id
stringlengths 14
16
| text
stringlengths 36
2.73k
| source
stringlengths 49
117
|
---|---|---|
ef066ece87c0-5 | list_assertions_prompt = load_prompt(config.pop("list_assertions_prompt_path"))
if "check_assertions_prompt" in config:
check_assertions_prompt_config = config.pop("check_assertions_prompt")
check_assertions_prompt = load_prompt_from_config(
check_assertions_prompt_config
)
elif "check_assertions_prompt_path" in config:
check_assertions_prompt = load_prompt(
config.pop("check_assertions_prompt_path")
)
if "revised_answer_prompt" in config:
revised_answer_prompt_config = config.pop("revised_answer_prompt")
revised_answer_prompt = load_prompt_from_config(revised_answer_prompt_config)
elif "revised_answer_prompt_path" in config:
revised_answer_prompt = load_prompt(config.pop("revised_answer_prompt_path"))
return LLMCheckerChain(
llm=llm,
create_draft_answer_prompt=create_draft_answer_prompt,
list_assertions_prompt=list_assertions_prompt,
check_assertions_prompt=check_assertions_prompt,
revised_answer_prompt=revised_answer_prompt,
**config,
)
def _load_llm_math_chain(config: dict, **kwargs: Any) -> LLMMathChain:
if "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm` or `llm_path` must be present.")
if "prompt" in config:
prompt_config = config.pop("prompt")
prompt = load_prompt_from_config(prompt_config)
elif "prompt_path" in config: | https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html |
ef066ece87c0-6 | prompt = load_prompt_from_config(prompt_config)
elif "prompt_path" in config:
prompt = load_prompt(config.pop("prompt_path"))
return LLMMathChain(llm=llm, prompt=prompt, **config)
def _load_map_rerank_documents_chain(
config: dict, **kwargs: Any
) -> MapRerankDocumentsChain:
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.")
return MapRerankDocumentsChain(llm_chain=llm_chain, **config)
def _load_pal_chain(config: dict, **kwargs: Any) -> PALChain:
if "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm` or `llm_path` must be present.")
if "prompt" in config:
prompt_config = config.pop("prompt")
prompt = load_prompt_from_config(prompt_config)
elif "prompt_path" in config:
prompt = load_prompt(config.pop("prompt_path"))
else:
raise ValueError("One of `prompt` or `prompt_path` must be present.")
return PALChain(llm=llm, prompt=prompt, **config) | https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html |
ef066ece87c0-7 | return PALChain(llm=llm, prompt=prompt, **config)
def _load_refine_documents_chain(config: dict, **kwargs: Any) -> RefineDocumentsChain:
if "initial_llm_chain" in config:
initial_llm_chain_config = config.pop("initial_llm_chain")
initial_llm_chain = load_chain_from_config(initial_llm_chain_config)
elif "initial_llm_chain_path" in config:
initial_llm_chain = load_chain(config.pop("initial_llm_chain_path"))
else:
raise ValueError(
"One of `initial_llm_chain` or `initial_llm_chain_config` must be present."
)
if "refine_llm_chain" in config:
refine_llm_chain_config = config.pop("refine_llm_chain")
refine_llm_chain = load_chain_from_config(refine_llm_chain_config)
elif "refine_llm_chain_path" in config:
refine_llm_chain = load_chain(config.pop("refine_llm_chain_path"))
else:
raise ValueError(
"One of `refine_llm_chain` or `refine_llm_chain_config` must be present."
)
if "document_prompt" in config:
prompt_config = config.pop("document_prompt")
document_prompt = load_prompt_from_config(prompt_config)
elif "document_prompt_path" in config:
document_prompt = load_prompt(config.pop("document_prompt_path"))
return RefineDocumentsChain(
initial_llm_chain=initial_llm_chain,
refine_llm_chain=refine_llm_chain,
document_prompt=document_prompt,
**config,
)
def _load_qa_with_sources_chain(config: dict, **kwargs: Any) -> QAWithSourcesChain: | https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html |
ef066ece87c0-8 | if "combine_documents_chain" in config:
combine_documents_chain_config = config.pop("combine_documents_chain")
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
elif "combine_documents_chain_path" in config:
combine_documents_chain = load_chain(config.pop("combine_documents_chain_path"))
else:
raise ValueError(
"One of `combine_documents_chain` or "
"`combine_documents_chain_path` must be present."
)
return QAWithSourcesChain(combine_documents_chain=combine_documents_chain, **config)
def _load_sql_database_chain(config: dict, **kwargs: Any) -> SQLDatabaseChain:
if "database" in kwargs:
database = kwargs.pop("database")
else:
raise ValueError("`database` must be present.")
if "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm` or `llm_path` must be present.")
if "prompt" in config:
prompt_config = config.pop("prompt")
prompt = load_prompt_from_config(prompt_config)
else:
prompt = None
return SQLDatabaseChain.from_llm(llm, database, prompt=prompt, **config)
def _load_vector_db_qa_with_sources_chain(
config: dict, **kwargs: Any
) -> VectorDBQAWithSourcesChain:
if "vectorstore" in kwargs:
vectorstore = kwargs.pop("vectorstore")
else:
raise ValueError("`vectorstore` must be present.") | https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html |
ef066ece87c0-9 | else:
raise ValueError("`vectorstore` must be present.")
if "combine_documents_chain" in config:
combine_documents_chain_config = config.pop("combine_documents_chain")
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
elif "combine_documents_chain_path" in config:
combine_documents_chain = load_chain(config.pop("combine_documents_chain_path"))
else:
raise ValueError(
"One of `combine_documents_chain` or "
"`combine_documents_chain_path` must be present."
)
return VectorDBQAWithSourcesChain(
combine_documents_chain=combine_documents_chain,
vectorstore=vectorstore,
**config,
)
def _load_vector_db_qa(config: dict, **kwargs: Any) -> VectorDBQA:
if "vectorstore" in kwargs:
vectorstore = kwargs.pop("vectorstore")
else:
raise ValueError("`vectorstore` must be present.")
if "combine_documents_chain" in config:
combine_documents_chain_config = config.pop("combine_documents_chain")
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
elif "combine_documents_chain_path" in config:
combine_documents_chain = load_chain(config.pop("combine_documents_chain_path"))
else:
raise ValueError(
"One of `combine_documents_chain` or "
"`combine_documents_chain_path` must be present."
)
return VectorDBQA(
combine_documents_chain=combine_documents_chain,
vectorstore=vectorstore,
**config,
)
def _load_api_chain(config: dict, **kwargs: Any) -> APIChain:
if "api_request_chain" in config:
api_request_chain_config = config.pop("api_request_chain") | https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html |
ef066ece87c0-10 | api_request_chain_config = config.pop("api_request_chain")
api_request_chain = load_chain_from_config(api_request_chain_config)
elif "api_request_chain_path" in config:
api_request_chain = load_chain(config.pop("api_request_chain_path"))
else:
raise ValueError(
"One of `api_request_chain` or `api_request_chain_path` must be present."
)
if "api_answer_chain" in config:
api_answer_chain_config = config.pop("api_answer_chain")
api_answer_chain = load_chain_from_config(api_answer_chain_config)
elif "api_answer_chain_path" in config:
api_answer_chain = load_chain(config.pop("api_answer_chain_path"))
else:
raise ValueError(
"One of `api_answer_chain` or `api_answer_chain_path` must be present."
)
if "requests_wrapper" in kwargs:
requests_wrapper = kwargs.pop("requests_wrapper")
else:
raise ValueError("`requests_wrapper` must be present.")
return APIChain(
api_request_chain=api_request_chain,
api_answer_chain=api_answer_chain,
requests_wrapper=requests_wrapper,
**config,
)
def _load_llm_requests_chain(config: dict, **kwargs: Any) -> LLMRequestsChain:
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.")
if "requests_wrapper" in kwargs: | https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html |
ef066ece87c0-11 | if "requests_wrapper" in kwargs:
requests_wrapper = kwargs.pop("requests_wrapper")
return LLMRequestsChain(
llm_chain=llm_chain, requests_wrapper=requests_wrapper, **config
)
else:
return LLMRequestsChain(llm_chain=llm_chain, **config)
type_to_loader_dict = {
"api_chain": _load_api_chain,
"hyde_chain": _load_hyde_chain,
"llm_chain": _load_llm_chain,
"llm_bash_chain": _load_llm_bash_chain,
"llm_checker_chain": _load_llm_checker_chain,
"llm_math_chain": _load_llm_math_chain,
"llm_requests_chain": _load_llm_requests_chain,
"pal_chain": _load_pal_chain,
"qa_with_sources_chain": _load_qa_with_sources_chain,
"stuff_documents_chain": _load_stuff_documents_chain,
"map_reduce_documents_chain": _load_map_reduce_documents_chain,
"map_rerank_documents_chain": _load_map_rerank_documents_chain,
"refine_documents_chain": _load_refine_documents_chain,
"sql_database_chain": _load_sql_database_chain,
"vector_db_qa_with_sources_chain": _load_vector_db_qa_with_sources_chain,
"vector_db_qa": _load_vector_db_qa,
}
def load_chain_from_config(config: dict, **kwargs: Any) -> Chain:
"""Load chain from Config Dict."""
if "_type" not in config:
raise ValueError("Must specify a chain Type in config")
config_type = config.pop("_type")
if config_type not in type_to_loader_dict: | https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html |
ef066ece87c0-12 | if config_type not in type_to_loader_dict:
raise ValueError(f"Loading {config_type} chain not supported")
chain_loader = type_to_loader_dict[config_type]
return chain_loader(config, **kwargs)
[docs]def load_chain(path: Union[str, Path], **kwargs: Any) -> Chain:
"""Unified method for loading a chain from LangChainHub or local fs."""
if hub_result := try_load_from_hub(
path, _load_chain_from_file, "chains", {"json", "yaml"}, **kwargs
):
return hub_result
else:
return _load_chain_from_file(path, **kwargs)
def _load_chain_from_file(file: Union[str, Path], **kwargs: Any) -> Chain:
"""Load chain from file."""
# Convert file to Path object.
if isinstance(file, str):
file_path = Path(file)
else:
file_path = file
# Load from either json or yaml.
if file_path.suffix == ".json":
with open(file_path) as f:
config = json.load(f)
elif file_path.suffix == ".yaml":
with open(file_path, "r") as f:
config = yaml.safe_load(f)
else:
raise ValueError("File type must be json or yaml")
# Override default 'verbose' and 'memory' for the chain
if "verbose" in kwargs:
config["verbose"] = kwargs.pop("verbose")
if "memory" in kwargs:
config["memory"] = kwargs.pop("memory")
# Load the chain from the config now.
return load_chain_from_config(config, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase. | https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html |
ef066ece87c0-13 | By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html |
96ba8cf2d4cd-0 | Source code for langchain.chains.llm
"""Chain that just formats a prompt and calls an LLM."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
from pydantic import Extra
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManager,
AsyncCallbackManagerForChainRun,
CallbackManager,
CallbackManagerForChainRun,
Callbacks,
)
from langchain.chains.base import Chain
from langchain.input import get_colored_text
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import LLMResult, PromptValue
[docs]class LLMChain(Chain):
"""Chain to run queries against LLMs.
Example:
.. code-block:: python
from langchain import LLMChain, OpenAI, PromptTemplate
prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(
input_variables=["adjective"], template=prompt_template
)
llm = LLMChain(llm=OpenAI(), prompt=prompt)
"""
prompt: BasePromptTemplate
"""Prompt object to use."""
llm: BaseLanguageModel
output_key: str = "text" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Will always return text key. | https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html |
96ba8cf2d4cd-1 | def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
response = self.generate([inputs], run_manager=run_manager)
return self.create_outputs(response)[0]
[docs] def generate(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = self.prep_prompts(input_list, run_manager=run_manager)
return self.llm.generate_prompt(
prompts, stop, callbacks=run_manager.get_child() if run_manager else None
)
[docs] async def agenerate(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = await self.aprep_prompts(input_list, run_manager=run_manager)
return await self.llm.agenerate_prompt(
prompts, stop, callbacks=run_manager.get_child() if run_manager else None
)
[docs] def prep_prompts(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Tuple[List[PromptValue], Optional[List[str]]]:
"""Prepare prompts from inputs."""
stop = None | https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html |
96ba8cf2d4cd-2 | """Prepare prompts from inputs."""
stop = None
if "stop" in input_list[0]:
stop = input_list[0]["stop"]
prompts = []
for inputs in input_list:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), "green")
_text = "Prompt after formatting:\n" + _colored_text
if run_manager:
run_manager.on_text(_text, end="\n", verbose=self.verbose)
if "stop" in inputs and inputs["stop"] != stop:
raise ValueError(
"If `stop` is present in any inputs, should be present in all."
