dedup-isc-ft-v107-score
float64 0.3
1
| uid
stringlengths 32
32
| text
stringlengths 1
17.9k
| paper_id
stringlengths 8
11
| original_image_filename
stringlengths 7
69
|
---|---|---|---|---|
0.475546 | 425c8190dedf4f13bed496d57839fa5d | Local concentrations of TGF-β1 and IGF-1 appear determinant for the osteogenic potential of primary ESsT-Cs. Cells were treated with increasing concentrations (0, 1, or 5 ng/mL) of recombinant (r) TGF-β1 in the absence (0 ng/mL) or presence (1 ng/mL) of recombinant (r) IGF-1 for 24 h before total RNA was extracted. Please note that primary ESsT-Cs produce and secrete endogenous levels of TGF-β1 and IGF-1 to the average value of 1 ng/mL for each of the two growth factors (cf. Figure 3 and Figure 5). Therefore, the total (t) concentration of each of the two growth factors, summing the endogenous and recombinant concentrations, is indicated. Expression of (a) COL1A1, SPP1, RUNX2, and ALPL and (b) DLX5, IBSP, BGLAP2, and PHEX mRNAs was analyzed by qRT-PCR. Values normalized to GAPDH are expressed relative to the values of untreated cells. Means ± SD from six independent experiments performed with primary ESsT-Cs from six different donors, and significant differences to untreated cells unless otherwise indicated, *** p < 0.001, ** p < 0.01, * p < 0.05 are shown. | PMC10179638 | ijms-24-08239-g007.jpg |
0.385786 | b6c74a7f9a924b78bf41b61769a2e451 | Local concentrations of TGF-β1 and IGF-1 appear determinant for the mineralization potential of primary ESsT-Cs. (a) Cells were treated with increasing concentrations (0, 1, or 5 ng/mL) of recombinant (r) TGF-β1 in the absence (0 ng/mL) or presence (1 ng/mL) of recombinant (r) IGF-1 for 4 days and subsequently grown under osteogenic culture conditions for 10 additional days before extracellular matrix mineralization was assessed by alizarin red stain. For clarity, the total (t) concentrations of each of the two growth factors, summing the endogenous and recombinant concentrations, are also indicated. Representative bright field and phase contrast images are shown. Scale bar, 500 µm. (b) Mineral deposition capacity was quantified by measuring the stained area using the Fiji distribution of ImageJ. Values normalized to DNA content are expressed relative to the values of untreated cells. Means ± SD from three independent experiments performed with primary ESsT-Cs from three different donors and significant differences to untreated cells, unless otherwise indicated, *** p < 0.001 are shown. | PMC10179638 | ijms-24-08239-g008.jpg |
0.44861 | 6a5b9606d97043b6bd559353f5a9f086 | The multidomain structure of MMP-9. The propeptide is shown green, the active site is shown yellow, the three fibronectin repeats are shown blue, the metal binding site is shown orange, the catalytic zinc ion is shown grey, the OG domain is shown brown, and the PEX domain is shown red. Panels (A–C): structural models from 3 different studies. Panel (D): a cartoon model. (Adapted from Jennifer Vandooren et al., 2013 [1], Copyright 2013 Taylor & Francis and reproduced with permission.) | PMC10180081 | molecules-28-03705-g001.jpg |
0.459218 | 07a9d6f23cbc468a8dfb4ba5bfa2c4b5 | The mechanisms of MMP-9 inhibition in thyroid tumor cells. | PMC10180081 | molecules-28-03705-g002.jpg |
0.460427 | 93a40ce395ad46de93673ebe7ae547a4 | Binding of representative HS IgG, Fab, and F(ab′)2 fragment preparations to M. luteus DNA.The binding of IgG (circle), Fab (triangle), and F(ab′)2 (square) fragments from two representative HS plasmas (H14 and H19) to M. luteus DNA was examined by ELISA. Each point shown is the average OD450 of two wells, with error bars indicating SD. Serial 2-fold dilutions of IgG and fragments were tested, with initial concentrations as follows. For plasma H14 (A): IgG and F(ab′)2, 20 μg/ml; Fab, 12.5 μg/ml. For plasma H19 (B): IgG and F(ab′)2, 80 μg/ml; Fab, 50 μg/ml. | PMC10180169 | nihms-1895130-f0001.jpg |
0.465617 | 9af82c4ee48b4a789abee8bf24f4c9e5 | Binding of HS IgG, Fab, and F(ab′)2 fragment preparations to M. luteus DNA and controls.The binding of IgG (circle), Fab (triangle), and F(ab′)2 (square) fragments from five HS plasmas (H13, H14, H16, H19, and H20) and preisolated, pooled IgG (Pool) to M. luteus DNA, EBV Ag, and tetanus toxoid was examined by ELISA. ND, data not determined for a particular control. Each point shown is the average OD450 of two wells, with error bars indicating SD. Serial 2-fold dilutions of IgG and fragments were tested, with initial concentrations as follows. For plasmas H13, H14, H16, H20, and Pool: IgG and F(ab′)2, 20 μg/ml; Fab, 12.5 μg/ml. For plasma H19: IgG and F(ab′)2, 80 μg/ml; Fab, 50 μg/ml. | PMC10180169 | nihms-1895130-f0002.jpg |
