Datasets:
metadata
language:
- en
dataset_info:
features:
- name: id
dtype: int64
- name: query
dtype: string
- name: product_title
dtype: string
- name: product_description
dtype: string
- name: median_relevance
dtype: float64
- name: relevance_variance
dtype: float64
- name: split
dtype: string
splits:
- name: train
num_bytes: 5156813
num_examples: 10158
- name: test
num_bytes: 14636826
num_examples: 22513
download_size: 10796818
dataset_size: 19793639
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
Crowdflower Search Results Relevance
- Original source: https://www.kaggle.com/c/crowdflower-search-relevance/overview
- More detailed version: https://data.world/crowdflower/ecommerce-search-relevance
Citation
@misc{crowdflower-search-relevance,
author = {AaronZukoff, Anna Montoya, JustinTenuto, Wendy Kan},
title = {Crowdflower Search Results Relevance},
publisher = {Kaggle},
year = {2015},
url = {https://kaggle.com/competitions/crowdflower-search-relevance}
}
Code for generating data
# ! unzip train.csv.zip
# ! unzip test.csv.zip
df_comp = pd.concat([
pd.read_csv("./train.csv").assign(split="train"),
pd.read_csv("./test.csv").assign(split="test"),
])
dataset = DatasetDict(
train=Dataset.from_pandas(df_comp[df_comp["split"] == "train"].reset_index(drop=True)),
test=Dataset.from_pandas(df_comp[df_comp["split"] == "test"].reset_index(drop=True)),
)
dataset.push_to_hub("napsternxg/kaggle_crowdflower_ecommerce_search_relevance")