)
prompts.append(prompt)
return prompts, stop
[docs] async def aprep_prompts(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Tuple[List[PromptValue], Optional[List[str]]]:
"""Prepare prompts from inputs."""
stop = None
if "stop" in input_list[0]:
stop = input_list[0]["stop"]
prompts = []
for inputs in input_list:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), "green")
_text = "Prompt after formatting:\n" + _colored_text
if run_manager:
await run_manager.on_text(_text, end="\n", verbose=self.verbose) | https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html |
96ba8cf2d4cd-3 | await run_manager.on_text(_text, end="\n", verbose=self.verbose)
if "stop" in inputs and inputs["stop"] != stop:
raise ValueError(
"If `stop` is present in any inputs, should be present in all."
)
prompts.append(prompt)
return prompts, stop
[docs] def apply(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> List[Dict[str, str]]:
"""Utilize the LLM generate method for speed gains."""
callback_manager = CallbackManager.configure(
callbacks, self.callbacks, self.verbose
)
run_manager = callback_manager.on_chain_start(
{"name": self.__class__.__name__},
{"input_list": input_list},
)
try:
response = self.generate(input_list, run_manager=run_manager)
except (KeyboardInterrupt, Exception) as e:
run_manager.on_chain_error(e)
raise e
outputs = self.create_outputs(response)
run_manager.on_chain_end({"outputs": outputs})
return outputs
[docs] async def aapply(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> List[Dict[str, str]]:
"""Utilize the LLM generate method for speed gains."""
callback_manager = AsyncCallbackManager.configure(
callbacks, self.callbacks, self.verbose
)
run_manager = await callback_manager.on_chain_start(
{"name": self.__class__.__name__},
{"input_list": input_list},
)
try:
response = await self.agenerate(input_list, run_manager=run_manager)
except (KeyboardInterrupt, Exception) as e: | https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html |
96ba8cf2d4cd-4 | except (KeyboardInterrupt, Exception) as e:
await run_manager.on_chain_error(e)
raise e
outputs = self.create_outputs(response)
await run_manager.on_chain_end({"outputs": outputs})
return outputs
[docs] def create_outputs(self, response: LLMResult) -> List[Dict[str, str]]:
"""Create outputs from response."""
return [
# Get the text of the top generated string.
{self.output_key: generation[0].text}
for generation in response.generations
]
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
response = await self.agenerate([inputs], run_manager=run_manager)
return self.create_outputs(response)[0]
[docs] def predict(self, callbacks: Callbacks = None, **kwargs: Any) -> str:
"""Format prompt with kwargs and pass to LLM.
Args:
callbacks: Callbacks to pass to LLMChain
**kwargs: Keys to pass to prompt template.
Returns:
Completion from LLM.
Example:
.. code-block:: python
completion = llm.predict(adjective="funny")
"""
return self(kwargs, callbacks=callbacks)[self.output_key]
[docs] async def apredict(self, callbacks: Callbacks = None, **kwargs: Any) -> str:
"""Format prompt with kwargs and pass to LLM.
Args:
callbacks: Callbacks to pass to LLMChain
**kwargs: Keys to pass to prompt template.
Returns:
Completion from LLM.
Example: | https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html |
96ba8cf2d4cd-5 | Returns:
Completion from LLM.
Example:
.. code-block:: python
completion = llm.predict(adjective="funny")
"""
return (await self.acall(kwargs, callbacks=callbacks))[self.output_key]
[docs] def predict_and_parse(
self, callbacks: Callbacks = None, **kwargs: Any
) -> Union[str, List[str], Dict[str, Any]]:
"""Call predict and then parse the results."""
result = self.predict(callbacks=callbacks, **kwargs)
if self.prompt.output_parser is not None:
return self.prompt.output_parser.parse(result)
else:
return result
[docs] async def apredict_and_parse(
self, callbacks: Callbacks = None, **kwargs: Any
) -> Union[str, List[str], Dict[str, str]]:
"""Call apredict and then parse the results."""
result = await self.apredict(callbacks=callbacks, **kwargs)
if self.prompt.output_parser is not None:
return self.prompt.output_parser.parse(result)
else:
return result
[docs] def apply_and_parse(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
"""Call apply and then parse the results."""
result = self.apply(input_list, callbacks=callbacks)
return self._parse_result(result)
def _parse_result(
self, result: List[Dict[str, str]]
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
if self.prompt.output_parser is not None:
return [
self.prompt.output_parser.parse(res[self.output_key]) for res in result | https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html |
96ba8cf2d4cd-6 | return [
self.prompt.output_parser.parse(res[self.output_key]) for res in result
]
else:
return result
[docs] async def aapply_and_parse(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
"""Call apply and then parse the results."""
result = await self.aapply(input_list, callbacks=callbacks)
return self._parse_result(result)
@property
def _chain_type(self) -> str:
return "llm_chain"
[docs] @classmethod
def from_string(cls, llm: BaseLanguageModel, template: str) -> Chain:
"""Create LLMChain from LLM and template."""
prompt_template = PromptTemplate.from_template(template)
return cls(llm=llm, prompt=prompt_template)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html |
9b78606e19b8-0 | Source code for langchain.chains.sequential
"""Chain pipeline where the outputs of one step feed directly into next."""
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.input import get_color_mapping
[docs]class SequentialChain(Chain):
"""Chain where the outputs of one chain feed directly into next."""
chains: List[Chain]
input_variables: List[str]
output_variables: List[str] #: :meta private:
return_all: bool = False
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Return expected input keys to the chain.
:meta private:
"""
return self.input_variables
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return self.output_variables
@root_validator(pre=True)
def validate_chains(cls, values: Dict) -> Dict:
"""Validate that the correct inputs exist for all chains."""
chains = values["chains"]
input_variables = values["input_variables"]
memory_keys = list()
if "memory" in values and values["memory"] is not None:
"""Validate that prompt input variables are consistent."""
memory_keys = values["memory"].memory_variables
if set(input_variables).intersection(set(memory_keys)):
overlapping_keys = set(input_variables) & set(memory_keys)
raise ValueError( | https://python.langchain.com/en/latest/_modules/langchain/chains/sequential.html |
9b78606e19b8-1 | overlapping_keys = set(input_variables) & set(memory_keys)
raise ValueError(
f"The the input key(s) {''.join(overlapping_keys)} are found "
f"in the Memory keys ({memory_keys}) - please use input and "
f"memory keys that don't overlap."
)
known_variables = set(input_variables + memory_keys)
for chain in chains:
missing_vars = set(chain.input_keys).difference(known_variables)
if missing_vars:
raise ValueError(
f"Missing required input keys: {missing_vars}, "
f"only had {known_variables}"
)
overlapping_keys = known_variables.intersection(chain.output_keys)
if overlapping_keys:
raise ValueError(
f"Chain returned keys that already exist: {overlapping_keys}"
)
known_variables |= set(chain.output_keys)
if "output_variables" not in values:
if values.get("return_all", False):
output_keys = known_variables.difference(input_variables)
else:
output_keys = chains[-1].output_keys
values["output_variables"] = output_keys
else:
missing_vars = set(values["output_variables"]).difference(known_variables)
if missing_vars:
raise ValueError(
f"Expected output variables that were not found: {missing_vars}."
)
return values
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
known_values = inputs.copy()
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
for i, chain in enumerate(self.chains):
callbacks = _run_manager.get_child() | https://python.langchain.com/en/latest/_modules/langchain/chains/sequential.html |
9b78606e19b8-2 | callbacks = _run_manager.get_child()
outputs = chain(known_values, return_only_outputs=True, callbacks=callbacks)
known_values.update(outputs)
return {k: known_values[k] for k in self.output_variables}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
known_values = inputs.copy()
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
for i, chain in enumerate(self.chains):
outputs = await chain.acall(
known_values, return_only_outputs=True, callbacks=callbacks
)
known_values.update(outputs)
return {k: known_values[k] for k in self.output_variables}
[docs]class SimpleSequentialChain(Chain):
"""Simple chain where the outputs of one step feed directly into next."""
chains: List[Chain]
strip_outputs: bool = False
input_key: str = "input" #: :meta private:
output_key: str = "output" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
@root_validator()
def validate_chains(cls, values: Dict) -> Dict: | https://python.langchain.com/en/latest/_modules/langchain/chains/sequential.html |
9b78606e19b8-3 | @root_validator()
def validate_chains(cls, values: Dict) -> Dict:
"""Validate that chains are all single input/output."""
for chain in values["chains"]:
if len(chain.input_keys) != 1:
raise ValueError(
"Chains used in SimplePipeline should all have one input, got "
f"{chain} with {len(chain.input_keys)} inputs."
)
if len(chain.output_keys) != 1:
raise ValueError(
"Chains used in SimplePipeline should all have one output, got "
f"{chain} with {len(chain.output_keys)} outputs."
)
return values
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
_input = inputs[self.input_key]
color_mapping = get_color_mapping([str(i) for i in range(len(self.chains))])
for i, chain in enumerate(self.chains):
_input = chain.run(_input, callbacks=_run_manager.get_child())
if self.strip_outputs:
_input = _input.strip()
_run_manager.on_text(
_input, color=color_mapping[str(i)], end="\n", verbose=self.verbose
)
return {self.output_key: _input}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() | https://python.langchain.com/en/latest/_modules/langchain/chains/sequential.html |
9b78606e19b8-4 | _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
_input = inputs[self.input_key]
color_mapping = get_color_mapping([str(i) for i in range(len(self.chains))])
for i, chain in enumerate(self.chains):
_input = await chain.arun(_input, callbacks=callbacks)
if self.strip_outputs:
_input = _input.strip()
await _run_manager.on_text(
_input, color=color_mapping[str(i)], end="\n", verbose=self.verbose
)
return {self.output_key: _input}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/sequential.html |
d5bec16522ab-0 | Source code for langchain.chains.hyde.base
"""Hypothetical Document Embeddings.
https://arxiv.org/abs/2212.10496
"""
from __future__ import annotations
from typing import Any, Dict, List, Optional
import numpy as np
from pydantic import Extra
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.hyde.prompts import PROMPT_MAP
from langchain.chains.llm import LLMChain
from langchain.embeddings.base import Embeddings
[docs]class HypotheticalDocumentEmbedder(Chain, Embeddings):
"""Generate hypothetical document for query, and then embed that.
Based on https://arxiv.org/abs/2212.10496
"""
base_embeddings: Embeddings
llm_chain: LLMChain
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Input keys for Hyde's LLM chain."""
return self.llm_chain.input_keys
@property
def output_keys(self) -> List[str]:
"""Output keys for Hyde's LLM chain."""
return self.llm_chain.output_keys
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call the base embeddings."""
return self.base_embeddings.embed_documents(texts)
[docs] def combine_embeddings(self, embeddings: List[List[float]]) -> List[float]:
"""Combine embeddings into final embeddings."""
return list(np.array(embeddings).mean(axis=0)) | https://python.langchain.com/en/latest/_modules/langchain/chains/hyde/base.html |
d5bec16522ab-1 | return list(np.array(embeddings).mean(axis=0))
[docs] def embed_query(self, text: str) -> List[float]:
"""Generate a hypothetical document and embedded it."""
var_name = self.llm_chain.input_keys[0]
result = self.llm_chain.generate([{var_name: text}])
documents = [generation.text for generation in result.generations[0]]
embeddings = self.embed_documents(documents)
return self.combine_embeddings(embeddings)
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
"""Call the internal llm chain."""