0.433216 | e4170024975849f8a92fc83c46614e1a | Binding of representative SLE IgG, Fab, and F(ab′)2 fragment preparations to M. luteus and CT DNA.The binding of IgG (circle), Fab (triangle), and F(ab′)2 (square) fragments from two representative SLE plasmas (32 and 35) to M. luteus DNA (A and B) and to CT DNA (C and D) was examined by ELISA. Each point is the average OD450 of two wells, with error bars indicating SD. Serial 2-fold dilutions of IgG and fragments were tested, with initial concentrations as follows. For plasma 32 (A and C): IgG and F(ab′)2, 100 μg/ml, Fab, 62.5 μg/ml. For plasma 35 (B and D): IgG and F(ab′)2, 80 μg/ml, Fab, 50 μg/ml. | PMC10180169 | nihms-1895130-f0003.jpg |
0.469513 | e5c98ddaa1cd47e0843b92f9097203d5 | Binding of SLE IgG, Fab, and F(ab′)2 fragment preparations to M. luteus DNA, CT DNA, and controls.The binding of IgG (circle), Fab (triangle), and F(ab′)2 (square) preparations from five SLE plasmas (31, 32, and 35–37) to M. luteus DNA, CT DNA, EBV Ag, and tetanus toxoid was examined by ELISA. Each point is the average OD450 of two wells, with error bars indicating SD. Serial 2-fold dilutions of IgG and fragments were tested, with initial concentrations as follows. For plasmas 31 and 36: IgG and F(ab′)2, 120 μg/ml; Fab, 75 μg/ml. For plasma 32: IgG and F(ab′)2, 100 μg/ml; Fab, 62.5 μg/ml. For plasmas 35 and 37: IgG and F(ab′)2, 80 μg/ml; Fab, 50 μg/ml. | PMC10180169 | nihms-1895130-f0004.jpg |
0.528634 | b206c31d67c2473fa84e9f69d0f158a7 | The unit cell in auxetic configuration (a), the non-auxetic configuration (b), the connection between the auxetic unit cell with its neighbors (c), and the connection between the conventional unit cell with its neighbors (d). | PMC10180246 | materials-16-03473-g001.jpg |
0.503108 | e825a4bc404e46708e29489321b9de7b | Lateral (a) and top (b) views of the unit cell and its key dimensions. | PMC10180246 | materials-16-03473-g002.jpg |
0.526651 | eb630a3442784523bf727d8733fd7cf8 | Auxetic (a) and conventional (b) lateral and top (plan) schematic views of the unit cells in different configurations. | PMC10180246 | materials-16-03473-g003.jpg |
0.552248 | 4a7646986c6144fb8c42b6456474c56e | Simple solution to accommodate general boundaries through external nodes. | PMC10180246 | materials-16-03473-g004.jpg |
0.43594 | 607b0f2a9b7d42bf9794f5c79828aa77 | Three-dimensional (a) and top (b) views of a shell created from the proposed metamaterial cell simply using Δzn=20sinyn10. | PMC10180246 | materials-16-03473-g005.jpg |
0.480263 | 0074fceb5d6b4cb8a691cb54d9698310 | Different sections of a shell created from the proposed metamaterial cell using Δzn=10sinxn10sinyn10, where (a) is a slice perpendicular to the x-axis, (b) is a top (plan) view of the previous slice from the z-axis, and (c) represents the whole domain. | PMC10180246 | materials-16-03473-g006.jpg |
0.442235 | baf26b9811014ba99b965ff5827143b2 | Typical numerical results for the auxetic (top, a–d), and non-auxetic (bottom, e–h) configurations. In both configurations, an increasing incremental vertical displacement load is applied—from unloaded (left) to fully loaded (right). | PMC10180246 | materials-16-03473-g007.jpg |
0.406703 | 77bf59c9033943869d87290693cf7d30 | Range of mechanical properties obtained from the numerical models, considering different geometries, where (a,b) represent the magnitude (size) of these geometrical variables against the equivalent Young’s modulus Ez and transverse Poisson’s ratio νt, respectively, and (c) displays the relationship between Young’s modulus and Poisson’s ratio in the simulations. | PMC10180246 | materials-16-03473-g008.jpg |
0.388658 | 0e157fa0e1fa478db2e1b4a760c8c8be | The ML model predictions of longitudinal Young’s modulus Ez (a) and transverse Poisson’s ratio νt (b), using RF as the regressor. Blue represents the training set, and orange represents the test set. Ground-truth values (from simulations) are on the horizontal axes, while predicted values are on the vertical axes (perfect prediction lies on the bisectrix). A high accuracy is achieved in the test set in terms of the coefficient of determination R2. | PMC10180246 | materials-16-03473-g009.jpg |
