content
stringlengths
5
1.05M
from sqlalchemy import Column, Integer, String, Float from app.models.database import Base class User(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True, autoincrement=True) name = Column(String(64), unique=False) picture = Column(String(64), unique=False) company = Column(String(64), unique=False) email = Column(String(64), unique=True) phone = Column(String(64), unique=True) country = Column(String(64), unique=False) longitude = Column(Float, unique=False) latitude = Column(Float, unique=False) def __init__(self, user=None): self.name = user['name'] self.picture = user['picture'] self.company = user['company'] self.email = user['email'] self.phone = user['phone'] self.longitude = user['longitude'] self.latitude = user['latitude'] def as_dict(self): return {c.name: getattr(self, c.name) for c in self.__table__.columns}
from PySide2 import QtCore, QtGui, QtWidgets from qtwidgets import PasswordEdit class Window(QtWidgets.QMainWindow): def __init__(self): super().__init__() password = PasswordEdit() self.setCentralWidget(password) app = QtWidgets.QApplication([]) w = Window() w.show() app.exec_()
from .load_dicom import load_scan_from_dicom, get_pixels_hu __all__ = [load_scan_from_dicom, get_pixels_hu]
import curses import platform import terraindata as td import fielddata as field import variables as var import uidata as UI import colors import functions as func import dialogue as dial import cardfunc as cf def display(): var.window.border('|', '|', '-', '-', '#', '#', '#', '#') var.window.addstr(UI.Main.title_text[0], UI.Main.title_text[1], 'Location : ' + var.Field.location) for i in range(len(field.field[var.Field.location])): for j in range(len(field.field[var.Field.location][0])): r = UI.Field.cell_interval[0] * i - var.Camera.position[0] c = UI.Field.cell_interval[1] * j - var.Camera.position[1] if r > 0 and r < 26 and c > 0 and c < 90: draw_terrain(r, c, field.field[var.Field.location][i][j]) for i in range(len(field.objects[var.Field.location])): r = UI.Field.cell_interval[0] * field.objects[var.Field.location][i][0] - var.Camera.position[0] c = UI.Field.cell_interval[1] * field.objects[var.Field.location][i][1] - var.Camera.position[1] if r > 0 and r < 26 and c > 0 and c < 90: draw_objects(r, c, field.objects[var.Field.location][i][2]) draw_player(UI.Field.cell_interval[0] * var.Field.player_position[0] - var.Camera.position[0], UI.Field.cell_interval[1] * var.Field.player_position[1] - var.Camera.position[1]) if var.Game.state == 'dialogue': func.draw_rect(UI.Main.dialogue[0], UI.Main.dialogue[1], UI.Main.dialogue[2], UI.Main.dialogue[3], colors.fg_white) var.window.addstr(UI.Main.dialogue_text[0], UI.Main.dialogue_text[1], dial.data[var.Game.interaction]['contents'][var.Game.interaction_level]) def draw_terrain(r, c, terrain): func.draw_rect(r, c, UI.Field.cell_size[0], UI.Field.cell_size[1], colors.fg_white) for i in range(3): for j in range(4): if platform.system() == 'Windows': var.window.addstr(r + i + 1, c + j + 1, td.character[terrain][i][j], curses.color_pair(td.color_code['windows'][td.color[terrain][i][j]])) else: var.window.addstr(r + i + 1, c + j + 1, td.character[terrain][i][j], curses.color_pair(td.color_code['other'][td.color[terrain][i][j]])) def draw_objects(r, c, ID): for i in range(3): for j in range(4): if platform.system() == 'Windows': var.window.addstr(r + i + 1, c + j + 1, td.objects[ID][i][j], curses.color_pair(td.color_code['windows'][td.objects_color[ID][i][j]])) else: var.window.addstr(r + i + 1, c + j + 1, td.objects[ID][i][j], curses.color_pair(td.color_code['other'][td.objects_color[ID][i][j]])) def draw_player(r, c): var.window.addstr(r + 1, c + 2, '||') var.window.addstr(r + 3, c + 2, '--') def input_handle(key): if var.Game.state == '': if key == 96 + 23: if field.walls[var.Field.location][var.Field.player_position[0] - 1][var.Field.player_position[1]] == 0: var.Field.player_position[0] -= 1 var.Camera.position[0] -= UI.Field.cell_interval[0] var.Field.player_face = 'U' elif key == 96 + 19: if field.walls[var.Field.location][var.Field.player_position[0] + 1][var.Field.player_position[1]] == 0: var.Field.player_position[0] += 1 var.Camera.position[0] += UI.Field.cell_interval[0] var.Field.player_face = 'D' elif key == 96 + 1: if field.walls[var.Field.location][var.Field.player_position[0]][var.Field.player_position[1] - 1] == 0: var.Field.player_position[1] -= 1 var.Camera.position[1] -= UI.Field.cell_interval[1] var.Field.player_face = 'L' elif key == 96 + 4: if field.walls[var.Field.location][var.Field.player_position[0]][var.Field.player_position[1] + 1] == 0: var.Field.player_position[1] += 1 var.Camera.position[1] += UI.Field.cell_interval[1] var.Field.player_face = 'R' elif key == 96 + 5: for i in range(len(field.connection[var.Field.location])): if var.Field.player_position[0] == field.connection[var.Field.location][i][0][0] and var.Field.player_position[1] == field.connection[var.Field.location][i][0][1]: var.Field.player_position = [field.connection[var.Field.location][i][2][0], field.connection[var.Field.location][i][2][1]] var.Camera.position = [field.connection[var.Field.location][i][3][0], field.connection[var.Field.location][i][3][1]] var.Field.location = field.connection[var.Field.location][i][1] elif key == 96 + 18: for i in range(len(field.interaction[var.Field.location])): for j in range(4): if var.Field.player_position[0] == field.interaction[var.Field.location][i][j][0] and var.Field.player_position[1] == field.interaction[var.Field.location][i][j][1] and var.Field.player_face == field.interaction[var.Field.location][i][j][2]: var.Game.state = 'dialogue' var.Game.interaction = field.interaction[var.Field.location][i][4] var.Game.interaction_level = 0 elif var.Game.state == 'dialogue': if key == 96 + 5: if var.Game.interaction_level < len(dial.data[var.Game.interaction]['contents']) - 1: var.Game.interaction_level += 1 elif key == 96 + 25: if var.Game.interaction_level == len(dial.data[var.Game.interaction]['contents']) - 1: if dial.data[var.Game.interaction]['end_option'][121] == 'battle': var.Game.scene = 'battle' func.battle_start() cf.deck_generate_battle('adventure1') elif key == 96 + 14: var.Game.state = '' var.Game.interaction = -1 var.Game.interaction_level = -1 def neighbor(pos1, pos2): if abs(pos1[0] - pos2[0]) == 0 and abs(pos1[1] - pos2[1]) == 1: return True if abs(pos1[0] - pos2[0]) == 1 and abs(pos1[1] - pos2[1]) == 0: return True return False
# Copyright (c) 2013, [email protected] and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe def execute(filters=None): columns = [ "Posting Date:Date:100", "Employee:Link/Employee:100", "Employee Name:Data:150", "Advance Amount:Currency:120", "Paid Amount:Currency:120", "Retired Amount:Currency:130", "Refunded Amount:Currency:130", "Variance:Currency:120", ] conditions = "" if filters.get("from_date"): conditions += "d.posting_date >= DATE('{from_date}')" if filters.get("to_date"): conditions += " AND d.posting_date <= DATE('{to_date}')" if filters.get("status") and filters.get('status') != "Retired": conditions += " AND d.status = '{status}'" else: conditions += " AND d.claimed_amount = d.advance_amount or AND d.refunded = d.advance_amount " data = frappe.db.sql("SELECT d.posting_date, d.employee, d.employee_name , d.advance_amount, d.paid_amount, " "d.claimed_amount, d.refund_amount, (d.refund_amount + d.claimed_amount - d.paid_amount) FROM " "`tabEmployee Advance` d WHERE {0} ".format(conditions.format(**filters)), as_list=1) return columns, data
import os import pickle import numpy as np from tqdm import tqdm import phns DATA_PATH = os.path.dirname(os.path.realpath(__file__)) + "/../data/" print(f"Loading data from {DATA_PATH}") with open(DATA_PATH + "timit_bench.pkl", "rb") as f: data = pickle.load(f) # missing words: # exceptions = [ # "motorists'", # "somebody'll", # "andrei's", # # "morphophonemic", # "nihilistic", # "radiosterilization", # "exhusband", # "smolderingly", # "geocentricism", # "unmagnified", # "stirrin", # "utopianism", # "infuriation", # "preprepared", # "understandingly", # "eventualities", # "micrometeorites", # "herdin'", # "responsively", # "demineralization", # "unwaveringly", # "cap'n", # "mournfully", # "autofluorescence", # "fasciculations", # "weatherstrip", # "nonsystematic", # "traditionalism", # "chorused", # "micrometeorite", # "reupholstering", # "castorbeans" # ] cers = [] cers_no_contractions = [] skipped = 0 missing = set() for item in tqdm(data): # Preprocessing data _phns = phns.utils.timit_to_cmu(item["phns"]) _phns = [phns.Phn(phn) for phn in _phns if phn != "sil"] graph = phns.from_text( item["text"], missing_handler=lambda word: missing.add(word), apply_confusion=True, ) if graph: result = phns.closest(_phns, graph) cers.append(result["cmu_cer"]) if result["cmu_cer"] > 0.3 and False: print(item["text"]) print("phns", item["phns"]) print("_phns", [phn.val for phn in _phns]) print("targt", [phn.val for phn in result["target"]]) print("match", [graph.nodes[m].value.val for m in result["match"]]) print(result) import ipdb ipdb.set_trace() else: skipped += 1 print("skipped: ", skipped) print("missing: ", len(missing)) print(missing) print( { "25%": np.percentile(cers, 25), "50%": np.percentile(cers, 50), "75%": np.percentile(cers, 75), "95%": np.percentile(cers, 95), "mean": np.mean(cers), } )
from http import HTTPStatus from unittest.mock import patch from pytest_cases import parametrize_with_cases from infobip_channels.core.models import ResponseBase from infobip_channels.email.channel import EmailChannel from tests.conftest import get_response_object def set_up_mock_server_and_send_request( httpserver, status_code, response_content, endpoint, http_method, expected_headers, expected_query_parameters, expected_data, request_data, method_name, ): httpserver.expect_request( endpoint, method=http_method, query_string=expected_query_parameters, headers=expected_headers, data=expected_data, ).respond_with_response(get_response_object(status_code, response_content)) email_channel = EmailChannel.from_auth_params( {"base_url": httpserver.url_for("/"), "api_key": "secret"} ) return getattr(email_channel, method_name)(request_data) @patch("urllib3.filepost.choose_boundary", return_value="mockBoundary") @parametrize_with_cases( "status_code, response_content, endpoint, http_method, expected_headers, " "expected_query_parameters, expected_data, request_data, method_name", prefix="case__supported_status", ) def test_mms_endpoints__supported_status( mock_boundary, httpserver, status_code, response_content, endpoint, http_method, expected_headers, expected_query_parameters, expected_data, request_data, method_name, ): response = set_up_mock_server_and_send_request( httpserver, status_code, response_content, endpoint, http_method, expected_headers, expected_query_parameters, expected_data, request_data, method_name, ) if method_name == "delete_existing_domain" or method_name == "verify_domain": assert response.status_code == status_code else: response_dict = EmailChannel.convert_model_to_dict(response) raw_response = response_dict.pop("rawResponse") expected_response_dict = { **response_content, "statusCode": HTTPStatus(status_code), } assert isinstance(response, ResponseBase) is True assert response.status_code == status_code assert response_dict == expected_response_dict assert raw_response is not None @patch("urllib3.filepost.choose_boundary", return_value="mockBoundary") @parametrize_with_cases( "status_code, response_content, endpoint, http_method, expected_headers, " "expected_query_parameters, expected_data, request_data, method_name", prefix="case__unsupported_status", ) def test_mms_endpoints__unsupported_status( mock_boundary, httpserver, status_code, response_content, endpoint, http_method, expected_headers, expected_query_parameters, expected_data, request_data, method_name, ): response = set_up_mock_server_and_send_request( httpserver, status_code, response_content, endpoint, http_method, expected_headers, expected_query_parameters, expected_data, request_data, method_name, ) assert isinstance(response, ResponseBase) is False assert response is not None assert response.status_code == status_code assert response.json() == response_content
''' Test for generate_indexes module. ''' from dmrg_helpers.extract.generate_indexes import SiteFilter def test_constant(): f = SiteFilter('1') assert f.a == '1' assert f.i == None assert f.pm == None assert f.b == None assert f.is_constant() == True assert f.build_index(5) == 1 def test_odd(): f = SiteFilter('2*i+1') assert f.a == '2' assert f.i == 'i' assert f.pm == '+' assert f.b == '1' assert f.is_constant() == False assert f.build_index(5) == 11 def test_even(): f = SiteFilter('2*i') assert f.a == '2' assert f.i == 'i' assert f.pm == None assert f.b == None assert f.is_constant() == False assert f.build_index(5) == 10 def test_identity(): f = SiteFilter('i') assert f.a == None assert f.i == 'i' assert f.pm == None assert f.b == None assert f.is_constant() == False assert f.build_index(5) == 5
from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, SubmitField from wtforms.validators import DataRequired, Email, EqualTo, ValidationError from flask_babel import _, lazy_gettext as _l from blog_app.models import User class LoginForm(FlaskForm): username = StringField(_l('Username'), validators=[DataRequired()]) password = PasswordField(_l('Password'), validators=[DataRequired()]) remember_me = BooleanField(_l('Remember me')) log_in = SubmitField(_l('Log In')) class RegistrationForm(FlaskForm): username = StringField(_l('Username'), validators=[DataRequired()]) email = StringField(_l('Email'), validators=[DataRequired(), Email()]) password = PasswordField(_l('Password'), validators=[DataRequired()]) repeat_password = PasswordField(_l('Repeat Password'), validators=[DataRequired(), EqualTo('password')]) sign_up = SubmitField(_l('Registration')) def validate_username(self, username): user = User.query.filter_by(username=username.data).first() if user is not None: raise ValidationError(_('Please use a different username')) def validate_email(self, email): user = User.query.filter_by(email=email.data).first() if user is not None: raise ValidationError(_('Please use a different email address.')) class ResetPasswordRequestForm(FlaskForm): email = StringField(_l('Email'), validators=[DataRequired(), Email()]) submit = SubmitField(_l('Request Password Reset')) class ResetPasswordForm(FlaskForm): new_password = PasswordField(_l('Password'), validators=[DataRequired()]) repeat_password = PasswordField(_l('Repeat Password'), validators=[DataRequired(), EqualTo('new_password')]) submit = SubmitField(_l('Request Password Reset'))
import time from datetime import datetime import subprocess32 as subprocess import select from .logging_ext import logger class RunResult(object): def __init__(self, text, status): self.text = text self.status = status def run_with_io_timeout(cmd, timeout_sec=120): command = ' '.join(cmd) logger.info('run_with_io_timeout: running {}'.format(command)) start_time = datetime.now() p = subprocess.Popen( cmd, bufsize=0, shell=False, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, close_fds=True) process_id = p.pid logger.info('run_with_io_timeout: spawned process pid={}'.format(process_id)) def read_line(): _ln = '' while True: _rlist, _wlist, _xlist = select.select([p.stdout], [], [p.stdout], timeout_sec) if _xlist: return _ln, 'closed' if not _rlist: return _ln, 'timeout' _c = p.stdout.read(1) if not _c: return _ln, 'closed' if _c == '\n': return _ln, '' _ln += _c last_line_time = time.time() lines = [] while True: ln, status = read_line() lines.append(ln) print(ln) if status == 'closed': break ## if ln is none then the read timed out, kill it if status == 'timeout': p.kill() break ## save output to the db at 5 second intervals if time.time() - last_line_time > 5: last_line_time = time.time() p.stdout.close() p.wait() end_time = datetime.now() duration_sec = (end_time - start_time).total_seconds() if p.returncode == 0: logger.info('run_with_io_timeout: return_code={} duration={}sec'.format(p.returncode, duration_sec)) else: if status == 'timeout': state = 'killed hung job' else: state = 'failed' logger.error('run_with_io_timeout: return_code={} duration={}sec {}'.format(p.returncode, duration_sec, state)) return RunResult(u''.join(lines), p.returncode)
from btmonitor.pubsub import Hub from btmonitor.pubsub import Subscription import pytest @pytest.mark.asyncio async def test_pubsub_single(): hub: Hub[int] = Hub() hub.publish(1) with Subscription(hub) as queue: assert queue.empty() hub.publish(2) result = await queue.get() assert result == 2 assert queue.empty() hub.suspend() hub.publish(3) assert queue.empty() assert hub.is_suspended() hub.resume() hub.publish(3) assert not queue.empty() assert not hub.is_suspended() @pytest.mark.asyncio async def test_pubsub_multi(): hub: Hub[int] = Hub() hub.publish(1) with Subscription(hub) as queue: assert queue.empty() hub.publish_all([3, 4]) result = await queue.get() assert result == 3 assert not queue.empty() result = await queue.get() assert result == 4 assert queue.empty()
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-function-docstring """These examples should be handle by the classicalfunction compiler""" from qiskit.circuit import Int1 def identity(a: Int1) -> Int1: return a def bit_and(a: Int1, b: Int1) -> Int1: return a & b def bit_or(a: Int1, b: Int1) -> Int1: return a | b def bool_or(a: Int1, b: Int1) -> Int1: return a or b def bool_not(a: Int1) -> Int1: return not a def and_and(a: Int1, b: Int1, c: Int1) -> Int1: return a and b and c def multiple_binop(a: Int1, b: Int1) -> Int1: return (a or b) | (b & a) and (a & b) def id_assing(a: Int1) -> Int1: b = a return b def example1(a: Int1, b: Int1) -> Int1: c = a & b d = b | a return c ^ a | d def grover_oracle(a: Int1, b: Int1, c: Int1, d: Int1) -> Int1: return not a and b and not c and d
import re import os import gzip import argparse import numpy as np import scipy.stats as stats import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from Bio import SeqIO def plot_lengths(lengths, name): mean_len, std_len, median_len = np.mean(lengths), np.std(lengths), np.median(lengths) min_len, max_len = lengths.min(), lengths.max() fig, ax = plt.subplots() n, bins, patches = plt.hist(lengths, 50, rwidth=0.8, align='mid', density=True, alpha=0.75) x = np.linspace(min(bins), max(bins), 1000) lengths_log = np.log(lengths) mean_log, std_log = lengths_log.mean(), lengths_log.std() pdf = (np.exp(-(np.log(x) - mean_log)**2 / (2 * std_log**2)) / (x * std_log * np.sqrt(2 * np.pi))) plt.plot(x, pdf) plt.title('Read length histogram') plt.grid(True) plt.savefig(f'plots/{name}_length.png') with open(f'logs/{name}_length.log', 'w') as f: f.write(f'----- LENGTH INFO -----\n') f.write(f'Num seq\t\t=\t{len(lengths)}\n') f.write(f'Min len\t\t=\t{min_len}\n') f.write(f'Median len\t=\t{median_len}\n') f.write(f'Mean len\t=\t{mean_len}\n') f.write(f'Std len\t\t=\t{std_len}\n') f.write(f'Max len\t\t=\t{max_len}\n') f.write(f'-------------------------\n') def plot_qscores(qualities, name): mean_q, std_q, median_q = np.mean(qualities), np.std(qualities), np.median(qualities) min_q, max_q = qualities.min(), qualities.max() fig, ax = plt.subplots() n, bins, patches = plt.hist(qualities, 50, rwidth=0.8, align='mid', density=True, alpha=0.75) x = np.linspace(min(bins), max(bins), 1000) plt.plot(x, stats.norm.pdf(x, mean_q, std_q)) plt.title('Q-score histogram') plt.grid(True) plt.savefig(f'plots/{name}_qscore.png') with open(f'logs/{name}_qscores.log', 'w') as f: f.write(f'----- Q-SCORE INFO -----\n') f.write(f'Num seq\t\t=\t{len(qualities)}\n') f.write(f'Min Q\t\t=\t{min_q}\n') f.write(f'Median Q\t=\t{median_q}\n') f.write(f'Mean Q\t\t=\t{mean_q}\n') f.write(f'Std Q\t\t=\t{std_q}\n') f.write(f'Max Q\t\t=\t{max_q}\n') f.write(f'--------------------------\n') def plot_accuracies(accuracies, name): mean_acc, std_acc, median_acc = np.mean(accuracies), np.std(accuracies), np.median(accuracies) min_acc, max_acc = accuracies.min(), accuracies.max() fig, ax = plt.subplots() n, bins, patches = plt.hist(accuracies, 50, rwidth=0.8, align='mid', density=True, alpha=0.75) x = np.linspace(min(bins), max(bins), 1000) plt.plot(x, stats.norm.pdf(x, mean_acc, std_acc)) plt.title('Accuracy histogram') plt.grid(True) plt.savefig(f'plots/{name}_acc.png') with open(f'logs/{name}_acc.log', 'w') as f: f.write(f'----- ACCURACY INFO -----\n') f.write(f'Num seq\t\t=\t{len(accuracies)}\n') f.write(f'Min acc\t\t=\t{min_acc}\n') f.write(f'Median acc\t=\t{median_acc}\n') f.write(f'Mean acc\t=\t{mean_acc}\n') f.write(f'Std acc\t\t=\t{std_acc}\n') f.write(f'Max acc\t\t=\t{max_acc}\n') f.write(f'-------------------------\n') def get_acc(q): return 1.0 - 10 ** -(q / 10) def main(args): filename = args.filename find_l_dist = args.length find_q_dist = args.qscore find_acc_dist = args.accuracy try: if filename[-2:] == 'gz': f = gzip.open(filename, 'rt') else: f = open(filename) if find_l_dist: lengths = np.array([len(s) for s in SeqIO.parse(f, 'fastq')]) f.seek(0) if find_q_dist: qualities = np.array([np.array(r.letter_annotations['phred_quality']).mean() \ for r in SeqIO.parse(f, 'fastq')]) f.seek(0) if find_acc_dist: accuracies = np.array([np.array(list(map(get_acc, r.letter_annotations['phred_quality']))).mean() \ for r in SeqIO.parse(f, 'fastq')]) f.seek(0) finally: f.close() pattern = r'.*/(.*).fast.*' name = re.findall(pattern, filename)[0] if find_l_dist: print('Processing lengths...') plot_lengths(lengths, name) if find_q_dist: print('Processing q-scores...') plot_qscores(qualities, name) if find_acc_dist: print('Processing accuracies...') plot_accuracies(accuracies, name) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Plot distributions') parser.add_argument('filename', type=str) parser.add_argument('--length', action='store_true', default=False) parser.add_argument('--qscore', action='store_true', default=False) parser.add_argument('--accuracy', action='store_true', default=False) args = parser.parse_args() main(args)
default_app_config = 'marketing.apps.MarketingConfig'
#020 - Sorteando uma ordem na lista from random import shuffle n1 = str(input('primeiro aluno: ')) n2 = str(input('segundo aluno: ')) n3 = str(input('terceiro aluno: ')) n4 = str(input('quarto aluno: ')) lista = [n1, n2, n3, n4] shuffle(lista) print('a ordem de apresentacao sera ') print(lista)
import cv2 import numpy as np #---------------------------------------------------# # 对输入图像进行resize #---------------------------------------------------# def letterbox_image(image, size): ih, iw, _ = np.shape(image) w, h = size scale = min(w/iw, h/ih) nw = int(iw*scale) nh = int(ih*scale) image = cv2.resize(image, (nw, nh)) new_image = np.ones([size[1], size[0], 3]) * 128 new_image[(h-nh)//2:nh+(h-nh)//2, (w-nw)//2:nw+(w-nw)//2] = image return new_image #---------------------------------------------------# # 获得学习率 #---------------------------------------------------# def get_lr(optimizer): for param_group in optimizer.param_groups: return param_group['lr'] def preprocess_input(image): image -= np.array((104, 117, 123),np.float32) return image
# Copyright 2021 UW-IT, University of Washington # SPDX-License-Identifier: Apache-2.0 from django.core.cache.backends.memcached import BaseMemcachedCache class PymemcacheCache(BaseMemcachedCache): """ Implementation of a pymemcache binding for Django 2.x. """ def __init__(self, server, params): import pymemcache super().__init__(server, params, library=pymemcache, value_not_found_exception=KeyError) @property def _cache(self): if getattr(self, "_client", None) is None: kwargs = { "allow_unicode_keys": True, "default_noreply": False, "serde": self._lib.serde.pickle_serde, } kwargs.update(self._options) self._client = self._lib.HashClient(self._servers, **kwargs) return self._client def close(self, **kwargs): # Don't call disconnect_all() if connection pooling is enabled, # as it resets the failover state and creates unnecessary reconnects. if not self._cache.use_pooling: self._cache.disconnect_all()
## # Main Module: display.py ## import configparser import tm1637 from time import sleep config = configparser.ConfigParser() config.read('config/appconfig.ini') CLK = int(config['GPIO']['clk']) DIO = int(config['GPIO']['dio']) tm = tm1637.TM1637(clk=CLK, dio=DIO) tm.brightness(7) while True: tm.scroll('HELLO LISA') tm.numbers(69, 69) sleep(3)
""" PyENT: Python version of FourmiLab's ENT: Benchmarking suite for pseudorandom number sequence. (c) 2020 by Minh-Hai Nguyen """ import sys import numpy as np from scipy.stats import chi2 as spChi2 def Chi2(data,bins,min_value=None,max_value=None): """ Compute chi-square bins: int or sequence of bins If min_value or max_value is None, use the bounds of the data """ if min_value is None: min_value = min(data) if max_value is None: max_value = max(data) Os, bs = np.histogram(data,bins=bins,range=(min_value,max_value),density=False) E = len(data)/len(bs) return np.sum((Os-E)**2)/E def Chi2Q(data,bins,min_value=None,max_value=None): """ Compute accumunative distribution of chi-square bins: int or sequence of bins If min_value or max_value is None, use the bounds of the data """ if min_value is None: min_value = min(data) if max_value is None: max_value = max(data) Os, bs = np.histogram(data,bins=bins,range=(min_value,max_value),density=False) E = len(data)/(len(bs)-1) c2 = np.sum((Os-E)**2)/E return 1-spChi2.cdf(c2,len(bs)-2) def Pi(data,min_value=None,max_value=None): """ Estimate the value of pi from the data by Monte-Carlo method by converting data into a series of (x,y) coordinates in a square and count the number of points fall within a circle bounded by that square If min_value or max_value is None, use the upper and lower bounds of the data """ if min_value is None: min_value = min(data) if max_value is None: max_value = max(data) R = (max_value - min_value)/2 Rloc = (max_value + min_value)/2 R2 = R**2 xs = data[:-1] - Rloc ys = data[1:] - Rloc ds = xs**2 + ys**2 hits = np.sum(ds<R2) return 4*hits/len(xs) def Entropy(data,bins,min_value=None,max_value=None): """ Compute Shannon Entropy of the data bins: int or sequence of bins If min_value or max_value is None, use the bounds of the data """ if min_value is None: min_value = min(data) if max_value is None: max_value = max(data) Os,_ = np.histogram(data,bins=bins,range=(min_value,max_value),density=False) Ps = Os/len(data) Ps = Ps[Ps>0] E = -np.sum(Ps*np.log2(Ps)) return E def Corr(data): """ Serial Correlation Coefficient """ result = np.corrcoef(data[:-1],data[1:]) return abs(result[0,1]/result[0,0]) def ENT(data,bins,min_value=None,max_value=None,display=False): """ Comprehensive randomness Benchmarking bins: int or sequence of bins If min_value or max_value is None, use the bounds of the data display: print out results or not """ if min_value is None: min_value = min(data) if max_value is None: max_value = max(data) # Number of bins if isinstance(bins,list): num_bins = len(bins) else: num_bins = bins # Shannon Entropy entropy = Entropy(data,bins,min_value,max_value) max_ent = np.log2(num_bins) # Chi-square Test chi2 = Chi2(data,bins,min_value,max_value) chi2Q = 1-spChi2.cdf(chi2,num_bins-1) # Mean mean = np.mean(data) median = (min_value + max_value)/2 # Monte-Carlo value for Pi pi = Pi(data,min_value,max_value) # Serial Correlation corr = Corr(data) # Print out if display: print("Entropy = ", entropy, "bits per character.") print("Optimum compression would reduce the size of this data by %.0f percent." %((max_ent-entropy)*100/max_ent)) print() print("Chi square distribution is %.2e, and randomly would exceed this value %.1f percent of the times." %(chi2,chi2Q*100)) print() print("Arithmetic mean value is %.2e" %mean) print("Median value is %.2e" %median) print() print("Monte-Carlo value for Pi is ", pi, " (error %.3f percent)" %(abs(np.pi-pi)*100/np.pi)) print() print("Serial correlation coefficient is ", corr) return entropy, chi2, pi, corr def ent_file(fname, display=False): """ Run ENT analysis on binary file fname Data is read as bytes """ with open(fname,'rb') as f: data = f.read() data = np.array(bytearray(data)) return ENT(data,1<<8,min_value=0,max_value=1<<8-1,display=display) if __name__=="__main__": args = sys.argv if len(args)<2: fname = input("File name: ") fnames = [fname] else: fnames = args[1:] for fname in fnames: print() print("Test results for file: %s" %fname) _ = ent_file(fname,True) print("============")
import os from model.generic_loss_functions import PFNL_generic_loss_functions from model.generic_loss_functions import NAME as PROPOSED_LOSS from model.control import PFNL_control from model.control import NAME as CONTROL from model.alternative import PFNL_alternative from model.alternative import NAME as ALTERNATIVE from model.null import PFNL_null from model.null import NAME as NULL os.environ["CUDA_VISIBLE_DEVICES"] = "0" if __name__ == '__main__': # Choose model model = PFNL_control() # model = PFNL_null() # model = PFNL_alternative() # model = PFNL_generic_loss_functions() print('Model loaded!') # Training the model model.train() print('Training finished') # Testing the specified model if isinstance(model, PFNL_control): NAME = CONTROL elif isinstance(model, PFNL_null): NAME = NULL elif isinstance(model, PFNL_generic_loss_functions): NAME = PROPOSED_LOSS else: NAME = ALTERNATIVE model.testvideos('test/vid4', name='{}'.format(NAME)) model.testvideos('test/udm10', name='{}'.format(NAME)) print('Runtime finished')
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Prefix DAG permissions. Revision ID: 849da589634d Revises: 45ba3f1493b9 Create Date: 2020-10-01 17:25:10.006322 """ from airflow.security import permissions from airflow.www.app import cached_app # revision identifiers, used by Alembic. revision = '849da589634d' down_revision = '45ba3f1493b9' branch_labels = None depends_on = None def upgrade(): # noqa: D103 permissions = ['can_dag_read', 'can_dag_edit'] view_menus = cached_app().appbuilder.sm.get_all_view_menu() convert_permissions(permissions, view_menus, upgrade_action, upgrade_dag_id) def downgrade(): # noqa: D103 permissions = ['can_read', 'can_edit'] vms = cached_app().appbuilder.sm.get_all_view_menu() view_menus = [vm for vm in vms if (vm.name == permissions.RESOURCE_DAG or vm.name.startswith('DAG:'))] convert_permissions(permissions, view_menus, downgrade_action, downgrade_dag_id) def upgrade_dag_id(dag_id): """Adds the 'DAG:' prefix to a DAG view if appropriate.""" if dag_id == 'all_dags': return permissions.RESOURCE_DAG if dag_id.startswith("DAG:"): return dag_id return f"DAG:{dag_id}" def downgrade_dag_id(dag_id): """Removes the 'DAG:' prefix from a DAG view name to return the DAG id.""" if dag_id == permissions.RESOURCE_DAG: return 'all_dags' if dag_id.startswith("DAG:"): return dag_id[len("DAG:") :] return dag_id def upgrade_action(action): """Converts the a DAG permission name from the old style to the new style.""" if action == 'can_dag_read': return 'can_read' return 'can_edit' def downgrade_action(action): """Converts the a DAG permission name from the old style to the new style.""" if action == 'can_read': return 'can_dag_read' return 'can_dag_edit' def convert_permissions(permissions, view_menus, convert_action, convert_dag_id): """Creates new empty role in DB""" appbuilder = cached_app().appbuilder # pylint: disable=no-member roles = appbuilder.sm.get_all_roles() views_to_remove = set() for permission_name in permissions: # pylint: disable=too-many-nested-blocks for view_menu in view_menus: view_name = view_menu.name old_pvm = appbuilder.sm.find_permission_view_menu(permission_name, view_name) if not old_pvm: continue views_to_remove.add(view_name) new_permission_name = convert_action(permission_name) new_pvm = appbuilder.sm.add_permission_view_menu(new_permission_name, convert_dag_id(view_name)) for role in roles: if appbuilder.sm.exist_permission_on_roles(view_name, permission_name, [role.id]): appbuilder.sm.add_permission_role(role, new_pvm) appbuilder.sm.del_permission_role(role, old_pvm) print(f"DELETING: {role.name} ----> {view_name}.{permission_name}") appbuilder.sm.del_permission_view_menu(permission_name, view_name) print(f"DELETING: perm_view ----> {view_name}.{permission_name}") for view_name in views_to_remove: if appbuilder.sm.find_view_menu(view_name): appbuilder.sm.del_view_menu(view_name) print(f"DELETING: view_menu ----> {view_name}") if 'can_dag_read' in permissions: for permission_name in permissions: if appbuilder.sm.find_permission(permission_name): appbuilder.sm.del_permission(permission_name) print(f"DELETING: permission ----> {permission_name}")
import torch import random from torch.distributions.multivariate_normal import MultivariateNormal from utils import cov class EstimationMaximisation(object): '''Gaussian Estimation Maximisation Algorithm The following models the Gaussian Estimation Maximisation algorithm. Given a set of points, we do a clustering if them into Gaussian models, given that the number of clusters is selected before. Args: points: List of Pytorch tensors on which the algorithm is to be run no_of_iterations: The number of iterations the algorithm is to be run on. no_of_gaussians: The number of clusters the data is to be divided into parametric: whether the clustering is soft or hard, where soft clustering is not assigning weights to a point for each cluster it is to belong to, while hard is that a point belongs to a single cluster. ''' def __init__(self, points, no_of_iterations, no_of_gaussians, parametric="Yes"): '''Initialise variables for EM Model Sets the means, weights, gamma and the covaraince matrices to None. ''' self.points = points #list of pytorch tensors self.no_of_points = len(self.points) self.no_of_iterations = no_of_iterations self.parametric = parametric self.no_of_gaussians = no_of_gaussians self.dimension = points[0].shape[0] self.means = None self.cov_matrices = None self.weights = None self.gamma = None if parametric == 'No': raise Warning('Non - Parametric version to be implememted however not available, shifting to Parametric version...') self.parametric == 'Yes' def initilize_means(self): '''Initialises Means for the Gaussians Intialises a random Pytorch Tensor of the dimensions equal to that of the points dimensions, for each Gaussian. Returns: list of mean Tensors ''' means = list() for i in xrange(self.no_of_gaussians): means.append(torch.rand(self.dimension, )) self.means = means return means def initilize_cov_matrices(self): '''Initialise Covariance Matrices for the Gaussians Initialise Covaraiance matrices for the Gaussians by first initialising a set of points and then computing the Covaraiance matrix for it. Returns: List of Tensor Covariance matrices ''' cov_matrices = list() for i in xrange(self.no_of_gaussians): cov_matrices.append(cov(torch.rand(self.dimension+100, self.dimension))) self.cov_matrices = cov_matrices assert(cov_matrices[0].shape[0] == self.dimension) assert(cov_matrices[0].shape[1] == self.dimension) return cov_matrices def initialize_parameters(self): '''Initialise weights for the Gaussians Initialise weights for the Gaussians, given the Estimation Maximisation Algorithm is "parametric" Returns: List of Tensor weights ''' params = list() for i in xrange(self.no_of_gaussians): params.append(torch.rand(1)) l = sum(params) for i in xrange(self.no_of_gaussians): params[i] = params[i]/l # assert(sum(params) == 1.0) self.weights = params return params def initialize_gamma(self): '''Initialise Gamma Gamma is a matrix of size nxd and can be defined as probabilty of each point belonging to each Gaussian Returns: Gamma Tensor matrix ''' k = torch.rand(self.no_of_points, self.no_of_gaussians) sums = torch.sum(k, dim=0) for i in xrange(self.no_of_gaussians): k[:, i] = k[:, i]/sums[i] self.gamma = k return k def update_parametric(self): '''Estimation Maxiisation Update Function Firstly step M is done - update the gamma matrix by finding the probabilites of each point in each Gaussian. Using this partitiom the centers, weights and the covariance matrices of the Gaussians are updated K-step. ''' gamma = torch.ones((self.no_of_points, self.no_of_gaussians)) # Finding the gamma matrix for the iteration, go through # all points for all Gaussians for i in xrange(self.no_of_points): l = 0.0 for j in xrange(self.no_of_gaussians): # Define Multivariate Function normal_function = MultivariateNormal(self.means[j], self.cov_matrices[j]) # Find the porbability for point prob = torch.exp(normal_function.log_prob(self.points[i]))*self.weights[j] # Update the gamma fiunction gamma[i, j] = prob l += prob for j in xrange(self.no_of_gaussians): # Normalise the Gamma function over a Gaussian gamma[i, j] = gamma[i, j]/l self.gamma = gamma # row wise sum of gamma matrix s = torch.sum(gamma, dim=0) for i in xrange(self.no_of_gaussians): # updating weights using the weight calculation formula self.weights[i] = s[i]/self.no_of_points # define a mean tensor mean = torch.zeros((self.dimension, )) for j in xrange(self.no_of_points): # print np.argwhere(np.isnan(gamma[j, i])) # k = self.points[j]*gamma[j, i]) # Find the weighted mean using points "Parametric EM" mean += self.points[j]*gamma[j, i]) self.means[i] = mean/s[i] #updating means for i in xrange(self.no_of_gaussians): # update covaraince matrices g = torch.tensor(self.points).view(self.no_of_points, self.dimension) - self.means[i].view(1, self.dimension) self.cov_matrices[i] = torch.mm(g.t(), self.gamma[:, i]*g) #updating covariance matrices # print self.means def update_inverse_parametric(self): '''Estimation Maxiisation Update Function inverse In order to tackle the low probability of points in each Gaussian first the K-step is done, gamma is taken at random and first the means and covariance matrices and weights are updated, then gamma is updated The first update method is recommended however if not then this method should help make the algorthm converge. ''' s = torch.sum(self.gamma, dim=0) # Initialise weights, means ans=d covriance matrices self.weights = list() self.means = list() self.cov_matrices = list() for i in xrange(self.no_of_gaussians): self.weights.append(0) self.means.append(0) self.cov_matrices.append(0) # update the means and weights of the Gaussians for i in xrange(self.no_of_gaussians): self.weights[i] = s[i]/self.no_of_points mean = torch.zeros((self.dimension, )) for j in xrange(self.no_of_points): # k = np.multiply(self.points[j], self.gamma[j, i]) mean += self.points[j] * self.gamma[j, i] self.means[i] = mean/s[i] # update the covariance matrices for the Gaussians for i in xrange(self.no_of_gaussians): g = torch.tensor(self.points).view(self.no_of_points, self.dimension)-self.means[i].view(1, self.dimension)) self.cov_matrices[i] = torch.mm(g.t(), self.gamma[:, i].view(self.gamma.shape[0], 1)*g) gamma = torch.ones((self.no_of_points, self.no_of_gaussians)) # Using means, covariance matrices and weights, update gamma for i in xrange(self.no_of_points): l = 0.0 for j in xrange(self.no_of_gaussians): prob = MultivariateNormal.probs(self.points[i], self.means[j], self.cov_matrices[j], allow_singular=True)*self.weights[j] # print 'a' gamma[i, j] = prob l += prob for j in xrange(self.no_of_gaussians): gamma[i, j] = gamma[i, j]/l self.gamma = gamma def update_NonParametric(self): NotImplemented def update_inverse_NonParametric(self): NotImplemented def iterate(self): for i in xrange(self.no_of_iterations): if i == 0: if self.means == None: self.initilize_means() if self.cov_matrices == None: self.initilize_cov_matrices() if self.weights == None: self.initialize_parameters() print('iteration - '+str(i+1)) if self.parametric == 'Yes': self.update_parametric() else: self.update_NonParametric() print('') print('iteration complete') def iterate_inverse(self): for i in xrange(self.no_of_iterations): if i == 0: if self.gamma == None: self.initialize_gamma() print('iteration - '+str(i+1)) if self.parametric == 'Yes': self.update_inverse_parametric() else: self.update_inverse_NonParametric() print('') print('#####Iterations complete#######')
