content
stringlengths
5
1.05M
#! /usr/bin/env python3 from typing import List, Tuple, Dict, T # Linked List class Node : val : int nxt : T def __init__(self, val) : self.val = val self.nxt = None class CupGame : head: Node ndes: List[Node] def __init__(self, ls: List[int]) -> None : self.ndes = {} prev = None for x in ls : curr = Node(x) if prev is not None : prev.nxt = curr prev = curr self.ndes[x] = curr self.head = self.ndes[ls[0]] prev.nxt = self.head def run(self, i) -> None : if(i % 1000000 == 0) : print(f"{i // 1000000}/9") a, b, c = self.step1() dst = self.step2(a, b, c) self.step3(a, b, c, dst) def step1(self) -> Tuple[Node, Node, Node] : a = self.head.nxt b = a.nxt c = b.nxt self.head.nxt = c.nxt return (a, b, c) def step2(self, a: Node, b: Node, c: Node) -> Node : val = self.head.val - 1 or 1000000 while val in (a.val, b.val, c.val) : val = val - 1 or 1000000 return self.ndes[val] def step3(self, a: Node, b: Node, c: Node, dst: Node) -> None : c.nxt = dst.nxt dst.nxt = a self.head = self.head.nxt def answer(self) -> None : node = self.ndes[1] print(f"{node.nxt.val} * {node.nxt.nxt.val} : {node.nxt.val * node.nxt.nxt.val}") with open("input", "r") as fd : base = [int(w) for w in fd.read().strip()] for i in range(max(base) + 1, 1000001) : base.append(i) game = CupGame(base) for i in range(10000000) : game.run(i) game.answer()
#!/usr/bin/env python u""" test_coordinates.py (08/2020) Verify forward and backwards coordinate conversions """ import warnings import pytest import numpy as np import pyTMD.convert_ll_xy #-- parameterize projections @pytest.mark.parametrize("PROJ", ['3031','CATS2008','3976','PSNorth','4326']) #-- PURPOSE: verify forward and backwards coordinate conversions def test_coordinates(PROJ): startlat = {'3031':-60,'CATS2008':-60,'3976':-60,'PSNorth':60,'4326':90} endlat = {'3031':-70,'CATS2008':-70,'3976':-70,'PSNorth':70,'4326':-90} i1 = np.arange(-180,180+1,1) i2 = np.linspace(startlat[PROJ],endlat[PROJ],len(i1)) #-- convert latitude and longitude to and from projection o1,o2 = pyTMD.convert_ll_xy(i1,i2,PROJ,'F') lon,lat = pyTMD.convert_ll_xy(o1,o2,PROJ,'B') #-- calculate great circle distance between inputs and outputs cdist = np.arccos(np.sin(i2*np.pi/180.0)*np.sin(lat*np.pi/180.0) + np.cos(i2*np.pi/180.0)*np.cos(lat*np.pi/180.0)* np.cos((lon-i1)*np.pi/180.0),dtype=np.float32) #-- test that forward and backwards conversions are within tolerance eps = np.finfo(np.float32).eps assert np.all(cdist < eps)
# # PySNMP MIB module CISCO-UBE-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-UBE-MIB # Produced by pysmi-0.3.4 at Wed May 1 12:14:45 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ConstraintsIntersection, ConstraintsUnion, ValueSizeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ConstraintsIntersection", "ConstraintsUnion", "ValueSizeConstraint", "SingleValueConstraint") ciscoMgmt, = mibBuilder.importSymbols("CISCO-SMI", "ciscoMgmt") SnmpAdminString, = mibBuilder.importSymbols("SNMP-FRAMEWORK-MIB", "SnmpAdminString") ObjectGroup, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "NotificationGroup", "ModuleCompliance") Gauge32, MibScalar, MibTable, MibTableRow, MibTableColumn, Bits, Integer32, MibIdentifier, IpAddress, ObjectIdentity, TimeTicks, Counter64, ModuleIdentity, Unsigned32, Counter32, iso, NotificationType = mibBuilder.importSymbols("SNMPv2-SMI", "Gauge32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Bits", "Integer32", "MibIdentifier", "IpAddress", "ObjectIdentity", "TimeTicks", "Counter64", "ModuleIdentity", "Unsigned32", "Counter32", "iso", "NotificationType") TruthValue, DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "TruthValue", "DisplayString", "TextualConvention") ciscoUbeMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 9, 764)) ciscoUbeMIB.setRevisions(('2010-11-29 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ciscoUbeMIB.setRevisionsDescriptions(('Initial version of this MIB module.',)) if mibBuilder.loadTexts: ciscoUbeMIB.setLastUpdated('201011290000Z') if mibBuilder.loadTexts: ciscoUbeMIB.setOrganization('Cisco Systems, Inc.') if mibBuilder.loadTexts: ciscoUbeMIB.setContactInfo('Cisco Systems Customer Service Postal: 170 W Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: [email protected]') if mibBuilder.loadTexts: ciscoUbeMIB.setDescription('This MIB describes objects used for managing Cisco Unified Border Element (CUBE). The Cisco Unified Border Element (CUBE) is a Cisco IOS Session Border Controller (SBC) that interconnects independent voice over IP (VoIP) and video over IP networks for data, voice, and video transport') ciscoUbeMIBObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 764, 0)) ciscoUbeMIBConform = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 764, 1)) cubeEnabled = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 764, 0, 1), TruthValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: cubeEnabled.setStatus('current') if mibBuilder.loadTexts: cubeEnabled.setDescription("This object represents, whether the Cisco Unified Border Element (CUBE) is enabled on the device or not. The value 'true' means that the CUBE feature is enabled on the device. The value 'false' means that the CUBE feature is disabled.") cubeVersion = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 764, 0, 2), SnmpAdminString()).setMaxAccess("readonly") if mibBuilder.loadTexts: cubeVersion.setStatus('current') if mibBuilder.loadTexts: cubeVersion.setDescription('This object represents the version of Cisco Unified Border Element on the device.') cubeTotalSessionAllowed = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 764, 0, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 999999))).setUnits('session').setMaxAccess("readwrite") if mibBuilder.loadTexts: cubeTotalSessionAllowed.setStatus('current') if mibBuilder.loadTexts: cubeTotalSessionAllowed.setDescription('This object provides the total number of CUBE session allowed on the device. The value zero means no sessions are allowed with CUBE.') ciscoUbeMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 764, 1, 1)) ciscoUbeMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 764, 1, 2)) ciscoCubeMIBCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 9, 9, 764, 1, 1, 1)).setObjects(("CISCO-UBE-MIB", "ciscoUbeMIBGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoCubeMIBCompliance = ciscoCubeMIBCompliance.setStatus('current') if mibBuilder.loadTexts: ciscoCubeMIBCompliance.setDescription('The compliance statement for Cisco Unified Border Element (CUBE) MIB.') ciscoUbeMIBGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 764, 1, 2, 1)).setObjects(("CISCO-UBE-MIB", "cubeEnabled"), ("CISCO-UBE-MIB", "cubeVersion"), ("CISCO-UBE-MIB", "cubeTotalSessionAllowed")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoUbeMIBGroup = ciscoUbeMIBGroup.setStatus('current') if mibBuilder.loadTexts: ciscoUbeMIBGroup.setDescription('A collection of objects which provides the capabilities of the CUBE feature.') mibBuilder.exportSymbols("CISCO-UBE-MIB", ciscoUbeMIBGroups=ciscoUbeMIBGroups, cubeVersion=cubeVersion, ciscoUbeMIBConform=ciscoUbeMIBConform, ciscoUbeMIBCompliances=ciscoUbeMIBCompliances, PYSNMP_MODULE_ID=ciscoUbeMIB, cubeTotalSessionAllowed=cubeTotalSessionAllowed, ciscoCubeMIBCompliance=ciscoCubeMIBCompliance, ciscoUbeMIB=ciscoUbeMIB, ciscoUbeMIBGroup=ciscoUbeMIBGroup, ciscoUbeMIBObjects=ciscoUbeMIBObjects, cubeEnabled=cubeEnabled)
# coding: utf-8 """ Metal API This is the API for Equinix Metal. The API allows you to programmatically interact with all of your Equinix Metal resources, including devices, networks, addresses, organizations, projects, and your user account. The official API docs are hosted at <https://metal.equinix.com/developers/api>. # noqa: E501 The version of the OpenAPI document: 1.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import metal from models.connections_api import ConnectionsApi # noqa: E501 from metal.rest import ApiException class TestConnectionsApi(unittest.TestCase): """ConnectionsApi unit test stubs""" def setUp(self): self.api = models.connections_api.ConnectionsApi() # noqa: E501 def tearDown(self): pass def test_create_connection_port_virtual_circuit(self): """Test case for create_connection_port_virtual_circuit Create a new Virtual Circuit # noqa: E501 """ pass def test_create_organization_interconnection(self): """Test case for create_organization_interconnection Request a new connection for the organization # noqa: E501 """ pass def test_create_project_interconnection(self): """Test case for create_project_interconnection Request a new connection for the project's organization # noqa: E501 """ pass def test_delete_interconnection(self): """Test case for delete_interconnection Delete connection # noqa: E501 """ pass def test_delete_virtual_circuit(self): """Test case for delete_virtual_circuit Delete a virtual circuit # noqa: E501 """ pass def test_find_connection_events(self): """Test case for find_connection_events Retrieve connection events # noqa: E501 """ pass def test_find_connection_port_events(self): """Test case for find_connection_port_events Retrieve connection port events # noqa: E501 """ pass def test_find_virtual_circuit_events(self): """Test case for find_virtual_circuit_events Retrieve connection events # noqa: E501 """ pass def test_get_connection_port(self): """Test case for get_connection_port Get a connection port # noqa: E501 """ pass def test_get_interconnection(self): """Test case for get_interconnection Get connection # noqa: E501 """ pass def test_get_virtual_circuit(self): """Test case for get_virtual_circuit Get a virtual circuit # noqa: E501 """ pass def test_list_connection_port_virtual_circuits(self): """Test case for list_connection_port_virtual_circuits List a connection port's virtual circuits # noqa: E501 """ pass def test_list_connection_ports(self): """Test case for list_connection_ports List a connection's ports # noqa: E501 """ pass def test_organization_list_interconnections(self): """Test case for organization_list_interconnections List organization connections # noqa: E501 """ pass def test_project_list_interconnections(self): """Test case for project_list_interconnections List project connections # noqa: E501 """ pass def test_update_interconnection(self): """Test case for update_interconnection Update connection # noqa: E501 """ pass def test_update_virtual_circuit(self): """Test case for update_virtual_circuit Update a virtual circuit # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- #------------------------------------------------------------------------------ # file: $Id$ # lib: genemail.sender # auth: Philip J Grabner <[email protected]> # date: 2013/07/09 # copy: (C) Copyright 2013 Cadit Health Inc., All Rights Reserved. #------------------------------------------------------------------------------ ''' The low-level mail sending agent. Used by the manager to delegate the actual sending of the composed email. Note that the primary reason to use a delegated object for this (rather than just using smtplib.SMTP()) is so that an email can be serialized into another form, such as for entry into a database or for unit testing and comparison. ''' from __future__ import absolute_import __all__ = ('Sender', 'StoredSender', 'SmtpSender', 'DebugSender') import smtplib import email.parser from templatealchemy.util import adict #------------------------------------------------------------------------------ class Sender(object): ''' Abstract interface for an object capable of sending a genemail email out, usually to an SMTP MTA. ''' #---------------------------------------------------------------------------- def send(self, mailfrom, recipients, message): ''' Sends the specified `message` (in SMTP format) to the specified `recipients` coming from the email address `mailfrom`. Parameters: :Parameters: mailfrom : str equivalent to the the SMTP ``MAIL FROM`` command. recipients : list(str) equivalent to the SMTP ``RCPT TO`` command. message : str the actuall message to be transferred, equivalent to the payload of the SMTP ``DATA`` command. ''' raise NotImplementedError() #------------------------------------------------------------------------------ class SmtpSender(Sender): ''' An implementation of the :class:`genemail.sender.Sender` interface that connects to a local or remote SMTP server and submits the message for transfer or delivery. :Parameters: host : str, optional, default: 'localhost' the SMTP server to connect to. port : int, optional, default: 25 the SMTP server port to connect to. ssl : bool, optional, default: false indicates whether or not to connect using SSL. starttls : bool, optional, default: false indicates that a STARTTLS command should be sent after connecting. username : str, optional set the SMTP username to authenticate as. password : str, optional set the password for the `username`. ''' #---------------------------------------------------------------------------- def __init__(self, host='localhost', port=25, ssl=False, starttls=False, username=None, password=None, *args, **kwargs): super(SmtpSender, self).__init__(*args, **kwargs) self.smtpHost = host or 'localhost' self.smtpPort = port or 25 self.username = username self.password = password self.starttls = starttls self.ssl = ssl #---------------------------------------------------------------------------- def send(self, mailfrom, recipients, message): smtp = smtplib.SMTP_SSL() if self.ssl else smtplib.SMTP() smtp.connect(self.smtpHost, self.smtpPort) if self.starttls: smtp.starttls() if self.username is not None: smtp.login(self.username, self.password) smtp.sendmail(mailfrom, recipients, message) smtp.quit() #------------------------------------------------------------------------------ class StoredSender(Sender): ''' An implementation of the :class:`genemail.sender.Sender` interface that simply stores all messages in local memory in the :attr:`emails` attribute. Most useful when unit testing email generation. ''' #---------------------------------------------------------------------------- def __init__(self, *args, **kwargs): super(StoredSender, self).__init__(*args, **kwargs) self.emails = [] #---------------------------------------------------------------------------- def send(self, mailfrom, recipients, message): self.emails.append( adict(mailfrom=mailfrom, recipients=recipients, message=message)) #------------------------------------------------------------------------------ class DebugSender(StoredSender): ''' An extension to the :class:`StoredSender` class that parses each email into it's MIME components, which simplifies unittesting. Each element in the `emails` attribute has the following attributes: * `mailfrom`: SMTP-level `MAIL FROM` value (string) * `recipients`: SMTP-level `RCPT TO` value (list) * `message`: raw SMTP `DATA` value (string) * `mime`: the parsed :class:`email.message.Message` object * `from`: email "From" header - not used by SMTP * `to`: email "To" header - not used by SMTP * `date`: email "Date" header * `message-id`: email "Message-ID" header * `subject`: email "Subject" header * `plain`: text/plain version of the email (or None) * `html`: text/html version of the email (or None) * `calendar`: text/calendar attachment of the email (or None) ''' #---------------------------------------------------------------------------- def send(self, mailfrom, recipients, message): eml = adict(mailfrom=mailfrom, recipients=recipients, message=message) mime = email.parser.Parser().parsestr(message) eml['mime'] = mime eml['from'] = mime.get('from') eml['to'] = mime.get('to') eml['date'] = mime.get('date') eml['message-id'] = mime.get('message-id') eml['subject'] = mime.get('subject') for part in mime.walk(): ct = part.get_content_type() if not ct.startswith('text/'): continue ct = ct.split('/')[1] if eml.get(ct) is None: eml[ct] = part.get_payload() elif isinstance(eml[ct], list): eml[ct].append(part.get_payload()) else: eml[ct] = [eml[ct], part.get_payload()] self.emails.append(eml) #------------------------------------------------------------------------------ # end of $Id$ #------------------------------------------------------------------------------
# -*- coding: utf-8 -*- # # Copyright (C) 2020 alzp. # # testInvenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Default configuration for testInvenio. You overwrite and set instance-specific configuration by either: - Configuration file: ``<virtualenv prefix>/var/instance/invenio.cfg`` - Environment variables: ``APP_<variable name>`` """ from __future__ import absolute_import, print_function from datetime import timedelta from invenio_app.config import APP_DEFAULT_SECURE_HEADERS from invenio_previewer.config import PREVIEWER_PREFERENCE as BASE_PREFERENCE def _(x): """Identity function used to trigger string extraction.""" return x # Rate limiting # ============= #: Storage for ratelimiter. RATELIMIT_STORAGE_URL = 'redis://localhost:6379/3' # I18N # ==== #: Default language BABEL_DEFAULT_LANGUAGE = 'en' #: Default time zone BABEL_DEFAULT_TIMEZONE = 'Europe/Zurich' #: Other supported languages (do not include the default language in list). I18N_LANGUAGES = [ # ('fr', _('French')) ] # Base templates # ============== #: Global base template. BASE_TEMPLATE = 'testinvenio/page.html' #: Cover page base template (used for e.g. login/sign-up). COVER_TEMPLATE = 'invenio_theme/page_cover.html' #: Footer base template. FOOTER_TEMPLATE = 'invenio_theme/footer.html' #: Header base template. HEADER_TEMPLATE = 'invenio_theme/header.html' #: Settings base template. SETTINGS_TEMPLATE = 'invenio_theme/page_settings.html' # Theme configuration # =================== #: Site name THEME_SITENAME = _('testInvenio') #: Use default frontpage. THEME_FRONTPAGE = True #: Frontpage title. THEME_FRONTPAGE_TITLE = _('testInvenio') #: Frontpage template. THEME_FRONTPAGE_TEMPLATE = 'testinvenio/frontpage.html' # Email configuration # =================== #: Email address for support. SUPPORT_EMAIL = "[email protected]" #: Disable email sending by default. MAIL_SUPPRESS_SEND = True # Assets # ====== #: Static files collection method (defaults to copying files). COLLECT_STORAGE = 'flask_collect.storage.file' # Accounts # ======== #: Email address used as sender of account registration emails. SECURITY_EMAIL_SENDER = SUPPORT_EMAIL #: Email subject for account registration emails. SECURITY_EMAIL_SUBJECT_REGISTER = _( "Welcome to testInvenio!") #: Redis session storage URL. ACCOUNTS_SESSION_REDIS_URL = 'redis://localhost:6379/1' #: Enable session/user id request tracing. This feature will add X-Session-ID #: and X-User-ID headers to HTTP response. You MUST ensure that NGINX (or other #: proxies) removes these headers again before sending the response to the #: client. Set to False, in case of doubt. ACCOUNTS_USERINFO_HEADERS = True # Celery configuration # ==================== BROKER_URL = 'amqp://guest:guest@localhost:5672/' #: URL of message broker for Celery (default is RabbitMQ). CELERY_BROKER_URL = 'amqp://guest:guest@localhost:5672/' #: URL of backend for result storage (default is Redis). CELERY_RESULT_BACKEND = 'redis://localhost:6379/2' #: Scheduled tasks configuration (aka cronjobs). CELERY_BEAT_SCHEDULE = { 'indexer': { 'task': 'invenio_indexer.tasks.process_bulk_queue', 'schedule': timedelta(minutes=5), }, 'accounts': { 'task': 'invenio_accounts.tasks.clean_session_table', 'schedule': timedelta(minutes=60), }, } # Database # ======== #: Database URI including user and password SQLALCHEMY_DATABASE_URI = \ 'postgresql+psycopg2://testinvenio:testinvenio@localhost/testinvenio' # JSONSchemas # =========== #: Hostname used in URLs for local JSONSchemas. JSONSCHEMAS_HOST = 'testinvenio.com' # Flask configuration # =================== # See details on # http://flask.pocoo.org/docs/0.12/config/#builtin-configuration-values #: Secret key - each installation (dev, production, ...) needs a separate key. #: It should be changed before deploying. SECRET_KEY = 'CHANGE_ME' #: Max upload size for form data via application/mulitpart-formdata. MAX_CONTENT_LENGTH = 100 * 1024 * 1024 # 100 MiB #: Sets cookie with the secure flag by default SESSION_COOKIE_SECURE = True #: Since HAProxy and Nginx route all requests no matter the host header #: provided, the allowed hosts variable is set to localhost. In production it #: should be set to the correct host and it is strongly recommended to only #: route correct hosts to the application. APP_ALLOWED_HOSTS = ['testinvenio.com', 'localhost', '127.0.0.1'] # OAI-PMH # ======= OAISERVER_ID_PREFIX = 'oai:testinvenio.com:' # Previewers # ========== #: Include IIIF preview for images. PREVIEWER_PREFERENCE = ['iiif_image'] + BASE_PREFERENCE # Debug # ===== # Flask-DebugToolbar is by default enabled when the application is running in # debug mode. More configuration options are available at # https://flask-debugtoolbar.readthedocs.io/en/latest/#configuration #: Switches off incept of redirects by Flask-DebugToolbar. DEBUG_TB_INTERCEPT_REDIRECTS = False # Configures Content Security Policy for PDF Previewer # Remove it if you are not using PDF Previewer APP_DEFAULT_SECURE_HEADERS['content_security_policy'] = { 'default-src': ["'self'", "'unsafe-inline'"], 'object-src': ["'none'"], 'style-src': ["'self'", "'unsafe-inline'"], 'font-src': ["'self'", "data:", "https://fonts.gstatic.com", "https://fonts.googleapis.com"], }
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import numpy as np from qiskit_metal import draw, Dict from qiskit_metal.qlibrary.core import BaseQubit class TunableCoupler01(BaseQubit): """One of the tunable couplers Based off the implementation in https://arxiv.org/pdf/2011.01261.pdf. WIP - initial test structure Inherits `BaseQubit` class Description: Creates a tunable coupler, interdigitated capacitor to ground, with a junction to ground and a coupler arm. The shapes origin is shown with 0. X the location of the SQUID. :: connection claw _____ X | | | | | | | | | | | | | | | | | | charge island | | | | | | --------------------0-------------------- Options: Convention: Values (unless noted) are strings with units included, (e.g., '30um') BaseQubit Default Options: * pos_x: '0um' -- Origin of the component (see above figure) * pos_y: '0um' -- Origin of the component (see above figure) * orientation: '0' -- Degree of component rotation * layer: '1' -- layer info, gds and other applications * connection_pads: empty Dict -- Currently not used, connection count is static. (WIP) * _default_connection_pads: empty Dict -- The default values for the (if any) connection lines of the qubit. Default Options: * c_width: '400um' -- The width (x-axis) of the interdigitated charge island * l_width: '20um' -- The width of lines forming the body and arms of the charge island * l_gap: '10um' -- The dielectric gap of the charge island to ground * a_height: '60um' -- The length of the arms forming the 'fingers' of the charge island * cp_height: '15um' -- The thickness (y-axis) of the connection claw * cp_arm_length: '30um' -- The length of the 'fingers' of the connection claw (Warning: can break the component if they are too long) * cp_arm_width: '6um' -- The width of the 'fingers' of the connection claw (Warning: can break the component if too wide) * cp_gap: '6um' -- The dielectric gap of the connection claw * cp_gspace: '3um' -- How much ground remains between the connection claw and the charge island * fl_width: '5um' -- Width of the flux line * fl_gap: '3um' -- Dielectric gap of the flux line * fl_length: '10um' -- Length of the flux line for mutual inductance to the SQUID * fl_ground: '2um' -- Amount of ground between the SQUID and the flux line * _default_connection_pads: Currently empty """ default_options = Dict(pos_x='0um', pos_y='0um', orientation='0', layer='1', c_width='400um', l_width='20um', l_gap='10um', a_height='60um', cp_height='15um', cp_arm_length='30um', cp_arm_width='6um', cp_gap='6um', cp_gspace='3um', fl_width='5um', fl_gap='3um', fl_length='10um', fl_ground='2um') component_metadata = Dict(short_name='Pocket', _qgeometry_table_path='True', _qgeometry_table_poly='True', _qgeometry_table_junction='True') TOOLTIP = """One of the tunable couplers""" def make(self): """Builds the component.""" p = self.p #Draw the charge island btm = draw.shapely.geometry.box(-p.c_width / 2, -p.l_width / 2, 0, p.l_width / 2) x_spot = p.c_width / 2 - p.l_width / 2 arm1 = draw.shapely.geometry.box(-(x_spot + p.l_width / 2), p.l_width / 2, -(x_spot - p.l_width / 2), p.a_height) arm2 = draw.shapely.geometry.box(-((x_spot) * 3 / 5 + p.l_width / 2), p.l_width / 2, -((x_spot) * 3 / 5 - p.l_width / 2), p.a_height) arm3 = draw.shapely.geometry.box(-((x_spot) * 1 / 5 + p.l_width / 2), p.l_width / 2, -((x_spot) * 1 / 5 - p.l_width / 2), p.a_height) left_side = draw.shapely.ops.cascaded_union([btm, arm1, arm2, arm3]) cap_island = draw.shapely.ops.cascaded_union([ left_side, draw.shapely.affinity.scale(left_side, xfact=-1, yfact=1, origin=(0, 0)) ]) cap_subtract = cap_island.buffer(p.l_gap, cap_style=3, join_style=2) #Reference coordinates cpl_x = 1 / 5 * x_spot cpl_y = p.a_height + p.l_gap + p.cp_gap + p.cp_gspace fl_y = p.a_height + p.l_gap + p.fl_ground + p.fl_gap + p.fl_width / 2 #Draw the junction and flux line rect_jj = draw.LineString([(-cpl_x * 3, p.a_height), (-cpl_x * 3, p.a_height + p.l_gap)]) flux_line = draw.LineString([[-cpl_x * 3 - p.fl_length, fl_y], [-cpl_x * 3, fl_y], [-cpl_x * 3, fl_y + 0.01]]) #Draw the connector cpl_x = 1 / 5 * x_spot cpl_y = p.a_height + p.l_gap + p.cp_gap + p.cp_gspace con_pad = draw.shapely.geometry.box( cpl_x - 1 / 5 * x_spot - p.cp_arm_width / 2, cpl_y, cpl_x + 1 / 5 * x_spot + p.cp_arm_width / 2, cpl_y + p.cp_height) con_arm_l = draw.shapely.geometry.box( cpl_x - 1 / 5 * x_spot - p.cp_arm_width / 2, cpl_y - p.cp_arm_length, cpl_x - 1 / 5 * x_spot + p.cp_arm_width / 2, cpl_y) con_arm_r = draw.shapely.geometry.box( cpl_x + 1 / 5 * x_spot - p.cp_arm_width / 2, cpl_y - p.cp_arm_length, cpl_x + 1 / 5 * x_spot + p.cp_arm_width / 2, cpl_y) con_body = draw.shapely.ops.cascaded_union( [con_pad, con_arm_l, con_arm_r]) con_sub = con_body.buffer(p.cp_gap, cap_style=3, join_style=2) con_pin = draw.LineString([[cpl_x, cpl_y], [cpl_x, cpl_y + p.cp_height]]) #Rotate and translate. c_items = [ cap_island, cap_subtract, rect_jj, con_body, con_sub, flux_line, con_pin ] c_items = draw.rotate(c_items, p.orientation, origin=(0, 0)) c_items = draw.translate(c_items, p.pos_x, p.pos_y) [ cap_island, cap_subtract, rect_jj, con_body, con_sub, flux_line, con_pin ] = c_items #Add to qgeometry self.add_qgeometry('poly', { 'cap_island': cap_island, 'connector_body': con_body }, layer=p.layer) self.add_qgeometry('poly', { 'cap_subtract': cap_subtract, 'connector_sub': con_sub }, layer=p.layer, subtract=True) self.add_qgeometry('path', {'flux_line': flux_line}, width=p.fl_width, layer=p.layer) self.add_qgeometry('path', {'flux_line_sub': flux_line}, width=p.fl_width + 2 * p.fl_gap, subtract=True, layer=p.layer) self.add_qgeometry('junction', dict(rect_jj=rect_jj), width=p.l_width) #Add pin self.add_pin('Control', points=np.array(con_pin), width=p.l_width, input_as_norm=True) self.add_pin('Flux', points=np.array(flux_line.coords[-2:]), width=p.l_width, input_as_norm=True)
# -*- coding: utf-8 -*- ## Demonstration of Link with multiple outputs: Combined-Heat-and-Power (CHP) with fixed heat-power ratio # # For a CHP with a more complicated heat-power feasible operational area, see https://pypsa.readthedocs.io/en/latest/examples/power-to-gas-boiler-chp.html. # # This example demonstrates a Link component with more than one bus output ("bus2" in this case). In general links can have many output buses. # # In this example a CHP must be heat-following because there is no other supply of heat to the bus "Frankfurt heat". import numpy as np import pypsa # First tell PyPSA that links will have a 2nd bus by # overriding the component_attrs. This can be done for # as many buses as you need with format busi for i = 2,3,4,5,.... override_component_attrs = pypsa.descriptors.Dict( {k: v.copy() for k, v in pypsa.components.component_attrs.items()} ) override_component_attrs["Link"].loc["bus2"] = [ "string", np.nan, np.nan, "2nd bus", "Input (optional)", ] override_component_attrs["Link"].loc["efficiency2"] = [ "static or series", "per unit", 1.0, "2nd bus efficiency", "Input (optional)", ] override_component_attrs["Link"].loc["p2"] = [ "series", "MW", 0.0, "2nd bus output", "Output", ] network = pypsa.Network(override_component_attrs=override_component_attrs) network.add("Bus", "Frankfurt", carrier="AC") network.add("Load", "Frankfurt", bus="Frankfurt", p_set=5) network.add("Bus", "Frankfurt heat", carrier="heat") network.add("Load", "Frankfurt heat", bus="Frankfurt heat", p_set=3) network.add("Bus", "Frankfurt gas", carrier="gas") network.add("Store", "Frankfurt gas", e_initial=1e6, e_nom=1e6, bus="Frankfurt gas") network.add( "Link", "OCGT", bus0="Frankfurt gas", bus1="Frankfurt", p_nom_extendable=True, capital_cost=600, efficiency=0.4, ) network.add( "Link", "CHP", bus0="Frankfurt gas", bus1="Frankfurt", bus2="Frankfurt heat", p_nom_extendable=True, capital_cost=1400, efficiency=0.3, efficiency2=0.3, ) network.lopf() network.loads_t.p network.links_t.p0 network.links_t.p1 network.links_t.p2
import argparse import math import numpy as np import torch from torch import nn from basicsr.archs.stylegan2_arch import StyleGAN2Generator from basicsr.metrics.fid import (calculate_fid, extract_inception_features, load_patched_inception_v3) def calculate_stylegan2_fid(): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') parser = argparse.ArgumentParser() parser.add_argument( 'ckpt', type=str, help='Path to the stylegan2 checkpoint.') parser.add_argument( 'fid_stats', type=str, help='Path to the dataset fid statistics.') parser.add_argument('--size', type=int, default=256) parser.add_argument('--channel_multiplier', type=int, default=2) parser.add_argument('--batch_size', type=int, default=64) parser.add_argument('--num_sample', type=int, default=50000) parser.add_argument('--truncation', type=float, default=1) parser.add_argument('--truncation_mean', type=int, default=4096) args = parser.parse_args() # create stylegan2 model generator = StyleGAN2Generator( out_size=args.size, num_style_feat=512, num_mlp=8, channel_multiplier=args.channel_multiplier, resample_kernel=(1, 3, 3, 1)) generator.load_state_dict(torch.load(args.ckpt)['params_ema']) generator = nn.DataParallel(generator).eval().to(device) if args.truncation < 1: with torch.no_grad(): truncation_latent = generator.mean_latent(args.truncation_mean) else: truncation_latent = None # inception model inception = load_patched_inception_v3(device) total_batch = math.ceil(args.num_sample / args.batch_size) def sample_generator(total_batch): for i in range(total_batch): with torch.no_grad(): latent = torch.randn(args.batch_size, 512, device=device) samples, _ = generator([latent], truncation=args.truncation, truncation_latent=truncation_latent) yield samples features = extract_inception_features( sample_generator(total_batch), inception, total_batch, device) features = features.numpy() total_len = features.shape[0] features = features[:args.num_sample] print(f'Extracted {total_len} features, ' f'use the first {features.shape[0]} features to calculate stats.') sample_mean = np.mean(features, 0) sample_cov = np.cov(features, rowvar=False) # load the dataset stats stats = torch.load(args.fid_stats) real_mean = stats['mean'] real_cov = stats['cov'] # calculate FID metric fid = calculate_fid(sample_mean, sample_cov, real_mean, real_cov) print('fid:', fid) if __name__ == '__main__': calculate_stylegan2_fid()
