metadata
dict
text
stringlengths
60
3.49M
{ "source": "123Powerful/csmetrics.org", "score": 3 }
#### File: csmetrics.org/app/mag_search.py ```python import os, json, requests, time, csv import http.client, urllib.request, urllib.parse, urllib.error, base64 cur_path = os.path.dirname(os.path.abspath(__file__)) MAS_URL_PREFIX = "https://api.labs.cognitive.microsoft.com" headers = { # Request headers 'Ocp-Apim-Subscription-Key': '' # api key required } def query_academic_search(type, url, query): if type == "get": response = requests.get(url, params=urllib.parse.urlencode(query), headers=headers) elif type == "post": response = requests.post(url, json=query, headers=headers) if response.status_code != 200: print("return statue: " + str(response.status_code)) print("ERROR: problem with the request.") print(response.content) #exit() return json.loads((response.content).decode("utf-8")) def get_instituion(instname): url = os.path.join(MAS_URL_PREFIX, "academic/v1.0/interpret") data = query_academic_search("get", url, {"query": instname}) # print(data) interpret_expr = data["interpretations"][0]["rules"][0]["output"]["value"] # print(interpret_expr) normalized_name = interpret_expr.split("\'")[-2] # print(instname, normalized_name) return normalized_name def replaceParentGrid(): old_inst_file = os.path.join(cur_path, "data/inst_fullname.csv") new_inst_file = os.path.join(cur_path, "data/inst_fullname_grid.csv") grid_rel_file = os.path.join(cur_path, "data/parent_relations.csv") reader = csv.reader(open(grid_rel_file)) next(reader) # skip the first line grid_relations = {r[0]:r[2] for r in reader} reader = csv.reader(open(old_inst_file)) writer = csv.writer(open(new_inst_file, "w")) for r in reader: print(r, len(r)) if len(r) < 3: writer.writerow([r[0], r[1], "", "", ""]) else: writer.writerow([r[0], r[1], grid_relations[r[2]] if r[2] in grid_relations else r[2], r[3] if len(r) > 3 else "", r[4] if len(r) > 4 else ""]) def merge_grid_institutions(): gridMap = dict() reader = csv.reader(open("data/grid.csv")) next(reader) # skip the first line gridMap = {r[0].strip():(r[1].strip(),r[2].strip()) for r in reader} reader = csv.reader(open("data/grid_types.csv")) next(reader) gridType = {r[0]:r[1] for r in reader} instInfo = {} csvfile = open('data/inst_full_clean.csv', 'w', newline='') spamwriter = csv.writer(csvfile, delimiter=',') reader = csv.reader(open("data/inst_fullname_grid.csv")) next(reader) for r in reader: instInfo[r[0]] = { "fullname": r[1].strip(), "grid": r[2].strip(), "url": r[3].strip(), "wiki": r[4].strip() } grid = instInfo[r[0]]["grid"] # print(r[0], instInfo[r[0]]["grid"], gridType[instInfo[r[0]]["grid"]]) instInfo[r[0]]["country"] = gridMap[grid][0] if grid in gridMap else "" instInfo[r[0]]["continent"] = gridMap[grid][1] if grid in gridMap else "Other" instInfo[r[0]]["type"] = gridType[grid] if grid in gridType else "Other" for k,v in instInfo.items(): spamwriter.writerow([k] + [v["fullname"],v["type"],v["continent"],v["country"],v["url"] if v["url"] != "" else v["wiki"]]) def clean_inst(): # inst_alias clean # instfile = open("inst_alias.csv") # reader = csv.reader(instfile, delimiter=',') # with open('inst_alias_clean.csv', 'w', newline='') as csvfile: # spamwriter = csv.writer(csvfile, delimiter=',') # for r in reader: # if len(r) == 2: # spamwriter.writerow(r) # else: # spamwriter.writerow([r[0], "{}".format(','.join(r[1:]))]) # change csv format for inst_fullname instfile = open("data/inst_fullname") reader = csv.reader(instfile, delimiter='\t') with open('data/inst_fullname.csv', 'w', newline='') as csvfile: spamwriter = csv.writer(csvfile, delimiter=',') for r in reader: spamwriter.writerow(r) def gen_inst_alias(instName): instNameAlias = {} # print("instName", sorted(list(instName))[:300]) ind = 1 for n in sorted(list(instName)): try: key = get_instituion(n) print(n, "-->", key, "{}/{}".format(ind, len(instName))) if key in instNameAlias: instNameAlias[key].append(n) else: instNameAlias[key] = [n] time.sleep(0.5) except Exception as exct: print(" ERROR:", n) ind += 1 with open('inst_alias.csv', 'w', newline='') as csvfile: spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) for k, v in instNameAlias.items(): spamwriter.writerow([k] + [alias for alias in v]) if __name__ == '__main__': # clean_inst() replaceParentGrid() merge_grid_institutions() ```
{ "source": "123prashanth123/Fault-Detection-System", "score": 3 }
#### File: Fault-Detection-System/Application Building Blocks/RTApp.py ```python import cv2 import torch import utils as u # ******************************************************************************************************************** # # Inference Helper def __help__(frame=None, model=None, fea_extractor=None, show_prob=True, pt1=None, pt2=None): """ frame : Current frame being processed model : Siamese Network Model fea_extractor : Feature Extraction Model show_prob : Flag to control whether to display the similarity score pt1 : Start Point of the Reference Bounding Box pt2 : End Point of the Reference Bounding Box """ disp_frame = frame.copy() # Center Crop + Resize frame = u.preprocess(frame, change_color_space=False) # Perform Inference on current frame with torch.no_grad(): features = u.normalize(fea_extractor(u.FEA_TRANSFORM(frame).to(u.DEVICE).unsqueeze(dim=0))) y_pred = torch.sigmoid(model(features))[0][0].item() # Prediction > Upper Bound -----> Match # Lower Bound <= Prediction <= Upper Bound -----> Possible Match # Prediction < Lower Bound -----> No Match if show_prob: if y_pred >= u.upper_bound_confidence: cv2.putText(img=disp_frame, text="Match, {:.5f}".format(y_pred), org=(25, 75), fontScale=1, fontFace=cv2.FONT_HERSHEY_SIMPLEX, color=u.CLI_GREEN, thickness=2) cv2.rectangle(img=disp_frame, pt1=(int(pt1[0]) - u.RELIEF, int(pt1[1]) - u.RELIEF), pt2=(int(pt2[0]) + u.RELIEF, int(pt2[1]) + u.RELIEF), color=u.CLI_GREEN, thickness=2) elif u.lower_bound_confidence <= y_pred <= u.upper_bound_confidence: cv2.putText(img=disp_frame, text="Possible Error, {:.5f}".format(y_pred), org=(25, 75), fontScale=1, fontFace=cv2.FONT_HERSHEY_SIMPLEX, color=u.CLI_ORANGE, thickness=2) cv2.rectangle(img=disp_frame, pt1=(int(pt1[0]) - u.RELIEF, int(pt1[1]) - u.RELIEF), pt2=(int(pt2[0]) + u.RELIEF, int(pt2[1]) + u.RELIEF), color=u.CLI_ORANGE, thickness=2) else: cv2.putText(img=disp_frame, text="No Match, {:.5f}".format(y_pred), org=(25, 75), fontScale=1, fontFace=cv2.FONT_HERSHEY_SIMPLEX, color=u.CLI_RED, thickness=2) cv2.rectangle(img=disp_frame, pt1=(int(pt1[0]) - u.RELIEF, int(pt1[1]) - u.RELIEF), pt2=(int(pt2[0]) + u.RELIEF, int(pt2[1]) + u.RELIEF), color=u.CLI_RED, thickness=2) else: if y_pred >= u.upper_bound_confidence: cv2.rectangle(img=disp_frame, pt1=(int(pt1[0]) - u.RELIEF, int(pt1[1]) - u.RELIEF), pt2=(int(pt2[0]) + u.RELIEF, int(pt2[1]) + u.RELIEF), color=u.CLI_GREEN, thickness=2) elif u.lower_bound_confidence <= y_pred <= u.upper_bound_confidence: cv2.rectangle(img=disp_frame, pt1=(int(pt1[0]) - u.RELIEF, int(pt1[1]) - u.RELIEF), pt2=(int(pt2[0]) + u.RELIEF, int(pt2[1]) + u.RELIEF), color=u.CLI_ORANGE, thickness=2) else: cv2.rectangle(img=disp_frame, pt1=(int(pt1[0]) - u.RELIEF, int(pt1[1]) - u.RELIEF), pt2=(int(pt2[0]) + u.RELIEF, int(pt2[1]) + u.RELIEF), color=u.CLI_RED, thickness=2) return disp_frame # ******************************************************************************************************************** # """ Video Handling """ ``` #### File: Feature Extractions/Feature Extraction and Comparison/Snapshot.py ```python import os import cv2 import platform import utils as u # ******************************************************************************************************************** # def capture_snapshot(): # Setting up capture Object if platform.system() != "Windows": cap = cv2.VideoCapture(u.ID) else: cap = cv2.VideoCapture(u.ID, cv2.CAP_DSHOW) cap.set(cv2.CAP_PROP_FRAME_WIDTH, u.CAM_WIDTH) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, u.CAM_HEIGHT) cap.set(cv2.CAP_PROP_FPS, u.FPS) u.breaker() count = len(os.listdir(u.IMAGE_PATH)) + 1 # Read Data from capture object while cap.isOpened(): _, frame = cap.read() # Preprocess frame with CLAHE (clipLimit:2, tileGridSize: (2, 2)) frame = u.clahe_equ(frame) # Display the frame cv2.imshow("Feed", frame) # Press 'c' to Capture the frame if cv2.waitKey(1) == ord("c"): cv2.imwrite(os.path.join(u.IMAGE_PATH, "Snapshot_{}.png".format(count)), frame) print("Captured Snapshot - {}".format(count)) count += 1 # Press 'q' to Quit if cv2.waitKey(1) == ord("q"): break u.breaker() # Release capture object and destory all windows cap.release() cv2.destroyAllWindows() # ******************************************************************************************************************** # ``` #### File: Feature Extractions/Feature Extraction and Comparison/utils.py ```python import os import cv2 from termcolor import colored os.system("color") # LineBreaker def breaker(num=50, char="*"): print(colored("\n" + num*char + "\n", color="magenta")) # Custom Print Function def myprint(text, color, on_color=None): print(colored(text, color=color, on_color=on_color)) # CLAHE Preprocessing (Cliplimit: 2.0, TileGridSize: (2, 2)) def clahe_equ(image): clahe = cv2.createCLAHE(clipLimit=2, tileGridSize=(2, 2)) for i in range(3): image[:, :, i] = clahe.apply(image[:, :, i]) return image # Center Crop (Resize to 256x256, then center crop the 224x224 region) def preprocess(image, change_color_space=True): if change_color_space: image = cv2.cvtColor(src=image, code=cv2.COLOR_BGR2RGB) image = cv2.resize(src=image, dsize=(256, 256), interpolation=cv2.INTER_AREA) h, w, _ = image.shape cx, cy = w // 2, h // 2 return image[cy - 112:cy + 112, cx - 112:cx + 112, :] # Setting up self-aware Image Directory IMAGE_PATH = os.path.join(os.path.dirname(__file__), "Images") if not os.path.exists(IMAGE_PATH): os.makedirs(IMAGE_PATH) # Webcam Feed Attributes CAM_WIDTH, CAM_HEIGHT, FPS, ID = 640, 360, 30, 0 ``` #### File: Feature Extractions/ORB In-Depth Analysis/Analysis.py ```python import os import cv2 import platform import numpy as np import random as r import matplotlib.pyplot as plt import utils as u ##################################################################################################### # Function to get ORB Features from an image. def get_orb_features(orb, image): """ orb: ORB Object image: (np.ndarray) image data """ image = cv2.cvtColor(src=image, code=cv2.COLOR_RGB2GRAY) kp, des = orb.detectAndCompute(image, None) return kp, des # Fucntion to return topK keypoints. TopK keypoints are decided by their response def get_topK(kp, K=5): """ kp: List of ORB Keypoints K: Top K keypoints to use (Default: 5) """ responses = [] for k in kp: responses.append(k.response) if len(responses) > K: responses_idx = np.argpartition(responses, -K)[-K:].astype("int64") topK_kp = [] for idx in responses_idx: topK_kp.append(kp[idx]) return topK_kp else: return None # Image Analysis tool showing various keypoint attributes for a random keypoint def show_kp_info(kp): kp_sample = r.randint(0, len(kp)-1) u.breaker() print("Total Number of Keypoints : {}".format(len(kp))) u.breaker() print("Keypoint {} Information".format(kp_sample)) u.breaker() print("Angle : {:.5f}".format(kp[kp_sample].angle)) print("Octave : {:.5f}".format(kp[kp_sample].octave)) print("Point : {}".format(kp[kp_sample].pt)) print("Response : {:.5f}".format(kp[kp_sample].response)) print("Size : {:.5f}".format(kp[kp_sample].size)) # Image Analysis tool showing various keypoint attributes the entire list of keypoints def show_info(kp): angles = [] octaves = [] points = [] responses = [] sizes = [] for k in kp: angles.append(k.angle) octaves.append(k.octave) points.append(k.pt) responses.append(k.response) sizes.append(k.size) x_Axis = np.arange(1, len(kp)+1) plt.figure() plt.subplot(1, 4, 1) plt.plot(x_Axis, angles, "r") plt.grid() plt.title("Angles") plt.subplot(1, 4, 2) plt.plot(x_Axis, octaves, "r") plt.grid() plt.title("Octaves") plt.subplot(1, 4, 3) plt.plot(x_Axis, responses, "r") plt.grid() plt.title("Responses") plt.subplot(1, 4, 4) plt.plot(x_Axis, sizes, "r") plt.grid() plt.title("Sizes") plt.show() # Display the Keypoint image def show_kp_image(image, kp): """ image: (np.ndarray) Image data kp: (list) List of ORB Keypoints """ kp_image = cv2.drawKeypoints(image, kp, None, (0, 255, 0), cv2.DRAW_MATCHES_FLAGS_DEFAULT) plt.figure() plt.imshow(kp_image) plt.axis("off") plt.show() ##################################################################################################### # Function to handle image analysis def image_analysis(name, nfeatures, K): # Read Image file image = cv2.cvtColor(src=cv2.imread(os.path.join(u.IMAGE_PATH, name)), code=cv2.COLOR_BGR2RGB) # Create ORB object orb = cv2.ORB_create(nfeatures=nfeatures) # Obtain image keypoints kp, _ = get_orb_features(orb, image) # Show Random Keypoint Information show_kp_info(kp) # Show all keypoint information show_info(kp) # Get topK Keypoints topK_kp = get_topK(kp, K) # Show image with all the keypoints show_kp_image(image, kp) # Show image with topK keypoints show_kp_image(image, topK_kp) ##################################################################################################### def realtime_analysis(nfeatures, K=None): # Create ORB object orb = cv2.ORB_create(nfeatures=nfeatures) # Setting up capture object if platform.system() != "Windows": cap = cv2.VideoCapture(u.ID) else: cap = cv2.VideoCapture(u.ID, cv2.CAP_DSHOW) cap.set(cv2.CAP_PROP_FRAME_WIDTH, u.CAM_WIDTH) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, u.CAM_HEIGHT) cap.set(cv2.CAP_PROP_FPS, u.FPS) # Creat CLAHE object clahe = cv2.createCLAHE(clipLimit=5, tileGridSize=(2, 2)) while cap.isOpened(): _, frame = cap.read() # Preprocess frame with CLAHE (clipLimit:2, tileGridSize: (2, 2)) for i in range(frame.shape[-1]): frame[:, :, i] = clahe.apply(frame[:, :, i]) # frame = cv2.GaussianBlur(src=frame, ksize=(15, 15), sigmaX=0) # Obtain frame keypoints kp, _ = get_orb_features(orb, frame) # Get topK Keypoints if K is specified if K is None: frame = cv2.drawKeypoints(frame, kp, None, (0, 255, 0), cv2.DRAW_MATCHES_FLAGS_DEFAULT) else: topK_kp = get_topK(kp, K=K) if topK_kp is not None: frame = cv2.drawKeypoints(frame, topK_kp, None, (0, 255, 0), cv2.DRAW_MATCHES_FLAGS_DEFAULT) # Press 'q' to Quit cv2.imshow("Feed", frame) if cv2.waitKey(1) == ord("q"): break # Release capture cbject and destory all windows cap.release() cv2.destroyAllWindows() ##################################################################################################### ``` #### File: OSD/One Shot Detectors with Edges/Snapshot.py ```python Shot Detectors with Edges/Snapshot.py<gh_stars>0 import os import cv2 import platform import numpy as np import utils as u def capture_snapshot(): # Setting up capture object if platform.system() != "Windows": cap = cv2.VideoCapture(u.ID) else: cap = cv2.VideoCapture(u.ID, cv2.CAP_DSHOW) cap.set(cv2.CAP_PROP_FRAME_WIDTH, u.CAM_WIDTH) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, u.CAM_HEIGHT) cap.set(cv2.CAP_PROP_FPS, u.FPS) count = len(os.listdir(u.IMAGE_PATH)) + 1 u.breaker() # Read data from capture object while cap.isOpened(): _, frame = cap.read() # Obtain the edges frame = u.AUGMENT(images=np.expand_dims(frame, axis=0))[0] cv2.imshow("Feed", frame) # Press 'c' to Capture Snapshot if cv2.waitKey(1) == ord("c"): cv2.imwrite(os.path.join(u.IMAGE_PATH, "Snapshot_{}.png".format(count)), frame) print("Captured Snapshot - {}".format(count)) count += 1 # Press 'q' to Quit if cv2.waitKey(1) == ord("q"): break u.breaker() # Release the capture object and destroy all windows cap.release() cv2.destroyAllWindows() ``` #### File: References and Tests/Capture/cli.py ```python import os import cv2 import sys import platform from termcolor import colored # ******************************************************************************************************************** # # Setting up self-aware Image Capture Directory SAVE_PATH = os.path.join(os.getcwd(), "Captures") if not os.path.exists(SAVE_PATH): os.makedirs(SAVE_PATH) # Custom Print Function def myprint(text, color, on_color=None): print(colored(text, color=color, on_color=on_color)) # Linebreaker def breaker(num=50, char="*"): print(colored("\n" + num*char + "\n", color="cyan")) # Initialize the capture object def init_video(ID, w, h): if platform.system() != "Windows": cap = cv2.VideoCapture(ID) else: cap = cv2.VideoCapture(ID, cv2.CAP_DSHOW) cap.set(cv2.CAP_PROP_FRAME_WIDTH, w) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, h) cap.set(cv2.CAP_PROP_FPS, 30) return cap # ******************************************************************************************************************** # # Function that captures an igae form the webcam feed def image_capture(CaptureObject): """ CaptureObject: OpenCV VideoCapture Object that has been initialized """ count = 1 breaker() # Read data from capture object while CaptureObject.isOpened(): _, frame = CaptureObject.read() # Press 'c' to Capture frame if cv2.waitKey(1) == ord("c"): cv2.imwrite(os.path.join(SAVE_PATH, "Snapshot_{}.png".format(count)), frame) print("Captured Snapshot - {}".format(count)) count += 1 # Display the frame cv2.imshow("Webcam Feed", frame) # Press 'q' to Quit if cv2.waitKey(1) == ord("q"): break breaker() # Release the capture object and destroy all windows CaptureObject.release() cv2.destroyAllWindows() # ******************************************************************************************************************** # # Functionality to capture a snippet of the realtime webcam feed. Not Implemented def video_capture(CaptureObject, number_of_frames): pass # ******************************************************************************************************************** # """ CLI Arguments: 1. --id : Device ID used for Video Capture (default: 0) 2. --w : Width fo the Capture Frame (Default: 640) 3. --h : Height of the Capture Frame (Default: 360) """ def app(): args_1 = "--id" args_2 = "--w" args_3 = "--h" # Default CLI Argument Values device_id = 0 w = 640 h = 360 # CLI Argument Handling if args_1 in sys.argv: device_id = int(sys.argv[sys.argv.index(args_1) + 1]) if args_2 in sys.argv: w = int(sys.argv[sys.argv.index(args_2) + 1]) if args_3 in sys.argv: h = int(sys.argv[sys.argv.index(args_3) + 1]) cap = init_video(device_id, w, h) image_capture(cap) # ******************************************************************************************************************** # ``` #### File: References and Tests/Capture/gui.py ```python import os import sys import cv2 import platform import tkinter as tk from PIL import Image, ImageTk # Webcam Canvas Attributes CAM_WIDTH, CAM_HEIGHT = 640, 360 # ******************************************************************************************************************** # # Setting up self-aware Image Capture Directory SAVE_PATH = os.path.join(os.getcwd(), "Captures") if not os.path.exists(SAVE_PATH): os.makedirs(SAVE_PATH) # ******************************************************************************************************************** # class Video(object): def __init__(self, device_id=None, width=None, height=None, fps=30): """ device_id: (int) Device ID of the capture device (can be set via command line) width: (int) Width of the Capture Frame height: (int) Height of the Capture Frame fps: (int) FPS of the Capture Object """ self.device_id = device_id self.width = width self.height = height self.fps = fps self.cap = None # Initialize the capture object def start(self): if platform.system() != "Windows": self.cap = cv2.VideoCapture(self.device_id) else: self.cap = cv2.VideoCapture(self.device_id, cv2.CAP_DSHOW) self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, self.width) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height) self.cap.set(cv2.CAP_PROP_FPS, self.fps) # Releases the capture object def stop(self): if self.cap.isOpened(): self.cap.release() # Gets a frame from the capture object def get_frame(self): if self.cap.isOpened(): ret, frame = self.cap.read() if ret: return ret, cv2.cvtColor(src=frame, code=cv2.COLOR_BGR2RGB) else: return ret, None # ******************************************************************************************************************** # # Tkinter Frame that handles the Video Feed class VideoFrame(tk.Frame): def __init__(self, master, V=None, w=None, h=None, *args, **kwargs): """ master: master widget upon which this works V: Video Capture Object w: Width of the Canvas Used h: height of the Canvas Used """ tk.Frame.__init__(self, master, *args, **kwargs) self.master = master self.V = V self.image = None self.canvas = tk.Canvas(self, width=w, height=h, background="black") self.canvas.pack() self.delay = 15 self.id = None # Function to update the canvas every 15 ms def update(self): ret, frame = self.V.get_frame() if ret: self.image = ImageTk.PhotoImage(Image.fromarray(frame)) self.canvas.create_image(0, 0, anchor="nw", image=self.image) self.id = self.after(self.delay, self.update) # Function to start the Video Capture def start(self): self.update() # Function to stop the Video Capture def stop(self): if self.id: self.after_cancel(self.id) self.id = None # ******************************************************************************************************************** # # Tkinter Frame that handles the Buttons class ActionFrame(tk.Frame): def __init__(self, master, V=None, path=None, *args, **kwargs): tk.Frame.__init__(self, master, *args, **kwargs) """ master: master widget upon which this works V: Video Capture Object path: Path to which to save the image capture """ self.master = master self.V = V self.path = path self.count = 1 button_height, button_width = 2, 20 # Capture Button Setup self.CaptureButton = tk.Button(self, text="Capture", background="#00E8FF", activebackground="#86F4FF", foreground="black", width=button_width, height=button_height, relief="raised", command=self.capture) self.CaptureButton.grid(row=0, column=0) # Quit Button Setup self.QuitButton = tk.Button(self, text="Quit", background="#FF0000", activebackground="#FCAEAE", foreground="black", width=button_width, height=button_height, relief="raised", command=self.do_quit) self.QuitButton.grid(row=0, column=1) # Capture Button Callback def capture(self): ret, frame = self.V.get_frame() if ret: cv2.imwrite(os.path.join(self.path, "Snapshot_{}.png".format(self.count)), cv2.cvtColor(src=frame, code=cv2.COLOR_BGR2RGB)) self.count += 1 # Quit Button Callback def do_quit(self): self.master.destroy() # ******************************************************************************************************************** # # Wrapper for all the Tkinter Frames class Main(object): def __init__(self, master, id=None, w=None, h=None, path=None, num_of_frames=None): V = Video(id, w, h) V.start() VideoWidget = VideoFrame(master, V=V, w=w, h=h) VideoWidget.pack() VideoWidget.start() ActionWidget = ActionFrame(master, V=V, path=path) ActionWidget.pack() # ******************************************************************************************************************** # """ CLI Arguments: 1. --id : Device ID used for Video Capture (default: 0) 2. --w : Width fo the Capture Frame (Default: 640) 3. --h : Height of the Capture Frame (Default: 360) """ def app(): args_1 = "--id" args_2 = "--w" args_3 = "--h" # Default CLI argument values device_id = 0 w = 640 h = 360 # CLI Argument Handling if args_1 in sys.argv: device_id = int(sys.argv[sys.argv.index(args_1) + 1]) if args_2 in sys.argv: w = int(sys.argv[sys.argv.index(args_2) + 1]) if args_3 in sys.argv: h = int(sys.argv[sys.argv.index(args_3) + 1]) # Open a new Tkinter Window root = tk.Tk() # Setting up the root window size ww, wh = int(1.05*w), int(1.175*h) root.geometry("{}x{}".format(ww, wh)) # Setting up the root window title root.title("Capture Application") # Calling the Application Wrapper Main(root, device_id, w, h, SAVE_PATH) # Start root.mainloop() # ******************************************************************************************************************** # ``` #### File: References and Tests/Patch Pattern Recognition/cli.py ```python import os import cv2 import sys import utils as u from Snapshot import capture_snapshot from Processor import process_patches_in_video # ******************************************************************************************************************** # def app(): args_1 = "--part-name" args_2 = "--filename" args_3 = "--capture" args_4 = "--process" args_5 = "--similarity" # Default CLI Argument Values do_capture, do_process = None, None similarity = 0.8 # CLI Argument Handling if args_1 in sys.argv: p_name = sys.argv[sys.argv.index(args_1) + 1] if args_2 in sys.argv: f_name = sys.argv[sys.argv.index(args_2) + 1] if args_3 in sys.argv: do_capture = True if args_4 in sys.argv: do_process = True if args_5 in sys.argv: similarity = float(sys.argv[sys.argv.index(args_5) + 1]) u.breaker() u.myprint("--- Application Start ---", color="green") # Runs if --capture is specified if do_capture: capture_snapshot(part_name=p_name) # Runs if --process is specified if do_process: path = os.path.join(u.IMAGE_PATH, p_name) patch = u.preprocess(cv2.imread(os.path.join(path, f_name), cv2.IMREAD_COLOR)) process_patches_in_video(patch, similarity) u.myprint("\n--- Application End ---", color="green") u.breaker() # ******************************************************************************************************************** # ``` #### File: References and Tests/Patch Processing/cli.py ```python import sys import utils as u from Processor import process_video_as_patches # ******************************************************************************************************************** # def app(): args_1 = "--pw" args_2 = "--ph" args_3 = "--test" # Default CLI Arguments pw, ph, test = 48, 48, None # CLI Argument Handling if args_1 in sys.argv: pw = int(sys.argv[sys.argv.index(args_1) + 1]) if args_2 in sys.argv: ph = int(sys.argv[sys.argv.index(args_2) + 1]) if args_3 in sys.argv: test = int(sys.argv[sys.argv.index(args_3) + 1]) u.breaker() u.myprint("--- Application Start ---", color="green") process_video_as_patches(pw, ph, test=test) u.myprint("\n--- Application End ---", color="green") u.breaker() # ******************************************************************************************************************** # ``` #### File: References and Tests/Tkinter Videos/ButtonFrame.py ```python import tkinter as tk # Tkinter Frame that handles the Buttons class ButtonFrame(tk.Frame): def __init__(self, master, VideoWidget=None, *args, **kwargs): tk.Frame.__init__(self, master, *args, **kwargs) """ master: master widget upon which this works VideoWidget: Video Capture Frame """ self.master = master self.VideoWidget = VideoWidget self.button_height = 2 self.button_width = 20 # Start Button Setup self.startButton = tk.Button(self, text="Start", width=self.button_width, height=self.button_height, background="#23EF13", activebackground="#9AF592", foreground="black", relief="raised", command=self.do_start) self.startButton.grid(row=0, column=0) # Stop Button Setup self.stopButton = tk.Button(self, text="Stop", width=self.button_width, height=self.button_height, background="#FFC500", activebackground="#FFE99E", foreground="black", relief="raised", command=self.do_stop) self.stopButton.grid(row=0, column=1) # Quit Button Setup self.quitButton = tk.Button(self, text="Quit", width=self.button_width, height=self.button_height, background="red", activebackground="#FCAEAE", foreground="black", relief="raised", command=self.do_quit) self.quitButton.grid(row=0, column=2) # Start Button Callback def do_start(self): self.VideoWidget.start() # Stop Button Callback def do_stop(self): self.VideoWidget.stop() # Quit Button Callback def do_quit(self): self.master.master.destroy() ```
{ "source": "123raji/MY-APPLICATION-STORE-REPO", "score": 3 }
#### File: 123raji/MY-APPLICATION-STORE-REPO/SQS-LAMBDA-CloudWatchLogs.py ```python import json def lambda_handler(event, context): for record in event['Records']: print ("Lambda") payload=record["body"] print(str(payload)) ``` #### File: 123raji/MY-APPLICATION-STORE-REPO/SQS-SNS-LAMBDA.py ```python import json  import boto3  import os    def lambda_handler(event, context):      batch_processes=[]      for record in event['Records']:          send_request(record["body"])      def send_request(body):      # Create an SNS client      sns = boto3.client('sns')        # Publish a simple message to the specified SNS topic      response = sns.publish(          TopicArn="arn:aws:sns:us-west-2:464599248654:JJTech-Test-Delete",          Message=body,      )        # Print out the response      print(response) ```
{ "source": "123seven/fastgm", "score": 2 }
#### File: 123seven/fastgm/setup.py ```python import os from sys import version_info from setuptools import setup, Extension, find_packages try: from Cython.Build import cythonize except ImportError: cythonize = None if version_info[0] == 2: from io import open # https://cython.readthedocs.io/en/latest/src/userguide/source_files_and_compilation.html#distributing-cython-modules def no_cythonize(extensions, **_ignore): for extension in extensions: sources = [] for sfile in extension.sources: path, ext = os.path.splitext(sfile) if ext in (".pyx", ".py"): if extension.language == "c++": ext = ".cpp" else: ext = ".c" sfile = path + ext sources.append(sfile) extension.sources[:] = sources return extensions extensions = [ Extension( 'fastgm.sm4', sources=['src/fastgm/sm4.pyx'], ), Extension( 'fastgm.sm3', sources=['src/fastgm/sm3.pyx'], ) ] CYTHONIZE = bool(int(os.getenv("CYTHONIZE", 0))) and cythonize is not None if CYTHONIZE: compiler_directives = {"embedsignature": True} extensions = cythonize(extensions, compiler_directives=compiler_directives) else: extensions = no_cythonize(extensions) setup( name="fastgm", version="0.3.1", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots) author="wptoux", author_email="<EMAIL>", description="Fast GMSSL Library for Python", long_description=open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", keywords="国密 GM GMSSL SM2 SM3 SM4 Cython", license="Apache", url="https://github.com/wptoux/fastgm", zip_safe=False, package_dir={"": "src"}, packages=find_packages("src"), ext_modules=extensions, options={"bdist_wheel": {"universal": True}}, ) ```
{ "source": "123seven/ruia", "score": 3 }
#### File: examples/hacker_news_spider/hn2mongo.py ```python from ruia_motor import RuiaMotorInsert, init_spider from ruia import AttrField, Item, Spider, TextField class HackerNewsItem(Item): target_item = TextField(css_select="tr.athing") title = TextField(css_select="a.storylink") url = AttrField(css_select="a.storylink", attr="href") class HackerNewsSpider(Spider): start_urls = [f"https://news.ycombinator.com/news?p={index}" for index in range(3)] concurrency = 3 # 设置代理 aiohttp_kwargs = {"proxy": "http://0.0.0.0:1087"} async def parse(self, response): async for item in HackerNewsItem.get_items(html=await response.text()): yield RuiaMotorInsert(collection="news", data=item.results) async def init_plugins_after_start(spider_ins): spider_ins.mongodb_config = {"host": "127.0.0.1", "port": 27017, "db": "ruia_motor"} init_spider(spider_ins=spider_ins) if __name__ == "__main__": HackerNewsSpider.start(after_start=init_plugins_after_start) ```
{ "source": "123seven/wecaht_tools", "score": 2 }
#### File: wecaht_tools/wechat/exceptions.py ```python from __future__ import absolute_import, unicode_literals class WeChatException(Exception): """Base exception for wechat""" def __init__(self, errcode, errmsg): """ :param errcode: Error code :param errmsg: Error message """ self.errcode = errcode or 40000 self.errmsg = errmsg def __str__(self): _repr = { 'retCode': self.errcode, 'retMsg': self.errmsg } return _repr def __repr__(self): _repr = { 'Class': self.__class__.__name__, 'retCode': self.errcode, 'retMsg': self.errmsg } return _repr class WeChatClientException(WeChatException): """WeChat API client exception class""" def __init__(self, errcode, errmsg, client=None, request=None, response=None): super(WeChatClientException, self).__init__(errcode, errmsg) self.request = request self.response = response class InvalidSignatureException(WeChatException): """Invalid signature exception class""" def __init__(self, errcode=-40001, errmsg='Invalid signature'): super(InvalidSignatureException, self).__init__(errcode, errmsg) class APILimitedException(WeChatClientException): """WeChat API call limited exception class""" pass class InvalidAppIdException(WeChatException): """Invalid app_id exception class""" def __init__(self, errcode=-40005, errmsg='Invalid AppId'): super(InvalidAppIdException, self).__init__(errcode, errmsg) class WeChatOAuthException(WeChatClientException): """WeChat OAuth API exception class""" pass class WeChatComponentOAuthException(WeChatClientException): """WeChat Component OAuth API exception class""" pass ```
{ "source": "123swk123/esp-idf", "score": 2 }
#### File: lwip/weekend_test/net_suite_test.py ```python import re import os import sys import socket from threading import Thread, Event import subprocess import time from shutil import copyfile try: import IDF except ImportError: # this is a test case write with tiny-test-fw. # to run test cases outside tiny-test-fw, # we need to set environment variable `TEST_FW_PATH`, # then get and insert `TEST_FW_PATH` to sys path before import FW module test_fw_path = os.getenv("TEST_FW_PATH") if test_fw_path and test_fw_path not in sys.path: sys.path.insert(0, test_fw_path) import IDF import DUT import Utility stop_sock_listener = Event() stop_io_listener = Event() sock = None client_address = None manual_test = False def io_listener(dut1): global sock global client_address data = b'' while not stop_io_listener.is_set(): try: data = dut1.expect(re.compile(r"PacketOut:\[([a-fA-F0-9]+)\]"), timeout=5) except DUT.ExpectTimeout: continue if data != () and data[0] != b'': packet_data = data[0] print("Packet_data>{}<".format(packet_data)) response = bytearray.fromhex(packet_data.decode()) print("Sending to socket:") packet = ' '.join(format(x, '02x') for x in bytearray(response)) print("Packet>{}<".format(packet)) if client_address is not None: sock.sendto(response, ('127.0.0.1', 7777)) def sock_listener(dut1): global sock global client_address sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.settimeout(5) server_address = '0.0.0.0' server_port = 7771 server = (server_address, server_port) sock.bind(server) try: while not stop_sock_listener.is_set(): try: payload, client_address = sock.recvfrom(1024) packet = ' '.join(format(x, '02x') for x in bytearray(payload)) print("Received from address {}, data {}".format(client_address, packet)) dut1.write(str.encode(packet)) except socket.timeout: pass finally: sock.close() sock = None @IDF.idf_example_test(env_tag="Example_WIFI") def lwip_test_suite(env, extra_data): global stop_io_listener global stop_sock_listener """ steps: | 1. Rebuilds test suite with esp32_netsuite.ttcn 2. Starts listeners on stdout and socket 3. Execute ttcn3 test suite 4. Collect result from ttcn3 """ dut1 = env.get_dut("net_suite", "examples/system/network_tests") # check and log bin size binary_file = os.path.join(dut1.app.binary_path, "net_suite.bin") bin_size = os.path.getsize(binary_file) IDF.log_performance("net_suite", "{}KB".format(bin_size // 1024)) IDF.check_performance("net_suite", bin_size // 1024) dut1.start_app() thread1 = Thread(target=sock_listener, args=(dut1, )) thread2 = Thread(target=io_listener, args=(dut1, )) if not manual_test: # Variables refering to esp32 ttcn test suite TTCN_SRC = 'esp32_netsuite.ttcn' TTCN_CFG = 'esp32_netsuite.cfg' # System Paths netsuite_path = os.getenv("NETSUITE_PATH") netsuite_src_path = os.path.join(netsuite_path, "src") test_dir = os.path.dirname(os.path.realpath(__file__)) # Building the suite print("Rebuilding the test suite") print("-------------------------") # copy esp32 specific files to ttcn net-suite dir copyfile(os.path.join(test_dir, TTCN_SRC), os.path.join(netsuite_src_path, TTCN_SRC)) copyfile(os.path.join(test_dir, TTCN_CFG), os.path.join(netsuite_src_path, TTCN_CFG)) proc = subprocess.Popen(['bash', '-c', 'cd ' + netsuite_src_path + ' && source make.sh'], cwd=netsuite_path, stdout=subprocess.PIPE, stderr=subprocess.PIPE) output = proc.stdout.read() print("Note: First build step we expect failure (titan/net_suite build system not suitable for multijob make)") print(output) proc = subprocess.Popen(['bash', '-c', 'cd ' + netsuite_src_path + ' && make'], cwd=netsuite_path, stdout=subprocess.PIPE, stderr=subprocess.PIPE) print("Note: This time all dependencies shall be generated -- multijob make shall pass") output = proc.stdout.read() print(output) # Executing the test suite thread1.start() thread2.start() time.sleep(2) print("Executing the test suite") print("------------------------") proc = subprocess.Popen(['ttcn3_start', os.path.join(netsuite_src_path,'test_suite'), os.path.join(netsuite_src_path, TTCN_CFG)], stdout=subprocess.PIPE) output = proc.stdout.read() print(output) print("Collecting results") print("------------------") verdict_stats = re.search('(Verdict statistics:.*)', output) if verdict_stats: verdict_stats = verdict_stats.group(1) else: verdict_stats = b"" verdict = re.search('Overall verdict: pass', output) if verdict: print("Test passed!") Utility.console_log(verdict_stats, "green") else: Utility.console_log(verdict_stats, "red") raise ValueError('Test failed with: {}'.format(verdict_stats)) else: try: # Executing the test suite thread1.start() thread2.start() time.sleep(2) while True: time.sleep(0.5) except KeyboardInterrupt: pass print("Executing done, waiting for tests to finish") print("-------------------------------------------") stop_io_listener.set() stop_sock_listener.set() thread1.join() thread2.join() if __name__ == '__main__': print("Manual execution, please build and start ttcn in a separate console") manual_test = True lwip_test_suite() ``` #### File: nimble/blehr/blehr_test.py ```python from __future__ import print_function import os import sys import re import threading import traceback import Queue import subprocess try: # This environment variable is expected on the host machine test_fw_path = os.getenv("TEST_FW_PATH") if test_fw_path and test_fw_path not in sys.path: sys.path.insert(0, test_fw_path) import IDF except ImportError as e: print(e) print("\nCheck your IDF_PATH\nOR") print("Try `export TEST_FW_PATH=$IDF_PATH/tools/tiny-test-fw` for resolving the issue\nOR") print("Try `pip install -r $IDF_PATH/tools/tiny-test-fw/requirements.txt` for resolving the issue\n") import IDF try: import lib_ble_client except ImportError: lib_ble_client_path = os.getenv("IDF_PATH") + "/tools/ble" if lib_ble_client_path and lib_ble_client_path not in sys.path: sys.path.insert(0, lib_ble_client_path) import lib_ble_client import Utility # When running on local machine execute the following before running this script # > make app bootloader # > make print_flash_cmd | tail -n 1 > build/download.config # > export TEST_FW_PATH=~/esp/esp-idf/tools/tiny-test-fw def blehr_client_task(hr_obj, dut_addr): interface = 'hci0' ble_devname = 'blehr_sensor_1.0' hr_srv_uuid = '180d' hr_char_uuid = '2a37' # Get BLE client module ble_client_obj = lib_ble_client.BLE_Bluez_Client(interface, devname=ble_devname, devaddr=dut_addr) if not ble_client_obj: raise RuntimeError("Failed to get DBus-Bluez object") # Discover Bluetooth Adapter and power on is_adapter_set = ble_client_obj.set_adapter() if not is_adapter_set: raise RuntimeError("Adapter Power On failed !!") # Connect BLE Device is_connected = ble_client_obj.connect() if not is_connected: # Call disconnect to perform cleanup operations before exiting application ble_client_obj.disconnect() raise RuntimeError("Connection to device " + str(ble_devname) + " failed !!") # Read Services services_ret = ble_client_obj.get_services() if services_ret: Utility.console_log("\nServices\n") Utility.console_log(str(services_ret)) else: ble_client_obj.disconnect() raise RuntimeError("Failure: Read Services failed") ''' Blehr application run: Start Notifications Retrieve updated value Stop Notifications ''' blehr_ret = ble_client_obj.hr_update_simulation(hr_srv_uuid, hr_char_uuid) if blehr_ret: Utility.console_log("Success: blehr example test passed") else: raise RuntimeError("Failure: blehr example test failed") # Call disconnect to perform cleanup operations before exiting application ble_client_obj.disconnect() class BleHRThread(threading.Thread): def __init__(self, dut_addr, exceptions_queue): threading.Thread.__init__(self) self.dut_addr = dut_addr self.exceptions_queue = exceptions_queue def run(self): try: blehr_client_task(self, self.dut_addr) except Exception: self.exceptions_queue.put(traceback.format_exc(), block=False) @IDF.idf_example_test(env_tag="Example_WIFI_BT") def test_example_app_ble_hr(env, extra_data): """ Steps: 1. Discover Bluetooth Adapter and Power On 2. Connect BLE Device 3. Start Notifications 4. Updated value is retrieved 5. Stop Notifications """ subprocess.check_output(['rm','-rf','/var/lib/bluetooth/*']) subprocess.check_output(['hciconfig','hci0','reset']) # Acquire DUT dut = env.get_dut("blehr", "examples/bluetooth/nimble/blehr") # Get binary file binary_file = os.path.join(dut.app.binary_path, "blehr.bin") bin_size = os.path.getsize(binary_file) IDF.log_performance("blehr_bin_size", "{}KB".format(bin_size // 1024)) IDF.check_performance("blehr_bin_size", bin_size // 1024) # Upload binary and start testing Utility.console_log("Starting blehr simple example test app") dut.start_app() dut.reset() # Get device address from dut dut_addr = dut.expect(re.compile(r"Device Address: ([a-fA-F0-9:]+)"), timeout=30)[0] exceptions_queue = Queue.Queue() # Starting a py-client in a separate thread blehr_thread_obj = BleHRThread(dut_addr, exceptions_queue) blehr_thread_obj.start() blehr_thread_obj.join() exception_msg = None while True: try: exception_msg = exceptions_queue.get(block=False) except Queue.Empty: break else: Utility.console_log("\n" + exception_msg) if exception_msg: raise Exception("Thread did not run successfully") # Check dut responses dut.expect("subscribe event; cur_notify=1", timeout=30) dut.expect("subscribe event; cur_notify=0", timeout=30) dut.expect("disconnect;", timeout=30) if __name__ == '__main__': test_example_app_ble_hr() ``` #### File: esp_app_trace/espytrace/apptrace.py ```python import os try: from urlparse import urlparse except ImportError: from urllib.parse import urlparse try: import SocketServer except ImportError: import socketserver as SocketServer import threading import tempfile import time import subprocess import os.path import elftools.elf.elffile as elffile import elftools.elf.constants as elfconst def addr2line(toolchain, elf_path, addr): """ Creates trace reader. Parameters ---------- toolchain : string toolchain prefix to retrieve source line locations using addresses elf_path : string path to ELF file to use addr : int address to retrieve source line location Returns ------- string source line location string """ try: return subprocess.check_output(['%saddr2line' % toolchain, '-e', elf_path, '0x%x' % addr]).decode("utf-8") except subprocess.CalledProcessError: return '' class ParseError(RuntimeError): """ Parse error exception """ def __init__(self, message): RuntimeError.__init__(self, message) class ReaderError(RuntimeError): """ Trace reader error exception """ def __init__(self, message): RuntimeError.__init__(self, message) class ReaderTimeoutError(ReaderError): """ Trace reader timeout error """ def __init__(self, tmo, sz): ReaderError.__init__(self, 'Timeout %f sec while reading %d bytes!' % (tmo, sz)) class ReaderShutdownRequest(ReaderError): """ Trace reader shutdown request error Raised when user presses CTRL+C (SIGINT). """ def __init__(self): ReaderError.__init__(self, 'Shutdown request!') class Reader: """ Base abstract reader class """ def __init__(self, tmo): """ Constructor Parameters ---------- tmo : int read timeout """ self.timeout = tmo self.need_stop = False def read(self, sz): """ Reads a number of bytes Parameters ---------- sz : int number of bytes to read Returns ------- bytes object read bytes Returns ------- ReaderTimeoutError if timeout expires ReaderShutdownRequest if SIGINT was received during reading """ pass def readline(self): """ Reads line Parameters ---------- sz : int number of bytes to read Returns ------- string read line """ pass def forward(self, sz): """ Moves read pointer to a number of bytes Parameters ---------- sz : int number of bytes to read """ pass def cleanup(self): """ Cleans up reader """ self.need_stop = True class FileReader(Reader): """ File reader class """ def __init__(self, path, tmo): """ Constructor Parameters ---------- path : string path to file to read tmo : int see Reader.__init__() """ Reader.__init__(self, tmo) self.trace_file_path = path self.trace_file = open(path, 'rb') def read(self, sz): """ see Reader.read() """ data = b'' start_tm = time.clock() while not self.need_stop: data += self.trace_file.read(sz - len(data)) if len(data) == sz: break if self.timeout != -1 and time.clock() >= start_tm + self.timeout: raise ReaderTimeoutError(self.timeout, sz) if self.need_stop: raise ReaderShutdownRequest() return data def get_pos(self): """ Retrieves current file read position Returns ------- int read position """ return self.trace_file.tell() def readline(self, linesep=os.linesep): """ see Reader.read() """ line = '' start_tm = time.clock() while not self.need_stop: line += self.trace_file.readline().decode("utf-8") if line.endswith(linesep): break if self.timeout != -1 and time.clock() >= start_tm + self.timeout: raise ReaderTimeoutError(self.timeout, 1) if self.need_stop: raise ReaderShutdownRequest() return line def forward(self, sz): """ see Reader.read() """ cur_pos = self.trace_file.tell() start_tm = time.clock() while not self.need_stop: file_sz = os.path.getsize(self.trace_file_path) if file_sz - cur_pos >= sz: break if self.timeout != -1 and time.clock() >= start_tm + self.timeout: raise ReaderTimeoutError(self.timeout, sz) if self.need_stop: raise ReaderShutdownRequest() self.trace_file.seek(sz, os.SEEK_CUR) class NetRequestHandler: """ Handler for incoming network requests (connections, datagrams) """ def handle(self): while not self.server.need_stop: data = self.rfile.read(1024) if len(data) == 0: break self.server.wtrace.write(data) self.server.wtrace.flush() class NetReader(FileReader): """ Base netwoek socket reader class """ def __init__(self, tmo): """ see Reader.__init__() """ fhnd,fname = tempfile.mkstemp() FileReader.__init__(self, fname, tmo) self.wtrace = os.fdopen(fhnd, 'wb') self.server_thread = threading.Thread(target=self.serve_forever) self.server_thread.start() def cleanup(self): """ see Reader.cleanup() """ FileReader.cleanup(self) self.shutdown() self.server_close() self.server_thread.join() time.sleep(0.1) self.trace_file.close() self.wtrace.close() class TCPRequestHandler(NetRequestHandler, SocketServer.StreamRequestHandler): """ Handler for incoming TCP connections """ pass class TCPReader(NetReader, SocketServer.TCPServer): """ TCP socket reader class """ def __init__(self, host, port, tmo): """ Constructor Parameters ---------- host : string see SocketServer.BaseServer.__init__() port : int see SocketServer.BaseServer.__init__() tmo : int see Reader.__init__() """ SocketServer.TCPServer.__init__(self, (host, port), TCPRequestHandler) NetReader.__init__(self, tmo) class UDPRequestHandler(NetRequestHandler, SocketServer.DatagramRequestHandler): """ Handler for incoming UDP datagrams """ pass class UDPReader(NetReader, SocketServer.UDPServer): """ UDP socket reader class """ def __init__(self, host, port, tmo): """ Constructor Parameters ---------- host : string see SocketServer.BaseServer.__init__() port : int see SocketServer.BaseServer.__init__() tmo : int see Reader.__init__() """ SocketServer.UDPServer.__init__(self, (host, port), UDPRequestHandler) NetReader.__init__(self, tmo) def reader_create(trc_src, tmo): """ Creates trace reader. Parameters ---------- trc_src : string trace source URL. Supports 'file:///path/to/file' or (tcp|udp)://host:port tmo : int read timeout Returns ------- Reader reader object or None if URL scheme is not supported """ url = urlparse(trc_src) if len(url.scheme) == 0 or url.scheme == 'file': if os.name == 'nt': # workaround for Windows path return FileReader(trc_src[7:], tmo) else: return FileReader(url.path, tmo) if url.scheme == 'tcp': return TCPReader(url.hostname, url.port, tmo) if url.scheme == 'udp': return UDPReader(url.hostname, url.port, tmo) return None class TraceDataProcessor: """ Base abstract class for all trace data processors. """ def __init__(self, print_events, keep_all_events=False): """ Constructor. Parameters ---------- print_events : bool if True every event will be printed as they arrive keep_all_events : bool if True all events will be kept in self.events in the order they arrive """ self.print_events = print_events self.keep_all_events = keep_all_events self.total_events = 0 self.events = [] # This can be changed by the root procesor that includes several sub-processors. # It is used access some method of root processor which can contain methods/data common for all sub-processors. # Common info could be current execution context, info about running tasks, available IRQs etc. self.root_proc = self def _print_event(self, event): """ Base method to print an event. Parameters ---------- event : object Event object """ print("EVENT[{:d}]: {}".format(self.total_events, event)) def print_report(self): """ Base method to print report. """ print("Processed {:d} events".format(self.total_events)) def cleanup(self): """ Base method to make cleanups. """ pass def on_new_event(self, event): """ Base method to process event. """ if self.print_events: self._print_event(event) if self.keep_all_events: self.events.append(event) self.total_events += 1 class LogTraceParseError(ParseError): """ Log trace parse error exception. """ pass def get_str_from_elf(felf, str_addr): """ Retrieves string from ELF file. Parameters ---------- felf : elffile.ELFFile open ELF file handle to retrive format string from str_addr : int address of the string Returns ------- string string or None if it was not found """ tgt_str = '' for sect in felf.iter_sections(): if sect['sh_addr'] == 0 or (sect['sh_flags'] & elfconst.SH_FLAGS.SHF_ALLOC) == 0: continue if str_addr < sect['sh_addr'] or str_addr >= sect['sh_addr'] + sect['sh_size']: continue sec_data = sect.data() for i in range(str_addr - sect['sh_addr'], sect['sh_size']): if type(sec_data) is str: ch = sec_data[i] else: ch = str(chr(sec_data[i])) if ch == '\0': break tgt_str += ch if len(tgt_str) > 0: return tgt_str return None class LogTraceEvent: """ Log trace event. """ def __init__(self, fmt_addr, log_args): """ Constructor. Parameters ---------- fmt_addr : int address of the format string log_args : list list of log message arguments """ self.fmt_addr = fmt_addr self.args = log_args def get_message(self, felf): """ Retrieves log message. Parameters ---------- felf : elffile.ELFFile open ELF file handle to retrive format string from Returns ------- string formatted log message Raises ------ LogTraceParseError if format string has not been found in ELF file """ fmt_str = get_str_from_elf(felf, self.fmt_addr) if not fmt_str: raise LogTraceParseError('Failed to find format string for 0x%x' % self.fmt_addr) prcnt_idx = 0 for i, arg in enumerate(self.args): prcnt_idx = fmt_str.find('%', prcnt_idx, -2) # TODO: check str ending with % if prcnt_idx == -1: break prcnt_idx += 1 # goto next char if fmt_str[prcnt_idx] == 's': # find string arg_str = get_str_from_elf(felf, self.args[i]) if arg_str: self.args[i] = arg_str else: self.args[i] = '<None>' fmt_str = fmt_str.replace('%p', '%x') return fmt_str % tuple(self.args) class BaseLogTraceDataProcessorImpl: """ Base implementation for log data processors. """ def __init__(self, print_log_events=False, elf_path=''): """ Constructor. Parameters ---------- print_log_events : bool if True every log event will be printed as they arrive elf_path : string path to ELF file to retrieve format strings for log messages """ if len(elf_path): self.felf = elffile.ELFFile(open(elf_path, 'rb')) else: self.felf = None self.print_log_events = print_log_events self.messages = [] def cleanup(self): """ Cleanup """ if self.felf: self.felf.stream.close() def print_report(self): """ Prints log report """ print("=============== LOG TRACE REPORT ===============") print("Processed {:d} log messages.".format(len(self.messages))) def on_new_event(self, event): """ Processes log events. Parameters ---------- event : LogTraceEvent Event object. """ msg = event.get_message(self.felf) self.messages.append(msg) if self.print_log_events: print(msg), class HeapTraceParseError(ParseError): """ Heap trace parse error exception. """ pass class HeapTraceDuplicateAllocError(HeapTraceParseError): """ Heap trace duplicate allocation error exception. """ def __init__(self, addr, new_size, prev_size): """ Constructor. Parameters ---------- addr : int memory block address new_size : int size of the new allocation prev_size : int size of the previous allocation """ HeapTraceParseError.__init__(self, """Duplicate alloc @ 0x{:x}! New alloc is {:d} bytes, previous is {:d} bytes.""".format(addr, new_size, prev_size)) class HeapTraceEvent: """ Heap trace event. """ def __init__(self, ctx_name, in_irq, core_id, ts, alloc, size, addr, callers, toolchain='', elf_path=''): """ Constructor. Parameters ---------- ctx_name : string name of event context (task or IRQ name) in_irq : bool True if event has been generated in IRQ context, otherwise False core_id : int core which generated the event ts : float event timestamp alloc : bool True for allocation event, otherwise False size : int size of allocation; has no meaning for de-allocation event addr : int address of allocation/de-allocation callers : list list of callers (callstack) for event toolchain_pref : string toolchain prefix to retrieve source line locations using addresses elf_path : string path to ELF file to retrieve format strings for log messages """ self.ctx_name = ctx_name self.in_irq = in_irq self.core_id = core_id self.ts = ts self.alloc = alloc self.size = size self.addr = addr self.callers = callers self.toolchain = toolchain self.elf_path = elf_path def __repr__(self): if len(self.toolchain) and len(self.elf_path): callers = os.linesep for addr in self.callers: callers += '{}'.format(addr2line(self.toolchain, self.elf_path, addr)) else: callers = '' for addr in self.callers: if len(callers): callers += ':' callers += '0x{:x}'.format(addr) if self.in_irq: ctx_desc = 'IRQ "%s"' % self.ctx_name else: ctx_desc = 'task "%s"' % self.ctx_name if self.alloc: return "[{:.9f}] HEAP: Allocated {:d} bytes @ 0x{:x} from {} on core {:d} by: {}".format(self.ts, self.size, self.addr, ctx_desc, self.core_id, callers) else: return "[{:.9f}] HEAP: Freed bytes @ 0x{:x} from {} on core {:d} by: {}".format(self.ts, self.addr, ctx_desc, self.core_id, callers) class BaseHeapTraceDataProcessorImpl: """ Base implementation for heap data processors. """ def __init__(self, print_heap_events=False): """ Constructor. Parameters ---------- print_heap_events : bool if True every heap event will be printed as they arrive """ self._alloc_addrs = {} self.allocs = [] self.frees = [] self.heap_events_count = 0 self.print_heap_events = print_heap_events def on_new_event(self, event): """ Processes heap events. Keeps track of active allocations list. Parameters ---------- event : HeapTraceEvent Event object. """ self.heap_events_count += 1 if self.print_heap_events: print(event) if event.alloc: if event.addr in self._alloc_addrs: raise HeapTraceDuplicateAllocError(event.addr, event.size, self._alloc_addrs[event.addr].size) self.allocs.append(event) self._alloc_addrs[event.addr] = event else: # do not treat free on unknown addresses as errors, because these blocks coould be allocated when tracing was disabled if event.addr in self._alloc_addrs: event.size = self._alloc_addrs[event.addr].size self.allocs.remove(self._alloc_addrs[event.addr]) del self._alloc_addrs[event.addr] else: self.frees.append(event) def print_report(self): """ Prints heap report """ print("=============== HEAP TRACE REPORT ===============") print("Processed {:d} heap events.".format(self.heap_events_count)) if len(self.allocs) == 0: print("OK - Heap errors was not found.") return leaked_bytes = 0 for alloc in self.allocs: leaked_bytes += alloc.size print(alloc) for free in self.frees: if free.addr > alloc.addr and free.addr <= alloc.addr + alloc.size: print("Possible wrong free operation found") print(free) print("Found {:d} leaked bytes in {:d} blocks.".format(leaked_bytes, len(self.allocs))) ``` #### File: tools/test_idf_py/idf_ext.py ```python def action_extensions(base_actions, project_path=None): def echo(name, *args, **kwargs): print(name, args, kwargs) # Add global options extensions = { "global_options": [ { "names": ["--test-0"], "help": "Non-deprecated option.", "deprecated": False }, { "names": ["--test-1"], "help": "Deprecated option 1.", "deprecated": True }, { "names": ["--test-2"], "help": "Deprecated option 2.", "deprecated": "Please update your parameters." }, { "names": ["--test-3"], "help": "Deprecated option 3.", "deprecated": { "custom_message": "Please update your parameters." } }, { "names": ["--test-4"], "help": "Deprecated option 3.", "deprecated": { "since": "v4.0", "removed": "v5.0" } }, ], "actions": { "test-0": { "callback": echo, "help": "Non-deprecated command 0", "options": [ { "names": ["--test-sub-0"], "help": "Non-deprecated subcommand option 0", "default": None, }, { "names": ["--test-sub-1"], "help": "Deprecated subcommand option 1", "default": None, "deprecated": True }, ], "arguments": [{ "names": ["test-arg-0"], }], }, "test-1": { "callback": echo, "help": "Deprecated command 1", "deprecated": "Please use alternative command." }, }, } return extensions ```
{ "source": "123tarunanand/PokemonTrading", "score": 2 }
#### File: 123tarunanand/PokemonTrading/app.py ```python import hashlib import json from time import time,sleep from uuid import uuid4 import pandas as pd from flask import Flask,jsonify,request,render_template,redirect,url_for,flash import random import pokemon from blockchain import Blockchain import requests import ast import sys import threading import pandas as pd if len(sys.argv) ==1 : print("Nodetracker and port number not passed") exit() if len(sys.argv) ==2 : print("Port number not passed") exit() # Instantiate our Node app = Flask(__name__,template_folder='templates') node = str('http://0.0.0.0:' + sys.argv[2]+ '/node') # Instantiate the Blockchain blockchain = Blockchain(node) pokedex = pd.read_csv('Kanto.csv',index_col='Nat') def pokemonname(index): return pokedex['Pokemon'][index] def regnode(): sleep(1) #Let tracker know about presence of this node print("Node registration attempted") url=str('http://0.0.0.0:' + sys.argv[1]+ '/nodes') payload={'Node':str('http://0.0.0.0:'+ sys.argv[2]+'/node')} requests.post(url,data=json.dumps(payload)) print("Node registration completed") if(len(sys.argv)==1): print("Node tracker port and node port not passed") exit() elif(len(sys.argv)==2): print("Node port not passed") exit() @app.route('/',methods=['GET','POST']) def start(): if request.method == 'GET': if blockchain.user: return redirect(url_for('home')) return render_template('./home.html') if blockchain.user: return redirect(url_for('home')) username = request.form['user'] if username.isspace() or not username: return render_template('./home.html') blockchain.user = username print("User initiated") return redirect(url_for('home')) @app.route('/home') def home(): pokes=[] pokenum = blockchain.own_pokes() for k in pokenum: pokes.append({'name':pokemonname(k),'id':str(str(k)+'.png')}) return render_template('./main.html',name=blockchain.user,pokes=pokes) @app.route('/node',methods=['POST']) def register_node(): data = ast.literal_eval((request.data).decode('utf-8')) print("New node received-") print(data['Node']) blockchain.nodereg(data['Node']) if data['New'] == 'False': bk = requests.get(str(data['Node']+"/chain")).json() while(blockchain.currentmining): pass if bk['length'] > len(blockchain.chain): blockchain.chain = bk['chain'] print("Consensus chain received") return jsonify("Received") @app.route('/mine', methods=['GET']) def mine(): #if len(blockchain.current_trade) == 0: # return jsonify("No transactions to mine"),200 blockchain.currentmining = True ctrade = blockchain.current_trade present = {} for node in blockchain.nodes: present[node]= blockchain.other_pokes(node) present[blockchain.node]=blockchain.own_pokes() for trade in ctrade: if (int(trade['sentby1']) in present[trade['trainer1']]) and (int(trade['sentby2']) in present[trade['trainer2']]): present[trade['trainer1']].append(int(trade['sentby2'])) present[trade['trainer2']].append(int(trade['sentby1'])) present[trade['trainer1']].remove(int(trade['sentby1'])) present[trade['trainer2']].remove(int(trade['sentby2'])) else: if str(trade['trainer1'])==str((blockchain.node)): treqs=blockchain.tradereqs for k in treqs: if str(k['node']) == str(trade['trainer2']) and str(k['timestamp']) == str(trade['time']): k['status']="Invalid" break blockchain.tradereqs=treqs print(treqs) else: url = str(trade['trainer1']+'/trade/offerresp') payload={'node':trade['trainer2'],'sent':trade['sentby1'],'rec':trade['sentby2'],'tim':trade['time'],'status':'Invalid'} requests.post(url,data=json.dumps(payload)) ctrade.remove(trade) print("Invalid trade removed") blockchain.trade=ctrade last_block = blockchain.last_block last_proof = last_block['proof'] proof = blockchain.proof_of_work(last_proof) previous_hash = blockchain.hash(last_block) block = blockchain.new_block(proof,previous_hash) blockchain.currentmining = False print("Mining complete") payload = json.dumps({'chain':blockchain.chain,'length':len(blockchain.chain)}) for node in blockchain.nodes: url = str(node+'/sync') requests.post(url,data=payload) return redirect(url_for('home')) @app.route('/trade') def starttrade(): pokes=[] pokenum = blockchain.own_pokes() for k in pokenum: pokes.append({'name':pokemonname(k),'id':str(str(k)+'.png'),'num':k}) return render_template('./trade.html',name=blockchain.user,pokes=pokes) @app.route('/trade/<param>') def choosetrain(param): nodes = blockchain.nodes response=[] param = int(param) for n in nodes: otherpokes = blockchain.other_pokes(n) for i in otherpokes: j = pokemonname(i) response.append({'name':j,'id':(str(i)+".png"),'num':i,'trainer':n}) name = pokemonname(param) cur = param param = str(param)+'.png' return render_template('./tradereq.html',name=name,id=param,pokes=response,cur=cur) @app.route('/trade/outg',methods=['GET','POST']) def tradereq(): if request.method == 'GET': treq = blockchain.tradereqs pokes=[] chain = blockchain.chain for p in treq: k={} i= pokemonname(p['rec']) j=pokemonname(p['sent']) k['rec'] = i k['sent'] = j k['node'] =p['node'] if (p['status'] == 'Accepted but Unverified'): for block in blockchain.chain: for trade in block['trade']: if trade['trainer1'] == blockchain.node and str(p['timestamp']) == str(trade['time']): p['status'] = 'Verified' k['status'] = p['status'] pokes.append(k) blockchain.tradereqs=treq return render_template('./tradessent.html',pokes = pokes) if request.method == 'POST': timestamp=time() blockchain.tradereqs.append({'node':request.form['node'],'sent':int(request.form['Sendpoke']),'rec':int(request.form['Rec']),'status':'No response yet','timestamp':timestamp}) payload={'node':blockchain.node,'sent':request.form['Sendpoke'],'rec':request.form['Rec'],'timestamp':timestamp} url=str(request.form['node']+'/trade/off') requests.post(url,data = json.dumps(payload)) print("Offer sent") return redirect('/trade/outg') @app.route('/trade/off') def tradeoff(): tre = blockchain.offers pokes=[] for p in tre: k={} i=pokemonname(p['sent']) j=pokemonname(p['rec']) k['sent'] = i k['rec'] = j k['node']=p['node'] k['time']=p['timestamp'] k['sentid']=p['sent'] k['recid']=p['rec'] pokes.append(k) return render_template('./tradeoffers.html',pokes=pokes) @app.route('/node/trade/off',methods=['POST']) def tradeoffrec(): if request.method == 'POST': print("Offer received") data = ast.literal_eval((request.data).decode('utf-8')) blockchain.offers.append({'node':data['node'],'sent':int(data['sent']),'rec':int(data['rec']),'timestamp':data['timestamp']}) return jsonify("Received offer") @app.route('/node/sync',methods=['POST']) def sync(): data = ast.literal_eval((request.data).decode('utf-8')) print("Received new block") while(blockchain.currentmining): pass if data['length'] > len(blockchain.chain): blockchain.chain = data['chain'] toff = blockchain.current_trade for block in blockchain.chain: for trade in block['trade']: for t in toff: if trade == t: toff.remove(t) print("Removed") blockchain.current_trade = toff return jsonify("Request complete"),200 @app.route('/trade/unc') def returnv(): return jsonify(blockchain.current_trade) @app.route('/node/trade',methods=['POST']) def add_transaction(): values = ast.literal_eval((request.data).decode('utf-8')) index = blockchain.new_transaction(values['trainer1'],values['trainer2'],values['sentby1'],values['sentby2'],values['time']) return jsonify(blockchain.current_trade),200 @app.route('/trade/resp',methods=['POST']) def traderesponse(): if request.form['submit'] == 'Accept': offers = blockchain.offers for o in offers: if str(o['node']) == str(request.form['node']) and (str(o['sent']) == str(request.form['Sendpoke'])) and (str(o['rec']) == str(request.form['Rec'])) and (str(o['timestamp']) == str(request.form['tim'])): offers.remove(o) print("Offer accepted") break blockchain.offers = offers url = str(request.form['node']+'/trade/offerresp') payload={'node':blockchain.node,'sent':request.form['Sendpoke'],'rec':request.form['Rec'],'tim':request.form['tim'],'status':'Accepted but Unverified'} requests.post(url,data=json.dumps(payload)) values={'trainer1':request.form['node'],'trainer2':blockchain.node,'sentby1':request.form['Sendpoke'],'sentby2':request.form['Rec'],'time':request.form['tim']} index = blockchain.new_transaction(values['trainer1'],values['trainer2'],values['sentby1'],values['sentby2'],values['time']) payload = json.dumps(values) for node in blockchain.nodes: url = str(node+'/trade') requests.post(url,data=payload) return redirect('/trade/off') else: offers = blockchain.offers for o in offers: if str(o['node']) == str(request.form['node']) and (str(o['sent']) == str(request.form['Sendpoke'])) and (str(o['rec']) == str(request.form['Rec'])) and (str(o['timestamp']) == str(request.form['tim'])): offers.remove(o) print("Offer removed") break blockchain.offers = offers url = str(request.form['node']+'/trade/offerresp') payload={'node':blockchain.node,'sent':request.form['Sendpoke'],'rec':request.form['Rec'],'tim':request.form['tim'],'status':'Cancelled'} requests.post(url,data=json.dumps(payload)) return redirect('/trade/off') @app.route('/node/trade/offerresp',methods=['POST']) def offresp(): data = ast.literal_eval((request.data).decode('utf-8')) treqs=blockchain.tradereqs for k in treqs: print(k) if str(k['node']) == str(data['node']) and str(k['timestamp']) == str(data['tim']): k['status']=str(data['status']) break blockchain.tradereqs=treqs return jsonify("Received") @app.route('/node/chain', methods=['GET']) def full_chain(): response = { 'chain': blockchain.chain, 'length': len(blockchain.chain), } return jsonify(response), 200 if __name__ == '__main__': port = int(sys.argv[2]) t1 = threading.Thread(target=regnode) t1.start() app.run(host='0.0.0.0', port=port) ``` #### File: 123tarunanand/PokemonTrading/blockchain.py ```python import hashlib import json from time import time from uuid import uuid4 import pandas as pd import random import pokemon #Blockchain class class Blockchain(object): def __init__(self,node): #Existing Blockchain self.chain=[] self.user = "" #Current trades pending self.current_trade = [] self.nodes = set() self.node = node self.currentmining = False self.pokedex = pd.read_csv('Kanto.csv')['Rarity'] self.rew1=[] self.rew2=[] self.rew3=[] self.rew4=[] self.rew5=[] i = 1 for p in self.pokedex: if p == 1: self.rew1.append(i) if p == 2: self.rew2.append(i) if p == 3: self.rew3.append(i) if p == 4: self.rew4.append(i) if p == 5: self.rew5.append(i) i = i + 1 self.rew2 = self.rew1 + self.rew2 self.rew3 = self.rew3 + self.rew2 self.rew4 = self.rew4 + self.rew3 self.rew5 = self.rew5 + self.rew4 #Create genesis block self.new_block(proof=0,previous_hash='0') self.tradereqs=[] self.offers = [] def own_pokes(self): caughtpokes=[] rem=[] print("Own pokemon referenced") for block in self.chain: if block['miner'] == self.node: caughtpokes.append(block['rew']) for trade in block['trade']: if trade['trainer1'] == self.node: caughtpokes.append(int(trade['sentby2'])) rem.append(int(trade['sentby1'])) elif trade['trainer2'] == self.node: caughtpokes.append(int(trade['sentby1'])) rem.append(int(trade['sentby2'])) for x in rem: caughtpokes.remove(x) print("Own pokemon received") return caughtpokes def other_pokes(self,nodel): caughtpokes=[] rem=[] print("Other pokemon referenced") for block in self.chain: if block['miner'] == nodel: caughtpokes.append(block['rew']) for trade in block['trade']: if trade['trainer1'] == nodel: caughtpokes.append(int(trade['sentby2'])) rem.append(int(trade['sentby1'])) elif trade['trainer2'] == nodel: caughtpokes.append(int(trade['sentby1'])) rem.append(int(trade['sentby2'])) for x in rem: caughtpokes.remove(x) print("Pokemon referenced") return caughtpokes def nodereg(self,node): self.nodes.add(node) def new_block(self,proof,previous_hash = None): #Create a new block after mining in the blockchain #previous_hash = None for the genesis block trans = len(self.current_trade) block = { 'index':len(self.chain) + 1, 'timestamp': time(), 'trade': self.current_trade, 'proof': proof, 'previous_hash': previous_hash or self.hash(self.chain[-1]), 'miner':self.node } self.current_trade=[] if trans == 0: rew = random.choice(self.rew1) elif trans < 5: rew = random.choice(self.rew2) elif trans < 10: rew = random.choice(self.rew3) elif trans < 20: rew = random.choice(self.rew4) else: rew = random.choice(self.rew5) block['rew']=rew; self.chain.append(block) print("Block mined and added to chain") return block def new_transaction(self,trainer1,trainer2,sentby1,sentby2,timesent): #creates a new trade to go into next mined block ctrade={ 'trainer1': trainer1, 'trainer2': trainer2, 'sentby1': sentby1, 'sentby2' : sentby2, 'time' : timesent } self.current_trade.append(ctrade) return self.last_block['index'] + 1 def proof_of_work(self,last_proof): #Simple proof of work algorithm: proof = 0; print("Mining going on") lastb = self.hash(self.chain[-1]) while self.valid_proof(last_proof,proof,lastb) is False: proof +=1 print("Proofofwork found") return proof def valid_proof(self,last_proof,proof,lasthash): guess = str(str(last_proof+proof)+str(lasthash)).encode() guess_hash = hashlib.sha256(guess).hexdigest() return guess_hash[:4] == '0000' @staticmethod def hash(block): #Creates a SHA-256 hash of a block block_string = json.dumps(block,sort_keys=True).encode() return hashlib.sha256(block_string).hexdigest() @property def last_block(self): # Returns the last Block in the chain return self.chain[-1] ``` #### File: 123tarunanand/PokemonTrading/nodetracker.py ```python import json from time import sleep import requests from flask import Flask,jsonify,request,render_template,redirect import ast import sys app = Flask(__name__) nodes=set() if len(sys.argv)!=2: print("Port number not passed") exit() @app.route('/nodes',methods=['POST']) def register_node(): data = ast.literal_eval((request.data).decode('utf-8')) data = data['Node'] print(data) for node in nodes: requests.post(node,json.dumps({'Node':data,'New':'True'})) requests.post(data,json.dumps({'Node':node,'New':'False'})) nodes.add(data) return jsonify("Received") if __name__ == '__main__': port = int(sys.argv[1]) app.run(host='0.0.0.0', port=port) ```
{ "source": "123weizheng/blog", "score": 2 }
#### File: blog/post/models.py ```python from django.db import models from user.models import User class Post(models.Model): uid = models.IntegerField() title = models.CharField(max_length=64) created = models.DateTimeField(auto_now_add=True) content = models.TextField() @property def auth(self): '''帖子的作者''' if not hasattr(self, '_auth'): self._auth = User.objects.get(id=self.uid) return self._auth def comments(self): '''帖子的所有评论''' return Comment.objects.filter(post_id=self.id).order_by('-id') def tags(self): '''帖子对应的所有 tag''' relations = PostTagRelation.objects.filter(post_id=self.id).only('tag_id') # 取出与post与tag的关系 tag_id_list = [r.tag_id for r in relations] # 取出对应的 tag id 列表 return Tag.objects.filter(id__in=tag_id_list) # 返回对应的 tag def update_tags(self, tag_names): '''更新 post 对应的 tag''' updated_tags = set(Tag.ensure_tags(tag_names)) current_tags = set(self.tags()) # 找出尚未建立关联的 tag need_create_tags = updated_tags - current_tags need_create_tag_id_list = [t.id for t in need_create_tags] PostTagRelation.add_relations(self.id, need_create_tag_id_list) # 找出需要删除关联的 tag need_delete_tags = current_tags - updated_tags need_delete_tag_id_list = [t.id for t in need_delete_tags] PostTagRelation.del_relations(self.id, need_delete_tag_id_list) class Comment(models.Model): uid = models.IntegerField() post_id = models.IntegerField() created = models.DateTimeField(auto_now_add=True) content = models.TextField() @property def auth(self): '''评论的作者''' if not hasattr(self, '_auth'): self._auth = User.objects.get(id=self.uid) return self._auth @property def post(self): '''评论对应的帖子''' if not hasattr(self, '_post'): self._post = Post.objects.get(id=self.post_id) return self._post class PostTagRelation(models.Model): ''' post 与 tag 的关系表 使用Nginx做负载均衡 nginx 使用Nginx做负载均衡 linux 使用Nginx做负载均衡 web Linux部署 linux Linux部署 nginx Linux部署 django Python的魔术方法 python ''' post_id = models.IntegerField() tag_id = models.IntegerField() @classmethod def add_relations(cls, post_id, tag_id_list): '''建立 post id 与 tags 的对应关系''' new_relations = [cls(post_id=post_id, tag_id=tid) for tid in tag_id_list] cls.objects.bulk_create(new_relations) @classmethod def del_relations(cls, post_id, tag_id_list): cls.objects.filter(post_id=post_id, tag_id__in=tag_id_list).delete() class Tag(models.Model): name = models.CharField(max_length=16, unique=True) @classmethod def ensure_tags(cls, tag_names): '''确保传入的 tag 已存在,如果不存在直接创建出来''' exists = cls.objects.filter(name__in=tag_names) # 当前已存在的 tag exist_names = set(tag.name for tag in exists) # 已存在的 tag 的 name new_names = set(tag_names) - exist_names # 待创建的 tag 的 name new_tags = [cls(name=n) for n in new_names] # 待创建的 tag cls.objects.bulk_create(new_tags) # 批量提交、创建 return cls.objects.filter(name__in=tag_names) def posts(self): '''当前 tag 对应的所有 post''' relations = PostTagRelation.objects.filter(tag_id=self.id).only('post_id') # 取出与tag与post的关系 post_id_list = [r.post_id for r in relations] # 取出对应的 post id 列表 return Post.objects.filter(id__in=post_id_list) # 返回对应的 post ```
{ "source": "123weizheng/python-script", "score": 2 }
#### File: python-script/PageSpeedInsights/psi.py ```python import os from googleapiclient.discovery import build # Access Token, generated from GCP Console Credentials page. API_KEY = os.getenv('GCP_API_KEY') # For local development, setup http proxy as needed. HTTP = None URL = "https://m.ctrip.com/webapp/flight/schedule/detail.html" def run(url): pagespeedonline = build( serviceName = 'pagespeedonline', version = 'v5', http = HTTP, developerKey = API_KEY ) response = pagespeedonline.pagespeedapi().runpagespeed(url = url).execute() print(response) return ('OK', 200) def run_http(request): request_json = request.get_json() try: url = request_json['url'] return run(url) except KeyError: return ('', 400) def run_pubsub(event, context): import base64 pubsub_message = base64.urlsafe_b64decode(event['data']).decode('utf-8') run(pubsub_message) return 'OK' def test_run_http(): from flask import Request _request = Request.from_values(json = { "url": URL }) run_http(_request) def test_run_pubsub(): import base64 event = { "data": base64.urlsafe_b64encode(URL.encode('utf-8'))} context = None run_pubsub(event, context) if __name__ == "__main__": import httplib2 HTTP = httplib2.Http(proxy_info = httplib2.ProxyInfo(httplib2.socks.PROXY_TYPE_SOCKS5, '127.0.0.1', 1086)) test_run_http() test_run_pubsub() ```
{ "source": "123weizheng/wenshu_utils", "score": 3 }
