content
stringlengths
5
1.05M
''' Auth API 관련 테스트 케이스 ''' import unittest from json import loads from flask import current_app from app import create_app from flask_jwt_extended import create_access_token class AuthAPITestCase(unittest.TestCase): ''' Auth 테스트 케이스 클래스 ''' def setUp(self): '''전처리 메소드''' self.app = create_app('testing') self.app_context = self.app.app_context() self.app_context.push() self.client = self.app.test_client() self.access_token = { 'ADMIN': create_access_token( identity=self.app.config['ADMIN_ID'], expires_delta=False), 'TEST': create_access_token( identity="test", expires_delta=False)} def tearDown(self): '''후처리 메소드''' self.app_context.pop() def get_headers(self, user_type="ADMIN"): '''API Header 생성 메소드''' result = { 'Accept': 'application/json', 'Authorization': "Bearer " + self.access_token[user_type], #'Content-Type': 'application/json', } return result def test_sejong(self): '''세종대학교 구성원 인증 API 테스트''' resp = self.client.post( '/api/auth/sejong', headers=self.get_headers(), json={ "sj_id": current_app.config['SEJONG_ID'], "sj_pw": current_app.config['SEJONG_PW'] } ) self.assertEqual(resp.status_code, 200) def test_signup_secession(self): '''회원 가입 API 테스트 (회원 탈퇴 API 테스트 로직도 이하 동일함)''' resp = self.client.post( '/api/auth/signup', headers=self.get_headers(), json={ "sj_id": current_app.config['SEJONG_ID'], "sj_pw": current_app.config['SEJONG_PW'], "id": "test", "pw": "test", "nickname": "test" } ) self.assertEqual(resp.status_code, 200) resp = self.client.delete( '/api/auth/secession', headers=self.get_headers("TEST"), json={"pw": "test"} ) self.assertEqual(resp.status_code, 200) def test_signin(self): ''' 로그인 API 검증 테스트 ''' resp = self.client.post( '/api/auth/signin', headers=self.get_headers(), json={ "id": current_app.config['ADMIN_ID'], "pw": current_app.config['ADMIN_PW'] } ) self.assertEqual(resp.status_code, 200) def test_update_password(self): '''비밀번호 변경 API 테스트''' resp = self.client.post( '/api/auth/signup', headers=self.get_headers(), json={ "sj_id": current_app.config['SEJONG_ID'], "sj_pw": current_app.config['SEJONG_PW'], "id": "test", "pw": "test", "nickname": "test" } ) self.assertEqual(resp.status_code, 200) resp = self.client.patch( '/api/auth/user/password', headers=self.get_headers("TEST"), json={ "old_pw": "test", "new_pw": "test2", "check_pw": "test2" } ) self.assertEqual(resp.status_code, 200) resp = self.client.delete( '/api/auth/secession', headers=self.get_headers("TEST"), json={"pw": "test2"} ) self.assertEqual(resp.status_code, 200) def test_update_nickname(self): '''닉네임 변경 API 테스트''' resp = self.client.post( '/api/auth/signup', headers=self.get_headers(), json={ "sj_id": current_app.config['SEJONG_ID'], "sj_pw": current_app.config['SEJONG_PW'], "id": "test", "pw": "test", "nickname": "test" } ) self.assertEqual(resp.status_code, 200) resp = self.client.patch( '/api/auth/user/nickname', headers=self.get_headers("TEST"), json={"nickname": "test2"} ) self.assertEqual(resp.status_code, 200) resp = self.client.delete( '/api/auth/secession', headers=self.get_headers("TEST"), json={"pw": "test"} ) self.assertEqual(resp.status_code, 200) def test_get_user(self): ''' 회원 정보 반환 API 검증 테스트 ''' resp = self.client.get( '/api/auth/user', headers=self.get_headers(), json={} ) self.assertEqual(resp.status_code, 200)
""" Utilities to match ground truth boxes to anchor boxes. Copyright (C) 2018 Pierluigi Ferrari Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import division import numpy as np def match_bipartite_greedy(weight_matrix): """ Returns a bipartite matching according to the given weight matrix. The algorithm works as follows: Let the first axis of `weight_matrix` represent ground truth boxes and the second axis anchor boxes. The ground truth box that has the greatest similarity with any anchor box will be matched first, then out of the remaining ground truth boxes, the ground truth box that has the greatest similarity with any of the remaining anchor boxes will be matched second, and so on. That is, the ground truth boxes will be matched in descending order by maximum similarity with any of the respectively remaining anchor boxes. The runtime complexity is O(m^2 * n), where `m` is the number of ground truth boxes and `n` is the number of anchor boxes. Arguments: weight_matrix (array): A 2D Numpy array that represents the weight matrix for the matching process. If `(m,n)` is the shape of the weight matrix, it must be `m <= n`. The weights can be integers or floating point numbers. The matching process will maximize, i.e. larger weights are preferred over smaller weights. Returns: A 1D Numpy array of length `weight_matrix.shape[0]` that represents the matched index along the second axis of `weight_matrix` for each index along the first axis. """ weight_matrix = np.copy(weight_matrix) # We'll modify this array. num_ground_truth_boxes = weight_matrix.shape[0] all_gt_indices = list(range(num_ground_truth_boxes)) # Only relevant for fancy-indexing below. # This 1D array will contain for each ground truth box the index of # the matched anchor box. matches = np.zeros(num_ground_truth_boxes, dtype=np.int) # In each iteration of the loop below, exactly one ground truth box # will be matched to one anchor box. for _ in range(num_ground_truth_boxes): # Find the maximal anchor-ground truth pair in two steps: First, reduce # over the anchor boxes and then reduce over the ground truth boxes. anchor_indices = np.argmax(weight_matrix, axis=1) # Reduce along the anchor box axis. overlaps = weight_matrix[all_gt_indices, anchor_indices] ground_truth_index = np.argmax(overlaps) # Reduce along the ground truth box axis. anchor_index = anchor_indices[ground_truth_index] matches[ground_truth_index] = anchor_index # Set the match. # Set the row of the matched ground truth box and the column of the matched # anchor box to all zeros. This ensures that those boxes will not be matched again, # because they will never be the best matches for any other boxes. weight_matrix[ground_truth_index] = 0 weight_matrix[:, anchor_index] = 0 return matches def match_multi(weight_matrix, threshold): """ Matches all elements along the second axis of `weight_matrix` to their best matches along the first axis subject to the constraint that the weight of a match must be greater than or equal to `threshold` in order to produce a match. If the weight matrix contains elements that should be ignored, the row or column representing the respective elemet should be set to a value below `threshold`. Arguments: weight_matrix (array): A 2D Numpy array that represents the weight matrix for the matching process. If `(m,n)` is the shape of the weight matrix, it must be `m <= n`. The weights can be integers or floating point numbers. The matching process will maximize, i.e. larger weights are preferred over smaller weights. threshold (float): A float that represents the threshold (i.e. lower bound) that must be met by a pair of elements to produce a match. Returns: Two 1D Numpy arrays of equal length that represent the matched indices. The first array contains the indices along the first axis of `weight_matrix`, the second array contains the indices along the second axis. """ num_anchor_boxes = weight_matrix.shape[1] all_anchor_indices = list(range(num_anchor_boxes)) # Only relevant for fancy-indexing below. # Find the best ground truth match for every anchor box. ground_truth_indices = np.argmax(weight_matrix, axis=0) # Array of shape (weight_matrix.shape[1],) overlaps = weight_matrix[ground_truth_indices, all_anchor_indices] # Array of shape (weight_matrix.shape[1],) # Filter out the matches with a weight below the threshold. anchor_indices_thresh_met = np.nonzero(overlaps >= threshold)[0] gt_indices_thresh_met = ground_truth_indices[anchor_indices_thresh_met] return gt_indices_thresh_met, anchor_indices_thresh_met
#pretrained_model = '/home/dzm44/Documents/projects/clinical-bert/clinical-bert-weights' #code_graph_file = '/home/dzm44/Documents/data/icd_codes/code_graph_radiology_expanded.pkl' pretrained_model = '/home/jered/Documents/projects/clinical-bert/clinical-bert-weights' code_graph_file = '/home/jered/Documents/data/icd_codes/code_graph_radiology_expanded.pkl' #data_dir = '/home/dzm44/Documents/data/Dataset_10-11-2019/preprocessed/reports_and_codes_expanded' data_dir = '/home/jered/Documents/data/Dataset_10-11-2019/preprocessed/reports_and_codes_expanded' #data_dir = '/home/jered/Documents/data/Dataset_10-11-2019/preprocessed/mini' #data_dir = '/home/jered/Documents/data/mimic-iii-clinical-database-1.4/preprocessed/reports_and_codes_expanded' #data_dir = '/home/jered/Documents/data/mimic-iii-clinical-database-1.4/preprocessed/mini' val_file = 'val.data' #val_file = 'test.data' # training params learning_rate_unfrozen = .00001 learning_rate_frozen = .001 batch_size = 8 epochs = 3 #epochs = 5 limit_rows_train = 10000 #limit_rows_train = None limit_rows_val = 1000 #limit_rows_val = None subbatches = 8 num_workers = 2 checkpoint_every = 10 copy_checkpoint_every = 300 val_every = 10 email_every = 30 expensive_val_every = 500 #expensive_val_every = None # model params sentences_per_checkpoint = 30 concatenate_code_embedding = True # email params smtp_server = 'smtp.gmail.com' port = 465 sender_email = '[email protected]' receiver_email = '[email protected]'
from abc import ABC, abstractmethod class Cat(ABC): @abstractmethod def talk(self, meow_type): pass class BlackCat(Cat): pass black_cat = BlackCat()
# Generated by Django 2.0.4 on 2018-05-01 14:30 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('zoo', '0012_auto_20180501_1406'), ] operations = [ migrations.RemoveField( model_name='exhibit', name='animals', ), ]
import os import sys import torch import tarfile import numpy as np from types import SimpleNamespace import pcam.datasets.modelnet40 as m40 from pcam.models.network import PoseEstimator from torch.optim.lr_scheduler import MultiStepLR from torch.utils.tensorboard import SummaryWriter from pcam.tool.train_util import train_one_epoch, validation import math from pcam.datasets.kitti_dm import KittiDataModule from pcam.datasets.threedmatch_dm import ThreeDMatchDataModule from sacred import Experiment from sacred import SETTINGS from sacred.utils import apply_backspaces_and_linefeeds from sacred.observers import MongoObserver # Sacred config. SETTINGS.CAPTURE_MODE = 'sys' # for tqdm name = 'pcam_train' ex = Experiment(name) @ex.config def config(): # Name of the dataset DATASET = '' # Number of points to sample for the point cloud NUM_POINTS = 2048 # Device for torch DEVICE = 'cuda' # Name of subfolder where to save checkpoint PREFIX = 'new_training' # Use a sparse mapping or not when computing pairs of corresponding point SPARSE_ATTENTION = True # Set to False for PCAM. When set to True only the last attention is used to find corresponding point. LAST_ATTENTION = False # Numbers of layers in our encoder to find matching points NB_ENCODERS = 6 # Number of epochs NB_EPOCHS = 100 # In case training needs to be relaunched from last checkpoint RELOAD_LAST = False # (De)activate losses during training LOSS_ENTROPY_ATTENTION = True LOSS_DIST_ATTENTION = False LOSS_DIST_CONFIDENCE = True def save_model(epoch, net, optimizer, scheduler, best_recall, best_rre, filename): torch.save( { 'epoch': epoch, 'net': net.state_dict(), 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), 'best_recall': best_recall, 'best_rre': best_rre, }, filename ) @ex.automain def main(NB_EPOCHS, NUM_POINTS, RELOAD_LAST, DEVICE, PREFIX, SPARSE_ATTENTION, LAST_ATTENTION, NB_ENCODERS, DATASET, LOSS_ENTROPY_ATTENTION, LOSS_DIST_ATTENTION, LOSS_DIST_CONFIDENCE): # --- Base directory basedir = os.path.dirname(os.path.realpath(__file__)) + '/../' # --- Load dataset if DATASET == 'kitti': path2data = basedir + "/data/kitti/dataset" icp_cache_path = basedir + "/data/kitti/icp" threshold_rte = 0.6 threshold_rre = 5 config = SimpleNamespace( voxel_size=0.3, min_scale=1., max_scale=1., ) data_module = KittiDataModule(path2data, icp_cache_path, NUM_POINTS) elif DATASET == '3dmatch': path2data = basedir + "/data/3dmatch/threedmatch" config = SimpleNamespace( voxel_size=0.05, min_scale=0.8, max_scale=1.2, ) threshold_rte = 0.3 threshold_rre = 15 data_module = ThreeDMatchDataModule(path2data, NUM_POINTS) elif DATASET[:8] == 'modelnet': unseen = False gaussian_noise = False if len(DATASET) > 8: if DATASET[9:] == 'unseen': unseen = True elif DATASET[9:] == 'noise': gaussian_noise = True else: raise NotImplementedError('Dataset not available') print('unseen', unseen, 'gaussian_noise', gaussian_noise) train_loader = torch.utils.data.DataLoader( m40.ModelNet40(1024, partition='train', gaussian_noise=gaussian_noise, unseen=unseen), pin_memory=True, batch_size=1, collate_fn=m40.collate_fn, num_workers=4, shuffle=True ) val_loader = torch.utils.data.DataLoader( m40.ModelNet40(1024, partition='val', gaussian_noise=gaussian_noise, unseen=unseen), pin_memory=True, batch_size=1, collate_fn=m40.collate_fn, num_workers=4, shuffle=False ) # For validation accuracy during training threshold_rte = 0.03 threshold_rre = 1. # Only used to define threshold for good pairs of points config = SimpleNamespace( voxel_size=0.03, max_scale=1., ) if DATASET == 'kitti' or DATASET == '3dmatch': train_loader = data_module.train_loader() val_loader = data_module.val_loader() # --- Network BACKPROP = not SPARSE_ATTENTION net = PoseEstimator( nb_encoders=NB_ENCODERS, last_attention=LAST_ATTENTION, sparse_attention=SPARSE_ATTENTION, backprop=BACKPROP ).to(DEVICE) # --- Optimizer epoch_factor = NB_EPOCHS / 100.0 optimizer = torch.optim.AdamW(net.parameters(), lr=1e-3, weight_decay=1e-3) scheduler = MultiStepLR(optimizer, milestones=[int(60 * epoch_factor), int(80 * epoch_factor)], gamma=0.1) # --- Path to experiment root = basedir + "/trained_models/" path2exp = root + DATASET + '/' + PREFIX + '/' if SPARSE_ATTENTION: path2exp += 'sparse_' else: path2exp += 'soft_' if LAST_ATTENTION: path2exp += 'lastAttention_' path2exp += 'nbEnc_' + str(NB_ENCODERS) if not BACKPROP: path2exp += '_noBackprop' if LOSS_DIST_ATTENTION: if LOSS_ENTROPY_ATTENTION: path2exp += '_DistEntAtt' else: path2exp += '_DistAtt' else: if not LOSS_ENTROPY_ATTENTION: path2exp += '_NoLossAtt' if LOSS_DIST_CONFIDENCE: path2exp += '_DistConf' if NUM_POINTS != 2048: path2exp += '_' + str(NUM_POINTS) print('Save experiment in ' + path2exp) # --- Reload model if RELOAD_LAST: print('Reload last checkpoint') checkpoint = torch.load(os.path.join(path2exp, 'check_point_last.pth')) net.load_state_dict(checkpoint['net']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) epoch = checkpoint['epoch'] + 1 purge_step = epoch * len(train_loader) recall_best = checkpoint['best_recall'] if checkpoint.get('best_recall') is not None else 0 rre_best = checkpoint['best_rre'] if checkpoint.get('best_rre') is not None else np.inf else: epoch = 0 purge_step = 0 recall_best = 0 rre_best = np.inf # --- Tensorboard logger = SummaryWriter(log_dir=path2exp, purge_step=purge_step, flush_secs=60) # --- Train for epoch in range(epoch, NB_EPOCHS): train_one_epoch(epoch, train_loader, net, optimizer, logger, DEVICE, 2 * config.max_scale * config.voxel_size, LOSS_ENTROPY_ATTENTION, LOSS_DIST_ATTENTION, LOSS_DIST_CONFIDENCE) recall, rre = validation(epoch, val_loader, net, logger, DEVICE, threshold_rte=threshold_rte, threshold_rre=threshold_rre) scheduler.step() # Save best model (but we use the last saved model at test time !) if recall_best < recall or (recall_best == recall and rre_best > rre): recall_best, rre_best = recall, rre filename = os.path.join(path2exp, 'check_point_best.pth') save_model(epoch, net, optimizer, scheduler, recall_best, rre_best, filename) # Save checkpoint print(epoch + 1, 'epoch done') filename = os.path.join(path2exp, 'check_point_last.pth') save_model(epoch, net, optimizer, scheduler, recall_best, rre_best, filename)
from bootiful_sanic.model.user import User class UserDAO(User): @classmethod async def get_user(cls, user_id): user = await cls.get_or_404(user_id) return user
from rest_framework import serializers class HelloSerializer(serializers.Serializer): """Serializers a name field for testing our APIView""" name = serializers.CharField(max_length= 10)
# -*- coding: utf-8 -*- from __future__ import absolute_import from enum import IntEnum class LiveAuthType(IntEnum): api = 0 password = 1 no_password = 2 class LiveTemplateType(IntEnum): video = 1 # 视频 video_chat_qa = 2 # 视频,聊天,问答 video_chat = 3 # 视频,聊天 3 video_doc_chat = 4 # 视频,文档,聊天 4 video_doc_chat_qa = 5 # 视频,文档,聊天,问答 5 video_qa = 6 # 视频,问答 6 class LiveAutoLoginType(IntEnum): user = 1 assistant = 2 manage = 3 lecturer = 4 class ClassRoomAutoLoginType(IntEnum): presenter = 1 # 教师 assistant = 2 # 助教 talker = 3 # 互动 audience = 4 # 旁听 inspector = 5 # 隐身 record = 6 # 回放 class ClassRoomRoomType(IntEnum): chat = 1 small_class = 2 class ClassRoomTemplateType(IntEnum): talk = 1 # 讲课模式 main = 2 # 主视角模式 tile = 4 # 平铺模式 # one_to_one = 8 # 1v1模式, 使用这个会500 two_teacher = 16 # 双师模式 class ClassRoomMergeType(IntEnum): main = 1 # 讲课模式 tile = 2 # 主视角模式 cover = 3 # 平铺模式 class ClassRoomClassType(IntEnum): call = 1 # 点名 free = 2 # 自由 auto = 3 # 自动
import random as rnd import numpy as np import prettytable POPULATION_SIZE = 9 NUMB_OF_ELITE_SCHEDULES = 1 TOURNAMENT_SELECTION_SIZE = 3 MUTATION_RATE = 0.1 class Department: def __init__(self, name, courses): self._name = name self._courses = courses def get_name(self): return self._name def get_courses(self): return self._courses class Class: def __init__(self, id, dept, course): self._id = id self._dept = dept self._course = course self._instructor = None self._meetingTime = None self._room = None def get_id(self): return self._id def get_dept(self): return self._dept def get_course(self): return self._course def get_instructor(self): return self._instructor def get_meetingTime(self): return self._meetingTime def get_room(self): return self._room def set_instructor(self, instructor): self._instructor = instructor def set_meetingTime(self, meetingTime): self._meetingTime = meetingTime def set_room(self, room): self._room = room def __str__(self) -> str: return str(self._dept.get_name()) + ',' + str(self._course.get_number()) + ',' + \ str(self._room.get_number()) + ',' + str(self._instructor.get_id()) + ',' + str( self._meetingTime.get_id()) class Course: def __init__(self, number, name, instructors, maxNumberOfStudents): self._number = number self._name = name self._instructors = instructors self._maxNumberOfStudents = maxNumberOfStudents def get_number(self): return self._number def get_name(self): return self._name def get_instructors(self): return self._instructors def get_maxNumbOfStudents(self): return self._maxNumberOfStudents def __str__(self): return self._name class Instructor: def __init__(self, id, name): self._id = id self._name = name def get_id(self): return self._id def get_name(self): return self._name def __str__(self): return self._name class Room: def __init__(self, number, seatingCapacity): self._number = number self._seatingCapacity = seatingCapacity def get_number(self): return self._number def get_seatingCapacity(self): return self._seatingCapacity class MeetingTime: def __init__(self, id, time): self._id = id self._time = time def get_id(self): return self._id def get_time(self): return self._time class Data: ROOMS = [['R1', 25], ['R2', 45], ['R3', 35]] MEETING_TIMES = [['MT1', 'MWF 09:00 - 10:00'], ['MT2', 'MWF 10:00 - 11:00'], ['MT3', 'TTH 09:00 - 10:30'], ['MT4', 'TTH 10:30 - 12:00']] INSTRUCTORS = [['I1', 'Dr James Web'], ['I2', 'Dr Mike Brown'], ['I3', 'Dr Steve Day'], ['I4', 'Dr Jane Doe']] def __init__(self): self._rooms = [] self._meetingTimes = [] self._instructors = [] for i in range(len(self.ROOMS)): self._rooms.append(Room(self.ROOMS[i][0], self.ROOMS[i][1])) for i in range(len(self.MEETING_TIMES)): self._meetingTimes.append(MeetingTime(self.MEETING_TIMES[i][0], self.MEETING_TIMES[i][1])) for i in range(len(self.INSTRUCTORS)): self._instructors.append(Instructor(self.INSTRUCTORS[i][0], self.INSTRUCTORS[i][1])) course1 = Course("C1", "325K", [self._instructors[0], self._instructors[1]], 25) course2 = Course("C2", "320K", [self._instructors[0], self._instructors[1]], 35) course3 = Course("C3", "462k", [self._instructors[0], self._instructors[1]], 25) course4 = Course("C4", "464K", [self._instructors[2], self._instructors[3]], 30) course5 = Course("C5", "360C", [self._instructors[3]], 35) course6 = Course("C6", "303K", [self._instructors[0], self._instructors[2]], 45) course7 = Course("C7", "303L", [self._instructors[1], self._instructors[3]], 45) self._courses = [course1, course2, course3, course4, course5, course6, course7] dept1 = Department("MATH", [course1, course3]) dept2 = Department("EE", [course2, course4, course5]) dept3 = Department("PHY", [course6, course7]) self._depts = [dept1, dept2, dept3] self._numberOfClasses = 0 for i in range(len(self._depts)): self._numberOfClasses += len(self._depts[i].get_courses()) def get_rooms(self): return self._rooms def get_instructors(self): return self._instructors def get_courses(self): return self._courses def get_depts(self): return self._depts def get_meetingTimes(self): return self._meetingTimes class Schedule: def __init__(self): self._data = data self._classes = [] self._numOfConflicts = 0 self._fitness = -1 self._classNumb = 0 self._isFitnessChanged = True def get_classes(self): self._isFitnessChanged = True return self._classes def get_numOfConflicts(self): return self._numOfConflicts def get_fitness(self): if self._isFitnessChanged: self._fitness = self.calculate_fitness() self._isFitnessChanged = False return self._fitness def initialize(self): depts = self._data.get_depts() for i in range(len(depts)): courses = depts[i].get_courses() for j in range(len(courses)): new_class = Class(self._classNumb, depts[i], courses[j]) self._classNumb += 1 new_class.set_meetingTime(data.get_meetingTimes()[rnd.randrange(0, len(data.get_meetingTimes()))]) new_class.set_room(data.get_rooms()[rnd.randrange(0, len(data.get_rooms()))]) new_class.set_instructor( courses[j].get_instructors()[rnd.randrange(0, len(courses[j].get_instructors()))]) self._classes.append(new_class) return self def calculate_fitness(self): self._numOfConflicts = 0 classes = self.get_classes() for i in range(len(classes)): if classes[i].get_room().get_seatingCapacity() < classes[i].get_course().get_maxNumbOfStudents(): self._numOfConflicts += 1 for j in range(len(classes)): if j >= i: if \ classes[i].get_meetingTime() == classes[j].get_meetingTime() and classes[i].get_id() != \ classes[j].get_id(): if classes[i].get_room() == classes[j].get_room(): self._numOfConflicts += 1 if classes[i].get_instructor() == classes[j].get_instructor(): self._numOfConflicts += 1 return 1 / (1.0 * (self._numOfConflicts + 1)) def __str__(self) -> str: return_value = '' for i in range(len(self._classes) - 1): return_value += str(self._classes[i]) + ', ' return_value += str(self._classes[len(self._classes) - 1]) return return_value class Population: def __init__(self, size): self._size = size self._data = data self._schedules = [] for i in range(size): self._schedules.append(Schedule().initialize()) def get_schedules(self): return self._schedules class GeneticAlgorithm: def evolve(self, population): return self._mutate_population(self._crossover_population(population)) def _crossover_population(self, pop): crossover_pop = Population(0) for i in range(NUMB_OF_ELITE_SCHEDULES): crossover_pop.get_schedules().append(pop.get_schedules()[i]) i = NUMB_OF_ELITE_SCHEDULES while i < POPULATION_SIZE: schedule1 = self._select_tournament_population(pop).get_schedules()[0] schedule2 = self._select_tournament_population(pop).get_schedules()[0] crossover_pop.get_schedules().append(self._crossover_schedule(schedule1, schedule2)) i += 1 return crossover_pop def _mutate_population(self, population): for i in range(NUMB_OF_ELITE_SCHEDULES, POPULATION_SIZE): self._mutate_schedule(population.get_schedules()[i]) return population def _crossover_schedule(self, schedule1, schedule2): self.is_not_used() crossover_schedule = Schedule().initialize() for i in range(0, len(crossover_schedule.get_classes())): if rnd.random() > 0.5: crossover_schedule.get_classes()[i] = schedule1.get_classes()[i] else: crossover_schedule.get_classes()[i] = schedule2.get_classes()[i] return crossover_schedule def _mutate_schedule(self, mutateSchedule): self.is_not_used() schedule = Schedule().initialize() for i in range(len(mutateSchedule.get_classes())): if MUTATION_RATE > rnd.random(): mutateSchedule.get_classes()[i] = schedule.get_classes()[i] return mutateSchedule def _select_tournament_population(self, pop): self.is_not_used() tournament_pop = Population(0) i = 0 while i < TOURNAMENT_SELECTION_SIZE: tournament_pop.get_schedules().append(pop.get_schedules()[rnd.randrange(0, POPULATION_SIZE)]) i += 1 tournament_pop.get_schedules().sort(key=lambda x: x.get_fitness(), reverse=True) return tournament_pop def is_not_used(self): pass class DisplayMgr: def print_available_data(self): self.is_not_used() print("> All Available Data") self.print_dept() self.print_course() self.print_room() self.print_instructor() self.print_meeting_times() def print_dept(self): self.is_not_used() depts = data.get_depts() available_depts_table = prettytable.PrettyTable(['dept', 'courses']) for i in range(len(depts)): courses = depts.__getitem__(i).get_courses() temp_str = "[" for j in range(len(courses) - 1): temp_str += courses[j].__str__() + ", " temp_str += courses[len(courses) - 1].__str__() + "]" available_depts_table.add_row([depts.__getitem__(i).get_name(), temp_str]) print(available_depts_table) def print_course(self): self.is_not_used() available_course_table = prettytable.PrettyTable(['id', 'course', 'maxS', 'ins']) courses = data.get_courses() for i in range(len(courses)): instructors = courses[i].get_instructors() temp_str = "" for j in range(len(instructors) - 1): temp_str += instructors[j].__str__() + ", " temp_str += instructors[len(instructors) - 1].__str__() available_course_table.add_row( [courses[i].get_number(), courses[i].get_name(), str(courses[i].get_maxNumbOfStudents()), temp_str] ) print(available_course_table) def print_room(self): self.is_not_used() availableRoomsTable = prettytable.PrettyTable(['room', 'max']) rooms = data.get_rooms() for i in range(len(rooms)): availableRoomsTable.add_row([str(rooms[i].get_number()), str(rooms[i].get_seatingCapacity())]) print(availableRoomsTable) def print_instructor(self): self.is_not_used() available_instructor_table = prettytable.PrettyTable(['id', 'ins']) instructors = data.get_instructors() for i in range(len(instructors)): available_instructor_table.add_row([instructors[i].get_id(), instructors[i].get_name()]) print(available_instructor_table) def print_meeting_times(self): self.is_not_used() availableMeetingTimeTable = prettytable.PrettyTable(['id', 'mt']) meetingTimes = data.get_meetingTimes() for i in range(len(meetingTimes)): availableMeetingTimeTable.add_row([meetingTimes[i].get_id(), meetingTimes[i].get_time()]) print(availableMeetingTimeTable) def print_generation(self, population): self.is_not_used() table1 = prettytable.PrettyTable(['Schedule #', 'Fitness', '# of conflicts', 'classes [dept,class,room,instructor,meeting-time]']) schedules = population.get_schedules() for i in range(len(schedules)): table1.add_row([str(i + 1), round(schedules[i].get_fitness(), 3), schedules[i].get_numOfConflicts(), schedules[i].__str__()]) print(table1) def print_schedule_as_table(self, schedule): self.is_not_used() table1 = prettytable.PrettyTable(['Class #', 'Dept', 'Courses (number, max # of students)', "Room (Capacity)", "Instructor (Id)", "Meeting Time (Id)"]) classes = schedule.get_classes() for i in range(len(classes)): course = classes[i].get_course().get_name() + " (" + classes[i].get_course().get_number() + ", " + \ str(classes[i].get_course().get_maxNumbOfStudents()) + ")" instructor = classes[i].get_instructor().get_name() + " (" + classes[i].get_instructor().get_id() + ")" room = classes[i].get_room().get_number() + " (" + str(classes[i].get_room().get_seatingCapacity()) + ")" meeting_time = classes[i].get_meetingTime().get_time() + " (" + classes[i].get_meetingTime().get_id() + ")" table1.add_row( [classes[i].get_id(), classes[i].get_dept().get_name(), course, room, instructor, meeting_time] ) print(table1) def print_mean(self, population): self.is_not_used() schedules = population.get_schedules() fitness_scores = [] for i in range(len(schedules)): fitness_scores.append(round(schedules[i].get_fitness(), 3)) print("> Mean= ", np.array(fitness_scores).mean()) def print_std(self, population): self.is_not_used() schedules = population.get_schedules() fitness_scores = [] for i in range(len(schedules)): fitness_scores.append(round(schedules[i].get_fitness(), 3)) print("> Standard Deviation= ", np.array(fitness_scores).std()) def is_not_used(self): pass data = Data() display = DisplayMgr() display.print_available_data() generation_number = 0 print("\n> Generation #", generation_number) population = Population(POPULATION_SIZE) population.get_schedules().sort(key=lambda x: x.get_fitness(), reverse=True) display.print_generation(population) geneticAlgorithm = GeneticAlgorithm() while population.get_schedules()[0].get_fitness() != 1.0: generation_number += 1 print("\n> Generation #", generation_number) population = geneticAlgorithm.evolve(population) population.get_schedules().sort(key=lambda x: x.get_fitness(), reverse=True) display.print_generation(population) display.print_schedule_as_table(population.get_schedules()[0]) display.print_mean(population) display.print_std(population)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ README: 轉換格式 從 臺灣生物分類階層樹狀名錄 Input: https://taibnet.sinica.edu.tw/AjaxTree/allkingdom.php? id detail: #https://taibnet.sinica.edu.tw/chi/taibnet_species_detail.php?name_code=201102&tree=y API by hack: https://taibnet.sinica.edu.tw/AjaxTree/xml.php?id=%s CSV 格式: id,level,link,child,pid,name,ename,memo,text 項目 ID, 第幾層 ,從頭到此的結構 ,是否有子項(0:屬 1:非屬),上層代號,中文名稱,英文名稱,備註(此項資料下面有多少項目),項目原始 text @author: wuulong """ #%% get XML import os import requests import pandas as pd import xml.etree.ElementTree as etree import re load_cnt = 0 # 讀取的項目數量, debug purpose #%% 資料儲存 class BioTree(): def __init__(self,root_id,root_level,root_link): self.root ={} # [level,link,result] , self.root_id = root_id #植物界 self.root_level = root_level #界:1 self.root_link = root_link # 7-x-x #%% 下載 xml, 如果已經下載過,會跳過 def url_to_file(url,pathname,reload=False): #print("url_to_file: url=%s, pathname=%s" %(url,pathname)) global load_cnt need_load= True if reload==False and os.path.isfile(pathname) : need_load = False if need_load: try: r = requests.get(url, allow_redirects=True,verify=False) open(pathname, 'wb').write(r.content) except: return False load_cnt += 1 if load_cnt % 100 ==0 : print("loading cnt = %i" %(load_cnt)) return True #%% 將 XML 轉換成 list def parse_xml(filename): try: tree = etree.parse(filename) root = tree.getroot() dataname = root[0].tag #FIME: need more check no data result = [] for item in root.findall(dataname): id = item.attrib['id'] child = item.attrib['child'] text_tmp = item.attrib['text'] #text = text_tmp text = text_tmp.replace(chr(160),' ') #(C2) A0-> 0x20 #m = re.search('(\S+)\s+(.*)<font.*>(.*)</font>',text) #print("child=%s,id=%s,name=%s,ename=%s,memo=%s,text=%s" %(child,id,m.group(1),m.group(2),m.group(3).strip(),text)) result.append([id,child,text]) except: result = None return result #[ [id,child,text],[id,child,text],... ] #%% 取得與處理某個 id def get_id(id): url="https://taibnet.sinica.edu.tw/AjaxTree/xml.php?id=%s" %(id) status = url_to_file(url,"%s.xml" %(id),False) if not status: print("!!! Get URL exception: id=%i" %(id)) return None filename = "%s.xml" %(id) result = parse_xml(filename) if result is None: print("!!! Parse XML Exception: id=%s " %(id)) return result #%% 將 item 中的 text, 取出名稱,英文學名, memo def parse_text(id,child,text): #print("parse_txt id=%s" %(id)) if child=='1': m = re.search('(\S+)\s+(.*)<font.*>(.*)</font>',text) if m: name = m.group(1) ename = m.group(2).replace('<i>','').replace('</i>','') memo = m.group(3).strip() #print("child=%s,id=%s,name=%s,ename=%s,memo=%s,text=%s" %(child,id,name,ename,memo,text)) else: print('Exception parse_text: id=%s' % (id) ) return [id, child, '', '', ''] else: if text[0]=='<': m = re.search('(.*)<font.*>(.*)</font>',text) name = "" ename_str = m.group(1) else: m = re.search('(\S*)\s*(.*)<font.*>(.*)</font>',text) name = m.group(1) ename_str = m.group(2) m2 = re.findall("<i>(.*?)</i>", ename_str, flags=0) ename = " ".join(m2) memo = "" #print("child=%s,id=%s,name=%s,ename=%s, text=%s" %(child,id,name,ename, text)) return [id, child, name, ename, memo] #%% 遞迴取id def travel_id(oid,level,link, root, recurisve=False): result = get_id(oid) if result is None: return root[oid]=[level,link,result] for [id,child,text] in result: if child=='1': if recurisve: if link: link_str = "%s-%s" %(link,id) else: link_str = id travel_id(id, level+1, link_str,root, True) #%% 將結果輸出到螢幕或是檔案(CSV) def dump_root(root,filename): if filename != "": # 開啟檔案 fp = open(filename, "w",encoding='UTF-8') fp.write("id|level|link|child|pid|name|ename|memo|text\n") for pid in root.keys(): result = root[pid][2] level = root[pid][0]+1 link = root[pid][1] for [id,child,text] in result: [id, child, name, ename, memo] = parse_text(id,child,text) if link: link_str = "%s-%s" %(link,id) else: link_str = id if filename != "": fp.write("%s|%i|%s|%s|%s|%s|%s|%s|%s\n" %(id,level,link_str, child,pid,name,ename, memo, text)) else: print("id=%s|level=%i|link=%s|child=%s|pid=%s|name=%s|ename=%s|memo=%s|text=%s" %(id,level,link_str,child,pid,name,ename, memo, text)) if filename != "": fp.close() #%% 設定/取得/輸出 #oid='71004010012' bt = BioTree('7',1,"7") #處理的ID, 第幾層(界為第一層),從上到此層的結構(如維管束植物門為 7-710) ,此例為植物界 #bt = BioTree('0',0,"") #此例為全部 #bt = BioTree('1',3,"1-0-0") #病毒是特例 #bt = BioTree('7100402',1,"7-710-71004-7100402") #處理的ID, 第幾層(界為第一層),從上到此層的結構(如維管束植物門為 7-710) ,此例為植物界 #bt = BioTree('1',1,"1") #處理的ID, 第幾層(界為第一層),從上到此層的結構(如維管束植物門為 7-710) ,此例為植物界 travel_id(bt.root_id,bt.root_level,bt.root_link,bt.root, True) dump_root(bt.root,"biotree.csv") #dump_root(bt.root,"")
