assert mmr_output[0].page_content == texts[0]
assert mmr_output[1].page_content == texts[2]
mmr_output = docsearch.max_marginal_relevance_search(texts[0], k=3, fetch_k=2)
assert len(mmr_output) == 2 | def test_max_marginal_relevance_search(self, elasticsearch_connection: dict,
index_name: str) ->None:
"""Test max marginal relevance search."""
texts = ['foo', 'bar', 'baz']
docsearch = ElasticsearchStore.from_texts(texts, FakeEmbeddings(), **
elasticsearch_connection, index_name=index_name, strategy=
ElasticsearchStore.ExactRetrievalStrategy())
mmr_output = docsearch.max_marginal_relevance_search(texts[0], k=3,
fetch_k=3)
sim_output = docsearch.similarity_search(texts[0], k=3)
assert mmr_output == sim_output
mmr_output = docsearch.max_marginal_relevance_search(texts[0], k=2,
fetch_k=3)
assert len(mmr_output) == 2
assert mmr_output[0].page_content == texts[0]
assert mmr_output[1].page_content == texts[1]
mmr_output = docsearch.max_marginal_relevance_search(texts[0], k=2,
fetch_k=3, lambda_mult=0.1)
assert len(mmr_output) == 2
assert mmr_output[0].page_content == texts[0]
assert mmr_output[1].page_content == texts[2]
mmr_output = docsearch.max_marginal_relevance_search(texts[0], k=3,
fetch_k=2)
assert len(mmr_output) == 2 | Test max marginal relevance search. |
__init__ | """Initialize the visitor."""
self.source: Optional[str] = None
self.count = 0 | def __init__(self) ->None:
"""Initialize the visitor."""
self.source: Optional[str] = None
self.count = 0 | Initialize the visitor. |
embed_query | """Compute query embedding using an OctoAI instruct model."""
text = text.replace('\n', ' ')
return self._compute_embeddings([text], self.query_instruction)[0] | def embed_query(self, text: str) ->List[float]:
"""Compute query embedding using an OctoAI instruct model."""
text = text.replace('\n', ' ')
return self._compute_embeddings([text], self.query_instruction)[0] | Compute query embedding using an OctoAI instruct model. |
lazy_load | """Lazily load the file."""
response = requests.post('https://2markdown.com/api/2md', headers={
'X-Api-Key': self.api_key}, json={'url': self.url})
text = response.json()['article']
metadata = {'source': self.url}
yield Document(page_content=text, metadata=metadata) | def lazy_load(self) ->Iterator[Document]:
"""Lazily load the file."""
response = requests.post('https://2markdown.com/api/2md', headers={
'X-Api-Key': self.api_key}, json={'url': self.url})
text = response.json()['article']
metadata = {'source': self.url}
yield Document(page_content=text, metadata=metadata) | Lazily load the file. |
run | if mode == 'get_issues':
return self.get_issues()
elif mode == 'get_issue':
return json.dumps(self.get_issue(int(query)))
elif mode == 'comment_on_issue':
return self.comment_on_issue(query)
elif mode == 'create_file':
return self.create_file(query)
elif mode == 'create_pull_request':
return self.create_pull_request(query)
elif mode == 'read_file':
return self.read_file(query)
elif mode == 'update_file':
return self.update_file(query)
elif mode == 'delete_file':
return self.delete_file(query)
else:
raise ValueError('Invalid mode' + mode) | def run(self, mode: str, query: str) ->str:
if mode == 'get_issues':
return self.get_issues()
elif mode == 'get_issue':
return json.dumps(self.get_issue(int(query)))
elif mode == 'comment_on_issue':
return self.comment_on_issue(query)
elif mode == 'create_file':
return self.create_file(query)
elif mode == 'create_pull_request':
return self.create_pull_request(query)
elif mode == 'read_file':
return self.read_file(query)
elif mode == 'update_file':
return self.update_file(query)
elif mode == 'delete_file':
return self.delete_file(query)
else:
raise ValueError('Invalid mode' + mode) | null |
llm | return _get_llm(max_tokens=10) | @pytest.fixture
def llm() ->AzureOpenAI:
return _get_llm(max_tokens=10) | null |
on_retriever_end | self.on_retriever_end_common() | def on_retriever_end(self, *args: Any, **kwargs: Any) ->Any:
self.on_retriever_end_common() | null |
__add | faiss = dependable_faiss_import()
if not isinstance(self.docstore, AddableMixin):
raise ValueError(
f'If trying to add texts, the underlying docstore should support adding items, which {self.docstore} does not'
)
_len_check_if_sized(texts, metadatas, 'texts', 'metadatas')
_metadatas = metadatas or ({} for _ in texts)
documents = [Document(page_content=t, metadata=m) for t, m in zip(texts,
_metadatas)]
_len_check_if_sized(documents, embeddings, 'documents', 'embeddings')
_len_check_if_sized(documents, ids, 'documents', 'ids')
vector = np.array(embeddings, dtype=np.float32)
if self._normalize_L2:
faiss.normalize_L2(vector)
self.index.add(vector)
ids = ids or [str(uuid.uuid4()) for _ in texts]
self.docstore.add({id_: doc for id_, doc in zip(ids, documents)})
starting_len = len(self.index_to_docstore_id)
index_to_id = {(starting_len + j): id_ for j, id_ in enumerate(ids)}
self.index_to_docstore_id.update(index_to_id)
return ids | def __add(self, texts: Iterable[str], embeddings: Iterable[List[float]],
metadatas: Optional[Iterable[dict]]=None, ids: Optional[List[str]]=None
) ->List[str]:
faiss = dependable_faiss_import()
if not isinstance(self.docstore, AddableMixin):
raise ValueError(
f'If trying to add texts, the underlying docstore should support adding items, which {self.docstore} does not'
)
_len_check_if_sized(texts, metadatas, 'texts', 'metadatas')
_metadatas = metadatas or ({} for _ in texts)
documents = [Document(page_content=t, metadata=m) for t, m in zip(texts,
_metadatas)]
_len_check_if_sized(documents, embeddings, 'documents', 'embeddings')
_len_check_if_sized(documents, ids, 'documents', 'ids')
vector = np.array(embeddings, dtype=np.float32)
if self._normalize_L2:
faiss.normalize_L2(vector)
self.index.add(vector)
ids = ids or [str(uuid.uuid4()) for _ in texts]
self.docstore.add({id_: doc for id_, doc in zip(ids, documents)})
starting_len = len(self.index_to_docstore_id)
index_to_id = {(starting_len + j): id_ for j, id_ in enumerate(ids)}
self.index_to_docstore_id.update(index_to_id)
return ids | null |
_stream | messages, params = self._get_chat_params([prompt], stop)
params = {**params, **kwargs, 'stream': True}
for stream_resp in completion_with_retry(self, messages=messages,
run_manager=run_manager, **params):
if not isinstance(stream_resp, dict):
stream_resp = stream_resp.dict()
token = stream_resp['choices'][0]['delta'].get('content', '')
chunk = GenerationChunk(text=token)
yield chunk
if run_manager:
run_manager.on_llm_new_token(token, chunk=chunk) | def _stream(self, prompt: str, stop: Optional[List[str]]=None, run_manager:
Optional[CallbackManagerForLLMRun]=None, **kwargs: Any) ->Iterator[
GenerationChunk]:
messages, params = self._get_chat_params([prompt], stop)
params = {**params, **kwargs, 'stream': True}
for stream_resp in completion_with_retry(self, messages=messages,
run_manager=run_manager, **params):
if not isinstance(stream_resp, dict):
stream_resp = stream_resp.dict()
token = stream_resp['choices'][0]['delta'].get('content', '')
chunk = GenerationChunk(text=token)
yield chunk
if run_manager:
run_manager.on_llm_new_token(token, chunk=chunk) | null |
_import_predictionguard | from langchain_community.llms.predictionguard import PredictionGuard
return PredictionGuard | def _import_predictionguard() ->Any:
from langchain_community.llms.predictionguard import PredictionGuard
return PredictionGuard | null |
_type | return 'conversational' | @property
def _type(self) ->str:
return 'conversational' | null |
from_documents | """
Create a Bagel vectorstore from a list of documents.
Args:
documents (List[Document]): List of Document objects to add to the
Bagel vectorstore.
embedding (Optional[List[float]]): List of embedding.
ids (Optional[List[str]]): List of IDs. Defaults to None.
cluster_name (str): The name of the BagelDB cluster.
client_settings (Optional[bagel.config.Settings]): Client settings.
client (Optional[bagel.Client]): Bagel client instance.
cluster_metadata (Optional[Dict]): Metadata associated with the
Bagel cluster. Defaults to None.
Returns:
Bagel: Bagel vectorstore.
"""
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return cls.from_texts(texts=texts, embedding=embedding, metadatas=metadatas,
ids=ids, cluster_name=cluster_name, client_settings=client_settings,
client=client, cluster_metadata=cluster_metadata, **kwargs) | @classmethod
def from_documents(cls: Type[Bagel], documents: List[Document], embedding:
Optional[Embeddings]=None, ids: Optional[List[str]]=None, cluster_name:
str=_LANGCHAIN_DEFAULT_CLUSTER_NAME, client_settings: Optional[bagel.
config.Settings]=None, client: Optional[bagel.Client]=None,
cluster_metadata: Optional[Dict]=None, **kwargs: Any) ->Bagel:
"""
Create a Bagel vectorstore from a list of documents.
Args:
documents (List[Document]): List of Document objects to add to the
Bagel vectorstore.
embedding (Optional[List[float]]): List of embedding.
ids (Optional[List[str]]): List of IDs. Defaults to None.
cluster_name (str): The name of the BagelDB cluster.
client_settings (Optional[bagel.config.Settings]): Client settings.
client (Optional[bagel.Client]): Bagel client instance.
cluster_metadata (Optional[Dict]): Metadata associated with the
Bagel cluster. Defaults to None.