#### File: wenshu_utils/tests/test_wzws.py ```python import unittest import requests from wenshu_utils.vl5x.args import Vl5x, Number, Guid from wenshu_utils.wzws.decrypt import wzws_decrypt class TestWZWS(unittest.TestCase): def setUp(self): self.error_msg = "请开启JavaScript并刷新该页" self.session = requests.Session() self.session.headers.update({ "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36", }) def tearDown(self): self.session.close() def test_list(self): response = self.session.get("http://wenshu.court.gov.cn/list/list/") text = response.content.decode() if self.error_msg in text: redirect_url1 = wzws_decrypt(text, url=response.url) redirect_url2 = wzws_decrypt(text) self.assertEqual(redirect_url1, redirect_url2) _ = self.session.get(redirect_url1) url = "http://wenshu.court.gov.cn/List/ListContent" data = { "Param": "关键词:合同", "Index": 1, "Page": 10, "Order": "法院层级", "Direction": "asc", "vl5x": Vl5x(self.session.cookies["vjkl5"]), "number": Number(), "guid": Guid(), } response = self.session.post(url, data=data) self.assertNotIn(self.error_msg, response.content.decode()) print(response.text) def test_detail(self): url = "http://wenshu.court.gov.cn/CreateContentJS/CreateContentJS.aspx" params = { "DocID": "13d4c01a-0734-4ec1-bbac-658f8bb8ec62", } response = self.session.get(url, params=params) text = response.content.decode() if self.error_msg in text: redirect_url1 = wzws_decrypt(text, url=response.url) redirect_url2 = wzws_decrypt(text) self.assertEqual(redirect_url1, redirect_url2) response = self.session.get(redirect_url1) self.assertNotIn(self.error_msg, response.content.decode()) print(response.text) if __name__ == '__main__': unittest.main() ``` #### File: wenshu_utils/docid/decrypt.py ```python from Cryptodome.Cipher import AES from Cryptodome.Util.Padding import unpad from ._unzip import unzip IV = b"abcd134556abcedf" def decrypt_doc_id(doc_id: str, key: bytes) -> str: result = unzip(doc_id) for _ in range(2): result = _decrypt(result, key) return result.decode() def _decrypt(data: bytes, key: bytes, iv: bytes = IV) -> bytes: """pycryptodomex库解密""" cipher = AES.new(key=key, mode=AES.MODE_CBC, iv=iv) plaintext = cipher.decrypt(bytes.fromhex(data.decode())) result = unpad(plaintext, AES.block_size) return result def _decrypt2(data: bytes, key: bytes, iv: bytes = IV) -> bytes: """cryptography库解密""" from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.primitives.padding import PKCS7 from cryptography.hazmat.backends import default_backend cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=default_backend()) decryptor = cipher.decryptor() decrypted = decryptor.update(bytes.fromhex(data.decode())) + decryptor.finalize() pkcs7 = PKCS7(algorithms.AES.block_size) unpadder = pkcs7.unpadder() result = unpadder.update(decrypted) + unpadder.finalize() return result ``` #### File: wenshu_utils/wzws/decrypt.py ```python import base64 import re from urllib import parse import execjs from execjs.runtime_names import Node from lxml.etree import HTML def wzws_decrypt(text: str, url: str = None) -> str: """ :param text: 提示"请开启JavaScript并刷新该页"的响应text :param url: 当前请求的url,如果提供url将使用Python实现的算法计算结果,速度很多 如果不传url,将调用外部的nodejs解析得到结果,会慢一些 url示例: http://wenshu.court.gov.cn/CreateContentJS/CreateContentJS.aspx?DocID=13d4c01a-0734-4ec1-bbac-658f8bb8ec62 :return: 重定向url,访问重定向url后会返回wzws_cid的cookie和正确的响应 """ if url is None: base_url = "http://wenshu.court.gov.cn" custom_js = """ window = {}; document = { createElement: () => ({ style: "", appendChild: () => ({}), submit: () => ({}) }), body: { appendChild: obj => { window.location = obj.action } } }; atob = str => Buffer.from(str, "base64").toString("binary"); get_location = () => window.location; """ html = HTML(text) js = html.xpath("//script/text()")[0] ctx = execjs.get(Node).compile(custom_js + js) location = ctx.call("get_location") redirect_url = parse.urljoin(base_url, location) else: prefix_url = "http://wenshu.court.gov.cn/WZWSRE" parse_result = parse.urlparse(url) request_path = (parse_result.path + "?" + parse_result.query) if parse_result.query else parse_result.path encoded_path = base64.b64encode(request_path.encode()).decode() question, factor = re.search(r'wzwsquestion="(.+?)".+wzwsfactor="(\d+)"', text).groups() challenge = "WZWS_CONFIRM_PREFIX_LABEL{}".format(sum(ord(i) for i in question) * int(factor) + 111111) query_params = "wzwschallenge={}".format(base64.b64encode(challenge.encode()).decode()) redirect_url = prefix_url + encoded_path + "?" + query_params return redirect_url ```
{ "source": "123zbt/PySODEvalToolkit", "score": 2 }
#### File: PySODEvalToolkit/tools/converter.py ```python import argparse import importlib.util import os import sys from itertools import chain import numpy as np parser = argparse.ArgumentParser( description="A useful and convenient tool to convert your .npy results into the table code in latex." ) parser.add_argument( "-i", "--result-file", required=True, nargs="+", action="extend", help="The path of the *_metrics.npy file.", ) parser.add_argument( "-o", "--tex-file", required=True, type=str, help="The path of the exported tex file." ) parser.add_argument( "-c", "--config-file", type=str, help="The path of the customized config file." ) parser.add_argument( "--contain-table-env", action="store_true", help="Whether to containe the table env in the exported code.", ) parser.add_argument( "--transpose", action="store_true", help="Whether to transpose the table.", ) args = parser.parse_args() def update_dict(parent_dict, sub_dict): for sub_k, sub_v in sub_dict.items(): if sub_k in parent_dict: if sub_v is not None and isinstance(sub_v, dict): update_dict(parent_dict=parent_dict[sub_k], sub_dict=sub_v) continue parent_dict.update(sub_dict) results = {} for result_file in args.result_file: result = np.load(file=result_file, allow_pickle=True).item() update_dict(results, result) impossible_up_bound = 1 impossible_down_bound = 0 # 读取数据 dataset_names = sorted(list(results.keys())) metric_names = ["SM", "wFm", "MAE", "adpF", "avgF", "maxF", "adpE", "avgE", "maxE"] method_names = sorted(list(set(chain(*[list(results[n].keys()) for n in dataset_names])))) if args.config_file is not None: assert args.config_file.endswith(".py") module_name = os.path.basename(args.config_file) spec = importlib.util.spec_from_file_location(module_name, args.config_file) module = importlib.util.module_from_spec(spec) if module_name in sys.modules: print(f"{module_name} has existed in sys.modules") else: sys.modules[module_name] = module print(f"{module_name} is loaded.") spec.loader.exec_module(module) if "dataset_names" not in module.__dict__: print( "`dataset_names` doesnot be contained in your config file, so we use the default config." ) else: dataset_names = module.__dict__["dataset_names"] if "metric_names" not in module.__dict__: print( "`metric_names` doesnot be contained in your config file, so we use the default config." ) else: metric_names = module.__dict__["metric_names"] if "method_names" not in module.__dict__: print( "`method_names` doesnot be contained in your config file, so we use the default config." ) else: method_names = module.__dict__["method_names"] print( f"CONFIG INFORMATION:\n - DATASETS: {dataset_names}]\n - METRICS: {metric_names}\n - METHODS: {method_names}" ) # 整理表格 ori_columns = [] column_for_index = [] for dataset_idx, dataset_name in enumerate(dataset_names): for metric_idx, metric_name in enumerate(metric_names): fiiled_value = ( impossible_up_bound if metric_name.lower() == "mae" else impossible_down_bound ) fiiled_dict = {k: fiiled_value for k in metric_names} ori_column = [ results[dataset_name].get(method_name, fiiled_dict)[metric_name] for method_name in method_names ] column_for_index.append([x * round(1 - fiiled_value * 2) for x in ori_column]) ori_columns.append(ori_column) style_templates = dict( method_row_body="& {method_name}", method_column_body=" {method_name}", dataset_row_body="& \multicolumn{{{num_metrics}}}{{c}}{{\\textbf{{{dataset_name}}}}}", dataset_column_body="\multirow{{-{num_metrics}}}{{*}}{{\\rotatebox{{90}}{{\\textbf{{{dataset_name}}}}}", dataset_head=" ", metric_body="& {metric_name}", metric_row_head=" ", metric_column_head="& ", body=[ "& {{\color{{reda}} \\textbf{{{txt:.03f}}}}}", # top1 "& {{\color{{mygreen}} \\textbf{{{txt:.03f}}}}}", # top2 "& {{\color{{myblue}} \\textbf{{{txt:.03f}}}}}", # top3 "& {txt:.03f}", # other ], ) # 排序并添加样式 def replace_cell(ori_value, k): if ori_value == impossible_up_bound or ori_value == impossible_down_bound: new_value = "& " else: new_value = style_templates["body"][k].format(txt=ori_value) return new_value for col, ori_col in zip(column_for_index, ori_columns): col_array = np.array(col).reshape(-1) sorted_col_array = np.sort(np.unique(col_array), axis=-1)[-3:][::-1] # [top1_idxes, top2_idxes, top3_idxes] top_k_idxes = [np.argwhere(col_array == x).tolist() for x in sorted_col_array] for k, idxes in enumerate(top_k_idxes): for row_idx in idxes: ori_col[row_idx[0]] = replace_cell(ori_col[row_idx[0]], k) for idx, x in enumerate(ori_col): if not isinstance(x, str): ori_col[idx] = replace_cell(x, -1) # 构建表头 num_datasets = len(dataset_names) num_metrics = len(metric_names) num_methods = len(method_names) # 先构开头的列,再整体构造开头的行 latex_table_head = [] latex_table_tail = [] if not args.transpose: dataset_row = ( [style_templates["dataset_head"]] + [ style_templates["dataset_row_body"].format(num_metrics=num_metrics, dataset_name=x) for x in dataset_names ] + [r"\\"] ) metric_row = ( [style_templates["metric_row_head"]] + [style_templates["metric_body"].format(metric_name=x) for x in metric_names] * num_datasets + [r"\\"] ) additional_rows = [dataset_row, metric_row] # 构建第一列 method_column = [ style_templates["method_column_body"].format(method_name=x) for x in method_names ] additional_columns = [method_column] columns = additional_columns + ori_columns rows = [list(row) + [r"\\"] for row in zip(*columns)] rows = additional_rows + rows if args.contain_table_env: column_style = "|".join([f"*{num_metrics}{{c}}"] * len(dataset_names)) latex_table_head = [ f"\\begin{{tabular}}{{l|{column_style}}}\n", "\\toprule[2pt]", ] else: dataset_column = [] for x in dataset_names: blank_cells = [" "] * (num_metrics - 1) dataset_cell = [ style_templates["dataset_column_body"].format(num_metrics=num_metrics, dataset_name=x) ] dataset_column.extend(blank_cells + dataset_cell) metric_column = [ style_templates["metric_body"].format(metric_name=x) for x in metric_names ] * num_datasets additional_columns = [dataset_column, metric_column] method_row = ( [style_templates["dataset_head"], style_templates["metric_column_head"]] + [style_templates["method_row_body"].format(method_name=x) for x in method_names] + [r"\\"] ) additional_rows = [method_row] additional_columns = [list(x) for x in zip(*additional_columns)] rows = [cells + row + [r"\\"] for cells, row in zip(additional_columns, ori_columns)] rows = additional_rows + rows if args.contain_table_env: column_style = "".join([f"*{{{num_methods}}}{{c}}"]) latex_table_head = [ f"\\begin{{tabular}}{{cc|{column_style}}}\n", "\\toprule[2pt]", ] if args.contain_table_env: latex_table_tail = [ "\\bottomrule[2pt]\n", "\\end{tabular}", ] rows = [latex_table_head] + rows + [latex_table_tail] with open(args.tex_file, mode="w", encoding="utf-8") as f: for row in rows: f.write("".join(row) + "\n") ```
{ "source": "123zhangzq/HW_DPDP", "score": 2 }
#### File: src/utils/logging_engine.py ```python import logging import sys class LoggingEngine: def __init__(self, level="debug", contents=None, logger_name=None): self.logging_level_dict = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL } logging_level = self.logging_level_dict.get(level.lower(), logging.DEBUG) if contents is None: contents = ["asctime", "levelname", "funcName", "lineno", "message"] if logger_name is None: logger_name = 'logging_engine' logging_fmt = "%(asctime)s [%(filename)-15s | %(lineno)d] %(levelname)s: %(message)s" # logging_fmt = " - ".join([f"%({content})s" for content in contents]) logger = logging.getLogger(logger_name) logger.setLevel(level=logging_level) formatter = logging.Formatter(logging_fmt) if not logger.handlers: handler = logging.StreamHandler(sys.stdout) handler.setFormatter(formatter) logger.addHandler(handler) self.logger = logger self.logger_name = logger_name self.handlers = {} self.formatter = formatter self.import_log_funcs() def import_log_funcs(self): log_funcs = ['debug', 'info', 'warning', 'error', 'critical', 'exception'] for func_name in log_funcs: func = getattr(self.logger, func_name) setattr(self, func_name, func) def add_file_output(self, filename: str, level='info', mode="w"): if filename not in self.handlers: handler = logging.FileHandler(filename, mode=mode, encoding='UTF-8') handler.setFormatter(self.formatter) handler.setLevel(self.logging_level_dict.get(level.lower(), logging.DEBUG)) self.handlers[filename] = handler self.logger.addHandler(handler) def remove_file_handler(self, file_path): if file_path in self.handlers: self.logger.removeHandler(self.handlers.get(file_path)) def debug(self, msg: str): pass def info(self, msg: str): pass def warning(self, msg: str): pass def error(self, msg: str): pass def critical(self, msg: str): pass def exception(self, msg: str): pass logger = LoggingEngine(logger_name="glob_logging_engine", level="info") def test_log(): log = LoggingEngine(level="debug", contents=["asctime", "levelname", "filename", "lineno", "funcName", "message"]) log.info("Hello World!") ```
{ "source": "1244919208/Maverick-Theme-Galileo", "score": 2 }
#### File: 1244919208/Maverick-Theme-Galileo/utils.py ```python import os import json from Maverick.Config import g_conf from Maverick.Utils import unify_joinpath, safe_read, filterPlaceholders translation = None def tr(str, locale="english"): """translation support translate str according to translation file """ global translation if translation is None: path = unify_joinpath(os.path.dirname( __file__) + '/locale', g_conf.language+".json") translation = json.loads(safe_read(path) or '{}') return translation.get(str, str) def build_links(links): fp = filterPlaceholders str = '<span class="separator">·</span>'.join(['<li><a class="no-style" title="%s" href="%s" target="_blank"><i class="%s"></i>%s</a></li>' % (fp(item['name']), fp(item['url']), fp(item['icon']), fp(item['name'])) for item in links]) return '<ul>%s</ul>' % str def build_navs(navs): fp = filterPlaceholders list = ['<li><a class="ga-highlight" href="%s" target="%s">%s</a></li>' % (fp(item['url']), fp(item['target']), fp(item['name'])) for item in navs] list.append( '<li><a href="#" target="_self" class="search-form-input ga-highlight">%s</a></li>' % tr('Search')) return '<ul>%s</ul>' % ('<span class="separator">·</span>'.join(list)) def filterPrefix(url: str): """replace prefix with `/`, to fix Valine view counting """ return url.replace(g_conf.site_prefix, "/") ```
{ "source": "12520054/pybot", "score": 3 }
#### File: chatterbot/logic/closest_meaning.py ```python from .base_match import BaseMatchAdapter class ClosestMeaningAdapter(BaseMatchAdapter): """ This adapter selects a response by comparing the tokenized form of the input statement's text, with the tokenized form of possible matching statements. For each possible match, the sum of the Cartesian product of the path similarity of each statement is compared. This process simulates an evaluation of the closeness of synonyms. The known statement with the greatest path similarity is then returned. """ def __init__(self, **kwargs): super(ClosestMeaningAdapter, self).__init__(**kwargs) from chatterbot.conversation.comparisons import synset_distance self.compare_statements = kwargs.get( 'statement_comparison_function', synset_distance ) ``` #### File: chatterbot/logic/mathematical_evaluation.py ```python from __future__ import unicode_literals from chatterbot.logic import LogicAdapter from chatterbot.conversation import Statement import re import os import json import decimal class MathematicalEvaluation(LogicAdapter): """ The MathematicalEvaluation logic adapter parses input to determine whether the user is asking a question that requires math to be done. If so, MathematicalEvaluation goes through a set of steps to parse the input and extract the equation that must be solved. The steps, in order, are: 1) Normalize input: Remove punctuation and other irrelevant data 2) Convert words to numbers 3) Extract the equation 4) Simplify the equation 5) Solve the equation & return result """ def __init__(self, **kwargs): super(MathematicalEvaluation, self).__init__(**kwargs) language = kwargs.get('math_words_language', 'english') self.math_words = self.get_language_data(language) def get_language_data(self, language): """ Load language-specific data """ from chatterbot.corpus import Corpus corpus = Corpus() math_words_data_file_path = corpus.get_file_path( 'chatterbot.corpus.{}.math_words'.format(language), extension='json' ) try: with open(math_words_data_file_path) as data: return json.load(data) except IOError: raise self.UnrecognizedLanguageException( 'A math_words data file was not found for `{}` at `{}`.'.format( language, math_words_data_file_path ) ) def can_process(self, statement): """ Determines whether it is appropriate for this adapter to respond to the user input. """ confidence, response = self.process(statement) return confidence == 1 def process(self, statement): """ Takes a statement string. Returns the simplified statement string with the mathematical terms "solved". """ input_text = statement.text # Getting the mathematical terms within the input statement expression = str(self.simplify_chunks(self.normalize(input_text))) # Returning important information try: expression += "= " + str(eval(expression)) # return a confidence of 1 if the expression could be evaluated return 1, Statement(expression) except: return 0, Statement(expression) def simplify_chunks(self, input_text): """ Separates the incoming text. """ string = '' for chunk in input_text.split(): is_chunk_integer = self.is_integer(chunk) if is_chunk_integer is False: is_chunk_float = self.is_float(chunk) if is_chunk_float is False: is_chunk_operator = self.is_operator(chunk) if is_chunk_operator is not False: string += str(is_chunk_operator) + ' ' else: string += str(is_chunk_float) + ' ' else: string += str(is_chunk_integer) + ' ' return string def is_float(self, string): """ If the string is a float, returns the float of the string. Otherwise, it returns False. """ try: return decimal.Decimal(string) except decimal.DecimalException: return False def is_integer(self, string): """ If the string is an integer, returns the int of the string. Otherwise, it returns False. """ try: return int(string) except: return False def is_operator(self, string): """ If the string is an operator, returns said operator. Otherwise, it returns false. """ if string in "+-/*^()": return string else: return False def normalize(self, string): """ Normalizes input text, reducing errors and improper calculations. """ # If the string is empty, just return it if len(string) is 0: return string # Setting all words to lowercase string = string.lower() # Removing punctuation if not string[-1].isalnum(): string = string[:-1] # Removing words string = self.substitute_words(string) # Returning normalized text return string def substitute_words(self, string): """ Substitutes numbers for words. """ condensed_string = '_'.join(string.split()) for word in self.math_words["words"]: condensed_string = re.sub( '_'.join(word.split(' ')), self.math_words["words"][word], condensed_string ) for number in self.math_words["numbers"]: condensed_string = re.sub( number, str(self.math_words["numbers"][number]), condensed_string ) for scale in self.math_words["scales"]: condensed_string = re.sub( "_" + scale, " " + self.math_words["scales"][scale], condensed_string ) condensed_string = condensed_string.split('_') for chunk_index in range(0, len(condensed_string)): value = "" try: value = str(eval(condensed_string[chunk_index])) condensed_string[chunk_index] = value except: pass for chunk_index in range(0, len(condensed_string)): if self.is_integer(condensed_string[chunk_index]) or self.is_float(condensed_string[chunk_index]): i = 1 start_index = chunk_index end_index = -1 while (chunk_index + i < len(condensed_string) and (self.is_integer(condensed_string[chunk_index + i]) or self.is_float(condensed_string[chunk_index + i]))): end_index = chunk_index + i i += 1 for sub_chunk in range(start_index, end_index): condensed_string[sub_chunk] += " +" condensed_string[start_index] = "( " + condensed_string[start_index] condensed_string[end_index] += " )" return ' '.join(condensed_string) class UnrecognizedLanguageException(Exception): def __init__(self, value='The specified language was not recognized'): self.value = value def __str__(self): return repr(self.value) ``` #### File: chatterbot/logic/multi_adapter.py ```python from __future__ import unicode_literals from collections import Counter from .logic_adapter import LogicAdapter class MultiLogicAdapter(LogicAdapter): """ MultiLogicAdapter allows ChatterBot to use multiple logic adapters. It has methods that allow ChatterBot to add an adapter, set the chat bot, and process an input statement to get a response. """ def __init__(self, **kwargs): super(MultiLogicAdapter, self).__init__(**kwargs) self.adapters = [] def process(self, statement): """ Returns the outout of a selection of logic adapters for a given input statement. :param statement: The input statement to be processed. """ results = [] result = None max_confidence = -1 for adapter in self.adapters: if adapter.can_process(statement): confidence, output = adapter.process(statement) results.append((confidence, output, )) self.logger.info( '{} selected "{}" as a response with a confidence of {}'.format( str(adapter.__class__), output.text, confidence ) ) if confidence > max_confidence: result = output max_confidence = confidence else: self.logger.info( 'Not processing the statement using {}'.format( str(adapter.__class__) ) ) # If multiple adapters agree on the same statement, # then that statement is more likely to be the correct response if len(results) >= 3: statements = [s[1] for s in results] count = Counter(statements) most_common = count.most_common() if most_common[0][1] > 1: result = most_common[0][0] max_confidence = self.get_greatest_confidence(result, results) return max_confidence, result def get_greatest_confidence(self, statement, options): """ Returns the greatest confidence value for a statement that occurs multiple times in the set of options. :param statement: A statement object. :param options: A tuple in the format of (confidence, statement). """ values = [] for option in options: if option[1] == statement: values.append(option[0]) return max(values) def add_adapter(self, adapter): """ Appends a logic adapter to the list of logic adapters being used. :param adapter: The logic adapter to be added. :type adapter: LogicAdapter """ self.adapters.append(adapter) def set_chatbot(self, chatbot): """ Set the chatbot for each of the contained logic adapters. """ super(MultiLogicAdapter, self).set_chatbot(chatbot) for adapter in self.adapters: adapter.set_chatbot(chatbot) ``` #### File: chatterbot/output/microsoft.py ```python from __future__ import unicode_literals from .output_adapter import OutputAdapter import requests import json class Microsoft(OutputAdapter): """ An output adapter that allows a ChatterBot instance to send responses to a Micorsoft bot using *Direct Line client protocol*. """ def __init__(self, **kwargs): super(Microsoft, self).__init__(**kwargs) self.directline_host = kwargs.get('directline_host', 'https://directline.botframework.com') self.direct_line_token_or_secret = kwargs.get\ ('direct_line_token_or_secret') self.conversation_id = kwargs.get('conversation_id') authorization_header = 'BotConnector {}'.\ format(self.direct_line_token_or_secret) self.headers = { 'Authorization': authorization_header, 'Content-Type': 'application/json' } def _validate_status_code(self, response): status_code = response.status_code if status_code not in [200, 204]: raise self.HTTPStatusException('{} status code recieved'. format(status_code)) def get_most_recent_message(self): endpoint = '{host}/api/conversations/{id}/messages'\ .format(host=self.directline_host, id=self.conversation_id) response = requests.get( endpoint, headers=self.headers, verify=False ) self.logger.info('{} retrieving most recent messages {}'.format( response.status_code, endpoint )) self._validate_status_code(response) data = response.json() if data['messages']: last_msg = int(data['watermark']) return data['messages'][last_msg-1] return None def send_message(self, conversation_id, message): """ Send a message to a HipChat room. https://www.hipchat.com/docs/apiv2/method/send_message """ message_url = "{host}/api/conversations/{conversationId}/messages".\ format(host=self.directline_host, conversationId=conversation_id) response = requests.post( message_url, headers=self.headers, data=json.dumps({ 'message': message }) ) self.logger.info('{} sending message {}'.format( response.status_code, message_url )) self._validate_status_code(response) # Microsoft return 204 on operation succeeded and no content was returned. return self.get_most_recent_message() def process_response(self, statement, confidence=None): data = self.send_message(self.conversation_id, statement.text) self.logger.info('processing user response {}'.format(data)) return statement class HTTPStatusException(Exception): """ Exception raised when unexpected non-success HTTP status codes are returned in a response. """ def __init__(self, value): self.value = value def __str__(self): return repr(self.value) ``` #### File: pybot/chatterbot/utils.py ```python def clean_whitespace(text): """ Remove any extra whitespace and line breaks as needed. """ import re # Replace linebreaks with spaces text = text.replace('\n', ' ').replace('\r', ' ').replace('\t', ' ') # Remove any leeding or trailing whitespace text = text.strip() # Remove consecutive spaces text = re.sub(' +', ' ', text) return text def clean(text): """ A function for cleaning a string of text. Returns valid ASCII characters. """ import unicodedata import sys text = clean_whitespace(text) # Remove links from message # text = re.sub(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', '', text) # Replace HTML escape characters if sys.version_info[0] < 3: from HTMLParser import HTMLParser parser = HTMLParser() text = parser.unescape(text) else: import html text = html.unescape(text) # Normalize unicode characters # 'raw_input' is just 'input' in python3 if sys.version_info[0] < 3: text = unicode(text) text = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode('utf-8') return str(text) def import_module(dotted_path): """ Imports the specified module based on the dot notated import path for the module. """ import importlib module_parts = dotted_path.split('.') module_path = '.'.join(module_parts[:-1]) module = importlib.import_module(module_path) return getattr(module, module_parts[-1]) def input_function(): """ Normalizes reading input between python 2 and 3. The function 'raw_input' becomes 'input' in Python 3. """ import sys if sys.version_info[0] < 3: user_input = str(raw_input()) # Avoid problems using format strings with unicode characters if user_input: user_input = user_input.decode('utf-8') else: user_input = input() return user_input def nltk_download_corpus(corpus_name): """ Download the specified NLTK corpus file unless it has already been downloaded. Returns True if the corpus needed to be downloaded. """ from nltk.data import find from nltk import download # Download the wordnet data only if it is not already downloaded zip_file = '{}.zip'.format(corpus_name) downloaded = False try: find(zip_file) except LookupError: download(corpus_name) downloaded = True return downloaded def remove_stopwords(tokens, language): """ Takes a language (i.e. 'english'), and a set of word tokens. Returns the tokenized text with any stopwords removed. Stop words are words like "is, the, a, ..." """ from nltk.corpus import stopwords # Get the stopwords for the specified language stop_words = stopwords.words(language) # Remove the stop words from the set of word tokens tokens = set(tokens) - set(stop_words) return tokens ```
{ "source": "1254517211/test-1", "score": 3 }
#### File: test-1/test/downloadTingWa.py ```python import urllib.request import os import time import datetime def url_open(url): req = urllib.request.Request(url) req.add_header('User-Agent', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36') page = urllib.request.urlopen(req) html = page.read() return html def download(title,post,url): filename = title + "." +post with open(filename, 'wb') as f: music = url_open(url) f.write(music) def download_mai(): start = 528 baseUrl = "http://www.itingwa.com/listen/" while True: now = datetime.datetime.now() now = now.strftime('%Y-%m-%d %H:%M:%S') print(now) print(start) url = baseUrl + str(start) html = url_open(url).decode('utf-8') a = html.find("页面未找到") if a != -1: time.sleep(3) start = start + 1 continue a = html.find("frame1") a = html.find("<h1>", a) + 4 b = html.find("<a href", a) title = str(start) + " - " + html[a:b].strip() title = title.replace('*','-') print(title) a = html.find("<div id=\"tw_player\"", b) a = html.find("http", a) b = html.find("</div>", a) - 2 downUrl = html[a:b] print(downUrl) post = downUrl[-3:] print(post) try: download(title,post,downUrl) print("begin to sleep") time.sleep(2) except ConnectionResetError: start = start - 1 start = start + 1 if __name__ == '__main__': download_mai() ```
{ "source": "12564985/DeFMO", "score": 3 }
#### File: DeFMO/dataloaders/loader.py ```python import torch from torchvision import transforms from PIL import Image import os import random from main_settings import * import pdb class ShapeBlurDataset(torch.utils.data.Dataset): def __init__(self, dataset_folder=g_dataset_folder, render_objs = g_render_objs, number_per_category=g_number_per_category, do_augment=False, use_latent_learning=g_use_latent_learning): self.timestamps = torch.linspace(0,1,g_fmo_steps) self.dataset_folder = dataset_folder self.render_objs = render_objs self.number_per_category = number_per_category self.do_augment = do_augment self.use_latent_learning = use_latent_learning def __len__(self): return len(self.render_objs)*self.number_per_category def __getitem__(self, index): # inputs, gt_paths = get_training_sample(render_objs=self.render_objs, max_obj=self.number_per_category, dataset_folder=self.dataset_folder) objname = int(index / self.number_per_category) objid = (index % self.number_per_category) + 1 inputs, gt_paths = get_training_sample(render_objs=[self.render_objs[objname]], min_obj=objid, max_obj=objid, dataset_folder=self.dataset_folder, use_latent_learning=self.use_latent_learning) perm = torch.randperm(int(g_fmo_steps/2)) inds = perm[:int(g_fmo_train_steps/2)] inds,_ = inds.sort() inds = torch.cat((inds, (g_fmo_steps-1)-torch.flip(inds,[0])), 0) times = self.timestamps[inds] inds_left = perm[int(g_fmo_train_steps/2):] inds_left = torch.cat((inds_left, (g_fmo_steps-1)-torch.flip(inds_left,[0])), 0) times_left = self.timestamps[inds_left] hs_frames = [] for ind in inds: gt_batch = get_gt_sample(gt_paths, ind) hs_frames.append(gt_batch) hs_frames = torch.stack(hs_frames,0).contiguous() if self.do_augment: if random.random() > 0.5: inputs = torch.flip(inputs, [-1]) hs_frames = torch.flip(hs_frames, [-1]) if random.random() > 0.5: inputs = torch.flip(inputs, [-2]) hs_frames = torch.flip(hs_frames, [-2]) return inputs, times, hs_frames, times_left def get_transform(): if g_normalize: return transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) else: return transforms.ToTensor() def get_training_sample(render_objs = g_render_objs, min_obj=1, max_obj=g_number_per_category, dataset_folder=g_dataset_folder, use_latent_learning=False): gt_paths = [] while True: obj = random.choice(render_objs) times = random.randint(min_obj,max_obj) filename = os.path.join(dataset_folder, obj, "{}_{:04d}.png".format(obj, times)) if g_use_median: bgr_path = os.path.join(dataset_folder, obj, "GT", "{}_{:04d}".format(obj, times), "bgr_med.png") if not g_use_median or not os.path.exists(bgr_path): bgr_path = os.path.join(dataset_folder, obj, "GT", "{}_{:04d}".format(obj, times), "bgr.png") if not os.path.exists(filename) or not os.path.exists(bgr_path): print('Something does not exist: {} or {}'.format(filename, bgr_path)) continue I = Image.open(filename) B = Image.open(bgr_path) preprocess = get_transform() if use_latent_learning: I2 = Image.open(os.path.join(dataset_folder, obj, "diffbgr", "{:04d}_im.png".format(times))) if g_use_median: B2 = Image.open(os.path.join(dataset_folder, obj, "diffbgr", "{:04d}_bgrmed.png".format(times))) else: B2 = Image.open(os.path.join(dataset_folder, obj, "diffbgr", "{:04d}_bgr.png".format(times))) input_batch = torch.cat((preprocess(I), preprocess(B), preprocess(I2), preprocess(B2)), 0) else: input_batch = torch.cat((preprocess(I), preprocess(B)), 0) for ki in range(g_fmo_steps): gt_paths.append(os.path.join(dataset_folder, obj, "GT", "{}_{:04d}".format(obj, times), "image-{:06d}.png".format(ki+1))) return input_batch, gt_paths def get_gt_sample(gt_paths, ti): GT = Image.open(gt_paths[ti]) preprocess = transforms.ToTensor() gt_batch = preprocess(GT) return gt_batch def get_dataset_statistics(dataset_folder=g_dataset_folder): nobj = 0 all_times = [] all_objs_max = [] for obj in g_render_objs: times = 0 while True: filename = os.path.join(dataset_folder, obj, "{}_{:04d}.png".format(obj, times+1)) bgr_path = os.path.join(dataset_folder, obj, "GT", "{}_{:04d}".format(obj, times+1), "bgr.png") if not os.path.exists(filename) or not os.path.exists(bgr_path): break times += 1 print('Object {} has {} instances'.format(obj, times)) all_times.append(times) if times > 0: nobj += 1 if times == g_number_per_category: all_objs_max.append(obj) print('Number of objects {}'.format(len(g_render_objs))) print('Number of non-zero objects {}'.format(nobj)) print(all_times) print(all_objs_max) print(len(all_objs_max)) ``` #### File: DeFMO/helpers/torch_helpers.py ```python import torch from torch.nn import functional as F from torchvision.utils import save_image from skimage.measure import label, regionprops import os import cv2 import numpy as np from main_settings import * import matplotlib.pyplot as plt from PIL import Image import pdb def renders2traj(renders,device): masks = renders[:,:,-1] sumx = torch.sum(masks,-2) sumy = torch.sum(masks,-1) cenx = torch.sum(sumy*torch.arange(1,sumy.shape[-1]+1)[None,None].float().to(device),-1) / torch.sum(sumy,-1) ceny = torch.sum(sumx*torch.arange(1,sumx.shape[-1]+1)[None,None].float().to(device),-1) / torch.sum(sumx,-1) est_traj = torch.cat((cenx.unsqueeze(-1),ceny.unsqueeze(-1)),-1) return est_traj def renders2traj_bbox(renders_rgba): masks = renders_rgba[:,:,-1] est_traj = [] for ti in range(masks.shape[2]): th = np.min([0.1, 0.5*np.max(masks[:,:,ti])]) dI = (masks[:,:,ti] >= th).astype(float) labeled = label(dI) regions = regionprops(labeled) areas = [reg.area for reg in regions] region = regions[np.argmax(areas)] bbox = np.array(region.bbox) est_traj = np.r_[est_traj, bbox[:2] + (bbox[2:]-bbox[:2])/2] est_traj = np.reshape(est_traj, (-1,2)).T return est_traj def write_latent(rendering, latent, device, folder=g_temp_folder,steps=g_fmo_steps,videoname='output.avi'): write_video = True write_images = False eps = 0 out = None with torch.no_grad(): times = torch.linspace(0+eps,1-eps,steps).to(device) renders = rendering(latent,times[None]) for ki in range(renders.shape[1]): ti = times[ki] if write_images: save_image(renders[0,ki].clone(), os.path.join(folder, 'latent{:04d}.png'.format(int(ti*100)))) if write_video: if out is None: out = cv2.VideoWriter(os.path.join(folder, videoname),cv2.VideoWriter_fourcc(*"MJPG"), 6, (renders.shape[4], renders.shape[3]),True) im4 = renders[0,ki].data.cpu().detach().numpy().transpose(1,2,0) im = im4[:,:,[2,1,0]] * im4[:,:,3:] + 1* (1 - im4[:,:,3:]) out.write( (im * 255).astype(np.uint8) ) if write_video: out.release() return renders def write_gt(gt_paths, folder=g_temp_folder, bgr_clr = 1): write_video = True out = None renders = [] for ti in range(len(gt_paths)): im4 = np.array(Image.open(gt_paths[ti]))/255 renders.append(im4[np.newaxis].copy()) if out is None: out = cv2.VideoWriter(os.path.join(folder, 'output_gt.avi'),cv2.VideoWriter_fourcc(*"MJPG"), 6, (im4.shape[1], im4.shape[0]),True) im = im4[:,:,[2,1,0]] * im4[:,:,3:] + bgr_clr* (1 - im4[:,:,3:]) out.write( (im.copy() * 255).astype(np.uint8) ) out.release() renders = np.stack(renders,1) renders = torch.from_numpy(renders).float().permute(0,1,4,2,3) return renders def write_gt_masks(gt_paths, folder=g_temp_folder, bgr_clr = 1): write_video = True out = None renders = [] for ti in range(len(gt_paths)): im4 = np.array(Image.open(gt_paths[ti]))/255 renders.append(im4[np.newaxis].copy()) if out is None: out = cv2.VideoWriter(os.path.join(folder, 'output_masks_gt.avi'),cv2.VideoWriter_fourcc(*"MJPG"), 6, (im4.shape[1], im4.shape[0]),True) im = (im4[:,:,[3,3,3]]) if bgr_clr == 1: im = 1 - im out.write( (im.copy() * 255).astype(np.uint8) ) out.release() renders = np.stack(renders,1) renders = torch.from_numpy(renders).float().permute(0,1,4,2,3) return renders def get_figure(encoder, rendering, device, val_batch): latent = encoder(val_batch) times = [0, 1] fig = plt.figure() # figsize=(12, 48) nidx = len(times) for idx in np.arange(nidx): t_tensor = torch.FloatTensor([times[idx]]).to(device).repeat(latent.shape[0], 1, latent.shape[2], latent.shape[3]) result = rendering(torch.cat((t_tensor,latent),1)).cpu().numpy() ax = fig.add_subplot(1, nidx, idx+1, xticks=[], yticks=[]) plt.imshow(np.transpose(result[0], (1, 2, 0))) ax.set_title("t = {}".format(times[idx])) return fig def get_images(encoder, rendering, device, val_batch): with torch.no_grad(): latent = encoder(val_batch) times = torch.linspace(0,1,2).to(device) renders = rendering(latent,times[None]) renders = renders.cpu().numpy() renders = renders[:,:,3:4]*(renders[:,:,:3]-1)+1 return renders def normalized_cross_correlation_channels(image1, image2): mean1 = image1.mean([2,3,4],keepdims=True) mean2 = image2.mean([2,3,4],keepdims=True) std1 = image1.std([2,3,4],unbiased=False,keepdims=True) std2 = image2.std([2,3,4],unbiased=False,keepdims=True) eps=1e-8 bs, ts, *sh = image1.shape N = sh[0]*sh[1]*sh[2] im1b = ((image1-mean1)/(std1*N+eps)).view(bs*ts, sh[0], sh[1], sh[2]) im2b = ((image2-mean2)/(std2+eps)).reshape(bs*ts, sh[0], sh[1], sh[2]) padding = (0,) + tuple(side // 10 for side in sh[1:]) result = F.conv3d(im1b[None], im2b[:,None], padding=padding, bias=None, groups=bs*ts) ncc = result.view(bs*ts, -1).max(1)[0].view(bs, ts) return ncc def normalized_cross_correlation(image1, image2): mean1 = image1.mean([2,3],keepdims=True) mean2 = image2.mean([2,3],keepdims=True) std1 = image1.std([2,3],unbiased=False,keepdims=True) std2 = image2.std([2,3],unbiased=False,keepdims=True) eps=1e-8 bs, ts, *sh = image1.shape N = sh[0]*sh[1] im1b = ((image1-mean1)/(std1*N+eps)).view(bs*ts, sh[0], sh[1]) im2b = ((image2-mean2)/(std2+eps)).reshape(bs*ts, sh[0], sh[1]) padding = tuple(side // 10 for side in sh) result = F.conv2d(im1b[None], im2b[:,None], padding=padding, bias=None, groups=bs*ts) ncc = result.view(bs*ts, -1).max(1)[0].view(bs, ts) return ncc ``` #### File: DeFMO/renderer/render_fmo.py ```python import sys import os import random import pickle import bpy import glob import numpy as np from mathutils import Vector from mathutils import Euler import cv2 from PIL import Image from skimage.draw import line_aa from scipy import signal from skimage.measure import regionprops # import moviepy.editor as mpy from array2gif import write_gif abs_path = os.path.abspath(__file__) sys.path.append(os.path.dirname(abs_path)) from render_helper import * from settings import * import settings import pdb def renderTraj(pars, H): ## Input: pars is either 2x2 (line) or 2x3 (parabola) if pars.shape[1] == 2: pars = np.concatenate( (pars, np.zeros((2,1))),1) ns = 2 else: ns = 5 ns = np.max([2, ns]) rangeint = np.linspace(0,1,ns) for timeinst in range(rangeint.shape[0]-1): ti0 = rangeint[timeinst] ti1 = rangeint[timeinst+1] start = pars[:,0] + pars[:,1]*ti0 + pars[:,2]*(ti0*ti0) end = pars[:,0] + pars[:,1]*ti1 + pars[:,2]*(ti1*ti1) start = np.round(start).astype(np.int32) end = np.round(end).astype(np.int32) rr, cc, val = line_aa(start[0], start[1], end[0], end[1]) valid = np.logical_and(np.logical_and(rr < H.shape[0], cc < H.shape[1]), np.logical_and(rr > 0, cc > 0)) rr = rr[valid] cc = cc[valid] val = val[valid] if len(H.shape) > 2: H[rr, cc, 0] = 0 H[rr, cc, 1] = 0 H[rr, cc, 2] = val else: H[rr, cc] = val return H def open_log(temp_folder = g_temp): # redirect output to log file logfile = os.path.join(temp_folder,'blender_render.log') try: os.remove(logfile) except OSError: pass open(logfile, 'a').close() old = os.dup(1) sys.stdout.flush() os.close(1) os.open(logfile, os.O_WRONLY) return old def close_log(old): # disable output redirection os.close(1) os.dup(old) os.close(old) def clear_mesh(): """ clear all meshes in the secene """ bpy.ops.object.select_all(action='DESELECT') for obj in bpy.data.objects: if obj.type == 'MESH': obj.select = True bpy.ops.object.delete() for block in bpy.data.meshes: if block.users == 0: bpy.data.meshes.remove(block) for block in bpy.data.materials: if block.users == 0: bpy.data.materials.remove(block) for block in bpy.data.textures: if block.users == 0: bpy.data.textures.remove(block) for block in bpy.data.images: if block.users == 0: bpy.data.images.remove(block) def scene_setting_init(use_gpu): """initialize blender setting configurations """ sce = bpy.context.scene.name bpy.data.scenes[sce].render.engine = g_engine_type bpy.data.scenes[sce].cycles.film_transparent = g_use_film_transparent #output bpy.data.scenes[sce].render.image_settings.color_mode = g_rgb_color_mode bpy.data.scenes[sce].render.image_settings.color_depth = g_rgb_color_depth bpy.data.scenes[sce].render.image_settings.file_format = g_rgb_file_format bpy.data.scenes[sce].render.use_overwrite = g_depth_use_overwrite bpy.data.scenes[sce].render.use_file_extension = g_depth_use_file_extension if g_ambient_light: world = bpy.data.worlds['World'] world.use_nodes = True bg = world.node_tree.nodes['Background'] bg.inputs[0].default_value[:3] = g_bg_color bg.inputs[1].default_value = 1.0 #dimensions bpy.data.scenes[sce].render.resolution_x = g_resolution_x bpy.data.scenes[sce].render.resolution_y = g_resolution_y bpy.data.scenes[sce].render.resolution_percentage = g_resolution_percentage if use_gpu: bpy.data.scenes[sce].render.engine = 'CYCLES' #only cycles engine can use gpu bpy.data.scenes[sce].render.tile_x = g_hilbert_spiral bpy.data.scenes[sce].render.tile_x = g_hilbert_spiral bpy.context.user_preferences.addons['cycles'].preferences.devices[0].use = False bpy.context.user_preferences.addons['cycles'].preferences.devices[1].use = True ndev = len(bpy.context.user_preferences.addons['cycles'].preferences.devices) print('Number of devices {}'.format(ndev)) for ki in range(2,ndev): bpy.context.user_preferences.addons['cycles'].preferences.devices[ki].use = False bpy.context.user_preferences.addons['cycles'].preferences.compute_device_type = 'CUDA' # bpy.types.CyclesRenderSettings.device = 'GPU' bpy.data.scenes[sce].cycles.device = 'GPU' def node_setting_init(): bpy.context.scene.use_nodes = True tree = bpy.context.scene.node_tree links = tree.links for node in tree.nodes: tree.nodes.remove(node) render_layer_node = tree.nodes.new('CompositorNodeRLayers') image_output_node = tree.nodes.new('CompositorNodeOutputFile') image_output_node.base_path = g_syn_rgb_folder links.new(render_layer_node.outputs[0], image_output_node.inputs[0]) # image_output_node = bpy.context.scene.node_tree.nodes[1] image_output_node.base_path = g_temp image_output_node.file_slots[0].path = 'image-######.png' # blender placeholder # def render(obj_path, viewpoint, temp_folder): """render rbg image render a object rgb image by a given camera viewpoint and choose random image as background, only render one image at a time. Args: obj_path: a string variable indicate the obj file path viewpoint: a vp parameter(contains azimuth,elevation,tilt angles and distance) """ vp = viewpoint cam_location = camera_location(vp.azimuth, vp.elevation, vp.distance) cam_rot = camera_rot_XYZEuler(vp.azimuth, vp.elevation, vp.tilt) cam_obj = bpy.data.objects['Camera'] cam_obj.location[0] = cam_location[0] cam_obj.location[1] = cam_location[1] cam_obj.location[2] = cam_location[2] cam_obj.rotation_euler[0] = cam_rot[0] cam_obj.rotation_euler[1] = cam_rot[1] cam_obj.rotation_euler[2] = cam_rot[2] if not os.path.exists(g_syn_rgb_folder): os.mkdir(g_syn_rgb_folder) obj = bpy.data.objects['model_normalized'] ni = g_fmo_steps maxlen = 0.5 maxrot = 1.57/6 tri = 0 # rot_base = np.array([math.pi/2,0,0]) while tri <= g_max_trials: do_repeat = False tri += 1 if not g_apply_texture: for oi in range(len(bpy.data.objects)): if bpy.data.objects[oi].type == 'CAMERA' or bpy.data.objects[oi].type == 'LAMP': continue for tempi in range(len(bpy.data.objects[oi].data.materials)): if bpy.data.objects[oi].data.materials[tempi].alpha != 1.0: return True, True ## transparent object los_start = Vector((random.uniform(-maxlen/10, maxlen/10), random.uniform(-maxlen, maxlen), random.uniform(-maxlen, maxlen))) loc_step = Vector((random.uniform(-maxlen/10, maxlen/10), random.uniform(-maxlen, maxlen), random.uniform(-maxlen, maxlen)))/ni rot_base = np.array((random.uniform(0, 2*math.pi), random.uniform(0, 2*math.pi), random.uniform(0, 2*math.pi))) rot_step = np.array((random.uniform(-maxrot, maxrot), random.uniform(-maxrot, maxrot), random.uniform(-maxrot, maxrot)))/ni old = open_log(temp_folder) for ki in [0, ni-1]+list(range(1,ni-1)): for oi in range(len(bpy.data.objects)): if bpy.data.objects[oi].type == 'CAMERA' or bpy.data.objects[oi].type == 'LAMP': continue bpy.data.objects[oi].location = los_start + loc_step*ki bpy.data.objects[oi].rotation_euler = Euler(rot_base + (rot_step*ki)) bpy.context.scene.frame_set(ki + 1) bpy.ops.render.render(write_still=True) #start rendering if ki == 0 or ki == (ni-1): Mt = cv2.imread(os.path.join(bpy.context.scene.node_tree.nodes[1].base_path,'image-{:06d}.png'.format(ki+1)),cv2.IMREAD_UNCHANGED)[:,:,-1] > 0 is_border = ((Mt[0,:].sum()+Mt[-1,:].sum()+Mt[:,0].sum()+Mt[:,-1].sum()) > 0) or Mt.sum()==0 if is_border: if ki == 0: close_log(old) return False, True ## sample different starting viewpoint else: do_repeat = True ## just sample another motion direction if do_repeat: break close_log(old) if do_repeat == False: break if do_repeat: ## sample different starting viewpoint return False, True return False, False def make_fmo(path, gt_path, video_path): n_im = 5 background_images = os.listdir(g_background_image_path) seq_name = random.choice(background_images) seq_images = glob.glob(os.path.join(g_background_image_path,seq_name,"*.jpg")) if len(seq_images) <= n_im: seq_images = glob.glob(os.path.join(g_background_image_path,seq_name,"*.png")) seq_images.sort() bgri = random.randint(n_im,len(seq_images)-1) bgr_path = seq_images[bgri] B0 = cv2.imread(bgr_path)/255 B = cv2.resize(B0, dsize=(int(g_resolution_x*g_resolution_percentage/100), int(g_resolution_y*g_resolution_percentage/100)), interpolation=cv2.INTER_CUBIC) B[B > 1] = 1 B[B < 0] = 0 FH = np.zeros(B.shape) MH = np.zeros(B.shape[:2]) pars = np.array([[(B.shape[0]-1)/2-1, (B.shape[1]-1)/2-1], [1.0, 1.0]]).T FM = np.zeros(B.shape[:2]+(4,g_fmo_steps,)) centroids = np.zeros((2,g_fmo_steps)) for ki in range(g_fmo_steps): FM[:,:,:,ki] = cv2.imread(os.path.join(gt_path,'image-{:06d}.png'.format(ki+1)),cv2.IMREAD_UNCHANGED)/g_rgb_color_max props = regionprops((FM[:,:,-1,ki]>0).astype(int)) if len(props) != 1: return False centroids[:,ki] = props[0].centroid for ki in range(g_fmo_steps): F = FM[:,:,:-1,ki]*FM[:,:,-1:,ki] M = FM[:,:,-1,ki] if ki < g_fmo_steps-1: pars[:,1] = centroids[:,ki+1] - centroids[:,ki] H = renderTraj(pars, np.zeros(B.shape[:2])) H /= H.sum()*g_fmo_steps for kk in range(3): FH[:,:,kk] += signal.fftconvolve(H, F[:,:,kk], mode='same') MH += signal.fftconvolve(H, M, mode='same') Im = FH + (1 - MH)[:,:,np.newaxis]*B Im[Im > 1] = 1 Im[Im < 0] = 0 if g_skip_low_contrast: Diff = np.sum(np.abs(Im - B),2) meanval = np.mean(Diff[MH > 0.05]) print("Contrast {}".format(meanval)) if meanval < 0.2: return False if g_skip_small: sizeper = np.sum(MH > 0.01)/(MH.shape[0]*MH.shape[1]) print("Size percentage {}".format(sizeper)) if sizeper < 0.05: return False Im = Im[:,:,[2,1,0]] Ims = Image.fromarray((Im * 255).astype(np.uint8)) Ims.save(path) Ball = np.zeros(B.shape+(n_im,)) Ball[:,:,:,0] = B for ki in range(1,n_im): bgrki_path = seq_images[bgri-ki] Ball[:,:,:,ki] = cv2.resize(cv2.imread(bgrki_path)/255, dsize=(int(g_resolution_x*g_resolution_percentage/100), int(g_resolution_y*g_resolution_percentage/100)), interpolation=cv2.INTER_CUBIC) Ball[Ball > 1] = 1 Ball[Ball < 0] = 0 Bmed = np.median(Ball,3) Image.fromarray((B[:,:,[2,1,0]] * 255).astype(np.uint8)).save(os.path.join(gt_path,'bgr.png')) Image.fromarray((Bmed[:,:,[2,1,0]] * 255).astype(np.uint8)).save(os.path.join(gt_path,'bgr_med.png')) # Ims.save(os.path.join(g_temp,"I.png")) # Image.fromarray((FH * 255)[:,:,[2,1,0]].astype(np.uint8)).save(os.path.join(g_temp,"FH.png")) # Image.fromarray((MH * 255).astype(np.uint8)).save(os.path.join(g_temp,"MH.png")) # Image.fromarray((M * 255).astype(np.uint8)).save(os.path.join(g_temp,"M.png")) # Image.fromarray((F * 255)[:,:,[2,1,0]].astype(np.uint8)).save(os.path.join(g_temp,"F.png")) # Image.fromarray((B0 * 255)[:,:,[2,1,0]].astype(np.uint8)).save(os.path.join(g_temp,"B.png")) if False: Fwr = FM[:,:,:-1,:] * FM[:,:,-1:,:] + 1 * (1 - FM[:,:,-1:,:]) Fwr = (Fwr * 255).astype(np.uint8) # Fwr[np.repeat(FM[:,:,-1:,:]==0,3,2)]=255 out = cv2.VideoWriter(video_path,cv2.VideoWriter_fourcc(*"MJPG"), 6, (F.shape[1],F.shape[0]),True) for ki in range(g_fmo_steps): out.write(Fwr[:,:,:,ki]) out.release() return True def render_obj(obj_path, path, objid, obj_name, temp_folder): """ render one obj file by a given viewpoint list a wrapper function for render() Args: obj_path: a string variable indicate the obj file path """ vps_path = random.sample(g_view_point_file, 1)[0] vps = list(load_viewpoint(vps_path)) random.shuffle(vps) save_path = os.path.join(path,"{}_{:04d}.png".format(obj_name,objid)) gt_path = os.path.join(path,"GT","{}_{:04d}".format(obj_name,objid)) video_path = os.path.join(path,"{}_{:04d}.avi".format(obj_name,objid)) if not os.path.exists(gt_path): os.mkdir(gt_path) image_output_node = bpy.context.scene.node_tree.nodes[1] image_output_node.base_path = gt_path for imt in bpy.data.images: bpy.data.images.remove(imt) if g_apply_texture: for oi in range(len(bpy.data.objects)): if bpy.data.objects[oi].type == 'CAMERA' or bpy.data.objects[oi].type == 'LAMP': continue bpy.context.scene.objects.active = bpy.data.objects[oi] # pdb.set_trace() # for m in bpy.data.materials: # bpy.data.materials.remove(m) # bpy.ops.object.material_slot_remove() bpy.ops.object.editmode_toggle() bpy.ops.uv.cube_project() bpy.ops.object.editmode_toggle() texture_images = os.listdir(g_texture_path) texture = random.choice(texture_images) tex_path = os.path.join(g_texture_path,texture) # mat = bpy.data.materials.new(texture) # mat.use_nodes = True # nt = mat.node_tree # nodes = nt.nodes # links = nt.links # # Image Texture # textureNode = nodes.new("ShaderNodeTexImage") # textureNode.image = bpy.data.images.load(tex_path) # links.new(nodes['Diffuse BSDF'].inputs['Color'], textureNode.outputs['Color']) # mat.specular_intensity = 0 # bpy.data.objects[oi].active_material = mat # print(bpy.data.objects[oi].active_material) for mat in bpy.data.materials: nodes = mat.node_tree.nodes links = mat.node_tree.links textureNode = nodes.new("ShaderNodeTexImage") textureNode.image = bpy.data.images.load(tex_path) links.new(nodes['Diffuse BSDF'].inputs['Color'], textureNode.outputs['Color']) # print(bpy.data.objects[oi].active_material) tri = 0 while tri <= g_max_trials: tri += 1 vp = random.sample(vps, 1)[0] sample_different_object, sample_different_vp = render(obj_path, vp, temp_folder) if sample_different_vp: if sample_different_object: print('Transparent object!') return False print('Rendering failed, repeating') continue success = make_fmo(save_path, gt_path, video_path) if success: return True print('Making FMO failed, repeating') return False def init_all(): """init everything we need for rendering an image """ scene_setting_init(g_gpu_render_enable) node_setting_init() cam_obj = bpy.data.objects['Camera'] cam_obj.rotation_mode = g_rotation_mode if g_render_light: bpy.data.objects['Lamp'].data.energy = 50 bpy.ops.object.lamp_add(type='SUN') bpy.data.objects['Sun'].data.energy = 5 ### YOU CAN WRITE YOUR OWN IMPLEMENTATION TO GENERATE DATA init_all() argv = sys.argv argv = argv[argv.index("--") + 1:] start_index = int(argv[0]) step_index = int(argv[1]) print('Start index {}, step index {}'.format(start_index, step_index)) temp_folder = g_syn_rgb_folder+g_render_objs[start_index]+'/' for obj_name in g_render_objs[start_index:(start_index+step_index)]: print("Processing object {}".format(obj_name)) obj_folder = os.path.join(g_syn_rgb_folder, obj_name) if not os.path.exists(obj_folder): os.makedirs(obj_folder) if not os.path.exists(os.path.join(obj_folder,"GT")): os.mkdir(os.path.join(obj_folder,"GT")) num = g_shapenet_categlory_pair[obj_name] search_path = os.path.join(g_shapenet_path, num, '**','*.obj') pathes = glob.glob(search_path, recursive=True) random.shuffle(pathes) objid = 1 tri = 0 while objid <= g_number_per_category: print(" instance {}".format(objid)) clear_mesh() path = random.sample(pathes, 1)[0] old = open_log(temp_folder) bpy.ops.import_scene.obj(filepath=path, axis_forward='-Z', axis_up='Y', filter_glob="*.obj;*.mtl", use_split_groups=False, use_split_objects=True) # bpy.ops.import_scene.obj(filepath=path) close_log(old) #combine_objects() #scale_objects(0.5) result = render_obj(path, obj_folder, objid, obj_name, temp_folder) if result: objid += 1 tri = 0 else: print('Error! Rendering another object from the category!') tri += 1 if tri > g_max_trials: print('No object find in the category!!!!!!!!!') break ``` #### File: DeFMO/renderer/render_helper.py ```python import os import glob import math import random from collections import namedtuple from settings import * # need to write outside the function, otherwise pickle can find # where VP were defined VP = namedtuple('VP',['azimuth', 'elevation', 'tilt', 'distance']) Model = namedtuple('Model', ['path', 'vps']) def load_viewpoint(viewpoint_file): """read viewpoints from a file, can only read one file at once Args: viewpoint_file: file path to viewpoint file, read only one file for each function call Returns: generator of viewpoint parameters(contains azimuth,elevation,tilt angles and distance) """ with open(viewpoint_file) as viewpoints: for line in viewpoints.readlines(): yield VP(*line.strip().split()) def load_viewpoints(viewpoint_file_list): """load multiple viewpoints file from given lists Args: viewpoint_file_list: a list contains obj path a wrapper for load_viewpoint function Returns: return a generator contains multiple generators which contains obj pathes """ if isinstance(viewpoint_file_list, str): vp_file_list = [viewpoint_file_list] try: vp_file_list = iter(viewpoint_file_list) except TypeError: print("viewpoint_file_list is not an iterable object") for vp_file in vp_file_list: yield load_viewpoint(vp_file) def load_object_lists(category=None): """ load object pathes according to the given category Args: category:a iterable object contains the category which we want render Returns: generator of gnerators of obj file pathes """ #type checking if not category: category = g_render_objs elif isinstance(category, str): category = [category] else: try: iter(category) except TypeError: print("category should be an iterable object") #load obj file path for cat in category: num = g_shapenet_categlory_pair[cat] search_path = os.path.join(g_shapenet_path, num, '**','*.obj') yield glob.iglob(search_path, recursive=True) def camera_location(azimuth, elevation, dist): """get camera_location (x, y, z) you can write your own version of camera_location function to return the camera loation in the blender world coordinates system Args: azimuth: azimuth degree(object centered) elevation: elevation degree(object centered) dist: distance between camera and object(in meter) Returens: return the camera location in world coordinates in meters """ #convert azimuth, elevation degree to radians phi = float(elevation) * math.pi / 180 theta = float(azimuth) * math.pi / 180 dist = float(dist) x = dist * math.cos(phi) * math.cos(theta) y = dist * math.cos(phi) * math.sin(theta) z = dist * math.sin(phi) return x, y, z def camera_rot_XYZEuler(azimuth, elevation, tilt): """get camera rotaion in XYZEuler Args: azimuth: azimuth degree(object centerd) elevation: elevation degree(object centerd) tilt: twist degree(object centerd) Returns: return the camera rotation in Euler angles(XYZ ordered) in radians """ azimuth, elevation, tilt = float(azimuth), float(elevation), float(tilt) x, y, z = 90, 0, 90 #set camera at x axis facing towards object #twist #if tilt > 0: # y = tilt #else: # y = 360 + tilt #latitude x = x - elevation #longtitude z = z + azimuth return x * math.pi / 180, y * math.pi / 180, z * math.pi / 180 def random_sample_objs(num_per_cat): """randomly sample object file from ShapeNet for each category in global variable g_render_objs, and then save the result in global variable g_obj_path Args: num_per_cat: how many obj file we want to sample per category Returns: vps: a dictionary contains category name and its corresponding obj file path """ obj_path_lists = load_object_lists(g_render_objs) obj_path_dict = {} for cat, pathes in zip(g_render_objs, obj_path_lists): pathes = list(pathes) random.shuffle(pathes) samples = random.sample(pathes, num_per_cat) obj_path_dict[cat] = samples return obj_path_dict def random_sample_vps(obj_path_dict, num_per_model): """randomly sample vps from vp lists, for each model, we sample num_per_cat number vps, and save the result to g_vps Args: obj_pathes: result of function random_sample_objs, contains obj file pathes num_per_cat: how many view point to sample per model Returns: result_dict: a dictionary contains model name and its corresponding viewpoints """ if type(g_view_point_file) == set: vp_file_lists = [name for name in g_view_point_file] else: vp_file_lists = [g_view_point_file[name] for name in g_render_objs] viewpoint_lists = load_viewpoints(vp_file_lists) obj_file_pathes = [obj_path_dict[name] for name in g_render_objs] result_dict = {} for cat, pathes, vps in zip(g_render_objs, obj_file_pathes, viewpoint_lists): vps = list(vps) random.shuffle(vps) models = [] for p in pathes: samples = random.sample(vps, num_per_model) models.append(Model(p, samples)) result_dict[cat] = models return result_dict def random_sample_objs_and_vps(model_num_per_cat, vp_num_per_model): """wrapper function for randomly sample model and viewpoints and return the result, each category in g_render_objs contains multiple Model object, each Model object has path and vps attribute path attribute indicates where the obj file is and vps contains viewpoints to render the obj file Args: model_num_per_cat: how many models you want to sample per category vp_num_per_model: how many viewpoints you want to sample per model Returns: return a dict contains Model objects """ obj_path_dict = random_sample_objs(model_num_per_cat) result_dict = random_sample_vps(obj_path_dict, vp_num_per_model) return result_dict ```
{ "source": "1259975740/Img2Txt", "score": 3 }
#### File: Img2Txt/Fun/pdf2txt.py ```python import argparse import logging import sys import pdfminer3.settings pdfminer3.settings.STRICT = False import pdfminer3.high_level import pdfminer3.layout from pdfminer3.image import ImageWriter import tkinter as tk from tkinter import messagebox as mBox def extract_text(files=[], outfile='-', _py2_no_more_posargs=None, no_laparams=False, all_texts=None, detect_vertical=None, # LAParams word_margin=None, char_margin=None, line_margin=None, boxes_flow=None, # LAParams output_type='text', codec='utf-8', strip_control=False, maxpages=0, page_numbers=None, password="", scale=1.0, rotation=0, layoutmode='normal', output_dir=None, debug=False, disable_caching=False, **other): if _py2_no_more_posargs is not None: raise ValueError("Too many positional arguments passed.") if not files: raise ValueError("Must provide files to work upon!") if not no_laparams: laparams = pdfminer3.layout.LAParams() for param in ("all_texts", "detect_vertical", "word_margin", "char_margin", "line_margin", "boxes_flow"): paramv = locals().get(param, None) if paramv is not None: setattr(laparams, param, paramv) else: laparams = None imagewriter = None if output_dir: imagewriter = ImageWriter(output_dir) if output_type == "text" and outfile != "-": for override, alttype in ( (".htm", "html"), (".html", "html"), (".xml", "xml"), (".tag", "tag") ): if outfile.endswith(override): output_type = alttype if outfile == "-": outfp = sys.stdout if outfp.encoding is not None: codec = 'utf-8' else: outfp = open(outfile, "wb") for fname in files: with open(fname, "rb") as fp: pdfminer3.high_level.extract_text_to_fp(fp, **locals()) return outfp def trans(files, outfile): mBox.showinfo('提示', '运行中,请耐心等待\n 文件越复杂,运行时间越久哦(关了吧,没关系的)') outfp = extract_text(files=files,outfile=outfile) outfp.close() mBox.showinfo('提示ʾ', '运行完毕') if __name__ == '__main__': trans(files=['E:/java-2020-03/eclipse/workspace/Img2Txt/Fun/test.pdf'],outfile='output.html') ``` #### File: Img2Txt/Fun/screenShot.py ```python import tkinter as tk from tkinter import filedialog as fd import os from os import path from PIL import ImageGrab from time import sleep class ScreenShot: def __init__(self,master,filename): self._createWidge(master, filename) #变量X和Y用来记录鼠标左键按下的位置 def _onLeftButtonDown(self,event): self._X.set(event.x) self._Y.set(event.y) #开始截图 self._sel = True def _onLeftButtonMove(self,event): if not self._sel: return try: #删除刚画完的图形,要不然鼠标移动的时候是黑乎乎的一片矩形 self._canvas.delete(self._lastDraw) except Exception as e: pass self._lastDraw = self._canvas.create_rectangle(self._X.get(), self._Y.get(), event.x, event.y, outline='black', width = 5) def _onLeftButtonUp(self,event): self.fileName = os.path.join(os.path.dirname(__file__),'../Input') self._sel = False try: self._canvas.delete(self._lastDraw) except Exception as e: pass sleep(0.1) #考虑鼠标左键从右下方按下而从左上方抬起的截图 leftSel, rightSel = sorted([self._X.get(), event.x]) topSel, bottomSel = sorted([self._Y.get(), event.y]) pic = ImageGrab.grab((leftSel+1,topSel,rightSel+1,bottomSel)) #弹出保存截图对话框 fDir = os.path.join(os.path.dirname(__file__),'../Input') #���ϼ��ļ�Ŀ¼�� self.fileName = fd.asksaveasfilename(title='保存截图', filetypes=[('JPG files','*.jpg')], initialdir=fDir) #默认的文件夹呀!! if self.fileName: pic.save(self.fileName) pic.close() #关闭当前窗口 #print(left, ' ', top,' ',right,' ',bottom) self.top.destroy() print(self.fileName) sleep(1) def _createWidge(self,master,filename): self.fileName = os.path.abspath(os.path.join( os.path.dirname(__file__),".."))+'\Input' self._X = tk.IntVar(0) self._Y = tk.IntVar(0) #屏幕尺寸 screenWidth = master.winfo_screenwidth() #print(screenWidth) screenHeight = master.winfo_screenheight() #print(screenHeight) #创建顶级组件容器 self.top = tk.Toplevel(master, width=screenWidth, height=screenHeight) #不显示最大化、最小化按钮 self.top.overrideredirect(True) self._canvas = tk.Canvas(self.top,bg='white', width=screenWidth, height=screenHeight) #显示全屏截图,在全屏截图上进行区域截图 self._img = tk.PhotoImage(file=filename) self._canvas.create_image(screenWidth//2, screenHeight//2,image=self._img) #鼠标左键按下的位置 self._canvas.bind('<Button-1>', self._onLeftButtonDown) #鼠标左键移动,显示选取的区域 self._canvas.bind('<B1-Motion>', self._onLeftButtonMove) #获取鼠标左键抬起的位置,保存区域截图 self._canvas.bind('<ButtonRelease-1>', self._onLeftButtonUp) self._canvas.pack(fill=tk.BOTH, expand=tk.YES) def buttonCaptureClick(master): #最小化主窗口 master.state('icon') sleep(0.5) filename = 'screenShot.png' im = ImageGrab.grab() im.save(filename) im.close() #显示全屏幕截图 w = ScreenShot(master,filename) # master.printScrBut.wait_window(w.top) #截图结束,恢复主窗口,并删除临时的全屏幕截图文件 #label.config(text='Hello') os.remove(filename) print(w.fileName) return w.fileName ``` #### File: Img2Txt/Fun/summary.py ```python from pyhanlp import * from tkinter import messagebox as mBox import tkinter as tk def summary(text,num,Widget): text_list = HanLP.extractSummary(text,num) text = '\n'.join([t for t in text_list]) Widget.insert(tk.INSERT,text) mBox.showinfo('提示', '运行完毕') if __name__ == "__main__": summary_list = summary('“芦花滩上有扁舟, 俊杰黄昏独自游, 义到尽头原是命, 反躬逃难必无忧。”\ 这是一首出自《水浒传》中吴用留下的藏头反诗;电视剧《裂变》中汉奸“蝙蝠”也曾\ 使用数字对应书本页面和文字的方法传递消息给日寇;电影《暗算》中更是提到了黄依\ 依解决多种密文的具体情节;甚至连动画片《名侦探柯南》也出现了 skytale 加密的细\ 节。事实上,密文不仅存在于荧幕中,而且深入到生活的方方面面,例如用于存储互联\ 网消息的 cookie、以及互联网安全中常提到的数字签名、在银行等网站上填写个人信息\ 时,都会用一定的手段将明文加密成密文传输到在远处的服务器中,可以说,在互联网\ 的世界里,只要有比特流动,就一定会有加密的存在。为此,各大高校还设立了专门的\ 学科,如密码学、密码分析学、密码史等。不得不说,密码的发展更数学密切相关、大\ 多数的密码学家都兼任数学家的身份,而密码学,这一学科在战争时代更是快速地发展。\ 以下将会介绍密码学的发展史、以及一些经典密码学的典型加密方法和其对应的解密方\ 法的介绍、文章最后会简单地提及现代密码学的一些实现手段',5) print(summary_list) ``` #### File: Img2Txt/GUI/Tab3.py ```python import tkinter as tk from tkinter import ttk import sys from PIL.FontFile import WIDTH sys.path.append('../') from Fun.vert import verticalPrint from tkinter import messagebox as mBox from tkinter import scrolledtext from threading import Thread class Tab3(): def __init__(self,tab,i18n): self._createWidget(tab,i18n) def _createTransThread(self): input_text = u''+str(self.inScrTxt.get(1.0,tk.END)) print(input_text) width = int(self.widthEry.get()) run = Thread(target=verticalPrint,args=(input_text,width,self.outScrTxt)) run.setDaemon(True) run.start() def _trans(self): self._createTransThread() def _clean(self): if mBox.askyesno("百变小T", "确定清空输出框里的内容吗?"): self.inScrTxt.delete(1.0,tk.END) self.outScrTxt.delete(1.0,tk.END) def _createWidget(self,tab,i18n): self.zhuo = ttk.Frame(tab) self.zhuo.grid(row=0,column=0) self.widthFrm = ttk.Frame(self.zhuo) self.widthFrm.grid(column=0,row=0,sticky='W',pady=6) ttk.Label(self.widthFrm,text=i18n.width).grid(column=0,row=0) self._width_default = tk.StringVar() self._width_default.set(6) self.widthEry = ttk.Entry(self.widthFrm,textvariable=self._width_default) self.widthEry.grid(column=1,row=0) #转换按钮 self.butFrm = ttk.Frame(self.zhuo) self.butFrm.grid(column=0,row=2,sticky='W',pady=6) self.transBut = ttk.Button(self.butFrm,text=i18n.transBut, command=self._trans) self.transBut.grid(column=1,row=0) self.cleanBut = ttk.Button(self.butFrm,text=i18n.cleanBut, command=self._clean) self.cleanBut.grid(column=2,row=0) for child in self.butFrm.winfo_children(): child.grid_configure(padx=6,pady=6,sticky='W') #滑动文字展示栏 self.printOptFrm = ttk.Frame(self.zhuo) self.printOptFrm.grid(row=1,column=0,sticky='W') ttk.Label(self.printOptFrm,text=i18n.input_tab3).grid(column=0,row=0) self.inScrTxt = scrolledtext.ScrolledText(self.printOptFrm,height=10,width=70,wrap=tk.WORD) self.inScrTxt.grid(row=1,column=0,sticky='W',padx=6,pady=6) self.inScrTxt.insert(tk.INSERT,"凡是到达了的地方,都I want to die, but I still to my life 属于昨天。哪怕那山再青,那水再秀,那风再温柔。带深的流连便成了一种羁绊,\ 绊住的不仅是双脚,还有未来。可我的钱不够笑哭") ttk.Label(self.printOptFrm,text=i18n.output_tab3).grid(column=0,row=2) self.outScrTxt = scrolledtext.ScrolledText(self.printOptFrm,height=10,width=70,wrap=tk.WORD) self.outScrTxt.grid(row=3,column=0,sticky='W',padx=6,pady=6) for child in self.printOptFrm.winfo_children(): child.grid_configure(padx=6,pady=6,sticky='W') ```
{ "source": "1259975740/Word2Paper", "score": 3 }
#### File: dist/Fun/fun1.py ```python from PIL import Image, ImageFont import numpy as np from handright import Template, handwrite from multiprocessing import Pool import time from Fun.fun2 import * from tkinter import messagebox as mBox def trans(input_path,output_path,font_path,line_spacing,font_size, fill,left_margin,top_margin,right_margin,bottom_margin,word_spacing, disturb_x_sigma,disturb_y_sigma,disturb_theta_sigma, line_spacing_sigma,font_size_sigma,word_spacing_sigma,background,if_test=False): mBox.showinfo('提示', '运行中,请耐心等待\n 文件越复杂,运行时间越久哦') background=Image.open(background) width, height = background.size background = background.resize((np.int(3*width),np.int(2.5*height)),resample=Image.LANCZOS) if not if_test: text = read_docx(input_path) else: text = """ 卿寻鲤影剔浮英, 我恨浮英掩玉卿。 难教芳心知我心, 孤烛半影又天明。 """ time_start = time.time() template = Template( background=background, font_size=font_size, font=ImageFont.truetype(font_path), line_spacing=line_spacing, fill=fill, # ���塰��ɫ�� left_margin=left_margin, top_margin=-top_margin, right_margin=right_margin, bottom_margin=bottom_margin, word_spacing=word_spacing, line_spacing_sigma=line_spacing_sigma, # �м������Ŷ� font_size_sigma=font_size_sigma, # �����С����Ŷ� word_spacing_sigma=word_spacing_sigma, # �ּ������Ŷ� end_chars=",。;、“”", # ��ֹ�ض��ַ����Ű��㷨���Զ����ж����������� perturb_x_sigma=disturb_x_sigma, # �ʻ�����ƫ������Ŷ� perturb_y_sigma=disturb_y_sigma, # �ʻ�����ƫ������Ŷ� perturb_theta_sigma=disturb_theta_sigma, # �ʻ���תƫ������Ŷ� ) images = handwrite(text, template) for i, im in enumerate(images): assert isinstance(im, Image.Image) if not if_test: im.save(output_path+"\{}.jpg".format(i)) else: im.save(r"../test.jpg") time_end = time.time() print('本次运行共耗费: '+str(time_end-time_start)+' 秒') mBox.showinfo('提示', '运行完毕') ```
{ "source": "1260228859/greentor", "score": 2 }
#### File: greentor/greentor/green.py ```python from __future__ import absolute_import import sys import socket import time import errno import greenlet from functools import wraps from collections import deque try: from StringIO import StringIO except ImportError: from io import StringIO from tornado.ioloop import IOLoop from tornado.concurrent import Future from tornado.gen import coroutine, Return from tornado.netutil import Resolver from tornado.iostream import (IOStream as BaseIOStream, StreamClosedError, _ERRNO_WOULDBLOCK) IS_PYPY = False try: import __pypy__ __pypy__ IS_PYPY = True except: pass def enable_debug(): if IS_PYPY: sys.stderr.write("settrace api unsupported on pypy") sys.stderr.flush() return import inspect def trace_green(event, args): src, target = args if event == "switch": print("from %s switch to %s" % (src, target)) elif event == "throw": print("from %s throw exception to %s" % (src, target)) if src.gr_frame: tracebacks = inspect.getouterframes(src.gr_frame) buff = [] for traceback in tracebacks: srcfile, lineno, func_name, codesample = traceback[1:-1] trace_line = '''File "%s", line %d, in %s\n%s ''' buff.append(trace_line % (srcfile, lineno, func_name, "".join(codesample))) print("".join(buff)) greenlet.settrace(trace_green) class GreenTask(greenlet.greenlet): def __init__(self, run, *args, **kwargs): super(GreenTask, self).__init__() self._run = run self._args = args self._kwargs = kwargs self._future = Future() self._result = None self._exc_info = () @property def args(self): return self._args @property def kwargs(self): return self._kwargs def run(self): try: timeout = self.kwargs.pop("timeout", 0) if timeout: timer = Timeout(timeout) timer.start() self._result = self._run(*self.args, **self.kwargs) self._future.set_result(self._result) except: self._exc_info = sys.exc_info() self._future.set_exc_info(self._exc_info) finally: if timeout: timer.cancel() def start(self): self.switch() def __str__(self): func_name = "%s of %s " % (self._run.__name__, self._run.__module__) return "<greenlet %s at %s>" % (func_name, hex(id(self))) def __repr__(self): return self.__str__() def wait(self): return self._future @classmethod def spawn(cls_green, *args, **kwargs): task = cls_green(*args, **kwargs) task.start() return task def synclize(func): coro = coroutine(func) @wraps(func) def _sync_call(*args, **kwargs): child_gr = greenlet.getcurrent() main = child_gr.parent assert main, "only run in child greenlet" def callback(future): if future.exc_info(): child_gr.throw(*future.exc_info()) elif future.exception(): child_gr.throw(future.exception()) else: child_gr.switch(future.result()) IOLoop.current().add_future(coro(*args, **kwargs), callback) return main.switch() return _sync_call def spawn(callable_obj, *args, **kwargs): return GreenTask.spawn(callable_obj, *args, **kwargs).wait() def green(func): @wraps(func) def wrapper(*args, **kwargs): return GreenTask.spawn(func, *args, **kwargs).wait() return wrapper class Waiter(object): def __init__(self): self._greenlet = greenlet.getcurrent() self._main = self._greenlet.parent @property def greenlet(self): return self._greenlet def switch(self, value): self._greenlet.switch(value) def throw(self, *exc_info): self._greenlet.throw(*exc_info) def get(self): return self._main.switch() def clear(self): pass def sleep(seconds): waiter = Waiter() unique = object() IOLoop.current().add_timeout(time.time() + seconds, waiter.switch, unique) waiter.get() class TimeoutException(Exception): pass class Timeout(object): def __init__(self, deadline, ex=TimeoutException): self._greenlet = greenlet.getcurrent() self._ex = ex self._callback = None self._deadline = deadline self._delta = time.time() + deadline self._ioloop = IOLoop.current() def start(self, callback=None): errmsg = "%s timeout, deadline is %d seconds" % (str(self._greenlet), self._deadline) if callback: self._callback = self._ioloop.add_timeout(self._delta, callback, self._ex(errmsg)) else: self._callback = self._ioloop.add_timeout( self._delta, self._greenlet.throw, self._ex(errmsg)) def cancel(self): assert self._callback, "Timeout not started" self._ioloop.remove_timeout(self._callback) self._greenlet = None class IOStream(BaseIOStream): def _handle_events(self, fd, events): if self._closed: return try: if self._connecting: self._handle_connect() if self._closed: return if events & self.io_loop.READ: self._handle_read() if self._closed: return if events & self.io_loop.WRITE: self._handle_write() if self._closed: return if events & self.io_loop.ERROR: self.error = self.get_fd_error() self.io_loop.add_callback(self.close) return except Exception: self.close(exc_info=True) raise def _handle_connect(self): super(IOStream, self)._handle_connect() if not self.closed(): self._state = self.io_loop.ERROR | self.io_loop.READ self.io_loop.update_handler(self.fileno(), self._state) def _handle_read(self): chunk = True while True: try: chunk = self.socket.recv(self.read_chunk_size) if not chunk: break self._read_buffer.append(chunk) self._read_buffer_size += len(chunk) except (socket.error, IOError, OSError) as e: en = e.errno if hasattr(e, 'errno') else e.args[0] if en in _ERRNO_WOULDBLOCK: break if en == errno.EINTR: continue self.close(exc_info=True) return if self._read_future is not None and self._read_buffer_size >= self._read_bytes: future, self._read_future = self._read_future, None data = b"".join(self._read_buffer) self._read_buffer.clear() self._read_buffer_size = 0 self._read_bytes = 0 future.set_result(data) if not chunk: self.close() return def read(self, num_bytes): assert self._read_future is None, "Already reading" if self._closed: raise StreamClosedError(real_error=self.error) future = self._read_future = Future() self._read_bytes = num_bytes self._read_partial = False if self._read_buffer_size >= self._read_bytes: future, self._read_future = self._read_future, None data = b"".join(self._read_buffer) self._read_buffer.clear() self._read_buffer_size = 0 self._read_bytes = 0 future.set_result(data) return future read_bytes = read def _handle_write(self): while self._write_buffer: try: data = self._write_buffer.popleft() num_bytes = self.socket.send(data) self._write_buffer_size -= num_bytes if num_bytes < len(data): self._write_buffer.appendleft(data[num_bytes:]) return except (socket.error, IOError, OSError) as e: en = e.errno if hasattr(e, 'errno') else e.args[0] if en in _ERRNO_WOULDBLOCK: self._write_buffer.appendleft(data) break self.close(exc_info=True) return if not self._write_buffer: if self._state & self.io_loop.WRITE: self._state = self._state & ~self.io_loop.WRITE self.io_loop.update_handler(self.fileno(), self._state) def write(self, data): assert isinstance(data, bytes) if self._closed: raise StreamClosedError(real_error=self.error) if data: self._write_buffer.append(data) self._write_buffer_size += len(data) if not self._connecting: self._handle_write() if self._write_buffer: if not self._state & self.io_loop.WRITE: self._state = self._state | self.io_loop.WRITE self.io_loop.update_handler(self.fileno(), self._state) class AsyncSocket(object): def __init__(self, sock): self._iostream = IOStream(sock) self._resolver = Resolver() self._readtimeout = 0 self._connecttimeout = 0 self._rbuffer = StringIO(b'') self._rbuffer_size = 0 def set_readtimeout(self, timeout): self._readtimeout = timeout def set_connecttimeout(self, timeout): self._connecttimeout = timeout @synclize def connect(self, address): host, port = address timer = None try: if self._connecttimeout: timer = Timeout(self._connecttimeout) timer.start() resolved_addrs = yield self._resolver.resolve( host, port, family=socket.AF_INET) for addr in resolved_addrs: family, host_port = addr yield self._iostream.connect(host_port) break except TimeoutException as e: self.close() raise socket.timeout(e.message) finally: if timer: timer.cancel() def sendall(self, buff): self._iostream.write(buff) def read(self, nbytes): if nbytes <= self._rbuffer_size: self._rbuffer_size -= nbytes return self._rbuffer.read(nbytes) if self._rbuffer_size > 0: self._iostream._read_buffer.appendleft(self._rbuffer.read()) self._iostream._read_buffer_size += self._rbuffer_size self._rbuffer_size = 0 if nbytes <= self._iostream._read_buffer_size: data, data_len = b''.join( self._iostream._read_buffer), self._iostream._read_buffer_size self._iostream._read_buffer.clear() self._iostream._read_buffer_size = 0 if data_len == nbytes: return data self._rbuffer_size = data_len - nbytes self._rbuffer = StringIO(data) return self._rbuffer.read(nbytes) data = self._read(nbytes) if len(data) == nbytes: return data self._rbuffer_size = len(data) - nbytes self._rbuffer = StringIO(data) return self._rbuffer.read(nbytes) @synclize def _read(self, nbytes): timer = None try: if self._readtimeout: timer = Timeout(self._readtimeout) timer.start() data = yield self._iostream.read_bytes(nbytes) raise Return(data) except TimeoutException as e: self.close() raise socket.timeout(e.message) finally: if timer: timer.cancel() def recv(self, nbytes): return self.read(nbytes) def close(self): self._iostream.close() def set_nodelay(self, flag): self._iostream.set_nodelay(flag) def settimeout(self, timeout): pass def shutdown(self, direction): if self._iostream.fileno(): self._iostream.fileno().shutdown(direction) def recv_into(self, buff): expected_rbytes = len(buff) data = self.read(expected_rbytes) srcarray = bytearray(data) nbytes = len(srcarray) buff[0:nbytes] = srcarray return nbytes def makefile(self, mode, other): return self def fileno(self): return self._iostream.fileno() class Event(object): def __init__(self): self._waiter = [] self._ioloop = IOLoop.current() def set(self): self._ioloop.add_callback(self._notify) def wait(self, timeout=None): current_greenlet = greenlet.getcurrent() self._waiter.append(current_greenlet.switch) waiter = Waiter() if timeout: timeout_checker = Timeout(timeout) timeout_checker.start(current_greenlet.throw) waiter.get() timeout_checker.cancel() else: waiter.get() def _notify(self): for waiter in self._waiter: waiter(self) class Pool(object): def __init__(self, max_size=32, wait_timeout=8, params={}): self._maxsize = max_size self._conn_params = params self._pool = deque(maxlen=self._maxsize) self._wait = deque() self._wait_timeout = wait_timeout self._count = 0 self._started = False self._ioloop = IOLoop.current() self._event = Event() self._ioloop.add_future(spawn(self.start), lambda future: future) def create_raw_conn(self): pass def init_pool(self): self._count += 1 conn = self.create_raw_conn() self._pool.append(conn) @property def size(self): return len(self._pool) def get_conn(self): while 1: if self._pool: return self._pool.popleft() elif self._count < self._maxsize: self.init_pool() else: return self.wait_conn() def wait_conn(self): timer = None child_gr = greenlet.getcurrent() main = child_gr.parent try: if self._wait_timeout: timer = Timeout(self._wait_timeout) timer.start() self._wait.append(child_gr.switch) return main.switch() except TimeoutException: raise Exception("timeout wait connections, connections size %s", self.size) finally: if timer: timer.cancel() def release(self, conn): if self._wait: switch = self._wait.popleft() self._ioloop.add_callback(switch, conn) else: self._pool.append(conn) def quit(self): self._started = False self._event.set() def _close_all(self): for conn in tuple(self._pool): conn.close() self._pool = None def start(self): # self.init_pool() self._started = True self._event.wait() self._close_all() ```
{ "source": "126alexander/ASS_126", "score": 4 }
