id
stringlengths 14
16
| text
stringlengths 36
2.73k
| source
stringlengths 49
117
|
---|---|---|
daecfd007442-1 | Tool dataclass#
The ‘Tool’ dataclass wraps functions that accept a single string input and returns a string output.
# Load the tool configs that are needed.
search = SerpAPIWrapper()
llm_math_chain = LLMMathChain(llm=llm, verbose=True)
tools = [
Tool.from_function(
func=search.run,
name = "Search",
description="useful for when you need to answer questions about current events"
# coroutine= ... <- you can specify an async method if desired as well
),
]
/Users/wfh/code/lc/lckg/langchain/chains/llm_math/base.py:50: UserWarning: Directly instantiating an LLMMathChain with an llm is deprecated. Please instantiate with llm_chain argument or using the from_llm class method.
warnings.warn(
You can also define a custom `args_schema`` to provide more information about inputs.
from pydantic import BaseModel, Field
class CalculatorInput(BaseModel):
question: str = Field()
tools.append(
Tool.from_function(
func=llm_math_chain.run,
name="Calculator",
description="useful for when you need to answer questions about math",
args_schema=CalculatorInput
# coroutine= ... <- you can specify an async method if desired as well
)
)
# Construct the agent. We will use the default agent type here.
# See documentation for a full list of options.
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")
> Entering new AgentExecutor chain... | https://python.langchain.com/en/latest/modules/agents/tools/custom_tools.html |
daecfd007442-2 | > Entering new AgentExecutor chain...
I need to find out Leo DiCaprio's girlfriend's name and her age
Action: Search
Action Input: "Leo DiCaprio girlfriend"
Observation: After rumours of a romance with Gigi Hadid, the Oscar winner has seemingly moved on. First being linked to the television personality in September 2022, it appears as if his "age bracket" has moved up. This follows his rumoured relationship with mere 19-year-old Eden Polani.
Thought:I still need to find out his current girlfriend's name and age
Action: Search
Action Input: "Leo DiCaprio current girlfriend"
Observation: Just Jared on Instagram: “Leonardo DiCaprio & girlfriend Camila Morrone couple up for a lunch date!
Thought:Now that I know his girlfriend's name is Camila Morrone, I need to find her current age
Action: Search
Action Input: "Camila Morrone age"
Observation: 25 years
Thought:Now that I have her age, I need to calculate her age raised to the 0.43 power
Action: Calculator
Action Input: 25^(0.43)
> Entering new LLMMathChain chain...
25^(0.43)```text
25**(0.43)
```
...numexpr.evaluate("25**(0.43)")...
Answer: 3.991298452658078
> Finished chain.
Observation: Answer: 3.991298452658078
Thought:I now know the final answer
Final Answer: Camila Morrone's current age raised to the 0.43 power is approximately 3.99.
> Finished chain.
"Camila Morrone's current age raised to the 0.43 power is approximately 3.99."
Subclassing the BaseTool class# | https://python.langchain.com/en/latest/modules/agents/tools/custom_tools.html |
daecfd007442-3 | Subclassing the BaseTool class#
You can also directly subclass BaseTool. This is useful if you want more control over the instance variables or if you want to propagate callbacks to nested chains or other tools.
from typing import Optional, Type
from langchain.callbacks.manager import AsyncCallbackManagerForToolRun, CallbackManagerForToolRun
class CustomSearchTool(BaseTool):
name = "custom_search"
description = "useful for when you need to answer questions about current events"
def _run(self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None) -> str:
"""Use the tool."""
return search.run(query)
async def _arun(self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("custom_search does not support async")
class CustomCalculatorTool(BaseTool):
name = "Calculator"
description = "useful for when you need to answer questions about math"
args_schema: Type[BaseModel] = CalculatorInput
def _run(self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None) -> str:
"""Use the tool."""
return llm_math_chain.run(query)
async def _arun(self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("Calculator does not support async")
tools = [CustomSearchTool(), CustomCalculatorTool()]
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True) | https://python.langchain.com/en/latest/modules/agents/tools/custom_tools.html |
daecfd007442-4 | agent.run("Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")
> Entering new AgentExecutor chain...
I need to use custom_search to find out who Leo DiCaprio's girlfriend is, and then use the Calculator to raise her age to the 0.43 power.
Action: custom_search
Action Input: "Leo DiCaprio girlfriend"
Observation: After rumours of a romance with Gigi Hadid, the Oscar winner has seemingly moved on. First being linked to the television personality in September 2022, it appears as if his "age bracket" has moved up. This follows his rumoured relationship with mere 19-year-old Eden Polani.
Thought:I need to find out the current age of Eden Polani.
Action: custom_search
Action Input: "Eden Polani age"
Observation: 19 years old
Thought:Now I can use the Calculator to raise her age to the 0.43 power.
Action: Calculator
Action Input: 19 ^ 0.43
> Entering new LLMMathChain chain...
19 ^ 0.43```text
19 ** 0.43
```
...numexpr.evaluate("19 ** 0.43")...
Answer: 3.547023357958959
> Finished chain.
Observation: Answer: 3.547023357958959
Thought:I now know the final answer.
Final Answer: 3.547023357958959
> Finished chain.
'3.547023357958959'
Using the tool decorator# | https://python.langchain.com/en/latest/modules/agents/tools/custom_tools.html |
daecfd007442-5 | > Finished chain.
'3.547023357958959'
Using the tool decorator#
To make it easier to define custom tools, a @tool decorator is provided. This decorator can be used to quickly create a Tool from a simple function. The decorator uses the function name as the tool name by default, but this can be overridden by passing a string as the first argument. Additionally, the decorator will use the function’s docstring as the tool’s description.
from langchain.tools import tool
@tool
def search_api(query: str) -> str:
"""Searches the API for the query."""
return f"Results for query {query}"
search_api
You can also provide arguments like the tool name and whether to return directly.
@tool("search", return_direct=True)
def search_api(query: str) -> str:
"""Searches the API for the query."""
return "Results"
search_api
Tool(name='search', description='search(query: str) -> str - Searches the API for the query.', args_schema=<class 'pydantic.main.SearchApi'>, return_direct=True, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x12748c4c0>, func=<function search_api at 0x16bd66310>, coroutine=None)
You can also provide args_schema to provide more information about the argument
class SearchInput(BaseModel):
query: str = Field(description="should be a search query")
@tool("search", return_direct=True, args_schema=SearchInput)
def search_api(query: str) -> str:
"""Searches the API for the query."""
return "Results"
search_api | https://python.langchain.com/en/latest/modules/agents/tools/custom_tools.html |
daecfd007442-6 | """Searches the API for the query."""
return "Results"
search_api
Tool(name='search', description='search(query: str) -> str - Searches the API for the query.', args_schema=<class '__main__.SearchInput'>, return_direct=True, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x12748c4c0>, func=<function search_api at 0x16bcf0ee0>, coroutine=None)
Custom Structured Tools#
If your functions require more structured arguments, you can use the StructuredTool class directly, or still subclass the BaseTool class.
StructuredTool dataclass#
To dynamically generate a structured tool from a given function, the fastest way to get started is with StructuredTool.from_function().
import requests
from langchain.tools import StructuredTool
def post_message(url: str, body: dict, parameters: Optional[dict] = None) -> str:
"""Sends a POST request to the given url with the given body and parameters."""
result = requests.post(url, json=body, params=parameters)
return f"Status: {result.status_code} - {result.text}"
tool = StructuredTool.from_function(post_message)
Subclassing the BaseTool#
The BaseTool automatically infers the schema from the _run method’s signature.
from typing import Optional, Type
from langchain.callbacks.manager import AsyncCallbackManagerForToolRun, CallbackManagerForToolRun
class CustomSearchTool(BaseTool):
name = "custom_search"
description = "useful for when you need to answer questions about current events"
def _run(self, query: str, engine: str = "google", gl: str = "us", hl: str = "en", run_manager: Optional[CallbackManagerForToolRun] = None) -> str: | https://python.langchain.com/en/latest/modules/agents/tools/custom_tools.html |
daecfd007442-7 | """Use the tool."""
search_wrapper = SerpAPIWrapper(params={"engine": engine, "gl": gl, "hl": hl})
return search_wrapper.run(query)
async def _arun(self, query: str, engine: str = "google", gl: str = "us", hl: str = "en", run_manager: Optional[AsyncCallbackManagerForToolRun] = None) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("custom_search does not support async")
# You can provide a custom args schema to add descriptions or custom validation
class SearchSchema(BaseModel):
query: str = Field(description="should be a search query")
engine: str = Field(description="should be a search engine")
gl: str = Field(description="should be a country code")
hl: str = Field(description="should be a language code")
class CustomSearchTool(BaseTool):
name = "custom_search"
description = "useful for when you need to answer questions about current events"
args_schema: Type[SearchSchema] = SearchSchema
def _run(self, query: str, engine: str = "google", gl: str = "us", hl: str = "en", run_manager: Optional[CallbackManagerForToolRun] = None) -> str:
"""Use the tool."""
search_wrapper = SerpAPIWrapper(params={"engine": engine, "gl": gl, "hl": hl})
return search_wrapper.run(query)
async def _arun(self, query: str, engine: str = "google", gl: str = "us", hl: str = "en", run_manager: Optional[AsyncCallbackManagerForToolRun] = None) -> str:
"""Use the tool asynchronously.""" | https://python.langchain.com/en/latest/modules/agents/tools/custom_tools.html |
daecfd007442-8 | """Use the tool asynchronously."""
raise NotImplementedError("custom_search does not support async")
Using the decorator#
The tool decorator creates a structured tool automatically if the signature has multiple arguments.
import requests
from langchain.tools import tool
@tool
def post_message(url: str, body: dict, parameters: Optional[dict] = None) -> str:
"""Sends a POST request to the given url with the given body and parameters."""
result = requests.post(url, json=body, params=parameters)
return f"Status: {result.status_code} - {result.text}"
Modify existing tools#
Now, we show how to load existing tools and modify them directly. In the example below, we do something really simple and change the Search tool to have the name Google Search.
from langchain.agents import load_tools
tools = load_tools(["serpapi", "llm-math"], llm=llm)
tools[0].name = "Google Search"
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")
> Entering new AgentExecutor chain...
I need to find out Leo DiCaprio's girlfriend's name and her age.
Action: Google Search
Action Input: "Leo DiCaprio girlfriend"
Observation: After rumours of a romance with Gigi Hadid, the Oscar winner has seemingly moved on. First being linked to the television personality in September 2022, it appears as if his "age bracket" has moved up. This follows his rumoured relationship with mere 19-year-old Eden Polani.
Thought:I still need to find out his current girlfriend's name and her age.
Action: Google Search | https://python.langchain.com/en/latest/modules/agents/tools/custom_tools.html |
daecfd007442-9 | Action: Google Search
Action Input: "Leo DiCaprio current girlfriend age"
Observation: Leonardo DiCaprio has been linked with 19-year-old model Eden Polani, continuing the rumour that he doesn't date any women over the age of ...
Thought:I need to find out the age of Eden Polani.
Action: Calculator
Action Input: 19^(0.43)
Observation: Answer: 3.547023357958959
Thought:I now know the final answer.
Final Answer: The age of Leo DiCaprio's girlfriend raised to the 0.43 power is approximately 3.55.
> Finished chain.
"The age of Leo DiCaprio's girlfriend raised to the 0.43 power is approximately 3.55."
Defining the priorities among Tools#
When you made a Custom tool, you may want the Agent to use the custom tool more than normal tools.
For example, you made a custom tool, which gets information on music from your database. When a user wants information on songs, You want the Agent to use the custom tool more than the normal Search tool. But the Agent might prioritize a normal Search tool.
This can be accomplished by adding a statement such as Use this more than the normal search if the question is about Music, like 'who is the singer of yesterday?' or 'what is the most popular song in 2022?' to the description.
An example is below.
# Import things that are needed generically
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain.llms import OpenAI
from langchain import LLMMathChain, SerpAPIWrapper
search = SerpAPIWrapper()
tools = [
Tool(
name = "Search",
func=search.run, | https://python.langchain.com/en/latest/modules/agents/tools/custom_tools.html |
daecfd007442-10 | tools = [
Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events"
),
Tool(
name="Music Search",
func=lambda x: "'All I Want For Christmas Is You' by Mariah Carey.", #Mock Function
description="A Music search engine. Use this more than the normal search if the question is about Music, like 'who is the singer of yesterday?' or 'what is the most popular song in 2022?'",
)
]
agent = initialize_agent(tools, OpenAI(temperature=0), agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("what is the most famous song of christmas")
> Entering new AgentExecutor chain...
I should use a music search engine to find the answer
Action: Music Search
Action Input: most famous song of christmas'All I Want For Christmas Is You' by Mariah Carey. I now know the final answer
Final Answer: 'All I Want For Christmas Is You' by Mariah Carey.
> Finished chain.
"'All I Want For Christmas Is You' by Mariah Carey."
Using tools to return directly#
Often, it can be desirable to have a tool output returned directly to the user, if it’s called. You can do this easily with LangChain by setting the return_direct flag for a tool to be True.
llm_math_chain = LLMMathChain(llm=llm)
tools = [
Tool(
name="Calculator",
func=llm_math_chain.run,
description="useful for when you need to answer questions about math",
return_direct=True
)
]
llm = OpenAI(temperature=0) | https://python.langchain.com/en/latest/modules/agents/tools/custom_tools.html |
daecfd007442-11 | return_direct=True
)
]
llm = OpenAI(temperature=0)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("whats 2**.12")
> Entering new AgentExecutor chain...
I need to calculate this
Action: Calculator
Action Input: 2**.12Answer: 1.086734862526058
> Finished chain.
'Answer: 1.086734862526058'
previous
Getting Started
next
Multi-Input Tools
Contents
Completely New Tools - String Input and Output
Tool dataclass
Subclassing the BaseTool class
Using the tool decorator
Custom Structured Tools
StructuredTool dataclass
Subclassing the BaseTool
Using the decorator
Modify existing tools
Defining the priorities among Tools
Using tools to return directly
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/custom_tools.html |
5bbceba39ee5-0 | .ipynb
.pdf
Multi-Input Tools
Contents
Multi-Input Tools with a string format
Multi-Input Tools#
This notebook shows how to use a tool that requires multiple inputs with an agent. The recommended way to do so is with the StructuredTool class.
import os
os.environ["LANGCHAIN_TRACING"] = "true"
from langchain import OpenAI
from langchain.agents import initialize_agent, AgentType
llm = OpenAI(temperature=0)
from langchain.tools import StructuredTool
def multiplier(a: float, b: float) -> float:
"""Multiply the provided floats."""
return a * b
tool = StructuredTool.from_function(multiplier)
# Structured tools are compatible with the STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION agent type.
agent_executor = initialize_agent([tool], llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent_executor.run("What is 3 times 4")
> Entering new AgentExecutor chain...