#!/usr/bin/env python import os import yaml from botocore.exceptions import ClientError, ProfileNotFound import boto3 from fabric.api import run, env, task, sudo, cd from fabric.contrib.files import exists from fabric.contrib.console import confirm from fabric.operations import require from fabric.utils import abort, warn from git import Repo # We depend on the repo name in Github for the canonical name, however the folder cloned locally could be # named differently. This code queries the `origin` remote and gets the repo name from git configuration # instead of expecting the folder name to also be the upstream repo name. repo = Repo() origin_url = repo.remotes.origin.url remote_repo_path = origin_url.split('/')[1] repo_name = remote_repo_path.split('.')[0] env.forward_agent = True with open('fabric_config.yaml') as file: deploy_config = yaml.load(file) shortcode = deploy_config.get('shortcode') artifact_name = deploy_config.get('artifact_name') temp_dir = deploy_config.get('temp_dir') deploy_to = deploy_config.get('deploy_to') s3_bucket = deploy_config.get('s3_bucket') def _get_latest_build(): try: session = boto3.Session(profile_name=os.getenv('AWS_PROFILE', 'hb-deployer')) except ProfileNotFound: abort('AWS profile not found. Ensure you have `hb-deployer` set up in `~/.aws/credentials`') try: s3 = session.client('s3') r = s3.list_objects(Bucket=s3_bucket) target_match = '/'.join((repo_name, '_'.join((repo_name, env.branch)))) available_builds = [x.get('Key') for x in r.get('Contents') if x.get('Key').startswith(target_match)] try: return available_builds[-1] except IndexError: abort('Unable to find any builds in S3. Check that TravisCI is uploading builds.') except ClientError: abort('Permission denied when performing S3 query. Check your AWS credential configuration.') def _get_current_build(): if exists('%s/.current_version' % os.path.join(deploy_to, artifact_name), use_sudo=True): current_build = run('cat %s/.current_version' % os.path.join(deploy_to, artifact_name)) else: current_build = 'unknown' return current_build def download_build(s3_bucket, build_id, temp_dir): sudo('aws s3 cp s3://%s/%s %s/' % (s3_bucket, build_id, temp_dir)) with cd(temp_dir): _, build_filename = build_id.split('/') sudo('tar xf %s' % build_filename) path_to_deployed_artifact = os.path.join(deploy_to, artifact_name) if 'wp-content' in repo_name: _wpcontent(temp_dir, build_filename, path_to_deployed_artifact) else: _normal(temp_dir, build_filename, path_to_deployed_artifact) _cleanup_build_dir() def _wpcontent(temp_dir, build_filename, path_to_deployed_artifact): # The steps for deploying the `wp-content/` folder are a special case so that we don't blow away # the folders inside that that we're deploying separately (eg, everything in `plugins/` and `themes/`) with cd(temp_dir): sudo('mv hnc-%s %s' % (artifact_name, artifact_name)) sudo('rsync -a %s/* %s' % (artifact_name, path_to_deployed_artifact)) sudo('find %s -type f -name *.php -exec chown deployer:deployer {} \;' % path_to_deployed_artifact) sudo('find %s -type f -name *.php -exec chmod 644 {} \;' % path_to_deployed_artifact) sudo('find %s -type d -exec chown deployer:deployer {} \;' % os.path.join(path_to_deployed_artifact, 'mu-plugins')) sudo('find %s -type d -exec chmod 755 {} \;' % os.path.join(path_to_deployed_artifact, 'mu-plugins')) sudo('echo %s > %s/.current_version' % (build_filename, path_to_deployed_artifact)) def _normal(temp_dir, build_filename, path_to_deployed_artifact): with cd(temp_dir): sudo('rsync -a --delete %s %s' % (artifact_name, deploy_to)) sudo('chown -R deployer:deployer %s' % path_to_deployed_artifact) sudo('find %s -type f -exec chmod 644 {} \;' % path_to_deployed_artifact) sudo('find %s -type d -exec chmod 755 {} \;' % path_to_deployed_artifact) sudo('echo %s > %s/.current_version' % (build_filename, path_to_deployed_artifact)) def _cleanup_build_dir(): sudo('rm -rf %s/*' % temp_dir) def stage_set(stage_name='stg'): env.stage = stage_name for option, value in deploy_config['stages'][env.stage].items(): setattr(env, option, value) @task def prod(): stage_set('prod') @task def stg(): stage_set('stg') @task def deploy(override_prompt=False): """ Deploy the project. """ require('stage', provided_by=(stg, prod)) latest_build = _get_latest_build() current_build = _get_current_build() if current_build == 'unknown': msg = '''Either this is the first time deploying or the destination is in unknown state. Either way, deploying now is a safe operation and this message is only for your own information.''' warn('Unable to find a deployed build on the node. %s' % msg) print 'Build currently deployed:', current_build print 'Build available for deploying:', latest_build.split('/')[1] print if not override_prompt: continue_prompt = confirm('Ready to deploy?') if not continue_prompt: abort('Not ready to deploy') if latest_build.split('/')[1] == current_build: warn('You are about to deploy the exact same build again') dupe_deploy_prompt = confirm('Are you use you want to deploy the same build again?') if not dupe_deploy_prompt: abort('Not deploying duplicate build') download_build(s3_bucket, latest_build, temp_dir)
#!/usr/bin/python # -*-coding:utf-8 -*- u""" :创建时间: 2021/1/11 21:05 :作者: 苍之幻灵 :我的主页: https://cpcgskill.com :QQ: 2921251087 :爱发电: https://afdian.net/@Phantom_of_the_Cang :aboutcg: https://www.aboutcg.org/teacher/54335 :bilibili: https://space.bilibili.com/351598127 """ import logging import ast import astunparse from utils import * logging.basicConfig( format="%(asctime)s [CPCLI] %(levelname)s: %(message)s", level=logging.DEBUG) class BuildPython(object): head = u"""\ import sys import <<group>> <<group>>.<<module>> = sys.modules.get(__name__) """ def __init__(self, src, group_name, script): self.src = formattedPath(src) self.current_src = self.src self.current_file = None self.script = formattedPath(script) self.n_id = u"_" + uid() self.files = list() self.build_end_files = list() self.group_name = group_name # 获得所有文件 for root, dirs, files in os.walk(self.src): for file in files: self.files.append(formattedPath(u"%s/%s" % (root, file))) def run(self): # 确定要编译的文件 build_files = [i for i in self.files if i.split(u".")[-1] == u"py"] # 对文件进行编译 for i in build_files: logging.info(u"build : %s" % i) self.buildPyFile(i) # 添加运行时头 for i in build_files: module_name = self.fileModuleName(self.src, i) if len(module_name.split(u".")) == 1: logging.info(u"head :%s" % module_name) code = readFile(i) nodes = ast.parse(code) for t in reversed(self.buildTemplate(module_name.split(u".")[0])): nodes.body.insert(0, t) writeFile(i, astunparse.unparse(nodes)) # 编译脚本程序 code = readFile(self.script) nodes = ast.parse(code) for i in ast.walk(nodes): if isinstance(i, ast.Import): for ID in range(len(i.names)): t = i.names[ID] file = self.searchModuleFile(self.src, t.name) if not file is None: module_name = self.fileModuleName(self.src, file) module_name = u"%s.%s" % (self.group_name, module_name) module_names = module_name.split(u".") if t.asname is None: head = ast.alias() head.name = u".".join(module_names[:2]) head.asname = module_names[1] t.asname = u"_" i.names[ID] = [head, t] else: i.names[ID] = [t] t.name = module_name else: i.names[ID] = [t] i.names = [l for t in i.names for l in t] elif isinstance(i, ast.ImportFrom): if i.level < 1: file = self.searchModuleFile(self.src, i.module) if not file is None: module_name = self.fileModuleName(self.src, file) module_name = u"%s.%s" % (self.group_name, module_name) i.module = module_name code = astunparse.unparse(nodes) writeFile(self.script, code) def buildTemplate(self, module_name): head = self.head head = head.replace(u"<<group>>", self.group_name) head = head.replace(u"<<module>>", module_name) return ast.parse(head).body def buildPyFile(self, file): if file in self.build_end_files: return _up_file = self.current_file self.current_file = formattedPath(file) self.current_src = u"/".join(self.current_file.split(u"/")[:-1]) try: code = readFile(self.current_file) # 添加到完成编译的文件里 self.build_end_files.append(self.current_file) nodes = ast.parse(code) for i in ast.walk(nodes): if isinstance(i, ast.Import): for ID in range(len(i.names)): t = i.names[ID] file = self.searchModuleFile(self.src, t.name) if not file is None: module_name = self.fileModuleName(self.src, file) module_name = u"%s.%s" % (self.group_name, module_name) module_names = module_name.split(u".") op_module_names = t.name.split(u".") if t.asname is None: head = ast.alias() head.name = u".".join(module_names[:len(module_names) - (len(op_module_names) - 1)]) head.asname = module_names[len(module_names) - len(op_module_names)] t.asname = u"_" i.names[ID] = [head, t] else: i.names[ID] = [t] t.name = module_name # 对应的python文件 # self.buildPyFile(file) else: i.names[ID] = [t] i.names = [l for t in i.names for l in t] elif isinstance(i, ast.ImportFrom): if i.level < 1: file = self.searchModuleFile(self.src, i.module) if not file is None: module_name = self.fileModuleName(self.src, file) module_name = u"%s.%s" % (self.group_name, module_name) i.module = module_name # self.buildPyFile(file) code = astunparse.unparse(nodes) writeFile(self.current_file, code) except Exception as ex: if self.current_file in self.build_end_files: self.build_end_files.remove(self.current_file) finally: self.current_file = _up_file if not _up_file is None: self.current_src = u"/".join(self.current_file.split(u"/")[:-1]) def isfile(self, file): file = formattedPath(file) return file in self.files def searchModuleFile(self, root, module): u""" :param root: :param module: :return: :rtype: unicode|None """ if module is None: if self.isfile(u"%s/__init__.py" % root): return u"%s/__init__.py" % root return None module_file = module.replace(u".", u"/") if self.isfile(u"%s/%s/__init__.py" % (root, module_file)): return u"%s/%s/__init__.py" % (root, module_file) if self.isfile(u"%s/%s.py" % (root, module_file)): return u"%s/%s.py" % (root, module_file) if self.isfile(u"%s/%s.pyd" % (root, module_file)): return u"%s/%s.pyd" % (root, module_file) if self.isfile(u"%s/%s.pyw" % (root, module_file)): return u"%s/%s.pyw" % (root, module_file) if self.isfile(u"%s/%s.pyo" % (root, module_file)): return u"%s/%s.pyo" % (root, module_file) if self.isfile(u"%s/%s.pyc" % (root, module_file)): return u"%s/%s.pyc" % (root, module_file) if self.isfile(u"%s/%s.pyz" % (root, module_file)): return u"%s/%s.pyz" % (root, module_file) return None def fileModuleName(self, root, module_file): names = module_file[len(root) + 1:].split(u"/") if len(names) <= 1: names[-1] = names[-1].split(u".")[0] return u".".join(names) if names[-1] == u"__init__.py": names.pop(-1) names[-1] = names[-1].split(u".")[0] return u".".join(names) def absModuleName(self, module, root, current_src, level=0): if level <= 0: module_file = self.searchModuleFile(current_src, module) if not module_file is None: return self.fileModuleName(root, module_file) module_file = self.searchModuleFile(root, module) if not module_file is None: return self.fileModuleName(root, module_file) else: current_dir_path_sps = current_src.split(u"/") for i in range(level - 1): current_dir_path_sps.pop(-1) path = u"/".join(current_dir_path_sps) module_file = self.searchModuleFile(path, module) if not module_file is None: return self.fileModuleName(root, module_file) return None def group(src, script, group_name=None): script = formattedPath(script) if group_name is None: group_name = uidname() BuildPython(src=src, group_name=group_name, script=script).run()
"""Tkinter GUI chat client.""" import socket import threading import tkinter as tk firstclick = True client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) IP = "127.0.0.1" PORT = 33002 BUFFSIZE = 1024 ADDR = (IP, PORT) MSG_COUNT = 0 """ Address Family - internet, SOCK_STREAM is the TCP connection; reliable """ client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) """ reuse socket address to allow reconnecting """ client_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) client_socket.connect(ADDR) def on_entry_click(event): """function that gets called whenever entry1 is clicked""" global firstclick if firstclick: # if this is the first time they clicked it firstclick = False entry_field.delete(0, "end") # delete all the text in the entry def receive(): """Handles receiving of messages.""" while True: try: msg = client_socket.recv(BUFFSIZE).decode("utf8") msg_list.insert(tk.END, msg) except OSError: # Possibly client has left the chat. break def send(event=None): # event is passed by binders. """Handles sending of messages.""" global MSG_COUNT msg = my_msg.get() """" Update chat window with current user's name/username """ if MSG_COUNT == 0 and msg != "{quit}": new_title = '%s\'s Chat Window' % msg window.title(new_title) my_msg.set("") # Clears input field. client_socket.send(bytes(msg, "utf8")) MSG_COUNT += 1 if msg == "{quit}": client_socket.close() window.quit() def on_closing(event=None): """This function is to be called when the window is closed.""" my_msg.set("{quit}") send() window = tk.Tk() window.title("Chat Room") window.geometry("500x350") messages_frame = tk.Frame(window) my_msg = tk.StringVar() # For the messages to be sent. my_msg.set("Type your messages here.") scrollbar = tk.Scrollbar(messages_frame) # To navigate through past messages. # Following will contain the messages. msg_list = tk.Listbox(messages_frame, height=15, width=60, yscrollcommand=scrollbar.set) scrollbar.pack(side=tk.RIGHT, fill=tk.Y) msg_list.pack(side=tk.LEFT, fill=tk.BOTH) msg_list.pack() messages_frame.pack() entry_field = tk.Entry(window, textvariable=my_msg) entry_field.bind('<FocusIn>', on_entry_click) entry_field.bind("<Return>", send) entry_field.pack() send_button = tk.Button(window, text="Send", command=send) send_button.pack() window.protocol("WM_DELETE_WINDOW", on_closing) receive_thread = threading.Thread(target=receive) receive_thread.start() window.mainloop()
from django.conf import settings from django.db import models from django.utils.functional import lazy from django.utils.translation import gettext_lazy as _ from djchoices import DjangoChoices, ChoiceItem from future.utils import python_2_unicode_compatible from bluebottle.utils.models import PublishableModel, get_language_choices @python_2_unicode_compatible class Quote(PublishableModel): """ Slides for homepage """ class QuoteStatus(DjangoChoices): published = ChoiceItem('published', label=_("Published")) draft = ChoiceItem('draft', label=_("Draft")) # Contents language = models.CharField(_("language"), max_length=7, choices=lazy(get_language_choices, list)()) quote = models.TextField() user = models.ForeignKey(settings.AUTH_USER_MODEL, verbose_name=_('Quoted member'), related_name="quote_user", on_delete=models.CASCADE) def __str__(self): return self.quote class Meta: ordering = ('-publication_date',)
""" Script to generate suitesparse_graphblas.h, suitesparse_graphblas_no_complex.h, and source.c files. - Copy the SuiteSparse header file GraphBLAS.h to the local directory. - Run the C preprocessor (cleans it up, but also loses #define values). - Parse the processed header file using pycparser. - Create the final files with and without complex types. - Check #define values for sanity. The generated files are then used by cffi to bind to SuiteSparse:GraphBLAS. When running against new versions of SuiteSparse:GraphBLAS, the most likely things that may need to change are: - Update DEFINES, the integer #define constants defined by SuiteSparse. - Update CHAR_DEFINES, the char* #defines. - Update IGNORE_DEFINES, #defines that the script may mistakingly identity, but that we can safely ignore. - Update DEPRECATED: deprecated names (including enum fields) to exclude. Run `python create_headers.py --help` to see more help. """ import argparse import os import re import shutil import subprocess import sys import pycparser from pycparser import c_ast, c_generator, parse_file def sort_key(string): """e.g., sort 'INT8' before 'INT16'""" return string.replace("8", "08") def has_complex(string): return "FC32" in string or "FC64" in string def groupby(index, seq): rv = {} for item in seq: key = item[index] if key in rv: rv[key].append(item) else: rv[key] = [item] return rv AUTO = "/* This file is automatically generated */" DEPRECATED = { # enums "GxB_IS_HYPER", "GrB_SCMP", # functions "GxB_kron", "GxB_Matrix_resize", "GxB_Vector_resize", # UnaryOp "GxB_ABS_BOOL", "GxB_ABS_INT8", "GxB_ABS_INT16", "GxB_ABS_INT32", "GxB_ABS_INT64", "GxB_ABS_UINT8", "GxB_ABS_UINT16", "GxB_ABS_UINT32", "GxB_ABS_UINT64", "GxB_ABS_FP32", "GxB_ABS_FP64", # Monoids "GxB_MIN_INT8_MONOID", "GxB_MIN_INT16_MONOID", "GxB_MIN_INT32_MONOID", "GxB_MIN_INT64_MONOID", "GxB_MIN_UINT8_MONOID", "GxB_MIN_UINT16_MONOID", "GxB_MIN_UINT32_MONOID", "GxB_MIN_UINT64_MONOID", "GxB_MIN_FP32_MONOID", "GxB_MIN_FP64_MONOID", "GxB_MAX_INT8_MONOID", "GxB_MAX_INT16_MONOID", "GxB_MAX_INT32_MONOID", "GxB_MAX_INT64_MONOID", "GxB_MAX_UINT8_MONOID", "GxB_MAX_UINT16_MONOID", "GxB_MAX_UINT32_MONOID", "GxB_MAX_UINT64_MONOID", "GxB_MAX_FP32_MONOID", "GxB_MAX_FP64_MONOID", "GxB_PLUS_INT8_MONOID", "GxB_PLUS_INT16_MONOID", "GxB_PLUS_INT32_MONOID", "GxB_PLUS_INT64_MONOID", "GxB_PLUS_UINT8_MONOID", "GxB_PLUS_UINT16_MONOID", "GxB_PLUS_UINT32_MONOID", "GxB_PLUS_UINT64_MONOID", "GxB_PLUS_FP32_MONOID", "GxB_PLUS_FP64_MONOID", "GxB_TIMES_INT8_MONOID", "GxB_TIMES_INT16_MONOID", "GxB_TIMES_INT32_MONOID", "GxB_TIMES_INT64_MONOID", "GxB_TIMES_UINT8_MONOID", "GxB_TIMES_UINT16_MONOID", "GxB_TIMES_UINT32_MONOID", "GxB_TIMES_UINT64_MONOID", "GxB_TIMES_FP32_MONOID", "GxB_TIMES_FP64_MONOID", "GxB_LOR_BOOL_MONOID", "GxB_LAND_BOOL_MONOID", "GxB_LXOR_BOOL_MONOID", "GxB_LXNOR_BOOL_MONOID", # "GxB_EQ_BOOL_MONOID", # XXX: I prefer this name to GrB_LXNOR_MONOID_BOOL # Semirings "GxB_PLUS_TIMES_INT8", "GxB_PLUS_TIMES_INT16", "GxB_PLUS_TIMES_INT32", "GxB_PLUS_TIMES_INT64", "GxB_PLUS_TIMES_UINT8", "GxB_PLUS_TIMES_UINT16", "GxB_PLUS_TIMES_UINT32", "GxB_PLUS_TIMES_UINT64", "GxB_PLUS_TIMES_FP32", "GxB_PLUS_TIMES_FP64", "GxB_PLUS_MIN_INT8", "GxB_PLUS_MIN_INT16", "GxB_PLUS_MIN_INT32", "GxB_PLUS_MIN_INT64", "GxB_PLUS_MIN_UINT8", "GxB_PLUS_MIN_UINT16", "GxB_PLUS_MIN_UINT32", "GxB_PLUS_MIN_UINT64", "GxB_PLUS_MIN_FP32", "GxB_PLUS_MIN_FP64", "GxB_MIN_PLUS_INT8", "GxB_MIN_PLUS_INT16", "GxB_MIN_PLUS_INT32", "GxB_MIN_PLUS_INT64", "GxB_MIN_PLUS_UINT8", "GxB_MIN_PLUS_UINT16", "GxB_MIN_PLUS_UINT32", "GxB_MIN_PLUS_UINT64", "GxB_MIN_PLUS_FP32", "GxB_MIN_PLUS_FP64", "GxB_MIN_TIMES_INT8", "GxB_MIN_TIMES_INT16", "GxB_MIN_TIMES_INT32", "GxB_MIN_TIMES_INT64", "GxB_MIN_TIMES_UINT8", "GxB_MIN_TIMES_UINT16", "GxB_MIN_TIMES_UINT32", "GxB_MIN_TIMES_UINT64", "GxB_MIN_TIMES_FP32", "GxB_MIN_TIMES_FP64", "GxB_MIN_FIRST_INT8", "GxB_MIN_FIRST_INT16", "GxB_MIN_FIRST_INT32", "GxB_MIN_FIRST_INT64", "GxB_MIN_FIRST_UINT8", "GxB_MIN_FIRST_UINT16", "GxB_MIN_FIRST_UINT32", "GxB_MIN_FIRST_UINT64", "GxB_MIN_FIRST_FP32", "GxB_MIN_FIRST_FP64", "GxB_MIN_SECOND_INT8", "GxB_MIN_SECOND_INT16", "GxB_MIN_SECOND_INT32", "GxB_MIN_SECOND_INT64", "GxB_MIN_SECOND_UINT8", "GxB_MIN_SECOND_UINT16", "GxB_MIN_SECOND_UINT32", "GxB_MIN_SECOND_UINT64", "GxB_MIN_SECOND_FP32", "GxB_MIN_SECOND_FP64", "GxB_MIN_MAX_INT8", "GxB_MIN_MAX_INT16", "GxB_MIN_MAX_INT32", "GxB_MIN_MAX_INT64", "GxB_MIN_MAX_UINT8", "GxB_MIN_MAX_UINT16", "GxB_MIN_MAX_UINT32", "GxB_MIN_MAX_UINT64", "GxB_MIN_MAX_FP32", "GxB_MIN_MAX_FP64", "GxB_MAX_PLUS_INT8", "GxB_MAX_PLUS_INT16", "GxB_MAX_PLUS_INT32", "GxB_MAX_PLUS_INT64", "GxB_MAX_PLUS_UINT8", "GxB_MAX_PLUS_UINT16", "GxB_MAX_PLUS_UINT32", "GxB_MAX_PLUS_UINT64", "GxB_MAX_PLUS_FP32", "GxB_MAX_PLUS_FP64", "GxB_MAX_TIMES_INT8", "GxB_MAX_TIMES_INT16", "GxB_MAX_TIMES_INT32", "GxB_MAX_TIMES_INT64", "GxB_MAX_TIMES_UINT8", "GxB_MAX_TIMES_UINT16", "GxB_MAX_TIMES_UINT32", "GxB_MAX_TIMES_UINT64", "GxB_MAX_TIMES_FP32", "GxB_MAX_TIMES_FP64", "GxB_MAX_FIRST_INT8", "GxB_MAX_FIRST_INT16", "GxB_MAX_FIRST_INT32", "GxB_MAX_FIRST_INT64", "GxB_MAX_FIRST_UINT8", "GxB_MAX_FIRST_UINT16", "GxB_MAX_FIRST_UINT32", "GxB_MAX_FIRST_UINT64", "GxB_MAX_FIRST_FP32", "GxB_MAX_FIRST_FP64", "GxB_MAX_SECOND_INT8", "GxB_MAX_SECOND_INT16", "GxB_MAX_SECOND_INT32", "GxB_MAX_SECOND_INT64", "GxB_MAX_SECOND_UINT8", "GxB_MAX_SECOND_UINT16", "GxB_MAX_SECOND_UINT32", "GxB_MAX_SECOND_UINT64", "GxB_MAX_SECOND_FP32", "GxB_MAX_SECOND_FP64", "GxB_MAX_MIN_INT8", "GxB_MAX_MIN_INT16", "GxB_MAX_MIN_INT32", "GxB_MAX_MIN_INT64", "GxB_MAX_MIN_UINT8", "GxB_MAX_MIN_UINT16", "GxB_MAX_MIN_UINT32", "GxB_MAX_MIN_UINT64", "GxB_MAX_MIN_FP32", "GxB_MAX_MIN_FP64", "GxB_LOR_LAND_BOOL", "GxB_LAND_LOR_BOOL", "GxB_LXOR_LAND_BOOL", # "GxB_EQ_LOR_BOOL", # XXX: I prefer this name to GrB_LXNOR_LOR_SEMIRING_BOOL # Old deprecated (probably already removed) "GrB_eWiseMult_Vector_Semiring", "GrB_eWiseMult_Vector_Monoid", "GrB_eWiseMult_Vector_BinaryOp", "GrB_eWiseMult_Matrix_Semiring", "GrB_eWiseMult_Matrix_Monoid", "GrB_eWiseMult_Matrix_BinaryOp", "GrB_eWiseAdd_Vector_Semiring", "GrB_eWiseAdd_Vector_Monoid", "GrB_eWiseAdd_Vector_BinaryOp", "GrB_eWiseAdd_Matrix_Semiring", "GrB_eWiseAdd_Matrix_Monoid", "GrB_eWiseAdd_Matrix_BinaryOp", } DEFINES = { "GxB_STDC_VERSION", "GxB_IMPLEMENTATION_MAJOR", "GxB_IMPLEMENTATION_MINOR", "GxB_IMPLEMENTATION_SUB", "GxB_SPEC_MAJOR", "GxB_SPEC_MINOR", "GxB_SPEC_SUB", "GxB_IMPLEMENTATION", "GxB_SPEC_VERSION", "GxB_INDEX_MAX", "GRB_VERSION", "GRB_SUBVERSION", "GxB_NTHREADS", "GxB_CHUNK", "GxB_GPU_CONTROL", "GxB_GPU_CHUNK", "GxB_HYPERSPARSE", "GxB_SPARSE", "GxB_BITMAP", "GxB_FULL", "GxB_NBITMAP_SWITCH", "GxB_ANY_SPARSITY", "GxB_AUTO_SPARSITY", "GxB_RANGE", "GxB_STRIDE", "GxB_BACKWARDS", "GxB_BEGIN", "GxB_END", "GxB_INC", } CHAR_DEFINES = { "GxB_IMPLEMENTATION_NAME", "GxB_IMPLEMENTATION_DATE", "GxB_SPEC_DATE", "GxB_IMPLEMENTATION_ABOUT", "GxB_IMPLEMENTATION_LICENSE", "GxB_SPEC_ABOUT", } IGNORE_DEFINES = { "GrB", "GxB", "CMPLX", "CMPLXF", "GB_PUBLIC", "GRAPHBLAS_H", "GrB_INVALID_HANDLE", "GrB_NULL", "GxB_SUITESPARSE_GRAPHBLAS", "NMACRO", # deprecated "GxB_HYPER", } IGNORE_LINES = { "GxB_cuda_calloc", "GxB_cuda_malloc", "GxB_cuda_free", } class VisitEnumTypedef(c_generator.CGenerator): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.results = [] def visit_Typedef(self, node): rv = super().visit_Typedef(node) if isinstance(node.type.type, c_ast.Enum): self.results.append(rv + ";") return rv def get_ast(filename): fake_include = os.path.dirname(pycparser.__file__) + "utils/fake_libc_include" ast = parse_file(filename, cpp_args=f"-I{fake_include}") return ast def get_groups(ast): generator = c_generator.CGenerator() lines = generator.visit(ast).splitlines() seen = set() groups = {} vals = {x for x in lines if "extern GrB_Info GxB" in x} - seen seen.update(vals) groups["GxB methods"] = sorted(vals, key=sort_key) vals = {x for x in lines if "extern GrB_Info GrB" in x} - seen seen.update(vals) groups["GrB methods"] = sorted(vals, key=sort_key) vals = {x for x in lines if "extern GrB_Info GB" in x} - seen seen.update(vals) groups["GB methods"] = sorted(vals, key=sort_key) missing_methods = {x for x in lines if "extern GrB_Info " in x} - seen assert not missing_methods vals = {x for x in lines if "extern GrB" in x} - seen seen.update(vals) groups["GrB objects"] = sorted(vals, key=sort_key) vals = {x for x in lines if "extern GxB" in x} - seen seen.update(vals) groups["GxB objects"] = sorted(vals, key=sort_key) vals = {x for x in lines if "extern const" in x and "GxB" in x} - seen seen.update(vals) groups["GxB const"] = sorted(vals, key=sort_key) vals = {x for x in lines if "extern const" in x and "GrB" in x} - seen seen.update(vals) groups["GrB const"] = sorted(vals, key=sort_key) missing_const = {x for x in lines if "extern const" in x} - seen assert not missing_const vals = {x for x in lines if "typedef" in x and "GxB" in x and "(" not in x} - seen seen.update(vals) groups["GxB typedef"] = sorted(vals, key=sort_key) vals = {x for x in lines if "typedef" in x and "GrB" in x and "(" not in x} - seen seen.update(vals) groups["GrB typedef"] = sorted(vals, key=sort_key) missing_typedefs = {x for x in lines if "typedef" in x and "GB" in x and "(" not in x} - seen assert not missing_typedefs assert all(x.endswith(";") for x in seen) # sanity check g = VisitEnumTypedef() _ = g.visit(ast) enums = g.results vals = {x for x in enums if "} GrB" in x} for val in vals: seen.update(val.splitlines()) groups["GrB typedef enums"] = sorted(vals, key=lambda x: sort_key(x.rsplit("}", 1)[-1])) vals = {x for x in enums if "} GxB" in x} for val in vals: seen.update(val.splitlines()) groups["GxB typedef enums"] = sorted(vals, key=lambda x: sort_key(x.rsplit("}", 1)[-1])) missing_enums = set(enums) - set(groups["GrB typedef enums"]) - set(groups["GxB typedef enums"]) assert not missing_enums vals = {x for x in lines if "typedef" in x and "GxB" in x} - seen seen.update(vals) groups["GxB typedef funcs"] = sorted(vals, key=sort_key) vals = {x for x in lines if "typedef" in x and "GrB" in x} - seen assert not vals groups["not seen"] = sorted(set(lines) - seen, key=sort_key) for group in groups["not seen"]: assert "extern" not in group, group unhandled = set() for line in groups["not seen"]: if "GrB" in line or "GxB" in line: for item in IGNORE_LINES: if item in line: break else: unhandled.add(line) if unhandled: raise ValueError( "\n===================================\n" "Unhandled functions with GrB or GxB\n" "-----------------------------------\n " + "\n ".join(sorted(unhandled)) + "\n===================================" ) return groups def get_group_info(groups, ast, *, skip_complex=False): rv = {} def handle_constants(group): for line in group: extern, const, ctype, name = line.split(" ") assert name.endswith(";") name = name[:-1].replace("(void)", "()") assert extern == "extern" assert const == "const" if name in DEPRECATED: continue if skip_complex and has_complex(line): continue info = { "text": line, } yield info rv["GrB const"] = list(handle_constants(groups["GrB const"])) rv["GxB const"] = list(handle_constants(groups["GxB const"])) def handle_objects(group): for line in group: extern, ctype, name = line.split(" ") assert name.endswith(";") name = name[:-1] assert extern == "extern" if name in DEPRECATED: continue if skip_complex and has_complex(line): continue info = { "text": line, } yield info rv["GrB objects"] = list(handle_objects(groups["GrB objects"])) rv["GxB objects"] = list(handle_objects(groups["GxB objects"])) def handle_enums(group): for text in group: text = text.replace("enum \n", "enum\n") typedef, bracket, *fields, name = text.splitlines() assert typedef.strip() == "typedef enum" assert bracket == "{" assert name.startswith("}") assert name.endswith(";") name = name[1:-1].strip() if name in DEPRECATED: continue if skip_complex and has_complex(name): continue # Break this open so we can remove unwanted deprecated fields. # Instead of traversing the AST, munging string is good enough. typedef, bracket, *fields, cname = text.splitlines() typedef = typedef.strip() assert typedef.strip() == "typedef enum" assert bracket == "{" assert cname.startswith("}") assert cname.endswith(";") new_fields = [] for field in fields: if field.endswith(","): field = field[:-1] field = field.strip() cfieldname, eq, val = field.split(" ") assert eq == "=" if cfieldname in DEPRECATED: continue if skip_complex and has_complex(cfieldname): continue new_fields.append(field) if not new_fields: continue lines = [typedef, bracket] for field in new_fields: lines.append(f" {field},") lines[-1] = lines[-1][:-1] # remove last comma lines.append(cname) info = { "orig_text": text, "text": "\n".join(lines), } yield info rv["GrB typedef enums"] = list(handle_enums(groups["GrB typedef enums"])) rv["GxB typedef enums"] = list(handle_enums(groups["GxB typedef enums"])) def handle_typedefs(group): for line in group: typedef, *ctypes, name = line.split(" ") assert typedef == "typedef" assert name.endswith(";") name = name[:-1] if name in DEPRECATED: continue if skip_complex and has_complex(line): continue info = { "text": line, } yield info rv["GrB typedef"] = list(handle_typedefs(groups["GrB typedef"])) rv["GxB typedef"] = list(handle_typedefs(groups["GxB typedef"])) def handle_typedef_funcs(group): for line in group: assert line.endswith(";") and line.startswith("typedef") if skip_complex and has_complex(line): continue info = { "text": line, } yield info rv["GxB typedef funcs"] = list(handle_typedef_funcs(groups["GxB typedef funcs"])) class FuncDeclVisitor(c_ast.NodeVisitor): def __init__(self): self.functions = [] def visit_Decl(self, node): if isinstance(node.type, c_ast.FuncDecl) and node.storage == ["extern"]: self.functions.append(node) def handle_function_node(node): if generator.visit(node.type.type) != "GrB_Info": raise ValueError(generator.visit(node)) if node.name in DEPRECATED: return text = generator.visit(node) text += ";" if skip_complex and has_complex(text): return if "GrB_Matrix" in text: group = "matrix" elif "GrB_Vector" in text: group = "vector" elif "GxB_Scalar" in text or "GrB_Scalar" in text: group = "scalar" else: group = node.name.split("_", 2)[1] group = { # Apply our naming scheme "GrB_Matrix": "matrix", "GrB_Vector": "vector", "GxB_Scalar": "scalar", "SelectOp": "selectop", "BinaryOp": "binary", "Desc": "descriptor", "Descriptor": "descriptor", "Monoid": "monoid", "Semiring": "semiring", "Type": "type", "UnaryOp": "unary", "IndexUnaryOp": "indexunary", # "everything else" is "core" "getVersion": "core", "Global": "core", "cuda": "core", "finalize": "core", "init": "core", "wait": "core", "deserialize": "core", }[group] return { "name": node.name, "group": group, "node": node, "text": text, } generator = c_generator.CGenerator() visitor = FuncDeclVisitor() visitor.visit(ast) grb_nodes = [node for node in visitor.functions if node.name.startswith("GrB_")] gxb_nodes = [node for node in visitor.functions if node.name.startswith("GxB_")] gb_nodes = [node for node in visitor.functions if node.name.startswith("GB_")] assert len(grb_nodes) == len(groups["GrB methods"]) assert len(gxb_nodes) == len(groups["GxB methods"]) assert len(gb_nodes) == len(groups["GB methods"]) grb_funcs = (handle_function_node(node) for node in grb_nodes) gxb_funcs = (handle_function_node(node) for node in gxb_nodes) gb_funcs = (handle_function_node(node) for node in gb_nodes) grb_funcs = [x for x in grb_funcs if x is not None] gxb_funcs = [x for x in gxb_funcs if x is not None] gb_funcs = [x for x in gb_funcs if x is not None] rv["GrB methods"] = sorted(grb_funcs, key=lambda x: sort_key(x["text"])) rv["GxB methods"] = sorted(gxb_funcs, key=lambda x: sort_key(x["text"])) rv["GB methods"] = sorted(gb_funcs, key=lambda x: sort_key(x["text"])) for key in groups.keys() - rv.keys(): rv[key] = groups[key] return rv def parse_header(filename, *, skip_complex=False): ast = get_ast(filename) groups = get_groups(ast) return get_group_info(groups, ast, skip_complex=skip_complex) def create_header_text(groups, *, char_defines=None, defines=None): if char_defines is None: char_defines = CHAR_DEFINES if defines is None: defines = DEFINES text = [AUTO] text.append("/* GrB typedefs */") for group in groups["GrB typedef"]: text.append(group["text"]) text.append("") text.append("/* GxB typedefs */") for group in groups["GxB typedef"]: text.append(group["text"]) text.append("") text.append("/* GxB typedefs (functions) */") for group in groups["GxB typedef funcs"]: text.append(group["text"]) text.append("") text.append("/* GrB enums */") for group in groups["GrB typedef enums"]: text.append(group["text"]) text.append("") text.append("/* GxB enums */") for group in groups["GxB typedef enums"]: text.append(group["text"]) text.append("") text.append("/* GrB consts */") for group in groups["GrB const"]: text.append(group["text"]) text.append("") text.append("/* GxB consts */") for group in groups["GxB const"]: text.append(group["text"]) text.append("") text.append("/* GrB objects */") for group in groups["GrB objects"]: if "GxB" not in group["text"]: text.append(group["text"]) text.append("") text.append("/* GrB objects (extended) */") for group in groups["GrB objects"]: if "GxB" in group["text"]: text.append(group["text"]) text.append("") text.append("/* GxB objects */") for group in groups["GxB objects"]: text.append(group["text"]) def handle_funcs(group): groups = groupby("group", group) for name in sorted(groups, key=sort_key): yield "" yield f"/* {name} */" for info in groups[name]: yield info["text"] text.append("") text.append("/****************") text.append("* GrB functions *") text.append("****************/") text.extend(handle_funcs(groups["GrB methods"])) text.append("") text.append("/***************") text.append("* GB functions *") text.append("***************/") text.extend(handle_funcs(groups["GB methods"])) text.append("") text.append("/****************") text.append("* GxB functions *") text.append("****************/") text.extend(handle_funcs(groups["GxB methods"])) text.append("") text.append("/* int DEFINES */") for item in sorted(defines, key=sort_key): text.append(f"#define {item} ...") text.append("") text.append("/* char* DEFINES */") for item in sorted(char_defines, key=sort_key): text.append(f"extern char *{item}_STR;") return text def create_source_text(*, char_defines=None): if char_defines is None: char_defines = CHAR_DEFINES text = [ AUTO, '#include "GraphBLAS.h"', ] for item in sorted(char_defines, key=sort_key): text.append(f"char *{item}_STR = {item};") return text def main(): parser = argparse.ArgumentParser() parser.add_argument( "--graphblas", help="Path to GraphBLAS.h of SuiteSparse. Default will look in Python prefix path.", default=os.path.join(sys.prefix, "include", "GraphBLAS.h"), ) parser.add_argument( "--show-skipped", action="store_true", help="If specified, then print the lines that were skipped when parsing the header file.", ) args = parser.parse_args() thisdir = os.path.dirname(__file__) # copy the original to this file graphblas_h = os.path.join(thisdir, "GraphBLAS-orig.h") # after the preprocessor processed_h = os.path.join(thisdir, "GraphBLAS-processed.h") # final files used by cffi (with and without complex numbers) final_h = os.path.join(thisdir, "suitesparse_graphblas.h") final_no_complex_h = os.path.join(thisdir, "suitesparse_graphblas_no_complex.h") source_c = os.path.join(thisdir, "source.c") # Copy original file print(f"Step 1: copy {args.graphblas} to {graphblas_h}") if not os.path.exists(args.graphblas): raise FileNotFoundError(f"File not found: {args.graphblas}") shutil.copyfile(args.graphblas, graphblas_h) # Run it through the preprocessor print(f"Step 2: run preprocessor to create {processed_h}") include = os.path.join(os.path.dirname(pycparser.__file__), "utils", "fake_libc_include") command = ( f"gcc -nostdinc -E -I{include} {graphblas_h} " f"| sed 's/ complex / _Complex /g' > {processed_h}" ) res = subprocess.run(command, shell=True) if res.returncode != 0: raise RuntimeError("Subprocess command failed", res) # Create final header file print(f"Step 3: parse header file to create {final_h}") groups = parse_header(processed_h, skip_complex=False) text = create_header_text(groups) with open(final_h, "w") as f: f.write("\n".join(text)) # Create final header file (no complex) print(f"Step 4: parse header file to create {final_no_complex_h}") groups_no_complex = parse_header(processed_h, skip_complex=True) text = create_header_text(groups_no_complex) with open(final_no_complex_h, "w") as f: f.write("\n".join(text)) # Create source print(f"Step 5: create {source_c}") text = create_source_text() with open(source_c, "w") as f: f.write("\n".join(text)) # Check defines print("Step 6: check #define definitions") with open(graphblas_h) as f: text = f.read() define_lines = re.compile(r".*?#define\s+\w+\s+") define_pattern = re.compile(r"#define\s+\w+\s+") defines = set() for line in define_lines.findall(text): line = line.split("//")[0].split("/*")[0] defines.update(x[len("#define") :].strip() for x in define_pattern.findall(line)) extra_defines = (DEFINES | CHAR_DEFINES) - defines if extra_defines: # Should this raise? If it's a problem, it will raise when compiling. print( f"WARNING: the following #define values weren't found in {graphblas_h}: " + ", ".join(sorted(extra_defines)) ) unknown_defines = defines - DEFINES - CHAR_DEFINES - IGNORE_DEFINES if unknown_defines: raise ValueError( f"Unknown #define values found in {graphblas_h}: " + ", ".join(sorted(unknown_defines)) ) print("Success!", "\N{ROCKET}") if args.show_skipped: print() print(f"Showing lines from {processed_h} that were skipped when creating {final_h}:") print("-" * 80) for line in sorted(groups["not seen"], key=sort_key): print(line) if __name__ == "__main__": main()
from functools import partial as p import pytest from tests.helpers.util import ensure_always, wait_for pytestmark = [pytest.mark.kubernetes_events, pytest.mark.monitor_without_endpoints] def has_event(fake_services, event_dict): event_type = event_dict["reason"] obj_kind = event_dict["involvedObjectKind"] for event in fake_services.events: if event.eventType == event_type: for dim in event.dimensions: if dim.key == "kubernetes_kind" and dim.value == obj_kind: return True return False @pytest.mark.kubernetes def test_k8s_events_with_whitelist(k8s_cluster): config = """ monitors: - type: kubernetes-events whitelistedEvents: - reason: Pulled involvedObjectKind: Pod - reason: Created involvedObjectKind: Pod - reason: Started involvedObjectKind: Pod """ with k8s_cluster.run_agent(config) as agent: for expected_event in [ {"reason": "Pulled", "involvedObjectKind": "Pod"}, {"reason": "Created", "involvedObjectKind": "Pod"}, {"reason": "Started", "involvedObjectKind": "Pod"}, ]: assert wait_for(p(has_event, agent.fake_services, expected_event)), ( "timed out waiting for event '%s'!" % expected_event ) @pytest.mark.kubernetes def test_k8s_events_without_whitelist(k8s_cluster): config = """ monitors: - type: kubernetes-events """ with k8s_cluster.run_agent(config) as agent: assert ensure_always(lambda: not agent.fake_services.events, 30), "event received!"
