method_name
stringlengths 1
78
| method_body
stringlengths 3
9.66k
| full_code
stringlengths 31
10.7k
| docstring
stringlengths 4
4.74k
⌀ |
---|---|---|---|
configurable_alternatives | from langchain_core.runnables.configurable import RunnableConfigurableAlternatives
return RunnableConfigurableAlternatives(which=which, default=self,
alternatives=kwargs, default_key=default_key, prefix_keys=prefix_keys) | def configurable_alternatives(self, which: ConfigurableField, *,
default_key: str='default', prefix_keys: bool=False, **kwargs: Union[
Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]
) ->RunnableSerializable[Input, Output]:
from langchain_core.runnables.configurable import RunnableConfigurableAlternatives
return RunnableConfigurableAlternatives(which=which, default=self,
alternatives=kwargs, default_key=default_key, prefix_keys=prefix_keys) | null |
as_import_path | """Path of the file as a LangChain import exclude langchain top namespace."""
if isinstance(file, str):
file = Path(file)
path = get_relative_path(file, relative_to=relative_to)
if file.is_file():
path = path[:-len(file.suffix)]
import_path = path.replace(SEPARATOR, '.')
if suffix:
import_path += '.' + suffix
return import_path | def as_import_path(file: Union[Path, str], *, suffix: Optional[str]=None,
relative_to: Path=PACKAGE_DIR) ->str:
"""Path of the file as a LangChain import exclude langchain top namespace."""
if isinstance(file, str):
file = Path(file)
path = get_relative_path(file, relative_to=relative_to)
if file.is_file():
path = path[:-len(file.suffix)]
import_path = path.replace(SEPARATOR, '.')
if suffix:
import_path += '.' + suffix
return import_path | Path of the file as a LangChain import exclude langchain top namespace. |
on_chat_model_start | assert all(isinstance(m, BaseMessage) for m in chain(*messages))
self.on_chat_model_start_common() | def on_chat_model_start(self, serialized: Dict[str, Any], messages: List[
List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID]=None,
**kwargs: Any) ->Any:
assert all(isinstance(m, BaseMessage) for m in chain(*messages))
self.on_chat_model_start_common() | null |
_convert_message_to_dict | """Converts message to a dict according to role"""
content = cast(str, message.content)
if isinstance(message, HumanMessage):
return {'role': 'user', 'content': ContentFormatterBase.
escape_special_characters(content)}
elif isinstance(message, AIMessage):
return {'role': 'assistant', 'content': ContentFormatterBase.
escape_special_characters(content)}
elif isinstance(message, SystemMessage):
return {'role': 'system', 'content': ContentFormatterBase.
escape_special_characters(content)}
elif isinstance(message, ChatMessage
) and message.role in LlamaContentFormatter.SUPPORTED_ROLES:
return {'role': message.role, 'content': ContentFormatterBase.
escape_special_characters(content)}
else:
supported = ','.join([role for role in LlamaContentFormatter.
SUPPORTED_ROLES])
raise ValueError(
f"""Received unsupported role.
Supported roles for the LLaMa Foundation Model: {supported}"""
) | @staticmethod
def _convert_message_to_dict(message: BaseMessage) ->Dict:
"""Converts message to a dict according to role"""
content = cast(str, message.content)
if isinstance(message, HumanMessage):
return {'role': 'user', 'content': ContentFormatterBase.
escape_special_characters(content)}
elif isinstance(message, AIMessage):
return {'role': 'assistant', 'content': ContentFormatterBase.
escape_special_characters(content)}
elif isinstance(message, SystemMessage):
return {'role': 'system', 'content': ContentFormatterBase.
escape_special_characters(content)}
elif isinstance(message, ChatMessage
) and message.role in LlamaContentFormatter.SUPPORTED_ROLES:
return {'role': message.role, 'content': ContentFormatterBase.
escape_special_characters(content)}
else:
supported = ','.join([role for role in LlamaContentFormatter.
SUPPORTED_ROLES])
raise ValueError(
f"""Received unsupported role.
Supported roles for the LLaMa Foundation Model: {supported}"""
) | Converts message to a dict according to role |
_alias | self.write(t.name)
if t.asname:
self.write(' as ' + t.asname) | def _alias(self, t):
self.write(t.name)
if t.asname:
self.write(' as ' + t.asname) | null |
setUp | self.loader = CubeSemanticLoader(cube_api_url='http://example.com',
cube_api_token='test_token') | def setUp(self) ->None:
self.loader = CubeSemanticLoader(cube_api_url='http://example.com',
cube_api_token='test_token') | null |
lookup | """Look up based on prompt and llm_string.""" | @abstractmethod
def lookup(self, prompt: str, llm_string: str) ->Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string.""" | Look up based on prompt and llm_string. |
_identifying_params | """Get the identifying parameters."""
return {**{'model_name': self.model_name}, **self._default_params} | @property
def _identifying_params(self) ->Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{'model_name': self.model_name}, **self._default_params} | Get the identifying parameters. |
_stream_response_to_generation_chunk | """Convert a stream response to a generation chunk."""
if not stream_response['choices']:
return GenerationChunk(text='')
return GenerationChunk(text=stream_response['choices'][0]['text'],
generation_info=dict(finish_reason=stream_response['choices'][0].get(
'finish_reason', None), logprobs=stream_response['choices'][0].get(
'logprobs', None))) | def _stream_response_to_generation_chunk(stream_response: Dict[str, Any]
) ->GenerationChunk:
"""Convert a stream response to a generation chunk."""
if not stream_response['choices']:
return GenerationChunk(text='')
return GenerationChunk(text=stream_response['choices'][0]['text'],
generation_info=dict(finish_reason=stream_response['choices'][0].
get('finish_reason', None), logprobs=stream_response['choices'][0].
get('logprobs', None))) | Convert a stream response to a generation chunk. |
text | return RedisText(field) | @staticmethod
def text(field: str) ->'RedisText':
return RedisText(field) | null |
test_transform_keeps_order | bs_transformer = BeautifulSoupTransformer()
multiple_tags_html = (
'<h1>First heading.</h1><p>First paragraph.</p><h1>Second heading.</h1><p>Second paragraph.</p>'
)
documents = [Document(page_content=multiple_tags_html)]
docs_transformed_p_then_h1 = bs_transformer.transform_documents(documents,
tags_to_extract=['p', 'h1'])
assert docs_transformed_p_then_h1[0
].page_content == 'First heading. First paragraph. Second heading. Second paragraph.'
documents = [Document(page_content=multiple_tags_html)]
docs_transformed_h1_then_p = bs_transformer.transform_documents(documents,
tags_to_extract=['h1', 'p'])
assert docs_transformed_h1_then_p[0
].page_content == 'First heading. First paragraph. Second heading. Second paragraph.' | @pytest.mark.requires('bs4')
def test_transform_keeps_order() ->None:
bs_transformer = BeautifulSoupTransformer()
multiple_tags_html = (
'<h1>First heading.</h1><p>First paragraph.</p><h1>Second heading.</h1><p>Second paragraph.</p>'
)
documents = [Document(page_content=multiple_tags_html)]
docs_transformed_p_then_h1 = bs_transformer.transform_documents(documents,
tags_to_extract=['p', 'h1'])
assert docs_transformed_p_then_h1[0
].page_content == 'First heading. First paragraph. Second heading. Second paragraph.'
documents = [Document(page_content=multiple_tags_html)]
docs_transformed_h1_then_p = bs_transformer.transform_documents(documents,
tags_to_extract=['h1', 'p'])
assert docs_transformed_h1_then_p[0
].page_content == 'First heading. First paragraph. Second heading. Second paragraph.' | null |
_invocation_params | params = self._default_params
if self.model_kwargs:
params.update(self.model_kwargs)
if self.stop_sequences is not None and stop_sequences is not None:
raise ValueError('`stop` found in both the input and default params.')
elif self.stop_sequences is not None:
params['stop'] = self.stop_sequences
else:
params['stop'] = stop_sequences
return {**params, **kwargs} | def _invocation_params(self, stop_sequences: Optional[List[str]], **kwargs: Any
) ->dict:
params = self._default_params
if self.model_kwargs:
params.update(self.model_kwargs)
if self.stop_sequences is not None and stop_sequences is not None:
raise ValueError('`stop` found in both the input and default params.')
elif self.stop_sequences is not None:
params['stop'] = self.stop_sequences
else:
params['stop'] = stop_sequences
return {**params, **kwargs} | null |
test_awadb_add_texts | """Test end to end adding of texts."""
texts = ['foo', 'bar', 'baz']
docsearch = AwaDB.from_texts(table_name='test_awadb', texts=texts,
embedding=FakeEmbeddings())
docsearch.add_texts(['foo'])
output = docsearch.similarity_search('foo', k=2)
assert output == [Document(page_content='foo'), Document(page_content='foo')] | def test_awadb_add_texts() ->None:
"""Test end to end adding of texts."""
texts = ['foo', 'bar', 'baz']
docsearch = AwaDB.from_texts(table_name='test_awadb', texts=texts,
embedding=FakeEmbeddings())
docsearch.add_texts(['foo'])
output = docsearch.similarity_search('foo', k=2)
assert output == [Document(page_content='foo'), Document(page_content=
'foo')] | Test end to end adding of texts. |
test_openai_callback_agent | from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
tools = load_tools(['serpapi', 'llm-math'], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.
ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
with get_openai_callback() as cb:
agent.run(
"Who is Olivia Wilde's boyfriend? What is his current age raised to the 0.23 power?"
)
print(f'Total Tokens: {cb.total_tokens}')
print(f'Prompt Tokens: {cb.prompt_tokens}')
print(f'Completion Tokens: {cb.completion_tokens}')
print(f'Total Cost (USD): ${cb.total_cost}') | def test_openai_callback_agent() ->None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
tools = load_tools(['serpapi', 'llm-math'], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.
ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
with get_openai_callback() as cb:
agent.run(
"Who is Olivia Wilde's boyfriend? What is his current age raised to the 0.23 power?"
)
print(f'Total Tokens: {cb.total_tokens}')
print(f'Prompt Tokens: {cb.prompt_tokens}')
print(f'Completion Tokens: {cb.completion_tokens}')
print(f'Total Cost (USD): ${cb.total_cost}') | null |
__init__ | """Initialize with bilibili url.
Args:
video_urls: List of bilibili urls.
"""
self.video_urls = video_urls | def __init__(self, video_urls: List[str]):
"""Initialize with bilibili url.
Args:
video_urls: List of bilibili urls.
"""
self.video_urls = video_urls | Initialize with bilibili url.
Args:
video_urls: List of bilibili urls. |
save_local | """Save ScaNN index, docstore, and index_to_docstore_id to disk.
Args:
folder_path: folder path to save index, docstore,
and index_to_docstore_id to.
"""
path = Path(folder_path)
scann_path = path / '{index_name}.scann'.format(index_name=index_name)
scann_path.mkdir(exist_ok=True, parents=True)
self.index.serialize(str(scann_path))
with open(path / '{index_name}.pkl'.format(index_name=index_name), 'wb') as f:
pickle.dump((self.docstore, self.index_to_docstore_id), f) | def save_local(self, folder_path: str, index_name: str='index') ->None:
"""Save ScaNN index, docstore, and index_to_docstore_id to disk.
Args:
folder_path: folder path to save index, docstore,
and index_to_docstore_id to.
"""
path = Path(folder_path)
scann_path = path / '{index_name}.scann'.format(index_name=index_name)
scann_path.mkdir(exist_ok=True, parents=True)
self.index.serialize(str(scann_path))
with open(path / '{index_name}.pkl'.format(index_name=index_name), 'wb'
) as f:
pickle.dump((self.docstore, self.index_to_docstore_id), f) | Save ScaNN index, docstore, and index_to_docstore_id to disk.