Thought: I need to multiply 3 and 4
Action:
```
{
"action": "multiplier",
"action_input": {"a": 3, "b": 4}
}
```
Observation: 12
Thought: I know what to respond
Action:
```
{
"action": "Final Answer",
"action_input": "3 times 4 is 12"
}
```
> Finished chain.
'3 times 4 is 12'
Multi-Input Tools with a string format# | https://python.langchain.com/en/latest/modules/agents/tools/multi_input_tool.html |
5bbceba39ee5-1 | '3 times 4 is 12'
Multi-Input Tools with a string format#
An alternative to the structured tool would be to use the regular Tool class and accept a single string. The tool would then have to handle the parsing logic to extract the relavent values from the text, which tightly couples the tool representation to the agent prompt. This is still useful if the underlying language model can’t reliabl generate structured schema.
Let’s take the multiplication function as an example. In order to use this, we will tell the agent to generate the “Action Input” as a comma-separated list of length two. We will then write a thin wrapper that takes a string, splits it into two around a comma, and passes both parsed sides as integers to the multiplication function.
from langchain.llms import OpenAI
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
Here is the multiplication function, as well as a wrapper to parse a string as input.
def multiplier(a, b):
return a * b
def parsing_multiplier(string):
a, b = string.split(",")
return multiplier(int(a), int(b))
llm = OpenAI(temperature=0)
tools = [
Tool(
name = "Multiplier",
func=parsing_multiplier,
description="useful for when you need to multiply two numbers together. The input to this tool should be a comma separated list of numbers of length two, representing the two numbers you want to multiply together. For example, `1,2` would be the input if you wanted to multiply 1 by 2."
)
]
mrkl = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
mrkl.run("What is 3 times 4")
> Entering new AgentExecutor chain... | https://python.langchain.com/en/latest/modules/agents/tools/multi_input_tool.html |
5bbceba39ee5-2 | > Entering new AgentExecutor chain...
I need to multiply two numbers
Action: Multiplier
Action Input: 3,4
Observation: 12
Thought: I now know the final answer
Final Answer: 3 times 4 is 12
> Finished chain.
'3 times 4 is 12'
previous
Defining Custom Tools
next
Tool Input Schema
Contents
Multi-Input Tools with a string format
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/multi_input_tool.html |
d9f4a696fefc-0 | .ipynb
.pdf
Google Serper API
Contents
As part of a Self Ask With Search Chain
Obtaining results with metadata
Searching for Google Images
Searching for Google News
Searching for Google Places
Google Serper API#
This notebook goes over how to use the Google Serper component to search the web. First you need to sign up for a free account at serper.dev and get your api key.
import os
import pprint
os.environ["SERPER_API_KEY"] = ""
from langchain.utilities import GoogleSerperAPIWrapper
search = GoogleSerperAPIWrapper()
search.run("Obama's first name?")
'Barack Hussein Obama II'
As part of a Self Ask With Search Chain#
os.environ['OPENAI_API_KEY'] = ""
from langchain.utilities import GoogleSerperAPIWrapper
from langchain.llms.openai import OpenAI
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
llm = OpenAI(temperature=0)
search = GoogleSerperAPIWrapper()
tools = [
Tool(
name="Intermediate Answer",
func=search.run,
description="useful for when you need to ask with search"
)
]
self_ask_with_search = initialize_agent(tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True)
self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?")
> Entering new AgentExecutor chain...
Yes.
Follow up: Who is the reigning men's U.S. Open champion?
Intermediate answer: Current champions Carlos Alcaraz, 2022 men's singles champion.
Follow up: Where is Carlos Alcaraz from?
Intermediate answer: El Palmar, Spain | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-1 | Follow up: Where is Carlos Alcaraz from?
Intermediate answer: El Palmar, Spain
So the final answer is: El Palmar, Spain
> Finished chain.
'El Palmar, Spain'
Obtaining results with metadata#
If you would also like to obtain the results in a structured way including metadata. For this we will be using the results method of the wrapper.
search = GoogleSerperAPIWrapper()
results = search.results("Apple Inc.")
pprint.pp(results)
{'searchParameters': {'q': 'Apple Inc.',
'gl': 'us',
'hl': 'en',
'num': 10,
'type': 'search'},
'knowledgeGraph': {'title': 'Apple',
'type': 'Technology company',
'website': 'http://www.apple.com/',
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQwGQRv5TjjkycpctY66mOg_e2-npacrmjAb6_jAWhzlzkFE3OTjxyzbA&s=0',
'description': 'Apple Inc. is an American multinational '
'technology company headquartered in '
'Cupertino, California. Apple is the '
"world's largest technology company by "
'revenue, with US$394.3 billion in 2022 '
'revenue. As of March 2023, Apple is the '
"world's biggest...",
'descriptionSource': 'Wikipedia',
'descriptionLink': 'https://en.wikipedia.org/wiki/Apple_Inc.',
'attributes': {'Customer service': '1 (800) 275-2273',
'CEO': 'Tim Cook (Aug 24, 2011–)', | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-2 | 'CEO': 'Tim Cook (Aug 24, 2011–)',
'Headquarters': 'Cupertino, CA',
'Founded': 'April 1, 1976, Los Altos, CA',
'Founders': 'Steve Jobs, Steve Wozniak, '
'Ronald Wayne, and more',
'Products': 'iPhone, iPad, Apple TV, and '
'more'}},
'organic': [{'title': 'Apple',
'link': 'https://www.apple.com/',
'snippet': 'Discover the innovative world of Apple and shop '
'everything iPhone, iPad, Apple Watch, Mac, and Apple '
'TV, plus explore accessories, entertainment, ...',
'sitelinks': [{'title': 'Support',
'link': 'https://support.apple.com/'},
{'title': 'iPhone',
'link': 'https://www.apple.com/iphone/'},
{'title': 'Site Map',
'link': 'https://www.apple.com/sitemap/'},
{'title': 'Business',
'link': 'https://www.apple.com/business/'},
{'title': 'Mac',
'link': 'https://www.apple.com/mac/'},
{'title': 'Watch',
'link': 'https://www.apple.com/watch/'}],
'position': 1},
{'title': 'Apple Inc. - Wikipedia',
'link': 'https://en.wikipedia.org/wiki/Apple_Inc.',
'snippet': 'Apple Inc. is an American multinational technology '
'company headquartered in Cupertino, California. '
"Apple is the world's largest technology company by "
'revenue, ...', | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-3 | "Apple is the world's largest technology company by "
'revenue, ...',
'attributes': {'Products': 'AirPods; Apple Watch; iPad; iPhone; '
'Mac; Full list',
'Founders': 'Steve Jobs; Steve Wozniak; Ronald '
'Wayne; Mike Markkula'},
'sitelinks': [{'title': 'History',
'link': 'https://en.wikipedia.org/wiki/History_of_Apple_Inc.'},
{'title': 'Timeline of Apple Inc. products',
'link': 'https://en.wikipedia.org/wiki/Timeline_of_Apple_Inc._products'},
{'title': 'Litigation involving Apple Inc.',
'link': 'https://en.wikipedia.org/wiki/Litigation_involving_Apple_Inc.'},
{'title': 'Apple Store',
'link': 'https://en.wikipedia.org/wiki/Apple_Store'}],
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRvmB5fT1LjqpZx02UM7IJq0Buoqt0DZs_y0dqwxwSWyP4PIN9FaxuTea0&s',
'position': 2},
{'title': 'Apple Inc. | History, Products, Headquarters, & Facts '
'| Britannica',
'link': 'https://www.britannica.com/topic/Apple-Inc',
'snippet': 'Apple Inc., formerly Apple Computer, Inc., American '
'manufacturer of personal computers, smartphones, '
'tablet computers, computer peripherals, and computer '
'...',
'attributes': {'Related People': 'Steve Jobs Steve Wozniak Jony ' | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-4 | 'attributes': {'Related People': 'Steve Jobs Steve Wozniak Jony '
'Ive Tim Cook Angela Ahrendts',
'Date': '1976 - present'},
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcS3liELlhrMz3Wpsox29U8jJ3L8qETR0hBWHXbFnwjwQc34zwZvFELst2E&s',
'position': 3},
{'title': 'AAPL: Apple Inc Stock Price Quote - NASDAQ GS - '
'Bloomberg.com',
'link': 'https://www.bloomberg.com/quote/AAPL:US',
'snippet': 'AAPL:USNASDAQ GS. Apple Inc. COMPANY INFO ; Open. '
'170.09 ; Prev Close. 169.59 ; Volume. 48,425,696 ; '
'Market Cap. 2.667T ; Day Range. 167.54170.35.',
'position': 4},
{'title': 'Apple Inc. (AAPL) Company Profile & Facts - Yahoo '
'Finance',
'link': 'https://finance.yahoo.com/quote/AAPL/profile/',
'snippet': 'Apple Inc. designs, manufactures, and markets '
'smartphones, personal computers, tablets, wearables, '
'and accessories worldwide. The company offers '
'iPhone, a line ...',
'position': 5},
{'title': 'Apple Inc. (AAPL) Stock Price, News, Quote & History - '
'Yahoo Finance',
'link': 'https://finance.yahoo.com/quote/AAPL', | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-5 | 'link': 'https://finance.yahoo.com/quote/AAPL',
'snippet': 'Find the latest Apple Inc. (AAPL) stock quote, '
'history, news and other vital information to help '
'you with your stock trading and investing.',
'position': 6}],
'peopleAlsoAsk': [{'question': 'What does Apple Inc do?',
'snippet': 'Apple Inc. (Apple) designs, manufactures and '
'markets smartphones, personal\n'
'computers, tablets, wearables and accessories '
'and sells a range of related\n'
'services.',
'title': 'AAPL.O - | Stock Price & Latest News - Reuters',
'link': 'https://www.reuters.com/markets/companies/AAPL.O/'},
{'question': 'What is the full form of Apple Inc?',
'snippet': '(formerly Apple Computer Inc.) is an American '
'computer and consumer electronics\n'
'company famous for creating the iPhone, iPad '
'and Macintosh computers.',
'title': 'What is Apple? An products and history overview '
'- TechTarget',
'link': 'https://www.techtarget.com/whatis/definition/Apple'},
{'question': 'What is Apple Inc iPhone?',
'snippet': 'Apple Inc (Apple) designs, manufactures, and '
'markets smartphones, tablets,\n'
'personal computers, and wearable devices. The '
'company also offers software\n'
'applications and related services, '
'accessories, and third-party digital content.\n'
"Apple's product portfolio includes iPhone, "
'iPad, Mac, iPod, Apple Watch, and\n'
'Apple TV.', | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-6 | 'iPad, Mac, iPod, Apple Watch, and\n'
'Apple TV.',
'title': 'Apple Inc Company Profile - Apple Inc Overview - '
'GlobalData',
'link': 'https://www.globaldata.com/company-profile/apple-inc/'},
{'question': 'Who runs Apple Inc?',
'snippet': 'Timothy Donald Cook (born November 1, 1960) is '
'an American business executive\n'
'who has been the chief executive officer of '
'Apple Inc. since 2011. Cook\n'
"previously served as the company's chief "
'operating officer under its co-founder\n'
'Steve Jobs. He is the first CEO of any Fortune '
'500 company who is openly gay.',
'title': 'Tim Cook - Wikipedia',
'link': 'https://en.wikipedia.org/wiki/Tim_Cook'}],
'relatedSearches': [{'query': 'Who invented the iPhone'},
{'query': 'Apple iPhone'},
{'query': 'History of Apple company PDF'},
{'query': 'Apple company history'},
{'query': 'Apple company introduction'},
{'query': 'Apple India'},
{'query': 'What does Apple Inc own'},
{'query': 'Apple Inc After Steve'},
{'query': 'Apple Watch'},
{'query': 'Apple App Store'}]}
Searching for Google Images#
We can also query Google Images using this wrapper. For example:
search = GoogleSerperAPIWrapper(type="images")
results = search.results("Lion")
pprint.pp(results)
{'searchParameters': {'q': 'Lion',
'gl': 'us',
'hl': 'en',
'num': 10, | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-7 | 'hl': 'en',
'num': 10,
'type': 'images'},
'images': [{'title': 'Lion - Wikipedia',
'imageUrl': 'https://upload.wikimedia.org/wikipedia/commons/thumb/7/73/Lion_waiting_in_Namibia.jpg/1200px-Lion_waiting_in_Namibia.jpg',
'imageWidth': 1200,
'imageHeight': 900,
'thumbnailUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRye79ROKwjfb6017jr0iu8Bz2E1KKuHg-A4qINJaspyxkZrkw&s',
'thumbnailWidth': 259,
'thumbnailHeight': 194,
'source': 'Wikipedia',
'domain': 'en.wikipedia.org',
'link': 'https://en.wikipedia.org/wiki/Lion',
'position': 1},
{'title': 'Lion | Characteristics, Habitat, & Facts | Britannica',
'imageUrl': 'https://cdn.britannica.com/55/2155-050-604F5A4A/lion.jpg',
'imageWidth': 754,
'imageHeight': 752,
'thumbnailUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcS3fnDub1GSojI0hJ-ZGS8Tv-hkNNloXh98DOwXZoZ_nUs3GWSd&s',
'thumbnailWidth': 225,
'thumbnailHeight': 224,
'source': 'Encyclopedia Britannica',
'domain': 'www.britannica.com', | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-8 | 'domain': 'www.britannica.com',
'link': 'https://www.britannica.com/animal/lion',
'position': 2},
{'title': 'African lion, facts and photos',
'imageUrl': 'https://i.natgeofe.com/n/487a0d69-8202-406f-a6a0-939ed3704693/african-lion.JPG',
'imageWidth': 3072,
'imageHeight': 2043,
'thumbnailUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTPlTarrtDbyTiEm-VI_PML9VtOTVPuDXJ5ybDf_lN11H2mShk&s',
'thumbnailWidth': 275,
'thumbnailHeight': 183,
'source': 'National Geographic',
'domain': 'www.nationalgeographic.com',
