id
stringlengths 14
16
| text
stringlengths 36
2.73k
| source
stringlengths 49
117
|
---|---|---|
7732bf78ff52-2
|
parameter = self._get_referenced_parameter(ref)
while isinstance(parameter, Reference):
parameter = self._get_referenced_parameter(parameter)
return parameter
[docs] def get_referenced_schema(self, ref: Reference) -> Schema:
"""Get a schema (or nested reference) or err."""
ref_name = ref.ref.split("/")[-1]
schemas = self._schemas_strict
if ref_name not in schemas:
raise ValueError(f"No schema found for {ref_name}")
return schemas[ref_name]
def _get_root_referenced_schema(self, ref: Reference) -> Schema:
"""Get the root reference or err."""
schema = self.get_referenced_schema(ref)
while isinstance(schema, Reference):
schema = self.get_referenced_schema(schema)
return schema
def _get_referenced_request_body(
self, ref: Reference
) -> Optional[Union[Reference, RequestBody]]:
"""Get a request body (or nested reference) or err."""
ref_name = ref.ref.split("/")[-1]
request_bodies = self._request_bodies_strict
if ref_name not in request_bodies:
raise ValueError(f"No request body found for {ref_name}")
return request_bodies[ref_name]
def _get_root_referenced_request_body(
self, ref: Reference
) -> Optional[RequestBody]:
"""Get the root request Body or err."""
request_body = self._get_referenced_request_body(ref)
while isinstance(request_body, Reference):
request_body = self._get_referenced_request_body(request_body)
return request_body
@staticmethod
def _alert_unsupported_spec(obj: dict) -> None:
"""Alert if the spec is not supported."""
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/openapi_utils.html
|
7732bf78ff52-3
|
"""Alert if the spec is not supported."""
warning_message = (
" This may result in degraded performance."
+ " Convert your OpenAPI spec to 3.1.* spec"
+ " for better support."
)
swagger_version = obj.get("swagger")
openapi_version = obj.get("openapi")
if isinstance(openapi_version, str):
if openapi_version != "3.1.0":
logger.warning(
f"Attempting to load an OpenAPI {openapi_version}"
f" spec. {warning_message}"
)
else:
pass
elif isinstance(swagger_version, str):
logger.warning(
f"Attempting to load a Swagger {swagger_version}"
f" spec. {warning_message}"
)
else:
raise ValueError(
"Attempting to load an unsupported spec:"
f"\n\n{obj}\n{warning_message}"
)
[docs] @classmethod
def parse_obj(cls, obj: dict) -> "OpenAPISpec":
try:
cls._alert_unsupported_spec(obj)
return super().parse_obj(obj)
except ValidationError as e:
# We are handling possibly misconfigured specs and want to do a best-effort
# job to get a reasonable interface out of it.
new_obj = copy.deepcopy(obj)
for error in e.errors():
keys = error["loc"]
item = new_obj
for key in keys[:-1]:
item = item[key]
item.pop(keys[-1], None)
return cls.parse_obj(new_obj)
[docs] @classmethod
def from_spec_dict(cls, spec_dict: dict) -> "OpenAPISpec":
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/openapi_utils.html
|
7732bf78ff52-4
|
def from_spec_dict(cls, spec_dict: dict) -> "OpenAPISpec":
"""Get an OpenAPI spec from a dict."""
return cls.parse_obj(spec_dict)
[docs] @classmethod
def from_text(cls, text: str) -> "OpenAPISpec":
"""Get an OpenAPI spec from a text."""
try:
spec_dict = json.loads(text)
except json.JSONDecodeError:
spec_dict = yaml.safe_load(text)
return cls.from_spec_dict(spec_dict)
[docs] @classmethod
def from_file(cls, path: Union[str, Path]) -> "OpenAPISpec":
"""Get an OpenAPI spec from a file path."""
path_ = path if isinstance(path, Path) else Path(path)
if not path_.exists():
raise FileNotFoundError(f"{path} does not exist")
with path_.open("r") as f:
return cls.from_text(f.read())
[docs] @classmethod
def from_url(cls, url: str) -> "OpenAPISpec":
"""Get an OpenAPI spec from a URL."""
response = requests.get(url)
return cls.from_text(response.text)
@property
def base_url(self) -> str:
"""Get the base url."""
return self.servers[0].url
[docs] def get_methods_for_path(self, path: str) -> List[str]:
"""Return a list of valid methods for the specified path."""
path_item = self._get_path_strict(path)
results = []
for method in HTTPVerb:
operation = getattr(path_item, method.value, None)
if isinstance(operation, Operation):
results.append(method.value)
return results
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/openapi_utils.html
|
7732bf78ff52-5
|
if isinstance(operation, Operation):
results.append(method.value)
return results
[docs] def get_operation(self, path: str, method: str) -> Operation:
"""Get the operation object for a given path and HTTP method."""
path_item = self._get_path_strict(path)
operation_obj = getattr(path_item, method, None)
if not isinstance(operation_obj, Operation):
raise ValueError(f"No {method} method found for {path}")
return operation_obj
[docs] def get_parameters_for_operation(self, operation: Operation) -> List[Parameter]:
"""Get the components for a given operation."""
parameters = []
if operation.parameters:
for parameter in operation.parameters:
if isinstance(parameter, Reference):
parameter = self._get_root_referenced_parameter(parameter)
parameters.append(parameter)
return parameters
[docs] def get_request_body_for_operation(
self, operation: Operation
) -> Optional[RequestBody]:
"""Get the request body for a given operation."""
request_body = operation.requestBody
if isinstance(request_body, Reference):
request_body = self._get_root_referenced_request_body(request_body)
return request_body
[docs] @staticmethod
def get_cleaned_operation_id(operation: Operation, path: str, method: str) -> str:
"""Get a cleaned operation id from an operation id."""
operation_id = operation.operationId
if operation_id is None:
# Replace all punctuation of any kind with underscore
path = re.sub(r"[^a-zA-Z0-9]", "_", path.lstrip("/"))
operation_id = f"{path}_{method}"
return operation_id.replace("-", "_").replace(".", "_").replace("/", "_")
By Harrison Chase
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/openapi_utils.html
|
7732bf78ff52-6
|
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/openapi_utils.html
|
f69de0bf9734-0
|
Source code for langchain.tools.openapi.utils.api_models
"""Pydantic models for parsing an OpenAPI spec."""
import logging
from enum import Enum
from typing import Any, Dict, List, Optional, Sequence, Tuple, Type, Union
from openapi_schema_pydantic import MediaType, Parameter, Reference, RequestBody, Schema
from pydantic import BaseModel, Field
from langchain.tools.openapi.utils.openapi_utils import HTTPVerb, OpenAPISpec
logger = logging.getLogger(__name__)
PRIMITIVE_TYPES = {
"integer": int,
"number": float,
"string": str,
"boolean": bool,
"array": List,
"object": Dict,
"null": None,
}
# See https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.1.0.md#parameterIn
# for more info.
class APIPropertyLocation(Enum):
"""The location of the property."""
QUERY = "query"
PATH = "path"
HEADER = "header"
COOKIE = "cookie" # Not yet supported
@classmethod
def from_str(cls, location: str) -> "APIPropertyLocation":
"""Parse an APIPropertyLocation."""
try:
return cls(location)
except ValueError:
raise ValueError(
f"Invalid APIPropertyLocation. Valid values are {cls.__members__}"
)
_SUPPORTED_MEDIA_TYPES = ("application/json",)
SUPPORTED_LOCATIONS = {
APIPropertyLocation.QUERY,
APIPropertyLocation.PATH,
}
INVALID_LOCATION_TEMPL = (
'Unsupported APIPropertyLocation "{location}"'
" for parameter {name}. "
+ f"Valid values are {[loc.value for loc in SUPPORTED_LOCATIONS]}"
)
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
f69de0bf9734-1
|
+ f"Valid values are {[loc.value for loc in SUPPORTED_LOCATIONS]}"
)
SCHEMA_TYPE = Union[str, Type, tuple, None, Enum]
class APIPropertyBase(BaseModel):
"""Base model for an API property."""
# The name of the parameter is required and is case sensitive.
# If "in" is "path", the "name" field must correspond to a template expression
# within the path field in the Paths Object.
# If "in" is "header" and the "name" field is "Accept", "Content-Type",
# or "Authorization", the parameter definition is ignored.
# For all other cases, the "name" corresponds to the parameter
# name used by the "in" property.
name: str = Field(alias="name")
"""The name of the property."""
required: bool = Field(alias="required")
"""Whether the property is required."""
type: SCHEMA_TYPE = Field(alias="type")
"""The type of the property.
Either a primitive type, a component/parameter type,
or an array or 'object' (dict) of the above."""
default: Optional[Any] = Field(alias="default", default=None)
"""The default value of the property."""
description: Optional[str] = Field(alias="description", default=None)
"""The description of the property."""
class APIProperty(APIPropertyBase):
"""A model for a property in the query, path, header, or cookie params."""
location: APIPropertyLocation = Field(alias="location")
"""The path/how it's being passed to the endpoint."""
@staticmethod
def _cast_schema_list_type(schema: Schema) -> Optional[Union[str, Tuple[str, ...]]]:
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
f69de0bf9734-2
|
type_ = schema.type
if not isinstance(type_, list):
return type_
else:
return tuple(type_)
@staticmethod
def _get_schema_type_for_enum(parameter: Parameter, schema: Schema) -> Enum:
"""Get the schema type when the parameter is an enum."""
param_name = f"{parameter.name}Enum"
return Enum(param_name, {str(v): v for v in schema.enum})
@staticmethod
def _get_schema_type_for_array(
schema: Schema,
) -> Optional[Union[str, Tuple[str, ...]]]:
items = schema.items
if isinstance(items, Schema):
schema_type = APIProperty._cast_schema_list_type(items)
elif isinstance(items, Reference):
ref_name = items.ref.split("/")[-1]
schema_type = ref_name # TODO: Add ref definitions to make his valid
else:
raise ValueError(f"Unsupported array items: {items}")
if isinstance(schema_type, str):
# TODO: recurse
schema_type = (schema_type,)
return schema_type
@staticmethod
def _get_schema_type(parameter: Parameter, schema: Optional[Schema]) -> SCHEMA_TYPE:
if schema is None:
return None
schema_type: SCHEMA_TYPE = APIProperty._cast_schema_list_type(schema)
if schema_type == "array":
schema_type = APIProperty._get_schema_type_for_array(schema)
elif schema_type == "object":
# TODO: Resolve array and object types to components.
raise NotImplementedError("Objects not yet supported")
elif schema_type in PRIMITIVE_TYPES:
if schema.enum:
schema_type = APIProperty._get_schema_type_for_enum(parameter, schema)
else:
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
f69de0bf9734-3
|
schema_type = APIProperty._get_schema_type_for_enum(parameter, schema)
else:
# Directly use the primitive type
pass
else:
raise NotImplementedError(f"Unsupported type: {schema_type}")
return schema_type
@staticmethod
def _validate_location(location: APIPropertyLocation, name: str) -> None:
if location not in SUPPORTED_LOCATIONS:
raise NotImplementedError(
INVALID_LOCATION_TEMPL.format(location=location, name=name)
)
@staticmethod
def _validate_content(content: Optional[Dict[str, MediaType]]) -> None:
if content:
raise ValueError(
"API Properties with media content not supported. "
"Media content only supported within APIRequestBodyProperty's"
)
@staticmethod
def _get_schema(parameter: Parameter, spec: OpenAPISpec) -> Optional[Schema]:
schema = parameter.param_schema
if isinstance(schema, Reference):
schema = spec.get_referenced_schema(schema)
elif schema is None:
return None
elif not isinstance(schema, Schema):
raise ValueError(f"Error dereferencing schema: {schema}")
return schema
@staticmethod
def is_supported_location(location: str) -> bool:
"""Return whether the provided location is supported."""
try:
return APIPropertyLocation.from_str(location) in SUPPORTED_LOCATIONS
except ValueError:
return False
@classmethod
def from_parameter(cls, parameter: Parameter, spec: OpenAPISpec) -> "APIProperty":
"""Instantiate from an OpenAPI Parameter."""
location = APIPropertyLocation.from_str(parameter.param_in)
cls._validate_location(
location,
parameter.name,
)
cls._validate_content(parameter.content)
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
f69de0bf9734-4
|
location,
parameter.name,
)
cls._validate_content(parameter.content)
schema = cls._get_schema(parameter, spec)
schema_type = cls._get_schema_type(parameter, schema)
default_val = schema.default if schema is not None else None
return cls(
name=parameter.name,
location=location,
default=default_val,
description=parameter.description,
required=parameter.required,
type=schema_type,
)
class APIRequestBodyProperty(APIPropertyBase):
"""A model for a request body property."""
properties: List["APIRequestBodyProperty"] = Field(alias="properties")
"""The sub-properties of the property."""
