id
stringlengths 14
16
| text
stringlengths 36
2.73k
| source
stringlengths 49
117
|
---|---|---|
5737f0cb900d-6 | )
async_browser = create_async_playwright_browser()
toolkit = PlayWrightBrowserToolkit.from_browser(async_browser=async_browser)
tools = toolkit.get_tools()
tools_by_name = {tool.name: tool for tool in tools}
print(tools_by_name.keys())
navigate_tool = tools_by_name["navigate_browser"]
extract_text = tools_by_name["extract_text"]
from langchain.agents import initialize_agent, AgentType
from langchain.chat_models import ChatOpenAI
from langchain.tools import MetaphorSearchResults
llm = ChatOpenAI(model_name="gpt-4", temperature=0.7)
metaphor_tool = MetaphorSearchResults(api_wrapper=search)
agent_chain = initialize_agent([metaphor_tool, extract_text, navigate_tool], llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent_chain.run("find me an interesting tweet about AI safety using Metaphor, then tell me the first sentence in the post. Do not finish until able to retrieve the first sentence.")
> Entering new AgentExecutor chain...
Thought: I need to find a tweet about AI safety using Metaphor Search.
Action:
```
{
"action": "Metaphor Search Results JSON",
"action_input": {
"query": "interesting tweet AI safety",
"num_results": 1
}
}
```
{'results': [{'url': 'https://safe.ai/', 'title': 'Center for AI Safety', 'dateCreated': '2022-01-01', 'author': None, 'score': 0.18083244562149048}]}
Observation: [{'title': 'Center for AI Safety', 'url': 'https://safe.ai/', 'author': None, 'date_created': '2022-01-01'}] | https://python.langchain.com/en/latest/modules/agents/tools/examples/metaphor_search.html |
5737f0cb900d-7 | Thought:I need to navigate to the URL provided in the search results to find the tweet.
> Finished chain.
'I need to navigate to the URL provided in the search results to find the tweet.'
previous
IFTTT WebHooks
next
OpenWeatherMap API
Contents
Metaphor Search
Call the API
Use Metaphor as a tool
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/metaphor_search.html |
546d95c2de21-0 | .ipynb
.pdf
IFTTT WebHooks
Contents
Creating a webhook
Configuring the “If This”
Configuring the “Then That”
Finishing up
IFTTT WebHooks#
This notebook shows how to use IFTTT Webhooks.
From https://github.com/SidU/teams-langchain-js/wiki/Connecting-IFTTT-Services.
Creating a webhook#
Go to https://ifttt.com/create
Configuring the “If This”#
Click on the “If This” button in the IFTTT interface.
Search for “Webhooks” in the search bar.
Choose the first option for “Receive a web request with a JSON payload.”
Choose an Event Name that is specific to the service you plan to connect to.
This will make it easier for you to manage the webhook URL.
For example, if you’re connecting to Spotify, you could use “Spotify” as your
Event Name.
Click the “Create Trigger” button to save your settings and create your webhook.
Configuring the “Then That”#
Tap on the “Then That” button in the IFTTT interface.
Search for the service you want to connect, such as Spotify.
Choose an action from the service, such as “Add track to a playlist”.
Configure the action by specifying the necessary details, such as the playlist name,
e.g., “Songs from AI”.
Reference the JSON Payload received by the Webhook in your action. For the Spotify
scenario, choose “{{JsonPayload}}” as your search query.
Tap the “Create Action” button to save your action settings.
Once you have finished configuring your action, click the “Finish” button to
complete the setup.
Congratulations! You have successfully connected the Webhook to the desired
service, and you’re ready to start receiving data and triggering actions 🎉 | https://python.langchain.com/en/latest/modules/agents/tools/examples/ifttt.html |
546d95c2de21-1 | service, and you’re ready to start receiving data and triggering actions 🎉
Finishing up#
To get your webhook URL go to https://ifttt.com/maker_webhooks/settings
Copy the IFTTT key value from there. The URL is of the form
https://maker.ifttt.com/use/YOUR_IFTTT_KEY. Grab the YOUR_IFTTT_KEY value.
from langchain.tools.ifttt import IFTTTWebhook
import os
key = os.environ["IFTTTKey"]
url = f"https://maker.ifttt.com/trigger/spotify/json/with/key/{key}"
tool = IFTTTWebhook(name="Spotify", description="Add a song to spotify playlist", url=url)
tool.run("taylor swift")
"Congratulations! You've fired the spotify JSON event"
previous
Human as a tool
next
Metaphor Search
Contents
Creating a webhook
Configuring the “If This”
Configuring the “Then That”
Finishing up
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/ifttt.html |
6b8e3afb1f0f-0 | .ipynb
.pdf
GraphQL tool
GraphQL tool#
This Jupyter Notebook demonstrates how to use the BaseGraphQLTool component with an Agent.
GraphQL is a query language for APIs and a runtime for executing those queries against your data. GraphQL provides a complete and understandable description of the data in your API, gives clients the power to ask for exactly what they need and nothing more, makes it easier to evolve APIs over time, and enables powerful developer tools.
By including a BaseGraphQLTool in the list of tools provided to an Agent, you can grant your Agent the ability to query data from GraphQL APIs for any purposes you need.
In this example, we’ll be using the public Star Wars GraphQL API available at the following endpoint: https://swapi-graphql.netlify.app/.netlify/functions/index.
First, you need to install httpx and gql Python packages.
pip install httpx gql > /dev/null
Now, let’s create a BaseGraphQLTool instance with the specified Star Wars API endpoint and initialize an Agent with the tool.
from langchain import OpenAI
from langchain.agents import load_tools, initialize_agent, AgentType
from langchain.utilities import GraphQLAPIWrapper
llm = OpenAI(temperature=0)
tools = load_tools(["graphql"], graphql_endpoint="https://swapi-graphql.netlify.app/.netlify/functions/index", llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
Now, we can use the Agent to run queries against the Star Wars GraphQL API. Let’s ask the Agent to list all the Star Wars films and their release dates.
graphql_fields = """allFilms {
films {
title
director
releaseDate
speciesConnection {
species {
name
classification
homeworld {
name
} | https://python.langchain.com/en/latest/modules/agents/tools/examples/graphql.html |
6b8e3afb1f0f-1 | species {
name
classification
homeworld {
name
}
}
}
}
}
"""
suffix = "Search for the titles of all the stawars films stored in the graphql database that has this schema "
agent.run(suffix + graphql_fields)
> Entering new AgentExecutor chain...
I need to query the graphql database to get the titles of all the star wars films
Action: query_graphql
Action Input: query { allFilms { films { title } } }
Observation: "{\n \"allFilms\": {\n \"films\": [\n {\n \"title\": \"A New Hope\"\n },\n {\n \"title\": \"The Empire Strikes Back\"\n },\n {\n \"title\": \"Return of the Jedi\"\n },\n {\n \"title\": \"The Phantom Menace\"\n },\n {\n \"title\": \"Attack of the Clones\"\n },\n {\n \"title\": \"Revenge of the Sith\"\n }\n ]\n }\n}"
Thought: I now know the titles of all the star wars films
Final Answer: The titles of all the star wars films are: A New Hope, The Empire Strikes Back, Return of the Jedi, The Phantom Menace, Attack of the Clones, and Revenge of the Sith.
> Finished chain.
'The titles of all the star wars films are: A New Hope, The Empire Strikes Back, Return of the Jedi, The Phantom Menace, Attack of the Clones, and Revenge of the Sith.'
previous
Gradio Tools
next
HuggingFace Tools
By Harrison Chase
© Copyright 2023, Harrison Chase. | https://python.langchain.com/en/latest/modules/agents/tools/examples/graphql.html |
6b8e3afb1f0f-2 | By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/graphql.html |
ad7b91888f6e-0 | .ipynb
.pdf
Apify
Apify#
This notebook shows how to use the Apify integration for LangChain.
Apify is a cloud platform for web scraping and data extraction,
which provides an ecosystem of more than a thousand
ready-made apps called Actors for various web scraping, crawling, and data extraction use cases.
For example, you can use it to extract Google Search results, Instagram and Facebook profiles, products from Amazon or Shopify, Google Maps reviews, etc. etc.
In this example, we’ll use the Website Content Crawler Actor,
which can deeply crawl websites such as documentation, knowledge bases, help centers, or blogs,
and extract text content from the web pages. Then we feed the documents into a vector index and answer questions from it.
#!pip install apify-client
First, import ApifyWrapper into your source code:
from langchain.document_loaders.base import Document
from langchain.indexes import VectorstoreIndexCreator
from langchain.utilities import ApifyWrapper
Initialize it using your Apify API token and for the purpose of this example, also with your OpenAI API key:
import os
os.environ["OPENAI_API_KEY"] = "Your OpenAI API key"
os.environ["APIFY_API_TOKEN"] = "Your Apify API token"
apify = ApifyWrapper()
Then run the Actor, wait for it to finish, and fetch its results from the Apify dataset into a LangChain document loader.
Note that if you already have some results in an Apify dataset, you can load them directly using ApifyDatasetLoader, as shown in this notebook. In that notebook, you’ll also find the explanation of the dataset_mapping_function, which is used to map fields from the Apify dataset records to LangChain Document fields.
loader = apify.call_actor(
actor_id="apify/website-content-crawler", | https://python.langchain.com/en/latest/modules/agents/tools/examples/apify.html |
ad7b91888f6e-1 | loader = apify.call_actor(
actor_id="apify/website-content-crawler",
run_input={"startUrls": [{"url": "https://python.langchain.com/en/latest/"}]},
dataset_mapping_function=lambda item: Document(
page_content=item["text"] or "", metadata={"source": item["url"]}
),
)
Initialize the vector index from the crawled documents:
index = VectorstoreIndexCreator().from_loaders([loader])
And finally, query the vector index:
query = "What is LangChain?"
result = index.query_with_sources(query)
print(result["answer"])
print(result["sources"])
LangChain is a standard interface through which you can interact with a variety of large language models (LLMs). It provides modules that can be used to build language model applications, and it also provides chains and agents with memory capabilities.
https://python.langchain.com/en/latest/modules/models/llms.html, https://python.langchain.com/en/latest/getting_started/getting_started.html
previous
Tool Input Schema
next
ArXiv API Tool
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/apify.html |
11380371da99-0 | .ipynb
.pdf
Google Search
Contents
Number of Results
Metadata Results
Google Search#
This notebook goes over how to use the google search component.
First, you need to set up the proper API keys and environment variables. To set it up, create the GOOGLE_API_KEY in the Google Cloud credential console (https://console.cloud.google.com/apis/credentials) and a GOOGLE_CSE_ID using the Programmable Search Enginge (https://programmablesearchengine.google.com/controlpanel/create). Next, it is good to follow the instructions found here.
Then we will need to set some environment variables.
import os
os.environ["GOOGLE_CSE_ID"] = ""
os.environ["GOOGLE_API_KEY"] = ""
from langchain.tools import Tool
from langchain.utilities import GoogleSearchAPIWrapper
search = GoogleSearchAPIWrapper()
tool = Tool(
name = "Google Search",
description="Search Google for recent results.",
func=search.run
)
tool.run("Obama's first name?") | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_search.html |
11380371da99-1 | tool.run("Obama's first name?")
