content
stringlengths
5
1.05M
""" The default bootpeg grammar """ from typing import Union from functools import singledispatch from ..apegs.boot import ( Value, Range, Any, Empty, Sequence, Choice, Repeat, And, Not, Entail, Capture, Transform, Reference, Rule, Clause, Parser, Grammar, bpeg_parser, ) from ..api import bootpeg_actions, import_parser precedence = { clause: prec for prec, clauses in enumerate( ( [Value, Range, Any, Empty, Reference], [Not, And], [Repeat, Capture], [Sequence, Entail], [Choice, Transform], ) ) for clause in clauses } def _wrapped(clause: Clause, parent: Clause) -> str: literal = unparse(clause) if literal[0] == "[" or precedence[type(parent)] >= precedence[type(clause)]: return literal else: return f"({unparse(clause)})" @singledispatch def unparse(clause: Union[Clause, Parser, Grammar]) -> str: """Format a ``clause`` according to bootpeg standard grammar""" raise NotImplementedError(f"Cannot unparse {clause!r} as bpeg") @unparse.register(Parser) @unparse.register(Grammar) def unparse_grammar(clause: Union[Parser, Grammar]) -> str: return "\n\n".join(unparse(rule) for rule in clause.rules) @unparse.register(Value) def unparse_literal(clause: Value) -> str: if clause.value == "\n": return r"\n" if '"' in clause.value: if "'" in clause.value: return '"' + clause.value.replace("'", r"\'") + '"' return f"'{clause.value}'" return f'"{clause.value}"' @unparse.register(Range) def unparse_range(clause: Range) -> str: return f"{clause.lower!r}-{clause.upper!r}" @unparse.register(Empty) def unparse_empty(clause: Empty) -> str: return '""' @unparse.register(Any) def unparse_any(clause: Any) -> str: return "." * clause.length @unparse.register(Reference) def unparse_reference(clause: Reference) -> str: return clause.name @unparse.register(Sequence) def unparse_sequence(clause: Sequence) -> str: return " ".join(_wrapped(sub_clause, clause) for sub_clause in clause.sub_clauses) @unparse.register(Entail) def unparse_entail(clause: Entail) -> str: return "~ " + " ".join( _wrapped(sub_clause, clause) for sub_clause in clause.sub_clauses ) @unparse.register(Choice) def unparse_choice(clause: Choice) -> str: if isinstance(clause.sub_clauses[-1], Empty): return ( "[" + " | ".join( _wrapped(sub_clause, clause) for sub_clause in clause.sub_clauses[:-1] ) + "]" ) return " | ".join(_wrapped(sub_clause, clause) for sub_clause in clause.sub_clauses) @unparse.register(Repeat) def unparse_repeat(clause: Repeat) -> str: return _wrapped(clause.sub_clause, clause) + "+" @unparse.register(Not) def unparse_not(clause: Not) -> str: return "!" + _wrapped(clause.sub_clause, clause) @unparse.register(And) def unparse_and(clause: And) -> str: return "&" + _wrapped(clause.sub_clause, clause) @unparse.register(Capture) def unparse_capture(clause: Capture) -> str: var = "*" if clause.variadic else "" return f"{var}{clause.name}={_wrapped(clause.sub_clause, clause)}" @unparse.register(Transform) def unparse_transform(clause: Transform) -> str: return f"{unparse(clause.sub_clause)} {{{clause.action}}}" @unparse.register(Rule) def unparse_rule(clause: Rule) -> str: sub_clause = clause.sub_clause if isinstance(sub_clause, Choice): body = "\n".join(f" | {unparse(case)}" for case in sub_clause.sub_clauses) else: body = f" | {unparse(sub_clause)}" return f"{clause.name}:\n{body}" parse: Parser[str, Grammar] = import_parser( __name__, dialect=bpeg_parser, actions=bootpeg_actions, )
from ctypes import c_float from math import ceil from pathlib import Path from pybgfx import bgfx from pybgfx.utils import as_void_ptr from pybgfx.utils.shaders_utils import ShaderType, load_shader from natrix.core.common.constants import TemplateConstants from natrix.core.fluid_simulator import FluidSimulator from natrix.core.utils.shaders_utils import create_buffer root_path = Path(__file__).parent / "shaders" class SmoothParticlesArea: PARTICLES_IN = 0 PARTICLES_OUT = 1 _width = 512 _height = 512 _particles_buffer = None _speed = 500.0 _dissipation = 1.0 simulate = True def __init__( self, width: int, height: int, fluid_simulation: FluidSimulator, vertex_layout: bgfx.VertexLayout, ): self.fluid_simulation = fluid_simulation self.vertex_layout = vertex_layout self._width = width self._height = height self._create_uniforms() self._load_compute_kernels() self._set_size() self._create_buffers() self._init_compute_kernels() @property def speed(self): return self._speed @speed.setter def speed(self, value): if value > 0: self._speed = value else: raise ValueError("'Speed' should be greater than zero") @property def dissipation(self): return self._dissipation @dissipation.setter def dissipation(self, value): if value > 0: self._dissipation = value else: raise ValueError("'Dissipation' should be grater than zero") def add_particles(self, position: tuple, radius: float, strength: float): if self.simulate: self._init_compute_kernels() bgfx.setUniform( self.position_uniform, as_void_ptr((c_float * 2)(position[0], position[1])), ) bgfx.setUniform(self.value_uniform, as_void_ptr((c_float * 1)(strength))) bgfx.setUniform(self.radius_uniform, as_void_ptr((c_float * 1)(radius))) bgfx.dispatch( 0, self._add_particles_kernel, self._num_groups_x, self._num_groups_x, 1 ) self._flip_buffer() def update(self, time_delta: float): self._init_compute_kernels() if self.simulate: bgfx.setUniform( self.dissipation_uniform, as_void_ptr((c_float * 1)(self.dissipation)) ) bgfx.setUniform( self.elapsed_time_uniform, as_void_ptr((c_float * 1)(time_delta)) ) bgfx.setUniform(self.speed_uniform, as_void_ptr((c_float * 1)(self.speed))) bgfx.dispatch( 0, self._advect_particles_kernel, self._num_groups_x, self._num_groups_y, 1, ) self._flip_buffer() def _set_size(self): self._particle_size = (self._width, self._height) self._velocity_size = ( self.fluid_simulation.width, self.fluid_simulation.height, ) group_size_x = TemplateConstants.NUM_THREADS.value group_size_y = TemplateConstants.NUM_THREADS.value self._num_cells = self._width * self._height self._num_groups_x = int(ceil(float(self._width) / float(group_size_x))) self._num_groups_y = int(ceil(float(self._height) / float(group_size_y))) def _create_uniforms(self): self.particle_size_uniform = bgfx.createUniform( "_ParticleSize", bgfx.UniformType.Vec4 ) self.position_uniform = bgfx.createUniform("_Position", bgfx.UniformType.Vec4) self.value_uniform = bgfx.createUniform("_Value", bgfx.UniformType.Vec4) self.radius_uniform = bgfx.createUniform("_Radius", bgfx.UniformType.Vec4) self.dissipation_uniform = bgfx.createUniform( "_Dissipation", bgfx.UniformType.Vec4 ) self.elapsed_time_uniform = bgfx.createUniform( "_ElapsedTime", bgfx.UniformType.Vec4 ) self.speed_uniform = bgfx.createUniform("_Speed", bgfx.UniformType.Vec4) self.velocity_size_uniform = bgfx.createUniform( "_VelocitySize", bgfx.UniformType.Vec4 ) def _init_compute_kernels(self): bgfx.setUniform( self.particle_size_uniform, as_void_ptr((c_float * 2)(self._particle_size[0], self._particle_size[1])), ) bgfx.setUniform( self.velocity_size_uniform, as_void_ptr((c_float * 2)(self._velocity_size[0], self._velocity_size[1])), ) bgfx.setBuffer( TemplateConstants.PARTICLES_IN.value, self._particles_buffer[self.PARTICLES_IN], bgfx.Access.Write, ) bgfx.setBuffer( TemplateConstants.PARTICLES_OUT.value, self._particles_buffer[self.PARTICLES_OUT], bgfx.Access.Write, ) def _create_buffers(self): self._particles_buffer = [ create_buffer(self._num_cells, 1, self.vertex_layout), create_buffer(self._num_cells, 1, self.vertex_layout), ] def _load_compute_kernels(self): self._add_particles_kernel = bgfx.createProgram( load_shader( "shader.AddParticle.comp", ShaderType.COMPUTE, root_path=root_path ), True, ) self._advect_particles_kernel = bgfx.createProgram( load_shader( "shader.AdvectParticle.comp", ShaderType.COMPUTE, root_path=root_path ), True, ) def _flip_buffer(self): tmp = self.PARTICLES_IN self.PARTICLES_IN = self.PARTICLES_OUT self.PARTICLES_OUT = tmp bgfx.setBuffer( TemplateConstants.PARTICLES_IN.value, self._particles_buffer[self.PARTICLES_IN], bgfx.Access.Read, ) bgfx.setBuffer( TemplateConstants.PARTICLES_OUT.value, self._particles_buffer[self.PARTICLES_OUT], bgfx.Access.Write, ) def destroy(self): # Destroy uniforms bgfx.destroy(self.particle_size_uniform) bgfx.destroy(self.position_uniform) bgfx.destroy(self.value_uniform) bgfx.destroy(self.radius_uniform) bgfx.destroy(self.dissipation_uniform) bgfx.destroy(self.elapsed_time_uniform) bgfx.destroy(self.speed_uniform) bgfx.destroy(self.velocity_size_uniform) # Destroy buffers bgfx.destroy(self._particles_buffer[0]) bgfx.destroy(self._particles_buffer[1]) # Destroy compute shaders bgfx.destroy(self._add_particles_kernel) bgfx.destroy(self._advect_particles_kernel)
class Solution: def countBits(self, num): """ :type num: int :rtype: List[int] """ one_bits_counts = [0] for n in range(1, num + 1): if n % 2 == 0: extra = 0 else: extra = 1 one_bits_counts.append(one_bits_counts[n // 2] + extra) return one_bits_counts def main(): sol = Solution() print(sol.countBits(0)) print(sol.countBits(2)) print(sol.countBits(5)) if __name__ == '__main__': main()
""" A very simple yet meaningful optimal control program consisting in a pendulum starting downward and ending upward while requiring the minimum of generalized forces. The solver is only allowed to move the pendulum sideways. This simple example is a good place to start investigating explicit and implicit dynamics. There are extra controls in implicit dynamics which are joint acceleration qddot thus, u=[tau, qddot]^T. Also a dynamic constraints is enforced at each shooting nodes such that InverseDynamics(q,qdot,qddot) - tau = 0. Finally, once it finished optimizing, it animates the model using the optimal solution. """ import biorbd_casadi as biorbd from bioptim import ( OptimalControlProgram, DynamicsFcn, Dynamics, Bounds, QAndQDotBounds, InitialGuess, ObjectiveFcn, OdeSolver, CostType, Solver, BoundsList, ObjectiveList, ) import matplotlib.pyplot as plt import numpy as np def prepare_ocp( biorbd_model_path: str, final_time: float, n_shooting: int, ode_solver: OdeSolver = OdeSolver.RK1(n_integration_steps=1), use_sx: bool = False, n_threads: int = 1, implicit_dynamics: bool = False, ) -> OptimalControlProgram: """ The initialization of an ocp Parameters ---------- biorbd_model_path: str The path to the biorbd model final_time: float The time in second required to perform the task n_shooting: int The number of shooting points to define int the direct multiple shooting program ode_solver: OdeSolver = OdeSolver.RK4() Which type of OdeSolver to use use_sx: bool If the SX variable should be used instead of MX (can be extensive on RAM) n_threads: int The number of threads to use in the paralleling (1 = no parallel computing) implicit_dynamics: bool implicit Returns ------- The OptimalControlProgram ready to be solved """ biorbd_model = biorbd.Model(biorbd_model_path) objective_functions = ObjectiveList() objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau") # Dynamics dynamics = Dynamics(DynamicsFcn.TORQUE_DRIVEN, implicit_dynamics=implicit_dynamics) # Path constraint tau_min, tau_max, tau_init = -100, 100, 0 # Be careful to let the accelerations not to much bounded to find the same solution in implicit dynamics if implicit_dynamics: qddot_min, qddot_max, qddot_init = -1000, 1000, 0 x_bounds = BoundsList() x_bounds.add(bounds=QAndQDotBounds(biorbd_model)) x_bounds[0][:, [0, -1]] = 0 x_bounds[0][1, -1] = 3.14 # Initial guess n_q = biorbd_model.nbQ() n_qdot = biorbd_model.nbQdot() n_qddot = biorbd_model.nbQddot() n_tau = biorbd_model.nbGeneralizedTorque() x_init = InitialGuess([0] * (n_q + n_qdot)) # Define control path constraint # There are extra controls in implicit dynamics which are joint acceleration qddot. if implicit_dynamics: u_bounds = Bounds([tau_min] * n_tau + [qddot_min] * n_qddot, [tau_max] * n_tau + [qddot_max] * n_qddot) else: u_bounds = Bounds([tau_min] * n_tau, [tau_max] * n_tau) u_bounds[1, :] = 0 # Prevent the model from actively rotate if implicit_dynamics: u_init = InitialGuess([0] * (n_tau + n_qddot)) else: u_init = InitialGuess([0] * n_tau) return OptimalControlProgram( biorbd_model, dynamics, n_shooting, final_time, x_init=x_init, u_init=u_init, x_bounds=x_bounds, u_bounds=u_bounds, objective_functions=objective_functions, ode_solver=ode_solver, use_sx=use_sx, n_threads=n_threads, ) def solve_ocp(implicit_dynamics: bool) -> OptimalControlProgram: """ The initialization of ocp with implicit_dynamics as the only argument Parameters ---------- implicit_dynamics: bool implicit Returns ------- The OptimalControlProgram ready to be solved """ model_path = "models/pendulum.bioMod" n_shooting = 200 # The higher it is, the closer implicit and explicit solutions are. ode_solver = OdeSolver.RK2(n_integration_steps=1) time = 1 # --- Prepare the ocp with implicit dynamics --- # ocp = prepare_ocp( biorbd_model_path=model_path, final_time=time, n_shooting=n_shooting, ode_solver=ode_solver, implicit_dynamics=implicit_dynamics, ) # --- Custom Plots --- # ocp.add_plot_penalty(CostType.ALL) # --- Solve the ocp --- # sol_opt = Solver.IPOPT(show_online_optim=False) sol = ocp.solve(sol_opt) return sol def prepare_plots(sol_implicit, sol_explicit): plt.figure() tau_ex = sol_explicit.controls["tau"][0, :] tau_im = sol_implicit.controls["tau"][0, :] plt.plot(tau_ex, label="tau in explicit dynamics") plt.plot(tau_im, label="tau in implicit dynamics") plt.xlabel("frames") plt.ylabel("Torque (Nm)") plt.legend() plt.figure() cost_ex = np.sum(sol_explicit.cost) cost_im = np.sum(sol_implicit.cost) plt.bar([0, 1], width=0.3, height=[cost_ex, cost_im]) plt.xticks([0, 1], ["explicit", "implicit"]) plt.ylabel(" weighted cost function") plt.figure() time_ex = np.sum(sol_explicit.real_time_to_optimize) time_im = np.sum(sol_implicit.real_time_to_optimize) plt.bar([0, 1], width=0.3, height=[time_ex, time_im]) plt.xticks([0, 1], ["explicit", "implicit"]) plt.ylabel("time (s)") plt.show() def main(): """ The pendulum runs two ocp with implicit and explicit dynamics and plot comparison for the results """ # --- Prepare the ocp with implicit and explicit dynamics --- # sol_implicit = solve_ocp(implicit_dynamics=True) sol_explicit = solve_ocp(implicit_dynamics=False) # --- Show the results in a bioviz animation --- # sol_implicit.print() # sol_implicit.animate(n_frames=100) # sol_implicit.graphs() # --- Show the results in a bioviz animation --- # sol_explicit.print() # sol_explicit.animate(n_frames=100) # sol_explicit.graphs() # Tau are closer between implicit and explicit when the dynamic is more discretized, # meaning the more n_shooting is high, the more tau are close. prepare_plots(sol_implicit, sol_explicit) if __name__ == "__main__": main()
""" Given a 2-D matrix representing an image, a location of a pixel in the screen and a color C, replace the color of the given pixel and all adjacent same colored pixels with C. For example, given the following matrix, and location pixel of (2, 2), and 'G' for green: B B W W W W W W W B B B Becomes B B G G G G G G G B B B """ # key idea : flood-fill algo with 8 connectivity components connectivity = [ (-1, 0), # North (-1, 1), # North-East (0, 1), # East (1, 1), # South-East (1, 0), # South (1, -1), # South-West (0, -1), # West (-1, -1), # North-West ] def my_flood_fill(mat, loc, new_color): r,c = loc curr_color = mat[r][c] mat[r][c] = new_color for row, col in connectivity: if -1 < r+row < len(mat) and -1 < c+col < len(mat[1]) and mat[r+row][c+col] == curr_color: my_flood_fill(mat, (r+row, col+c), new_color) if __name__ == '__main__': mat = [ ['B', 'B', 'W'], ['W', 'W', 'W'], ['W', 'W', 'W'], ['B', 'B', 'B'] ] print(*mat, sep='\n', end='\n'+'---'*5+'\n') my_flood_fill(mat, (2,2), 'G') print(*mat, sep='\n', end='\n'+'---'*5+'\n')
#!/usr/bin/python3 # -*- coding: utf-8 -*- import re import funcoes as fun def verifica_escola(texto): result="" contador=0 substring1 = "escola" if substring1 in texto: result+=substring1+" " contador+=1 return result,contador def encontra_esportes(texto): result="" contador=0 pesquisar_esportes = ['futebol', 'volei', 'tênis de mesa', 'natação', 'futsal', 'capoeira', 'skate', 'skatismo', 'surf', 'vôlei de praia', 'badminton', 'frescobol', 'judô', 'atletismo', 'críquete', 'basquete', 'hockey na grama', 'hockey no gelo', 'beisebol', 'fórmula 1', 'Rugby', 'futebol americano', 'golfe', 'handebol', 'queimado', 'hipismo', 'ginástica olímpica', 'Triatlo', 'maratona', 'canoagem', 'peteca', 'jiu-jitsu', 'esgrima', 'vale-tudo', 'karatê', 'corrida', 'ciclismo', 'boxe', 'MMA', 'Taekwondo'] # print(len(pesquisar_esportes)) for i in pesquisar_esportes: if i in texto: result+=i+" " contador+=1 return result,contador def busca_batalha_luta_guerra(texto): result="" contador=0 palavras_crivo_intermediario = ['lut','guerr','batalha'] # palavras_crivo_intermediario = ''.join(palavras_crivo_intermediario_inicio) # palavras_crivo_intermediario = palavras_crivo_intermediario_inicio.split() # palavras_crivo_intermediario_encontradas = [] for i in palavras_crivo_intermediario: if i in texto: result+=i+" " contador+=1 return result,contador def busca_amizade(texto): result="" contador=0 palavras_crivo_amizade = ['amig', 'amiz', 'migux','amigos','amigas'] for i in palavras_crivo_amizade: if i in texto: result+=i+" " contador+=1 return result,contador def busca_jogo(texto): result="" contador=0 substring = "jog" if substring in texto: result+=substring+" " contador+=1 return result,contador def proc_inter(texto): result="" contador=0 r,c =encontra_esportes(texto) result+=r contador+=c r,c =busca_batalha_luta_guerra(texto) result+=r contador+=c r,c =busca_amizade(texto) result+=r contador+=c r,c =busca_jogo(texto) result+=r contador+=c return result,contador
""" PF = Picture Frame EW = Eye White EC = Eye Color BC = Body Color OT = OutLine BG = BackGround BK = BeaK CH = Christmas Hat """ import random # color generator for common rarity def common(): PF = [0, 0, 0] EW = [255, 255, 255] EC = [random.randint(0, 250), random.randint(0, 250), random.randint(0, 250)] BC = [random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] OT = [random.randint(100, 250), random.randint(100, 250), random.randint(100, 250)] BG = [250, 249, 213] BK = [random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] return PF, EW, EC, BC, OT, BG, BK # color generator for rare rarity def rare(): eyeWhiteColors = [255, 0] eyeWhite = random.choice(eyeWhiteColors) PF = [0, 0, 0] EW = [50, 50, 50] EC = [random.randint(100, 255), random.randint(0, 255), random.randint(0, 255)] BC = [random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] OT = [255 - BC[0], 255 - BC[1], 255 - BC[2]] BG = [250, 249, 213] BK = [255 - EC[0], 255 - EC[1], 255 - EC[2]] return PF, EW, EC, BC, OT, BG, BK # color generator for legendary rarity def legendary_r(): eyeWhiteColors = [255, 0] eyeWhite = random.choice(eyeWhiteColors) PF = [0, 0, 0] EW = [255, 255, 255] EC = [random.randint(50, 255), 0, 0] BC = [random.randint(150, 255), 0, 0] OT = [random.randint(100, 150), 0, 0] BG = [random.randint(0, 50), 0, 0] BK = [random.randint(50, 100), 0, 0] return PF, EW, EC, BC, OT, BG, BK # color generator for legendary rarity def legendary_g(): eyeWhiteColors = [255, 0] eyeWhite = random.choice(eyeWhiteColors) PF = [0, 0, 0] EW = [255, 255, 255] EC = [0, random.randint(50, 255), 0] BC = [0, random.randint(150, 255), 0] OT = [0, random.randint(100, 150), 0] BG = [0, random.randint(0, 50), 0] BK = [0, random.randint(50, 100), 0] return PF, EW, EC, BC, OT, BG, BK # color generator for legendary rarity def legendary_b(): eyeWhiteColors = [255, 0] eyeWhite = random.choice(eyeWhiteColors) PF = [0, 0, 0] EW = [255, 255, 255] EC = [0, 0, random.randint(50, 255)] BC = [0, 0, random.randint(150, 255)] OT = [0, 0, random.randint(100, 150)] BG = [0, 0, random.randint(0, 50)] BK = [0, 0, random.randint(50, 100)] return PF, EW, EC, BC, OT, BG, BK # color generator for classified rarity def classified_blk(): PF = [0, 0, 0] EW = [255, 255, 255] ECr = random.randint(0, 150) EC = [ECr, ECr, ECr] BCr = random.randint(0, 150) BC = [BCr, BCr, BCr] OT = [0, 0, 0] BG = [250, 249, 213] BKr = random.randint(0, 150) BK = [BKr, BKr, BKr] return PF, EW, EC, BC, OT, BG, BK # color generator for classified rarity def classified_wht(): PF = [0, 0, 0] EW = [80, 80, 80] ECr = random.randint(120, 200) EC = [ECr, ECr, ECr] BCr = random.randint(120, 210) BC = [BCr, BCr, BCr] OT = [255, 255, 255] BG = [28, 28, 28] BKr = random.randint(160, 210) BK = [BKr, BKr, BKr] return PF, EW, EC, BC, OT, BG, BK # color generator for holiday christmas def christmas(): PF = [0, 0, 0] EW = [255, 255, 255] EC = [random.randint(100, 255), random.randint(0, 255), random.randint(0, 255)] BC = [random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] OT = [255 - EC[0], 255 - EC[1], 255 - EC[2]] BG = [40, 40, 40] BK = [255 - BC[0], 255 - BC[1], 255 - BC[2]] return PF, EW, EC, BC, OT, BG, BK # color generator for upside down image def upsidedown(): PF = [0, 0, 0] EW = [0, 0, 0] EC = [random.randint(100, 255), random.randint(0, 255), random.randint(0, 255)] BC = [random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] OT = [255 - EC[0], 255 - EC[1], 255 - EC[2]] BG = [250, 249, 213] BK = [255 - BC[0], 255 - BC[1], 255 - BC[2]] return PF, EW, EC, BC, OT, BG, BK
# The knows API is already defined for you. # @param a, person a # @param b, person b # @return a boolean, whether a knows b # def knows(a, b): class Solution(object): def findCelebrity(self, n): """ :type n: int :rtype: int """ candidate=0 for i in xrange(n): # find the 'maxinum' candidate if knows(candidate,i): candidate=i # after candidate, the value all less than candidate # it means all the people beyond knows candidate # check whether before has large value, means # check whether has people candidate knows if any(knows(candidate,i) for i in xrange(candidate)): return -1 # check all know candidate if not all(knows(i,candidate) for i in xrange(n)): return -1 return candidate
import dash import dash_html_components as html import dash_core_components as dcc import dash_bootstrap_components as dbc from dash.dependencies import Input, Output, State import dash_table import numpy as np # import functions from .py files import app_graphing as app_gr import app_wrangling as app_wr # load board game data boardgame_data = app_wr.call_boardgame_data() # dictionary for tab 1 slider max_year = boardgame_data["year_published"].max().year slider_dict = {x: str(x) for x in range(1950, (max_year + 1), 5)} # dictionary for dropdowns col_key_list = ["category", "mechanic", "publisher"] col_value_list = [app_wr.subset_data(boardgame_data, v) for v in col_key_list] col_dict = dict(zip(col_key_list, col_value_list)) # radio dict radio_options = [ {"label": " Categories", "value": "category"}, {"label": " Mechanics", "value": "mechanic"}, {"label": " Publishers", "value": "publisher"}, ] # extents for 3D plot extents_3d = { "min_x": boardgame_data["x"].min(), "max_x": boardgame_data["x"].max(), "min_y": boardgame_data["y"].min(), "max_y": boardgame_data["y"].max(), "min_z": boardgame_data["z"].min(), "max_z": boardgame_data["z"].max(), } # title for all tabs def title(): """ :return: A Div containing dashboard title. """ return html.Div( children=[html.H1("Board Game Data Explorer", style={"font-weight": "normal"})] ) # description card tab 1 def description_card_tab1(): """ :return: A Div containing welcome message and descriptions on tab 1. """ return html.Div( id="description-card-tab1", children=[ html.H5("Welcome to the Board Game Data Explorer"), dcc.Markdown( id="intro1", children="Use the tab selectors above to view either \ **Game Trends**, **Top Games**, or the **3D Game Explorer**. \ Descriptions are available on each tab using the **button** \ to the right. A **dataset** description is also available.", ), ], ) # Data set description for tab 1 def data_set_desc_tab1(): """ :return: A Div containing description of the data set, which pops out in the tab 1 modal. """ return html.Div( children=[ html.H4("Description of Dataset"), dcc.Markdown( "This dataset comes from the [BoardGameGeek](https://boardgamegeek.com/) \ website and includes board games with descriptions, general game \ details, publisher, and user ratings.", ), dcc.Markdown( "Note that he dataset is filtered to remove any games with less than \ 50 user ratings and is limited to games published after 1950." ), ] ) # tab 1 description for modal button def tab_1_description(): """ :return: A Div containing description of tab 1 that goes in the pop out modal on tab 1. """ return html.Div( children=[ html.H4("Game Trends"), dcc.Markdown( "Select Categories, Mechanics, or Publishers and filter on the \ minimum number of user ratings for a board game." ), html.H5("Timeseries Subtab"), dcc.Markdown( "**Average Game Ratings** provides a plot of each game's \ average user rating vs published year. Note that \ the blue trendline represents the annual average of all \ published games regardless of user selection." ), dcc.Markdown( "**Game Counts** provides the total count of games published in each year \ based on the user selections." ), html.H5("Density Subtab"), dcc.Markdown( "View user rating density plots based on user selections. Also allows \ subsetting the data based on a year range using a slider" ), dcc.Markdown( "If no elements are selected from the dropdown menu, the top 5 Categories, \ Mechanics or Publishers based on the mean average user rating will \ be displayed." ), ] ) # tab 2 description for modal button def tab_2_description(): """ :return: A Div containing description of tab 2 that goes in the pop out modal on tab 2. """ return html.Div( children=[ html.H4("Top Games"), dcc.Markdown( "This tab allows users to select any combination of game categories, \ mechanics and publishers as well as the minimum number of user ratings \ for a game. The top 10 games containing all selections and ranked by \ user rating will be displayed." ), dcc.Markdown( "Below the barchart is also a button which will show a table of \ information for the 10 games." ), ] ) # tab 3 description for modal button def tab_3_description(): """ :return: A Div containing description of tab 3 that goes in the pop out modal on tab 3. """ return html.Div( children=[ html.H4("3D Game Explorer"), dcc.Markdown( "The 3D Game Explorer shows a visual representation of game \ similarity based on game categories, mechanics, and user ratings." ), dcc.Markdown( "The graph was generated using a \ [t-SNE](https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding)\ analysis. Game similarity between mechanics and categories is shown on \ the horizontal (x and y axes) and game similarity in user ratings \ (both counts and average rating) is represented on the vertical \ (z-axis)." ), dcc.Markdown( "Clicking on any game will provide game details at the bottom of the left\ column." ), ] ) # control card for tab 1 def generate_control_card_tab1(): """ :return: A Div containing controls for graphs on tab 1, which go on the control card on the left. """ return html.Div( id="control-card-tab1", children=[ html.H6("Select:"), dcc.RadioItems( id="radio-selection-tab1", options=radio_options, value="mechanic", labelStyle={"display": "block"}, persistence=False, ), html.Br(), html.H6("Select elements to view:"), dcc.Dropdown(id="radio-dependent-tab1", options=[], multi=True, value=[]), html.Br(), html.H6("Select minumum number of ratings:"), dcc.Slider( id="min-num-ratings", min=0, max=10000, step=100, value=5000, marks={0: "0", 5000: "5000", 10000: "10000"}, ), html.Br(), html.Div(id="slider-output-container_2"), ], ) # control card for tab 2 def generate_control_card_tab2(): """ :return: A Div containing controls for graphs on tab 2, which go on the control card on the left. """ return html.Div( id="control-card-tab2", children=[ html.H6("Select categories:"), dcc.Dropdown( id="category-widget-tab2", value="", options=[ {"label": name, "value": name} for name in col_dict["category"] ], multi=True, ), html.Br(), html.H6("Select mechanics:"), dcc.Dropdown( id="mechanics-widget-tab2", value="", options=[ {"label": name, "value": name} for name in col_dict["mechanic"] ], multi=True, ), html.Br(), html.H6("Select publishers:"), dcc.Dropdown( id="publisher-widget-tab2", value="", options=[ {"label": name, "value": name} for name in col_dict["publisher"] ], multi=True, ), html.Br(), html.H6("Select minumum number of ratings:"), dcc.Slider( id="min-num-ratings2", min=0, max=10000, step=100, value=5000, marks={0: "0", 5000: "5000", 10000: "10000"}, ), html.Br(), html.Div(id="slider-output-container_3"), ], ) # control card for tab 3 def generate_control_card_tab3(): """ :return: A Div containing controls for graphs on tab 3, which go on the control card on the left. """ return html.Div( id="control-card-tab3", children=[ html.H6("Select:"), dcc.RadioItems( id="radio-selection-tab3", options=radio_options, value="category", labelStyle={"display": "block"}, ), html.Br(), html.H6("Select elements to view:"), dcc.Dropdown( id="radio-dependent-tab3", options=[], multi=True, value=["Negotiation", "Farming"], ), html.Br(), html.H6("Select game to highlight:"), dcc.Dropdown( id="games-dependent-tab3", options=[], multi=False, value=None ), ], ) # sub-title card tab 1 sub_title_card_1 = dbc.Card( dbc.CardBody( [ html.Div( [ dbc.Row( [ dbc.Col(description_card_tab1(), width=8), dbc.Col( [ html.Div( [ dbc.Button( "Dataset Description", id="open", style={"margin-left": "15px"}, ), dbc.Modal( [ dbc.ModalBody(data_set_desc_tab1()), dbc.ModalFooter( dbc.Button( "Close", id="close", className="ml-auto", ) ), ], id="modal", ), html.Br(), html.Br(), html.Div( [ dbc.Button( "Game Trends Tab Description ", id="open2", style={"margin-left": "15px"}, ), dbc.Modal( [ dbc.ModalBody( tab_1_description() ), dbc.ModalFooter( dbc.Button( "Close", id="close2", className="ml-auto", ) ), ], id="modal2", ), ] ), ] ), ] ), ], ), ] ) ] ), color="#F3F2F2", ) # subtitle card tab 2 sub_title_card_2 = dbc.Card( dbc.CardBody( dbc.Row( [ dbc.Col( [ html.H5("Top Board Games"), html.P( "Use the interactive features below to view the top \ 10 games based on choice of game categories, mechanics \ and publishers. " ), ], width=9, ), dbc.Col( [ dbc.Button("Top Games Tab Description", id="open3"), dbc.Modal( [ dbc.ModalBody(tab_2_description()), dbc.ModalFooter( dbc.Button( "Close", id="close3", className="ml-auto" ) ), ], id="modal3", ), ], width=3, ), ] ) ), color="#F3F2F2", ) # subtitle card tab 3 sub_title_card_3 = dbc.Card( dbc.CardBody( dbc.Row( [ dbc.Col( [ html.H5("Board Game Explorer"), dcc.Markdown( "Select either categories, mechanics or publishers.\ Then select different elements to view on the\ following figure. **Click** any game on the plot to\ view details in the left column. **Larger** points \ indicate games with higher user ratings scores." ), ], width=9, ), dbc.Col( [ dbc.Button("3D Game Explorer Description", id="open4"), dbc.Modal( [ dbc.ModalBody(tab_3_description()), dbc.ModalFooter( dbc.Button( "Close", id="close4", className="ml-auto" ) ), ], id="modal4", ), ], width=3, ), ] ) ), color="#F3F2F2", ) # card 1 containing the pop over "how to use tab 1" instructions and # control card for tab 1 first_card_tab1 = dbc.Card( dbc.CardBody( [ html.Div( id="control-card-tab-1", children=[ html.Div( [ dbc.Button("How to use", id="popover-target", color="info"), dbc.Popover( [ dbc.PopoverHeader( "How To Use The Game Trends Tab?" ), dbc.PopoverBody( "Select either categories, mechanics or \ publishers below, then select elements \ from the drop-down to visualize on this \ tab. Use the slider to select the minimum \ number ratings for the games shown in the \ visualization. In the density plot tab,\ choose a time period by dragging the \ interactive slider. " ), ], id="popover", is_open=False, target="popover-target", ), ] ), html.Br(), generate_control_card_tab1(), ], ) ] ), color="#F3F2F2", ) # card 2 for tab 1 containing the two plots on upper portion of tab 1, # the scatter plot and the counts stacked histogram second_card_tab1 = dbc.Card( dbc.CardBody( dbc.Tabs( [ dbc.Tab( label="Timeseries Plots", children=( [ html.Div( [ dbc.Col( [ html.Br(), html.H5("Average Game Ratings"), html.H6( "Blue line shows annual average of \ ALL games in dataset" ), html.Iframe( # scatter plot id="scatter", style={ "border-width": "0", "width": "100%", "height": "250px", }, ), html.Br(), html.H5("Published Game Counts"), html.Iframe( # stacked histogram id="count", style={ "border-width": "0", "width": "100%", "height": "250px", }, ), ], width={"size": 10, "offset": 1}, ), html.Br(), ] ) ] ), ), dbc.Tab( label="Density Plot", children=( html.Div( [ dbc.Row( dbc.Col( [ html.Div( [ html.Br(), html.H5("Game Density Plots"), html.Br(), html.Div( id="top-range-slider-output", ), html.Br(), html.Br(), html.Div( dcc.RangeSlider( id="top-range-slider", min=1950, max=2016, step=1, value=[1990, 2010], marks=slider_dict, ), style={ "width": "60%", "display": "inline-block", "align-items": "center", "justify-content": "center", }, ), html.Br(), html.Br(), html.Br(), html.Iframe( id="density_plot", style={ "border-width": "0", "width": "1050px", "height": "550px", }, ), ], style={ "display": "inline-block", "align-items": "center", "justify-content": "center", }, ) ], width={"size": 6, "offset": 1}, ) ) ] ) ), ), ] ) ), color="#F3F2F2", ) # card 1 for tab 2 containing the pop over "how to use tab 2" instructions and # control card for tab 2 first_card_tab2 = dbc.Card( dbc.CardBody( [ html.Div( id="control-card-tab-2", children=[ html.Div( [ dbc.Button( "How to use", id="popover-target2", color="info" ), dbc.Popover( [ dbc.PopoverHeader("How To Use The Top Games Tab?"), dbc.PopoverBody( "Select any combination of game categories, mechanics \ and publishers in the dropdowns below to populate \ the Top Games bar chart. User the slider to filter \ based on mininum number of user ratings for a game." ), ], id="popover2", is_open=False, target="popover-target2", ), ] ), html.Br(), generate_control_card_tab2(), ], ), ] ), color="#F3F2F2", style={"height": "30em"}, ) # Tab 2 card containing the top 10 games bar chart for tab 2 top_n_games_card_tab2 = dbc.Card( dbc.CardBody( [ html.Br(), dbc.Col( [ html.H5("Top 10 Games"), html.Div( html.Iframe( id="top-n-games", style={ "border-width": "0", "width": "100%", "height": "1000px", }, ), ), ], width={"size": 12, "offset": 1}, ), ] ), color="#F3F2F2", style={"height": "30rem"}, ) # table card top_n_games_table_card_tab2 = dbc.Card( dbc.CardBody( [ html.Div( [ dbc.Button( "View Game Details", id="collapse-button", className="mb-3", color="primary", ), dbc.Collapse( dbc.Card( dbc.CardBody( [ html.H5("Top 10 Games Facts Table:"), dash_table.DataTable( id="top-n-games-datatable", style_cell={ "whiteSpace": "normal", "height": "auto", "font-family": "Verdana", "font-size": 10, }, style_table={"overflowY": "scroll"}, sort_action="native", style_data_conditional=[ { "if": {"row_index": "odd"}, "backgroundColor": "rgb(248, 248, 248)", } ], style_header={ "backgroundColor": "rgb(230, 230, 230)", "fontWeight": "bold", }, ), ], style={"height": "40rem", "width": "90rem"}, ), color="#F3F2F2", ), id="collapse", ), ], ) ] ), color="#F3F2F2", ) # card 1 for tab 3 containing the pop over "how to use tab 2" instructions and # control card for tab 3 control_card_tab3 = dbc.Card( dbc.CardBody( [ html.Div( [ dbc.Button("How to use", id="popover-target3", color="info"), dbc.Popover( [ dbc.PopoverHeader("How To Use The 3D Game Explorer Tab?"), dbc.PopoverBody( "Select game categories, mechanics and publishers or populate \ the 3D plot. Click and drag to move around the \ 3D plot, and use the mouse to zoom. Simply hover \ over and click a game to view game facts." ), ], id="popover3", is_open=False, target="popover-target3", ), ] ), html.Br(), html.Div( id="left-column-tab3", className="four columns", # not sure this is needed children=[generate_control_card_tab3()], ), html.Br(), html.H5("Selected Game Facts:"), html.H6("Name and Rating:"), html.Div(id="tsne-data-out-name"), html.Div(id="tsne-data-out-score"), html.Div(id="tsne-data-out-ratings"), html.Br(), html.H6("Categories:"), html.Div(id="tsne-data-out-categories"), html.Br(), html.H6("Mechanics:"), html.Div(id="tsne-data-out-mechanics"), html.Br(), html.H6("Publishers:"), html.Div(id="tsne-data-out-publishers"), ] ), color="#F3F2F2", ) # card the tsne plot on tab 3 tab_3_plot = dbc.Card( dbc.CardBody( [ html.Div( [ html.Br(), html.H5("3D Game Explorer"), dcc.Graph(id="tsne-3d-plot", style={"height": "80vh"}), ] ), ] ), color="#F3F2F2", ) # tab styling features for layout tabs_styles = {"height": "44px" ""} tab_style = { "borderBottom": "1px solid #d6d6d6", "padding": "6px", "fontWeight": "bold", } tab_selected_style = { "borderTop": "1px solid #d6d6d6", "borderBottom": "1px solid #d6d6d6", "backgroundColor": "#119DFF", "color": "white", "padding": "6px", } # set up app stylesheet and server app = dash.Dash( __name__, title="Board Game Data Explorer", external_stylesheets=[dbc.themes.BOOTSTRAP], ) server = app.server # app layout app.layout = html.Div( dbc.Container( html.Div( [ # dashboard title dbc.Row( [ dbc.Col( [ html.Div( id="title-top", children=[title()], style={"backgroundColor": "#DDDCDC"}, ) ] ) ] ), dcc.Tabs( [ dcc.Tab( label="Game Trends", children=[ html.Div( [ dbc.Row([((dbc.Col(sub_title_card_1)))]), html.Br(), dbc.Row( [ dbc.Col(first_card_tab1, width=3), dbc.Col(second_card_tab1, width=9), ] ), ] ) ], style=tab_style, selected_style=tab_selected_style, ), dcc.Tab( label="Top Games", children=[ html.Div( [ dbc.Row([((dbc.Col(sub_title_card_2)))]), html.Br(), dbc.Row( [ dbc.Col(first_card_tab2, width=3), dbc.Col( [ top_n_games_card_tab2, ], width=9, ), ] ), html.Br(), dbc.Row( dbc.Col(top_n_games_table_card_tab2), ), ], style={"height": 1250}, ) ], style=tab_style, selected_style=tab_selected_style, ), dcc.Tab( label="3D Game Explorer", children=[ html.Div( [ dbc.Row(dbc.Col(sub_title_card_3)), html.Br(), dbc.Row( [ dbc.Col(control_card_tab3, width=3), dbc.Col(tab_3_plot, width=9), ] ), ] ) ], style=tab_style, selected_style=tab_selected_style, ), ] ), ], style={"backgroundColor": "#DDDCDC"}, ), fluid=True, ), style={"backgroundColor": "#DDDCDC"}, ) # Set up callbacks/backend # modal data set description @app.callback( Output("modal", "is_open"), [Input("open", "n_clicks"), Input("close", "n_clicks")], [State("modal", "is_open")], ) def toggle_modal_description(n1, n2, is_open): """ :return: Open modal callback if user clicks data set description button on tab 1. """ if n1 or n2: return not is_open return is_open # modal tab 1 description @app.callback( Output("modal2", "is_open"), [Input("open2", "n_clicks"), Input("close2", "n_clicks")], [State("modal2", "is_open")], ) def toggle_modal_tab1(n1, n2, is_open): """ :return: Open modal callback if user clicks tab 1 description button on tab 1. """ if n1 or n2: return not is_open return is_open # Button over select for how to use tab 1 on control card @app.callback( Output("popover", "is_open"), [Input("popover-target", "n_clicks")], [State("popover", "is_open")], ) def toggle_popover_tab1(n, is_open): """ :return: Open pop-over callback for how to use button for tab 1. """ if n: return not is_open return is_open # radio button selection options to populate drop downs for tab1 @app.callback( dash.dependencies.Output("radio-dependent-tab1", "options"), dash.dependencies.Output("radio-dependent-tab1", "value"), [dash.dependencies.Input("radio-selection-tab1", "value")], ) def update_options_tab1(chosen_selection): """ :return: Callback to generate drop down based on radio button selection. """ col = chosen_selection return [{"label": c, "value": c} for c in col_dict[col]], [] # scatter plot tab 1 @app.callback( Output("scatter", "srcDoc"), Input("radio-selection-tab1", "value"), Input("radio-dependent-tab1", "value"), Input("min-num-ratings", "value"), ) def call_scatter_tab1(col, list_, n_ratings): """ :return: Scatter plot of game ratings on tab 1. """ chart = app_gr.scatter_plot_dates(boardgame_data, col, list_, n_ratings) return chart.to_html() # stacked histogram of counts annual published counts @app.callback( Output("count", "srcDoc"), Input("radio-selection-tab1", "value"), Input("radio-dependent-tab1", "value"), Input("min-num-ratings", "value"), ) def call_counts_tab1(col, list_, n_ratings): """ :return: Bar chart of published game counts on tab 1. """ chart2 = app_gr.count_plot_dates(boardgame_data, col, list_, n_ratings) return chart2.to_html() # year range slider output tab 1 @app.callback( dash.dependencies.Output("top-range-slider-output", "children"), dash.dependencies.Input("top-range-slider", "value"), ) def range_slider_select_tab1(value): """ :return: Tab 1 year range slider output years for density plot on tab 1. """ transformed_value = [v for v in value] return "Years Selected: {} to {}".format(transformed_value[0], transformed_value[1]) # density plot tab 1 @app.callback( Output("density_plot", "srcDoc"), Input("radio-selection-tab1", "value"), Input("radio-dependent-tab1", "value"), Input("top-range-slider", "value"), Input("min-num-ratings", "value"), ) def call_density_tab1(col, list_, value1, value2): """ :return: Game rating density plot on tab 1. """ transformed_value = [v for v in value1] val1 = transformed_value[0] val2 = transformed_value[1] density_chart = app_gr.rank_plot_density( boardgame_data, col, list_, year_in=int(val1), year_out=int(val2), n_ratings=value2, ) return density_chart.to_html() # modal for description tab 2 @app.callback( Output("modal3", "is_open"), [Input("open3", "n_clicks"), Input("close3", "n_clicks")], [State("modal3", "is_open")], ) def toggle_modal_tab(n1, n2, is_open): """ :return: Open modal callback if user clicks tab 2 description button on tab 2. """ if n1 or n2: return not is_open return is_open # modal for description tab 3 @app.callback( Output("modal4", "is_open"), [Input("open4", "n_clicks"), Input("close4", "n_clicks")], [State("modal4", "is_open")], ) def toggle_modal_tab3(n1, n2, is_open): """ :return: Open modal callback if user clicks tab 3 description button on tab 3. """ if n1 or n2: return not is_open return is_open # Button over select for how to use tab 2 on control card @app.callback( Output("popover2", "is_open"), [Input("popover-target2", "n_clicks")], [State("popover2", "is_open")], ) def toggle_popover_tab2(n, is_open): """ :return: Open pop-over callback for how to use button for tab 2. """ if n: return not is_open return is_open # Button over select for how to use tab 3 on control card @app.callback( Output("popover3", "is_open"), [Input("popover-target3", "n_clicks")], [State("popover3", "is_open")], ) def toggle_popover_tab3(n, is_open): """ :return: Open pop-over callback for how to use button for tab 2. """ if n: return not is_open return is_open # top n games bar chart tab 2 @app.callback( Output("top-n-games", "srcDoc"), Input("category-widget-tab2", "value"), Input("mechanics-widget-tab2", "value"), Input("publisher-widget-tab2", "value"), Input("min-num-ratings2", "value"), ) def call_top_n_games_tab2(c, m, p, value2): """ :return: Top 10 games plot on tab 2. """ top_n_games = app_gr.top_n_plot( data=boardgame_data, cat=c, mech=m, pub=p, n=10, n_ratings=value2, ) return top_n_games.to_html() # data table top n games bar chart tab 2 @app.callback( Output("top-n-games-datatable", "data"), Output(component_id="top-n-games-datatable", component_property="columns"), Input("category-widget-tab2", "value"), Input("mechanics-widget-tab2", "value"), Input("publisher-widget-tab2", "value"), Input("min-num-ratings2", "value"), ) def update_table_tab2(c, m, p, value2): """ :return: Data frame columns and ouput to populate data table(dcc.DataTable) on tab 2. """ list_cols = [ "name", "min_players", "max_players", "min_playtime", "max_playtime", "year_published", "category", "mechanic", "publisher", "average_rating", "users_rated", ] table = app_wr.call_boardgame_filter( data=boardgame_data, cat=c, mech=m, pub=p, n=10, n_ratings=value2 ) columns = [{"name": col, "id": col} for col in list_cols] columns[0]["name"] = ("Game Name",) columns[1]["name"] = "Min Players" columns[2]["name"] = "Max Players" columns[3]["name"] = "Min Playtime" columns[4]["name"] = "Max Playtime" columns[5]["name"] = "Year Published" columns[6]["name"] = "Categories" columns[7]["name"] = "Mechanics" columns[8]["name"] = "Publishers" columns[9]["name"] = "Avg. User Rating" columns[10]["name"] = "No. Ratings" table_out = app_wr.clean_table(table) data_out = table_out.to_dict("rows") return data_out, columns # radio button selection options to populate dropdowns for tab3 @app.callback( dash.dependencies.Output("radio-dependent-tab3", "options"), [dash.dependencies.Input("radio-selection-tab3", "value")], ) def update_options_tab3(chosen_selection): """ :return: Callback to generate radio buttons on tab 3. """ col = chosen_selection return [{"label": c, "value": c} for c in col_dict[col]] # radio button selection options to populate game dropdown for tab3 @app.callback( Output("games-dependent-tab3", "options"), [Input("radio-selection-tab3", "value"), Input("radio-dependent-tab3", "value")], ) def update_games_tab3(col, list_): """ :return: Callback to generate drop down based on radio button selection on tab 3. """ if col == "category": games = app_wr.call_boardgame_filter(boardgame_data, cat=list_) elif col == "mechanic": games = app_wr.call_boardgame_filter(boardgame_data, mech=list_) else: games = app_wr.call_boardgame_filter(boardgame_data, pub=list_) return games["name"].map(lambda x: {"label": x, "value": x}) # tsne graph tab 3 @app.callback( Output("tsne-3d-plot", "figure"), Input("radio-selection-tab3", "value"), Input("radio-dependent-tab3", "value"), Input("games-dependent-tab3", "value"), ) def call_tsne_tab3(col, list_, game): """ :return: Interactive TSNE plot tab 3. """ fig = app_gr.graph_3D(boardgame_data, col, list_, game, extents_3d) return fig # text output from tsne graph click @app.callback( Output("tsne-data-out-name", "children"), Output("tsne-data-out-score", "children"), Output("tsne-data-out-ratings", "children"), Output("tsne-data-out-categories", "children"), Output("tsne-data-out-mechanics", "children"), Output("tsne-data-out-publishers", "children"), Input("tsne-3d-plot", "clickData"), ) def display_click_message_tab3(clickData): """ :return: Selected game data to put into control card on tab 3. """ if clickData: click_point_np = np.array( [clickData["points"][0][i] for i in ["x", "y", "z"]] ).astype(np.float64) # Create a mask of the point clicked bool_mask_click = boardgame_data.loc[:, "x":"z"].eq(click_point_np).all(axis=1) # retreive data if bool_mask_click.any(): data_out = boardgame_data[bool_mask_click] click_name = data_out.name.values[0] click_sc = "Avg Rating: " + str(round(data_out.average_rating.values[0], 2)) click_rat = "No. of Ratings: " + str(data_out.users_rated.values[0]) click_cat = ", ".join(data_out.category.values[0]) click_mec = ", ".join(data_out.mechanic.values[0]) click_pub = ", ".join(data_out.publisher.values[0]) return click_name, click_sc, click_rat, click_cat, click_mec, click_pub return None, None, None, None, None, None # slider output container first tab @app.callback( dash.dependencies.Output("slider-output-container_2", "children"), [dash.dependencies.Input("min-num-ratings", "value")], ) def update_output_tab1(value): """ :return: Minimum number of games selected output text on tab 1 based on slider input. """ return "Min Ratings: {}".format(value) # slider output container second tab @app.callback( dash.dependencies.Output("slider-output-container_3", "children"), [dash.dependencies.Input("min-num-ratings2", "value")], ) def update_output_tab2(value): """ :return: Minimum number of games selected output text on tab 2 based on slider input. """ return "Min Ratings: {}".format(value) # collapse button for top 10 games fact table @app.callback( Output("collapse", "is_open"), [Input("collapse-button", "n_clicks")], [State("collapse", "is_open")], ) def toggle_collapse_tab2(n, is_open): """ :return: Open top 10 games fact table on tab 2 if clicked. """ if n: return not is_open return is_open # run if __name__ == "__main__": app.run_server(debug=False, host="127.0.0.1", port=8055)
