id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
49
117
f7f4eabdab45-1
data_type: str, **kwargs: Any, ) -> bool: index = self.client.tvs_get_index(self.index_name) if index is not None: logger.info("Index already exists") return False self.client.tvs_create_index( self.index_name, dim, distance_type, index_type, data_type, **kwargs, ) return True [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Add texts data to an existing index.""" ids = [] keys = kwargs.get("keys", None) # Write data to tair pipeline = self.client.pipeline(transaction=False) embeddings = self.embedding_function.embed_documents(list(texts)) for i, text in enumerate(texts): # Use provided key otherwise use default key key = keys[i] if keys else _uuid_key() metadata = metadatas[i] if metadatas else {} pipeline.tvs_hset( self.index_name, key, embeddings[i], False, **{ self.content_key: text, self.metadata_key: json.dumps(metadata), }, ) ids.append(key) pipeline.execute() return ids [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """ Returns the most similar indexed documents to the query text. Args: query (str): The query text for which to find similar documents.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/tair.html
f7f4eabdab45-2
Args: query (str): The query text for which to find similar documents. k (int): The number of documents to return. Default is 4. Returns: List[Document]: A list of documents that are most similar to the query text. """ # Creates embedding vector from user query embedding = self.embedding_function.embed_query(query) keys_and_scores = self.client.tvs_knnsearch( self.index_name, k, embedding, False, None, **kwargs ) pipeline = self.client.pipeline(transaction=False) for key, _ in keys_and_scores: pipeline.tvs_hmget( self.index_name, key, self.metadata_key, self.content_key ) docs = pipeline.execute() return [ Document( page_content=d[1], metadata=json.loads(d[0]), ) for d in docs ] [docs] @classmethod def from_texts( cls: Type[Tair], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, index_name: str = "langchain", content_key: str = "content", metadata_key: str = "metadata", **kwargs: Any, ) -> Tair: try: from tair import tairvector except ImportError: raise ValueError( "Could not import tair python package. " "Please install it with `pip install tair`." ) url = get_from_dict_or_env(kwargs, "tair_url", "TAIR_URL") if "tair_url" in kwargs: kwargs.pop("tair_url")
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/tair.html
f7f4eabdab45-3
if "tair_url" in kwargs: kwargs.pop("tair_url") distance_type = tairvector.DistanceMetric.InnerProduct if "distance_type" in kwargs: distance_type = kwargs.pop("distance_typ") index_type = tairvector.IndexType.HNSW if "index_type" in kwargs: index_type = kwargs.pop("index_type") data_type = tairvector.DataType.Float32 if "data_type" in kwargs: data_type = kwargs.pop("data_type") index_params = {} if "index_params" in kwargs: index_params = kwargs.pop("index_params") search_params = {} if "search_params" in kwargs: search_params = kwargs.pop("search_params") keys = None if "keys" in kwargs: keys = kwargs.pop("keys") try: tair_vector_store = cls( embedding, url, index_name, content_key=content_key, metadata_key=metadata_key, search_params=search_params, **kwargs, ) except ValueError as e: raise ValueError(f"tair failed to connect: {e}") # Create embeddings for documents embeddings = embedding.embed_documents(texts) tair_vector_store.create_index_if_not_exist( len(embeddings[0]), distance_type, index_type, data_type, **index_params, ) tair_vector_store.add_texts(texts, metadatas, keys=keys) return tair_vector_store [docs] @classmethod def from_documents( cls, documents: List[Document], embedding: Embeddings,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/tair.html
f7f4eabdab45-4
cls, documents: List[Document], embedding: Embeddings, metadatas: Optional[List[dict]] = None, index_name: str = "langchain", content_key: str = "content", metadata_key: str = "metadata", **kwargs: Any, ) -> Tair: texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return cls.from_texts( texts, embedding, metadatas, index_name, content_key, metadata_key, **kwargs ) [docs] @staticmethod def drop_index( index_name: str = "langchain", **kwargs: Any, ) -> bool: """ Drop an existing index. Args: index_name (str): Name of the index to drop. Returns: bool: True if the index is dropped successfully. """ try: from tair import Tair as TairClient except ImportError: raise ValueError( "Could not import tair python package. " "Please install it with `pip install tair`." ) url = get_from_dict_or_env(kwargs, "tair_url", "TAIR_URL") try: if "tair_url" in kwargs: kwargs.pop("tair_url") client = TairClient.from_url(url=url, **kwargs) except ValueError as e: raise ValueError(f"Tair connection error: {e}") # delete index ret = client.tvs_del_index(index_name) if ret == 0: # index not exist logger.info("Index does not exist") return False
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/tair.html
f7f4eabdab45-5
# index not exist logger.info("Index does not exist") return False return True [docs] @classmethod def from_existing_index( cls, embedding: Embeddings, index_name: str = "langchain", content_key: str = "content", metadata_key: str = "metadata", **kwargs: Any, ) -> Tair: """Connect to an existing Tair index.""" url = get_from_dict_or_env(kwargs, "tair_url", "TAIR_URL") search_params = {} if "search_params" in kwargs: search_params = kwargs.pop("search_params") return cls( embedding, url, index_name, content_key=content_key, metadata_key=metadata_key, search_params=search_params, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/tair.html
d08cd49f7f70-0
Source code for langchain.vectorstores.base """Interface for vector stores.""" from __future__ import annotations import asyncio import warnings from abc import ABC, abstractmethod from functools import partial from typing import Any, Dict, Iterable, List, Optional, Tuple, Type, TypeVar from pydantic import BaseModel, Field, root_validator from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.schema import BaseRetriever VST = TypeVar("VST", bound="VectorStore") [docs]class VectorStore(ABC): """Interface for vector stores.""" [docs] @abstractmethod def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ [docs] async def aadd_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore.""" raise NotImplementedError [docs] def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Run more documents through the embeddings and add to the vectorstore. Args: documents (List[Document]: Documents to add to the vectorstore.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
d08cd49f7f70-1
Args: documents (List[Document]: Documents to add to the vectorstore. Returns: List[str]: List of IDs of the added texts. """ # TODO: Handle the case where the user doesn't provide ids on the Collection texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return self.add_texts(texts, metadatas, **kwargs) [docs] async def aadd_documents( self, documents: List[Document], **kwargs: Any ) -> List[str]: """Run more documents through the embeddings and add to the vectorstore. Args: documents (List[Document]: Documents to add to the vectorstore. Returns: List[str]: List of IDs of the added texts. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return await self.aadd_texts(texts, metadatas, **kwargs) [docs] def search(self, query: str, search_type: str, **kwargs: Any) -> List[Document]: """Return docs most similar to query using specified search type.""" if search_type == "similarity": return self.similarity_search(query, **kwargs) elif search_type == "mmr": return self.max_marginal_relevance_search(query, **kwargs) else: raise ValueError( f"search_type of {search_type} not allowed. Expected " "search_type to be 'similarity' or 'mmr'." ) [docs] async def asearch( self, query: str, search_type: str, **kwargs: Any
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
d08cd49f7f70-2
self, query: str, search_type: str, **kwargs: Any ) -> List[Document]: """Return docs most similar to query using specified search type.""" if search_type == "similarity": return await self.asimilarity_search(query, **kwargs) elif search_type == "mmr": return await self.amax_marginal_relevance_search(query, **kwargs) else: raise ValueError( f"search_type of {search_type} not allowed. Expected " "search_type to be 'similarity' or 'mmr'." ) [docs] @abstractmethod def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query.""" [docs] def similarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Args: query: input text k: Number of Documents to return. Defaults to 4. **kwargs: kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns: List of Tuples of (doc, similarity_score) """ docs_and_similarities = self._similarity_search_with_relevance_scores( query, k=k, **kwargs ) if any(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
d08cd49f7f70-3
query, k=k, **kwargs ) if any( similarity < 0.0 or similarity > 1.0 for _, similarity in docs_and_similarities ): warnings.warn( "Relevance scores must be between" f" 0 and 1, got {docs_and_similarities}" ) score_threshold = kwargs.get("score_threshold") if score_threshold is not None: docs_and_similarities = [ (doc, similarity) for doc, similarity in docs_and_similarities if similarity >= score_threshold ] if len(docs_and_similarities) == 0: warnings.warn( f"No relevant docs were retrieved using the relevance score\ threshold {score_threshold}" ) return docs_and_similarities def _similarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs and relevance scores, normalized on a scale from 0 to 1. 0 is dissimilar, 1 is most similar. """ raise NotImplementedError [docs] async def asimilarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: """Return docs most similar to query.""" # This is a temporary workaround to make the similarity search # asynchronous. The proper solution is to make the similarity search # asynchronous in the vector store implementations. func = partial(self.similarity_search_with_relevance_scores, query, k, **kwargs)
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
d08cd49f7f70-4
func = partial(self.similarity_search_with_relevance_scores, query, k, **kwargs) return await asyncio.get_event_loop().run_in_executor(None, func) [docs] async def asimilarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query.""" # This is a temporary workaround to make the similarity search # asynchronous. The proper solution is to make the similarity search # asynchronous in the vector store implementations. func = partial(self.similarity_search, query, k, **kwargs) return await asyncio.get_event_loop().run_in_executor(None, func) [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query vector. """ raise NotImplementedError [docs] async def asimilarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector.""" # This is a temporary workaround to make the similarity search # asynchronous. The proper solution is to make the similarity search # asynchronous in the vector store implementations. func = partial(self.similarity_search_by_vector, embedding, k, **kwargs) return await asyncio.get_event_loop().run_in_executor(None, func) [docs] def max_marginal_relevance_search(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
d08cd49f7f70-5
[docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ raise NotImplementedError [docs] async def amax_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance.""" # This is a temporary workaround to make the similarity search # asynchronous. The proper solution is to make the similarity search # asynchronous in the vector store implementations. func = partial( self.max_marginal_relevance_search, query, k, fetch_k, lambda_mult, **kwargs ) return await asyncio.get_event_loop().run_in_executor(None, func)
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
d08cd49f7f70-6
) return await asyncio.get_event_loop().run_in_executor(None, func) [docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ raise NotImplementedError [docs] async def amax_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance.""" raise NotImplementedError [docs] @classmethod def from_documents( cls: Type[VST], documents: List[Document], embedding: Embeddings, **kwargs: Any, ) -> VST: """Return VectorStore initialized from documents and embeddings."""