"STATE OF HAWAII. 1 Child's First Name. (Type or print). 2. Sex. BARACK. 3. This Birth. CERTIFICATE OF LIVE BIRTH. FILE. NUMBER 151 le. lb. Middle Name. Barack Hussein Obama II is an American former politician who served as the 44th president of the United States from 2009 to 2017. A member of the Democratic\xa0... When Barack Obama was elected president in 2008, he became the first African American to hold ... The Middle East remained a key foreign policy challenge. Jan 19, 2017 ... Jordan Barack Treasure, New York City, born in 2008 ... Jordan Barack Treasure made national news when he was the focus of a New York newspaper\xa0... Portrait of George Washington, the 1st President of the United States ... Portrait of Barack Obama, the 44th President of the United States\xa0... His full name is Barack Hussein Obama II. Since the “II” is simply because he was named for his father, his last name is Obama. Mar 22, 2008 ... Barry Obama decided that he didn't like his nickname. A few of his friends at Occidental College had already begun to call him Barack (his\xa0... Aug 18, 2017 ... It took him several seconds and multiple clues to remember former President Barack Obama's first name. Miller knew that every answer had to\xa0... Feb 9, 2015 ... Michael Jordan misspelled Barack Obama's first name on 50th-birthday gift ... Knowing Obama is a Chicagoan and huge basketball fan,\xa0... 4 days ago ... Barack Obama, in full Barack Hussein Obama II, (born August 4, 1961, Honolulu, Hawaii, U.S.), 44th president of the United States (2009–17) and\xa0..." | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_search.html |
11380371da99-2 | Number of Results#
You can use the k parameter to set the number of results
search = GoogleSearchAPIWrapper(k=1)
tool = Tool(
name = "I'm Feeling Lucky",
description="Search Google and return the first result.",
func=search.run
)
tool.run("python")
'The official home of the Python Programming Language.'
‘The official home of the Python Programming Language.’
Metadata Results#
Run query through GoogleSearch and return snippet, title, and link metadata.
Snippet: The description of the result.
Title: The title of the result.
Link: The link to the result.
search = GoogleSearchAPIWrapper()
def top5_results(query):
return search.results(query, 5)
tool = Tool(
name = "Google Search Snippets",
description="Search Google for recent results.",
func=top5_results
)
previous
Google Places
next
Google Serper API
Contents
Number of Results
Metadata Results
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_search.html |
73e2e9a3f115-0 | .ipynb
.pdf
Bing Search
Contents
Number of results
Metadata Results
Bing Search#
This notebook goes over how to use the bing search component.
First, you need to set up the proper API keys and environment variables. To set it up, follow the instructions found here.
Then we will need to set some environment variables.
import os
os.environ["BING_SUBSCRIPTION_KEY"] = ""
os.environ["BING_SEARCH_URL"] = ""
from langchain.utilities import BingSearchAPIWrapper
search = BingSearchAPIWrapper()
search.run("python") | https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html |
73e2e9a3f115-1 | 'Thanks to the flexibility of <b>Python</b> and the powerful ecosystem of packages, the Azure CLI supports features such as autocompletion (in shells that support it), persistent credentials, JMESPath result parsing, lazy initialization, network-less unit tests, and more. Building an open-source and cross-platform Azure CLI with <b>Python</b> by Dan Taylor. <b>Python</b> releases by version number: Release version Release date Click for more. <b>Python</b> 3.11.1 Dec. 6, 2022 Download Release Notes. <b>Python</b> 3.10.9 Dec. 6, 2022 Download Release Notes. <b>Python</b> 3.9.16 Dec. 6, 2022 Download Release Notes. <b>Python</b> 3.8.16 Dec. 6, 2022 Download Release Notes. <b>Python</b> 3.7.16 Dec. 6, 2022 Download Release Notes. In this lesson, we will look at the += operator in <b>Python</b> and see how it works with several simple examples.. The operator ‘+=’ is a shorthand for the addition assignment operator.It adds two values and assigns the sum | https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html |
73e2e9a3f115-2 | assignment operator.It adds two values and assigns the sum to a variable (left operand). W3Schools offers free online tutorials, references and exercises in all the major languages of the web. Covering popular subjects like HTML, CSS, JavaScript, <b>Python</b>, SQL, Java, and many, many more. This tutorial introduces the reader informally to the basic concepts and features of the <b>Python</b> language and system. It helps to have a <b>Python</b> interpreter handy for hands-on experience, but all examples are self-contained, so the tutorial can be read off-line as well. For a description of standard objects and modules, see The <b>Python</b> Standard ... <b>Python</b> is a general-purpose, versatile, and powerful programming language. It's a great first language because <b>Python</b> code is concise and easy to read. Whatever you want to do, <b>python</b> can do it. From web development to machine learning to data science, <b>Python</b> is the language for you. To install <b>Python</b> using the Microsoft Store: | https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html |
73e2e9a3f115-3 | To install <b>Python</b> using the Microsoft Store: Go to your Start menu (lower left Windows icon), type "Microsoft Store", select the link to open the store. Once the store is open, select Search from the upper-right menu and enter "<b>Python</b>". Select which version of <b>Python</b> you would like to use from the results under Apps. Under the “<b>Python</b> Releases for Mac OS X” heading, click the link for the Latest <b>Python</b> 3 Release - <b>Python</b> 3.x.x. As of this writing, the latest version was <b>Python</b> 3.8.4. Scroll to the bottom and click macOS 64-bit installer to start the download. When the installer is finished downloading, move on to the next step. Step 2: Run the Installer' | https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html |
73e2e9a3f115-4 | Number of results#
You can use the k parameter to set the number of results
search = BingSearchAPIWrapper(k=1)
search.run("python")
'Thanks to the flexibility of <b>Python</b> and the powerful ecosystem of packages, the Azure CLI supports features such as autocompletion (in shells that support it), persistent credentials, JMESPath result parsing, lazy initialization, network-less unit tests, and more. Building an open-source and cross-platform Azure CLI with <b>Python</b> by Dan Taylor.'
Metadata Results#
Run query through BingSearch and return snippet, title, and link metadata.
Snippet: The description of the result.
Title: The title of the result.
Link: The link to the result.
search = BingSearchAPIWrapper()
search.results("apples", 5)
[{'snippet': 'Lady Alice. Pink Lady <b>apples</b> aren’t the only lady in the apple family. Lady Alice <b>apples</b> were discovered growing, thanks to bees pollinating, in Washington. They are smaller and slightly more stout in appearance than other varieties. Their skin color appears to have red and yellow stripes running from stem to butt.',
'title': '25 Types of Apples - Jessica Gavin',
'link': 'https://www.jessicagavin.com/types-of-apples/'},
{'snippet': '<b>Apples</b> can do a lot for you, thanks to plant chemicals called flavonoids. And they have pectin, a fiber that breaks down in your gut. If you take off the apple’s skin before eating it, you won ...',
'title': 'Apples: Nutrition & Health Benefits - WebMD',
'link': 'https://www.webmd.com/food-recipes/benefits-apples'}, | https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html |
73e2e9a3f115-5 | {'snippet': '<b>Apples</b> boast many vitamins and minerals, though not in high amounts. However, <b>apples</b> are usually a good source of vitamin C. Vitamin C. Also called ascorbic acid, this vitamin is a common ...',
'title': 'Apples 101: Nutrition Facts and Health Benefits',
'link': 'https://www.healthline.com/nutrition/foods/apples'},
{'snippet': 'Weight management. The fibers in <b>apples</b> can slow digestion, helping one to feel greater satisfaction after eating. After following three large prospective cohorts of 133,468 men and women for 24 years, researchers found that higher intakes of fiber-rich fruits with a low glycemic load, particularly <b>apples</b> and pears, were associated with the least amount of weight gain over time.',
'title': 'Apples | The Nutrition Source | Harvard T.H. Chan School of Public Health',
'link': 'https://www.hsph.harvard.edu/nutritionsource/food-features/apples/'}]
previous
Shell Tool
next
ChatGPT Plugins
Contents
Number of results
Metadata Results
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html |
668a9cc5b3a2-0 | .ipynb
.pdf
Shell Tool
Contents
Use with Agents
Shell Tool#
Giving agents access to the shell is powerful (though risky outside a sandboxed environment).
The LLM can use it to execute any shell commands. A common use case for this is letting the LLM interact with your local file system.
from langchain.tools import ShellTool
shell_tool = ShellTool()
print(shell_tool.run({"commands": ["echo 'Hello World!'", "time"]}))
Hello World!
real 0m0.000s
user 0m0.000s
sys 0m0.000s
/Users/wfh/code/lc/lckg/langchain/tools/shell/tool.py:34: UserWarning: The shell tool has no safeguards by default. Use at your own risk.
warnings.warn(
Use with Agents#
As with all tools, these can be given to an agent to accomplish more complex tasks. Let’s have the agent fetch some links from a web page.
from langchain.chat_models import ChatOpenAI
from langchain.agents import initialize_agent
from langchain.agents import AgentType
llm = ChatOpenAI(temperature=0)
shell_tool.description = shell_tool.description + f"args {shell_tool.args}".replace("{", "{{").replace("}", "}}")
self_ask_with_search = initialize_agent([shell_tool], llm, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
self_ask_with_search.run("Download the langchain.com webpage and grep for all urls. Return only a sorted list of them. Be sure to use double quotes.")
> Entering new AgentExecutor chain...
Question: What is the task?
Thought: We need to download the langchain.com webpage and extract all the URLs from it. Then we need to sort the URLs and return them.
Action:
``` | https://python.langchain.com/en/latest/modules/agents/tools/examples/bash.html |
668a9cc5b3a2-1 | Action:
```
{
"action": "shell",
"action_input": {
"commands": [
"curl -s https://langchain.com | grep -o 'http[s]*://[^\" ]*' | sort"
]
}
}
```
/Users/wfh/code/lc/lckg/langchain/tools/shell/tool.py:34: UserWarning: The shell tool has no safeguards by default. Use at your own risk.
warnings.warn(
Observation: https://blog.langchain.dev/
https://discord.gg/6adMQxSpJS
https://docs.langchain.com/docs/
https://github.com/hwchase17/chat-langchain
https://github.com/hwchase17/langchain
https://github.com/hwchase17/langchainjs
https://github.com/sullivan-sean/chat-langchainjs
https://js.langchain.com/docs/
https://python.langchain.com/en/latest/
https://twitter.com/langchainai
Thought:The URLs have been successfully extracted and sorted. We can return the list of URLs as the final answer.
Final Answer: ["https://blog.langchain.dev/", "https://discord.gg/6adMQxSpJS", "https://docs.langchain.com/docs/", "https://github.com/hwchase17/chat-langchain", "https://github.com/hwchase17/langchain", "https://github.com/hwchase17/langchainjs", "https://github.com/sullivan-sean/chat-langchainjs", "https://js.langchain.com/docs/", "https://python.langchain.com/en/latest/", "https://twitter.com/langchainai"]
> Finished chain. | https://python.langchain.com/en/latest/modules/agents/tools/examples/bash.html |
668a9cc5b3a2-2 | > Finished chain.
'["https://blog.langchain.dev/", "https://discord.gg/6adMQxSpJS", "https://docs.langchain.com/docs/", "https://github.com/hwchase17/chat-langchain", "https://github.com/hwchase17/langchain", "https://github.com/hwchase17/langchainjs", "https://github.com/sullivan-sean/chat-langchainjs", "https://js.langchain.com/docs/", "https://python.langchain.com/en/latest/", "https://twitter.com/langchainai"]'
previous
AWS Lambda API
next
Bing Search
Contents
Use with Agents
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/bash.html |
df266457743b-0 | .ipynb
.pdf
SearxNG Search API
Contents
Custom Parameters
Obtaining results with metadata
SearxNG Search API#
This notebook goes over how to use a self hosted SearxNG search API to search the web.
You can check this link for more informations about Searx API parameters.
import pprint
from langchain.utilities import SearxSearchWrapper
search = SearxSearchWrapper(searx_host="http://127.0.0.1:8888")
For some engines, if a direct answer is available the warpper will print the answer instead of the full list of search results. You can use the results method of the wrapper if you want to obtain all the results.
search.run("What is the capital of France")
'Paris is the capital of France, the largest country of Europe with 550 000 km2 (65 millions inhabitants). Paris has 2.234 million inhabitants end 2011. She is the core of Ile de France region (12 million people).'
Custom Parameters#
SearxNG supports up to 139 search engines. You can also customize the Searx wrapper with arbitrary named parameters that will be passed to the Searx search API . In the below example we will making a more interesting use of custom search parameters from searx search api.