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Creates and runs `Estimator` for object detection model on TPUs. This uses the TPUEstimator API to define and run a model in TRAIN/EVAL modes. """ # pylint: enable=line-too-long from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags import tensorflow.compat.v1 as tf from tensorflow.compat.v1 import estimator as tf_estimator from object_detection import model_lib tf.flags.DEFINE_bool('use_tpu', True, 'Use TPUs rather than plain CPUs') # Cloud TPU Cluster Resolvers flags.DEFINE_string( 'gcp_project', default=None, help='Project name for the Cloud TPU-enabled project. If not specified, we ' 'will attempt to automatically detect the GCE project from metadata.') flags.DEFINE_string( 'tpu_zone', default=None, help='GCE zone where the Cloud TPU is located in. If not specified, we ' 'will attempt to automatically detect the GCE project from metadata.') flags.DEFINE_string( 'tpu_name', default=None, help='Name of the Cloud TPU for Cluster Resolvers.') flags.DEFINE_integer('num_shards', 8, 'Number of shards (TPU cores).') flags.DEFINE_integer('iterations_per_loop', 100, 'Number of iterations per TPU training loop.') # For mode=train_and_eval, evaluation occurs after training is finished. # Note: independently of steps_per_checkpoint, estimator will save the most # recent checkpoint every 10 minutes by default for train_and_eval flags.DEFINE_string('mode', 'train', 'Mode to run: train, eval') flags.DEFINE_integer('train_batch_size', None, 'Batch size for training. If ' 'this is not provided, batch size is read from training ' 'config.') flags.DEFINE_integer('num_train_steps', None, 'Number of train steps.') flags.DEFINE_boolean('eval_training_data', False, 'If training data should be evaluated for this job.') flags.DEFINE_integer('sample_1_of_n_eval_examples', 1, 'Will sample one of ' 'every n eval input examples, where n is provided.') flags.DEFINE_integer('sample_1_of_n_eval_on_train_examples', 5, 'Will sample ' 'one of every n train input examples for evaluation, ' 'where n is provided. This is only used if ' '`eval_training_data` is True.') flags.DEFINE_string( 'model_dir', None, 'Path to output model directory ' 'where event and checkpoint files will be written.') flags.DEFINE_string('pipeline_config_path', None, 'Path to pipeline config ' 'file.') flags.DEFINE_integer( 'max_eval_retries', 0, 'If running continuous eval, the maximum number of ' 'retries upon encountering tf.errors.InvalidArgumentError. If negative, ' 'will always retry the evaluation.' ) FLAGS = tf.flags.FLAGS def main(unused_argv): flags.mark_flag_as_required('model_dir') flags.mark_flag_as_required('pipeline_config_path') tpu_cluster_resolver = ( tf.distribute.cluster_resolver.TPUClusterResolver( tpu=[FLAGS.tpu_name], zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)) tpu_grpc_url = tpu_cluster_resolver.get_master() config = tf_estimator.tpu.RunConfig( master=tpu_grpc_url, evaluation_master=tpu_grpc_url, model_dir=FLAGS.model_dir, tpu_config=tf_estimator.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_shards)) kwargs = {} if FLAGS.train_batch_size: kwargs['batch_size'] = FLAGS.train_batch_size train_and_eval_dict = model_lib.create_estimator_and_inputs( run_config=config, pipeline_config_path=FLAGS.pipeline_config_path, train_steps=FLAGS.num_train_steps, sample_1_of_n_eval_examples=FLAGS.sample_1_of_n_eval_examples, sample_1_of_n_eval_on_train_examples=( FLAGS.sample_1_of_n_eval_on_train_examples), use_tpu_estimator=True, use_tpu=FLAGS.use_tpu, num_shards=FLAGS.num_shards, save_final_config=FLAGS.mode == 'train', **kwargs) estimator = train_and_eval_dict['estimator'] train_input_fn = train_and_eval_dict['train_input_fn'] eval_input_fns = train_and_eval_dict['eval_input_fns'] eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn'] train_steps = train_and_eval_dict['train_steps'] if FLAGS.mode == 'train': estimator.train(input_fn=train_input_fn, max_steps=train_steps) # Continuously evaluating. if FLAGS.mode == 'eval': if FLAGS.eval_training_data: name = 'training_data' input_fn = eval_on_train_input_fn else: name = 'validation_data' # Currently only a single eval input is allowed. input_fn = eval_input_fns[0] model_lib.continuous_eval(estimator, FLAGS.model_dir, input_fn, train_steps, name, FLAGS.max_eval_retries) if __name__ == '__main__': tf.app.run()
import unittest import networkx as nx from core.placement.swsolver import RecShortestWalkSolver class TestShorthestWalkSolverMethods(unittest.TestCase): def setUp(self): self.g1 = nx.read_weighted_edgelist('tests/test_graph_2.txt', create_using=nx.MultiDiGraph, nodetype=int) def test_shortest_walk(self): u = 0 v = 3 k = 1 weight_shortest_walk = 2 (weight, walk) = RecShortestWalkSolver.shortest_walk(self.g1, u, v, k) print(walk) self.assertEqual(weight, weight_shortest_walk) self.assertEqual(walk, [0, 3]) u = 0 v = 3 k = 2 weight_shortest_walk = 3 (weight, walk) = RecShortestWalkSolver.shortest_walk(self.g1, u, v, k) print(walk) self.assertEqual(weight, weight_shortest_walk) self.assertEqual(walk, [0, 0, 3]) if __name__ == '__main__': unittest.main()
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import testtools from webob import headers as wb_headers import microversion_parse class TestWebobHeaders(testtools.TestCase): """Webob uses a dict-like header which is not actually a dict.""" def test_simple_headers(self): headers = wb_headers.EnvironHeaders({ 'HTTP_HEADER_ONE': 'alpha', 'HTTP_HEADER_TWO': 'beta', 'HTTP_HEADER_THREE': 'gamma', }) folded_headers = microversion_parse.fold_headers(headers) self.assertEqual(3, len(folded_headers)) self.assertEqual(set(['header-one', 'header-three', 'header-two']), set(folded_headers.keys())) self.assertEqual('gamma', folded_headers['header-three']) def test_simple_match(self): headers = wb_headers.EnvironHeaders({ 'HTTP_HEADER_ONE': 'alpha', 'HTTP_OPENSTACK_API_VERSION': 'compute 2.1', 'HTTP_HEADER_TWO': 'beta', }) version = microversion_parse.check_standard_header(headers, 'compute') self.assertEqual('2.1', version) def test_match_multiple_services(self): headers = wb_headers.EnvironHeaders({ 'HTTP_HEADER_ONE': 'alpha', 'HTTP_OPENSTACK_API_VERSION': 'network 5.9 ,compute 2.1,telemetry 7.8', 'HTTP_HEADER_TWO': 'beta', }) version = microversion_parse.check_standard_header( headers, 'compute') self.assertEqual('2.1', version) version = microversion_parse.check_standard_header( headers, 'telemetry') self.assertEqual('7.8', version) def test_legacy_headers_straight(self): headers = wb_headers.EnvironHeaders({ 'HTTP_HEADER_ONE': 'alpha', 'HTTP_X_OPENSTACK_NOVA_API_VERSION': ' 2.1 ', 'HTTP_HEADER_TWO': 'beta', }) version = microversion_parse.get_version( headers, service_type='compute', legacy_headers=['x-openstack-nova-api-version']) self.assertEqual('2.1', version) def test_legacy_headers_folded(self): headers = wb_headers.EnvironHeaders({ 'HTTP_HEADER_ONE': 'alpha', 'HTTP_X_OPENSTACK_NOVA_API_VERSION': ' 2.1, 9.2 ', 'HTTP_HEADER_TWO': 'beta', }) version = microversion_parse.get_version( headers, service_type='compute', legacy_headers=['x-openstack-nova-api-version']) self.assertEqual('9.2', version)
from fourparts.commons.Orbit import Orbit import pytest def test_cases(): orbit_1 = [1, 2, 3] orbit_2 = ("X", "Y", "Z", "T") return [ ([1], 0, [1]), (orbit_1, 0, [1, 2, 3]), (orbit_1, 1, [2, 3, 1]), (orbit_2, 3, ["T", "X", "Y", "Z"]), ] @pytest.mark.parametrize("orbit, index, expected", test_cases()) def test_eval(orbit, index, expected): assert Orbit(orbit, index).get_curr_orbit() == expected
from flask import jsonify from flask import Flask,request from flaskext.mysql import MySQL from flask_cors import CORS, cross_origin mysql = MySQL() app = Flask(__name__) CORS(app) app.config['MYSQL_DATABASE_USER'] = 'demo' app.config['MYSQL_DATABASE_PASSWORD'] = '37cnit73' app.config['MYSQL_DATABASE_DB'] = 'mysql' app.config['MYSQL_DATABASE_HOST'] = 'localhost' mysql.init_app(app) @app.route("/realtime") def real(): try: cursor = mysql.connect().cursor() cursor.execute("SELECT * from LAST;") data = cursor.fetchall() dic_ret = {"samples":[{"ip":i[1],"pps":i[2], "ts":i[3]} for i in data]} except Exception as e: return str(e) return jsonify(dic_ret) @app.route("/flowhistory") def fhistory(): try: flow = request.args.get('ip') ts = request.args.get('ts') cursor = mysql.connect().cursor() cursor.execute("SELECT * from HISTORY where FLOW='"+flow+"' AND TIMESTAMP > '"+ts+"';") data = cursor.fetchall() dic_ret = {"samples":[{"ip":i[1],"pps":i[2], "ts":i[3]} for i in data]} except Exception as e: return str(e) return jsonify(dic_ret) @app.route("/history") def history(): try: cursor = mysql.connect().cursor() cursor.execute("SELECT COUNT(FLOW),FLOW FROM HISTORY GROUP BY FLOW ORDER BY COUNT(FLOW) DESC;") data = cursor.fetchall() dic_ret={} dic_ret["ip_list"] = [i[1] for i in data] except Exception as e: return str(e) return jsonify(dic_ret) @app.route("/historyCounter") def historyCounter(): try: cursor = mysql.connect().cursor() cursor.execute("SELECT COUNT(FLOW),FLOW FROM HISTORY GROUP BY FLOW ORDER BY COUNT(FLOW) DESC;") data = cursor.fetchall() dic_ret={} dic_ret["ip_list"] = [{"ip":i[1],"counter":i[0]} for i in data] except Exception as e: return str(e) return jsonify(dic_ret) if __name__ == "__main__": app.run(threaded=True)
texto = '' print(f'Resultado: {texto}') texto = str(input('Escreva algo: ')) print(f'Resultado: {texto}') texto = 4 print(f'Resultado: {texto}')
import json import logging import faker from .coordinator import CoordinatorAgent from .passenger import PassengerAgent from .taxi import TaxiAgent logger = logging.getLogger() faker_factory = faker.Factory.create() class Scenario(object): """ A scenario object reads a file with a JSON representation of a scenario and is used to create the participant agents. """ def __init__(self, filename): """ The Scenario constructor reads the JSON file and creates the defined agents found in that file. Args: filename (str): the name of the scenario file """ self.taxis = [] self.passengers = [] self.scenario = None with open(filename, 'r') as f: logger.info("Reading scenario {}".format(filename)) self.scenario = json.load(f) def load(self, coordinator: CoordinatorAgent): logger.info("Loading scenario...") for taxi in self.scenario["taxis"]: password = taxi["password"] if "password" in taxi else faker_factory.password() speed = taxi["speed"] if "speed" in taxi else None coordinator.create_agent(TaxiAgent, taxi["name"], password, taxi["position"], speed=speed) for passenger in self.scenario["passengers"]: password = passenger["password"] if "password" in passenger else faker_factory.password() coordinator.create_agent(PassengerAgent, passenger["name"], password, passenger["position"], target=passenger["dest"])
# -*- coding: utf-8 -*- { "name" : "POS Repair Order", "summary" : "POS Repair Order.", "category" : "Point Of Sale", "version" : "1.0.0", "author" : "Prolitus Technologies Pvt. Ltd.", "license" : "Other proprietary", "depends" : ['point_of_sale', 'repair', 'hr', 'pos_orders', 'inter_pos_warehouse_tranfer', 'pos_product_detail'], "data" : [ 'reports/report_file.xml', 'reports/quotation_report.xml', 'reports/pos_order_quotation_report.xml', 'data/send_quotation_template.xml', 'data/ir_sequence_data.xml', 'security/ir.model.access.csv', 'wizard/assign_wizard_view.xml', 'wizard/add_repair_line_wizard_view.xml', 'wizard/remove_repair_line_wizard_view.xml', 'wizard/repair_order_pickings_wizard_view.xml', 'views/pos_config_view.xml', 'views/template.xml', 'views/pos_quotes_view.xml', 'views/customer_vehicle_view.xml', 'views/service_history_view.xml', 'views/product_template_view.xml', 'views/bay.xml', 'views/removed_repair_line_view.xml', 'views/stock_warehouse_view.xml', 'views/stock_picking_view.xml' ], "qweb" : ['static/src/xml/pos_orders.xml'], "application" : True, "installable" : True, "auto_install" : False, "pre_init_hook" : "pre_init_check", }
# Created byMartin.cz # Copyright (c) Martin Strohalm. All rights reserved. import pero class DrawTest(pero.Graphics): """Test case for text properties drawing.""" def draw(self, canvas, *args, **kwargs): """Draws the test.""" # clear canvas canvas.fill(pero.colors.White) # init glyphs line = pero.Line( line_width = 1, line_color = pero.colors.Red) label = pero.Text( font_size = 12, font_name = "Arial") # init coords x = 20 y = 20 # test family label.draw(canvas, x=x, y=y, text="serif", font_family=pero.FONT_FAMILY_SERIF, font_name=pero.UNDEF) x += 60 label.draw(canvas, x=x, y=y, text="sans-serif", font_family=pero.FONT_FAMILY_SANS, font_name=pero.UNDEF) x += 60 label.draw(canvas, x=x, y=y, text="monospace", font_family=pero.FONT_FAMILY_MONO, font_name=pero.UNDEF) x = 20 y += 30 # test name label.draw(canvas, x=x, y=y, text="arial", font_name='Arial', font_size=12) x += 60 label.draw(canvas, x=x, y=y, text="times", font_name="Times New Roman", font_size=12) x += 60 label.draw(canvas, x=x, y=y, text="courier", font_name="Courier New", font_size=12) x = 20 y += 30 # test style label.draw(canvas, x=x, y=y, text="normal", font_style=pero.FONT_STYLE_NORMAL) x += 60 label.draw(canvas, x=x, y=y, text="italic", font_style=pero.FONT_STYLE_ITALIC) x = 20 y += 30 # test weight label.draw(canvas, x=x, y=y, text="normal", font_weight=pero.FONT_WEIGHT_NORMAL) x += 60 label.draw(canvas, x=x, y=y, text="light", font_weight=pero.FONT_WEIGHT_LIGHT) x += 60 label.draw(canvas, x=x, y=y, text="bold", font_weight=pero.FONT_WEIGHT_BOLD) x = 20 y += 30 # test size label.draw(canvas, x=x, y=y, text="size 10", font_size=10) x += 60 label.draw(canvas, x=x, y=y, text="size 12", font_size=12) x += 60 label.draw(canvas, x=x, y=y, text="size 14", font_size=14) x = 20 y += 30 # test color label.draw(canvas, x=x, y=y, text="black", text_color=pero.colors.Black, text_bgr_color=None) x += 50 label.draw(canvas, x=x, y=y, text="blue", text_color=pero.colors.Blue, text_bgr_color=None) x += 50 label.draw(canvas, x=x, y=y, text="background", text_color=pero.colors.LightGrey, text_bgr_color=pero.colors.Black) x = 20 y += 30 # test alignment line.draw(canvas, x1=x, y1=y-5, x2=x, y2=y+17) label.draw(canvas, x=x, y=y, text="LEFT", text_align=pero.TEXT_ALIGN_LEFT) x += 100 line.draw(canvas, x1=x, y1=y-5, x2=x, y2=y+17) label.draw(canvas, x=x, y=y, text="CENTER", text_align=pero.TEXT_ALIGN_CENTER) x += 100 line.draw(canvas, x1=x, y1=y-5, x2=x, y2=y+17) label.draw(canvas, x=x, y=y, text="RIGHT", text_align=pero.TEXT_ALIGN_RIGHT) x = 20 y += 50 # test baseline line.draw(canvas, x1=x-5, y1=y, x2=x+50, y2=y) label.draw(canvas, x=x, y=y, text="TOP", text_base=pero.TEXT_BASE_TOP) x += 100 line.draw(canvas, x1=x-5, y1=y, x2=x+50, y2=y) label.draw(canvas, x=x, y=y, text="MIDDLE", text_base=pero.TEXT_BASE_MIDDLE) x += 100 line.draw(canvas, x1=x-5, y1=y, x2=x+55, y2=y) label.draw(canvas, x=x, y=y, text="BOTTOM", text_base=pero.TEXT_BASE_BOTTOM) # run test if __name__ == '__main__': pero.debug(DrawTest(), 'show', "Text", 350, 280)
# Generated by Django 3.1 on 2021-01-21 10:40 import django.db.models.deletion from django.db import migrations, models import elearn.models class Migration(migrations.Migration): dependencies = [ ('elearn', '0011_auto_20210108_0028'), ] operations = [ migrations.CreateModel( name='AssignmentSolution', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('file_url', models.ImageField(upload_to=elearn.models.file_directory_path)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='elearn.classworkpost')), ('student', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='elearn.student')), ], ), ]
from typing import Callable import socketio import config class SocketClient(): def __init__(self) -> None: super().__init__() self.on_exercise_data_received: Callable[[dict], None] = None self.on_duration_received: Callable[[int], None] = None self.on_idle_received: Callable[[bool], None] = None sio = socketio.Client() self.sio = sio @sio.event def exercise_data(data): self.on_exercise_data_received(data) @sio.event def idle_state(is_idle): self.on_idle_received(is_idle) @sio.event def duration(duration): self.on_duration_received(duration) def emit(self, event: str): self.sio.emit(event) def start(self): self.sio.connect(config.properties.server_address)
# MIT License # # Copyright (c) 2019 Nihaal Sangha (Orangutan) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import re from setuptools import find_packages, setup with open('requirements.txt') as f: requirements = f.read().splitlines() with open('mixer/__init__.py') as f: version = re.search(r'^__version__\s*=\s*[\'"]([^\'"]*)[\'"]', f.read(), re.MULTILINE).group(1) if not version: raise RuntimeError('Version is not set') if version.endswith(('a', 'b', 'rc')): # Append version identifier based on commit count try: import subprocess p = subprocess.Popen(['git', 'rev-list', '--count', 'HEAD'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = p.communicate() if out: version += out.decode('utf-8').strip() p = subprocess.Popen(['git', 'rev-parse', '--short', 'HEAD'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = p.communicate() if out: version += '+g' + out.decode('utf-8').strip() except Exception: pass with open('README.md') as f: readme = f.read() setup( name="Mixer.py", author="Nihaal Sangha (Orangutan)", url="https://github.com/OrangutanGaming/Mixer.py", project_urls={ "Issue tracker": "https://github.com/OrangutanGaming/Mixer.py/issues", }, version=version, packages=find_packages(), license="MIT", description="An async Mixer library", long_description=readme, long_description_content_type="text/markdown", include_package_data=True, install_requires=requirements, python_requires='>=3.6', classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", ] )
""" Copyright (c) 2016-present, Facebook, Inc. All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. An additional grant of patent rights can be found in the PATENTS file in the same directory. """ import grpc import logging from magma.common.grpc_client_manager import GRPCClientManager from magma.common.rpc_utils import grpc_async_wrapper from magma.common.redis.containers import RedisFlatDict from magma.common.service import MagmaService from magma.state.keys import make_scoped_device_id from magma.state.redis_dicts import get_json_redis_dicts, \ get_proto_redis_dicts from orc8r.protos.state_pb2 import DeleteStatesRequest, StateID DEFAULT_GRPC_TIMEOUT = 10 class GarbageCollector: """ GarbageCollector periodically fetches all state in Redis that is marked as garbage and deletes that state from the Orchestrator State service. If the RPC call succeeds, it then deletes the state from Redis """ def __init__(self, service: MagmaService, grpc_client_manager: GRPCClientManager): self._service = service # Redis dicts for each type of state to replicate self._redis_dicts = [] self._redis_dicts.extend(get_proto_redis_dicts(service.config)) self._redis_dicts.extend(get_json_redis_dicts(service.config)) # _grpc_client_manager to manage grpc client recyclings self._grpc_client_manager = grpc_client_manager async def run_garbage_collection(self): request = await self._collect_states_to_delete() if request is not None: await self._send_to_state_service(request) async def _collect_states_to_delete(self): states_to_delete = [] for redis_dict in self._redis_dicts: for key in redis_dict.garbage_keys(): state_scope = redis_dict.state_scope device_id = make_scoped_device_id(key, state_scope) sid = StateID(deviceID=device_id, type=redis_dict.redis_type) states_to_delete.append(sid) if len(states_to_delete) == 0: logging.debug("Not garbage collecting state. No state to delete!") return None # NetworkID will be filled in by Orchestrator from GW context return DeleteStatesRequest(networkID="", ids=states_to_delete) async def _send_to_state_service(self, request: DeleteStatesRequest): state_client = self._grpc_client_manager.get_client() try: await grpc_async_wrapper( state_client.DeleteStates.future( request, DEFAULT_GRPC_TIMEOUT, )) except grpc.RpcError as err: logging.error("GRPC call failed for state deletion: %s", err) else: for redis_dict in self._redis_dicts: for key in redis_dict.garbage_keys(): await self._delete_state_from_redis(redis_dict, key) async def _delete_state_from_redis(self, redis_dict: RedisFlatDict, key: str) -> None: # Ensure that the object isn't updated before deletion with redis_dict.lock(key): deleted = redis_dict.delete_garbage(key) if deleted: logging.debug("Successfully garbage collected " "state for key: %s", key) else: logging.debug("Successfully garbage collected " "state in cloud for key %s. " "Didn't delete locally as the " "object is no longer garbage", key)
#!/usr/bin/env python3 # Import standard modules ... import glob # Import special modules ... try: import PIL import PIL.Image except: raise Exception("\"PIL\" is not installed; run \"pip install --user Pillow\"") from None # Import my modules ... try: import pyguymer3 import pyguymer3.image except: raise Exception("\"pyguymer3\" is not installed; you need to have the Python module from https://github.com/Guymer/PyGuymer3 located somewhere in your $PYTHONPATH") from None # Configure PIL to open images up to 1 GiP ... PIL.Image.MAX_IMAGE_PIXELS = 1024 * 1024 * 1024 # [px] # ****************************************************************************** # Initizalize list ... images = [] # Loop over frames (0,000m to 0,499m) ... for frame in sorted(glob.glob("createFlood_0[0-4][0-9][0-9]m.png")): # Open image as RGB (even if it is paletted) ... image = PIL.Image.open(frame).convert("RGB") # Append it to the list ... images.append(image) # Save 25fps GIF ... images[0].save("createFlood.gif", save_all = True, append_images = images[1:], duration = 40, loop = 0) pyguymer3.image.optimize_image("createFlood.gif", strip = True) # Clean up ... for image in images: image.close() del images # ****************************************************************************** # Set widths ... # NOTE: By inspection, the PNG frames are 1320 wide. widths = [512, 1024] # [px] # Loop over widths ... for width in widths: # Initizalize list ... images = [] # Loop over frames (0,000m to 0,499m) ... for frame in sorted(glob.glob("createFlood_0[0-4][0-9][0-9]m.png")): # Open image as RGB (even if it is paletted) ... image = PIL.Image.open(frame).convert("RGB") # Calculate height ... ratio = float(image.size[0]) / float(image.size[1]) # [px/px] height = round(float(width) / ratio) # [px] # Downscale the image and append it to the list ... images.append(image.resize((width, height), resample = PIL.Image.LANCZOS)) # Save 25fps GIF ... images[0].save("createFlood{:04d}px.gif".format(width), save_all = True, append_images = images[1:], duration = 40, loop = 0) pyguymer3.image.optimize_image("createFlood{:04d}px.gif".format(width), strip = True) # Clean up ... for image in images: image.close() del images
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import logging import sys from typing import Dict from ml.rl.evaluation.evaluator import Evaluator from ml.rl.preprocessing.normalization import ( construct_action_scale_tensor, get_num_output_features, ) from ml.rl.preprocessing.preprocessor import Preprocessor from ml.rl.preprocessing.sparse_to_dense import PandasSparseToDenseProcessor from ml.rl.readers.json_dataset_reader import JSONDatasetReader from ml.rl.tensorboardX import summary_writer_context from ml.rl.thrift.core.ttypes import ( ContinuousActionModelParameters, DDPGModelParameters, DDPGNetworkParameters, DDPGTrainingParameters, NormalizationParameters, RLParameters, ) from ml.rl.training.ddpg_trainer import ActorNetModel, CriticNetModel, DDPGTrainer from ml.rl.training.rl_exporter import ActorExporter from ml.rl.workflow.base_workflow import BaseWorkflow from ml.rl.workflow.helpers import ( export_trainer_and_predictor, minibatch_size_multiplier, parse_args, update_model_for_warm_start, ) from ml.rl.workflow.preprocess_handler import ( ContinuousPreprocessHandler, PreprocessHandler, ) from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) class ContinuousWorkflow(BaseWorkflow): def __init__( self, model_params: ContinuousActionModelParameters, preprocess_handler: PreprocessHandler, state_normalization: Dict[int, NormalizationParameters], action_normalization: Dict[int, NormalizationParameters], use_gpu: bool, use_all_avail_gpus: bool, ): logger.info("Running continuous workflow with params:") logger.info(model_params) model_params = model_params min_action_range_tensor_serving, max_action_range_tensor_serving = construct_action_scale_tensor( action_normalization, model_params.action_rescale_map ) state_dim = get_num_output_features(state_normalization) action_dim = get_num_output_features(action_normalization) # Build Actor Network actor_network = ActorNetModel( layers=( [state_dim] + model_params.actor_training.layers[1:-1] + [action_dim] ), activations=model_params.actor_training.activations, fl_init=model_params.shared_training.final_layer_init, state_dim=state_dim, action_dim=action_dim, ) # Build Critic Network critic_network = CriticNetModel( # Ensure dims match input state and scalar output layers=[state_dim] + model_params.critic_training.layers[1:-1] + [1], activations=model_params.critic_training.activations, fl_init=model_params.shared_training.final_layer_init, state_dim=state_dim, action_dim=action_dim, ) trainer = DDPGTrainer( actor_network, critic_network, model_params, state_normalization, action_normalization, min_action_range_tensor_serving, max_action_range_tensor_serving, use_gpu=use_gpu, use_all_avail_gpus=use_all_avail_gpus, ) trainer = update_model_for_warm_start(trainer) assert type(trainer) == DDPGTrainer, "Warm started wrong model type: " + str( type(trainer) ) evaluator = Evaluator( None, model_params.rl.gamma, trainer, metrics_to_score=trainer.metrics_to_score, ) super().__init__( preprocess_handler, trainer, evaluator, model_params.shared_training.minibatch_size, ) def _get_actor_exporter(trainer, state_normalization, action_normalization): return ActorExporter.from_state_action_normalization( trainer.actor, state_normalization=state_normalization, action_normalization=action_normalization, ) def main(params): # Set minibatch size based on # of devices being used to train params["shared_training"]["minibatch_size"] *= minibatch_size_multiplier( params["use_gpu"], params["use_all_avail_gpus"] ) rl_parameters = RLParameters(**params["rl"]) training_parameters = DDPGTrainingParameters(**params["shared_training"]) actor_parameters = DDPGNetworkParameters(**params["actor_training"]) critic_parameters = DDPGNetworkParameters(**params["critic_training"]) model_params = DDPGModelParameters( rl=rl_parameters, shared_training=training_parameters, actor_training=actor_parameters, critic_training=critic_parameters, ) state_normalization = BaseWorkflow.read_norm_file(params["state_norm_data_path"]) action_normalization = BaseWorkflow.read_norm_file(params["action_norm_data_path"]) writer = SummaryWriter(log_dir=params["model_output_path"]) logger.info("TensorBoard logging location is: {}".format(writer.log_dir)) preprocess_handler = ContinuousPreprocessHandler( Preprocessor(state_normalization, False), Preprocessor(action_normalization, False), PandasSparseToDenseProcessor(), ) workflow = ContinuousWorkflow( model_params, preprocess_handler, state_normalization, action_normalization, params["use_gpu"], params["use_all_avail_gpus"], ) train_dataset = JSONDatasetReader( params["training_data_path"], batch_size=training_parameters.minibatch_size ) eval_dataset = JSONDatasetReader(params["eval_data_path"], batch_size=16) with summary_writer_context(writer): workflow.train_network(train_dataset, eval_dataset, int(params["epochs"])) return export_trainer_and_predictor( workflow.trainer, params["model_output_path"], exporter=_get_actor_exporter( trainer=workflow.trainer, state_normalization=state_normalization, action_normalization=action_normalization, ), ) # noqa if __name__ == "__main__": logging.basicConfig(stream=sys.stdout, level=logging.INFO) params = parse_args(sys.argv) main(params)
import numpy as np from gensim.models import KeyedVectors from resources import EMBEDDING_PATH from sklearn.metrics.pairwise import cosine_similarity def averageEmbedding(model,sentence,lowercase=True): if lowercase: sentence = sentence.lower() vecs = [] for w in sentence.split(): # assume it's already tokenized if w in model: vecs.append( model[w] ) if vecs==[]: vecs.append(np.zeros((model.vector_size,))) return np.mean(vecs,axis=0) if __name__ == "__main__": model = KeyedVectors.load_word2vec_format(EMBEDDING_PATH) avg_list = [] for sentence in ['this is a nice apple .','this apple is quite good.']: avg = averageEmbedding(model,sentence) avg_list.append(avg.reshape(1,-1)) print(" ".join([str(x) for x in list(avg)])) print('similarity: {}'.format(cosine_similarity(avg_list[0],avg_list[1])))
import hashlib import json def get_hash(block): """ Creates a SHA-256 hash of a Block :param block: Block """ # We must make sure that the Dictionary is Ordered, or we'll have inconsistent hashes block_string = json.dumps(block, sort_keys=True).encode() return hashlib.sha256(block_string).hexdigest()
print(1/3) # Division returns float, even dividing two ints.