from starlette.middleware.base import BaseHTTPMiddleware, RequestResponseEndpoint, DispatchFunction from starlette.requests import Request from starlette.responses import Response from starlette.types import ASGIApp class BrowserCachingMiddleware(BaseHTTPMiddleware): """ Enabling the caching of assets by the browser can defeat the auto-fetching of resources to cache them in the user's computer. At the end, we only use the mechanism of py-youwol to handle caching of resources. """ cache = {} def __init__(self, app: ASGIApp, dispatch: DispatchFunction = None, **_) -> None: super().__init__(app, dispatch) async def dispatch( self, request: Request, call_next: RequestResponseEndpoint ) -> Response: response = await call_next(request) if '/api/assets-gateway/raw/' in request.url.path and request.method == "GET": response.headers["Cache-Control"] = "no-cache, no-store" return response
from django.urls import include, path from rest_framework import routers from . import views router = routers.DefaultRouter() router.register(r"invoices", views.InvoicesViewSet) urlpatterns = [ path("", include(router.urls)), path( "api-auth/", include("rest_framework.urls", namespace="rest_framework") ), ]
"""Add dependency matcher pipe to the pipeline.""" from array import array from collections import defaultdict, namedtuple from typing import Union import spacy from spacy.language import Language from spacy.matcher import DependencyMatcher from spacy.tokens import Span, Token from traiter.util import as_list, sign DEPENDENCY = 'traiter.dependency.v1' LINK_NEAREST = 'traiter.link_nearest.v1' NEVER = 9999 PENALTY = { ',': 2, ';': 5, '.': NEVER, } DependencyPatterns = Union[dict, list[dict]] Link = namedtuple('Link', 'trait start_char end_char') def add_extensions(): """Add extensions for spans and tokens used by entity linker pipes.""" if not Span.has_extension('links'): Span.set_extension('links', default=[]) Token.set_extension('links', default=[]) @Language.factory(DEPENDENCY) class Dependency: """Matchers that walk the parse tree of a sentence or doc.""" def __init__(self, nlp: Language, name: str, patterns: DependencyPatterns): self.nlp = nlp self.name = name self.matcher = DependencyMatcher(nlp.vocab) patterns = as_list(patterns) self.dispatch = self.build_dispatch_table(patterns) self.build_matchers(patterns) add_extensions() def build_matchers(self, patterns: DependencyPatterns): """Setup matchers.""" for matcher in patterns: label = matcher['label'] self.matcher.add(label, matcher['patterns']) def build_dispatch_table(self, patterns: DependencyPatterns): """Setup after match actions.""" dispatch = {} for matcher in patterns: label = matcher['label'] label = self.nlp.vocab.strings[label] if on_match := matcher.get('on_match'): func = spacy.registry.misc.get(on_match['func']) dispatch[label] = (func, on_match.get('kwargs', {})) return dispatch def __call__(self, doc): matches = self.matcher(doc) if not self.dispatch: return doc matches_by_id = defaultdict(list) for match in matches: matches_by_id[match[0]].append(match) for match_id, match_list in matches_by_id.items(): if after := self.dispatch.get(match_id): after[0](doc, match_list, **after[1]) return doc @spacy.registry.misc(LINK_NEAREST) def link_nearest(doc, matches, **kwargs): """Link traits.""" anchor = kwargs.get('anchor') e_matches = tokens2entities(doc, matches) # Group indices by anchor index (instance) and the other entity's label groups = defaultdict(list) for _, m_idx in e_matches: anchor_i = [i for i in m_idx if doc.ents[i].label_ == anchor][0] for entity_i in [i for i in m_idx if doc.ents[i].label_ != anchor]: e_label = doc.ents[entity_i].label_ dist = weighted_distance(anchor_i, entity_i, doc) groups[(anchor_i, e_label)].append((dist, entity_i)) # Then sort the groups by weighted distance & grab the closest entity groups = {k: sorted(v)[0][1] for k, v in groups.items()} # Update the anchor entity with data from the closest entity for (anchor_i, e_label), nearest in groups.items(): n_ent = doc.ents[nearest] doc.ents[anchor_i]._.data[e_label] = n_ent._.data[e_label] doc.ents[anchor_i]._.links.append(Link( e_label, n_ent.start_char, n_ent.end_char)) def weighted_distance(anchor_i, entity_i, doc): """Calculate the token offset from the anchor to the entity, penalize punct.""" lo, hi = (entity_i, anchor_i) if entity_i < anchor_i else (anchor_i, entity_i) lo, hi = doc.ents[lo][-1].i, doc.ents[hi][0].i dist = hi - lo penalty = sum(PENALTY.get(doc[i].text, 0) for i in range(lo + 1, hi)) return dist + penalty, sign(anchor_i - entity_i) def tokens2entities(doc, matches): """Map tokens in the matches to entities. The dependency tree is built by a neural net before running the linker rules. The dependency tree links tokens, not spans/entities to tokens. Therefore a tree arc may point to any token in an entity/span and many arcs may point to the same entity. We want to add data to the entity not to the tokens. So we need to map tokens in the matches to entities. This function turns match token indices into entity indices. """ token2ent = array('i', [-1] * len(doc)) # This creates an array of tokens indices and the entity indices they map to for e, ent in enumerate(doc.ents): token2ent[ent.start:ent.end] = array('i', [e] * len(ent)) # Map the matched tokens to entities, remove duplicates and remove non-entities mapped = {(m_id, tuple(e for i in t_idx if (e := token2ent[i]) >= 0)) for m_id, t_idx in matches} return sorted(mapped) # #################################################################################### # TODO: Remove the code below when other traiters migrate to use link_nearest() NEAREST_ANCHOR = 'traiter.nearest_anchor.v1' @spacy.registry.misc(NEAREST_ANCHOR) def nearest_anchor(doc, matches, **kwargs): """Link traits to the nearest anchor trait. In this case the "superior" trait (body_part, sex, etc.) is the anchor. This uses a simple algorithm for linking traits. 1) Create a set of matched entities from matches of tokens. 2) Find all entities. 2) Link entities to closest anchor entity. There are different distance metrics. """ anchor, anchor_idx, ent_idx = map_tokens2entities(doc, matches, kwargs) # Find the closest anchor entity to the target entity for e in ent_idx: if not doc.ents[e]._.data.get(anchor): nearest = [(token_penalty(a, e, doc), a) for a in anchor_idx] nearest = [n for n in nearest if n[0][0] < NEVER] if nearest: nearest_idx = sorted(nearest)[0][1] doc.ents[e]._.data[anchor] = doc.ents[nearest]._.data[anchor] nearest = doc.ents[nearest_idx] doc.ents[e]._.links.append(Link( anchor, nearest.start_char, nearest.end_char)) def map_tokens2entities(doc, matches, kwargs): """Map tokens in the matches to entities. The dependency tree is built by a neural net before the linker rules are run. The dependency tree links tokens, not spans/entities to tokens. Therefore a tree arc may point to any token in an entity/span and many arcs may point to the same entity. We want to add data to the entity not to the tokens. So we need to map tokens in the matches to entities. """ # print(kwargs) # print(matches) anchor = kwargs.get('anchor') exclude = kwargs.get('exclude') anchor_2_ent = array('i', [-1] * len(doc)) token_2_ent = array('i', [-1] * len(doc)) for e, ent in enumerate(doc.ents): if ent.label_ == exclude: continue elif ent.label_ == anchor: anchor_2_ent[ent.start:ent.end] = array('i', [e] * len(ent)) else: token_2_ent[ent.start:ent.end] = array('i', [e] * len(ent)) # From the matches with token indexes get the entity index anchor_idx, ent_idx = set(), set() for _, token_ids in matches: ent_idx |= {e for t in token_ids if (e := token_2_ent[t]) > -1} anchor_idx |= {e for t in token_ids if (e := anchor_2_ent[t]) > -1} return anchor, anchor_idx, ent_idx def token_penalty(anchor_i, entity_i, doc): """Calculate the token offset from the anchor to the entity, penalize punct.""" lo, hi = (entity_i, anchor_i) if entity_i < anchor_i else (anchor_i, entity_i) lo, hi = doc.ents[lo][-1].i, doc.ents[hi][0].i dist = hi - lo penalty = sum(PENALTY.get(doc[i].text, 0) for i in range(lo + 1, hi)) return dist + penalty, sign(anchor_i - entity_i) def entity_distance(anchor_i, entity_i, _): """Calculate the distance in token offset from the anchor to the entity.""" dist = anchor_i - entity_i return abs(dist), sign(dist) def token_distance(anchor_i, entity_i, doc): """Calculate token offset from the anchor to the entity.""" hi, lo = (anchor_i, entity_i) if anchor_i > entity_i else (entity_i, anchor_i) dist = doc.ents[hi][0].i - doc.ents[lo][-1].i return dist, sign(anchor_i - entity_i), entity_i
from .core import contents, where __all__ = ["contents", "where"] __version__ = "2022.05.18.1"
import json if __name__ == '__main__': students_list = [] while True: command = input("Add, list, exit, load <>, save <>: ").lower() if command == 'exit': break elif command == 'add': last_name = input('Your last name^ ') class_name = input('Class ') grades = [] n = 0 while n < 5: grades.append(int(input('Your grades '))) n += 1 student = { 'Last name': last_name, 'Class': class_name, 'Grades': grades, } students_list.append(student) if len(students_list) > 1: students_list.sort(key=lambda item: item.get('Last name', '')) print(students_list) elif command == 'list': count = 0 for student in students_list: for i in student['Grades']: if i == 2: count += 1 print('{:>4}: {}'.format('This student got an F', student.get('Last name', ''))) elif command.startswith('load '): parts = command.split(' ', maxsplit=1) with open(parts[1], 'r') as f: data = json.load(f) print(data) elif command.startswith('save '): parts = command.split(' ', maxsplit=1) with open(parts[1], 'w') as f: json.dump(students_list, f)
def main(): info('Waiting for minibone access') wait('FelixMiniboneFlag', 0) info('Minibone free') acquire('JanMiniboneFlag', clear=True) info('Minibone acquired') wait('MinibonePumpTimeFlag', 0)
#!/usr/bin/env python # -*- coding: utf-8 -*- '''Setup for filament_watch''' import ez_setup ez_setup.use_setuptools() from setuptools import setup with open('README.md') as readme_file: README = readme_file.read() setup( name="filament_watch", version="1.0", author="Richard L. Lynch", author_email="[email protected]", description=("Monitors filament motion and pauses/cancels OctoPrint if the filament stops feeding."), long_description=README, license="MIT", keywords="3d_printer 3d printer filament watch monitor jam safety", url="https://github.com/rllynch/filament_watch", packages=['filament_watch'], include_package_data=True, entry_points={ 'console_scripts': ['filament_watch = filament_watch.filament_watch:main'], }, install_requires=[ 'requests', 'pyserial', 'cherrypy>=3.1', 'pyyaml' ] )
#!/usr/bin/env python ''' Created on Feb 21, 2020 @author: gsnyder Retrieve BOM computed notifications Note: The user account you run this under will determine the scope (i.e. projects, versions) of the notifications that can be received. ''' # TODO: Use startDate filter on /api/notifications to limit the notifications retrieved when using -n import argparse from datetime import datetime import json import logging import pytz import sys import timestring from terminaltables import AsciiTable from blackduck.HubRestApi import HubInstance, object_id parser = argparse.ArgumentParser("Retreive BOM computed notifications") parser.add_argument("project", help="The name of the project") parser.add_argument("version", help="The name of the version") parser.add_argument("-n", "--newer_than", default=None, type=str, help="Set this option to see all vulnerability notifications published since the given date/time.") parser.add_argument("-d", "--save_dt", action='store_true', help="If set, the date/time will be saved to a file named '.last_run' in the current directory which can be used later with the -n option to see vulnerabilities published since the last run.") parser.add_argument("-l", "--limit", default=100000, help="To change the limit on the number of notifications to retrieve") parser.add_argument("-s", "--system", action='store_true', help="Pull notifications from the system as opposed to the user's account") args = parser.parse_args() if args.newer_than: newer_than = timestring.Date(args.newer_than).date # adjust to UTC so the comparison is normalized newer_than = newer_than.astimezone(pytz.utc) else: newer_than = None if args.save_dt: with open(".last_run", "w") as f: f.write(datetime.now().isoformat()) logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s', stream=sys.stderr, level=logging.DEBUG) logging.getLogger("requests").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.WARNING) hub = HubInstance() current_user = hub.get_current_user() version = hub.get_project_version_by_name(args.project, args.version) version_url = version['_meta']['href'] # Construct the URL to either pull from the system or user account scope, # and then narrow the search to only include BOM computed notifications if args.system: notifications_url = "{}/api/notifications".format(hub.get_urlbase()) else: notifications_url = hub.get_link(current_user, "notifications") notifications_url = "{}?limit={}&filter=notificationType:VERSION_BOM_CODE_LOCATION_BOM_COMPUTED".format( notifications_url, args.limit) if newer_than: # add to the URL to include startDate start_date = newer_than.strftime("%Y-%m-%dT%H:%M:%S.%fZ") notifications_url += "&startDate=" + start_date logging.debug(f"Retrieving BOM computed notifications using {notifications_url}") bom_computed_notifications = hub.execute_get(notifications_url).json().get('items', []) # filter to include only those notification pertaining to the specified project, version bom_computed_notifications = list( filter(lambda n: version_url == n['content']['projectVersion'], bom_computed_notifications)) print(json.dumps(bom_computed_notifications))
#!/usr/bin/env python """Exercise answer 8.2 for chapter 8.""" def ui(): """The program of UI.""" while True: tip = """ Input three numbers, using ',' to seperate it. These are from,to,and increment. We'll generate a sequence for you. Using 'q' to quit this: """ inp = raw_input(tip).strip() if inp == 'q': break else: nums = inp.split(',') if len(nums) != 3: print "Numbers not right." continue seq = xrange(int(nums[0]), int(nums[1]), int(nums[2])) for x in seq: print x, if __name__ == '__main__': ui()
#!/usr/bin/env python import rospy import time import cv2 import sys import numpy as np import message_filters from sensor_msgs.msg import Image, CameraInfo from std_msgs.msg import Header from cv_bridge import CvBridge, CvBridgeError from openpose_ros_msgs.msg import OpenPoseHumanList from visualization_msgs.msg import MarkerArray, Marker from geometry_msgs.msg import Point from human_pose_multiview.msg import CustomMarkerArray CAMERA = str(sys.argv[1]) # Read camera from parameters # Subscribers HUMAN_POSE_TOPIC = "/human_pose_estimation/human_list/cam_" + CAMERA COLOR_IMAGE_TOPIC = "/cam_" + CAMERA + "/color/image_raw" DEPTH_IMAGE_TOPIC = "/cam_" + CAMERA + "/depth_registered/image_rect" CAMERA_PARAMETERS = "/cam_" + CAMERA + "/color/camera_info" # Publisher HUMAN_POSE_DRAWER_TOPIC = "/human_pose/pose3D/cam_" + CAMERA class PoseGenerator: def __init__(self, pub, K): self.bridge = CvBridge() #self.pose_sub = rospy.Subscriber(HUMAN_POSE_TOPIC, MarkerArray, self.pose_callback, queue_size=10) #self.image_sub = rospy.Subscriber(COLOR_IMAGE_TOPIC, Image, self.image_callback, queue_size=10) self.pose_sub = message_filters.Subscriber(HUMAN_POSE_TOPIC, OpenPoseHumanList) self.image_sub = message_filters.Subscriber(COLOR_IMAGE_TOPIC, Image) self.depth_sub = message_filters.Subscriber(DEPTH_IMAGE_TOPIC, Image) self.sync = message_filters.ApproximateTimeSynchronizer([self.pose_sub, self.image_sub, self.depth_sub], 10, 0.1) self.sync.registerCallback(self.callback) self.pub = pub self.K = K self.fx = K[0] self.fy = K[4] self.cx = K[2] self.cy = K[5] self.depth_env_delta = 2 self.min_depth = 1000 self.max_depth = 2500 self.threshold = 0.25 self.g_depth_scale = 1000.0 def callback(self, data_pose, data_image, data_depth): #print("message \t - \t", data_image.header.seq, data_pose.header.seq) cv_color = self.bridge.imgmsg_to_cv2(data_image, "rgb8") cv_depth = self.bridge.imgmsg_to_cv2(data_depth, "16UC1") ma = CustomMarkerArray() h = Header(frame_id=data_image.header.frame_id, seq=data_image.header.seq) ma.header = h for kp_idx, point in enumerate(data_pose.human_list[0].body_key_points_with_prob): if point.prob >= self.threshold: u, v = int(round(point.x)), int(round(point.y)) depth_candidates = [] for uu in range(u-self.depth_env_delta, u+self.depth_env_delta): for vv in range(v-self.depth_env_delta, v+self.depth_env_delta): if uu<0 or vv<0 or uu>=cv_color.shape[1] or vv>=cv_color.shape[0]: break if cv_depth[vv,uu] > self.min_depth and cv_depth[vv,uu] < self.max_depth: depth_candidates.append(cv_depth[vv,uu]) if not depth_candidates: break depth_candidates.sort() #z = 0 #if kp_idx==11 or kp_idx==12: #z = depth_candidates[-1] / self.g_depth_scale #else: z = depth_candidates[len(depth_candidates)/2] / self.g_depth_scale x = (u - self.cx) * z / self.fx y = (v - self.cy) * z / self.fy marker = Marker() marker.header = h marker.pose.position.x = x marker.pose.position.y = y marker.pose.position.z = z marker.pose.orientation.w = 1 marker.pose.orientation.x = 0 marker.pose.orientation.y = 0 marker.pose.orientation.z = 0 marker.scale.x = 0.05 marker.scale.y = 0.05 marker.scale.z = 0.05 marker.ns = "joints" marker.id = kp_idx marker.color.r = 1.0 marker.color.a = 1.0 ma.confidences.append(point.prob) ma.markers.append(marker) self.pub.publish(ma) class CameraCalibSubscriber(): def __init__(self): self.subscriber = rospy.Subscriber(CAMERA_PARAMETERS, CameraInfo, self.camera_callback, queue_size=1) self.stop = False self.K = None self.camera_frame_id = None self.camera_seq = None def camera_callback(self, data): self.K = data.K self.camera_frame_id = data.header.frame_id self.camera_seq = data.header.seq self.stop = True def wait_for_calib(self): try: while not self.stop: time.sleep(1.0) except KeyboardInterrupt: print("Shutting down") return self.K, self.camera_frame_id, self.camera_seq if __name__ == '__main__': rospy.init_node('pose_drawer_3d', anonymous=True) #read calib from ros topic camera_calib = CameraCalibSubscriber() K, camera_frame_id, camera_seq = camera_calib.wait_for_calib() pub = rospy.Publisher(HUMAN_POSE_DRAWER_TOPIC, CustomMarkerArray, queue_size=10) human_pose_drawer = PoseGenerator(pub, K) rospy.spin()
import json import unittest from unittest.mock import patch import requests_mock from frontstage import app from frontstage.common.eq_payload import EqPayload from frontstage.controllers import collection_exercise_controller from frontstage.exceptions.exceptions import ApiError, InvalidEqPayLoad from tests.integration.mocked_services import ( business_party, case, categories, collection_exercise, collection_exercise_events, collection_instrument_eq, collection_instrument_seft, completed_case, respondent_party, survey, survey_eq, url_banner_api, url_get_business_party, url_get_case, url_get_case_categories, url_get_ci, url_get_collection_exercise, url_get_collection_exercise_events, url_get_respondent_party, url_get_survey, url_get_survey_by_short_name_eq, url_post_case_event_uuid, ) encoded_jwt_token = ( "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJwYXJ0eV9pZCI6ImY5NTZlOGFlLTZ" "lMGYtNDQxNC1iMGNmLWEwN2MxYWEzZTM3YiIsImV4cGlyZXNfYXQiOiIxMDAxMjM0NTY" "3ODkiLCJyb2xlIjoicmVzcG9uZGVudCIsInVucmVhZF9tZXNzYWdlX2NvdW50Ijp7InZh" "bHVlIjowLCJyZWZyZXNoX2luIjozMjUyNzY3NDAwMC4wfSwiZXhwaXJlc19pbiI6MzI1M" "jc2NzQwMDAuMH0.m94R50EPIKTJmE6gf6PvCmCq8ZpYwwV8PHSqsJh5fnI" ) class TestGenerateEqURL(unittest.TestCase): def setUp(self): self.app = app.test_client() self.app.set_cookie("localhost", "authorization", "session_key") self.headers = { "Authorization": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX2lkIjoicmluZ3JhbUBub3d3aGVyZS5jb20iLCJ1c2VyX3Njb3BlcyI6WyJjaS5yZWFkIiwiY2kud3JpdGUiXX0.se0BJtNksVtk14aqjp7SvnXzRbEKoqXb8Q5U9VVdy54" # NOQA } self.patcher = patch("redis.StrictRedis.get", return_value=encoded_jwt_token) self.patcher.start() def tearDown(self): self.patcher.stop() @requests_mock.mock() def test_generate_eq_url(self, mock_request): # Given all external services are mocked and we have an EQ collection instrument mock_request.get(url_get_case, json=case) mock_request.get(url_get_collection_exercise, json=collection_exercise) mock_request.get(url_get_collection_exercise_events, json=collection_exercise_events) mock_request.get(url_get_business_party, json=business_party) mock_request.get(url_get_survey_by_short_name_eq, json=survey_eq) mock_request.get(url_get_ci, json=collection_instrument_eq) mock_request.get(url_get_case_categories, json=categories) mock_request.post(url_post_case_event_uuid, status_code=201) mock_request.get(url_get_respondent_party, status_code=200, json=respondent_party) mock_request.get(url_banner_api, status_code=404) # When the generate-eq-url is called response = self.app.get( f"/surveys/access-survey?case_id={case['id']}&business_party_id={business_party['id']}" f"&survey_short_name={survey_eq['shortName']}&ci_type=EQ", headers=self.headers, ) # An eq url is generated self.assertEqual(response.status_code, 302) self.assertIn("https://eq-test/session?token=", response.location) @requests_mock.mock() @patch("frontstage.controllers.party_controller.is_respondent_enrolled") def test_generate_eq_url_complete_case(self, mock_request, _): # Given a mocked case has its caseGroup status as complete mock_request.get( f"{app.config['COLLECTION_EXERCISE_URL']}" f"/collectionexercises/14fb3e68-4dca-46db-bf49-04b84e07e77c", json=collection_exercise, ) mock_request.get(f"{app.config['CASE_URL']}/cases/8cdc01f9-656a-4715-a148-ffed0dbe1b04", json=completed_case) mock_request.get(url_get_collection_exercise_events, json=collection_exercise_events) mock_request.get(url_get_business_party, json=business_party) mock_request.get(url_get_survey_by_short_name_eq, json=survey_eq) mock_request.get(url_get_ci, json=collection_instrument_eq) mock_request.get(url_get_case_categories, json=categories) mock_request.post(url_post_case_event_uuid, status_code=201) mock_request.get(url_get_respondent_party, status_code=200, json=respondent_party) mock_request.get(url_banner_api, status_code=404) # When the generate-eq-url is called response = self.app.get( f"/surveys/access-survey?case_id={completed_case['id']}&business_party_id={business_party['id']}" f"&survey_short_name={survey_eq['shortName']}&ci_type=EQ", headers=self.headers, follow_redirects=True, ) # A 403 is returned self.assertEqual(response.status_code, 403) @requests_mock.mock() def test_generate_eq_url_seft(self, mock_request): # Given all external services are mocked and we have seft collection instrument mock_request.get(url_get_collection_exercise, json=collection_exercise) mock_request.get(url_get_collection_exercise_events, json=collection_exercise_events) mock_request.get(url_get_business_party, json=business_party) mock_request.get(url_get_survey, json=survey) mock_request.get(url_get_ci, json=collection_instrument_seft) mock_request.get(url_banner_api, status_code=404) # When create_payload is called # Then an InvalidEqPayLoad is raised with app.app_context(): with self.assertRaises(InvalidEqPayLoad) as e: EqPayload().create_payload( case, party_id=respondent_party["id"], business_party_id=business_party["id"], survey=survey_eq ) self.assertEqual( e.exception.message, "Collection instrument 68ad4018-2ddd-4894-89e7-33f0135887a2 type is not EQ" ) @requests_mock.mock() def test_generate_eq_url_no_eq_id(self, mock_request): # Given all external services are mocked and we have an EQ collection instrument without an EQ ID with open("tests/test_data/collection_instrument/collection_instrument_eq_no_eq_id.json") as json_data: collection_instrument_eq_no_eq_id = json.load(json_data) mock_request.get(url_get_ci, json=collection_instrument_eq_no_eq_id) mock_request.get(url_banner_api, status_code=404) # When create_payload is called # Then an InvalidEqPayLoad is raised with app.app_context(): with self.assertRaises(InvalidEqPayLoad) as e: EqPayload().create_payload( case, party_id=respondent_party["id"], business_party_id=business_party["id"], survey=survey_eq ) self.assertEqual( e.exception.message, "Collection instrument 68ad4018-2ddd-4894-89e7-33f0135887a2 " "classifiers are incorrect or missing", ) @requests_mock.mock() def test_generate_eq_url_no_form_type(self, mock_request): # Given all external services are mocked and we have an EQ collection instrument without a Form_type with open("tests/test_data/collection_instrument/collection_instrument_eq_no_form_type.json") as json_data: collection_instrument_eq_no_form_type = json.load(json_data) mock_request.get(url_get_ci, json=collection_instrument_eq_no_form_type) mock_request.get(url_banner_api, status_code=404) # When create_payload is called # Then an InvalidEqPayLoad is raised with app.app_context(): with self.assertRaises(InvalidEqPayLoad) as e: EqPayload().create_payload( case, party_id=respondent_party["id"], business_party_id=business_party["id"], survey=survey_eq ) self.assertEqual( e.exception.message, "Collection instrument 68ad4018-2ddd-4894-89e7-33f0135887a2 " "classifiers are incorrect or missing", ) @requests_mock.mock() def test_access_collection_exercise_events_fail(self, mock_request): # Given a failing collection exercise events service mock_request.get(url_get_collection_exercise_events, status_code=500) mock_request.get(url_banner_api, status_code=404) # When get collection exercise events is called # Then an ApiError is raised with app.app_context(): with self.assertRaises(ApiError): collection_exercise_controller.get_collection_exercise_events(collection_exercise["id"]) def test_generate_eq_url_incorrect_date_format(self): # Given an invalid date date = "invalid" # When format_string_long_date_time_to_short_date is called # Then an InvalidEqPayLoad is raised with self.assertRaises(InvalidEqPayLoad) as e: EqPayload()._format_string_long_date_time_to_short_date(date) self.assertEqual(e.exception.message, "Unable to format invalid") def test_generate_eq_url_iso8601_date_format(self): # Given a valid date date = "2007-01-25T12:00:00Z" # When format_string_long_date_time_to_short_date is called # Then the correct date is returned result = EqPayload()._format_string_long_date_time_to_short_date(date) self.assertEqual(result, "2007-01-25") def test_iso8601_adjusts_to_local_time(self): # Given a valid date in tz -1hr before midnight date = "2007-01-25T23:59:59-0100" # When format_date is called result = EqPayload()._format_string_long_date_time_to_short_date(date) # Then the date is localised to the next day self.assertEqual(result, "2007-01-26") def test_generate_eq_url_missing_mandatory_event_date(self): # Given a mandatory event date does not exist collex_events_dates = [ { "id": "e82e7ec9-b14e-412c-813e-edfd2e03e773", "collectionExerciseId": "8d926ae3-fb3c-4c25-9f0f-356ded7d1ac0", "tag": "return_by", "timestamp": "2018-03-27T01:00:00.000+01:00", }, { "id": "8a24731e-3d79-4f3c-b6eb-3b199f53694f", "collectionExerciseId": "8d926ae3-fb3c-4c25-9f0f-356ded7d1ac0", "tag": "reminder", "timestamp": "2018-04-03T01:00:00.000+01:00", }, ] # When find_event_date_by_tag is called with a search param # Then an InvalidEqPayLoad is raised with self.assertRaises(InvalidEqPayLoad) as e: EqPayload()._find_event_date_by_tag("return by", collex_events_dates, "123", True) self.assertEqual(e.exception.message, "Mandatory event not found for collection 123 for search param return by") def test_generate_eq_url_non_mandatory_event_date_is_none(self): # Given a non mandatory event date does not exist collex_events_dates = [] # When find_event_date_by_tag is called with a search param # Then a None response is returned and no exception is raised response = EqPayload()._find_event_date_by_tag("employment", collex_events_dates, "123", False) self.assertEqual(response, None) def test_generate_eq_url_non_mandatory_event_date_is_returned(self): # Given a non mandatory event date exists collex_events_dates = [ { "id": "e82e7ec9-b14e-412c-813e-edfd2e03e773", "collectionExerciseId": "8d926ae3-fb3c-4c25-9f0f-356ded7d1ac0", "tag": "return_by", "timestamp": "2018-03-27T01:00:00.000+01:00", }, { "id": "8a24731e-3d79-4f3c-b6eb-3b199f53694f", "collectionExerciseId": "8d926ae3-fb3c-4c25-9f0f-356ded7d1ac0", "tag": "employment", "timestamp": "2018-04-03T01:00:00.000+01:00", }, ] # When find_event_date_by_tag is called with a search param # Then the formatted date is returned response = EqPayload()._find_event_date_by_tag("employment", collex_events_dates, "123", False) self.assertEqual(response, "2018-04-03")
import requests.exceptions import google.auth.exceptions class HttpError(Exception): """Holds the message and code from cloud errors.""" def __init__(self, error_response=None): if error_response: self.message = error_response.get("message", "") self.code = error_response.get("code", None) else: self.message = "" self.code = None # Call the base class constructor with the parameters it needs super(HttpError, self).__init__(self.message) class ChecksumError(Exception): """Raised when the md5 hash of the content does not match the header.""" pass RETRIABLE_EXCEPTIONS = ( requests.exceptions.ChunkedEncodingError, requests.exceptions.ConnectionError, requests.exceptions.ReadTimeout, requests.exceptions.Timeout, requests.exceptions.ProxyError, requests.exceptions.SSLError, requests.exceptions.ContentDecodingError, google.auth.exceptions.RefreshError, ChecksumError, ) def is_retriable(exception): """Returns True if this exception is retriable.""" errs = list(range(500, 505)) + [ # Request Timeout 408, # Too Many Requests 429, ] errs += [str(e) for e in errs] if isinstance(exception, HttpError): return exception.code in errs return isinstance(exception, RETRIABLE_EXCEPTIONS) class FileSender: def __init__(self, consistency="none"): self.consistency = consistency if consistency == "size": self.sent = 0 elif consistency == "md5": from hashlib import md5 self.md5 = md5() async def send(self, pre, f, post): yield pre chunk = f.read(64 * 1024) while chunk: yield chunk if self.consistency == "size": self.sent += len(chunk) elif self.consistency == "md5": self.md5.update(chunk) chunk = f.read(64 * 1024) yield post def __len__(self): return self.sent
"""Implementação de Pilha em Python.""" class Nodo: """Elemento de uma pilha, guardando um valor e referenciando outro Nodo. """ def __init__(self, valor): """Constrói um nodo com o valor indicado. Por padrão, não há um próximo elemento. """ self.valor = valor self.debaixo = None def __repr__(self) -> str: """Representa a estrutura de uma maneira amigável para imprimir no terminal.""" return f"<{self.valor}>" class Pilha: """Estrutura de dados dinâmica composta de nodos empilhados um em cima do outro.""" def __init__(self): """Constrói uma pilha vazia.""" self._topo = None @property def topo(self) -> Nodo: """Retorna o nodo inicial da pilha, de forma que só possa ser lido.""" return self._topo def adicionar(self, valor) -> Nodo: """Inclui um nodo no topo da pilha com o valor indicado. O novo nodo aponta para o antigo "topo". """ novo_nodo = Nodo(valor) novo_nodo.debaixo = self._topo self._topo = novo_nodo return novo_nodo def consumir(self) -> Nodo: """Retira o nodo do topo da pilha e promove o debaixo.""" nodo_removido = self._topo if self._topo is not None: self._topo = nodo_removido.debaixo return nodo_removido def imprimir(self): """Imprime todos os nodos da pilha.""" texto = "<<< " nodo = self._topo while nodo: texto += f"{nodo} |" nodo = nodo.debaixo return texto def __repr__(self) -> str: """Representa a estrutura de uma maneira amigável para imprimir no terminal.""" conteudo = f"Topo: {self._topo} " if self._topo else "VAZIA" return f"[{self.__class__.__name__} | {conteudo}]"
import topi import tvm import numpy as np import torch dim0 = 8 dim1 = 3 dim2 = 4 shape_size1 = [dim0, dim1] shape_size2 = [dim0, dim2] dtype = "float32" A = tvm.te.placeholder(shape_size1, dtype=dtype, name="A") B = tvm.te.placeholder(shape_size2, dtype=dtype, name="B") C = topi.concatenate([A, B], axis=1) dC = tvm.te.placeholder(C.shape, dtype=dtype, name="dC") dA, dB = tvm.te.mygradient(C, [A, B], dC) s = tvm.te.create_schedule([C.op, dA.op, dB.op]) print(tvm.lower(s, [A, B, dC, dA, dB], simple_mode=True)) func = tvm.build(s, [A, B, dC, dA, dB], target="llvm") A_np = np.random.uniform(-10, 10, shape_size1).astype("float32") B_np = np.random.uniform(-10, 10, shape_size2).astype("float32") dC_np = np.ones([dim0, dim1+dim2]).astype("float32") dA_np = np.zeros(shape_size1).astype("float32") dB_np = np.zeros(shape_size2).astype("float32") ctx = tvm.context("llvm", 0) A_tvm = tvm.nd.array(A_np, ctx) B_tvm = tvm.nd.array(B_np, ctx) dC_tvm = tvm.nd.array(dC_np, ctx) dA_tvm = tvm.nd.array(dA_np, ctx) dB_tvm = tvm.nd.array(dB_np, ctx) func(A_tvm, B_tvm, dC_tvm, dA_tvm, dB_tvm) print("dA_tvm", dA_tvm) # =======> # compare the results with pytorch A_torch = torch.tensor(A_np, requires_grad=True) B_torch = torch.tensor(B_np, requires_grad=True) C_torch = torch.cat([A_torch, B_torch], dim=1) loss = C_torch.sum() loss.backward() print("Pytorch gradient:\n", A_torch.grad.numpy(), B_torch.grad.numpy()) tvm.testing.assert_allclose(dA_tvm.asnumpy(), A_torch.grad.numpy(), atol=1e-30, rtol=1e-30) tvm.testing.assert_allclose(dB_tvm.asnumpy(), B_torch.grad.numpy(), atol=1e-30, rtol=1e-30) print("Compare with PyTorch success!")
