dedup-isc-ft-v107-score
float64
0.3
1
uid
stringlengths
32
32
text
stringlengths
1
17.9k
paper_id
stringlengths
8
11
original_image_filename
stringlengths
7
69
0.475546
425c8190dedf4f13bed496d57839fa5d
Local concentrations of TGF-β1 and IGF-1 appear determinant for the osteogenic potential of primary ESsT-Cs. Cells were treated with increasing concentrations (0, 1, or 5 ng/mL) of recombinant (r) TGF-β1 in the absence (0 ng/mL) or presence (1 ng/mL) of recombinant (r) IGF-1 for 24 h before total RNA was extracted. Please note that primary ESsT-Cs produce and secrete endogenous levels of TGF-β1 and IGF-1 to the average value of 1 ng/mL for each of the two growth factors (cf. Figure 3 and Figure 5). Therefore, the total (t) concentration of each of the two growth factors, summing the endogenous and recombinant concentrations, is indicated. Expression of (a) COL1A1, SPP1, RUNX2, and ALPL and (b) DLX5, IBSP, BGLAP2, and PHEX mRNAs was analyzed by qRT-PCR. Values normalized to GAPDH are expressed relative to the values of untreated cells. Means ± SD from six independent experiments performed with primary ESsT-Cs from six different donors, and significant differences to untreated cells unless otherwise indicated, *** p < 0.001, ** p < 0.01, * p < 0.05 are shown.
PMC10179638
ijms-24-08239-g007.jpg
0.385786
b6c74a7f9a924b78bf41b61769a2e451
Local concentrations of TGF-β1 and IGF-1 appear determinant for the mineralization potential of primary ESsT-Cs. (a) Cells were treated with increasing concentrations (0, 1, or 5 ng/mL) of recombinant (r) TGF-β1 in the absence (0 ng/mL) or presence (1 ng/mL) of recombinant (r) IGF-1 for 4 days and subsequently grown under osteogenic culture conditions for 10 additional days before extracellular matrix mineralization was assessed by alizarin red stain. For clarity, the total (t) concentrations of each of the two growth factors, summing the endogenous and recombinant concentrations, are also indicated. Representative bright field and phase contrast images are shown. Scale bar, 500 µm. (b) Mineral deposition capacity was quantified by measuring the stained area using the Fiji distribution of ImageJ. Values normalized to DNA content are expressed relative to the values of untreated cells. Means ± SD from three independent experiments performed with primary ESsT-Cs from three different donors and significant differences to untreated cells, unless otherwise indicated, *** p < 0.001 are shown.
PMC10179638
ijms-24-08239-g008.jpg
0.44861
6a5b9606d97043b6bd559353f5a9f086
The multidomain structure of MMP-9. The propeptide is shown green, the active site is shown yellow, the three fibronectin repeats are shown blue, the metal binding site is shown orange, the catalytic zinc ion is shown grey, the OG domain is shown brown, and the PEX domain is shown red. Panels (A–C): structural models from 3 different studies. Panel (D): a cartoon model. (Adapted from Jennifer Vandooren et al., 2013 [1], Copyright 2013 Taylor & Francis and reproduced with permission.)
PMC10180081
molecules-28-03705-g001.jpg
0.459218
07a9d6f23cbc468a8dfb4ba5bfa2c4b5
The mechanisms of MMP-9 inhibition in thyroid tumor cells.
PMC10180081
molecules-28-03705-g002.jpg
0.460427
93a40ce395ad46de93673ebe7ae547a4
Binding of representative HS IgG, Fab, and F(ab′)2 fragment preparations to M. luteus DNA.The binding of IgG (circle), Fab (triangle), and F(ab′)2 (square) fragments from two representative HS plasmas (H14 and H19) to M. luteus DNA was examined by ELISA. Each point shown is the average OD450 of two wells, with error bars indicating SD. Serial 2-fold dilutions of IgG and fragments were tested, with initial concentrations as follows. For plasma H14 (A): IgG and F(ab′)2, 20 μg/ml; Fab, 12.5 μg/ml. For plasma H19 (B): IgG and F(ab′)2, 80 μg/ml; Fab, 50 μg/ml.
PMC10180169
nihms-1895130-f0001.jpg
0.465617
9af82c4ee48b4a789abee8bf24f4c9e5
Binding of HS IgG, Fab, and F(ab′)2 fragment preparations to M. luteus DNA and controls.The binding of IgG (circle), Fab (triangle), and F(ab′)2 (square) fragments from five HS plasmas (H13, H14, H16, H19, and H20) and preisolated, pooled IgG (Pool) to M. luteus DNA, EBV Ag, and tetanus toxoid was examined by ELISA. ND, data not determined for a particular control. Each point shown is the average OD450 of two wells, with error bars indicating SD. Serial 2-fold dilutions of IgG and fragments were tested, with initial concentrations as follows. For plasmas H13, H14, H16, H20, and Pool: IgG and F(ab′)2, 20 μg/ml; Fab, 12.5 μg/ml. For plasma H19: IgG and F(ab′)2, 80 μg/ml; Fab, 50 μg/ml.