'link': 'https://www.nationalgeographic.com/animals/mammals/facts/african-lion',
'position': 3},
{'title': 'Saint Louis Zoo | African Lion',
'imageUrl': 'https://optimise2.assets-servd.host/maniacal-finch/production/animals/african-lion-01-01.jpg?w=1200&auto=compress%2Cformat&fit=crop&dm=1658933674&s=4b63f926a0f524f2087a8e0613282bdb',
'imageWidth': 1200,
'imageHeight': 1200, | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-9 | 'imageWidth': 1200,
'imageHeight': 1200,
'thumbnailUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTlewcJ5SwC7yKup6ByaOjTnAFDeoOiMxyJTQaph2W_I3dnks4&s',
'thumbnailWidth': 225,
'thumbnailHeight': 225,
'source': 'St. Louis Zoo',
'domain': 'stlzoo.org',
'link': 'https://stlzoo.org/animals/mammals/carnivores/lion',
'position': 4},
{'title': 'How to Draw a Realistic Lion like an Artist - Studio '
'Wildlife',
'imageUrl': 'https://studiowildlife.com/wp-content/uploads/2021/10/245528858_183911853822648_6669060845725210519_n.jpg',
'imageWidth': 1431,
'imageHeight': 2048,
'thumbnailUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTmn5HayVj3wqoBDQacnUtzaDPZzYHSLKUlIEcni6VB8w0mVeA&s',
'thumbnailWidth': 188,
'thumbnailHeight': 269,
'source': 'Studio Wildlife',
'domain': 'studiowildlife.com',
'link': 'https://studiowildlife.com/how-to-draw-a-realistic-lion-like-an-artist/',
'position': 5},
{'title': 'Lion | Characteristics, Habitat, & Facts | Britannica', | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-10 | {'title': 'Lion | Characteristics, Habitat, & Facts | Britannica',
'imageUrl': 'https://cdn.britannica.com/29/150929-050-547070A1/lion-Kenya-Masai-Mara-National-Reserve.jpg',
'imageWidth': 1600,
'imageHeight': 1085,
'thumbnailUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSCqaKY_THr0IBZN8c-2VApnnbuvKmnsWjfrwKoWHFR9w3eN5o&s',
'thumbnailWidth': 273,
'thumbnailHeight': 185,
'source': 'Encyclopedia Britannica',
'domain': 'www.britannica.com',
'link': 'https://www.britannica.com/animal/lion',
'position': 6},
{'title': "Where do lions live? Facts about lions' habitats and "
'other cool facts',
'imageUrl': 'https://www.gannett-cdn.com/-mm-/b2b05a4ab25f4fca0316459e1c7404c537a89702/c=0-0-1365-768/local/-/media/2022/03/16/USATODAY/usatsports/imageForEntry5-ODq.jpg?width=1365&height=768&fit=crop&format=pjpg&auto=webp',
'imageWidth': 1365,
'imageHeight': 768, | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-11 | 'imageWidth': 1365,
'imageHeight': 768,
'thumbnailUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTc_4vCHscgvFvYy3PSrtIOE81kNLAfhDK8F3mfOuotL0kUkbs&s',
'thumbnailWidth': 299,
'thumbnailHeight': 168,
'source': 'USA Today',
'domain': 'www.usatoday.com',
'link': 'https://www.usatoday.com/story/news/2023/01/08/where-do-lions-live-habitat/10927718002/',
'position': 7},
{'title': 'Lion',
'imageUrl': 'https://i.natgeofe.com/k/1d33938b-3d02-4773-91e3-70b113c3b8c7/lion-male-roar_square.jpg',
'imageWidth': 3072,
'imageHeight': 3072,
'thumbnailUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQqLfnBrBLcTiyTZynHH3FGbBtX2bd1ScwpcuOLnksTyS9-4GM&s',
'thumbnailWidth': 225,
'thumbnailHeight': 225,
'source': 'National Geographic Kids',
'domain': 'kids.nationalgeographic.com',
'link': 'https://kids.nationalgeographic.com/animals/mammals/facts/lion',
'position': 8},
{'title': "Lion | Smithsonian's National Zoo", | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-12 | {'title': "Lion | Smithsonian's National Zoo",
'imageUrl': 'https://nationalzoo.si.edu/sites/default/files/styles/1400_scale/public/animals/exhibit/africanlion-005.jpg?itok=6wA745g_',
'imageWidth': 1400,
'imageHeight': 845,
'thumbnailUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSgB3z_D4dMEOWJ7lajJk4XaQSL4DdUvIRj4UXZ0YoE5fGuWuo&s',
'thumbnailWidth': 289,
'thumbnailHeight': 174,
'source': "Smithsonian's National Zoo",
'domain': 'nationalzoo.si.edu',
'link': 'https://nationalzoo.si.edu/animals/lion',
'position': 9},
{'title': "Zoo's New Male Lion Explores Habitat for the First Time "
'- Virginia Zoo',
'imageUrl': 'https://virginiazoo.org/wp-content/uploads/2022/04/ZOO_0056-scaled.jpg',
'imageWidth': 2560,
'imageHeight': 2141,
'thumbnailUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTDCG7XvXRCwpe_-Vy5mpvrQpVl5q2qwgnDklQhrJpQzObQGz4&s',
'thumbnailWidth': 246,
'thumbnailHeight': 205,
'source': 'Virginia Zoo',
'domain': 'virginiazoo.org', | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-13 | 'source': 'Virginia Zoo',
'domain': 'virginiazoo.org',
'link': 'https://virginiazoo.org/zoos-new-male-lion-explores-habitat-for-thefirst-time/',
'position': 10}]}
Searching for Google News#
We can also query Google News using this wrapper. For example:
search = GoogleSerperAPIWrapper(type="news")
results = search.results("Tesla Inc.")
pprint.pp(results)
{'searchParameters': {'q': 'Tesla Inc.',
'gl': 'us',
'hl': 'en',
'num': 10,
'type': 'news'},
'news': [{'title': 'ISS recommends Tesla investors vote against re-election '
'of Robyn Denholm',
'link': 'https://www.reuters.com/business/autos-transportation/iss-recommends-tesla-investors-vote-against-re-election-robyn-denholm-2023-05-04/',
'snippet': 'Proxy advisory firm ISS on Wednesday recommended Tesla '
'investors vote against re-election of board chair Robyn '
'Denholm, citing "concerns on...',
'date': '5 mins ago',
'source': 'Reuters',
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcROdETe_GUyp1e8RHNhaRM8Z_vfxCvdfinZwzL1bT1ZGSYaGTeOojIdBoLevA&s',
'position': 1},
{'title': 'Global companies by market cap: Tesla fell most in April', | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-14 | {'title': 'Global companies by market cap: Tesla fell most in April',
'link': 'https://www.reuters.com/markets/global-companies-by-market-cap-tesla-fell-most-april-2023-05-02/',
'snippet': 'Tesla Inc was the biggest loser among top companies by '
'market capitalisation in April, hit by disappointing '
'quarterly earnings after it...',
'date': '1 day ago',
'source': 'Reuters',
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQ4u4CP8aOdGyRFH6o4PkXi-_eZDeY96vLSag5gDjhKMYf98YBER2cZPbkStQ&s',
'position': 2},
{'title': 'Tesla Wanted an EV Price War. Ford Showed Up.',
'link': 'https://www.bloomberg.com/opinion/articles/2023-05-03/tesla-wanted-an-ev-price-war-ford-showed-up',
'snippet': 'The legacy automaker is paring back the cost of its '
'Mustang Mach-E model after Tesla discounted its '
'competing EVs, portending tighter...',
'date': '6 hours ago',
'source': 'Bloomberg.com',
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcS_3Eo4VI0H-nTeIbYc5DaQn5ep7YrWnmhx6pv8XddFgNF5zRC9gEpHfDq8yQ&s',
'position': 3}, | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-15 | 'position': 3},
{'title': 'Joby Aviation to get investment from Tesla shareholder '
'Baillie Gifford',
'link': 'https://finance.yahoo.com/news/joby-aviation-investment-tesla-shareholder-204450712.html',
'snippet': 'This comes days after Joby clinched a $55 million '
'contract extension to deliver up to nine air taxis to '
'the U.S. Air Force,...',
'date': '4 hours ago',
'source': 'Yahoo Finance',
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQO0uVn297LI-xryrPNqJ-apUOulj4ohM-xkN4OfmvMOYh1CPdUEBbYx6hviw&s',
'position': 4},
{'title': 'Tesla resumes U.S. orders for a Model 3 version at lower '
'price, range',
'link': 'https://finance.yahoo.com/news/tesla-resumes-us-orders-model-045736115.html',
'snippet': '(Reuters) -Tesla Inc has resumed taking orders for its '
'Model 3 long-range vehicle in the United States, the '
"company's website showed late on...",
'date': '19 hours ago',
'source': 'Yahoo Finance',
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTIZetJ62sQefPfbQ9KKDt6iH7Mc0ylT5t_hpgeeuUkHhJuAx2FOJ4ZTRVDFg&s',
'position': 5}, | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-16 | 'position': 5},
{'title': 'The Tesla Model 3 Long Range AWD Is Now Available in the '
'U.S. With 325 Miles of Range',
'link': 'https://www.notateslaapp.com/news/1393/tesla-reopens-orders-for-model-3-long-range-after-months-of-unavailability',
'snippet': 'Tesla has reopened orders for the Model 3 Long Range '
'RWD, which has been unavailable for months due to high '
'demand.',
'date': '7 hours ago',
'source': 'Not a Tesla App',
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSecrgxZpRj18xIJY-nDHljyP-A4ejEkswa9eq77qhMNrScnVIqe34uql5U4w&s',
'position': 6},
{'title': 'Tesla Cybertruck alpha prototype spotted at the Fremont '
'factory in new pics and videos',
'link': 'https://www.teslaoracle.com/2023/05/03/tesla-cybertruck-alpha-prototype-interior-and-exterior-spotted-at-the-fremont-factory-in-new-pics-and-videos/',
'snippet': 'A Tesla Cybertruck alpha prototype goes to Fremont, '
'California for another round of testing before going to '
'production later this year (pics...',
'date': '14 hours ago',
'source': 'Tesla Oracle', | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-17 | 'date': '14 hours ago',
'source': 'Tesla Oracle',
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRO7M5ZLQE-Zo4-_5dv9hNAQZ3wSqfvYCuKqzxHG-M6CgLpwPMMG_ssebdcMg&s',
'position': 7},
{'title': 'Tesla putting facility in new part of country - Austin '
'Business Journal',
'link': 'https://www.bizjournals.com/austin/news/2023/05/02/tesla-leases-building-seattle-area.html',
'snippet': 'Check out what Puget Sound Business Journal has to '
"report about the Austin-based company's real estate "
'footprint in the Pacific Northwest.',
'date': '22 hours ago',
'source': 'The Business Journals',
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcR9kIEHWz1FcHKDUtGQBS0AjmkqtyuBkQvD8kyIY3kpaPrgYaN7I_H2zoOJsA&s',
'position': 8},
{'title': 'Tesla (TSLA) Resumes Orders for Model 3 Long Range After '
'Backlog',
'link': 'https://www.bloomberg.com/news/articles/2023-05-03/tesla-resumes-orders-for-popular-model-3-long-range-at-47-240',
'snippet': 'Tesla Inc. has resumed taking orders for its Model 3 '
'Long Range edition with a starting price of $47240, ' | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-18 | 'Long Range edition with a starting price of $47240, '
'according to its website.',
'date': '5 hours ago',
'source': 'Bloomberg.com',
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTWWIC4VpMTfRvSyqiomODOoLg0xhoBf-Tc1qweKnSuaiTk-Y1wMJZM3jct0w&s',
'position': 9}]}
If you want to only receive news articles published in the last hour, you can do the following:
search = GoogleSerperAPIWrapper(type="news", tbs="qdr:h")
results = search.results("Tesla Inc.")
pprint.pp(results)
{'searchParameters': {'q': 'Tesla Inc.',
'gl': 'us',
'hl': 'en',
'num': 10,
'type': 'news',
'tbs': 'qdr:h'},
'news': [{'title': 'Oklahoma Gov. Stitt sees growing foreign interest in '
'investments in ...',
'link': 'https://www.reuters.com/world/us/oklahoma-gov-stitt-sees-growing-foreign-interest-investments-state-2023-05-04/',
'snippet': 'T)), a battery supplier to electric vehicle maker Tesla '
'Inc (TSLA.O), said on Sunday it is considering building '
'a battery plant in Oklahoma, its third in...',
'date': '53 mins ago',
'source': 'Reuters', | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-19 | 'date': '53 mins ago',
'source': 'Reuters',
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSSTcsXeenqmEKdiekvUgAmqIPR4nlAmgjTkBqLpza-lLfjX1CwB84MoNVj0Q&s',
'position': 1},
{'title': 'Ryder lanza solución llave en mano para vehículos '
'eléctricos en EU',
'link': 'https://www.tyt.com.mx/nota/ryder-lanza-solucion-llave-en-mano-para-vehiculos-electricos-en-eu',
'snippet': 'Ryder System Inc. presentó RyderElectric+ TM como su '
'nueva solución llave en mano ... Ryder también tiene '
'reservados los semirremolques Tesla y continúa...',
'date': '56 mins ago',
'source': 'Revista Transportes y Turismo',
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQJhXTQQtjSUZf9YPM235WQhFU5_d7lEA76zB8DGwZfixcgf1_dhPJyKA1Nbw&s',
'position': 2},
{'title': '"I think people can get by with $999 million," Bernie '
'Sanders tells American Billionaires.', | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-20 | 'Sanders tells American Billionaires.',
'link': 'https://thebharatexpressnews.com/i-think-people-can-get-by-with-999-million-bernie-sanders-tells-american-billionaires-heres-how-the-ultra-rich-can-pay-less-income-tax-than-you-legally/',
'snippet': 'The report noted that in 2007 and 2011, Amazon.com Inc. '
'founder Jeff Bezos “did not pay a dime in federal ... '
'If you want to bet on Musk, check out Tesla.',
'date': '11 mins ago',
'source': 'THE BHARAT EXPRESS NEWS',
'imageUrl': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcR_X9qqSwVFBBdos2CK5ky5IWIE3aJPCQeRYR9O1Jz4t-MjaEYBuwK7AU3AJQ&s',
'position': 3}]}
Some examples of the tbs parameter:
qdr:h (past hour)
qdr:d (past day)
qdr:w (past week)
qdr:m (past month)
qdr:y (past year)
You can specify intermediate time periods by adding a number:
qdr:h12 (past 12 hours)
qdr:d3 (past 3 days)
qdr:w2 (past 2 weeks)
qdr:m6 (past 6 months)
qdr:m2 (past 2 years)
For all supported filters simply go to Google Search, search for something, click on “Tools”, add your date filter and check the URL for “tbs=”.