Args:
folder_path: folder path to save index, docstore,
and index_to_docstore_id to. |
similarity_search_by_vector | """The most k similar documents and scores of the specified query.
Args:
embeddings: embedding vector of the query.
k: The k most similar documents to the text query.
min_score: the score of similar documents to the text query
Returns:
The k most similar documents to the specified text query.
0 is dissimilar, 1 is the most similar.
"""
embed = np.array(embedding)
if self.flag:
query_data = {'query': {'sum': [{'field': 'text_embedding', 'feature':
(embed / np.linalg.norm(embed)).tolist()}]}, 'size': k, 'fields': [
'text', 'metadata']}
query_result = self.vearch.search(self.using_db_name, self.
using_table_name, query_data)
res = query_result['hits']['hits']
else:
query_data = {'vector': [{'field': 'text_embedding', 'feature': embed /
np.linalg.norm(embed)}], 'fields': [], 'is_brute_search': 1,
'retrieval_param': {'metric_type': 'InnerProduct', 'nprobe': 20},
'topn': k}
query_result = self.vearch.search(query_data)
res = query_result[0]['result_items']
docs = []
for item in res:
content = ''
meta_data = {}
if self.flag:
item = item['_source']
for item_key in item:
if item_key == 'text':
content = item[item_key]
continue
if item_key == 'metadata':
meta_data['source'] = item[item_key]
continue
docs.append(Document(page_content=content, metadata=meta_data))
return docs | def similarity_search_by_vector(self, embedding: List[float], k: int=
DEFAULT_TOPN, **kwargs: Any) ->List[Document]:
"""The most k similar documents and scores of the specified query.
Args:
embeddings: embedding vector of the query.
k: The k most similar documents to the text query.
min_score: the score of similar documents to the text query
Returns:
The k most similar documents to the specified text query.
0 is dissimilar, 1 is the most similar.
"""
embed = np.array(embedding)
if self.flag:
query_data = {'query': {'sum': [{'field': 'text_embedding',
'feature': (embed / np.linalg.norm(embed)).tolist()}]}, 'size':
k, 'fields': ['text', 'metadata']}
query_result = self.vearch.search(self.using_db_name, self.
using_table_name, query_data)
res = query_result['hits']['hits']
else:
query_data = {'vector': [{'field': 'text_embedding', 'feature':
embed / np.linalg.norm(embed)}], 'fields': [],
'is_brute_search': 1, 'retrieval_param': {'metric_type':
'InnerProduct', 'nprobe': 20}, 'topn': k}
query_result = self.vearch.search(query_data)
res = query_result[0]['result_items']
docs = []
for item in res:
content = ''
meta_data = {}
if self.flag:
item = item['_source']
for item_key in item:
if item_key == 'text':
content = item[item_key]
continue
if item_key == 'metadata':
meta_data['source'] = item[item_key]
continue
docs.append(Document(page_content=content, metadata=meta_data))
return docs | The most k similar documents and scores of the specified query.
Args:
embeddings: embedding vector of the query.
k: The k most similar documents to the text query.
min_score: the score of similar documents to the text query
Returns:
The k most similar documents to the specified text query.
0 is dissimilar, 1 is the most similar. |
_get_memories_until_limit | """Reduce the number of tokens in the documents."""
result = []
for doc in self.memory_retriever.memory_stream[::-1]:
if consumed_tokens >= self.max_tokens_limit:
break
consumed_tokens += self.llm.get_num_tokens(doc.page_content)
if consumed_tokens < self.max_tokens_limit:
result.append(doc)
return self.format_memories_simple(result) | def _get_memories_until_limit(self, consumed_tokens: int) ->str:
"""Reduce the number of tokens in the documents."""
result = []
for doc in self.memory_retriever.memory_stream[::-1]:
if consumed_tokens >= self.max_tokens_limit:
break
consumed_tokens += self.llm.get_num_tokens(doc.page_content)
if consumed_tokens < self.max_tokens_limit:
result.append(doc)
return self.format_memories_simple(result) | Reduce the number of tokens in the documents. |
test_pdfminer_loader | """Test PDFMiner loader."""
file_path = Path(__file__).parent.parent / 'examples/hello.pdf'
loader = PDFMinerLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
file_path = Path(__file__).parent.parent / 'examples/layout-parser-paper.pdf'
loader = PDFMinerLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
file_path = Path(__file__).parent.parent / 'examples/hello.pdf'
loader = PDFMinerLoader(str(file_path), concatenate_pages=True)
docs = loader.load()
assert len(docs) == 1
file_path = Path(__file__).parent.parent / 'examples/layout-parser-paper.pdf'
loader = PDFMinerLoader(str(file_path), concatenate_pages=False)
docs = loader.load()
assert len(docs) == 16 | def test_pdfminer_loader() ->None:
"""Test PDFMiner loader."""
file_path = Path(__file__).parent.parent / 'examples/hello.pdf'
loader = PDFMinerLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
file_path = Path(__file__
).parent.parent / 'examples/layout-parser-paper.pdf'
loader = PDFMinerLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
file_path = Path(__file__).parent.parent / 'examples/hello.pdf'
loader = PDFMinerLoader(str(file_path), concatenate_pages=True)
docs = loader.load()
assert len(docs) == 1
file_path = Path(__file__
).parent.parent / 'examples/layout-parser-paper.pdf'
loader = PDFMinerLoader(str(file_path), concatenate_pages=False)
docs = loader.load()
assert len(docs) == 16 | Test PDFMiner loader. |
_import_tongyi | from langchain_community.llms.tongyi import Tongyi
return Tongyi | def _import_tongyi() ->Any:
from langchain_community.llms.tongyi import Tongyi
return Tongyi | null |
test_confluence_loader_initialization | ConfluenceLoader(self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=
self.MOCK_API_TOKEN)
mock_confluence.assert_called_once_with(url=self.CONFLUENCE_URL, username=
'[email protected]', password='api_token', cloud=True) | def test_confluence_loader_initialization(self, mock_confluence: MagicMock
) ->None:
ConfluenceLoader(self.CONFLUENCE_URL, username=self.MOCK_USERNAME,
api_key=self.MOCK_API_TOKEN)
mock_confluence.assert_called_once_with(url=self.CONFLUENCE_URL,
username='[email protected]', password='api_token', cloud=True) | null |
raise_deprecation | """Raise deprecation warning if callback_manager is used."""
if values.get('callback_manager') is not None:
warnings.warn(
'callback_manager is deprecated. Please use callbacks instead.',
DeprecationWarning)
values['callbacks'] = values.pop('callback_manager', None)
return values | @root_validator()
def raise_deprecation(cls, values: Dict) ->Dict:
"""Raise deprecation warning if callback_manager is used."""
if values.get('callback_manager') is not None:
warnings.warn(
'callback_manager is deprecated. Please use callbacks instead.',
DeprecationWarning)
values['callbacks'] = values.pop('callback_manager', None)
return values | Raise deprecation warning if callback_manager is used. |
_import_baiducloud_vector_search | from langchain_community.vectorstores.baiducloud_vector_search import BESVectorStore
return BESVectorStore | def _import_baiducloud_vector_search() ->Any:
from langchain_community.vectorstores.baiducloud_vector_search import BESVectorStore
return BESVectorStore | null |
_response_to_result | """Converts a PaLM API response into a LangChain ChatResult."""
llm_output = {}
if response.prompt_feedback:
try:
prompt_feedback = type(response.prompt_feedback).to_dict(response.
prompt_feedback, use_integers_for_enums=False)
llm_output['prompt_feedback'] = prompt_feedback
except Exception as e:
logger.debug(f'Unable to convert prompt_feedback to dict: {e}')
generations: List[ChatGeneration] = []
role_map = {'model': ai_msg_t, 'user': human_msg_t}
for candidate in response.candidates:
content = candidate.content
parts_content = _parts_to_content(content.parts)
if content.role not in role_map:
logger.warning(
f'Unrecognized role: {content.role}. Treating as a ChatMessage.')
msg = chat_msg_t(content=parts_content, role=content.role)
else:
msg = role_map[content.role](content=parts_content)
generation_info = {}
if candidate.finish_reason:
generation_info['finish_reason'] = candidate.finish_reason.name
if candidate.safety_ratings:
generation_info['safety_ratings'] = [type(rating).to_dict(rating) for
rating in candidate.safety_ratings]
generations.append(generation_t(message=msg, generation_info=
generation_info))
if not response.candidates:
logger.warning(
f"""Gemini produced an empty response. Continuing with empty message
Feedback: {response.prompt_feedback}"""
)
generations = [generation_t(message=ai_msg_t(content=''),
generation_info={})]
return ChatResult(generations=generations, llm_output=llm_output) | def _response_to_result(response: genai.types.GenerateContentResponse,
ai_msg_t: Type[BaseMessage]=AIMessage, human_msg_t: Type[BaseMessage]=
HumanMessage, chat_msg_t: Type[BaseMessage]=ChatMessage, generation_t:
Type[ChatGeneration]=ChatGeneration) ->ChatResult:
"""Converts a PaLM API response into a LangChain ChatResult."""
llm_output = {}
if response.prompt_feedback:
try:
prompt_feedback = type(response.prompt_feedback).to_dict(response
.prompt_feedback, use_integers_for_enums=False)
llm_output['prompt_feedback'] = prompt_feedback
except Exception as e:
logger.debug(f'Unable to convert prompt_feedback to dict: {e}')
generations: List[ChatGeneration] = []
role_map = {'model': ai_msg_t, 'user': human_msg_t}
for candidate in response.candidates:
content = candidate.content
parts_content = _parts_to_content(content.parts)
if content.role not in role_map:
logger.warning(
f'Unrecognized role: {content.role}. Treating as a ChatMessage.'
)
msg = chat_msg_t(content=parts_content, role=content.role)
else:
msg = role_map[content.role](content=parts_content)
generation_info = {}
if candidate.finish_reason:
generation_info['finish_reason'] = candidate.finish_reason.name
if candidate.safety_ratings:
generation_info['safety_ratings'] = [type(rating).to_dict(
rating) for rating in candidate.safety_ratings]
generations.append(generation_t(message=msg, generation_info=
generation_info))
if not response.candidates:
logger.warning(
f"""Gemini produced an empty response. Continuing with empty message
Feedback: {response.prompt_feedback}"""
)
generations = [generation_t(message=ai_msg_t(content=''),
generation_info={})]
return ChatResult(generations=generations, llm_output=llm_output) | Converts a PaLM API response into a LangChain ChatResult. |
_identifying_params | return self._default_params | @property
def _identifying_params(self) ->Dict[str, Any]:
return self._default_params | null |
_import_playwright_ClickTool | from langchain_community.tools.playwright import ClickTool
return ClickTool | def _import_playwright_ClickTool() ->Any:
from langchain_community.tools.playwright import ClickTool
return ClickTool | null |
load | """Load documents."""
return list(self.lazy_load()) | def load(self) ->List[Document]:
"""Load documents."""
return list(self.lazy_load()) | Load documents. |
test_results | """Test that call gives the correct answer."""
search = BingSearchAPIWrapper()
results = search.results("Obama's first name", num_results=5)
result_contents = '\n'.join(f"{result['title']}: {result['snippet']}" for
result in results)
assert 'Barack Hussein Obama' in result_contents | def test_results() ->None:
"""Test that call gives the correct answer."""
search = BingSearchAPIWrapper()
results = search.results("Obama's first name", num_results=5)
result_contents = '\n'.join(f"{result['title']}: {result['snippet']}" for
result in results)
assert 'Barack Hussein Obama' in result_contents | Test that call gives the correct answer. |
_is_delta_sync_index | """Return True if the index is a delta-sync index."""
return self.index_type == 'DELTA_SYNC' | def _is_delta_sync_index(self) ->bool:
"""Return True if the index is a delta-sync index."""
return self.index_type == 'DELTA_SYNC' | Return True if the index is a delta-sync index. |
main | pass | @app.callback()
def main(version: bool=typer.Option(False, '--version', '-v', help=
'Print the current CLI version.', callback=version_callback, is_eager=True)
):
pass | null |
__init__ | self._commands: List[str] = []
self.output = output | def __init__(self, output: str='') ->None:
self._commands: List[str] = []
self.output = output | null |
yield_keys | """Yield keys in the store."""
if prefix:
pattern = self._get_prefixed_key(prefix)
else:
pattern = self._get_prefixed_key('*')
scan_iter = cast(Iterator[bytes], self.client.scan_iter(match=pattern))
for key in scan_iter:
decoded_key = key.decode('utf-8')
if self.namespace:
relative_key = decoded_key[len(self.namespace) + 1:]
yield relative_key
else:
yield decoded_key | def yield_keys(self, *, prefix: Optional[str]=None) ->Iterator[str]:
"""Yield keys in the store."""
if prefix:
pattern = self._get_prefixed_key(prefix)
else:
pattern = self._get_prefixed_key('*')
scan_iter = cast(Iterator[bytes], self.client.scan_iter(match=pattern))
for key in scan_iter:
decoded_key = key.decode('utf-8')
if self.namespace:
relative_key = decoded_key[len(self.namespace) + 1:]
yield relative_key
else:
yield decoded_key | Yield keys in the store. |
update_with_delayed_score | """
Updates the learned policy with the score provided.