#### File: 126alexander/ASS_126/Temperature.py ```python import math import time # Intro print("Welcome to the Temperature Conventer. Type C for Celsuis, F for Fahreinheit and K for Kelvin") # Function def again(): try_again = print() # Letting the user choose the temperature and convert it to another temperature else User_Temperature = input("your temperature | C | F | K | ").upper() convert_Temperature = input("The temperature you want to convert to | C | F | K | ").upper() # If the user's intial temperature (C, F, or K) convert it to what the user wants to convert to (C, F, or K) and give him the equation if User_Temperature == "C": if convert_Temperature == "F": degree = float(input("enter the degree: ")) result = (degree * 9/5) + 32 print(f"{result}°F \nThe equation: ({degree} × 9/5) + 32 = {result}") elif convert_Temperature == "K": degree = float(input("enter the degree: ")) result = degree + 273.15 print(f"{result}°K \nThe equation: {degree} + 273.15 = {result}") elif convert_Temperature == "C": print("This is the same type of temperature") time.sleep(1) again() else: print("Type a temperature") time.sleep(1) again() elif User_Temperature == "F": if convert_Temperature == "C": degree = float(input("enter the degree: ")) result = (degree - 32) * 5/9 print(f"{result}°F \nThe equation: ({degree} - 32) × 5/9 = {result}") elif convert_Temperature == "K": degree = float(input("enter the degree: ")) result = (degree - 32) * 5/9 + 273.15 print(f"{result}°K \nThe equation: ({degree} - 32) × 5/9 + 273.15 = {result}") elif convert_Temperature == "F": print("This is the same type of temperature") time.sleep(1) again() else: print("Type a temperature") time.sleep(1) again() elif User_Temperature == "K": if convert_Temperature == "C": degree = float(input("enter the degree: ")) result = degree - 273.15 print(f"{result}°F \nThe equation: {degree} - 273.15 = {result}") elif convert_Temperature == "F": degree = float(input("enter the degree: ")) result = (degree - 273.15) * 9/5 + 32 print(f"{result}°K \nThe equation: ({degree} - 273.15) × 9/5 + 32 = {result}") elif convert_Temperature == "K": print("This is the same type of temperature") time.sleep(1) again() else: print("Type a temperature") time.sleep(1) again() else: print("Type a temperature") time.sleep(1) again() # Aking if the user wants to convert again while try_again != "Yes" and try_again != "No": print("\nDo you want to try again?") try_again = input("Yes | No | ").lower().capitalize() if try_again == "Yes": again() break elif try_again == "No": print("Goodbye") break again() ```
{ "source": "126alexander/LAB_13", "score": 4 }
#### File: LAB_13/modules/fun_task_1.py ```python import random def answer(): i = 24 grade = [] for i in range(0, i): grade.append(random.randint(2, 5)) print(f"Массив оценок: {grade}") count = 0 for i in grade: count += grade[i] / 5; print(f"Из них пятёрок: {count:0.1f}") ```
{ "source": "1271756664/PyHail", "score": 2 }
#### File: PyHail/pyhail/hdr.py ```python def main(radar_dict): """ Hail Differential Reflectity Retrieval Required DBZH and ZDR fields Parameters: =========== radar_dict: dictionary contains two entries, dbz and zdr, which contain numpy arrays of their respective fields. Returns: ======== hdr_meta: dict pyart field dictionary containing HDR dataset hdr_size_meta: dict pyary field dictionary containing HDR size dataset """ # extract fields dbz = radar_dict["dbz"] zdr = radar_dict["zdr"] # calculate hdr # apply primary function zdr_fun = 19 * zdr + 27 # set limits based on zdr zdr_fun[zdr <= 0] = 27 zdr_fun[zdr > 1.74] = 60 # apply to zhh hdr = dbz - zdr_fun # use polynomial from Depue et al. 2009 to transform dB into mm hdr_size = 0.0284 * (hdr ** 2) - 0.366 * hdr + 11.69 hdr_size[hdr <= 0] = 0 # generate meta hdr_meta = { "data": hdr, "units": "dB", "long_name": "Hail Differential Reflectivity", "description": "Hail Differential Reflectivity developed by <NAME> Zhao (1990) doi:10.1109/TGRS.1990.572906" } hdr_size_meta = { "data": hdr_size, "units": "mm", "long_name": "HDR hail size estimate", "description": "Hail Differential Reflectivity Hail Size developed by Depue et al. (2009) doi:10.1175/JAM2529.1", "comments": "transform from HDR (dB) to hail size (mm); function scaled from paper figure" } # return hdr data return hdr_meta, hdr_size_meta ```
{ "source": "1271756664/study", "score": 2 }
#### File: pycwr/retrieve/HID.py ```python from ..configure.location_config import mbf_path import xarray as xr import numpy as np DEFAULT_WEIGHTS = {'dBZ': 1.5, 'ZDR': 0.8, 'KDP': 1.0, 'CC': 0.8, 'LDR': 0.5, 'T': 0.4} beta_params = xr.open_dataset(mbf_path) def hid_beta_function(x, m, a, b): """ :param x: input data(Zh, Zdr, Kdp...) :param m: center :param a: width :param b: slope :return: """ if None in x: return 0 else: return 1 / (1 + ((x - m) / a) ** (2 * b)) def fhc_HCL(dBZ=None, ZDR=None, KDP=None, CC=None, LDR=None, T=None, method="hybrid", band="C", weights=DEFAULT_WEIGHTS): """ Does FHC for warm-season precip. using beta function for Fuzzy Logic HCL types: Species #: ------------------------------- Drizzle 1 Rain 2 Ice Crystals 3 Dry Aggregates Snow 4 Wet Snow 5 Vertical Ice 6 Low-Density Graupel 7 High-Density Graupel 8 Hail 9 Big Drops 10 ------------------------------- cite{Dolan, Brenda , et al. "A Robust C-Band Hydrometeor Identification Algorithm and Application to a Long-Term Polarimetric Radar Dataset." Journal of Applied Meteorology and Climatology 52.9(2013):2162-2186.} :param weights: :param dBZ: Input reflectivity scalar/array :param ZDR: Input differential reflectivity scalar/array :param KDP: Input specific differential phase scalar/array :param CC: Input cross correlation ratio scalar/array :param LDR: Input linear depolarization ratio scalar/array :param T: Input temperature scalar/array :param method: Currently support 'hybrid' or 'linear' methods; hybrid preferred :param band: 'X', 'C', or 'S' :return: hydrometeor species [1-10] """ if LDR is None and ZDR is None and KDP is None and CC is None: print("No Polarimetric variable input!") return if dBZ is None: print("No reflectivity variable input!") return if LDR is None: weights['LDR'] = 0 if ZDR is None: weights['ZDR'] = 0 if KDP is None: weights['KDP'] = 0 if T is None: weights['T'] = 0 if CC is None: weights['CC'] = 0 Beta_ZDR = hid_beta_function(np.stack([ZDR] * 10, axis=-1), beta_params.MBF.sel(Band=band, Feature="ZDR", Param="m").values, beta_params.MBF.sel(Band=band, Feature="ZDR", Param="a").values, beta_params.MBF.sel(Band=band, Feature="ZDR", Param="b").values) Beta_dBZ = hid_beta_function(np.stack([dBZ] * 10, axis=-1), beta_params.MBF.sel(Band=band, Feature="dBZ", Param="m").values, beta_params.MBF.sel(Band=band, Feature="dBZ", Param="a").values, beta_params.MBF.sel(Band=band, Feature="dBZ", Param="b").values) Beta_KDP = hid_beta_function(np.stack([KDP] * 10, axis=-1), beta_params.MBF.sel(Band=band, Feature="KDP", Param="m").values, beta_params.MBF.sel(Band=band, Feature="KDP", Param="a").values, beta_params.MBF.sel(Band=band, Feature="KDP", Param="b").values) Beta_CC = hid_beta_function(np.stack([CC] * 10, axis=-1), beta_params.MBF.sel(Band=band, Feature="CC", Param="m").values, beta_params.MBF.sel(Band=band, Feature="CC", Param="a").values, beta_params.MBF.sel(Band=band, Feature="CC", Param="b").values) Beta_LDR = hid_beta_function(np.stack([LDR] * 10, axis=-1), beta_params.MBF.sel(Band=band, Feature="LDR", Param="m").values, beta_params.MBF.sel(Band=band, Feature="LDR", Param="a").values, beta_params.MBF.sel(Band=band, Feature="LDR", Param="b").values) if T is None: Beta_T = 1 else: Beta_T = hid_beta_function(np.stack([T] * 10, axis=-1), beta_params.MBF.sel(Band=band, Feature="T", Param="m").values, beta_params.MBF.sel(Band=band, Feature="T", Param="a").values, beta_params.MBF.sel(Band=band, Feature="T", Param="b").values) if method == "hybrid": HCL = (Beta_LDR*weights['LDR'] + Beta_KDP*weights['KDP'] + Beta_ZDR*weights['ZDR'] + Beta_CC*weights['CC'])/\ (weights['LDR'] + weights['KDP'] + weights['ZDR'] + weights['CC'])*Beta_T*Beta_dBZ elif method=="linear": HCL = (Beta_LDR*weights['LDR'] + Beta_KDP*weights['KDP'] + Beta_ZDR*weights['ZDR'] + Beta_CC*weights['CC'] +\ Beta_T * weights['T'] + Beta_dBZ * weights['dBZ'])/(weights['LDR'] + weights['KDP'] + weights['ZDR'] +\ weights['CC'] + weights['T'] + weights['dBZ']) else: print("No weighting method defined, use hybrid or linear") return return np.where(np.any(np.isnan(HCL), axis=-1), np.nan, np.argmax(HCL, axis=-1) + 1) ```
{ "source": "1271756664/-xESMF", "score": 3 }
#### File: -xESMF/IO/read_netCDF_with_PyNIO.py ```python import os import numpy as np import Ngl, Nio #----------------------------------------------------------------------- #-- Function: getVariableNames() - return the variable names (without coordinates) #----------------------------------------------------------------------- def getVariableNames(file): dims = file.dimensions coords = list(dims.keys()) names = list(file.variables.keys()) vnames = [n for n in names if n not in coords] return(vnames, coords) #----------------------------------------------------------------------- #-- Function: main #----------------------------------------------------------------------- def main(): #-- input file rectilinear_grid_3d.nc from the NCL User Guide #-- is available in the PyNGL installation home = os.environ.get('HOME') fname = os.path.join(home,"local/miniconda2/envs/pyngl_py3/lib/python3.7/site-packages/ngl/ncarg/data/nug/rectilinear_grid_3D.nc") #-- data file name #-- open file and print some information similar to ncdump and others file = Nio.open_file(fname,"r") print('------------------------------------------------------') print() print('--> file ', file) print() print('--> file attributes ', file.attributes) print() dims = file.dimensions print('--> file dimensions ', dims.values) print() print('--> file size of dimension time = ', dims['time']) print('--> file size of dimension lat = ', dims['lat']) print('--> file size of dimension lon = ', dims['lon']) #-- same as above #print('--> file size of dimension time = ', file.dimensions['time']) #print('--> file size of dimension lat = ', file.dimensions['lat']) #print('--> file size of dimension lon = ', file.dimensions['lon']) print() #-- get the variable and coordinates names (using function defined at the top of the script) vnames, coords = getVariableNames(file) print('--> Variable names (no coordinates): ', vnames) print('--> Variable names for coordinates: ', coords) print() #-- get the attributes of variable 't' vattr = [getattr(file.variables['t'],a) for a in file.variables['t'].attributes.keys()] print('--> file variable attributes ', list(vattr)) print() #-- read variable 't', first timestep, first level var = file.variables['t'][0,0,:,:] #-- print the size and shape of the variable print('------------------------------------------------------') print() print('--> var.size ',var.shape[0] * var.shape[1]) print('--> var.shape ',var.shape) #-- same as #print('--> var.size ',f.dimensions['lat'] * f.dimensions['lon']) #print('--> var.shape ',var.shape) print() #-- read variable latitude and longitude arrays lat = file.variables['lat'][:] lon = file.variables['lon'][:] #-- print the minimum and maximum of lat and lon print('------------------------------------------------------') print() print('--> lat min ', lat.min().item()) print('--> lat max ', lat.max()) print('--> lon min ', lon.min()) print('--> lon max ', lon.max()) #-- the above notation has the same results as below #print('--> lat min ', lat.min().item()) #print('--> lat max ', lat.max().item()) #print('--> lon min ', lon.min().item()) #print('--> lon max ', lon.max().item()) print() #-- retrieve the name of the coordinates lat/lon variables and the values of #-- the shape of the coordinates dimslat = coords[0] shapelat = lat.shape[0] dimslon = coords[1] shapelon = lon.shape[0] nrlat = shapelat nrlon = shapelon print('------------------------------------------------------') print() print('--> dimslat: ',dimslat, ' dimslon: ',dimslon,' nrlat: ',nrlat,' nrlon: ',nrlon) print() #-- print variable information print('------------------------------------------------------') print() print('--> var information') print() print(var) print() ##-- print the variable attributes #print('------------------------------------------------------') #print() #print('--> attributes: ',var.key()) #print() #-- print the variable values #print('------------------------------------------------------') #print() #print('--> values ') #print() #print(var.values) #print() #-- print the type of the variable (DataArray) print('------------------------------------------------------') print() print('--> type(var) ',type(var)) print() #-- print the type of the variable values (numpy.ndarray) print('------------------------------------------------------') print() print('--> type(var.values) ',type(var[:,:])) print() #-- select variable t from dataset for first timestep print('------------------------------------------------------') print() print('--> dataset variable t (time=0, lev=6)') print() print(file.variables['t'][0,6,:,:]) print() #-- select variable t from dataset, lat index 1 and lon index 2 print('------------------------------------------------------') print() print('--> dataset variable t select data which is closest to lat=1 and lon=2') print() print(file.variables['t'][:,:,1,2]) print() #-- select variable t, timestep 2001-01-01 print('------------------------------------------------------') print() print('--> time(0) = "2001-01-01"') print() print(file.variables['t'][0,:,:,:]) print() #-- select a sub-region (slice) - Take attention to the strange notation of the selection! #-- The leading i tells PyNIO to use the index instead of coordinate values, e.g. time|i0 print('------------------------------------------------------') print() print('--> select sub-region') print() print(file.variables['t']['time|i0 lev|: lat|20:0 lon|-25:0']) print() #-- print median values of variable t of dataset, one value for each level (axis=lat,lon) print('------------------------------------------------------') print() print('--> variable median') print() print(np.median(file.variables['t'],axis=(2,3))) print() #-- compute the means of the variable t of the dataset, one value for each level (axis=lat,lon) print('------------------------------------------------------') print() print('--> means') print() means = np.mean(file.variables['t'], axis=(2,3)) print(means) print() #-- compute the mean of the variable t which are greater than 273.15 K print('------------------------------------------------------') print() print('--> only means greater than 273.15 K') print() print(means[np.where(means > 273.15)]) print() #------------------------------------------------------------- #-- run main #------------------------------------------------------------- if __name__ == "__main__": main() ``` #### File: Transition_examples_NCL_to_PyNGL/xy/TRANS_bar_chart.py ```python from __future__ import print_function import numpy as np import Ngl #-- function get_bar returns coordinates of a bar def get_bar(x,y,dx,ymin,bar_width_perc=0.6): dxp = (dx * bar_width_perc)/2. xbar = np.array([x-dxp, x+dxp, x+dxp, x-dxp, x-dxp]) ybar = np.array([ ymin, ymin, y, y, ymin]) return xbar,ybar #-------------- # MAIN #-------------- #-- create random x- and y-values x = np.arange(1,13,1) y = [8,5,11,6,9,9,6,2,4,1,3,3] dx = min(x[1:-1]-x[0:-2]) #-- distance between x-values #-- define color and x-axis labels color = 'blue' xlabels = ["Jan","Feb","Mar","Apr","May","Jun", \ "Jul","Aug","Sep","Oct","Nov","Dec"]#-- x-axis labels #-- open a workstation wkres = Ngl.Resources() #-- generate an resources object for workstation wks_type = "png" #-- output type of workstation wks = Ngl.open_wks(wks_type,"plot_TRANS_bar_chart_py",wkres) #-- set resources res = Ngl.Resources() #-- generate an res object for plot res.nglFrame = False #-- don't advance frame res.nglPointTickmarksOutward = True #-- point tickmarks outward res.tiXAxisString = "x-values" #-- x-axis title res.tiYAxisString = "y-values" #-- y-axis title res.tmXBMode = "Explicit" #-- define bottom x-axis values and labels res.tmXBValues = x #-- x-axis values res.tmXBLabels = xlabels #-- x-axis labels res.tmXBLabelFontHeightF = 0.012 #-- bottom x-axis font size res.trXMinF = 0.0 #-- x-axis min value res.trXMaxF = 13.0 #-- x-axis max value res.trYMinF = 0.0 #-- y-axis min value res.trYMaxF = 12.0 #-- y-axis max value #-- bar resources barres = Ngl.Resources() #-- resource list for bars barres.gsFillColor = color #-- set bar color #-- loop through each y point and create bar for i in range(len(y)): xbar,ybar = get_bar(x[i], y[i], dx, res.trXMinF, 0.3) plot = Ngl.xy(wks, xbar, ybar, res) Ngl.polygon(wks, plot, xbar, ybar, barres) #-- filled bar Ngl.frame(wks) #-- advance frame Ngl.end() ``` #### File: Visualization/PyNGL/Hovmoeller_plot_hov_1.py ```python from __future__ import print_function import numpy as np import os, sys import Ngl,Nio #------------------------------------------------------- #-- Function: add_titles(wks,plot,resources,title,left,center,right) #------------------------------------------------------- def add_titles(wks,plot,title="",left="",center="",right=""): vpx = Ngl.get_float(plot,"vpXF") #-- retrieve value of res.vpXF from plot vpy = Ngl.get_float(plot,"vpYF") #-- retrieve value of res.vpYF from plot vpw = Ngl.get_float(plot,"vpWidthF") #-- retrieve value of res.vpWidthF from plot vph = Ngl.get_float(plot,"vpHeightF") #-- retrieve value of res.vpHeightF from plot ymax = vpy+0.08 #-- we need space for the title and strings if(ymax > 0.98): print("--> if you can't see the title use res.nglMaximize = False and/or set res.vpYF") #-- add title if(title != ""): tires = Ngl.Resources() tires.txFontHeightF = 0.018 tires.txJust = "CenterCenter" tires.txFont = 22 #-- Font 22: Helvetica bold if(left != "" or center != "" or right != ""): y = vpy + 0.07 else: y = vpy + 0.05 Ngl.text_ndc(wks, title, 0.5, y, tires) #-- add left, center and/or right string txres = Ngl.Resources() txres.txFontHeightF = 0.014 #-- font size for left, center and right string y = vpy + 0.035 #-- y-position if(left != ""): txres.txJust = "CenterLeft" #-- text justification x = vpx #-- x-position Ngl.text_ndc(wks, left, x, y, txres) #-- add text to wks if(center != ""): txres.txJust = "CenterCenter" #-- text justification Ngl.text_ndc(wks, center, 0.5, y, txres) #-- add text to wks if(right != ""): txres.txJust = "CenterRight" #-- text justification x = vpx+vpw #-- x-position Ngl.text_ndc(wks, right, x, y, txres) #-- add text to wks #------------------------------------------------------- #-- MAIN #------------------------------------------------------- #-- data path and file name ncarg_root = os.environ.get('NCARG_ROOT') diri = ncarg_root + '/lib/ncarg/data/cdf/' fname = 'chi200_ud_smooth.nc' #-- open file and read variables f = Nio.open_file(diri + fname,"r") #-- open data file chi = f.variables['CHI'][:,:] #-- read variable CHI[time,lon] lon = f.variables['lon'][:] time = f.variables['time'][:] scale = 1.0e6 chi = chi/scale #-- create the plot wks = Ngl.open_wks('png','plot_hovmueller') #-- open workstation #-- set resources res = Ngl.Resources res.nglFrame = False res.nglMaximize = False #-- maximize plot output #res.tiMainString = 'Default Hovmu~H-13V2F35~H~FV-2H3~ller' #-- title res.sfXArray = lon #-- scalar field x res.sfYArray = time #-- scalar field y res.tiYAxisString = 'elapsed time' res.tmYLLabelFontHeightF = 0.015 res.nglPointTickmarksOutward = True #-- point tickmarks out plot = Ngl.contour(wks,chi,res) #-- draw contours #-- delete resources because they will cause warnings (Why?) del([res.sfXArray,res.sfYArray,res.tiYAxisString,res.tmYLLabelFontHeightF]) #-- add the title and left, center and/or right string title = "Default Hovmu~H-13V2F35~H~FV-2H3~ller" long_name = f.variables["CHI"].attributes['long_name'] units = f.variables["CHI"].attributes['units'] add_titles(wks,plot,title,left=long_name,right=units) #-- advance the frame Ngl.frame(wks) #-- end Ngl.end() ``` #### File: Visualization/PyNGL/xy_plot_timeseries_xarray.py ```python from __future__ import print_function import sys, os import numpy as np import xarray as xr import datetime import Ngl #----------------------------------------------------------------------- #-- Function: add_titles(wks, plot, title, left, center, right, xtitle, ytitle) #----------------------------------------------------------------------- def ngl_Strings(wks, plot, title='', left='', center='', right='', xtitle='', ytitle=''): vpx = Ngl.get_float(plot,"vpXF") #-- retrieve value of res.vpXF from plot vpy = Ngl.get_float(plot,"vpYF") #-- retrieve value of res.vpYF from plot vpw = Ngl.get_float(plot,"vpWidthF") #-- retrieve value of res.vpWidthF from plot vph = Ngl.get_float(plot,"vpHeightF") #-- retrieve value of res.vpHeightF from plot ymax = vpy+0.08 #-- we need space for the title and strings if(ymax > 0.98): print("--> if you can't see the title use res.nglMaximize = False and/or set res.vpYF") #-- add title if(title != ""): tires = Ngl.Resources() tires.txFontHeightF = 0.016 tires.txJust = "CenterCenter" tires.txFont = 22 #-- Font 22: Helvetica bold if(left != "" or center != "" or right != ""): y = vpy + 0.075 else: y = vpy + 0.05 Ngl.text_ndc(wks, title, 0.5, y, tires) #-- add left, center and/or right string txres = Ngl.Resources() txres.txFontHeightF = 0.020 #-- font size for left, center and right string y = vpy + 0.035 #-- y-position if(left != ""): txres.txJust = "CenterLeft" #-- text justification x = vpx #-- x-position Ngl.text_ndc(wks, left, x, y, txres) #-- add text to wks if(center != ""): txres.txJust = "CenterCenter" #-- text justification Ngl.text_ndc(wks, center, 0.5, y, txres) #-- add text to wks if(right != ""): txres.txJust = "CenterRight" #-- text justification x = vpx+vpw #-- x-position Ngl.text_ndc(wks, right, x, y, txres) #-- add text to wks #-- add y-axis title string txtires = Ngl.Resources() txtires.txFontHeightF = 0.024 #-- font size for x-axis title string txtires.txAngleF = 90.0 txtires.txJust = "CenterCenter" #-- text justification y = vpy - vph/2 #-- y-position x = vpx - 0.12 Ngl.text_ndc(wks, ytitle, x, y, txtires) #-- add text to wks #----------------------------------------------------------------------- #-- Function: conv_time_netcdf(ds) #----------------------------------------------------------------------- def conv_time_netcdf(ds): ntime = len(ds.time) years = ds.time.dt.year.values months = ds.time.dt.month.values days = ds.time.dt.day.values date_labels = [datetime.date(years[i],months[i],days[i]) for i in range(0,ntime)] date_labels = np.array(date_labels,dtype='str') return(date_labels) #----------------------------------------------------------------------- #-- Function: main #----------------------------------------------------------------------- def main(): print('') #-- open file and read variable and time home = os.environ.get('HOME') fname = os.path.join(home,'NCL/PyNGL/User_Guide_examples/rectilinear_grid_2D.nc') ds = xr.open_dataset(fname) var = ds.tsurf time = ds.time #-- xarray deletes the units and long_name attributes, so we have to get #-- them on another way print('--> time attributes:', ds.time.attrs) print('') units = var.attrs['units'] lname = var.attrs['long_name'] #-- print some information about the variable and the time coordinate print('--> var: ',var) print('') #-- convert the time values to date strings using a user defined function date_labels = conv_time_netcdf(ds) print('--> date_labels ',type(date_labels)) print('') #-- for explicit x-axis generate simple time array time = np.arange(0,len(ds.time),1) #-- compute the area mean without weighting areamean = np.average(var,axis=(1,2)) print('--> areamean: ',areamean) print('') #-- open a workstation wks = Ngl.open_wks('png','plot_xy_plot_timeseries') #-- graphics output #-- set resources/attributes res = Ngl.Resources() #-- generate an res object for plot res.tiMainString = 'DKRZ Example: xy-plot timeseries' #-- draw a title res.tiMainOffsetYF = 0.02 res.nglMaximize = False res.nglPointTickmarksOutward = True #-- point tickmarks outward res.nglDraw = False res.nglFrame = False res.vpWidthF = 0.7 res.vpHeightF = 0.7 res.vpXF = 0.2 res.vpYF = 0.85 res.tmXBMode = 'Explicit' #-- use explicit values res.tmXBValues = time res.tmXBLabels = list(date_labels) res.tmXBLabelFontHeightF = 0.006 res.tmXBLabelJust = 'CenterRight' res.tmXBLabelDeltaF = 0.2 res.tmXBLabelAngleF = 40.0 res.tmXBLabelStride = 4 #-- draw the plot plot = Ngl.xy(wks,time,areamean,res) #-- add additional strings to plot (like NCL's gsnLeftString and gsnRightString) ngl_Strings(wks, plot, left=lname, right=units, ytitle=lname) #-- done Ngl.draw(plot) Ngl.frame(wks) Ngl.end() #------------------------------------------------------------- #-- run main #------------------------------------------------------------- if __name__ == "__main__": main() ```
{ "source": "1271756664/xgrads", "score": 2 }
#### File: xgrads/xgrads/core.py ```python import os, sys, re import numpy as np from datetime import datetime from numpy import datetime64, timedelta64 """ Core classes are defined below """ class CtlDescriptor(object): """ This class represents a descriptor file like the .ctl file for GrADS. It generally includes a multi-dimensional spherical dataset. Attributes: dsetPath: dataset file descPath: descriptor file indxPath: index file (for GRIB file) stnmPath: station map file (for station file) pdef: projection-definition tdef: t-definition zdef: z-definition ydef: y-definition xdef: x-definition vdef: variable-definition zrev: z-dimension reverse (i.e., from north to south) yrev: y-dimension reverse (i.e., from upper to lower levels) hasData: whether the corresponding binary data file exist vcount : variable count dtype: data type periodicX: whether xdef is periodic cal365Days: whether the calendar is always 365 days (no leap year) template : whether it is a template for multiple binary files sequential: whether it is a sequential file (Fortran style) byteOrder : byte order, little-endian or big-endian storage : storage type, '99' or '-1,20' or others totalZCount: total number of horizontal slice zRecLength : record length of a single horizontal slice tRecLength : record length of a single time (including all variables) """ def __init__(self, encoding='GBK', **kwargs): """ Constructor. Parameters ---------- encoding : str Encoding for the ctl file contents e.g., ['GBK', 'UTF-8']. file = fileName : str The ctl path/file name. content = content: str A string representation for the ctl file contents. Returns ---------- ctl : CtlDescriptor An object represents the ctl file """ self.vcount = 0 self.pdef = None self.tdef = None self.zdef = None self.ydef = None self.xdef = None self.vdef = None self.dsetPath = '' self.descPath = '' self.indxPath = '' self.stnmPath = '' self.storage = '' self.dtype = '' self.title = '' self.incre = '' self.zrev = False self.yrev = False self.hasData = False self.periodicX = False self.cal365Days = False self.template = False self.sequential = False self.totalZCount = 0 self.zRecLength = 0 self.tRecLength = 0 self.byteOrder = sys.byteorder if kwargs.get('file'): abspath = kwargs['file'] if os.path.getsize(abspath) / (1024.0*1024.0) > 2: raise Exception('ctl file is too large (> 2 MB)') with open(abspath, 'r', encoding=encoding) as f: fileContent = f.readlines() elif kwargs.get('content'): abspath = None fileContent = kwargs['content'].splitlines() else: raise Exception('invalid key word '+ '(file='' or content='' is allowed)') for i, line in enumerate(fileContent): llower = line.lower() if (llower.startswith('dset') or llower.startswith('index') or llower.startswith('stnmap') ) and abspath is not None and '^' in line: dirname = os.path.dirname(abspath) if dirname[-1] != '/': fileContent[i] = line.replace('^', os.path.dirname(abspath) + '/') else: fileContent[i] = line.replace('^', os.path.dirname(abspath)) self.descPath=abspath self.parse(fileContent) def parse(self, fileContent): dpath_str = None for oneline in fileContent: if oneline.lower().startswith('dset'): dpath_str = oneline.split()[1] elif oneline.lower().startswith('index'): self._processIndex(oneline) elif oneline.lower().startswith('stnmap'): self._processStnmap(oneline) elif oneline.lower().startswith('dtype'): self.dtype = oneline[5:].strip() elif oneline.lower().startswith('pdef'): self._processPDEF(oneline) elif oneline.lower().startswith('title'): self.title = oneline.split()[1].strip() elif oneline.lower().startswith('undef'): self.undef = float(oneline.split()[1].strip()) elif oneline.lower().startswith('options'): self._processOptions(oneline) elif oneline.lower().startswith('byteswapped'): self.byteOrder = 'big' \ if sys.byteorder == 'little' else 'little' elif oneline.lower().startswith('xdef'): self._processXDef(oneline, fileContent) elif oneline.lower().startswith('ydef'): self._processYDef(oneline,fileContent) elif oneline.lower().startswith('zdef'): self._processZDef(oneline, fileContent) elif oneline.lower().startswith('tdef'): self._processTDef(oneline) elif oneline.lower().startswith('vars'): self._processVars(oneline, fileContent) elif oneline.startswith('*') or oneline.strip() == '': continue if dpath_str == None: raise Exception('no valid dset is parsed') if self.template: self._processDSets(dpath_str) else: self._processDSet(dpath_str) if self.yrev: self.ydef.samples = np.flip(self.ydef.samples) if self.zrev: self.zdef = np.flip(self.zdef) def _processDSets(self, dpath_str): strPos = dpath_str.find('%') if strPos == -1: raise Exception('template is used in ctl but no % in dset') endPos = len(dpath_str) - dpath_str[::-1].index('%') + 2 template = dpath_str[strPos:endPos] tokens = [] for token in self._split_by_len(template, 3): tokens.append(self._get_template_format(token)) fmt = ''.join(tokens) fileList = [] times = self.tdef.samples for l in range(len(times)): part = times[l].item().strftime(fmt) fname = dpath_str[:strPos] + part + dpath_str[endPos:] fname = self._replace_forecast_template(fname, l) # remove duplicated file if fname not in fileList: fileList.append(fname) self.dsetPath = np.array(fileList) has = True for file in fileList: if not os.path.exists(file): has = False break self.hasData = has def _processDSet(self, dpath_str): self.dsetPath = dpath_str self.hasData = os.path.exists(self.dsetPath) def _processIndex(self, oneline): self.indxPath = oneline.split()[1] def _processStnmap(self, oneline): self.stnmPath = oneline.split()[1] def _processPDEF(self, oneline): self.pdef = PDEF(oneline) def _processOptions(self, oneline): lineLower = oneline.lower() if 'yrev' in lineLower: self.yrev = True if 'zrev' in lineLower: self.zrev = True if 'template' in lineLower: self.template = True if 'sequential' in lineLower: self.sequential = True if '365_day_calendar' in lineLower: self.cal365Days = True if 'big_endian' in lineLower: self.byteOrder = 'big' if 'byteswapped' in lineLower: self.byteOrder = \ 'big' if sys.byteorder == 'little' else 'little' def _processXDef(self, oneline, fileContent): tokens = oneline.lower().split() xnum = int(tokens[1]) if tokens[2] == 'linear': xlnr = True elif tokens[2] == 'levels': xlnr = False else: raise Exception('invalid type for xdef (linear or levels): ' + tokens[2]) if xlnr: start, intv = float(tokens[3]), float(tokens[4]) self.xdef = Coordinate('xdef', np.linspace(start, start + intv * (xnum-1), xnum, dtype=np.float32)) else: values = [float(i) for i in tokens[3:]] count = len(values) index = fileContent.index(oneline) + 1 while count < xnum: split = fileContent[index].split() values += [float(v) for v in split] count += len(split) index += 1 if count != xnum: raise Exception('not parse xdef correctly') self.xdef = Coordinate('xdef', np.array(values)) self.periodicX = self.xdef.isPeriodic(360) def _processYDef(self, oneline, fileContent): tokens = oneline.lower().split() ynum = int(tokens[1]) if tokens[2] == 'linear': ylnr = True elif tokens[2] == 'levels': ylnr = False else: raise Exception('invalid type for ydef (linear or levels): ' + tokens[2]) if ylnr: start, intv = float(tokens[3]), float(tokens[4]) self.ydef = Coordinate('ydef', np.linspace(start, start + intv * (ynum-1), ynum, dtype=np.float32)) else: values = [float(i) for i in tokens[3:]] count = len(values) index = fileContent.index(oneline) + 1 while count < ynum: split = fileContent[index].split() values += [float(v) for v in split] count += len(split) index += 1 if count != ynum: raise Exception(('not parse ydef correctly, count={0} '+ 'while ynum={1}').format(count, ynum)) self.ydef = Coordinate('ydef', np.array(values)) def _processZDef(self, oneline, fileContent): tokens = oneline.lower().split() znum = int(tokens[1]) if tokens[2] == 'linear': zlnr = True elif tokens[2] == 'levels': zlnr = False else: raise Exception('invalid type for zdef (linear or levels): ' + tokens[2]) if zlnr: start, intv = float(tokens[3]), float(tokens[4]) self.zdef = Coordinate('zdef', np.linspace(start, start + intv * (znum-1), znum, dtype=np.float32)) else: values = [float(i) for i in tokens[3:]] count = len(values) index = fileContent.index(oneline) + 1 while count < znum: split = fileContent[index].split() values += [float(v) for v in split] count += len(split) index += 1 if count != znum: raise Exception('not parse zdef correctly') self.zdef = Coordinate('zdef', np.array(values)) def _processTDef(self, oneline): tokens = oneline.lower().split() tnum = int(tokens[1]) if tokens[2]!='linear': raise Exception('nonlinear tdef is not supported') times = self._times_to_array(tokens[3], tokens[4], tnum) self.incre = GrADS_increment_to_timedelta64(tokens[4]) self.tdef = Coordinate('tdef', times) def _processVars(self, oneline, fileContent): if (self.dtype != 'station' and not all([self.tdef, self.zdef, self.ydef, self.xdef])): raise Exception('vdef should be after x, y, z and t definitions') t = self.tdef.length() if self.dtype != 'station': y = self.ydef.length() if self.pdef is None else self.pdef.jsize x = self.xdef.length() if self.pdef is None else self.pdef.isize self.zRecLength = x * y * 4 # add two bytes at the beginning and the end if self.sequential: self.zRecLength += 8 tokens = oneline.split() vnum = int(tokens[1]) start = fileContent.index(oneline) + 1 if vnum < 1: raise Exception('there should be at least one CtlVar') self.vcount = vnum self.vdef = [None] * vnum v = CtlVar(fileContent[start]) v.index =0 v.strPos=0 v.tcount=t if self.dtype != 'station': v.ycount=y v.xcount=x self.totalZCount += v.zcount self.storage = v.storage self.vdef[0] = v type1 = type2 = type3 = False for i in range(1, vnum): v = CtlVar(fileContent[start+i]) vs = self.vdef[i-1] v.index = i v.undef = self.undef v.tcount = t if self.dtype != 'station': v.ycount = y v.xcount = x # if v.storage in ['99', '0']: if v.storage in ['99', '0', '00', '000', '1', '11', '111']: v.strPos = vs.zcount * self.zRecLength + vs.strPos type1 = True elif v.storage == '-1,20': v.strPos = vs.zcount * self.zRecLength * t + vs.strPos type2 = True else: type3 = True if not type3 and type1 == type2: raise Exception('storage type should be the same') self.totalZCount += v.zcount self.vdef[i] = v self.tRecLength = self.zRecLength * self.totalZCount if fileContent[start + vnum].strip().lower() != 'endvars': raise Exception('endvars is expected') def _get_template_format(self, part): """ Get time format string. See the following URL for reference: http://cola.gmu.edu/grads/gadoc/templates.html %x1 1 digit decade %x3 3 digit decade %y2 2 digit year %y4 4 digit year %m1 1 or 2 digit month %m2 2 digit month (leading zero if needed) %mc 3 character month abbreviation %d1 1 or 2 digit day %d2 2 digit day (leading zero if needed) %h1 1 or 2 digit hour %h2 2 digit hour %h3 3 digit hour (e.g., 120 or 012) %n2 2 digit minute; leading zero if needed %f2 2 digit forecast hour; leading zero if needed; more digits added for hours >99; hour values increase indefinitely %f3 3 digit forecast hour; leading zeros if needed; more digits added for hours >999; hour values increase indefinitely %fn2 2 digit forecast minute; leading zero if needed; more digits added for minutes > 99; minute values increase indefinitely (2.0.a9+) %fhn forecast time expressed in hours and minutes (hhnn) where minute value (nn) is always <=59 and hour value (hh) increases indefinitely. If hh or nn are <=9, they are padded with a 0, so they are always at least 2 digits; more digits added for hours >99. (2.0.a9+) %fdhn forecast time expressed in days, hours, and minutes (ddhhnn) where minute value (nn) is always <=59, hour value (hh) is always <=23 and day value (dd) increases indefinitely. If dd, hh, or nn are <=9, they are padded with a 0 so they are always at least 2 digits; more digits added for days >99. (2.0.a9+) %j3 3 digit julian day (day of year) (2.0.a7+) %t1 1 or 2 digit time index (file names contain number sequences that begin with 1 or 01) (2.0.a7+) %t2 2 digit time index (file names contain number sequences that begin with 01) (2.0.a7+) %t3 3 digit time index (file names contain number sequences that begin with 001) (2.0.a7+) %t4 4 digit time index (file names contain number sequences that begin with 0001) (2.0.a8+) %t5 5 digit time index (file names contain number sequences that begin with 00001) (2.0.a8+) %t6 6 digit time index (file names contain number sequences that begin with 000001) (2.0.a8+) %tm1 1 or 2 digit time index (file names contain number sequences that begin with 0 or 00) (2.0.a7+) %tm2 2 digit time index (file names contain number sequences that begin with 00) (2.0.a7+) %tm3 3 digit time index (file names contain number sequences that begin with 000) (2.0.a7+) %tm4 4 digit time index (file names contain number sequences that begin with 0000) (2.0.a8+) %tm5 5 digit time index (file names contain number sequences that begin with 00000) (2.0.a8+) %tm6 6 digit time index (file names contain number sequences that begin with 000000) (2.0.a8+) Parameters ---------- part : str A string in the above format started with %. Returns ------- re : str A string represents the format in python datetime """ if part == '%y2': return '%y' elif part == '%y4': return '%Y' elif part == '%m1': return '%m' elif part == '%m2': return '%m' elif part == '%mc': return '%b' elif part == '%d1': return '%d' elif part == '%d2': return '%d' elif part == '%h1': return '%H' elif part == '%h2': return '%H' elif part == '%n2': return '%M' elif part in ['%f3', '%f2']: # this is not supported by strftime() return '_miniufo_' + part[1:] else: raise Exception('unsupported format: ' + part) def _replace_forecast_template(self, fname, l): """ Replace forecast str %f as a template in dset. Parameters ---------- fname: str A given string of binary file. l: int Index of file in a template. Returns ------- re : str A string after replacing the %f template. """ if fname.find('_miniufo_f3') != -1: dt_h = self.incre.astype('timedelta64[s]') / \ np.timedelta64(1, 'h') fname = fname.replace('_miniufo_f3', '{0:03d}'.format( int(dt_h * l))) if fname.find('_miniufo_f2') != -1: dt_h = self.incre.astype('timedelta64[s]') / \ np.timedelta64(1, 'h') fname = fname.replace('_miniufo_f2', '{0:02d}'.format( int(dt_h * l))) return fname def _split_by_len(self, s, size): """ Split a string by a given size. Parameters ---------- s : str A given string. size : int A given size. Returns ------- re : list A list contains the splitted strings. """ chunks = len(s) return [s[i:i + size] for i in range(0, chunks, size)] def _times_to_array(self, strTime, incre, tnum): """ Convert GrADS time string of strart time and increment to an array of numpy.datetime64. Parameters ---------- strTime : str Grads start time e.g., 00:00z01Jan2000. incre : str Grads time increment in str format e.g., 1dy. tnum : int Grads time increment in str format e.g., 1dy. Returns ---------- re : numpy array of datetime64 """ if 'mo' in incre: start = GrADStime_to_datetime(strTime) lst = [] for l in range(tnum): y, m = start.year, start.month y, m = y+int((m+l-1)/12), int((m+l-1)%12)+1 lst.append(start.replace(year=y, month=m)) return np.asarray(lst, dtype='datetime64[s]') elif 'yr' in incre: start = GrADStime_to_datetime(strTime) lst = [] for l in range(tnum): y = start.year + l lst.append(start.replace(year=y)) return np.asarray(lst, dtype='datetime64[s]') else: start = GrADStime_to_datetime64(strTime) intv = GrADS_increment_to_timedelta64(incre) return np.arange(start, start + intv * tnum, intv) def __repr__(self): """ Print this class as a string. """ vdef = np.array(self.vdef) pdef = self.pdef.proj if self.pdef is not None else '' return \ ' dsetPath: ' + str(self.dsetPath) + '\n'\ ' descPath: ' + str(self.descPath) + '\n'\ ' indxPath: ' + str(self.indxPath) + '\n'\ ' stnmPath: ' + str(self.stnmPath) + '\n'\ ' title: ' + str(self.title) + '\n'\ ' undef: ' + str(self.undef) + '\n'\ ' zrev: ' + str(self.zrev) + '\n'\ ' yrev: ' + str(self.yrev) + '\n'\ ' dtype: ' + str(self.dtype) + '\n'\ ' template: ' + str(self.template) + '\n'\ ' periodicX: ' + str(self.periodicX) + '\n'\ ' cal365Days: ' + str(self.cal365Days)+ '\n'\ ' sequential: ' + str(self.sequential)+ '\n'\ ' byteOrder: ' + str(self.byteOrder) + '\n'\ ' xdef: ' + str(self.xdef) + '\n'\ ' ydef: ' + str(self.ydef) + '\n'\ ' zdef: ' + str(self.zdef) + '\n'\ ' tdef: ' + str(self.tdef) + '\n'\ ' pdef: ' + str(pdef) + '\n'\ ' vdef: ' + str(vdef) class PDEF(object): """ PDEF class. Parse necessary info in PDEF. Reference: http://cola.gmu.edu/grads/gadoc/pdef.html """ def __init__(self, oneline): """ Constructor. Parameters ---------- oneline : str The ASCII line of PDEF in ctl file. """ lineLower = oneline.lower() if 'nps' in lineLower or 'sps' in lineLower: token = lineLower.split() if len(token) != 8: raise Exception('not enough tokens for PDEF, ' + 'expected 8 but found ' + str(len(token))) self.isize = int (token[1]) # size of native grid in x direction self.jsize = int (token[2]) # size of native grid in y direction self.proj = (token[3]) # type of projection self.ipole = int (token[4]) # i-coord of pole ref to ll corner self.jpole = int (token[5]) # j-coord of pole ref to ll corner self.lonref = float(token[6]) # reference longitude self.gridinc = float(token[7]) # distance between gripoints in km elif 'lccr' in lineLower or 'lcc' in lineLower: token = lineLower.split() if len(token) != 13: raise Exception('not enough tokens for PDEF, ' + 'expected 13 but found ' + str(len(token))) self.isize = int (token[1]) # size of native grid in x direction self.jsize = int (token[2]) # size of native grid in y direction self.proj = (token[3]) # type of projection self.latref = float(token[4]) # ref latitude self.lonref = float(token[5]) # ref longitude (E>0, W<0) self.iref = float(token[6]) # i of ref point self.jref = float(token[7]) # j of ref point self.Struelat= float(token[8]) # S true lat self.Ntruelat= float(token[9]) # N true lat self.slon = float(token[10]) # standard longitude self.dx = float(token[11]) # grid X increment in meters self.dy = float(token[12]) # grid Y increment in meters else: raise Exception('not currently supported PDEF\n' + oneline) def __str__(self): """ Print this class as a string. """ return '\n'.join(['%s: %s' % item for item in self.__dict__.items()]) class Coordinate(object): """ Discrete sampled coordinate. This is a simple wrapper for np.array for a coordinate. """ def __init__(self, name, samples): """ Constructor. Parameters ---------- name : str The name of the coordinate. samples : np.array 1D array for the discrete coordinate. """ self.isLinear = True self.isIncre = True self.name = name self.samples = samples self.delSamples = None self.max = np.max(self.samples) self.min = np.min(self.samples) if len(samples) > 1: self.delSamples = np.diff(self.samples) if self.samples[-1] < self.samples[0]: self.isIncre=False else: self.delSamples = np.array([1]) def length(self): return len(self.samples) def isPeriodic(self,period): # not physically but generally true if not self.isLinear: return False delta = self.delSamples[0] start = self.samples[-1] + delta - period if(abs((start - self.samples[0]) / delta > 1e-4)): return False return True def __str__(self): """ Print this class as a string. """ return str(self.samples) class CtlVar(object): """ A simple variable class used in .ctl file """ __reBlank = re.compile(r'[\s\t]+') __reUnits = re.compile(r'\([^\(\)]+?\)') def __init__(self, oneLineStr): self.tcount = 0 self.zcount = 0 self.ycount = 0 self.xcount = 0 self.undef = np.nan self.dependZ= True # whether the var depends on z self.unit = '' self.name = '' self.comment= '' self.index = 0 self.strPos = 0 self.name, self.zcount, self.storage, self.comment = \ CtlVar.__reBlank.split(oneLineStr.strip(), maxsplit=3) self.zcount = int(self.zcount) findMatch = CtlVar.__reUnits.findall(self.comment) if findMatch: self.unit = findMatch[-1] self.comment = self.comment[:self.comment.index(self.unit)].strip() else: self.unit = '' if self.zcount == 0: self.zcount = 1 self.dependZ= False def __str__(self): """ Print this class as a string. """ return '\n'.join(('%8s: %s' % item for item in self.__dict__.items())) def __repr__(self): """ Print this class as a string. """ return 'CtlVar: {0:8s} in shape (t={1:d}, z={2:d}, y={3:d}, x={4:d})'\ .format(self.name, self.tcount, self.zcount, self.ycount, self.xcount) """ Some useful functions defined here """ def GrADStime_to_datetime(gradsTime): """ Convert GrADS time string e.g., 00:00z01Jan2000 to datetime Parameters ---------- gradsTime : str Grads time in str format e.g., 00:00z01Jan2000. Returns ---------- re : datetime """ lens = len(gradsTime) if lens==15 or lens==14: time = datetime.strptime(gradsTime, "%H:%Mz%d%b%Y") elif lens==12 or lens==11: time = datetime.strptime(gradsTime, "%Hz%d%b%Y" ) elif lens== 9 or lens== 8: time = datetime.strptime(gradsTime, "%d%b%Y" ) elif lens== 7: time = datetime.strptime(gradsTime, "%b%Y" ) else: raise Exception('invalid length of GrADS date/time string') return time def GrADStime_to_datetime64(gradsTime): """ Convert GrADS time string e.g., 00:00z01Jan2000 to numpy.datetime64 Parameters ---------- gradsTime : str Grads time in str format e.g., 00:00z01Jan2000. Returns ---------- re : datetime64 """ time = GrADStime_to_datetime(gradsTime) return datetime64(time.strftime('%Y-%m-%dT%H:%M:%S')) def GrADS_increment_to_timedelta64(incre): """ Convert GrADS time increment string to numpy.timedelta64 Parameters ---------- incre : str Grads time increment in str format e.g., 1dy. Returns ---------- re : timedelta64 """ unit = incre[-2:] amount = incre[:-2] unitDict = { 'se': 's', 'mn': 'm', 'hr': 'h', 'dy': 'D', 'mo': 'M', 'yr': 'Y'} return timedelta64(int(amount), unitDict[unit]) """ Helper (private) methods are defined below """ ```
{ "source": "1271/hoper", "score": 2 }
#### File: hoper/hoper/_args.py ```python from argparse import ArgumentParser, MetavarTypeHelpFormatter from .meta import version class Formatter(MetavarTypeHelpFormatter): def _format_action_invocation(self, action): if not action.option_strings: default = self._get_default_metavar_for_positional(action) metavar, = self._metavar_formatter(action, default)(1) return metavar else: parts = [] if action.nargs == 0: parts.extend(action.option_strings) else: default = self._get_default_metavar_for_optional(action) args_string = self._format_args(action, default) args_len = len(action.option_strings) - 1 for i, option_string in enumerate(action.option_strings): if i == args_len: parts.append('%s %s' % (option_string, args_string)) else: parts.append(option_string) return ', '.join(parts) def get_cli_arguments() -> ArgumentParser: # pragma: no cover args_parser = ArgumentParser(formatter_class=Formatter) args_parser.add_argument('url', metavar='url', type=str, help='Analyzed url') args_parser.add_argument('-u', '--user-agent', type=str, metavar='AGENT', help='User-agent', default='Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)' ' Chrome/51.0.2704.103 Safari/537.36') args_parser.add_argument('-c', '--cookies', metavar='C', type=str, nargs='*', default=[], help='Cookies. Format: --cookies key1=value1 key2=value2') args_parser.add_argument('-i', '--show-ip', action='store_true', help='Show ip for each hop') args_parser.add_argument('-l', '--last-only', action='store_true', help='Show only last url (without history)') args_parser.add_argument('-T', '--timeout', type=int, help='How long to wait for te server to send' ' data before giving up. In milliseconds (1/100 sec)') args_parser.add_argument('-t', '--show-request-time', action='store_true', help='Show request time for each hop') args_parser.add_argument('-E', '--no-error-messages', action='store_true', help='Don\'t show error messages') args_parser.add_argument('-S', '--no-statistic', action='store_true', help='Don\'t show statistic message') # args_parser.add_argument('-p', '--post', action='store_true', help='Use post instead of get') args_parser.add_argument('-C', '--count-only', action='store_true', help='Show count hops and exit') args_parser.add_argument('-j', '--allow-js-redirects', action='store_true', dest='try_js', help='Try detect js redirects') args_parser.add_argument('--proxy', type=str, metavar='URL', nargs='*', help='Proxy. Format: http://proxy:123 (for http and https) or http=http://proxy:123' ' https=http://secured-proxy:321 ftp=http://ftp-proxy:332') args_parser.add_argument('-F', '--do-not-follow-loops', action='store_true', dest='disallow_loops', help='If loop detected, stop operation') args_parser.add_argument('-J', '--print-json', action='store_true', help='Print result as json') args_parser.add_argument('--pretty-json', action='store_true', help='Makes sense only if the --print-json argument is specified') args_parser.add_argument('-v', '--version', action='version', help='Show version and exit', version=version) args_parser.add_argument('-H', '--disallow-hooks', action='store_true', help='Disable special hooks for some sites') return args_parser arguments = get_cli_arguments() __all__ = ['arguments'] ``` #### File: hoper/hoper/_print.py ```python from sys import stderr from urllib.parse import urlparse from .util.store import store from .util.types import Hope from .util.utils import host2ip def err(*args): if store().allow_error_messages: print(*args, file=stderr) def scheme2port(scheme: str) -> int: if scheme == 'https' or scheme == '': # https as default return 443 if scheme == 'http': return 80 raise RuntimeError('Scheme not supported') def print_item(item: Hope): info = 'Hope:\t%s\nStatus:\t%i\n' % (item.url, item.status) if store().args.try_js: info += 'Js: %s\n' % ('True' if 'js' == item.type else 'False') if store().args.show_request_time: info += 'Time:\t%0.2f\n' % item.time if store().args.show_ip: r = urlparse(item.url) ipv4, ipv6 = host2ip(r) for ip in ipv4: info += 'Ip4:\t%s\n' % ip for ip in ipv6: info += 'Ip6:\t%s\n' % ip print(info, end='') ``` #### File: hoper/util/proxy_parser.py ```python from re import compile from sys import stderr from typing import List, Union, Dict, Optional __all__ = ['parse_proxies'] RE = compile(r"""^(?:(?P<scheme>\w+)=)?(?P<url>\w+://.+)$""") def parse_proxies(items: Optional[List]) -> Union[Dict[str, str]]: proxies: Dict[str, str] = {} if items is None: return proxies for i in items: _parsed = RE.search(i) if _parsed is None: print('Error parsing %s' % i, file=stderr) continue parsed = _parsed.groupdict() scheme = parsed.get('scheme', None) url = parsed['url'] if scheme is None: proxies.setdefault('http', url) proxies.setdefault('https', url) else: proxies[scheme] = url return proxies ``` #### File: hoper/util/utils.py ```python from socket import getaddrinfo, AddressFamily from sys import stderr from typing import List, Tuple, Optional from urllib.parse import urlparse, urlunparse, ParseResult from requests import Response from .store import store default_scheme = 'http' def err(*args): if store().allow_error_messages: print(*args, file=stderr) def scheme2port(scheme: str) -> int: if scheme == 'https' or scheme == '': # https as default return 443 if scheme == 'http': return 80 raise RuntimeError('Scheme not supported') def host2ip(r: ParseResult) -> Tuple[List[str], List[str]]: port = r.port or scheme2port(r.scheme) info = getaddrinfo(r.hostname, port) ipv4 = [] ipv6 = [] for ip in info: _ip = ip[-1][0] if ip[0] == AddressFamily.AF_INET and _ip not in ipv4: ipv4.append(_ip) elif ip[0] == AddressFamily.AF_INET6 and _ip not in ipv6: ipv6.append(_ip) return ipv4, ipv6 def normalize_url(url): result = urlparse(url) scheme = result.scheme path = result.path netloc = result.netloc query = result.query fragment = result.fragment params = result.params if '' == scheme: err('Scheme has empty. Use default (%s)\n' % default_scheme) scheme = default_scheme if '' == netloc: netloc = result.path path = '' return urlunparse((scheme, netloc, path, params, query, fragment)) def get_response_redirect_url(response: Response) -> Optional[str]: if 300 <= response.status_code < 400: return response.headers['location'] return None def cookies2dict(cookies: List[str]): _c = {} for c in cookies: key, value = c.split('=') _c[key] = value return _c ```
{ "source": "127t6937/chainer-gan-lib", "score": 2 }
#### File: chainer-gan-lib/dcgan/net.py ```python import os import sys import numpy as np import chainer import chainer.functions as F import chainer.links as L sys.path.append(os.path.dirname(__file__)) sys.path.append(os.path.abspath(os.path.dirname(__file__)) + os.path.sep + os.path.pardir) from common.net import add_noise class Generator(chainer.Chain): def __init__(self, n_hidden=128, bottom_width=4, ch=512, wscale=0.02): super(Generator, self).__init__() self.n_hidden = n_hidden self.ch = ch self.bottom_width = bottom_width with self.init_scope(): w = chainer.initializers.Normal(wscale) self.l0 = L.Linear(self.n_hidden, bottom_width * bottom_width * ch, initialW=w) self.dc1 = L.Deconvolution2D(ch, ch // 2, 4, 2, 1, initialW=w) self.dc2 = L.Deconvolution2D(ch // 2, ch // 4, 4, 2, 1, initialW=w) self.dc3 = L.Deconvolution2D(ch // 4, ch // 8, 4, 2, 1, initialW=w) self.dc4 = L.Deconvolution2D(ch // 8, 3, 3, 1, 1, initialW=w) self.bn0 = L.BatchNormalization(bottom_width * bottom_width * ch) self.bn1 = L.BatchNormalization(ch // 2) self.bn2 = L.BatchNormalization(ch // 4) self.bn3 = L.BatchNormalization(ch // 8) def make_hidden(self, batchsize): return np.random.uniform(-1, 1, (batchsize, self.n_hidden, 1, 1)) \ .astype(np.float32) def __call__(self, z): h = F.reshape(F.relu(self.bn0(self.l0(z))), (len(z), self.ch, self.bottom_width, self.bottom_width)) h = F.relu(self.bn1(self.dc1(h))) h = F.relu(self.bn2(self.dc2(h))) h = F.relu(self.bn3(self.dc3(h))) x = F.tanh(self.dc4(h)) return x class Discriminator(chainer.Chain): def __init__(self, bottom_width=4, ch=512, wscale=0.02): w = chainer.initializers.Normal(wscale) super(Discriminator, self).__init__() with self.init_scope(): self.c0_0 = L.Convolution2D(3, ch // 8, 3, 1, 1, initialW=w) self.c0_1 = L.Convolution2D(ch // 8, ch // 4, 4, 2, 1, initialW=w) self.c1_0 = L.Convolution2D(ch // 4, ch // 4, 3, 1, 1, initialW=w) self.c1_1 = L.Convolution2D(ch // 4, ch // 2, 4, 2, 1, initialW=w) self.c2_0 = L.Convolution2D(ch // 2, ch // 2, 3, 1, 1, initialW=w) self.c2_1 = L.Convolution2D(ch // 2, ch // 1, 4, 2, 1, initialW=w) self.c3_0 = L.Convolution2D(ch // 1, ch // 1, 3, 1, 1, initialW=w) self.l4 = L.Linear(bottom_width * bottom_width * ch, 1, initialW=w) self.bn0_1 = L.BatchNormalization(ch // 4, use_gamma=False) self.bn1_0 = L.BatchNormalization(ch // 4, use_gamma=False) self.bn1_1 = L.BatchNormalization(ch // 2, use_gamma=False) self.bn2_0 = L.BatchNormalization(ch // 2, use_gamma=False) self.bn2_1 = L.BatchNormalization(ch // 1, use_gamma=False) self.bn3_0 = L.BatchNormalization(ch // 1, use_gamma=False) def __call__(self, x): h = F.leaky_relu(self.c0_0(x)) h = F.leaky_relu(self.bn0_1(self.c0_1(h))) h = F.leaky_relu(self.bn1_0(self.c1_0(h))) h = F.leaky_relu(self.bn1_1(self.c1_1(h))) h = F.leaky_relu(self.bn2_0(self.c2_0(h))) h = F.leaky_relu(self.bn2_1(self.c2_1(h))) h = F.leaky_relu(self.bn3_0(self.c3_0(h))) return self.l4(h) ``` #### File: chainer-gan-lib/dfm/net.py ```python import chainer.functions as F import chainer.links as L import numpy as np import chainer class Discriminator(chainer.Chain): def __init__(self, bottom_width=2, ch=512, wscale=0.02): w = chainer.initializers.Normal(wscale) super(Discriminator, self).__init__() with self.init_scope(): self.c0 = L.Convolution2D(3, ch // 16, 3, 1, 1, initialW=w) self.c1 = L.Convolution2D(ch // 16, ch // 8, 4, 2, 1, initialW=w) self.c2 = L.Convolution2D(ch // 8, ch // 4, 4, 2, 1, initialW=w) self.c3 = L.Convolution2D(ch // 4, ch // 2, 4, 2, 1, initialW=w) self.c4 = L.Convolution2D(ch // 2, ch // 1, 4, 2, 1, initialW=w) self.l5 = L.Linear(bottom_width * bottom_width * ch, 1, initialW=w) self.bn1 = L.BatchNormalization(ch // 8) self.bn2 = L.BatchNormalization(ch // 4) self.bn3 = L.BatchNormalization(ch // 2) self.bn4 = L.BatchNormalization(ch // 1, use_gamma=False) def __call__(self, x): h = x h = F.leaky_relu(self.c0(h)) h = F.leaky_relu(self.bn1(self.c1(h))) h = F.leaky_relu(self.bn2(self.c2(h))) h = F.leaky_relu(self.bn3(self.c3(h))) feature = self.bn4(self.c4(h)) h = F.leaky_relu(feature) return feature, self.l5(h) class Denoiser(chainer.Chain): def __init__(self): super(Denoiser, self).__init__() with self.init_scope(): self.l0 = L.Linear(2048, 2048) self.l1 = L.Linear(2048, 2048) self.l2 = L.Linear(2048, 2048) self.l3 = L.Linear(2048, 2048) self.l4 = L.Linear(2048, 2048) self.l5 = L.Linear(2048, 2048) self.l6 = L.Linear(2048, 2048) self.l7 = L.Linear(2048, 2048) self.l8 = L.Linear(2048, 2048) self.l9 = L.Linear(2048, 2048) self.bn0 = L.BatchNormalization(2048) self.bn1 = L.BatchNormalization(2048) self.bn2 = L.BatchNormalization(2048) self.bn3 = L.BatchNormalization(2048) self.bn4 = L.BatchNormalization(2048) self.bn5 = L.BatchNormalization(2048) self.bn6 = L.BatchNormalization(2048) self.bn7 = L.BatchNormalization(2048) self.bn8 = L.BatchNormalization(2048) def __call__(self, x): h = F.reshape(x, (len(x), 2048)) h = F.leaky_relu(self.bn0(self.l0(h))) h = F.leaky_relu(self.bn1(self.l1(h))) h = F.leaky_relu(self.bn2(self.l2(h))) h = F.leaky_relu(self.bn3(self.l3(h))) h = F.leaky_relu(self.bn4(self.l4(h))) h = F.leaky_relu(self.bn5(self.l5(h))) h = F.leaky_relu(self.bn6(self.l6(h))) h = F.leaky_relu(self.bn7(self.l7(h))) h = F.leaky_relu(self.bn8(self.l8(h))) return F.reshape(self.l9(h), (len(x), 512, 2, 2)) ``` #### File: chainer-gan-lib/minibatch_discrimination/net.py ```python import chainer.functions as F import chainer.links as L import numpy as np import chainer class Discriminator(chainer.Chain): def __init__(self, bottom_width=4, ch=512, wscale=0.02, B=100, C=5): w = chainer.initializers.Normal(wscale) self.B = B self.C = C super(Discriminator, self).__init__() with self.init_scope(): self.c0_0 = L.Convolution2D(3, ch // 8, 3, 1, 1, initialW=w) self.c0_1 = L.Convolution2D(ch // 8, ch // 4, 4, 2, 1, initialW=w) self.c1_0 = L.Convolution2D(ch // 4, ch // 4, 3, 1, 1, initialW=w) self.c1_1 = L.Convolution2D(ch // 4, ch // 2, 4, 2, 1, initialW=w) self.c2_0 = L.Convolution2D(ch // 2, ch // 2, 3, 1, 1, initialW=w) self.c2_1 = L.Convolution2D(ch // 2, ch // 1, 4, 2, 1, initialW=w) self.c3_0 = L.Convolution2D(ch // 1, ch // 1, 3, 1, 1, initialW=w) self.md = L.Linear(bottom_width * bottom_width * ch, B * C, initialW=w) self.l4 = L.Linear(bottom_width * bottom_width * ch + B, 1, initialW=w) self.bn0_1 = L.BatchNormalization(ch // 4, use_gamma=False) self.bn1_0 = L.BatchNormalization(ch // 4, use_gamma=False) self.bn1_1 = L.BatchNormalization(ch // 2, use_gamma=False) self.bn2_0 = L.BatchNormalization(ch // 2, use_gamma=False) self.bn2_1 = L.BatchNormalization(ch // 1, use_gamma=False) self.bn3_0 = L.BatchNormalization(ch // 1, use_gamma=False) def __call__(self, x): N = x.data.shape[0] h = F.leaky_relu(self.c0_0(x)) h = F.leaky_relu(self.bn0_1(self.c0_1(h))) h = F.leaky_relu(self.bn1_0(self.c1_0(h))) h = F.leaky_relu(self.bn1_1(self.c1_1(h))) h = F.leaky_relu(self.bn2_0(self.c2_0(h))) h = F.leaky_relu(self.bn2_1(self.c2_1(h))) feature = F.reshape(F.leaky_relu(self.c3_0(h)), (N, 8192)) m = F.reshape(self.md(feature), (N, self.B * self.C, 1)) m0 = F.broadcast_to(m, (N, self.B * self.C, N)) m1 = F.transpose(m0, (2, 1, 0)) d = F.absolute(F.reshape(m0 - m1, (N, self.B, self.C, N))) d = F.sum(F.exp(-F.sum(d, axis=2)), axis=2) - 1 h = F.concat([feature, d]) return self.l4(h) ``` #### File: chainer-gan-lib/progressive/updater.py ```python import numpy as np import math import os, sys import chainer import chainer.functions as F from chainer import Variable sys.path.append(os.path.dirname(__file__)) sys.path.append(os.path.abspath(os.path.dirname(__file__)) + os.path.sep + os.path.pardir) from common.misc import soft_copy_param class Updater(chainer.training.StandardUpdater): def __init__(self, *args, **kwargs): self.gen, self.dis, self.gs = kwargs.pop('models') self.n_dis = kwargs.pop('n_dis') self.lam = kwargs.pop('lam') self.gamma = kwargs.pop('gamma') self.smoothing = kwargs.pop('smoothing') self.stage_interval = kwargs.pop('stage_interval') self.initial_stage = kwargs.pop('initial_stage') self.counter = math.ceil(self.initial_stage * self.stage_interval) super(Updater, self).__init__(*args, **kwargs) def update_core(self): gen_optimizer = self.get_optimizer('opt_gen') dis_optimizer = self.get_optimizer('opt_dis') xp = self.gen.xp for i in range(self.n_dis): batch = self.get_iterator('main').next() batchsize = len(batch) x = [] for j in range(batchsize): x.append(np.asarray(batch[j]).astype("f")) x_real = Variable(xp.asarray(x)) self.stage = self.counter / self.stage_interval if math.floor(self.stage)%2==0: reso = min(32, 4 * 2**(((math.floor(self.stage)+1)//2))) scale = max(1, 32//reso) if scale>1: x_real = F.average_pooling_2d(x_real, scale, scale, 0) else: alpha = self.stage - math.floor(self.stage) reso_low = min(32, 4 * 2**(((math.floor(self.stage))//2))) reso_high = min(32, 4 * 2**(((math.floor(self.stage)+1)//2))) scale_low = max(1, 32//reso_low) scale_high = max(1, 32//reso_high) if scale_low>1: x_real_low = F.unpooling_2d( F.average_pooling_2d(x_real, scale_low, scale_low, 0), 2, 2, 0, outsize=(reso_high, reso_high)) x_real_high = F.average_pooling_2d(x_real, scale_high, scale_high, 0) x_real = (1-alpha)*x_real_low + alpha*x_real_high y_real = self.dis(x_real, stage=self.stage) z = Variable(xp.asarray(self.gen.make_hidden(batchsize))) x_fake = self.gen(z, stage=self.stage) y_fake = self.dis(x_fake, stage=self.stage) x_fake.unchain_backward() eps = xp.random.uniform(0, 1, size=batchsize).astype("f")[:, None, None, None] x_mid = eps * x_real + (1.0 - eps) * x_fake x_mid_v = Variable(x_mid.data) y_mid = F.sum(self.dis(x_mid_v, stage=self.stage)) dydx, = chainer.grad([y_mid], [x_mid_v], enable_double_backprop=True) dydx = F.sqrt(F.sum(dydx*dydx, axis=(1, 2, 3))) loss_gp = self.lam * F.mean_squared_error(dydx, self.gamma * xp.ones_like(dydx.data)) * (1.0/self.gamma**2) loss_dis = F.sum(-y_real) / batchsize loss_dis += F.sum(y_fake) / batchsize # prevent drift factor loss_dis += 0.001 * F.sum(y_real**2) / batchsize loss_dis_total = loss_dis + loss_gp self.dis.cleargrads() loss_dis_total.backward() dis_optimizer.update() loss_dis_total.unchain_backward() # train generator z = Variable(xp.asarray(self.gen.make_hidden(batchsize))) x_fake = self.gen(z, stage=self.stage) y_fake = self.dis(x_fake, stage=self.stage) loss_gen = F.sum(-y_fake) / batchsize self.gen.cleargrads() loss_gen.backward() gen_optimizer.update() # update smoothed generator soft_copy_param(self.gs, self.gen, 1.0-self.smoothing) chainer.reporter.report({'loss_dis': loss_dis}) chainer.reporter.report({'loss_gen': loss_gen}) chainer.reporter.report({'loss_gp': loss_gp}) chainer.reporter.report({'g': F.mean(dydx)}) chainer.reporter.report({'stage': self.stage}) self.counter += batchsize ```
{ "source": "12860/dlflow", "score": 3 }
#### File: dlflow/mgr/errors.py ```python class BaseError(Exception): def __init__(self, err_info=""): super(BaseError, self).__init__(self) self.err_info = err_info def __str__(self): return str(self.err_info) class InstantiateNotAllowed(BaseError): pass class FileTypeNotSupport(BaseError): pass class ParameterError(BaseError): pass class RegisterKeyDuplicate(BaseError): pass class NotInitializeError(BaseError): pass class FmapNotExists(BaseError): pass class CircularReferences(BaseError): pass class ParserNotExists(BaseError): pass class FeatureEncodeError(BaseError): pass class FeatureNotBind(BaseError): pass ``` #### File: models/internal/DNNBinaryClassifier.py ```python from dlflow.mgr import model, config from dlflow.models import ModelBase import tensorflow as tf class _Embedding(tf.keras.layers.Layer): def __init__(self, input_dim, output_dim): super(_Embedding, self).__init__() self.input_dim = input_dim self.output_dim = output_dim def build(self, input_shape): self.embedding = self.add_weight(name="emb_w", shape=[self.input_dim, self.output_dim], initializer='uniform') def call(self, inputs, **kwargs): emb = tf.nn.embedding_lookup(self.embedding, inputs) out_dim = inputs.shape[-1] * self.output_dim return tf.reshape(emb, [-1, out_dim]) @model.reg("DNNBinaryClassifier") class DNNBinaryClassifier(ModelBase): cfg = config.setting( config.req("MODEL.layers"), config.opt("MODEL.learning_rate", 0.001), config.opt("MODEL.batch_size", 128) ) def __init__(self, fmap): super(DNNBinaryClassifier, self).__init__(fmap) self.optimizer = tf.keras.optimizers.Adam( learning_rate=config.MODEL.learning_rate) self.compute_loss = tf.keras.losses.BinaryCrossentropy( from_logits=True) self.mean_loss = tf.keras.metrics.Mean() self.acc = tf.keras.metrics.BinaryAccuracy() self.auc = tf.keras.metrics.AUC() self.metrics = { "mean_loss": self.mean_loss, "acc": self.acc, "auc": self.auc } def build(self): concat_list = self.get_inputs(tp="nums") for ctg_inp, depth in self.get_inputs(tp="ctgs", with_depth=True): _emb = _Embedding(depth, 6)(ctg_inp) concat_list.append(_emb) net = tf.concat(concat_list, axis=1) for size in config.MODEL.layers: net = tf.keras.layers.Dense(size, activation=tf.nn.relu)(net) logits = tf.keras.layers.Dense(1)(net) sigmoid = tf.nn.sigmoid(logits) self.set_output(logits, "logits") self.set_output(sigmoid, "sigmoid") @tf.function def train(self, feature, label): _label = label["label"] with tf.GradientTape() as tape: logits, sigmoid = self.model(feature) loss = self.compute_loss(_label, logits) grads = tape.gradient(loss, self.model.trainable_variables) self.optimizer.apply_gradients( zip(grads, self.model.trainable_variables)) self.mean_loss(loss) self.acc(_label, sigmoid) self.auc(_label, sigmoid) @tf.function def evaluate(self, feature, label): _label = label["label"] logits, sigmoid = self.model(feature) loss = self.compute_loss(_label, logits) self.mean_loss(loss) self.acc(_label, sigmoid) self.auc(_label, sigmoid) @tf.function def predict(self, feature): pred = self.model(feature) return pred ``` #### File: models/internal/NNDenseInput.py ```python from dlflow.mgr import model, config from dlflow.models import InputBase from dlflow.features import PRESET_BUCKETS from collections import OrderedDict import tensorflow as tf @model.reg("NNDenseInput") class NNDenseInput(InputBase): cfg = config.setting( config.opt("MODEL.epochs", None), config.opt("MODEL.batch_size", 1), config.opt("MODEL.parallel", 4), config.opt("MODEL.shuffle_size", None), config.opt("MODEL.drop_remainder", False), config.opt("MODEL.buffer_size", None) ) def __init__(self, fmap): super(NNDenseInput, self).__init__(fmap) def tfr_inputs(self, files): feature_dict = OrderedDict() for fe in self.fmap.primary_keys.get_features(): feature_dict[fe.name] = self._TF_FEATURE[fe.fetype]([1]) for fe in self.fmap.labels.get_features(): feature_dict[fe.name] = self._TF_FEATURE[fe.fetype]([1]) buckets = self.fmap.get_buckets(drop=PRESET_BUCKETS) for bucket in buckets: nums_size = bucket.nums.fe_size ctgs_size = bucket.ctgs.fe_count if nums_size > 0: name = "_".join([bucket.name, "nums"]) feature_dict[name] = self._float_feature([nums_size]) if ctgs_size > 0: name = "_".join([bucket.name, "ctgs"]) feature_dict[name] = self._int_feature([ctgs_size]) def _parse_single_example(example): feature = tf.io.parse_single_example(example, feature_dict) return feature parallel = config.MODEL.parallel dataset = tf.data \ .TFRecordDataset(filenames=files, buffer_size=config.MODEL.buffer_size, num_parallel_reads=parallel) \ .map(map_func=_parse_single_example, num_parallel_calls=parallel) \ .batch(batch_size=config.MODEL.batch_size, drop_remainder=config.MODEL.drop_remainder) \ .repeat(count=config.MODEL.epochs) if config.MODEL.shuffle_size: dataset = dataset.shuffle(config.MODEL.shuffle_size) return dataset def rdd_inputs(self, rdd, batch_size): primary_keys = [] features = [] out_dtype = [] out_shape = [] for fe in self.fmap.primary_keys.get_features(): primary_keys.append(fe.name) out_dtype.append(self._TF_TYPE[fe.fetype]) out_shape.append(tf.TensorShape([fe.size])) buckets = self.fmap.get_buckets(drop=PRESET_BUCKETS) for bucket in buckets: nums_size = bucket.nums.fe_size ctgs_size = bucket.ctgs.fe_count if nums_size > 0: name = "_".join([bucket.name, "nums"]) features.append(name) out_dtype.append(tf.float32) out_shape.append(tf.TensorShape(nums_size)) if ctgs_size > 0: name = "_".join([bucket.name, "ctgs"]) features.append(name) out_dtype.append(tf.int64) out_shape.append(tf.TensorShape(ctgs_size)) def rdd_generator(): for row in rdd: row_data = [] for k in primary_keys: row_data.append([row[k]]) for k in features: row_data.append(list(row[k])) yield tuple(row_data) dataset = tf.data.Dataset \ .from_generator(generator=rdd_generator, output_shapes=tuple(out_shape), output_types=tuple(out_dtype)) \ .batch(batch_size, drop_remainder=False) return dataset ``` #### File: dlflow/models/model_base.py ```python from dlflow.features import PRESET_BUCKETS, PKEY_NAME, LABEL_NAME from pathlib import Path from collections import OrderedDict from absl import logging import tensorflow as tf import numpy as np import abc class ModelBase(metaclass=abc.ABCMeta): def __init__(self, fmap): super(ModelBase, self).__init__() self.metrics = {} self.msg_frac = 100 self._model = None self.pkey_names = [] self.label_names = [] self.feature_names = [] self.output_names = [] self.inputs = OrderedDict() self.outputs = OrderedDict() self._build(fmap) @property def model(self): return self._model @abc.abstractmethod def build(self, *args, **kwargs): pass def train(self, feature, label): pass def predict(self, feature): pass def evaluate(self, feature, label): pass def train_act(self, dataset): step = 0 for data in dataset: step += 1 _, label, feature = self.unpack_data(data) self.train(feature, label) if step % self.msg_frac == 0: self.show_metrics(step) self.show_metrics(step) def predict_act(self, dataset): len_pkey = len(self.pkey_names) len_output = len(self.output_names) pred_pkeys = [[] for _ in range(len_pkey)] pred_outputs = [[] for _ in range(len_output)] for _data in dataset: data = list(_data) pkey = data[:len_pkey] feature = data[len_pkey:] if len(feature) == 1: feature = feature[0] outputs = self.predict(feature) if isinstance(outputs, tf.Tensor): outputs = [outputs] for l, k in zip(pred_pkeys, pkey): if k.shape[-1] == 1: k_np = k.numpy().squeeze(axis=len(k.shape) - 1) else: k_np = k.numpy() l.append(k_np) for l, p in zip(pred_outputs, outputs): if p.shape[-1] == 1: p_np = p.numpy().squeeze(axis=len(p.shape) - 1) else: p_np = p.numpy() l.append(p_np) np_list = [] for i in pred_pkeys: _keys = np.concatenate(i, axis=0).tolist() if isinstance(_keys[0], bytes): _keys = [e.decode("utf-8") for e in _keys] np_list.append(_keys) for i in pred_outputs: np_list.append(np.concatenate(i, axis=0).tolist()) res = [] for item in zip(*np_list): res.append([i for i in item]) return res def evaluate_act(self, dataset): step = 0 for data in dataset: step += 1 _, label, feature = self.unpack_data(data) self.evaluate(feature, label) if step % self.msg_frac == 0: self.show_metrics(step) self.show_metrics(step) def _build(self, fmap): self.build_inputs(fmap) inputs = self.get_inputs() self.build() outputs = self.get_outputs() self._model = tf.keras.Model(inputs=inputs, outputs=outputs) def save(self, save_dir): save_dir = Path(save_dir) h5dir = save_dir.joinpath("h5weights") if not h5dir.is_dir(): h5dir.mkdir(parents=True) self._model.save(save_dir.as_posix()) self._model.save_weights(h5dir.joinpath("weights.h5").as_posix()) def load_model(self, load_dir): load_dir = Path(load_dir) self._model = tf.keras.models.load_model(load_dir.as_posix()) def load_weights(self, load_dir): weight_path = Path(load_dir) if weight_path.suffix == ".h5": self._model.load_weights(weight_path.as_posix()) else: self._model.load_weights( weight_path.joinpath("h5weights", "weights.h5").as_posix()) def unpack_data(self, data): pkey = [data[n] for n in self.pkey_names] label = {n: data[n] for n in self.label_names} feature = [data[n] for n in self.feature_names] return pkey, label, feature def build_inputs(self, fmap): for fe in fmap[PKEY_NAME].get_features(): self.pkey_names.append(fe.name) for fe in fmap[LABEL_NAME].get_features(): self.label_names.append(fe.name) buckets = fmap.get_buckets(drop=PRESET_BUCKETS) for bucket in buckets: nums_size = bucket.nums.fe_size ctgs_size = bucket.ctgs.fe_count self.inputs[bucket.name] = OrderedDict() if nums_size > 0: num_name = "_".join([bucket.name, "nums"]) num_input = tf.keras.Input(shape=nums_size, dtype=tf.float32, name=num_name) self.feature_names.append(num_name) info = { "input": num_input, "depth": nums_size } self.inputs[bucket.name]["nums"] = info if ctgs_size > 0: ctgs_name = "_".join([bucket.name, "ctgs"]) ctg_input = tf.keras.Input(shape=ctgs_size, dtype=tf.int64, name=ctgs_name) emb_depth = bucket.ctgs.fe_size self.feature_names.append(ctgs_name) info = { "input": ctg_input, "depth": emb_depth } self.inputs[bucket.name]["ctgs"] = info def get_inputs(self, tp=None, with_depth=False): inputs = [] if tp is None: for field_inputs in self.inputs.values(): for _field in field_inputs.values(): if with_depth: _item = (_field["input"], _field["depth"]) else: _item = _field["input"] inputs.append(_item) else: for field_inputs in self.inputs.values(): if tp not in field_inputs: continue _field = field_inputs[tp] if with_depth: _item = (_field["input"], _field["depth"]) else: _item = _field["input"] inputs.append(_item) return inputs def get_outputs(self): outputs = [] for _, output in self.outputs.items(): outputs.append(output) if len(outputs) == 1: outputs = [outputs] return outputs def show_metrics(self, step): msg = "Step: {}".format(step) for name, metric in self.metrics.items(): msg += ", {}: {:>.4f}".format(name, metric.result()) logging.info(msg) def set_output(self, output, name): self.outputs[name] = output self.output_names.append(name) ``` #### File: dlflow/utils/logger.py ```python import os import logging import absl.logging as absl_logging _ABSL_LOGGING_LEVEL = { "debug": absl_logging.DEBUG, "info": absl_logging.INFO, "warn": absl_logging.WARNING, "error": absl_logging.ERROR } DEFAULT_INFO_FMT = "%(asctime)s [%(levelname)s] - %(message)s" DEFAULT_DEBUG_FMT = "%(asctime)s %(filename)s:%(lineno)d " \ "[%(levelname)s] - %(message)s" def logging_initialize(log_level=None, fmt_str=None): absl_handler = absl_logging.get_absl_handler() if log_level is None: log_level = "info" if fmt_str is None: fmt_str = DEFAULT_DEBUG_FMT formatter = logging.Formatter(fmt_str) absl_handler.setFormatter(formatter) set_logging_level(log_level) def set_logging_level(log_level): if log_level.lower() not in _ABSL_LOGGING_LEVEL: raise ValueError("Logging initialize error. Can not recognize value of" " <log_level> which by given '{}' , except 'debug'," " 'info', 'warn', 'error'.".format(log_level)) absl_handler = absl_logging.get_absl_handler() if absl_handler in logging.root.handlers: logging.root.removeHandler(absl_handler) absl_logging.set_verbosity(_ABSL_LOGGING_LEVEL[log_level]) absl_logging.set_stderrthreshold(_ABSL_LOGGING_LEVEL[log_level]) absl_logging._warn_preinit_stderr = False logging.root.addHandler(absl_handler) def set_logging_writer(log_name, log_dir): absl_handler = absl_logging.get_absl_handler() if not os.path.exists(log_dir): os.makedirs(log_dir) absl_handler.use_absl_log_file(program_name=log_name, log_dir=log_dir) def get_logging_info_str(): info = ["\n=== === LOGGING INFO === ==="] for _name, _logger in logging.Logger.manager.loggerDict.items(): if hasattr(_logger, "handlers"): _handler = _logger.handlers else: _handler = "None" _str = " * {} : {} - {}".format(_name, _logger, _handler) info.append(_str) info.append("=== === LOGGING INFO === ===\n") return "\n".join(info) ``` #### File: dmflow/example/run_spark.py ```python from __future__ import print_function import os import sys import logging import subprocess import argparse import pprint SPARK_PREFIX = "dmflow" JAR_NAME = "dmflow-1.0.0-SNAPSHOT.jar" DEBUG = False PROD = False logging.basicConfig(level=logging.DEBUG, format='%(asctime)s [%(levelname)s] - %(message)s', datefmt='%Y-%m-%d %a %H:%M:%S', stream=sys.stdout) class Config: def __init__(self): self.MaxExecutors = 300 self.parallelism = 1000 self.cores = 2 self.APP_PREFIX = SPARK_PREFIX self.YARN_QUEUE = "root.my_yarn_queue" def __repr__(self): return """MLflow Runner Config ( ------------- Project Config ------------ YARN_QUEUE: {0} ------------- Spark Runtime Config ------------ MaxExecutors: {1} parallelism: {2} cores: {3} ) """.format(self.YARN_QUEUE, self.MaxExecutors, self.parallelism, self.cores) class HDFS: @staticmethod def exists(hdfs_path): cmd = "hadoop fs -test -e " + hdfs_path logging.debug("run shell: " + cmd) ret = subprocess.call(cmd, shell=True) return True if ret == 0 else False @staticmethod def copyTolocal(hdfs_path): cmd = "hadoop fs -get {0} .".format(hdfs_path) logging.debug("run shell: " + cmd) subprocess.call(cmd, shell=True) class ExecWrapper: cmd = 'echo "replace cmd as your command"' def run(self): cmd = self.cmd logging.debug(r'exec cmd: %s' % cmd) p = subprocess.Popen(cmd, shell=True, bufsize=1, universal_newlines=True) p.wait() sys.stdout.flush() code = p.returncode if code != 0: raise RuntimeError( "subprocess run shell failed! ret=" + str(code)) class ShowSparkVersion(ExecWrapper): def __init__(self): self.cmd = "spark-submit --version" class FeatureFlowRunner(ExecWrapper): TEMPLATE = ''' spark-submit --queue {YARN_QUEUE} \ --class com.didi.dm.dmflow.FeatureFlowRunner \ --name "{appName}" \ --driver-memory 2g \ --executor-memory 12g \ --conf "spark.dynamicAllocation.enabled=true" \ --conf "spark.driver.maxResultSize=1g" \ --conf "spark.dynamicAllocation.minExecutors=100" \ --conf "spark.dynamicAllocation.maxExecutors={MaxExecutors}" \ --conf "spark.yarn.executor.memoryOverhead=3g" \ --conf "spark.sql.shuffle.partitions={parallelism}" \ --conf "spark.default.parallelism={parallelism}" \ --conf "spark.executor.cores={cores}" \ --driver-java-options "-Dlog4j.configuration=file:log4j.properties" \ {JAR_NAME} \ --seedSQL "{seedSQL}" \ --featureConfig "{featureConfig}" \ --featureDate "{featureDate}" \ --featureModelHDFS "{featureModelHDFS}" \ --featureOutHDFS "{featureOutHDFS}" {fit_args} ''' def __init__(self, seedSQL, featureConfig, featureDate, featureModelHDFS, featureOutHDFS, fit): fit_args = "--fit false" if fit is True: assert os.path.exists(featureConfig), \ "input featureConfig is not exists when fit=true: " \ + featureConfig fit_args = "--fit true" def isNullOrEmpty(seedSQL): assert isinstance(seedSQL, str), "输入的参数不是字符串" return True \ if not seedSQL or len(seedSQL.strip()) == 0 else False params = { "YARN_QUEUE": config.YARN_QUEUE, "appName": ".".join([SPARK_PREFIX, featureDate]), "JAR_NAME": JAR_NAME, "MaxExecutors": config.MaxExecutors, "parallelism": config.parallelism, "cores": config.cores, "seedSQL": seedSQL, "featureConfig": featureConfig, "featureDate": featureDate, "featureModelHDFS": featureModelHDFS, "featureOutHDFS": featureOutHDFS, "fit_args": fit_args } self.cmd = self.TEMPLATE.replace("\n", " ").format(**params) if __name__ == '__main__': print("[RUN]", ' '.join(sys.argv)) parser = argparse.ArgumentParser(description='MLflow Binary Runner') parser.add_argument('-f', '--conf', help='特征合并的配置文件地址', required=True) parser.add_argument('-s', '--sql', help='label人群的SQL字符串', default='') parser.add_argument('-d', '--date', help='执行的特征日期', default='') parser.add_argument('-m', '--featureModelHDFS', help='模型保存的HDFS地址', default='') parser.add_argument("-o", '--featureOutHDFS', help='合并后的特征产出HDFS地址', default='') parser.add_argument('--fit', help='是否根据配置生成模型?否的情况会直接读取模型', action='store_true') parser.add_argument("-v", "--verbosity", help="increase output verbosity", action="store_true") opt = parser.parse_args() logging.debug("输入的CLI参数如下:") pprint.pprint(vars(opt)) config = Config() logging.debug(config) FeatureFlowRunner( seedSQL=opt.sql, featureConfig=opt.conf, featureDate=opt.date, featureModelHDFS=opt.featureModelHDFS, featureOutHDFS=opt.featureOutHDFS, fit=opt.fit ).run() ``` #### File: mnist_example/model/mnist_classifier.py ```python from dlflow.mgr import model, config from dlflow.models import ModelBase import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, Conv2D from tensorflow.keras.layers import ReLU, Dropout, Flatten from tensorflow.keras.layers import BatchNormalization, MaxPooling2D @model.reg("mnist_cnn") class MyModel(ModelBase): cfg = config.setting( config.req("MODEL.learning_rate"), config.req("MODEL.classes"), config.req("MODEL.layers"), config.opt("MODEL.batch_size", 8) ) def __init__(self, fmap): super(MyModel, self).__init__(fmap) self.optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) self.compute_loss = tf.keras.losses.SparseCategoricalCrossentropy() self.mean_loss = tf.keras.metrics.Mean() self.acc = tf.keras.metrics.SparseCategoricalAccuracy() self.metrics = { "mean_loss": self.mean_loss, "acc": self.acc } self.msg_frac = 10 def build(self): concat_list = self.get_inputs(tp="nums") images = tf.concat(concat_list, axis=1) images = tf.reshape(images, (-1, 28, 28, 1)) output = CNN(n_class=10)(images) arg_max = tf.argmax(output, axis=1) self.set_output(output, "softmax") self.set_output(arg_max, "argmax") @tf.function def train(self, feature, label): _label = label["label"] with tf.GradientTape() as tape: output, _ = self.model(feature) loss = self.compute_loss(_label, output) grads = tape.gradient(loss, self.model.trainable_variables) self.optimizer.apply_gradients( zip(grads, self.model.trainable_variables)) self.mean_loss(loss) self.acc(_label, output) @tf.function def evaluate(self, feature, label): _label = label["label"] output, _ = self.model(feature) loss = self.compute_loss(_label, output) self.mean_loss(loss) self.acc(_label, output) @tf.function def predict(self, feature): pred = self.model(feature) return pred class CNN(Model): def __init__(self, n_class=10): super(CNN, self).__init__() self.conv1 = Conv2D(32, (3, 3), activation='relu') self.conv2 = Conv2D(64, (3, 3), activation='relu') self.max_pooing2d = MaxPooling2D((2, 2)) self.flatten = Flatten() self.dense1 = Dense(64, activation='relu') self.dense2 = Dense(n_class, activation='softmax') def call(self, inputs): x = self.conv1(inputs) x = self.max_pooing2d(x) x = self.conv2(x) x = self.max_pooing2d(x) x = self.flatten(x) x = self.dense1(x) x = self.dense2(x) return x ``` #### File: dlflow/static_task/DemoTask.py ```python from dlflow.tasks import TaskNode from dlflow.mgr import task, config from absl import logging @task.reg("model register name") class DemoTask(TaskNode): parent_tag = TaskNode.set_tag("PARENT_TAG") output_tag = TaskNode.set_tag("OUTPUT_TAG") bind_tasks = "task name or list of tasks" cfg = config.setting( config.req("DemoParam") ) def __init__(self): super(DemoTask, self).__init__() @TaskNode.timeit def run(self): logging.info("Running {}".format(self.__class__.__name__)) ```
{ "source": "128technology/blaster", "score": 2 }