Returns:
Bagel: Bagel vectorstore.
"""
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return cls.from_texts(texts=texts, embedding=embedding, metadatas=
metadatas, ids=ids, cluster_name=cluster_name, client_settings=
client_settings, client=client, cluster_metadata=cluster_metadata,
**kwargs) | Create a Bagel vectorstore from a list of documents.
Args:
documents (List[Document]): List of Document objects to add to the
Bagel vectorstore.
embedding (Optional[List[float]]): List of embedding.
ids (Optional[List[str]]): List of IDs. Defaults to None.
cluster_name (str): The name of the BagelDB cluster.
client_settings (Optional[bagel.config.Settings]): Client settings.
client (Optional[bagel.Client]): Bagel client instance.
cluster_metadata (Optional[Dict]): Metadata associated with the
Bagel cluster. Defaults to None.
Returns:
Bagel: Bagel vectorstore. |
_wrapped_fn | return contexts.pop().run(fn, *args) | def _wrapped_fn(*args: Any) ->T:
return contexts.pop().run(fn, *args) | null |
test_redis_semantic_cache_multi | set_llm_cache(RedisSemanticCache(embedding=FakeEmbeddings(), redis_url=
REDIS_TEST_URL, score_threshold=0.1))
llm = FakeLLM()
params = llm.dict()
params['stop'] = None
llm_string = str(sorted([(k, v) for k, v in params.items()]))
get_llm_cache().update('foo', llm_string, [Generation(text='fizz'),
Generation(text='Buzz')])
output = llm.generate(['bar'])
expected_output = LLMResult(generations=[[Generation(text='fizz'),
Generation(text='Buzz')]], llm_output={})
assert output == expected_output
get_llm_cache().clear(llm_string=llm_string) | def test_redis_semantic_cache_multi() ->None:
set_llm_cache(RedisSemanticCache(embedding=FakeEmbeddings(), redis_url=
REDIS_TEST_URL, score_threshold=0.1))
llm = FakeLLM()
params = llm.dict()
params['stop'] = None
llm_string = str(sorted([(k, v) for k, v in params.items()]))
get_llm_cache().update('foo', llm_string, [Generation(text='fizz'),
Generation(text='Buzz')])
output = llm.generate(['bar'])
expected_output = LLMResult(generations=[[Generation(text='fizz'),
Generation(text='Buzz')]], llm_output={})
assert output == expected_output
get_llm_cache().clear(llm_string=llm_string) | null |
test_konko_chat_test | """Evaluate basic ChatKonko functionality."""
chat_instance = ChatKonko(max_tokens=10)
msg = HumanMessage(content='Hi')
chat_response = chat_instance([msg])
assert isinstance(chat_response, BaseMessage)
assert isinstance(chat_response.content, str) | def test_konko_chat_test() ->None:
"""Evaluate basic ChatKonko functionality."""
chat_instance = ChatKonko(max_tokens=10)
msg = HumanMessage(content='Hi')
chat_response = chat_instance([msg])
assert isinstance(chat_response, BaseMessage)
assert isinstance(chat_response.content, str) | Evaluate basic ChatKonko functionality. |
_llm_type | """Return type of llm."""
return 'vllm-openai' | @property
def _llm_type(self) ->str:
"""Return type of llm."""
return 'vllm-openai' | Return type of llm. |
test_self_hosted_embedding_query | """Test self-hosted custom embeddings."""
query = 'foo bar'
gpu = get_remote_instance()
embedding = SelfHostedEmbeddings(model_load_fn=get_pipeline, hardware=gpu,
inference_fn=inference_fn)
output = embedding.embed_query(query)
assert len(output) == 50265 | def test_self_hosted_embedding_query() ->None:
"""Test self-hosted custom embeddings."""
query = 'foo bar'
gpu = get_remote_instance()
embedding = SelfHostedEmbeddings(model_load_fn=get_pipeline, hardware=
gpu, inference_fn=inference_fn)
output = embedding.embed_query(query)
assert len(output) == 50265 | Test self-hosted custom embeddings. |
__is_headers_available_for_non_html | _unstructured_version = self.__version.split('-')[0]
unstructured_version = tuple([int(x) for x in _unstructured_version.split('.')]
)
return unstructured_version >= (0, 5, 13) | def __is_headers_available_for_non_html(self) ->bool:
_unstructured_version = self.__version.split('-')[0]
unstructured_version = tuple([int(x) for x in _unstructured_version.
split('.')])
return unstructured_version >= (0, 5, 13) | null |
score_response | score = 200
return score | def score_response(self, inputs: Dict[str, Any], llm_response: str, event:
pick_best_chain.PickBestEvent) ->float:
score = 200
return score | null |
_run | """Run the tool."""
results = self.api_resource.users().messages().list(userId='me', q=query,
maxResults=max_results).execute().get(resource.value, [])
if resource == Resource.THREADS:
return self._parse_threads(results)
elif resource == Resource.MESSAGES:
return self._parse_messages(results)
else:
raise NotImplementedError(f'Resource of type {resource} not implemented.') | def _run(self, query: str, resource: Resource=Resource.MESSAGES,
max_results: int=10, run_manager: Optional[CallbackManagerForToolRun]=None
) ->List[Dict[str, Any]]:
"""Run the tool."""
results = self.api_resource.users().messages().list(userId='me', q=
query, maxResults=max_results).execute().get(resource.value, [])
if resource == Resource.THREADS:
return self._parse_threads(results)
elif resource == Resource.MESSAGES:
return self._parse_messages(results)
else:
raise NotImplementedError(
f'Resource of type {resource} not implemented.') | Run the tool. |
from_llm | """Create a new evaluator from an LLM.""" | @classmethod
@abstractmethod
def from_llm(cls, llm: BaseLanguageModel, **kwargs: Any) ->LLMEvalChain:
"""Create a new evaluator from an LLM.""" | Create a new evaluator from an LLM. |
detect_file_encodings | """Try to detect the file encoding.
Returns a list of `FileEncoding` tuples with the detected encodings ordered
by confidence.
Args:
file_path: The path to the file to detect the encoding for.
timeout: The timeout in seconds for the encoding detection.
"""
import chardet
def read_and_detect(file_path: str) ->List[dict]:
with open(file_path, 'rb') as f:
rawdata = f.read()
return cast(List[dict], chardet.detect_all(rawdata))
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(read_and_detect, file_path)
try:
encodings = future.result(timeout=timeout)
except concurrent.futures.TimeoutError:
raise TimeoutError(
f'Timeout reached while detecting encoding for {file_path}')
if all(encoding['encoding'] is None for encoding in encodings):
raise RuntimeError(f'Could not detect encoding for {file_path}')
return [FileEncoding(**enc) for enc in encodings if enc['encoding'] is not None
] | def detect_file_encodings(file_path: str, timeout: int=5) ->List[FileEncoding]:
"""Try to detect the file encoding.
Returns a list of `FileEncoding` tuples with the detected encodings ordered
by confidence.
Args:
file_path: The path to the file to detect the encoding for.
timeout: The timeout in seconds for the encoding detection.
"""
import chardet
def read_and_detect(file_path: str) ->List[dict]:
with open(file_path, 'rb') as f:
rawdata = f.read()
return cast(List[dict], chardet.detect_all(rawdata))
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(read_and_detect, file_path)
try:
encodings = future.result(timeout=timeout)
except concurrent.futures.TimeoutError:
raise TimeoutError(
f'Timeout reached while detecting encoding for {file_path}')
if all(encoding['encoding'] is None for encoding in encodings):
raise RuntimeError(f'Could not detect encoding for {file_path}')
return [FileEncoding(**enc) for enc in encodings if enc['encoding'] is not
None] | Try to detect the file encoding.
Returns a list of `FileEncoding` tuples with the detected encodings ordered
by confidence.
Args:
file_path: The path to the file to detect the encoding for.
timeout: The timeout in seconds for the encoding detection. |
is_lc_serializable | return False | @classmethod
def is_lc_serializable(cls) ->bool:
return False | null |
test_run_success | output = api_client.run('HUNTER X HUNTER')
assert 'Yoshihiro Togashi' in output | def test_run_success(api_client: WikipediaAPIWrapper) ->None:
output = api_client.run('HUNTER X HUNTER')
assert 'Yoshihiro Togashi' in output | null |
test_character_text_splitter_separtor_empty_doc | """Test edge cases are separators."""
text = 'f b'
splitter = CharacterTextSplitter(separator=' ', chunk_size=2, chunk_overlap=0)
output = splitter.split_text(text)
expected_output = ['f', 'b']
assert output == expected_output | def test_character_text_splitter_separtor_empty_doc() ->None:
"""Test edge cases are separators."""