# -*-coding:utf-8-*- from __future__ import print_function import numpy as np import pickle import os # Single Layer Restricted Boltzmann Machine class RBM: def __init__(self, num_visible, num_hidden, learning_rate=0.1, path=None): """ 初始化函数 Initial Function :param num_visible: 可见层单元个数,the number of visible units :param num_hidden: 隐含层单元个数,the number of hidden units :param learning_rate: 学习率,the learning rate of RBM :param path: 该RBM参数存储的路径 the path where we store the parameters of RBM RBM类成员: weights: weights 是 RBM 的网络权重矩阵,其大小为 ( 1 + num_visible ) * ( 1 + num_hidden) 第一行为隐含层偏置权重,第一列为可见层偏置权重,第一行第一列永远为0 第二行第二列起至矩阵尾为可见层与隐含层之间的边的权重 weights is the matrix of size ( 1 + num_visible ) * ( 1 + num_hidden) the first row of "weights" is the hidden bias, the first column of "weights" is the visible bias the rest part of "weights" is the weight matrix of edges between visible units and hidden units weightsinc: weightsinc 是训练过程中weights矩阵的增量 weightsinc is the increase (or change) of "weights" in every epoch of training """ self.num_hidden = num_hidden self.num_visible = num_visible self.learning_rate = learning_rate self.path = path # 查看是否有存档,如果有,则载入参数weights和weightsinc # Check whether the parameter file exists; if so, load the data datafile = os.path.join(self.path, 'weights') if os.path.isfile(datafile): with open(datafile, 'rb') as fp: self.weights = pickle.load(fp) print("Load Weights Successfully!") datafile = os.path.join(self.path, 'weightsinc') with open(datafile, 'rb') as fp: self.weightinc = pickle.load(fp) print("Load WeightInc Successfully!") else: # 初始化权重 "weights",高斯分布,均值为1,标准差为0.1 # Initialize the weights, using a Gaussian distribution with mean 0 and standard deviation 0.1. self.weights = 0.1 * np.random.randn(self.num_visible, self.num_hidden) # Insert "weights" for the bias units into the first row and first column 插入偏置单元 self.weights = np.insert(self.weights, 0, 0, axis=0) self.weights = np.insert(self.weights, 0, 0, axis=1) with open(datafile, 'wb') as fp: pickle.dump(self.weights, fp) print("Create Weights Successfully!") # 初始化 "weightsinc",0矩阵 # Initialize the weightsinc with zero matrix self.weightinc = np.zeros([self.num_visible + 1, self.num_hidden + 1]) datafile = os.path.join(self.path, 'weightsinc') with open(datafile, 'wb') as fp: pickle.dump(self.weightinc, fp) print("Create WeightInc Successfully!") def train(self, batch_data, max_epochs=50): """ Train the RBM :param batch_data: 训练集,类型为list,每个list元素为np.array,np.array是矩阵,每一行为每一个训练样本 training data, type: list of np.array, every np.array is a matrix where each row is a training example consisting of the states of visible units. i.e. every np.array is a batch of training set :param max_epochs: 训练最大迭代次数, the max epochs of the training operation """ # Initialization # weightcost times weightsinc and then be added to the normal gradient (i.e. weightsinc) # weightcost 乘以增量weightsinc 加上新的weightinc, 是为了weight-decay # weightcost ranges from 0.01 to 0.00001 weightcost = 0.0002 # Momentum is a simple method for increasing the speed of learning when the objective function # contains long, narrow and fairly straight ravines with a gentle but consistent gradient along the floor # of the ravine and much steeper gradients up the sides of the ravine. initialmomentum = 0.5 finalmomentum = 0.9 count = 0 for epoch in range(0, max_epochs): errorsum = 0 for data in batch_data: num_examples = data.shape[0] # 第一列加入偏置单元 1 # Insert bias units of 1 into the first column. data = np.insert(data, 0, 1, axis=1) # Gibbs Sample # 从 data 中 采样 sample 得到 隐单元 hidden units # (This is the "positive CD phase", aka 正相.) pos_hidden_activations = np.dot(data, self.weights) pos_hidden_probs = self._logistic(pos_hidden_activations) # Fix the bias unit 修正偏置单元 pos_hidden_probs[:, 0] = 1 pos_hidden_states = pos_hidden_probs > np.random.rand(num_examples, self.num_hidden + 1) pos_associations = np.dot(data.T, pos_hidden_probs) # 从隐单元 hidden units 采样 sample,重构 reconstruct 显单元 visible units # (This is the "negative CD phase", aka 负相.) neg_visible_activations = np.dot(pos_hidden_states, self.weights.T) neg_visible_probs = self._logistic(neg_visible_activations) # Fix the bias unit 修正偏置单元 neg_visible_probs[:, 0] = 1 neg_hidden_activations = np.dot(neg_visible_probs, self.weights) neg_hidden_probs = self._logistic(neg_hidden_activations) # Fix the bias unit 修正偏置单元 neg_hidden_probs[:, 0] = 1 neg_associations = np.dot(neg_visible_probs.T, neg_hidden_probs) error = np.sum((data - neg_visible_probs) ** 2) errorsum = error + errorsum # 选择 momentum if epoch > 5: momentum = finalmomentum else: momentum = initialmomentum # Update weights 更新权重 delta = (pos_associations - neg_associations) / num_examples vishid = self.weights[1:self.num_visible + 1, 1:self.num_hidden + 1] vishid = np.insert(vishid, 0, 0, axis=0) vishid = np.insert(vishid, 0, 0, axis=1) self.weightinc = momentum * self.weightinc + self.learning_rate * (delta - weightcost * vishid) # 确保无关项为 0 self.weightinc[0, 0] = 0 self.weights += self.weightinc self.weights[0, 0] = 0 count += 1 print("Count %s: error is %s" % (count, error)) # Save weights and error 保存权值和误差 if self.path: datafile = os.path.join(self.path, 'weights') with open(datafile, 'wb') as fp: pickle.dump(self.weights, fp) datafile = os.path.join(self.path, 'count.txt') with open(datafile, 'at') as fp: fp.write("%s,%s\n" % (count, error)) if self.path: datafile = os.path.join(self.path, 'epoch.txt') with open(datafile, 'at') as fp: fp.write("%s,%s\n" % (epoch, errorsum)) def run_visible_for_hidden(self, batch_data): """ Assuming the RBM has been trained (so that weights for the network have been learned), run the network on a set of visible units, to get probabilities of the hidden units. :param batch_data: 可见层数据,类型为list,每个list元素为np.array,np.array是矩阵,每一行为一个样本 visible units data, type: list of np.array, every np.array is a matrix where each row is a example consisting of the states of visible units. i.e. every np.array is a batch of visible units data set :return: 隐含单元的logistic概率,类型为list,每个list元素为np.array,与输入数据相对应 the probabilities of the hidden units, type: list of np.array, every np.array is a batch of hidden units data set, corresponding to the input """ batch_pos_hidden_probs = [] for data in batch_data: # 第一列加入偏置单元 1 # Insert bias units of 1 into the first column of data. data = np.insert(data, 0, 1, axis=1) # Calculate the activations of the hidden units. hidden_activations = np.dot(data, self.weights) # Calculate the probabilities of turning the hidden units on. hidden_probs = self._logistic(hidden_activations) pos_hidden_probs = hidden_probs[:, 1:] batch_pos_hidden_probs.append(pos_hidden_probs) return batch_pos_hidden_probs def run_hidden_for_visible(self, batch_data): """ Assuming the RBM has been trained (so that weights for the network have been learned), run the network on a set of hidden units, to get probabilities of the visible units. :param batch_data: 隐含层数据,类型为list,每个list元素为np.array,np.array是矩阵,每一行为一个样本 hidden units data, type: list of np.array, every np.array is a matrix where each row is a example consisting of the states of hidden units. i.e. every np.array is a batch of hidden units data set :return: 可见单元的logistic概率,类型为list,每个list元素为np.array,与输入数据相对应 the probabilities of the visible units, type: list of np.array, every np.array is a batch of visible units data set, corresponding to the input """ batch_neg_visible_probs = [] for data in batch_data: # Insert bias units of 1 into the first column of data. data = np.insert(data, 0, 1, axis=1) # Calculate the activations of the visible units. visible_activations = np.dot(data, self.weights.T) # Calculate the probabilities of turning the visible units on. visible_probs = self._logistic(visible_activations) neg_visible_probs = visible_probs[:, 1:] batch_neg_visible_probs.append(neg_visible_probs) return batch_neg_visible_probs def predict(self, batch_data, soft_max=10): """ Assuming the RBM has been trained (so that weights for the network have been learned), run the network on a set of test data, to get recognition results (only perform digits recognition) This prediction method is especially designed for the visible units including the label(softmax) :param batch_data: 可见层数据,类型为list,每个list元素为np.array,np.array是矩阵,每一行为一个样本 visible units data, type: list of np.array, every np.array is a matrix where each row is a example consisting of the states of visible units. i.e. every np.array is a batch of visible units data set :param soft_max: 标签的维度, 为4或10,4维是0-9的二进制表示,10维的每一维(只能为0或1)对应是否属于相应数字类别 the dimension of label, only can take value of 4 or 10 4 means the label is expressed as binary 10 means the state of each dimension infer whether it belongs to that class :return: 分类结果,类型为list,其元素为list, 该list元素为标签,与输入数据相对应 the classification result, type: list of list of int, list2 is a batch of answers, corresponding to the input """ final_ans = [] for data in batch_data: ans = [] num_examples = data.shape[0] data = np.insert(data, 0, 1, axis=1) data = np.split(data, num_examples) for item in data: hidden_activations = np.dot(item, self.weights) vbias_energy = hidden_activations[0, 0] hidden_probs = self._logfree(hidden_activations) hidden_probs[:, 0] = 0 free_energy = - np.sum(hidden_probs) - vbias_energy min_free_energy = free_energy tmp_ans = 0 for number in range(1, 10): tmpitem = item.copy() if soft_max == 10: tmpitem[0, self.num_visible - 9:self.num_visible + 1] = 0 tmpitem[0, self.num_visible - (9 - number)] = 1 else: if soft_max == 4: label = bin(number) label = label[::-1] length = len(label) for i in range(0, length - 3 + 1): tmpitem[0, self.num_visible + i - 3] = int(label[i]) if length != 6: for i in range(1, 6 - length + 1): tmpitem[0, self.num_visible - (6 - length) + i] = 0 hidden_activations = np.dot(tmpitem, self.weights) vbias_energy = hidden_activations[0, 0] hidden_probs = self._logfree(hidden_activations) hidden_probs[:, 0] = 0 free_energy = - np.sum(hidden_probs) - vbias_energy if free_energy < min_free_energy: tmp_ans = number min_free_energy = free_energy ans.append(tmp_ans) final_ans.append(ans) return final_ans @staticmethod def _logistic(x): # np.tanh is more stable than np.exp in numpy # return 1.0 / (1 + np.exp(-x)) return .5 * (1 + np.tanh(.5 * x)) @staticmethod def _logfree(x): return np.log(1 + np.exp(x))
import shutil import os import subprocess ''' Building Executables ''' print('Started build...') build = subprocess.Popen(["pyinstaller", "--onefile", "--windowed", "--icon=logo.ico", "Pic2Text.py"], stdin =subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, bufsize=0) # Send OP build.stdin.write("uname -a\n") build.stdin.write("uptime\n") build.stdin.close() # Fetch output for line in build.stdout: print(line.strip()) print("Completed build !!!") FOLDERS = ['ui','ICONS','Tesseract-OCR'] ''' Copying files to dist ''' print('Started copying files to dist...') try: for folder in FOLDERS: if os.path.isdir('dist/'+folder): shutil.rmtree('dist/'+folder) print('Removed dist/{}'.format(folder)) shutil.copytree(folder,'dist/'+folder) print('Copied {} to "dist"'.format(folder)) print('Completed Files copying !!!') except Exception as e: print('Error while copying files to dist')
"""Plot a histogram.""" import pandas as pd import matplotlib.pyplot as plt from util import get_data, plot_data, compute_daily_returns def test_run(): # Read data dates = pd.date_range('2009-01-01', '2012-12-31') # date range as index symbols = ['SPY'] df = get_data(symbols, dates) # get data for each symbol plot_data(df) # Compute daily returns daily_returns = compute_daily_returns(df) plot_data(daily_returns, title = "Daily returns", ylabel = "Daily returns") # Plot a histogram daily_returns.hist(bins = 20) # Get mean and standard deviation mean = daily_returns['SPY'].mean() print "mean=", mean std = daily_returns['SPY'].std() plt.axvline(mean, color = 'w', linestyle = 'dashed', linewidth = 2) plt.axvline(std, color = 'r', linestyle = 'dashed', linewidth = 2) plt.axvline(-std, color = 'r', linestyle = 'dashed', linewidth = 2) plt.show() # Compute kurtosis print daily_returns.kurtosis() if __name__ == "__main__": test_run()
from rest_framework import serializers from .models import Posts class PostSerializer(serializers.ModelSerializer): slug = serializers.SlugField(read_only=True) create_by = serializers.CurrentUserDefault class Meta: model = Posts fields = ['id', 'title', 'content', 'image', 'create_by', 'slug']
r"""*Single-source version number for* ``stdio_mgr``. ``stdio_mgr`` provides a context manager for convenient mocking and/or wrapping of ``stdin``/``stdout``/``stderr`` interactions. **Author** Brian Skinn ([email protected]) **File Created** 18 Mar 2019 **Copyright** \(c) Brian Skinn 2018-2019 **Source Repository** http://www.github.com/bskinn/stdio-mgr **Documentation** See README.rst at the GitHub repository **License** The MIT License; see |license_txt|_ for full license terms **Members** """ __version__ = "2.0.dev1" # pragma: no mutate
import pyqt_designer_plugin_entry_points print("* pyqt_designer_plugin_entry_points hook *") globals().update(**pyqt_designer_plugin_entry_points.enumerate_widgets()) print(pyqt_designer_plugin_entry_points.connect_events())
# Generated by Django 2.1.2 on 2021-12-04 16:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('instrumento', '0001_initial'), ] operations = [ migrations.AddField( model_name='evaluacion', name='puntaje', field=models.IntegerField(default=0), preserve_default=False, ), migrations.AddField( model_name='evaluacion', name='resultado', field=models.CharField(default=0, max_length=50), preserve_default=False, ), ]
''' Created on 2013-11-24 @author: Nich ''' import unittest from objects.component_manager import ComponentManager, ArrayComponentSource from objects.node_factory import NodeFactoryDB class TestComponent0(object): __compname__ = "test_component0" def __init__(self, entity_id, some_string=None): self.entity_id = entity_id self.some_string = some_string class TestComponent1(object): __compname__ = "test_component1" def __init__(self, entity_id, some_string=None): self.entity_id = entity_id self.some_string = some_string class TestComponent2(object): __compname__ = "test_component2" def __init__(self, entity_id, some_string=None): self.entity_id = entity_id self.some_string = some_string class TestComponent3(object): __compname__ = "test_component3" def __init__(self, entity_id, some_string=None): self.entity_id = entity_id self.some_string = some_string class TestComponent4(object): __compname__ = "test_component4" def __init__(self, entity_id, some_string=None): self.entity_id = entity_id self.some_string = some_string class TestComponent5(object): __compname__ = "test_component5" def __init__(self, entity_id, some_string=None): self.entity_id = entity_id self.some_string = some_string class TestComponent7(object): __compname__ = "test_component7" def __init__(self, entity_id, some_string=None): self.entity_id = entity_id self.some_string = some_string class TestComponent8(object): __compname__ = "test_component8" def __init__(self, entity_id, some_string=None): self.entity_id = entity_id self.some_string = some_string class TestComponent9(object): __compname__ = "test_component9" def __init__(self, entity_id, some_string=None): self.entity_id = entity_id self.some_string = some_string class Test(unittest.TestCase): def setUp(self): self.components1 = {"test_component0": TestComponent0, "test_component1": TestComponent1, "test_component2": TestComponent2, "test_component3": TestComponent3, "test_component8": TestComponent8, } self.components2 = { "test_component4": TestComponent4, "test_component5": TestComponent5, "test_component7": TestComponent7, "test_component9": TestComponent9, } self.component_source1 = ArrayComponentSource(self.components1) self.component_source2 = ArrayComponentSource(self.components2) self.component_manager = ComponentManager( [self.component_source1, self.component_source2]) # all components self.test_entity1 = self.component_manager.create_entity({"test_component0": {"some_string": "E1C0"}, "test_component1": {"some_string": "E1C1"}, "test_component2": {"some_string": "E1C2"}, "test_component3": {"some_string": "E1C3"}, "test_component4": {"some_string": "E1C4"}, }) # no components self.test_entity2 = self.component_manager.create_entity({}) # even components self.test_entity3 = self.component_manager.create_entity({ "test_component0": {"some_string": "E3C0"}, "test_component2": {"some_string": "E3C2"}, "test_component4": {"some_string": "E3C4"}, }) # odd components self.test_entity4 = self.component_manager.create_entity({"test_component1": {"some_string": "E4C1"}, "test_component3": {"some_string": "E4C3"}, }) # copy of entity1 to make sure that they stay distinct self.test_entity5 = self.component_manager.create_entity({"test_component0": {"some_string": "E5C0"}, "test_component1": {"some_string": "E5C1"}, "test_component2": {"some_string": "E5C2"}, "test_component3": {"some_string": "E5C3"}, "test_component4": {"some_string": "E5C4"}, }) # Component only in second source self.test_entity6 = self.component_manager.create_entity( {'test_component7': {"some_string": "E6C7"}}) self.test_entity7 = self.component_manager.create_entity( {'test_component3': {"some_string": "E7C7"}, 'test_component7': {'some_string': "E7C3"}}) def tearDown(self): pass def testGetComponentWithNoEntitiesReturnsNone(self): es = self.component_manager.get_entities_with_components( ["test_component8"]) self.assertEqual(len(es), 0) es = self.component_manager.get_entities_with_components( ["test_component9"]) self.assertEqual(len(es), 0) es = self.component_manager.get_entities_with_components( ["test_component8", 'test_component7']) self.assertEqual(len(es), 0) es = self.component_manager.get_entities_with_components( ["test_component7", 'test_component8']) self.assertEqual(len(es), 0) es = self.component_manager.get_entities_with_components( ["test_component3", 'test_component9']) self.assertEqual(len(es), 0) es = self.component_manager.get_entities_with_components( ["test_component9", 'test_component3']) self.assertEqual(len(es), 0) def testGetEntityFromOneComponent(self): es = self.component_manager.get_entities_with_components( ["test_component7"]) self.assertEqual(len(es), 2) def testGetEntityFromDifferentSources(self): es = self.component_manager.get_entities_with_components( ['test_component7', 'test_component3']) self.assertEqual(len(es), 1) es2 = self.component_manager.get_entities_with_components( ['test_component3', 'test_component7']) self.assertEqual(len(es2), 1) def testAddGetComponent(self): self.component_manager.add_component_to_object( "test_component0", self.test_entity2.id, {"some_string": "test1"}) comp = self.component_manager.get_component( self.test_entity2.id, "test_component0") self.assertEqual(comp.some_string, "test1") def testGetSupportedSubset(self): self.assertEqual(sorted(["test_component0", "test_component3"]), sorted(self.component_source1.get_supported_subset( ["test_component0", "test_component6", "test_component3", "test_component7"]))) def testHas(self): self.assertTrue( self.component_manager.has_component("test_component0")) self.assertTrue( self.component_manager.has_component("test_component1")) self.assertTrue( self.component_manager.has_component("test_component2")) self.assertTrue( self.component_manager.has_component("test_component3")) self.assertTrue( self.component_manager.has_component("test_component4")) self.assertTrue( self.component_manager.has_component("test_component5")) self.assertFalse( self.component_manager.has_component("test_component6")) def testGetEntitiesForComponent(self): entities = [self.component_manager.create_entity( {}) for _ in range(10)] even_entities = [] odd_entities = [] for i, e in enumerate(entities): counter = i % 2 self.component_manager.add_component_to_object( "test_component" + str(0 + counter), e.id, None) self.component_manager.add_component_to_object( "test_component" + str(2 + counter), e.id, None) self.component_manager.add_component_to_object( "test_component" + str(4 + counter), e.id, None) if counter == 0: even_entities.append(e.id) else: odd_entities.append(e.id) print(entities) print(sorted(self.component_manager.get_entities_for_component("test_component2"))) print(even_entities) self.assertTrue(set(even_entities).issubset( set(self.component_manager.get_entities_for_component("test_component2")))) self.assertTrue(set(odd_entities).issubset( set(self.component_manager.get_entities_for_component("test_component5")))) def test_remove_component(self): entity1 = self.component_manager.create_entity({}) self.component_manager.add_component_to_object( "test_component0", entity1.id, {"some_string": "test1"}) comp = self.component_manager.get_component( entity1.id, "test_component0") self.assertEqual(comp.some_string, "test1") self.component_manager.remove_component("test_component0", entity1.id) with self.assertRaises(AttributeError): self.component_manager.get_component(entity1.id, "test_component0") if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
import os import time import numpy as np import pandas import pandas as pd from scripts.MADDPG.maddpg import MADDPG from scripts.MADDPG.buffer import MultiAgentReplayBuffer # from scripts.MADDPG_original.maddpg import MADDPG # from scripts.MADDPG_original.buffer import MultiAgentReplayBuffer from make_env import make_env from scripts.MADDPG.edge_env import EdgeEnv pandas.set_option('display.max_columns', None) # display all columns def obs_list_to_state_vector(observation): """convert several ndarrays to one ndarray""" state = np.array([]) for obs in observation: state = np.concatenate([state, obs]) return state if __name__ == '__main__': debug = False # debug = True evaluate = False # evaluate = True # scenario = 'simple' scenario = 'edge_cloud' # print something every 500 games PRINT_INTERVAL = 500 N_GAMES = 80000 print(f"Run {N_GAMES} episodes in total") # the game do not have a terminal state so we set a max steps for each episode MAX_STEPS = 20 total_steps_cntr = 0 score_history = [] sw_history_om = [] best_score = 10000 # save the model if the score > -10 # parameters of fog nodes h_r = 5 l_r = 3 l_c = 2 n_c = 2.5 h_c = 3 avg_resource_capacity = {0: [h_r, h_r, h_r]} avg_unit_cost = {0: [l_c, l_c, l_c]} env = EdgeEnv(avg_resource_capacity, avg_unit_cost, n_nodes=1, n_timesteps=10, n_tasks=500, max_steps=MAX_STEPS, n_actions=2, p_high_value_tasks=0.2) n_agents = env.n_nodes actor_dims = [] for i in range(n_agents): actor_dims.append(env.observation_space[i].shape[0]) # print(env.observation_space[i]) # exit() critic_dims = sum(actor_dims) # action space is a list of arrays, assume each agent has same action space n_actions = env.n_actions # print(env.action_space[0]) # exit() # print(env.action_space[0].shape[0]) # exit() # print(f"actor_dims = {actor_dims}") # print(f"critic_dims = {critic_dims}") print(f"number of agents = {n_agents}") print(f"number of actions = {n_actions}") maddpg_agents = MADDPG(actor_dims, critic_dims, n_agents, n_actions, fc1=64, fc2=64, alpha=0.01, beta=0.01, scenario=scenario, chkpt_dir='tmp/maddpg/') memory = MultiAgentReplayBuffer(int(1e6), critic_dims, actor_dims, n_actions, n_agents, batch_size=1024) if evaluate: maddpg_agents.load_checkpoint() avg_sw_df = pd.DataFrame(columns=['episode_ID', 'avg_sw']) if debug: env.verbose = True # print the details of process N_GAMES = 3 else: env.verbose = False for i in range(N_GAMES): # for i in range(1): obs, om_sw = env.reset() if env.verbose: print("df_tasks:") print(env.df_tasks.head(20)) print(env.df_nodes) # exit() score = 0 done = False episode_step_cntr = 0 node_0_actions = [] while not done: if evaluate: env.render() # time.sleep(0.1) # to slow down the action for the video actions_probs = maddpg_agents.choose_action(obs) # choose the action according to the probabilities actions = [] for actions_prob in actions_probs: s = sum(actions_prob) p = [i / s for i in actions_prob] # a = np.random.choice(n_actions, 1, p=action) action = np.random.choice(n_actions, 1, p=p) actions.append(action[0]) # action in {1,2,...,10} node_0_actions.append(actions[0]) # the actions are greater than one because of noises # actions = np.concatenate(actions) # print(f"actions_probs = {actions_probs}") # print(f"actions = {actions}") # exit() obs_, reward, done, sw_increase = env.step(actions) reward = reward * n_agents # print(total_steps_cntr) # print(f"sw_increase = {reward}") if episode_step_cntr >= MAX_STEPS - 1: done = True else: state = obs_list_to_state_vector(obs) state_ = obs_list_to_state_vector(obs_) memory.store_transition(obs, state, actions_probs, reward, obs_, state_, done) # print(f"store transition:") # print(f"current observation = {obs}") # print(f"next observation = {obs_}") # print(f"current state = {state}") # print(f"next state = {state_}") # print(f"actions = {actions_probs}") # print(f"reward = {reward}") # exit() # do not learn when evaluate, learn every 100 steps if total_steps_cntr % 100 == 0 and not evaluate: maddpg_agents.learn(memory) # set the current state to new state obs = obs_ score += sw_increase total_steps_cntr += 1 episode_step_cntr += 1 node_0_actions_df = pandas.DataFrame(node_0_actions, columns=['action_of_node_0']) # print(f"social welfare of episode {i} = {score}") # print(f"social welfare (achieved by OM) = {om_sw}") sw_history_om.append(om_sw) score_history.append(score) # average score of previous 100 games avg_score = np.mean(score_history[-100:]) avg_sw_om = np.mean(sw_history_om[-100:]) # print("score_history") # print(score_history) # print("avg_score") # print(avg_score) if env.verbose: print('episode', i, 'social welfare by RL {:.1f}'.format(score)) print('episode', i, 'social welfare by OM {:.1f}'.format(om_sw)) if not evaluate: if avg_score > best_score: maddpg_agents.save_checkpoint() best_score = avg_score if i % PRINT_INTERVAL == 0 and i > 0: print('episode', i, 'average social welfare by RL {:.1f}'.format(avg_score)) print('episode', i, 'average social welfare by OM {:.1f}'.format(avg_sw_om)) # print actions every * episodes # print("actions:") # print(actions) part_tasks = env.df_tasks['valuation_coefficient'] part_tasks = part_tasks[0:MAX_STEPS + 1] # print("part_tasks:") # print(part_tasks) # print("actions of node 0:") # print(node_0_actions_df) # # print actions of node 0 (the high-capacity node) # watch_actions_df = pd.DataFrame( # columns=['valuation_coefficient', 'node_0_action']) # watch_actions_df['valuation_coefficient'] = part_tasks # watch_actions_df['node_0_action'] = node_0_actions_df # print(watch_actions_df) # # exit() df = pd.DataFrame({'episode_ID': [i], 'avg_sw': [avg_score]}) avg_sw_df = avg_sw_df.append(df, ignore_index=True) if i >= 10000: outdir = '/Users/fan/OneDrive - University of Southampton/Chandler\'s Projects/Edge-Cloud-Resource-Allocation-Using-MARL-and-Auction/scripts/MADDPG/tmp' outname = 'average_social_welfare.csv' fullname = os.path.join(outdir, outname) print("... saving to .csv file ...") avg_sw_df.to_csv(fullname, index=False)
# -*- coding: utf-8 -*- from selenium import webdriver from fixture.session import Session from fixture.check_profile import Check class Fixture: def __init__(self, base_url, browser="Safari"): if browser == "Safari": self.driver = webdriver.Safari() elif browser == "Chrome": self.driver = webdriver.Chrome() elif browser == "Firefox": self.driver = webdriver.Firefox() else: raise ValueError("Unrecognized browser %s" % browser) browser = self.driver browser.implicitly_wait(10) browser.base_url = base_url self.session = Session(self) self.check = Check(self) browser.maximize_window() browser.delete_all_cookies() def is_valid(self): try: self.driver.current_url return True except: return False def open_home_page(self): browser = self.driver browser.get(browser.base_url) def destroy(self): self.driver.quit()
from __future__ import absolute_import, print_function import argparse import json import logging import os import random import sys import boto log = logging.getLogger("nameq.dump") def dump_hosts(s3bucket, s3prefix, filter_features=None, single=False, s3options=None): if s3options is None: s3options = {} if s3prefix and not s3prefix.endswith("/"): s3prefix += "/" entries = [] error = None conn = boto.connect_s3(**s3options) bucket = conn.get_bucket(s3bucket, validate=False) for key in bucket.list(s3prefix): if key.name == s3prefix: continue data = key.get_contents_as_string() try: entry_features = set(json.loads(data).get("features", ())) except (TypeError, ValueError, KeyError) as e: log.error("%s: %s", key.name, e) error = e else: if not filter_features or filter_features & entry_features: entries.append(key.name[len(s3prefix):]) if not entries and error: raise error if single: entries = [random.choice(entries)] return entries def main(): parser = argparse.ArgumentParser() parser.add_argument("--single", action="store_true", help="print at most one entry at random") parser.add_argument("--s3host", help="S3 endpoint hostname") parser.add_argument("s3location", help="s3bucket/s3prefix") parser.add_argument("feature", nargs="*", help="feature names") args = parser.parse_args() if "/" in args.s3location: bucket, prefix = args.s3location.split("/", 1) else: bucket, prefix = args.s3location, "" progname = os.path.basename(sys.argv[0]) log_handler = logging.StreamHandler() log_handler.setFormatter(logging.Formatter(progname + ": %(message)s")) log.addHandler(log_handler) log.setLevel(logging.INFO) s3options = {} if args.s3host: s3options["host"] = args.s3host for entry in dump_hosts(bucket, prefix, set(args.feature), args.single, s3options): print(entry) if __name__ == "__main__": try: main() except KeyboardInterrupt: sys.exit(1)
import json import matplotlib.pyplot as plt f_name = "pos_cur.json" data = None with open(f_name, 'r') as file: data = json.load(file) f = data["forward"] r = data["reverse"] print("len(f): %d\tlen(r): %d" % (len(f), len(r))) p_f = [] c_f = [] for d in f: p_f.append(d[0]) c_f.append(d[1]) plt.plot(p_f, c_f) plt.show()
"""This script collates all of the hand sourced enthalpy of vaporization data.""" import pandas from nonbonded.library.models.datasets import Component, DataSetEntry from openff.evaluator import substances def source_enthalpy_of_vaporization() -> pandas.DataFrame: """Returns a list of hand sourced enthalpy of vaporization data entries""" data_entries = [ # Formic Acid DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="OC=O", mole_fraction=1.0)], value=46.3, std_error=0.25, doi="10.3891/acta.chem.scand.24-2612", ), # Acetic Acid DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CC(O)=O", mole_fraction=1.0)], value=51.6, std_error=0.75, doi="10.3891/acta.chem.scand.24-2612", ), # Propionic Acid DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCC(O)=O", mole_fraction=1.0)], value=55, std_error=1, doi="10.3891/acta.chem.scand.24-2612", ), # Butyric Acid DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCC(O)=O", mole_fraction=1.0)], value=58, std_error=2, doi="10.3891/acta.chem.scand.24-2612", ), # Isobutyric Acid DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CC(C)C(O)=O", mole_fraction=1.0)], value=53, std_error=2, doi="10.3891/acta.chem.scand.24-2612", ), # Methanol DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CO", mole_fraction=1.0)], value=37.83, std_error=0.11349, doi="10.1016/0378-3812(85)90026-3", ), # Ethanol DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCO", mole_fraction=1.0)], value=42.46, std_error=0.12738, doi="10.1016/0378-3812(85)90026-3", ), # 1-Propanol DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCO", mole_fraction=1.0)], value=47.5, std_error=0.1425, doi="10.1016/0378-3812(85)90026-3", ), # Isopropanol DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CC(C)O", mole_fraction=1.0)], value=45.48, std_error=0.13644, doi="10.1016/0378-3812(85)90026-3", ), # n-Butanol DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCO", mole_fraction=1.0)], value=52.42, std_error=0.15726, doi="10.1016/0378-3812(85)90026-3", ), # Isobutanol DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CC(C)CO", mole_fraction=1.0)], value=50.89, std_error=0.15267, doi="10.1016/0378-3812(85)90026-3", ), # t-butanol DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CC(C)(C)O", mole_fraction=1.0)], value=46.75, std_error=0.14025, doi="10.1016/0378-3812(85)90026-3", ), # n-pentanol DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCCO", mole_fraction=1.0)], value=44.36, std_error=0.13308, doi="10.1016/0378-3812(85)90026-3", ), # 1-hexanol DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCCCO", mole_fraction=1.0)], value=61.85, std_error=0.2, doi="10.1016/0021-9614(77)90202-6", ), # 1-heptanol DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCCCCO", mole_fraction=1.0)], value=66.81, std_error=0.2, doi="10.1016/0021-9614(77)90202-6", ), # 1-octanol DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCCCCCO", mole_fraction=1.0)], value=70.98, std_error=0.42, doi="10.1016/0021-9614(77)90202-6", ), # Propyl formate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCOC=O", mole_fraction=1.0)], value=37.49, std_error=0.07498, doi="10.1135/cccc19803233", ), # Butyl formate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCOC=O", mole_fraction=1.0)], value=41.25, std_error=0.0825, doi="10.1135/cccc19803233", ), # Methyl acetate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="COC(C)=O", mole_fraction=1.0)], value=32.3, std_error=0.0646, doi="10.1135/cccc19803233", ), # Ethyl acetate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCOC(C)=O", mole_fraction=1.0)], value=35.62, std_error=0.07124, doi="10.1135/cccc19803233", ), # Propyl acetate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCOC(C)=O", mole_fraction=1.0)], value=39.83, std_error=0.07966, doi="10.1135/cccc19803233", ), # Methyl propionate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCC(=O)OC", mole_fraction=1.0)], value=35.85, std_error=0.0717, doi="10.1135/cccc19803233", ), # Ethyl propionate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCOC(=O)CC", mole_fraction=1.0)], value=39.25, std_error=0.0785, doi="10.1135/cccc19803233", ), # Butyl acetate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=313.5, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCOC(C)=O", mole_fraction=1.0)], value=42.96, std_error=0.08592, doi="10.1135/cccc19803233", ), # Propyl propionate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=313.5, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCOC(=O)CC", mole_fraction=1.0)], value=42.14, std_error=0.08428, doi="10.1135/cccc19803233", ), # Methyl Butanoate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCC(=O)OC", mole_fraction=1.0)], value=40.1, std_error=0.4, doi="10.1007/BF00653098", ), # Methyl Pentanoate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCC(=O)OC", mole_fraction=1.0)], value=44.32, std_error=0.5, doi="10.1007/BF00653098", ), # Ethyl Butanoate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCC(=O)OCC", mole_fraction=1.0)], value=42.86, std_error=0.1, doi="10.1016/0021-9614(86)90070-4", ), # Ethylene glycol diacetate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CC(=O)OCCOC(=O)C", mole_fraction=1.0)], value=61.44, std_error=0.15, doi="10.1016/0021-9614(86)90070-4", ), # Methyl formate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=293.25, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="COC=O", mole_fraction=1.0)], value=28.7187400224, std_error=None, doi="10.1135/cccc19760001", ), # Ethyl formate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=304, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCOC=O", mole_fraction=1.0)], value=31.63314346416, std_error=None, doi="10.1135/cccc19760001", ), # 1,3-propanediol DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="OCCCO", mole_fraction=1.0)], value=70.5, std_error=0.3, doi="10.1021/je060419q", ), # 2,4 pentanediol DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CC(CC(C)O)O", mole_fraction=1.0)], value=72.5, std_error=0.3, doi="10.1021/je060419q", ), # glycerol DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="C(C(CO)O)O", mole_fraction=1.0)], value=91.7, std_error=0.9, doi="10.1016/0021-9614(88)90173-5", ), # Diethyl Malonate DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCOC(=O)CC(=O)OCC", mole_fraction=1.0)], value=61.70, std_error=0.25, doi="10.1021/je100231g", ), # 1,4-dioxane DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="C1COCCO1", mole_fraction=1.0)], value=38.64, std_error=0.05, doi="10.1039/P29820000565", ), # oxane DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="C1CCOCC1", mole_fraction=1.0)], value=34.94, std_error=0.84, doi="10.1039/TF9615702125", ), # methyl tert butyl ether DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="COC(C)(C)C", mole_fraction=1.0)], value=32.42, std_error=None, doi="10.1016/0021-9614(80)90152-4", ), # diisopropyl ether DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CC(C)OC(C)C", mole_fraction=1.0)], value=32.12, std_error=None, doi="10.1016/0021-9614(80)90152-4", ), # Dibutyl ether DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCOCCCC", mole_fraction=1.0)], value=44.99, std_error=None, doi="10.1016/0021-9614(80)90152-4", ), # cyclopentanone DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.16, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="O=C1CCCC1", mole_fraction=1.0)], value=42.63, std_error=0.42, doi="10.1002/hlca.19720550510", ), # 2-pentanone DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCC(C)=O", mole_fraction=1.0)], value=38.43, std_error=None, doi="10.1016/0021-9614(83)90091-5", ), # cyclohexanone DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.16, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="O=C1CCCCC1", mole_fraction=1.0)], value=44.89, std_error=0.63, doi="10.1002/hlca.19720550510", ), # cycloheptanone DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.16, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="O=C1CCCCCC1", mole_fraction=1.0)], value=49.54, std_error=0.63, doi="10.1002/hlca.19720550510", ), # cyclohexane DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="C1CCCCC1", mole_fraction=1.0)], value=33.02, std_error=None, doi="10.1135/cccc19790637", ), # hexane DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCCC", mole_fraction=1.0)], value=31.55, std_error=None, doi="10.1135/cccc19790637", ), # methylcyclohexane DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CC1CCCCC1", mole_fraction=1.0)], value=35.38, std_error=None, doi="10.1135/cccc19790637", ), # heptane DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCCCC", mole_fraction=1.0)], value=36.58, std_error=None, doi="10.1135/cccc19790637", ), # iso-octane DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CC(C)CC(C)(C)C", mole_fraction=1.0)], value=35.13, std_error=None, doi="10.1135/cccc19790637", ), # decane DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCCCCCCC", mole_fraction=1.0)], value=51.35, std_error=None, doi="10.3891/acta.chem.scand.20-0536", ), # acetone DataSetEntry( property_type="EnthalpyOfVaporization", temperature=300.4, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CC(C)=O", mole_fraction=1.0)], value=30.848632, std_error=0.008368, doi="10.1021/ja01559a015", ), # butan-2-one DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCC(C)=O", mole_fraction=1.0)], value=34.51, std_error=0.04, doi="0021-9614(79)90127-7", ), # pentan-3-one DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCC(=O)CC", mole_fraction=1.0)], value=38.52, std_error=None, doi="10.1016/0021-9614(83)90091-5", ), # 4-methylpentan-2-one DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CC(=O)CC(C)C", mole_fraction=1.0)], value=40.56, std_error=None, doi="10.1016/0021-9614(83)90091-5", ), # 3-hexanone DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCC(=O)CC", mole_fraction=1.0)], value=42.45, std_error=None, doi="10.1016/0021-9614(83)90091-5", ), # 2-methylheptane DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCCC(C)C", mole_fraction=1.0)], value=39.66, std_error=None, doi="10.1135/cccc19790637", ), # 3-methylpentane DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCC(C)CC", mole_fraction=1.0)], value=30.26, std_error=None, doi="10.1135/cccc19790637", ), # 2-Methylhexane DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCC(C)C", mole_fraction=1.0)], value=34.85, std_error=None, doi="10.1135/cccc19790637", ), # Octane DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCCCCC", mole_fraction=1.0)], value=41.47, std_error=None, doi="10.1135/cccc19790637", ), # Methyl Propyl Ether DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCOC", mole_fraction=1.0)], value=27.57, std_error=0.068925, doi="10.1016/0021-9614(80)90152-4", ), # Ethyl isopropyl ether DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCOC(C)C", mole_fraction=1.0)], value=30.04, std_error=0.0751, doi="10.1016/0021-9614(80)90152-4", ), # Dipropyl ether DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCOCCC", mole_fraction=1.0)], value=35.68, std_error=0.0892, doi="10.1016/0021-9614(80)90152-4", ), # butyl methyl ether DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="CCCCOC", mole_fraction=1.0)], value=32.43, std_error=0.081075, doi="10.1016/0021-9614(80)90152-4", ), # methyl isopropyl ether DataSetEntry( property_type="EnthalpyOfVaporization", temperature=298.15, pressure=101.325, phase="Liquid + Gas", components=[Component(smiles="COC(C)C", mole_fraction=1.0)], value=26.41, std_error=0.066025, doi="10.1016/0021-9614(80)90152-4", ), ] # Normalize the smiles patterns. for data_entry in data_entries: original_smiles = data_entry.components[0].smiles normalized_smiles = substances.Component(original_smiles).smiles data_entry.components[0].smiles = normalized_smiles data_rows = [data_entry.to_series() for data_entry in data_entries] data_frame = pandas.DataFrame(data_rows) return data_frame