Will raise an error if selection_scorer is set, and force_score=True was not provided during the method call
"""
if self._can_use_selection_scorer() and not force_score:
raise RuntimeError(
'The selection scorer is set, and force_score was not set to True. Please set force_score=True to use this function.'
)
if self.metrics:
self.metrics.on_feedback(score)
event: TEvent = chain_response['selection_metadata']
self._call_after_scoring_before_learning(event=event, score=score)
self.active_policy.learn(event=event)
self.active_policy.log(event=event) | def update_with_delayed_score(self, score: float, chain_response: Dict[str,
Any], force_score: bool=False) ->None:
"""
Updates the learned policy with the score provided.
Will raise an error if selection_scorer is set, and force_score=True was not provided during the method call
"""
if self._can_use_selection_scorer() and not force_score:
raise RuntimeError(
'The selection scorer is set, and force_score was not set to True. Please set force_score=True to use this function.'
)
if self.metrics:
self.metrics.on_feedback(score)
event: TEvent = chain_response['selection_metadata']
self._call_after_scoring_before_learning(event=event, score=score)
self.active_policy.learn(event=event)
self.active_policy.log(event=event) | Updates the learned policy with the score provided.
Will raise an error if selection_scorer is set, and force_score=True was not provided during the method call |
wrong_output_format | assert 'foo' in inputs
assert 'baz' in inputs
return 'hehe' | def wrong_output_format(inputs: dict) ->str:
assert 'foo' in inputs
assert 'baz' in inputs
return 'hehe' | null |
test_non_zero_distance | eval_chain = StringDistanceEvalChain(distance=distance, normalize_score=
normalize_score)
prediction = 'I like to eat apples.'
reference = 'I like apples.'
result = eval_chain.evaluate_strings(prediction=prediction, reference=reference
)
assert 'score' in result
assert 0 < result['score']
if normalize_score:
assert result['score'] < 1.0 | @pytest.mark.requires('rapidfuzz')
@pytest.mark.parametrize('distance', valid_distances)
@pytest.mark.parametrize('normalize_score', [True, False])
def test_non_zero_distance(distance: StringDistance, normalize_score: bool
) ->None:
eval_chain = StringDistanceEvalChain(distance=distance, normalize_score
=normalize_score)
prediction = 'I like to eat apples.'
reference = 'I like apples.'
result = eval_chain.evaluate_strings(prediction=prediction, reference=
reference)
assert 'score' in result
assert 0 < result['score']
if normalize_score:
assert result['score'] < 1.0 | null |
_permute | """Sort texts in ascending order, and
delivers a lambda expr, which can sort a same length list
https://github.com/UKPLab/sentence-transformers/blob/
c5f93f70eca933c78695c5bc686ceda59651ae3b/sentence_transformers/SentenceTransformer.py#L156
Args:
texts (List[str]): _description_
sorter (Callable, optional): _description_. Defaults to len.
Returns:
Tuple[List[str], Callable]: _description_
Example:
```
texts = ["one","three","four"]
perm_texts, undo = self._permute(texts)
texts == undo(perm_texts)
```
"""
if len(texts) == 1:
return texts, lambda t: t
length_sorted_idx = np.argsort([(-sorter(sen)) for sen in texts])
texts_sorted = [texts[idx] for idx in length_sorted_idx]
return texts_sorted, lambda unsorted_embeddings: [unsorted_embeddings[idx] for
idx in np.argsort(length_sorted_idx)] | @staticmethod
def _permute(texts: List[str], sorter: Callable=len) ->Tuple[List[str],
Callable]:
"""Sort texts in ascending order, and
delivers a lambda expr, which can sort a same length list
https://github.com/UKPLab/sentence-transformers/blob/
c5f93f70eca933c78695c5bc686ceda59651ae3b/sentence_transformers/SentenceTransformer.py#L156
Args:
texts (List[str]): _description_
sorter (Callable, optional): _description_. Defaults to len.
Returns:
Tuple[List[str], Callable]: _description_
Example:
```
texts = ["one","three","four"]
perm_texts, undo = self._permute(texts)
texts == undo(perm_texts)
```
"""
if len(texts) == 1:
return texts, lambda t: t
length_sorted_idx = np.argsort([(-sorter(sen)) for sen in texts])
texts_sorted = [texts[idx] for idx in length_sorted_idx]
return texts_sorted, lambda unsorted_embeddings: [unsorted_embeddings[
idx] for idx in np.argsort(length_sorted_idx)] | Sort texts in ascending order, and
delivers a lambda expr, which can sort a same length list
https://github.com/UKPLab/sentence-transformers/blob/
c5f93f70eca933c78695c5bc686ceda59651ae3b/sentence_transformers/SentenceTransformer.py#L156
Args:
texts (List[str]): _description_
sorter (Callable, optional): _description_. Defaults to len.
Returns:
Tuple[List[str], Callable]: _description_
Example:
```
texts = ["one","three","four"]
perm_texts, undo = self._permute(texts)
texts == undo(perm_texts)
``` |
__init__ | super().__init__()
self.file_path = path if isinstance(path, Path) else Path(path) | def __init__(self, path: Union[Path, str]) ->None:
super().__init__()
self.file_path = path if isinstance(path, Path) else Path(path) | null |
aggregate_lines_to_chunks | """Combine lines with common metadata into chunks
Args:
lines: Line of text / associated header metadata
"""
aggregated_chunks: List[LineType] = []
for line in lines:
if aggregated_chunks and aggregated_chunks[-1]['metadata'] == line[
'metadata']:
aggregated_chunks[-1]['content'] += ' \n' + line['content']
elif aggregated_chunks and aggregated_chunks[-1]['metadata'] != line[
'metadata'] and len(aggregated_chunks[-1]['metadata']) < len(line[
'metadata']) and aggregated_chunks[-1]['content'].split('\n')[-1][0
] == '#' and not self.strip_headers:
aggregated_chunks[-1]['content'] += ' \n' + line['content']
aggregated_chunks[-1]['metadata'] = line['metadata']
else:
aggregated_chunks.append(line)
return [Document(page_content=chunk['content'], metadata=chunk['metadata']) for
chunk in aggregated_chunks] | def aggregate_lines_to_chunks(self, lines: List[LineType]) ->List[Document]:
"""Combine lines with common metadata into chunks
Args:
lines: Line of text / associated header metadata
"""
aggregated_chunks: List[LineType] = []
for line in lines:
if aggregated_chunks and aggregated_chunks[-1]['metadata'] == line[
'metadata']:
aggregated_chunks[-1]['content'] += ' \n' + line['content']
elif aggregated_chunks and aggregated_chunks[-1]['metadata'] != line[
'metadata'] and len(aggregated_chunks[-1]['metadata']) < len(line
['metadata']) and aggregated_chunks[-1]['content'].split('\n')[-1][
0] == '#' and not self.strip_headers:
aggregated_chunks[-1]['content'] += ' \n' + line['content']
aggregated_chunks[-1]['metadata'] = line['metadata']
else:
aggregated_chunks.append(line)
return [Document(page_content=chunk['content'], metadata=chunk[
'metadata']) for chunk in aggregated_chunks] | Combine lines with common metadata into chunks
Args:
lines: Line of text / associated header metadata |
_identifying_params | """Get the identifying parameters."""
return {'base_url': self.base_url, **{}, **self._default_params} | @property
def _identifying_params(self) ->Mapping[str, Any]:
"""Get the identifying parameters."""
return {'base_url': self.base_url, **{}, **self._default_params} | Get the identifying parameters. |
similarity_search_with_relevance_scores | """Perform similarity retrieval based on text with scores.
Args:
query: Vectorize text for retrieval.,should not be empty.
k: top n.
search_filter: Additional filtering conditions.
Returns:
document_list: List of documents.
"""
embedding: List[float] = self.embedding.embed_query(query)
return self.create_results_with_score(self.inner_embedding_query(embedding=
embedding, search_filter=search_filter, k=k)) | def similarity_search_with_relevance_scores(self, query: str, k: int=4,
search_filter: Optional[dict]=None, **kwargs: Any) ->List[Tuple[
Document, float]]:
"""Perform similarity retrieval based on text with scores.
Args:
query: Vectorize text for retrieval.,should not be empty.
k: top n.
search_filter: Additional filtering conditions.
Returns:
document_list: List of documents.
"""
embedding: List[float] = self.embedding.embed_query(query)
return self.create_results_with_score(self.inner_embedding_query(
embedding=embedding, search_filter=search_filter, k=k)) | Perform similarity retrieval based on text with scores.
Args:
query: Vectorize text for retrieval.,should not be empty.
k: top n.
search_filter: Additional filtering conditions.
Returns:
document_list: List of documents. |
create_client | try:
from zep_python import ZepClient
except ImportError:
raise ImportError(
'Could not import zep-python package. Please install it with `pip install zep-python`.'
)
values['zep_client'] = values.get('zep_client', ZepClient(base_url=values[
'url'], api_key=values.get('api_key')))
return values | @root_validator(pre=True)
def create_client(cls, values: dict) ->dict:
try:
from zep_python import ZepClient
except ImportError:
raise ImportError(
'Could not import zep-python package. Please install it with `pip install zep-python`.'
)
values['zep_client'] = values.get('zep_client', ZepClient(base_url=
values['url'], api_key=values.get('api_key')))
return values | null |
similarity_search | vector = self._embedding.embed_query(query)
return self.similarity_search_by_vector(vector, k=k, filter=filter, **kwargs) | def similarity_search(self, query: str, k: int=4, filter: Optional[Dict[str,
Any]]=None, **kwargs: Any) ->List[Document]:
vector = self._embedding.embed_query(query)
return self.similarity_search_by_vector(vector, k=k, filter=filter, **
kwargs) | null |
add_texts | """Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of unique IDs.
refresh_indices: bool to refresh ElasticSearch indices
Returns:
List of ids from adding the texts into the vectorstore.
"""
try:
from elasticsearch.exceptions import NotFoundError
from elasticsearch.helpers import bulk
except ImportError:
raise ImportError(
'Could not import elasticsearch python package. Please install it with `pip install elasticsearch`.'