#### File: webapp/blaster/menu.py ```python from flask import ( Blueprint, flash, g, redirect, render_template, request, url_for ) bp = Blueprint('menu', __name__) @bp.route('/') def home(): return render_template('menu.html') ``` #### File: webapp/blaster/quickstart.py ```python import functools from flask import ( current_app, Blueprint, flash, Flask, g, redirect, render_template, request, session, url_for, jsonify ) import json from blaster.db import get_db from . import constants bp = Blueprint('quickstart', __name__, url_prefix='/quickstart') @bp.route('/<instance>') def instantiate(instance=None): db = get_db() node_row = db.execute('SELECT quickstart_id from node WHERE identifier = ?', (instance,)).fetchone() if node_row is None: qs_row = db.execute('SELECT node_name, asset_id, config FROM quickstart WHERE default_quickstart > 0').fetchone() else: if node_row[0] is None: qs_row = db.execute('SELECT node_name, asset_id, config FROM quickstart WHERE default_quickstart > 0').fetchone() else: qs_row = db.execute('SELECT node_name, asset_id, config FROM quickstart WHERE id = ?', (node_row['quickstart_id'],)).fetchone() if qs_row is None: return jsonify(error="Could not find a specific or default quickstart"), 404 response = {} quickstart = { 'a': qs_row['asset_id'], 'n': qs_row['node_name'], 'c': qs_row['config'] } response['quickstart'] = json.dumps(quickstart) response['password'] = <PASSWORD> db.execute('UPDATE node SET status = ? WHERE identifier = ?', ('Bootstrapped', instance)) db.commit() return jsonify(response) ```
{ "source": "128technology/rules_pkg", "score": 2 }
#### File: pkg/releasing/print_rel_notes.py ```python import sys from string import Template import textwrap from releasing import release_tools def print_notes(repo, version, tarball_path, org='bazelbuild'): file_name = release_tools.package_basename(repo, version) sha256 = release_tools.get_package_sha256(tarball_path) url = 'https://github.com/%s/%s/releases/download/%s/%s' % ( org, repo, version, file_name) workspace_stanza = release_tools.workspace_content(url, repo, sha256) relnotes_template = Template(textwrap.dedent( """ ------------------------ snip ---------------------------- **New Features** **Incompatible Changes** **WORKSPACE setup** ``` ${workspace_stanza} ``` **Using the rules** See [the source](https://github.com/${org}/${repo}/tree/master). ------------------------ snip ---------------------------- """).strip()) print(relnotes_template.substitute({ 'org': org, 'repo': repo, 'workspace_stanza': workspace_stanza, })) def main(args): print_notes(repo=args[1], version=args[2], tarball_path=args[3]) if __name__ == '__main__': main(sys.argv) ```
{ "source": "128technology/stage_check", "score": 2 }
#### File: stage_check/stage_check/AbstractTest.py ```python import importlib import re import os import sys import getpass import datetime import shlex import subprocess import pprint try: from stage_check import Output except ImportError: import Output try: from stage_check import EntryTest except ImportError: import EntryTest try: from stage_check import Linux except ImportError: import Linux class Base(object): """ Note that individual tests are unaware of their node context. It is up to the invoker to understand that some tests run on the primary node and others on the secondary, while still others run on both. """ def __init__(self, test_id, config, args): self._debug = args.debug self.desc_string = '' self._test_id = str(test_id) self._schema = {} self.message_list = [ ] self.results = {} self.output = None self._version = "0.0.0" # These are set after creation to give the test context # about what has transpired so far (helpful for progressive # json output) self.__last_test_id = 0 self.__router_index = 0 self.__last_router_index = 0 try: self.desc_string = config["Description"] except KeyError: self.desc_string = "NO DESC PROVIDED" self.base_name = 'AbstractTest' self.module_name = config["TestModule"] self.output_suffix = config["OutputModule"] try: self.__enabled = config["Enable"] except KeyError: self.__enabled = True try: self.params = config["Parameters"] except Exception as e: print(f"***********************************") print(f"* Test: {type(self).__name__}") print(f"* Error validating test parameters ") print(f"* EXITING...") print(f"***********************************") print(e) sys.exit(1) def requires_graphql(self): return False def requires_netconf(self): return False def resource_greedy(self): return False def description(self): return f'{self.test_id:>2} {self.desc_string}' def desc(self): return self.desc_string @property def enabled(self): return self.__enabled @property def debug(self): return self._debug @property def test_id(self): return self._test_id @property def schema(self): return self._schema @property def version(self): return self._version @property def last_test_id(self): return self.__last_test_id @last_test_id.setter def last_test_id(self, last_test_id): self.__last_test_id = last_test_id @property def router_index(self): return self.__router_index @router_index.setter def router_index(self, router_index): self.__router_index = router_index @property def last_router_index(self): return self.__last_router_index @router_index.setter def last_router_index(self, last_router_index): self.__last_router_index = last_router_index def apply_default_params(self, default_params): params = self.params.copy() for param in default_params: if not param in params: params[param] = default_params[param] if self.debug: print(f'------ {self.description()} ------') pprint.pprint(params) return params def create_output_instance(self, module_dict=None): """ Load configured output module """ self.output = None output_name_base = "Output" + self.module_name output_module_name = output_name_base + self.output_suffix if module_dict is None or \ output_module_name not in module_dict: output_module = importlib.import_module(output_module_name) if hasattr(output_module, output_module_name): if module_dict is not None: module_dict[output_module_name] = output_module # print(f"Successfully registered output plugin '{output_module_name}'") else: print(f"Module '{output_module_name}' has no class; skipping") if module_dict is not None: output_module = module_dict[output_module_name] output = output_module.create_instance() required_base_name = output_name_base + '.Base' if output.full_name != required_base_name: print(f"Output Module '{output_module_name}' must have parent '{required_base_name}'") print(f"Parent is {output.full_name}") sys.exit(1) self.output = output def run(self): """ Abstract test template """ return -1 def exclude_flat_entry(self, entry, excludes): """ Compare flattened list entry with special node_type and node_name entries against a list of exlusion dictionaries If the extry matches, it should be exluded from the test performed on the list. Note that a missing key from the entry will cause the exclusion rule to fail, and thus the test should be peformed... (consider just throwing an exception) """ if entry is None: return True entry_excluded=False for exclude in excludes: excluded=True for exclude_key in exclude: if not exclude_key in entry or \ entry[exclude_key] != exclude[exclude_key]: excluded=False break if self.debug: pprint.pprint(exclude) print(f'Exclude: {excluded}') if excluded: entry_excluded=True break return entry_excluded def eval_tests(self, flattened_json, entry_tests): """ Process test entries on the fly. """ eval = EvalTest.eval(self.debug) for entry in flattened_json: return_status = test_entry() if self.ouput is not None: self.output.oproctest_match(entry) def eval_tests(self, node, test_list, default_result): """ Evaluate a series of tests against the provided node A node should be an entry in the list of json objects for testing (e.g.network interfaces, device interfaces etc.) """ if self.debug: print(f'------- start eval_tests ---------') pprint.pprint(node) result = default_result entry_text_result='?' for entry in test_list: if self.debug: entry_str = pprint.pformat(entry) print(f'------- start eval_tests ---------') print(f'{entry}') for key in entry: if key == "status": continue match = self.test_key_value(node, key, entry[key]) if match is None or \ match is False: break if self.debug: print(f'-------Result={result}--------------') if match is not None and \ match is True and \ "status" in entry: entry_text_result = entry["status"] result = Output.text_to_status(entry_text_result) break if self.debug: print(f'*******************************') print(f' eval_tests: FINAL RESULT {entry_text_result}({result})') print(f'*******************************') return result def test_key_value(self, node, key, value): """ node is a dictionary to look up a value for a nested diectionary. """ try: key_list = key.split(".") for subkey in key_list: if self.debug: nodestr = pprint.pformat(node) print (f'test_key_value: {nodestr} -> subkey={subkey}') node = node[subkey] # Consider not catching this here to make it # more obvious to the caller... except (KeyError, TypeError) as e: return None if self.debug: print (f'test_key_value: {key} == {value}?') return (node == value) def test_info(self, local_info, router_context): info={} try: dt = datetime.datetime.now() info["DateTime"] = dt #info["node_type"] = router_context.node_type() info["StageCheckVersion"] = "1.0.0" info["TestModule"] = self.__class__.__name__ info["TestVersion"] = self.version info["TestDescription"] = self.desc() info["TestIndex"] = int(self.test_id) info["TestIndexLast"] = self.last_test_id info["RouterIndex"] = self.router_index info["RouterIndexLast"] = self.last_router_index info["InvokingRouter"] = local_info.get_router_name() info["InvokingNode"] = local_info.get_node_name() info["InvokingRole"] = local_info.get_node_type() info["Router"] = router_context.get_router() """ info["Node"] = router-context.get_node_by_type(node_type) info["NodeType"] = node_type info["Asset"] = router-context.get_asset_by_type(node_type) info["SWVersion"] = router_context.get_version_by_type(node_type) """ except Exception as e: print(e) pass # pprint.pprint(info) return info def test_end_by_status(self, status_list = []): """ Perform whatever action occurs at test_end() except only if self.status matches an entry in the passed list @status_list -- List of statuses to natch """ self.output.test_end_by_status(status_list) class GraphQL(Base): """ Base class for GraphQL tests """ class ReplyStatus(object): """ Simplified Server / API status... """ def __init__(self): self._server_code = 200 self._error_list = [] @property def error_list(self): return self._error_list @error_list.setter def error_list(self, value): if isinstance(value, list): self._error_list.extend(value) @property def server_code(self): return self._server_code @server_code.setter def server_code(self, value): self._server_code = value def __init__(self, test_id, config, args): super().__init__(test_id, config, args) def process_gql_status(self, query_status, errors=None): error_list=[] if errors is not None: for entry in errors: if "message" in entry and \ not entry["message"] in error_list: error_list.append(entry["message"]) if query_status is None or \ query_status > 299 or \ len(error_list) > 0: self.output.graphql_error(query_status, error_list) return False return True def send_query(self, gql_node, gql_token, json_reply, status=None): errors=[] query_status = gql_node.send_query(gql_token, json_reply, errors) if status is not None: status.server_code = query_status status.error_list = errors return self.process_gql_status(query_status, errors) def _workaround_graphql_api(self, intf_list): """ Works around a problem / bug with the graphql API not always returning state information for a L2 HA network-interface. """ statemap = {} statekey='' for entry in intf_list: try: sharedPhysAddr = entry['router/nodes/deviceInterfaces/sharedPhysAddress'] if sharedPhysAddr == '': continue statekey = sharedPhysAddr + ':' + entry['name'] except (KeyError, TypeError): continue if 'state' in entry and \ entry['state'] is not None: statemap[statekey] = entry['state'] for entry in intf_list: try: sharedPhysAddr = entry['router/nodes/deviceInterfaces/sharedPhysAddress'] if sharedPhysAddr == '': continue statekey = sharedPhysAddr + ':' + entry['name'] if 'state' not in entry or \ entry['state'] is None: entry['state'] = statemap[statekey] except (KeyError, TypeError): continue class Linux(Base, Linux.Callbacks): """ Base Class for tests using linux commands """ def __init__(self, test_id, config, args): super().__init__(test_id, config, args) try: self.__timeout = config["Timeout"] except KeyError: pass @property def timeout(self): return __timeout def run_linux_progress(self, message): self.output.progress_display(message, self.fp) def line_to_message(self, line, regex=None, message_format='No Format Provided'): """ If provided, The format is applied to matching groups from regex as applied to line. """ output_string = message_format if regex is not None: matches = re.search(regex, line, re.MULTILINE|re.DOTALL) if matches is not None: index = 1 while index < 10: try: dest = '{' + str(index) + '}' source = matches.group(index) output_string = output_string.replace(dest, source) except IndexError: pass index += 1 return output_string def convert_to_json(self, text_list, pattern, regex_groups, json_data): """ Derived classes can override this with their own conversion routines See TestT1Detail """ json_data.clear() return json_data def run_linux_json(self, local_info, router_context, node_type, command, patterns, json_data, error_lines, fp): """ """ # run the command... candidate_lines = [] shell_status = self.run_linux(local_info, router_context, node_type, command, None, candidate_lines, error_lines, fp) # convert output to json... if len(error_lines) == 0: self.convert_to_json(candidate_lines, patterns, json_data) return shell_status def run_linux(self, local_info, router_context, node_type, command, candidate_regex, candidate_lines, error_lines, fp): """ """ salt_error_indicators = [] salt_error_indicators.append('^\s*Minion did not return.') salt_error_indicators.append('^\s*No minions matched the target.') asset_id = router_context.get_asset_by_type(node_type) if asset_id is None or asset_id == '': error_lines.append(f"Missing asset info for {node_type} node") return 0 candidate_lines.clear() linux_command = command if local_info.get_node_type() == 'conductor': linux_command = 't128-salt ' + asset_id + " cmd.run '" + command + "'" if self.debug: if candidate_regex is not None: print(f'Candidate Regex: {candidate_regex}') print(f'Linux Command: {linux_command}') print(f'Asset ID: {asset_id}') # subprocess.DEVNULL is python 3.3+ only self.output.progress_display(f"Run '{linux_command}'...", fp=fp) pipe = subprocess.Popen(shlex.split(linux_command), stdin=open(os.devnull, 'rb'), bufsize=0, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, close_fds=True) for line in iter(pipe.stdout.readline, b''): bline = line.rstrip() xline = bline.decode('utf-8') if self.debug: print(f'Consider: {xline}') if candidate_regex is not None and \ candidate_regex != '' and \ not re.search(candidate_regex, xline): continue candidate_lines.append(xline) if self.debug: print(f'*Matched: {xline}') for indicator in salt_error_indicators: if re.search(indicator, xline): error_lines.append(xline.lstrip()) if self.debug: pprint.pprint(candidate_lines) return_code = pipe.poll() return return_code def check_user(self, required_user): message = None status = Output.Status.OK user = getpass.getuser() if user != required_user: status=Output.Status.WARN self.output.run_as_wrong_user(user, status=status) return status ``` #### File: stage_check/stage_check/Banner.py ```python class MissingOverload(Exception): """ Raised when the base class is method is not overloaded... """ pass class Base(object): def __init__(self): self.place_holder = True """ Module to create Text Banners. Abstracted out because these have no place when creating json output (in this case the only test banner might be a comma). """ def header_summary( self, router_context, tests_by_status ): """ Output summary of Router information """ raise MissingOverload def header( self, router_context, router_count, router_max, fp=None ): """ Invoked before a router's test is started to output Interesting information about that Router """ raise MissingOverload def trailer_summary( self, router_context ): """ Output summary of Router information """ raise MissingOverload def trailer( self, router_context, router_count, router_max, fp=None ): """ Invoked before a router's test is started to output Interesting information about that Router """ raise MissingOverload ``` #### File: stage_check/stage_check/EntryTest.py ```python import re import pprint import sly try: from stage_check import Output except ImportError: import Output class LexerError(Exception): """ Raised when Lexer token extraction error occurs w/o debug enabled... """ pass class MissingOverload(Exception): """ Raised when MatchFunction is not overloaded by a derived class """ class MatchFunction(object): """ Derived classes will have this method called when """ def process_match(entry, test_index, test, defaults): raise MissingOverload class TestLexer(sly.Lexer): # Set of token names. This is always required tokens = { INT, FLOAT, KEY, STRING, BOOL, KEY_TEST, TYPE2STR, PLUS, MINUS, MULT, DIVIDE, EQ, LT, LE, GT, GE, NE, OR, AND, LPAREN, RPAREN } literals = { '(', ')', '\'', '@' } # String containing ignored characters ignore = ' \t' # Regular expression rules for tokens PLUS = r'\+' MINUS = r'-' MULT = r'\*' DIVIDE = r'/' EQ = r'==' LE = r'<=' LT = r'<' GE = r'>=' GT = r'>' NE = r'!=' OR = r'\|\|' AND = r'&&' LPAREN = r'\(' RPAREN = r'\)' TYPE2STR = r'@' @_(r'\d+') def INT(self, t): t.value = int(t.value) return t # Identifiers and keywords FLOAT = r'[0-9]+\.[0-9]+' INT = r'[0-9]+' KEY = r'[a-zA-Z0-9]+([\.\/_][a-zA-Z0-9]+)*' KEY_TEST = r'\?[a-zA-Z0-9]+([\.\/_][a-zA-Z0-9]+)*' STRING = r'\'[^\']*\'' KEY['True'] = BOOL KEY['False'] = BOOL ignore_comment = r'\#.*' # Line number tracking @_(r'\n+') def ignore_newline(self, t): self.lineno += t.value.count('\n') def error(self, t): if self.debug: print('Line %d: Bad character %r' % (self.lineno, t.value[0])) else: raise LexerError self.index += 1 @property def debug(self): return self.__debug @debug.setter def debug(self, value): self.__debug = value class TestParser(sly.Parser): """ Consider adding support for unary operators: - negativity operator ! logical negation ? dictionary key existence Additional binary: =~ regex match """ tokens = TestLexer.tokens @property def debug(self): return self.__debug @debug.setter def debug(self, debug): if isinstance(debug, bool): self.__debug = debug @property def json_entry(self): return self.__json_entry @json_entry.setter def json_entry(self, json_entry): if isinstance(json_entry, dict): self.__json_entry = json_entry def infer_type(self, non_string, string): if isinstance(non_string, int): return int(string) elif isinstance(non_string, float): return float(string) elif isinstance(non_string, bool): return bool(string) return None def infer_types(self, left, right): #print(f"INFER(I) L={left}({type(left)} R={right}({type(right)}") if not isinstance(left, str) and \ isinstance(right, str): right = self.infer_type(left, right) if not isinstance(right, str) and \ isinstance(left, str): left = self.infer_type(right, left) #print(f"INFER(O) L={left}({type(left)} R={right}({type(right)}") return left, right @_('expr_or OR expr_and') def expr_or(self, p): if self.debug: print(f"{p[0]} || {p[2]}: {p[0] or p[2]}") return p[0] or p[2] @_('expr_and') def expr_or(self, p): return p.expr_and @_('expr_and AND expr_comp') def expr_and(self,p): if self.debug: print(f"{p[0]} && {p[2]}: {p[0] and p[2]}") return p[0] and p[2] @_('expr_comp') def expr_and(self, p): return p.expr_comp @_('expr_comp EQ expr_add') def expr_comp(self, p): if self.debug: print(f"{p[0]} == {p[2]}: {p[0] == p[2]}") return p[0] == p[2] @_('expr_comp NE expr_add') def expr_comp(self, p): if self.debug: print(f"{p[0]} != {p[2]}: {p[0] != p[2]}") return p[0] != p[2] @_('expr_comp GT expr_add') def expr_comp(self, p): left, right = self.infer_types(p[0], p[2]) if self.debug: print(f"GT: {left} > {right}: {left > right}") return left > right @_('expr_comp LT expr_add') def expr_comp(self, p): left, right = self.infer_types(p[0], p[2]) if self.debug: print(f"LT: {left} < {right}: {left < right}") return left < right @_('expr_comp LE expr_add') def expr_comp(self, p): left, right = self.infer_types(p[0], p[2]) if self.debug: print(f"LE: {left} <= {right}: {left <= right}") return left <= right @_('expr_comp GE expr_add') def expr_comp(self, p): left, right = self.infer_types(p[0], p[2]) if self.debug: print(f"GE: {left} >= {right}: {left >= right}") return left >= right @_('expr_add') def expr_comp(self, p): return p.expr_add @_('expr_add PLUS expr_mult') def expr_add(self, p): if self.debug: print(f"{p[0]} + {p[2]}: {p[0] + p[2]}") return p[0] + p[2] @_('expr_add MINUS expr_mult') def expr_add(self, p): if self.debug: print(f"{p[0]} - {p[2]}: {p[0] - p[2]}") return p[0] - p[2] @_('expr_mult') def expr_add(self, p): return p.expr_mult @_('expr_mult MULT expr') def expr_mult(self, p): if self.debug: print(f"{p[0]} * {p[2]}: {p[0] * p[2]}") return p[0] * p[2] @_('expr_mult DIVIDE expr') def expr_mult(self, p): if self.debug: print(f"{p[0]} / {p[2]}: {p[0] / p[2]}") return p[0] / p[2] @_('expr') def expr_mult(self, p): return p.expr @_('LPAREN expr_or RPAREN') def expr(self, p): if self.debug: print(f"({p.expr_or})") return p.expr_or @_('TYPE2STR expr') def expr(self, p): try: type_name = p[1].__class__.__name__ if type_name == 'NoneType': type_name = 'None' except NameError: type_name = 'Undefined' if self.debug: print(f"@{p[1]}: {type_name}") return type_name @_('term') def expr(self, p): return p.term @_('INT') def term(self, p): return int(p[0]) @_('FLOAT') def term(self, p): return float(p[0]) @_('KEY') def term(self, p): keys = p[0].split('.') value = self.__json_entry for k in keys: value = value[k] if self.debug: print(f"entry[{p[0]}] = {value}") return value @_('KEY_TEST') def term(self, p): """ Treating this as a token is a bit of a hack, but it works... """ key = p[0] key = key[1:] keys = key.split('.') value = self.__json_entry for k in keys: if not k in value: if self.debug: print(f"?entry[{key}] = False") return False value = value[k] if self.debug: print(f"?entry[{key}] = True") return True @_('STRING') def term(self, p): return p[0][1:-1] @_('BOOL') def term(self, p): return p[0] == 'True' @property def json_entry(self): return self.__json_entry @json_entry.setter def json_entry(self, value): self.__json_entry = value @property def debug(self): return self.__debug @debug.setter def debug(self, value): self.__debug = value class Parser(object): def __init__(self, debug=False): self.__lexer = TestLexer() self.__parser = TestParser() self.__lexer.debug = debug self.__parser.debug = debug self.__debug = debug @property def lexer(self): return self.__lexer @property def parser(self): return self.__parser @property def debug(self): return self.__debug def true_value(self, value): """ Convert a value to boolean using explicit rules """ bool_result = False if isinstance(value, bool): if value == True: bool_result = True elif isinstance(value, int): if value != 0: bool_result = True elif isinstance(value, float): if value != 0.0: bool_result = True elif isinstance(value, str): if value != '': bool_result = True return bool_result def exclude_entry(self, entry, exclude_tests): """ Evaluate entry against list of exclude tests. Returns True if it matches, False if it does not. *entry* Dictionary derived from flattened graphql json reply, Linux command etc. *exclude_tests* Dictionary of tests to run against this entry """ self.parser.json_entry = entry matched = False rule_number=0 for item in exclude_tests: try: tokens = self.lexer.tokenize(item) result = self.parser.parse(tokens) except Exception as e: entry["exclude_rule"] = item entry["exclude_exception"] = f"rule {rule_number}: {e.__class__.__name__} exception '{e}'" break matched = self.true_value(result) if matched: if self.debug: print(f"exclude_entry[{rule_number}]: Matched {item}\n") matched = True break else: if self.debug: print(f"exclude_entry[{rule_number}]: No Match {item}\n") rule_number = rule_number + 1 return matched def eval_entry_by_test(self, entry, test_index, test_entry, defaults): """ *entry* Entry from json reply list, Linux command etc. Linux command etc. Linux command etc. *test_index* Dictionary of tests to run against this entry *test_entry* Test (dictionary) to run against this entry *defaults* Default values if not present in test_entry Returns None if: (1) entry did not match the test (2) entry matched but no status could be found """ fname = "eval_entry_by_test" return_status = None if self.debug: print(f"{fname}[#{test_index}]: check entry against {test_entry['test']}") try: tokens = self.lexer.tokenize(test_entry["test"]) result = self.parser.parse(tokens) if self.debug: print(f"{fname}[#{test_index}]: parse({test_entry['test']}) -> RESULT:{result}") except Exception as e: return_status = Output.Status.FAIL entry["test_status"] = return_status entry["test_matched"] = test_entry entry["test_index"] = test_index entry["test_exception"] = f"Rule #{test_index}: {e.__class__.__name__} exception '{e}'" if self.debug: print(f"{fname}[#{test_index}]: EXCEPTION {e.__class__.__name__} {e}") return return_status matched = self.true_value(result) if matched: if "status" in test_entry: status = test_entry["status"] elif "status" in defaults: status = defaults["status"] else: return None format_string = None if "format" in test_entry: format_string = test_entry["format"] elif "format" in defaults: format_string = defaults["format"] return_status = Output.text_to_status(status) if self.debug: print(f"{fname}[#{test_index}]: {status} matched -> " f"{Output.text_to_status(status)}({status})") entry["test_status"] = return_status entry["test_matched"] = test_entry entry["test_index"] = test_index entry["test_format"] = format_string entry["test_exception"] = None return return_status def eval_entry_by_tests(self, entry, entry_tests): """ *entry* Entry from json reply list, Linux command etc. Linux command etc. *entry_tests* Dictionary of tests to run against this entry """ no_match = { "status" : None } defaults = {} tests = entry_tests["tests"] if "no_match" in entry_tests: no_match = entry_tests["no_match"] if "defaults" in entry_tests: defaults = entry_tests["defaults"] self.parser.json_entry = entry if self.debug: print("------- eval_entry_by_tests: the entry --------") pprint.pprint(self.parser.json_entry) print("------- eval_entry_by_tests: the tests --------") pprint.pprint(entry_tests) print("-------------------------------------------------") return_status = None test_index = 0 for test in tests: current_status = self.eval_entry_by_test(entry, test_index, test, defaults) if current_status is not None: return_status = current_status break test_index += 1 if return_status is None: return_status = Output.text_to_status(no_match["status"]) entry["test_status"] = return_status entry["test_matched"] = None entry["test_exception"] = None if "format" in no_match: entry["test_format"] = no_match["format"] if self.debug: print(f"test_entry[#N/A]: return_status None -> " f"{Output.status_to_text(return_status)} ({return_status})") return return_status def eval_tests_by_entry(self, entry, entry_tests, func_object): """ *entry* Entry from json reply list, Linux command etc. Linux command etc. *entry_tests* Dictionary of tests to run against this entry *func* Function to execute """ defaults = {} tests = entry_tests["tests"] if "defaults" in entry_tests: defaults = entry_tests["defaults"] self.parser.json_entry = entry if self.debug: print("------- eval_entry_by_tests: the entry --------") pprint.pprint(self.parser.json_entry) print("------- eval_entry_by_tests: the tests --------") pprint.pprint(entry_tests) print("-------------------------------------------------") test_index = 0 for test in tests: return_status = None current_status = self.eval_entry_by_test(entry, test_index, test, defaults) if current_status is not None: func_object.process_match(entry, test_index, test, defaults) test_index += 1 ``` #### File: stage_check/stage_check/gql_helper.py ```python import os import sys import requests import json import pprint import getpass from requests.packages.urllib3.exceptions import InsecureRequestWarning GRAPHQL_API_HOST = '127.0.0.1' GRAPHQL_API_URL = '/api/v1/graphql' GRAPHQL_LOGIN_URL = '/api/v1/login' GRAPHQL_LOCAL_PORT = 31516 def pretty_print_POST(req): """ At this point it is completely built and ready to be fired; it is "prepared". However pay attention at the formatting used in this function because it is programmed to be pretty printed and may differ from the actual request. """ print('{}\n{}\n{}\n\n{}'.format( '-----------START-----------', req.method + ' ' + req.url, '\n'.join('{}: {}'.format(k, v) for k, v in req.headers.items()), req.body, )) print('------------END------------\n') class RestToken: """ REST API Token manager. The API token is stored at $HOME/.graphql/token """ def __init__(self, doLogin=True, gql_path=None): if gql_path is None: home_path = os.path.expanduser("~") self.token_file_path = os.path.join(home_path, '.graphql', 'token') else: self.token_file_path = os.path.join(gql_path, 'token') try: with open(self.token_file_path, 'r') as file: data = file.read().replace('\n', '') self.token = data except (IOError, FileNotFoundError) as exception_type: self.token='' self.init_token(gql_path=gql_path) def init_token(self, username='', password='', gql_path=None): """ """ if username == '': username = getpass.getuser() if username == 'root': username = 'admin' if password == '': print(f'Please enter password for user {username} to generate a token.') print('You should only have to do this once') password = getpass.getpass() if password == '': return False requests.packages.urllib3.disable_warnings(InsecureRequestWarning) api_url = 'https://%s%s' % (GRAPHQL_API_HOST, GRAPHQL_LOGIN_URL) headers = {'Content-Type': 'application/json'} credentials = {"username": username, "password": password} response = requests.post(api_url, headers=headers, data=json.dumps(credentials), verify=False) json_response = response.json() try: self.token = json_response['token'] except KeyError: pprint.pprint(json_response) print(f'Failed to obtain token for user "{username}"') sys.exit(1) if gql_path is None: token_path = os.path.join(os.environ['HOME'], '.graphql') else: token_path = gql_path token_file_path = os.path.join(token_path, 'token') if not os.path.exists(token_path): os.mkdir(token_path) with open(token_file_path, "w") as token_file: token_file.write(self.token) return True def get_token(self): return self.token class RawGQL: """ """ def __init__(self, raw_string, debug=False): self.raw_string=raw_string self._debug = debug @property def debug(self): return self._debug def get_top_level(self): return True def format(self): return self.raw_string def build_query(self): return { "query" : '{' + self.format() + '}' } def format_results(self, json_dict): return json_dict['data'] def send_query(self, rt, json_reply, errors=None): if self.get_top_level() is False: return # Don't validate rhe server's cert requests.packages.urllib3.disable_warnings(InsecureRequestWarning) url = 'https://' + GRAPHQL_API_HOST if rt is None: url = url + f":{GRAPHQL_LOCAL_PORT}" url = url + GRAPHQL_API_URL headers = {} if rt is not None: headers['Authorization'] = 'Bearer %s' % rt.get_token() headers['Content-Type'] = 'application/json' files = {} data = {} #json_body={ "query": self.build_query() } json_body = self.build_query() files['json'] = (None, json.dumps(json_body), 'application/json') if self.debug: req = requests.Request('POST', url, data = json.dumps(json_body), headers = headers) prepared = req.prepare() pretty_print_POST(prepared) try: response = requests.post(url, data = json.dumps(json_body), headers = headers, verify = False) if self.debug: print('................START RAW REPLY ......................') pprint.pprint(response.status_code) print('......................................................') pprint.pprint(response.content) print('......................................................') pprint.pprint(response.json()) print('.................END RAW REPLY .......................') except (ConnectionRefusedError, requests.packages.urllib3.exceptions.NewConnectionError, requests.exceptions.ConnectionError) as e: print(f'+----------------------------------------------------------------------------+') print(f'| Unable to communicate with GraphQL:') print(f'| {url}') print(f'| {e.__class__.__name__}') print(f'| {e}') print(f'+----------------------------------------------------------------------------+') sys.exit(1) server_status = response.status_code if server_status == 200: resp_as_json = response.json() try: if 'errors' in resp_as_json and \ errors is not None: errors.clear() errors.extend(resp_as_json["errors"]) json_reply.update(self.format_results(resp_as_json)) except (KeyError, IndexError) as e: json_reply.clear() if self.debug: if server_status == 200: print('========= json reply =========') pprint.pprint(json_reply) if errors is not None: print('========= errors ==========') pprint.pprint(errors) else: print(f'========= server status: {server_status} =========') return server_status def flatten_json(self, node, stop_prefix, seperator='/', prefix='router', depth=0): output_list = [] fields_noop = {} def unedgify(edgy_node): """ Replaces ['edges']['node'][key].... LIST DICT With a list of dictionaries. Converts: {edges : [{node : { 'key-1' : 'value-1' }}, {node : { 'key-1' : 'value-1' }} ]} To: [{ 'key-1', 'value-1' }, { 'key-1', 'value-1' }] """ if isinstance(edgy_node, dict): if 'edges' in edgy_node: edgy_node = edgy_node['edges'] index = 0 while index < len(edgy_node): if 'node' in edgy_node[index]: edgy_node[index] = edgy_node[index]['node'] edgy_node[index] = unedgify(edgy_node[index]) index = index + 1 else: for key in edgy_node: edgy_node[key] = unedgify(edgy_node[key]) return edgy_node def _flatten_json(node, stop_prefix, seperator='.', prefix='router', depth=0): """ Flatten json reply, starting at root, down to stopkey, skipping edges and node key. Each key is named with the levels traversed prepended (each named level seperated by the seperator parameter.. Returns: node_list: A list of nodes at level; stop_prefix built up during recursion field_dict: A dictionary of fields to be applied to node_list during tail-end recursion (should be empty at finish) Note: Currently this will not work for 'unusual' grapqhql where 'node' means a 128T node name and not a graphql node. Likewise lists not in the form { 'edges' : [ entry1, entry2, ... ] } can cause poblems """ node_list = [] field_dict = {} skip_list = [ 'edges', 'node' ] node_type = type(node) if node_type == list: for entry in node: sub_list, sub_fields = _flatten_json(entry, stop_prefix, seperator, prefix, depth) node_list = node_list + sub_list field_dict.update(sub_fields) elif node_type == dict: for key in node: prefstr = prefix if not key in skip_list: prefstr = prefix + seperator + key sub_list, sub_fields = _flatten_json(node[key], stop_prefix, seperator, prefstr, depth + 1) if prefstr == stop_prefix: sub_list = unedgify(node[key]) if type(sub_list) == dict: sub_list = sub_list.copy() if type(sub_list) != list: sub_list = [sub_list] node_list = node_list + sub_list field_dict.update(sub_fields) else: # at the stop-level, use normal field names key = prefix #print(f'PREFIX:{prefix} STOP_PREFIX:{stop_prefix}') #pprint.pprint(node) if stop_prefix in key: key = prefix.split(seperator)[-1] #print(f'KEY NOW: {key}') field_dict[key] = node if len(node_list) > 0 and \ len(field_dict) > 0: for entry in node_list: # cannot blindly do entry.update(field_dict), as subtrees with # no nodes for stop_prefix will bubble up and overwrite previous # entries... for field_key in field_dict: if type(entry) == dict: if field_key not in entry: entry[field_key] = field_dict[field_key] field_dict = {} return node_list, field_dict.copy() output_list, fields_noop = _flatten_json(node, stop_prefix, seperator, prefix, depth) return output_list class NodeGQL(RawGQL): """ """ def __init__(self, name, fields=[], names=[], top_level=False, debug=False): super().__init__('', debug) self.fields=fields self.nodes=[] self.name=name self.names=names self.top_level = top_level # if the name starts with 'all' then assume its top_level... if self.top_level is False: if self.name[:3] == 'all': self.top_level = True def get_top_level(self): return self.top_level def set_fields(self, fields): self.fields = fields def clear_fields(self): self.fields=[] def add_node(self, node): self.nodes.append(node) def get_api_string(self): api_string = self.name if len(self.names) > 0: name_count = 0 api_string += '(names: [ ' for name in self.names: if name_count > 0: api_string += ', ' api_string += '"' + name + '"' name_count += 1 api_string += ' ])' return api_string def format(self): str = self.get_api_string() field_count=0 if len(self.fields) > 0 or len (self.nodes > 0): str += ' { edges { node {' for field in self.fields: str += ' ' + field for node in self.nodes: str += ' ' + node.format() str += ' } } }' #print(str) return str def format_results(self, json_dict): return json_dict['data'][self.name]['edges'][0] ``` #### File: stage_check/stage_check/OutputAssetState.py ```python try: from stage_check import Output except ImportError: import Output class Base(Output.Base): def __init__(self): super().__init__() self.__full_name = 'OutputAssetState.Base' """ interim_result """ def proc_interim_result(self, entry, status=None): if status is not None: self.status = status self.amend_interim_result( entry, status=status ) return self.status def amend_interim_result(self, entry, status=None): """ Override this method if necessary """ return True """ test_result """ def proc_test_result(self, entry_test, stats, status=None): if status is not None: self.status = status self.amend_test_result( entry_test, stats ) return self.status def amend_test_result( self, no_match, stats) : """ Override this method if necessary """ return True ``` #### File: stage_check/stage_check/OutputDeviceNamespaceText.py ```python import pprint try: from stage_check import Output except ImportError: import Output try: from stage_check import OutputDeviceNamespace except ImportError: import OutputDeviceNamespace def create_instance(): return OutputDeviceNamespaceText() class OutputDeviceNamespaceText(OutputDeviceNamespace.Base, Output.Text): """ """ def __init__(self): super().__init__() def add_namespace_match(self, status, message, list_message): """ @status @message @list_message """ self.status = status if message is not None and message != '': self.message = message if list_message is not None and list_message != '': self.message_list.append(list_message) return self.status def amend_namespace_match(self, message, list_message): """ @message @list_message """ if message is not None and message != '': self.message = message if list_message is not None and list_message != '': self.message_list.append(list_message) return True def amend_run_linux_error(self, return_status, error_string): """ @return_status @error_string """ self.message = error_string return True def amend_test_result(self, ns_line_count, line_count, params): """ @ns_line_count - Matching line count, specified namespace @line_count - Matching line count, global namespace @test_params - Test parameters """ if self.message is None: if line_count == 0 and ns_line_count == 0: self.message = params['error-no-data'] elif len(self.message_list) > 0: self.message = self.message_list.pop(0) return True ``` #### File: stage_check/stage_check/OutputDeviceStateText.py ```python try: from stage_check import Output except ImportError: import Output try: from stage_check import OutputDeviceState except ImportError: import OutputDeviceState def create_instance(): return OutputDeviceStateText() class OutputDeviceStateText(OutputDeviceState.Base, Output.Text): """ """ def __init__(self): super().__init__() self.message = 'All required network devices In Service' def amend_test_match(self, entry): """ @status @entry """ return self.entry_result_to_text(entry) def amend_test_fail_result(self, count): """ @count """ self.message = f"{count} required network devices are not LINK UP" self.message_list.append("Use PCLI 'show device-interfaces' for more information") return True def amend_test_warn_result(self, count): """ @count """ self.message = f"Incorrect state for {count} device interfaces" self.message_list.append("Use PCLI 'show device-interfaces' for more information") return True ``` #### File: stage_check/stage_check/OutputFib.py ```python try: from stage_check import Output except ImportError: import Output class Base(Output.Base): def __init__(self): super().__init__() self.__full_name = 'OutputFib.Base' """ too_few_entries """ def proc_too_few_entries( self, params, stats ): self.status = Output.Status.FAIL self.amend_too_few_entries( params, stats ) return self.status def amend_too_few_entries( self, params, stats ): return True """ too_many_entries """ def proc_too_many_entries( self, params, stats ): self.status = Output.Status.FAIL self.amend_too_many_entries( params, stats ) return self.status def amend_too_many_entries( self, params, stats ): return True """ test_match """ def proc_test_match( self, entry ): if "test_status" in entry and \ entry["test_status"] == Output.Status.FAIL: self.status = entry["test_status"] self.amend_test_match( entry ) def amend_test_match( self, entry ): return True """ test_result """ def proc_test_result( self, params, stats ): if not "fail_count" in stats: self.status = Output.Status.OK self.amend_test_result( params, stats ) def amend_test_result( self, params, stats ): return True ``` #### File: stage_check/stage_check/OutputFibText.py ```python try: from stage_check import Output except ImportError: import Output try: from stage_check import OutputFib except ImportError: import OutputFib def create_instance(): return OutputFibText() class OutputFibText(OutputFib.Base, Output.Text): """ """ def __init__(self): super().__init__() def amend_too_few_entries( self, params, stats ): self.message = f"FIB size = {entry['total_count']} < {minimum_threshold}" return True def amend_too_many_entries( self, params, stats ): self.message = f"FIB size = {entry['total_count']} > {maximum_threshold}" sel.message_list.append(f"Node {entry['node_name']} FIB size = {entry['totalCount']}") return True def amend_test_match( self, entry ): return self.entry_result_to_text(entry) def amend_test_result( self, params, stats ): if "fail_count" in stats: self.message = f"{stats['fail_count']} / {stats['total_count']} FIB entries FAIL ({stats['exclude_count']} excluded)" else: self.message = f"{stats['total_count'] - stats['exclude_count']} FIB entries PASS ({stats['exclude_count']} excluded)" return True ``` #### File: stage_check/stage_check/OutputGatewayPingText.py ```python try: from stage_check import Output except ImportError: import Output try: from stage_check import OutputGatewayPing except ImportError: import OutputGatewayPing def create_instance(): return OutputGatewayPingText() class OutputGatewayPingText(OutputGatewayPing.Base, Output.Text): """ """ def __init__(self): super().__init__() self.message = "No Results to display..." def amend_cannot_ping_no_gateway(self, entry, ni_key): """ Invoked if no gateway can be found for the network interface @entry @ni_key """ self.message_list.append(f'Cannot ping via NI {entry[ni_key]}, No Gateway!') return True def amend_cannot_ping_dev_status(self, entry, ni_key, status): """ Invoked when ping cannot be completed due to the device interface having status != OPER_UP @entry @ni_key @status """ self.message_list.append(f'Cannot ping via NI {entry[ni_key]}, device status: {status}') return True def amend_no_data_in_reply(self, entry, ni_key, gateway): """ Invoked when a ping has been issued and here is missing address data in the ping reply. @entry @ni_key - Key used to get interface name from entry @gateway - Pinging to/via this Gateway """ error_msg = f"{entry[ni_key]} -> {gateway}: No address info in reply" if not error_msg in self.message_list: self.message_list.append(f"{entry[ni_key]} -> {gateway}: No address info in reply") return True def amend_no_address_in_reply(self, entry, ni_key): """ Invoked when no address or gateway data is available for a network interface, and thus ping cannot be issued @entry - Interface entry being processed @ni_key - Key used to get interface name from entry """ self.message_list.append(f"Skipping NI {entry[ni_key]}: No address info in reply") return True def amend_ping_result_pass(self, entry, ni_key, ping_count, ping_success_count, target, average_reply_time): """ Invoked when all ping_count pings for a network interface receive responses @entry, @ni_key, @ping_count, @ping_success_count, @target, @average_reply_time """ self.message_list.append(f"NI {entry[ni_key]}: {ping_success_count}/{ping_count} replies from {target}; " + f"average latency {average_reply_time:.2}ms") return True def amend_ping_result_fail(self, entry, ni_key, ping_count, ping_fail_count, target, average_reply_time): """ Invoked when some of the pings for a network interface receive no response @entry, @ni_key, @ping_count, @ping_success_count, @target, @average_reply_time """ self.message_list.append(f"NI {entry[ni_key]}: {ping_fail_count}/{ping_count} fails to {target}; " + f"average latency {average_reply_time:.2}ms") return True def amend_test_result(self, gateway_count, gateway_success_count, gateway_fail_count, params): """ @gateway_count @gateway_success_count @gateway_fail_count @params """ iterations = params['iterations'] if gateway_count == 0: self.message = "No matching Network Interfaces!" if len(self.message_list) > 1: if self.status == Output.Status.OK: self.message = f"All {gateway_success_count} matching NIs received" \ f" {iterations}/{iterations} replies" else: self.message = f"Some matching NIs received < {iterations} replies" elif len(self.message_list) == 1: self.message = self.message_list.pop() return True ``` #### File: stage_check/stage_check/OutputLogsText.py ```python import pprint try: from stage_check import Output except ImportError: import Output try: from stage_check import OutputLogs except ImportError: import OutputLogs def create_instance(): return OutputLogsText() class OutputLogsText(OutputLogs.Base, Output.Text): """ """ def __init__(self): super().__init__() def amend_pattern_matched( self, params, pattern ): format_str = "Missing format string..." try: index = int(pattern["pindex"]) except (KeyError, ValueError) as e: self.message_list.append(f"No pattern index available!") return True try: patterns = params["patterns"] except KeyError: self.message_list.append(f"Pattern List missing from config.json") return True try: config = patterns[index] except IndexError: self.message_list.append(f"No config for pattern index={index}!") return True try: format_str = config["format"] except KeyError: pass output_str = Output.populate_format(pattern, format_str); self.message_list.append(output_str) return True def amend_test_result( self, params, stats ): """ """ format_str="Missing format..." if self.status == Output.Status.FAIL: try: format_str = params["result"]["FAIL"] except KeyError: pass else: try: format_str = params["result"]["PASS"] except KeyError: pass stats["past_hours"] = params["past_hours"] self.message = Output.populate_format(stats, format_str) return self.status ``` #### File: stage_check/stage_check/OutputRecentCores.py ```python try: from stage_check import Output except ImportError: import Output class Base(Output.Base): def __init__(self): super().__init__() self.__full_name = 'OutputRecentCores.Base' """ test_result """ def proc_uptime_match( self, cores ): self.amend_uptime_match( cores ) def amend_uptime_match( self, cores ): return True """ service_match """ def proc_service_match( self, service, cores ): self.amend_service_match( service, cores ) def amend_service_match( self, service, cores ): return True """ test_result """ def proc_test_result( self, message, status = None ): if status is not None: self.status = status self.amend_test_result( message ) def amend_test_result( self, message ): return True ``` #### File: stage_check/stage_check/OutputRecentCoresText.py ```python import pprint try: from stage_check import Output except ImportError: import Output try: from stage_check import OutputRecentCores except ImportError: import OutputRecentCores def create_instance(): return OutputRecentCoresText() class OutputRecentCoresText(OutputRecentCores.Base, Output.Text): """ """ def __init__(self): super().__init__() def amend_uptime_match( self, cores ): exec_counts = {} for core in cores: exec_name = core["EXE"] exec_name = exec_name.split('/')[-1] try: exec_counts[exec_name] += 1 except KeyError: exec_counts[exec_name] = 1 for exec_name in exec_counts: self.message_list.append(f"{exec_counts[exec_name]} {exec_name} crashes since OS boot") return True def amend_service_match( self, service, cores ): exec_counts = {} for core in cores: exec_name = core["EXE"] exec_name = exec_name.split('/')[-1] try: exec_counts[exec_name] += 1 except KeyError: exec_counts[exec_name] = 1 for exec_name in exec_counts: self.message_list.append(f"{exec_counts[exec_name]} {exec_name} crashes since {service} start") return True def amend_test_result( self, message ): self.message = message ``` #### File: stage_check/stage_check/OutputRedundancyDatabaseConn.py ```python try: from stage_check import Output except ImportError: import Output class Base(Output.Base): """ """ def __init__(self): super().__init__() self.__full_name = "OutputRedundancyDatabaseConn.Base" self.status = Output.Status.OK """ no_node_data """ def proc_no_node_data(self, local_info): """ """ self.status = Output.Status.WARN self.amend_no_node_data(local_info) return self.status def amend_no_node_data(self, local_info): """ """ return True """ metric """ def proc_metric(self, entry, entry_value): """ """ self.amend_metric(entry, entry_value) return self.status def amend_metric(self, entry, entry_value): """ """ return True """ missing_data """ def proc_missing_data(self): """ """ self.status = Output.Status.FAIL self.amend_missing_data() return self.status def amend_missing_data(self): """ """ return True """ """ def proc_test_result(self, status, entry_count, test_value, fail_count, expected_entries): """ @entry_count @test_value @fail_count @expected_entries """ if status is not None: self.status = status self.amend_test_result( entry_count, test_value, fail_count, expected_entries ) return self.status def amend_test_result(self, entry_count, test_value, fail_count, expected_entries): """ @entry_count @test_value @fail_count @expected_entries """ return True """ """ def proc_test_result_bad_values(self, entry_count, test_value, fail_count, expected_entries): """ @entry_count @test_value @fail_count @expected_entries """ self.amend_test_result_bad_values( entry_count, test_value, fail_count, expected_entries ) return self.status def amed_test_result_bad_values(self, entry_count, test_value, fail_count, expected_entries): """ @entry_count @test_value @fail_count @expected_entries """ return True ``` #### File: stage_check/stage_check/TestEthtool.py ```python import pprint import re try: from stage_check import Output except ImportError: import Output try: from stage_check import EntryTest except ImportError: import EntryTest try: from stage_check import Linux except ImportError: import Linux try: from stage_check import AbstractTest except ImportError: import AbstractTest def create_instance(test_id, config, args): """ Invoked by TestExecutor class to create a test instance @test_id - test index number @config - test parameters from configuration @args - command line args """ return TestT1Detail(test_id, config, args) class TestT1Detail(AbstractTest.Linux, EntryTest.MatchFunction): """ Tests to see if the requested device pattern matches in the global namespace and/or the specified namespaces(s) """ def __init__(self, test_id, config, args): super().__init__(test_id, config, args) self.results = [] def get_params(self): # apply defaults default_params = { "node_type" : "secondary", "linux_device" : "", "exclude_tests" : [], "entry_tests" : {}, } params = self.apply_default_params(default_params) return params def run(self, local_info, router_context, gql_token, fp): """ """ # Ugly! test_info = self.test_info(local_info, router_context) self.output.test_start(test_info, status=Output.Status.OK) params = self.get_params() if self.check_user("root") != Output.Status.OK: return self.output.test_end(fp) self.output.progress_start(fp) json_data = {} error_lines = [] ethtool = Linux.Ethtool( debug=self.debug, progobj=self ) # Ugly.... self.fp = fp shell_status = ethtool.run_linux_args( local_info, router_context, params['node_type'], params['linux_device'], error_lines, json_data ) # Ugly... self.fp = None if self.debug: print('........ flattened list ..........') pprint.pprint(json_data) engine = EntryTest.Parser(debug=self.debug) engine.eval_entry_by_tests( json_data, params["entry_tests"] ) self.output.proc_test_result(json_data) return self.output.test_end(fp) ``` #### File: stage_check/stage_check/TestInterfaceLearnedIP.py ```python import pprint import ipaddress try: from stage_check import gql_helper except ImportError: import gql_helper try: from stage_check import Output except ImportError: import Output try: from stage_check import AbstractTest except ImportError: import AbstractTest def create_instance(test_id, config, args): """ Invoked by TestExecutor class to create a test instance @test_id - test index number @config - test parameters from, config @args - command line args """ return TestInterfaceLearnedIP(test_id, config, args) class TestInterfaceLearnedIP(AbstractTest.GraphQL): """ """ def __init__(self, test_id, config, args): super().__init__(test_id, config, args) def requires_grapqhl(self): """ Override """ return True def get_params(self): """ """ default_params = { "network-interfaces" : [], "exclude_tests" : [], "skip_no_address" : True } params = self.apply_default_params(default_params) return params def run(self, local_info, router_context, gql_token, fp): """ This test uses the gql engine to get device state state Sample data returned by query: [{'name': 'ha-fabric', 'state': None}, {'name': 'DIA', 'state': {'addresses': [{'ipAddress': '172.16.4.103'}]}}, {'name': 'mpls-t1', 'state': {'addresses': [{'ipAddress': '<empty>'}]}}] """ test_info = self.test_info(local_info, router_context) self.output.test_start(test_info) params = self.get_params() include_list = params["network-interfaces"] exclude_list = params["exclude_tests"] # Kind of a hack as we suggest that its OK for an address to be missing # Theoretically this is an error condition, but currently it is normal # that GraphQL will sort of arbitrarily pick a node's L2 HA interfaces # to place state information in. skip_if_address_missing = params["skip_no_address"] """ API = allRouters Fields = name """ qr = gql_helper.NodeGQL("allRouters", ['name'], [ router_context.get_router() ], debug=self.debug) qn = gql_helper.NodeGQL("nodes", ['name']) qd = gql_helper.NodeGQL("deviceInterfaces", [ 'name', 'sharedPhysAddress', 'state { operationalStatus }' ]) qi = gql_helper.NodeGQL("networkInterfaces", ['name', 'state { addresses { ipAddress } }'], include_list) qr.add_node(qn) qn.add_node(qd) qd.add_node(qi) json_reply={} if not self.send_query(qr, gql_token, json_reply): return self.output.test_end(fp) flatter_json = qr.flatten_json(json_reply, 'router/nodes/deviceInterfaces/networkInterfaces', '/') router_context.set_allRouters_node_type(flatter_json) # do not work around the grapqhl api for now... # self._workaround_graphql_api(flatter_json) if self.debug: print('........ flattened list ..........') pprint.pprint(flatter_json) address_list=[] not_excluded_count = 0 if len(flatter_json) > 0: for entry in flatter_json: try: if_name = None if_name = entry['name'] except KeyError: pass if len(include_list) > 0 and \ not if_name in include_list: continue if len(exclude_list) > 0 and \ if_name in exclude_list: continue address=None if if_name is not None: if self.exclude_flat_entry(entry, exclude_list): continue #if entry['router/nodes/deviceInterfaces/state/operationalStatus'] != "OPER_UP" try: address = entry['state']['addresses'][0]['ipAddress'] except (KeyError, IndexError, TypeError) as e: # TODO: Report Exception {e.__class__.__name__} {e} if not skip_if_address_missing: self.output.proc_address_missing(None, entry) continue if address is not None: # address='1.1.1.1' if address == '<empty>': self.output.proc_empty_address(entry) else: ip_address = ipaddress.ip_address(address) status = self.output.status if ip_address.is_private: status = Output.Status.FAIL iptype = 'Private' else: iptype = 'Public' address_list.append(address) self.output.proc_address_type(status, entry, address, iptype) else: if skip_if_address_missing: continue self.output.proc_address_missing(None, entry) not_excluded_count += 1 else: self.output.proc_no_interfaces_found(include_list) status = self.output.status if status == Output.Status.OK and \ not_excluded_count == 0: status = Output.Status.FAIL self.output.proc_test_result(status, address_list, not_excluded_count) return self.output.test_end(fp) ``` #### File: stage_check/stage_check/TestPeerReachability.py ```python import pprint try: from stage_check import gql_helper except ImportError: import gql_helper try: from stage_check import AbstractTest except ImportError: import AbstractTest try: from stage_check import Output except ImportError: import Output try: from stage_check import EntryTest except ImportError: import EntryTest def create_instance(test_id, config, args): """ Invoked by TestExecutor class to create a test instance @test_id - test index number @config - test parameters from, config @args - command line args """ return TestPeerReachability(test_id, config, args) class TestPeerReachability(AbstractTest.GraphQL): """ """ def __init__(self, test_id, config, args): super().__init__(test_id, config, args) def requires_grapqhl(self): """ Override """ return True def get_params(self): """ expected_entries shoudl fail schema validation if missing from the parameters """ default_params = { "test_value" : "UP", "test_equality" : True, "exclude_tests" : [], "include_list" : [] } params = self.apply_default_params(default_params) return params def run(self, local_info, router_context, gql_token, fp): """ This test uses the gql engine to get peer reachability status """ test_info = self.test_info(local_info, router_context) self.output.test_start(test_info) params = self.get_params() # TODO figure out what the include_list is, a list of peers? include_list = params["include_list"] exclusions = params["exclude_tests"] entry_tests = params["entry_tests"] """ API = allNodes Fields = name """ qr = gql_helper.NodeGQL("allRouters", ['name'], [ router_context.get_router() ], debug=self.debug) qp = gql_helper.NodeGQL("peers", [ 'name', 'paths { node adjacentNode deviceInterface networkInterface adjacentAddress status }' ], include_list) qr.add_node(qp) json_reply={} if not self.send_query(qr, gql_token, json_reply): return self.output.test_end(fp) # this query is not working correctly unfortunately... even UP is returned flatter_json = qr.flatten_json(json_reply, 'router/peers/paths') router_context.set_allRouters_node_type(flatter_json, 'node') if self.debug: print('........ flattened list ..........') pprint.pprint(flatter_json) paths_per_peer = {} failed_peer_paths = {} stats = {} Output.init_result_stats(stats) stats["total_count"] = len(flatter_json) stats["failed_peer_count"] = 0 stats["tested_peer_count"] = 0 engine = EntryTest.Parser(self.debug) for path in flatter_json: try: if engine.exclude_entry(path, exclusions): stats["exclude_count"] += 1 continue peer_name = path['router/peers/name'] test_result = engine.eval_entry_by_tests( path, entry_tests ) Output.update_stats(stats, test_result) if peer_name in paths_per_peer: paths_per_peer[peer_name] += 1 else: paths_per_peer[peer_name] = 1 stats["tested_peer_count"] += 1 if test_result == Output.Status.FAIL: if peer_name in failed_peer_paths: failed_peer_paths[peer_name] += 1 else: failed_peer_paths[peer_name] = 1 stats["failed_peer_count"] += 1 self.output.proc_failed_peer(path, peer_name) self.output.proc_failed_path(path) except KeyError: pass status = Output.Status.OK if stats["FAIL"] > 0: status = Output.Status.FAIL self.output.proc_test_result(entry_tests, stats, status=status) return self.output.test_end(fp) ``` #### File: stage_check/stage_check/TestSessions.py ```python import pprint try: from stage_check import gql_helper except ImportError: import gql_helper try: from stage_check import Output except ImportError: import Output try: from stage_check import AbstractTest except ImportError: import AbstractTest try: from stage_check import EntryTest except ImportError: import EntryTest def create_instance(test_id, config, args): """ Invoked by TestExecutor class to create a test instance @test_id - test index number @config - test parameters from, config @args - command line args """ return TestSessions(test_id, config, args) class TestSessions(AbstractTest.GraphQL): """ Filtering of the session table is performed in highwayManager by taking all fields, concatenating into a string and matching the filter against this string to match the flow. """ def __init__(self, test_id, config, args): super().__init__(test_id, config, args) def requires_grapqhl(self): """ Override """ return True def get_params(self): """ Apply defaults (some of these are non-sensical and absense should be caught during schema validation """ default_params = { "idle_theshold_seconds" : 0, "idle_maximum_seconds" : 0, "max_sessions_to_query" : 0, "filter_string" : "", "match_port" : 0, "exclude_tests" : [] } params = self.apply_default_params(default_params) return params def run(self, local_info, router_context, gql_token, fp): flowEntryFields = [ \ 'sourceIp', 'destIp', 'sourcePort', 'destPort', 'vlan', 'devicePort', 'protocol', 'sessionUuid', 'natIp', 'natPort', 'serviceName', 'tenant', 'encrypted', 'inactivityTimeout', 'deviceInterfaceName', 'networkInterfaceName', 'startTime', 'forward' ] test_info = self.test_info(local_info, router_context) self.output.test_start(test_info) params = self.get_params() try: idle_threshold_seconds = params["idle_threshold_seconds"] idle_maximum_seconds = params["idle_maximum_seconds"] max_sessions = params["max_sessions_to_query"] filter_string = params["filter_string"] match_port = params["match_port"] except Exception as e: # TODO: Improve error handling print("CONFIG ERROR\n") return Output.Status.FAIL exclude_tests = [] if "exclude_tests" in params: exclude_tests = params["exclude_tests"] flow_entry_suffix=f'(first: {max_sessions}, filter: "\\"\\"~\\"{filter_string}\\"")' if local_info.get_router_name() == router_context.get_router() and \ local_info.get_node_type() == 'conductor': # Check Error output self.output.unsupported_node_type(local_info) return Output.Status.WARN qr = gql_helper.NodeGQL("allRouters", ['name'], [ router_context.get_router() ], debug=self.debug) qn = gql_helper.NodeGQL("nodes", ['name']) qf = gql_helper.NodeGQL(f"flowEntries{flow_entry_suffix}", flowEntryFields) qr.add_node(qn) qn.add_node(qf) json_reply={} if not self.send_query(qr, gql_token, json_reply): return self.output.test_end(fp) # Unfortunately jmespath is buggy and does not work well for integers :-( # This is unforunate as the hope was to use a jmespath expression # to eliminate all valid sessions (however that might be defined) flatter_json = qr.flatten_json(json_reply, 'router/nodes/flowEntries', '/') if self.debug: print('........ flattened list ..........') pprint.pprint(flatter_json) matching_flows = {} session_flow_counts = {} stats = {} Output.init_result_stats(stats); stats["total_count"] = len(flatter_json) stats["session_flow_count"] = 0 engine = EntryTest.Parser(debug=self.debug) for flow in flatter_json: try: uuid = flow['sessionUuid'] if engine.exclude_entry(flow, exclude_tests): stats["exclude_count"] += 1 continue if not uuid in session_flow_counts: session_flow_counts[uuid] = 1 else: session_flow_counts[uuid] += 1 test_status = engine.eval_entry_by_tests(flow, params["entry_tests"]) Output.update_stats(stats, test_status) if test_status == Output.Status.FAIL: # Note that this must be configured in the parameters just so the value can # be used in this calculation delta = idle_maximum_seconds - flow['inactivityTimeout'] flow["test_idle_duration"] = delta if not uuid in matching_flows or \ matching_flows[uuid]["test_inactivity_duration"] < delta: matching_flows[uuid] = flow except (KeyError, TypeError) as e: flow["test_exception"] = f"Flow Exception: {e}" continue stats["session_flow_count"] = len(session_flow_counts) status = Output.Status.FAIL if len(matching_flows) == 0: status = Output.Status.OK self.output.proc_test_result(status, matching_flows, stats, params) return self.output.test_end(fp) ``` #### File: stage_check/tests/test_entry.py ```python import re import json import time import datetime import pprint import sly import pytest try: from stage_check import EntryTest except ImportError: import EntryTest try: from stage_check import Output except ImportError: import Output test_data = [ { "exclude_tests" : [ "route/tenant == 'null-tenant'" ], "entry_tests" : { "no_match" : { "status" : "PASS", "text" : "blah blah blah" }, "defaults" : { "status" : "FAIL" }, "tests" : [ { "test" : "@Loss_Of_Signal == 'Undefined'", "status" : "FAIL", "format" : "Test Undefined Variable", }, { "test" : "@Loss_Of_Signal == 'None'", "status" : "FAIL", "format" : "Test None Variable", }, { "test" : "@Loss_Of_Signal != 'Undefined' && Loss_Of_Signal > 1000", "status" : "FAIL", "format" : "Test Loss_Of_Signal > 1000", }, { "test" : "?gateway == False", "status" : "WARN", "format" : "Test Gateway Undefined", }, { "test" : "route/ipPrefix == '0.0.0.0/0' && gateway == '172.23.5.1' && route/l4Port < 1000", "status" : "FAIL", "format" : "Test Compound expression for {gateway}", }, { "test" : "route/ipPrefix == '0.0.0.0/8'", "status" : "PASS", "format" : "Test PASS for route/ipPrefix" }, { "test" : "route/ipPrefix == '0.0.0.0/8'", "status" : "FAIL", "format" : "Test FAIL for route/ipPrefix" } ] } } ] @pytest.mark.parametrize('entry,expected', [ ( { "Loss_Of_Signal" : "50000", "serviceName": "internet_service", "route/ipPrefix": "0.0.0.0/0", "route/l4Port": 0, "route/l4PortUpper": 0, "route/protocol": 'null', "route/tenant": "null-tenant", "devicePort": 110, "gateway": "172.23.5.1", "nodeId": 2, "vlan": 1011, "deviceInterface": "PUBLIC_S", "networkInterface": "public_1011", }, { "status" : "SKIP" } ), ( { "Loss_Of_Signal" : "50000", "serviceName": "internet_service", "route/ipPrefix": "0.0.0.0/0", "route/l4Port": 0, "route/l4PortUpper": 0, "route/protocol": 'null', "route/tenant": "unconstrained.wireless", "devicePort": 110, "gateway": "172.23.5.1", "nodeId": 2, "vlan": 1011, "deviceInterface": "PUBLIC_S", "networkInterface": "public_1011" }, { "status" : "FAIL" } ), ( { "Loss_Of_Signal" : "100", "serviceName": "<ControlMessageService>", "route/ipPrefix": "0.0.0.0/8", "route/l4Port": 0, "route/l4PortUpper": 0, "route/protocol": 'null', "route/tenant": "<global>" }, { "status" : "WARN" } ), ( { "Loss_Of_Signal" : "100", "serviceName": "<ControlMessageService>", "route/ipPrefix": "0.0.0.0/8", "route/l4Port": 0, "route/l4PortUpper": 0, "route/protocol": 'null', "route/tenant": "<global>", "gateway": "172.23.5.1" }, { "status" : "PASS" } ), ( { }, { "status" : "FAIL" } ), ( { "Loss_Of_Signal" : None }, { "status" : "FAIL" } ) ] ) def test_entry_matching(entry, expected): global test_data print("#######################################") pprint.pprint(entry) print("#######################################") parser = EntryTest.Parser(debug=True) matched = parser.exclude_entry(entry, test_data[0]["exclude_tests"]) pprint.pprint(matched) if matched: # ensure we really meant this entry to be skipped assert expected["status"] == "SKIP" #print(f"Excluded entry:") #print(f"==================") #pprint.pprint(entry) else: test_status = parser.eval_entry_by_tests(entry, test_data[0]["entry_tests"]) print(f"Matched Entry Status: {Output.status_to_text(test_status)}({test_status})") #print("#######################################") #pprint.pprint(entry) #print("#######################################") assert Output.status_to_text(test_status) == expected["status"] ```
{ "source": "1291945816/ML_Assessment", "score": 3 }
#### File: 1291945816/ML_Assessment/HandleImage.py ```python import numpy as np import cv2 def image_to_bin(img): ''' :param img: 一幅已被处理好的图片 :return: ''' tempimage = [] h,w,_=img.shape for x in range(h): tempimage_temp = [] for y in range(w): if int(img[x][y][0])+int(img[x][y][1])+int(img[x][y][2]) == 0: tempimage.append(int(1)) else: tempimage.append(int(0)) return tempimage def image_handle(filename): img = cv2.imread(filename) img = cv2.resize(img,(128,64),interpolation=cv2.INTER_CUBIC) pic = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #将图片灰度化 #将每一个元素进行二值化 保持只有黑白统一的像素值 for index_x,i in enumerate(img): for index_y,j in enumerate(i): if (j>200).all(): img[index_x][index_y] = 240 # 白色 else: img[index_x][index_y] = 0 # 黑色 #根据列的白像素大小来判断 (h,w,_)=img.shape w -= 1 col_nz = [0] * w; for x in range(w): for y in range(h): if img[y,x][0] == 240: col_nz[x] += 1 #获取每一个数字的范围 count_scope = [] temp = 0 tempValue=-1 for i in range(len(col_nz)): if col_nz[i] <= 60 and temp==0: tempValue = i temp = 1 elif temp == 1 and col_nz[i] > 60: count_scope.append((tempValue,i)) temp = 0 image_list = [] if(len(count_scope)>=1): for x in count_scope: tempImage = img[:,x[0]:x[1]] tempImage = cv2.resize(tempImage, (32, 32), interpolation=cv2.INTER_CUBIC) tempImage = image_to_bin(tempImage) image_list.append(tempImage) return image_list else: return None ```
{ "source": "12944qwerty/Ratchet", "score": 3 }