# This is useful for handling nested property cycles.
# We can define separate types in that case.
references_used: List[str] = Field(alias="references_used")
"""The references used by the property."""
@classmethod
def _process_object_schema(
cls, schema: Schema, spec: OpenAPISpec, references_used: List[str]
) -> Tuple[Union[str, List[str], None], List["APIRequestBodyProperty"]]:
properties = []
required_props = schema.required or []
if schema.properties is None:
raise ValueError(
f"No properties found when processing object schema: {schema}"
)
for prop_name, prop_schema in schema.properties.items():
if isinstance(prop_schema, Reference):
ref_name = prop_schema.ref.split("/")[-1]
if ref_name not in references_used:
references_used.append(ref_name)
prop_schema = spec.get_referenced_schema(prop_schema)
else:
continue
properties.append(
cls.from_schema(
schema=prop_schema,
name=prop_name,
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
f69de0bf9734-5
|
cls.from_schema(
schema=prop_schema,
name=prop_name,
required=prop_name in required_props,
spec=spec,
references_used=references_used,
)
)
return schema.type, properties
@classmethod
def _process_array_schema(
cls, schema: Schema, name: str, spec: OpenAPISpec, references_used: List[str]
) -> str:
items = schema.items
if items is not None:
if isinstance(items, Reference):
ref_name = items.ref.split("/")[-1]
if ref_name not in references_used:
references_used.append(ref_name)
items = spec.get_referenced_schema(items)
else:
pass
return f"Array<{ref_name}>"
else:
pass
if isinstance(items, Schema):
array_type = cls.from_schema(
schema=items,
name=f"{name}Item",
required=True, # TODO: Add required
spec=spec,
references_used=references_used,
)
return f"Array<{array_type.type}>"
return "array"
@classmethod
def from_schema(
cls,
schema: Schema,
name: str,
required: bool,
spec: OpenAPISpec,
references_used: Optional[List[str]] = None,
) -> "APIRequestBodyProperty":
"""Recursively populate from an OpenAPI Schema."""
if references_used is None:
references_used = []
schema_type = schema.type
properties: List[APIRequestBodyProperty] = []
if schema_type == "object" and schema.properties:
schema_type, properties = cls._process_object_schema(
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
f69de0bf9734-6
|
schema_type, properties = cls._process_object_schema(
schema, spec, references_used
)
elif schema_type == "array":
schema_type = cls._process_array_schema(schema, name, spec, references_used)
elif schema_type in PRIMITIVE_TYPES:
# Use the primitive type directly
pass
elif schema_type is None:
# No typing specified/parsed. WIll map to 'any'
pass
else:
raise ValueError(f"Unsupported type: {schema_type}")
return cls(
name=name,
required=required,
type=schema_type,
default=schema.default,
description=schema.description,
properties=properties,
references_used=references_used,
)
class APIRequestBody(BaseModel):
"""A model for a request body."""
description: Optional[str] = Field(alias="description")
"""The description of the request body."""
properties: List[APIRequestBodyProperty] = Field(alias="properties")
# E.g., application/json - we only support JSON at the moment.
media_type: str = Field(alias="media_type")
"""The media type of the request body."""
@classmethod
def _process_supported_media_type(
cls,
media_type_obj: MediaType,
spec: OpenAPISpec,
) -> List[APIRequestBodyProperty]:
"""Process the media type of the request body."""
references_used = []
schema = media_type_obj.media_type_schema
if isinstance(schema, Reference):
references_used.append(schema.ref.split("/")[-1])
schema = spec.get_referenced_schema(schema)
if schema is None:
raise ValueError(
f"Could not resolve schema for media type: {media_type_obj}"
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
f69de0bf9734-7
|
f"Could not resolve schema for media type: {media_type_obj}"
)
api_request_body_properties = []
required_properties = schema.required or []
if schema.type == "object" and schema.properties:
for prop_name, prop_schema in schema.properties.items():
if isinstance(prop_schema, Reference):
prop_schema = spec.get_referenced_schema(prop_schema)
api_request_body_properties.append(
APIRequestBodyProperty.from_schema(
schema=prop_schema,
name=prop_name,
required=prop_name in required_properties,
spec=spec,
)
)
else:
api_request_body_properties.append(
APIRequestBodyProperty(
name="body",
required=True,
type=schema.type,
default=schema.default,
description=schema.description,
properties=[],
references_used=references_used,
)
)
return api_request_body_properties
@classmethod
def from_request_body(
cls, request_body: RequestBody, spec: OpenAPISpec
) -> "APIRequestBody":
"""Instantiate from an OpenAPI RequestBody."""
properties = []
for media_type, media_type_obj in request_body.content.items():
if media_type not in _SUPPORTED_MEDIA_TYPES:
continue
api_request_body_properties = cls._process_supported_media_type(
media_type_obj,
spec,
)
properties.extend(api_request_body_properties)
return cls(
description=request_body.description,
properties=properties,
media_type=media_type,
)
[docs]class APIOperation(BaseModel):
"""A model for a single API operation."""
operation_id: str = Field(alias="operation_id")
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
f69de0bf9734-8
|
operation_id: str = Field(alias="operation_id")
"""The unique identifier of the operation."""
description: Optional[str] = Field(alias="description")
"""The description of the operation."""
base_url: str = Field(alias="base_url")
"""The base URL of the operation."""
path: str = Field(alias="path")
"""The path of the operation."""
method: HTTPVerb = Field(alias="method")
"""The HTTP method of the operation."""
properties: Sequence[APIProperty] = Field(alias="properties")
# TODO: Add parse in used components to be able to specify what type of
# referenced object it is.
# """The properties of the operation."""
# components: Dict[str, BaseModel] = Field(alias="components")
request_body: Optional[APIRequestBody] = Field(alias="request_body")
"""The request body of the operation."""
@staticmethod
def _get_properties_from_parameters(
parameters: List[Parameter], spec: OpenAPISpec
) -> List[APIProperty]:
"""Get the properties of the operation."""
properties = []
for param in parameters:
if APIProperty.is_supported_location(param.param_in):
properties.append(APIProperty.from_parameter(param, spec))
elif param.required:
raise ValueError(
INVALID_LOCATION_TEMPL.format(
location=param.param_in, name=param.name
)
)
else:
logger.warning(
INVALID_LOCATION_TEMPL.format(
location=param.param_in, name=param.name
)
+ " Ignoring optional parameter"
)
pass
return properties
[docs] @classmethod
def from_openapi_url(
cls,
spec_url: str,
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
f69de0bf9734-9
|
def from_openapi_url(
cls,
spec_url: str,
path: str,
method: str,
) -> "APIOperation":
"""Create an APIOperation from an OpenAPI URL."""
spec = OpenAPISpec.from_url(spec_url)
return cls.from_openapi_spec(spec, path, method)
[docs] @classmethod
def from_openapi_spec(
cls,
spec: OpenAPISpec,
path: str,
method: str,
) -> "APIOperation":
"""Create an APIOperation from an OpenAPI spec."""
operation = spec.get_operation(path, method)
parameters = spec.get_parameters_for_operation(operation)
properties = cls._get_properties_from_parameters(parameters, spec)
operation_id = OpenAPISpec.get_cleaned_operation_id(operation, path, method)
request_body = spec.get_request_body_for_operation(operation)
api_request_body = (
APIRequestBody.from_request_body(request_body, spec)
if request_body is not None
else None
)
description = operation.description or operation.summary
if not description and spec.paths is not None:
description = spec.paths[path].description or spec.paths[path].summary
return cls(
operation_id=operation_id,
description=description,
base_url=spec.base_url,
path=path,
method=method,
properties=properties,
request_body=api_request_body,
)
[docs] @staticmethod
def ts_type_from_python(type_: SCHEMA_TYPE) -> str:
if type_ is None:
# TODO: Handle Nones better. These often result when
# parsing specs that are < v3
return "any"
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
f69de0bf9734-10
|
# parsing specs that are < v3
return "any"
elif isinstance(type_, str):
return {
"str": "string",
"integer": "number",
"float": "number",
"date-time": "string",
}.get(type_, type_)
elif isinstance(type_, tuple):
return f"Array<{APIOperation.ts_type_from_python(type_[0])}>"
elif isinstance(type_, type) and issubclass(type_, Enum):
return " | ".join([f"'{e.value}'" for e in type_])
else:
return str(type_)
def _format_nested_properties(
self, properties: List[APIRequestBodyProperty], indent: int = 2
) -> str:
"""Format nested properties."""
formatted_props = []
for prop in properties:
prop_name = prop.name
prop_type = self.ts_type_from_python(prop.type)
prop_required = "" if prop.required else "?"
prop_desc = f"/* {prop.description} */" if prop.description else ""
if prop.properties:
nested_props = self._format_nested_properties(
prop.properties, indent + 2
)
prop_type = f"{{\n{nested_props}\n{' ' * indent}}}"
formatted_props.append(
f"{prop_desc}\n{' ' * indent}{prop_name}{prop_required}: {prop_type},"
)
return "\n".join(formatted_props)
[docs] def to_typescript(self) -> str:
"""Get typescript string representation of the operation."""
operation_name = self.operation_id
params = []
if self.request_body:
formatted_request_body_props = self._format_nested_properties(
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
f69de0bf9734-11
|
if self.request_body:
formatted_request_body_props = self._format_nested_properties(
self.request_body.properties
)
params.append(formatted_request_body_props)
for prop in self.properties:
prop_name = prop.name
prop_type = self.ts_type_from_python(prop.type)
prop_required = "" if prop.required else "?"
prop_desc = f"/* {prop.description} */" if prop.description else ""
params.append(f"{prop_desc}\n\t\t{prop_name}{prop_required}: {prop_type},")
formatted_params = "\n".join(params).strip()
description_str = f"/* {self.description} */" if self.description else ""
typescript_definition = f"""
{description_str}
type {operation_name} = (_: {{
{formatted_params}
}}) => any;
"""
return typescript_definition.strip()
@property
def query_params(self) -> List[str]:
return [
property.name
for property in self.properties
if property.location == APIPropertyLocation.QUERY
]
@property
def path_params(self) -> List[str]:
return [
property.name
for property in self.properties
if property.location == APIPropertyLocation.PATH
]
@property
def body_params(self) -> List[str]:
if self.request_body is None:
return []
return [prop.name for prop in self.request_body.properties]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
981439a6b2ab-0
|
Source code for langchain.tools.wolfram_alpha.tool
"""Tool for the Wolfram Alpha API."""
from typing import Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
[docs]class WolframAlphaQueryRun(BaseTool):
"""Tool that adds the capability to query using the Wolfram Alpha SDK."""
name = "Wolfram Alpha"
description = (
"A wrapper around Wolfram Alpha. "
"Useful for when you need to answer questions about Math, "
"Science, Technology, Culture, Society and Everyday Life. "
"Input should be a search query."