from plum import dispatch from plum import dispatch from netket.utils import struct from .algorithms import AbstractODEAlgorithm from .controllers import PIController ## def default_controller(alg, cache, qoldinit=None): # if ispredictive(alg): PredictiveController # if isstandard(alg): IController beta1, beta2 = _digest_beta1_beta2(alg, cache) return PIController(beta1, beta2) def _digest_beta1_beta2(alg, cache): beta2 = beta2_default(alg) beta1 = beta1_default(alg, beta2) # should use rational type... # return convert(QT, beta1)::QT, convert(QT, beta2)::QT return beta1, beta2 @dispatch def beta2_default(alg: AbstractODEAlgorithm): return 2 / (5 * alg.alg_order) if alg.is_adaptive else 0 @dispatch def beta1_default(alg: AbstractODEAlgorithm, beta2): return 7 / (10 * alg.alg_order) if alg.is_adaptive else 0 @dispatch def gamma_default(alg: AbstractODEAlgorithm, beta2): return 9 / 10 if alg.is_adaptive else 0
import config """ ... Usage --------- mongo = mongo('prefix name e.g. myprojectname') mongo.write_to_*() """ class Mongo: """ A class used to represent the mongo container ... Attributes ---------- prefix : str The prefix applied for all container names container_name : str the name to give the containr inside the dockerfile Methods ------- get_docker_compose_content() Returns to the docker compose file with the neccessary mongo content get_env_content(root_path: str) Returns the environmental file content """ def __init__(self, prefix_for_containers: str): """ Parameters ---------- prefix : str The prefix applied to all container names container_name : str the name to give the containr inside the dockerfile dockerfile_name : str a formatted string that defines the name of the docker file for mongo """ self.prefix: str = prefix_for_containers self.container_name: str = prefix_for_containers + '_mongo' def get_docker_compose_content(self): """ Returns the neccessary content to the docker-compose.yml file for mongo """ docker_compose_content: List[str] = [ " mongodb:", " container_name: {}".format(self.container_name), " image: mongo", " ports:", ' "27017:27017"', " env_file:", " - ./.docker/env/mongo.env", " networks:", " - {}-network".format(self.prefix) ] return docker_compose_content def get_env_content(self): """ Returns the environment file content """ content = [ 'MONGODB_ROOT_USERNAME=root', 'MONGODB_ROOT_PASSWD=rootpassword', 'MONGODB_ROOT_ROLE=root', 'MONGODB_USERNAME=user', 'MONGODB_PASSWD=password', 'MONGODB_DBNAME=db', 'MONGODB_ROLE=readWrite' ] return content
import os import logging from datetime import datetime # This is for the console message printing. ConsoleLogParm = { "MsgLevel": logging.INFO, "MsgFormat": '[%(asctime)s] %(name)s [%(levelname)s] %(message)s', "DateFormate": '%m/%d %I:%M:%S' } # This log file will not be implemented by default. FileLogParm = { "MsgLevel": logging.INFO, "MsgFormat": '[%(asctime)s] %(name)s [%(levelname)s] %(message)s', "DateFormate": None, "Filename":r".\RiverwareABM.log" } # This log file will be created automatically when exercute # runPyRAMID() in RiverwareWrap. FileLogParm_runRiverwareABM = { "MsgLevel": logging.DEBUG, "MsgFormat": '[%(asctime)s] %(name)s [%(levelname)s] %(message)s', "DateFormate": None, "Filename":"PyRAMID.log" } MsglevelDict = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR } def addGlobalLogFile(Filename=None, Mode='w', MsgLevel=None): """Add a global log file. Args: Filename (str, optional): Log file name. Defaults to None. Mode (str, optional): txt mode. Defaults to 'w'. MsgLevel (str, optional): Message level. Defaults to None. Returns: None """ if Filename is None: Filename = FileLogParm["Filename"] # else: # Filename = os.path.join(Directory, Filename) # Create file handler at "root" level. logger = logging.getLogger("PyRAMID") logger.setLevel(logging.INFO) fh = logging.FileHandler(Filename, Mode) # 'w' Overwrite, 'a' append if MsgLevel is not None: assert MsgLevel in ['debug', 'info', 'warning', 'error'], \ print("ValueError MsgLevel must be one of these [None, 'debug', "+\ "'info', 'warning', 'error'].") fh.setLevel(MsglevelDict[MsgLevel]) else: fh.setLevel(FileLogParm["MsgLevel"]) formatter_fh = logging.Formatter(FileLogParm["MsgFormat"], \ datefmt=FileLogParm["DateFormate"]) fh.setFormatter(formatter_fh) logger.addHandler(fh) # print the following message with package hierarchical structures. logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) #logger.info("Global log file is created at {}"\ # .format(os.path.join(os.getcwd(),Filename[2:]))) return None def addLocalLogFile(filename, logger, Directory, Mode='w', MsgLevel=None): """Add local log file. This function is to add the local log file for modules within RiverwareABMpackage. This function can be use for files outside of RiverwareABM package if the proper logger is given. To get the proper logger, we recommend user to run setLoggerForCustomizedFile(). Args: filename (str): Log file name. logger (object): logger object. Directory (str): Log file folder directory. Mode (str, optional): .txt mode. Defaults to 'w'. MsgLevel (str, optional): Message level. Defaults to None. Returns: [list]: A list contains logger and file handler. """ Filename = os.path.join(Directory, filename) fh = logging.FileHandler(Filename, Mode) # w: Overwrite the file, a: append if MsgLevel is not None: assert MsgLevel in ['debug', 'info', 'warning', 'error'], \ print("ValueError MsgLevel must be one of these [None, 'debug', "\ + "'info', 'warning', 'error'].") fh.setLevel(MsglevelDict[MsgLevel]) else: fh.setLevel(FileLogParm["MsgLevel"]) formatter_fh = logging.Formatter(FileLogParm["MsgFormat"], \ datefmt=FileLogParm["DateFormate"]) fh.setFormatter(formatter_fh) logger.addHandler(fh) return logger, fh def removeLocalLogFile(logger, fh): """Remove file handler from given logger. Args: logger (object): logger object. fh (object): File handler object. Returns: object: logger object. """ logger.removeHandler(fh) return logger def setLoggerForCustomizedFile(AbbrOfThisPyFile, MsgLevel=None): """Set logger. This function help to get hierarchical logger under the root RiverwareABM with the given abbreviation of your file. Args: AbbrOfThisPyFile (str): Abbreviation of .py file name. MsgLevel (str, optional): Message level. 'debug', 'info', 'warning', 'error'. Defaults to None. Returns: object: logger """ # Add the hierarchical logger under the root RiverwareABM. logger = logging.getLogger("PyRAMID.{}".format(AbbrOfThisPyFile)) if MsgLevel is not None: assert MsgLevel in ['debug', 'info', 'warning', 'error'], \ print("ValueError MsgLevel must be one of these [None, 'debug', "\ + "'info', 'warning', 'error'].") logger.setLevel(MsglevelDict[MsgLevel]) else: logger.setLevel(ConsoleLogParm["MsgLevel"]) return logger def createFolderWithDatetime(WD, Folder): """Create folder with datetime under given WD. Args: WD (str): Working directory. Folder (str): Prefix of the folder name. Returns: [str]: Created folder's directory. """ assert os.path.isdir(WD),\ print("PathError Given directory not exists. {}".format(WD)) dt_string = datetime.now().strftime("%Y%m%d_%H%M%S") # This is use to store all calibration data WD_new = os.path.join(WD, Folder+"_{}".format(dt_string)) os.makedirs(WD_new) print("Create {}".format(WD_new)) return WD_new
b='Hong Pi Geng Nie Kong Zhi Xiao She Yu Jiang Voi Chong Qi Chen Sang Suo Qian Hui Shan E Ci Qiu Ke Ham Weng Zi Ji Mai Da Cuo Manh Chom Lou Kang Kuo Di Qie Mo Guo Hong Chao Hei Gei Gun Zaat Zoeng Cao Zhe Ke Keoi Gun Xu Peng Jue Gan Si Sui Que Wu Yan Peng Xiao Pan Zyun Sin Taan La Gun Doi Vo Quanh Vo San Lo Vo Beng Zhen Ji Jin Lian Ken Zhou Zao Cuoi Le Qi Bing Yin Pin Oe Tung Me Sou Lu Di Du Liao Zhuo Chang Gach Re Ghe Quanh Soi Chen Ta Jin Que Dao Cin Chen Rang Po Lai Zhong Xie Nen Gach Jiang Qu Lei Ca Que Gach Xiang Lei To Lan Lom La'
from astropy.io import fits # path_data = '' import glob imlist = sorted(glob.glob(f'{path_data}/Calib*NGC*0.fits')) for inim in imlist: with fits.open(inim) as hdul: print(hdul.info())
from django.contrib.auth.mixins import LoginRequiredMixin from django.views.generic import TemplateView class RACI(LoginRequiredMixin, TemplateView): template_name = "RACI/RACI.html" login_url = '/' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) return context
import atexit import os import random import string import subprocess import sys import pytest class SubprocessIOC: def __init__(self, ioc_py): self.pv_prefix = "".join( random.choice(string.ascii_uppercase) for _ in range(12) ) sim_ioc = os.path.join(os.path.dirname(__file__), ioc_py) cmd = [sys.executable, sim_ioc, self.pv_prefix] self.proc = subprocess.Popen( cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) def kill(self): if self.proc.returncode is None: # still running, kill it and print the output self.proc.kill() out, err = self.proc.communicate() print(out.decode()) print(err.decode()) @pytest.fixture def cothread_ioc(): ioc = SubprocessIOC("sim_cothread_ioc.py") yield ioc ioc.kill() def aioca_cleanup(): from aioca import purge_channel_caches, _catools # Unregister the aioca atexit handler as it conflicts with the one installed # by cothread. If we don't do this we get a seg fault. This is not a problem # in production as we won't mix aioca and cothread, but we do mix them in # the tests so need to do this. atexit.unregister(_catools._catools_atexit) # purge the channels before the event loop goes purge_channel_caches() @pytest.fixture def asyncio_ioc(): ioc = SubprocessIOC("sim_asyncio_ioc.py") yield ioc ioc.kill() aioca_cleanup() @pytest.fixture def asyncio_ioc_override(): ioc = SubprocessIOC("sim_asyncio_ioc_override.py") yield ioc ioc.kill() aioca_cleanup()
#!/usr/bin/env python import re import os import os.path import struct from numpy.fft import rfft file_re = re.compile(r"([LR])(\-?\d+).*e(\d+)a.dat", re.IGNORECASE) kemar = {} for dirpath, _dn, files in os.walk("full"): for fname in files: #print dirpath, fname m = file_re.match(fname) if not m: continue fname = os.path.join(dirpath, fname) mic = {'L': 0, 'R': 1}[m.group(1).upper()] elev = int(m.group(2)) az = int(m.group(3)) with open(fname, "rb") as f: data = f.read() #print "Read %d" %len(data) data = struct.unpack(">512h", data) sdata = [] for i in xrange(0, len(data)): sdata.append(0) for i in xrange(0, len(data)): sdata.append(data[i] / 32768.0) data = rfft(sdata) if elev not in kemar: kemar[elev] = {az: {mic: data}} continue if az not in kemar[elev]: kemar[elev][az] = {mic: data} continue kemar[elev][az][mic] = data header = """#ifndef CLUNK_KEMAR_H #define CLUNK_KEMAR_H /* This data is Copyright 1994 by the MIT Media Laboratory. It is provided free with no restrictions on use, provided the authors are cited when the data is used in any research or commercial application. Bill Gardner [email protected] and Keith Martin [email protected] */ #include <stdint.h> #ifdef __cplusplus extern "C" { #endif /* DO NOT EDIT THIS HEADER, IT'S AUTOGENERATED */ """ print "found %d elevation angles" %len(kemar) eangles = sorted(kemar.iterkeys()) header += "static const int KemarMinElevation = %d;\n" % min(eangles) header += "static const int KemarMaxElevation = %d;\n" % max(eangles) header += "static const int KemarElevationCount = %d;\n" % len(eangles) header += "static const int KemarElevationStep = %d;\n" % ((max(eangles) - min(eangles)) / (len(eangles) - 1)) header += "static const unsigned KemarPoints = 513;\n" header += """ struct kemar_elevation_data { int elevation; unsigned samples; const float (*data)[2][513][2]; }; """ header += "extern struct kemar_elevation_data kemar_data[14];\n" header += """ #ifdef __cplusplus } #endif #endif """ with open("kemar.h", "wb") as f: f.write(header) source = """#include "kemar.h" """ epilogue = """ struct kemar_elevation_data kemar_data[%d] = { """ %len(eangles) for elev, az_dict in sorted(kemar.iteritems()): print "elevation %d, items: %d" %(elev, len(az_dict)) array_name = "elev_%s" %(elev if elev >= 0 else ("m%d" % -elev)) source += """static const float %s[][2][513][2] = { """ %array_name for az, mic_n_data in sorted(az_dict.iteritems()): data0 = "" data1 = "" for a in mic_n_data[0]: data0 += "{%g, %g}, " %(float(a.real), float(a.imag)) for a in mic_n_data[1]: data1 += "{%g, %g}, " %(float(a.real), float(a.imag)) source += """ /* azimuth = %d */ { {%s}, {%s} }, """ %(az, data0, data1) source += "};\n" epilogue += "\t{%4d, %4d, %10s },\n" %(elev, len(az_dict), array_name) epilogue += """}; """ with open("kemar.c", "wb") as f: f.write(source + epilogue)
from pygmy.model import * from pygmy.config import config from pygmy.database.sqlite import SqliteDatabase from pygmy.database.postgresql import PostgreSQLDatabase from pygmy.database.mysql import MySQLDatabase from pygmy.database.base import Model class DatabaseFactory: @staticmethod def create(): """Get db class from config.db.engine""" # TODO: make a utli.mapping if config.database['engine'] == 'sqlite3': database = SqliteDatabase() elif config.database['engine'] == 'postgresql': database = PostgreSQLDatabase() elif config.database['engine'] == 'mysql': database = MySQLDatabase() else: raise Exception( "Unsupported DB type. Supported types are " "postgresql/sqlite3 and mysql") database.initialize(config.debug) # Create all tables, if not already exists. Model.metadata.create_all(database.engine) # TODO DB: Run migrations return database
# RemovedInDjango50Warning. from django.core.serializers.base import ( PickleSerializer as BasePickleSerializer, ) from django.core.signing import JSONSerializer as BaseJSONSerializer JSONSerializer = BaseJSONSerializer PickleSerializer = BasePickleSerializer
""" The solver for training """ import tensorflow as tf import numpy as np import logging from time import time from os import path, makedirs from model import * from train400_data import * from ops import * from utils import * flags = tf.app.flags conf = flags.FLAGS class Solver(object): def __init__(self): # path self.data_dir = conf.data_dir self.models_dir = conf.models_dir self.logFilename = conf.log_name # make dirs if not path.exists(self.models_dir): makedirs(self.models_dir) # soft constraint for total epochs self.num_epoch = conf.num_epoch + 1 # hyper parameters self.batch_size = conf.batch_size self.weight_decay = conf.weight_decay # learning rate self.lr = tf.placeholder(tf.float32) self.base_lr = conf.base_lr self.power = conf.power self.end_lr = conf.end_lr # resuming and finetune self.resume = conf.resume self.finetune = conf.finetune if conf.iters == None: if self.resume or self.finetune: raise ValueError # get datas and labels for training dataset = Train400_Data(filename=path.join(self.data_dir, 'train400.tfrecord'), num_epoch=self.num_epoch, sigma=50, batch_size=self.batch_size, scope='train400') with tf.device('/gpu:0'): # build the inference graph net = Net(data=dataset.datas, label=dataset.labels, wl=self.weight_decay) net.build_net() # create an optimizer that performs gradient descent self.train_op = tf.train.AdamOptimizer(self.lr).minimize(net.total_loss) self.total_loss = net.total_loss def init_logging(self): logging.basicConfig( level = logging.DEBUG, #format = 'LINE %(lineno)-4d %(levelname)-8s %(message)s', format = '%(message)s', datefmt = '%m-%d %H:%M', filename = self.logFilename, filemode = 'w') # define a Handler which writes INFO messages or higher to the sys.stderr console = logging.StreamHandler() console.setLevel(logging.DEBUG) # set a format which is simpler for console use #formatter = logging.Formatter('LINE %(lineno)-4d : %(levelname)-8s %(message)s'); formatter = logging.Formatter('%(message)s') # tell the handler to use this format console.setFormatter(formatter) logging.getLogger('').addHandler(console) def train(self, disp_freq, save_freq, summary_freq): # initialize logging self.init_logging() # operations for initialization init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) summary_op = tf.summary.merge_all() saver = tf.train.Saver(max_to_keep=int(10e3)) # create a session for running operations in the graph config = tf.ConfigProto(allow_soft_placement=True) # config.gpu_options.allow_growth = True config.gpu_options.allow_growth = False #config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 # enable XLA sess = tf.Session(config=config) # initialize the variables (like the epoch counter) sess.run(init_op) # restore trained weights for resuming if self.resume or self.finetune: saver.restore(sess, path.join(conf.finetune_models_dir, 'model.ckpt-' + str(conf.iters))) summary_writer = tf.summary.FileWriter(self.models_dir, sess.graph) # start input enqueue threads coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # global iterations for resuming if self.resume: iters = conf.iters # for training and finetune else: iters = 0 # accumulational variables sum_time = 0 sum_loss = 0 # trace options and metadata checkpoint_path = path.join(self.models_dir, 'model.ckpt') # run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) # run_metadata = tf.RunMetadata() # save iteration 0 and metagraph saver.save(sess, checkpoint_path, global_step=iters) # generate summary # summary_str = sess.run(summary_op, options=run_options, run_metadata=run_metadata) # summary_writer.add_run_metadata(run_metadata, 'step%03d' % iters) # summary_writer.add_summary(summary_str, iters) # decay policy of learning rate decay_fraction_of_epochs = 1.0 self.decay_steps = (num_examples_per_epoch_for_train * self.num_epoch * decay_fraction_of_epochs) // self.batch_size total_loss = sess.run(self.total_loss, feed_dict={self.lr: self.base_lr}) logging.info('step %d, loss = %.8f' % (iters, total_loss)) try: # training loop while not coord.should_stop(): # calculate current learning rate (truncated polynomial decay) if iters <= self.decay_steps: current_lr = (self.base_lr - self.end_lr) * pow((1 - float(iters) / self.decay_steps), (self.power)) + self.end_lr else: current_lr = self.end_lr # run training steps or whatever t1 = time() _, total_loss = sess.run([self.train_op, self.total_loss], feed_dict={self.lr: current_lr}) t2 = time() iters += 1 # accumulate sum_time += t2 - t1 sum_loss += total_loss # display if iters % disp_freq == 0: logging.info('step %d, loss = %.4f (lr: %.8f, time: %.2fs)' % (iters, sum_loss / disp_freq, current_lr, sum_time)) sum_time = 0 sum_loss = 0 # save checkpoint if iters % save_freq == 0: saver.save(sess, checkpoint_path, global_step=iters, write_meta_graph=False) # write summary if iters % summary_freq == -1: summary_str = sess.run(summary_op, options=run_options, run_metadata=run_metadata) summary_writer.add_run_metadata(run_metadata, 'step%03d' % iters) summary_writer.add_summary(summary_str, iters) except tf.errors.OutOfRangeError: logging.info('Done training -- epoch limit reached') finally: # when done, ask the threads to stop coord.request_stop() # wait for threads to finish coord.join(threads) sess.close()
from telegram_bot_sdk.telegram_objects.sticker import Sticker class StickerSet: """This class represents a sticker set :param name: Sticker set name :type name: str :param title: Sticker set title :type title: str :param is_animated: True, if the sticker set contains animated stickers :type is_animated: bool :param contains_masks: True, if the sticker set contains masks :type contains_masks: bool :param stickers: List of all set stickers :type stickers: list of :ref:`object_stickers` """ def __init__(self, *, name, title, is_animated, contains_masks, stickers): self.name = name self.title = title self.is_animated = is_animated self.contains_masks = contains_masks self.stickers = [Sticker(**x) for x in stickers] if stickers else None
# -*- coding: utf-8 -*- # pylint: disable=redefined-outer-name """Tests for the ``PdosWorkChain.get_builder_from_protocol`` method.""" from aiida.engine import ProcessBuilder from aiida.plugins import WorkflowFactory import pytest from aiida_quantumespresso.common.types import ElectronicType, SpinType PdosWorkChain = WorkflowFactory('quantumespresso.pdos') @pytest.fixture def get_pdos_generator_inputs(fixture_code, generate_structure): """Generate a set of default inputs for the ``PdosWorkChain.get_builder_from_protocol()`` method.""" return { 'pw_code': fixture_code('quantumespresso.pw'), 'dos_code': fixture_code('quantumespresso.dos'), 'projwfc_code': fixture_code('quantumespresso.projwfc'), 'structure': generate_structure('silicon') } def test_get_available_protocols(): """Test ``PdosWorkChain.get_available_protocols``.""" protocols = PdosWorkChain.get_available_protocols() assert sorted(protocols.keys()) == ['fast', 'moderate', 'precise'] assert all('description' in protocol for protocol in protocols.values()) def test_get_default_protocol(): """Test ``PdosWorkChain.get_default_protocol``.""" assert PdosWorkChain.get_default_protocol() == 'moderate' def test_default(get_pdos_generator_inputs, data_regression, serialize_builder): """Test ``PdosWorkChain.get_builder_from_protocol`` for the default protocol.""" inputs = get_pdos_generator_inputs builder = PdosWorkChain.get_builder_from_protocol(**inputs) assert isinstance(builder, ProcessBuilder) data_regression.check(serialize_builder(builder)) def test_electronic_type(get_pdos_generator_inputs): """Test ``PdosWorkChain.get_builder_from_protocol`` with ``electronic_type`` keyword.""" with pytest.raises(NotImplementedError): builder = PdosWorkChain.get_builder_from_protocol( **get_pdos_generator_inputs, electronic_type=ElectronicType.AUTOMATIC ) builder = PdosWorkChain.get_builder_from_protocol( **get_pdos_generator_inputs, electronic_type=ElectronicType.INSULATOR ) for namespace, occupations in zip((builder.scf, builder.nscf), ('fixed', 'tetrahedra')): parameters = namespace['pw']['parameters'].get_dict() assert parameters['SYSTEM']['occupations'] == occupations assert 'degauss' not in parameters['SYSTEM'] assert 'smearing' not in parameters['SYSTEM'] def test_spin_type(get_pdos_generator_inputs): """Test ``PdosWorkChain.get_builder_from_protocol`` with ``spin_type`` keyword.""" with pytest.raises(NotImplementedError): for spin_type in [SpinType.NON_COLLINEAR, SpinType.SPIN_ORBIT]: builder = PdosWorkChain.get_builder_from_protocol(**get_pdos_generator_inputs, spin_type=spin_type) builder = PdosWorkChain.get_builder_from_protocol(**get_pdos_generator_inputs, spin_type=SpinType.COLLINEAR) for namespace in [builder.scf, builder.nscf]: parameters = namespace['pw']['parameters'].get_dict() assert parameters['SYSTEM']['nspin'] == 2 assert parameters['SYSTEM']['starting_magnetization'] == {'Si': 0.1} def test_nscf_smearing_raises(get_pdos_generator_inputs): """Test ``PdosWorkChain.get_builder_from_protocol`` fails when NSCF uses smearing.""" overrides = {'nscf': {'pw': {'parameters': {'SYSTEM': {'occupations': 'smearing'}}}}} with pytest.raises(ValueError, match=r'`SYSTEM.occupations` in `nscf.pw.parameters`'): PdosWorkChain.get_builder_from_protocol(**get_pdos_generator_inputs, overrides=overrides)
#97% Accuracy on 2 epoch from keras.datasets import mnist import tensorflow.keras as keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, BatchNormalization, Conv2D, MaxPooling2D from keras.utils import normalize from keras.callbacks import TensorBoard import matplotlib.pyplot as plt model_Name = "Mnist_Conv_batchNormalise" tensorboard_name = 'conv(32-64)_batchNormalise/' #Load data (x_train, y_train), (x_test, y_test) = mnist.load_data() #Normalise the data x_train = normalize(x_train, axis=-1) x_test = normalize(x_test, axis=-1) #Reshape Data #2-for conv x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) x_train = x_train.reshape(x_train.shape[0], 28,28, 1) model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1), data_format="channels_last")) model.add(BatchNormalization(axis=-1)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(BatchNormalization(axis=-1)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(2048, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) #compile model model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) #Tensorboard for visualise tensorboard = TensorBoard(log_dir='Mnist_log/' + tensorboard_name, histogram_freq=30) #Feed the data model.fit(x_train, y_train, epochs=2, batch_size=128, validation_data=(x_test, y_test), callbacks=[tensorboard]) #Save Model model.save(model_Name + '.model') #Delete existing model del model #load saved model save_model = keras.models.load_model(model_Name + '.model')
#!/usr/bin/python """ Build a simple network from scratch, using mininet primitives. This is more complicated than using the higher-level classes, but it exposes the configuration details and allows customization. For most tasks, the higher-level API will be preferable. """ import csv import sys import time from mininet.net import Mininet from mininet.node import Node from mininet.link import Link from mininet.log import setLogLevel, info from mininet.util import quietRun import pingparser CTLR_IP = '2017:db8::ffaa' CTLR_PRT = '6653' # 0: Step wise testing, 1: Continues Testing mode = 1 def stop_net(controller, cname, switch): info("*** Stopping network\n") controller.cmd('kill %' + cname) switch.cmd('ovs-vsctl del-br dp0') switch.deleteIntfs() info('Net was removed\n') def scratchNet(cname='controller', cargs='-v ptcp:'): "Create network from scratch using Open vSwitch." info("*** Creating nodes\n") controller = Node('c0', inNamespace=False) switch = Node('s0', inNamespace=False) h0 = Node('h0') h1 = Node('h1') info("*** Creating links\n") Link(h0, switch) Link(h1, switch) info("*** Configuring hosts\n") h0.setIP('192.168.123.1/24') h1.setIP('192.168.123.2/24') info(str(h0) + '\n') info(str(h1) + '\n') info("*** Starting network using Open vSwitch\n") controller.cmd(cname + ' ' + cargs + '&') switch.cmd('ovs-vsctl del-br dp0') switch.cmd('ovs-vsctl add-br dp0') for intf in switch.intfs.values(): print switch.cmd('ovs-vsctl add-port dp0 %s' % intf) # Note: controller and switch are in root namespace, and we # can connect via loopback interface s_cmd = 'ovs-vsctl set-controller dp0 tcp:[{}]:{}'.format(CTLR_IP, CTLR_PRT) print s_cmd switch.cmd(s_cmd) ping_results = ['received,host,jitter,packet_loss,avgping,minping,time,sent,maxping\n'] try: h0.cmd('echo "" > pings.txt') if mode == 0: step_wise_testing(h0, h1, ping_results) else: continuous_testing(h0, h1, ping_results) except KeyboardInterrupt: print "Warning: Caught KeyboardInterrupt, stopping network" tm_local = time.localtime() dt = time.gmtime() file_name = 'pings_{}_{}_{}-{}_{}_{}.csv'.format(dt.tm_year, dt.tm_mon, dt.tm_mday, tm_local.tm_hour, tm_local.tm_min, tm_local.tm_sec) f = open(file_name, 'w+') for item in ping_results: f.write(item) stop_net(controller, cname, switch) def step_wise_testing(h0, h1, ping_results): while True: if 'is_connected' not in quietRun('ovs-vsctl show'): wait_for_controller_connection() print "Press ENTER to execute Test\n" line = sys.stdin.readline() if line: info("Key Input Accepted\n") ping_test(h0, h1, ping_results) def continuous_testing(h0, h1, ping_results): while True: if 'is_connected' not in quietRun('ovs-vsctl show'): wait_for_controller_connection() ping_test(h0, h1, ping_results) time.sleep(1) def ping_test(h0, h1, ping_results): info("*** Running test\n") ping_res = h0.cmdPrint('ping -c1 ' + h1.IP()) ping_res = pingparser.parse(ping_res) tm_local = time.localtime() ping_res['time'] = '{}:{}:{}'.format(tm_local.tm_hour, tm_local.tm_min, tm_local.tm_sec) val_string = ','.join(ping_res.itervalues()) ping_results.append(val_string + "\n") print ping_res info("*** Sleep\n") def wait_for_controller_connection(): info('*** Waiting for switch to connect to controller') while 'is_connected' not in quietRun('ovs-vsctl show'): time.sleep(1) info('.') info('Connected \n') if __name__ == '__main__': setLogLevel('info') info('*** Scratch network demo (kernel datapath)\n') Mininet.init() scratchNet()
import datetime from tkinter import font import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.dates as mpl_dates from mplfinance.original_flavor import candlestick_ohlc import pandas as pd def candlestick_plot(data): data_clean = {"Date": [], "Open": [], "High": [], "Low": [], "Close": []} for i in data: data_clean["Date"].append(datetime.datetime.fromtimestamp(i[0]/1000)) data_clean["Open"].append(float(i[1])) data_clean["High"].append(float(i[2])) data_clean["Low"].append(float(i[3])) data_clean["Close"].append(float(i[4])) data_clean = pd.DataFrame(data_clean) data_clean["Date"] = pd.to_datetime(data_clean["Date"]) data_clean["Date"] = data_clean["Date"].apply(mpl_dates.date2num) fig, ax = plt.subplots() candlestick_ohlc(ax, data_clean.values, width = 0.2, colorup = "blue", colordown="red", alpha=0.8) ax.grid() ax.set_xlabel("Date") ax.set_ylabel("Price") fig.suptitle("Candlestick chart for OHCLV of the given symbol") ax.xaxis.set_major_formatter(mpl_dates.DateFormatter("%d-%m-%y")) fig.autofmt_xdate() fig.tight_layout() plt.show()
''' Descripttion: version: Author: zpliu Date: 2021-07-01 11:18:14 LastEditors: zpliu LastEditTime: 2021-07-01 11:18:16 @param: '''
from ascntr.cli import cli def test_simple_call(cli_runner, oracle_dsn, target_dsn): pass
import torch import src MAX_TRIES = 100 EPS = 1e-8 def lipschitz_max_grad(net, X_observe, X_target, Y_target, k=1): ''' Description: Penalizes the model if it does not have a K-Lipschitz maximum gradient-norm for any interpolant between samples from the target and observed distributions. Note for multidimensional inputs, K-Lipschitz quality is: ||f(x1) - f(x2)|| <= K*||x1 - x2|| Input: net - torch.nn.Module, the training model. X_observe - torch Tensor of size (N, D), samples from the observed distribution. X_target - torch Tensor of size (M, D), samples from the target distribution. Y_target - torch Tensor of size (M, T), output for X_target. k - float, target Lipschitz constant. Output: loss - torch Tensor of shape (0), loss value from which backpropogation should begin. ''' device = X_observe.device X_observe = X_observe.cpu() with torch.no_grad(): X_choice, Y_choice = _rand_diff_choice(X_observe, X_target, Y_target) X_interp = _rand_blend(X_observe, X_choice) Y_interp = net(X_interp.to(device)) grad = torch.autograd.grad( [Y_interp.mean()], net.parameters(), create_graph=True, only_inputs=True )[0] return ((k-grad.norm(p=2))**2).mean() # === PRIVATE === def _rand_blend(X1, X2): assert X1.size() == X2.size() alpha = torch.rand_like(X1) * (1-EPS) return alpha*X1 + (1-alpha)*X2 def _rand_diff_choice(X_observe, X_target, Y_target): N = X_target.size(0) M = X_observe.size(0) assert N >= M I = src.tensortools.rand_indices(N)[:M] X_choice = X_target[I].clone() Y_choice = Y_target[I].clone() too_close = _check_too_close(X_observe, X_choice) for i in range(MAX_TRIES): m = too_close.long().sum().item() if m == 0: break I = src.tensortools.rand_indices(N)[:m] X_choice[too_close] = X_target[I].clone() Y_choice[too_close] = Y_target[I].clone() too_close = _check_too_close(X_observe, X_choice) assert i < MAX_TRIES # ERROR: No close matches were found! return X_choice, Y_choice def _check_too_close(X1, X2): N = X1.size(0) return (X1.view(N, -1) - X2.view(N, -1)).norm(p=2, dim=1) < EPS
from django.db import models class Instances(models.Model): channelId = models.UUIDField channelName = models.TextField() def __str__(self): return "%s" % (self.channelId)
import numpy as np class NotInVocabularyError(Exception): """Auxillary class.""" pass class GloVeDataIterator(): """ Args: get_text_iterator: Callable that returns an iterator that yields text, as a list of words (strings). window_size: Positive integer. min_word_count: Non-negative integer. """ def __init__(self, get_text_iterator, window_size, min_word_count=6): self.get_text_iterator = get_text_iterator self.window_size = window_size self.min_word_count = min_word_count # Get vocabulary first, and then the co-occurance counts self._vocab = self._get_vocabulary() self._X = self._get_cooccurance_counts() self.vocab_size = len(self._vocab) def _get_vocabulary(self): """Returns a dict mapping from word (string) to its ID (as integer) in vocabulary.""" word_counts = {} for text in self.get_text_iterator(): for word in text: try: word_counts[word] += 1 except KeyError: word_counts[word] = 1 word_counts = [(w, c) for w, c in word_counts.items() if c >= self.min_word_count] word_counts = sorted(word_counts, key=lambda _: _[1], reverse=True) vocab = {w: i for i, (w, c) in enumerate(word_counts)} return vocab def _get_cooccurance_counts(self): r"""Returns a dict mapping from word-word ID pair :math:`(i, j)` to its co-occurance counts :math:`X_ij`.""" # Stats the word-word co-occurance counts X = {} # initialize. def count_in_text(text): window = [] # initialize. for word in text: window.append(word) if len(window) > 2 * self.window_size + 1: window = window[1:] for other_word in window[:-1]: try: ij = (self.get_word_id(word), self.get_word_id(other_word)) try: X[ij] += 1 except KeyError: X[ij] = 1 except NotInVocabularyError: pass for text in self.get_text_iterator(): count_in_text(text) return X def get_word_id(self, word): """Returns the ID of the `word` in the vocabulary. Args: word: String. Returns: Non-negative integer in the range [0, self.vocab_size). Raise: NotInVocabularyError. """ try: return self._vocab[word] except KeyError: raise NotInVocabularyError def X(self, i, j): """Returns the word-word co-occurance counts of the i-th and the j-th words in the vocabulary. Args: i: Non-negative integer in the range [0, self.vocab_size). j: Non-negative integer in the range [0, self.vocab_size). Returns: Non-negative integer. """ assert i < self.vocab_size and j < self.vocab_size try: return self._X[(i, j)] except KeyError: return 0 def __iter__(self): """ Yields: Numpy array with shape `[None, 3]` and int-dtype, where the first column is for `i`, the second for `j` and the final one for `X_ij`. """ while True: i, j = np.random.randint(0, self.vocab_size - 1, size=[2]) yield np.array([i, j, self.X(i, j)]) if __name__ == '__main__': """Test""" import os from gensim.test.utils import datapath from gensim.corpora import WikiCorpus # Get file path script_path = os.path.abspath(__file__) data_dir = os.path.join(script_path, '../../../dat') file_name = 'enwiki-latest-pages-articles1.xml-p10p30302.bz2' file_path = os.path.join(data_dir, file_name) wiki_corpus = WikiCorpus(datapath(file_path)) def get_text_iterator(corpus=wiki_corpus): return corpus.get_texts() glove_data_iter = GloVeDataIterator(get_text_iterator, window_size=2) # Display results print('{} words in vocabulary.'.format(glove_data_iter.vocab_size)) non_vanishing_counts = len( [v for k, v in glove_data_iter._X.items() if v > 0]) print('{} non-vanishing counts in the word-word co-occurance counts.' .format(non_vanishing_counts))
""" rasters.py includes code to work with raster datasets, particularly to sample raster using a PrmsDiscretization object and then use it as input data """ import numpy as np class Rasters(object): """ Raster object which allows the user to snap a raster to a grid. Parameters ---------- raster : osgeo.gdal.Dataset object """ def __init__(self, raster): self.raster = raster self._band_data = None self._xpoints = None self._ypoints = None self._xypoints = None @property def extent(self): """ Returns ------- (xmin, xmax, ymin, ymax) """ return ( self.raster.bounds.left, self.raster.bounds.right, self.raster.bounds.bottom, self.raster.bounds.top, ) @property def xpoints(self): """ Returns ------- Cell centered x points for raster values """ if self._band_data is not None: if self._xpoints is None: xmin, xmax = self.extent[0:2] ynum, xnum = self._band_data.shape t = np.linspace(xmin, xmax, xnum) self._xpoints = np.tile(t, (ynum, 1)) return self._xpoints @property def ypoints(self): """ Returns ------- Cell centered y points for raster values """ if self._band_data is not None: if self._ypoints is None: ymin, ymax = self.extent[2:4] ynum, xnum = self._band_data.shape t = np.linspace(ymin, ymax, ynum) self._ypoints = np.tile(t, (xnum, 1)).T return self._ypoints @property def xypoints(self): """ Returns ------- np.ndarray cell centered x, y points for raster values """ if self._xypoints is None: if self.xpoints is None or self.ypoints is None: return self._xypoints = np.array([self.xpoints, self.ypoints]) return self._xypoints @property def band_array(self): """ Returns ------- np.ndarray of the raster band """ if self._band_data is not None: nodata = self.raster.nodata self._band_data[self._band_data == nodata] = np.nan return self._band_data def sample_discretization(self, prms_discretizaiton): """ Method to sample the raster using the prms_discretization object cell centers Parameters ---------- prms_discretizaiton : PrmsDiscretization object Returns ------- np.ndarray """ xy = list( zip( prms_discretizaiton.x_hru_centers, prms_discretizaiton.y_hru_centers, ) ) temp = np.array(list(self.raster.sample(xy))).flatten() temp[temp == self.raster.nodata] = np.nan return temp def set_raster_band(self, band): """ Method to use GDAL to set the raster band for visualization Parameters ---------- band : int raster band number """ self._band_data = self.raster.read(band) @staticmethod def load(name): """ Parameters ---------- name : raster file name Returns ------- Rasters object """ import rasterio raster = rasterio.open(name) return Rasters(raster)
expected_output = { "services-accounting-information": { "flow-aggregate-template-detail": { "flow-aggregate-template-detail-ipv4": { "detail-entry": [{ "byte-count": "184", "input-snmp-interface-index": "1014", "mpls-label-1": "299792", "mpls-label-2": "16", "mpls-label-3": "0", "output-snmp-interface-index": "624", "packet-count": "2" }] } } } }
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the LICENSE file for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class Pennant(MakefilePackage): """PENNANT is an unstructured mesh physics mini-app designed for advanced architecture research. It contains mesh data structures and a few physics algorithms adapted from the LANL rad-hydro code FLAG, and gives a sample of the typical memory access patterns of FLAG. """ homepage = "https://github.com/lanl/PENNANT" url = "https://github.com/lanl/PENNANT/archive/pennant_v0.9.tar.gz" tags = ['proxy-app'] version('0.9', '4f21ba3836b2721436277308c2e33f45') version('0.8', 'a1afff4914fef8140c3024a02d7c993c') version('0.7', 'd642a030d5388f65f799504803794a4e') version('0.6', '8ab2d4b47ec9870643bfe6f262cd47a4') version('0.5', '534547878c698b9926e2886c74e10831') version('0.4', '0f67d8da0a92bd42d92a4823d3e4dbe1') variant('mpi', default=True, description='Build with MPI support') variant('openmp', default=True, description='Build with OpenMP support') variant('debug', default=False, description='Enable debug') depends_on('mpi', when='+mpi') def edit(self, spec, prefix): makefile = FileFilter('Makefile') debug = '-g' opt = '-O3' if self.compiler.name == 'intel': opt += ' -fast -fno-alias' if self.compiler.name == 'pgi': opt += ' -fastsse' makefile.filter( 'CXXFLAGS_DEBUG .*', 'CXXFLAGS_DEBUG := {0}'.format(debug)) makefile.filter( 'CXXFLAGS_OPT .*', 'CXXFLAGS_OPT := {0}'.format(opt)) makefile.filter( 'CXXFLAGS_OPENMP .*', 'CXXFLAGS_OPENMP := {0}'.format(self.compiler.openmp_flag)) if '+mpi' in spec: makefile.filter( 'CXX .*', 'CXX := {0}'.format(spec['mpi'].mpicxx)) else: makefile.filter('-DUSE_MPI', '#') makefile.filter('CXX .*', 'CXX := c++') if '+openmp' not in spec: makefile.filter('.*CXXFLAGS_OPENMP.*', '#') if '+debug' in spec: makefile.filter( '.*(CXXFLAGS_OPT).*', 'CXXFLAGS := $(CXXFLAGS_DEBUG)') def install(self, spec, prefix): def install_dir(dirname): install_tree(dirname, join_path(prefix, dirname)) mkdirp(prefix.bin) install('build/pennant', prefix.bin) install_dir('doc') install_dir('test') install('LICENSE', prefix) install('README', prefix)
import os from django.conf import settings from django.core.management import BaseCommand from django_test_tools.generators.crud_generator import GenericTemplateWriter from django_test_tools.generators.model_generator import FactoryBoyGenerator from ...app_manager import DjangoAppManager PRINT_IMPORTS = """ import string from random import randint from pytz import timezone from django.conf import settings from factory import Iterator from factory import LazyAttribute from factory import SubFactory from factory import lazy_attribute from factory.django import DjangoModelFactory, FileField from factory.fuzzy import FuzzyText, FuzzyInteger from faker import Factory as FakerFactory faker = FakerFactory.create() """ PRINT_FACTORY_CLASS = """ class {0}Factory(DjangoModelFactory): class Meta: model = {0} """ PRINT_CHARFIELD = """ {} = LazyAttribute(lambda x: faker.text(max_nb_chars={}))""" PRINT_CHARFIELD_NUM = """ {} = LazyAttribute(lambda x: FuzzyText(length={}, chars=string.digits).fuzz())""" PRINT_CHARFIELD_LETTERS = """ {} = LazyAttribute(lambda x: FuzzyText(length={}, chars=string.ascii_letters).fuzz())""" PRINT_CHARFIELD_CHOICES = """ {} = Iterator({}.{}, getter=lambda x: x[0])""" PRINT_DATETIMEFIELD = """ {} = LazyAttribute(lambda x: faker.date_time_between(start_date="-1y", end_date="now", tzinfo=timezone(settings.TIME_ZONE)))""" PRINT_FOREIGNKEY = """ {} = SubFactory({}Factory){}""" PRINT_FILEFIELD = """ {} = FileField(filename='{}.{}')""" PRINT_BOOLEANFIELD = """ {} = Iterator([True, False])""" PRINT_INTEGERFIELD = """ {} = LazyAttribute(lambda o: randint(1, 100))""" PRINT_IPADDRESSFIELD = """ {} = LazyAttribute(lambda o: faker.ipv4(network=False))""" PRINT_TEXTFIELD = """ {} = LazyAttribute(lambda x: faker.paragraph(nb_sentences=3, variable_nb_sentences=True))""" PRINT_DECIMALFIELD = """ {} = LazyAttribute(lambda x: faker.pydecimal(left_digits={}, right_digits={}, positive=True))""" PRINT_UNSUPPORTED_FIELD = """ #{} = {} We do not support this field type""" PRINT_COUNTRYFIELD = """ {} = Iterator(['PA', 'US'])""" # noinspection PyProtectedMember class ModelFactoryGenerator(object): def __init__(self, model): self.model = model def _generate(self): factory_class_content = list() factory_class_content.append({'print': PRINT_FACTORY_CLASS, 'args': [self.model.__name__]}) for field in self.model._meta.fields: field_type = type(field).__name__ field_data = dict() if field_type in ['AutoField', 'AutoCreatedField', 'AutoLastModifiedField']: pass elif field_type in ['DateTimeField', 'DateField']: field_data = {'print': PRINT_DATETIMEFIELD, 'args': [field.name]} factory_class_content.append(field_data) elif field_type == 'CharField': field_data = self._get_charfield(field) factory_class_content.append(field_data) elif field_type == 'ForeignKey': related_model = field.remote_field.model.__name__ field_data = {'print': PRINT_FOREIGNKEY, 'args': [field.name, related_model, '']} factory_class_content.append(field_data) elif field_type == 'BooleanField': field_data = {'print': PRINT_BOOLEANFIELD, 'args': [field.name]} factory_class_content.append(field_data) elif field_type == 'TextField': field_data = {'print': PRINT_TEXTFIELD, 'args': [field.name]} factory_class_content.append(field_data) elif field_type == 'IntegerField': field_data = {'print': PRINT_INTEGERFIELD, 'args': [field.name]} factory_class_content.append(field_data) elif field_type == 'FileField': field_data = {'print': PRINT_FILEFIELD, 'args': [field.name, field.name, 'xlsx']} factory_class_content.append(field_data) elif field_type == 'DecimalField' or field_type == 'MoneyField': max_left = field.max_digits - field.decimal_places max_right = field.decimal_places field_data = {'print': PRINT_DECIMALFIELD, 'args': [field.name, max_left, max_right]} factory_class_content.append(field_data) elif field_type == 'GenericIPAddressField': field_data = {'print': PRINT_IPADDRESSFIELD, 'args': [field.name]} factory_class_content.append(field_data) elif field_type == 'CountryField': field_data = {'print': PRINT_COUNTRYFIELD, 'args': [field.name]} factory_class_content.append(field_data) else: field_data = {'print': PRINT_UNSUPPORTED_FIELD, 'args': [field.name, field_type]} factory_class_content.append(field_data) return factory_class_content def _get_charfield(self, field): field_data = dict() if field.choices is not None and len(field.choices) > 0: field_data = {'print': PRINT_CHARFIELD_CHOICES, 'args': [field.name, self.model.__name__, 'CHOICES']} return field_data else: if self._is_number(field.name): field_data = {'print': PRINT_CHARFIELD_NUM, 'args': [field.name, field.max_length]} return field_data else: if field.max_length >= 5: field_data = {'print': PRINT_CHARFIELD, 'args': [field.name, field.max_length]} else: field_data = {'print': PRINT_CHARFIELD_LETTERS, 'args': [field.name, field.max_length]} return field_data def _is_number(self, field_name): num_vals = ['id', 'num'] for nv in num_vals: if nv in field_name.lower(): return True return False def __str__(self): printable = list() for print_data in self._generate(): try: printable.append(print_data['print'].format(*print_data['args'])) except IndexError as e: print('-' * 74) print('{print} {args}'.format(**print_data)) raise e return '\n'.join(printable) class Command(BaseCommand): """ $ python manage.py generate_factories project.app """ def add_arguments(self, parser): parser.add_argument('app_name') # parser.add_argument("-l", "--list", # action='store_true', # dest="list", # help="List employees", # ) # parser.add_argument("-a", "--assign", # action='store_true', # dest="assign", # help="Create unit assignments", # ) # # parser.add_argument("--filename", dest="filename", help="Output filename", default=None, ) # parser.add_argument("--start-date", # dest="start_date", # help="Start date for the assignment", # default=None, # ) # parser.add_argument("--fiscal-year", # dest="fiscal_year", # help="Fiscal year for assignments", # default=None, # ) # parser.add_argument("-u", "--username", # dest="usernames", # help="LDAP usernames for employees", # nargs='+', # ) def handle(self, *args, **options): app_name = options.get('app_name') if options.get('filename'): filename = os.path.join(settings.TEST_OUTPUT_PATH, options.get('filename')) generator = FactoryBoyGenerator() factory_data = generator.create_template_data(app_name) template_name = 'factories.py.j2' writer = GenericTemplateWriter(template_name) writer.write(factory_data, filename) else: app_manager = DjangoAppManager() app = app_manager.get_app(app_name) if not app: self.stderr.write('This command requires an existing app name as ' 'argument') self.stderr.write('Available apps:') for app in sorted(app_manager.installed_apps): self.stderr.write(' %s' % app) else: self.stdout.write(PRINT_IMPORTS) for model in app.get_models(): model_fact = ModelFactoryGenerator(model) self.stdout.write(str(model_fact))
import os import numpy as np #---# # import cv2 # from scipy import ndimage import imageio #---# import matplotlib.pyplot as plt # data_path = '/opt/carnd_p3/data/' # On GPU-enabled workspace data_path = '~/opt/carnd_p3/data/' # On local machine # Expand the path data_path = os.path.expanduser(data_path) # The image to check # sample = "center_2016_12_01_13_42_18_344.jpg" # sample = "right_2016_12_01_13_42_18_344.jpg" sample = "left_2016_12_01_13_42_18_344.jpg" current_path_center = data_path + '/IMG/' + sample.split('/')[-1] image_ = imageio.imread(current_path_center) image_crop = image_[50:-20, :] image_flip = np.fliplr(image_crop) # plot #--------------------------# plt.figure() plt.imshow(image_) # crop plt.figure() plt.imshow(image_crop) # crop, flip plt.figure() plt.imshow(image_flip) # Show plt.show()