text = 'f b'
splitter = CharacterTextSplitter(separator=' ', chunk_size=2,
chunk_overlap=0)
output = splitter.split_text(text)
expected_output = ['f', 'b']
assert output == expected_output | Test edge cases are separators. |
set_model_kwargs | if v:
assert 'prompt' not in v, "model_kwargs must not contain key 'prompt'"
assert 'stop' not in v, "model_kwargs must not contain key 'stop'"
return v | @validator('model_kwargs', always=True)
def set_model_kwargs(cls, v: Optional[Dict[str, Any]]) ->Optional[Dict[str,
Any]]:
if v:
assert 'prompt' not in v, "model_kwargs must not contain key 'prompt'"
assert 'stop' not in v, "model_kwargs must not contain key 'stop'"
return v | null |
test_similarity_search_by_vector_not_supported_for_managed_embedding | index = mock_index(DELTA_SYNC_INDEX_MANAGED_EMBEDDINGS)
index.similarity_search.return_value = EXAMPLE_SEARCH_RESPONSE
vectorsearch = default_databricks_vector_search(index)
query_embedding = DEFAULT_EMBEDDING_MODEL.embed_query('foo')
filters = {'some filter': True}
limit = 7
with pytest.raises(ValueError) as ex:
vectorsearch.similarity_search_by_vector(query_embedding, k=limit,
filters=filters)
assert '`similarity_search_by_vector` is not supported for index with Databricks-managed embeddings.' in str(
ex.value) | @pytest.mark.requires('databricks', 'databricks.vector_search')
def test_similarity_search_by_vector_not_supported_for_managed_embedding(
) ->None:
index = mock_index(DELTA_SYNC_INDEX_MANAGED_EMBEDDINGS)
index.similarity_search.return_value = EXAMPLE_SEARCH_RESPONSE
vectorsearch = default_databricks_vector_search(index)
query_embedding = DEFAULT_EMBEDDING_MODEL.embed_query('foo')
filters = {'some filter': True}
limit = 7
with pytest.raises(ValueError) as ex:
vectorsearch.similarity_search_by_vector(query_embedding, k=limit,
filters=filters)
assert '`similarity_search_by_vector` is not supported for index with Databricks-managed embeddings.' in str(
ex.value) | null |
test_get_media_metadata_location | """Test for retrieving media metadata location from NASA Image and Video Library"""
nasa = NasaAPIWrapper()
output = nasa.run('get_media_metadata_location', 'as11-40-5874')
assert output is not None | def test_get_media_metadata_location() ->None:
"""Test for retrieving media metadata location from NASA Image and Video Library"""
nasa = NasaAPIWrapper()
output = nasa.run('get_media_metadata_location', 'as11-40-5874')
assert output is not None | Test for retrieving media metadata location from NASA Image and Video Library |
_invoke | return self._pick(input) | def _invoke(self, input: Dict[str, Any]) ->Dict[str, Any]:
return self._pick(input) | null |
__init__ | """Initialize an EncodedStore."""
self.store = store
self.key_encoder = key_encoder
self.value_serializer = value_serializer
self.value_deserializer = value_deserializer | def __init__(self, store: BaseStore[str, Any], key_encoder: Callable[[K],
str], value_serializer: Callable[[V], bytes], value_deserializer:
Callable[[Any], V]) ->None:
"""Initialize an EncodedStore."""
self.store = store
self.key_encoder = key_encoder
self.value_serializer = value_serializer
self.value_deserializer = value_deserializer | Initialize an EncodedStore. |
__init__ | super().__init__(blob_loader, blob_parser)
self.num_workers = num_workers | def __init__(self, blob_loader: BlobLoader, blob_parser: BaseBlobParser,
num_workers: int=4) ->None:
super().__init__(blob_loader, blob_parser)
self.num_workers = num_workers | null |
embed_query | """Embed a query using a YandexGPT embeddings models.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return _embed_with_retry(self, texts=[text])[0] | def embed_query(self, text: str) ->List[float]:
"""Embed a query using a YandexGPT embeddings models.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return _embed_with_retry(self, texts=[text])[0] | Embed a query using a YandexGPT embeddings models.
Args:
text: The text to embed.
Returns:
Embeddings for the text. |
ensure_config | """Ensure that a config is a dict with all keys present.
Args:
config (Optional[RunnableConfig], optional): The config to ensure.
Defaults to None.
Returns:
RunnableConfig: The ensured config.
"""
empty = RunnableConfig(tags=[], metadata={}, callbacks=None, recursion_limit=25
)
if (var_config := var_child_runnable_config.get()):
empty.update(cast(RunnableConfig, {k: v for k, v in var_config.items() if
v is not None}))
if config is not None:
empty.update(cast(RunnableConfig, {k: v for k, v in config.items() if v
is not None}))
return empty | def ensure_config(config: Optional[RunnableConfig]=None) ->RunnableConfig:
"""Ensure that a config is a dict with all keys present.
Args:
config (Optional[RunnableConfig], optional): The config to ensure.
Defaults to None.
Returns:
RunnableConfig: The ensured config.
"""
empty = RunnableConfig(tags=[], metadata={}, callbacks=None,
recursion_limit=25)
if (var_config := var_child_runnable_config.get()):
empty.update(cast(RunnableConfig, {k: v for k, v in var_config.
items() if v is not None}))
if config is not None:
empty.update(cast(RunnableConfig, {k: v for k, v in config.items() if
v is not None}))
return empty | Ensure that a config is a dict with all keys present.
Args:
config (Optional[RunnableConfig], optional): The config to ensure.
Defaults to None.
Returns:
RunnableConfig: The ensured config. |
token_or_credential_present | """Validate that at least one of token and credentials is present."""
if 'token' in values or 'credential' in values:
return values
raise ValueError('Please provide either a credential or a token.') | @root_validator(pre=True, allow_reuse=True)
def token_or_credential_present(cls, values: Dict[str, Any]) ->Dict[str, Any]:
"""Validate that at least one of token and credentials is present."""
if 'token' in values or 'credential' in values:
return values
raise ValueError('Please provide either a credential or a token.') | Validate that at least one of token and credentials is present. |
_import_myscale | from langchain_community.vectorstores.myscale import MyScale
return MyScale | def _import_myscale() ->Any:
from langchain_community.vectorstores.myscale import MyScale
return MyScale | null |
completion_with_retry | """Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
def _completion_with_retry(**_kwargs: Any) ->Any:
return make_request(llm, **_kwargs)
return _completion_with_retry(**kwargs) | def completion_with_retry(llm: Nebula, **kwargs: Any) ->Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
def _completion_with_retry(**_kwargs: Any) ->Any:
return make_request(llm, **_kwargs)
return _completion_with_retry(**kwargs) | Use tenacity to retry the completion call. |
_identifying_params | return {'input_func': self.input_func.__name__, 'message_func': self.
message_func.__name__} | @property
def _identifying_params(self) ->Dict[str, Any]:
return {'input_func': self.input_func.__name__, 'message_func': self.
message_func.__name__} | null |
_google_serper_api_results | headers = {'X-API-KEY': self.serper_api_key or '', 'Content-Type':
'application/json'}
params = {'q': search_term, **{key: value for key, value in kwargs.items() if
value is not None}}
response = requests.post(f'https://google.serper.dev/{search_type}',
headers=headers, params=params)
response.raise_for_status()
search_results = response.json()
return search_results | def _google_serper_api_results(self, search_term: str, search_type: str=
'search', **kwargs: Any) ->dict:
headers = {'X-API-KEY': self.serper_api_key or '', 'Content-Type':
'application/json'}
params = {'q': search_term, **{key: value for key, value in kwargs.
items() if value is not None}}
response = requests.post(f'https://google.serper.dev/{search_type}',
headers=headers, params=params)
response.raise_for_status()
search_results = response.json()
return search_results | null |
_import_bing_search_tool_BingSearchResults | from langchain_community.tools.bing_search.tool import BingSearchResults
return BingSearchResults | def _import_bing_search_tool_BingSearchResults() ->Any:
from langchain_community.tools.bing_search.tool import BingSearchResults
return BingSearchResults | null |
get_image | if isinstance(layout_object, pdfminer.layout.LTImage):
return layout_object
if isinstance(layout_object, pdfminer.layout.LTContainer):
for child in layout_object:
return get_image(child)
else:
return None | def get_image(layout_object: Any) ->Any:
if isinstance(layout_object, pdfminer.layout.LTImage):
return layout_object
if isinstance(layout_object, pdfminer.layout.LTContainer):
for child in layout_object:
return get_image(child)
else:
return None | null |
leave | """Decrease the indentation level."""
self._indent -= 1 | def leave(self):
"""Decrease the indentation level."""
self._indent -= 1 | Decrease the indentation level. |
output_keys | """Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, INTERMEDIATE_STEPS_KEY] | @property
def output_keys(self) ->List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, INTERMEDIATE_STEPS_KEY] | Return the singular output key.
:meta private: |
_generate | """Call OpenAI generate and then call PromptLayer API to log the request."""
from promptlayer.utils import get_api_key, promptlayer_api_request
request_start_time = datetime.datetime.now().timestamp()
generated_responses = super()._generate(prompts, stop, run_manager)
request_end_time = datetime.datetime.now().timestamp()
for i in range(len(prompts)):
prompt = prompts[i]
generation = generated_responses.generations[i][0]
resp = {'text': generation.text, 'llm_output': generated_responses.
llm_output}
params = {**self._identifying_params, **kwargs}
pl_request_id = promptlayer_api_request('langchain.PromptLayerOpenAI',
'langchain', [prompt], params, self.pl_tags, resp,
request_start_time, request_end_time, get_api_key(), return_pl_id=
self.return_pl_id)
if self.return_pl_id:
if generation.generation_info is None or not isinstance(generation.
generation_info, dict):
generation.generation_info = {}
generation.generation_info['pl_request_id'] = pl_request_id
return generated_responses | def _generate(self, prompts: List[str], stop: Optional[List[str]]=None,
run_manager: Optional[CallbackManagerForLLMRun]=None, **kwargs: Any
) ->LLMResult:
"""Call OpenAI generate and then call PromptLayer API to log the request."""
from promptlayer.utils import get_api_key, promptlayer_api_request
request_start_time = datetime.datetime.now().timestamp()
generated_responses = super()._generate(prompts, stop, run_manager)
request_end_time = datetime.datetime.now().timestamp()
for i in range(len(prompts)):
prompt = prompts[i]
generation = generated_responses.generations[i][0]
resp = {'text': generation.text, 'llm_output': generated_responses.
llm_output}
params = {**self._identifying_params, **kwargs}
pl_request_id = promptlayer_api_request('langchain.PromptLayerOpenAI',
'langchain', [prompt], params, self.pl_tags, resp,
request_start_time, request_end_time, get_api_key(),
return_pl_id=self.return_pl_id)
if self.return_pl_id:
if generation.generation_info is None or not isinstance(generation
.generation_info, dict):
generation.generation_info = {}
generation.generation_info['pl_request_id'] = pl_request_id
return generated_responses | Call OpenAI generate and then call PromptLayer API to log the request. |
update | """Update cache based on prompt and llm_string."""