)
api_wrapper: WolframAlphaAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the WolframAlpha tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the WolframAlpha tool asynchronously."""
raise NotImplementedError("WolframAlphaQueryRun does not support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/wolfram_alpha/tool.html
|
87575b4659ec-0
|
Source code for langchain.tools.metaphor_search.tool
"""Tool for the Metaphor search API."""
from typing import Dict, List, Optional, Union
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper
[docs]class MetaphorSearchResults(BaseTool):
"""Tool that has capability to query the Metaphor Search API and get back json."""
name = "Metaphor Search Results JSON"
description = (
"A wrapper around Metaphor Search. "
"Input should be a Metaphor-optimized query. "
"Output is a JSON array of the query results"
)
api_wrapper: MetaphorSearchAPIWrapper
def _run(
self,
query: str,
num_results: int,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> Union[List[Dict], str]:
"""Use the tool."""
try:
return self.api_wrapper.results(query, num_results)
except Exception as e:
return repr(e)
async def _arun(
self,
query: str,
num_results: int,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> Union[List[Dict], str]:
"""Use the tool asynchronously."""
try:
return await self.api_wrapper.results_async(query, num_results)
except Exception as e:
return repr(e)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/metaphor_search/tool.html
|
2ca6befb1ad0-0
|
Source code for langchain.tools.google_places.tool
"""Tool for the Google search API."""
from typing import Optional
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.google_places_api import GooglePlacesAPIWrapper
class GooglePlacesSchema(BaseModel):
query: str = Field(..., description="Query for goole maps")
[docs]class GooglePlacesTool(BaseTool):
"""Tool that adds the capability to query the Google places API."""
name = "Google Places"
description = (
"A wrapper around Google Places. "
"Useful for when you need to validate or "
"discover addressed from ambiguous text. "
"Input should be a search query."
)
api_wrapper: GooglePlacesAPIWrapper = Field(default_factory=GooglePlacesAPIWrapper)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("GooglePlacesRun does not support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/google_places/tool.html
|
5a6f50ed84da-0
|
Source code for langchain.tools.scenexplain.tool
"""Tool for the SceneXplain API."""
from typing import Optional
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.scenexplain import SceneXplainAPIWrapper
class SceneXplainInput(BaseModel):
"""Input for SceneXplain."""
query: str = Field(..., description="The link to the image to explain")
[docs]class SceneXplainTool(BaseTool):
"""Tool that adds the capability to explain images."""
name = "Image Explainer"
description = (
"An Image Captioning Tool: Use this tool to generate a detailed caption "
"for an image. The input can be an image file of any format, and "
"the output will be a text description that covers every detail of the image."
)
api_wrapper: SceneXplainAPIWrapper = Field(default_factory=SceneXplainAPIWrapper)
def _run(
self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the tool."""
return self.api_wrapper.run(query)
async def _arun(
self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("SceneXplainTool does not support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/scenexplain/tool.html
|
fbbd7958f8c4-0
|
Source code for langchain.tools.google_search.tool
"""Tool for the Google search API."""
from typing import Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.google_search import GoogleSearchAPIWrapper
[docs]class GoogleSearchRun(BaseTool):
"""Tool that adds the capability to query the Google search API."""
name = "Google Search"
description = (
"A wrapper around Google Search. "
"Useful for when you need to answer questions about current events. "
"Input should be a search query."
)
api_wrapper: GoogleSearchAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("GoogleSearchRun does not support async")
[docs]class GoogleSearchResults(BaseTool):
"""Tool that has capability to query the Google Search API and get back json."""
name = "Google Search Results JSON"
description = (
"A wrapper around Google Search. "
"Useful for when you need to answer questions about current events. "
"Input should be a search query. Output is a JSON array of the query results"
)
num_results: int = 4
api_wrapper: GoogleSearchAPIWrapper
def _run(
self,
|
https://python.langchain.com/en/latest/_modules/langchain/tools/google_search/tool.html
|
fbbd7958f8c4-1
|
api_wrapper: GoogleSearchAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return str(self.api_wrapper.results(query, self.num_results))
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("GoogleSearchRun does not support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/google_search/tool.html
|
42762cd8fdcf-0
|
Source code for langchain.tools.wikipedia.tool
"""Tool for the Wikipedia API."""
from typing import Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.wikipedia import WikipediaAPIWrapper
[docs]class WikipediaQueryRun(BaseTool):
"""Tool that adds the capability to search using the Wikipedia API."""
name = "Wikipedia"
description = (
"A wrapper around Wikipedia. "
"Useful for when you need to answer general questions about "
"people, places, companies, facts, historical events, or other subjects. "
"Input should be a search query."
)
api_wrapper: WikipediaAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Wikipedia tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Wikipedia tool asynchronously."""
raise NotImplementedError("WikipediaQueryRun does not support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/wikipedia/tool.html
|
ff3c640f25cd-0
|
Source code for langchain.tools.azure_cognitive_services.image_analysis
from __future__ import annotations
import logging
from typing import Any, Dict, Optional
from pydantic import root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.azure_cognitive_services.utils import detect_file_src_type
from langchain.tools.base import BaseTool
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class AzureCogsImageAnalysisTool(BaseTool):
"""Tool that queries the Azure Cognitive Services Image Analysis API.
In order to set this up, follow instructions at:
https://learn.microsoft.com/en-us/azure/cognitive-services/computer-vision/quickstarts-sdk/image-analysis-client-library-40
"""
azure_cogs_key: str = "" #: :meta private:
azure_cogs_endpoint: str = "" #: :meta private:
vision_service: Any #: :meta private:
analysis_options: Any #: :meta private:
name = "Azure Cognitive Services Image Analysis"
description = (
"A wrapper around Azure Cognitive Services Image Analysis. "
"Useful for when you need to analyze images. "
"Input should be a url to an image."
)
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and endpoint exists in environment."""
azure_cogs_key = get_from_dict_or_env(
values, "azure_cogs_key", "AZURE_COGS_KEY"
)
azure_cogs_endpoint = get_from_dict_or_env(
values, "azure_cogs_endpoint", "AZURE_COGS_ENDPOINT"
)
|
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
|
ff3c640f25cd-1
|
values, "azure_cogs_endpoint", "AZURE_COGS_ENDPOINT"
)
try:
import azure.ai.vision as sdk
values["vision_service"] = sdk.VisionServiceOptions(
endpoint=azure_cogs_endpoint, key=azure_cogs_key
)
values["analysis_options"] = sdk.ImageAnalysisOptions()
values["analysis_options"].features = (
sdk.ImageAnalysisFeature.CAPTION
| sdk.ImageAnalysisFeature.OBJECTS
| sdk.ImageAnalysisFeature.TAGS
| sdk.ImageAnalysisFeature.TEXT
)
except ImportError:
raise ImportError(
"azure-ai-vision is not installed. "
"Run `pip install azure-ai-vision` to install."
)
return values
def _image_analysis(self, image_path: str) -> Dict:
try:
import azure.ai.vision as sdk
except ImportError:
pass
image_src_type = detect_file_src_type(image_path)
if image_src_type == "local":
vision_source = sdk.VisionSource(filename=image_path)
elif image_src_type == "remote":
vision_source = sdk.VisionSource(url=image_path)
else:
raise ValueError(f"Invalid image path: {image_path}")
image_analyzer = sdk.ImageAnalyzer(
self.vision_service, vision_source, self.analysis_options
)
result = image_analyzer.analyze()
res_dict = {}
if result.reason == sdk.ImageAnalysisResultReason.ANALYZED:
if result.caption is not None:
res_dict["caption"] = result.caption.content
if result.objects is not None:
res_dict["objects"] = [obj.name for obj in result.objects]
if result.tags is not None:
|
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
|
ff3c640f25cd-2
|
if result.tags is not None:
res_dict["tags"] = [tag.name for tag in result.tags]
if result.text is not None:
res_dict["text"] = [line.content for line in result.text.lines]
else:
error_details = sdk.ImageAnalysisErrorDetails.from_result(result)
raise RuntimeError(
f"Image analysis failed.\n"
f"Reason: {error_details.reason}\n"
f"Details: {error_details.message}"
)
return res_dict
def _format_image_analysis_result(self, image_analysis_result: Dict) -> str:
formatted_result = []
if "caption" in image_analysis_result:
formatted_result.append("Caption: " + image_analysis_result["caption"])
if (
"objects" in image_analysis_result
and len(image_analysis_result["objects"]) > 0
):
formatted_result.append(
"Objects: " + ", ".join(image_analysis_result["objects"])
)
if "tags" in image_analysis_result and len(image_analysis_result["tags"]) > 0:
formatted_result.append("Tags: " + ", ".join(image_analysis_result["tags"]))
if "text" in image_analysis_result and len(image_analysis_result["text"]) > 0:
formatted_result.append("Text: " + ", ".join(image_analysis_result["text"]))
return "\n".join(formatted_result)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
try:
image_analysis_result = self._image_analysis(query)
if not image_analysis_result:
return "No good image analysis result was found"
|
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
|
ff3c640f25cd-3
|
if not image_analysis_result:
return "No good image analysis result was found"
return self._format_image_analysis_result(image_analysis_result)
except Exception as e:
raise RuntimeError(f"Error while running AzureCogsImageAnalysisTool: {e}")
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("AzureCogsImageAnalysisTool does not support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
|
84a933040928-0
|
Source code for langchain.tools.azure_cognitive_services.form_recognizer
from __future__ import annotations
import logging
from typing import Any, Dict, List, Optional
from pydantic import root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.azure_cognitive_services.utils import detect_file_src_type
from langchain.tools.base import BaseTool
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class AzureCogsFormRecognizerTool(BaseTool):
"""Tool that queries the Azure Cognitive Services Form Recognizer API.
In order to set this up, follow instructions at:
https://learn.microsoft.com/en-us/azure/applied-ai-services/form-recognizer/quickstarts/get-started-sdks-rest-api?view=form-recog-3.0.0&pivots=programming-language-python
"""
azure_cogs_key: str = "" #: :meta private:
azure_cogs_endpoint: str = "" #: :meta private:
doc_analysis_client: Any #: :meta private:
name = "Azure Cognitive Services Form Recognizer"
description = (
"A wrapper around Azure Cognitive Services Form Recognizer. "
"Useful for when you need to "
"extract text, tables, and key-value pairs from documents. "
"Input should be a url to a document."
)
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and endpoint exists in environment."""
azure_cogs_key = get_from_dict_or_env(
values, "azure_cogs_key", "AZURE_COGS_KEY"
)
|
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
|
84a933040928-1
|
values, "azure_cogs_key", "AZURE_COGS_KEY"
)
azure_cogs_endpoint = get_from_dict_or_env(
values, "azure_cogs_endpoint", "AZURE_COGS_ENDPOINT"
)
try:
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential
values["doc_analysis_client"] = DocumentAnalysisClient(
endpoint=azure_cogs_endpoint,
credential=AzureKeyCredential(azure_cogs_key),
)
except ImportError:
raise ImportError(
"azure-ai-formrecognizer is not installed. "
"Run `pip install azure-ai-formrecognizer` to install."
)
return values
def _parse_tables(self, tables: List[Any]) -> List[Any]:
result = []
for table in tables:
rc, cc = table.row_count, table.column_count
_table = [["" for _ in range(cc)] for _ in range(rc)]
for cell in table.cells:
_table[cell.row_index][cell.column_index] = cell.content
result.append(_table)
return result
def _parse_kv_pairs(self, kv_pairs: List[Any]) -> List[Any]:
result = []
for kv_pair in kv_pairs:
key = kv_pair.key.content if kv_pair.key else ""
value = kv_pair.value.content if kv_pair.value else ""
result.append((key, value))
return result
def _document_analysis(self, document_path: str) -> Dict:
document_src_type = detect_file_src_type(document_path)
if document_src_type == "local":
with open(document_path, "rb") as document:
|
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
|
84a933040928-2
|
with open(document_path, "rb") as document:
poller = self.doc_analysis_client.begin_analyze_document(
"prebuilt-document", document
)
elif document_src_type == "remote":
poller = self.doc_analysis_client.begin_analyze_document_from_url(
"prebuilt-document", document_path
)
else:
raise ValueError(f"Invalid document path: {document_path}")
result = poller.result()
res_dict = {}
if result.content is not None:
res_dict["content"] = result.content
if result.tables is not None:
res_dict["tables"] = self._parse_tables(result.tables)
if result.key_value_pairs is not None:
res_dict["key_value_pairs"] = self._parse_kv_pairs(result.key_value_pairs)
return res_dict
def _format_document_analysis_result(self, document_analysis_result: Dict) -> str:
formatted_result = []
if "content" in document_analysis_result:
formatted_result.append(
f"Content: {document_analysis_result['content']}".replace("\n", " ")
)
if "tables" in document_analysis_result:
for i, table in enumerate(document_analysis_result["tables"]):
formatted_result.append(f"Table {i}: {table}".replace("\n", " "))
if "key_value_pairs" in document_analysis_result:
for kv_pair in document_analysis_result["key_value_pairs"]:
formatted_result.append(
f"{kv_pair[0]}: {kv_pair[1]}".replace("\n", " ")
)
return "\n".join(formatted_result)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
|
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
|
84a933040928-3
|
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
try:
document_analysis_result = self._document_analysis(query)
if not document_analysis_result:
return "No good document analysis result was found"
return self._format_document_analysis_result(document_analysis_result)
except Exception as e:
raise RuntimeError(f"Error while running AzureCogsFormRecognizerTool: {e}")
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("AzureCogsFormRecognizerTool does not support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
|
254f2fc40507-0
|
Source code for langchain.tools.azure_cognitive_services.speech2text
from __future__ import annotations
import logging
import time
from typing import Any, Dict, Optional
from pydantic import root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.azure_cognitive_services.utils import (
detect_file_src_type,
download_audio_from_url,
)
from langchain.tools.base import BaseTool
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class AzureCogsSpeech2TextTool(BaseTool):
"""Tool that queries the Azure Cognitive Services Speech2Text API.