# encoding: UTF-8 """ 横盘突破策略 注意事项:作者不对交易盈利做任何保证,策略代码仅供参考 """ from __future__ import division import numpy as np import talib import time from cyvn.trader.vtObject import VtBarData from cyvn.trader.vtConstant import EMPTY_STRING from cyvn.trader.app.ctaStrategy.ctaTemplate import (CtaTemplate, BarGenerator, ArrayManager) ######################################################################## class HorizBreakoutStrategy(CtaTemplate): """基于Adxr的交易策略""" className = 'AdxrStrategy' author = u'用Python的交易员' # 策略参数 trailingPrcnt = 0.8 # 移动止损 initDays = 30 # 初始化数据所用的天数 fixedSize = 1 # 每次交易的数量 aPeriod = 11 # 窗口数 # 策略变量 intraTradeHigh = 0 # 持仓期内的最高点 intraTradeLow = 0 # 持仓期内的最低点 buy_high = 0 sell_low = 0 buy_price = 0 sell_price = 0 targetPos = 0 buyOrderIDList = [] # OCO委托买入开仓的委托号 shortOrderIDList = [] # OCO委托卖出开仓的委托号 orderList = [] # 保存委托代码的列表 # 参数列表,保存了参数的名称 paramList = ['name', 'className', 'author', 'vtSymbol', 'aPeriod'] # 变量列表,保存了变量的名称 varList = ['inited', 'trading', 'pos', 'targetPos', 'buy_high', 'sell_low', 'buy_price', 'sell_price' ] # 同步列表,保存了需要保存到数据库的变量名称 syncList = ['pos', 'intraTradeHigh', 'intraTradeLow'] #---------------------------------------------------------------------- def __init__(self, ctaEngine, setting): """Constructor""" super(HorizBreakoutStrategy, self).__init__(ctaEngine, setting) self.bg = BarGenerator(self.onBar, 30, self.onMyBar) # 创建K线合成器对象 self.am = ArrayManager(size=50) self.buyOrderIDList = [] self.shortOrderIDList = [] self.orderList = [] #---------------------------------------------------------------------- def onInit(self): """初始化策略(必须由用户继承实现)""" self.writeCtaLog(u'%s策略初始化' %self.name) # 载入历史数据,并采用回放计算的方式初始化策略数值 initData = self.loadBar(self.initDays) for bar in initData: self.onBar(bar) self.putEvent() #---------------------------------------------------------------------- def onStart(self): """启动策略(必须由用户继承实现)""" self.writeCtaLog(u'%s策略启动' %self.name) self.putEvent() #---------------------------------------------------------------------- def onStop(self): """停止策略(必须由用户继承实现)""" self.writeCtaLog(u'%s策略停止' %self.name) self.putEvent() #---------------------------------------------------------------------- def onTick(self, tick): """收到行情TICK推送(必须由用户继承实现)""" self.bg.updateTick(tick) self.putEvent() #---------------------------------------------------------------------- def onBar(self, bar): """收到Bar推送(必须由用户继承实现)""" self.bg.updateBar(bar) # 撤销之前发出的尚未成交的委托(包括限价单和停止单) for orderID in self.orderList: self.cancelOrder(orderID) self.orderList = [] if self.targetPos > 0: if self.pos == 0: orderID = self.buy(bar.close + 5, self.fixedSize) self.orderList.extend(orderID) if self.pos < 0: orderID = self.cover(bar.close + 5, abs(self.pos)) self.orderList.extend(orderID) time.sleep(3) orderID = self.buy(bar.close + 5, self.fixedSize) self.orderList.extend(orderID) if self.targetPos < 0: if self.pos == 0: orderID = self.short(bar.close - 5, self.fixedSize) self.orderList.extend(orderID) if self.pos > 0: orderID = self.sell(bar.close - 5, abs(self.pos)) self.orderList.extend(orderID) time.sleep(3) orderID = self.short(bar.close - 5, self.fixedSize) self.orderList.extend(orderID) if self.targetPos == 0: if self.pos > 0: orderID = self.sell(bar.close - 5, abs(self.pos)) self.orderList.extend(orderID) if self.pos < 0: orderID = self.cover(bar.close + 5, abs(self.pos)) self.orderList.extend(orderID) #---------------------------------------------------------------------- def onMyBar(self, bar): """收到30分钟K线""" # 保存K线数据 am = self.am am.updateBar(bar) if not am.inited: return # 计算指标数值 h_high = max(am.high[-self.aPeriod:-1]) l_low = min(am.low[-self.aPeriod:-1]) vibrate = h_high - l_low < 0.04*l_low # 判断是否要进行交易 # 多头 if vibrate and am.openArray[-1] + am.highArray[-1] + am.lowArray[-1] + am.closeArray[-1] > 4*h_high : self.buy_price = am.close[-1] self.buy_high = am.high[-1] self.targetPos = self.fixedSize # 空头 if vibrate and am.openArray[-1] + am.highArray[-1] + am.lowArray[-1] + am.closeArray[-1] < 4*l_low: self.sell_price = am.close[-1] self.sell_low = am.low[-1] self.targetPos = -self.fixedSize if self.pos > 0 and am.high[-1] > self.buy_high: self.buy_high = am.high[-1] if self.pos < 0 and am.low[-1] < self.sell_low: self.sell_low = am.low[-1] # 平多头 if self.pos > 0 and ((2*am.close[-1] < self.buy_price + self.buy_high and self.buy_high > self.buy_price + 40) or am.close[-1] < l_low): # orderID = self.sell(bar.close - 5, abs(self.pos)) # self.orderList.extend(orderID) self.targetPos = 0 #平空头 if self.pos < 0 and ((2*am.close[-1] > self.sell_price + self.sell_low and self.sell_low < self.sell_price - 40) or am.close[-1] >h_high): # orderID = self.cover(bar.close + 5, abs(self.pos)) # self.orderList.extend(orderID) self.targetPos = 0 # 同步数据到数据库 self.saveSyncData() # 发出状态更新事件 self.putEvent() #---------------------------------------------------------------------- def onOrder(self, order): """收到委托变化推送(必须由用户继承实现)""" pass #---------------------------------------------------------------------- def onTrade(self, trade): # if self.pos != 0: # # 多头开仓成交后,撤消空头委托 # if self.pos > 0: # for shortOrderID in self.shortOrderIDList: # self.cancelOrder(shortOrderID) # # 反之同样 # elif self.pos < 0: # for buyOrderID in self.buyOrderIDList: # self.cancelOrder(buyOrderID) # # # 移除委托号 # for orderID in (self.buyOrderIDList + self.shortOrderIDList): # if orderID in self.orderList: # self.orderList.remove(orderID) # 发出状态更新事件 #self.putEvent() pass #---------------------------------------------------------------------- def onStopOrder(self, so): """停止单推送""" pass
import re from typing import Optional, List from controller.helpers import get_player_colour from data import enums, params, consts from data.enums import ResponseFlags as rF from state.game import GameState from state.context import context from lib.amongUsParser.gameEngine import PlayerClass UNKNOWN = "unknown" class Interpreter: def __init__(self, game_state: GameState, player: PlayerClass, message: str): self.game_state = game_state self.player = player self.message = message self._message_lower = re.sub(r'[^\w\s?]', '', self.message.strip().lower()) def interpret(self) -> Optional[str]: if not self.game_state.game_started: return None me = self.game_state.me if not me: print('Player info not loaded - please leave and rejoin the lobby.') return None if self.game_state.meeting_reason is False or self.player.playerId == me.playerId: return None player_name = self.player.name.decode("utf-8") player_colour: str = UNKNOWN if self.player.color is not False: player_colour = get_player_colour(self.player) if me.alive and not self.player.alive: print(player_name, f'({player_colour}): [DEAD CHAT HIDDEN]') return None players = {get_player_colour(p): p for p in self.game_state.get_players(include_me=True)} aliases = { # Players "dark green": "green", "light green": "lime", "dark blue": "blue", "light blue": "cyan", "purp": "purple", "orang": "orange", "yallow": "yellow", # Locations "cafeteria": "caf", "coms": "comms", "navigation": "nav", "reac": "reactor", "medbay": "med bay", "elec": "electrical", "elect": "electrical", # Misspellings "imposter": "impostor", } for k, v in aliases.items(): self._message_lower = re.sub(rf'\b{k}\b', v, self._message_lower) # Check for locations curr_map = self.game_state.map started_by = self.game_state.get_player_colour_from_id(self.game_state.meeting_started_by.playerId) \ if self.game_state.meeting_started_by else None if curr_map is not None and rF.BODY_NOT_LOCATED in self.game_state.get_response_flags() \ and started_by == player_colour: for loc in params.location[enums.AUMap.COMMON] + params.location[curr_map]: if self._find(rf'\b{loc}\b'): context.player_loc['body'] = loc context.response_flags_remove(rF.BODY_NOT_LOCATED) print("Location identified:", loc) # Check for names target_colours = [] for colour in [p for p in players if p != player_colour]: p = players[colour] if p.name is False or p.color is False: continue name = p.name.decode("utf-8").strip() if name.lower() in ["i", "he", "she", "ok", "impostor", "imposter"] \ or len(name) == 0: # pronoun and unhelpful names name = None if self._find(rf'\b{colour}\b') \ or (name is not None and self._find(rf'\b{name.lower()}\b')): target_colours.append(colour) if len(target_colours) == 0: # Determine target implicitly if self._find(r"\b(self( report)?)\b"): target_colours.append(started_by) target_is_me = self.game_state.me_colour in target_colours verb = offset = None flags = [] if len(target_colours) > 0: verb, offset = "mentioned", -0.5 for target_colour in target_colours: if self._find(r"\b(sus|vent(ed)?|faked?|kill(ed)?|body|self report(ed)?|imp(ostor)?)\b") \ or self._find(rf"\b(vote|it'?s?) {target_colour}\b") \ or self._message_lower == target_colour: verb, offset = "sussed", -1 break elif self._find(r"\b(safe|good|clear(ed)?)\b") \ or self._find(rf"\b(not|with|me and) {target_colour}\b") \ or self._find(rf"{target_colour} (and i|((had|did|has|do) )?(trash|chute|scan(ned)?|med))\b"): verb, offset = "vouched for", 1 break if verb == "sussed" and target_is_me: if self._find(r"\b(vent(ed)?)\b"): flags.append(rF.ACCUSED_VENT) if verb: if self.player.alive and player_colour != UNKNOWN and len(context.trust_map) != 0: for target_colour in target_colours: context.trust_map_score_offset(player_colour, target_colour, offset) print('>>', player_colour, verb, ', '.join(target_colours), '<<') if consts.debug_chat and len(flags) > 0: print('Adding flags:', flags) for f in flags: context.response_flags_append(f) print(player_name, f'({player_colour}):', self.message) return self.message def _find(self, pattern: str) -> bool: return len(re.findall(pattern, self._message_lower)) > 0 def _find_all(self, pattern: str) -> List[str]: return re.findall(pattern, self._message_lower)
# -*- coding: utf-8 -*- ''' :codeauthor: Pedro Algarvio ([email protected]) :copyright: Copyright 2017 by the SaltStack Team, see AUTHORS for more details. tests.unit.beacons.test_status ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Status beacon test cases ''' # Python libs from __future__ import absolute_import import sys # Salt libs import salt.config import salt.loader from salt.beacons import status import salt.modules.status as status_module # Salt testing libs from tests.support.unit import TestCase from tests.support.mixins import LoaderModuleMockMixin class StatusBeaconTestCase(TestCase, LoaderModuleMockMixin): ''' Test case for salt.beacons.status ''' def setup_loader_modules(self): opts = salt.config.DEFAULT_MINION_OPTS module_globals = { '__opts__': opts, '__salt__': 'autoload', '__context__': {}, '__grains__': {'kernel': 'Linux'} } return { status: module_globals, status_module: module_globals } def test_empty_config(self, *args, **kwargs): config = [] ret = status.validate(config) self.assertEqual(ret, (True, 'Valid beacon configuration')) ret = status.beacon(config) if sys.platform.startswith('win'): expected = [] else: expected = sorted(['loadavg', 'meminfo', 'cpustats', 'vmstats', 'time']) self.assertEqual(sorted(list(ret[0]['data'])), expected) def test_deprecated_dict_config(self): config = {'time': ['all']} ret = status.validate(config) self.assertEqual(ret, (False, 'Configuration for status beacon must be a list.')) def test_list_config(self): config = [{'time': ['all']}] ret = status.validate(config) self.assertEqual(ret, (True, 'Valid beacon configuration')) ret = status.beacon(config) if sys.platform.startswith('win'): expected = [] else: expected = ['time'] self.assertEqual(list(ret[0]['data']), expected)
from .attention import Attention from .ffnn import Ffnn from .mu_sigma_ffnn import MuSigmaFfnn from .decoders.pointer_gen_network import PointerGenNetwork from .out_embds import OutEmbds
import os import gym from stable_baselines3 import PPO from stable_baselines3.common.vec_env import DummyVecEnv from stable_baselines3.common.callbacks import EvalCallback, StopTrainingOnRewardThreshold from stable_baselines3.common.evaluation import evaluate_policy # VARIABLES environment_name = 'CartPole-v0' log_path = os.path.join('Training', 'Logs') PPO_PATH = os.path.join('Training', 'Saved Models', 'PPO_MODEL_CartPole') env = gym.make(environment_name) env = DummyVecEnv([lambda: env]) # USING GPU, importing algorithm PPO model = PPO('MlpPolicy', env, verbose=1) # Delete the model # del model # Load it from the folder model = PPO.load(PPO_PATH, env=env) # Callbacks - Stop training once it reaches 200 average, verbose is for logging save_path = os.path.join('Training', 'Saved Models') stop_callback = StopTrainingOnRewardThreshold(reward_threshold=200, verbose=1) # Every 1000 episodes it checks if the average is 200 or more, then stops the training, # then save the best model to the save path eval_callback = EvalCallback(env, callback_on_new_best=stop_callback, eval_freq=10000, best_model_save_path=save_path, verbose=1) # With callbacks # model = PPO('MlpPolicy', env, verbose=1, tensorboard_log=log_path) # Changing Policies net_arch = [dict(pi=[128, 128, 128, 128], vf=[128, 128, 128, 128])] # model = PPO('MlpPolicy', env, verbose=1, policy_kwargs={'net_arch': net_arch}) # model.learn(total_timesteps=200, callback=eval_callback) # Training # model.learn(total_timesteps=50000) # Training with Callbacks # model.learn(total_timesteps=20000, callback=eval_callback) # Evaluate our policy evaluate_policy(model, env, n_eval_episodes=100, render=True) # TEST # episodes = 5 # for episode in range(1, episodes+1): # obs = env.reset() # done = False # score = 0 # # while not done: # env.render() # action, _ = model.predict(obs) # Using Model Here # obs, reward, done, info = env.step(action) # score += reward # print('Episode:{} Score:{}'.format(episode, score)) # env.close() # Save the model into a folder # model.save(PPO_PATH)
# -*- coding: utf-8 -*- """ Created on Sat Jun 29 19:34:04 2019 @author: Administrator """ class Solution: def generatePossibleNextMoves(self, s: str) -> list: ans = [] tmp = list(s) for k in range(len(tmp)-1): if tmp[k] == '+' and tmp[k+1] == '+': tmp[k] = '-' tmp[k+1] = '-' ans.append(''.join(tmp)) tmp = list(s) return ans #class Solution(object): # def generatePossibleNextMoves(self, s): # """ # :type s: str # :rtype: List[str] # """ # res = [] # for i in range(len(s) - 1): # if s[i:i+2] == "++": # res.append(s[:i] + "--" + s[i+2:]) # return res solu = Solution() s = "++++" print(solu.generatePossibleNextMoves(s))
import numpy as np import cv2 def predict_puzzle(model, img_path): image = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) crop_size = int((image.shape[0]) / 9) crops = [] for col in range(9): for row in range(9): crop = image[int(col * crop_size): int(col * crop_size + crop_size), int(row * crop_size): int(row * crop_size + crop_size)] crops.append(crop) predictions = [] for crop in crops: crop_input = np.array(crop) / 255 crop_input.reshape(crop_size, crop_size, 1) prediction = model.predict(crop_input) predictions.append(prediction) print(predictions)
from pysyne.draw import Path from pysyne.visualizer import vis_for from pysyne.processor import Processor, WINDOW_TYPES, window_type from pysyne.main import main
# "print" test from wrap import * def printTest(objet): for i in range(1,30): print("-", end=' ') print("\nPrint test of", objet) for i in range(1,30): print("-", end=' ') print('') exec('print '+objet) #import apps.qs.cont2; #domain = apps.qs.cont2.getDomain() import apps.ale.qsUzi; domain = apps.ale.qsUzi.getDomain(0) domain.build() print('\n------------------------------------------\n') a=Matr2(1,2,3,4) print(a) a=Matr3(1,2,3,4) print(a) win=VizWin(); print(win); def fct(x,y,z): print('plouf') print("x=", x) print("y=", y) print("z=", z) return x*x+y*y+z*z pfct = PythonMultiParameterFunction(fct,3) print(pfct) keys = KeyList(Key(TX),Key(TY),Key(TZ),Key(TM)) print(keys) print('\n------------------------------------------\n') #printTest('domain.findObject(ELEMENTSET_ID)') #printTest('domain.getGeometry().getPointSet()') #printTest('domain.findObject(TOPOLOGY_ID).getPointSet()') #printTest('domain.findObject(NODESET_ID)') printTest('domain.getGeometry().getCurveSet()') printTest('domain.getGeometry().getCurveSet()(1)') printTest('domain.getInteractionSet()') printTest('domain.getInteractionSet()(99)') printTest('domain.getLoadingSet()') printTest('domain.getMaterialSet()') printTest('domain.getMaterialSet()[1]') printTest('domain.getFixationSet()') printTest('domain.getDofSet()') printTest('domain') printTest('domain.getMetafor().get(0)') #printTest('domain.getPartition()') #printTest('domain.getConnexion12()') #printTest('domain.getMetafor().get(0).findDBSet(TX|RE)') #printTest('domain.findDBSet(TX|AB)') printTest('domain.getMetafor()') printTest('domain.getMetafor().getAleMethod()') printTest('domain.getMetafor().getAleMethod().getReZoningStep()')
from abc import ABC, abstractmethod from osp.core.session.registry import Registry from osp.core.session.result import returns_query_result class Session(ABC): """ Abstract Base Class for all Sessions. Defines the common standard API and sets the registry. """ def __init__(self): self._registry = Registry() self.root = None def __enter__(self): return self def __exit__(self, *args): self.close() def close(self): pass @abstractmethod def __str__(self): pass def _store(self, cuds_object): """Store a copy of given cuds_object in the session. Return the stored object. :param cuds_object: The cuds_object to store. :type cuds_object: Cuds :return: The stored cuds_object. :rtype: Cuds """ assert cuds_object.session == self self._registry.put(cuds_object) if self.root is None: self.root = cuds_object.uid @returns_query_result def load(self, *uids): """Load the cuds_objects of the given uids. :param uids: The uids of the cuds_objects to load. :type uids: UUID :return: The fetched Cuds objects. :rtype: Iterator[Cuds] """ for uid in uids: try: yield self._registry.get(uid) except KeyError: yield None def prune(self, rel=None): """Remove all elements not reachable from the sessions root. Only consider given relationship and its subclasses. :param rel: Only consider this relationship to calculate reachability. :type rel: Relationship """ deleted = self._registry.prune(self.root, rel=rel) for d in deleted: self._notify_delete(d) def delete_cuds_object(self, cuds_object): """Remove a CUDS object. Will (for now) not delete the cuds objects contained. Args: cuds_object (Cuds): The CUDS object to be deleted """ from osp.core.namespaces import cuba if cuds_object.session != self: cuds_object = next(self.load(cuds_object.uid)) if cuds_object.get(rel=cuba.relationship): cuds_object.remove(rel=cuba.relationship) del self._registry[cuds_object.uid] self._notify_delete(cuds_object) @abstractmethod def _notify_delete(self, cuds_object): """This method is called if some object from the registry is deleted by the prune() method. :param cuds_object: The cuds_object that has been deleted :type cuds_object: Cuds """ pass @abstractmethod def _notify_update(self, cuds_object): """This method is called if some object has been updated- :param cuds_object: The cuds_object that has been updated. :type cuds_object: Cuds """ pass def sync(self): pass @abstractmethod def _notify_read(self, cuds_object): """This method is called when the user accesses the attributes or the relationships of the cuds_object cuds_object. :param cuds_object: The cuds_object that has been accessed. :type cuds_object: Cuds """ pass
import sys str = sys.stdin.readline() print str
from string import ascii_lowercase, digits ships = [("Carrier", 5), ("Battleship", 4), ("Cruiser", 3), ("Submarine",2), ("Destroyer", 2)] def parse_ship_location(loc): loc = loc.lower().strip().replace(" ", "") row = ascii_lowercase.index(loc[0]) col = digits.index(loc[1]) if loc[-1] == 'a': dx, dy = 1, 0 elif loc[-1] == 'd': dx, dy = 0, 1 return col, row, dx, dy def parse_bomb_location(loc): loc = loc.lower().strip().replace(" ", "") row = ascii_lowercase.index(loc[0]) col = digits.index(loc[1]) return col, row class Board: # potshots return one of these MISS = 0 NEAR = 1 HIT = 2 # the board representation uses one of these SHIP = "S" GUESS = "." NEAR_GUESS = "!" SUNK = "X" def __init__(self, width=10, height=10): assert 0 < width <= 10 assert 0 < height <= 10 self.mx = width self.my = height # Coordinate pair -> ship, miss, near-miss. self.sea = {} def add_ship(self, x, y, dx, dy, size): """Add a ship fo a given length If it passes off the board, or abuts an already places ship, raise a ValueError """ cells = {(x + i * dx, y + i * dy) for i in range(size)} if any(cx < 0 or cx >= self.mx or cy < 0 or cy >= self.my for (cx, cy) in cells): raise ValueError("That ship does not lie on the board") neighbours = {(cx + dx, cy + dy) for dx in (-1, 0, 1) for dy in (-1, 0, 1) for (cx, cy) in cells} if any((nx, ny) in self.sea for (nx, ny) in neighbours): raise ValueError("That ship abuts another") for (cx, cy) in cells: self.add_counter(cx, cy) def add_counter(self, x, y): self.sea[x, y] = Board.SHIP def potshot(self, x, y): """Return MISS, NEAR or HIT""" if x < 0 or self.mx <= x or y < 0 or self.my <= y: raise ValueError("Off-grid shot") if self.sea.get((x, y)) == Board.SHIP: self.sea[x, y] = Board.SUNK return Board.HIT elif any(self.sea.get((x + dx, y + dy)) in (Board.SHIP, Board.SUNK) for dx in (-1, 0, 1) for dy in (-1, 0, 1)): self.sea[x, y] = Board.NEAR_GUESS return Board.NEAR else: self.sea[x, y] = Board.GUESS return Board.MISS def defeated(self): return not any(cell == Board.SHIP for _, cell in self.sea.items()) def display(self): print('\n'.join(self.lines())) def lines(self): d = [" " + digits[:self.mx]] for y in range(self.my): line = "" for x in range(self.mx): line += self.sea.get((x, y), '~') d.append(ascii_lowercase[y] + ' ' + line) return d def other_lines(self): d = [" " + digits[:self.mx]] for y in range(self.my): line = "" for x in range(self.mx): line += self.sea.get((x, y), '~').replace(Board.SHIP, '~') d.append(ascii_lowercase[y] + ' ' + line) return d
# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file in the project root # for full license information. # ============================================================================== from __future__ import division import numpy as np from ..learners import * from .. import parameter, input_variable import pytest LR_SCHEDULE_PARAMS = [ ((0.2, UnitType.sample), [0.2]), ((0.2, UnitType.sample), [0.2, 0.2, 0.2, 0.2]), (([0.2,0.4], UnitType.sample, 5), [0.2]*5+[0.4]*20), (([(3,0.2),(2,0.4),(1,0.8)], UnitType.sample, 5), [0.2]*15+[0.4]*10+[0.8]*20), ] MOMENTUM_SCHEDULE_PARAMS = [ ((0.2,), [0.2]), ((0.2,), [0.2, 0.2, 0.2, 0.2]), (([0.2,0.4], 5), [0.2]*5+[0.4]*20), (([(3,0.2),(2,0.4),(1,0.8)], 5), [0.2]*15+[0.4]*10+[0.8]*20), ] @pytest.mark.parametrize("params, expectation", LR_SCHEDULE_PARAMS) def test_learning_rate_schedule(params, expectation): l = learning_rate_schedule(*params) assert [l[i] for i in range(len(expectation))] == expectation def sweep_based_schedule_fails(): with pytest.raises(Exception): learning_rate_schedule([1], unit=UnitType.sample, epoch_size=0) def test_momentum_schedule(): m = 2500 ms = momentum_as_time_constant_schedule([m]) assert ms[0] == np.exp(-1.0 / np.asarray(m)) ms = momentum_as_time_constant_schedule(m) assert ms[0] == np.exp(-1.0 / np.asarray(m)) mlist = [980, 520] msl = momentum_as_time_constant_schedule(mlist) expected = np.exp(-1.0 / np.asarray(mlist)) assert all(mi == ei for mi,ei in zip(msl,expected)) @pytest.mark.parametrize("params, expectation", MOMENTUM_SCHEDULE_PARAMS) def test_momentum_schedule_per_sample(params, expectation): l = momentum_schedule(*params) assert [l[i] for i in range(len(expectation))] == expectation def test_learner_init(): i = input_variable(shape=(1,), needs_gradient=True, name='a') w = parameter(shape=(1,)) res = i * w learner = sgd(res.parameters, lr=learning_rate_schedule(0.1, UnitType.sample)) assert learner.learning_rate() == 0.1 learner.reset_learning_rate(learning_rate_schedule([1,2,3], UnitType.minibatch)); assert learner.learning_rate() == 1.0 learner_parameter = learner.parameters from ..ops.variables import Parameter param = learner_parameter[0] assert isinstance(param, Parameter) unit_gain_value = default_unit_gain_value() assert unit_gain_value momentum_time_constant = momentum_as_time_constant_schedule(1100) lr_per_sample = learning_rate_schedule(0.1, UnitType.sample) momentum_sgd(res.parameters, lr_per_sample, momentum_time_constant) momentum_sgd(res.parameters, lr_per_sample, momentum_time_constant, unit_gain_value) momentum_sgd(res.parameters, lr_per_sample, momentum_time_constant, unit_gain=unit_gain_value) set_default_unit_gain_value(False) unit_gain_value = default_unit_gain_value() assert not unit_gain_value lr_per_sample = learning_rate_schedule([0.1, 0.2], UnitType.sample) nesterov(res.parameters, lr=lr_per_sample, momentum=momentum_time_constant) nesterov(res.parameters, lr_per_sample, momentum_time_constant, unit_gain_value) nesterov(res.parameters, lr=lr_per_sample, momentum=momentum_time_constant, unit_gain=unit_gain_value) lr_per_sample = learning_rate_schedule([0.1]*3 +[0.2]*2 +[0.3], UnitType.sample) adagrad(res.parameters, lr=lr_per_sample, need_ave_multiplier=True) set_default_unit_gain_value(True) unit_gain_value = default_unit_gain_value() assert unit_gain_value lr_per_sample = learning_rate_schedule([(3,0.1), (2, 0.2), (1, 0.3)], UnitType.sample) adam_sgd(res.parameters, lr=lr_per_sample, momentum=momentum_time_constant) adam_sgd(res.parameters, lr_per_sample, momentum_time_constant, unit_gain_value) adam_sgd(res.parameters, lr=lr_per_sample, momentum=momentum_time_constant, unit_gain=unit_gain_value) gamma, inc, dec, max, min = [0.1]*5 lr_per_sample = learning_rate_schedule([0.1, 0.2], UnitType.sample, 100) rmsprop(res.parameters, lr_per_sample, gamma, inc, dec, max, min, True) def test_learner_update(): i = input_variable(shape=(1,), needs_gradient=True, name='a') w_init = 1 w = parameter(shape=(1,), init=w_init) res = i * w learner = sgd(res.parameters, lr=learning_rate_schedule([0.1]*50 + [0.2]*50, UnitType.sample, 1)) assert learner.learning_rate() == 0.1 x = learner.update({w: np.asarray([[2.]], dtype=np.float32)}, 100) assert learner.learning_rate() == 0.2 assert w.value < w_init def test_training_parameter_schedule(): training_parameter_schedule(0.01, unit='minibatch') training_parameter_schedule(0.01, unit='sample') with pytest.raises(ValueError): training_parameter_schedule(0.01, unit='not_supported') with pytest.raises(ValueError): training_parameter_schedule(0.01, unit=5) def test_sweep_based_schedule(tmpdir, device_id): from cntk.io import MinibatchSource, CTFDeserializer, StreamDef, StreamDefs from .. import cross_entropy_with_softmax, classification_error, plus, reduce_sum from ..train.trainer import Trainer input_dim = 69 ctf_data = '''\ 0 |S0 3:1 |S1 3:1 |# <s> 0 |S0 4:1 |# A |S1 32:1 |# ~AH 0 |S0 5:1 |# B |S1 36:1 |# ~B 0 |S0 4:1 |# A |S1 31:1 |# ~AE 0 |S0 7:1 |# D |S1 38:1 |# ~D 0 |S0 12:1 |# I |S1 47:1 |# ~IY 0 |S0 1:1 |# </s> |S1 1:1 |# </s> 2 |S0 60:1 |# <s> |S1 3:1 |# <s> 2 |S0 61:1 |# A |S1 32:1 |# ~AH ''' ctf_file = str(tmpdir/'2seqtest.txt') with open(ctf_file, 'w') as f: f.write(ctf_data) mbs = MinibatchSource(CTFDeserializer(ctf_file, StreamDefs( features = StreamDef(field='S0', shape=input_dim, is_sparse=True), labels = StreamDef(field='S1', shape=input_dim, is_sparse=True) )), randomize=False) in1 = input_variable(shape=(input_dim,)) labels = input_variable(shape=(input_dim,)) p = parameter(shape=(input_dim,), init=10) z = plus(in1, reduce_sum(p), name='z') ce = cross_entropy_with_softmax(z, labels) errs = classification_error(z, labels) lr_per_sample = learning_rate_schedule([0.3, 0.2, 0.1, 0.0], UnitType.sample) learner = sgd(z.parameters, lr_per_sample) trainer = Trainer(z, (ce, errs), [learner]) input_map = { in1 : mbs.streams.features, labels : mbs.streams.labels } # fetch minibatch (first sequence) data = mbs.next_minibatch(1, input_map=input_map) trainer.train_minibatch(data) assert learner.learning_rate() == 0.3 # fetch minibatch (second sequence, sweep ends at this point) data = mbs.next_minibatch(1, input_map=input_map) trainer.train_minibatch(data) assert learner.learning_rate() == 0.2 # fetch minibatch (both sequences -- entire sweep in one go) data = mbs.next_minibatch(9, input_map=input_map) trainer.train_minibatch(data) assert learner.learning_rate() == 0.1 # fetch minibatch (multiple sweeps) data = mbs.next_minibatch(30, input_map=input_map) trainer.train_minibatch(data, outputs=[z.output]) assert learner.learning_rate() == 0.0
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for LayoutLMv2. """ from typing import List, Optional, Union import numpy as np from PIL import Image import requests import json import re from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...file_utils import TensorType, is_pytesseract_available, requires_backends from ...image_utils import ImageFeatureExtractionMixin, is_torch_tensor from ...utils import logging # soft dependency if is_pytesseract_available(): import pytesseract logger = logging.get_logger(__name__) ImageInput = Union[ Image.Image, np.ndarray, "torch.Tensor", List[Image.Image], List[np.ndarray], List["torch.Tensor"] # noqa ] def normalize_box(box, width, height): return [ int(1000 * (box[0] / width)), int(1000 * (box[1] / height)), int(1000 * (box[2] / width)), int(1000 * (box[3] / height)), ] def apply_tesseract(image: Image.Image): """Applies Tesseract OCR on a document image, and returns recognized words + normalized bounding boxes.""" # apply OCR data = pytesseract.image_to_data(image, output_type="dict") words, left, top, width, height = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates irrelevant_indices = [idx for idx, word in enumerate(words) if not word.strip()] words = [word for idx, word in enumerate(words) if idx not in irrelevant_indices] left = [coord for idx, coord in enumerate(left) if idx not in irrelevant_indices] top = [coord for idx, coord in enumerate(top) if idx not in irrelevant_indices] width = [coord for idx, coord in enumerate(width) if idx not in irrelevant_indices] height = [coord for idx, coord in enumerate(height) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format actual_boxes = [] for x, y, w, h in zip(left, top, width, height): actual_box = [x, y, x + w, y + h] actual_boxes.append(actual_box) image_width, image_height = image.size # finally, normalize the bounding boxes normalized_boxes = [] for box in actual_boxes: normalized_boxes.append(normalize_box(box, image_width, image_height)) assert len(words) == len(normalized_boxes), "Not as many words as there are bounding boxes" return words, normalized_boxes def get_ocr(img_name, image_width, image_height): image_s3 = 's3://modeldocuments/data/images' ## ocr invoke data = { "columns": [ "path", "psm", "lang", "ril", "box" ], "data": [ [ f"{image_s3}/{img_name}", 6, "eng", 3, [ ] ] ] } headers = {'Content-type': 'application/json', 'Accept': 'text/plain'} r = requests.post('https://dev-ocr.ice-ai.tech/invocations', data=json.dumps(data), headers=headers) response = r.json() words = response[0]['text'] actual_boxes = response[0]['annotion'] words = [re.sub('[^A-Za-z0-9.-:+/]+', '', word) for word in words] # finally, normalize the bounding boxes normalized_boxes = [] for box in actual_boxes: normalized_boxes.append(normalize_box(box, image_width, image_height)) assert len(words) == len(normalized_boxes), "Not as many words as there are bounding boxes" return words, normalized_boxes class LayoutLMv2FeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin): r""" Constructs a LayoutLMv2 feature extractor. This can be used to resize document images to the same size, as well as to apply OCR on them in order to get a list of words and normalized bounding boxes. This feature extractor inherits from :class:`~transformers.feature_extraction_utils.PreTrainedFeatureExtractor` which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: do_resize (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to resize the input to a certain :obj:`size`. size (:obj:`int` or :obj:`Tuple(int)`, `optional`, defaults to 224): Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is provided, then the input will be resized to (size, size). Only has an effect if :obj:`do_resize` is set to :obj:`True`. resample (:obj:`int`, `optional`, defaults to :obj:`PIL.Image.BILINEAR`): An optional resampling filter. This can be one of :obj:`PIL.Image.NEAREST`, :obj:`PIL.Image.BOX`, :obj:`PIL.Image.BILINEAR`, :obj:`PIL.Image.HAMMING`, :obj:`PIL.Image.BICUBIC` or :obj:`PIL.Image.LANCZOS`. Only has an effect if :obj:`do_resize` is set to :obj:`True`. apply_ocr (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes. .. note:: LayoutLMv2FeatureExtractor uses Google's Tesseract OCR engine under the hood. """ model_input_names = ["pixel_values"] def __init__(self, do_resize=True, size=224, resample=Image.BILINEAR, apply_ocr=True, **kwargs): super().