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
d08cd49f7f70-7
) -> VST: """Return VectorStore initialized from documents and embeddings.""" texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs) [docs] @classmethod async def afrom_documents( cls: Type[VST], documents: List[Document], embedding: Embeddings, **kwargs: Any, ) -> VST: """Return VectorStore initialized from documents and embeddings.""" texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return await cls.afrom_texts(texts, embedding, metadatas=metadatas, **kwargs) [docs] @classmethod @abstractmethod def from_texts( cls: Type[VST], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> VST: """Return VectorStore initialized from texts and embeddings.""" [docs] @classmethod async def afrom_texts( cls: Type[VST], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> VST: """Return VectorStore initialized from texts and embeddings.""" raise NotImplementedError [docs] def as_retriever(self, **kwargs: Any) -> VectorStoreRetriever: return VectorStoreRetriever(vectorstore=self, **kwargs) class VectorStoreRetriever(BaseRetriever, BaseModel):
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
d08cd49f7f70-8
class VectorStoreRetriever(BaseRetriever, BaseModel): vectorstore: VectorStore search_type: str = "similarity" search_kwargs: dict = Field(default_factory=dict) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True @root_validator() def validate_search_type(cls, values: Dict) -> Dict: """Validate search type.""" if "search_type" in values: search_type = values["search_type"] if search_type not in ("similarity", "similarity_score_threshold", "mmr"): raise ValueError(f"search_type of {search_type} not allowed.") if search_type == "similarity_score_threshold": score_threshold = values["search_kwargs"].get("score_threshold") if (score_threshold is None) or ( not isinstance(score_threshold, float) ): raise ValueError( "`score_threshold` is not specified with a float value(0~1) " "in `search_kwargs`." ) return values def get_relevant_documents(self, query: str) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.similarity_search(query, **self.search_kwargs) elif self.search_type == "similarity_score_threshold": docs_and_similarities = ( self.vectorstore.similarity_search_with_relevance_scores( query, **self.search_kwargs ) ) docs = [doc for doc, _ in docs_and_similarities] elif self.search_type == "mmr": docs = self.vectorstore.max_marginal_relevance_search( query, **self.search_kwargs ) else:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
d08cd49f7f70-9
query, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def aget_relevant_documents(self, query: str) -> List[Document]: if self.search_type == "similarity": docs = await self.vectorstore.asimilarity_search( query, **self.search_kwargs ) elif self.search_type == "similarity_score_threshold": docs_and_similarities = ( await self.vectorstore.asimilarity_search_with_relevance_scores( query, **self.search_kwargs ) ) docs = [doc for doc, _ in docs_and_similarities] elif self.search_type == "mmr": docs = await self.vectorstore.amax_marginal_relevance_search( query, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Add documents to vectorstore.""" return self.vectorstore.add_documents(documents, **kwargs) async def aadd_documents( self, documents: List[Document], **kwargs: Any ) -> List[str]: """Add documents to vectorstore.""" return await self.vectorstore.aadd_documents(documents, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
a047b684715b-0
Source code for langchain.vectorstores.chroma """Wrapper around ChromaDB embeddings platform.""" from __future__ import annotations import logging import uuid from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import xor_args from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance if TYPE_CHECKING: import chromadb import chromadb.config logger = logging.getLogger() DEFAULT_K = 4 # Number of Documents to return. def _results_to_docs(results: Any) -> List[Document]: return [doc for doc, _ in _results_to_docs_and_scores(results)] def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]: return [ # TODO: Chroma can do batch querying, # we shouldn't hard code to the 1st result (Document(page_content=result[0], metadata=result[1] or {}), result[2]) for result in zip( results["documents"][0], results["metadatas"][0], results["distances"][0], ) ] [docs]class Chroma(VectorStore): """Wrapper around ChromaDB embeddings platform. To use, you should have the ``chromadb`` python package installed. Example: .. code-block:: python from langchain.vectorstores import Chroma from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Chroma("langchain_store", embeddings.embed_query) """
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html
a047b684715b-1
vectorstore = Chroma("langchain_store", embeddings.embed_query) """ _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain" def __init__( self, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, embedding_function: Optional[Embeddings] = None, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, collection_metadata: Optional[Dict] = None, client: Optional[chromadb.Client] = None, ) -> None: """Initialize with Chroma client.""" try: import chromadb import chromadb.config except ImportError: raise ValueError( "Could not import chromadb python package. " "Please install it with `pip install chromadb`." ) if client is not None: self._client = client else: if client_settings: self._client_settings = client_settings else: self._client_settings = chromadb.config.Settings() if persist_directory is not None: self._client_settings = chromadb.config.Settings( chroma_db_impl="duckdb+parquet", persist_directory=persist_directory, ) self._client = chromadb.Client(self._client_settings) self._embedding_function = embedding_function self._persist_directory = persist_directory self._collection = self._client.get_or_create_collection( name=collection_name, embedding_function=self._embedding_function.embed_documents if self._embedding_function is not None else None, metadata=collection_metadata, ) @xor_args(("query_texts", "query_embeddings")) def __query_collection( self,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html
a047b684715b-2
def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Query the chroma collection.""" try: import chromadb except ImportError: raise ValueError( "Could not import chromadb python package. " "Please install it with `pip install chromadb`." ) for i in range(n_results, 0, -1): try: return self._collection.query( query_texts=query_texts, query_embeddings=query_embeddings, n_results=i, where=where, **kwargs, ) except chromadb.errors.NotEnoughElementsException: logger.error( f"Chroma collection {self._collection.name} " f"contains fewer than {i} elements." ) raise chromadb.errors.NotEnoughElementsException( f"No documents found for Chroma collection {self._collection.name}" ) [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html
a047b684715b-3
ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added texts. """ # TODO: Handle the case where the user doesn't provide ids on the Collection if ids is None: ids = [str(uuid.uuid1()) for _ in texts] embeddings = None if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(texts)) self._collection.add( metadatas=metadatas, embeddings=embeddings, documents=texts, ids=ids ) return ids [docs] def similarity_search( self, query: str, k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with Chroma. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Document]: List of documents most similar to the query text. """ docs_and_scores = self.similarity_search_with_score(query, k, filter=filter) return [doc for doc, _ in docs_and_scores] [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html
a047b684715b-4
"""Return docs most similar to embedding vector. Args: embedding (str): Embedding to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query vector. """ results = self.__query_collection( query_embeddings=embedding, n_results=k, where=filter ) return _results_to_docs(results) [docs] def similarity_search_with_score( self, query: str, k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search with Chroma with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text with distance in float. """ if self._embedding_function is None: results = self.__query_collection( query_texts=[query], n_results=k, where=filter ) else: query_embedding = self._embedding_function.embed_query(query) results = self.__query_collection( query_embeddings=[query_embedding], n_results=k, where=filter ) return _results_to_docs_and_scores(results) [docs] def max_marginal_relevance_search_by_vector( self,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html
a047b684715b-5
[docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) mmr_selected = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), results["embeddings"][0], k=k, lambda_mult=lambda_mult, ) candidates = _results_to_docs(results) selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected] return selected_results
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html
a047b684715b-6
return selected_results [docs] def max_marginal_relevance_search( self, query: str, k: int = DEFAULT_K, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding_function is None: raise ValueError( "For MMR search, you must specify an embedding function on" "creation." ) embedding = self._embedding_function.embed_query(query) docs = self.max_marginal_relevance_search_by_vector( embedding, k, fetch_k, lambda_mul=lambda_mult, filter=filter ) return docs [docs] def delete_collection(self) -> None: """Delete the collection.""" self._client.delete_collection(self._collection.name) [docs] def get(self, include: Optional[List[str]] = None) -> Dict[str, Any]:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html
a047b684715b-7
"""Gets the collection. Args: include (Optional[List[str]]): List of fields to include from db. Defaults to None. """ if include is not None: return self._collection.get(include=include) else: return self._collection.get() [docs] def persist(self) -> None: """Persist the collection. This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed. """ if self._persist_directory is None: raise ValueError( "You must specify a persist_directory on" "creation to persist the collection." ) self._client.persist() [docs] def update_document(self, document_id: str, document: Document) -> None: """Update a document in the collection. Args: document_id (str): ID of the document to update. document (Document): Document to update. """ text = document.page_content metadata = document.metadata self._collection.update_document(document_id, text, metadata) [docs] @classmethod def from_texts( cls: Type[Chroma], texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a raw documents.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html
a047b684715b-8
) -> Chroma: """Create a Chroma vectorstore from a raw documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: texts (List[str]): List of texts to add to the collection. collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. ids (Optional[List[str]]): List of document IDs. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings Returns: Chroma: Chroma vectorstore. """ chroma_collection = cls( collection_name=collection_name, embedding_function=embedding, persist_directory=persist_directory, client_settings=client_settings, client=client, ) chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids) return chroma_collection [docs] @classmethod def from_documents( cls: Type[Chroma], documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, # Add this line **kwargs: Any, ) -> Chroma:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html
a047b684715b-9
**kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a list of documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. ids (Optional[List[str]]): List of document IDs. Defaults to None. documents (List[Document]): List of documents to add to the vectorstore. embedding (Optional[Embeddings]): Embedding function. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings Returns: Chroma: Chroma vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( texts=texts, embedding=embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, persist_directory=persist_directory, client_settings=client_settings, client=client, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/chroma.html
69f5c9f00013-0
Source code for langchain.vectorstores.vectara """Wrapper around Vectara vector database.""" from __future__ import annotations import json import logging import os from hashlib import md5 from typing import Any, Iterable, List, Optional, Tuple, Type import requests from pydantic import Field from langchain.embeddings.base import Embeddings from langchain.schema import Document from langchain.vectorstores.base import VectorStore, VectorStoreRetriever [docs]class Vectara(VectorStore): """Implementation of Vector Store using Vectara (https://vectara.com). Example: .. code-block:: python from langchain.vectorstores import Vectara vectorstore = Vectara( vectara_customer_id=vectara_customer_id, vectara_corpus_id=vectara_corpus_id, vectara_api_key=vectara_api_key ) """ def __init__( self, vectara_customer_id: Optional[str] = None, vectara_corpus_id: Optional[str] = None, vectara_api_key: Optional[str] = None, ): """Initialize with Vectara API.""" self._vectara_customer_id = vectara_customer_id or os.environ.get( "VECTARA_CUSTOMER_ID" ) self._vectara_corpus_id = vectara_corpus_id or os.environ.get( "VECTARA_CORPUS_ID" ) self._vectara_api_key = vectara_api_key or os.environ.get("VECTARA_API_KEY") if ( self._vectara_customer_id is None or self._vectara_corpus_id is None or self._vectara_api_key is None ): logging.warning(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
69f5c9f00013-1