""" Команда, которая показывает, что бот работает """ from time import time import json import platform import psutil from random import randint from datetime import datetime import sys from vkbottle.bot import Blueprint, Message from utils.edit_msg import edit_msg from filters import ForEveryoneRule bp = Blueprint("Ping-pong command") quote = ['Я не волшебник, я всего лишь учусь','Это не баг — это незадокументированная фича.','Удаленный код — отлаженный код.','Чтобы понять рекурсию, нужно сперва понять рекурсию.', 'Самая сложная часть в дизайне… держаться подальше от фич.', 'Если сразу не получилось хорошо, назовите это версией 1.0.', 'format c: - лучший антивирус', 'Куплюклавиатурусработающимпробелом', 'Чудеса случаются.', 'Предположим, что у тебя есть 1000 рублей... Ну, для круглого счета возьмем 1024...', '99% ошибок компьютера сидит в полуметре от монитора.', 'Невозможно победить того, кто не сдается', 'Моё "люблю" очень дорогого стоит. Говорю это редко и мало кому.', 'Миллионы людей не заменят тебя. Никогда.', 'Ничего в этой жизни не дается легко'] text = quote[randint(0, (len(quote)-1))] datanow = datetime.now() @bp.on.message(ForEveryoneRule("ping"), text="<prefix>пинг") async def ping_handler(message: Message): """ > !пинг > 🏓 | Понг! > ⏱ | Ответ за 0.05 секунд (если включен режим debug) > 🏓 | Понг! > ⏱ | Ответ за 0.05 секунд (debug) > 💻 | ОС: Microsoft Windows 11 > 🔧 | Процессор: 21.2% > ⚙ | Работает 97 часов (4 дней) > ❤ | [id322615766|VK+] """ start = time() with open("config.json", "r", encoding="utf-8") as file: content = json.load(file) if content["debug"] is not True: end = time() result = round(end - start, 4) await edit_msg( bp.api, message, f"&#127955; | Понг!\n&#9201; | Ответ за {result} секунд (debug-Off)\n" f"&#128343; | Время: %c\n" f"&#128187; | ОС: {system} \n" f"&#128295; | Процессор: {cpu}\n" f"&#9881; | Бот работает {work_hours} часов, это({work_days} дней)\n" f"&#128214; | Цитата дня: random.choiceпинг{quote}\n" f"&#10084; | [vk.com/public210991551|Создатель]\n" f"&#128100; | [id314119670|Кодер/Тех-Админ]" ) else: try: cpu = str(psutil.cpu_percent()) + "%" except PermissionError: cpu = "не известно (android?)" system_name = platform.system() """ Если бот запущен на ОС Windows 11, то platform.release() вернет 10, что бы этого избежать, можно сделать проверку на версию системы: """ if system_name == "Windows": if int(platform.version().split(".")[2]) > 20000: system_version = "11" else: system_version = platform.release() else: system_version = platform.release() system = system_name + " " + system_version with open("time_started.txt", "r", encoding="utf-8") as file: work_hours = round((round(time()) - int(file.read())) / 3600, 4) work_days = work_hours // 24 end = time() result = round(end - start, 4) await edit_msg( bp.api, message, f"&#127955; | Понг!\n&#9201; | Ответ за {result} секунд (debug-Off)\n" f"&#128343; | Время: {datanow} \n" f"&#128187; | ОС: {system} \n" f"&#128295; | Процессор: {cpu}\n" f"&#9881; | Бот работает {work_hours} часов, это({work_days} дней)\n" f"&#128214; | Цитата запуска: {text}\n \n" f"&#10084; | [vk.com/public210991551|Создатель]\n" f"&#128100; | [id314119670|Кодер/Тех-Админ]" )
#!/usr/bin/python print("Hello World") print("Added line from src2") print("Added line from src1") import bar import baz
# -*- coding: utf-8 -*- # @Author: Muhammad Alfin N # @Date: 2021-03-30 20:13:14 # @Last Modified by: Muhammad Alfin N # @Last Modified time: 2021-04-07 18:38:41 import numpy as np import imageio import random import torch import PIL import os import cv2 import time import pyrebase from models import get_instrumented_model from decomposition import get_or_compute from ipywidgets import fixed,Layout from skimage import img_as_ubyte from tqdm import tqdm,trange from config import Config from PIL import Image torch.autograd.set_grad_enabled(False) torch.backends.cudnn.benchmark = True class Model: def __init__(self, name, num_components=60): if name == 'stroller': model_class = 'stroller_193' if name == 'pushchair': model_class = 'pushchair_572' if name == 'childseat': model_class = 'childseat_719' self.name = name self.config = Config( model='StyleGAN2', layer='style', output_class=model_class, components=num_components, use_w=True, batch_size=5000 ) self.model = self.init_model() self.storage = self.init_storage() def init_storage(self): config = { "apiKey": "AIzaSyCP9sj_xIogRC_5EowwMwQIh9MEvLlCqrk", "authDomain": "niomata-745ae.firebaseapp.com", "projectId": "niomata-745ae", "storageBucket": "niomata-745ae.appspot.com", "messagingSenderId": "933534202946", "appId": "1:933534202946:web:8c1d2b2b94b772533a81db", "measurementId": "G-MZCLX7LM9G", "databaseURL":"https://niomata-745ae-default-rtdb.firebaseio.com/" } firebase = pyrebase.initialize_app(config) return firebase.storage() def init_model(self): inst = get_instrumented_model(self.config.model, self.config.output_class, self.config.layer, torch.device('cuda'), use_w=self.config.use_w) model = inst.model return model def normalize_z(self,z): torch.autograd.set_grad_enabled(False) torch.backends.cudnn.benchmark = True if self.name == 'stroller': good_seed = [2,3,5,6,7,8,12,13,15,19,20,22,30,39,41,42,43,51,57,63,68,72,91,99,102,144,155,158,167,178,187,239,240,243,297,298,322,323,333,334,335,344,370,373,374,376,384,423,425,436,445,447,472,475,484,499,500,527,576,581,582,595,631,671,689,690,698,708,838,895] if self.name == 'pushchair': good_seed = [2,3,4,5,7,8,9,10,11,12,13,20,21,25,31,50,59,62,63,64,107,108,120,129,134,155,191,217,224,229,230,232,242,243,244,247,250,291,294,326,341,366,369,370,373,385,391,392,393,398,417,425,440,451,459,462,472,494,501,515,522,523,534,525,545,553,559] if self.name == 'childseat': good_seed = [2,3,27,38,45,48,49,68,78,82,86,90,91,96,110,118,149,154,155,158,159,160,162,167,201,202,206,290,294,295,296,297,302,309,350,351,380,412,437,449,450,451,452,468,500,503,508,519,520,560,561,565,641,643,684,687,715,777,778,813,878,885,889,915,926,927,955,937,972,975,988,993,994] base = self.model.sample_latent(1, seed=random.choice(good_seed)).cpu().numpy() z = base + (z - base)*0.5 return z def generate_from_z(self,z,truncation=0.5,resize=(500,500),normalize=True): self.model.truncation = truncation z = self.normalize_z(z) if normalize else z img = self.model.sample_np(z) img = Image.fromarray((img * 255).astype(np.uint8)).resize(resize,Image.LANCZOS) return img def generate_image(self,seed): torch.autograd.set_grad_enabled(False) torch.backends.cudnn.benchmark = True z = self.model.sample_latent(1, seed=seed).cpu().numpy() return self.generate_from_z(z) def generate_z(self,seed): torch.autograd.set_grad_enabled(False) torch.backends.cudnn.benchmark = True return self.model.sample_latent(1, seed=seed).cpu().numpy() def generate_transversal(self,output_dir,combinations,num): torch.autograd.set_grad_enabled(False) torch.backends.cudnn.benchmark = True seeds = [] for i in num: z = self.model.sample_latent(1, seed=i).cpu().numpy() z = self.normalize_z(z) seeds.append(z) for combi in combinations: seed_1 = seeds[combi[0]-1] seed_2 = seeds[combi[1]-1] step = 5 imgs = self.transverse_image(z_1=seed_1, z_2=seed_2, step=step) seed_1_path = os.path.join(output_dir,self.name,'{}_{}.npy'.format(self.name,combi[0])).replace(os.sep,'/') seed_2_path = os.path.join(output_dir,self.name,'{}_{}.npy'.format(self.name,combi[1])).replace(os.sep,'/') np.save(os.path.splitext(seed_1_path)[0],seed_1) # self.storage.child(seed_1_path).put(seed_1_path) np.save(os.path.splitext(seed_2_path)[0],seed_2) # self.storage.child(seed_2_path).put(seed_2_path) for step,img in enumerate(imgs): if step == 0: name = '{}_{}.jpg'.format(self.name,combi[0],step) elif step == (len(imgs)-1): name = '{}_{}.jpg'.format(self.name,combi[1],step) else: name = '{}_{}_to_{}_{}.jpg'.format(self.name,combi[0],combi[1],step) img_path = os.path.join(output_dir,self.name,name).replace(os.sep,'/') img.save(img_path) self.storage.child(img_path).put(img_path) def transverse_image(self,z_1,z_2,step=5): zs = [] for i in range(step): z = z_1 + 1/step*i*(z_2-z_1) zs.append(z) return [self.generate_from_z(x,normalize=False) for x in zs] def generate_style(self,z,data,output_dir): id_style = data['name'] step = int(data['step']) scale = int(data['scale']) ls = int(data['layer_start']) le = int(data['layer_end']) rule = np.load(data['path']) truncation = float(data['truncation']) index = 0 output_dir = os.path.join(output_dir,self.name,id_style) if not os.path.isdir(output_dir): os.makedirs(output_dir) for i in range(-step,step): index = index + 1 z_styles = self.apply_rule(z,rule,i,scale,ls,le) img = self.generate_from_z(z = z_styles, truncation=truncation, normalize = False) name = '{}_step_{}.jpg'.format(id_style,index) save_path = os.path.join(output_dir,name).replace(os.sep,'/') img.save(save_path) np.save(os.path.splitext(save_path)[0],z_styles) self.storage.child(save_path).put(save_path) # self.storage.child(os.path.splitext(save_path)[0]+'.npy').put(os.path.splitext(save_path)[0]+'.npy') def apply_rule(self,z,rule,step,scale,ls,le): z = [z]*self.model.get_max_latents() for l in range(ls, le): z[l] = z[l] + rule * step * scale return z
from kangrouter import KangRouterClient import time import os apiKey = os.environ["API_KEY"] licenseId = os.environ["LICENSE_ID"] problem = { "nbResources": 3, "jobs": [ { "jobId": "Job01", "origLat": "38.674921", "origLon": "-9.175401", "destLat": "38.716860", "destLon": "-9.162417", "minStartTime": "13:00", "maxStartTime": "13:15", "minEndTime": "13:55", "maxEndTime": "13:55", "pickupDuration": 10, "deliveryDuration": 10, "cargoId": "Fernando Pessoa", "consumptions": [ 0, 1, 0 ] } ], "vehicles": [ { "vehicleId": "12-AS-46", "depotLat": "38.806842", "depotLon": "-9.382556", "minStartTime": "07:00", "maxEndTime": "22:00", "maxWorkDuration": 540, "capacities": [ 2, 3, 0 ], """ "breaks": [ { "breakId": "Lunch", "minStartTime": "12:00", "maxEndTime": "14:00", "duration": 60 } ], """ "overspeed": 1.25 } ] } def test(): api = KangRouterClient(apiKey,licenseId) solverId = api.create(problem) status = api.getStatus(solverId) for i in range(10): time.sleep(5) status = api.getStatus(solverId) if status["execStatus"]!="pending": break assert status["execStatus"]=="completed" assert status["schedCost"]==70 solution = api.getSolution(solverId) assert solution["type"]=="total" assert len(solution["jobsScheduled"])==1
# -*- coding: utf-8 -*- import urlparse from nose.tools import * # flake8: noqa from tests.base import ApiTestCase from tests.factories import AuthUserFactory from api.base.settings.defaults import API_BASE class TestUsers(ApiTestCase): def setUp(self): super(TestUsers, self).setUp() self.user_one = AuthUserFactory() self.user_two = AuthUserFactory() def tearDown(self): super(TestUsers, self).tearDown() def test_returns_200(self): res = self.app.get('/{}users/'.format(API_BASE)) assert_equal(res.status_code, 200) assert_equal(res.content_type, 'application/vnd.api+json') def test_find_user_in_users(self): url = "/{}users/".format(API_BASE) res = self.app.get(url) user_son = res.json['data'] ids = [each['id'] for each in user_son] assert_in(self.user_two._id, ids) def test_all_users_in_users(self): url = "/{}users/".format(API_BASE) res = self.app.get(url) user_son = res.json['data'] ids = [each['id'] for each in user_son] assert_in(self.user_one._id, ids) assert_in(self.user_two._id, ids) def test_find_multiple_in_users(self): url = "/{}users/?filter[full_name]=fred".format(API_BASE) res = self.app.get(url) user_json = res.json['data'] ids = [each['id'] for each in user_json] assert_in(self.user_one._id, ids) assert_in(self.user_two._id, ids) def test_find_single_user_in_users(self): url = "/{}users/?filter[full_name]=my".format(API_BASE) self.user_one.fullname = 'My Mom' self.user_one.save() res = self.app.get(url) user_json = res.json['data'] ids = [each['id'] for each in user_json] assert_in(self.user_one._id, ids) assert_not_in(self.user_two._id, ids) def test_find_no_user_in_users(self): url = "/{}users/?filter[full_name]=NotMyMom".format(API_BASE) res = self.app.get(url) user_json = res.json['data'] ids = [each['id'] for each in user_json] assert_not_in(self.user_one._id, ids) assert_not_in(self.user_two._id, ids) def test_users_list_takes_profile_image_size_param(self): size = 42 url = "/{}users/?profile_image_size={}".format(API_BASE, size) res = self.app.get(url) user_json = res.json['data'] for user in user_json: profile_image_url = user['links']['profile_image'] query_dict = urlparse.parse_qs(urlparse.urlparse(profile_image_url).query) assert_equal(int(query_dict.get('s')[0]), size)
#!/bin/python3 import math import os import random import re import sys,array # Complete the countApplesAndOranges function below. def countApplesAndOranges(s, t, a, b, apples, oranges): k1=s-a k2=b-t c1=0 c2=0 m=apples.__len__() n=oranges.__len__() for i in range(m): if(apples[i]>=0): if(apples[i]>=k1 and apples[i]<=(t-a)): c1=c1+1 for j in range(n): if(oranges[j]<=0): v=abs(oranges[j]) if(v>=k2 and v<=(b-s)): c2=c2+1 print(c1) print(c2) if __name__ == '__main__': st = input().split() s = int(st[0]) t = int(st[1]) ab = input().split() a = int(ab[0]) b = int(ab[1]) mn = input().split() m = int(mn[0]) n = int(mn[1]) apples = list(map(int, input().rstrip().split())) oranges = list(map(int, input().rstrip().split())) countApplesAndOranges(s, t, a, b, apples, oranges)
import inspect import io import multiprocessing import os import socket import sys import tempfile import time import unittest import requests import uvicorn from dijkstar.graph import Graph from dijkstar.server import utils from dijkstar.server.client import Client from dijkstar.server.conf import settings class TestUtils(unittest.TestCase): def test_import_object(self): obj = utils.import_object("tests.test_server:TestUtils") self.assertIs(obj, self.__class__) def test_import_object_none(self): obj = utils.import_object(None) self.assertIsNone(obj) def test_load_graph(self): with tempfile.NamedTemporaryFile(suffix=".marshal") as file: graph = Graph() graph.add_edge(1, 2) graph.marshal(file) file.flush() with utils.modified_settings(graph_file=file.name): loaded_graph = utils.load_graph(settings) self.assertEqual(loaded_graph, graph) def test_load_no_graph(self): graph = utils.load_graph(settings) self.assertEqual(graph, Graph()) def test_modified_settings(self): self.assertIsNone(settings.graph_file) with utils.modified_settings(graph_file="test_graph_file.marshal"): self.assertEqual(settings.graph_file, "test_graph_file.marshal") self.assertIsNone(settings.graph_file) class TestClient(unittest.TestCase): @classmethod def setUpClass(cls): def get_free_port(): sock = socket.socket() sock.bind(("", 0)) port = sock.getsockname()[1] sock.close() return port # 1 - - - → 2 # | | # | | # ↓ ↓ # 3 - - - → 4 graph_file = tempfile.NamedTemporaryFile(delete=False, suffix=".marshal") graph = Graph() graph.add_edge(1, 2, 1) graph.add_edge(1, 3, 1) graph.add_edge(2, 4, 1) graph.add_edge(3, 4, 1) graph.marshal(graph_file) graph_file.flush() graph_file.close() cls.host = "127.0.0.1" cls.port = get_free_port() cls.base_url = f"http://{cls.host}:{cls.port}" cls.graph = graph cls.graph_file = graph_file.name cls.server_process = multiprocessing.Process( target=uvicorn.run, args=("dijkstar.server.app:app",), kwargs={ "host": cls.host, "port": cls.port, "log_level": "error", }, ) # XXX: This has to be set for Python 3.8 only (???) os.environ["GRAPH_FILE"] = graph_file.name with utils.modified_settings(graph_file=cls.graph_file): cls.server_process.start() attempts_left = 20 sleep_time = 0.1 total_seconds = int(round(attempts_left * sleep_time)) while attempts_left > 0: try: requests.get(cls.base_url) except requests.ConnectionError: attempts_left -= 1 if attempts_left > 0: time.sleep(sleep_time) else: print( f"WARNING: Failed to connect to server after {total_seconds} seconds", file=sys.stderr, ) for name in dir(cls): if name.startswith("test_"): attr = getattr(cls, name) if inspect.isfunction(attr): decorated = unittest.skip( "Could not connect to client" )(attr) setattr(cls, name, decorated) else: break @classmethod def tearDownClass(cls): cls.server_process.terminate() cls.server_process.join() os.remove(cls.graph_file) def setUp(self): self.client = self.make_client() def make_client(self, base_url=None): return Client(base_url or self.base_url) def test_routes(self): client = self.client self.assertEqual(len(client.routes), 6) self.assertIn("graph-info", client.routes) self.assertIn("get-node", client.routes) self.assertIn("get-edge", client.routes) self.assertIn("find-path", client.routes) def test_get_graph_info(self): client = self.client data = client.graph_info() self.assertIn("edge_count", data) self.assertIn("node_count", data) self.assertEqual(data["edge_count"], 4) self.assertEqual(data["node_count"], 4) def test_load_graph(self): client = self.client message = client.load_graph() self.assertEqual(message, f"Graph reloaded from {self.graph_file}") def test_load_graph_from_file(self): client = self.client message = client.load_graph(file_name=self.graph_file) self.assertEqual(message, f"Graph loaded from {self.graph_file}") def test_load_graph_from_data(self): client = self.client file = io.BytesIO() self.graph.marshal(file) file.seek(0) message = client.load_graph(graph_data=file.getvalue()) self.assertEqual(message, "Graph loaded from data") def test_reload_graph(self): client = self.client message = client.reload_graph() self.assertEqual(message, f"Graph reloaded from {self.graph_file}") def test_get_node(self): client = self.client data = client.get_node(1) self.assertEqual(data, self.graph[1]) def test_get_edge(self): client = self.client data = client.get_edge(1, 2) self.assertEqual(data, self.graph.get_edge(1, 2)) def test_find_path(self): client = self.client data = client.find_path(1, 4) self.assertIn("nodes", data) self.assertIn("edges", data) self.assertIn("costs", data) self.assertIn("total_cost", data) nodes = data["nodes"] edges = data["edges"] self.assertEqual(len(nodes), 3) self.assertEqual(len(edges), 2) self.assertEqual(nodes, [1, 2, 4]) self.assertEqual(edges, [1, 1]) def test_find_path_with_annex(self): client = self.client # Insert node between nodes 1 and 2 then find a path from that # node (-1) to node 4. data = client.find_path( -1, 4, annex_nodes=(1, 2), annex_edges=( (1, -1, 1.1), (-1, 2, 1.2), ), ) nodes = data["nodes"] edges = data["edges"] self.assertEqual(len(nodes), 3) self.assertEqual(len(edges), 2) self.assertEqual(nodes, [-1, 2, 4]) self.assertEqual(edges, [1.2, 1])
from .base import BaseEmbedding from .feature_embedding import FeatureEmbedding from .tabtransformer_embedding import TabTransformerEmbedding
# TODO: wird alle 30 minuten vom Main angekickt # imports from database import session, Strings, strings, String1, string1, String2, string2, String3, string3, Panels, panels import time # import quick2wire.i2c as i2c import serial_interface import threading class InputHandler(threading.Thread): def __init__(self): threading.Thread.__init__(self) # 3 seconds read timeout for now self.tty = serial_interface.SerialInterface(3, 0xdeadbeef) # Issue a call for faulty data after 10 samples; just for simulation purpose self.counter = 5 # function to write a database-item into the strings table def write_string_into_database(self, strnumber, strcurrent): newcurrent = Strings() newcurrent.stringnumber = strnumber newcurrent.stringcurrent = strcurrent newcurrent.timestamp = time.time() session.add(newcurrent) session.flush() # function to write a database-item into the panles table def write_panel_into_database(self, serialnumber, stringnumber, voltage): newvoltage = Panels() newvoltage.stringnumber = stringnumber newvoltage.serialnumber = serialnumber newvoltage.voltage = voltage newvoltage.timestamp = time.time() session.add(newvoltage) session.flush() #TODO: überprüfen ob sn in stringsx table schon vorhanden falls nicht reinschreiben # function to wirte a database item into the string1 table # function to wirte a database item into the string2 table def write_string2_into_database(self, serialnumber): newstringitem = String2() newstringitem.serialnumber = serialnumber session.add(newstringitem) session.flush() # function to wirte a database item into the string3 table def write_string3_into_database(self, serialnumber): newstringitem = String3() newstringitem.serialnumber = serialnumber session.add(newstringitem) session.flush() # # function to get the current-values of a string # def read_stringcurrents_i2c(self, stringnumber): # address_read = 0b01101001 # address_write = 0b01101000 # register = 0 # if stringnumber == 1: # register = 0b01100011 # elif stringnumber == 2: # register = 0b01100101 # elif stringnumber == 3: # register = 0b01100111 # with i2c.I2CMaster() as bus: # read_results = bus.transaction(i2c.writing_bytes(address_write, register), i2c.reading(address_read, 2)) # received_data = read_results[0][0] # # todo check crc # # todo split the currentvalue from the rest of the data to return it # return current # # # # function to get the current voltage of one module # def read_modulevoltage_i2c(self, stringnumber, serialnumber): # # TODO: register # register = 0 # address_read = 0 # address_write = 0 # if stringnumber == 1: # address_read = 0b10011011 # address_write = 0b10011010 # elif stringnumber == 2: # address_read = 0b10011001 # address_write = 0b10011000 # elif stringnumber == 3: # address_read = 0b10010011 # address_write = 0b10010010 # with i2c.I2CMaster() as bus: # read_results = bus.transaction(i2c.writing_bytes(address_write, register, bin(serialnumber)), i2c.reading(address_read, 2)) # received_data = read_results[0][0] # #todo check CRC # # todo split infos in SN and voltage # return (sn,voltage) # function to get the stringcurrents of all 3 strings and write them into the database def stringcurrents_request(self): stringnumbers = [1, 2, 3] for stringnumber in stringnumbers: current = read_stringcurrents_i2c(stringnumber) # TODO: current in richtige form bringen self.write_string_into_database(stringnumber, current) # function that compares the sringcurrents and sets a flag if the deviation is too high def string_compare(self): # creates a list with the latest stringcurrent values for the 3 strings # (inserts a zero if there is one a not existing string) stringnumbers = [1, 2, 3] latestlogs = [] for stringnumber in stringnumbers: results = session.query(Strings).filter(strings.c.stringnumber == stringnumber).all() if len(results) == 0: latestlogs.append(0) else: latestlogs.append(results[-1]) # calculates the average of the existing stringcurrents currents = [] # TODO: Abweichung definieren percentage_deviation = 30 for log in latestlogs: currents.append(log.stringcurrent) average = (sum(currents))/(sum(1 for e in currents if e)) # ignores the zero if there is one # sets the watch flag to all logs with a higher percentage_deviation than chosen for log in latestlogs: if (log.stringcurrent < average/100*(100-percentage_deviation)) | (log.stringcurrent > average/100*(100+percentage_deviation)): log.flag_watch = True session.flush() else: pass # function to get the voltages of all the modules in the system and writes them into the database def modulevoltage_request(self): strings = [] strings.append(session.query(String1).all()) strings.append(session.query(String2).all()) strings.append(session.query(String3).all()) # Only for simulation purposes if self.counter > 0: self.counter -= 1; else: self.counter = 5 for string_id, string in enumerate(strings): if string: for item in string: # TODO: change back to i2c; UART only for testing purposes # (sn, voltage) = read_modulevoltage_i2c(1, item.serialnumber) if self.counter > 0: self.tty.request_good_fake_data(item.serialnumber) else: self.tty.request_bad_fake_data(item.serialnumber) voltage = self.tty.wait_for_voltage(item.serialnumber) # TODO: voltage in richtiges format anpassen # TODO: timer auf antwort warten (wie realisieren) # if voltage == 0: #TODO: muss noch angepasst werden # # TODO: if keine antwort # historycheck = session.query(Panels).filter((panels.c.serialnumber == item.serialnumber) & (panels.c.timestamp > (time.time() - 24*60*60))).all() # if len(historycheck)==0: # # TODO: melden auslösen # pass #zu testzwecken - wieder rausnehmen # else: # pass # # TODO: else antwort kommt # else: self.write_panel_into_database(item.serialnumber, string_id + 1, voltage) latestlogs = [] values = [] for panel in string: result = session.query(Panels).filter(panels.c.serialnumber == panel.serialnumber).order_by(panels.c.timestamp.desc()).first() latestlogs.append(result) values.append(result.voltage) avg_value = sum(values) / len(values) for log in latestlogs: deviation = avg_value - log.voltage log.deviation = deviation # TODO: remove this ugly demo patch as it just instantly faults an isse when a module drops significantly (could be a 2sec shadow) if(deviation > 0.2 * avg_value): self.issue_fault(log.serialnumber) session.flush() def issue_fault(self, serial_number): print('FAULT DETECTED', serial_number) self.fault_callback(serial_number) def set_fault_callback(self, callback): self.fault_callback = callback def stop(self): self.running = False def run(self): self.running = True while self.running: self.modulevoltage_request() #Wait for 3 Secs, then issue new sample time.sleep(3) # TODO: main sequence: # stringcurrents_request() # string_compare() # input_handler.write_string1_into_database(0xdeadbeef) # input_handler.write_string1_into_database(0xcafebabe) # input_handler.write_string1_into_database(0xbadeaffe)
from .CountingGridModel import CountingGridModel from .CountingGridModelWithGPU import CountingGridModelWithGPU __all__ = ['CountingGridModel', 'CountingGridModelWithGPU']
import ijson import pickle import csv import os import sys import gc import time from numpy import random # Path to the 12gb arxiv dataset path_dataset = "..\data\dblp.v12.json" path_dataset_cities = "..\data\cities15000.txt" # Path were we will store the dataset as a python dict #path_pickled_dataset = "..\data\dblp.v12.small.pickle" path_csv_folder = "..\data\CSV" path_countries = "..\data\country.txt" cities_blacklist = ["university"] use_entire_dataset = False acceptance_rate = 0.02 def load_countries(): ''' Updates the city blacklist with all names of countries (and their parts) Returns code -> country dictionary ''' print("Loading countries dataset and updating blacklist") countries = [] code_to_country = {} country_to_code = {} with open(path_countries, encoding='utf-8', errors='ignore') as f: lines = f.readlines() for line in lines: split_line = line.split(" (") country = split_line[0] code = split_line[-1].split(")")[0] code_to_country[code] = country country_to_code[country] = code countries.append(country) for part_of_country_name in country.split(" "): if part_of_country_name == "": continue cities_blacklist.append(clean_string_cities(part_of_country_name)) return code_to_country, country_to_code def get_prefixes(): ''' Outputs and returns all prefixes in the data_set (except indexed_abstract) ''' prefixes = [] with open(path_dataset, "rb") as input_file: # load json iteratively parser = ijson.parse(input_file) for prefix, event, value in parser: if prefix not in prefixes and "indexed_abstract" not in prefix: prefixes.append(prefix) print(prefix) return prefixes def main(): ''' Takes the big arxiv dataset and transforms it to a CSV that Neo4J can import as a knowledge graph ''' code_to_country, country_to_code = load_countries() dict = compress_to_dict(-1) dict_all_cities, city_to_country, list_cities = load_cities_data() # transform_dict_to_csv(dict_all_cities, city_to_country, country_to_code, list_cities, dict) export_csv_for_pykeen(dict_all_cities, city_to_country, country_to_code, list_cities, dict) def org_to_unique_city(org, dict_all_cities, city_to_country, country_to_code, max_words_in_city_name = 3): ''' Given an org name, splits it into all single words and checks if any of them are a city Retuns the unique name of that city and country code ''' # Remove all non-alphabet characters org_only_alphabet = "" for i in org: if i.isalpha(): org_only_alphabet += i else: org_only_alphabet += " " org = org_only_alphabet words = org.replace(",", " ").replace("\t", " ").split(" ") words = [word for word in words if word != ""] possible_names = [] for i in range(1, max_words_in_city_name + 1): possible_names += string_to_windows(words, i) found_city_name = False unique_name = "" country = "" for possible_name in possible_names: if(possible_name in dict_all_cities): if possible_name in cities_blacklist: continue found_city_name = True unique_name = dict_all_cities[possible_name] country = city_to_country[unique_name] if not found_city_name: for possible_name in words: if(possible_name in country_to_code): country = country_to_code[possible_name] return unique_name, country def string_to_windows(input_list, windows_size): ''' Slides a window over a list and returns everything inside that window ''' output_list = [] for idx, element in enumerate(input_list): if idx + windows_size > len(input_list): break else: output_list.append(clean_string_cities(' '.join([input_list[i] for i in range(idx, idx + windows_size)]))) return output_list def clean_string_cities(city): return city.lower().replace(" ", "") def ensure_is_int_or_empty(input): if isinstance(input, int): return input elif isfloat(input): return int(float(input)) elif isinstance(input, str) and input.isnumeric(): return input return "" def load_cities_data(): ''' Loads the cities15000 dataset Returns: dict_all_cities, city_to_country, list_cities, list_unique_citynames ''' # Contains all cities from the dataset, key is possible city names, returns unique city names dict_all_cities = {} # List of all unique city names list_cities = [] # Dictionary # Key: Unique city name # Value: Country Code city_to_country = {} with open(path_dataset_cities, encoding='utf-8', errors='ignore') as f: lines = f.readlines() for line in lines: # First element is an id, get rid of it row = line.split("\t") unique_name = clean_string_cities(row[2]) if(unique_name in cities_blacklist): continue list_cities.append(unique_name) names = [row[1], row[2]] + row[3].split(',') country_idx = -1 for (idx, element) in enumerate(names): if isfloat(element): break if(element not in dict_all_cities): dict_all_cities[clean_string_cities(element)] = unique_name city_to_country[unique_name] = row[8] # Remove potential duplicates in list_cities list_cities = list(dict.fromkeys(list_cities)) return dict_all_cities, city_to_country, list_cities def isfloat(value): ''' Check if a string is a float Source: https://stackoverflow.com/a/20929881/6515970 ''' try: float(value) return True except ValueError: return False def transform_dict_to_csv(dict_all_cities, city_to_country, country_to_code, list_cities, dataset): ''' Takes the processed dataset and turns it into several CSVs ''' papers = [] authors = [] keywords = [] paper_keyword_relations = [] paper_author_relations = [] authors_last_id = 0 authors_to_id = {} keywords_last_id = 0 keywords_to_id = {} authors_cities = [] print("Transform dictionary") for (id,paper) in enumerate(dataset): if(id % 5000 == 0): print(f"\r>> Transformed {id/1e6} million entries ", end = '', flush=True) papers.append([id, clean_string(paper["title"]), ensure_is_int_or_empty(paper["year"])]) for author in paper["authors"]: org = clean_string(author["org"]) city, country = org_to_unique_city(org, dict_all_cities, city_to_country, country_to_code) name = clean_string(author["name"]) identifier = name + " " + city if identifier in authors_to_id: author_id = authors_to_id[identifier] else: author_id = authors_last_id authors.append([author_id, name, org, city, country]) authors_to_id[identifier] = author_id authors_last_id += 1 if city != "": authors_cities.append([author_id, city]) paper_author_relations.append([id, author_id]) for keyword in paper["keywords"]: name = clean_string(keyword["name"]) weight = keyword["weight"] if name in keywords_to_id: keyword_id = keywords_to_id[name] else: keyword_id = keywords_last_id keywords.append([keyword_id, name]) keywords_to_id[name] = keyword_id keywords_last_id += 1 paper_keyword_relations.append([id, keyword_id, weight]) print("\nStoring CSVs:") export_to_csv(papers, "papers") export_to_csv(authors, "authors") export_to_csv(keywords, "keywords") export_to_csv(paper_author_relations, "paper_author") export_to_csv(paper_keyword_relations, "paper_keyword") export_to_csv(authors_cities, "authors_cities") cities = list(map(lambda x: [x], list_cities)) countries = list(map(lambda x: [x], list(country_to_code.values()))) export_to_csv(cities, "cities") export_to_csv(countries, "countries") cities_countries = [] for city in list_cities: cities_countries.append([city, city_to_country[city]]) export_to_csv(cities_countries, "cities_countries") def export_csv_for_pykeen(dict_all_cities, city_to_country, country_to_code, list_cities, dataset): ''' Takes the processed dataset and turns it one CSV for pykeen ''' relations = [] cities = [] print("Transform dictionary") for (id,paper) in enumerate(dataset): if(id % 5000 == 0): print(f"\r>> Transformed {id/1e6} million entries ", end = '', flush=True) paper_name = ("(P){0} ({1})".format(clean_string(paper["title"]), ensure_is_int_or_empty(paper["year"]))) for author in paper["authors"]: org = clean_string(author["org"]) city, _ = org_to_unique_city(org, dict_all_cities, city_to_country, country_to_code) author_name = "(A){0}: {1} ({2})".format(clean_string(author["name"]),clean_string(author["org"]), city) # Only store author information if we know their city # Keep track of all cities so we can create the corresponding countries if city != '': city_name = "(CI)" + city relations.append([paper_name, "AUTHOREDBY", author_name]) relations.append([paper_name, "WRITTENIN", city_name]) relations.append([author_name, "WORKSIN", city_name]) cities.append(city) for keyword in paper["keywords"]: keyword_name = clean_string(keyword["name"]) relations.append([paper_name, "ISABOUT", "(K)" + keyword_name]) # Remove duplicates from cities list cities = list(dict.fromkeys(cities)) for city in cities: relations.append(["(CI)" + city, "ISIN", "(CO)" + city_to_country[city]]) print("\n") export_to_csv(relations, "relations_for_pykeen_final", '\t') # These symbols might confuse the import into Neo4f # we remove them forbidden_symbols = [',', '"', "'", '`', '’', '´', "{", "}", '"', '“', '”', '\\', '$', '^', '\n'] def clean_string(string): #for symbol in forbidden_symbols: # string = string.replace(symbol, '') #return string return ''.join(list([i for i in string if i.isalpha() or i.isnumeric() or i == " " or i == ":" or i == "(" or i == ")"])) def export_to_csv(data, name, delimiter = ","): ''' Takes a list of lines and stores that as a csv in the csv folder under <name>.csv ''' filename = os.path.join(path_csv_folder, name + ".csv") print(f"Writing to {filename}") with open(filename, mode='w', encoding='utf-8', errors='ignore') as file: csv_writer = csv.writer(file, delimiter=delimiter, quotechar='"', quoting=csv.QUOTE_MINIMAL) for row in data: #print(row[1].encode('utf-8', 'ignore')) csv_writer.writerow(row) # Caution must accept is buggy. It is no always the case that all must accept authors / keywords get accepted must_accept_authors = [] must_accept_keywords = ["Physics", "Knowledge graph", "Discrete mathematics", "Ontology", "Description logic", "Knowledge management"] def compress_to_dict(max_lines_to_process = -1): ''' Takes the big arxiv dataset and removes unneeded data and stores it as a dict ''' data_set = [] processed_lines = 0 with open(path_dataset, "rb") as input_file: parser = ijson.parse(input_file) for prefix, event, value in parser: if(processed_lines % 1e5 == 0): print(f"\r>> Read {processed_lines/1e6} million lines", end = '', flush=True) if(processed_lines == max_lines_to_process): break must_accept = False if "indexed_abstract" not in prefix: # Open or close a new paper if prefix == "item" and event == "start_map": curr_paper = {"title":"", "authors":[], "keywords":[], "arxiv_id":0, "year":0, "venue":{"arxiv_id":0, "name":""}, "publisher":""} elif prefix == "item" and event == "end_map": if must_accept or use_entire_dataset or random.rand() <= acceptance_rate: data_set.append(curr_paper) # Keywords elif prefix == "item.fos.item" and event == "start_map": curr_keyword = {"name":"", "weight":0} elif prefix == "item.fos.item" and event == "end_map": curr_paper["keywords"].append(curr_keyword) elif prefix == "item.fos.item.name": if value in must_accept_keywords: must_accept = True curr_keyword["name"] = value elif prefix == "item.fos.item.w": curr_keyword["weight"] = float(value) # Authors elif prefix == "item.authors.item" and event == "start_map": curr_author = {"name":"", "org":"", "arxiv_id":0} elif prefix == "item.authors.item" and event == "end_map": curr_paper["authors"].append(curr_author) elif prefix == "item.authors.item.name": if value in must_accept_authors: must_accept = True curr_author["name"] = value elif prefix == "item.authors.item.org": curr_author["org"] = value elif prefix == "item.authors.item.id": curr_author["arxiv_id"] = value # Everything else elif prefix == "item.publisher": curr_paper["publisher"] = value elif prefix == "item.title": curr_paper["title"] = clean_string(value) elif prefix == "item.id": curr_paper["arxiv_id"] = value elif prefix == "item.year": curr_paper["year"] = value elif prefix == "item.year": curr_paper["year"] = value elif prefix == "item.publisher": curr_paper["publisher"] = value elif prefix == "item.venue.raw": curr_paper["venue"]["name"] = value elif prefix == "item.venue.id": curr_paper["venue"]["arxiv_id"] = value processed_lines += 1 #print("\nStoring dictionary (pickle)") # Store dataset as dict #outputfile = open(path_pickled_dataset,'wb') #pickle.dump(data_set,outputfile) #outputfile.close() return data_set if __name__ == "__main__": main() def print_dataset(): ''' Prints the JSON (except indexed_abstract) ''' with open(path_dataset, 'rb') as input_file: parser = ijson.parse(input_file) for prefix, event, value in parser: if "indexed_abstract" not in prefix: print('prefix={}, event={}, value={}'.format(prefix, event, value)) ''' Prefixes except indexed_abstract: item item.id item.authors item.authors.item item.authors.item.name item.authors.item.org item.authors.item.id item.title item.year item.n_citation item.page_start item.page_end item.doc_type item.publisher item.volume item.issue item.doi item.references item.references.item item.fos item.fos.item Contains a topic of the paper, e.g. "Computer Science" or "Communications protocol" item.fos.item.name item.fos.item.w item.venue item.venue.raw item.venue.id item.venue.type '''
from torch.utils.tensorboard import SummaryWriter class Logger: def __init__(self, log_dir, logging_interval): self.writer = SummaryWriter(log_dir) self.logging_interval = logging_interval self.counter = 0 @classmethod def from_config(cls, config, name): log_dir = config.logging_path.format( ds_name=config.ds_name, model_architecture=config.model_architecture, name=name ) return cls(log_dir=log_dir, logging_interval=config.logging_interval) class BiGANLogger(Logger): def __call__(self, epoch, step, disc_loss, gen_enc_loss, *args, **kwargs): self.counter += 1 if step % self.logging_interval == 0: self.writer.add_scalar(f'Loss/Disc', disc_loss, self.counter) self.writer.add_scalar(f'Loss/GenEnc', gen_enc_loss, self.counter) print(f"epoch {epoch}, disc_loss {disc_loss}, gen_enc_loss {gen_enc_loss}") class GANLogger(Logger): def __call__(self, epoch, step, disc_loss, gen_loss, gen_disc_acc, disc_real_acc, disc_fake_acc, *args, **kwargs): self.counter += 1 if step % self.logging_interval == 0: self.writer.add_scalar(f'Loss/Disc', disc_loss, self.counter) self.writer.add_scalar(f'Loss/Gen', gen_loss, self.counter) self.writer.add_scalar(f'Gen/DiscFake', gen_disc_acc, self.counter) self.writer.add_scalar(f'Disc/Real', disc_real_acc, self.counter) self.writer.add_scalar(f'Disc/Fake', disc_fake_acc, self.counter) print(f"epoch {epoch}, disc_loss {disc_loss}, gen_loss {gen_loss}") print(f"gen_disc_acc {gen_disc_acc}, disc_real_acc {disc_real_acc}, disc_fake_acc {disc_fake_acc}") class ClfLogger(Logger): def __call__(self, epoch, loss, step, *args, **kwargs): self.counter += 1 if step % self.logging_interval == 0: self.writer.add_scalar('Loss', loss, self.counter) print(f"epoch {epoch}, loss {loss}")
""" https://pythontutor.com/visualize.html#code=class%20Solution%3A%0A%20%20%20%20def%20duplicateZeros%28self,%20arr%29%20-%3E%20None%3A%0A%20%20%20%20%20%20%20%20%22%22%22%0A%20%20%20%20%20%20%20%20Do%20not%20return%20anything,%20modify%20arr%20in-place%20instead.%0A%20%20%20%20%20%20%20%20%22%22%22%0A%20%20%20%20%20%20%20%20possible_dups%20%3D%200%0A%20%20%20%20%20%20%20%20length_%20%3D%20len%28arr%29%20-%201%0A%0A%20%20%20%20%20%20%20%20%23%20Find%20the%20number%20of%20zeros%20to%20be%20duplicated%0A%20%20%20%20%20%20%20%20for%20left%20in%20range%28length_%20%2B%201%29%3A%0A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20Stop%20when%20left%20points%20beyond%20the%20last%20element%20in%20the%20original%20list%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20which%20would%20be%20part%20of%20the%20modified%20list%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20left%20%3E%20length_%20-%20possible_dups%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20break%0A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20Count%20the%20zeros%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20arr%5Bleft%5D%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20Edge%20case%3A%20This%20zero%20can't%20be%20duplicated.%20We%20have%20no%20more%20space,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20as%20left%20is%20pointing%20to%20the%20last%20element%20which%20could%20be%20included%20%20%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20if%20left%20%3D%3D%20length_%20-%20possible_dups%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20arr%5Blength_%5D%20%3D%200%20%23%20For%20this%20zero%20we%20just%20copy%20it%20without%20duplication.%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20length_%20-%3D%201%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20possible_dups%20%2B%3D%201%0A%0A%20%20%20%20%20%20%20%20%23%20Start%20backwards%20from%20the%20last%20element%20which%20would%20be%20part%20of%20new%20list.%0A%20%20%20%20%20%20%20%20last%20%3D%20length_%20-%20possible_dups%0A%0A%20%20%20%20%20%20%20%20%23%20Copy%20zero%20twice,%20and%20non%20zero%20once.%0A%20%20%20%20%20%20%20%20for%20i%20in%20range%28last,%20-1,%20-1%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20arr%5Bi%5D%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20arr%5Bi%20%2B%20possible_dups%5D%20%3D%200%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20possible_dups%20-%3D%201%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20arr%5Bi%20%2B%20possible_dups%5D%20%3D%200%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20arr%5Bi%20%2B%20possible_dups%5D%20%3D%20arr%5Bi%5D%0A%0A%0As%20%3D%20Solution%28%29%0As.duplicateZeros%28%5B1,0,2,3,0,4,5,0%5D%29%0A%20%20%20%20%20%20%20%20%20%20%20%20&cumulative=false&curInstr=8&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false Why backwards? If we would start shifting from left to right, then we would be overwriting elements before we have had the chance to shift them that is why we go backwards instead. We make sure we have shifted out an element before we shift another one into its original position. What is the correct shift distance? The duplication of a zero pushes all elements to the right of it by one. This means also that every element is shifted to the right as many times as there are zeroes to the left of it. E.g. in the array [1,0,2,0,3] , 1 will not move, 2 will shift one position and 3 will shift two positions. As we go backwards, every time we bypass a zero (and duplicate it), the shift distance decreases for the elements we haven't shifted yet, because there is one less zero in front of them. Why the < n checks? Shifts push some of the elements out of the array. We do the < n checks to make sure we write down only elements that are shifted to a valid position inside the array and we ignore the ones falling off the end """ class Solution: def duplicateZeros(self, arr: List[int]) -> None: """ Do not return anything, modify arr in-place instead. """ zeros = 0 for i in range(len(arr)): if arr[i] == 0: zeros += 1 for i in range(len(arr) - 1, -1 ,-1): if i + zeros < len(arr): arr[i + zeros] == arr[i] if arr[i] == 0: zeros -= 1 if i + zeros < len(arr): arr[i + zeros] = 0
""" Unit tests for data_collections module """ import unittest import pytest from sentinelhub import DataCollection, TestSentinelHub, SHConfig from sentinelhub.constants import ServiceUrl from sentinelhub.data_collections import DataCollectionDefinition from sentinelhub.exceptions import SHDeprecationWarning class TestDataCollectionDefinition(TestSentinelHub): def test_repr(self): definition = DataCollection.SENTINEL1_IW.value representation = repr(definition) self.assertTrue(isinstance(representation, str)) self.assertTrue(representation.count('\n') >= 5) def test_derive(self): definition = DataCollectionDefinition( api_id='X', wfs_id='Y' ) derived_definition = definition.derive(wfs_id='Z') self.assertEqual(derived_definition.api_id, 'X') self.assertEqual(derived_definition.wfs_id, 'Z') self.assertEqual(derived_definition.collection_type, None) def test_compare(self): def1 = DataCollectionDefinition(api_id='X', _name='A') def2 = DataCollectionDefinition(api_id='X', _name='B') self.assertEqual(def1, def2) class TestDataCollection(TestSentinelHub): def test_define(self): for _ in range(3): data_collection = DataCollection.define( 'NEW', api_id='X', sensor_type='Sensor', bands=('B01',), is_timeless=True ) self.assertEqual(data_collection, DataCollection.NEW) with self.assertRaises(ValueError): DataCollection.define( 'NEW_NEW', api_id='X', sensor_type='Sensor', bands=('B01',), is_timeless=True ) with self.assertRaises(ValueError): DataCollection.define( 'NEW', api_id='Y' ) def test_define_from(self): bands = ['B01', 'XYZ'] for _ in range(3): data_collection = DataCollection.define_from( DataCollection.SENTINEL5P, 'NEW_5P', api_id='X', bands=bands ) self.assertEqual(data_collection, DataCollection.NEW_5P) self.assertEqual(data_collection.api_id, 'X') self.assertEqual(data_collection.wfs_id, DataCollection.SENTINEL5P.wfs_id) self.assertEqual(data_collection.bands, tuple(bands)) def test_define_byoc_and_batch(self): byoc_id = '0000d273-7e89-4f00-971e-9024f89a0000' byoc = DataCollection.define_byoc(byoc_id, name=f'MY_BYOC') batch = DataCollection.define_batch(byoc_id, name='MY_BATCH') self.assertEqual(byoc, DataCollection.MY_BYOC) self.assertEqual(batch, DataCollection.MY_BATCH) for ds in [byoc, batch]: self.assertTrue(ds.api_id.endswith(byoc_id)) self.assertEqual(ds.collection_id, byoc_id) with self.assertWarns(SHDeprecationWarning): byoc2 = DataCollection(byoc_id.replace('0', '1')) self.assertTrue(byoc, byoc2) def test_attributes(self): ds = DataCollection.SENTINEL3_OLCI for attr_name in ['api_id', 'catalog_id', 'wfs_id', 'service_url', 'bands', 'sensor_type']: value = getattr(ds, attr_name) self.assertNotEqual(value, None) self.assertEqual(value, getattr(ds.value, attr_name)) ds = DataCollection.define('EMPTY') for attr_name in ['api_id', 'catalog_id', 'wfs_id', 'bands']: with self.assertRaises(ValueError): getattr(ds, attr_name) self.assertEqual(ds.service_url, None) def test_sentine1_checks(self): self.assertTrue(DataCollection.SENTINEL1_IW.is_sentinel1) self.assertFalse(DataCollection.SENTINEL2_L1C.is_sentinel1) self.assertTrue(DataCollection.SENTINEL1_IW_ASC.contains_orbit_direction('ascending')) self.assertFalse(DataCollection.SENTINEL1_IW_DES.contains_orbit_direction('ascending')) self.assertTrue(DataCollection.SENTINEL2_L2A.contains_orbit_direction('descending')) def test_get_available_collections(self): collections = DataCollection.get_available_collections() self._check_collection_list(collections) config = SHConfig() config.sh_base_url = ServiceUrl.EOCLOUD eocloud_collections = DataCollection.get_available_collections(config=config) self._check_collection_list(eocloud_collections) self.assertNotEqual(eocloud_collections, collections) def _check_collection_list(self, collection_list): self.assertTrue(isinstance(collection_list, list)) self.assertTrue(all(isinstance(data_collection, DataCollection) for data_collection in collection_list)) def test_data_collection_transfer_with_ray(): """ This tests makes sure that the process of transferring a custom DataCollection object to a Ray worker and back works correctly. """ ray = pytest.importorskip('ray') ray.init(log_to_driver=False) collection = DataCollection.SENTINEL2_L1C.define_from('MY_NEW_COLLECTION', api_id='xxx') collection_future = ray.remote(lambda x: x).remote(collection) transferred_collection = ray.get(collection_future) assert collection is transferred_collection ray.shutdown() if __name__ == '__main__': unittest.main()