#### File: Ratchet/Ratchet/Bot.py ```python import discord as d import sys, traceback from discord.ext.commands import Bot from discord.ext.commands import bot_has_permissions from discord.ext.commands import has_permissions from discord.ext import commands as c import os from random import randint import datetime class Bot(c.Cog): def __init__(self,client): self.bot = client @c.group(invoke_without_command=True,name='info',aliases=['desc','botinfo']) async def info(self,ctx): """Sends desc of bot""" try: await ctx.send('I am Ratchet. A fun bot. To see a list of commands, type in \'\\helps\'.\n To report a bug, DM the owner. `<PASSWORD>`') await ctx.send('Subcommands:\n - `\\info guilds`\n - `\\info status`\n - `\\info invite`\n - `\\info ping`\n - `\\info emojis`') except Exception as e: print(e) @info.command(name='guilds') async def guilds(self,ctx): for guild in self.bot.guilds: await ctx.send(f'{guild.name} - {guild.id}') @info.command(name='emojis') async def emojis(self,ctx): """spits out the emojis that this bot is connected to""" emojis = '' for emoji in self.bot.emojis: emojis += '{}'.format(str(emoji)) await ctx.send(emojis) @info.command(name='status', aliases=['use','usage']) async def status(self,ctx): await ctx.send('__**_Status_**__ <:online:512174327899226123>') await ctx.send('Server Count: {}'.format(len(self.bot.guilds))) user = 0 for guild in self.bot.guilds: for member in guild.members: user += 1 await ctx.send('Serving {} users'.format(user)) """@info.command(name='inv', aliases=['invite_link','invite']) async def inv(self,ctx): Want this bot on your server? await ctx.send('Hi! If you would like me to be on your server, please use this link:\n <https://discordapp.com/api/oauth2/authorize?client_id=549642567718010880&permissions=2146958839&scope=bot>')""" @c.guild_only() @c.command(name='leave') async def leave(self,ctx): """LEaves the Guild. ADMIN ONLY""" if ctx.author.id == <PASSWORD>: await ctx.send('Awww, why don\'t you want me???') await ctx.guild.leave() @c.command(name='report',aliases=['bug']) async def report(self,ctx): await ctx.send('Please report any bugs or glitches with this bot to 12944qwerty#9317. :D\nIf you have any suggestions, feel free to talk there too.') @info.command(name='ping') async def ping(self,ctx): """Tests for reply speed""" milis = datetime.datetime.now().timestamp() try: em = d.Embed(title='Pong!:ping_pong:') em.add_field(name='Latency',value=f'{round(self.bot.latency * 1000,1)}ms') milis1 = datetime.datetime.now().timestamp() em.add_field(name='Heartbeat:heartbeat:',value=f'{round((milis1-milis) * 1000000,2)}ms') em.set_footer(text=self.bot.user.display_name, icon_url=self.bot.user.avatar_url) msg = await ctx.send(embed=em) milis2 = datetime.datetime.now().timestamp() em.add_field(name='Edit',value=f'{round((milis2-milis)*1000,1)}ms') await msg.edit(embed=em) except Exception as e: print(e) def setup(bot): bot.add_cog(Bot(bot)) ```
{ "source": "1297rohit/FaceReco", "score": 2 }
#### File: FaceReco/FaceReco/supportFiles.py ```python from pkg_resources import resource_filename def pose_predictor_model_location(): return resource_filename(__name__, "./shape_predictor_68_face_landmarks.dat") def modelFile_location(): return resource_filename(__name__, "./opencv_face_detector_uint8.pb") def face_recognition_model_location(): return resource_filename(__name__, "./dlib_face_recognition_resnet_model_v1.dat") def configFile_location(): return resource_filename(__name__, "./opencv_face_detector.pbtxt") ```
{ "source": "1299172402/BBDown_GUI", "score": 2 }
#### File: BBDown_GUI/UI/main.py ```python from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Form_main(object): def setupUi(self, Form_main): Form_main.setObjectName("Form_main") Form_main.resize(1560, 500) Form_main.setMinimumSize(QtCore.QSize(620, 400)) Form_main.setMaximumSize(QtCore.QSize(1560, 500)) self.horizontalLayoutWidget = QtWidgets.QWidget(Form_main) self.horizontalLayoutWidget.setGeometry(QtCore.QRect(30, 180, 571, 31)) self.horizontalLayoutWidget.setObjectName("horizontalLayoutWidget") self.horizontalLayout = QtWidgets.QHBoxLayout(self.horizontalLayoutWidget) self.horizontalLayout.setContentsMargins(0, 0, 0, 0) self.horizontalLayout.setObjectName("horizontalLayout") self.checkBox_ffmpeg = QtWidgets.QCheckBox(self.horizontalLayoutWidget) self.checkBox_ffmpeg.setWhatsThis("") self.checkBox_ffmpeg.setChecked(True) self.checkBox_ffmpeg.setObjectName("checkBox_ffmpeg") self.horizontalLayout.addWidget(self.checkBox_ffmpeg) self.lineEdit_ffmpeg = QtWidgets.QLineEdit(self.horizontalLayoutWidget) self.lineEdit_ffmpeg.setText("") self.lineEdit_ffmpeg.setReadOnly(False) self.lineEdit_ffmpeg.setObjectName("lineEdit_ffmpeg") self.horizontalLayout.addWidget(self.lineEdit_ffmpeg) self.pushButton_ffmpeg = QtWidgets.QPushButton(self.horizontalLayoutWidget) self.pushButton_ffmpeg.setEnabled(True) self.pushButton_ffmpeg.setObjectName("pushButton_ffmpeg") self.horizontalLayout.addWidget(self.pushButton_ffmpeg) self.horizontalLayoutWidget_3 = QtWidgets.QWidget(Form_main) self.horizontalLayoutWidget_3.setGeometry(QtCore.QRect(30, 220, 571, 31)) self.horizontalLayoutWidget_3.setObjectName("horizontalLayoutWidget_3") self.horizontalLayout_3 = QtWidgets.QHBoxLayout(self.horizontalLayoutWidget_3) self.horizontalLayout_3.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.label_dir = QtWidgets.QLabel(self.horizontalLayoutWidget_3) self.label_dir.setObjectName("label_dir") self.horizontalLayout_3.addWidget(self.label_dir) self.lineEdit_dir = QtWidgets.QLineEdit(self.horizontalLayoutWidget_3) self.lineEdit_dir.setText("") self.lineEdit_dir.setObjectName("lineEdit_dir") self.horizontalLayout_3.addWidget(self.lineEdit_dir) self.pushButton_dir = QtWidgets.QPushButton(self.horizontalLayoutWidget_3) self.pushButton_dir.setEnabled(True) self.pushButton_dir.setObjectName("pushButton_dir") self.horizontalLayout_3.addWidget(self.pushButton_dir) self.groupBox = QtWidgets.QGroupBox(Form_main) self.groupBox.setGeometry(QtCore.QRect(440, 20, 161, 71)) self.groupBox.setObjectName("groupBox") self.comboBox_source = QtWidgets.QComboBox(self.groupBox) self.comboBox_source.setGeometry(QtCore.QRect(10, 30, 141, 22)) self.comboBox_source.setObjectName("comboBox_source") self.comboBox_source.addItem("") self.comboBox_source.addItem("") self.comboBox_source.addItem("") self.comboBox_source.addItem("") self.groupBox_2 = QtWidgets.QGroupBox(Form_main) self.groupBox_2.setGeometry(QtCore.QRect(440, 110, 161, 51)) self.groupBox_2.setObjectName("groupBox_2") self.comboBox_encoding = QtWidgets.QComboBox(self.groupBox_2) self.comboBox_encoding.setGeometry(QtCore.QRect(10, 20, 141, 22)) self.comboBox_encoding.setObjectName("comboBox_encoding") self.comboBox_encoding.addItem("") self.comboBox_encoding.addItem("") self.comboBox_encoding.addItem("") self.comboBox_encoding.addItem("") self.groupBox_3 = QtWidgets.QGroupBox(Form_main) self.groupBox_3.setGeometry(QtCore.QRect(20, 20, 131, 141)) self.groupBox_3.setObjectName("groupBox_3") self.verticalLayoutWidget_3 = QtWidgets.QWidget(self.groupBox_3) self.verticalLayoutWidget_3.setGeometry(QtCore.QRect(10, 20, 111, 111)) self.verticalLayoutWidget_3.setObjectName("verticalLayoutWidget_3") self.verticalLayout_4 = QtWidgets.QVBoxLayout(self.verticalLayoutWidget_3) self.verticalLayout_4.setContentsMargins(0, 0, 0, 0) self.verticalLayout_4.setObjectName("verticalLayout_4") self.pushButton_login = QtWidgets.QPushButton(self.verticalLayoutWidget_3) self.pushButton_login.setObjectName("pushButton_login") self.verticalLayout_4.addWidget(self.pushButton_login) self.pushButton_logintv = QtWidgets.QPushButton(self.verticalLayoutWidget_3) self.pushButton_logintv.setObjectName("pushButton_logintv") self.verticalLayout_4.addWidget(self.pushButton_logintv) self.horizontalLayoutWidget_4 = QtWidgets.QWidget(Form_main) self.horizontalLayoutWidget_4.setGeometry(QtCore.QRect(30, 280, 571, 41)) self.horizontalLayoutWidget_4.setObjectName("horizontalLayoutWidget_4") self.horizontalLayout_4 = QtWidgets.QHBoxLayout(self.horizontalLayoutWidget_4) self.horizontalLayout_4.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_4.setObjectName("horizontalLayout_4") self.label_url = QtWidgets.QLabel(self.horizontalLayoutWidget_4) self.label_url.setObjectName("label_url") self.horizontalLayout_4.addWidget(self.label_url) self.lineEdit_url = QtWidgets.QLineEdit(self.horizontalLayoutWidget_4) self.lineEdit_url.setMaximumSize(QtCore.QSize(16777215, 24)) self.lineEdit_url.setObjectName("lineEdit_url") self.horizontalLayout_4.addWidget(self.lineEdit_url) self.pushButton_download = QtWidgets.QPushButton(Form_main) self.pushButton_download.setGeometry(QtCore.QRect(510, 360, 93, 28)) self.pushButton_download.setObjectName("pushButton_download") self.pushButton_advanced = QtWidgets.QPushButton(Form_main) self.pushButton_advanced.setGeometry(QtCore.QRect(410, 360, 93, 28)) self.pushButton_advanced.setObjectName("pushButton_advanced") self.pushButton_about = QtWidgets.QPushButton(Form_main) self.pushButton_about.setEnabled(True) self.pushButton_about.setGeometry(QtCore.QRect(30, 360, 93, 28)) self.pushButton_about.setObjectName("pushButton_about") self.groupBox_4 = QtWidgets.QGroupBox(Form_main) self.groupBox_4.setGeometry(QtCore.QRect(800, 180, 181, 111)) self.groupBox_4.setObjectName("groupBox_4") self.verticalLayoutWidget_10 = QtWidgets.QWidget(self.groupBox_4) self.verticalLayoutWidget_10.setGeometry(QtCore.QRect(10, 20, 160, 80)) self.verticalLayoutWidget_10.setObjectName("verticalLayoutWidget_10") self.verticalLayout_10 = QtWidgets.QVBoxLayout(self.verticalLayoutWidget_10) self.verticalLayout_10.setContentsMargins(0, 0, 0, 0) self.verticalLayout_10.setObjectName("verticalLayout_10") self.checkBox_mp4box = QtWidgets.QCheckBox(self.verticalLayoutWidget_10) self.checkBox_mp4box.setObjectName("checkBox_mp4box") self.verticalLayout_10.addWidget(self.checkBox_mp4box) self.checkBox_mp4box_path = QtWidgets.QCheckBox(self.verticalLayoutWidget_10) self.checkBox_mp4box_path.setObjectName("checkBox_mp4box_path") self.verticalLayout_10.addWidget(self.checkBox_mp4box_path) self.lineEdit_mp4box_path = QtWidgets.QLineEdit(self.verticalLayoutWidget_10) self.lineEdit_mp4box_path.setObjectName("lineEdit_mp4box_path") self.verticalLayout_10.addWidget(self.lineEdit_mp4box_path) self.groupBox_5 = QtWidgets.QGroupBox(Form_main) self.groupBox_5.setGeometry(QtCore.QRect(1000, 20, 211, 141)) self.groupBox_5.setObjectName("groupBox_5") self.verticalLayoutWidget_13 = QtWidgets.QWidget(self.groupBox_5) self.verticalLayoutWidget_13.setGeometry(QtCore.QRect(10, 20, 187, 113)) self.verticalLayoutWidget_13.setObjectName("verticalLayoutWidget_13") self.verticalLayout_13 = QtWidgets.QVBoxLayout(self.verticalLayoutWidget_13) self.verticalLayout_13.setContentsMargins(0, 0, 0, 0) self.verticalLayout_13.setObjectName("verticalLayout_13") self.verticalLayout_9 = QtWidgets.QVBoxLayout() self.verticalLayout_9.setObjectName("verticalLayout_9") self.checkBox_token = QtWidgets.QCheckBox(self.verticalLayoutWidget_13) self.checkBox_token.setObjectName("checkBox_token") self.verticalLayout_9.addWidget(self.checkBox_token) self.lineEdit_token = QtWidgets.QLineEdit(self.verticalLayoutWidget_13) self.lineEdit_token.setPlaceholderText("") self.lineEdit_token.setObjectName("lineEdit_token") self.verticalLayout_9.addWidget(self.lineEdit_token) self.verticalLayout_13.addLayout(self.verticalLayout_9) self.verticalLayout_8 = QtWidgets.QVBoxLayout() self.verticalLayout_8.setObjectName("verticalLayout_8") self.checkBox_c = QtWidgets.QCheckBox(self.verticalLayoutWidget_13) self.checkBox_c.setObjectName("checkBox_c") self.verticalLayout_8.addWidget(self.checkBox_c) self.lineEdit_c = QtWidgets.QLineEdit(self.verticalLayoutWidget_13) self.lineEdit_c.setPlaceholderText("") self.lineEdit_c.setObjectName("lineEdit_c") self.verticalLayout_8.addWidget(self.lineEdit_c) self.verticalLayout_13.addLayout(self.verticalLayout_8) self.groupBox_6 = QtWidgets.QGroupBox(Form_main) self.groupBox_6.setGeometry(QtCore.QRect(630, 20, 141, 141)) self.groupBox_6.setObjectName("groupBox_6") self.verticalLayoutWidget_6 = QtWidgets.QWidget(self.groupBox_6) self.verticalLayoutWidget_6.setGeometry(QtCore.QRect(10, 30, 121, 99)) self.verticalLayoutWidget_6.setObjectName("verticalLayoutWidget_6") self.verticalLayout_6 = QtWidgets.QVBoxLayout(self.verticalLayoutWidget_6) self.verticalLayout_6.setContentsMargins(0, 0, 0, 0) self.verticalLayout_6.setObjectName("verticalLayout_6") self.checkBox_audio_only = QtWidgets.QCheckBox(self.verticalLayoutWidget_6) self.checkBox_audio_only.setObjectName("checkBox_audio_only") self.verticalLayout_6.addWidget(self.checkBox_audio_only) self.checkBox_video_only = QtWidgets.QCheckBox(self.verticalLayoutWidget_6) self.checkBox_video_only.setObjectName("checkBox_video_only") self.verticalLayout_6.addWidget(self.checkBox_video_only) self.checkBox_sub_only = QtWidgets.QCheckBox(self.verticalLayoutWidget_6) self.checkBox_sub_only.setObjectName("checkBox_sub_only") self.verticalLayout_6.addWidget(self.checkBox_sub_only) self.checkBox_danmaku = QtWidgets.QCheckBox(self.verticalLayoutWidget_6) self.checkBox_danmaku.setObjectName("checkBox_danmaku") self.verticalLayout_6.addWidget(self.checkBox_danmaku) self.groupBox_7 = QtWidgets.QGroupBox(Form_main) self.groupBox_7.setGeometry(QtCore.QRect(1230, 20, 311, 271)) self.groupBox_7.setObjectName("groupBox_7") self.verticalLayoutWidget_4 = QtWidgets.QWidget(self.groupBox_7) self.verticalLayoutWidget_4.setGeometry(QtCore.QRect(10, 30, 291, 231)) self.verticalLayoutWidget_4.setObjectName("verticalLayoutWidget_4") self.verticalLayout_14 = QtWidgets.QVBoxLayout(self.verticalLayoutWidget_4) self.verticalLayout_14.setContentsMargins(0, 0, 0, 0) self.verticalLayout_14.setObjectName("verticalLayout_14") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.checkBox_F = QtWidgets.QCheckBox(self.verticalLayoutWidget_4) self.checkBox_F.setObjectName("checkBox_F") self.verticalLayout.addWidget(self.checkBox_F) self.lineEdit_F = QtWidgets.QLineEdit(self.verticalLayoutWidget_4) self.lineEdit_F.setObjectName("lineEdit_F") self.verticalLayout.addWidget(self.lineEdit_F) self.verticalLayout_14.addLayout(self.verticalLayout) self.verticalLayout_2 = QtWidgets.QVBoxLayout() self.verticalLayout_2.setObjectName("verticalLayout_2") self.checkBox_M = QtWidgets.QCheckBox(self.verticalLayoutWidget_4) self.checkBox_M.setObjectName("checkBox_M") self.verticalLayout_2.addWidget(self.checkBox_M) self.lineEdit_M = QtWidgets.QLineEdit(self.verticalLayoutWidget_4) self.lineEdit_M.setObjectName("lineEdit_M") self.verticalLayout_2.addWidget(self.lineEdit_M) self.verticalLayout_14.addLayout(self.verticalLayout_2) self.verticalLayout_18 = QtWidgets.QVBoxLayout() self.verticalLayout_18.setObjectName("verticalLayout_18") self.label_val = QtWidgets.QLabel(self.verticalLayoutWidget_4) self.label_val.setObjectName("label_val") self.verticalLayout_18.addWidget(self.label_val) self.plainTextEdit = QtWidgets.QPlainTextEdit(self.verticalLayoutWidget_4) self.plainTextEdit.setReadOnly(True) self.plainTextEdit.setObjectName("plainTextEdit") self.verticalLayout_18.addWidget(self.plainTextEdit) self.verticalLayout_14.addLayout(self.verticalLayout_18) self.groupBox_8 = QtWidgets.QGroupBox(Form_main) self.groupBox_8.setGeometry(QtCore.QRect(620, 300, 191, 171)) self.groupBox_8.setObjectName("groupBox_8") self.verticalLayoutWidget_12 = QtWidgets.QWidget(self.groupBox_8) self.verticalLayoutWidget_12.setGeometry(QtCore.QRect(10, 20, 174, 141)) self.verticalLayoutWidget_12.setObjectName("verticalLayoutWidget_12") self.verticalLayout_12 = QtWidgets.QVBoxLayout(self.verticalLayoutWidget_12) self.verticalLayout_12.setContentsMargins(0, 0, 0, 0) self.verticalLayout_12.setObjectName("verticalLayout_12") self.checkBox_p_show_all = QtWidgets.QCheckBox(self.verticalLayoutWidget_12) self.checkBox_p_show_all.setObjectName("checkBox_p_show_all") self.verticalLayout_12.addWidget(self.checkBox_p_show_all) self.verticalLayout_5 = QtWidgets.QVBoxLayout() self.verticalLayout_5.setObjectName("verticalLayout_5") self.checkBox_p = QtWidgets.QCheckBox(self.verticalLayoutWidget_12) self.checkBox_p.setObjectName("checkBox_p") self.verticalLayout_5.addWidget(self.checkBox_p) self.lineEdit_p = QtWidgets.QLineEdit(self.verticalLayoutWidget_12) self.lineEdit_p.setObjectName("lineEdit_p") self.verticalLayout_5.addWidget(self.lineEdit_p) self.verticalLayout_12.addLayout(self.verticalLayout_5) self.verticalLayout_11 = QtWidgets.QVBoxLayout() self.verticalLayout_11.setObjectName("verticalLayout_11") self.checkBox_p_delay = QtWidgets.QCheckBox(self.verticalLayoutWidget_12) self.checkBox_p_delay.setObjectName("checkBox_p_delay") self.verticalLayout_11.addWidget(self.checkBox_p_delay) self.lineEdit_p_delay = QtWidgets.QLineEdit(self.verticalLayoutWidget_12) self.lineEdit_p_delay.setObjectName("lineEdit_p_delay") self.verticalLayout_11.addWidget(self.lineEdit_p_delay) self.verticalLayout_12.addLayout(self.verticalLayout_11) self.groupBox_9 = QtWidgets.QGroupBox(Form_main) self.groupBox_9.setGeometry(QtCore.QRect(790, 20, 201, 141)) self.groupBox_9.setObjectName("groupBox_9") self.verticalLayoutWidget_15 = QtWidgets.QWidget(self.groupBox_9) self.verticalLayoutWidget_15.setGeometry(QtCore.QRect(10, 30, 181, 99)) self.verticalLayoutWidget_15.setObjectName("verticalLayoutWidget_15") self.verticalLayout_15 = QtWidgets.QVBoxLayout(self.verticalLayoutWidget_15) self.verticalLayout_15.setContentsMargins(0, 0, 0, 0) self.verticalLayout_15.setObjectName("verticalLayout_15") self.checkBox_ia = QtWidgets.QCheckBox(self.verticalLayoutWidget_15) self.checkBox_ia.setObjectName("checkBox_ia") self.verticalLayout_15.addWidget(self.checkBox_ia) self.checkBox_info = QtWidgets.QCheckBox(self.verticalLayoutWidget_15) self.checkBox_info.setObjectName("checkBox_info") self.verticalLayout_15.addWidget(self.checkBox_info) self.checkBox_hs = QtWidgets.QCheckBox(self.verticalLayoutWidget_15) self.checkBox_hs.setObjectName("checkBox_hs") self.verticalLayout_15.addWidget(self.checkBox_hs) self.checkBox_debug = QtWidgets.QCheckBox(self.verticalLayoutWidget_15) self.checkBox_debug.setObjectName("checkBox_debug") self.verticalLayout_15.addWidget(self.checkBox_debug) self.groupBox_10 = QtWidgets.QGroupBox(Form_main) self.groupBox_10.setGeometry(QtCore.QRect(630, 180, 151, 111)) self.groupBox_10.setObjectName("groupBox_10") self.verticalLayoutWidget_16 = QtWidgets.QWidget(self.groupBox_10) self.verticalLayoutWidget_16.setGeometry(QtCore.QRect(10, 20, 131, 80)) self.verticalLayoutWidget_16.setObjectName("verticalLayoutWidget_16") self.verticalLayout_16 = QtWidgets.QVBoxLayout(self.verticalLayoutWidget_16) self.verticalLayout_16.setContentsMargins(0, 0, 0, 0) self.verticalLayout_16.setObjectName("verticalLayout_16") self.checkBox_skip_subtitle = QtWidgets.QCheckBox(self.verticalLayoutWidget_16) self.checkBox_skip_subtitle.setObjectName("checkBox_skip_subtitle") self.verticalLayout_16.addWidget(self.checkBox_skip_subtitle) self.checkBox_skip_cover = QtWidgets.QCheckBox(self.verticalLayoutWidget_16) self.checkBox_skip_cover.setObjectName("checkBox_skip_cover") self.verticalLayout_16.addWidget(self.checkBox_skip_cover) self.checkBox_skip_mux = QtWidgets.QCheckBox(self.verticalLayoutWidget_16) self.checkBox_skip_mux.setObjectName("checkBox_skip_mux") self.verticalLayout_16.addWidget(self.checkBox_skip_mux) self.groupBox_11 = QtWidgets.QGroupBox(Form_main) self.groupBox_11.setGeometry(QtCore.QRect(990, 180, 221, 111)) self.groupBox_11.setObjectName("groupBox_11") self.verticalLayoutWidget_17 = QtWidgets.QWidget(self.groupBox_11) self.verticalLayoutWidget_17.setGeometry(QtCore.QRect(10, 20, 198, 81)) self.verticalLayoutWidget_17.setObjectName("verticalLayoutWidget_17") self.verticalLayout_17 = QtWidgets.QVBoxLayout(self.verticalLayoutWidget_17) self.verticalLayout_17.setContentsMargins(0, 0, 0, 0) self.verticalLayout_17.setObjectName("verticalLayout_17") self.checkBox_mt = QtWidgets.QCheckBox(self.verticalLayoutWidget_17) self.checkBox_mt.setChecked(False) self.checkBox_mt.setObjectName("checkBox_mt") self.verticalLayout_17.addWidget(self.checkBox_mt) self.checkBox_language = QtWidgets.QCheckBox(self.verticalLayoutWidget_17) self.checkBox_language.setObjectName("checkBox_language") self.verticalLayout_17.addWidget(self.checkBox_language) self.lineEdit_language = QtWidgets.QLineEdit(self.verticalLayoutWidget_17) self.lineEdit_language.setObjectName("lineEdit_language") self.verticalLayout_17.addWidget(self.lineEdit_language) self.horizontalLayoutWidget_5 = QtWidgets.QWidget(Form_main) self.horizontalLayoutWidget_5.setGeometry(QtCore.QRect(30, 420, 571, 31)) self.horizontalLayoutWidget_5.setObjectName("horizontalLayoutWidget_5") self.horizontalLayout_5 = QtWidgets.QHBoxLayout(self.horizontalLayoutWidget_5) self.horizontalLayout_5.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_5.setObjectName("horizontalLayout_5") self.label_bbdown = QtWidgets.QLabel(self.horizontalLayoutWidget_5) self.label_bbdown.setObjectName("label_bbdown") self.horizontalLayout_5.addWidget(self.label_bbdown) self.lineEdit_bbdown = QtWidgets.QLineEdit(self.horizontalLayoutWidget_5) self.lineEdit_bbdown.setObjectName("lineEdit_bbdown") self.horizontalLayout_5.addWidget(self.lineEdit_bbdown) self.pushButton_bbdown = QtWidgets.QPushButton(self.horizontalLayoutWidget_5) self.pushButton_bbdown.setObjectName("pushButton_bbdown") self.horizontalLayout_5.addWidget(self.pushButton_bbdown) self.horizontalLayoutWidget_2 = QtWidgets.QWidget(Form_main) self.horizontalLayoutWidget_2.setGeometry(QtCore.QRect(220, 320, 381, 31)) self.horizontalLayoutWidget_2.setObjectName("horizontalLayoutWidget_2") self.horizontalLayout_2 = QtWidgets.QHBoxLayout(self.horizontalLayoutWidget_2) self.horizontalLayout_2.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.radioButton_p_current = QtWidgets.QRadioButton(self.horizontalLayoutWidget_2) self.radioButton_p_current.setChecked(True) self.radioButton_p_current.setObjectName("radioButton_p_current") self.horizontalLayout_2.addWidget(self.radioButton_p_current) self.radioButton_p_all = QtWidgets.QRadioButton(self.horizontalLayoutWidget_2) self.radioButton_p_all.setObjectName("radioButton_p_all") self.horizontalLayout_2.addWidget(self.radioButton_p_all) self.radioButton_p_new = QtWidgets.QRadioButton(self.horizontalLayoutWidget_2) self.radioButton_p_new.setObjectName("radioButton_p_new") self.horizontalLayout_2.addWidget(self.radioButton_p_new) self.groupBox_14 = QtWidgets.QGroupBox(Form_main) self.groupBox_14.setGeometry(QtCore.QRect(160, 20, 271, 141)) self.groupBox_14.setObjectName("groupBox_14") self.radioButton_dfn_480P = QtWidgets.QRadioButton(self.groupBox_14) self.radioButton_dfn_480P.setGeometry(QtCore.QRect(140, 50, 120, 19)) self.radioButton_dfn_480P.setObjectName("radioButton_dfn_480P") self.radioButton_dfn_more = QtWidgets.QRadioButton(self.groupBox_14) self.radioButton_dfn_more.setGeometry(QtCore.QRect(10, 100, 61, 19)) self.radioButton_dfn_more.setObjectName("radioButton_dfn_more") self.radioButton_dfn_priority = QtWidgets.QRadioButton(self.groupBox_14) self.radioButton_dfn_priority.setGeometry(QtCore.QRect(10, 20, 249, 19)) self.radioButton_dfn_priority.setChecked(True) self.radioButton_dfn_priority.setObjectName("radioButton_dfn_priority") self.radioButton_dfn_1080P = QtWidgets.QRadioButton(self.groupBox_14) self.radioButton_dfn_1080P.setGeometry(QtCore.QRect(10, 50, 119, 19)) self.radioButton_dfn_1080P.setObjectName("radioButton_dfn_1080P") self.radioButton_dfn_360P = QtWidgets.QRadioButton(self.groupBox_14) self.radioButton_dfn_360P.setGeometry(QtCore.QRect(140, 70, 120, 19)) self.radioButton_dfn_360P.setObjectName("radioButton_dfn_360P") self.radioButton_dfn_720P = QtWidgets.QRadioButton(self.groupBox_14) self.radioButton_dfn_720P.setGeometry(QtCore.QRect(10, 70, 119, 19)) self.radioButton_dfn_720P.setObjectName("radioButton_dfn_720P") self.comboBox_dfn_more = QtWidgets.QComboBox(self.groupBox_14) self.comboBox_dfn_more.setGeometry(QtCore.QRect(80, 100, 181, 22)) self.comboBox_dfn_more.setObjectName("comboBox_dfn_more") self.comboBox_dfn_more.addItem("") self.comboBox_dfn_more.addItem("") self.comboBox_dfn_more.addItem("") self.comboBox_dfn_more.addItem("") self.comboBox_dfn_more.addItem("") self.comboBox_dfn_more.addItem("") self.comboBox_dfn_more.addItem("") self.comboBox_dfn_more.addItem("") self.groupBox_12 = QtWidgets.QGroupBox(Form_main) self.groupBox_12.setGeometry(QtCore.QRect(840, 300, 211, 171)) self.groupBox_12.setObjectName("groupBox_12") self.verticalLayoutWidget_7 = QtWidgets.QWidget(self.groupBox_12) self.verticalLayoutWidget_7.setGeometry(QtCore.QRect(10, 20, 196, 141)) self.verticalLayoutWidget_7.setObjectName("verticalLayoutWidget_7") self.verticalLayout_19 = QtWidgets.QVBoxLayout(self.verticalLayoutWidget_7) self.verticalLayout_19.setContentsMargins(0, 0, 0, 0) self.verticalLayout_19.setObjectName("verticalLayout_19") self.checkBox_use_aria2c = QtWidgets.QCheckBox(self.verticalLayoutWidget_7) self.checkBox_use_aria2c.setObjectName("checkBox_use_aria2c") self.verticalLayout_19.addWidget(self.checkBox_use_aria2c) self.checkBox_aria2c_path = QtWidgets.QCheckBox(self.verticalLayoutWidget_7) self.checkBox_aria2c_path.setObjectName("checkBox_aria2c_path") self.verticalLayout_19.addWidget(self.checkBox_aria2c_path) self.lineEdit_aria2c_path = QtWidgets.QLineEdit(self.verticalLayoutWidget_7) self.lineEdit_aria2c_path.setText("") self.lineEdit_aria2c_path.setReadOnly(False) self.lineEdit_aria2c_path.setObjectName("lineEdit_aria2c_path") self.verticalLayout_19.addWidget(self.lineEdit_aria2c_path) self.checkBox_aria2c_proxy = QtWidgets.QCheckBox(self.verticalLayoutWidget_7) self.checkBox_aria2c_proxy.setObjectName("checkBox_aria2c_proxy") self.verticalLayout_19.addWidget(self.checkBox_aria2c_proxy) self.lineEdit_aria2c_proxy = QtWidgets.QLineEdit(self.verticalLayoutWidget_7) self.lineEdit_aria2c_proxy.setObjectName("lineEdit_aria2c_proxy") self.verticalLayout_19.addWidget(self.lineEdit_aria2c_proxy) self.retranslateUi(Form_main) QtCore.QMetaObject.connectSlotsByName(Form_main) def retranslateUi(self, Form_main): _translate = QtCore.QCoreApplication.translate Form_main.setWindowTitle(_translate("Form_main", "BBDown - GUI")) self.checkBox_ffmpeg.setText(_translate("Form_main", "ffmpeg")) self.pushButton_ffmpeg.setText(_translate("Form_main", "浏览")) self.label_dir.setText(_translate("Form_main", "下载目录")) self.pushButton_dir.setText(_translate("Form_main", "浏览")) self.groupBox.setTitle(_translate("Form_main", "下载源")) self.comboBox_source.setItemText(0, _translate("Form_main", "网页端")) self.comboBox_source.setItemText(1, _translate("Form_main", "TV端")) self.comboBox_source.setItemText(2, _translate("Form_main", "APP端")) self.comboBox_source.setItemText(3, _translate("Form_main", "国际端")) self.groupBox_2.setTitle(_translate("Form_main", "下载视频编码格式")) self.comboBox_encoding.setItemText(0, _translate("Form_main", "优先可用编码")) self.comboBox_encoding.setItemText(1, _translate("Form_main", "AVC")) self.comboBox_encoding.setItemText(2, _translate("Form_main", "AV1")) self.comboBox_encoding.setItemText(3, _translate("Form_main", "HEVC")) self.groupBox_3.setTitle(_translate("Form_main", "账户")) self.pushButton_login.setText(_translate("Form_main", "登录")) self.pushButton_logintv.setText(_translate("Form_main", "登录(TV端)")) self.label_url.setText(_translate("Form_main", "视频地址")) self.lineEdit_url.setToolTip(_translate("Form_main", "<html><head/><body><p>视频地址 或 av bv BV ep ss</p></body></html>")) self.lineEdit_url.setWhatsThis(_translate("Form_main", "<html><head/><body><p><br/></p></body></html>")) self.pushButton_download.setText(_translate("Form_main", "下载")) self.pushButton_advanced.setText(_translate("Form_main", "高级选项>")) self.pushButton_about.setText(_translate("Form_main", "关于")) self.groupBox_4.setTitle(_translate("Form_main", "MP4Box")) self.checkBox_mp4box.setText(_translate("Form_main", "使用MP4Box来混流")) self.checkBox_mp4box_path.setText(_translate("Form_main", "设置MP4Box的路径")) self.lineEdit_mp4box_path.setToolTip(_translate("Form_main", "<html><head/><body><p>mp4box的路径</p></body></html>")) self.lineEdit_mp4box_path.setWhatsThis(_translate("Form_main", "<html><head/><body><p>路径不要包含空格</p></body></html>")) self.groupBox_5.setTitle(_translate("Form_main", "cookies")) self.checkBox_token.setToolTip(_translate("Form_main", "<html><head/><body><p>设置access_token用以下载TV/APP接口的会员内容</p></body></html>")) self.checkBox_token.setText(_translate("Form_main", "单独设置access_token")) self.checkBox_c.setToolTip(_translate("Form_main", "<html><head/><body><p>设置字符串cookie用以下载网页接口的会员内容</p></body></html>")) self.checkBox_c.setText(_translate("Form_main", "单独设置cookie")) self.groupBox_6.setTitle(_translate("Form_main", "下载选项")) self.checkBox_audio_only.setText(_translate("Form_main", "仅下载音频")) self.checkBox_video_only.setText(_translate("Form_main", "仅下载视频")) self.checkBox_sub_only.setText(_translate("Form_main", "仅下载字幕")) self.checkBox_danmaku.setText(_translate("Form_main", "下载弹幕")) self.groupBox_7.setTitle(_translate("Form_main", "文件名选项")) self.checkBox_F.setText(_translate("Form_main", "单分P")) self.lineEdit_F.setPlaceholderText(_translate("Form_main", "<videoTitle>")) self.checkBox_M.setText(_translate("Form_main", "多分P")) self.lineEdit_M.setPlaceholderText(_translate("Form_main", "<videoTitle>/[P<pageNumberWithZero>]<pageTitle>")) self.label_val.setText(_translate("Form_main", "内置变量")) self.plainTextEdit.setPlainText(_translate("Form_main", "<videoTitle>: 视频主标题\n" "<pageNumber>: 视频分P序号\n" "<pageNumberWithZero>: 视频分P序号(前缀补零)\n" "<pageTitle>: 视频分P标题\n" "<aid>: 视频aid\n" "<cid>: 视频cid\n" "<dfn>: 视频清晰度\n" "<res>: 视频分辨率\n" "<fps>: 视频帧率\n" "<videoCodecs>: 视频编码\n" "<videoBandwidth>: 视频码率\n" "<audioCodecs>: 音频编码\n" "<audioBandwidth>: 音频码率")) self.groupBox_8.setTitle(_translate("Form_main", "分P")) self.checkBox_p_show_all.setText(_translate("Form_main", "展示所有分P标题")) self.checkBox_p.setToolTip(_translate("Form_main", "<html><head/><body><p>选择指定分p或分p范围:(-p 8 或 -p 1,2 或 -p 3-5 或 -p ALL)</p></body></html>")) self.checkBox_p.setText(_translate("Form_main", "指定下载分P")) self.lineEdit_p.setToolTip(_translate("Form_main", "<html><head/><body><p>选择指定分p或分p范围:(-p 8 或 -p 1,2 或 -p 3-5 或 -p ALL)</p></body></html>")) self.lineEdit_p.setPlaceholderText(_translate("Form_main", "如1,2或3-5或ALL或NEW")) self.checkBox_p_delay.setToolTip(_translate("Form_main", "<html><head/><body><p>设置下载合集分P之间的下载间隔时间(单位: 秒, 默认无间隔)</p></body></html>")) self.checkBox_p_delay.setText(_translate("Form_main", "分P下载时间间隔")) self.lineEdit_p_delay.setPlaceholderText(_translate("Form_main", "0")) self.groupBox_9.setTitle(_translate("Form_main", "交互选项")) self.checkBox_ia.setText(_translate("Form_main", "交互式选择清晰度")) self.checkBox_info.setText(_translate("Form_main", "仅解析而不进行下载")) self.checkBox_hs.setText(_translate("Form_main", "不显示所有音视频流")) self.checkBox_debug.setText(_translate("Form_main", "输出调试日志")) self.groupBox_10.setTitle(_translate("Form_main", "跳过选项")) self.checkBox_skip_subtitle.setText(_translate("Form_main", "跳过字幕下载")) self.checkBox_skip_cover.setText(_translate("Form_main", "跳过封面下载")) self.checkBox_skip_mux.setText(_translate("Form_main", "跳过混流步骤")) self.groupBox_11.setTitle(_translate("Form_main", "其他")) self.checkBox_mt.setText(_translate("Form_main", "使用多线程下载")) self.checkBox_language.setToolTip(_translate("Form_main", "<html><head/><body><p>设置混流的音频语言(代码),如chi, jpn等</p></body></html>")) self.checkBox_language.setText(_translate("Form_main", "设置混流的音频语言代码")) self.lineEdit_language.setPlaceholderText(_translate("Form_main", "如chi,jpn")) self.label_bbdown.setText(_translate("Form_main", " BBDown")) self.pushButton_bbdown.setText(_translate("Form_main", "浏览")) self.radioButton_p_current.setText(_translate("Form_main", "下载当前分P")) self.radioButton_p_all.setText(_translate("Form_main", "下载全部分P")) self.radioButton_p_new.setText(_translate("Form_main", "下载最新分P")) self.groupBox_14.setTitle(_translate("Form_main", "下载视频画质")) self.radioButton_dfn_480P.setText(_translate("Form_main", "480P 清晰")) self.radioButton_dfn_more.setText(_translate("Form_main", "更多")) self.radioButton_dfn_priority.setText(_translate("Form_main", "优先下载最高画质")) self.radioButton_dfn_1080P.setText(_translate("Form_main", "1080P 高清")) self.radioButton_dfn_360P.setText(_translate("Form_main", "360P 流畅")) self.radioButton_dfn_720P.setText(_translate("Form_main", "720P 高清")) self.comboBox_dfn_more.setItemText(0, _translate("Form_main", "优先下载最高画质")) self.comboBox_dfn_more.setItemText(1, _translate("Form_main", "8K 超高清")) self.comboBox_dfn_more.setItemText(2, _translate("Form_main", "杜比视界")) self.comboBox_dfn_more.setItemText(3, _translate("Form_main", "HDR 真彩")) self.comboBox_dfn_more.setItemText(4, _translate("Form_main", "4K 超清")) self.comboBox_dfn_more.setItemText(5, _translate("Form_main", "1080P 高帧率")) self.comboBox_dfn_more.setItemText(6, _translate("Form_main", "1080P 高码率")) self.comboBox_dfn_more.setItemText(7, _translate("Form_main", "720P 高帧率")) self.groupBox_12.setTitle(_translate("Form_main", "aria2c")) self.checkBox_use_aria2c.setText(_translate("Form_main", "使用aria2c")) self.checkBox_aria2c_path.setText(_translate("Form_main", "aria2c的路径")) self.checkBox_aria2c_proxy.setToolTip(_translate("Form_main", "<html><head/><body><p>调用aria2c进行下载时的代理地址配置</p></body></html>")) self.checkBox_aria2c_proxy.setText(_translate("Form_main", "aria2c的代理地址")) self.lineEdit_aria2c_proxy.setToolTip(_translate("Form_main", "<html><head/><body><p>调用aria2c进行下载时的代理地址配置</p></body></html>")) ```
{ "source": "129Camal/SPLN-19", "score": 3 }
#### File: SPLN-19/Testes/aula.py ```python from bs4 import BeautifulSoup as BS import requests import subprocess from build_utils import build_profile # def getHTML(word): # urlBase = "https://dicionario.priberam.org/" # composedURL = urlBase + word #response = requests.get(composedURL).content response = subprocess.check_output(['curl',composedURL]) # soup = BS(response) return soup # def getFromSoup(soup): # find elements using CSS selector #resultados = soup.select('#resultados .def') # resultados = soup.find('div',id='resultados') # data = resultados.find_all('span','def') # return data # def elem_extr_func(original_word,data,result_objts): # resultObjects = result_objts # defs = resultObjects['significados'] # defs[original_word] = [word.text for word in data] # result_objts = resultObjects # def build_priberam_profile(words): # obj = {'significados':{}} # priberam_profile = build_profile(words,getHTML,getFromSoup,obj,elem_extr_func) # return priberam_profile # words = ['banana','Ezequiel','João','balão'] priberam_profile = build_priberam_profile(words) ``` #### File: TP1/Enun_2/xmlStruct.py ```python import xml.etree.ElementTree as ET import sys file = sys.argv[1] tree = ET.parse(file) root = tree.getroot() count = 1 #itera sobre os filhos dos filhos do root imprimindo as suas tags identadas def parseChilds(parent, count): for child in parent: print(('\t'* count)+'-->',child.tag) children = child.getchildren() if(children): parseChilds(children, count+1) #imprime tag do elemento root print(root.tag) #itera sobre os filhos do root imprimindo as suas tags for child in root: print('-->', child.tag) children = child.getchildren() if(children): parseChilds(children, count) ``` #### File: SPLN-19/TP2/companyNLP.py ```python import nltk from owlready2 import * # Pacotes do nltk para fazer download #nltk.download('stopwords') #nltk.download('words') #nltk.download('maxent_ne_chunker') #nltk.download('averaged_perceptron_tagger') # Abrir ontologia ontology = get_ontology("http://spln.di.uminho.pt/ontology") # Especificar Classes, ObjectProperties e DataProperties with ontology: class Company(Thing): pass class Product(Thing): pass class Location(Thing): pass class is_product_of(ObjectProperty): domain = [Product] range = [Company] class is_location_of(ObjectProperty): domain = [Location] range = [Company] class has_product(ObjectProperty): domain = [Company] range = [Product] inverse_property = is_product_of class has_location(ObjectProperty): domain = [Company] range = [Location] inverse_property = is_location_of class has_cost(DataProperty, FunctionalProperty): domain = [Product] range = [float] # Abrir ficheiro com o texto text = open("text.txt").read() products = [] prices = [] my_company = "" indexProduct = 1 # Função que associa produtos e preços a uma determinada empresa na ontologia def addProducts(): global indexProduct j = 0 for product in products: aux = [] for i in range(len(product)-1): aux.append(product[i][0]) aux.append(str(indexProduct)) x = "_".join(aux) obj = Product(x) obj.has_cost = float(prices[j][1][0]) my_company.has_product.append(obj) indexProduct += 1 j += 1 del products[:] del prices[:] # Divisão por frases sentences = nltk.sent_tokenize(text) #Percorrer cada frase procurando entidades ou fazendo chunks para descobrir determinadas coisas como produtos ou preços. for sentence in sentences: # Divisão por palavras words = nltk.word_tokenize(sentence) # Tags de discurso tags = nltk.pos_tag(words) #Chunks #Company: {<NNP>+<NN>?} chunkGram = r"""Product: {<NN.*>+<IN>} {<NN.*>+<V.*>} Price: {<\$><CD>}""" chunkParser = nltk.RegexpParser(chunkGram) tree = chunkParser.parse(tags) #Entidades namedEnt = nltk.ne_chunk(tags) for t in namedEnt.subtrees(): #Encontrar localizações if t.label() == "GPE": location = t.leaves() for i in range(len(location)): location[i] = location[i][0] local = "_".join(location) my_company.has_location.append(Location(local)) #Encontrar empresas if t.label() == "ORGANIZATION" or t.label() == "PERSON": company = (t.leaves())[0][0] if(not ontology.company): if(len(products)): addProducts() my_company = Company(company) # Tratamento de dados sobre os chunks encontrados de preços e produtos flag = 0 for subtree in tree.subtrees(): if subtree.label() == "Price": price = subtree.leaves() flag = 1 if subtree.label() == "Product": product = subtree.leaves() if flag == 1: products.append(product) prices.append(price) flag = 0 # Inserir na ontologia os produtos e preços da ultima empresa encontrada addProducts() # Guardar a ontologia ontology.save(file = "onto.rdf", format = "rdfxml") # print("Company: " + company) # print("Products: " + str(products)) # print("Locations: " + str(locations)) # print("Company: " + str(company) + "\n\n\n") # print("\nEmpresa: " + str(Company.instances())) # print("Produtos: " + str(Product.instances())) # for i in Product.instances(): # print("Custo do produto " + str(i) +": " + str(i.has_cost)) # print("Locais: " + str(Location.instances())) # print("Localizações da Empresa: " + str(list(ontology.has_location.get_relations()))) # print("Produtos da Empresa: " + str(list(ontology.has_product.get_relations()))) ``` #### File: SPLN-19/TP3/scrapping.py ```python from bs4 import BeautifulSoup as BS import requests import sys import re import getopt import os # # Funtion to get the meaning of the word with certain semantic meaning # def getMeaning(word, semantic_meaning): urlBase = "https://www.lexico.com/en/definition/" + word response = requests.get(urlBase).content soup = BS(response, 'html.parser') word_types = soup.findAll('section', 'gramb') for word_type in word_types: instance = word_type.find('h3', 'ps pos') if(semantic_meaning != instance.span.text): continue ul = word_type.find('ul', 'semb') lis = ul.findAll('li') allmeaning = [] allsyn = [] for li in lis: div = li.find('div', 'trg') if(div): p = div.find('p') if(p): span = p.find('span', 'ind') if(span): allmeaning.append(span.text) # Get Synonyms sysn = div.find('div', 'synonyms') if(sysn): strong = sysn.find('strong', 'syn') exg = sysn.find('span', 'syn') if(not exg): allsyn.append(strong.text) else: allsyn.append(strong.text + exg.text) else: allsyn.append("Doesn`t have synonyms") if(len(allmeaning) > 0): x = " || ".join(allmeaning) print("\t\t\t<prop type=\"meaning\">" + x + "</prop>") if(len(allsyn) > 0): x = " || ".join(allsyn) print("\t\t\t<prop type=\"synonyms\">" + x + "</prop>") # -------------------------------- BEGIN ----------------------------------- # # All languages available languages = [('german', 'de'), ('french', 'fr'), ('spanish', 'es'), ('chinese', 'ch'), ('russian', 'ru'), ('portuguese', 'pt'), ('italian', 'it'), ('polish', 'pl')] # See what words and what languages the user wants opts, args = getopt.getopt(sys.argv[1:], '', ['to=']) # Filter the languages that user wants languages = list(filter(lambda x: x[1] in opts[0][1], languages)) # End the script if we not have languages or words to translate if(len(languages) <= 0 or len(args) <= 0): print("Please enter the corret inputs!") sys.exit() notFound = 0 for userWord in args: types = {} for language in languages: urlBase = "https://www.linguee.com/english-" + \ language[0] + "/search?query=" + userWord response = requests.get(urlBase).content soup = BS(response, 'html.parser') dictionary = soup.find('div', id="dictionary") if(not dictionary): notFound = 1 print(userWord + ": we don't find any translation for that!") break exact = dictionary.find('div', 'exact') lemma = exact.findAll('div', 'lemma') for lem in lemma: word = lem.find('span', 'tag_lemma') tag_wordtype = word.find('span', 'tag_wordtype') word_type = tag_wordtype.text if(not types.get(word_type)): types[word_type] = [] translation = lem.find('span', 'tag_trans') types[word_type].append((language[1], translation.a.text)) f = open('english_' + userWord + '2all.tmx', 'w') sys.stdout = f print("<?xml version=\"1.0\" encoding=\"UTF-8\"?>", "<tmx version=\"1.4\">", "\t<header adminlang=\"en\"", "\t\tdatatype=\"tbx\"", "\t\to-tmf=\"unknown\"", "\t\tsegtype=\"block\"", "\t\tsrclang=\"en\"/>", "\t<body>", sep="\n") i = 0 for word_type in types.items(): print("\t\t<tu tuid=\"" + str(i+1) + "\">", "\t\t\t<prop type=\"word_type\">" + word_type[0] + "</prop>", sep="\n") getMeaning(userWord, word_type[0]) print("\t\t\t<tuv xml:lang=\"en\">", "\t\t\t\t<seg>" + userWord + "</seg>", "\t\t\t</tuv>", sep="\n") for translation in word_type[1]: print("\t\t\t<tuv xml:lang=\"" + translation[0] + "\">", "\t\t\t\t<seg>" + translation[1] + "</seg>", "\t\t\t</tuv>", sep="\n") i = i + 1 print("\t\t</tu>") print("\t</body>", "</tmx>", sep="\n") if(notFound == 1): os.remove('english_' + userWord + '2all.tmx') notFound = 0 ```
{ "source": "12arsh12/webots-uav", "score": 3 }
#### File: webots-uav/supervisorController/supervisorController.py ```python import numpy as np from deepbots.supervisor.controllers.supervisor_emitter_receiver import SupervisorCSV from PPOAgent import PPOAgent, Transition from utilities import normalizeToRange import time class CartPoleSupervisor(SupervisorCSV): def __init__(self): super().__init__() self.observationSpace = 3 # The agent has 4 inputs self.actionSpace = 2 # The agent can perform 2 actions self.robot = None self.respawnRobot() # self.poleEndpoint = self.supervisor.getFromDef("POLE_ENDPOINT") self.messageReceived = None # Variable to save the messages received from the robot self.episodeCount = 0 # Episode counter self.episodeLimit = 100 # Max number of episodes allowed self.stepsPerEpisode = 2000 # Max number of steps per episode self.episodeScore = 0 # Score accumulated during an episode self.episodeScoreList = [] # A list to save all the episode scores, used to check if task is solved def respawnRobot(self): if self.robot is not None: # Despawn existing robot self.robot.remove() # Respawn robot in starting position and state rootNode = self.supervisor.getRoot() # This gets the root of the scene tree childrenField = rootNode.getField('children') # This gets a list of all the children, ie. objects of the scene childrenField.importMFNode(-1, "Robot2.wbo") # Load robot from file and add to second-to-last position # Get the new robot and pole endpoint references self.robot = self.supervisor.getFromDef("ROBOT2") # self.poleEndpoint = self.supervisor.getFromDef("POLE_ENDPOINT") def get_observations(self): obs = self.robot.getPosition() return obs def get_reward(self, action=None): height = self.robot.getPosition()[1] # print(self.robot.getPosition()) diff = abs(1-height) return -diff def is_done(self): return False def solved(self): if len(self.episodeScoreList) > 100: # Over 100 trials thus far if np.mean(self.episodeScoreList[-100:]) > 195.0: # Last 100 episodes' scores average value return True return False def reset(self): self.respawnRobot() self.supervisor.simulationResetPhysics() # Reset the simulation physics to start over self.messageReceived = None return self.robot.getPosition() def get_info(self): return None supervisor = CartPoleSupervisor() agent = PPOAgent(supervisor.observationSpace, supervisor.actionSpace) solved = False # Run outer loop until the episodes limit is reached or the task is solved while not solved and supervisor.episodeCount < supervisor.episodeLimit: observation = supervisor.reset() # Reset robot and get starting observation supervisor.episodeScore = 0 time.sleep(5) for step in range(supervisor.stepsPerEpisode): # In training mode the agent samples from the probability distribution, naturally implementing exploration selectedAction, actionProb = agent.work(observation, type_="selectAction") # print('action') # Step the supervisor to get the current selectedAction's reward, the new observation and whether we reached # the done condition newObservation, reward, done, info = supervisor.step([selectedAction]) # Save the current state transition in agent's memory trans = Transition(observation, selectedAction, actionProb, reward, newObservation) agent.storeTransition(trans) if done: # Save the episode's score supervisor.episodeScoreList.append(supervisor.episodeScore) agent.trainStep(batchSize=step) solved = supervisor.solved() # Check whether the task is solved break supervisor.episodeScore += reward # Accumulate episode reward observation = newObservation # observation for next step is current step's newObservation print("Episode #", supervisor.episodeCount, "score:", supervisor.episodeScore) supervisor.episodeCount += 1 # Increment episode counter if not solved: print("Task is not solved, deploying agent for testing...") elif solved: print("Task is solved, deploying agent for testing...") observation = supervisor.reset() while True: selectedAction, actionProb = agent.work(observation, type_="selectActionMax") observation, _, _, _ = supervisor.step([selectedAction]) ```
{ "source": "12avnisharma/advanced-lane-detection", "score": 2 }
#### File: 12avnisharma/advanced-lane-detection/birdseye.py ```python from helpers import show_dotted_image import cv2 import numpy as np class BirdsEye: def __init__(self, source_points, dest_points, cam_matrix, distortion_coef): self.spoints = source_points self.dpoints = dest_points self.src_points = np.array(source_points, np.float32) self.dest_points = np.array(dest_points, np.float32) self.cam_matrix = cam_matrix self.dist_coef = distortion_coef self.warp_matrix = cv2.getPerspectiveTransform(self.src_points, self.dest_points) self.inv_warp_matrix = cv2.getPerspectiveTransform(self.dest_points, self.src_points) def undistort(self, raw_image, show_dotted = False): image = cv2.undistort(raw_image, self.cam_matrix, self.dist_coef, None, self.cam_matrix) if show_dotted: show_dotted_image(image, self.spoints) return image def sky_view(self, ground_image, show_dotted = False): temp_image = self.undistort(ground_image, show_dotted = False) shape = (temp_image.shape[1], temp_image.shape[0]) warp_image = cv2.warpPerspective(temp_image, self.warp_matrix, shape, flags = cv2.INTER_LINEAR) if show_dotted: show_dotted_image(warp_image, self.dpoints) return warp_image def project(self, ground_image, sky_lane, left_fit, right_fit, color = (0, 255, 0)): z = np.zeros_like(sky_lane) sky_lane = np.dstack((z, z, z)) kl, kr = left_fit, right_fit h = sky_lane.shape[0] ys = np.linspace(0, h - 1, h) lxs = kl[0] * (ys**2) + kl[1]* ys + kl[2] rxs = kr[0] * (ys**2) + kr[1]* ys + kr[2] pts_left = np.array([np.transpose(np.vstack([lxs, ys]))]) pts_right = np.array([np.flipud(np.transpose(np.vstack([rxs, ys])))]) pts = np.hstack((pts_left, pts_right)) cv2.fillPoly(sky_lane, np.int_(pts), color) shape = (sky_lane.shape[1], sky_lane.shape[0]) ground_lane = cv2.warpPerspective(sky_lane, self.inv_warp_matrix, shape) result = cv2.addWeighted(ground_image, 1, ground_lane, 0.3, 0) return result ``` #### File: 12avnisharma/advanced-lane-detection/lanefilter.py ```python import cv2 import numpy as np from helpers import roi, scale_abs class LaneFilter: def __init__(self, p): self.sat_thresh = p['sat_thresh'] self.light_thresh = p['light_thresh'] self.light_thresh_agr = p['light_thresh_agr'] self.grad_min, self.grad_max = p['grad_thresh'] self.mag_thresh, self.x_thresh = p['mag_thresh'], p['x_thresh'] self.hls, self.l, self.s, self.z = None, None, None, None self.color_cond1, self.color_cond2 = None, None self.sobel_cond1, self.sobel_cond2, self.sobel_cond3 = None, None, None def sobel_breakdown(self, img): self.apply(img) b1, b2, b3 = self.z.copy(), self.z.copy(), self.z.copy() b1[(self.sobel_cond1)] = 255 b2[(self.sobel_cond2)] = 255 b3[(self.sobel_cond3)] = 255 return np.dstack((b1, b2,b3)) def color_breakdown(self, img): self.apply(img) b1, b2 = self.z.copy(), self.z.copy() b1[(self.color_cond1)] = 255 b2[(self.color_cond2)] = 255 return np.dstack((b1, b2, self.z)) def apply(self, rgb_image): self.hls = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2HLS) self.l = self.hls[:, :, 1] self.s = self.hls[:, :, 2] self.z = np.zeros_like(self.s) color_img = self.apply_color_mask() sobel_img = self.apply_sobel_mask() filtered_img = cv2.bitwise_or(sobel_img, color_img) return filtered_img def apply_color_mask(self): self.color_cond1 = (self.s > self.sat_thresh) & (self.l > self.light_thresh) self.color_cond2 = self.l > self.light_thresh_agr b = self.z.copy() b[(self.color_cond1 | self.color_cond2)] = 1 return b def apply_sobel_mask(self): lx = cv2.Sobel(self.l, cv2.CV_64F, 1, 0, ksize = 5) ly = cv2.Sobel(self.l, cv2.CV_64F, 0, 1, ksize = 5) gradl = np.arctan2(np.absolute(ly), np.absolute(lx)) l_mag = np.sqrt(lx**2 + ly**2) slm, slx, sly = scale_abs(l_mag), scale_abs(lx), scale_abs(ly) b = self.z.copy() self.sobel_cond1 = slm > self.mag_thresh self.sobel_cond2 = slx > self.x_thresh self.sobel_cond3 = (gradl > self.grad_min) & (gradl < self.grad_max) b[(self.sobel_cond1 & self.sobel_cond2 & self.sobel_cond3)] = 1 return b ```
{ "source": "12DEP/hik", "score": 2 }
#### File: components/stream/recorder.py ```python from __future__ import annotations from collections import deque from io import BytesIO import logging import os import threading import av from av.container import OutputContainer from homeassistant.core import HomeAssistant, callback from .const import RECORDER_CONTAINER_FORMAT, SEGMENT_CONTAINER_FORMAT from .core import PROVIDERS, IdleTimer, Segment, StreamOutput _LOGGER = logging.getLogger(__name__) @callback def async_setup_recorder(hass): """Only here so Provider Registry works.""" def recorder_save_worker(file_out: str, segments: deque[Segment]): """Handle saving stream.""" if not segments: _LOGGER.error("Recording failed to capture anything") return if not os.path.exists(os.path.dirname(file_out)): os.makedirs(os.path.dirname(file_out), exist_ok=True) pts_adjuster: dict[str, int | None] = {"video": None, "audio": None} output: OutputContainer | None = None output_v = None output_a = None last_stream_id = None # The running duration of processed segments. Note that this is in av.time_base # units which seem to be defined inversely to how stream time_bases are defined running_duration = 0 last_sequence = float("-inf") for segment in segments: # Because the stream_worker is in a different thread from the record service, # the lookback segments may still have some overlap with the recorder segments if segment.sequence <= last_sequence: continue last_sequence = segment.sequence # Open segment source = av.open( BytesIO(segment.init + segment.moof_data), "r", format=SEGMENT_CONTAINER_FORMAT, ) source_v = source.streams.video[0] source_a = source.streams.audio[0] if len(source.streams.audio) > 0 else None # Create output on first segment if not output: output = av.open( file_out, "w", format=RECORDER_CONTAINER_FORMAT, container_options={ "video_track_timescale": str(int(1 / source_v.time_base)) }, ) # Add output streams if necessary if not output_v: output_v = output.add_stream(template=source_v) context = output_v.codec_context context.flags |= "GLOBAL_HEADER" if source_a and not output_a: output_a = output.add_stream(template=source_a) # Recalculate pts adjustments on first segment and on any discontinuity # We are assuming time base is the same across all discontinuities if last_stream_id != segment.stream_id: last_stream_id = segment.stream_id pts_adjuster["video"] = int( (running_duration - source.start_time) / (av.time_base * source_v.time_base) ) if source_a: pts_adjuster["audio"] = int( (running_duration - source.start_time) / (av.time_base * source_a.time_base) ) # Remux video for packet in source.demux(): if packet.dts is None: continue packet.pts += pts_adjuster[packet.stream.type] packet.dts += pts_adjuster[packet.stream.type] packet.stream = output_v if packet.stream.type == "video" else output_a output.mux(packet) running_duration += source.duration - source.start_time source.close() if output is not None: output.close() @PROVIDERS.register("recorder") class RecorderOutput(StreamOutput): """Represents HLS Output formats.""" def __init__(self, hass: HomeAssistant, idle_timer: IdleTimer) -> None: """Initialize recorder output.""" super().__init__(hass, idle_timer) self.video_path = None @property def name(self) -> str: """Return provider name.""" return "recorder" def prepend(self, segments: list[Segment]) -> None: """Prepend segments to existing list.""" self._segments.extendleft(reversed(segments)) def cleanup(self): """Write recording and clean up.""" _LOGGER.debug("Starting recorder worker thread") thread = threading.Thread( name="recorder_save_worker", target=recorder_save_worker, args=(self.video_path, self._segments), ) thread.start() super().cleanup() ```
{ "source": "12DEP/qqqqqqqqqqqqqqqqqq", "score": 2 }
#### File: src/examples/read_alert_stream.py ```python import asyncio import os from hikvision_isapi.isapi.client import ISAPIClient from hikvision_isapi.isapi.model import EventNotificationAlert eventbus = asyncio.Queue() async def main(hik_client: ISAPIClient): while True: event: EventNotificationAlert = await eventbus.get() # if event_type == 'videoloss' and event_state == 'inactive': # continue print( "Event: {} \tState: {}, \tChannel: {}/{}, \t Time: {}".format( event.type, event.state, event.channel_id, event.channel_name, str(event.timestamp) ) ) if __name__ == "__main__": hik_client = ISAPIClient(os.environ.get("BASE_URL"), os.environ.get("USERNAME"), os.environ.get("PASSWORD")) loop = asyncio.get_event_loop() loop.run_until_complete(asyncio.gather(main(hik_client), hik_client.listen_hikvision_event_stream(eventbus))) ``` #### File: hikvision_isapi/isapi/model.py ```python from datetime import datetime from typing import Any, Union import xmltodict class BaseHikvisionEntity(object): XML_ROOT_ELEMENT: str = None XML_ROOT_LIST_ELEMENT: str = None XML_PARSE_ATTRS = False TO_STRING_FIELDS = tuple() def __init__(self) -> None: self._xmldict = {} def _from_field(self, field: str, _default: Any = None) -> Any: return self._xmldict.get(field) def _to_field(self, field: str, value: Any): self._xmldict[field] = value @classmethod def from_xml_str(cls, xml_str: Union[str, bytes], resolve_root_array=True): parsed = xmltodict.parse(xml_str, xml_attribs=cls.XML_PARSE_ATTRS) if cls.XML_ROOT_LIST_ELEMENT and cls.XML_ROOT_LIST_ELEMENT in parsed: parsed = parsed.get(cls.XML_ROOT_LIST_ELEMENT) if cls.XML_ROOT_ELEMENT: parsed = parsed.get(cls.XML_ROOT_ELEMENT) if isinstance(parsed, list): return [cls.from_xml_dict(x) for x in parsed] else: return cls.from_xml_dict(parsed) @classmethod def from_xml_dict(cls, xml_dict: dict): result = cls() result._xmldict = xml_dict return result def __repr__(self): if len(self.TO_STRING_FIELDS) == 0: props = "obj=" + hex(id(self)) else: props = ", ".join(["{}={}".format(f, self._from_field(f)) for f in self.TO_STRING_FIELDS]) return "{}({})".format(self.__class__.__name__, props) class DeviceInfo(BaseHikvisionEntity): XML_ROOT_ELEMENT = "DeviceInfo" DEVICE_TYPE_NVR = "NVR" FIELD_DEVICE_NAME = "deviceName" FIELD_DEVICE_ID = "deviceID" FIELD_MODEL = "model" FIELD_SERIAL_NUMBER = "serialNumber" FIELD_FIRMWARE_VERSION = "firmwareVersion" FIELD_FIRMWARE_RELEASE_DATE = "firmwareReleaseDate" FIELD_DEVICE_TYPE = "deviceType" @property def device_name(self) -> str: return self._from_field(self.FIELD_DEVICE_NAME) @device_name.setter def device_name(self, value: str): self._to_field(self.FIELD_DEVICE_NAME, value) @property def device_id(self) -> str: return self._from_field(self.FIELD_DEVICE_ID) @device_id.setter def device_id(self, value: str): self._to_field(self.FIELD_DEVICE_ID, value) @property def model(self) -> str: return self._from_field(self.FIELD_MODEL) @model.setter def model(self, value: str): self._to_field(self.FIELD_MODEL, value) @property def serial_number(self) -> str: return self._from_field(self.FIELD_SERIAL_NUMBER) @serial_number.setter def serial_number(self, value: str): self._to_field(self.FIELD_SERIAL_NUMBER, value) @property def device_type(self) -> str: return self._from_field(self.FIELD_DEVICE_TYPE) @device_type.setter def device_type(self, value: str): self._to_field(self.FIELD_DEVICE_TYPE, value) def is_nvr(self) -> bool: return self.device_type == self.DEVICE_TYPE_NVR class InputChannel(BaseHikvisionEntity): XML_ROOT_LIST_ELEMENT = "InputProxyChannelList" XML_ROOT_ELEMENT = "InputProxyChannel" FIELD_ID = "id" FIELD_NAME = "name" TO_STRING_FIELDS = (FIELD_ID, FIELD_NAME) @property def input_id(self) -> str: return self._from_field(self.FIELD_ID) @input_id.setter def input_id(self, value: str): self._to_field(self.FIELD_ID, value) @property def input_name(self) -> str: return self._from_field(self.FIELD_NAME) @input_name.setter def input_name(self, value: str): self._to_field(self.FIELD_NAME, value) class EventNotificationAlert(BaseHikvisionEntity): XML_ROOT_ELEMENT = "EventNotificationAlert" FIELD_EVENT_TYPE = "eventType" FIELD_EVENT_DESCRIPTION = "eventDescription" FIELD_CHANNEL_NAME = "channelName" FIELD_CHANNEL_ID = "channelID" FIELD_EVENT_STATE = "eventState" FIELD_EVENT_TIME = "dateTime" @property def type(self) -> str: return self._from_field(self.FIELD_EVENT_TYPE) @type.setter def type(self, value: str): self._to_field(self.FIELD_EVENT_TYPE, value) @property def description(self) -> str: return self._from_field(self.FIELD_EVENT_DESCRIPTION) @description.setter def description(self, value: str): self._to_field(self.FIELD_EVENT_DESCRIPTION, value) @property def channel_name(self) -> str: return self._from_field(self.FIELD_CHANNEL_NAME) @channel_name.setter def channel_name(self, value: str): self._to_field(self.FIELD_CHANNEL_NAME, value) @property def channel_id(self) -> str: return self._from_field(self.FIELD_CHANNEL_ID) @channel_id.setter def channel_id(self, value: str): self._to_field(self.FIELD_CHANNEL_ID, value) @property def state(self) -> str: return self._from_field(self.FIELD_EVENT_STATE) @state.setter def state(self, value: str): self._to_field(self.FIELD_EVENT_STATE, value) @property def timestamp(self) -> datetime: str_val = self._from_field(self.FIELD_EVENT_TIME) if str_val is None: return None return datetime.fromisoformat(self._from_field(self.FIELD_EVENT_TIME)) @timestamp.setter def timestamp(self, value: datetime): self._to_field(self.FIELD_EVENT_TIME, datetime.isoformat(value)) ```
{ "source": "12DEP/wi", "score": 2 }
#### File: custom_components/googlewifi/binary_sensor.py ```python from homeassistant.components.binary_sensor import BinarySensorEntity from homeassistant.const import ATTR_NAME from homeassistant.helpers import entity_platform from homeassistant.helpers.update_coordinator import UpdateFailed from . import GoogleWifiEntity, GoogleWiFiUpdater from .const import ( ATTR_IDENTIFIERS, ATTR_MANUFACTURER, ATTR_MODEL, ATTR_SW_VERSION, COORDINATOR, DEFAULT_ICON, DEV_MANUFACTURER, DOMAIN, ) SERVICE_RESET = "reset" async def async_setup_entry(hass, entry, async_add_entities): """Set up the binary sensor platforms.""" coordinator = hass.data[DOMAIN][entry.entry_id][COORDINATOR] entities = [] for system_id, system in coordinator.data.items(): entity = GoogleWifiBinarySensor( coordinator=coordinator, name=f"Google Wifi System {system_id}", icon=DEFAULT_ICON, system_id=system_id, item_id=None, ) entities.append(entity) for ap_id, access_point in system["access_points"].items(): ap_name = "Google Access Point" if access_point["accessPointSettings"].get("accessPointOtherSettings"): if access_point["accessPointSettings"]["accessPointOtherSettings"].get( "apName" ): ap_name = access_point["accessPointSettings"][ "accessPointOtherSettings" ]["apName"] if access_point["accessPointSettings"]["accessPointOtherSettings"].get( "roomData" ): if access_point["accessPointSettings"]["accessPointOtherSettings"][ "roomData" ].get("name"): ap_name = f"{access_point['accessPointSettings']['accessPointOtherSettings']['roomData']['name']} Access Point" entity = GoogleWifiBinarySensor( coordinator=coordinator, name=ap_name, icon=DEFAULT_ICON, system_id=system_id, item_id=ap_id, ) entities.append(entity) async_add_entities(entities) # register service for reset platform = entity_platform.current_platform.get() platform.async_register_entity_service( SERVICE_RESET, {}, "async_reset_device", ) class GoogleWifiBinarySensor(GoogleWifiEntity, BinarySensorEntity): """Defines a Google WiFi sensor.""" def __init__(self, coordinator, name, icon, system_id, item_id): """Initialize the sensor.""" super().__init__( coordinator=coordinator, name=name, icon=icon, system_id=system_id, item_id=item_id, ) self._state = None self._device_info = None @property def is_on(self) -> bool: """Return the on/off state of the sensor.""" try: state = False if self._item_id: if ( self.coordinator.data[self._system_id]["access_points"][ self._item_id ]["status"] == "AP_ONLINE" ): state = True else: if self.coordinator.data[self._system_id]["status"] == "WAN_ONLINE": state = True self._state = state except TypeError: pass except KeyError: pass return self._state @property def device_info(self): """Define the device as an individual Google WiFi system.""" try: device_info = { ATTR_MANUFACTURER: DEV_MANUFACTURER, ATTR_NAME: self._name, } if self._item_id: device_info[ATTR_IDENTIFIERS] = {(DOMAIN, self._item_id)} this_data = self.coordinator.data[self._system_id]["access_points"][ self._item_id ] device_info[ATTR_MANUFACTURER] = this_data["accessPointProperties"][ "hardwareType" ] device_info[ATTR_SW_VERSION] = this_data["accessPointProperties"][ "firmwareVersion" ] device_info["via_device"] = (DOMAIN, self._system_id) else: device_info[ATTR_IDENTIFIERS] = {(DOMAIN, self._system_id)} device_info[ATTR_MODEL] = "Google Wifi" device_info[ATTR_SW_VERSION] = self.coordinator.data[self._system_id][ "groupProperties" ]["otherProperties"]["firmwareVersion"] self._device_info = device_info except TypeError: pass except KeyError: pass return self._device_info async def async_reset_device(self): """Reset the network or specific access point.""" if self._item_id: success = await self.coordinator.api.restart_ap(self._item_id) if success: self.async_schedule_update_ha_state() else: raise ConnectionError("Failed to reset access point.") else: success = await self.coordinator.api.restart_system(self._system_id) if success: self.async_schedule_update_ha_state() else: raise ConnectionError("Failed to reset the Google Wifi system.") ``` #### File: custom_components/googlewifi/const.py ```python from homeassistant.const import ( ATTR_NAME, DATA_RATE_BITS_PER_SECOND, DATA_RATE_BYTES_PER_SECOND, DATA_RATE_GIGABITS_PER_SECOND, DATA_RATE_GIGABYTES_PER_SECOND, DATA_RATE_KILOBITS_PER_SECOND, DATA_RATE_KILOBYTES_PER_SECOND, DATA_RATE_MEGABITS_PER_SECOND, DATA_RATE_MEGABYTES_PER_SECOND, ) DOMAIN = "googlewifi" COORDINATOR = "coordinator" GOOGLEWIFI_API = "googlewifi_api" ATTR_IDENTIFIERS = "identifiers" ATTR_MANUFACTURER = "manufacturer" ATTR_MODEL = "model" ATTR_SW_VERSION = "sw_version" ATTR_CONNECTIONS = "connections" POLLING_INTERVAL = 30 REFRESH_TOKEN = "<PASSWORD>" DEV_MANUFACTURER = "Google" DEV_CLIENT_MODEL = "Connected Client" DEFAULT_ICON = "mdi:wifi" PAUSE_UPDATE = 15 ADD_DISABLED = "add_disabled" CONF_SPEEDTEST = "auto_speedtest" DEFAULT_SPEEDTEST = True CONF_SPEEDTEST_INTERVAL = "speedtest_interval" DEFAULT_SPEEDTEST_INTERVAL = 24 CONF_SPEED_UNITS = "speed_units" SIGNAL_ADD_DEVICE = "googlewifi_add_device" SIGNAL_DELETE_DEVICE = "googlewifi_delete_device" def unit_convert(data_rate: float, unit_of_measurement: str): """Convert the speed based on unit of measure.""" if unit_of_measurement == DATA_RATE_BYTES_PER_SECOND: data_rate *= 0.125 elif unit_of_measurement == DATA_RATE_KILOBYTES_PER_SECOND: data_rate *= 0.000125 elif unit_of_measurement == DATA_RATE_MEGABYTES_PER_SECOND: data_rate *= 1.25e-7 elif unit_of_measurement == DATA_RATE_GIGABYTES_PER_SECOND: data_rate *= 1.25e-10 elif unit_of_measurement == DATA_RATE_KILOBITS_PER_SECOND: data_rate *= 0.001 elif unit_of_measurement == DATA_RATE_MEGABITS_PER_SECOND: data_rate *= 1e-6 elif unit_of_measurement == DATA_RATE_GIGABITS_PER_SECOND: data_rate *= 1e-9 return round(data_rate, 2) ```
{ "source": "12doge-LEO/imiRecorder", "score": 3 }
#### File: imiRecorder/src/db_helper.py ```python import pymongo class dbConnector: def __init__(self): self.__db_name = "imiDB" self.__user_name = "doge12" self.__user_pwd = "<PASSWORD>" self.__token = f"mongodb+srv://{self.__user_name}:{self.__user_pwd}@cluster0.mk62e.mongodb.net/<PASSWORD>?retryWrites=true&w=majority" self.__client = pymongo.MongoClient(self.__token) self.__collection = "imiRecords" def _get_collection(self): return self.__collection def test(self): print(self.__client[self._get_collection()]) def insert(self, data: dict): if self.__client[self._get_collection()]["db1"].find({"rid": data["rid"]}).count() > 0: print("record exists") return False else : return self.__client[self._get_collection()]["db1"].insert_one(data) imi_db_connector = dbConnector() ``` #### File: imiRecorder/src/recordDownloader.py ```python import requests import json, os, zipfile import time from typing import List, Dict import matplotlib.pyplot as plt class Record: def __init__(self, name='', rid='', date='', urls=[], cover_url='', start_timestamp=0, end_timestamp=0): self.name = name self.date = date self.rid = rid self.urls = urls # type: List[str] self.cover_url = cover_url self.raw_dm = [] self.analyzed_dm = [] self.reference = { 'Referrer Policy': 'strict-origin-when-cross-origin' } self.headers = { 'User-Agent': 'Mozilla / 5.0(WindowsNT 10.0; Win64;x64) AppleWebKit / 537.36(KHTML, likeGecko) Chrome / ' '87.0.4280.141 Safari / 537.36 ' } self.start_timestamp = start_timestamp self.end_timestamp = end_timestamp self.file_path = '' self.TIME_STEP = 180 self.proxies = { 'http': 'http://' + '172.16.31.10:43664/', 'https': 'https://' + '172.16.31.10:43664/', } def to_dict(self): record_dict = {"name": self.name, "date": self.date, "rid": self.rid, "urls": self.urls, "raw_dm": self.raw_dm, "analyzed_dm": self.analyzed_dm, "start_timestamp": self.start_timestamp, "end_timestamp": self.end_timestamp} return record_dict def download(self): for url in self.urls: file_name = './' + url.split('?')[0].split('/')[-1].replace(':', '-') file_name = '-'.join(file_name.split('-')[1:]) record_video_name = self.name.replace(' ', '') record_video_name = record_video_name.replace('|', '') file_name = record_video_name + '-' + file_name response = requests.get(url, headers=self.headers, params=self.reference) with open(file_name, 'wb') as f: f.write(response.content) def draw_dm_time_map(self, temp_dir=''): plt.figure(figsize=(15, 15)) max_index = int((self.end_timestamp - self.start_timestamp) / self.TIME_STEP) x_data = [i for i in range(0, max_index)] y_data = self.analyzed_dm[0:max_index] plt.plot(x_data, y_data, label='count', linewidth=3, color='b', marker='o', markerfacecolor='blue', markersize=5) # 横坐标描述 plt.xlabel('time') # 纵坐标描述 plt.ylabel('count') # 设置数字标签 for a, b in zip(x_data, y_data): plt.text(a, b, '({},{})'.format(a, b), ha='center', va='bottom', fontsize=15) plt.savefig(temp_dir + '/{}'.format(self.name) + '_dm_figure.png') plt.close() def sava_dm_as_json(self, temp_dir): with open(temp_dir + '/{}'.format(self.name) + '_dm.json', 'w' ) as result: json.dump(self.raw_dm, result, ensure_ascii=False) def save_analyzed_dm_data(self, temp_dir): def get_dm_content_and_time(_dm_data): _dm_content = [] # type: List[Dict] for temp_dm in _dm_data: _dm_content.append( {'time': int(temp_dm['check_info']['ts'] / 1000), 'text': temp_dm['text']}) return _dm_content time_dm_content = get_dm_content_and_time(self.raw_dm) with open(temp_dir + '/{}'.format(self.name) + '_analyzed_dm.json', 'w' ) as result: json.dump(time_dm_content, result, ensure_ascii=False) def save_live_record_url(self, temp_dir): with open(temp_dir + '/{}'.format(self.name) + '_record_urls.txt', 'w') as file: for url in self.urls: file.write(url + '\n') def save_cover(self, temp_dir): cover = requests.get(self.cover_url) with open(temp_dir + '/{}'.format(self.name) + '_cover.png', 'wb') as file: file.write(cover.content) def daily_workflow(self): temp_dir = '../resource/' + self.name + '_' + str( time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime(int(self.start_timestamp)))) if not os.path.exists(temp_dir): os.makedirs(temp_dir) self.file_path = temp_dir else: self.file_path = temp_dir return False def zipdir(path, ziph): # ziph is zipfile handle for root, dirs, files in os.walk(path): for file in files: ziph.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.join(path, '..'))) try: self.draw_dm_time_map(temp_dir) self.sava_dm_as_json(temp_dir) self.save_analyzed_dm_data(temp_dir) self.save_live_record_url(temp_dir) self.save_cover(temp_dir) except: print('DM error find please check') file_path = self.file_path zip_file_name = '../resource' + '/{}'.format(self.name) + '.zip' zipf = zipfile.ZipFile(zip_file_name, 'w', zipfile.ZIP_DEFLATED) zipdir(file_path, zipf) zipf.close() with open('../resource/list.txt', 'a+') as file: file.write(self.rid + '\n') return True class RecordDownloader: def __init__(self, max_count=100): self.url = 'https://api.live.bilibili.com/xlive/web-room/v1/record/getLiveRecordUrl?' self.live_room_url = 'https://api.live.bilibili.com/xlive/web-room/v1/record/getList?room_id=22605466&page=1' \ '&page_size=20 ' self.record_list = [] self.platform = 'html5' self.reference = { 'Referrer Policy': 'strict-origin-when-cross-origin' } self.headers = { 'User-Agent': 'Mozilla / 5.0(WindowsNT 10.0; Win64;x64) AppleWebKit / 537.36(KHTML, likeGecko) Chrome / ' '87.0.4280.141 Safari / 537.36 ' } self.TIME_STEP = 180 self.max_count = max_count self.proxies = { 'http': 'http://' + '172.16.31.10:43664/', 'https': 'https://' + '172.16.31.10:43664/', } def get_recent_record_id(self): self.live_room_url = 'https://api.live.bilibili.com/xlive/web-room/v1/record/getList?room_id=22605466&page=1' \ '&page_size=20' response = requests.get(self.live_room_url, headers=self.headers, params=self.reference) self.record_list = response.json()['data']['list'] def get_live_record_by_id(self, record_id): record_request_url = self.url + 'rid={}'.format(record_id) + '&platform=' + self.platform response = requests.get(record_request_url, params=self.reference) record_video_urls = [item['url'] for item in response.json()['data']['list']] return record_video_urls def download_files(self, record_video_urls, record_video_name): for url in record_video_urls: file_name = './' + url.split('?')[0].split('/')[-1].replace(':', '-') file_name = '-'.join(file_name.split('-')[1:]) record_video_name = record_video_name.replace(' ', '') record_video_name = record_video_name.replace('|', '') file_name = record_video_name + '-' + file_name response = requests.get(url, headers=self.headers, params=self.reference) with open(file_name, 'wb') as f: f.write(response.content) def get_dm_pool(self, rid, total_time): dm_data = [] dm_url = 'https://api.live.bilibili.com/xlive/web-room/v1/dM/getDMMsgByPlayBackID' for i in range(0, int(total_time / 3)): # if i % 10 == 0 or i == int(total_time / 3) - 1: # print('Getting DM index : {}/{}'.format(i, int(total_time / 3))) params = { 'rid': rid, 'index': str(i), 'Connection': 'keep-alive' } response = requests.get(dm_url, headers=self.headers, params=params) # time.sleep(1) assert response.status_code == 200 try: dm_data.extend(response.json()['data']['dm']['dm_info']) except: # print('Error: dm get failed') continue return dm_data def create_record_instance(self): record_rids = [] try: with open('../resource/list.txt', 'r+') as file: record_rids = file.read() pass except: print('List file is not exist, pass') temp_record_list = [] count = 0 for record in self.record_list: if record['rid'] in record_rids: count += 1 # print('{} is exist, continue'.format(record['rid'])) if count >= self.max_count: break continue temp_record = Record(rid=record['rid'], urls=self.get_live_record_by_id(record['rid']), name=record['title'], cover_url=record['cover'], start_timestamp=record['start_timestamp'], end_timestamp=record['end_timestamp']) print('Creating record instance: ' + str(temp_record.name)) temp_record.raw_dm = self.get_dm_pool(temp_record.rid, (temp_record.end_timestamp - temp_record.start_timestamp) / 60) # print('Begin DM analysis...') temp_record.analyzed_dm = self.analyze_dm_by_timestamp(temp_record.raw_dm) # print('DM instance created') temp_record_list.append(temp_record) count += 1 if count >= self.max_count: break return temp_record_list def analyze_dm_by_timestamp(self, dm_data): def get_dm_content_and_time(_dm_data): _dm_content = [] # type: List[Dict] for temp_dm in _dm_data: _dm_content.append( {'time': int(temp_dm['check_info']['ts'] / 1000), 'text': temp_dm['text']}) return _dm_content time_dm_matrix = [] dm_content = get_dm_content_and_time(dm_data) max_timestamps = 0 for item in dm_content: if item['time'] > max_timestamps: max_timestamps = item['time'] try: for i in range(0, int((max_timestamps - dm_content[0]['time']) / self.TIME_STEP) + 1): time_dm_matrix.append(0) for item in dm_content: time_dm_matrix[int((item['time'] - dm_content[0]['time']) / self.TIME_STEP)] += 1 except: print('Dm data error, please check raw dm data') return time_dm_matrix ```
{ "source": "12DReflections/cab_trips", "score": 3 }
#### File: 12DReflections/cab_trips/app.py ```python import datetime import os import sys from flask import Flask, redirect, url_for, request, jsonify, make_response from models import Medallions from database import db_session from flask_sqlalchemy import SQLAlchemy from werkzeug.security import generate_password_hash, check_password_hash from functools import wraps from flask_caching import Cache app = Flask(__name__) app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.secret_key = os.environ['APP_SECRET_KEY'] cache = Cache(app, config={'CACHE_TYPE': 'simple'}) @app.route('/medallion', methods=['POST']) @cache.cached(timeout=50) def medallionquery(): data = request.get_json() pickup_date = datetime.datetime.strptime(data['pickup_date'], '%Y-%m-%d').date() # yyyy-mm-dd medal_req = data['medallions'] # comma separated string medal_req = [x.strip() for x in medal_req.split(',')] # strip whitespace and turn medallions to a list medallions = Medallions.query.all() output = {} for m in medallions: medallion = {} medallion['medalallion'] = m.medallion medallion['pickup_date'] = m.pickup_datetime.date() if medallion['pickup_date'] == pickup_date and medallion['medalallion'] in medal_req: # if medal and date match # then add to or append to result list if medallion['medalallion'] not in output: output[medallion['medalallion']] = 1 else: output[medallion['medalallion']] += 1 output['response'] = 200 return jsonify(output) @app.route('/clearcache') def clearcache(): with app.app_context(): cache.clear() return jsonify({'result' : "success, cache is cleared", "response": 200}) if __name__ == '__main__': app.run(host='0.0.0.0', port=5090, debug=True) ```
{ "source": "12DReflections/latitude_assessment", "score": 3 }
#### File: 12DReflections/latitude_assessment/file_reader.py ```python import io import json import logging import codecs import re class File_Reader: '''Create the file reader class''' '''The class reads in a spec file and an input file. First the input file is converted into windows-1252 encoding, then the file is decoded to a CSV file.''' def __init__(self, spec_name='spec.json', input_file='text_input.txt'): self.spec_filepath = spec_name self.input_file = input_file def run(self): f = File_Reader() spec_data = self.input_spec(f.spec_filepath) # Currently outputs to fixed_framed.lat fixed_frame = self.convert_to_fixed_width(spec_data, self.input_file) print("Fixed frame file save location: " + fixed_frame) csv_output = self.parser(spec_data, fixed_frame) print("CSV Output save location: " + csv_output) return 0 def input_spec(self, specfile): try: with open(specfile) as json_file: spec_data = json.load(json_file) except Exception as err: logging.error('Cannot load the spec') logging.error(err) # Convert to variables from unicode in the spec offset_integers = [] for sub in spec_data['Offsets']: offset_integers.append(int(sub)) spec_data['Offsets'] = offset_integers spec_data['IncludeHeader'] = bool(spec_data['IncludeHeader']) return spec_data # A parser that can parse the fixed width file and generate a CSV def parser(self, spec, fixed_frame_input_file="fixed_frame.lat"): try: f = io.open(fixed_frame_input_file, mode="r", encoding="cp1252") fixed_frame = f.readlines() output_csv = 'csv_output.csv' # Strip whitespace and write to CSV with open(output_csv,'w') as file: for line in fixed_frame: cleaned_string = ','.join([w.strip() for w in line.split(';')]) file.write(cleaned_string + '\n') f.close() except Exception as err: logging.error(err) return output_csv def convert_to_fixed_width(self, spec_data, input_file): # Generate fixed line file with delimeters showing frames frame_offsets = self.get_frame_offsets(spec_data) output_file = 'fixed_frame.lat' with open(input_file, 'r') as f: with codecs.open(output_file, 'wb', 'cp1252') as writer: if spec_data['IncludeHeader']: column_headers = '' for h in spec_data['ColumnNames']: column_headers += h + ';' column_headers = self.header_splitter(spec_data['ColumnNames'], spec_data['Offsets']) writer.write(column_headers) # Apply the fixed line delimeters and write to encoded file for i, line in enumerate(f.readlines()): splitted_line = self.line_splitter(line, frame_offsets) writer.write(splitted_line) return output_file def header_splitter(self, line, frame_offsets, delimiter = ';'): # Split a line at the frame offsets line_fixed = '' for i, n in enumerate(frame_offsets): # Build the line [TODO] switch to inline string one-liner fixed_frames = ' ' * (int(frame_offsets[i]) - 2) line_fixed += line[i] line_fixed += fixed_frames + delimiter return line_fixed def line_splitter(self, line, frame_offsets, delimiter = ';'): # Split a line at the frame offsets for i, n in enumerate(frame_offsets): if i == len(frame_offsets) - 1: continue line = re.sub(r"^(.{%d})()" % (n + i), r"\1%s" % delimiter, line) return line def get_frame_offsets(self, spec_data): # Get the aggregate offsets to return the spacing aggregate_offset = [] for i, width in enumerate(spec_data['Offsets']): if i == 0: aggregate_offset.append(int(width)) else: distance_sum = width + aggregate_offset[i-1] aggregate_offset.append(distance_sum) return aggregate_offset ```
{ "source": "12DReflections/NatLangMachineLearning", "score": 3 }