PMC10180169
nihms-1895130-f0002.jpg
0.433216
e4170024975849f8a92fc83c46614e1a
Binding of representative SLE IgG, Fab, and F(ab′)2 fragment preparations to M. luteus and CT DNA.The binding of IgG (circle), Fab (triangle), and F(ab′)2 (square) fragments from two representative SLE plasmas (32 and 35) to M. luteus DNA (A and B) and to CT DNA (C and D) was examined by ELISA. Each point is the average OD450 of two wells, with error bars indicating SD. Serial 2-fold dilutions of IgG and fragments were tested, with initial concentrations as follows. For plasma 32 (A and C): IgG and F(ab′)2, 100 μg/ml, Fab, 62.5 μg/ml. For plasma 35 (B and D): IgG and F(ab′)2, 80 μg/ml, Fab, 50 μg/ml.
PMC10180169
nihms-1895130-f0003.jpg
0.469513
e5c98ddaa1cd47e0843b92f9097203d5
Binding of SLE IgG, Fab, and F(ab′)2 fragment preparations to M. luteus DNA, CT DNA, and controls.The binding of IgG (circle), Fab (triangle), and F(ab′)2 (square) preparations from five SLE plasmas (31, 32, and 35–37) to M. luteus DNA, CT DNA, EBV Ag, and tetanus toxoid was examined by ELISA. Each point is the average OD450 of two wells, with error bars indicating SD. Serial 2-fold dilutions of IgG and fragments were tested, with initial concentrations as follows. For plasmas 31 and 36: IgG and F(ab′)2, 120 μg/ml; Fab, 75 μg/ml. For plasma 32: IgG and F(ab′)2, 100 μg/ml; Fab, 62.5 μg/ml. For plasmas 35 and 37: IgG and F(ab′)2, 80 μg/ml; Fab, 50 μg/ml.
PMC10180169
nihms-1895130-f0004.jpg
0.528634
b206c31d67c2473fa84e9f69d0f158a7
The unit cell in auxetic configuration (a), the non-auxetic configuration (b), the connection between the auxetic unit cell with its neighbors (c), and the connection between the conventional unit cell with its neighbors (d).
PMC10180246
materials-16-03473-g001.jpg
0.503108
e825a4bc404e46708e29489321b9de7b
Lateral (a) and top (b) views of the unit cell and its key dimensions.
PMC10180246
materials-16-03473-g002.jpg
0.526651
eb630a3442784523bf727d8733fd7cf8
Auxetic (a) and conventional (b) lateral and top (plan) schematic views of the unit cells in different configurations.
PMC10180246
materials-16-03473-g003.jpg
0.552248
4a7646986c6144fb8c42b6456474c56e
Simple solution to accommodate general boundaries through external nodes.
PMC10180246
materials-16-03473-g004.jpg
0.43594
607b0f2a9b7d42bf9794f5c79828aa77
Three-dimensional (a) and top (b) views of a shell created from the proposed metamaterial cell simply using Δzn=20sinyn10.
PMC10180246
materials-16-03473-g005.jpg
0.480263
0074fceb5d6b4cb8a691cb54d9698310
Different sections of a shell created from the proposed metamaterial cell using Δzn=10sinxn10sinyn10, where (a) is a slice perpendicular to the x-axis, (b) is a top (plan) view of the previous slice from the z-axis, and (c) represents the whole domain.
PMC10180246
materials-16-03473-g006.jpg
0.442235
baf26b9811014ba99b965ff5827143b2
Typical numerical results for the auxetic (top, a–d), and non-auxetic (bottom, e–h) configurations. In both configurations, an increasing incremental vertical displacement load is applied—from unloaded (left) to fully loaded (right).
PMC10180246
materials-16-03473-g007.jpg
0.406703
77bf59c9033943869d87290693cf7d30
Range of mechanical properties obtained from the numerical models, considering different geometries, where (a,b) represent the magnitude (size) of these geometrical variables against the equivalent Young’s modulus Ez and transverse Poisson’s ratio νt, respectively, and (c) displays the relationship between Young’s modulus and Poisson’s ratio in the simulations.