input = """ a(1,2,0). a(1,3,0). a(2,3,0). b(X) :- a(X,_,_). c(X) :- a(_,X,_). """ output = """ a(1,2,0). a(1,3,0). a(2,3,0). b(X) :- a(X,_,_). c(X) :- a(_,X,_). """
#!/usr/bin/env python3 from json import dump, load from os.path import isfile from subprocess import run import sys class colors: BOLD = "\033[1m" HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' END = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def save(obj, f): f = open(f, "w") dump(obj, f, sort_keys=True, indent=4) def translate(translations, key, move): temp_file = "/tmp/" + key temp = open(temp_file, "w") print("# Übersetzung oben eingeben.", "# Ohne Eingabe wird die Übersetzung abgebrochen.", "# ", "# ================================================================================", "# ID: %s" % key, "# TITLE: %s" % move["name"], "# CLASSES: %s" % ", ".join(move["classes"]) if "classes" in move else "All classes", "# -- Zu Übersetzen ---------------------------------------------------------------", "# %s" % move["description"].replace("\n", "\n# "), "# --------------------------------------------------------------------------------", "# ================================================================================", sep="\n", file=temp) temp.flush() temp.close() proc = run(["$VISUAL %s" % temp_file], shell=True) if proc.returncode == 0: lines = [] temp = open(temp_file) for line in temp.readlines(): if not line.startswith("#"): line = line.strip() print(line) lines.append(line) temp.close() if len(lines) > 0 and lines[0] != "": translations[key] = "\n".join(lines) return True return False data_file = open("data.json", "r") data = load(data_file) translations = {} if isfile("description_translations.json"): in_file = open("description_translations.json", "r") translations = load(in_file) out_file = "description_translations.json" # Translate basic moves moves = data["basic_moves"] for move in moves: if not move["key"] in translations: success = translate(translations, move["key"], move) save(translations, out_file) if not success: sys.exit() # Translate special moves moves = data["special_moves"] for move in moves: if not move["key"] in translations: success = translate(translations, move["key"], move) save(translations, out_file) if not success: sys.exit() save(translations, out_file) # Reload moves to fix dublication bug translations = {} if isfile("description_translations.json"): in_file = open("description_translations.json", "r") translations = load(in_file) # Translate all remaining moves moves = data["moves"] for key, move in moves.items(): if not key in translations: success = translate(translations, key, move) save(translations, out_file) if not success: sys.exit()
def sortedSquaredArray(array): smallest = 0 largest = len(array) - 1 result = [] while smallest <= largest: if abs(array[smallest]) > abs(array[largest]): val = array[smallest] smallest += 1 else: val = array[largest] largest -= 1 result.append(val*val) return list(reversed(result)) print(sortedSquaredArray([1, 2, 3, 5, 6, 8, 9]))
''' 有这样一个字典d = {"chaoqian":87, “caoxu”:90, “caohuan”:98, “wuhan”:82, “zhijia”:89} 1)将以上字典按成绩排名 ''' d = {"chaoqian":87, "caoxu":90, "caohuan":98, "wuhan":82, "zhijia":89} print(sorted(d.items(),key = lambda item : item[1]))
import datetime import pandas as pd import plotly.graph_objects as go from dateutil.relativedelta import relativedelta from plotly.subplots import make_subplots def get_date_list(start_day) -> list: """시작일부터 오늘까지를 1달 간격으로 나눈 것을 리스트로 만듦""" date_list = [] start = datetime.datetime.strptime(start_day, "%Y%m%d") today = datetime.datetime.now() first_day = datetime.datetime(today.year, today.month, 1) date_list.append(today.strftime("%Y%m%d")) date = first_day delta = relativedelta(months=1) while date > start: date_list.append(date.strftime("%Y%m%d")) date = date - delta date_list.append(start.strftime("%Y%m%d")) return date_list def make_ohlcv_graph( df: pd.DataFrame, open="시가", high="고가", low="저가", close="종가", volume="거래량" ) -> None: # hovertext 생성 ohlc_candle_hovertext = [] volume_bar_hovertext = [] for i in range(len(df[open])): ohlc_candle_hovertext.append( f"일자: {df.index[i].date()}<br>시가: {df[open][i]}<br>고가: {df[high][i]}<br>저가: {df[low][i]}<br>종가: {df[close][i]}" ) volume_bar_hovertext.append(f"일자: {df.index[i].date()}<br>거래량: {df[volume][i]}") # OHLC 캔들 차트 생성 ohlc_candle = go.Candlestick( x=df.index, open=df[open], high=df[high], low=df[low], close=df[close], text=ohlc_candle_hovertext, hoverinfo="text", increasing_line_color="red", decreasing_line_color="blue", ) # 거래량 바 차트 생성 volume_bar = go.Bar( x=df.index, y=df[volume], text=volume_bar_hovertext, hoverinfo="text", ) # 그래프 그리기 fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.02) fig.add_trace(ohlc_candle, row=1, col=1) fig.add_trace(volume_bar, row=2, col=1) fig.update_layout( yaxis1_title="가격", yaxis2_title="거래량", xaxis2_title="기간", xaxis1_rangeslider_visible=False, xaxis2_rangeslider_visible=True, showlegend=False, yaxis1=dict(domain=[0.25, 1]), yaxis2=dict(domain=[0, 0.2]), ) fig.show()
import csv from datetime import datetime import pytz import os from ledger.settings_base import TIME_ZONE from mooringlicensing.settings import BASE_DIR from mooringlicensing.components.approvals.models import ( Approval, WaitingListAllocation, AnnualAdmissionPermit, AuthorisedUserPermit, MooringLicence ) date_now = datetime.now(pytz.timezone(TIME_ZONE)).date() date_now_str = date_now.strftime('%Y%m%d') def write_wla(): approval_type = WaitingListAllocation.code approvals = WaitingListAllocation.objects.filter(status='current') header_row = ['Lodgement Number', 'Start Date', 'Expiry Date', 'Issue Date', 'WLA Queue Date', 'WLA Order', 'First Name', 'Last Name', 'Address 1', 'Suburb', 'State', 'Country', 'Postcode', 'Postal Address', 'Phone', 'Mobile', 'EMAIL', 'Vessel Rego', 'Company', ] rows = [[wla.lodgement_number, wla.start_date, wla.expiry_date, wla.issue_date.strftime('%Y-%m-%d'), wla.wla_queue_date.strftime('%Y-%m-%d') if wla.wla_queue_date else '', wla.wla_order, wla.submitter.first_name, wla.submitter.last_name, wla.submitter.residential_address.line1, wla.submitter.residential_address.locality, wla.submitter.residential_address.state, wla.submitter.residential_address.country, wla.submitter.residential_address.postcode, '', wla.submitter.phone_number, wla.submitter.mobile_number, wla.submitter.email, wla.current_proposal.vessel_ownership.vessel.rego_no if wla.current_proposal.vessel_ownership else '', '', ] for wla in WaitingListAllocation.objects.filter(status='current')] write_file(approval_type, approvals, header_row, rows) def write_aap(): approval_type = AnnualAdmissionPermit.code approvals = AnnualAdmissionPermit.objects.filter(status='current') header_row = ['Lodgement Number', 'Start Date', 'Expiry Date', 'Issue Date', 'First Name', 'Last Name', 'Address 1', 'Suburb', 'State', 'Country', 'Postcode', 'Postal Address', 'Phone', 'Mobile', 'EMAIL', 'Vessel Rego', 'Company', ] rows = [[aap.lodgement_number, aap.start_date, aap.expiry_date, aap.issue_date.strftime('%Y-%m-%d'), aap.submitter.first_name, aap.submitter.last_name, aap.submitter.residential_address.line1, aap.submitter.residential_address.locality, aap.submitter.residential_address.state, aap.submitter.residential_address.country, aap.submitter.residential_address.postcode, '', aap.submitter.phone_number, aap.submitter.mobile_number, aap.submitter.email, aap.current_proposal.vessel_ownership.vessel.rego_no if aap.current_proposal.vessel_ownership else '', '', ] for aap in AnnualAdmissionPermit.objects.filter(status='current')] write_file(approval_type, approvals, header_row, rows) def write_aup(): approval_type = AuthorisedUserPermit.code approvals = AuthorisedUserPermit.objects.filter(status='current') header_row = ['Lodgement Number', 'Start Date', 'Expiry Date', 'Issue Date', 'Moorings', 'First Name', 'Last Name', 'Address 1', 'Suburb', 'State', 'Country', 'Postcode', 'Postal Address', 'Phone', 'Mobile', 'EMAIL', 'Vessel Rego', 'Company', ] rows = [[aup.lodgement_number, aup.start_date, aup.expiry_date, aup.issue_date.strftime('%Y-%m-%d'), ','.join(str(moa.mooring) for moa in aup.mooringonapproval_set.filter(mooring__mooring_licence__status='current')), aup.submitter.first_name, aup.submitter.last_name, aup.submitter.residential_address.line1, aup.submitter.residential_address.locality, aup.submitter.residential_address.state, aup.submitter.residential_address.country, aup.submitter.residential_address.postcode, '', aup.submitter.phone_number, aup.submitter.mobile_number, aup.submitter.email, aup.current_proposal.vessel_ownership.vessel.rego_no if aup.current_proposal.vessel_ownership else '', '', ] for aup in AuthorisedUserPermit.objects.filter(status='current')] write_file(approval_type, approvals, header_row, rows) def write_ml(): approval_type = MooringLicence.code approvals = MooringLicence.objects.filter(status='current') header_row = ['Lodgement Number', 'Start Date', 'Expiry Date', 'Issue Date', 'Mooring', 'First Name', 'Last Name', 'Address 1', 'Suburb', 'State', 'Country', 'Postcode', 'Postal Address', 'Phone', 'Mobile', 'EMAIL', 'Vessels', ] rows = [[ml.lodgement_number, ml.start_date, ml.expiry_date, ml.issue_date.strftime('%Y-%m-%d'), ml.mooring if hasattr(ml, 'mooring') else '', ml.submitter.first_name, ml.submitter.last_name, ml.submitter.residential_address.line1, ml.submitter.residential_address.locality, ml.submitter.residential_address.state, ml.submitter.residential_address.country, ml.submitter.residential_address.postcode, '', ml.submitter.phone_number, ml.submitter.mobile_number, ml.submitter.email, ','.join(vessel.rego_no for vessel in ml.vessel_list), ] for ml in MooringLicence.objects.filter(status='current')] write_file(approval_type, approvals, header_row, rows) def write_file(approval_type, approvals, header_row, rows): if not os.path.isdir(os.path.join(BASE_DIR, 'mooringlicensing', 'utils', 'csv')): os.mkdir(os.path.join(BASE_DIR, 'mooringlicensing', 'utils', 'csv')) filename = os.path.join(BASE_DIR, 'mooringlicensing', 'utils', 'csv', '{}_{}.csv'.format(approval_type, date_now_str)) with open(filename, 'w', newline='') as csvfile: csvwriter = csv.writer(csvfile, delimiter=':', quotechar='|', quoting=csv.QUOTE_MINIMAL) csvwriter.writerow(header_row) for row in rows: csvwriter.writerow(row) write_wla() write_aap() write_aup() write_ml()
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools from typing import Optional from sparseml.base import check_version try: import onnx onnx_err = None except Exception as err: onnx = object() # TODO: populate with fake object for necessary imports onnx_err = err try: import onnxruntime onnxruntime_err = None except Exception as err: onnxruntime = object() # TODO: populate with fake object for necessary imports onnxruntime_err = err __all__ = [ "onnx", "onnx_err", "onnxruntime", "onnxruntime_err", "check_onnx_install", "check_onnxruntime_install", "require_onnx", "require_onnxruntime", ] _ONNX_MIN_VERSION = "1.5.0" _ORT_MIN_VERSION = "1.0.0" def check_onnx_install( min_version: Optional[str] = _ONNX_MIN_VERSION, max_version: Optional[str] = None, raise_on_error: bool = True, ) -> bool: """ Check that the onnx package is installed. If raise_on_error, will raise an ImportError if it is not installed or the required version range, if set, is not installed. If not raise_on_error, will return True if installed with required version and False otherwise. :param min_version: The minimum version for onnx that it must be greater than or equal to, if unset will require no minimum version :type min_version: str :param max_version: The maximum version for onnx that it must be less than or equal to, if unset will require no maximum version. :type max_version: str :param raise_on_error: True to raise any issues such as not installed, minimum version, or maximum version as ImportError. False to return the result. :type raise_on_error: bool :return: If raise_on_error, will return False if onnx is not installed or the version is outside the accepted bounds and True if everything is correct. :rtype: bool """ if onnx_err is not None: if raise_on_error: raise onnx_err return False return check_version("onnx", min_version, max_version, raise_on_error) def check_onnxruntime_install( min_version: Optional[str] = _ORT_MIN_VERSION, max_version: Optional[str] = None, raise_on_error: bool = True, ) -> bool: """ Check that the onnxruntime package is installed. If raise_on_error, will raise an ImportError if it is not installed or the required version range, if set, is not installed. If not raise_on_error, will return True if installed with required version and False otherwise. :param min_version: The minimum version for onnxruntime that it must be greater than or equal to, if unset will require no minimum version :type min_version: str :param max_version: The maximum version for onnxruntime that it must be less than or equal to, if unset will require no maximum version. :type max_version: str :param raise_on_error: True to raise any issues such as not installed, minimum version, or maximum version as ImportError. False to return the result. :type raise_on_error: bool :return: If raise_on_error, will return False if onnxruntime is not installed or the version is outside the accepted bounds and True if everything is correct. :rtype: bool """ if onnxruntime_err is not None: if raise_on_error: raise onnxruntime_err return False return check_version("onnxruntime", min_version, max_version, raise_on_error) def require_onnx( min_version: Optional[str] = _ONNX_MIN_VERSION, max_version: Optional[str] = None ): """ Decorator function to require use of onnx. Will check that onnx package is installed and within the bounding ranges of min_version and max_version if they are set before calling the wrapped function. See :func:`check_onnx_install` for more info. param min_version: The minimum version for onnx that it must be greater than or equal to, if unset will require no minimum version :type min_version: str :param max_version: The maximum version for onnx that it must be less than or equal to, if unset will require no maximum version. :type max_version: str """ def _decorator(func): @functools.wraps(func) def _wrapper(*args, **kwargs): check_onnx_install(min_version, max_version) return func(*args, **kwargs) return _wrapper return _decorator def require_onnxruntime( min_version: Optional[str] = _ORT_MIN_VERSION, max_version: Optional[str] = None ): """ Decorator function to require use of onnxruntime. Will check that onnxruntime package is installed and within the bounding ranges of min_version and max_version if they are set before calling the wrapped function. See :func:`check_onnxruntime_install` for more info. param min_version: The minimum version for onnxruntime that it must be greater than or equal to, if unset will require no minimum version :type min_version: str :param max_version: The maximum version for onnxruntime that it must be less than or equal to, if unset will require no maximum version. :type max_version: str """ def _decorator(func): @functools.wraps(func) def _wrapper(*args, **kwargs): check_onnxruntime_install(min_version, max_version) return func(*args, **kwargs) return _wrapper return _decorator
from respa.settings import * # Get whitenoise for serving static files try: place = MIDDLEWARE.index('django.middleware.security.SecurityMiddleware') except ValueError: place = 0 MIDDLEWARE.insert(place, 'whitenoise.middleware.WhiteNoiseMiddleware') import environ deploy_env = environ.Env( USE_X_FORWARDED_HOST = (bool, False), SECURE_PROXY = (bool, False) ) USE_X_FORWARDED_HOST = deploy_env('USE_X_FORWARDED_HOST') if deploy_env('SECURE_PROXY'): SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https')
# -*- coding: utf-8; -*- # # @file __init__.py # @brief # @author Frédéric SCHERMA (INRA UMR1095) # @date 2016-09-01 # @copyright Copyright (c) 2016 INRA/CIRAD # @license MIT (see LICENSE file) # @details """ coll-gate application initialisation """ # Application Config for startup and more... default_app_config = __name__ + '.apps.CollGateMain'
import arcade def draw_snowflake(x,y): #90 degree up arcade.draw_line(x, y,x, y+50, arcade.color.WHITE, 3) arcade.draw_line(x, y+30, x+10, y + 40, arcade.color.WHITE, 3) arcade.draw_line(x, y+30, x-10, y + 40, arcade.color.WHITE, 3) #0 degree - right arcade.draw_line(x, y, x+50, y, arcade.color.WHITE, 3) arcade.draw_line(x+30, y, x+40, y + 10, arcade.color.WHITE, 3) arcade.draw_line(x+30, y, x+40, y - 10, arcade.color.WHITE, 3) #45 degree arcade.draw_line(x, y, x+30, y + 30, arcade.color.WHITE, 3) arcade.draw_line(x+20, y+20, x+30, y + 20, arcade.color.WHITE, 3) arcade.draw_line(x+20, y+20, x+20, y + 30, arcade.color.WHITE, 3) #180 degree arcade.draw_line(x, y, x-50, y, arcade.color.WHITE, 3) arcade.draw_line(x-30, y, x-40, y - 10, arcade.color.WHITE, 3) arcade.draw_line(x-30, y, x-40, y + 10, arcade.color.WHITE, 3) #270 degree arcade.draw_line(x, y,x, y-50, arcade.color.WHITE, 3) arcade.draw_line(x, y-30, x-10, y - 40, arcade.color.WHITE, 3) arcade.draw_line(x, y-30, x+10, y - 40, arcade.color.WHITE, 3) #135 degree arcade.draw_line(x, y, x-30, y + 30, arcade.color.WHITE, 3) arcade.draw_line(x-20, y+20, x-30, y + 20, arcade.color.WHITE, 3) arcade.draw_line(x-20, y+20, x-20, y + 30, arcade.color.WHITE, 3) #225 degree arcade.draw_line(x, y, x-30, y - 30, arcade.color.WHITE, 3) arcade.draw_line(x-20, y-20, x-30, y - 20, arcade.color.WHITE, 3) arcade.draw_line(x-20, y-20, x-20, y - 30, arcade.color.WHITE, 3) #315 degree arcade.draw_line(x, y, x+30, y - 30, arcade.color.WHITE, 3) arcade.draw_line(x+20, y-20, x+30, y - 20, arcade.color.WHITE, 3) arcade.draw_line(x+20, y-20, x+20, y - 30, arcade.color.WHITE, 3)
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np from sklearn.svm import SVC import pickle from sklearn.metrics import f1_score from sklearn.metrics import accuracy_score import collections from sklearn import tree from sklearn.neural_network import MLPClassifier import time import os def _get_int_feature(dictionary, key, counter): if key in dictionary: return dictionary[key], counter else: # key not in dictionary dictionary[key] = counter return dictionary[key], counter+1 # In[2]: def calculate_macro_f1_score(predictions, true_labels): true_positives = [0 for i in range(11)] false_positives = [0 for i in range(11)] false_negatives = [0 for i in range(11)] if len(predictions) != len(true_labels): print("bug in code, length of predictions should match length of true_labels") return None for i in range(len(predictions)): if predictions[i] == true_labels[i]: true_positives[predictions[i]] += 1 else: false_positives[predictions[i]] += 1 false_negatives[true_labels[i]] += 1 total_classes = 0 total_f1 = 0 for i in range(11): if true_positives[i]==0 and false_positives[i]==0: continue elif true_positives[i]==0 and false_negatives[i]==0: continue prec = true_positives[i]*1.0/(true_positives[i] + false_positives[i]) recall = true_positives[i]*1.0/(true_positives[i]+false_negatives[i]) f1=0 if prec+recall != 0: f1 = 2*prec*recall/(prec+recall) total_classes += 1 total_f1 += f1 return total_f1*100.0/total_classes def calculate_micro_f1_score(predictions, true_labels): true_positives = 0 false_positives = 0 false_negatives = 0 if len(predictions) != len(true_labels): print("bug in code, length of predictions should match length of true_labels") return None for i in range(len(predictions)): if predictions[i] == true_labels[i]: true_positives += 1 else: false_positives += 1 false_negatives += 1 prec = true_positives*1.0/(true_positives + false_positives) recall = true_positives*1.0/(true_positives+false_negatives) return 2*prec*recall*100.0/(prec+recall) # In[3]: dos = ['back','land','neptune','pod','smurf','teardrop'] u2r = ['buffer_overflow','loadmodule','perl','rootkit'] r2l = ['ftp_write','guess_passwd','imap','multihop','phf','spy','warezclient','warezmaster'] probing = ['ipsweep','nmap','portsweep','satan'] normal = ['normal'] ifile = open('../kddcup.data','r') # loading data raw_data = ifile.readlines() ifile.close() ## cleaning ## cleanedData = [] dict_tcp,tcpCount = {},0 dict_http,httpCount = {},0 dict_sf,sfCount = {},0 nDOS,nU2R,nR2L,nProb,nNormal,nOthers = 0,0,0,0,0,0 for info in raw_data: info = info.replace('\n','').replace('.','').split(',') info[1], tcpCount = _get_int_feature(dict_tcp, info[1], tcpCount) info[2], httpCount = _get_int_feature(dict_http, info[2], httpCount) info[3], sfCount = _get_int_feature(dict_sf, info[3], sfCount) # print("info is ", info) if info[-1] in dos: info[-1] = 1 #'DOS' label nDOS += 1 # cleanedData.append(info) elif info[-1] in u2r: info[-1] = 2 #'U2R' nU2R += 1 elif info[-1] in r2l: info[-1] = 3 #'R2L' nR2L += 1 elif info[-1] in probing: info[-1] = 4 #'PROBING' nProb += 1 elif info[-1] in normal: # label is normal nNormal += 1 info[-1] = 0 #'NORMAL' label else: # unspecified label nOthers += 1 continue cleanedData.append(info) # with open('cleaned_data', 'wb') as fp: # pickle.dump(cleanedData, fp) # with open ('cleaned_data', 'rb') as fp: # cleanedData = pickle.load(fp) examples_matrix = np.array(cleanedData) np.random.shuffle(examples_matrix) # In[4]: print(nDOS,nU2R,nR2L,nNormal,nOthers) # In[5]: def _run_svm(train_feature_matrix, train_label_matrix, test_feature_matrix): clf = SVC(gamma='auto') clf.fit(train_feature_matrix, train_label_matrix) predicted_labels = clf.predict(test_feature_matrix) return predicted_labels # In[6]: def _run_dtree(train_feature_matrix, train_label_matrix, test_feature_matrix): dt_clf = tree.DecisionTreeClassifier() dt_clf = dt_clf.fit(train_feature_matrix, train_label_matrix) dt_predictions = dt_clf.predict(test_feature_matrix) return dt_predictions # In[7]: def _run_nn(train_feature_matrix, train_label_matrix, test_feature_matrix): nn_clf = MLPClassifier(solver='adam', alpha=1e-5, hidden_layer_sizes=(50, 30), random_state=1) nn_train_feature_matrix = train_feature_matrix.astype(np.float64) nn_test_feature_matrix = test_feature_matrix.astype(np.float64) nn_clf.fit(nn_train_feature_matrix, train_label_matrix) nn_predictions = nn_clf.predict(nn_test_feature_matrix) return nn_predictions # In[ ]: # print("example is ", examples_matrix[1]) result_file = open('results.txt','w') result_file.write("dataset size, svm macroF1Score, svm accuracy, svm time, dtree macroF1Score, dtree accuracy, dtree time, nn macroF1Score, nn accuracy, nn time\n") for data_size in range(250000,len(cleanedData)+1,5000): train_size = int(data_size * 0.7) test_size = data_size - train_size # train_size = 70000 # test_size = 30000 train_feature_matrix = examples_matrix[:train_size,:-1] train_label_matrix = examples_matrix[:train_size,-1] test_feature_matrix = examples_matrix[train_size+1:train_size+test_size,:-1] test_label_matrix = examples_matrix[train_size+1:train_size+test_size,-1] #print(collections.Counter(train_label_matrix)) #print(collections.Counter(test_label_matrix)) print(data_size) #run svm print('SVM') start_time = time.time() predicted_labels = _run_svm(train_feature_matrix, train_label_matrix, test_feature_matrix) end_time = time.time() - start_time macro_f1_score = f1_score(test_label_matrix, predicted_labels, average='macro') accuracy = accuracy_score(test_label_matrix, predicted_labels) result_file.write(str(data_size) + ", ") result_file.write(str(macro_f1_score) + ", " + str(accuracy) + ", " + str(end_time) + ", ") result_file.flush() os.fsync(result_file.fileno()) #run decision tree print('DT') start_time = time.time() predicted_labels = _run_dtree(train_feature_matrix, train_label_matrix, test_feature_matrix) end_time = time.time() - start_time macro_f1_score = f1_score(test_label_matrix, predicted_labels, average='macro') accuracy = accuracy_score(test_label_matrix, predicted_labels) result_file.write(str(data_size) + ", ") result_file.write(str(macro_f1_score) + ", " + str(accuracy) + ", " + str(end_time) + ", ") result_file.flush() os.fsync(result_file.fileno()) #run neural network print('ANN') start_time = time.time() predicted_labels = _run_nn(train_feature_matrix, train_label_matrix, test_feature_matrix) end_time = time.time() - start_time macro_f1_score = f1_score(test_label_matrix, predicted_labels, average='macro') accuracy = accuracy_score(test_label_matrix, predicted_labels) result_file.write(str(macro_f1_score) + ", " + str(accuracy) + ", " + str(end_time) + "\n") result_file.flush() os.fsync(result_file.fileno()) result_file.close() # In[ ]:
#!/usr/bin/env python """ obsgen.py State Estimation and Analysis for PYthon Module to process observations: obsgen : class to convert from raw to ROMS observations using specific subclasses Written by Brian Powell on 08/15/15 Copyright (c)2010--2021 University of Hawaii under the MIT-License. """ import numpy as np import netCDF4 import h5py import seapy import datetime from warnings import warn from rich.progress import track def error_profile(obs, depth, error, provenance=None): """ Apply a vertical error profile to a given observation structure. This allows for error minimums to vary by depth and observation type. Parameters ---------- obs : seapy.roms.obs.obs or string, The observations to enforce the error profile upon. depth : ndarray, Array of depths for the errors provided error : dict, Dictionary of the errors, where the key is the type of observation (as defined by seapy.roms.obs.obs_types) and the value is an ndarray of same length as depth with the error [in squared units] of the observation profile. provenance : list of int or string, optional, The provenance to apply the errors to (ignore other observations of the same type, but different instrument) Returns ------- None: The obs structure is mutable is changed in place Examples -------- >>> obs = obs('observation_file.nc') >>> depth = [10, 30, 50, 1000, 2000] >>> error['temp'] = [0.5, 0.2, 0.4, 0.1, 0.01] >>> error_profile(obs, depth, error) The resulting 'obs' class will have had its error profiles modified. """ from scipy.interpolate import interp1d obs = seapy.roms.obs.asobs(obs) depth = np.atleast_1d(depth).flatten() depth = np.abs(depth) pro = seapy.roms.obs.asprovenance(provenance) if provenance else None # Loop over all of the profiles in the error dictionary and # apply them to the observations for var in error: typ = seapy.roms.obs.astype(var) try: fint = interp1d(depth, error[var].flatten(), copy=False) if pro.any(): l = np.where(np.logical_and(obs.type == typ, np.in1d(obs.provenance, pro))) else: l = np.where(np.logical_and(obs.type == typ, obs.depth < 0)) nerr = fint(np.abs(obs.depth[l])) obs.error[l] = np.maximum(obs.error[l], nerr) except ValueError: warn("Error for {:s} is the wrong size".format(var)) continue pass def add_ssh_tides(obs, tide_file, tide_error, tide_start=None, provenance=None, reftime=seapy.default_epoch): """ Apply predicted barotropic tides to the SSH values of given observations using the tide_file given. Parameters ---------- obs : seapy.roms.obs.obs or string, The observations to enforce the error profile upon. tide_file : string, The name of the ROMS tidal forcing file to use for predicting the barotropic tides. tide_error : np.masked_array A two dimensional array of the tidal fit errors to apply to the ssh errors when adding the tides. This should be the same size as the rho-grid. The units of the error must be in meters. If it is masked, the mask will be honored and obs that are in the mask will be removed. This allows you to filter on regions of high error. tide_start : bool, optional, If given, the tide_start of the tide file. If not specified, will read the attribute of the tidal forcing file provenance : list of int or string, optional, The provenance to apply the tides to (ignore other observations of the same type, but different instrument) reftime: datetime, Reference time for the observation times Returns ------- None: The obs structure is mutable is changed in place Examples -------- >>> obs = obs('observation_file.nc') >>> add_ssh_tides(obs, 'tide_frc.nc', errmap) The resulting 'obs' variable will have modified data. To save it: >>> obs.to_netcdf() """ # Load tidal file data frc = seapy.roms.tide.load_forcing(tide_file) if not tide_start: tide_start = frc['tide_start'] # Make sure that the sizes are the same if frc['Eamp'].shape[1:] != tide_error.shape: raise ValueError( "The error array is not the same size as the tidal grid") # Gather the observations that need tidal information obs = seapy.roms.obs.asobs(obs) pro = seapy.roms.obs.asprovenance(provenance) if provenance else None if pro: l = np.where(np.logical_and(obs.type == 1, np.in1d(obs.provenance, pro))) else: l = np.where(obs.type == 1) # If we have any, then do tidal predictions and add the signal # and error to the observations bad = [] if l[0].any(): ox = np.rint(obs.x[l]).astype(int) oy = np.rint(obs.y[l]).astype(int) idx = seapy.unique_rows((ox, oy)) for cur in track(idx): pts = np.where(np.logical_and(ox == ox[cur], oy == oy[cur])) # If this point is masked, remove from the observations if not tide_error[oy[cur], ox[cur]]: bad.append(l[0][pts].tolist()) else: time = [reftime + datetime.timedelta(t) for t in obs.time[l][pts]] amppha = seapy.tide.pack_amp_phase( frc['tides'], frc['Eamp'][:, oy[cur], ox[cur]], frc['Ephase'][:, oy[cur], ox[cur]]) zpred = seapy.tide.predict(time, amppha, lat=obs.lat[l][cur], tide_start=tide_start) # Add the information to the observations obs.value[l[0][pts]] += zpred obs.error[l[0][pts]] = np.maximum( obs.error[l[0][pts]], tide_error[oy[cur], ox[cur]]**2) # If any were bad, then remove them if bad: obs.delete(seapy.flatten(bad)) pass class obsgen(object): def __init__(self, grid, dt, reftime=seapy.default_epoch): """ class for abstracting the processing of raw observation files (satellite, in situ, etc.) into ROMS observations files. All processing has commonalities which this class encapsulates, while leaving the loading and translation of individual data formats to subclasses. Parameters ---------- grid: seapy.model.grid or string, grid to use for generating observations dt: float, Model time-step or greater in units of days epoch: datetime, optional, Time to reference all observations from Returns ------- None """ self.grid = seapy.model.asgrid(grid) self.dt = dt self.epoch = reftime def convert_file(self, file, title=None): """ convert a raw observation file into a ROMS observations structure. The subclasses are responsible for the conversion, and this method is obsgen is only a stub. Parameters ---------- file : string, filename of the file to process title : string, Title to give the new observation structure global attribute Returns ------- seapy.roms.obs.obs, observation structure from raw obs """ pass def datespan_file(self, file): """ check the given file and return the date span of data that are covered by the file. Parameters ---------- file : string, filename of the file to process Returns ------- start : datetime starting date and time of the data end : datetime ending date and time of the data """ return None, None def batch_files(self, in_files, out_files, start_time=None, end_time=None, clobber=True): """ Given a list of input files, process each one and save each result into the given output file. Parameters ---------- in_files : list of strings, filenames of the files to process out_files : list of strings, filenames of the files to create for each of the input filenames. If a single string is given, the character '#' will be replaced by the starting time of the observation (e.g. out_files="out_#.nc" will become out_03234.nc) start_time : datetime, optional starting date and time for data to process (ignore files that are outside of the time period) end_time : datetime, optional ending date and time for data to process (ignore files that are outside of the time period). If start_time is provided, and end_time is not, then a period of one day is assumed. clobber : bool, optional If TRUE, overwrite any existing output files. If False, the file is given a letter suffix. Returns ------- None """ import re import os datecheck = False if start_time is not None: datecheck = True if end_time is None: end_time = start_time + datetime.timedelta(1) outtime = False if isinstance(out_files, str): outtime = True time = re.compile('\#') for n, file in enumerate(in_files): try: # Check the times if user requested print(file, end="") if datecheck: st, en = self.datespan_file(file) if (en is not None and en < start_time) or \ (st is not None and st > end_time): print(": SKIPPED") continue # Convert the file obs = self.convert_file(file) if obs is None: print(": NO OBS") continue # Output the obs to the correct file if outtime: ofile = time.sub("{:05d}".format(int(obs.time[0])), out_files) else: ofile = out_files[n] if clobber: obs.to_netcdf(ofile, True) else: for i in "abcdefgh": if os.path.isfile(ofile): ofile = re.sub("[a-h]{0,1}\.nc", i + ".nc", ofile) else: break obs.to_netcdf(ofile, False) print(": SAVED") except (BaseException, UserWarning) as e: warn("WARNING: {:s} cannot be processed.\nError: {:}".format( file, e.args)) pass ############################################################################## # # REMOTE-SENSING DATA # ############################################################################## class aquarius_sss(obsgen): """ class to process Aquarius SSS HDF5 files into ROMS observation files. This is a subclass of seapy.roms.genobs.genobs, and handles the loading of the data. """ def __init__(self, grid, dt, reftime=seapy.default_epoch, salt_limits=None, salt_error=0.2): if salt_limits is None: self.salt_limits = (10, 36) else: self.salt_limits = salt_limits self.salt_error = salt_error super().__init__(grid, dt, reftime) def datespan_file(self, file): f = h5py.File(file, 'r') try: year = f.attrs['Period End Year'] day = f.attrs['Period End Day'] st = datetime.datetime(year, 1, 1) + datetime.timedelta(int(day)) en = st + datetime.timedelta(1) except: st = en = None pass finally: f.close() return st, en def convert_file(self, file, title="AQUARIUS Obs"): """ Load an Aquarius file and convert into an obs structure """ f = h5py.File(file, 'r') salt = np.ma.masked_equal(np.flipud(f['l3m_data'][:]), f['l3m_data'].attrs['_FillValue']) year = f.attrs['Period End Year'] day = f.attrs['Period End Day'] nlat = f.attrs['Northernmost Latitude'] - 0.5 slat = f.attrs['Southernmost Latitude'] + 0.5 wlon = f.attrs['Westernmost Longitude'] + 0.5 elon = f.attrs['Easternmost Longitude'] - 0.5 dlat = f.attrs['Latitude Step'] dlon = f.attrs['Longitude Step'] f.close() [lon, lat] = np.meshgrid(np.arange(wlon, elon + dlon, dlon), np.arange(slat, nlat + dlat, dlat)) time = (datetime.datetime(year, 1, 1) + datetime.timedelta(int(day)) - self.epoch).days lat = lat.flatten() lon = lon.flatten() if self.grid.east(): lon[lon < 0] += 360 salt = np.ma.masked_outside(salt.flatten(), self.salt_limits[0], self.salt_limits[1]) data = [seapy.roms.obs.raw_data("SALT", "SSS_AQUARIUS", salt, None, self.salt_error)] # Grid it return seapy.roms.obs.gridder(self.grid, time, lon, lat, None, data, self.dt, title) pass class aviso_sla_map(obsgen): """ class to process AVISO SLA map netcdf files into ROMS observation files. This is a subclass of seapy.roms.genobs.genobs, and handles the loading of the data. """ def __init__(self, grid, dt, reftime=seapy.default_epoch, ssh_mean=None, ssh_error=0.05): if ssh_mean is not None: self.ssh_mean = seapy.convolve_mask(ssh_mean, ksize=5, copy=True) else: self.ssh_mean = None self.ssh_error = ssh_error super().