#### File: NatLangMachineLearning/4_Text_Classification/single_classification.py ```python def find_features(document_list, training_d_list): article_words = set(document_list) features = {} for w in training_d_list: features[w] = (w in article_words) # a boolean dict of words from our list that are in an article return features training_data = "this sentence string format yellow orange purple green" training_data_list = training_data.split() sentence = "this is a sentence of words in a string format alfalfa" sentence_list = sentence.split() feat = find_features(sentence_list, training_data_list) print feat ``` #### File: NatLangMachineLearning/4_Text_Classification/text_classification.py ```python import nltk import random from nltk.corpus import movie_reviews # Text Classification with nltk library # Works if you have a body of a words and a boolean classification ie (positive, negative) as a tuple documents = [(list(movie_reviews.words(fileid)), category) for category in movie_reviews.categories() for fileid in movie_reviews.fileids(category)] # # Same as # documents = [] # for category in movie_reviews.categories(): # for fileid in movie_reviews.fileids(category): # documents.append(list(movie_reviews.words(fileid)), category) # Train data random.shuffle(documents) # Get the full list of words all_words = [] for w in movie_reviews.words(): all_words.append(w.lower()) # Convert list to frequency distribution and print most common words all_words = nltk.FreqDist(all_words) #print all_words.most_common(15) # Train on the top 3000 words word_features = list(all_words.keys())[:3000] # training_data = "this sentence string format yellow orange purple green" # word_features = training_data.split() # A set removes doubled elements, only single representation def find_features(document): words = set(document) features = {} for w in word_features: # (w in words) creates boolean value for each word, if word in document it will return true, else it will return false features[w] = (w in words) return features # sentence = "this is a sentence of words in a string format alfalfa" # feat = find_features(sentence) # print feat print((find_features(movie_reviews.words('neg/cv000_29416.txt')))) featuresets = [(find_features(rev), category) for (rev, category) in documents] print 'kitty' ``` #### File: NatLangMachineLearning/5_naive_bayes/bayes.py ```python import nltk import random from nltk.corpus import movie_reviews from nltk.tokenize import word_tokenize # A naive bayes algorithm, finding the words which lead to a positive/negative classification of an article # Text Classification with nltk library # Works if you have a body of a words and a boolean classification ie (positive, negative) as a tuple documents = [(list(movie_reviews.words(fileid)), category) for category in movie_reviews.categories() for fileid in movie_reviews.fileids(category)] # # Same as # documents = [] # for category in movie_reviews.categories(): # for fileid in movie_reviews.fileids(category): # documents.append(list(movie_reviews.words(fileid)), category) # Train data random.shuffle(documents) # Get the full list of words all_words = [] for w in movie_reviews.words(): all_words.append(w.lower()) # Convert list to frequency distribution and print most common words all_words = nltk.FreqDist(all_words) #print all_words.most_common(15) # Train on the top 3000 words word_features = list(all_words.keys())[:3000] # training_data = "this sentence string format yellow orange purple green" # word_features = training_data.split() # A set removes doubled elements, only single representation def find_features(document): words = word_tokenize(document) print words #print words features = {} for w in word_features: # (w in words) creates boolean value for each word, if word in document it will return true, else it will return false features[w] = (w in words) print features return features # sentence = "this is a sentence of words in a string format alfalfa" # feat = find_features(sentence) # print feat #print((find_features(movie_reviews.words('neg/cv000_29416.txt')))) clas_sentence = 'refreshingly dismissed madsen' clas = find_features(clas_sentence) # The existence of words in a document, from our training words, and whether they lead to a positive/negative category featuresets = [(find_features(rev), category) for (rev, category) in documents] #print featuresets[1] training_set = featuresets[:1900] testing_set = featuresets[1900:] # Naive bayes # post_occurence = prior_occurrence * liklihood / evidence # Show whether a word is more likely to be in a positive or negative review classifier = nltk.NaiveBayesClassifier.train(training_set) print("Naive Bayes Algo accuracy percent: ", (nltk.classify.accuracy(classifier, testing_set)) * 100) classifier.show_most_informative_features(15) print classifier.classify(clas) #print clas print 'kitty' ```
{ "source": "12ds95/prototypical-networks", "score": 3 }
#### File: protonets/utils/visual.py ```python from visdom import Visdom import numpy as np viz = Visdom() def train_val_acc(title): """ """ layout = dict(legend=['train', 'val'], title=title+" Acc Plot") return plotTwoLine(layout) def train_val_loss(title): """ """ layout = dict(legend=['train', 'val'], title=title+" Loss Plot") return plotTwoLine(layout) def plotTwoLine(layout): """ """ win = None prevX = 0 prevYa = 0 prevYb = 0 def update_plotTwoLine(x, ya, yb): def update(): nonlocal prevX, prevYa, prevYb, win if win is None: prevX = x prevYa = ya prevYb = yb win = viz.line( X=np.column_stack((np.linspace(prevX, x, 10), np.linspace(prevX, x, 10))), Y=np.column_stack((np.linspace(prevYa, ya, 10), np.linspace(prevYb, yb, 10))), opts=layout ) else: viz.line( X=np.column_stack((np.linspace(prevX, x, 10), np.linspace(prevX, x, 10))), Y=np.column_stack((np.linspace(prevYa, ya, 10), np.linspace(prevYb, yb, 10))), win=win, update='append' ) update() nonlocal prevX, prevYa, prevYb prevX = x prevYa = ya prevYb = yb return update_plotTwoLine if __name__ == '__main__': from time import sleep pic = train_val_acc("First Plot") pic(1, 0.5, 0.1) sleep(1) pic(2, 0.2, 0.3) ```
{ "source": "12f23eddde/PKUAutoElective", "score": 2 }
#### File: autoelective/captcha/classifier.py ```python __all__ = ["KNN","SVM","RandomForest"] import os import re from sklearn.neighbors.classification import KNeighborsClassifier from sklearn.svm import SVC from sklearn.ensemble.forest import RandomForestClassifier from sklearn.externals import joblib from .feature import get_feature_extractor from ..const import MODEL_DIR from ..utils import Singleton _regexModelFilename = re.compile( pattern=( r'^(?P<alg>\S+)\.model\.' r'f(?P<feature>[1-5])\.' r'(?:l(?P<level>\d{1})\.)*' r'c(?P<compress>\d{1})' r'(?P<ext>\.z|\.gz|\.bz2|\.xz|\.lzma)$' ), flags=re.I, ) def _get_MODEL_FILES(): model_files = {} for file in os.listdir(MODEL_DIR): res = _regexModelFilename.match(file) if res is not None: filename = res.group() resDict = res.groupdict() alg = resDict.pop("alg") resDict["path"] = os.path.abspath(os.path.join(MODEL_DIR, filename)) model_files[alg] = resDict return model_files _MODEL_FILES = _get_MODEL_FILES() class BaseClassifier(object, metaclass=Singleton): ALG = "" def __init__(self): if self.__class__ is __class__: raise NotImplementedError clf, feature = self._load_model() self._clf = clf self.feature = feature def _load_model(self): alg = self.__class__.ALG detail = _MODEL_FILES.get(alg) path, fCode, lCode = map(detail.__getitem__, ("path","feature","level")) feature = get_feature_extractor(fCode, lCode) if path is None: raise FileNotFoundError("model %s.* is missing" % alg) return joblib.load(path), feature def predict(self, Xlist): return self._clf.predict(Xlist) class RandomForest(BaseClassifier): ALG = "RandomForest" class KNN(BaseClassifier): ALG = "KNN" class SVM(BaseClassifier): ALG = "SVM" ``` #### File: autoelective/captcha/feature.py ```python __all__ = ["get_feature_extractor"] from functools import partial import numpy as np def _feature1(img): """ 遍历全部像素 """ ary = np.array(img.convert("1")) ary = 1 - ary # 反相 return ary.flatten() def _feature2(img): """ feature2 降维 """ ary = np.array(img.convert("1")) ary = 1 - ary # 反相 return np.concatenate([ary.sum(axis=0), ary.sum(axis=1)]) def _feature3(img, level): """ 考虑临近像素的遍历 """ ary = np.array(img.convert("1")) ary = 1 - ary # 反相 l = level featureVector = [] for i in range(l, ary.shape[0]-l): for j in range(l, ary.shape[1]-l): i1, i2, j1, j2 = i-l, i+l+1, j-l, j+l+1 featureVector.append(np.sum(ary[i1:i2, j1:j2])) # sum block return np.array(featureVector) def _feature4(img, level): """ feature3 降维 """ ary = _feature3(img, level) s = int(np.sqrt(ary.size)) assert s**2 == ary.size # 确保为方 ary.resize((s,s)) return np.concatenate([ary.sum(axis=0), ary.sum(axis=1)]) def _feature5(img, level): """ feature3 改版,给接近中心的点增加权重 weight 矩阵例如: array([[1, 1, 1, 1, 1], [1, 2, 2, 2, 1], [1, 2, 3, 2, 1], [1, 2, 2, 2, 1], [1, 1, 1, 1, 1]]) """ ary = np.array(img.convert("1")) ary = 1 - ary # 反相 l = level s = size = 2 * l + 1 weight = np.zeros(s**2, dtype=np.int).reshape((s,s)) for k in range(l+1): mask = np.array([ k <= i < s-k and k <= j < s-k for i in range(s) for j in range(s) ]).reshape((s,s)) weight[mask] += (k + 1)**2 # 等比数列 featureVector = [] for i in range(l, ary.shape[0]-l): for j in range(l, ary.shape[1]-l): i1, i2, j1, j2 = i-l, i+l+1, j-l, j+l+1 featureVector.append(np.sum(ary[i1:i2, j1:j2]*weight)) # sum block with weight return np.array(featureVector) _FEATURE_MAP = { "1": _feature1, "2": _feature2, "3": _feature3, "4": _feature4, "5": _feature5, } def get_feature_extractor(feature, level=""): feature = str(feature) if feature in ("1","2"): func = _FEATURE_MAP[feature] elif feature in ("3","4","5"): if level == "": raise ValueError("level must be given for feature %s" % feature) level = int(level) if level <= 0: raise ValueError("level must be a positive integer, not %s" % level) func = partial(_FEATURE_MAP[feature], level=level) return func ``` #### File: PKUAutoElective/autoelective/loop.py ```python __all__ = ["main"] import sys import time import random from queue import Queue, Empty from collections import deque from threading import Thread, Lock from requests.compat import json from requests.exceptions import RequestException from . import __version__, __date__ from .iaaa import IAAAClient from .elective import ElectiveClient from .captcha import CaptchaRecognizer from .course import Course from .config import AutoElectiveConfig from .parser import load_course_csv, get_tables, get_courses, get_courses_with_detail, get_sida from .logger import ConsoleLogger, FileLogger from .exceptions import * cout = ConsoleLogger("loop") ferr = FileLogger("loop.error") # loop 的子日志,同步输出到 console config = AutoElectiveConfig() interval = config.refreshInterval deviation = config.refreshRandomDeviation isDualDegree = config.isDualDegree identity = config.identity page = config.supplyCancelPage loginLoopInterval = config.loginLoopInterval electivePoolSize = config.electiveClientPoolSize config.check_identify(identity) config.check_supply_cancel_page(page) recognizer = CaptchaRecognizer() electivePool = Queue(maxsize=electivePoolSize) reloginPool = Queue(maxsize=electivePoolSize) shouldKillAllThreads = False class _ElectiveNeedsLogin(Exception): pass def _get_refresh_interval(): if deviation <= 0: return interval delta = (random.random() * 2 - 1) * deviation * interval return interval + delta def _has_candidates(goals, ignored): _ignored = [ x[0] for x in ignored ] count = 0 for course in goals: if course in _ignored: continue count += 1 return count > 0 def _get_available_courses(goals, plans, elected, ignored): queue = deque() _ignored = [ x[0] for x in ignored ] for c0 in goals: if c0 in _ignored: continue for c in elected: if c == c0: cout.info("%s is elected, ignored" % c0) ignored.append( (c0, "Elected") ) break else: for c in plans: if c == c0: if c.is_available(): queue.append(c) cout.info("%s is AVAILABLE now !" % c) break else: raise NotInCoursePlanException("%s is not in your course plan." % c0) return queue def _task_setup_pools(): for i in range(1, electivePoolSize+1): electivePool.put_nowait(ElectiveClient(id=i)) def _task_print_header(): header = "# PKU Auto-Elective Tool v%s (%s) #" % (__version__, __date__) line = "#" + "-"*(len(header) - 2) + "#" cout.info(line) cout.info(header) cout.info(line) cout.info("") def _task_print_goals(goals, ignored): """ 输出待选课程 """ if not _has_candidates(goals, ignored): return line = "-" * 30 cout.info("> Current tasks") cout.info(line) idx = 1 _ignored = [ x[0] for x in ignored ] for course in goals: if course in _ignored: continue cout.info("%02d. %s" % (idx, course)) idx += 1 cout.info(line) cout.info("") def _task_print_ignored(ignored): """ 输出忽略列表 """ if len(ignored) == 0: return line = "-" * 30 cout.info("> Ignored tasks") cout.info(line) idx = 1 for course, reason in ignored: cout.info("%02d. %s %s" % (idx, course, reason)) idx += 1 cout.info(line) cout.info("") def _task_validate_captcha(elective): """ 填一次验证码 """ while True: cout.info("Fetch a captcha") r = elective.get_DrawServlet() captcha = recognizer.recognize(r.content) code = captcha.code cout.info("Recognition result: %s" % code) r = elective.get_Validate(code) try: res = r.json()["valid"] # 可能会返回一个错误网页 ... except Exception as e: ferr.error(e) raise OperationFailedError(msg="Unable to validate captcha") if res == "2": cout.info("Validation passed!") captcha.clear_cache() cout.info("Clear captcha cache") break elif res == "0": cout.info("Validation failed, try again") else: cout.warning("Unknown validation result: %s" % validRes) def _thread_login_loop(status): elective = None shouldQuitImmediately = False global shouldKillAllThreads while True: if shouldKillAllThreads: break shouldQuitImmediately = False if elective is None: elective = reloginPool.get() try: cout.info("Try to login IAAA (client: %s)" % elective.id) iaaa = IAAAClient() # not reusable r = iaaa.oauth_login() try: token = r.json()["token"] except Exception as e: ferr.error(e) raise OperationFailedError(msg="Unable to parse IAAA token. response body: %s" % r.content) elective.clear_cookies() r = elective.sso_login(token) if isDualDegree: sida = get_sida(r) sttp = identity referer = r.url _ = elective.sso_login_dual_degree(sida, sttp, referer) cout.info("Login success (client: %s)" % elective.id) electivePool.put_nowait(elective) elective = None except (ServerError, StatusCodeError) as e: ferr.error(e) cout.warning("ServerError/StatusCodeError encountered") except OperationFailedError as e: ferr.error(e) cout.warning("OperationFailedError encountered") except RequestException as e: ferr.error(e) cout.warning("RequestException encountered") except IAAAException as e: ferr.error(e) cout.warning("IAAAException encountered") except CaughtCheatingError as e: ferr.critical(e) # 严重错误 shouldQuitImmediately = True raise e except ElectiveException as e: ferr.error(e) cout.warning("ElectiveException encountered") except json.JSONDecodeError as e: ferr.error(e) cout.warning("JSONDecodeError encountered") except KeyboardInterrupt as e: shouldQuitImmediately = True except Exception as e: ferr.exception(e) shouldQuitImmediately = True raise e finally: if shouldQuitImmediately: shouldKillAllThreads = True sys.exit(1) t = loginLoopInterval cout.info("") cout.info("IAAA login loop sleep %s s" % t) cout.info("") time.sleep(t) def _thread_main_loop(goals, ignored, status): loop = 0 elective = None shouldQuitImmediately = False shouldEnterNextLoopImmediately = False global shouldKillAllThreads def _update_loop(): if status is not None: status["loop"] = loop def _ignore_course(course, reason): ignored.append( (course.to_simplified(), reason) ) _task_setup_pools() _task_print_header() while True: if shouldKillAllThreads: break shouldQuitImmediately = False shouldEnterNextLoopImmediately = False if not _has_candidates(goals, ignored): cout.info("No tasks, exit") break loop += 1 _update_loop() cout.info("") cout.info("======== Loop %d ========" % loop) cout.info("") # MARK: print current plans _task_print_goals(goals, ignored) _task_print_ignored(ignored) try: if elective is None: elective = electivePool.get() cout.info("> Current client: %s" % elective.id) cout.info("") if not elective.hasLogined: raise _ElectiveNeedsLogin # quit this loop # MARK: check supply/cancel page if page == 1: cout.info("Get SupplyCancel page %s" % page) resp = elective.get_SupplyCancel() tables = get_tables(resp._tree) elected = get_courses(tables[1]) plans = get_courses_with_detail(tables[0]) else: # # 刷新非第一页的课程,第一次请求会遇到返回空页面的情况 # # 模拟方法: # 1.先登录辅双,打开补退选第二页 # 2.再在同一浏览器登录主修 # 3.刷新辅双的补退选第二页可以看到 # # ----------------------------------------------- # # 引入 retry 逻辑以防止以为某些特殊原因无限重试 # 正常情况下一次就能成功,但是为了应对某些偶发错误,这里设为最多尝试 3 次 # retry = 3 while True: if retry == 0: raise OperationFailedError(msg="unable to get normal Supplement page %s" % page) cout.info("Get Supplement page %s" % page) resp = elective.get_supplement(page=page) # 双学位第二页 tables = get_tables(resp._tree) try: elected = get_courses(tables[1]) plans = get_courses_with_detail(tables[0]) except IndexError as e: cout.warning("IndexError encountered") cout.info("Get SupplyCancel first to prevent empty table returned") _ = elective.get_SupplyCancel() # 遇到空页面时请求一次补退选主页,之后就可以不断刷新 else: break finally: retry -= 1 # MARK: check available courses cout.info("Get available courses") queue = _get_available_courses(goals, plans, elected, ignored) # MAKR: elect available courses if len(queue) == 0: cout.info("No courses available") continue while len(queue) > 0: course = queue.popleft() cout.info("Try to elect %s" % course) _task_validate_captcha(elective) retryRequired = True while retryRequired: retryRequired = False try: resp = elective.get_ElectSupplement(course.href) except (ElectionRepeatedError, TimeConflictError) as e: ferr.error(e) cout.warning("ElectionRepeatedError encountered") _ignore_course(course, reason="Repeated") except TimeConflictError as e: ferr.error(e) cout.warning("TimeConflictError encountered") _ignore_course(course, reason="Time conflict") except ExamTimeConflictError as e: ferr.error(e) cout.warning("ExamTimeConflictError encountered") _ignore_course(course, reason="Exam time conflict") except ElectionPermissionError as e: ferr.error(e) cout.warning("ElectionPermissionError encountered") _ignore_course(course, reason="Permission required") except CreditsLimitedError as e: ferr.error(e) cout.warning("CreditsLimitedError encountered") _ignore_course(course, reason="Credits limited") except MutuallyExclusiveCourseError as e: ferr.error(e) cout.warning("MutuallyExclusiveCourseError encountered") _ignore_course(course, reason="Mutual exclusive") except ElectionSuccess as e: cout.info("%s is ELECTED !" % course) # 不从此处加入 ignored ,而是在下回合根据实际选课结果来决定是否忽略 except ElectionFailedError as e: ferr.error(e) cout.warning("ElectionFailedError encountered") # 具体原因不明,且不能马上重试 except Exception as e: raise e except NotInCoursePlanException as e: cout.error(e) shouldQuitImmediately = True raise e except (ServerError, StatusCodeError) as e: ferr.error(e) cout.warning("ServerError/StatusCodeError encountered") except OperationFailedError as e: ferr.error(e) cout.warning("OperationFailedError encountered") except RequestException as e: ferr.error(e) cout.warning("RequestException encountered") except IAAAException as e: ferr.error(e) cout.warning("IAAAException encountered") except _ElectiveNeedsLogin as e: cout.info("client: %s needs Login" % elective.id) reloginPool.put_nowait(elective) elective = None shouldEnterNextLoopImmediately = True except (SessionExpiredError, InvalidTokenError, NoAuthInfoError, SharedSessionError) as e: ferr.error(e) cout.info("client: %s needs relogin" % elective.id) reloginPool.put_nowait(elective) elective = None shouldEnterNextLoopImmediately = True except CaughtCheatingError as e: ferr.critical(e) # 严重错误 shouldQuitImmediately = True raise e except SystemException as e: ferr.error(e) cout.warning("SystemException encountered") except TipsException as e: ferr.error(e) cout.warning("TipsException encountered") except OperationTimeoutError as e: ferr.error(e) cout.warning("OperationTimeoutError encountered") except json.JSONDecodeError as e: ferr.error(e) cout.warning("JSONDecodeError encountered") except KeyboardInterrupt as e: shouldQuitImmediately = True raise e except Exception as e: ferr.exception(e) shouldQuitImmediately = True raise e finally: if shouldQuitImmediately: shouldKillAllThreads = True sys.exit(2) if elective is not None: # change elective client electivePool.put_nowait(elective) elective = None if shouldEnterNextLoopImmediately: cout.info("") cout.info("======== END Loop %d ========" % loop) cout.info("") else: t = _get_refresh_interval() cout.info("") cout.info("======== END Loop %d ========" % loop) cout.info("Main loop sleep %s s" % t) cout.info("") time.sleep(t) def main(goals=None, ignored=None, status=None): goals = load_course_csv() if goals is None else goals ignored = [] if ignored is None else ignored # (course, reason) tList = [ Thread(target=_thread_login_loop, name="Loop-Login", args=(status,)), Thread(target=_thread_main_loop, name="Loop-Main", args=(goals, ignored, status)) ] for t in tList: t.daemon = True t.start() for t in tList: t.join() ``` #### File: PKUAutoElective/autoelective/monitor.py ```python __all__ = ["main"] import logging import werkzeug._internal as _werkzeug_internal from flask import Flask, current_app, jsonify from flask.logging import default_handler from .config import AutoElectiveConfig from .logger import ConsoleLogger cout = ConsoleLogger("monitor") ferr = ConsoleLogger("monitor.error") config = AutoElectiveConfig() def main(goals, ignored, status): monitor = Flask(__name__) # MARK: register routes @monitor.route("/", methods=["GET"]) @monitor.route("/rules", methods=["GET"]) def root(): rules = [] for r in sorted(current_app.url_map.iter_rules(), key=lambda r: r.rule): line = "{method} {rule}".format( method=','.join( m for m in r.methods if m not in ("HEAD","OPTIONS") ), rule=r.rule ) rules.append(line) return jsonify(rules) @monitor.route("/loop", methods=["GET"]) def loop(): return str(status["loop"]) @monitor.route("/goals", methods=["GET"]) def get_goals(): return jsonify([ str(course) for course in goals ]) @monitor.route("/current",methods=["GET"]) def get_current(): _ignored = [ x[0] for x in ignored ] return jsonify([ str(course) for course in goals if course not in _ignored ]) @monitor.route("/ignored", methods=["GET"]) def get_ignored(): return jsonify([ "%s %s" % (course, reason) for (course, reason) in ignored ]) @monitor.route("/all", methods=["GET"]) def get_all(): _ignored = [ x[0] for x in ignored ] return jsonify( { "loop": status["loop"], "goals": [ str(course) for course in goals ], "current": [ str(course) for course in goals if course not in _ignored ], "ignored": [ "%s %s" % (course, reason) for (course, reason) in ignored ], } ) # MARK: setup monitor monitor.config["JSON_AS_ASCII"] = False monitor.config["JSON_SORT_KEYS"] = False _werkzeug_internal._logger = cout # custom _logger for werkzeug monitor.logger.removeHandler(default_handler) for logger in [cout, ferr]: for handler in logger.handlers: monitor.logger.addHandler(handler) monitor.run( host=config.monitorHost, port=config.monitorPort, debug=True, use_reloader=False, ) ```
{ "source": "12f23eddde/tank2s", "score": 2 }
#### File: tank2s/geasrc/train.py ```python import numpy as np import geatpy as ga import subprocess,time,sys,math from multiprocessing import Pool,freeze_support from tqdm import tqdm # 调试用变量 DEBUG = True WRITE_TO_FILE = True # 全局变量 GENERATION = 0 TOTAL = 0 BATTLECOUNTER = 0 # 本程序依赖Tank2Judge.exe # Tank2Judge.exe 输入表现型矩阵 # 1 3 4 5 6 7 4 7 4 6 7 8 4 8 # 输出十张地图对局中双方的得分(输0 平1 赢2) # 2 2 # modified def sga_real_templet(AIM_M, AIM_F, PUN_M, PUN_F, FieldDR, problem, maxormin, MAXGEN, NIND, SUBPOP, GGAP, selectStyle, recombinStyle, recopt, pm, distribute, drawing = 1, _init = None, _read_from_file = False): """ sga_real_templet.py - 单目标编程模板(实值编码) 语法: 该函数除了参数drawing外,不设置可缺省参数。当某个参数需要缺省时,在调用函数时传入None即可。 比如当没有罚函数时,则在调用编程模板时将第3、4个参数设置为None即可,如: sga_real_templet(AIM_M, 'aimfuc', None, None, ..., maxormin) 输入参数: AIM_M - 目标函数的地址,由AIM_M = __import__('目标函数所在文件名')语句得到 目标函数规范定义:[f,LegV] = aimfuc(Phen,LegV) 其中Phen是种群的表现型矩阵, LegV为种群的可行性列向量,f为种群的目标函数值矩阵 AIM_F : str - 目标函数名 PUN_M - 罚函数的地址,由PUN_M = __import__('罚函数所在文件名')语句得到 罚函数规范定义: newFitnV = punishing(LegV, FitnV) 其中LegV为种群的可行性列向量, FitnV为种群个体适应度列向量 一般在罚函数中对LegV为0的个体进行适应度惩罚,返回修改后的适应度列向量newFitnV PUN_F : str - 罚函数名 FieldDR : array - 实际值种群区域描述器 [lb; (float) 指明每个变量使用的下界 ub] (float) 指明每个变量使用的上界 注:不需要考虑是否包含变量的边界值。在crtfld中已经将是否包含边界值进行了处理 本函数生成的矩阵的元素值在FieldDR的[下界, 上界)之间 problem : str - 表明是整数问题还是实数问题,'I'表示是整数问题,'R'表示是实数问题 maxormin int - 最小最大化标记,1表示目标函数最小化;-1表示目标函数最大化 MAXGEN : int - 最大遗传代数 NIND : int - 种群规模,即种群中包含多少个个体 SUBPOP : int - 子种群数量,即对一个种群划分多少个子种群 GGAP : float - 代沟,表示子代与父代染色体及性状不相同的概率 selectStyle : str - 指代所采用的低级选择算子的名称,如'rws'(轮盘赌选择算子) recombinStyle: str - 指代所采用的低级重组算子的名称,如'xovsp'(单点交叉) recopt : float - 交叉概率 pm : float - 重组概率 distribute : bool - 是否增强种群的分布性(可能会造成收敛慢) drawing : int - (可选参数),0表示不绘图,1表示绘制最终结果图。默认drawing为1 输出参数: pop_trace : array - 种群进化记录器(进化追踪器), 第0列记录着各代种群最优个体的目标函数值 第1列记录着各代种群的适应度均值 第2列记录着各代种群最优个体的适应度值 var_trace : array - 变量记录器,记录着各代种群最优个体的变量值,每一列对应一个控制变量 times : float - 进化所用时间 模板使用注意: 1.本模板调用的目标函数形如:[ObjV,LegV] = aimfuc(Phen,LegV), 其中Phen表示种群的表现型矩阵, LegV为种群的可行性列向量(详见Geatpy数据结构) 2.本模板调用的罚函数形如: newFitnV = punishing(LegV, FitnV), 其中FitnV为用其他算法求得的适应度 若不符合上述规范,则请修改算法模板或自定义新算法模板 3.关于'maxormin': geatpy的内核函数全是遵循“最小化目标”的约定的,即目标函数值越小越好。 当需要优化最大化的目标时,需要设置'maxormin'为-1。 本算法模板是正确使用'maxormin'的典型范例,其具体用法如下: 当调用的函数传入参数包含与“目标函数值矩阵”有关的参数(如ObjV,ObjVSel,NDSetObjV等)时, 查看该函数的参考资料(可用'help'命令查看,也可到官网上查看相应的教程), 里面若要求传入前对参数乘上'maxormin',则需要乘上。 里面若要求对返回参数乘上'maxormin'进行还原, 则调用函数返回得到的相应参数需要乘上'maxormin'进行还原,否则其正负号就会被改变。 CHANGE: 1._init为参数初始值(可选):若init为None,则所有Chrom均随机生成,否则则将init添加至初始Chrom 2.修改了重插入部分 3.允许通过read_from_file保存种群 """ """==========================初始化配置===========================""" # 获取目标函数和罚函数 aimfuc = getattr(AIM_M, AIM_F) # 获得目标函数 if PUN_F is not None: punishing = getattr(PUN_M, PUN_F) # 获得罚函数 NVAR = FieldDR.shape[1] # 得到控制变量的个数 # 定义进化记录器,初始值为nan pop_trace = (np.zeros((MAXGEN ,2)) * np.nan) # 定义变量记录器,记录控制变量值,初始值为nan var_trace = (np.zeros((MAXGEN ,NVAR)) * np.nan) ax = None # 存储上一帧图形 repnum = 0 # 初始化重复个体数为0 """=========================开始遗传算法进化=======================""" if problem == 'R': if _read_from_file is True: Chrom = np.loadtxt('chrom') elif _init is None: Chrom = ga.crtrp(NIND, FieldDR) # 生成初始种群 else: Chrom = np.vstack([ga.crtrp(NIND-1, FieldDR),_init]) elif problem == 'I': if _read_from_file is True: Chrom = np.loadtxt('chrom') elif _init is None: Chrom = ga.crtip(NIND, FieldDR) # 生成初始种群 else: Chrom = np.vstack([ga.crtip(NIND-1, FieldDR),_init]) LegV = np.ones((NIND, 1)) # 初始化种群的可行性列向量 [ObjV, LegV] = aimfuc(Chrom, LegV) # 求种群的目标函数值 gen = 0 badCounter = 0 # 用于记录在“遗忘策略下”被忽略的代数 # 开始进化!! start_time = time.time() # 开始计时 while gen < MAXGEN: if badCounter >= 10 * MAXGEN: # 若多花了10倍的迭代次数仍没有可行解出现,则跳出 break # CHANGE FitnV = ga.powing(maxormin * ObjV, LegV, None, SUBPOP) # CHANGE if PUN_F is not None: FitnV = punishing(LegV, FitnV) # 调用罚函数 # 记录进化过程 bestIdx = np.argmax(FitnV) # 获取最优个体的下标 if LegV[bestIdx] != 0: feasible = np.where(LegV != 0)[0] # 排除非可行解 pop_trace[gen,0] = np.sum(ObjV[feasible]) / ObjV[feasible].shape[0] # 记录种群个体平均目标函数值 pop_trace[gen,1] = ObjV[bestIdx] # 记录当代目标函数的最优值 var_trace[gen,:] = Chrom[bestIdx, :] # 记录当代最优的控制变量值 repnum = len(np.where(ObjV[np.argmax(FitnV)] == ObjV)[0]) # 计算最优个体重复数 # 绘制动态图 if drawing == 2: ax = ga.sgaplot(pop_trace[:,[1]],'种群最优个体目标函数值', False, ax, gen) badCounter = 0 # badCounter计数器清零 if WRITE_TO_FILE is True: np.savetxt('chrom',Chrom) with open('temp.txt', 'a') as ftemp: ftemp.write('>>> Generation '+ str(gen) +'\n') ftemp.write('Best Value = ' + str(ObjV[bestIdx])+'\n') ftemp.write('Best Chrom = ') ftemp.writelines(np.array2string(Chrom[bestIdx, :], separator=',')) ftemp.write('\n') ftemp.close() else: gen -= 1 # 忽略这一代(遗忘策略) badCounter += 1 if distribute == True: # 若要增强种群的分布性(可能会造成收敛慢) idx = np.argsort(ObjV[:, 0], 0) dis = np.diff(ObjV[idx,0]) / (np.max(ObjV[idx,0]) - np.min(ObjV[idx,0]) + 1)# 差分计算距离的修正偏移量 dis = np.hstack([dis, dis[-1]]) dis = dis + np.min(dis) # 修正偏移量+最小量=修正绝对量 FitnV[idx, 0] *= np.exp(dis) # 根据相邻距离修改适应度,突出相邻距离大的个体,以增加种群的多样性 # 进行遗传算子 SelCh=ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP) # 选择 SelCh=ga.recombin(recombinStyle, SelCh, recopt, SUBPOP) # 对所选个体进行重组 if problem == 'R': SelCh=ga.mutbga(SelCh,FieldDR, pm) # 变异 if repnum > Chrom.shape[0] * 0.01: # 当最优个体重复率高达1%时,进行一次高斯变异 SelCh=ga.mutgau(SelCh, FieldDR, pm) # 高斯变异 elif problem == 'I': SelCh=ga.mutint(SelCh, FieldDR, pm) LegVSel = np.ones((SelCh.shape[0], 1)) # 初始化育种种群的可行性列向量 # CHANGE currCh = np.vstack([Chrom,SelCh]) currLegV = np.vstack([LegV,LegVSel]) [resObjV, resLegV] = aimfuc(currCh, currLegV) # 求种群的目标函数值 [ObjV,ObjVSel] = np.split(resObjV,[len(ObjV)]) resFitnV = ga.ranking(maxormin * resObjV, resLegV, None, SUBPOP) # 计算育种种群的适应度 [FitnV,FitnVSel] = np.split(resFitnV,[len(FitnV)]) if PUN_F is not None: FitnVSel = punishing(LegVSel, FitnVSel) # 调用罚函数 # 重插入 [Chrom, ObjV, LegV] = ga.reins(Chrom, SelCh, SUBPOP, 1, 1, FitnV, FitnVSel, ObjV, ObjVSel, LegV, LegVSel) gen += 1 if DEBUG is True: for i in range(len(ObjV)): print('aimfunc =', ObjV[i], end = ' ') print('Chrom =', Chrom[i]) end_time = time.time() # 结束计时 times = end_time - start_time # 后处理进化记录器 delIdx = np.where(np.isnan(pop_trace))[0] pop_trace = np.delete(pop_trace, delIdx, 0) var_trace = np.delete(var_trace, delIdx, 0) if pop_trace.shape[0] == 0: raise RuntimeError('error: no feasible solution. (有效进化代数为0,没找到可行解。)') # 绘图 if drawing != 0: ga.trcplot(pop_trace, [['种群个体平均目标函数值', '种群最优个体目标函数值']]) # 输出结果 if maxormin == 1: best_gen = np.argmin(pop_trace[MAXGEN - 1, 1]) # 记录最优种群是在哪一代 best_ObjV = np.min(pop_trace[MAXGEN - 1, 1]) elif maxormin == -1: best_gen = MAXGEN - 1 # 记录最优种群是在哪一代 best_ObjV = np.max(pop_trace[MAXGEN - 1, 1]) print('最优的目标函数值为:%s'%(best_ObjV)) print('最优的控制变量值为:') for i in range(NVAR): print(var_trace[MAXGEN - 1, i], end = ',') print('有效进化代数:%s'%(pop_trace.shape[0])) print('最优的一代是第 %s 代'%(best_gen+1)) print('时间已过 %s 秒'%(times)) # 返回进化记录器、变量记录器以及执行时间 ftemp.close() return [pop_trace, var_trace, times] def battle(_para): # para_A,para_B均为单行向量 返回值为十局中得分(List) args = '' for it in _para[0]: args += ' ' + str(it) for it in _para[1]: args += ' ' + str(it) # if DEBUG is True: # print("[DEBUG] Judge arguments =",args) curr_input = args.encode('utf-8') curr_process = subprocess.run('190522_Tank2S_Judge.exe', stdout=subprocess.PIPE, input=curr_input) curr_output = curr_process.stdout.decode('utf-8') # bytes to string if DEBUG is True: print("[DEBUG] Judge output = ",curr_output) curr_answ = curr_output.split() res = [float(curr_answ[0]), float(curr_answ[1])] return res def aimfunc(Phen,LegV): # 以十局平均得分作为目标函数值 global GENERATION,TOTAL row_count = Phen.shape[0] print('Generation',GENERATION) _pool = Pool() _battle_list = [] for i in range(row_count-1): # 单循环赛 for j in range(i+1,row_count): _battle_list.append([Phen[i,:],Phen[j,:]]) # if(DEBUG): # print('BattleList:', _battle_list) _battle_res = list(tqdm(_pool.imap(battle,_battle_list),total = len(_battle_list),unit = 'battle')) counter = 0 f = np.zeros((row_count,1)) for i in range(row_count-1): # 单循环赛 for j in range(i+1,row_count): f[i] += _battle_res[counter][0] f[j] += _battle_res[counter][1] counter+=1 f /= row_count GENERATION += 1 print('BattleRes:',f.T) return [f,LegV] if __name__ == '__main__': # For Windows Platform freeze_support() # 获取函数接口地址 AIM_M = __import__('train') # 调试变量 parameter_count = 6 # 需要训练的参数数量 init = [2,1.2,0.3,2.0,5,0.5] # 参数初始值 upper_bound = np.array([5,2.4,0.6,5,10,1.2]) lower_bound = np.array([0.5,0.6,0.1,1,2.5,0.2]) # 遗传算法参数 MAXGEN = 50 # 最大遗传代数 NIND = 10 # 种群规模 (必须是子种群数量的N倍) SUBPOP = 1 # 子种群数量 GGAP = 0.5 # 代沟,本模板中该参数为无用参数 selectStyle = 'etour' # 低级选择算子 recombinStyle = 'xovsp' # 低级重组算子 recopt = 0.9 # 交叉概率 pm = 0.1 # 重组概率 distribute = False # 是否增强种群的分布性(可能会造成收敛慢) # 初始化变量 ranges = np.vstack([lower_bound*np.ones((1,parameter_count)), upper_bound*np.ones((1,parameter_count))]) # CHANGE borders = np.vstack([np.zeros((1,parameter_count)), np.zeros((1,parameter_count))]) # bu包含边界 precisions = [3] * parameter_count # 在二进制/格雷码编码中代表自变量的编码精度,当控制变量是连续型时,根据crtfld参考资料,该变量只表示边界精度,故设置为一定的正数即可 # 生成区域描述器 FieldDR = ga.crtfld(ranges, borders, precisions) if DEBUG is True: print('FieldDR :', FieldDR) # 多种群竞争进化 实值编码 最大化目标 [pop_trace, var_trace, times] = sga_real_templet(AIM_M, 'aimfunc', None, None, FieldDR, 'R', -1, MAXGEN, NIND, SUBPOP, GGAP, selectStyle, recombinStyle, recopt, pm, distribute, 1, _init=init) ```
{ "source": "12HuYang/GridFree", "score": 3 }
#### File: 12HuYang/GridFree/axistest.py ```python from tkinter import * loccanvas=None minx=0 maxx=0 totalbins=0 linelocs=[0,0] bins=None # def cal_xvalue(x): # print(maxx,minx,max(bins),min(bins)) # binwidth=int(maxx-minx)/(max(bins)-min(bins)) # print(x,minx,binwidth) # xloc=int((x-minx)/binwidth) # print(xloc) # #value=min(bins)+xloc*binwidth # return xloc # # # # def item_enter(event): # global loccanvas # loccanvas.config(cursor='hand2') # loccanvas._restorItem=None # loccanvas._restoreOpts=None # itemType=loccanvas.type(CURRENT) # #print(itemType) # # pass # # def item_leave(event): # global loccanvas # pass # # def item_start_drag(event): # global loccanvas,linelocs # itemType=loccanvas.type(CURRENT) # print(itemType) # if itemType=='line': # fill=loccanvas.itemconfigure(CURRENT,'fill')[4] # if fill=='red': # loccanvas._lastX=event.x # #loccanvas._lastY=event.y # linelocs[0]=event.x # else: # if fill=='orange': # loccanvas._lastX=event.x # #loccanvas._lastY=event.y # linelocs[1]=event.x # else: # loccanvas._lastX=None # else: # loccanvas._lastX=None # pass # # def item_drag(event): # global loccanvas,linelocs # x=event.x # y=event.y # if x<minx: # x=minx # if x>maxx: # x=maxx # try: # fill=loccanvas.itemconfigure(CURRENT,'fill')[4] # except: # return # #itemType=loccanvas.type(CURRENT) # try: # test=0-loccanvas._lastX # except: # return # loccanvas.move(CURRENT,x-loccanvas._lastX,0) # loccanvas._lastX=x # if fill=='red': # linelocs[0]=x # if fill=='orange': # linelocs[1]=x # #print(line_a) # #print(minline) # #print(maxline) # print(cal_xvalue(linelocs[0]),cal_xvalue(linelocs[1])) # # pass def drawdots(ulx,uly,rlx,rly,x_bins,y_bins,datalist,canvas,inputfigdotlist): global loccanvas,minx,maxx,totalbins,bins,linelocs loccanvas=canvas minx=ulx maxx=rlx canvas.create_text(int(ulx+(rlx-ulx)/2),rly-20,text='By size',font=('Times',14),anchor=N) canvas.create_line(ulx,uly,rlx,uly,width=2) canvas.create_line(ulx,uly,ulx,rly,width=2) canvas.create_line(ulx,rly,rlx,rly,width=2) canvas.create_line(rlx,uly,rlx,rly,width=2) vlinelocs=[ulx,rlx] hlinelocs=[rly,uly] canvas.create_text(ulx-25-10,int(uly/2)+25,text='\n'.join('Shape'),font=('Times',12),anchor=E) canvas.create_text(int(rlx/2)+50,uly+30,text='Pixels',font=('Times',12),anchor=N) xbinwidth=(rlx-ulx-50)/(len(x_bins)-1) for i in range(len(x_bins)): x=ulx+(i*xbinwidth) canvas.create_line(x+25,uly+5,x+25,uly,width=2) canvas.create_text(x+25,uly+6,text='%d'%(x_bins[i]),font=('Times',12),anchor=N) ybinwidth=(uly-rly-50)/(len(y_bins)-1) for i in range(len(y_bins)): y=uly-(i*ybinwidth) canvas.create_line(ulx-5,y-25,ulx,y-25,width=2) canvas.create_text(ulx-6,y-25,text='%d'%(y_bins[i]),font=('Times',12),anchor=E) for (xs,ys) in datalist: a=canvas.create_oval(xs-1,ys-1,xs+1,ys+1,width=1,outline='black',fill='SkyBlue') inputfigdotlist.update({(xs,ys):a}) canvas.create_line(ulx+12,rly,ulx+12,uly,arrow=LAST,fill='red',width=2,dash=(5,1)) canvas.create_line(rlx-12,rly,rlx-12,uly,arrow=LAST,fill='red',width=2) canvas.create_line(ulx,rly+12,rlx,rly+12,arrow=FIRST,fill='blue',width=2) canvas.create_line(ulx,uly-12,rlx,uly-12,arrow=FIRST,fill='blue',width=2,dash=(5,1)) def drawPlot(ulx,uly,rlx,rly,hist,bin_edges,canvas): global loccanvas,minx,maxx,totalbins,bins,linelocs loccanvas=canvas # The window is an object of type tk #root = Tk() #root.title('Simple Plot') # A canvas object is something you can draw on # we put it into the root window #canvas = Canvas(root, width=400, height=300, bg = 'white') # figures out how the canvas sits in the window #canvas.pack() # draw x and y axes minx=ulx maxx=rlx linelocs=[minx,maxx] totalbins=len(bin_edges) bins=bin_edges canvas.create_line(ulx,uly,rlx,uly, width=2) canvas.create_line(ulx,uly,ulx,rly, width=2) # markings on x axis binwidth=(rlx-ulx)/(len(hist)) for i in range(len(bin_edges)): x = ulx + (i * binwidth) canvas.create_line(x,uly+5,x,uly, width=2) canvas.create_text(x,uly+5, text='%d'% (bin_edges[i]), font=('Times',12),anchor=N) # markings on y axis maxhist=max(hist) histwidth=(uly-rly)/maxhist histbreak=int(maxhist/10) for i in range(maxhist): y = uly - (i * histwidth) if i%histbreak==0: canvas.create_line(ulx-5,y,ulx,y, width=2) canvas.create_text(ulx-6,y, text='%d'% (i), font=('Times',12),anchor=E) if i==maxhist-1 and i%histbreak!=0: canvas.create_line(ulx-5,y,ulx,y, width=2) canvas.create_text(ulx-6,y, text='%d'% (i), font=('Times',12),anchor=E) canvas.create_line(ulx,rly,ulx,uly,arrow=LAST,fill='red',width=2) #minline=canvas.create_text(ulx,rly-5,text='%d'% 0,fill='red',font=('Times',12)) canvas.create_line(rlx,rly,rlx,uly,arrow=LAST,fill='orange',width=2) #maxline=canvas.create_text(rlx,rly-5,text='%d'% max(bin_edges),fill='red',font=('Times',12)) #canvas.bind('<Any-Enter>',item_enter) #canvas.bind('<Any-Leave>',item_leave) #canvas.bind('<Button-1>',item_start_drag) #canvas.bind('<B1-Motion>',item_drag) # rescale the input data so it matches the axes ## scaled = [] ## for (x,y) in dataList: ## scaled.append((100 + 3*x, 250 - (4*y)/5)) # draw the wiggly line #canvas.create_line(dataList, fill='black') # and some dots at the corner points #for (xs,ys) in dataList: # canvas.create_oval(xs-6,ys-6,xs+6,ys+6, width=1, # outline='black', fill='SkyBlue2') # display window and wait for it to close #root.mainloop() def main(): # detect if this is being run by itself or because it was imported if __name__ != "__main__": return # some meaningless x-y data points to plot # the input data is in the range x = 0 to 100, and y = 0 to 250. originalData = [(12, 56), (20, 94), (33, 98), (45, 120), (61, 180), (75, 160), (98, 223)] # rescale the data to lie in the graph range x = 100 to 400, y = 250 to 50 # remember y is zero at the top of the window. scaledDataList = [] for (x,y) in originalData: scaledDataList.append((100 + 3*x, 250 - (4*y)/5)) drawPlot(scaledDataList) if __name__ == '__main__' : main() ``` #### File: 12HuYang/GridFree/batchprocess.py ```python import tkinter.filedialog as filedialog from tkinter import messagebox from PIL import Image,ImageDraw,ImageFont from PIL import ImageTk,ImageGrab import cv2 from skimage import filters import matplotlib.pyplot as pyplt import numpy as np from sklearn.cluster import KMeans import tkintercorestat import tkintercore import cal_kernelsize import os import csv import scipy.linalg as la import multiprocessing import time #from multiprocessing import Process batch_colorbandtable=np.array([[255,0,0],[255,127,0],[255,255,0],[127,255,0],[0,255,255],[0,127,255],[0,0,255],[127,0,255],[75,0,130],[255,0,255]],'uint8') class batch_img(): def __init__(self,size,bands): self.size=size self.bands=bands class batch_ser_func(): def __init__(self,filename): self.file=filename self.folder=FOLDER self.exportpath=exportpath self.batch_Multiimage={} self.batch_Multigray={} self.batch_Multitype={} self.batch_Multiimagebands={} self.batch_Multigraybands={} self.batch_displaybandarray={} self.batch_originbandarray={} self.batch_originpcabands={} self.batch_colordicesband={} self.batch_results={} self.kernersizes={} self.reseglabels=None self.displayfea_l=0 self.displayfea_w=0 self.RGB_vector=None self.colorindex_vector=None self.displaypclagels=None def Open_batchimage(self): try: Filersc=cv2.imread(self.folder+'/'+self.file,flags=cv2.IMREAD_ANYCOLOR) height,width,channel=np.shape(Filersc) Filesize=(height,width) print('filesize:',height,width) RGBfile=cv2.cvtColor(Filersc,cv2.COLOR_BGR2RGB) Grayfile=cv2.cvtColor(Filersc,cv2.COLOR_BGR2Lab) Grayfile=cv2.cvtColor(Grayfile,cv2.COLOR_BGR2GRAY) Grayimg=batch_img(Filesize,Grayfile) RGBbands=np.zeros((channel,height,width)) for j in range(channel): band=RGBfile[:,:,j] band=np.where(band==0,1e-6,band) RGBbands[j,:,:]=band RGBimg=batch_img(Filesize,RGBbands) tempdict={self.file:RGBimg} self.batch_Multiimagebands.update(tempdict) tempdict={self.file:Grayfile} self.batch_Multigray.update(tempdict) tempdict={self.file:0} self.batch_Multitype.update(tempdict) tempdict={self.file:Grayimg} self.batch_Multigraybands.update(tempdict) except: # messagebox.showerror('Invalid Image Format','Cannot open '+filename) return False return True def fillbands(self,originbands,displaybands,vector,vectorindex,name,band): tempdict={name:band} if name not in originbands: originbands.update(tempdict) image=cv2.resize(band,(self.displayfea_w,self.displayfea_l),interpolation=cv2.INTER_LINEAR) displaydict={name:image} displaybands.update(displaydict) fea_bands=image.reshape((self.displayfea_l*self.displayfea_w),1)[:,0] vector[:,vectorindex]=vector[:,vectorindex]+fea_bands return def singleband(self): try: bands=self.batch_Multiimagebands[self.file].bands except: return channel,fea_l,fea_w=bands.shape print('bandsize',fea_l,fea_w) if fea_l*fea_w>2000*2000: ratio=batch_findratio([fea_l,fea_w],[2000,2000]) else: ratio=1 print('ratio',ratio) originbands={} displays={} displaybands=cv2.resize(bands[0,:,:],(int(fea_w/ratio),int(fea_l/ratio)),interpolation=cv2.INTER_LINEAR) displayfea_l,displayfea_w=displaybands.shape self.RGB_vector=np.zeros((displayfea_l*displayfea_w,3)) self.colorindex_vector=np.zeros((displayfea_l*displayfea_w,12)) self.displayfea_l,self.displayfea_w=displaybands.shape self.RGB_vectorr=np.zeros((displayfea_l*displayfea_w,3)) self.colorindex_vector=np.zeros((displayfea_l*displayfea_w,12)) Red=bands[0,:,:] Green=bands[1,:,:] Blue=bands[2,:,:] self.fillbands(originbands,displays,self.RGB_vector,0,'Band1',Red) self.fillbands(originbands,displays,self.RGB_vector,1,'Band2',Green) self.fillbands(originbands,displays,self.RGB_vector,2,'Band3',Blue) #secondsmallest_R=np.partition(Red,1)[1][0] #secondsmallest_G=np.partition(Green,1)[1][0] #secondsmallest_B=np.partition(Blue,1)[1][0] #Red=Red+secondsmallest_R #Green=Green+secondsmallest_G #Blue=Blue+secondsmallest_B PAT_R=Red/(Red+Green) PAT_G=Green/(Green+Blue) PAT_B=Blue/(Blue+Red) ROO_R=Red/Green ROO_G=Green/Blue ROO_B=Blue/Red DIF_R=2*Red-Green-Blue DIF_G=2*Green-Blue-Red DIF_B=2*Blue-Red-Green GLD_R=Red/(np.multiply(np.power(Blue,0.618),np.power(Green,0.382))) GLD_G=Green/(np.multiply(np.power(Blue,0.618),np.power(Red,0.382))) GLD_B=Blue/(np.multiply(np.power(Green,0.618),np.power(Red,0.382))) self.fillbands(originbands,displays,self.colorindex_vector,0,'PAT_R',PAT_R) self.fillbands(originbands,displays,self.colorindex_vector,1,'PAT_G',PAT_G) self.fillbands(originbands,displays,self.colorindex_vector,2,'PAT_B',PAT_B) self.fillbands(originbands,displays,self.colorindex_vector,3,'ROO_R',ROO_R) self.fillbands(originbands,displays,self.colorindex_vector,4,'ROO_G',ROO_G) self.fillbands(originbands,displays,self.colorindex_vector,5,'ROO_B',ROO_B) self.fillbands(originbands,displays,self.colorindex_vector,6,'DIF_R',DIF_R) self.fillbands(originbands,displays,self.colorindex_vector,7,'DIF_G',DIF_G) self.fillbands(originbands,displays,self.colorindex_vector,8,'DIF_B',DIF_B) self.fillbands(originbands,displays,self.colorindex_vector,9,'GLD_R',GLD_R) self.fillbands(originbands,displays,self.colorindex_vector,10,'GLD_G',GLD_G) self.fillbands(originbands,displays,self.colorindex_vector,11,'GLD_B',GLD_B) NDI=128*((Green-Red)/(Green+Red)+1) VEG=Green/(np.power(Red,0.667)*np.power(Blue,(1-0.667))) Greenness=Green/(Green+Red+Blue) CIVE=0.44*Red+0.811*Green+0.385*Blue+18.7845 MExG=1.262*Green-0.844*Red-0.311*Blue NDRB=(Red-Blue)/(Red+Blue) NGRDI=(Green-Red)/(Green+Red) colorindex_vector=np.zeros((displayfea_l*displayfea_w,7)) self.fillbands(originbands,displays,colorindex_vector,0,'NDI',NDI) self.fillbands(originbands,displays,colorindex_vector,1,'VEG',VEG) self.fillbands(originbands,displays,colorindex_vector,2,'Greenness',Greenness) self.fillbands(originbands,displays,colorindex_vector,3,'CIVE',CIVE) self.fillbands(originbands,displays,colorindex_vector,4,'MExG',MExG) self.fillbands(originbands,displays,colorindex_vector,5,'NDRB',NDRB) self.fillbands(originbands,displays,colorindex_vector,6,'NGRDI',NGRDI) rgb_M=np.mean(self.RGB_vector.T,axis=1) colorindex_M=np.mean(self.colorindex_vector.T,axis=1) print('rgb_M',rgb_M,'colorindex_M',colorindex_M) rgb_C=self.RGB_vector-rgb_M colorindex_C=self.colorindex_vector-colorindex_M rgb_V=np.corrcoef(rgb_C.T) color_V=np.corrcoef(colorindex_C.T) rgb_std=rgb_C/np.std(self.RGB_vector.T,axis=1) color_std=colorindex_C/np.std(self.colorindex_vector.T,axis=1) rgb_eigval,rgb_eigvec=np.linalg.eig(rgb_V) color_eigval,color_eigvec=np.linalg.eig(color_V) print('rgb_eigvec',rgb_eigvec) print('color_eigvec',color_eigvec) featurechannel=14 pcabands=np.zeros((self.colorindex_vector.shape[0],featurechannel)) for i in range(3): pcn=rgb_eigvec[:,i] pcnbands=np.dot(rgb_std,pcn) pcvar=np.var(pcnbands) print('rgb pc',i+1,'var=',pcvar) pcabands[:,i]=pcabands[:,i]+pcnbands pcabands[:,1]=np.copy(pcabands[:,2]) pcabands[:,2]=pcabands[:,2]*0 for i in range(2,featurechannel): pcn=color_eigvec[:,i-2] pcnbands=np.dot(color_std,pcn) pcvar=np.var(pcnbands) print('color index pc',i-1,'var=',pcvar) pcabands[:,i]=pcabands[:,i]+pcnbands displayfea_vector=np.concatenate((self.RGB_vector,self.colorindex_vector),axis=1) self.batch_originpcabands.update({self.file:displayfea_vector}) pcabandsdisplay=pcabands.reshape(displayfea_l,displayfea_w,featurechannel) tempdictdisplay={'LabOstu':pcabandsdisplay} self.batch_displaybandarray.update({self.file:tempdictdisplay}) self.batch_originbandarray.update({self.file:originbands}) def singleband_oldversion(self): try: bands=self.batch_Multigraybands[self.file].bands except: return bandsize=self.batch_Multigraybands[self.file].size print('bandsize',bandsize) try: channel,height,width=bands.shape except: channel=0 if channel>1: bands=bands[0,:,:] ostu=filters.threshold_otsu(bands) bands=bands.astype('float32') bands=bands/ostu if bandsize[0]*bandsize[1]>2000*2000: ratio=batch_findratio([bandsize[0],bandsize[1]],[2000,2000]) else: ratio=1 print('ratio',ratio) originbands={} displays={} fea_l,fea_w=bands.shape # fea_vector=np.zeros((fea_l*fea_w,10)) # pyplt.imsave('batch_bands.png',bands) displaybands=cv2.resize(bands,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) # pyplt.imsave('batch_displaybands.png',displaybands) displayfea_l,displayfea_w=displaybands.shape self.displayfea_l,self.displayfea_w=displaybands.shape fea_vector=np.zeros((displayfea_l*displayfea_w,3)) displayfea_vector=np.zeros((displayfea_l*displayfea_w,7)) colorfea_vector=np.zeros((displayfea_l*displayfea_w,7)) if 'LabOstu' not in originbands: originbands.update({'LabOstu':bands}) fea_bands=bands.reshape(fea_l*fea_w,1)[:,0] displayfea_bands=displaybands.reshape((displayfea_l*displayfea_w),1)[:,0] # fea_vector[:,9]=fea_vector[:,0]+fea_bands displayfea_vector[:,6]=displayfea_vector[:,6]+displayfea_bands minv=displayfea_bands.min() maxv=displayfea_bands.max() fearange=maxv-minv colorfeabands=displayfea_bands-minv colorfeabands=colorfeabands/fearange*255 colorfea_vector[:,6]=colorfea_vector[:,6]+colorfeabands displays.update({'LabOstu':displaybands}) bands=self.batch_Multiimagebands[self.file].bands NDI=128*((bands[1,:,:]-bands[0,:,:])/(bands[1,:,:]+bands[0,:,:])+1) tempdict={'NDI':NDI} if 'NDI' not in originbands: originbands.update(tempdict) displaybands=cv2.resize(NDI,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) fea_bands=NDI.reshape(fea_l*fea_w,1)[:,0] # originfea_vector[:,1]=originfea_vector[:,1]+fea_bands displayfea_bands=displaybands.reshape((displayfea_l*displayfea_w),1)[:,0] # fea_vector[:,1]=fea_vector[:,1]+fea_bands displayfea_vector[:,1]=displayfea_vector[:,1]+displayfea_bands minv=displayfea_bands.min() maxv=displayfea_bands.max() fearange=maxv-minv colorfeabands=displayfea_bands-minv colorfeabands=colorfeabands/fearange*255 colorfea_vector[:,6]=colorfea_vector[:,6]+colorfeabands displaydict={'NDI':displaybands} displays.update(displaydict) Red=bands[0,:,:] Green=bands[1,:,:] Blue=bands[2,:,:] tempdict={'Band1':Red} if 'Band1' not in originbands: originbands.update(tempdict) image=cv2.resize(Red,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) displaydict={'Band1':image} displays.update(displaydict) fea_bands=Red.reshape(fea_l*fea_w,1)[:,0] # originfea_vector[:,2]=originfea_vector[:,2]+fea_bands displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] fea_vector[:,0]=fea_vector[:,0]+displayfea_bands # displayfea_vector[:,2]=displayfea_vector[:,2]+displayfea_bands tempdict={'Band2':Green} if 'Band2' not in originbands: originbands.update(tempdict) image=cv2.resize(Green,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) displaydict={'Band2':image} displays.update(displaydict) fea_bands=Green.reshape(fea_l*fea_w,1)[:,0] # originfea_vector[:,3]=originfea_vector[:,3]+fea_bands displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] fea_vector[:,1]=fea_vector[:,1]+displayfea_bands # displayfea_vector[:,3]=displayfea_vector[:,3]+displayfea_bands tempdict={'Band3':Blue} if 'Band3' not in originbands: originbands.update(tempdict) # originfea_vector[:,4]=originfea_vector[:,4]+Blue image=cv2.resize(Blue,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) displaydict={'Band3':image} displays.update(displaydict) fea_bands=Blue.reshape(fea_l*fea_w,1)[:,0] displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] fea_vector[:,2]=fea_vector[:,2]+displayfea_bands # displayfea_vector[:,4]=displayfea_vector[:,4]+displayfea_bands Greenness = bands[1, :, :] / (bands[0, :, :] + bands[1, :, :] + bands[2, :, :]) tempdict = {'Greenness': Greenness} if 'Greenness' not in originbands: originbands.update(tempdict) # originfea_vector[:,5]=originfea_vector[:,5]+Greenness image=cv2.resize(Greenness,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) #image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) displaydict={'Greenness':image} #displaybandarray.update(worktempdict) displays.update(displaydict) fea_bands=Greenness.reshape(fea_l*fea_w,1)[:,0] displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] # fea_vector[:,5]=fea_vector[:,5]+fea_bands minv=displayfea_bands.min() maxv=displayfea_bands.max() fearange=maxv-minv colorfeabands=displayfea_bands-minv colorfeabands=colorfeabands/fearange*255 colorfea_vector[:,2]=colorfea_vector[:,2]+colorfeabands displayfea_vector[:,2]=displayfea_vector[:,2]+displayfea_bands VEG=bands[1,:,:]/(np.power(bands[0,:,:],0.667)*np.power(bands[2,:,:],(1-0.667))) tempdict={'VEG':VEG} if 'VEG' not in originbands: originbands.update(tempdict) # originfea_vector[:,6]=originfea_vector[:,6]+VEG image=cv2.resize(VEG,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) kernel=np.ones((4,4),np.float32)/16 #displaybandarray.update({'LabOstu':}) #image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) worktempdict={'VEG':cv2.filter2D(image,-1,kernel)} displays.update(worktempdict) fea_bands=VEG.reshape(fea_l*fea_w,1)[:,0] displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] # fea_vector[:,6]=fea_vector[:,6]+fea_bands minv=displayfea_bands.min() maxv=displayfea_bands.max() fearange=maxv-minv colorfeabands=displayfea_bands-minv colorfeabands=colorfeabands/fearange*255 colorfea_vector[:,3]=colorfea_vector[:,3]+colorfeabands displayfea_vector[:,3]=displayfea_vector[:,3]+displayfea_bands CIVE=0.441*bands[0,:,:]-0.811*bands[1,:,:]+0.385*bands[2,:,:]+18.78745 tempdict={'CIVE':CIVE} if 'CIVE' not in originbands: originbands.update(tempdict) # originfea_vector[:,7]=originfea_vector[:,7]+CIVE image=cv2.resize(CIVE,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) #image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) worktempdict={'CIVE':image} displays.update(worktempdict) fea_bands=CIVE.reshape(fea_l*fea_w,1)[:,0] displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] # fea_vector[:,7]=fea_vector[:,7]+fea_bands displayfea_vector[:,4]=displayfea_vector[:,4]+displayfea_bands minv=displayfea_bands.min() maxv=displayfea_bands.max() fearange=maxv-minv colorfeabands=displayfea_bands-minv colorfeabands=colorfeabands/fearange*255 colorfea_vector[:,4]=colorfea_vector[:,4]+colorfeabands MExG=1.262*bands[1,:,:]-0.884*bands[0,:,:]-0.311*bands[2,:,:] tempdict={'MExG':MExG} if 'MExG' not in originbands: originbands.update(tempdict) # originfea_vector[:,8]=originfea_vector[:,8]+MExG image=cv2.resize(MExG,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) #image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) worktempdict={'MExG':image} displays.update(worktempdict) fea_bands=MExG.reshape(fea_l*fea_w,1)[:,0] displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] # fea_vector[:,8]=fea_vector[:,8]+fea_bands displayfea_vector[:,5]=displayfea_vector[:,5]+displayfea_bands minv=displayfea_bands.min() maxv=displayfea_bands.max() fearange=maxv-minv colorfeabands=displayfea_bands-minv colorfeabands=colorfeabands/fearange*255 colorfea_vector[:,5]=colorfea_vector[:,5]+colorfeabands NDVI=(bands[0,:,:]-bands[2,:,:])/(bands[0,:,:]+bands[2,:,:]) tempdict={'NDVI':NDVI} if 'NDVI' not in originbands: originbands.update(tempdict) # originfea_vector[:,0]=originfea_vector[:,9]+NDVI image=cv2.resize(NDVI,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) #image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) worktempdict={'NDVI':image} displays.update(worktempdict) fea_bands=NDVI.reshape(fea_l*fea_w,1)[:,0] displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] # fea_vector[:,0]=fea_vector[:,9]+fea_bands displayfea_vector[:,0]=displayfea_vector[:,0]+displayfea_bands minv=displayfea_bands.min() maxv=displayfea_bands.max() fearange=maxv-minv colorfeabands=displayfea_bands-minv colorfeabands=colorfeabands/fearange*255 colorfea_vector[:,0]=colorfea_vector[:,0]+colorfeabands NGRDI=(bands[1,:,:]-bands[0,:,:])/(bands[1,:,:]+bands[0,:,:]) tempdict={'NGRDI':NGRDI} if 'NGRDI' not in originbands: originbands.update(tempdict) image=cv2.resize(NGRDI,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) #image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) worktempdict={'NGRDI':image} displays.update(worktempdict) if channel>=1: nirbands=self.batch_Multigraybands[self.file].bands NDVI=(nirbands[0,:,:]-bands[1,:,:])/(nirbands[0,:,:]+bands[1,:,:]) tempdict={'NDVI':NDVI} #if 'NDVI' not in originbandarray: originbands.update(tempdict) image=cv2.resize(NDVI,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) #image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) worktempdict={'NDVI':image} displays.update(worktempdict) '''PCA part''' displayfea_vector=np.concatenate((fea_vector,displayfea_vector),axis=1) M=np.mean(displayfea_vector.T,axis=1) OM=np.mean(fea_vector.T,axis=1) print('M',M,'M shape',M.shape, 'OM',OM,'OM Shape',OM.shape) C=displayfea_vector-M OC=fea_vector-OM #max=np.max(C.T,axis=1) #print('MAX',max) #C=C/max print('C',C,'OC',OC) #V=np.cov(C.T) V=np.corrcoef(C.T) OV=np.corrcoef(OC.T) std=np.std(displayfea_vector.T,axis=1) O_std=np.std(fea_vector.T,axis=1) print(std,O_std) std_displayfea=C/std O_stddisplayfea=OC/O_std print(std_displayfea,O_stddisplayfea) #eigvalues,eigvectors=np.linalg.eig(V) #n,m=displayfea_vector.shape #C=np.dot(displayfea_vector.T,displayfea_vector)/(n-1) V_var=np.cov(std_displayfea.T) print('COV',V_var) print('COR',V) eigvalues=la.eigvals(V_var) #eigvalues=np.linalg.eigvals(C) print('eigvalue',eigvalues) idx=np.argsort(eigvalues) print('idx',idx) eigvalues,eigvectors=np.linalg.eig(V) print('eigvalue',eigvalues) print('eigvectors',eigvectors) eigvalueperc={} featurechannel=10 # for i in range(len(eigvalues)): # print('percentage',i,eigvalues[i]/sum(eigvalues)) # eigvalueperc.update({i:eigvalues[i]/sum(eigvalues)}) # #if eigvalues[i]>0: # featurechannel+=1 # o_eigenvalue,o_eigenvector=np.linalg.eig(OV) pcabands=np.zeros((displayfea_vector.shape[0],featurechannel)) # o_pcabands=np.zeros((fea_vector.shape[0],featurechannel)) pcavar={} #separate PCA # for i in range(3): # pcn=o_eigenvector[:,i] # pcnbands=np.dot(O_stddisplayfea,pcn) # pcvar=np.var(pcnbands) # print('pc',i+1,' var=',pcvar) # pcabands[:,i]=pcabands[:,i]+pcnbands # for i in range(7): # pcn=eigvectors[:,i] # # opcn=o_eigenvector[:,i] # #pcnbands=np.dot(displayfea_vector,pcn) # pcnbands=np.dot(std_displayfea,pcn) # # opcnbands=np.dot(O_stddisplayfea,opcn) # pcvar=np.var(pcnbands) # print('pc',i+1,' var=',pcvar) # temppcavar={i:pcvar} # pcavar.update(temppcavar) # # pcnbands=np.dot(C,pcn) # # opcnbands=np.dot(OC,opcn) # pcabands[:,i+3]=pcabands[:,i+3]+pcnbands #combined PCa for i in range(featurechannel): pcn=eigvectors[:,i] # pcnbands=np.dot(std_displayfea,pcn) pcnbands=np.dot(C,pcn) pcvar=np.var(pcnbands) print('pc',i+1,' var=',pcvar) temppcavar={i:pcvar} pcavar.update(temppcavar) pcabands[:,i]=pcabands[:,i]+pcnbands # o_pcabands[:,i]=o_pcabands[:,i]+opcnbands # sortvar=sorted(pcavar,key=pcavar.get) # print(sortvar) # for i in range(len(sortvar)): # pcn=eigvectors[:,sortvar[i]] # pcnbands=np.dot(displayfea_vector,pcn) # pcabands[:,i]=pcabands[:,i]+pcnbands #np.savetxt('pcs.csv',pcabands,delimiter=',',fmt='%s') #np.savetxt('color-index.csv',displayfea_vector,delimiter=',',fmt='%s') #high,width=pcabands.shape #fp=open('pcs.csv',w) #fc=open('color-index.csv',w) #head=['Otsu','NDI','R','G','B','Greenness','VEG','CIVE','MExG','NDVI'] #for i in range(high): # '''No PCA''' # colorfea_vector=np.concatenate((fea_vector,colorfea_vector),axis=1) # displayfea_vector=np.concatenate((fea_vector,displayfea_vector),axis=1) # M=np.mean(colorfea_vector.T,axis=1) # print('colorfea_vector M',M) # pcabands=np.copy(colorfea_vector) # featurechannel=10 #threedplot(pcabands) # self.batch_originpcabands.update({self.file:o_pcabands}) self.batch_originpcabands.update({self.file:displayfea_vector}) pcabandsdisplay=pcabands.reshape(displayfea_l,displayfea_w,featurechannel) #originbands={'LabOstu':pcabandsdisplay} tempdictdisplay={'LabOstu':pcabandsdisplay} #displaybandarray.update({file:displays}) self.batch_displaybandarray.update({self.file:tempdictdisplay}) self.batch_originbandarray.update({self.file:originbands}) def kmeansclassify(self): if kmeans==0: messagebox.showerror('Kmeans error','Kmeans should greater than 0') return None file=self.file originpcabands=self.batch_displaybandarray[file]['LabOstu'] pcah,pcaw,pcac=originpcabands.shape tempband=np.zeros((pcah,pcaw,1)) if pcweight==0.0: tempband[:,:,0]=tempband[:,:,0]+originpcabands[:,:,pcs] else: if pcweight<0.0: rgbpc=originpcabands[:,:,0] else: rgbpc=originpcabands[:,:,1] rgbpc=(rgbpc-rgbpc.min())*255/(rgbpc.max()-rgbpc.min()) firstterm=abs(pcweight)*2*rgbpc colorpc=originpcabands[:,:,pcs] colorpc=(colorpc-colorpc.min())*255/(colorpc.max()-colorpc.min()) secondterm=(1-abs(pcweight)*2)*colorpc tempband[:,:,0]=tempband[:,:,0]+firstterm+secondterm self.displaypclagels=np.copy(tempband[:,:,0]) if kmeans==1: print('kmeans=1') displaylabels=np.mean(tempband,axis=2) pyplt.imsave(file+'_k=1.png',displaylabels) else: if kmeans>1: h,w,c=tempband.shape print('shape',tempband.shape) reshapedtif=tempband.reshape(tempband.shape[0]*tempband.shape[1],c) print('reshape',reshapedtif.shape) clf=KMeans(n_clusters=kmeans,init='k-means++',n_init=10,random_state=0) tempdisplayimg=clf.fit(reshapedtif) # print('label=0',np.any(tempdisplayimg==0)) displaylabels=tempdisplayimg.labels_.reshape((self.batch_displaybandarray[self.file]['LabOstu'].shape[0], self.batch_displaybandarray[self.file]['LabOstu'].shape[1])) clusterdict={} displaylabels=displaylabels+10 for i in range(kmeans): locs=np.where(tempdisplayimg.labels_==i) maxval=reshapedtif[locs].max() print(maxval) clusterdict.update({maxval:i+10}) print(clusterdict) sortcluster=list(sorted(clusterdict)) print(sortcluster) for i in range(len(sortcluster)): cluster_num=clusterdict[sortcluster[i]] displaylabels=np.where(displaylabels==cluster_num,i,displaylabels) return displaylabels def kmeansclassify_oldversion(self): if kmeans==0: messagebox.showerror('Kmeans error','Kmeans should greater than 0') return None file=self.file originpcabands=self.batch_displaybandarray[self.file]['LabOstu'] pcah,pcaw,pcac=originpcabands.shape print(self.file,'originpcabands',pcah,pcaw,pcac) pcakeys=pcs tempband=np.zeros((pcah,pcaw,len(pcakeys))) for i in range(len(pcakeys)): channel=int(pcakeys[i])-1 tempband[:,:,i]=tempband[:,:,i]+originpcabands[:,:,channel] if kmeans==1: print('kmeans=1') displaylabels=np.mean(tempband,axis=2) pyplt.imsave(file+'_k=1.png',displaylabels) else: #tempband=displaybandarray[currentfilename]['LabOstu'] if kmeans>1: h,w,c=tempband.shape print('shape',tempband.shape) reshapedtif=tempband.reshape(tempband.shape[0]*tempband.shape[1],c) print('reshape',reshapedtif.shape) clf=KMeans(n_clusters=kmeans,init='k-means++',n_init=10,random_state=0) tempdisplayimg=clf.fit(reshapedtif) # print('label=0',np.any(tempdisplayimg==0)) displaylabels=tempdisplayimg.labels_.reshape((self.batch_displaybandarray[self.file]['LabOstu'].shape[0], self.batch_displaybandarray[self.file]['LabOstu'].shape[1])) clusterdict={} displaylabels=displaylabels+10 for i in range(kmeans): locs=np.where(tempdisplayimg.labels_==i) maxval=reshapedtif[locs].max() print(maxval) clusterdict.update({maxval:i+10}) print(clusterdict) sortcluster=list(sorted(clusterdict)) print(sortcluster) for i in range(len(sortcluster)): cluster_num=clusterdict[sortcluster[i]] displaylabels=np.where(displaylabels==cluster_num,i,displaylabels) return displaylabels def generateimgplant(self,displaylabels): colordicesband=np.copy(displaylabels) tempdisplayimg=np.zeros((self.batch_displaybandarray[self.file]['LabOstu'].shape[0], self.batch_displaybandarray[self.file]['LabOstu'].shape[1])) colordivimg=np.zeros((self.batch_displaybandarray[self.file]['LabOstu'].shape[0], self.batch_displaybandarray[self.file]['LabOstu'].shape[1])) for i in range(len(kmeans_sel)): sk=kmeans_sel[i]-1 tempdisplayimg=np.where(displaylabels==sk,1,tempdisplayimg) currentlabels=np.copy(tempdisplayimg) originbinaryimg=np.copy(tempdisplayimg) tempcolorimg=np.copy(displaylabels).astype('float32') ratio=batch_findratio([tempdisplayimg.shape[0],tempdisplayimg.shape[1]],[850,850]) if tempdisplayimg.shape[0]*tempdisplayimg.shape[1]<850*850: tempdisplayimg=cv2.resize(tempdisplayimg,(int(tempdisplayimg.shape[1]*ratio),int(tempdisplayimg.shape[0]*ratio))) colordivimg=cv2.resize(tempcolorimg,(int(colordivimg.shape[1]*ratio),int(colordivimg.shape[0]*ratio))) else: tempdisplayimg=cv2.resize(tempdisplayimg,(int(tempdisplayimg.shape[1]/ratio),int(tempdisplayimg.shape[0]/ratio))) colordivimg=cv2.resize(tempcolorimg,(int(colordivimg.shape[1]/ratio),int(colordivimg.shape[0]/ratio))) binaryimg=np.zeros((tempdisplayimg.shape[0],tempdisplayimg.shape[1],3)) colordeimg=np.zeros((colordivimg.shape[0],colordivimg.shape[1],3)) locs=np.where(tempdisplayimg==1) binaryimg[locs]=[240,228,66] for i in range(kmeans): locs=np.where(colordivimg==i) colordeimg[locs]=batch_colorbandtable[i] Image.fromarray(colordeimg.astype('uint8')).save(self.file+'-allcolorindex.png',"PNG") Image.fromarray((binaryimg.astype('uint8'))).save(self.file+'-binaryimg.png',"PNG") return currentlabels,originbinaryimg def resegment(self): if type(self.reseglabels) == type(None): return False labels=np.copy(self.reseglabels) reseglabels,border,colortable,labeldict=tkintercorestat.resegmentinput(labels,minthres,maxthres,minlw,maxlw) self.batch_results.update({self.file:(labeldict,{})}) return True def extraction(self,currentlabels): if kmeans==1: messagebox.showerror('Invalid Class #',message='#Class = 1, try change it to 2 or more, and refresh Color-Index.') return False nonzeros=np.count_nonzero(currentlabels) print('nonzero counts',nonzeros) nonzeroloc=np.where(currentlabels!=0) try: ulx,uly=min(nonzeroloc[1]),min(nonzeroloc[0]) except: messagebox.showerror('Invalid Colorindices',message='Need to process colorindicies') return False rlx,rly=max(nonzeroloc[1]),max(nonzeroloc[0]) nonzeroratio=float(nonzeros)/((rlx-ulx)*(rly-uly)) print(nonzeroratio) if nonzeroratio>std_nonzeroratio*2: return False dealpixel=nonzeroratio*currentlabels.shape[0]*currentlabels.shape[1] ratio=1 if nonzeroratio<=0.2:# and nonzeroratio>=0.1: ratio=batch_findratio([currentlabels.shape[0],currentlabels.shape[1]],[1600,1600]) if currentlabels.shape[0]*currentlabels.shape[1]>1600*1600: workingimg=cv2.resize(currentlabels,(int(currentlabels.shape[1]/ratio),int(currentlabels.shape[0]/ratio)),interpolation=cv2.INTER_LINEAR) else: #ratio=1 #print('nonzeroratio',ratio) workingimg=np.copy(currentlabels) segmentratio=0 else: print('deal pixel',dealpixel) if dealpixel>512000: if currentlabels.shape[0]*currentlabels.shape[1]>850*850: segmentratio=batch_findratio([currentlabels.shape[0],currentlabels.shape[1]],[850,850]) if segmentratio<2: segmentratio=2 workingimg=cv2.resize(currentlabels,(int(currentlabels.shape[1]/segmentratio),int(currentlabels.shape[0]/segmentratio)),interpolation=cv2.INTER_LINEAR) else: segmentratio=1 #print('ratio',ratio) workingimg=np.copy(currentlabels) pixelmmratio=1.0 coin=False print('nonzeroratio:',ratio,'segmentation ratio',segmentratio) print('workingimgsize:',workingimg.shape) pyplt.imsave('workingimg.png',workingimg) originlabels=None if originlabels is None: originlabels,border,colortable,originlabeldict=tkintercorestat.init(workingimg,workingimg,'',workingimg,10,coin) self.reseglabels=originlabels self.batch_results.update({self.file:(originlabeldict,{})}) return True def savePCAimg(self,originfile): file=self.file path=self.exportpath originpcabands=self.batch_displaybandarray[file]['LabOstu'] pcah,pcaw,pcac=originpcabands.shape tempband=np.zeros((pcah,pcaw)) if pcweight==0.0: tempband=tempband+originpcabands[:,:,pcs] else: if pcweight<0.0: rgbpc=originpcabands[:,:,0] else: rgbpc=originpcabands[:,:,1] rgbpc=(rgbpc-rgbpc.min())*255/(rgbpc.max()-rgbpc.min()) firstterm=abs(pcweight)*2*rgbpc colorpc=originpcabands[:,:,pcs] colorpc=(colorpc-colorpc.min())*255/(colorpc.max()-colorpc.min()) secondterm=(1-abs(pcweight)*2)*colorpc tempband=tempband+firstterm+secondterm displaylabels=np.copy(tempband) if displaylabels.min()<0: displaylabels=displaylabels-displaylabels.min() colorrange=displaylabels.max()-displaylabels.min() displaylabels=displaylabels*255/colorrange grayimg=Image.fromarray(displaylabels.astype('uint8'),'L') originheight,originwidth=self.batch_Multigraybands[file].size origingray=grayimg.resize([originwidth,originheight],resample=Image.BILINEAR) origingray.save(path+'/'+originfile+'-PCAimg.png',"PNG") # addcolorstrip() return def savePCAimg_oldversion(self,originfile): file=self.file path=self.exportpath originpcabands=self.batch_displaybandarray[file]['LabOstu'] pcah,pcaw,pcac=originpcabands.shape pcakeys=pcs tempband=np.zeros((pcah,pcaw,len(pcakeys))) for i in range(len(pcakeys)): channel=int(pcakeys[i])-1 tempband[:,:,i]=tempband[:,:,i]+originpcabands[:,:,channel] displaylabels=np.mean(tempband,axis=2) # generateimgplant(displaylabels) # grayimg=(((displaylabels-displaylabels.min())/(displaylabels.max()-displaylabels.min()))*255.9).astype(np.uint8) # pyplt.imsave('k=1.png',displaylabels.astype('uint8')) # pyplt.imsave('k=1.png',grayimg) if displaylabels.min()<0: displaylabels=displaylabels-displaylabels.min() colorrange=displaylabels.max()-displaylabels.min() displaylabels=displaylabels*255/colorrange grayimg=Image.fromarray(displaylabels.astype('uint8'),'L') originheight,originwidth=self.batch_Multigraybands[file].size origingray=grayimg.resize([originwidth,originheight],resample=Image.BILINEAR) origingray.save(path+'/'+originfile+'-PCAimg.png',"PNG") # addcolorstrip() return def showcounting(self,tup,number=True,frame=True,header=True,whext=False,blkext=False): labels=tup[0] colortable=tup[2] coinparts=tup[3] filename=tup[4] uniquelabels=list(colortable.keys()) imgrsc=cv2.imread(FOLDER+'/'+filename,flags=cv2.IMREAD_ANYCOLOR) imgrsc=cv2.cvtColor(imgrsc,cv2.COLOR_BGR2RGB) imgrsc=cv2.resize(imgrsc,(labels.shape[1],labels.shape[0]),interpolation=cv2.INTER_LINEAR) image=Image.fromarray(imgrsc) if whext==True: # blkbkg=np.zeros((labels.shape[0],labels.shape[1],3),dtype='float') whbkg=np.zeros((labels.shape[0],labels.shape[1],3),dtype='float') whbkg[:,:,:]=[255,255,255] itemlocs=np.where(labels!=0) # blkbkg[itemlocs]=imgrsc[itemlocs] whbkg[itemlocs]=imgrsc[itemlocs] image=Image.fromarray(whbkg.astype('uint8')) if blkext==True: blkbkg=np.zeros((labels.shape[0],labels.shape[1],3),dtype='float') itemlocs=np.where(labels!=0) blkbkg[itemlocs]=imgrsc[itemlocs] blkbkg[itemlocs]=imgrsc[itemlocs] image=Image.fromarray(blkbkg.astype('uint8')) print('showcounting_resize',image.size) image.save('beforlabel.gif',append_images=[image]) draw=ImageDraw.Draw(image) sizeuniq,sizecounts=np.unique(labels,return_counts=True) minsize=min(sizecounts) suggsize=int(minsize**0.5) if suggsize>22: suggsize=22 if suggsize<14: suggsize=14 font=ImageFont.truetype('cmb10.ttf',size=suggsize) for uni in uniquelabels: if uni!=0: pixelloc = np.where(labels == uni) try: ulx = min(pixelloc[1]) except: continue uly = min(pixelloc[0]) rlx = max(pixelloc[1]) rly = max(pixelloc[0]) midx = ulx + int((rlx - ulx) / 2) midy = uly + int((rly - uly) / 2) print(ulx, uly, rlx, rly) if frame==True: draw.polygon([(ulx,uly),(rlx,uly),(rlx,rly),(ulx,rly)],outline='red') if number==True: if uni in colortable: canvastext = str(colortable[uni]) else: canvastext = 'No label' # if imgtypevar.get()=='0': draw.text((midx-1, midy+1), text=canvastext, font=font, fill='white') draw.text((midx+1, midy+1), text=canvastext, font=font, fill='white') draw.text((midx-1, midy-1), text=canvastext, font=font, fill='white') draw.text((midx+1, midy-1), text=canvastext, font=font, fill='white') #draw.text((midx,midy),text=canvastext,font=font,fill=(141,2,31,0)) draw.text((midx,midy),text=canvastext,font=font,fill='black') if header==True: content='item count:'+str(len(uniquelabels))+'\n File: '+filename contentlength=len(content)+50 #rectext=canvas.create_text(10,10,fill='black',font='Times 16',text=content,anchor=NW) draw.text((10-1, 10+1), text=content, font=font, fill='white') draw.text((10+1, 10+1), text=content, font=font, fill='white') draw.text((10-1, 10-1), text=content, font=font, fill='white') draw.text((10+1, 10-1), text=content, font=font, fill='white') #draw.text((10,10),text=content,font=font,fill=(141,2,31,0)) draw.text((10,10),text=content,font=font,fill='black') #image.save(originfile+'-countresult'+extension,"JPEG") #firstimg=Multigraybands[currentfilename] #height,width=firstimg.size height,width,channel=self.batch_displaybandarray[filename]['LabOstu'].shape ratio=batch_findratio([height,width],[850,850]) #if labels.shape[0]*labels.shape[1]<850*850: # disimage=image.resize([int(labels.shape[1]*ratio),int(labels.shape[0]*ratio)],resample=Image.BILINEAR) #else: # disimage=image.resize([int(labels.shape[1]/ratio),int(labels.shape[0]/ratio)],resample=Image.BILINEAR) print('show counting ratio',ratio) if height*width<850*850: print('showcounting small') disimage=image.resize([int(width*ratio),int(height*ratio)],resample=Image.BILINEAR) else: print('showcounting big') disimage=image.resize([int(width/ratio),int(height/ratio)],resample=Image.BILINEAR) print('showcounting shape',disimage.size) displayoutput=ImageTk.PhotoImage(disimage) disimage.save('output.gif',append_images=[disimage]) #image.save('originoutput.gif',append_images=[image]) return displayoutput,image,disimage def export_ext(self,whext=False,blkext=False): if len(batch_filenames)==0: messagebox.showerror('No files','Please load images to process') return file=self.file path=self.exportpath suggsize=8 smallfont=ImageFont.truetype('cmb10.ttf',size=suggsize) # kernersizes={} # for file in batch_filenames: labeldict=self.batch_results[file][0] itervalue='iter0' labels=labeldict[itervalue]['labels'] counts=labeldict[itervalue]['counts'] colortable=labeldict[itervalue]['colortable'] head_tail=os.path.split(file) originfile,extension=os.path.splitext(head_tail[1]) if len(path)>0: tup=(labels,counts,colortable,[],file) _band,segimg,small_segimg=self.showcounting(tup,False,True,True,whext,blkext) imageband=segimg draw=ImageDraw.Draw(imageband) uniquelabels=list(colortable.keys()) tempdict={} pixelmmratio=1.0 print('pixelmmratio',pixelmmratio) if file not in self.kernersizes: for uni in uniquelabels: if uni !