doc_id = self._make_id(prompt, llm_string)
blob = _dumps_generations(return_val)
self.collection.upsert({'_id': doc_id, 'body_blob': blob}) | def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE
) ->None:
"""Update cache based on prompt and llm_string."""
doc_id = self._make_id(prompt, llm_string)
blob = _dumps_generations(return_val)
self.collection.upsert({'_id': doc_id, 'body_blob': blob}) | Update cache based on prompt and llm_string. |
_create_chat_result | generations = []
for candidate in response['candidates']:
message = ChatMLflowAIGateway._convert_dict_to_message(candidate['message']
)
message_metadata = candidate.get('metadata', {})
gen = ChatGeneration(message=message, generation_info=dict(
message_metadata))
generations.append(gen)
response_metadata = response.get('metadata', {})
return ChatResult(generations=generations, llm_output=response_metadata) | @staticmethod
def _create_chat_result(response: Mapping[str, Any]) ->ChatResult:
generations = []
for candidate in response['candidates']:
message = ChatMLflowAIGateway._convert_dict_to_message(candidate[
'message'])
message_metadata = candidate.get('metadata', {})
gen = ChatGeneration(message=message, generation_info=dict(
message_metadata))
generations.append(gen)
response_metadata = response.get('metadata', {})
return ChatResult(generations=generations, llm_output=response_metadata) | null |
_import_apify | from langchain_community.utilities.apify import ApifyWrapper
return ApifyWrapper | def _import_apify() ->Any:
from langchain_community.utilities.apify import ApifyWrapper
return ApifyWrapper | null |
plan | log = ''
for action, observation in intermediate_steps:
log += (
f'<tool>{action.tool}</tool><tool_input>{action.tool_input}</tool_input><observation>{observation}</observation>'
)
tools = ''
for tool in self.tools:
tools += f'{tool.name}: {tool.description}\n'
inputs = {'intermediate_steps': log, 'tools': tools, 'question': kwargs[
'input'], 'stop': ['</tool_input>', '</final_answer>']}
response = self.llm_chain(inputs, callbacks=callbacks)
return response[self.llm_chain.output_key] | def plan(self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks:
Callbacks=None, **kwargs: Any) ->Union[AgentAction, AgentFinish]:
log = ''
for action, observation in intermediate_steps:
log += (
f'<tool>{action.tool}</tool><tool_input>{action.tool_input}</tool_input><observation>{observation}</observation>'
)
tools = ''
for tool in self.tools:
tools += f'{tool.name}: {tool.description}\n'
inputs = {'intermediate_steps': log, 'tools': tools, 'question': kwargs
['input'], 'stop': ['</tool_input>', '</final_answer>']}
response = self.llm_chain(inputs, callbacks=callbacks)
return response[self.llm_chain.output_key] | null |
_similarity_index_search_with_score | """Search k embeddings similar to the query embedding. Returns a list of
(index, distance) tuples."""
if not self._neighbors_fitted:
raise SKLearnVectorStoreException(
'No data was added to SKLearnVectorStore.')
neigh_dists, neigh_idxs = self._neighbors.kneighbors([query_embedding],
n_neighbors=k)
return list(zip(neigh_idxs[0], neigh_dists[0])) | def _similarity_index_search_with_score(self, query_embedding: List[float],
*, k: int=DEFAULT_K, **kwargs: Any) ->List[Tuple[int, float]]:
"""Search k embeddings similar to the query embedding. Returns a list of
(index, distance) tuples."""
if not self._neighbors_fitted:
raise SKLearnVectorStoreException(
'No data was added to SKLearnVectorStore.')
neigh_dists, neigh_idxs = self._neighbors.kneighbors([query_embedding],
n_neighbors=k)
return list(zip(neigh_idxs[0], neigh_dists[0])) | Search k embeddings similar to the query embedding. Returns a list of
(index, distance) tuples. |
on_tool_end | """If not the final action, print out observation."""
if observation_prefix is not None:
print_text(f'\n{observation_prefix}')
print_text(output, color=color or self.color)
if llm_prefix is not None:
print_text(f'\n{llm_prefix}') | def on_tool_end(self, output: str, color: Optional[str]=None,
observation_prefix: Optional[str]=None, llm_prefix: Optional[str]=None,
**kwargs: Any) ->None:
"""If not the final action, print out observation."""
if observation_prefix is not None:
print_text(f'\n{observation_prefix}')
print_text(output, color=color or self.color)
if llm_prefix is not None:
print_text(f'\n{llm_prefix}') | If not the final action, print out observation. |
test_add_recognizer_operator | """
Test add recognizer and anonymize a new type of entity and with a custom operator
"""
from presidio_analyzer import PatternRecognizer
from presidio_anonymizer.entities import OperatorConfig
from langchain_experimental.data_anonymizer import PresidioAnonymizer
anonymizer = PresidioAnonymizer(analyzed_fields=[])
titles_list = ['Sir', 'Madam', 'Professor']
custom_recognizer = PatternRecognizer(supported_entity='TITLE', deny_list=
titles_list)
anonymizer.add_recognizer(custom_recognizer)
text = 'Madam Jane Doe was here.'
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == '<TITLE> Jane Doe was here.'
custom_operator = {'TITLE': OperatorConfig('replace', {'new_value': 'Dear'})}
anonymizer.add_operators(custom_operator)
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == 'Dear Jane Doe was here.' | @pytest.mark.requires('presidio_analyzer', 'presidio_anonymizer', 'faker')
def test_add_recognizer_operator() ->None:
"""
Test add recognizer and anonymize a new type of entity and with a custom operator
"""
from presidio_analyzer import PatternRecognizer
from presidio_anonymizer.entities import OperatorConfig
from langchain_experimental.data_anonymizer import PresidioAnonymizer
anonymizer = PresidioAnonymizer(analyzed_fields=[])
titles_list = ['Sir', 'Madam', 'Professor']
custom_recognizer = PatternRecognizer(supported_entity='TITLE',
deny_list=titles_list)
anonymizer.add_recognizer(custom_recognizer)
text = 'Madam Jane Doe was here.'
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == '<TITLE> Jane Doe was here.'
custom_operator = {'TITLE': OperatorConfig('replace', {'new_value':
'Dear'})}
anonymizer.add_operators(custom_operator)
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == 'Dear Jane Doe was here.' | Test add recognizer and anonymize a new type of entity and with a custom operator |
test_resolve_criteria_str | assert CriteriaEvalChain.resolve_criteria('helpfulness') == {'helpfulness':
_SUPPORTED_CRITERIA[Criteria.HELPFULNESS]}
assert CriteriaEvalChain.resolve_criteria('correctness') == {'correctness':
_SUPPORTED_CRITERIA[Criteria.CORRECTNESS]} | def test_resolve_criteria_str() ->None:
assert CriteriaEvalChain.resolve_criteria('helpfulness') == {'helpfulness':
_SUPPORTED_CRITERIA[Criteria.HELPFULNESS]}
assert CriteriaEvalChain.resolve_criteria('correctness') == {'correctness':
_SUPPORTED_CRITERIA[Criteria.CORRECTNESS]} | null |
main | print('Hello World!')
return 0 | def main() ->int:
print('Hello World!')
return 0 | null |
copy | """Copy the callback manager."""
return self.__class__(handlers=self.handlers, inheritable_handlers=self.
inheritable_handlers, parent_run_id=self.parent_run_id, tags=self.tags,
inheritable_tags=self.inheritable_tags, metadata=self.metadata,
inheritable_metadata=self.inheritable_metadata) | def copy(self: T) ->T:
"""Copy the callback manager."""
return self.__class__(handlers=self.handlers, inheritable_handlers=self
.inheritable_handlers, parent_run_id=self.parent_run_id, tags=self.
tags, inheritable_tags=self.inheritable_tags, metadata=self.
metadata, inheritable_metadata=self.inheritable_metadata) | Copy the callback manager. |
evaluate | """Synchronously process the HTML content of the page."""
from unstructured.partition.html import partition_html
for selector in (self.remove_selectors or []):
elements = page.locator(selector).all()
for element in elements:
if element.is_visible():
element.evaluate('element => element.remove()')
page_source = page.content()
elements = partition_html(text=page_source)
return '\n\n'.join([str(el) for el in elements]) | def evaluate(self, page: 'Page', browser: 'Browser', response: 'Response'
) ->str:
"""Synchronously process the HTML content of the page."""