0.483818 | e9c442ed7d9b40698beecdee953eb063 | Schematic illustration of graphite structure. | PMC10180389 | materials-16-03601-g001.jpg |
0.436916 | 59f9004d71f540dabf3ca013fd20b542 | Lignocellulosic decomposition temperature according to TGA analysis. | PMC10180389 | materials-16-03601-g002.jpg |
0.43786 | 6d7cfbbe05c34516b3bc6ee862214ba4 | Principal component analysis (PCA) of (a) phenolic compounds and (b) carotenoids in pepper samples. Hierarchical clustering analysis (HCA) allowed identification of clusters. | PMC10180469 | molecules-28-03830-g001.jpg |
0.417622 | 167b912c0b3548b8a9efa689ee8472c8 | Principal component analysis (PCA) for (a) aminoacids, (b) organic acids for pepper samples. Clusters identification performed by HCA. | PMC10180469 | molecules-28-03830-g002.jpg |
0.432953 | c80413910c22459db8d52e17cb328a39 | Principal component analysis (PCA) for (a) fatty acids and (b) phytosterols for pepper samples. Clusters identification performed by HCA. | PMC10180469 | molecules-28-03830-g003.jpg |
0.475403 | 5383dd9c419c427885f639e3eab4f632 | Heat map of 32 metabolites accumulated in sweet pepper (C. annuum L.). The lower bars indicate the sample classes (control, T2, T3, T4, T5, T6, T7, T8, T9). The columns represent stress-induced (SA and H2O2/EC), and the rows refer to distinct metabolites. The values of the metabolite’s concentration have depicted with an encoded-color matrix from the dark/light in every genotype, which has been log2- changed and mean-centered. | PMC10180469 | molecules-28-03830-g004.jpg |
0.506477 | 512c2ff0213c4bb896b0670eea9b12b0 | Graphic of the metabolome subsequent the metabolite pathway plotting of the impacted metabolites recognized after result stress-induced in sweet pepper (C. annuum L.). A color coded matrix indicates concentration values of the metabolic pathway and result of each metabolite, which has been log2- changed and mean-centered. (Color figure online). The investigation was achieved using the MetaboAnalyst software. 5.0. | PMC10180469 | molecules-28-03830-g005.jpg |
0.390092 | 2b5e3b5a5ed54f9b8be0830360100375 | Schematic view of a two-layered piezoelectric nanobeam. | PMC10180470 | materials-16-03485-g001.jpg |
0.405774 | 170fa434b1b14d2680e8ae9975d9a0de | The schematic of the distribution of grid points on the nanobeam. | PMC10180470 | materials-16-03485-g002.jpg |
0.438528 | 822cb2440d08432f9203eb54e5f888e9 | Variation of frequency ratio of a two-layered nanobeam against h/L for various FG index numbers. (a) C-C and (b) C-F boundary conditions. | PMC10180470 | materials-16-03485-g003.jpg |
0.445798 | 04a56bc692b54a77ad91794c407f881c | Variation of fundamental vibration frequency of two-layered nanobeams against h/L for (a) C-C, (b) C-F, (c) C-S, and (d) SS boundary conditions and three modulus. | PMC10180470 | materials-16-03485-g004.jpg |
0.440131 | 02516d41fc0b41efb5cf9416ca5fe8e1 | Variation of fundamental vibration frequency of two-layered nanobeams against hd/h for various n and (a) C-C and (b) C-F boundary conditions. | PMC10180470 | materials-16-03485-g005.jpg |
0.480577 | a572eaeac4744b26a18b7c90e27f5b97 | Variation of fundamental vibration frequency of two-layered nanobeams against ξ for (a) C-C, (b) C-F, (c) C-S, and (d) SS boundary conditions. | PMC10180470 | materials-16-03485-g006a.jpg |
0.430187 | 441b7ae3ddd04d3581e15bb123d750b9 | Variation of fundamental vibration frequency of two-layered nanobeams against k/L for (a) C-C, (b) C-F, (c) C-S, and (d) SS boundary conditions. | PMC10180470 | materials-16-03485-g007.jpg |
0.413151 | 701390086fe84ad692cb4dbb26d28ef7 | Variation of fundamental vibration frequency of two-layered nanobeams obtained via differential nonlocal against k/L for (a) C-C and (b) C-F boundary conditions. | PMC10180470 | materials-16-03485-g008.jpg |
0.448999 | 628b52315a2041cda8e62e5a60cf55e7 | Variation of fundamental vibration frequency of two-layered nanobeams against μ31 for (a) C-C, (b) C-F, (c) C-S, and (d) SS boundary conditions. | PMC10180470 | materials-16-03485-g009a.jpg |
0.410828 | 9da0ef79d9b54d5f939c3f24aba4e98c | Displacement FRF for different beam types and (a) C-C and (b) C-F boundary conditions. | PMC10180470 | materials-16-03485-g010.jpg |
0.426143 | b307c8f0585c43339eb1522a7e6503d2 | Displacement FRF for different values of h/L and (a) C-C and (b) C-F boundary conditions. | PMC10180470 | materials-16-03485-g011.jpg |