PMC10180246
materials-16-03473-g008.jpg
0.388658
0e157fa0e1fa478db2e1b4a760c8c8be
The ML model predictions of longitudinal Young’s modulus Ez (a) and transverse Poisson’s ratio νt (b), using RF as the regressor. Blue represents the training set, and orange represents the test set. Ground-truth values (from simulations) are on the horizontal axes, while predicted values are on the vertical axes (perfect prediction lies on the bisectrix). A high accuracy is achieved in the test set in terms of the coefficient of determination R2.
PMC10180246
materials-16-03473-g009.jpg
0.483818
e9c442ed7d9b40698beecdee953eb063
Schematic illustration of graphite structure.
PMC10180389
materials-16-03601-g001.jpg
0.436916
59f9004d71f540dabf3ca013fd20b542
Lignocellulosic decomposition temperature according to TGA analysis.
PMC10180389
materials-16-03601-g002.jpg
0.43786
6d7cfbbe05c34516b3bc6ee862214ba4
Principal component analysis (PCA) of (a) phenolic compounds and (b) carotenoids in pepper samples. Hierarchical clustering analysis (HCA) allowed identification of clusters.
PMC10180469
molecules-28-03830-g001.jpg
0.417622
167b912c0b3548b8a9efa689ee8472c8
Principal component analysis (PCA) for (a) aminoacids, (b) organic acids for pepper samples. Clusters identification performed by HCA.
PMC10180469
molecules-28-03830-g002.jpg
0.432953
c80413910c22459db8d52e17cb328a39
Principal component analysis (PCA) for (a) fatty acids and (b) phytosterols for pepper samples. Clusters identification performed by HCA.
PMC10180469
molecules-28-03830-g003.jpg
0.475403
5383dd9c419c427885f639e3eab4f632
Heat map of 32 metabolites accumulated in sweet pepper (C. annuum L.). The lower bars indicate the sample classes (control, T2, T3, T4, T5, T6, T7, T8, T9). The columns represent stress-induced (SA and H2O2/EC), and the rows refer to distinct metabolites. The values of the metabolite’s concentration have depicted with an encoded-color matrix from the dark/light in every genotype, which has been log2- changed and mean-centered.
PMC10180469
molecules-28-03830-g004.jpg
0.506477
512c2ff0213c4bb896b0670eea9b12b0
Graphic of the metabolome subsequent the metabolite pathway plotting of the impacted metabolites recognized after result stress-induced in sweet pepper (C. annuum L.). A color coded matrix indicates concentration values of the metabolic pathway and result of each metabolite, which has been log2- changed and mean-centered. (Color figure online). The investigation was achieved using the MetaboAnalyst software. 5.0.
PMC10180469
molecules-28-03830-g005.jpg
0.390092
2b5e3b5a5ed54f9b8be0830360100375
Schematic view of a two-layered piezoelectric nanobeam.
PMC10180470
materials-16-03485-g001.jpg
0.405774
170fa434b1b14d2680e8ae9975d9a0de
The schematic of the distribution of grid points on the nanobeam.
PMC10180470
materials-16-03485-g002.jpg
0.438528
822cb2440d08432f9203eb54e5f888e9
Variation of frequency ratio of a two-layered nanobeam against h/L for various FG index numbers. (a) C-C and (b) C-F boundary conditions.
PMC10180470
materials-16-03485-g003.jpg
0.445798
04a56bc692b54a77ad91794c407f881c
Variation of fundamental vibration frequency of two-layered nanobeams against h/L for (a) C-C, (b) C-F, (c) C-S, and (d) SS boundary conditions and three modulus.
PMC10180470
materials-16-03485-g004.jpg
0.440131
02516d41fc0b41efb5cf9416ca5fe8e1
Variation of fundamental vibration frequency of two-layered nanobeams against hd/h for various n and (a) C-C and (b) C-F boundary conditions.
PMC10180470
materials-16-03485-g005.jpg
0.480577
a572eaeac4744b26a18b7c90e27f5b97
Variation of fundamental vibration frequency of two-layered nanobeams against ξ for (a) C-C, (b) C-F, (c) C-S, and (d) SS boundary conditions.
PMC10180470
materials-16-03485-g006a.jpg
0.430187
441b7ae3ddd04d3581e15bb123d750b9
Variation of fundamental vibration frequency of two-layered nanobeams against k/L for (a) C-C, (b) C-F, (c) C-S, and (d) SS boundary conditions.
PMC10180470
materials-16-03485-g007.jpg
0.413151
701390086fe84ad692cb4dbb26d28ef7
Variation of fundamental vibration frequency of two-layered nanobeams obtained via differential nonlocal against k/L for (a) C-C and (b) C-F boundary conditions.