from unstructured.partition.html import partition_html
for selector in (self.remove_selectors or []):
elements = page.locator(selector).all()
for element in elements:
if element.is_visible():
element.evaluate('element => element.remove()')
page_source = page.content()
elements = partition_html(text=page_source)
return '\n\n'.join([str(el) for el in elements]) | Synchronously process the HTML content of the page. |
clear | """Pass.""" | def clear(self) ->None:
"""Pass.""" | Pass. |
_BoolOp | self.write('(')
s = ' %s ' % self.boolops[t.op.__class__]
interleave(lambda : self.write(s), self.dispatch, t.values)
self.write(')') | def _BoolOp(self, t):
self.write('(')
s = ' %s ' % self.boolops[t.op.__class__]
interleave(lambda : self.write(s), self.dispatch, t.values)
self.write(')') | null |
test_tool_calls_merge | chunks: List[dict] = [dict(content=''), dict(content='', additional_kwargs=
{'tool_calls': [{'index': 0, 'id': 'call_CwGAsESnXehQEjiAIWzinlva',
'function': {'arguments': '', 'name': 'person'}, 'type': 'function'}]}),
dict(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id':
None, 'function': {'arguments': '{"na', 'name': None}, 'type': None}]}),
dict(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id':
None, 'function': {'arguments': 'me": ', 'name': None}, 'type': None}]}
), dict(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id':
None, 'function': {'arguments': '"jane"', 'name': None}, 'type': None}]
}), dict(content='', additional_kwargs={'tool_calls': [{'index': 0,
'id': None, 'function': {'arguments': ', "a', 'name': None}, 'type':
None}]}), dict(content='', additional_kwargs={'tool_calls': [{'index':
0, 'id': None, 'function': {'arguments': 'ge": ', 'name': None}, 'type':
None}]}), dict(content='', additional_kwargs={'tool_calls': [{'index':
0, 'id': None, 'function': {'arguments': '2}', 'name': None}, 'type':
None}]}), dict(content='', additional_kwargs={'tool_calls': [{'index':
1, 'id': 'call_zXSIylHvc5x3JUAPcHZR5GZI', 'function': {'arguments': '',
'name': 'person'}, 'type': 'function'}]}), dict(content='',
additional_kwargs={'tool_calls': [{'index': 1, 'id': None, 'function':
{'arguments': '{"na', 'name': None}, 'type': None}]}), dict(content='',
additional_kwargs={'tool_calls': [{'index': 1, 'id': None, 'function':
{'arguments': 'me": ', 'name': None}, 'type': None}]}), dict(content='',
additional_kwargs={'tool_calls': [{'index': 1, 'id': None, 'function':
{'arguments': '"bob",', 'name': None}, 'type': None}]}), dict(content=
'', additional_kwargs={'tool_calls': [{'index': 1, 'id': None,
'function': {'arguments': ' "ag', 'name': None}, 'type': None}]}), dict
(content='', additional_kwargs={'tool_calls': [{'index': 1, 'id': None,
'function': {'arguments': 'e": 3', 'name': None}, 'type': None}]}),
dict(content='', additional_kwargs={'tool_calls': [{'index': 1, 'id':
None, 'function': {'arguments': '}', 'name': None}, 'type': None}]}),
dict(content='')]
final = None
for chunk in chunks:
msg = AIMessageChunk(**chunk)
if final is None:
final = msg
else:
final = final + msg
assert final == AIMessageChunk(content='', additional_kwargs={'tool_calls':
[{'index': 0, 'id': 'call_CwGAsESnXehQEjiAIWzinlva', 'function': {
'arguments': '{"name": "jane", "age": 2}', 'name': 'person'}, 'type':
'function'}, {'index': 1, 'id': 'call_zXSIylHvc5x3JUAPcHZR5GZI',
'function': {'arguments': '{"name": "bob", "age": 3}', 'name': 'person'
}, 'type': 'function'}]}) | def test_tool_calls_merge() ->None:
chunks: List[dict] = [dict(content=''), dict(content='',
additional_kwargs={'tool_calls': [{'index': 0, 'id':
'call_CwGAsESnXehQEjiAIWzinlva', 'function': {'arguments': '',
'name': 'person'}, 'type': 'function'}]}), dict(content='',
additional_kwargs={'tool_calls': [{'index': 0, 'id': None,
'function': {'arguments': '{"na', 'name': None}, 'type': None}]}),
dict(content='', additional_kwargs={'tool_calls': [{'index': 0,
'id': None, 'function': {'arguments': 'me": ', 'name': None},
'type': None}]}), dict(content='', additional_kwargs={'tool_calls':
[{'index': 0, 'id': None, 'function': {'arguments': '"jane"',
'name': None}, 'type': None}]}), dict(content='', additional_kwargs
={'tool_calls': [{'index': 0, 'id': None, 'function': {'arguments':
', "a', 'name': None}, 'type': None}]}), dict(content='',
additional_kwargs={'tool_calls': [{'index': 0, 'id': None,
'function': {'arguments': 'ge": ', 'name': None}, 'type': None}]}),
dict(content='', additional_kwargs={'tool_calls': [{'index': 0,
'id': None, 'function': {'arguments': '2}', 'name': None}, 'type':
None}]}), dict(content='', additional_kwargs={'tool_calls': [{
'index': 1, 'id': 'call_zXSIylHvc5x3JUAPcHZR5GZI', 'function': {
'arguments': '', 'name': 'person'}, 'type': 'function'}]}), dict(
content='', additional_kwargs={'tool_calls': [{'index': 1, 'id':
None, 'function': {'arguments': '{"na', 'name': None}, 'type': None
}]}), dict(content='', additional_kwargs={'tool_calls': [{'index':
1, 'id': None, 'function': {'arguments': 'me": ', 'name': None},
'type': None}]}), dict(content='', additional_kwargs={'tool_calls':
[{'index': 1, 'id': None, 'function': {'arguments': '"bob",',
'name': None}, 'type': None}]}), dict(content='', additional_kwargs
={'tool_calls': [{'index': 1, 'id': None, 'function': {'arguments':
' "ag', 'name': None}, 'type': None}]}), dict(content='',
additional_kwargs={'tool_calls': [{'index': 1, 'id': None,
'function': {'arguments': 'e": 3', 'name': None}, 'type': None}]}),
dict(content='', additional_kwargs={'tool_calls': [{'index': 1,
'id': None, 'function': {'arguments': '}', 'name': None}, 'type':
None}]}), dict(content='')]
final = None
for chunk in chunks:
msg = AIMessageChunk(**chunk)
if final is None:
final = msg
else:
final = final + msg
assert final == AIMessageChunk(content='', additional_kwargs={
'tool_calls': [{'index': 0, 'id': 'call_CwGAsESnXehQEjiAIWzinlva',
'function': {'arguments': '{"name": "jane", "age": 2}', 'name':
'person'}, 'type': 'function'}, {'index': 1, 'id':
'call_zXSIylHvc5x3JUAPcHZR5GZI', 'function': {'arguments':
'{"name": "bob", "age": 3}', 'name': 'person'}, 'type': 'function'}]}) | null |
_import_textgen | from langchain_community.llms.textgen import TextGen
return TextGen | def _import_textgen() ->Any:
from langchain_community.llms.textgen import TextGen
return TextGen | null |
test_python_repl_print | program = """
import numpy as np
v1 = np.array([1, 2, 3])
v2 = np.array([4, 5, 6])
dot_product = np.dot(v1, v2)
print("The dot product is {:d}.".format(dot_product))
"""
tool = PythonREPLTool()
assert tool.run(program) == 'The dot product is 32.\n' | def test_python_repl_print() ->None:
program = """
import numpy as np
v1 = np.array([1, 2, 3])
v2 = np.array([4, 5, 6])
dot_product = np.dot(v1, v2)
print("The dot product is {:d}.".format(dot_product))
"""
tool = PythonREPLTool()
assert tool.run(program) == 'The dot product is 32.\n' | null |
vectara_query | """Run a Vectara query
Args:
query: Text to look up documents similar to.
config: VectaraQueryConfig object
Returns:
A list of k Documents matching the given query
If summary is enabled, last document is the summary text with 'summary'=True
"""
if isinstance(config.mmr_config, dict):
config.mmr_config = MMRConfig(**config.mmr_config)
if isinstance(config.summary_config, dict):
config.summary_config = SummaryConfig(**config.summary_config)
data = {'query': [{'query': query, 'start': 0, 'numResults': config.
mmr_config.mmr_k if config.mmr_config.is_enabled else config.k,
'contextConfig': {'sentencesBefore': config.n_sentence_context,
'sentencesAfter': config.n_sentence_context}, 'corpusKey': [{
'customerId': self._vectara_customer_id, 'corpusId': self.
_vectara_corpus_id, 'metadataFilter': config.filter,
'lexicalInterpolationConfig': {'lambda': config.lambda_val}}]}]}
if config.mmr_config.is_enabled:
data['query'][0]['rerankingConfig'] = {'rerankerId': 272725718,
'mmrConfig': {'diversityBias': config.mmr_config.diversity_bias}}
if config.summary_config.is_enabled:
data['query'][0]['summary'] = [{'maxSummarizedResults': config.
summary_config.max_results, 'responseLang': config.summary_config.
response_lang}]
response = self._session.post(headers=self._get_post_headers(), url=
'https://api.vectara.io/v1/query', data=json.dumps(data), timeout=self.
vectara_api_timeout)
if response.status_code != 200:
logger.error('Query failed %s',
f'(code {response.status_code}, reason {response.reason}, details {response.text})'
)
return [], ''
result = response.json()
if config.score_threshold:
responses = [r for r in result['responseSet'][0]['response'] if r[
'score'] > config.score_threshold]
else:
responses = result['responseSet'][0]['response']
documents = result['responseSet'][0]['document']
metadatas = []
for x in responses:
md = {m['name']: m['value'] for m in x['metadata']}
doc_num = x['documentIndex']
doc_md = {m['name']: m['value'] for m in documents[doc_num]['metadata']}
if 'source' not in doc_md:
doc_md['source'] = 'vectara'
md.update(doc_md)
metadatas.append(md)
res = [(Document(page_content=x['text'], metadata=md), x['score']) for x,
md in zip(responses, metadatas)]
if config.mmr_config.is_enabled:
res = res[:config.k]
if config.summary_config.is_enabled:
summary = result['responseSet'][0]['summary'][0]['text']
res.append((Document(page_content=summary, metadata={'summary': True}),
0.0))
return res | def vectara_query(self, query: str, config: VectaraQueryConfig, **kwargs: Any
) ->List[Tuple[Document, float]]:
"""Run a Vectara query
Args:
query: Text to look up documents similar to.
config: VectaraQueryConfig object
Returns:
A list of k Documents matching the given query
If summary is enabled, last document is the summary text with 'summary'=True
"""
if isinstance(config.mmr_config, dict):
config.mmr_config = MMRConfig(**config.mmr_config)
if isinstance(config.summary_config, dict):
config.summary_config = SummaryConfig(**config.summary_config)
data = {'query': [{'query': query, 'start': 0, 'numResults': config.
mmr_config.mmr_k if config.mmr_config.is_enabled else config.k,
'contextConfig': {'sentencesBefore': config.n_sentence_context,
'sentencesAfter': config.n_sentence_context}, 'corpusKey': [{
'customerId': self._vectara_customer_id, 'corpusId': self.