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
return self.llm_chain(inputs, callbacks=_run_manager.get_child())
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
base_embeddings: Embeddings,
prompt_key: str,
**kwargs: Any,
) -> HypotheticalDocumentEmbedder:
"""Load and use LLMChain for a specific prompt key."""
prompt = PROMPT_MAP[prompt_key]
llm_chain = LLMChain(llm=llm, prompt=prompt)
return cls(base_embeddings=base_embeddings, llm_chain=llm_chain, **kwargs)
@property
def _chain_type(self) -> str:
return "hyde_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/hyde/base.html |
294018abbbf3-0 | Source code for langchain.chains.llm_summarization_checker.base
"""Chain for summarization with self-verification."""
from __future__ import annotations
import warnings
from pathlib import Path
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.sequential import SequentialChain
from langchain.prompts.prompt import PromptTemplate
PROMPTS_DIR = Path(__file__).parent / "prompts"
CREATE_ASSERTIONS_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "create_facts.txt", ["summary"]
)
CHECK_ASSERTIONS_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "check_facts.txt", ["assertions"]
)
REVISED_SUMMARY_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "revise_summary.txt", ["checked_assertions", "summary"]
)
ARE_ALL_TRUE_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "are_all_true_prompt.txt", ["checked_assertions"]
)
def _load_sequential_chain(
llm: BaseLanguageModel,
create_assertions_prompt: PromptTemplate,
check_assertions_prompt: PromptTemplate,
revised_summary_prompt: PromptTemplate,
are_all_true_prompt: PromptTemplate,
verbose: bool = False,
) -> SequentialChain:
chain = SequentialChain(
chains=[
LLMChain(
llm=llm,
prompt=create_assertions_prompt,
output_key="assertions",
verbose=verbose,
),
LLMChain( | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html |
294018abbbf3-1 | verbose=verbose,
),
LLMChain(
llm=llm,
prompt=check_assertions_prompt,
output_key="checked_assertions",
verbose=verbose,
),
LLMChain(
llm=llm,
prompt=revised_summary_prompt,
output_key="revised_summary",
verbose=verbose,
),
LLMChain(
llm=llm,
output_key="all_true",
prompt=are_all_true_prompt,
verbose=verbose,
),
],
input_variables=["summary"],
output_variables=["all_true", "revised_summary"],
verbose=verbose,
)
return chain
[docs]class LLMSummarizationCheckerChain(Chain):
"""Chain for question-answering with self-verification.
Example:
.. code-block:: python
from langchain import OpenAI, LLMSummarizationCheckerChain
llm = OpenAI(temperature=0.0)
checker_chain = LLMSummarizationCheckerChain.from_llm(llm)
"""
sequential_chain: SequentialChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated] LLM wrapper to use."""
create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT
"""[Deprecated]"""
check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT
"""[Deprecated]"""
revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT
"""[Deprecated]"""
are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT
"""[Deprecated]"""
input_key: str = "query" #: :meta private: | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html |
294018abbbf3-2 | input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
max_checks: int = 2
"""Maximum number of times to check the assertions. Default to double-checking."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values:
warnings.warn(
"Directly instantiating an LLMSummarizationCheckerChain with an llm is "
"deprecated. Please instantiate with"
" sequential_chain argument or using the from_llm class method."
)
if "sequential_chain" not in values and values["llm"] is not None:
values["sequential_chain"] = _load_sequential_chain(
values["llm"],
values.get("create_assertions_prompt", CREATE_ASSERTIONS_PROMPT),
values.get("check_assertions_prompt", CHECK_ASSERTIONS_PROMPT),
values.get("revised_summary_prompt", REVISED_SUMMARY_PROMPT),
values.get("are_all_true_prompt", ARE_ALL_TRUE_PROMPT),
verbose=values.get("verbose", False),
)
return values
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any], | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html |
294018abbbf3-3 | def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
all_true = False
count = 0
output = None
original_input = inputs[self.input_key]
chain_input = original_input
while not all_true and count < self.max_checks:
output = self.sequential_chain(
{"summary": chain_input}, callbacks=_run_manager.get_child()
)
count += 1
if output["all_true"].strip() == "True":
break
if self.verbose:
print(output["revised_summary"])
chain_input = output["revised_summary"]
if not output:
raise ValueError("No output from chain")
return {self.output_key: output["revised_summary"].strip()}
@property
def _chain_type(self) -> str:
return "llm_summarization_checker_chain"
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT,
check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT,
revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT,
are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT,
verbose: bool = False,
**kwargs: Any,
) -> LLMSummarizationCheckerChain:
chain = _load_sequential_chain(
llm,
create_assertions_prompt,
check_assertions_prompt,
revised_summary_prompt, | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html |
294018abbbf3-4 | create_assertions_prompt,
check_assertions_prompt,
revised_summary_prompt,
are_all_true_prompt,
verbose=verbose,
)
return cls(sequential_chain=chain, verbose=verbose, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html |
1e45a0e925a8-0 | Source code for langchain.chains.sql_database.base
"""Chain for interacting with SQL Database."""
from __future__ import annotations
import warnings
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.sql_database.prompt import DECIDER_PROMPT, PROMPT, SQL_PROMPTS
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.sql_database import SQLDatabase
from langchain.tools.sql_database.prompt import QUERY_CHECKER
INTERMEDIATE_STEPS_KEY = "intermediate_steps"
[docs]class SQLDatabaseChain(Chain):
"""Chain for interacting with SQL Database.
Example:
.. code-block:: python
from langchain import SQLDatabaseChain, OpenAI, SQLDatabase
db = SQLDatabase(...)
db_chain = SQLDatabaseChain.from_llm(OpenAI(), db)
"""
llm_chain: LLMChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated] LLM wrapper to use."""
database: SQLDatabase = Field(exclude=True)
"""SQL Database to connect to."""
prompt: Optional[BasePromptTemplate] = None
"""[Deprecated] Prompt to use to translate natural language to SQL."""
top_k: int = 5
"""Number of results to return from the query"""
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
return_intermediate_steps: bool = False | https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
1e45a0e925a8-1 | return_intermediate_steps: bool = False
"""Whether or not to return the intermediate steps along with the final answer."""
return_direct: bool = False
"""Whether or not to return the result of querying the SQL table directly."""
use_query_checker: bool = False
"""Whether or not the query checker tool should be used to attempt
to fix the initial SQL from the LLM."""
query_checker_prompt: Optional[BasePromptTemplate] = None
"""The prompt template that should be used by the query checker"""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values:
warnings.warn(
"Directly instantiating an SQLDatabaseChain with an llm is deprecated. "
"Please instantiate with llm_chain argument or using the from_llm "
"class method."
)
if "llm_chain" not in values and values["llm"] is not None:
database = values["database"]
prompt = values.get("prompt") or SQL_PROMPTS.get(
database.dialect, PROMPT
)
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt)
return values
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps: | https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
1e45a0e925a8-2 | :meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, INTERMEDIATE_STEPS_KEY]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
input_text = f"{inputs[self.input_key]}\nSQLQuery:"
_run_manager.on_text(input_text, verbose=self.verbose)
# If not present, then defaults to None which is all tables.
table_names_to_use = inputs.get("table_names_to_use")
table_info = self.database.get_table_info(table_names=table_names_to_use)
llm_inputs = {
"input": input_text,
"top_k": str(self.top_k),
"dialect": self.database.dialect,
"table_info": table_info,
"stop": ["\nSQLResult:"],
}
intermediate_steps: List = []
try:
intermediate_steps.append(llm_inputs) # input: sql generation
sql_cmd = self.llm_chain.predict(
callbacks=_run_manager.get_child(),
**llm_inputs,
).strip()
if not self.use_query_checker:
_run_manager.on_text(sql_cmd, color="green", verbose=self.verbose)
intermediate_steps.append(
sql_cmd
) # output: sql generation (no checker)
intermediate_steps.append({"sql_cmd": sql_cmd}) # input: sql exec
result = self.database.run(sql_cmd)
intermediate_steps.append(str(result)) # output: sql exec | https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
1e45a0e925a8-3 | intermediate_steps.append(str(result)) # output: sql exec
else:
query_checker_prompt = self.query_checker_prompt or PromptTemplate(
template=QUERY_CHECKER, input_variables=["query", "dialect"]
)
query_checker_chain = LLMChain(
llm=self.llm_chain.llm, prompt=query_checker_prompt
)
query_checker_inputs = {
"query": sql_cmd,
"dialect": self.database.dialect,
}
checked_sql_command: str = query_checker_chain.predict(
callbacks=_run_manager.get_child(), **query_checker_inputs
).strip()
intermediate_steps.append(
checked_sql_command
) # output: sql generation (checker)
_run_manager.on_text(
checked_sql_command, color="green", verbose=self.verbose
)
intermediate_steps.append(
{"sql_cmd": checked_sql_command}
) # input: sql exec
result = self.database.run(checked_sql_command)
intermediate_steps.append(str(result)) # output: sql exec
sql_cmd = checked_sql_command
_run_manager.on_text("\nSQLResult: ", verbose=self.verbose)
_run_manager.on_text(result, color="yellow", verbose=self.verbose)
# If return direct, we just set the final result equal to
# the result of the sql query result, otherwise try to get a human readable
# final answer
if self.return_direct:
final_result = result
else:
_run_manager.on_text("\nAnswer:", verbose=self.verbose)
input_text += f"{sql_cmd}\nSQLResult: {result}\nAnswer:"
llm_inputs["input"] = input_text
intermediate_steps.append(llm_inputs) # input: final answer | https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
1e45a0e925a8-4 | intermediate_steps.append(llm_inputs) # input: final answer
final_result = self.llm_chain.predict(
callbacks=_run_manager.get_child(),
**llm_inputs,
).strip()
intermediate_steps.append(final_result) # output: final answer
_run_manager.on_text(final_result, color="green", verbose=self.verbose)
chain_result: Dict[str, Any] = {self.output_key: final_result}
if self.return_intermediate_steps:
chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps
return chain_result
except Exception as exc:
# Append intermediate steps to exception, to aid in logging and later
# improvement of few shot prompt seeds
exc.intermediate_steps = intermediate_steps # type: ignore
raise exc
@property
def _chain_type(self) -> str:
return "sql_database_chain"
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
db: SQLDatabase,
prompt: Optional[BasePromptTemplate] = None,
**kwargs: Any,
) -> SQLDatabaseChain:
prompt = prompt or SQL_PROMPTS.get(db.dialect, PROMPT)
llm_chain = LLMChain(llm=llm, prompt=prompt)
return cls(llm_chain=llm_chain, database=db, **kwargs)
[docs]class SQLDatabaseSequentialChain(Chain):
"""Chain for querying SQL database that is a sequential chain.
The chain is as follows:
1. Based on the query, determine which tables to use.
2. Based on those tables, call the normal SQL database chain.
This is useful in cases where the number of tables in the database is large. | https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
1e45a0e925a8-5 | This is useful in cases where the number of tables in the database is large.
"""
decider_chain: LLMChain
sql_chain: SQLDatabaseChain
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
return_intermediate_steps: bool = False
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
database: SQLDatabase,
query_prompt: BasePromptTemplate = PROMPT,
decider_prompt: BasePromptTemplate = DECIDER_PROMPT,
**kwargs: Any,
) -> SQLDatabaseSequentialChain:
"""Load the necessary chains."""
sql_chain = SQLDatabaseChain.from_llm(
llm, database, prompt=query_prompt, **kwargs
)
decider_chain = LLMChain(
llm=llm, prompt=decider_prompt, output_key="table_names"
)
return cls(sql_chain=sql_chain, decider_chain=decider_chain, **kwargs)
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, INTERMEDIATE_STEPS_KEY]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None, | https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
1e45a0e925a8-6 | run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
_table_names = self.sql_chain.database.get_usable_table_names()
table_names = ", ".join(_table_names)
llm_inputs = {
"query": inputs[self.input_key],
"table_names": table_names,
}
_lowercased_table_names = [name.lower() for name in _table_names]
table_names_from_chain = self.decider_chain.predict_and_parse(**llm_inputs)
table_names_to_use = [
name
for name in table_names_from_chain
if name.lower() in _lowercased_table_names
]
_run_manager.on_text("Table names to use:", end="\n", verbose=self.verbose)
_run_manager.on_text(
str(table_names_to_use), color="yellow", verbose=self.verbose
)
new_inputs = {
self.sql_chain.input_key: inputs[self.input_key],
"table_names_to_use": table_names_to_use,
}
return self.sql_chain(
new_inputs, callbacks=_run_manager.get_child(), return_only_outputs=True
)
@property
def _chain_type(self) -> str:
return "sql_database_sequential_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
2e66f10b25f3-0 | Source code for langchain.chains.llm_checker.base
"""Chain for question-answering with self-verification."""
from __future__ import annotations
import warnings
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.llm_checker.prompt import (
CHECK_ASSERTIONS_PROMPT,
CREATE_DRAFT_ANSWER_PROMPT,
LIST_ASSERTIONS_PROMPT,
REVISED_ANSWER_PROMPT,
)
from langchain.chains.sequential import SequentialChain
from langchain.prompts import PromptTemplate
def _load_question_to_checked_assertions_chain(
llm: BaseLanguageModel,
create_draft_answer_prompt: PromptTemplate,
list_assertions_prompt: PromptTemplate,
check_assertions_prompt: PromptTemplate,
revised_answer_prompt: PromptTemplate,
) -> SequentialChain:
create_draft_answer_chain = LLMChain(
llm=llm,
prompt=create_draft_answer_prompt,
output_key="statement",
)
list_assertions_chain = LLMChain(
llm=llm,
prompt=list_assertions_prompt,
output_key="assertions",
)
check_assertions_chain = LLMChain(
llm=llm,
prompt=check_assertions_prompt,
output_key="checked_assertions",
)
revised_answer_chain = LLMChain(
llm=llm,
prompt=revised_answer_prompt,
output_key="revised_statement",
)
chains = [
create_draft_answer_chain, | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html |
2e66f10b25f3-1 | )
chains = [
create_draft_answer_chain,
list_assertions_chain,
check_assertions_chain,
revised_answer_chain,
]
question_to_checked_assertions_chain = SequentialChain(
chains=chains,
input_variables=["question"],
output_variables=["revised_statement"],
verbose=True,
)
return question_to_checked_assertions_chain
[docs]class LLMCheckerChain(Chain):
"""Chain for question-answering with self-verification.