PMC10180470
materials-16-03485-g008.jpg
0.448999
628b52315a2041cda8e62e5a60cf55e7
Variation of fundamental vibration frequency of two-layered nanobeams against μ31 for (a) C-C, (b) C-F, (c) C-S, and (d) SS boundary conditions.
PMC10180470
materials-16-03485-g009a.jpg
0.410828
9da0ef79d9b54d5f939c3f24aba4e98c
Displacement FRF for different beam types and (a) C-C and (b) C-F boundary conditions.
PMC10180470
materials-16-03485-g010.jpg
0.426143
b307c8f0585c43339eb1522a7e6503d2
Displacement FRF for different values of h/L and (a) C-C and (b) C-F boundary conditions.
PMC10180470
materials-16-03485-g011.jpg
0.441681
b6567dcfcf2542a194a43a776ad0d21b
Voltage FRF for different values of h/L and (a) C-C and (b) C-F boundary conditions.
PMC10180470
materials-16-03485-g012.jpg
0.469023
ed785d1c48154dc7ba1286a0ad5ca9ae
Displacement FRF for different values of κ/L and (a) C-C and (b) C-F boundary conditions.
PMC10180470
materials-16-03485-g013.jpg
0.467431
92d9b332683f4c918b6d238530280a88
Voltage FRF for different values of κ/L and (a) C-C and (b) C-F boundary conditions.
PMC10180470
materials-16-03485-g014.jpg
0.45515
8f59ed83d1924d299b6a94659949188e
Displacement FRF for different values ξ of h/L and (a) C-C and (b) C-F boundary conditions.
PMC10180470
materials-16-03485-g015.jpg
0.485645
3a55384e568d4a5ca8851af036399180
Voltage FRF for different values ξ of h/L and (a) C-C and (b) C-F boundary conditions.
PMC10180470
materials-16-03485-g016.jpg
0.573303
dacc62cbace343bd9265811b8bc6ba16
Structural formula of PHB.
PMC10181107
polymers-15-02042-g001.jpg
0.458642
9e4a37fc7c68413997368f758031b5c9
The mechanism of biodegradation: (1) surface, (2) bulk.
PMC10181107
polymers-15-02042-g002.jpg
0.495746
2dfa35df739b4f55945196ed905b99e5
The scheme of the single-capillary laboratory unit for electrospinning [31].
PMC10181107
polymers-15-02042-g003.jpg
0.507305
268c63c7f5ce49f1a1a9c23e24210e67
SEM images of the materials based on PHB obtained by different methods: (a) electrospinning, (b) pressing.
PMC10181107
polymers-15-02042-g004.jpg
0.36394
e9add2a04151412cbacfcd8b6529872b
Microscopy of the original material and the material after placement in the soil (magnification 200): (a) fiber, (b) film.
PMC10181107
polymers-15-02042-g005.jpg
0.410891
b3773dbd94e74eefb96a19aa8e4b4c3b
Biodegradation of fibrous material from PHB.
PMC10181107
polymers-15-02042-g006.jpg
0.458883
a869ed32b6ed47c3934c017344e77fe0
Changes in the structure and properties of materials: (a) stress–strain curves of fibrous material before and after the soil; (b) stress–strain curves of film before and after the soil; (c) the rate of the mass of the fibrous material based on PHB lost during biodegradation in the soil; (d) DSC curves of the material before and after the soil.
PMC10181107
polymers-15-02042-g007.jpg
0.438032
62554cc487ac414ab43f05c68ed799fb
The FTIR spectra: (a) fiber, (b) film.
PMC10181107
polymers-15-02042-g008.jpg
0.433904
97bc89996ac541f6a924018cb78dcb29
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{3}$$\end{document}s3 through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\left( \eta \right)$$\end{document}gη.
PMC10183014
41598_2023_34783_Fig10_HTML.jpg
0.494085
5c4413608d2a4a43922ed7ef4029604a
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Pr$$\end{document}Pr through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \left( \eta \right)$$\end{document}θη.
PMC10183014
41598_2023_34783_Fig11_HTML.jpg
0.460485
04ff7866ecac433c8daf61f3bdbfde00
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Me$$\end{document}Me through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \left( \eta \right)$$\end{document}θη.
PMC10183014
41598_2023_34783_Fig12_HTML.jpg
0.471289
dde5cf2faa3a4df3b598308e1bf6d8a2
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Nr$$\end{document}Nr through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \left( \eta \right)$$\end{document}θη.
PMC10183014
41598_2023_34783_Fig13_HTML.jpg
0.522161
42e1f723f7374bae8ee0677345a74c07
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi_{1} = \phi_{2} = \phi_{3}$$\end{document}ϕ1=ϕ2=ϕ3 through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \left( \eta \right)$$\end{document}θη.