Searching for Google Places#
We can also query Google Places using this wrapper. For example: | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-21 | Searching for Google Places#
We can also query Google Places using this wrapper. For example:
search = GoogleSerperAPIWrapper(type="places")
results = search.results("Italian restaurants in Upper East Side")
pprint.pp(results)
{'searchParameters': {'q': 'Italian restaurants in Upper East Side',
'gl': 'us',
'hl': 'en',
'num': 10,
'type': 'places'},
'places': [{'position': 1,
'title': "L'Osteria",
'address': '1219 Lexington Ave',
'latitude': 40.777154599999996,
'longitude': -73.9571363,
'thumbnailUrl': 'https://lh5.googleusercontent.com/p/AF1QipNjU7BWEq_aYQANBCbX52Kb0lDpd_lFIx5onw40=w92-h92-n-k-no',
'rating': 4.7,
'ratingCount': 91,
'category': 'Italian'},
{'position': 2,
'title': "Tony's Di Napoli",
'address': '1081 3rd Ave',
'latitude': 40.7643567,
'longitude': -73.9642373,
'thumbnailUrl': 'https://lh5.googleusercontent.com/p/AF1QipNbNv6jZkJ9nyVi60__8c1DQbe_eEbugRAhIYye=w92-h92-n-k-no',
'rating': 4.5,
'ratingCount': 2265,
'category': 'Italian'},
{'position': 3,
'title': 'Caravaggio', | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-22 | {'position': 3,
'title': 'Caravaggio',
'address': '23 E 74th St',
'latitude': 40.773412799999996,
'longitude': -73.96473379999999,
'thumbnailUrl': 'https://lh5.googleusercontent.com/p/AF1QipPDGchokDvppoLfmVEo6X_bWd3Fz0HyxIHTEe9V=w92-h92-n-k-no',
'rating': 4.5,
'ratingCount': 276,
'category': 'Italian'},
{'position': 4,
'title': 'Luna Rossa',
'address': '347 E 85th St',
'latitude': 40.776593999999996,
'longitude': -73.950351,
'thumbnailUrl': 'https://lh5.googleusercontent.com/p/AF1QipNPCpCPuqPAb1Mv6_fOP7cjb8Wu1rbqbk2sMBlh=w92-h92-n-k-no',
'rating': 4.5,
'ratingCount': 140,
'category': 'Italian'},
{'position': 5,
'title': "Paola's",
'address': '1361 Lexington Ave',
'latitude': 40.7822019,
'longitude': -73.9534096,
'thumbnailUrl': 'https://lh5.googleusercontent.com/p/AF1QipPJr2Vcx-B6K-GNQa4koOTffggTePz8TKRTnWi3=w92-h92-n-k-no',
'rating': 4.5, | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-23 | 'rating': 4.5,
'ratingCount': 344,
'category': 'Italian'},
{'position': 6,
'title': 'Come Prima',
'address': '903 Madison Ave',
'latitude': 40.772124999999996,
'longitude': -73.965012,
'thumbnailUrl': 'https://lh5.googleusercontent.com/p/AF1QipNrX19G0NVdtDyMovCQ-M-m0c_gLmIxrWDQAAbz=w92-h92-n-k-no',
'rating': 4.5,
'ratingCount': 176,
'category': 'Italian'},
{'position': 7,
'title': 'Botte UES',
'address': '1606 1st Ave.',
'latitude': 40.7750785,
'longitude': -73.9504801,
'thumbnailUrl': 'https://lh5.googleusercontent.com/p/AF1QipPPN5GXxfH3NDacBc0Pt3uGAInd9OChS5isz9RF=w92-h92-n-k-no',
'rating': 4.4,
'ratingCount': 152,
'category': 'Italian'},
{'position': 8,
'title': 'Piccola Cucina Uptown',
'address': '106 E 60th St',
'latitude': 40.7632468,
'longitude': -73.9689825, | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-24 | 'longitude': -73.9689825,
'thumbnailUrl': 'https://lh5.googleusercontent.com/p/AF1QipPifIgzOCD5SjgzzqBzGkdZCBp0MQsK5k7M7znn=w92-h92-n-k-no',
'rating': 4.6,
'ratingCount': 941,
'category': 'Italian'},
{'position': 9,
'title': 'Pinocchio Restaurant',
'address': '300 E 92nd St',
'latitude': 40.781453299999995,
'longitude': -73.9486788,
'thumbnailUrl': 'https://lh5.googleusercontent.com/p/AF1QipNtxlIyEEJHtDtFtTR9nB38S8A2VyMu-mVVz72A=w92-h92-n-k-no',
'rating': 4.5,
'ratingCount': 113,
'category': 'Italian'},
{'position': 10,
'title': 'Barbaresco',
'address': '843 Lexington Ave #1',
'latitude': 40.7654332,
'longitude': -73.9656873,
'thumbnailUrl': 'https://lh5.googleusercontent.com/p/AF1QipMb9FbPuXF_r9g5QseOHmReejxSHgSahPMPJ9-8=w92-h92-n-k-no',
'rating': 4.3,
'ratingCount': 122,
'locationHint': 'In The Touraine',
'category': 'Italian'}]}
previous
Google Search
next
Gradio Tools
Contents | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
d9f4a696fefc-25 | previous
Google Search
next
Gradio Tools
Contents
As part of a Self Ask With Search Chain
Obtaining results with metadata
Searching for Google Images
Searching for Google News
Searching for Google Places
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_serper.html |
b3ec2a21b685-0 | .ipynb
.pdf
OpenWeatherMap API
Contents
Use the wrapper
Use the tool
OpenWeatherMap API#
This notebook goes over how to use the OpenWeatherMap component to fetch weather information.
First, you need to sign up for an OpenWeatherMap API key:
Go to OpenWeatherMap and sign up for an API key here
pip install pyowm
Then we will need to set some environment variables:
Save your API KEY into OPENWEATHERMAP_API_KEY env variable
Use the wrapper#
from langchain.utilities import OpenWeatherMapAPIWrapper
import os
os.environ["OPENWEATHERMAP_API_KEY"] = ""
weather = OpenWeatherMapAPIWrapper()
weather_data = weather.run("London,GB")
print(weather_data)
In London,GB, the current weather is as follows:
Detailed status: broken clouds
Wind speed: 2.57 m/s, direction: 240°
Humidity: 55%
Temperature:
- Current: 20.12°C
- High: 21.75°C
- Low: 18.68°C
- Feels like: 19.62°C
Rain: {}
Heat index: None
Cloud cover: 75%
Use the tool#
from langchain.llms import OpenAI
from langchain.agents import load_tools, initialize_agent, AgentType
import os
os.environ["OPENAI_API_KEY"] = ""
os.environ["OPENWEATHERMAP_API_KEY"] = ""
llm = OpenAI(temperature=0)
tools = load_tools(["openweathermap-api"], llm)
agent_chain = initialize_agent(
tools=tools,
llm=llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
) | https://python.langchain.com/en/latest/modules/agents/tools/examples/openweathermap.html |
b3ec2a21b685-1 | agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
)
agent_chain.run("What's the weather like in London?")
> Entering new AgentExecutor chain...
I need to find out the current weather in London.
Action: OpenWeatherMap
Action Input: London,GB
Observation: In London,GB, the current weather is as follows:
Detailed status: broken clouds
Wind speed: 2.57 m/s, direction: 240°
Humidity: 56%
Temperature:
- Current: 20.11°C
- High: 21.75°C
- Low: 18.68°C
- Feels like: 19.64°C
Rain: {}
Heat index: None
Cloud cover: 75%
Thought: I now know the current weather in London.
Final Answer: The current weather in London is broken clouds, with a wind speed of 2.57 m/s, direction 240°, humidity of 56%, temperature of 20.11°C, high of 21.75°C, low of 18.68°C, and a heat index of None.
> Finished chain.
'The current weather in London is broken clouds, with a wind speed of 2.57 m/s, direction 240°, humidity of 56%, temperature of 20.11°C, high of 21.75°C, low of 18.68°C, and a heat index of None.'
previous
Metaphor Search
next
Python REPL
Contents
Use the wrapper
Use the tool
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/openweathermap.html |
b93b8f212e4a-0 | .ipynb
.pdf
ChatGPT Plugins
ChatGPT Plugins#
This example shows how to use ChatGPT Plugins within LangChain abstractions.
Note 1: This currently only works for plugins with no auth.
Note 2: There are almost certainly other ways to do this, this is just a first pass. If you have better ideas, please open a PR!
from langchain.chat_models import ChatOpenAI
from langchain.agents import load_tools, initialize_agent
from langchain.agents import AgentType
from langchain.tools import AIPluginTool
tool = AIPluginTool.from_plugin_url("https://www.klarna.com/.well-known/ai-plugin.json")
llm = ChatOpenAI(temperature=0)
tools = load_tools(["requests_all"] )
tools += [tool]
agent_chain = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent_chain.run("what t shirts are available in klarna?")
> Entering new AgentExecutor chain...
I need to check the Klarna Shopping API to see if it has information on available t shirts.
Action: KlarnaProducts
Action Input: None
Observation: Usage Guide: Use the Klarna plugin to get relevant product suggestions for any shopping or researching purpose. The query to be sent should not include stopwords like articles, prepositions and determinants. The api works best when searching for words that are related to products, like their name, brand, model or category. Links will always be returned and should be shown to the user. | https://python.langchain.com/en/latest/modules/agents/tools/examples/chatgpt_plugins.html |
b93b8f212e4a-1 | OpenAPI Spec: {'openapi': '3.0.1', 'info': {'version': 'v0', 'title': 'Open AI Klarna product Api'}, 'servers': [{'url': 'https://www.klarna.com/us/shopping'}], 'tags': [{'name': 'open-ai-product-endpoint', 'description': 'Open AI Product Endpoint. Query for products.'}], 'paths': {'/public/openai/v0/products': {'get': {'tags': ['open-ai-product-endpoint'], 'summary': 'API for fetching Klarna product information', 'operationId': 'productsUsingGET', 'parameters': [{'name': 'q', 'in': 'query', 'description': 'query, must be between 2 and 100 characters', 'required': True, 'schema': {'type': 'string'}}, {'name': 'size', 'in': 'query', 'description': 'number of products returned', 'required': False, 'schema': {'type': 'integer'}}, {'name': 'budget', 'in': 'query', 'description': 'maximum price of the matching product in local currency, filters results', 'required': False, 'schema': {'type': 'integer'}}], 'responses': {'200': {'description': 'Products found', 'content': {'application/json': {'schema': {'$ref': '#/components/schemas/ProductResponse'}}}}, | https://python.langchain.com/en/latest/modules/agents/tools/examples/chatgpt_plugins.html |
b93b8f212e4a-2 | {'schema': {'$ref': '#/components/schemas/ProductResponse'}}}}, '503': {'description': 'one or more services are unavailable'}}, 'deprecated': False}}}, 'components': {'schemas': {'Product': {'type': 'object', 'properties': {'attributes': {'type': 'array', 'items': {'type': 'string'}}, 'name': {'type': 'string'}, 'price': {'type': 'string'}, 'url': {'type': 'string'}}, 'title': 'Product'}, 'ProductResponse': {'type': 'object', 'properties': {'products': {'type': 'array', 'items': {'$ref': '#/components/schemas/Product'}}}, 'title': 'ProductResponse'}}}} | https://python.langchain.com/en/latest/modules/agents/tools/examples/chatgpt_plugins.html |
b93b8f212e4a-3 | Thought:I need to use the Klarna Shopping API to search for t shirts.
Action: requests_get
Action Input: https://www.klarna.com/us/shopping/public/openai/v0/products?q=t%20shirts | https://python.langchain.com/en/latest/modules/agents/tools/examples/chatgpt_plugins.html |
b93b8f212e4a-4 | Observation: {"products":[{"name":"Lacoste Men's Pack of Plain T-Shirts","url":"https://www.klarna.com/us/shopping/pl/cl10001/3202043025/Clothing/Lacoste-Men-s-Pack-of-Plain-T-Shirts/?utm_source=openai","price":"$26.60","attributes":["Material:Cotton","Target Group:Man","Color:White,Black"]},{"name":"Hanes Men's Ultimate 6pk. Crewneck T-Shirts","url":"https://www.klarna.com/us/shopping/pl/cl10001/3201808270/Clothing/Hanes-Men-s-Ultimate-6pk.-Crewneck-T-Shirts/?utm_source=openai","price":"$13.82","attributes":["Material:Cotton","Target Group:Man","Color:White"]},{"name":"Nike Boy's Jordan Stretch T-shirts","url":"https://www.klarna.com/us/shopping/pl/cl359/3201863202/Children-s-Clothing/Nike-Boy-s-Jordan-Stretch-T-shirts/?utm_source=openai","price":"$14.99","attributes":["Material:Cotton","Color:White,Green","Model:Boy","Size (Small-Large):S,XL,L,M"]},{"name":"Polo Classic Fit Cotton V-Neck T-Shirts 3-Pack","url":"https://www.klarna.com/us/shopping/pl/cl10001/3203028500/Clothing/Polo-Classic-Fit-Cotton-V-Neck-T-Shirts-3-Pack/?utm_source=openai","price":"$29.95","attributes":["Material:Cotton","Target Group:Man","Color:White,Blue,Black"]},{"name":"adidas Comfort T-shirts Men's | https://python.langchain.com/en/latest/modules/agents/tools/examples/chatgpt_plugins.html |
b93b8f212e4a-5 | Comfort T-shirts Men's 3-pack","url":"https://www.klarna.com/us/shopping/pl/cl10001/3202640533/Clothing/adidas-Comfort-T-shirts-Men-s-3-pack/?utm_source=openai","price":"$14.99","attributes":["Material:Cotton","Target Group:Man","Color:White,Black","Neckline:Round"]}]} | https://python.langchain.com/en/latest/modules/agents/tools/examples/chatgpt_plugins.html |
b93b8f212e4a-6 | Thought:The available t shirts in Klarna are Lacoste Men's Pack of Plain T-Shirts, Hanes Men's Ultimate 6pk. Crewneck T-Shirts, Nike Boy's Jordan Stretch T-shirts, Polo Classic Fit Cotton V-Neck T-Shirts 3-Pack, and adidas Comfort T-shirts Men's 3-pack.