__init__(grid, dt, reftime) def datespan_file(self, file): nc = seapy.netcdf(file) try: st = datetime.datetime.strptime(nc.getncattr("time_coverage_start"), "%Y-%m-%dT%H:%M:%SZ") en = datetime.datetime.strptime(nc.getncattr("time_coverage_end"), "%Y-%m-%dT%H:%M:%SZ") except: st = en = None pass finally: nc.close() return st, en def convert_file(self, file, title="AVISO Obs"): """ Load an AVISO file and convert into an obs structure """ # Load AVISO Data nc = seapy.netcdf(file) lonname = 'lon' if 'lon' in nc.variables.keys() else 'longitude' lon = nc.variables[lonname][:] latname = 'lat' if 'lat' in nc.variables.keys() else 'latitude' lat = nc.variables[latname][:] dat = np.squeeze(nc.variables["sla"][:]) err = np.squeeze(nc.variables["err"][:]) time = seapy.roms.get_time( nc, "time", records=[0], epoch=self.epoch)[0] nc.close() lon, lat = np.meshgrid(lon, lat) lat = lat.flatten() lon = lon.flatten() if not self.grid.east(): lon[lon > 180] -= 360 data = [seapy.roms.obs.raw_data("ZETA", "SSH_AVISO_MAP", dat.flatten(), err.flatten(), self.ssh_error)] # Grid it obs = seapy.roms.obs.gridder(self.grid, time, lon, lat, None, data, self.dt, title) # Apply the model mean ssh to the sla data if self.ssh_mean is not None: m, p = seapy.oasurf(self.grid.I, self.grid.J, self.ssh_mean, obs.x, obs.y, nx=1, ny=1, weight=7) obs.value += m return obs _aviso_sla_errors = { "SSH_AVISO_ENVISAT": 0.06, "SSH_AVISO_JASON1": 0.05, "SSH_AVISO_JASON2": 0.05, "SSH_AVISO_JASON3": 0.05, "SSH_AVISO_GFO": 0.05, "SSH_AVISO_ALTIKA": 0.07, "SSH_AVISO_CRYOSAT2": 0.07, "SSH_AVISO_HAIYANG": 0.07, "SSH_AVISO_ERS1": 0.06, "SSH_AVISO_ERS2": 0.06, "SSH_AVISO_TOPEX_POSEIDON": 0.05, "SSH_AVISO_SENTINEL3A": 0.05 } class aviso_sla_track(obsgen): """ class to process AVISO SLA track netcdf files into ROMS observation files. This is a subclass of seapy.roms.genobs.genobs, and handles the loading of the data. THIS COVERS ALL SATELLITES/INSTRUMENTS FROM AVISO TRACK: al, c2, e1, e2, en, enn, g2, h2, j1, j1g, j1n, j2, tp and tpn. Parameters ---------- ssh_mean : ndarray, Spatial map of rho-grid shape that contains the model mean SSH ssh_error: dict, optional Dictionary of the minimum errors for each satellite. The default uses the errors defined in _aviso_sla_errors repeat: int Number of hours to repeat the track before and after its initial pass """ def __init__(self, grid, dt, reftime=seapy.default_epoch, ssh_mean=None, ssh_error=None, repeat=3, provenance="SSH"): self.provenance = provenance.upper() self.repeat = repeat self.ssh_error = ssh_error if ssh_error else _aviso_sla_errors if ssh_mean is not None: self.ssh_mean = seapy.convolve_mask(ssh_mean, ksize=5, copy=True) else: self.ssh_mean = None super().__init__(grid, dt, reftime) def convert_file(self, file, title="AVISO SLA Track Obs"): """ Load an AVISO file and convert into an obs structure """ # Load AVISO Data nc = seapy.netcdf(file) lon = nc.variables["longitude"][:] lat = nc.variables["latitude"][:] slaname = 'SLA' if 'SLA' in nc.variables.keys() else 'sla_filtered' dat = nc.variables[slaname][:] time = seapy.roms.num2date(nc, "time", epoch=self.epoch) nc.close() # make them into vectors lat = lat.ravel() lon = lon.ravel() dat = dat.ravel() err = np.ones(dat.shape) * _aviso_sla_errors.get(self.provenance, 0.1) if not self.grid.east(): lon[lon > 180] -= 360 good = dat.nonzero() data = [seapy.roms.obs.raw_data("ZETA", self.provenance, dat[good], err[good], err[0])] # Grid it obs = seapy.roms.obs.gridder(self.grid, time, lon[good], lat[good], None, data, self.dt, title) # Apply the model mean ssh to the sla data if self.ssh_mean is not None and obs is not None: m, p = seapy.oasurf(self.grid.I, self.grid.J, self.ssh_mean, obs.x, obs.y, nx=1, ny=1, weight=7) obs.value += m # Duplicate the observations before and after as per the repeat # time unless it is zero if self.repeat and obs: prior = obs.copy() after = obs.copy() prior.time -= self.repeat / 24 after.time += self.repeat / 24 obs.add(prior) obs.add(after) return obs class ostia_sst_map(obsgen): """ class to process OSTIA SST map netcdf files into ROMS observation files. This is a subclass of seapy.roms.genobs.genobs, and handles the loading of the data. """ def __init__(self, grid, dt, reftime=seapy.default_epoch, temp_error=0.4, temp_limits=None): self.temp_error = temp_error if temp_limits is None: self.temp_limits = (2, 35) else: self.temp_limits = temp_limits super().__init__(grid, dt, reftime) def convert_file(self, file, title="OSTIA SST Obs"): """ Load an OSTIA file and convert into an obs structure """ # Load OSTIA Data nc = seapy.netcdf(file) lon = nc.variables["lon"][:] lat = nc.variables["lat"][:] dat = np.ma.masked_outside(np.squeeze( nc.variables["analysed_sst"][:]) - 273.15, self.temp_limits[0], self.temp_limits[1]) err = np.ma.masked_outside(np.squeeze( nc.variables["analysis_error"][:]), 0.01, 2.0) dat[err.mask] = np.ma.masked time = seapy.roms.num2date( nc, "time", records=[0], epoch=self.epoch)[0] nc.close() if self.grid.east(): lon[lon < 0] += 360 lon, lat = np.meshgrid(lon, lat) good = dat.nonzero() lat = lat[good] lon = lon[good] data = [seapy.roms.obs.raw_data("TEMP", "SST_OSTIA", dat.compressed(), err[good], self.temp_error)] # Grid it return seapy.roms.obs.gridder(self.grid, time, lon, lat, None, data, self.dt, title) class navo_sst_map(obsgen): """ class to process NAVO SST map netcdf files into ROMS observation files. This is a subclass of seapy.roms.genobs.genobs, and handles the loading of the data. """ def __init__(self, grid, dt, depth=None, reftime=seapy.default_epoch, temp_error=0.25, temp_limits=None, provenance="SST_NAVO_MAP"): self.temp_error = temp_error self.provenance = provenance.upper() self.temp_limits = (2, 35) if temp_limits is None else temp_limits self.depth = 4 if depth is None else np.abs(depth) super().__init__(grid, dt, reftime) def datespan_file(self, file): nc = seapy.netcdf(file) try: st = datetime.datetime.strptime(nc.getncattr("start_date"), "%Y-%m-%d UTC") en = datetime.datetime.strptime(nc.getncattr("stop_date"), "%Y-%m-%d UTC") except: st = en = None pass finally: nc.close() return st, en def convert_file(self, file, title="NAVO SST Obs"): """ Load a NAVO map file and convert into an obs structure """ import re import sys nc = seapy.netcdf(file) lon = nc.variables["lon"][:] lat = nc.variables["lat"][:] dat = np.ma.masked_outside(np.squeeze(nc.variables["analysed_sst"][:]) - 273.15, self.temp_limits[0], self.temp_limits[1]) err = np.ma.array(np.squeeze( nc.variables["analysis_error"][:]), mask=dat.mask) # this is an analyzed product and provides errors as a function # of space and time directly the temperature is the bulk # temperature (ie at around 4m depth, below the e-folding depths of # sunlight in the ocean so the product does not have a diuranl cycle # (ie you don;t have to worry about hourly variations) time = seapy.roms.num2date( nc, "time", records=[0], epoch=self.epoch)[0] nc.close() # here we set the depth to be 4 m below the surface if self.grid.east(): lon[lon < 0] += 360 lon, lat = np.meshgrid(lon, lat) good = dat.nonzero() lat = lat[good] lon = lon[good] data = [seapy.roms.obs.raw_data("TEMP", self.provenance, dat.compressed(), err[good], self.temp_error)] # Grid it obs = seapy.roms.obs.gridder(self.grid, time, lon, lat, None, data, self.dt, depth_adjust=True, title=title) obs.z *= 0 obs.depth = -self.depth * np.ones(len(obs.depth)) return obs class modis_sst_map(obsgen): """ class to process MODIS SST map netcdf files into ROMS observation files. This is a subclass of seapy.roms.genobs.genobs, and handles the loading of the data. """ def __init__(self, grid, dt, reftime=seapy.default_epoch, temp_error=0.5, temp_limits=None, provenance="SST_MODIS_AQUA"): self.temp_error = temp_error self.provenance = provenance.upper() if temp_limits is None: self.temp_limits = (2, 35) else: self.temp_limits = temp_limits super().__init__(grid, dt, reftime) def convert_file(self, file, title="MODIS SST Obs"): """ Load an MODIS file and convert into an obs structure """ # Load MODIS Data import re nc = seapy.netcdf(file) lon = nc.variables["lon"][:] lat = nc.variables["lat"][:] dat = np.ma.masked_outside(nc.variables["sst"][:], self.temp_limits[0], self.temp_limits[1]) err = np.ones(dat.shape) * self.temp_error time = seapy.date2day(datetime.datetime.strptime( re.sub('\.[0-9]+Z$', '', nc.time_coverage_end), "%Y-%m-%dT%H:%M:%S"), self.epoch) # Check the data flags flags = np.ma.masked_not_equal(nc.variables["qual_sst"][:], 0) dat[flags.mask] = np.ma.masked nc.close() if self.grid.east(): lon[lon < 0] += 360 lon, lat = np.meshgrid(lon, lat) good = dat.nonzero() lat = lat[good] lon = lon[good] data = [seapy.roms.obs.raw_data("TEMP", self.provenance, dat.compressed(), err[good], self.temp_error)] # Grid it return seapy.roms.obs.gridder(self.grid, time, lon, lat, None, data, self.dt, title) class remss_swath(obsgen): """ class to process REMSS SST swath netcdf files into ROMS observation files. The files may be AMSRE, TMI, etc. This is a subclass of seapy.roms.genobs.genobs, and handles the loading of the data. """ def __init__(self, grid, dt, check_qc_flags=True, reftime=seapy.default_epoch, temp_error=0.4, temp_limits=None, provenance="SST_REMSS"): self.temp_error = temp_error self.provenance = provenance.upper() self.check_qc_flags = check_qc_flags if temp_limits is None: self.temp_limits = (2, 35) else: self.temp_limits = temp_limits super().__init__(grid, dt, reftime) def convert_file(self, file, title="REMSS SST Obs"): """ Load an REMSS file and convert into an obs structure """ # Load REMSS Data nc = seapy.netcdf(file) lon = nc.variables["lon"][:] lat = nc.variables["lat"][:] dat = np.ma.masked_outside(np.squeeze( nc.variables["sea_surface_temperature"][:]) - 273.15, self.temp_limits[0], self.temp_limits[1]) err = np.ma.masked_outside(np.squeeze( nc.variables["sses_standard_deviation"][:]), 0.01, 2.0) dat[err.mask] = np.ma.masked # Check the data flags if self.check_qc_flags: flags = np.ma.masked_not_equal( np.squeeze(nc.variables["quality_level"][:]), 5) dat[flags.mask] = np.ma.masked else: dat = np.ma.masked_where( np.squeeze(nc.variables["quality_level"][:]).data == 1, dat) # Grab the observation time time = seapy.roms.num2date(nc, "time", records=[0])[0] - self.epoch dtime = nc.variables["sst_dtime"][:] time = np.squeeze((time.total_seconds() + dtime) * seapy.secs2day) nc.close() if self.grid.east(): lon[lon < 0] += 360 good = dat.nonzero() data = [seapy.roms.obs.raw_data("TEMP", self.provenance, dat.compressed(), err[good], self.temp_error)] # Grid it return seapy.roms.obs.gridder(self.grid, time[good], lon[good], lat[good], None, data, self.dt, title) class remss_map(obsgen): """ class to process REMSS SST map netcdf files into ROMS observation files. The files may be AMSRE, TMI, etc. This is a subclass of seapy.roms.genobs.genobs, and handles the loading of the data. """ def __init__(self, grid, dt, reftime=seapy.default_epoch, temp_error=0.4, temp_limits=None, provenance="SST_REMSS"): self.temp_error = temp_error self.provenance = provenance.upper() if temp_limits is None: self.temp_limits = (2, 35) else: self.temp_limits = temp_limits super().__init__(grid, dt, reftime) def convert_file(self, file, title="REMSS SST Obs"): """ Load an REMSS file and convert into an obs structure """ # Load REMSS Data nc = seapy.netcdf(file) lon = nc.variables["lon"][:] lat = nc.variables["lat"][:] dat = np.ma.masked_outside(np.squeeze( nc.variables["sea_surface_temperature"][:]) - 273.15, self.temp_limits[0], self.temp_limits[1]) err = np.ma.masked_outside(np.squeeze( nc.variables["SSES_standard_deviation_error"][:]), 0.01, 2.0) dat[err.mask] = np.ma.masked # Check the data flags flags = np.ma.masked_not_equal( np.squeeze(nc.variables["rejection_flag"][:]), 0) dat[flags.mask] = np.ma.masked err[flags.mask] = np.ma.masked # Grab the observation time time = seapy.roms.num2date(nc, "time", epoch=self.epoch) sst_time = nc.variables["sst_dtime"][:] * seapy.secs2day for n, i in enumerate(time): sst_time[n, :, :] += i sst_time[dat.mask] = np.ma.masked # Set up the coordinate lon, lat = np.meshgrid(lon, lat) lon = np.ma.masked_where(dat.mask, seapy.adddim(lon, len(time))) lat = np.ma.masked_where(dat.mask, seapy.adddim(lat, len(time))) nc.close() if self.grid.east(): lon[lon < 0] += 360 data = [seapy.roms.obs.raw_data("TEMP", self.provenance, dat.compressed(), err.compressed(), self.temp_error)] # Grid it return seapy.roms.obs.gridder(self.grid, sst_time.compressed(), lon.compressed(), lat.compressed, None, data, self.dt, title) class viirs_swath(obsgen): """ class to process VIIRS SST swath netcdf files into ROMS observation files. This is a subclass of seapy.roms.obsgen.obsgen, and handles the loading of the data. """ def __init__(self, grid, dt, check_qc_flags=True, reftime=seapy.default_epoch, temp_error=0.4, temp_limits=None, provenance="SST_VIIRS"): self.temp_error = temp_error self.provenance = provenance.upper() self.check_qc_flags = check_qc_flags if temp_limits is None: self.temp_limits = (2, 35) else: self.temp_limits = temp_limits super().__init__(grid, dt, reftime) def convert_file(self, file, title="VIIRS SST Obs"): """ Load a VIIRS file and convert into an obs structure """ # Load VIIRS Data nc = seapy.netcdf(file, aggdim="time") lon = nc.variables["lon"][:] lat = nc.variables["lat"][:] dat = np.ma.masked_outside( nc.variables["sea_surface_temperature"][:] - 273.15, self.temp_limits[0], self.temp_limits[1]) err = np.ma.masked_outside( nc.variables["sses_standard_deviation"][:], 0.01, 2.0) dat[err.mask] = np.ma.masked # Check the data flags if self.check_qc_flags: flags = np.ma.masked_not_equal( nc.variables["quality_level"][:], 5) dat[flags.mask] = np.ma.masked else: dat = np.ma.masked_where( nc.variables["quality_level"][:].data == 1, dat) # Grab the observation time time = netCDF4.num2date(nc.variables["time"][:], nc.variables["time"].units) - self.epoch time = np.asarray([x.total_seconds() for x in time])[ :, np.newaxis, np.newaxis] dtime = nc.variables["sst_dtime"][:] time = (time + dtime) * seapy.secs2day nc.close() # Set up the coordinate lon = np.ma.masked_where(dat.mask, seapy.adddim(lon, len(time))) lat = np.ma.masked_where(dat.mask, seapy.adddim(lat, len(time))) if self.grid.east(): lon[lon < 0] += 360 good = dat.nonzero() data = [seapy.roms.obs.raw_data("TEMP", self.provenance, dat.compressed(), err[good], self.temp_error)] # Grid it return seapy.roms.obs.gridder(self.grid, time[good], lon[good], lat[good], None, data, self.dt, title) ############################################################################## # # IN SITU DATA # ############################################################################## class seaglider_profile(obsgen): """ class to process SeaGlider .pro files into ROMS observation files. This is a subclass of seapy.roms.genobs.genobs, and handles the loading of the data. """ def __init__(self, grid, dt, reftime=seapy.default_epoch, dtype=None, temp_limits=None, salt_limits=None, depth_limit=-15, temp_error=0.2, salt_error=0.05): if temp_limits is None: self.temp_limits = (5, 30) else: self.temp_limits = temp_limits if salt_limits is None: self.salt_limits = (31, 35.5) else: self.salt_limits = salt_limits if dtype is None: self.dtype = {'names': ('time', 'pres', 'depth', 'temp', 'cond', 'salt', 'sigma', 'lat', 'lon'), 'formats': ['f4'] * 9} else: self.dtype = dtype self.depth_limit = depth_limit self.temp_error = temp_error self.salt_error = salt_error super().__init__(grid, dt, reftime) def convert_file(self, file, title="SeaGlider Obs"): """ Load a SeaGlider .pro file and convert into an obs structure """ import re # Load the text file. All data goes into the pro dictionary # as defined by dtype. The header information needs to be parsed with open(file) as myfile: header = [myfile.readline() for i in range(19)] pro = np.loadtxt(myfile, self.dtype, delimiter=',', comments='%') # Parse the header information parser = re.compile('^%(\w+): (.*)$') params = {} for line in header: try: opt = parser.findall(line) params[opt[0][0]] = opt[0][1] except: pass # Determine the needed information from the headers glider_name = "GLIDER" if params.get("glider", None) is None else \ "GLIDER_SG" + params["glider"] provenance = seapy.roms.obs.asprovenance(glider_name) try: date = [int(s) for s in re.findall('([\d]{2})\s', params["start"])] start_time = datetime.datetime.strptime(params["start"].strip(), "%m %d 1%y %H %M %S") dtime = (start_time - self.epoch).total_seconds() / 86400 except: raise ValueError("date format incorrect in file: " + file) # Make sure that the GPS fix isn't screwy if self.grid.east(): pro["lon"][pro["lon"] < 0] += 360 dist = seapy.earth_distance(pro["lon"][0], pro["lat"][0], pro["lon"][-1], pro["lat"][-1]) velocity = dist / pro["time"][-1] if velocity > 2: warn("WARNING: GPS fix is incorrect for " + file) return None # Build the data with masked entries temp = np.ma.masked_outside(pro["temp"], self.temp_limits[0], self.temp_limits[1]) salt = np.ma.masked_outside(pro["salt"], self.salt_limits[0], self.salt_limits[1]) depth = np.ma.masked_greater(-pro["depth"], self.depth_limit) good = ~np.ma.getmaskarray(depth) # Grid it data = [seapy.roms.obs.raw_data("TEMP", provenance, temp[good], None, self.temp_error), seapy.roms.obs.raw_data("SALT", provenance, salt[good], None, self.salt_error)] return seapy.roms.obs.gridder(self.grid, pro["time"][good] / 86400 + dtime, pro["lon"][good], pro["lat"][good], depth.compressed(), data, self.dt, title) class mooring(obsgen): """ Class to process generic moorings into ROMS observation files. This handles temp, salt, u, and v. """ def __init__(self, grid, dt, reftime=seapy.default_epoch, temp_limits=None, salt_limits=None, u_limits=None, v_limits=None, depth_limit=0, temp_error=0.25, salt_error=0.08, u_error=0.08, v_error=0.08, lat=None, lon=None, provenance=None): if temp_limits is None: self.temp_limits = (5, 35) else: self.temp_limits = temp_limits if salt_limits is None: self.salt_limits = (31, 35.5) else: self.salt_limits = salt_limits if u_limits is None: self.u_limits = (-3, 3) else: self.u_limits = u_limits if v_limits is None: self.v_limits = (-3, 3) else: self.v_limits = v_limits if provenance is None: self.provenance = seapy.roms.obs.asprovenance("MOORING") else: self.provenance = provenance.upper() self.depth_limit = depth_limit self.temp_error = temp_error self.salt_error = salt_error self.u_error = u_error self.v_error = v_error self.lat = np.atleast_1d(lat) self.lon = np.atleast_1d(lon) super().__init__(grid, dt, reftime) def convert_data(self, time, depth, data, error=None, title="Mooring Obs"): """ Given a set of data, process into an observation structure Parameters ---------- time : ndarray time of observations depth : ndarray depth of observations. depth is in rows, time in columns. If depth does not change with time, it will be replicated in time. data : dict data to put into observations. A dictionary using seapy.roms.fields as keys. error : dict, optional error of the observations (same keys and sizes as data) title : string, optional title for obs Returns ------- obs: seapy.roms.obs.obs """ # Check that the lat/lon is in the grid if self.grid.east(): self.lon[self.lon <= 0] += 360 else: self.lon[self.lon >= 180] -= 360 if not np.logical_and.reduce(( self.lon >= np.min(self.grid.lon_rho), self.lon <= np.max(self.grid.lon_rho), self.lat >= np.min(self.grid.lat_rho), self.lat <= np.max(self.grid.lat_rho))): warn("Mooring location is not in grid") return depth = np.atleast_1d(depth) if not error: error = {} if not data: warn("No data is provided") return # Process the data obsdata = [] for field in data: limit = getattr(self, field + '_limits') vals = np.ma.masked_outside(data[field], limit[0], limit[1], copy=False) obsdata.append(seapy.roms.obs.raw_data(field, self.provenance, vals, getattr( error, field, None), getattr(self, field + '_error'))) ndep = depth.size nt = len(time) lat = np.resize(self.lat, (nt, ndep)) lon = np.resize(self.lon, (nt, ndep)) depth = np.resize(depth, (nt, ndep)) time = np.resize(time, (nt, ndep)) return seapy.roms.obs.gridder(self.grid, time, lon, lat, depth, obsdata, self.dt, title) class tao_mooring(mooring): """ class to process TAO files into ROMS observation files. This is a subclass of seapy.roms.genobs.genobs, and handles the loading of the data. """ def __init__(self, grid, dt, reftime=seapy.default_epoch, temp_limits=None, salt_limits=None, u_limits=None, v_limits=None, depth_limit=0, temp_error=0.25, salt_error=0.08, u_error=0.08, v_error=0.08): super().__init__(grid, dt, reftime) def convert_file(self, file, title="TAO Obs"): """ Load a TAO netcdf file and convert into an obs structure """ vals = {"temp": ["T_20", "QT_5020"], "salt": ["S_41", "QS_5041"], "u": ["U_320", "QS_5300"], "v": ["V_321", "QS_5300"]} nc = seapy.netcdf(file) lat = nc.variables["lat"][:] lon = nc.variables["lon"][:] if not self.grid.east(): lon[lon > 180] -= 360 lat, lon = np.meshgrid(lat, lon) time = seapy.roms.num2date(nc, "time", epoch=self.epoch) depth = -nc.variables["depth"][:] profile_list = np.where(np.logical_and.reduce(( lon >= np.min(self.grid.lon_rho), lon <= np.max(self.grid.lon_rho), lat >= np.min(self.grid.lat_rho), lat <= np.max(self.grid.lat_rho)))) # If nothing is in the area, return nothing if not profile_list[0].size: return None # Process each of the variables that are present obsdata = [] for field in vals: limit = getattr(self, field + '_limits') if vals[field][0] in nc.variables: data = nc.variables[vals[field][0]][:] data = np.ma.masked_outside( data[profile_list[0], profile_list[1], :, :], limit[0], limit[1], copy=False) qc = nc.variables[vals[field][1]][:] qc = qc[profile_list[0], profile_list[1], :, :] bad = np.where(np.logical_and(qc != 1, qc != 2)) data[bad] = np.ma.masked obsdata.append(seapy.roms.obs.raw_data(field, "TAO_ARRAY", data.compressed(), None, getattr(self, field + '_error'))) nc.close() # Build the time, lon, lat, and depth arrays of appropriate size npts = profile_list[0].size ndep = depth.size nt = len(time) lat = np.resize(lat[profile_list], (nt, ndep, npts)) lat = np.squeeze(np.transpose(lat, (2, 1, 0)))[~data.mask] lon = np.resize(lon[profile_list], (nt, ndep, npts)) lon = np.squeeze(np.transpose(lon, (2, 1, 0)))[~data.mask] depth = np.resize(depth, (npts, nt, ndep)) depth = np.squeeze(np.transpose(depth, (0, 2, 1)))[~data.mask] time = np.squeeze(np.resize(time, (npts, ndep, nt)))[~data.mask] return seapy.roms.obs.gridder(self.grid, time, lon, lat, depth, obsdata, self.dt, title) class argo_ctd(obsgen): """ class to process ARGO CTD netcdf files into ROMS observation files. This is a subclass of seapy.roms.genobs.genobs, and handles the loading of the data. """ def __init__(self, grid, dt, reftime=seapy.default_epoch, temp_limits=None, salt_limits=None, temp_error=0.25, salt_error=0.1): if temp_limits is None: self.temp_limits = (2, 35) else: self.temp_limits = temp_limits if salt_limits is None: self.salt_limits = (10, 35.5) else: self.salt_limits = salt_limits self.temp_error = temp_error self.salt_error = salt_error super().__init__(grid, dt, reftime) def datespan_file(self, file): """ return the just the day that this argo file covers """ nc = seapy.netcdf(file) try: d = netCDF4.num2date(nc.variables['JULD'][0], nc.variables['JULD'].units) st = datetime.datetime(*d.timetuple()[:3]) en = datetime.datetime(*d.timetuple()[:3] + (23, 59, 59)) except: st = en = None pass finally: nc.close() return st, en def convert_file(self, file, title="Argo Obs"): """ Load an Argo file and convert into an obs structure """ nc = seapy.netcdf(file, aggdim="N_PROF") # Load the position of all profiles in the file lon = nc.variables["LONGITUDE"][:] lat = nc.variables["LATITUDE"][:] pro_q = nc.variables["POSITION_QC"][:].astype(int) # Find the profiles that are in our area with known locations quality if self.grid.east(): lon[lon < 0] += 360 profile_list = np.where(np.logical_and.reduce(( lat >= np.min(self.grid.lat_rho), lat <= np.max(self.grid.lat_rho), lon >= np.min(self.grid.lon_rho), lon <= np.max(self.grid.lon_rho), pro_q == 1)))[0] # Check which are good profiles profile_qc = nc.variables["PROFILE_PRES_QC"][ profile_list].astype('<U1') profile_list = profile_list[profile_qc == 'A'] if not profile_list.size: return None # Load only the data from those in our area julian_day = nc.variables["JULD_LOCATION"][profile_list] argo_epoch = datetime.datetime.strptime(''.join( nc.variables["REFERENCE_DATE_TIME"][:].astype('<U1')), '%Y%m%d%H%M%S') time_delta = (self.epoch - argo_epoch).days file_stamp = datetime.datetime.strptime(''.join( nc.variables["DATE_CREATION"][:].astype('<U1')), '%Y%m%d%H%M%S') # Grab data over the previous day file_time = np.minimum((file_stamp - argo_epoch).days, int(np.max(julian_day))) time_list = np.where(julian_day >= file_time - 1)[0] julian_day = julian_day[time_list] lon = lon[profile_list[time_list]] lat = lat[profile_list[time_list]] profile_list = profile_list[time_list] # Load the data in our region and time temp = nc.variables["TEMP"][profile_list, :] temp_qc = nc.variables["TEMP_QC"][profile_list, :] salt = nc.variables["PSAL"][profile_list, :] salt_qc = nc.variables["PSAL_QC"][profile_list, :] pres = nc.variables["PRES"][profile_list, :] pres_qc = nc.variables["PRES_QC"][profile_list, :] nc.close() # Ensure consistency full_mask = np.logical_or.reduce((temp.mask, salt.mask, pres.mask)) temp[full_mask] = np.ma.masked temp_qc[full_mask] = np.ma.masked salt[full_mask] = np.ma.masked salt_qc[full_mask] = np.ma.masked pres[full_mask] = np.ma.masked pres_qc[full_mask] = np.ma.masked # Combine the QC codes qc = np.mean(np.vstack((temp_qc.compressed(), salt_qc.compressed(), pres_qc.compressed())).astype(int), axis=0) good_data = np.where(qc == 1) # Put everything together into individual observations time = np.resize(julian_day - time_delta, pres.shape[::-1]).T[~temp.mask][good_data] lat = np.resize(lat, pres.shape[::-1]).T[~temp.mask][good_data] lon = np.resize(lon, pres.shape[::-1]).T[~temp.mask][good_data] depth = -seapy.seawater.depth(pres.compressed()[good_data], lat) # Apply the limits temp = np.ma.masked_outside(temp.compressed()[good_data], self.temp_limits[0], self.temp_limits[1]) salt = np.ma.masked_outside(salt.compressed()[good_data], self.salt_limits[0], self.salt_limits[1]) data = [seapy.roms.obs.raw_data("TEMP", "CTD_ARGO", temp, None, self.temp_error), seapy.roms.obs.raw_data("SALT", "CTD_ARGO", salt, None, self.salt_error)] return seapy.roms.obs.gridder(self.grid, time, lon, lat, depth, data, self.dt, title)
from pydantic import BaseModel, Field, UUID4 from typing import Optional from uuid import uuid4 from api.models import type_str, validators class AlertTypeBase(BaseModel): """Represents a type of alert.""" description: Optional[type_str] = Field(description="An optional human-readable description of the alert type") value: type_str = Field(description="The value of the alert type") class AlertTypeCreate(AlertTypeBase): uuid: UUID4 = Field(default_factory=uuid4, description="The UUID of the alert type") class AlertTypeRead(AlertTypeBase): uuid: UUID4 = Field(description="The UUID of the alert type") class Config: orm_mode = True class AlertTypeUpdate(AlertTypeBase): value: Optional[type_str] = Field(description="The value of the alert type") _prevent_none: classmethod = validators.prevent_none("value")
#! /usr/bin/env python ''' This module is part of the FMLC package. https://github.com/LBNL-ETA/FMLC ''' import time class triggering(object): ''' Class to handle internal triggering of models. ''' def __init__(self, ts, init_now=False): ''' Input ----- ts (dict): Timesteps for triggering with timestep in seconds. init_now (bool): Initialize with current timestep. This is not recommended as timesteps are not aligned. Good for testing and debugging. (Default = False) ''' self.ts = ts self.init_now = init_now self._initialize_all_trigger() def _initialize_all_trigger(self): ''' Initializaiton of all triggers. ''' now = time.time() self.trigger = {} mode = 'prev' if self.init_now else 'next' for k in self.ts.keys(): self.trigger[k] = self._get_trigger(self.ts[k], now, mode=mode, integer=(self.ts[k]%1) == 0) def refresh_trigger(self, name, now=time.time()): ''' Refresh the trigger. Input ----- name (str): Name of the trigger. now (time.time): Current time to refresh. (Default = time.time()) ''' self.trigger[name] = self._get_trigger(self.ts[name], now, mode='next', integer=(self.ts[name]%1) == 0) def _get_trigger(self, ts, now=time.time(), mode='next', integer=False): ''' Get the current trigger value. Input ----- ts (float): The timestep of the trigger. now (time.time): Current time to refresh. (Default = time.time()) mode (str): Mode of calculation, either "next" or "prev". (Default = "next") integer (bool): Round seconds to full integer. Recommended when ts > 10 s. (Defualt = False) Return ------ trigger (float): Next trigger as timestamp. ''' trigger = round(now/ts) * ts if integer: trigger = int(trigger) if mode == 'next': trigger = trigger + ts elif mode == 'prev': trigger = trigger - ts else: print('ERROR: "mode" must be "next" or "prev"') return trigger if __name__ == '__main__': ts = {} ts['main'] = 0.5 # seconds ts['print'] = 1 print('"Main" should be triggered every {} s.'.format(ts['main'])) print('"Print" should be triggered every {} s.'.format(ts['print'])) trigger_test = triggering(ts) now_init = time.time() now = now_init while now < now_init+3: now = time.time() if now >= trigger_test.trigger['main']: print('Main triggered\t{}'.format(round(now, 2))) trigger_test.refresh_trigger('main', now) if now >= trigger_test.trigger['print']: print('Print triggered\t{}'.format(round(now, 2))) trigger_test.refresh_trigger('print', now)
from django.test import TestCase from django.urls import reverse from django.contrib.auth import get_user_model from django.contrib import messages from django.utils.translation import gettext_lazy as _ from nami import Nami, MemberNotFound from nami.mock import Session as NamiMock from .views import NamiSearchView class IndexTest(TestCase): fixtures = ["troop_130000.json"] def setUp(self): self.user = get_user_model().objects.get(email="user@test") self.client.force_login(self.user) def test_must_be_logged_in(self): self.client.logout() response = self.client.get(reverse("troop:index", kwargs={"troop_number": 404})) self.assertEqual(response.status_code, 302) def test_not_found(self): response = self.client.get(reverse("troop:index", kwargs={"troop_number": 404})) self.assertEqual(response.status_code, 403) def test_not_allowed(self): response = self.client.get( reverse("troop:index", kwargs={"troop_number": 130100}) ) self.assertEqual(response.status_code, 403) def test_found(self): response = self.client.get( reverse("troop:index", kwargs={"troop_number": 130000}) ) self.assertEqual(response.status_code, 200) class CreateParticipantTest(TestCase): fixtures = ["troop_130000.json"] valid_data = { "troop": "1", # id of the troop "first_name": "Trick", "last_name": "Duck", "gender": "male", "birthday": "1.1.1900", # "email": "", not required "nami": "12", "age_section": "cub", # "is_leader": "", not required "attendance": [1], # id of the day # "diet": "", not required # "medication": "", not required # "comment": "", not required } def setUp(self): self.user = get_user_model().objects.get(email="user@test") self.client.force_login(self.user) def test_get_form(self): response = self.client.get( reverse("troop:participant.create", kwargs={"troop_number": 130000}) ) self.assertEqual(response.status_code, 200) def test_post_empty_form(self): response = self.client.post( reverse("troop:participant.create", kwargs={"troop_number": 130000}) ) self.assertEqual(response.status_code, 422) def test_post_form(self): response = self.client.post( reverse("troop:participant.create", kwargs={"troop_number": 130000}), self.valid_data, ) self.assertEqual(response.status_code, 302) self.assertEqual( response.url, reverse("troop:participant.index", kwargs={"troop_number": 130000}), ) def test_post_form_addanother(self): data = self.valid_data.copy() data["_addanother"] = "1" response = self.client.post( reverse("troop:participant.create", kwargs={"troop_number": 130000}), data ) self.assertEqual(response.status_code, 302) self.assertEqual( response.url, reverse("troop:participant.nami-search", kwargs={"troop_number": 130000}), ) def test_get_form_prefilled(self): response = self.client.get( reverse("troop:participant.create", kwargs={"troop_number": 130000}), data={"first_name": "Trick"}, ) self.assertEqual(response.status_code, 200) self.assertContains(response, 'value="Trick"') class UpdateParticipantTest(TestCase): fixtures = ["troop_130000.json"] url = reverse("troop:participant.edit", kwargs={"troop_number": 130000, "pk": 1}) def setUp(self): self.user = get_user_model().objects.get(email="user@test") self.client.force_login(self.user) def test_get_form(self): response = self.client.get(self.url) self.assertEqual(response.status_code, 200) def test_post_empty_form(self): response = self.client.post(self.url) self.assertEqual(response.status_code, 422) def test_post_form(self): response = self.client.post( self.url, { "troop": "1", "first_name": "Track", # new name "last_name": "Duck", "gender": "male", "birthday": "1.1.1900", "nami": "12", "age_section": "", # new section (empty) "attendance": [1], }, ) self.assertEqual(response.status_code, 302) self.assertEqual( response.url, reverse("troop:participant.index", kwargs={"troop_number": 130000}), ) class NamiSearchTest(TestCase): fixtures = ["troop_130000.json"] def setUp(self): self.user = get_user_model().objects.get(email="user@test") self.client.force_login(self.user) self.original_nami_method = NamiSearchView.nami self.nami_mock = Nami({}, session_cls=NamiMock) self.mocked_nami_method = lambda s: self.nami_mock def tearDown(self): NamiSearchView.nami = self.original_nami_method def test_get_form(self): response = self.client.get( reverse("troop:participant.nami-search", kwargs={"troop_number": 130000}) ) self.assertEqual(response.status_code, 200) def test_post_empty_form(self): response = self.client.post( reverse("troop:participant.nami-search", kwargs={"troop_number": 130000}) ) self.assertEqual(response.status_code, 422) def test_post_form(self): self.nami_mock.session.response = [ { "entries_nachname": "Duck", "entries_vorname": "Trick", "entries_mitgliedsNummer": 12345, } ] NamiSearchView.nami = self.mocked_nami_method response = self.client.post( reverse("troop:participant.nami-search", kwargs={"troop_number": 130000}), {"nami": "12345"}, ) self.assertEqual(response.status_code, 302) self.assertEqual( response.url, reverse("troop:participant.create", kwargs={"troop_number": 130000}) + "?last_name=Duck&first_name=Trick&nami=12345", ) m = list(messages.get_messages(response.wsgi_request)) self.assertEqual(1, len(m)) self.assertEqual(messages.SUCCESS, m[0].level) def test_post_form_empty_nami_settings(self): response = self.client.post( reverse("troop:participant.nami-search", kwargs={"troop_number": 130000}), {"nami": "12345"}, ) self.assertEqual(response.status_code, 302) self.assertEqual( response.url, reverse("troop:participant.create", kwargs={"troop_number": 130000}) + "?nami=12345", ) m = list(messages.get_messages(response.wsgi_request)) self.assertEqual(1, len(m)) self.assertEqual(messages.WARNING, m[0].level) def test_post_not_found(self): self.nami_mock.session.exception = MemberNotFound NamiSearchView.nami = self.mocked_nami_method response = self.client.post( reverse("troop:participant.nami-search", kwargs={"troop_number": 130000}), {"nami": "12345"}, ) self.assertEqual(response.status_code, 302) self.assertEqual( response.url, reverse("troop:participant.create", kwargs={"troop_number": 130000}) + "?nami=12345", ) m = list(messages.get_messages(response.wsgi_request)) self.assertEqual(1, len(m)) self.assertEqual(messages.INFO, m[0].level) def test_post_form_already_in_db(self): response = self.client.post( reverse("troop:participant.nami-search", kwargs={"troop_number": 130000}), {"nami": "130001"}, ) self.assertEqual(response.status_code, 302) self.assertEqual( response.url, reverse("troop:participant.edit", kwargs={"troop_number": 130000, "pk": 1}), ) m = list(messages.get_messages(response.wsgi_request)) self.assertEqual(1, len(m)) self.assertEqual(messages.INFO, m[0].level) def test_post_form_already_in_db_wrong_troop(self): response = self.client.post( reverse("troop:participant.nami-search", kwargs={"troop_number": 130000}), {"nami": "130002"}, ) self.assertEqual(response.status_code, 409) m = list(messages.get_messages(response.wsgi_request)) self.assertEqual(1, len(m)) self.assertEqual(messages.ERROR, m[0].level) class IndexParticipantTest(TestCase): fixtures = ["troop_130000.json"] def setUp(self): self.user = get_user_model().objects.get(email="user@test") self.client.force_login(self.user) def test_found(self): response = self.client.get( reverse("troop:participant.index", kwargs={"troop_number": 130000}) ) self.assertEqual(response.status_code, 200) def test_contains_creations(self): response = self.client.get( reverse("troop:participant.index", kwargs={"troop_number": 130000}) ) self.assertEqual(response.status_code, 200) self.assertNotContains(response, "Trick") self.client.post( reverse("troop:participant.create", kwargs={"troop_number": 130000}), CreateParticipantTest.valid_data, ) response = self.client.get( reverse("troop:participant.index", kwargs={"troop_number": 130000}) ) self.assertEqual(response.status_code, 200) self.assertContains(response, "Trick") class ParticipantExportTest(TestCase): fixtures = ["troop_130000.json"] def setUp(self): self.user = get_user_model().objects.get(email="user@test") self.client.force_login(self.user) def test_export(self): response = self.client.get( reverse("troop:participant.export", kwargs={"troop_number": 130000}) ) self.assertEqual(response.status_code, 200) self.assertEqual(response["content-type"], "text/csv") self.assertEqual( response["content-disposition"], 'attachment; filename="packmas13_130000.csv"', ) self.assertContains(response, "Vor") self.assertContains(response, "Nach") self.assertContains(response, _("no section")) self.assertContains(response, "2020-02-20") self.assertContains(response, "Vegan")