0.441681 | b6567dcfcf2542a194a43a776ad0d21b | Voltage FRF for different values of h/L and (a) C-C and (b) C-F boundary conditions. | PMC10180470 | materials-16-03485-g012.jpg |
0.469023 | ed785d1c48154dc7ba1286a0ad5ca9ae | Displacement FRF for different values of κ/L and (a) C-C and (b) C-F boundary conditions. | PMC10180470 | materials-16-03485-g013.jpg |
0.467431 | 92d9b332683f4c918b6d238530280a88 | Voltage FRF for different values of κ/L and (a) C-C and (b) C-F boundary conditions. | PMC10180470 | materials-16-03485-g014.jpg |
0.45515 | 8f59ed83d1924d299b6a94659949188e | Displacement FRF for different values ξ of h/L and (a) C-C and (b) C-F boundary conditions. | PMC10180470 | materials-16-03485-g015.jpg |
0.485645 | 3a55384e568d4a5ca8851af036399180 | Voltage FRF for different values ξ of h/L and (a) C-C and (b) C-F boundary conditions. | PMC10180470 | materials-16-03485-g016.jpg |
0.573303 | dacc62cbace343bd9265811b8bc6ba16 | Structural formula of PHB. | PMC10181107 | polymers-15-02042-g001.jpg |
0.458642 | 9e4a37fc7c68413997368f758031b5c9 | The mechanism of biodegradation: (1) surface, (2) bulk. | PMC10181107 | polymers-15-02042-g002.jpg |
0.495746 | 2dfa35df739b4f55945196ed905b99e5 | The scheme of the single-capillary laboratory unit for electrospinning [31]. | PMC10181107 | polymers-15-02042-g003.jpg |
0.507305 | 268c63c7f5ce49f1a1a9c23e24210e67 | SEM images of the materials based on PHB obtained by different methods: (a) electrospinning, (b) pressing. | PMC10181107 | polymers-15-02042-g004.jpg |
0.36394 | e9add2a04151412cbacfcd8b6529872b | Microscopy of the original material and the material after placement in the soil (magnification 200): (a) fiber, (b) film. | PMC10181107 | polymers-15-02042-g005.jpg |
0.410891 | b3773dbd94e74eefb96a19aa8e4b4c3b | Biodegradation of fibrous material from PHB. | PMC10181107 | polymers-15-02042-g006.jpg |
0.458883 | a869ed32b6ed47c3934c017344e77fe0 | Changes in the structure and properties of materials: (a) stress–strain curves of fibrous material before and after the soil; (b) stress–strain curves of film before and after the soil; (c) the rate of the mass of the fibrous material based on PHB lost during biodegradation in the soil; (d) DSC curves of the material before and after the soil. | PMC10181107 | polymers-15-02042-g007.jpg |
0.438032 | 62554cc487ac414ab43f05c68ed799fb | The FTIR spectra: (a) fiber, (b) film. | PMC10181107 | polymers-15-02042-g008.jpg |
0.433904 | 97bc89996ac541f6a924018cb78dcb29 | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s_{3}$$\end{document}s3 through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g\left( \eta \right)$$\end{document}gη. | PMC10183014 | 41598_2023_34783_Fig10_HTML.jpg |
0.494085 | 5c4413608d2a4a43922ed7ef4029604a | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Pr$$\end{document}Pr through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta \left( \eta \right)$$\end{document}θη. | PMC10183014 | 41598_2023_34783_Fig11_HTML.jpg |
0.460485 | 04ff7866ecac433c8daf61f3bdbfde00 | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Me$$\end{document}Me through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta \left( \eta \right)$$\end{document}θη. | PMC10183014 | 41598_2023_34783_Fig12_HTML.jpg |
0.471289 | dde5cf2faa3a4df3b598308e1bf6d8a2 | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Nr$$\end{document}Nr through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta \left( \eta \right)$$\end{document}θη. | PMC10183014 | 41598_2023_34783_Fig13_HTML.jpg |
0.522161 | 42e1f723f7374bae8ee0677345a74c07 | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi_{1} = \phi_{2} = \phi_{3}$$\end{document}ϕ1=ϕ2=ϕ3 through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta \left( \eta \right)$$\end{document}θη. | PMC10183014 | 41598_2023_34783_Fig14_HTML.jpg |
0.499498 | 54b1acb4563c4a3f8d64c79951d7fb48 | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_{T}$$\end{document}QT through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta \left( \eta \right)$$\end{document}θη. | PMC10183014 | 41598_2023_34783_Fig15_HTML.jpg |
0.464585 | 206e99be3c554618827f513a245269f4 | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q$$\end{document}Q through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta \left( \eta \right)$$\end{document}θη. | PMC10183014 | 41598_2023_34783_Fig16_HTML.jpg |