import numpy as np import tensorflow as tf from matcher import HungarianMatcher class DETRLosses(): def __init__(self,num_classes = 2): super(DETRLosses, self).__init__() self.weight_dict = {'loss_ce': 1, 'loss_bbox': 1, 'loss_giou': 2} self.matcher = HungarianMatcher() self.num_classes = num_classes+1 self.empty_weight = np.ones([self.num_classes]) self.eos_coef = 0.1 self.empty_weight[-1] = self.eos_coef self.empty_weight = tf.convert_to_tensor(self.empty_weight) def _get_src_permutation_idx(self, indices): # permute predictions following indices batch_idx = tf.concat([tf.fill(src.shape, i) for i, (src, _) in enumerate(indices)],axis=0) batch_idx = tf.cast(batch_idx,tf.int64) src_idx = tf.concat([src for (src, _) in indices],axis=0) return batch_idx, src_idx def _get_tgt_permutation_idx(self, indices): # permute targets following indices batch_idx =tf.concat([tf.fill(tgt.shape, i) for i, (_, tgt) in enumerate(indices)],axis=0) tgt_idx = tf.concat([tgt for (_, tgt) in indices],axis=0) return batch_idx, tgt_idx def bbox_loss(self,outputs, targets, indices, num_boxes): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. """ idx = self._get_src_permutation_idx(indices) idx_t = tf.transpose(tf.stack((idx))) src_boxes = tf.gather_nd(outputs['pred_boxes'],idx_t) target_boxes = tf.concat([tf.gather(t['bboxes'],i) for t, (_, i) in zip(targets, indices)], axis=0) target_boxes = tf.cast(target_boxes,tf.float32) loss_bbox = tf.math.abs(tf.math.subtract(src_boxes,target_boxes)) #L1 losses = {} losses['loss_bbox'] = tf.math.reduce_sum(loss_bbox) / num_boxes loss_giou = tf.linalg.diag_part(1-(self.matcher.generalized_box_iou( self.matcher.box_cxcywh_to_xyxy(src_boxes), self.matcher.box_cxcywh_to_xyxy(target_boxes)))) losses['loss_giou'] = tf.math.reduce_sum(loss_giou) / num_boxes print("LOSS_BBOX",losses['loss_bbox']) print("LOSS_GIOU",losses['loss_giou']) return losses def class_loss(self,outputs, targets, indices, num_boxes): """Classification loss (NLL) targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] """ assert 'pred_logits' in outputs src_logits = outputs['pred_logits'] idx = self._get_src_permutation_idx(indices) idx_t = tf.transpose(tf.stack((idx))) # print("IDX_t",idx_t) target_classes_o = tf.concat([tf.gather(t['labels'],J) for t, (_, J) in zip(targets, indices)],axis=0) target_classes_o = tf.cast(target_classes_o,tf.int32) target_classes = tf.fill(src_logits.shape[:2], self.num_classes-1) target_classes = tf.tensor_scatter_nd_update(target_classes,idx_t,target_classes_o) # print("targ classes",target_classes.shape) # print("src_logits",src_logits.shape) cce = tf.keras.losses.SparseCategoricalCrossentropy() loss_ce = cce(target_classes,src_logits).numpy() print("LOSS_CE",loss_ce) losses = {'loss_ce': loss_ce} return losses def combined_loss_fn(self,outputs,targets): # Class Loss and BBOX loss indices = self.matcher.runMatch(outputs, targets) print("indices",indices) #print("indices",indices) # Compute the average number of target boxes accross all nodes, for normalization purposes num_boxes = sum(len(t["labels"]) for t in targets) # num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) num_boxes = tf.convert_to_tensor([num_boxes],dtype=tf.float64) # num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() num_boxes = tf.clip_by_value(num_boxes,1,tf.float32.max).numpy() # print("num_boxes") bboxLoss = self.bbox_loss(outputs,targets,indices, num_boxes) classLoss = self.class_loss(outputs,targets,indices, num_boxes) combined_loss = {**bboxLoss, **classLoss} # combined_loss = classLoss loss = sum(combined_loss[k] * self.weight_dict[k] for k in combined_loss.keys() if k in self.weight_dict) print("LOSS",combined_loss,loss) return loss
# Copyright (c) 1996-2015 PSERC. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. """Global test counters initialization. """ from time import time from pypower.t.t_globals import TestGlobals def t_begin(num_of_tests, quiet=False): """Initializes the global test counters, setting everything up to execute C{num_of_tests} tests using C{t_ok} and C{t_is}. If C{quiet} is true, it will not print anything for the individual tests, only a summary when C{t_end} is called. @author: Ray Zimmerman (PSERC Cornell) """ TestGlobals.t_quiet = quiet TestGlobals.t_num_of_tests = num_of_tests TestGlobals.t_counter = 1 TestGlobals.t_ok_cnt = 0 TestGlobals.t_not_ok_cnt = 0 TestGlobals.t_skip_cnt = 0 TestGlobals.t_clock = time() if not TestGlobals.t_quiet: print('1..%d' % num_of_tests)
import logging from basics.base import Base as PyBase class Base(PyBase): def __init__(self, *args, disable_logging=False, **kwargs): # print(f"mlpug.Base(*args={args}, kwargs={kwargs})") super().__init__(*args, **kwargs) self._logging_disabled = None self._set_logging_disabled(disable_logging) @property def logging_disabled(self): return self._logging_disabled def _set_logging_disabled(self, disable): self._log.setLevel(logging.WARN if disable else logging.DEBUG) self._logging_disabled = disable
""" Definition of the :class:`PersonNameTestCase` class. """ from dicom_parser.data_elements.person_name import PersonName from tests.test_data_element import DataElementTestCase class PersonNameTestCase(DataElementTestCase): """ Tests for the :class:`~dicom_parser.data_elements.person_name.PersonName` class. """ TEST_CLASS = PersonName SAMPLE_KEY = "PatientName"
# -*- coding: utf-8 -*- """ * TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-蓝鲸 PaaS 平台(BlueKing-PaaS) available. * Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. * Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://opensource.org/licenses/MIT * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on * an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the * specific language governing permissions and limitations under the License. """ from typing import Any, Type, TypeVar from typing_extensions import Protocol class BindableProtocol(Protocol): """BindableProtocol is a protocol for lazy initialization and binding to a manager""" def bind( self, name, # type: str manager, # type: Any ): """Bind to manager with the specified name""" raise NotImplementedError class BindProperty(object): """ BindProperty is a API declaration specification of lazy initialization of Property. To help the IDE improve the intelligent completion experience, use the bind_property function instead of the class. """ def __init__( self, cls, # type: Type[BindableProtocol] *args, # type: Any **kwargs # type: Any ): self._name = "" self._property_id = "_bind_property_id_%s" % id(self) self._cls = cls self._args = args self._kwargs = kwargs def __set_name__(self, obj_type, name): self._name = name def __get__(self, obj, obj_type=None): if not obj: return self._cls # At least for Python 3.6 and higher # The __set_name__ method was included # which is automatically called when the class is being created # So in order to compatibility with low versions # we need to cache the property instance if hasattr(obj, self._property_id): return getattr(obj, self._property_id) value = self._cls(*self._args, **self._kwargs) # type: ignore value.bind(self._name, obj) setattr(obj, self._name or self._property_id, value) return value T = TypeVar("T", bound=BindableProtocol) def bind_property(cls, *args, **kwargs): # type: (Type[T], *Any, **Any) -> T """The generic function wrapper for BindProperty""" return BindProperty(cls, *args, **kwargs) # type: ignore
from flask import Flask, request, json from api.scrapper import API app = Flask(__name__) def are_valid_query_params(query_params): required_params = ["oci", "oco", "dci", "dco", "dd"] try: for param in required_params: assert param in query_params.keys() return True except AssertionError: return False @app.route("/") def fetch_and_return_flights(): params = request.args if are_valid_query_params(params): return app.response_class(status=200, mimetype="application/json", response=json.dumps({ "status": "success", "tickets": API(params).get_data() })) else: return app.response_class(status=404, mimetype="application/json", response=json.dumps({ "status": "failure", "tickets": [] })) if __name__ == "__main__": app.run()
import pytest import numpy as np from numpy.testing import assert_array_almost_equal from context import fiberorient as fo def test_confidence(st_obj): test_conf = st_obj.confidence true_conf = np.array([[[0.10819485, 0.42774707, 0.42774707, 0.10819485], [0.42774707, 0.68832326, 0.68832326, 0.42774707], [0.42774707, 0.68832326, 0.68832326, 0.42774707], [0.10819485, 0.42774707, 0.42774707, 0.10819485]], [[0.10819485, 0.42774707, 0.42774707, 0.10819485], [0.42774707, 0.68832326, 0.68832326, 0.42774707], [0.42774707, 0.68832326, 0.68832326, 0.42774707], [0.10819485, 0.42774707, 0.42774707, 0.10819485]], [[0.10819485, 0.42774707, 0.42774707, 0.10819485], [0.42774707, 0.68832326, 0.68832326, 0.42774707], [0.42774707, 0.68832326, 0.68832326, 0.42774707], [0.10819485, 0.42774707, 0.42774707, 0.10819485]], [[0.10819485, 0.42774707, 0.42774707, 0.10819485], [0.42774707, 0.68832326, 0.68832326, 0.42774707], [0.42774707, 0.68832326, 0.68832326, 0.42774707], [0.10819485, 0.42774707, 0.42774707, 0.10819485]]]) assert_array_almost_equal(test_conf, true_conf) def test_vectors(vectors): test_vectors = np.zeros_like(vectors) test_vectors[..., 0] = 1 # all x assert_array_almost_equal(test_vectors, vectors)
import unrealsdk from unrealsdk import * from ..OptionManager import Options import json import os class Viewmodel(BL2MOD): Name = "CVM" Description = "<B><U><font size='18' color='#e8131d'>Configurable Viewmodel</font></U></B>\n" \ "A mod that allows you to set your viewmodel the way you like it!" Author = "Juso" Options = [ Options.Spinner("Save current type to file", "Save the current configuration for" " the current WeaponType", "Save", ["Save", "Save"]), Options.Spinner("Save same type to file", "Save the current configuration for" " all the same WeaponTypes", "Save All", ["Save All", "Save All"]), Options.Spinner("Load from files", "Loads your previously saved configs.", "Load", ["Load", "Load"]), Options.Slider("FirstPersonMeshFOV", "Change the FirstPersonMeshFOV", 45, 0, 100, 1), Options.Slider("PlayerViewOffset.X", "Change the PlayerViewOffset X Value", 20, -100, 100, 1), Options.Slider("PlayerViewOffset.Y", "Change the PlayerViewOffset Y Value", 4, -100, 100, 1), Options.Slider("PlayerViewOffset.Z", "Change the PlayerViewOffset Z Value", 2, -100, 100, 1), Options.Slider("RelativeRotation.Pitch", "Change the Pitch of the Weapon", 0, -32768, 32768, 182), Options.Slider("RelativeRotation.Yaw", "Change the Yaw of the Weapon", 16384, -32768, 32768, 182), Options.Slider("RelativeRotation.Roll", "Change the Roll of the Weapon", 0, -32768, 32768, 182), ] PATH = os.path.dirname(os.path.realpath(__file__)) def get_pc(self): return GetEngine().GamePlayers[0].Actor def Enable(self): pass def Disable(self): pass def change_MeshFOV(self, value, WT): WT.FirstPersonMeshFOV = value self.get_pc().UpdateForegroundFOV() def change_ViewOffset(self, xyz, value, WT): if xyz == "PlayerViewOffset.X": WT.PlayerViewOffset.X = value elif xyz == "PlayerViewOffset.Y": WT.PlayerViewOffset.Y = value elif xyz == "PlayerViewOffset.Z": WT.PlayerViewOffset.Z = value pawn = self.get_pc().Pawn pawn.SetArmPosition() def change_RelativeRotation(self, rot, value): if self.get_pc() and self.get_pc().Pawn: pawn = self.get_pc().Pawn hands = pawn.Arms.SkeletalMesh if rot == "RelativeRotation.Pitch": hands.Sockets[0].RelativeRotation.Pitch = int(value) elif rot == "RelativeRotation.Yaw": hands.Sockets[0].RelativeRotation.Yaw = int(value) elif rot == "RelativeRotation.Roll": hands.Sockets[0].RelativeRotation.Roll = int(value) pawn.SetArmPosition() self.get_pc().UpdateForegroundFOV() saved_settings = {} def save_to_json(self, obj): self.saved_settings.clear() for _option in self.Options[3:8]: self.saved_settings[_option.Caption] = _option.CurrentValue with open(os.path.join(self.PATH, str(obj) + ".json"), "w") as file: json.dump(self.saved_settings, file) self.saved_settings.clear() for _option in self.Options[8:]: self.saved_settings[_option.Caption] = _option.CurrentValue with open(os.path.join(self.PATH, "SkeletalMeshSocket.json"), "w") as file: json.dump(self.saved_settings, file) def ModOptionChanged(self, option, newValue): if option in self.Options: if not self.get_pc() or not self.get_pc().Pawn or not self.get_pc().Pawn.Weapon: return WeaponType = self.get_pc().Pawn.Weapon.DefinitionData.WeaponTypeDefinition if option.Caption == "FirstPersonMeshFOV": self.change_MeshFOV(newValue, WeaponType) elif option.Caption == "PlayerViewOffset.X": self.change_ViewOffset(option.Caption, newValue, WeaponType) elif option.Caption == "PlayerViewOffset.Y": self.change_ViewOffset(option.Caption, newValue, WeaponType) elif option.Caption == "PlayerViewOffset.Z": self.change_ViewOffset(option.Caption, newValue, WeaponType) elif option.Caption == "RelativeRotation.Pitch": self.change_RelativeRotation(option.Caption, newValue) elif option.Caption == "RelativeRotation.Yaw": self.change_RelativeRotation(option.Caption, newValue) elif option.Caption == "RelativeRotation.Roll": self.change_RelativeRotation(option.Caption, newValue) elif option.Caption == "Save current type to file": self.save_to_json(WeaponType) elif option.Caption == "Save same type to file": for wt in FindAll("WeaponTypeDefinition"): if wt.BodyWeaponHoldName == WeaponType.BodyWeaponHoldName: self.save_to_json(wt) elif option.Caption == "Load from files": for root, dirs, files in os.walk(self.PATH): for file in files: if file.endswith(".json"): if len(file.split()) > 1: cls = str(file.split()[0]) obj = os.path.splitext(str(file.split()[1]))[0] WeaponType = FindObject(cls, obj) with open(os.path.join(root, file), "r") as f: settings = json.load(f) self.change_MeshFOV(settings["FirstPersonMeshFOV"], WeaponType) for attr, value in settings.items(): try: self.change_ViewOffset(attr, value, WeaponType) except: pass else: with open(os.path.join(root, file), "r") as f: settings = json.load(f) for attr, value in settings.items(): try: self.change_RelativeRotation(attr, value) except: pass unrealsdk.RegisterMod(Viewmodel()) # IronsightsRotation (Pitch=425,Yaw=-603,Roll=-128) WillowPlayerPawn # Use this for an inspection mod
# test_561.py import unittest from arrayPairSum_561 import arrayPairSum class sortArrayByParityTest(unittest.TestCase): def test_sort_array_by_parity_1(self): self.assertEqual(arrayPairSum([1,4,3,2]), 4) def test_sort_array_by_parity_2(self): self.assertEqual(arrayPairSum([]), 0) if __name__ == '__main__': unittest.main()
file = open("/Users/yuqil/Desktop/16fall/15688/final project/code/688proj/base_dir/original-data/AMiner-Author.txt") dict = {} cur_name = None cur_address = None read_name = False for line in file: if line.startswith("#n"): cur_name = line.rstrip()[3:] read_name = True elif line.startswith("#a"): if read_name: cur_address = line.rstrip()[3:] dict[cur_name] = cur_address read_name = False cur_name, cur_address = None, None else: continue person = open("/Users/yuqil/Desktop/16fall/15688/final project/code/688proj/base_dir/new_person.txt") output = open("author_address.txt", "wb") for line in person: line = line.rstrip() name = line[line.find(",") + 1 :] if name in dict: addr = dict[name] if len(addr) > 0: if ";" in addr: addr = addr[0 : addr.find(";")] output.write(name + "\t" + addr + "\n") print name, addr output.close() person.close()
_base_ = [ '../_base_/models/oscar/oscar_gqa_config.py', '../_base_/datasets/oscar/oscar_gqa_dataset.py', '../_base_/default_runtime.py', ] # cover the parrmeter in above files model = dict(params=dict(model_name_or_path='/home/datasets/mix_data/model/vinvl/vqa/base/checkpoint-2000000', )) data_root = '/home/datasets/mix_data/vinvl/datasets/gqa' gqa_reader_train_cfg = dict( model_name_or_path='/home/datasets/mix_data/model/vinvl/vqa/base/checkpoint-2000000', data_dir=data_root, label_file=data_root + '/trainval_testdev_all_ans2label.pkl', label2ans_file=data_root + '/trainval_testdev_all_label2ans.pk', ) gqa_reader_test_cfg = dict( model_name_or_path='/home/datasets/mix_data/model/vinvl/vqa/base/checkpoint-2000000', data_dir=data_root, label_file=data_root + '/trainval_testdev_all_ans2label.pkl', label2ans_file=data_root + '/trainval_testdev_all_label2ans.pk', ) train_data = dict(data=dict(reader=gqa_reader_train_cfg, ), ) test_data = dict(data=dict(reader=gqa_reader_test_cfg, ), )
""" View netCDF time series in an interactive timeseries plot with bokeh. Plot opens in a browser window. """ from bokeh.models import ColumnDataSource from bokeh.plotting import figure, show, output_file from bokeh.palettes import Category10 as palette import itertools import numpy import argparse import galene as ga import cftime from dateutil.parser import parse as dateparse import datetime color_cycle = itertools.cycle(palette[10]) def make_interactive_plot(cube_list): p = figure(x_axis_type='datetime', plot_width=1400, plot_height=700) for cube in cube_list: time_coord = cube.coord('time') time_units = time_coord.units time_array = numpy.array(time_coord.points) # get cftime calendar-aware datetime datetime_list = time_units.num2date(time_array) # convert to python datetime datetime_list = [ datetime.datetime(d.year, d.month, d.day, d.hour, d.minute, d.second) for d in datetime_list ] values = cube.data.flatten() legend = cube.attributes['dataset_id'] c = next(color_cycle) p.line(datetime_list, values, legend_label=legend, color=c) ylabel = '{:} [{:}]'.format(cube.standard_name.replace('_', ' '), cube.units) p.yaxis.axis_label = ylabel p.title.text = cube.attributes['location_name'] output_file('timeseries.html') show(p) def load_cubes(file_list, start_time=None, end_time=None): cube_list = [] var_list = ['slev', 'temp', 'psal', 'iceextent', 'icevol'] for f in file_list: c = None for v in var_list: try: c = ga.load_cube(f, v, start_time=start_time, end_time=end_time) break except Exception: pass assert c is not None, 'Could not open file {:}'.format(f) cube_list.append(c) return cube_list def parse_args(): parser = argparse.ArgumentParser( description='Open netCDF time series files in an interactive plot.', # includes default values in help entries formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument('-f', '--files', metavar='file', nargs='+', help='a netCDF file to open, multiple values accepted') parser.add_argument('--remove-mean', action='store_true', help='remove mean from time series prior to plotting') parser.add_argument('-s', '--startdate', help='Start date of time series, in format "YYYY-MM-DDTHH" or "YYYY-MM-DD", e.g. "2006-05-01T00".') parser.add_argument('-e', '--enddate', help='Start date of time series, in format "YYYY-MM-DDTHH" or "YYYY-MM-DD", e.g. "2006-05-03T00".') parser.add_argument('-v', '--variable', help='Variable to read, e.g. "slev"') parser.add_argument('-l', '--location_name', help='Location to read, e.g. "Helsinki"') parser.add_argument('-d', '--datasets', help='Comma-separated list of dataset_id to read, e.g. "obs,run01"') args = parser.parse_args() sd = args.startdate if sd is not None: sd = dateparse(sd) ed = args.enddate if ed is not None: ed = dateparse(ed) cube_list = [] if args.datasets is not None: assert args.location_name is not None, 'location_name must be set' assert args.variable is not None, 'variable must be set' for dataset_id in args.datasets.split(','): dset = ga.read_dataset( dataset_id, 'timeseries', args.variable, location_name=args.location_name, start_time=sd, end_time=ed, verbose=False ) c_list = list(dset.values()) cube_list.extend(c_list) if args.files is not None: c_list = load_cubes(args.files, start_time=sd, end_time=ed) cube_list.extend(c_list) if len(cube_list) == 0: raise Exception('No timeseries data loaded. Either files or datasets must be defined') if args.remove_mean: for c in cube_list: c.data -= c.data.mean() make_interactive_plot(cube_list) if __name__ == '__main__': parse_args()
import tensorflow as tf import numpy as np from tensorflow.python.framework import ops # from tensorflow.python.ops import array_ops # from tensorflow.python.ops import sparse_ops ani_mod = tf.load_op_library('ani.so'); @ops.RegisterGradient("AniCharge") def _ani_charge_grad(op, grads): """The gradients for `ani_charge`. Args: op: The `ani_charge` `Operation` that we are differentiating, which we can use to find the inputs and outputs of the original op. grad: Gradient with respect to the output of the `ani_charge` op. Returns: Gradients with respect to the input of `ani_charge`. """ x,y,z,qs,mo,macs = op.inputs # dLdy = grads dydx = ani_mod.ani_charge_grad(x,y,z,qs,mo,macs,grads) result = [ None, None, None, dydx, None, None, ] return result if __name__ == "__main__": cp = tf.ConfigProto(log_device_placement=True, allow_soft_placement=False, device_count = {'GPU': 1}) sess = tf.Session(config=cp) atom_matrix = np.array([ [0, 1.0, 2.0, 3.0], # H [2, 2.0, 1.0, 4.0], # N [0, 0.5, 1.2, 2.3], # H [1, 0.3, 1.7, 3.2], # C [2, 0.6, 1.2, 1.1], # N [0, 14.0, 23.0, 15.0], # H [0, 2.0, 0.5, 0.3], # H [0, 2.3, 0.2, 0.4], # H [0, 2.3, 0.2, 0.4], # H [1, 0.3, 1.7, 3.2], # C [2, 0.6, 1.2, 1.1]], dtype=np.float32) mol_idxs = np.array([0,0,0,0,0,0,0,0,1,1,1], dtype=np.int32) atom_types = atom_matrix[:, 0] x = atom_matrix[:, 1] y = atom_matrix[:, 2] z = atom_matrix[:, 3] scatter_idxs, gather_idxs, atom_counts = ani_mod.ani_sort(atom_types) mol_atom_counts = tf.segment_sum(tf.ones_like(mol_idxs), mol_idxs) mol_offsets = tf.cumsum(mol_atom_counts, exclusive=True) qs_ph = tf.placeholder(dtype=np.float32) qs_np = np.array([ 1.0, -1.1, 1.2, 2.3, -4.3, 3.1, 0.4, -0.9, -1.0, 2.2, 3.5 ]) ys = ani_mod.ani_charge(x,y,z,qs_ph,mol_offsets, mol_atom_counts) print(sess.run(ys, feed_dict={qs_ph: qs_np})) # grads = ani_mod.ani_charge_grad( # x,y,z,qs,mol_offsets, mol_atom_counts) # print(sess.run(grads)) grad = tf.gradients(ys, qs_ph) print(sess.run(grad, feed_dict={qs_ph: qs_np}))
import clr import re regexString = IN[0] SheetNameList = IN[1] elementList = list() for item in SheetNameList: searchObj = re.search(regexString, item) elementList.append(searchObj.group()) OUT = elementList
import ee import geemap # Create a map centered at (lat, lon). Map = geemap.Map(center=[40, -100], zoom=4) # NWI legend: https://www.fws.gov/wetlands/Data/Mapper-Wetlands-Legend.html def nwi_add_color(fc): emergent = ee.FeatureCollection( fc.filter(ee.Filter.eq('WETLAND_TY', 'Freshwater Emergent Wetland'))) emergent = emergent.map(lambda f: f.set( 'R', 127).set('G', 195).set('B', 28)) # print(emergent.first()) forested = fc.filter(ee.Filter.eq( 'WETLAND_TY', 'Freshwater Forested/Shrub Wetland')) forested = forested.map(lambda f: f.set('R', 0).set('G', 136).set('B', 55)) pond = fc.filter(ee.Filter.eq('WETLAND_TY', 'Freshwater Pond')) pond = pond.map(lambda f: f.set('R', 104).set('G', 140).set('B', 192)) lake = fc.filter(ee.Filter.eq('WETLAND_TY', 'Lake')) lake = lake.map(lambda f: f.set('R', 19).set('G', 0).set('B', 124)) riverine = fc.filter(ee.Filter.eq('WETLAND_TY', 'Riverine')) riverine = riverine.map(lambda f: f.set( 'R', 1).set('G', 144).set('B', 191)) fc = ee.FeatureCollection(emergent.merge( forested).merge(pond).merge(lake).merge(riverine)) base = ee.Image(0).mask(0).toInt8() img = base.paint(fc, 'R') \ .addBands(base.paint(fc, 'G') .addBands(base.paint(fc, 'B'))) return img fromFT = ee.FeatureCollection("users/wqs/Pipestem/Pipestem_HUC10") Map.addLayer(ee.Image().paint(fromFT, 0, 2), {}, 'Watershed') huc8_id = '10160002' nwi_asset_path = 'users/wqs/NWI-HU8/HU8_' + huc8_id + '_Wetlands' # NWI wetlands for the clicked watershed clicked_nwi_huc = ee.FeatureCollection(nwi_asset_path) nwi_color = nwi_add_color(clicked_nwi_huc) Map.centerObject(clicked_nwi_huc, 10) Map.addLayer(nwi_color, {'gamma': 0.3, 'opacity': 0.7}, 'NWI Wetlands Color') # Display the map. Map
''' This file sets up the titanic problem using kNN algorithm. Accuracy: 0.79904 ''' #import kNN import knn.kNN as knn #import model import data.TitanicParser as model #using pyplotlib to plot error with k import matplotlib.pyplot as plt #load trainer from knn trainer = knn.knn() #get train and test data X,Y,testX,testY,validX,validY = model.loadData(validationSet=True) #load train data trainer.loadData(X,Y) #holds error on validation set for each k validErrors = {} #setup k's to test ks = range(1, 25, 2) for k in ks: #holds the error count for this k error = 0 #set the k parameter in the trainer trainer.setK(k) #for each validation example for i in range(len(validX)): #try to predict its label using training data guess = trainer.predict(validX[i]) #cast guesses to T/F if guess > .5: guessRound = 1 else: guessRound = 0 #check if wrong if guessRound != validY[i]: error += 1 #save error validErrors[k] = (error / len(validX)) print("Validation Error", k, (error / len(validX))) #find best k error = 1 bestK = 1 #for each k tried for key in validErrors.keys(): #if this k is better, save it if validErrors[key] < error: error = validErrors[key] bestK = key #set k to trainer trainer.setK(bestK) #holds errors error = 0 #for each item in test data for i in range(len(testX)): #try to predict its label using training data guess = trainer.predict(testX[i]) #cast guesses to T/F if guess > .5: guessRound = 1 else: guessRound = 0 #check if wrong if guessRound != testY[i]: error += 1 #print error and accuract print("K:", bestK) print("Error:", error / len(testX)) print("Accuracy:", 1 - error / len(testX)) #reset knn with best k trainer = knn.knn(k=bestK) #load all data X,Y = model.loadTrainData() #load trainer trainer.loadData(X,Y) #load test data passenger, testX = model.loadActualTestData() #open output file output = open("knnout.csv", "w+") #print header output.write("PassengerId,Survived\n") #for each test item for i in range(len(testX)): #make prediction guess = trainer.predict(testX[i]) #binary cast if guess < .5: correctedGuess = 0 else: correctedGuess = 1 #write to file output.write(str(passenger[i])) output.write(",") output.write(str(correctedGuess)) output.write("\n") #close output output.close() #holds errors related to each k errors = [] #for each k, add its respective error to errors list for k in ks: errors.append(validErrors[k]) #plot, k and errors plt.plot(ks, errors) plt.show()
import socket, ssl HOST, PORT = 'example.com', 443 def handle(conn): conn.write(b'GET / HTTP/1.1\n') print(conn.recv().decode()) def main(): sock = socket.socket(socket.AF_INET) context = ssl.create_default_context(ssl.Purpose.SERVER_AUTH) context.options |= ssl.OP_NO_TLSv1 | ssl.OP_NO_TLSv1_1 # optional conn = context.wrap_socket(sock, server_hostname=HOST) try: conn.connect((HOST, PORT)) handle(conn) finally: conn.close() if __name__ == '__main__': main()
"""Contract test cases for ready.""" import json from typing import Any from aiohttp import ClientSession, hdrs, MultipartWriter import pytest from rdflib import Graph from rdflib.compare import graph_diff, isomorphic @pytest.mark.contract @pytest.mark.asyncio async def test_validator_with_file(http_service: Any) -> None: """Should return OK and successful validation.""" url = f"{http_service}/validator" data_graph_file = "tests/files/valid_catalog.ttl" shapes_graph_file = "tests/files/mock_dcat-ap-no-shacl_shapes_2.00.ttl" ontology_graph_file = "tests/files/ontologies.ttl" with MultipartWriter("mixed") as mpwriter: p = mpwriter.append(open(data_graph_file, "rb")) p.set_content_disposition( "attachment", name="data-graph-file", filename=data_graph_file ) p = mpwriter.append(open(shapes_graph_file, "rb")) p.set_content_disposition( "attachment", name="shapes-graph-file", filename=shapes_graph_file ) p = mpwriter.append(open(ontology_graph_file, "rb")) p.set_content_disposition( "attachment", name="ontology-graph-file", filename=ontology_graph_file ) session = ClientSession() async with session.post(url, data=mpwriter) as resp: body = await resp.text() await session.close() assert resp.status == 200 assert "text/turtle" in resp.headers[hdrs.CONTENT_TYPE] # results_graph (validation report) should be isomorphic to the following: src = """ @prefix sh: <http://www.w3.org/ns/shacl#> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . [] a sh:ValidationReport ; sh:conforms true . """ with open("tests/files/valid_catalog.ttl", "r") as file: text = file.read() # body is graph of both the input data and the validation report g0 = Graph().parse(data=text, format="text/turtle") g1 = g0 + Graph().parse(data=src, format="turtle") g2 = Graph().parse(data=body, format="text/turtle") _isomorphic = isomorphic(g1, g2) if not _isomorphic: _dump_diff(g1, g2) pass assert _isomorphic, "results_graph is incorrect" @pytest.mark.contract @pytest.mark.asyncio async def test_validator_accept_json_ld(http_service: Any) -> None: """Should return OK and successful validation and content-type should be json-ld.""" url = f"{http_service}/validator" data_graph_file = "tests/files/valid_catalog.ttl" headers = {"Accept": "application/ld+json"} shapes_graph_file = "tests/files/mock_dcat-ap-no-shacl_shapes_2.00.ttl" ontology_graph_file = "tests/files/ontologies.ttl" with MultipartWriter("mixed") as mpwriter: p = mpwriter.append(open(data_graph_file, "rb")) p.set_content_disposition( "attachment", name="data-graph-file", filename=data_graph_file ) p = mpwriter.append(open(shapes_graph_file, "rb")) p.set_content_disposition( "attachment", name="shapes-graph-file", filename=shapes_graph_file ) p = mpwriter.append(open(ontology_graph_file, "rb")) p.set_content_disposition( "attachment", name="ontology-graph-file", filename=ontology_graph_file ) session = ClientSession() async with session.post(url, headers=headers, data=mpwriter) as resp: # ... body = await resp.text() await session.close() assert resp.status == 200 assert "application/ld+json" in resp.headers[hdrs.CONTENT_TYPE] # results_graph (validation report) should be isomorphic to the following: src = """ [ { "@type": [ "http://www.w3.org/ns/shacl#ValidationReport" ], "http://www.w3.org/ns/shacl#conforms": [ { "@value": true } ] }, { "@id": "http://www.w3.org/ns/shacl#ValidationReport" } ] """ with open(data_graph_file, "r") as file: text = file.read() g0 = Graph().parse(data=text, format="text/turtle") g1 = g0 + Graph().parse(data=src, format="json-ld") g2 = Graph().parse(data=body, format="json-ld") _isomorphic = isomorphic(g1, g2) if not _isomorphic: _dump_diff(g1, g2) pass assert _isomorphic, "results_graph is incorrect" @pytest.mark.contract @pytest.mark.asyncio async def test_validator_file_content_type_json_ld(http_service: Any) -> None: """Should return OK and successful validation.""" url = f"{http_service}/validator" data_graph_file = "tests/files/valid_catalog.json" shapes_graph_file = "tests/files/mock_dcat-ap-no-shacl_shapes_2.00.ttl" ontology_graph_file = "tests/files/ontologies.ttl" with MultipartWriter("mixed") as mpwriter: p = mpwriter.append( open(data_graph_file, "rb"), {"CONTENT-TYPE": "application/ld+json"} ) p.set_content_disposition( "attachment", name="data-graph-file", filename=data_graph_file ) p = mpwriter.append(open(shapes_graph_file, "rb")) p.set_content_disposition( "attachment", name="shapes-graph-file", filename=shapes_graph_file ) p = mpwriter.append(open(ontology_graph_file, "rb")) p.set_content_disposition( "attachment", name="ontology-graph-file", filename=ontology_graph_file ) session = ClientSession() async with session.post(url, data=mpwriter) as resp: body = await resp.text() await session.close() assert resp.status == 200 assert "text/turtle" in resp.headers[hdrs.CONTENT_TYPE] # results_graph (validation report) should be isomorphic to the following: src = """ @prefix sh: <http://www.w3.org/ns/shacl#> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . [] a sh:ValidationReport ; sh:conforms true . """ with open(data_graph_file, "r") as file: text = file.read() g0 = Graph().parse(data=text, format="json-ld") g1 = g0 + Graph().parse(data=src, format="text/turtle") g2 = Graph().parse(data=body, format="text/turtle") _isomorphic = isomorphic(g1, g2) if not _isomorphic: _dump_diff(g1, g2) pass assert _isomorphic, "results_graph is incorrect" @pytest.mark.contract @pytest.mark.asyncio async def test_validator_file_content_type_rdf_xml(http_service: Any) -> None: """Should return OK and successful validation.""" url = f"{http_service}/validator" data_graph_file = "tests/files/valid_catalog.xml" shapes_graph_file = "tests/files/mock_dcat-ap-no-shacl_shapes_2.00.ttl" ontology_graph_file = "tests/files/ontologies.ttl" with MultipartWriter("mixed") as mpwriter: p = mpwriter.append( open(data_graph_file, "rb"), {"CONTENT-TYPE": "application/rdf+xml"} ) p.set_content_disposition( "attachment", name="data-graph-file", filename=data_graph_file ) p = mpwriter.append(open(shapes_graph_file, "rb")) p.set_content_disposition( "attachment", name="shapes-graph-file", filename=shapes_graph_file ) p = mpwriter.append(open(ontology_graph_file, "rb")) p.set_content_disposition( "attachment", name="ontology-graph-file", filename=ontology_graph_file ) session = ClientSession() async with session.post(url, data=mpwriter) as resp: body = await resp.text() await session.close() assert resp.status == 200 assert "text/turtle" in resp.headers[hdrs.CONTENT_TYPE] # results_graph (validation report) should be isomorphic to the following: src = """ @prefix sh: <http://www.w3.org/ns/shacl#> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . [] a sh:ValidationReport ; sh:conforms true . """ with open(data_graph_file, "r") as file: text = file.read() g0 = Graph().parse(data=text, format="application/rdf+xml") g1 = g0 + Graph().parse(data=src, format="text/turtle") g2 = Graph().parse(data=body, format="text/turtle") _isomorphic = isomorphic(g1, g2) if not _isomorphic: _dump_diff(g1, g2) pass assert _isomorphic, "results_graph is incorrect" @pytest.mark.contract @pytest.mark.asyncio async def test_validator_url(http_service: Any) -> None: """Should return OK and successful validation.""" url = f"{http_service}/validator" data_graph_url = "https://raw.githubusercontent.com/Informasjonsforvaltning/dcat-ap-no-validator-service/main/tests/files/valid_catalog.ttl" # noqa: B950 shapes_graph_file = "tests/files/mock_dcat-ap-no-shacl_shapes_2.00.ttl" ontology_graph_file = "tests/files/ontologies.ttl" with MultipartWriter("mixed") as mpwriter: p = mpwriter.append(data_graph_url) p.set_content_disposition("inline", name="data-graph-url") p = mpwriter.append(open(shapes_graph_file, "rb")) p.set_content_disposition( "attachment", name="shapes-graph-file", filename=shapes_graph_file ) p = mpwriter.append(open(ontology_graph_file, "rb")) p.set_content_disposition( "attachment", name="ontology-graph-file", filename=ontology_graph_file ) session = ClientSession() async with session.post(url, data=mpwriter) as resp: body = await resp.text() await session.close() assert resp.status == 200 assert "text/turtle" in resp.headers[hdrs.CONTENT_TYPE] # results_graph (validation report) should be isomorphic to the following: src = """ @prefix sh: <http://www.w3.org/ns/shacl#> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . [] a sh:ValidationReport ; sh:conforms true . """ session = ClientSession() async with session.get(data_graph_url) as resp: text = await resp.text() await session.close() g0 = Graph().parse(data=text, format="text/turtle") g1 = g0 + Graph().parse(data=src, format="text/turtle") g2 = Graph().parse(data=body, format="text/turtle") _isomorphic = isomorphic(g1, g2) if not _isomorphic: _dump_diff(g1, g2) pass assert _isomorphic, "results_graph is incorrect" @pytest.mark.contract @pytest.mark.asyncio async def test_validator_with_file_content_encoding(http_service: Any) -> None: """Should return OK and successful validation.""" url = f"{http_service}/validator" data_graph_file = "tests/files/valid_catalog.ttl" shapes_graph_file = "tests/files/mock_dcat-ap-no-shacl_shapes_2.00.ttl" ontology_graph_file = "tests/files/ontologies.ttl" with MultipartWriter("mixed") as mpwriter: p = mpwriter.append(open(data_graph_file, "rb")) p.set_content_disposition( "attachment", name="data-graph-file", filename=data_graph_file ) p.headers[hdrs.CONTENT_ENCODING] = "gzip" p = mpwriter.append(open(shapes_graph_file, "rb")) p.set_content_disposition( "attachment", name="shapes-graph-file", filename=shapes_graph_file ) p = mpwriter.append(open(ontology_graph_file, "rb")) p.set_content_disposition( "attachment", name="ontology-graph-file", filename=ontology_graph_file ) session = ClientSession() async with session.post(url, data=mpwriter) as resp: body = await resp.text() await session.close() assert resp.status == 200 assert "text/turtle" in resp.headers[hdrs.CONTENT_TYPE] # results_graph (validation report) should be isomorphic to the following: src = """ @prefix sh: <http://www.w3.org/ns/shacl#> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . [] a sh:ValidationReport ; sh:conforms true . """ with open(data_graph_file, "r") as file: text = file.read() g0 = Graph().parse(data=text, format="text/turtle") g1 = g0 + Graph().parse(data=src, format="text/turtle") g2 = Graph().parse(data=body, format="text/turtle") _isomorphic = isomorphic(g1, g2) if not _isomorphic: _dump_diff(g1, g2) pass assert _isomorphic, "results_graph is incorrect" @pytest.mark.contract @pytest.mark.asyncio async def test_validator_with_default_config(http_service: Any) -> None: """Should return OK and successful validation.""" url = f"{http_service}/validator" data_graph_file = "tests/files/valid_catalog.ttl" shapes_graph_file = "tests/files/mock_dcat-ap-no-shacl_shapes_2.00.ttl" ontology_graph_file = "tests/files/ontologies.ttl" config = {"expand": True, "includeExpandedTriples": False} with MultipartWriter("mixed") as mpwriter: p = mpwriter.append(open(data_graph_file, "rb")) p.set_content_disposition( "attachment", name="data-graph-file", filename=data_graph_file ) p.headers[hdrs.CONTENT_ENCODING] = "gzip" p = mpwriter.append(json.dumps(config)) p.set_content_disposition("inline", name="config") p = mpwriter.append(open(shapes_graph_file, "rb")) p.set_content_disposition( "attachment", name="shapes-graph-file", filename=shapes_graph_file ) p = mpwriter.append(open(ontology_graph_file, "rb")) p.set_content_disposition( "attachment", name="ontology-graph-file", filename=ontology_graph_file ) session = ClientSession() async with session.post(url, data=mpwriter) as resp: body = await resp.text() await session.close() assert resp.status == 200 assert "text/turtle" in resp.headers[hdrs.CONTENT_TYPE] # results_graph (validation report) should be isomorphic to the following: src = """ @prefix sh: <http://www.w3.org/ns/shacl#> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . [] a sh:ValidationReport ; sh:conforms true . """ with open(data_graph_file, "r") as file: text = file.read() g0 = Graph().parse(data=text, format="text/turtle") g1 = g0 + Graph().parse(data=src, format="text/turtle") g2 = Graph().parse(data=body, format="text/turtle") _isomorphic = isomorphic(g1, g2) if not _isomorphic: _dump_diff(g1, g2) pass assert _isomorphic, "results_graph is incorrect" @pytest.mark.contract @pytest.mark.asyncio async def test_validator_with_file_and_shapes_graph_file(http_service: Any) -> None: """Should return OK and successful validation.""" url = f"{http_service}/validator" data_graph_file = "tests/files/valid_catalog.ttl" shapes_graph_file = "tests/files/mock_dcat-ap-no-shacl_shapes_2.00.ttl" ontology_graph_file = "tests/files/ontologies.ttl" with MultipartWriter("mixed") as mpwriter: p = mpwriter.append(open(data_graph_file, "rb")) p.set_content_disposition( "attachment", name="data-graph-file", filename=data_graph_file ) p = mpwriter.append(open(shapes_graph_file, "rb")) p.set_content_disposition( "attachment", name="shapes-graph-file", filename=shapes_graph_file ) p = mpwriter.append(open(ontology_graph_file, "rb")) p.set_content_disposition( "attachment", name="ontology-graph-file", filename=ontology_graph_file ) session = ClientSession() async with session.post(url, data=mpwriter) as resp: body = await resp.text() await session.close() assert resp.status == 200 assert "text/turtle" in resp.headers[hdrs.CONTENT_TYPE] # results_graph (validation report) should be isomorphic to the following: src = """ @prefix sh: <http://www.w3.org/ns/shacl#> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . [] a sh:ValidationReport ; sh:conforms true . """ with open("tests/files/valid_catalog.ttl", "r") as file: text = file.read() # body is graph of both the input data and the validation report g0 = Graph().parse(data=text, format="text/turtle") g1 = g0 + Graph().parse(data=src, format="turtle") g2 = Graph().parse(data=body, format="text/turtle") _isomorphic = isomorphic(g1, g2) if not _isomorphic: _dump_diff(g1, g2) pass assert _isomorphic, "results_graph is incorrect" # --- bad cases --- @pytest.mark.contract @pytest.mark.asyncio async def test_validator_with_not_valid_file(http_service: Any) -> None: """Should return OK and unsuccessful validation.""" url = f"{http_service}/validator" data_graph_file = "tests/files/invalid_catalog.ttl" shapes_graph_file = "tests/files/mock_dcat-ap-no-shacl_shapes_2.00.ttl" ontology_graph_file = "tests/files/ontologies.ttl" with MultipartWriter("mixed") as mpwriter: p = mpwriter.append(open(data_graph_file, "rb")) p.set_content_disposition( "attachment", name="data-graph-file", filename=data_graph_file ) p = mpwriter.append(open(shapes_graph_file, "rb")) p.set_content_disposition( "attachment", name="shapes-graph-file", filename=shapes_graph_file ) p = mpwriter.append(open(ontology_graph_file, "rb")) p.set_content_disposition( "attachment", name="ontology-graph-file", filename=ontology_graph_file ) session = ClientSession() async with session.post(url, data=mpwriter) as resp: body = await resp.text() await session.close() assert resp.status == 200 assert "text/turtle" in resp.headers[hdrs.CONTENT_TYPE] # results_graph (validation report) should be isomorphic to the following: src = """ @prefix sh: <http://www.w3.org/ns/shacl#> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . [] a sh:ValidationReport ; sh:conforms false ; sh:result [ a sh:ValidationResult ; sh:focusNode <http://dataset-publisher:8080/datasets/1> ; sh:resultMessage "Less than 1 values on <http://dataset-publisher:8080/datasets/1>->dcat:theme" ; sh:resultPath <http://www.w3.org/ns/dcat#theme> ; sh:resultSeverity sh:Violation ; sh:sourceConstraintComponent sh:MinCountConstraintComponent ; sh:sourceShape [ sh:class <http://www.w3.org/2004/02/skos/core#Concept> ; sh:minCount 1 ; sh:path <http://www.w3.org/ns/dcat#theme> ; sh:severity sh:Violation ] ], [ a sh:ValidationResult ; sh:focusNode <http://dataset-publisher:8080/datasets/1> ; sh:resultMessage "Less than 1 values on <http://dataset-publisher:8080/datasets/1>->dct:description" ; sh:resultPath <http://purl.org/dc/terms/description> ; sh:resultSeverity sh:Violation ; sh:sourceConstraintComponent sh:MinCountConstraintComponent ; sh:sourceShape [ sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:path <http://purl.org/dc/terms/description> ; sh:severity sh:Violation ] ], [ a sh:ValidationResult ; sh:focusNode <http://dataset-publisher:8080/datasets/1> ; sh:resultMessage "Data-themes fra EU skal brukes for dcat:theme"@nb ; sh:resultPath <http://www.w3.org/ns/dcat#theme> ; sh:resultSeverity sh:Warning ; sh:sourceConstraintComponent sh:QualifiedMinCountConstraintComponent ; sh:sourceShape [ sh:message "Data-themes fra EU skal brukes for dcat:theme"@nb ; sh:path <http://www.w3.org/ns/dcat#theme> ; sh:qualifiedMinCount 1 ; sh:qualifiedValueShape [ sh:node <https://data.norge.no/specification/dcat-ap-no/#DataThemeRestriction> ] ; sh:severity sh:Warning ] ] . """ with open(data_graph_file, "r") as file: text = file.read() g0 = Graph().parse(data=text, format="text/turtle") g1 = g0 + Graph().parse(data=src, format="text/turtle") g2 = Graph().parse(data=body, format="text/turtle") _isomorphic = isomorphic(g1, g2) if not _isomorphic: _dump_diff(g1, g2) pass assert _isomorphic, "results_graph is incorrect" @pytest.mark.contract @pytest.mark.asyncio async def test_validator_notexisting_url(http_service: Any) -> None: """Should return 400.""" url = f"{http_service}/validator" data_graph_url = "https://raw.githubusercontent.com/Informasjonsforvaltning/dcat-ap-no-validator-service/main/tests/files/does_not_exist.ttl" # noqa: B950 shapes_graph_file = "tests/files/mock_dcat-ap-no-shacl_shapes_2.00.ttl" with MultipartWriter("mixed") as mpwriter: p = mpwriter.append(data_graph_url) p.set_content_disposition("inline", name="data-graph-url") p = mpwriter.append(open(shapes_graph_file, "rb")) p.set_content_disposition( "attachment", name="shapes-graph-file", filename=shapes_graph_file ) session = ClientSession() async with session.post(url, data=mpwriter) as resp: _ = await resp.text() await session.close() assert resp.status == 400 @pytest.mark.contract @pytest.mark.asyncio async def test_validator_illformed_url(http_service: Any) -> None: """Should return 400.""" url = f"{http_service}/validator" data_graph_url = "http://slfkjasdf" # noqa: B950 shapes_graph_file = "tests/files/mock_dcat-ap-no-shacl_shapes_2.00.ttl" with MultipartWriter("mixed") as mpwriter: p = mpwriter.append(data_graph_url) p.set_content_disposition("inline", name="data-graph-url") p = mpwriter.append(open(shapes_graph_file, "rb")) p.set_content_disposition( "attachment", name="shapes-graph-file", filename=shapes_graph_file ) session = ClientSession() async with session.post(url, data=mpwriter) as resp: _ = await resp.text() await session.close() assert resp.status == 400 @pytest.mark.contract @pytest.mark.asyncio async def test_validator_url_to_invalid_rdf(http_service: Any) -> None: """Should return 400.""" url = f"{http_service}/validator" data_graph_url = "https://raw.githubusercontent.com/Informasjonsforvaltning/dcat-ap-no-validator-service/main/tests/files/invalid_rdf.txt" # noqa: B950 shapes_graph_file = "tests/files/mock_dcat-ap-no-shacl_shapes_2.00.ttl" with MultipartWriter("mixed") as mpwriter: p = mpwriter.append(data_graph_url) p.set_content_disposition("inline", name="data-graph-url") p = mpwriter.append(open(shapes_graph_file, "rb")) p.set_content_disposition( "attachment", name="shapes-graph-file", filename=shapes_graph_file ) session = ClientSession() async with session.post(url, data=mpwriter) as resp: _ = await resp.text() await session.close() assert resp.status == 400 # ---------------------------------------------------------------------- # # Utils for displaying debug information def _dump_diff(g1: Graph, g2: Graph) -> None: in_both, in_first, in_second = graph_diff(g1, g2) print("\nin both:") _dump_turtle(in_both) print("\nin first:") _dump_turtle(in_first) print("\nin second:") _dump_turtle(in_second) def _dump_turtle(g: Graph) -> None: for _l in g.serialize(format="text/turtle").splitlines(): if _l: print(_l)