PMC10183014
41598_2023_34783_Fig14_HTML.jpg
0.499498
54b1acb4563c4a3f8d64c79951d7fb48
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{T}$$\end{document}QT through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \left( \eta \right)$$\end{document}θη.
PMC10183014
41598_2023_34783_Fig15_HTML.jpg
0.464585
206e99be3c554618827f513a245269f4
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}Q through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \left( \eta \right)$$\end{document}θη.
PMC10183014
41598_2023_34783_Fig16_HTML.jpg
0.42025
5d9b0c524a4445888d5038aeb78f454d
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi_{1} = \phi_{2} = \phi_{3}$$\end{document}ϕ1=ϕ2=ϕ3 through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{f} {\text{Re}}_{x}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}}$$\end{document}CfRex1/2.
PMC10183014
41598_2023_34783_Fig17_HTML.jpg
0.462966
d526d507cda8485397173cff9989bbd6
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{P}} \;\& \;\phi_{1} = \phi_{2} = \phi_{3}$$\end{document}P&ϕ1=ϕ2=ϕ3 through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{f} {\text{Re}}_{x}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}}$$\end{document}CfRex1/2.
PMC10183014
41598_2023_34783_Fig18_HTML.jpg
0.420766
aa0a15e6171142958bd2081cd3cbcd25
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Nr\;\& \;\Pr$$\end{document}Nr&Pr through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Nu{\text{Re}}_{x}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}}$$\end{document}NuRex1/2.
PMC10183014
41598_2023_34783_Fig19_HTML.jpg
0.540369
5bf890cf23424358a2ae8a08a8cac87b
Curve of the flow model.
PMC10183014
41598_2023_34783_Fig1_HTML.jpg
0.509145
2aa04cd55f864428b79da59c86b93556
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha\;\& \;\phi_{1} = \phi_{2} = \phi_{3}$$\end{document}Ha&ϕ1=ϕ2=ϕ3 through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Nu{\text{Re}}_{x}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}}$$\end{document}NuRex1/2.
PMC10183014
41598_2023_34783_Fig20_HTML.jpg
0.47439
8d21043808d542db91f4845ddb9ae6f9
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha$$\end{document}Ha through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{\prime}\left( \eta \right)$$\end{document}f′η.
PMC10183014
41598_2023_34783_Fig2_HTML.jpg
0.513706
00f5315b650542d68ad8213038765578
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi_{1} = \phi_{2} = \phi_{3}$$\end{document}ϕ1=ϕ2=ϕ3 through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{\prime}\left( \eta \right)$$\end{document}f′η.
PMC10183014
41598_2023_34783_Fig3_HTML.jpg
0.436361
02ca46e725314857807f0132d43b01f8
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{2}$$\end{document}s2 through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{\prime}\left( \eta \right)$$\end{document}f′η.
PMC10183014
41598_2023_34783_Fig4_HTML.jpg
0.463049
1966d4c87e0a4453b9cd16779dc75f5b
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}β through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{\prime}\left( \eta \right)$$\end{document}f′η.
PMC10183014
41598_2023_34783_Fig5_HTML.jpg
0.443305
109f2dc2943e49acac763d78a7616330
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Me$$\end{document}Me through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{\prime}\left( \eta \right)$$\end{document}f′η.
PMC10183014
41598_2023_34783_Fig6_HTML.jpg
0.511677
2b21b6e7eaf74a328a9b1405d2cb81ff
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document}P through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{\prime}\left( \eta \right)$$\end{document}f′η.
PMC10183014
41598_2023_34783_Fig7_HTML.jpg
0.469682
d21d5879ccb8485e9d161092d0f882bd
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Re}}$$\end{document}Re through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{\prime}\left( \eta \right)$$\end{document}f′η.
PMC10183014
41598_2023_34783_Fig8_HTML.jpg
0.426209
1679db651198428fae325033700dc719
Curve of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Me$$\end{document}Me through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\left( \eta \right)$$\end{document}gη.
PMC10183014
41598_2023_34783_Fig9_HTML.jpg
0.386948
dbcf0bfbcfd24d52b1d9f25ab2d31282
Emergence times of males that were exposed to the experimental light treatment (blue, N = 31) and males that were exposed to the control treatment (red, N = 15). The vertical dashed line indicates the start of the light treatment. The numbers at the top show for each day the number of females that started a clutch. Boxplots show median, 1st and 3rd quartile and 1.5 times the inter-quartile range. Dots show the raw data.
PMC10183205
arad006_fig1.jpg
0.450461
27cdc9042a2a4b13af8888d1b76296ac
The proportion of males that sired at least one extra-pair young in the control treatment (N = 15), the experimental treatment (N = 31), and the untreated group (N = 92). Dots and error bars show model-predicted values and 95% confidence intervals.