In order to set this up, follow instructions at:
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/get-started-speech-to-text?pivots=programming-language-python
"""
azure_cogs_key: str = "" #: :meta private:
azure_cogs_region: str = "" #: :meta private:
speech_language: str = "en-US" #: :meta private:
speech_config: Any #: :meta private:
name = "Azure Cognitive Services Speech2Text"
description = (
"A wrapper around Azure Cognitive Services Speech2Text. "
"Useful for when you need to transcribe audio to text. "
"Input should be a url to an audio file."
)
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and endpoint exists in environment."""
azure_cogs_key = get_from_dict_or_env(
values, "azure_cogs_key", "AZURE_COGS_KEY"
)
|
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/speech2text.html
|
254f2fc40507-1
|
values, "azure_cogs_key", "AZURE_COGS_KEY"
)
azure_cogs_region = get_from_dict_or_env(
values, "azure_cogs_region", "AZURE_COGS_REGION"
)
try:
import azure.cognitiveservices.speech as speechsdk
values["speech_config"] = speechsdk.SpeechConfig(
subscription=azure_cogs_key, region=azure_cogs_region
)
except ImportError:
raise ImportError(
"azure-cognitiveservices-speech is not installed. "
"Run `pip install azure-cognitiveservices-speech` to install."
)
return values
def _continuous_recognize(self, speech_recognizer: Any) -> str:
done = False
text = ""
def stop_cb(evt: Any) -> None:
"""callback that stop continuous recognition"""
speech_recognizer.stop_continuous_recognition_async()
nonlocal done
done = True
def retrieve_cb(evt: Any) -> None:
"""callback that retrieves the intermediate recognition results"""
nonlocal text
text += evt.result.text
# retrieve text on recognized events
speech_recognizer.recognized.connect(retrieve_cb)
# stop continuous recognition on either session stopped or canceled events
speech_recognizer.session_stopped.connect(stop_cb)
speech_recognizer.canceled.connect(stop_cb)
# Start continuous speech recognition
speech_recognizer.start_continuous_recognition_async()
while not done:
time.sleep(0.5)
return text
def _speech2text(self, audio_path: str, speech_language: str) -> str:
try:
import azure.cognitiveservices.speech as speechsdk
|
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/speech2text.html
|
254f2fc40507-2
|
try:
import azure.cognitiveservices.speech as speechsdk
except ImportError:
pass
audio_src_type = detect_file_src_type(audio_path)
if audio_src_type == "local":
audio_config = speechsdk.AudioConfig(filename=audio_path)
elif audio_src_type == "remote":
tmp_audio_path = download_audio_from_url(audio_path)
audio_config = speechsdk.AudioConfig(filename=tmp_audio_path)
else:
raise ValueError(f"Invalid audio path: {audio_path}")
self.speech_config.speech_recognition_language = speech_language
speech_recognizer = speechsdk.SpeechRecognizer(self.speech_config, audio_config)
return self._continuous_recognize(speech_recognizer)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
try:
text = self._speech2text(query, self.speech_language)
return text
except Exception as e:
raise RuntimeError(f"Error while running AzureCogsSpeech2TextTool: {e}")
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("AzureCogsSpeech2TextTool does not support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/speech2text.html
|
d9d9ec7b7859-0
|
Source code for langchain.tools.azure_cognitive_services.text2speech
from __future__ import annotations
import logging
import tempfile
from typing import Any, Dict, Optional
from pydantic import root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class AzureCogsText2SpeechTool(BaseTool):
"""Tool that queries the Azure Cognitive Services Text2Speech API.
In order to set this up, follow instructions at:
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/get-started-text-to-speech?pivots=programming-language-python
"""
azure_cogs_key: str = "" #: :meta private:
azure_cogs_region: str = "" #: :meta private:
speech_language: str = "en-US" #: :meta private:
speech_config: Any #: :meta private:
name = "Azure Cognitive Services Text2Speech"
description = (
"A wrapper around Azure Cognitive Services Text2Speech. "
"Useful for when you need to convert text to speech. "
)
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and endpoint exists in environment."""
azure_cogs_key = get_from_dict_or_env(
values, "azure_cogs_key", "AZURE_COGS_KEY"
)
azure_cogs_region = get_from_dict_or_env(
values, "azure_cogs_region", "AZURE_COGS_REGION"
)
try:
|
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/text2speech.html
|
d9d9ec7b7859-1
|
)
try:
import azure.cognitiveservices.speech as speechsdk
values["speech_config"] = speechsdk.SpeechConfig(
subscription=azure_cogs_key, region=azure_cogs_region
)
except ImportError:
raise ImportError(
"azure-cognitiveservices-speech is not installed. "
"Run `pip install azure-cognitiveservices-speech` to install."
)
return values
def _text2speech(self, text: str, speech_language: str) -> str:
try:
import azure.cognitiveservices.speech as speechsdk
except ImportError:
pass
self.speech_config.speech_synthesis_language = speech_language
speech_synthesizer = speechsdk.SpeechSynthesizer(
speech_config=self.speech_config, audio_config=None
)
result = speech_synthesizer.speak_text(text)
if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
stream = speechsdk.AudioDataStream(result)
with tempfile.NamedTemporaryFile(
mode="wb", suffix=".wav", delete=False
) as f:
stream.save_to_wav_file(f.name)
return f.name
elif result.reason == speechsdk.ResultReason.Canceled:
cancellation_details = result.cancellation_details
logger.debug(f"Speech synthesis canceled: {cancellation_details.reason}")
if cancellation_details.reason == speechsdk.CancellationReason.Error:
raise RuntimeError(
f"Speech synthesis error: {cancellation_details.error_details}"
)
return "Speech synthesis canceled."
else:
return f"Speech synthesis failed: {result.reason}"
def _run(
self,
query: str,
|
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/text2speech.html
|
d9d9ec7b7859-2
|
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
try:
speech_file = self._text2speech(query, self.speech_language)
return speech_file
except Exception as e:
raise RuntimeError(f"Error while running AzureCogsText2SpeechTool: {e}")
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("AzureCogsText2SpeechTool does not support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/text2speech.html
|
8201f21afebc-0
|
Source code for langchain.tools.youtube.search
"""
Adapted from https://github.com/venuv/langchain_yt_tools
CustomYTSearchTool searches YouTube videos related to a person
and returns a specified number of video URLs.
Input to this tool should be a comma separated list,
- the first part contains a person name
- and the second(optional) a number that is the
maximum number of video results to return
"""
import json
from typing import Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools import BaseTool
[docs]class YouTubeSearchTool(BaseTool):
name = "YouTubeSearch"
description = (
"search for youtube videos associated with a person. "
"the input to this tool should be a comma separated list, "
"the first part contains a person name and the second a "
"number that is the maximum number of video results "
"to return aka num_results. the second part is optional"
)
def _search(self, person: str, num_results: int) -> str:
from youtube_search import YoutubeSearch
results = YoutubeSearch(person, num_results).to_json()
data = json.loads(results)
url_suffix_list = [video["url_suffix"] for video in data["videos"]]
return str(url_suffix_list)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
values = query.split(",")
person = values[0]
if len(values) > 1:
num_results = int(values[1])
else:
|
https://python.langchain.com/en/latest/_modules/langchain/tools/youtube/search.html
|
8201f21afebc-1
|
num_results = int(values[1])
else:
num_results = 2
return self._search(person, num_results)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("YouTubeSearchTool does not yet support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/youtube/search.html
|
36c01f669f60-0
|
Source code for langchain.tools.shell.tool
import asyncio
import platform
import warnings
from typing import List, Optional, Type, Union
from pydantic import BaseModel, Field, root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.bash import BashProcess
class ShellInput(BaseModel):
"""Commands for the Bash Shell tool."""
commands: Union[str, List[str]] = Field(
...,
description="List of shell commands to run. Deserialized using json.loads",
)
"""List of shell commands to run."""
@root_validator
def _validate_commands(cls, values: dict) -> dict:
"""Validate commands."""
# TODO: Add real validators
commands = values.get("commands")
if not isinstance(commands, list):
values["commands"] = [commands]
# Warn that the bash tool is not safe
warnings.warn(
"The shell tool has no safeguards by default. Use at your own risk."
)
return values
def _get_default_bash_processs() -> BashProcess:
"""Get file path from string."""
return BashProcess(return_err_output=True)
def _get_platform() -> str:
"""Get platform."""
system = platform.system()
if system == "Darwin":
return "MacOS"
return system
[docs]class ShellTool(BaseTool):
"""Tool to run shell commands."""
process: BashProcess = Field(default_factory=_get_default_bash_processs)
"""Bash process to run commands."""
name: str = "terminal"
"""Name of tool."""
|
https://python.langchain.com/en/latest/_modules/langchain/tools/shell/tool.html
|
36c01f669f60-1
|
name: str = "terminal"
"""Name of tool."""
description: str = f"Run shell commands on this {_get_platform()} machine."
"""Description of tool."""
args_schema: Type[BaseModel] = ShellInput
"""Schema for input arguments."""
def _run(
self,
commands: Union[str, List[str]],
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Run commands and return final output."""
return self.process.run(commands)
async def _arun(
self,
commands: Union[str, List[str]],
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Run commands asynchronously and return final output."""
return await asyncio.get_event_loop().run_in_executor(
None, self.process.run, commands
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/shell/tool.html
|
ffe2e6ab562f-0
|
Source code for langchain.tools.human.tool
"""Tool for asking human input."""
from typing import Callable, Optional
from pydantic import Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
def _print_func(text: str) -> None:
print("\n")
print(text)
[docs]class HumanInputRun(BaseTool):
"""Tool that adds the capability to ask user for input."""
name = "Human"
description = (
"You can ask a human for guidance when you think you "
"got stuck or you are not sure what to do next. "
"The input should be a question for the human."
)
prompt_func: Callable[[str], None] = Field(default_factory=lambda: _print_func)
input_func: Callable = Field(default_factory=lambda: input)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Human input tool."""
self.prompt_func(query)
return self.input_func()
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Human tool asynchronously."""
raise NotImplementedError("Human tool does not support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/human/tool.html
|
e42146565dd3-0
|
Source code for langchain.tools.google_serper.tool
"""Tool for the Serper.dev Google Search API."""
from typing import Optional
from pydantic.fields import Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.google_serper import GoogleSerperAPIWrapper
[docs]class GoogleSerperRun(BaseTool):
"""Tool that adds the capability to query the Serper.dev Google search API."""
name = "Google Serper"
description = (
"A low-cost Google Search API."
"Useful for when you need to answer questions about current events."
"Input should be a search query."
)
api_wrapper: GoogleSerperAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return str(self.api_wrapper.run(query))
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
return (await self.api_wrapper.arun(query)).__str__()
[docs]class GoogleSerperResults(BaseTool):
"""Tool that has capability to query the Serper.dev Google Search API
and get back json."""
name = "Google Serrper Results JSON"
description = (
"A low-cost Google Search API."
"Useful for when you need to answer questions about current events."