# pan_and_tilt_tracker.py # to run this program, type: # sudo python pan_and_tilt_tracker.py headed (GUI) # sudo python pan_and_tilt_tracker.py headless (no GUI (for embedded use)) # this program pans/tilts two servos so a mounted webcam tracks a red ball # use the circuit from "pan_and_tilt_tracker.png" import RPi.GPIO as GPIO import cv2 import numpy as np import os import sys from operator import itemgetter ################################################################################################### def main(): headed_or_headless = "" if len(sys.argv) == 2 and str(sys.argv[1]) == "headed": headed_or_headless = "headed" print "entering headed mode" elif len(sys.argv) == 2 and str(sys.argv[1]) == "headless": headed_or_headless = "headless" print "entering headless mode" else: print "\nprogram usage:\n" print "for headed mode (GUI interface) @command prompt type: sudo python pan_and_tilt_tracker.py headed\n" print "for headless mode (no GUI interface, i.e. embedded mode) @ command prompt type: sudo python pan_and_tilt_tracker.py headless\n" return # end if else GPIO.setmode(GPIO.BCM) # use GPIO pin numbering, not physical pin numbering led_gpio_pin = 18 pan_gpio_pin = 24 tilt_gpio_pin = 25 pwmFrequency = 100 # frequency in Hz pwmInitialDutyCycle = 14 # initial duty cycle in % GPIO.setup(led_gpio_pin, GPIO.OUT) GPIO.setup(pan_gpio_pin, GPIO.OUT) GPIO.setup(tilt_gpio_pin, GPIO.OUT) pwmPanObject = GPIO.PWM(pan_gpio_pin, pwmFrequency) pwmTiltObject = GPIO.PWM(tilt_gpio_pin, pwmFrequency) pwmPanObject.start(pwmInitialDutyCycle) pwmTiltObject.start(pwmInitialDutyCycle) capWebcam = cv2.VideoCapture(0) # declare a VideoCapture object and associate to webcam, 0 => use 1st webcam print "default resolution = " + str(capWebcam.get(cv2.CAP_PROP_FRAME_WIDTH)) + "x" + str(capWebcam.get(cv2.CAP_PROP_FRAME_HEIGHT)) capWebcam.set(cv2.CAP_PROP_FRAME_WIDTH, 320.0) capWebcam.set(cv2.CAP_PROP_FRAME_HEIGHT, 240.0) print "updated resolution = " + str(capWebcam.get(cv2.CAP_PROP_FRAME_WIDTH)) + "x" + str(capWebcam.get(cv2.CAP_PROP_FRAME_HEIGHT)) if capWebcam.isOpened() == False: # check if VideoCapture object was associated to webcam successfully print "error: capWebcam not accessed successfully\n\n" # if not, print error message to std out os.system("pause") # pause until user presses a key so user can see error message return # and exit function (which exits program) # end if intXFrameCenter = int(float(capWebcam.get(cv2.CAP_PROP_FRAME_WIDTH)) / 2.0) intYFrameCenter = int(float(capWebcam.get(cv2.CAP_PROP_FRAME_WIDTH)) / 2.0) panServoPosition = int(90) # pan servo position in degrees tiltServoPosition = int(90) # tilt servo position in degrees updateServoMotorPositions(pwmPanObject, panServoPosition, pwmTiltObject, tiltServoPosition) while cv2.waitKey(1) != 27 and capWebcam.isOpened(): # until the Esc key is pressed or webcam connection is lost blnFrameReadSuccessfully, imgOriginal = capWebcam.read() # read next frame if not blnFrameReadSuccessfully or imgOriginal is None: # if frame was not read successfully print "error: frame not read from webcam\n" # print error message to std out os.system("pause") # pause until user presses a key so user can see error message break # exit while loop (which exits program) # end if imgHSV = cv2.cvtColor(imgOriginal, cv2.COLOR_BGR2HSV) imgThreshLow = cv2.inRange(imgHSV, np.array([0, 135, 135]), np.array([19, 255, 255])) imgThreshHigh = cv2.inRange(imgHSV, np.array([168, 135, 135]), np.array([179, 255, 255])) imgThresh = cv2.add(imgThreshLow, imgThreshHigh) imgThresh = cv2.GaussianBlur(imgThresh, (3, 3), 2) imgThresh = cv2.dilate(imgThresh, np.ones((5,5),np.uint8)) imgThresh = cv2.erode(imgThresh, np.ones((5,5),np.uint8)) intRows, intColumns = imgThresh.shape circles = cv2.HoughCircles(imgThresh, cv2.HOUGH_GRADIENT, 3, intRows / 4) # fill variable circles with all circles in the processed image GPIO.output(led_gpio_pin, GPIO.LOW) if circles is not None: # this line is necessary to keep program from crashing on next line if no circles were found GPIO.output(led_gpio_pin, GPIO.HIGH) sortedCircles = sorted(circles[0], key = itemgetter(2), reverse = True) largestCircle = sortedCircles[0] x, y, radius = largestCircle # break out x, y, and radius print "ball position x = " + str(x) + ", y = " + str(y) + ", radius = " + str(radius) # print ball position and radius if x < intXFrameCenter and panServoPosition >= 2: panServoPosition = panServoPosition - 2 elif x > intXFrameCenter and panServoPosition <= 178: panServoPosition = panServoPosition + 2 # end if else if y < intYFrameCenter and tiltServoPosition >= 62: tiltServoPosition = tiltServoPosition - 2 elif y > intYFrameCenter and tiltServoPosition <= 133: tiltServoPosition = tiltServoPosition + 2 # end if else updateServoMotorPositions(pwmPanObject, panServoPosition, pwmTiltObject, tiltServoPosition) if headed_or_headless == "headed": cv2.circle(imgOriginal, (x, y), 3, (0, 255, 0), -1) # draw small green circle at center of detected object cv2.circle(imgOriginal, (x, y), radius, (0, 0, 255), 3) # draw red circle around the detected object # end if # end if if headed_or_headless == "headed": cv2.imshow("imgOriginal", imgOriginal) # show windows cv2.imshow("imgThresh", imgThresh) # end if # end while cv2.destroyAllWindows() # remove windows from memory return # end main ################################################################################################### def updateServoMotorPositions(pwmPanObject, panServoPosition, pwmTiltObject, tiltServoPosition): panDutyCycle = ((float(panServoPosition) * 0.01) + 0.5) * 10 tiltDutyCycle = ((float(tiltServoPosition) * 0.01) + 0.5) * 10 pwmPanObject.ChangeDutyCycle(panDutyCycle) pwmTiltObject.ChangeDutyCycle(tiltDutyCycle) # end function ################################################################################################### if __name__ == "__main__": main()
# Generated by Django 3.1.1 on 2020-10-15 17:45 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("carbon_quiz", "0058_auto_20201012_1444"), ("carbon_quiz", "0059_auto_20201014_1909"), ] operations = []
from rest_framework.test import APIClient from django.test import SimpleTestCase, TestCase, Client from django.urls import reverse, resolve from products.models import Product, Category, Comment import json from decimal import Decimal from django.contrib.auth.models import User #testing views class TestViews(TestCase): ### 10/10, completed ### def setUp(self): TestCase.allow_database_queries = True self.study_notes_category = Category.objects.create(name = 'Study notes') self.clothing_category = Category.objects.create(name = 'Clothing') self.author_user = User.objects.create(username='testuser') self.author_user.set_password('12345') self.author_user.save() self.client = Client() login = self.client.login(username='testuser', password='12345') #author_user creates his product with id/pk = 1 ''' self.product1 = Product.objects.create( image_link_1 = 'http://personal.psu.edu/xqz5228/jpg.jpg', image_link_2 = 'https://media.alienwarearena.com/media/1327-m.jpg', category = self.study_notes_category, #category taken from CATEGORY_CHOICES title = 'T-shirt', condition = 'N', price_in_SGD = 1.0, description = 'testing', this_product_has_multiple_quantities = True, delivery_location = 'CLB/Engineering', #delivery_location taken from DELIVERY_CHOICES extra_information = 'Nothing to add', author = author_user, #attributes auto-generated: pub_date and view_count ) self.PRODUCT_ID = 1 ''' self.another_user = User.objects.create(username='another_dude') self.another_user.set_password('12345') self.another_user.save() self.client = Client() self.API_client = APIClient() self.product1 = Product.objects.create( image_link_1 = 'http://personal.psu.edu/xqz5228/jpg.jpg', image_link_2 = 'https://media.alienwarearena.com/media/1327-m.jpg', category = self.study_notes_category, #category taken from CATEGORY_CHOICES title = 'T-shirt', condition = 'N', price_in_SGD = 1.0, description = 'testing', this_product_has_multiple_quantities = True, delivery_location = 'CLB/Engineering', #delivery_location taken from DELIVERY_CHOICES extra_information = 'Nothing to add', author = self.author_user, #attributes auto-generated: pub_date and view_count ) self.PRODUCT_ID = 1 def test_product_list_view_number_of_listings_works(self): response = self.client.get(reverse('home')) self.assertEquals(response.status_code, 200) #status code 200, the request was fulfilled. self.assertTemplateUsed(response, 'products/product_list.html') self.assertEquals(Product.objects.count(), 1) def test_product_category_view_categorisation_works(self): self.product2 = Product.objects.create( image_link_1 = 'http://personal.psu.edu/xqz5228/jpg.jpg', image_link_2 = 'https://media.alienwarearena.com/media/1327-m.jpg', category = self.study_notes_category, #<--------------- title = 'T-shirt', condition = 'N', price_in_SGD = 1.0, description = 'testing', this_product_has_multiple_quantities = True, delivery_location = 'CLB/Engineering', #delivery_location taken from DELIVERY_CHOICES extra_information = 'Nothing to add', author = self.author_user, #attributes auto-generated: pub_date and view_count ) self.product3 = Product.objects.create( image_link_1 = 'http://personal.psu.edu/xqz5228/jpg.jpg', image_link_2 = 'https://media.alienwarearena.com/media/1327-m.jpg', category = self.clothing_category, #<--------------- title = 'T-shirt', condition = 'N', price_in_SGD = 1.0, description = 'testing', this_product_has_multiple_quantities = True, delivery_location = 'CLB/Engineering', #delivery_location taken from DELIVERY_CHOICES extra_information = 'Nothing to add', author = self.author_user, #attributes auto-generated: pub_date and view_count ) #correct counts self.assertEquals(len(Product.objects.filter(category = self.study_notes_category)), 2) self.assertEquals(len(Product.objects.filter(category = self.clothing_category)), 1) #correct HTTPResponse response = self.client.get(reverse('product-by-category', args = (self.PRODUCT_ID,))) self.assertEquals(response.status_code, 200) #the request was fulfilled. def test_user_profile_view_works(self): response = self.client.get(reverse('user-details')) self.assertEquals(response.status_code, 200) #the request was fulfilled. def test_product_create_works(self): ''' check if the product listing is actually created ''' Product.objects.create( image_link_1 = 'http://personal.psu.edu/xqz5228/jpg.jpg', image_link_2 = 'https://media.alienwarearena.com/media/1327-m.jpg', category = self.study_notes_category, #category taken from CATEGORY_CHOICES title = 'T-shirt', condition = 'N', price_in_SGD = 1.0, description = 'testing', this_product_has_multiple_quantities = True, delivery_location = 'CLB/Engineering', #delivery_location taken from DELIVERY_CHOICES extra_information = 'Nothing to add', author = self.author_user, #attributes auto-generated: pub_date and view_count ) self.PRODUCT_ID += 1 response = self.client.get(reverse('product-detail', args = (self.PRODUCT_ID,))) self.assertEquals(response.status_code, 302) #redirected to product-details page self.assertEquals(Product.objects.count(), 2) #check if the product listing is created def test_product_detail_view_from_author_works(self): self.client.login(username='testuser', password='12345') #self.author_user, the creator of the product listing, requests to view the listing. response = self.client.get(reverse('product-detail', args = (self.PRODUCT_ID,))) #authenticated self.assertTemplateUsed(response, 'products/product_detail.html') self.assertEquals(response.status_code, 200) def test_product_detail_view_from_other_users_works(self): self.client.login(username='another_dude', password='12345') #self.author_user, the creator of the product listing, requests to view the listing. response = self.client.get(reverse('product-detail', args = (self.PRODUCT_ID,))) #authenticated self.assertTemplateUsed(response, 'products/product_detail_guest.html') self.assertEquals(response.status_code, 200) def test_product_update_view_from_author_works(self): self.client.login(username='testuser', password='12345') #self.author_user, the creator of the product listing, requests to update the listing. response = self.client.get(reverse('product-update', args = (self.PRODUCT_ID,))) #authenticated, view from author of the listing self.assertTemplateUsed(response, 'products/product_create.html') self.assertEquals(response.status_code, 200) UPDATE_request = self.client.post(reverse('product-update', args = (self.PRODUCT_ID,))) self.assertEquals(response.status_code, 200) #check that update POST request is fulfilled (html rendered) self.assertEquals(Product.objects.count(), 1) #confirm that product1 is still here def test_product_update_view_from_other_users_unauthorised(self): self.client.login(username='another_dude', password='12345') response = self.client.get(reverse('product-update', args = (self.PRODUCT_ID,))) #permission denied, will redirect to home self.assertEquals(response.status_code, 302) #redirected to home def test_product_delete_view_from_author_works(self): self.client.login(username='testuser', password='12345') #self.author_user, the creator of the product listing, requests to delete the listing. GET_response = self.client.get(reverse('product-delete', args = (self.PRODUCT_ID,))) #authenticated, view from author of the listing self.assertTemplateUsed(GET_response, 'products/product_delete.html') self.assertEquals(GET_response.status_code, 200) POST_response = self.client.post(reverse('product-delete', args = (self.PRODUCT_ID,))) self.assertEquals(POST_response.status_code, 302) #product1 deleted, redirects to home self.assertEquals(Product.objects.count(), 0) #confirm that product1 is already deleted def test_product_delete_view_from_other_users_unauthorised(self): self.client.login(username='another_dude', password='12345') response = self.client.get(reverse('product-delete', args = (self.PRODUCT_ID,))) #product2 #permission denied, will redirect to home self.assertEquals(response.status_code, 302) #redirected to home
# -*- coding: utf-8 -*- ############################################################################# # # Copyright © Dragon Dollar Limited # contact: [email protected] # # This software is a collection of webservices designed to provide a secure # and scalable framework to build e-commerce websites. # # This software is governed by the CeCILL-B license under French law and # abiding by the rules of distribution of free software. You can use, # modify and/ or redistribute the software under the terms of the CeCILL-B # license as circulated by CEA, CNRS and INRIA at the following URL # " http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL-B license and that you accept its terms. # ############################################################################# import settings import logging import os import re import requests import urllib from bs4 import BeautifulSoup number_type_mapping = { 'container': 'CONTAINER', 'bill_of_landing': 'BILLOFLADING', } def gen_resp_soup(response): return BeautifulSoup(response.text.encode('utf8')) class CosconAPI: def searchContainer(self, search_by=None, number=None): number_type = number_type_mapping[search_by] context = requests.session() init_response = self._execute(context) jsessionid = self._get_jsessionid(init_response) jsf_state = self._get_jsf_state(gen_resp_soup(init_response)) data = self._get_common_post_data(number_type, number, jsf_state) post_response = self._post(context, data, number, number_type, jsessionid, jsf_state) return self._parse_post_response(post_response, context, number_type, number, jsessionid) def _post(self, context, data, number, number_type, jsessionid, jsf_state): headers = { 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', 'X-Requested-With': 'XMLHttpRequest', 'Faces-Request': 'partial/ajax', 'Referer': settings.COSCON_CONTAINER_URL, 'Accept': 'application/xml, text/xml, */*; q=0.01', 'Accept-Language': 'en-US,en;q=0.5', 'Accept-Encoding': 'gzip, deflate', } cookies = {'JSESSIONID': jsessionid, 'number': number, 'numberType': number_type, 'language': 'en_US'} post_response = self._execute(context, data=data, headers=headers, cookies=cookies) return post_response def _parse_post_response(self, response, context, number_type, number, jsessionid): if number_type == 'BILLOFLADING': func = self._parse_billoflanding_post_response else: func = self._parse_container_post_response data = func(response, context, number_type, number, jsessionid) return data def _parse_billoflanding_post_response(self, response, context, number_type, number, jsessionid): soup = gen_resp_soup(response) container_num = self._get_container_num(soup, number_type) result = self.searchContainer(search_by='container', number=container_num) end_time = self._get_endtime(soup) if end_time: result['shipment_cycle'] = [{ 'status': 'Empty Equipment Returned', 'time': end_time, }] return result def _get_endtime(self, soup): top = soup.find(id='containerInfoByBlNum') rows = top.find(name='tbody').findChildren(name='tr') return rows[-1].findChildren(attrs={'class': 'labelTextMyFocus'})[-1].getText() def _parse_container_post_response(self, response, context, number_type, number, jsessionid): jsf_state = self._get_updated_value("javax.faces.ViewState", response) soup = gen_resp_soup(response) history = soup.find(id='cargoTrackingContainerHistory6') rows = history.find(name='tbody').findChildren(name='tr') shipment_cycle = self._get_shipment_cycle_info(rows, jsf_state, context, number_type, number, jsessionid) prv_rows = history.find(id='Cargohistory').find(name='tbody').findChildren(name='tr') prv_shipment_cycle = self._get_shipment_cycle_info(prv_rows, jsf_state, context, number_type, number, jsessionid, current=False) return {'container': self._get_container_info(soup, number_type), 'ports': self._get_ports_info(soup, number_type), 'shipment_cycle': shipment_cycle, 'prv_shipment_cycle': prv_shipment_cycle, } def _get_shipment_cycle_info(self, rows, jsf_state, context, number_type, number, jsessionid, current=True): from common.utils import format_datetime shipment_cycle = [] last_vessel_info = None for row in rows: cols = row.find_all(attrs={'class': 'labelTextMyFocus'}) if cols: status = cols[0].getText() location = cols[1].getText() time = cols[2].getText() mode = cols[3].getText().strip() shipment = { 'status': status, 'location': location, 'time': format_datetime(time, 'Hongkong', 'UTC'), 'mode': mode, } a_tag = cols[3].find_parent(name='a') if current and mode == 'Vessel' and a_tag: a_id = a_tag.get('id') data = self._get_common_post_data(number_type, number, jsf_state) data['cntrNum'] = number data['cntrStatus'] = status data['containerHistorySize'] = len(rows) data['containerSize'] = 1 data['issueTime'] = time data[a_id] = a_id data['javax.faces.partial.render'] = 'vesselInfoField' data['javax.faces.source'] = a_id data['numberType'] = number_type post_response = self._post(context, data, number, number_type, jsessionid, jsf_state) jsf_state = self._get_updated_value("javax.faces.ViewState", post_response) vessel_html = self._get_updated_value("vesselInfoField", post_response) vessel_info = self._parse_vessel_info(vessel_html) last_vessel_info = vessel_info shipment.update(vessel_info) if mode == '' and last_vessel_info: shipment.update(last_vessel_info) shipment_cycle.append(shipment) return shipment_cycle def _parse_vessel_info(self, html): soup = BeautifulSoup(html) info = soup.find(id='vesselInfoField_content') rows = info.find(name='table').findChildren(name='tr') vessel_info = { 'vessel_name': rows[0].find_all(name='td')[1].getText(), 'from_port': rows[1].find_all(name='td')[1].getText(), 'to_port': rows[3].find_all(name='td')[1].getText(), } return vessel_info def _get_container_num(self, soup, number_type): if number_type == 'CONTAINER': top = soup.find(id='CargoTracking1') \ .find(attrs={'class': 'Containerkuang3'}) rows = top.find(name='table').findChildren(name='tr') else: top = soup.find(id='containerInfoByBlNum') rows = top.find(name='tbody').findChildren(name='tr') return rows[-1].find(attrs={'class': 'labelTextMyFocus'}).getText() def _get_container_info(self, soup, number_type): if number_type != 'CONTAINER': return {} top = soup.find(id='CargoTracking1') \ .find(attrs={'class': 'Containerkuang3'}) rows = top.find(name='table').findChildren(name='tr') result = rows[-1].find_all(attrs={'class': 'labelTextMyFocus'}) from common.utils import format_datetime return { 'container_num': result[0].getText(), 'container_size': result[1].getText(), 'seal_no': result[2].getText(), 'location': result[3].getText(), 'status': result[4].getText(), 'datetime': format_datetime(result[5].getText(), 'Hongkong', 'UTC'), } def _get_ports_info(self, soup, number_type): if number_type != 'CONTAINER': return {} points = soup.find(id='cargopic1') ports = {} for _name, _text in [('por', '提空点'), ('fnd', '返空点'), ('first_pol', '始发港'), ('last_pod', '目的港')]: p = points.find(name='div', text=_text) if p and p.find_next(): ports[_name] = self._get_valid_port_name(p.find_next().text) ports['ts_port'] = [] for p in points.findChildren(name='div', text='中转港'): if p and p.find_next(): pname = self._get_valid_port_name(p.find_next().text) if pname and (len(ports['ts_port']) == 0 or ports['ts_port'][-1] != pname): ports['ts_port'].append(pname) return ports def _get_valid_port_name(self, text): return text.encode('utf-8').split('\n')[0].replace('·', '').strip().split(',')[0] def _get_jsf_state(self, soup): state = soup.find(id='javax.faces.ViewState') return state.get('value') if state else '' def _get_updated_value(self, name, response): ret = re.findall( r'<update id="%s"><\!\[CDATA\[(.*?)\]\]></update>' % name, response.text, re.M|re.S) return ret[0] def _get_jsessionid(self, response): return response.cookies.get('JSESSIONID') or '' def _execute(self, context, data=None, headers=None, cookies=None): try: api_url = settings.COSCON_CONTAINER_URL if data: data = urllib.urlencode(data) response = context.post(api_url, data=data, timeout=settings.THIRDPARTY_ACCESS_TIMEOUT, headers=headers, cookies=cookies) else: response = context.get(api_url, timeout=settings.THIRDPARTY_ACCESS_TIMEOUT) return response except Exception, e: logging.error("Got exception when accessing third-party API " "(url: %s) : %s", api_url, e, exc_info=True) raise def _get_common_post_data(self, number_type, number, jsf_state): return { 'a10time1': '', 'a10time2': '', 'a11time1': '', 'a11time2': '', 'a12time': '', 'a13time': '', 'a2time': '', 'a3time': '', 'a5time1': '', 'a5time2': '', 'a7time1': '', 'a7time2': '', 'a9time1': '', 'a9time2': '', 'billRemark': '', 'bkRmark': '', 'bookingNumbers': '0', 'cargoTrackSearchId': number_type, 'cargoTrackingPara': number, 'cargoTrackingRedirect': 'false', 'cargoTrckingFindButton': 'cargoTrckingFindButton', 'cntrOrderType': '', 'cntrOrderType2': '', 'cntrRemark': '', 'containerNumberAll': '', 'containerNumberAllByBookingNumber': '', 'containerSize': '', 'containerTransportationMode': '', 'isbillOfLadingExist': 'false', 'isbookingNumberExist': 'false', 'j_idt1189': '', 'j_idt172': '', 'j_idt636': '', 'j_idt665': '', 'j_idt694': '', 'j_idt723': '', 'j_idt752': '', 'javax.faces.ViewState': jsf_state, 'javax.faces.partial.ajax': 'true', 'javax.faces.partial.execute': '@all', 'javax.faces.partial.render': 'bookingNumbers billToBookingGrop billofLading_Table3 release_Information_bill release_Information_booking cargoTrackingOrderBillInformation cargoTrackingBookingOfLadingInformation cargoTrackingContainerHistory cargoTrackingContainerInfoStatus cargoTrackingContainerBillOfLadingNumber1 cargoTrackingContainerInfoByContainerNumber release_Information_booking_version release_Information_bill_version actualLoadingInfo containerInfoByBlNum containerInfoByBkgNumTable actualLoadingInfo5 documentStatus cargoTrackingAcivePictures containerNumberAll containerInfo_table3 containerInfo_table4 cargoTrackingPrintByContainer containerNumberAllByBookingNumber registerUserValidate validateCargoTracking isbillOfLadingExist isbookingNumberExist cargoTrackingContainerPictureByContainer cargoTrackingContainerHistory1 cargoTrackingOrderBillMyFocus cargoTrackingBookingMyFocus userId contaienrNoExist billChange4 bookingChange4 bookingChange3 cargoTrackingContainerHistory6 numberType containerSize containerMessage containerTab isLogin cargoTrackingBillContainer cargoTrackingBillContainer1 BillMessage BookingMessage searchSuccess searchError containerTransportationMode', 'javax.faces.source': 'cargoTrckingFindButton', 'mainForm': 'mainForm', 'num': '0', 'num1': '0', 'num2': '0', 'num3': '0', 'num4': '0', 'num5': '0', 'num6': '0', 'numberType': '', 'onlyFirstAndLast': 'false', 'onlyFirstAndLast2': 'false', 'userId': '', 'validateCargoTracking': 'false', }
def data_parser(data): print 'Your name is {0}, you are {1} years old, and your username is {2}.'.format(data[0],data[1],data[2]) if 'y' in data[3]: f = open('data_logger.txt','w') f.write('Your name is {0}, you are {1} years old, and your username is {2}.'.format(data[0],data[1],data[2])) def data_retriever(): save_prompt = input('Save this data to disk, or no?\n>') name_input = input('What\'s your name?\n>') age_input = input('What\'s your age?\n>') reddit_username_input = input('What\'s your reddit username?\n>') return name_input,age_input,reddit_username_input,save_prompt data_parser(data_retriever())
from settings import * import os PROJECT_HOME = os.path.dirname(os.path.dirname(__file__)) LOG_FOLDER=os.path.join(PROJECT_HOME, '..', 'logs') if os.path.exists(os.path.join(PROJECT_HOME,"local_settings.py")): from local_settings import * LOG_LEVEL="DEBUG" LOG_FILENAME="operations_management.log" LOGGING = { 'version': 1, 'disable_existing_loggers': True, 'formatters': { 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(message)s' }, 'simple': { 'format': '%(asctime)s %(levelname)s %(message)s' }, }, 'handlers': { 'null': { 'level': 'DEBUG', 'class': 'logging.NullHandler', }, 'mail_admins': { 'level': 'ERROR', 'class': 'django.utils.log.AdminEmailHandler' }, 'file':{ 'level':'DEBUG', 'class':'logging.handlers.RotatingFileHandler', 'filename':os.path.join(LOG_FOLDER, LOG_FILENAME), 'formatter': 'verbose', 'maxBytes':604800, 'backupCount':50 } }, 'loggers': { 'django': { 'handlers':['mail_admins',], 'propagate': True, 'level':'DEBUG', }, 'django.db.backends.schema': { 'handlers':['null',], 'propagate': True, 'level':'INFO', }, '': { 'handlers': ['file',], 'propagate': True, 'level': LOG_LEVEL } }, }
# hack to run multiple luigi tasks in one session import luigi import json import argparse from mc_luigi import LearnClassifierFromGt, PipelineParameter from mc_luigi import MulticutSegmentation, BlockwiseMulticutSegmentation def learn_rf(): ppl_parameter = PipelineParameter() ppl_parameter.read_input_file('./inputs.json') inputs = ppl_parameter.inputs ppl_parameter.separateEdgeClassification = True ppl_parameter.ignoreSegLabel = 0 ppl_parameter.useN5Backend = True ppl_parameter.nTrees = 150 luigi.run([ "--local-scheduler", "--pathsToSeg", json.dumps(inputs["seg"]), "--pathsToGt", json.dumps(inputs["gt"])], LearnClassifierFromGt ) def mc(): ppl_parameter = PipelineParameter() # read the json with paths to input files ppl_parameter.read_input_file('./inputs.json') inputs = ppl_parameter.inputs # set the parameters ppl_parameter.multicutWeightingScheme = "z" ppl_parameter.separateEdgeClassification = True ppl_parameter.multicutVerbose = False ppl_parameter.ignoreSegLabel = 0 ppl_parameter.useN5Backend = True luigi.run( ["--local-scheduler", "--pathToSeg", inputs["seg"][0], "--pathToClassifier", inputs["rf"]], MulticutSegmentation ) def blockwise_mc(): ppl_parameter = PipelineParameter() # read the json with paths to input files ppl_parameter.read_input_file('./inputs.json') inputs = ppl_parameter.inputs # set the parameters ppl_parameter.multicutWeightingScheme = "z" ppl_parameter.separateEdgeClassification = True ppl_parameter.multicutVerbose = False ppl_parameter.multicutBlockShape = [20, 256, 256] ppl_parameter.multicutBlockOverlap = [5, 50, 50] ppl_parameter.ignoreSegLabel = 0 ppl_parameter.useN5Backend = True n_levels = 1 luigi.run( ["--local-scheduler", "--pathToSeg", inputs["seg"][0], "--pathToClassifier", inputs["rf"], "--numberOfLevels", str(n_levels)], BlockwiseMulticutSegmentation ) def main(): parser = argparse.ArgumentParser() parser.add_argument('task', type=str) args = parser.parse_args() task_fu = eval(args.task) task_fu() if __name__ == '__main__': main()
import os import sys import threading import time from multiprocessing import Pool import requests from pyramid.config import Configurator from pyramid.response import Response # begin chdir armor up = os.path.dirname(os.path.abspath(__file__)) testdir = os.path.dirname(up) hendrix_app_dir = os.path.dirname(testdir) hendrix_package_dir = os.path.dirname(hendrix_app_dir) sys.path.insert(0, hendrix_package_dir) # end chdir armor from hendrix.deploy.base import HendrixDeploy from zope.interface import provider from twisted.logger import ILogObserver, formatEvent @provider(ILogObserver) def simpleObserver(event): print(formatEvent(event)) # from twisted.logger import globalLogBeginner # globalLogBeginner.beginLoggingTo([simpleObserver], redirectStandardIO=False) def cpu_heavy(heft, label=None): count = 0 previous_count = 0 start = 1 previous = start one_before_that = 0 end = heft timer_start = time.time() while True: new = previous + one_before_that one_before_that = previous previous = new count += 1 if count == end / 2 and end % 2 == 0: print("%s halfway: %s" % (label, time.time() - timer_start)) time.sleep(0) if count == end: print("%s done: %s" % (label, time.time() - timer_start)) return global total_requests global avg_duration total_requests = 0 avg_duration = 0 def long(): global total_requests global avg_duration previous_duration = (total_requests * avg_duration) total_requests += 1 timer_start = time.time() thread = threading.current_thread() print("Starting stream %s on %s" % (total_requests, thread.name)) # cpu_heavy(100000, label) r = requests.get('http://localhost:8010/.25') duration = time.time() - timer_start print("Finished stream %s after %s" % (total_requests, duration)) avg_duration = float(previous_duration + duration) / float(total_requests) print("Average duration after %s: %s" % (total_requests, avg_duration)) class PerformanceTest(object): pool = Pool(20) def view(self, request): # option 1 # @crosstown_traffic() # def wait(): # long() # option 2 self.pool.apply_async(long) return Response() config = Configurator() config.add_route('test_view', '/') config.add_view(PerformanceTest().view, route_name='test_view') app = config.make_wsgi_app() if __name__ == '__main__': deployer = HendrixDeploy(options={'wsgi': app}) deployer.run()
__author__ = 'peeyush' from GCAM import FilesFolders import timeit, sys, os from GCAM import Fetch_pmids import pandas as pd def check_database_update(annoDB, cellDB, resource_path): ''' This function checks for update in annotation db and celltype db. If found then delete gene_occu_db. :param annoDB: :param cellDB: :return: ''' annoDB_size = len(annoDB) cellDB_size = len(cellDB) size = [] try: file = open(resource_path + os.path.sep + 'db_version', 'r') for line in file: size.append(int(line.split(':')[1])) #print 'check_database', int(line.split(':')[1]) file.close() if annoDB_size not in size or cellDB_size not in size: os.remove(resource_path + os.path.sep + 'gene_occu_db.csv') file = open(resource_path + os.path.sep + 'db_version', 'w') lines = ['annoDB:' + str(annoDB_size), '\ncellDB:' + str(cellDB_size)] file.writelines(lines) file.close() except: file = open(resource_path + os.path.sep + 'db_version', 'w') lines = ['annoDB:' + str(annoDB_size), '\ncellDB:' + str(cellDB_size)] file.writelines(lines) file.close() def check_old_analysed_genes(genenames, dataframe): ''' This function will check if the gene has already been analysed and retrieve its occurrence. :param genenames: :param resource_path: :return: ''' #dataframe = FilesFolders.read_previous_occurrence_table(resource_path) new_genelist = [] has_genes = [] if not dataframe is None: for gene in genenames: if gene not in dataframe.columns: new_genelist.append(gene) if gene in dataframe.columns: has_genes.append(gene) foundgenes_df = dataframe[has_genes] return new_genelist, foundgenes_df def occurrence_df(genenames, resource_path, subquery): ''' This function will prepare the occurrence df for genes. :param genenames: :param resource_path: :return: ''' annDB = FilesFolders.read_annotation_database(resource_path) cellDB = FilesFolders.celltype_DB(resource_path) check_database_update(annDB, cellDB, resource_path) print ('Checking for pre analysed genes....') dataframe, created = FilesFolders.read_previous_occurrence_table(resource_path) join = False if dataframe is not None: new_genenames, foundgenes_df = check_old_analysed_genes(genenames, dataframe) if len(new_genenames) > 0: join = True else: foundgenes_df = pd.DataFrame() new_genenames = genenames print ('Reading required DBs') occuDF = cellDB total_abstract = 0 abs_in_DB = 0 count = 0 + len(new_genenames) for gene in new_genenames: sys.stdout.write("\rGenes remain for analyse:%d" % count) sys.stdout.flush() #print gene GeneObj = Fetch_pmids.Genes(gene=gene, subquery=subquery, resource_path=resource_path) GeneObj.get_pmids() total_abstract += len(GeneObj.pmids) # calcuate total no of abstracts GeneObj.get_pmid_pos(annoDB=annDB) abs_in_DB += len(GeneObj.cellinpmid) occuDF = GeneObj.get_occurrence(cellDB=occuDF) count -= 1 joincellsynonym(occuDF, resource_path) if not created: occuDF.to_csv(resource_path + os.path.sep + 'gene_occu_db.csv', sep=',', ignore_index=True) if join: print("\nUpdating gene occurrence db....") update_dataframe = pd.concat([occuDF.drop(['celltype'], axis=1), dataframe], axis=1) update_dataframe.to_csv(resource_path + os.path.sep + 'gene_occu_db.csv', sep=',', ignore_index=True) occuDF = pd.concat([occuDF, foundgenes_df], axis=1) return occuDF def joincellsynonym(celloccu, resource_path): ''' Join multiple cell synonym to one. :param celloccu: :param cellSyn: :return: ''' cellSyn = FilesFolders.cell_synonym(resource_path) colname = celloccu.columns.values.tolist() indexRem = [] #print celloccu for k, v in cellSyn.iterrows(): index = celloccu.celltype[celloccu.celltype == v['cell'].lower()].index.tolist()[0] for cell in v['synonyms'].split(','): #print cell indexsyn = celloccu.celltype[celloccu.celltype == cell.lower()].index.tolist()[0] indexRem.append(indexsyn) ## adding synonym for col in colname: if col != 'celltype' and col != 'Unnamed: 0': celloccu.loc[index, col] = celloccu.loc[index, col] + celloccu.loc[indexsyn, col] celloccu = celloccu.drop(celloccu.index[indexRem]) #print celloccu return celloccu
class ConfigurationError(Exception): """Error raised when a class constructor has not been initialized correctly.""" pass class ExecutionProviderException(Exception): """ Base class for all exceptions Only to be invoked when only a more specific error is not available. """ pass class SchedulerMissingArgs(ExecutionProviderException): ''' Error raised when the template used to compose the submit script to the local resource manager is missing required arguments ''' def __init__(self, missing_keywords, sitename): self.missing_keywords = missing_keywords self.sitename = sitename def __repr__(self): return "SchedulerMissingArgs: Pool:{0} Arg:{1}".format(self.sitename, self.missing_keywords) class ScriptPathError(ExecutionProviderException): ''' Error raised when the template used to compose the submit script to the local resource manager is missing required arguments ''' def __init__(self, script_path, reason): self.script_path = script_path self.reason = reason def __repr__(self): return "Unable to write submit script:{0} Reason:{1}".format(self.script_path, self.reason) class BadLauncher(ExecutionProviderException): ''' Error raised when a non callable object is provider as Launcher ''' def __init__(self, launcher, reason): self.launcher = launcher self.reason = reason def __repr__(self): return "Bad Launcher provided:{0} Reason:{1}".format(self.launcher, self.reason) class OptionalModuleMissing(ExecutionProviderException): ''' Error raised a required module is missing for a optional/extra provider ''' def __init__(self, module_names, reason): self.module_names = module_names self.reason = reason def __repr__(self): return "Unable to Initialize provider.Missing:{0}, Reason:{1}".format( self.module_names, self.reason ) class ChannelRequired(ExecutionProviderException): ''' Execution provider requires a channel. ''' def __init__(self, provider, reason): self.provider = provider self.reason = reason def __repr__(self): return "Unable to Initialize provider.Provider:{0}, Reason:{1}".format( self.provider, self.reason ) class ScaleOutFailed(ExecutionProviderException): ''' Generic catch. Scale out failed in the submit phase on the provider side ''' def __init__(self, provider, reason): self.provider = provider self.reason = reason def __repr__(self): return "Unable to Initialize provider.Provider:{0}, Reason:{1}".format( self.provider, self.reason )
# -*- coding:utf-8 -*- """ Description: Contract Parameter Type in neo.Wallets Usage: from neo.SmartContract.ContractParameterType import ContractParameterType """ class ContractParameterType(object): Signature = 0x00 # 签名 Boolean = 0x01 Integer = 0x02 # 整数 Hash160 = 0x03 # 160位散列值 Hash256 = 0x04 # 256位散列值 ByteArray = 0x05 # 字节数组 PublicKey = 0x06 String = 0x07 Array = 0x10 Void = 0xff import inspect def ToName(param_type): items = inspect.getmembers(ContractParameterType) if type(param_type) is bytes: param_type = int.from_bytes(param_type, 'little') for item in items: name = item[0] val = int(item[1]) if val == param_type: return name return None
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 17 16:17:25 2017 @author: jorgemauricio Instrucciones 1. Elevar al cuadrado una lista dada por el usuario de 10 elementos, se debe de mostrar la lista original y la lista elevada al cuadrado. Ej. a = [1,2,3,4,5,6,7,8,9,10] R = [1,4,9,16,25,36,49,64,81,100] """ valores = [] print("Introduce un valor entero númerico \nSi deseas terminar con el proceso ingresa *no*") while True: valor = input("Introduce un valor: ") if valor == "no": break else: valor = int(valor) valores.append(valor) print("Valores originales: \n", valores) print("Valores al cuadrado: ") print([x**2 for x in valores])