# 读写数据 import pickle import os from plugins import getNow from plugins import logManage key_allow: list = [ '#', '*', ',', ',', '.', '。', '!', '!', '?', '?', ':', ':', ';', ';', '+', '-', '/' ] def save_obj(obj, name: str) -> None: filePath = name + '.data' with open(filePath, 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def load_obj(name: str) -> dict: filePath = name + '.data' if not os.path.exists(filePath): return {} with open(filePath, 'rb') as f: return pickle.load(f) # 读取配置信息 def read_config(): filePath = 'data/config.txt' config = { 'version': '0.5.5', 'qq': 0, 'name': '小柒', 'color': '天蓝色', 'age': 18, 'master': 0, 'master_right': [], 'administrator': [], 'contributor': [], 'RPG_administrator': [], 'blacklist_group': {}, 'blacklist_member': {}, 'test_group': [] } if not os.path.exists(filePath): with open(filePath, 'w', encoding='utf-8') as f: f.write('version=0.5.5\n') f.write('qq=0\n') f.write('name=小柒\n') f.write('color=天蓝色\n') f.write('age=18\n') f.write('master=1597867839\n') f.write('masterRight=\n') f.write('administrator=\n') f.write('contributor=\n') f.write('RPGadministrator=\n') f.write('blacklistGroup=\n') f.write('blacklistMember=\n') f.write('testGroup=\n') return config with open(filePath, 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: line = line.strip() if len(line) == 0: continue if line[0] == '#': continue datas = line.split('#') if len(datas) < 1: continue pair = datas[0].split('=') if len(pair) != 2: continue pair[0] = pair[0].strip() pair[1] = pair[1].strip() if pair[0] == 'version': config['version'] = pair[1] elif pair[0] == 'qq': if pair[1].isdigit(): config['qq'] = int(pair[1]) elif pair[0] == 'name': config['name'] = pair[1] elif pair[0] == 'color': config['color'] = pair[1] elif pair[0] == 'age': if pair[1].isdigit(): config['age'] = int(pair[1]) elif pair[0] == 'master': if pair[1].isdigit(): config['master'] = int(pair[1]) elif pair[0] == 'masterRight': qq_list = pair[1].split(',') for i in qq_list: if i.isdigit(): config['master_right'].append(int(i)) elif pair[0] == 'administrator': qq_list = pair[1].split(',') for i in qq_list: if i.isdigit(): config['administrator'].append(int(i)) elif pair[0] == 'contributor': qq_list = pair[1].split(',') for i in qq_list: if i.isdigit(): config['contributor'].append(int(i)) elif pair[0] == 'RPGadministrator': qq_list = pair[1].split(',') for i in qq_list: if i.isdigit(): config['RPG_administrator'].append(int(i)) elif pair[0] == 'testGroup': qq_list = pair[1].split(',') for i in qq_list: if i.isdigit(): config['test_group'].append(int(i)) elif pair[0] == 'blacklistGroup': qq_list = pair[1].split(',') for i in qq_list: data_list = i.split('(') if data_list[0].isdigit(): config['blacklist_group'][int(data_list[0])] = data_list[1][:-1] elif pair[0] == 'blacklistMember': qq_list = pair[1].split(',') for i in qq_list: data_list = i.split('(') if data_list[0].isdigit(): config['blacklist_member'][int(data_list[0])] = data_list[1][:-1] return config # 保存配置信息 def save_config(config): filePath = 'data/config.txt' with open(filePath, 'w', encoding='utf-8') as f: f.write('version=' + config['version'] + '\n') f.write('qq=' + str(config['qq']) + '\n') f.write('name=' + config['name'] + '\n') f.write('color=' + config['color'] + '\n') f.write('age=' + str(config['age']) + '\n') f.write('master=' + str(config['master']) + '\n') f.write('masterRight=' + list_string(config['master_right']) + '\n') f.write('administrator=' + list_string(config['administrator']) + '\n') f.write('contributor=' + list_string(config['contributor']) + '\n') f.write('RPGadministrator=' + list_string(config['RPG_administrator']) + '\n') f.write('blacklistGroup=' + dict_string(config['blacklist_group']) + '\n') f.write('blacklistMember=' + dict_string(config['blacklist_member']) + '\n') f.write('testGroup=' + list_string(config['test_group']) + '\n') # 读取群 def read_group(group_id): global key_allow filePath = 'data/__GROUP__/' + str(group_id) group = { 'config': { 'mute': False, # 是否禁言 'limit': False, # 是否限制 'nudge': True, # 是否开启戳一戳 'RPG': True, # 是否开启RPG 'limit_RPG': False, # 是否开启RPG限制 'curse': True, # 是否开启脏话 'image': False, # 是否开启图片搜索 'ai': False, # 是否开启ai 'autonomous_reply': True, # 是否开启自动回复(群内自定义的) 'repeat': True, # 是否开启自动加一 'TRPG': True, # 是否开启头骰娘 'clash': False, # 是否开启部落冲突查询 'clash_tag': '', # 部落标签 'key': ['.', '。', '*'], # 触发词 'reply_limit': 0, # 回复限制次数 'welcome': False, # 是否开启欢迎 'right_train': [], # 谁可以训练小柒 'right_activity': [], # 谁可以发起活动 'right_mute': [], # 谁可以禁言 'right_RPG': [], # 谁可以开关游戏 # ============================= 'flash': False, # 解除闪照 'member_wather': False, # 群成员监控 'revoke': False, # 防止撤回 'automatic': False, # 自动审核 'pass': '' # 加群暗号 }, 'key_reply': { 'key_at': {}, 'key': {}, 'question': {}, 'question_at': {} }, # 关键词回复 'welcome': None, # 欢迎语 'prohibited_word': [], 'statistics': { 'reply': [], 'RPG': [], 'card': [] }, 'group': {}, # 分组信息 'date': getNow.toString() } if not os.path.exists(filePath + '.config'): with open(filePath + '.config', 'w', encoding='utf-8') as f: f.write('date=' + group['date'] + '\n') f.write('mute=' + str(group['config']['mute']) + '\n') f.write('limit=' + str(group['config']['limit']) + '\n') f.write('nudge=' + str(group['config']['nudge']) + '\n') f.write('TRPG=' + str(group['config']['TRPG']) + '\n') f.write('RPG=' + str(group['config']['RPG']) + '\n') f.write('RPGlimit=' + str(group['config']['limit_RPG']) + '\n') f.write('curse=' + str(group['config']['curse']) + '\n') f.write('image=' + str(group['config']['image']) + '\n') f.write('ai=' + str(group['config']['ai']) + '\n') f.write('autoReply=' + str(group['config']['autonomous_reply']) + '\n') f.write('repeat=' + str(group['config']['repeat']) + '\n') f.write('clash=' + str(group['config']['clash']) + '\n') f.write('clashTag=' + str(group['config']['clash_tag']) + '\n') f.write('welcome=' + str(group['config']['welcome']) + '\n') f.write('key') for i in group['config']['key']: f.write('=' + i) f.write('\n') f.write('replyTimes=' + str(group['config']['reply_limit']) + '\n') f.write('trainRight=' + list_string(group['config']['right_train']) + '\n') f.write('activityRight=' + list_string(group['config']['right_activity']) + '\n') f.write('muteRight=' + list_string(group['config']['right_mute']) + '\n') f.write('gameRight=' + list_string(group['config']['right_RPG']) + '\n') f.write('flash=' + str(group['config']['flash']) + '\n') f.write('memberWather=' + str(group['config']['member_wather']) + '\n') f.write('revoke=' + str(group['config']['revoke']) + '\n') f.write('automatic=' + str(group['config']['automatic']) + '\n') f.write('pass=' + str(group['config']['pass']) + '\n') data = { 'key_reply': group['key_reply'], 'welcome': group['welcome'], 'prohibited_word': group['prohibited_word'], 'statistics': group['statistics'], 'group': group['group'] } if not os.path.exists(filePath + '.data'): save_obj(group, filePath) else: group = load_obj(filePath) return group if not os.path.exists(filePath + '.data'): data = { 'key_reply': group['key_reply'], 'welcome': group['welcome'], 'prohibited_word': group['prohibited_word'], 'statistics': group['statistics'], 'group': group['group'] } save_obj(group, filePath) data = load_obj(filePath) group['key_reply'] = data['key_reply'] group['welcome'] = data['welcome'] group['prohibited_word'] = data['prohibited_word'] group['statistics'] = data['statistics'] group['group'] = data['group'] with open(filePath + '.config', 'r', encoding='utf-8') as f: lines = f.readlines() group['config']['key'] = [] for line in lines: line = line.strip() if len(line) == 0: continue if line[0] == '#': continue datas = line.split('#') if len(datas) < 1: continue pair = datas[0].split('=') if len(pair) < 2: continue pair[0] = pair[0].strip() pair[1] = pair[1].strip().lower() if pair[0] == 'date': group['date'] = pair[1] elif pair[0] == 'mute': if pair[1] == 'true': group['config']['mute'] = True else: group['config']['mute'] = False elif pair[0] == 'limit': if pair[1] == 'true': group['config']['limit'] = True else: group['config']['limit'] = False elif pair[0] == 'nudge': if pair[1] == 'true': group['config']['nudge'] = True else: group['config']['nudge'] = False elif pair[0] == 'TRPG': if pair[1] == 'true': group['config']['TRPG'] = True else: group['config']['TRPG'] = False elif pair[0] == 'RPG': if pair[1] == 'true': group['config']['RPG'] = True else: group['config']['RPG'] = False elif pair[0] == 'RPGlimit': if pair[1] == 'true': group['config']['limit_RPG'] = True else: group['config']['limit_RPG'] = False elif pair[0] == 'curse': if pair[1] == 'true': group['config']['curse'] = True else: group['config']['curse'] = False elif pair[0] == 'image': if pair[1] == 'true': group['config']['image'] = True else: group['config']['image'] = False elif pair[0] == 'ai': if pair[1] == 'true': group['config']['ai'] = True else: group['config']['ai'] = False elif pair[0] == 'autoReply': if pair[1] == 'true': group['config']['autonomous_reply'] = True else: group['config']['autonomous_reply'] = False elif pair[0] == 'repeat': if pair[1] == 'true': group['config']['repeat'] = True else: group['config']['repeat'] = False elif pair[0] == 'clash': if pair[1] == 'true': group['config']['clash'] = True else: group['config']['clash'] = False elif pair[0] == 'clashTag': group['config']['clash_tag'] = pair[1].upper() elif pair[0] == 'welcome': if pair[1] == 'true': group['config']['welcome'] = True else: group['config']['welcome'] = False elif pair[0] == 'replyTimes': if pair[1].isdigit(): group['config']['reply_limit'] = int(pair[1]) elif pair[0] == 'key': for i in pair: if i in key_allow and i not in group['config']['key']: group['config']['key'].append(i) elif pair[0] == 'trainRight': qq_list = pair[1].split(',') for i in qq_list: if i.isdigit(): group['config']['right_train'].append(int(i)) elif pair[0] == 'activityRight': qq_list = pair[1].split(',') for i in qq_list: if i.isdigit(): group['config']['right_activity'].append(int(i)) elif pair[0] == 'muteRight': qq_list = pair[1].split(',') for i in qq_list: if i.isdigit(): group['config']['right_mute'].append(int(i)) elif pair[0] == 'gameRight': qq_list = pair[1].split(',') for i in qq_list: if i.isdigit(): group['config']['right_RPG'].append(int(i)) elif pair[0] == 'flash': if pair[1] == 'true': group['config']['flash'] = True else: group['config']['flash'] = False elif pair[0] == 'memberWather': if pair[1] == 'true': group['config']['member_wather'] = True else: group['config']['member_wather'] = False elif pair[0] == 'revoke': if pair[1] == 'true': group['config']['revoke'] = True else: group['config']['revoke'] = False elif pair[0] == 'automatic': if pair[1] == 'true': group['config']['automatic'] = True else: group['config']['automatic'] = False elif pair[0] == 'pass': pair = datas[0].split('=') pair[1] = pair[1].strip() group['config']['pass'] = pair[1] return group # 保存群 def save_group(group_id, config): filePath = 'data/__GROUP__/' + str(group_id) data = { 'key_reply': config['key_reply'], 'welcome': config['welcome'], 'prohibited_word': config['prohibited_word'], 'statistics': config['statistics'], 'group': config['group'] } save_obj(data, filePath) with open(filePath + '.config', 'w', encoding='utf-8') as f: f.write('date=' + config['date'] + '\n') f.write('mute=' + str(config['config']['mute']) + '\n') f.write('limit=' + str(config['config']['limit']) + '\n') f.write('nudge=' + str(config['config']['nudge']) + '\n') f.write('TRPG=' + str(config['config']['TRPG']) + '\n') f.write('RPG=' + str(config['config']['RPG']) + '\n') f.write('RPGlimit=' + str(config['config']['limit_RPG']) + '\n') f.write('curse=' + str(config['config']['curse']) + '\n') f.write('image=' + str(config['config']['image']) + '\n') f.write('ai=' + str(config['config']['ai']) + '\n') f.write('autoReply=' + str(config['config']['autonomous_reply']) + '\n') f.write('repeat=' + str(config['config']['repeat']) + '\n') f.write('clash=' + str(config['config']['clash']) + '\n') f.write('clashTag=' + str(config['config']['clash_tag']) + '\n') f.write('welcome=' + str(config['config']['welcome']) + '\n') f.write('key') for i in config['config']['key']: f.write('=' + i) f.write('\n') f.write('replyTimes=' + str(config['config']['reply_limit']) + '\n') f.write('trainRight=' + list_string(config['config']['right_train']) + '\n') f.write('activityRight=' + list_string(config['config']['right_activity']) + '\n') f.write('muteRight=' + list_string(config['config']['right_mute']) + '\n') f.write('gameRight=' + list_string(config['config']['right_RPG']) + '\n') f.write('flash=' + str(config['config']['flash']) + '\n') f.write('memberWather=' + str(config['config']['member_wather']) + '\n') f.write('revoke=' + str(config['config']['revoke']) + '\n') f.write('automatic=' + str(config['config']['automatic']) + '\n') f.write('pass=' + str(config['config']['pass']) + '\n') # 读取用户 def read_user(qq): global key_allow filePath = 'data/__USER__/' + str(qq) user = { 'config': { 'ai': True, 'reputation': 5, 'clash_user_tag': [], # 玩家标签 'main_clash_user_tag': 0, # 默认玩家标签 'clash_tag': [], # 部落标签 'main_clash_tag': 0, # 默认部落标签 'key': [] }, 'buffer': { 'id': 0, 'buffer': None, 'time': 'xx-xx-xx' }, 'statistics': { 'reply': [], 'RPG': [], 'card': [] }, 'date': getNow.toString() } if not os.path.exists(filePath + '.config'): with open(filePath + '.config', 'w', encoding='utf-8') as f: f.write('ai=false\n') f.write('reputation=5\n') f.write('clashUserTag=\n') f.write('mainClashUserTag=0\n') f.write('clashTag=\n') f.write('mainClashTag=0\n') f.write('key=*=.=。\n') f.write('date=' + user['date'] + '\n') if not os.path.exists(filePath + '.data'): config = { 'buffer': user['buffer'], 'statistics': user['statistics'] } save_obj(config, filePath) return user if not os.path.exists(filePath + '.data'): config = { 'buffer': user['buffer'], 'statistics': user['statistics'] } save_obj(config, filePath) config = load_obj(filePath) user['buffer'] = config['buffer'] user['statistics'] = config['statistics'] with open(filePath + '.config', 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: line = line.strip() if len(line) == 0: continue if line[0] == '#': continue datas = line.split('#') if len(datas) < 1: continue pair = datas[0].split('=') if len(pair) < 2: continue pair[0] = pair[0].strip() pair[1] = pair[1].strip().lower() if pair[0] == 'date': user['date'] = pair[1] elif pair[0] == 'clashUserTag': for i in range(1, len(pair)): if len(pair[i]) > 0: user['config']['clash_user_tag'].append(pair[i].upper()) elif pair[0] == 'mainClashUserTag' and pair[1].isdigit(): user['config']['main_clash_user_tag'] = int(pair[1]) elif pair[0] == 'clashTag': for i in range(1, len(pair)): if len(pair[i]) > 0: user['config']['clash_tag'].append(pair[i].upper()) elif pair[0] == 'mainClashTag' and pair[1].isdigit(): user['config']['main_clash_tag'] = int(pair[1]) elif pair[0] == 'ai': if pair[1] == 'true': user['config']['ai'] = True else: user['config']['ai'] = False elif pair[0] == 'key': for i in pair: if i in key_allow and i not in user['config']['key']: user['config']['key'].append(i) return user # 保存用户 def save_user(qq, user): filePath = 'data/__USER__/' + str(qq) config = { 'buffer': user['buffer'], 'statistics': user['statistics'] } save_obj(config, filePath) with open(filePath + '.config', 'w', encoding='utf-8') as f: f.write('ai=' + str(user['config']['ai']) + '\n') f.write('clashUserTag') for i in range(0, len(user['config']['clash_user_tag'])): f.write('=' + user['config']['clash_user_tag'][i]) f.write('\n') f.write('mainClashUserTag=' + str(user['config']['main_clash_user_tag']) + '\n') f.write('clashTag') for i in range(0, len(user['config']['clash_tag'])): f.write('=' + user['config']['clash_tag'][i]) f.write('\n') f.write('mainClashTag=' + str(user['config']['main_clash_tag']) + '\n') f.write('key') for i in user['config']['key']: f.write('=' + i) f.write('\n') f.write('date=' + user['date'] + '\n') def read_statistics(): filePath = 'data/__LOG__/statistics.log' statistics = { 'kick': 0, # 被踢出的次数 'quit': 0, # 退群次数 'mute': 0, # 禁言次数 'unmute': 0, # 解除禁言次数 'awaken': 0, # 唤醒次数 'help': 0, # 帮助调用次数 'base_function': 0, # 基础功能调动次数 'talk': 0, # talk模块调用次数 'clock_activity': 0, # 打卡、活动模块调用次数 'image_search': 0, # 图片搜索模块调用次数 'command': 0, # 命令模块调用次数 'operate': 0, # 管理员操作调用次数 'game': 0, # RPG游戏调用次数 'key_reply': 0, # 群内自定义关键词调用次数 'auto_repeat': 0, # 自动加一调用次数 'auto_reply': 0, # 自动回复调用次数 'clash': 0, # 部落冲突调用次数 'new_friend': 0, # 新的朋友 'new_group': 0, # 新加入的群 'message': 0, # 发送消息量 'last_minute': 0, # 上一分钟回复量 'nudge': 0 # 戳一戳 } if not os.path.exists(filePath): with open (filePath, 'w', encoding='utf-8') as f: f.write('kick=0\n') f.write('quit=0\n') f.write('mute=0\n') f.write('unmute=0\n') f.write('awaken=0\n') f.write('help=0\n') f.write('base_function=0\n') f.write('talk=0\n') f.write('clock_activity=0\n') f.write('image_search=0\n') f.write('command=0\n') f.write('operate=0\n') f.write('game=0\n') f.write('auto_repeat=0\n') f.write('auto_reply=0\n') f.write('clash=0\n') f.write('new_friend=0\n') f.write('new_group=0\n') f.write('message=0\n') f.write('last_minute=0\n') f.write('nudge=0\n') return statistics with open(filePath, 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: line = line.strip() if len(line) == 0: continue if line[0] == '#': continue datas = line.split('#') if len(datas) < 1: continue pair = datas[0].split('=') if len(pair) < 2: continue pair[0] = pair[0].strip() pair[1] = pair[1].strip() if statistics.__contains__(pair[0]) and pair[1].isdigit(): statistics[pair[0]] = int(pair[1]) return statistics def save_statistics(statistics): filePath = 'data/__LOG__/statistics.log' with open(filePath, 'w', encoding='utf-8') as f: f.write('kick=' + str(statistics['kick']) + '\n') f.write('quit=' + str(statistics['quit']) + '\n') f.write('mute=' + str(statistics['mute']) + '\n') f.write('unmute=' + str(statistics['unmute']) + '\n') f.write('awaken=' + str(statistics['awaken']) + '\n') f.write('help=' + str(statistics['help']) + '\n') f.write('base_function=' + str(statistics['base_function']) + '\n') f.write('talk=' + str(statistics['talk']) + '\n') f.write('clock_activity=' + str(statistics['clock_activity']) + '\n') f.write('image_search=' + str(statistics['image_search']) + '\n') f.write('command=' + str(statistics['command']) + '\n') f.write('operate=' + str(statistics['operate']) + '\n') f.write('game=' + str(statistics['game']) + '\n') f.write('auto_repeat=' + str(statistics['auto_repeat']) + '\n') f.write('auto_reply=' + str(statistics['auto_reply']) + '\n') f.write('clash=' + str(statistics['clash']) + '\n') f.write('new_friend=' + str(statistics['new_friend']) + '\n') f.write('new_group=' + str(statistics['new_group']) + '\n') f.write('message=' + str(statistics['message']) + '\n') f.write('last_minute=' + str(statistics['last_minute']) + '\n') f.write('nudge=' + str(statistics['nudge']) + '\n') def list_string(data): init = False ans = '' for i in data: if init: ans += ',' else: init = True ans += str(i) return ans def dict_string(data): init = False ans = '' for key, value in data.items(): if init: ans += ',' else: init = True ans += str(key) + '(' + value + ')' return ans def read_weather(): filePath = 'data/Function/Weather/weather.txt' weather = {} if not os.path.exists(filePath): logManage.log(getNow.toString(), '天气文件缺失!') return weather with open(filePath, 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: line = line.strip() if len(line) == 0: continue if line[0] == '#': continue datas = line.split('#') if len(datas) < 1: continue pair = datas[0].split('=') if len(pair) != 2: continue pair[0] = pair[0].strip() pair[1] = pair[1].strip() weather[pair[0]] = pair[1] return weather def read_clock(): filePath = 'data/ClockActivity/clockIn' clock = {} if not os.path.exists(filePath + '.data'): save_obj(clock, filePath) else: clock = load_obj(filePath) return clock def save_clock(clock): filePath = 'data/ClockActivity/clockIn' save_obj(clock, filePath) def read_luck(): filePath = 'data/luck' luck = { 'luck': {}, 'luckDate': 'xx-xx-xx' } if not os.path.exists(filePath + '.data'): save_obj(luck, filePath) else: luck = load_obj(filePath) return luck def save_luck(luck): filePath = 'data/luck' save_obj(luck, filePath) def read_screen_word(): filePath = 'data/screenWords.txt' screen = [] if not os.path.exists(filePath): with open(filePath , 'w', encoding='utf-8') as f: f.write('\n') logManage.log(getNow.toString(), '屏蔽词文件缺失') return screen with open(filePath, 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: line = line.strip() if len(line) > 0: screen.append(line) return screen def save_screen_word(screen): filePath = 'data/screenWords.txt' with open(filePath , 'w', encoding='utf-8') as f: for i in screen: f.write(i + '\n') if __name__ == '__main__': print('读写数据')
#!/usr/bin/env python import argparse import gzip import os from collections import OrderedDict import yaml from Bio.SeqIO.QualityIO import FastqGeneralIterator OUTPUT_DBKEY_DIR = 'output_dbkey' OUTPUT_METRICS_DIR = 'output_metrics' def get_sample_name(file_path): base_file_name = os.path.basename(file_path) if base_file_name.find(".") > 0: # Eliminate the extension. return os.path.splitext(base_file_name)[0] return base_file_name def get_dbkey(dnaprints_dict, key, s): # dnaprints_dict looks something like this: # {'brucella': {'NC_002945v4': ['11001110', '11011110', '11001100']} # {'bovis': {'NC_006895': ['11111110', '00010010', '01111011']}} d = dnaprints_dict.get(key, {}) for data_table_value, v_list in d.items(): if s in v_list: return data_table_value return "" def get_dnaprints_dict(dnaprint_fields): # A dndprint_fields entry looks something liek this. # [['AF2122', '/galaxy/tool-data/vsnp/AF2122/dnaprints/NC_002945v4.yml']] dnaprints_dict = {} for item in dnaprint_fields: # Here item is a 2-element list of data # table components, # value and path. value = item[0] path = item[1].strip() with open(path, "rt") as fh: # The format of all dnaprints yaml # files is something like this: # brucella: # - 0111111111111111 print_dict = yaml.load(fh, Loader=yaml.Loader) for print_dict_k, print_dict_v in print_dict.items(): dnaprints_v_dict = dnaprints_dict.get(print_dict_k, {}) if len(dnaprints_v_dict) > 0: # dnaprints_dict already contains k (e.g., 'brucella', # and dnaprints_v_dict will be a dictionary # that # looks something like this: # {'NC_002945v4': ['11001110', '11011110', '11001100']} value_list = dnaprints_v_dict.get(value, []) value_list = value_list + print_dict_v dnaprints_v_dict[value] = value_list else: # dnaprints_v_dict is an empty dictionary. dnaprints_v_dict[value] = print_dict_v dnaprints_dict[print_dict_k] = dnaprints_v_dict # dnaprints_dict looks something like this: # {'brucella': {'NC_002945v4': ['11001110', '11011110', '11001100']} # {'bovis': {'NC_006895': ['11111110', '00010010', '01111011']}} return dnaprints_dict def get_group_and_dbkey(dnaprints_dict, brucella_string, brucella_sum, bovis_string, bovis_sum, para_string, para_sum): if brucella_sum > 3: group = "Brucella" dbkey = get_dbkey(dnaprints_dict, "brucella", brucella_string) elif bovis_sum > 3: group = "TB" dbkey = get_dbkey(dnaprints_dict, "bovis", bovis_string) elif para_sum >= 1: group = "paraTB" dbkey = get_dbkey(dnaprints_dict, "para", para_string) else: group = "" dbkey = "" return group, dbkey def get_oligo_dict(): oligo_dict = {} oligo_dict["01_ab1"] = "AATTGTCGGATAGCCTGGCGATAACGACGC" oligo_dict["02_ab3"] = "CACACGCGGGCCGGAACTGCCGCAAATGAC" oligo_dict["03_ab5"] = "GCTGAAGCGGCAGACCGGCAGAACGAATAT" oligo_dict["04_mel"] = "TGTCGCGCGTCAAGCGGCGTGAAATCTCTG" oligo_dict["05_suis1"] = "TGCGTTGCCGTGAAGCTTAATTCGGCTGAT" oligo_dict["06_suis2"] = "GGCAATCATGCGCAGGGCTTTGCATTCGTC" oligo_dict["07_suis3"] = "CAAGGCAGATGCACATAATCCGGCGACCCG" oligo_dict["08_ceti1"] = "GTGAATATAGGGTGAATTGATCTTCAGCCG" oligo_dict["09_ceti2"] = "TTACAAGCAGGCCTATGAGCGCGGCGTGAA" oligo_dict["10_canis4"] = "CTGCTACATAAAGCACCCGGCGACCGAGTT" oligo_dict["11_canis"] = "ATCGTTTTGCGGCATATCGCTGACCACAGC" oligo_dict["12_ovis"] = "CACTCAATCTTCTCTACGGGCGTGGTATCC" oligo_dict["13_ether2"] = "CGAAATCGTGGTGAAGGACGGGACCGAACC" oligo_dict["14_63B1"] = "CCTGTTTAAAAGAATCGTCGGAACCGCTCT" oligo_dict["15_16M0"] = "TCCCGCCGCCATGCCGCCGAAAGTCGCCGT" oligo_dict["16_mel1b"] = "TCTGTCCAAACCCCGTGACCGAACAATAGA" oligo_dict["17_tb157"] = "CTCTTCGTATACCGTTCCGTCGTCACCATGGTCCT" oligo_dict["18_tb7"] = "TCACGCAGCCAACGATATTCGTGTACCGCGACGGT" oligo_dict["19_tbbov"] = "CTGGGCGACCCGGCCGACCTGCACACCGCGCATCA" oligo_dict["20_tb5"] = "CCGTGGTGGCGTATCGGGCCCCTGGATCGCGCCCT" oligo_dict["21_tb2"] = "ATGTCTGCGTAAAGAAGTTCCATGTCCGGGAAGTA" oligo_dict["22_tb3"] = "GAAGACCTTGATGCCGATCTGGGTGTCGATCTTGA" oligo_dict["23_tb4"] = "CGGTGTTGAAGGGTCCCCCGTTCCAGAAGCCGGTG" oligo_dict["24_tb6"] = "ACGGTGATTCGGGTGGTCGACACCGATGGTTCAGA" oligo_dict["25_para"] = "CCTTTCTTGAAGGGTGTTCG" oligo_dict["26_para_sheep"] = "CGTGGTGGCGACGGCGGCGGGCCTGTCTAT" oligo_dict["27_para_cattle"] = "TCTCCTCGGTCGGTGATTCGGGGGCGCGGT" return oligo_dict def get_seq_counts(value, fastq_list, gzipped): count = 0 for fastq_file in fastq_list: if gzipped: with gzip.open(fastq_file, 'rt') as fh: for title, seq, qual in FastqGeneralIterator(fh): count += seq.count(value) else: with open(fastq_file, 'r') as fh: for title, seq, qual in FastqGeneralIterator(fh): count += seq.count(value) return(value, count) def get_species_counts(fastq_list, gzipped): count_summary = {} oligo_dict = get_oligo_dict() for v1 in oligo_dict.values(): returned_value, count = get_seq_counts(v1, fastq_list, gzipped) for key, v2 in oligo_dict.items(): if returned_value == v2: count_summary.update({key: count}) count_list = [] for v in count_summary.values(): count_list.append(v) brucella_sum = sum(count_list[:16]) bovis_sum = sum(count_list[16:24]) para_sum = sum(count_list[24:]) return count_summary, count_list, brucella_sum, bovis_sum, para_sum def get_species_strings(count_summary): binary_dictionary = {} for k, v in count_summary.items(): if v > 1: binary_dictionary.update({k: 1}) else: binary_dictionary.update({k: 0}) binary_dictionary = OrderedDict(sorted(binary_dictionary.items())) binary_list = [] for v in binary_dictionary.values(): binary_list.append(v) brucella_binary = binary_list[:16] brucella_string = ''.join(str(e) for e in brucella_binary) bovis_binary = binary_list[16:24] bovis_string = ''.join(str(e) for e in bovis_binary) para_binary = binary_list[24:] para_string = ''.join(str(e) for e in para_binary) return brucella_string, bovis_string, para_string def output_dbkey(file_name, dbkey, output_file): # Output the dbkey. with open(output_file, "w") as fh: fh.write("%s" % dbkey) def output_files(fastq_file, count_list, group, dbkey, dbkey_file, metrics_file): base_file_name = get_sample_name(fastq_file) output_dbkey(base_file_name, dbkey, dbkey_file) output_metrics(base_file_name, count_list, group, dbkey, metrics_file) def output_metrics(file_name, count_list, group, dbkey, output_file): # Output the metrics. with open(output_file, "w") as fh: fh.write("Sample: %s\n" % file_name) fh.write("Brucella counts: ") for i in count_list[:16]: fh.write("%d," % i) fh.write("\nTB counts: ") for i in count_list[16:24]: fh.write("%d," % i) fh.write("\nPara counts: ") for i in count_list[24:]: fh.write("%d," % i) fh.write("\nGroup: %s" % group) fh.write("\ndbkey: %s\n" % dbkey) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--dnaprint_fields', action='append', dest='dnaprint_fields', nargs=2, required=False, default=None, help="List of dnaprints data table value, name and path fields") parser.add_argument('--read1', action='store', dest='read1', required=True, default=None, help='Required: single read') parser.add_argument('--read2', action='store', dest='read2', required=False, default=None, help='Optional: paired read') parser.add_argument('--gzipped', action='store_true', dest='gzipped', default=False, help='Input files are gzipped') parser.add_argument('--output_dbkey', action='store', dest='output_dbkey', required=True, default=None, help='Output reference file') parser.add_argument('--output_metrics', action='store', dest='output_metrics', required=True, default=None, help='Output metrics file') args = parser.parse_args() fastq_list = [args.read1] if args.read2 is not None: fastq_list.append(args.read2) # The value of dnaprint_fields is a list of lists, where each list is # the [value, name, path] components of the vsnp_dnaprints data table. # The data_manager_vsnp_dnaprints tool assigns the dbkey column from the # all_fasta data table to the value column in the vsnp_dnaprints data # table to ensure a proper mapping for discovering the dbkey. dnaprints_dict = get_dnaprints_dict(args.dnaprint_fields) # Here fastq_list consists of either a single read # or a set of paired reads, producing single outputs. count_summary, count_list, brucella_sum, bovis_sum, para_sum = get_species_counts(fastq_list, args.gzipped) brucella_string, bovis_string, para_string = get_species_strings(count_summary) group, dbkey = get_group_and_dbkey(dnaprints_dict, brucella_string, brucella_sum, bovis_string, bovis_sum, para_string, para_sum) output_files(args.read1, count_list, group, dbkey, dbkey_file=args.output_dbkey, metrics_file=args.output_metrics)
import os import torch from .base_synthesizer import BaseSynthesizer class SwapSynthesizer(BaseSynthesizer): @staticmethod def add_commandline_args(parser): return parser def prepare_synthesis(self): print("Preparing swapping visualization ...") if self.folders is None: print("'folder' is None.") return self._is_available self.contents = self.get_dataset(self.folders[0], force_square=False) self.styles = self.get_dataset(self.folders[1], force_square=True) result_dir = os.path.join(self.run_dir, "swap") os.makedirs(result_dir, exist_ok=True) self.filename = os.path.join(result_dir, "grid.png") print("Done!") self._is_available = True return self._is_available @torch.no_grad() def synthesize(self, model, *args, **kwargs): print("Synthesizing images using style code swapping ...") device = model.device content_images = [] for content_image in self.contents: content_images.append(content_image.unsqueeze(0).to(device)) grid = [torch.ones_like(content_images[0])] style_images = [] for style_image in self.styles: style_images.append(style_image) style_images = torch.stack(style_images).to(device) grid.append(style_images) for content_image in content_images: inputs = content_image.repeat(style_images.size(0), 1, 1, 1) outputs = model.synthesize(inputs, style_images) grid.append(content_image) grid.append(outputs) grid = torch.cat(grid) nrow=style_images.size(0) + 1 self.save_image(grid, self.filename, nrow=nrow)
"""Taskrunners""" from .base import Taskrunner from .coroutine import CoroutineTaskrunner from .decorators import as_task from .multi_dispatch import TaskDispatcher from .multiprocess import MultiprocessTaskrunner from .store_writer import StoreTaskWriter from .store_reader import StoreTaskReader from .thread import ThreadTaskrunner from .utils import run_process
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging import re class LogcatSymbolicator(object): CLASS_REGEX = re.compile(r"\b[A-Za-z][0-9A-Za-z_$]*\.[0-9A-Za-z_$.]+\b") TRACE_REGEX = re.compile( r"^(?P<prefix>.*)\s+at (?P<class>[A-Za-z][0-9A-Za-z_$]*\.[0-9A-Za-z_$.]+)" r"\.(?P<method>[0-9A-Za-z_$<>]+)\(((Unknown Source)?:(?P<lineno>\d+))?\)\s*\n", re.MULTILINE, ) def __init__(self, symbol_maps): self.symbol_maps = symbol_maps self.pending_switches = [] def class_replacer(self, matchobj): m = matchobj.group(0) if m in self.symbol_maps.class_map: return self.symbol_maps.class_map[m].origin_class return m def find_case_positions(self, start, pattern_id): count_positions = self.symbol_maps.line_map.get_stack(start) assert len(count_positions) == 1 assert count_positions[0].method == "redex.$Position.count" # The cases are stored in the immediately following lines, # and are ordered by pattern-id, so we can do a binary search. end = start + count_positions[0].line start = start + 1 while start <= end: middle = (start + end) // 2 case_positions = self.symbol_maps.line_map.get_stack(middle) assert len(case_positions) >= 1 assert case_positions[0].method == "redex.$Position.case" if case_positions[0].line == pattern_id: case_positions.pop(0) return case_positions elif case_positions[0].line < pattern_id: start = middle + 1 else: end = middle - 1 return None # If there's no debug info item, stack traces have no line number e.g. # at X.OPu.A04() # Just deobfuscate the class/method name def line_replacer_no_lineno(self, matchobj): class_name = matchobj.group("class") method_name = matchobj.group("method") if class_name in self.symbol_maps.class_map: class_map = self.symbol_maps.class_map[class_name] deobf_class_name = class_map.origin_class deobf_method_name = class_map.method_mapping[method_name] return "%s\tat %s.%s()\n" % ( matchobj.group("prefix"), deobf_class_name, deobf_method_name, ) return matchobj.string def line_replacer(self, matchobj): if not matchobj.group("lineno"): return self.line_replacer_no_lineno(matchobj) lineno = int(matchobj.group("lineno")) cls = matchobj.group("class") logging.debug("Starting with %s:%d", cls, lineno) if self.symbol_maps.iodi_metadata is not None: mapped_lineno, _ = self.symbol_maps.iodi_metadata.map_iodi( self.symbol_maps.debug_line_map, cls, matchobj.group("method"), lineno, ) lineno = mapped_lineno if mapped_lineno else lineno logging.debug("IODI mapped_lineno=%s lineno=%d", mapped_lineno, lineno) positions = self.symbol_maps.line_map.get_stack(lineno - 1) if cls in self.symbol_maps.class_map: cls = self.symbol_maps.class_map[cls] logging.debug("Class-map: cls=%s", cls) result = "" while positions: pos = positions.pop(0) if pos.method == "redex.$Position.switch": self.pending_switches.append( {"prefix": matchobj.group("prefix"), "line": pos.line} ) logging.debug( "Switch position: %s %d", matchobj.group("prefix"), pos.line ) elif pos.method == "redex.$Position.pattern": logging.debug("Switch pattern: %d", pos.line) pattern_id = pos.line if self.pending_switches: ps = self.pending_switches.pop() case_positions = self.find_case_positions(ps["line"], pattern_id) if case_positions: case_positions.extend(positions) positions = case_positions continue result += "%s\t$(unresolved switch %d)\n" % ( matchobj.group("prefix"), pattern_id, ) elif pos.method is None: logging.debug("Position without method") result += "%s\tat %s.%s(%s:%d)\n" % ( matchobj.group("prefix"), cls, matchobj.group("method"), pos.file, pos.line, ) else: logging.debug( "Position with method: %s/%s:%d", pos.method, pos.file, pos.line ) result += "%s\tat %s(%s:%d)\n" % ( matchobj.group("prefix"), pos.method, pos.file, pos.line, ) return result def symbolicate(self, line): line = self.CLASS_REGEX.sub(self.class_replacer, line) line = self.TRACE_REGEX.sub(self.line_replacer, line) return line @staticmethod def is_likely_logcat(line): return line.startswith("--------- beginning of") or re.match( r"[A-Z]/[A-Za-z0-9_$](\s*\d+):", line )
#!/usr/bin/python # -*- coding: utf-8 -*- import os print 'os.name =',os.name print 'os.uname=',os.uname() print 'os.environ=',os.environ print 'os.getenv(path)=',os.getenv('path') #操作文件和目录的函数一部分在os中,一部分在os.path中 #查看当前目录的绝对路径 print '查看当前目录的绝对路径',os.path.abspath('.') #在某个目录下面创建一个新目录 #首先先把要创建的新目录的完整路径写出来: os.path.join('/Users/mac','test') #然后创建一个目录 os.mkdir('/Users/mac/test') #删除一个目录 os.rmdir('/Users/mac/test') #注意把两个路径合成一个时,不要直接拼接字符串,而是使用join方式,这在不同操作系统都适用 #同样,拆分路径也需要使用特定函数 os.path.split('/Users/mac/file.txt') #结果为:('/Users/mac','file.txt') #获取文件扩展名 os.path.splitext('/Users/mac/file.txt') #结果为:('/Users/mac/file','.txt') #重命名 os.rename('test.txt','test.py') #删除文件 os.remove('test.py')
from manimlib_cairo.imports import * class Logo(VGroup): CONFIG = { 'color_1': [WHITE, BLUE_B, BLUE_D], 'color_2': [WHITE, '#C59978', '#8D5630'], # 'color_3': [average_color("#CCCCCC", BLUE_C), BLUE_C, BLUE_D], # 'color_4': [average_color("#CCCCCC", "#C59978"), '#C59978', '#8D5630'], 'color_3': [average_color(WHITE, BLUE_C), BLUE_C, BLUE_D], 'color_4': [average_color(WHITE, "#C59978"), '#C59978', '#8D5630'], 'center': ORIGIN, 'size': 2, 'shift_out': ORIGIN, 'black_bg': True, 'add_bg_square': False, } def __init__(self, **kwargs): VGroup.__init__(self, **kwargs) self.create_logo() def create_logo(self): p1 = Polygon(ORIGIN, RIGHT, 2 * UP, stroke_width=0).set_fill(self.color_1[0], 1) p2 = Polygon(1.5 * RIGHT, 3 * UR, 3 * UP, stroke_width=0).set_fill(self.color_1[1], 1) p3 = Polygon(2 * RIGHT, 3 * RIGHT, 3 * RIGHT + 2 * UP, stroke_width=0).set_fill(self.color_1[2], 1) if not self.black_bg: p1.set_fill(self.color_3[0], 1), p2.set_fill(self.color_3[1], 1), p3.set_fill(self.color_3[2], 1) self.bg = Square(stroke_width=0, fill_color=BLACK if self.black_bg else WHITE, fill_opacity=1).set_height(self.size * 2.5) if self.add_bg_square: self.add(self.bg) self.part_ur = VGroup(p1, p2, p3).move_to([2.5, 1., 0] + self.shift_out) self.part_ul = self.part_ur.copy().rotate(PI / 2, about_point=ORIGIN) self.part_dl = self.part_ur.copy().rotate(PI, about_point=ORIGIN) self.part_dr = self.part_ur.copy().rotate(3 * PI / 2, about_point=ORIGIN) self.add(self.part_ur, self.part_ul, self.part_dl, self.part_dr) self.set_height(self.size).move_to(self.center) if self.black_bg: self.part_ur[0].set_fill(self.color_2[0], 1), self.part_ur[1].set_fill(self.color_2[1], 1), self.part_ur[2].set_fill(self.color_2[2], 1) else: self.part_ur[0].set_fill(self.color_4[0], 1), self.part_ur[1].set_fill(self.color_4[1], 1), self.part_ur[2].set_fill(self.color_4[2], 1) self.inner_triangles = VGroup(self.part_ur[0], self.part_ul[0], self.part_dl[0], self.part_dr[0]) self.mid_triangles = VGroup(self.part_ur[1], self.part_ul[1], self.part_dl[1], self.part_dr[1]) self.outer_triangles = VGroup(self.part_ur[2], self.part_ul[2], self.part_dl[2], self.part_dr[2]) class OpeningScene(Scene): CONFIG = { "camera_config": { "background_color": "#333333", }, "enable_caching": False, } def construct(self): logo = Logo(size=8/3) squares = VGroup(*[Polygon(ORIGIN, UR, UL), Polygon(ORIGIN, UL, DL), Polygon(ORIGIN, DL, DR), Polygon(ORIGIN, DR, UR),]) squares.set_fill(WHITE, 1).set_stroke(width=0.5, color=WHITE).rotate(np.arctan(0.5)).set_height(logo.inner_triangles.get_height()) for s in squares: s.scale(0.8) img = ImageMobject("Tony.png").set_height(2) Group(logo, img).arrange(RIGHT, buff=1.5).center() line = Line(UP, DOWN, stroke_width=8, color=WHITE).move_to(mid(logo.get_right(), img.get_left())) line.set_length(1.4) text = VGroup( Text("Manim-Kindergarten", font="Orbitron bold", color=GREY_B), Text("鹤翔万里", font="PangMenZhengDao", color=WHITE, size=2.2) ).arrange(DOWN, aligned_edge=LEFT, buff=0.1).next_to(img, buff=0.5) text[0][0].set_color(logo.color_2[2]) text[0][6].set_color(logo.color_1[2]) all_logo = Group(logo, text, line, img).center() text = Group(text, line, img) bg = Rectangle(height=10, width=10, fill_color="#333333", fill_opacity=1, stroke_width=0) bg.add_updater(lambda m: m.move_to(logo, aligned_edge=RIGHT).shift(RIGHT*0.2)) text.save_state() text.shift((text.get_right()[0]-bg.get_right()[0]+0.2)*LEFT) logo.save_state() logo.move_to(ORIGIN) logo.scale(1.5) tris = logo.inner_triangles.copy().rotate(-PI) self.add(text, bg) self.wait(0.3) self.add(tris) self.wait(0.3) self.remove(tris) self.wait(0.2) self.add(tris) self.wait(0.15) self.remove(tris) self.wait(0.1) self.add(tris) self.wait(0.1) self.remove(tris) self.wait(0.075) self.add(tris) self.wait(0.075) self.remove(tris) self.wait(0.05) self.add(tris) self.wait(0.05) self.remove(tris) # square = Square().set_height(tris.get_height()).set_stroke(width=0.5, color=WHITE) # self.play(ReplacementTransform(square, tris), run_time=1) self.wait(0.2) self.play(ShowSubmobjectsOneByOne(tris), rate_func=linear, run_time=0.4) for i in tris: self.add(i) self.wait(0.1) self.play(*[ReplacementTransform(tris[i], squares[i]) for i in range(4)], rate_func=rush_from, run_time=0.6) #self.play(ReplacementTransform(tris, squares), rate_func=linear, run_time=0.8) self.wait(0.1) self.play(*[ReplacementTransform(squares[i], logo[i]) for i in range(4)], rate_func=rush_from, run_time=0.6) #self.play(ReplacementTransform(squares, logo), rate_func=linear, run_time=1.5) self.wait(0.1) self.play( text.restore, logo.restore, rate_func=rush_from, run_time=0.8 ) self.wait(1) self.remove(bg) self.play(FadeOut(Group(*self.mobjects)))
path = "~/.calendars/*" default_list = "Tasks" date_format = "%d/%m/%Y" time_format = "%H:%M" default_due = 0
#!/usr/bin/python import SocketServer, SimpleHTTPServer, argparse, json parser = argparse.ArgumentParser() parser.add_argument('--port', '-p', type=int, default=8008) parser.add_argument('--log-request-body', action='store_true', default=False) args = parser.parse_args() class HTTPHandler(SimpleHTTPServer.SimpleHTTPRequestHandler): __not_found = "<body>Not found</body>" def do_POST(self): body = None content_length = self.headers.getheader('content-length') if content_length: body = self.rfile.read(int(content_length)) if self.path == '/clientauth': if body: json_body = json.loads(body) # just check that json is paresable if args.log_request_body: print(body) stream_url = json_body.get('url', '') if stream_url == '/local/mp4/sample1.mp4/playlist.m3u8': redirect_body = '{"return_code":302, "redirect_location":"http://127.0.0.1:8081/content/blocked.mp4/playlist.m3u8"}' self.send_response(200) self.send_header('Content-Length', len(redirect_body)) self.end_headers() self.wfile.write(redirect_body) elif stream_url == '/local/mp4/sample2.mp4/playlist.m3u8': response_body = '{"return_code":403}' self.send_response(200) self.send_header('Content-Length', len(response_body)) self.end_headers() self.wfile.write(response_body) elif stream_url.endswith('/chunks.m3u8') or stream_url.endswith('/chunk.m3u8'): redirect_location = 'http://' + json_body.get('host') + stream_url[:stream_url.rfind('/') + 1] + 'playlist.m3u8' print(redirect_location) redirect_body = '{"return_code":302, "redirect_location":"' + redirect_location + '"}' self.send_response(200) self.send_header('Content-Length', len(redirect_body)) self.end_headers() self.wfile.write(redirect_body) else: user_agent = json_body.get('user_agent', None) if user_agent == "BlockMe/1.0": self.send_response(403) self.send_header('Content-Length', 0) self.end_headers() # it is enough to send 403 with empty body return referer = json_body.get('referer', None) if referer == "http://block.me": self.send_response(403) self.send_header('Content-Length', 0) self.end_headers() # it is enough to send 403 with empty body return body = '{"return_code":200}' self.send_response(200) self.send_header('Content-Length', len(body)) self.end_headers() self.wfile.write(body) else: self.send_response(403) self.send_header('Content-Length', 0) self.end_headers() else: self.send_response(404) self.send_header('Content-Length', len(self.__not_found)) self.end_headers() self.wfile.write(self.__not_found) SocketServer.TCPServer.allow_reuse_address = True httpd = SocketServer.TCPServer(("", args.port), HTTPHandler) try: httpd.serve_forever() except KeyboardInterrupt, e: pass finally: httpd.socket.close()
class circle(): def __init__(self,r): self.radius = r def circumference(self): return self.radius*2*3.14 def area(self): return self.radius**2*3.14 def volume(self): return self.radius**3*(4/3)*3.14 x = circle(3) print x.area() print x.circumference() print x.volume()
""" This plugin does not perform ANY test: The aim is to visit all URLs grabbed so far and build the transaction log to feed data to other plugins NOTE: This is an active plugin because it may visit URLs retrieved by vulnerability scanner spiders which may be considered sensitive or include vulnerability probing """ from framework.utils import OWTFLogger from framework.dependency_management.dependency_resolver import ServiceLocator DESCRIPTION = "Visit URLs found by other tools, some could be sensitive: need permission" def run(PluginInfo): urls = ServiceLocator.get_component("url_manager").GetURLsToVisit() for url in urls: # This will return only unvisited urls ServiceLocator.get_component("requester").GetTransaction(True, url) # Use cache if possible Content = "%s URLs were visited" % str(len(urls)) OWTFLogger.log(Content) return ServiceLocator.get_component("plugin_helper").HtmlString(Content)
# -*- coding: utf-8 -*- """ Created on Tue Apr 12 17:39:48 2022 @author: marco """ import pandas as pd import numpy as np import os from scipy.linalg import pinv as pinv from scipy.linalg import inv as inv from sklearn.preprocessing import PolynomialFeatures os.chdir('C://Users//marco//Desktop//Projects') cwd = os.getcwd() print("Current working directory: {0}".format(cwd)) import warnings # `do not disturbe` mode warnings.filterwarnings('ignore') dtafile = 'Data.xlsx' df = pd.read_excel(dtafile, index_col=0, skiprows=0, na_values=('NE'),sheet_name='Univariate') df2 = hamilton(h=8,p=4, df=df) def hamilton(df,h,p): df = df.copy() df1 = pd.DataFrame() # Support matrix for i in range(h,h+p): tmp = df.iloc[:,:].shift(i) tmp.columns = tmp.columns + '_'+ str(i) df1 = pd.concat([df1,tmp], axis=1) df1.columns = df1.columns.str.replace("_0", "") df1.drop(columns=df.columns[1:], inplace=True) df1 = pd.concat([df,df1], axis=1) df1['cons']=1 return df1 df1 = df.copy() df2 = df.copy() y = df1.to_numpy() n = y.shape[0] k1 = np.eye(n,n) k2 = np.eye(n, k=1) * -2 k3 = np.eye(n, k=2) k = k1 + k2 + k3 k = k[:-2,:] I = np.identity(n) w1 = lam t1 = inv (I + w1 * k.T @ k ) @ y lamb = np.full(shape=n,fill_value=lam,dtype=np.int) lamb[0]=lam*3 lamb[-1] = lam*3 lamb[1]=lam*(3/2) lamb[-2] = lam*(3/2) w2 = lamb.reshape(-1,1) t2 = inv (I + w2 * k.T @ k ) @ y df1['trend'] = t1 df1['cycle'] = df1['y']-df1['trend'] df2['trend_esc'] = t2 df2['cycle_esc'] = df2['y']-df2['trend_esc'] return (df1,df2)
from django.db import models, transaction from projects.models import Project from organizations.models import Organization class WorkstreamType(models.Model): name = models.CharField(max_length=50) organization = models.ForeignKey(Organization, null=True, on_delete=models.CASCADE) def __str__(self): return self.name class Workstream(models.Model): """ Abstract base class """ name = models.CharField(max_length=50) description = models.CharField(max_length=50, null=True, blank=True) objective = models.CharField(max_length=50, blank=True) motivation = models.CharField(max_length=50, blank=True) owner = models.CharField(max_length=50, blank=True) timestamp = models.DateTimeField(auto_now_add=True, null=True) category = models.ForeignKey(WorkstreamType, on_delete=models.CASCADE) project = models.ForeignKey(Project, on_delete=models.CASCADE) is_the_reference_workstream = models.BooleanField(default=False) copied_from = models.ForeignKey('self', null=True, blank=True, on_delete=models.CASCADE, related_name='copied_from_set') def __str__(self): return self.name @property def augmented_name(self): return ''.join([self.name, ' (', self.project.name, ')']) @property def augmented_name2(self): return ''.join([self.name, ' (', self.project.name, ')']) def save(self, *args, **kwargs): if not self.is_the_reference_workstream: return super(Workstream, self).save(*args, **kwargs) with transaction.atomic(): # make sure that no other workstreams of this type are tagged as reference workstream # to prevent any problems related to this, make sure that is_the_reference_workstream isn't shown in any # forms available to users. Workstream.objects.filter( is_the_reference_workstream=True, category=self.category).update(is_the_reference_workstream=False) return super(Workstream, self).save(*args, **kwargs)