"Input should be a search query. Output is a JSON object of the query results"
)
|
https://python.langchain.com/en/latest/_modules/langchain/tools/google_serper/tool.html
|
e42146565dd3-1
|
)
api_wrapper: GoogleSerperAPIWrapper = Field(default_factory=GoogleSerperAPIWrapper)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return str(self.api_wrapper.results(query))
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
return (await self.api_wrapper.aresults(query)).__str__()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/google_serper/tool.html
|
74faef60f13c-0
|
Source code for langchain.tools.zapier.tool
"""## Zapier Natural Language Actions API
\
Full docs here: https://nla.zapier.com/api/v1/docs
**Zapier Natural Language Actions** gives you access to the 5k+ apps, 20k+ actions
on Zapier's platform through a natural language API interface.
NLA supports apps like Gmail, Salesforce, Trello, Slack, Asana, HubSpot, Google Sheets,
Microsoft Teams, and thousands more apps: https://zapier.com/apps
Zapier NLA handles ALL the underlying API auth and translation from
natural language --> underlying API call --> return simplified output for LLMs
The key idea is you, or your users, expose a set of actions via an oauth-like setup
window, which you can then query and execute via a REST API.
NLA offers both API Key and OAuth for signing NLA API requests.
1. Server-side (API Key): for quickly getting started, testing, and production scenarios
where LangChain will only use actions exposed in the developer's Zapier account
(and will use the developer's connected accounts on Zapier.com)
2. User-facing (Oauth): for production scenarios where you are deploying an end-user
facing application and LangChain needs access to end-user's exposed actions and
connected accounts on Zapier.com
This quick start will focus on the server-side use case for brevity.
Review [full docs](https://nla.zapier.com/api/v1/docs) or reach out to
[email protected] for user-facing oauth developer support.
Typically you'd use SequentialChain, here's a basic example:
1. Use NLA to find an email in Gmail
2. Use LLMChain to generate a draft reply to (1)
|
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
|
74faef60f13c-1
|
2. Use LLMChain to generate a draft reply to (1)
3. Use NLA to send the draft reply (2) to someone in Slack via direct message
In code, below:
```python
import os
# get from https://platform.openai.com/
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY", "")
# get from https://nla.zapier.com/demo/provider/debug
# (under User Information, after logging in):
os.environ["ZAPIER_NLA_API_KEY"] = os.environ.get("ZAPIER_NLA_API_KEY", "")
from langchain.llms import OpenAI
from langchain.agents import initialize_agent
from langchain.agents.agent_toolkits import ZapierToolkit
from langchain.utilities.zapier import ZapierNLAWrapper
## step 0. expose gmail 'find email' and slack 'send channel message' actions
# first go here, log in, expose (enable) the two actions:
# https://nla.zapier.com/demo/start
# -- for this example, can leave all fields "Have AI guess"
# in an oauth scenario, you'd get your own <provider> id (instead of 'demo')
# which you route your users through first
llm = OpenAI(temperature=0)
zapier = ZapierNLAWrapper()
## To leverage a nla_oauth_access_token you may pass the value to the ZapierNLAWrapper
## If you do this there is no need to initialize the ZAPIER_NLA_API_KEY env variable
# zapier = ZapierNLAWrapper(zapier_nla_oauth_access_token="TOKEN_HERE")
toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier)
agent = initialize_agent(
toolkit.get_tools(),
llm,
|
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
|
74faef60f13c-2
|
agent = initialize_agent(
toolkit.get_tools(),
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
)
agent.run(("Summarize the last email I received regarding Silicon Valley Bank. "
"Send the summary to the #test-zapier channel in slack."))
```
"""
from typing import Any, Dict, Optional
from pydantic import Field, root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.zapier.prompt import BASE_ZAPIER_TOOL_PROMPT
from langchain.utilities.zapier import ZapierNLAWrapper
[docs]class ZapierNLARunAction(BaseTool):
"""
Args:
action_id: a specific action ID (from list actions) of the action to execute
(the set api_key must be associated with the action owner)
instructions: a natural language instruction string for using the action
(eg. "get the latest email from Mike Knoop" for "Gmail: find email" action)
params: a dict, optional. Any params provided will *override* AI guesses
from `instructions` (see "understanding the AI guessing flow" here:
https://nla.zapier.com/api/v1/docs)
"""
api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper)
action_id: str
params: Optional[dict] = None
base_prompt: str = BASE_ZAPIER_TOOL_PROMPT
zapier_description: str
params_schema: Dict[str, str] = Field(default_factory=dict)
name = ""
description = ""
@root_validator
|
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
|
74faef60f13c-3
|
name = ""
description = ""
@root_validator
def set_name_description(cls, values: Dict[str, Any]) -> Dict[str, Any]:
zapier_description = values["zapier_description"]
params_schema = values["params_schema"]
if "instructions" in params_schema:
del params_schema["instructions"]
# Ensure base prompt (if overrided) contains necessary input fields
necessary_fields = {"{zapier_description}", "{params}"}
if not all(field in values["base_prompt"] for field in necessary_fields):
raise ValueError(
"Your custom base Zapier prompt must contain input fields for "
"{zapier_description} and {params}."
)
values["name"] = zapier_description
values["description"] = values["base_prompt"].format(
zapier_description=zapier_description,
params=str(list(params_schema.keys())),
)
return values
def _run(
self, instructions: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
return self.api_wrapper.run_as_str(self.action_id, instructions, self.params)
async def _arun(
self,
_: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
raise NotImplementedError("ZapierNLAListActions does not support async")
ZapierNLARunAction.__doc__ = (
ZapierNLAWrapper.run.__doc__ + ZapierNLARunAction.__doc__ # type: ignore
)
|
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
|
74faef60f13c-4
|
)
# other useful actions
[docs]class ZapierNLAListActions(BaseTool):
"""
Args:
None
"""
name = "Zapier NLA: List Actions"
description = BASE_ZAPIER_TOOL_PROMPT + (
"This tool returns a list of the user's exposed actions."
)
api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper)
def _run(
self,
_: str = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
return self.api_wrapper.list_as_str()
async def _arun(
self,
_: str = "",
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
raise NotImplementedError("ZapierNLAListActions does not support async")
ZapierNLAListActions.__doc__ = (
ZapierNLAWrapper.list.__doc__ + ZapierNLAListActions.__doc__ # type: ignore
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
|
4f14cc24fe48-0
|
Source code for langchain.tools.playwright.click
from __future__ import annotations
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.playwright.base import BaseBrowserTool
from langchain.tools.playwright.utils import (
aget_current_page,
get_current_page,
)
class ClickToolInput(BaseModel):
"""Input for ClickTool."""
selector: str = Field(..., description="CSS selector for the element to click")
[docs]class ClickTool(BaseBrowserTool):
name: str = "click_element"
description: str = "Click on an element with the given CSS selector"
args_schema: Type[BaseModel] = ClickToolInput
visible_only: bool = True
"""Whether to consider only visible elements."""
playwright_strict: bool = False
"""Whether to employ Playwright's strict mode when clicking on elements."""
playwright_timeout: float = 1_000
"""Timeout (in ms) for Playwright to wait for element to be ready."""
def _selector_effective(self, selector: str) -> str:
if not self.visible_only:
return selector
return f"{selector} >> visible=1"
def _run(
self,
selector: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
# Navigate to the desired webpage before using this tool
|
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/click.html
|
4f14cc24fe48-1
|
# Navigate to the desired webpage before using this tool
selector_effective = self._selector_effective(selector=selector)
from playwright.sync_api import TimeoutError as PlaywrightTimeoutError
try:
page.click(
selector_effective,
strict=self.playwright_strict,
timeout=self.playwright_timeout,
)
except PlaywrightTimeoutError:
return f"Unable to click on element '{selector}'"
return f"Clicked element '{selector}'"
async def _arun(
self,
selector: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
page = await aget_current_page(self.async_browser)
# Navigate to the desired webpage before using this tool
selector_effective = self._selector_effective(selector=selector)
from playwright.async_api import TimeoutError as PlaywrightTimeoutError
try:
await page.click(
selector_effective,
strict=self.playwright_strict,
timeout=self.playwright_timeout,
)
except PlaywrightTimeoutError:
return f"Unable to click on element '{selector}'"
return f"Clicked element '{selector}'"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/click.html
|
566eb0e2e4c2-0
|
Source code for langchain.tools.playwright.current_page
from __future__ import annotations
from typing import Optional, Type
from pydantic import BaseModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.playwright.base import BaseBrowserTool
from langchain.tools.playwright.utils import aget_current_page, get_current_page
[docs]class CurrentWebPageTool(BaseBrowserTool):
name: str = "current_webpage"
description: str = "Returns the URL of the current page"
args_schema: Type[BaseModel] = BaseModel
def _run(
self,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
return str(page.url)
async def _arun(
self,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
page = await aget_current_page(self.async_browser)
return str(page.url)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/current_page.html
|
540978eb5c8b-0
|
Source code for langchain.tools.playwright.navigate_back
from __future__ import annotations
from typing import Optional, Type
from pydantic import BaseModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.playwright.base import BaseBrowserTool
from langchain.tools.playwright.utils import (
aget_current_page,
get_current_page,
)
[docs]class NavigateBackTool(BaseBrowserTool):
"""Navigate back to the previous page in the browser history."""
name: str = "previous_webpage"
description: str = "Navigate back to the previous page in the browser history"
args_schema: Type[BaseModel] = BaseModel
def _run(self, run_manager: Optional[CallbackManagerForToolRun] = None) -> str:
"""Use the tool."""
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
response = page.go_back()
if response:
return (
f"Navigated back to the previous page with URL '{response.url}'."
f" Status code {response.status}"
)
else:
return "Unable to navigate back; no previous page in the history"
async def _arun(
self,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
page = await aget_current_page(self.async_browser)
response = await page.go_back()
if response:
return (
|
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/navigate_back.html
|
540978eb5c8b-1
|
response = await page.go_back()
if response:
return (
f"Navigated back to the previous page with URL '{response.url}'."
f" Status code {response.status}"
)
else:
return "Unable to navigate back; no previous page in the history"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/navigate_back.html
|
c5c75868f82c-0
|
Source code for langchain.tools.playwright.extract_text
from __future__ import annotations
from typing import Optional, Type
from pydantic import BaseModel, root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.playwright.base import BaseBrowserTool
from langchain.tools.playwright.utils import aget_current_page, get_current_page
[docs]class ExtractTextTool(BaseBrowserTool):
name: str = "extract_text"
description: str = "Extract all the text on the current webpage"
args_schema: Type[BaseModel] = BaseModel
@root_validator
def check_acheck_bs_importrgs(cls, values: dict) -> dict:
"""Check that the arguments are valid."""
try:
from bs4 import BeautifulSoup # noqa: F401
except ImportError:
raise ValueError(
"The 'beautifulsoup4' package is required to use this tool."
" Please install it with 'pip install beautifulsoup4'."
)
return values
def _run(self, run_manager: Optional[CallbackManagerForToolRun] = None) -> str:
"""Use the tool."""