"""http://projecteuler.net/problem=056 Powerful digit sum A googol (10^100) is a massive number: one followed by one-hundred zeros; 100^100 is almost unimaginably large: one followed by two-hundred zeros. Despite their size, the sum of the digits in each number is only 1. Considering natural numbers of the form, a^b, where a, b < 100, what is the maximum digital sum? Solution by jontsai <[email protected]> """ from utils import * EXPECTED_ANSWER = 972 max_so_far = 0 for a in xrange(1, 100): for b in xrange(1, 100): value = a ** b max_so_far = max(sum_digits(value), max_so_far) answer = max_so_far print 'Expected: %s, Answer: %s' % (EXPECTED_ANSWER, answer)
import os import requests from b2stage.endpoints.commons.b2access import B2accessUtilities from restapi import decorators from restapi.connectors import celery from restapi.exceptions import RestApiException from restapi.services.authentication import Role from restapi.utilities.logs import log from seadata.endpoints.commons.cluster import ClusterContainerEndpoint class PidCache(ClusterContainerEndpoint, B2accessUtilities): labels = ["helper"] @decorators.auth.require_any(Role.ADMIN, Role.STAFF) @decorators.endpoint( path="/pidcache", summary="Retrieve values from the pid cache", responses={200: "Async job started"}, ) def get(self): c = celery.get_instance() task = c.celery_app.send_task("inspect_pids_cache") log.info("Async job: {}", task.id) return self.return_async_id(task.id) @decorators.auth.require_any(Role.ADMIN, Role.STAFF) @decorators.endpoint( path="/pidcache/<batch_id>", summary="Fill the pid cache", responses={200: "Async job started"}, ) def post(self, batch_id): try: imain = self.get_main_irods_connection() ipath = self.get_irods_production_path(imain) collection = os.path.join(ipath, batch_id) if not imain.exists(collection): raise RestApiException(f"Invalid batch id {batch_id}", status_code=404) c = celery.get_instance() task = c.celery_app.send_task("cache_batch_pids", args=[collection]) log.info("Async job: {}", task.id) return self.return_async_id(task.id) except requests.exceptions.ReadTimeout: return self.send_errors("B2SAFE is temporarily unavailable", code=503)
import rclpy from rclpy.node import Node from robot_interfaces.srv import SetMuxSource from sensor_msgs.msg import Joy class JoyCommands(Node): def __init__(self): super(JoyCommands, self).__init__('joy_commands') self._subscription = self.create_subscription(Joy, 'joy', self.joy_cb, 10) self._client = self.create_client(SetMuxSource, '/cmd_vel_source') self._buttons = { 2: 'nav', 3: 'joy', } while not self._client.wait_for_service(timeout_sec=1.0): self.get_logger().info('cmd_vel_source service not available, waiting...') def joy_cb(self, msg): for btn, src in self._buttons.items(): if msg.buttons[btn]: req = SetMuxSource.Request(name=src) self._client.call_async(req) def main(): rclpy.init() node = JoyCommands() rclpy.spin(node) rclpy.shutdown() if __name__ == '__main__': main()
""" This module allows doctest to find typechecked functions. Currently, doctest verifies functions to make sure that their globals() dict is the __dict__ of their module. In the case of decorated functions, the globals() dict *is* not the right one. To enable support for doctest do: import typecheck.doctest_support This import must occur before any calls to doctest methods. """ def __DocTestFinder_from_module(self, module, object): """ Return true if the given object is defined in the given module. """ import inspect if module is None: return True elif inspect.isfunction(object) or inspect.isclass(object): return module.__name__ == object.__module__ elif inspect.getmodule(object) is not None: return module is inspect.getmodule(object) elif hasattr(object, '__module__'): return module.__name__ == object.__module__ elif isinstance(object, property): return True # [XX] no way not be sure. else: raise ValueError("object must be a class or function") import doctest as __doctest __doctest.DocTestFinder._from_module = __DocTestFinder_from_module
import os from glob import glob import torch def mkdir_ifnotexists(directory): if not os.path.exists(directory): os.mkdir(directory) def get_class(kls): parts = kls.split('.') module = ".".join(parts[:-1]) m = __import__(module) for comp in parts[1:]: m = getattr(m, comp) return m def glob_imgs(path): imgs = [] for ext in ['*.png', '*.jpg', '*.JPEG', '*.JPG']: imgs.extend(glob(os.path.join(path, ext))) return imgs def split_input(model_input, total_pixels): ''' Split the input to fit Cuda memory for large resolution. Can decrease the value of n_pixels in case of cuda out of memory error. ''' n_pixels = 10000 # NOTE: hard code point size split = [] for i, indx in enumerate(torch.split(torch.arange(total_pixels).cuda(), n_pixels, dim=0)): data = model_input.copy() data['uv'] = torch.index_select(model_input['uv'], 1, indx) data['object_mask'] = torch.index_select(model_input['object_mask'], 1, indx) # data['gt_depth'] = torch.index_select(model_input['gt_depth'], 1, indx) # data['gt_normal'] = torch.index_select(model_input['gt_normal'], 1, indx) split.append(data) return split def merge_output(res, total_pixels, batch_size): ''' Merge the split output. ''' model_outputs = {} for entry in res[0]: if res[0][entry] is None: continue if len(res[0][entry].shape) == 1: model_outputs[entry] = torch.cat([r[entry].reshape(batch_size, -1, 1) for r in res], 1).reshape(batch_size * total_pixels) else: model_outputs[entry] = torch.cat([r[entry].reshape(batch_size, -1, r[entry].shape[-1]) for r in res], 1).reshape(batch_size * total_pixels, -1) return model_outputs
"""Provide Hook implementations for contingency checks.""" import logging from nested_lookup import nested_lookup from boardfarm.exceptions import ContingencyCheckError from boardfarm.lib.common import ( check_prompts, domain_ip_reach_check, retry_on_exception, ) from boardfarm.lib.DeviceManager import device_type from boardfarm.lib.hooks import contingency_impl, hookimpl from boardfarm.plugins import BFPluginManager logger = logging.getLogger("tests_logger") class ContingencyCheck: """Contingency check implementation.""" impl_type = "base" @hookimpl(tryfirst=True) def contingency_check(self, env_req, dev_mgr, env_helper): """Register service check plugins based on env_req. Reading the key value pairs from env_req, BFPluginManager scans for relative hook specs and implementations and loads them into a feature PluginManager (use generate_feature_manager). Once all plugins are registered, this functions will call the hook initiating respective service checks. :param env_req: ENV request provided by a test :type env_req: dict """ logger.info("Executing all contingency service checks under boardfarm") # initialize a feature Plugin Manager for Contingency check pm = BFPluginManager("contingency") # this will load all feature hooks for contingency pm.load_hook_specs("feature") all_impls = pm.fetch_impl_classes("feature") plugins_to_register = [all_impls["boardfarm.DefaultChecks"]] # referencing this from boardfarm-lgi dns_env = nested_lookup("DNS", env_req.get("environment_def", {})) if dns_env: plugins_to_register.append(all_impls["boardfarm.DNS"]) # ACS reference from boardfarm-lgi if "tr-069" in env_req.get("environment_def", {}): plugins_to_register.append(all_impls["boardfarm.ACS"]) # Voice reference from boardfarm-lgi if "voice" in env_req.get("environment_def", {}): plugins_to_register.append(all_impls["boardfarm.Voice"]) plugins_to_register.append(all_impls["boardfarm.CheckInterface"]) # since Pluggy executes plugin in LIFO order of registration # reverse the list so that Default check is executed first for i in reversed(plugins_to_register): pm.register(i) result = pm.hook.service_check( env_req=env_req, dev_mgr=dev_mgr, env_helper=env_helper ) # this needs to be orchestrated by hook wrapper maybe BFPluginManager.remove_plugin_manager("contingency") return result class DefaultChecks: """Perform these checks even if ENV req is empty.""" impl_type = "feature" @contingency_impl def service_check(self, env_req, dev_mgr, env_helper): """Implement Default Contingency Hook.""" logger.info("Executing Default service check [check_prompts] for BF") provisioner = dev_mgr.by_type(device_type.provisioner) wan = dev_mgr.by_type(device_type.wan) sipserver = dev_mgr.by_type(device_type.sipcenter) softphone = dev_mgr.by_type(device_type.softphone) wan_devices = [wan, provisioner] lan_devices = [] voice = "voice" in env_req.get("environment_def", {}) if voice: lan_devices = [dev_mgr.lan, dev_mgr.lan2] wan_devices = [wan, provisioner, sipserver, softphone] check_prompts(wan_devices + lan_devices) logger.info("Default service check [check_prompts] for BF executed") class CheckInterface: """Perform these checks even if ENV req is empty.""" impl_type = "feature" @contingency_impl(trylast=True) def service_check(self, env_req, dev_mgr, env_helper): """Implement Default Contingency Hook.""" logger.info("Executing CheckInterface service check for BF ") ip = {} wan = dev_mgr.by_type(device_type.wan) # TODO: should be driven by env_req lan_devices = [dev_mgr.lan, dev_mgr.lan2] def _start_lan_client(dev): ipv4, ipv6 = retry_on_exception(dev.start_lan_client, [], retries=1) return {"ipv4": ipv4, "ipv6": ipv6} def _setup_as_wan_gateway(): ipv4 = wan.get_interface_ipaddr(wan.iface_dut) ipv6 = wan.get_interface_ip6addr(wan.iface_dut) return {"ipv4": ipv4, "ipv6": ipv6} for dev in lan_devices: ip[dev.name] = _start_lan_client(dev) ip["wan"] = _setup_as_wan_gateway() logger.info("CheckInterface service checks for BF executed") return ip class DNS: """DNS contingency checks.""" impl_type = "feature" @contingency_impl def service_check(self, env_req, dev_mgr): """Implement Contingency Hook for DNS.""" logger.info("Executing DNS service check for BF") board = dev_mgr.by_type(device_type.DUT) dns_env = nested_lookup("DNS", env_req["environment_def"]) if nested_lookup("ACS_SERVER", dns_env): acs_dns = dns_env[0]["ACS_SERVER"] if acs_dns: output = board.dns.nslookup("acs_server.boardfarm.com") domain_ip_reach_check( board.arm, acs_dns["ipv4"]["reachable"] + acs_dns["ipv6"]["reachable"], acs_dns["ipv4"]["unreachable"] + acs_dns["ipv6"]["unreachable"], output, ) logger.info("DNS service checks for BF executed") class ACS: """ACS contingency checks.""" impl_type = "feature" @contingency_impl def service_check(self, env_req, dev_mgr): """Implement Contingency Hook for ACS.""" logger.info("Executing ACS service check for BF") board = dev_mgr.by_type(device_type.DUT) acs_server = dev_mgr.by_type(device_type.acs_server) packet_analysis = "packet_analysis" in env_req["environment_def"]["tr-069"] def check_acs_connection(): return bool( acs_server.get(board.get_cpeid(), "Device.DeviceInfo.SoftwareVersion") ) acs_connection = check_acs_connection() if not acs_connection: raise ContingencyCheckError("ACS service check Failed.") if packet_analysis: def check_packet_analysis_enable(): return acs_server.session_connected check_packet_analysis_enable() logger.info("ACS service checks for BF executed") class Voice: """VOICE contingency checks.""" impl_type = "feature" @contingency_impl def service_check(self, env_req, dev_mgr): """Implement Contingency Hook for VOICE.""" logger.info("Executing Voice service check for BF") dev_mgr.lan.check_tty() dev_mgr.lan2.check_tty() dev_mgr.board.mta_prov_check() dev_mgr.board.check_sip_endpoints_registration() logger.info("Voice service checks for BF executed")
# @Author : Peizhao Li # @Contact : [email protected] import scipy.sparse as sp import torch from torch import optim import torch.nn.functional as F from args import parse_args from utils import fix_seed, find_link from dataloader import get_dataset from model.utils import preprocess_graph, project from model.optimizer import loss_function from model.gae import GCNModelVAE from eval import fair_link_eval def main(args): # Data preparation G, adj, features, sensitive, test_edges_true, test_edges_false = get_dataset(args.dataset, args.scale, args.test_ratio) n_nodes, feat_dim = features.shape features = torch.from_numpy(features).float().to(args.device) sensitive_save = sensitive.copy() adj_norm = preprocess_graph(adj).to(args.device) adj = sp.coo_matrix(adj + sp.eye(adj.shape[0])) adj_label = torch.FloatTensor(adj.toarray()).to(args.device) intra_pos, inter_pos, intra_link_pos, inter_link_pos = find_link(adj, sensitive) pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum() pos_weight = torch.Tensor([pos_weight]).to(args.device) norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2) # Initialization model = GCNModelVAE(feat_dim, args.hidden1, args.hidden2, args.dropout).to(args.device) optimizer = optim.Adam(model.get_parameters(), lr=args.lr) # Training model.train() for i in range(args.outer_epochs): for epoch in range(args.T1): optimizer.zero_grad() recovered, z, mu, logvar = model(features, adj_norm) loss = loss_function(preds=recovered, labels=adj_label, mu=mu, logvar=logvar, n_nodes=n_nodes, norm=norm, pos_weight=pos_weight) loss.backward() cur_loss = loss.item() optimizer.step() print("Epoch in T1: [{:d}/{:d}];".format((epoch + 1), args.T1), "Loss: {:.3f};".format(cur_loss)) for epoch in range(args.T2): adj_norm = adj_norm.requires_grad_(True) recovered = model(features, adj_norm)[0] if args.eq: intra_score = recovered[intra_link_pos[:, 0], intra_link_pos[:, 1]].mean() inter_score = recovered[inter_link_pos[:, 0], inter_link_pos[:, 1]].mean() else: intra_score = recovered[intra_pos[:, 0], intra_pos[:, 1]].mean() inter_score = recovered[inter_pos[:, 0], inter_pos[:, 1]].mean() loss = F.mse_loss(intra_score, inter_score) loss.backward() cur_loss = loss.item() print("Epoch in T2: [{:d}/{:d}];".format(epoch + 1, args.T2), "Loss: {:.5f};".format(cur_loss)) adj_norm = adj_norm.add(adj_norm.grad.mul(-args.eta)).detach() adj_norm = adj_norm.to_dense() for i in range(adj_norm.shape[0]): adj_norm[i] = project(adj_norm[i]) adj_norm = adj_norm.to_sparse() # Evaluation model.eval() with torch.no_grad(): z = model(features, adj_norm)[1] hidden_emb = z.data.cpu().numpy() std = fair_link_eval(hidden_emb, sensitive_save, test_edges_true, test_edges_false) col = ["auc", "ap", "dp", "true", "false", "fnr", "tnr"] print("Result below ------") for term, val in zip(col, std): print(term, ":", val) return if __name__ == "__main__": args = parse_args() args.device = torch.device(args.device) fix_seed(args.seed) main(args)
from mine_generate import mine_generate import random import numpy as np class Cell: def __init__(self, coordinate): self.clues = set() self.reveal = 0 self.probability = 1.0 self.neighbor = 0 self.coordinate = coordinate self.mined = -1 class MineSweeper(object): def __init__(self, width, length, num): self.width = width self.length = length self.num = num self.unknown_cell = [] for row in range(self.width): for col in range(self.length): self.unknown_cell.append([row, col]) self.clear_cell = [] self.mine_cell = [] self.clue_cell = [] # info self.cells = [] for row in range(self.width): self.cells.append([]) for col in range(self.length): cell = Cell([row, col]) self.cells[row].append(cell) self.cells[0][0].probability = 0.0 self.queue = [[0, 0]] self.visit = [[0 for col in range(self.length)] for row in range(self.width)] self.visit[0][0] = 1 self.front = 0 self.rear = 1 # search self.chains = [] def reveal_query(self, x, y): self.cells[x][y].reveal = int( input('The state of Position (' + str(x) + ', ' + str(y) + '): ')) def clues_get(self, x, y): around = [[-1, -1], [0, -1], [1, -1], [-1, 0], [1, 0], [-1, 1], [0, 1], [1, 1]] clues = set() for i in range(len(around)): x_around = x + around[i][0] y_around = y + around[i][1] if x_around < 0 or y_around < 0 or x_around > self.width - 1 or y_around > self.length - 1 or \ self.cells[x_around][y_around].mined == 0: continue if self.cells[x_around][y_around].mined == 1: self.cells[x][y].reveal -= 1 else: clues.add((x_around, y_around)) if self.cells[x][y].mined == -1: self.unknown_cell.remove([x, y]) self.clear_cell.append([x, y]) self.cells[x][y].mined = 0 self.cells[x][y].clues = clues def renew_chains(self, x, y): for chain in self.chains: if (x, y) in chain.clues: chain.clues.remove((x, y)) chain.reveal -= self.cells[x][y].mined if len(chain.clues) == 0: self.chains.remove(chain) self.clue_cell.remove(chain.coordinate) def influence_chains(self, x, y): self.renew_chains(x, y) if len(self.cells[x][y].clues) == 0: return self.chains.append(self.cells[x][y]) self.clue_cell.append([x, y]) change = True while change: change = False for chain in self.chains: if chain.reveal != 0 and chain.reveal != len(chain.clues): for chain_t in self.chains: if chain_t != chain: if chain_t.clues.issubset(chain.clues): change = True chain.clues -= chain_t.clues chain.reveal -= chain_t.reveal else: change = True self.chains.remove(chain) self.clue_cell.remove(chain.coordinate) for clue in chain.clues: self.cells[clue[0]][clue[1]].mined = chain.reveal / len(chain.clues) self.cells[clue[0]][clue[1]].probability = self.cells[clue[0]][clue[1]].mined if chain.reveal == 0: self.clear_cell.append([clue[0], clue[1]]) else: self.mine_cell.append([clue[0], clue[1]]) self.unknown_cell.remove([clue[0], clue[1]]) self.renew_chains(clue[0], clue[1]) for chain in self.chains: probability = chain.reveal / len(chain.clues) for clue in chain.clues: self.cells[clue[0]][clue[1]].probability = probability def queue_sort(self): for i in range(self.front + 1, self.rear): # sort queue according to probability, insertion sort for almost sorted array key = self.queue[i] j = i - 1 while j >= self.front and self.cells[self.queue[j][0]][self.queue[j][1]].probability > \ self.cells[key[0]][key[1]].probability: self.queue[j + 1] = self.queue[j] j -= 1 self.queue[j + 1] = key # for i in range(front, rear): # print('probability', queue[i], self.cells[queue[i][0]][queue[i][1]].probability) def get_neighbor(self): around = [[-1, -1], [0, -1], [1, -1], [-1, 0], [1, 0], [-1, 1], [0, 1], [1, 1]] for row in range(self.width): for col in range(self.length): count = 0 for i in range(len(around)): x_around = row + around[i][0] y_around = col + around[i][1] if x_around < 0 or y_around < 0 or x_around > self.width - 1 or y_around > self.length - 1 or \ self.cells[x_around][y_around].mined != -1: continue count += 1 self.cells[row][col].neighbor = count def uncertainty(self): q_prob = self.cells[self.queue[self.front][0]][self.queue[self.front][1]].probability c_prob = (self.num - len(self.mine_cell)) / len(self.unknown_cell) self.get_neighbor() if q_prob > c_prob: coor = [] neighbor = 9 for row in range(self.width): for col in range(self.length): if self.visit[self.cells[row][col].coordinate[0]][self.cells[row][col].coordinate[1]] == 1 or \ self.cells[row][col].probability != 1: continue if self.cells[row][col].neighbor < neighbor: neighbor = self.cells[row][col].neighbor coor = self.cells[row][col].coordinate self.cells[coor[0]][coor[1]].probability = c_prob self.visit[coor[0]][coor[1]] = 1 self.queue.append([coor[0], coor[1]]) self.rear += 1 self.queue_sort() else: i = self.front while i < self.rear: if self.cells[self.queue[i][0]][self.queue[i][1]].probability > q_prob: break i += 1 pos = self.front for j in range(self.front + 1, i): if self.cells[self.queue[j][0]][self.queue[j][1]].neighbor < \ self.cells[self.queue[pos][0]][self.queue[pos][1]].neighbor: pos = j t = self.queue[pos] self.queue[pos] = self.queue[self.front] self.queue[self.front] = t def info_display(self): print('Knowledge base about the board: ') print('Unknown cells: ', self.unknown_cell) print('Clear cells: ', self.clear_cell) print('Mine cells: ', self.mine_cell) print('Clue cells: ', self.clue_cell) def step(self): self.queue_sort() if self.cells[self.queue[self.front][0]][self.queue[self.front][1]].probability != 0: self.uncertainty() x, y = self.queue[self.front][0], self.queue[self.front][1] self.front += 1 next_step = [[-1, -1], [0, -1], [1, -1], [-1, 0], [1, 0], [-1, 1], [0, 1], [1, 1]] for i in range(len(next_step)): x_next = x + next_step[i][0] y_next = y + next_step[i][1] if x_next < 0 or y_next < 0 or x_next > self.width - 1 or y_next > self.length - 1 or \ self.visit[x_next][y_next] == 1: continue self.visit[x_next][y_next] = 1 self.queue.append([x_next, y_next]) self.rear += 1 return x, y def mine_sweeper(self): game_over = False receive_prob = 0.9 while self.front < self.rear: if len(self.unknown_cell) == 0 or len(self.mine_cell) == self.num: break if self.cells[self.queue[self.front][0]][self.queue[self.front][1]].probability != 0: self.uncertainty() x, y = self.queue[self.front][0], self.queue[self.front][1] self.front += 1 if self.cells[x][y].mined != 1: self.info_display() self.reveal_query(x, y) if self.cells[x][y].reveal == -1: game_over = True break if random.random() < receive_prob: self.clues_get(x, y) self.influence_chains(x, y) next_step = [[-1, -1], [0, -1], [1, -1], [-1, 0], [1, 0], [-1, 1], [0, 1], [1, 1]] for i in range(len(next_step)): x_next = x + next_step[i][0] y_next = y + next_step[i][1] if x_next < 0 or y_next < 0 or x_next > self.width - 1 or y_next > self.length - 1 or \ self.visit[x_next][y_next] == 1: continue self.visit[x_next][y_next] = 1 self.queue.append([x_next, y_next]) self.rear += 1 self.queue_sort() if game_over: print('Game over, computer lost!') else: self.info_display() print('Computer win!') if __name__ == '__main__': width = 10 length = 10 num = 30 #board = mine_generate(width, length, num) board = np.array([[0,1,0,1,0], [0,0,1,0,0], [0,1,0,1,0], [0,0,0,0,0], [0,0,0,0,0]]) print(board) receive_prob = 1 mine_sweeper = MineSweeper(width, length, num) # mine_sweeper.mine_sweeper() while 1: x, y = mine_sweeper.step() if mine_sweeper.cells[x][y].mined != 1: mine_sweeper.cells[x][y].reveal = int(input('The state of Position (' + str(x) + ', ' + str(y) + '): ')) if random.random() < receive_prob: mine_sweeper.clues_get(x, y) mine_sweeper.influence_chains(x, y) if mine_sweeper.cells[x][y].reveal == -1: break if len(mine_sweeper.mine_cell) == num or not len(mine_sweeper.unknown_cell): # mine_sweeper.info_display() break
# ------------------------------------------------------------------------- # # Author: RRD # # Created: 24/10/2012 # Copyright: (c) rdamiani 2012 # Licence: <your licence> # ------------------------------------------------------------------------- import numpy as np def frustum(Db, Dt, H): """This function returns a frustum's volume and center of mass, CM INPUT: Parameters ---------- Db : float, base diameter Dt : float, top diameter H : float, height OUTPUTs: ------- vol : float, volume cm : float, geometric centroid relative to bottom (center of mass if uniform density) """ vol = frustumVol(Db, Dt, H, diamFlag=True) cm = frustumCG(Db, Dt, H, diamFlag=True) # vol = np.pi/12*H * (Db**2 + Dt**2 + Db * Dt) # cm = H/4 * (Db**2 + 3*Dt**2 + 2*Db*Dt) / (Db**2 + Dt**2 + Db*Dt) return vol, cm def frustumVol(rb, rt, h, diamFlag=False): """This function returns a frustum's volume with radii or diameter inputs. INPUTS: Parameters ---------- rb : float (scalar/vector), base radius rt : float (scalar/vector), top radius h : float (scalar/vector), height diamFlag : boolean, True if rb and rt are entered as diameters OUTPUTs: ------- vol : float (scalar/vector), volume """ if diamFlag: # Convert diameters to radii rb *= 0.5 rt *= 0.5 return np.pi * (h / 3.0) * (rb * rb + rt * rt + rb * rt) def frustumCG(rb, rt, h, diamFlag=False): """This function returns a frustum's center of mass/gravity (centroid) with radii or diameter inputs. NOTE: This is for a SOLID frustum, not a shell INPUTS: Parameters ---------- rb : float (scalar/vector), base radius rt : float (scalar/vector), top radius h : float (scalar/vector), height diamFlag : boolean, True if rb and rt are entered as diameters OUTPUTs: ------- cg : float (scalar/vector), center of mass/gravity (centroid) """ if diamFlag: # Convert diameters to radii rb *= 0.5 rt *= 0.5 return 0.25 * h * (rb ** 2 + 2.0 * rb * rt + 3.0 * rt ** 2) / (rb ** 2 + rb * rt + rt ** 2) def frustumIzz(rb, rt, h, diamFlag=False): """This function returns a frustum's mass-moment of inertia (divided by density) about the central (axial) z-axis with radii or diameter inputs. NOTE: This is for a SOLID frustum, not a shell INPUTS: Parameters ---------- rb : float (scalar/vector), base radius rt : float (scalar/vector), top radius h : float (scalar/vector), height diamFlag : boolean, True if rb and rt are entered as diameters OUTPUTs: ------- Izz : float (scalar/vector), Moment of inertia about z-axis """ if diamFlag: # Convert diameters to radii rb *= 0.5 rt *= 0.5 # Integrate 2*pi*r*r^2 dr dz from r=0 to r(z), z=0 to h # Also equals 0.3*Vol * (rt**5.0 - rb**5.0) / (rt**3.0 - rb**3.0) # Also equals (0.1*np.pi*h * (rt**5.0 - rb**5.0) / (rt - rb) ) return 0.1 * np.pi * h * (rt ** 4.0 + rb * rt ** 3 + rb ** 2 * rt ** 2 + rb ** 3 * rt + rb ** 4.0) def frustumIxx(rb, rt, h, diamFlag=False): """This function returns a frustum's mass-moment of inertia (divided by density) about the transverse x/y-axis passing through the center of mass with radii or diameter inputs. NOTE: This is for a SOLID frustum, not a shell INPUTS: Parameters ---------- rb : float (scalar/vector), base radius rt : float (scalar/vector), top radius h : float (scalar/vector), height diamFlag : boolean, True if rb and rt are entered as diameters OUTPUTs: ------- Ixx=Iyy : float (scalar/vector), Moment of inertia about x/y-axis through center of mass (principle axes) """ if diamFlag: # Convert diameters to radii rb *= 0.5 rt *= 0.5 # Integrate pi*r(z)^4/4 + pi*r(z)^2*(z-z_cg)^2 dz from z=0 to h A = 0.5 * frustumIzz(rb, rt, h) B = ( np.pi * h ** 3 / 80.0 * ( (rb ** 4 + 4.0 * rb ** 3 * rt + 10.0 * rb ** 2 * rt ** 2 + 4.0 * rb * rt ** 3 + rt ** 4) / (rb ** 2 + rb * rt + rt ** 2) ) ) return A + B def frustumShellVol(rb, rt, t, h, diamFlag=False): """This function returns a frustum shell's volume (for computing mass with density) with radii or diameter inputs. NOTE: This is for a frustum SHELL, not a solid INPUTS: Parameters ---------- rb : float (scalar/vector), base radius rt : float (scalar/vector), top radius t : float (scalar/vector), thickness h : float (scalar/vector), height diamFlag : boolean, True if rb and rt are entered as diameters OUTPUTs: ------- cg : float (scalar/vector), center of mass/gravity (ventroid) """ if diamFlag: # Convert diameters to radii rb *= 0.5 rt *= 0.5 # Integrate 2*pi*r*dr*dz from r=ri(z) to ro(z), z=0 to h rb_o = rb rb_i = rb - t rt_o = rt rt_i = rt - t # ( (np.pi*h/3.0) * ( (rb_o**2 + rb_o*rt_o + rt_o**2) - (rb_i**2 + rb_i*rt_i + rt_i**2) ) ) return frustumVol(rb_o, rt_o, h) - frustumVol(rb_i, rt_i, h) def frustumShellCG(rb, rt, t, h, diamFlag=False): """This function returns a frustum's center of mass/gravity (centroid) with radii or diameter inputs. NOTE: This is for a frustum SHELL, not a solid INPUTS: Parameters ---------- rb : float (scalar/vector), base radius rt : float (scalar/vector), top radius t : float (scalar/vector), thickness h : float (scalar/vector), height diamFlag : boolean, True if rb and rt are entered as diameters OUTPUTs: ------- cg : float (scalar/vector), center of mass/gravity (ventroid) """ if diamFlag: # Convert diameters to radii rb *= 0.5 rt *= 0.5 # Integrate 2*pi*r*z*dr*dz/V from r=ri(z) to ro(z), z=0 to h rb_o = rb rb_i = rb - t rt_o = rt rt_i = rt - t A = (rb_o ** 2 + 2.0 * rb_o * rt_o + 3.0 * rt_o ** 2) - (rb_i ** 2 + 2.0 * rb_i * rt_i + 3.0 * rt_i ** 2) B = (rb_o ** 2 + rb_o * rt_o + rt_o ** 2) - (rb_i ** 2 + rb_i * rt_i + rt_i ** 2) return h * A / 4.0 / B def frustumShellIzz(rb, rt, t, h, diamFlag=False): """This function returns a frustum's mass-moment of inertia (divided by density) about the central (axial) z-axis with radii or diameter inputs. NOTE: This is for a frustum SHELL, not a solid INPUTS: Parameters ---------- rb : float (scalar/vector), base radius rt : float (scalar/vector), top radius t : float (scalar/vector), thickness h : float (scalar/vector), height diamFlag : boolean, True if rb and rt are entered as diameters OUTPUTs: ------- Izz : float (scalar/vector), Moment of inertia about z-axis """ if diamFlag: # Convert diameters to radii rb *= 0.5 rt *= 0.5 # Integrate 2*pi*r*dr*dz from r=ri(z) to ro(z), z=0 to h rb_o = rb rb_i = rb - t rt_o = rt rt_i = rt - t return frustumIzz(rb_o, rt_o, h) - frustumIzz(rb_i, rt_i, h) def frustumShellIxx(rb, rt, t, h, diamFlag=False): """This function returns a frustum's mass-moment of inertia (divided by density) about the transverse x/y-axis passing through the center of mass with radii or diameter inputs. NOTE: This is for a frustum SHELL, not a solid INPUTS: Parameters ---------- rb : float (scalar/vector), base radius rt : float (scalar/vector), top radius t : float (scalar/vector), thickness h : float (scalar/vector), height diamFlag : boolean, True if rb and rt are entered as diameters OUTPUTs: ------- Ixx=Iyy : float (scalar/vector), Moment of inertia about x/y-axis through center of mass (principle axes) """ if diamFlag: # Convert diameters to radii rb *= 0.5 rt *= 0.5 # Integrate 2*pi*r*dr*dz from r=ri(z) to ro(z), z=0 to h rb_o = rb rb_i = rb - t rt_o = rt rt_i = rt - t return frustumIxx(rb_o, rt_o, h) - frustumIxx(rb_i, rt_i, h) if __name__ == "__main__": Db = 6.5 Dt = 4.0 H = 120.0 print("From commonse.Frustum: Sample Volume and CM of FRUSTUM=" + 4 * "{:8.4f}, ").format( *frustum(Db, Dt, H)[0].flatten() ) def main(): pass
from __future__ import absolute_import, print_function import unittest from metavariant.components import VariantComponents, findall_aminochanges_in_text, parse_components_from_aminochange AA_synonyms = {'Leu653Arg': ['L653R', 'Leu653Arg', '(Leu653Arg)'], 'Cys344Tyr': ['(Cys344Tyr)', 'C344Y', 'Cys344Tyr'], } good = 0 bad = 0 total = 6 class TestAminoChangeSearch(unittest.TestCase): def test_findall_aminochanges_in_text(self): for a_chg in AA_synonyms.keys(): found = findall_aminochanges_in_text('%r' % AA_synonyms[a_chg]) for synonym in AA_synonyms[a_chg]: assert synonym in found def test_parse_components_from_aminochange(self): for a_chg_list in AA_synonyms.values(): for a_chg in a_chg_list: assert parse_components_from_aminochange(a_chg) is not None def test_posedits_from_aminochange(self): achg = 'Leu653Arg' comp = VariantComponents(aminochange=achg) assert comp.posedit == achg assert 'L653R' in comp.posedit_slang
import logging import time from typing import Optional, Tuple import numpy as np from torch import Tensor import puc from puc import PUcKernelType from apu import config from apu.datasets.types import TensorGroup from apu.utils import ViewTo1D class PUcLearner: r""" Encapsulates learning for the PUc learner""" BASE_NAME = "PUc" def __init__(self, prior: Optional[float] = None): self._train_start = None try: self._kernel_type = PUcKernelType[config.KERNEL_TYPE.upper()] except KeyError: raise ValueError(f"Unknown kernel type: {config.KERNEL_TYPE.upper()}") self._model = None self._gamma_list = np.mgrid[.1:.9:9j] self._lambda_list = np.logspace(-6, 1, 20) self._prior = prior if prior is not None else config.TRAIN_PRIOR self._flatten = ViewTo1D() def _flatten_to_np(self, x: Tensor) -> np.ndarray: r""" Takes a \p torch \p Tensor object and flattens it to be 1D for an SVM """ return self._flatten(x).cpu().numpy() def name(self) -> str: r""" Name of the learner""" return self.BASE_NAME def fit(self, ts_grp: TensorGroup): r""" Fit the PUc learner """ msg = f"Training PUc with {config.KERNEL_TYPE.upper()} kernel & prior {self._prior:.2}" logging.info(f"Starting: {msg}") self._train_start = time.time() # Since PUc uses an SVM, must be 1D data vector p_x = self._flatten_to_np(ts_grp.p_x) u_tr_x = self._flatten_to_np(ts_grp.u_tr_x) u_te_x = self._flatten_to_np(ts_grp.u_te_x) # self._model = puc.sq_pu(xp=p_x, xu=u_tr_x, self._model = puc.fit(xp_tr=p_x, xu_tr=u_tr_x, xu_te=u_te_x, gamma_list=self._gamma_list, kertype=self._kernel_type.value, prior=self._prior, lambda_list=self._lambda_list) logging.info(f"COMPLETED: {msg}") def decision_function(self, x: Tensor) -> np.ndarray: r""" Predicts the tensor labels """ assert self._model is not None, "Model not trained" return puc.decision_function(self._model, self._flatten_to_np(x)) def decision_boundary(self) -> Tuple[float, float]: r""" Gets linear decision boundary """ assert self._model is not None, "Model not trained" assert self._kernel_type == PUcKernelType.LINEAR, "Only linear boundary supported" alpha = self._model["alpha"] m = -alpha[0] / alpha[1] b = -alpha[2] / alpha[1] return m, b def predict(self, x: Tensor) -> np.ndarray: r""" Predicts the tensor labels """ assert self._model is not None, "Model not trained" return puc.predict(self._model, self._flatten_to_np(x))