0.42025 | 5d9b0c524a4445888d5038aeb78f454d | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi_{1} = \phi_{2} = \phi_{3}$$\end{document}ϕ1=ϕ2=ϕ3 through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_{f} {\text{Re}}_{x}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}}$$\end{document}CfRex1/2. | PMC10183014 | 41598_2023_34783_Fig17_HTML.jpg |
0.462966 | d526d507cda8485397173cff9989bbd6 | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{P}} \;\& \;\phi_{1} = \phi_{2} = \phi_{3}$$\end{document}P&ϕ1=ϕ2=ϕ3 through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_{f} {\text{Re}}_{x}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}}$$\end{document}CfRex1/2. | PMC10183014 | 41598_2023_34783_Fig18_HTML.jpg |
0.420766 | aa0a15e6171142958bd2081cd3cbcd25 | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Nr\;\& \;\Pr$$\end{document}Nr&Pr through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Nu{\text{Re}}_{x}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}}$$\end{document}NuRex1/2. | PMC10183014 | 41598_2023_34783_Fig19_HTML.jpg |
0.540369 | 5bf890cf23424358a2ae8a08a8cac87b | Curve of the flow model. | PMC10183014 | 41598_2023_34783_Fig1_HTML.jpg |
0.509145 | 2aa04cd55f864428b79da59c86b93556 | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Ha\;\& \;\phi_{1} = \phi_{2} = \phi_{3}$$\end{document}Ha&ϕ1=ϕ2=ϕ3 through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Nu{\text{Re}}_{x}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}}$$\end{document}NuRex1/2. | PMC10183014 | 41598_2023_34783_Fig20_HTML.jpg |
0.47439 | 8d21043808d542db91f4845ddb9ae6f9 | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Ha$$\end{document}Ha through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f^{\prime}\left( \eta \right)$$\end{document}f′η. | PMC10183014 | 41598_2023_34783_Fig2_HTML.jpg |
0.513706 | 00f5315b650542d68ad8213038765578 | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi_{1} = \phi_{2} = \phi_{3}$$\end{document}ϕ1=ϕ2=ϕ3 through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f^{\prime}\left( \eta \right)$$\end{document}f′η. | PMC10183014 | 41598_2023_34783_Fig3_HTML.jpg |
0.436361 | 02ca46e725314857807f0132d43b01f8 | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s_{2}$$\end{document}s2 through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f^{\prime}\left( \eta \right)$$\end{document}f′η. | PMC10183014 | 41598_2023_34783_Fig4_HTML.jpg |
0.463049 | 1966d4c87e0a4453b9cd16779dc75f5b | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f^{\prime}\left( \eta \right)$$\end{document}f′η. | PMC10183014 | 41598_2023_34783_Fig5_HTML.jpg |
0.443305 | 109f2dc2943e49acac763d78a7616330 | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Me$$\end{document}Me through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f^{\prime}\left( \eta \right)$$\end{document}f′η. | PMC10183014 | 41598_2023_34783_Fig6_HTML.jpg |
0.511677 | 2b21b6e7eaf74a328a9b1405d2cb81ff | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P$$\end{document}P through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f^{\prime}\left( \eta \right)$$\end{document}f′η. | PMC10183014 | 41598_2023_34783_Fig7_HTML.jpg |
0.469682 | d21d5879ccb8485e9d161092d0f882bd | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{Re}}$$\end{document}Re through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f^{\prime}\left( \eta \right)$$\end{document}f′η. | PMC10183014 | 41598_2023_34783_Fig8_HTML.jpg |
0.426209 | 1679db651198428fae325033700dc719 | Curve of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Me$$\end{document}Me through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g\left( \eta \right)$$\end{document}gη. | PMC10183014 | 41598_2023_34783_Fig9_HTML.jpg |
0.386948 | dbcf0bfbcfd24d52b1d9f25ab2d31282 | Emergence times of males that were exposed to the experimental light treatment (blue, N = 31) and males that were exposed to the control treatment (red, N = 15). The vertical dashed line indicates the start of the light treatment. The numbers at the top show for each day the number of females that started a clutch. Boxplots show median, 1st and 3rd quartile and 1.5 times the inter-quartile range. Dots show the raw data. | PMC10183205 | arad006_fig1.jpg |