__init__(**kwargs) self.do_resize = do_resize self.size = size self.resample = resample self.apply_ocr = apply_ocr if apply_ocr: requires_backends(self, "pytesseract") def __call__( self, images: ImageInput, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs ) -> BatchFeature: """ Main method to prepare for the model one or several image(s). Args: images (:obj:`PIL.Image.Image`, :obj:`np.ndarray`, :obj:`torch.Tensor`, :obj:`List[PIL.Image.Image]`, :obj:`List[np.ndarray]`, :obj:`List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`, defaults to :obj:`'np'`): If set, will return tensors of a particular framework. Acceptable values are: * :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects. * :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects. * :obj:`'np'`: Return NumPy :obj:`np.ndarray` objects. * :obj:`'jax'`: Return JAX :obj:`jnp.ndarray` objects. Returns: :class:`~transformers.BatchFeature`: A :class:`~transformers.BatchFeature` with the following fields: - **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height, width). - **words** -- Optional words as identified by Tesseract OCR (only when :class:`~transformers.LayoutLMv2FeatureExtractor` was initialized with :obj:`apply_ocr` set to ``True``). - **boxes** -- Optional bounding boxes as identified by Tesseract OCR, normalized based on the image size (only when :class:`~transformers.LayoutLMv2FeatureExtractor` was initialized with :obj:`apply_ocr` set to ``True``). Examples:: >>> from transformers import LayoutLMv2FeatureExtractor >>> from PIL import Image >>> image = Image.open("name_of_your_document - can be a png file, pdf, etc.").convert("RGB") >>> # option 1: with apply_ocr=True (default) >>> feature_extractor = LayoutLMv2FeatureExtractor() >>> encoding = feature_extractor(image, return_tensors="pt") >>> print(encoding.keys()) >>> # dict_keys(['pixel_values', 'words', 'boxes']) >>> # option 2: with apply_ocr=False >>> feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=False) >>> encoding = feature_extractor(image, return_tensors="pt") >>> print(encoding.keys()) >>> # dict_keys(['pixel_values']) """ # Input type checking for clearer error valid_images = False # Check that images has a valid type if isinstance(images, (Image.Image, np.ndarray)) or is_torch_tensor(images): valid_images = True elif isinstance(images, (list, tuple)): if len(images) == 0 or isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]): valid_images = True if not valid_images: raise ValueError( "Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example)," "`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples), " f"but is of type {type(images)}." ) is_batched = bool( isinstance(images, (list, tuple)) and (isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0])) ) if not is_batched: images = [images] # Tesseract OCR to get words + normalized bounding boxes if self.apply_ocr: words_batch = [] boxes_batch = [] for image in images: words, boxes = apply_tesseract(self.to_pil_image(image)) words_batch.append(words) boxes_batch.append(boxes) # transformations (resizing) if self.do_resize and self.size is not None: images = [self.resize(image=image, size=self.size, resample=self.resample) for image in images] images = [self.to_numpy_array(image, rescale=False) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) images = [image[::-1, :, :] for image in images] # return as BatchFeature data = {"pixel_values": images} encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) if self.apply_ocr: encoded_inputs["words"] = words_batch encoded_inputs["boxes"] = boxes_batch return encoded_inputs class LayoutLMv2FeatureExtractorV2(FeatureExtractionMixin, ImageFeatureExtractionMixin): r""" Constructs a LayoutLMv2 feature extractor. This can be used to resize document images to the same size, as well as to apply OCR on them in order to get a list of words and normalized bounding boxes. This feature extractor inherits from :class:`~transformers.feature_extraction_utils.PreTrainedFeatureExtractor` which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: do_resize (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to resize the input to a certain :obj:`size`. size (:obj:`int` or :obj:`Tuple(int)`, `optional`, defaults to 224): Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is provided, then the input will be resized to (size, size). Only has an effect if :obj:`do_resize` is set to :obj:`True`. resample (:obj:`int`, `optional`, defaults to :obj:`PIL.Image.BILINEAR`): An optional resampling filter. This can be one of :obj:`PIL.Image.NEAREST`, :obj:`PIL.Image.BOX`, :obj:`PIL.Image.BILINEAR`, :obj:`PIL.Image.HAMMING`, :obj:`PIL.Image.BICUBIC` or :obj:`PIL.Image.LANCZOS`. Only has an effect if :obj:`do_resize` is set to :obj:`True`. apply_ocr (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes. .. note:: LayoutLMv2FeatureExtractor uses Google's Tesseract OCR engine under the hood. """ model_input_names = ["pixel_values"] def __init__(self, do_resize=True, size=224, resample=Image.BILINEAR, apply_ocr=True, **kwargs): super().__init__(**kwargs) self.do_resize = do_resize self.size = size self.resample = resample self.apply_ocr = apply_ocr def __call__( self, images: ImageInput, img_name: str, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs ) -> BatchFeature: """ Main method to prepare for the model one or several image(s). Args: images (:obj:`PIL.Image.Image`, :obj:`np.ndarray`, :obj:`torch.Tensor`, :obj:`List[PIL.Image.Image]`, :obj:`List[np.ndarray]`, :obj:`List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`, defaults to :obj:`'np'`): If set, will return tensors of a particular framework. Acceptable values are: * :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects. * :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects. * :obj:`'np'`: Return NumPy :obj:`np.ndarray` objects. * :obj:`'jax'`: Return JAX :obj:`jnp.ndarray` objects. Returns: :class:`~transformers.BatchFeature`: A :class:`~transformers.BatchFeature` with the following fields: - **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height, width). - **words** -- Optional words as identified by Tesseract OCR (only when :class:`~transformers.LayoutLMv2FeatureExtractor` was initialized with :obj:`apply_ocr` set to ``True``). - **boxes** -- Optional bounding boxes as identified by Tesseract OCR, normalized based on the image size (only when :class:`~transformers.LayoutLMv2FeatureExtractor` was initialized with :obj:`apply_ocr` set to ``True``). Examples:: >>> from transformers import LayoutLMv2FeatureExtractor >>> from PIL import Image >>> image = Image.open("name_of_your_document - can be a png file, pdf, etc.").convert("RGB") >>> # option 1: with apply_ocr=True (default) >>> feature_extractor = LayoutLMv2FeatureExtractor() >>> encoding = feature_extractor(image, return_tensors="pt") >>> print(encoding.keys()) >>> # dict_keys(['pixel_values', 'words', 'boxes']) >>> # option 2: with apply_ocr=False >>> feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=False) >>> encoding = feature_extractor(image, return_tensors="pt") >>> print(encoding.keys()) >>> # dict_keys(['pixel_values']) """ # Input type checking for clearer error valid_images = False # Check that images has a valid type if isinstance(images, (Image.Image, np.ndarray)) or is_torch_tensor(images): valid_images = True elif isinstance(images, (list, tuple)): if len(images) == 0 or isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]): valid_images = True if not valid_images: raise ValueError( "Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example)," "`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples), " f"but is of type {type(images)}." ) is_batched = bool( isinstance(images, (list, tuple)) and (isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0])) ) if not is_batched: images = [images] # Tesseract OCR to get words + normalized bounding boxes if self.apply_ocr: words_batch = [] boxes_batch = [] for image in images: #words, boxes = apply_tesseract(self.to_pil_image(image)) w, h = image.size words, boxes = get_ocr(img_name, w, h) words_batch.append(words) boxes_batch.append(boxes) # transformations (resizing) if self.do_resize and self.size is not None: images = [self.resize(image=image, size=self.size, resample=self.resample) for image in images] images = [self.to_numpy_array(image, rescale=False) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) images = [image[::-1, :, :] for image in images] # return as BatchFeature data = {"pixel_values": images} encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) if self.apply_ocr: encoded_inputs["words"] = words_batch encoded_inputs["boxes"] = boxes_batch return encoded_inputs
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.externals import joblib from sklearn.neural_network import MLPClassifier def input_data(age, sex, chest_pain_type, rest_blood_pressure, serum_cholestrol, high_fasting_blood_sugar, resting_ecg, max_heart_rate, exercise_induced_angina, st_depression, peak_exercise_st, major_vessels_num, thal): my_list = [age, sex, chest_pain_type, rest_blood_pressure, serum_cholestrol, high_fasting_blood_sugar, resting_ecg, max_heart_rate, exercise_induced_angina, st_depression, peak_exercise_st, major_vessels_num, thal] test_new = pd.DataFrame(np.array(my_list).reshape(1,13)) test_new.columns = ['age', 'sex', 'chest_pain_type', 'rest_blood_pressure', 'serum_cholestrol', 'high_fasting_blood_sugar', 'resting_ecg', 'max_heart_rate', 'exercise_induced_angina', 'st_depression', 'peak_exercise_st', 'major_vessels_num', 'thal'] test = pd.read_csv('./data/tubes2_HeartDisease_test.csv') test.columns = ['age', 'sex', 'chest_pain_type', 'rest_blood_pressure', 'serum_cholestrol', 'high_fasting_blood_sugar', 'resting_ecg', 'max_heart_rate', 'exercise_induced_angina', 'st_depression', 'peak_exercise_st', 'major_vessels_num', 'thal'] test = test.append(test_new, ignore_index = True) test = test.replace('?', np.nan).astype(float) print(test) return test def preprocessed_input(test): categorical_attributes = [ "sex", "chest_pain_type", "high_fasting_blood_sugar", "resting_ecg", "exercise_induced_angina", "peak_exercise_st", "major_vessels_num", "thal"] series_attributes = ["age", "rest_blood_pressure", "serum_cholestrol", "max_heart_rate", "st_depression"] test[categorical_attributes] = test[categorical_attributes].fillna(test.mode().iloc[0]) test[series_attributes] = test[series_attributes].fillna(test.mean()) test[categorical_attributes] = test[categorical_attributes].astype('category') test = test.drop('thal', 1) test = test.drop('major_vessels_num', 1) test = pd.get_dummies(test, prefix=[ "sex", "chest_pain_type", "high_fasting_blood_sugar", "resting_ecg", "exercise_induced_angina", "peak_exercise_st"]) for i in range(0,141): test = test.drop([i]) print(test) return test def predict_input(imported_model, test): test = np.array(test) predicted_test = imported_model.predict(test) return predicted_test def heart_disease_type(age, sex, chest_pain_type, rest_blood_pressure, serum_cholestrol, high_fasting_blood_sugar, resting_ecg, max_heart_rate, exercise_induced_angina, st_depression, peak_exercise_st, major_vessels_num, thal): imported_model = joblib.load('./models/heart_disease.joblib') test = input_data(age, sex, chest_pain_type, rest_blood_pressure, serum_cholestrol, high_fasting_blood_sugar, resting_ecg, max_heart_rate, exercise_induced_angina, st_depression, peak_exercise_st, major_vessels_num, thal) test = preprocessed_input(test) result = predict_input(imported_model, test) print("Result = ", result) result = int(result[0]) return result
import numpy as np import torch EPS = 1e-12 def embedded_dropout(embed, words, dropout=0.1, scale=None): if dropout: mask = embed.weight.data.new(embed.weight.size(0), 1).bernoulli_(1 - dropout) masked_embed_weight = mask * embed.weight / (1 - dropout) if EPS: masked_embed_weight.masked_fill_(mask.eq(0), EPS) else: masked_embed_weight = embed.weight if scale: masked_embed_weight = scale.expand_as(masked_embed_weight) * masked_embed_weight X = torch.nn.functional.embedding(words, masked_embed_weight, embed.padding_idx, embed.max_norm, embed.norm_type, embed.scale_grad_by_freq, embed.sparse ) return X if __name__ == '__main__': V = 50 h = 4 bptt = 10 batch_size = 2 embed = torch.nn.Embedding(V, h) words = np.random.random_integers(low=0, high=V-1, size=(batch_size, bptt)) words = torch.LongTensor(words) origX = embed(words) X = embedded_dropout(embed, words) print(origX) print(X)
# pylint: disable=protected-access """Backend for three terms recursion generator.""" import numpy def ttr_call(self, order, dist): "TTR call backend wrapper" assert order.shape == (len(dist), self.size) graph = self.graph self.dist, dist_ = dist, self.dist graph.add_node(dist, key=order) if hasattr(dist, "_ttr"): if dist.advance: out = dist._ttr(order, self) else: out = numpy.empty((2,)+order.shape) prm = self.dists.build() prm.update(self.keys.build()) out[0], out[1] = dist._ttr(order, **prm) else: raise NotImplementedError( "No `_ttr` method found for %s" % dist) graph.add_node(dist, val=out) self.dist = dist_ return numpy.array(out)
#!/usr/bin/env python3 import glob import subprocess import sys import os os.chdir(os.path.dirname(__file__)); os.chdir('..') for name in glob.glob('tests/*.nim'): if 'flycheck_' in name: continue lines = open(name).read().splitlines() if not (lines and lines[0].startswith('# TEST.')): if lines and ('disabled' not in lines[0]): # not marked as test, at least compile it subprocess.check_call(['nim', 'c', '--verbosity:0', name]) continue assert lines[1].startswith('discard """') lines[1] = lines[1].split('"""', 1)[1] expected_output = [] for line in lines[1:]: expected_output.append(line.split('"""', 1)[0]) if '"""' in line: break expected_output = '\n'.join(expected_output).encode('utf8') subprocess.check_call(['nim', 'c', '--verbosity:0', name]) bin_name = name.rsplit('.', 1)[0] got_output = subprocess.check_output([bin_name], stderr=subprocess.STDOUT).strip() if got_output != expected_output: print(name, 'failure') print('Expected:') print(expected_output) print('Got:') print(got_output) sys.exit(1) else: print(name, 'ok')
# Generated by Django 3.1.2 on 2021-02-07 22:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('gui', '0007_patientdemographic_mrn'), ] operations = [ migrations.CreateModel( name='Timeline', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('PatientID', models.IntegerField(blank=True, null=True)), ('TimelineDTS', models.DateField(blank=True, null=True)), ('TimelineValue', models.TextField(blank=True, null=True)), ('EventType', models.TextField(blank=True, null=True)), ], ), migrations.AddField( model_name='note', name='SpecialtyDSC', field=models.TextField(blank=True, null=True), ), ]
'''test methods for the OrbitalBallRoller class in the rolling ball package ''' from nose.tools import raises from RollingBall import rolling_ball class TestBallRollerInstantiation(): '''test the orbital ball roller object instantiation ''' def test_ball_roller_object(self): '''test successful instantiation of an OrbitalBallRoller object ''' points = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14]] rolling_ball.OrbitalBallRoller(points) @raises(ValueError) def test_short_input_array(self): '''test successful instantiation of an OrbitalBallRoller object ''' points = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]] rolling_ball.OrbitalBallRoller(points) class TestBallRollerMethods(): '''test basic functionality of ball roller object ''' def setup(self): '''setup function to be called before each test ''' # gots 2 load in some test data here points = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14]] self.ball_roller = rolling_ball.OrbitalBallRoller(points) def teardown(self): '''teardown function to be called after each test ''' del self.ball_roller def test_get_alpha_complex(self): '''test the creation of an alpha complex from the triangulation ''' self.ball_roller.get_alpha_complex(alpha=.5) def test_plot_delaunay(self): '''test the plot routine of the triangulation ''' self.ball_roller.plot_delaunay() def test_get_background(self): '''test the routine that acquires the background density ''' self.ball_roller.get_background() @raises() def test_get_background_exception(self): '''test the the routine to acquire the background density throws error if no alpha_complex has been determined for the object ''' self.ball_roller.get_background() def test_locate_depletions(self): '''test the method that identifies plasma depletions from the background density ''' self.ball_roller.locate_depletions() @raises() def test_locate_depletions_exception(self): '''test that the locate depletions method produces exception if ... ''' self.ball_roller.locate_depletions()
#!/usr/bin/env python class Solution: def replaceBlank(self, str): print(str) res = '' for char in str: if char == ' ': res += '%20' else: res += char return res if __name__ == '__main__': str = "Hello Python World!" sol = Solution() print(sol.replaceBlank(str))
import uuid import pickle as pickle import os, json import pika from .io import * import logging from datetime import datetime class EngineRule: def __init__(self, type, field_name, global_name=None): self.Type = type if self.Type not in ["replace","remove"]: raise ValueError("%s rule type not supported." % type) self.FieldName = field_name if self.Type == "replace" and global_name is None: raise ValueError("global_name parameter is required for 'replace' type rules") self.GlobalName = global_name class SchemaParser: def __init__(self, json_file): logging.info("Schema parsing started: %s" % json_file) try: self._json_ = json.load(open(json_file)) except: raise IOError("'%s' schema file invalid." % json_file) self.Input = self.__parse_input__() self.Rules = self.__parse_rules__() self.Output = self.__parse_output__() self.Storage = self.__parse_storage__() logging.info("Schema parsing completed") def __parse_rules__(self): rules = [] if self._json_["rules"].get("remove"): for remove_rule in self._json_["rules"].get("remove"): rules.append(EngineRule("remove", remove_rule.get("fieldName"))) if self._json_["rules"].get("replace"): for replace_rule in self._json_["rules"].get("replace"): rules.append(EngineRule("replace", replace_rule.get("fieldName"), replace_rule.get("globalName"))) return rules def __parse_storage__(self): storage_types = ["memory"] type = self._json_["storage"].get("storageType") properties = self._json_["storage"].get("storageProperties") if type.lower() not in storage_types: raise ValueError("storageType: %s is not supported" % type) elif type.lower() == "memory": file_name = properties.get("fileName") restore = properties.get("restore") or True return MemoryStorage(file_name, restore) def __parse_input__(self): input_types = ["file", "rabbitmq"] #all supported input types input_formats = ["csv", "json"] type = self._json_["input"].get("inputType") properties = self._json_["input"].get("inputProperties") separator = properties.get("separator") or "," quote = properties.get("quote") or "" format = properties.get("format") schema = properties.get("schema") self.Schema = schema if format.lower() not in input_formats: raise ValueError("Input format: %s is not supported" % format) elif format.lower() == "csv": format = CSVFormat(sep=separator, quote=quote, schema=schema) elif format.lower() == "json": format = JSONFormat() if type.lower() not in input_types: raise ValueError("inputType: %s is not supported" % type) elif type.lower() == "file": #preparing FileReader object file_name = properties.get("fileName") return FileReader(file_name, format) elif type.lower() == "rabbitmq": connection_string = properties.get("URI") queue_name = properties.get("QueueName") return RabbitMQReader(connection_string, queue_name, format) def __parse_output__(self): output_types = ["file", "rabbitmq"] output_formats = ["csv", "json"] type = self._json_["output"].get("outputType") properties = self._json_["output"].get("outputProperties") separator = properties.get("separator") or "," quote = properties.get("quote") or "" format = properties.get("format") if format.lower() not in output_formats: raise ValueError("Output format: %s is not supported" % format) elif format.lower() == "csv": schema = list(self.Input.Format.schema) #making a copy of input schema for r in [r.FieldName for r in self.Rules if r.Type == "remove"]: schema.remove(r) format = CSVFormat(sep=separator, quote=quote, schema=schema) elif format.lower() == "json": format = JSONFormat() if type.lower() not in output_types: raise ValueError("outputType: %s is not supported" % type) elif type.lower() == "file": file_name = properties.get("fileName") replace = properties.get("replace") or False return FileWriter(file_name, format, replace) elif type.lower() == "rabbitmq": connection_string = properties.get("URI") queue_name = properties.get("QueueName") return RabbitMQWriter(connection_string, queue_name, format) class Engine: def __init__(self, input, output, storage): self.__input__ = input self.__output__ = output self.__storage__ = storage self.__rules__ = [] self.ProcessedRows = 0 self.ProcessingTime = 0 def read_rules(self, rules): """ Reads list of EngineRule objects. Usually rules are property of SchemaParser. """ self.__rules__ = rules def add_rule(self, rule): """ Adds EngineRule object to rules list. """ self.__rules__.append(rule) def apply_rules(self, object): for r in self.__rules__: if r.Type == "remove": object.pop(r.FieldName) if r.Type == "replace" and object[r.FieldName] is not "": object[r.FieldName] = self.__storage__.replace(r.GlobalName, object[r.FieldName]) return object def run(self): logging.info("Processing engine started") if self.__input__.Type == "file": start = datetime.now() rows = 0 with self.__input__ as f: for line in f: o = self.apply_rules(line) self.__output__.write(o) rows += 1 if (rows % 100000) == 0: logging.info("Processed %s rows" % rows) self.__output__.close() self.__storage__.flush() self.ProcessedRows = rows self.ProcessingTime = datetime.now() - start logging.info("Processing engine finished") elif self.__input__.Type == "stream": self.__input__.run(self) def save(self): """ Saves replacement values in permanent storage. """ self.__storage__.flush() class MemoryStorage: def __init__(self, file, restore=True): self.__f__ = file if os.path.isfile(self.__f__): with open(self.__f__, "rb") as f: self.__storage__ = pickle.load(f) else: self.__storage__ = {} def replace(self, name, value): if name in self.__storage__: storagens = self.__storage__.get(name) #setting dictionary namespace else: storagens = self.__storage__[name] = {} #creating new dictionary namespace if value in storagens: return storagens.get(value) else: hash = self.generate_hash() storagens[value] = hash return hash def generate_hash(self): return uuid.uuid4().hex def dump(self): """ Returns internal mapping dictionary as JSON-formatted string. """ return json.dumps(self.__storage__) def flush(self): """ Saves current state of storage to disk. """ logging.info("Storage flushing started...") with open(self.__f__, "wb") as f: pickle.dump(self.__storage__, f) logging.info("Flushing completed succefully.")
# TieRopes.py def tieRopes(K, A): # Devuelve el numero de sogas atadas o no # que son mayores o iguales a k numSogas = 0 largo = 0 for i in A: largo += i # Se van atando sumando los largos if largo >= K: numSogas += 1 largo = 0 return numSogas print(tieRopes(4, [1, 2, 3, 4, 1, 1, 3]))
# -*- coding: utf-8 -*- """ Convert files with uniform grid to netcdf4 @author: rringuet, 2022 Date: 2020-05-05 00:00 Model: TS18 Bin: Esw 1.1 mV/m, Bang 178 deg., tilt 13.1 deg. Grid: Uniform (lat_step: 1.00, lon_step: 2.00 [deg]) MLAT [deg] MLT [hr] Pot [kV] Vazm [deg] Vmag [m/s] ---------- ---------- ---------- ---------- ---------- """ from glob import glob import numpy as np from time import perf_counter from datetime import datetime, timezone #from astropy.constants import R_earth from netCDF4 import Dataset import re model_varnames={"Pot":['V','kV'],"Vazm":['theta_v','deg'],"Vmag":['v','m/s'], #remaining variables are time series "tilt":['theta_Btilt',"deg"], 'Esw':['E_sw','mV/m'], 'Bang':['theta_B','deg'], #these are the coordinate variables 'MLAT':['MLAT','deg'], 'MLT':['MLT','hr']} def dts_to_hrs(datetime_string, filedate): '''Get hours since midnight from datetime string''' return (datetime.strptime(datetime_string, '%Y-%m-%d %H:%M').replace(tzinfo=timezone.utc)\ -filedate).total_seconds()/3600. def grid_type(filename): '''Determine grid type of data file. True if uniform, False if equal-area.''' read_obj = open(filename, 'r') line = read_obj.readline().strip() #Date: 2020-05-05 00:00 line = read_obj.readline().strip() #Model: TS18 line = read_obj.readline().strip() #Bin: Esw 1.1 mV/m, Bang 178 deg., tilt 13.1 deg. line = read_obj.readline().strip() #Grid: Uniform (lat_step: 1.00, lon_step: 2.00 [deg]) read_obj.close() return 'Uniform' in line #filename='C:/Users/rringuet/Kamodo_WinDev1/SuperDARN/fullday/model20200505-0000.txt' def ascii_reader(filename): '''Loads the data from a superdarn txt file into a nested dict''' #open file read_obj = open(filename, 'r') #extract header date_string = read_obj.readline().strip() #Date: 2020-05-05 00:00 model_string = read_obj.readline().strip() #Model: TS18 bin_string = read_obj.readline().strip() #Bin: Esw 1.1 mV/m, Bang 178 deg., tilt 13.1 deg. grid_string = read_obj.readline().strip() #Grid: Uniform (lat_step: 1.00, lon_step: 2.00 [deg]) trash = read_obj.readline().strip() #empty line variable_keys = read_obj.readline().strip() #MLAT [deg] MLT [hr] Pot [kV] Vazm [deg] Vmag [m/s] trash = read_obj.readline().strip() #---------- ---------- ---------- ---------- ---------- #extract info from header strings time_str = date_string[6:].strip() #'2020-05-05 00:00' date_string[2]+' '+date_string[3] filedate = datetime.strptime(time_str[:10], '%Y-%m-%d').replace(tzinfo=timezone.utc) hrs = dts_to_hrs(time_str, filedate) bin_list = bin_string[4:].split(',') Esw = float(bin_list[0].strip()[3:].strip().split(' ')[0]) Bang = float(bin_list[1].strip()[4:].strip().split(' ')[0]) tilt = float(bin_list[2].strip()[4:].strip().split(' ')[0]) var_list = re.split(' +',variable_keys) header_keys = ['tilt','Esw','Bang'] variable_keys = [item for item in var_list if '[' not in item] #create dictionary to store data in variables = {model_varnames[var][0]: {'units': model_varnames[var][-1], 'data': []} for var in variable_keys+header_keys} #store time series values variables[model_varnames['tilt'][0]]['data'] = tilt variables[model_varnames['Esw'][0]]['data'] = Esw variables[model_varnames['Bang'][0]]['data'] = Bang variables['time'] = {'units':'hr', 'data': hrs} #store array data into dictionary for line in read_obj: vals = re.split(' +', line.strip()) for i in range(len(variable_keys)): #skip empty block(s) at the end variables[model_varnames[variable_keys[i]][0]]['data'].append(vals[i]) #convert to numpy float arrays for key in variables.keys(): if isinstance(variables[key]['data'],(list)): variables[key]['data'] = np.array(variables[key]['data'], dtype=float) #add metadata variables['metadata'] = {'grid': grid_string[0][5:].strip(), 'model': model_string[0][6:].strip(), 'filedate': time_str[:10]} return variables def _toCDF(files, file_prefix): '''Reads in data from all files, writes to a netcdf4 file. Used for uniform grid data files for faster data access.''' #get data from first file, set lat/lon arrays file_data = ascii_reader(files[0]) lat = np.unique(file_data['MLAT']['data']) if sum(lat>0)==lat.size: cdf_filename = file_prefix+'_default_N.nc' #northern hemisphere data lat = np.append(lat, 90.) else: cdf_filename = file_prefix+'_default_S.nc' #southern hemisphere data lat = np.insert(lat, 0, -90.) lon = np.unique(file_data['MLT']['data'])*15. #set up net variables dictionary and time coordinate lists time = [file_data['time']['data']] var1D_list = ['theta_Btilt', 'E_sw', 'theta_B'] var3D_list = ['V', 'theta_v', 'v'] variables = {var: [np.reshape(file_data[var]['data'], (lat.size-1, lon.size)).T] \ for var in var3D_list} #reshape into lon/lat array for var in var1D_list: variables[var] = [file_data[var]['data']] #loop through files and add data to variables dict for file in files[1:]: data = ascii_reader(file) time.append(data['time']['data']) for var in var1D_list: variables[var].append(file_data[var]['data']) for var in var3D_list: variables[var].append(np.reshape(file_data[var]['data'], (lat.size-1, lon.size)).T) for var in var1D_list+var3D_list: variables[var] = np.array(variables[var]) #perform longitude wrapping in coordinate grid lon_le180 = np.where(lon<=180)[0] lon_ge180 = np.where(lon>=180)[0] #repeat 180 for -180 values if not 180. in lon: #add a cushion value for proper interpolation range (-180 to 180) lon_le180 = np.append(lon_le180, lon_le180.max()+1) lon_ge180 = np.insert(lon_ge180, 0, lon_ge180.min()-1) lon_size = len(lon_le180)+len(lon_ge180) tmp = np.zeros(lon_size) tmp[:len(lon_ge180)] = lon[lon_ge180]-360. tmp[len(lon_ge180):] = lon[lon_le180] lon = tmp #perform lon and lat wrapping in variable data for var in var3D_list: #perform scalar averaging for pole values (latitude wrapping) data_shape = variables[var].shape total_shape = (data_shape[0],data_shape[1],data_shape[2]+1) tmp = np.zeros(total_shape, dtype=float) if '_N.nc' in cdf_filename: #north pole at end of array tmp[:,:,:-1] = variables[var] #copy data into grid top = np.mean(tmp[:,:,-2],axis=1) #same shape as time axis tmp[:,:,-1] = np.broadcast_to(top, (total_shape[1],total_shape[0])).T elif '_S.nc' in cdf_filename: #south pole at beginning of array tmp[:,:,1:] = variables[var] #copy data into grid top = np.mean(tmp[:,:,1],axis=1) #same shape as time axis tmp[:,:,0] = np.broadcast_to(top, (total_shape[1],total_shape[0])).T variables[var] = tmp #swap longitudes, repeat 180 values for -180 position data_shape = variables[var].shape total_shape = (data_shape[0],lon_size,data_shape[2]) tmp = np.zeros(total_shape, dtype=float) tmp[:,:len(lon_ge180),:] = variables[var][:,lon_ge180,:] tmp[:,len(lon_ge180):,:] = variables[var][:,lon_le180,:] variables[var] = tmp #Data wrangling complete. Start new output file data_out = Dataset(cdf_filename, 'w', format='NETCDF4') data_out.file = ''.join([f+',' for f in files]).strip(',') data_out.model = 'SuperDARN' data_out.filedate = file_data['metadata']['filedate'] data_out.grid = file_data['metadata']['grid'] data_out.internal_model = file_data['metadata']['model'] #establish coordinates (lon, lat, then time open) #lon new_dim = data_out.createDimension('lon', lon.size) #create dimension new_var = data_out.createVariable('lon', np.float32, 'lon') #create variable new_var[:] = lon #store data for dimension in variable new_var.units = 'deg' #lat new_dim = data_out.createDimension('lat', lat.size) #create dimension new_var = data_out.createVariable('lat', np.float32, 'lat') #create variable new_var[:] = lat #store data for dimension in variable new_var.units = 'deg' #time new_dim = data_out.createDimension('time', len(files)) #create dimension new_var = data_out.createVariable('time', np.float32, 'time') #create variable new_var[:] = np.array(time) new_var.units = 'hr' #copy over variables to file for variable_name in variables.keys(): if variable_name in var3D_list: new_var = data_out.createVariable(variable_name, np.float32, ('time','lon','lat')) new_data = variables[variable_name] elif variable_name in var1D_list: new_var = data_out.createVariable(variable_name, np.float32, ('time')) new_data = variables[variable_name] else: continue new_var[:] = new_data #store data in variable units = [value[-1] for key, value in model_varnames.items() if value[0]==variable_name][0] new_var.units = units #close file data_out.close() return cdf_filename def _toCDFGroup(files, file_prefix): '''Reads in data from all files, writes to h5 files. Used for equal-area data files so that lon grids from different lat vals can be stored in groups.''' #get data from first file file_data = ascii_reader(files[0]) lat = np.unique(file_data['MLAT']['data']) if sum(lat>0)==lat.size: cdf_filename = file_prefix+'_equalarea_N.nc' #northern hemisphere data lat = np.append(lat, 90.) else: cdf_filename = file_prefix+'_equalarea_S.nc' #southern hemisphere data lat = np.insert(lat, 0, -90.) #set up net variables dictionary and time coordinate lists time = [file_data['time']['data']] var1D_list = ['theta_Btilt', 'E_sw', 'theta_B'] var3D_list = ['V', 'theta_v', 'v'] variables_1D = {var: [file_data[var]['data']] for var in var1D_list} variables_3D = {var: {latval: [] for latval in lat} for var in var3D_list} #store longitude locations and grids for each latitude value lonval_dict, lonidx_dict = {}, {} for latval in lat: idx = np.where(file_data['MLAT']['data']==latval)[0] lonidx_dict[latval] = idx #store indices if len(idx)==0: continue #skip latval=90. lon = file_data['MLT']['data'][idx]*15. #convert from MLT to degrees if lon.max()>360.: lon[np.argmax(lon)]-=360. #grid at pole has issues lonval_dict[latval] = np.unique(lon) if len(lonval_dict[latval])!=len(lon): #last lon value repeated near pole lonidx_dict[latval] = idx[:-1] #remove repeated value #Store variable data in nested fashion for file in files: data = ascii_reader(file) for var in var3D_list: for latval in lat: #1D array of vals for given time and lat variables_3D[var][latval].append(data[var]['data'][lonidx_dict[latval]]) #perform latitude wrapping first to avoid repeated values in average for var in var3D_list: #store which latval key is closest to pole if '_N.nc' in cdf_filename: pole_lat = 90. latval = lat[-2] #north pole at end of array elif '_S.nc' in cdf_filename: pole_lat = -90. latval = lat[1] #south pole at beginning of array #perform scalar averaging and store #variables_3D[var][latval] has shape (time,lon), average over lon values variables_3D[var][pole_lat] = np.mean(np.array(variables_3D[var][latval]),axis=1) #same shape as time #perform longitude swapping and lon wrapping per lat value for latval in lat: if latval!=pole_lat: #if not at the poles #wrap longitude coordinate values and store lon = lonval_dict[latval] lon_le180 = np.where(lon<=180)[0] lon_ge180 = np.where(lon>=180)[0] #repeat 180 for -180 values if not 180. in lon: #add a cushion value for proper interpolation range (-180 to 180) lon_le180 = np.append(lon_le180, lon_le180.max()+1) lon_ge180 = np.insert(lon_ge180, 0, lon_ge180.min()-1) lon_size = len(lon_le180)+len(lon_ge180) tmp = np.zeros(lon_size) tmp[:len(lon_ge180)] = lon[lon_ge180]-360. tmp[len(lon_ge180):] = lon[lon_le180] lonval_dict[latval] = tmp #swap longitude dimension of variables, each of shape (time,lon) for var in var3D_list: variables_3D[var][latval] = np.array(variables_3D[var][latval]) #swap longitudes, repeat 180 values for -180 position data_shape = variables[var].shape tmp = np.zeros((data_shape[0],lon_size), dtype=float) tmp[:,:len(lon_ge180)] = variables[var][:,lon_ge180] tmp[:,len(lon_ge180):] = variables[var][:,lon_le180] variables[var] = tmp #Data wrangling complete. Start new output file data_out = Dataset(cdf_filename, 'w', format='NETCDF4') data_out.file = ''.join([f+',' for f in files]).strip(',') data_out.model = 'SuperDARN' data_out.filedate = file_data['metadata']['filedate'] data_out.grid = file_data['metadata']['grid'] data_out.internal_model = file_data['metadata']['model'] #establish coordinates (lat, then time open) #lat new_dim = data_out.createDimension('lat', lat.size) #create dimension new_var = data_out.createVariable('lat', np.float32, 'lat') #create variable new_var[:] = lat #store data for dimension in variable new_var.units = 'deg' #time new_dim = data_out.createDimension('time', len(files)) #create dimension new_var = data_out.createVariable('time', np.float32, 'time') #create variable new_var[:] = np.array(time) new_var.units = 'hr' #CHANGE TO NESTED/GROUP FORMAT!!!! #copy over variables to file for variable_name in variables.keys(): if variable_name in var3D_list: new_var = data_out.createVariable(variable_name, np.float32, ('time','lon','lat')) new_data = variables[variable_name] elif variable_name in var1D_list: new_var = data_out.createVariable(variable_name, np.float32, ('time')) new_data = variables[variable_name] else: continue new_var[:] = new_data #store data in variable units = [value[-1] for key, value in model_varnames.items() if value[0]==variable_name][0] new_var.units = units #close file data_out.close() return cdf_filename def convert_files(file_prefix): '''Convert files of given pattern into one netCDF4 or h5 file''' #convert N and S hemisphere files separately or combine? print(f'Converted data file not found. Converting files with {file_prefix} prefix.') ftic = perf_counter() files = sorted(glob(file_prefix+'*.txt')) if grid_type(files[0]): #If grid is uniform, writte to netcdf4 print('Uniform grid detected. Converting to a netcdf4 file.') out_file = _toCDF(files, file_prefix) else: print('Equal-area grid detected. Converting to a grouped netcdf4 file.') out_file = _toCDFGroup(files, file_prefix) print(out_file) print(f'{len(files)} files with prefix {file_prefix} now combined into {out_file} '+\ f'in {perf_counter()-ftic:.6f}s.') return True
# -*- coding: utf-8 -*- try: from urllib import urlopen except ImportError: from urllib.request import urlopen import sys import zipfile import tarfile import io import os import distutils.log import ctypes if ctypes.sizeof(ctypes.c_void_p) == 8: PLATFORM = 'x64' else: PLATFORM = 'x86' DEBUG = os.path.splitext(sys.executable)[0].endswith('d') def get_dep(path, url): """download an archive to a specific location""" try: distutils.log.info( "fetching {0} to {1}".format( url, path, ) ) response = urlopen(url) dst_file = io.BytesIO(response.read()) dst_file.seek(0) dst = os.path.split(path)[0] if url.endswith('zip'): zip_ref = zipfile.ZipFile(dst_file) zip_ref.extractall(dst) zip_ref.close() dst_file.close() dst = os.path.join(dst, zip_ref.namelist()[0]) if dst != path: os.rename(dst, path) return True else: tar = tarfile.TarFile.gzopen(os.path.split(path)[1], fileobj=dst_file) dst = os.path.split(path)[0] tar.extractall(dst) dst = os.path.join(dst, tar.getmembers()[0].name) if dst != path: os.rename(dst, path) tar.close() dst_file.close() return True except: import traceback distutils.log.error(traceback.format_exc()) return False
'''FBAS definition helpers''' def get_hierarchical_base_definition(n_orgs, t_orgs, n_nodes, t_nodes): '''Get quorum slice definition for n_orgs orgs with n_node nodes each''' return { 'threshold': t_orgs, 'nodes': set(), 'children_definitions': [ { 'threshold': t_nodes, 'nodes': set(range(n_nodes * n, n_nodes * (n + 1))), 'children_definitions': [] } for n in range(n_orgs) ] } def get_nodes(definition): '''Get all nodes from a quorum slice definition''' nodes = definition['nodes'] for children_definition in definition['children_definitions']: nodes = nodes.union(get_nodes(children_definition)) return nodes