or self._vectara_api_key is None ): logging.warning( "Cant find Vectara credentials, customer_id or corpus_id in " "environment." ) else: logging.debug(f"Using corpus id {self._vectara_corpus_id}") self._session = requests.Session() # to reuse connections def _get_post_headers(self) -> dict: """Returns headers that should be attached to each post request.""" return { "x-api-key": self._vectara_api_key, "customer-id": self._vectara_customer_id, "Content-Type": "application/json", } def _delete_doc(self, doc_id: str) -> bool: """ Delete a document from the Vectara corpus. Args: url (str): URL of the page to delete. doc_id (str): ID of the document to delete. Returns: bool: True if deletion was successful, False otherwise. """ body = { "customer_id": self._vectara_customer_id, "corpus_id": self._vectara_corpus_id, "document_id": doc_id, } response = self._session.post( "https://api.vectara.io/v1/delete-doc", data=json.dumps(body), verify=True, headers=self._get_post_headers(), ) if response.status_code != 200: logging.error( f"Delete request failed for doc_id = {doc_id} with status code " f"{response.status_code}, reason {response.reason}, text " f"{response.text}" ) return False return True
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
69f5c9f00013-2
f"{response.text}" ) return False return True def _index_doc(self, doc_id: str, text: str, metadata: dict) -> bool: request: dict[str, Any] = {} request["customer_id"] = self._vectara_customer_id request["corpus_id"] = self._vectara_corpus_id request["document"] = { "document_id": doc_id, "metadataJson": json.dumps(metadata), "section": [{"text": text, "metadataJson": json.dumps(metadata)}], } response = self._session.post( headers=self._get_post_headers(), url="https://api.vectara.io/v1/index", data=json.dumps(request), timeout=30, verify=True, ) status_code = response.status_code result = response.json() status_str = result["status"]["code"] if "status" in result else None if status_code == 409 or (status_str and status_str == "ALREADY_EXISTS"): return False else: return True [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ ids = [md5(text.encode("utf-8")).hexdigest() for text in texts]
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
69f5c9f00013-3
ids = [md5(text.encode("utf-8")).hexdigest() for text in texts] for i, doc in enumerate(texts): doc_id = ids[i] metadata = metadatas[i] if metadatas else {} succeeded = self._index_doc(doc_id, doc, metadata) if not succeeded: self._delete_doc(doc_id) self._index_doc(doc_id, doc, metadata) return ids [docs] def similarity_search_with_score( self, query: str, k: int = 5, alpha: float = 0.025, filter: Optional[str] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return Vectara documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 5. alpha: parameter for hybrid search (called "lambda" in Vectara documentation). filter: Dictionary of argument(s) to filter on metadata. For example a filter can be "doc.rating > 3.0 and part.lang = 'deu'"} see https://docs.vectara.com/docs/search-apis/sql/filter-overview for more details. Returns: List of Documents most similar to the query and score for each. """ response = self._session.post( headers=self._get_post_headers(), url="https://api.vectara.io/v1/query", data=json.dumps( { "query": [ { "query": query, "start": 0, "num_results": k,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
69f5c9f00013-4
"start": 0, "num_results": k, "context_config": { "sentences_before": 3, "sentences_after": 3, }, "corpus_key": [ { "customer_id": self._vectara_customer_id, "corpus_id": self._vectara_corpus_id, "metadataFilter": filter, "lexical_interpolation_config": {"lambda": alpha}, } ], } ] } ), timeout=10, ) if response.status_code != 200: logging.error( "Query failed %s", f"(code {response.status_code}, reason {response.reason}, details " f"{response.text})", ) return [] result = response.json() responses = result["responseSet"][0]["response"] vectara_default_metadata = ["lang", "len", "offset"] docs = [ ( Document( page_content=x["text"], metadata={ m["name"]: m["value"] for m in x["metadata"] if m["name"] not in vectara_default_metadata }, ), x["score"], ) for x in responses ] return docs [docs] def similarity_search( self, query: str, k: int = 5, alpha: float = 0.025, filter: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return Vectara documents most similar to query, along with scores. Args:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
69f5c9f00013-5
"""Return Vectara documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 5. filter: Dictionary of argument(s) to filter on metadata. For example a filter can be "doc.rating > 3.0 and part.lang = 'deu'"} see https://docs.vectara.com/docs/search-apis/sql/filter-overview for more details. Returns: List of Documents most similar to the query """ docs_and_scores = self.similarity_search_with_score( query, k=k, alpha=alpha, filter=filter, **kwargs ) return [doc for doc, _ in docs_and_scores] [docs] @classmethod def from_texts( cls: Type[Vectara], texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> Vectara: """Construct Vectara wrapper from raw documents. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import Vectara vectara = Vectara.from_texts( texts, vectara_customer_id=customer_id, vectara_corpus_id=corpus_id, vectara_api_key=api_key, ) """ # Note: Vectara generates its own embeddings, so we ignore the provided # embeddings (required by interface) vectara = cls(**kwargs) vectara.add_texts(texts, metadatas) return vectara
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
69f5c9f00013-6
vectara.add_texts(texts, metadatas) return vectara [docs] def as_retriever(self, **kwargs: Any) -> VectaraRetriever: return VectaraRetriever(vectorstore=self, **kwargs) class VectaraRetriever(VectorStoreRetriever): vectorstore: Vectara search_kwargs: dict = Field(default_factory=lambda: {"alpha": 0.025, "k": 5}) """Search params. k: Number of Documents to return. Defaults to 5. alpha: parameter for hybrid search (called "lambda" in Vectara documentation). filter: Dictionary of argument(s) to filter on metadata. For example a filter can be "doc.rating > 3.0 and part.lang = 'deu'"} see https://docs.vectara.com/docs/search-apis/sql/filter-overview for more details. """ def add_texts( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> None: """Add text to the Vectara vectorstore. Args: texts (List[str]): The text metadatas (List[dict]): Metadata dicts, must line up with existing store """ self.vectorstore.add_texts(texts, metadatas) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
f4bc8cd357d3-0
Source code for langchain.vectorstores.qdrant """Wrapper around Qdrant vector database.""" from __future__ import annotations import uuid import warnings from hashlib import md5 from operator import itemgetter from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, Union, ) import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance if TYPE_CHECKING: from qdrant_client.http import models as rest MetadataFilter = Dict[str, Union[str, int, bool, dict, list]] [docs]class Qdrant(VectorStore): """Wrapper around Qdrant vector database. To use you should have the ``qdrant-client`` package installed. Example: .. code-block:: python from qdrant_client import QdrantClient from langchain import Qdrant client = QdrantClient() collection_name = "MyCollection" qdrant = Qdrant(client, collection_name, embedding_function) """ CONTENT_KEY = "page_content" METADATA_KEY = "metadata" def __init__( self, client: Any, collection_name: str, embeddings: Optional[Embeddings] = None, content_payload_key: str = CONTENT_KEY, metadata_payload_key: str = METADATA_KEY, embedding_function: Optional[Callable] = None, # deprecated ): """Initialize with necessary components.""" try: import qdrant_client
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html
f4bc8cd357d3-1
"""Initialize with necessary components.""" try: import qdrant_client except ImportError: raise ValueError( "Could not import qdrant-client python package. " "Please install it with `pip install qdrant-client`." ) if not isinstance(client, qdrant_client.QdrantClient): raise ValueError( f"client should be an instance of qdrant_client.QdrantClient, " f"got {type(client)}" ) if embeddings is None and embedding_function is None: raise ValueError( "`embeddings` value can't be None. Pass `Embeddings` instance." ) if embeddings is not None and embedding_function is not None: raise ValueError( "Both `embeddings` and `embedding_function` are passed. " "Use `embeddings` only." ) self.embeddings = embeddings self._embeddings_function = embedding_function self.client: qdrant_client.QdrantClient = client self.collection_name = collection_name self.content_payload_key = content_payload_key or self.CONTENT_KEY self.metadata_payload_key = metadata_payload_key or self.METADATA_KEY if embedding_function is not None: warnings.warn( "Using `embedding_function` is deprecated. " "Pass `Embeddings` instance to `embeddings` instead." ) if not isinstance(embeddings, Embeddings): warnings.warn( "`embeddings` should be an instance of `Embeddings`." "Using `embeddings` as `embedding_function` which is deprecated" ) self._embeddings_function = embeddings self.embeddings = None
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html
f4bc8cd357d3-2
) self._embeddings_function = embeddings self.embeddings = None def _embed_query(self, query: str) -> List[float]: """Embed query text. Used to provide backward compatibility with `embedding_function` argument. Args: query: Query text. Returns: List of floats representing the query embedding. """ if self.embeddings is not None: embedding = self.embeddings.embed_query(query) else: if self._embeddings_function is not None: embedding = self._embeddings_function(query) else: raise ValueError("Neither of embeddings or embedding_function is set") return embedding.tolist() if hasattr(embedding, "tolist") else embedding def _embed_texts(self, texts: Iterable[str]) -> List[List[float]]: """Embed search texts. Used to provide backward compatibility with `embedding_function` argument. Args: texts: Iterable of texts to embed. Returns: List of floats representing the texts embedding. """ if self.embeddings is not None: embeddings = self.embeddings.embed_documents(list(texts)) if hasattr(embeddings, "tolist"): embeddings = embeddings.tolist() elif self._embeddings_function is not None: embeddings = [] for text in texts: embedding = self._embeddings_function(text) if hasattr(embeddings, "tolist"): embedding = embedding.tolist() embeddings.append(embedding) else: raise ValueError("Neither of embeddings or embedding_function is set") return embeddings [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html
f4bc8cd357d3-3
metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ from qdrant_client.http import models as rest texts = list( texts ) # otherwise iterable might be exhausted after id calculation ids = [md5(text.encode("utf-8")).hexdigest() for text in texts] self.client.upsert( collection_name=self.collection_name, points=rest.Batch.construct( ids=ids, vectors=self._embed_texts(texts), payloads=self._build_payloads( texts, metadatas, self.content_payload_key, self.metadata_payload_key, ), ), ) return ids [docs] def similarity_search( self, query: str, k: int = 4, filter: Optional[MetadataFilter] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query. """ results = self.similarity_search_with_score(query, k, filter) return list(map(itemgetter(0), results))
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html
f4bc8cd357d3-4
return list(map(itemgetter(0), results)) [docs] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[MetadataFilter] = None ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query and score for each. """ results = self.client.search( collection_name=self.collection_name, query_vector=self._embed_query(query), query_filter=self._qdrant_filter_from_dict(filter), with_payload=True, limit=k, ) return [ ( self._document_from_scored_point( result, self.content_payload_key, self.metadata_payload_key ), result.score, ) for result in results ] [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html
f4bc8cd357d3-5
Defaults to 20. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ embedding = self._embed_query(query) results = self.client.search( collection_name=self.collection_name, query_vector=embedding, with_payload=True, with_vectors=True, limit=fetch_k, ) embeddings = [result.vector for result in results] mmr_selected = maximal_marginal_relevance( np.array(embedding), embeddings, k=k, lambda_mult=lambda_mult ) return [ self._document_from_scored_point( results[i], self.content_payload_key, self.metadata_payload_key ) for i in mmr_selected ] [docs] @classmethod def from_texts( cls: Type[Qdrant], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, location: Optional[str] = None, url: Optional[str] = None, port: Optional[int] = 6333, grpc_port: int = 6334, prefer_grpc: bool = False, https: Optional[bool] = None, api_key: Optional[str] = None, prefix: Optional[str] = None, timeout: Optional[float] = None, host: Optional[str] = None, path: Optional[str] = None, collection_name: Optional[str] = None,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html
f4bc8cd357d3-6
path: Optional[str] = None, collection_name: Optional[str] = None, distance_func: str = "Cosine", content_payload_key: str = CONTENT_KEY, metadata_payload_key: str = METADATA_KEY, **kwargs: Any, ) -> Qdrant: """Construct Qdrant wrapper from a list of texts. Args: texts: A list of texts to be indexed in Qdrant. embedding: A subclass of `Embeddings`, responsible for text vectorization. metadatas: An optional list of metadata. If provided it has to be of the same length as a list of texts. location: If `:memory:` - use in-memory Qdrant instance. If `str` - use it as a `url` parameter. If `None` - fallback to relying on `host` and `port` parameters. url: either host or str of "Optional[scheme], host, Optional[port], Optional[prefix]". Default: `None` port: Port of the REST API interface. Default: 6333 grpc_port: Port of the gRPC interface. Default: 6334 prefer_grpc: If true - use gPRC interface whenever possible in custom methods. Default: False https: If true - use HTTPS(SSL) protocol. Default: None api_key: API key for authentication in Qdrant Cloud. Default: None prefix: If not None - add prefix to the REST URL path. Example: service/v1 will result in http://localhost:6333/service/v1/{qdrant-endpoint} for REST API. Default: None timeout:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html