import os import reprint from fields.map import Map from towers.tower import tower_dict, get_tower_info from waves.monsters import PassedTheGateError from waves.wave import EasyWave, HeavyWave class Game: def __init__(self): self.gold = 100 self.lives = 30 self.points = 0 self.map = Map() self.waves = [EasyWave(), HeavyWave()] def build(self): def print_current(): os.system("clear") print("Buliding phase") self.map.print_with_monits([f"Available gold: {self.gold}", f"Lives: {self.lives}", f"Points: {self.points}", f"Towers price: {get_tower_info()}"]) while True: print_current() if input("Want to buy? y/n ") == "n": break tower_selection = input("Enter tower name ") try: tower = tower_dict[tower_selection.upper()]() except KeyError: print("Wrong letter") continue price = tower.price if price > self.gold: print("Not enough gold") continue while True: row = int(input("Enter row number ")) col = int(input("Enter col number ")) try: self.map.build_tower(tower, (row, col)) self.gold -= price break except ValueError: print("This field is unavailable") continue print_current() input("Press enter to start the battle") def fight(self): def get_current_status(): monsters_hp = [] for monster in self.map.monsters: monsters_hp.append(str(monster.hp)) monsters_hp = " ".join(monsters_hp) return f" Monsters hp: {monsters_hp}" wave = self.waves.pop(0) with reprint.output(output_type="dict", interval=0) as output_dict: while True: self.update() wave.release(self.map) wave.update() rows = self.map.get_rows() rows[0] += get_current_status() rows[1] += f" Lives: {self.lives}" for i, row in enumerate(rows): output_dict[i] = "{}".format("".join(row)) if not self.map.monsters: break if self.lives == 0: break def update(self): for _, field in self.map.wall.items(): if field.objects: tower = field.objects[0] tower.update() for monster in self.map.monsters: monster.update() if monster.is_alive: try: monster.move() except PassedTheGateError: self.map.remove_monster(monster) self.lives -= 1 else: self.gold += monster.gold self.points += monster.points self.map.remove_monster(monster) def run(self): while self.waves: self.build() os.system("clear") self.fight() if __name__ == '__main__': game = Game() game.run()
from typing import Optional from pydantic import BaseSettings, Field class Config(BaseSettings): ENVIRONMENT: str = Field(None, env="ENVIRONMENT") JWT_SECRET: Optional[str] DATA_HOST: Optional[str] TPV: Optional[str] TPV_USER: Optional[str] TPV_CORE: Optional[str] class Config: env_file: str = "config.env" class DevConfig(Config): class Config: env_prefix: str = "DEV_" class ProdConfig(Config): class Config: env_prefix: str = "PROD_" def get_config(): if "prod" == Config().ENVIRONMENT: return ProdConfig() else: return DevConfig() config = get_config()
#this function will return the price with a %10 discount def discount(price): result = 0.95*(price) # print("price=%f, result=%f", price, result) return result
from __future__ import print_function from collections import deque class TrainEarlyStopOnLosses(object): """Estimate if early stop conditions on losses fullfiled """ def __init__(self, stop_conditions, max_mem, stop_on_all_conditions): """Initialize the TrainEarlyStopOnLosses( class Parameters: stop_conditions (dict) - defintion of stops conditions with entries name_of_loss : max_change or name_of_Loss:[min_value,max_value] max_mem (int) - number of previous losses considered stop_on_all_conditions - if stop is on all conditions fullfilled (otherwise on any) """ self.stop_conditions = stop_conditions self.max_mem = max_mem self.stop_on_all_conditions = stop_on_all_conditions self.recent_losses = dict() # check early stop, storage losses def check(self, model): """checks if early stop Parameters: model Returns: boolean True if early stop conditions fullfilled """ early_stop_flag = False if len(self.stop_conditions) > 0: losses = model.get_current_losses() # check on start if properly configured if len(self.recent_losses) == 0: self. __check_config(losses) stop_on_losses = [] for loss in self.stop_conditions: stop_on_losses.append(False) if loss not in self.recent_losses: self.recent_losses[loss] = deque([], self.max_mem) self.recent_losses[loss].append(losses[loss]) if len(self.recent_losses[loss]) >= self.max_mem: min_mem_loss = max(self.recent_losses[loss]) max_mem_loss = min(self.recent_losses[loss]) # min max loss given if isinstance(self.stop_conditions[loss], list) or isinstance(self.stop_conditions[loss], tuple): if min_mem_loss > self.stop_conditions[loss][0] and max_mem_loss < self.stop_conditions[loss][1]: stop_on_losses[-1] = True # max diff given if isinstance(self.stop_conditions[loss], float): if abs(max_mem_loss - min_mem_loss) <= 2 * self.stop_conditions[loss]: stop_on_losses[-1] = True if self.stop_on_all_conditions: if all(stop_on_losses): print('all stop criteria fulfilled : stop') early_stop_flag = True else: if any(stop_on_losses): print('at least one stop criterion fulfilled : stop') early_stop_flag = True return early_stop_flag # early stop config sanity check def __check_config(self, losses): if len(self.stop_conditions) > 0: # early stop sanity check of conditions if self.max_mem <= 0: raise Exception("stop condition needs at least one prev data") for loss in self.stop_conditions: if loss not in losses: raise Exception("unrecognized stop condition : %s" % format(loss, )) # min max if isinstance(self.stop_conditions[loss], list) or isinstance(self.stop_conditions[loss], tuple): if self.stop_conditions[loss][0] >= self.stop_conditions[loss][1]: raise Exception( "wrong stop condition : %s bounds must be in order and not equal" % format(loss, )) if self.stop_conditions[loss][1] <= 0: raise Exception( "wrong stop condition : %s upper bound cannot be negative or zero" % format(loss, )) # diff if isinstance(self.stop_conditions[loss], float): if self.stop_conditions[loss] <= 0: raise Exception("wrong stop condition : %s cannot be negative or zero" % format(loss, ))
#!/usr/bin/env python3 # # huecon.py # # Interactive command line Hue console # import argparse import os import sys import config import hue import cli # Config file location CONFIG_FILE = os.path.expanduser("~/.huecon") CLI_HISTORY_FILE = os.path.expanduser("~/.huecon_history") CLI_DEF = { "show|:Show various Hue system info": { "lights:Show the lights": { "None:Show summary": "show_lights", "detail:Show detail": "show_lights_detail", "name:Show specific light by name": { "<light-name>:Show light with this name": "show_light", }, "id:Show specific light by id": { "<light-id>:Show light with this id": "show_light", }, }, "scenes:Show the scenes": { "None:Show summary": "show_scenes", "detail:Show detail": "show_scenes", "name:Show specific scene by name": { "<scene-name>:Show scene with this name": "show_scene", }, "id:Show specific scene by id": { "<scene-id>:Show scene with this id": "show_scene", }, }, "resourcelinks:Show the resourcelinks": { "None:Show summary": "show_resourcelinks", "name:Show specific resourcelink by name": { "<rlink-name>:Show resourcelink with this name": "show_resourcelink", }, "id:Show specific resourcelink by id": { "<rlink-id>:Show resourcelinl with this id": "show_resourcelink", }, }, "groups:Show the groups": { "None:Show summary": "show_groups", "name:Show specific group by name": { "<group-name>:Show group with this name": "show_group", }, "id:Show specific group by id": { "<group-id>:Show group with this id": "show_group", }, }, "sensors:Show the sensors": { "None:Show summary": "show_sensors", "name:Show specific sensor by name": { "<sensor-name>:Show sensor with this name": "show_sensor", }, "id:Show specific sensor by id": { "<sensor-id>:Show sensor with this id": "show_sensor", }, }, "rules:Show the rules": { "None:Show summary": "show_rules", "name:Show specific rule by name": { "<rule-name>:Show rule with this name": "show_rule", }, "id:Show specific rule by id": { "<rule-id>:Show rule with this id": "show_rule", }, }, "schedules:Show the schedules": { "None:Show summary": "show_schedules", "name:Show specific schedule by name": { "<sched-name>:Show schedule with this name": "show_schedule", }, "id:Show specific schedule by id": { "<sched-id>:Show schedule with this id": "show_schedule", }, }, "whitelist:Show the whitelist of users": "show_whitelist", }, "light:Perform actions for a light": { "id:Perform action for a light id": { "<light-id>:Perform action for this light id": { "on:Turn light on": "light_on", "off:Turn light off": "light_off", }, }, "name:Perform action for a light name": { "<light-name>:Perform action for this light name": { "on:Turn light on": "light_on", "off:Turn light off": "light_off", }, }, }, "group:Perform actions for a group": { "id:Perform action for a group id": { "<group-id>:Perform action for this group id": { "on:Turn group on": "group_on", "off:Turn group off": "group_off", }, }, "name:Perform action for a group name": { "<group-name>:Perform action for this group name": { "on:Turn group on": "group_on", "off:Turn group off": "group_off", }, }, }, "exit:Exit Huecon": "do_exit", } BANNER = """ _ _ ____ | | | | _ _ ___ / ___| ___ _ __ | |_| || | | | / _ \| | / _ \ | '_ \\ | _ || |_| || __/| |___| (_) || | | | |_| |_| \__,_| \___| \____|\___/ |_| |_| """ def exit_error(message): print(message) sys.exit(1) class ObjectIDArg(cli.ArgumentDef): def __init__(self, get_fn, arg_name): self.get_fn = get_fn super().__init__(arg_name + "-id", arg_name) def complete(self, ctx, arg): return [o.id for o in self.get_fn() if o.id.startswith(arg)] def process(self, ctx, arg): # Find the object! objects = {o.id: o for o in self.get_fn()} try: return objects[arg] except KeyError as exc: raise cli.ArgumentError("Unknown ID".format(self.name)) from exc def help_options(self, ctx): return [(o.id, o.name) for o in self.get_fn()] class ObjectNameArg(cli.ArgumentDef): def __init__(self, get_fn, arg_name): self.get_fn = get_fn super().__init__(arg_name + "-name", arg_name) def splitline(self, ctx, arg): # If there are quotes, then walk till we find last if arg and arg[0] == '"': if '" ' not in arg[1:]: return arg, None else: end = arg[1:].index('" ') return arg[:end + 2], arg[end + 2:].lstrip() else: return super().splitline(ctx, arg) def complete(self, ctx, arg): return ['"{}"'.format(o.name) for o in self.get_fn() if '"{}"'.format(o.name).startswith(arg)] def process(self, ctx, arg): # Find the object! objects = {o.name: o for o in self.get_fn()} # Strip quotes if len(arg) > 1 and arg[0] == '"' and arg[-1] == '"': arg = arg[1:-1] try: return objects[arg] except KeyError as exc: raise cli.ArgumentError("Unknown name".format(self.name), arg) from exc class HueCon(cli.Interface): intro = BANNER + '\n\nType help or ? to list commands.\n' prompt = '(huecon) ' def __init__(self, bridge_address=None): # Load config file self.config_file = config.Config(CONFIG_FILE) # Connect to bridge self.bridge = self._connect_to_bridge(bridge_address) # Create argument definitions arg_defs = {} for name, arg_name in (("light", None), ("scene", None), ("group", None), ("sensor", None), ("rule", None), ("schedule", "sched"), ("resourcelink", "rlink")): if arg_name is None: arg_name = name func = getattr(self.bridge, "get_{}s".format(name)) arg_defs["<{}-id>".format(arg_name)] = ObjectIDArg(func, name) arg_defs["<{}-name>".format(arg_name)] = ObjectNameArg(func, name) super().__init__(CLI_DEF, arg_defs, CLI_HISTORY_FILE) # ------------------------------------------------------------------------ # Utils # ------------------------------------------------------------------------ def _connect_to_bridge(self, bridge_address): # Get known bridges known_bridges = {bid: user for bid, user in self.config_file.get_bridges()} if bridge_address is None: address = input("Enter hue bridge host: ") else: address = bridge_address # Create a bridge try: bridge = hue.Bridge(address) except hue.Error as exc: exit_error("Bad bridge address: {!s}".format(exc)) print("Connected to bridge '{}'".format(bridge.name)) if bridge.id not in known_bridges: print("Bridge not known, registering with bridge") input("Press bridge button then press enter to continue...") try: username = bridge.register("huecon") except hue.Error as exc: exit_error("Failed to register with bridge: {!s}".format(exc)) # Update config self.config_file.add_bridge(bridge.id, username) self.config_file.write_file() else: username = known_bridges[bridge.id] print("Logging in...") try: bridge.auth(username) except hue.Error as exc: exit_error("Failed to connect to bridge: {!s}".format(exc)) return bridge def _print_light(self, light): print(light.name) print(" ID:", light.id) print(" Reachable:", bool_str(light.is_reachable)) print(" On:", bool_str(light.is_on)) print(" Brightness: {}%".format(light.state.bri * 100 / hue.common.MAX_BRIGHTNESS)) print(" Hue:", light.state.hue) print(" Saturation:", light.state.sat) print(" Effect:", light.state.effect) def _print_scene(self, scene): print(scene.name) print(" ID: {}".format(scene.id)) print(" Lights:") print(" " + "\n ".join(l.name for l in scene.lights)) print(" Last updated: {!s}".format(scene.last_updated)) print(" Recycle: {}".format(bool_str(scene.recycle))) print(" Locked: {}".format(bool_str(scene.locked))) print(" Owner: {}".format(scene.owner)) # ------------------------------------------------------------------------ # Action functions # ------------------------------------------------------------------------ def show_lights(self, ctx): print("Lights:") for light in self.bridge.get_lights(): print(" {} (state: {}, id: {})".format(light.name, light.state_str, light.id)) def show_light(self, ctx): self._print_light(ctx.args['light']) def show_lights_detail(self, ctx): print("Detailed lights info") for light in self.bridge.get_lights(): print("") self._print_light(light) def light_on(self, ctx): light = ctx.args["light"] print("Turning light '{}' on".format(light.name)) light.turn_on() def light_off(self, ctx): light = ctx.args["light"] print("Turning light '{}' off".format(light.name)) light.turn_off() def show_scenes(self, ctx): print("Scenes:") scenes = self.bridge.get_scenes() maxlen = max(len(s.name) for s in scenes) for scene in scenes: if "detail" in ctx.kws: print("") self._print_scene(scene) else: print(" {:{}} (id: {})".format(scene.name, maxlen, scene.id)) def show_scene(self, ctx): self._print_scene(ctx.args['scene']) def show_resourcelinks(self, ctx): print("Resourcelinks:") for rlink in self.bridge.get_resourcelinks(): print(" {} (id: {})".format(rlink.name, rlink.id)) print(" '{}'".format(rlink.description)) def show_resourcelink(self, ctx): rlink = ctx.args['resourcelink'] print(rlink.name) print(" Description: {}".format(rlink.description)) print(" ID: {}".format(rlink.id)) print(" Recycle: {}".format(bool_str(rlink.recycle))) print(" Links:") objects = rlink.links maxlen = max(len(type(obj).__name__) + len(obj.name) + 3 for obj in objects) for obj in objects: name = "{} '{}'".format(type(obj).__name__, obj.name) print(" {:{}} (id: {})".format(name, maxlen, obj.id)) def show_groups(self, ctx): print("Groups:") groups = self.bridge.get_groups() maxlen = max(len(group.name) for group in groups) for group in groups: print(" {:{}} (state: {}, type: {}, id: {})" .format(group.name, maxlen, group.state_str, group.type, group.id)) def show_group(self, ctx): group = ctx.args['group'] print(group.name) print(" ID: {}".format(group.id)) print(" Type: {}".format(group.type)) print(" Class: {}".format(group.group_class)) print(" State: {}".format(group.state_str)) print(" Recycle: {}".format(bool_str(group.recycle))) print(" Lights:") for light in group.lights: print(" {} ({})".format(light.name, light.state_str)) def show_sensors(self, ctx): print("Sensors:") sensors = self.bridge.get_sensors() maxlen = max(len(sensor.name) for sensor in sensors) for sensor in sensors: print(" {:{}} (type: {}, state: {}, id: {})" .format(sensor.name, maxlen, sensor.type_str, sensor.state_str, sensor.id)) def show_sensor(self, ctx): sensor = ctx.args['sensor'] print(sensor.name) print(" ID: {}".format(sensor.id)) print(" Type: {}".format(sensor.type_str)) print(" State: {}".format(sensor.state_str)) print(" Last updated: {!s}".format(sensor.last_updated)) print(" Recycle: {}".format(bool_str(sensor.recycle))) def show_rules(self, ctx): print("Rules:") rules = self.bridge.get_rules() maxlen = max(len(rule.name) for rule in rules) for rule in rules: print(" {:{}} (id: {})" .format(rule.name, maxlen, rule.id)) def show_rule(self, ctx): rule = ctx.args['rule'] print(rule.name) print(" ID: {}".format(rule.id)) print(" Status: {}".format(rule.status)) print(" Owner: {}".format(rule.owner)) print(" Last triggered: {!s}".format(rule.last_triggered)) print(" Times triggered: {}".format(rule.times_triggered)) print(" Conditions:") for cond in rule.conditions: print(" {!s}".format(cond)) print(" Actions:") for act in rule.actions: print(" {!s}".format(act)) def show_schedules(self, ctx): print("Schedules:") scheds = self.bridge.get_schedules() maxlen = max(len(sched.name) for sched in scheds) for sched in scheds: print(" {:{}} (id: {}, enabled: {})" .format(sched.name, maxlen, sched.id, bool_str(sched.is_enabled))) def show_schedule(self, ctx): sched = ctx.args['schedule'] print(sched.name) print(" ID: {}".format(sched.id)) print(" Enabled: {}".format(bool_str(sched.is_enabled))) print(" Timer time: {!s}".format(sched.timer_time)) print(" Created: {!s}".format(sched.created_time)) print(" Start time: {!s}".format(sched.start_time)) print(" Command:\n {!s}".format(sched.command_action)) print(" Auto-delete: {}".format(sched.auto_delete)) print(" Recycle: {}".format(sched.recycle)) def show_whitelist(self, ctx): print("User whitelist (ordered by last used):") for user in sorted(self.bridge.get_whitelist().values(), key=lambda u: u.last_used.datetime, reverse=True): print(" {}".format(user.name)) print(" Created: {!s}, Last used: {!s}" .format(user.created, user.last_used)) def group_on(self, ctx): group = ctx.args["group"] print("Turning group '{}' on".format(group.name)) group.turn_on() def group_off(self, ctx): group = ctx.args["group"] print("Turning group '{}' off".format(group.name)) group.turn_off() def do_exit(self, ctx): print("Bye!") ctx.end = True def bool_str(val): if val is None: return "--" elif val: return "Yes" else: return "No" if __name__ == '__main__': parser = argparse.ArgumentParser( description="Interactive console for managing Hue lights") parser.add_argument("-b", "--bridge", help="Connect to this bridge") args = parser.parse_args() HueCon(args.bridge)
"""Train dann.""" import numpy as np import torch import torch.nn as nn import torch.optim as optim from core.test import test from core.test_weight import test_weight from utils.utils import save_model import torch.backends.cudnn as cudnn import math cudnn.benchmark = True def weight(ten, a=10): a = torch.tensor(a, device=ten.device) return (torch.atan(a*(ten-0.5)) + torch.atan(0.5*a))/(2*torch.atan(a*0.5)) def lipton_weight(ten, beta = 4): order = torch.argsort(ten) return (order < len(ten)/(1+beta)).float() def get_quantile(ten, a = 0.5): return torch.kthvalue(ten,math.floor(len(ten)*a))[0] def train_dann(model, params, src_data_loader, tgt_data_loader, src_data_loader_eval, tgt_data_loader_eval, num_src, num_tgt, device, logger): """Train dann.""" #################### # 1. setup network # #################### # setup criterion and optimizer if not params.finetune_flag: print("training non-office task") # optimizer = optim.SGD(model.parameters(), lr=params.lr, momentum=params.momentum, weight_decay=params.weight_decay) optimizer = optim.Adam(model.parameters(), lr=params.lr) else: print("training office task") parameter_list = [{ "params": model.features.parameters(), "lr": 0.001 }, { "params": model.fc.parameters(), "lr": 0.001 }, { "params": model.bottleneck.parameters() }, { "params": model.classifier.parameters() }, { "params": model.discriminator.parameters() }] optimizer = optim.SGD(parameter_list, lr=0.01, momentum=0.9) criterion0 = nn.CrossEntropyLoss(reduction = 'mean') criterion = nn.CrossEntropyLoss(reduction = 'none') weight_src = torch.ones(num_src).to(device) weight_tgt = torch.ones(num_tgt).to(device) #################### # 2. train network # #################### global_step = 0 for epoch in range(params.num_epochs): # set train state for Dropout and BN layers model.train() # zip source and target data pair len_dataloader = min(len(src_data_loader), len(tgt_data_loader)) data_zip = enumerate(zip(src_data_loader, tgt_data_loader)) for step, ((images_src, class_src, idx_src), (images_tgt, _, idx_tgt)) in data_zip: p = float(step + epoch * len_dataloader) / \ params.num_epochs / len_dataloader alpha = 2. / (1. + np.exp(-10 * p)) - 1 # if params.lr_adjust_flag == 'simple': # lr = adjust_learning_rate(optimizer, p) # else: # lr = adjust_learning_rate_office(optimizer, p) # logger.add_scalar('lr', lr, global_step) # prepare domain label size_src = len(images_src) size_tgt = len(images_tgt) label_src = torch.zeros(size_src).long().to(device) # source 0 label_tgt = torch.ones(size_tgt).long().to(device) # target 1 # make images variable class_src = class_src.to(device) images_src = images_src.to(device) images_tgt = images_tgt.to(device) # zero gradients for optimizer optimizer.zero_grad() # train on source domain src_class_output, src_domain_output = model(input_data=images_src, alpha=alpha) src_loss_class = criterion0(src_class_output, class_src) if params.run_mode in [0,2]: src_loss_domain = criterion0(src_domain_output, label_src) else: src_loss_domain = criterion(src_domain_output, label_src) prob = torch.softmax(src_domain_output.data, dim = -1) if params.soft: if params.quantile: weight_src[idx_src] = (torch.sort(prob[:,1])[1]).float().detach() else: weight_src[idx_src] = weight(prob[:,1]).detach() else: if params.quantile: weight_src[idx_src] = (prob[:,0] < \ get_quantile(prob[:,0],params.threshold[0])).float().detach() else: weight_src[idx_src] = (prob[:,0] < params.threshold[0]).float().detach() src_loss_domain = torch.dot(weight_src[idx_src], src_loss_domain )/ torch.sum(weight_src[idx_src]) #train on target domain _, tgt_domain_output = model(input_data=images_tgt, alpha=alpha) if params.run_mode in [0,1]: tgt_loss_domain = criterion0(tgt_domain_output, label_tgt) else: tgt_loss_domain = criterion(tgt_domain_output, label_tgt) prob = torch.softmax(tgt_domain_output.data, dim = -1) if params.soft: if params.quantile: weight_tgt[idx_tgt] = (torch.sort(prob[:,0])[1]).float().detach() else: weight_tgt[idx_tgt] = weight(prob[:,0]).detach() else: if params.quantile: weight_tgt[idx_tgt] = (prob[:,1] < \ get_quantile(prob[:,1],params.threshold[1])).float().detach() else: weight_tgt[idx_tgt] = (prob[:,1] < params.threshold[1]).float().detach() tgt_loss_domain = torch.dot(weight_tgt[idx_tgt], tgt_loss_domain ) / torch.sum(weight_tgt[idx_tgt]) loss = src_loss_class + src_loss_domain + tgt_loss_domain if params.src_only_flag: loss = src_loss_class # optimize dann loss.backward() optimizer.step() global_step += 1 # print step info logger.add_scalar('src_loss_class', src_loss_class.item(), global_step) logger.add_scalar('src_loss_domain', src_loss_domain.item(), global_step) logger.add_scalar('tgt_loss_domain', tgt_loss_domain.item(), global_step) logger.add_scalar('loss', loss.item(), global_step) if ((step + 1) % params.log_step == 0): print( "Epoch [{:4d}/{}] Step [{:2d}/{}]: src_loss_class={:.6f}, src_loss_domain={:.6f}, tgt_loss_domain={:.6f}, loss={:.6f}" .format(epoch + 1, params.num_epochs, step + 1, len_dataloader, src_loss_class.data.item(), src_loss_domain.data.item(), tgt_loss_domain.data.item(), loss.data.item())) # eval model if ((epoch + 1) % params.eval_step == 0): src_test_loss, src_acc, src_acc_domain = test_weight(model, src_data_loader_eval, device, flag='source') tgt_test_loss, tgt_acc, tgt_acc_domain = test_weight(model, tgt_data_loader_eval, device, flag='target') logger.add_scalar('src_test_loss', src_test_loss, global_step) logger.add_scalar('src_acc', src_acc, global_step) logger.add_scalar('src_acc_domain', src_acc_domain, global_step) logger.add_scalar('tgt_test_loss', tgt_test_loss, global_step) logger.add_scalar('tgt_acc', tgt_acc, global_step) logger.add_scalar('tgt_acc_domain', tgt_acc_domain, global_step) # save model parameters if ((epoch + 1) % params.save_step == 0): save_model(model, params.model_root, params.src_dataset + '-' + params.tgt_dataset + "-dann-{}.pt".format(epoch + 1)) # save final model save_model(model, params.model_root, params.src_dataset + '-' + params.tgt_dataset + "-dann-final.pt") return model def adjust_learning_rate(optimizer, p): lr_0 = 0.01 alpha = 10 beta = 0.75 lr = lr_0 / (1 + alpha * p)**beta for param_group in optimizer.param_groups: param_group['lr'] = lr return lr def adjust_learning_rate_office(optimizer, p): lr_0 = 0.001 alpha = 10 beta = 0.75 lr = lr_0 / (1 + alpha * p)**beta for param_group in optimizer.param_groups[:2]: param_group['lr'] = lr for param_group in optimizer.param_groups[2:]: param_group['lr'] = 10 * lr return lr
# Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Provide stub objects that can act as stand-in "dummy" datasets for simple use cases, like getting all classes in a dataset. This exists so that demos can be run without requiring users to download/install datasets first. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from utils.collections import AttrDict def get_coco_dataset(): """A dummy COCO dataset that includes only the 'classes' field.""" ds = AttrDict() classes = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] ds.classes = {i: name for i, name in enumerate(classes)} return ds def get_tt100k_dataset(): ds = AttrDict() classes = [ '__background__', 'pl40', 'p26', 'p27', 'p5', 'ip', 'pl30', 'pn', 'w30', 'p11', 'pl5', 'wo', 'io', 'po', 'i4', 'pl70', 'pl80', 'pl50', 'ph4', 'pl100', 'il80', 'il70', 'il60', 'pne', 'i2', 'pg', 'p17', 'p12', 'p22', 'pl60', 'pm30', 'pl120', 'il110', 'il90', 'p10', 'w57', 'w55', 'ph4.5', 'w13', 'pl20', 'w59', 'i5', 'w63', 'p16', 'w32', 'pb', 'pl110', 'il100', 'ph5', 'p3', 'w58', 'ph2', 'pm55', 'p19', 'pl25', 'pm20', 'pr40', 'ph3.5', 'p18', 'w3', 'p8', 'ps', 'ph2.8', 'w12', 'pa14', 'p6', 'p9', 'p23', 'ph3', 'w47', 'il50', 'pr30', 'w37', 'w46', 'pm35', 'pr100', 'i10', 'pl15', 'w34', 'i13', 'pl10', 'p1', 'i12', 'pm2', 'pl90', 'pm10', 'pr20', 'pm40', 'w16', 'w15', 'i3', 'ph2.5', 'p15', 'pm8', 'pa12', 'w21', 'pa13', 'pr50', 'p13', 'pa10', 'ph2.2', 'ph4.2', 'pm5', 'i1', 'pr60', 'w42', 'pw3.2', 'p21', 'p25', 'pr70', 'w22', 'w10', 'p4', 'p14', 'pm13', 'pw4.2', 'pm50', 'w35', 'pl0', 'p2', 'w45', 'w8', 'w41', 'pl35', 'ph4.3', 'ph3.2', 'p20', 'pa8', 'ph2.1', 'pr80', 'pm15', 'i11', 'w20', 'i14', 'ph4.8', 'ph1.5', 'ph2.9', 'w18', 'w5', 'w38', 'pr10', 'pw2', 'pw3', 'pw4.5', 'p28', 'ph5.3', 'pw2.5', 'pw4', 'ph2.4', 'pw3.5', 'w66', 'p24', 'pc', 'pl4', 'pm1.5', 'ph3.3', 'w43', 'w31', 'ph5.5', 'pm46', 'pm25', 'w24', 'w48', 'w50', 'w26', 'w60', 'ph4.4', 'w49', 'ph2.6', 'i15', 'p7', 'pn40', 'pl65', 'w1', 'w62', 'w44'] ds.classes = {i: name for i, name in enumerate(classes)} return ds
import email @then(u'my details should match') def step_impl(context): context.execute_steps(u''' Then I should see "$first_name" And I should see "$last_name" And I should see "$contact_number" And I should see "$email" ''') @when(u'I confirm and submit my plea') def step_impl(context): context.execute_steps(u''' When I check "understand" And I press "Make your pleas" ''') @then(u'I should see the confirmation page') def step_impl(context): context.execute_steps(u''' Then the browser's URL should be "plea/complete/" And I should see "Your pleas have been sent to the magistrate" And I should see "Your URN: $urn" ''') @then(u'I should receive the confirmation email') def step_impl(context): context.execute_steps(u''' Then I should receive an email at "$email" with subject "Online plea submission confirmation" # And I should receive an email at "$email" containing "Your online pleas have been submitted" ''') # the above behaving step is failing in library code persona = context.persona messages = context.mail.messages_for_user(persona['email']) text = str(messages[0]) assert 'Your online pleas have been submitted' in text assert 'Your URN: {}'.format(persona['urn']) in text @then(u'police should receive confirmation email') def step_impl(context): context.execute_steps(u''' Then I should receive an email at "[email protected]" with subject "POLICE ONLINE PLEA: 00/FF/12345/60 <SJP> SMITH John" ''') @then(u'the court should receive my plea email with attached details') def step_impl(context): persona = context.persona name = "{} {}".format(persona['last_name'].upper(), persona['first_name']) context.execute_steps(u''' Then I should receive an email at "[email protected]" with subject "ONLINE PLEA: $urn <SJP> %s" And I should receive an email at "[email protected]" with attachment "plea.html" ''' % name) messages = context.mail.messages_for_user('[email protected]') attachment = email.message_from_string(messages[0]).get_payload(1) text = str(attachment) assert persona['first_name'] in text assert persona['last_name'] in text assert persona['email'] in text assert persona['contact_number'] in text assert persona['urn'] in text assert 'Charge 1' in text assert 'Charge 2' in text assert 'Your employment status' in text assert 'Total weekly income' in text
#!/usr/bin/python ''' ''' from ansible.module_utils.basic import AnsibleModule from Crypto.Cipher import AES #from Crypto.Util.Padding import pad, unpad from Crypto import Random from Crypto.Cipher import PKCS1_OAEP from Crypto.PublicKey import RSA import base64, os, random, tarfile, struct ANSIBLE_METADATA = { 'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'stratio' } class FileCryptException(Exception): """docstring for FileCryptException""" def __init__(self, msg, exception_type): super(FileCryptException, self).__init__() self.msg = msg self.exception_type = exception_type DOCUMENTATION = ''' --- module: file_cript short_description: Encrypts or decrypts a file version_added: "2.8" description: - "This module allows users encrypt or decrypt a file using RSA key files" options: src: description: - Source file to encrypt or decrypt required: true dest: description: - Optional destination path. Default is source path with a '.crypt' suffix. required: false op: description: - "encrypt" / "decrypt". required: true rm_src: description: - If true, this module will delete the source file once the operation is finished. Default is false required: false rsa_key_raw: description: - Raw public/private key to encrypt/decrypt the file. required: true rsa_key_path: description: - Path to the public/private key to encrypt/decrypt the file. required: true author: - Viktor Jacynycz ([email protected]) ''' EXAMPLES = ''' file_crypt: src: /workspace/my_big_file.data op: cypher rm_src: no rsa_key_raw: "{{ lookup('file', key_dir + '/public_key.pem') }}" file_crypt: src: /workspace/my_big_file.data dest: /workspace/filencrypted.crypt op: cypher rm_src: yes rsa_key_path: "/tmp/rsa_keys/public_key.pem" file_crypt: src: /workspace/my_big_file.data.crypt op: decypher rsa_key_path: "{{ lookup('file', key_dir + '/private_key.pem') }}" ''' RETURN = ''' cryptlog: description: Log text about the operation type: str returned: always ''' def run_module(): '''Main module''' module_args = dict( src=dict(type='str', required=True), dest=dict(type='str', required=False, default=''), op=dict(type='str', required=True), rm_src=dict(type='bool', required=False, default=False), rsa_key_raw=dict(type='str', required=False, default=''), rsa_key_path=dict(type='str', required=False, default='') ) result = dict( changed=False, log=[] ) module = AnsibleModule( argument_spec=module_args, supports_check_mode=True ) error = dict( msg='', error_type='' ) if module.check_mode: module.exit_json(**result) _src = module.params['src'] _dest = module.params['dest'] _op = module.params['op'] _rm_src = module.params['rm_src'] _rsa_key_raw = module.params['rsa_key_raw'] _rsa_key_path = module.params['rsa_key_path'] log = [] try: key = load_key(_rsa_key_raw, _rsa_key_path, _op) if _op == 'encrypt': encrypt_operation(key, _src, _dest, _rm_src, log) elif _op == 'decrypt': decrypt_operation(key, _src, _dest, _rm_src, log) else: raise FileCryptException("Parameter 'op' must be ['encrypt','decrypt']", "Wrong operation") except FileCryptException as snake_case_error: error['msg'] = snake_case_error.msg error['error_type'] = snake_case_error.exception_type module.fail_json(**error) result['log'] = log module.exit_json(**result) def load_key(rsa_key_raw, rsa_key_path, _op): try: # Try to load raw RSA key if rsa_key_raw == '': with open(rsa_key_path,'r') as rsa_public_file: rsa_key_data = RSA.importKey(rsa_public_file.read()) else: rsa_key_data = RSA.importKey(rsa_key_raw) if _op == 'encrypt': return PKCS1_OAEP.new(rsa_key_data.publickey()) else: return PKCS1_OAEP.new(rsa_key_data) except Exception as other_error: raise FileCryptException("Key file could not be loaded. "+str(other_error), "Keyfile error") def encrypt_operation(key, src, dest, rm_src, log): log.append('Encrypting file '+src) # Generate a new random AES key aeskey = Random.new().read(32) if dest == '': dest = src + ".crypt" encrypt_file(src, aeskey, dest) # Encrypt the key using RSA dest_dirname = os.path.dirname(dest) ciphertext = key.encrypt(aeskey) with open(dest_dirname + '/aes_key.crypt','wb') as rsafile: rsafile.write(base64.b64encode(ciphertext)) log.append('Encrypting complete') # Generate a tar containing the file encrypted and the key log.append('Generating tar file') with tarfile.open(dest + '.tar', "w:") as tar: tar.add(dest_dirname + '/aes_key.crypt', arcname='aes_key.crypt') tar.add(dest, arcname=os.path.basename(dest) ) os.remove(dest_dirname + '/aes_key.crypt') os.remove(dest) log.append('Tar file generated: ' + dest + '.tar') # Remove src file if rm_src is true if rm_src: os.remove(src) log.append('Removed source file') def decrypt_operation(key, src, dest, rm_src, log): log.append('Decrypting file '+src) # Extract tar file with tarfile.open(src, 'r:') as tgz: tgz.extractall(path=os.path.dirname(src)) # Get files cryptfile = src[:-4] aes_key_path = os.path.dirname(src) + '/aes_key.crypt' if dest == '': if cryptfile.endswith('.crypt'): dest = cryptfile[:-6] else: dest = src + ".crypt" with open(aes_key_path, 'rb') as encrypted_key: # Decrypt the key file using RSA aes_key = key.decrypt(base64.b64decode(encrypted_key.read())) # Decrypt the file using the decrypted key decrypt_file(cryptfile, aes_key, dest) log.append('Decrypted file '+ dest) os.remove(cryptfile) os.remove(aes_key_path) # Remove src file if rm_src is true if rm_src: os.remove(src) log.append('Removed source file') def encrypt(message, key): message = pad(message,AES.block_size) iv = Random.new().read(AES.block_size) cipher = AES.new(key, AES.MODE_CBC, iv) return iv + cipher.encrypt(message) def decrypt(ciphertext, key): iv = ciphertext[:AES.block_size] cipher = AES.new(key, AES.MODE_CBC, iv) plaintext = cipher.decrypt(ciphertext[AES.block_size:]) return unpad(plaintext,AES.block_size) def decrypt_file(in_filename, key, out_filename=None, chunksize=24*1024): """ Decrypts a file using AES (CBC mode) with the given key. Parameters are similar to encrypt_file, with one difference: out_filename, if not supplied will be in_filename without its last extension (i.e. if in_filename is 'aaa.zip.enc' then out_filename will be 'aaa.zip') """ if not out_filename: out_filename = os.path.splitext(in_filename)[0] with open(in_filename, 'rb') as infile: origsize = struct.unpack('<Q', infile.read(struct.calcsize('Q')))[0] iv = infile.read(16) decryptor = AES.new(key, AES.MODE_CBC, iv) with open(out_filename, 'wb') as outfile: while True: chunk = infile.read(chunksize) if len(chunk) == 0: break outfile.write(decryptor.decrypt(chunk)) outfile.truncate(origsize) def encrypt_file(in_filename, key, out_filename=None, chunksize=64*1024): """ Encrypts a file using AES (CBC mode) with the given key. key: The encryption key - a string that must be either 16, 24 or 32 bytes long. Longer keys are more secure. in_filename: Name of the input file out_filename: If None, '<in_filename>.enc' will be used. chunksize: Sets the size of the chunk which the function uses to read and encrypt the file. Larger chunk sizes can be faster for some files and machines. chunksize must be divisible by 16. """ if not out_filename: out_filename = in_filename + '.crypt' #iv = ''.join(chr(random.randint(0, 0xFF)) for i in range(16)) iv = Random.new().read(AES.block_size) encryptor = AES.new(key, AES.MODE_CBC, iv) filesize = os.path.getsize(in_filename) with open(in_filename, 'rb') as infile: with open(out_filename, 'wb') as outfile: outfile.write(struct.pack('<Q', filesize)) outfile.write(iv) while True: chunk = infile.read(chunksize) if len(chunk) == 0: break elif len(chunk) % 16 != 0: chunk += ' ' * (16 - len(chunk) % 16) outfile.write(encryptor.encrypt(chunk)) def old_encrypt_file(file_name, key, dest): with open(file_name, 'rb') as fo: plaintext = fo.read() enc = encrypt(plaintext, key) with open(dest, 'wb') as fo: fo.write(enc) def old_decrypt_file(file_name, key, dest): if dest == '': dest = file_name + ".decrypt" with open(file_name, 'rb') as fo: ciphertext = fo.read() dec = decrypt(ciphertext, key) with open(dest, 'wb') as fo: fo.write(dec) def main(): '''Main function''' run_module() if __name__ == '__main__': main()
# vim: ai ts=4 sts=4 et sw=4 encoding=utf-8 import unittest from mock import Mock, patch from django.contrib.auth.models import User from datawinners.accountmanagement.models import NGOUserProfile from datawinners.alldata import helper from datawinners.alldata.helper import get_all_project_for_user from datawinners.project.couch_view_helper import get_all_projects class TestHelper(unittest.TestCase): def setUp(self): self.database_manager = helper.get_database_manager self.all_projects = get_all_projects helper.get_database_manager = stub_get_database_manager def _get_normal_user(self): user = Mock(User) normal_profile = Mock(NGOUserProfile) normal_profile.reporter = False user.get_profile.return_value = normal_profile return user def _get_reporter_user(self): user = Mock(User) reporter_profile = Mock(NGOUserProfile) reporter_profile.reporter = True reporter_profile.reporter_id = 'something' user.get_profile.return_value = reporter_profile return user # def test_should_return_all_projects(self): # user = self._get_normal_user() # with patch("datawinners.alldata.helper.get_all_projects") as get_all_projects_mock: # get_all_projects_mock.return_value = {"project_name": "hello world"} # projects = get_all_project_for_user(user) # assert projects["project_name"] == "hello world" # def test_should_return_all_projects_for_user(self): # user = self._get_reporter_user() # get_all_projects = stub_get_all_projects_for_reporter # projects = get_all_project_for_user(user) # assert projects["project_name"] == "hello world" def test_should_return_disabled_and_display_none_for_reporter(self): user = self._get_reporter_user() disabled, hide = helper.get_visibility_settings_for(user) assert disabled == 'disable_link_for_reporter' assert hide == 'none' def test_should_return_enabled_and_display_for_other(self): user = self._get_normal_user() disabled, hide = helper.get_visibility_settings_for(user) assert hide == "" assert disabled == "" def test_should_return_DataSubmission_for_reporter(self): user = self._get_reporter_user() assert helper.get_page_heading(user) == 'Data Submission' def test_should_return_AllData_for_other(self): user = self._get_normal_user() assert helper.get_page_heading(user) == 'Questionnaires' def tearDown(self): get_all_projects = self.all_projects helper.get_database_manager = self.database_manager def stub_get_database_manager(*args): return Mock() def stub_get_all_projects_for_reporter(*args): assert args[0] is not None assert args[1] is not None return {"project_name": "hello world"} def stub_get_all_projects(*args): assert args[0] is not None return {"project_name": "hello world"}
from clld.web.maps import ParameterMap, Map class NumeralParameterMap(ParameterMap): def get_options(self): return { 'base_layer': 'Esri.WorldPhysical', 'icon_size': 15, 'max_zoom': 9, 'hash': True, } class NumeralLanguagesMap(Map): def get_options(self): return { 'base_layer': 'Esri.WorldPhysical', 'icon_size': 15, 'max_zoom': 9, 'hash': True, 'info_query': {'map_pop_up': 1}, } def includeme(config): config.register_map('parameter', NumeralParameterMap) config.register_map('languages', NumeralLanguagesMap)
#!/usr/bin/env python3 # # Copyright 2022 Graviti. Licensed under MIT License. # """Parameter type releated classes.""" from typing import TYPE_CHECKING from typing import Any as TypingAny from typing import Dict, List, Sequence, Tuple, Type, Union from graviti.portex.base import PortexType as ClassPortexType from graviti.portex.field import Fields as ClassFields from graviti.portex.package import Imports if TYPE_CHECKING: from graviti.portex.factory import Dynamic class ParameterType: """The base class of parameter type.""" @staticmethod def check(_: TypingAny) -> TypingAny: """Check the parameter type. Arguments: _: The argument which needs to be checked. Raises: NotImplementedError: The check method in base class should never be called. """ raise NotImplementedError @staticmethod def load(content: TypingAny, _: Imports) -> TypingAny: """Create an instance of the parameter type from the python content. Arguments: content: A python presentation of the parameter type. _: The imports of the parameter type. Returns: An instance of the parameter type. """ return content @staticmethod def dump(arg: TypingAny) -> TypingAny: """Dump the parameter type instance into the python presentation. Arguments: arg: The parameter type instance. Returns: The python presentation of the input instance. """ return arg PType = Union[Type[ParameterType], "Dynamic"] class Any(ParameterType): """Unconstrained parameter type.""" @staticmethod def check(arg: TypingAny) -> TypingAny: """Check the parameter type. Arguments: arg: The argument which needs to be checked. Returns: The input argument unchanged. """ return arg class Boolean(ParameterType): """Parameter type for JSON Boolean.""" @staticmethod def check(arg: TypingAny) -> TypingAny: """Check the parameter type. Arguments: arg: The argument which needs to be checked. Returns: The input argument unchanged. Raises: TypeError: When the input argument is not a JSON boolean (bool in python). """ if not isinstance(arg, bool): raise TypeError("Argument should be a bool") return arg class Array(ParameterType): """Parameter type for JSON Array.""" @staticmethod def check(arg: TypingAny) -> Sequence[TypingAny]: """Check the parameter type. Arguments: arg: The argument which needs to be checked. Returns: The input argument unchanged. Raises: TypeError: When the input argument is not a JSON array (Sequence in python). """ if not isinstance(arg, Sequence): raise TypeError("Argument should be a Sequence") return arg class Field(ParameterType): """Parameter type for Portex record field.""" @staticmethod def check(arg: TypingAny) -> Tuple[str, ClassPortexType]: """Check and transfer the parameter type. Arguments: arg: The argument which needs to be checked. Raises: TypeError: When the input argument is not a tuple of a str and a PortexType. Returns: A tuple of str and PortexType created by the input argument. """ name, portex_type = arg if isinstance(name, str) and isinstance(portex_type, ClassPortexType): return name, portex_type raise TypeError("Argument should be a tuple of a str and a PortexType") @staticmethod def load(content: Dict[str, TypingAny], imports: Imports) -> Tuple[str, ClassPortexType]: """Create Portex field instance from python dict. Arguments: content: A python dict representing a Portex field. imports: The imports of the Portex field. Returns: A tuple of name and PortexType created from the input python dict. """ return content["name"], ClassPortexType.from_pyobj(content, imports) @staticmethod def dump(arg: Tuple[str, ClassPortexType]) -> Dict[str, TypingAny]: """Dump the input Portex field instance to a python dict. Arguments: arg: A tuple of name and PortexType. Returns: A Python dict representation of the Portex field. """ name, portex_type = arg return {"name": name, **portex_type.to_pyobj(False)} class Fields(ParameterType): """Parameter type for Portex record fields.""" @staticmethod def check(arg: TypingAny) -> ClassFields: """Check and transfer the parameter type. Arguments: arg: The argument which needs to be checked. Returns: A :class:`Fields` instance created by the input argument. """ return ClassFields(arg) @staticmethod def load(content: List[TypingAny], imports: Imports) -> ClassFields: """Create Portex field list instance from python list. Arguments: content: A python list representing a Portex field list. imports: The imports of the Portex field. Returns: A Portex field list instance created from the input python list. """ return ClassFields.from_pyobj(content, imports) @staticmethod def dump(arg: ClassFields) -> List[TypingAny]: """Dump the input Portex field list instance to a python list. Arguments: arg: A Portex field list instance. Returns: A Python list representation of the Portex field list. """ return arg.to_pyobj() class Number(ParameterType): """Parameter type for JSON number.""" @staticmethod def check(arg: TypingAny) -> float: """Check the parameter type. Arguments: arg: The argument which needs to be checked. Returns: The input argument unchanged. Raises: TypeError: When the input argument is not a JSON number (float and int in python). """ if not isinstance(arg, (float, int)): raise TypeError("Argument should be a float or int") return arg class Integer(ParameterType): """Parameter type for JSON integer.""" @staticmethod def check(arg: TypingAny) -> float: """Check the parameter type. Arguments: arg: The argument which needs to be checked. Returns: The input argument unchanged. Raises: TypeError: When the input argument is not a JSON integer (int in python). """ if not isinstance(arg, int): raise TypeError("Argument should be a int") return arg class PortexType(ParameterType): """Parameter type for Portex type.""" @staticmethod def check(arg: TypingAny) -> ClassPortexType: """Check the parameter type. Arguments: arg: The argument which needs to be checked. Returns: The input argument unchanged. Raises: TypeError: When the input argument is not a Portex type. """ if not isinstance(arg, ClassPortexType): raise TypeError("Argument should be a Portex type") return arg @staticmethod def load(content: Dict[str, TypingAny], imports: Imports) -> ClassPortexType: """Create Portex type instance from python dict. Arguments: content: A python dict representing a Portex type. imports: The imports of the Portex type. Returns: A Portex type instance created from the input python dict. """ return ClassPortexType.from_pyobj(content, imports) @staticmethod def dump(arg: ClassPortexType) -> Dict[str, TypingAny]: """Dump the instance to a python dict. Arguments: arg: A Portex type instance. Returns: A python dict representation of the Portex type. """ return arg.to_pyobj(False) class String(ParameterType): """Parameter type for JSON string.""" @staticmethod def check(arg: TypingAny) -> str: """Check the parameter type. Arguments: arg: The argument which needs to be checked. Returns: The input argument unchanged. Raises: TypeError: When the input argument is not a JSON string (str in python). """ if not isinstance(arg, str): raise TypeError("Argument should be a string") return arg class TypeName(String): """Parameter type for Portex type name."""