=0: pixelloc = np.where(labels == float(uni)) try: ulx = min(pixelloc[1]) except: continue uly = min(pixelloc[0]) rlx = max(pixelloc[1]) rly = max(pixelloc[0]) print(ulx, uly, rlx, rly) midx = ulx + int((rlx - ulx) / 2) midy = uly + int((rly - uly) / 2) length={} currborder=tkintercore.get_boundaryloc(labels,uni) # print('currborder',currborder) print('currborder length',len(currborder[0])*len(currborder[1])) pixperc=float(len(pixelloc[0])/(labels.shape[0]*labels.shape[1])) print('pix length percentage',pixperc) if pixperc>0.06: x0=ulx y0=uly x1=rlx y1=rly kernellength=float(((x0-x1)**2+(y0-y1)**2)**0.5) else: for i in range(len(currborder[0])): for j in range(i+1,len(currborder[0])): templength=float(((currborder[0][i]-currborder[0][j])**2+(currborder[1][i]-currborder[1][j])**2)**0.5) length.update({(i,j):templength}) sortedlength=sorted(length,key=length.get,reverse=True) try: topcouple=sortedlength[0] except: continue kernellength=length[topcouple] i=topcouple[0] j=topcouple[1] x0=currborder[1][i] y0=currborder[0][i] x1=currborder[1][j] y1=currborder[0][j] #slope=float((y0-y1)/(x0-x1)) linepoints=[(currborder[1][i],currborder[0][i]),(currborder[1][j],currborder[0][j])] #draw.line(linepoints,fill='yellow') #points=linepixels(currborder[1][i],currborder[0][i],currborder[1][j],currborder[0][j]) lengthpoints=cal_kernelsize.bresenhamline(x0,y0,x1,y1) #x0,y0,x1,y1 for point in lengthpoints: # if imgtypevar.get()=='0': draw.point([int(point[0]),int(point[1])],fill='yellow') tengentaddpoints=cal_kernelsize.tengentadd(x0,y0,x1,y1,rlx,rly,labels,uni) #find tangent line above #for point in tengentaddpoints: #if int(point[0])>=ulx and int(point[0])<=rlx and int(point[1])>=uly and int(point[1])<=rly: # draw.point([int(point[0]),int(point[1])],fill='green') tengentsubpoints=cal_kernelsize.tengentsub(x0,y0,x1,y1,ulx,uly,labels,uni) #find tangent line below #for point in tengentsubpoints: # draw.point([int(point[0]),int(point[1])],fill='green') pointmatchdict={} for i in range(len(tengentaddpoints)): #find the pixel pair with shortest distance width=kernellength pointmatch=[] point=tengentaddpoints[i] try: templabel=labels[int(point[1]),int(point[0])] except: continue if templabel==uni: for j in range(len(tengentsubpoints)): subpoint=tengentsubpoints[j] tempwidth=float(((point[0]-subpoint[0])**2+(point[1]-subpoint[1])**2)**0.5) if tempwidth<width: pointmatch[:]=[] pointmatch.append(point) pointmatch.append(subpoint) #print('tempwidth',width) width=tempwidth if len(pointmatch)>0: #print('pointmatch',pointmatch) pointmatchdict.update({(pointmatch[0],pointmatch[1]):width}) widthsort=sorted(pointmatchdict,key=pointmatchdict.get,reverse=True) try: pointmatch=widthsort[0] print('final pointmatch',pointmatch) except: continue if len(pointmatch)>0: x0=int(pointmatch[0][0]) y0=int(pointmatch[0][1]) x1=int(pointmatch[1][0]) y1=int(pointmatch[1][1]) # if imgtypevar.get()=='0': draw.line([(x0,y0),(x1,y1)],fill='yellow') width=float(((x0-x1)**2+(y0-y1)**2)**0.5) print('width',width,'length',kernellength) print('kernelwidth='+str(width*pixelmmratio)) print('kernellength='+str(kernellength*pixelmmratio)) #print('kernelwidth='+str(kernelwidth*pixelmmratio)) tempdict.update({uni:[kernellength,width,pixelmmratio**2*len(pixelloc[0]),kernellength*pixelmmratio,width*pixelmmratio]}) if uni in colortable: canvastext = str(colortable[uni]) else: canvastext = 'No label' # if imgtypevar.get()=='0': draw.text((midx-1, midy+1), text=canvastext, font=smallfont, fill='white') draw.text((midx+1, midy+1), text=canvastext, font=smallfont, fill='white') draw.text((midx-1, midy-1), text=canvastext, font=smallfont, fill='white') draw.text((midx+1, midy-1), text=canvastext, font=smallfont, fill='white') #draw.text((midx,midy),text=canvastext,font=font,fill=(141,2,31,0)) draw.text((midx,midy),text=canvastext,font=smallfont,fill='black') #print(event.x, event.y, labels[event.x, event.y], ulx, uly, rlx, rly) #recborder = canvas.create_rectangle(ulx, uly, rlx, rly, outline='red') #drawcontents.append(recborder) self.kernersizes.update({file:tempdict}) originheight,originwidth=self.batch_Multigraybands[file].size image=imageband.resize([originwidth,originheight],resample=Image.BILINEAR) extcolor="" if whext==True: extcolor= "-extwht" if blkext==True: extcolor="-extblk" image.save(path+'/'+originfile+extcolor+'-sizeresult'+'.png',"PNG") tup=(labels,counts,colortable,[],file) _band,segimg,small_segimg=self.showcounting(tup,False,True,True,whext,blkext) segimage=segimg.resize([originwidth,originheight],resample=Image.BILINEAR) segimage.save(path+'/'+originfile+extcolor+'-segmentresult'+'.png',"PNG") _band,segimg,small_segimg=self.showcounting(tup,True,True,True,whext,blkext) segimage=segimg.resize([originwidth,originheight],resample=Image.BILINEAR) segimage.save(path+'/'+originfile+extcolor+'-labelresult'+'.png',"PNG") def export_result(self): file=self.file if len(batch_filenames)==0: messagebox.showerror('No files','Please load images to process') return suggsize=8 smallfont=ImageFont.truetype('cmb10.ttf',size=suggsize) self.kernersizes={} # path=filedialog.askdirectory() self.export_ext(True,False) self.export_ext(False,True) # for file in batch_filenames: labeldict=self.batch_results[self.file][0] itervalue='iter0' labels=labeldict[itervalue]['labels'] counts=labeldict[itervalue]['counts'] colortable=labeldict[itervalue]['colortable'] head_tail=os.path.split(self.file) originfile,extension=os.path.splitext(head_tail[1]) if len(self.exportpath)>0: tup=(labels,counts,colortable,[],self.file) _band,segimg,small_segimg=self.showcounting(tup,False) #imageband=outputimgbands[file][itervalue] imageband=segimg # draw=ImageDraw.Draw(imageband) uniquelabels=list(colortable.keys()) # tempdict={} pixelmmratio=1.0 #print('coinsize',coinsize.get(),'pixelmmratio',pixelmmratio) print('pixelmmratio',pixelmmratio) originheight,originwidth=self.batch_Multigraybands[file].size image=imageband.resize([originwidth,originheight],resample=Image.BILINEAR) image.save(self.exportpath+'/'+originfile+'-sizeresult'+'.png',"PNG") tup=(labels,counts,colortable,[],file) _band,segimg,small_segimg=self.showcounting(tup,False) segimage=segimg.resize([originwidth,originheight],resample=Image.BILINEAR) segimage.save(self.exportpath+'/'+originfile+'-segmentresult'+'.png',"PNG") _band,segimg,small_segimg=self.showcounting(tup,True) segimage=segimg.resize([originwidth,originheight],resample=Image.BILINEAR) segimage.save(self.exportpath+'/'+originfile+'-labelresult'+'.png',"PNG") originrestoredband=np.copy(labels) restoredband=originrestoredband.astype('uint8') colordicesband=self.batch_colordicesband[file] colordiv=np.zeros((colordicesband.shape[0],colordicesband.shape[1],3)) self.savePCAimg(originfile) # kvar=int(kmeans.get()) # print('kvar',kvar) # for i in range(kvar): # locs=np.where(colordicesband==i) # colordiv[locs]=colorbandtable[i] # colordivimg=Image.fromarray(colordiv.astype('uint8')) # colordivimg.save(path+'/'+originfile+'-colordevice'+'.jpeg',"JPEG") colordivimg=Image.open(file+'-allcolorindex.png') copycolordiv=colordivimg.resize([originwidth,originheight],resample=Image.BILINEAR) copycolordiv.save(self.exportpath+'/'+originfile+'-colordevice'+'.png',"PNG") #pyplt.imsave(path+'/'+originfile+'-colordevice'+'.png',colordiv.astype('uint8')) # copybinary=np.zeros((originbinaryimg.shape[0],originbinaryimg.shape[1],3),dtype='float') # nonzeros=np.where(originbinaryimg==1) # copybinary[nonzeros]=[255,255,0] # binaryimg=Image.fromarray(copybinary.astype('uint8')) binaryimg=Image.open(file+'-binaryimg.png') copybinaryimg=binaryimg.resize([originwidth,originheight],resample=Image.BILINEAR) copybinaryimg.save(self.exportpath+'/'+originfile+'-binaryimg'+'.png',"PNG") # pyplt.imsave(path+'/'+originfile+'-binaryimg'+'.png',originbinaryimg.astype('uint8')) #restoredband=cv2.resize(src=restoredband,dsize=(originwidth,originheight),interpolation=cv2.INTER_LINEAR) print(restoredband.shape) currentsizes=self.kernersizes[self.file] indicekeys=list(self.batch_originbandarray[self.file].keys()) indeclist=[ 0 for i in range(len(indicekeys)*3)] pcalist=[0 for i in range(3)] # temppcabands=np.zeros((self.batch_originpcabands[self.file].shape[0],len(pcs))) # for i in range(len(pcs)): # temppcabands[:,i]=temppcabands[:,i]+self.batch_originpcabands[self.file][:,pcs[i]-1] # pcabands=np.mean(temppcabands,axis=1) # # pcabands=pcabands.reshape((originheight,originwidth)) # pcabands=pcabands.reshape((self.displayfea_l,self.displayfea_w)) pcabands=np.copy(self.displaypclagels) datatable={} origindata={} for key in indicekeys: data=self.batch_originbandarray[self.file][key] data=data.tolist() tempdict={key:data} origindata.update(tempdict) print(key) # for uni in colortable: print(uniquelabels) print('len uniquelabels',len(uniquelabels)) for uni in uniquelabels: print(uni,colortable[uni]) uniloc=np.where(labels==float(uni)) if len(uniloc)==0 or len(uniloc[1])==0: print('no uniloc\n') print(uniloc[0],uniloc[1]) continue smalluniloc=np.where(originrestoredband==uni) ulx,uly=min(smalluniloc[1]),min(smalluniloc[0]) rlx,rly=max(smalluniloc[1]),max(smalluniloc[0]) width=rlx-ulx length=rly-uly print(width,length) subarea=restoredband[uly:rly+1,ulx:rlx+1] subarea=subarea.tolist() amount=len(uniloc[0]) print(amount) try: sizes=currentsizes[uni] except: print('no sizes\n') continue #templist=[amount,length,width] templist=[amount,sizes[0],sizes[1],sizes[2],sizes[3],sizes[4]] tempdict={colortable[uni]:templist+indeclist+pcalist} #NIR,Redeyes,R,G,B,NDVI,area print(tempdict) for ki in range(len(indicekeys)): originNDVI=origindata[indicekeys[ki]] print(len(originNDVI),len(originNDVI[0])) pixellist=[] for k in range(len(uniloc[0])): #print(uniloc[0][k],uniloc[1][k]) try: tempdict[colortable[uni]][6+ki*3]+=originNDVI[uniloc[0][k]][uniloc[1][k]] except IndexError: print(uniloc[0][k],uniloc[1][k]) tempdict[colortable[uni]][7+ki*3]+=originNDVI[uniloc[0][k]][uniloc[1][k]] pixellist.append(originNDVI[uniloc[0][k]][uniloc[1][k]]) tempdict[colortable[uni]][ki*3+6]=tempdict[colortable[uni]][ki*3+6]/amount tempdict[colortable[uni]][ki*3+8]=np.std(pixellist) pixellist=[] for k in range(len(uniloc[0])): try: tempdict[colortable[uni]][-2]+=pcabands[uniloc[0][k]][uniloc[1][k]] except IndexError: print(uniloc[0][k],uniloc[1][k]) tempdict[colortable[uni]][-3]+=pcabands[uniloc[0][k]][uniloc[1][k]] pixellist.append(pcabands[uniloc[0][k]][uniloc[1][k]]) tempdict[colortable[uni]][-3]=tempdict[colortable[uni]][-3]/amount tempdict[colortable[uni]][-1]=np.std(pixellist) datatable.update(tempdict) filename=self.exportpath+'/'+originfile+'-outputdata.csv' with open(filename,mode='w') as f: csvwriter=csv.writer(f) rowcontent=['Index','Plot','Area(#pixel)','Length(#pixel)','Width(#pixel)','Area(mm2)','Length(mm)','Width(mm)'] for key in indicekeys: rowcontent.append('avg-'+str(key)) rowcontent.append('sum-'+str(key)) rowcontent.append('std-'+str(key)) rowcontent.append('avg-PCA') rowcontent.append('sum-PCA') rowcontent.append('std-PCA') #csvwriter.writerow(['ID','NIR','Red Edge','Red','Green','Blue','NIRv.s.Green','LabOstu','area(#of pixel)']) #csvwriter.writerow(['Index','Plot','Area(#pixels)','avg-NDVI','sum-NDVI','std-NDVI','Length(#pixel)','Width(#pixel)'])#,'#holes']) csvwriter.writerow(rowcontent) i=1 for uni in datatable: row=[i,uni] for j in range(len(datatable[uni])): row.append(datatable[uni][j]) #row=[i,uni,datatable[uni][0],datatable[uni][1],datatable[uni][2],datatable[uni][5],datatable[uni][3],datatable[uni][4]]#, #datatable[uni][5]] i+=1 print(row) csvwriter.writerow(row) print('total data length=',len(datatable)) def process(self): if self.Open_batchimage()==False: return self.singleband() colordicesband=self.kmeansclassify() if type(colordicesband)==type(None): return self.batch_colordicesband.update({self.file:colordicesband}) currentlabels,originbinaryimg=self.generateimgplant(colordicesband) if self.extraction(currentlabels)==False: return if self.resegment()==False: return self.export_result() batch_filenames=[] batch_Multiimage={} batch_Multigray={} batch_Multitype={} batch_Multiimagebands={} batch_Multigraybands={} batch_displaybandarray={} batch_originbandarray={} batch_originpcabands={} batch_colordicesband={} batch_results={} pcweight=0 pcs=0 kmeans=0 kmeans_sel=[] maxthres=0 minthres=0 maxlw=0 minlw=0 std_nonzeroratio=0 FOLDER='' exportpath='' def batch_findratio(originsize,objectsize): oria=originsize[0] orib=originsize[1] obja=objectsize[0] objb=objectsize[1] if oria>obja or orib>objb: ratio=round(max((oria/obja),(orib/objb))) else: ratio=round(min((obja/oria),(objb/orib))) if oria*orib>850 * 850: if ratio<2: ratio=2 return ratio def Open_batchimage(dir,filename): global batch_Multiimage,batch_Multigray,batch_Multitype,batch_Multiimagebands,batch_Multigraybands try: Filersc=cv2.imread(dir+'/'+filename,flags=cv2.IMREAD_ANYCOLOR) height,width,channel=np.shape(Filersc) Filesize=(height,width) print('filesize:',height,width) RGBfile=cv2.cvtColor(Filersc,cv2.COLOR_BGR2RGB) Grayfile=cv2.cvtColor(Filersc,cv2.COLOR_BGR2Lab) Grayfile=cv2.cvtColor(Grayfile,cv2.COLOR_BGR2GRAY) Grayimg=batch_img(Filesize,Grayfile) RGBbands=np.zeros((channel,height,width)) for j in range(channel): band=RGBfile[:,:,j] band=np.where(band==0,1e-6,band) RGBbands[j,:,:]=band RGBimg=batch_img(Filesize,RGBbands) tempdict={filename:RGBimg} batch_Multiimagebands.update(tempdict) tempdict={filename:Grayfile} batch_Multigray.update(tempdict) tempdict={filename:0} batch_Multitype.update(tempdict) tempdict={filename:Grayimg} batch_Multigraybands.update(tempdict) # batch_filenames.append(filename) except: # messagebox.showerror('Invalid Image Format','Cannot open '+filename) return False return True def Open_batchfile(): global pcs,pcweight,kmeans,kmeans_sel,maxthres,minthres,maxlw,minlw,std_nonzeroratio btfile=filedialog.askopenfilename() if len(btfile)>0: if '.txt' in btfile: with open(btfile,mode='r') as f: setting=f.readlines() # print(setting) pcweight=float(setting[0].split(',')[1]) pcs=int(setting[1].split(',')[1])+1 # print(pcs) # for i in range(len(pcs)): # pcs[i]=int(pcs[i]) kmeans=setting[2].split(',')[1] kmeans=int(kmeans) kmeans_sel=setting[3].split(',')[1:-1] maxthres=setting[4].split(',')[1] try: maxthres=float(maxthres) except: messagebox.showerror('Load Max area error','No Max area threshold value.') return minthres=setting[5].split(',')[1] minthres=float(minthres) maxlw=setting[6].split(',')[1] maxlw=float(maxlw) minlw=setting[7].split(',')[1] minlw=float(minlw) std_nonzeroratio=float(setting[8].split(',')[1]) for i in range(len(kmeans_sel)): kmeans_sel[i]=int(kmeans_sel[i]) print('PCweight',pcweight,'PCsel',pcs,'KMeans',kmeans,'KMeans-Selection',kmeans_sel) print('maxthres',maxthres,'minthres',minthres,'maxlw',maxlw,'minlw',minlw) messagebox.showinfo('Batch settings','PCweight='+str(pcweight)+'\nPCsel='+str(pcs)+'\nKMeans='+str(kmeans)+ '\nCluster selection'+str(kmeans_sel)+'\nMax area='+str(maxthres)+ '\nMin area='+str(minthres)+'\nMax diagonal='+str(maxlw)+'\nMin diagonal='+ str(minlw)) def Open_batchfolder(): # global batch_filenames,batch_Multiimage,batch_Multigray,batch_Multitype,batch_Multiimagebands,batch_Multigraybands # global batch_displaybandarray,batch_originbandarray,batch_originpcabands # global pcs,kmeans,kmeans_sel # global batch_results global batch_filenames global FOLDER batch_filenames=[] # batch_Multiimage={} # batch_Multigray={} # batch_Multitype={} # batch_Multiimagebands={} # batch_Multigraybands={} # # batch_displaybandarray={} # batch_originbandarray={} # batch_originpcabands={} # # batch_results={} # pcs=0 # kmeans=0 # kmeans_sel=0 FOLDER=filedialog.askdirectory() if len(FOLDER)>0: print(FOLDER) # for root, dirs,files in os.walk(FOLDER): files=os.listdir(FOLDER) for filename in files: # print('root',root) # print('dirs',dirs) # print("filename",filename) batch_filenames.append(filename) # batch_filenames.append(filename) # Open_batchimage(FOLDER,filename) # batch_singleband(filename) # messagebox.showinfo('Finish loading','Loading Image finished') # if len(batch_filenames)==0: # messagebox.showerror('No file','No file under current folder') # return batch_filenames.sort() print('filenames',batch_filenames) def batch_kmeansclassify(file): if kmeans==0: messagebox.showerror('Kmeans error','Kmeans should greater than 0') return originpcabands=batch_displaybandarray[file]['LabOstu'] pcah,pcaw,pcac=originpcabands.shape print(file,'originpcabands',pcah,pcaw,pcac) pcakeys=pcs tempband=np.zeros((pcah,pcaw,len(pcakeys))) for i in range(len(pcakeys)): channel=int(pcakeys[i])-1 tempband[:,:,i]=tempband[:,:,i]+originpcabands[:,:,channel] if kmeans==1: print('kmeans=1') displaylabels=np.mean(tempband,axis=2) pyplt.imsave(file+'_k=1.png',displaylabels) else: #tempband=displaybandarray[currentfilename]['LabOstu'] if kmeans>1: h,w,c=tempband.shape print('shape',tempband.shape) reshapedtif=tempband.reshape(tempband.shape[0]*tempband.shape[1],c) print('reshape',reshapedtif.shape) clf=KMeans(n_clusters=kmeans,init='k-means++',n_init=10,random_state=0) tempdisplayimg=clf.fit(reshapedtif) # print('label=0',np.any(tempdisplayimg==0)) displaylabels=tempdisplayimg.labels_.reshape((batch_displaybandarray[file]['LabOstu'].shape[0], batch_displaybandarray[file]['LabOstu'].shape[1])) return displaylabels def batch_generateimgplant(displaylabels,file): colordicesband=np.copy(displaylabels) tempdisplayimg=np.zeros((batch_displaybandarray[file]['LabOstu'].shape[0], batch_displaybandarray[file]['LabOstu'].shape[1])) colordivimg=np.zeros((batch_displaybandarray[file]['LabOstu'].shape[0], batch_displaybandarray[file]['LabOstu'].shape[1])) for i in range(len(kmeans_sel)): sk=kmeans_sel[i]-1 tempdisplayimg=np.where(displaylabels==sk,1,tempdisplayimg) currentlabels=np.copy(tempdisplayimg) originbinaryimg=np.copy(tempdisplayimg) tempcolorimg=np.copy(displaylabels).astype('float32') ratio=batch_findratio([tempdisplayimg.shape[0],tempdisplayimg.shape[1]],[850,850]) if tempdisplayimg.shape[0]*tempdisplayimg.shape[1]<850*850: tempdisplayimg=cv2.resize(tempdisplayimg,(int(tempdisplayimg.shape[1]*ratio),int(tempdisplayimg.shape[0]*ratio))) colordivimg=cv2.resize(tempcolorimg,(int(colordivimg.shape[1]*ratio),int(colordivimg.shape[0]*ratio))) else: tempdisplayimg=cv2.resize(tempdisplayimg,(int(tempdisplayimg.shape[1]/ratio),int(tempdisplayimg.shape[0]/ratio))) colordivimg=cv2.resize(tempcolorimg,(int(colordivimg.shape[1]/ratio),int(colordivimg.shape[0]/ratio))) binaryimg=np.zeros((tempdisplayimg.shape[0],tempdisplayimg.shape[1],3)) colordeimg=np.zeros((colordivimg.shape[0],colordivimg.shape[1],3)) locs=np.where(tempdisplayimg==1) binaryimg[locs]=[240,228,66] for i in range(kmeans): locs=np.where(colordivimg==i) colordeimg[locs]=batch_colorbandtable[i] Image.fromarray(colordeimg.astype('uint8')).save(file+'-allcolorindex.png',"PNG") Image.fromarray((binaryimg.astype('uint8'))).save(file+'-binaryimg.png',"PNG") return currentlabels,originbinaryimg def batch_extraction(currentlabels,file): global batch_results if kmeans==1: messagebox.showerror('Invalid Class #',message='#Class = 1, try change it to 2 or more, and refresh Color-Index.') return nonzeros=np.count_nonzero(currentlabels) print('nonzero counts',nonzeros) nonzeroloc=np.where(currentlabels!=0) try: ulx,uly=min(nonzeroloc[1]),min(nonzeroloc[0]) except: messagebox.showerror('Invalid Colorindices',message='Need to process colorindicies') return rlx,rly=max(nonzeroloc[1]),max(nonzeroloc[0]) nonzeroratio=float(nonzeros)/((rlx-ulx)*(rly-uly)) print(nonzeroratio) dealpixel=nonzeroratio*currentlabels.shape[0]*currentlabels.shape[1] ratio=1 if nonzeroratio<=0.2:# and nonzeroratio>=0.1: ratio=batch_findratio([currentlabels.shape[0],currentlabels.shape[1]],[1600,1600]) if currentlabels.shape[0]*currentlabels.shape[1]>1600*1600: workingimg=cv2.resize(currentlabels,(int(currentlabels.shape[1]/ratio),int(currentlabels.shape[0]/ratio)),interpolation=cv2.INTER_LINEAR) else: #ratio=1 #print('nonzeroratio',ratio) workingimg=np.copy(currentlabels) segmentratio=0 else: print('deal pixel',dealpixel) if dealpixel>512000: if currentlabels.shape[0]*currentlabels.shape[1]>850*850: segmentratio=batch_findratio([currentlabels.shape[0],currentlabels.shape[1]],[850,850]) if segmentratio<2: segmentratio=2 workingimg=cv2.resize(currentlabels,(int(currentlabels.shape[1]/segmentratio),int(currentlabels.shape[0]/segmentratio)),interpolation=cv2.INTER_LINEAR) else: segmentratio=1 #print('ratio',ratio) workingimg=np.copy(currentlabels) pixelmmratio=1.0 coin=False print('nonzeroratio:',ratio,'segmentation ratio',segmentratio) print('workingimgsize:',workingimg.shape) pyplt.imsave('workingimg.png',workingimg) originlabels=None if originlabels is None: originlabels,border,colortable,originlabeldict=tkintercorestat.init(workingimg,workingimg,'',workingimg,10,coin) batch_results.update({file:(originlabeldict,{})}) def batch_proc_func(file): if len(FOLDER)==0: messagebox.showerror('No image folder','Need to assign image folder') return if len(exportpath)==0: messagebox.showerror('No output folder','Need to assign output folder') return if len(pcs)==0: messagebox.showerror('No batch file','Need to load batch file') return procobj=batch_ser_func(file) procobj.process() del procobj def batch_process(): global batch_colordicesband global batch_Multiimage,batch_Multigray,batch_Multitype,batch_Multiimagebands,batch_Multigraybands global batch_displaybandarray,batch_originbandarray,batch_originpcabands global batch_results if len(batch_filenames)==0: messagebox.showerror('No files','Please load images to process') return cpunum=multiprocessing.cpu_count() print('# of CPUs',cpunum) starttime=time.time() print('start time',starttime) for file in batch_filenames: # batch_Multiimage={} # batch_Multigray={} # batch_Multitype={} # batch_Multiimagebands={} # batch_Multigraybands={} # # batch_displaybandarray={} # batch_originbandarray={} # batch_originpcabands={} # batch_colordicesband={} # # batch_results={} # if Open_batchimage(FOLDER,file)==False: # continue # batch_singleband(file) # colordicesband=batch_kmeansclassify(file) # batch_colordicesband.update({file:colordicesband}) # currentlabels,originbinaryimg=batch_generateimgplant(colordicesband,file) # batch_extraction(currentlabels,file) # batch_export_result(exportpath,file) procobj=batch_ser_func(file) procobj.process() del procobj # multi_pool=multiprocessing.Pool(int(cpunum/4)) # multi_pool.map(batch_proc_func,batch_filenames) print('used time',time.time()-starttime) messagebox.showinfo('Done','Batch process ends!') def batch_showcounting(tup,number=True,frame=True,header=True,whext=False,blkext=False): labels=tup[0] colortable=tup[2] coinparts=tup[3] filename=tup[4] uniquelabels=list(colortable.keys()) imgrsc=cv2.imread(FOLDER+'/'+filename,flags=cv2.IMREAD_ANYCOLOR) imgrsc=cv2.cvtColor(imgrsc,cv2.COLOR_BGR2RGB) imgrsc=cv2.resize(imgrsc,(labels.shape[1],labels.shape[0]),interpolation=cv2.INTER_LINEAR) image=Image.fromarray(imgrsc) if whext==True: # blkbkg=np.zeros((labels.shape[0],labels.shape[1],3),dtype='float') whbkg=np.zeros((labels.shape[0],labels.shape[1],3),dtype='float') whbkg[:,:,:]=[255,255,255] itemlocs=np.where(labels!=0) # blkbkg[itemlocs]=imgrsc[itemlocs] whbkg[itemlocs]=imgrsc[itemlocs] image=Image.fromarray(whbkg.astype('uint8')) if blkext==True: blkbkg=np.zeros((labels.shape[0],labels.shape[1],3),dtype='float') itemlocs=np.where(labels!=0) blkbkg[itemlocs]=imgrsc[itemlocs] blkbkg[itemlocs]=imgrsc[itemlocs] image=Image.fromarray(blkbkg.astype('uint8')) print('showcounting_resize',image.size) image.save('beforlabel.gif',append_images=[image]) draw=ImageDraw.Draw(image) sizeuniq,sizecounts=np.unique(labels,return_counts=True) minsize=min(sizecounts) suggsize=int(minsize**0.5) if suggsize>22: suggsize=22 if suggsize<14: suggsize=14 font=ImageFont.truetype('cmb10.ttf',size=suggsize) for uni in uniquelabels: if uni!=0: pixelloc = np.where(labels == uni) try: ulx = min(pixelloc[1]) except: continue uly = min(pixelloc[0]) rlx = max(pixelloc[1]) rly = max(pixelloc[0]) midx = ulx + int((rlx - ulx) / 2) midy = uly + int((rly - uly) / 2) print(ulx, uly, rlx, rly) if frame==True: draw.polygon([(ulx,uly),(rlx,uly),(rlx,rly),(ulx,rly)],outline='red') if number==True: if uni in colortable: canvastext = str(colortable[uni]) else: canvastext = 'No label' # if imgtypevar.get()=='0': draw.text((midx-1, midy+1), text=canvastext, font=font, fill='white') draw.text((midx+1, midy+1), text=canvastext, font=font, fill='white') draw.text((midx-1, midy-1), text=canvastext, font=font, fill='white') draw.text((midx+1, midy-1), text=canvastext, font=font, fill='white') #draw.text((midx,midy),text=canvastext,font=font,fill=(141,2,31,0)) draw.text((midx,midy),text=canvastext,font=font,fill='black') if header==True: content='item count:'+str(len(uniquelabels))+'\n File: '+filename contentlength=len(content)+50 #rectext=canvas.create_text(10,10,fill='black',font='Times 16',text=content,anchor=NW) draw.text((10-1, 10+1), text=content, font=font, fill='white') draw.text((10+1, 10+1), text=content, font=font, fill='white') draw.text((10-1, 10-1), text=content, font=font, fill='white') draw.text((10+1, 10-1), text=content, font=font, fill='white') #draw.text((10,10),text=content,font=font,fill=(141,2,31,0)) draw.text((10,10),text=content,font=font,fill='black') #image.save(originfile+'-countresult'+extension,"JPEG") #firstimg=Multigraybands[currentfilename] #height,width=firstimg.size height,width,channel=batch_displaybandarray[filename]['LabOstu'].shape ratio=batch_findratio([height,width],[850,850]) #if labels.shape[0]*labels.shape[1]<850*850: # disimage=image.resize([int(labels.shape[1]*ratio),int(labels.shape[0]*ratio)],resample=Image.BILINEAR) #else: # disimage=image.resize([int(labels.shape[1]/ratio),int(labels.shape[0]/ratio)],resample=Image.BILINEAR) print('show counting ratio',ratio) if height*width<850*850: print('showcounting small') disimage=image.resize([int(width*ratio),int(height*ratio)],resample=Image.BILINEAR) else: print('showcounting big') disimage=image.resize([int(width/ratio),int(height/ratio)],resample=Image.BILINEAR) print('showcounting shape',disimage.size) displayoutput=ImageTk.PhotoImage(disimage) disimage.save('output.gif',append_images=[disimage]) #image.save('originoutput.gif',append_images=[image]) return displayoutput,image,disimage def batch_savePCAimg(path,originfile,file): originpcabands=batch_displaybandarray[file]['LabOstu'] pcah,pcaw,pcac=originpcabands.shape pcakeys=pcs tempband=np.zeros((pcah,pcaw,len(pcakeys))) for i in range(len(pcakeys)): channel=int(pcakeys[i])-1 tempband[:,:,i]=tempband[:,:,i]+originpcabands[:,:,channel] displaylabels=np.mean(tempband,axis=2) # generateimgplant(displaylabels) # grayimg=(((displaylabels-displaylabels.min())/(displaylabels.max()-displaylabels.min()))*255.9).astype(np.uint8) # pyplt.imsave('k=1.png',displaylabels.astype('uint8')) # pyplt.imsave('k=1.png',grayimg) grayimg=Image.fromarray(displaylabels.astype('uint8'),'L') originheight,originwidth=batch_Multigraybands[file].size origingray=grayimg.resize([originwidth,originheight],resample=Image.BILINEAR) origingray.save(path+'/'+originfile+'-PCAimg.png',"PNG") # addcolorstrip() return def batch_export_ext(path,file,whext=False,blkext=False): global kernersizes if len(batch_filenames)==0: messagebox.showerror('No files','Please load images to process') return suggsize=8 smallfont=ImageFont.truetype('cmb10.ttf',size=suggsize) # kernersizes={} # for file in batch_filenames: labeldict=batch_results[file][0] itervalue='iter0' labels=labeldict[itervalue]['labels'] counts=labeldict[itervalue]['counts'] colortable=labeldict[itervalue]['colortable'] head_tail=os.path.split(file) originfile,extension=os.path.splitext(head_tail[1]) if len(path)>0: tup=(labels,counts,colortable,[],file) _band,segimg,small_segimg=batch_showcounting(tup,False,True,True,whext,blkext) imageband=segimg draw=ImageDraw.Draw(imageband) uniquelabels=list(colortable.keys()) tempdict={} pixelmmratio=1.0 print('pixelmmratio',pixelmmratio) if file not in kernersizes: for uni in uniquelabels: if uni !=0: pixelloc = np.where(labels == float(uni)) try: ulx = min(pixelloc[1]) except: continue uly = min(pixelloc[0]) rlx = max(pixelloc[1]) rly = max(pixelloc[0]) print(ulx, uly, rlx, rly) midx = ulx + int((rlx - ulx) / 2) midy = uly + int((rly - uly) / 2) length={} currborder=tkintercore.get_boundaryloc(labels,uni) # print('currborder',currborder) print('currborder length',len(currborder[0])*len(currborder[1])) pixperc=float(len(pixelloc[0])/(labels.shape[0]*labels.shape[1])) print('pix length percentage',pixperc) if pixperc>0.06: x0=ulx y0=uly x1=rlx y1=rly kernellength=float(((x0-x1)**2+(y0-y1)**2)**0.5) else: for i in range(len(currborder[0])): for j in range(i+1,len(currborder[0])): templength=float(((currborder[0][i]-currborder[0][j])**2+(currborder[1][i]-currborder[1][j])**2)**0.5) length.update({(i,j):templength}) sortedlength=sorted(length,key=length.get,reverse=True) try: topcouple=sortedlength[0] except: continue kernellength=length[topcouple] i=topcouple[0] j=topcouple[1] x0=currborder[1][i] y0=currborder[0][i] x1=currborder[1][j] y1=currborder[0][j] #slope=float((y0-y1)/(x0-x1)) linepoints=[(currborder[1][i],currborder[0][i]),(currborder[1][j],currborder[0][j])] #draw.line(linepoints,fill='yellow') #points=linepixels(currborder[1][i],currborder[0][i],currborder[1][j],currborder[0][j]) lengthpoints=cal_kernelsize.bresenhamline(x0,y0,x1,y1) #x0,y0,x1,y1 for point in lengthpoints: # if imgtypevar.get()=='0': draw.point([int(point[0]),int(point[1])],fill='yellow') tengentaddpoints=cal_kernelsize.tengentadd(x0,y0,x1,y1,rlx,rly,labels,uni) #find tangent line above #for point in tengentaddpoints: #if int(point[0])>=ulx and int(point[0])<=rlx and int(point[1])>=uly and int(point[1])<=rly: # draw.point([int(point[0]),int(point[1])],fill='green') tengentsubpoints=cal_kernelsize.tengentsub(x0,y0,x1,y1,ulx,uly,labels,uni) #find tangent line below #for point in tengentsubpoints: # draw.point([int(point[0]),int(point[1])],fill='green') pointmatchdict={} for i in range(len(tengentaddpoints)): #find the pixel pair with shortest distance width=kernellength pointmatch=[] point=tengentaddpoints[i] try: templabel=labels[int(point[1]),int(point[0])] except: continue if templabel==uni: for j in range(len(tengentsubpoints)): subpoint=tengentsubpoints[j] tempwidth=float(((point[0]-subpoint[0])**2+(point[1]-subpoint[1])**2)**0.5) if tempwidth<width: pointmatch[:]=[] pointmatch.append(point) pointmatch.append(subpoint) #print('tempwidth',width) width=tempwidth if len(pointmatch)>0: #print('pointmatch',pointmatch) pointmatchdict.update({(pointmatch[0],pointmatch[1]):width}) widthsort=sorted(pointmatchdict,key=pointmatchdict.get,reverse=True) try: pointmatch=widthsort[0] print('final pointmatch',pointmatch) except: continue if len(pointmatch)>0: x0=int(pointmatch[0][0]) y0=int(pointmatch[0][1]) x1=int(pointmatch[1][0]) y1=int(pointmatch[1][1]) # if imgtypevar.get()=='0': draw.line([(x0,y0),(x1,y1)],fill='yellow') width=float(((x0-x1)**2+(y0-y1)**2)**0.5) print('width',width,'length',kernellength) print('kernelwidth='+str(width*pixelmmratio)) print('kernellength='+str(kernellength*pixelmmratio)) #print('kernelwidth='+str(kernelwidth*pixelmmratio)) tempdict.update({uni:[kernellength,width,pixelmmratio**2*len(pixelloc[0]),kernellength*pixelmmratio,width*pixelmmratio]}) if uni in colortable: canvastext = str(colortable[uni]) else: canvastext = 'No label' # if imgtypevar.get()=='0': draw.text((midx-1, midy+1), text=canvastext, font=smallfont, fill='white') draw.text((midx+1, midy+1), text=canvastext, font=smallfont, fill='white') draw.text((midx-1, midy-1), text=canvastext, font=smallfont, fill='white') draw.text((midx+1, midy-1), text=canvastext, font=smallfont, fill='white') #draw.text((midx,midy),text=canvastext,font=font,fill=(141,2,31,0)) draw.text((midx,midy),text=canvastext,font=smallfont,fill='black') #print(event.x, event.y, labels[event.x, event.y], ulx, uly, rlx, rly) #recborder = canvas.create_rectangle(ulx, uly, rlx, rly, outline='red') #drawcontents.append(recborder) kernersizes.update({file:tempdict}) originheight,originwidth=batch_Multigraybands[file].size image=imageband.resize([originwidth,originheight],resample=Image.BILINEAR) extcolor="" if whext==True: extcolor= "-extwht" if blkext==True: extcolor="-extblk" image.save(path+'/'+originfile+extcolor+'-sizeresult'+'.png',"PNG") tup=(labels,counts,colortable,[],file) _band,segimg,small_segimg=batch_showcounting(tup,False,True,True,whext,blkext) segimage=segimg.resize([originwidth,originheight],resample=Image.BILINEAR) segimage.save(path+'/'+originfile+extcolor+'-segmentresult'+'.png',"PNG") _band,segimg,small_segimg=batch_showcounting(tup,True,True,True,whext,blkext) segimage=segimg.resize([originwidth,originheight],resample=Image.BILINEAR) segimage.save(path+'/'+originfile+extcolor+'-labelresult'+'.png',"PNG") def batch_export_result(path,file): global kernersizes if len(batch_filenames)==0: messagebox.showerror('No files','Please load images to process') return suggsize=8 smallfont=ImageFont.truetype('cmb10.ttf',size=suggsize) kernersizes={} # path=filedialog.askdirectory() batch_export_ext(path,file,True,False) batch_export_ext(path,file,False,True) # for file in batch_filenames: labeldict=batch_results[file][0] itervalue='iter0' labels=labeldict[itervalue]['labels'] counts=labeldict[itervalue]['counts'] colortable=labeldict[itervalue]['colortable'] head_tail=os.path.split(file) originfile,extension=os.path.splitext(head_tail[1]) if len(path)>0: tup=(labels,counts,colortable,[],file) _band,segimg,small_segimg=batch_showcounting(tup,False) #imageband=outputimgbands[file][itervalue] imageband=segimg draw=ImageDraw.Draw(imageband) uniquelabels=list(colortable.keys()) # tempdict={} pixelmmratio=1.0 #print('coinsize',coinsize.get(),'pixelmmratio',pixelmmratio) print('pixelmmratio',pixelmmratio) # for uni in uniquelabels: # if uni !=0: # pixelloc = np.where(labels == float(uni)) # try: # ulx = min(pixelloc[1]) # except: # continue # uly = min(pixelloc[0]) # rlx = max(pixelloc[1]) # rly = max(pixelloc[0]) # print(ulx, uly, rlx, rly) # midx = ulx + int((rlx - ulx) / 2) # midy = uly + int((rly - uly) / 2) # length={} # currborder=tkintercore.get_boundaryloc(labels,uni) # for i in range(len(currborder[0])): # for j in range(i+1,len(currborder[0])): # templength=float(((currborder[0][i]-currborder[0][j])**2+(currborder[1][i]-currborder[1][j])**2)**0.5) # length.update({(i,j):templength}) # sortedlength=sorted(length,key=length.get,reverse=True) # try: # topcouple=sortedlength[0] # except: # continue # kernellength=length[topcouple] # i=topcouple[0] # j=topcouple[1] # x0=currborder[1][i] # y0=currborder[0][i] # x1=currborder[1][j] # y1=currborder[0][j] # #slope=float((y0-y1)/(x0-x1)) # linepoints=[(currborder[1][i],currborder[0][i]),(currborder[1][j],currborder[0][j])] # #draw.line(linepoints,fill='yellow') # #points=linepixels(currborder[1][i],currborder[0][i],currborder[1][j],currborder[0][j]) # # lengthpoints=cal_kernelsize.bresenhamline(x0,y0,x1,y1) #x0,y0,x1,y1 # for point in lengthpoints: # # if imgtypevar.get()=='0': # draw.point([int(point[0]),int(point[1])],fill='yellow') # tengentaddpoints=cal_kernelsize.tengentadd(x0,y0,x1,y1,rlx,rly,labels,uni) #find tangent line above # #for point in tengentaddpoints: # #if int(point[0])>=ulx and int(point[0])<=rlx and int(point[1])>=uly and int(point[1])<=rly: # # draw.point([int(point[0]),int(point[1])],fill='green') # tengentsubpoints=cal_kernelsize.tengentsub(x0,y0,x1,y1,ulx,uly,labels,uni) #find tangent line below # #for point in tengentsubpoints: # # draw.point([int(point[0]),int(point[1])],fill='green') # pointmatchdict={} # for i in range(len(tengentaddpoints)): #find the pixel pair with shortest distance # width=kernellength # pointmatch=[] # point=tengentaddpoints[i] # try: # templabel=labels[int(point[1]),int(point[0])] # except: # continue # if templabel==uni: # for j in range(len(tengentsubpoints)): # subpoint=tengentsubpoints[j] # tempwidth=float(((point[0]-subpoint[0])**2+(point[1]-subpoint[1])**2)**0.5) # if tempwidth<width: # pointmatch[:]=[] # pointmatch.append(point) # pointmatch.append(subpoint) # #print('tempwidth',width) # width=tempwidth # if len(pointmatch)>0: # #print('pointmatch',pointmatch) # pointmatchdict.update({(pointmatch[0],pointmatch[1]):width}) # widthsort=sorted(pointmatchdict,key=pointmatchdict.get,reverse=True) # try: # pointmatch=widthsort[0] # print('final pointmatch',pointmatch) # except: # continue # if len(pointmatch)>0: # x0=int(pointmatch[0][0]) # y0=int(pointmatch[0][1]) # x1=int(pointmatch[1][0]) # y1=int(pointmatch[1][1]) # # if imgtypevar.get()=='0': # draw.line([(x0,y0),(x1,y1)],fill='yellow') # width=float(((x0-x1)**2+(y0-y1)**2)**0.5) # print('width',width,'length',kernellength) # print('kernelwidth='+str(width*pixelmmratio)) # print('kernellength='+str(kernellength*pixelmmratio)) # #print('kernelwidth='+str(kernelwidth*pixelmmratio)) # tempdict.update({uni:[kernellength,width,pixelmmratio**2*len(pixelloc[0]),kernellength*pixelmmratio,width*pixelmmratio]}) # if uni in colortable: # canvastext = str(colortable[uni]) # else: # canvastext = 'No label' # # if imgtypevar.get()=='0': # draw.text((midx-1, midy+1), text=canvastext, font=smallfont, fill='white') # draw.text((midx+1, midy+1), text=canvastext, font=smallfont, fill='white') # draw.text((midx-1, midy-1), text=canvastext, font=smallfont, fill='white') # draw.text((midx+1, midy-1), text=canvastext, font=smallfont, fill='white') # #draw.text((midx,midy),text=canvastext,font=font,fill=(141,2,31,0)) # draw.text((midx,midy),text=canvastext,font=smallfont,fill='black') #print(event.x, event.y, labels[event.x, event.y], ulx, uly, rlx, rly) #recborder = canvas.create_rectangle(ulx, uly, rlx, rly, outline='red') #drawcontents.append(recborder) # kernersizes.update({file:tempdict}) originheight,originwidth=batch_Multigraybands[file].size image=imageband.resize([originwidth,originheight],resample=Image.BILINEAR) image.save(path+'/'+originfile+'-sizeresult'+'.png',"PNG") tup=(labels,counts,colortable,[],file) _band,segimg,small_segimg=batch_showcounting(tup,False) segimage=segimg.resize([originwidth,originheight],resample=Image.BILINEAR) segimage.save(path+'/'+originfile+'-segmentresult'+'.png',"PNG") _band,segimg,small_segimg=batch_showcounting(tup,True) segimage=segimg.resize([originwidth,originheight],resample=Image.BILINEAR) segimage.save(path+'/'+originfile+'-labelresult'+'.png',"PNG") originrestoredband=np.copy(labels) restoredband=originrestoredband.astype('uint8') colordicesband=batch_colordicesband[file] colordiv=np.zeros((colordicesband.shape[0],colordicesband.shape[1],3)) batch_savePCAimg(path,originfile,file) # kvar=int(kmeans.get()) # print('kvar',kvar) # for i in range(kvar): # locs=np.where(colordicesband==i) # colordiv[locs]=colorbandtable[i] # colordivimg=Image.fromarray(colordiv.astype('uint8')) # colordivimg.save(path+'/'+originfile+'-colordevice'+'.jpeg',"JPEG") colordivimg=Image.open(file+'-allcolorindex.png') copycolordiv=colordivimg.resize([originwidth,originheight],resample=Image.BILINEAR) copycolordiv.save(path+'/'+originfile+'-colordevice'+'.png',"PNG") #pyplt.imsave(path+'/'+originfile+'-colordevice'+'.png',colordiv.astype('uint8')) # copybinary=np.zeros((originbinaryimg.shape[0],originbinaryimg.shape[1],3),dtype='float') # nonzeros=np.where(originbinaryimg==1) # copybinary[nonzeros]=[255,255,0] # binaryimg=Image.fromarray(copybinary.astype('uint8')) binaryimg=Image.open(file+'-binaryimg.png') copybinaryimg=binaryimg.resize([originwidth,originheight],resample=Image.BILINEAR) copybinaryimg.save(path+'/'+originfile+'-binaryimg'+'.png',"PNG") # pyplt.imsave(path+'/'+originfile+'-binaryimg'+'.png',originbinaryimg.astype('uint8')) #restoredband=cv2.resize(src=restoredband,dsize=(originwidth,originheight),interpolation=cv2.INTER_LINEAR) print(restoredband.shape) currentsizes=kernersizes[file] indicekeys=list(batch_originbandarray[file].keys()) indeclist=[ 0 for i in range(len(indicekeys)*3)] pcalist=[0 for i in range(3)] temppcabands=np.zeros((batch_originpcabands[file].shape[0],len(pcs))) for i in range(len(pcs)): temppcabands[:,i]=temppcabands[:,i]+batch_originpcabands[file][:,pcs[i]-1] pcabands=np.mean(temppcabands,axis=1) pcabands=pcabands.reshape((originheight,originwidth)) datatable={} origindata={} for key in indicekeys: data=batch_originbandarray[file][key] data=data.tolist() tempdict={key:data} origindata.update(tempdict) print(key) # for uni in colortable: print(uniquelabels) print('len uniquelabels',len(uniquelabels)) for uni in uniquelabels: print(uni,colortable[uni]) uniloc=np.where(labels==float(uni)) if len(uniloc)==0 or len(uniloc[1])==0: print('no uniloc\n') print(uniloc[0],uniloc[1]) continue smalluniloc=np.where(originrestoredband==uni) ulx,uly=min(smalluniloc[1]),min(smalluniloc[0]) rlx,rly=max(smalluniloc[1]),max(smalluniloc[0]) width=rlx-ulx length=rly-uly print(width,length) subarea=restoredband[uly:rly+1,ulx:rlx+1] subarea=subarea.tolist() amount=len(uniloc[0]) print(amount) try: sizes=currentsizes[uni] except: print('no sizes\n') continue #templist=[amount,length,width] templist=[amount,sizes[0],sizes[1],sizes[2],sizes[3],sizes[4]] tempdict={colortable[uni]:templist+indeclist+pcalist} #NIR,Redeyes,R,G,B,NDVI,area print(tempdict) for ki in range(len(indicekeys)): originNDVI=origindata[indicekeys[ki]] print(len(originNDVI),len(originNDVI[0])) pixellist=[] for k in range(len(uniloc[0])): #print(uniloc[0][k],uniloc[1][k]) try: tempdict[colortable[uni]][6+ki*3]+=originNDVI[uniloc[0][k]][uniloc[1][k]] except IndexError: print(uniloc[0][k],uniloc[1][k]) tempdict[colortable[uni]][7+ki*3]+=originNDVI[uniloc[0][k]][uniloc[1][k]] pixellist.append(originNDVI[uniloc[0][k]][uniloc[1][k]]) tempdict[colortable[uni]][ki*3+6]=tempdict[colortable[uni]][ki*3+6]/amount tempdict[colortable[uni]][ki*3+8]=np.std(pixellist) pixellist=[] for k in range(len(uniloc[0])): try: tempdict[colortable[uni]][-2]+=pcabands[uniloc[0][k]][uniloc[1][k]] except IndexError: print(uniloc[0][k],uniloc[1][k]) tempdict[colortable[uni]][-3]+=pcabands[uniloc[0][k]][uniloc[1][k]] pixellist.append(pcabands[uniloc[0][k]][uniloc[1][k]]) tempdict[colortable[uni]][-3]=tempdict[colortable[uni]][-3]/amount tempdict[colortable[uni]][-1]=np.std(pixellist) datatable.update(tempdict) filename=path+'/'+originfile+'-outputdata.csv' with open(filename,mode='w') as f: csvwriter=csv.writer(f) rowcontent=['Index','Plot','Area(#pixel)','Length(#pixel)','Width(#pixel)','Area(mm2)','Length(mm)','Width(mm)'] for key in indicekeys: rowcontent.append('avg-'+str(key)) rowcontent.append('sum-'+str(key)) rowcontent.append('std-'+str(key)) rowcontent.append('avg-PCA') rowcontent.append('sum-PCA') rowcontent.append('std-PCA') #csvwriter.writerow(['ID','NIR','Red Edge','Red','Green','Blue','NIRv.s.Green','LabOstu','area(#of pixel)']) #csvwriter.writerow(['Index','Plot','Area(#pixels)','avg-NDVI','sum-NDVI','std-NDVI','Length(#pixel)','Width(#pixel)'])#,'#holes']) csvwriter.writerow(rowcontent) i=1 for uni in datatable: row=[i,uni] for j in range(len(datatable[uni])): row.append(datatable[uni][j]) #row=[i,uni,datatable[uni][0],datatable[uni][1],datatable[uni][2],datatable[uni][5],datatable[uni][3],datatable[uni][4]]#, #datatable[uni][5]] i+=1 print(row) csvwriter.writerow(row) print('total data length=',len(datatable)) # messagebox.showinfo('Saved',message='Results are saved to '+path) # tx=root.winfo_x() # ty=root.winfo_y() # top=Toplevel() # top.attributes("-topmost",True) # w = 300 # h = 150 # dx=100 # dy=100 # top.geometry("%dx%d+%d+%d" % (w, h, tx + dx, ty + dy)) # top.title('Saved') # Message(top,text='Results are saved to '+path,padx=20,pady=20).pack() # okbut=Button(top,text='Okay',command=top.destroy) # okbut.pack(side=BOTTOM) # top.after(10000,top.destroy) # batchfile=path+'/'+originfile+'-batch'+'.txt' # with open(batchfile,'w') as f: # for key in batch.keys(): # f.write(key) # f.write(',') # for i in range(len(batch[key])): # f.write(str(batch[key][i])) # f.write(',') # f.write('\n') # f.close() def batch_exportpath(): global exportpath exportpath=filedialog.askdirectory() while len(exportpath)==0: exportpath=filedialog.askdirectory() ``` #### File: 12HuYang/GridFree/histograms.py ```python import tkinter import axistest def plot ( data,hist,bin_edges,canvas ) : numberOfBins = len ( data ) #root = tkinter.Tk ( ) #width , height = 400 , 350 #canvas = tkinter.Canvas ( root , width = width , height = height ) #canvas.pack ( ) #numberOfStripes = 2 * numberOfBins + 1 numberOfStripes = numberOfBins + 1 barWidth = (400-50) / (numberOfStripes) unitHeight = 300 / ( max ( [ datum[1] for datum in data ] ) ) lastx=0 for i in range ( numberOfBins ) : #ulx=( 2 * i + 1 ) * barWidth if i==0: #ulx=(i+1)*barWidth ulx=25 #rlx=(i+2)*barWidth rlx=25+barWidth else: ulx=lastx rlx=lastx+barWidth #uly=height - unitHeight -12 uly=325 #rlx=( 2 * i + 2 ) * barWidth #rlx=(i+2)*(2*barWidth) lastx=rlx rly=325 - ( data[i][1] ) * unitHeight print(ulx,uly,rlx,rly) canvas.create_rectangle (ulx,uly,rlx,rly, fill = 'blue' ) axistest.drawPlot(25,uly,25+numberOfBins*barWidth,325-(max([datum[1] for datum in data]))*unitHeight,hist,bin_edges,canvas) return 25,25+numberOfBins*barWidth #root.mainloop ( ) if __name__ == '__main__' : plot ( [ [ '1--2' , 1 ] , [ '2--3' , 3 ] , [ '3--4' , 1 ] ] ) ``` #### File: 12HuYang/GridFree/tkinterGUI_nw.py ```python from tkinter import * from tkinter import ttk import tkinter.filedialog as filedialog from tkinter import messagebox from PIL import Image,ImageDraw,ImageFont from PIL import ImageTk,ImageGrab import cv2 from skimage import filters #import rasterio import matplotlib.pyplot as pyplt #from matplotlib.figure import Figure import numpy as np import os #import time import csv import scipy.linalg as la from functools import partial #import threading #import sys #import kplus from sklearn.cluster import KMeans import tkintercorestat #import tkintercorestat_plot import tkintercore import cal_kernelsize #import histograms #import createBins import axistest #from multiprocessing import Pool import lm_method #import batchprocess import sel_area class img(): def __init__(self,size,bands): self.size=size self.bands=bands import batchprocess displayimg={'Origin':None, 'PCs':None, 'Color Deviation':None, 'ColorIndices':None, 'Output':None} previewimg={'Color Deviation':None, 'ColorIndices':None} #cluster=['LabOstu','NDI'] #,'Greenness','VEG','CIVE','MExG','NDVI','NGRDI','HEIGHT'] #cluster=['LabOstu','NDI','Greenness','VEG','CIVE','MExG','NDVI','NGRDI','HEIGHT','Band1','Band2','Band3'] cluster=['PAT_R','PAT_G','PAT_B', 'DIF_R','DIF_G','DIF_B', 'ROO_R','ROO_G','ROO_B', 'GLD_R','GLD_G','GLD_B', 'Band1','Band2','Band3'] colorbandtable=np.array([[255,0,0],[255,127,0],[255,255,0],[127,255,0],[0,255,255],[0,127,255],[0,0,255],[127,0,255],[75,0,130],[255,0,255]],'uint8') #print('colortableshape',colortable.shape) filenames=[] Multiimage={} Multigray={} Multitype={} Multiimagebands={} Multigraybands={} workbandarray={} displaybandarray={} originbandarray={} colorindicearray={} clusterdisplay={} kernersizes={} multi_results={} outputimgdict={} outputimgbands={} outputsegbands={} originsegbands={} oldpcachoice=[] multiselectitems=[] coinbox_list=[] pre_checkbox=[] originpcabands={} batch={'PCweight':[], 'PCsel':[], 'Kmeans':[], 'Kmeans_sel':[], 'Area_max':[], 'Area_min':[], 'shape_max':[], 'shape_min':[], 'nonzero':[]} root=Tk() root.title('GridFree v.1.1.0 ') root.geometry("") root.option_add('*tearoff',False) emptymenu=Menu(root) root.config(menu=emptymenu) screenheight=root.winfo_screenheight() screenwidth=root.winfo_screenwidth() print('screenheight',screenheight,'screenwidth',screenwidth) screenstd=min(screenheight-100,screenwidth-100,850) coinsize=StringVar() selarea=StringVar() refvar=StringVar() imgtypevar=StringVar() edge=StringVar() kmeans=IntVar() pc_combine_up=DoubleVar() pc_combine_down=IntVar() filedropvar=StringVar() displaybut_var=StringVar() buttonvar=IntVar() bandchoice={} checkboxdict={} #minipixelareaclass=0 coinbox=None currentfilename='' currentlabels=None displaylabels=None workingimg=None displaypclabels=None boundaryarea=None outputbutton=None font=None reseglabels=None coindict=None ## Funcitons refarea=None originlabels=None originlabeldict=None changekmeans=False convband=None reflabel=0 minflash=[] dotflash=[] labelplotmap={} mappath='' elesize=[] labellist=[] figdotlist={} havecolorstrip=True kmeanschanged=False pcweightchanged=False originbinaryimg=None clusterchanged=False originselarea=False zoomoff=False maxx=0 minx=0 bins=None loccanvas=None linelocs=[0,0,0,0] maxy=0 miny=0 segmentratio=0 zoombox=[] displayfea_l=0 displayfea_w=0 resizeshape=[] previewshape=[] pcbuttons=[] pcbuttonsgroup=[] def distance(p1,p2): return np.sum((p1-p2)**2) def findratio(originsize,objectsize): oria=originsize[0] orib=originsize[1] obja=objectsize[0] objb=objectsize[1] if oria>obja or orib>objb: ratio=round(max((oria/obja),(orib/objb))) else: ratio=round(min((obja/oria),(objb/orib))) # if oria*orib>850 * 850: if oria*orib>screenstd * screenstd: if ratio<2: ratio=2 return ratio def getkeys(dict): return [*dict] def deletezoom(event,widget): print('leave widget') if len(zoombox)>0: for i in range(len(zoombox)): #print('delete') widget.delete(zoombox.pop(0)) widget.update() def zoom(event,widget,img): global zoombox x=event.x y=event.y #print(x,y) if len(zoombox)>1: widget.delete(zoombox.pop(0)) #print('delete') crop=img.crop((x-15,y-15,x+15,y+15)) w,h=crop.size #print(w,h) crop=crop.resize([w*3,h*3],resample=Image.BILINEAR) w,h=crop.size crop=ImageTk.PhotoImage(crop) zoombox.append(widget.create_image(x+5,y-5,image=crop)) root.update_idletasks() raise NameError #time.sleep(0.1) def changedisplay_pc(frame): for widget in frame.winfo_children(): widget.pack_forget() #widget.configure(image=displayimg[text]) #widget.image=displayimg[text] #widget.pack() w=displayimg['PCs']['Size'][1] l=displayimg['PCs']['Size'][0] widget.config(width=w,height=l) widget.create_image(0,0,image=displayimg['PCs']['Image'],anchor=NW) widget.pack() widget.update() def pcweightupdate(displayframe): getPCs() changedisplay_pc(displayframe) def buttonpress(val,displayframe,buttonframe): global buttonvar,pc_combine_up,kmeans buttonvar.set(val) kmeans.set(1) pc_combine_up.set(0.5) buttonchildren=buttonframe.winfo_children() for child in buttonchildren: child.config(highlightbackground='white') print(buttonchildren[val]) buttonchild=buttonchildren[val] buttonchild.config(highlightbackground='red') print('press button ',buttonvar.get()) getPCs() changedisplay_pc(displayframe) # if kmeans.get()>1: changekmeansbar('') beforecluster('') # changecluster('') def PCbuttons(frame,displayframe): #display pc buttons # buttonvar=IntVar() #buttonvar.set(0) for widget in frame.winfo_children(): widget.pack_forget() buttonframe=LabelFrame(frame) buttonframe.pack() for i in range(len(pcbuttons)): butimg=pcbuttons[i] but=Button(buttonframe,text='',image=butimg,compound=TOP,command=partial(buttonpress,i,displayframe,buttonframe)) if i==buttonvar.get(): but.config(highlightbackground='red') row=int(i/3) col=i%3 # print(row,col) but.grid(row=int(i/3),column=col) print('default button',buttonvar.get()) # change cluster,display def displaypreview(text): global figcanvas,resviewframe for widget in resviewframe.winfo_children(): widget.pack_forget() # previewframe=Canvas(frame,width=450,height=400,bg='white') figcanvas.pack() figcanvas.delete(ALL) if text=='Color Deviation': previewtext='ColorIndices' if text=='ColorIndices': previewtext='Color Deviation' previewimage=previewimg[previewtext]['Image'] figcanvas.create_image(0,0,image=previewimage,anchor=NW) figcanvas.update() def switchevent(event,widget,img): global zoomoff,zoomfnid_m,zoomfnid_l,zoombox zoomoff= not zoomoff if zoomoff==True: widget.unbind('<Motion>',zoomfnid_m) widget.unbind('<Leave>',zoomfnid_l) if len(zoombox)>0: for i in range(len(zoombox)): widget.delete(zoombox.pop(0)) widget.update() else: zoomfnid_m=widget.bind('<Motion>',lambda event,arg=widget:zoom(event,arg,img)) zoomfnid_l=widget.bind('<Leave>',lambda event,arg=widget:deletezoom(event,arg)) def changedisplayimg(frame,text): global displaybut_var,figcanvas,resviewframe,reflabel displaybut_var.set(disbuttonoption[text]) for widget in frame.winfo_children(): widget.pack_forget() #widget.configure(image=displayimg[text]) #widget.image=displayimg[text] #widget.pack() w=displayimg[text]['Size'][1] l=displayimg[text]['Size'][0] widget.config(width=w,height=l) widget.create_image(0,0,image=displayimg[text]['Image'],anchor=NW) widget.pack() widget.update() global rects,selareapos,app,delapp,delrects,delselarea,originselarea global zoomfnid_m,zoomfnid_l app=sel_area.Application(widget) # delapp=sel_area.Application(widget) if text=='Output': try: image=outputsegbands[currentfilename]['iter0'] displayfig() except: return zoomfnid_m=widget.bind('<Motion>',lambda event,arg=widget:zoom(event,arg,image)) zoomfnid_l=widget.bind('<Leave>',lambda event,arg=widget:deletezoom(event,arg)) delrects=app.start(zoomfnid_m,zoomfnid_l) widget.bind('<Double-Button-1>',lambda event,arg=widget:switchevent(event,arg,image)) print('delrects',delrects) else: reflabel=0 print('reflabel=',reflabel) try: delelareadim=app.getinfo(delrects[1]) if delelareadim!=[]: delselarea=delelareadim app.end() except: pass if text=='Origin': try: image=originsegbands['Origin'] zoomfnid_m=widget.bind('<Motion>',lambda event,arg=widget:zoom(event,arg,image)) zoomfnid_l=widget.bind('<Leave>',lambda event,arg=widget:deletezoom(event,arg)) except: return widget.bind('<Double-Button-1>',lambda event,arg=widget:switchevent(event,arg,image)) for widget in resviewframe.winfo_children(): widget.pack_forget() rects=app.start() print(rects) originselarea=True else: widget.unbind('<Motion>') selareadim=app.getinfo(rects[1]) if selareadim!=[]: selareapos=selareadim app.end(rects) if text=='PCs': selareadim=app.getinfo(rects[1]) if selareadim!=[0,0,1,1] and selareadim!=[] and selareadim!=selareapos: selareapos=selareadim if selareapos!=[0,0,1,1] and originselarea==True: #need to redo PCA npfilter=np.zeros((displayimg['Origin']['Size'][0],displayimg['Origin']['Size'][1])) filter=Image.fromarray(npfilter) draw=ImageDraw.Draw(filter) draw.ellipse(selareapos,fill='red') filter=np.array(filter) filter=np.divide(filter,np.max(filter)) filter=cv2.resize(filter,(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR) partialsingleband(filter) originselarea=False pass PCbuttons(resviewframe,frame) pass if text=='Color Deviation': #displaypreview displaypreview(text) pass if text=='ColorIndices': #displaypreview displaypreview(text) pass #print('change to '+text) #time.sleep(1) def updateresizeshape(shape,content): shape.append(int(content)) return shape def generatedisplayimg(filename): # init display images global resizeshape,previewshape try: # firstimg=Multiimagebands[filename] #height,width=firstimg.size # height,width,c=displaybandarray[filename]['LabOstu'].shape bandsize=Multiimagebands[filename].size if bandsize[0]*bandsize[1]>2000*2000: ratio=findratio([bandsize[0],bandsize[1]],[2000,2000]) else: ratio=1 height,width=bandsize[0]/ratio,bandsize[1]/ratio # ratio=findratio([height,width],[850,850]) ratio=findratio([height,width],[screenstd,screenstd]) print('displayimg ratio',ratio) resizeshape=[] # if height*width<850*850: if height*width<screenstd*screenstd: #resize=cv2.resize(Multiimage[filename],(int(width*ratio),int(height*ratio)),interpolation=cv2.INTER_LINEAR) updateresizeshape(resizeshape,width*ratio) updateresizeshape(resizeshape,height*ratio) # resizeshape.append(width*ratio) # resizeshape.append(height*ratio) if height>screenstd: resizeshape=[] ratio=round(height/screenstd) updateresizeshape(resizeshape,width*ratio) updateresizeshape(resizeshape,height*ratio) if width>screenstd: resizeshape=[] ratio=round(width/screenstd) updateresizeshape(resizeshape,width*ratio) updateresizeshape(resizeshape,height*ratio) else: #resize=cv2.resize(Multiimage[filename],(int(width/ratio),int(height/ratio)),interpolation=cv2.INTER_LINEAR) updateresizeshape(resizeshape,width/ratio) updateresizeshape(resizeshape,height/ratio) ratio=findratio([height,width],[400,450]) previewshape=[] if height*width<450*400: #resize=cv2.resize(Multiimage[filename],(int(width*ratio),int(height*ratio)),interpolation=cv2.INTER_LINEAR) updateresizeshape(previewshape,width*ratio) updateresizeshape(previewshape,height*ratio) if height>400: previewshape=[] ratio=round(height/screenstd) updateresizeshape(previewshape,width/ratio) updateresizeshape(previewshape,height/ratio) if width>450: previewshape=[] ratio=round(width/screenstd) updateresizeshape(previewshape,width/ratio) updateresizeshape(previewshape,height/ratio) else: #resize=cv2.resize(Multiimage[filename],(int(width/ratio),int(height/ratio)),interpolation=cv2.INTER_LINEAR) updateresizeshape(previewshape,width/ratio) updateresizeshape(previewshape,height/ratio) resize=cv2.resize(Multiimage[filename],(int(resizeshape[0]),int(resizeshape[1])),interpolation=cv2.INTER_LINEAR) originimg=Image.fromarray(resize.astype('uint8')) originsegbands.update({'Origin':originimg}) rgbimg=Image.fromarray(resize.astype('uint8')) draw=ImageDraw.Draw(rgbimg) suggsize=14 font=ImageFont.truetype('cmb10.ttf',size=suggsize) content='\n File: '+filename draw.text((10-1, 10+1), text=content, font=font, fill='white') draw.text((10+1, 10+1), text=content, font=font, fill='white') draw.text((10-1, 10-1), text=content, font=font, fill='white') draw.text((10+1, 10-1), text=content, font=font, fill='white') #draw.text((10,10),text=content,font=font,fill=(141,2,31,0)) draw.text((10,10),text=content,font=font,fill='black') rgbimg=ImageTk.PhotoImage(rgbimg) tempdict={} tempdict.update({'Size':resize.shape}) tempdict.update({'Image':rgbimg}) except: tempdict={} tempimg=np.zeros((screenstd,screenstd)) tempdict.update({'Size':tempimg.shape}) tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(tempimg.astype('uint8')))}) displayimg['Origin']=tempdict #if height*width<850*850: # resize=cv2.resize(Multigray[filename],(int(width*ratio),int(height*ratio)),interpolation=cv2.INTER_LINEAR) #else: #resize=cv2.resize(Multigray[filename],(int(width/ratio),int(height/ratio)),interpolation=cv2.INTER_LINEAR) tempimg=np.zeros((screenstd,screenstd)) tempdict={} try: tempdict.update({'Size':resize.shape}) tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(np.zeros((int(resizeshape[1]),int(resizeshape[0]))).astype('uint8')))}) except: tempdict.update({'Size':tempimg.shape}) #if height*width<850*850: # tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(np.zeros((int(height*ratio),int(width*ratio))).astype('uint8')))}) #else: # tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(np.zeros((int(height/ratio),int(width/ratio))).astype('uint8')))}) # tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(np.zeros((int(resizeshape[1]),int(resizeshape[0]))).astype('uint8')))}) tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(tempimg.astype('uint8')))}) displayimg['Output']=tempdict tempdict={} try: tempdict.update({'Size':resize.shape}) tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(np.zeros((int(resizeshape[1]),int(resizeshape[0]))).astype('uint8')))}) except: tempdict.update({'Size':tempimg.shape}) tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(tempimg.astype('uint8')))}) displayimg['PCs']=tempdict tempdict={} temppreviewdict={} temppreviewimg=np.zeros((450,400)) try: tempband=np.zeros((displaybandarray[filename]['LabOstu'][:,:,0].shape)) # tempband=tempband+displaybandarray[filename]['LabOstu'] # ratio=findratio([tempband.shape[0],tempband.shape[1]],[850,850]) #if tempband.shape[0]*tempband.shape[1]<850*850: # tempband=cv2.resize(ratio,(int(tempband.shape[1]*ratio),int(tempband.shape[0]*ratio)),interpolation=cv2.INTER_LINEAR) #else: # tempband=cv2.resize(ratio,(int(tempband.shape[1]/ratio),int(tempband.shape[0]/ratio)),interpolation=cv2.INTER_LINEAR) tempband=cv2.resize(tempband,(int(resizeshape[0]),int(resizeshape[1])),interpolation=cv2.INTER_LINEAR) tempdict.update({'Size':tempband.shape}) tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(tempband[:,:,2].astype('uint8')))}) temppreview=cv2.resize(tempband,(int(previewshape[0]),int(previewshape[1])),interpolation=cv2.INTER_LINEAR) temppreview=Image.fromarray(temppreview.astype('uint8')) temppreviewdict.update({'Size':previewshape}) temppreviewdict.update({'Image':ImageTk.PhotoImage(temppreview)}) # print('resizeshape',resizeshape) #pyplt.imsave('displayimg.png',tempband[:,:,0]) #indimg=cv2.imread('displayimg.png') except: tempdict.update({'Size':tempimg.shape}) tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(tempimg.astype('uint8')))}) temppreviewdict.update({'Size':temppreviewimg.shape}) temppreviewdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(temppreviewimg.astype('uint8')))}) displayimg['ColorIndices']=tempdict previewimg['ColorIndices']=temppreviewdict #resize=cv2.resize(Multigray[filename],(int(resizeshape[0]),int(resizeshape[1])),interpolation=cv2.INTER_LINEAR) #grayimg=ImageTk.PhotoImage(Image.fromarray(resize.astype('uint8'))) #tempdict={} #tempdict.update({'Size':resize.shape}) #tempdict.update({'Image':grayimg}) tempdict={} temppreviewdict={} try: colordeviate=np.zeros((tempband[:,:,0].shape[0],tempband[:,:,0].shape[1],3),'uint8') kvar=int(kmeans.get()) for i in range(kvar): locs=np.where(tempband[:,:,0]==i) colordeviate[locs]=colorbandtable[i,:] # pyplt.imsave('colordeviation.png',colordeviate) # # colordevimg=Image.fromarray(colordeviate.astype('uint8')) # # colordevimg.save('colordeviation.png',"PNG") # testcolor=Image.open('colordeviation.png') print('colordeviation.png') # colortempdict={} colordeviate=cv2.resize(colordeviate,(int(resizeshape[0]),int(resizeshape[1])),interpolation=cv2.INTER_LINEAR) tempdict.update({'Size':colordeviate.shape}) tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(colordeviate.astype('uint8')))}) # colortempdict.update({'Size':colordeviate.shape}) # colortempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(colordeviate.astype('uint8')))}) # colortempdict.update({'Image':ImageTk.PhotoImage(testcolor)}) # tempdict={} temppreview=cv2.resize(colordeviate,(int(previewshape[0]),int(previewshape[1])),interpolation=cv2.INTER_LINEAR) temppreviewdict.update({'Size':temppreview.shape}) temppreviewdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(temppreview[:,:,0].astype('uint8')))}) except: tempdict.update({'Size':tempimg.shape}) tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(tempimg.astype('uint8')))}) temppreviewdict.update({'Size':temppreviewimg.shape}) temppreviewdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(temppreviewimg.astype('uint8')))}) # displayimg['Color Deviation']=colortempdict displayimg['Color Deviation']=tempdict previewimg['Color Deviation']=temppreviewdict def Open_File(filename): #add to multi-image,multi-gray #call band calculation global Multiimage,Multigray,Multitype,Multiimagebands,Multigraybands,filenames try: Filersc=cv2.imread(filename,flags=cv2.IMREAD_ANYCOLOR) ndim=np.ndim(Filersc) if ndim==2: height,width=np.shape(Filersc) channel=1 Filersc.reshape((height,width,channel)) else: height,width,channel=np.shape(Filersc) Filesize=(height,width) print('filesize:',height,width) RGBfile=cv2.cvtColor(Filersc,cv2.COLOR_BGR2RGB) Multiimage.update({filename:RGBfile}) if ndim==2: Grayfile=np.copy(Filersc) else: Grayfile=cv2.cvtColor(Filersc,cv2.COLOR_BGR2Lab) Grayfile=cv2.cvtColor(Grayfile,cv2.COLOR_BGR2GRAY) #Grayfile=cv2.GaussianBlur(Grayfile,(3,3),cv2.BORDER_DEFAULT) #ostu=filters.threshold_otsu(Grayfile) #Grayfile=Grayfile.astype('float32') #Grayfile=Grayfile/ostu Grayimg=img(Filesize,Grayfile) RGBbands=np.zeros((channel,height,width)) for j in range(channel): band=RGBfile[:,:,j] band=np.where(band==0,1e-6,band) nans=np.isnan(band) band[nans]=1e-6 #ostu=filters.threshold_otsu(band) #band=band/ostu RGBbands[j,:,:]=band RGBimg=img(Filesize,RGBbands) tempdict={filename:RGBimg} Multiimagebands.update(tempdict) tempdict={filename:Grayfile} Multigray.update(tempdict) tempdict={filename:0} Multitype.update(tempdict) tempdict={filename:Grayimg} Multigraybands.update(tempdict) except: messagebox.showerror('Invalid Image Format','Cannot open '+filename) return False filenames.append(filename) return True def Open_Map(): if proc_mode[proc_name].get()=='1': batchprocess.Open_batchfile() return global mappath,elesize,labellist filepath=filedialog.askopenfilename() if len(filepath)>0: if 'csv' in filepath: mappath=filepath elesize=[] labellist=[] rows=[] print('open map at: '+mappath) with open(mappath,mode='r',encoding='utf-8-sig') as f: csvreader=csv.reader(f) for row in csvreader: rows.append(row) temprow=[] for ele in row: if ele is not '': temprow.append(ele) elesize.append(len(temprow)) for i in range(len(rows)): for j in range(len(rows[i])): if rows[i][j]!='': labellist.append(rows[i][j]) else: messagebox.showerror('Invalide File',message='Please open csv formate file as map file.') corlortable=tkintercorestat.get_colortable(reseglabels) tup=(reseglabels,[],corlortable,{},currentfilename) print(elesize) mapdict,mapimage,smallset=showcounting(tup,True,True,True) tempimgbands={} tempimgdict={} tempsmall={} tempimgbands.update({'iter0':mapimage}) tempimgdict.update({'iter0':mapdict}) tempsmall.update({'iter0':smallset}) outputimgdict.update({currentfilename:tempimgdict}) outputimgbands.update({currentfilename:tempimgbands}) outputsegbands.update({currentfilename:tempsmall}) changeoutputimg(currentfilename,'1') def Open_Multifile(): global extractbutton,outputbutton if proc_mode[proc_name].get()=='1': batchprocess.Open_batchfolder() extractbutton.config(state=NORMAL) outputbutton.config(state=NORMAL) return # else: # extractbutton.config(state=DISABLED) global Multiimage,Multigray,Multitype,Multiimagebands,changefileframe,imageframe,Multigraybands,filenames global changefiledrop,filedropvar,originbandarray,displaybandarray,clusterdisplay,currentfilename,resviewframe global refsubframe,reseglabels,refbutton,figcanvas,loccanvas,originlabels,changekmeans,refarea global originlabeldict,convband,panelA global havecolorstrip global colordicesband,oldpcachoice global pccombinebar_up global displaylabels,displaypclabels global buttonvar global colorindicearray global selarea MULTIFILES=filedialog.askopenfilenames() root.update() if len(MULTIFILES)>0: Multiimage={} Multigray={} Multitype={} Multiimagebands={} Multigraybands={} filenames=[] originbandarray={} colorindicearray={} displaybandarray={} clusterdisplay={} oldpcachoice=[] reseglabels=None originlabels=None originlabeldict=None #changekmeans=True convband=None refvar.set('0') kmeans.set('2') panelA.delete(ALL) panelA.unbind('<Button-1>') panelA.unbind('<Shift-Button-1>') refarea=None havecolorstrip=False displaypclabels=None buttonvar.set(0) # if 'NDI' in bandchoice: # bandchoice['NDI'].set('1') # if 'NDVI' in bandchoice: # bandchoice['NDVI'].set('1') refbutton.config(state=DISABLED) # selareabutton.configure(state=DISABLED) selarea.set('0') figcanvas.delete(ALL) #loccanvas=None for widget in refsubframe.winfo_children(): widget.config(state=DISABLED) #for widget in resviewframe.winfo_children(): # widget.config(state=DISABLED) if outputbutton is not None: outputbutton.config(state=DISABLED) for i in range(len(MULTIFILES)): if Open_File(MULTIFILES[i])==False: return generatedisplayimg(filenames[0]) changedisplayimg(imageframe,'Origin') # imageframe.update() # raise NameError # yield # thread=threading.Thread(target=singleband,args=(MULTIFILES[i],)) singleband(MULTIFILES[i]) # thread.start() # thread.join() for widget in changefileframe.winfo_children(): widget.pack_forget() currentfilename=filenames[0] # filedropvar.set(filenames[0]) # changefiledrop=OptionMenu(changefileframe,filedropvar,*filenames,command=partial(changeimage,imageframe)) # changefiledrop.pack() #singleband(filenames[0]) generatedisplayimg(filenames[0]) # changedisplayimg(imageframe,'Origin') getPCs() if len(bandchoice)>0: for i in range(len(cluster)): bandchoice[cluster[i]].set('') #changedisplayimg(imageframe,'Origin') kmeans.set(1) #reshapemodified_tif=np.zeros((displaybandarray[currentfilename]['LabOstu'].shape[0]*displaybandarray[currentfilename]['LabOstu'].shape[1],3)) #colordicesband=kmeansclassify(['LabOstu'],reshapemodified_tif) displaylabels=kmeansclassify() generateimgplant('') changedisplayimg(imageframe,'Origin') # if len(bandchoice)>0: # bandchoice['LabOstu'].set('1') global buttondisplay,pcaframe,kmeansbar for widget in buttondisplay.winfo_children(): widget.config(state=NORMAL) # for widget in pcaframe.winfo_children(): # for widget in pcselframe.winfo_children(): # widget.config(state=NORMAL) extractbutton.config(state=NORMAL) kmeansbar.state(["!disabled"]) pccombinebar_up.state(["!disabled"]) def fillpartialbands(vector,vectorindex,band,filter_vector): nonzero=np.where(filter_vector!=0) vector[nonzero,vectorindex]=vector[nonzero,vectorindex]+band def fillbands(originbands,displaybands,vector,vectorindex,name,band,filter=0): tempdict={name:band} if isinstance(filter,int): if name not in originbands: originbands.update(tempdict) image=cv2.resize(band,(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR) displaydict={name:image} displaybands.update(displaydict) fea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] vector[:,vectorindex]=vector[:,vectorindex]+fea_bands else: if name not in originbands: originbands.update(tempdict) image=cv2.resize(band,(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR) image=np.multiply(image,filter) displaydict={name:image} displaybands.update(displaydict) fea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] vector[:,vectorindex]=vector[:,vectorindex]+fea_bands return def plot3d(pcas): from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import import matplotlib.pyplot as plt fig=plt.figure() ax=fig.add_subplot(111,projection='3d') x=pcas[:,0] y=pcas[:,1] z=pcas[:,2]*0+np.min(pcas[:,2]) ax.scatter(x,y,z,color='tab:purple') x=pcas[:,0]*0+np.min(pcas[:,0]) y=pcas[:,1] z=pcas[:,2] ax.scatter(x,y,z,color='tab:pink') x=pcas[:,0] y=pcas[:,1]*0+np.max(pcas[:,1]) z=pcas[:,2] ax.scatter(x,y,z,color='tab:olive') ax.set_xlabel('Color Indices PC1') ax.set_ylabel('Color Indices PC2') ax.set_zlabel('Color Indices PC3') # plt.show() plt.savefig('3dplot_PC.png') def partialoneband(filter): global displaybandarray,originpcabands global pcbuttons global nonzero_vector,partialpca partialpca=True bands=Multiimagebands[currentfilename].bands channel,fea_l,fea_w=bands.shape nonzero=np.where(filter!=0) RGB_vector=np.zeros((displayfea_l*displayfea_w,3)) colorindex_vector=np.zeros((displayfea_l*displayfea_w,12)) filter_vector=filter.reshape((displayfea_l*displayfea_w),1)[:,0] originbands={} displays={} Red=cv2.resize(bands[0,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero] Green=cv2.resize(bands[0,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero] # Red=cv2.adaptiveThreshold(Red,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2) # Green=cv2.adaptiveThreshold(Green,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2) Blue=cv2.resize(bands[0,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero] # Blue=cv2.threshold(Blue,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) fillpartialbands(RGB_vector,0,Red,filter_vector) fillpartialbands(RGB_vector,1,Green,filter_vector) fillpartialbands(RGB_vector,2,Blue,filter_vector) PAT_R=Red PAT_G=Red PAT_B=Red ROO_R=Red ROO_G=Red ROO_B=Red DIF_R=Red DIF_G=Red DIF_B=Red GLD_R=Red GLD_G=Red GLD_B=Red fillpartialbands(colorindex_vector,0,PAT_R,filter_vector) fillpartialbands(colorindex_vector,1,PAT_G,filter_vector) fillpartialbands(colorindex_vector,2,PAT_B,filter_vector) fillpartialbands(colorindex_vector,3,ROO_R,filter_vector) fillpartialbands(colorindex_vector,4,ROO_G,filter_vector) fillpartialbands(colorindex_vector,5,ROO_B,filter_vector) fillpartialbands(colorindex_vector,6,DIF_R,filter_vector) fillpartialbands(colorindex_vector,7,DIF_G,filter_vector) fillpartialbands(colorindex_vector,8,DIF_B,filter_vector) fillpartialbands(colorindex_vector,9,GLD_R,filter_vector) fillpartialbands(colorindex_vector,10,GLD_G,filter_vector) fillpartialbands(colorindex_vector,11,GLD_B,filter_vector) nonzero_vector=np.where(filter_vector!=0) displayfea_vector=np.concatenate((RGB_vector,colorindex_vector),axis=1) featurechannel=14 # np.savetxt('color-index.csv',displayfea_vector,delimiter=',',fmt='%10.5f') # displayfea_vector=np.concatenate((RGB_vector,colorindex_vector),axis=1) originpcabands.update({currentfilename:displayfea_vector}) pcabandsdisplay=displayfea_vector[:,:14] pcabandsdisplay=pcabandsdisplay.reshape(displayfea_l,displayfea_w,featurechannel) tempdictdisplay={'LabOstu':pcabandsdisplay} displaybandarray.update({currentfilename:tempdictdisplay}) # originbandarray.update({currentfilename:originbands}) # Red=displays['Band1'] # Green=displays['Band2'] # Blue=displays['Band3'] # convimg=np.zeros((Red.shape[0],Red.shape[1],3)) # convimg[:,:,0]=Red # convimg[:,:,1]=Green # convimg[:,:,2]=Blue # convimg=Image.fromarray(convimg.astype('uint8')) # convimg.save('convimg.png','PNG') pcbuttons=[] need_w=int(450/3) need_h=int(400/4) for i in range(2,3): band=np.copy(pcabandsdisplay[:,:,i]) # imgband=(band-band.min())*255/(band.max()-band.min()) imgband=np.copy(band) pcimg=Image.fromarray(imgband.astype('uint8'),'L') # pcimg.save('pc'+'_'+str(i)+'.png',"PNG") pcimg.thumbnail((need_w,need_h),Image.ANTIALIAS) # pcimg.save('pc'+'_'+str(i)+'.png',"PNG") # ratio=max(displayfea_l/need_h,displayfea_w/need_w) # print('origin band range',band.max(),band.min()) # # band,cache=tkintercorestat.pool_forward(band,{"f":int(ratio),"stride":int(ratio)}) # band=cv2.resize(band,(need_w,need_h),interpolation=cv2.INTER_LINEAR) # bandrange=band.max()-band.min() # print('band range',band.max(),band.min()) # band=(band-band.min())/bandrange*255 # print('button img range',band.max(),band.min()) # buttonimg=Image.fromarray(band.astype('uint8'),'L') pcbuttons.append(ImageTk.PhotoImage(pcimg)) def partialsingleband(filter): global displaybandarray,originpcabands global pcbuttons global nonzero_vector,partialpca partialpca=True bands=Multiimagebands[currentfilename].bands channel,fea_l,fea_w=bands.shape nonzero=np.where(filter!=0) RGB_vector=np.zeros((displayfea_l*displayfea_w,3)) colorindex_vector=np.zeros((displayfea_l*displayfea_w,12)) filter_vector=filter.reshape((displayfea_l*displayfea_w),1)[:,0] originbands={} displays={} if channel==1: # Red=cv2.resize(bands[0,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero] # Green=cv2.resize(bands[0,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero] # Blue=cv2.resize(bands[0,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero] # fillpartialbands(RGB_vector,0,Red,filter_vector) # fillpartialbands(RGB_vector,1,Green,filter_vector) # fillpartialbands(RGB_vector,2,Blue,filter_vector) partialoneband(filter) return else: Red=cv2.resize(bands[0,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero] Green=cv2.resize(bands[1,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero] Blue=cv2.resize(bands[2,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero] fillpartialbands(RGB_vector,0,Red,filter_vector) fillpartialbands(RGB_vector,1,Green,filter_vector) fillpartialbands(RGB_vector,2,Blue,filter_vector) PAT_R=Red/(Red+Green) PAT_G=Green/(Green+Blue) PAT_B=Blue/(Blue+Red) ROO_R=Red/Green ROO_G=Green/Blue ROO_B=Blue/Red DIF_R=2*Red-Green-Blue DIF_G=2*Green-Blue-Red DIF_B=2*Blue-Red-Green GLD_R=Red/(np.multiply(np.power(Blue,0.618),np.power(Green,0.382))) GLD_G=Green/(np.multiply(np.power(Blue,0.618),np.power(Red,0.382))) GLD_B=Blue/(np.multiply(np.power(Green,0.618),np.power(Red,0.382))) fillpartialbands(colorindex_vector,0,PAT_R,filter_vector) fillpartialbands(colorindex_vector,1,PAT_G,filter_vector) fillpartialbands(colorindex_vector,2,PAT_B,filter_vector) fillpartialbands(colorindex_vector,3,ROO_R,filter_vector) fillpartialbands(colorindex_vector,4,ROO_G,filter_vector) fillpartialbands(colorindex_vector,5,ROO_B,filter_vector) fillpartialbands(colorindex_vector,6,DIF_R,filter_vector) fillpartialbands(colorindex_vector,7,DIF_G,filter_vector) fillpartialbands(colorindex_vector,8,DIF_B,filter_vector) fillpartialbands(colorindex_vector,9,GLD_R,filter_vector) fillpartialbands(colorindex_vector,10,GLD_G,filter_vector) fillpartialbands(colorindex_vector,11,GLD_B,filter_vector) for i in range(12): perc=np.percentile(colorindex_vector[:,i],1) print('perc',perc) colorindex_vector[:,i]=np.where(colorindex_vector[:,i]<perc,perc,colorindex_vector[:,i]) perc=np.percentile(colorindex_vector[:,i],99) print('perc',perc) colorindex_vector[:,i]=np.where(colorindex_vector[:,i]>perc,perc,colorindex_vector[:,i]) for i in range(3): perc=np.percentile(RGB_vector[:,i],1) print('perc',perc) RGB_vector[:,i]=np.where(RGB_vector[:,i]<perc,perc,RGB_vector[:,i]) perc=np.percentile(RGB_vector[:,i],99) print('perc',perc) RGB_vector[:,i]=np.where(RGB_vector[:,i]>perc,perc,RGB_vector[:,i]) nonzero_vector=np.where(filter_vector!