# Use Beautiful Soup since it's faster than looping through the elements
from bs4 import BeautifulSoup
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
html_content = page.content()
# Parse the HTML content with BeautifulSoup
soup = BeautifulSoup(html_content, "lxml")
return " ".join(text for text in soup.stripped_strings)
async def _arun(
self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
|
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/extract_text.html
|
c5c75868f82c-1
|
self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
) -> str:
"""Use the tool."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
# Use Beautiful Soup since it's faster than looping through the elements
from bs4 import BeautifulSoup
page = await aget_current_page(self.async_browser)
html_content = await page.content()
# Parse the HTML content with BeautifulSoup
soup = BeautifulSoup(html_content, "lxml")
return " ".join(text for text in soup.stripped_strings)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/extract_text.html
|
3c597f1beb9f-0
|
Source code for langchain.tools.playwright.navigate
from __future__ import annotations
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.playwright.base import BaseBrowserTool
from langchain.tools.playwright.utils import (
aget_current_page,
get_current_page,
)
class NavigateToolInput(BaseModel):
"""Input for NavigateToolInput."""
url: str = Field(..., description="url to navigate to")
[docs]class NavigateTool(BaseBrowserTool):
name: str = "navigate_browser"
description: str = "Navigate a browser to the specified URL"
args_schema: Type[BaseModel] = NavigateToolInput
def _run(
self,
url: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
response = page.goto(url)
status = response.status if response else "unknown"
return f"Navigating to {url} returned status code {status}"
async def _arun(
self,
url: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
page = await aget_current_page(self.async_browser)
response = await page.goto(url)
|
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/navigate.html
|
3c597f1beb9f-1
|
response = await page.goto(url)
status = response.status if response else "unknown"
return f"Navigating to {url} returned status code {status}"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/navigate.html
|
1f110de81197-0
|
Source code for langchain.tools.playwright.get_elements
from __future__ import annotations
import json
from typing import TYPE_CHECKING, List, Optional, Sequence, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.playwright.base import BaseBrowserTool
from langchain.tools.playwright.utils import aget_current_page, get_current_page
if TYPE_CHECKING:
from playwright.async_api import Page as AsyncPage
from playwright.sync_api import Page as SyncPage
class GetElementsToolInput(BaseModel):
"""Input for GetElementsTool."""
selector: str = Field(
...,
description="CSS selector, such as '*', 'div', 'p', 'a', #id, .classname",
)
attributes: List[str] = Field(
default_factory=lambda: ["innerText"],
description="Set of attributes to retrieve for each element",
)
async def _aget_elements(
page: AsyncPage, selector: str, attributes: Sequence[str]
) -> List[dict]:
"""Get elements matching the given CSS selector."""
elements = await page.query_selector_all(selector)
results = []
for element in elements:
result = {}
for attribute in attributes:
if attribute == "innerText":
val: Optional[str] = await element.inner_text()
else:
val = await element.get_attribute(attribute)
if val is not None and val.strip() != "":
result[attribute] = val
if result:
results.append(result)
return results
def _get_elements(
page: SyncPage, selector: str, attributes: Sequence[str]
) -> List[dict]:
|
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/get_elements.html
|
1f110de81197-1
|
) -> List[dict]:
"""Get elements matching the given CSS selector."""
elements = page.query_selector_all(selector)
results = []
for element in elements:
result = {}
for attribute in attributes:
if attribute == "innerText":
val: Optional[str] = element.inner_text()
else:
val = element.get_attribute(attribute)
if val is not None and val.strip() != "":
result[attribute] = val
if result:
results.append(result)
return results
[docs]class GetElementsTool(BaseBrowserTool):
name: str = "get_elements"
description: str = (
"Retrieve elements in the current web page matching the given CSS selector"
)
args_schema: Type[BaseModel] = GetElementsToolInput
def _run(
self,
selector: str,
attributes: Sequence[str] = ["innerText"],
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
# Navigate to the desired webpage before using this tool
results = _get_elements(page, selector, attributes)
return json.dumps(results, ensure_ascii=False)
async def _arun(
self,
selector: str,
attributes: Sequence[str] = ["innerText"],
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
|
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/get_elements.html
|
1f110de81197-2
|
raise ValueError(f"Asynchronous browser not provided to {self.name}")
page = await aget_current_page(self.async_browser)
# Navigate to the desired webpage before using this tool
results = await _aget_elements(page, selector, attributes)
return json.dumps(results, ensure_ascii=False)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/get_elements.html
|
7f095163482a-0
|
Source code for langchain.tools.playwright.extract_hyperlinks
from __future__ import annotations
import json
from typing import TYPE_CHECKING, Any, Optional, Type
from pydantic import BaseModel, Field, root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.playwright.base import BaseBrowserTool
from langchain.tools.playwright.utils import aget_current_page, get_current_page
if TYPE_CHECKING:
pass
class ExtractHyperlinksToolInput(BaseModel):
"""Input for ExtractHyperlinksTool."""
absolute_urls: bool = Field(
default=False,
description="Return absolute URLs instead of relative URLs",
)
[docs]class ExtractHyperlinksTool(BaseBrowserTool):
"""Extract all hyperlinks on the page."""
name: str = "extract_hyperlinks"
description: str = "Extract all hyperlinks on the current webpage"
args_schema: Type[BaseModel] = ExtractHyperlinksToolInput
@root_validator
def check_bs_import(cls, values: dict) -> dict:
"""Check that the arguments are valid."""
try:
from bs4 import BeautifulSoup # noqa: F401
except ImportError:
raise ValueError(
"The 'beautifulsoup4' package is required to use this tool."
" Please install it with 'pip install beautifulsoup4'."
)
return values
[docs] @staticmethod
def scrape_page(page: Any, html_content: str, absolute_urls: bool) -> str:
from urllib.parse import urljoin
from bs4 import BeautifulSoup
# Parse the HTML content with BeautifulSoup
soup = BeautifulSoup(html_content, "lxml")
# Find all the anchor elements and extract their href attributes
|
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/extract_hyperlinks.html
|
7f095163482a-1
|
# Find all the anchor elements and extract their href attributes
anchors = soup.find_all("a")
if absolute_urls:
base_url = page.url
links = [urljoin(base_url, anchor.get("href", "")) for anchor in anchors]
else:
links = [anchor.get("href", "") for anchor in anchors]
# Return the list of links as a JSON string
return json.dumps(links)
def _run(
self,
absolute_urls: bool = False,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
html_content = page.content()
return self.scrape_page(page, html_content, absolute_urls)
async def _arun(
self,
absolute_urls: bool = False,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
page = await aget_current_page(self.async_browser)
html_content = await page.content()
return self.scrape_page(page, html_content, absolute_urls)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/extract_hyperlinks.html
|
2240086ae979-0
|
Source code for langchain.tools.steamship_image_generation.tool
"""This tool allows agents to generate images using Steamship.
Steamship offers access to different third party image generation APIs
using a single API key.
Today the following models are supported:
- Dall-E
- Stable Diffusion
To use this tool, you must first set as environment variables:
STEAMSHIP_API_KEY
```
"""
from __future__ import annotations
from enum import Enum
from typing import TYPE_CHECKING, Dict, Optional
from pydantic import root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools import BaseTool
from langchain.tools.steamship_image_generation.utils import make_image_public
from langchain.utils import get_from_dict_or_env
if TYPE_CHECKING:
pass
class ModelName(str, Enum):
"""Supported Image Models for generation."""
DALL_E = "dall-e"
STABLE_DIFFUSION = "stable-diffusion"
SUPPORTED_IMAGE_SIZES = {
ModelName.DALL_E: ("256x256", "512x512", "1024x1024"),
ModelName.STABLE_DIFFUSION: ("512x512", "768x768"),
}
[docs]class SteamshipImageGenerationTool(BaseTool):
try:
from steamship import Steamship
except ImportError:
pass
"""Tool used to generate images from a text-prompt."""
model_name: ModelName
size: Optional[str] = "512x512"
steamship: Steamship
return_urls: Optional[bool] = False
name = "GenerateImage"
description = (
"Useful for when you need to generate an image."
|
https://python.langchain.com/en/latest/_modules/langchain/tools/steamship_image_generation/tool.html
|
2240086ae979-1
|
description = (
"Useful for when you need to generate an image."
"Input: A detailed text-2-image prompt describing an image"
"Output: the UUID of a generated image"
)
@root_validator(pre=True)
def validate_size(cls, values: Dict) -> Dict:
if "size" in values:
size = values["size"]
model_name = values["model_name"]
if size not in SUPPORTED_IMAGE_SIZES[model_name]:
raise RuntimeError(f"size {size} is not supported by {model_name}")
return values
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
steamship_api_key = get_from_dict_or_env(
values, "steamship_api_key", "STEAMSHIP_API_KEY"
)
try:
from steamship import Steamship
except ImportError:
raise ImportError(
"steamship is not installed. "
"Please install it with `pip install steamship`"
)
steamship = Steamship(
api_key=steamship_api_key,
)
values["steamship"] = steamship
if "steamship_api_key" in values:
del values["steamship_api_key"]
return values
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
image_generator = self.steamship.use_plugin(
plugin_handle=self.model_name.value, config={"n": 1, "size": self.size}
)
|
https://python.langchain.com/en/latest/_modules/langchain/tools/steamship_image_generation/tool.html
|
2240086ae979-2
|
)
task = image_generator.generate(text=query, append_output_to_file=True)
task.wait()
blocks = task.output.blocks
if len(blocks) > 0:
if self.return_urls:
return make_image_public(self.steamship, blocks[0])
else:
return blocks[0].id
raise RuntimeError(f"[{self.name}] Tool unable to generate image!")
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("GenerateImageTool does not support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/steamship_image_generation/tool.html
|
a5a2ea34b30e-0
|
Source code for langchain.tools.ddg_search.tool
"""Tool for the DuckDuckGo search API."""
import warnings
from typing import Any, Optional
from pydantic import Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
[docs]class DuckDuckGoSearchRun(BaseTool):
"""Tool that adds the capability to query the DuckDuckGo search API."""
name = "DuckDuckGo Search"
description = (
"A wrapper around DuckDuckGo Search. "
"Useful for when you need to answer questions about current events. "
"Input should be a search query."
)
api_wrapper: DuckDuckGoSearchAPIWrapper = Field(
default_factory=DuckDuckGoSearchAPIWrapper
)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("DuckDuckGoSearch does not support async")
[docs]class DuckDuckGoSearchResults(BaseTool):
"""Tool that queries the Duck Duck Go Search API and get back json."""
name = "DuckDuckGo Results JSON"
description = (
"A wrapper around Duck Duck Go Search. "
|
https://python.langchain.com/en/latest/_modules/langchain/tools/ddg_search/tool.html
|
a5a2ea34b30e-1
|
description = (
"A wrapper around Duck Duck Go Search. "
"Useful for when you need to answer questions about current events. "
"Input should be a search query. Output is a JSON array of the query results"
)
num_results: int = 4
api_wrapper: DuckDuckGoSearchAPIWrapper = Field(
default_factory=DuckDuckGoSearchAPIWrapper
)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return str(self.api_wrapper.results(query, self.num_results))
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("DuckDuckGoSearchResults does not support async")
def DuckDuckGoSearchTool(*args: Any, **kwargs: Any) -> DuckDuckGoSearchRun:
warnings.warn(
"DuckDuckGoSearchTool will be deprecated in the future. "
"Please use DuckDuckGoSearchRun instead.",
DeprecationWarning,
)
return DuckDuckGoSearchRun(*args, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/ddg_search/tool.html
|
1aa3cb562ebc-0
|
Source code for langchain.tools.file_management.copy
import shutil
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.file_management.utils import (
INVALID_PATH_TEMPLATE,
BaseFileToolMixin,
FileValidationError,
)
class FileCopyInput(BaseModel):
"""Input for CopyFileTool."""
source_path: str = Field(..., description="Path of the file to copy")
destination_path: str = Field(..., description="Path to save the copied file")
[docs]class CopyFileTool(BaseFileToolMixin, BaseTool):
name: str = "copy_file"
args_schema: Type[BaseModel] = FileCopyInput
description: str = "Create a copy of a file in a specified location"
def _run(
self,
source_path: str,
destination_path: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
source_path_ = self.get_relative_path(source_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(
arg_name="source_path", value=source_path
)
try:
destination_path_ = self.get_relative_path(destination_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(
arg_name="destination_path", value=destination_path
)
try:
shutil.copy2(source_path_, destination_path_, follow_symlinks=False)
return f"File copied successfully from {source_path} to {destination_path}."
except Exception as e:
|
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/copy.html
|
1aa3cb562ebc-1
|
except Exception as e:
return "Error: " + str(e)
async def _arun(
self,
source_path: str,
destination_path: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
# TODO: Add aiofiles method
raise NotImplementedError
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/copy.html
|
da55655d7386-0
|
Source code for langchain.tools.file_management.write
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.file_management.utils import (
INVALID_PATH_TEMPLATE,
BaseFileToolMixin,
FileValidationError,
)
class WriteFileInput(BaseModel):
"""Input for WriteFileTool."""
file_path: str = Field(..., description="name of file")
text: str = Field(..., description="text to write to file")
append: bool = Field(
default=False, description="Whether to append to an existing file."