PMC10183205
arad006_fig2.jpg
0.429424
4a30659c06324d2db56fb499fbbda295
Relation between the likelihood of siring at least one extra-pair young and the strength of the manipulation within the light-treated group (N = 31). The treatment score reflects the number of mornings on which a male was exposed to the light treatment and the number of females in the local neighborhood that were fertile on those days (see methods). (a) Fertile females in the first-order neighborhood, (b) fertile females in the first- and second-order neighborhood combined. Lines and shaded areas show model predictions and 95% confidence intervals. Dots at the top and bottom show the treatments score of males that did and did not sire at least one extra-pair young, respectively.
PMC10183205
arad006_fig3.jpg
0.495428
17c4541a2d1c4eb0b81c56e68014a940
The relationship between emergence time (individual averages over the experimental period) and the probability of siring at least one extra-pair young for males in the experimental treatment (blue, N = 31) and in the control treatment (red, N = 15). Lines and shaded areas show model-predicted values and 95% confidence intervals. Dots at the top and bottom show the average emergence time of males that did and did not sire at least one extra-pair young, respectively.
PMC10183205
arad006_fig4.jpg
0.479205
adcc14d567cf4b22a873d53cfbbb1c27
Flowchart of the literature search
PMC10183428
167_2022_7212_Fig1_HTML.jpg
0.371823
b9757b85e1b74899b5405e63ff3281cb
Grayscale ultrasound showing intraplacental hypoechoic images in the lower and anterior uterine segment compatible with placental lacunae in placenta previa accrete
PMC10183858
10-1055-s-0041-1736371-ifebrasgostatement-1.jpg
0.419046
242f3a301f304b67a4976b7bbbb390b6
Non-conservative surgical treatment of placenta accreta. Final aspects of uteri removed with placentas in situ in cesarean-hysterectomy
PMC10183858
10-1055-s-0041-1736371-ifebrasgostatement-10.jpg
0.421525
40ded0d73205496f80b341b69ff907e4
Bladder mobilization and dissection (Pelosi bypass) performed in the areas of vesicouterine adhesions in the surgical treatment of placenta accreta. Green arrows - after performing low selective ligations of vascular neoformations, mobilization and blunt dissection of the vesicouterine space are performed
PMC10183858
10-1055-s-0041-1736371-ifebrasgostatement-11.jpg
0.454625
edda544106af407aacc6c825ad794636
Uterine compression sutures of Cho (adapted by Palacios-Jaraquemada), 20 Dedes and Ziogas 27 and segment transverse sutures in multiples of eight. Source: Illustration by Felipe Lage Starling (authorized), 2021.
PMC10183858
10-1055-s-0041-1736371-ifebrasgostatement-12.jpg
0.463659
18bb3d0c32bb43f9b077ff5bb58fe377
Cho's uterine compression suture, uterine balloon tamponade and uterine sandwich technique. Source: Illustration by Felipe Lage Starling (authorized), 2021.
PMC10183858
10-1055-s-0041-1736371-ifebrasgostatement-13.jpg
0.437429
10593783e8334c2f90c36b6c839b9878
Placenta previa percreta implanted in the iliac vessels. Green arrows - placental tissue and vascular neoformations implanted over the right iliac vessels
PMC10183858
10-1055-s-0041-1736371-ifebrasgostatement-14.jpg
0.395196
282a95f1108d45a7ba28d2e3954df8d2
Cross-section of the uterovesical surface performed transvaginally with B-mode associated with color Doppler showing bridging vessels between placenta and bladder
PMC10183858
10-1055-s-0041-1736371-ifebrasgostatement-2.jpg
0.433091
c0ec2a51d55b42bbb27128d18529958c
Three-dimensional rendered view of intraplacental hypervascularity associated with power Doppler
PMC10183858
10-1055-s-0041-1736371-ifebrasgostatement-3.jpg
0.400275
ee791e0ebacd452ea126c97531f06d9b
Multiplanar 3D representation of the placenta and uterovesical interface associated with power Doppler, showing uterovesical and intraplacental hypervascularity
PMC10183858
10-1055-s-0041-1736371-ifebrasgostatement-4.jpg
0.527714
1add2b36f5774e96bf4c49d9011fa3c8
Sagittal diagram of the division of S1 and S2 genital vascular regions. Source: Illustration by Felipe Lage Starling (authorized), 2021.