In this example we will be using the engines parameters to query wikipedia
search = SearxSearchWrapper(searx_host="http://127.0.0.1:8888", k=5) # k is for max number of items
search.run("large language model ", engines=['wiki']) | https://python.langchain.com/en/latest/modules/agents/tools/examples/searx_search.html |
df266457743b-1 | search.run("large language model ", engines=['wiki'])
'Large language models (LLMs) represent a major advancement in AI, with the promise of transforming domains through learned knowledge. LLM sizes have been increasing 10X every year for the last few years, and as these models grow in complexity and size, so do their capabilities.\n\nGPT-3 can translate language, write essays, generate computer code, and more — all with limited to no supervision. In July 2020, OpenAI unveiled GPT-3, a language model that was easily the largest known at the time. Put simply, GPT-3 is trained to predict the next word in a sentence, much like how a text message autocomplete feature works.\n\nA large language model, or LLM, is a deep learning algorithm that can recognize, summarize, translate, predict and generate text and other content based on knowledge gained from massive datasets. Large language models are among the most successful applications of transformer models.\n\nAll of today’s well-known language models—e.g., GPT-3 from OpenAI, PaLM or LaMDA from Google, Galactica or OPT from Meta, Megatron-Turing from Nvidia/Microsoft, Jurassic-1 from AI21 Labs—are...\n\nLarge language models (LLMs) such as GPT-3are increasingly being used to generate text. These tools should be used with care, since they can generate content that is biased, non-verifiable, constitutes original research, or violates copyrights.'
Passing other Searx parameters for searx like language
search = SearxSearchWrapper(searx_host="http://127.0.0.1:8888", k=1)
search.run("deep learning", language='es', engines=['wiki']) | https://python.langchain.com/en/latest/modules/agents/tools/examples/searx_search.html |
df266457743b-2 | search.run("deep learning", language='es', engines=['wiki'])
'Aprendizaje profundo (en inglés, deep learning) es un conjunto de algoritmos de aprendizaje automático (en inglés, machine learning) que intenta modelar abstracciones de alto nivel en datos usando arquitecturas computacionales que admiten transformaciones no lineales múltiples e iterativas de datos expresados en forma matricial o tensorial. 1'
Obtaining results with metadata#
In this example we will be looking for scientific paper using the categories parameter and limiting the results to a time_range (not all engines support the time range option).
We also would like to obtain the results in a structured way including metadata. For this we will be using the results method of the wrapper.
search = SearxSearchWrapper(searx_host="http://127.0.0.1:8888")
results = search.results("Large Language Model prompt", num_results=5, categories='science', time_range='year')
pprint.pp(results)
[{'snippet': '… on natural language instructions, large language models (… the '
'prompt used to steer the model, and most effective prompts … to '
'prompt engineering, we propose Automatic Prompt …',
'title': 'Large language models are human-level prompt engineers',
'link': 'https://arxiv.org/abs/2211.01910',
'engines': ['google scholar'],
'category': 'science'},
{'snippet': '… Large language models (LLMs) have introduced new possibilities '
'for prototyping with AI [18]. Pre-trained on a large amount of '
'text data, models … language instructions called prompts. …',
'title': 'Promptchainer: Chaining large language model prompts through ' | https://python.langchain.com/en/latest/modules/agents/tools/examples/searx_search.html |
df266457743b-3 | 'title': 'Promptchainer: Chaining large language model prompts through '
'visual programming',
'link': 'https://dl.acm.org/doi/abs/10.1145/3491101.3519729',
'engines': ['google scholar'],
'category': 'science'},
{'snippet': '… can introspect the large prompt model. We derive the view '
'ϕ0(X) and the model h0 from T01. However, instead of fully '
'fine-tuning T0 during co-training, we focus on soft prompt '
'tuning, …',
'title': 'Co-training improves prompt-based learning for large language '
'models',
'link': 'https://proceedings.mlr.press/v162/lang22a.html',
'engines': ['google scholar'],
'category': 'science'},
{'snippet': '… With the success of large language models (LLMs) of code and '
'their use as … prompt design process become important. In this '
'work, we propose a framework called Repo-Level Prompt …',
'title': 'Repository-level prompt generation for large language models of '
'code',
'link': 'https://arxiv.org/abs/2206.12839',
'engines': ['google scholar'],
'category': 'science'},
{'snippet': '… Figure 2 | The benefits of different components of a prompt '
'for the largest language model (Gopher), as estimated from '
'hierarchical logistic regression. Each point estimates the '
'unique …',
'title': 'Can language models learn from explanations in context?',
'link': 'https://arxiv.org/abs/2204.02329', | https://python.langchain.com/en/latest/modules/agents/tools/examples/searx_search.html |
df266457743b-4 | 'link': 'https://arxiv.org/abs/2204.02329',
'engines': ['google scholar'],
'category': 'science'}]
Get papers from arxiv
results = search.results("Large Language Model prompt", num_results=5, engines=['arxiv'])
pprint.pp(results)
[{'snippet': 'Thanks to the advanced improvement of large pre-trained language '
'models, prompt-based fine-tuning is shown to be effective on a '
'variety of downstream tasks. Though many prompting methods have '
'been investigated, it remains unknown which type of prompts are '
'the most effective among three types of prompts (i.e., '
'human-designed prompts, schema prompts and null prompts). In '
'this work, we empirically compare the three types of prompts '
'under both few-shot and fully-supervised settings. Our '
'experimental results show that schema prompts are the most '
'effective in general. Besides, the performance gaps tend to '
'diminish when the scale of training data grows large.',
'title': 'Do Prompts Solve NLP Tasks Using Natural Language?',
'link': 'http://arxiv.org/abs/2203.00902v1',
'engines': ['arxiv'],
'category': 'science'},
{'snippet': 'Cross-prompt automated essay scoring (AES) requires the system '
'to use non target-prompt essays to award scores to a '
'target-prompt essay. Since obtaining a large quantity of '
'pre-graded essays to a particular prompt is often difficult and '
'unrealistic, the task of cross-prompt AES is vital for the '
'development of real-world AES systems, yet it remains an ' | https://python.langchain.com/en/latest/modules/agents/tools/examples/searx_search.html |
df266457743b-5 | 'development of real-world AES systems, yet it remains an '
'under-explored area of research. Models designed for '
'prompt-specific AES rely heavily on prompt-specific knowledge '
'and perform poorly in the cross-prompt setting, whereas current '
'approaches to cross-prompt AES either require a certain quantity '
'of labelled target-prompt essays or require a large quantity of '
'unlabelled target-prompt essays to perform transfer learning in '
'a multi-step manner. To address these issues, we introduce '
'Prompt Agnostic Essay Scorer (PAES) for cross-prompt AES. Our '
'method requires no access to labelled or unlabelled '
'target-prompt data during training and is a single-stage '
'approach. PAES is easy to apply in practice and achieves '
'state-of-the-art performance on the Automated Student Assessment '
'Prize (ASAP) dataset.',
'title': 'Prompt Agnostic Essay Scorer: A Domain Generalization Approach to '
'Cross-prompt Automated Essay Scoring',
'link': 'http://arxiv.org/abs/2008.01441v1',
'engines': ['arxiv'],
'category': 'science'},
{'snippet': 'Research on prompting has shown excellent performance with '
'little or even no supervised training across many tasks. '
'However, prompting for machine translation is still '
'under-explored in the literature. We fill this gap by offering a '
'systematic study on prompting strategies for translation, '
'examining various factors for prompt template and demonstration '
'example selection. We further explore the use of monolingual ' | https://python.langchain.com/en/latest/modules/agents/tools/examples/searx_search.html |
df266457743b-6 | 'example selection. We further explore the use of monolingual '
'data and the feasibility of cross-lingual, cross-domain, and '
'sentence-to-document transfer learning in prompting. Extensive '
'experiments with GLM-130B (Zeng et al., 2022) as the testbed '
'show that 1) the number and the quality of prompt examples '
'matter, where using suboptimal examples degenerates translation; '
'2) several features of prompt examples, such as semantic '
'similarity, show significant Spearman correlation with their '
'prompting performance; yet, none of the correlations are strong '
'enough; 3) using pseudo parallel prompt examples constructed '
'from monolingual data via zero-shot prompting could improve '
'translation; and 4) improved performance is achievable by '
'transferring knowledge from prompt examples selected in other '
'settings. We finally provide an analysis on the model outputs '
'and discuss several problems that prompting still suffers from.',
'title': 'Prompting Large Language Model for Machine Translation: A Case '
'Study',
'link': 'http://arxiv.org/abs/2301.07069v2',
'engines': ['arxiv'],
'category': 'science'},
{'snippet': 'Large language models can perform new tasks in a zero-shot '
'fashion, given natural language prompts that specify the desired '
'behavior. Such prompts are typically hand engineered, but can '
'also be learned with gradient-based methods from labeled data. '
'However, it is underexplored what factors make the prompts '
'effective, especially when the prompts are natural language. In ' | https://python.langchain.com/en/latest/modules/agents/tools/examples/searx_search.html |
df266457743b-7 | 'effective, especially when the prompts are natural language. In '
'this paper, we investigate common attributes shared by effective '
'prompts. We first propose a human readable prompt tuning method '
'(F LUENT P ROMPT) based on Langevin dynamics that incorporates a '
'fluency constraint to find a diverse distribution of effective '
'and fluent prompts. Our analysis reveals that effective prompts '
'are topically related to the task domain and calibrate the prior '
'probability of label words. Based on these findings, we also '
'propose a method for generating prompts using only unlabeled '
'data, outperforming strong baselines by an average of 7.0% '
'accuracy across three tasks.',
'title': "Toward Human Readable Prompt Tuning: Kubrick's The Shining is a "
'good movie, and a good prompt too?',
'link': 'http://arxiv.org/abs/2212.10539v1',
'engines': ['arxiv'],
'category': 'science'},
{'snippet': 'Prevailing methods for mapping large generative language models '
"to supervised tasks may fail to sufficiently probe models' novel "
'capabilities. Using GPT-3 as a case study, we show that 0-shot '
'prompts can significantly outperform few-shot prompts. We '
'suggest that the function of few-shot examples in these cases is '
'better described as locating an already learned task rather than '
'meta-learning. This analysis motivates rethinking the role of '
'prompts in controlling and evaluating powerful language models. '
'In this work, we discuss methods of prompt programming, ' | https://python.langchain.com/en/latest/modules/agents/tools/examples/searx_search.html |
df266457743b-8 | 'In this work, we discuss methods of prompt programming, '
'emphasizing the usefulness of considering prompts through the '
'lens of natural language. We explore techniques for exploiting '
'the capacity of narratives and cultural anchors to encode '
'nuanced intentions and techniques for encouraging deconstruction '
'of a problem into components before producing a verdict. '
'Informed by this more encompassing theory of prompt programming, '
'we also introduce the idea of a metaprompt that seeds the model '
'to generate its own natural language prompts for a range of '
'tasks. Finally, we discuss how these more general methods of '
'interacting with language models can be incorporated into '
'existing and future benchmarks and practical applications.',
'title': 'Prompt Programming for Large Language Models: Beyond the Few-Shot '
'Paradigm',
'link': 'http://arxiv.org/abs/2102.07350v1',
'engines': ['arxiv'],
'category': 'science'}]
In this example we query for large language models under the it category. We then filter the results that come from github.
results = search.results("large language model", num_results = 20, categories='it')
pprint.pp(list(filter(lambda r: r['engines'][0] == 'github', results)))
[{'snippet': 'Guide to using pre-trained large language models of source code',
'title': 'Code-LMs',
'link': 'https://github.com/VHellendoorn/Code-LMs',
'engines': ['github'],
'category': 'it'},
{'snippet': 'Dramatron uses large language models to generate coherent '
'scripts and screenplays.', | https://python.langchain.com/en/latest/modules/agents/tools/examples/searx_search.html |
df266457743b-9 | 'scripts and screenplays.',
'title': 'dramatron',
'link': 'https://github.com/deepmind/dramatron',
'engines': ['github'],
'category': 'it'}]
We could also directly query for results from github and other source forges.