from .dictionary import DictionaryTree from typing import Dict __all__ = ('Translator',) class Translator: def __init__(self, trees: Dict[str, DictionaryTree], use: str = None): assert len(trees) > 0 self.trees = trees self.all_uses = list(trees.keys()) if not use or use not in self.all_uses: self._use = self.all_uses[0] else: self._use = use @property def use(self): return self._use @use.setter def use(self, val): assert val in self.all_uses self._use = val def translate(self, sentence: str, use: str = None): tree = self.trees[use or self.use] translation = [] idx = 0 while idx < len(sentence): trans_part = tree.max_match(sentence[idx:]) idx += len(trans_part) translation.append(trans_part) return ''.join(translation) __call__ = translate
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data provider with an argument to control data augmentation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tensorflow.compat.v1 as tf import tensorflow_datasets as tfds from low_rank_local_connectivity import utils def extract_data(data, preprocess_image): """Extracts image, label and create a mask.""" image = data["image"] # Reserve label 0 for background label = tf.cast(data["label"], dtype=tf.int32) # Create a mask variable to track the real vs padded data in the last batch. mask = 1. image = preprocess_image(image) return image, label, mask def construct_iterator(dataset_builder, split, preprocess_fn, batch_size, is_training): """Constructs data iterator. Args: dataset_builder: tensorflow_datasets data builder. split: tensorflow_datasets data split. preprocess_fn: Function that preprocess each data example. batch_size: (Integer) Batch size. is_training: (boolean) Whether training or inference mode. Returns: Data iterator. """ dataset = dataset_builder.as_dataset(split=split, shuffle_files=True) dataset = dataset.map(preprocess_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) if is_training: # 4096 is ~0.625 GB of RAM. Reduce if memory issues encountered. dataset = dataset.shuffle(buffer_size=4096) dataset = dataset.repeat(-1 if is_training else 1) dataset = dataset.batch(batch_size, drop_remainder=is_training) if not is_training: # Pad the remainder of the last batch to make batch size fixed. dataset = utils.pad_to_batch(dataset, batch_size) dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) return tf.compat.v1.data.make_one_shot_iterator(dataset) class MNISTDataProvider(object): """MNIST Data Provider. Attributes: images: (4-D tensor) Images of shape (batch, height, width, channels). labels: (1-D tensor) Data labels of size (batch,). mask: (1-D boolean tensor) Data mask. Used when data is not repeated to indicate the fraction of the batch with true data in the final batch. num_classes: (Integer) Number of classes in the dataset. num_examples: (Integer) Number of examples in the dataset. class_names: (List of Strings) MNIST id for class labels. num_channels: (integer) Number of image color channels. image_size: (Integer) Size of the image. iterator: Tensorflow data iterator. """ def __init__(self, subset, batch_size, is_training, data_dir=None): dataset_builder = tfds.builder("mnist", data_dir=data_dir) dataset_builder.download_and_prepare(download_dir=data_dir) self.image_size = 28 if subset == "train": split = tfds.core.ReadInstruction("train", from_=8, to=100, unit="%") elif subset == "valid": split = tfds.core.ReadInstruction("train", from_=0, to=8, unit="%") elif subset == "test": split = tfds.Split.TEST else: raise ValueError("subset %s is undefined " % subset) self.num_channels = 1 iterator = construct_iterator( dataset_builder, split, self._preprocess_fn(), batch_size, is_training) info = dataset_builder.info self.iterator = iterator self.images, self.labels, self.mask = iterator.get_next() self.num_classes = info.features["label"].num_classes self.class_names = info.features["label"].names self.num_examples = info.splits[split].num_examples def _preprocess_fn(self): """Preprocessing function.""" image_size = self.image_size def preprocess_image(image): """Preprocessing.""" # Normalize to 0-1 range. image = tf.image.convert_image_dtype(image, dtype=tf.float32) image = 2 * image - 1 return tf.image.resize_image_with_crop_or_pad( image, image_size, image_size) return functools.partial(extract_data, preprocess_image=preprocess_image) class CIFAR10DataProvider(object): """CIFAR10 Data Provider. Attributes: images: (4-D tensor) Images of shape (batch, height, width, channels). labels: (1-D tensor) Data labels of size (batch,). mask: (1-D boolean tensor) Data mask. Used when data is not repeated to indicate the fraction of the batch with true data in the final batch. num_classes: (Integer) Number of classes in the dataset. num_examples: (Integer) Number of examples in the dataset. class_names: (List of Strings) CIFAR10 id for class labels. num_channels: (integer) Number of image color channels. image_size: (Integer) Size of the image. iterator: Tensorflow data iterator. """ def __init__(self, subset, batch_size, is_training, data_dir=None): dataset_builder = tfds.builder("cifar10", data_dir=data_dir) dataset_builder.download_and_prepare(download_dir=data_dir) self.image_size = 32 if subset == "train": split = tfds.core.ReadInstruction("train", from_=10, to=100, unit="%") elif subset == "valid": split = tfds.core.ReadInstruction("train", from_=0, to=10, unit="%") elif subset == "test": split = tfds.Split.TEST else: raise ValueError("subset %s is undefined " % subset) self.num_channels = 3 iterator = construct_iterator( dataset_builder, split, self._preprocess_fn(), batch_size, is_training) info = dataset_builder.info self.iterator = iterator self.images, self.labels, self.mask = iterator.get_next() self.num_classes = info.features["label"].num_classes self.class_names = info.features["label"].names self.num_examples = info.splits[split].num_examples def _preprocess_fn(self): """Preprocessing function.""" image_size = self.image_size def preprocess_image(image): """Preprocessing.""" # Normalize to 0-1 range. image = tf.image.convert_image_dtype(image, dtype=tf.float32) return tf.image.resize_image_with_crop_or_pad( image, image_size, image_size) return functools.partial(extract_data, preprocess_image=preprocess_image) def extract_data_celeba(data, preprocess_image, attribute="Male"): """Extracts image, label and create a mask (used by CelebA data provider).""" image = data["image"] # Reserve label 0 for background label = tf.cast(data["attributes"][attribute], dtype=tf.int32) # Create a mask variable to track the real vs padded data in the last batch. mask = 1. image = preprocess_image(image) return image, label, mask class CelebADataProvider(object): """CelebA Data Provider. Attributes: images: (4-D tensor) Images of shape (batch, height, width, channels). labels: (1-D tensor) Data labels of size (batch,). mask: (1-D boolean tensor) Data mask. Used when data is not repeated to indicate the fraction of the batch with true data in the final batch. num_classes: (integer) Number of classes in the dataset. num_examples: (integer) Number of examples in the dataset. num_channels: (integer) Number of image color channels. image_size: (Integer) Size of the image. iterator: Tensorflow data iterator. class_names: (List of strings) Name of classes in the order of the labels. """ image_size = 32 def __init__(self, subset, batch_size, is_training, data_dir=None): dataset_builder = tfds.builder("celeb_a", data_dir=data_dir) dataset_builder.download_and_prepare(download_dir=data_dir) if subset == "train": split = tfds.Split.TRAIN elif subset == "valid": split = tfds.Split.VALIDATION elif subset == "test": split = tfds.Split.TEST else: raise ValueError( "subset %s is undefined for the dataset" % subset) self.num_channels = 3 iterator = construct_iterator( dataset_builder, split, self._preprocess_fn(), batch_size, is_training) info = dataset_builder.info self.iterator = iterator self.images, self.labels, self.mask = iterator.get_next() self.num_classes = 2 self.class_names = ["Female", "Male"] self.num_examples = info.splits[split].num_examples def _preprocess_fn(self): """Preprocessing.""" crop = True image_size = self.image_size def preprocess_image(image): """Preprocesses the given image. Args: image: Tensor `image` representing a single image example of arbitrary size. Returns: Preprocessed image. """ # Normalize to 0-1 range. image = tf.image.convert_image_dtype(image, dtype=tf.float32) if crop: image = tf.image.crop_to_bounding_box(image, 40, 20, 218 - 80, 178 - 40) return tf.image.resize_bicubic([image], [image_size, image_size])[0] return functools.partial(extract_data_celeba, preprocess_image=preprocess_image, attribute="Male") def _random_translate(image, new_image_size, noise_fill=True): """Randomly translate image and pad with noise.""" image_shape = image.shape.as_list() image_size = image_shape[0] mask = tf.ones(image_shape) mask = tf.image.resize_image_with_crop_or_pad( mask, 2 * new_image_size - image_size, 2 * new_image_size - image_size) image = tf.image.resize_image_with_crop_or_pad( image, 2 * new_image_size - image_size, 2 * new_image_size - image_size) # Range of bounding boxes is from [0, new_image_size-image_size). offset_height = tf.random_uniform( shape=(), minval=0, maxval=new_image_size - image_size, dtype=tf.int32) offset_width = tf.random_uniform( shape=(), minval=0, maxval=new_image_size - image_size, dtype=tf.int32) image = tf.image.crop_to_bounding_box(image, offset_height, offset_width, new_image_size, new_image_size) if noise_fill: mask = tf.image.crop_to_bounding_box(mask, offset_height, offset_width, new_image_size, new_image_size) image += tf.random_uniform( (new_image_size, new_image_size, image_shape[-1]), 0, 1.0) * (1 - mask) return image class TranslatedCelebADataProvider(CelebADataProvider): """Celeb A Data Provider with images translated randomly. Attributes: init_op: Initialization operation for the data provider. images: (4-D tensor) Images of shape (batch, height, width, channels). labels: (1-D tensor) Data labels of size (batch,). mask: (1-D boolean tensor) Data mask. Used when data is not repeated to indicate the fraction of the batch with true data in the final batch. num_classes: (integer) Number of classes in the dataset. num_examples: (integer) Number of examples in the dataset. num_channels: (integer) Number of image color channels. use_augmentation: (boolean) Whether to use data augmentation or not. image_size: (Integer) Size of the image. iterator: Tensorflow data iterator. class_names: (List of strings) Name of classes in the order of the labels. """ image_size = 48 def _preprocess_fn(self): """Preprocessing.""" crop = True image_size = self.image_size def preprocess_image(image): """Preprocesses the given image. Args: image: Tensor `image` representing a single image example of arbitrary size. Returns: Preprocessed image. """ # Normalize to 0-1 range. image = tf.image.convert_image_dtype(image, dtype=tf.float32) if crop: image = tf.image.crop_to_bounding_box(image, 40, 20, 218 - 80, 178 - 40) image = tf.image.resize_bicubic([image], [32, 32])[0] return _random_translate(image, image_size, noise_fill=True) return functools.partial(extract_data_celeba, preprocess_image=preprocess_image, attribute="Male") # ===== Function that provides data. ====== _DATASETS = { "cifar10": CIFAR10DataProvider, "mnist": MNISTDataProvider, "celeba32": CelebADataProvider, "trans_celeba48": TranslatedCelebADataProvider, } def get_data_provider(dataset_name): """Returns dataset by name.""" return _DATASETS[dataset_name]
# Copyright 2021 Zefeng Zhu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # @Created Date: 2021-12-14 09:46:48 pm # @Filename: plot.py # @Email: [email protected] # @Author: Zefeng Zhu # @Last Modified: 2021-12-18 11:29:16 am from ResNetPPI.demo_configs import * from ResNetPPI.utils import get_bins_tex from matplotlib.animation import FuncAnimation def plot2dist6d(pdb_id, pdb_binary_int, binned_dist6d_1, binned_dist6d_12, outdir='./figs'): titles = get_bins_tex(0.5, 0, 20, '$[20,+\infty)$', non_contact_at_first=False) fig, ax = plt.subplots(figsize=(6, 5)) ax.set_aspect('equal') ax.set_title(titles[0]) cax = ax.pcolor(binned_dist6d_12[0, :, :], vmin=0, vmax=1, cmap='Blues') ax.invert_yaxis() #fig.colorbar(cax) def animate(i): ax.set_title(titles[i]) cax.set_array(binned_dist6d_12[i, :, :].flatten()) anim = FuncAnimation(fig, animate, interval=150, frames=binned_dist6d_12.shape[0], repeat=True) fig.show() anim.save(f'{outdir}/{pdb_id}.{pdb_binary_int.chain_1.struct_asym_id}.{pdb_binary_int.chain_2.struct_asym_id}_dist6d_maps.gif', writer='pillow') # --- titles = get_bins_tex(0.5, 2, 20, non_contact_at_first=False) fig, ax = plt.subplots(figsize=(6, 5)) ax.set_aspect('equal') ax.set_title(titles[0]) cax = ax.pcolor(binned_dist6d_1[0, :, :], vmin=0, vmax=1, cmap='Blues') ax.invert_yaxis() #fig.colorbar(cax) def animate(i): ax.set_title(titles[i]) cax.set_array(binned_dist6d_1[i, :, :].flatten()) anim = FuncAnimation(fig, animate, interval=150, frames=binned_dist6d_1.shape[0], repeat=True) fig.show() anim.save(f'{outdir}/{pdb_id}.{pdb_binary_int.chain_1.struct_asym_id}_dist6d_maps.gif', writer='pillow')
from stable_baselines3.ppo.policies import CnnPolicy, MlpPolicy from stable_baselines3.ppo.ppo import PPO
import time from selenium import webdriver browser = webdriver.Chrome() browser.get("http://www.seleniumframework.com/python-course/") browser.implicitly_wait(10) browser.maximize_window() # click the subscribe button subscribe = browser.find_element_by_xpath('//*[@id="text-11"]/div/form/input[3]').click() # Get the window handles and switch to the launched window window_handles = browser.window_handles print(window_handles + '\n') browser.switch_to.window(window_handles[1]) browser.maximize_window() time.sleep(5) # Switch to new window and maximize email_address = browser.find_element_by_xpath('//*[@id="pageHolder"]/div[1]/form/input[1]') email_address.send_keys('[email protected]') subscription_request = browser.find_element_by_xpath('//*[@id="pageHolder"]/div[1]/form/p[2]/input') subscription_request.click() browser.close() time.sleep(3) browser.quit()
from collections import OrderedDict from django.core.paginator import InvalidPage from rest_framework import status from rest_framework.exceptions import NotFound from rest_framework.pagination import _positive_int from rest_framework_datatables.pagination import DatatablesPageNumberPagination, DatatablesMixin from rest_framework.response import Response class CustomeDatatablesPaginator(DatatablesPageNumberPagination): def get_page_size(self, request): if self.page_size_query_param: try: page_size = request.query_params[self.page_size_query_param] if page_size == "-1": return 100000 return _positive_int( request.query_params[self.page_size_query_param], strict=True, cutoff=self.max_page_size ) except (KeyError, ValueError): pass return self.page_size def get_paginated_response(self, data): if not self.is_datatable_request: if 'http_status' in data: stat = data['http_status'] data.pop('http_status') else: stat = status.HTTP_200_OK response = OrderedDict([ ('count', self.page.paginator.count), ('next', self.get_next_link()), ('previous', self.get_previous_link()), ('data', data["data"]), ('msg', data["msg"]), ('status', data["status"]), ('status_code', data["status_code"]) ]) if 'summary' in data: response['summary'] = data['summary'] return Response(response, status=stat) response=OrderedDict([ ('recordsTotal', self.total_count), ('recordsFiltered', self.count), ('data', data["data"]), ('msg', data["msg"]), ('status', data["status"]), ('status_code', data["status_code"]) ]) if 'summary' in data: response['summary'] = data['summary'] return Response(response)
import json import os from copy import deepcopy from django.core.files.uploadedfile import UploadedFile from django.core.management.base import BaseCommand from couchforms.models import DefaultAuthContext from corehq.apps.hqadmin.management.commands.export_domain_forms_raw import ( FormMetadata, ) from corehq.apps.receiverwrapper.auth import AuthContext from corehq.apps.receiverwrapper.util import submit_form_locally class Command(BaseCommand): help = "Sumbit all forms saved by the ``export_domain_forms_raw`` command." \ "Note that if the domain you are importing into is not the same domain you" \ "exported from then there will be some inconsistencies since the new domain" \ "won't have the same user ID's or Application / App Build ID's" def add_arguments(self, parser): parser.add_argument('domain') parser.add_argument('folder_path') def handle(self, domain, folder_path, **options): if not os.path.exists(folder_path): raise Exception('Folder path must be the path to a directory') for name in os.listdir(folder_path): form_dir = os.path.join(folder_path, name) if not os.path.isdir(form_dir): continue with open(os.path.join(form_dir, 'metadata.json'), 'r', encoding='utf-8') as meta: metadata = FormMetadata.wrap(json.load(meta)) form_path = os.path.join(form_dir, 'form.xml') if not os.path.exists(form_path) and os.path.isfile(form_path): self.stderr.write('{} missing'.format(form_path)) continue attachments_dict = {} for name in metadata.attachments: path = os.path.join(form_dir, name) if os.path.exists(path): file = open(path, 'rb') attachments_dict[name] = UploadedFile(file, name) else: self.stderr.write('WARN: missing attachment: {}'.format(path)) with open(form_path, 'r', encoding='utf-8') as form: xml_data = form.read() auth_type = metadata.auth_context.get('doc_type', None) if auth_type == 'AuthContext': auth_context = AuthContext.wrap(deepcopy(metadata.to_json()['auth_context'])) auth_context.domain = domain else: auth_context = DefaultAuthContext() result = submit_form_locally( xml_data, domain, attachments=attachments_dict, received_on=metadata.received_on, auth_context=auth_context, app_id=metadata.app_id, build_id=metadata.build_id ) if not result.response.status_code == 201: self.stderr.write(str(result.response))
import json import fileinput import os import struct import numpy as np import matplotlib.pyplot as plt from math import pow ##def read_data(void): ## temp="" ### C:\\Users\LeeBruce\Desktop\\idkp1-10.txt def delete_black(FileName): file1 = open(FileName, 'r', encoding='utf-8') # 要去掉空行的文件 file2 = open("C:\\Users\LeeBruce\Desktop\\idkp1-102.txt", 'w', encoding='utf-8') # 生成没有空行的文件 try: for line in file1.readlines(): if line == '\n': line = line.strip("\n") file2.write(line) finally: file1.close() file2.close() def CuttingFile(): temp="" f = open("C:\\Users\LeeBruce\Desktop\\idkp1-102.txt", "r", encoding='utf-8') temp=f.readline() #print(temp) lines = f.readlines() data_1 = open("C:\\Users\LeeBruce\Desktop\\奇数行.txt", 'w', encoding='utf-8') data_2 = open("C:\\Users\LeeBruce\Desktop\\偶数行.txt", 'w', encoding='utf-8') num = 0 # 行数-1 for line in lines: if (num % 2) == 0: # num为偶数说明是奇数行 print(line.strip(), file=data_1) # .strip用来删除空行 else: # # num为奇数说明是偶数行 print(line.strip(), file=data_2) num += 1 data_1.close() data_2.close() f.close() f1=open("C:\\Users\LeeBruce\Desktop\\偶数行.txt", 'r', encoding='utf-8') d=[30] c=[10149] block=[] profit=[408,921,1329,11,998,1009,104,839,943,299,374,673,703,954,1657,425,950,1375,430,541,971,332,483,815,654,706,1360,956,992,1948, 408,921,1329,11,998,1009,104,839,943,299,374,673,703,954,1657,425,950,1375,430,541,971,332,483,815,654,706,1360,956,992,1948,228, 435,663,575,687,1262,470,609,1079,696,907,1603,273,961,1234,281,461,742,54,957,1011,149,258,407,28,90,118,245,949,1194,246,298,544 ,205,546,751,33,712,745,335,956,1291,163,918,1081,79,671,750,972,991,1963,217,962,1179,380,846,1226,158,671,829,39,701,740,258,577,835, 5,682,687,300,364,664,105,946,1051,68,675,743,450,465,915,686,697,1383,355,367,722,106,131,237,296,868,1164,621,807,1428,283,428,711 ,230,573,803,359,772,1131,270,642,912,134,507,641,21,242,263,236,705,941,469,785,1254,196,349,545,405,985,1390,865,988,1853,355,405,760,460 ,939,1399,142,408,550,291,436,727,644,922,1566,432,890,1322,352,885,1237,139,269,408,10,137,147,593,601,1194,724,764,1488,672,900,1572,892, 981,1873,597,641,1238,810,996,1806,459,816,1275,416,872,1288,310,945,1255,283,674,957,180,697,877,112,629,741,559,869,1428,79,802,881,164 ,192,356,323,340,663,333,464,797,472,496,968,234,914,1148,285,691,976,401,513,914,599,755,1354,391,928,1319,244,502,746,541,837,1378,208,970, 1178,107,449,556,705,887,1592,468,802,1270,444,683,1127,222,958,1180,18,24,42,153,540,693,54,633,687,853,903,1756,399,452,851,108,161,269, 328,431,759,] weight=[508,1021,1321,111,1098,1196,204,939,1107,399,474,719,803,1054,1781,525,1050,1362,530,641,903,432,583,894,754,806,1241,1056,1092,1545, 508,1021,1321,111,1098,1196,204,939,1107,399,474,719,803,1054,1781,525,1050,1362,530,641,903,432,583,894,754,806,1241,1056,1092,1545, 328,535,579,675,787,1037,570,709,1171,796,1007,1251,373,1061,1101,381,561,774,154,1057,1198,249,358,446,128,190,288,345,1049,1053,346, 398,622,305,646,930,133,812,892,435,1056,1406,263,1018,1192,179,771,802,1072,1091,1418,317,1062,1092,480,946,1064,258,771,846,139,801, 888,358,677,679,105,782,862,400,464,747,205,1046,1133,168,775,839,550,565,727,786,797,1098,455,467,623,206,231,232,396,968,1064,721,907, 1406,383,528,636,330,673,719,459,872,1316,370,742,846,234,607,737,121,342,372,336,805,1090,569,885,1245,296,449,729,505,1085,1364,965, 1088,1510,455,505,758,560,1039,1363,242,508,642,391,536,855,744,1022,1231,532,990,992,452,985,1021,239,369,450,110,237,264,693,701,1176, 824,864,1288,772,1000,1062,992,1081,1395,697,741,899,910,1096,1919,559,916,1296,516,972,1077,410,1045,1302,383,774,809,280,797,927,212, 729,923,659,969,1065,179,902,1010,264,292,441,423,440,450,433,564,826,572,596,1057,334,1014,1148,385,791,1019,501,613,625,699,855,1289, 491,1028,1381,344,602,609,641,937,1311,308,1070,1215,207,549,592,805,987,1133,568,902,952,544,783,1111,322,1058,1106,118,124,206,253, 640,756,154,733,879,953,1003,1510,499,552,883,208,261,437,428,531,728,] count = len(f1.readlines()) print("读入拆分后地文件行数为:",count) lines1 = f1.readlines() for line in lines1: for i in range(count): block[0,1]=line.split(",",1) d[i]=block[0].Split("*")[1] c[i]=block[1].Split(" ").Last() f1.close() count1=len(d) return d,c,profit,weight def testbage(list,weight_most,value,weight): def bag_0_1(weight, value, weight_most): # return max value num = len(weight) weight.insert(0, 0) # 前0件要用 value.insert(0, 0) # 前0件要用 bag = np.zeros((num + 1, weight_most + 1), dtype=np.int32) # 下标从零开始 for i in range(1, num + 1): for j in range(1, weight_most + 1): if weight[i] <= j: bag[i][j] = max(bag[i - 1][j - weight[i]] + value[i], bag[i - 1][j]) else: bag[i][j] = bag[i - 1][j] # print(bag) return bag[-1, -1] result = bag_0_1(weight, value, weight_most) return result if __name__ == '__main__': x=input("请输入文件路径:") l=15 delete_black(x) a,b,c,d=CuttingFile() #kio=testbage(a, b ,c, d) # print(kio) print("读入的价值列表为:", c) print("读入的重量列表为:",d ) print("D{0-1} KP数据的最优解为:",l) #-------------损失函数的收敛曲线图--------------- n=len(d) x=range(n) plt.scatter(x,d,color='red',linewidth=3) plt.title("Scatter plot of profit and weight") plt.xlabel("weight") plt.ylabel("profit") plt.show()
import numpy as np import matplotlib.pyplot as plt import matplotlib.cm import matplotlib.colors # named colors WHITE = "#ffffff" BLACK = "#000000" BLUE = "#1f77b4" # matplotlib C0 ORANGE = "#ff7f0e" # matplotlib C1 GREEN = "#2ca02c" # matplotlib C2 RED = "#d62728" # matplotlib C3 PURPLE = "#9467bd" # matplotlib C4 BROWN = "#8c564b" # matplotlib C5 PINK = "#e377c2" # matplotlib C6 GRAY = "#7f7f7f" # matplotlib C7 YELLOW = "#bcbd22" # matplotlib C8 TEAL = "#17becf" # matplotlib C9 CMAP_TO_OPPOSITE = {} def register_opposite_color(cmap_name, opposite_color): CMAP_TO_OPPOSITE[cmap_name] = opposite_color CMAP_TO_OPPOSITE[plt.get_cmap(cmap_name)] = opposite_color register_opposite_color("viridis", RED) register_opposite_color("plasma", GREEN) register_opposite_color("inferno", GREEN) register_opposite_color("magma", GREEN) class RichardsonColormap(matplotlib.colors.Colormap): """ A matplotlib Colormap subclass which implements the colormap described in J. L. Richardson, Comput. Phys. Commun. 63, 84 (1991). This colormap is appropriate for visualizing complex-valued functions in two dimensions. """ def __init__(self): self.name = "richardson" self.N = 256 def __call__(self, x, alpha=1, bytes=False): real, imag = np.real(x), np.imag(x) mag = np.sqrt((real ** 2) + (imag ** 2)) z = (mag ** 2) - 1 zplus = z + 2 eta = np.where(np.greater_equal(z, 0), 1, -1) common = 0.5 + (eta * (0.5 - (mag / zplus))) real_term = real / (np.sqrt(6) * zplus) imag_term = imag / (np.sqrt(2) * zplus) rgba = np.ones( np.shape(x) + (4,) ) # create rgba array of shape shape as x, except in last dimension, where rgba values will be stored rgba[:, 0] = common + (2 * real_term) # red rgba[:, 1] = common - real_term + imag_term # green rgba[:, 2] = common - real_term - imag_term # blue return rgba # register cmap so that plt.get_cmap('richardson') can find it matplotlib.cm.register_cmap(name="richardson", cmap=RichardsonColormap()) register_opposite_color("richardson", WHITE) blue_black_red_cdit = { "red": ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), "blue": ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0)), "green": ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), } blue_black_red_cmap = matplotlib.colors.LinearSegmentedColormap( "BlueBlackRed", blue_black_red_cdit ) matplotlib.cm.register_cmap(name="BlueBlackRed", cmap=blue_black_red_cmap) class RichardsonNormalization(matplotlib.colors.Normalize): """A matplotlib Normalize subclass which implements an appropriate normalization for :class:`RichardsonColormap`.""" def __init__(self, equator_magnitude=1): self.equator_magnitude = np.abs(equator_magnitude) def __call__(self, x, **kwargs): return np.ma.masked_invalid(x / self.equator_magnitude, copy=False) def autoscale(self, *args): pass def autoscale_None(self, *args): pass class AbsoluteRenormalize(matplotlib.colors.Normalize): def __init__(self): super().__init__(vmin=0, vmax=1, clip=False) def __call__(self, x, **kwargs): return np.ma.masked_invalid(np.abs(x) / np.nanmax(np.abs(x)), copy=False) def autoscale(self, *args): pass def autoscale_None(self, *args): pass
""" Helper function for parsing config file """ import configparser import logging from logging.config import fileConfig # Setup logging fileConfig('log_config.ini') logger = logging.getLogger() conf_file = '/var/crackq/files/crackq.conf' def hc_conf(): """ Parse config file and return dictionary of file locations for rules, wordlists, logs etc :return: dictionary containing conf entries """ logger.info("Reading from config file {}".format(conf_file)) config = configparser.ConfigParser() config.optionxform = str config.read(conf_file) conf_dict = {s: dict(config.items(s)) for s in config.sections()} #logger.debug("Conf Dictionary:\n{}".format(conf_dict)) return conf_dict
####################################################### # Takes esigner360 chart and repository index # finds newest version in the repository # iterates throu dependencies and if there is newer dependency, # it is updated ####################################################### from requests.models import HTTPBasicAuth import yaml import os import requests # returns extended semver string to compare versions simply def semVer2Number(semVer): split = semVer.split(".") ret = "" for ver in split: ret = ret + "." + ("0000000000000000000000" + ver)[-20:] return ret ########################## SEMVER_MAJOR=0 SEMVER_MINOR=1 SEMVER_PATCH=2 def incSemVer(part,semVer): semVerNum = list(map(lambda s: int(s), semVer.split("."))) semVerNum[part]=semVerNum[part]+1 return ".".join(list(map(lambda n:str(n), semVerNum))) ########################## def maxChartEntry(chartVersion): return { "extendedVer": semVer2Number(chartVersion["version"]), "realVer": chartVersion["version"], "chart": chartVersion } ########################## def getHighestVersionsFormRepo(repoIndex): maxChartVer = {} for chartName, chart in repoIndex["entries"].items(): #print(chartName) for chartVersion in chart: # initialize at first chart encounter if not chartName in maxChartVer: maxChartVer[chartName] = maxChartEntry(chartVersion) # update if version greater if semVer2Number(chartVersion["version"]) > maxChartVer[chartName]["extendedVer"]: maxChartVer[chartName] = maxChartEntry(chartVersion) return maxChartVer ########################## def loadRepoIndex(helmRepoUrl, helmRepoUser, helmRepoPwd): repoIndexRes = requests.get(helmRepoUrl+"/index.yaml", auth=HTTPBasicAuth(helmRepoUser, helmRepoPwd), verify=False) repoIndex = yaml.load(repoIndexRes.text, Loader = yaml.FullLoader) return repoIndex ########################## def loadChart(): with open("Chart.yaml") as f: return yaml.load(f, Loader=yaml.FullLoader) ##### END DEFs ######## helmRepoUrl = os.environ["HELM_REPO_URL"] helmRepoUser = os.environ["HELM_REPO_USER"] helmRepoPwd = os.environ["HELM_REPO_PWD"] # load repo index repoIndex = loadRepoIndex(helmRepoUrl, helmRepoUser, helmRepoPwd) maxChartVer = getHighestVersionsFormRepo(repoIndex) chart = loadChart() updated = False updatedModules = [] updatedModulesDetail = [] for idx, dep in enumerate(chart["dependencies"]): depName=dep["name"] depVer=dep["version"] maxDepVer = maxChartVer[depName]["chart"]["version"] if semVer2Number(depVer) < semVer2Number(maxDepVer): updatedModules.append(depName) updatedModulesDetail.append(f"upgrading dependency {depName} {depVer} -> {maxDepVer}") #print(f"upgrading dependency {depName} {depVer} -> {maxDepVer}") chart["dependencies"][idx]["version"] = maxDepVer updated = True if updated: oldChartVer = chart["version"] newChartVer = incSemVer(SEMVER_PATCH, chart["version"]) updatedModulesStr = ",".join(updatedModules) updatedModulesDetailStr = "\n".join(updatedModulesDetail) print(f"updating chart version {oldChartVer} -> {newChartVer} (updated modules: {updatedModulesStr})\n{updatedModulesDetailStr}") chart["version"] = newChartVer with open("Chart.yaml","w") as f: yaml.dump(chart,f,indent=2)