)
requests = []
ids = ids or [str(uuid.uuid4()) for _ in texts]
embeddings = self.embedding.embed_documents(list(texts))
dim = len(embeddings[0])
mapping = _default_text_mapping(dim)
try:
self.client.indices.get(index=self.index_name)
except NotFoundError:
self.create_index(self.client, self.index_name, mapping)
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
request = {'_op_type': 'index', '_index': self.index_name, 'vector':
embeddings[i], 'text': text, 'metadata': metadata, '_id': ids[i]}
requests.append(request)
bulk(self.client, requests)
if refresh_indices:
self.client.indices.refresh(index=self.index_name)
return ids | def add_texts(self, texts: Iterable[str], metadatas: Optional[List[dict]]=
None, ids: Optional[List[str]]=None, refresh_indices: bool=True, **
kwargs: Any) ->List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of unique IDs.
refresh_indices: bool to refresh ElasticSearch indices
Returns:
List of ids from adding the texts into the vectorstore.
"""
try:
from elasticsearch.exceptions import NotFoundError
from elasticsearch.helpers import bulk
except ImportError:
raise ImportError(
'Could not import elasticsearch python package. Please install it with `pip install elasticsearch`.'
)
requests = []
ids = ids or [str(uuid.uuid4()) for _ in texts]
embeddings = self.embedding.embed_documents(list(texts))
dim = len(embeddings[0])
mapping = _default_text_mapping(dim)
try:
self.client.indices.get(index=self.index_name)
except NotFoundError:
self.create_index(self.client, self.index_name, mapping)
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
request = {'_op_type': 'index', '_index': self.index_name, 'vector':
embeddings[i], 'text': text, 'metadata': metadata, '_id': ids[i]}
requests.append(request)
bulk(self.client, requests)
if refresh_indices:
self.client.indices.refresh(index=self.index_name)
return ids | Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of unique IDs.
refresh_indices: bool to refresh ElasticSearch indices
Returns:
List of ids from adding the texts into the vectorstore. |
_llm_type | """Return type of chat model."""
return 'chat-anthropic-messages' | @property
def _llm_type(self) ->str:
"""Return type of chat model."""
return 'chat-anthropic-messages' | Return type of chat model. |
on_llm_end | self.saved_things['generation'] = args[0] | def on_llm_end(self, *args: Any, **kwargs: Any) ->Any:
self.saved_things['generation'] = args[0] | null |
test_formatting | result = convert_messages_to_prompt_anthropic(messages)
assert result == expected | @pytest.mark.parametrize(('messages', 'expected'), [([HumanMessage(content=
'Hello')], """
Human: Hello
Assistant:"""), ([HumanMessage(content=
'Hello'), AIMessage(content='Answer:')],
"""
Human: Hello
Assistant: Answer:"""), ([SystemMessage(content=
"You're an assistant"), HumanMessage(content='Hello'), AIMessage(
content='Answer:')],
"""You're an assistant
Human: Hello
Assistant: Answer:""")])
def test_formatting(messages: List[BaseMessage], expected: str) ->None:
result = convert_messages_to_prompt_anthropic(messages)
assert result == expected | null |
test_explicitly_no_scorer | llm, PROMPT = setup()
chain = pick_best_chain.PickBest.from_llm(llm=llm, prompt=PROMPT,
selection_scorer=None, feature_embedder=pick_best_chain.
PickBestFeatureEmbedder(auto_embed=False, model=MockEncoder()))
response = chain.run(User=rl_chain.BasedOn('Context'), action=rl_chain.
ToSelectFrom(['0', '1', '2']))
assert response['response'] == 'hey'
selection_metadata = response['selection_metadata']
assert selection_metadata.selected.score is None | @pytest.mark.requires('vowpal_wabbit_next', 'sentence_transformers')
def test_explicitly_no_scorer() ->None:
llm, PROMPT = setup()
chain = pick_best_chain.PickBest.from_llm(llm=llm, prompt=PROMPT,
selection_scorer=None, feature_embedder=pick_best_chain.
PickBestFeatureEmbedder(auto_embed=False, model=MockEncoder()))
response = chain.run(User=rl_chain.BasedOn('Context'), action=rl_chain.
ToSelectFrom(['0', '1', '2']))
assert response['response'] == 'hey'
selection_metadata = response['selection_metadata']
assert selection_metadata.selected.score is None | null |
test_continue_on_failure_true | """Test exception is not raised when continue_on_failure=True."""
loader = NewsURLLoader(['badurl.foobar'])
loader.load() | def test_continue_on_failure_true() ->None:
"""Test exception is not raised when continue_on_failure=True."""
loader = NewsURLLoader(['badurl.foobar'])
loader.load() | Test exception is not raised when continue_on_failure=True. |
as_bytes_io | """Read data as a byte stream."""
if isinstance(self.data, bytes):
yield BytesIO(self.data)
elif self.data is None and self.path:
with open(str(self.path), 'rb') as f:
yield f
else:
raise NotImplementedError(f'Unable to convert blob {self}') | @contextlib.contextmanager
def as_bytes_io(self) ->Generator[Union[BytesIO, BufferedReader], None, None]:
"""Read data as a byte stream."""
if isinstance(self.data, bytes):
yield BytesIO(self.data)
elif self.data is None and self.path:
with open(str(self.path), 'rb') as f:
yield f
else:
raise NotImplementedError(f'Unable to convert blob {self}') | Read data as a byte stream. |
combine_embeddings | """Combine embeddings into final embeddings."""
return list(np.array(embeddings).mean(axis=0)) | def combine_embeddings(self, embeddings: List[List[float]]) ->List[float]:
"""Combine embeddings into final embeddings."""
return list(np.array(embeddings).mean(axis=0)) | Combine embeddings into final embeddings. |
embed_query | """Call out to Clarifai's embedding models.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
try:
from clarifai.client.model import Model
except ImportError:
raise ImportError(
'Could not import clarifai python package. Please install it with `pip install clarifai`.'
)
if self.pat is not None:
pat = self.pat
if self.model_url is not None:
_model_init = Model(url=self.model_url, pat=pat)
else:
_model_init = Model(model_id=self.model_id, user_id=self.user_id,
app_id=self.app_id, pat=pat)
try:
predict_response = _model_init.predict_by_bytes(bytes(text, 'utf-8'),
input_type='text')
embeddings = [list(op.data.embeddings[0].vector) for op in
predict_response.outputs]
except Exception as e:
logger.error(f'Predict failed, exception: {e}')
return embeddings[0] | def embed_query(self, text: str) ->List[float]:
"""Call out to Clarifai's embedding models.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
try:
from clarifai.client.model import Model
except ImportError:
raise ImportError(
'Could not import clarifai python package. Please install it with `pip install clarifai`.'
)
if self.pat is not None:
pat = self.pat
if self.model_url is not None:
_model_init = Model(url=self.model_url, pat=pat)
else:
_model_init = Model(model_id=self.model_id, user_id=self.user_id,
app_id=self.app_id, pat=pat)
try:
predict_response = _model_init.predict_by_bytes(bytes(text, 'utf-8'
), input_type='text')
embeddings = [list(op.data.embeddings[0].vector) for op in
predict_response.outputs]
except Exception as e:
logger.error(f'Predict failed, exception: {e}')
return embeddings[0] | Call out to Clarifai's embedding models.
Args:
text: The text to embed.
Returns:
Embeddings for the text. |
test_conversation_chain_errors_bad_variable | """Test that conversation chain raise error with bad variable."""
llm = FakeLLM()
prompt = PromptTemplate(input_variables=['foo'], template='{foo}')
memory = ConversationBufferMemory(memory_key='foo')
with pytest.raises(ValueError):
ConversationChain(llm=llm, prompt=prompt, memory=memory, input_key='foo') | def test_conversation_chain_errors_bad_variable() ->None:
"""Test that conversation chain raise error with bad variable."""
llm = FakeLLM()
prompt = PromptTemplate(input_variables=['foo'], template='{foo}')
memory = ConversationBufferMemory(memory_key='foo')
with pytest.raises(ValueError):
ConversationChain(llm=llm, prompt=prompt, memory=memory, input_key=
'foo') | Test that conversation chain raise error with bad variable. |
_import_tair | from langchain_community.vectorstores.tair import Tair
return Tair | def _import_tair() ->Any:
from langchain_community.vectorstores.tair import Tair
return Tair | null |
_prepare_query | new_query, new_kwargs = (self.structured_query_translator.
visit_structured_query(structured_query))
if structured_query.limit is not None:
new_kwargs['k'] = structured_query.limit
if self.use_original_query:
new_query = query
search_kwargs = {**self.search_kwargs, **new_kwargs}
return new_query, search_kwargs | def _prepare_query(self, query: str, structured_query: StructuredQuery
) ->Tuple[str, Dict[str, Any]]:
new_query, new_kwargs = (self.structured_query_translator.
visit_structured_query(structured_query))
if structured_query.limit is not None:
new_kwargs['k'] = structured_query.limit
if self.use_original_query:
new_query = query
search_kwargs = {**self.search_kwargs, **new_kwargs}
return new_query, search_kwargs | null |
format_tool_to_openai_function | """Format tool into the OpenAI function API."""
if tool.args_schema:
return convert_pydantic_to_openai_function(tool.args_schema, name=tool.
name, description=tool.description)
else:
return {'name': tool.name, 'description': tool.description,
'parameters': {'properties': {'__arg1': {'title': '__arg1', 'type':
'string'}}, 'required': ['__arg1'], 'type': 'object'}} | def format_tool_to_openai_function(tool: BaseTool) ->FunctionDescription:
"""Format tool into the OpenAI function API."""
if tool.args_schema:
return convert_pydantic_to_openai_function(tool.args_schema, name=
tool.name, description=tool.description)
else:
return {'name': tool.name, 'description': tool.description,
'parameters': {'properties': {'__arg1': {'title': '__arg1',
'type': 'string'}}, 'required': ['__arg1'], 'type': 'object'}} | Format tool into the OpenAI function API. |
_parse_response | if len(response) == 1:
result = self._parse_json(response[0])
else:
for entry in response:
if entry.get('provider') == 'eden-ai':
result = self._parse_json(entry)
return result | def _parse_response(self, response: list) ->str:
if len(response) == 1:
result = self._parse_json(response[0])
else:
for entry in response:
if entry.get('provider') == 'eden-ai':
result = self._parse_json(entry)
return result | null |
aggregate_elements_to_chunks | """Combine elements with common metadata into chunks
Args:
elements: HTML element content with associated identifying info and metadata
"""
aggregated_chunks: List[ElementType] = []
for element in elements:
if aggregated_chunks and aggregated_chunks[-1]['metadata'] == element[
'metadata']:
aggregated_chunks[-1]['content'] += ' \n' + element['content']
else:
aggregated_chunks.append(element)
return [Document(page_content=chunk['content'], metadata=chunk['metadata']) for
chunk in aggregated_chunks] | def aggregate_elements_to_chunks(self, elements: List[ElementType]) ->List[
Document]:
"""Combine elements with common metadata into chunks
Args:
elements: HTML element content with associated identifying info and metadata
"""
aggregated_chunks: List[ElementType] = []
for element in elements:
if aggregated_chunks and aggregated_chunks[-1]['metadata'] == element[
'metadata']:
aggregated_chunks[-1]['content'] += ' \n' + element['content']
else:
aggregated_chunks.append(element)
return [Document(page_content=chunk['content'], metadata=chunk[
'metadata']) for chunk in aggregated_chunks] | Combine elements with common metadata into chunks
Args:
elements: HTML element content with associated identifying info and metadata |
test_all_imports | assert set(__all__) == set(EXPECTED_ALL) | def test_all_imports() ->None:
assert set(__all__) == set(EXPECTED_ALL) | null |
test_not_an_ai | err = f'Expected an AI message got {str(SystemMessage)}'
with pytest.raises(TypeError, match=err):
_parse_ai_message(SystemMessage(content='x')) | def test_not_an_ai(self) ->None:
err = f'Expected an AI message got {str(SystemMessage)}'
with pytest.raises(TypeError, match=err):
_parse_ai_message(SystemMessage(content='x')) | null |
test_duckdb_loader_metadata_columns | """Test DuckDB loader."""