results = search.results("large language model", num_results = 20, engines=['github', 'gitlab'])
pprint.pp(results)
[{'snippet': "Implementation of 'A Watermark for Large Language Models' paper "
'by Kirchenbauer & Geiping et. al.',
'title': 'Peutlefaire / LMWatermark',
'link': 'https://gitlab.com/BrianPulfer/LMWatermark',
'engines': ['gitlab'],
'category': 'it'},
{'snippet': 'Guide to using pre-trained large language models of source code',
'title': 'Code-LMs',
'link': 'https://github.com/VHellendoorn/Code-LMs',
'engines': ['github'],
'category': 'it'},
{'snippet': '',
'title': 'Simen Burud / Large-scale Language Models for Conversational '
'Speech Recognition',
'link': 'https://gitlab.com/BrianPulfer',
'engines': ['gitlab'],
'category': 'it'},
{'snippet': 'Dramatron uses large language models to generate coherent '
'scripts and screenplays.',
'title': 'dramatron',
'link': 'https://github.com/deepmind/dramatron',
'engines': ['github'],
'category': 'it'}, | https://python.langchain.com/en/latest/modules/agents/tools/examples/searx_search.html |
df266457743b-10 | 'engines': ['github'],
'category': 'it'},
{'snippet': 'Code for loralib, an implementation of "LoRA: Low-Rank '
'Adaptation of Large Language Models"',
'title': 'LoRA',
'link': 'https://github.com/microsoft/LoRA',
'engines': ['github'],
'category': 'it'},
{'snippet': 'Code for the paper "Evaluating Large Language Models Trained on '
'Code"',
'title': 'human-eval',
'link': 'https://github.com/openai/human-eval',
'engines': ['github'],
'category': 'it'},
{'snippet': 'A trend starts from "Chain of Thought Prompting Elicits '
'Reasoning in Large Language Models".',
'title': 'Chain-of-ThoughtsPapers',
'link': 'https://github.com/Timothyxxx/Chain-of-ThoughtsPapers',
'engines': ['github'],
'category': 'it'},
{'snippet': 'Mistral: A strong, northwesterly wind: Framework for transparent '
'and accessible large-scale language model training, built with '
'Hugging Face 🤗 Transformers.',
'title': 'mistral',
'link': 'https://github.com/stanford-crfm/mistral',
'engines': ['github'],
'category': 'it'},
{'snippet': 'A prize for finding tasks that cause large language models to '
'show inverse scaling',
'title': 'prize',
'link': 'https://github.com/inverse-scaling/prize',
'engines': ['github'], | https://python.langchain.com/en/latest/modules/agents/tools/examples/searx_search.html |
df266457743b-11 | 'engines': ['github'],
'category': 'it'},
{'snippet': 'Optimus: the first large-scale pre-trained VAE language model',
'title': 'Optimus',
'link': 'https://github.com/ChunyuanLI/Optimus',
'engines': ['github'],
'category': 'it'},
{'snippet': 'Seminar on Large Language Models (COMP790-101 at UNC Chapel '
'Hill, Fall 2022)',
'title': 'llm-seminar',
'link': 'https://github.com/craffel/llm-seminar',
'engines': ['github'],
'category': 'it'},
{'snippet': 'A central, open resource for data and tools related to '
'chain-of-thought reasoning in large language models. Developed @ '
'Samwald research group: https://samwald.info/',
'title': 'ThoughtSource',
'link': 'https://github.com/OpenBioLink/ThoughtSource',
'engines': ['github'],
'category': 'it'},
{'snippet': 'A comprehensive list of papers using large language/multi-modal '
'models for Robotics/RL, including papers, codes, and related '
'websites',
'title': 'Awesome-LLM-Robotics',
'link': 'https://github.com/GT-RIPL/Awesome-LLM-Robotics',
'engines': ['github'],
'category': 'it'},
{'snippet': 'Tools for curating biomedical training data for large-scale '
'language modeling',
'title': 'biomedical',
'link': 'https://github.com/bigscience-workshop/biomedical', | https://python.langchain.com/en/latest/modules/agents/tools/examples/searx_search.html |
df266457743b-12 | 'link': 'https://github.com/bigscience-workshop/biomedical',
'engines': ['github'],
'category': 'it'},
{'snippet': 'ChatGPT @ Home: Large Language Model (LLM) chatbot application, '
'written by ChatGPT',
'title': 'ChatGPT-at-Home',
'link': 'https://github.com/Sentdex/ChatGPT-at-Home',
'engines': ['github'],
'category': 'it'},
{'snippet': 'Design and Deploy Large Language Model Apps',
'title': 'dust',
'link': 'https://github.com/dust-tt/dust',
'engines': ['github'],
'category': 'it'},
{'snippet': 'Polyglot: Large Language Models of Well-balanced Competence in '
'Multi-languages',
'title': 'polyglot',
'link': 'https://github.com/EleutherAI/polyglot',
'engines': ['github'],
'category': 'it'},
{'snippet': 'Code release for "Learning Video Representations from Large '
'Language Models"',
'title': 'LaViLa',
'link': 'https://github.com/facebookresearch/LaViLa',
'engines': ['github'],
'category': 'it'},
{'snippet': 'SmoothQuant: Accurate and Efficient Post-Training Quantization '
'for Large Language Models',
'title': 'smoothquant',
'link': 'https://github.com/mit-han-lab/smoothquant',
'engines': ['github'],
'category': 'it'}, | https://python.langchain.com/en/latest/modules/agents/tools/examples/searx_search.html |
df266457743b-13 | 'engines': ['github'],
'category': 'it'},
{'snippet': 'This repository contains the code, data, and models of the paper '
'titled "XL-Sum: Large-Scale Multilingual Abstractive '
'Summarization for 44 Languages" published in Findings of the '
'Association for Computational Linguistics: ACL-IJCNLP 2021.',
'title': 'xl-sum',
'link': 'https://github.com/csebuetnlp/xl-sum',
'engines': ['github'],
'category': 'it'}]
previous
Search Tools
next
SerpAPI
Contents
Custom Parameters
Obtaining results with metadata
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/searx_search.html |
5d9a3f062fa1-0 | .ipynb
.pdf
Python REPL
Python REPL#
Sometimes, for complex calculations, rather than have an LLM generate the answer directly, it can be better to have the LLM generate code to calculate the answer, and then run that code to get the answer. In order to easily do that, we provide a simple Python REPL to execute commands in.
This interface will only return things that are printed - therefore, if you want to use it to calculate an answer, make sure to have it print out the answer.
from langchain.agents import Tool
from langchain.utilities import PythonREPL
python_repl = PythonREPL()
python_repl.run("print(1+1)")
'2\n'
# You can create the tool to pass to an agent
repl_tool = Tool(
name="python_repl",
description="A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.",
func=python_repl.run
)
previous
OpenWeatherMap API
next
Requests
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/python.html |
084704be4ea1-0 | .ipynb
.pdf
Wikipedia
Wikipedia#
Wikipedia is a multilingual free online encyclopedia written and maintained by a community of volunteers, known as Wikipedians, through open collaboration and using a wiki-based editing system called MediaWiki. Wikipedia is the largest and most-read reference work in history.
First, you need to install wikipedia python package.
!pip install wikipedia
from langchain.utilities import WikipediaAPIWrapper
wikipedia = WikipediaAPIWrapper()
wikipedia.run('HUNTER X HUNTER') | https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html |
084704be4ea1-1 | 'Page: Hunter × Hunter\nSummary: Hunter × Hunter (stylized as HUNTER×HUNTER and pronounced "hunter hunter") is a Japanese manga series written and illustrated by Yoshihiro Togashi. It has been serialized in Shueisha\'s shōnen manga magazine Weekly Shōnen Jump since March 1998, although the manga has frequently gone on extended hiatuses since 2006. Its chapters have been collected in 37 tankōbon volumes as of November 2022. The story focuses on a young boy named Gon Freecss who discovers that his father, who left him at a young age, is actually a world-renowned Hunter, a licensed professional who specializes in fantastical pursuits such as locating rare or unidentified animal species, treasure hunting, surveying unexplored enclaves, or hunting down lawless individuals. Gon departs on a journey to become a Hunter and eventually find his father. Along the way, Gon meets various other Hunters and encounters the paranormal.\nHunter × Hunter was adapted into a 62-episode | https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html |
084704be4ea1-2 | × Hunter was adapted into a 62-episode anime television series produced by Nippon Animation and directed by Kazuhiro Furuhashi, which ran on Fuji Television from October 1999 to March 2001. Three separate original video animations (OVAs) totaling 30 episodes were subsequently produced by Nippon Animation and released in Japan from 2002 to 2004. A second anime television series by Madhouse aired on Nippon Television from October 2011 to September 2014, totaling 148 episodes, with two animated theatrical films released in 2013. There are also numerous audio albums, video games, musicals, and other media based on Hunter × Hunter.\nThe manga has been translated into English and released in North America by Viz Media since April 2005. Both television series have been also licensed by Viz Media, with the first series having aired on the Funimation Channel in 2009 and the second series broadcast on Adult Swim\'s Toonami programming block from April 2016 to June 2019.\nHunter × Hunter has been a huge critical and financial success | https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html |
084704be4ea1-3 | × Hunter has been a huge critical and financial success and has become one of the best-selling manga series of all time, having over 84 million copies in circulation by July 2022.\n\nPage: Hunter × Hunter (2011 TV series)\nSummary: Hunter × Hunter is an anime television series that aired from 2011 to 2014 based on Yoshihiro Togashi\'s manga series Hunter × Hunter. The story begins with a young boy named Gon Freecss, who one day discovers that the father who he thought was dead, is in fact alive and well. He learns that his father, Ging, is a legendary "Hunter", an individual who has proven themselves an elite member of humanity. Despite the fact that Ging left his son with his relatives in order to pursue his own dreams, Gon becomes determined to follow in his father\'s footsteps, pass the rigorous "Hunter Examination", and eventually find his father to become a Hunter in his own right.\nThis new Hunter × Hunter anime was announced on July | https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html |
084704be4ea1-4 | new Hunter × Hunter anime was announced on July 24, 2011. It is a complete reboot of the anime adaptation starting from the beginning of the manga, with no connections to the first anime from 1999. Produced by Nippon TV, VAP, Shueisha and Madhouse, the series is directed by Hiroshi Kōjina, with Atsushi Maekawa and Tsutomu Kamishiro handling series composition, Takahiro Yoshimatsu designing the characters and Yoshihisa Hirano composing the music. Instead of having the old cast reprise their roles for the new adaptation, the series features an entirely new cast to voice the characters. The new series premiered airing weekly on Nippon TV and the nationwide Nippon News Network from October 2, 2011. The series started to be collected in both DVD and Blu-ray format on January 25, 2012. Viz Media has licensed the anime for a DVD/Blu-ray release in North America with an English dub. On television, the series began airing on Adult | https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html |
084704be4ea1-5 | On television, the series began airing on Adult Swim\'s Toonami programming block on April 17, 2016, and ended on June 23, 2019.The anime series\' opening theme is alternated between the song "Departure!" and an alternate version titled "Departure! -Second Version-" both sung by Galneryus\' vocalist Masatoshi Ono. Five pieces of music were used as the ending theme; "Just Awake" by the Japanese band Fear, and Loathing in Las Vegas in episodes 1 to 26, "Hunting for Your Dream" by Galneryus in episodes 27 to 58, "Reason" sung by Japanese duo Yuzu in episodes 59 to 75, "Nagareboshi Kirari" also sung by Yuzu from episode 76 to 98, which was originally from the anime film adaptation, Hunter × Hunter: Phantom Rouge, and "Hyōri Ittai" by Yuzu featuring Hyadain from episode 99 to 146, which was also used in the film Hunter × Hunter: The Last Mission. The background music and soundtrack for the series was composed | https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html |
084704be4ea1-6 | The background music and soundtrack for the series was composed by Yoshihisa Hirano.\n\n\n\nPage: List of Hunter × Hunter characters\nSummary: The Hunter × Hunter manga series, created by Yoshihiro Togashi, features an extensive cast of characters. It takes place in a fictional universe where licensed specialists known as Hunters travel the world taking on special jobs ranging from treasure hunting to assassination. The story initially focuses on Gon Freecss and his quest to become a Hunter in order to find his father, Ging, who is himself a famous Hunter. On the way, Gon meets and becomes close friends with Killua Zoldyck, Kurapika and Leorio Paradinight.\nAlthough most characters are human, most possess superhuman strength and/or supernatural abilities due to Nen, the ability to control one\'s own life energy or aura. The world of the series also includes fantastical beasts such as the Chimera Ants or the Five great calamities.' | https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html |
084704be4ea1-7 | previous
Twilio
next
Wolfram Alpha
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html |
4c8546e0c152-0 | .ipynb
.pdf
HuggingFace Tools
HuggingFace Tools#
Huggingface Tools supporting text I/O can be
loaded directly using the load_huggingface_tool function.