Final Answer: The available t shirts in Klarna are Lacoste Men's Pack of Plain T-Shirts, Hanes Men's Ultimate 6pk. Crewneck T-Shirts, Nike Boy's Jordan Stretch T-shirts, Polo Classic Fit Cotton V-Neck T-Shirts 3-Pack, and adidas Comfort T-shirts Men's 3-pack.
> Finished chain.
"The available t shirts in Klarna are Lacoste Men's Pack of Plain T-Shirts, Hanes Men's Ultimate 6pk. Crewneck T-Shirts, Nike Boy's Jordan Stretch T-shirts, Polo Classic Fit Cotton V-Neck T-Shirts 3-Pack, and adidas Comfort T-shirts Men's 3-pack."
previous
Bing Search
next
DuckDuckGo Search
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/chatgpt_plugins.html |
1295037501a4-0 | .ipynb
.pdf
ArXiv API Tool
Contents
The ArXiv API Wrapper
ArXiv API Tool#
This notebook goes over how to use the arxiv component.
First, you need to install arxiv python package.
!pip install arxiv
from langchain.chat_models import ChatOpenAI
from langchain.agents import load_tools, initialize_agent, AgentType
llm = ChatOpenAI(temperature=0.0)
tools = load_tools(
["arxiv"],
)
agent_chain = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
)
agent_chain.run(
"What's the paper 1605.08386 about?",
)
> Entering new AgentExecutor chain...
I need to use Arxiv to search for the paper.
Action: Arxiv
Action Input: "1605.08386"
Observation: Published: 2016-05-26
Title: Heat-bath random walks with Markov bases
Authors: Caprice Stanley, Tobias Windisch
Summary: Graphs on lattice points are studied whose edges come from a finite set of
allowed moves of arbitrary length. We show that the diameter of these graphs on
fibers of a fixed integer matrix can be bounded from above by a constant. We
then study the mixing behaviour of heat-bath random walks on these graphs. We
also state explicit conditions on the set of moves so that the heat-bath random
walk, a generalization of the Glauber dynamics, is an expander in fixed
dimension.
Thought:The paper is about heat-bath random walks with Markov bases on graphs of lattice points. | https://python.langchain.com/en/latest/modules/agents/tools/examples/arxiv.html |
1295037501a4-1 | Thought:The paper is about heat-bath random walks with Markov bases on graphs of lattice points.
Final Answer: The paper 1605.08386 is about heat-bath random walks with Markov bases on graphs of lattice points.
> Finished chain.
'The paper 1605.08386 is about heat-bath random walks with Markov bases on graphs of lattice points.'
The ArXiv API Wrapper#
The tool wraps the API Wrapper. Below, we can explore some of the features it provides.
from langchain.utilities import ArxivAPIWrapper
Run a query to get information about some scientific article/articles. The query text is limited to 300 characters.
It returns these article fields:
Publishing date
Title
Authors
Summary
Next query returns information about one article with arxiv Id equal “1605.08386”.
arxiv = ArxivAPIWrapper()
docs = arxiv.run("1605.08386")
docs
'Published: 2016-05-26\nTitle: Heat-bath random walks with Markov bases\nAuthors: Caprice Stanley, Tobias Windisch\nSummary: Graphs on lattice points are studied whose edges come from a finite set of\nallowed moves of arbitrary length. We show that the diameter of these graphs on\nfibers of a fixed integer matrix can be bounded from above by a constant. We\nthen study the mixing behaviour of heat-bath random walks on these graphs. We\nalso state explicit conditions on the set of moves so that the heat-bath random\nwalk, a generalization of the Glauber dynamics, is an expander in fixed\ndimension.'
Now, we want to get information about one author, Caprice Stanley.
This query returns information about three articles. By default, the query returns information only about three top articles.
docs = arxiv.run("Caprice Stanley")
docs | https://python.langchain.com/en/latest/modules/agents/tools/examples/arxiv.html |
1295037501a4-2 | docs = arxiv.run("Caprice Stanley")
docs
'Published: 2017-10-10\nTitle: On Mixing Behavior of a Family of Random Walks Determined by a Linear Recurrence\nAuthors: Caprice Stanley, Seth Sullivant\nSummary: We study random walks on the integers mod $G_n$ that are determined by an\ninteger sequence $\\{ G_n \\}_{n \\geq 1}$ generated by a linear recurrence\nrelation. Fourier analysis provides explicit formulas to compute the\neigenvalues of the transition matrices and we use this to bound the mixing time\nof the random walks.\n\nPublished: 2016-05-26\nTitle: Heat-bath random walks with Markov bases\nAuthors: Caprice Stanley, Tobias Windisch\nSummary: Graphs on lattice points are studied whose edges come from a finite set of\nallowed moves of arbitrary length. We show that the diameter of these graphs on\nfibers of a fixed integer matrix can be bounded from above by a constant. We\nthen study the mixing behaviour of heat-bath random walks on these graphs. We\nalso state explicit conditions on the set of moves so that the heat-bath random\nwalk, a generalization of the Glauber dynamics, is an expander in fixed\ndimension.\n\nPublished: 2003-03-18\nTitle: Calculation of fluxes of charged particles and neutrinos from atmospheric showers\nAuthors: V. Plyaskin\nSummary: The results on the fluxes of charged particles and neutrinos from a\n3-dimensional (3D) simulation of atmospheric showers are presented. An\nagreement of calculated fluxes with data on charged particles from the AMS and\nCAPRICE detectors is demonstrated. Predictions on neutrino fluxes at different\nexperimental sites are compared with results from other calculations.' | https://python.langchain.com/en/latest/modules/agents/tools/examples/arxiv.html |
1295037501a4-3 | Now, we are trying to find information about non-existing article. In this case, the response is “No good Arxiv Result was found”
docs = arxiv.run("1605.08386WWW")
docs
'No good Arxiv Result was found'
previous
Apify
next
AWS Lambda API
Contents
The ArXiv API Wrapper
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/arxiv.html |
c0d94ef7a956-0 | .ipynb
.pdf
SceneXplain
Contents
Usage in an Agent
SceneXplain#
SceneXplain is an ImageCaptioning service accessible through the SceneXplain Tool.
To use this tool, you’ll need to make an account and fetch your API Token from the website. Then you can instantiate the tool.
import os
os.environ["SCENEX_API_KEY"] = "<YOUR_API_KEY>"
from langchain.agents import load_tools
tools = load_tools(["sceneXplain"])
Or directly instantiate the tool.
from langchain.tools import SceneXplainTool
tool = SceneXplainTool()
Usage in an Agent#
The tool can be used in any LangChain agent as follows:
from langchain.llms import OpenAI
from langchain.agents import initialize_agent
from langchain.memory import ConversationBufferMemory
llm = OpenAI(temperature=0)
memory = ConversationBufferMemory(memory_key="chat_history")
agent = initialize_agent(
tools, llm, memory=memory, agent="conversational-react-description", verbose=True
)
output = agent.run(
input=(
"What is in this image https://storage.googleapis.com/causal-diffusion.appspot.com/imagePrompts%2F0rw369i5h9t%2Foriginal.png. "
"Is it movie or a game? If it is a movie, what is the name of the movie?"
)
)
print(output)
> Entering new AgentExecutor chain...
Thought: Do I need to use a tool? Yes
Action: Image Explainer
Action Input: https://storage.googleapis.com/causal-diffusion.appspot.com/imagePrompts%2F0rw369i5h9t%2Foriginal.png | https://python.langchain.com/en/latest/modules/agents/tools/examples/sceneXplain.html |
c0d94ef7a956-1 | Observation: In a charmingly whimsical scene, a young girl is seen braving the rain alongside her furry companion, the lovable Totoro. The two are depicted standing on a bustling street corner, where they are sheltered from the rain by a bright yellow umbrella. The girl, dressed in a cheerful yellow frock, holds onto the umbrella with both hands while gazing up at Totoro with an expression of wonder and delight.
Totoro, meanwhile, stands tall and proud beside his young friend, holding his own umbrella aloft to protect them both from the downpour. His furry body is rendered in rich shades of grey and white, while his large ears and wide eyes lend him an endearing charm.
In the background of the scene, a street sign can be seen jutting out from the pavement amidst a flurry of raindrops. A sign with Chinese characters adorns its surface, adding to the sense of cultural diversity and intrigue. Despite the dreary weather, there is an undeniable sense of joy and camaraderie in this heartwarming image.
Thought: Do I need to use a tool? No
AI: This image appears to be a still from the 1988 Japanese animated fantasy film My Neighbor Totoro. The film follows two young girls, Satsuki and Mei, as they explore the countryside and befriend the magical forest spirits, including the titular character Totoro.
> Finished chain.
This image appears to be a still from the 1988 Japanese animated fantasy film My Neighbor Totoro. The film follows two young girls, Satsuki and Mei, as they explore the countryside and befriend the magical forest spirits, including the titular character Totoro.
previous
Requests
next
Search Tools
Contents
Usage in an Agent
By Harrison Chase
© Copyright 2023, Harrison Chase. | https://python.langchain.com/en/latest/modules/agents/tools/examples/sceneXplain.html |
c0d94ef7a956-2 | By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/sceneXplain.html |
c144e3d2b713-0 | .ipynb
.pdf
DuckDuckGo Search
DuckDuckGo Search#
This notebook goes over how to use the duck-duck-go search component.
# !pip install duckduckgo-search
from langchain.tools import DuckDuckGoSearchRun
search = DuckDuckGoSearchRun()
search.run("Obama's first name?") | https://python.langchain.com/en/latest/modules/agents/tools/examples/ddg.html |
c144e3d2b713-1 | 'Barack Obama, in full Barack Hussein Obama II, (born August 4, 1961, Honolulu, Hawaii, U.S.), 44th president of the United States (2009-17) and the first African American to hold the office. Before winning the presidency, Obama represented Illinois in the U.S. Senate (2005-08). Barack Hussein Obama II (/ b ə ˈ r ɑː k h uː ˈ s eɪ n oʊ ˈ b ɑː m ə / bə-RAHK hoo-SAYN oh-BAH-mə; born August 4, 1961) is an American former politician who served as the 44th president of the United States from 2009 to 2017. A member of the Democratic Party, he was the first African-American president of the United States. Obama previously served as a U.S. senator representing ... Barack Obama was the first African American president of the United States (2009-17). He oversaw the recovery of the U.S. economy (from the Great Recession of 2008-09) and the enactment of landmark health care reform (the Patient Protection and Affordable Care Act ). In 2009 he was awarded the Nobel Peace Prize. His birth certificate lists his first name as Barack: That\'s how Obama has spelled his name throughout his life. His name derives from a Hebrew name which means "lightning.". The Hebrew word has been transliterated into English in various spellings, including Barak, Buraq, Burack, and Barack. Most common names of U.S. presidents 1789-2021. Published by. Aaron O\'Neill , Jun 21, 2022. The most common first name for a U.S. president is James, followed by John and then William. Six U.S ...'
previous
ChatGPT Plugins | https://python.langchain.com/en/latest/modules/agents/tools/examples/ddg.html |
c144e3d2b713-2 | previous
ChatGPT Plugins
next
File System Tools
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/ddg.html |
018b212596d9-0 | .ipynb
.pdf
Search Tools
Contents
Google Serper API Wrapper
SerpAPI
GoogleSearchAPIWrapper
SearxNG Meta Search Engine
Search Tools#
This notebook shows off usage of various search tools.
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import OpenAI
llm = OpenAI(temperature=0)
Google Serper API Wrapper#
First, let’s try to use the Google Serper API tool.
tools = load_tools(["google-serper"], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("What is the weather in Pomfret?")
> Entering new AgentExecutor chain...
I should look up the current weather conditions.
Action: Search
Action Input: "weather in Pomfret"
Observation: 37°F
Thought: I now know the current temperature in Pomfret.
Final Answer: The current temperature in Pomfret is 37°F.
> Finished chain.
'The current temperature in Pomfret is 37°F.'
SerpAPI#
Now, let’s use the SerpAPI tool.
tools = load_tools(["serpapi"], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("What is the weather in Pomfret?")
> Entering new AgentExecutor chain...
I need to find out what the current weather is in Pomfret.
Action: Search
Action Input: "weather in Pomfret" | https://python.langchain.com/en/latest/modules/agents/tools/examples/search_tools.html |
018b212596d9-1 | Action: Search
Action Input: "weather in Pomfret"
Observation: Partly cloudy skies during the morning hours will give way to cloudy skies with light rain and snow developing in the afternoon. High 42F. Winds WNW at 10 to 15 ...
Thought: I now know the current weather in Pomfret.
Final Answer: Partly cloudy skies during the morning hours will give way to cloudy skies with light rain and snow developing in the afternoon. High 42F. Winds WNW at 10 to 15 mph.
> Finished chain.
'Partly cloudy skies during the morning hours will give way to cloudy skies with light rain and snow developing in the afternoon. High 42F. Winds WNW at 10 to 15 mph.'
GoogleSearchAPIWrapper#
Now, let’s use the official Google Search API Wrapper.
tools = load_tools(["google-search"], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("What is the weather in Pomfret?")
> Entering new AgentExecutor chain...
I should look up the current weather conditions.