from .bymean import DistanceFromMeanClassifier from .tensorflow import * from .tflearn import *
from antlr4 import Token, DiagnosticErrorListener, FileStream, CommonTokenStream from antlr4.error.ErrorListener import ErrorListener from pygls.types import Diagnostic, Range, DiagnosticSeverity, Position, Location from .antlr_build.diagnosis.SystemVerilogLexer import SystemVerilogLexer as DiagnosisLexer from .antlr_build.diagnosis.SystemVerilogParser import SystemVerilogParser as DiagnosisParser # Diagnosis is extremly slow at the moment, # should use the antlr, diagnostic tool to figure # out why. def parse(self, fname: str): input_stream = FileStream(fname) lexer = DiagnosisLexer(input_stream) stream = CommonTokenStream(lexer) parser = DiagnosisParser(stream) listener = DiagnosisListener() parser.addErrorListener(listener) tree = parser.system_verilog_text() return listener.errors class DiagnosisListener(DiagnosticErrorListener): def __init__(self): self.errors: [Diagnostic] = [] super().__init__() def syntaxError(self, recognizer, offendingSymbol: Token, line, column, msg, e): err = Diagnostic( range=Range(Position(line, column), Position(line, column+len(offendingSymbol.text))), message=msg ) self.errors.append(err)
# Author of Aqsa: Yulay Musin from django.conf.urls.i18n import i18n_patterns from django.conf.urls import url, include from aqsa_apps.account.urls import before_login_urlpatterns from django.views.generic import TemplateView from django.conf import settings from django.conf.urls.static import static urlpatterns = i18n_patterns( url(r'^registration/', include(before_login_urlpatterns)), url(r'^account/', include('aqsa_apps.account.urls')), url(r'^wallet_tag_etc/', include('aqsa_apps.wallet_tag_etc.urls')), url(r'^transaction/', include('aqsa_apps.transaction.urls')), url(r'^export_to_file/', include('aqsa_apps.export_to_file.urls')), url(r'^import_from_file/', include('aqsa_apps.import_from_file.urls')), url(r'^dashboard/', include('aqsa_apps.dashboard.urls')), url(r'^report/', include('aqsa_apps.report.urls')), url(r'^', include('aqsa_apps.about.urls')), ) urlpatterns += [ url(r'^robots.txt$', TemplateView.as_view(template_name='robots.txt', content_type='text/plain')), url(r'^humans.txt$', TemplateView.as_view(template_name='humans.txt', content_type='text/plain')), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
# Copyright (c) 2021, Mahmood Sharif, Keane Lucas, Michael K. Reiter, Lujo Bauer, and Saurabh Shintre # This file is code used in Malware Makeover """ Randomize multiple binaries to test that randomization doesn't break functionality. """ import random import time random.seed(time.time()) import sys sys.path.append('orp') import peLib import copy import func import inp import swap import reorder import equiv import preserv import disp import semnops from randtoolkit import reanalyze_functions, patch VER="0.3" # ALLOWED_TRANSFORMS = ['equiv', 'swap', 'preserv', \ # 'reorder', 'disp', 'semnops'] ALLOWED_TRANSFORMS = ['disp', 'semnops'] print('******* Allowed transformations: %s *******'%ALLOWED_TRANSFORMS) def randomize(input_file, n_randomize=10): pe_file, epilog = peLib.read_pe(input_file) # init DispState disp_state = disp.DispState(pe_file) # get the changed byte sets functions = inp.get_functions(input_file) levels = func.classify_functions(functions) func.analyze_functions(functions, levels) # see what happens when randomizing again and again and again... for i_r in range(n_randomize): global_diffs = [] changed_bytes = set() changed_insts = set() # transform counts transform_counts = [0]*len(ALLOWED_TRANSFORMS) for f in filter(lambda x: x.level != -1, functions.itervalues()): # skip the SEH prolog and epilog functions .. they cause trouble if "_SEH_" in f.name: continue selected_transform = random.choice(ALLOWED_TRANSFORMS) transform_counts[ALLOWED_TRANSFORMS.index(selected_transform)] += 1 if selected_transform=='equiv': # equivs diffs, c_b, c_i = equiv.do_equiv_instrs(f, p=0.5) if diffs: changed_bytes.update(c_b) changed_insts.update(c_i) global_diffs.extend(diffs) patch(pe_file, disp_state, diffs) elif selected_transform=='swap': # swaps swap.liveness_analysis(f.code) live_regs = swap.get_reg_live_subsets(f.instrs, f.code, f.igraph) swaps = swap.get_reg_swaps(live_regs) diffs, c_b, c_i = swap.do_multiple_swaps(f, swaps, p=0.5) if diffs: changed_bytes.update(c_b) changed_insts.update(c_i) global_diffs.extend(diffs) patch(pe_file, disp_state, diffs) elif selected_transform=='preserv': # preservs preservs, avail_regs = preserv.get_reg_preservations(f) diffs, c_b, c_i = preserv.do_reg_preservs(f, preservs, avail_regs, p=0.5) if diffs: changed_bytes.update(c_b) changed_insts.update(c_i) global_diffs.extend(diffs) patch(pe_file, disp_state, diffs) elif selected_transform=='reorder': # reorders diffs, c_b = reorder.do_random_reordering(f, pe_file) if diffs: changed_bytes.update(c_b) global_diffs.extend(diffs) patch(pe_file, disp_state, diffs) elif selected_transform=='disp': # displacements diffs, c_b, c_i = disp.displace_block(f, disp_state) if diffs: changed_bytes.update(c_b) changed_insts.update(c_i) global_diffs.extend(diffs) patch(pe_file, disp_state, diffs) elif selected_transform=='semnops': # semantic nops diffs, c_b = semnops.do_semnops(f) if diffs: changed_bytes.update(c_b) global_diffs.extend(diffs) patch(pe_file, disp_state, diffs) else: raise ValueError('Unknown transform type: %s'%transform) # update print '[iter %d]'%i_r print 'changed %d bytes (and %d instructions)'\ %(len(changed_bytes),len(changed_insts)) print 'transformation counts: %s'%transform_counts # reanalyze functions (if not the last iteration) if i_r<n_randomize-1: reanalyze_functions(functions, levels) # add displacements to the pe adj_pe = peLib.AdjustPE(pe_file) adj_pe.update_displacement(disp_state) # write output output_file = input_file.replace(".exe", "") + "_patched-w-compositions.exe" peLib.write_pe(output_file, pe_file, epilog) pe_file.close() # if need to merge with /tmp/reloc.data if disp_state.peinfo.getRelocationSize()>0: disp._merge_file(output_file) if __name__=="__main__": binary_paths = [\ 'test/caffeine/caffeine.exe', \ 'test/checksum-cygwin/cksum.exe', \ 'test/diff-cygwin/diff.exe', \ 'test/find-cygwin/find.exe', \ 'test/grep-cygwin/grep.exe', \ 'test/info-cygwin/info.exe', \ 'test/less-cygwin/less.exe', \ 'test/mv-cygwin/mv.exe', \ 'test/pip/pip.exe', \ 'test/python/python.exe' ] # import os # mal_dir = '../../data/virusshare-samples/samples/' # bin_names = os.listdir(mal_dir) # binary_paths = [os.path.join(mal_dir, bin_name, bin_name) for bin_name in bin_names] for bin_path in binary_paths: print('====================') print('Randomizing "%s"...'%(bin_path)) randomize(bin_path, n_randomize=10)
""" Write a Python program to append text in a existing file """ def append_text(file_name): with open(file_name, "a") as file: file.write("Django is the Python high level web framework!\n") file.write("and flask is also a good python framework") with open(file_name, "r") as read_file: res = [i for i in read_file] return res print(append_text("append.txt"))
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from classy_vision import meters from classy_vision.meters import VideoAccuracyMeter from test.generic.meter_test_utils import ClassificationMeterTest class TestVideoAccuracyMeter(ClassificationMeterTest): def test_accuracy_meter_registry(self): accuracy_meter = meters.build_meter( { "name": "video_accuracy", "topk": [1, 2], "clips_per_video_train": 1, "clips_per_video_test": 2, } ) self.assertTrue(isinstance(accuracy_meter, VideoAccuracyMeter)) def test_single_meter_update_and_reset(self): """ This test verifies that the meter works as expected on a single update + reset + same single update. """ meter = VideoAccuracyMeter( topk=[1, 2], clips_per_video_train=1, clips_per_video_test=2 ) # Batchsize = 3, num classes = 3, clips_per_video is 2, # score is a value in {1, 2, 3} model_output = torch.tensor( [[3, 2, 1], [3, 1, 2], [1, 2, 2], [1, 2, 3], [2, 2, 2], [1, 3, 2]], dtype=torch.float, ) # Class 0 is the correct class for video 1, class 2 for video 2, and # class 1 for video target = torch.tensor([0, 0, 1, 1, 2, 2]) # Only the first sample has top class correct, first and third # sample have correct class in top 2 expected_value = {"top_1": 1 / 3.0, "top_2": 3 / 3.0} self.meter_update_and_reset_test( meter, model_output, target, expected_value, is_train=False ) def test_double_meter_update_and_reset(self): meter = VideoAccuracyMeter( topk=[1, 2], clips_per_video_train=1, clips_per_video_test=2 ) # Batchsize = 3, num classes = 3, clips_per_video is 2, # score is a value in {1, 2, 3}. # Data of two batch is provided model_outputs = [ torch.tensor( [[3, 2, 1], [3, 1, 2], [1, 2, 2], [1, 2, 3], [2, 2, 2], [1, 3, 2]], dtype=torch.float, ), torch.tensor( [[3, 2, 1], [3, 1, 2], [1, 2, 2], [1, 2, 3], [2, 2, 2], [1, 3, 2]], dtype=torch.float, ), ] # Class 0 is the correct class for video 1, class 2 for video 2, and # class 1 for video, in both batches targets = [torch.tensor([0, 0, 1, 1, 2, 2]), torch.tensor([0, 0, 1, 1, 2, 2])] # First batch has top-1 accuracy of 1/3.0, top-2 accuracy of 2/3.0 # Second batch has top-1 accuracy of 2/3.0, top-2 accuracy of 3/3.0 expected_value = {"top_1": 2 / 6.0, "top_2": 6 / 6.0} self.meter_update_and_reset_test( meter, model_outputs, targets, expected_value, is_train=False ) def test_meter_invalid_model_output(self): meter = VideoAccuracyMeter( topk=[1, 2], clips_per_video_train=1, clips_per_video_test=2 ) # This model output has 3 dimensions instead of expected 2 model_output = torch.tensor( [[[3, 2, 1], [1, 2, 3]], [[-1, -3, -4], [-10, -90, -100]]], dtype=torch.float, ) target = torch.tensor([0, 1, 2]) self.meter_invalid_meter_input_test(meter, model_output, target) def test_meter_invalid_target(self): meter = VideoAccuracyMeter( topk=[1, 2], clips_per_video_train=1, clips_per_video_test=2 ) model_output = torch.tensor( [[3, 2, 1], [3, 1, 2], [1, 2, 2], [1, 2, 3], [2, 2, 2], [1, 3, 2]], dtype=torch.float, ) # Target has 3 dimensions instead of expected 1 or 2 target = torch.tensor([[[0, 1, 2], [0, 1, 2]]]) self.meter_invalid_meter_input_test(meter, model_output, target) # Target of clips from the same video is not consistent target = torch.tensor([0, 2, 1, 1, 2, 2]) self.meter_invalid_update_test(meter, model_output, target, is_train=False) def test_meter_invalid_topk(self): meter = VideoAccuracyMeter( topk=[1, 5], clips_per_video_train=1, clips_per_video_test=2 ) model_output = torch.tensor( [[3, 2, 1], [3, 1, 2], [1, 2, 2], [1, 2, 3], [2, 2, 2], [1, 3, 2]], dtype=torch.float, ) target = torch.tensor([0, 1, 2]) self.meter_invalid_meter_input_test(meter, model_output, target) def test_meter_get_set_classy_state_test(self): # In this test we update meter0 with model_output0 & target0 # and we update meter1 with model_output1 & target1 then # transfer the state from meter1 to meter0 and validate they # give same expected value. # Expected value is the expected value of meter1 meters = [ VideoAccuracyMeter( topk=[1, 2], clips_per_video_train=1, clips_per_video_test=2 ), VideoAccuracyMeter( topk=[1, 2], clips_per_video_train=1, clips_per_video_test=2 ), ] # Batchsize = 3, num classes = 3, score is a value in {1, 2, # 3}...3 is the highest score model_outputs = [ torch.tensor( [[1, 2, 3], [1, 1, 3], [2, 2, 1], [3, 2, 1], [2, 2, 2], [2, 3, 1]], dtype=torch.float, ), torch.tensor( [[3, 2, 1], [3, 1, 2], [1, 2, 2], [1, 2, 3], [2, 2, 2], [1, 3, 2]], dtype=torch.float, ), ] # Class 2 is the correct class for sample 1, class 0 for sample 2, etc targets = [torch.tensor([0, 0, 1, 1, 2, 2]), torch.tensor([0, 0, 1, 1, 2, 2])] # Value for second update expected_value = {"top_1": 1 / 3.0, "top_2": 3 / 3.0} self.meter_get_set_classy_state_test( meters, model_outputs, targets, expected_value, is_train=False ) def test_meter_distributed(self): # Meter0 will execute on one process, Meter1 on the other meters = [ VideoAccuracyMeter( topk=[1, 2], clips_per_video_train=1, clips_per_video_test=2 ), VideoAccuracyMeter( topk=[1, 2], clips_per_video_train=1, clips_per_video_test=2 ), ] # Batchsize = 3, num classes = 3, score is a value in {1, 2, # 3}...3 is the highest score model_outputs = [ torch.tensor( [[1, 2, 3], [1, 1, 3], [2, 2, 1], [3, 2, 1], [2, 2, 2], [2, 3, 1]], dtype=torch.float, ), # Meter 0 torch.tensor( [[3, 2, 1], [3, 1, 2], [1, 2, 2], [1, 2, 3], [2, 2, 2], [1, 3, 2]], dtype=torch.float, ), # Meter 1 torch.tensor( [[1, 2, 3], [1, 1, 3], [2, 2, 1], [3, 2, 1], [2, 2, 2], [2, 3, 1]], dtype=torch.float, ), # Meter 0 torch.tensor( [[3, 2, 1], [3, 1, 2], [1, 2, 2], [1, 2, 3], [2, 2, 2], [1, 3, 2]], dtype=torch.float, ), # Meter 1 ] # For meter 0, class 2 is the correct class for sample 1, class 0 for sample 2, # etc targets = [ torch.tensor([0, 0, 1, 1, 2, 2]), # Meter 0 torch.tensor([0, 0, 1, 1, 2, 2]), # Meter 1 torch.tensor([0, 0, 1, 1, 2, 2]), # Meter 0 torch.tensor([0, 0, 1, 1, 2, 2]), # Meter 1 ] # In first two updates there are 3 correct top-2, 5 correct in top 2 # The same occurs in the second two updates and is added to first expected_values = [ {"top_1": 1 / 6.0, "top_2": 4 / 6.0}, # After one update to each meter {"top_1": 2 / 12.0, "top_2": 8 / 12.0}, # After two updates to each meter ] self.meter_distributed_test( meters, model_outputs, targets, expected_values, is_train=False )
# generated by datamodel-codegen: # filename: schema/api/teams/createUser.json # timestamp: 2021-10-01T19:50:55+00:00 from __future__ import annotations from typing import List, Optional from pydantic import BaseModel, Field from ...entity.teams import user from ...type import basic, profile class RequestToCreateUserEntity(BaseModel): name: user.UserName displayName: Optional[str] = Field( None, description="Name used for display purposes. Example 'FirstName LastName'" ) email: basic.Email timezone: Optional[str] = Field(None, description='Timezone of the user') isBot: Optional[bool] = Field( None, description='When true indicates user is a bot with appropriate privileges', ) isAdmin: Optional[bool] = Field( False, description='When true indicates user is an adiministrator for the sytem with superuser privileges', ) profile: Optional[profile.Profile] = None teams: Optional[List[basic.Uuid]] = Field( None, description='Teams that the user belongs to' )
#!/usr/bin/env python # coding: utf8 # # Copyright (c) 2020 Centre National d'Etudes Spatiales (CNES). # # This file is part of PANDORA # # https://github.com/CNES/Pandora # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module contains functions associated to the disparity map computation step. """ import logging from abc import ABCMeta, abstractmethod from typing import Dict, Union, Tuple import numpy as np import xarray as xr from json_checker import Checker, And, Or from scipy.ndimage.morphology import binary_dilation import pandora.constants as cst from pandora.img_tools import compute_std_raster class AbstractDisparity: """ Abstract Disparity class """ __metaclass__ = ABCMeta disparity_methods_avail: Dict = {} cfg = None def __new__(cls, **cfg: dict): """ Return the plugin associated with the validation_method given in the configuration :param cfg: configuration {'validation_method': value} :type cfg: dictionary """ if cls is AbstractDisparity: if isinstance(cfg["disparity_method"], str): try: return super(AbstractDisparity, cls).__new__(cls.disparity_methods_avail[cfg["disparity_method"]]) except KeyError: logging.error("No disparity method named % supported", cfg["disparity_method"]) raise KeyError else: if isinstance(cfg["disparity_method"], unicode): # type: ignore # pylint: disable=undefined-variable # creating a plugin from registered short name given as unicode (py2 & 3 compatibility) try: return super(AbstractDisparity, cls).__new__( cls.disparity_methods_avail[cfg["disparity_method"].encode("utf-8")] ) except KeyError: logging.error( "No disparity method named % supported", cfg["disparity_method"], ) raise KeyError else: return super(AbstractDisparity, cls).__new__(cls) return None @classmethod def register_subclass(cls, short_name: str): """ Allows to register the subclass with its short name :param short_name: the subclass to be registered :type short_name: string """ def decorator(subclass): """ Registers the subclass in the available methods :param subclass: the subclass to be registered :type subclass: object """ cls.disparity_methods_avail[short_name] = subclass return subclass return decorator @abstractmethod def desc(self): """ Describes the disparity method """ print("Disparity method description") @abstractmethod def to_disp(self, cv: xr.Dataset, img_left: xr.Dataset = None, img_right: xr.Dataset = None) -> xr.Dataset: """ Disparity computation by applying the Winner Takes All strategy :param cv: the cost volume datset with the data variables: - cv 3D xarray.DataArray (row, col, disp) - confidence_measure 3D xarray.DataArray (row, col, indicator) :type cv: xarray.Dataset, :param img_left: left Dataset image containing : - im : 2D (row, col) xarray.DataArray - msk : 2D (row, col) xarray.DataArray :type img_left: xarray.Dataset :param img_right: right Dataset image containing : - im : 2D (row, col) xarray.DataArray - msk : 2D (row, col) xarray.DataArray :type img_right: xarray.Dataset :return: Dataset with the disparity map and the confidence measure with the data variables : - disparity_map 2D xarray.DataArray (row, col) - confidence_measure 3D xarray.DataArray (row, col, indicator) :rtype: xarray.Dataset """ @staticmethod def coefficient_map(cv: xr.DataArray) -> xr.DataArray: """ Return the coefficient map :param cv: cost volume :type cv: xarray.Dataset, with the data variables cost_volume 3D xarray.DataArray (row, col, disp) :return: the coefficient map :rtype: 2D DataArray (row, col) """ row = cv.coords["row"].data col = cv.coords["col"].data # Create the coefficient map coeff_map = xr.DataArray( cv["cost_volume"].sel(disp=cv["disp_indices"]).data.astype(np.float32), coords=[("row", row), ("col", col)], ) coeff_map.name = "Coefficient Map" coeff_map.attrs = cv.attrs return coeff_map @staticmethod def approximate_right_disparity(cv: xr.Dataset, img_right: xr.Dataset, invalid_value: float = 0) -> xr.Dataset: """ Create the right disparity map, by a diagonal search for the minimum in the left cost volume ERNST, Ines et HIRSCHMÜLLER, Heiko. Mutual information based semi-global stereo matching on the GPU. In : International Symposium on Visual Computing. Springer, Berlin, Heidelberg, 2008. p. 228-239. :param cv: the cost volume dataset with the data variables: - cost_volume 3D xarray.DataArray (row, col, disp) - confidence_measure 3D xarray.DataArray (row, col, indicator) :type cv: xarray.Dataset :param img_right: right Dataset image containing : - im : 2D (row, col) xarray.DataArray - msk : 2D (row, col) xarray.DataArray :type img_right: xarray.Dataset :param invalid_value: disparity to assign to invalid pixels :type invalid_value: float :return: Dataset with the right disparity map, the confidence measure and the validity mask with \ the data variables : - disparity_map 2D xarray.DataArray (row, col) - confidence_measure 3D xarray.DataArray (row, col, indicator) - validity_mask 2D xarray.DataArray (row, col) :rtype: xarray.Dataset """ disp_range = cv.coords["disp"].data.astype(float) col_range = cv.coords["col"].data row_range = cv.coords["row"].data # Extract integer disparity disp_range = np.extract(np.mod(disp_range, 1) == 0, disp_range) # Allocate the disparity map data = np.zeros((len(row_range), len(col_range))).astype(np.float32) disp_map = xr.Dataset( {"disparity_map": (["row", "col"], data)}, coords={"row": cv.coords["row"], "col": cv.coords["col"]}, ) confidence_measure = compute_std_raster(img_right, cv.attrs["window_size"]) # Create the confidence measure with the original image size and fill it confidence_measure_full = np.full((len(row_range), len(col_range), 1), np.nan, dtype=np.float32) offset = cv.attrs["offset_row_col"] row_off = np.arange(row_range[0] + offset, row_range[-1] - offset + 1) col_off = np.arange(col_range[0] + offset, col_range[-1] - offset + 1) if offset != 0: confidence_measure_full[offset:-offset, offset:-offset, :] = confidence_measure.reshape( (len(row_off), len(col_off), 1) ) else: confidence_measure_full = confidence_measure.reshape((len(row_range), len(col_range), 1)) disp_map["confidence_measure"] = xr.DataArray( data=confidence_measure_full.astype(np.float32), dims=["row", "col", "indicator"], ) # Allocate the validity mask disp_map["validity_mask"] = xr.DataArray( np.zeros(disp_map["disparity_map"].shape, dtype=np.uint16), dims=["row", "col"], ) disp_map.attrs = cv.attrs d_range = cv.coords["disp"].data disp_map.attrs["disp_min"] = d_range[0] disp_map.attrs["disp_max"] = d_range[-1] offset = disp_map.attrs["offset_row_col"] indices_nan = np.isnan(cv["cost_volume"].data) if cv.attrs["type_measure"] == "max": cv["cost_volume"].data[indices_nan] = -np.inf else: cv["cost_volume"].data[indices_nan] = np.inf for col in col_range: x_d = col - disp_range valid = np.where((x_d >= col_range[0]) & (x_d <= col_range[-1])) # The disparity interval is missing in the left image if x_d[valid].size == 0: disp_map["disparity_map"].loc[dict(col=col)] = invalid_value # Invalid pixel : the disparity interval is missing in the right image disp_map["validity_mask"].loc[ dict(col=col) ] += cst.PANDORA_MSK_PIXEL_RIGHT_NODATA_OR_DISPARITY_RANGE_MISSING else: # Diagonal search for the minimum or maximum if cv.attrs["type_measure"] == "max": min_ = ( cv["cost_volume"] .sel( col=xr.DataArray(np.flip(x_d[valid]), dims="disp_"), disp=xr.DataArray(np.flip(disp_range[valid]), dims="disp_"), ) .argmax(dim="disp_") ) else: min_ = ( cv["cost_volume"] .sel( col=xr.DataArray(np.flip(x_d[valid]), dims="disp_"), disp=xr.DataArray(np.flip(disp_range[valid]), dims="disp_"), ) .argmin(dim="disp_") ) # Disparity interval is incomplete if x_d[valid].size != disp_range.size: # Information: the disparity interval is incomplete (border reached in the right image) disp_map["validity_mask"].loc[ dict(col=col) ] += cst.PANDORA_MSK_PIXEL_RIGHT_INCOMPLETE_DISPARITY_RANGE disp_map["disparity_map"].loc[dict(col=col)] = -1 * np.flip(disp_range[valid])[min_.data] # type:ignore cv["cost_volume"].data[indices_nan] = np.nan invalid_mc = np.min(indices_nan, axis=2) # Pixels where the disparity interval is missing in the right image, have a disparity value invalid_value invalid_pixel = np.where(invalid_mc) disp_map["disparity_map"].data[invalid_pixel] = invalid_value if offset > 0: AbstractDisparity.mask_border(disp_map) return disp_map def validity_mask( self, disp: xr.Dataset, img_left: xr.Dataset, img_right: xr.Dataset, cv: xr.Dataset, ) -> None: """ Create the validity mask of the disparity map :param disp: dataset with the disparity map and the confidence measure :type disp: xarray.Dataset with the data variables : - disparity_map 2D xarray.DataArray (row, col) - confidence_measure 3D xarray.DataArray(row, col, indicator) :param img_left: left Dataset image containing : - im : 2D (row, col) xarray.DataArray - msk : 2D (row, col) xarray.DataArray :type img_left: xarray.Dataset :param img_right: right Dataset image containing : - im : 2D (row, col) xarray.DataArray - msk : 2D (row, col) xarray.DataArray :type img_right: xarray.Dataset :param cv: cost volume dataset with the data variables: - cost_volume 3D xarray.DataArray (row, col, disp) - confidence_measure 3D xarray.DataArray (row, col, indicator) :type cv: xarray.Dataset :return: None """ # Allocate the validity mask disp["validity_mask"] = xr.DataArray( np.zeros(disp["disparity_map"].shape, dtype=np.uint16), dims=["row", "col"] ) d_min = int(disp.attrs["disp_min"]) d_max = int(disp.attrs["disp_max"]) col = disp.coords["col"].data # Since disparity map is full size (input images size) offset = disp.attrs["offset_row_col"] # Negative disparity range if d_max < 0: bit_1 = np.where((col + d_max) < (col[0] + offset)) # Information: the disparity interval is incomplete (border reached in the right image) disp["validity_mask"].data[ :, np.where(((col + d_max) >= (col[0] + offset)) & ((col + d_min) < (col[0] + offset))), ] += cst.PANDORA_MSK_PIXEL_RIGHT_INCOMPLETE_DISPARITY_RANGE else: # Positive disparity range if d_min > 0: bit_1 = np.where((col + d_min) > (col[-1] - offset)) # Information: the disparity interval is incomplete (border reached in the right image) disp["validity_mask"].data[ :, np.where(((col + d_min) <= (col[-1] - offset)) & ((col + d_max) > (col[-1] - offset))), ] += cst.PANDORA_MSK_PIXEL_RIGHT_INCOMPLETE_DISPARITY_RANGE # Disparity range contains 0 else: bit_1 = ([],) # Information: the disparity interval is incomplete (border reached in the right image) disp["validity_mask"].data[ :, np.where(((col + d_min) < (col[0] + offset)) | (col + d_max > (col[-1]) - offset)), ] += cst.PANDORA_MSK_PIXEL_RIGHT_INCOMPLETE_DISPARITY_RANGE # Invalid pixel : the disparity interval is missing in the right image ( disparity range # outside the image ) disp["validity_mask"].data[:, bit_1] += cst.PANDORA_MSK_PIXEL_RIGHT_NODATA_OR_DISPARITY_RANGE_MISSING if "msk" in img_left.data_vars: self.allocate_left_mask(disp, img_left) if "msk" in img_right.data_vars: self.allocate_right_mask(disp, img_right, bit_1) # The disp_min and disp_max used to search missing disparity interval are not the local disp_min and disp_max # in case of a variable range of disparities. So there may be pixels that have missing disparity range (all # cost are np.nan), but are not detected in the code block above. To find the pixels that have a missing # disparity range, we search in the cost volume pixels where cost_volume(row,col, for all d) = np.nan self.mask_invalid_variable_disparity_range(disp, cv) if offset > 0: self.mask_border(disp) @staticmethod def mask_border(disp: xr.Dataset): """ Mask border pixel which haven't been calculated because of the window's size :param disp: dataset with the disparity map and the confidence measure with the data variables : - disparity_map 2D xarray.DataArray (row, col) - confidence_measure 3D xarray.DataArray(row, col, indicator) :type disp: xarray.Dataset :return: None """ offset = disp.attrs["offset_row_col"] if offset > 0: # Border pixels have invalid disparity, erase the potential previous values disp["validity_mask"].data[:offset, :] = cst.PANDORA_MSK_PIXEL_LEFT_NODATA_OR_BORDER disp["validity_mask"].data[-offset:, :] = cst.PANDORA_MSK_PIXEL_LEFT_NODATA_OR_BORDER disp["validity_mask"].data[offset:-offset, :offset] = cst.PANDORA_MSK_PIXEL_LEFT_NODATA_OR_BORDER disp["validity_mask"].data[offset:-offset, -offset:] = cst.PANDORA_MSK_PIXEL_LEFT_NODATA_OR_BORDER @staticmethod def mask_invalid_variable_disparity_range(disp, cv) -> None: """ Mask the pixels that have a missing disparity range, searching in the cost volume the pixels where cost_volume(row,col, for all d) = np.nan :param disp: dataset with the disparity map and the confidence measure with the data variables : - disparity_map 2D xarray.DataArray (row, col) - confidence_measure 3D xarray.DataArray(row, col, indicator) :type disp: xarray.Dataset :param cv: cost volume dataset with the data variables: - cost_volume 3D xarray.DataArray (row, col, disp) - confidence_measure 3D xarray.DataArray (row, col, indicator) :type cv: xarray.Dataset :return: None """ indices_nan = np.isnan(cv["cost_volume"].data) missing_disparity_range = np.min(indices_nan, axis=2) missing_range_y, missing_range_x = np.where(missing_disparity_range) # Mask the positions which have an missing disparity range, not already taken into account condition_to_mask = ( disp["validity_mask"].data[missing_range_y, missing_range_x] & cst.PANDORA_MSK_PIXEL_RIGHT_NODATA_OR_DISPARITY_RANGE_MISSING ) == 0 masking_value = ( disp["validity_mask"].data[missing_range_y, missing_range_x] + cst.PANDORA_MSK_PIXEL_RIGHT_NODATA_OR_DISPARITY_RANGE_MISSING ) no_masking_value = disp["validity_mask"].data[missing_range_y, missing_range_x] disp["validity_mask"].data[missing_range_y, missing_range_x] = np.where( condition_to_mask, masking_value, no_masking_value ) @staticmethod def allocate_left_mask(disp: xr.Dataset, img_left: xr.Dataset) -> None: """ Allocate the left image mask :param disp: dataset with the disparity map and the confidence measure with the data variables : - disparity_map 2D xarray.DataArray (row, col) - confidence_measure 3D xarray.DataArray(row, col, indicator) :type disp: xarray.Dataset :param img_left: left Dataset image containing : - im : 2D (row, col) xarray.DataArray - msk : 2D (row, col) xarray.DataArray :type img_left: xarray.Dataset :return: None """ _, r_mask = xr.align(disp["validity_mask"], img_left["msk"]) # Dilatation : pixels that contains no_data in their aggregation window become no_data dil = binary_dilation( img_left["msk"].data == img_left.attrs["no_data_mask"], structure=np.ones((disp.attrs["window_size"], disp.attrs["window_size"])), iterations=1, ) # Invalid pixel : no_data in the left image disp["validity_mask"] += dil.astype(np.uint16) * cst.PANDORA_MSK_PIXEL_LEFT_NODATA_OR_BORDER # Invalid pixel : invalidated by the validity mask of the left image given as input disp["validity_mask"] += xr.where( (r_mask != img_left.attrs["no_data_mask"]) & (r_mask != img_left.attrs["valid_pixels"]), cst.PANDORA_MSK_PIXEL_IN_VALIDITY_MASK_LEFT, 0, ).astype(np.uint16) @staticmethod def allocate_right_mask(disp: xr.Dataset, img_right: xr.Dataset, bit_1: Union[np.ndarray, Tuple]) -> None: """ Allocate the right image mask :param disp: dataset with the disparity map and the confidence measure with the data variables : - disparity_map 2D xarray.DataArray (row, col) - confidence_measure 3D xarray.DataArray(row, col, indicator) :type disp: xarray.Dataset :param img_right: left Dataset image containing : - im : 2D (row, col) xarray.DataArray - msk : 2D (row, col) xarray.DataArray :type img_right: xarray.Dataset :param bit_1: where the disparity interval is missing in the right image ( disparity range outside the image ) :type: ndarray or Tuple :return: None """ offset = disp.attrs["offset_row_col"] _, r_mask = xr.align(disp["validity_mask"], img_right["msk"]) d_min = int(disp.attrs["disp_min"]) d_max = int(disp.attrs["disp_max"]) col = disp.coords["col"].data row = disp.coords["row"].data # Dilatation : pixels that contains no_data in their aggregation window become no_data dil = binary_dilation( img_right["msk"].data == img_right.attrs["no_data_mask"], structure=np.ones((disp.attrs["window_size"], disp.attrs["window_size"])), iterations=1, ) r_mask = xr.where( (r_mask != img_right.attrs["no_data_mask"]) & (r_mask != img_right.attrs["valid_pixels"]), 1, 0, ).data # Useful to calculate the case where the disparity interval is incomplete, and all remaining right # positions are invalidated by the right mask b_2_7 = np.zeros((len(row), len(col)), dtype=np.uint16) # Useful to calculate the case where no_data in the right image invalidated the disparity interval no_data_right = np.zeros((len(row), len(col)), dtype=np.uint16) col_range = np.arange(len(col)) for dsp in range(d_min, d_max + 1): # Diagonal in the cost volume col_d = col_range + dsp valid_index = np.where((col_d >= col_range[0] + offset) & (col_d <= col_range[-1] - offset)) # No_data and masked pixels do not raise the same flag, we need to treat them differently b_2_7[:, col_range[valid_index]] += r_mask[:, col_d[valid_index]].astype(np.uint16) b_2_7[:, col_range[np.setdiff1d(col_range, valid_index)]] += 1 no_data_right[:, col_range[valid_index]] += dil[:, col_d[valid_index]] no_data_right[:, col_range[np.setdiff1d(col_range, valid_index)]] += 1 # Exclusion of pixels that have flag 1 already enabled b_2_7[:, bit_1[0]] = 0 no_data_right[:, bit_1[0]] = 0 # Invalid pixel: right positions invalidated by the mask of the right image given as input disp["validity_mask"].data[ np.where(b_2_7 == len(range(d_min, d_max + 1))) ] += cst.PANDORA_MSK_PIXEL_IN_VALIDITY_MASK_RIGHT # If Invalid pixel : the disparity interval is missing in the right image (disparity interval # is invalidated by no_data in the right image ) disp["validity_mask"].data[ np.where(no_data_right == len(range(d_min, d_max + 1))) ] += cst.PANDORA_MSK_PIXEL_RIGHT_NODATA_OR_DISPARITY_RANGE_MISSING @AbstractDisparity.register_subclass("wta") class WinnerTakesAll(AbstractDisparity): """ WinnerTakesAll class allows to perform the disparity computation step """ # Default configuration, do not change this value _INVALID_DISPARITY = -9999 def __init__(self, **cfg): """float :param cfg: optional configuration :type cfg: dictionary """ self.cfg = self.check_conf(**cfg) self._invalid_disparity = self.cfg["invalid_disparity"] def check_conf(self, **cfg: Union[str, int, float, bool]) -> Dict[str, Union[str, int, float, bool]]: """ Add default values to the dictionary if there are missing elements and check if the dictionary is correct :param cfg: disparity configuration :type cfg: dict :return cfg: disparity configuration updated :rtype: dict """ # Give the default value if the required element is not in the configuration if "invalid_disparity" not in cfg: cfg["invalid_disparity"] = self._INVALID_DISPARITY schema = { "disparity_method": And(str, lambda input: "wta"), "invalid_disparity": Or(int, float, lambda input: np.isnan(input)), } checker = Checker(schema) checker.validate(cfg) return cfg def desc(self) -> None: """ Describes the disparity method :return: None """ print("Winner takes all method") def to_disp(self, cv: xr.Dataset, img_left: xr.Dataset = None, img_right: xr.Dataset = None) -> xr.Dataset: """ Disparity computation by applying the Winner Takes All strategy :param cv: the cost volume datset with the data variables: - cost_volume 3D xarray.DataArray (row, col, disp) - confidence_measure 3D xarray.DataArray (row, col, indicator) :type cv: xarray.Dataset :param img_left: left Dataset image containing : - im : 2D (row, col) xarray.DataArray - msk : 2D (row, col) xarray.DataArray :type img_left: xarray.Dataset :param img_right: right Dataset image containing : - im : 2D (row, col) xarray.DataArray - msk : 2D (row, col) xarray.DataArray :type img_right: xarray.Dataset :return: Dataset with the disparity map and the confidence measure with the data variables : - disparity_map 2D xarray.DataArray (row, col) - confidence_measure 3D xarray.DataArray (row, col, indicator) :rtype: xarray.Dataset """ indices_nan = np.isnan(cv["cost_volume"].data) # Winner Takes All strategy if cv.attrs["type_measure"] == "max": # Disparities are computed by selecting the maximal cost at each pixel cv["cost_volume"].data[indices_nan] = -np.inf disp = self.argmax_split(cv) else: # Disparities are computed by selecting the minimal cost at each pixel cv["cost_volume"].data[indices_nan] = np.inf disp = self.argmin_split(cv) cv["cost_volume"].data[indices_nan] = np.nan row = cv.coords["row"] col = cv.coords["col"] # ----- Disparity map ----- disp_map = xr.Dataset({"disparity_map": (["row", "col"], disp)}, coords={"row": row, "col": col}) invalid_mc = np.min(indices_nan, axis=2) # Pixels where the disparity interval is missing in the right image, have a disparity value invalid_value invalid_pixel = np.where(invalid_mc) disp_map["disparity_map"].data[invalid_pixel] = self._invalid_disparity # Save the disparity map in the cost volume cv["disp_indices"] = disp_map["disparity_map"].copy(deep=True) disp_map.attrs = cv.attrs d_range = cv.coords["disp"].data disp_map.attrs["disp_min"] = d_range[0] disp_map.attrs["disp_max"] = d_range[-1] # ----- Confidence measure ----- # Allocate the confidence measure in the disparity_map dataset if "confidence_measure" in cv.data_vars: disp_map["confidence_measure"] = cv["confidence_measure"] # Remove temporary values del indices_nan del invalid_mc return disp_map @staticmethod def argmin_split(cost_volume: xr.Dataset) -> np.ndarray: """ Find the indices of the minimum values for a 3D DataArray, along axis 2. Memory consumption is reduced by splitting the 3D Array. :param cost_volume: the cost volume dataset :type cost_volume: xarray.Dataset :return: the disparities for which the cost volume values are the smallest :rtype: np.ndarray """ ncol, nrow, ndsp = cost_volume["cost_volume"].shape # pylint: disable=unused-variable disp = np.zeros((ncol, nrow), dtype=np.float32) # Numpy argmin is making a copy of the cost volume. # To reduce memory, numpy argmin is applied on a small part of the cost volume. # The cost volume is split (along the row axis) into multiple sub-arrays with a step of 100 cv_chunked_y = np.array_split(cost_volume["cost_volume"].data, np.arange(100, ncol, 100), axis=0) y_begin = 0 for col, cv_y in enumerate(cv_chunked_y): # pylint: disable=unused-variable # To reduce memory, the cost volume is split (along the col axis) into # multiple sub-arrays with a step of 100 cv_chunked_x = np.array_split(cv_y, np.arange(100, nrow, 100), axis=1) x_begin = 0 for row, cv_x in enumerate(cv_chunked_x): # pylint: disable=unused-variable disp[y_begin : y_begin + cv_y.shape[0], x_begin : x_begin + cv_x.shape[1]] = cost_volume.coords[ "disp" ].data[np.argmin(cv_x, axis=2)] x_begin += cv_x.shape[1] y_begin += cv_y.shape[0] return disp @staticmethod def argmax_split(cost_volume: xr.Dataset) -> np.ndarray: """ Find the indices of the maximum values for a 3D DataArray, along axis 2. Memory consumption is reduced by splitting the 3D Array. :param cost_volume: the cost volume dataset :type cost_volume: xarray.Dataset :return: the disparities for which the cost volume values are the highest :rtype: np.ndarray """ ncol, nrow, ndisp = cost_volume["cost_volume"].shape # pylint: disable=unused-variable disp = np.zeros((ncol, nrow), dtype=np.float32) # Numpy argmax is making a copy of the cost volume. # To reduce memory, numpy argmax is applied on a small part of the cost volume. # The cost volume is split (along the row axis) into multiple sub-arrays with a step of 100 cv_chunked_col = np.array_split(cost_volume["cost_volume"].data, np.arange(100, ncol, 100), axis=0) col_begin = 0 for col, cv_y in enumerate(cv_chunked_col): # pylint: disable=unused-variable # To reduce memory, the cost volume is split (along the col axis) # into multiple sub-arrays with a step of 100 cv_chunked_row = np.array_split(cv_y, np.arange(100, nrow, 100), axis=1) row_begin = 0 for row, cv_x in enumerate(cv_chunked_row): # pylint: disable=unused-variable disp[ col_begin : col_begin + cv_y.shape[0], row_begin : row_begin + cv_x.shape[1], ] = cost_volume.coords["disp"].data[np.argmax(cv_x, axis=2)] row_begin += cv_x.shape[1] col_begin += cv_y.shape[0] return disp