f4bc8cd357d3-7
Default: None timeout: Timeout for REST and gRPC API requests. Default: 5.0 seconds for REST and unlimited for gRPC host: Host name of Qdrant service. If url and host are None, set to 'localhost'. Default: None path: Path in which the vectors will be stored while using local mode. Default: None collection_name: Name of the Qdrant collection to be used. If not provided, it will be created randomly. Default: None distance_func: Distance function. One of: "Cosine" / "Euclid" / "Dot". Default: "Cosine" content_payload_key: A payload key used to store the content of the document. Default: "page_content" metadata_payload_key: A payload key used to store the metadata of the document. Default: "metadata" **kwargs: Additional arguments passed directly into REST client initialization This is a user friendly interface that: 1. Creates embeddings, one for each text 2. Initializes the Qdrant database as an in-memory docstore by default (and overridable to a remote docstore) 3. Adds the text embeddings to the Qdrant database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import Qdrant from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() qdrant = Qdrant.from_texts(texts, embeddings, "localhost") """ try: import qdrant_client except ImportError: raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html
f4bc8cd357d3-8
try: import qdrant_client except ImportError: raise ValueError( "Could not import qdrant-client python package. " "Please install it with `pip install qdrant-client`." ) from qdrant_client.http import models as rest # Just do a single quick embedding to get vector size partial_embeddings = embedding.embed_documents(texts[:1]) vector_size = len(partial_embeddings[0]) collection_name = collection_name or uuid.uuid4().hex distance_func = distance_func.upper() client = qdrant_client.QdrantClient( location=location, url=url, port=port, grpc_port=grpc_port, prefer_grpc=prefer_grpc, https=https, api_key=api_key, prefix=prefix, timeout=timeout, host=host, path=path, **kwargs, ) client.recreate_collection( collection_name=collection_name, vectors_config=rest.VectorParams( size=vector_size, distance=rest.Distance[distance_func], ), ) # Now generate the embeddings for all the texts embeddings = embedding.embed_documents(texts) client.upsert( collection_name=collection_name, points=rest.Batch.construct( ids=[md5(text.encode("utf-8")).hexdigest() for text in texts], vectors=embeddings, payloads=cls._build_payloads( texts, metadatas, content_payload_key, metadata_payload_key ), ), ) return cls( client=client, collection_name=collection_name, embeddings=embedding,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html
f4bc8cd357d3-9
client=client, collection_name=collection_name, embeddings=embedding, content_payload_key=content_payload_key, metadata_payload_key=metadata_payload_key, ) @classmethod def _build_payloads( cls, texts: Iterable[str], metadatas: Optional[List[dict]], content_payload_key: str, metadata_payload_key: str, ) -> List[dict]: payloads = [] for i, text in enumerate(texts): if text is None: raise ValueError( "At least one of the texts is None. Please remove it before " "calling .from_texts or .add_texts on Qdrant instance." ) metadata = metadatas[i] if metadatas is not None else None payloads.append( { content_payload_key: text, metadata_payload_key: metadata, } ) return payloads @classmethod def _document_from_scored_point( cls, scored_point: Any, content_payload_key: str, metadata_payload_key: str, ) -> Document: return Document( page_content=scored_point.payload.get(content_payload_key), metadata=scored_point.payload.get(metadata_payload_key) or {}, ) def _build_condition(self, key: str, value: Any) -> List[rest.FieldCondition]: from qdrant_client.http import models as rest out = [] if isinstance(value, dict): for _key, value in value.items(): out.extend(self._build_condition(f"{key}.{_key}", value)) elif isinstance(value, list): for _value in value:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html
f4bc8cd357d3-10
elif isinstance(value, list): for _value in value: if isinstance(_value, dict): out.extend(self._build_condition(f"{key}[]", _value)) else: out.extend(self._build_condition(f"{key}", _value)) else: out.append( rest.FieldCondition( key=f"{self.metadata_payload_key}.{key}", match=rest.MatchValue(value=value), ) ) return out def _qdrant_filter_from_dict( self, filter: Optional[MetadataFilter] ) -> Optional[rest.Filter]: from qdrant_client.http import models as rest if not filter: return None return rest.Filter( must=[ condition for key, value in filter.items() for condition in self._build_condition(key, value) ] ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/qdrant.html
7ccfa64988e3-0
Source code for langchain.vectorstores.annoy """Wrapper around Annoy vector database.""" from __future__ import annotations import os import pickle import uuid from configparser import ConfigParser from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple import numpy as np from langchain.docstore.base import Docstore from langchain.docstore.document import Document from langchain.docstore.in_memory import InMemoryDocstore from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance INDEX_METRICS = frozenset(["angular", "euclidean", "manhattan", "hamming", "dot"]) DEFAULT_METRIC = "angular" def dependable_annoy_import() -> Any: """Import annoy if available, otherwise raise error.""" try: import annoy except ImportError: raise ValueError( "Could not import annoy python package. " "Please install it with `pip install --user annoy` " ) return annoy [docs]class Annoy(VectorStore): """Wrapper around Annoy vector database. To use, you should have the ``annoy`` python package installed. Example: .. code-block:: python from langchain import Annoy db = Annoy(embedding_function, index, docstore, index_to_docstore_id) """ def __init__( self, embedding_function: Callable, index: Any, metric: str, docstore: Docstore, index_to_docstore_id: Dict[int, str], ): """Initialize with necessary components.""" self.embedding_function = embedding_function
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
7ccfa64988e3-1
): """Initialize with necessary components.""" self.embedding_function = embedding_function self.index = index self.metric = metric self.docstore = docstore self.index_to_docstore_id = index_to_docstore_id [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: raise NotImplementedError( "Annoy does not allow to add new data once the index is build." ) [docs] def process_index_results( self, idxs: List[int], dists: List[float] ) -> List[Tuple[Document, float]]: """Turns annoy results into a list of documents and scores. Args: idxs: List of indices of the documents in the index. dists: List of distances of the documents in the index. Returns: List of Documents and scores. """ docs = [] for idx, dist in zip(idxs, dists): _id = self.index_to_docstore_id[idx] doc = self.docstore.search(_id) if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {_id}, got {doc}") docs.append((doc, dist)) return docs [docs] def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, search_k: int = -1 ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
7ccfa64988e3-2
Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. search_k: inspect up to search_k nodes which defaults to n_trees * n if not provided Returns: List of Documents most similar to the query and score for each """ idxs, dists = self.index.get_nns_by_vector( embedding, k, search_k=search_k, include_distances=True ) return self.process_index_results(idxs, dists) [docs] def similarity_search_with_score_by_index( self, docstore_index: int, k: int = 4, search_k: int = -1 ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. search_k: inspect up to search_k nodes which defaults to n_trees * n if not provided Returns: List of Documents most similar to the query and score for each """ idxs, dists = self.index.get_nns_by_item( docstore_index, k, search_k=search_k, include_distances=True ) return self.process_index_results(idxs, dists) [docs] def similarity_search_with_score( self, query: str, k: int = 4, search_k: int = -1 ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
7ccfa64988e3-3
k: Number of Documents to return. Defaults to 4. search_k: inspect up to search_k nodes which defaults to n_trees * n if not provided Returns: List of Documents most similar to the query and score for each """ embedding = self.embedding_function(query) docs = self.similarity_search_with_score_by_vector(embedding, k, search_k) return docs [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, search_k: int = -1, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. search_k: inspect up to search_k nodes which defaults to n_trees * n if not provided Returns: List of Documents most similar to the embedding. """ docs_and_scores = self.similarity_search_with_score_by_vector( embedding, k, search_k ) return [doc for doc, _ in docs_and_scores] [docs] def similarity_search_by_index( self, docstore_index: int, k: int = 4, search_k: int = -1, **kwargs: Any ) -> List[Document]: """Return docs most similar to docstore_index. Args: docstore_index: Index of document in docstore k: Number of Documents to return. Defaults to 4. search_k: inspect up to search_k nodes which defaults to n_trees * n if not provided Returns: List of Documents most similar to the embedding. """
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
7ccfa64988e3-4
Returns: List of Documents most similar to the embedding. """ docs_and_scores = self.similarity_search_with_score_by_index( docstore_index, k, search_k ) return [doc for doc, _ in docs_and_scores] [docs] def similarity_search( self, query: str, k: int = 4, search_k: int = -1, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. search_k: inspect up to search_k nodes which defaults to n_trees * n if not provided Returns: List of Documents most similar to the query. """ docs_and_scores = self.similarity_search_with_score(query, k, search_k) return [doc for doc, _ in docs_and_scores] [docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. fetch_k: Number of Documents to fetch to pass to MMR algorithm. k: Number of Documents to return. Defaults to 4. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
7ccfa64988e3-5
of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ idxs = self.index.get_nns_by_vector( embedding, fetch_k, search_k=-1, include_distances=False ) embeddings = [self.index.get_item_vector(i) for i in idxs] mmr_selected = maximal_marginal_relevance( np.array([embedding], dtype=np.float32), embeddings, k=k, lambda_mult=lambda_mult, ) # ignore the -1's if not enough docs are returned/indexed selected_indices = [idxs[i] for i in mmr_selected if i != -1] docs = [] for i in selected_indices: _id = self.index_to_docstore_id[i] doc = self.docstore.search(_id) if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {_id}, got {doc}") docs.append(doc) return docs [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
7ccfa64988e3-6
k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ embedding = self.embedding_function(query) docs = self.max_marginal_relevance_search_by_vector( embedding, k, fetch_k, lambda_mult=lambda_mult ) return docs @classmethod def __from( cls, texts: List[str], embeddings: List[List[float]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, metric: str = DEFAULT_METRIC, trees: int = 100, n_jobs: int = -1, **kwargs: Any, ) -> Annoy: if metric not in INDEX_METRICS: raise ValueError( ( f"Unsupported distance metric: {metric}. " f"Expected one of {list(INDEX_METRICS)}" ) ) annoy = dependable_annoy_import() if not embeddings: raise ValueError("embeddings must be provided to build AnnoyIndex") f = len(embeddings[0]) index = annoy.AnnoyIndex(f, metric=metric) for i, emb in enumerate(embeddings): index.add_item(i, emb) index.build(trees, n_jobs=n_jobs) documents = [] for i, text in enumerate(texts):
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
7ccfa64988e3-7
documents = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} documents.append(Document(page_content=text, metadata=metadata)) index_to_id = {i: str(uuid.uuid4()) for i in range(len(documents))} docstore = InMemoryDocstore( {index_to_id[i]: doc for i, doc in enumerate(documents)} ) return cls(embedding.embed_query, index, metric, docstore, index_to_id) [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, metric: str = DEFAULT_METRIC, trees: int = 100, n_jobs: int = -1, **kwargs: Any, ) -> Annoy: """Construct Annoy wrapper from raw documents. Args: texts: List of documents to index. embedding: Embedding function to use. metadatas: List of metadata dictionaries to associate with documents. metric: Metric to use for indexing. Defaults to "angular". trees: Number of trees to use for indexing. Defaults to 100. n_jobs: Number of jobs to use for indexing. Defaults to -1. This is a user friendly interface that: 1. Embeds documents. 2. Creates an in memory docstore 3. Initializes the Annoy database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import Annoy from langchain.embeddings import OpenAIEmbeddings
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
7ccfa64988e3-8
from langchain import Annoy from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() index = Annoy.from_texts(texts, embeddings) """ embeddings = embedding.embed_documents(texts) return cls.__from( texts, embeddings, embedding, metadatas, metric, trees, n_jobs, **kwargs ) [docs] @classmethod def from_embeddings( cls, text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, metric: str = DEFAULT_METRIC, trees: int = 100, n_jobs: int = -1, **kwargs: Any, ) -> Annoy: """Construct Annoy wrapper from embeddings. Args: text_embeddings: List of tuples of (text, embedding) embedding: Embedding function to use. metadatas: List of metadata dictionaries to associate with documents. metric: Metric to use for indexing. Defaults to "angular". trees: Number of trees to use for indexing. Defaults to 100. n_jobs: Number of jobs to use for indexing. Defaults to -1 This is a user friendly interface that: 1. Creates an in memory docstore with provided embeddings 2. Initializes the Annoy database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import Annoy from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts)