#encoding=utf-8 import datetime, time import re def get_year_start_end(): import calendar day_now = time.localtime() day_begin = '%d-01-01' % (day_now.tm_year) # 月初肯定是1号 wday, monthRange = calendar.monthrange(day_now.tm_year, 12) day_end = '%d-12-%02d' % (day_now.tm_year,monthRange) return day_begin,day_end def get_month_start_end(): import calendar day_now = time.localtime() day_begin = '%d-%02d-01' % (day_now.tm_year, day_now.tm_mon) # 月初肯定是1号 wday, monthRange = calendar.monthrange(day_now.tm_year, day_now.tm_mon) # 得到本月的天数 第一返回为月第一日为星期几(0-6), 第二返回为此月天数 day_end = '%d-%02d-%02d' % (day_now.tm_year, day_now.tm_mon, monthRange) return day_begin,day_end def get_month_start_end_by_month(sdate): import calendar day_now = time.localtime() day_begin = '%d-%02d-01 00:00:00' % (sdate.year, sdate.month) # 月初肯定是1号 wday, monthRange = calendar.monthrange(sdate.year, sdate.month) # 得到本月的天数 第一返回为月第一日为星期几(0-6), 第二返回为此月天数 day_end = '%d-%02d-%02d 23:59:59' % (sdate.year, sdate.month, monthRange) date_day_begin = datetime.datetime.strptime(day_begin,"%Y-%m-%d %H:%M:%S") date_day_end = datetime.datetime.strptime(day_end,"%Y-%m-%d %H:%M:%S") next_day_begin = date_day_end+datetime.timedelta(seconds=120) return date_day_begin , date_day_end, next_day_begin def get_week_start_end(d=None): if not d: d = datetime.datetime.now() this_week_start = d - datetime.timedelta(days=d.weekday()) this_week_end = this_week_start + datetime.timedelta(days=6) return this_week_start.strftime("%Y-%m-%d") + " 00:00:00",this_week_end.strftime("%Y-%m-%d")+ " 23:59:59" def get_week_start_end_day(d=None): if not d: d = datetime.datetime.now() this_week_start = d - datetime.timedelta(days=d.weekday()) this_week_end = this_week_start + datetime.timedelta(days=6) return this_week_start.strftime("%m月%d日"),this_week_end.strftime("%m月%d日") def humanreadable_mseconds(mseconds): seconds = int(mseconds) / 1000 s = seconds % 60 h = seconds / 60 / 60 if h: m = seconds / 60 % 60 ret = u"%02d:%02d:%02d" % (h,m,s) else: m = seconds / 60 ret = u"%02d:%02d" % (m,s) return ret def zero_date(): d = datetime.datetime.today() return datetime.datetime(d.year, d.month, d.day) def datetime_to_timestamp(d): return int(time.mktime(d.timetuple())) def timestamp_to_datetime(response): "Converts a unix timestamp to a Python datetime object" if not response: return None try: response = int(response) except ValueError: return None return datetime.datetime.fromtimestamp(response) def days_ago(day=30): return datetime.datetime.now() - datetime.timedelta(day) def nature_days_ago(day=30): return zero_date() - datetime.timedelta(day) def after_days(day=30): return datetime.datetime.now() + datetime.timedelta(day) def after_from_days(dd,day=1): return dd + datetime.timedelta(day) def nature_after_days(day=30): return zero_date() + datetime.timedelta(day) def nature_after_days_end(day=30): return zero_date() + datetime.timedelta(day) - datetime.timedelta(seconds=60) def seconds_to_zero(): d = nature_after_days(1) return int(datetime_to_timestamp(d) - int(time.time())) def is_weekend(d=datetime.datetime.today()): return d.weekday() in (0, 6) def minutes_ago(seconds=300): return datetime.datetime.now() - datetime.timedelta(seconds=seconds) def after_minutes(seconds=300): return datetime.datetime.now() + datetime.timedelta(seconds=seconds) def int_day(d=None): if d is None: d = datetime.datetime.today() return int("%s%d%d" % (d.year,d.month, d.day)) def int_days(d=None): if d is None: d = datetime.datetime.today() return int("%s%02d%02d" % (d.year,d.month, d.day)) def int_month(d=None): if d is None: d = datetime.datetime.today() return int("%s%d" % (d.year, d.month)) def int_week(d=None): if d is None: d = datetime.datetime.today() monday = d.weekday() d = d - datetime.timedelta(monday) return int("%s%d%d" % (d.year, d.month, d.day)) def int_weeks(d=None): if d is None: d = datetime.datetime.today() monday = d.weekday() d = d - datetime.timedelta(monday) return int("%s%02d%02d" % (d.year, d.month, d.day)) def int_last_weeks(d=None): if d is None: d = datetime.datetime.today() - datetime.timedelta(7) monday = d.weekday() d = d - datetime.timedelta(monday) return int("%s%02d%02d" % (d.year, d.month, d.day)) def is_legal_date(d): timere = "^(\d{2}|\d{4})-((0([1-9]{1}))|(1[0|1|2]))-(([0-2]([0-9]{1}))|(3[0|1]))$" return re.match(timere, d) != None def out_week_date(year,day): fir_day = datetime.datetime(year,1,1) zone = datetime.timedelta(days=day-1) return datetime.datetime.strftime(fir_day + zone, "%Y-%m-%d")
import warnings import numpy as np import pandas as pd import pymc3 as pm import arviz as az import theano.tensor as tt from gumbi.utils.misc import assert_in, assert_is_subset from gumbi.utils.gp_utils import get_ℓ_prior from gumbi.aggregation import DataSet from gumbi.arrays import * from gumbi.arrays import ParameterArray as parray from gumbi.arrays import UncertainParameterArray as uparray from gumbi.arrays import MVUncertainParameterArray as mvuparray from ..base import Regressor __all__ = ['GP'] class GP(Regressor): r"""Gaussian Process surface learning and prediction. See Also -------- :class:`Regressor` Notes ----- The GP class is built from a dataframe in the form of a :class:`DataSet` object. The output(s) are taken from :attr:`DataSet.outputs` and the corresponding column in the tidy data frame taken from :attr:`DataSet.names_column`. This column will be generically referred to as the `output_column` in this documentation, but can take any value specifed when the :class:`DataSet` is constructed. The model inputs are constructed by filtering this dataframe, extracting column values, and converting these to numerical input coordinates. The main entry point will be :meth:`fit`, which parses the dimensions of the model with :meth:`specify_model`, extracts numerical input coordinates with :meth:`get_structured_data`, compiles the Pymc3 model with :meth:`build_model`, and finally learns the hyperparameters with :meth:`find_MAP`. Dimensions fall into several categories: * Filter dimensions, those with only one level, are used to subset the dataframe but are not included as explicit inputs to the model. These are not specified explicitly, but rather any continuous or categorical dimension with only one level is treated as a filter dimension. * Continuous dimensions are treated as explicit coordinates and given a Radial Basis Function kernel * Linear dimensions (which must be a subset of `continuous_dims`) have an additional linear kernel. * Coregion dimensions imply a distinct but correlated output for each level * If more than one output is specified, the `output_column` is treated as a categorical dim. A non-additive model has the form: .. math:: y &\sim \text{Normal} \left( \mu, \sigma \right) \\ mu &\sim \mathcal{GP} \left( K \right) \\ K &= \left( K^\text{cont}+K^\text{lin} \right) K^\text{coreg}_\text{outputs} \prod_{n} K^\text{coreg}_{n} \\ K^\text{cont} &= \text{RBF} \left( \ell_{i}, \eta \right) \\ K^\text{lin} &= \text{LIN} \left( c_{j}, \tau \right) \\ K^\text{coreg} &= \text{Coreg} \left( \boldsymbol{W}, \kappa \right) \\ \sigma &\sim \text{Exponential} \left( 1 \right) \\ Where :math:`i` denotes a continuous dimension, :math:`j` denotes a linear dimension, and :math:`n` denotes a categorical dimension (excluding the `output_column`). :math:`K^\text{cont}` and :math:`K^\text{lin}` each consist of a joint kernel encompassing all continuous and linear dimensions, respectively, whereas :math:`K^\text{coreg}_{n}` is a distinct kernel for a given categorical dimension. The additive model has the form: .. math:: mu &\sim \mathcal{GP}\left( K^\text{global} \right) + \sum_{n} \mathcal{GP}\left( K_{n} \right) \\ K^\text{global} &= \left( K^\text{cont}+K^\text{lin} \right) K^\text{coreg}_\text{outputs} \\ K_{n} &= \left( K^\text{cont}_{n}+K^\text{lin}_{n} \right) K^\text{coreg}_\text{outputs} K^\text{coreg}_{n} \\ Note that, in the additive model, :math:`K^\text{cont}_{n}` and :math:`K^\text{lin}_{n}` still consist of only the continuous and linear dimensions, respectively, but have unique priors corresponding to each categorical dimension. However, there is only one :math:`K^\text{coreg}_\text{outputs}` kernel. Parameters ---------- dataset : DataSet Data for fitting. outputs : str or list of str, default None Name(s) of output(s) to learn. If ``None``, uses all values from ``outputs`` attribute of *dataset*. seed : int Random seed Examples -------- A GP object is created from a :class:`DataSet` and can be fit immediately with the default dimension configuration (regressing `r` with RBF + linear kernels for `X` and `Y`): >>> import gumbi as gmb >>> df = pd.read_pickle(gmb.data.example_dataset) >>> outputs=['a', 'b', 'c', 'd', 'e', 'f'] >>> ds = gmb.DataSet(df, outputs=outputs, log_vars=['Y', 'b', 'c', 'd', 'f'], logit_vars=['X', 'e']) >>> gp = gmb.GP(ds, outputs='d').fit() Note that last line is equivalent to >>> gp = gmb.GP(ds, outputs='d') >>> gp.specify_model() >>> gp.build_model() >>> gp.find_MAP() The model can be specified with various continuous, linear, and categorical dimensions. `X` and `Y` are always included in both ``continuous_dims`` and ``linear_dims``. >>> gp.specify_model(continuous_dims='lg10_Z', linear_dims='lg10_Z', categorical_dims='Pair') >>> gmb.GP(ds).fit(continuous_dims='lg10_Z', linear_dims='lg10_Z', categorical_dims='Pair') # equivalent After the model is fit, define a grid of points at which to make predictions. The result is a :class:`ParameterArray`: >>> gp.prepare_grid() >>> gp.grid_points ('X', 'Y'): [(0.075 , 10.) (0.08358586, 10.) (0.09217172, 10.) ... (0.90782828, 800.) (0.91641414, 800.) (0.925 , 800.)] Make predictions, returning an :class:`UncertainParameterArray` >>> gp.predict_grid() >>> gp.predictions d['μ', 'σ2']: [[(0.70728056, 0.16073197) (0.70728172, 0.16073197) (0.70728502, 0.16073197) ... (0.70727954, 0.16073197) (0.7072809 , 0.16073197) (0.70728058, 0.16073197)] ... [(0.70749247, 0.1607318 ) (0.70773573, 0.16073116) (0.70806603, 0.16072949) ... (0.70728449, 0.16073197) (0.70728194, 0.16073197) (0.7072807 , 0.16073197)]] The `uparray` makes it easy to calculate standard statistics in natural or transformed/standardized space while maintaining the original shape of the array: >>> gp.predictions.z.dist.ppf(0.025) array([[-3.1887916 , -3.18878491, -3.18876601, ..., -3.18879744, -3.18878966, -3.18879146], ..., [-3.1875742 , -3.18617286, -3.18426272, ..., -3.18876906, -3.18878366, -3.18879081]]) Finally, plot the results: >>> import matplotlib.pyplot as plt >>> >>> plt.style.use(str(gmb.style.futura)) >>> x_pa = gp.predictions_X >>> y_upa = gp.predictions >>> gmb.ParrayPlotter(x_pa, y_upa).plot() Plot a slice down the center of the prediction along each axis >>> x_pa, y_upa = gp.get_conditional_prediction(Y=88) >>> >>> ax = gmb.ParrayPlotter(x_pa, y_upa).plot() >>> ax.set_xticklabels([int(float(txt.get_text())*100) for txt in ax.get_xticklabels()]); Plot a slice down the center of the prediction along each axis >>> x_pa, y_upa = gp.get_conditional_prediction(X=0.5) >>> >>> ax = gmb.ParrayPlotter(x_pa, y_upa).plot() >>> ax.set_xticklabels([int(float(txt.get_text())*100) for txt in ax.get_xticklabels()]); Attributes ---------- dataset : DataSet Data for fitting. outputs : list of str Name(s) of output(s) to learn. seed : int Random seed continuous_dims : list of str Columns of dataframe used as continuous dimensions linear_dims : list of str Subset of continuous dimensions to apply an additional linear kernel. continuous_levels : dict Values considered within each continuous column as ``{dim: [level1, level2]}`` continuous_coords : dict Numerical coordinates of each continuous level within each continuous dimension as ``{dim: {level: coord}}`` categorical_dims : list of str Columns of dataframe used as categorical dimensions categorical_levels : dict Values considered within each categorical column as ``{dim: [level1, level2]}`` categorical_coords : dict Numerical coordinates of each categorical level within each categorical dimension as ``{dim: {level: coord}}`` additive : bool Whether to treat categorical dimensions as additive or joint filter_dims : dict Dictionary of column-value pairs used to filter dataset before fitting X : array A 2D tall array of input coordinates. y : array A 1D vector of observations model : pymc3.model.Model Compiled pymc3 model gp_dict : dict Dictionary of model GP objects. Contains at least 'total'. """ def __init__(self, dataset: DataSet, outputs=None, seed=2021): super(GP, self).__init__(dataset, outputs, seed) self.model = None self.gp_dict = None self.MAP = None self.trace = None self.continuous_kernel = 'ExpQuad' self.heteroskedastic_inputs = False self.heteroskedastic_outputs = True self.sparse = False self.latent = False self.n_u = 100 self.model_specs = { 'seed': self.seed, 'continuous_kernel': self.continuous_kernel, 'heteroskedastic_inputs': self.heteroskedastic_inputs, 'heteroskedastic_outputs': self.heteroskedastic_outputs, 'sparse': self.sparse, 'n_u': self.n_u, } ################################################################################ # Model building and fitting ################################################################################ def fit(self, outputs=None, linear_dims=None, continuous_dims=None, continuous_levels=None, continuous_coords=None, categorical_dims=None, categorical_levels=None, additive=False, seed=None, heteroskedastic_inputs=False, heteroskedastic_outputs=True, sparse=False, n_u=100, ARD=True, **MAP_kwargs): """Fits a GP surface Parses inputs, compiles a Pymc3 model, then finds the MAP value for the hyperparameters. `{}_dims` arguments indicate the columns of the dataframe to be included in the model, with `{}_levels` indicating which values of those columns are to be included (``None`` implies all values). If ``additive==True``, the model is constructed as the sum of a global GP and a distinct GP for each categorical dimension. Each of these GPs, including the global GP, consists of an RBF+linear kernel multiplied by a coregion kernel for the `output_column` if necessary. Although the same continuous kernel structure is used for each GP in this model, unique priors are assigned to each distinct kernel. However, there is always only one coregion kernel for the `output_column`. The kernel for each dimension-specific GP is further multiplied by a coregion kernel that provides an output for each level in that dimension. See Also -------- :meth:`build_model` Parameters ---------- outputs : str or list of str, default None Name(s) of output(s) to learn. If ``None``, :attr:`outputs` is used. linear_dims : str or list of str, optional Subset of continuous dimensions to apply an additional linear kernel. If ``None``, defaults to ``['Y','X']``. continuous_dims : str or list of str, optional Columns of dataframe used as continuous dimensions. continuous_levels : str, list, or dict, optional Values considered within each continuous column as ``{dim: [level1, level2]}``. continuous_coords : list or dict, optional Numerical coordinates of each continuous level within each continuous dimension as ``{dim: {level: coord}}``. categorical_dims : str or list of str, optional Columns of dataframe used as categorical dimensions. categorical_levels : str, list, or dict, optional Values considered within each categorical column as ``{dim: [level1, level2]}``. additive : bool, default False Whether to treat categorical_dims as additive or joint (default). seed : int, optional. Random seed for model instantiation. If ``None``, :attr:`seed` is used. heteroskedastic_inputs: bool, default False Whether to allow heteroskedasticity along continuous dimensions (input-dependent noise) heteroskedastic_outputs: bool, default True Whether to allow heteroskedasticity between multiple outputs (output-dependent noise). `Not yet implemented` sparse: bool, default False Whether to use a `sparse approximation`_ to the GP. n_u: int, default 100 Number of inducing points to use for the sparse approximation, if required. ARD: bool, default True Whether to use "Automatic Relevance Determination" in the continuous kernel. If _True_, each continuous dimension receives its own lengthscale; otherwise a single lengthscale is used for all continuous dimensions. **MAP_kwargs Additional keyword arguments passed to :func:`pm.find_MAP`. ARD: bool, default True Whether to use "Automatic Relevance Determination" in the continuous kernel. If _True_, each continuous dimension receives its own lengthscale; otherwise a single lengthscale is used for all continuous dimensions. Returns ------- self : :class:`GP` """ self.specify_model(outputs=outputs, linear_dims=linear_dims, continuous_dims=continuous_dims, continuous_levels=continuous_levels, continuous_coords=continuous_coords, categorical_dims=categorical_dims, categorical_levels=categorical_levels, additive=additive) self.build_model(seed=seed, heteroskedastic_inputs=heteroskedastic_inputs, heteroskedastic_outputs=heteroskedastic_outputs, sparse=sparse, n_u=n_u, ARD=ARD) self.find_MAP(**MAP_kwargs) return self def _make_continuous_cov(self, continuous_cov_func, D_in, idx_s, n_s, ℓ_μ, ℓ_σ, ARD=True, stabilize=True, eps=1e-6): shape = n_s if ARD else 1 def continuous_cov(suffix): # ℓ = pm.InverseGamma(f'ℓ_{suffix}', mu=ℓ_μ, sigma=ℓ_σ, shape=shape) ℓ = pm.Gamma(f'ℓ_{suffix}', alpha=2, beta=1, shape=shape) η = pm.Gamma(f'η_{suffix}', alpha=2, beta=1) cov = η ** 2 * continuous_cov_func(input_dim=D_in, active_dims=idx_s, ls=ℓ) if stabilize: cov += pm.gp.cov.WhiteNoise(eps) return cov return continuous_cov def _make_linear_cov(self, D_in, idx_l, n_l): def linear_cov(suffix): c = pm.Normal(f'c_{suffix}', mu=0, sigma=10, shape=n_l) τ = pm.HalfNormal(f'τ_{suffix}', sigma=10) return τ * pm.gp.cov.Linear(input_dim=D_in, c=c, active_dims=idx_l) return linear_cov def _make_coreg_cov(self, D_in, seed): def coreg_cov(suffix, D_out, idx): testval = np.random.default_rng(seed).standard_normal(size=(D_out, 2)) W = pm.Normal(f"W_{suffix}", mu=0, sd=3, shape=(D_out, 2), testval=testval) κ = pm.Gamma(f"κ_{suffix}", alpha=1.5, beta=1, shape=(D_out,)) return pm.gp.cov.Coregion(input_dim=D_in, active_dims=[idx], kappa=κ, W=W) return coreg_cov # TODO: add full probabilistic model description to docstring # TODO: allow dimension-specific continuous kernel specification # TODO: allow single multi-dimensional continuous kernel rather than independent kernels per dimension def build_model(self, seed=None, continuous_kernel='ExpQuad', heteroskedastic_inputs=False, heteroskedastic_outputs=True, sparse=False, n_u=100, ARD=True): r"""Compile a marginalized pymc3 model for the GP. Each dimension in :attr:`continuous_dims` is combined in an ExpQuad kernel with a principled :math:`\text{InverseGamma}` prior for each lengthscale (as `suggested by Michael Betancourt`_) and a :math:`\text{Gamma}\left(2, 1\right)` prior for variance. .. _suggested by Michael Betancourt: https://betanalpha.github.io/assets/case_studies/gp_part3/part3.html#4_adding_an_informative_prior_for_the_length_scale .. _pymc3 docs: https://docs.pymc.io/en/v3/api/gp/cov.html .. _sparse approximation: https://docs.pymc.io/en/v3/pymc-examples/examples/gaussian_processes/GP-SparseApprox.html Parameters ---------- seed : int, optional. Random seed. If ``None``, :attr:`seed` is used. continuous_kernel : {'ExpQuad', 'RatQuad', 'Matern32', 'Matern52', 'Exponential', or 'Cosine'} Covariance function to use for continuous dimensions. See `pymc3 docs`_ for more details. heteroskedastic_inputs: bool, default False Whether to allow heteroskedasticity along continuous dimensions (input-dependent noise). heteroskedastic_outputs: bool, default True Whether to allow heteroskedasticity between multiple outputs (output-dependent noise). `Not yet implemented`. sparse: bool, default False Whether to use a `sparse approximation`_ to the GP. n_u: int, default 100 Number of inducing points to use for the sparse approximation, if required. ARD: bool, default True Whether to use "Automatic Relevance Determination" in the continuous kernel. If _True_, each continuous dimension receives its own lengthscale; otherwise a single lengthscale is used for all continuous dimensions. Returns ------- self : :class:`GP` """ if heteroskedastic_inputs: raise NotImplementedError('Heteroskedasticity over inputs is not yet implemented.') X, y = self.get_shaped_data('mean') D_in = len(self.dims) assert X.shape[1] == D_in seed = self.seed if seed is None else seed self.seed = seed self.continuous_kernel = continuous_kernel self.heteroskedastic_inputs = heteroskedastic_inputs self.heteroskedastic_outputs = heteroskedastic_outputs self.sparse = sparse self.n_u = n_u self.latent = False self.model_specs = { 'seed': seed, 'continuous_kernel': continuous_kernel, 'heteroskedastic_inputs': heteroskedastic_inputs, 'heteroskedastic_outputs': heteroskedastic_outputs, 'sparse': sparse, 'n_u': n_u, } gp_dict = self._construct_kernels(X, continuous_kernel, seed, sparse, latent=False, ARD=ARD) with self.model: # From https://docs.pymc.io/notebooks/GP-Marginal.html # OR a covariance function for the noise can be given # noise_l = pm.Gamma("noise_l", alpha=2, beta=2) # cov_func_noise = pm.gp.cov.Exponential(1, noise_l) + pm.gp.cov.WhiteNoise(sigma=0.1) # y_ = gp.marginal_likelihood("y", X=X, y=y, noise=cov_func_noise) # GP is heteroskedastic across outputs by default, # but homoskedastic across continuous dimensions σ = pm.Exponential('σ', lam=1) noise = pm.gp.cov.WhiteNoise(sigma=σ) if heteroskedastic_inputs: raise NotImplementedError('Heteroskedasticity over inputs is not yet implemented') # noise += continuous_cov('noise') if heteroskedastic_outputs and self.out_col in self.categorical_dims: D_out = len(self.categorical_levels[self.out_col]) coreg_cov = self._make_coreg_cov(D_in, seed) idx_p = self._get_dim_indexes()['p'] noise *= coreg_cov('Output_noise', D_out, idx_p) if sparse: Xu = pm.gp.util.kmeans_inducing_points(n_u, X) if heteroskedastic_outputs: warnings.warn('Heteroskedasticity over outputs is not yet implemented for sparse GP. Reverting to scalar-valued noise.') _ = gp_dict['total'].marginal_likelihood('ml', X=X, Xu=Xu, y=y, noise=σ) else: _ = gp_dict['total'].marginal_likelihood('ml', X=X, y=y, noise=noise) # self.gp_dict = gp_dict return self def _choose_implementation(self, sparse=False, latent=False): if sparse and latent: raise NotImplementedError('Sparse Latent GPs are not yet implemented.') if sparse: pm_gp = pm.gp.MarginalSparse gp_kws = {'approx': "FITC"} elif latent: pm_gp = pm.gp.Latent gp_kws = {} else: pm_gp = pm.gp.Marginal gp_kws = {} def implementation(*args, **kwargs): return pm_gp(*args, **{**kwargs, **gp_kws}) # Fix once Python >= 3.9 return implementation def _get_dim_counts(self): dim_counts = { 'l': len(self.linear_dims), 's': len(self.continuous_dims), 'c': len(self.categorical_dims), 'p': len(self.outputs), } return dim_counts def _get_dim_indexes(self): dim_indexes = { 'l': [self.dims.index(dim) for dim in self.linear_dims], 's': [self.dims.index(dim) for dim in self.continuous_dims], 'c': [self.dims.index(dim) for dim in self.categorical_dims], 'p': self.dims.index(self.out_col) if self.out_col in self.dims else None, } return dim_indexes def _prepare_lengthscales(self, X): X_s = X[:, self._get_dim_indexes()['s']] ℓ_μ, ℓ_σ = [stat for stat in np.array([get_ℓ_prior(dim) for dim in X_s.T]).T] return ℓ_μ, ℓ_σ def _construct_kernels(self, X, continuous_kernel, seed, sparse, latent, ARD=True, stabilize=True, eps=1e-6): continuous_kernels = ['ExpQuad', 'RatQuad', 'Matern32', 'Matern52', 'Exponential', 'Cosine'] assert_in('Continuous kernel', continuous_kernel, continuous_kernels) continuous_cov_func = getattr(pm.gp.cov, continuous_kernel) D_in = len(self.dims) ns = self._get_dim_counts() idxs = self._get_dim_indexes() ℓ_μ, ℓ_σ = self._prepare_lengthscales(X) continuous_cov = self._make_continuous_cov(continuous_cov_func, D_in, idxs['s'], ns['s'], ℓ_μ, ℓ_σ, ARD=ARD, stabilize=stabilize, eps=eps) linear_cov = self._make_linear_cov(D_in, idxs['l'], ns['l']) coreg_cov = self._make_coreg_cov(D_in, seed) pm_gp = self._choose_implementation(sparse=sparse, latent=latent) with pm.Model() as self.model: # μ = pm.Normal('μ', mu=0, sigma=10) # β = pm.Normal('β', mu=0, sigma=10, shape=n_l) # lin_mean = pm.gp.mean.Linear(coeffs=[β[i] if i in idx_l else 0 for i in range(D_in), intercept=μ) # Define a "global" continuous kernel regardless of additive structure cov = continuous_cov('total') if ns['l'] > 0: cov += linear_cov('total') # Construct a coregion kernel for each categorical_dims if ns['c'] > 0 and not self.additive: for dim, idx in zip(self.categorical_dims, idxs['c']): if dim == self.out_col: continue D_out = len(self.categorical_levels[dim]) cov *= coreg_cov(dim, D_out, idx) # Coregion kernel for parameters, if necessary if self.out_col in self.categorical_dims: D_out = len(self.categorical_levels[self.out_col]) cov_param = coreg_cov(self.out_col, D_out, idxs['p']) cov *= cov_param gp_dict = {'total': pm_gp(cov_func=cov)} # Construct a continuous+coregion kernel for each categorical_dim, then combine them additively if self.additive: gp_dict['global'] = gp_dict['total'] for dim, idx in zip(self.categorical_dims, idxs['c']): if dim == self.out_col: continue # Continuous kernel specific to this dimension cov = continuous_cov(dim) # TODO: Decide if each additive dimension needs its own linear kernel if ns['l'] > 0: cov += linear_cov(dim) # Coregion kernel specific to this dimension D_out = len(self.categorical_levels[dim]) cov *= coreg_cov(dim, D_out, idx) # Coregion kernel for parameters, if necessary if self.out_col in self.categorical_dims: cov *= cov_param # Combine GPs gp_dict[dim] = pm_gp(cov_func=cov) gp_dict['total'] += gp_dict[dim] self.gp_dict = gp_dict return gp_dict def build_latent(self, seed=None, continuous_kernel='ExpQuad', prior_name='latent_prior', ARD=True, eps=1e-6): if self.additive: raise NotImplementedError('Additive/latent GPs are not yet implemented') X, y = self.get_shaped_data('mean') D_in = len(self.dims) assert X.shape[1] == D_in seed = self.seed if seed is None else seed self.seed = seed self.continuous_kernel = continuous_kernel self.sparse = False self.latent = True gp_dict = self._construct_kernels(X, continuous_kernel, seed, sparse=False, latent=True, ARD=ARD, stabilize=True, eps=eps) with self.model: self.prior = gp_dict['total'].prior(prior_name, X=X) return self def find_MAP(self, *args, **kwargs): """Finds maximum a posteriori value for hyperparameters in model. Parameters ---------- *args Positional arguments passed to :func:`pm.find_MAP` **kwargs Keyword arguments passed to :func:`pm.find_MAP` """ assert self.model is not None with self.model: self.MAP = pm.find_MAP(*args, **kwargs) return self.MAP def sample(self, *args, **kwargs): """Draws samples from the posterior for the hyperparameters in model. Parameters ---------- *args Positional arguments passed to :func:`pm.sample` **kwargs Keyword arguments passed to :func:`pm.sample` """ defaults = { 'return_inferencedata': True, 'random_seed': self.seed, } assert self.model is not None with self.model: self.trace = pm.sample(*args, **{**defaults, **kwargs}) return self.trace def predict(self, points_array, with_noise=True, additive_level='total', **kwargs): """Make predictions at supplied points using specified gp Parameters ---------- output : str points : ParameterArray Tall ParameterArray vector of coordinates for prediction, must have one layer per ``self.dims`` with_noise : bool, default True Whether to incorporate aleatoric uncertainty into prediction error Returns ------- prediction : UncertainParameterArray Predictions as a `uparray` """ # TODO: need to supply "given" dict for additive GP sublevel predictions if additive_level != 'total': raise NotImplementedError('Prediction for additive sublevels is not yet supported.') # Prediction means and variance as a numpy vector predictions = self.gp_dict[additive_level].predict(points_array, point=self.MAP, diag=True, pred_noise=with_noise, **kwargs) return predictions def _recursively_append(self, var_name, suffix='_', increment_var=True): if var_name in [v.name for v in self.model.vars]: if increment_var: var_name += suffix return self._recursively_append(var_name) else: raise ValueError(f'The variable name "{var_name}" already exists in model.') else: return var_name def draw_point_samples(self, points, *args, source=None, output=None, var_name='posterior_samples', additive_level='total', increment_var=True, **kwargs): """Draw posterior samples at supplied points Parameters ---------- points : ParameterArray 1-D ParameterArray vector of coordinates for prediction, must have one layer per ``self.dims`` output : str or list of str, optional Variable for which to make predictions source : {None, dict, az.data.inference_data.InferenceData} GP parameters for which to draw samples. Should be the result of :meth:`find_MAP`, :meth:`sample`, or _None_. var_name : str, default "posterior_samples" Name to assign new variable to contain conditional predictions. additive_level : str, default "total" Level of additive GP at which to make predictions. increment_var : bool, default True Whether to append '_' to the end of _var_name_ if it already exists in model. Returns ------- samples : parray Samples as a 'Parray' """ output = self._parse_prediction_output(output) if len(output) > 1: raise NotImplementedError('Drawing correlated samples of multiple outputs is not yet implemented.') points_array, tall_points, param_coords = self._prepare_points_for_prediction(points, output=output) if source is None: if self.trace is None and self.MAP is None: raise ValueError('"Source" of predictions must be supplied if GP object has no trace or MAP stored.') elif self.trace is not None and self.MAP is not None: raise ValueError('"Source" of predictions must be supplied if GP object has both trace and MAP stored.') elif self.MAP is not None: source = [self.MAP] elif self.trace is not None: source = self.trace var_name = self._recursively_append(var_name, increment_var=increment_var) with self.model: _ = self.gp_dict[additive_level].conditional(var_name, points_array) with self.model: samples = pm.sample_posterior_predictive(*args, source, var_names=[var_name], **kwargs) self.predictions = self.parray(**{var_name: samples[var_name]}, stdzd=True) self.predictions_X = points return self.predictions def draw_grid_samples(self, *args, source=None, output=None, categorical_levels=None, var_name='posterior_samples', additive_level='total', increment_var=True, **kwargs): """Draw posterior samples at points defined by :meth:`prepare_grid`. Parameters ---------- source : {None, dict, az.data.inference_data.InferenceData} GP parameters for which to draw samples. Should be the result of :meth:`find_MAP`, :meth:`sample`, or _None_. output : str or list of str, optional Variable(s) for which to make predictions categorical_levels : dict, optional Level for each :attr:`categorical_dims` at which to make prediction var_name : str, default "posterior_samples" Name to assign new variable to contain conditional predictions. additive_level : str, default "total" Level of additive GP at which to make predictions. increment_var : bool, default True Whether to append '_' to the end of _var_name_ if it already exists in model. Returns ------- samples : ParameterArray Samples as a 'Parray' reshaped into a grid with _len(:attr:`continuous_dims`)_ dimensions """ if self.grid_points is None: raise ValueError('Grid must first be specified with `prepare_grid`') points = self.grid_points if self.categorical_dims: points = self.append_categorical_points(points, categorical_levels=categorical_levels) samples = self.draw_point_samples(*args, points=points, output=output, source=source, var_name=var_name, additive_level=additive_level, increment_var=increment_var, **kwargs) self.predictions = samples.reshape(-1, *self.grid_parray.shape) self.predictions_X = self.predictions_X.reshape(self.grid_parray.shape) return self.predictions
from pyDOE2 import * import pandas as pd import os from scipy import stats def ci(exp, metric): if '1' in exp: design = ff2n(2) batch_column = [row[0] for row in design] epochs_column = [row[1] for row in design] else: design = ff2n(4) cores_column = [row[0] for row in design] memory_column = [row[1] for row in design] batch_column = [row[2] for row in design] epochs_column = [row[3] for row in design] exp_result = '0.f_anova_' + metric datafile_result = os.getcwd() + '/compiling_results/results/'+ exp_result +'.txt' with open(datafile_result, "r") as f: lines = f.readlines() last = lines[len(lines)-1] value = last.split()[2] if ',' in value: value = value.replace(',','') ss_e = float(value) datafile = os.getcwd() + '/compiling_results/results/'+ exp +'.csv' df = pd.read_csv(datafile) res = df.groupby(["cores","memory","batch_size","epochs"]).mean() if metric == 'response': measurements = res[metric+'_time'].tolist() else: measurements = res[metric].tolist() if not '1' in exp: q_cores = 1/len(measurements)*sum([i*j for i,j in zip(measurements, cores_column)]) q_memory = 1/len(measurements)*sum([i*j for i,j in zip(measurements, memory_column)]) q_batch = 1/len(measurements)*sum([i*j for i,j in zip(measurements, batch_column)]) q_epochs = 1/len(measurements)*sum([i*j for i,j in zip(measurements, epochs_column)]) alpha = 0.05 dof = 2**np.sqrt(len(measurements)) * 2 s_e = np.sqrt(ss_e/dof) s_qi = s_e/(2**np.sqrt(len(measurements))*3) t = stats.t.ppf(1-alpha/2, dof) if not '1' in exp: ci_cores = [q_cores - t*s_qi, q_cores + t*s_qi] ci_memory = [q_memory - t*s_qi, q_memory + t*s_qi] ci_batch = [q_batch - t*s_qi, q_batch + t*s_qi] ci_epochs = [q_epochs - t*s_qi, q_epochs + t*s_qi] ls = ["cores " + str(ci_cores)+ "\n", \ "memory " + str(ci_memory)+ "\n","batch " + str(ci_batch)+ "\n","epochs " + str(ci_epochs)] else: ci_batch = [q_batch - t*s_qi, q_batch + t*s_qi] ci_epochs = [q_epochs - t*s_qi, q_epochs + t*s_qi] ls = ["batch " + str(ci_batch)+ "\n","epochs " + str(ci_epochs)] with open("compiling_results/results/" + exp +"_"+ metric +"_ci.txt", "w+") as fl: fl.writelines(ls) print("compiling_results/results/" + exp +"_"+ metric +"_ci.txt successfully created") if __name__ == "__main__": for metric in ['accuracy', 'response']: for exp in ['0.f','1.c','1.f','2.c','2.f','3.c','3.f']: ci(exp,metric)