__author__ = 'rcj1492' __created__ = '2017.12' __license__ = 'MIT' def walk_data(input_data): ''' a generator function for retrieving data in a nested dictionary :param input_data: dictionary or list with nested data :return: string with dot_path, object with value of endpoint ''' def _walk_dict(input_dict, path_to_root): if not path_to_root: yield '.', input_dict for key, value in input_dict.items(): key_path = '%s.%s' % (path_to_root, key) type_name = value.__class__.__name__ yield key_path, value if type_name == 'dict': for dot_path, value in _walk_dict(value, key_path): yield dot_path, value elif type_name == 'list': for dot_path, value in _walk_list(value, key_path): yield dot_path, value def _walk_list(input_list, path_to_root): for i in range(len(input_list)): item_path = '%s[%s]' % (path_to_root, i) type_name = input_list[i].__class__.__name__ yield item_path, input_list[i] if type_name == 'dict': for dot_path, value in _walk_dict(input_list[i], item_path): yield dot_path, value elif type_name == 'list': for dot_path, value in _walk_list(input_list[i], item_path): yield dot_path, value if isinstance(input_data, dict): for dot_path, value in _walk_dict(input_data, ''): yield dot_path, value elif isinstance(input_data, list): for dot_path, value in _walk_list(input_data, ''): yield dot_path, value else: raise ValueError('walk_data() input_data argument must be a list or dictionary.') def segment_path(dot_path): ''' a function to separate the path segments in a dot_path key :param dot_path: string with dot path syntax :return: list of string segments of path ''' import re digit_pat = re.compile('\[(\d+)\]') key_list = dot_path.split('.') segment_list = [] for key in key_list: if key: item_list = digit_pat.split(key) for item in item_list: if item: segment_list.append(item) return segment_list def transform_data(function, input_data): ''' a function to apply a function to each value in a nested dictionary :param function: callable function with a single input of any datatype :param input_data: dictionary or list with nested data to transform :return: dictionary or list with data transformed by function ''' # construct copy try: from copy import deepcopy output_data = deepcopy(input_data) except: raise ValueError('transform_data() input_data argument cannot contain module datatypes.') # walk over data and apply function for dot_path, value in walk_data(input_data): current_endpoint = output_data segment_list = segment_path(dot_path) segment = None if segment_list: for i in range(len(segment_list)): try: segment = int(segment_list[i]) except: segment = segment_list[i] if i + 1 == len(segment_list): pass else: current_endpoint = current_endpoint[segment] current_endpoint[segment] = function(value) return output_data def clean_data(input_value): ''' a function to transform a value into a json or yaml valid datatype :param input_value: object of any datatype :return: object with json valid datatype ''' # pass normal json/yaml datatypes if input_value.__class__.__name__ in ['bool', 'str', 'float', 'int', 'NoneType']: pass # transform byte data to base64 encoded string elif isinstance(input_value, bytes): from base64 import b64encode input_value = b64encode(input_value).decode() # convert tuples and sets into lists elif isinstance(input_value, tuple) or isinstance(input_value, set): new_list = [] new_list.extend(input_value) input_value = transform_data(clean_data, new_list) # recurse through dictionaries and lists elif isinstance(input_value, dict) or isinstance(input_value, list): input_value = transform_data(clean_data, input_value) # convert to string all python objects and callables else: input_value = str(input_value) return input_value def reconstruct_dict(dot_paths, values): ''' a method for reconstructing a dictionary from the values along dot paths ''' output_dict = {} for i in range(len(dot_paths)): if i + 1 <= len(values): path_segments = segment_path(dot_paths[i]) current_nest = output_dict for j in range(len(path_segments)): key_name = path_segments[j] try: key_name = int(key_name) except: pass if j + 1 == len(path_segments): if isinstance(key_name, int): current_nest.append(values[i]) else: current_nest[key_name] = values[i] else: next_key = path_segments[j+1] try: next_key = int(next_key) except: pass if isinstance(next_key, int): if not key_name in current_nest.keys(): current_nest[key_name] = [] current_nest = current_nest[key_name] else: if isinstance(key_name, int): current_nest.append({}) current_nest = current_nest[len(current_nest) - 1] else: if not key_name in current_nest.keys(): current_nest[key_name] = {} current_nest = current_nest[key_name] return output_dict if __name__ == '__main__': # test walk_data from collections import OrderedDict recursive_paths = [] recursive_values = [] test_dict = { 'you': { 'me': { 'us': 'them' } }, 'him': [ { 'her': { 'their': 'our' } } ], 'here': [ { 'there': [ 'everywhere' ] } ] } ordered_dict = OrderedDict(test_dict) for dot_path, value in walk_data(ordered_dict): recursive_paths.append(dot_path) recursive_values.append(value) # test segment_paths and reconstruct_dict dot_paths = [] values = [] for number in (3,7,11): dot_paths.append(recursive_paths[number]) values.append(recursive_values[number]) rebuilt_dict = reconstruct_dict(dot_paths, values) assert rebuilt_dict == test_dict
from testfixtures import StringComparison as S, compare from testfixtures.compat import PY2 from unittest import TestCase class Tests(TestCase): def test_equal_yes(self): self.failUnless('on 40220'==S('on \d+')) def test_equal_no(self): self.failIf('on xxx'==S('on \d+')) def test_not_equal_yes(self): self.failIf('on 40220'!=S('on \d+')) def test_not_equal_no(self): self.failUnless('on xxx'!=S('on \d+')) def test_comp_in_sequence(self): self.failUnless(( 1,2,'on 40220' )==( 1,2,S('on \d+') )) def test_not_string(self): self.failIf(40220==S('on \d+')) def test_repr(self): compare('<S:on \\d+>', repr(S('on \d+'))) def test_str(self): compare('<S:on \\d+>', str(S('on \d+'))) def test_sort(self): a = S('a') b = S('b') c = S('c') compare(sorted(('d',c,'e',a,'a1',b,)), [a,'a1',b,c,'d','e',]) if PY2: # cmp no longer exists in Python 3! def test_cmp_yes(self): self.failIf(cmp(S('on \d+'), 'on 4040')) def test_cmp_no(self): self.failUnless(cmp(S('on \d+'), 'on xx'))
from flask import Flask, request, render_template import main.judge_ques as Jg import main.judge_image as Img import main.utils as Utils import main.mock as Mock import os,json import main.db as db from main.WXBizDataCrypt import WXBizDataCrypt app = Flask(__name__) ''' @project: 官网 @author: Laurel ''' @app.route('/') def admin(): return render_template('admin.html') #整体测试路由 @app.route('/mini/test') def test(): d = db.DB() r = d.already_in('sfdasdf', '13333333333') if r is None: return "None" else: return r['phone'] return ('sfdsdf', '13333333333') #重定向到图像识别测试模块 @app.route('/mini/recognition/front') def recognition_front(): return render_template('drugcheck.html') #图像识别测试模块 @app.route('/mini/recognition/test', methods=['GET', 'POST']) def recognition_test(): return Mock.recognition_test(request, render_template) ''' @project: questionnaire @author: Laurel @updated_at: 20200322 ''' #调查问卷 @app.route('/mini/questionnaire') def questionnaire(): args = request.args.get('paper') return Jg.judge(args) ''' @project: drug check image recognition @author: Laurel @updated_at: - ''' #图像识别 @app.route('/mini/recognition', methods=['GET', 'POST']) def recognition(): openid = request.form.get('openid') image = request.files.get('file') path_list = Utils.saveImage(image, openid) return Img.judgeimage(path_list[0], path_list[1]) #上传个人信息 @app.route('/mini/recognition/information', methods=['POST']) def recognitionInformation(): params = json.loads(request.get_data(as_text=True)) information = params['information'] app.logger.info(information) return '' ''' public ''' #登陆获取openid和sessionKey @app.route('/mini/loginstatus') def login_status(): r, openid, sessionkey = Utils.fetchOpenIdAndSession(request) registed = Utils.is_registed(openid) if registed is None: return json.dumps({'status': 'unregisted', 'openid':openid, 'session_key':sessionkey}) else: return r #小程序注册 @app.route('/mini/regist', methods=['GET', 'POST']) def drug_regist(): params = json.loads(request.get_data(as_text=True)) appid = params['appid'] iv = params['iv'] session_key = params['session_key'] en_data = params['encryptedData'] openid = params['openid'] pc = WXBizDataCrypt(appid, session_key) un_data = pc.decrypt(en_data, iv) return Utils.regist(openid, un_data['phoneNumber']) if __name__ == '__main__': # 服务器配置 app.run(host="0.0.0.0", port=3000, debug=True, threaded=True)
import threading class Adc(object): """Thread-safe wrapper around an ADC object.""" def __init__(self, adc): """Create a new Adc instance Args: adc: The raw ADC which this class makes thread-safe by synchronizing its read calls. """ self._adc = adc self._lock = threading.Lock() def read_adc(self, adc_number): """Read a value from the ADC Args: adc_number: ADC channel to read. Returns: The value read from the given ADC channel (as a float). """ with self._lock: return self._adc.read_adc(adc_number)
from setuptools import setup setup(name='comic-scraper', version='0.9.0', description='Scraps comics,mangas and creates cbz (/pdf) files for offline reading', url='https://github.com/AbstractGeek/comic-scraper', download_url='https://github.com/AbstractGeek/comic-scraper/tarball/0.9.0', author='Dinesh Natesan', author_email='[email protected]', license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.5', 'Topic :: Games/Entertainment', ], keywords='comics manga scraper', packages=['comic_scraper'], install_requires=[ 'beautifulsoup4==4.6.0', 'certifi==2017.7.27.1', 'chardet==3.0.4', 'futures==3.1.1', 'idna==2.6', 'img2pdf==0.2.4', 'olefile==0.44', 'Pillow==4.3.0', 'requests==2.18.4', 'urllib3==1.22' ], entry_points={ 'console_scripts': ['comic-scraper=comic_scraper.comic_scraper:main'], }, include_package_data=True, zip_safe=False)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Mar 21 12:06:17 2018 @author: zoli """ from export.filter_volumes import filter_volumes def get_server_name(server_id:str,instances:list) -> str: for instance in instances: if instance.id == server_id: return instance.name return "" def volumes_prepare(volumes:list,instances:list,projects:dict) -> list: """ Convert volumes to dictionary and add extra parameters like server name and project name. """ v2 = [] for volume in volumes: volume_dict = volume.to_dict() volume_dict["project_name"] = projects[volume_dict["os-vol-tenant-attr:tenant_id"]] if volume_dict["name"] == "None" or volume_dict["name"] == None: volume_dict["name"] = "" if volume_dict["name"] != "": #replace space to _ so its usable in the volume name, if it has volume name volume_dict["name"] = str(volume_dict["name"]).replace(" ","_") #check if volume is attached to an instance and act accordingly if volume_dict["attachments"] != [] : volume_dict["server_id"] = volume_dict["attachments"][0]["server_id"] volume_dict["server_name"] = get_server_name(volume_dict["attachments"][0]["server_id"],instances) volume_dict["mountpoint"] = volume_dict["attachments"][0]["device"].split('/')[-1] if volume_dict["mountpoint"] == "vda": volume_dict["mountpoint"] = "root" else: volume_dict["server_id"] = "not attached" volume_dict["server_name"] = "" volume_dict["mountpoint"] = "" volume_dict["volume_migration_name"] = volume_dict["id"]+"-"+volume_dict["name"]+"-"+volume_dict["server_name"]+"-"+volume_dict["mountpoint"] v2.append(volume_dict) v2 = filter_volumes(v2) return v2
# Copyright 2021 IBM Corp. # SPDX-License-Identifier: Apache-2.0 import unittest import sys from xskipper import Registration from xskipper.testing.utils import XskipperTestCase class XskipperRegistrationTests(XskipperTestCase): def setUp(self): super(XskipperRegistrationTests, self).setUp() def tearDown(self): super(XskipperRegistrationTests, self).tearDown() # tests to check the API works fine (logic is tested in Scala) def test_registration(self): # Add MetadataFilterFactor Registration.addMetadataFilterFactory(self.spark, 'io.xskipper.search.filters.BaseFilterFactory') # Add IndexFactory Registration.addIndexFactory(self.spark, 'io.xskipper.index.BaseIndexFactory') # Add MetaDataTranslator Registration.addMetaDataTranslator(self.spark, 'io.xskipper.metadatastore.parquet.ParquetBaseMetaDataTranslator') # Add ClauseTranslator Registration.addClauseTranslator(self.spark, 'io.xskipper.metadatastore.parquet.ParquetBaseClauseTranslator') if __name__ == "__main__": xskipper_test = unittest.TestLoader().loadTestsFromTestCase(XskipperRegistrationTests) result = unittest.TextTestRunner(verbosity=3).run(xskipper_test) sys.exit(not result.wasSuccessful())
import example print(f"result={example.add(2, 5)}")
import FWCore.ParameterSet.Config as cms # DQM Environment dqmEnv = cms.EDAnalyzer("DQMEventInfo", # put your subsystem name here (this goes into the foldername) subSystemFolder = cms.untracked.string('YourSubsystem'), # set the window for eventrate calculation (in minutes) eventRateWindow = cms.untracked.double(0.5), # define folder to store event info (default: EventInfo) eventInfoFolder = cms.untracked.string('EventInfo') )
from unittest import TestCase from mock import Mock, MagicMock, patch from broker.service.spreadsheet_upload_service import SpreadsheetUploadService class SpreadsheetUploadServiceTest(TestCase): def setUp(self) -> None: self.ingest_api = Mock('ingest_api') self.storage_service = Mock('storage_service') self.storage_service.store = Mock(return_value='path') self.mock_submission = Mock('submission') self.mock_template_mgr = Mock('template_mgr') self.importer = MagicMock('importer') self.importer.import_file = Mock(return_value=(self.mock_submission, self.mock_template_mgr)) self.importer.update_spreadsheet_with_uuids = Mock() self.spreadsheet_upload_service = spreadsheet_upload_service = SpreadsheetUploadService(self.ingest_api, self.storage_service, self.importer) def test_upload_success(self): # when self.spreadsheet_upload_service.upload('url', 'path') # then self.importer.import_file.assert_called_with('path', 'url', project_uuid=None) self.importer.update_spreadsheet_with_uuids.assert_called_with(self.mock_submission, self.mock_template_mgr, 'path') def test_upload_update_success(self): # when self.spreadsheet_upload_service.upload_updates('url', 'path') # then self.importer.import_file.assert_called_with('path', 'url', is_update=True) self.importer.update_spreadsheet_with_uuids.assert_not_called()
from rest_framework.schemas import AutoSchema class CustomSchema(AutoSchema): def get_link(self, path, method, base_url): link = super().get_link(path, method, base_url) link._fields += self.get_core_fields() return link def get_core_fields(self): return getattr(self.view, "coreapi_fields", ())
import sys executable = sys.executable import mpi4py mpi4py.rc.threads = False # no multithreading... from mpi4py import MPI def xtomo_reconstruct(data, theta, rot_center='None', Dopts=None, order='sino'): if order != 'sino': data=np.swapaxes(data,0,1) if type(Dopts)==type(None): Dopts={ 'algo':'iradon', 'GPU': True, 'n_workers' : 1 } if Dopts['n_workers']==1: from xtomo.loop_sino_simple import reconstruct tomo = reconstruct(data, theta, rot_center, Dopts) else: from xtomo.spawn import reconstruct_mpiv as recon tomo=recon(data,theta,rot_center, Dopts) return tomo # reconstruct from file def reconstruct_mpi(fname, n_workers, Dopts): Dopts['file_in']=fname from xtomo.IO import getfilename file_out=getfilename(Dopts['file_in'], Dopts['algo']) #print('file_out=',file_out) Dopts['file_out']=file_out import xtomo arg1=xtomo.__path__.__dict__["_path"][0]+'/mpi_worker_FIO.py' comm = MPI.COMM_WORLD.Spawn( executable, args = [arg1,], #args=[sys.argv[0], start_worker], maxprocs=n_workers) comm_intra = comm.Merge(MPI.COMM_WORLD) # broadcast the options comm_intra.bcast(Dopts,root=0) # make sure we sent the data # doing the reconstruction comm_intra.barrier() comm_intra.Free() del comm_intra comm.Disconnect() #comm.Free() # reconstruct from numpy arrays to numpy array def reconstruct_mpiv(sino, theta, rot_center, Dopts): # Dopts['n_workers']=n_workers #Dopts['file_in']=fname #from xtomo.IO import getfilename #file_out=getfilename(Dopts['file_in'], Dopts['algo']) #print('file_out=',file_out) #Dopts['file_out']=file_out import xtomo import xtomo.communicator # arg1=xtomo.__path__.__dict__["_path"][0]+'/mpi_worker.py' arg1=xtomo.__path__[0]+'/mpi_worker.py' comm = MPI.COMM_WORLD.Spawn( executable, args = [arg1,], #args=[sys.argv[0], start_worker], maxprocs=Dopts['n_workers']) comm_intra = comm.Merge(MPI.COMM_WORLD) print('spawned size',comm_intra.Get_size()-1) # broadcast the data sino_shape = sino.shape theta_shape = theta.shape num_slices =sino_shape[0] num_rays = sino_shape[2] tomo_shape = (num_slices, num_rays, num_rays) comm_intra.bcast(sino_shape,root=0) comm_intra.bcast(theta_shape,root=0) comm_intra.bcast(rot_center,root=0) comm_intra.bcast(Dopts,root=0) # IO in shared memory shared_sino = xtomo.communicator.allocate_shared(sino_shape, comm = comm_intra) shared_theta = xtomo.communicator.allocate_shared(theta_shape, comm=comm_intra) shared_tomo = xtomo.communicator.allocate_shared(tomo_shape, comm = comm_intra) print('allocated shared') shared_sino[...]=sino shared_theta[...]=theta # make sure we sent the data comm_intra.barrier() # do the reconstruction in spawned mpi calls comm_intra.barrier() # import numpy as np # print("shared tomo and data",np.sum(shared_tomo),np.sum(shared_sino),np.sum(sino)) # done with the job comm_intra.Free() del comm_intra comm.Disconnect() del shared_sino, shared_theta, xtomo return shared_tomo #comm.Free() import tempfile tempdir = tempfile.gettempdir()+'/xpack/' import os.path as path import os try: os.mkdir(tempdir) except: None import numpy as np # memory mapping file def mmdata(shp, fname, mode='w+'): filename = path.join(tempdir, fname) fp = np.memmap(filename, dtype='float32', mode=mode, shape=shp) return fp #shared_sino = xtomo.communicator.allocate_shared(sino_shape, comm = comm_intra) def reconstruct_mpimm(sino, theta, rot_center, n_workers, Dopts, order='sino'): import xtomo import xtomo.communicator import numpy as np if order == 'proj': sino=np.swapaxes(sino,0,1) arg1=xtomo.__path__.__dict__["_path"][0]+'/mpi_worker_mm.py' comm = MPI.COMM_WORLD.Spawn( executable, args = [arg1,], #args=[sys.argv[0], start_worker], maxprocs=n_workers) comm_intra = comm.Merge(MPI.COMM_WORLD) print('spawned size',comm_intra.Get_size()) # broadcast the data sino_shape = sino.shape theta_shape = theta.shape num_slices =sino_shape[0] num_rays = sino_shape[2] tomo_shape = (num_slices, num_rays, num_rays) comm_intra.bcast(sino_shape,root=0) comm_intra.bcast(theta_shape,root=0) comm_intra.bcast(rot_center,root=0) comm_intra.bcast(Dopts,root=0) #print('broadcasted') # sinogram in shared memory, which is memory mapped shared_sino = mmdata(sino_shape, 'data', mode='w+') #print('sinogram on file') shared_theta = mmdata(theta_shape, 'theta', mode = 'w+') shared_tomo =mmdata(tomo_shape, 'tomo', mode='w+') shared_sino[...]=sino shared_theta[...]=theta #print('tomo on file') # make sure the files exist comm_intra.barrier() # doing the reconstruction comm_intra.barrier() comm_intra.barrier() comm_intra.Free() del comm_intra comm.Disconnect() return shared_tomo #comm.Free()
import requests theEnum = {'place': '位置', 'kind': '類型', 'rentprice': '租金', 'area': '坪數'} region = {} region[0] = [ {'id': 0, 'txt': '北部'}, {'id': 1, 'txt': '台北市'}, {'id': 3, 'txt': '新北市'}, {'id': 6, 'txt': '桃園市'}, {'id': 4, 'txt': '新竹市'}, {'id': 5, 'txt': '新竹縣'}, {'id': 21, 'txt': '宜蘭縣'}, {'id': 2, 'txt': '基隆市'} ]; region[1] = [ {'id': 0, 'txt': '中部'}, {'id': 8, 'txt': '台中市'}, {'id': 10, 'txt': '彰化縣'}, {'id': 14, 'txt': '雲林縣'}, {'id': 7, 'txt': '苗栗縣'}, {'id': 11, 'txt': '南投縣'} ]; region[2] = [ {'id': 0, 'txt': '南部'}, {'id': 17, 'txt': '高雄市'}, {'id': 15, 'txt': '台南市'}, {'id': 12, 'txt': '嘉義市'}, {'id': 13, 'txt': '嘉義縣'}, {'id': 19, 'txt': '屏東縣'} ] region[3] = [ {'id': 0, 'txt': '東部'}, {'id': 22, 'txt': '台東縣'}, {'id': 23, 'txt': '花蓮縣'}, {'id': 24, 'txt': '澎湖縣'}, {'id': 25, 'txt': '金門縣'}, {'id': 26, 'txt': '連江縣'} ] section = {} section[1] = {1: "中正區", 2: "大同區", 3: "中山區", 4: "松山區", 5: "大安區", 6: "萬華區", 7: "信義區", 8: "士林區", 9: "北投區", 10: "內湖區", 11: "南港區", 12: "文山區"}; section[2] = {13: "仁愛區", 14: "信義區", 15: "中正區", 16: "中山區", 17: "安樂區", 18: "暖暖區", 19: "七堵區"}; section[3] = {20: "萬里區", 21: "金山區", 26: "板橋區", 27: "汐止區", 28: "深坑區", 29: "石碇區", 30: "瑞芳區", 31: "平溪區", 32: "雙溪區", 33: "貢寮區", 34: "新店區", 35: "坪林區", 36: "烏來區", 37: "永和區", 38: "中和區", 39: "土城區", 40: "三峽區", 41: "樹林區", 42: "鶯歌區", 43: "三重區", 44: "新莊區", 45: "泰山區", 46: "林口區", 47: "蘆洲區", 48: "五股區", 49: "八里區", 50: "淡水區", 51: "三芝區", 52: "石門區"}; section[4] = {370: "香山區", 371: "東區", 372: "北區"}; section[5] = {54: "竹北市", 55: "湖口鄉", 56: "新豐鄉", 57: "新埔鎮", 58: "關西鎮", 59: "芎林鄉", 60: "寶山鄉", 61: "竹東鎮", 62: "五峰鄉", 63: "橫山鄉", 64: "尖石鄉", 65: "北埔鄉", 66: "峨嵋鄉"}; section[6] = {73: "桃園區", 67: "中壢區", 68: "平鎮區", 69: "龍潭區", 70: "楊梅區", 71: "新屋區", 72: "觀音區", 74: "龜山區", 75: "八德區", 76: "大溪區", 77: "復興區", 78: "大園區", 79: "蘆竹區"}; section[7] = {88: "苗栗市", 80: "竹南鎮", 81: "頭份市", 82: "三灣鄉", 83: "南庄鄉", 84: "獅潭鄉", 85: "後龍鎮", 86: "通霄鎮", 87: "苑裡鎮", 89: "造橋鄉", 90: "頭屋鄉", 91: "公館鄉", 92: "大湖鄉", 93: "泰安鄉", 94: "銅鑼鄉", 95: "三義鄉", 96: "西湖鄉", 97: "卓蘭鎮"}; section[8] = {98: "中區", 99: "東區", 100: "南區", 101: "西區", 102: "北區", 103: "北屯區", 104: "西屯區", 105: "南屯區", 106: "太平區", 107: "大里區", 108: "霧峰區", 109: "烏日區", 110: "豐原區", 111: "后里區", 112: "石岡區", 113: "東勢區", 114: "和平區", 115: "新社區", 116: "潭子區", 117: "大雅區", 118: "神岡區", 119: "大肚區", 120: "沙鹿區", 121: "龍井區", 122: "梧棲區", 123: "清水區", 124: "大甲區", 125: "外埔區", 126: "大安區"}; section[10] = {127: "彰化市", 128: "芬園鄉", 129: "花壇鄉", 130: "秀水鄉", 131: "鹿港鎮", 132: "福興鄉", 133: "線西鄉", 134: "和美鎮", 135: "伸港鄉", 136: "員林市", 137: "社頭鄉", 138: "永靖鄉", 139: "埔心鄉", 140: "溪湖鎮", 141: "大村鄉", 142: "埔鹽鄉", 143: "田中鎮", 144: "北斗鎮", 145: "田尾鄉", 146: "埤頭鄉", 147: "溪州鄉", 148: "竹塘鄉", 149: "二林鎮", 150: "大城鄉", 151: "芳苑鄉", 152: "二水鄉"}; section[11] = {153: "南投市", 154: "中寮鄉", 155: "草屯鎮", 156: "國姓鄉", 157: "埔里鎮", 158: "仁愛鄉", 159: "名間鄉", 160: "集集鎮", 161: "水里鄉", 162: "魚池鄉", 163: "信義鄉", 164: "竹山鎮", 165: "鹿谷鄉"}; section[12] = {373: "西區", 374: "東區"}; section[13] = {167: "番路鄉", 168: "梅山鄉", 169: "竹崎鄉", 170: "阿里山鄉", 171: "中埔鄉", 172: "大埔鄉", 173: "水上鄉", 174: "鹿草鄉", 175: "太保市", 176: "朴子市", 177: "東石鄉", 178: "六腳鄉", 179: "新港鄉", 180: "民雄鄉", 181: "大林鎮", 182: "溪口鄉", 183: "義竹鄉", 184: "布袋鎮"}; section[14] = {185: "斗南鎮", 186: "大埤鄉", 187: "虎尾鎮", 188: "土庫鎮", 189: "褒忠鄉", 190: "東勢鄉", 191: "臺西鄉", 192: "崙背鄉", 193: "麥寮鄉", 194: "斗六市", 195: "林內鄉", 196: "古坑鄉", 197: "莿桐鄉", 198: "西螺鎮", 199: "二崙鄉", 200: "北港鎮", 201: "水林鄉", 202: "口湖鄉", 203: "四湖鄉", 204: "元長鄉"}; section[15] = {206: "東區", 207: "南區", 208: "中西區", 209: "北區", 210: "安平區", 211: "安南區", 212: "永康區", 213: "歸仁區", 214: "新化區", 215: "左鎮區", 216: "玉井區", 217: "楠西區", 218: "南化區", 219: "仁德區", 220: "關廟區", 221: "龍崎區", 222: "官田區", 223: "麻豆區", 224: "佳里區", 225: "西港區", 226: "七股區", 227: "將軍區", 228: "學甲區", 229: "北門區", 230: "新營區", 231: "後壁區", 232: "白河區", 233: "東山區", 234: "六甲區", 235: "下營區", 236: "柳營區", 237: "鹽水區", 238: "善化區", 239: "大內區", 240: "山上區", 241: "新市區", 242: "安定區"}; section[17] = {243: "新興區", 244: "前金區", 245: "苓雅區", 246: "鹽埕區", 247: "鼓山區", 248: "旗津區", 249: "前鎮區", 250: "三民區", 251: "楠梓區", 252: "小港區", 253: "左營區", 254: "仁武區", 255: "大社區", 258: "岡山區", 259: "路竹區", 260: "阿蓮區", 261: "田寮區", 262: "燕巢區", 263: "橋頭區", 264: "梓官區", 265: "彌陀區", 266: "永安區", 267: "湖內區", 268: "鳳山區", 269: "大寮區", 270: "林園區", 271: "鳥松區", 272: "大樹區", 273: "旗山區", 274: "美濃區", 275: "六龜區", 276: "內門區", 277: "杉林區", 278: "甲仙區", 279: "桃源區", 280: "那瑪夏區", 281: "茂林區", 282: "茄萣區"}; section[19] = {295: "屏東市", 296: "三地門鄉", 297: "霧臺鄉", 298: "瑪家鄉", 299: "九如鄉", 300: "里港鄉", 301: "高樹鄉", 302: "鹽埔鄉", 303: "長治鄉", 304: "麟洛鄉", 305: "竹田鄉", 306: "內埔鄉", 307: "萬丹鄉", 308: "潮州鎮", 309: "泰武鄉", 310: "來義鄉", 311: "萬巒鄉", 312: "崁頂鄉", 313: "新埤鄉", 314: "南州鄉", 315: "林邊鄉", 316: "東港鎮", 317: "琉球鄉", 318: "佳冬鄉", 319: "新園鄉", 320: "枋寮鄉", 321: "枋山鄉", 322: "春日鄉", 323: "獅子鄉", 324: "車城鄉", 325: "牡丹鄉", 326: "恆春鎮", 327: "滿州鄉"}; section[21] = {328: "宜蘭市", 329: "頭城鎮", 330: "礁溪鄉", 331: "壯圍鄉", 332: "員山鄉", 333: "羅東鎮", 334: "三星鄉", 335: "大同鄉", 336: "五結鄉", 337: "冬山鄉", 338: "蘇澳鎮", 339: "南澳鄉"}; section[22] = {341: "台東市", 342: "綠島鄉", 343: "蘭嶼鄉", 344: "延平鄉", 345: "卑南鄉", 346: "鹿野鄉", 347: "關山鎮", 348: "海端鄉", 349: "池上鄉", 350: "東河鄉", 351: "成功鎮", 352: "長濱鄉", 353: "太麻里鄉", 354: "金峰鄉", 355: "大武鄉", 356: "達仁鄉"}; section[23] = {357: "花蓮市", 358: "新城鄉", 359: "秀林鄉", 360: "吉安鄉", 361: "壽豐鄉", 362: "鳳林鎮", 363: "光復鄉", 364: "豐濱鄉", 365: "瑞穗鄉", 366: "萬榮鄉", 367: "玉里鎮", 368: "卓溪鄉", 369: "富里鄉"}; section[24] = {283: "馬公市", 284: "西嶼鄉", 285: "望安鄉", 286: "七美鄉", 287: "白沙鄉", 288: "湖西鄉"}; section[25] = {289: "金沙鎮", 290: "金湖鎮", 291: "金寧鄉", 292: "金城鎮", 293: "烈嶼鄉", 294: "烏坵鄉"}; section[26] = {22: "南竿鄉", 23: "北竿鄉", 24: "莒光鄉", 25: "東引鄉", 256: "東沙", 257: "南沙"}; kind = {1: '整層住家', 2: '獨立套房', 3: '分租套房', 4: '雅房', 8: '車位', 24: '其他'} def get_region_name(input_region_name): for i in region: for re in region[i]: if re['txt'] == input_region_name: return re['id'] return -1 def get_section_name(input_section_name): for i in section: for number, sec in section[i].items(): if sec == input_section_name: return i, number return -1, -1 def get_place_arg(input_place_name): region_number = get_region_name(input_place_name) if region_number != -1: return 'region=' + str(region_number) else: the_region_number, section_number = get_section_name(input_place_name) if the_region_number != -1 and section_number != -1: return 'region=' + str(the_region_number) + '&section=' + str(section_number) return '' def get_kind_arg(input_kind_name): for k, v in kind.items(): if v == input_kind_name: return 'kind=' + str(k) return '' def get_arguments_content(lists): content = '' for n in lists: m = n.split('=') if len(m) <= 1: continue input_key = m[0] input_value = m[1] for k, v in theEnum.items(): if v == input_key: if k == 'place': place_arg = get_place_arg(input_value) if place_arg != '': content += place_arg + '&' break if k == 'kind': kind_arg = get_kind_arg(input_value) if kind_arg != '': content += kind_arg + '&' break content += k + '=' + input_value + '&' break return content[:-1] if len(content) > 0 and content[-1] == '&' else content def rent_591_object_list(argu): print(argu) argu_content = get_arguments_content(argu) if argu_content == '': return [] print(argu_content) target_url = 'https://rent.591.com.tw/home/search/rsList?is_new_list=1&' + argu_content print(target_url) header = { 'Host': 'rent.591.com.tw', 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/59.0.3071.115 Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'zh-TW,zh;q=0.8,en-US;q=0.6,en;q=0.4,zh-CN;q=0.2', 'Cookie': 'PHPSESSID=sdsini6kdld2gnblp9h9nuur20; userLoginHttpReferer=https%253A%252F%252Fwww.591.com.tw%252Fuser-login.html; 591equipment=08826710014998500681545450; ResolutionSort=1; index_keyword_search_analysis=%7B%22role%22%3A%221%22%2C%22type%22%3A2%2C%22keyword%22%3A%22%22%2C%22selectKeyword%22%3A%22%E4%B8%89%E9%87%8D%E5%8D%80%22%2C%22menu%22%3A%22400-800%E8%90%AC%22%2C%22hasHistory%22%3A1%2C%22hasPrompt%22%3A0%2C%22history%22%3A0%7D; detail-guide=1; last_search_type=1; localTime=2; imgClick=5407932; __utma=82835026.1593737612.1499849967.1500696632.1500867495.2; __utmc=82835026; __utmz=82835026.1500696632.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); user_index_role=1; user_browse_recent=a%3A5%3A%7Bi%3A0%3Ba%3A2%3A%7Bs%3A4%3A%22type%22%3Bi%3A1%3Bs%3A7%3A%22post_id%22%3Bs%3A7%3A%225424210%22%3B%7Di%3A1%3Ba%3A2%3A%7Bs%3A4%3A%22type%22%3Bi%3A1%3Bs%3A7%3A%22post_id%22%3Bs%3A7%3A%225372536%22%3B%7Di%3A2%3Ba%3A2%3A%7Bs%3A4%3A%22type%22%3Bi%3A1%3Bs%3A7%3A%22post_id%22%3Bs%3A7%3A%225429867%22%3B%7Di%3A3%3Ba%3A2%3A%7Bs%3A4%3A%22type%22%3Bi%3A1%3Bs%3A7%3A%22post_id%22%3Bs%3A7%3A%225413919%22%3B%7Di%3A4%3Ba%3A2%3A%7Bs%3A4%3A%22type%22%3Bi%3A1%3Bs%3A7%3A%22post_id%22%3Bs%3A7%3A%225422226%22%3B%7D%7D; ba_cid=a%3A5%3A%7Bs%3A6%3A%22ba_cid%22%3Bs%3A32%3A%225f91a10df47762976645e67b67ee4864%22%3Bs%3A7%3A%22page_ex%22%3Bs%3A48%3A%22https%3A%2F%2Frent.591.com.tw%2Frent-detail-5372536.html%22%3Bs%3A4%3A%22page%22%3Bs%3A48%3A%22https%3A%2F%2Frent.591.com.tw%2Frent-detail-5424210.html%22%3Bs%3A7%3A%22time_ex%22%3Bi%3A1501484991%3Bs%3A4%3A%22time%22%3Bi%3A1501485062%3B%7D; __auc=e1db4f0b15d3607a4d9066c79d8; c10f3143a018a0513ebe1e8d27b5391c=1; client:unique:pc=eyJpdiI6Ink3RHRFU01hYnVEZVwvSkVPWThuVjBRPT0iLCJ2YWx1ZSI6ImVtRW5ZWkNZeEtlOWxQYTMrZlFuS0E9PSIsIm1hYyI6ImZkZTlmMjBmMTFjZThkYjgwY2VlMWZiNjhlNjdjOWQ2NjUyMWE0ZmEzMzRlNjEyYWMwYjQxNzIzMDM2MmEyZDUifQ%3D%3D; is_new_index=1; is_new_index_redirect=1; loginNoticeStatus=1; loginNoticeNumber=3; new_rent_list_kind_test=0; _ga=GA1.3.1593737612.1499849967; _gid=GA1.3.1595742426.1501650062; _ga=GA1.4.1593737612.1499849967; _gid=GA1.4.1595742426.1501650062; urlJumpIp=3; urlJumpIpByTxt=%E6%96%B0%E5%8C%97%E5%B8%82;' } res = requests.Session() req = res.get(target_url, headers=header) data = req.json() return data['data']['data'] def rent_591_object_list_tostring(items): limit = 5 cnt = 0 content = '' for item in items: title = item['address_img'] layout = item['layout'] kind_name = item['kind_name'] full_address = item['section_name'] + item['street_name'] + item['addr_number_name'] price = item['price'] link = "https://rent.591.com.tw/rent-detail-{}.html".format(item['id']) content += "{}\n{}\n{}\n{}\n{}\n{}\n\n".format(title, layout, kind_name, full_address, price, link) cnt += 1 if cnt >= limit: break return content