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
7ccfa64988e3-9
embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) db = Annoy.from_embeddings(text_embedding_pairs, embeddings) """ texts = [t[0] for t in text_embeddings] embeddings = [t[1] for t in text_embeddings] return cls.__from( texts, embeddings, embedding, metadatas, metric, trees, n_jobs, **kwargs ) [docs] def save_local(self, folder_path: str, prefault: bool = False) -> None: """Save Annoy index, docstore, and index_to_docstore_id to disk. Args: folder_path: folder path to save index, docstore, and index_to_docstore_id to. prefault: Whether to pre-load the index into memory. """ path = Path(folder_path) os.makedirs(path, exist_ok=True) # save index, index config, docstore and index_to_docstore_id config_object = ConfigParser() config_object["ANNOY"] = { "f": self.index.f, "metric": self.metric, } self.index.save(str(path / "index.annoy"), prefault=prefault) with open(path / "index.pkl", "wb") as file: pickle.dump((self.docstore, self.index_to_docstore_id, config_object), file) [docs] @classmethod def load_local( cls, folder_path: str, embeddings: Embeddings, ) -> Annoy: """Load Annoy index, docstore, and index_to_docstore_id to disk. Args:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
7ccfa64988e3-10
Args: folder_path: folder path to load index, docstore, and index_to_docstore_id from. embeddings: Embeddings to use when generating queries. """ path = Path(folder_path) # load index separately since it is not picklable annoy = dependable_annoy_import() # load docstore and index_to_docstore_id with open(path / "index.pkl", "rb") as file: docstore, index_to_docstore_id, config_object = pickle.load(file) f = int(config_object["ANNOY"]["f"]) metric = config_object["ANNOY"]["metric"] index = annoy.AnnoyIndex(f, metric=metric) index.load(str(path / "index.annoy")) return cls( embeddings.embed_query, index, metric, docstore, index_to_docstore_id ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
fbdbe4d42559-0
Source code for langchain.vectorstores.elastic_vector_search """Wrapper around Elasticsearch vector database.""" from __future__ import annotations import uuid from abc import ABC from typing import Any, Dict, Iterable, List, Optional, Tuple from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_env from langchain.vectorstores.base import VectorStore def _default_text_mapping(dim: int) -> Dict: return { "properties": { "text": {"type": "text"}, "vector": {"type": "dense_vector", "dims": dim}, } } def _default_script_query(query_vector: List[float], filter: Optional[dict]) -> Dict: if filter: ((key, value),) = filter.items() filter = {"match": {f"metadata.{key}.keyword": f"{value}"}} else: filter = {"match_all": {}} return { "script_score": { "query": filter, "script": { "source": "cosineSimilarity(params.query_vector, 'vector') + 1.0", "params": {"query_vector": query_vector}, }, } } # ElasticVectorSearch is a concrete implementation of the abstract base class # VectorStore, which defines a common interface for all vector database # implementations. By inheriting from the ABC class, ElasticVectorSearch can be # defined as an abstract base class itself, allowing the creation of subclasses with # their own specific implementations. If you plan to subclass ElasticVectorSearch, # you can inherit from it and define your own implementation of the necessary methods # and attributes. [docs]class ElasticVectorSearch(VectorStore, ABC):
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
fbdbe4d42559-1
# and attributes. [docs]class ElasticVectorSearch(VectorStore, ABC): """Wrapper around Elasticsearch as a vector database. To connect to an Elasticsearch instance that does not require login credentials, pass the Elasticsearch URL and index name along with the embedding object to the constructor. Example: .. code-block:: python from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch( elasticsearch_url="http://localhost:9200", index_name="test_index", embedding=embedding ) To connect to an Elasticsearch instance that requires login credentials, including Elastic Cloud, use the Elasticsearch URL format https://username:password@es_host:9243. For example, to connect to Elastic Cloud, create the Elasticsearch URL with the required authentication details and pass it to the ElasticVectorSearch constructor as the named parameter elasticsearch_url. You can obtain your Elastic Cloud URL and login credentials by logging in to the Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and navigating to the "Deployments" page. To obtain your Elastic Cloud password for the default "elastic" user: 1. Log in to the Elastic Cloud console at https://cloud.elastic.co 2. Go to "Security" > "Users" 3. Locate the "elastic" user and click "Edit" 4. Click "Reset password" 5. Follow the prompts to reset the password The format for Elastic Cloud URLs is https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243. Example: .. code-block:: python
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
fbdbe4d42559-2
Example: .. code-block:: python from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() elastic_host = "cluster_id.region_id.gcp.cloud.es.io" elasticsearch_url = f"https://username:password@{elastic_host}:9243" elastic_vector_search = ElasticVectorSearch( elasticsearch_url=elasticsearch_url, index_name="test_index", embedding=embedding ) Args: elasticsearch_url (str): The URL for the Elasticsearch instance. index_name (str): The name of the Elasticsearch index for the embeddings. embedding (Embeddings): An object that provides the ability to embed text. It should be an instance of a class that subclasses the Embeddings abstract base class, such as OpenAIEmbeddings() Raises: ValueError: If the elasticsearch python package is not installed. """ def __init__( self, elasticsearch_url: str, index_name: str, embedding: Embeddings, *, ssl_verify: Optional[Dict[str, Any]] = None, ): """Initialize with necessary components.""" try: import elasticsearch except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) self.embedding = embedding self.index_name = index_name _ssl_verify = ssl_verify or {} try: self.client = elasticsearch.Elasticsearch(elasticsearch_url, **_ssl_verify) except ValueError as e: raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
fbdbe4d42559-3
except ValueError as e: raise ValueError( f"Your elasticsearch client string is mis-formatted. Got error: {e} " ) [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, refresh_indices: bool = True, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. refresh_indices: bool to refresh ElasticSearch indices Returns: List of ids from adding the texts into the vectorstore. """ try: from elasticsearch.exceptions import NotFoundError from elasticsearch.helpers import bulk except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) requests = [] ids = [] embeddings = self.embedding.embed_documents(list(texts)) dim = len(embeddings[0]) mapping = _default_text_mapping(dim) # check to see if the index already exists try: self.client.indices.get(index=self.index_name) except NotFoundError: # TODO would be nice to create index before embedding, # just to save expensive steps for last self.client.indices.create(index=self.index_name, mappings=mapping) for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} _id = str(uuid.uuid4()) request = { "_op_type": "index",
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
fbdbe4d42559-4
request = { "_op_type": "index", "_index": self.index_name, "vector": embeddings[i], "text": text, "metadata": metadata, "_id": _id, } ids.append(_id) requests.append(request) bulk(self.client, requests) if refresh_indices: self.client.indices.refresh(index=self.index_name) return ids [docs] def similarity_search( self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ docs_and_scores = self.similarity_search_with_score(query, k, filter=filter) documents = [d[0] for d in docs_and_scores] return documents [docs] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ embedding = self.embedding.embed_query(query) script_query = _default_script_query(embedding, filter) response = self.client.search(index=self.index_name, query=script_query, size=k)
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
fbdbe4d42559-5
response = self.client.search(index=self.index_name, query=script_query, size=k) hits = [hit for hit in response["hits"]["hits"]] docs_and_scores = [ ( Document( page_content=hit["_source"]["text"], metadata=hit["_source"]["metadata"], ), hit["_score"], ) for hit in hits ] return docs_and_scores [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, elasticsearch_url: Optional[str] = None, index_name: Optional[str] = None, refresh_indices: bool = True, **kwargs: Any, ) -> ElasticVectorSearch: """Construct ElasticVectorSearch wrapper from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in the Elasticsearch instance. 3. Adds the documents to the newly created Elasticsearch index. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch.from_texts( texts, embeddings, elasticsearch_url="http://localhost:9200" ) """ elasticsearch_url = elasticsearch_url or get_from_env( "elasticsearch_url", "ELASTICSEARCH_URL" ) index_name = index_name or uuid.uuid4().hex
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
fbdbe4d42559-6
) index_name = index_name or uuid.uuid4().hex vectorsearch = cls(elasticsearch_url, index_name, embedding, **kwargs) vectorsearch.add_texts( texts, metadatas=metadatas, refresh_indices=refresh_indices ) return vectorsearch By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
d9b77dea0907-0
Source code for langchain.vectorstores.pinecone """Wrapper around Pinecone vector database.""" from __future__ import annotations import logging import uuid from typing import Any, Callable, Iterable, List, Optional, Tuple from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore logger = logging.getLogger(__name__) [docs]class Pinecone(VectorStore): """Wrapper around Pinecone vector database. To use, you should have the ``pinecone-client`` python package installed. Example: .. code-block:: python from langchain.vectorstores import Pinecone from langchain.embeddings.openai import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") index = pinecone.Index("langchain-demo") embeddings = OpenAIEmbeddings() vectorstore = Pinecone(index, embeddings.embed_query, "text") """ def __init__( self, index: Any, embedding_function: Callable, text_key: str, namespace: Optional[str] = None, ): """Initialize with Pinecone client.""" try: import pinecone except ImportError: raise ValueError( "Could not import pinecone python package. " "Please install it with `pip install pinecone-client`." ) if not isinstance(index, pinecone.index.Index): raise ValueError( f"client should be an instance of pinecone.index.Index, " f"got {type(index)}" ) self._index = index
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
d9b77dea0907-1
f"got {type(index)}" ) self._index = index self._embedding_function = embedding_function self._text_key = text_key self._namespace = namespace [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, namespace: Optional[str] = None, batch_size: int = 32, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. namespace: Optional pinecone namespace to add the texts to. Returns: List of ids from adding the texts into the vectorstore. """ if namespace is None: namespace = self._namespace # Embed and create the documents docs = [] ids = ids or [str(uuid.uuid4()) for _ in texts] for i, text in enumerate(texts): embedding = self._embedding_function(text) metadata = metadatas[i] if metadatas else {} metadata[self._text_key] = text docs.append((ids[i], embedding, metadata)) # upsert to Pinecone self._index.upsert(vectors=docs, namespace=namespace, batch_size=batch_size) return ids [docs] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[dict] = None,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
d9b77dea0907-2
k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, ) -> List[Tuple[Document, float]]: """Return pinecone documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Dictionary of argument(s) to filter on metadata namespace: Namespace to search in. Default will search in '' namespace. Returns: List of Documents most similar to the query and score for each """ if namespace is None: namespace = self._namespace query_obj = self._embedding_function(query) docs = [] results = self._index.query( [query_obj], top_k=k, include_metadata=True, namespace=namespace, filter=filter, ) for res in results["matches"]: metadata = res["metadata"] if self._text_key in metadata: text = metadata.pop(self._text_key) score = res["score"] docs.append((Document(page_content=text, metadata=metadata), score)) else: logger.warning( f"Found document with no `{self._text_key}` key. Skipping." ) return docs [docs] def similarity_search( self, query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return pinecone documents most similar to query. Args: query: Text to look up documents similar to.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
d9b77dea0907-3
Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Dictionary of argument(s) to filter on metadata namespace: Namespace to search in. Default will search in '' namespace. Returns: List of Documents most similar to the query and score for each """ docs_and_scores = self.similarity_search_with_score( query, k=k, filter=filter, namespace=namespace, **kwargs ) return [doc for doc, _ in docs_and_scores] [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 32, text_key: str = "text", index_name: Optional[str] = None, namespace: Optional[str] = None, **kwargs: Any, ) -> Pinecone: """Construct Pinecone wrapper from raw documents. This is a user friendly interface that: 1. Embeds documents. 2. Adds the documents to a provided Pinecone index This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import Pinecone from langchain.embeddings import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") embeddings = OpenAIEmbeddings() pinecone = Pinecone.from_texts( texts, embeddings,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
d9b77dea0907-4
pinecone = Pinecone.from_texts( texts, embeddings, index_name="langchain-demo" ) """ try: import pinecone except ImportError: raise ValueError( "Could not import pinecone python package. " "Please install it with `pip install pinecone-client`." ) indexes = pinecone.list_indexes() # checks if provided index exists if index_name in indexes: index = pinecone.Index(index_name) elif len(indexes) == 0: raise ValueError( "No active indexes found in your Pinecone project, " "are you sure you're using the right API key and environment?" ) else: raise ValueError( f"Index '{index_name}' not found in your Pinecone project. " f"Did you mean one of the following indexes: {', '.join(indexes)}" ) for i in range(0, len(texts), batch_size): # set end position of batch i_end = min(i + batch_size, len(texts)) # get batch of texts and ids lines_batch = texts[i:i_end] # create ids if not provided if ids: ids_batch = ids[i:i_end] else: ids_batch = [str(uuid.uuid4()) for n in range(i, i_end)] # create embeddings embeds = embedding.embed_documents(lines_batch) # prep metadata and upsert batch if metadatas: metadata = metadatas[i:i_end] else: metadata = [{} for _ in range(i, i_end)] for j, line in enumerate(lines_batch):
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
d9b77dea0907-5
for j, line in enumerate(lines_batch): metadata[j][text_key] = line to_upsert = zip(ids_batch, embeds, metadata) # upsert to Pinecone index.upsert(vectors=list(to_upsert), namespace=namespace) return cls(index, embedding.embed_query, text_key, namespace) [docs] @classmethod def from_existing_index( cls, index_name: str, embedding: Embeddings, text_key: str = "text", namespace: Optional[str] = None, ) -> Pinecone: """Load pinecone vectorstore from index name.""" try: import pinecone except ImportError: raise ValueError( "Could not import pinecone python package. " "Please install it with `pip install pinecone-client`." ) return cls( pinecone.Index(index_name), embedding.embed_query, text_key, namespace ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
89b0a68d2dfb-0
Source code for langchain.vectorstores.myscale """Wrapper around MyScale vector database.""" from __future__ import annotations import json import logging from hashlib import sha1 from threading import Thread from typing import Any, Dict, Iterable, List, Optional, Tuple from pydantic import BaseSettings from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore logger = logging.getLogger() def has_mul_sub_str(s: str, *args: Any) -> bool: for a in args: if a not in s: return False return True [docs]class MyScaleSettings(BaseSettings): """MyScale Client Configuration Attribute: myscale_host (str) : An URL to connect to MyScale backend. Defaults to 'localhost'. myscale_port (int) : URL port to connect with HTTP. Defaults to 8443. username (str) : Usernamed to login. Defaults to None. password (str) : Password to login. Defaults to None. index_type (str): index type string. index_param (dict): index build parameter. database (str) : Database name to find the table. Defaults to 'default'. table (str) : Table name to operate on. Defaults to 'vector_table'. metric (str) : Metric to compute distance, supported are ('l2', 'cosine', 'ip'). Defaults to 'cosine'. column_map (Dict) : Column type map to project column name onto langchain semantics. Must have keys: `text`, `id`, `vector`, must be same size to number of columns. For example: .. code-block:: python {
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
89b0a68d2dfb-1
.. code-block:: python { 'id': 'text_id', 'vector': 'text_embedding', 'text': 'text_plain', 'metadata': 'metadata_dictionary_in_json', } Defaults to identity map. """ host: str = "localhost" port: int = 8443 username: Optional[str] = None password: Optional[str] = None index_type: str = "IVFFLAT" index_param: Optional[Dict[str, str]] = None column_map: Dict[str, str] = { "id": "id", "text": "text", "vector": "vector", "metadata": "metadata", } database: str = "default" table: str = "langchain" metric: str = "cosine" def __getitem__(self, item: str) -> Any: return getattr(self, item) class Config: env_file = ".env" env_prefix = "myscale_" env_file_encoding = "utf-8" [docs]class MyScale(VectorStore): """Wrapper around MyScale vector database You need a `clickhouse-connect` python package, and a valid account to connect to MyScale. MyScale can not only search with simple vector indexes, it also supports complex query with multiple conditions, constraints and even sub-queries. For more information, please visit [myscale official site](https://docs.myscale.com/en/overview/) """ def __init__( self, embedding: Embeddings, config: Optional[MyScaleSettings] = None, **kwargs: Any,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
89b0a68d2dfb-2
config: Optional[MyScaleSettings] = None, **kwargs: Any, ) -> None: """MyScale Wrapper to LangChain embedding_function (Embeddings): config (MyScaleSettings): Configuration to MyScale Client Other keyword arguments will pass into [clickhouse-connect](https://docs.myscale.com/) """ try: from clickhouse_connect import get_client except ImportError: raise ValueError( "Could not import clickhouse connect python package. " "Please install it with `pip install clickhouse-connect`." ) try: from tqdm import tqdm self.pgbar = tqdm except ImportError: # Just in case if tqdm is not installed self.pgbar = lambda x: x super().__init__() if config is not None: self.config = config else: self.config = MyScaleSettings() assert self.config assert self.config.host and self.config.port assert ( self.config.column_map and self.config.database and self.config.table and self.config.metric ) for k in ["id", "vector", "text", "metadata"]: assert k in self.config.column_map assert self.config.metric in ["ip", "cosine", "l2"] # initialize the schema dim = len(embedding.embed_query("try this out")) index_params = ( ", " + ",".join([f"'{k}={v}'" for k, v in self.config.index_param.items()]) if self.config.index_param else "" ) schema_ = f""" CREATE TABLE IF NOT EXISTS {self.config.database}.{self.config.table}(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
89b0a68d2dfb-3
CREATE TABLE IF NOT EXISTS {self.config.database}.{self.config.table}( {self.config.column_map['id']} String, {self.config.column_map['text']} String, {self.config.column_map['vector']} Array(Float32), {self.config.column_map['metadata']} JSON, CONSTRAINT cons_vec_len CHECK length(\ {self.config.column_map['vector']}) = {dim}, VECTOR INDEX vidx {self.config.column_map['vector']} \ TYPE {self.config.index_type}(\ 'metric_type={self.config.metric}'{index_params}) ) ENGINE = MergeTree ORDER BY {self.config.column_map['id']} """ self.dim = dim self.BS = "\\" self.must_escape = ("\\", "'") self.embedding_function = embedding.embed_query self.dist_order = "ASC" if self.config.metric in ["cosine", "l2"] else "DESC" # Create a connection to myscale self.client = get_client( host=self.config.host, port=self.config.port, username=self.config.username, password=self.config.password, **kwargs, ) self.client.command("SET allow_experimental_object_type=1") self.client.command(schema_) [docs] def escape_str(self, value: str) -> str: return "".join(f"{self.BS}{c}" if c in self.must_escape else c for c in value) def _build_istr(self, transac: Iterable, column_names: Iterable[str]) -> str: ks = ",".join(column_names) _data = [] for n in transac: n = ",".join([f"'{self.escape_str(str(_n))}'" for _n in n])
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
89b0a68d2dfb-4
_data.append(f"({n})") i_str = f""" INSERT INTO TABLE {self.config.database}.{self.config.table}({ks}) VALUES {','.join(_data)} """ return i_str def _insert(self, transac: Iterable, column_names: Iterable[str]) -> None: _i_str = self._build_istr(transac, column_names) self.client.command(_i_str) [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, batch_size: int = 32, ids: Optional[Iterable[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. ids: Optional list of ids to associate with the texts. batch_size: Batch size of insertion metadata: Optional column data to be inserted Returns: List of ids from adding the texts into the vectorstore. """ # Embed and create the documents ids = ids or [sha1(t.encode("utf-8")).hexdigest() for t in texts] colmap_ = self.config.column_map transac = [] column_names = { colmap_["id"]: ids, colmap_["text"]: texts, colmap_["vector"]: map(self.embedding_function, texts), } metadatas = metadatas or [{} for _ in texts] column_names[colmap_["metadata"]] = map(json.dumps, metadatas)
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
89b0a68d2dfb-5
column_names[colmap_["metadata"]] = map(json.dumps, metadatas) assert len(set(colmap_) - set(column_names)) >= 0 keys, values = zip(*column_names.items()) try: t = None for v in self.pgbar( zip(*values), desc="Inserting data...", total=len(metadatas) ): assert len(v[keys.index(self.config.column_map["vector"])]) == self.dim transac.append(v) if len(transac) == batch_size: if t: t.join() t = Thread(target=self._insert, args=[transac, keys]) t.start() transac = [] if len(transac) > 0: if t: t.join() self._insert(transac, keys) return [i for i in ids] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return [] [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, config: Optional[MyScaleSettings] = None, text_ids: Optional[Iterable[str]] = None, batch_size: int = 32, **kwargs: Any, ) -> MyScale: """Create Myscale wrapper with existing texts Args: embedding_function (Embeddings): Function to extract text embedding texts (Iterable[str]): List or tuple of strings to be added
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
89b0a68d2dfb-6
texts (Iterable[str]): List or tuple of strings to be added config (MyScaleSettings, Optional): Myscale configuration text_ids (Optional[Iterable], optional): IDs for the texts. Defaults to None. batch_size (int, optional): Batchsize when transmitting data to MyScale. Defaults to 32. metadata (List[dict], optional): metadata to texts. Defaults to None. Other keyword arguments will pass into [clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api) Returns: MyScale Index """ ctx = cls(embedding, config, **kwargs) ctx.add_texts(texts, ids=text_ids, batch_size=batch_size, metadatas=metadatas) return ctx def __repr__(self) -> str: """Text representation for myscale, prints backends, username and schemas. Easy to use with `str(Myscale())` Returns: repr: string to show connection info and data schema """ _repr = f"\033[92m\033[1m{self.config.database}.{self.config.table} @ " _repr += f"{self.config.host}:{self.config.port}\033[0m\n\n" _repr += f"\033[1musername: {self.config.username}\033[0m\n\nTable Schema:\n" _repr += "-" * 51 + "\n" for r in self.client.query( f"DESC {self.config.database}.{self.config.table}" ).named_results(): _repr += (
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
89b0a68d2dfb-7
).named_results(): _repr += ( f"|\033[94m{r['name']:24s}\033[0m|\033[96m{r['type']:24s}\033[0m|\n" ) _repr += "-" * 51 + "\n" return _repr def _build_qstr( self, q_emb: List[float], topk: int, where_str: Optional[str] = None ) -> str: q_emb_str = ",".join(map(str, q_emb)) if where_str: where_str = f"PREWHERE {where_str}" else: where_str = "" q_str = f""" SELECT {self.config.column_map['text']}, {self.config.column_map['metadata']}, dist FROM {self.config.database}.{self.config.table} {where_str} ORDER BY distance({self.config.column_map['vector']}, [{q_emb_str}]) AS dist {self.dist_order} LIMIT {topk} """ return q_str [docs] def similarity_search( self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any ) -> List[Document]: """Perform a similarity search with MyScale Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
89b0a68d2dfb-8
of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of Documents """ return self.similarity_search_by_vector( self.embedding_function(query), k, where_str, **kwargs ) [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, where_str: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Perform a similarity search with MyScale by vectors Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of (Document, similarity) """ q_str = self._build_qstr(embedding, k, where_str) try: return [ Document( page_content=r[self.config.column_map["text"]], metadata=r[self.config.column_map["metadata"]], ) for r in self.client.query(q_str).named_results() ] except Exception as e:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
89b0a68d2dfb-9
] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return [] [docs] def similarity_search_with_relevance_scores( self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any ) -> List[Tuple[Document, float]]: """Perform a similarity search with MyScale Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of documents """ q_str = self._build_qstr(self.embedding_function(query), k, where_str) try: return [ ( Document( page_content=r[self.config.column_map["text"]], metadata=r[self.config.column_map["metadata"]], ), r["dist"], ) for r in self.client.query(q_str).named_results() ] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return [] [docs] def drop(self) -> None: """
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
89b0a68d2dfb-10
return [] [docs] def drop(self) -> None: """ Helper function: Drop data """ self.client.command( f"DROP TABLE IF EXISTS {self.config.database}.{self.config.table}" ) @property def metadata_column(self) -> str: return self.config.column_map["metadata"] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