Example:
.. code-block:: python
from langchain import OpenAI, LLMCheckerChain
llm = OpenAI(temperature=0.7)
checker_chain = LLMCheckerChain.from_llm(llm)
"""
question_to_checked_assertions_chain: SequentialChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated] LLM wrapper to use."""
create_draft_answer_prompt: PromptTemplate = CREATE_DRAFT_ANSWER_PROMPT
"""[Deprecated]"""
list_assertions_prompt: PromptTemplate = LIST_ASSERTIONS_PROMPT
"""[Deprecated]"""
check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT
"""[Deprecated]"""
revised_answer_prompt: PromptTemplate = REVISED_ANSWER_PROMPT
"""[Deprecated] Prompt to use when questioning the documents."""
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values: | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html |
2e66f10b25f3-2 | if "llm" in values:
warnings.warn(
"Directly instantiating an LLMCheckerChain with an llm is deprecated. "
"Please instantiate with question_to_checked_assertions_chain "
"or using the from_llm class method."
)
if (
"question_to_checked_assertions_chain" not in values
and values["llm"] is not None
):
question_to_checked_assertions_chain = (
_load_question_to_checked_assertions_chain(
values["llm"],
values.get(
"create_draft_answer_prompt", CREATE_DRAFT_ANSWER_PROMPT
),
values.get("list_assertions_prompt", LIST_ASSERTIONS_PROMPT),
values.get("check_assertions_prompt", CHECK_ASSERTIONS_PROMPT),
values.get("revised_answer_prompt", REVISED_ANSWER_PROMPT),
)
)
values[
"question_to_checked_assertions_chain"
] = question_to_checked_assertions_chain
return values
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
question = inputs[self.input_key]
output = self.question_to_checked_assertions_chain( | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html |
2e66f10b25f3-3 | question = inputs[self.input_key]
output = self.question_to_checked_assertions_chain(
{"question": question}, callbacks=_run_manager.get_child()
)
return {self.output_key: output["revised_statement"]}
@property
def _chain_type(self) -> str:
return "llm_checker_chain"
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
create_draft_answer_prompt: PromptTemplate = CREATE_DRAFT_ANSWER_PROMPT,
list_assertions_prompt: PromptTemplate = LIST_ASSERTIONS_PROMPT,
check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT,
revised_answer_prompt: PromptTemplate = REVISED_ANSWER_PROMPT,
**kwargs: Any,
) -> LLMCheckerChain:
question_to_checked_assertions_chain = (
_load_question_to_checked_assertions_chain(
llm,
create_draft_answer_prompt,
list_assertions_prompt,
check_assertions_prompt,
revised_answer_prompt,
)
)
return cls(
question_to_checked_assertions_chain=question_to_checked_assertions_chain,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html |
2704cfb3c65c-0 | Source code for langchain.chains.graph_qa.base
"""Question answering over a graph."""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Field
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.graph_qa.prompts import ENTITY_EXTRACTION_PROMPT, PROMPT
from langchain.chains.llm import LLMChain
from langchain.graphs.networkx_graph import NetworkxEntityGraph, get_entities
from langchain.prompts.base import BasePromptTemplate
[docs]class GraphQAChain(Chain):
"""Chain for question-answering against a graph."""
graph: NetworkxEntityGraph = Field(exclude=True)
entity_extraction_chain: LLMChain
qa_chain: LLMChain
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
return _output_keys
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
qa_prompt: BasePromptTemplate = PROMPT,
entity_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT,
**kwargs: Any,
) -> GraphQAChain:
"""Initialize from LLM.""" | https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/base.html |
2704cfb3c65c-1 | ) -> GraphQAChain:
"""Initialize from LLM."""
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
entity_chain = LLMChain(llm=llm, prompt=entity_prompt)
return cls(
qa_chain=qa_chain,
entity_extraction_chain=entity_chain,
**kwargs,
)
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
"""Extract entities, look up info and answer question."""
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
question = inputs[self.input_key]
entity_string = self.entity_extraction_chain.run(question)
_run_manager.on_text("Entities Extracted:", end="\n", verbose=self.verbose)
_run_manager.on_text(
entity_string, color="green", end="\n", verbose=self.verbose
)
entities = get_entities(entity_string)
context = ""
for entity in entities:
triplets = self.graph.get_entity_knowledge(entity)
context += "\n".join(triplets)
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
_run_manager.on_text(context, color="green", end="\n", verbose=self.verbose)
result = self.qa_chain(
{"question": question, "context": context},
callbacks=_run_manager.get_child(),
)
return {self.output_key: result[self.qa_chain.output_key]}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/base.html |
f1e458a69675-0 | Source code for langchain.chains.graph_qa.cypher
"""Question answering over a graph."""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Field
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.graph_qa.prompts import CYPHER_GENERATION_PROMPT, CYPHER_QA_PROMPT
from langchain.chains.llm import LLMChain
from langchain.graphs.neo4j_graph import Neo4jGraph
from langchain.prompts.base import BasePromptTemplate
[docs]class GraphCypherQAChain(Chain):
"""Chain for question-answering against a graph by generating Cypher statements."""
graph: Neo4jGraph = Field(exclude=True)
cypher_generation_chain: LLMChain
qa_chain: LLMChain
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
return _output_keys
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
*,
qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT,
cypher_prompt: BasePromptTemplate = CYPHER_GENERATION_PROMPT,
**kwargs: Any, | https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/cypher.html |
f1e458a69675-1 | **kwargs: Any,
) -> GraphCypherQAChain:
"""Initialize from LLM."""
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
cypher_generation_chain = LLMChain(llm=llm, prompt=cypher_prompt)
return cls(
qa_chain=qa_chain,
cypher_generation_chain=cypher_generation_chain,
**kwargs,
)
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
"""Generate Cypher statement, use it to look up in db and answer question."""
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
question = inputs[self.input_key]
generated_cypher = self.cypher_generation_chain.run(
{"question": question, "schema": self.graph.get_schema}, callbacks=callbacks
)
_run_manager.on_text("Generated Cypher:", end="\n", verbose=self.verbose)
_run_manager.on_text(
generated_cypher, color="green", end="\n", verbose=self.verbose
)
context = self.graph.query(generated_cypher)
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
_run_manager.on_text(
str(context), color="green", end="\n", verbose=self.verbose
)
result = self.qa_chain(
{"question": question, "context": context},
callbacks=callbacks,
)
return {self.output_key: result[self.qa_chain.output_key]}
By Harrison Chase | https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/cypher.html |
f1e458a69675-2 | By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/cypher.html |
21dc0e7e45c9-0 | Source code for langchain.chains.combine_documents.base
"""Base interface for chains combining documents."""
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Tuple
from pydantic import Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.docstore.document import Document
from langchain.prompts.base import BasePromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
def format_document(doc: Document, prompt: BasePromptTemplate) -> str:
"""Format a document into a string based on a prompt template."""
base_info = {"page_content": doc.page_content}
base_info.update(doc.metadata)
missing_metadata = set(prompt.input_variables).difference(base_info)
if len(missing_metadata) > 0:
required_metadata = [
iv for iv in prompt.input_variables if iv != "page_content"
]
raise ValueError(
f"Document prompt requires documents to have metadata variables: "
f"{required_metadata}. Received document with missing metadata: "
f"{list(missing_metadata)}."
)
document_info = {k: base_info[k] for k in prompt.input_variables}
return prompt.format(**document_info)
class BaseCombineDocumentsChain(Chain, ABC):
"""Base interface for chains combining documents."""
input_key: str = "input_documents" #: :meta private:
output_key: str = "output_text" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property | https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
21dc0e7e45c9-1 | :meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
def prompt_length(self, docs: List[Document], **kwargs: Any) -> Optional[int]:
"""Return the prompt length given the documents passed in.
Returns None if the method does not depend on the prompt length.
"""
return None
@abstractmethod
def combine_docs(self, docs: List[Document], **kwargs: Any) -> Tuple[str, dict]:
"""Combine documents into a single string."""
@abstractmethod
async def acombine_docs(
self, docs: List[Document], **kwargs: Any
) -> Tuple[str, dict]:
"""Combine documents into a single string asynchronously."""
def _call(
self,
inputs: Dict[str, List[Document]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
docs = inputs[self.input_key]
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
output, extra_return_dict = self.combine_docs(
docs, callbacks=_run_manager.get_child(), **other_keys
)
extra_return_dict[self.output_key] = output
return extra_return_dict
async def _acall(
self,
inputs: Dict[str, List[Document]],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None, | https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
21dc0e7e45c9-2 | run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
docs = inputs[self.input_key]
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
output, extra_return_dict = await self.acombine_docs(
docs, callbacks=_run_manager.get_child(), **other_keys
)
extra_return_dict[self.output_key] = output
return extra_return_dict
[docs]class AnalyzeDocumentChain(Chain):
"""Chain that splits documents, then analyzes it in pieces."""
input_key: str = "input_document" #: :meta private:
text_splitter: TextSplitter = Field(default_factory=RecursiveCharacterTextSplitter)
combine_docs_chain: BaseCombineDocumentsChain
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return self.combine_docs_chain.output_keys
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
document = inputs[self.input_key]
docs = self.text_splitter.create_documents([document])
# Other keys are assumed to be needed for LLM prediction | https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
21dc0e7e45c9-3 | # Other keys are assumed to be needed for LLM prediction
other_keys: Dict = {k: v for k, v in inputs.items() if k != self.input_key}
other_keys[self.combine_docs_chain.input_key] = docs
return self.combine_docs_chain(
other_keys, return_only_outputs=True, callbacks=_run_manager.get_child()
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
da2da8bb9c17-0 | Source code for langchain.chains.retrieval_qa.base
"""Chain for question-answering against a vector database."""
from __future__ import annotations
import warnings
from abc import abstractmethod
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.question_answering.stuff_prompt import PROMPT_SELECTOR
from langchain.prompts import PromptTemplate
from langchain.schema import BaseRetriever, Document
from langchain.vectorstores.base import VectorStore
class BaseRetrievalQA(Chain):
combine_documents_chain: BaseCombineDocumentsChain
"""Chain to use to combine the documents."""
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
return_source_documents: bool = False
"""Return the source documents."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
allow_population_by_field_name = True
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the output keys. | https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
da2da8bb9c17-1 | def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
if self.return_source_documents:
_output_keys = _output_keys + ["source_documents"]
return _output_keys
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
prompt: Optional[PromptTemplate] = None,
**kwargs: Any,
) -> BaseRetrievalQA:
"""Initialize from LLM."""
_prompt = prompt or PROMPT_SELECTOR.get_prompt(llm)
llm_chain = LLMChain(llm=llm, prompt=_prompt)
document_prompt = PromptTemplate(
input_variables=["page_content"], template="Context:\n{page_content}"
)
combine_documents_chain = StuffDocumentsChain(
llm_chain=llm_chain,
document_variable_name="context",
document_prompt=document_prompt,
)
return cls(combine_documents_chain=combine_documents_chain, **kwargs)
@classmethod
def from_chain_type(
cls,
llm: BaseLanguageModel,
chain_type: str = "stuff",
chain_type_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> BaseRetrievalQA:
"""Load chain from chain type."""