import os, json, time, gc, copy, shutil, random, pickle, sys, pdb from datetime import datetime import numpy as np from allennlp.common.tee_logger import TeeLogger from allennlp.modules.text_field_embedders import TextFieldEmbedder, BasicTextFieldEmbedder from allennlp.modules.token_embedders import PretrainedTransformerEmbedder from pytz import timezone import faiss import torch import torch.nn as nn from tqdm import tqdm def cuda_device_parser(str_ids): return [int(stridx) for stridx in str_ids.strip().split(',')] def from_original_sentence2left_mention_right_tokens_before_berttokenized(sentence): mention_start = '<target>' mention_end = '</target>' original_tokens = sentence.split(' ') mention_start_idx = int(original_tokens.index(mention_start)) mention_end_idx = int(original_tokens.index(mention_end)) if mention_end_idx == len(sentence) - 1 : return original_tokens[:mention_start_idx], original_tokens[mention_start_idx+1:mention_end_idx], [] else: return original_tokens[:mention_start_idx], original_tokens[mention_start_idx+1:mention_end_idx], original_tokens[mention_end_idx+1:] def parse_cuidx2encoded_emb_for_debugging(cuidx2encoded_emb, original_cui2idx): print('/////Some entities embs are randomized for debugging./////') for cuidx in tqdm(original_cui2idx.values()): if cuidx not in cuidx2encoded_emb: cuidx2encoded_emb.update({cuidx:np.random.randn(*cuidx2encoded_emb[0].shape)}) return cuidx2encoded_emb def parse_cuidx2encoded_emb_2_cui2emb(cuidx2encoded_emb, original_cui2idx): cui2emb = {} for cui, idx in original_cui2idx.items(): cui2emb.update({cui:cuidx2encoded_emb[idx]}) return cui2emb def experiment_logger(args): ''' :param args: from biencoder_parameters :return: dirs for experiment log ''' experimet_logdir = args.experiment_logdir # / is included timestamp = datetime.now(timezone('Asia/Tokyo')) str_timestamp = '{0:%Y%m%d_%H%M%S}'.format(timestamp)[2:] dir_for_each_experiment = experimet_logdir + str_timestamp if os.path.exists(dir_for_each_experiment): dir_for_each_experiment += '_d' dir_for_each_experiment += '/' logger_path = dir_for_each_experiment + 'teelog.log' os.mkdir(dir_for_each_experiment) if not args.debug: sys.stdout = TeeLogger(logger_path, sys.stdout, False) # default: False sys.stderr = TeeLogger(logger_path, sys.stderr, False) # default: False return dir_for_each_experiment def from_jsonpath_2_str2idx(json_path): str2intidx = {} with open(json_path, 'r') as f: tmp_str2stridx = json.load(f) for str_key, str_idx in tmp_str2stridx.items(): str2intidx.update({str_key:int(str_idx)}) return str2intidx def from_jsonpath_2_idx2str(json_path): intidx2str = {} with open(json_path, 'r') as f: tmp_stridx2str = json.load(f) for str_idx, value_str in tmp_stridx2str.items(): intidx2str.update({int(str_idx):value_str}) return intidx2str def from_jsonpath_2_str2strorlist(json_path): with open(json_path, 'r') as f: raw_json = json.load(f) return raw_json def pklloader(pkl_path): with open(pkl_path, 'rb') as p: loaded = pickle.load(p) return loaded class EmbLoader: def __init__(self, args): self.args = args def emb_returner(self): if self.args.bert_name == 'bert-base-uncased': huggingface_model = 'bert-base-uncased' elif self.args.bert_name == 'biobert': assert self.args.ifbert_use_whichmodel == 'biobert' huggingface_model = './biobert_transformers/' else: huggingface_model = 'dummy' print(self.args.bert_name,'are not supported') exit() bert_embedder = PretrainedTransformerEmbedder(model_name=huggingface_model) return bert_embedder, bert_embedder.get_output_dim(), BasicTextFieldEmbedder({'tokens': bert_embedder}, allow_unmatched_keys=True) class OnlyFixedDatasetLoader: ''' Before running this, we assume that preprocess has been already done ''' def __init__(self, args): self.args = args self.dataset = self.dataset_name_returner() self.dataset_dir = self.dataset_dir_returner() def dataset_name_returner(self): assert self.args.dataset in ['xxx', 'yyy', 'zzz'] return self.args.dataset def dataset_dir_returner(self): return self.args.mention_dump_dir + self.dataset + '/' def fixed_idxnized_datapath_returner(self): id2line_json_path = self.dataset_dir + 'id2line.json' # pmid2int_mention_path = self.dataset_dir + 'pmid2ment.json' train_mentionidpath = self.dataset_dir + 'train_mentionid.pkl' dev_mentionidpath = self.dataset_dir + 'dev_mentionid.pkl' test_mentionidpath = self.dataset_dir + 'test_mentionid.pkl' return id2line_json_path, train_mentionidpath, dev_mentionidpath, test_mentionidpath def id2line_path_2_intid2line(self, id2line_json_path): with open(id2line_json_path, 'r') as id2l: tmp_id2l = json.load(id2l) intid2line = {} for str_idx, line_mention in tmp_id2l.items(): intid2line.update({int(str_idx): line_mention}) return intid2line def train_dev_test_mentionid_returner(self, train_mentionidpath, dev_mentionidpath, test_mentionidpath): with open(train_mentionidpath, 'rb') as trp: train_mentionid = pickle.load(trp) with open(dev_mentionidpath, 'rb') as drp: dev_mentionid = pickle.load(drp) with open(test_mentionidpath, 'rb') as terp: test_mentionid = pickle.load(terp) if self.args.debug: return train_mentionid[:300], dev_mentionid[:200], test_mentionid[:400] else: return train_mentionid, dev_mentionid, test_mentionid def id2line_trn_dev_test_loader(self): id2line_json_path, train_mentionidpath, dev_mentionidpath, test_mentionidpath = self.fixed_idxnized_datapath_returner() id2line = self.id2line_path_2_intid2line(id2line_json_path=id2line_json_path) train_mentionid, dev_mentionid, test_mentionid = self.train_dev_test_mentionid_returner( train_mentionidpath=train_mentionidpath, dev_mentionidpath=dev_mentionidpath, test_mentionidpath=test_mentionidpath) return id2line, train_mentionid, dev_mentionid, test_mentionid class KBConstructor_fromKGemb: def __init__(self, args): self.args = args self.kbemb_dim = self.args.kbemb_dim self.original_kbloader_to_memory() def original_kbloader_to_memory(self): cui2idx_path, idx2cui_path, cui2emb_path, cui2cano_path, cui2def_path = self.from_datasetname_return_related_dicts_paths() print('set value and load original KB') self.original_cui2idx = from_jsonpath_2_str2idx(cui2idx_path) self.original_idx2cui = from_jsonpath_2_idx2str(idx2cui_path) self.original_cui2emb = pklloader(cui2emb_path) self.original_cui2cano = from_jsonpath_2_str2strorlist(cui2cano_path) self.original_cui2def = from_jsonpath_2_str2strorlist(cui2def_path) def return_original_KB(self): return self.original_cui2idx, self.original_idx2cui, self.original_cui2emb, self.original_cui2cano, self.original_cui2def def from_datasetname_return_related_dicts_paths(self): assert self.args.dataset in ['xxx','yyy','zzz'] if self.args.dataset in ['xxx', 'yyy']: cui2idx_path = './dataset/cui2idx.json' idx2cui_path = './dataset/idx2cui.json' cui2emb_path = './dataset/cui2emb.pkl' cui2cano_path = './dataset/cui2cano.json' cui2def_path = './dataset/cui2def.json' else: cui2idx_path, idx2cui_path, cui2emb_path, cui2cano_path, cui2def_path = ['dummy' for i in range(5)] print(self.args.dataset, 'are currently not supported') exit() return cui2idx_path, idx2cui_path, cui2emb_path, cui2cano_path, cui2def_path def load_original_KBmatrix_alignedwith_idx2cui(self): KBemb = np.random.randn(len(self.original_cui2emb.keys()), self.kbemb_dim).astype('float32') for idx, cui in self.original_idx2cui.items(): KBemb[idx] = self.original_cui2emb[cui] return KBemb def indexed_faiss_loader_for_constructing_smallKB(self): if self.args.search_method_for_faiss_during_construct_smallKBfortrain == 'indexflatl2': # L2 self.indexed_faiss = faiss.IndexFlatL2(self.kbemb_dim) elif self.args.search_method_for_faiss_during_construct_smallKBfortrain == 'indexflatip': # innerdot * Beforehand-Normalization must be done. self.indexed_faiss = faiss.IndexFlatIP(self.kbemb_dim) elif self.args.search_method_for_faiss_during_construct_smallKBfortrain == 'cossim': # innerdot * Beforehand-Normalization must be done. self.indexed_faiss = faiss.IndexFlatIP(self.kbemb_dim) else: print('currently',self.args.search_method_for_faiss_during_construct_smallKBfortrain, 'are not supported') exit() return self.indexed_faiss class ForOnlyFaiss_KBIndexer: def __init__(self, args, input_cui2idx, input_idx2cui, input_cui2emb, search_method_for_faiss, entity_emb_dim=300): self.args = args self.kbemb_dim = entity_emb_dim self.cui2idx = input_cui2idx self.idx2cui = input_idx2cui self.cui2emb = input_cui2emb self.search_method_for_faiss = search_method_for_faiss self.indexed_faiss_loader() self.KBmatrix = self.KBmatrixloader() self.entity_num = len(input_cui2idx) self.indexed_faiss_KBemb_adder(KBmatrix=self.KBmatrix) def KBmatrixloader(self): KBemb = np.random.randn(len(self.cui2idx.keys()), self.kbemb_dim).astype('float32') for idx, cui in self.idx2cui.items(): KBemb[idx] = self.cui2emb[cui].astype('float32') return KBemb def indexed_faiss_loader(self): if self.search_method_for_faiss == 'indexflatl2': # L2 self.indexed_faiss = faiss.IndexFlatL2(self.kbemb_dim) elif self.search_method_for_faiss == 'indexflatip': # self.indexed_faiss = faiss.IndexFlatIP(self.kbemb_dim) elif self.search_method_for_faiss == 'cossim': # innerdot * Beforehand-Normalization must be done. self.indexed_faiss = faiss.IndexFlatIP(self.kbemb_dim) def indexed_faiss_KBemb_adder(self, KBmatrix): if self.search_method_for_faiss == 'cossim': KBemb_normalized_for_cossimonly = np.random.randn(self.entity_num, self.kbemb_dim).astype('float32') for idx, emb in enumerate(KBmatrix): if np.linalg.norm(emb, ord=2, axis=0) != 0: KBemb_normalized_for_cossimonly[idx] = emb / np.linalg.norm(emb, ord=2, axis=0) self.indexed_faiss.add(KBemb_normalized_for_cossimonly) else: self.indexed_faiss.add(KBmatrix) def indexed_faiss_returner(self): return self.indexed_faiss def KBembeddings_loader(self): KBembeddings = nn.Embedding(self.entity_num, self.kbemb_dim, padding_idx=0) KBembeddings.weight.data.copy_(torch.from_numpy(self.KBmatrix)) KBembeddings.weight.requires_grad = False return KBembeddings class FixedNegativesEntityLoader: def __init__(self, args): self.args = args self.dataset = self.args.dataset self.dataset_checker() def train_mention_idx2negatives_loader(self): negatives_json_path = './duringtrain_sampled_negs/' + self.args.dataset + '.json' with open(negatives_json_path, 'r') as f: train_mention_stridx2negativesdata = json.load(f) train_mention_intidx2negatives = {} for stridx, itsdata in train_mention_stridx2negativesdata.items(): train_mention_intidx2negatives.update({int(stridx):itsdata}) return train_mention_intidx2negatives def dataset_checker(self): try: assert self.args.dataset in ['xxx', 'yyy', 'zzz'] except: raise NotImplementedError
"""2d Helmholtz""" from .base_fun import fun_cst, fun_cst_der from .calc_field import far_field, incident_field, scattered_field, total_field from .prob_cst import create_problem_cst
from stt import Transcriber import glob import os BASE_DIR = '/home/sontc/PycharmProjects/VPS/wave2vec_2/self-supervised-speech-recognition' transcriber = Transcriber(lm_weight=1.51, word_score=2.57, beam_size=100) result = [] file_names, data = [], [] for i, file_path in enumerate(glob.glob('converted_wavs/*', recursive=False)): file_name = os.path.basename(file_path) data.append(file_path) file_names.append(file_name) # because there are 2190 samples so we transcribe 10 samples each turn if len(data) == 10: hypos = transcriber.transcribe(data) hypos = list(map(lambda x: x.lower(), hypos)) temp = zip(file_names, hypos) temp = list(map(lambda x: '\t'.join(x), temp)) temp = '\n'.join(temp) print(temp) print(f'============processed {i + 1} samples============') result.append(temp) data = data[:0] file_names = file_names[:0] with open('vps_result.txt', 'w') as fp: fp.write('\n'.join(result))
import time import psycopg2 from Protocol import * import threading DATABASE_ADDRESS = "NONE" DATABASE_NAME = "NONE" DATABASE_SCHEME = "NONE" DATABASE_USER = "NONE" DATABASE_PASSWORD = "NONE" DATABASE_PORT = "NONE" SECRET_KEY = b'\xf8[\xd6\t<\xd8\x04a5siif\x93\xdc\xe0' IV = b'\x8e;\xf21bB\x0c\x95\x93\xce\xe9J3,\x04\xdd' class DBConnection(): def __init__(self): self.conn = None self.cursor = None self.log = "" def connect(self): """ Establish connection to PostgreSQL server. :return: None, otherwise raise an error. """ try: debugMessages("DB_CONNECT", True) self.conn = psycopg2.connect( host=DATABASE_ADDRESS, database=DATABASE_NAME, user=DATABASE_USER, password=DATABASE_PASSWORD, port=DATABASE_PORT) except (Exception, psycopg2.OperationalError): debugMessages("DB_CONNECTION_ERROR", True) try: # connect to the PostgreSQL server self.log += 'Connecting to the PostgreSQL database...\n' # create a cursor self.cursor = self.conn.cursor() # execute a statement self.log += 'PostgreSQL database version:\n' self.cursor.execute('SELECT version()') # display the PostgreSQL database server version db_version = self.cursor.fetchone() self.log += str(db_version) + "\n" debugMessages("DB_CONNECTED", True) except (Exception, psycopg2.DatabaseError): debugMessages("DB_OPERATION_ERROR", True) def user_authentication(self, username, password, client_address): """ Validate login details of the client. :param username: client (String) username :param password: client (String) password :param client_address: IP:PORT of client. :return: success message (Protocol), otherwise error message. """ sql_auth = "SELECT * FROM online_chat_db.users WHERE username = %s AND password = %s" self.cursor.execute(sql_auth, (username, password)) sql_query_result = self.cursor.fetchall() # check if given data exists in sql table if len(sql_query_result) == 0: return PROTOCOLS["login_failed_msg"], [] # update online status to (True) of Client. self.update(table="users", column="online", new_value=True, filter_key="id", filter_value=sql_query_result[0][0]) # attach current socket ip to the logged-in user ip_address = "{0}:{1}".format(client_address[0], str(client_address[1])) self.update(table="users", column="ip_address", new_value=ip_address, filter_key="id", filter_value=sql_query_result[0][0]) return PROTOCOLS["login_ok_msg"], sql_query_result[0] def update(self, table, column, new_value, filter_key, filter_value): """ Update record in the database :param table: database table name :param column: database column name :param filter_key: database column name to filter records. (Default: unique column) :param filter_value: database row value to filter records :param new_value: new data to update. :return: None """ sql_query = "UPDATE {0}.{1} SET {2}='{3}' WHERE {4}='{5}'". \ format(DATABASE_SCHEME, table, column, new_value, filter_key, filter_value) self.cursor.execute(sql_query) self.conn.commit() if len(self.query(table, filter_key, filter_value, column)) == 0: debugMessages("DB_UPDATE_QUERY_FAIL", True) def query(self, table, filter_key=None, filter_value=None, column=None): """ Retrieve record from the database. :param table: database table name :param column: database column name :param filter_key: database column name to filter records. (Default: unique column) :param filter_value: database row value to filter records :return: None """ if column is None and filter_key is not None and filter_value is not None: sql_auth = "SELECT * FROM {0}.{1} WHERE {2}='{3}'". \ format(DATABASE_SCHEME, table, filter_key, filter_value) self.cursor.execute(sql_auth) sql_query_result = self.cursor.fetchall() return sql_query_result if column is not None and filter_key is None and filter_value is None: sql_auth = "SELECT {0} FROM {1}.{2}".format(column, DATABASE_SCHEME, table) self.cursor.execute(sql_auth) sql_query_result = self.cursor.fetchall() return sql_query_result if column is not None and filter_key is not None and filter_value is not None: sql_auth = "SELECT {0} FROM {1}.{2} WHERE {3}='{4}'". \ format(column, DATABASE_SCHEME, table, filter_key, filter_value) self.cursor.execute(sql_auth) sql_query_result = self.cursor.fetchall() return sql_query_result if column is None and filter_key is None and filter_value is None: print("{} table called from DB".format(table)) sql_auth = "SELECT * FROM {0}.{1}".format(DATABASE_SCHEME, table) self.cursor.execute(sql_auth) sql_query_result = self.cursor.fetchall() return sql_query_result def insert(self, cmd, data): if cmd == "NEW_USER": # organize data to variables. username, password, online, ip_address, avatar = data[0], data[1], data[2], data[3], data[4] status, room, color = data[5], data[6], data[7] # check if username exist search_username = self.query(table='users', filter_key='username', filter_value=username, column='username') if len(search_username) == 0: # create user id in chronological order. self.cursor.execute("SELECT MAX(id)+1 FROM online_chat_db.users") new_id = self.cursor.fetchall()[0][0] # organize data for sql execution. columns = "id, username, password, online, ip_address,avatar, status, room, color" values = "{0},'{1}','{2}','{3}','{4}','{5}','{6}','{7}','{8}'". \ format(new_id, username, password, online, ip_address, avatar, status, room, color) self.cursor.execute("INSERT INTO online_chat_db.users({0}) VALUES ({1})".format(columns, values)) self.conn.commit() # check if record was successfully inserted return self.query(table='users', filter_key='username', filter_value=username, column='username') else: return ["#USERNAME_EXIST#"] def close_connection(self): """ Close connection to the PostgreSQL database. :return: None. """ self.cursor.close() self.conn.close()
from django.shortcuts import render from forms import contactForm from django.core.mail import send_mail from django.conf import settings # Create your views here. def contact(request): title = 'Contact' form = contactForm(request.POST or None) confirm_message = None if form.is_valid(): name = form.cleaned_data['name'] comment = form.cleaned_data['comment'] subject = 'Message from MYSITE.com' emailFrom = form.cleaned_data['email'] emailTo = [settings.EMAIL_HOST_USER] message = '%s - %s - %s' %(comment, name, emailFrom) send_mail(subject, message, emailFrom, emailTo, fail_silently=False) title = 'Thanks!' confirm_message = 'Thanks for the message. We will get right back to you.' form = None context = {'title':title, 'form':form, 'confirm_message':confirm_message} template = 'contact.html' return render(request, template, context)
#!/usr/bin/env python from multiprocessing import Event import json import time # from pygecko.multiprocessing import geckopy # from pygecko.transport.zmq_sub_pub import Pub, Sub from pygecko.transport.zmq_req_rep import Reply, Request from pygecko.multiprocessing.process import GeckoSimpleProcess from pygecko import zmqTCP, zmqUDS from pygecko import get_ip import shutil # move and delete files/folders import os def rmdir(path): try: shutil.rmtree(path) except FileNotFoundError: # folder was already deleted or doesn't exist ... it's ok pass ipAddress = get_ip() endpt = zmqUDS("/tmp/req_rpy_0") if os.path.exists(endpt): os.remove(endpt) def proc(): def cb(msg): print("cb send:", msg) msg = json.dumps({"recv send": "ans"}).encode("utf-8") print("cb recv:", msg) return msg rep = Reply() rep.bind(endpt) good = False while not good: good = rep.listen(cb) print(">> reply good?", good) p = GeckoSimpleProcess() p.start(func=proc, name='reply') req = Request() req.connect(endpt) ans = None while ans is None: time.sleep(5) msg = json.dumps({"request send": "question"}).encode("utf-8") ans = req.get(msg) print(">> request good?", ans) time.sleep(0.01)
from reports.models import Station def station_list(request): # pylint: disable=unused-argument stations = list() for station in Station.objects.all(): station.incidents_count = station.incidents.count() stations.append(station) return {'station_list': stations}
from __future__ import print_function, unicode_literals """ This file pretends to make it possible that all the unit tests use a particular and somehow configurable port range (e.g. 10500 - 11000), so as to avoid conflicts with other applications. At this moment, the system uses random ports which are in conflict with production systems when tests are run (e.g. in the continuous integration server). """ STARTING_PORT = 10000 RESERVED_PORTS = 500 # for static files, etc. CURRENT_PORT = STARTING_PORT + RESERVED_PORTS def new(): global CURRENT_PORT port = CURRENT_PORT CURRENT_PORT += 1 return port
# Copyright (c) 2022 Dai HBG """ 该脚本用于将1分钟数据中不在市的部分删除 """ import os import pandas as pd def main(): data_path = 'D:/Documents/AutoFactoryData' intra_path = 'E:/Backups/AutoFactoryData/StockIntraDayData/1m' dates = os.listdir(intra_path) for date in dates: all_securities = pd.read_csv('{}/StockDailyData/{}/all_securities.csv'.format(data_path, date)) all_stocks = set(all_securities['code']) files = os.listdir('{}/{}'.format(intra_path, date)) for f in files: if f[:-4] not in all_stocks: os.remove('{}/{}/{}'.format(intra_path, date, f)) print('{} done.'.format(date)) if __name__ == '__main__': main()
# Copyright (c) 2021, zerodha and contributors # For license information, please see license.txt import frappe from frappe.model.document import Document class RobinChapterMapping(Document): """Mapping.""" def before_insert(self): if not self.user: self.user = frappe.session.user @frappe.whitelist() def get_mapped_city(): """Return mapped cities.""" data = frappe.db.sql(""" SELECT c.city as value FROM `tabChapter` c INNER JOIN `tabRobin Chapter Mapping` as r ON c.name = r.chapter WHERE r.user = %(user)s """, {"user": frappe.session.user}, as_dict=True) return data
#Oskar Svedlund #TEINF-20 #24-08-21 #Welcome screen print("Welcome to the game.") name = input("What is your name? ") print("Glad you're back, " + name) cats = input("How many cats did you se on your way here? ") paws = int(cats) * 4 print("so you saw" , cats, "cats on your way here? Thats like", paws, "paws. cool")
# Generated by Django 2.1.7 on 2019-03-20 03:40 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('forum_permission', '0003_remove_forumpermission_name'), ] operations = [ migrations.RemoveField( model_name='forumpermission', name='is_global', ), migrations.RemoveField( model_name='forumpermission', name='is_local', ), ]
from abc import ABCMeta, abstractmethod from future.utils import with_metaclass, iteritems class OpticAxisRule(with_metaclass(ABCMeta, object)): # return values of neighbor_that_send_photor_to and # neighbor_that_provide_photor should be the # following: # [x] is the neighbor at position x # [x, y] is the neighbor at position y # of neighbor at position x # this is commutative so order does not matter # positions are relative to o. # The actual directions are given by `_get_unit_axis` # of `HexagonArray` class # 1 # 6 2 # o # 5 3 # 4 # 0 is the current column, arrangement is based # on right eye as seen from inside or left eye as # seen from outside. # 5 and 6 is the anterior side and 2, 3 the posterior # dorsal/ventral depend on whether it is the left or # the right eye. # See also RFC #3 for the coordinate system for the left eye. # The right eye is constructed by a rotation in opposit direction # of the rotation of left eye. # __metaclass__ = ABCMeta inds = {'R{}'.format(i + 1): i + 1 for i in range(8)} @classmethod def name_to_ind(cls, name): try: return cls.inds[name] except KeyError: print('"{}" is not a valid neuron name'.format(name)) raise @classmethod def is_photor(cls, name): return name in cls.inds.keys() @abstractmethod def neighbor_that_send_photor_to(self, photor_ind): return @abstractmethod def neighbor_that_provide_photor(self, photor_ind): return class OpticAxisNeuralSuperpositionTop(OpticAxisRule): def __init__(self): self.name = 'neural superposition' def neighbor_that_send_photor_to(self, photor_ind): if photor_ind == 1: neighbor = [2] elif photor_ind == 2: neighbor = [3] elif photor_ind == 3: neighbor = [12] elif photor_ind == 4: neighbor = [4] elif photor_ind == 5: neighbor = [5] elif photor_ind == 6: neighbor = [6] elif photor_ind == 7: neighbor = [0] elif photor_ind == 8: neighbor = [0] else: raise ValueError('Unexpected neighbor index {}. Expected 1-8.' .format(photor_ind)) return neighbor def neighbor_that_provide_photor(self, photor_ind): if photor_ind == 1: neighbor = [5] elif photor_ind == 2: neighbor = [6] elif photor_ind == 3: neighbor = [18] elif photor_ind == 4: neighbor = [1] elif photor_ind == 5: neighbor = [2] elif photor_ind == 6: neighbor = [3] elif photor_ind == 7: neighbor = [0] elif photor_ind == 8: neighbor = [0] else: raise ValueError('Unexpected neighbor index {}. Expected 1-8.' .format(photor_ind)) return neighbor class OpticAxisNeuralSuperpositionBottom(OpticAxisRule): def __init__(self): self.name = 'neural superposition' def neighbor_that_send_photor_to(self, photor_ind): if photor_ind == 1: neighbor = [3] elif photor_ind == 2: neighbor = [2] elif photor_ind == 3: neighbor = [8] elif photor_ind == 4: neighbor = [1] elif photor_ind == 5: neighbor = [6] elif photor_ind == 6: neighbor = [5] elif photor_ind == 7: neighbor = [0] elif photor_ind == 8: neighbor = [0] else: raise ValueError('Unexpected neighbor index {}. Expected 1-6.' .format(photor_ind)) return neighbor def neighbor_that_provide_photor(self, photor_ind): if photor_ind == 1: neighbor = [6] elif photor_ind == 2: neighbor = [5] elif photor_ind == 3: neighbor = [14] elif photor_ind == 4: neighbor = [4] elif photor_ind == 5: neighbor = [3] elif photor_ind == 6: neighbor = [2] elif photor_ind == 7: neighbor = [0] elif photor_ind == 8: neighbor = [0] else: raise ValueError('Unexpected neighbor index {}. Expected 1-8.' .format(photor_ind)) return neighbor class OpticAxisPlain(OpticAxisRule): def __init__(self): self.name = 'plain' def neighbor_that_send_photor_to(self, photor_ind): return [0] def neighbor_that_provide_photor(self, photor_ind): return [0] class RuleHexArrayMap(object): ''' A class that assigns columns based on composition rule in a consistent way. ''' def __init__(self, rule, hexarray): # keys are tuples (column_id, photoreceptorname) neighbors_for_photor = {} neighbors_that_provide_photor = {} for el in hexarray.elements: for neuron, ind in iteritems(OpticAxisRule.inds): neighbordr = rule.neighbor_that_send_photor_to(ind) neighborid = hexarray.get_neighborid(el.gid, neighbordr) # While given selector is connected to a port # search for a selector of a cartridge # in the opposite direction (than the original rule). # Stop if selector is the same as the previous. # Here we assume the 2 methods of opticaxis # return cartridge ids in opposite directions and if # there is no cartridge in one of those directions # method returns the current cartridge id # instead of the neighbor's. # In case the rule connects ommatidium and cartridges # with same ids there should be no conflict in the first # place (the following check is always False) # Another option is to ignore those connections # but unconnected ports cause problems elsewhere while (neighborid, neuron) in neighbors_that_provide_photor: neighbordr = rule.neighbor_that_provide_photor(ind) neighborid_new = hexarray.get_neighborid( neighborid, neighbordr) if neighborid_new == neighborid: break else: neighborid = neighborid_new neighbors_for_photor[(el.gid, neuron)] = neighborid neighbors_that_provide_photor[(neighborid, neuron)] = el.gid self.neighbors_for_photor = neighbors_for_photor self.neighbors_that_provide_photor = neighbors_that_provide_photor def neighbor_that_send_photor_to(self, column_id, photor): return self.neighbors_for_photor[(column_id, photor)] def neighbor_that_provide_photor(self, column_id, photor): return self.neighbors_that_provide_photor[(column_id, photor)] # don't use this directly # implementation might change _class_dict = { 'Plain': OpticAxisPlain, 'SuperpositionTop': OpticAxisNeuralSuperpositionTop, 'SuperpositionBottom': OpticAxisNeuralSuperpositionBottom } def opticaxisFactory(rule): try: return _class_dict[rule] except KeyError: raise ValueError('Value {} not in axis rules {}' ' dictionary'.format(rule, list(_class_dict.keys()))) def main(): axis = opticaxisFactory('Superposition')() neuronname = 'R1' ind = axis.name_to_ind(neuronname) print(axis.neighbor_that_send_photor_to(ind)) if __name__ == '__main__': main()
"""Add vehicle table Revision ID: 1e99b5efb76f Revises: 2bbd670f53b4 Create Date: 2020-05-24 15:29:19.928946 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = "1e99b5efb76f" down_revision = "2bbd670f53b4" branch_labels = None depends_on = None def upgrade(): op.create_table( "vehicle", sa.Column("pk", sa.Integer(), nullable=False), sa.Column("id", sa.String(), nullable=True), sa.Column("source_pk", sa.Integer(), nullable=False), sa.Column("system_pk", sa.Integer(), nullable=False), sa.Column("trip_pk", sa.Integer(), nullable=True), sa.Column("label", sa.String(), nullable=True), sa.Column("license_plate", sa.String(), nullable=True), sa.Column( "current_status", sa.Enum( "INCOMING_AT", "STOPPED_AT", "IN_TRANSIT_TO", name="status", native_enum=False, ), nullable=False, ), sa.Column("latitude", sa.Float(), nullable=True), sa.Column("longitude", sa.Float(), nullable=True), sa.Column("bearing", sa.Float(), nullable=True), sa.Column("odometer", sa.Float(), nullable=True), sa.Column("speed", sa.Float(), nullable=True), sa.Column( "congestion_level", sa.Enum( "UNKNOWN_CONGESTION_LEVEL", "RUNNING_SMOOTHLY", "STOP_AND_GO", "CONGESTION", "SEVERE_CONGESTION", name="congestionlevel", native_enum=False, ), nullable=False, ), sa.Column("updated_at", sa.TIMESTAMP(timezone=True), nullable=True), sa.ForeignKeyConstraint(["source_pk"], ["feed_update.pk"],), sa.ForeignKeyConstraint(["system_pk"], ["system.pk"],), sa.PrimaryKeyConstraint("pk"), sa.UniqueConstraint("system_pk", "id"), ) op.create_index( op.f("ix_vehicle_source_pk"), "vehicle", ["source_pk"], unique=False ) op.create_index( op.f("ix_vehicle_system_pk"), "vehicle", ["system_pk"], unique=False ) op.create_index(op.f("ix_vehicle_trip_pk"), "vehicle", ["trip_pk"], unique=True) op.create_foreign_key(None, "vehicle", "trip", ["trip_pk"], ["pk"]) op.alter_column("alert", "cause", existing_type=sa.VARCHAR(), nullable=False) op.alter_column("alert", "effect", existing_type=sa.VARCHAR(), nullable=False) op.add_column("trip", sa.Column("delay", sa.Integer(), nullable=True)) op.add_column( "trip", sa.Column("started_at", sa.TIMESTAMP(timezone=True), nullable=True) ) op.add_column( "trip", sa.Column("updated_at", sa.TIMESTAMP(timezone=True), nullable=True) ) op.drop_column("trip", "current_stop_sequence") op.drop_column("trip", "vehicle_id") op.drop_column("trip", "last_update_time") op.drop_column("trip", "start_time") op.drop_column("trip", "current_status") op.add_column("vehicle", sa.Column("current_stop_pk", sa.Integer(), nullable=True)) op.add_column( "vehicle", sa.Column("current_stop_sequence", sa.Integer(), nullable=True) ) op.add_column( "vehicle", sa.Column( "occupancy_status", sa.Enum( "EMPTY", "MANY_SEATS_AVAILABLE", "FEW_SEATS_AVAILABLE", "STANDING_ROOM_ONLY", "CRUSHED_STANDING_ROOM_ONLY", "FULL", "NOT_ACCEPTING_PASSENGERS", "UNKNOWN", name="occupancystatus", native_enum=False, ), nullable=False, ), ) op.create_foreign_key(None, "vehicle", "stop", ["current_stop_pk"], ["pk"]) def downgrade(): pass
# -*- coding: utf-8 -*- from setuptools import setup, find_packages with open('README.rst') as f: readme = f.read() with open('LICENSE') as f: license = f.read() setup( name='datatransfer', version='1.0', description='the data transfering module to use scp.', long_description=None, author='Takeki Shikano', author_email='', url=None, license='MIT', packages=find_packages(exclude=('docs',)) )
#!/usr/bin/env python #coding: utf-8 from riak_common import * import riak import redis import numbers def _set_expecting_numeric_response(nutcracker, key, value): response = nutcracker.set(key, value) if not isinstance(response, numbers.Number): raise Exception('Expected nutcracker.set to return a number, but got: {0}'.format(response)) return response def _create_delete_run(key_count, riak_client, riak_bucket, nutcracker, redis): keys = [ distinct_key() for i in range(0, key_count)] nc_keys = [] for i, key in enumerate(keys): if i % 2 == 0: nc_keys += [ key ] else: nc_keys += [ nutcracker_key(key) ] cleanup_func = lambda : nutcracker.delete(*nc_keys) retry_write(cleanup_func) keys_created = 0 for i, key in enumerate(nc_keys): write_func = lambda: _set_expecting_numeric_response(nutcracker, key, key) keys_created += retry_write(write_func) assert_equal(len(nc_keys), keys_created) for i, key in enumerate(nc_keys): read_func = lambda: nutcracker.get(key) read_value = retry_read(read_func) assert_equal(key, read_value) delete_func = lambda : nutcracker.delete(*nc_keys) del_response = retry_write(delete_func) assert_equal(len(nc_keys), del_response) failed_to_delete = 0 for i, key in enumerate(nc_keys): riak_read_func = lambda : riak_bucket.get(key) riak_object = retry_read_notfound_ok(riak_read_func) if None != riak_object.data: failed_to_delete += 1 continue assert_equal(0, failed_to_delete) def _create_delete(key_count, redis_to_shutdown, riak_to_shutdown): (riak_client, riak_bucket, nutcracker, redis) = getconn(testing_type='partition') try: shutdown_redis_nodes(redis_to_shutdown) shutdown_riak_nodes(riak_to_shutdown) _create_delete_run(key_count, riak_client, riak_bucket, nutcracker, redis) except: raise finally: restore_redis_nodes() restore_riak_nodes() def test_happy_path(): _create_delete(riak_many_n, 0, 0) def test_one_redis_node_down(): _create_delete(riak_many_n, 1, 0) def test_two_redis_nodes_down(): _create_delete(riak_many_n, 2, 0) def test_one_riak_node_down(): _create_delete(riak_many_n, 0, 1) def test_two_riak_nodes_down(): _create_delete(riak_many_n, 0, 2)
#!/usr/bin/env python3 import sys import yaml config = {} with open(sys.argv[1]) as raw: config = yaml.load(raw) def alias_for_cluster(cluster): if cluster == "api.ci": return "ci" # why do we still do this?? return cluster def internal_hostnames_for_cluster(cluster): if cluster == "api.ci": return ["docker-registry.default.svc.cluster.local:5000", "docker-registry.default.svc:5000"] return ["image-registry.openshift-image-registry.svc.cluster.local:5000", "image-registry.openshift-image-registry.svc:5000"] def internal_auths_for_cluster(cluster): auths = [] for hostname in internal_hostnames_for_cluster(cluster): auths.append({ "bw_item": "build_farm", "registry_url": hostname, "auth_bw_attachment": "token_image-puller_{}_reg_auth_value.txt".format(alias_for_cluster(cluster)), }) return auths def config_for_cluster(cluster): return { "from": { ".dockerconfigjson": { "dockerconfigJSON": internal_auths_for_cluster(cluster) + [ { "bw_item": "cloud.openshift.com-pull-secret", "registry_url": "cloud.openshift.com", "auth_bw_attachment": "auth", "email_bw_field": "email", }, { "bw_item": "quay.io-pull-secret", "registry_url": "quay.io", "auth_bw_attachment": "auth", "email_bw_field": "email", }, { "bw_item": "registry.connect.redhat.com-pull-secret", "registry_url": "registry.connect.redhat.com", "auth_bw_attachment": "auth", "email_bw_field": "email", }, { "bw_item": "registry.redhat.io-pull-secret", "registry_url": "registry.redhat.io", "auth_bw_attachment": "auth", "email_bw_field": "email", }, { "bw_item": "build_farm", "registry_url": "registry.svc.ci.openshift.org", "auth_bw_attachment": "token_image-puller_ci_reg_auth_value.txt", }, { "bw_item": "build_farm", "registry_url": "registry.ci.openshift.org", "auth_bw_attachment": "token_image-puller_app.ci_reg_auth_value.txt", }, { "bw_item": "build_farm", "registry_url": "registry.arm-build01.arm-build.devcluster.openshift.com", "auth_bw_attachment": "token_image-puller_arm01_reg_auth_value.txt", }, { "bw_item": "build_farm", "registry_url": "registry.build01.ci.openshift.org", "auth_bw_attachment": "token_image-puller_build01_reg_auth_value.txt", }, { "bw_item": "build_farm", "registry_url": "registry.build02.ci.openshift.org", "auth_bw_attachment": "token_image-puller_build02_reg_auth_value.txt", }, { "bw_item": "build_farm", "registry_url": "registry.apps.build01-us-west-2.vmc.ci.openshift.org", "auth_bw_attachment": "token_image-puller_vsphere_reg_auth_value.txt", }], }, }, "to": [{ "cluster": cluster, "namespace": "ci", "name": "registry-pull-credentials-all", "type": "kubernetes.io/dockerconfigjson", }, { "cluster": cluster, "namespace": "test-credentials", "name": "registry-pull-credentials-all", "type": "kubernetes.io/dockerconfigjson", }], } clusters = ["api.ci", "app.ci", "build01", "build02", "vsphere"] configs = dict(zip(clusters, [config_for_cluster(cluster) for cluster in clusters])) found = dict(zip(clusters, [False for cluster in clusters])) for i, secret in enumerate(config["secret_configs"]): for c in configs: if secret["to"] == configs[c]["to"]: found[configs[c]["to"][0]["cluster"]] = True config["secret_configs"][i] = configs[c] for c in found: if not found[c]: config["secret_configs"].append(configs[c]) with open(sys.argv[1], "w") as raw: yaml.dump(config, raw)