Action: Google Search
Action Input: "weather in Pomfret" | https://python.langchain.com/en/latest/modules/agents/tools/examples/search_tools.html |
018b212596d9-2 | Action: Google Search
Action Input: "weather in Pomfret"
Observation: Showers early becoming a steady light rain later in the day. Near record high temperatures. High around 60F. Winds SW at 10 to 15 mph. Chance of rain 60%. Pomfret, CT Weather Forecast, with current conditions, wind, air quality, and what to expect for the next 3 days. Hourly Weather-Pomfret, CT. As of 12:52 am EST. Special Weather Statement +2 ... Hazardous Weather Conditions. Special Weather Statement ... Pomfret CT. Tonight ... National Digital Forecast Database Maximum Temperature Forecast. Pomfret Center Weather Forecasts. Weather Underground provides local & long-range weather forecasts, weatherreports, maps & tropical weather conditions for ... Pomfret, CT 12 hour by hour weather forecast includes precipitation, temperatures, sky conditions, rain chance, dew-point, relative humidity, wind direction ... North Pomfret Weather Forecasts. Weather Underground provides local & long-range weather forecasts, weatherreports, maps & tropical weather conditions for ... Today's Weather - Pomfret, CT. Dec 31, 2022 4:00 PM. Putnam MS. --. Weather forecast icon. Feels like --. Hi --. Lo --. Pomfret, CT temperature trend for the next 14 Days. Find daytime highs and nighttime lows from TheWeatherNetwork.com. Pomfret, MD Weather Forecast Date: 332 PM EST Wed Dec 28 2022. The area/counties/county of: Charles, including the cites of: St. Charles and Waldorf.
Thought: I now know the current weather conditions in Pomfret.
Final Answer: Showers early becoming a steady light rain later in the day. Near record high temperatures. High around 60F. Winds SW at 10 to 15 mph. Chance of rain 60%. | https://python.langchain.com/en/latest/modules/agents/tools/examples/search_tools.html |
018b212596d9-3 | > Finished AgentExecutor chain.
'Showers early becoming a steady light rain later in the day. Near record high temperatures. High around 60F. Winds SW at 10 to 15 mph. Chance of rain 60%.'
SearxNG Meta Search Engine#
Here we will be using a self hosted SearxNG meta search engine.
tools = load_tools(["searx-search"], searx_host="http://localhost:8888", llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("What is the weather in Pomfret")
> Entering new AgentExecutor chain...
I should look up the current weather
Action: SearX Search
Action Input: "weather in Pomfret"
Observation: Mainly cloudy with snow showers around in the morning. High around 40F. Winds NNW at 5 to 10 mph. Chance of snow 40%. Snow accumulations less than one inch.
10 Day Weather - Pomfret, MD As of 1:37 pm EST Today 49°/ 41° 52% Mon 27 | Day 49° 52% SE 14 mph Cloudy with occasional rain showers. High 49F. Winds SE at 10 to 20 mph. Chance of rain 50%....
10 Day Weather - Pomfret, VT As of 3:51 am EST Special Weather Statement Today 39°/ 32° 37% Wed 01 | Day 39° 37% NE 4 mph Cloudy with snow showers developing for the afternoon. High 39F.... | https://python.langchain.com/en/latest/modules/agents/tools/examples/search_tools.html |
018b212596d9-4 | Pomfret, CT ; Current Weather. 1:06 AM. 35°F · RealFeel® 32° ; TODAY'S WEATHER FORECAST. 3/3. 44°Hi. RealFeel® 50° ; TONIGHT'S WEATHER FORECAST. 3/3. 32°Lo.
Pomfret, MD Forecast Today Hourly Daily Morning 41° 1% Afternoon 43° 0% Evening 35° 3% Overnight 34° 2% Don't Miss Finally, Here’s Why We Get More Colds and Flu When It’s Cold Coast-To-Coast...
Pomfret, MD Weather Forecast | AccuWeather Current Weather 5:35 PM 35° F RealFeel® 36° RealFeel Shade™ 36° Air Quality Excellent Wind E 3 mph Wind Gusts 5 mph Cloudy More Details WinterCast...
Pomfret, VT Weather Forecast | AccuWeather Current Weather 11:21 AM 23° F RealFeel® 27° RealFeel Shade™ 25° Air Quality Fair Wind ESE 3 mph Wind Gusts 7 mph Cloudy More Details WinterCast...
Pomfret Center, CT Weather Forecast | AccuWeather Daily Current Weather 6:50 PM 39° F RealFeel® 36° Air Quality Fair Wind NW 6 mph Wind Gusts 16 mph Mostly clear More Details WinterCast...
12:00 pm · Feels Like36° · WindN 5 mph · Humidity43% · UV Index3 of 10 · Cloud Cover65% · Rain Amount0 in ...
Pomfret Center, CT Weather Conditions | Weather Underground star Popular Cities San Francisco, CA 49 °F Clear Manhattan, NY 37 °F Fair Schiller Park, IL (60176) warning39 °F Mostly Cloudy... | https://python.langchain.com/en/latest/modules/agents/tools/examples/search_tools.html |
018b212596d9-5 | Thought: I now know the final answer
Final Answer: The current weather in Pomfret is mainly cloudy with snow showers around in the morning. The temperature is around 40F with winds NNW at 5 to 10 mph. Chance of snow is 40%.
> Finished chain.
'The current weather in Pomfret is mainly cloudy with snow showers around in the morning. The temperature is around 40F with winds NNW at 5 to 10 mph. Chance of snow is 40%.'
previous
SceneXplain
next
SearxNG Search API
Contents
Google Serper API Wrapper
SerpAPI
GoogleSearchAPIWrapper
SearxNG Meta Search Engine
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/search_tools.html |
efe9f3dc7222-0 | .ipynb
.pdf
Zapier Natural Language Actions API
Contents
Zapier Natural Language Actions API
Example with Agent
Example with SimpleSequentialChain
Zapier Natural Language Actions API#
Full docs here: https://nla.zapier.com/api/v1/docs
Zapier Natural Language Actions gives you access to the 5k+ apps, 20k+ actions on Zapier’s platform through a natural language API interface.
NLA supports apps like Gmail, Salesforce, Trello, Slack, Asana, HubSpot, Google Sheets, Microsoft Teams, and thousands more apps: https://zapier.com/apps
Zapier NLA handles ALL the underlying API auth and translation from natural language –> underlying API call –> return simplified output for LLMs. The key idea is you, or your users, expose a set of actions via an oauth-like setup window, which you can then query and execute via a REST API.
NLA offers both API Key and OAuth for signing NLA API requests.
Server-side (API Key): for quickly getting started, testing, and production scenarios where LangChain will only use actions exposed in the developer’s Zapier account (and will use the developer’s connected accounts on Zapier.com)
User-facing (Oauth): for production scenarios where you are deploying an end-user facing application and LangChain needs access to end-user’s exposed actions and connected accounts on Zapier.com
This quick start will focus on the server-side use case for brevity. Review full docs or reach out to [email protected] for user-facing oauth developer support.
This example goes over how to use the Zapier integration with a SimpleSequentialChain, then an Agent.
In code, below:
import os
# get from https://platform.openai.com/
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY", "") | https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html |
efe9f3dc7222-1 | os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY", "")
# get from https://nla.zapier.com/demo/provider/debug (under User Information, after logging in):
os.environ["ZAPIER_NLA_API_KEY"] = os.environ.get("ZAPIER_NLA_API_KEY", "")
Example with Agent#
Zapier tools can be used with an agent. See the example below.
from langchain.llms import OpenAI
from langchain.agents import initialize_agent
from langchain.agents.agent_toolkits import ZapierToolkit
from langchain.agents import AgentType
from langchain.utilities.zapier import ZapierNLAWrapper
## step 0. expose gmail 'find email' and slack 'send channel message' actions
# first go here, log in, expose (enable) the two actions: https://nla.zapier.com/demo/start -- for this example, can leave all fields "Have AI guess"
# in an oauth scenario, you'd get your own <provider> id (instead of 'demo') which you route your users through first
llm = OpenAI(temperature=0)
zapier = ZapierNLAWrapper()
toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier)
agent = initialize_agent(toolkit.get_tools(), llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("Summarize the last email I received regarding Silicon Valley Bank. Send the summary to the #test-zapier channel in slack.")
> Entering new AgentExecutor chain...
I need to find the email and summarize it.
Action: Gmail: Find Email
Action Input: Find the latest email from Silicon Valley Bank | https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html |
efe9f3dc7222-2 | Action: Gmail: Find Email
Action Input: Find the latest email from Silicon Valley Bank
Observation: {"from__name": "Silicon Valley Bridge Bank, N.A.", "from__email": "[email protected]", "body_plain": "Dear Clients, After chaotic, tumultuous & stressful days, we have clarity on path for SVB, FDIC is fully insuring all deposits & have an ask for clients & partners as we rebuild. Tim Mayopoulos <https://eml.svb.com/NjEwLUtBSy0yNjYAAAGKgoxUeBCLAyF_NxON97X4rKEaNBLG", "reply_to__email": "[email protected]", "subject": "Meet the new CEO Tim Mayopoulos", "date": "Tue, 14 Mar 2023 23:42:29 -0500 (CDT)", "message_url": "https://mail.google.com/mail/u/0/#inbox/186e393b13cfdf0a", "attachment_count": "0", "to__emails": "[email protected]", "message_id": "186e393b13cfdf0a", "labels": "IMPORTANT, CATEGORY_UPDATES, INBOX"}
Thought: I need to summarize the email and send it to the #test-zapier channel in Slack.
Action: Slack: Send Channel Message
Action Input: Send a slack message to the #test-zapier channel with the text "Silicon Valley Bank has announced that Tim Mayopoulos is the new CEO. FDIC is fully insuring all deposits and they have an ask for clients and partners as they rebuild." | https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html |
efe9f3dc7222-3 | Observation: {"message__text": "Silicon Valley Bank has announced that Tim Mayopoulos is the new CEO. FDIC is fully insuring all deposits and they have an ask for clients and partners as they rebuild.", "message__permalink": "https://langchain.slack.com/archives/C04TSGU0RA7/p1678859932375259", "channel": "C04TSGU0RA7", "message__bot_profile__name": "Zapier", "message__team": "T04F8K3FZB5", "message__bot_id": "B04TRV4R74K", "message__bot_profile__deleted": "false", "message__bot_profile__app_id": "A024R9PQM", "ts_time": "2023-03-15T05:58:52Z", "message__bot_profile__icons__image_36": "https://avatars.slack-edge.com/2022-08-02/3888649620612_f864dc1bb794cf7d82b0_36.png", "message__blocks[]block_id": "kdZZ", "message__blocks[]elements[]type": "['rich_text_section']"}
Thought: I now know the final answer.
Final Answer: I have sent a summary of the last email from Silicon Valley Bank to the #test-zapier channel in Slack.
> Finished chain.
'I have sent a summary of the last email from Silicon Valley Bank to the #test-zapier channel in Slack.'
Example with SimpleSequentialChain#
If you need more explicit control, use a chain, like below.
from langchain.llms import OpenAI
from langchain.chains import LLMChain, TransformChain, SimpleSequentialChain
from langchain.prompts import PromptTemplate
from langchain.tools.zapier.tool import ZapierNLARunAction | https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html |
efe9f3dc7222-4 | from langchain.tools.zapier.tool import ZapierNLARunAction
from langchain.utilities.zapier import ZapierNLAWrapper
## step 0. expose gmail 'find email' and slack 'send direct message' actions
# first go here, log in, expose (enable) the two actions: https://nla.zapier.com/demo/start -- for this example, can leave all fields "Have AI guess"
# in an oauth scenario, you'd get your own <provider> id (instead of 'demo') which you route your users through first
actions = ZapierNLAWrapper().list()
## step 1. gmail find email
GMAIL_SEARCH_INSTRUCTIONS = "Grab the latest email from Silicon Valley Bank"
def nla_gmail(inputs):
action = next((a for a in actions if a["description"].startswith("Gmail: Find Email")), None)
return {"email_data": ZapierNLARunAction(action_id=action["id"], zapier_description=action["description"], params_schema=action["params"]).run(inputs["instructions"])}
gmail_chain = TransformChain(input_variables=["instructions"], output_variables=["email_data"], transform=nla_gmail)
## step 2. generate draft reply
template = """You are an assisstant who drafts replies to an incoming email. Output draft reply in plain text (not JSON).
Incoming email:
{email_data}
Draft email reply:"""
prompt_template = PromptTemplate(input_variables=["email_data"], template=template)
reply_chain = LLMChain(llm=OpenAI(temperature=.7), prompt=prompt_template)
## step 3. send draft reply via a slack direct message
SLACK_HANDLE = "@Ankush Gola"
def nla_slack(inputs): | https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html |
efe9f3dc7222-5 | SLACK_HANDLE = "@Ankush Gola"
def nla_slack(inputs):
action = next((a for a in actions if a["description"].startswith("Slack: Send Direct Message")), None)
instructions = f'Send this to {SLACK_HANDLE} in Slack: {inputs["draft_reply"]}'
return {"slack_data": ZapierNLARunAction(action_id=action["id"], zapier_description=action["description"], params_schema=action["params"]).run(instructions)}
slack_chain = TransformChain(input_variables=["draft_reply"], output_variables=["slack_data"], transform=nla_slack)
## finally, execute
overall_chain = SimpleSequentialChain(chains=[gmail_chain, reply_chain, slack_chain], verbose=True)
overall_chain.run(GMAIL_SEARCH_INSTRUCTIONS)
> Entering new SimpleSequentialChain chain... | https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html |
efe9f3dc7222-6 | overall_chain.run(GMAIL_SEARCH_INSTRUCTIONS)
> Entering new SimpleSequentialChain chain...
{"from__name": "Silicon Valley Bridge Bank, N.A.", "from__email": "[email protected]", "body_plain": "Dear Clients, After chaotic, tumultuous & stressful days, we have clarity on path for SVB, FDIC is fully insuring all deposits & have an ask for clients & partners as we rebuild. Tim Mayopoulos <https://eml.svb.com/NjEwLUtBSy0yNjYAAAGKgoxUeBCLAyF_NxON97X4rKEaNBLG", "reply_to__email": "[email protected]", "subject": "Meet the new CEO Tim Mayopoulos", "date": "Tue, 14 Mar 2023 23:42:29 -0500 (CDT)", "message_url": "https://mail.google.com/mail/u/0/#inbox/186e393b13cfdf0a", "attachment_count": "0", "to__emails": "[email protected]", "message_id": "186e393b13cfdf0a", "labels": "IMPORTANT, CATEGORY_UPDATES, INBOX"}
Dear Silicon Valley Bridge Bank,
Thank you for your email and the update regarding your new CEO Tim Mayopoulos. We appreciate your dedication to keeping your clients and partners informed and we look forward to continuing our relationship with you.