import boto3 import os import json def lambda_handler(message, context): if ('body' not in message or message['httpMethod'] != 'PUT'): return { 'statusCode': 400, 'headers': {}, 'body': json.dumps({'msg': 'Bad Request'}) } table_name = os.environ.get('TABLE', 'Users') region = os.environ.get('REGION', 'us-east-1') aws_environment = os.environ.get('AWSENV', 'AWS') if aws_environment == 'AWS_SAM_LOCAL': users_table = boto3.resource( 'dynamodb', endpoint_url='http://dynamodb:8000' ) else: users_table = boto3.resource( 'dynamodb', region_name=region ) table = users_table.Table(table_name) user = json.loads(message['body']) params = { 'id': user['id'], 'date': user['date'] } response = table.update_item( Key=params, UpdateExpression="set stage = :s, description = :d", ExpressionAttributeValues={ ':s': user['stage'], ':d': user['description'] }, ReturnValues="UPDATED_NEW" ) print(response) return { 'statusCode': 200, 'headers': {}, 'body': json.dumps({'msg': 'User updated'}) }
from collections import defaultdict from helpers import get_input def main() -> int: bin_strings = [row.strip() for row in get_input(3)] N = len(bin_strings) bits = len(bin_strings[0]) sums = [sum(int(string[i]) for string in bin_strings)for i in range(bits)] gamma = int("".join(str(int(sum >= N/2)) for sum in sums), 2) epsilon = gamma ^ (2 ** bits - 1) return gamma * epsilon def main2() -> int: bin_strings = [row.strip() for row in get_input(3)] def rating(bin_strings, function): n = 0 while len(bin_strings) > 1: d = defaultdict(list) for string in bin_strings: d[string[n]].append(string) n += 1 bin_strings = function(d) return int(bin_strings[0], 2) oxygen_function = lambda d: max(d["1"], d["0"], key=lambda x: len(x)) oxygen = rating(bin_strings, oxygen_function) co2_function = lambda d: min(d["0"], d["1"], key=lambda x: len(x)) co2 = rating(bin_strings, co2_function) return oxygen * co2 if __name__ == "__main__": print(main()) print(main2())
# # ⚠ Warning # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT # LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # [🥭 Mango Markets](https://mango.markets/) support is available at: # [Docs](https://docs.mango.markets/) # [Discord](https://discord.gg/67jySBhxrg) # [Twitter](https://twitter.com/mangomarkets) # [Github](https://github.com/blockworks-foundation) # [Email](mailto:[email protected]) import datetime import json import logging import requests import time import typing from base64 import b64decode from decimal import Decimal from solana.blockhash import Blockhash, BlockhashCache from solana.keypair import Keypair from solana.publickey import PublicKey from solana.rpc.api import Client from solana.rpc.commitment import Commitment from solana.rpc.providers.http import HTTPProvider from solana.rpc.types import DataSliceOpts, MemcmpOpts, RPCMethod, RPCResponse, TokenAccountOpts, TxOpts from solana.transaction import Transaction from .constants import SOL_DECIMAL_DIVISOR from .instructionreporter import InstructionReporter from .logmessages import expand_log_messages # # 🥭 ClientException class # # A `ClientException` exception base class that allows trapping and handling rate limiting # independent of other error handling. # class ClientException(Exception): def __init__(self, message: str, name: str, cluster_url: str) -> None: super().__init__(message) self.message: str = message self.name: str = name self.cluster_url: str = cluster_url def __str__(self) -> str: return f"« {type(self)} '{self.message}' from '{self.name}' on {self.cluster_url} »" def __repr__(self) -> str: return f"{self}" # # 🥭 RateLimitException class # # A `RateLimitException` exception base class that allows trapping and handling rate limiting # independent of other error handling. # class RateLimitException(ClientException): pass # # 🥭 TooMuchBandwidthRateLimitException class # # A `TooMuchBandwidthRateLimitException` exception that specialises the `RateLimitException` # for when too much bandwidth has been consumed. # class TooMuchBandwidthRateLimitException(RateLimitException): pass # # 🥭 TooManyRequestsRateLimitException class # # A `TooManyRequestsRateLimitException` exception that specialises the `RateLimitException` # for when too many requests have been sent in a short time. # class TooManyRequestsRateLimitException(RateLimitException): pass # # 🥭 BlockhashNotFoundException class # # A `BlockhashNotFoundException` exception allows trapping and handling exceptions when a blockhash is sent that # the node doesn't understand. This can happen when the blockhash is too old (and the node no longer # considers it 'recent') or when it's too new (and hasn't yet made it to the node that is responding). # class BlockhashNotFoundException(ClientException): def __init__(self, name: str, cluster_url: str, blockhash: typing.Optional[Blockhash] = None) -> None: message: str = f"Blockhash '{blockhash}' not found on {cluster_url}." super().__init__(message, name, cluster_url) self.blockhash: typing.Optional[Blockhash] = blockhash def __str__(self) -> str: return f"« BlockhashNotFoundException '{self.name}' [{self.blockhash}] on {self.cluster_url} »" # # 🥭 NodeIsBehindException class # # A `NodeIsBehindException` exception allows trapping and handling exceptions when a node is behind by too # many slots. # class NodeIsBehindException(ClientException): def __init__(self, name: str, cluster_url: str, slots_behind: int) -> None: message: str = f"Node is behind by {slots_behind} slots." super().__init__(message, name, cluster_url) self.slots_behind: int = slots_behind def __str__(self) -> str: return f"« NodeIsBehindException '{self.name}' [behind by {self.slots_behind} slots] on {self.cluster_url} »" # # 🥭 FailedToFetchBlockhashException class # # A `FailedToFetchBlockhashException` exception allows trapping and handling exceptions when we fail # to fetch a recent or distinct blockhash. # class FailedToFetchBlockhashException(ClientException): def __init__(self, message: str, name: str, cluster_url: str, pauses: typing.Sequence[float]) -> None: super().__init__(message, name, cluster_url) self.pauses: typing.Sequence[float] = pauses def __str__(self) -> str: if len(self.pauses) == 0: return f"« FailedToFetchBlockhashException '{self.name}' Failed to get recent blockhash on {self.cluster_url} »" pauses_text = ",".join(f"{pause}" for pause in self.pauses[:-1]) return f"« FailedToFetchBlockhashException '{self.name}' Failed to get a fresh, recent blockhash after {len(self.pauses)} attempts - paused {pauses_text} seconds between attempts on {self.cluster_url} »" # # 🥭 TransactionException class # # A `TransactionException` exception that can provide additional error data, or at least better output # of problems at the right place. # class TransactionException(ClientException): def __init__(self, transaction: typing.Optional[Transaction], message: str, code: int, name: str, cluster_url: str, rpc_method: str, request_text: str, response_text: str, accounts: typing.Union[str, typing.List[str], None], errors: typing.Union[str, typing.List[str], None], logs: typing.Union[str, typing.List[str], None], instruction_reporter: InstructionReporter = InstructionReporter()) -> None: super().__init__(message, name, cluster_url) self.transaction: typing.Optional[Transaction] = transaction self.code: int = code self.rpc_method: str = rpc_method self.request_text: str = request_text self.response_text: str = response_text def _ensure_list(item: typing.Union[str, typing.List[str], None]) -> typing.List[str]: if item is None: return [] if isinstance(item, str): return [item] if isinstance(item, list): return item return [f"{item}"] self.accounts: typing.Sequence[str] = _ensure_list(accounts) self.errors: typing.Sequence[str] = _ensure_list(errors) self.logs: typing.Sequence[str] = expand_log_messages(_ensure_list(logs)) self.instruction_reporter: InstructionReporter = instruction_reporter def __str__(self) -> str: request_details: str = "" response_details: str = "" if logging.DEBUG >= logging.root.level: request_details = f""" Request: {self.request_text}""" response_details = f""" Response: {self.response_text}""" transaction_details = "" if self.transaction is not None: instruction_details = "\n".join(list(map(self.instruction_reporter.report, self.transaction.instructions))) transaction_details = "\n Instructions:\n " + instruction_details.replace("\n", "\n ") accounts = "No Accounts" if len(self.accounts) > 0: accounts = "\n ".join([f"{item}".replace("\n", "\n ") for item in self.accounts]) errors = "No Errors" if len(self.errors) > 0: errors = "\n ".join([f"{item}".replace("\n", "\n ") for item in self.errors]) logs = "No Logs" if len(self.logs) > 0: logs = "\n ".join([f"{item}".replace("\n", "\n ") for item in self.logs]) return f"""« 𝚃𝚛𝚊𝚗𝚜𝚊𝚌𝚝𝚒𝚘𝚗𝙴𝚡𝚌𝚎𝚙𝚝𝚒𝚘𝚗 in '{self.name}' [{self.rpc_method}]: {self.code}:: {self.message}{transaction_details} Accounts: {accounts} Errors: {errors} Logs: {logs}{request_details}{response_details} »""" def __repr__(self) -> str: return f"{self}" UnspecifiedCommitment = Commitment("unspecified") UnspecifiedEncoding = "unspecified" # # 🥭 ErrorHandlingProvider class # # A `ErrorHandlingProvider` extends the HTTPProvider with better error handling. # class ErrorHandlingProvider(HTTPProvider): def __init__(self, name: str, cluster_url: str, instruction_reporter: InstructionReporter): super().__init__(cluster_url) self.name: str = name self.cluster_url: str = cluster_url self.instruction_reporter: InstructionReporter = instruction_reporter def make_request(self, method: RPCMethod, *params: typing.Any) -> RPCResponse: # This is the entire method in HTTPProvider that we're overriding here: # # """Make an HTTP request to an http rpc endpoint.""" # request_kwargs = self._before_request(method=method, params=params, is_async=False) # raw_response = requests.post(**request_kwargs) # return self._after_request(raw_response=raw_response, method=method) request_kwargs = self._before_request(method=method, params=params, is_async=False) raw_response = requests.post(**request_kwargs) # Some custom exceptions specifically for rate-limiting. This allows calling code to handle this # specific case if they so choose. # # "You will see HTTP respose codes 429 for too many requests or 413 for too much bandwidth." if raw_response.status_code == 413: raise TooMuchBandwidthRateLimitException( f"Rate limited (too much bandwidth) calling method '{method}'.", self.name, self.cluster_url) elif raw_response.status_code == 429: raise TooManyRequestsRateLimitException( f"Rate limited (too many requests) calling method '{method}'.", self.name, self.cluster_url) # Not a rate-limit problem, but maybe there was some other error? raw_response.raise_for_status() # All seems OK, but maybe the server returned an error? If so, try to pass on as much # information as we can. response_text: str = raw_response.text response: typing.Dict[str, typing.Any] = json.loads(response_text) if "error" in response: if response["error"] is str: message: str = typing.cast(str, response["error"]) raise ClientException(f"Transaction failed: '{message}'", self.name, self.cluster_url) else: error = response["error"] error_message: str = error["message"] if "message" in error else "No message" error_data: typing.Dict[str, typing.Any] = error["data"] if "data" in error else {} error_accounts = error_data["accounts"] if "accounts" in error_data else "No accounts" error_code: int = error["code"] if "code" in error else -1 error_err = error_data["err"] if "err" in error_data else "No error text returned" error_logs = error_data["logs"] if "logs" in error_data else "No logs" parameters = json.dumps({"jsonrpc": "2.0", "method": method, "params": params}) transaction: typing.Optional[Transaction] = None blockhash: typing.Optional[Blockhash] = None if method == "sendTransaction": transaction = Transaction.deserialize(b64decode(params[0])) blockhash = transaction.recent_blockhash if error_code == -32005: slots_behind: int = error["data"]["numSlotsBehind"] if "numSlotsBehind" in error["data"] else -1 raise NodeIsBehindException(self.name, self.cluster_url, slots_behind) if error_err == "BlockhashNotFound": raise BlockhashNotFoundException(self.name, self.cluster_url, blockhash) exception_message: str = f"Transaction failed with: '{error_message}'" raise TransactionException(transaction, exception_message, error_code, self.name, self.cluster_url, method, parameters, response_text, error_accounts, error_err, error_logs, self.instruction_reporter) # The call succeeded. return typing.cast(RPCResponse, response) class BetterClient: def __init__(self, client: Client, name: str, cluster_name: str, cluster_url: str, commitment: Commitment, skip_preflight: bool, encoding: str, blockhash_cache_duration: int, instruction_reporter: InstructionReporter) -> None: self.logger: logging.Logger = logging.getLogger(self.__class__.__name__) self.compatible_client: Client = client self.name: str = name self.cluster_name: str = cluster_name self.cluster_url: str = cluster_url self.commitment: Commitment = commitment self.skip_preflight: bool = skip_preflight self.encoding: str = encoding self.blockhash_cache_duration: int = blockhash_cache_duration self.instruction_reporter: InstructionReporter = instruction_reporter # kangda said in Discord: https://discord.com/channels/791995070613159966/836239696467591186/847816026245693451 # "I think you are better off doing 4,8,16,20,30" self.retry_pauses: typing.Sequence[Decimal] = [Decimal(4), Decimal( 8), Decimal(16), Decimal(20), Decimal(30)] @staticmethod def from_configuration(name: str, cluster_name: str, cluster_url: str, commitment: Commitment, skip_preflight: bool, encoding: str, blockhash_cache_duration: int, instruction_reporter: InstructionReporter) -> "BetterClient": provider: HTTPProvider = ErrorHandlingProvider(name, cluster_url, instruction_reporter) blockhash_cache: typing.Union[BlockhashCache, bool] = False if blockhash_cache_duration > 0: blockhash_cache = BlockhashCache(blockhash_cache_duration) client: Client = Client(cluster_url, commitment=commitment, blockhash_cache=blockhash_cache) client._provider = provider return BetterClient(client, name, cluster_name, cluster_url, commitment, skip_preflight, encoding, blockhash_cache_duration, instruction_reporter) def get_balance(self, pubkey: typing.Union[PublicKey, str], commitment: Commitment = UnspecifiedCommitment) -> Decimal: resolved_commitment, _ = self.__resolve_defaults(commitment) response = self.compatible_client.get_balance(pubkey, resolved_commitment) value = Decimal(response["result"]["value"]) return value / SOL_DECIMAL_DIVISOR def get_account_info(self, pubkey: typing.Union[PublicKey, str], commitment: Commitment = UnspecifiedCommitment, encoding: str = UnspecifiedEncoding, data_slice: typing.Optional[DataSliceOpts] = None) -> typing.Any: resolved_commitment, resolved_encoding = self.__resolve_defaults(commitment, encoding) response = self.compatible_client.get_account_info(pubkey, resolved_commitment, resolved_encoding, data_slice) return response["result"] def get_confirmed_signatures_for_address2(self, account: typing.Union[str, Keypair, PublicKey], before: typing.Optional[str] = None, until: typing.Optional[str] = None, limit: typing.Optional[int] = None) -> typing.Sequence[str]: response = self.compatible_client.get_confirmed_signature_for_address2(account, before, until, limit) return [result["signature"] for result in response["result"]] def get_confirmed_transaction(self, signature: str, encoding: str = "json") -> typing.Any: _, resolved_encoding = self.__resolve_defaults(None, encoding) response = self.compatible_client.get_confirmed_transaction(signature, resolved_encoding) return response["result"] def get_minimum_balance_for_rent_exemption(self, size: int, commitment: Commitment = UnspecifiedCommitment) -> int: resolved_commitment, _ = self.__resolve_defaults(commitment) response = self.compatible_client.get_minimum_balance_for_rent_exemption(size, resolved_commitment) return int(response["result"]) def get_program_accounts(self, pubkey: typing.Union[str, PublicKey], commitment: Commitment = UnspecifiedCommitment, encoding: typing.Optional[str] = UnspecifiedEncoding, data_slice: typing.Optional[DataSliceOpts] = None, data_size: typing.Optional[int] = None, memcmp_opts: typing.Optional[typing.List[MemcmpOpts]] = None) -> typing.Any: resolved_commitment, resolved_encoding = self.__resolve_defaults(commitment, encoding) response = self.compatible_client.get_program_accounts( pubkey, resolved_commitment, resolved_encoding, data_slice, data_size, memcmp_opts) return response["result"] def get_recent_blockhash(self, commitment: Commitment = UnspecifiedCommitment) -> Blockhash: resolved_commitment, _ = self.__resolve_defaults(commitment) response = self.compatible_client.get_recent_blockhash(resolved_commitment) return Blockhash(response["result"]["value"]["blockhash"]) def get_token_account_balance(self, pubkey: typing.Union[str, PublicKey], commitment: Commitment = UnspecifiedCommitment) -> Decimal: resolved_commitment, _ = self.__resolve_defaults(commitment) response = self.compatible_client.get_token_account_balance(pubkey, resolved_commitment) value = Decimal(response["result"]["value"]["amount"]) decimal_places = response["result"]["value"]["decimals"] divisor = Decimal(10 ** decimal_places) return value / divisor def get_token_accounts_by_owner(self, owner: PublicKey, token_account_options: TokenAccountOpts, commitment: Commitment = UnspecifiedCommitment,) -> typing.Any: resolved_commitment, _ = self.__resolve_defaults(commitment) response = self.compatible_client.get_token_accounts_by_owner(owner, token_account_options, resolved_commitment) return response["result"]["value"] def get_multiple_accounts(self, pubkeys: typing.List[typing.Union[PublicKey, str]], commitment: Commitment = UnspecifiedCommitment, encoding: str = UnspecifiedEncoding, data_slice: typing.Optional[DataSliceOpts] = None) -> typing.Any: resolved_commitment, resolved_encoding = self.__resolve_defaults(commitment, encoding) response = self.compatible_client.get_multiple_accounts( pubkeys, resolved_commitment, resolved_encoding, data_slice) return response["result"]["value"] def send_transaction(self, transaction: Transaction, *signers: Keypair, opts: TxOpts = TxOpts(preflight_commitment=UnspecifiedCommitment)) -> str: proper_commitment: Commitment = opts.preflight_commitment if proper_commitment == UnspecifiedCommitment: proper_commitment = self.commitment proper_opts = TxOpts(preflight_commitment=proper_commitment, skip_confirmation=opts.skip_confirmation, skip_preflight=opts.skip_preflight) response = self.compatible_client.send_transaction(transaction, *signers, opts=proper_opts) return str(response["result"]) def wait_for_confirmation(self, transaction_ids: typing.Sequence[str], max_wait_in_seconds: int = 60) -> typing.Sequence[str]: self.logger.info(f"Waiting up to {max_wait_in_seconds} seconds for {transaction_ids}.") all_confirmed: typing.List[str] = [] start_time: datetime.datetime = datetime.datetime.now() cutoff: datetime.datetime = start_time + datetime.timedelta(seconds=max_wait_in_seconds) for transaction_id in transaction_ids: while datetime.datetime.now() < cutoff: time.sleep(1) confirmed = self.get_confirmed_transaction(transaction_id) if confirmed is not None: self.logger.info( f"Confirmed {transaction_id} after {datetime.datetime.now() - start_time} seconds.") all_confirmed += [transaction_id] break if len(all_confirmed) != len(transaction_ids): self.logger.info(f"Timed out after {max_wait_in_seconds} seconds waiting on transaction {transaction_id}.") return all_confirmed def __resolve_defaults(self, commitment: typing.Optional[Commitment], encoding: typing.Optional[str] = None) -> typing.Tuple[Commitment, str]: if commitment is None or commitment == UnspecifiedCommitment: commitment = self.commitment if encoding is None or encoding == UnspecifiedEncoding: encoding = self.encoding return commitment, encoding def __str__(self) -> str: return f"« 𝙱𝚎𝚝𝚝𝚎𝚛𝙲𝚕𝚒𝚎𝚗𝚝 [{self.cluster_name}]: {self.cluster_url} »" def __repr__(self) -> str: return f"{self}"
# coding=utf-8 from __future__ import unicode_literals import django from ..compat import patterns if django.VERSION < (1, 6): from django.conf.urls.defaults import url, include else: from django.conf.urls import url, include urlpatterns = patterns( url(r'viewlet/', include('viewlet.urls')) )
import logging import multiprocessing import time import rdkit from rdkit.Chem.QED import qed from sqlalchemy import create_engine # logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def construct_problem(): # We have to delay all importing of tensorflow until the child processes launch, # see https://github.com/tensorflow/tensorflow/issues/8220. We should be more careful about where / when we # import tensorflow, especially if there's a chance we'll use tf.serving to do the policy / reward evaluations on # the workers. Might require upstream changes to nfp as well. from rlmolecule.tree_search.reward import RankedRewardFactory from rlmolecule.molecule.molecule_config import MoleculeConfig from rlmolecule.molecule.molecule_problem import MoleculeTFAlphaZeroProblem from rlmolecule.molecule.molecule_state import MoleculeState class QEDOptimizationProblem(MoleculeTFAlphaZeroProblem): def __init__(self, engine: 'sqlalchemy.engine.Engine', config: 'MoleculeConfig', **kwargs) -> None: super(QEDOptimizationProblem, self).__init__(engine, config, **kwargs) self._config = config def get_initial_state(self) -> MoleculeState: return MoleculeState(rdkit.Chem.MolFromSmiles('C'), self._config) def get_reward(self, state: MoleculeState) -> (float, {}): if state.forced_terminal: return qed(state.molecule), {'forced_terminal': True, 'smiles': state.smiles} return 0.0, {'forced_terminal': False, 'smiles': state.smiles} config = MoleculeConfig(max_atoms=25, min_atoms=1, tryEmbedding=True, sa_score_threshold=4., stereoisomers=False) engine = create_engine(f'sqlite:///qed_data.db', connect_args={'check_same_thread': False}, execution_options = {"isolation_level": "AUTOCOMMIT"}) run_id = 'qed_example' reward_factory = RankedRewardFactory( engine=engine, run_id=run_id, reward_buffer_min_size=10, reward_buffer_max_size=50, ranked_reward_alpha=0.75 ) problem = QEDOptimizationProblem( engine, config, run_id=run_id, reward_class=reward_factory, features=8, num_heads=2, num_messages=1, min_buffer_size=15, policy_checkpoint_dir='policy_checkpoints' ) return problem def run_games(): from rlmolecule.alphazero.alphazero import AlphaZero game = AlphaZero(construct_problem()) while True: path, reward = game.run(num_mcts_samples=50) logger.info(f'Game Finished -- Reward {reward.raw_reward:.3f} -- Final state {path[-1][0]}') def train_model(): construct_problem().train_policy_model(steps_per_epoch=100, game_count_delay=20, verbose=2) def monitor(): from rlmolecule.sql.tables import RewardStore problem = construct_problem() while True: best_reward = problem.session.query(RewardStore) \ .filter_by(run_id=problem.run_id) \ .order_by(RewardStore.reward.desc()).first() num_games = len(list(problem.iter_recent_games())) if best_reward: print(f"Best Reward: {best_reward.reward:.3f} for molecule " f"{best_reward.data['smiles']} with {num_games} games played") time.sleep(5) if __name__ == "__main__": jobs = [multiprocessing.Process(target=monitor)] jobs[0].start() time.sleep(1) for i in range(5): jobs += [multiprocessing.Process(target=run_games)] jobs += [multiprocessing.Process(target=train_model)] for job in jobs[1:]: job.start() for job in jobs: job.join(300)
#!/usr/bin/env python # -*- coding: utf-8 -*- import os, sys import jreadability_feedback as jf import unittest import tempfile import json class AppTestCase(unittest.TestCase): def setUp(self): self.db_fd, jf.app.config['DATABASE'] = tempfile.mkstemp() jf.app.config['TESTING'] = True self.app = jf.app.test_client() jf.init_db() def tearDown(self): os.close(self.db_fd) os.unlink(jf.app.config['DATABASE']) def login(self, username, password): return self.app.post('/login', data=dict( username=username, password=password ), follow_redirects=True) def logout(self): return self.app.get('/logout', follow_redirects=True) def view(self): return self.app.get('/view', follow_redirects=True) def test_login(self): rv = self.app.get('/login') assert u'ユーザ名' in rv.data.decode('utf-8') def test_empty_db(self): rv = self.login('admin', 'default') rv = self.app.get('/view') assert u'ありません' in rv.data.decode('utf-8') def test_login_logout(self): rv = self.login('admin', 'default') assert u'ログイン' in rv.data.decode('utf-8') rv = self.logout() assert u'ログアウト' in rv.data.decode('utf-8') rv = self.login('adminx', 'default') assert u'無効です' in rv.data.decode('utf-8') rv = self.login('admin', 'defaultx') assert u'無効です' in rv.data.decode('utf-8') def test_messages(self): self.login('admin', 'default') rv = self.app.post('/post', data=json.dumps(dict( original_text=u'ものは試し', evaluation=5, grade=4, )), follow_redirects=True) assert rv.status_code == 204 rv = self.view() assert u'ありません' not in rv.data.decode('utf-8') assert u'ものは試し' in rv.data.decode('utf-8') if __name__ == '__main__': unittest.main()
#!/usr/bin/python3 import re, sys from Bio import SeqIO def read_gff(infile): f = open(infile, 'r') gff_dict = dict() trans_dict = dict() for line in f: line = line.strip() if line.startswith('#'): continue content = line.split() if content[2] == "transcript": gid = re.search(r'source_gene=(.*?);', content[8]).group(1) tid = re.search(r'transcript_id=(.*?);', content[8]).group(1) gff_dict[tid] = [content[0], content[3]] trans_dict[tid] = gid return gff_dict, trans_dict def run(fastafile, gff_file): gff_dict, trans_dict = read_gff(gff_file) f = open(fastafile, 'r') for record in SeqIO.parse(f, 'fasta'): seqid = record.id sequence = record.seq for index, base in enumerate(sequence): if base == ".": relative_start = index * 3 start_pos = int(gff_dict[seqid][1]) + relative_start - 1 print(gff_dict[seqid][0] + "\t" + str(start_pos) + "\t" + str(start_pos + 3) + "\t" + seqid + ":" + trans_dict[seqid]) f.close() if __name__ == "__main__": protein_file = sys.argv[1] gff_file = sys.argv[2] run(protein_file, gff_file)
#! /usr/bin/env python import os import tornado.ioloop import tornado.options from tornado.options import define, options import tornado.web from api.controller.BaseStaticFileHandler import BaseStaticFileHandler from api.controller.ServerListController import ServerListController from api.controller.InfoController import InfoController from api.controller.CommandsController import CommandsController from api.controller.InfoListController import InfoListController from api.controller.StatusController import StatusController from api.controller.SettingsController import SettingsController from api.controller.SlowlogController import SlowlogController from daemonized import daemonized class redis_live(daemonized): def run_daemon(self): define("port", default=8888, help="run on the given port", type=int) define("debug", default=0, help="debug mode", type=int) tornado.options.parse_command_line() print os.path.abspath('.') # Bootup handlers = [ (r"/api/servers", ServerListController), (r"/api/info", InfoController), (r"/api/status", StatusController), (r"/api/infolist",InfoListController), (r"/api/commands", CommandsController), (r"/api/settings",SettingsController), (r"/api/slowlog",SlowlogController), (r"/(.*)", BaseStaticFileHandler, {"path": os.path.abspath('.')+'/www'}) ] server_settings = {'debug': options.debug} application = tornado.web.Application(handlers, **server_settings) application.listen(options.port) tornado.ioloop.IOLoop.instance().start() if __name__ == "__main__": live= redis_live() live.start()
from dataclasses import dataclass from datetime import datetime from dash.dash import Dash from dash.dependencies import Input, Output from dash.development.base_component import Component from plotly.missing_ipywidgets import FigureWidget from dash.exceptions import PreventUpdate from components.transaction_store_block import TransactionStore from core.typings import BalanceType from .base_block import BaseComponent, BaseComponentConfig from dash import html, dcc import plotly.graph_objects as go import pandas as pd @dataclass class ForecastComponentInput(): store_name: str class ForecastComponent(BaseComponent): layout: Component def __init__(self, input: ForecastComponentInput, app: Dash = None, config: BaseComponentConfig = None) -> None: self.input = input super().__init__(app=app, config=config) def render(self): """Initializes the component layout""" return html.Div(children=[ dcc.Graph( id=self.prefix('graph') ) ]) def callbacks(self, app: Dash) -> None: @app.callback( Output(self.get_name(), 'figure'), Input(self.input.store_name, "data") ) def load_data(data) -> FigureWidget: if data is None: raise PreventUpdate trx_data = TransactionStore.load_data(data) balance_data = trx_data.get_balance_data() fig = go.Figure() def add_trace(data: pd.DataFrame, name: str, scheduled: bool = False): nonlocal fig fig.add_trace( go.Scatter(x=data["date"], y=data["balance"], name=name, line=go.scatter.Line( dash="dash" if scheduled is True else "solid" ))) add_trace(self.get_recorded_checkings(balance_data), "Checkings") add_trace(self.get_scheduled_checkings(balance_data), "Checkings (scheduled)", True) add_trace(self.get_recorded_liabilities(balance_data), "Liabilities") add_trace(self.get_scheduled_liabilities(balance_data), "Liabilities (scheduled)", True) fig.add_vline(datetime.now()) return fig def _get_scheduled(self, data: pd.DataFrame, scheduled_value: bool): """Filter data based on the scheduled value""" return data[data["scheduled"] == scheduled_value] def _get_type(self, data: pd.DataFrame, type: BalanceType): """Filter data based on the type value""" return data[data["type"] == type] def get_recorded_checkings(self, data: pd.DataFrame): """Filter data for only recorded checkings""" all_recorded = self._get_scheduled(data, False) return self._get_type(all_recorded, BalanceType.CHECKINGS) def get_scheduled_checkings(self, data: pd.DataFrame): """Filter data for only scheduled checkings""" all_scheduled = self._get_scheduled(data, True) return self._get_type(all_scheduled, BalanceType.CHECKINGS) def get_recorded_liabilities(self, data: pd.DataFrame): """Filter data for only recorded liabilities""" all_recorded = self._get_scheduled(data, False) return self._get_type(all_recorded, BalanceType.LIABILITIES) def get_scheduled_liabilities(self, data: pd.DataFrame): """Filter data for only scheduled liabilities""" all_scheduled = self._get_scheduled(data, True) return self._get_type(all_scheduled, BalanceType.LIABILITIES) def get_name(self): return self.prefix('graph')
#!/usr/bin/env python import os def mkdir_p(dir): '''make a directory (dir) if it doesn't exist''' if not os.path.exists(dir): os.mkdir(dir) job_directory = "%s/jobs" %os.getcwd() # Make top level directories mkdir_p(job_directory) script_path= "$HOME/projects/seasonal_forecasting/code/scripts/" fields = ["swvl1", "msl", "t2m"] regions = ["EU", "NA-EU", "EU"] preprocesses = ["anomalies", "anomalies", "anomalies"] lrs = [1e-2, 1e-9, 5e-5] n_min,n_max = 1, 5 for field, region, preprocess, lr in zip(fields, regions, preprocesses, lrs): for n in range(n_min,n_max+1): jn = field + '_' + region + '_' + preprocess + '_n' + str(n) job_file = os.path.join(job_directory,"%s.job" %jn) with open(job_file, 'w') as fh: fh.writelines("#!/bin/tcsh\n") fh.writelines("#SBATCH --job-name=%s.job\n" % jn) fh.writelines("#SBATCH --partition=pCluster") fh.writelines("#SBATCH --N=1") fh.writelines("#SBATCH --n=40") fh.writelines("#SBATCH --t=30\n") fh.writelines("#SBATCH --output=jobs/%s.out\n" % jn) fh.writelines("#SBATCH --error=jobs/%s.err\n" % jn) fh.writelines("#SBATCH --mail-type=END\n") fh.writelines("#SBATCH [email protected]\n") fh.writelines("#SBATCH --account=nonnenma\n") fh.writelines(f"python {script_path}script_pCluster_run_single.py {n} {field} {region} {preprocess} {lr}\n") os.system("sbatch %s" %job_file)
def fibonacci(num): fibs = [0,1] for i in range(num-2): fibs.append(fibs[-2]+fibs[-1]) print(fibs[num-1]) n = int(input()) for i in range(n): m = int(input()) fibonacci(m+1)
from __future__ import absolute_import, print_function, unicode_literals from validator.constants import BUGZILLA_BUG from ..regex.generic import FILE_REGEXPS from .jstypes import Global, Hook, Interfaces # SQL. SYNCHRONOUS_SQL_DESCRIPTION = ( 'The use of synchronous SQL via the storage system leads to severe ' 'responsiveness issues, and should be avoided at all costs. Please ' 'use asynchronous SQL via Sqlite.jsm (http://mzl.la/sqlite-jsm) or ' 'the `executeAsync` method, or otherwise switch to a simpler database ' 'such as JSON files or IndexedDB.') def check_dynamic_sql(this, args, callee): """Check for the use of non-static strings when creating/exeucting SQL statements.""" if len(args) >= 1 and not args[0].is_clean_literal: this.traverser.warning( err_id=('js', 'instanceactions', 'executeSimpleSQL_dynamic'), warning='SQL statements should be static strings', description=('Dynamic SQL statement should be constucted via ' 'static strings, in combination with dynamic ' 'parameter binding via Sqlite.jsm wrappers ' '(http://mzl.la/sqlite-jsm) or ' '`createAsyncStatement` ' '(https://developer.mozilla.org/en-US/docs' '/Storage#Binding_parameters)')) @Global.hook('**', 'extend') class MaybeDBConnection(Hook): def createStatement(this, args, callee): """Handle calls to `createStatement`, returning an object which emits warnings upon calls to `execute` and `executeStep` rather than `executeAsync`.""" check_dynamic_sql(this, args, callee) return this.traverser.wrap().query_interface( 'mozIStorageBaseStatement') @Hook.on_call def createAsyncStatement(this, args, callee): check_dynamic_sql(this, args, callee) @Hook.on_call def executeSimpleSQL(this, args, callee): """Handle calls to `executeSimpleSQL`, warning that asynchronous methods should be used instead. """ check_dynamic_sql(this, args, callee) return {'err_id': ('js', 'instanceactions', 'executeSimpleSQL'), 'warning': 'Synchronous SQL should not be used', 'description': SYNCHRONOUS_SQL_DESCRIPTION} @Interfaces.hook class mozIStorageBaseStatement(Hook): execute = {'on_call': SYNCHRONOUS_SQL_DESCRIPTION} executeStep = {'on_call': SYNCHRONOUS_SQL_DESCRIPTION} # XMLHttpRequest. @Interfaces.hook class nsIXMLHttpRequest(Hook): @Hook.on_call def open(this, args, callee): """Check that XMLHttpRequest.open is not called synchronously.""" if len(args) >= 3 and not args[2].as_bool(): return ('Synchronous HTTP requests can cause serious UI ' 'performance problems, especially for users with ' 'slow network connections.') @Global.hook('XMLHttpRequest', 'return') def XMLHttpRequest(this, args, callee): return this.traverser.wrap().query_interface('nsIXMLHttpRequest') # Other. Interfaces.hook(('nsIAccessibleRetrieval',), on_get=( 'Using the nsIAccessibleRetrieval interface causes significant ' 'performance degradation in Gecko. It should only be used in ' 'accessibility-related add-ons.')) Interfaces.hook(('nsIDNSService', 'resolve'), on_call={ 'warning': '`nsIDNSService.resolve()` should not be used.', 'description': 'The `nsIDNSService.resolve` method performs a ' 'synchronous DNS lookup, which will freeze the UI. This ' 'can result in severe performance issues. ' '`nsIDNSService.asyncResolve()` should be used instead.'}) Interfaces.hook(('nsISound', 'play'), on_call={ 'warning': '`nsISound.play` should not be used.', 'description': 'The `nsISound.play` function is synchronous, and thus ' 'freezes the interface while the sound is playing. It ' 'should be avoided in favor of the HTML5 audio APIs.'}) FILE_REGEXPS.extend([ # Use of deprecated DOM mutation events. (r'\b(?:on)?(?:%s)\b' % '|'.join(( 'DOMAttrModified', 'DOMAttributeNameChanged', 'DOMCharacterDataModified', 'DOMElementNameChanged', 'DOMNodeInserted', 'DOMNodeInsertedIntoDocument', 'DOMNodeRemoved', 'DOMNodeRemovedFromDocument', 'DOMSubtreeModified')), {'err_id': ('testcases_regex', 'file', 'mutation-events'), 'warning': 'DOM mutation events are deprecated', 'description': 'DOM mutation events officially deprecated, due ' 'to their severe performance impact, and should not ' 'be used. Please use MutationObserver ' 'objects, or other triggers which do not involve ' 'directly checking the DOM.'}), # Use of mouse events with potential performance impacts. (r'\b(?:on)?mouse(?:move|over|out)\b', {'err_id': ('testcases_regex', 'file', 'mouse-events'), 'warning': 'Mouse events may cause performance issues.', 'description': ( 'The use of `mousemove`, `mouseover`, and `mouseout` is ' 'discouraged. These events are dispatched with high frequency ' 'and can cause severe performance issues.')}), ]) # Prototype mutation. WARN_PROTOTYPE_MUTATION = { 'err_id': ('testcases_javascript', 'performance', 'prototype_mutation'), 'warning': 'Mutating the prototypes of existing objects is deprecated', 'description': ('Mutating the prototypes of objects using `__proto__` or ' '`Object.setPrototypeOf` causes severe performance ' 'degradation, and is deprecated. You should instead use ' '`Object.create` to create a new object with the given ' 'prototype.', 'See bug %s for more information.' % BUGZILLA_BUG % 948227), } Global.hook(('Object', 'setPrototypeOf'), on_call=WARN_PROTOTYPE_MUTATION) @Global.hook(('**', '__proto__'), 'on_set') def set__proto__(this, value): if this.set_by != 'object literal': # Warn only if this is an assignment. Ignore if it's a property # present in an object literal. return WARN_PROTOTYPE_MUTATION # Event loop. Global.hook(('**', 'processNextEvent'), on_call=( 'Spinning the event loop with processNextEvent is a common cause of ' 'deadlocks, crashes, and other errors due to unintended reentrancy. ' 'Please use asynchronous callbacks instead wherever possible'))
from helpers import read_data, get_settings, package_translation import api settings = get_settings() article_map = read_data('article_map') locales = ['de', 'es', 'fr', 'ja', 'pt-br'] for article in article_map: url = '{}/articles/{}/translations/missing.json'.format(settings['src_root'], article) missing_locales = api.get_resource_list(url, list_name='locales', paginate=False) for locale in locales: if locale in missing_locales: # if translation missing in src, nothing to move continue print('Moving {} translation for article {}'.format(locale, article)) # get translation in src hc url = '{}/articles/{}/translations/{}.json'.format(settings['src_root'], article, locale) translation = api.get_resource(url) # create translation in dest hc url = '{}/articles/{}/translations.json'.format(settings['dst_root'], article_map[article]) payload = package_translation(translation) api.post_resource(url, payload) print('\nFinished moving translations.\n')
from unittest.mock import Mock, call from pytest import fixture, mark from pyviews.binding import BindingContext from pyviews.binding.expression import ExpressionBinding, bind_setter_to_expression from pyviews.binding.tests.common import InnerViewModel, ParentViewModel from pyviews.expression import Expression, execute from pyviews.core import InheritedDict, XmlAttr @fixture def expression_binding_fixture(request): inner_vm = InnerViewModel(0, 'inner str') view_model = ParentViewModel(0, inner_vm) callback = Mock() request.cls.view_model = view_model request.cls.callback = callback @mark.usefixtures('expression_binding_fixture') class ExpressionBindingTests: """ExpressionBinding tests""" def _bind(self, expression: Expression, global_vars: InheritedDict) -> ExpressionBinding: binding = ExpressionBinding(self.callback, expression, global_vars) binding.bind() return binding @mark.parametrize('source, global_dict', [ ('vm', {'vm': InnerViewModel(0, '')}), ('vm.int_value', {'vm': InnerViewModel(2, '')}), ('vm.str_value', {'vm': InnerViewModel(2, 'asdf')}), ('(vm.int_value, parent.inner_vm.int_value)', { 'vm': InnerViewModel(2, 'asdf'), 'parent': ParentViewModel(0, InnerViewModel(0, '')) }), ]) def test_initialize_target(self, source: str, global_dict: dict): """Target should be updated with expression value on Binding.bind() call""" expression = Expression(source) self._bind(expression, InheritedDict(global_dict)) expected = execute(expression, global_dict) assert self.callback.call_args == call(expected) @mark.parametrize('source, global_dict, change', [ ('vm.int_value', {'vm': InnerViewModel(0, '')}, lambda gl: setattr(gl['vm'], 'int_value', 3)), ('vm.inner_vm.int_value', {'vm': ParentViewModel(0, InnerViewModel(0, ''))}, lambda gl: setattr(gl['vm'], 'inner_vm', InnerViewModel(5, 'updated'))), ('vm.inner_vm.str_value', {'vm': ParentViewModel(0, InnerViewModel(0, ''))}, lambda gl: setattr(gl['vm'].inner_vm, 'str_value', 'asdf') ), ('(vm.int_value, parent.inner_vm.int_value)', {'vm': InnerViewModel(0, ''), 'parent': ParentViewModel(0, InnerViewModel(0, ''))}, lambda gl: setattr(gl['parent'].inner_vm, 'int_value', 3) ), ('(vm.str_value, str(parent.inner_vm.int_value))', {'vm': InnerViewModel(0, ''), 'parent': ParentViewModel(0, InnerViewModel(0, ''))}, lambda gl: setattr(gl['parent'].inner_vm, 'int_value', 3) ), ('vms[0].int_value', {'vms': [InnerViewModel(0, '')]}, lambda gl: setattr(gl['vms'][0], 'int_value', 3) ), ('vms[ivm.int_value].int_value', { 'vms': [InnerViewModel(0, ''), InnerViewModel(1, '')], 'ivm': InnerViewModel(0, '') }, lambda gl: setattr(gl['vms'][0], 'int_value', 3) ), ('vms[ivm.int_value].int_value', { 'vms': [InnerViewModel(0, ''), InnerViewModel(1, '')], 'ivm': InnerViewModel(0, '') }, lambda gl: setattr(gl['ivm'], 'int_value', 1) ) ]) def test_expression_changed(self, source: str, global_dict: dict, change): """Target should be updated after expression result is changed""" expression = Expression(source) global_vars = InheritedDict(global_dict) self._bind(expression, global_vars) change(global_vars) expected = execute(expression, global_vars.to_dictionary()) assert self.callback.call_args_list[1:] == [call(expected)] @mark.parametrize('source, global_dict, change', [ ('vm.int_value', {'vm': InnerViewModel(0, '')}, lambda gl: setattr(gl['vm'], 'int_value', 3)), ('vm.inner_vm.int_value', {'vm': ParentViewModel(0, InnerViewModel(0, ''))}, lambda gl: setattr(gl['vm'], 'inner_vm', InnerViewModel(5, 'updated'))), ('vm.inner_vm.str_value', {'vm': ParentViewModel(0, InnerViewModel(0, ''))}, lambda gl: setattr(gl['vm'].inner_vm, 'str_value', 'asdf') ), ('(vm.int_value, parent.inner_vm.int_value)', {'vm': InnerViewModel(0, ''), 'parent': ParentViewModel(0, InnerViewModel(0, ''))}, lambda gl: setattr(gl['parent'].inner_vm, 'int_value', 3) ), ('(vm.str_value, str(parent.inner_vm.int_value))', {'vm': InnerViewModel(0, ''), 'parent': ParentViewModel(0, InnerViewModel(0, ''))}, lambda gl: setattr(gl['parent'].inner_vm, 'int_value', 3) ), ('vms[0].int_value', {'vms': [InnerViewModel(0, '')]}, lambda gl: setattr(gl['vms'][0], 'int_value', 3) ), ('vms[ivm.int_value].int_value', { 'vms': [InnerViewModel(0, ''), InnerViewModel(1, '')], 'ivm': InnerViewModel(0, '') }, lambda gl: setattr(gl['vms'][0], 'int_value', 3) ), ('vms[ivm.int_value].int_value', { 'vms': [InnerViewModel(0, ''), InnerViewModel(1, '')], 'ivm': InnerViewModel(0, '') }, lambda gl: setattr(gl['ivm'], 'int_value', 1) ) ]) def test_destroy(self, source: str, global_dict: dict, change): """Destroy should stop handling expression changes and update target""" expression = Expression(source) global_vars = InheritedDict(global_dict) binding = self._bind(expression, global_vars) self.callback.reset_mock() binding.destroy() change(global_vars) assert not self.callback.called @fixture def binding_context_fixture(request): setter, xml_attr = Mock(), XmlAttr('name') context = BindingContext({ 'setter': setter, 'xml_attr': xml_attr, 'expression_body': '1+1', 'node': Mock(node_globals=InheritedDict()) }) request.cls.context = context @mark.usefixtures('binding_context_fixture') class BindSetterToExpressionTests: def test_binds_setter_to_expression_changes(self): """should bind setter to expression changes""" self.context.node = Mock(node_globals=InheritedDict({'value': 1})) self.context.expression_body = 'value' bind_setter_to_expression(self.context) self.context.setter.reset_mock() self.context.node.node_globals['value'] = 2 assert self.context.setter.call_args == call(self.context.node, self.context.xml_attr.name, 2) def test_returns_binding(self): """should return expression binding""" actual = bind_setter_to_expression(self.context) assert isinstance(actual, ExpressionBinding)