0.450461 | 27cdc9042a2a4b13af8888d1b76296ac | The proportion of males that sired at least one extra-pair young in the control treatment (N = 15), the experimental treatment (N = 31), and the untreated group (N = 92). Dots and error bars show model-predicted values and 95% confidence intervals. | PMC10183205 | arad006_fig2.jpg |
0.429424 | 4a30659c06324d2db56fb499fbbda295 | Relation between the likelihood of siring at least one extra-pair young and the strength of the manipulation within the light-treated group (N = 31). The treatment score reflects the number of mornings on which a male was exposed to the light treatment and the number of females in the local neighborhood that were fertile on those days (see methods). (a) Fertile females in the first-order neighborhood, (b) fertile females in the first- and second-order neighborhood combined. Lines and shaded areas show model predictions and 95% confidence intervals. Dots at the top and bottom show the treatments score of males that did and did not sire at least one extra-pair young, respectively. | PMC10183205 | arad006_fig3.jpg |
0.495428 | 17c4541a2d1c4eb0b81c56e68014a940 | The relationship between emergence time (individual averages over the experimental period) and the probability of siring at least one extra-pair young for males in the experimental treatment (blue, N = 31) and in the control treatment (red, N = 15). Lines and shaded areas show model-predicted values and 95% confidence intervals. Dots at the top and bottom show the average emergence time of males that did and did not sire at least one extra-pair young, respectively. | PMC10183205 | arad006_fig4.jpg |
0.479205 | adcc14d567cf4b22a873d53cfbbb1c27 | Flowchart of the literature search | PMC10183428 | 167_2022_7212_Fig1_HTML.jpg |
0.371823 | b9757b85e1b74899b5405e63ff3281cb |
Grayscale ultrasound showing intraplacental hypoechoic images in the lower and anterior uterine segment compatible with placental lacunae in placenta previa accrete
| PMC10183858 | 10-1055-s-0041-1736371-ifebrasgostatement-1.jpg |
0.419046 | 242f3a301f304b67a4976b7bbbb390b6 |
Non-conservative surgical treatment of placenta accreta. Final aspects of uteri removed with placentas in situ in cesarean-hysterectomy
| PMC10183858 | 10-1055-s-0041-1736371-ifebrasgostatement-10.jpg |
0.421525 | 40ded0d73205496f80b341b69ff907e4 |
Bladder mobilization and dissection (Pelosi bypass) performed in the areas of vesicouterine adhesions in the surgical treatment of placenta accreta. Green arrows - after performing low selective ligations of vascular neoformations, mobilization and blunt dissection of the vesicouterine space are performed
| PMC10183858 | 10-1055-s-0041-1736371-ifebrasgostatement-11.jpg |
0.454625 | edda544106af407aacc6c825ad794636 |
Uterine compression sutures of Cho (adapted by Palacios-Jaraquemada),
20
Dedes and Ziogas
27
and segment transverse sutures in multiples of eight. Source: Illustration by Felipe Lage Starling (authorized), 2021.
| PMC10183858 | 10-1055-s-0041-1736371-ifebrasgostatement-12.jpg |
0.463659 | 18bb3d0c32bb43f9b077ff5bb58fe377 |
Cho's uterine compression suture, uterine balloon tamponade and uterine sandwich technique. Source: Illustration by Felipe Lage Starling (authorized), 2021.
| PMC10183858 | 10-1055-s-0041-1736371-ifebrasgostatement-13.jpg |
0.437429 | 10593783e8334c2f90c36b6c839b9878 |
Placenta previa percreta implanted in the iliac vessels. Green arrows - placental tissue and vascular neoformations implanted over the right iliac vessels
| PMC10183858 | 10-1055-s-0041-1736371-ifebrasgostatement-14.jpg |
0.395196 | 282a95f1108d45a7ba28d2e3954df8d2 |
Cross-section of the uterovesical surface performed transvaginally with B-mode associated with color Doppler showing bridging vessels between placenta and bladder
| PMC10183858 | 10-1055-s-0041-1736371-ifebrasgostatement-2.jpg |
0.433091 | c0ec2a51d55b42bbb27128d18529958c |
Three-dimensional rendered view of intraplacental hypervascularity associated with power Doppler
| PMC10183858 | 10-1055-s-0041-1736371-ifebrasgostatement-3.jpg |
0.400275 | ee791e0ebacd452ea126c97531f06d9b |
Multiplanar 3D representation of the placenta and uterovesical interface associated with power Doppler, showing uterovesical and intraplacental hypervascularity
| PMC10183858 | 10-1055-s-0041-1736371-ifebrasgostatement-4.jpg |
0.527714 | 1add2b36f5774e96bf4c49d9011fa3c8 |
Sagittal diagram of the division of S1 and S2 genital vascular regions. Source: Illustration by Felipe Lage Starling (authorized), 2021.