Best regards,
[Your Name] | https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html |
efe9f3dc7222-7 | Best regards,
[Your Name]
{"message__text": "Dear Silicon Valley Bridge Bank, \n\nThank you for your email and the update regarding your new CEO Tim Mayopoulos. We appreciate your dedication to keeping your clients and partners informed and we look forward to continuing our relationship with you. \n\nBest regards, \n[Your Name]", "message__permalink": "https://langchain.slack.com/archives/D04TKF5BBHU/p1678859968241629", "channel": "D04TKF5BBHU", "message__bot_profile__name": "Zapier", "message__team": "T04F8K3FZB5", "message__bot_id": "B04TRV4R74K", "message__bot_profile__deleted": "false", "message__bot_profile__app_id": "A024R9PQM", "ts_time": "2023-03-15T05:59:28Z", "message__blocks[]block_id": "p7i", "message__blocks[]elements[]elements[]type": "[['text']]", "message__blocks[]elements[]type": "['rich_text_section']"}
> Finished chain. | https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html |
efe9f3dc7222-8 | > Finished chain.
'{"message__text": "Dear Silicon Valley Bridge Bank, \\n\\nThank you for your email and the update regarding your new CEO Tim Mayopoulos. We appreciate your dedication to keeping your clients and partners informed and we look forward to continuing our relationship with you. \\n\\nBest regards, \\n[Your Name]", "message__permalink": "https://langchain.slack.com/archives/D04TKF5BBHU/p1678859968241629", "channel": "D04TKF5BBHU", "message__bot_profile__name": "Zapier", "message__team": "T04F8K3FZB5", "message__bot_id": "B04TRV4R74K", "message__bot_profile__deleted": "false", "message__bot_profile__app_id": "A024R9PQM", "ts_time": "2023-03-15T05:59:28Z", "message__blocks[]block_id": "p7i", "message__blocks[]elements[]elements[]type": "[[\'text\']]", "message__blocks[]elements[]type": "[\'rich_text_section\']"}'
previous
YouTubeSearchTool
next
Agents
Contents
Zapier Natural Language Actions API
Example with Agent
Example with SimpleSequentialChain
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html |
024e0a29f6e4-0 | .ipynb
.pdf
SerpAPI
Contents
Custom Parameters
SerpAPI#
This notebook goes over how to use the SerpAPI component to search the web.
from langchain.utilities import SerpAPIWrapper
search = SerpAPIWrapper()
search.run("Obama's first name?")
'Barack Hussein Obama II'
Custom Parameters#
You can also customize the SerpAPI wrapper with arbitrary parameters. For example, in the below example we will use bing instead of google.
params = {
"engine": "bing",
"gl": "us",
"hl": "en",
}
search = SerpAPIWrapper(params=params)
search.run("Obama's first name?")
'Barack Hussein Obama II is an American politician who served as the 44th president of the United States from 2009 to 2017. A member of the Democratic Party, Obama was the first African-American presi…New content will be added above the current area of focus upon selectionBarack Hussein Obama II is an American politician who served as the 44th president of the United States from 2009 to 2017. A member of the Democratic Party, Obama was the first African-American president of the United States. He previously served as a U.S. senator from Illinois from 2005 to 2008 and as an Illinois state senator from 1997 to 2004, and previously worked as a civil rights lawyer before entering politics.Wikipediabarackobama.com'
from langchain.agents import Tool
# You can create the tool to pass to an agent
repl_tool = Tool(
name="python_repl", | https://python.langchain.com/en/latest/modules/agents/tools/examples/serpapi.html |
024e0a29f6e4-1 | repl_tool = Tool(
name="python_repl",
description="A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.",
func=search.run,
)
previous
SearxNG Search API
next
Twilio
Contents
Custom Parameters
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/serpapi.html |
0064fc3e804f-0 | .ipynb
.pdf
Gradio Tools
Contents
Using a tool
Using within an agent
Gradio Tools#
There are many 1000s of Gradio apps on Hugging Face Spaces. This library puts them at the tips of your LLM’s fingers 🦾
Specifically, gradio-tools is a Python library for converting Gradio apps into tools that can be leveraged by a large language model (LLM)-based agent to complete its task. For example, an LLM could use a Gradio tool to transcribe a voice recording it finds online and then summarize it for you. Or it could use a different Gradio tool to apply OCR to a document on your Google Drive and then answer questions about it.
It’s very easy to create you own tool if you want to use a space that’s not one of the pre-built tools. Please see this section of the gradio-tools documentation for information on how to do that. All contributions are welcome!
# !pip install gradio_tools
Using a tool#
from gradio_tools.tools import StableDiffusionTool
local_file_path = StableDiffusionTool().langchain.run("Please create a photo of a dog riding a skateboard")
local_file_path
Loaded as API: https://gradio-client-demos-stable-diffusion.hf.space ✔
Job Status: Status.STARTING eta: None
'/Users/harrisonchase/workplace/langchain/docs/modules/agents/tools/examples/b61c1dd9-47e2-46f1-a47c-20d27640993d/tmp4ap48vnm.jpg'
from PIL import Image
im = Image.open(local_file_path)
display(im)
Using within an agent#
from langchain.agents import initialize_agent
from langchain.llms import OpenAI | https://python.langchain.com/en/latest/modules/agents/tools/examples/gradio_tools.html |
0064fc3e804f-1 | from langchain.agents import initialize_agent
from langchain.llms import OpenAI
from gradio_tools.tools import (StableDiffusionTool, ImageCaptioningTool, StableDiffusionPromptGeneratorTool,
TextToVideoTool)
from langchain.memory import ConversationBufferMemory
llm = OpenAI(temperature=0)
memory = ConversationBufferMemory(memory_key="chat_history")
tools = [StableDiffusionTool().langchain, ImageCaptioningTool().langchain,
StableDiffusionPromptGeneratorTool().langchain, TextToVideoTool().langchain]
agent = initialize_agent(tools, llm, memory=memory, agent="conversational-react-description", verbose=True)
output = agent.run(input=("Please create a photo of a dog riding a skateboard "
"but improve my prompt prior to using an image generator."
"Please caption the generated image and create a video for it using the improved prompt."))
Loaded as API: https://gradio-client-demos-stable-diffusion.hf.space ✔
Loaded as API: https://taesiri-blip-2.hf.space ✔
Loaded as API: https://microsoft-promptist.hf.space ✔
Loaded as API: https://damo-vilab-modelscope-text-to-video-synthesis.hf.space ✔
> Entering new AgentExecutor chain...
Thought: Do I need to use a tool? Yes
Action: StableDiffusionPromptGenerator
Action Input: A dog riding a skateboard
Job Status: Status.STARTING eta: None
Observation: A dog riding a skateboard, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha
Thought: Do I need to use a tool? Yes
Action: StableDiffusion | https://python.langchain.com/en/latest/modules/agents/tools/examples/gradio_tools.html |
0064fc3e804f-2 | Thought: Do I need to use a tool? Yes
Action: StableDiffusion
Action Input: A dog riding a skateboard, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha
Job Status: Status.STARTING eta: None
Job Status: Status.PROCESSING eta: None
Observation: /Users/harrisonchase/workplace/langchain/docs/modules/agents/tools/examples/2e280ce4-4974-4420-8680-450825c31601/tmpfmiz2g1c.jpg
Thought: Do I need to use a tool? Yes
Action: ImageCaptioner
Action Input: /Users/harrisonchase/workplace/langchain/docs/modules/agents/tools/examples/2e280ce4-4974-4420-8680-450825c31601/tmpfmiz2g1c.jpg
Job Status: Status.STARTING eta: None
Observation: a painting of a dog sitting on a skateboard
Thought: Do I need to use a tool? Yes
Action: TextToVideo
Action Input: a painting of a dog sitting on a skateboard
Job Status: Status.STARTING eta: None
Due to heavy traffic on this app, the prediction will take approximately 73 seconds.For faster predictions without waiting in queue, you may duplicate the space using: Client.duplicate(damo-vilab/modelscope-text-to-video-synthesis)
Job Status: Status.IN_QUEUE eta: 73.89824726581574
Due to heavy traffic on this app, the prediction will take approximately 42 seconds.For faster predictions without waiting in queue, you may duplicate the space using: Client.duplicate(damo-vilab/modelscope-text-to-video-synthesis)
Job Status: Status.IN_QUEUE eta: 42.49370198879602 | https://python.langchain.com/en/latest/modules/agents/tools/examples/gradio_tools.html |
0064fc3e804f-3 | Job Status: Status.IN_QUEUE eta: 42.49370198879602
Job Status: Status.IN_QUEUE eta: 21.314297944849187
Observation: /var/folders/bm/ylzhm36n075cslb9fvvbgq640000gn/T/tmp5snj_nmzf20_cb3m.mp4
Thought: Do I need to use a tool? No
AI: Here is a video of a painting of a dog sitting on a skateboard.
> Finished chain.
previous
Google Serper API
next
GraphQL tool
Contents
Using a tool
Using within an agent
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/gradio_tools.html |
02c659958ccc-0 | .ipynb
.pdf
File System Tools
Contents
The FileManagementToolkit
Selecting File System Tools
File System Tools#
LangChain provides tools for interacting with a local file system out of the box. This notebook walks through some of them.
Note: these tools are not recommended for use outside a sandboxed environment!
First, we’ll import the tools.
from langchain.tools.file_management import (
ReadFileTool,
CopyFileTool,
DeleteFileTool,
MoveFileTool,
WriteFileTool,
ListDirectoryTool,
)
from langchain.agents.agent_toolkits import FileManagementToolkit
from tempfile import TemporaryDirectory
# We'll make a temporary directory to avoid clutter
working_directory = TemporaryDirectory()
The FileManagementToolkit#
If you want to provide all the file tooling to your agent, it’s easy to do so with the toolkit. We’ll pass the temporary directory in as a root directory as a workspace for the LLM.
It’s recommended to always pass in a root directory, since without one, it’s easy for the LLM to pollute the working directory, and without one, there isn’t any validation against
straightforward prompt injection.
toolkit = FileManagementToolkit(root_dir=str(working_directory.name)) # If you don't provide a root_dir, operations will default to the current working directory
toolkit.get_tools() | https://python.langchain.com/en/latest/modules/agents/tools/examples/filesystem.html |
02c659958ccc-1 | toolkit.get_tools()
[CopyFileTool(name='copy_file', description='Create a copy of a file in a specified location', args_schema=<class 'langchain.tools.file_management.copy.FileCopyInput'>, return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x1156f4350>, root_dir='/var/folders/gf/6rnp_mbx5914kx7qmmh7xzmw0000gn/T/tmpxb8c3aug'),
DeleteFileTool(name='file_delete', description='Delete a file', args_schema=<class 'langchain.tools.file_management.delete.FileDeleteInput'>, return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x1156f4350>, root_dir='/var/folders/gf/6rnp_mbx5914kx7qmmh7xzmw0000gn/T/tmpxb8c3aug'),
FileSearchTool(name='file_search', description='Recursively search for files in a subdirectory that match the regex pattern', args_schema=<class 'langchain.tools.file_management.file_search.FileSearchInput'>, return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x1156f4350>, root_dir='/var/folders/gf/6rnp_mbx5914kx7qmmh7xzmw0000gn/T/tmpxb8c3aug'), | https://python.langchain.com/en/latest/modules/agents/tools/examples/filesystem.html |
02c659958ccc-2 | MoveFileTool(name='move_file', description='Move or rename a file from one location to another', args_schema=<class 'langchain.tools.file_management.move.FileMoveInput'>, return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x1156f4350>, root_dir='/var/folders/gf/6rnp_mbx5914kx7qmmh7xzmw0000gn/T/tmpxb8c3aug'),
ReadFileTool(name='read_file', description='Read file from disk', args_schema=<class 'langchain.tools.file_management.read.ReadFileInput'>, return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x1156f4350>, root_dir='/var/folders/gf/6rnp_mbx5914kx7qmmh7xzmw0000gn/T/tmpxb8c3aug'),
WriteFileTool(name='write_file', description='Write file to disk', args_schema=<class 'langchain.tools.file_management.write.WriteFileInput'>, return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x1156f4350>, root_dir='/var/folders/gf/6rnp_mbx5914kx7qmmh7xzmw0000gn/T/tmpxb8c3aug'),
ListDirectoryTool(name='list_directory', description='List files and directories in a specified folder', args_schema=<class 'langchain.tools.file_management.list_dir.DirectoryListingInput'>, return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x1156f4350>, root_dir='/var/folders/gf/6rnp_mbx5914kx7qmmh7xzmw0000gn/T/tmpxb8c3aug')] | https://python.langchain.com/en/latest/modules/agents/tools/examples/filesystem.html |
02c659958ccc-3 | Selecting File System Tools#
If you only want to select certain tools, you can pass them in as arguments when initializing the toolkit, or you can individually initialize the desired tools.
tools = FileManagementToolkit(root_dir=str(working_directory.name), selected_tools=["read_file", "write_file", "list_directory"]).get_tools()
tools
[ReadFileTool(name='read_file', description='Read file from disk', args_schema=<class 'langchain.tools.file_management.read.ReadFileInput'>, return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x1156f4350>, root_dir='/var/folders/gf/6rnp_mbx5914kx7qmmh7xzmw0000gn/T/tmpxb8c3aug'),
WriteFileTool(name='write_file', description='Write file to disk', args_schema=<class 'langchain.tools.file_management.write.WriteFileInput'>, return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x1156f4350>, root_dir='/var/folders/gf/6rnp_mbx5914kx7qmmh7xzmw0000gn/T/tmpxb8c3aug'),
ListDirectoryTool(name='list_directory', description='List files and directories in a specified folder', args_schema=<class 'langchain.tools.file_management.list_dir.DirectoryListingInput'>, return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x1156f4350>, root_dir='/var/folders/gf/6rnp_mbx5914kx7qmmh7xzmw0000gn/T/tmpxb8c3aug')]
read_tool, write_tool, list_tool = tools
write_tool.run({"file_path": "example.txt", "text": "Hello World!"}) | https://python.langchain.com/en/latest/modules/agents/tools/examples/filesystem.html |
02c659958ccc-4 | write_tool.run({"file_path": "example.txt", "text": "Hello World!"})
'File written successfully to example.txt.'