_chain_type_kwargs = chain_type_kwargs or {}
combine_documents_chain = load_qa_chain(
llm, chain_type=chain_type, **_chain_type_kwargs
)
return cls(combine_documents_chain=combine_documents_chain, **kwargs)
@abstractmethod
def _get_docs(self, question: str) -> List[Document]: | https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
da2da8bb9c17-2 | @abstractmethod
def _get_docs(self, question: str) -> List[Document]:
"""Get documents to do question answering over."""
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Run get_relevant_text and llm on input query.
If chain has 'return_source_documents' as 'True', returns
the retrieved documents as well under the key 'source_documents'.
Example:
.. code-block:: python
res = indexqa({'query': 'This is my query'})
answer, docs = res['result'], res['source_documents']
"""
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
question = inputs[self.input_key]
docs = self._get_docs(question)
answer = self.combine_documents_chain.run(
input_documents=docs, question=question, callbacks=_run_manager.get_child()
)
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
@abstractmethod
async def _aget_docs(self, question: str) -> List[Document]:
"""Get documents to do question answering over."""
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Run get_relevant_text and llm on input query.
If chain has 'return_source_documents' as 'True', returns
the retrieved documents as well under the key 'source_documents'.
Example: | https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
da2da8bb9c17-3 | the retrieved documents as well under the key 'source_documents'.
Example:
.. code-block:: python
res = indexqa({'query': 'This is my query'})
answer, docs = res['result'], res['source_documents']
"""
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
question = inputs[self.input_key]
docs = await self._aget_docs(question)
answer = await self.combine_documents_chain.arun(
input_documents=docs, question=question, callbacks=_run_manager.get_child()
)
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
[docs]class RetrievalQA(BaseRetrievalQA):
"""Chain for question-answering against an index.
Example:
.. code-block:: python
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.faiss import FAISS
from langchain.vectorstores.base import VectorStoreRetriever
retriever = VectorStoreRetriever(vectorstore=FAISS(...))
retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=retriever)
"""
retriever: BaseRetriever = Field(exclude=True)
def _get_docs(self, question: str) -> List[Document]:
return self.retriever.get_relevant_documents(question)
async def _aget_docs(self, question: str) -> List[Document]:
return await self.retriever.aget_relevant_documents(question)
[docs]class VectorDBQA(BaseRetrievalQA): | https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
da2da8bb9c17-4 | [docs]class VectorDBQA(BaseRetrievalQA):
"""Chain for question-answering against a vector database."""
vectorstore: VectorStore = Field(exclude=True, alias="vectorstore")
"""Vector Database to connect to."""
k: int = 4
"""Number of documents to query for."""
search_type: str = "similarity"
"""Search type to use over vectorstore. `similarity` or `mmr`."""
search_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Extra search args."""
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict:
warnings.warn(
"`VectorDBQA` is deprecated - "
"please use `from langchain.chains import RetrievalQA`"
)
return values
@root_validator()
def validate_search_type(cls, values: Dict) -> Dict:
"""Validate search type."""
if "search_type" in values:
search_type = values["search_type"]
if search_type not in ("similarity", "mmr"):
raise ValueError(f"search_type of {search_type} not allowed.")
return values
def _get_docs(self, question: str) -> List[Document]:
if self.search_type == "similarity":
docs = self.vectorstore.similarity_search(
question, k=self.k, **self.search_kwargs
)
elif self.search_type == "mmr":
docs = self.vectorstore.max_marginal_relevance_search(
question, k=self.k, **self.search_kwargs
)
else:
raise ValueError(f"search_type of {self.search_type} not allowed.")
return docs | https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
da2da8bb9c17-5 | raise ValueError(f"search_type of {self.search_type} not allowed.")
return docs
async def _aget_docs(self, question: str) -> List[Document]:
raise NotImplementedError("VectorDBQA does not support async")
@property
def _chain_type(self) -> str:
"""Return the chain type."""
return "vector_db_qa"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
b48866b14c4c-0 | Source code for langchain.chains.llm_bash.base
"""Chain that interprets a prompt and executes bash code to perform bash operations."""
from __future__ import annotations
import logging
import warnings
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.llm_bash.prompt import PROMPT
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import OutputParserException
from langchain.utilities.bash import BashProcess
logger = logging.getLogger(__name__)
[docs]class LLMBashChain(Chain):
"""Chain that interprets a prompt and executes bash code to perform bash operations.
Example:
.. code-block:: python
from langchain import LLMBashChain, OpenAI
llm_bash = LLMBashChain.from_llm(OpenAI())
"""
llm_chain: LLMChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated] LLM wrapper to use."""
input_key: str = "question" #: :meta private:
output_key: str = "answer" #: :meta private:
prompt: BasePromptTemplate = PROMPT
"""[Deprecated]"""
bash_process: BashProcess = Field(default_factory=BashProcess) #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict: | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_bash/base.html |
b48866b14c4c-1 | def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values:
warnings.warn(
"Directly instantiating an LLMBashChain with an llm is deprecated. "
"Please instantiate with llm_chain or using the from_llm class method."
)
if "llm_chain" not in values and values["llm"] is not None:
prompt = values.get("prompt", PROMPT)
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt)
return values
@root_validator
def validate_prompt(cls, values: Dict) -> Dict:
if values["llm_chain"].prompt.output_parser is None:
raise ValueError(
"The prompt used by llm_chain is expected to have an output_parser."
)
return values
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
_run_manager.on_text(inputs[self.input_key], verbose=self.verbose)
t = self.llm_chain.predict(
question=inputs[self.input_key], callbacks=_run_manager.get_child()
)
_run_manager.on_text(t, color="green", verbose=self.verbose) | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_bash/base.html |
b48866b14c4c-2 | )
_run_manager.on_text(t, color="green", verbose=self.verbose)
t = t.strip()
try:
parser = self.llm_chain.prompt.output_parser
command_list = parser.parse(t) # type: ignore[union-attr]
except OutputParserException as e:
_run_manager.on_chain_error(e, verbose=self.verbose)
raise e
if self.verbose:
_run_manager.on_text("\nCode: ", verbose=self.verbose)
_run_manager.on_text(
str(command_list), color="yellow", verbose=self.verbose
)
output = self.bash_process.run(command_list)
_run_manager.on_text("\nAnswer: ", verbose=self.verbose)
_run_manager.on_text(output, color="yellow", verbose=self.verbose)
return {self.output_key: output}
@property
def _chain_type(self) -> str:
return "llm_bash_chain"
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
prompt: BasePromptTemplate = PROMPT,
**kwargs: Any,
) -> LLMBashChain:
llm_chain = LLMChain(llm=llm, prompt=prompt)
return cls(llm_chain=llm_chain, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_bash/base.html |
217d65b1a947-0 | Source code for langchain.chains.flare.base
from __future__ import annotations
import re
from abc import abstractmethod
from typing import Any, Dict, List, Optional, Sequence, Tuple
import numpy as np
from pydantic import Field
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.chains.flare.prompts import (
PROMPT,
QUESTION_GENERATOR_PROMPT,
FinishedOutputParser,
)
from langchain.chains.llm import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import BasePromptTemplate
from langchain.schema import BaseRetriever, Generation
class _ResponseChain(LLMChain):
prompt: BasePromptTemplate = PROMPT
@property
def input_keys(self) -> List[str]:
return self.prompt.input_variables
def generate_tokens_and_log_probs(
self,
_input: Dict[str, Any],
*,
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Tuple[Sequence[str], Sequence[float]]:
llm_result = self.generate([_input], run_manager=run_manager)
return self._extract_tokens_and_log_probs(llm_result.generations[0])
@abstractmethod
def _extract_tokens_and_log_probs(
self, generations: List[Generation]
) -> Tuple[Sequence[str], Sequence[float]]:
"""Extract tokens and log probs from response."""
class _OpenAIResponseChain(_ResponseChain):
llm: OpenAI = Field(
default_factory=lambda: OpenAI(
max_tokens=32, model_kwargs={"logprobs": 1}, temperature=0
) | https://python.langchain.com/en/latest/_modules/langchain/chains/flare/base.html |
217d65b1a947-1 | )
)
def _extract_tokens_and_log_probs(
self, generations: List[Generation]
) -> Tuple[Sequence[str], Sequence[float]]:
tokens = []
log_probs = []
for gen in generations:
if gen.generation_info is None:
raise ValueError
tokens.extend(gen.generation_info["logprobs"]["tokens"])
log_probs.extend(gen.generation_info["logprobs"]["token_logprobs"])
return tokens, log_probs
class QuestionGeneratorChain(LLMChain):
prompt: BasePromptTemplate = QUESTION_GENERATOR_PROMPT
@property
def input_keys(self) -> List[str]:
return ["user_input", "context", "response"]
def _low_confidence_spans(
tokens: Sequence[str],
log_probs: Sequence[float],
min_prob: float,
min_token_gap: int,
num_pad_tokens: int,
) -> List[str]:
_low_idx = np.where(np.exp(log_probs) < min_prob)[0]
low_idx = [i for i in _low_idx if re.search(r"\w", tokens[i])]
if len(low_idx) == 0:
return []
spans = [[low_idx[0], low_idx[0] + num_pad_tokens + 1]]
for i, idx in enumerate(low_idx[1:]):
end = idx + num_pad_tokens + 1
if idx - low_idx[i] < min_token_gap:
spans[-1][1] = end
else:
spans.append([idx, end])
return ["".join(tokens[start:end]) for start, end in spans]
[docs]class FlareChain(Chain):
question_generator_chain: QuestionGeneratorChain | https://python.langchain.com/en/latest/_modules/langchain/chains/flare/base.html |
217d65b1a947-2 | [docs]class FlareChain(Chain):
question_generator_chain: QuestionGeneratorChain
response_chain: _ResponseChain = Field(default_factory=_OpenAIResponseChain)
output_parser: FinishedOutputParser = Field(default_factory=FinishedOutputParser)
retriever: BaseRetriever
min_prob: float = 0.2
min_token_gap: int = 5
num_pad_tokens: int = 2
max_iter: int = 10
start_with_retrieval: bool = True
@property
def input_keys(self) -> List[str]:
return ["user_input"]
@property
def output_keys(self) -> List[str]:
return ["response"]
def _do_generation(
self,
questions: List[str],
user_input: str,
response: str,
_run_manager: CallbackManagerForChainRun,
) -> Tuple[str, bool]:
callbacks = _run_manager.get_child()
docs = []
for question in questions:
docs.extend(self.retriever.get_relevant_documents(question))
context = "\n\n".join(d.page_content for d in docs)
result = self.response_chain.predict(
user_input=user_input,
context=context,
response=response,
callbacks=callbacks,
)
marginal, finished = self.output_parser.parse(result)
return marginal, finished
def _do_retrieval(
self,
low_confidence_spans: List[str],
_run_manager: CallbackManagerForChainRun,
user_input: str,
response: str,
initial_response: str,
) -> Tuple[str, bool]:
question_gen_inputs = [
{
"user_input": user_input, | https://python.langchain.com/en/latest/_modules/langchain/chains/flare/base.html |
217d65b1a947-3 | question_gen_inputs = [
{
"user_input": user_input,
"current_response": initial_response,
"uncertain_span": span,
}
for span in low_confidence_spans
]
callbacks = _run_manager.get_child()
question_gen_outputs = self.question_generator_chain.apply(
question_gen_inputs, callbacks=callbacks
)
questions = [
output[self.question_generator_chain.output_keys[0]]
for output in question_gen_outputs
]
_run_manager.on_text(
f"Generated Questions: {questions}", color="yellow", end="\n"
)
return self._do_generation(questions, user_input, response, _run_manager)
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
user_input = inputs[self.input_keys[0]]
response = ""
for i in range(self.max_iter):
_run_manager.on_text(
f"Current Response: {response}", color="blue", end="\n"
)
_input = {"user_input": user_input, "context": "", "response": response}
tokens, log_probs = self.response_chain.generate_tokens_and_log_probs(
_input, run_manager=_run_manager
)
low_confidence_spans = _low_confidence_spans(
tokens,
log_probs,
self.min_prob,
self.min_token_gap,
self.num_pad_tokens,
)
initial_response = response.strip() + " " + "".join(tokens) | https://python.langchain.com/en/latest/_modules/langchain/chains/flare/base.html |
217d65b1a947-4 | )
initial_response = response.strip() + " " + "".join(tokens)
if not low_confidence_spans:
response = initial_response
final_response, finished = self.output_parser.parse(response)
if finished:
return {self.output_keys[0]: final_response}
continue
marginal, finished = self._do_retrieval(
low_confidence_spans,
_run_manager,
user_input,
response,
initial_response,
)
response = response.strip() + " " + marginal
if finished:
break
return {self.output_keys[0]: response}
[docs] @classmethod
def from_llm(
cls, llm: BaseLanguageModel, max_generation_len: int = 32, **kwargs: Any
) -> FlareChain:
question_gen_chain = QuestionGeneratorChain(llm=llm)
response_llm = OpenAI(
max_tokens=max_generation_len, model_kwargs={"logprobs": 1}, temperature=0
)
response_chain = _OpenAIResponseChain(llm=response_llm)
return cls(
question_generator_chain=question_gen_chain,
response_chain=response_chain,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/flare/base.html |
d1f5c033a301-0 | Source code for langchain.chains.pal.base
"""Implements Program-Aided Language Models.