| PMC10183858 | 10-1055-s-0041-1736371-ifebrasgostatement-5.jpg |
0.48591 | 6b7784d072944225be368888ce436456 |
Vesicouterine, vesicoplacental and colpouterine anastomotic systems. Source: Illustration by Felipe Lage Starling (authorized), 2021. *Vesicouterine and vesicoplacental anastomotic systems. ** Colpouterine anastomotic system
| PMC10183858 | 10-1055-s-0041-1736371-ifebrasgostatement-6.jpg |
0.417771 | a2f1dce14e3d4d2fb7395d800859b2d5 |
Low selective ligations of vascular neoformations present in the uterine segment in the surgical management of placenta accreta. Exposure of vascular neoformations present in the vesicouterine reflection by means of traction with Allis forceps. Double ligations made using a suture passer
| PMC10183858 | 10-1055-s-0041-1736371-ifebrasgostatement-7.jpg |
0.397611 | 53ef3a6fbf4c403ca9aa4556962bf2e1 |
Excision with uteroplacental segmental exeresis followed by restoration of the uterine anatomy in conservative surgical treatment of placenta accreta. Upper left – excision of the uterine segment affected by invasion of placental cotyledons and ovular membranes. Other images – final aspects of the restoration of the uterine anatomy with hysterorrhaphy in the fundus or uterine body and suture between the uterine body and the residual lower uterine segment
| PMC10183858 | 10-1055-s-0041-1736371-ifebrasgostatement-8.jpg |
0.425941 | e41b50cee56f4017820cca1faaa8ba31 |
Steps of the cesarean-hysterectomy technique in the surgical management of placenta accreta
| PMC10183858 | 10-1055-s-0041-1736371-ifebrasgostatement-9.jpg |
0.428591 | 4cd7b04408564680b8698bfc0e177606 | Overview of the workflow and clustering approach. (A) Schematic
representation of the workflow. The three stages ((i) the generation
of a virtual library, (ii) novelty and shape analysis, and (iii) compound
selection from the library) are represented with different colors.
(B–D) Exemplary comparison of three different settings in the
clustering step where increasing weight is given to PMI values NPR1
and NPR2. In each panel, a set of compounds (i.e., the virtual library
from which compounds 6a–f were selected)
was clustered into four clusters using MDS/PCA/k-means
as described in the text. The top graph shows chemical space visualized
by t-SNE from the calculated fingerprints, whereas
the bottom graph shows the corresponding PMI plot. (B) PCA and MDS
received equal weight; NPR1 and NPR2 did not receive extra weight.
(C) PCA received twice the weight of MDS; NPR1 and NPR2 received 100-fold
weight in PCA. Fingerprint diversity is largely conserved while clustering
becomes more apparent in the PMI plot. (D) PCA received 100-fold weight;
NPR1 and NPR2 received 100-fold weight. Clustering is effectively
dominated by PMI values. | PMC10184156 | ml2c00503_0001.jpg |
0.432056 | e56635ad76594a9982c12a7e882d24dd | Design and synthesis of the cyclopropane library. (A) Building
blocks 3 and 5 were decorated using the
workflow by derivatization of the synthetic handles (dashed circles),
resulting in a library of complementary cis- and trans-cyclopropane fragments with varying “northern”
and “southern” exit vectors. (B) Synthetic routes toward
the cyclopropane library: (a) ethyl vinyl ether, Rh2(OAc)2, Et2O, rt, 3.5 h, 31% (2a) and 40%
(2b); (b) aq NaOH, EtOH, 80 °C, 1 h, 77–89%;
(c) [i] HATU, DIPEA, R1R2NH, rt, overnight,
6–55%; [ii] for 6b and 6e: MeOH,
H2O, 100 °C, MW irradiation, 8 h, 26–43% over
two steps; (d) vinyl bromide, Rh2(OAc)2, DCE,
rt, 3 days; (e) [i] aq NaOH, EtOH, 80 °C, 1 h; [ii] SOCl2, rt, overnight; [iii] Me2NH·HCl, DIPEA, THF,
rt, 2.5 h, 12% from 1; (f) KOH, 18-crown-6, R3OH, rt, 2 h, 3–62%. Except for 6b, all final
compounds are racemates. | PMC10184156 | ml2c00503_0002.jpg |
0.491477 | 6f41de050c484e5397c9af48cb159ef6 | Analysis of the physicochemical
properties of the cyclopropane
library. (A) Calculated physicochemical values, expressed as minimum,
mean, and maximum values. Cells are colored according to their adherence
to the Ro3 (right-most column, supplemented with a heavy-atom count
(HAC) limit of ≤20): higher (orange), equal to (yellow), or
lower (green) than the Ro3 limits. (B) Radar plots depicting the distribution
of physicochemical properties of the cyclopropane library and the
Ro3 limits (in an identical representation as in our recent 3D fragment
libraries review14). Axes were scaled as
follows:14 cLogP, [−1.9; 4.5]; HAC,
[7; 27]; HBA, [0; 8]; HBD, [0; 4]; MW, [95; 455 Da]; nRot, [0; 10];
TPSA, [10; 140 Å2]. Mean values are depicted by the
blue line. Ranges, defined by the minimum and maximum values, are
defined by the gray areas. (C) Solubility/aggregation analysis of
selected fragments by nephelometry. | PMC10184156 | ml2c00503_0003.jpg |
0.426694 | a63c27ef14b84edbacea72d13a2e2655 | Shape analysis of the cyclopropane library using the commonly
used
PMI plots20 (e.g., Chawner et al.46). (A) PMI plot of the cyclopropane library.