# List files in the working directory
list_tool.run({})
'example.txt'
previous
DuckDuckGo Search
next
Google Places
Contents
The FileManagementToolkit
Selecting File System Tools
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/filesystem.html |
43a27b61e82c-0 | .ipynb
.pdf
YouTubeSearchTool
YouTubeSearchTool#
This notebook shows how to use a tool to search YouTube
Adapted from venuv/langchain_yt_tools
#! pip install youtube_search
from langchain.tools import YouTubeSearchTool
tool = YouTubeSearchTool()
tool.run("lex friedman")
"['/watch?v=VcVfceTsD0A&pp=ygUMbGV4IGZyaWVkbWFu', '/watch?v=gPfriiHBBek&pp=ygUMbGV4IGZyaWVkbWFu']"
You can also specify the number of results that are returned
tool.run("lex friedman,5")
"['/watch?v=VcVfceTsD0A&pp=ygUMbGV4IGZyaWVkbWFu', '/watch?v=YVJ8gTnDC4Y&pp=ygUMbGV4IGZyaWVkbWFu', '/watch?v=Udh22kuLebg&pp=ygUMbGV4IGZyaWVkbWFu', '/watch?v=gPfriiHBBek&pp=ygUMbGV4IGZyaWVkbWFu', '/watch?v=L_Guz73e6fw&pp=ygUMbGV4IGZyaWVkbWFu']"
previous
Wolfram Alpha
next
Zapier Natural Language Actions API
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/youtube.html |
f81e4cc32e0b-0 | .ipynb
.pdf
Wolfram Alpha
Wolfram Alpha#
This notebook goes over how to use the wolfram alpha component.
First, you need to set up your Wolfram Alpha developer account and get your APP ID:
Go to wolfram alpha and sign up for a developer account here
Create an app and get your APP ID
pip install wolframalpha
Then we will need to set some environment variables:
Save your APP ID into WOLFRAM_ALPHA_APPID env variable
pip install wolframalpha
import os
os.environ["WOLFRAM_ALPHA_APPID"] = ""
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
wolfram = WolframAlphaAPIWrapper()
wolfram.run("What is 2x+5 = -3x + 7?")
'x = 2/5'
previous
Wikipedia
next
YouTubeSearchTool
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/wolfram_alpha.html |
40f158f539c5-0 | .ipynb
.pdf
Human as a tool
Contents
Configuring the Input Function
Human as a tool#
Human are AGI so they can certainly be used as a tool to help out AI agent
when it is confused.
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.agents import load_tools, initialize_agent
from langchain.agents import AgentType
llm = ChatOpenAI(temperature=0.0)
math_llm = OpenAI(temperature=0.0)
tools = load_tools(
["human", "llm-math"],
llm=math_llm,
)
agent_chain = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
)
In the above code you can see the tool takes input directly from command line.
You can customize prompt_func and input_func according to your need (as shown below).
agent_chain.run("What's my friend Eric's surname?")
# Answer with 'Zhu'
> Entering new AgentExecutor chain...
I don't know Eric's surname, so I should ask a human for guidance.
Action: Human
Action Input: "What is Eric's surname?"
What is Eric's surname?
Zhu
Observation: Zhu
Thought:I now know Eric's surname is Zhu.
Final Answer: Eric's surname is Zhu.
> Finished chain.
"Eric's surname is Zhu."
Configuring the Input Function#
By default, the HumanInputRun tool uses the python input function to get input from the user.
You can customize the input_func to be anything you’d like.
For instance, if you want to accept multi-line input, you could do the following:
def get_input() -> str: | https://python.langchain.com/en/latest/modules/agents/tools/examples/human_tools.html |
40f158f539c5-1 | def get_input() -> str:
print("Insert your text. Enter 'q' or press Ctrl-D (or Ctrl-Z on Windows) to end.")
contents = []
while True:
try:
line = input()
except EOFError:
break
if line == "q":
break
contents.append(line)
return "\n".join(contents)
# You can modify the tool when loading
tools = load_tools(
["human", "ddg-search"],
llm=math_llm,
input_func=get_input
)
# Or you can directly instantiate the tool
from langchain.tools import HumanInputRun
tool = HumanInputRun(input_func=get_input)
agent_chain = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
)
agent_chain.run("I need help attributing a quote")
> Entering new AgentExecutor chain...
I should ask a human for guidance
Action: Human
Action Input: "Can you help me attribute a quote?"
Can you help me attribute a quote?
Insert your text. Enter 'q' or press Ctrl-D (or Ctrl-Z on Windows) to end.
vini
vidi
vici
q
Observation: vini
vidi
vici
Thought:I need to provide more context about the quote
Action: Human
Action Input: "The quote is 'Veni, vidi, vici'"
The quote is 'Veni, vidi, vici'
Insert your text. Enter 'q' or press Ctrl-D (or Ctrl-Z on Windows) to end.
oh who said it
q
Observation: oh who said it | https://python.langchain.com/en/latest/modules/agents/tools/examples/human_tools.html |
40f158f539c5-2 | oh who said it
q
Observation: oh who said it
Thought:I can use DuckDuckGo Search to find out who said the quote
Action: DuckDuckGo Search
Action Input: "Who said 'Veni, vidi, vici'?" | https://python.langchain.com/en/latest/modules/agents/tools/examples/human_tools.html |
40f158f539c5-3 | Observation: Updated on September 06, 2019. "Veni, vidi, vici" is a famous phrase said to have been spoken by the Roman Emperor Julius Caesar (100-44 BCE) in a bit of stylish bragging that impressed many of the writers of his day and beyond. The phrase means roughly "I came, I saw, I conquered" and it could be pronounced approximately Vehnee, Veedee ... Veni, vidi, vici (Classical Latin: [weːniː wiːdiː wiːkiː], Ecclesiastical Latin: [ˈveni ˈvidi ˈvitʃi]; "I came; I saw; I conquered") is a Latin phrase used to refer to a swift, conclusive victory.The phrase is popularly attributed to Julius Caesar who, according to Appian, used the phrase in a letter to the Roman Senate around 47 BC after he had achieved a quick victory in his short ... veni, vidi, vici Latin quotation from Julius Caesar ve· ni, vi· di, vi· ci | https://python.langchain.com/en/latest/modules/agents/tools/examples/human_tools.html |
40f158f539c5-4 | Caesar ve· ni, vi· di, vi· ci ˌwā-nē ˌwē-dē ˈwē-kē ˌvā-nē ˌvē-dē ˈvē-chē : I came, I saw, I conquered Articles Related to veni, vidi, vici 'In Vino Veritas' and Other Latin... Dictionary Entries Near veni, vidi, vici Venite veni, vidi, vici Venizélos See More Nearby Entries Cite this Entry Style The simplest explanation for why veni, vidi, vici is a popular saying is that it comes from Julius Caesar, one of history's most famous figures, and has a simple, strong meaning: I'm powerful and fast. But it's not just the meaning that makes the phrase so powerful. Caesar was a gifted writer, and the phrase makes use of Latin grammar to ... One of the best known and most frequently quoted Latin expression, veni, vidi, vici may be found hundreds of times throughout the centuries used as an expression of triumph. The words are said to have | https://python.langchain.com/en/latest/modules/agents/tools/examples/human_tools.html |
40f158f539c5-5 | expression of triumph. The words are said to have been used by Caesar as he was enjoying a triumph. | https://python.langchain.com/en/latest/modules/agents/tools/examples/human_tools.html |
40f158f539c5-6 | Thought:I now know the final answer
Final Answer: Julius Caesar said the quote "Veni, vidi, vici" which means "I came, I saw, I conquered".
> Finished chain.
'Julius Caesar said the quote "Veni, vidi, vici" which means "I came, I saw, I conquered".'
previous
HuggingFace Tools
next
IFTTT WebHooks
Contents
Configuring the Input Function
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/human_tools.html |
5737f0cb900d-0 | .ipynb
.pdf
Metaphor Search
Contents
Metaphor Search
Call the API
Use Metaphor as a tool
Metaphor Search#
This notebook goes over how to use Metaphor search.
First, you need to set up the proper API keys and environment variables. Request an API key [here](Sign up for early access here).
Then enter your API key as an environment variable.
import os
os.environ["METAPHOR_API_KEY"] = ""
from langchain.utilities import MetaphorSearchAPIWrapper
search = MetaphorSearchAPIWrapper()
Call the API#
results takes in a Metaphor-optimized search query and a number of results (up to 500). It returns a list of results with title, url, author, and creation date.
search.results("The best blog post about AI safety is definitely this: ", 10) | https://python.langchain.com/en/latest/modules/agents/tools/examples/metaphor_search.html |
5737f0cb900d-1 | {'results': [{'url': 'https://www.anthropic.com/index/core-views-on-ai-safety', 'title': 'Core Views on AI Safety: When, Why, What, and How', 'dateCreated': '2023-03-08', 'author': None, 'score': 0.1998831331729889}, {'url': 'https://aisafety.wordpress.com/', 'title': 'Extinction Risk from Artificial Intelligence', 'dateCreated': '2013-10-08', 'author': None, 'score': 0.19801370799541473}, {'url': 'https://www.lesswrong.com/posts/WhNxG4r774bK32GcH/the-simple-picture-on-ai-safety', 'title': 'The simple picture on AI safety - LessWrong', 'dateCreated': '2018-05-27', 'author': 'Alex Flint', 'score': 0.19735534489154816}, {'url': 'https://slatestarcodex.com/2015/05/29/no-time-like-the-present-for-ai-safety-work/', 'title': 'No Time Like The Present For AI Safety Work', 'dateCreated': '2015-05-29', 'author': None, 'score': 0.19408763945102692}, {'url': 'https://www.lesswrong.com/posts/5BJvusxdwNXYQ4L9L/so-you-want-to-save-the-world', 'title': 'So You Want to Save the World | https://python.langchain.com/en/latest/modules/agents/tools/examples/metaphor_search.html |
5737f0cb900d-2 | 'title': 'So You Want to Save the World - LessWrong', 'dateCreated': '2012-01-01', 'author': 'Lukeprog', 'score': 0.18853715062141418}, {'url': 'https://openai.com/blog/planning-for-agi-and-beyond', 'title': 'Planning for AGI and beyond', 'dateCreated': '2023-02-24', 'author': 'Authors', 'score': 0.18665121495723724}, {'url': 'https://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html', 'title': 'The Artificial Intelligence Revolution: Part 1 - Wait But Why', 'dateCreated': '2015-01-22', 'author': 'Tim Urban', 'score': 0.18604731559753418}, {'url': 'https://forum.effectivealtruism.org/posts/uGDCaPFaPkuxAowmH/anthropic-core-views-on-ai-safety-when-why-what-and-how', 'title': 'Anthropic: Core Views on AI Safety: When, Why, What, and How - EA Forum', 'dateCreated': '2023-03-09', 'author': 'Jonmenaster', 'score': 0.18415069580078125}, {'url': 'https://www.lesswrong.com/posts/xBrpph9knzWdtMWeQ/the-proof-of-doom', 'title': 'The Proof of Doom - | https://python.langchain.com/en/latest/modules/agents/tools/examples/metaphor_search.html |
5737f0cb900d-3 | 'title': 'The Proof of Doom - LessWrong', 'dateCreated': '2022-03-09', 'author': 'Johnlawrenceaspden', 'score': 0.18159329891204834}, {'url': 'https://intelligence.org/why-ai-safety/', 'title': 'Why AI Safety? - Machine Intelligence Research Institute', 'dateCreated': '2017-03-01', 'author': None, 'score': 0.1814115345478058}]} | https://python.langchain.com/en/latest/modules/agents/tools/examples/metaphor_search.html |
5737f0cb900d-4 | [{'title': 'Core Views on AI Safety: When, Why, What, and How',
'url': 'https://www.anthropic.com/index/core-views-on-ai-safety',
'author': None,
'date_created': '2023-03-08'},
{'title': 'Extinction Risk from Artificial Intelligence',
'url': 'https://aisafety.wordpress.com/',
'author': None,
'date_created': '2013-10-08'},
{'title': 'The simple picture on AI safety - LessWrong',
'url': 'https://www.lesswrong.com/posts/WhNxG4r774bK32GcH/the-simple-picture-on-ai-safety',
'author': 'Alex Flint',
'date_created': '2018-05-27'},
{'title': 'No Time Like The Present For AI Safety Work',
'url': 'https://slatestarcodex.com/2015/05/29/no-time-like-the-present-for-ai-safety-work/',
'author': None,
'date_created': '2015-05-29'},
{'title': 'So You Want to Save the World - LessWrong',
'url': 'https://www.lesswrong.com/posts/5BJvusxdwNXYQ4L9L/so-you-want-to-save-the-world',
'author': 'Lukeprog',
'date_created': '2012-01-01'},
{'title': 'Planning for AGI and beyond',
'url': 'https://openai.com/blog/planning-for-agi-and-beyond',
'author': 'Authors',
'date_created': '2023-02-24'}, | https://python.langchain.com/en/latest/modules/agents/tools/examples/metaphor_search.html |
5737f0cb900d-5 | 'date_created': '2023-02-24'},
{'title': 'The Artificial Intelligence Revolution: Part 1 - Wait But Why',
'url': 'https://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html',
'author': 'Tim Urban',
'date_created': '2015-01-22'},
{'title': 'Anthropic: Core Views on AI Safety: When, Why, What, and How - EA Forum',
'url': 'https://forum.effectivealtruism.org/posts/uGDCaPFaPkuxAowmH/anthropic-core-views-on-ai-safety-when-why-what-and-how',
'author': 'Jonmenaster',
'date_created': '2023-03-09'},
{'title': 'The Proof of Doom - LessWrong',
'url': 'https://www.lesswrong.com/posts/xBrpph9knzWdtMWeQ/the-proof-of-doom',
'author': 'Johnlawrenceaspden',
'date_created': '2022-03-09'},
{'title': 'Why AI Safety? - Machine Intelligence Research Institute',
'url': 'https://intelligence.org/why-ai-safety/',
'author': None,
'date_created': '2017-03-01'}]
Use Metaphor as a tool#
Metaphor can be used as a tool that gets URLs that other tools such as browsing tools.
from langchain.agents.agent_toolkits import PlayWrightBrowserToolkit
from langchain.tools.playwright.utils import (
create_async_playwright_browser,# A synchronous browser is available, though it isn't compatible with jupyter.
)
async_browser = create_async_playwright_browser() | https://python.langchain.com/en/latest/modules/agents/tools/examples/metaphor_search.html |
Subsets and Splits