# Random utility functions. import itertools # Flatten a list of lists, e.g. [[1, 2], [3, 4]] => [1, 2, 3, 4]. def flatten(l): return list(itertools.chain.from_iterable(l)
import time import numpy as np import pandas as pd from research.gpq.icinco_demo import evaluate_performance from ssmtoybox.mtran import UnscentedTransform from ssmtoybox.ssinf import ExtendedKalman, ExtendedKalmanGPQD from ssmtoybox.ssmod import UNGMTransition, UNGMMeasurement from ssmtoybox.utils import GaussRV steps, mc = 50, 10 # time steps, mc simulations # setup univariate non-stationary growth model x0 = GaussRV(1, cov=np.atleast_2d(5.0)) q = GaussRV(1, cov=np.atleast_2d(10.0)) dyn = UNGMTransition(x0, q) # dynamics r = GaussRV(1) obs = UNGMMeasurement(r, 1) # observation model x = dyn.simulate_discrete(steps, mc) z = obs.simulate_measurements(x) # use only the central sigma-point usp_0 = np.zeros((dyn.dim_in, 1)) usp_ut = UnscentedTransform.unit_sigma_points(dyn.dim_in) # set the RBF kernel hyperparameters hyp_rbf = np.array([[1.0] + dyn.dim_in*[3.0]]) hyp_rbf_ut = np.array([[8.0] + dyn.dim_in*[0.5]]) # derivative observations only at the central point der_mask = np.array([0]) # filters/smoothers to test algorithms = ( # EKF, GPQ+D w/ affine kernel, GPQ+D w/ RBF kernel (el --> infty) ExtendedKalman(dyn, obs), # GPQ+D RBF kernel w/ single sigma-point, becomes EKF for el --> infinity ExtendedKalmanGPQD(dyn, obs, hyp_rbf, hyp_rbf), ) num_alg = len(algorithms) # space for estimates mean_f, cov_f = np.zeros((dyn.dim_in, steps, mc, num_alg)), np.zeros((dyn.dim_in, dyn.dim_in, steps, mc, num_alg)) mean_s, cov_s = np.zeros((dyn.dim_in, steps, mc, num_alg)), np.zeros((dyn.dim_in, dyn.dim_in, steps, mc, num_alg)) # do filtering/smoothing t0 = time.time() # measure execution time print('Running filters/smoothers ...') for a, alg in enumerate(algorithms): print('{}'.format(alg.__class__.__name__)) # print filter/smoother name for sim in range(mc): mean_f[..., sim, a], cov_f[..., sim, a] = alg.forward_pass(z[..., sim]) mean_s[..., sim, a], cov_s[..., sim, a] = alg.backward_pass() alg.reset() print('Done in {0:.4f} [sec]'.format(time.time() - t0)) # evaluate perfomance scores = evaluate_performance(x, mean_f, cov_f, mean_s, cov_s) rmseMean_f, nciMean_f, nllMean_f, rmseMean_s, nciMean_s, nllMean_s = scores[:6] rmseStd_f, nciStd_f, nllStd_f, rmseStd_s, nciStd_s, nllStd_s = scores[6:] # rmseMean_f, rmseMean_s = rmseMean_f.squeeze(), rmseMean_s.squeeze() # nciMean_f, nciMean_s = nciMean_f.squeeze(), nciMean_s.squeeze() # nllMean_f, nllMean_s = nllMean_f.squeeze(), nllMean_s.squeeze() # put data into Pandas DataFrame for fancy printing and latex export row_labels = ['EKF', 'EKF-GPQD'] # ['EKF', 'GPQD-RBF', 'GPQD-AFFINE', 'UKF', 'GPQD-UT-RBF'] col_labels = ['RMSE', '2STD', 'NCI', '2STD', 'NLL', '2STD'] pd.set_option('precision', 4, 'max_columns', 6) table_f = pd.DataFrame(np.hstack((rmseMean_f, rmseStd_f, nciMean_f, nciStd_f, nllMean_f, nllStd_f)), index=row_labels, columns=col_labels) table_s = pd.DataFrame(np.hstack((rmseMean_s, rmseStd_s, nciMean_s, nciStd_s, nllMean_s, nllStd_s)), index=row_labels, columns=col_labels) # print tables print('Filter metrics') print(table_f) print('Smoother metrics') print(table_s)
from functools import partial import numpy as np from modAL.batch import uncertainty_batch_sampling from modAL.models import ActiveLearner from sklearn.datasets import load_iris from sklearn.decomposition import PCA from sklearn.neighbors import KNeighborsClassifier # Set our RNG for reproducibility. RANDOM_STATE_SEED = 123 np.random.seed(RANDOM_STATE_SEED) iris = load_iris() X_raw = iris['data'] y_raw = iris['target'] # Define our PCA transformer and fit it onto our raw dataset. pca = PCA(n_components=2, random_state=RANDOM_STATE_SEED) transformed_iris = pca.fit_transform(X=X_raw) # Isolate the data we'll need for plotting. x_component, y_component = transformed_iris[:, 0], transformed_iris[:, 1] # Isolate our examples for our labeled dataset. n_labeled_examples = X_raw.shape[0] training_indices = np.random.randint(low=0, high=n_labeled_examples + 1, size=3) X_train = X_raw[training_indices] y_train = y_raw[training_indices] # Isolate the non-training examples we'll be querying. X_pool = np.delete(X_raw, training_indices, axis=0) y_pool = np.delete(y_raw, training_indices, axis=0) # Pre-set our batch sampling to retrieve 3 samples at a time. BATCH_SIZE = 3 preset_batch = partial(uncertainty_batch_sampling, n_instances=BATCH_SIZE) # Testing the cold-start learner = ActiveLearner( estimator=KNeighborsClassifier(n_neighbors=3), query_strategy=preset_batch ) cold_start_idx, cold_start_inst = learner.query(X_raw) learner.teach(X_raw[cold_start_idx], y_raw[cold_start_idx]) # Specify our active learning model. learner = ActiveLearner( estimator=KNeighborsClassifier(n_neighbors=3), X_training=X_train, y_training=y_train, query_strategy=preset_batch ) predictions = learner.predict(X_raw) # Record our learner's score on the raw data. unqueried_score = learner.score(X_raw, y_raw) # Pool-based sampling N_RAW_SAMPLES = 20 N_QUERIES = N_RAW_SAMPLES // BATCH_SIZE for index in range(N_QUERIES): query_index, query_instance = learner.query(X_pool) # Teach our ActiveLearner model the record it has requested. X, y = X_pool[query_index], y_pool[query_index] learner.teach(X=X, y=y) # Remove the queried instance from the unlabeled pool. X_pool = np.delete(X_pool, query_index, axis=0) y_pool = np.delete(y_pool, query_index) # Calculate and report our model's accuracy. model_accuracy = learner.score(X_raw, y_raw) predictions = learner.predict(X_raw)
import numpy as np from det3d.core.bbox import box_np_ops from det3d.core.sampler import preprocess as prep from det3d.builder import build_dbsampler from det3d.core.input.voxel_generator import VoxelGenerator from det3d.core.utils.center_utils import ( draw_umich_gaussian, gaussian_radius) from ..registry import PIPELINES def _dict_select(dict_, inds): for k, v in dict_.items(): if isinstance(v, dict): _dict_select(v, inds) else: dict_[k] = v[inds] def drop_arrays_by_name(gt_names, used_classes): inds = [i for i, x in enumerate(gt_names) if x not in used_classes] inds = np.array(inds, dtype=np.int64) return inds @PIPELINES.register_module class Preprocess(object): def __init__(self, cfg=None, **kwargs): self.shuffle_points = cfg.shuffle_points self.min_points_in_gt = cfg.get("min_points_in_gt", -1) self.mode = cfg.mode if self.mode == "train": self.global_rotation_noise = cfg.global_rot_noise self.global_scaling_noise = cfg.global_scale_noise self.global_translate_std = cfg.get('global_translate_std', 0) self.class_names = cfg.class_names if cfg.db_sampler != None: # 1. defined in det3d/builder.py/build_dbsampler # 2. defined in det3d/core/sampler/preprocess.py/ [DBFilterByMinNumPoint, DBFilterByDifficulty, DataBasePreprocessor] # 3. defined in det3d/core/sampler/sample_ops.py/DataBaseSamplerV2 self.db_sampler = build_dbsampler(cfg.db_sampler) else: self.db_sampler = None self.npoints = cfg.get("npoints", -1) self.no_augmentation = cfg.get('no_augmentation', False) def __call__(self, res, info): # 1. save mode in res res["mode"] = self.mode # 2. get points from above res if res["type"] in ["WaymoDataset"]: if "combined" in res["lidar"]: points = res["lidar"]["combined"] else: points = res["lidar"]["points"] elif res["type"] in ["NuScenesDataset"]: points = res["lidar"]["combined"] else: raise NotImplementedError # 3. get anno_dict && gt_dict if self.mode == "train": anno_dict = res["lidar"]["annotations"] gt_dict = { "gt_boxes": anno_dict["boxes"], "gt_names": np.array(anno_dict["names"]).reshape(-1), } if self.mode == "train" and not self.no_augmentation: # 4.1 去掉不重要的框 selected = drop_arrays_by_name( gt_dict["gt_names"], ["DontCare", "ignore", "UNKNOWN"] ) _dict_select(gt_dict, selected) # 4.2 去掉包含点数过少的框 if self.min_points_in_gt > 0: # TODO : 返回 (n,), 指向有每个gt_box内部有多少点 # TODO CUT HERE point_counts = box_np_ops.points_count_rbbox( points, gt_dict["gt_boxes"] ) mask = point_counts >= min_points_in_gt _dict_select(gt_dict, mask) # 4.3 mask记录gt labels数组各元素是否在有效class_names里面 gt_boxes_mask = np.array( [n in self.class_names for n in gt_dict["gt_names"]], dtype=np.bool_ ) if self.db_sampler: sampled_dict = self.db_sampler.sample_all( res["metadata"]["image_prefix"], gt_dict["gt_boxes"], gt_dict["gt_names"], res["metadata"]["num_point_features"], False, gt_group_ids=None, calib=None, road_planes=None) if sampled_dict is not None: sampled_gt_names = sampled_dict["gt_names"] sampled_gt_boxes = sampled_dict["gt_boxes"] sampled_points = sampled_dict["points"] sampled_gt_masks = sampled_dict["gt_masks"] gt_dict["gt_names"] = np.concatenate( [gt_dict["gt_names"], sampled_gt_names], axis=0 ) gt_dict["gt_boxes"] = np.concatenate( [gt_dict["gt_boxes"], sampled_gt_boxes] ) gt_boxes_mask = np.concatenate( [gt_boxes_mask, sampled_gt_masks], axis=0 ) points = np.concatenate([sampled_points, points], axis=0) # 4.4 根据4.3 mask和sampled_gt_masks过滤gt_dict _dict_select(gt_dict, gt_boxes_mask) # 4.5 将gt_names 数组从str编码成int,所有label从1开始,保存到gt_dict gt_classes = np.array( [self.class_names.index(n) + 1 for n in gt_dict["gt_names"]], dtype=np.int32,) gt_dict["gt_classes"] = gt_classes # 4.6 数据增强 gt_dict["gt_boxes"], points = prep.random_flip_both(gt_dict["gt_boxes"], points) gt_dict["gt_boxes"], points = prep.global_rotation( gt_dict["gt_boxes"], points, rotation=self.global_rotation_noise) gt_dict["gt_boxes"], points = prep.global_scaling_v2( gt_dict["gt_boxes"], points, *self.global_scaling_noise) gt_dict["gt_boxes"], points = prep.global_translate_( gt_dict["gt_boxes"], points, noise_translate_std=self.global_translate_std) elif self.no_augmentation: gt_boxes_mask = np.array( [n in self.class_names for n in gt_dict["gt_names"]], dtype=np.bool_ ) _dict_select(gt_dict, gt_boxes_mask) gt_classes = np.array( [self.class_names.index(n) + 1 for n in gt_dict["gt_names"]], dtype=np.int32, ) gt_dict["gt_classes"] = gt_classes if self.shuffle_points: np.random.shuffle(points) res["lidar"]["points"] = points if self.mode == "train": res["lidar"]["annotations"] = gt_dict return res, info @PIPELINES.register_module class Voxelization(object): def __init__(self, **kwargs): cfg = kwargs.get("cfg", None) self.range = cfg.range self.voxel_size = cfg.voxel_size self.max_points_in_voxel = cfg.max_points_in_voxel self.max_voxel_num = [cfg.max_voxel_num, cfg.max_voxel_num] if isinstance(cfg.max_voxel_num, int) else cfg.max_voxel_num self.double_flip = cfg.get('double_flip', False) self.voxel_generator = VoxelGenerator( voxel_size=self.voxel_size, point_cloud_range=self.range, max_num_points=self.max_points_in_voxel, max_voxels=self.max_voxel_num[0], ) def __call__(self, res, info): voxel_size = self.voxel_generator.voxel_size pc_range = self.voxel_generator.point_cloud_range grid_size = self.voxel_generator.grid_size if res["mode"] == "train": gt_dict = res["lidar"]["annotations"] bv_range = pc_range[[0, 1, 3, 4]] mask = prep.filter_gt_box_outside_range(gt_dict["gt_boxes"], bv_range) _dict_select(gt_dict, mask) res["lidar"]["annotations"] = gt_dict max_voxels = self.max_voxel_num[0] else: max_voxels = self.max_voxel_num[1] voxels, coordinates, num_points = self.voxel_generator.generate( res["lidar"]["points"], max_voxels=max_voxels ) num_voxels = np.array([voxels.shape[0]], dtype=np.int64) res["lidar"]["voxels"] = dict( voxels=voxels, coordinates=coordinates, num_points=num_points, num_voxels=num_voxels, shape=grid_size, range=pc_range, size=voxel_size ) double_flip = self.double_flip and (res["mode"] != 'train') if double_flip: flip_voxels, flip_coordinates, flip_num_points = self.voxel_generator.generate( res["lidar"]["yflip_points"] ) flip_num_voxels = np.array([flip_voxels.shape[0]], dtype=np.int64) res["lidar"]["yflip_voxels"] = dict( voxels=flip_voxels, coordinates=flip_coordinates, num_points=flip_num_points, num_voxels=flip_num_voxels, shape=grid_size, range=pc_range, size=voxel_size ) flip_voxels, flip_coordinates, flip_num_points = self.voxel_generator.generate( res["lidar"]["xflip_points"] ) flip_num_voxels = np.array([flip_voxels.shape[0]], dtype=np.int64) res["lidar"]["xflip_voxels"] = dict( voxels=flip_voxels, coordinates=flip_coordinates, num_points=flip_num_points, num_voxels=flip_num_voxels, shape=grid_size, range=pc_range, size=voxel_size ) flip_voxels, flip_coordinates, flip_num_points = self.voxel_generator.generate( res["lidar"]["double_flip_points"] ) flip_num_voxels = np.array([flip_voxels.shape[0]], dtype=np.int64) res["lidar"]["double_flip_voxels"] = dict( voxels=flip_voxels, coordinates=flip_coordinates, num_points=flip_num_points, num_voxels=flip_num_voxels, shape=grid_size, range=pc_range, size=voxel_size ) return res, info def flatten(box): return np.concatenate(box, axis=0) def merge_multi_group_label(gt_classes, num_classes_by_task): num_task = len(gt_classes) flag = 0 for i in range(num_task): gt_classes[i] += flag flag += num_classes_by_task[i] return flatten(gt_classes) @PIPELINES.register_module class AssignLabel(object): def __init__(self, **kwargs): """Return CenterNet training labels like heatmap, height, offset""" assigner_cfg = kwargs["cfg"] self.out_size_factor = assigner_cfg.out_size_factor self.tasks = assigner_cfg.target_assigner.tasks self.gaussian_overlap = assigner_cfg.gaussian_overlap self._max_objs = assigner_cfg.max_objs self._min_radius = assigner_cfg.min_radius def __call__(self, res, info): max_objs = self._max_objs class_names_by_task = [t.class_names for t in self.tasks] num_classes_by_task = [t.num_class for t in self.tasks] # Calculate output featuremap size grid_size = res["lidar"]["voxels"]["shape"] pc_range = res["lidar"]["voxels"]["range"] voxel_size = res["lidar"]["voxels"]["size"] feature_map_size = grid_size[:2] // self.out_size_factor example = {} if res["mode"] == "train": gt_dict = res["lidar"]["annotations"] # reorganize the gt_dict by tasks task_masks = [] flag = 0 for class_name in class_names_by_task: task_masks.append( [ np.where( gt_dict["gt_classes"] == class_name.index(i) + 1 + flag ) for i in class_name ] ) flag += len(class_name) task_boxes = [] task_classes = [] task_names = [] flag2 = 0 for idx, mask in enumerate(task_masks): task_box = [] task_class = [] task_name = [] for m in mask: task_box.append(gt_dict["gt_boxes"][m]) task_class.append(gt_dict["gt_classes"][m] - flag2) task_name.append(gt_dict["gt_names"][m]) task_boxes.append(np.concatenate(task_box, axis=0)) task_classes.append(np.concatenate(task_class)) task_names.append(np.concatenate(task_name)) flag2 += len(mask) for task_box in task_boxes: # limit rad to [-pi, pi] task_box[:, -1] = box_np_ops.limit_period( task_box[:, -1], offset=0.5, period=np.pi * 2 ) # print(gt_dict.keys()) gt_dict["gt_classes"] = task_classes gt_dict["gt_names"] = task_names gt_dict["gt_boxes"] = task_boxes res["lidar"]["annotations"] = gt_dict draw_gaussian = draw_umich_gaussian hms, anno_boxs, inds, masks, cats = [], [], [], [], [] for idx, task in enumerate(self.tasks): hm = np.zeros((len(class_names_by_task[idx]), feature_map_size[1], feature_map_size[0]), dtype=np.float32) if res['type'] == 'NuScenesDataset': # [reg, hei, dim, vx, vy, rots, rotc] anno_box = np.zeros((max_objs, 10), dtype=np.float32) elif res['type'] == 'WaymoDataset': anno_box = np.zeros((max_objs, 10), dtype=np.float32) else: raise NotImplementedError("Only Support nuScene for Now!") ind = np.zeros((max_objs), dtype=np.int64) mask = np.zeros((max_objs), dtype=np.uint8) cat = np.zeros((max_objs), dtype=np.int64) num_objs = min(gt_dict['gt_boxes'][idx].shape[0], max_objs) for k in range(num_objs): cls_id = gt_dict['gt_classes'][idx][k] - 1 w, l, h = gt_dict['gt_boxes'][idx][k][3], gt_dict['gt_boxes'][idx][k][4], \ gt_dict['gt_boxes'][idx][k][5] w, l = w / voxel_size[0] / self.out_size_factor, l / voxel_size[1] / self.out_size_factor if w > 0 and l > 0: radius = gaussian_radius((l, w), min_overlap=self.gaussian_overlap) radius = max(self._min_radius, int(radius)) # be really careful for the coordinate system of your box annotation. x, y, z = gt_dict['gt_boxes'][idx][k][0], gt_dict['gt_boxes'][idx][k][1], \ gt_dict['gt_boxes'][idx][k][2] coor_x, coor_y = (x - pc_range[0]) / voxel_size[0] / self.out_size_factor, \ (y - pc_range[1]) / voxel_size[1] / self.out_size_factor ct = np.array( [coor_x, coor_y], dtype=np.float32) ct_int = ct.astype(np.int32) # throw out not in range objects to avoid out of array area when creating the heatmap if not (0 <= ct_int[0] < feature_map_size[0] and 0 <= ct_int[1] < feature_map_size[1]): continue draw_gaussian(hm[cls_id], ct, radius) new_idx = k x, y = ct_int[0], ct_int[1] cat[new_idx] = cls_id ind[new_idx] = y * feature_map_size[0] + x mask[new_idx] = 1 if res['type'] == 'NuScenesDataset': vx, vy = gt_dict['gt_boxes'][idx][k][6:8] rot = gt_dict['gt_boxes'][idx][k][8] anno_box[new_idx] = np.concatenate( (ct - (x, y), z, np.log(gt_dict['gt_boxes'][idx][k][3:6]), np.array(vx), np.array(vy), np.sin(rot), np.cos(rot)), axis=None) elif res['type'] == 'WaymoDataset': vx, vy = gt_dict['gt_boxes'][idx][k][6:8] rot = gt_dict['gt_boxes'][idx][k][-1] anno_box[new_idx] = np.concatenate( (ct - (x, y), z, np.log(gt_dict['gt_boxes'][idx][k][3:6]), np.array(vx), np.array(vy), np.sin(rot), np.cos(rot)), axis=None) else: raise NotImplementedError("Only Support Waymo and nuScene for Now") hms.append(hm) anno_boxs.append(anno_box) masks.append(mask) inds.append(ind) cats.append(cat) # used for two stage code boxes = flatten(gt_dict['gt_boxes']) classes = merge_multi_group_label(gt_dict['gt_classes'], num_classes_by_task) if res["type"] == "NuScenesDataset": gt_boxes_and_cls = np.zeros((max_objs, 10), dtype=np.float32) elif res['type'] == "WaymoDataset": gt_boxes_and_cls = np.zeros((max_objs, 10), dtype=np.float32) else: raise NotImplementedError() boxes_and_cls = np.concatenate((boxes, classes.reshape(-1, 1).astype(np.float32)), axis=1) num_obj = len(boxes_and_cls) assert num_obj <= max_objs # x, y, z, w, l, h, rotation_y, velocity_x, velocity_y, class_name boxes_and_cls = boxes_and_cls[:, [0, 1, 2, 3, 4, 5, 8, 6, 7, 9]] gt_boxes_and_cls[:num_obj] = boxes_and_cls example.update({'gt_boxes_and_cls': gt_boxes_and_cls}) example.update({'hm': hms, 'anno_box': anno_boxs, 'ind': inds, 'mask': masks, 'cat': cats}) else: pass res["lidar"]["targets"] = example return res, info
class Config(object): from datetime import timedelta SECRET_KEY = 'OVERRIDE THIS WITH A SECURE VALUE in instance/config.py!' CELERY_BROKER_URL = 'redis://' CELERY_RESULT_BACKEND = 'redis://' CELERY_ACCEPT_CONTENT = ['pickle'] CELERYBEAT_SCHEDULE = { 'update-agencies-every-week': { 'task': 'celerytasks.update_agencies', 'schedule': timedelta(days=7), }, 'update-routes-every-24h': { 'task': 'celerytasks.update_routes', 'schedule': timedelta(hours=24), }, 'update-predictions-every-9s': { 'task': 'celerytasks.update_predictions', 'schedule': timedelta(seconds=9), }, 'update-vehicle-locations-every-3s': { 'task': 'celerytasks.update_vehicle_locations', 'schedule': timedelta(seconds=3), }, 'delete-stale-predictions-every-5m': { 'task': 'celerytasks.delete_stale_predictions', 'schedule': timedelta(minutes=5), }, 'delete-stale-vehicle-locations-every-5m': { 'task': 'celerytasks.delete_stale_vehicle_locations', 'schedule': timedelta(minutes=5), }, } SQLALCHEMY_TRACK_MODIFICATIONS = False PREDICTIONS_MAX_AGE = 5 * 60; LOCATIONS_MAX_AGE = 5 * 60; AGENCIES = ['rutgers'] # Stops with the same tag within this distance of each other will be averaged to one lat/lon point. # 0.001 = 110 Meters (football field) SAME_STOP_LAT = 0.005 SAME_STOP_LON = 0.005 # Map display parameters MAP_ERROR_TILE_URL = 'http://tiles.antsar-static.com/generic/tile-blank-black.png' MAP_TILE_URL = 'http://{s}.basemaps.cartocdn.com/dark_all/{z}/{x}/{y}.png' MAP_TILE_SUBDOMAINS = ['a', 'b', 'c'] MAP_TILESET = 'rutgers-black' MAP_LAT_PADDING = 0.03 MAP_LON_PADDING = 0.03 class ProdConfig(Config): SQLALCHEMY_URI = 'postgresql://localhost/pybusmap_prod' CELERY_BROKER_URL = 'redis://localhost/0' CELERY_RESULT_BACKEND = 'redis://localhost/0' class DevConfig(Config): DEBUG = True SQLALCHEMY_URI = 'postgresql://localhost/pybusmap_dev' CELERY_BROKER_URL = 'redis://localhost/1' CELERY_RESULT_BACKEND = 'redis://localhost/1'
# Copyright 2015 Geoscience Australia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function from builtins import * import numpy from cubeaccess.core import Coordinate, Variable, StorageUnitBase, StorageUnitDimensionProxy, StorageUnitStack from cubeaccess.storage import NetCDF4StorageUnit, GeoTifStorageUnit from cubeaccess.indexing import Range class TestStorageUnit(StorageUnitBase): def __init__(self, coords, vars): self.coordinates = coords self.variables = vars def _get_coord(self, name): coord = self.coordinates[name] data = numpy.linspace(coord.begin, coord.end, coord.length, dtype=coord.dtype) return data def _fill_data(self, name, index, dest): dest.fill(1) ds1 = TestStorageUnit({ 't': Coordinate(numpy.int, 100, 400, 4), 'y': Coordinate(numpy.float32, 0, 9.5, 20), 'x': Coordinate(numpy.float32, 9, 0, 10) }, { 'B10': Variable(numpy.float32, numpy.nan, ('t', 'y', 'x')) }) ds2 = TestStorageUnit({ 't': Coordinate(numpy.int, 500, 600, 3), 'y': Coordinate(numpy.float32, 5, 14.5, 20), 'x': Coordinate(numpy.float32, 4, -5, 10) }, { 'B10': Variable(numpy.float32, numpy.nan, ('t', 'y', 'x')) }) netcdffiles = [ "/short/v10/dra547/injest_examples/multiple_band_variables/LS7_ETM_NBAR_P54_GANBAR01-002_089_078_2015_152_-26.nc", "/short/v10/dra547/injest_examples/multiple_band_variables/LS7_ETM_NBAR_P54_GANBAR01-002_089_078_2015_152_-27.nc", "/short/v10/dra547/injest_examples/multiple_band_variables/LS7_ETM_NBAR_P54_GANBAR01-002_089_078_2015_153_-26.nc", "/short/v10/dra547/injest_examples/multiple_band_variables/LS7_ETM_NBAR_P54_GANBAR01-002_089_078_2015_153_-27.nc", "/short/v10/dra547/injest_examples/multiple_band_variables/LS7_ETM_NBAR_P54_GANBAR01-002_089_078_2015_154_-26.nc", "/short/v10/dra547/injest_examples/multiple_band_variables/LS7_ETM_NBAR_P54_GANBAR01-002_089_078_2015_154_-27.nc" ] geotiffiles = [ # "/mnt/data/tiles/EPSG4326_1deg_0.00025pixel/LS7_ETM/142_-033/2010/LS7_ETM_NBAR_142_-033_2010-01-16T00-12-07.682499.tif", # "/mnt/data/tiles/EPSG4326_1deg_0.00025pixel/LS7_ETM/142_-033/2010/LS7_ETM_FC_142_-033_2010-01-16T00-12-07.682499.tif", # "/mnt/data/tiles/EPSG4326_1deg_0.00025pixel/LS7_ETM/142_-033/2010/LS7_ETM_NBAR_142_-033_2010-01-16T00-11-43.729979.tif", # "/mnt/data/tiles/EPSG4326_1deg_0.00025pixel/LS7_ETM/142_-033/2010/LS7_ETM_FC_142_-033_2010-01-16T00-11-43.729979.tif", # "/mnt/data/tiles/EPSG4326_1deg_0.00025pixel/LS7_ETM/142_-033/2010/LS7_ETM_NBAR_142_-033_2010-01-07T00-17-46.208174.tif", "/g/data/rs0/tiles/EPSG4326_1deg_0.00025pixel/LS5_TM/142_-033/2004/LS5_TM_NBAR_142_-033_2004-01-07T23-59-21.879044.tif", "/g/data/rs0/tiles/EPSG4326_1deg_0.00025pixel/LS5_TM/142_-033/2004/LS5_TM_NBAR_142_-033_2004-11-07T00-05-33.311000.tif", "/g/data/rs0/tiles/EPSG4326_1deg_0.00025pixel/LS5_TM/142_-033/2004/LS5_TM_NBAR_142_-033_2004-12-25T00-06-26.534031.tif", ] def _time_from_filename(f): from datetime import datetime dtstr = f.split('/')[-1].split('_')[-1][:-4] # 2004-11-07T00-05-33.311000 dt = datetime.strptime(dtstr, "%Y-%m-%dT%H-%M-%S.%f") return numpy.datetime64(dt, 's') def test_storage_unit_dimension_proxy(): su = StorageUnitDimensionProxy(ds1, ('greg', 12.0)) data = su._get_coord('greg') assert(data == numpy.array([12.0])) data = su.get('B10') assert(data.values.shape == (1, 4, 20, 10)) assert(data.dims == ('greg', 't', 'y', 'x')) assert(numpy.all(data.values == 1)) # print(data) # print (su.coordinates) # print (su.variables) data = su.get('B10', greg=Range(13, 14)) assert(data.values.size == 0) def test_geotif_storage_unit(): files = geotiffiles su = GeoTifStorageUnit(files[0]) assert(set(su.coordinates.keys()) == ({'x', 'y'})) data = su.get('2', x=Range(142.5, 142.7), y=Range(-32.5, -32.2)) assert(len(data.coords['x']) == 801) assert(len(data.coords['y']) == 1201) assert(numpy.any(data.values != -999)) data = su.get('2', x=slice(500), y=slice(3400, None)) assert(len(data.coords['x']) == 500) assert(len(data.coords['y']) == 600) assert(numpy.any(data.values != -999)) # print(su.coordinates) # print (su.variables) # print(data) def test_netcdf_storage_unit(): files = netcdffiles su = NetCDF4StorageUnit(files[2]) assert(set(su.coordinates.keys()) == ({'longitude', 'latitude', 'time'})) data = su.get('band2', longitude=Range(153.5, 153.7), latitude=Range(-25.5, -25.2)) assert(len(data.coords['longitude']) == 801) assert(len(data.coords['latitude']) == 1201) assert(numpy.any(data.values != -999)) # mds = StorageUnitSet([NetCDF4StorageUnit(filename) for filename in files]) # data = mds.get('band2') # assert(np.any(data.values != -999)) # print(mds.get('band2')) # print(mds.coordinates) # print(mds.variables) def test_storage_unit_stack(): #TODO: use ds1/ds2 files = geotiffiles storage_units = [StorageUnitDimensionProxy(GeoTifStorageUnit(f), ('t', _time_from_filename(f))) for f in files] stack = StorageUnitStack(storage_units, 't') times = numpy.array([_time_from_filename(f) for f in files]) assert(numpy.all(stack._get_coord('t') == times)) trange = Range(numpy.datetime64('2004-11-07T00:05:33Z', 's'), numpy.datetime64('2004-12-25T00:06:26Z', 's')) data = stack.get('2', t=trange, x=Range(142.5, 142.7), y=Range(-32.5, -32.2)) assert(len(data.coords['t']) == 2) assert(len(data.coords['x']) == 801) assert(len(data.coords['y']) == 1201) assert(numpy.any(data.values != -999)) data = stack.get('2', t=slice(0, 2), x=slice(500), y=slice(3400, None)) assert(len(data.coords['t']) == 2) assert(len(data.coords['x']) == 500) assert(len(data.coords['y']) == 600) assert(numpy.any(data.values != -999)) # print(stack.coordinates) # print(stack.variables)
import datetime import dateutil.tz import numpy as np import numpy.testing import pytest import cara.data.weather as wx def test_nearest_wx_station(): melbourne_lat, melbourne_lon = -37.81739, 144.96751 station_rec = wx.nearest_wx_station(longitude=melbourne_lon, latitude=melbourne_lat) station_name = station_rec[1].strip() # Note: For Melbourne, the nearest station is 'MELBOURNE REGIONAL OFFICE', # but the nearest location with suitable wx data is 'MELBOURNE ESSENDON' assert station_name == 'MELBOURNE ESSENDON' def test_refine(): source_times = [0, 3, 6, 9, 12, 15, 18, 21] data = [0, 30, 60, 90, 120, 90, 60, 30] time_bounds, data = wx.refine_hourly_data(source_times, data, 4) # Notice that the expected data falls in the mid-point of the # expected time bounds. np.testing.assert_array_equal(time_bounds, [0., 6., 12., 18., 24.]) np.testing.assert_array_equal(data, [30., 90., 90., 30.]) def test_refine_offset(): source_times = [14, 20, 26, 32] data = [200., 182, 168, 192] time_bounds, data = wx.refine_hourly_data(source_times, data, 6) # Notice that the expected data falls in the mid-point of the # expected time bounds. np.testing.assert_array_equal(time_bounds, [0., 4., 8., 12., 16., 20., 24.]) np.testing.assert_array_almost_equal(data, [168., 184., 194.666667, 200., 188., 177.333333]) def test_refine_non_monotonic(): source_times = [14, 20, 2, 8] data = [200., 182, 168, 192] time_bounds, data = wx.refine_hourly_data(source_times, data, 6) # Notice that the expected data falls in the mid-point of the # expected time bounds. np.testing.assert_array_equal(time_bounds, [0., 4., 8., 12., 16., 20., 24.]) np.testing.assert_array_almost_equal(data, [168., 184., 194.666667, 200., 188., 177.333333]) def test_timezone_at__out_of_range(): with pytest.raises(ValueError, match='out of bounds'): wx.timezone_at(latitude=88, longitude=181) @pytest.mark.parametrize( ["latitude", "longitude", "expected_tz_name"], [ [6.14275, 46.20833, 'Europe/Zurich'], # Geneva [144.96751, -37.81739, "Australia/Melbourne"], # Melbourne [-176.433333, -44.033333, 'Pacific/Chatham'], # Chatham Islands ] ) def test_timezone_at__expected(latitude, longitude, expected_tz_name): assert wx.timezone_at(latitude=longitude, longitude=latitude) == dateutil.tz.gettz(expected_tz_name) assert wx.timezone_at(latitude=0, longitude=-175) == dateutil.tz.gettz('Etc/GMT+12') assert wx.timezone_at(latitude=89.8, longitude=-170) == dateutil.tz.gettz('Etc/GMT+11')
from decimal import Decimal from django.db.models import Q from .models import CustomerInfo import re import zenhan def ExtractNumber(org_str, data_type): """ 引数で渡された文字列を半角に変換し、数字のみを抽出して返す。 param: org_str。例:'(0120)123-456 param: data_type。例:1=電話番号用、2=郵便番号用、3=法人番号用 return: org_strから数字のみを抽出した文字列。例:'0120123456' """ # 全角→半角変換 han_org_str = zenhan.z2h(org_str) if data_type == 1: # 電話番号用 # カッコとハイフン以外を抽出 filterd_str = re.findall(r'[^\(\)\-()−]+', han_org_str) elif data_type == 2: # 郵便番号用 # ハイフン以外を抽出 filterd_str = re.findall(r'[^\-−]+', han_org_str) elif data_type == 3: # 法人番号用 # 法人番号は数字のみなので正規表現の抽出は行わない filterd_str = han_org_str # filterd_strは配列なので結合した文字列を返す return ''.join(filterd_str) def DecimalDefaultProc(obj): """ DecimalをJSONで出力可能にする """ if isinstance(obj, Decimal): return float(obj) raise TypeError def CheckDuplicatePhoneNumber(phone_number, user): """ 重複電話番号のチェックを行い、件数を返す。 """ if not phone_number: return 0 return CustomerInfo.objects.filter( Q(tel_number1=phone_number) | Q(tel_number2=phone_number) | Q(tel_number3=phone_number)).filter( workspace=user.workspace, delete_flg='False').filter( Q(public_status='1') | Q(public_status='2') | Q(author=user.email) | Q(shared_edit_user=user) | Q(shared_view_user=user) | Q(shared_edit_group__in=user.my_group.all()) | Q(shared_view_group__in=user.my_group.all())).distinct( ).count()
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. def add_memory_config(cfg): """ Add config for Memory bank. """ cfg.MODEL.ROI_HEADS.TEMP_S = 48 cfg.MODEL.ROI_HEADS.MIN_CACHE = 20 cfg.MODEL.ROI_HEADS.MAX_CACHE = 60 cfg.MODEL.ROI_HEADS.RANDOM_SELECT = False cfg.MODEL.ROI_HEADS.CACHE_CAT_FILE = "lvis0.5_rare_cats.txt" cfg.MODEL.ROI_HEADS.CLS_LAYER = "cosine" cfg.MODEL.ROI_HEADS.RUN = 1
#!/usr/bin/env python # -*- coding:utf-8 -*- from __future__ import unicode_literals import socket from scplib import * from iplugin import Plugin from icommand import * from state import * DEFAULT_IP = '127.0.0.1' DEFAULT_PORT = 8888 listen_sock_dict = {} server_sock_dict = {} client_sock_dict = {} class CommandServerBindListen(Command): def add_args(self): self.get_parser().add_argument('-i', '--ip', dest = 'ip', metavar = 'ip', action = "store", default = DEFAULT_IP, help='the server ip') self.get_parser().add_argument('-p', '--port', dest = 'port', metavar = 'port', type = int, action = "store", default = DEFAULT_PORT, help='the server port') self.get_parser().add_argument('-n', '--nblock', action = "store_true", default = False, help='the non block') def perform(self, argv): ns = self.get_parser().parse_args(argv[1:]) addr = (ns.ip, ns.port) listen_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) listen_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) listen_sock.setblocking(True) listen_sock.bind(addr) listen_sock.listen(0x10) fd = listen_sock.fileno() listen_sock_dict[fd] = (ns.port, listen_sock) log.debug("Server bind and listen at %s:%d [fd = %d]" %(ns.ip, ns.port, fd)) class CommandSocketList(Command): def add_args(self): pass def perform(self, argv): ns = self.get_parser().parse_args(argv[1:]) def dump_dict(name, d): keys = d.keys() keys.sort() log.debug(name) for k in keys: log.debug("%4d :%d" %(k, d[k][0])) dump_dict("listen socket:", listen_sock_dict) dump_dict("server socket:", server_sock_dict) dump_dict("client socket:", client_sock_dict) class CommandServerAccept(Command): def add_args(self): self.get_parser().add_argument('fd', type = int, action = "store", help='the socket fd') self.get_parser().add_argument('-n', '--nblock', action = "store_true", default = False, help='the non block') def perform(self, argv): ns = self.get_parser().parse_args(argv[1:]) listen_port, listen_sock = listen_sock_dict[ns.fd] log.debug("Server accept...") sock, addr = listen_sock.accept() sock.setblocking(True) fd = sock.fileno() peer_ip, peer_port = sock.getpeername() server_sock_dict[fd] = (peer_port, sock) log.debug("Server accept connection from %s:%d [fd = %d]" %(peer_ip, peer_port, fd)) class CommandClientConnect(Command): def add_args(self): self.get_parser().add_argument('-i', '--ip', dest = 'ip', metavar = 'ip', action = "store", default = DEFAULT_IP, help='the server ip') self.get_parser().add_argument('-p', '--port', dest = 'port', metavar = 'port', type = int, action = "store", default = DEFAULT_PORT, help='the server port') self.get_parser().add_argument('-n', '--nblock', action = "store_true", default = False, help='the non block') def perform(self, argv): ns = self.get_parser().parse_args(argv[1:]) addr = (ns.ip, ns.port) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setblocking(True) fd = sock.fileno() sock.connect(addr) local_ip, local_port = sock.getsockname() client_sock_dict[fd] = (local_port, sock) log.debug("client connect at %s:%d [fd = %d]" %(local_ip, local_port, fd)) class CommandSocketClose(Command): def add_args(self): self.get_parser().add_argument('fd', type = int, action = "store", help='the socket fd') def perform(self, argv): ns = self.get_parser().parse_args(argv[1:]) fd = ns.fd if fd in listen_sock_dict: listen_sock_dict[fd][1].close() #del listen_sock_dict[fd] if fd in server_sock_dict: server_sock_dict[fd][1].close() #del server_sock_dict[fd] if fd in client_sock_dict: client_sock_dict[fd][1].close() #del client_sock_dict[fd] class CommandSocketSend(Command): def add_args(self): self.get_parser().add_argument('fd', type = int, action = "store", help='the socket fd') self.get_parser().add_argument('data', action = "store", help='the data to be send') def perform(self, argv): ns = self.get_parser().parse_args(argv[1:]) fd = ns.fd data = b(ns.data) sock = None while True: if fd in server_sock_dict: sock = server_sock_dict[fd][1] break if fd in client_sock_dict: sock = client_sock_dict[fd][1] break break length = sock.send(data) log.debug("send data length = %d" %(length)) log.debug(get_dump_string("send", data[:length])) class CommandSocketRecv(Command): def add_args(self): self.get_parser().add_argument('fd', type = int, action = "store", help='the socket fd') self.get_parser().add_argument('length', type = int, action = "store", help='the recv length') def perform(self, argv): ns = self.get_parser().parse_args(argv[1:]) fd = ns.fd length = ns.length sock = None while True: if fd in server_sock_dict: sock = server_sock_dict[fd][1] break if fd in client_sock_dict: sock = client_sock_dict[fd][1] break break data = sock.recv(length) log.debug("recv data length = %d" %(len(data))) log.debug(get_dump_string("recv", data)) _cs_cmd_dict = { "server-bind-listen": CommandServerBindListen, "server-accept" : CommandServerAccept, "client-connect" : CommandClientConnect, "socket-close" : CommandSocketClose, "socket-send" : CommandSocketSend, "socket-recv" : CommandSocketRecv, "socket-list" : CommandSocketList, } class TCPCSPlugin(Plugin): def __init__(self): self.__name = "cs" self.__cmd_dict = _cs_cmd_dict self.__var_dict = {} def get_name(self): return self.__name def get_cmd_dict(self): return self.__cmd_dict def get_var_dict(self): return self.__var_dict def get_ext_matches(self): return [] def register(plugin_dict): plugin_object = TCPCSPlugin() plugin_dict[plugin_object.get_name()] = plugin_object
from unittest import TestCase from piccolo.columns import Varchar from piccolo.table import create_table_class class TestCreateTableClass(TestCase): def test_create_table_class(self): """ Make sure a basic `Table` can be created successfully. """ _Table = create_table_class(class_name="MyTable") self.assertEqual(_Table._meta.tablename, "my_table") _Table = create_table_class( class_name="MyTable", class_kwargs={"tablename": "my_table_1"} ) self.assertEqual(_Table._meta.tablename, "my_table_1") column = Varchar() _Table = create_table_class( class_name="MyTable", class_members={"name": column} ) self.assertIn(column, _Table._meta.columns) def test_protected_tablenames(self): """ Make sure that the logic around protected tablenames still works as expected. """ with self.assertRaises(ValueError): create_table_class(class_name="User") with self.assertRaises(ValueError): create_table_class( class_name="MyUser", class_kwargs={"tablename": "user"} ) # This shouldn't raise an error: create_table_class( class_name="User", class_kwargs={"tablename": "my_user"} )
import py_midicsv as pm import numpy as np import pandas as pd import librosa import matplotlib.pyplot as plt from PIL import Image import warnings class Generated_Song: def __init__(self, song_length=10000): '''Break data into metadata, midi data, and end track data''' self.meta_data = ['0, 0, Header, 0, 1, 96\n', '1, 0, Start_track\n', '1, 0, Title_t, "1 1-Keyzone Classic\\000"\n', '1, 0, Time_signature, 4, 2, 36, 8\n', '1, 0, Time_signature, 4, 2, 36, 8\n'] self.track_end = [f'1, {song_length}, End_track\n', '0, 0, End_of_file'] self.midi_data = [] '''Initialize and populate Numpy matrices for representing MIDI actions''' self.song_length = song_length self.midi_note_array = np.zeros((128, self.song_length)) self.midi_df = pd.DataFrame(columns=['track', 'tick', 'control', 'channel', 'control_num', 'velocity']) def add_note(self, note_start, note_value, note_length, velocity): self.midi_df.loc[len(self.midi_df.index)] = [1, note_start, 'Note_on_c', 0, note_value, velocity] self.midi_df.loc[len(self.midi_df.index)] = [1, note_start+note_length, 'Note_off_c', 0, note_value, velocity] # self.populate_midi_note_array() def add_randomized_notes(self, num_notes=100, time='uniform', note_value='normal', note_length='uniform', velocity='normal'): note_starts, note_vals, note_lens, note_vels = None, None, None, None if time == 'uniform': note_starts = np.random.uniform(low=0, high=self.song_length, size=num_notes) if note_value == 'normal': note_vals = np.random.normal(loc=64, scale=21, size=num_notes) elif note_value == 'uniform': note_vals = np.random.uniform(low=0, high=127, size=num_notes) if note_length == 'uniform': note_lens = np.random.uniform(low=10, high=1000, size=num_notes) elif note_length == 'normal': note_lens = np.random.normal(loc=100, scale=300, size=num_notes) if velocity == 'normal': note_vels = np.random.normal(loc=64, scale=21, size=num_notes) note_starts = np.round(note_starts) note_vals = np.round(note_vals) note_lens = np.round(note_lens) note_vels = np.round(note_vels) note_vals[note_vals > 127] = 127 note_vals[note_vals < 0] = 0 note_lens[note_lens < 10] = 10 note_vels[note_vels > 127] = 127 note_vels[note_vels < 10] = 10 midi_values = np.column_stack((note_starts, note_vals, note_lens, note_vels)) print(midi_values) # note_start, note_value, note_length, velocity for row in midi_values: self.add_note(int(row[0]), int(row[1]), int(row[2]), int(row[3])) print(row) def sort_midi_df(self): self.midi_df.sort_values(by='tick', inplace=True) def export_midi(self, path_out): midi_out = [] for line in self.meta_data: midi_out.append(line) self.sort_midi_df() df = self.midi_df.copy() cols = df.columns df['midi_string'] = df[cols].apply(lambda row: ', '.join(row.values.astype(str)) + '\n', axis=1) midi_strings = df['midi_string'].tolist() midi_out += midi_strings midi_out += self.track_end midi_object = pm.csv_to_midi(midi_out) with open(path_out, 'wb') as output_file: midi_writer = pm.FileWriter(output_file) midi_writer.write(midi_object) song = Generated_Song() print(song.midi_df) song.sort_midi_df() print(song.midi_df) song.add_randomized_notes() song.export_midi('../data/testmidi.mid')
from inspect import stack, getframeinfo,getsource from colorama import Fore,init from datetime import datetime # Before reading code u should know # -> getframeinfo(stack()[1][0]) function getting data about used code line and # -> that why we can get debug of a code part from program white=Fore.LIGHTWHITE_EX green=Fore.GREEN red=Fore.RED reset=Fore.RESET init() class pyChocolate: def File(self,frame,kwargs): return f"{white} file :{frame.filename}" if ifEqual(kwargs,("file",True)) else "" def Code(self,frame,color,kwargs): return f"{white} code: {color}{frame.code_context[0].strip()}{reset}" if ifEqual(kwargs,("code",True)) else "" def Info(self,frame,output,kwargs): return f"{white}[Line-{frame.lineno}] ->({green+firstValue(frame.code_context[0].strip())+white}) { green}{pretifyOutput(output)} {self.Code(frame,green,kwargs)} {self.File(frame,kwargs)}" def Warn(self,frame,output,kwargs): return f"{white}[Line-{frame.lineno}] { red}{pretifyOutput(output)} {self.Code(frame,red,kwargs)} {self.File(frame,kwargs)}" def LOG(self,frame,output:"debuging content",kwargs)->"return given output": print(self.Warn(frame,output,kwargs) if ifEqual(kwargs,("mode","warn")) else self.Info(frame,output,kwargs),reset) return output def Catch(self,frame,tryFunc,runFunc): arg1,arg2=tryFunc[1],runFunc[1] name1,name2=str(tryFunc[0]).split(" ")[1],str(runFunc[0]).split(" ")[1] string=f"{white}[Line-{frame.lineno}]->(Catch) Func:{ green}{{0}} {white}args:({{1}}{white}){ green} {white} return:{ green}{{2}} {reset}" try: rv=tryFunc[0](*arg1) args=colorfulArgs(arg1) print(string.format(name1,args,pretifyOutput(rv))) except Exception as func1err: try: rv=runFunc[0](*arg2) args=colorfulArgs(arg2) print(string.format(name2,args,pretifyOutput(rv))) print(white+f"[Catched]->({green+name1+white})({colorfulArgs(arg1)+white}) "+str(func1err)+reset) print(getsource(tryFunc[0])) except Exception as func2err: print(f"{white}[Line-{frame.lineno}]->({ Fore.LIGHTRED_EX}Catch{white}) { red}'error on both functions' {white}[{ red}{name1}{white},{ red}{name2}{white}]{ reset}") print(white+f"[Catched]->({green+name1+white})({colorfulArgs(arg1)+white}) "+str(func1err)+reset) print(getsource(tryFunc[0])) print(white+f"[Catched]->({green+name2+white})({colorfulArgs(arg2)+white}) "+str(func2err)+reset) print(getsource(runFunc[0])) return [func1err,func2err] return rv def put(self,text): date=datetime.now().strftime("%H:%M:%S") print(white+f"[{date}] "+text+reset) #-----------ChocolateFuncs---------- def ifEqual(kwargs,tuple_): return True if tuple_ in list(kwargs.items()) else False def multiSplit(string,args): for arg in args: string=string.replace(arg,args[0]) return string.split(args[0]) def getLog(code): x=multiSplit(code,["(",")"]) try: i=x.index("Log") except: for s in x: if "Log" in s: i=x.index(s) return x[i+1:len(x)-i-1] def firstValue(code): code=getLog(code) end="" if len(code)>1: return code[0]+white+")("+green+"".join(code[1]) rv=" ".join(code).split(",")[0] if rv[0]=="[" or rv[0]=="{" or rv[0]=="(" or rv[0]=='"': p={"[":"]","{":"}","(":")",'"':'"'} end="..."+p[rv[0]] if rv[0]=='"' and rv.endswith('"'): end="" if rv[0]=='{' and rv.endswith('}'): end="" if rv[0]=='[' and rv.endswith(']'): end="" return rv+end def colorfulArgs(arg): return ','.join([ green+str(i)+reset if type(i)!=str else green+'"'+str(i)+'"'+reset for i in arg]) def colorfulDicts(output,indent,innerIndent=False): innerIndent=indent if innerIndent==True else 0 def colorize(): rv=white+"{\n" for i in list(output.items()): rv+=f'{indent*" "} {green}"{i[0]}"{white}:' if isinstance(i[1], dict): rv+=colorfulDicts(i[1],indent+2,True)+(indent+2)*" "+"\n" elif isinstance(i[1], str): rv+=f'{green}"{i[1]}"{reset},\n' elif isinstance(i[1],list): rv+=f"{white}[{colorfulArgs(i[1])}{white}]\n" else: rv+=f'{i[1]},\n' return rv comma="," if innerIndent else "" return f"{green}"+colorize()+white+(innerIndent*" ")+"}"+comma def pretifyOutput(output): if type(output)==str: return f'"{output}"' elif type(output)==dict: return f"{white}rv={green}Dict\n"+colorfulDicts(output,4)+"\n" elif type(output)==list: return white+"["+colorfulArgs(output)+white+"]" else: return output #-----------exporting--------------- Chocolate=pyChocolate() def Log(output:"debuging content",**kwargs)->"return given output": return Chocolate.LOG(getframeinfo(stack()[1][0]),output,kwargs) def Catch(tryFunc:"function",runFunc:"function")->"return given output": return Chocolate.Catch(getframeinfo(stack()[1][0]),tryFunc,runFunc) def put(text): Chocolate.put(text) #-------------Done------------------
# sqlite3: SQLite 데이터베이스용 DB-API 2.0 인터페이스 # SQLite는 별도의 서버 프로세스가 필요 없고 SQL 질의 언어의 비표준 변형을 사용한다. # 데이터베이스에 액세스할 수 있는 경량 디스크 기반 데이터베이스를 제공하는 C 라이브러리이다. # 일부 응용 프로그램은 내부 데이터 저장을 위해 SQLite를 사용할 수 있다. # 자세한 내용은 파이썬 공식 문서의 "sqlite3 — SQLite 데이터베이스용 DB-API 2.0 인터페이스"를 참고하면 된다. # 파이썬 sqlite3 공식 문서 링크: https://docs.python.org/ko/3/library/sqlite3.html import sqlite3 # 데이터베이스를 생성한다. con = sqlite3.connect('example.db') # cursor 객체를 불러온다. cur = con.cursor() # 'stocks' 테이블을 생성한다. cur.execute('''CREATE TABLE stocks (date text, trans text, symbol text, qty real, price real) ''') # 'stocks' 테이블에 열 데이터를 추가한다. cur.execute("INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14)") # 'commit'을 통해 데이터를 저장한다. con.commit() # 데이터베이스와 연결이 완료되면 'close' 메서드를 통해 연결을 종료한다. # 작업을 끝낸 후, 모든 변경 사항이 적용되었는지 확인해야 한다. # 그렇지 않으면 'close' 메서드를 호출할 경우, 변경 내용이 손실된다. con.close()
from PyQt5.QtCore import Qt, QSize from PyQt5.QtGui import QPixmap from PyQt5.QtWidgets import QSlider, QWidget, QLabel, QPushButton from src.common.QssHelper import QssHelper class Style(object): @staticmethod def init_footer_style(slider_volume: QSlider, footer: QWidget, volume: int, btn_zoom: QPushButton, width: int, height: int): # ------------------ footer ------------------ # slider_volume.setValue(volume) footer.setStyleSheet(QssHelper.load("/main/footer.css")) btn_zoom.setGeometry(width - 18, height - 18, 14, 14) btn_zoom.setStyleSheet("QPushButton{border-image:url(./resource/image/缩放.png)}") btn_zoom.setCursor(Qt.SizeFDiagCursor) @staticmethod def init_music_card_style(music_info_widget: QWidget, btn_music_image: QPushButton, music_image_label: QLabel): music_info_widget.setStyleSheet( "QWidget#music_info_widget{background-color:#f5f5f7;border:none;border-right:1px solid #e1e1e2;}") music_info_widget.setCursor(Qt.PointingHandCursor) btn_music_image.setIconSize(QSize(44, 44)) btn_music_image.setAutoFillBackground(True) music_image_label.setStyleSheet("QLabel{background-color: rgba(71, 71, 71, 150)}") music_image_label.setPixmap(QPixmap("./resource/image/全屏.png")) music_image_label.hide()