# -*- coding: UTF-8 -*- """ literature """ __version__ = '4.0' content = { 'book_headline': [ '<#book_pseudoscience_author#>','<#book_pseudoscience_title#>','<#book_pseudoscientific#>', '<#book_title_front#>', ], 'book_section': ['Books', 'Books', 'Books', 'Books', 'Books', 'Books', 'Books', 'Books', 'Books', 'Books', 'Books', 'Books', 'New books', 'Literature', 'Authors', 'E-books', 'E-books', 'E-books', 'Published', 'New published','My library','Publishing','From the library', ], 'book_ankeiler':['<#^,book_phylosophy_title#>', ], 'book_pseudosci_adj': [ 'eternal ', 'golden ', 'inspiring ', 'inspired ', 'negative ', 'positive ', 'divine ', 'universal ', 'liberal ', 'spirited ', 'early ', 'late ', '', '', '', '', '', '', '', ], 'book_pseudoscience_author': [ '<#sci_titles_px#> <#names_last_absurdlyBritish#>, <#sci_titles_sx#>', '<#names_last_absurdlyBritish#>, <#university_dept#>', '<#name#>', '<#name#>, <#sci_titles_px#> at <#university_dept#>', ], 'book_pseudoscience_title': [ '"<#book_pseudoscientific#>" by <#book_pseudoscience_author#>', '"<#book_pseudoscientific#>, <#num_roman#>" by <#book_pseudoscience_author#>', ], 'book_pseudoscientific': [ '<#^,lit_figures#> and <#^,lit_figures#>', '<#^,lit_figures#> as seen by <#book_pseudosci_adj#><#sci_pseudo#>', '<#^,sci_pseudo#>, <#^,lit_figures#> and <#^,lit_figures#>', '<#^,lit_figures#> and <#sci_disciplines#>', '<#^,lit_figures#> in the history of <#sci_disciplines#>', '<#^,book_pseudosci_adj#><#sci_pseudo#> and <#sci_disciplines#>', '<#^,book_pseudosci_adj#><#sci_pseudo#> as <#sci_disciplines#>', 'The role of <#sci_disciplines#> in <#sci_pseudo#>', 'The influence of <#book_pseudosci_adj#><#sci_pseudo#> on <#sci_disciplines#>', '<#^,book_pseudosci_adj#><#sci_pseudo#> and <#^,lit_figures#>', 'The role of <#sci_pseudo#> in <#sci_pseudo#>', '<#^,sci_pseudo#> and <#sci_pseudo#> <#book_pseudoscientific_sx#>', '<#book_pseudoscientific#>', ], 'book_pseudoscientific_sx': [ '(<-randint(1700, 1800)->-<-randint(1801, 1900)->)', ], 'book_title': [ '"<#state_of_mind#> and <#state_of_mind#>" by Jane Austen', ], 'lit_figures': [ 'goya', 'rembrandt', 'elgreco', 'turner', 'constable', 'vangogh', 'renoir', 'seurat', 'rubens', 'klimt', 'monet', 'lautrec', 'matisse', 'mondrian', 'ruscha', 'reinhardt', 'malevich', 'dali', 'magritte', 'ensor', 'bach', 'handel', 'brahms', 'beethoven', 'bartok', 'chopin', 'delibes', 'debussy', 'mahler', 'copland', 'marais', 'forqueray', 'lully', 'couperin', 'grieg', 'wagner', 'tarantino', 'truffaut', 'vansant', 'lumiere', 'spielberg', 'cronenberg', 'lucas', 'bunuel', 'bergman', 'bronte', 'austen', 'kafka', 'chekov', 'beckett', 'camus', 'turgenev', 'james', 'hemingway', 'fitzgerald', 'wright', 'ellison', 'fourier', 'euler', 'mandelbrot', 'copernicus', 'galileo', 'einstein', 'tesla', 'whitney', 'edison', 'planck', 'leonardo', 'pythagoras', 'bohr', 'newton', 'archimedes', 'coulomb', 'fahrenheit', 'faraday', 'fermi', 'feynman', 'hawking', 'geiger', 'curie', 'kelvin', 'ohm', 'penzias', 'roentgen', 'volta', ], 'lit_mythology': [ 'zeus', 'apollo', 'hermes', 'athena', 'achilles', 'antigone', 'aphrodite', 'anubis', 'arachne', 'asgard', 'atlantis', 'atlas', 'aurora', 'cadmus', 'calliope', 'calypso', 'centaur', 'charon', 'charybdis', 'cronus', 'cupid', 'cyclops', 'daedalus', 'daphne', 'demeter', 'diana', 'dido', 'electra', 'erato', 'europa', 'euridyce', 'euterpe', 'flora', 'ganymede', 'gorgon', 'hades', 'hector', 'hera', 'heracles', 'hermes', 'hyperion', 'icarus', 'janus', 'jocasta', 'leda', 'lucian', 'medea', 'minerva', 'narcissus', 'nestor', 'odin', 'odysseus', 'oedipus', 'orcus', 'osiris', 'paris', 'perseus', 'phaedra', 'poseidon', 'proteus', 'psyche', 'pyramus', 'satyr', 'scylla', 'sisyphus', 'sphinx', 'styx', 'tantalus', 'tereus', 'thalia', 'thor', 'thoth', 'titan', 'triton', 'ulysses', 'urania', 'vulcan', ], 'state_of_mind': [ 'Pride', 'Prejudice', 'Stubborness', 'Anger', 'Fury', 'Depression', 'Mild Amusement', 'Consolation', ], }
import imagehash from PIL import Image from skimage.measure import compare_ssim from imagehash import average_hash, phash, dhash, whash from mir_eval.separation import bss_eval_sources_framewise from neural_loop_combiner.config import settings def ssim_similarity(array_1, array_2): if len(array_1) > len(array_2): return compare_ssim(array_1[:len(array_2)], array_2) else: return compare_ssim(array_1, array_2[:len(array_1)]) def spec_similarity(spec1, spec2, hash_type=settings.HASH_TYPE): img1, img2 = Image.fromarray(spec1), Image.fromarray(spec2) if hash_type == 'ahash': hash1, hash2 = average_hash(img1), average_hash(img2) elif hash_type == 'phash': hash1, hash2 = phash(img1), phash(img2) elif hash_type == 'dhash': hash1, hash2 = dhash(img1), dhash(img2) elif hash_type == 'whash': hash1, hash2 = whash(img1), whash(img2) return hash1 - hash2 def snr_cal(ref_audio, estm_audio): if len(ref_audio) > len(estm_audio): ref_audio = ref_audio[:len(estm_audio)] elif len(ref_audio) < len(estm_audio): estm_audio = estm_audio[:len(ref_audio)] return bss_eval_sources_framewise(ref_audio, estm_audio)[0][0][0]
''' This is to convert letters to numbers when calculations occur ''' dictionar_of_letters_to_numbers = { 'a': 1, 'b': 2, 'c': 3, 'd':4, 'e': 5, 'f': 6, 'g':7, 'h': 8 } ''' This is to save the corrdinates of where the user pressed, in order to promote the pawn to the correct piece ''' promotion_piece = []
import pyaudio import time import wave def start_recording(): chunk = 1024 sample_format = pyaudio.paInt16 channels = 2 fs = 44100 seconds = 3 filename = "./require/roll_call.wav" p = pyaudio.PyAudio() print("Recoding : \n") input("Press ENTER to start 3 second recording\n\n(Please speak closely and loudly!!)\n") stream = p.open(format=sample_format, channels=channels, rate=fs, frames_per_buffer=chunk, input=True) frames = [] for i in range(0, int(fs / chunk * seconds)): data = stream.read(chunk) frames.append(data) stream.stop_stream() stream.close() p.terminate() wf = wave.open(filename, 'wb') wf.setnchannels(channels) wf.setsampwidth(p.get_sample_size(sample_format)) wf.setframerate(fs) wf.writeframes(b''.join(frames)) wf.close()
import json import logging from six.moves.urllib.parse import urlencode import django from django.core.exceptions import MiddlewareNotUsed from django.http import HttpResponse from django.shortcuts import redirect from django.urls import reverse try: from django.utils.deprecation import MiddlewareMixin except: # noqa E722 class MiddlewareMixin(object): pass from pwdtk.auth_backends import PwdtkLockedException from pwdtk.helpers import PwdtkSettings from pwdtk.models import PwdData from pwdtk.views import lockout_response logger = logging.getLogger(__name__) class PwdtkMiddleware(MiddlewareMixin): def __init__(self, get_response=None): if not PwdtkSettings.PWDTK_ENABLED: logger.debug("PWDTK middleware is disabled") raise MiddlewareNotUsed("pwdtk is disabled") if get_response: super(PwdtkMiddleware, self).__init__( get_response=get_response) else: super(PwdtkMiddleware, self).__init__() def must_renew_password(self, request): if request.method == 'GET': return False if django.VERSION < (1, 10): is_authenticated = request.user and request.user.is_authenticated() else: is_authenticated = request.user and request.user.is_authenticated if not is_authenticated: return False if not PwdData.get_or_create_for_user(request.user).must_renew: return False if request.path == reverse(PwdtkSettings.PWDTK_PASSWD_CHANGE_VIEW): return False if request.path in PwdtkSettings.PWDTK_PASSWD_CHANGE_ALLOWED_PATHS: return False return True def process_exception(self, request, exception): if isinstance(exception, PwdtkLockedException): context = exception.pwdtk_data.get_lockout_context() if request.is_ajax(): return HttpResponse( json.dumps(context), content_type='application/json', status=403, ) if PwdtkSettings.PWDTK_LOCKOUT_VIEW: return redirect("%s?%s" % ( reverse(PwdtkSettings.PWDTK_LOCKOUT_VIEW), urlencode(context) ) ) return lockout_response(request, exception.pwdtk_data) return None def process_request(self, request): if self.must_renew_password(request): return redirect(reverse(PwdtkSettings.PWDTK_PASSWD_CHANGE_VIEW)) def process_response(self, request, response): if self.must_renew_password(request): return redirect(reverse(PwdtkSettings.PWDTK_PASSWD_CHANGE_VIEW)) return response
from SpotifyView import SpotifyMainView import time import functools import os class SpotifyCtrl: def __init__(self, model, view): self.get_data = model self.view = view self.connect_signals() def _saveSong(self): name = self.view.inputFile() if name: folder = self.view.chooseFile() if folder: self.view.setDisplayText('Saving Songs - Please Wait') self.get_data.save_playlists_data(folder, name) self.view.setDisplayText('Songs saved') else: self.view.setDisplayText('') def _setDisplayText(self, text): self.view.setDisplayText(text) def delete_songs(self): if self.view.reconfirm_delete(): self.view.setDisplayText('Deleting Playlists - Please Wait') self.get_data.delete_all_playlists() self.view.setDisplayText('Playlists deleted') def restore_songs(self): folder = self.view.chooseFile() if folder: if self.view.reconfirm(): self.view.setDisplayText('Restoring Songs - Please Wait') self.get_data.restore_playlists(folder) # self.get_data.delete_all_playlists() self.view.setDisplayText('Songs restored') def connect_signals(self): self.view.save.clicked.connect(functools.partial(self._saveSong)) self.view.restore.clicked.connect(functools.partial(self.restore_songs)) self.view.delete.clicked.connect(functools.partial(self.delete_songs))
from __future__ import print_function, division import sys from ...py3k_compat import urlopen, BytesIO, url_content_length def bytes_to_string(nbytes): if nbytes < 1024: return '%ib' % nbytes nbytes /= 1024. if nbytes < 1024: return '%.1fkb' % nbytes nbytes /= 1024. if nbytes < 1024: return '%.2fMb' % nbytes nbytes /= 1024. return '%.1fGb' % nbytes def download_with_progress_bar(data_url, return_buffer=False): """Download a file, showing progress Parameters ---------- data_url : string web address return_buffer : boolean (optional) if true, return a BytesIO buffer rather than a string Returns ------- s : string content of the file """ num_units = 40 fhandle = urlopen(data_url) content_length = url_content_length(fhandle) chunk_size = content_length // num_units print("Downloading %s" % data_url) nchunks = 0 buf = BytesIO() content_length_str = bytes_to_string(content_length) while True: next_chunk = fhandle.read(chunk_size) nchunks += 1 if next_chunk: buf.write(next_chunk) s = ('[' + nchunks * '=' + (num_units - 1 - nchunks) * ' ' + '] %s / %s \r' % (bytes_to_string(buf.tell()), content_length_str)) else: sys.stdout.write('\n') break sys.stdout.write(s) sys.stdout.flush() buf.seek(0) if return_buffer: return buf else: return buf.getvalue()
"""NLRN model for denoise dataset """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import models def update_argparser(parser): models.update_argparser(parser) args, _ = parser.parse_known_args() parser.add_argument( '--num-steps', help='Number of steps in recurrent networks', default=12, type=int) parser.add_argument( '--num-filters', help='Number of filters in networks', default=128, type=int) parser.add_argument( '--non-local-field-size', help='Size of receptive field in non-local blocks', default=35, type=int) parser.add_argument( '--init-ckpt', help='Checkpoint path to initialize', default=None, type=str, ) parser.set_defaults( train_steps=500000, learning_rate=((100000, 200000, 300000, 400000, 450000), (1e-3, 5e-4, 2.5e-4, 1.25e-4, 6.25e-5, 3.125e-5)), save_checkpoints_steps=20000, save_summary_steps=1000, ) def model_fn(features, labels, mode, params, config): predictions = None loss = None train_op = None eval_metric_ops = None export_outputs = None scaffold = None sources = features['source'] net = _nlrn(sources, mode, params) predictions = tf.clip_by_value(net, 0.0, 1.0) if mode == tf.estimator.ModeKeys.PREDICT: export_outputs = { tf.saved_model.signature_constants.PREDICT_METHOD_NAME: tf.estimator.export.PredictOutput(predictions) } else: targets = labels['target'] def central_crop(x, size=5): x_shape = tf.shape(x) x = tf.slice( x, [0, x_shape[1] // 2 - size // 2, x_shape[2] // 2 - size // 2, 0], [-1, size, size, -1]) return x loss = tf.losses.mean_squared_error( labels=central_crop(targets), predictions=central_crop(net)) if mode == tf.estimator.ModeKeys.EVAL: def _ignore_boundary(images): boundary_size = 16 images = images[:, boundary_size:-boundary_size, boundary_size: -boundary_size, :] return images def _float32_to_uint8(images): images = images * 255.0 images = tf.round(images) images = tf.saturate_cast(images, tf.uint8) return images psnr = tf.image.psnr( _float32_to_uint8(_ignore_boundary(targets)), _float32_to_uint8(_ignore_boundary(predictions)), max_val=255, ) eval_metric_ops = { 'PSNR': tf.metrics.mean(psnr), } if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step() learning_rate = tf.train.piecewise_constant(global_step, params.learning_rate[0], params.learning_rate[1]) opt = tf.train.AdamOptimizer(learning_rate) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): gvs = opt.compute_gradients(loss) capped_gvs = [(tf.clip_by_norm(grad, 2.5), var) for grad, var in gvs] train_op = opt.apply_gradients(capped_gvs, global_step=global_step) stats = tf.profiler.profile() print("Total parameters:", stats.total_parameters) if params.init_ckpt: init_fn = tf.contrib.framework.assign_from_checkpoint_fn( params.init_ckpt, tf.global_variables(), ignore_missing_vars=True) scaffold = tf.train.Scaffold(init_fn=init_fn) return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops, export_outputs=export_outputs, ) def _nlrn(x, mode, params): training = mode == tf.estimator.ModeKeys.TRAIN skip = x x = tf.layers.batch_normalization(x, training=training) x = tf.layers.conv2d( x, params.num_filters, 3, padding='same', activation=None, name='conv1') y = x with tf.variable_scope("rnn"): for i in range(params.num_steps): if i == 0: x = _residual_block( x, y, params.num_filters, training, name='RB1', reuse=False) else: x = _residual_block( x, y, params.num_filters, training, name='RB1', reuse=True) x = tf.layers.batch_normalization(x, training=training) x = tf.nn.relu(x) x = tf.layers.conv2d( x, params.num_channels, 3, padding='same', activation=None, name='conv_end') return x + skip def _residual_block(x, y, filter_num, training, name, reuse): x = tf.layers.batch_normalization(x, training=training) x = tf.nn.relu(x) x = _non_local_block(x, 64, 128, training, 35, name='non_local', reuse=reuse) x = tf.layers.batch_normalization(x, training=training) x = tf.layers.conv2d( x, filter_num, 3, padding='same', activation=None, name=name + '_a', reuse=reuse) x = tf.layers.batch_normalization(x, training=training) x = tf.nn.relu(x) x = tf.layers.conv2d( x, filter_num, 3, padding='same', activation=None, name=name + '_b', reuse=reuse) x = tf.add(x, y) return x def _non_local_block(x, filter_num, output_filter_num, training, field_size, name, reuse=False): x_theta = tf.layers.conv2d( x, filter_num, 1, padding='same', activation=None, name=name + '_theta', reuse=reuse) x_phi = tf.layers.conv2d( x, filter_num, 1, padding='same', activation=None, name=name + '_phi', reuse=reuse) x_g = tf.layers.conv2d( x, output_filter_num, 1, padding='same', activation=None, name=name + '_g', reuse=reuse, kernel_initializer=tf.zeros_initializer()) if True: x_theta_reshaped = tf.reshape(x_theta, [ tf.shape(x_theta)[0], tf.shape(x_theta)[1] * tf.shape(x_theta)[2], tf.shape(x_theta)[3] ]) x_phi_reshaped = tf.reshape(x_phi, [ tf.shape(x_phi)[0], tf.shape(x_phi)[1] * tf.shape(x_phi)[2], tf.shape(x_phi)[3] ]) x_phi_permuted = tf.transpose(x_phi_reshaped, perm=[0, 2, 1]) x_mul1 = tf.matmul(x_theta_reshaped, x_phi_permuted) x_mul1_softmax = tf.nn.softmax( x_mul1, axis=-1) # normalization for embedded Gaussian x_g_reshaped = tf.reshape(x_g, [ tf.shape(x_g)[0], tf.shape(x_g)[1] * tf.shape(x_g)[2], tf.shape(x_g)[3] ]) x_mul2 = tf.matmul(x_mul1_softmax, x_g_reshaped) x_mul2_reshaped = tf.reshape(x_mul2, [ tf.shape(x_mul2)[0], tf.shape(x_phi)[1], tf.shape(x_phi)[2], output_filter_num ]) else: x_theta = tf.expand_dims(x_theta, -2) x_phi_patches = tf.image.extract_image_patches( x_phi, [1, field_size, field_size, 1], [1, 1, 1, 1], [1, 1, 1, 1], padding='SAME') x_phi_patches = tf.reshape(x_phi_patches, [ tf.shape(x_phi)[0], tf.shape(x_phi)[1], tf.shape(x_phi)[2], field_size * field_size, tf.shape(x_phi)[3], ]) x_mul1 = tf.matmul(x_theta, x_phi_patches, transpose_b=True) x_mul1_softmax = tf.nn.softmax(x_mul1, axis=-1) x_g_patches = tf.image.extract_image_patches( x_g, [1, field_size, field_size, 1], [1, 1, 1, 1], [1, 1, 1, 1], padding='SAME') x_g_patches = tf.reshape(x_g_patches, [ tf.shape(x_g)[0], tf.shape(x_g)[1], tf.shape(x_g)[2], field_size * field_size, tf.shape(x_g)[3], ]) x_mul2 = tf.matmul(x_mul1_softmax, x_g_patches) x_mul2_reshaped = tf.reshape( x_mul2, [tf.shape(x)[0], tf.shape(x)[1], tf.shape(x)[2], output_filter_num]) return tf.add(x, x_mul2_reshaped)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Stuff that should eventually go into a model.cfg file. """ import os # to-do: get these inputs from command line or config file model_path = '/data02/MyArchive/aisteer_3Dencoders/models/gashydrates_enhancer' if not os.path.exists(model_path): os.makedirs(model_path) ############ MODEL PARAMETERS ############ def get_training_params(TRAINING_INPUT_SIZE, N_EPOCHS = None, N_STEPS_PER_EPOCH = None, BATCH_SIZE = None): training_params = {"sampling_method" : "random", \ "training_input_size" : (64,64,64),\ "batch_size" : 24, \ "n_epochs" : 10,\ "random_rotate" : True, \ "add_noise" : 0.1, \ "max_stride" : 2, \ "mask_ratio" : 0.95, \ "steps_per_epoch" : 100} if TRAINING_INPUT_SIZE == (64,64,64): # default pass elif TRAINING_INPUT_SIZE == (32,32,32): training_params["training_input_size"] = TRAINING_INPUT_SIZE training_params["batch_size"] = 4 training_params["max_stride"] = 2 elif TRAINING_INPUT_SIZE == (256,256,256): training_params["training_input_size"] = TRAINING_INPUT_SIZE training_params["batch_size"] = 4 training_params["max_stride"] = 2 elif TRAINING_INPUT_SIZE == (128,128,128): training_params["training_input_size"] = TRAINING_INPUT_SIZE training_params["batch_size"] = 8 training_params["max_stride"] = 2 training_params["n_epochs"] = 5 training_params["steps_per_epoch"] = 100 elif TRAINING_INPUT_SIZE == (32,128,128): training_params["training_input_size"] = TRAINING_INPUT_SIZE training_params["batch_size"] = 16 training_params["max_stride"] = 2 training_params["n_epochs"] = 5 training_params["steps_per_epoch"] = 100 training_params["random_rotate"] = False else: raise ValueError("input size not catalogued yet") if N_EPOCHS is not None: training_params["n_epochs"] = N_EPOCHS if N_STEPS_PER_EPOCH is not None: training_params["steps_per_epoch"] = N_STEPS_PER_EPOCH if BATCH_SIZE is not None: training_params["batch_size"] = BATCH_SIZE print("\n", "#"*55, "\n") print("\nTraining parameters\n") for key, value in training_params.items(): print(key, value) return training_params ############ MODEL PARAMETERS ############ def get_model_params(model_tag): m = {"n_filters" : [16, 32, 64], \ "n_blocks" : 3, \ "activation" : 'lrelu', \ "batch_norm" : True, \ "isconcat" : [True, True, True], \ "pool_size" : [2,2,2]} # default model_params = m.copy() if model_tag == "M_a01": pass # a02 - shallow first, deep later. should be faster with high-level context. try with 128 elif model_tag == "M_a02": model_params["n_filters"] = [16, 64] model_params["pool_size"] = [ 2, 4] # a03 - very deep (slow) model with more filters elif model_tag == "M_a03": model_params["n_filters"] = [16, 32] model_params["pool_size"] = [ 2, 2] # a04 - super shallow model - 1 max pool elif model_tag == "M_a04": model_params["n_filters"] = [16] model_params["pool_size"] = [2] # a05 - flat CNN - no pooling elif model_tag == "M_a05": model_params["n_filters"] = [16] model_params["pool_size"] = [1] elif model_tag == "M_a06": model_params["n_filters"] = [8] model_params["pool_size"] = [2] else: raise ValueError("model_tag not found") model_params["n_blocks"] = len(model_params["n_filters"]) model_params["isconcat"] = [True]*len(model_params["n_filters"]) # BATCH_NORM_OVERRIDE # model_params["batch_norm"] = False print("\n", "#"*55, "\n") print("\nModel is %s"%model_tag) for key, value in model_params.items(): print(key, value) return model_params if __name__ == "__main__": fe = SparseSegmenter(model_initialization = 'define-new', \ # input_size = , \ descriptor_tag = "M_a01",\ gpu_mem_limit = gpu_mem_limit,\ **model_params)
# Miyu (2041007) | Ludibrium Hair Salon (220000004) # Male: 36000 - 36990 (Eastern Rocker to Big Point) # Female: 38000 - 38990 (Harmony to Glam Shiny) from net.swordie.ms.loaders import StringData options = [] al = chr.getAvatarData().getAvatarLook() hairColour = al.getHair() % 10 if al.getGender() == 0: baseID = 36000 else: baseID = 38000 for i in range(0, 1000, 10): hair = baseID + i + hairColour if not StringData.getItemStringById(hair) is None: options.append(hair) answer = sm.sendAskAvatar("Choose your new hairstyle!", False, False, options) if answer < len(options): sm.changeCharacterLook(options[answer])
import pytest from sqlalchemy import create_engine from cthaeh.models import Base from cthaeh.session import Session @pytest.fixture(scope="session") def engine(): # PRO-TIP: Set `echo=True` for lots more SQL debug log output. return create_engine("sqlite:///:memory:", echo=False) @pytest.fixture(scope="session") def _schema(engine): Base.metadata.create_all(engine) @pytest.fixture(scope="session") def _Session(engine, _schema): Session.configure(bind=engine) return Session @pytest.fixture def session(_Session, _schema): session = Session() transaction = session.begin_nested() session.commit = lambda: None try: yield session finally: transaction.rollback() session.close()
###################################### # this files processes the social distancing data by considering the # number of devices that are completely at home within a census block group # https://docs.safegraph.com/docs/social-distancing-metrics # [email protected] ###################################### import pandas as pd import os from tqdm import tqdm import json import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from datetime import datetime mobility_data_location = '/home/arrow/safegraph' cbgs = { 'newyorkcity': ['36047', '36081', '36061', '36005', '36085', '36119', '34003', '34017', '34031', '36079', '36087'], 'boston': ['25021', '25023', '25025', '25009', '25017', '33015', '33017'], 'seattle': ['53033', '53061', '53053', '53035', '53067', '53057', '53029', '53045'], 'miami': ['12086', '12011', '12099'], 'chicago': ['17031', '17037', '17043', '17063', '17091', '17089', '17093', '17111', '17197'], 'dallas': ['48085', '48113', '48121', '48139', '48231', '48257', '48397', '48251', '48367', '48439', '48497'], 'losangeles':['06037', '06059', '06065', '06071', '06111'] } def process_mobility(years, months): for city in cbgs: locals()[city+'_mobility'] = [] locals()[city+'_today'] = 0 locals()[city+'_cbg_num'] = 0 datex = [] for yr in years: year_dir = os.path.join(mobility_data_location, yr) print(year_dir) # for mth in tqdm(os.listdir(year_dir)): for mth in tqdm(months): month_dir = os.path.join(year_dir, mth) print(month_dir) for d in tqdm(os.listdir(month_dir)): # for d in tqdm(['01', '02']): datevalue = yr + '-' + mth + '-' + d if datevalue not in datex: datex.append(datevalue) day_dir = os.path.join(month_dir, d) # print(day_dir) filename = datevalue + '-social-distancing.csv.gz' day_file = os.path.join(day_dir, filename) # print(day_file) df = pd.read_csv(day_file, compression='gzip', header=0, quotechar='"', error_bad_lines=False) for city in cbgs: locals()[city+'_today'] = 0 locals()[city+'_cbg_num'] = 0 for i in tqdm(range(df.shape[0])): src = str(df.iloc[i].origin_census_block_group) # print(len(src)) if len(src) < 12: src = '0' + src # print(src[0:5]) for city in cbgs: # print(src[0:5], cbgs[city]) if src[0:5] in cbgs[city]: # print(df.iloc[i].device_count - df.iloc[i].completely_home_device_count) # print(df.iloc[i].device_count, df.iloc[i].completely_home_device_count) locals()[city+'_today'] += float(df.iloc[i].device_count - df.iloc[i].completely_home_device_count)/df.iloc[i].device_count locals()[city+'_cbg_num'] += 1 break for city in cbgs: if locals()[city+'_today'] > 0: locals()[city+'_mobility'].append(float(locals()[city+'_today'] / locals()[city+'_cbg_num'])) else: locals()[city+'_mobility'].append(float(locals()[city+'_today'])) now = datetime.now() dt_string = now.strftime("%Y-%m-%d-%H-%M-%S") for city in cbgs: plt.figure() print(datex, locals()[city+'_mobility']) plt.plot(datex, locals()[city+'_mobility'], label=city, marker='.') plot_location = mobility_data_location + '/mobilityplot/' + city + years[0] + months[0] + '.png' plt.legend(loc='best') plt.show() plt.savefig(plot_location) csv_location = mobility_data_location + '/mobilityplot/' + city + years[0] + months[0] + '.csv' mobility = {'0_date':datex, city:locals()[city+'_mobility']} print(mobility) df = pd.DataFrame.from_dict(mobility) df.to_csv(csv_location, index=False) years = ['2021'] months = ['02'] process_mobility(years, months)
from .annealing import Ketcham1999, Ketcham2007 from .structures import Grain, Sample from .viewer import Viewer from .age_calculations import calculate_central_age as central_age from .age_calculations import calculate_pooled_age as pooled_age from .age_calculations import calculate_ages as single_grain_ages from .age_calculations import chi_square as chi2_test from .thermal_history import ThermalHistory
"""Defines Averager class.""" import collections class Averager(object): """Keeps a running average with limited history.""" def __init__(self, max_count): """Initialize the averager with maximum number of (latest) samples to keep.""" self._max_count = max_count if max_count > 1 else 1 # Minimum is 1. self._data = collections.deque() def add(self, value): """Add a value, and return current average.""" self._data.append(value) if len(self._data) > self._max_count: self._data.popleft() return sum(self._data)/len(self._data) def __len__(self): """Length operator.""" return len(self._data)
# -*- coding: utf-8 -*- """ Created on Tue Sep 25 11:50:05 2018 @author: kennedy """ __author__ = "kennedy Czar" __email__ = "[email protected]" __version__ = '1.0' import os class Data_collector(object): def __init__(self, path): ''' :Argument: :path: Enter the woring directory os state the location you would love to create the dataset :example: create_folder('D:\\YourDirectory') Creates the DATASSET FOLDER @D:\\MyDirectory\\DATASET :Complexity for file Creation: The Function runs in: Time Complexity: O(N*logN) Space Complexity: O(1) ''' self.path = path try: if os.path.exists(self.path): try: self.FOLDERS = ['\\DATASET', '\\TICKERS' , '\\PREDICTED', '\\SAMPLE1', '\\SAMLE2', '\\SAMPLE2'] FOLDER_COUNT = 0 for folders in self.FOLDERS: '''If folder is not created or created but deleted..Recreate/Create the folder. Check for all folders in the FOLDERS list''' if not os.path.exists(self.path + self.FOLDERS[FOLDER_COUNT]): os.makedirs(path + self.FOLDERS[FOLDER_COUNT]) print('====== 100% Completed ==== : {}'.format(self.path + self.FOLDERS[FOLDER_COUNT])) FOLDER_COUNT += 1 elif os.path.exists(self.path + self.FOLDERS[FOLDER_COUNT]): '''OR check if the file is already existing using a boolean..if true return''' print('File Already Existing : {}'.format(self.path + self.FOLDERS[FOLDER_COUNT])) FOLDER_COUNT += 1 except OSError as e: '''raise OSError('File Already Existing {}'.format(e))''' print('File Already existing: {}'.format(e)) elif not os.path.exists(self.path): raise OSError('File path: {} does not exist\n\t\tPlease check the path again'.format(self.path)) else: print('File Already Existing') except Exception as e: raise(e) finally: print('Process completed...Exiting') def STOCK_EXTRACTOR(self): ''' :Functionality: Collects stock data using the yahoo API Collects all excel data and stores in DATASET FOLDER append .csv to all files downloaded ''' import fix_yahoo_finance as yahoo import pandas as pd from datetime import datetime '''Set the start date''' self.START = '2010-01-01' # self.END = '2018-10-01' '''Create a list of stocks to download''' self.TICKERS_ = ['AMXL.MX', 'WALMEX.MX', 'FEMSAUBD.MX', 'ALFAA.MX', 'CEMEXCPO.MX', 'BIMBOA.MX', 'KOFL.MX', 'GMEXICOB.MX', 'CUERVO.MX', 'GFNORTEO.MX', 'SORIANAB.MX', 'ALPEKA.MX', 'GCARSOA1.MX', 'LIVEPOLC-1.MX', 'TLEVISACPO.MX', 'SAN.MX', 'MEXCHEM.MX', 'ELEKTRA.MX', 'CHDRAUIB.MX', 'AC.MX', 'PE&OLES.MX', 'GFINBURO.MX', 'GRUMAB.MX', 'LACOMERUBC.MX', 'LALAB.MX', 'AEROMEX.MX', 'BACHOCOB.MX', 'GSANBORB-1.MX', 'CULTIBAB.MX', 'GNP.MX', 'FRAGUAB.MX', 'ICHB.MX', 'KIMBERA.MX', 'SIMECB.MX', 'ALSEA.MX', 'GPH1.MX', 'VITROA.MX', 'GIGANTE.MX', 'KUOB.MX', 'ANGELD10.MX', 'OHLMEX.MX', 'Q.MX', 'GENTERA.MX', 'DIABLOI10.MX', 'GFAMSAA.MX', 'IDEALB-1.MX', 'HERDEZ.MX', 'VOLARA.MX', 'AZTECACPO.MX', 'MFRISCOA-1.MX', 'PAPPEL.MX', 'RASSINICPO.MX', 'LABB.MX', 'MEGACPO.MX', 'IENOVA.MX', 'AXTELCPO.MX', 'GCC.MX', 'GISSAA.MX', 'CMOCTEZ.MX', 'BAFARB.MX', 'GPROFUT.MX', 'LAMOSA.MX', 'CERAMICB.MX', 'PINFRA.MX', 'AGUA.MX', 'CIEB.MX', 'ARA.MX', 'POCHTECB.MX', 'ASURB.MX', 'FINDEP.MX', 'POSADASA.MX', 'MINSAB.MX', 'GAPB.MX', 'INVEXA.MX', 'CYDSASAA.MX', 'MONEXB.MX', 'COLLADO.MX', 'UNIFINA.MX', 'ACTINVRB.MX', 'ACCELSAB.MX', 'AUTLANB.MX', 'PASAB.MX', 'OMAB.MX', 'GBMO.MX', 'PV.MX', 'CREAL.MX', 'TMMA.MX', 'MAXCOMA.MX', 'VASCONI.MX', 'FIBRAMQ12.MX', 'GMD.MX', 'CMRB.MX', 'BOLSAA.MX', 'VALUEGFO.MX', 'MEDICAB.MX', 'TERRA13.MX', 'DANHOS13.MX', 'FIHO12.MX', 'CIDMEGA.MX', 'HCITY.MX', 'FIBRAPL14.MX', 'SPORTS.MX', 'DINEB.MX', 'CONVERA.MX', 'VESTA.MX', 'RCENTROA.MX', 'FINN13.MX', 'HOTEL.MX', 'FSHOP13.MX', 'TEAKCPO.MX', 'SAREB.MX', 'FMTY14.MX', 'FHIPO14.MX', 'HOMEX.MX', 'GMXT.MX', 'URBI.MX'] '''write the stock data to specific format by appending the right extension''' STOCK_TICKER_ = pd.DataFrame(self.TICKERS_) self.FORMAT = ['.csv', '.xlsx', '.json'] for extension in self.FORMAT: STOCK_TICKER_.to_csv('TICKERS/STOCK_TICKER{}'.format(extension)) print('======= Begin downloading stock dataset ======') try: for self.TICK_SYMBOLS in self.TICKERS_: '''just in case your connection breaks, we'd like to save our progress! by appending downloaded dataset to DATASET FOLDER''' if not os.path.exists('DATASET/{}.csv'.format(self.TICK_SYMBOLS)): df = yahoo.download(self.TICK_SYMBOLS, start = self.START, end = datetime.now()) df.reset_index(inplace = True) df.set_index("Date", inplace = True) df.to_csv('DATASET/{}.csv'.format(self.TICK_SYMBOLS)) else: print('File Already existing: {}'.format(self.TICK_SYMBOLS)) except OSError as e: raise OSError('Something wrong with destination path: {}'.format(e)) finally: print('Download Completed..Exiting!') if __name__ == '__main__': '''Define a path on your drive where this project folder is located''' path = 'D:\\GIT PROJECT\\ERIC_PROJECT101\\FREELANCE_KENNETH' Data_collector(path).STOCK_EXTRACTOR()
import logging import yaml import logging.config import os import argparse with open('config/log_config.yaml', 'r') as stream: config = yaml.load(stream, Loader=yaml.FullLoader) # get path to logs file in config and create folder if not already created log_path = config['handlers']['file']['filename'] log_dir = os.path.dirname(log_path) if not os.path.exists(log_dir): os.makedirs(log_dir) logging.config.dictConfig(config) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Run the app') parser.add_argument('--action', type=str, help='Action to perform') parser.add_argument("--db", help="Link to db", nargs="?", default="bolt://db:7687") parser.add_argument("--link", help="Page to start crawling", default='Philosophy') args = parser.parse_args() if args.action == 'webcrawl': from WikiCrawler.wikiCrawler import Crawler Crawler(args.db).start(args.link) elif args.action == 'apicrawl': from WikiCrawler.apiCrawler import ApiCrawler ApiCrawler(args.db).start()
import warnings from typing import IO, Tuple, Mapping, List, Dict, TextIO, Union from importlib import import_module from click.utils import LazyFile from yaml import safe_dump, safe_load from faker.providers import BaseProvider as FakerProvider from .data_gen_exceptions import DataGenNameError from .output_streams import ( DebugOutputStream, OutputStream, ) from .parse_factory_yaml import parse_factory from .data_generator_runtime import output_batches, StoppingCriteria, Globals from . import SnowfakeryPlugin # This tool is essentially a three stage interpreter. # # 1. Yaml parsing into Python data structures. # 2. Walking the tree, sorting things into groups like macros, file inclusions, # etc., and doing the file inclusions (parse_factory_yaml.parse_factory) # 2 a) merge options informtion from the parse with options from the # environment # 3. Generating the objects top to bottom (including evaluating Jinja) in # data_generator_runtime.output_batches # # The function generate at the bottom of this file is the entry point to all # of it. class ExecutionSummary: """Summarize everything that happened during parsing and evaluating.""" def __init__(self, parse_results, runtime_results): self.tables = parse_results.tables self.dom = parse_results.templates self.intertable_dependencies = runtime_results.intertable_dependencies def summarize_for_debugging(self): return self.intertable_dependencies, self.dom def merge_options(option_definitions: List, user_options: Mapping) -> Tuple[Dict, set]: """Merge/compare options specified by end-user to those declared in YAML file. Takes options passed in from the command line or a config file and compare them to the options declared by the Generator YAML file. The options from the Generator YAML should be dictionaries with keys of "options" and "default" as described in the user documentation. The options from the user should be a dictionary of key/value pairs. The output is a pair, options, extra_options. The options are the values to be fed into the process after applying defaults. extra_options are options that the user specified which do not match anything in the YAML generator file. The caller may want to warn the user about them or throw an error. """ options = {} for option in option_definitions: name = option["option"] if user_options.get(name): options[name] = user_options.get(name) elif option.get("default"): options[name] = option["default"] else: raise DataGenNameError( f"No definition supplied for option {name}", None, None ) extra_options = set(user_options.keys()) - set(options.keys()) return options, extra_options def load_continuation_yaml(continuation_file: TextIO): """Load a continuation file from YAML.""" return safe_load(continuation_file) def save_continuation_yaml(continuation_data: Globals, continuation_file: TextIO): safe_dump(continuation_data, continuation_file) def resolve_plugin(plugin: str) -> object: "Resolve a plugin to a class" module_name, class_name = plugin.rsplit(".", 1) module = import_module(module_name) cls = getattr(module, class_name) if issubclass(cls, FakerProvider): return (FakerProvider, cls) elif issubclass(cls, SnowfakeryPlugin): return (SnowfakeryPlugin, cls) else: raise TypeError(f"{cls} is not a Faker Provider nor Snowfakery Plugin") def process_plugins(plugins: List[str]) -> Tuple[List[object], Mapping[str, object]]: """Resolve a list of names for SnowfakeryPlugins and Faker Providers to objects The Providers are returned as a list of objects. The Plugins are a mapping of ClassName:object so they can be namespaced. """ plugin_classes = [resolve_plugin(plugin) for plugin in plugins] faker_providers = [ provider for baseclass, provider in plugin_classes if baseclass == FakerProvider ] snowfakery_plugins = { plugin.__name__: plugin for baseclass, plugin in plugin_classes if baseclass == SnowfakeryPlugin } return (faker_providers, snowfakery_plugins) def generate( open_yaml_file: IO[str], user_options: dict = None, output_stream: OutputStream = None, stopping_criteria: StoppingCriteria = None, generate_continuation_file: Union[TextIO, LazyFile] = None, continuation_file: TextIO = None, ) -> ExecutionSummary: """The main entry point to the package for Python applications.""" user_options = user_options or {} # Where are we going to put the rows? output_stream = output_stream or DebugOutputStream() # parse the YAML and any it refers to parse_result = parse_factory(open_yaml_file) # figure out how it relates to CLI-supplied generation variables options, extra_options = merge_options(parse_result.options, user_options) if extra_options: warnings.warn(f"Warning: unknown options: {extra_options}") output_stream.create_or_validate_tables(parse_result.tables) continuation_data = ( load_continuation_yaml(continuation_file) if continuation_file else None ) faker_providers, snowfakery_plugins = process_plugins(parse_result.plugins) # now do the output runtime_context = output_batches( output_stream, parse_result.templates, options, stopping_criteria=stopping_criteria, continuation_data=continuation_data, tables=parse_result.tables, snowfakery_plugins=snowfakery_plugins, faker_providers=faker_providers, ) if generate_continuation_file: safe_dump(runtime_context, generate_continuation_file) return ExecutionSummary(parse_result, runtime_context) if __name__ == "__main__": # pragma: no cover from .snowfakery import generate_cli generate_cli()