As in https://arxiv.org/pdf/2211.10435.pdf.
"""
from __future__ import annotations
import warnings
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.pal.colored_object_prompt import COLORED_OBJECT_PROMPT
from langchain.chains.pal.math_prompt import MATH_PROMPT
from langchain.prompts.base import BasePromptTemplate
from langchain.utilities import PythonREPL
[docs]class PALChain(Chain):
"""Implements Program-Aided Language Models."""
llm_chain: LLMChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated]"""
prompt: BasePromptTemplate = MATH_PROMPT
"""[Deprecated]"""
stop: str = "\n\n"
get_answer_expr: str = "print(solution())"
python_globals: Optional[Dict[str, Any]] = None
python_locals: Optional[Dict[str, Any]] = None
output_key: str = "result" #: :meta private:
return_intermediate_steps: bool = False
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values:
warnings.warn(
"Directly instantiating an PALChain with an llm is deprecated. " | https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html |
d1f5c033a301-1 | "Directly instantiating an PALChain with an llm is deprecated. "
"Please instantiate with llm_chain argument or using the one of "
"the class method constructors from_math_prompt, "
"from_colored_object_prompt."
)
if "llm_chain" not in values and values["llm"] is not None:
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=MATH_PROMPT)
return values
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, "intermediate_steps"]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
code = self.llm_chain.predict(
stop=[self.stop], callbacks=_run_manager.get_child(), **inputs
)
_run_manager.on_text(code, color="green", end="\n", verbose=self.verbose)
repl = PythonREPL(_globals=self.python_globals, _locals=self.python_locals)
res = repl.run(code + f"\n{self.get_answer_expr}")
output = {self.output_key: res.strip()}
if self.return_intermediate_steps:
output["intermediate_steps"] = code
return output | https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html |
d1f5c033a301-2 | output["intermediate_steps"] = code
return output
[docs] @classmethod
def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain:
"""Load PAL from math prompt."""
llm_chain = LLMChain(llm=llm, prompt=MATH_PROMPT)
return cls(
llm_chain=llm_chain,
stop="\n\n",
get_answer_expr="print(solution())",
**kwargs,
)
[docs] @classmethod
def from_colored_object_prompt(
cls, llm: BaseLanguageModel, **kwargs: Any
) -> PALChain:
"""Load PAL from colored object prompt."""
llm_chain = LLMChain(llm=llm, prompt=COLORED_OBJECT_PROMPT)
return cls(
llm_chain=llm_chain,
stop="\n\n\n",
get_answer_expr="print(answer)",
**kwargs,
)
@property
def _chain_type(self) -> str:
return "pal_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html |
b574ccc0bddb-0 | Source code for langchain.chains.llm_math.base
"""Chain that interprets a prompt and executes python code to do math."""
from __future__ import annotations
import math
import re
import warnings
from typing import Any, Dict, List, Optional
import numexpr
from pydantic import Extra, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.llm_math.prompt import PROMPT
from langchain.prompts.base import BasePromptTemplate
[docs]class LLMMathChain(Chain):
"""Chain that interprets a prompt and executes python code to do math.
Example:
.. code-block:: python
from langchain import LLMMathChain, OpenAI
llm_math = LLMMathChain.from_llm(OpenAI())
"""
llm_chain: LLMChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated] LLM wrapper to use."""
prompt: BasePromptTemplate = PROMPT
"""[Deprecated] Prompt to use to translate to python if necessary."""
input_key: str = "question" #: :meta private:
output_key: str = "answer" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values:
warnings.warn( | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html |
b574ccc0bddb-1 | if "llm" in values:
warnings.warn(
"Directly instantiating an LLMMathChain with an llm is deprecated. "
"Please instantiate with llm_chain argument or using the from_llm "
"class method."
)
if "llm_chain" not in values and values["llm"] is not None:
prompt = values.get("prompt", PROMPT)
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt)
return values
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
return [self.output_key]
def _evaluate_expression(self, expression: str) -> str:
try:
local_dict = {"pi": math.pi, "e": math.e}
output = str(
numexpr.evaluate(
expression.strip(),
global_dict={}, # restrict access to globals
local_dict=local_dict, # add common mathematical functions
)
)
except Exception as e:
raise ValueError(
f'LLMMathChain._evaluate("{expression}") raised error: {e}.'
" Please try again with a valid numerical expression"
)
# Remove any leading and trailing brackets from the output
return re.sub(r"^\[|\]$", "", output)
def _process_llm_result(
self, llm_output: str, run_manager: CallbackManagerForChainRun
) -> Dict[str, str]: | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html |
b574ccc0bddb-2 | ) -> Dict[str, str]:
run_manager.on_text(llm_output, color="green", verbose=self.verbose)
llm_output = llm_output.strip()
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
if text_match:
expression = text_match.group(1)
output = self._evaluate_expression(expression)
run_manager.on_text("\nAnswer: ", verbose=self.verbose)
run_manager.on_text(output, color="yellow", verbose=self.verbose)
answer = "Answer: " + output
elif llm_output.startswith("Answer:"):
answer = llm_output
elif "Answer:" in llm_output:
answer = "Answer: " + llm_output.split("Answer:")[-1]
else:
raise ValueError(f"unknown format from LLM: {llm_output}")
return {self.output_key: answer}
async def _aprocess_llm_result(
self,
llm_output: str,
run_manager: AsyncCallbackManagerForChainRun,
) -> Dict[str, str]:
await run_manager.on_text(llm_output, color="green", verbose=self.verbose)
llm_output = llm_output.strip()
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
if text_match:
expression = text_match.group(1)
output = self._evaluate_expression(expression)
await run_manager.on_text("\nAnswer: ", verbose=self.verbose)
await run_manager.on_text(output, color="yellow", verbose=self.verbose)
answer = "Answer: " + output
elif llm_output.startswith("Answer:"):
answer = llm_output | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html |
b574ccc0bddb-3 | elif llm_output.startswith("Answer:"):
answer = llm_output
elif "Answer:" in llm_output:
answer = "Answer: " + llm_output.split("Answer:")[-1]
else:
raise ValueError(f"unknown format from LLM: {llm_output}")
return {self.output_key: answer}
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
_run_manager.on_text(inputs[self.input_key])
llm_output = self.llm_chain.predict(
question=inputs[self.input_key],
stop=["```output"],
callbacks=_run_manager.get_child(),
)
return self._process_llm_result(llm_output, _run_manager)
async def _acall(
self,
inputs: Dict[str, str],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
await _run_manager.on_text(inputs[self.input_key])
llm_output = await self.llm_chain.apredict(
question=inputs[self.input_key],
stop=["```output"],
callbacks=_run_manager.get_child(),
)
return await self._aprocess_llm_result(llm_output, _run_manager)
@property
def _chain_type(self) -> str:
return "llm_math_chain"
[docs] @classmethod
def from_llm(
cls, | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html |
b574ccc0bddb-4 | [docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
prompt: BasePromptTemplate = PROMPT,
**kwargs: Any,
) -> LLMMathChain:
llm_chain = LLMChain(llm=llm, prompt=prompt)
return cls(llm_chain=llm_chain, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html |
8da7d9eefd72-0 | Source code for langchain.chains.conversation.base
"""Chain that carries on a conversation and calls an LLM."""
from typing import Dict, List
from pydantic import Extra, Field, root_validator
from langchain.chains.conversation.prompt import PROMPT
from langchain.chains.llm import LLMChain
from langchain.memory.buffer import ConversationBufferMemory
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseMemory
[docs]class ConversationChain(LLMChain):
"""Chain to have a conversation and load context from memory.
Example:
.. code-block:: python
from langchain import ConversationChain, OpenAI
conversation = ConversationChain(llm=OpenAI())
"""
memory: BaseMemory = Field(default_factory=ConversationBufferMemory)
"""Default memory store."""
prompt: BasePromptTemplate = PROMPT
"""Default conversation prompt to use."""
input_key: str = "input" #: :meta private:
output_key: str = "response" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Use this since so some prompt vars come from history."""
return [self.input_key]
@root_validator()
def validate_prompt_input_variables(cls, values: Dict) -> Dict:
"""Validate that prompt input variables are consistent."""
memory_keys = values["memory"].memory_variables
input_key = values["input_key"]
if input_key in memory_keys:
raise ValueError(
f"The input key {input_key} was also found in the memory keys " | https://python.langchain.com/en/latest/_modules/langchain/chains/conversation/base.html |
8da7d9eefd72-1 | f"The input key {input_key} was also found in the memory keys "
f"({memory_keys}) - please provide keys that don't overlap."
)
prompt_variables = values["prompt"].input_variables
expected_keys = memory_keys + [input_key]
if set(expected_keys) != set(prompt_variables):
raise ValueError(
"Got unexpected prompt input variables. The prompt expects "
f"{prompt_variables}, but got {memory_keys} as inputs from "
f"memory, and {input_key} as the normal input key."
)
return values
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/conversation/base.html |
057a4336623c-0 | Source code for langchain.chains.constitutional_ai.base
"""Chain for applying constitutional principles to the outputs of another chain."""
from typing import Any, Dict, List, Optional
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple
from langchain.chains.constitutional_ai.principles import PRINCIPLES
from langchain.chains.constitutional_ai.prompts import CRITIQUE_PROMPT, REVISION_PROMPT
from langchain.chains.llm import LLMChain
from langchain.prompts.base import BasePromptTemplate
[docs]class ConstitutionalChain(Chain):
"""Chain for applying constitutional principles.
Example:
.. code-block:: python
from langchain.llms import OpenAI
from langchain.chains import LLMChain, ConstitutionalChain
from langchain.chains.constitutional_ai.models \
import ConstitutionalPrinciple
llm = OpenAI()
qa_prompt = PromptTemplate(
template="Q: {question} A:",
input_variables=["question"],
)
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
constitutional_chain = ConstitutionalChain.from_llm(
llm=llm,
chain=qa_chain,
constitutional_principles=[
ConstitutionalPrinciple(
critique_request="Tell if this answer is good.",
revision_request="Give a better answer.",
)
],
)
constitutional_chain.run(question="What is the meaning of life?")