)
[docs]class WriteFileTool(BaseFileToolMixin, BaseTool):
name: str = "write_file"
args_schema: Type[BaseModel] = WriteFileInput
description: str = "Write file to disk"
def _run(
self,
file_path: str,
text: str,
append: bool = False,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
write_path = self.get_relative_path(file_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(arg_name="file_path", value=file_path)
try:
write_path.parent.mkdir(exist_ok=True, parents=False)
mode = "a" if append else "w"
with write_path.open(mode, encoding="utf-8") as f:
f.write(text)
return f"File written successfully to {file_path}."
except Exception as e:
return "Error: " + str(e)
|
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/write.html
|
da55655d7386-1
|
except Exception as e:
return "Error: " + str(e)
async def _arun(
self,
file_path: str,
text: str,
append: bool = False,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
# TODO: Add aiofiles method
raise NotImplementedError
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/write.html
|
4f3a073246fb-0
|
Source code for langchain.tools.file_management.delete
import os
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.file_management.utils import (
INVALID_PATH_TEMPLATE,
BaseFileToolMixin,
FileValidationError,
)
class FileDeleteInput(BaseModel):
"""Input for DeleteFileTool."""
file_path: str = Field(..., description="Path of the file to delete")
[docs]class DeleteFileTool(BaseFileToolMixin, BaseTool):
name: str = "file_delete"
args_schema: Type[BaseModel] = FileDeleteInput
description: str = "Delete a file"
def _run(
self,
file_path: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
file_path_ = self.get_relative_path(file_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(arg_name="file_path", value=file_path)
if not file_path_.exists():
return f"Error: no such file or directory: {file_path}"
try:
os.remove(file_path_)
return f"File deleted successfully: {file_path}."
except Exception as e:
return "Error: " + str(e)
async def _arun(
self,
file_path: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
# TODO: Add aiofiles method
raise NotImplementedError
By Harrison Chase
© Copyright 2023, Harrison Chase.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/delete.html
|
4f3a073246fb-1
|
raise NotImplementedError
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/delete.html
|
9a5aef0c8088-0
|
Source code for langchain.tools.file_management.file_search
import fnmatch
import os
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.file_management.utils import (
INVALID_PATH_TEMPLATE,
BaseFileToolMixin,
FileValidationError,
)
class FileSearchInput(BaseModel):
"""Input for FileSearchTool."""
dir_path: str = Field(
default=".",
description="Subdirectory to search in.",
)
pattern: str = Field(
...,
description="Unix shell regex, where * matches everything.",
)
[docs]class FileSearchTool(BaseFileToolMixin, BaseTool):
name: str = "file_search"
args_schema: Type[BaseModel] = FileSearchInput
description: str = (
"Recursively search for files in a subdirectory that match the regex pattern"
)
def _run(
self,
pattern: str,
dir_path: str = ".",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
dir_path_ = self.get_relative_path(dir_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(arg_name="dir_path", value=dir_path)
matches = []
try:
for root, _, filenames in os.walk(dir_path_):
for filename in fnmatch.filter(filenames, pattern):
absolute_path = os.path.join(root, filename)
relative_path = os.path.relpath(absolute_path, dir_path_)
matches.append(relative_path)
if matches:
|
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/file_search.html
|
9a5aef0c8088-1
|
matches.append(relative_path)
if matches:
return "\n".join(matches)
else:
return f"No files found for pattern {pattern} in directory {dir_path}"
except Exception as e:
return "Error: " + str(e)
async def _arun(
self,
dir_path: str,
pattern: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
# TODO: Add aiofiles method
raise NotImplementedError
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/file_search.html
|
49f0dce14fea-0
|
Source code for langchain.tools.file_management.read
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.file_management.utils import (
INVALID_PATH_TEMPLATE,
BaseFileToolMixin,
FileValidationError,
)
class ReadFileInput(BaseModel):
"""Input for ReadFileTool."""
file_path: str = Field(..., description="name of file")
[docs]class ReadFileTool(BaseFileToolMixin, BaseTool):
name: str = "read_file"
args_schema: Type[BaseModel] = ReadFileInput
description: str = "Read file from disk"
def _run(
self,
file_path: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
read_path = self.get_relative_path(file_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(arg_name="file_path", value=file_path)
if not read_path.exists():
return f"Error: no such file or directory: {file_path}"
try:
with read_path.open("r", encoding="utf-8") as f:
content = f.read()
return content
except Exception as e:
return "Error: " + str(e)
async def _arun(
self,
file_path: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
# TODO: Add aiofiles method
raise NotImplementedError
By Harrison Chase
|
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/read.html
|
49f0dce14fea-1
|
# TODO: Add aiofiles method
raise NotImplementedError
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/read.html
|
64aa5a3abd8c-0
|
Source code for langchain.tools.file_management.move
import shutil
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.file_management.utils import (
INVALID_PATH_TEMPLATE,
BaseFileToolMixin,
FileValidationError,
)
class FileMoveInput(BaseModel):
"""Input for MoveFileTool."""
source_path: str = Field(..., description="Path of the file to move")
destination_path: str = Field(..., description="New path for the moved file")
[docs]class MoveFileTool(BaseFileToolMixin, BaseTool):
name: str = "move_file"
args_schema: Type[BaseModel] = FileMoveInput
description: str = "Move or rename a file from one location to another"
def _run(
self,
source_path: str,
destination_path: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
source_path_ = self.get_relative_path(source_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(
arg_name="source_path", value=source_path
)
try:
destination_path_ = self.get_relative_path(destination_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(
arg_name="destination_path_", value=destination_path_
)
if not source_path_.exists():
return f"Error: no such file or directory {source_path}"
try:
# shutil.move expects str args in 3.8
shutil.move(str(source_path_), destination_path_)
|
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/move.html
|
64aa5a3abd8c-1
|
shutil.move(str(source_path_), destination_path_)
return f"File moved successfully from {source_path} to {destination_path}."
except Exception as e:
return "Error: " + str(e)
async def _arun(
self,
source_path: str,
destination_path: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
# TODO: Add aiofiles method
raise NotImplementedError
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/move.html
|
c1e20842d284-0
|
Source code for langchain.tools.file_management.list_dir
import os
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.file_management.utils import (
INVALID_PATH_TEMPLATE,
BaseFileToolMixin,
FileValidationError,
)
class DirectoryListingInput(BaseModel):
"""Input for ListDirectoryTool."""
dir_path: str = Field(default=".", description="Subdirectory to list.")
[docs]class ListDirectoryTool(BaseFileToolMixin, BaseTool):
name: str = "list_directory"
args_schema: Type[BaseModel] = DirectoryListingInput
description: str = "List files and directories in a specified folder"
def _run(
self,
dir_path: str = ".",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
dir_path_ = self.get_relative_path(dir_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(arg_name="dir_path", value=dir_path)
try:
entries = os.listdir(dir_path_)
if entries:
return "\n".join(entries)
else:
return f"No files found in directory {dir_path}"
except Exception as e:
return "Error: " + str(e)
async def _arun(
self,
dir_path: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
# TODO: Add aiofiles method
raise NotImplementedError
By Harrison Chase
© Copyright 2023, Harrison Chase.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/list_dir.html
|
c1e20842d284-1
|
raise NotImplementedError
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/list_dir.html
|
ec8be752ce16-0
|
Source code for langchain.vectorstores.atlas
"""Wrapper around Atlas by Nomic."""
from __future__ import annotations
import logging
import uuid
from typing import Any, Iterable, List, Optional, Type
import numpy as np
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
logger = logging.getLogger(__name__)
[docs]class AtlasDB(VectorStore):
"""Wrapper around Atlas: Nomic's neural database and rhizomatic instrument.
To use, you should have the ``nomic`` python package installed.
Example:
.. code-block:: python
from langchain.vectorstores import AtlasDB
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
vectorstore = AtlasDB("my_project", embeddings.embed_query)
"""
_ATLAS_DEFAULT_ID_FIELD = "atlas_id"
def __init__(
self,
name: str,
embedding_function: Optional[Embeddings] = None,
api_key: Optional[str] = None,
description: str = "A description for your project",
is_public: bool = True,
reset_project_if_exists: bool = False,
) -> None:
"""
Initialize the Atlas Client
Args:
name (str): The name of your project. If the project already exists,
it will be loaded.
embedding_function (Optional[Callable]): An optional function used for
embedding your data. If None, data will be embedded with
Nomic's embed model.
api_key (str): Your nomic API key
description (str): A description for your project.
is_public (bool): Whether your project is publicly accessible.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
ec8be752ce16-1
|
is_public (bool): Whether your project is publicly accessible.
True by default.
reset_project_if_exists (bool): Whether to reset this project if it
already exists. Default False.
Generally userful during development and testing.
"""
try:
import nomic
from nomic import AtlasProject
except ImportError:
raise ValueError(
"Could not import nomic python package. "
"Please install it with `pip install nomic`."
)
if api_key is None:
raise ValueError("No API key provided. Sign up at atlas.nomic.ai!")
nomic.login(api_key)
self._embedding_function = embedding_function
modality = "text"
if self._embedding_function is not None:
modality = "embedding"
# Check if the project exists, create it if not
self.project = AtlasProject(
name=name,
description=description,
modality=modality,
is_public=is_public,
reset_project_if_exists=reset_project_if_exists,
unique_id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD,
)
self.project._latest_project_state()
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
refresh: bool = True,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts (Iterable[str]): Texts to add to the vectorstore.
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
ec8be752ce16-2
|
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
ids (Optional[List[str]]): An optional list of ids.
refresh(bool): Whether or not to refresh indices with the updated data.
Default True.
Returns:
List[str]: List of IDs of the added texts.
"""
if (
metadatas is not None
and len(metadatas) > 0
and "text" in metadatas[0].keys()
):
raise ValueError("Cannot accept key text in metadata!")
texts = list(texts)
if ids is None:
ids = [str(uuid.uuid1()) for _ in texts]
# Embedding upload case
if self._embedding_function is not None:
_embeddings = self._embedding_function.embed_documents(texts)
embeddings = np.stack(_embeddings)
if metadatas is None:
data = [
{AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i], "text": texts[i]}
for i, _ in enumerate(texts)
]
else:
for i in range(len(metadatas)):
metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i]
metadatas[i]["text"] = texts[i]
data = metadatas
self.project._validate_map_data_inputs(
[], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data
)
with self.project.wait_for_project_lock():
self.project.add_embeddings(embeddings=embeddings, data=data)
# Text upload case
else:
if metadatas is None:
data = [
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
ec8be752ce16-3
|
else:
if metadatas is None:
data = [
{"text": text, AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i]}
for i, text in enumerate(texts)
]
else:
for i, text in enumerate(texts):
metadatas[i]["text"] = texts
metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i]
data = metadatas
self.project._validate_map_data_inputs(
[], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data
)
with self.project.wait_for_project_lock():
self.project.add_text(data)
if refresh:
if len(self.project.indices) > 0:
with self.project.wait_for_project_lock():
self.project.rebuild_maps()
return ids
[docs] def create_index(self, **kwargs: Any) -> Any:
"""Creates an index in your project.
See
https://docs.nomic.ai/atlas_api.html#nomic.project.AtlasProject.create_index
for full detail.
"""
with self.project.wait_for_project_lock():
return self.project.create_index(**kwargs)
[docs] def similarity_search(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Document]:
"""Run similarity search with AtlasDB
Args:
query (str): Query text to search for.
k (int): Number of results to return. Defaults to 4.
Returns:
List[Document]: List of documents most similar to the query text.
"""
if self._embedding_function is None:
raise NotImplementedError(
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
ec8be752ce16-4
|
"""
if self._embedding_function is None:
raise NotImplementedError(
"AtlasDB requires an embedding_function for text similarity search!"
)
_embedding = self._embedding_function.embed_documents([query])[0]
embedding = np.array(_embedding).reshape(1, -1)
with self.project.wait_for_project_lock():
neighbors, _ = self.project.projections[0].vector_search(
queries=embedding, k=k
)
datas = self.project.get_data(ids=neighbors[0])
docs = [
Document(page_content=datas[i]["text"], metadata=datas[i])
for i, neighbor in enumerate(neighbors)
]
return docs
[docs] @classmethod
def from_texts(
cls: Type[AtlasDB],
texts: List[str],
embedding: Optional[Embeddings] = None,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
name: Optional[str] = None,
api_key: Optional[str] = None,
description: str = "A description for your project",
is_public: bool = True,
reset_project_if_exists: bool = False,
index_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> AtlasDB:
"""Create an AtlasDB vectorstore from a raw documents.