# -*- coding: utf-8 -*- # Copyright 2009-2017 Yelp and Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class for all runners.""" import copy import datetime import getpass import logging import os import os.path import posixpath import pprint import re import shutil import sys import tarfile import tempfile import mrjob.step from mrjob.compat import translate_jobconf from mrjob.compat import translate_jobconf_dict from mrjob.compat import translate_jobconf_for_all_versions from mrjob.conf import combine_dicts from mrjob.conf import combine_opts from mrjob.conf import load_opts_from_mrjob_confs from mrjob.fs.composite import CompositeFilesystem from mrjob.fs.local import LocalFilesystem from mrjob.options import _combiners from mrjob.options import _deprecated_aliases from mrjob.options import CLEANUP_CHOICES from mrjob.parse import is_uri from mrjob.py2 import PY2 from mrjob.py2 import string_types from mrjob.setup import WorkingDirManager from mrjob.setup import name_uniquely from mrjob.setup import parse_legacy_hash_path from mrjob.setup import parse_setup_cmd from mrjob.step import _is_spark_step_type from mrjob.util import to_lines from mrjob.util import zip_dir log = logging.getLogger(__name__) # use to detect globs and break into the part before and after the glob GLOB_RE = re.compile(r'^(.*?)([\[\*\?].*)$') # buffer for piping files into sort on Windows _BUFFER_SIZE = 4096 # jobconf options for implementing SORT_VALUES _SORT_VALUES_JOBCONF = { 'mapreduce.partition.keypartitioner.options': '-k1,1', 'stream.num.map.output.key.fields': 2 } # partitioner for sort_values _SORT_VALUES_PARTITIONER = \ 'org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner' class MRJobRunner(object): """Abstract base class for all runners""" # this class handles the basic runner framework, options and config files, # arguments to mrjobs, and setting up job working dirs and environments. # this will put files from setup scripts, py_files, and bootstrap_mrjob # into the job's working dir, but won't actually run/import them # # command lines to run substeps (including Spark) are handled by # mrjob.bin.MRJobBinRunner #: alias for this runner; used for picking section of #: :py:mod:``mrjob.conf`` to load one of ``'local'``, ``'emr'``, #: or ``'hadoop'`` alias = None # libjars is only here because the job can set it; might want to # handle this with a warning from the launcher instead OPT_NAMES = { 'bootstrap_mrjob', 'check_input_paths', 'cleanup', 'cleanup_on_failure', 'cmdenv', 'jobconf', 'label', 'libjars', 'local_tmp_dir', 'owner', 'py_files', 'setup', 'upload_archives', 'upload_dirs', 'upload_files' } # if this is true, when bootstrap_mrjob is true, add it through the # setup script _BOOTSTRAP_MRJOB_IN_SETUP = True ### methods to call from your batch script ### def __init__(self, mr_job_script=None, conf_paths=None, extra_args=None, file_upload_args=None, hadoop_input_format=None, hadoop_output_format=None, input_paths=None, output_dir=None, partitioner=None, sort_values=None, stdin=None, step_output_dir=None, **opts): """All runners take the following keyword arguments: :type mr_job_script: str :param mr_job_script: the path of the ``.py`` file containing the :py:class:`~mrjob.job.MRJob`. If this is None, you won't actually be able to :py:meth:`run` the job, but other utilities (e.g. :py:meth:`ls`) will work. :type conf_paths: None or list :param conf_paths: List of config files to combine and use, or None to search for mrjob.conf in the default locations. :type extra_args: list of str :param extra_args: a list of extra cmd-line arguments to pass to the mr_job script. This is a hook to allow jobs to take additional arguments. :param file_upload_args: a list of tuples of ``('--ARGNAME', path)``. The file at the given path will be uploaded to the local directory of the mr_job script when it runs, and then passed into the script with ``--ARGNAME``. Useful for passing in SQLite DBs and other configuration files to your job. :type hadoop_input_format: str :param hadoop_input_format: name of an optional Hadoop ``InputFormat`` class. Passed to Hadoop along with your first step with the ``-inputformat`` option. Note that if you write your own class, you'll need to include it in your own custom streaming jar (see :mrjob-opt:`hadoop_streaming_jar`). :type hadoop_output_format: str :param hadoop_output_format: name of an optional Hadoop ``OutputFormat`` class. Passed to Hadoop along with your first step with the ``-outputformat`` option. Note that if you write your own class, you'll need to include it in your own custom streaming jar (see :mrjob-opt:`hadoop_streaming_jar`). :type input_paths: list of str :param input_paths: Input files for your job. Supports globs and recursively walks directories (e.g. ``['data/common/', 'data/training/*.gz']``). If this is left blank, we'll read from stdin :type output_dir: str :param output_dir: An empty/non-existent directory where Hadoop should put the final output from the job. If you don't specify an output directory, we'll output into a subdirectory of this job's temporary directory. You can control this from the command line with ``--output-dir``. This option cannot be set from configuration files. If used with the hadoop runner, this path does not need to be fully qualified with ``hdfs://`` URIs because it's understood that it has to be on HDFS. :type partitioner: str :param partitioner: Optional name of a Hadoop partitioner class, e.g. ``'org.apache.hadoop.mapred.lib.HashPartitioner'``. Hadoop streaming will use this to determine how mapper output should be sorted and distributed to reducers. :type sort_values: bool :param sort_values: if true, set partitioners and jobconf variables so that reducers to receive the values associated with any key in sorted order (sorted by their *encoded* value). Also known as secondary sort. :param stdin: an iterable (can be a ``BytesIO`` or even a list) to use as stdin. This is a hook for testing; if you set ``stdin`` via :py:meth:`~mrjob.job.MRJob.sandbox`, it'll get passed through to the runner. If for some reason your lines are missing newlines, we'll add them; this makes it easier to write automated tests. :type step_output_dir: str :param step_output_dir: An empty/non-existent directory where Hadoop should put output from all steps other than the last one (this only matters for multi-step jobs). Currently ignored by local runners. """ self._ran_job = False # opts are made from: # # empty defaults (everything set to None) # runner-specific defaults # opts from config file(s) # opts from command line self._opts = self._combine_confs( [(None, {key: None for key in self.OPT_NAMES})] + [(None, self._default_opts())] + load_opts_from_mrjob_confs(self.alias, conf_paths) + [('the command line', opts)] ) log.debug('Active configuration:') log.debug(pprint.pformat({ opt_key: self._obfuscate_opt(opt_key, opt_value) for opt_key, opt_value in self._opts.items() })) self._fs = None # a local tmp directory that will be cleaned up when we're done # access/make this using self._get_local_tmp_dir() self._local_tmp_dir = None self._working_dir_mgr = WorkingDirManager() # mapping from dir to path for corresponding archive. we pick # paths during init(), but don't actually create the archives # until self._create_dir_archives() is called self._dir_to_archive_path = {} # dir archive names (the filename minus ".tar.gz") already taken self._dir_archive_names_taken = set() # set of dir_archives that have actually been created self._dir_archives_created = set() # track (name, path) of files and archives to upload to spark. # these are a subset of those in self._working_dir_mgr self._spark_files = [] self._spark_archives = [] self._upload_mgr = None # define in subclasses that use this self._script_path = mr_job_script if self._script_path: self._working_dir_mgr.add('file', self._script_path) # give this job a unique name self._job_key = self._make_unique_job_key( label=self._opts['label'], owner=self._opts['owner']) # extra args to our job self._extra_args = list(extra_args) if extra_args else [] for extra_arg in self._extra_args: if isinstance(extra_arg, dict): if extra_arg.get('type') != 'file': raise NotImplementedError self._working_dir_mgr.add(**extra_arg) self._spark_files.append( (extra_arg['name'], extra_arg['path'])) # extra file arguments to our job if file_upload_args: log.warning('file_upload_args is deprecated and will be removed' ' in v0.6.0. Pass dicts to extra_args instead.') for arg, path in file_upload_args: arg_file = parse_legacy_hash_path('file', path) self._working_dir_mgr.add(**arg_file) self._extra_args.extend([arg, arg_file]) self._spark_files.append((arg_file['name'], arg_file['path'])) # set up uploading for hash_path in self._opts['upload_files']: uf = parse_legacy_hash_path('file', hash_path, must_name='upload_files') self._working_dir_mgr.add(**uf) self._spark_files.append((uf['name'], uf['path'])) for hash_path in self._opts['upload_archives']: ua = parse_legacy_hash_path('archive', hash_path, must_name='upload_archives') self._working_dir_mgr.add(**ua) self._spark_archives.append((ua['name'], ua['path'])) for hash_path in self._opts['upload_dirs']: # pick name based on directory path ud = parse_legacy_hash_path('dir', hash_path, must_name='upload_archives') # but feed working_dir_mgr the archive's path archive_path = self._dir_archive_path(ud['path']) self._working_dir_mgr.add( 'archive', archive_path, name=ud['name']) self._spark_archives.append((ud['name'], archive_path)) # py_files # self._setup is a list of shell commands with path dicts # interleaved; see mrjob.setup.parse_setup_cmd() for details self._setup = self._parse_setup_and_py_files() for cmd in self._setup: for token in cmd: if isinstance(token, dict): # convert dir archives tokens to archives if token['type'] == 'dir': # feed the archive's path to self._working_dir_mgr token['path'] = self._dir_archive_path(token['path']) token['type'] = 'archive' self._working_dir_mgr.add(**token) # Where to read input from (log files, etc.) self._input_paths = input_paths or ['-'] # by default read from stdin if PY2: self._stdin = stdin or sys.stdin else: self._stdin = stdin or sys.stdin.buffer self._stdin_path = None # temp file containing dump from stdin # where a zip file of the mrjob library is stored locally self._mrjob_zip_path = None # store output_dir self._output_dir = output_dir # store partitioner self._partitioner = partitioner # store sort_values self._sort_values = sort_values # store step_output_dir self._step_output_dir = step_output_dir # store hadoop input and output formats self._hadoop_input_format = hadoop_input_format self._hadoop_output_format = hadoop_output_format # A cache for self._get_steps(); also useful as a test hook self._steps = None # this variable marks whether a cleanup has happened and this runner's # output stream is no longer available. self._closed = False ### Options #### def _default_opts(self): try: owner = getpass.getuser() except: owner = None return dict( check_input_paths=True, cleanup=['ALL'], cleanup_on_failure=['NONE'], local_tmp_dir=tempfile.gettempdir(), owner=owner, ) def _combine_confs(self, source_and_opt_list): """Combine several opt dictionaries into one. *source_and_opt_list* is a list of tuples of *source*, *opts* where *opts* is a dictionary and *source* is either None or a description of where the opts came from (usually a path). Only override this if you need truly fine-grained control, including knowledge of the options' source. """ opt_list = [ self._fix_opts(opts, source) for source, opts in source_and_opt_list ] return self._combine_opts(opt_list) def _combine_opts(self, opt_list): """Combine several opt dictionaries into one. *opt_list* is a list of dictionaries containing validated options Override this if you need to base options off the values of other options, but don't need to issue warnings etc. about the options' source. """ return combine_opts(self._opt_combiners(), *opt_list) def _opt_combiners(self): """A dictionary mapping opt name to combiner funciton. This won't necessarily include every opt name (we default to :py:func:`~mrjob.conf.combine_value`). """ return _combiners(self.OPT_NAMES) def _fix_opts(self, opts, source=None): """Take an options dictionary, and either return a sanitized version of it, or raise an exception. *source* is either a string describing where the opts came from or None. This ensures that opt dictionaries are really dictionaries and handles deprecated options. """ if source is None: source = 'defaults' # defaults shouldn't trigger warnings if not isinstance(opts, dict): raise TypeError( 'options for %s (from %s) must be a dict' % self.runner_alias, source) deprecated_aliases = _deprecated_aliases(self.OPT_NAMES) results = {} for k, v in sorted(opts.items()): # rewrite deprecated aliases if k in deprecated_aliases: if v is None: # don't care continue aliased_opt = deprecated_aliases log.warning('Deprecated option %s (from %s) has been renamed' ' to %s and will be removed in v0.7.0' % ( k, source, aliased_opt)) if opts.get(aliased_opt) is not None: return # don't overwrite non-aliased opt k = aliased_opt if k in self.OPT_NAMES: results[k] = None if v is None else self._fix_opt(k, v, source) else: log.warning('Unexpected option %s (from %s)' % (k, source)) return results def _fix_opt(self, opt_key, opt_value, source): """Fix a single option, returning its correct value or raising an exception. This is not called for options that are ``None``. This currently handles cleanup opts. Override this if you require additional opt validation or cleanup. """ if opt_key in ('cleanup', 'cleanup_on_failure'): return self._fix_cleanup_opt(opt_key, opt_value, source) else: return opt_value def _fix_cleanup_opt(self, opt_key, opt_value, source): """Fix a cleanup option, or raise ValueError.""" if isinstance(opt_value, string_types): opt_value = [opt_value] if 'NONE' in opt_value and len(set(opt_value)) > 1: raise ValueError( 'Cannot clean up both nothing and something!' ' (%s option from %s)' % (opt_key, source)) for cleanup_type in opt_value: if cleanup_type not in CLEANUP_CHOICES: raise ValueError( '%s must be one of %s, not %s (from %s)' % ( opt_key, ', '.join(CLEANUP_CHOICES), opt_value, source)) return opt_value def _obfuscate_opt(self, opt_key, opt_value): """Return value of opt to show in debug printout. Used to obfuscate credentials, etc.""" return opt_value ### Filesystem object ### @property def fs(self): """:py:class:`~mrjob.fs.base.Filesystem` object for the local filesystem. """ if self._fs is None: # wrap LocalFilesystem in CompositeFilesystem to get IOError # on URIs (see #1185) self._fs = CompositeFilesystem(LocalFilesystem()) return self._fs ### Running the job and parsing output ### def run(self): """Run the job, and block until it finishes. Raise :py:class:`~mrjob.step.StepFailedException` if there are any problems (except on :py:class:`~mrjob.inline.InlineMRJobRunner`, where we raise the actual exception that caused the step to fail). """ if not self._script_path: raise AssertionError("No script to run!") if self._ran_job: raise AssertionError("Job already ran!") self._create_dir_archives() self._check_input_paths() self._run() self._ran_job = True def cat_output(self): """Stream the jobs output, as a stream of ``bytes``. If there are multiple output files, there will be an empty bytestring (``b''``) between them. .. versionadded:: 0.6.0 In previous versions, you'd use :py:meth:`stream_output`. """ output_dir = self.get_output_dir() if output_dir is None: raise AssertionError('Run the job before streaming output') if self._closed is True: log.warning( 'WARNING! Trying to stream output from a closed runner, output' ' will probably be empty.') log.info('Streaming final output from %s...' % output_dir) def split_path(path): while True: base, name = os.path.split(path) # no more elements if not name: break yield name path = base def ls_output(): for filename in self.fs.ls(output_dir): subpath = filename[len(output_dir):] if not (any(name.startswith('_') for name in split_path(subpath))): yield filename for i, filename in enumerate(ls_output()): if i > 0: yield b'' # EOF of previous file for chunk in self.fs._cat_file(filename): yield chunk def stream_output(self): """Like :py:meth:`cat_output` except that it groups bytes into lines. Equivalent to ``mrjob.util.to_lines(runner.stream_output())``. .. deprecated:: 0.6.0 """ log.warning('stream_output() is deprecated and will be removed in' ' v0.7.0. use mrjob.util.to_lines(runner.cat_output())' ' instead.') return to_lines(self.cat_output()) def _cleanup_mode(self, mode=None): """Actual cleanup action to take based on various options""" if self._script_path and not self._ran_job: return mode or self._opts['cleanup_on_failure'] else: return mode or self._opts['cleanup'] def _cleanup_cloud_tmp(self): """Cleanup any files/directories on cloud storage (e.g. S3) we created while running this job. Should be safe to run this at any time, or multiple times. """ pass # only EMR runner does this def _cleanup_hadoop_tmp(self): """Cleanup any files/directories on HDFS we created while running this job. Should be safe to run this at any time, or multiple times. """ pass # only Hadoop runner does this def _cleanup_local_tmp(self): """Cleanup any files/directories on the local machine we created while running this job. Should be safe to run this at any time, or multiple times. This particular function removes any local tmp directories added to the list self._local_tmp_dirs This won't remove output_dir if it's outside of our tmp dir. """ if self._local_tmp_dir: log.info('Removing temp directory %s...' % self._local_tmp_dir) try: shutil.rmtree(self._local_tmp_dir) except OSError as e: log.exception(e) self._local_tmp_dir = None def _cleanup_cluster(self): """Terminate the cluster if there is one.""" pass # this only happens on EMR def _cleanup_logs(self): """Cleanup any log files that are created as a side-effect of the job. """ pass # this only happens on EMR def _cleanup_job(self): """Stop any jobs that we created that are still running.""" pass # currently disabled (see #1241) def cleanup(self, mode=None): """Clean up running jobs, temp files, and logs, subject to the *cleanup* option passed to the constructor. If you create your runner in a :keyword:`with` block, :py:meth:`cleanup` will be called automatically:: with mr_job.make_runner() as runner: ... # cleanup() called automatically here :param mode: override *cleanup* passed into the constructor. Should be a list of strings from :py:data:`CLEANUP_CHOICES` """ mode = self._cleanup_mode(mode) def mode_has(*args): return any((choice in mode) for choice in args) if self._script_path and not self._ran_job: if mode_has('CLUSTER', 'ALL'): self._cleanup_cluster() if mode_has('JOB', 'ALL'): self._cleanup_job() if mode_has('ALL', 'TMP', 'CLOUD_TMP'): self._cleanup_cloud_tmp() if mode_has('ALL', 'TMP', 'HADOOP_TMP'): self._cleanup_hadoop_tmp() if mode_has('ALL', 'TMP', 'LOCAL_TMP'): self._cleanup_local_tmp() if mode_has('ALL', 'LOGS'): self._cleanup_logs() self._closed = True def counters(self): """Get counters associated with this run in this form:: [{'group name': {'counter1': 1, 'counter2': 2}}, {'group name': ...}] The list contains an entry for every step of the current job. """ raise NotImplementedError ### hooks for the with statement ### def __enter__(self): """Don't do anything special at start of with block""" return self def __exit__(self, type, value, traceback): """Call self.cleanup() at end of with block.""" self.cleanup() ### more runner information ### def get_opts(self): """Get options set for this runner, as a dict.""" log.warning('get_opts() is deprecated and will be removed in v0.7.0') return copy.deepcopy(self._opts) def get_job_key(self): """Get the unique key for the job run by this runner. This has the format ``label.owner.date.time.microseconds`` """ return self._job_key def get_output_dir(self): """Find the directory containing the job output. If the job hasn't run yet, returns None""" if self._script_path and not self._ran_job: return None return self._output_dir ### other methods you need to implement in your subclass ### def get_hadoop_version(self): """Return the version number of the Hadoop environment as a string if Hadoop is being used or simulated. Return None if not applicable. :py:class:`~mrjob.emr.EMRJobRunner` infers this from the cluster. :py:class:`~mrjob.hadoop.HadoopJobRunner` gets this from ``hadoop version``. :py:class:`~mrjob.local.LocalMRJobRunner` has an additional `hadoop_version` option to specify which version it simulates. :py:class:`~mrjob.inline.InlineMRJobRunner` does not simulate Hadoop at all. """ return None # you'll probably wan't to add your own __init__() and cleanup() as well def _run(self): """Run the job.""" raise NotImplementedError ### internal utilities for implementing MRJobRunners ### def _get_local_tmp_dir(self): """Create a tmp directory on the local filesystem that will be cleaned up by self.cleanup()""" if not self._local_tmp_dir: path = os.path.join(self._opts['local_tmp_dir'], self._job_key) log.info('Creating temp directory %s' % path) if os.path.isdir(path): shutil.rmtree(path) os.makedirs(path) self._local_tmp_dir = path return self._local_tmp_dir def _make_unique_job_key(self, label=None, owner=None): """Come up with a useful unique ID for this job. We use this to choose the output directory, etc. for the job. """ # use the name of the script if one wasn't explicitly # specified if not label: if self._script_path: label = os.path.basename(self._script_path).split('.')[0] else: label = 'no_script' if not owner: owner = 'no_user' now = datetime.datetime.utcnow() return '%s.%s.%s.%06d' % ( label, owner, now.strftime('%Y%m%d.%H%M%S'), now.microsecond) def _get_steps(self): """Call the job script to find out how many steps it has, and whether there are mappers and reducers for each step. Validate its output. Returns output as described in :ref:`steps-format`. Results are cached, so call this as many times as you want. """ if self._steps is None: self._steps = self._load_steps() return self._steps def _load_steps(self): """Ask job how many steps it has, and whether there are mappers and reducers for each step. Returns output as described in :ref:`steps-format`. """ raise NotImplementedError def _get_step(self, step_num): """Get a single step (calls :py:meth:`_get_steps`).""" return self._get_steps()[step_num] def _num_steps(self): """Get the number of steps (calls :py:meth:`get_steps`).""" return len(self._get_steps()) def _has_streaming_steps(self): """Are any of our steps Hadoop streaming steps?""" return any(step['type'] == 'streaming' for step in self._get_steps()) def _has_spark_steps(self): """Are any of our steps Spark steps (either spark or spark_script)""" return any(_is_spark_step_type(step['type']) for step in self._get_steps()) def _args_for_task(self, step_num, mrc): return [ '--step-num=%d' % step_num, '--%s' % mrc, ] + self._mr_job_extra_args() def _mr_job_extra_args(self, local=False): """Return arguments to add to every invocation of MRJob. :type local: boolean :param local: if this is True, use files' local paths rather than the path they'll have inside Hadoop streaming """ result = [] for extra_arg in self._extra_args: if isinstance(extra_arg, dict): if local: result.append(extra_arg['path']) else: result.append(self._working_dir_mgr.name(**extra_arg)) else: result.append(extra_arg) return result def _dir_archive_path(self, dir_path): """Assign a path for the archive of *dir_path* but don't actually create anything.""" if dir_path not in self._dir_to_archive_path: # we can check local paths now if not (is_uri(dir_path) or os.path.isdir(dir_path)): raise OSError('%s is not a directory!' % dir_path) name = name_uniquely( dir_path, names_taken=self._dir_archive_names_taken) self._dir_archive_names_taken.add(name) self._dir_to_archive_path[dir_path] = os.path.join( self._get_local_tmp_dir(), 'archives', name + '.tar.gz') return self._dir_to_archive_path[dir_path] def _create_dir_archives(self): """Call this to create all dir archives""" for dir_path in sorted(set(self._dir_to_archive_path)): self._create_dir_archive(dir_path) def _create_dir_archive(self, dir_path): """Helper for :py:meth:`archive_dir`""" if not self.fs.exists(dir_path): raise OSError('%s does not exist') tar_gz_path = self._dir_archive_path(dir_path) if tar_gz_path in self._dir_archives_created: return # already created if not os.path.isdir(os.path.dirname(tar_gz_path)): os.makedirs(os.path.dirname(tar_gz_path)) # for remote files tmp_download_path = os.path.join( self._get_local_tmp_dir(), 'tmp-download') log.info('Archiving %s -> %s' % (dir_path, tar_gz_path)) with tarfile.open(tar_gz_path, mode='w:gz') as tar_gz: for path in self.fs.ls(dir_path): # fs.ls() only lists files if path == dir_path: raise OSError('%s is a file, not a directory!' % dir_path) # TODO: do we need this? if os.path.realpath(path) == os.path.realpath(tar_gz_path): raise OSError( 'attempted to archive %s into itself!' % tar_gz_path) if is_uri(path): path_in_tar_gz = path[len(dir_path):].lstrip('/') log.info(' downloading %s -> %s' % ( path, tmp_download_path)) with open(tmp_download_path, 'wb') as f: for chunk in self.fs.cat(path): f.write(chunk) local_path = tmp_download_path else: path_in_tar_gz = path[len(dir_path):].lstrip(os.sep) local_path = path log.debug(' adding %s to %s' % (path, tar_gz_path)) tar_gz.add(local_path, path_in_tar_gz, recursive=False) self._dir_archives_created.add(tar_gz_path) def _bootstrap_mrjob(self): """Should we bootstrap mrjob?""" if self._opts['bootstrap_mrjob'] is None: return self._opts['interpreter'] is None else: return bool(self._opts['bootstrap_mrjob']) def _get_input_paths(self): """Get the paths to input files, dumping STDIN to a local file if need be.""" if '-' in self._input_paths: if self._stdin_path is None: # prompt user, so they don't think the process has stalled log.info('reading from STDIN') stdin_path = os.path.join(self._get_local_tmp_dir(), 'STDIN') log.debug('dumping stdin to local file %s' % stdin_path) with open(stdin_path, 'wb') as stdin_file: for line in self._stdin: # catch missing newlines (often happens with test data) if not line.endswith(b'\n'): line += b'\n' stdin_file.write(line) self._stdin_path = stdin_path return [self._stdin_path if p == '-' else p for p in self._input_paths] def _check_input_paths(self): """Check that input exists prior to running the job, if the `check_input_paths` option is true.""" if not self._opts['check_input_paths']: return for path in self._input_paths: if path == '-': continue # STDIN always exists if not self.fs.can_handle_path(path): continue # e.g. non-S3 URIs on EMR if not self.fs.exists(path): raise IOError( 'Input path %s does not exist!' % (path,)) def _intermediate_output_uri(self, step_num, local=False): """A URI for intermediate output for the given step number.""" join = os.path.join if local else posixpath.join return join( self._step_output_dir or self._default_step_output_dir(), '%04d' % step_num) def _default_step_output_dir(self): """Where to put output for steps other than the last one, if not specified by the *output_dir* constructor keyword. Usually you want this to be on HDFS (most efficient). Define this in your runner subclass. """ raise NotImplementedError def _step_input_uris(self, step_num): """A list of URIs to use as input for the given step. For all except the first step, this list will have a single item (a directory).""" if step_num == 0: return [self._upload_mgr.uri(path) for path in self._get_input_paths()] else: return [self._intermediate_output_uri(step_num - 1)] def _step_output_uri(self, step_num): """URI to use as output for the given step. This is either an intermediate dir (see :py:meth:`intermediate_output_uri`) or ``self._output_dir`` for the final step.""" if step_num == len(self._get_steps()) - 1: return self._output_dir else: return self._intermediate_output_uri(step_num) def _interpolate_input_and_output(self, args, step_num): """Replace :py:data:`~mrjob.step.INPUT` and :py:data:`~mrjob.step.OUTPUT` in arguments to a jar or Spark step. If there are multiple input paths (i.e. on the first step), they'll be joined with a comma. """ def interpolate(arg): if arg == mrjob.step.INPUT: return ','.join(self._step_input_uris(step_num)) elif arg == mrjob.step.OUTPUT: return self._step_output_uri(step_num) else: return arg return [interpolate(arg) for arg in args] def _create_mrjob_zip(self): """Make a zip of the mrjob library, without .pyc or .pyo files, This will also set ``self._mrjob_zip_path`` and return it. Typically called from :py:meth:`_create_setup_wrapper_script`. It's safe to call this method multiple times (we'll only create the zip file once.) """ if not self._mrjob_zip_path: # find mrjob library import mrjob if not os.path.basename(mrjob.__file__).startswith('__init__.'): raise Exception( "Bad path for mrjob library: %s; can't bootstrap mrjob", mrjob.__file__) mrjob_dir = os.path.dirname(mrjob.__file__) or '.' zip_path = os.path.join(self._get_local_tmp_dir(), 'mrjob.zip') def filter_path(path): filename = os.path.basename(path) return not(filename.lower().endswith('.pyc') or filename.lower().endswith('.pyo') or # filter out emacs backup files filename.endswith('~') or # filter out emacs lock files filename.startswith('.#') or # filter out MacFuse resource forks filename.startswith('._')) log.debug('archiving %s -> %s as %s' % ( mrjob_dir, zip_path, os.path.join('mrjob', ''))) zip_dir(mrjob_dir, zip_path, filter=filter_path, prefix='mrjob') self._mrjob_zip_path = zip_path return self._mrjob_zip_path def _jobconf_for_step(self, step_num): """Get the jobconf dictionary, optionally including step-specific jobconf info. Also translate jobconfs to the current Hadoop version, if necessary. """ step = self._get_step(step_num) # _sort_values_jobconf() isn't relevant to Spark, # but it doesn't do any harm either jobconf = combine_dicts(self._sort_values_jobconf(), self._opts['jobconf'], step.get('jobconf')) # if user is using the wrong jobconfs, add in the correct ones # and log a warning hadoop_version = self.get_hadoop_version() if hadoop_version: jobconf = translate_jobconf_dict(jobconf, hadoop_version) return jobconf def _sort_values_jobconf(self): """Jobconf dictionary to enable sorting by value. """ if not self._sort_values: return {} # translate _SORT_VALUES_JOBCONF to the correct Hadoop version, # without logging a warning hadoop_version = self.get_hadoop_version() jobconf = {} for k, v in _SORT_VALUES_JOBCONF.items(): if hadoop_version: jobconf[translate_jobconf(k, hadoop_version)] = v else: for j in translate_jobconf_for_all_versions(k): jobconf[j] = v return jobconf def _sort_values_partitioner(self): """Partitioner to use with *sort_values* keyword to the constructor.""" if self._sort_values: return _SORT_VALUES_PARTITIONER else: return None def _parse_setup_and_py_files(self): """Parse the *setup* option with :py:func:`mrjob.setup.parse_setup_cmd()`, and patch in *py_files*. """ setup = [] # py_files for path in self._opts['py_files']: # Spark (at least v1.3.1) doesn't work with # and --py-files, # see #1375 if '#' in path: raise ValueError("py_files cannot contain '#'") path_dict = parse_legacy_hash_path('file', path) setup.append(['export PYTHONPATH=', path_dict, ':$PYTHONPATH']) # setup for cmd in self._opts['setup']: setup.append(parse_setup_cmd(cmd)) return setup def _upload_args(self): # just upload every file and archive in the working dir manager return self._upload_args_helper('-files', None, '-archives', None) def _upload_args_helper( self, files_opt_str, files, archives_opt_str, archives): args = [] file_hash_paths = list(self._arg_hash_paths('file', files)) if file_hash_paths: args.append(files_opt_str) args.append(','.join(file_hash_paths)) archive_hash_paths = list(self._arg_hash_paths('archive', archives)) if archive_hash_paths: args.append(archives_opt_str) args.append(','.join(archive_hash_paths)) return args def _arg_hash_paths(self, type, named_paths=None): """Helper function for the *upload_args methods.""" if named_paths is None: # just return everything managed by _working_dir_mgr named_paths = sorted( self._working_dir_mgr.name_to_path(type).items()) for name, path in named_paths: if not name: name = self._working_dir_mgr.name(type, path) uri = self._upload_mgr.uri(path) yield '%s#%s' % (uri, name) def _fix_env(env): """Convert environment dictionary to strings (Python 2.7 on Windows doesn't allow unicode).""" def _to_str(s): if isinstance(s, string_types) and not isinstance(s, str): return s.encode('utf_8') else: return s return dict((_to_str(k), _to_str(v)) for k, v in env.items())
# -*- coding: utf-8 -*- """ @author:XuMing([email protected]) @description: 生成仿真评论 """ import os from textgen.unsup_generation.phrase import load_list, caculate_word_idf, text2review, find_word_phrase, get_seg_pos from textgen.unsup_generation.util import text2seg_pos, get_aspect_express, get_candidate_aspect, \ merge_aspect_express, fake_review_filter, generate_reviews, NSDict, PairPattSort pwd_path = os.path.abspath(os.path.dirname(__file__)) default_stopwords_path = os.path.join(pwd_path, '../data/stopwords.txt') default_pos_adj_word_path = os.path.join(pwd_path, '../data/HowNetPOSWord.txt') class Generate: def __init__(self, docs): print('docs_text len:', len(docs)) # 加载停用词 self.stopwords = set(load_list(default_stopwords_path)) # 计算除去停用词的每个词的idf值 self.word_idf, self.seg_pos_text = caculate_word_idf(docs, self.stopwords) review_list, all_word = text2review(self.seg_pos_text) phrase_list = find_word_phrase(all_word, review_list) print('find new word:', phrase_list) # 加载正向情感词典 self.pos_adj_word = load_list(default_pos_adj_word_path) def generate(self, doc, num=1000, is_uniq=True): seg_pos_text = [get_seg_pos(l) for l in doc] seg_list, pos_list, seg_review_list = text2seg_pos(seg_pos_text, pattern='[。!?,~]') raw_aspect_list = get_candidate_aspect(seg_list, pos_list, self.pos_adj_word, self.stopwords, self.word_idf) # 构建候选集合 N = NSDict(seg_list, pos_list, raw_aspect_list) ns_dict = N.build_nsdict() # 候选集合排序 P = PairPattSort(ns_dict) pair_score = P.sort_pair() # 得到正确的观点表达候选 pair_useful = {} baseline = 0.1 * len(pair_score) for i, item in enumerate(pair_score): if i <= baseline: aspect, opinion = item[0].split('\t') if aspect in pair_useful: pair_useful[aspect].append(opinion) else: pair_useful[aspect] = [opinion] # 从原始评论中抽取观点表达 aspect_express = get_aspect_express(seg_review_list, pair_useful) # 字符匹配合并aspect merged_aspect_express, opinion_set = merge_aspect_express(aspect_express, pair_useful) # 生成假评论 generated_raw_reviews = generate_reviews(merged_aspect_express, num=num) results = fake_review_filter(generated_raw_reviews, opinion_set, is_uniq=is_uniq) return results if __name__ == '__main__': sample1 = load_list(os.path.join(pwd_path, '../data/12617.txt')) docs_text = [["挺好的,速度很快,也很实惠,不知效果如何", "产品没得说,买了以后就降价,心情不美丽。", "刚收到,包装很完整,不错", "发货速度很快,物流也不错,同一时间买的两个东东,一个先到一个还在路上。这个水水很喜欢,不过盖子真的开了。盖不牢了现在。", "包装的很好,是正品", "被种草兰蔻粉水三百元一大瓶囤货,希望是正品好用,收到的时候用保鲜膜包裹得严严实实,只敢买考拉自营的护肤品", ], ['很温和,清洗的也很干净,不油腻,很不错,会考虑回购,第一次考拉买护肤品,满意', '这款卸妆油我会无限回购的。即使我是油痘皮,也不会闷痘,同时在脸部按摩时,还能解决白头的脂肪粒的问题。用清水洗完脸后,非常的清爽。', '自从用了fancl之后就不用其他卸妆了,卸的舒服又干净', '买贵了,大润发才卖79。9。', ], sample1 ] m = Generate(docs_text) r = m.generate(sample1[:500]) print('size:', len(r)) for review in r: print('\t' + review)
# -*- coding: utf-8 -*- # Copyright 2019 The Blueoil Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import math import numpy as np from scipy import ndimage from abc import ABCMeta, abstractmethod from PIL import Image, ImageEnhance, ImageFilter class Augmentor(metaclass=ABCMeta): def __repr__(self): return "{}({})".format(self.__class__.__name__, self.__dict__) @abstractmethod def __call__(self, *args, **kwargs): NotImplementedError() def split_input_tensor(self, input_tensor): """ input_tensor: np.ndarray with shape (H, W, 6) return: ndarray(H, W, 3), ndarray(H, W, 3) """ return input_tensor[..., :3], input_tensor[..., 3:] class ColorConverter(Augmentor): """ Augmentors converting pixel color properties """ def __call__(self, image, *args, **kwargs): image_a, image_b = self.split_input_tensor(image) factor = np.random.uniform(self.min_value, self.max_value) processed_tensor = np.concatenate([ self.process(image_a, factor), self.process(image_b, factor) ], axis=2) return dict({"image": processed_tensor}, **kwargs) def process(self, *args, **kwargs): NotImplementedError() class Brightness(ColorConverter): """ Adjusting image brightness. reference: https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html#PIL.ImageEnhance.PIL.ImageEnhance.Brightness args: min_value, max_value: An enhancement factor of 0.0 gives a black image. A factor of 1.0 gives the original image. """ def __init__(self, min_value=0.75, max_value=1.25): assert min_value >= 0 and max_value >= 0, "Negative value not allowed!" self.min_value, self.max_value = min_value, max_value def process(self, image, factor): pil_image = Image.fromarray(image) enhancer = ImageEnhance.Brightness(pil_image) processed_image = enhancer.enhance(factor) return np.array(processed_image) class Color(ColorConverter): """ Adjusting image color. reference: https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html#PIL.ImageEnhance.PIL.ImageEnhance.Color args: min_value, max_value An enhancement factor of 0.0 gives a black and white image. A factor of 1.0 gives the original image. """ def __init__(self, min_value=0.75, max_value=1.25): assert min_value >= 0 and max_value >= 0, "Negative value not allowed!" self.min_value, self.max_value = min_value, max_value def process(self, image, factor): pil_image = Image.fromarray(image) enhancer = ImageEnhance.Color(pil_image) processed_image = enhancer.enhance(factor) return np.array(processed_image) class Contrast(ColorConverter): """ Adjusting image contrast. reference: https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html#PIL.ImageEnhance.PIL.ImageEnhance.Contrast args: min_value, max_value An enhancement factor of 0.0 gives a solid grey image. A factor of 1.0 gives the original image. """ def __init__(self, min_value=0.75, max_value=1.25): assert min_value >= 0 and max_value >= 0, "Negative value not allowed!" self.min_value, self.max_value = min_value, max_value def process(self, image, factor): pil_image = Image.fromarray(image) enhancer = ImageEnhance.Contrast(pil_image) processed_image = enhancer.enhance(factor) return np.array(processed_image) class Hue(ColorConverter): """ Adjusting image hue. args: min_value, max_value An enhancement factor of 0.0 gives a solid grey image. A factor of 1.0 gives the original image. """ def __init__(self, min_value=-10.0, max_value=10.0): assert min_value > -255 and max_value < 255, \ "Value range should be within (-255, 255)!" self.min_value, self.max_value = min_value, max_value def process(self, image, factor): pil_image = Image.fromarray(image) hsv_image = np.array(pil_image.convert("HSV")) hsv_image[:, :, 0] = hsv_image[:, :, 0] + factor processed_image = Image.fromarray(hsv_image, "HSV").convert("RGB") return np.array(processed_image) class Gamma(ColorConverter): """ Gamma blur filter. """ def __init__(self, min_value=0.0, max_value=1.0): assert min_value >= 0 and max_value >= 0, "Negative value not allowed!" self.min_value, self.max_value = min_value, max_value def process(self, image, gamma): processed_image = (((image / 255.0) ** gamma) * 255.0).astype(np.uint8) return processed_image class GaussianBlur(ColorConverter): """ Gaussian blur filter. reference: https://pillow.readthedocs.io/en/stable/reference/ImageFilter.html#PIL.ImageFilter.GaussianBlur args: min_value, max_value References default is 2. """ def __init__(self, min_value=0.0, max_value=1.0): assert min_value >= 0 and max_value >= 0, "Negative value not allowed!" self.min_value, self.max_value = min_value, max_value def process(self, image, radius): pil_image = Image.fromarray(image) processed_image = pil_image.filter(ImageFilter.GaussianBlur(radius)) return np.array(processed_image) class GaussianNoise(Augmentor): """ Additive Gaussian noise. """ def __init__(self, min_value=0.0, max_value=1.0): assert min_value >= 0 and max_value >= 0, "Negative value not allowed!" self.min_value, self.max_value = min_value, max_value def __call__(self, image, label, **kwargs): # print(image.shape) noise_amp = np.random.uniform(self.min_value, self.max_value) image_noise = noise_amp * np.random.randn(*image.shape) processed_image = image + image_noise processed_image[processed_image < 0] = 0 processed_image[processed_image > 255] = 255 processed_image = processed_image.astype(np.uint8) return dict({ "image": processed_image, "label": label}, **kwargs) class FlipTopBottom(Augmentor): """ Flip top bottom. args: probability Probability for flipping. """ def __init__(self, prob=0.5): self.prob = prob def __call__(self, image, label, **kwargs): if np.random.rand() < self.prob: image = image[::-1, ...] label = label[::-1, ...] label[:, :, 1] *= -1.0 return dict({ "image": image, "label": label}, **kwargs) class FlipLeftRight(Augmentor): """ Flip left right. args: probability Probability for flipping. """ def __init__(self, prob=0.5): self.prob = prob def __call__(self, image, label, **kwargs): if np.random.rand() < self.prob: image = image[:, ::-1, :] label = label[:, ::-1, :] label[:, :, 0] *= -1.0 return dict({ "image": image, "label": label}, **kwargs) class Identity(Augmentor): """ create the pair of images with no change args: probability Probability for applying this process. """ def __init__(self, prob=0.1): self.prob = prob def __call__(self, image, label, **kwargs): if np.random.rand() < self.prob: image[..., :3] = image[..., 3:] label[:] = 0.0 return dict({ "image": image, "label": label}, **kwargs) class Rotate(Augmentor): """ Rotating image """ def __init__(self, min_value=-15, max_value=15): self.min_value, self.max_value = min_value, max_value def __call__(self, image, label, **kwargs): ang = np.random.uniform(self.min_value, self.max_value) deg = ang * np.pi / 180 rot_mat = np.array([ [np.cos(deg), -np.sin(deg)], [np.sin(deg), np.cos(deg)], ]) image_new = ndimage.rotate(image, ang, reshape=False, cval=0.0) image_new = image_new.astype(np.uint8) flow_new = np.array(label.dot(rot_mat.T)) flow_new = ndimage.rotate(flow_new, ang, reshape=False, cval=0.0) return dict({ "image": image_new, "label": flow_new}, **kwargs) class Scale(Augmentor): """ Scaling image """ def __init__(self, min_value=1.0, max_value=2.0): assert min_value >= 1.0 or max_value >= 1.0, \ "scaling parameter should be greater than 1.0" self.min_value, self.max_value = min_value, max_value def random_crop(self, data, crop_size): height, width, _ = data.shape if height == crop_size[0] or width == crop_size[1]: return data top = np.random.randint(0, height - crop_size[0]) left = np.random.randint(0, width - crop_size[1]) bottom = top + crop_size[0] right = left + crop_size[1] return data[top:bottom, left:right, :] def __call__(self, image, label, **kwargs): image_size = image.shape[:2] factor = np.random.uniform(self.min_value, self.max_value) data = np.concatenate([image, label * factor], axis=2) zoomed_data = ndimage.zoom(data, [factor, factor, 1], order=1) data = self.random_crop(zoomed_data, crop_size=image_size) image_new = data[..., :-2] image_new[image_new < 0] = 0 image_new[image_new > 255] = 255 image_new = image_new.astype(np.uint8) label_new = data[..., -2:] return dict({"image": image_new, "label": label_new}, **kwargs) class Translate(Augmentor): """ Shifting image """ def __init__(self, min_value=-0.2, max_value=0.2): self.min_value, self.max_value = min_value, max_value def __call__(self, image, label, **kwargs): image_size = image.shape[:2] dh = np.random.uniform(self.min_value, self.max_value) dw = np.random.uniform(self.min_value, self.max_value) shift = [int(image_size[0] * dh), int(image_size[1] * dw), 0] shifted_image = ndimage.shift(image, shift, order=1, cval=0) shifted_label = ndimage.shift(label, shift, order=1, cval=0) return dict({"image": shifted_image, "label": shifted_label}, **kwargs)
import nltk import pickle import random from nltk.classify import ClassifierI from nltk.classify.scikitlearn import SklearnClassifier from nltk.corpus import movie_reviews from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC from sklearn.svm import NuSVC from sklearn.svm import SVC from statistics import mode documents = [(list(movie_reviews.words(fieldid)), category) for category in movie_reviews.categories() for fieldid in movie_reviews.fileids(category)] random.shuffle(documents, random=None) words_list = [] for w in movie_reviews.words(): words_list.append(w.lower()) words_list = nltk.FreqDist(words_list) word_feature = list(words_list.keys())[50:5000] def featuresFind(document): feature = {} words = set(document) for w in word_feature: feature[w] = (w in words) return feature featureSet = [(featuresFind(rev), category) for (rev, category) in documents] trainSet = featureSet[:1400] testSet = featureSet[1400:] # trainSet = featureSet[100:1900] # testSet = featureSet[1900:] list_of_classifier = [MultinomialNB, LogisticRegression, SGDClassifier, SVC, LinearSVC, NuSVC] listClassifier = [] for classifier in list_of_classifier: classifier_name = SklearnClassifier(classifier()) listClassifier.append(classifier_name) classifier_name.train(trainSet) print('{} Accuracy : {}'.format(classifier.__name__, nltk.classify.accuracy(classifier_name, testSet)*100)) class ClassifierVote(ClassifierI): def __init__(self, classifiers): self._classifiers = classifiers def mode(self, features): votes = [] for classifier in self._classifiers: vote = classifier.classify(features) votes.append(vote) return mode(votes) def confidence(self, features): votes = [] for classifier in self._classifiers: vote = classifier.classify(features) votes.append(vote) vote_choice = votes.count(mode(votes)) confi = vote_choice / len(votes) return confi votes_classified = ClassifierVote(listClassifier) for i in range(5): print('Confidence : {}'.format(votes_classified.confidence(testSet[i][0])*100)) print('Mode : {}'.format(votes_classified.mode(testSet[i][0])))