# Requires transformers>=4.29.0 and huggingface_hub>=0.14.1
!pip install --upgrade transformers huggingface_hub > /dev/null
from langchain.agents import load_huggingface_tool
tool = load_huggingface_tool("lysandre/hf-model-downloads")
print(f"{tool.name}: {tool.description}")
model_download_counter: This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. It takes the name of the category (such as text-classification, depth-estimation, etc), and returns the name of the checkpoint
tool.run("text-classification")
'facebook/bart-large-mnli'
previous
GraphQL tool
next
Human as a tool
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/huggingface_tools.html |
85eaa03f5a2b-0 | .ipynb
.pdf
Google Places
Google Places#
This notebook goes through how to use Google Places API
#!pip install googlemaps
import os
os.environ["GPLACES_API_KEY"] = ""
from langchain.tools import GooglePlacesTool
places = GooglePlacesTool()
places.run("al fornos")
"1. Delfina Restaurant\nAddress: 3621 18th St, San Francisco, CA 94110, USA\nPhone: (415) 552-4055\nWebsite: https://www.delfinasf.com/\n\n\n2. Piccolo Forno\nAddress: 725 Columbus Ave, San Francisco, CA 94133, USA\nPhone: (415) 757-0087\nWebsite: https://piccolo-forno-sf.com/\n\n\n3. L'Osteria del Forno\nAddress: 519 Columbus Ave, San Francisco, CA 94133, USA\nPhone: (415) 982-1124\nWebsite: Unknown\n\n\n4. Il Fornaio\nAddress: 1265 Battery St, San Francisco, CA 94111, USA\nPhone: (415) 986-0100\nWebsite: https://www.ilfornaio.com/\n\n"
previous
File System Tools
next
Google Search
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/google_places.html |
7a365657d5bc-0 | .ipynb
.pdf
Twilio
Contents
Setup
Sending a message
Twilio#
This notebook goes over how to use the Twilio API wrapper to send a text message.
Setup#
To use this tool you need to install the Python Twilio package twilio
# !pip install twilio
You’ll also need to set up a Twilio account and get your credentials. You’ll need your Account String Identifier (SID) and your Auth Token. You’ll also need a number to send messages from.
You can either pass these in to the TwilioAPIWrapper as named parameters account_sid, auth_token, from_number, or you can set the environment variables TWILIO_ACCOUNT_SID, TWILIO_AUTH_TOKEN, TWILIO_FROM_NUMBER.
Sending a message#
from langchain.utilities.twilio import TwilioAPIWrapper
twilio = TwilioAPIWrapper(
# account_sid="foo",
# auth_token="bar",
# from_number="baz,"
)
twilio.run("hello world", "+16162904619")
previous
SerpAPI
next
Wikipedia
Contents
Setup
Sending a message
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/twilio.html |
a27f46674ab8-0 | .ipynb
.pdf
Requests
Contents
Inside the tool
Requests#
The web contains a lot of information that LLMs do not have access to. In order to easily let LLMs interact with that information, we provide a wrapper around the Python Requests module that takes in a URL and fetches data from that URL.
from langchain.agents import load_tools
requests_tools = load_tools(["requests_all"])
requests_tools
[RequestsGetTool(name='requests_get', description='A portal to the internet. Use this when you need to get specific content from a website. Input should be a url (i.e. https://www.google.com). The output will be the text response of the GET request.', args_schema=None, return_direct=False, verbose=False, callbacks=None, callback_manager=None, requests_wrapper=TextRequestsWrapper(headers=None, aiosession=None)),
RequestsPostTool(name='requests_post', description='Use this when you want to POST to a website.\n Input should be a json string with two keys: "url" and "data".\n The value of "url" should be a string, and the value of "data" should be a dictionary of \n key-value pairs you want to POST to the url.\n Be careful to always use double quotes for strings in the json string\n The output will be the text response of the POST request.\n ', args_schema=None, return_direct=False, verbose=False, callbacks=None, callback_manager=None, requests_wrapper=TextRequestsWrapper(headers=None, aiosession=None)), | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-1 | RequestsPatchTool(name='requests_patch', description='Use this when you want to PATCH to a website.\n Input should be a json string with two keys: "url" and "data".\n The value of "url" should be a string, and the value of "data" should be a dictionary of \n key-value pairs you want to PATCH to the url.\n Be careful to always use double quotes for strings in the json string\n The output will be the text response of the PATCH request.\n ', args_schema=None, return_direct=False, verbose=False, callbacks=None, callback_manager=None, requests_wrapper=TextRequestsWrapper(headers=None, aiosession=None)),
RequestsPutTool(name='requests_put', description='Use this when you want to PUT to a website.\n Input should be a json string with two keys: "url" and "data".\n The value of "url" should be a string, and the value of "data" should be a dictionary of \n key-value pairs you want to PUT to the url.\n Be careful to always use double quotes for strings in the json string.\n The output will be the text response of the PUT request.\n ', args_schema=None, return_direct=False, verbose=False, callbacks=None, callback_manager=None, requests_wrapper=TextRequestsWrapper(headers=None, aiosession=None)),
RequestsDeleteTool(name='requests_delete', description='A portal to the internet. Use this when you need to make a DELETE request to a URL. Input should be a specific url, and the output will be the text response of the DELETE request.', args_schema=None, return_direct=False, verbose=False, callbacks=None, callback_manager=None, requests_wrapper=TextRequestsWrapper(headers=None, aiosession=None))]
Inside the tool#
Each requests tool contains a requests wrapper. You can work with these wrappers directly below | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-2 | Each requests tool contains a requests wrapper. You can work with these wrappers directly below
# Each tool wrapps a requests wrapper
requests_tools[0].requests_wrapper
TextRequestsWrapper(headers=None, aiosession=None)
from langchain.utilities import TextRequestsWrapper
requests = TextRequestsWrapper()
requests.get("https://www.google.com") | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-3 | '<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage" lang="en"><head><meta content="Search the world\'s information, including webpages, images, videos and more. Google has many special features to help you find exactly what you\'re looking for." name="description"><meta content="noodp" name="robots"><meta content="text/html; charset=UTF-8" http-equiv="Content-Type"><meta content="/images/branding/googleg/1x/googleg_standard_color_128dp.png" itemprop="image"><title>Google</title><script | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-4 | nonce="MXrF0nnIBPkxBza4okrgPA">(function(){window.google={kEI:\'TA9QZOa5EdTakPIPuIad-Ac\',kEXPI:\'0,1359409,6059,206,4804,2316,383,246,5,1129120,1197768,626,380097,16111,28687,22431,1361,12319,17581,4997,13228,37471,7692,2891,3926,213,7615,606,50058,8228,17728,432,3,346,1244,1,16920,2648,4,1528,2304,29062,9871,3194,13658,2980,1457,16786,5803,2554,4094,7596,1,42154,2,14022,2373,342,23024,6699,31123 | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-5 | 342,23024,6699,31123,4568,6258,23418,1252,5835,14967,4333,4239,3245,445,2,2,1,26632,239,7916,7321,60,2,3,15965,872,7830,1796,10008,7,1922,9779,36154,6305,2007,17765,427,20136,14,82,2730,184,13600,3692,109,2412,1548,4308,3785,15175,3888,1515,3030,5628,478,4,9706,1804,7734,2738,1853,1032,9480,2995,576,1041,5648,3722,2058,3048,2130,2365,662,476,958,87,111,5807,2,975,1167,891,3580,1439,1128,7343,426,2 | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-6 | 1439,1128,7343,426,249,517,95,1102,14,696,1270,750,400,2208,274,2776,164,89,119,204,139,129,1710,2505,320,3,631,439,2,300,1645,172,1783,784,169,642,329,401,50,479,614,238,757,535,717,102,2,739,738,44,232,22,442,961,45,214,383,567,500,487,151,120,256,253,179,673,2,102,2,10,535,123,135,1685,5206695,190,2,20,50,198,5994221,2804424,3311,141,795,19735,1,1,346,5008,7,13,10,24,31,2,39,1,5,1,16,7,2,41,247 | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-7 | ,1,5,1,16,7,2,41,247,4,9,7,9,15,4,4,121,24,23944834,4042142,1964,16672,2894,6250,15739,1726,647,409,837,1411438,146986,23612960,7,84,93,33,101,816,57,532,163,1,441,86,1,951,73,31,2,345,178,243,472,2,148,962,455,167,178,29,702,1856,288,292,805,93,137,68,416,177,292,399,55,95,2566\',kBL:\'hw1A\',kOPI:89978449};google.sn=\'webhp\';google.kHL=\'en\';})();(function(){\nvar | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-8 | h=this||self;function l(){return void 0!==window.google&&void 0!==window.google.kOPI&&0!==window.google.kOPI?window.google.kOPI:null};var m,n=[];function p(a){for(var b;a&&(!a.getAttribute||!(b=a.getAttribute("eid")));)a=a.parentNode;return b||m}function q(a){for(var b=null;a&&(!a.getAttribute||!(b=a.getAttribute("leid")));)a=a.parentNode;return b}function r(a){/^http:/i.test(a)&&"https:"===window.location.protocol&&(google.ml&&google.ml(Error("a"),!1,{src:a,glmm:1}),a="");return a}\nfunction t(a,b,c,d,k){var e="";-1===b.search("&ei=")&&(e="&ei="+p(d),-1===b.search("&lei=")&&(d=q(d))&&(e+="&lei="+d));d="";var g=-1===b.search("&cshid=")&&"slh"!==a,f=[];f.push(["zx",Date.now().toString()]);h._cshid&&g&&f.push(["cshid",h._cshid]);c=c();null!=c&&f.push(["opi",c.toString()]);for(c=0;c<f.length;c++){if(0===c||0<c)d+="&";d+=f[c][0]+"="+f[c][1]}return"/"+(k||"gen_204")+"?atyp=i&ct="+String(a)+"&cad="+(b+e+d)};m=google.kEI;google.getEI=p;google.getLEI=q;google.ml=function(){return null};google.log=function(a,b,c,d,k,e){e=void | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-9 | null};google.log=function(a,b,c,d,k,e){e=void 0===e?l:e;c||(c=t(a,b,e,d,k));if(c=r(c)){a=new Image;var g=n.length;n[g]=a;a.onerror=a.onload=a.onabort=function(){delete n[g]};a.src=c}};google.logUrl=function(a,b){b=void 0===b?l:b;return t("",a,b)};}).call(this);(function(){google.y={};google.sy=[];google.x=function(a,b){if(a)var c=a.id;else{do c=Math.random();while(google.y[c])}google.y[c]=[a,b];return!1};google.sx=function(a){google.sy.push(a)};google.lm=[];google.plm=function(a){google.lm.push.apply(google.lm,a)};google.lq=[];google.load=function(a,b,c){google.lq.push([[a],b,c])};google.loadAll=function(a,b){google.lq.push([a,b])};google.bx=!1;google.lx=function(){};}).call(this);google.f={};(function(){\ndocument.documentElement.addEventListener("submit",function(b){var a;if(a=b.target){var c=a.getAttribute("data-submitfalse");a="1"===c||"q"===c&&!a.elements.q.value?!0:!1}else a=!1;a&&(b.preventDefault(),b.stopPropagation())},!0);document.documentElement.addEventListener("click",function(b){var a;a:{for(a=b.target;a&&a!