"""
chain: LLMChain
constitutional_principles: List[ConstitutionalPrinciple]
critique_chain: LLMChain | https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html |
057a4336623c-1 | critique_chain: LLMChain
revision_chain: LLMChain
return_intermediate_steps: bool = False
[docs] @classmethod
def get_principles(
cls, names: Optional[List[str]] = None
) -> List[ConstitutionalPrinciple]:
if names is None:
return list(PRINCIPLES.values())
else:
return [PRINCIPLES[name] for name in names]
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
chain: LLMChain,
critique_prompt: BasePromptTemplate = CRITIQUE_PROMPT,
revision_prompt: BasePromptTemplate = REVISION_PROMPT,
**kwargs: Any,
) -> "ConstitutionalChain":
"""Create a chain from an LLM."""
critique_chain = LLMChain(llm=llm, prompt=critique_prompt)
revision_chain = LLMChain(llm=llm, prompt=revision_prompt)
return cls(
chain=chain,
critique_chain=critique_chain,
revision_chain=revision_chain,
**kwargs,
)
@property
def input_keys(self) -> List[str]:
"""Defines the input keys."""
return self.chain.input_keys
@property
def output_keys(self) -> List[str]:
"""Defines the output keys."""
if self.return_intermediate_steps:
return ["output", "critiques_and_revisions", "initial_output"]
return ["output"]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]: | https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html |
057a4336623c-2 | ) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
response = self.chain.run(
**inputs,
callbacks=_run_manager.get_child(),
)
initial_response = response
input_prompt = self.chain.prompt.format(**inputs)
_run_manager.on_text(
text="Initial response: " + response + "\n\n",
verbose=self.verbose,
color="yellow",
)
critiques_and_revisions = []
for constitutional_principle in self.constitutional_principles:
# Do critique
raw_critique = self.critique_chain.run(
input_prompt=input_prompt,
output_from_model=response,
critique_request=constitutional_principle.critique_request,
callbacks=_run_manager.get_child(),
)
critique = self._parse_critique(
output_string=raw_critique,
).strip()
# if the critique contains "No critique needed", then we're done
# in this case, initial_output is the same as output,
# but we'll keep it for consistency
if "no critique needed" in critique.lower():
critiques_and_revisions.append((critique, ""))
continue
# Do revision
revision = self.revision_chain.run(
input_prompt=input_prompt,
output_from_model=response,
critique_request=constitutional_principle.critique_request,
critique=critique,
revision_request=constitutional_principle.revision_request,
callbacks=_run_manager.get_child(),
).strip()
response = revision
critiques_and_revisions.append((critique, revision))
_run_manager.on_text( | https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html |
057a4336623c-3 | critiques_and_revisions.append((critique, revision))
_run_manager.on_text(
text=f"Applying {constitutional_principle.name}..." + "\n\n",
verbose=self.verbose,
color="green",
)
_run_manager.on_text(
text="Critique: " + critique + "\n\n",
verbose=self.verbose,
color="blue",
)
_run_manager.on_text(
text="Updated response: " + revision + "\n\n",
verbose=self.verbose,
color="yellow",
)
final_output: Dict[str, Any] = {"output": response}
if self.return_intermediate_steps:
final_output["initial_output"] = initial_response
final_output["critiques_and_revisions"] = critiques_and_revisions
return final_output
@staticmethod
def _parse_critique(output_string: str) -> str:
if "Revision request:" not in output_string:
return output_string
output_string = output_string.split("Revision request:")[0]
if "\n\n" in output_string:
output_string = output_string.split("\n\n")[0]
return output_string
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html |
3e5cb5bb6030-0 | Source code for langchain.chains.qa_with_sources.vector_db
"""Question-answering with sources over a vector database."""
import warnings
from typing import Any, Dict, List
from pydantic import Field, root_validator
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain
from langchain.docstore.document import Document
from langchain.vectorstores.base import VectorStore
[docs]class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain):
"""Question-answering with sources over a vector database."""
vectorstore: VectorStore = Field(exclude=True)
"""Vector Database to connect to."""
k: int = 4
"""Number of results to return from store"""
reduce_k_below_max_tokens: bool = False
"""Reduce the number of results to return from store based on tokens limit"""
max_tokens_limit: int = 3375
"""Restrict the docs to return from store based on tokens,
enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true"""
search_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Extra search args."""
def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]:
num_docs = len(docs)
if self.reduce_k_below_max_tokens and isinstance(
self.combine_documents_chain, StuffDocumentsChain
):
tokens = [
self.combine_documents_chain.llm_chain.llm.get_num_tokens(
doc.page_content
)
for doc in docs
]
token_count = sum(tokens[:num_docs])
while token_count > self.max_tokens_limit:
num_docs -= 1
token_count -= tokens[num_docs] | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/vector_db.html |
3e5cb5bb6030-1 | num_docs -= 1
token_count -= tokens[num_docs]
return docs[:num_docs]
def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]:
question = inputs[self.question_key]
docs = self.vectorstore.similarity_search(
question, k=self.k, **self.search_kwargs
)
return self._reduce_tokens_below_limit(docs)
async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]:
raise NotImplementedError("VectorDBQAWithSourcesChain does not support async")
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict:
warnings.warn(
"`VectorDBQAWithSourcesChain` is deprecated - "
"please use `from langchain.chains import RetrievalQAWithSourcesChain`"
)
return values
@property
def _chain_type(self) -> str:
return "vector_db_qa_with_sources_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/vector_db.html |
f094796db179-0 | Source code for langchain.chains.qa_with_sources.base
"""Question answering with sources over documents."""
from __future__ import annotations
import re
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain
from langchain.chains.qa_with_sources.map_reduce_prompt import (
COMBINE_PROMPT,
EXAMPLE_PROMPT,
QUESTION_PROMPT,
)
from langchain.docstore.document import Document
from langchain.prompts.base import BasePromptTemplate
class BaseQAWithSourcesChain(Chain, ABC):
"""Question answering with sources over documents."""
combine_documents_chain: BaseCombineDocumentsChain
"""Chain to use to combine documents."""
question_key: str = "question" #: :meta private:
input_docs_key: str = "docs" #: :meta private:
answer_key: str = "answer" #: :meta private:
sources_answer_key: str = "sources" #: :meta private:
return_source_documents: bool = False
"""Return the source documents."""
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
document_prompt: BasePromptTemplate = EXAMPLE_PROMPT, | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html |
f094796db179-1 | document_prompt: BasePromptTemplate = EXAMPLE_PROMPT,
question_prompt: BasePromptTemplate = QUESTION_PROMPT,
combine_prompt: BasePromptTemplate = COMBINE_PROMPT,
**kwargs: Any,
) -> BaseQAWithSourcesChain:
"""Construct the chain from an LLM."""
llm_question_chain = LLMChain(llm=llm, prompt=question_prompt)
llm_combine_chain = LLMChain(llm=llm, prompt=combine_prompt)
combine_results_chain = StuffDocumentsChain(
llm_chain=llm_combine_chain,
document_prompt=document_prompt,
document_variable_name="summaries",
)
combine_document_chain = MapReduceDocumentsChain(
llm_chain=llm_question_chain,
combine_document_chain=combine_results_chain,
document_variable_name="context",
)
return cls(
combine_documents_chain=combine_document_chain,
**kwargs,
)
@classmethod
def from_chain_type(
cls,
llm: BaseLanguageModel,
chain_type: str = "stuff",
chain_type_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> BaseQAWithSourcesChain:
"""Load chain from chain type."""
_chain_kwargs = chain_type_kwargs or {}
combine_document_chain = load_qa_with_sources_chain(
llm, chain_type=chain_type, **_chain_kwargs
)
return cls(combine_documents_chain=combine_document_chain, **kwargs)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key. | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html |
f094796db179-2 | def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.question_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
_output_keys = [self.answer_key, self.sources_answer_key]
if self.return_source_documents:
_output_keys = _output_keys + ["source_documents"]
return _output_keys
@root_validator(pre=True)
def validate_naming(cls, values: Dict) -> Dict:
"""Fix backwards compatability in naming."""
if "combine_document_chain" in values:
values["combine_documents_chain"] = values.pop("combine_document_chain")
return values
@abstractmethod
def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]:
"""Get docs to run questioning over."""
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
docs = self._get_docs(inputs)
answer = self.combine_documents_chain.run(
input_documents=docs, callbacks=_run_manager.get_child(), **inputs
)
if re.search(r"SOURCES:\s", answer):
answer, sources = re.split(r"SOURCES:\s", answer)
else:
sources = ""
result: Dict[str, Any] = {
self.answer_key: answer,
self.sources_answer_key: sources,
}
if self.return_source_documents:
result["source_documents"] = docs
return result | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html |
f094796db179-3 | if self.return_source_documents:
result["source_documents"] = docs
return result
@abstractmethod
async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]:
"""Get docs to run questioning over."""
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
docs = await self._aget_docs(inputs)
answer = await self.combine_documents_chain.arun(
input_documents=docs, callbacks=_run_manager.get_child(), **inputs
)
if re.search(r"SOURCES:\s", answer):
answer, sources = re.split(r"SOURCES:\s", answer)
else:
sources = ""
result: Dict[str, Any] = {
self.answer_key: answer,
self.sources_answer_key: sources,
}
if self.return_source_documents:
result["source_documents"] = docs
return result
[docs]class QAWithSourcesChain(BaseQAWithSourcesChain):
"""Question answering with sources over documents."""
input_docs_key: str = "docs" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_docs_key, self.question_key]
def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]:
return inputs.pop(self.input_docs_key)
async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]:
return inputs.pop(self.input_docs_key) | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html |
f094796db179-4 | return inputs.pop(self.input_docs_key)
@property
def _chain_type(self) -> str:
return "qa_with_sources_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html |
9c5578dde070-0 | Source code for langchain.chains.qa_with_sources.retrieval
"""Question-answering with sources over an index."""
from typing import Any, Dict, List
from pydantic import Field
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain
from langchain.docstore.document import Document
from langchain.schema import BaseRetriever
[docs]class RetrievalQAWithSourcesChain(BaseQAWithSourcesChain):
"""Question-answering with sources over an index."""
retriever: BaseRetriever = Field(exclude=True)
"""Index to connect to."""
reduce_k_below_max_tokens: bool = False
"""Reduce the number of results to return from store based on tokens limit"""
max_tokens_limit: int = 3375
"""Restrict the docs to return from store based on tokens,
enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true"""
def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]:
num_docs = len(docs)
if self.reduce_k_below_max_tokens and isinstance(
self.combine_documents_chain, StuffDocumentsChain
):
tokens = [
self.combine_documents_chain.llm_chain.llm.get_num_tokens(
doc.page_content
)
for doc in docs
]
token_count = sum(tokens[:num_docs])
while token_count > self.max_tokens_limit:
num_docs -= 1
token_count -= tokens[num_docs]
return docs[:num_docs]
def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]:
question = inputs[self.question_key]
docs = self.retriever.get_relevant_documents(question) | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/retrieval.html |
9c5578dde070-1 | docs = self.retriever.get_relevant_documents(question)
return self._reduce_tokens_below_limit(docs)
async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]:
question = inputs[self.question_key]
docs = await self.retriever.aget_relevant_documents(question)
return self._reduce_tokens_below_limit(docs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/retrieval.html |
af45cbf37d95-0 | Source code for langchain.chains.conversational_retrieval.base
"""Chain for chatting with a vector database."""
from __future__ import annotations
import warnings
from abc import abstractmethod
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from pydantic import Extra, Field, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chains.llm import LLMChain
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseMessage, BaseRetriever, Document
from langchain.vectorstores.base import VectorStore
# Depending on the memory type and configuration, the chat history format may differ.
# This needs to be consolidated.
CHAT_TURN_TYPE = Union[Tuple[str, str], BaseMessage]
_ROLE_MAP = {"human": "Human: ", "ai": "Assistant: "}
def _get_chat_history(chat_history: List[CHAT_TURN_TYPE]) -> str:
buffer = ""
for dialogue_turn in chat_history:
if isinstance(dialogue_turn, BaseMessage):
role_prefix = _ROLE_MAP.get(dialogue_turn.type, f"{dialogue_turn.type}: ")
buffer += f"\n{role_prefix}{dialogue_turn.content}"
elif isinstance(dialogue_turn, tuple):
human = "Human: " + dialogue_turn[0] | https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
af45cbf37d95-1 | human = "Human: " + dialogue_turn[0]
ai = "Assistant: " + dialogue_turn[1]
buffer += "\n" + "\n".join([human, ai])
else:
raise ValueError(
f"Unsupported chat history format: {type(dialogue_turn)}."
f" Full chat history: {chat_history} "
)
return buffer
class BaseConversationalRetrievalChain(Chain):
"""Chain for chatting with an index."""
combine_docs_chain: BaseCombineDocumentsChain
question_generator: LLMChain
output_key: str = "answer"
return_source_documents: bool = False
get_chat_history: Optional[Callable[[CHAT_TURN_TYPE], str]] = None
"""Return the source documents."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
allow_population_by_field_name = True
@property
def input_keys(self) -> List[str]:
"""Input keys."""
return ["question", "chat_history"]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
if self.return_source_documents:
_output_keys = _output_keys + ["source_documents"]
return _output_keys
@abstractmethod
def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
"""Get docs."""
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]: | https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
af45cbf37d95-2 | ) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
question = inputs["question"]
get_chat_history = self.get_chat_history or _get_chat_history
chat_history_str = get_chat_history(inputs["chat_history"])
if chat_history_str:
callbacks = _run_manager.get_child()
new_question = self.question_generator.run(
question=question, chat_history=chat_history_str, callbacks=callbacks
)
else:
new_question = question
docs = self._get_docs(new_question, inputs)
new_inputs = inputs.copy()
new_inputs["question"] = new_question
new_inputs["chat_history"] = chat_history_str
answer = self.combine_docs_chain.run(
input_documents=docs, callbacks=_run_manager.get_child(), **new_inputs
)
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
@abstractmethod
async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
"""Get docs."""