_vectara_corpus_id, 'metadataFilter': config.filter,
'lexicalInterpolationConfig': {'lambda': config.lambda_val}}]}]}
if config.mmr_config.is_enabled:
data['query'][0]['rerankingConfig'] = {'rerankerId': 272725718,
'mmrConfig': {'diversityBias': config.mmr_config.diversity_bias}}
if config.summary_config.is_enabled:
data['query'][0]['summary'] = [{'maxSummarizedResults': config.
summary_config.max_results, 'responseLang': config.
summary_config.response_lang}]
response = self._session.post(headers=self._get_post_headers(), url=
'https://api.vectara.io/v1/query', data=json.dumps(data), timeout=
self.vectara_api_timeout)
if response.status_code != 200:
logger.error('Query failed %s',
f'(code {response.status_code}, reason {response.reason}, details {response.text})'
)
return [], ''
result = response.json()
if config.score_threshold:
responses = [r for r in result['responseSet'][0]['response'] if r[
'score'] > config.score_threshold]
else:
responses = result['responseSet'][0]['response']
documents = result['responseSet'][0]['document']
metadatas = []
for x in responses:
md = {m['name']: m['value'] for m in x['metadata']}
doc_num = x['documentIndex']
doc_md = {m['name']: m['value'] for m in documents[doc_num]['metadata']
}
if 'source' not in doc_md:
doc_md['source'] = 'vectara'
md.update(doc_md)
metadatas.append(md)
res = [(Document(page_content=x['text'], metadata=md), x['score']) for
x, md in zip(responses, metadatas)]
if config.mmr_config.is_enabled:
res = res[:config.k]
if config.summary_config.is_enabled:
summary = result['responseSet'][0]['summary'][0]['text']
res.append((Document(page_content=summary, metadata={'summary':
True}), 0.0))
return res | Run a Vectara query
Args:
query: Text to look up documents similar to.
config: VectaraQueryConfig object
Returns:
A list of k Documents matching the given query
If summary is enabled, last document is the summary text with 'summary'=True |
query | """
Executes when a search is performed on the store.
Args:
query_vector: The query vector,
or None if not using vector-based query.
query: The text query, or None if not using text-based query.
k: The total number of results to retrieve.
fetch_k: The number of results to fetch initially.
vector_query_field: The field containing the vector
representations in the index.
text_field: The field containing the text data in the index.
filter: List of filter clauses to apply to the query.
similarity: The similarity strategy to use, or None if not using one.
Returns:
Dict: The Elasticsearch query body.
""" | @abstractmethod
def query(self, query_vector: Union[List[float], None], query: Union[str,
None], *, k: int, fetch_k: int, vector_query_field: str, text_field:
str, filter: List[dict], similarity: Union[DistanceStrategy, None]) ->Dict:
"""
Executes when a search is performed on the store.
Args:
query_vector: The query vector,
or None if not using vector-based query.
query: The text query, or None if not using text-based query.
k: The total number of results to retrieve.
fetch_k: The number of results to fetch initially.
vector_query_field: The field containing the vector
representations in the index.
text_field: The field containing the text data in the index.
filter: List of filter clauses to apply to the query.
similarity: The similarity strategy to use, or None if not using one.
Returns:
Dict: The Elasticsearch query body.
""" | Executes when a search is performed on the store.
Args:
query_vector: The query vector,
or None if not using vector-based query.
query: The text query, or None if not using text-based query.
k: The total number of results to retrieve.
fetch_k: The number of results to fetch initially.
vector_query_field: The field containing the vector
representations in the index.
text_field: The field containing the text data in the index.
filter: List of filter clauses to apply to the query.
similarity: The similarity strategy to use, or None if not using one.
Returns:
Dict: The Elasticsearch query body. |
print_task_result | print('\x1b[93m\x1b[1m' + """
*****TASK RESULT*****
""" + '\x1b[0m\x1b[0m')
print(result) | def print_task_result(self, result: str) ->None:
print('\x1b[93m\x1b[1m' + '\n*****TASK RESULT*****\n' + '\x1b[0m\x1b[0m')
print(result) | null |
_iterate_files | """Iterate over the files in a directory or zip file.
Args:
path (str): Path to the directory or zip file.
Yields:
str: The path to each file.
"""
if os.path.isfile(path):
yield path
elif os.path.isdir(path):
for root, _, files in os.walk(path):
for file in files:
if file.endswith('.txt'):
yield os.path.join(root, file)
elif zipfile.is_zipfile(path):
with zipfile.ZipFile(path) as zip_file:
for file in zip_file.namelist():
if file.endswith('.txt'):
yield zip_file.extract(file) | def _iterate_files(self, path: str) ->Iterator[str]:
"""Iterate over the files in a directory or zip file.
Args:
path (str): Path to the directory or zip file.
Yields:
str: The path to each file.
"""
if os.path.isfile(path):
yield path
elif os.path.isdir(path):
for root, _, files in os.walk(path):
for file in files:
if file.endswith('.txt'):
yield os.path.join(root, file)
elif zipfile.is_zipfile(path):
with zipfile.ZipFile(path) as zip_file:
for file in zip_file.namelist():
if file.endswith('.txt'):
yield zip_file.extract(file) | Iterate over the files in a directory or zip file.
Args:
path (str): Path to the directory or zip file.
Yields:
str: The path to each file. |
on_text | """Run when text is received.
Args:
text (str): The received text.
Returns:
Any: The result of the callback.
"""
handle_event(self.handlers, 'on_text', None, text, run_id=self.run_id,
parent_run_id=self.parent_run_id, tags=self.tags, **kwargs) | def on_text(self, text: str, **kwargs: Any) ->Any:
"""Run when text is received.
Args:
text (str): The received text.
Returns:
Any: The result of the callback.
"""
handle_event(self.handlers, 'on_text', None, text, run_id=self.run_id,
parent_run_id=self.parent_run_id, tags=self.tags, **kwargs) | Run when text is received.
Args:
text (str): The received text.
Returns:
Any: The result of the callback. |
_generate | return ChatResult(generations=[ChatGeneration(message=AIMessage(content='',
additional_kwargs={'function_call': {'name': 'accept', 'arguments':
"""{
"draft": "turtles"
}"""}}))]) | def _generate(self, messages: List[BaseMessage], stop: Optional[List[str]]=
None, run_manager: Optional[CallbackManagerForLLMRun]=None, **kwargs: Any
) ->ChatResult:
return ChatResult(generations=[ChatGeneration(message=AIMessage(content
='', additional_kwargs={'function_call': {'name': 'accept',
'arguments': """{
"draft": "turtles"
}"""}}))]) | null |
_process_end_trace | if not run.parent_run_id:
pass
else:
span = self._span_map[run.id]
span.set_outputs(outputs=run.outputs)
span.__api__end__() | def _process_end_trace(self, run: 'Run') ->None:
if not run.parent_run_id:
pass
else:
span = self._span_map[run.id]
span.set_outputs(outputs=run.outputs)
span.__api__end__() | null |
output_keys | """Return output key.
:meta private:
"""
return [self.output_key] | @property
def output_keys(self) ->List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key] | Return output key.
:meta private: |
_identifying_params | """Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {**{'model_kwargs': _model_kwargs}} | @property
def _identifying_params(self) ->Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {**{'model_kwargs': _model_kwargs}} | Get the identifying parameters. |
_prepare_request | """Prepare the request details for the DataForSEO SERP API."""
if self.api_login is None or self.api_password is None:
raise ValueError('api_login or api_password is not provided')
cred = base64.b64encode(f'{self.api_login}:{self.api_password}'.encode('utf-8')
).decode('utf-8')
headers = {'Authorization': f'Basic {cred}', 'Content-Type': 'application/json'
}
obj = {'keyword': quote(keyword)}
obj = {**obj, **self.default_params, **self.params}
data = [obj]
_url = (
f"https://api.dataforseo.com/v3/serp/{obj['se_name']}/{obj['se_type']}/live/advanced"
)
return {'url': _url, 'headers': headers, 'data': data} | def _prepare_request(self, keyword: str) ->dict:
"""Prepare the request details for the DataForSEO SERP API."""
if self.api_login is None or self.api_password is None:
raise ValueError('api_login or api_password is not provided')
cred = base64.b64encode(f'{self.api_login}:{self.api_password}'.encode(
'utf-8')).decode('utf-8')
headers = {'Authorization': f'Basic {cred}', 'Content-Type':
'application/json'}
obj = {'keyword': quote(keyword)}
obj = {**obj, **self.default_params, **self.params}
data = [obj]
_url = (
f"https://api.dataforseo.com/v3/serp/{obj['se_name']}/{obj['se_type']}/live/advanced"
)
return {'url': _url, 'headers': headers, 'data': data} | Prepare the request details for the DataForSEO SERP API. |
test_web_path_parameter | web_base_loader = WebBaseLoader(web_paths=['https://www.example.com'])
assert web_base_loader.web_paths == ['https://www.example.com']
web_base_loader = WebBaseLoader(web_path=['https://www.example.com'])
assert web_base_loader.web_paths == ['https://www.example.com']
web_base_loader = WebBaseLoader(web_path='https://www.example.com')
assert web_base_loader.web_paths == ['https://www.example.com'] | def test_web_path_parameter(self) ->None:
web_base_loader = WebBaseLoader(web_paths=['https://www.example.com'])
assert web_base_loader.web_paths == ['https://www.example.com']
web_base_loader = WebBaseLoader(web_path=['https://www.example.com'])
assert web_base_loader.web_paths == ['https://www.example.com']
web_base_loader = WebBaseLoader(web_path='https://www.example.com')
assert web_base_loader.web_paths == ['https://www.example.com'] | null |
test_init_fail_index_none | with pytest.raises(TypeError) as ex:
DatabricksVectorSearch(None)
assert 'index must be of type VectorSearchIndex.' in str(ex.value) | @pytest.mark.requires('databricks', 'databricks.vector_search')
def test_init_fail_index_none() ->None:
with pytest.raises(TypeError) as ex:
DatabricksVectorSearch(None)
assert 'index must be of type VectorSearchIndex.' in str(ex.value) | null |
distance_metric | return request.param | @pytest.fixture(params=['L1', 'L2', 'max', 'cos'])
def distance_metric(request: FixtureRequest) ->str:
return request.param | null |
test_couchbase_import | """Test that the Couchbase document loader can be imported."""