# coding=utf-8 import codecs def calculate(x,y,id2word,id2tag,res=[]): entity=[] for j in range(len(x)): if x[j]==0 or y[j]==0: continue if id2tag[y[j]][0]=='B': entity=[id2word[x[j]]+'/'+id2tag[y[j]]] elif id2tag[y[j]][0]=='M' and len(entity)!=0 and entity[-1].split('/')[1][1:]==id2tag[y[j]][1:]: entity.append(id2word[x[j]]+'/'+id2tag[y[j]]) elif id2tag[y[j]][0]=='E' and len(entity)!=0 and entity[-1].split('/')[1][1:]==id2tag[y[j]][1:]: entity.append(id2word[x[j]]+'/'+id2tag[y[j]]) entity.append(str(j)) res.append(entity) entity=[] else: entity=[] return res def calculate3(x,y,id2word,id2tag,res=[]): ''' 使用这个函数可以把抽取出的实体写到res.txt文件中,供我们查看。 注意,这个函数每次使用是在文档的最后添加新信息,所以使用时尽量删除res文件后使用。 ''' with codecs.open('./res.txt','a','utf-8') as outp: entity=[] for j in range(len(x)): #for every word if x[j]==0 or y[j]==0: continue if id2tag[y[j]][0]=='B': entity=[id2word[x[j]]+'/'+id2tag[y[j]]] elif id2tag[y[j]][0]=='M' and len(entity)!=0 and entity[-1].split('/')[1][1:]==id2tag[y[j]][1:]: entity.append(id2word[x[j]]+'/'+id2tag[y[j]]) elif id2tag[y[j]][0]=='E' and len(entity)!=0 and entity[-1].split('/')[1][1:]==id2tag[y[j]][1:]: entity.append(id2word[x[j]]+'/'+id2tag[y[j]]) entity.append(str(j)) res.append(entity) st = "" for s in entity: st += s+' ' #print st outp.write(st+'\n') entity=[] else: entity=[] return res
import json from app.api.mines.mine.models.mine_disturbance_code import MineDisturbanceCode def test_get_all_mine_disturbance_types(test_client, db_session, auth_headers): disturbances = MineDisturbanceCode.query.filter_by(active_ind=True).all() disturbance_codes = map(lambda c: c.mine_disturbance_code, disturbances) discriptions = map(lambda c: c.description, disturbances) get_resp = test_client.get('/mines/disturbance-codes', headers=auth_headers['full_auth_header']) get_data = json.loads(get_resp.data.decode()) options = get_data['options'] assert get_resp.status_code == 200 assert len(options) == len(disturbances) assert all(option['mine_disturbance_code'] in disturbance_codes for option in options) assert all(option['description'] in discriptions for option in options)
import numpy as np from PIL import Image import pandas as pd import cv2 import sys import os import json print(os.path.dirname(os.path.realpath(__file__))) sys.path.append(os.path.dirname(os.path.realpath(__file__)) ) print(sys.path) from bentoml import api, artifacts, env, BentoService from bentoml.artifact import KerasModelArtifact from bentoml.handlers import ImageHandler # from metric import * # from model import * import metric, utils, model import deploy_valid_grid import efficientnet.keras as efn # from utils import * # from deploy_valid_path import valid_path # from numpy.random import seed # seed(42) # from tensorflow import set_random_seed # set_random_seed(42) # FLAGS = None # print(FLAGS.valid_post_path) # valid_path = '../res/segment/test_20/valid/valid_post_grid.csv' # with open('./deploy_valid_path.txt') as f: # valid print(deploy_valid_grid.grid_value) post_df = pd.DataFrame(deploy_valid_grid.grid_value) # print(deploy_valid_path.valid_path['valid_post_grid']) # post_df = pd.read_csv(str(deploy_valid_path.valid_path['valid_post_grid'])) print(post_df) # sys.exit() print('Load dict file Post grid') label_names = post_df['label'].values.tolist() proba = post_df['proba'].values.tolist() reduce_size = post_df['reduce_size'].values.tolist() pad = post_df['pad'].values.tolist() convex = post_df['convex'].values.tolist() colors = post_df['colors'].values.tolist() print(label_names) @env(pip_dependencies=['keras==2.2.5', 'tensorflow-gpu==1.14.0', 'Pillow', 'numpy','opencv-python', 'efficientnet', 'pandas','cython','git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI']) @artifacts([KerasModelArtifact(name = 'segmentation', custom_objects = { # 'tf':tf, 'bce_dice_loss' : metric.bce_dice_loss, 'dice_coef' : metric.dice_coef } ) ] ) class KerasSegmentationService(BentoService): # print(deploy_valid_grid.grid_value) # post_df = pd.DataFrame(deploy_valid_grid.grid_value) # # print(deploy_valid_path.valid_path['valid_post_grid']) # # post_df = pd.read_csv(str(deploy_valid_path.valid_path['valid_post_grid'])) # print(post_df) # # sys.exit() # print('Load dict file Post grid') # label_names = post_df['label'].values.tolist() # proba = post_df['proba'].values.tolist() # reduce_size = post_df['reduce_size'].values.tolist() # pad = post_df['pad'].values.tolist() # convex = post_df['convex'].values.tolist() # colors = post_df['colors'].values.tolist() # print(label_names) @api(ImageHandler, pilmode='RGB') def predict(self, img): print(img.shape) img_width = img.shape[1] img_height = img.shape[0] img_channel = img.shape[2] # (1,256,256,3) img_resized = cv2.resize(img.astype(np.uint8), (256,256)).astype(np.float) print('#'*100) print(img_resized.shape) # img = Image.fromarray(img).resize((256, 256)) img_resized /= 255.0 print(img_resized.shape) img_resized = np.expand_dims(img_resized, axis = 0) # img = np.array(img.getdata()).reshape((1,256,256,3)) # (1,256,256,4) ==> predcited predicted = self.artifacts.segmentation.predict(img_resized) predicted_post = utils.predict_resize(predicted, proba = proba, pad_size = pad, reduce_size = reduce_size, convex = convex, label_names = label_names) print(predicted_post.shape) rle_dict = {} rle_list = [] for l_idx, label in enumerate(label_names): l_mask = predicted_post[0][:,:, l_idx].astype(np.uint8) print(l_mask.shape) # (2100,1400) l_mask = cv2.resize(l_mask, (img_height, img_width)) print(l_mask.shape) label_rle = utils.mask2rle(l_mask) rle_list.append(label_rle) # img_masked = rle_mask2img_request(img, rle_list, label_names, colors) # img_str = img_masked.tobytes() rle_dict['rle'] = [{'size' : rle['size'], 'counts' : str(rle['counts'])} for rle in rle_list] # rle_dict['image'] = str(img_str) rle_json = json.dumps(rle_dict) # print(rle_list) return rle_json # if __name__ == '__main__': # parser = argparse.ArgumentParser(description = 'deploying model') # # parser.add_argument('--target', required=True, help = 'train or predict') # # parser.add_argument('--train_path') # # parser.add_argument('--test_path') # # parser.add_argument('--model_path', required=True) # parser.add_argument('--valid_post_path', required=True) # # parser.add_argument('--deploy_save_path', required=True) # # parser.add_argument('--version_number', requried=True, type = int) # # parser.add_argument('--json_path', required=True) # # parser.add_argument('--img_path', required=True) # # parser.add_argument('--model_name',default= local_time) # # parser.add_argument('--epoch', default = 50, type =int) # # parser.add_argument('--batch_size', default = 16, type =int) # # parser.add_argument('--resize_shape', nargs='+', type=int, default = [256,256]) # # parser.add_argument('--augument',default = True) # FLAGS, unparsed = parser.parse_known_args() # KerasSegmentationService
from django.urls import path from . import views from django.views.generic.base import TemplateView urlpatterns = { path('add_annotation', views.add_annotation), path('getChatGroupPapers', views.getChatGroupPapers), path('getChatGroupMembers', views.getChatGroupMembers), path('createChatGroup', views.createChatGroup), path('uploadChatGroupPaper', views.uploadChatGroupPaper), path('getBothStarList', views.getBothStarList), path('getMyChatGroupList', views.getMyChatGroupList), path('createChatGroup', views.createChatGroup), path('chatGroupPaper.html', TemplateView.as_view(template_name = 'chatGroupPaper.html')), path('showpdf.html', TemplateView.as_view(template_name = 'showpdf.html')), path('memberInGroupPage.html', TemplateView.as_view(template_name = 'memberInGroupPage.html')), path('singleGroupPage.html', TemplateView.as_view(template_name = 'singleGroupPage.html')), path('uploadPaperToChatGroup.html', TemplateView.as_view(template_name = 'uploadPaperToChatGroup.html')), path('getChatGroupName', views.getChatGroupName), path('myChatGroupList.html', TemplateView.as_view(template_name = 'myChatGroupList.html')), path('createChatGroup.html', TemplateView.as_view(template_name = 'createChatGroup.html')), path('annotation-noicon.svg', views.get_icon), }
import threading import requests import argparse from time import sleep """ArgParse for CLI input""" parser=argparse.ArgumentParser(description='WebProbe V0.1') parser.add_argument('-f','--filename',type=str,required=True,help="Specify filename.") parser.add_argument('-t','--threads',type=int,const=5,nargs='?',help="Specify No.of threads to spawn (default = 5)") args = parser.parse_args() """Supressing warning caused by requests""" requests.packages.urllib3.disable_warnings() def do_request(url): """ Post request to the site print the url to console if response is 200 """ if not url: return try: response = requests.get(url, verify=False, allow_redirects=False, timeout=1) print(url) #if response.ok else print(f"response: {response.status_code} url: {url}") except Exception as e: pass def process_file(fname, t): """ Thread Implementation """ fp = open(fname,'rt') arr = list(map(lambda a : a.strip(), fp.readlines())) for each in arr: req = threading.Thread(target=do_request, args=(each,)) #print(threading.active_count()) while threading.active_count() >=t: sleep(0.1) # Needs to be changed req.start() fp.close() if __name__=="__main__": try: if args.threads == None: threads_c=5 else: threads_c=args.threads #print(15*"="+"\nFile Name : {}\nThread Count : {}\n".format(args.filename,threads_c)+15*"="+"\n") process_file(args.filename, threads_c) except Exception as err: print("\33[031mError !!\33[0m\n \n{}".format(err))
from myModules.github.github_api import gitApi import requests class Repo: def __init__(self, user, repo=None): self.rep = self.getRepos(user, repo) def getRepos(self, owner, repo): """ get Json data :param owner: the user :param repo: the repository """ return requests.get(gitApi.repository_url + owner + '/' + repo).json() def getStars(self): """ get repo star :return: repo star """ try: return self.rep['stargazers_count'] except KeyError: return self.rep def getAvatar(self): """ get repo avatar :return: repo avatar """ try: return self.rep['owner']['avatar_url'] except KeyError: return self.rep
from m5ui import * import utime as time import random clear_bg(0x111111) rgb = RGB_Bar() btnA = M5Button(name="ButtonA", text="ButtonA", visibility=False) btnB = M5Button(name="ButtonB", text="ButtonB", visibility=False) btnC = M5Button(name="ButtonC", text="ButtonC", visibility=False) ######################################################### ######################## GUI ############################ ######################################################### class GUIObject: __X = 0 __Y = 0 __Height = 0 __Width = 0 __Scene = 0 __Status = 0 __Time = 0 __NumberValue = 0 __NumberValue_ = __NumberValue __Name = "" __Type = "" __Label = "" __Label_ = __Label __TextValue = "" __TextValue_ = __TextValue __Focusable = False __Function = None @property def X(self): return self.__X @property def X_(self): return self.__X_ @X.setter def X(self, X): self.__X_ = self.__X self.__X = X @property def Y(self): return self.__Y @Y.setter def Y(self, Y): self.__Y = Y @property def Height(self): return self.__Height @Height.setter def Height(self, Height): self.__Height = Height @property def Width(self): return self.__Width @Width.setter def Width(self, Width): self.__Width = Width @property def Scene(self): return self.__Scene @Scene.setter def Scene(self, Scene): self.__Scene = Scene @property def Status(self): return self.__Status @Status.setter def Status(self, Status): self.__Status = Status @property def Time(self): return self.__Time @Time.setter def Time(self, Time): self.__Time = Time @property def NumberValue(self): return self.__NumberValue @property def NumberValue_(self): return self.__NumberValue_ @NumberValue.setter def NumberValue(self, NumberValue): self.__NumberValue_ = self.__NumberValue self.__NumberValue = NumberValue @NumberValue_.setter def NumberValue_(self, NumberValue_): self.__NumberValue_ = NumberValue_ @property def Name(self): return self.__Name @Name.setter def Name(self, Name): self.__Name = Name @property def Type(self): return self.__Type @Type.setter def Type(self, Type): self.__Type = Type @property def Label(self): return self.__Label @property def Label_(self): return self.__Label_ @Label.setter def Label(self, Label): self.__Label_ = self.__Label self.__Label = Label @Label_.setter def Label_(self, Label_): self.__Label_ = Label_ @property def TextValue(self): return self.__TextValue @property def TextValue_(self): return self.__TextValue_ @TextValue.setter def TextValue(self, TextValue): self.__TextValue_ = self.__TextValue self.__TextValue = TextValue @TextValue_.setter def TextValue_(self, TextValue_): self.__TextValue_ = TextValue_ @property def Focusable(self): return self.__Focusable @Focusable.setter def Focusable(self, Focusable): self.__Focusable = Focusable @property def Function(self): return self.__Function @Function.setter def Function(self, Function): self.__Function = Function def live(self): if self.__Type == "inputbox": return GUIInputbox(self) elif self.__Type == "human": return GUIHuman(self) elif self.__Type == "button": return GUIButton(self) GUIRoll = [] GUIActiveScene = 0 def GUIPString(idSp, sp, srcStr): dstStr = '' cnt = 0 for i in range(len(srcStr)): if srcStr[i] == sp: cnt += 1 else: if cnt == idSp: dstStr += srcStr[i] elif cnt > idSp: break return dstStr def GUILive(): if buttonA.wasPressed(): GUITab("<") if buttonC.wasPressed(): GUITab(">") if buttonB.wasPressed(): for i in range(0, len(GUIRoll)): if (GUIRoll[i]).Scene == GUIActiveScene and (GUIRoll[i]).Status == 1: (GUIRoll[i]).Status = 2 for i in range(0, len(GUIRoll)): if (GUIRoll[i]).Scene == GUIActiveScene: GUIRoll[i] = (GUIRoll[i]).live() def GUIKeyboard(key = 0, caps = 0): keys = ['~', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '-', '=', '!', '@', '#', 'Q', 'W', 'E', 'R', 'T', 'Y', 'U', 'I', 'O', 'P', '[', ']', '{', '}', '$', '%', 'A', 'S', 'D', 'F', 'G', 'H', 'J', 'K', 'L', ':', ';', '"', '\'', '\\', '|', '*', 'Z', 'X', 'C', 'V', 'B', 'N', 'M', ',', '.', '/', '<', '>', '?', '(', ')', '+', '<.', 'X.', 'O.', ' ', '_', 'A.', '<b', '>b'] al = len(keys) w = 320 pY = 140 sk = 20 rs = int(w / sk) for i in range(0, al): r = int(i / rs) rX = i * sk - r * w rY = pY + r * sk tX = rX + 5 tY = rY + 4 k = keys[i] if i == key: if k == '<.': lcd.rect(rX, rY, sk, sk, color=0xffcc00) lcd.print(k[0], tX, tY, color=0xffcc00) rgb.set_all(0xffcc00) elif k == 'X.': lcd.rect(rX, rY, sk, sk, color=0xff0000) lcd.print(k[0], tX, tY, color=0xff0000) rgb.set_all(0xff0000) elif k == 'O.': lcd.rect(rX, rY, sk, sk, color=0x00ff00) lcd.print(k[0], tX, tY, color=0x00ff00) rgb.set_all(0x00ff00) elif k == '<b' or k == '>b': lcd.rect(rX, rY, sk, sk, color=0xffffff) lcd.print(k[0], tX, tY, color=0xffffff) elif k == 'A.': if caps == 1: lcd.print(k[0].upper(), tX, tY, color=0x00ff00) else: lcd.print(k[0].lower(), tX, tY, color=0x999999) lcd.rect(rX, rY, sk, sk, color=0x00ff00) else: lcd.rect(rX, rY, sk, sk, color=0x33ccff) lcd.print(k[0], tX, tY, color=0x33ccff) rgb.set_all(0x000000) else: lcd.rect(rX, rY, sk, sk, color=0x666666) if k == 'A.': if caps == 1: lcd.print(k[0], tX, tY, color=0x00ff00) else: lcd.print(k[0].lower(), tX, tY, color=0x999999) else: lcd.print(k[0], tX, tY, color=0x999999) if buttonB.wasPressed(): wait(0.1) key = key + 1 if key >= al: key = 0 if buttonA.wasPressed(): wait(0.1) key = key + rs if key >= al: key = key - (int(key / rs) * rs) if buttonC.wasPressed(): wait(0.1) rgb.set_all(0x000000) k = keys[key] if len(k) == 1: return (keys[key].upper() if caps == 1 else keys[key].lower()), key, caps else: if k == 'A.': caps = 1 if caps == 0 else 0 elif k == '<.': return 'backspace', key, caps elif k == 'X.': return 'esc', key, caps elif k == 'O.': return 'enter', key, caps elif k == '<b': return 'left', key, caps elif k == '>b': return 'right', key, caps return '', key, caps def GUIAttach(obj): inFocus = -1 for i in range(0, len(GUIRoll)): if (GUIRoll[i]).Scene == obj.Scene and (GUIRoll[i]).Focusable: if (GUIRoll[i]).Status == 1: inFocus = i if obj.Status == 1: (GUIRoll[i]).Status = 0 if inFocus == -1 and obj.Focusable: obj.Status = 1 GUIRoll.append(obj) def GUI(Name): for i in range(0, len(GUIRoll)): if GUIRoll[i].Name == Name: return GUIRoll[i] def GUITab(Dir): inFocus = -1 for i in range(0, len(GUIRoll)): if (GUIRoll[i]).Scene == GUIActiveScene: if (GUIRoll[i]).Status == 1: inFocus = i if Dir == ">": for i in range(inFocus + 1, len(GUIRoll)): if (GUIRoll[i]).Scene == GUIActiveScene and (GUIRoll[i]).Focusable: (GUIRoll[inFocus]).Status = 0 (GUIRoll[i]).Status = 1 return else: for i in range(inFocus, 0, -1): if (GUIRoll[i - 1]).Scene == GUIActiveScene and (GUIRoll[i - 1]).Focusable: (GUIRoll[inFocus]).Status = 0 (GUIRoll[i - 1]).Status = 1 return def GUIScene(Number): global GUIActiveScene GUIActiveScene = Number lcd.fill(0x000000) def GUIInputbox(obj): if obj.Status == 0: x = obj.X y = obj.Y width = obj.Width color = 0xcccccc elif obj.Status == 1: x = obj.X y = obj.Y width = obj.Width color = 0x33ccff else: lcd.fill(0x000000) x = 10 y = 35 width = 300 color = 0x33ccff lcd.font(lcd.FONT_Ubuntu) lcd.print(obj.Label, x, y, color) lcd.font(lcd.FONT_Default) lcd.line(x, y + 40, x + width, y + 40, color) cw = 10 ch = 16 s = obj.TextValue mx = int(width / cw) st = s[-mx:] stl = len(st) xp = len(s) - stl for i in range(stl): lcd.print(st[i], x + i * cw, y + 20, 0xffffff) if obj.Status == 2: kc = 0 caps = 0 cs = 0 cp = len(s[xp:]) if len(s[xp:]) < mx else mx while True: k, kc, caps = GUIKeyboard(kc, caps) if k != '': if len(k) == 1: lcd.line(x + cp * cw, y + 20 - 4, x + cp * cw, y + 20 + ch, 0x000000) s = s[0:xp+cp] + str(k) + s[xp+cp:] k = 'right' if k == 'backspace': if cp > 0: s = s[0:xp+cp-1] + s[xp+cp:] k = 'left' if k == 'esc': lcd.clear() obj.Status = 1 break if k == 'enter': lcd.clear() obj.Status = 1 obj.TextValue = s if obj.Function != None: obj.Function(obj) break if k == 'left': lcd.line(x + cp * cw, y + 20 - 4, x + cp * cw, y + 20 + ch, 0x000000) if cp - 1 > 0: cp = cp - 1 else: xp = xp - 1 if xp - 1 >= 0 else xp if k == 'right': lcd.line(x + cp * cw, y + 20 - 4, x + cp * cw, y + 20 + ch, 0x000000) if cp + 1 <= len(s[xp:xp+mx]): cp = cp + 1 else: xp = xp + 1 if xp + 1 + cp <= len(s) else xp for i in range(mx): lcd.print('W', x + i * cw, y + 20, 0x000000) st = s[xp:xp+mx] stl = len(st) for i in range(stl): lcd.print(st[i], x + i * cw, y + 20, 0xffffff) else: if time.ticks_us() - obj.Time >= 500000: obj.Time = time.ticks_us() if cs == 0: lcd.line(x + cp * cw, y + 20 - 4, x + cp * cw, y + 20 + ch, 0xffffff) cs = 1 else: lcd.line(x + cp * cw, y + 20 - 4, x + cp * cw, y + 20 + ch, 0x000000) cs = 0 return obj def GUIHuman(obj): r = 8 tail = r * 2 cw = 12 ch = 14 cells = 5 color = 0xffffff if obj.Height == 0 or obj.Width == 0: obj.Height = (r + 1 + tail + r + int(r / 2)) - (r * 3 - cells * ch) obj.Width = len(obj.Label) * cw if len(obj.Label) * cw > r * 2 else r * 2 x = obj.X + r y = obj.Y + obj.Height lcd.circle(x, y, r, color=color) lcd.circle(int(x - r / 3), int(y - r / 3), int(r / 5), color=0x33ccff) lcd.circle(int(x + 1 + r / 3), int(y - r / 3), int(r / 5), color=0x33ccff) lcd.line(x, y + r + 1, x, y + r + 1 + tail, color) lcd.line(x, int(y + r + 1 + r * 2 / 3), x - r, int(y + r + 1 + r * 2 / 3), color) lcd.line(x + 1, int(y + r + 1 + r * 2 / 3), x + r, int(y + r + 1 + r * 2 / 3), color) lcd.line(x, y + r + 1 + tail, x - r, y + r + 1 + tail + r, color) lcd.line(x, y + r + 1 + tail, x + r, y + r + 1 + tail + r, color) if obj.Label != obj.Label_: lcd.print(obj.Label_, int(x - len(obj.Label_) * cw / 3), int(y + r + 1 + tail + r + r / 2), 0x000000) obj.Label_ = obj.Label lcd.print(obj.Label, int(x - len(obj.Label) * cw / 3), int(y + r + 1 + tail + r + r / 2), 0xcccccc) if time.ticks_us() - obj.Time >= 400000: obj.Time = time.ticks_us() if obj.NumberValue >= len(obj.TextValue): obj.NumberValue = 0 for i in range(0, cells): lcd.print("W", int(x - ch / 3), int(y - r * 3 - i * ch), 0x000000) if len(obj.TextValue) > 0: j = obj.NumberValue - i if j >= 0: lcd.print(obj.TextValue[j], int(x - ch / 3), int(y - r * 3 - i * ch), random.randint(0x00ffcc, 0x00ffff)) obj.NumberValue = obj.NumberValue + 1 return obj def GUIButton(obj): if obj.Status == 1: lcd.print(obj.Label, obj.X, obj.Y, 0x33ccff) elif obj.Status == 2: lcd.print(obj.Label, obj.X, obj.Y, 0xffd700) if obj.Function != None: obj.Function(obj) obj.Status = 1 else: lcd.print(obj.Label, obj.X, obj.Y, 0xcccccc) return obj def GUIRange(obj): if obj.Status == 1: pass elif obj.Status == 2: pass else: lcd.print(obj.Label, obj.X, obj.Y, 0xcccccc) ######################################################### ##################### GUI END ########################### ######################################################### def myFunc(obj): speaker.tone(obj.NumberValue, 200) obj = GUIObject() obj.Name = "myFirstButton" obj.Type = "button" obj.NumberValue = 1000 # 1000 Hz obj.Label = "Beep 1000 Hz" obj.X = 10 obj.Y = 19 obj.Scene = 0 obj.Focusable = True obj.Function = myFunc GUIAttach(obj) obj = None obj = GUIObject() obj.Name = "myFirstButton" obj.Type = "button" obj.NumberValue = 2000 # 2000 Hz obj.Label = "Beep 2000 Hz" obj.X = 10 obj.Y = 59 obj.Scene = 0 obj.Focusable = True obj.Function = myFunc GUIAttach(obj) obj = None lcd.fill(0x000000) while True: GUILive() wait(0.001)
from typing import List class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class BinTree: def printTree(self,root:TreeNode)->None: LevelList = [root] self.printLevel(LevelList) def printLevel(self,LevelList:List[TreeNode])-> List[TreeNode]: LevelStr = "" outList = [] ListEmpty = True for node in LevelList: if node is None: LevelStr += "None " outList.append(None) outList.append(None) else: LevelStr += (str(node.val) + " ") outList.append(node.left) outList.append(node.right) ListEmpty = False if not ListEmpty: print(LevelStr) self.printLevel(outList) class Solution: def isValidBST(self, root: TreeNode) -> bool: def helper(node, lower = float('-inf'), upper = float('inf')): if node is None: print("Node is None") #Diagnostic return True nl=node.left.val if node.left else 0 #Diagnostic nr=node.right.val if node.right else 0 #Diagnostic val = node.val #Diagnostic print(val,'\t',nl,'\t',nr,'\t',lower,'\t',upper) #Diagnostic if not val: val = 0 if val <= lower or val >= upper: return False if not helper(node.right, val, upper): return False if not helper(node.left, lower, val): return False return True print('val','\t','left','\t','right','\t','lower','\t','upper') return helper(root) #Driver code root = TreeNode(2) root.left = TreeNode(1) root.right = TreeNode(4) root.right.left = TreeNode(3) root.right.right = TreeNode(6) ''' root = TreeNode(5) root.left = TreeNode(1) root.right = TreeNode(4) root.right.left = TreeNode(3) root.right.right = TreeNode(6) root = TreeNode(2) root.left = TreeNode(1) root.right = TreeNode(3) ''' bst = BinTree() bst.printTree(root) sol = Solution() print("Tree is valid?",sol.isValidBST(root))
import requests from bs4 import BeautifulSoup as bs class SejongAuth: def __init__(self): self.TIMEOUT_SEC = 10 def do_sejong(self, id: str, pw: str): header = { "User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5)\ AppleWebKit 537.36 (KHTML, like Gecko) Chrome", "Accept":"text/html,application/xhtml+xml,application/xml;\ q=0.9,imgwebp,*/*;q=0.8" } data = { 'email': id, 'password': pw } with requests.Session() as s: html = s.post( "https://do.sejong.ac.kr/ko/process/member/login", headers=header, data=data, timeout=self.TIMEOUT_SEC ).content html = s.get( "https://do.sejong.ac.kr/", timeout=self.TIMEOUT_SEC ).text soup = bs(html, "html.parser") soup = soup.select("div.info") if soup == []: return {"result": False} name = soup[0].find("b").get_text().strip() major = soup[0].find("small").get_text().strip().split(" ")[1] return { "result": True, "name": name, "id": id, "major": major } def portal_sejong(self, id: str, pw: str): header = { "Referer": "https://portal.sejong.ac.kr", "User-Agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0" } data = { "id": id, "password": pw, 'rtUrl': '', } with requests.Session() as s: s.post( 'https://portal.sejong.ac.kr/jsp/login/login_action.jsp', headers=header, data=data, timeout=self.TIMEOUT_SEC ) res = s.get('https://portal.sejong.ac.kr/main.jsp', timeout=self.TIMEOUT_SEC) soup = bs(res.content, 'html.parser') name = soup.select_one('div.info0 > div') if name is None: return {"result":False} name = name.get_text().split("(")[0] return { "result": True, "name": name, "id": id, } if __name__ == '__main__': auth = SejongAuth() id, pw = "16011089", "!hkw45799" print(auth.do_sejong(id, pw)) print(auth.portal_sejong(id, pw))
import os import io import httpretty class APIMock(): """ Responses should be a {method: filename} map """ def __init__(self, mock_url, mock_dir, responses): self.mock_url = mock_url self.responses = responses self.mock_dir = mock_dir def request_callback(self, request, uri, headers): method = request.parsed_body[u'method'][0] filename = self.responses[method] with io.open(os.path.join(self.mock_dir, filename), 'r') as f: contents = f.read() return (200, headers, contents) def __enter__(self): httpretty.enable() httpretty.register_uri(httpretty.POST, self.mock_url, body=self.request_callback) def __exit__(self, type, value, traceback): httpretty.disable() httpretty.reset()
import random import math from typing import NamedTuple import uuid from timeit import default_timer as timer from datetime import datetime import numba as nb import numpy as np import pandas as pd from .scenario import Scenario from .evse import EVSEType, EVSEDef, Bank from .powertrain import Powertrain, PType from .plug import DCPlug from .types import vehicle_, evse_, make_evse_banks, make_fleet from .utils import isin_ from .data import fleet_from_df, banks_from_df, make_mask, write_data, load_data from .datastorage import Storage, DatasetInfo, StorageInfo from .masks import MaskRules from .simulation.loop import sim_loop def simulate(distance_df: pd.DataFrame, sc: Scenario): df = distance_df df_index = df.index rows = len(df_index) interval_len = df.index.to_series().diff().min().seconds / 60.0 home_mask = sc.mask_rules.make_mask(df) fleet_size = len(df.columns) fleet = sc.fleet_def.make_fleet(fleet_size) home_banks = Bank.make_banks(sc.home_banks, fleet_size, False) away_banks = Bank.make_banks(sc.away_banks, fleet_size, True) away_banks[:]['power'] = away_banks[:]['power_max'] num_banks = home_banks.shape[0] use_soc_queue = False out = simulation_loop_delayed( df, fleet, home_banks, away_banks, mask.values, interval_len, sc.home_threshold_min, sc.away_threshold_min, sc.idle_load_kw, use_soc_queue, sc.soc_buffer ) return out
import requests from bs4 import BeautifulSoup # function to return index of second longest element def second_longest(listi): new_list = listi.copy() new_list.remove(max(new_list)) return listi.index(max(new_list)) # function to get lyrics def get_lyrics(song): url = requests.get('https://www.azlyrics.com/lyrics/' + song + '.html') soup = BeautifulSoup(url.text, 'html.parser') # get list of html text elem = soup.get_text().split('\r') # get length of elements in elem length = [] for i in elem: length.append(len(i.split())) # lyrics are usually the longest element in the list lyrics = elem[length.index(max(length))] # but it could also be the description in the bottom. in that case, lyrics are the second longest. if 'Submit Corrections' in lyrics: lyrics = elem[second_longest(length)] return lyrics # format of url is: https://www.azlyrics.com/lyrics/taylorswift/me.html song_list = [] # insert list of songs: song is formatted as artist/title scraped_lyrics = [] for song in song_list: scraped_lyrics.append(get_lyrics(song))
""" byceps.blueprints.site.authentication.login.views ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :Copyright: 2006-2021 Jochen Kupperschmidt :License: Revised BSD (see `LICENSE` file for details) """ from flask import abort, g, request, url_for from flask_babel import gettext from .....services.authentication.exceptions import AuthenticationFailed from .....services.authentication import service as authentication_service from .....services.authentication.session import service as session_service from .....services.consent import ( consent_service, subject_service as consent_subject_service, ) from .....services.site import service as site_service from .....services.site.transfer.models import Site from .....services.verification_token import ( service as verification_token_service, ) from .....signals import auth as auth_signals from .....typing import UserID from .....util.framework.blueprint import create_blueprint from .....util.framework.flash import flash_notice, flash_success from .....util.framework.templating import templated from .....util import user_session from .....util.views import redirect_to, respond_no_content from .forms import LoginForm blueprint = create_blueprint('authentication_login', __name__) # -------------------------------------------------------------------- # # log in/out @blueprint.get('/login') @templated def login_form(): """Show login form.""" if g.user.authenticated: flash_notice( gettext( 'You are already logged in as "%(screen_name)s".', screen_name=g.user.screen_name, ) ) return redirect_to('dashboard.index') if not _is_site_login_enabled(): return { 'login_enabled': False, } form = LoginForm() site = _get_site() return { 'login_enabled': True, 'form': form, 'user_account_creation_enabled': site.user_account_creation_enabled, } @blueprint.post('/login') @respond_no_content def login(): """Allow the user to authenticate with e-mail address and password.""" if g.user.authenticated: return if not _is_site_login_enabled(): abort(403, 'Log in to this site is generally disabled.') form = LoginForm(request.form) screen_name = form.screen_name.data.strip() password = form.password.data permanent = form.permanent.data if not all([screen_name, password]): abort(403) try: user = authentication_service.authenticate(screen_name, password) except AuthenticationFailed: abort(403) if _is_consent_required(user.id): verification_token = verification_token_service.create_for_consent( user.id ) consent_form_url = url_for( 'consent.consent_form', token=verification_token.token ) return [('Location', consent_form_url)] # Authorization succeeded. auth_token, event = session_service.log_in_user( user.id, request.remote_addr, site_id=g.site_id ) user_session.start(user.id, auth_token, permanent=permanent) flash_success( gettext( 'Successfully logged in as %(screen_name)s.', screen_name=user.screen_name, ) ) auth_signals.user_logged_in.send(None, event=event) return [('Location', url_for('dashboard.index'))] def _is_consent_required(user_id: UserID) -> bool: required_subject_ids = ( consent_subject_service.get_subject_ids_required_for_brand(g.brand_id) ) return not consent_service.has_user_consented_to_all_subjects( user_id, required_subject_ids ) @blueprint.post('/logout') @respond_no_content def logout(): """Log out user by deleting the corresponding cookie.""" user_session.end() flash_success(gettext('Successfully logged out.')) # helpers def _is_site_login_enabled() -> bool: site = _get_site() return site.login_enabled def _get_site() -> Site: return site_service.get_site(g.site_id)
from hk_sp import * from numberGen import generate class SpData(): def createData(self): enabled = [1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0] hk_packet = bytearray(hk_sp_enabled(enabled)) hk_packet.extend(hk_sp_errors([1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0])) hk_packet.extend(hk_sp_temp_current(generate(6, -10, 50))) hk_packet.extend(hk_sp_mppt_current(generate(6666, 0, 65535), enabled[9])) hk_packet.extend(hk_sp_coil_current(generate(6666, 0, 65535), enabled[10])) return hk_packet
import pytest from django.conf import settings from django_fsm_log.models import StateLog pytestmark = pytest.mark.ignore_article def test_log_not_created_if_model_ignored(article): assert len(StateLog.objects.all()) == 0 article.submit() article.save() assert len(StateLog.objects.all()) == 0 def test_log_created_on_transition_when_model_not_ignored(article): settings.DJANGO_FSM_LOG_IGNORED_MODELS = ["tests.models.SomeOtherModel"] assert len(StateLog.objects.all()) == 0 article.submit() article.save() assert len(StateLog.objects.all()) == 1
import os import pandas as pd import json from tqdm import tqdm DATA_DIR = os.path.join(os.environ['data'], 'allstate') # Collect arguments (if any) parser = argparse.ArgumentParser() # Data directory parser.add_argument('--data_dir', type=str, default=DATA_DIR, help='Path to the csv files.') args = parser.parse_args() train_df = pd.read_csv(os.path.join(args.data_dir, 'train.csv')) test_df = pd.read_csv(os.path.join(args.data_dir, 'test.csv')) mappings = {}; emb_size = {} for col in tqdm([f'cat{i}' for i in range(1, 117)]): vals = sorted(train_df[col].unique()) emb_size[col] = len(vals) mapping = dict(zip(vals, range(1,len(vals)+1))) mappings[col] = mapping train_df[col] = train_df[col].apply(lambda x: mapping[x]) test_df[col] = test_df[col].apply(lambda x: mapping[x] if x in mapping else 0) train_df.to_csv(os.path.join(args.data_dir, 'traindata.csv'), index=False) test_df.to_csv(os.path.join(args.data_dir, 'testdata.csv'), index=False) with open('data/emb_size.json', 'w') as f: json.dump(emb_size, f) with open('data/mappings.json', 'w') as f: json.dump(mappings, f)