loader = DuckDBLoader('SELECT 1 AS a, 2 AS b', page_content_columns=['a'],
metadata_columns=['b'])
docs = loader.load()
assert len(docs) == 1
assert docs[0].page_content == 'a: 1'
assert docs[0].metadata == {'b': 2} | @unittest.skipIf(not duckdb_installed, 'duckdb not installed')
def test_duckdb_loader_metadata_columns() ->None:
"""Test DuckDB loader."""
loader = DuckDBLoader('SELECT 1 AS a, 2 AS b', page_content_columns=[
'a'], metadata_columns=['b'])
docs = loader.load()
assert len(docs) == 1
assert docs[0].page_content == 'a: 1'
assert docs[0].metadata == {'b': 2} | Test DuckDB loader. |
_import_spark_sql_tool_ListSparkSQLTool | from langchain_community.tools.spark_sql.tool import ListSparkSQLTool
return ListSparkSQLTool | def _import_spark_sql_tool_ListSparkSQLTool() ->Any:
from langchain_community.tools.spark_sql.tool import ListSparkSQLTool
return ListSparkSQLTool | null |
_stream | message_dicts = self._create_message_dicts(messages)
default_chunk_class = AIMessageChunk
params = {'model': self.model, 'messages': message_dicts, 'stream': True,
**self.model_kwargs, **kwargs}
for chunk in completion_with_retry(self, self.use_retry, run_manager=
run_manager, stop=stop, **params):
choice = chunk.choices[0]
chunk = _convert_delta_to_message_chunk(choice.delta, default_chunk_class)
finish_reason = choice.finish_reason
generation_info = dict(finish_reason=finish_reason
) if finish_reason is not None else None
default_chunk_class = chunk.__class__
chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info)
yield chunk
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk) | def _stream(self, messages: List[BaseMessage], stop: Optional[List[str]]=
None, run_manager: Optional[CallbackManagerForLLMRun]=None, **kwargs: Any
) ->Iterator[ChatGenerationChunk]:
message_dicts = self._create_message_dicts(messages)
default_chunk_class = AIMessageChunk
params = {'model': self.model, 'messages': message_dicts, 'stream':
True, **self.model_kwargs, **kwargs}
for chunk in completion_with_retry(self, self.use_retry, run_manager=
run_manager, stop=stop, **params):
choice = chunk.choices[0]
chunk = _convert_delta_to_message_chunk(choice.delta,
default_chunk_class)
finish_reason = choice.finish_reason
generation_info = dict(finish_reason=finish_reason
) if finish_reason is not None else None
default_chunk_class = chunk.__class__
chunk = ChatGenerationChunk(message=chunk, generation_info=
generation_info)
yield chunk
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk) | null |
test_qdrant_similarity_search_filters_with_qdrant_filters | """Test end to end construction and search."""
from qdrant_client.http import models as rest
texts = ['foo', 'bar', 'baz']
metadatas = [{'page': i, 'details': {'page': i + 1, 'pages': [i + 2, -1]}} for
i in range(len(texts))]
docsearch = Qdrant.from_texts(texts, ConsistentFakeEmbeddings(), metadatas=
metadatas, location=':memory:', vector_name=vector_name)
qdrant_filter = rest.Filter(must=[rest.FieldCondition(key='metadata.page',
match=rest.MatchValue(value=1)), rest.FieldCondition(key=
'metadata.details.page', match=rest.MatchValue(value=2)), rest.
FieldCondition(key='metadata.details.pages', match=rest.MatchAny(any=[3]))]
)
output = docsearch.similarity_search('foo', k=1, filter=qdrant_filter)
assert output == [Document(page_content='bar', metadata={'page': 1,
'details': {'page': 2, 'pages': [3, -1]}})] | @pytest.mark.parametrize('vector_name', [None, 'my-vector'])
def test_qdrant_similarity_search_filters_with_qdrant_filters(vector_name:
Optional[str]) ->None:
"""Test end to end construction and search."""
from qdrant_client.http import models as rest
texts = ['foo', 'bar', 'baz']
metadatas = [{'page': i, 'details': {'page': i + 1, 'pages': [i + 2, -1
]}} for i in range(len(texts))]
docsearch = Qdrant.from_texts(texts, ConsistentFakeEmbeddings(),
metadatas=metadatas, location=':memory:', vector_name=vector_name)
qdrant_filter = rest.Filter(must=[rest.FieldCondition(key=
'metadata.page', match=rest.MatchValue(value=1)), rest.
FieldCondition(key='metadata.details.page', match=rest.MatchValue(
value=2)), rest.FieldCondition(key='metadata.details.pages', match=
rest.MatchAny(any=[3]))])
output = docsearch.similarity_search('foo', k=1, filter=qdrant_filter)
assert output == [Document(page_content='bar', metadata={'page': 1,
'details': {'page': 2, 'pages': [3, -1]}})] | Test end to end construction and search. |
from_texts | """Create ClickHouse wrapper with existing texts
Args:
embedding_function (Embeddings): Function to extract text embedding
texts (Iterable[str]): List or tuple of strings to be added
config (ClickHouseSettings, Optional): ClickHouse configuration
text_ids (Optional[Iterable], optional): IDs for the texts.
Defaults to None.
batch_size (int, optional): Batchsize when transmitting data to ClickHouse.
Defaults to 32.
metadata (List[dict], optional): metadata to texts. Defaults to None.
Other keyword arguments will pass into
[clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api)
Returns:
ClickHouse Index
"""
ctx = cls(embedding, config, **kwargs)
ctx.add_texts(texts, ids=text_ids, batch_size=batch_size, metadatas=metadatas)
return ctx | @classmethod
def from_texts(cls, texts: List[str], embedding: Embeddings, metadatas:
Optional[List[Dict[Any, Any]]]=None, config: Optional[
ClickhouseSettings]=None, text_ids: Optional[Iterable[str]]=None,
batch_size: int=32, **kwargs: Any) ->Clickhouse:
"""Create ClickHouse wrapper with existing texts
Args:
embedding_function (Embeddings): Function to extract text embedding
texts (Iterable[str]): List or tuple of strings to be added
config (ClickHouseSettings, Optional): ClickHouse configuration
text_ids (Optional[Iterable], optional): IDs for the texts.
Defaults to None.
batch_size (int, optional): Batchsize when transmitting data to ClickHouse.
Defaults to 32.
metadata (List[dict], optional): metadata to texts. Defaults to None.
Other keyword arguments will pass into
[clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api)
Returns:
ClickHouse Index
"""
ctx = cls(embedding, config, **kwargs)
ctx.add_texts(texts, ids=text_ids, batch_size=batch_size, metadatas=
metadatas)
return ctx | Create ClickHouse wrapper with existing texts
Args:
embedding_function (Embeddings): Function to extract text embedding
texts (Iterable[str]): List or tuple of strings to be added
config (ClickHouseSettings, Optional): ClickHouse configuration
text_ids (Optional[Iterable], optional): IDs for the texts.
Defaults to None.
batch_size (int, optional): Batchsize when transmitting data to ClickHouse.
Defaults to 32.
metadata (List[dict], optional): metadata to texts. Defaults to None.
Other keyword arguments will pass into
[clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api)
Returns:
ClickHouse Index |
__init__ | """Init the pipeline with an auxiliary function.
The load function must be in global scope to be imported
and run on the server, i.e. in a module and not a REPL or closure.
Then, initialize the remote inference function.
"""
super().__init__(**kwargs)
try:
import runhouse as rh
except ImportError:
raise ImportError(
'Could not import runhouse python package. Please install it with `pip install runhouse`.'
)
remote_load_fn = rh.function(fn=self.model_load_fn).to(self.hardware, reqs=
self.model_reqs)
_load_fn_kwargs = self.load_fn_kwargs or {}
self.pipeline_ref = remote_load_fn.remote(**_load_fn_kwargs)
self.client = rh.function(fn=self.inference_fn).to(self.hardware, reqs=self
.model_reqs) | def __init__(self, **kwargs: Any):
"""Init the pipeline with an auxiliary function.
The load function must be in global scope to be imported
and run on the server, i.e. in a module and not a REPL or closure.
Then, initialize the remote inference function.
"""
super().__init__(**kwargs)
try:
import runhouse as rh
except ImportError:
raise ImportError(
'Could not import runhouse python package. Please install it with `pip install runhouse`.'
)
remote_load_fn = rh.function(fn=self.model_load_fn).to(self.hardware,
reqs=self.model_reqs)
_load_fn_kwargs = self.load_fn_kwargs or {}
self.pipeline_ref = remote_load_fn.remote(**_load_fn_kwargs)
self.client = rh.function(fn=self.inference_fn).to(self.hardware, reqs=
self.model_reqs) | Init the pipeline with an auxiliary function.
The load function must be in global scope to be imported
and run on the server, i.e. in a module and not a REPL or closure.
Then, initialize the remote inference function. |
test_deeplakewith_persistence | """Test end to end construction and search, with persistence."""
import deeplake
dataset_path = './tests/persist_dir'
if deeplake.exists(dataset_path):
deeplake.delete(dataset_path)
texts = ['foo', 'bar', 'baz']
docsearch = DeepLake.from_texts(dataset_path=dataset_path, texts=texts,
embedding=FakeEmbeddings())
output = docsearch.similarity_search('foo', k=1)
assert output == [Document(page_content='foo')]
docsearch = DeepLake(dataset_path=dataset_path, embedding_function=
FakeEmbeddings())
output = docsearch.similarity_search('foo', k=1)
docsearch.delete_dataset() | def test_deeplakewith_persistence() ->None:
"""Test end to end construction and search, with persistence."""
import deeplake
dataset_path = './tests/persist_dir'
if deeplake.exists(dataset_path):
deeplake.delete(dataset_path)
texts = ['foo', 'bar', 'baz']
docsearch = DeepLake.from_texts(dataset_path=dataset_path, texts=texts,
embedding=FakeEmbeddings())
output = docsearch.similarity_search('foo', k=1)
assert output == [Document(page_content='foo')]
docsearch = DeepLake(dataset_path=dataset_path, embedding_function=
FakeEmbeddings())
output = docsearch.similarity_search('foo', k=1)
docsearch.delete_dataset() | Test end to end construction and search, with persistence. |
_sync_request_embed | response = requests.post(**self._kwargs_post_request(model=model, texts=
batch_texts))
if response.status_code != 200:
raise Exception(
f'Infinity returned an unexpected response with status {response.status_code}: {response.text}'
)
return [e['embedding'] for e in response.json()['data']] | def _sync_request_embed(self, model: str, batch_texts: List[str]) ->List[List
[float]]:
response = requests.post(**self._kwargs_post_request(model=model, texts
=batch_texts))
if response.status_code != 200:
raise Exception(
f'Infinity returned an unexpected response with status {response.status_code}: {response.text}'
)
return [e['embedding'] for e in response.json()['data']] | null |
test_load_uses_page_content_column_to_create_document_text | sample_data_frame = sample_data_frame.rename(mapping={'text':
'dummy_test_column'})
loader = PolarsDataFrameLoader(sample_data_frame, page_content_column=
'dummy_test_column')
docs = loader.load()
assert docs[0].page_content == 'Hello'
assert docs[1].page_content == 'World' | def test_load_uses_page_content_column_to_create_document_text(
sample_data_frame: pl.DataFrame) ->None:
sample_data_frame = sample_data_frame.rename(mapping={'text':
'dummy_test_column'})
loader = PolarsDataFrameLoader(sample_data_frame, page_content_column=
'dummy_test_column')
docs = loader.load()
assert docs[0].page_content == 'Hello'
assert docs[1].page_content == 'World' | null |
weighted_reciprocal_rank | """
Perform weighted Reciprocal Rank Fusion on multiple rank lists.