from langchain_community.document_loaders import CouchbaseLoader | def test_couchbase_import() ->None:
"""Test that the Couchbase document loader can be imported."""
from langchain_community.document_loaders import CouchbaseLoader | Test that the Couchbase document loader can be imported. |
_load_llm_bash_chain | from langchain_experimental.llm_bash.base import LLMBashChain
llm_chain = None
if 'llm_chain' in config:
llm_chain_config = config.pop('llm_chain')
llm_chain = load_chain_from_config(llm_chain_config)
elif 'llm_chain_path' in config:
llm_chain = load_chain(config.pop('llm_chain_path'))
elif 'llm' in config:
llm_config = config.pop('llm')
llm = load_llm_from_config(llm_config)
elif 'llm_path' in config:
llm = load_llm(config.pop('llm_path'))
else:
raise ValueError('One of `llm_chain` or `llm_chain_path` must be present.')
if 'prompt' in config:
prompt_config = config.pop('prompt')
prompt = load_prompt_from_config(prompt_config)
elif 'prompt_path' in config:
prompt = load_prompt(config.pop('prompt_path'))
if llm_chain:
return LLMBashChain(llm_chain=llm_chain, prompt=prompt, **config)
else:
return LLMBashChain(llm=llm, prompt=prompt, **config) | def _load_llm_bash_chain(config: dict, **kwargs: Any) ->Any:
from langchain_experimental.llm_bash.base import LLMBashChain
llm_chain = None
if 'llm_chain' in config:
llm_chain_config = config.pop('llm_chain')
llm_chain = load_chain_from_config(llm_chain_config)
elif 'llm_chain_path' in config:
llm_chain = load_chain(config.pop('llm_chain_path'))
elif 'llm' in config:
llm_config = config.pop('llm')
llm = load_llm_from_config(llm_config)
elif 'llm_path' in config:
llm = load_llm(config.pop('llm_path'))
else:
raise ValueError(
'One of `llm_chain` or `llm_chain_path` must be present.')
if 'prompt' in config:
prompt_config = config.pop('prompt')
prompt = load_prompt_from_config(prompt_config)
elif 'prompt_path' in config:
prompt = load_prompt(config.pop('prompt_path'))
if llm_chain:
return LLMBashChain(llm_chain=llm_chain, prompt=prompt, **config)
else:
return LLMBashChain(llm=llm, prompt=prompt, **config) | null |
test_run_llm_all_formats | llm = FakeLLM()
_run_llm(llm, inputs, mock.MagicMock()) | @pytest.mark.parametrize('inputs', _VALID_PROMPTS + _VALID_MESSAGES)
def test_run_llm_all_formats(inputs: Dict[str, Any]) ->None:
llm = FakeLLM()
_run_llm(llm, inputs, mock.MagicMock()) | null |
on_llm_new_token | self._llm_token_stream += _convert_newlines(token)
self._llm_token_writer_idx = self._container.markdown(self.
_llm_token_stream, index=self._llm_token_writer_idx) | def on_llm_new_token(self, token: str, **kwargs: Any) ->None:
self._llm_token_stream += _convert_newlines(token)
self._llm_token_writer_idx = self._container.markdown(self.
_llm_token_stream, index=self._llm_token_writer_idx) | null |
output_keys | """Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
return _output_keys | @property
def output_keys(self) ->List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
return _output_keys | Return the output keys.
:meta private: |
__init__ | """Initialize with DashVector collection."""
try:
import dashvector
except ImportError:
raise ValueError(
'Could not import dashvector python package. Please install it with `pip install dashvector`.'
)
if not isinstance(collection, dashvector.Collection):
raise ValueError(
f'collection should be an instance of dashvector.Collection, bug got {type(collection)}'
)
self._collection = collection
self._embedding = embedding
self._text_field = text_field | def __init__(self, collection: Any, embedding: Embeddings, text_field: str):
"""Initialize with DashVector collection."""
try:
import dashvector
except ImportError:
raise ValueError(
'Could not import dashvector python package. Please install it with `pip install dashvector`.'
)
if not isinstance(collection, dashvector.Collection):
raise ValueError(
f'collection should be an instance of dashvector.Collection, bug got {type(collection)}'
)
self._collection = collection
self._embedding = embedding
self._text_field = text_field | Initialize with DashVector collection. |
test_chat_prompt_template_indexing | message1 = SystemMessage(content='foo')
message2 = HumanMessage(content='bar')
message3 = HumanMessage(content='baz')
template = ChatPromptTemplate.from_messages([message1, message2, message3])
assert template[0] == message1
assert template[1] == message2
slice_template = template[1:]
assert slice_template[0] == message2
assert len(slice_template) == 2 | def test_chat_prompt_template_indexing() ->None:
message1 = SystemMessage(content='foo')
message2 = HumanMessage(content='bar')
message3 = HumanMessage(content='baz')
template = ChatPromptTemplate.from_messages([message1, message2, message3])
assert template[0] == message1
assert template[1] == message2
slice_template = template[1:]
assert slice_template[0] == message2
assert len(slice_template) == 2 | null |
_key_encoder | """Encode a key."""
return namespace + str(_hash_string_to_uuid(key)) | def _key_encoder(key: str, namespace: str) ->str:
"""Encode a key."""
return namespace + str(_hash_string_to_uuid(key)) | Encode a key. |
create_vector_extension | try:
with Session(self._bind) as session:
statement = sqlalchemy.text(
'BEGIN;SELECT pg_advisory_xact_lock(1573678846307946496);CREATE EXTENSION IF NOT EXISTS vector;COMMIT;'
)
session.execute(statement)
session.commit()
except Exception as e:
raise Exception(f'Failed to create vector extension: {e}') from e | def create_vector_extension(self) ->None:
try:
with Session(self._bind) as session:
statement = sqlalchemy.text(
'BEGIN;SELECT pg_advisory_xact_lock(1573678846307946496);CREATE EXTENSION IF NOT EXISTS vector;COMMIT;'
)
session.execute(statement)
session.commit()
except Exception as e:
raise Exception(f'Failed to create vector extension: {e}') from e | null |
test_empty_intermediate_steps | output = format_log_to_str([])
assert output == '' | def test_empty_intermediate_steps() ->None:
output = format_log_to_str([])
assert output == '' | null |
test_selector_add_example | """Test NGramOverlapExampleSelector can add an example."""
new_example = {'input': 'Spot plays fetch.', 'output': 'foo4'}
selector.add_example(new_example)
sentence = 'Spot can run.'
output = selector.select_examples({'input': sentence})
assert output == [EXAMPLES[2], EXAMPLES[0]] + [new_example] + [EXAMPLES[1]] | def test_selector_add_example(selector: NGramOverlapExampleSelector) ->None:
"""Test NGramOverlapExampleSelector can add an example."""
new_example = {'input': 'Spot plays fetch.', 'output': 'foo4'}
selector.add_example(new_example)
sentence = 'Spot can run.'
output = selector.select_examples({'input': sentence})
assert output == [EXAMPLES[2], EXAMPLES[0]] + [new_example] + [EXAMPLES[1]] | Test NGramOverlapExampleSelector can add an example. |
embed_documents | """Call the base embeddings."""
return self.base_embeddings.embed_documents(texts) | def embed_documents(self, texts: List[str]) ->List[List[float]]:
"""Call the base embeddings."""
return self.base_embeddings.embed_documents(texts) | Call the base embeddings. |
similarity_search_with_score_id | embedding_vector = self.embedding.embed_query(query)
return self.similarity_search_with_score_id_by_vector(embedding=
embedding_vector, k=k, filter=filter) | def similarity_search_with_score_id(self, query: str, k: int=4, filter:
Optional[Dict[str, str]]=None) ->List[Tuple[Document, float, str]]:
embedding_vector = self.embedding.embed_query(query)
return self.similarity_search_with_score_id_by_vector(embedding=
embedding_vector, k=k, filter=filter) | null |
test_timescalevector_with_index | """Test deleting functionality."""
texts = ['bar', 'baz']
docs = [Document(page_content=t, metadata={'a': 'b'}) for t in texts]
docsearch = TimescaleVector.from_documents(documents=docs, collection_name=
'test_collection', embedding=FakeEmbeddingsWithAdaDimension(),
service_url=SERVICE_URL, pre_delete_collection=True)
texts = ['foo']
meta = [{'b': 'c'}]
docsearch.add_texts(texts, meta)
docsearch.create_index()
output = docsearch.similarity_search('bar', k=10)
assert len(output) == 3
docsearch.drop_index()
docsearch.create_index(index_type=TimescaleVector.IndexType.