PMC10183858
10-1055-s-0041-1736371-ifebrasgostatement-5.jpg
0.48591
6b7784d072944225be368888ce436456
Vesicouterine, vesicoplacental and colpouterine anastomotic systems. Source: Illustration by Felipe Lage Starling (authorized), 2021. *Vesicouterine and vesicoplacental anastomotic systems. ** Colpouterine anastomotic system
PMC10183858
10-1055-s-0041-1736371-ifebrasgostatement-6.jpg
0.417771
a2f1dce14e3d4d2fb7395d800859b2d5
Low selective ligations of vascular neoformations present in the uterine segment in the surgical management of placenta accreta. Exposure of vascular neoformations present in the vesicouterine reflection by means of traction with Allis forceps. Double ligations made using a suture passer
PMC10183858
10-1055-s-0041-1736371-ifebrasgostatement-7.jpg
0.397611
53ef3a6fbf4c403ca9aa4556962bf2e1
Excision with uteroplacental segmental exeresis followed by restoration of the uterine anatomy in conservative surgical treatment of placenta accreta. Upper left – excision of the uterine segment affected by invasion of placental cotyledons and ovular membranes. Other images – final aspects of the restoration of the uterine anatomy with hysterorrhaphy in the fundus or uterine body and suture between the uterine body and the residual lower uterine segment
PMC10183858
10-1055-s-0041-1736371-ifebrasgostatement-8.jpg
0.425941
e41b50cee56f4017820cca1faaa8ba31
Steps of the cesarean-hysterectomy technique in the surgical management of placenta accreta
PMC10183858
10-1055-s-0041-1736371-ifebrasgostatement-9.jpg
0.428591
4cd7b04408564680b8698bfc0e177606
Overview of the workflow and clustering approach. (A) Schematic representation of the workflow. The three stages ((i) the generation of a virtual library, (ii) novelty and shape analysis, and (iii) compound selection from the library) are represented with different colors. (B–D) Exemplary comparison of three different settings in the clustering step where increasing weight is given to PMI values NPR1 and NPR2. In each panel, a set of compounds (i.e., the virtual library from which compounds 6a–f were selected) was clustered into four clusters using MDS/PCA/k-means as described in the text. The top graph shows chemical space visualized by t-SNE from the calculated fingerprints, whereas the bottom graph shows the corresponding PMI plot. (B) PCA and MDS received equal weight; NPR1 and NPR2 did not receive extra weight. (C) PCA received twice the weight of MDS; NPR1 and NPR2 received 100-fold weight in PCA. Fingerprint diversity is largely conserved while clustering becomes more apparent in the PMI plot. (D) PCA received 100-fold weight; NPR1 and NPR2 received 100-fold weight. Clustering is effectively dominated by PMI values.
PMC10184156
ml2c00503_0001.jpg
0.432056
e56635ad76594a9982c12a7e882d24dd
Design and synthesis of the cyclopropane library. (A) Building blocks 3 and 5 were decorated using the workflow by derivatization of the synthetic handles (dashed circles), resulting in a library of complementary cis- and trans-cyclopropane fragments with varying “northern” and “southern” exit vectors. (B) Synthetic routes toward the cyclopropane library: (a) ethyl vinyl ether, Rh2(OAc)2, Et2O, rt, 3.5 h, 31% (2a) and 40% (2b); (b) aq NaOH, EtOH, 80 °C, 1 h, 77–89%; (c) [i] HATU, DIPEA, R1R2NH, rt, overnight, 6–55%; [ii] for 6b and 6e: MeOH, H2O, 100 °C, MW irradiation, 8 h, 26–43% over two steps; (d) vinyl bromide, Rh2(OAc)2, DCE, rt, 3 days; (e) [i] aq NaOH, EtOH, 80 °C, 1 h; [ii] SOCl2, rt, overnight; [iii] Me2NH·HCl, DIPEA, THF, rt, 2.5 h, 12% from 1; (f) KOH, 18-crown-6, R3OH, rt, 2 h, 3–62%. Except for 6b, all final compounds are racemates.
PMC10184156
ml2c00503_0002.jpg
0.491477
6f41de050c484e5397c9af48cb159ef6
Analysis of the physicochemical properties of the cyclopropane library. (A) Calculated physicochemical values, expressed as minimum, mean, and maximum values. Cells are colored according to their adherence to the Ro3 (right-most column, supplemented with a heavy-atom count (HAC) limit of ≤20): higher (orange), equal to (yellow), or lower (green) than the Ro3 limits. (B) Radar plots depicting the distribution of physicochemical properties of the cyclopropane library and the Ro3 limits (in an identical representation as in our recent 3D fragment libraries review14). Axes were scaled as follows:14 cLogP, [−1.9; 4.5]; HAC, [7; 27]; HBA, [0; 8]; HBD, [0; 4]; MW, [95; 455 Da]; nRot, [0; 10]; TPSA, [10; 140 Å2]. Mean values are depicted by the blue line. Ranges, defined by the minimum and maximum values, are defined by the gray areas. (C) Solubility/aggregation analysis of selected fragments by nephelometry.