==document.documentElement;a=a.parentElement)if("A"===a.tagName){a="1"===a.getAttribute("data-nohref");break | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-10 | a}a=!1}a&&b.preventDefault()},!0);}).call(this);</script><style>#gbar,#guser{font-size:13px;padding-top:1px !important;}#gbar{height:22px}#guser{padding-bottom:7px !important;text-align:right}.gbh,.gbd{border-top:1px solid #c9d7f1;font-size:1px}.gbh{height:0;position:absolute;top:24px;width:100%}@media all{.gb1{height:22px;margin-right:.5em;vertical-align:top}#gbar{float:left}}a.gb1,a.gb4{text-decoration:underline !important}a.gb1,a.gb4{color:#00c !important}.gbi .gb4{color:#dd8e27 !important}.gbf .gb4{color:#900 !important}\n</style><style>body,td,a,p,.h{font-family:arial,sans-serif}body{margin:0;overflow-y:scroll}#gog{padding:3px 8px 0}td{line-height:.8em}.gac_m td{line-height:17px}form{margin-bottom:20px}.h{color:#1558d6}em{font-weight:bold;font-style:normal}.lst{height:25px;width:496px}.gsfi,.lst{font:18px arial,sans-serif}.gsfs{font:17px arial,sans-serif}.ds{display:inline-box;display:inline-block;margin:3px 0 4px;margin-left:4px}input{font-family:inherit}body{background:#fff;color:#000}a{color:#4b11a8;text-decoration:none}a:hover,a:active{text-decoration:underline}.fl | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-11 | a{color:#1558d6}a:visited{color:#4b11a8}.sblc{padding-top:5px}.sblc a{display:block;margin:2px 0;margin-left:13px;font-size:11px}.lsbb{background:#f8f9fa;border:solid 1px;border-color:#dadce0 #70757a #70757a #dadce0;height:30px}.lsbb{display:block}#WqQANb a{display:inline-block;margin:0 12px}.lsb{background:url(/images/nav_logo229.png) 0 -261px repeat-x;border:none;color:#000;cursor:pointer;height:30px;margin:0;outline:0;font:15px arial,sans-serif;vertical-align:top}.lsb:active{background:#dadce0}.lst:focus{outline:none}</style><script nonce="MXrF0nnIBPkxBza4okrgPA">(function(){window.google.erd={jsr:1,bv:1785,de:true};\nvar h=this||self;var k,l=null!=(k=h.mei)?k:1,n,p=null!=(n=h.sdo)?n:!0,q=0,r,t=google.erd,v=t.jsr;google.ml=function(a,b,d,m,e){e=void 0===e?2:e;b&&(r=a&&a.message);if(google.dl)return google.dl(a,e,d),null;if(0>v){window.console&&console.error(a,d);if(-2===v)throw a;b=!1}else b=!a||!a.message||"Error loading script"===a.message||q>=l&&!m?!1:!0;if(!b)return null;q++;d=d||{};b=encodeURIComponent;var | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-12 | null;q++;d=d||{};b=encodeURIComponent;var c="/gen_204?atyp=i&ei="+b(google.kEI);google.kEXPI&&(c+="&jexpid="+b(google.kEXPI));c+="&srcpg="+b(google.sn)+"&jsr="+b(t.jsr)+"&bver="+b(t.bv);var f=a.lineNumber;void 0!==f&&(c+="&line="+f);var g=\na.fileName;g&&(0<g.indexOf("-extension:/")&&(e=3),c+="&script="+b(g),f&&g===window.location.href&&(f=document.documentElement.outerHTML.split("\\n")[f],c+="&cad="+b(f?f.substring(0,300):"No script found.")));c+="&jsel="+e;for(var u in d)c+="&",c+=b(u),c+="=",c+=b(d[u]);c=c+"&emsg="+b(a.name+": "+a.message);c=c+"&jsst="+b(a.stack||"N/A");12288<=c.length&&(c=c.substr(0,12288));a=c;m||google.log(0,"",a);return a};window.onerror=function(a,b,d,m,e){r!==a&&(a=e instanceof Error?e:Error(a),void 0===d||"lineNumber"in a||(a.lineNumber=d),void 0===b||"fileName"in a||(a.fileName=b),google.ml(a,!1,void 0,!1,"SyntaxError"===a.name||"SyntaxError"===a.message.substring(0,11)||-1!==a.message.indexOf("Script error")?3:0));r=null;p&&q>=l&&(window.onerror=null)};})();</script></head><body bgcolor="#fff"><script | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-13 | bgcolor="#fff"><script nonce="MXrF0nnIBPkxBza4okrgPA">(function(){var src=\'/images/nav_logo229.png\';var iesg=false;document.body.onload = function(){window.n && window.n();if (document.images){new Image().src=src;}\nif (!iesg){document.f&&document.f.q.focus();document.gbqf&&document.gbqf.q.focus();}\n}\n})();</script><div id="mngb"><div id=gbar><nobr><b class=gb1>Search</b> <a class=gb1 href="https://www.google.com/imghp?hl=en&tab=wi">Images</a> <a class=gb1 href="https://maps.google.com/maps?hl=en&tab=wl">Maps</a> <a class=gb1 href="https://play.google.com/?hl=en&tab=w8">Play</a> <a class=gb1 href="https://www.youtube.com/?tab=w1">YouTube</a> <a class=gb1 href="https://news.google.com/?tab=wn">News</a> <a class=gb1 href="https://mail.google.com/mail/?tab=wm">Gmail</a> <a class=gb1 href="https://drive.google.com/?tab=wo">Drive</a> <a class=gb1 style="text-decoration:none" href="https://www.google.com/intl/en/about/products?tab=wh"><u>More</u> »</a></nobr></div><div id=guser width=100%><nobr><span id=gbn class=gbi></span><span id=gbf | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-14 | id=gbn class=gbi></span><span id=gbf class=gbf></span><span id=gbe></span><a href="http://www.google.com/history/optout?hl=en" class=gb4>Web History</a> | <a href="/preferences?hl=en" class=gb4>Settings</a> | <a target=_top id=gb_70 href="https://accounts.google.com/ServiceLogin?hl=en&passive=true&continue=https://www.google.com/&ec=GAZAAQ" class=gb4>Sign in</a></nobr></div><div class=gbh style=left:0></div><div class=gbh style=right:0></div></div><center><br clear="all" id="lgpd"><div id="lga"><img alt="Google" height="92" src="/images/branding/googlelogo/1x/googlelogo_white_background_color_272x92dp.png" style="padding:28px 0 14px" width="272" id="hplogo"><br><br></div><form action="/search" name="f"><table cellpadding="0" cellspacing="0"><tr valign="top"><td width="25%"> </td><td align="center" nowrap=""><input name="ie" value="ISO-8859-1" type="hidden"><input value="en" name="hl" type="hidden"><input name="source" type="hidden" value="hp"><input name="biw" type="hidden"><input name="bih" type="hidden"><div class="ds" | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-15 | name="bih" type="hidden"><div class="ds" style="height:32px;margin:4px 0"><input class="lst" style="margin:0;padding:5px 8px 0 6px;vertical-align:top;color:#000" autocomplete="off" value="" title="Google Search" maxlength="2048" name="q" size="57"></div><br style="line-height:0"><span class="ds"><span class="lsbb"><input class="lsb" value="Google Search" name="btnG" type="submit"></span></span><span class="ds"><span class="lsbb"><input class="lsb" id="tsuid_1" value="I\'m Feeling Lucky" name="btnI" type="submit"><script nonce="MXrF0nnIBPkxBza4okrgPA">(function(){var id=\'tsuid_1\';document.getElementById(id).onclick = function(){if (this.form.q.value){this.checked = 1;if (this.form.iflsig)this.form.iflsig.disabled = false;}\nelse top.location=\'/doodles/\';};})();</script><input value="AOEireoAAAAAZFAdXGKCXWBK5dlWxPhh8hNPQz1s9YT6" name="iflsig" type="hidden"></span></span></td><td class="fl sblc" align="left" nowrap="" width="25%"><a href="/advanced_search?hl=en&authuser=0">Advanced search</a></td></tr></table><input id="gbv" | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-16 | search</a></td></tr></table><input id="gbv" name="gbv" type="hidden" value="1"><script nonce="MXrF0nnIBPkxBza4okrgPA">(function(){var a,b="1";if(document&&document.getElementById)if("undefined"!=typeof XMLHttpRequest)b="2";else if("undefined"!=typeof ActiveXObject){var c,d,e=["MSXML2.XMLHTTP.6.0","MSXML2.XMLHTTP.3.0","MSXML2.XMLHTTP","Microsoft.XMLHTTP"];for(c=0;d=e[c++];)try{new ActiveXObject(d),b="2"}catch(h){}}a=b;if("2"==a&&-1==location.search.indexOf("&gbv=2")){var f=google.gbvu,g=document.getElementById("gbv");g&&(g.value=a);f&&window.setTimeout(function(){location.href=f},0)};}).call(this);</script></form><div id="gac_scont"></div><div style="font-size:83%;min-height:3.5em"><br><div id="prm"><style>.szppmdbYutt__middle-slot-promo{font-size:small;margin-bottom:32px}.szppmdbYutt__middle-slot-promo a.ZIeIlb{display:inline-block;text-decoration:none}.szppmdbYutt__middle-slot-promo img{border:none;margin-right:5px;vertical-align:middle}</style><div class="szppmdbYutt__middle-slot-promo" data-ved="0ahUKEwjmj7fr6dT-AhVULUQIHThDB38QnIcBCAQ"><a class="NKcBbd" | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-17 | class="NKcBbd" href="https://www.google.com/url?q=https://blog.google/outreach-initiatives/diversity/asian-pacific-american-heritage-month-2023/%3Futm_source%3Dhpp%26utm_medium%3Downed%26utm_campaign%3Dapahm&source=hpp&id=19035152&ct=3&usg=AOvVaw1zrN82vzhoWl4hz1zZ4gLp&sa=X&ved=0ahUKEwjmj7fr6dT-AhVULUQIHThDB38Q8IcBCAU" rel="nofollow">Celebrate Asian Pacific American Heritage Month with Google</a></div></div></div><span id="footer"><div style="font-size:10pt"><div style="margin:19px auto;text-align:center" id="WqQANb"><a href="/intl/en/ads/">Advertising</a><a href="/services/">Business Solutions</a><a href="/intl/en/about.html">About Google</a></div></div><p style="font-size:8pt;color:#70757a">© 2023 - <a href="/intl/en/policies/privacy/">Privacy</a> - <a href="/intl/en/policies/terms/">Terms</a></p></span></center><script nonce="MXrF0nnIBPkxBza4okrgPA">(function(){window.google.cdo={height:757,width:1440};(function(){var a=window.innerWidth,b=window.innerHeight;if(!a||!b){var | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-18 | a=window.innerWidth,b=window.innerHeight;if(!a||!b){var c=window.document,d="CSS1Compat"==c.compatMode?c.documentElement:c.body;a=d.clientWidth;b=d.clientHeight}a&&b&&(a!=google.cdo.width||b!=google.cdo.height)&&google.log("","","/client_204?&atyp=i&biw="+a+"&bih="+b+"&ei="+google.kEI);}).call(this);})();</script> <script nonce="MXrF0nnIBPkxBza4okrgPA">(function(){google.xjs={ck:\'xjs.hp.vUsZk7fd8do.L.X.O\',cs:\'ACT90oF8ktm8JGoaZ23megDhHoJku7YaGw\',excm:[]};})();</script> <script nonce="MXrF0nnIBPkxBza4okrgPA">(function(){var u=\'/xjs/_/js/k\\x3dxjs.hp.en.q0lHXBfs9JY.O/am\\x3dAAAA6AQAUABgAQ/d\\x3d1/ed\\x3d1/rs\\x3dACT90oE3ek6-fjkab6CsTH0wUEUUPhnExg/m\\x3dsb_he,d\';var amd=0;\nvar e=this||self,f=function(c){return c};var h;var n=function(c,g){this.g=g===l?c:""};n.prototype.toString=function(){return this.g+""};var l={};\nfunction p(){var c=u,g=function(){};google.lx=google.stvsc?g:function(){google.timers&&google.timers.load&&google.tick&&google.tick("load","xjsls");var | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-19 | a=document;var b="SCRIPT";"application/xhtml+xml"===a.contentType&&(b=b.toLowerCase());b=a.createElement(b);a=null===c?"null":void 0===c?"undefined":c;if(void 0===h){var d=null;var m=e.trustedTypes;if(m&&m.createPolicy){try{d=m.createPolicy("goog#html",{createHTML:f,createScript:f,createScriptURL:f})}catch(r){e.console&&e.console.error(r.message)}h=\nd}else h=d}a=(d=h)?d.createScriptURL(a):a;a=new n(a,l);b.src=a instanceof n&&a.constructor===n?a.g:"type_error:TrustedResourceUrl";var k,q;(k=(a=null==(q=(k=(b.ownerDocument&&b.ownerDocument.defaultView||window).document).querySelector)?void 0:q.call(k,"script[nonce]"))?a.nonce||a.getAttribute("nonce")||"":"")&&b.setAttribute("nonce",k);document.body.appendChild(b);google.psa=!0;google.lx=g};google.bx||google.lx()};google.xjsu=u;e._F_jsUrl=u;setTimeout(function(){0<amd?google.caft(function(){return p()},amd):p()},0);})();window._ = window._ || {};window._DumpException = _._DumpException = function(e){throw e;};window._s = window._s || {};_s._DumpException = _._DumpException;window._qs = window._qs || {};_qs._DumpException = _._DumpException;function | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-20 | || {};_qs._DumpException = _._DumpException;function _F_installCss(c){}\n(function(){google.jl={blt:\'none\',chnk:0,dw:false,dwu:true,emtn:0,end:0,ico:false,ikb:0,ine:false,injs:\'none\',injt:0,injth:0,injv2:false,lls:\'default\',pdt:0,rep:0,snet:true,strt:0,ubm:false,uwp:true};})();(function(){var pmc=\'{\\x22d\\x22:{},\\x22sb_he\\x22:{\\x22agen\\x22:true,\\x22cgen\\x22:true,\\x22client\\x22:\\x22heirloom-hp\\x22,\\x22dh\\x22:true,\\x22ds\\x22:\\x22\\x22,\\x22fl\\x22:true,\\x22host\\x22:\\x22google.com\\x22,\\x22jsonp\\x22:true,\\x22msgs\\x22:{\\x22cibl\\x22:\\x22Clear Search\\x22,\\x22dym\\x22:\\x22Did you mean:\\x22,\\x22lcky\\x22:\\x22I\\\\u0026#39;m Feeling Lucky\\x22,\\x22lml\\x22:\\x22Learn more\\x22,\\x22psrc\\x22:\\x22This search was removed from your \\\\u003Ca href\\x3d\\\\\\x22/history\\\\\\x22\\\\u003EWeb | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-21 | href\\x3d\\\\\\x22/history\\\\\\x22\\\\u003EWeb History\\\\u003C/a\\\\u003E\\x22,\\x22psrl\\x22:\\x22Remove\\x22,\\x22sbit\\x22:\\x22Search by image\\x22,\\x22srch\\x22:\\x22Google Search\\x22},\\x22ovr\\x22:{},\\x22pq\\x22:\\x22\\x22,\\x22rfs\\x22:[],\\x22sbas\\x22:\\x220 3px 8px 0 rgba(0,0,0,0.2),0 0 0 1px rgba(0,0,0,0.08)\\x22,\\x22stok\\x22:\\x22C3TIBpTor6RHJfEIn2nbidnhv50\\x22}}\';google.pmc=JSON.parse(pmc);})();</script> </body></html>' | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