TIMESCALE_VECTOR, max_alpha=1.0, num_neighbors=50)
docsearch.drop_index()
docsearch.create_index('tsv', max_alpha=1.0, num_neighbors=50)
docsearch.drop_index()
docsearch.create_index('ivfflat', num_lists=20, num_records=1000)
docsearch.drop_index()
docsearch.create_index('hnsw', m=16, ef_construction=64) | def test_timescalevector_with_index() ->None:
"""Test deleting functionality."""
texts = ['bar', 'baz']
docs = [Document(page_content=t, metadata={'a': 'b'}) for t in texts]
docsearch = TimescaleVector.from_documents(documents=docs,
collection_name='test_collection', embedding=
FakeEmbeddingsWithAdaDimension(), service_url=SERVICE_URL,
pre_delete_collection=True)
texts = ['foo']
meta = [{'b': 'c'}]
docsearch.add_texts(texts, meta)
docsearch.create_index()
output = docsearch.similarity_search('bar', k=10)
assert len(output) == 3
docsearch.drop_index()
docsearch.create_index(index_type=TimescaleVector.IndexType.
TIMESCALE_VECTOR, max_alpha=1.0, num_neighbors=50)
docsearch.drop_index()
docsearch.create_index('tsv', max_alpha=1.0, num_neighbors=50)
docsearch.drop_index()
docsearch.create_index('ivfflat', num_lists=20, num_records=1000)
docsearch.drop_index()
docsearch.create_index('hnsw', m=16, ef_construction=64) | Test deleting functionality. |
_import_symblai_nebula | from langchain_community.llms.symblai_nebula import Nebula
return Nebula | def _import_symblai_nebula() ->Any:
from langchain_community.llms.symblai_nebula import Nebula
return Nebula | null |
validate_return_direct_tool | """Validate that tools are compatible with agent."""
agent = values['agent']
tools = values['tools']
if isinstance(agent, BaseMultiActionAgent):
for tool in tools:
if tool.return_direct:
raise ValueError(
'Tools that have `return_direct=True` are not allowed in multi-action agents'
)
return values | @root_validator()
def validate_return_direct_tool(cls, values: Dict) ->Dict:
"""Validate that tools are compatible with agent."""
agent = values['agent']
tools = values['tools']
if isinstance(agent, BaseMultiActionAgent):
for tool in tools:
if tool.return_direct:
raise ValueError(
'Tools that have `return_direct=True` are not allowed in multi-action agents'
)
return values | Validate that tools are compatible with agent. |
get_unique_config_specs | """Get the unique config specs from a sequence of config specs."""
grouped = groupby(sorted(specs, key=lambda s: (s.id, *(s.dependencies or []
))), lambda s: s.id)
unique: List[ConfigurableFieldSpec] = []
for id, dupes in grouped:
first = next(dupes)
others = list(dupes)
if len(others) == 0:
unique.append(first)
elif all(o == first for o in others):
unique.append(first)
else:
raise ValueError(
f'RunnableSequence contains conflicting config specsfor {id}: {[first] + others}'
)
return unique | def get_unique_config_specs(specs: Iterable[ConfigurableFieldSpec]) ->List[
ConfigurableFieldSpec]:
"""Get the unique config specs from a sequence of config specs."""
grouped = groupby(sorted(specs, key=lambda s: (s.id, *(s.dependencies or
[]))), lambda s: s.id)
unique: List[ConfigurableFieldSpec] = []
for id, dupes in grouped:
first = next(dupes)
others = list(dupes)
if len(others) == 0:
unique.append(first)
elif all(o == first for o in others):
unique.append(first)
else:
raise ValueError(
f'RunnableSequence contains conflicting config specsfor {id}: {[first] + others}'
)
return unique | Get the unique config specs from a sequence of config specs. |
test_anonymize | """Test anonymizing a name in a simple sentence"""
from langchain_experimental.data_anonymizer import PresidioAnonymizer
text = 'Hello, my name is John Doe.'
anonymizer = PresidioAnonymizer(analyzed_fields=analyzed_fields)
anonymized_text = anonymizer.anonymize(text)
assert ('John Doe' in anonymized_text) == should_contain | @pytest.mark.requires('presidio_analyzer', 'presidio_anonymizer', 'faker')
@pytest.mark.parametrize('analyzed_fields,should_contain', [(['PERSON'],
False), (['PHONE_NUMBER'], True), (None, False)])
def test_anonymize(analyzed_fields: List[str], should_contain: bool) ->None:
"""Test anonymizing a name in a simple sentence"""
from langchain_experimental.data_anonymizer import PresidioAnonymizer
text = 'Hello, my name is John Doe.'
anonymizer = PresidioAnonymizer(analyzed_fields=analyzed_fields)
anonymized_text = anonymizer.anonymize(text)
assert ('John Doe' in anonymized_text) == should_contain | Test anonymizing a name in a simple sentence |
test_pgvector_with_custom_connection | """Test construction using a custom connection."""
texts = ['foo', 'bar', 'baz']
engine = sqlalchemy.create_engine(CONNECTION_STRING)
with engine.connect() as connection:
docsearch = PGVector.from_texts(texts=texts, collection_name=
'test_collection', embedding=FakeEmbeddingsWithAdaDimension(),
connection_string=CONNECTION_STRING, pre_delete_collection=True,
connection=connection)
output = docsearch.similarity_search('foo', k=1)
assert output == [Document(page_content='foo')] | def test_pgvector_with_custom_connection() ->None:
"""Test construction using a custom connection."""
texts = ['foo', 'bar', 'baz']
engine = sqlalchemy.create_engine(CONNECTION_STRING)
with engine.connect() as connection:
docsearch = PGVector.from_texts(texts=texts, collection_name=
'test_collection', embedding=FakeEmbeddingsWithAdaDimension(),
connection_string=CONNECTION_STRING, pre_delete_collection=True,
connection=connection)
output = docsearch.similarity_search('foo', k=1)
assert output == [Document(page_content='foo')] | Test construction using a custom connection. |
_chat_stream_with_aggregation | final_chunk: Optional[ChatGenerationChunk] = None
for stream_resp in self._create_chat_stream(messages, stop, **kwargs):
if stream_resp:
chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp)
if final_chunk is None:
final_chunk = chunk
else:
final_chunk += chunk
if run_manager:
run_manager.on_llm_new_token(chunk.text, verbose=verbose)
if final_chunk is None:
raise ValueError('No data received from Ollama stream.')
return final_chunk | def _chat_stream_with_aggregation(self, messages: List[BaseMessage], stop:
Optional[List[str]]=None, run_manager: Optional[
CallbackManagerForLLMRun]=None, verbose: bool=False, **kwargs: Any
) ->ChatGenerationChunk:
final_chunk: Optional[ChatGenerationChunk] = None
for stream_resp in self._create_chat_stream(messages, stop, **kwargs):
if stream_resp:
chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp)
if final_chunk is None:
final_chunk = chunk
else:
final_chunk += chunk
if run_manager:
run_manager.on_llm_new_token(chunk.text, verbose=verbose)
if final_chunk is None:
raise ValueError('No data received from Ollama stream.')
return final_chunk | null |
from_existing_index | """
Get instance of an existing Neo4j vector index. This method will
return the instance of the store without inserting any new
embeddings.
Neo4j credentials are required in the form of `url`, `username`,
and `password` and optional `database` parameters along with
the `index_name` definition.
"""
if search_type == SearchType.HYBRID and not keyword_index_name:
raise ValueError(
'keyword_index name has to be specified when using hybrid search option'
)
store = cls(embedding=embedding, index_name=index_name, keyword_index_name=
keyword_index_name, search_type=search_type, **kwargs)
embedding_dimension = store.retrieve_existing_index()
if not embedding_dimension:
raise ValueError(
'The specified vector index name does not exist. Make sure to check if you spelled it correctly'
)
if not store.embedding_dimension == embedding_dimension:
raise ValueError(
f"""The provided embedding function and vector index dimensions do not match.
Embedding function dimension: {store.embedding_dimension}
Vector index dimension: {embedding_dimension}"""
)
if search_type == SearchType.HYBRID:
fts_node_label = store.retrieve_existing_fts_index()
if not fts_node_label:
raise ValueError(
'The specified keyword index name does not exist. Make sure to check if you spelled it correctly'
)
elif not fts_node_label == store.node_label:
raise ValueError(
"Vector and keyword index don't index the same node label")
return store | @classmethod
def from_existing_index(cls: Type[Neo4jVector], embedding: Embeddings,
index_name: str, search_type: SearchType=DEFAULT_SEARCH_TYPE,
keyword_index_name: Optional[str]=None, **kwargs: Any) ->Neo4jVector:
"""
Get instance of an existing Neo4j vector index. This method will
return the instance of the store without inserting any new
embeddings.
Neo4j credentials are required in the form of `url`, `username`,
and `password` and optional `database` parameters along with
the `index_name` definition.
"""
if search_type == SearchType.HYBRID and not keyword_index_name:
raise ValueError(
'keyword_index name has to be specified when using hybrid search option'
)
store = cls(embedding=embedding, index_name=index_name,
keyword_index_name=keyword_index_name, search_type=search_type, **
kwargs)
embedding_dimension = store.retrieve_existing_index()
if not embedding_dimension:
raise ValueError(
'The specified vector index name does not exist. Make sure to check if you spelled it correctly'
)
if not store.embedding_dimension == embedding_dimension:
raise ValueError(
f"""The provided embedding function and vector index dimensions do not match.
Embedding function dimension: {store.embedding_dimension}
Vector index dimension: {embedding_dimension}"""
)
if search_type == SearchType.HYBRID:
fts_node_label = store.retrieve_existing_fts_index()
if not fts_node_label:
raise ValueError(
'The specified keyword index name does not exist. Make sure to check if you spelled it correctly'
)
elif not fts_node_label == store.node_label:
raise ValueError(
"Vector and keyword index don't index the same node label")
return store | Get instance of an existing Neo4j vector index. This method will
return the instance of the store without inserting any new
embeddings.
Neo4j credentials are required in the form of `url`, `username`,
and `password` and optional `database` parameters along with
the `index_name` definition. |