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
question = inputs["question"]
get_chat_history = self.get_chat_history or _get_chat_history
chat_history_str = get_chat_history(inputs["chat_history"])
if chat_history_str:
callbacks = _run_manager.get_child()
new_question = await self.question_generator.arun( | https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
af45cbf37d95-3 | new_question = await self.question_generator.arun(
question=question, chat_history=chat_history_str, callbacks=callbacks
)
else:
new_question = question
docs = await self._aget_docs(new_question, inputs)
new_inputs = inputs.copy()
new_inputs["question"] = new_question
new_inputs["chat_history"] = chat_history_str
answer = await self.combine_docs_chain.arun(
input_documents=docs, callbacks=_run_manager.get_child(), **new_inputs
)
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
def save(self, file_path: Union[Path, str]) -> None:
if self.get_chat_history:
raise ValueError("Chain not savable when `get_chat_history` is not None.")
super().save(file_path)
[docs]class ConversationalRetrievalChain(BaseConversationalRetrievalChain):
"""Chain for chatting with an index."""
retriever: BaseRetriever
"""Index to connect to."""
max_tokens_limit: Optional[int] = None
"""If set, restricts the docs to return from store based on tokens, enforced only
for StuffDocumentChain"""
def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]:
num_docs = len(docs)
if self.max_tokens_limit and isinstance(
self.combine_docs_chain, StuffDocumentsChain
):
tokens = [
self.combine_docs_chain.llm_chain.llm.get_num_tokens(doc.page_content)
for doc in docs
]
token_count = sum(tokens[:num_docs])
while token_count > self.max_tokens_limit: | https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
af45cbf37d95-4 | while token_count > self.max_tokens_limit:
num_docs -= 1
token_count -= tokens[num_docs]
return docs[:num_docs]
def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
docs = self.retriever.get_relevant_documents(question)
return self._reduce_tokens_below_limit(docs)
async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
docs = await self.retriever.aget_relevant_documents(question)
return self._reduce_tokens_below_limit(docs)
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
retriever: BaseRetriever,
condense_question_prompt: BasePromptTemplate = CONDENSE_QUESTION_PROMPT,
chain_type: str = "stuff",
verbose: bool = False,
combine_docs_chain_kwargs: Optional[Dict] = None,
**kwargs: Any,
) -> BaseConversationalRetrievalChain:
"""Load chain from LLM."""
combine_docs_chain_kwargs = combine_docs_chain_kwargs or {}
doc_chain = load_qa_chain(
llm,
chain_type=chain_type,
verbose=verbose,
**combine_docs_chain_kwargs,
)
condense_question_chain = LLMChain(
llm=llm, prompt=condense_question_prompt, verbose=verbose
)
return cls(
retriever=retriever,
combine_docs_chain=doc_chain,
question_generator=condense_question_chain,
**kwargs,
)
[docs]class ChatVectorDBChain(BaseConversationalRetrievalChain): | https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
af45cbf37d95-5 | )
[docs]class ChatVectorDBChain(BaseConversationalRetrievalChain):
"""Chain for chatting with a vector database."""
vectorstore: VectorStore = Field(alias="vectorstore")
top_k_docs_for_context: int = 4
search_kwargs: dict = Field(default_factory=dict)
@property
def _chain_type(self) -> str:
return "chat-vector-db"
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict:
warnings.warn(
"`ChatVectorDBChain` is deprecated - "
"please use `from langchain.chains import ConversationalRetrievalChain`"
)
return values
def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
vectordbkwargs = inputs.get("vectordbkwargs", {})
full_kwargs = {**self.search_kwargs, **vectordbkwargs}
return self.vectorstore.similarity_search(
question, k=self.top_k_docs_for_context, **full_kwargs
)
async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
raise NotImplementedError("ChatVectorDBChain does not support async")
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
vectorstore: VectorStore,
condense_question_prompt: BasePromptTemplate = CONDENSE_QUESTION_PROMPT,
chain_type: str = "stuff",
combine_docs_chain_kwargs: Optional[Dict] = None,
**kwargs: Any,
) -> BaseConversationalRetrievalChain:
"""Load chain from LLM."""
combine_docs_chain_kwargs = combine_docs_chain_kwargs or {} | https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
af45cbf37d95-6 | combine_docs_chain_kwargs = combine_docs_chain_kwargs or {}
doc_chain = load_qa_chain(
llm,
chain_type=chain_type,
**combine_docs_chain_kwargs,
)
condense_question_chain = LLMChain(llm=llm, prompt=condense_question_prompt)
return cls(
vectorstore=vectorstore,
combine_docs_chain=doc_chain,
question_generator=condense_question_chain,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
5c0ddff29e0f-0 | Source code for langchain.chains.qa_generation.base
from __future__ import annotations
import json
from typing import Any, Dict, List, Optional
from pydantic import Field
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.qa_generation.prompt import PROMPT_SELECTOR
from langchain.prompts.base import BasePromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
[docs]class QAGenerationChain(Chain):
llm_chain: LLMChain
text_splitter: TextSplitter = Field(
default=RecursiveCharacterTextSplitter(chunk_overlap=500)
)
input_key: str = "text"
output_key: str = "questions"
k: Optional[int] = None
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
prompt: Optional[BasePromptTemplate] = None,
**kwargs: Any,
) -> QAGenerationChain:
_prompt = prompt or PROMPT_SELECTOR.get_prompt(llm)
chain = LLMChain(llm=llm, prompt=_prompt)
return cls(llm_chain=chain, **kwargs)
@property
def _chain_type(self) -> str:
raise NotImplementedError
@property
def input_keys(self) -> List[str]:
return [self.input_key]
@property
def output_keys(self) -> List[str]:
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any], | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_generation/base.html |
5c0ddff29e0f-1 | def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, List]:
docs = self.text_splitter.create_documents([inputs[self.input_key]])
results = self.llm_chain.generate(
[{"text": d.page_content} for d in docs], run_manager=run_manager
)
qa = [json.loads(res[0].text) for res in results.generations]
return {self.output_key: qa}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_generation/base.html |
378a057bcf2b-0 | Source code for langchain.chains.api.base
"""Chain that makes API calls and summarizes the responses to answer a question."""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Field, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.api.prompt import API_RESPONSE_PROMPT, API_URL_PROMPT
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.prompts import BasePromptTemplate
from langchain.requests import TextRequestsWrapper
[docs]class APIChain(Chain):
"""Chain that makes API calls and summarizes the responses to answer a question."""
api_request_chain: LLMChain
api_answer_chain: LLMChain
requests_wrapper: TextRequestsWrapper = Field(exclude=True)
api_docs: str
question_key: str = "question" #: :meta private:
output_key: str = "output" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.question_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
return [self.output_key]
@root_validator(pre=True)
def validate_api_request_prompt(cls, values: Dict) -> Dict:
"""Check that api request prompt expects the right variables."""
input_vars = values["api_request_chain"].prompt.input_variables
expected_vars = {"question", "api_docs"}
if set(input_vars) != expected_vars: | https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html |
378a057bcf2b-1 | if set(input_vars) != expected_vars:
raise ValueError(
f"Input variables should be {expected_vars}, got {input_vars}"
)
return values
@root_validator(pre=True)
def validate_api_answer_prompt(cls, values: Dict) -> Dict:
"""Check that api answer prompt expects the right variables."""
input_vars = values["api_answer_chain"].prompt.input_variables
expected_vars = {"question", "api_docs", "api_url", "api_response"}
if set(input_vars) != expected_vars:
raise ValueError(
f"Input variables should be {expected_vars}, got {input_vars}"
)
return values
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
question = inputs[self.question_key]
api_url = self.api_request_chain.predict(
question=question,
api_docs=self.api_docs,
callbacks=_run_manager.get_child(),
)
_run_manager.on_text(api_url, color="green", end="\n", verbose=self.verbose)
api_response = self.requests_wrapper.get(api_url)
_run_manager.on_text(
api_response, color="yellow", end="\n", verbose=self.verbose
)
answer = self.api_answer_chain.predict(
question=question,
api_docs=self.api_docs,
api_url=api_url,
api_response=api_response,
callbacks=_run_manager.get_child(),
)
return {self.output_key: answer}
async def _acall(
self, | https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html |
378a057bcf2b-2 | async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
question = inputs[self.question_key]
api_url = await self.api_request_chain.apredict(
question=question,
api_docs=self.api_docs,
callbacks=_run_manager.get_child(),
)
await _run_manager.on_text(
api_url, color="green", end="\n", verbose=self.verbose
)
api_response = await self.requests_wrapper.aget(api_url)
await _run_manager.on_text(
api_response, color="yellow", end="\n", verbose=self.verbose
)
answer = await self.api_answer_chain.apredict(
question=question,
api_docs=self.api_docs,
api_url=api_url,
api_response=api_response,
callbacks=_run_manager.get_child(),
)
return {self.output_key: answer}
[docs] @classmethod
def from_llm_and_api_docs(
cls,
llm: BaseLanguageModel,
api_docs: str,
headers: Optional[dict] = None,
api_url_prompt: BasePromptTemplate = API_URL_PROMPT,
api_response_prompt: BasePromptTemplate = API_RESPONSE_PROMPT,
**kwargs: Any,
) -> APIChain:
"""Load chain from just an LLM and the api docs."""
get_request_chain = LLMChain(llm=llm, prompt=api_url_prompt)
requests_wrapper = TextRequestsWrapper(headers=headers) | https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html |
378a057bcf2b-3 | requests_wrapper = TextRequestsWrapper(headers=headers)
get_answer_chain = LLMChain(llm=llm, prompt=api_response_prompt)
return cls(
api_request_chain=get_request_chain,
api_answer_chain=get_answer_chain,
requests_wrapper=requests_wrapper,
api_docs=api_docs,
**kwargs,
)
@property
def _chain_type(self) -> str:
return "api_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html |
9b9316f92bcb-0 | Source code for langchain.chains.api.openapi.chain
"""Chain that makes API calls and summarizes the responses to answer a question."""
from __future__ import annotations
import json
from typing import Any, Dict, List, NamedTuple, Optional, cast
from pydantic import BaseModel, Field
from requests import Response
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun, Callbacks
from langchain.chains.api.openapi.requests_chain import APIRequesterChain
from langchain.chains.api.openapi.response_chain import APIResponderChain
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.requests import Requests
from langchain.tools.openapi.utils.api_models import APIOperation
class _ParamMapping(NamedTuple):
"""Mapping from parameter name to parameter value."""
query_params: List[str]
body_params: List[str]
path_params: List[str]
[docs]class OpenAPIEndpointChain(Chain, BaseModel):
"""Chain interacts with an OpenAPI endpoint using natural language."""
api_request_chain: LLMChain
api_response_chain: Optional[LLMChain]
api_operation: APIOperation
requests: Requests = Field(exclude=True, default_factory=Requests)
param_mapping: _ParamMapping = Field(alias="param_mapping")
return_intermediate_steps: bool = False
instructions_key: str = "instructions" #: :meta private:
output_key: str = "output" #: :meta private:
max_text_length: Optional[int] = Field(ge=0) #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.instructions_key]
@property | https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
9b9316f92bcb-1 | :meta private:
"""
return [self.instructions_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, "intermediate_steps"]
def _construct_path(self, args: Dict[str, str]) -> str:
"""Construct the path from the deserialized input."""
path = self.api_operation.base_url + self.api_operation.path
for param in self.param_mapping.path_params:
path = path.replace(f"{{{param}}}", str(args.pop(param, "")))
return path
def _extract_query_params(self, args: Dict[str, str]) -> Dict[str, str]:
"""Extract the query params from the deserialized input."""
query_params = {}
for param in self.param_mapping.query_params:
if param in args:
query_params[param] = args.pop(param)
return query_params
def _extract_body_params(self, args: Dict[str, str]) -> Optional[Dict[str, str]]:
"""Extract the request body params from the deserialized input."""
body_params = None
if self.param_mapping.body_params:
body_params = {}
for param in self.param_mapping.body_params:
if param in args:
body_params[param] = args.pop(param)
return body_params
[docs] def deserialize_json_input(self, serialized_args: str) -> dict:
"""Use the serialized typescript dictionary.
Resolve the path, query params dict, and optional requestBody dict.
"""
args: dict = json.loads(serialized_args)
path = self._construct_path(args) | https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
Subsets and Splits