a27f46674ab8-22 | previous
Python REPL
next
SceneXplain
Contents
Inside the tool
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/requests.html |
7ff1cfec0ad8-0 | .ipynb
.pdf
AWS Lambda API
AWS Lambda API#
This notebook goes over how to use the AWS Lambda Tool component.
AWS Lambda is a serverless computing service provided by Amazon Web Services (AWS), designed to allow developers to build and run applications and services without the need for provisioning or managing servers. This serverless architecture enables you to focus on writing and deploying code, while AWS automatically takes care of scaling, patching, and managing the infrastructure required to run your applications.
By including a awslambda in the list of tools provided to an Agent, you can grant your Agent the ability to invoke code running in your AWS Cloud for whatever purposes you need.
When an Agent uses the awslambda tool, it will provide an argument of type string which will in turn be passed into the Lambda function via the event parameter.
First, you need to install boto3 python package.
!pip install boto3 > /dev/null
In order for an agent to use the tool, you must provide it with the name and description that match the functionality of you lambda function’s logic.
You must also provide the name of your function.
Note that because this tool is effectively just a wrapper around the boto3 library, you will need to run aws configure in order to make use of the tool. For more detail, see here
from langchain import OpenAI
from langchain.agents import load_tools, AgentType
llm = OpenAI(temperature=0)
tools = load_tools(
["awslambda"],
awslambda_tool_name="email-sender",
awslambda_tool_description="sends an email with the specified content to [email protected]",
function_name="testFunction1"
)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True) | https://python.langchain.com/en/latest/modules/agents/tools/examples/awslambda.html |
7ff1cfec0ad8-1 | agent.run("Send an email to [email protected] saying hello world.")
previous
ArXiv API Tool
next
Shell Tool
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/tools/examples/awslambda.html |
55015d2130d0-0 | .ipynb
.pdf
How to add SharedMemory to an Agent and its Tools
How to add SharedMemory to an Agent and its Tools#
This notebook goes over adding memory to both of an Agent and its tools. Before going through this notebook, please walk through the following notebooks, as this will build on top of both of them:
Adding memory to an LLM Chain
Custom Agents
We are going to create a custom Agent. The agent has access to a conversation memory, search tool, and a summarization tool. And, the summarization tool also needs access to the conversation memory.
from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory
from langchain import OpenAI, LLMChain, PromptTemplate
from langchain.utilities import GoogleSearchAPIWrapper
template = """This is a conversation between a human and a bot:
{chat_history}
Write a summary of the conversation for {input}:
"""
prompt = PromptTemplate(
input_variables=["input", "chat_history"],
template=template
)
memory = ConversationBufferMemory(memory_key="chat_history")
readonlymemory = ReadOnlySharedMemory(memory=memory)
summry_chain = LLMChain(
llm=OpenAI(),
prompt=prompt,
verbose=True,
memory=readonlymemory, # use the read-only memory to prevent the tool from modifying the memory
)
search = GoogleSearchAPIWrapper()
tools = [
Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events"
),
Tool(
name = "Summary",
func=summry_chain.run, | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/sharedmemory_for_tools.html |
55015d2130d0-1 | Tool(
name = "Summary",
func=summry_chain.run,
description="useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary."
)
]
prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:"""
suffix = """Begin!"
{chat_history}
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"]
)
We can now construct the LLMChain, with the Memory object, and then create the agent.
llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)
agent_chain.run(input="What is ChatGPT?")
> Entering new AgentExecutor chain...
Thought: I should research ChatGPT to answer this question.
Action: Search
Action Input: "ChatGPT" | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/sharedmemory_for_tools.html |
55015d2130d0-2 | Action: Search
Action Input: "ChatGPT"
Observation: Nov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...
Thought: I now know the final answer. | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/sharedmemory_for_tools.html |
55015d2130d0-3 | Thought: I now know the final answer.
Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.
> Finished chain.
"ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting."
To test the memory of this agent, we can ask a followup question that relies on information in the previous exchange to be answered correctly.
agent_chain.run(input="Who developed it?")
> Entering new AgentExecutor chain...
Thought: I need to find out who developed ChatGPT
Action: Search
Action Input: Who developed ChatGPT | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/sharedmemory_for_tools.html |
55015d2130d0-4 | Action Input: Who developed ChatGPT
Observation: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ... | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/sharedmemory_for_tools.html |
55015d2130d0-5 | Thought: I now know the final answer
Final Answer: ChatGPT was developed by OpenAI.
> Finished chain.
'ChatGPT was developed by OpenAI.'
agent_chain.run(input="Thanks. Summarize the conversation, for my daughter 5 years old.")
> Entering new AgentExecutor chain...
Thought: I need to simplify the conversation for a 5 year old.
Action: Summary
Action Input: My daughter 5 years old
> Entering new LLMChain chain...
Prompt after formatting:
This is a conversation between a human and a bot:
Human: What is ChatGPT?
AI: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.
Human: Who developed it?
AI: ChatGPT was developed by OpenAI.
Write a summary of the conversation for My daughter 5 years old:
> Finished chain.
Observation:
The conversation was about ChatGPT, an artificial intelligence chatbot. It was created by OpenAI and can send and receive images while chatting.
Thought: I now know the final answer.
Final Answer: ChatGPT is an artificial intelligence chatbot created by OpenAI that can send and receive images while chatting.
> Finished chain.
'ChatGPT is an artificial intelligence chatbot created by OpenAI that can send and receive images while chatting.'
Confirm that the memory was correctly updated.
print(agent_chain.memory.buffer)
Human: What is ChatGPT? | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/sharedmemory_for_tools.html |
55015d2130d0-6 | print(agent_chain.memory.buffer)
Human: What is ChatGPT?
AI: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.
Human: Who developed it?
AI: ChatGPT was developed by OpenAI.
Human: Thanks. Summarize the conversation, for my daughter 5 years old.
AI: ChatGPT is an artificial intelligence chatbot created by OpenAI that can send and receive images while chatting.
For comparison, below is a bad example that uses the same memory for both the Agent and the tool.
## This is a bad practice for using the memory.
## Use the ReadOnlySharedMemory class, as shown above.
template = """This is a conversation between a human and a bot:
{chat_history}
Write a summary of the conversation for {input}:
"""
prompt = PromptTemplate(
input_variables=["input", "chat_history"],
template=template
)
memory = ConversationBufferMemory(memory_key="chat_history")
summry_chain = LLMChain(
llm=OpenAI(),
prompt=prompt,
verbose=True,
memory=memory, # <--- this is the only change
)
search = GoogleSearchAPIWrapper()
tools = [
Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events"
),
Tool(
name = "Summary",
func=summry_chain.run, | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/sharedmemory_for_tools.html |
55015d2130d0-7 | Tool(
name = "Summary",
func=summry_chain.run,
description="useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary."
)
]
prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:"""
suffix = """Begin!"
{chat_history}
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"]
)
llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)
agent_chain.run(input="What is ChatGPT?")
> Entering new AgentExecutor chain...
Thought: I should research ChatGPT to answer this question.
Action: Search
Action Input: "ChatGPT" | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/sharedmemory_for_tools.html |
55015d2130d0-8 | Action: Search
Action Input: "ChatGPT"
Observation: Nov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...
Thought: I now know the final answer. | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/sharedmemory_for_tools.html |
55015d2130d0-9 | Thought: I now know the final answer.
Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.
> Finished chain.
"ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting."
agent_chain.run(input="Who developed it?")
> Entering new AgentExecutor chain...
Thought: I need to find out who developed ChatGPT
Action: Search
Action Input: Who developed ChatGPT | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/sharedmemory_for_tools.html |
55015d2130d0-10 | Action Input: Who developed ChatGPT
Observation: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ... | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/sharedmemory_for_tools.html |
55015d2130d0-11 | Thought: I now know the final answer
Final Answer: ChatGPT was developed by OpenAI.
> Finished chain.
'ChatGPT was developed by OpenAI.'
agent_chain.run(input="Thanks. Summarize the conversation, for my daughter 5 years old.")