from django.urls import path from .views import my_works, my_works_detail, my_post_detail app_name = 'my_works_blog' urlpatterns = [ path('', my_works, name='index'), path("<int:pk>/", my_works_detail, name='project_detail'), path("<int:pk>/<int:pk1>", my_post_detail, name='post_detail'), ]
#!/usr/bin/python -i import numpy as np from NuclearNormMinimization import NuclearNormMinimization from sklearn.metrics import mean_squared_error U = np.random.random((10,10)) S = np.zeros((10,10)) S[0,0] = 500 S[1,1] = 100 S[2,2] = 50 V = np.random.random((10,20)) matrix = np.matmul(U, np.matmul(S, V)) incomplete_matrix = matrix.copy() blah = np.random.random(incomplete_matrix.shape) hidden_entries = (blah >= 0.7) sampled_entries = np.logical_not(hidden_entries) incomplete_matrix[ hidden_entries ] = np.nan solver = NuclearNormMinimization() completed_matrix = solver.complete(incomplete_matrix) mse = mean_squared_error(matrix, completed_matrix) print('mean_squared_error = {0:.6f}'.format(mse))
""" TODO: *Choose which drink you want out of the top n *Exception when 0 mathces """ import sqlite3 def main(): ingredientList = []; matchDict = {}; print("""\nHello, I'm Cocky, and this is Cocky's Cocktail Shack. \nI'll help you make a cocktail."""); print("Please enter your ingredients and write \"done\" when finished \n") while True: ingredientString = input("> ") if ingredientString.lower() == "done": break else: ingredientList.append(ingredientString.lower()) makeTable() dbEntries = fetchTable() for entry in dbEntries: matchName, matchValue = getMatches(ingredientList, entry[0], entry[1]) matchDict[matchName] = matchValue bestDrink = max(matchDict, key=matchDict.get) bestDrinkIngredients = getBestDrink(bestDrink) bestDrinkInstructions = getBestInstructions(bestDrink) haveList, haveNotList = getMatchingIngredients(ingredientList, bestDrinkIngredients) haveString = ", ".join(haveList) haveNotString = ", ".join(haveNotList) print("\n") print("Your most suitable cocktail is: ", bestDrink) print("The ingredients you have are: ", haveString, "\r") print("The ingredients you need to get are: ", haveNotString, "\r") print("\n") print("Instructions: ", bestDrinkInstructions) conn.close() def makeTable(): c.execute("""CREATE TABLE IF NOT EXISTS cocktails (names text, ingredients text, instructions text)""") conn.commit() def fetchTable(): entriesList = [] c.execute("SELECT * FROM cocktails") for entry in c.fetchall(): entryName, entryIngredients, entryInstructions = entry entryIngredients = entryIngredients.split(", ") entriesList.append([entryName, entryIngredients, entryInstructions]) return entriesList def getMatches(userIngredients, cocktailName, cocktailIngredients): matchDict = {}; for item in userIngredients: if item in cocktailIngredients: if not cocktailName in matchDict: matchDict[cocktailName] = 1 else: matchDict[cocktailName] += 1 elif not cocktailName in matchDict: matchDict[cocktailName] = 0 return(cocktailName, matchDict[cocktailName]) def getBestDrink(bestDrink): c.execute("SELECT ingredients FROM cocktails WHERE names = (?)", [bestDrink]) ingredientList = c.fetchone()[0].split(", ") return(ingredientList) def getMatchingIngredients(userIngredients, bestIngredients): haveList = [] haveNotList = [] for item in bestIngredients: if item in userIngredients: haveList.append(item) else: haveNotList.append(item) return(haveList, haveNotList) def getBestInstructions(bestDrink): c.execute("SELECT instructions FROM cocktails WHERE names = (?)", [bestDrink]) instruction = c.fetchone()[0] return(instruction) conn = sqlite3.connect("cocktails2.db") c = conn.cursor() main()
""" Factories for features and geometries """ from typing import Mapping, Union import keytree.compat from keytree.model import GEOM_TYPES, NSMAP, Feature, Geometry def feature(element, kmlns: Union[str, Mapping] = NSMAP) -> Feature: kid = element.attrib.get("id") name = element.findtext("kml:name", namespaces=kmlns) or element.findtext( "kml:Name", namespaces=kmlns ) snippet = element.findtext("kml:Snippet", namespaces=kmlns) description = element.findtext( "kml:description", namespaces=kmlns ) or element.findtext("kml:Description", namespaces=kmlns) for geom_type in GEOM_TYPES: geom_element = element.find(geom_type, namespaces=kmlns) if geom_element is not None: g = geometry(geom_element, kmlns=kmlns) return Feature(kid, g, name=name, snippet=snippet, description=description) return Feature(kid, None, name=name, snippet=snippet, description=description) def geometry(element, kmlns: Mapping = NSMAP) -> Geometry: tp = element.tag.split("}") if kmlns is None: kmlns = {"": tp[0][1:]} geom_type = tp[1] # geom_type = element.tag return geometry_factory[geom_type](element, kmlns) def geometry_Point(element, kmlns: Mapping = NSMAP): t = element.findtext("kml:coordinates", namespaces=kmlns) tv = t.split(",") return Geometry("Point", tuple([float(v) for v in tv])) def geometry_LineString(element, kmlns: Mapping = NSMAP): text = element.findtext("kml:coordinates", namespaces=kmlns) ts = text.split() coords = [] for t in ts: tv = t.split(",") coords.append(tuple([float(v) for v in tv])) return Geometry("LineString", tuple(coords)) def geometry_Track(element, kmlns: Mapping = NSMAP): sourcecoords = element.findall("gx:coord", namespaces=kmlns) coords = [] for coord in sourcecoords: tv = coord.text.split() coords.append(tuple([float(v) for v in tv])) return Geometry("LineString", tuple(coords)) def geometry_MultiTrack(element, kmlns: Mapping = NSMAP): geometries = [] for i in [el for el in element if el.tag.split("}")[1] == "Track"]: geometries.append(geometry(i, kmlns=kmlns)) return Geometry("MultiLineString", geometries) def geometry_Polygon(element, kmlns: Mapping = NSMAP): shell = element.find("kml:outerBoundaryIs", namespaces=kmlns) text = shell.findtext("*/kml:coordinates", namespaces=kmlns) ts = text.split() shell_coords = [] for t in ts: tv = t.split(",") shell_coords.append(tuple([float(v) for v in tv])) poly_coords = [] poly_coords.append(tuple(shell_coords)) holes = element.findall("kml:innerBoundaryIs", namespaces=kmlns) for hole in holes: text = hole.findtext("*/kml:coordinates", namespaces=kmlns) ts = text.split() hole_coords = [] for t in ts: tv = t.split(",") hole_coords.append(tuple([float(v) for v in tv])) poly_coords.append(tuple(hole_coords)) return Geometry("Polygon", tuple(poly_coords)) def geometry_Multi(element, kmlns: Mapping = NSMAP): geometries = [] geometry_type = multi_geometry[ [ el.tag.split("}")[1] for el in element if el.tag.split("}")[1] in multi_geometry.keys() ][0] ] for i in element: geometries.append(geometry(i, kmlns=kmlns).coordinates) return Geometry(geometry_type, geometries) geometry_factory = { "Point": geometry_Point, "LineString": geometry_LineString, "Track": geometry_Track, "MultiTrack": geometry_MultiTrack, "Polygon": geometry_Polygon, "MultiGeometry": geometry_Multi, } multi_geometry = { "Point": "MultiPoint", "LineString": "MultiLineString", "Polygon": "MultiPolygon", }
# Copyright © 2020, Oracle and/or its affiliates. All rights reserved. # In this example, we specify and estimate a Bayes Factor for the 4-5th rule import torch from relax import * from relax.interface import BayesFactor import relax.estimators.importance.KDE_tips as Stan from data import data2 as data # Step 0: pre-process the data candidates_qualified = filter(lambda candidate: candidate['qualified'] == 'y',data) candidates_unqualified = filter(lambda candidate: candidate['qualified'] == 'n',data) female_candidates_qualified = filter(lambda candidate: candidate['gender'] == 'female',candidates_qualified) male_candidates_qualified = filter(lambda candidate: candidate['gender'] == 'male',candidates_qualified) female_accepted_qualified = filter(lambda candidate: candidate['decision'] == 'accept',female_candidates_qualified) male_accepted_qualified = filter(lambda candidate: candidate['decision'] == 'accept',male_candidates_qualified) female_candidates_unqualified = filter(lambda candidate: candidate['gender'] == 'female',candidates_unqualified) male_candidates_unqualified = filter(lambda candidate: candidate['gender'] == 'male',candidates_unqualified) female_accepted_unqualified = filter(lambda candidate: candidate['decision'] == 'accept',female_candidates_unqualified) male_accepted_unqualified = filter(lambda candidate: candidate['decision'] == 'accept',male_candidates_unqualified) nfcq = len(list(female_candidates_qualified)) nmcq = len(list(male_candidates_qualified)) nfaq = len(list(female_accepted_qualified)) nmaq = len(list(male_accepted_qualified)) nfcu = len(list(female_candidates_unqualified)) nmcu = len(list(male_candidates_unqualified)) nfau = len(list(female_accepted_unqualified)) nmau = len(list(male_accepted_unqualified)) # Step 1: specify the models def majority(path, const): def model(): theta = sample('theta' + path, Beta(const['alpha' + path],const['beta' + path])) X = sample('X' + path, Binomial(const['N' + path],theta)) return [theta,X] return model def demographic_parity(path,const): pro_tip = ('STAN_NUTS', ['theta' + path, 'phi' + path], ['X' + path, 'Y' + path]) def model(): [theta,X] = majority(path,const)() phi = sample('phi' + path, Uniform(0.8 * theta,1.0)) Y = sample('Y' + path, Binomial(const['M' + path],phi)) pro_tip return model def demographic_parity_dual(path,const): pro_tip = ('STAN_NUTS', ['theta' + path, 'phi' + path], ['X' + path, 'Y' + path]) def model(): [theta,X] = majority(path,const)() phi = sample('phi' + path, Uniform(0.0,0.8 * theta)) Y = sample('Y' + path, Binomial(const['M' + path],phi)) pro_tip return model def equality_odds_template(f,path,const): pro_tip = ('Block', [path + 'qualified', path + 'unqualified']) def model(): for j in ['qualified','unqualified']: f(path + j,const)() pro_tip return model # Step 2: create the Bayes Factor constants = {'N_qualified': nmcq, 'M_qualified': nfcq, 'N_unqualified': nmcu, 'M_unqualified': nfcu, 'alpha_qualified': 1.0, 'beta_qualified': 1.0, 'alpha_unqualified': 1.0, 'beta_unqualified': 1.0 } data = {'X_qualified': torch.tensor([float(nmaq)]), 'Y_qualified': torch.tensor([float(nfaq)]), 'X_unqualified': torch.tensor([float(nmau)]), 'Y_unqualified': torch.tensor([float(nfau)]) } data_stan = {'X_qualified': nmaq, 'Y_qualified': nfaq, 'X_unqualified': nmau, 'Y_unqualified': nfau } null_model = equality_odds_template(demographic_parity,'_',constants) alternative_model = equality_odds_template(demographic_parity_dual,'_',constants) test_equality_odds = BayesFactor(null_model,alternative_model,data) # Step 3: estimator = Stan.Experiment(100,test_equality_odds,constants,data_stan) estimation = estimator.estimate(100000,test_equality_odds) print('Estimate of dual Bayes Factor: ', estimation)
class UrlManager(object): def __init__(self): pass def get_main_seed_url(self): return 'https://www.meitulu.com/'
"""Library integration with Random123.""" from __future__ import division, absolute_import __copyright__ = "Copyright (C) 2016 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from pytools import ImmutableRecord from mako.template import Template import numpy as np # {{{ rng metadata class RNGInfo(ImmutableRecord): @property def full_name(self): return "%s%dx%d" % (self.name, self.width, self.bits) _philox_base_info = RNGInfo( name="philox", pyopencl_header="pyopencl-random123/philox.cl", generic_header="Random123/philox.h", key_width=2) _threefry_base_info = RNGInfo( name="threefry", pyopencl_header="pyopencl-random123/threefry.cl", generic_header="Random123/threefry.h", key_width=4) RNG_VARIANTS = [ _philox_base_info.copy(width=2, bits=32), _philox_base_info.copy(width=2, bits=64), _philox_base_info.copy(width=4, bits=32), _philox_base_info.copy(width=4, bits=64), _threefry_base_info.copy(width=2, bits=32), _threefry_base_info.copy(width=2, bits=64), _threefry_base_info.copy(width=4, bits=32), _threefry_base_info.copy(width=4, bits=64), ] FUNC_NAMES_TO_RNG = dict( (v.full_name + suffix, v) for v in RNG_VARIANTS for suffix in [ "", "_f32", "_f64", ]) # }}} # {{{ preamble PREAMBLE_TEMPLATE = Template(""" %if is_pyopencl_target: #include <${ rng_variant.pyopencl_header }> %else: #include <${ rng_variant.generic_header }> %endif <% name = rng_variant.full_name width = rng_variant.width if rng_variant.bits == 32: counter_type = "uint%d" % width key_type = "uint%d" % rng_variant.key_width elif rng_variant.bits == 64: counter_type = "ulong%d" % width key_type = "ulong%d" % rng_variant.key_width else: assert False %> typedef union { ${ counter_type } v; ${ name }_ctr_t c; } ${ name }_ctr_vec_union; ${ counter_type } ${ name }_bump(${ counter_type } ctr) { if (++ctr.x == 0) if (++ctr.y == 0) ++ctr.z; return ctr; } ${ counter_type } ${ name }_gen( ${ counter_type } ctr, ${ key_type } key, ${ counter_type } *new_ctr) { ${ name }_ctr_vec_union result; result.c = ${ name }( *(${ name }_ctr_t *) &ctr, *(${ name }_key_t *) &key); *new_ctr = ${ name }_bump(ctr); return result.v; } float${ width } ${ name }_f32( ${ counter_type } ctr, ${ key_type } key, ${ counter_type } *new_ctr) { *new_ctr = ctr; return convert_float${ width }(${ name }_gen(*new_ctr, key, new_ctr)) * ${ repr(1./2**32) }f; } double${ width } ${ name }_f64( ${ counter_type } ctr, ${ key_type } key, ${ counter_type } *new_ctr) { *new_ctr = ctr; %if rng_variant.bits == 32: return convert_double${ width }(${ name }_gen(*new_ctr, key, new_ctr)) * ${ repr(1./2**32) } + convert_double${ width }(${ name }_gen(*new_ctr, key, new_ctr)) * ${ repr(1./2**64) }; %elif rng_variant.bits == 64: *new_ctr = ctr; return convert_double${ width }(${ name }_gen(*new_ctr, key, new_ctr)) * ${ repr(1./2**64) }; %else: #error Unrecognized bit width in RNG %endif } """, strict_undefined=True) # }}} def random123_preamble_generator(preamble_info): for f in preamble_info.seen_functions: try: rng_variant = FUNC_NAMES_TO_RNG[f.name] except KeyError: continue from loopy.target.pyopencl import PyOpenCLTarget yield ("90-random123-"+rng_variant.full_name, PREAMBLE_TEMPLATE.render( is_pyopencl_target=isinstance( preamble_info.kernel.target, PyOpenCLTarget), rng_variant=rng_variant, )) def random123_function_mangler(kernel, name, arg_dtypes): try: rng_variant = FUNC_NAMES_TO_RNG[name] except KeyError: return None from loopy.types import NumpyType target = kernel.target base_dtype = {32: np.uint32, 64: np.uint64}[rng_variant.bits] ctr_dtype = target.vector_dtype(NumpyType(base_dtype), rng_variant.width) key_dtype = target.vector_dtype(NumpyType(base_dtype), rng_variant.key_width) from loopy.kernel.data import CallMangleInfo fn = rng_variant.full_name if name == fn: return CallMangleInfo( target_name=fn+"_gen", result_dtypes=(ctr_dtype, ctr_dtype), arg_dtypes=(ctr_dtype, key_dtype)) elif name == fn + "_f32": return CallMangleInfo( target_name=name, result_dtypes=( target.vector_dtype(NumpyType(np.float32), rng_variant.width), ctr_dtype), arg_dtypes=(ctr_dtype, key_dtype)) elif name == fn + "_f64": return CallMangleInfo( target_name=name, result_dtypes=( target.vector_dtype(NumpyType(np.float64), rng_variant.width), ctr_dtype), arg_dtypes=(ctr_dtype, key_dtype)) else: return None # vim: foldmethod=marker
import os import pytest import renderapi import json import mock import numpy as np from test_data import ( RAW_STACK_INPUT_JSON, render_params, montage_z, solver_montage_parameters, test_pointmatch_parameters as pointmatch_example, test_pointmatch_parameters_qsub as pointmatch_example_qsub) from asap.solver.solve import Solve_stack from asap.pointmatch.create_tilepairs import TilePairClientModule from asap.pointmatch.generate_point_matches_spark import ( PointMatchClientModuleSpark) from asap.pointmatch.generate_point_matches_qsub import ( PointMatchClientModuleQsub) @pytest.fixture(scope='module') def render(): render_params['project'] = solver_montage_parameters[ 'input_stack']['project'] render = renderapi.connect(**render_params) return render @pytest.fixture(scope='module') def tspecs_from_json(): tilespecs = [renderapi.tilespec.TileSpec(json=d) for d in RAW_STACK_INPUT_JSON] return tilespecs # raw stack with lens correction and intensity correction done @pytest.fixture(scope='module') def raw_stack(render, tspecs_from_json): test_raw_stack = 'input_raw_stack' renderapi.stack.create_stack( test_raw_stack, render=render) renderapi.client.import_tilespecs( test_raw_stack, tspecs_from_json, render=render) renderapi.stack.set_stack_state( test_raw_stack, 'COMPLETE', render=render) yield test_raw_stack renderapi.stack.delete_stack( test_raw_stack, render=render) @pytest.fixture(scope='module') def test_create_montage_tile_pairs(render, raw_stack, tmpdir_factory): output_directory = str(tmpdir_factory.mktemp('Montage')) params = { "render": render_params, "zNeighborDistance": 0, "xyNeighborFactor": 0.9, "excludeCornerNeighbors": "true", "excludeSameLayerNeighbors": "false", "excludeCompletelyObscuredTiles": "true", "minZ": montage_z, "maxZ": montage_z, "output_dir": output_directory, "stack": raw_stack, "output_json": "out.json" } mod = TilePairClientModule(input_data=params, args=[]) mod.run() # check if the file has been created with open(params['output_json'], 'r') as fp: out_d = json.load(fp) tilepair_file = out_d['tile_pair_file'] assert(os.path.exists(tilepair_file) and os.path.getsize(tilepair_file) > 0) with open(tilepair_file, 'r') as f: js = json.load(f) npairs = js['neighborPairs'] assert(len(npairs) == 4) yield tilepair_file def test_create_montage_tile_pairs_no_z(render, raw_stack, tmpdir): output_directory = str(tmpdir.join('Montage')) params = { "render": render_params, "zNeighborDistance": 0, "xyNeighborFactor": 0.9, "excludeCornerNeighbors": "true", "excludeSameLayerNeighbors": "false", "excludeCompletelyObscuredTiles": "true", "output_dir": output_directory, "stack": raw_stack, "output_json": "out.json" } mod = TilePairClientModule(input_data=params, args=[]) mod.run() # check if the file has been created with open(params['output_json'], 'r') as fp: out_d = json.load(fp) tilepair_file = out_d['tile_pair_file'] assert(os.path.exists(tilepair_file) and os.path.getsize(tilepair_file) > 0) with open(tilepair_file, 'r') as f: js = json.load(f) npairs = js['neighborPairs'] assert(len(npairs) == 4) @pytest.fixture(scope='module') def test_point_match_generation( render, test_create_montage_tile_pairs, tmpdir_factory): output_directory = str(tmpdir_factory.mktemp('output_json')) pointmatch_example['output_json'] = os.path.join( output_directory, 'output.json') pointmatch_example['pairJson'] = test_create_montage_tile_pairs mod = PointMatchClientModuleSpark(input_data=pointmatch_example, args=[]) mod.run() with open(pointmatch_example['output_json'], 'r') as fp: output_d = json.load(fp) assert (output_d['pairCount'] > 0) yield pointmatch_example['collection'] class MockSubprocessException(Exception): pass def mock_suprocess_qsub_call(cmd): print(cmd) raise MockSubprocessException('fake subprocess call') @mock.patch('subprocess.check_call', side_effect=mock_suprocess_qsub_call) def test_point_match_generation_qsub( render, test_create_montage_tile_pairs, tmpdir_factory): output_directory = str(tmpdir_factory.mktemp('output_json')) pointmatch_example_qsub['output_json'] = os.path.join( output_directory, 'output.json') pointmatch_example_qsub['pairJson'] = test_create_montage_tile_pairs mod = PointMatchClientModuleQsub( input_data=pointmatch_example_qsub, args=[]) with pytest.raises(MockSubprocessException): mod.run() def test_montage_solver( render, raw_stack, test_point_match_generation, tmpdir_factory): output_directory = str(tmpdir_factory.mktemp('output_json')) parameters = dict(solver_montage_parameters) parameters['input_stack']['name'] = raw_stack parameters['pointmatch']['name'] = test_point_match_generation parameters['pointmatch']['db_interface'] = 'render' parameters['input_stack']['db_interface'] = 'render' parameters['output_json'] = os.path.join( output_directory, "montage_solve.json") # affine half size parameters['transformation'] = "AffineModel" parameters['fullsize_transform'] = False mod = Solve_stack(input_data=parameters, args=[]) mod.run() precision = 1e-7 assert np.all(np.array(mod.module.results['precision']) < precision) assert np.all(np.array(mod.module.results['error'])) < 200 with open(parameters['output_json'], 'r') as f: output_d = json.load(f) assert parameters['output_stack']['name'][0] == output_d['stack']
import VIKOR as vikor import numpy as np from normalisation_fuc import omri_normalisation # Step 2*: change SR fucntion to adapt rim version def SR_omri(D, w, AB): nD = omri_normalisation(D, AB) S = np.zeros(nD.shape[0]) R = np.zeros(nD.shape[0]) for i in range(nD.shape[0]): for j in range(nD.shape[1]): nD[i,j] = nD[i,j] * w[j] S[i] = sum(nD[i,:]) R[i] = max(nD[i,:]) return S, R # VIKOR OMRI version def vikor_omri(D, w, AB): s, r = SR_omri(D, w, AB) q = vikor.Q(s, r, len(w)) return s, r, q
import functools import re import pathlib import timeit from typing import Union, List, Generator, Type from net_models.validators import normalize_interface_name from net_models.models.interfaces.InterfaceModels import InterfaceModel from net_models.models import VRFModel from net_models.models.services.ServerModels import * from net_models.inventory import HostConfig, ConfigDefaults from net_parser.utils import re_search_lines, re_filter_lines, compile_regex, property_autoparse from net_parser.config import ( BaseConfigParser, BaseConfigLine, IosConfigLine, IosConfigParser, IosInterfaceParser, IosAaaParser, IosVrfDefinitionParser, IosLineParser, IosLoggingLine, IosBannerLine ) class IosConfigParser(BaseConfigParser): INTERFACE_LINE_CLASS = IosInterfaceParser CONFIG_LINE_CLS = IosConfigLine _interface_pattern = r"[A-z]{2,}(?:[A-z\-])?\d+(?:\/\d+)?(?:\:\d+)?(?:\.\d+)?" _ip_address_pattern = r"(?:\d{1,3}\.){3}\d{1,3}" _host_pattern = r"[A-z0-9\-\_\.]+" _source_interface_regex = re.compile(pattern=r"source (?P<src_interface>{0})".format(_interface_pattern)) _source_vrf_regex = re.compile(pattern=r"vrf (?P<vrf>\S+)") _hostname_regex = re.compile(pattern=r"^hostname (?P<hostname>\S+)\Z") _ip_arp_proxy_disable_regex = re.compile(pattern=r"^(?:(?P<no>no) )?ip arp proxy disable$", flags=re.MULTILINE) _service_password_encryption_regex = re.compile(pattern=r"^(?:(?P<no>no) )?service password-encryption$", flags=re.MULTILINE) _banner_regex = re.compile(pattern=r"^banner (?P<banner_type>\S+)") _service_pad_regex = re.compile(pattern=r"^(?:(?P<no>no) )?service pad$", flags=re.MULTILINE) _ip_finger_regex = re.compile(pattern=r"^(?:(?P<no>no) )?ip finger(?: (?P<rfc_compliant>rfc-compliant))?$", flags=re.MULTILINE) _ip_source_route_regex = re.compile(pattern=r"^(?:(?P<no>no) )?ip source-route$", flags=re.MULTILINE) _ntp_server_base_regex = re.compile(pattern=r"^ntp server(?: vrf \S+)? (?P<server>{0}|{1})".format(_ip_address_pattern, _host_pattern), flags=re.MULTILINE) _ntp_peer_base_regex = re.compile(pattern=r"^ntp peer(?: vrf \S+)? (?P<server>{0}|{1})".format(_ip_address_pattern, _host_pattern), flags=re.MULTILINE) _ntp_authentication_keys_regex = re.compile(pattern=r"^ntp authentication-key (?P<key_id>\d+) (?P<method>\S+) (?P<value>\S+)(?: (?P<encryption_type>\d+))?", flags=re.MULTILINE) _ntp_trusted_key_regex = re.compile(pattern=r"^ntp trusted-key (?P<key_id>\d+)", flags=re.MULTILINE) _ntp_acl_regex = re.compile(pattern=r"^ntp access-group (?P<access_type>\S+) (?P<acl_name>\S+)", flags=re.MULTILINE) _ntp_src_interface_regex = re.compile(pattern=r"^ntp source (?P<src_interface>{})".format(_interface_pattern), flags=re.MULTILINE) _logging_source_interface_regex = re.compile(pattern=r"^logging source-interface (?P<src_interface>{0})(?: vrf (?P<vrf>\S+))?".format(_interface_pattern)) _logging_server_base_regex = re.compile(pattern=r"^logging host (?P<server>{0}|{1})".format(_ip_address_pattern, _host_pattern)) _logging_transport_regex = re.compile(pattern=r"transport (?P<protocol>udp|tcp) port (?P<port>\d+)") def __init__(self, config: Union[pathlib.Path, List[str], str], verbosity: int =4, name: str = "BaseConfigParser", defaults: Type[ConfigDefaults] = None, **kwargs): super().__init__(config=config, verbosity=verbosity, name="IosConfigParser", **kwargs) self.DEFAULTS = defaults or ConfigDefaults() @functools.cached_property def hostname(self): candidates = self.re_search_lines(regex=self._hostname_regex, group="hostname") return self.first_candidate_or_none(candidates=candidates) @property def interface_lines(self) -> Generator[IosInterfaceParser, None, None]: return (x for x in self.lines if 'interface' in x.get_type) @property def interfaces(self) -> Generator[InterfaceModel, None, None]: return (x.to_model() for x in self.interface_lines) @functools.cached_property def aaa_lines(self): return (x for x in self.lines if isinstance(x, IosAaaParser)) @functools.cached_property def management_lines(self): return (x.to_model() for x in self.lines if isinstance(x, IosLineParser)) @functools.cached_property def logging_lines(self): return (x for x in self.lines if isinstance(x, IosLoggingLine)) def get_interface_line(self, interface_name: str) -> Union[IosInterfaceParser, None]: interface_name = normalize_interface_name(interface_name=interface_name, short=False) candidates = [x for x in self.interface_lines if x.name == interface_name] return self.first_candidate_or_none(candidates=candidates) @property def vrf_definition_lines(self) -> Generator[IosVrfDefinitionParser, None, None]: return (x for x in self.lines if isinstance(x, IosVrfDefinitionParser)) @property def vrfs(self) -> Generator[VRFModel, None, None]: return (x.model for x in self.vrf_definition_lines) @functools.cached_property def ntp(self) -> NtpConfig: ntp = NtpConfig() ntp_lines = self.re_search_lines(regex=self.compile_regex(pattern=r"^ntp .*", flags=re.MULTILINE)) if not len(ntp_lines): return None # Source Interface ntp_src_interface = self.first_candidate_or_none(candidates=re_search_lines(lines=ntp_lines, regex=self._ntp_src_interface_regex, group="src_interface")) if ntp_src_interface is not None: ntp.src_interface = ntp_src_interface # Servers Section candidate_pattern = self._ntp_server_base_regex regexes = [ self._source_interface_regex, self._source_vrf_regex, re.compile("key (?P<key_id>\d+)"), re.compile("(?P<prefer>prefer)") ] ntp_servers = property_autoparse(lines=ntp_lines, candidate_pattern=candidate_pattern, regexes=regexes, logger=self.logger, include_candidate=True) if len(ntp_servers): ntp_servers = [self._val_to_bool(entry=x, keys=['prefer']) for x in ntp_servers] ntp_servers = [NtpServer.parse_obj(x) for x in ntp_servers] if len(ntp_servers): ntp.servers = ntp_servers # Peers candidate_pattern = self._ntp_peer_base_regex regexes = [ self._source_interface_regex, self._source_vrf_regex, re.compile("key (?P<key_id>\d+)"), re.compile("(?P<prefer>prefer)") ] ntp_peers = property_autoparse(lines=ntp_lines, candidate_pattern=candidate_pattern, regexes=regexes, logger=self.logger, include_candidate=True) if len(ntp_peers): ntp_peers = [self._val_to_bool(entry=x, keys=['prefer']) for x in ntp_peers] ntp_peers = [NtpServer.parse_obj(x) for x in ntp_peers] if len(ntp_peers): ntp.peers = ntp_peers authenticate = self._globals_check( regex=re.compile( pattern=r"^(?:(?P<no>no) )?ntp authenticate$", flags=re.MULTILINE ), default=False ) ntp.authenticate = authenticate # Keys ntp_auth_keys, ntp_lines = re_filter_lines(lines=ntp_lines, regex=self._ntp_authentication_keys_regex, group='ALL') if len(ntp_auth_keys): ntp_auth_keys = [NtpKey.parse_obj(x) for x in ntp_auth_keys] ntp_trusted_keys = [int(x) for x in re_search_lines(lines=ntp_lines, regex=self._ntp_trusted_key_regex, group='key_id')] for ntp_key in ntp_auth_keys: if ntp_key.key_id in ntp_trusted_keys: ntp_key.trusted = True if len(ntp_auth_keys): ntp.ntp_keys = ntp_auth_keys # Access Lists acl_lines, ntp_lines = re_filter_lines(lines=ntp_lines, regex=self._ntp_acl_regex, group="ALL") if len(acl_lines): ntp.access_groups = NtpAccessGroups() for entry in acl_lines: if entry['access_type'] == 'serve-only': ntp.access_groups.serve_only = entry['acl_name'] if entry['access_type'] == 'query-only': ntp.access_groups.query_only = entry['acl_name'] if entry['access_type'] == 'serve': ntp.access_groups.serve = entry['acl_name'] if entry['access_type'] == 'peer': ntp.access_groups.peer = entry['acl_name'] return ntp @functools.cached_property def logging(self) -> LoggingConfig: logging_lines = list(self.logging_lines) if len(logging_lines) == 0: return None logging = LoggingConfig() candidate_pattern = self._logging_server_base_regex regexes = [ self._source_vrf_regex, self._source_interface_regex, self._logging_transport_regex ] logging_servers = property_autoparse(lines=logging_lines, candidate_pattern=self._logging_server_base_regex, regexes=regexes, logger=self.logger, include_candidate=True) logging_servers = [{k:v for k,v in x.items() if v is not None} for x in logging_servers] logging_servers = [LoggingServer.parse_obj(x) for x in logging_servers] if len(logging_servers): logging.servers = logging_servers logging_sources = re_search_lines(lines=logging_lines, regex=self._logging_source_interface_regex, group='ALL') logging_sources = [LoggingSource.parse_obj(x) for x in logging_sources] if len(logging_sources): logging.sources = logging_sources return logging @property def routing(self): raise NotImplementedError @functools.cached_property def proxy_arp_enabled(self) -> bool: candidates = self.re_search_lines(regex=self._ip_arp_proxy_disable_regex, group='ALL') candidate = self.first_candidate_or_none(candidates=candidates) if candidate is not None: candidate = self._val_to_bool(entry=candidate, keys=['no']) if candidate['no'] is True: # no ip arp proxy disable return True elif candidate['no'] is False: # ip arp proxy disable return False else: # Enabled by default return True def _globals_check(self, regex: re.Pattern, default: bool) -> bool: """ This function looks for given `regex`, if found and prefixed with 'no', returns False. If not prefixed with no, returns True. Returns 'default' otherwise. Args: regex: re.Pattern with 'no' groups specified default: bool - which value to return if regex did not match Returns: """ candidates = self.re_search_lines(regex=regex, group='ALL') candidate = self.first_candidate_or_none(candidates=candidates) if candidate is not None: candidate = self._val_to_bool(entry=candidate, keys=['no']) if candidate['no'] is True: # Negated return False elif candidate['no'] is False: return True else: return default @functools.cached_property def password_encryption_enabled(self) -> bool: return self._globals_check(regex=self._service_password_encryption_regex, default=False) @functools.cached_property def banner(self): banners = {} candidates = self.re_search_lines(regex=self._banner_regex) stop_chars = ['^C', chr(3)] for candidate in candidates: banner_type = candidate.re_search(regex=self._banner_regex, group='banner_type') banner_text = None # Determine the stopchar stop_char_occurences = {candidate.text.count(x):x for x in stop_chars} stop_char = stop_char_occurences[max(stop_char_occurences.keys())] if max(stop_char_occurences.keys()) == 2: # SingleLine banner_text = [x for x in candidate.text.split(stop_char) if x != ''][-1] else: # Multiline banner_text = [] # First line first_part_candidates = [x for x in candidate.text.split(stop_char) if x != ''][1:] if len(first_part_candidates): banner_text.append(first_part_candidates[0]) for line in self.lines[candidate.number+1:]: if stop_char in line.text: last_part_candidate = [x for x in line.text.split(stop_char) if x != ''][:1] if len(last_part_candidate): banner_text.append(last_part_candidate[0]) break else: banner_text.append(line.text) if isinstance(banner_text, list): banner_text = '\n'.join(banner_text) banners[banner_type] = banner_text return banners @functools.cached_property def ip_source_routing_enabled(self): return self._globals_check(regex=self._ip_source_route_regex, default=True) @functools.cached_property def ip_finger_enabled(self): return self._globals_check(regex=self._ip_finger_regex, default=True) @functools.cached_property def service_pad_enabled(self) -> bool: """ Packet Assembler Disassembler service Returns: bool """ return self._globals_check(regex=self._service_pad_regex, default=True) @functools.cached_property def service_tcp_keepalives_in(self): self._globals_check(regex=self._service_tcp_keepalives_in, default=False) @functools.cached_property def service_tcp_keepalives_in(self): self._globals_check(regex=self._service_tcp_keepalives_in, default=False) def to_model(self): model = HostConfig(interfaces={x.name: x for x in self.interfaces}) if self.hostname is not None: model.hostname = self.hostname vrfs = list(self.vrfs) if len(vrfs): model.vrf_definitions = vrfs management_lines = list(self.management_lines) if len(management_lines): model.management_lines = management_lines if self.ntp is not None: model.ntp = self.ntp if self.logging is not None: model.logging = self.logging return model
import ConfigParser, os, uuid, subprocess cur_dir = os.path.dirname(__file__) couchdb_ini_file_path = os.path.join(cur_dir, 'etc/couchdb.ini') if os.path.isfile(couchdb_ini_file_path): config = ConfigParser.ConfigParser() config.read([couchdb_ini_file_path]) config.set('couchdb', 'uuid', uuid.uuid4().hex) with open(couchdb_ini_file_path, 'wb') as configfile: config.write(configfile) subprocess.check_call([os.path.join(cur_dir, 'bin/circusd'), "--daemon"])
from cli.src.helpers.build_io import (get_inventory_path_for_build, load_inventory, load_manifest, save_inventory) from cli.src.helpers.data_loader import load_schema_obj from cli.src.helpers.data_loader import types as data_types from cli.src.helpers.doc_list_helpers import select_single from cli.src.helpers.objdict_helpers import merge_objdict from cli.src.models.AnsibleHostModel import AnsibleHostModel from cli.src.models.AnsibleInventoryItem import AnsibleInventoryItem from cli.src.Step import Step class AnsibleInventoryUpgrade(Step): def __init__(self, build_dir, backup_build_dir, config_docs): super().__init__(__name__) self.build_dir = build_dir self.backup_build_dir = backup_build_dir self.cluster_model = None self.config_docs = config_docs self.manifest_docs = [] def __enter__(self): super().__enter__() return self def __exit__(self, exc_type, exc_value, traceback): pass def get_role(self, inventory, role_name): for role in inventory: if role.role == role_name: return role return None def delete_role(self, inventory, role_name): for i in range(len(inventory)): if inventory[i].role == role_name: del inventory[i] return def rename_role(self, inventory, role_name, new_role_name): role = self.get_role(inventory, role_name) if role is not None: role.role = new_role_name def get_new_config_roles(self): roles = [] for doc in self.config_docs: if "configuration/" in doc.kind: roles.append(doc.kind.replace('configuration/', '')) return roles def upgrade(self): inventory_path = get_inventory_path_for_build(self.backup_build_dir) self.logger.info(f'Loading backup Ansible inventory: {inventory_path}') loaded_inventory = load_inventory(inventory_path) # move loaded inventory to templating structure new_inventory = [] for key in loaded_inventory.groups: if key != 'all' and key != 'ungrouped': group_hosts = loaded_inventory.groups[key].hosts new_hosts = [] for host in group_hosts: new_hosts.append(AnsibleHostModel(host.address, host.vars['ansible_host'])) new_inventory.append(AnsibleInventoryItem(key, new_hosts)) self.logger.info('Upgrading Ansible inventory') # load cluster model from manifest self.manifest_docs = load_manifest(self.backup_build_dir) self.cluster_model = select_single(self.manifest_docs, lambda x: x.kind == 'epiphany-cluster') # Merge manifest cluster config with newer defaults default_cluster_model = load_schema_obj(data_types.DEFAULT, self.cluster_model.provider, 'epiphany-cluster') merge_objdict(default_cluster_model, self.cluster_model) self.cluster_model = default_cluster_model # repository & image_registry roles added in v0.4.0 repository = self.get_role(new_inventory, 'repository') if repository is None: raise Exception('repository group not found in inventory. ' 'Your deployment may not be supported by this version of Epiphany. ' 'You may try to use older version first.') # add image_registry if not present image_registry = self.get_role(new_inventory, 'image_registry') if image_registry is None: hosts = [AnsibleHostModel(repository.hosts[0].name, repository.hosts[0].ip)] new_inventory.append(AnsibleInventoryItem('image_registry', hosts)) # save new inventory save_inventory(new_inventory, self.cluster_model, self.build_dir) return 0
from flask import current_app from src.shared.entity import Session from src.shared.manage_error import ManageErrorUtils, CodeError, TError from .entities import InputOutput, InputOutputSchema class InputOutputDBService: @staticmethod def check_input_output_exists(input_output_id): session = None try: session = Session() existing_input_output = session.query(InputOutput).filter_by(id_es=input_output_id).first() if existing_input_output is None: msg = "L'entrée sortie n'existe pas" ManageErrorUtils.exception(CodeError.DB_VALIDATION_ERROR, TError.DATA_NOT_FOUND, msg, 404) except Exception as error: current_app.logger.error(f"InputOutputDBService - check_input_output_exists : {error}") raise except ValueError as error: current_app.logger.error(f"InputOutputDBService - check_input_output_exists : {error}") raise finally: if session is not None: session.close() @staticmethod def check_input_output_uniqueness(annee_recette, annee_affectation, input_output_id=None): session = None try: session = Session() existing_input_output = session.query(InputOutput).filter(InputOutput.annee_recette_es == annee_recette, InputOutput.annee_affectation_es == annee_affectation) if input_output_id is not None: existing_input_output = existing_input_output.filter(InputOutput.id_es != input_output_id) existing_input_output = existing_input_output.first() if existing_input_output is not None: msg = f'L\'entrée sortie ({annee_recette} , {annee_affectation}) existe déjà.' ManageErrorUtils.exception(CodeError.DB_VALIDATION_ERROR, TError.UNIQUE_CONSTRAINT_ERROR, msg, 400) except Exception as error: current_app.logger.error(f"InputOutputDBService - check_input_output_uniqueness : {error}") raise except ValueError as error: current_app.logger.error(f"InputOutputDBService - check_input_output_uniqueness : {error}") raise finally: if session is not None: session.close() @staticmethod def get_input_output_by_id(input_output_id: int): session = None try: session = Session() input_output_object = session.query(InputOutput).filter_by(id_es=input_output_id).first() schema = InputOutputSchema() input_output = schema.dump(input_output_object) if input_output is None: ManageErrorUtils.value_error(CodeError.DB_VALIDATION_WARNING, TError.DATA_NOT_FOUND, 'Cette entrée sortie n\'existe pas', 404) return input_output except Exception as error: current_app.logger.error(f"InputOutputDBService - get_input_output_by_id : {error}") raise except ValueError as error: current_app.logger.error(f"InputOutputDBService - get_input_output_by_id : {error}") raise finally: if session is not None: session.close() @staticmethod def get_input_output_by_filter(query_param=None): session = None try: session = Session() input_outputs = session.query(InputOutput) if query_param is not None: annee_recette_es = query_param.get('annee_recette_es', default=None, type=int) if annee_recette_es is not None: input_outputs = input_outputs.filter(InputOutput.annee_recette_es == annee_recette_es) annee_recette_es_sup = query_param.get('annee_recette_es_sup', default=None, type=int) if annee_recette_es_sup is not None: input_outputs = input_outputs.filter(InputOutput.annee_recette_es >= annee_recette_es_sup) annee_recette_es_inf = query_param.get('annee_recette_es_inf', default=None, type=int) if annee_recette_es_inf is not None: input_outputs = input_outputs.filter(InputOutput.annee_recette_es <= annee_recette_es_inf) annee_affectation_es = query_param.get('annee_affectation_es', default=None, type=int) if annee_affectation_es is not None: input_outputs = input_outputs.filter(InputOutput.annee_affectation_es == annee_affectation_es) annee_affectation_es_sup = query_param.get('annee_affectation_es_sup', default=None, type=int) if annee_affectation_es_sup is not None: input_outputs = input_outputs.filter(InputOutput.annee_affectation_es >= annee_affectation_es_sup) annee_affectation_es_inf = query_param.get('annee_affectation_es_inf', default=None, type=int) if annee_affectation_es_inf is not None: input_outputs = input_outputs.filter(InputOutput.annee_affectation_es <= annee_affectation_es_inf) montant_es = query_param.get('montant_es', default=None, type=float) if montant_es is not None: input_outputs = input_outputs.filter(InputOutput.montant_es == montant_es) montant_es_sup = query_param.get('montant_es_sup', default=None, type=float) if montant_es_sup is not None: input_outputs = input_outputs.filter(InputOutput.montant_es >= montant_es_sup) montant_es_inf = query_param.get('montant_es_inf', default=None, type=float) if montant_es_inf is not None: input_outputs = input_outputs.filter(InputOutput.montant_es <= montant_es_inf) input_outputs = input_outputs.all() input_outputs = InputOutputSchema(many=True).dump(input_outputs) if input_outputs is None: ManageErrorUtils.value_error(CodeError.DB_VALIDATION_WARNING, TError.DATA_NOT_FOUND, 'Cette-es entrée-s sortie-s n\'existe-nt pas', 404) return input_outputs except Exception as error: current_app.logger.error(f"InputOutputDBService - get_input_output_by_filter : {error}") raise except ValueError as error: current_app.logger.error(f"InputOutputDBService - get_input_output_by_filter : {error}") raise finally: if session is not None: session.close() @staticmethod def insert(input_output: InputOutput): session = None inserted_input_output = None try: session = Session() session.add(input_output) if input_output is None: msg = "Une erreur est survenue lors de l'enregistrement de cette entrée sortie" ManageErrorUtils.value_error(CodeError.DB_VALIDATION_WARNING, TError.INSERT_ERROR, msg, 500) else: session.commit() inserted_input_output = InputOutputSchema().dump(input_output) return inserted_input_output except Exception as error: session.rollback() current_app.logger.error(f"InputOutputDBService - insert : {error}") raise except ValueError as error: session.rollback() current_app.logger.error(f"InputOutputDBService - insert : {error}") raise finally: if session is not None: session.close() @staticmethod def update(input_output: InputOutput): session = None try: session = Session() session.merge(input_output) session.commit() updated_input_output = InputOutputSchema().dump(input_output) return updated_input_output except Exception as error: session.rollback() current_app.logger.error(f"InputOutputDBService - update : {error}") raise except ValueError as error: session.rollback() current_app.logger.error(f"InputOutputDBService - update : {error}") raise finally: if session is not None: session.close() @staticmethod def delete(input_output_id: int) -> int: session = None try: session = Session() session.query(InputOutput).filter_by(id_es=input_output_id).delete() session.commit() return input_output_id except Exception as error: session.rollback() current_app.logger.error(f"InputOutputDBService - delete : {error}") raise except ValueError as error: session.rollback() current_app.logger.error(f"InputOutputDBService - delete : {error}") raise finally: if session is not None: session.close()