You can find more details about RRF here:
https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf
Args:
doc_lists: A list of rank lists, where each rank list contains unique items.
Returns:
list: The final aggregated list of items sorted by their weighted RRF
scores in descending order.
"""
if len(doc_lists) != len(self.weights):
raise ValueError(
'Number of rank lists must be equal to the number of weights.')
all_documents = set()
for doc_list in doc_lists:
for doc in doc_list:
all_documents.add(doc.page_content)
rrf_score_dic = {doc: (0.0) for doc in all_documents}
for doc_list, weight in zip(doc_lists, self.weights):
for rank, doc in enumerate(doc_list, start=1):
rrf_score = weight * (1 / (rank + self.c))
rrf_score_dic[doc.page_content] += rrf_score
sorted_documents = sorted(rrf_score_dic.keys(), key=lambda x: rrf_score_dic
[x], reverse=True)
page_content_to_doc_map = {doc.page_content: doc for doc_list in doc_lists for
doc in doc_list}
sorted_docs = [page_content_to_doc_map[page_content] for page_content in
sorted_documents]
return sorted_docs | def weighted_reciprocal_rank(self, doc_lists: List[List[Document]]) ->List[
Document]:
"""
Perform weighted Reciprocal Rank Fusion on multiple rank lists.
You can find more details about RRF here:
https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf
Args:
doc_lists: A list of rank lists, where each rank list contains unique items.
Returns:
list: The final aggregated list of items sorted by their weighted RRF
scores in descending order.
"""
if len(doc_lists) != len(self.weights):
raise ValueError(
'Number of rank lists must be equal to the number of weights.')
all_documents = set()
for doc_list in doc_lists:
for doc in doc_list:
all_documents.add(doc.page_content)
rrf_score_dic = {doc: (0.0) for doc in all_documents}
for doc_list, weight in zip(doc_lists, self.weights):
for rank, doc in enumerate(doc_list, start=1):
rrf_score = weight * (1 / (rank + self.c))
rrf_score_dic[doc.page_content] += rrf_score
sorted_documents = sorted(rrf_score_dic.keys(), key=lambda x:
rrf_score_dic[x], reverse=True)
page_content_to_doc_map = {doc.page_content: doc for doc_list in
doc_lists for doc in doc_list}
sorted_docs = [page_content_to_doc_map[page_content] for page_content in
sorted_documents]
return sorted_docs | Perform weighted Reciprocal Rank Fusion on multiple rank lists.
You can find more details about RRF here:
https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf
Args:
doc_lists: A list of rank lists, where each rank list contains unique items.
Returns:
list: The final aggregated list of items sorted by their weighted RRF
scores in descending order. |
test_figma_file_loader | """Test Figma file loader."""
loader = FigmaFileLoader(ACCESS_TOKEN, IDS, KEY)
docs = loader.load()
assert len(docs) == 1 | def test_figma_file_loader() ->None:
"""Test Figma file loader."""
loader = FigmaFileLoader(ACCESS_TOKEN, IDS, KEY)
docs = loader.load()
assert len(docs) == 1 | Test Figma file loader. |
observation_prefix | """Prefix to append the observation with."""
return 'Observation: ' | @property
def observation_prefix(self) ->str:
"""Prefix to append the observation with."""
return 'Observation: ' | Prefix to append the observation with. |
__exit__ | self.close() | def __exit__(self, exception_type: Any, exception_value: Any, traceback: Any
) ->None:
self.close() | null |
test_loading_few_shot_prompt_from_yaml | """Test loading few shot prompt from yaml."""
with change_directory(EXAMPLE_DIR):
prompt = load_prompt('few_shot_prompt.yaml')
expected_prompt = FewShotPromptTemplate(input_variables=['adjective'],
prefix='Write antonyms for the following words.', example_prompt=
PromptTemplate(input_variables=['input', 'output'], template=
"""Input: {input}
Output: {output}"""), examples=[{'input': 'happy',
'output': 'sad'}, {'input': 'tall', 'output': 'short'}], suffix=
"""Input: {adjective}
Output:""")
assert prompt == expected_prompt | def test_loading_few_shot_prompt_from_yaml() ->None:
"""Test loading few shot prompt from yaml."""
with change_directory(EXAMPLE_DIR):
prompt = load_prompt('few_shot_prompt.yaml')
expected_prompt = FewShotPromptTemplate(input_variables=[
'adjective'], prefix='Write antonyms for the following words.',
example_prompt=PromptTemplate(input_variables=['input',
'output'], template="""Input: {input}
Output: {output}"""),
examples=[{'input': 'happy', 'output': 'sad'}, {'input': 'tall',
'output': 'short'}], suffix="""Input: {adjective}
Output:""")
assert prompt == expected_prompt | Test loading few shot prompt from yaml. |
on_tool_start | """Do nothing when tool starts."""
pass | def on_tool_start(self, serialized: Dict[str, Any], input_str: str, **
kwargs: Any) ->None:
"""Do nothing when tool starts."""
pass | Do nothing when tool starts. |
on_agent_action | """Run on agent action."""
self.step += 1
self.tool_starts += 1
self.starts += 1
tool = action.tool
tool_input = str(action.tool_input)
log = action.log
resp = self._init_resp()
resp.update({'action': 'on_agent_action', 'log': log, 'tool': tool})
resp.update(self.get_custom_callback_meta())
if self.stream_logs:
self._log_stream(tool_input, resp, self.step)
resp.update({'tool_input': tool_input})
self.action_records.append(resp) | def on_agent_action(self, action: AgentAction, **kwargs: Any) ->Any:
"""Run on agent action."""
self.step += 1
self.tool_starts += 1
self.starts += 1
tool = action.tool
tool_input = str(action.tool_input)
log = action.log
resp = self._init_resp()
resp.update({'action': 'on_agent_action', 'log': log, 'tool': tool})
resp.update(self.get_custom_callback_meta())
if self.stream_logs:
self._log_stream(tool_input, resp, self.step)
resp.update({'tool_input': tool_input})
self.action_records.append(resp) | Run on agent action. |
merge_chat_runs | """Merge chat runs together.
A chat run is a sequence of messages from the same sender.
Args:
chat_sessions: A list of chat sessions.
Returns:
A list of chat sessions with merged chat runs.
"""
for chat_session in chat_sessions:
yield merge_chat_runs_in_session(chat_session) | def merge_chat_runs(chat_sessions: Iterable[ChatSession]) ->Iterator[
ChatSession]:
"""Merge chat runs together.
A chat run is a sequence of messages from the same sender.
Args:
chat_sessions: A list of chat sessions.
Returns:
A list of chat sessions with merged chat runs.
"""
for chat_session in chat_sessions:
yield merge_chat_runs_in_session(chat_session) | Merge chat runs together.
A chat run is a sequence of messages from the same sender.
Args:
chat_sessions: A list of chat sessions.
Returns:
A list of chat sessions with merged chat runs. |
ignore_agent | """Whether to ignore agent callbacks."""
return False | @property
def ignore_agent(self) ->bool:
"""Whether to ignore agent callbacks."""
return False | Whether to ignore agent callbacks. |
_call | """Call out to HuggingFace Hub's inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = hf("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
params = {**_model_kwargs, **kwargs}
parameter_payload = {'inputs': prompt, 'parameters': params}
headers = {'Authorization': f'Bearer {self.huggingfacehub_api_token}',
'Content-Type': 'application/json'}
try:
response = requests.post(self.endpoint_url, headers=headers, json=
parameter_payload)
except requests.exceptions.RequestException as e:
raise ValueError(f'Error raised by inference endpoint: {e}')
generated_text = response.json()
if 'error' in generated_text:
raise ValueError(
f"Error raised by inference API: {generated_text['error']}")
if self.task == 'text-generation':
text = generated_text[0]['generated_text']
if text.startswith(prompt):
text = text[len(prompt):]
elif self.task == 'text2text-generation':
text = generated_text[0]['generated_text']
elif self.task == 'summarization':
text = generated_text[0]['summary_text']
else:
raise ValueError(
f'Got invalid task {self.task}, currently only {VALID_TASKS} are supported'
)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text | def _call(self, prompt: str, stop: Optional[List[str]]=None, run_manager:
Optional[CallbackManagerForLLMRun]=None, **kwargs: Any) ->str:
"""Call out to HuggingFace Hub's inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = hf("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
params = {**_model_kwargs, **kwargs}
parameter_payload = {'inputs': prompt, 'parameters': params}
headers = {'Authorization': f'Bearer {self.huggingfacehub_api_token}',
'Content-Type': 'application/json'}
try:
response = requests.post(self.endpoint_url, headers=headers, json=
parameter_payload)
except requests.exceptions.RequestException as e:
raise ValueError(f'Error raised by inference endpoint: {e}')
generated_text = response.json()
if 'error' in generated_text:
raise ValueError(
f"Error raised by inference API: {generated_text['error']}")
if self.task == 'text-generation':
text = generated_text[0]['generated_text']
if text.startswith(prompt):
text = text[len(prompt):]
elif self.task == 'text2text-generation':
text = generated_text[0]['generated_text']
elif self.task == 'summarization':
text = generated_text[0]['summary_text']
else:
raise ValueError(
f'Got invalid task {self.task}, currently only {VALID_TASKS} are supported'
)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text | Call out to HuggingFace Hub's inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = hf("Tell me a joke.") |
vectara3 | vectara3: Vectara = Vectara()
texts = [
"""
The way Grounded Generation with Vectara works is we only use valid responses
from your data relative to the search query.
This dramatically reduces hallucinations in Vectara's responses.
You can try it out on your own on our newly launched AskNews demo to experience
Grounded Generation, or register an account to ground generative summaries on
your own data.
"""
,
"""
Generative AI promises to revolutionize how you can benefit from your data,
but you need it to provide dependable information without the risk of data
leakage. This is why today we're adding a fundamental capability to our
platform to make generative AI safer to use. It enables you to ask your
data questions and get reliable, accurate answers by retrieving and
summarizing only the relevant information. We call it “Grounded Generation”.
"""
,
"""
We are incredibly excited to share another feature with this launch:
Hybrid Search! Neural LLM systems are excellent at understanding the context
and meaning of end-user queries, but they can still underperform when matching
exact product SKUs, unusual names of people or companies, barcodes, and other
text which identifies entities rather than conveying semantics. We're bridging
this gap by introducing a lexical configuration that matches exact keywords,
supports Boolean operators, and executes phrase searches, and incorporates
the results into our neural search results.
"""
]
doc_ids = []
for text in texts:
ids = vectara3.add_documents([Document(page_content=text, metadata={})])
doc_ids.extend(ids)
yield vectara3
for doc_id in doc_ids:
vectara3._delete_doc(doc_id) | @pytest.fixture(scope='function')
def vectara3():
vectara3: Vectara = Vectara()
texts = [
"""
The way Grounded Generation with Vectara works is we only use valid responses
from your data relative to the search query.
This dramatically reduces hallucinations in Vectara's responses.
You can try it out on your own on our newly launched AskNews demo to experience
Grounded Generation, or register an account to ground generative summaries on
your own data.