> Entering new AgentExecutor chain...
Thought: I need to simplify the conversation for a 5 year old.
Action: Summary
Action Input: My daughter 5 years old
> Entering new LLMChain chain...
Prompt after formatting:
This is a conversation between a human and a bot:
Human: What is ChatGPT?
AI: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.
Human: Who developed it?
AI: ChatGPT was developed by OpenAI.
Write a summary of the conversation for My daughter 5 years old:
> Finished chain.
Observation:
The conversation was about ChatGPT, an artificial intelligence chatbot developed by OpenAI. It is designed to have conversations with humans and can also send and receive images.
Thought: I now know the final answer.
Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI that can have conversations with humans and send and receive images.
> Finished chain.
'ChatGPT is an artificial intelligence chatbot developed by OpenAI that can have conversations with humans and send and receive images.'
The final answer is not wrong, but we see the 3rd Human input is actually from the agent in the memory because the memory was modified by the summary tool.
print(agent_chain.memory.buffer) | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/sharedmemory_for_tools.html |
55015d2130d0-12 | print(agent_chain.memory.buffer)
Human: What is ChatGPT?
AI: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.
Human: Who developed it?
AI: ChatGPT was developed by OpenAI.
Human: My daughter 5 years old
AI:
The conversation was about ChatGPT, an artificial intelligence chatbot developed by OpenAI. It is designed to have conversations with humans and can also send and receive images.
Human: Thanks. Summarize the conversation, for my daughter 5 years old.
AI: ChatGPT is an artificial intelligence chatbot developed by OpenAI that can have conversations with humans and send and receive images.
previous
How to use a timeout for the agent
next
Plan and Execute
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023. | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/sharedmemory_for_tools.html |
6d22cf4be3c9-0 | .ipynb
.pdf
How to create ChatGPT Clone
How to create ChatGPT Clone#
This chain replicates ChatGPT by combining (1) a specific prompt, and (2) the concept of memory.
Shows off the example as in https://www.engraved.blog/building-a-virtual-machine-inside/
from langchain import OpenAI, ConversationChain, LLMChain, PromptTemplate
from langchain.memory import ConversationBufferWindowMemory
template = """Assistant is a large language model trained by OpenAI.
Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.
{history}
Human: {human_input}
Assistant:"""
prompt = PromptTemplate(
input_variables=["history", "human_input"],
template=template
)
chatgpt_chain = LLMChain(
llm=OpenAI(temperature=0),
prompt=prompt, | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
6d22cf4be3c9-1 | llm=OpenAI(temperature=0),
prompt=prompt,
verbose=True,
memory=ConversationBufferWindowMemory(k=2),
)
output = chatgpt_chain.predict(human_input="I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.")
print(output)
> Entering new LLMChain chain...
Prompt after formatting:
Assistant is a large language model trained by OpenAI.
Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist. | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
6d22cf4be3c9-2 | Human: I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.
Assistant:
> Finished chain.
```
/home/user
```
output = chatgpt_chain.predict(human_input="ls ~")
print(output)
> Entering new LLMChain chain...
Prompt after formatting:
Assistant is a large language model trained by OpenAI.
Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist. | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
6d22cf4be3c9-3 | Human: I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.
AI:
```
$ pwd
/
```
Human: ls ~
Assistant:
> Finished LLMChain chain.
```
$ ls ~
Desktop Documents Downloads Music Pictures Public Templates Videos
```
output = chatgpt_chain.predict(human_input="cd ~")
print(output)
> Entering new LLMChain chain...
Prompt after formatting:
Assistant is a large language model trained by OpenAI.
Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
6d22cf4be3c9-4 | Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.
Human: I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.
AI:
```
$ pwd
/
```
Human: ls ~
AI:
```
$ ls ~
Desktop Documents Downloads Music Pictures Public Templates Videos
```
Human: cd ~
Assistant:
> Finished LLMChain chain.
```
$ cd ~
$ pwd
/home/user
```
output = chatgpt_chain.predict(human_input="{Please make a file jokes.txt inside and put some jokes inside}")
print(output)
> Entering new LLMChain chain...
Prompt after formatting:
Assistant is a large language model trained by OpenAI.
Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
6d22cf4be3c9-5 | Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.
Human: ls ~
AI:
```
$ ls ~
Desktop Documents Downloads Music Pictures Public Templates Videos
```
Human: cd ~
AI:
```
$ cd ~
$ pwd
/home/user
```
Human: {Please make a file jokes.txt inside and put some jokes inside}
Assistant:
> Finished LLMChain chain.
```
$ touch jokes.txt
$ echo "Why did the chicken cross the road? To get to the other side!" >> jokes.txt
$ echo "What did the fish say when it hit the wall? Dam!" >> jokes.txt
$ echo "Why did the scarecrow win the Nobel Prize? Because he was outstanding in his field!" >> jokes.txt
```
output = chatgpt_chain.predict(human_input="""echo -e "x=lambda y:y*5+3;print('Result:' + str(x(6)))" > run.py && python3 run.py""")
print(output)
> Entering new LLMChain chain...
Prompt after formatting:
Assistant is a large language model trained by OpenAI. | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
6d22cf4be3c9-6 | Prompt after formatting:
Assistant is a large language model trained by OpenAI.
Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.
Human: cd ~
AI:
```
$ cd ~
$ pwd
/home/user
```
Human: {Please make a file jokes.txt inside and put some jokes inside}
AI:
```
$ touch jokes.txt
$ echo "Why did the chicken cross the road? To get to the other side!" >> jokes.txt
$ echo "What did the fish say when it hit the wall? Dam!" >> jokes.txt
$ echo "Why did the scarecrow win the Nobel Prize? Because he was outstanding in his field!" >> jokes.txt
```
Human: echo -e "x=lambda y:y*5+3;print('Result:' + str(x(6)))" > run.py && python3 run.py
Assistant:
> Finished LLMChain chain.
``` | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
6d22cf4be3c9-7 | Assistant:
> Finished LLMChain chain.
```
$ echo -e "x=lambda y:y*5+3;print('Result:' + str(x(6)))" > run.py
$ python3 run.py
Result: 33
```
output = chatgpt_chain.predict(human_input="""echo -e "print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])" > run.py && python3 run.py""")
print(output)
> Entering new LLMChain chain...
Prompt after formatting:
Assistant is a large language model trained by OpenAI.
Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.
Human: {Please make a file jokes.txt inside and put some jokes inside}
AI:
```
$ touch jokes.txt | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
6d22cf4be3c9-8 | AI:
```
$ touch jokes.txt
$ echo "Why did the chicken cross the road? To get to the other side!" >> jokes.txt
$ echo "What did the fish say when it hit the wall? Dam!" >> jokes.txt
$ echo "Why did the scarecrow win the Nobel Prize? Because he was outstanding in his field!" >> jokes.txt
```
Human: echo -e "x=lambda y:y*5+3;print('Result:' + str(x(6)))" > run.py && python3 run.py
AI:
```
$ echo -e "x=lambda y:y*5+3;print('Result:' + str(x(6)))" > run.py
$ python3 run.py
Result: 33
```
Human: echo -e "print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])" > run.py && python3 run.py
Assistant:
> Finished LLMChain chain.
```
$ echo -e "print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])" > run.py
$ python3 run.py
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
```
docker_input = """echo -e "echo 'Hello from Docker" > entrypoint.sh && echo -e "FROM ubuntu:20.04\nCOPY entrypoint.sh entrypoint.sh\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image"""
output = chatgpt_chain.predict(human_input=docker_input)
print(output)
> Entering new LLMChain chain... | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
6d22cf4be3c9-9 | print(output)
> Entering new LLMChain chain...
Prompt after formatting:
Assistant is a large language model trained by OpenAI.
Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.
Human: echo -e "x=lambda y:y*5+3;print('Result:' + str(x(6)))" > run.py && python3 run.py
AI:
```
$ echo -e "x=lambda y:y*5+3;print('Result:' + str(x(6)))" > run.py
$ python3 run.py
Result: 33
```
Human: echo -e "print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])" > run.py && python3 run.py
AI:
``` | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
6d22cf4be3c9-10 | AI:
```
$ echo -e "print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])" > run.py
$ python3 run.py
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
```
Human: echo -e "echo 'Hello from Docker" > entrypoint.sh && echo -e "FROM ubuntu:20.04
COPY entrypoint.sh entrypoint.sh
ENTRYPOINT ["/bin/sh","entrypoint.sh"]">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image
Assistant:
> Finished LLMChain chain.
```
$ echo -e "echo 'Hello from Docker" > entrypoint.sh
$ echo -e "FROM ubuntu:20.04
COPY entrypoint.sh entrypoint.sh
ENTRYPOINT ["/bin/sh","entrypoint.sh"]">Dockerfile
$ docker build . -t my_docker_image
$ docker run -t my_docker_image
Hello from Docker
```
output = chatgpt_chain.predict(human_input="nvidia-smi")
print(output)
> Entering new LLMChain chain...
Prompt after formatting:
Assistant is a large language model trained by OpenAI.
Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
6d22cf4be3c9-11 | Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.
Human: echo -e "print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])" > run.py && python3 run.py
AI:
```
$ echo -e "print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])" > run.py
$ python3 run.py
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
```
Human: echo -e "echo 'Hello from Docker" > entrypoint.sh && echo -e "FROM ubuntu:20.04
COPY entrypoint.sh entrypoint.sh
ENTRYPOINT ["/bin/sh","entrypoint.sh"]">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image
AI:
```
$ echo -e "echo 'Hello from Docker" > entrypoint.sh
$ echo -e "FROM ubuntu:20.04
COPY entrypoint.sh entrypoint.sh
ENTRYPOINT ["/bin/sh","entrypoint.sh"]">Dockerfile | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
6d22cf4be3c9-12 | ENTRYPOINT ["/bin/sh","entrypoint.sh"]">Dockerfile
$ docker build . -t my_docker_image
$ docker run -t my_docker_image
Hello from Docker
```
Human: nvidia-smi
Assistant:
> Finished LLMChain chain.
```
$ nvidia-smi
Sat May 15 21:45:02 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 108... Off | 00000000:01:00.0 Off | N/A |
| N/A 45C P0 N/A / N/A | 511MiB / 10206MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
output = chatgpt_chain.predict(human_input="ping bbc.com")
print(output)
> Entering new LLMChain chain...
Prompt after formatting:
Assistant is a large language model trained by OpenAI. | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
6d22cf4be3c9-13 | Prompt after formatting:
Assistant is a large language model trained by OpenAI.
Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.
Human: echo -e "echo 'Hello from Docker" > entrypoint.sh && echo -e "FROM ubuntu:20.04
COPY entrypoint.sh entrypoint.sh
ENTRYPOINT ["/bin/sh","entrypoint.sh"]">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image
AI:
```
$ echo -e "echo 'Hello from Docker" > entrypoint.sh
$ echo -e "FROM ubuntu:20.04
COPY entrypoint.sh entrypoint.sh
ENTRYPOINT ["/bin/sh","entrypoint.sh"]">Dockerfile
$ docker build . -t my_docker_image
$ docker run -t my_docker_image
Hello from Docker
```
Human: nvidia-smi
AI:
``` | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
6d22cf4be3c9-14 | Hello from Docker
```
Human: nvidia-smi
AI:
```
$ nvidia-smi
Sat May 15 21:45:02 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 108... Off | 00000000:01:00.0 Off | N/A |
| N/A 45C P0 N/A / N/A | 511MiB / 10206MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
Human: ping bbc.com
Assistant:
> Finished LLMChain chain.
```
$ ping bbc.com
PING bbc.com (151.101.65.81): 56 data bytes
64 bytes from 151.101.65.81: icmp_seq=0 ttl=53 time=14.945 ms
64 bytes from 151.101.65.81: icmp_seq=1 ttl=53 time=14.945 ms
64 bytes from 151.101.65.81: icmp_seq=2 ttl=53 time=14.945 ms
--- bbc.com ping statistics --- | https://python.langchain.com/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.