25da66ea5cdf-0
Source code for langchain.vectorstores.opensearch_vector_search """Wrapper around OpenSearch vector database.""" from __future__ import annotations import uuid from typing import Any, Dict, Iterable, List, Optional, Tuple from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from langchain.vectorstores.base import VectorStore IMPORT_OPENSEARCH_PY_ERROR = ( "Could not import OpenSearch. Please install it with `pip install opensearch-py`." ) SCRIPT_SCORING_SEARCH = "script_scoring" PAINLESS_SCRIPTING_SEARCH = "painless_scripting" MATCH_ALL_QUERY = {"match_all": {}} # type: Dict def _import_opensearch() -> Any: """Import OpenSearch if available, otherwise raise error.""" try: from opensearchpy import OpenSearch except ImportError: raise ValueError(IMPORT_OPENSEARCH_PY_ERROR) return OpenSearch def _import_bulk() -> Any: """Import bulk if available, otherwise raise error.""" try: from opensearchpy.helpers import bulk except ImportError: raise ValueError(IMPORT_OPENSEARCH_PY_ERROR) return bulk def _import_not_found_error() -> Any: """Import not found error if available, otherwise raise error.""" try: from opensearchpy.exceptions import NotFoundError except ImportError: raise ValueError(IMPORT_OPENSEARCH_PY_ERROR) return NotFoundError def _get_opensearch_client(opensearch_url: str, **kwargs: Any) -> Any: """Get OpenSearch client from the opensearch_url, otherwise raise error.""" try: opensearch = _import_opensearch()
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
25da66ea5cdf-1
try: opensearch = _import_opensearch() client = opensearch(opensearch_url, **kwargs) except ValueError as e: raise ValueError( f"OpenSearch client string provided is not in proper format. " f"Got error: {e} " ) return client def _validate_embeddings_and_bulk_size(embeddings_length: int, bulk_size: int) -> None: """Validate Embeddings Length and Bulk Size.""" if embeddings_length == 0: raise RuntimeError("Embeddings size is zero") if bulk_size < embeddings_length: raise RuntimeError( f"The embeddings count, {embeddings_length} is more than the " f"[bulk_size], {bulk_size}. Increase the value of [bulk_size]." ) def _bulk_ingest_embeddings( client: Any, index_name: str, embeddings: List[List[float]], texts: Iterable[str], metadatas: Optional[List[dict]] = None, vector_field: str = "vector_field", text_field: str = "text", mapping: Dict = {}, ) -> List[str]: """Bulk Ingest Embeddings into given index.""" bulk = _import_bulk() not_found_error = _import_not_found_error() requests = [] ids = [] mapping = mapping try: client.indices.get(index=index_name) except not_found_error: client.indices.create(index=index_name, body=mapping) for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} _id = str(uuid.uuid4()) request = { "_op_type": "index",
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
25da66ea5cdf-2
request = { "_op_type": "index", "_index": index_name, vector_field: embeddings[i], text_field: text, "metadata": metadata, "_id": _id, } requests.append(request) ids.append(_id) bulk(client, requests) client.indices.refresh(index=index_name) return ids def _default_scripting_text_mapping( dim: int, vector_field: str = "vector_field", ) -> Dict: """For Painless Scripting or Script Scoring,the default mapping to create index.""" return { "mappings": { "properties": { vector_field: {"type": "knn_vector", "dimension": dim}, } } } def _default_text_mapping( dim: int, engine: str = "nmslib", space_type: str = "l2", ef_search: int = 512, ef_construction: int = 512, m: int = 16, vector_field: str = "vector_field", ) -> Dict: """For Approximate k-NN Search, this is the default mapping to create index.""" return { "settings": {"index": {"knn": True, "knn.algo_param.ef_search": ef_search}}, "mappings": { "properties": { vector_field: { "type": "knn_vector", "dimension": dim, "method": { "name": "hnsw", "space_type": space_type, "engine": engine, "parameters": {"ef_construction": ef_construction, "m": m},
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
25da66ea5cdf-3
"parameters": {"ef_construction": ef_construction, "m": m}, }, } } }, } def _default_approximate_search_query( query_vector: List[float], k: int = 4, vector_field: str = "vector_field", ) -> Dict: """For Approximate k-NN Search, this is the default query.""" return { "size": k, "query": {"knn": {vector_field: {"vector": query_vector, "k": k}}}, } def _approximate_search_query_with_boolean_filter( query_vector: List[float], boolean_filter: Dict, k: int = 4, vector_field: str = "vector_field", subquery_clause: str = "must", ) -> Dict: """For Approximate k-NN Search, with Boolean Filter.""" return { "size": k, "query": { "bool": { "filter": boolean_filter, subquery_clause: [ {"knn": {vector_field: {"vector": query_vector, "k": k}}} ], } }, } def _approximate_search_query_with_lucene_filter( query_vector: List[float], lucene_filter: Dict, k: int = 4, vector_field: str = "vector_field", ) -> Dict: """For Approximate k-NN Search, with Lucene Filter.""" search_query = _default_approximate_search_query( query_vector, k=k, vector_field=vector_field ) search_query["query"]["knn"][vector_field]["filter"] = lucene_filter return search_query
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
25da66ea5cdf-4
return search_query def _default_script_query( query_vector: List[float], space_type: str = "l2", pre_filter: Dict = MATCH_ALL_QUERY, vector_field: str = "vector_field", ) -> Dict: """For Script Scoring Search, this is the default query.""" return { "query": { "script_score": { "query": pre_filter, "script": { "source": "knn_score", "lang": "knn", "params": { "field": vector_field, "query_value": query_vector, "space_type": space_type, }, }, } } } def __get_painless_scripting_source( space_type: str, query_vector: List[float], vector_field: str = "vector_field" ) -> str: """For Painless Scripting, it returns the script source based on space type.""" source_value = ( "(1.0 + " + space_type + "(" + str(query_vector) + ", doc['" + vector_field + "']))" ) if space_type == "cosineSimilarity": return source_value else: return "1/" + source_value def _default_painless_scripting_query( query_vector: List[float], space_type: str = "l2Squared", pre_filter: Dict = MATCH_ALL_QUERY, vector_field: str = "vector_field", ) -> Dict: """For Painless Scripting Search, this is the default query.""" source = __get_painless_scripting_source(space_type, query_vector) return {
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
25da66ea5cdf-5
source = __get_painless_scripting_source(space_type, query_vector) return { "query": { "script_score": { "query": pre_filter, "script": { "source": source, "params": { "field": vector_field, "query_value": query_vector, }, }, } } } def _get_kwargs_value(kwargs: Any, key: str, default_value: Any) -> Any: """Get the value of the key if present. Else get the default_value.""" if key in kwargs: return kwargs.get(key) return default_value [docs]class OpenSearchVectorSearch(VectorStore): """Wrapper around OpenSearch as a vector database. Example: .. code-block:: python from langchain import OpenSearchVectorSearch opensearch_vector_search = OpenSearchVectorSearch( "http://localhost:9200", "embeddings", embedding_function ) """ def __init__( self, opensearch_url: str, index_name: str, embedding_function: Embeddings, **kwargs: Any, ): """Initialize with necessary components.""" self.embedding_function = embedding_function self.index_name = index_name self.client = _get_opensearch_client(opensearch_url, **kwargs) [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
25da66ea5cdf-6
"""Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. bulk_size: Bulk API request count; Default: 500 Returns: List of ids from adding the texts into the vectorstore. Optional Args: vector_field: Document field embeddings are stored in. Defaults to "vector_field". text_field: Document field the text of the document is stored in. Defaults to "text". """ embeddings = self.embedding_function.embed_documents(list(texts)) _validate_embeddings_and_bulk_size(len(embeddings), bulk_size) text_field = _get_kwargs_value(kwargs, "text_field", "text") dim = len(embeddings[0]) engine = _get_kwargs_value(kwargs, "engine", "nmslib") space_type = _get_kwargs_value(kwargs, "space_type", "l2") ef_search = _get_kwargs_value(kwargs, "ef_search", 512) ef_construction = _get_kwargs_value(kwargs, "ef_construction", 512) m = _get_kwargs_value(kwargs, "m", 16) vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field") mapping = _default_text_mapping( dim, engine, space_type, ef_search, ef_construction, m, vector_field ) return _bulk_ingest_embeddings( self.client, self.index_name, embeddings, texts, metadatas, vector_field, text_field, mapping, ) [docs] def similarity_search(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
25da66ea5cdf-7
text_field, mapping, ) [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. By default supports Approximate Search. Also supports Script Scoring and Painless Scripting. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. Optional Args: vector_field: Document field embeddings are stored in. Defaults to "vector_field". text_field: Document field the text of the document is stored in. Defaults to "text". metadata_field: Document field that metadata is stored in. Defaults to "metadata". Can be set to a special value "*" to include the entire document. Optional Args for Approximate Search: search_type: "approximate_search"; default: "approximate_search" boolean_filter: A Boolean filter consists of a Boolean query that contains a k-NN query and a filter. subquery_clause: Query clause on the knn vector field; default: "must" lucene_filter: the Lucene algorithm decides whether to perform an exact k-NN search with pre-filtering or an approximate search with modified post-filtering. Optional Args for Script Scoring Search: search_type: "script_scoring"; default: "approximate_search" space_type: "l2", "l1", "linf", "cosinesimil", "innerproduct", "hammingbit"; default: "l2" pre_filter: script_score query to pre-filter documents before identifying
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
25da66ea5cdf-8
pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {"match_all": {}} Optional Args for Painless Scripting Search: search_type: "painless_scripting"; default: "approximate_search" space_type: "l2Squared", "l1Norm", "cosineSimilarity"; default: "l2Squared" pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {"match_all": {}} """ docs_with_scores = self.similarity_search_with_score(query, k, **kwargs) return [doc[0] for doc in docs_with_scores] [docs] def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: """Return docs and it's scores most similar to query. By default supports Approximate Search. Also supports Script Scoring and Painless Scripting. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents along with its scores most similar to the query. Optional Args: same as `similarity_search` """ embedding = self.embedding_function.embed_query(query) search_type = _get_kwargs_value(kwargs, "search_type", "approximate_search") text_field = _get_kwargs_value(kwargs, "text_field", "text") metadata_field = _get_kwargs_value(kwargs, "metadata_field", "metadata") vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field") if search_type == "approximate_search":
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
25da66ea5cdf-9
if search_type == "approximate_search": boolean_filter = _get_kwargs_value(kwargs, "boolean_filter", {}) subquery_clause = _get_kwargs_value(kwargs, "subquery_clause", "must") lucene_filter = _get_kwargs_value(kwargs, "lucene_filter", {}) if boolean_filter != {} and lucene_filter != {}: raise ValueError( "Both `boolean_filter` and `lucene_filter` are provided which " "is invalid" ) if boolean_filter != {}: search_query = _approximate_search_query_with_boolean_filter( embedding, boolean_filter, k=k, vector_field=vector_field, subquery_clause=subquery_clause, ) elif lucene_filter != {}: search_query = _approximate_search_query_with_lucene_filter( embedding, lucene_filter, k=k, vector_field=vector_field ) else: search_query = _default_approximate_search_query( embedding, k=k, vector_field=vector_field ) elif search_type == SCRIPT_SCORING_SEARCH: space_type = _get_kwargs_value(kwargs, "space_type", "l2") pre_filter = _get_kwargs_value(kwargs, "pre_filter", MATCH_ALL_QUERY) search_query = _default_script_query( embedding, space_type, pre_filter, vector_field ) elif search_type == PAINLESS_SCRIPTING_SEARCH: space_type = _get_kwargs_value(kwargs, "space_type", "l2Squared") pre_filter = _get_kwargs_value(kwargs, "pre_filter", MATCH_ALL_QUERY) search_query = _default_painless_scripting_query( embedding, space_type, pre_filter, vector_field ) else:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
25da66ea5cdf-10
embedding, space_type, pre_filter, vector_field ) else: raise ValueError("Invalid `search_type` provided as an argument") response = self.client.search(index=self.index_name, body=search_query) hits = [hit for hit in response["hits"]["hits"][:k]] documents_with_scores = [ ( Document( page_content=hit["_source"][text_field], metadata=hit["_source"] if metadata_field == "*" or metadata_field not in hit["_source"] else hit["_source"][metadata_field], ), hit["_score"], ) for hit in hits ] return documents_with_scores [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any, ) -> OpenSearchVectorSearch: """Construct OpenSearchVectorSearch wrapper from raw documents. Example: .. code-block:: python from langchain import OpenSearchVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() opensearch_vector_search = OpenSearchVectorSearch.from_texts( texts, embeddings, opensearch_url="http://localhost:9200" ) OpenSearch by default supports Approximate Search powered by nmslib, faiss and lucene engines recommended for large datasets. Also supports brute force search through Script Scoring and Painless Scripting. Optional Args: vector_field: Document field embeddings are stored in. Defaults to "vector_field".