"""
,
"""
Generative AI promises to revolutionize how you can benefit from your data,
but you need it to provide dependable information without the risk of data
leakage. This is why today we're adding a fundamental capability to our
platform to make generative AI safer to use. It enables you to ask your
data questions and get reliable, accurate answers by retrieving and
summarizing only the relevant information. We call it “Grounded Generation”.
"""
,
"""
We are incredibly excited to share another feature with this launch:
Hybrid Search! Neural LLM systems are excellent at understanding the context
and meaning of end-user queries, but they can still underperform when matching
exact product SKUs, unusual names of people or companies, barcodes, and other
text which identifies entities rather than conveying semantics. We're bridging
this gap by introducing a lexical configuration that matches exact keywords,
supports Boolean operators, and executes phrase searches, and incorporates
the results into our neural search results.
"""
]
doc_ids = []
for text in texts:
ids = vectara3.add_documents([Document(page_content=text, metadata={})]
)
doc_ids.extend(ids)
yield vectara3
for doc_id in doc_ids:
vectara3._delete_doc(doc_id) | null |
_Call | self.dispatch(t.func)
self.write('(')
comma = False
for e in t.args:
if comma:
self.write(', ')
else:
comma = True
self.dispatch(e)
for e in t.keywords:
if comma:
self.write(', ')
else:
comma = True
self.dispatch(e)
self.write(')') | def _Call(self, t):
self.dispatch(t.func)
self.write('(')
comma = False
for e in t.args:
if comma:
self.write(', ')
else:
comma = True
self.dispatch(e)
for e in t.keywords:
if comma:
self.write(', ')
else:
comma = True
self.dispatch(e)
self.write(')') | null |
process_output | """
Uses regex to remove the command from the output
Args:
output: a process' output string
command: the executed command
"""
pattern = re.escape(command) + '\\s*\\n'
output = re.sub(pattern, '', output, count=1)
return output.strip() | def process_output(self, output: str, command: str) ->str:
"""
Uses regex to remove the command from the output
Args:
output: a process' output string
command: the executed command
"""
pattern = re.escape(command) + '\\s*\\n'
output = re.sub(pattern, '', output, count=1)
return output.strip() | Uses regex to remove the command from the output
Args:
output: a process' output string
command: the executed command |
on_agent_action | self.on_agent_action_common() | def on_agent_action(self, *args: Any, **kwargs: Any) ->Any:
self.on_agent_action_common() | null |
from_function | """Initialize tool from a function."""
if func is None and coroutine is None:
raise ValueError('Function and/or coroutine must be provided')
return cls(name=name, func=func, coroutine=coroutine, description=
description, return_direct=return_direct, args_schema=args_schema, **kwargs
) | @classmethod
def from_function(cls, func: Optional[Callable], name: str, description:
str, return_direct: bool=False, args_schema: Optional[Type[BaseModel]]=
None, coroutine: Optional[Callable[..., Awaitable[Any]]]=None, **kwargs:
Any) ->Tool:
"""Initialize tool from a function."""
if func is None and coroutine is None:
raise ValueError('Function and/or coroutine must be provided')
return cls(name=name, func=func, coroutine=coroutine, description=
description, return_direct=return_direct, args_schema=args_schema,
**kwargs) | Initialize tool from a function. |
get_title | return self.DocumentTitle or '' | def get_title(self) ->str:
return self.DocumentTitle or '' | null |
add_texts | """Run more texts through the embeddings and add to the retriever.
Args:
texts: Iterable of strings to add to the retriever.
refresh_indices: bool to refresh ElasticSearch indices
Returns:
List of ids from adding the texts into the retriever.
"""
try:
from elasticsearch.helpers import bulk
except ImportError:
raise ValueError(
'Could not import elasticsearch python package. Please install it with `pip install elasticsearch`.'
)
requests = []
ids = []
for i, text in enumerate(texts):
_id = str(uuid.uuid4())
request = {'_op_type': 'index', '_index': self.index_name, 'content':
text, '_id': _id}
ids.append(_id)
requests.append(request)
bulk(self.client, requests)
if refresh_indices:
self.client.indices.refresh(index=self.index_name)
return ids | def add_texts(self, texts: Iterable[str], refresh_indices: bool=True) ->List[
str]:
"""Run more texts through the embeddings and add to the retriever.
Args:
texts: Iterable of strings to add to the retriever.
refresh_indices: bool to refresh ElasticSearch indices
Returns:
List of ids from adding the texts into the retriever.
"""
try:
from elasticsearch.helpers import bulk
except ImportError:
raise ValueError(
'Could not import elasticsearch python package. Please install it with `pip install elasticsearch`.'
)
requests = []
ids = []
for i, text in enumerate(texts):
_id = str(uuid.uuid4())
request = {'_op_type': 'index', '_index': self.index_name,
'content': text, '_id': _id}
ids.append(_id)
requests.append(request)
bulk(self.client, requests)
if refresh_indices:
self.client.indices.refresh(index=self.index_name)
return ids | Run more texts through the embeddings and add to the retriever.
Args:
texts: Iterable of strings to add to the retriever.
refresh_indices: bool to refresh ElasticSearch indices
Returns:
List of ids from adding the texts into the retriever. |
from_texts | """Return Marqo initialized from texts. Note that Marqo does not need
embeddings, we retain the parameter to adhere to the Liskov
substitution principle.
This is a quick way to get started with marqo - simply provide your texts and
metadatas and this will create an instance of the data store and index the
provided data.
To know the ids of your documents with this approach you will need to include
them in under the key "_id" in your metadatas for each text
Example:
.. code-block:: python
from langchain_community.vectorstores import Marqo
datastore = Marqo(texts=['text'], index_name='my-first-index',
url='http://localhost:8882')
Args:
texts (List[str]): A list of texts to index into marqo upon creation.
embedding (Any, optional): Embeddings (not required). Defaults to None.
index_name (str, optional): The name of the index to use, if none is
provided then one will be created with a UUID. Defaults to None.
url (str, optional): The URL for Marqo. Defaults to "http://localhost:8882".
api_key (str, optional): The API key for Marqo. Defaults to "".
metadatas (Optional[List[dict]], optional): A list of metadatas, to
accompany the texts. Defaults to None.
this is only used when a new index is being created. Defaults to "cpu". Can
be "cpu" or "cuda".
add_documents_settings (Optional[Dict[str, Any]], optional): Settings
for adding documents, see
https://docs.marqo.ai/0.0.16/API-Reference/documents/#query-parameters.
Defaults to {}.
index_settings (Optional[Dict[str, Any]], optional): Index settings if
the index doesn't exist, see
https://docs.marqo.ai/0.0.16/API-Reference/indexes/#index-defaults-object.
Defaults to {}.
Returns:
Marqo: An instance of the Marqo vector store
"""
try:
import marqo
except ImportError:
raise ImportError(
'Could not import marqo python package. Please install it with `pip install marqo`.'
)
if not index_name:
index_name = str(uuid.uuid4())
client = marqo.Client(url=url, api_key=api_key)
try:
client.create_index(index_name, settings_dict=index_settings or {})
if verbose:
print(f'Created {index_name} successfully.')
except Exception:
if verbose:
print(f'Index {index_name} exists.')
instance: Marqo = cls(client, index_name, searchable_attributes=
searchable_attributes, add_documents_settings=add_documents_settings or
{}, page_content_builder=page_content_builder)
instance.add_texts(texts, metadatas)
return instance | @classmethod
def from_texts(cls, texts: List[str], embedding: Any=None, metadatas:
Optional[List[dict]]=None, index_name: str='', url: str=
'http://localhost:8882', api_key: str='', add_documents_settings:
Optional[Dict[str, Any]]=None, searchable_attributes: Optional[List[str
]]=None, page_content_builder: Optional[Callable[[Dict[str, str]], str]
]=None, index_settings: Optional[Dict[str, Any]]=None, verbose: bool=
True, **kwargs: Any) ->Marqo:
"""Return Marqo initialized from texts. Note that Marqo does not need
embeddings, we retain the parameter to adhere to the Liskov
substitution principle.
This is a quick way to get started with marqo - simply provide your texts and
metadatas and this will create an instance of the data store and index the
provided data.
To know the ids of your documents with this approach you will need to include
them in under the key "_id" in your metadatas for each text
Example:
.. code-block:: python
from langchain_community.vectorstores import Marqo
datastore = Marqo(texts=['text'], index_name='my-first-index',
url='http://localhost:8882')
Args:
texts (List[str]): A list of texts to index into marqo upon creation.
embedding (Any, optional): Embeddings (not required). Defaults to None.
index_name (str, optional): The name of the index to use, if none is
provided then one will be created with a UUID. Defaults to None.
url (str, optional): The URL for Marqo. Defaults to "http://localhost:8882".
api_key (str, optional): The API key for Marqo. Defaults to "".
metadatas (Optional[List[dict]], optional): A list of metadatas, to
accompany the texts. Defaults to None.
this is only used when a new index is being created. Defaults to "cpu". Can
be "cpu" or "cuda".
add_documents_settings (Optional[Dict[str, Any]], optional): Settings
for adding documents, see
https://docs.marqo.ai/0.0.16/API-Reference/documents/#query-parameters.
Defaults to {}.
index_settings (Optional[Dict[str, Any]], optional): Index settings if
the index doesn't exist, see
https://docs.marqo.ai/0.0.16/API-Reference/indexes/#index-defaults-object.
Defaults to {}.
Returns:
Marqo: An instance of the Marqo vector store
"""
try:
import marqo
except ImportError:
raise ImportError(
'Could not import marqo python package. Please install it with `pip install marqo`.'
)
if not index_name:
index_name = str(uuid.uuid4())
client = marqo.Client(url=url, api_key=api_key)
try:
client.create_index(index_name, settings_dict=index_settings or {})
if verbose:
print(f'Created {index_name} successfully.')
except Exception:
if verbose:
print(f'Index {index_name} exists.')
instance: Marqo = cls(client, index_name, searchable_attributes=
searchable_attributes, add_documents_settings=
add_documents_settings or {}, page_content_builder=page_content_builder
)
instance.add_texts(texts, metadatas)
return instance | Return Marqo initialized from texts. Note that Marqo does not need
embeddings, we retain the parameter to adhere to the Liskov
substitution principle.
This is a quick way to get started with marqo - simply provide your texts and
metadatas and this will create an instance of the data store and index the
provided data.
To know the ids of your documents with this approach you will need to include
them in under the key "_id" in your metadatas for each text
Example:
.. code-block:: python
from langchain_community.vectorstores import Marqo
datastore = Marqo(texts=['text'], index_name='my-first-index',
url='http://localhost:8882')
Args:
texts (List[str]): A list of texts to index into marqo upon creation.
embedding (Any, optional): Embeddings (not required). Defaults to None.
index_name (str, optional): The name of the index to use, if none is
provided then one will be created with a UUID. Defaults to None.
url (str, optional): The URL for Marqo. Defaults to "http://localhost:8882".
api_key (str, optional): The API key for Marqo. Defaults to "".
metadatas (Optional[List[dict]], optional): A list of metadatas, to
accompany the texts. Defaults to None.
this is only used when a new index is being created. Defaults to "cpu". Can
be "cpu" or "cuda".
add_documents_settings (Optional[Dict[str, Any]], optional): Settings
for adding documents, see
https://docs.marqo.ai/0.0.16/API-Reference/documents/#query-parameters.
Defaults to {}.
index_settings (Optional[Dict[str, Any]], optional): Index settings if
the index doesn't exist, see
https://docs.marqo.ai/0.0.16/API-Reference/indexes/#index-defaults-object.
Defaults to {}.