Args:
texts (List[str]): The list of texts to ingest.
name (str): Name of the project to create.
api_key (str): Your nomic API key,
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
ec8be752ce16-5
|
ids (Optional[List[str]]): Optional list of document IDs. If None,
ids will be auto created
description (str): A description for your project.
is_public (bool): Whether your project is publicly accessible.
True by default.
reset_project_if_exists (bool): Whether to reset this project if it
already exists. Default False.
Generally userful during development and testing.
index_kwargs (Optional[dict]): Dict of kwargs for index creation.
See https://docs.nomic.ai/atlas_api.html
Returns:
AtlasDB: Nomic's neural database and finest rhizomatic instrument
"""
if name is None or api_key is None:
raise ValueError("`name` and `api_key` cannot be None.")
# Inject relevant kwargs
all_index_kwargs = {"name": name + "_index", "indexed_field": "text"}
if index_kwargs is not None:
for k, v in index_kwargs.items():
all_index_kwargs[k] = v
# Build project
atlasDB = cls(
name,
embedding_function=embedding,
api_key=api_key,
description="A description for your project",
is_public=is_public,
reset_project_if_exists=reset_project_if_exists,
)
with atlasDB.project.wait_for_project_lock():
atlasDB.add_texts(texts=texts, metadatas=metadatas, ids=ids)
atlasDB.create_index(**all_index_kwargs)
return atlasDB
[docs] @classmethod
def from_documents(
cls: Type[AtlasDB],
documents: List[Document],
embedding: Optional[Embeddings] = None,
ids: Optional[List[str]] = None,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
ec8be752ce16-6
|
ids: Optional[List[str]] = None,
name: Optional[str] = None,
api_key: Optional[str] = None,
persist_directory: Optional[str] = None,
description: str = "A description for your project",
is_public: bool = True,
reset_project_if_exists: bool = False,
index_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> AtlasDB:
"""Create an AtlasDB vectorstore from a list of documents.
Args:
name (str): Name of the collection to create.
api_key (str): Your nomic API key,
documents (List[Document]): List of documents to add to the vectorstore.
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
ids (Optional[List[str]]): Optional list of document IDs. If None,
ids will be auto created
description (str): A description for your project.
is_public (bool): Whether your project is publicly accessible.
True by default.
reset_project_if_exists (bool): Whether to reset this project if
it already exists. Default False.
Generally userful during development and testing.
index_kwargs (Optional[dict]): Dict of kwargs for index creation.
See https://docs.nomic.ai/atlas_api.html
Returns:
AtlasDB: Nomic's neural database and finest rhizomatic instrument
"""
if name is None or api_key is None:
raise ValueError("`name` and `api_key` cannot be None.")
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return cls.from_texts(
name=name,
api_key=api_key,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
ec8be752ce16-7
|
return cls.from_texts(
name=name,
api_key=api_key,
texts=texts,
embedding=embedding,
metadatas=metadatas,
ids=ids,
description=description,
is_public=is_public,
reset_project_if_exists=reset_project_if_exists,
index_kwargs=index_kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
d0b6daf2adb4-0
|
Source code for langchain.vectorstores.supabase
from __future__ import annotations
from itertools import repeat
from typing import (
TYPE_CHECKING,
Any,
Iterable,
List,
Optional,
Tuple,
Type,
Union,
)
import numpy as np
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance
if TYPE_CHECKING:
import supabase
[docs]class SupabaseVectorStore(VectorStore):
"""VectorStore for a Supabase postgres database. Assumes you have the `pgvector`
extension installed and a `match_documents` (or similar) function. For more details:
https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabase
You can implement your own `match_documents` function in order to limit the search
space to a subset of documents based on your own authorization or business logic.
Note that the Supabase Python client does not yet support async operations.
If you'd like to use `max_marginal_relevance_search`, please review the instructions
below on modifying the `match_documents` function to return matched embeddings.
"""
_client: supabase.client.Client
# This is the embedding function. Don't confuse with the embedding vectors.
# We should perhaps rename the underlying Embedding base class to EmbeddingFunction
# or something
_embedding: Embeddings
table_name: str
query_name: str
def __init__(
self,
client: supabase.client.Client,
embedding: Embeddings,
table_name: str,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
|
d0b6daf2adb4-1
|
embedding: Embeddings,
table_name: str,
query_name: Union[str, None] = None,
) -> None:
"""Initialize with supabase client."""
try:
import supabase # noqa: F401
except ImportError:
raise ValueError(
"Could not import supabase python package. "
"Please install it with `pip install supabase`."
)
self._client = client
self._embedding: Embeddings = embedding
self.table_name = table_name or "documents"
self.query_name = query_name or "match_documents"
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict[Any, Any]]] = None,
**kwargs: Any,
) -> List[str]:
docs = self._texts_to_documents(texts, metadatas)
vectors = self._embedding.embed_documents(list(texts))
return self.add_vectors(vectors, docs)
[docs] @classmethod
def from_texts(
cls: Type["SupabaseVectorStore"],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
client: Optional[supabase.client.Client] = None,
table_name: Optional[str] = "documents",
query_name: Union[str, None] = "match_documents",
**kwargs: Any,
) -> "SupabaseVectorStore":
"""Return VectorStore initialized from texts and embeddings."""
if not client:
raise ValueError("Supabase client is required.")
if not table_name:
raise ValueError("Supabase document table_name is required.")
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
|
d0b6daf2adb4-2
|
if not table_name:
raise ValueError("Supabase document table_name is required.")
embeddings = embedding.embed_documents(texts)
docs = cls._texts_to_documents(texts, metadatas)
_ids = cls._add_vectors(client, table_name, embeddings, docs)
return cls(
client=client,
embedding=embedding,
table_name=table_name,
query_name=query_name,
)
[docs] def add_vectors(
self, vectors: List[List[float]], documents: List[Document]
) -> List[str]:
return self._add_vectors(self._client, self.table_name, vectors, documents)
[docs] def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
vectors = self._embedding.embed_documents([query])
return self.similarity_search_by_vector(vectors[0], k)
[docs] def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
result = self.similarity_search_by_vector_with_relevance_scores(embedding, k)
documents = [doc for doc, _ in result]
return documents
[docs] def similarity_search_with_relevance_scores(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
vectors = self._embedding.embed_documents([query])
return self.similarity_search_by_vector_with_relevance_scores(vectors[0], k)
[docs] def similarity_search_by_vector_with_relevance_scores(
self, query: List[float], k: int
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
|
d0b6daf2adb4-3
|
self, query: List[float], k: int
) -> List[Tuple[Document, float]]:
match_documents_params = dict(query_embedding=query, match_count=k)
res = self._client.rpc(self.query_name, match_documents_params).execute()
match_result = [
(
Document(
metadata=search.get("metadata", {}), # type: ignore
page_content=search.get("content", ""),
),
search.get("similarity", 0.0),
)
for search in res.data
if search.get("content")
]
return match_result
[docs] def similarity_search_by_vector_returning_embeddings(
self, query: List[float], k: int
) -> List[Tuple[Document, float, np.ndarray[np.float32, Any]]]:
match_documents_params = dict(query_embedding=query, match_count=k)
res = self._client.rpc(self.query_name, match_documents_params).execute()
match_result = [
(
Document(
metadata=search.get("metadata", {}), # type: ignore
page_content=search.get("content", ""),
),
search.get("similarity", 0.0),
# Supabase returns a vector type as its string represation (!).
# This is a hack to convert the string to numpy array.
np.fromstring(
search.get("embedding", "").strip("[]"), np.float32, sep=","
),
)
for search in res.data
if search.get("content")
]
return match_result
@staticmethod
def _texts_to_documents(
texts: Iterable[str],
metadatas: Optional[Iterable[dict[Any, Any]]] = None,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
|
d0b6daf2adb4-4
|
metadatas: Optional[Iterable[dict[Any, Any]]] = None,
) -> List[Document]:
"""Return list of Documents from list of texts and metadatas."""
if metadatas is None:
metadatas = repeat({})
docs = [
Document(page_content=text, metadata=metadata)
for text, metadata in zip(texts, metadatas)
]
return docs
@staticmethod
def _add_vectors(
client: supabase.client.Client,
table_name: str,
vectors: List[List[float]],
documents: List[Document],
) -> List[str]:
"""Add vectors to Supabase table."""
rows: List[dict[str, Any]] = [
{
"content": documents[idx].page_content,
"embedding": embedding,
"metadata": documents[idx].metadata, # type: ignore
}
for idx, embedding in enumerate(vectors)
]
# According to the SupabaseVectorStore JS implementation, the best chunk size
# is 500
chunk_size = 500
id_list: List[str] = []
for i in range(0, len(rows), chunk_size):
chunk = rows[i : i + chunk_size]
result = client.from_(table_name).insert(chunk).execute() # type: ignore
if len(result.data) == 0:
raise Exception("Error inserting: No rows added")
# VectorStore.add_vectors returns ids as strings
ids = [str(i.get("id")) for i in result.data if i.get("id")]
id_list.extend(ids)
return id_list
[docs] def max_marginal_relevance_search_by_vector(
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
|
d0b6daf2adb4-5
|
return id_list
[docs] def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
result = self.similarity_search_by_vector_returning_embeddings(
embedding, fetch_k
)
matched_documents = [doc_tuple[0] for doc_tuple in result]
matched_embeddings = [doc_tuple[2] for doc_tuple in result]
mmr_selected = maximal_marginal_relevance(
np.array([embedding], dtype=np.float32),
matched_embeddings,
k=k,
lambda_mult=lambda_mult,
)
filtered_documents = [matched_documents[i] for i in mmr_selected]
return filtered_documents
[docs] def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
|
d0b6daf2adb4-6
|
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
`max_marginal_relevance_search` requires that `query_name` returns matched
embeddings alongside the match documents. The following function function
demonstrates how to do this:
```sql
CREATE FUNCTION match_documents_embeddings(query_embedding vector(1536),
match_count int)
RETURNS TABLE(
id bigint,
content text,
metadata jsonb,
embedding vector(1536),
similarity float)
LANGUAGE plpgsql
AS $$
# variable_conflict use_column
BEGIN
RETURN query
SELECT
id,
content,
metadata,
embedding,
1 -(docstore.embedding <=> query_embedding) AS similarity
FROM
docstore
ORDER BY
docstore.embedding <=> query_embedding
LIMIT match_count;
END;
$$;```
"""
embedding = self._embedding.embed_documents([query])
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
|
d0b6daf2adb4-7
|
$$;```
"""
embedding = self._embedding.embed_documents([query])
docs = self.max_marginal_relevance_search_by_vector(
embedding[0], k, fetch_k, lambda_mult=lambda_mult
)
return docs
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/supabase.html
|
f7f4eabdab45-0
|
Source code for langchain.vectorstores.tair
"""Wrapper around Tair Vector."""
from __future__ import annotations
import json
import logging
import uuid
from typing import Any, Iterable, List, Optional, Type
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.base import VectorStore
logger = logging.getLogger(__name__)
def _uuid_key() -> str:
return uuid.uuid4().hex
[docs]class Tair(VectorStore):
def __init__(
self,
embedding_function: Embeddings,
url: str,
index_name: str,
content_key: str = "content",
metadata_key: str = "metadata",
search_params: Optional[dict] = None,
**kwargs: Any,
):
self.embedding_function = embedding_function
self.index_name = index_name
try:
from tair import Tair as TairClient
except ImportError:
raise ValueError(
"Could not import tair python package. "
"Please install it with `pip install tair`."
)
try:
# connect to tair from url
client = TairClient.from_url(url, **kwargs)
except ValueError as e:
raise ValueError(f"Tair failed to connect: {e}")
self.client = client
self.content_key = content_key
self.metadata_key = metadata_key
self.search_params = search_params
[docs] def create_index_if_not_exist(
self,
dim: int,
distance_type: str,
index_type: str,
data_type: str,
**kwargs: Any,
) -> bool:
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/tair.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.