PMC10184156
ml2c00503_0003.jpg
0.426694
a63c27ef14b84edbacea72d13a2e2655
Shape analysis of the cyclopropane library using the commonly used PMI plots20 (e.g., Chawner et al.46). (A) PMI plot of the cyclopropane library. Open data points represent PMI values of individual conformations (ΔEmax ≤ 5 kcal·mol–1, RMSD > 0.1). Average PMI values per compound are plotted as solid data points. (B, C) Global minimum conformations of opposing diastereomers 6a and 6d, made with MOE software (v2019.0104). (D) PMI-based comparison of the current library to synthetic14,16 and commercial52 3D/Fsp3-rich fragment libraries.
PMC10184156
ml2c00503_0004.jpg
0.572284
bc34475345cd4c5ca895afd17200177f
Schematic of horizontal and vertical rotator cuff force couples. (A) The vertical force couple is described as the superiorly directed force of the deltoid (D) balanced by the compressive action of the supraspinatus (SSp) and inferiorly directed forces of the inferior subscapularis (SSc) and teres minor (TMin). (B) The horizontal force couple is described as the balance between the internally rotating force of the SSc and externally rotating forces of the infraspinatus (IS) and TMin.
PMC10184227
10.1177_23259671231154452-fig1.jpg
0.55568
d62670d05bd04abcaadafc211a70f766
Schematic of the anterior rotator cable attachment. The anterior rotator cable attaches in 2 limbs around the superior portion of the bicipital groove. Tear patterns extending from the posterosuperior cuff to the superior portion of the subscapularis can be assumed to involve this attachment and may be associated with more profound loss of function.
PMC10184227
10.1177_23259671231154452-fig2.jpg
0.509159
5bb9ac88a2ae4e62809558a3e4726d8c
Imaging findings that correlate with pseudoparalysis. (A) Collin et al 19 developed a classification for massive tear patterns (types A-E) based on the involvement of 5 portions of the rotator cuff: inferior subscapularis (SSc [inf]), superior subscapularis (SSc [sup]), supraspinatus (SSp), infraspinatus (IS), and teres minor (Tmin). These were correlated with the percentage of patients with pseudoparalysis (PP). Red and gray signify torn and intact portions of the cuff, respectively. (B) The Shoulder Abduction Moment index 9 is based on 2 circles. The green circle approximates the deltoid undersurface; it is drawn by being centered at the center of rotation and just touching the undersurface or sclerotic line of the acromion. The red circle approximates the rotator cuff moment arm; it is drawn centered on the humeral head and matching the articular surface.
PMC10184227
10.1177_23259671231154452-fig3.jpg
0.486585
dee015c6e9344a81872ddd34660b6566
Timeline showing the introduction of surgical techniques for massive rotator cuff tear. LDT, latissimus dorsi transfer; LT, lesser tuberosity; PMaj, pectoralis major; PMin, pectoralis minor; PS, posterosuperior; RSA, reverse shoulder arthroplasty; SCR, superior capsule reconstruction; TMaj, teres major.
PMC10184227
10.1177_23259671231154452-fig4.jpg
0.451131
3f31dc9274c94060a2010f7dc5f51715
Conceptual approach of current treatment options. ACR, anterior capsule reconstruction; GH, glenohumeral; GT, greater tuberosity; LD, latissimus dorsi; LT, lesser tuberosity; LTT, lower trapezius tendon; PMaj, pectoralis major; PMin, pectoralis minor; SCR, superior capsule reconstruction.
PMC10184227
10.1177_23259671231154452-fig5.jpg
0.468346
505fbf8525994424843b9f41c843ad84
Description of population and sample of the present study.
PMC10185381
rbmt-21-01-e2023809-g01.jpg
0.551068
f4032f8ee71244038d4ccc5bd9b17184
Frequency (n) of perceived pain after the work shift among police officers of Countryside Specialized Police Battalion (Batalhão de Policiamento Especializado do Interior), in Ceará, Brazil (2020).
PMC10185381
rbmt-21-01-e2023809-g02.jpg
0.429662
3f60d67e369349819c7f1d07ce518e67
Sleep disorder-related nucleus and brain regions in children with ASD.
PMC10185750
fpsyt-14-1079683-g001.jpg
0.418582
2da0760852e94b74ab7cf9b8abe37663
Schematic representation of the genetic and neural mechanisms of sleep disorders in children with ASD.
PMC10185750
fpsyt-14-1079683-g002.jpg