Returns:
Marqo: An instance of the Marqo vector store |
_parse_response | formatted_list: list = []
if len(response) == 1:
self._parse_json_multilevel(response[0]['extracted_data'][0],
formatted_list)
else:
for entry in response:
if entry.get('provider') == 'eden-ai':
self._parse_json_multilevel(entry['extracted_data'][0],
formatted_list)
return '\n'.join(formatted_list) | def _parse_response(self, response: list) ->str:
formatted_list: list = []
if len(response) == 1:
self._parse_json_multilevel(response[0]['extracted_data'][0],
formatted_list)
else:
for entry in response:
if entry.get('provider') == 'eden-ai':
self._parse_json_multilevel(entry['extracted_data'][0],
formatted_list)
return '\n'.join(formatted_list) | null |
validate_environment | """Validate that open_clip and torch libraries are installed."""
try:
import open_clip
model_name = values.get('model_name', cls.__fields__['model_name'].default)
checkpoint = values.get('checkpoint', cls.__fields__['checkpoint'].default)
model, _, preprocess = open_clip.create_model_and_transforms(model_name
=model_name, pretrained=checkpoint)
tokenizer = open_clip.get_tokenizer(model_name)
values['model'] = model
values['preprocess'] = preprocess
values['tokenizer'] = tokenizer
except ImportError:
raise ImportError(
'Please ensure both open_clip and torch libraries are installed. pip install open_clip_torch torch'
)
return values | @root_validator()
def validate_environment(cls, values: Dict) ->Dict:
"""Validate that open_clip and torch libraries are installed."""
try:
import open_clip
model_name = values.get('model_name', cls.__fields__['model_name'].
default)
checkpoint = values.get('checkpoint', cls.__fields__['checkpoint'].
default)
model, _, preprocess = open_clip.create_model_and_transforms(model_name
=model_name, pretrained=checkpoint)
tokenizer = open_clip.get_tokenizer(model_name)
values['model'] = model
values['preprocess'] = preprocess
values['tokenizer'] = tokenizer
except ImportError:
raise ImportError(
'Please ensure both open_clip and torch libraries are installed. pip install open_clip_torch torch'
)
return values | Validate that open_clip and torch libraries are installed. |
test_call | """Test that call gives correct answer."""
search = SearchApiAPIWrapper()
output = search.run('What is the capital of Lithuania?')
assert 'Vilnius' in output | def test_call() ->None:
"""Test that call gives correct answer."""
search = SearchApiAPIWrapper()
output = search.run('What is the capital of Lithuania?')
assert 'Vilnius' in output | Test that call gives correct answer. |
compress_documents | """Filter documents based on similarity of their embeddings to the query."""
stateful_documents = get_stateful_documents(documents)
embedded_documents = _get_embeddings_from_stateful_docs(self.embeddings,
stateful_documents)
embedded_query = self.embeddings.embed_query(query)
similarity = self.similarity_fn([embedded_query], embedded_documents)[0]
included_idxs = np.arange(len(embedded_documents))
if self.k is not None:
included_idxs = np.argsort(similarity)[::-1][:self.k]
if self.similarity_threshold is not None:
similar_enough = np.where(similarity[included_idxs] > self.
similarity_threshold)
included_idxs = included_idxs[similar_enough]
for i in included_idxs:
stateful_documents[i].state['query_similarity_score'] = similarity[i]
return [stateful_documents[i] for i in included_idxs] | def compress_documents(self, documents: Sequence[Document], query: str,
callbacks: Optional[Callbacks]=None) ->Sequence[Document]:
"""Filter documents based on similarity of their embeddings to the query."""
stateful_documents = get_stateful_documents(documents)
embedded_documents = _get_embeddings_from_stateful_docs(self.embeddings,
stateful_documents)
embedded_query = self.embeddings.embed_query(query)
similarity = self.similarity_fn([embedded_query], embedded_documents)[0]
included_idxs = np.arange(len(embedded_documents))
if self.k is not None:
included_idxs = np.argsort(similarity)[::-1][:self.k]
if self.similarity_threshold is not None:
similar_enough = np.where(similarity[included_idxs] > self.
similarity_threshold)
included_idxs = included_idxs[similar_enough]
for i in included_idxs:
stateful_documents[i].state['query_similarity_score'] = similarity[i]
return [stateful_documents[i] for i in included_idxs] | Filter documents based on similarity of their embeddings to the query. |
similarity_search_by_vector | raise NotImplementedError | def similarity_search_by_vector(self, embedding: List[float], k: int=4, **
kwargs: Any) ->List[Document]:
raise NotImplementedError | null |
_resolve_schema_references | """
Resolves the $ref keys in a JSON schema object using the provided definitions.
"""
if isinstance(schema, list):
for i, item in enumerate(schema):
schema[i] = _resolve_schema_references(item, definitions)
elif isinstance(schema, dict):
if '$ref' in schema:
ref_key = schema.pop('$ref').split('/')[-1]
ref = definitions.get(ref_key, {})
schema.update(ref)
else:
for key, value in schema.items():
schema[key] = _resolve_schema_references(value, definitions)
return schema | def _resolve_schema_references(schema: Any, definitions: Dict[str, Any]) ->Any:
"""
Resolves the $ref keys in a JSON schema object using the provided definitions.
"""
if isinstance(schema, list):
for i, item in enumerate(schema):
schema[i] = _resolve_schema_references(item, definitions)
elif isinstance(schema, dict):
if '$ref' in schema:
ref_key = schema.pop('$ref').split('/')[-1]
ref = definitions.get(ref_key, {})
schema.update(ref)
else:
for key, value in schema.items():
schema[key] = _resolve_schema_references(value, definitions)
return schema | Resolves the $ref keys in a JSON schema object using the provided definitions. |
embed_documents | return [self._get_embedding() for _ in texts] | def embed_documents(self, texts: List[str]) ->List[List[float]]:
return [self._get_embedding() for _ in texts] | null |
_parse_json | result = []
label_info = []
for found_obj in json_data['items']:
label_str = f"{found_obj['label']} - Confidence {found_obj['confidence']}"
x_min = found_obj.get('x_min')
x_max = found_obj.get('x_max')
y_min = found_obj.get('y_min')
y_max = found_obj.get('y_max')
if self.show_positions and all([x_min, x_max, y_min, y_max]):
label_str += f""",at the position x_min: {x_min}, x_max: {x_max},
y_min: {y_min}, y_max: {y_max}"""
label_info.append(label_str)
result.append('\n'.join(label_info))
return '\n\n'.join(result) | def _parse_json(self, json_data: dict) ->str:
result = []
label_info = []
for found_obj in json_data['items']:
label_str = (
f"{found_obj['label']} - Confidence {found_obj['confidence']}")
x_min = found_obj.get('x_min')
x_max = found_obj.get('x_max')
y_min = found_obj.get('y_min')
y_max = found_obj.get('y_max')
if self.show_positions and all([x_min, x_max, y_min, y_max]):
label_str += f""",at the position x_min: {x_min}, x_max: {x_max},
y_min: {y_min}, y_max: {y_max}"""
label_info.append(label_str)
result.append('\n'.join(label_info))
return '\n\n'.join(result) | null |
_import_slack_send_message | from langchain_community.tools.slack.send_message import SlackSendMessage
return SlackSendMessage | def _import_slack_send_message() ->Any:
from langchain_community.tools.slack.send_message import SlackSendMessage
return SlackSendMessage | null |
_get_mock_quip_loader | quip_loader = QuipLoader(self.API_URL, access_token=self.ACCESS_TOKEN,
request_timeout=60)
quip_loader.quip_client = mock_quip
return quip_loader | def _get_mock_quip_loader(self, mock_quip: MagicMock) ->QuipLoader:
quip_loader = QuipLoader(self.API_URL, access_token=self.ACCESS_TOKEN,
request_timeout=60)
quip_loader.quip_client = mock_quip
return quip_loader | null |
nested_element | """Get nested element from path."""
if len(path) == 0:
return AddableDict({elem.tag: elem.text})
else:
return AddableDict({path[0]: [nested_element(path[1:], elem)]}) | def nested_element(path: List[str], elem: ET.Element) ->Any:
"""Get nested element from path."""
if len(path) == 0:
return AddableDict({elem.tag: elem.text})
else:
return AddableDict({path[0]: [nested_element(path[1:], elem)]}) | Get nested element from path. |
from_texts | """Create Rockset wrapper with existing texts.
This is intended as a quicker way to get started.
"""
assert client is not None, 'Rockset Client cannot be None'
assert collection_name, 'Collection name cannot be empty'
assert text_key, 'Text key name cannot be empty'
assert embedding_key, 'Embedding key cannot be empty'
rockset = cls(client, embedding, collection_name, text_key, embedding_key)
rockset.add_texts(texts, metadatas, ids, batch_size)
return rockset | @classmethod
def from_texts(cls, texts: List[str], embedding: Embeddings, metadatas:
Optional[List[dict]]=None, client: Any=None, collection_name: str='',
text_key: str='', embedding_key: str='', ids: Optional[List[str]]=None,
batch_size: int=32, **kwargs: Any) ->Rockset:
"""Create Rockset wrapper with existing texts.
This is intended as a quicker way to get started.
"""
assert client is not None, 'Rockset Client cannot be None'
assert collection_name, 'Collection name cannot be empty'
assert text_key, 'Text key name cannot be empty'
assert embedding_key, 'Embedding key cannot be empty'
rockset = cls(client, embedding, collection_name, text_key, embedding_key)
rockset.add_texts(texts, metadatas, ids, batch_size)
return rockset | Create Rockset wrapper with existing texts.
This is intended as a quicker way to get started. |
_get_language_model | if isinstance(llm_like, BaseLanguageModel):
return llm_like
elif isinstance(llm_like, RunnableBinding):
return _get_language_model(llm_like.bound)
elif isinstance(llm_like, RunnableWithFallbacks):
return _get_language_model(llm_like.runnable)
elif isinstance(llm_like, (RunnableBranch, DynamicRunnable)):
return _get_language_model(llm_like.default)
else:
raise ValueError(
f'Unable to extract BaseLanguageModel from llm_like object of type {type(llm_like)}'
) | def _get_language_model(llm_like: Runnable) ->BaseLanguageModel:
if isinstance(llm_like, BaseLanguageModel):
return llm_like
elif isinstance(llm_like, RunnableBinding):
return _get_language_model(llm_like.bound)
elif isinstance(llm_like, RunnableWithFallbacks):
return _get_language_model(llm_like.runnable)
elif isinstance(llm_like, (RunnableBranch, DynamicRunnable)):
return _get_language_model(llm_like.default)
else:
raise ValueError(
f'Unable to extract BaseLanguageModel from llm_like object of type {type(llm_like)}'
) | null |
on_agent_action | """Run on agent action."""
self.metrics['step'] += 1
self.metrics['tool_starts'] += 1
self.metrics['starts'] += 1
tool_starts = self.metrics['tool_starts']
resp: Dict[str, Any] = {}
resp.update({'action': 'on_agent_action', 'tool': action.tool, 'tool_input':
action.tool_input, 'log': action.log})
resp.update(self.metrics)
self.jsonf(resp, self.temp_dir, f'agent_action_{tool_starts}') | def on_agent_action(self, action: AgentAction, **kwargs: Any) ->Any:
"""Run on agent action."""
self.metrics['step'] += 1
self.metrics['tool_starts'] += 1
self.metrics['starts'] += 1
tool_starts = self.metrics['tool_starts']
resp: Dict[str, Any] = {}
resp.update({'action': 'on_agent_action', 'tool': action.tool,
'tool_input': action.tool_input, 'log': action.log})
resp.update(self.metrics)
self.jsonf(resp, self.temp_dir, f'agent_action_{tool_starts}') | Run on agent action. |