import pandas as pd from IPython.display import display dt1 = { 'aa': ['j', 'b', 'e', 'g', 'i', 'c'], "ab": [4, 2, 5, 6, 1, 7], } dt2 = { 'aa': ['b', 'e', 'i', 'j', 'c', 'g'], "ac": [4, 9, 5, 8, 3, 4], } df1 = pd.DataFrame(dt1) # df1 = df1.set_index('aa') display(df1) df2 = pd.DataFrame(dt2) # df2 = df2.set_index('aa') display(df2) # df3 = pd.concat([df1, df2], axis=1, sort=False) # df3.reset_index(inplace=True) # df3 = df3.rename(columns = {'index':'aa'}) # display(df3) df3 = df1.merge(df2, how='left') df3 = df3.reindex(sorted(df3.columns), axis=1) df3 = df3[['ac', 'aa', 'ab']] display(df3)
""" A python program to plot a grade histogram Usage: python plot_grade_hist.py [filename] [colname] [maxy] ([nscorecols]) Required inputs: filename - text file containing either two columns (name total) or three columns (name, score_multiple-choice, score_short-answer) colname - the name of the column containing the score of interest. NOTE: for the old-school text files, this will be 'col2' _unless_ the old-school file also is in 3-column format, in which case this parameter is ignored and the optional nscorecols parameter should be set to 2. If the input file is in CSV format, the colname parameter could be something like 'Midterm 2 (32620)' or 'MT2' or 'Final Grade' maxy - maximum value for y axis Optional input: nscorecols - number of score columns (1 for 2-column input, 2 for 3-column input). ONLY set this if the input file is in the old-school text format AND it is in 3-column format (i.e., with nscorecols=2). If it is in the old-school text format but is in the 2-column input, then DO NOT set this keyword, but just set the colname variable above to 'col2' """ import numpy as n from matplotlib import pyplot as p import sys import gradefuncs as gf if len(sys.argv) < 4: print('') print('ERROR: This program requires at least 3 input parameters:') print(' 1. infile - name of the input file containing scores') print(' 2. colname - name of column containing the relevant score if the') print(' input file is in csv format produced by smartsite or canvas or') print(' if it is in old-school text format with one total-score column') print(' In the second case (text format with one column of scores) the') print(' colname parameter should be set to "col2"') print(' 3. maxy - maximum y value for plot') print('It may also take an optional fourth parameter, which should ONLY BE') print(' USED if the file is BOTH in the old-school text format and has') print(' two columns with scores (one for multiple-choice and one for short') print(' answer), in which case, this parameter should be used and set to 2.') print('') print('Format: python plot_grade_hist.py infile colname maxy') print(' --- or ---') print('Format: python plot_grade_hist.py infile colname maxy 2') print('') sys.exit() if len(sys.argv) == 5: old_3col = True else: old_3col = False infile = sys.argv[1] colname = sys.argv[2] maxy = float(sys.argv[3]) if old_3col: tot = gf.read_text(infile,2) else: tot = gf.read_table(infile, colname) if tot is None: print('Could not plot histogram') print('') sys.exit() binsize = 3 gf.plot_tothist(infile,tot,maxy,binsize)
from flask import jsonify def badrequest(message): response = jsonify({'status': 'BAD_REQUEST', 'error_message': message}) response.status_code = 400 return response
import csv datosStudents = sc.textFile("/home/leo/Files/studentsPR.csv") students=datosStudents.map(lambda x: [x]).map(lambda x : list(csv.reader(x))[0]) final=students.filter(lambda x: x[5] == 'F').filter(lambda x: x[2] == '71381') final.foreach(print)
# Generated by Django 2.2.12 on 2020-04-30 05:56 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('home', '0001_initial'), ] operations = [ migrations.AddField( model_name='event', name='partner', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='home.Partner'), ), ]
def get_warnings(connection): warnings = connection.show_warnings() if warnings: print('warnings:', warnings) def get_script_from_file(filename): f = open(filename, 'r') script = f.read() f.close() return script def get_report(mysql, script): conn = mysql.connect() get_warnings(conn) cursor = conn.cursor() cursor.execute(script) results = cursor.fetchall() cursor.close() conn.close() # print('report results:', results) return results
# from modules import ilmodule import requests import re import time from time import mktime from datetime import datetime import json import globals # # Try to determine the actual date of the picture. By metadata, filename, etc, # Assuming all the EXIF data was already extracted previously. # Place this step of processing - one of the latest (i.e. after EXIF, GPS, etc.) # class DateOfPicture(ilmodule.ILModule): def __init__(self): super().__init__() self.getMessageBus().subscribe(self.onMessage, globals.TOPIC_DATE) def onMessage(self, arg): self.getLogger().debug("Received topic date request: " + str(arg)) metadata = self.findDateOfImage(arg) # metadata["text_en"] = "" # metadata["text_ru"] = "" # Json pretty print self.getLogger().info(json.dumps(metadata, indent=4)) self.saveJsonToFile( json.dumps(metadata, indent=4), "json_" + arg["hash"] + ".json", ) self.getMessageBus().sendMessage(globals.TOPIC_SAVEDB, arg=metadata) def loadJsonFromFile(self, filename): with open(filename, "r") as f: return json.load(f) def stringIsDateTime(self, str): try: time.strptime(str, "%Y:%m:%d %H:%M:%S") return True except ValueError: return False def stringIsDate(self, str): try: time.strptime(str, "%Y:%m:%d") return True except ValueError: return False def stringIsTime(self, str): try: time.strptime(str, "%H:%M:%S") return True except ValueError: return False def findDateOfImage(self, image_data): # Getting the path to the image file. try: date_time = "" # if DateTimeOriginal is not available, use DateTime if "DateTimeOriginal" in image_data["EXIF"] and self.stringIsDateTime( str(image_data["EXIF"]["DateTimeOriginal"]).replace(": ", ":") ): date_time = str(image_data["EXIF"]["DateTimeOriginal"]).replace( ": ", ":" ) else: if "DateTime" in image_data["EXIF"] and self.stringIsDateTime( str(image_data["EXIF"]["DateTime"]).replace(": ", ":") ): date_time = str(image_data["EXIF"]["DateTime"]).replace(": ", ":") if date_time != "": image_data["dateOfImage"] = date_time return image_data gps_time = "" if "GPSTimeStamp" in image_data["gps"] and self.stringIsTime( str(image_data["gps"]["GPSTimeStamp"]).replace(": ", ":") ): gps_time = str(image_data["gps"]["GPSTimeStamp"]).replace(": ", ":") else: gps_time = "00:00:01" gps_date = "" if "GPSDateStamp" in image_data["gps"] and self.stringIsDate( str(image_data["gps"]["GPSDateStamp"]).replace(": ", ":") ): gps_date = str(image_data["gps"]["GPSDateStamp"]).replace(": ", ":") else: gps_date = "" # If there's no DATE - we're not interested in TIME. if gps_date != "": gps_date_parsed = datetime.fromtimestamp( mktime(time.strptime(gps_date, "%Y:%m:%d")) ).date() gps_time_parsed = datetime.strptime(gps_time, "%H:%M:%S").time() gps_date_parsed = datetime.combine(gps_date_parsed, gps_time_parsed) image_data["dateOfImage"] = gps_date_parsed.strftime( "%Y:%m:%d %H:%M:%S" ) return image_data # If no date can be found in image_data, let's inspect the filename itself (the last hope) fileName = image_data["image_path"] fullDateRegExp = re.search( "((19|20)\d\d)([\-\._/]*)(0[1-9]|1[012])([\-\._/]*)(0[1-9]|[12][0-9]|3[01])([\-\._/\s]*)(0[0-9]|1[1-9]|2[1-3])([\-\._/\s]*)(0[0-9]|[1-5][1-9])([\-\._/\s]*)(0[0-9]|[1-5][1-9])", fileName, ) if fullDateRegExp: d = datetime( int(fullDateRegExp.group(1)), int(fullDateRegExp.group(4)), int(fullDateRegExp.group(6)), int(fullDateRegExp.group(8)), int(fullDateRegExp.group(10)), int(fullDateRegExp.group(12)), ) image_data["dateOfImage"] = d.strftime("%Y:%m:%d %H:%M:%S") return image_data dateOnlyRegExp = re.search( "((19|20)\d\d)([\-\._/]*)(0[1-9]|1[012])([\-\._/]*)(0[1-9]|[12][0-9]|3[01])", fileName, ) if dateOnlyRegExp: d = datetime( int(dateOnlyRegExp.group(1)), int(dateOnlyRegExp.group(4)), int(dateOnlyRegExp.group(6)), 0, 0, 1, ) image_data["dateOfImage"] = d.strftime("%Y:%m:%d %H:%M:%S") return image_data else: self.getLogger().warning( "No DATE information found in picture file: " + str(fileName) ) return image_data except Exception as e: self.getLogger().error(str(e)) finally: self.cleanupTmp()
# noinspection PyUnresolvedReferences import gc import ucomputer import utime def address(): return ucomputer.get_computer_address() def tmp_address(): return ucomputer.get_tmp_address() def free_memory(): return gc.mem_free() def total_memory(): return gc.mem_alloc() + gc.mem_free() def uptime(): return utime.time_up() def shutdown(reboot: bool = False): if reboot: ucomputer.reboot() else: ucomputer.shutdown() raise NotImplementedError("invalid behavior") def reboot(): ucomputer.reboot() raise NotImplementedError("invalid behavior") def get_boot_address() -> str: import component # noinspection PyUnresolvedReferences eeprom = component.eeprom return eeprom.getData().decode() def set_boot_address(address: str): import component # noinspection PyUnresolvedReferences eeprom = component.eeprom eeprom.setData(address.encode()) def runlevel(): return 1 def users(): return ucomputer.get_users() def add_user(user: str): return ucomputer.add_user(user) def remove_user(user: str): return ucomputer.remove_user(user) def push_signal(name, *args): ucomputer.push_signal(name, *args) def pull_signal(seconds): signal = ucomputer.pop_signal(int(seconds * 20)) if signal is None: return None name, args = signal return (name,) + args def beep(frequency=None, duration=None): return ucomputer.beep(frequency, duration)
# This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild from pkg_resources import parse_version import kaitaistruct from kaitaistruct import KaitaiStruct, KaitaiStream, BytesIO from enum import Enum import collections import zlib if parse_version(kaitaistruct.__version__) < parse_version('0.9'): raise Exception("Incompatible Kaitai Struct Python API: 0.9 or later is required, but you have %s" % (kaitaistruct.__version__)) class Swf(KaitaiStruct): """SWF files are used by Adobe Flash (AKA Shockwave Flash, Macromedia Flash) to encode rich interactive multimedia content and are, essentially, a container for special bytecode instructions to play back that content. In early 2000s, it was dominant rich multimedia web format (.swf files were integrated into web pages and played back with a browser plugin), but its usage largely declined in 2010s, as HTML5 and performant browser-native solutions (i.e. JavaScript engines and graphical approaches, such as WebGL) emerged. There are a lot of versions of SWF (~36), format is somewhat documented by Adobe. .. seealso:: Source - https://www.adobe.com/content/dam/acom/en/devnet/pdf/swf-file-format-spec.pdf """ class Compressions(Enum): zlib = 67 none = 70 lzma = 90 class TagType(Enum): end_of_file = 0 place_object = 4 remove_object = 5 set_background_color = 9 define_sound = 14 place_object2 = 26 remove_object2 = 28 frame_label = 43 export_assets = 56 script_limits = 65 file_attributes = 69 place_object3 = 70 symbol_class = 76 metadata = 77 define_scaling_grid = 78 do_abc = 82 define_scene_and_frame_label_data = 86 SEQ_FIELDS = ["compression", "signature", "version", "len_file", "plain_body", "zlib_body"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['compression']['start'] = self._io.pos() self.compression = KaitaiStream.resolve_enum(Swf.Compressions, self._io.read_u1()) self._debug['compression']['end'] = self._io.pos() self._debug['signature']['start'] = self._io.pos() self.signature = self._io.read_bytes(2) self._debug['signature']['end'] = self._io.pos() if not self.signature == b"\x57\x53": raise kaitaistruct.ValidationNotEqualError(b"\x57\x53", self.signature, self._io, u"/seq/1") self._debug['version']['start'] = self._io.pos() self.version = self._io.read_u1() self._debug['version']['end'] = self._io.pos() self._debug['len_file']['start'] = self._io.pos() self.len_file = self._io.read_u4le() self._debug['len_file']['end'] = self._io.pos() if self.compression == Swf.Compressions.none: self._debug['plain_body']['start'] = self._io.pos() self._raw_plain_body = self._io.read_bytes_full() _io__raw_plain_body = KaitaiStream(BytesIO(self._raw_plain_body)) self.plain_body = Swf.SwfBody(_io__raw_plain_body, self, self._root) self.plain_body._read() self._debug['plain_body']['end'] = self._io.pos() if self.compression == Swf.Compressions.zlib: self._debug['zlib_body']['start'] = self._io.pos() self._raw__raw_zlib_body = self._io.read_bytes_full() self._raw_zlib_body = zlib.decompress(self._raw__raw_zlib_body) _io__raw_zlib_body = KaitaiStream(BytesIO(self._raw_zlib_body)) self.zlib_body = Swf.SwfBody(_io__raw_zlib_body, self, self._root) self.zlib_body._read() self._debug['zlib_body']['end'] = self._io.pos() class Rgb(KaitaiStruct): SEQ_FIELDS = ["r", "g", "b"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['r']['start'] = self._io.pos() self.r = self._io.read_u1() self._debug['r']['end'] = self._io.pos() self._debug['g']['start'] = self._io.pos() self.g = self._io.read_u1() self._debug['g']['end'] = self._io.pos() self._debug['b']['start'] = self._io.pos() self.b = self._io.read_u1() self._debug['b']['end'] = self._io.pos() class DoAbcBody(KaitaiStruct): SEQ_FIELDS = ["flags", "name", "abcdata"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['flags']['start'] = self._io.pos() self.flags = self._io.read_u4le() self._debug['flags']['end'] = self._io.pos() self._debug['name']['start'] = self._io.pos() self.name = (self._io.read_bytes_term(0, False, True, True)).decode(u"ASCII") self._debug['name']['end'] = self._io.pos() self._debug['abcdata']['start'] = self._io.pos() self.abcdata = self._io.read_bytes_full() self._debug['abcdata']['end'] = self._io.pos() class SwfBody(KaitaiStruct): SEQ_FIELDS = ["rect", "frame_rate", "frame_count", "file_attributes_tag", "tags"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['rect']['start'] = self._io.pos() self.rect = Swf.Rect(self._io, self, self._root) self.rect._read() self._debug['rect']['end'] = self._io.pos() self._debug['frame_rate']['start'] = self._io.pos() self.frame_rate = self._io.read_u2le() self._debug['frame_rate']['end'] = self._io.pos() self._debug['frame_count']['start'] = self._io.pos() self.frame_count = self._io.read_u2le() self._debug['frame_count']['end'] = self._io.pos() if self._root.version >= 8: self._debug['file_attributes_tag']['start'] = self._io.pos() self.file_attributes_tag = Swf.Tag(self._io, self, self._root) self.file_attributes_tag._read() self._debug['file_attributes_tag']['end'] = self._io.pos() self._debug['tags']['start'] = self._io.pos() self.tags = [] i = 0 while not self._io.is_eof(): if not 'arr' in self._debug['tags']: self._debug['tags']['arr'] = [] self._debug['tags']['arr'].append({'start': self._io.pos()}) _t_tags = Swf.Tag(self._io, self, self._root) _t_tags._read() self.tags.append(_t_tags) self._debug['tags']['arr'][len(self.tags) - 1]['end'] = self._io.pos() i += 1 self._debug['tags']['end'] = self._io.pos() class Rect(KaitaiStruct): SEQ_FIELDS = ["b1", "skip"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['b1']['start'] = self._io.pos() self.b1 = self._io.read_u1() self._debug['b1']['end'] = self._io.pos() self._debug['skip']['start'] = self._io.pos() self.skip = self._io.read_bytes(self.num_bytes) self._debug['skip']['end'] = self._io.pos() @property def num_bits(self): if hasattr(self, '_m_num_bits'): return self._m_num_bits if hasattr(self, '_m_num_bits') else None self._m_num_bits = (self.b1 >> 3) return self._m_num_bits if hasattr(self, '_m_num_bits') else None @property def num_bytes(self): if hasattr(self, '_m_num_bytes'): return self._m_num_bytes if hasattr(self, '_m_num_bytes') else None self._m_num_bytes = (((self.num_bits * 4) - 3) + 7) // 8 return self._m_num_bytes if hasattr(self, '_m_num_bytes') else None class Tag(KaitaiStruct): SEQ_FIELDS = ["record_header", "tag_body"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['record_header']['start'] = self._io.pos() self.record_header = Swf.RecordHeader(self._io, self, self._root) self.record_header._read() self._debug['record_header']['end'] = self._io.pos() self._debug['tag_body']['start'] = self._io.pos() _on = self.record_header.tag_type if _on == Swf.TagType.define_sound: self._raw_tag_body = self._io.read_bytes(self.record_header.len) _io__raw_tag_body = KaitaiStream(BytesIO(self._raw_tag_body)) self.tag_body = Swf.DefineSoundBody(_io__raw_tag_body, self, self._root) self.tag_body._read() elif _on == Swf.TagType.set_background_color: self._raw_tag_body = self._io.read_bytes(self.record_header.len) _io__raw_tag_body = KaitaiStream(BytesIO(self._raw_tag_body)) self.tag_body = Swf.Rgb(_io__raw_tag_body, self, self._root) self.tag_body._read() elif _on == Swf.TagType.script_limits: self._raw_tag_body = self._io.read_bytes(self.record_header.len) _io__raw_tag_body = KaitaiStream(BytesIO(self._raw_tag_body)) self.tag_body = Swf.ScriptLimitsBody(_io__raw_tag_body, self, self._root) self.tag_body._read() elif _on == Swf.TagType.do_abc: self._raw_tag_body = self._io.read_bytes(self.record_header.len) _io__raw_tag_body = KaitaiStream(BytesIO(self._raw_tag_body)) self.tag_body = Swf.DoAbcBody(_io__raw_tag_body, self, self._root) self.tag_body._read() elif _on == Swf.TagType.export_assets: self._raw_tag_body = self._io.read_bytes(self.record_header.len) _io__raw_tag_body = KaitaiStream(BytesIO(self._raw_tag_body)) self.tag_body = Swf.SymbolClassBody(_io__raw_tag_body, self, self._root) self.tag_body._read() elif _on == Swf.TagType.symbol_class: self._raw_tag_body = self._io.read_bytes(self.record_header.len) _io__raw_tag_body = KaitaiStream(BytesIO(self._raw_tag_body)) self.tag_body = Swf.SymbolClassBody(_io__raw_tag_body, self, self._root) self.tag_body._read() else: self.tag_body = self._io.read_bytes(self.record_header.len) self._debug['tag_body']['end'] = self._io.pos() class SymbolClassBody(KaitaiStruct): SEQ_FIELDS = ["num_symbols", "symbols"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['num_symbols']['start'] = self._io.pos() self.num_symbols = self._io.read_u2le() self._debug['num_symbols']['end'] = self._io.pos() self._debug['symbols']['start'] = self._io.pos() self.symbols = [None] * (self.num_symbols) for i in range(self.num_symbols): if not 'arr' in self._debug['symbols']: self._debug['symbols']['arr'] = [] self._debug['symbols']['arr'].append({'start': self._io.pos()}) _t_symbols = Swf.SymbolClassBody.Symbol(self._io, self, self._root) _t_symbols._read() self.symbols[i] = _t_symbols self._debug['symbols']['arr'][i]['end'] = self._io.pos() self._debug['symbols']['end'] = self._io.pos() class Symbol(KaitaiStruct): SEQ_FIELDS = ["tag", "name"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag']['start'] = self._io.pos() self.tag = self._io.read_u2le() self._debug['tag']['end'] = self._io.pos() self._debug['name']['start'] = self._io.pos() self.name = (self._io.read_bytes_term(0, False, True, True)).decode(u"ASCII") self._debug['name']['end'] = self._io.pos() class DefineSoundBody(KaitaiStruct): class SamplingRates(Enum): rate_5_5_khz = 0 rate_11_khz = 1 rate_22_khz = 2 rate_44_khz = 3 class Bps(Enum): sound_8_bit = 0 sound_16_bit = 1 class Channels(Enum): mono = 0 stereo = 1 SEQ_FIELDS = ["id", "format", "sampling_rate", "bits_per_sample", "num_channels", "num_samples"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['id']['start'] = self._io.pos() self.id = self._io.read_u2le() self._debug['id']['end'] = self._io.pos() self._debug['format']['start'] = self._io.pos() self.format = self._io.read_bits_int_be(4) self._debug['format']['end'] = self._io.pos() self._debug['sampling_rate']['start'] = self._io.pos() self.sampling_rate = KaitaiStream.resolve_enum(Swf.DefineSoundBody.SamplingRates, self._io.read_bits_int_be(2)) self._debug['sampling_rate']['end'] = self._io.pos() self._debug['bits_per_sample']['start'] = self._io.pos() self.bits_per_sample = KaitaiStream.resolve_enum(Swf.DefineSoundBody.Bps, self._io.read_bits_int_be(1)) self._debug['bits_per_sample']['end'] = self._io.pos() self._debug['num_channels']['start'] = self._io.pos() self.num_channels = KaitaiStream.resolve_enum(Swf.DefineSoundBody.Channels, self._io.read_bits_int_be(1)) self._debug['num_channels']['end'] = self._io.pos() self._io.align_to_byte() self._debug['num_samples']['start'] = self._io.pos() self.num_samples = self._io.read_u4le() self._debug['num_samples']['end'] = self._io.pos() class RecordHeader(KaitaiStruct): SEQ_FIELDS = ["tag_code_and_length", "big_len"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_code_and_length']['start'] = self._io.pos() self.tag_code_and_length = self._io.read_u2le() self._debug['tag_code_and_length']['end'] = self._io.pos() if self.small_len == 63: self._debug['big_len']['start'] = self._io.pos() self.big_len = self._io.read_s4le() self._debug['big_len']['end'] = self._io.pos() @property def tag_type(self): if hasattr(self, '_m_tag_type'): return self._m_tag_type if hasattr(self, '_m_tag_type') else None self._m_tag_type = KaitaiStream.resolve_enum(Swf.TagType, (self.tag_code_and_length >> 6)) return self._m_tag_type if hasattr(self, '_m_tag_type') else None @property def small_len(self): if hasattr(self, '_m_small_len'): return self._m_small_len if hasattr(self, '_m_small_len') else None self._m_small_len = (self.tag_code_and_length & 63) return self._m_small_len if hasattr(self, '_m_small_len') else None @property def len(self): if hasattr(self, '_m_len'): return self._m_len if hasattr(self, '_m_len') else None self._m_len = (self.big_len if self.small_len == 63 else self.small_len) return self._m_len if hasattr(self, '_m_len') else None class ScriptLimitsBody(KaitaiStruct): SEQ_FIELDS = ["max_recursion_depth", "script_timeout_seconds"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['max_recursion_depth']['start'] = self._io.pos() self.max_recursion_depth = self._io.read_u2le() self._debug['max_recursion_depth']['end'] = self._io.pos() self._debug['script_timeout_seconds']['start'] = self._io.pos() self.script_timeout_seconds = self._io.read_u2le() self._debug['script_timeout_seconds']['end'] = self._io.pos()
"""Support for Konnected devices.""" import asyncio import copy import hmac import json import logging from aiohttp.hdrs import AUTHORIZATION from aiohttp.web import Request, Response import voluptuous as vol from homeassistant import config_entries from homeassistant.components.binary_sensor import DEVICE_CLASSES_SCHEMA from homeassistant.components.http import HomeAssistantView from homeassistant.config_entries import ConfigEntry from homeassistant.const import ( ATTR_ENTITY_ID, CONF_ACCESS_TOKEN, CONF_BINARY_SENSORS, CONF_DEVICES, CONF_HOST, CONF_ID, CONF_NAME, CONF_PIN, CONF_PORT, CONF_SENSORS, CONF_SWITCHES, CONF_TYPE, CONF_ZONE, HTTP_BAD_REQUEST, HTTP_NOT_FOUND, HTTP_UNAUTHORIZED, STATE_OFF, STATE_ON, ) from homeassistant.core import HomeAssistant from homeassistant.helpers import config_validation as cv from .config_flow import ( # Loading the config flow file will register the flow CONF_DEFAULT_OPTIONS, CONF_IO, CONF_IO_BIN, CONF_IO_DIG, CONF_IO_SWI, OPTIONS_SCHEMA, ) from .const import ( CONF_ACTIVATION, CONF_API_HOST, CONF_BLINK, CONF_DISCOVERY, CONF_INVERSE, CONF_MOMENTARY, CONF_PAUSE, CONF_POLL_INTERVAL, CONF_REPEAT, DOMAIN, PIN_TO_ZONE, STATE_HIGH, STATE_LOW, UPDATE_ENDPOINT, ZONE_TO_PIN, ZONES, ) from .errors import CannotConnect from .handlers import HANDLERS from .panel import AlarmPanel _LOGGER = logging.getLogger(__name__) def ensure_pin(value): """Check if valid pin and coerce to string.""" if value is None: raise vol.Invalid("pin value is None") if PIN_TO_ZONE.get(str(value)) is None: raise vol.Invalid("pin not valid") return str(value) def ensure_zone(value): """Check if valid zone and coerce to string.""" if value is None: raise vol.Invalid("zone value is None") if str(value) not in ZONES is None: raise vol.Invalid("zone not valid") return str(value) def import_validator(config): """Validate zones and reformat for import.""" config = copy.deepcopy(config) io_cfgs = {} # Replace pins with zones for conf_platform, conf_io in ( (CONF_BINARY_SENSORS, CONF_IO_BIN), (CONF_SENSORS, CONF_IO_DIG), (CONF_SWITCHES, CONF_IO_SWI), ): for zone in config.get(conf_platform, []): if zone.get(CONF_PIN): zone[CONF_ZONE] = PIN_TO_ZONE[zone[CONF_PIN]] del zone[CONF_PIN] io_cfgs[zone[CONF_ZONE]] = conf_io # Migrate config_entry data into default_options structure config[CONF_IO] = io_cfgs config[CONF_DEFAULT_OPTIONS] = OPTIONS_SCHEMA(config) # clean up fields migrated to options config.pop(CONF_BINARY_SENSORS, None) config.pop(CONF_SENSORS, None) config.pop(CONF_SWITCHES, None) config.pop(CONF_BLINK, None) config.pop(CONF_DISCOVERY, None) config.pop(CONF_IO, None) return config # configuration.yaml schemas (legacy) BINARY_SENSOR_SCHEMA_YAML = vol.All( vol.Schema( { vol.Exclusive(CONF_ZONE, "s_io"): ensure_zone, vol.Exclusive(CONF_PIN, "s_io"): ensure_pin, vol.Required(CONF_TYPE): DEVICE_CLASSES_SCHEMA, vol.Optional(CONF_NAME): cv.string, vol.Optional(CONF_INVERSE, default=False): cv.boolean, } ), cv.has_at_least_one_key(CONF_PIN, CONF_ZONE), ) SENSOR_SCHEMA_YAML = vol.All( vol.Schema( { vol.Exclusive(CONF_ZONE, "s_io"): ensure_zone, vol.Exclusive(CONF_PIN, "s_io"): ensure_pin, vol.Required(CONF_TYPE): vol.All(vol.Lower, vol.In(["dht", "ds18b20"])), vol.Optional(CONF_NAME): cv.string, vol.Optional(CONF_POLL_INTERVAL, default=3): vol.All( vol.Coerce(int), vol.Range(min=1) ), } ), cv.has_at_least_one_key(CONF_PIN, CONF_ZONE), ) SWITCH_SCHEMA_YAML = vol.All( vol.Schema( { vol.Exclusive(CONF_ZONE, "s_io"): ensure_zone, vol.Exclusive(CONF_PIN, "s_io"): ensure_pin, vol.Optional(CONF_NAME): cv.string, vol.Optional(CONF_ACTIVATION, default=STATE_HIGH): vol.All( vol.Lower, vol.Any(STATE_HIGH, STATE_LOW) ), vol.Optional(CONF_MOMENTARY): vol.All(vol.Coerce(int), vol.Range(min=10)), vol.Optional(CONF_PAUSE): vol.All(vol.Coerce(int), vol.Range(min=10)), vol.Optional(CONF_REPEAT): vol.All(vol.Coerce(int), vol.Range(min=-1)), } ), cv.has_at_least_one_key(CONF_PIN, CONF_ZONE), ) DEVICE_SCHEMA_YAML = vol.All( vol.Schema( { vol.Required(CONF_ID): cv.matches_regex("[0-9a-f]{12}"), vol.Optional(CONF_BINARY_SENSORS): vol.All( cv.ensure_list, [BINARY_SENSOR_SCHEMA_YAML] ), vol.Optional(CONF_SENSORS): vol.All(cv.ensure_list, [SENSOR_SCHEMA_YAML]), vol.Optional(CONF_SWITCHES): vol.All(cv.ensure_list, [SWITCH_SCHEMA_YAML]), vol.Inclusive(CONF_HOST, "host_info"): cv.string, vol.Inclusive(CONF_PORT, "host_info"): cv.port, vol.Optional(CONF_BLINK, default=True): cv.boolean, vol.Optional(CONF_DISCOVERY, default=True): cv.boolean, } ), import_validator, ) # pylint: disable=no-value-for-parameter CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Required(CONF_ACCESS_TOKEN): cv.string, vol.Optional(CONF_API_HOST): vol.Url(), vol.Optional(CONF_DEVICES): vol.All( cv.ensure_list, [DEVICE_SCHEMA_YAML] ), } ) }, extra=vol.ALLOW_EXTRA, ) YAML_CONFIGS = "yaml_configs" PLATFORMS = ["binary_sensor", "sensor", "switch"] async def async_setup(hass: HomeAssistant, config: dict): """Set up the Konnected platform.""" cfg = config.get(DOMAIN) if cfg is None: cfg = {} if DOMAIN not in hass.data: hass.data[DOMAIN] = { CONF_ACCESS_TOKEN: cfg.get(CONF_ACCESS_TOKEN), CONF_API_HOST: cfg.get(CONF_API_HOST), CONF_DEVICES: {}, } hass.http.register_view(KonnectedView) # Check if they have yaml configured devices if CONF_DEVICES not in cfg: return True for device in cfg.get(CONF_DEVICES, []): # Attempt to importing the cfg. Use # hass.async_add_job to avoid a deadlock. hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data=device, ) ) return True async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry): """Set up panel from a config entry.""" client = AlarmPanel(hass, entry) # create a data store in hass.data[DOMAIN][CONF_DEVICES] await client.async_save_data() try: await client.async_connect() except CannotConnect: # this will trigger a retry in the future raise config_entries.ConfigEntryNotReady for component in PLATFORMS: hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, component) ) entry.add_update_listener(async_entry_updated) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry): """Unload a config entry.""" unload_ok = all( await asyncio.gather( *[ hass.config_entries.async_forward_entry_unload(entry, component) for component in PLATFORMS ] ) ) if unload_ok: hass.data[DOMAIN][CONF_DEVICES].pop(entry.data[CONF_ID]) return unload_ok async def async_entry_updated(hass: HomeAssistant, entry: ConfigEntry): """Reload the config entry when options change.""" await hass.config_entries.async_reload(entry.entry_id) class KonnectedView(HomeAssistantView): """View creates an endpoint to receive push updates from the device.""" url = UPDATE_ENDPOINT name = "api:konnected" requires_auth = False # Uses access token from configuration def __init__(self): """Initialize the view.""" @staticmethod def binary_value(state, activation): """Return binary value for GPIO based on state and activation.""" if activation == STATE_HIGH: return 1 if state == STATE_ON else 0 return 0 if state == STATE_ON else 1 async def update_sensor(self, request: Request, device_id) -> Response: """Process a put or post.""" hass = request.app["hass"] data = hass.data[DOMAIN] auth = request.headers.get(AUTHORIZATION, None) tokens = [] if hass.data[DOMAIN].get(CONF_ACCESS_TOKEN): tokens.extend([hass.data[DOMAIN][CONF_ACCESS_TOKEN]]) tokens.extend( [ entry.data[CONF_ACCESS_TOKEN] for entry in hass.config_entries.async_entries(DOMAIN) if entry.data.get(CONF_ACCESS_TOKEN) ] ) if auth is None or not next( (True for token in tokens if hmac.compare_digest(f"Bearer {token}", auth)), False, ): return self.json_message("unauthorized", status_code=HTTP_UNAUTHORIZED) try: # Konnected 2.2.0 and above supports JSON payloads payload = await request.json() except json.decoder.JSONDecodeError: _LOGGER.error( ( "Your Konnected device software may be out of " "date. Visit https://help.konnected.io for " "updating instructions." ) ) device = data[CONF_DEVICES].get(device_id) if device is None: return self.json_message( "unregistered device", status_code=HTTP_BAD_REQUEST ) try: zone_num = str(payload.get(CONF_ZONE) or PIN_TO_ZONE[payload[CONF_PIN]]) zone_data = device[CONF_BINARY_SENSORS].get(zone_num) or next( (s for s in device[CONF_SENSORS] if s[CONF_ZONE] == zone_num), None ) except KeyError: zone_data = None if zone_data is None: return self.json_message( "unregistered sensor/actuator", status_code=HTTP_BAD_REQUEST ) zone_data["device_id"] = device_id for attr in ["state", "temp", "humi", "addr"]: value = payload.get(attr) handler = HANDLERS.get(attr) if value is not None and handler: hass.async_create_task(handler(hass, zone_data, payload)) return self.json_message("ok") async def get(self, request: Request, device_id) -> Response: """Return the current binary state of a switch.""" hass = request.app["hass"] data = hass.data[DOMAIN] device = data[CONF_DEVICES].get(device_id) if not device: return self.json_message( f"Device {device_id} not configured", status_code=HTTP_NOT_FOUND ) # Our data model is based on zone ids but we convert from/to pin ids # based on whether they are specified in the request try: zone_num = str( request.query.get(CONF_ZONE) or PIN_TO_ZONE[request.query[CONF_PIN]] ) zone = next( ( switch for switch in device[CONF_SWITCHES] if switch[CONF_ZONE] == zone_num ) ) except StopIteration: zone = None except KeyError: zone = None zone_num = None if not zone: target = request.query.get( CONF_ZONE, request.query.get(CONF_PIN, "unknown") ) return self.json_message( f"Switch on zone or pin {target} not configured", status_code=HTTP_NOT_FOUND, ) resp = {} if request.query.get(CONF_ZONE): resp[CONF_ZONE] = zone_num else: resp[CONF_PIN] = ZONE_TO_PIN[zone_num] # Make sure entity is setup zone_entity_id = zone.get(ATTR_ENTITY_ID) if zone_entity_id: resp["state"] = self.binary_value( hass.states.get(zone_entity_id).state, zone[CONF_ACTIVATION], ) return self.json(resp) _LOGGER.warning("Konnected entity not yet setup, returning default") resp["state"] = self.binary_value(STATE_OFF, zone[CONF_ACTIVATION]) return self.json(resp) async def put(self, request: Request, device_id) -> Response: """Receive a sensor update via PUT request and async set state.""" return await self.update_sensor(request, device_id) async def post(self, request: Request, device_id) -> Response: """Receive a sensor update via POST request and async set state.""" return await self.update_sensor(request, device_id)
#!/usr/bin/env python # -*- coding: utf-8 -*- """ ¹⁷O 2D DAS NMR of Coesite ^^^^^^^^^^^^^^^^^^^^^^^^^ """ # %% # Coesite is a high-pressure (2-3 GPa) and high-temperature (700°C) polymorph of silicon # dioxide :math:`\text{SiO}_2`. Coesite has five crystallographic :math:`^{17}\text{O}` # sites. The experimental dataset used in this example is published in # Grandinetti `et al.` [#f1]_ import numpy as np import csdmpy as cp import matplotlib.pyplot as plt from lmfit import Minimizer from mrsimulator import Simulator from mrsimulator.methods import Method2D from mrsimulator import signal_processing as sp from mrsimulator.utils import spectral_fitting as sf from mrsimulator.utils import get_spectral_dimensions from mrsimulator.utils.collection import single_site_system_generator from mrsimulator.method.event import SpectralEvent # sphinx_gallery_thumbnail_number = 3 # %% # Import the dataset # ------------------ filename = "https://sandbox.zenodo.org/record/814455/files/DASCoesite.csdf" experiment = cp.load(filename) # standard deviation of noise from the dataset sigma = 921.6698 # For spectral fitting, we only focus on the real part of the complex dataset experiment = experiment.real # Convert the coordinates along each dimension from Hz to ppm. _ = [item.to("ppm", "nmr_frequency_ratio") for item in experiment.dimensions] # plot of the dataset. max_amp = experiment.max() levels = (np.arange(14) + 1) * max_amp / 15 # contours are drawn at these levels. options = dict(levels=levels, alpha=0.75, linewidths=0.5) # plot options plt.figure(figsize=(4.25, 3.0)) ax = plt.subplot(projection="csdm") ax.contour(experiment, colors="k", **options) ax.invert_xaxis() ax.set_ylim(30, -30) plt.grid() plt.tight_layout() plt.show() # %% # Create a fitting model # ---------------------- # **Guess model** # # Create a guess list of spin systems. shifts = [29, 39, 54.8, 51, 56] # in ppm Cq = [6.1e6, 5.4e6, 5.5e6, 5.5e6, 5.1e6] # in Hz eta = [0.1, 0.2, 0.15, 0.15, 0.3] abundance_ratio = [1, 1, 2, 2, 2] abundance = np.asarray(abundance_ratio) / 8 * 100 # in % spin_systems = single_site_system_generator( isotope="17O", isotropic_chemical_shift=shifts, quadrupolar={"Cq": Cq, "eta": eta}, abundance=abundance, ) # %% # **Method** # # Create the DAS method. # Get the spectral dimension parameters from the experiment. spectral_dims = get_spectral_dimensions(experiment) DAS = Method2D( channels=["17O"], magnetic_flux_density=11.744, # in T spectral_dimensions=[ dict( **spectral_dims[0], events=[ SpectralEvent( fraction=0.5, rotor_angle=37.38 * 3.14159 / 180, transition_query=[{"P": [-1], "D": [0]}], ), SpectralEvent( fraction=0.5, rotor_angle=79.19 * 3.14159 / 180, transition_query=[{"P": [-1], "D": [0]}], ), ], ), # The last spectral dimension block is the direct-dimension dict( **spectral_dims[1], events=[ SpectralEvent( rotor_angle=54.735 * 3.14159 / 180, transition_query=[{"P": [-1], "D": [0]}], ) ], ), ], experiment=experiment, # also add the measurement to the method. ) # Optimize the script by pre-setting the transition pathways for each spin system from # the das method. for sys in spin_systems: sys.transition_pathways = DAS.get_transition_pathways(sys) # %% # **Guess Spectrum** # Simulation # ---------- sim = Simulator(spin_systems=spin_systems, methods=[DAS]) sim.config.number_of_sidebands = 1 # no sidebands are required for this dataset. sim.run() # Post Simulation Processing # -------------------------- processor = sp.SignalProcessor( operations=[ # Gaussian convolution along both dimensions. sp.IFFT(dim_index=(0, 1)), sp.apodization.Gaussian(FWHM="0.15 kHz", dim_index=0), sp.apodization.Gaussian(FWHM="0.1 kHz", dim_index=1), sp.FFT(dim_index=(0, 1)), sp.Scale(factor=4e7), ] ) processed_data = processor.apply_operations(data=sim.methods[0].simulation).real # Plot of the guess Spectrum # -------------------------- plt.figure(figsize=(4.25, 3.0)) ax = plt.subplot(projection="csdm") ax.contour(experiment, colors="k", **options) ax.contour(processed_data, colors="r", linestyles="--", **options) ax.invert_xaxis() ax.set_ylim(30, -30) plt.grid() plt.tight_layout() plt.show() # %% # Least-squares minimization with LMFIT # ------------------------------------- # Use the :func:`~mrsimulator.utils.spectral_fitting.make_LMFIT_params` for a quick # setup of the fitting parameters. params = sf.make_LMFIT_params(sim, processor) print(params.pretty_print(columns=["value", "min", "max", "vary", "expr"])) # %% # **Solve the minimizer using LMFIT** minner = Minimizer(sf.LMFIT_min_function, params, fcn_args=(sim, processor, sigma)) result = minner.minimize(method="powell") result # %% # The best fit solution # --------------------- best_fit = sf.bestfit(sim, processor)[0] # Plot the spectrum plt.figure(figsize=(4.25, 3.0)) ax = plt.subplot(projection="csdm") ax.contour(experiment, colors="k", **options) ax.contour(best_fit, colors="r", linestyles="--", **options) ax.invert_xaxis() ax.set_ylim(30, -30) plt.grid() plt.tight_layout() plt.show() # %% # The best fit solution # --------------------- residuals = sf.residuals(sim, processor)[0] fig, ax = plt.subplots( 1, 3, sharey=True, figsize=(10, 3.0), subplot_kw={"projection": "csdm"} ) vmax, vmin = experiment.max(), experiment.min() for i, dat in enumerate([experiment, best_fit, residuals]): ax[i].imshow(dat, aspect="auto", vmax=vmax, vmin=vmin) ax[i].invert_xaxis() ax[0].set_ylim(30, -30) plt.tight_layout() plt.show() # %% # .. [#f1] Grandinetti, P. J., Baltisberger, J. H., Farnan, I., Stebbins, J. F., # Werner, U. and Pines, A. # Solid-State :math:`^{17}\text{O}` Magic-Angle and Dynamic-Angle Spinning NMR # Study of the :math:`\text{SiO}_2` Polymorph Coesite, J. Phys. Chem. 1995, # **99**, *32*, 12341-12348. # `DOI: 10.1021/j100032a045 <https://doi.org/10.1021/j100032a045>`_
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RPopvar(RPackage): """PopVar: Genomic Breeding Tools: Genetic Variance Prediction andCross- Validation""" homepage = "https://cloud.r-project.org/package=PopVar" url = "https://cloud.r-project.org/src/contrib/PopVar_1.2.1.tar.gz" list_url = "https://cloud.r-project.org/src/contrib/Archive/PopVar" version('1.2.1', sha256='5e3df79634ab63708a431e4b8e6794675972ac6c58d2bc615726aa0f142f5f25') depends_on('[email protected]:', type=('build', 'run')) depends_on('r-bglr', type=('build', 'run')) depends_on('r-qtl', type=('build', 'run')) depends_on('r-rrblup', type=('build', 'run'))
class Person: def __init__(self, firstname, lastname): self.firstname = firstname self.lastname = lastname self.address = [] def add_address(self, address): self.address.append(address) class Address: def __init__(self, street, number): self.street = street self.number = number if __name__ == "__main__": from copy import deepcopy fred = Person("Fred", "Chaves") fred_address = Address("Av Principal", "100A") fred.add_address(fred_address) darly = deepcopy(fred) darly.firstname = "Darly"