Open data points represent PMI values of individual conformations
(ΔEmax ≤ 5 kcal·mol–1, RMSD > 0.1). Average PMI values per compound
are
plotted as solid data points. (B, C) Global minimum conformations
of opposing diastereomers 6a and 6d, made
with MOE software (v2019.0104). (D) PMI-based comparison of the current
library to synthetic14,16 and commercial52 3D/Fsp3-rich fragment libraries. | PMC10184156 | ml2c00503_0004.jpg |
0.572284 | bc34475345cd4c5ca895afd17200177f | Schematic of horizontal and vertical rotator cuff force couples. (A) The vertical force couple is described as the superiorly directed force of the deltoid (D) balanced by the compressive action of the supraspinatus (SSp) and inferiorly directed forces of the inferior subscapularis (SSc) and teres minor (TMin). (B) The horizontal force couple is described as the balance between the internally rotating force of the SSc and externally rotating forces of the infraspinatus (IS) and TMin. | PMC10184227 | 10.1177_23259671231154452-fig1.jpg |
0.55568 | d62670d05bd04abcaadafc211a70f766 | Schematic of the anterior rotator cable attachment. The anterior rotator cable attaches in 2 limbs around the superior portion of the bicipital groove. Tear patterns extending from the posterosuperior cuff to the superior portion of the subscapularis can be assumed to involve this attachment and may be associated with more profound loss of function. | PMC10184227 | 10.1177_23259671231154452-fig2.jpg |
0.509159 | 5bb9ac88a2ae4e62809558a3e4726d8c | Imaging findings that correlate with pseudoparalysis. (A) Collin et al
19
developed a classification for massive tear patterns (types A-E) based on the involvement of 5 portions of the rotator cuff: inferior subscapularis (SSc [inf]), superior subscapularis (SSc [sup]), supraspinatus (SSp), infraspinatus (IS), and teres minor (Tmin). These were correlated with the percentage of patients with pseudoparalysis (PP). Red and gray signify torn and intact portions of the cuff, respectively. (B) The Shoulder Abduction Moment index
9
is based on 2 circles. The green circle approximates the deltoid undersurface; it is drawn by being centered at the center of rotation and just touching the undersurface or sclerotic line of the acromion. The red circle approximates the rotator cuff moment arm; it is drawn centered on the humeral head and matching the articular surface. | PMC10184227 | 10.1177_23259671231154452-fig3.jpg |
0.486585 | dee015c6e9344a81872ddd34660b6566 | Timeline showing the introduction of surgical techniques for massive rotator cuff tear. LDT, latissimus dorsi transfer; LT, lesser tuberosity; PMaj, pectoralis major; PMin, pectoralis minor; PS, posterosuperior; RSA, reverse shoulder arthroplasty; SCR, superior capsule reconstruction; TMaj, teres major. | PMC10184227 | 10.1177_23259671231154452-fig4.jpg |
0.451131 | 3f31dc9274c94060a2010f7dc5f51715 | Conceptual approach of current treatment options. ACR, anterior capsule reconstruction; GH, glenohumeral; GT, greater tuberosity; LD, latissimus dorsi; LT, lesser tuberosity; LTT, lower trapezius tendon; PMaj, pectoralis major; PMin, pectoralis minor; SCR, superior capsule reconstruction. | PMC10184227 | 10.1177_23259671231154452-fig5.jpg |
0.468346 | 505fbf8525994424843b9f41c843ad84 | Description of population and sample of the present study. | PMC10185381 | rbmt-21-01-e2023809-g01.jpg |
0.551068 | f4032f8ee71244038d4ccc5bd9b17184 | Frequency (n) of perceived pain after the work shift among police
officers of Countryside Specialized Police Battalion (Batalhão de
Policiamento Especializado do Interior), in Ceará, Brazil
(2020). | PMC10185381 | rbmt-21-01-e2023809-g02.jpg |
0.429662 | 3f60d67e369349819c7f1d07ce518e67 | Sleep disorder-related nucleus and brain regions in children with ASD. | PMC10185750 | fpsyt-14-1079683-g001.jpg |
0.418582 | 2da0760852e94b74ab7cf9b8abe37663 | Schematic representation of the genetic and neural mechanisms of sleep disorders in children with ASD. | PMC10185750 | fpsyt-14-1079683-g002.jpg |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.