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
25da66ea5cdf-11
vector_field: Document field embeddings are stored in. Defaults to "vector_field". text_field: Document field the text of the document is stored in. Defaults to "text". Optional Keyword Args for Approximate Search: engine: "nmslib", "faiss", "lucene"; default: "nmslib" space_type: "l2", "l1", "cosinesimil", "linf", "innerproduct"; default: "l2" ef_search: Size of the dynamic list used during k-NN searches. Higher values lead to more accurate but slower searches; default: 512 ef_construction: Size of the dynamic list used during k-NN graph creation. Higher values lead to more accurate graph but slower indexing speed; default: 512 m: Number of bidirectional links created for each new element. Large impact on memory consumption. Between 2 and 100; default: 16 Keyword Args for Script Scoring or Painless Scripting: is_appx_search: False """ opensearch_url = get_from_dict_or_env( kwargs, "opensearch_url", "OPENSEARCH_URL" ) # List of arguments that needs to be removed from kwargs # before passing kwargs to get opensearch client keys_list = [ "opensearch_url", "index_name", "is_appx_search", "vector_field", "text_field", "engine", "space_type", "ef_search", "ef_construction", "m", ] embeddings = embedding.embed_documents(texts) _validate_embeddings_and_bulk_size(len(embeddings), bulk_size)
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
25da66ea5cdf-12
_validate_embeddings_and_bulk_size(len(embeddings), bulk_size) dim = len(embeddings[0]) # Get the index name from either from kwargs or ENV Variable # before falling back to random generation index_name = get_from_dict_or_env( kwargs, "index_name", "OPENSEARCH_INDEX_NAME", default=uuid.uuid4().hex ) is_appx_search = _get_kwargs_value(kwargs, "is_appx_search", True) vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field") text_field = _get_kwargs_value(kwargs, "text_field", "text") if is_appx_search: engine = _get_kwargs_value(kwargs, "engine", "nmslib") space_type = _get_kwargs_value(kwargs, "space_type", "l2") ef_search = _get_kwargs_value(kwargs, "ef_search", 512) ef_construction = _get_kwargs_value(kwargs, "ef_construction", 512) m = _get_kwargs_value(kwargs, "m", 16) mapping = _default_text_mapping( dim, engine, space_type, ef_search, ef_construction, m, vector_field ) else: mapping = _default_scripting_text_mapping(dim) [kwargs.pop(key, None) for key in keys_list] client = _get_opensearch_client(opensearch_url, **kwargs) _bulk_ingest_embeddings( client, index_name, embeddings, texts, metadatas, vector_field, text_field, mapping, ) return cls(opensearch_url, index_name, embedding, **kwargs) By Harrison Chase
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
25da66ea5cdf-13
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
1a5d6df7f1fd-0
Source code for langchain.vectorstores.weaviate """Wrapper around weaviate vector database.""" from __future__ import annotations import datetime from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Type from uuid import uuid4 import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance def _default_schema(index_name: str) -> Dict: return { "class": index_name, "properties": [ { "name": "text", "dataType": ["text"], } ], } def _create_weaviate_client(**kwargs: Any) -> Any: client = kwargs.get("client") if client is not None: return client weaviate_url = get_from_dict_or_env(kwargs, "weaviate_url", "WEAVIATE_URL") try: # the weaviate api key param should not be mandatory weaviate_api_key = get_from_dict_or_env( kwargs, "weaviate_api_key", "WEAVIATE_API_KEY", None ) except ValueError: weaviate_api_key = None try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip instal weaviate-client`" ) auth = ( weaviate.auth.AuthApiKey(api_key=weaviate_api_key) if weaviate_api_key is not None else None )
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
1a5d6df7f1fd-1
if weaviate_api_key is not None else None ) client = weaviate.Client(weaviate_url, auth_client_secret=auth) return client def _default_score_normalizer(val: float) -> float: return 1 - 1 / (1 + np.exp(val)) def _json_serializable(value: Any) -> Any: if isinstance(value, datetime.datetime): return value.isoformat() return value [docs]class Weaviate(VectorStore): """Wrapper around Weaviate vector database. To use, you should have the ``weaviate-client`` python package installed. Example: .. code-block:: python import weaviate from langchain.vectorstores import Weaviate client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...) weaviate = Weaviate(client, index_name, text_key) """ def __init__( self, client: Any, index_name: str, text_key: str, embedding: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, relevance_score_fn: Optional[ Callable[[float], float] ] = _default_score_normalizer, by_text: bool = True, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
1a5d6df7f1fd-2
) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._embedding = embedding self._text_key = text_key self._query_attrs = [self._text_key] self._relevance_score_fn = relevance_score_fn self._by_text = by_text if attributes is not None: self._query_attrs.extend(attributes) [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid ids = [] with self._client.batch as batch: for i, text in enumerate(texts): data_properties = {self._text_key: text} if metadatas is not None: for key, val in metadatas[i].items(): data_properties[key] = _json_serializable(val) # If the UUID of one of the objects already exists # then the existing object will be replaced by the new object. _id = ( kwargs["uuids"][i] if "uuids" in kwargs else get_valid_uuid(uuid4()) ) if self._embedding is not None: vector = self._embedding.embed_documents([text])[0] else: vector = None batch.add_data_object( data_object=data_properties, class_name=self._index_name, uuid=_id,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
1a5d6df7f1fd-3
class_name=self._index_name, uuid=_id, vector=vector, ) ids.append(_id) return ids [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ if self._by_text: return self.similarity_search_by_text(query, k, **kwargs) else: if self._embedding is None: raise ValueError( "_embedding cannot be None for similarity_search when " "_by_text=False" ) embedding = self._embedding.embed_query(query) return self.similarity_search_by_vector(embedding, k, **kwargs) [docs] def similarity_search_by_text( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ content: Dict[str, Any] = {"concepts": [query]} if kwargs.get("search_distance"): content["certainty"] = kwargs.get("search_distance") query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"):
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
1a5d6df7f1fd-4
if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) if kwargs.get("additional"): query_obj = query_obj.with_additional(kwargs.get("additional")) result = query_obj.with_near_text(content).with_limit(k).do() if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Look up similar documents by embedding vector in Weaviate.""" vector = {"vector": embedding} query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) if kwargs.get("additional"): query_obj = query_obj.with_additional(kwargs.get("additional")) result = query_obj.with_near_vector(vector).with_limit(k).do() if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
1a5d6df7f1fd-5
k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding is not None: embedding = self._embedding.embed_query(query) else: raise ValueError( "max_marginal_relevance_search requires a suitable Embeddings object" ) return self.max_marginal_relevance_search_by_vector( embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, **kwargs ) [docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
1a5d6df7f1fd-6
Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ vector = {"vector": embedding} query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) results = ( query_obj.with_additional("vector") .with_near_vector(vector) .with_limit(fetch_k) .do() ) payload = results["data"]["Get"][self._index_name] embeddings = [result["_additional"]["vector"] for result in payload] mmr_selected = maximal_marginal_relevance( np.array(embedding), embeddings, k=k, lambda_mult=lambda_mult ) docs = [] for idx in mmr_selected: text = payload[idx].pop(self._text_key) payload[idx].pop("_additional") meta = payload[idx] docs.append(Document(page_content=text, metadata=meta)) return docs [docs] def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: if self._embedding is None: raise ValueError( "_embedding cannot be None for similarity_search_with_score"
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
1a5d6df7f1fd-7
raise ValueError( "_embedding cannot be None for similarity_search_with_score" ) content: Dict[str, Any] = {"concepts": [query]} if kwargs.get("search_distance"): content["certainty"] = kwargs.get("search_distance") query_obj = self._client.query.get(self._index_name, self._query_attrs) if not self._by_text: embedding = self._embedding.embed_query(query) vector = {"vector": embedding} result = ( query_obj.with_near_vector(vector) .with_limit(k) .with_additional("vector") .do() ) else: result = ( query_obj.with_near_text(content) .with_limit(k) .with_additional("vector") .do() ) if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs_and_scores = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) score = np.dot( res["_additional"]["vector"], self._embedding.embed_query(query) ) docs_and_scores.append((Document(page_content=text, metadata=res), score)) return docs_and_scores def _similarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs and relevance scores, normalized on a scale from 0 to 1. 0 is dissimilar, 1 is most similar. """ if self._relevance_score_fn is None: raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html