"""Module allowing for ``python -m lexos ...``.""" from lexos import application application.run()
"""Tools for getting spectra for lya fitting. Includes choosing a data file for each star, reading the files, and processing the spectral data (from either IUE, STIS, ...) into a format that can be used directly for the fitting. The variable target_use_which_spectrum indicates which data to use for each star. It can be customized by editing this file. Running this module directly will print out the default value for this dictionary. """ from astropy.table import Table from astropy.io import fits import numpy as np from pathlib import Path from warnings import warn from scipy.interpolate import interp1d import collections # \(swp[0-9]\{5\}\) # can be manually tweaked. If the value is a list or contains *, the # spectra will be coadded target_use_which_spectrum = { "HD097471": "data/HD097471/mastDownload/IUE/swp19375/swp19375mxlo_vo.fits", "HD037525": "data/HD037525/mastDownload/IUE/swp27579/swp27579.mxhi.gz", "HD093827": "data/HD093827/mastDownload/IUE/swp50536/swp50536.mxhi.gz", # "HD093827": "data/HD093827/*mxlo_vo.fits", "HD051013": "data/HD051013/mastDownload/IUE/swp22860/swp22860.mxhi.gz", "HD096675": "data/HD096675/mastDownload/IUE/swp41717/swp41717.mxhi.gz", "HD023060": "data/HD023060/mastDownload/IUE/swp11151/swp11151mxlo_vo.fits", "HD099872": "data/HD099872/mastDownload/HST/**/*_x1d.fits", # "HD152248": "data/HD152248/mastDownload/IUE/swp54576/swp54576.mxhi.gz", "HD152248": "data/HD152248/**/*.mxhi.gz", "HD209339": "data/HD209339/mastDownload/HST/**/*_x1d.fits", # "HD197770": "data/HD197770/mastDownload/HST/oedl04010/oedl04010_x1d.fits", "HD197770": "data/HD197770/**/*.mxhi.gz", "HD037332": "data/HD037332/mastDownload/IUE/swp32289/swp32289.mxhi.gz", "HD093028": "data/HD093028/mastDownload/IUE/swp05521/swp05521.mxhi.gz", # "HD062542": "data/HD062542/mastDownload/HST/obik01020/obik01020_x1d.fits", # wavelength range # "HD062542": "data/HD062542/*.mxhi.gz", # way too noisy "HD062542": "data/HD062542/**/*mxlo_vo.fits", # "HD190603": "data/HD190603/*.mxhi.gz", "HD190603": "data/HD190603/**/*mxlo_vo.fits", # "HD046202": "data/HD046202/mastDownload/IUE/swp08845/swp08845.mxhi.gz", # "HD046202": "data/HD046202/mastDownload/HST/ocb6e0030/ocb6e0030_x1d.fits", # "HD046202": "data/HD046202/mastDownload/HST/ocb6e1030/ocb6e1030_x1d.fits", "HD046202": "data/HD046202/mastDownload/HST/**/*_x1d.fits", # "HD047129": "data/HD047129/mastDownload/IUE/swp07077/swp07077.mxhi.gz", "HD047129": "data/HD047129/**/*.mxhi.gz", "HD235874": "data/HD235874/mastDownload/IUE/swp34158/swp34158mxlo_vo.fits", "HD216898": "data/HD216898/swp43934.mxhi.gz", # "HD216898": "data/HD216898/mastDownload/IUE/swp17175/swp17175mxlo_vo.fits", "HD326329": "data/HD326329/mastDownload/IUE/swp48698/swp48698.mxhi.gz", "HD179406": [ "data/HD179406/mastDownload/IUE/swp08974/swp08974.mxhi.gz", "data/HD179406/mastDownload/IUE/swp08976/swp08976.mxhi.gz", "data/HD179406/mastDownload/IUE/swp13865/swp13865.mxhi.gz", "data/HD179406/mastDownload/IUE/swp36939/swp36939.mxhi.gz", "data/HD179406/mastDownload/IUE/swp36940/swp36940.mxhi.gz", ], "BD+52d3210": "data/BD+52d3210/mastDownload/IUE/swp34153/swp34153mxlo_vo.fits", "BD+56d524": "data/BD+56d524/mastDownload/IUE/swp20330/swp20330mxlo_vo.fits", # data for comparison to existing HI results "HD094493": "data/HD094493/mastDownload/HST/o54306010/o54306010_x1d.fits", "HD045314": "data/HD045314/mastDownload/IUE/**/*mxhi.gz" } # namedtuple defines a simple class Spectrum = collections.namedtuple( "Spectrum", ["wavs", "flux", "errs", "net", "exptime"] ) def processed(target, wmin=0, wmax=1400, disp=0.25): """Get spectrum data ready for fitting Lya for the given target. Tweak the variable get_spectrum.target_use_which_spectrum to choose the right data. Depending on whether a IUE or STIS spectrum was chosen, different steps will be taken. The end result is the spectral data in a common format, processed with different steps depending on the source of the data. Returns ------- wav, flux: ndarray of wavelengths (angstrom) and fluxes (erg s-1 cm-2 angstrom-1) """ # choose data filename = target_use_which_spectrum[target] print("Getting data from ", filename) spectrum, rebin = auto_wavs_flux_errs(filename) if rebin: binnedwavs, binnedflux = rebin_spectrum_around_lya(spectrum, wmin, wmax, disp) else: wavs, flux = spectrum.wavs, spectrum.flux use = np.logical_and(wmin < wavs, wavs < wmax) binnedwavs, binnedflux = wavs[use], flux[use] # remove nans (these are very annoying when they propagate, e.g. # max([array with nan]) = nan). safe = np.isfinite(binnedflux) safewavs = binnedwavs[safe] safeflux = binnedflux[safe] return safewavs, safeflux, filename def auto_wavs_flux_errs(filename): """Load spectrum or multiple spectra based on file name.""" # determine if multiple files were provided. If a glob pattern was provided, this counts as if isinstance(filename, list): to_be_coadded = filename elif isinstance(filename, str): if "*" in filename: to_be_coadded = [str(p) for p in Path(".").glob(filename)] elif "x1d" in filename: # a single x1d file can contain multiple extensions, which # need to be coadded to_be_coadded = [filename] else: to_be_coadded = None else: warn("filename should be str or list!") raise if to_be_coadded is None: if "x1d" in filename: spectrum = merged_stis_data(filename) rebin = True elif "mxhi" in filename: spectrum = merged_iue_h_data(filename) rebin = True elif "mxlo" in filename: spectrum = iue_l_data(filename) rebin = False else: warn("File {} not supported yet, exiting".format(filename)) exit() else: if "x1d" in to_be_coadded[0]: spectrum = coadd_hst_stis(to_be_coadded) rebin = True elif "mxhi" in to_be_coadded[0]: spectrum = coadd_iue_h(to_be_coadded) rebin = True elif "mxlo" in to_be_coadded[0]: spectrum = coadd_iue_l(to_be_coadded) rebin = False return spectrum, rebin def merged_stis_data(filename, extension=1): """Get spectrum data from all STIS spectral orders. If only filename is given, use SCI extension. Returns ------- wavs: numpy array, all wavelengths, sorted flux: all fluxes at these wavelengths errs: all errors at these wavelengths """ with fits.open(filename) as f: t = f[extension].data exptime = get_exptime(f[extension].header) output_columns = ["WAVELENGTH", "FLUX", "ERROR", "NET"] fields = [np.concatenate(t[c]) for c in output_columns] # clean up by dq dq = np.concatenate(t["DQ"]) good = dq == 0 print(f"STIS: {good.sum()} out of {len(good)} wavelength points are good") fields = [c[good] for c in fields] # sort by wavelength idxs = np.argsort(fields[0]) fields = [c[idxs] for c in fields] # add exptime and create Spectrum (namedtuple) object (* unpacks, # should be in right order) fields.append(exptime) return Spectrum(*fields) def merged_iue_h_data(filename): """ Get Spectrumn info over all orders of high res IUE data. Returns ------- Spectrum """ t = Table.read(filename) def iue_wavs(i): return t[i]["WAVELENGTH"] + t[i]["DELTAW"] * np.arange(t[i]["NPOINTS"]) def pixrange(i): return slice(t[i]["STARTPIX"], t[i]["STARTPIX"] + t[i]["NPOINTS"]) def all_of_column(colname): return np.concatenate([t[i][colname][pixrange(i)] for i in range(len(t))]) allwavs = np.concatenate([iue_wavs(i) for i in range(len(t))]) colnames = ["WAVELENGTH", "ABS_CAL", "NOISE", "NET"] column_values = [allwavs] for colname in colnames[1:]: column_values.append(all_of_column(colname)) # clean up using DQ dq = all_of_column("QUALITY") good = dq == 0 print(f"IUE: {good.sum()} out of {len(good)} wavelength points are good") for array in column_values: array = array[good] # sort by wavelength idxs = np.argsort(column_values[0]) column_values = [c[idxs] for c in column_values] # add exptime and create Spectrum exptime = get_exptime(fits.getheader(filename, ext=0)) fields = column_values + [exptime] return Spectrum(*fields) def iue_l_data(filename): t = Table.read(filename) wavs = t["WAVE"][0] flux = t["FLUX"][0] sigma = t["SIGMA"][0] # net is not available net = None # exptime is not used (for now) exptime = None return Spectrum(wavs, flux, sigma, net, exptime) def coadd_iue_h(filenames): print(f"Coadding {len(filenames)} IUE H exposures") return coadd_general([merged_iue_h_data(fn) for fn in filenames]) def coadd_iue_l(filenames): print(f"Coadding {len(filenames)} IUE L exposures") spectrums = [iue_l_data(fn) for fn in filenames] if not np.equal.reduce([s.wavs for s in spectrums]).all(): warn("Not all wavs are equal in IUE L. Implement fix pls.") raise # Assume that the wavs are always the same. If not, the above error # will trigger, and I should reconsider. numwavs = len(spectrums[0].wavs) flux_sum = np.zeros(numwavs) weight_sum = np.zeros(numwavs) for s in spectrums: good = np.isfinite(s.flux) & (s.errs > 0) weight = 1 / s.errs ** 2 flux_sum[good] += s.flux[good] * weight[good] weight_sum[good] += weight[good] # simply the 1/sigma2 weighting rule new_flux = flux_sum / weight_sum new_errs = np.sqrt(1 / weight_sum) return Spectrum(spectrums[0].wavs, new_flux, new_errs, None, None) def coadd_hst_stis(filenames): # get all SCI exposures spectrums = [] # remember handles so we can close them later for fn in filenames: with fits.open(fn) as hdus: for extension in range(1, len(hdus)): spectrums.append(merged_stis_data(fn, extension)) print(f"Coadding {len(spectrums)} STIS exposures from {len(filenames)} files") return coadd_general(spectrums) def coadd_general(spectrums): """General function for coadding spectra. spectrums : list of Spectrum objects Returns ------- spectrum : Spectrum object representing the coadded data """ # get all the per-wavelength data all_wavs = [s.wavs for s in spectrums] # determine new wavelength grid, using max of median of wavelength # increment as step size maxwav = np.amax(np.concatenate(all_wavs)) minwav = np.amin(np.concatenate(all_wavs)) disp = np.amax([np.median(np.diff(w)) for w in all_wavs]) newwavs = np.arange(minwav, maxwav, disp) # instead of binning, we're just going to do nearest neighbour on a # slightly coarser wavelength grid. It worked for Julia, so... flux_sum = np.zeros(len(newwavs)) weight_sum = np.zeros(len(newwavs)) variance_sum = np.zeros(len(newwavs)) net_sum = np.zeros(len(newwavs)) total_exptime = np.zeros(len(newwavs)) for s in spectrums: # nearest neighbour interpolation of all relevant quantities def do_interp1d(quantity): return interp1d( s.wavs, quantity, kind="nearest", fill_value=np.nan, bounds_error=False, )(newwavs) fi = do_interp1d(s.flux) ei = do_interp1d(s.errs) ni = do_interp1d(s.net) exptime = s.exptime # weights scale with ni / fi = sensitivity good_fi_ni = (fi != 0) & np.isfinite(fi) & (ni != 0) & np.isfinite(ni) wi = np.where(good_fi_ni, ni / fi, 0) * exptime good_wi = wi > 0 # total_counts = flux * sensitivity * exptime # --> flux = total_counts / (sensitivity * exptime) # # V(flux) = V(total_counts) / (sensitivity * exptime)**2 # = total_counts / (sensitivity * exptime)**2 (poisson) # = flux * sensitivity * exptime / (sensitivity * exptime)**2 # = flux / (sensitivity * exptime) # sens = counts per flux unit weight_sum[good_wi] += wi[good_wi] flux_sum[good_wi] += wi[good_wi] * fi[good_wi] variance_sum[good_wi] += np.square(ei[good_wi] * wi[good_wi]) net_sum[good_wi] += ni[good_wi] * exptime total_exptime[good_wi] += exptime flux_result = flux_sum / weight_sum errs_result = np.sqrt(variance_sum) / weight_sum net_result = net_sum / total_exptime return Spectrum(newwavs, flux_result, errs_result, net_result, total_exptime) def rebin_spectrum_around_lya(spectrum, wmin=0, wmax=1400, disp=0.25): """Rebin spectrum to for lya fitting, and reject certain points. A rebinning of the spectrum to make it more useful for lya fitting. Every new point is the weighted average of all data within the range of a bin. The weights are flux / net * exptime if those are available. If not 1 / errs**2 is used. The bins can be specified by choosing a minimum, maximum wavelength and a resolution (in Angstrom). Additionally, only the points that satisfy some basic data rejection criteria are used. Returns ------- newwavs: average wavelength in each bin newflux: average flux in each bin """ wavs = spectrum.wavs flux = spectrum.flux wavmin = max(wmin, np.amin(wavs)) wavmax = min(wmax, np.amax(wavs)) wavbins = np.arange(wavmin, wavmax, disp) if spectrum.net is not None and spectrum.exptime is not None: weights = spectrum.net / flux * spectrum.exptime else: weights = 1 / spectrum.errs ** 2 # np.digitize returns list of indices. b = 1 means that the data point # is between wav[0] (first) and wav[1]. b = n-1 means between wav[n-2] # and wav[n-1] (last). b = 0 or n mean out of range. bs = np.digitize(wavs, wavbins) newwavs = np.zeros(len(wavbins) - 1) newflux = np.zeros(len(wavbins) - 1) for i in range(0, len(wavbins) - 1): in_bin = bs == i + 1 # b runs from 1 to n-1 use = np.logical_and.reduce( [in_bin, np.isfinite(flux), weights > 0, np.isfinite(weights)] ) # if a bin is empty or something else is wrong, the nans will be # filtered out later if not use.any(): newwavs[i] = 0 newflux[i] = np.nan continue newwavs[i] = np.average(wavs[use], weights=weights[use]) newflux[i] = np.average(flux[use], weights=weights[use]) return newwavs, newflux def get_exptime(header): """Tries a couple of keywords to find the exposure time in a FITS header""" for exptime_key in ("EXPTIME", "LEXPTIME", "SEXPTIME"): if exptime_key in header: exptime = float(header[exptime_key]) return exptime # Some code to generate the above dict from scratch. Manual tweaking can # occur after. if __name__ == "__main__": gen_dict = {} here = Path(".") for d in list(here.glob("./data/HD*")) + list(here.glob("./data/BD*")): has_iue_h = False has_iue_l = False has_hst_stis = False # has_hst_cos = False # lower in this list of ifs is higher priority target = Path(d).name # def set_if_exists(glob_pattern): # files = d.glob(glob_pattern) # if len(files) > 0: # spectrum_file = files[0] iue_l_files = list(d.glob("*mxlo_vo.fits")) if len(iue_l_files) > 0: spectrum_file = str(iue_l_files[0]) iue_h_files = list(d.glob("*mxhi.gz")) if len(iue_h_files) > 0: spectrum_file = str(iue_h_files[0]) hst_stis_files = list(d.glob("**/*x1d.fits")) if len(hst_stis_files) > 0: spectrum_file = str(hst_stis_files[0]) gen_dict[target] = spectrum_file print(gen_dict)
# %% [markdown] # # Models and Ensembling Methods # %% [markdown] # ## Import dependencies import numpy from gensim.models import word2vec from gensim.models import KeyedVectors import pandas from nltk import WordPunctTokenizer from sklearn.preprocessing import label_binarize import sqlite3 from sklearn.multiclass import OneVsRestClassifier from matplotlib import pyplot as plt import seaborn as sns from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score from sklearn.metrics import f1_score from sklearn.metrics import matthews_corrcoef from sklearn.metrics import precision_recall_fscore_support from sklearn import svm from itertools import cycle from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn import tree from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_validate from sklearn.metrics import precision_score, recall_score, roc_auc_score from sklearn.metrics import multilabel_confusion_matrix, confusion_matrix from sklearn.metrics import make_scorer from sklearn.ensemble import StackingClassifier from sklearn.ensemble import BaggingClassifier from sklearn import tree from sklearn.model_selection import GridSearchCV from mlxtend.plotting import plot_learning_curves import lime import lime.lime_tabular # %% [markdown] # ## Define Constants W2V_FEATURE_SIZE = 300 N_CLASSES = 4 RANDOM_STATE = 123 N_FOLDS = 5 # %% [markdown] # ## Read in the data # %% [markdown] # ### Load raw train and test data # %% [markdown] # #### Load in the data from the database # %% dbconn = sqlite3.connect('./data/cleanedtraintest_v2.db') train_data_df = pandas.read_sql_query( 'SELECT category, content_cleaned FROM train_data', dbconn) test_data_df = pandas.read_sql_query( 'SELECT category, content_cleaned FROM test_data', dbconn) dbconn.commit() dbconn.close() # %% [markdown] # #### Check the if the data was loaded correctly # %% train_data_df # %% test_data_df # %% [markdown] # #### Train & Test data where x is the predictor features, y is the predicted feature x_train = train_data_df.content_cleaned y_train = label_binarize(train_data_df.category, classes=range(1, N_CLASSES + 1)) x_test = test_data_df.content_cleaned y_test = label_binarize(test_data_df.category, classes=range(1, N_CLASSES + 1)) # %% [markdown] # ### Load word2vec data # %% [markdown] # #### Load word2vec feature arrays from .npz files # load dict of arrays w2v_train_features_array_dict = numpy.load( './data/word2vec-train-features-120000-min5dim300.npz') w2v_test_features_array_dict = numpy.load( './data/word2vec-test-features-120000-min5dim300.npz') # extract the first array from train data = w2v_train_features_array_dict['arr_0'] # print the array print(data) # extract the first array from test data = w2v_test_features_array_dict['arr_0'] # print the array print(data) # %% [markdown] # #### Load word2vec model trained key vectors w2v_model_train = KeyedVectors.load( './data/custom-trained-word2vec-120000-min5dim300.kv') # %% [markdown] # #### Get the word2vec data back into usable form wpt = WordPunctTokenizer() tokenized_corpus_train = [wpt.tokenize(document) for document in x_train] tokenized_corpus_test = [wpt.tokenize(document) for document in x_test] # %% def average_word_vectors(words, model, vocabulary, num_features): feature_vector = numpy.zeros((num_features,), dtype="float32") nwords = 0. for word in words: if word in vocabulary: nwords = nwords + 1. feature_vector = numpy.add(feature_vector, model[word]) if nwords: feature_vector = numpy.divide(feature_vector, nwords) return feature_vector def averaged_word_vectorizer(corpus, model, num_features): vocabulary = set(model.wv.index2word) features = [average_word_vectors(tokenized_sentence, model, vocabulary, num_features) for tokenized_sentence in corpus] return numpy.array(features) # %% [markdown] # #### Obtain document level embeddings # %% w2v_feature_array_train = averaged_word_vectorizer(corpus=tokenized_corpus_train, model=w2v_model_train, num_features=W2V_FEATURE_SIZE) w2v_feature_array_test = averaged_word_vectorizer(corpus=tokenized_corpus_test, model=w2v_model_train, num_features=W2V_FEATURE_SIZE) x_train_w2v = pandas.DataFrame(w2v_feature_array_train) x_test_w2v = pandas.DataFrame(w2v_feature_array_test) # %% [markdown] # #### Sample down for speed, for now. x_train_w2v = x_train_w2v.sample( n = 3000, replace = False, random_state = RANDOM_STATE ) y_train = train_data_df.category.sample( n = 3000, replace = False, random_state = RANDOM_STATE ) y_train = label_binarize(y_train, classes=range(1, N_CLASSES + 1)) # %% [markdown] # #### Delete variables we don't need anymore to save memory # del(w2v_feature_array_test) # del(w2v_feature_array_train) # del(w2v_test_features_array_dict) # del(w2v_train_features_array_dict) # del(tokenized_corpus_test) # del(tokenized_corpus_train) # del(wpt) # del(train_data_df) # del(test_data_df) # del(x_train) # del(x_test) # del(data) # %% [markdown] # ## Build Models # %% [markdown] # ### SVM Model Building Function def run_svm(x_train, y_train): classifier = OneVsRestClassifier(svm.LinearSVC(random_state=RANDOM_STATE)) classifier.fit(x_train, y_train) return classifier # %% [markdown] # ### Logistic Regression Model Building Function def run_logreg(x_train, y_train): classifier = OneVsRestClassifier(LogisticRegression(random_state=RANDOM_STATE)) classifier.fit(x_train, y_train) return classifier # %% [markdown] # ### Naive Bayes Function def run_nb(x_train, y_train): classifier = OneVsRestClassifier(GaussianNB()) classifier.fit(x_train, y_train) return classifier # %% [markdown] # ### Decision Trees Function def run_dectree(x_train, y_train): classifier = OneVsRestClassifier(tree.DecisionTreeClassifier()) classifier.fit(x_train, y_train) return classifier # %% [markdown] # ### Functions to calculate scores and to plot them # Calculate, then plot the Precision, Recall, Average Precision, F1 def prf1_calc(classifier, algo_name, n_classes, x_test, y_test): # Get the decision function from the classifier if algo_name == 'SVM': y_score = classifier.decision_function(x_test) else: y_score = classifier.predict_proba(x_test) y_pred = classifier.predict(x_test) # The average precision score in multi-label settings # For each class precision = dict() recall = dict() average_f1 = dict() average_precision = dict() mcc = dict() for i in range(n_classes): precision[i], recall[i], _ = precision_recall_curve(y_test[:, i], y_score[:, i]) average_precision[i] = average_precision_score(y_test[:, i], y_score[:, i]) average_f1[i] = f1_score(y_test[:, i], y_pred[:, i]) mcc[i] = matthews_corrcoef(y_test[:, i], y_pred[:, i]) # A "micro-average": quantifying score on all classes jointly precision["micro"], recall["micro"], _ = precision_recall_curve(y_test.ravel(), y_score.ravel()) average_precision["micro"] = average_precision_score(y_test, y_score, average="micro") average_f1['micro'] = f1_score(y_test, y_pred, average='micro') mcc['micro'] = sum(mcc.values())/4 # Plot the data prf1_plot(precision, recall, average_precision, algo_name, n_classes) # Return all metrics results = pandas.DataFrame() for k in average_precision.keys(): results.at[algo_name, f'P-R {k}'] = numpy.round(average_precision[k], 3) results.at[algo_name, f'F1 {k}'] = numpy.round(average_f1[k], 3) results.at[algo_name, f'MCC {k}'] = numpy.round(mcc[k], 3) return results # Function to Plot Precision, Recall, F1 def prf1_plot(precision, recall, average_precision, algo_name, n_classes): print(algo_name) print('Average precision score, micro-averaged over all classes: {0:0.2f}' .format(average_precision["micro"])) # Plot the micro-averaged Precision-Recall curve plt.figure() plt.step(recall['micro'], precision['micro'], where='post') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title( 'Average precision score, micro-averaged over all classes: AP={0:0.2f}' .format(average_precision["micro"])) # Plot Precision-Recall curve for each class and iso-f1 curves # setup plot details colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal']) plt.figure(figsize=(7, 8)) f_scores = numpy.linspace(0.2, 0.8, num=4) lines = [] labels = [] for f_score in f_scores: x = numpy.linspace(0.01, 1) y = f_score * x / (2 * x - f_score) l, = plt.plot(x[y >= 0], y[y >= 0], color='gray', alpha=0.2) plt.annotate('f1={0:0.1f}'.format(f_score), xy=(0.9, y[45] + 0.02)) lines.append(l) labels.append('iso-f1 curves') l, = plt.plot(recall["micro"], precision["micro"], color='gold', lw=2) lines.append(l) labels.append('micro-average Precision-recall (area = {0:0.2f})' ''.format(average_precision["micro"])) for i, color in zip(range(n_classes), colors): l, = plt.plot(recall[i], precision[i], color=color, lw=2) lines.append(l) labels.append('Precision-recall for class {0} (area = {1:0.2f})' ''.format(i, average_precision[i])) fig = plt.gcf() fig.subplots_adjust(bottom=0.25) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Extension of Precision-Recall curve to multi-class') plt.legend(lines, labels, loc=(0, -.5), prop=dict(size=14)) plt.show() # %% [markdown] # ## Run the Base Models # %% # Run SVM Model svm_model = run_svm(x_train_w2v, y_train) # %% # Run Logistic Regression Model logreg_model = run_logreg(x_train_w2v, y_train) # %% # Run Naive Bayes Classifier nb_model = run_nb(x_train_w2v, y_train) # %% # Run Decision Trees Classifier dectree_model = run_dectree(x_train_w2v, y_train) # %% [markdown] # ## Get the scores # %% # Initialize the dataframe to keep track of the scores scores = pandas.DataFrame() # %% # Precision, Recall, Avg. Precision for SVM scores = scores.append(prf1_calc(svm_model, 'SVM', N_CLASSES, x_test_w2v, y_test)) # %% # Precision, Recall, Avg. Precision for LOG REG scores = scores.append(prf1_calc(logreg_model, 'LOGREG', N_CLASSES, x_test_w2v, y_test)) # %% # Precision, Recall, Avg. Precision for Naive Bayes scores = scores.append(prf1_calc(nb_model, 'NB', N_CLASSES, x_test_w2v, y_test)) # %% # Precision, Recall, Avg. Precision for Decision Trees scores = scores.append(prf1_calc(dectree_model, 'DT', N_CLASSES, x_test_w2v, y_test)) # %% [markdown] # ## Look at Cross-Validation # %% Create model list to iterate through for cross validation gnb = OneVsRestClassifier(GaussianNB()) sv = OneVsRestClassifier(svm.LinearSVC(random_state=RANDOM_STATE)) lreg = OneVsRestClassifier(LogisticRegression(random_state=RANDOM_STATE)) dtree = OneVsRestClassifier(tree.DecisionTreeClassifier()) model_list = [gnb, sv, lreg, dtree] model_namelist = ['Gaussian Naive Bayes', 'SVM/Linear SVC', 'Logistic Regression', 'Decision Tree'] # %% Make scoring metrics to pass cv function through scoring = {'precision': make_scorer(precision_score, average='micro'), 'recall': make_scorer(recall_score, average='micro'), 'f1': make_scorer(f1_score, average='micro'), 'roc_auc': make_scorer(roc_auc_score, average='micro'), # 'mcc': make_scorer(matthews_corrcoef) <- cannot support multi-label } cv_result_entries = [] i = 0 # %% Loop cross validation through various models and generate results for mod in model_list: metrics = cross_validate( mod, x_train_w2v, y_train, cv=N_FOLDS, scoring = scoring, return_train_score=False, n_jobs=-1 ) for key in metrics.keys(): for fold_index, score in enumerate(metrics[key]): cv_result_entries.append((model_namelist[i], fold_index, key, score)) i += 1 # %% #cv_result_entries = pandas.read_csv('./data/cv-results.csv') cv_results_df = pandas.DataFrame(cv_result_entries) #cv_results_df.drop('Unnamed: 0', axis=1, inplace=True) cv_results_df.columns = ['algo', 'cv fold', 'metric', 'value'] #test_df = pandas.DataFrame((cv_results_df[cv_results_df.metric.eq('fit_time')])) # %% Plot cv results for metric_name, metric in zip(['fit_time', 'test_precision', 'test_recall', 'test_f1', 'test_roc_auc'], ['Fit Time', 'Precision', 'Recall', 'F1 Score', 'ROC AUC']): sns.boxplot(x='algo', y='value', #hue='algo', data=cv_results_df[cv_results_df.metric.eq(f'{metric_name}')]) sns.stripplot(x='algo', y = 'value', data = cv_results_df[cv_results_df.metric.eq(f'{metric_name}')], size = 5, linewidth = 1) plt.title(f'{metric} Algo Comparison', fontsize=12) plt.xlabel('Algorithm', fontsize=12) plt.ylabel(f'{metric}', fontsize=12) plt.xticks([0, 1, 2, 3, 4]) plt.xticks(rotation=45) #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() # %% Misclassification Errors i=0 for model in model_list: plt.figure() plot_learning_curves(x_train_w2v, y_train, x_test_w2v, y_test, model) plt.title('Learning Curve for ' + model_namelist[i], fontsize=14) plt.xlabel('Training Set Size (%)', fontsize=12) plt.ylabel('Misclassification Error', fontsize=12) plt.show() i += 1 # %% Get predictions y_test_pred = [] for model in model_list: y_test_pred.append(model.predict(x_test_w2v)) # %% Confusion Matrix CLASSES = ['World', 'Sports', 'Business', 'Sci/Tech'] i=0 for _ in model_list: cm = confusion_matrix(numpy.argmax(y_test, axis=1), numpy.argmax(y_test_pred[i], axis=1)) cm_df = pandas.DataFrame(cm, index = CLASSES, columns = CLASSES) cm_df.index.name = 'Actual' cm_df.columns.name = 'Predicted' plt.title('Confusion Matrix for ' + model_namelist[i], fontsize=14) sns.heatmap(cm_df, annot=True, fmt='.6g', annot_kws={"size": 10}, cmap='Reds') plt.show() i += 1 # %% HYPER PARAMETER TUNING BY HYPEROPT (not working) '''from hyperopt import STATUS_OK N_FOLDS = 5 #%% #Objective Function def objective(params, n_folds = N_FOLDS): cv_results = cross_validate(OneVsRestClassifier(GaussianNB()), x_train_w2v, y_train, cv = n_folds, fit_params= params, scoring = {'f1': make_scorer(f1_score, average='micro')}, return_train_score=False, n_jobs=-1 ) # Extract the best score best_score = max(cv_results['test_f1']) # Loss must be minimized loss = 1 - best_score # Dictionary with information for evaluation return {'loss': loss, 'params': params, 'status': STATUS_OK} # %% #Domain Space from hyperopt import hp space = {'estimator__var_smoothing': hp.uniform('estimator__var_smoothing', 1.e-09, 1.e+00)} #%% # Optimization Algorithm from hyperopt import tpe tpe_algo = tpe.suggest #%% # Results History from hyperopt import Trials bayes_trials = Trials() #%% # Run the optimization from hyperopt import fmin from hyperopt import rand MAX_EVALS = 500 params = space # Optimize best = fmin(fn = objective, space = space, algo = tpe.suggest, max_evals = 100, trials = bayes_trials) print(best)''' # %% [markdown] # ## Hyper-parameter tuning with exhaustive Grid Search # ### Tune hyperparameters for Gaussian Naive-Bayes params_gnb = {'estimator__var_smoothing': [1.e-09, 1.e-08, 1.e-07, 1.e-06, 1.e-05, 1.e-04, 1.e-03, 1.e-02, 1.e-01, 1.e+00] } clf = GridSearchCV(estimator=gnb, param_grid=params_gnb, scoring='f1_micro', n_jobs=-1, cv=N_FOLDS, return_train_score=True ) clf_res = clf.fit(x_train_w2v, y_train) print('Best Score: ', clf_res.best_score_) print('Best Params: ', clf_res.best_params_) # %% # ### Tune hyperparameters for Logistic Regression params_lreg = { "estimator__penalty": ['l1', 'l2'], "estimator__C": [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000], #"estimator__class_weight":[{1:0.5, 0:0.5}, {1:0.4, 0:0.6}, # {1:0.6, 0:0.4}, {1:0.7, 0:0.3}], "estimator__solver": ["newton-cg", "sag", "saga", "lbfgs"] } clf = GridSearchCV(estimator=lreg, param_grid=params_lreg, scoring='f1_micro', n_jobs=-1, cv=N_FOLDS, return_train_score=True ) clf_res = clf.fit(x_train_w2v, y_train) print('Best score:', clf_res.best_score_) print('Best Params:', clf_res.best_params_) # %% # ### Tune hyperparameters for SVM (Linear SVC) params_sv = { "estimator__penalty":['l1', 'l2'], "estimator__tol": [1.e-08, 1.e-07, 1.e-06, 1.e-05, 1.e-04, 1.e-03, 1.e-02, 1.e-01, 1.e+00], "estimator__loss":['hinge','squared_hinge'], "estimator__C": [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000] #"estimator__class_weight":['None',{1:0.5, 0:0.5}, # {1:0.4, 0:0.6}, {1:0.6, 0:0.4}, {1:0.7, 0:0.3}], } clf = GridSearchCV(estimator=sv, param_grid=params_sv, scoring='f1_micro', n_jobs=-1, cv=N_FOLDS, return_train_score=False ) clf_res = clf.fit(x_train_w2v, y_train) print('Best score:', clf_res.best_score_) print('Best Params:', clf_res.best_params_) # %% # ### Tune hyperparameters for Decision Trees params_dtree = { "estimator__splitter":["best", "random"], "estimator__min_samples_split":range(1, 20, 1) } clf = GridSearchCV(estimator=dtree, param_grid=params_dtree, scoring='f1_micro', n_jobs=-1, cv=N_FOLDS, return_train_score=False ) clf_res = clf.fit(x_train_w2v, y_train) print('Best score:', clf_res.best_score_) print('Best Params:', clf_res.best_params_) # %% [markdown] # ## Ensemble Methods # %% [markdown] # ### Stacking estimators = [ ('nb', GaussianNB()), ('svm', svm.LinearSVC()) ] sclf = OneVsRestClassifier(StackingClassifier( estimators=estimators, final_estimator=LogisticRegression()) ) metrics = cross_validate( sclf, x_train_w2v, y_train, cv=N_FOLDS, scoring = scoring, return_train_score=False, n_jobs=-1 ) # %% res = [] for key in metrics.keys(): for fold_index, score in enumerate(metrics[key]): res.append(('Stacking', fold_index, key, score)) # %% res_df = pandas.DataFrame.from_dict(res) res_df.columns = ['algo', 'cv fold', 'metric', 'value'] cv_results_inc_ens = pandas.concat([cv_results_df, res_df]) # %% [markdown] # ### Bagging sclf = OneVsRestClassifier(BaggingClassifier( base_estimator=LogisticRegression()) ) metrics = cross_validate( sclf, x_train_w2v, y_train, cv=N_FOLDS, scoring = scoring, return_train_score=False, n_jobs=-1 ) # %% res = [] for key in metrics.keys(): for fold_index, score in enumerate(metrics[key]): res.append(('Bagging', fold_index, key, score)) # %% res_df = pandas.DataFrame.from_dict(res) res_df.columns = ['algo', 'cv fold', 'metric', 'value'] cv_results_inc_ens = pandas.concat([cv_results_inc_ens, res_df]) # %% [markdown] # ### Boosting from sklearn.ensemble import AdaBoostClassifier sclf = OneVsRestClassifier(AdaBoostClassifier( random_state=RANDOM_STATE) ) metrics = cross_validate( sclf, x_train_w2v, y_train, cv=N_FOLDS, scoring = scoring, return_train_score=False, n_jobs=-1 ) # %% res = [] for key in metrics.keys(): for fold_index, score in enumerate(metrics[key]): res.append(('AdaBoost', fold_index, key, score)) # %% res_df = pandas.DataFrame.from_dict(res) res_df.columns = ['algo', 'cv fold', 'metric', 'value'] cv_results_inc_ens = pandas.concat([cv_results_inc_ens, res_df]) # %% #cv_results_inc_ens.to_csv('./data/cv-results-inc-ens.csv') # %% [markdown] # ### Plot the results including ensembling for metric_name, metric in zip(['fit_time', 'test_precision', 'test_recall', 'test_f1', 'test_roc_auc'], ['Fit Time', 'Precision', 'Recall', 'F1 Score', 'ROC AUC']): sns.lineplot(x='cv fold', y='value', hue='algo', data=cv_results_inc_ens[cv_results_inc_ens.metric.eq(f'{metric_name}')]) plt.title(f'{metric} Algo Comparison', fontsize=12) plt.xlabel('CV Fold', fontsize=12) plt.ylabel(f'{metric}', fontsize=12) plt.xticks([0, 1, 2, 3, 4]) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() # %% [markdown] # ## LIME for model interpretation # predict_fn = model_namelist # i = 0 # for model in model_list: # predict_fn[i] = lambda x: model.predict_proba(x).astype(float) # i += 1 # %% feature_names = list(w2v_model_train.vocab) # %% import lime.lime_text class_names=['W','S','B','T'] explainer = lime.lime_tabular.LimeTabularExplainer(x_test_w2v.values, feature_names=feature_names, mode='classification', class_names=class_names) # %% # use gnb (predict_fn[0]) idx = 34 exp = explainer.explain_instance(x_test_w2v.values[idx], lreg.predict_proba, num_features=20, top_labels=4) print('Document id: %d' % idx) # print('Predicted class =', class_names[lreg.predict(numpy.argmax(y_test, axis=1)[idx])])#.reshape(1,-1)[0,0]]) # print('True class: %s' % class_names[y_test[idx]]) # %% print ('\n'.join(map(str, exp.as_list(label=0)))) # %% exp.show_in_notebook() #%% ELI 5 import eli5 import sklearn.pipeline import IPython #for pipeline in pipelines: print('Estimator: ' % (['Logistic Regression'])) #labels = pipeline['pipeline'].classes_.tolist() #estimator = lreg eli5.show_weights(estimator = lreg, top = 10, target_names = ['W','S','B','T'], feature_names = x_train_w2v) #eli5.show_prediction(estimator = lreg, doc = x_test_w2v.values[34], target_names = ['W','S','B','T']) #target_names = ['W','S','B','T'], vec = word2vec)) # %% [markdown] # ## References - Code sample sources disclaimer: # Code for this project is either directly from (with some modification), # or inspired by, but not limited to the following sources: # - Respective documentation and examples from each used API's doc/guide website # - Kelly Epley Naive Bayes: # https://towardsdatascience.com/naive-bayes-document-classification-in-python-e33ff50f937e # - MLWhiz's excellent blogs about text classification and NLP: # https://mlwhiz.com/blog/2018/12/17/text_classification/ # https://mlwhiz.com/blog/2019/01/17/deeplearning_nlp_preprocess/ # https://mlwhiz.com/blog/2019/02/08/deeplearning_nlp_conventional_methods/ # https://www.kaggle.com/mlwhiz/conventional-methods-for-quora-classification/ # - Christof Henkel preprocessing: # https://www.kaggle.com/christofhenkel/how-to-preprocessing-when-using-embeddings # - datanizing GmbH: # https://medium.com/@datanizing/modern-text-mining-with-python-part-1-of-5-introduction-cleaning-and-linguistics-647f9ec85b6a # - Datacamp wordcloud: # https://www.datacamp.com/community/tutorials/wordcloud-python # - Seaborn Pydata tutorials: # https://seaborn.pydata.org/introduction.html#intro-plot-customization # - Dipanjan S's tutorials: # https://github.com/dipanjanS # - Analytics Vidhya: # https://www.analyticsvidhya.com/blog/2018/04/a-comprehensive-guide-to-understand-and-implement-text-classification-in-python/ # - Jason Brownlee's Feature Selection For Machine Learning in Python # https://machinelearningmastery.com/feature-selection-machine-learning-python/ # - Susan Li's Multi-class text classification with Scikit-learn: # https://towardsdatascience.com/multi-class-text-classification-with-scikit-learn-12f1e60e0a9f # - Vadim Smolyakov Ensemble Learning to Improve Machine Learning Results: # https://blog.statsbot.co/ensemble-learning-d1dcd548e936 # - Udacity course video on Youtube UD120: # https://www.youtube.com/watch?v=GdsLRKjjKLw # - Hyperparameter Tuning with Hyperopt # https://towardsdatascience.com/automated-machine-learning-hyperparameter-tuning-in-python-dfda59b72f8a # - Hyperparameter Tuning for Gaussian NB # https://www.quora.com/Can-the-prior-in-a-naive-Bayes-be-considered-a-hyperparameter-and-tuned-for-better-accuracy # - Hyperparameter Tuning for Decision Trees # https://towardsdatascience.com/how-to-tune-a-decision-tree-f03721801680 # - Lime tutorial # https://marcotcr.github.io/lime/tutorials/Lime%20-%20multiclass.html # - ELI5 # https://towardsdatascience.com/3-ways-to-interpretate-your-nlp-model-to-management-and-customer-5428bc07ce15
import dash_core_components as dcc import dash_bootstrap_components as dbc import dash_html_components as html from dash.dependencies import Input, Output, State from copy import deepcopy from UI.app import app from UI.pages import ( data_upload, problem_formulation, train_model, optimize, navigator_2_fronts, coloring_parallel_coords, ) pages = { "/upload": data_upload, "/problem": problem_formulation, "/train": train_model, "/optimize": optimize, "/navigate": navigator_2_fronts, "/colour": coloring_parallel_coords, } o_nautilus_page_order = ["/upload", "/problem", "/train", "/optimize", "/navigate"] parallel_coords_colouring_order = ["/upload", "/problem", "/colour"] layout = html.Div( [ dcc.Location(id="url", refresh=False), html.Div(id="page-content", children=[]), html.Div(id="app_choice", children=None, hidden=True), ] ) home_page = html.Div( [ dbc.Row( dbc.Col( html.H1("Choose an application"), className="row justify-content-center" ) ), dbc.Row( dbc.Col( dbc.ButtonGroup( [ dbc.Button( "O-NAUTILUS", id="onautilus_button", n_clicks_timestamp=-1, href="/upload#O-NAUTILUS", className="mr-1 mt-1", color="primary", ), dbc.Button( "Coloured Parallel Coordinates", id="cpc_button", n_clicks_timestamp=-1, href="/upload#CPC", className="mr-1 mt-1", color="primary", ), ] ), className="row justify-content-center", ) ), ] ) def navbuttons(prev, home, next_): buttons = [ dbc.Row( dbc.Col( dbc.ButtonGroup( [ dbc.Button( "Previous", id="prev_button", n_clicks_timestamp=-1, href=prev, className="mt-3", color="primary", ), dbc.Button( "Home", id="home_button", n_clicks_timestamp=-1, href=home, className="ml-1 mr-1 mt-3", color="primary", ), dbc.Button( "Next", id="next_button", n_clicks_timestamp=-1, href=next_, className="mt-3", color="primary", ), ] ), className="row justify-content-center", ) ) ] return buttons app.layout = layout @app.callback( Output("page-content", "children"), [Input("url", "pathname")], [State("url", "hash")], ) def display_page(pathname, app_choice): if pathname == "/": return home_page elif pathname in pages: layout = pages[pathname].layout() prev = "/" next_ = "/error" if app_choice == "#O-NAUTILUS": current_page_index = o_nautilus_page_order.index(pathname) if current_page_index != 0: prev = o_nautilus_page_order[current_page_index - 1] if current_page_index != len(o_nautilus_page_order) - 1: next_ = o_nautilus_page_order[current_page_index + 1] elif app_choice == "#CPC": current_page_index = parallel_coords_colouring_order.index(pathname) if current_page_index != 0: prev = parallel_coords_colouring_order[current_page_index - 1] if current_page_index != len(parallel_coords_colouring_order) - 1: next_ = parallel_coords_colouring_order[current_page_index + 1] else: return "404" layout.children.extend( deepcopy( navbuttons(prev + app_choice, "/" + app_choice, next_ + app_choice) ) ) return layout else: return "404" if __name__ == "__main__": app.run_server(debug=False)
MESSAGE_TEXT='**Official Store:** https://shop.safemoon.net' def store(update, context): context.bot.send_message(chat_id=update.effective_chat.id, text=MESSAGE_TEXT , parse_mode='markdown', disable_web_page_preview='True')
import random as r from termcolor import cprint CHARSLIST = list("#@&\"'§!°-_*$`%=+/:;.,?^|<>{}[]()") ACTIONS = { '=':'Assign a value', ':':'Specify a type', '<':'Start cast to a type', '>':'End cast to a type', '[':'Start a list', ']':'End a list', 'ö':'Start a dict', 'ë':'End a dict', '°':'End a dict', '$':'Concatenation', '`':'Interpolation start', 'ô':'Interpolation end', '+':'Addition', '-':'Substraction', '*':'Multiplication', '^':'Power', '/':'Division', '%':'Modulo', '@':'Start index localisation', 'ê':'End index localisation', '#':'Add a comment', '¨':'Open a multiline comment', '£':'Close a multiline comment', 'ç':'Check equality', 'à':'Check strong equality', '!':'Logical NOT', '&':'Logical AND', '|':'Logical OR', '.':'Access an object property', 'é':'Access a class property', '?':'Start a tertiary condition', '{':'Start a scope', '}':'End a scope', '(':'Start a function call', ')':'End a function call', '"':'Indicate a string', ';':'End a line', ',':'Common separator' } SAMPLE = """ # DO NOT use that unsecure_mode: bool = 0; # Get userinput plz = "please"; usrin = input("Your name `plzô")<str>; if !empty(usrin) & xss_safe(usrin) | unsecure_mode { col1: hexColor = "0x" $ input(); col2: hexColor = "0x" $ input(); info = ö "IP":get_ip(), "date":now()<str>, "theme":[col1, col2] ë header_color.set(info@themeê@0ê); display(WebsiteéResourceséLogo(col2)); } else { ¨ We should really handle that shit though this is not my job anymore Show a random calculation instead £ display(8 + 9 / 4 * 5 ^ 9 % 8); } """ MIN_LEN = 1 MAX_LEN = 3 MAX_RPT = 3 def gen_operator(length=None, blacklist=False, unallowed=[]): charslist = [e for e in CHARSLIST if e not in (blacklist if blacklist else [])] result = str() length = r.randint(MIN_LEN, MAX_LEN) if length is None else int(length) for i in range(length): seled = r.choice(charslist) while seled in unallowed: cprint(f'Tried: {seled}, already taken','red') seled = r.choice(charslist) # todo add approx. 75% chance to choose a previous char (from current buffer), in order to reduce chaosness in result result += seled return result maxlen = max([len(e) for e in ACTIONS.values()]) repl_map = dict() mul_length_codes = list("¨£#&|$") forced_codes = list('') for acode, a in ACTIONS.items(): if acode in forced_codes: repl_map[acode] = acode continue l = None if acode in mul_length_codes else 1 op = gen_operator(l, blacklist=forced_codes, unallowed=list(repl_map.values())) sp = ' ' * (1 + maxlen - len(a)) print(f"{a}{sp}{op}") repl_map[acode] = op print("=" * 30 + "This is what a code sample would like:") sample = str() for c in SAMPLE: sample += repl_map.get(c, c) print(sample)
import time start_time = time.time() import json, yaml import pandas as pd import numpy as np import redacted_logging as rlog logger = rlog.get_logger(__name__) #read input file try: with open(r'/inputVolume/security_input.yaml') as file: inputYAML = yaml.load(file, Loader=yaml.FullLoader) logger.info("Reading request.yaml file...") except FileNotFoundError: logger.error("Cannot find security_input.yaml file!") else: parties = inputYAML['parties'] # Read all encrypted datasets into a list # try: smallest = 0 dataset_list = [] for p in parties: df_eachParty = pd.read_csv('/data/encrypted_%s.csv' %(p)).set_index('encString') dataset_list.append(df_eachParty) except: logger.error("Verification and decrption failed! No files are able to be executed. Please check your keys.") else: for i in range(0, len(parties)): logger.info('{dataparty} has {datasize} rows'.format(dataparty=parties[i], datasize=len(dataset_list[i]))) # Order the size of datasets from small to large # sizes = [] for dataset in dataset_list: sizes.append(len(dataset)) order = np.argsort(sizes) # Find match records # for item in range(0, len(order)): multi_match = [] multi_match_number = [] exact_match = [] no_match = [] if item == 0: combined_df = dataset_list[order[item]] else: for i in combined_df.index: try: pair = dataset_list[order[item]].loc[i] if type(pair) == pd.DataFrame: multi_match.append(i) multi_match_number.append(len(pair)) elif type(pair) == pd.Series: exact_match.append(i) except: no_match.append(i) # Report matches # logger.debug('Matching result - Exact {exNum}'.format(exNum=len(exact_match))) logger.debug('Matching result - Multi {mulNum}'.format(mulNum=len(multi_match))) logger.debug('Matching result - None {noNum}'.format(noNum=len(no_match))) logger.debug("Multi-matching array: {array} ".format(array=str(multi_match_number))) # Link and combine actual data with person identifiers # combined_df = pd.concat([combined_df.loc[exact_match], dataset_list[order[item]].loc[exact_match]], axis=1, join='inner') if len(exact_match) > 0: # Restrict analysis if exact match is less than 100 # if len(exact_match) < 100: logger.warning("The number of exact-matched instances is less than 100!!") sys.exit("Due to priavcy concerns, execution is interrupted here. Please provide datasets which have more common instances!") else: cmb_col = list(combined_df.columns) with open('/output/CombinedFeatures.txt', 'w') as f: for item in cmb_col: f.write("%s\n" % item) # Save file # combined_df.to_csv('/data/act_data.csv') logger.debug('Features in combined dataset are saved locally') logger.info("Matching and linking took {runtime:.4f}s to run.".format(runtime=(time.time() - start_time))) else: logger.error('No records have been exactly matched so that no combined dataset is generated!!')