=0) rgb_M=np.mean(RGB_vector[nonzero_vector,:].T,axis=1) colorindex_M=np.mean(colorindex_vector[nonzero_vector,:].T,axis=1) print('rgb_M',rgb_M,'colorindex_M',colorindex_M) rgb_C=RGB_vector[nonzero_vector,:][0]-rgb_M.T colorindex_C=colorindex_vector[nonzero_vector,:][0]-colorindex_M.T rgb_V=np.corrcoef(rgb_C.T) color_V=np.corrcoef(colorindex_C.T) nans=np.isnan(color_V) color_V[nans]=1e-6 rgb_std=rgb_C/(np.std(RGB_vector[nonzero_vector,:].T,axis=1)).T color_std=colorindex_C/(np.std(colorindex_vector[nonzero_vector,:].T,axis=1)).T nans=np.isnan(color_std) color_std[nans]=1e-6 rgb_eigval,rgb_eigvec=np.linalg.eig(rgb_V) color_eigval,color_eigvec=np.linalg.eig(color_V) print('rgb_eigvec',rgb_eigvec) print('color_eigvec',color_eigvec) featurechannel=12 pcabands=np.zeros((colorindex_vector.shape[0],featurechannel)) rgbbands=np.zeros((colorindex_vector.shape[0],3)) for i in range(0,9): pcn=color_eigvec[:,i] pcnbands=np.dot(color_std,pcn) pcvar=np.var(pcnbands) print('color index pc',i+1,'var=',pcvar) pcabands[nonzero_vector,i]=pcabands[nonzero_vector,i]+pcnbands for i in range(9,12): pcn=rgb_eigvec[:,i-9] pcnbands=np.dot(rgb_std,pcn) pcvar=np.var(pcnbands) print('rgb pc',i-9+1,'var=',pcvar) pcabands[nonzero_vector,i]=pcabands[nonzero_vector,i]+pcnbands rgbbands[nonzero_vector,i-9]=rgbbands[nonzero_vector,i-9]+pcnbands # plot3d(pcabands) # np.savetxt('rgb.csv',rgbbands,delimiter=',',fmt='%10.5f') # pcabands[:,1]=np.copy(pcabands[:,1]) # pcabands[:,2]=pcabands[:,2]*0 # indexbands=np.zeros((colorindex_vector.shape[0],3)) # if i<5: # indexbands[:,i-2]=indexbands[:,i-2]+pcnbands for i in range(12): perc=np.percentile(pcabands[:,i],1) print('perc',perc) pcabands[:,i]=np.where(pcabands[:,i]<perc,perc,pcabands[:,i]) perc=np.percentile(pcabands[:,i],99) print('perc',perc) pcabands[:,i]=np.where(pcabands[:,i]>perc,perc,pcabands[:,i]) '''save to csv''' # indexbands[:,0]=indexbands[:,0]+pcabands[:,2] # indexbands[:,1]=indexbands[:,1]+pcabands[:,3] # indexbands[:,2]=indexbands[:,2]+pcabands[:,4] # plot3d(indexbands) # np.savetxt('pcs.csv',pcabands,delimiter=',',fmt='%10.5f') displayfea_vector=np.concatenate((RGB_vector,colorindex_vector),axis=1) # np.savetxt('color-index.csv',displayfea_vector,delimiter=',',fmt='%10.5f') # displayfea_vector=np.concatenate((RGB_vector,colorindex_vector),axis=1) originpcabands.update({currentfilename:displayfea_vector}) pcabandsdisplay=pcabands.reshape(displayfea_l,displayfea_w,featurechannel) tempdictdisplay={'LabOstu':pcabandsdisplay} displaybandarray.update({currentfilename:tempdictdisplay}) # originbandarray.update({currentfilename:originbands}) # Red=displays['Band1'] # Green=displays['Band2'] # Blue=displays['Band3'] # convimg=np.zeros((Red.shape[0],Red.shape[1],3)) # convimg[:,:,0]=Red # convimg[:,:,1]=Green # convimg[:,:,2]=Blue # convimg=Image.fromarray(convimg.astype('uint8')) # convimg.save('convimg.png','PNG') pcbuttons=[] need_w=int(450/3) need_h=int(400/4) for i in range(12): band=np.copy(pcabandsdisplay[:,:,i]) imgband=(band-band.min())*255/(band.max()-band.min()) pcimg=Image.fromarray(imgband.astype('uint8'),'L') # pcimg.save('pc'+'_'+str(i)+'.png',"PNG") pcimg.thumbnail((need_w,need_h),Image.ANTIALIAS) # pcimg.save('pc'+'_'+str(i)+'.png',"PNG") # ratio=max(displayfea_l/need_h,displayfea_w/need_w) # print('origin band range',band.max(),band.min()) # # band,cache=tkintercorestat.pool_forward(band,{"f":int(ratio),"stride":int(ratio)}) # band=cv2.resize(band,(need_w,need_h),interpolation=cv2.INTER_LINEAR) # bandrange=band.max()-band.min() # print('band range',band.max(),band.min()) # band=(band-band.min())/bandrange*255 # print('button img range',band.max(),band.min()) # buttonimg=Image.fromarray(band.astype('uint8'),'L') pcbuttons.append(ImageTk.PhotoImage(pcimg)) def oneband(file): global displaybandarray,originbandarray,originpcabands,displayfea_l,displayfea_w global pcbuttons global partialpca partialpca=False try: bands=Multiimagebands[file].bands except: return pcbuttons=[] channel,fea_l,fea_w=bands.shape print('bandsize',fea_l,fea_w) if fea_l*fea_w>2000*2000: ratio=findratio([fea_l,fea_w],[2000,2000]) else: ratio=1 print('ratio',ratio) originbands={} displays={} displaybands=cv2.resize(bands[0,:,:],(int(fea_w/ratio),int(fea_l/ratio)),interpolation=cv2.INTER_LINEAR) displayfea_l,displayfea_w=displaybands.shape RGB_vector=np.zeros((displayfea_l*displayfea_w,3)) colorindex_vector=np.zeros((displayfea_l*displayfea_w,12)) Red=bands[0,:,:].astype('uint8') # _,Red=cv2.threshold(Red,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) Green=bands[0,:,:].astype('uint8') # _,Green=cv2.threshold(Green,0,255,cv2.THRESH_OTSU) Blue=bands[0,:,:].astype('uint8') # _,Blue=cv2.threshold(Blue,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) fillbands(originbands,displays,RGB_vector,0,'Band1',Red) fillbands(originbands,displays,RGB_vector,1,'Band2',Green) fillbands(originbands,displays,RGB_vector,2,'Band3',Blue) PAT_R=bands[0,:,:].astype('uint8') # PAT_R=cv2.adaptiveThreshold(PAT_R,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2) PAT_G=bands[0,:,:] # PAT_G=cv2.adaptiveThreshold(PAT_G,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2) PAT_B=bands[0,:,:] ROO_R=bands[0,:,:] ROO_G=bands[0,:,:] ROO_B=bands[0,:,:] DIF_R=bands[0,:,:] DIF_G=bands[0,:,:] DIF_B=bands[0,:,:] GLD_R=bands[0,:,:] GLD_G=bands[0,:,:] GLD_B=bands[0,:,:] fillbands(originbands,displays,colorindex_vector,0,'PAT_R',PAT_R) fillbands(originbands,displays,colorindex_vector,1,'PAT_G',PAT_G) fillbands(originbands,displays,colorindex_vector,2,'PAT_B',PAT_B) fillbands(originbands,displays,colorindex_vector,3,'ROO_R',ROO_R) fillbands(originbands,displays,colorindex_vector,4,'ROO_G',ROO_G) fillbands(originbands,displays,colorindex_vector,5,'ROO_B',ROO_B) fillbands(originbands,displays,colorindex_vector,6,'DIF_R',DIF_R) fillbands(originbands,displays,colorindex_vector,7,'DIF_G',DIF_G) fillbands(originbands,displays,colorindex_vector,8,'DIF_B',DIF_B) fillbands(originbands,displays,colorindex_vector,9,'GLD_R',GLD_R) fillbands(originbands,displays,colorindex_vector,10,'GLD_G',GLD_G) fillbands(originbands,displays,colorindex_vector,11,'GLD_B',GLD_B) displayfea_vector=np.concatenate((RGB_vector,colorindex_vector),axis=1) # np.savetxt('color-index.csv',displayfea_vector,delimiter=',',fmt='%10.5f') featurechannel=14 originpcabands.update({file:displayfea_vector}) # pcabandsdisplay=pcabands.reshape(displayfea_l,displayfea_w,featurechannel) # pcabandsdisplay=np.concatenate((RGB_vector,colorindex_vector),axis=2) pcabandsdisplay=displayfea_vector[:,:14] pcabandsdisplay=pcabandsdisplay.reshape(displayfea_l,displayfea_w,featurechannel) tempdictdisplay={'LabOstu':pcabandsdisplay} displaybandarray.update({file:tempdictdisplay}) originbandarray.update({file:originbands}) # Red=displays['Band1'] # Green=displays['Band2'] # Blue=displays['Band3'] # convimg=np.zeros((Red.shape[0],Red.shape[1],3)) # convimg[:,:,0]=Red # convimg[:,:,1]=Green # convimg[:,:,2]=Blue # convimg=Image.fromarray(convimg.astype('uint8')) # convimg.save('convimg.png','PNG') need_w=int(450/3) need_h=int(400/4) for i in range(2,3): band=np.copy(pcabandsdisplay[:,:,i]) # band=np.copy(Red) # imgband=(band-band.min())*255/(band.max()-band.min()) imgband=np.copy(band) pcimg=Image.fromarray(imgband.astype('uint8'),'L') # pcimg.save('pc'+'_'+str(i)+'.png',"PNG") pcimg.thumbnail((need_w,need_h),Image.ANTIALIAS) # pcimg.save('pc'+'_'+str(i)+'.png',"PNG") # ratio=max(displayfea_l/need_h,displayfea_w/need_w) # print('origin band range',band.max(),band.min()) # # band,cache=tkintercorestat.pool_forward(band,{"f":int(ratio),"stride":int(ratio)}) # band=cv2.resize(band,(need_w,need_h),interpolation=cv2.INTER_LINEAR) # bandrange=band.max()-band.min() # print('band range',band.max(),band.min()) # band=(band-band.min())/bandrange*255 # print('button img range',band.max(),band.min()) # buttonimg=Image.fromarray(band.astype('uint8'),'L') pcbuttons.append(ImageTk.PhotoImage(pcimg)) def singleband(file): global displaybandarray,originbandarray,originpcabands,displayfea_l,displayfea_w global pcbuttons global partialpca partialpca=False try: bands=Multiimagebands[file].bands except: return pcbuttons=[] channel,fea_l,fea_w=bands.shape print('bandsize',fea_l,fea_w) if fea_l*fea_w>2000*2000: ratio=findratio([fea_l,fea_w],[2000,2000]) else: ratio=1 print('ratio',ratio) originbands={} displays={} displaybands=cv2.resize(bands[0,:,:],(int(fea_w/ratio),int(fea_l/ratio)),interpolation=cv2.INTER_LINEAR) # displaybands=np.copy(bands[0,:,:]) displayfea_l,displayfea_w=displaybands.shape # displayfea_l,displayfea_w=fea_l,fea_w print(displayfea_l,displayfea_w) RGB_vector=np.zeros((displayfea_l*displayfea_w,3)) colorindex_vector=np.zeros((displayfea_l*displayfea_w,12)) if channel==1: # Red=bands[0,:,:] # Green=bands[0,:,:] # Blue=bands[0,:,:] oneband(file) return else: Red=bands[0,:,:] Green=bands[1,:,:] Blue=bands[2,:,:] fillbands(originbands,displays,RGB_vector,0,'Band1',Red) fillbands(originbands,displays,RGB_vector,1,'Band2',Green) fillbands(originbands,displays,RGB_vector,2,'Band3',Blue) # import matplotlib.pyplot as plt # fig,axs=plt.subplots(1,3) # for i in range(3): # minpc2=np.min(RGB_vector[:,i]) # maxpc2=np.max(RGB_vector[:,i]) # print(minpc2,maxpc2) # bins=range(int(minpc2),int(maxpc2),10) # axs[i].hist(RGB_vector[:,i],bins,range=(minpc2,maxpc2)) # axs[i].set_title('RGBband_'+str(i+1)) # # plt.hist(pcabands[:,13],bins,range=(minpc2,maxpc2)) # plt.show() # secondsmallest_R=np.partition(Red,1)[1][0] # secondsmallest_G=np.partition(Green,1)[1][0] # secondsmallest_B=np.partition(Blue,1)[1][0] # # Red=Red+secondsmallest_R # Green=Green+secondsmallest_G # Blue=Blue+secondsmallest_B # Red=Red/255+1 # Green=Green/255+1 # Blue=Blue/255+1 PAT_R=Red/(Red+Green) PAT_G=Green/(Green+Blue) PAT_B=Blue/(Blue+Red) ROO_R=Red/(Green+1e-6) ROO_G=Green/(Blue+1e-6) ROO_B=Blue/(Red+1e-6) DIF_R=2*Red-Green-Blue DIF_G=2*Green-Blue-Red DIF_B=2*Blue-Red-Green GLD_R=Red/(np.multiply(np.power(Blue,0.618),np.power(Green,0.382))+1e-6) GLD_G=Green/(np.multiply(np.power(Blue,0.618),np.power(Red,0.382))+1e-6) GLD_B=Blue/(np.multiply(np.power(Green,0.618),np.power(Red,0.382))+1e-6) fillbands(originbands,displays,colorindex_vector,0,'PAT_R',PAT_R) fillbands(originbands,displays,colorindex_vector,1,'PAT_G',PAT_G) fillbands(originbands,displays,colorindex_vector,2,'PAT_B',PAT_B) fillbands(originbands,displays,colorindex_vector,3,'ROO_R',ROO_R) fillbands(originbands,displays,colorindex_vector,4,'ROO_G',ROO_G) fillbands(originbands,displays,colorindex_vector,5,'ROO_B',ROO_B) fillbands(originbands,displays,colorindex_vector,6,'DIF_R',DIF_R) fillbands(originbands,displays,colorindex_vector,7,'DIF_G',DIF_G) fillbands(originbands,displays,colorindex_vector,8,'DIF_B',DIF_B) fillbands(originbands,displays,colorindex_vector,9,'GLD_R',GLD_R) fillbands(originbands,displays,colorindex_vector,10,'GLD_G',GLD_G) fillbands(originbands,displays,colorindex_vector,11,'GLD_B',GLD_B) # for i in [5,11]: # colorindex_vector[:,i]=np.log10(colorindex_vector[:,i]) # perc=np.percentile(colorindex_vector[:,i],99) # print('perc',perc) # colorindex_vector[:,i]=np.where(colorindex_vector[:,i]>perc,perc,colorindex_vector[:,i]) # # for i in [0,1,3,4,9,10]: # colorindex_vector[:,i]=np.log10(colorindex_vector[:,i]) # perc=np.percentile(colorindex_vector[:,i],90) # print('perc',perc) # colorindex_vector[:,i]=np.where(colorindex_vector[:,i]>perc,perc,colorindex_vector[:,i]) # for i in [5,11]: # colorindex_vector[:,i]=np.log10(colorindex_vector[:,i]) # perc=np.percentile(colorindex_vector[:,i],99) # print('perc',perc) # colorindex_vector[:,i]=np.where(colorindex_vector[:,i]>perc,perc,colorindex_vector[:,i]) # # for i in [3,4,9,10]: # colorindex_vector[:,i]=np.log10(colorindex_vector[:,i]) # perc=np.percentile(colorindex_vector[:,i],1) # print('perc',perc) # colorindex_vector[:,i]=np.where(colorindex_vector[:,i]<perc,perc,colorindex_vector[:,i]) # perc=np.percentile(colorindex_vector[:,i],99) # print('perc',perc) # colorindex_vector[:,i]=np.where(colorindex_vector[:,i]>perc,perc,colorindex_vector[:,i]) # # for i in [0,1]: # colorindex_vector[:,i]=np.log10(colorindex_vector[:,i]) # perc=np.percentile(colorindex_vector[:,i],2) # print('perc',perc) # colorindex_vector[:,i]=np.where(colorindex_vector[:,i]<perc,perc,colorindex_vector[:,i]) # for i in [0,1,3,4,9,10]: # colorindex_vector[:,i]=np.log10(colorindex_vector[:,i]) for i in range(12): perc=np.percentile(colorindex_vector[:,i],1) print('perc',perc) colorindex_vector[:,i]=np.where(colorindex_vector[:,i]<perc,perc,colorindex_vector[:,i]) perc=np.percentile(colorindex_vector[:,i],99) print('perc',perc) colorindex_vector[:,i]=np.where(colorindex_vector[:,i]>perc,perc,colorindex_vector[:,i]) for i in range(3): perc=np.percentile(RGB_vector[:,i],1) print('perc',perc) RGB_vector[:,i]=np.where(RGB_vector[:,i]<perc,perc,RGB_vector[:,i]) perc=np.percentile(RGB_vector[:,i],99) print('perc',perc) RGB_vector[:,i]=np.where(RGB_vector[:,i]>perc,perc,RGB_vector[:,i]) # import matplotlib.pyplot as plt # fig,axs=plt.subplots(4,3) # for i in range(12): # minpc2=np.min(colorindex_vector[:,i]) # maxpc2=np.max(colorindex_vector[:,i]) # print(minpc2,maxpc2) # # bins=range(int(minpc2),int(maxpc2)+1,10) # axs[int(i/3),i%3].hist(colorindex_vector[:,i],10,range=(minpc2,maxpc2)) # axs[int(i/3),i%3].set_title('Colorindex_'+str(i+1)) # # axs[i].hist(colorindex_vector[:,i],10,range=(minpc2,maxpc2)) # # axs[i].set_title('Colorindex_'+str(i+1)) # # plt.hist(pcabands[:,13],bins,range=(minpc2,maxpc2)) # plt.show() rgb_M=np.mean(RGB_vector.T,axis=1) colorindex_M=np.mean(colorindex_vector.T,axis=1) print('rgb_M',rgb_M,'colorindex_M',colorindex_M) rgb_C=RGB_vector-rgb_M colorindex_C=colorindex_vector-colorindex_M rgb_V=np.corrcoef(rgb_C.T) color_V=np.corrcoef(colorindex_C.T) nans=np.isnan(color_V) color_V[nans]=1e-6 rgb_std=rgb_C/np.std(RGB_vector.T,axis=1) color_std=colorindex_C/np.std(colorindex_vector.T,axis=1) nans=np.isnan(color_std) color_std[nans]=1e-6 rgb_eigval,rgb_eigvec=np.linalg.eig(rgb_V) color_eigval,color_eigvec=np.linalg.eig(color_V) print('rgb_eigvec',rgb_eigvec) print('color_eigvec',color_eigvec) featurechannel=12 pcabands=np.zeros((colorindex_vector.shape[0],featurechannel)) rgbbands=np.zeros((colorindex_vector.shape[0],3)) # plot3d(pcabands) # np.savetxt('rgb.csv',rgbbands,delimiter=',',fmt='%10.5f') # pcabands[:,1]=np.copy(pcabands[:,1]) # pcabands[:,2]=pcabands[:,2]*0 indexbands=np.zeros((colorindex_vector.shape[0],3)) # for i in range(3,featurechannel): # csvpcabands=np.zeros((colorindex_vector.shape[0],15)) for i in range(0,9): pcn=color_eigvec[:,i] pcnbands=np.dot(color_std,pcn) pcvar=np.var(pcnbands) print('color index pc',i+1,'var=',pcvar) pcabands[:,i]=pcabands[:,i]+pcnbands # if i<5: # indexbands[:,i-2]=indexbands[:,i-2]+pcnbands for i in range(9,12): pcn=rgb_eigvec[:,i-9] pcnbands=np.dot(rgb_std,pcn) pcvar=np.var(pcnbands) print('rgb pc',i+1,'var=',pcvar) pcabands[:,i]=pcabands[:,i]+pcnbands rgbbands[:,i-9]=rgbbands[:,i-9]+pcnbands # for i in range(0,12): # pcn=color_eigvec[:,i] # pcnbands=np.dot(color_std,pcn) # pcvar=np.var(pcnbands) # print('csv color index pc',i+1,'var=',pcvar) # csvpcabands[:,i]=csvpcabands[:,i]+pcnbands # for i in range(12,15): # pcn=rgb_eigvec[:,i-12] # pcnbands=np.dot(rgb_std,pcn) # csvpcabands[:,i]=csvpcabands[:,i]+pcnbands # '''save to csv''' # indexbands[:,0]=indexbands[:,0]+pcabands[:,2] # indexbands[:,1]=indexbands[:,1]+pcabands[:,3] # indexbands[:,2]=indexbands[:,2]+pcabands[:,4] # plot3d(indexbands) # np.savetxt('pcs.csv',pcabands,delimiter=',',fmt='%10.5f') # minpc=np.min(pcabands) # # meanpc=np.mean(pcabands) # stdpc=np.std(pcabands) # print('meanpc',meanpc,'stdpc',stdpc) # pcabands=pcabands-meanpc/stdpc # import matplotlib.pyplot as plt # minpc2=np.min(pcabands[:,13]) # maxpc2=np.max(pcabands[:,13]) # print(minpc2,maxpc2) # bins=range(int(minpc2),int(maxpc2),10) # plt.hist(pcabands[:,13],bins,range=(minpc2,maxpc2)) # plt.show() # np.savetxt('pcs.csv',pcabands[:,3],delimiter=',',fmt='%10.5f') for i in range(12): perc=np.percentile(pcabands[:,i],1) print('perc',perc) pcabands[:,i]=np.where(pcabands[:,i]<perc,perc,pcabands[:,i]) perc=np.percentile(pcabands[:,i],99) print('perc',perc) pcabands[:,i]=np.where(pcabands[:,i]>perc,perc,pcabands[:,i]) # import matplotlib.pyplot as plt # fig,axs=plt.subplots(4,3) # for i in range(2,14): # minpc2=np.min(pcabands[:,i]) # maxpc2=np.max(pcabands[:,i]) # print(minpc2,maxpc2) # # bins=range(int(minpc2),int(maxpc2)+1,10) # axs[int((i-2)/3),(i-2)%3].hist(pcabands[:,i],10,range=(minpc2,maxpc2)) # axs[int((i-2)/3),(i-2)%3].set_title('PC_'+str(i-2+1)) # # axs[i].hist(colorindex_vector[:,i],10,range=(minpc2,maxpc2)) # # axs[i].set_title('Colorindex_'+str(i+1)) # # plt.hist(pcabands[:,13],bins,range=(minpc2,maxpc2)) # plt.show() # header=['R','G','B', # 'PAT_R','PAT_G','PAT_B', # 'DIF_R','DIF_G','DIF_B', # 'ROO_R','ROO_G','ROO_B', # 'GLD_R','GLD_G','GLD_B',] # displayfea_vector=np.concatenate((RGB_vector,colorindex_vector),axis=1) # with open('color-index.csv','w') as f: # writer=csv.writer(f) # writer.writerow(header) # for i in range(displayfea_vector.shape[0]): # writer.writerow(list(displayfea_vector[i,:])) # np.savetxt('color-index.csv',displayfea_vector,delimiter=',',fmt='%10.5f') displayfea_vector=np.concatenate((RGB_vector,colorindex_vector),axis=1) originpcabands.update({file:displayfea_vector}) pcabandsdisplay=pcabands.reshape(displayfea_l,displayfea_w,featurechannel) tempdictdisplay={'LabOstu':pcabandsdisplay} displaybandarray.update({file:tempdictdisplay}) originbandarray.update({file:originbands}) # Red=displays['Band1'] # Green=displays['Band2'] # Blue=displays['Band3'] # convimg=np.zeros((Red.shape[0],Red.shape[1],3)) # convimg[:,:,0]=Red # convimg[:,:,1]=Green # convimg[:,:,2]=Blue # convimg=Image.fromarray(convimg.astype('uint8')) # convimg.save('convimg.png','PNG') need_w=int(450/3) need_h=int(400/4) # pcdisplay=[3,4,5,6,7,8,9,10,11,0,1,2] # for i in range(2,featurechannel): for i in range(featurechannel): band=np.copy(pcabandsdisplay[:,:,i]) imgband=(band-band.min())*255/(band.max()-band.min()) pcimg=Image.fromarray(imgband.astype('uint8'),'L') # pcimg.save('pc'+'_'+str(i)+'.png',"PNG") pcimg.thumbnail((need_w,need_h),Image.ANTIALIAS) # pcimg.save('pc'+'_'+str(i)+'.png',"PNG") # ratio=max(displayfea_l/need_h,displayfea_w/need_w) # print('origin band range',band.max(),band.min()) # # band,cache=tkintercorestat.pool_forward(band,{"f":int(ratio),"stride":int(ratio)}) # band=cv2.resize(band,(need_w,need_h),interpolation=cv2.INTER_LINEAR) # bandrange=band.max()-band.min() # print('band range',band.max(),band.min()) # band=(band-band.min())/bandrange*255 # print('button img range',band.max(),band.min()) # buttonimg=Image.fromarray(band.astype('uint8'),'L') pcbuttons.append(ImageTk.PhotoImage(pcimg)) def colorindices_cal(file): global colorindicearray try: bands=Multiimagebands[file].bands except: return channel,fea_l,fea_w=bands.shape print('bandsize',fea_l,fea_w) if fea_l*fea_w>2000*2000: ratio=findratio([fea_l,fea_w],[2000,2000]) else: ratio=1 print('ratio',ratio) originbands={} displays={} # displaybands=cv2.resize(bands[0,:,:],(int(fea_w/ratio),int(fea_l/ratio)),interpolation=cv2.INTER_LINEAR) # displaybands=np.copy(bands[0,:,:]) # displayfea_l,displayfea_w=displaybands.shape # displayfea_l,displayfea_w=fea_l,fea_w print(displayfea_l,displayfea_w) colorindex_vector=np.zeros((displayfea_l*displayfea_w,7)) if channel==1: Red=bands[0,:,:] Green=bands[0,:,:] Blue=bands[0,:,:] else: Red=bands[0,:,:] Green=bands[1,:,:] Blue=bands[2,:,:] secondsmallest_R=np.partition(Red,1)[1][0] secondsmallest_G=np.partition(Green,1)[1][0] secondsmallest_B=np.partition(Blue,1)[1][0] Red=Red+secondsmallest_R Green=Green+secondsmallest_G Blue=Blue+secondsmallest_B NDI=128*((Green-Red)/(Green+Red)+1) VEG=Green/(np.power(Red,0.667)*np.power(Blue,(1-0.667))) Greenness=Green/(Green+Red+Blue) CIVE=0.44*Red+0.811*Green+0.385*Blue+18.7845 MExG=1.262*Green-0.844*Red-0.311*Blue NDRB=(Red-Blue)/(Red+Blue) NGRDI=(Green-Red)/(Green+Red) fillbands(originbands,displays,colorindex_vector,0,'NDI',NDI) fillbands(originbands,displays,colorindex_vector,1,'VEG',VEG) fillbands(originbands,displays,colorindex_vector,2,'Greenness',Greenness) fillbands(originbands,displays,colorindex_vector,3,'CIVE',CIVE) fillbands(originbands,displays,colorindex_vector,4,'MExG',MExG) fillbands(originbands,displays,colorindex_vector,5,'NDRB',NDRB) fillbands(originbands,displays,colorindex_vector,6,'NGRDI',NGRDI) colorindicearray.update({file:originbands}) def singleband_oldversion(file): global displaybandarray,originbandarray,originpcabands,displayfea_l,displayfea_w global pcbuttons try: bands=Multigraybands[file].bands except: return pcbuttons=[] bandsize=Multigraybands[file].size print('bandsize',bandsize) try: channel,height,width=bands.shape except: channel=0 if channel>1: bands=bands[0,:,:] #bands=cv2.GaussianBlur(bands,(3,3),cv2.BORDER_DEFAULT) ostu=filters.threshold_otsu(bands) bands=bands.astype('float32') bands=bands/ostu #display purpose if bandsize[0]*bandsize[1]>2000*2000: ratio=findratio([bandsize[0],bandsize[1]],[2000,2000]) else: ratio=1 print('ratio',ratio) #if bandsize[0]*bandsize[1]>850*850: # ratio=findratio([bandsize[0],bandsize[1]],[850,850]) #else: # ratio=1 #ttestbands=np.copy(bands) #testdisplaybands=cv2.resize(ttestbands,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) #testdisplaybands=cv2.resize(testdisplaybands,(int(resizeshape[0]),int(resizeshape[1])),interpolation=cv2.INTER_LINEAR) #print('testdisplaybands size',testdisplaybands.size) #if bandsize[0]*bandsize[1]>850*850: # ratio=findratio([bandsize[0],bandsize[1]],[850,850]) #else: # ratio=1 originbands={} displays={} fea_l,fea_w=bands.shape # fea_vector=np.zeros((fea_l*fea_w,3)) pyplt.imsave('bands.png',bands) displaybands=cv2.resize(bands,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) pyplt.imsave('displaybands.png',displaybands) displayfea_l,displayfea_w=displaybands.shape fea_vector=np.zeros((displayfea_l*displayfea_w,3)) displayfea_vector=np.zeros((displayfea_l*displayfea_w,7)) colorfea_vector=np.zeros((displayfea_l*displayfea_w,7)) # originfea_vector=np.zeros((bandsize[0],bandsize[1],10)) # saveimg=np.copy(bands).astype('uint8') # pyplt.imsave('ostuimg.png',saveimg) if 'LabOstu' not in originbands: originbands.update({'LabOstu':bands}) fea_bands=bands.reshape(fea_l*fea_w,1)[:,0] # originfea_vector[:,9]=originfea_vector[:,0]+fea_bands displayfea_bands=displaybands.reshape((displayfea_l*displayfea_w),1)[:,0] # fea_vector[:,9]=fea_vector[:,0]+fea_bands displayfea_vector[:,6]=displayfea_vector[:,6]+displayfea_bands minv=displayfea_bands.min() maxv=displayfea_bands.max() fearange=maxv-minv colorfeabands=displayfea_bands-minv colorfeabands=colorfeabands/fearange*255 colorfea_vector[:,6]=colorfea_vector[:,6]+colorfeabands #displaybands=displaybands.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) #kernel=np.ones((2,2),np.float32)/4 #displaybands=np.copy(bands) displays.update({'LabOstu':displaybands}) #displaybandarray.update({'LabOstu':cv2.filter2D(displaybands,-1,kernel)}) bands=Multiimagebands[file].bands #for i in range(3): # bands[i,:,:]=cv2.GaussianBlur(bands[i,:,:],(3,3),cv2.BORDER_DEFAULT) NDI=128*((bands[1,:,:]-bands[0,:,:])/(bands[1,:,:]+bands[0,:,:])+1) tempdict={'NDI':NDI} # saveimg=np.copy(NDI).astype('uint8') # pyplt.imsave('NDIimg.png',saveimg) if 'NDI' not in originbands: originbands.update(tempdict) displaybands=cv2.resize(NDI,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) fea_bands=NDI.reshape(fea_l*fea_w,1)[:,0] # originfea_vector[:,1]=originfea_vector[:,1]+fea_bands displayfea_bands=displaybands.reshape((displayfea_l*displayfea_w),1)[:,0] # fea_vector[:,1]=fea_vector[:,1]+fea_bands displayfea_vector[:,1]=displayfea_vector[:,1]+displayfea_bands minv=displayfea_bands.min() maxv=displayfea_bands.max() fearange=maxv-minv colorfeabands=displayfea_bands-minv colorfeabands=colorfeabands/fearange*255 colorfea_vector[:,1]=colorfea_vector[:,1]+colorfeabands #displaybands=np.copy(NDI) #kernel=np.ones((2,2),np.float32)/4 #displaydict={'NDI':cv2.filter2D(displaybands,-1,kernel)} displaydict={'NDI':displaybands} #displaydict=displaydict.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) displays.update(displaydict) Red=bands[0,:,:] Green=bands[1,:,:] Blue=bands[2,:,:] tempdict={'Band1':Red} # saveimg=np.zeros((bandsize[0],bandsize[1],3),'uint8') # saveimg[:,:,0]=np.copy(Red).astype('uint8') # pyplt.imsave('Redimg.png',saveimg) # saveimg=np.zeros((bandsize[0],bandsize[1],3),'uint8') # saveimg[:,:,1]=np.copy(Green).astype('uint8') # pyplt.imsave('Greenimg.png',saveimg) # saveimg=np.zeros((bandsize[0],bandsize[1],3),'uint8') # saveimg[:,:,2]=np.copy(Blue).astype('uint8') # pyplt.imsave('Blueimg.png',saveimg) if 'Band1' not in originbands: originbands.update(tempdict) image=cv2.resize(Red,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) displaydict={'Band1':image} displays.update(displaydict) # fea_bands=Red.reshape(fea_l*fea_w,1)[:,0] fea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] # originfea_vector[:,2]=originfea_vector[:,2]+fea_bands displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] fea_vector[:,0]=fea_vector[:,0]+fea_bands # displayfea_vector[:,2]=displayfea_vector[:,2]+displayfea_bands tempdict={'Band2':Green} if 'Band2' not in originbands: originbands.update(tempdict) image=cv2.resize(Green,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) displaydict={'Band2':image} displays.update(displaydict) # fea_bands=Green.reshape(fea_l*fea_w,1)[:,0] fea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] # originfea_vector[:,3]=originfea_vector[:,3]+fea_bands displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] fea_vector[:,1]=fea_vector[:,1]+fea_bands # displayfea_vector[:,3]=displayfea_vector[:,3]+displayfea_bands tempdict={'Band3':Blue} if 'Band3' not in originbands: originbands.update(tempdict) # originfea_vector[:,4]=originfea_vector[:,4]+Blue image=cv2.resize(Blue,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) displaydict={'Band3':image} displays.update(displaydict) # fea_bands=Blue.reshape(fea_l*fea_w,1)[:,0] fea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] fea_vector[:,2]=fea_vector[:,2]+fea_bands # displayfea_vector[:,4]=displayfea_vector[:,4]+displayfea_bands Greenness = bands[1, :, :] / (bands[0, :, :] + bands[1, :, :] + bands[2, :, :]) tempdict = {'Greenness': Greenness} if 'Greenness' not in originbands: originbands.update(tempdict) # originfea_vector[:,5]=originfea_vector[:,5]+Greenness image=cv2.resize(Greenness,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) #image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) displaydict={'Greenness':image} #displaybandarray.update(worktempdict) displays.update(displaydict) fea_bands=Greenness.reshape(fea_l*fea_w,1)[:,0] displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] # fea_vector[:,5]=fea_vector[:,5]+fea_bands displayfea_vector[:,2]=displayfea_vector[:,2]+displayfea_bands minv=displayfea_bands.min() maxv=displayfea_bands.max() fearange=maxv-minv colorfeabands=displayfea_bands-minv colorfeabands=colorfeabands/fearange*255 colorfea_vector[:,2]=colorfea_vector[:,2]+colorfeabands VEG=bands[1,:,:]/(np.power(bands[0,:,:],0.667)*np.power(bands[2,:,:],(1-0.667))) tempdict={'VEG':VEG} if 'VEG' not in originbands: originbands.update(tempdict) # originfea_vector[:,6]=originfea_vector[:,6]+VEG image=cv2.resize(VEG,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) kernel=np.ones((4,4),np.float32)/16 #displaybandarray.update({'LabOstu':}) #image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) worktempdict={'VEG':cv2.filter2D(image,-1,kernel)} displays.update(worktempdict) fea_bands=VEG.reshape(fea_l*fea_w,1)[:,0] displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] # fea_vector[:,6]=fea_vector[:,6]+fea_bands displayfea_vector[:,3]=displayfea_vector[:,3]+displayfea_bands minv=displayfea_bands.min() maxv=displayfea_bands.max() fearange=maxv-minv colorfeabands=displayfea_bands-minv colorfeabands=colorfeabands/fearange*255 colorfea_vector[:,3]=colorfea_vector[:,3]+colorfeabands CIVE=0.441*bands[0,:,:]-0.811*bands[1,:,:]+0.385*bands[2,:,:]+18.78745 tempdict={'CIVE':CIVE} if 'CIVE' not in originbands: originbands.update(tempdict) # originfea_vector[:,7]=originfea_vector[:,7]+CIVE image=cv2.resize(CIVE,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) #image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) worktempdict={'CIVE':image} displays.update(worktempdict) fea_bands=CIVE.reshape(fea_l*fea_w,1)[:,0] displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] # fea_vector[:,7]=fea_vector[:,7]+fea_bands displayfea_vector[:,4]=displayfea_vector[:,4]+displayfea_bands minv=displayfea_bands.min() maxv=displayfea_bands.max() fearange=maxv-minv colorfeabands=displayfea_bands-minv colorfeabands=colorfeabands/fearange*255 colorfea_vector[:,4]=colorfea_vector[:,4]+colorfeabands MExG=1.262*bands[1,:,:]-0.884*bands[0,:,:]-0.311*bands[2,:,:] tempdict={'MExG':MExG} if 'MExG' not in originbands: originbands.update(tempdict) # originfea_vector[:,8]=originfea_vector[:,8]+MExG image=cv2.resize(MExG,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) #image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) worktempdict={'MExG':image} displays.update(worktempdict) fea_bands=MExG.reshape(fea_l*fea_w,1)[:,0] displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] # fea_vector[:,8]=fea_vector[:,8]+fea_bands displayfea_vector[:,5]=displayfea_vector[:,5]+displayfea_bands minv=displayfea_bands.min() maxv=displayfea_bands.max() fearange=maxv-minv colorfeabands=displayfea_bands-minv colorfeabands=colorfeabands/fearange*255 colorfea_vector[:,5]=colorfea_vector[:,5]+colorfeabands NDVI=(bands[0,:,:]-bands[2,:,:])/(bands[0,:,:]+bands[2,:,:]) tempdict={'NDVI':NDVI} if 'NDVI' not in originbands: originbands.update(tempdict) # originfea_vector[:,0]=originfea_vector[:,9]+NDVI image=cv2.resize(NDVI,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) #image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) worktempdict={'NDVI':image} displays.update(worktempdict) fea_bands=NDVI.reshape(fea_l*fea_w,1)[:,0] displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0] # fea_vector[:,0]=fea_vector[:,9]+fea_bands displayfea_vector[:,0]=displayfea_vector[:,0]+displayfea_bands minv=displayfea_bands.min() maxv=displayfea_bands.max() fearange=maxv-minv colorfeabands=displayfea_bands-minv colorfeabands=colorfeabands/fearange*255 colorfea_vector[:,0]=colorfea_vector[:,0]+colorfeabands NGRDI=(bands[1,:,:]-bands[0,:,:])/(bands[1,:,:]+bands[0,:,:]) tempdict={'NGRDI':NGRDI} if 'NGRDI' not in originbands: originbands.update(tempdict) image=cv2.resize(NGRDI,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) #image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) worktempdict={'NGRDI':image} displays.update(worktempdict) if channel>=1: nirbands=Multigraybands[file].bands NDVI=(nirbands[0,:,:]-bands[1,:,:])/(nirbands[0,:,:]+bands[1,:,:]) tempdict={'NDVI':NDVI} #if 'NDVI' not in originbandarray: originbands.update(tempdict) image=cv2.resize(NDVI,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR) #image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3)) worktempdict={'NDVI':image} displays.update(worktempdict) '''PCA part''' displayfea_vector=np.concatenate((fea_vector,displayfea_vector),axis=1) M=np.mean(displayfea_vector.T,axis=1) OM=np.mean(fea_vector.T,axis=1) print('M',M,'M shape',M.shape, 'OM',OM,'OM Shape',OM.shape) C=displayfea_vector-M OC=fea_vector-OM #max=np.max(C.T,axis=1) #print('MAX',max) #C=C/max print('C',C,'OC',OC) #V=np.cov(C.T) V=np.corrcoef(C.T) OV=np.corrcoef(OC.T) std=np.std(displayfea_vector.T,axis=1) O_std=np.std(fea_vector.T,axis=1) print(std,O_std) std_displayfea=C/std O_stddisplayfea=OC/O_std print(std_displayfea,O_stddisplayfea) #eigvalues,eigvectors=np.linalg.eig(V) #n,m=displayfea_vector.shape #C=np.dot(displayfea_vector.T,displayfea_vector)/(n-1) V_var=np.cov(std_displayfea.T) print('COV',V_var) print('COR',V) eigvalues=la.eigvals(V_var) #eigvalues=np.linalg.eigvals(C) print('eigvalue',eigvalues) idx=np.argsort(eigvalues) print('idx',idx) eigvalues,eigvectors=np.linalg.eig(V) print('eigvalue',eigvalues) print('eigvectors',eigvectors) eigvalueperc={} featurechannel=10 # for i in range(len(eigvalues)): # print('percentage',i,eigvalues[i]/sum(eigvalues)) # eigvalueperc.update({i:eigvalues[i]/sum(eigvalues)}) # #if eigvalues[i]>0: # featurechannel+=1 # o_eigenvalue,o_eigenvector=np.linalg.eig(OV) pcabands=np.zeros((displayfea_vector.shape[0],featurechannel)) # o_pcabands=np.zeros((fea_vector.shape[0],featurechannel)) pcavar={} # # # # # separate PCs # # for i in range(3): # # pcn=o_eigenvector[:,i] # # pcnbands=np.dot(O_stddisplayfea,pcn) # # pcvar=np.var(pcnbands) # # print('pc',i+1,' var=',pcvar) # # pcabands[:,i]=pcabands[:,i]+pcnbands # # for i in range(7): # # pcn=eigvectors[:,i] # # pcnbands=np.dot(std_displayfea,pcn) # # pcvar=np.var(pcnbands) # # print('pc',i+1,' var=',pcvar) # # temppcavar={i:pcvar} # # pcavar.update(temppcavar) # # pcabands[:,i+3]=pcabands[:,i+3]+pcnbands # # # # # combined PCs for i in range(featurechannel): pcn=eigvectors[:,i] # pcnbands=np.dot(std_displayfea,pcn) pcnbands=np.dot(C,pcn) pcvar=np.var(pcnbands) print('pc',i+1,' var=',pcvar) temppcavar={i:pcvar} pcavar.update(temppcavar) pcabands[:,i]=pcabands[:,i]+pcnbands # ''' NO PCA''' # colorfea_vector=np.concatenate((fea_vector,colorfea_vector),axis=1) # displayfea_vector=np.concatenate((fea_vector,displayfea_vector),axis=1) # M=np.mean(colorfea_vector.T,axis=1) # print('colorfea_vector M',M) # pcabands=np.copy(colorfea_vector) # featurechannel=10 '''Export to CSV''' # np.savetxt('pcs.csv',pcabands,delimiter=',',fmt='%s') # np.savetxt('color-index.csv',displayfea_vector,delimiter=',',fmt='%s') #threedplot(pcabands) # originpcabands.update({file:o_pcabands}) originpcabands.update({file:displayfea_vector}) pcabandsdisplay=pcabands.reshape(displayfea_l,displayfea_w,featurechannel) #originbands={'LabOstu':pcabandsdisplay} tempdictdisplay={'LabOstu':pcabandsdisplay} #displaybandarray.update({file:displays}) displaybandarray.update({file:tempdictdisplay}) originbandarray.update({file:originbands}) need_w=int(450/4) need_h=int(400/3) for i in range(featurechannel): band=np.copy(pcabandsdisplay[:,:,i]) ratio=max(displayfea_l/need_h,displayfea_w/need_w) band,cache=tkintercorestat.pool_forward(band,{"f":int(ratio),"stride":int(ratio)}) bandrange=band.max()-band.min() band=(band-band.min())/bandrange*255 buttonimg=Image.fromarray(band.astype('uint8'),'L') pcbuttons.append(ImageTk.PhotoImage(buttonimg)) # buttonimg.save('pcbutton_'+str(i)+'.png',"PNG") # print('saved') from mpl_toolkits.mplot3d import Axes3D def threedplot(area): fig=pyplt.figure() ax=fig.add_subplot(111,projection='3d') n=100 xs=np.copy(area[0:n,0]) ys=np.copy(area[0:n,1]) zs=np.copy(area[0:n,3]) colors=("red","green","blue") groups=("PC1","PC2","PC3") #for c,l in [('r','o'),('g','^')]: ax.scatter(xs,ys,np.max(zs),c='r',marker='o') ax.scatter(xs,np.min(ys),zs,c='b',marker='^') ax.scatter(np.max(xs),ys,zs,c='g') ax.set_xlabel('PC1') ax.set_ylabel('PC2') ax.set_zlabel('PC3') pyplt.show() def changeimage(frame,filename): global clusterdisplay,currentfilename,resviewframe clusterdisplay={} currentfilename=filename print(filename) generatedisplayimg(filename) changedisplayimg(frame,'Origin') for key in cluster: tuplist=[] for i in range(len(cluster)): tuplist.append('') tup=tuple(tuplist) bandchoice[key].set(tup) #for key in cluster: # ch=ttk.Checkbutton(contentframe,text=key,variable=bandchoice[key],command=changecluster)#,command=partial(autosetclassnumber,clusternumberentry,bandchoice)) # ch.pack() if filename in multi_results.keys(): for widget in resviewframe.winfo_children(): widget.pack_forget() iternum=len(list(multi_results[filename][0].keys())) itervar=IntVar() itervar.set(iternum) resscaler=Scale(resviewframe,from_=1,to=iternum,tickinterval=1,length=220,orient=HORIZONTAL,variable=itervar,command=partial(changeoutputimg,filename)) resscaler.pack() outputbutton=Button(resviewframe,text='Export Results',command=partial(export_result,itervar)) outputbutton.pack() def generatecheckbox(frame,classnum): global checkboxdict,havecolorstrip changekmeansbar('') for widget in frame.winfo_children(): widget.pack_forget() checkboxdict={} havecolorstrip=False addcolorstrip() for i in range(10): dictkey=str(i+1) tempdict={dictkey:Variable()} tempdict[dictkey].set('0') checkboxdict.update(tempdict) ch=Checkbutton(checkboxframe,text=dictkey,variable=checkboxdict[dictkey],command=partial(changeclusterbox,''))#,command=partial(changecluster,'')) if i+1>int(kmeans.get()): ch.config(state=DISABLED) ch.pack(side=LEFT) #if i==0: # ch.invoke() #for i in range(int(classnum)): # dictkey='class '+str(i+1) # tempdict={dictkey:Variable()} # checkboxdict.update(tempdict) #ch=ttk.Checkbutton(frame,text=dictkey,command=partial(generateplant,checkboxdict,bandchoice,classnum),variable=checkboxdict[dictkey]) # ch=ttk.Checkbutton(frame,text=dictkey,command=changecluster,variable=checkboxdict[dictkey]) # ch.grid(row=int(i/3),column=int(i%3)) # if i==minipixelareaclass: # ch.invoke() def generateimgplant(event): global currentlabels,changekmeans,colordicesband,originbinaryimg,pre_checkbox colordicesband=np.copy(displaylabels) keys=checkboxdict.keys() plantchoice=[] pre_checkbox=[] for key in keys: plantchoice.append(checkboxdict[key].get()) pre_checkbox.append(checkboxdict[key].get()) origindisplaylabels=np.copy(displaybandarray[currentfilename]['LabOstu']) h,w,c=origindisplaylabels.shape # tempdisplayimg=np.zeros((displaybandarray[currentfilename]['LabOstu'].shape[0], # displaybandarray[currentfilename]['LabOstu'].shape[1])) # colordivimg=np.zeros((displaybandarray[currentfilename]['LabOstu'].shape[0], # displaybandarray[currentfilename]['LabOstu'].shape[1])) tempdisplayimg=np.zeros((h,w)) colordivimg=np.zeros((h,w)) sel_count=plantchoice.count('1') if sel_count == int(kmeans.get()): tempdisplayimg=tempdisplayimg+1 else: for i in range(int(kmeans.get())): tup=plantchoice[i] if '1' in tup: tempdisplayimg=np.where(displaylabels==i,1,tempdisplayimg) # uniquecolor=np.unique(tempdisplayimg) # if len(uniquecolor)==1 and uniquecolor[0]==1: # tempdisplayimg=np.copy(displaylabels).astype('float32') currentlabels=np.copy(tempdisplayimg) originbinaryimg=np.copy(tempdisplayimg) tempcolorimg=np.copy(displaylabels).astype('float32') # ratio=findratio([h,w],[850,850]) # if h*w<850*850: # tempdisplayimg=cv2.resize(tempdisplayimg,(int(w*ratio),int(h*ratio))) # colordivimg=cv2.resize(tempcolorimg,(int(w*ratio),int(h*ratio))) # if h>850: # ratio=round(h/850) # tempdisplayimg=cv2.resize(tempdisplayimg,(int(w/ratio),int(h/ratio))) # colordivimg=cv2.resize(tempcolorimg,(int(w/ratio),int(h/ratio))) # if w>850: # ratio=round(w/850) # tempdisplayimg=cv2.resize(tempdisplayimg,(int(w/ratio),int(h/ratio))) # colordivimg=cv2.resize(tempcolorimg,(int(w/ratio),int(h/ratio))) # else: # tempdisplayimg=cv2.resize(tempdisplayimg,(int(w/ratio),int(h/ratio))) # colordivimg=cv2.resize(tempcolorimg,(int(w/ratio),int(h/ratio))) # tempdisplayimg=cv2.resize(tempdisplayimg,(int(resizeshape[0]),int(resizeshape[1]))) # colordivimg=cv2.resize(tempcolorimg,(int(resizeshape[0]),int(resizeshape[1]))) colordivimg=np.copy(tempcolorimg) binaryimg=np.zeros((h,w,3)) kvar=int(kmeans.get()) locs=np.where(tempdisplayimg==1) binaryimg[locs]=[240,228,66] colordeimg=np.zeros((h,w,3)) # binarypreview=cv2.resize(binaryimg,(int(previewshape[0]),int(previewshape[1]))) binarypreview=np.copy(binaryimg) if kvar==1: if colordivimg.min()<0: # if abs(colordivimg.min())<colordivimg.max(): colordivimg=colordivimg-colordivimg.min() colorrange=colordivimg.max()-colordivimg.min() colordivimg=colordivimg*255/colorrange grayimg=Image.fromarray(colordivimg.astype('uint8'),'L') grayimg=grayimg.resize((int(resizeshape[0]),int(resizeshape[1]))) #grayimg.show() colordivdict={} colordivdict.update({'Size':[resizeshape[1],resizeshape[0]]}) colordivdict.update({'Image':ImageTk.PhotoImage(grayimg)}) displayimg['Color Deviation']=colordivdict colordivpreview={} # colordivpreimg=cv2.resize(colordivimg,(int(previewshape[0]),int(previewshape[1]))) graypreviewimg=Image.fromarray(colordivimg.astype('uint8'),'L') graypreviewimg=graypreviewimg.resize((int(previewshape[0]),int(previewshape[1]))) colordivpreview.update({'Size':[previewshape[1],previewshape[0]]}) colordivpreview.update({'Image':ImageTk.PhotoImage(graypreviewimg)}) previewimg['Color Deviation']=colordivpreview binaryimg=np.zeros((resizeshape[1],resizeshape[0],3)) tempdict={} tempdict.update({'Size':[resizeshape[1],resizeshape[0]]}) tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(binaryimg.astype('uint8')))}) displayimg['ColorIndices']=tempdict binarypreview=np.zeros((int(previewshape[1]),int(previewshape[0]))) tempdict={} tempdict.update({'Size':binarypreview.shape}) tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(binarypreview.astype('uint8')))}) previewimg['ColorIndices']=tempdict # changedisplayimg(imageframe,'Color Deviation') else: for i in range(kvar): locs=np.where(colordivimg==i) colordeimg[locs]=colorbandtable[i] #pyplt.imsave('displayimg.png',tempdisplayimg) #pyplt.imsave('allcolorindex.png',colordivimg) #bands=Image.fromarray(tempdisplayimg) #bands=bands.convert('L') #bands.save('displayimg.png') #indimg=cv2.imread('displayimg.png') colordeimg=Image.fromarray(colordeimg.astype('uint8')) colordeimg.save('allcolorindex.png',"PNG") binaryimg=Image.fromarray(binaryimg.astype('uint8')) binaryimg.save('binaryimg.png',"PNG") binaryimg=binaryimg.resize((int(resizeshape[0]),int(resizeshape[1]))) tempdict={} tempdict.update({'Size':[resizeshape[1],resizeshape[0]]}) tempdict.update({'Image':ImageTk.PhotoImage(binaryimg)}) displayimg['ColorIndices']=tempdict tempdict={} binaryimg=binaryimg.resize((int(previewshape[0]),int(previewshape[1]))) tempdict.update({'Size':[previewshape[1],previewshape[0]]}) tempdict.update({'Image':ImageTk.PhotoImage(binaryimg)}) previewimg['ColorIndices']=tempdict #indimg=cv2.imread('allcolorindex.png') #tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(indimg))}) # # colorimg=cv2.imread('allcolorindex.png') # Image.fromarray((binaryimg.astype('uint8'))).save('binaryimg.png',"PNG") colordeimg=colordeimg.resize((resizeshape[0],resizeshape[1])) colordivdict={} colordivdict.update({'Size':[resizeshape[1],resizeshape[0]]}) colordivdict.update({'Image':ImageTk.PhotoImage(colordeimg)}) displayimg['Color Deviation']=colordivdict colordivdict={} # colordeimgpre=cv2.resize(colordeimg,(int(previewshape[0]),int(previewshape[1]))) colordeimg=colordeimg.resize((previewshape[0],previewshape[1])) colordivdict.update({'Size':[previewshape[1],previewshape[0]]}) colordivdict.update({'Image':ImageTk.PhotoImage(colordeimg)}) previewimg['Color Deviation']=colordivdict # changedisplayimg(imageframe,'ColorIndices') # print('sel count',sel_count) if kvar>1: if sel_count==0: changedisplayimg(imageframe,'Color Deviation') else: changedisplayimg(imageframe,'ColorIndices') # changekmeans=True #def kmeansclassify(choicelist,reshapedtif): def kmeansclassify_oldversion(): global clusterdisplay #,minipixelareaclass if int(kmeans.get())==0: return #for i in range(len(choicelist)): # tempband=displaybandarray[currentfilename][choicelist[i]] #tempband=cv2.resize(tempband,(450,450),interpolation=cv2.INTER_LINEAR) # reshapedtif[:,i]=tempband.reshape(tempband.shape[0]*tempband.shape[1],2)[:,0] #if len(choicelist)==0: originpcabands=displaybandarray[currentfilename]['LabOstu'] pcah,pcaw,pcac=originpcabands.shape pcacount={} keys=list(pcaboxdict.keys()) for item in keys: if pcaboxdict[item].get()=='1': pcacount.update({item:pcaboxdict[item]}) pcakeys=list(pcacount.keys()) tempband=np.zeros((pcah,pcaw,len(pcakeys))) for i in range(len(pcakeys)): channel=int(pcakeys[i])-1 tempband[:,:,i]=tempband[:,:,i]+originpcabands[:,:,channel] if int(kmeans.get())==1: print('kmeans=1') displaylabels=np.mean(tempband,axis=2) pyplt.imsave('k=1.png',displaylabels) else: #tempband=displaybandarray[currentfilename]['LabOstu'] if int(kmeans.get())>1: h,w,c=tempband.shape print('shape',tempband.shape) reshapedtif=tempband.reshape(tempband.shape[0]*tempband.shape[1],c) print('reshape',reshapedtif.shape) clf=KMeans(n_clusters=int(kmeans.get()),init='k-means++',n_init=10,random_state=0) tempdisplayimg=clf.fit(reshapedtif) # print('label=0',np.any(tempdisplayimg==0)) displaylabels=tempdisplayimg.labels_.reshape((displaybandarray[currentfilename]['LabOstu'].shape[0], displaybandarray[currentfilename]['LabOstu'].shape[1])) clusterdict={} displaylabels=displaylabels+10 for i in range(int(kmeans.get())): locs=np.where(tempdisplayimg.labels_==i) maxval=reshapedtif[locs].max() print(maxval) clusterdict.update({maxval:i+10}) print(clusterdict) sortcluster=list(sorted(clusterdict)) print(sortcluster) for i in range(len(sortcluster)): cluster_num=clusterdict[sortcluster[i]] displaylabels=np.where(displaylabels==cluster_num,i,displaylabels) # pixelarea=1.0 # for i in range(int(kmeans.get())): # pixelloc=np.where(displaylabels==i) # pixelnum=len(pixelloc[0]) # temparea=float(pixelnum/(displaylabels.shape[0]*displaylabels.shape[1])) # if temparea<pixelarea: # #minipixelareaclass=i # pixelarea=temparea if kmeans.get() not in clusterdisplay: tempdict={kmeans.get():displaylabels} #clusterdisplay.update({''.join(choicelist):tempdict}) clusterdisplay.update(tempdict) return displaylabels def kmeansclassify(): global clusterdisplay,displaylabels if int(kmeans.get())==0: return originpcabands=displaybandarray[currentfilename]['LabOstu'] pcah,pcaw,pcac=originpcabands.shape pcpara=pc_combine_up.get() print(pcpara,type(pcpara)) tempband=np.zeros((pcah,pcaw,1)) # pcsel=buttonvar.get()+2 pcsel=buttonvar.get() pcweights=pc_combine_up.get()-0.5 if pcweights==0.0: tempband[:,:,0]=tempband[:,:,0]+originpcabands[:,:,pcsel] else: if pcweights<0.0: #RGBPC1 rgbpc=originpcabands[:,:,9] else: rgbpc=originpcabands[:,:,10] rgbpc=(rgbpc-rgbpc.min())*255/(rgbpc.max()-rgbpc.min()) firstterm=abs(pcweights)*2*rgbpc colorpc=originpcabands[:,:,pcsel] colorpc=(colorpc-colorpc.min())*255/(colorpc.max()-colorpc.min()) secondterm=(1-abs(pcweights)*2)*colorpc tempband[:,:,0]=tempband[:,:,0]+firstterm+secondterm if int(kmeans.get())==1: print('kmeans=1') displaylabels=np.mean(tempband,axis=2) pyplt.imsave('k=1.png',displaylabels) else: if int(kmeans.get())>1: h,w,c=tempband.shape print('shape',tempband.shape) reshapedtif=tempband.reshape(tempband.shape[0]*tempband.shape[1],c) if partialpca==True: partialshape=reshapedtif[nonzero_vector] print('partial reshape',partialshape.shape) clf=KMeans(n_clusters=int(kmeans.get()),init='k-means++',n_init=10,random_state=0) tempdisplayimg=clf.fit(partialshape) reshapedtif[nonzero_vector,0]=np.add(tempdisplayimg.labels_,1) print(reshapedtif[nonzero_vector]) displaylabels=reshapedtif.reshape((displaybandarray[currentfilename]['LabOstu'].shape[0], displaybandarray[currentfilename]['LabOstu'].shape[1])) # reshapedtif=cv2.resize(reshapedtif,(c,resizeshape[0]*resizeshape[1]),cv2.INTER_LINEAR) clusterdict={} displaylabels=displaylabels+10 for i in range(int(kmeans.get())): locs=np.where(tempdisplayimg.labels_==i) try: maxval=partialshape[locs].max() except: print('kmeans',i) messagebox.showerror('Cluster maximum value is ', i) return displaylabels print(maxval) clusterdict.update({maxval:i+11}) print(clusterdict) sortcluster=list(sorted(clusterdict)) print(sortcluster) for i in range(len(sortcluster)): cluster_num=clusterdict[sortcluster[i]] displaylabels=np.where(displaylabels==cluster_num,i,displaylabels) return displaylabels else: print('reshape',reshapedtif.shape) clf=KMeans(n_clusters=int(kmeans.get()),init='k-means++',n_init=10,random_state=0) tempdisplayimg=clf.fit(reshapedtif) # print('label=0',np.any(tempdisplayimg==0)) displaylabels=tempdisplayimg.labels_.reshape((displaybandarray[currentfilename]['LabOstu'].shape[0], displaybandarray[currentfilename]['LabOstu'].shape[1])) # displaylabels=tempdisplayimg.labels_.reshape((resizeshape[1],resizeshape[0])) clusterdict={} displaylabels=displaylabels+10 for i in range(int(kmeans.get())): locs=np.where(tempdisplayimg.labels_==i) maxval=reshapedtif[locs].max() print(maxval) clusterdict.update({maxval:i+10}) print(clusterdict) sortcluster=list(sorted(clusterdict)) print(sortcluster) for i in range(len(sortcluster)): cluster_num=clusterdict[sortcluster[i]] displaylabels=np.where(displaylabels==cluster_num,i,displaylabels) # if kmeans.get() not in clusterdisplay: # tempdict={kmeans.get():displaylabels} # #clusterdisplay.update({''.join(choicelist):tempdict}) # clusterdisplay.update(tempdict) return displaylabels def addcolorstrip(): global kmeanscanvasframe,havecolorstrip if havecolorstrip is False: colornum=int(kmeans.get()) for widget in kmeanscanvasframe.winfo_children(): widget.pack_forget() widget.delete(ALL) widget.config(width=350,height=10) widget.create_image(3,0,image=colorstripdict['colorstrip'+str(colornum)],anchor=NW) widget.pack() havecolorstrip=True def getPCs(): global displayimg,displaypclabels originpcabands=displaybandarray[currentfilename]['LabOstu'] pcah,pcaw,pcac=originpcabands.shape pcweights=pc_combine_up.get()-0.5 tempband=np.zeros((pcah,pcaw)) # pcsel=buttonvar.get()+2 pcsel=buttonvar.get() if pcweights==0.0: tempband=tempband+originpcabands[:,:,pcsel] else: if pcweights<0.0: #RGBPC1 rgbpc=originpcabands[:,:,9] else: rgbpc=originpcabands[:,:,10] rgbpc=(rgbpc-rgbpc.min())*255/(rgbpc.max()-rgbpc.min()) firstterm=abs(pcweights)*2*rgbpc colorpc=originpcabands[:,:,pcsel] colorpc=(colorpc-colorpc.min())*255/(colorpc.max()-colorpc.min()) secondterm=(1-abs(pcweights)*2)*colorpc tempband=tempband+firstterm+secondterm displaypclabels=np.copy(tempband) displaylabels=np.copy(tempband) pyplt.imsave('k=1.png',displaylabels) colordivimg=np.copy(displaylabels) print('origin pc range',colordivimg.max(),colordivimg.min()) # colordivimg=cv2.resize(tempcolorimg,(int(resizeshape[0]),int(resizeshape[1]))) print('pc range',colordivimg.max(),colordivimg.min()) if colordivimg.min()<0: colordivimg=colordivimg-colordivimg.min() colorrange=colordivimg.max()-colordivimg.min() colordivimg=(colordivimg)*255/colorrange colordivimg=Image.fromarray(colordivimg.astype('uint8'),'L') colordivimg=colordivimg.resize((int(resizeshape[0]),int(resizeshape[1])),Image.ANTIALIAS) displayimg['PCs']['Image']=ImageTk.PhotoImage(colordivimg) # displayimg['Color Deviation']['Image']=ImageTk.PhotoImage(colordivimg) def getPCs_olcversion(): global displayimg originpcabands=displaybandarray[currentfilename]['LabOstu'] pcah,pcaw,pcac=originpcabands.shape pcacount={} keys=list(pcaboxdict.keys()) for item in keys: if pcaboxdict[item].get()=='1': pcacount.update({item:pcaboxdict[item]}) pcakeys=list(pcacount.keys()) tempband=np.zeros((pcah,pcaw,len(pcakeys))) for i in range(len(pcakeys)): channel=int(pcakeys[i])-1 tempband[:,:,i]=tempband[:,:,i]+originpcabands[:,:,channel] # if int(kmeans.get())==1: print('kmeans=1') displaylabels=np.mean(tempband,axis=2) pyplt.imsave('k=1.png',displaylabels) ratio=findratio([originpcabands.shape[0],originpcabands.shape[1]],[screenstd,screenstd]) tempcolorimg=np.copy(displaylabels) colordivimg=np.zeros((displaylabels.shape[0], displaylabels.shape[1])) # if originpcabands.shape[0]*originpcabands.shape[1]<850*850: # # tempdisplayimg=cv2.resize(originpcabands,(int(originpcabands.shape[1]*ratio),int(originpcabands.shape[0]*ratio))) # colordivimg=cv2.resize(tempcolorimg,(int(colordivimg.shape[1]*ratio),int(colordivimg.shape[0]*ratio))) # else: # # tempdisplayimg=cv2.resize(originpcabands,(int(originpcabands.shape[1]/ratio),int(originpcabands.shape[0]/ratio))) # colordivimg=cv2.resize(tempcolorimg,(int(colordivimg.shape[1]/ratio),int(colordivimg.shape[0]/ratio))) # if colordivimg.min()<0: # if abs(colordivimg.min())<colordivimg.max(): # colordivimg=colordivimg-colordivimg.min() colordivimg=cv2.resize(tempcolorimg,(int(resizeshape[0]),int(resizeshape[1]))) if colordivimg.min()<0: colordivimg=colordivimg-colordivimg.min() colorrange=colordivimg.max()-colordivimg.min() colordivimg=colordivimg*255/colorrange colordivimg=colordivimg.astype('uint8') grayimg=Image.fromarray(colordivimg,'L') displayimg['PCs']['Image']=ImageTk.PhotoImage(grayimg) def changepca(event): global clusterdisplay,colordicesband,oldpcachoice global displaylabels if len(oldpcachoice)>0: keys=pcaboxdict.keys() newlist=[] for key in keys: newlist.append(pcaboxdict[key].get()) samecount=0 print('oldlist',oldpcachoice) print('newlist',newlist) for i in range(len(oldpcachoice)): if oldpcachoice[i]==newlist[i]: samecount+=1 if samecount==len(oldpcachoice): return getPCs() clusterdisplay={} keys=pcaboxdict.keys() oldpcachoice=[] for key in keys: oldpcachoice.append(pcaboxdict[key].get()) displaylabels=kmeansclassify() colordicesband=np.copy(displaylabels) generateimgplant() return def savePCAimg(path,originfile,file): originpcabands=displaybandarray[currentfilename]['LabOstu'] pcah,pcaw,pcac=originpcabands.shape # pcacount={} # keys=list(pcaboxdict.keys()) # for item in keys: # if pcaboxdict[item].get()=='1': # pcacount.update({item:pcaboxdict[item]}) # pcakeys=list(pcacount.keys()) # tempband=np.zeros((pcah,pcaw,len(pcakeys))) # for i in range(len(pcakeys)): # channel=int(pcakeys[i])-1 # tempband[:,:,i]=tempband[:,:,i]+originpcabands[:,:,channel] # displaylabels=np.mean(tempband,axis=2) # generateimgplant(displaylabels) # grayimg=(((displaylabels-displaylabels.min())/(displaylabels.max()-displaylabels.min()))*255.9).astype(np.uint8) # pyplt.imsave('k=1.png',displaylabels.astype('uint8')) # pyplt.imsave('k=1.png',grayimg) pcweights=pc_combine_up.get()-0.5 tempband=np.zeros((pcah,pcaw)) # pcsel=buttonvar.get()+2 pcsel=buttonvar.get() if pcweights==0.0: tempband=tempband+originpcabands[:,:,pcsel] else: if pcweights<0.0: #RGBPC1 rgbpc=originpcabands[:,:,9] else: rgbpc=originpcabands[:,:,10] rgbpc=(rgbpc-rgbpc.min())*255/(rgbpc.max()-rgbpc.min()) firstterm=abs(pcweights)*2*rgbpc colorpc=originpcabands[:,:,pcsel] colorpc=(colorpc-colorpc.min())*255/(colorpc.max()-colorpc.min()) secondterm=(1-abs(pcweights)*2)*colorpc tempband=tempband+firstterm+secondterm displaylabels=np.copy(tempband) if displaylabels.min()<0: # if abs(displaylabels.min())<displaylabels.max(): displaylabels=displaylabels-displaylabels.min() colorrange=displaylabels.max()-displaylabels.min() displaylabels=displaylabels*255/colorrange grayimg=Image.fromarray(displaylabels.astype('uint8'),'L') originheight,originwidth=Multigraybands[file].size origingray=grayimg.resize([originwidth,originheight],resample=Image.BILINEAR) origingray.save(path+'/'+originfile+'-PCAimg.png',"PNG") # addcolorstrip() return def changecluster(event): global havecolorstrip,pre_checkbox,displaylabels,needreclass originpcabands=displaybandarray[currentfilename]['LabOstu'] pcah,pcaw,pcac=originpcabands.shape pcweights=pc_combine_up.get()-0.5 tempband=np.zeros((pcah,pcaw,1)) # pcsel=buttonvar.get()+2 pcsel=buttonvar.get() if pcweights==0.0: tempband[:,:,0]=tempband[:,:,0]+originpcabands[:,:,pcsel] else: if pcweights<0.0: #RGBPC1 rgbpc=originpcabands[:,:,9] else: rgbpc=originpcabands[:,:,10] rgbpc=(rgbpc-rgbpc.min())*255/(rgbpc.max()-rgbpc.min()) firstterm=abs(pcweights)*2*rgbpc colorpc=originpcabands[:,:,pcsel] colorpc=(colorpc-colorpc.min())*255/(colorpc.max()-colorpc.min()) secondterm=(1-abs(pcweights)*2)*colorpc tempband[:,:,0]=tempband[:,:,0]+firstterm+secondterm if int(kmeans.get())==1: displaylabels=np.mean(tempband,axis=2) generateimgplant(displaylabels) print('max',displaylabels.max()) print('min',displaylabels.min()) if displaylabels.min()<0: # if abs(displaylabels.min())<displaylabels.max(): displaylabels=displaylabels-displaylabels.min() colorrange=displaylabels.max()-displaylabels.min() displaylabels=displaylabels*255/colorrange grayimg=Image.fromarray(displaylabels.astype('uint8'),'L') print('max',displaylabels.max()) print('min',displaylabels.min()) # grayimg.thumbnail((int(resizeshape[0]),int(resizeshape[1])),Image.ANTIALIAS) grayimg.save('k=1.png',"PNG") addcolorstrip() return else: # if kmeans.get() in clusterdisplay: # displaylabels=clusterdisplay[kmeans.get()] # # else: # havecolorstrip=False # # choicelist=[] # #reshapemodified_tif=np.zeros((displaybandarray[currentfilename]['LabOstu'].shape[0]*displaybandarray[currentfilename]['LabOstu'].shape[1],len(choicelist))) # #displaylabels=kmeansclassify(choicelist,reshapemodified_tif) # displaylabels=kmeansclassify() displaylabels=kmeansclassify() # changedisplayimg(imageframe,'Color Deviation') global checkboxdict keys=checkboxdict.keys() for key in keys: checkboxdict[key].set('0') generateimgplant('') # pyplt.imsave('allcolorindex.png',displaylabels) #kmeanscanvas.update() addcolorstrip() return def changecluster_oldversion(event): global havecolorstrip,pre_checkbox imageband=np.copy(displaybandarray[currentfilename]['LabOstu']) if int(kmeans.get())==1: originpcabands=displaybandarray[currentfilename]['LabOstu'] pcah,pcaw,pcac=originpcabands.shape pcacount={} keys=list(pcaboxdict.keys()) for item in keys: if pcaboxdict[item].get()=='1': pcacount.update({item:pcaboxdict[item]}) pcakeys=list(pcacount.keys()) tempband=np.zeros((pcah,pcaw,len(pcakeys))) for i in range(len(pcakeys)): channel=int(pcakeys[i])-1 tempband[:,:,i]=tempband[:,:,i]+originpcabands[:,:,channel] displaylabels=np.mean(tempband,axis=2) generateimgplant(displaylabels) # grayimg=(((displaylabels-displaylabels.min())/(displaylabels.max()-displaylabels.min()))*255.9).astype(np.uint8) # pyplt.imsave('k=1.png',displaylabels.astype('uint8')) # pyplt.imsave('k=1.png',grayimg) print('max',displaylabels.max()) print('min',displaylabels.min()) if displaylabels.min()<0: # if abs(displaylabels.min())<displaylabels.max(): displaylabels=displaylabels-displaylabels.min() colorrange=displaylabels.max()-displaylabels.min() displaylabels=displaylabels*255/colorrange grayimg=Image.fromarray(displaylabels.astype('uint8'),'L') print('max',displaylabels.max()) print('min',displaylabels.min()) grayimg.save('k=1.png',"PNG") # originheight,originwidth=Multigraybands[filenames[0]].size # origingray=grayimg.resize([originwidth,originheight],resample=Image.BILINEAR) # origingray.save('PCAimg.png',"PNG") addcolorstrip() return else: if kmeans.get() in clusterdisplay: displaylabels=clusterdisplay[kmeans.get()] if len(pre_checkbox)>0: keys=checkboxdict.keys() plantchoice=[] for key in keys: plantchoice.append(checkboxdict[key].get()) allsame=True for i in range(len(pre_checkbox)): if pre_checkbox[i]!=plantchoice[i]: allsame=False if allsame==True: print('allsame=true') return else: havecolorstrip=False choicelist=[] #reshapemodified_tif=np.zeros((displaybandarray[currentfilename]['LabOstu'].shape[0]*displaybandarray[currentfilename]['LabOstu'].shape[1],len(choicelist))) #displaylabels=kmeansclassify(choicelist,reshapemodified_tif) displaylabels=kmeansclassify() generateimgplant(displaylabels) # pyplt.imsave('allcolorindex.png',displaylabels) #kmeanscanvas.update() addcolorstrip() return def showcounting(tup,number=True,frame=True,header=True,whext=False,blkext=False): global multi_results,kernersizes#,pixelmmratio,kernersizes global font labels=tup[0] counts=tup[1] if len(mappath)>0: colortable=tkintercorestat.get_mapcolortable(labels,elesize.copy(),labellist.copy()) else: colortable=tup[2] #colortable=labeldict[itervalue]['colortable'] if type(refarea)!=type(None): colortable.update({65535:'Ref'}) labels[refarea]=65535 #labeldict=tup[0] coinparts=tup[3] filename=tup[4] #currlabeldict=labeldict['iter'+str(int(itervar)-1)] #print(currlabeldict) #labels=currlabeldict['labels'] #counts=currlabeldict['counts'] #colortable=currlabeldict['colortable'] uniquelabels=list(colortable.keys()) originfile,extension=os.path.splitext(filename) imgrsc=cv2.imread(filename,flags=cv2.IMREAD_ANYCOLOR) imgrsc=cv2.cvtColor(imgrsc,cv2.COLOR_BGR2RGB) imgrsc=cv2.resize(imgrsc,(labels.shape[1],labels.shape[0]),interpolation=cv2.INTER_LINEAR) image=Image.fromarray(imgrsc) if whext==True: # blkbkg=np.zeros((labels.shape[0],labels.shape[1],3),dtype='float') whbkg=np.zeros((labels.shape[0],labels.shape[1],3),dtype='float') whbkg[:,:,:]=[255,255,255] itemlocs=np.where(labels!=0) # blkbkg[itemlocs]=imgrsc[itemlocs] whbkg[itemlocs]=imgrsc[itemlocs] image=Image.fromarray(whbkg.astype('uint8')) if blkext==True: blkbkg=np.zeros((labels.shape[0],labels.shape[1],3),dtype='float') itemlocs=np.where(labels!=0) blkbkg[itemlocs]=imgrsc[itemlocs] blkbkg[itemlocs]=imgrsc[itemlocs] image=Image.fromarray(blkbkg.astype('uint8')) #print('showcounting img',image.size) #image.save('beforeresize.gif',append_images=[image]) #image=image.resize([labels.shape[1],labels.shape[0]],resample=Image.BILINEAR) print('showcounting_resize',image.size) image.save('beforlabel.gif',append_images=[image]) draw=ImageDraw.Draw(image) #font=ImageFont.load_default() sizeuniq,sizecounts=np.unique(labels,return_counts=True) minsize=min(image.size[0],image.size[1]) suggsize=int(minsize**0.5) # if suggsize>22: # suggsize=22 # if suggsize<14: # suggsize=14 #suggsize=8 #print('fontsize',suggsize) # suggsize=22 font=ImageFont.truetype('cmb10.ttf',size=suggsize) #if labels.shape[1]<850: # font=ImageFont.truetype('cmb10.ttf',size=16) #else: # font=ImageFont.truetype('cmb10.ttf',size=22) if len(coinparts)>0: tempband=np.zeros(labels.shape) coinkeys=coinparts.keys() for coin in coinkeys: coinlocs=coinparts[coin] tempband[coinlocs]=1 global recborder for uni in uniquelabels: if uni!=0: uni=colortable[uni] if uni=='Ref': pixelloc = np.where(labels == 65535) else: pixelloc = np.where(labels == uni) try: ulx = min(pixelloc[1]) except: print('no pixellloc[1] on uni=',uni) print('pixelloc =',pixelloc) continue uly = min(pixelloc[0]) rlx = max(pixelloc[1]) rly = max(pixelloc[0]) midx = ulx + int((rlx - ulx) / 2) midy = uly + int((rly - uly) / 2) print(ulx, uly, rlx, rly) if frame==True: draw.polygon([(ulx,uly),(rlx,uly),(rlx,rly),(ulx,rly)],outline='red') if number==True: if uni in colortable: canvastext = str(colortable[uni]) else: # canvastext = 'No label' canvastext=uni canvastext=str(canvastext) if imgtypevar.get()=='0': draw.text((midx-1, midy+1), text=canvastext, font=font, fill='white') draw.text((midx+1, midy+1), text=canvastext, font=font, fill='white') draw.text((midx-1, midy-1), text=canvastext, font=font, fill='white') draw.text((midx+1, midy-1), text=canvastext, font=font, fill='white') #draw.text((midx,midy),text=canvastext,font=font,fill=(141,2,31,0)) draw.text((midx,midy),text=canvastext,font=font,fill='black') if header==True: if refarea is not None: content='item count:'+str(len(uniquelabels)-1)+'\n File: '+filename else: content='item count:'+str(len(uniquelabels))+'\n File: '+filename contentlength=len(content)+50 #rectext=canvas.create_text(10,10,fill='black',font='Times 16',text=content,anchor=NW) draw.text((10-1, 10+1), text=content, font=font, fill='white') draw.text((10+1, 10+1), text=content, font=font, fill='white') draw.text((10-1, 10-1), text=content, font=font, fill='white') draw.text((10+1, 10-1), text=content, font=font, fill='white') #draw.text((10,10),text=content,font=font,fill=(141,2,31,0)) draw.text((10,10),text=content,font=font,fill='black') #image.save(originfile+'-countresult'+extension,"JPEG") #firstimg=Multigraybands[currentfilename] #height,width=firstimg.size height,width,channel=displaybandarray[filename]['LabOstu'].shape ratio=findratio([height,width],[screenstd,screenstd]) #if labels.shape[0]*labels.shape[1]<850*850: # disimage=image.resize([int(labels.shape[1]*ratio),int(labels.shape[0]*ratio)],resample=Image.BILINEAR) #else: # disimage=image.resize([int(labels.shape[1]/ratio),int(labels.shape[0]/ratio)],resample=Image.BILINEAR) print('show counting ratio',ratio) if height*width<screenstd*screenstd: print('showcounting small') disimage=image.resize([int(width*ratio),int(height*ratio)],resample=Image.BILINEAR) else: print('showcounting big') disimage=image.resize([int(width/ratio),int(height/ratio)],resample=Image.BILINEAR) print('showcounting shape',disimage.size) displayoutput=ImageTk.PhotoImage(disimage) disimage.save('output.gif',append_images=[disimage]) #image.save('originoutput.gif',append_images=[image]) return displayoutput,image,disimage #displayimg['Output']=displayoutput #changedisplayimg(imageframe,'Output') #time.sleep(5) #image.show() def changeoutputimg(file,intnum): outputimg=outputimgdict[file]['iter'+str(int(intnum)-1)] tempdict={} tempdict.update({'Size':displayimg['ColorIndices']['Size']}) tempdict.update({'Image':outputimg}) displayimg['Output']=tempdict changedisplayimg(imageframe,'Output') def export_ext(iterver,path,whext=False,blkext=False): suggsize=8 print('fontsize',suggsize) smallfont=ImageFont.truetype('cmb10.ttf',size=suggsize) files=multi_results.keys() # path=filedialog.askdirectory() for file in files: labeldict=multi_results[file][0] totalitervalue=len(list(labeldict.keys())) #itervalue='iter'+str(int(iterver.get())-1) #itervalue='iter'+str(totalitervalue-1) #itervalue=int(iterver.get()) itervalue='iter'+iterver print(itervalue) print(labeldict) labels=labeldict[itervalue]['labels'] counts=labeldict[itervalue]['counts'] if len(mappath)>0: colortable=tkintercorestat.get_mapcolortable(labels,elesize.copy(),labellist.copy()) else: colortable=labeldict[itervalue]['colortable'] #originheight,originwidth=Multigraybands[file].size #copylabels=np.copy(labels) #copylabels[refarea]=65535 #labels=cv2.resize(copylabels.astype('float32'),dsize=(originwidth,originheight),interpolation=cv2.INTER_LINEAR) head_tail=os.path.split(file) originfile,extension=os.path.splitext(head_tail[1]) if len(path)>0: tup=(labels,counts,colortable,[],currentfilename) _band,segimg,small_segimg=showcounting(tup,False,True,True,whext,blkext) #imageband=outputimgbands[file][itervalue] imageband=segimg draw=ImageDraw.Draw(imageband) uniquelabels=list(colortable.keys()) tempdict={} if refarea is not None: specarea=float(sizeentry.get()) pixelmmratio=(specarea/len(refarea[0]))**0.5 else: pixelmmratio=1.0 #print('coinsize',coinsize.get(),'pixelmmratio',pixelmmratio) print('pixelmmratio',pixelmmratio) for uni in uniquelabels: if uni !=0: tempuni=colortable[uni] if tempuni=='Ref': pixelloc=np.where(labels==65535) else: pixelloc = np.where(labels == float(uni)) try: ulx = min(pixelloc[1]) except: continue uly = min(pixelloc[0]) rlx = max(pixelloc[1]) rly = max(pixelloc[0]) print(ulx, uly, rlx, rly) midx = ulx + int((rlx - ulx) / 2) midy = uly + int((rly - uly) / 2) length={} currborder=tkintercore.get_boundaryloc(labels,uni) for i in range(len(currborder[0])): for j in range(i+1,len(currborder[0])): templength=float(((currborder[0][i]-currborder[0][j])**2+(currborder[1][i]-currborder[1][j])**2)**0.5) length.update({(i,j):templength}) sortedlength=sorted(length,key=length.get,reverse=True) try: topcouple=sortedlength[0] except: continue kernellength=length[topcouple] i=topcouple[0] j=topcouple[1] x0=currborder[1][i] y0=currborder[0][i] x1=currborder[1][j] y1=currborder[0][j] #slope=float((y0-y1)/(x0-x1)) #linepoints=[(currborder[1][i],currborder[0][i]),(currborder[1][j],currborder[0][j])] #draw.line(linepoints,fill='yellow') #points=linepixels(currborder[1][i],currborder[0][i],currborder[1][j],currborder[0][j]) lengthpoints=cal_kernelsize.bresenhamline(x0,y0,x1,y1) #x0,y0,x1,y1 for point in lengthpoints: if imgtypevar.get()=='0': draw.point([int(point[0]),int(point[1])],fill='yellow') # abovecenter=[] # lowercenter=[] # for i in range(len(currborder[0])): # for j in range(len(lengthpoints)): # if currborder[0][i]<lengthpoints[j][1]: # lowercenter.append((currborder[1][i],currborder[0][i])) #append(x,y) # break # loc=(currborder[1][i],currborder[0][i]) # if loc not in abovecenter and loc not in lowercenter: # abovecenter.append(loc) othodict={} # widthdict={} for i in range(len(currborder[0])): for j in range(i+1,len(currborder[0])): wx0=currborder[1][i] wy0=currborder[0][i] wx1=currborder[1][j] wy1=currborder[0][j] u1=x1-x0 u2=y1-y0 v1=wx1-wx0 v2=wy1-wy0 otho=abs(u1*v1+u2*v2)/(((u1**2+u2**2)**0.5)*(v1**2+v2**2)**0.5) wlength=float((wx0-wx1)**2+(wy0-wy1)**2)**0.5 if otho<=0.13: othodict.update({(wx0,wy0,wx1,wy1):wlength}) sortedwidth=sorted(othodict,key=othodict.get,reverse=True) try: topwidth=sortedwidth[0] except: continue widepoints=cal_kernelsize.bresenhamline(topwidth[0],topwidth[1],topwidth[2],topwidth[3]) for point in widepoints: if imgtypevar.get()=='0': draw.point([int(point[0]),int(point[1])],fill='black') width=othodict[topwidth] print('width',width,'length',kernellength) print('kernelwidth='+str(width*pixelmmratio)) print('kernellength='+str(kernellength*pixelmmratio)) #print('kernelwidth='+str(kernelwidth*pixelmmratio)) tempdict.update({colortable[uni]:[kernellength,width,pixelmmratio**2*len(pixelloc[0]),kernellength*pixelmmratio,width*pixelmmratio]}) #if uni in colortable: canvastext = str(colortable[uni]) #else: # canvastext = uni if imgtypevar.get()=='0': draw.text((midx-1, midy+1), text=canvastext, font=smallfont, fill='white') draw.text((midx+1, midy+1), text=canvastext, font=smallfont, fill='white') draw.text((midx-1, midy-1), text=canvastext, font=smallfont, fill='white') draw.text((midx+1, midy-1), text=canvastext, font=smallfont, fill='white') #draw.text((midx,midy),text=canvastext,font=font,fill=(141,2,31,0)) draw.text((midx,midy),text=canvastext,font=smallfont,fill='black') #print(event.x, event.y, labels[event.x, event.y], ulx, uly, rlx, rly) #recborder = canvas.create_rectangle(ulx, uly, rlx, rly, outline='red') #drawcontents.append(recborder) kernersizes.update({file:tempdict}) originheight,originwidth=Multigraybands[file].size image=imageband.resize([originwidth,originheight],resample=Image.BILINEAR) extcolor="" if whext==True: extcolor= "-extwht" if blkext==True: extcolor="-extblk" image.save(path+'/'+originfile+extcolor+'-sizeresult'+'.png',"PNG") tup=(labels,counts,colortable,[],currentfilename) _band,segimg,small_segimg=showcounting(tup,False,True,True,whext,blkext) segimage=segimg.resize([originwidth,originheight],resample=Image.BILINEAR) segimage.save(path+'/'+originfile+extcolor+'-segmentresult'+'.png',"PNG") _band,segimg,small_segimg=showcounting(tup,True,True,True,whext,blkext) segimage=segimg.resize([originwidth,originheight],resample=Image.BILINEAR) segimage.save(path+'/'+originfile+extcolor+'-labelresult'+'.png',"PNG") def export_result(iterver): global batch if proc_mode[proc_name].get()=='1': batchprocess.batch_exportpath() return suggsize=8 print('fontsize',suggsize) smallfont=ImageFont.truetype('cmb10.ttf',size=suggsize) files=multi_results.keys() path=filedialog.askdirectory() root.update() # export_ext(iterver,path,True,False) # export_ext(iterver,path,False,True) for file in files: labeldict=multi_results[file][0] totalitervalue=len(list(labeldict.keys())) #itervalue='iter'+str(int(iterver.get())-1) #itervalue='iter'+str(totalitervalue-1) #itervalue=int(iterver.get()) itervalue='iter'+iterver print(itervalue) print(labeldict) labels=labeldict[itervalue]['labels'] counts=labeldict[itervalue]['counts'] if len(mappath)>0: colortable=tkintercorestat.get_mapcolortable(labels,elesize.copy(),labellist.copy()) else: colortable=labeldict[itervalue]['colortable'] #originheight,originwidth=Multigraybands[file].size #copylabels=np.copy(labels) #copylabels[refarea]=65535 #labels=cv2.resize(copylabels.astype('float32'),dsize=(originwidth,originheight),interpolation=cv2.INTER_LINEAR) head_tail=os.path.split(file) originfile,extension=os.path.splitext(head_tail[1]) originimg_crop=cv2.imread(file) uniquelabels=list(colortable.keys()) originheight,originwidth=Multigraybands[file].size ratio=int(findratio([512,512],[labels.shape[0],labels.shape[1]])) if labels.shape[0]<512: cache=(np.zeros((labels.shape[0]*ratio,labels.shape[1]*ratio)),{"f":int(ratio),"stride":int(ratio)}) convband=tkintercorestat.pool_backward(labels,cache) else: if labels.shape[0]>512: convband=cv2.resize(labels,(512,512),interpolation=cv2.INTER_LINEAR) else: if labels.shape[0]==512: convband=np.copy(labels) locfilename=path+'/'+originfile+'-pixellocs.csv' #from spectral import imshow, view_cube '''hyperspectral img process''' # import spectral.io.envi as envi lesszeroonefive=[] with open(locfilename,mode='w') as f: csvwriter=csv.writer(f) rowcontent=['id','locs'] csvwriter.writerow(rowcontent) # result_ref=envi.open(head_tail[0]+'/'+originfile+'/results/REFLECTANCE_'+originfile+'.hdr', head_tail[0]+'/'+originfile+'/results/REFLECTANCE_'+originfile+'.dat') # result_nparr=np.array(result_ref.load()) # corrected_nparr=np.copy(result_nparr) for uni in uniquelabels: if uni!=0: tempuni=colortable[uni] if tempuni=='Ref': pixelloc = np.where(convband == 65535) else: pixelloc = np.where(convband == float(uni)) # kernelval=corrected_nparr[pixelloc] # nirs=np.mean(kernelval,axis=0) # print('nirs 170',nirs[170]) # if nirs[170]<0.15: # lesszeroonefive.append(uni) rowcontent=[colortable[uni]] rowcontent=rowcontent+list(pixelloc[0]) csvwriter.writerow(rowcontent) rowcontent=[colortable[uni]] rowcontent=rowcontent+list(pixelloc[1]) csvwriter.writerow(rowcontent) f.close() # print(lesszeroonefive) '''end''' if len(path)>0: tup=(labels,counts,colortable,[],currentfilename) _band,segimg,small_segimg=showcounting(tup,False) #imageband=outputimgbands[file][itervalue] imageband=segimg draw=ImageDraw.Draw(imageband) uniquelabels=list(colortable.keys()) tempdict={} if refarea is not None: specarea=float(sizeentry.get()) pixelmmratio=(specarea/len(refarea[0]))**0.5 else: pixelmmratio=1.0 #print('coinsize',coinsize.get(),'pixelmmratio',pixelmmratio) print('pixelmmratio',pixelmmratio) for uni in uniquelabels: if uni !=0: #uni=colortable[uni] tempuni=colortable[uni] if tempuni=='Ref': pixelloc = np.where(labels == 65535) else: pixelloc = np.where(labels == float(uni)) try: ulx = min(pixelloc[1]) except: continue uly = min(pixelloc[0]) rlx = max(pixelloc[1]) rly = max(pixelloc[0]) print(ulx, uly, rlx, rly) midx = ulx + int((rlx - ulx) / 2) midy = uly + int((rly - uly) / 2) length={} currborder=tkintercore.get_boundaryloc(labels,uni) for i in range(len(currborder[0])): for j in range(i+1,len(currborder[0])): templength=float(((currborder[0][i]-currborder[0][j])**2+(currborder[1][i]-currborder[1][j])**2)**0.5) length.update({(i,j):templength}) sortedlength=sorted(length,key=length.get,reverse=True) try: topcouple=sortedlength[0] except: continue kernellength=length[topcouple] i=topcouple[0] j=topcouple[1] x0=currborder[1][i] y0=currborder[0][i] x1=currborder[1][j] y1=currborder[0][j] #slope=float((y0-y1)/(x0-x1)) linepoints=[(currborder[1][i],currborder[0][i]),(currborder[1][j],currborder[0][j])] #draw.line(linepoints,fill='yellow') #points=linepixels(currborder[1][i],currborder[0][i],currborder[1][j],currborder[0][j]) lengthpoints=cal_kernelsize.bresenhamline(x0,y0,x1,y1) #x0,y0,x1,y1 for point in lengthpoints: if imgtypevar.get()=='0': draw.point([int(point[0]),int(point[1])],fill='yellow') othodict={} # widthdict={} for i in range(len(currborder[0])): for j in range(i+1,len(currborder[0])): wx0=currborder[1][i] wy0=currborder[0][i] wx1=currborder[1][j] wy1=currborder[0][j] u1=x1-x0 u2=y1-y0 v1=wx1-wx0 v2=wy1-wy0 otho=abs(u1*v1+u2*v2)/(((u1**2+u2**2)**0.5)*(v1**2+v2**2)**0.5) wlength=float((wx0-wx1)**2+(wy0-wy1)**2)**0.5 if otho<=0.13: othodict.update({(wx0,wy0,wx1,wy1):wlength}) sortedwidth=sorted(othodict,key=othodict.get,reverse=True) try: topwidth=sortedwidth[0] except: continue widepoints=cal_kernelsize.bresenhamline(topwidth[0],topwidth[1],topwidth[2],topwidth[3]) for point in widepoints: if imgtypevar.get()=='0': draw.point([int(point[0]),int(point[1])],fill='black') width=othodict[topwidth] print('width',width,'length',kernellength) print('kernelwidth='+str(width*pixelmmratio)) print('kernellength='+str(kernellength*pixelmmratio)) #print('kernelwidth='+str(kernelwidth*pixelmmratio)) tempdict.update({colortable[uni]:[kernellength,width,pixelmmratio**2*len(pixelloc[0]),kernellength*pixelmmratio,width*pixelmmratio]}) #if uni in colortable: canvastext = str(colortable[uni]) # else: # canvastext = 'No label' # canvastext = uni if imgtypevar.get()=='0': if uni in lesszeroonefive: draw.text((midx-1, midy+1), text=canvastext, font=smallfont, fill='white') draw.text((midx+1, midy+1), text=canvastext, font=smallfont, fill='white') draw.text((midx-1, midy-1), text=canvastext, font=smallfont, fill='white') draw.text((midx+1, midy-1), text=canvastext, font=smallfont, fill='white') #draw.text((midx,midy),text=canvastext,font=font,fill=(141,2,31,0)) draw.text((midx,midy),text=canvastext,font=smallfont,fill='red') else: draw.text((midx-1, midy+1), text=canvastext, font=smallfont, fill='white') draw.text((midx+1, midy+1), text=canvastext, font=smallfont, fill='white') draw.text((midx-1, midy-1), text=canvastext, font=smallfont, fill='white') draw.text((midx+1, midy-1), text=canvastext, font=smallfont, fill='white') #draw.text((midx,midy),text=canvastext,font=font,fill=(141,2,31,0)) draw.text((midx,midy),text=canvastext,font=smallfont,fill='black') #print(event.x, event.y, labels[event.x, event.y], ulx, uly, rlx, rly) #recborder = canvas.create_rectangle(ulx, uly, rlx, rly, outline='red') #drawcontents.append(recborder) kernersizes.update({file:tempdict}) image=imageband.resize([originwidth,originheight],resample=Image.BILINEAR) image.save(path+'/'+originfile+'-sizeresult'+'.png',"PNG") tup=(labels,counts,colortable,[],currentfilename) _band,segimg,small_segimg=showcounting(tup,False) segimage=segimg.resize([originwidth,originheight],resample=Image.BILINEAR) segimage.save(path+'/'+originfile+'-segmentresult'+'.png',"PNG") _band,segimg,small_segimg=showcounting(tup,True) segimage=segimg.resize([originwidth,originheight],resample=Image.BILINEAR) segimage.save(path+'/'+originfile+'-labelresult'+'.png',"PNG") originrestoredband=np.copy(labels) restoredband=originrestoredband.astype('uint8') colordiv=np.zeros((colordicesband.shape[0],colordicesband.shape[1],3)) savePCAimg(path,originfile,file) # kvar=int(kmeans.get()) # print('kvar',kvar) # for i in range(kvar): # locs=np.where(colordicesband==i) # colordiv[locs]=colorbandtable[i] # colordivimg=Image.fromarray(colordiv.astype('uint8')) # colordivimg.save(path+'/'+originfile+'-colordevice'+'.jpeg',"JPEG") colordivimg=Image.open('allcolorindex.png') copycolordiv=colordivimg.resize([originwidth,originheight],resample=Image.BILINEAR) copycolordiv.save(path+'/'+originfile+'-colordevice'+'.png',"PNG") #pyplt.imsave(path+'/'+originfile+'-colordevice'+'.png',colordiv.astype('uint8')) # copybinary=np.zeros((originbinaryimg.shape[0],originbinaryimg.shape[1],3),dtype='float') # nonzeros=np.where(originbinaryimg==1) # copybinary[nonzeros]=[255,255,0] # binaryimg=Image.fromarray(copybinary.astype('uint8')) binaryimg=Image.open('binaryimg.png') copybinaryimg=binaryimg.resize([originwidth,originheight],resample=Image.BILINEAR) copybinaryimg.save(path+'/'+originfile+'-binaryimg'+'.png',"PNG") # pyplt.imsave(path+'/'+originfile+'-binaryimg'+'.png',originbinaryimg.astype('uint8')) #restoredband=cv2.resize(src=restoredband,dsize=(originwidth,originheight),interpolation=cv2.INTER_LINEAR) print(restoredband.shape) currentsizes=kernersizes[file] indicekeys=list(originbandarray[file].keys()) indeclist=[ 0 for i in range(len(indicekeys)*3)] pcalist=[0 for i in range(3)] # temppcabands=np.zeros((originpcabands[file].shape[0],len(batch['PCs']))) # temppcabands=np.zeros(originpcabands[file].shape[0],1) # for i in range(len(batch['PCs'])): # temppcabands[:,i]=temppcabands[:,i]+originpcabands[file][:,batch['PCs'][i]-1] pcabands=np.copy(displaypclabels) # pcabands=pcabands.reshape((originheight,originwidth)) # pcabands=pcabands.reshape(displayfea_l,displayfea_w) colorindices_cal(file) colorindicekeys=list(colorindicearray[file].keys()) colorindicelist=[ 0 for i in range(len(colorindicekeys)*3)] datatable={} origindata={} for key in indicekeys: data=originbandarray[file][key] data=data.tolist() tempdict={key:data} origindata.update(tempdict) print(key) for key in colorindicekeys: data=colorindicearray[file][key] data=data.tolist() tempdict={key:data} origindata.update(tempdict) print(key) # for uni in colortable: print(uniquelabels) print('len uniquelabels',len(uniquelabels)) for uni in uniquelabels: print(uni,colortable[uni]) uni=colortable[uni] if uni=='Ref': uniloc=np.where(labels==65535) smalluniloc=np.where(originrestoredband==65535) else: uniloc=np.where(labels==float(uni)) smalluniloc=np.where(originrestoredband==uni) if len(uniloc)==0 or len(uniloc[1])==0: print('no uniloc\n') print(uniloc[0],uniloc[1]) continue ulx,uly=min(smalluniloc[1]),min(smalluniloc[0]) rlx,rly=max(smalluniloc[1]),max(smalluniloc[0]) width=rlx-ulx length=rly-uly print(width,length) subarea=restoredband[uly:rly+1,ulx:rlx+1] subarea=subarea.tolist() amount=len(uniloc[0]) print(amount) try: sizes=currentsizes[uni] except: print('no sizes\n') continue #templist=[amount,length,width] templist=[amount,sizes[0],sizes[1],sizes[2],sizes[3],sizes[4]] # tempdict={colortable[uni]:templist+indeclist+colorindicelist+pcalist} #NIR,Redeyes,R,G,B,NDVI,area tempdict={uni:templist+indeclist+colorindicelist+pcalist} #NIR,Redeyes,R,G,B,NDVI,area print(tempdict) indicekeys=list(origindata.keys()) for ki in range(len(indicekeys)): originNDVI=origindata[indicekeys[ki]] print('originNDVI size',len(originNDVI),len(originNDVI[0])) pixellist=[] for k in range(len(uniloc[0])): #print(uniloc[0][k],uniloc[1][k]) try: # tempdict[colortable[uni]][6+ki*3]+=originNDVI[uniloc[0][k]][uniloc[1][k]] tempdict[uni][6+ki*3]+=originNDVI[uniloc[0][k]][uniloc[1][k]] except IndexError: print(uniloc[0][k],uniloc[1][k]) # tempdict[colortable[uni]][7+ki*3]+=originNDVI[uniloc[0][k]][uniloc[1][k]] tempdict[uni][7+ki*3]+=originNDVI[uniloc[0][k]][uniloc[1][k]] pixellist.append(originNDVI[uniloc[0][k]][uniloc[1][k]]) # tempdict[colortable[uni]][ki*3+6]=tempdict[colortable[uni]][ki*3+6]/amount # tempdict[colortable[uni]][ki*3+8]=np.std(pixellist) tempdict[uni][ki*3+6]=tempdict[uni][ki*3+6]/amount tempdict[uni][ki*3+8]=np.std(pixellist) pixellist=[] for k in range(len(uniloc[0])): try: # tempdict[colortable[uni]][-2]+=pcabands[uniloc[0][k]][uniloc[1][k]] tempdict[uni][-2]+=pcabands[uniloc[0][k]][uniloc[1][k]] except IndexError: print(uniloc[0][k],uniloc[1][k]) # tempdict[colortable[uni]][-3]+=pcabands[uniloc[0][k]][uniloc[1][k]] tempdict[uni][-3]+=pcabands[uniloc[0][k]][uniloc[1][k]] pixellist.append(pcabands[uniloc[0][k]][uniloc[1][k]]) # tempdict[colortable[uni]][-3]=tempdict[colortable[uni]][-3]/amount # tempdict[colortable[uni]][-1]=np.std(pixellist) tempdict[uni][-3]=tempdict[uni][-3]/amount tempdict[uni][-1]=np.std(pixellist) datatable.update(tempdict) filename=path+'/'+originfile+'-outputdata.csv' with open(filename,mode='w') as f: csvwriter=csv.writer(f) rowcontent=['Index','Plot','Area(#pixel)','Length(#pixel)','Width(#pixel)','Area(mm2)','Length(mm)','Width(mm)'] for key in indicekeys: rowcontent.append('avg-'+str(key)) rowcontent.append('sum-'+str(key)) rowcontent.append('std-'+str(key)) rowcontent.append('avg-PCA') rowcontent.append('sum-PCA') rowcontent.append('std-PCA') #csvwriter.writerow(['ID','NIR','Red Edge','Red','Green','Blue','NIRv.s.Green','LabOstu','area(#of pixel)']) #csvwriter.writerow(['Index','Plot','Area(#pixels)','avg-NDVI','sum-NDVI','std-NDVI','Length(#pixel)','Width(#pixel)'])#,'#holes']) csvwriter.writerow(rowcontent) i=1 for uni in datatable: row=[i,uni] for j in range(len(datatable[uni])): row.append(datatable[uni][j]) #row=[i,uni,datatable[uni][0],datatable[uni][1],datatable[uni][2],datatable[uni][5],datatable[uni][3],datatable[uni][4]]#, #datatable[uni][5]] i+=1 print(row) csvwriter.writerow(row) print('total data length=',len(datatable)) # messagebox.showinfo('Saved',message='Results are saved to '+path) tx=root.winfo_x() ty=root.winfo_y() top=Toplevel() top.attributes("-topmost",True) w = 300 h = 150 dx=100 dy=100 top.geometry("%dx%d+%d+%d" % (w, h, tx + dx, ty + dy)) top.title('Saved') Message(top,text='Results are saved to '+path,padx=20,pady=20).pack() okbut=Button(top,text='Okay',command=top.destroy) okbut.pack(side=BOTTOM) top.after(10000,top.destroy) thresholds=[cal_xvalue(linelocs[0]),cal_xvalue(linelocs[1])] minthres=min(thresholds) maxthres=max(thresholds) lwthresholds=[cal_yvalue(linelocs[2]),cal_yvalue(linelocs[3])] maxlw=max(lwthresholds) minlw=min(lwthresholds) batch['Area_max']=[maxthres] batch['Area_min']=[minthres] batch['shape_max']=[maxlw] batch['shape_min']=[minlw] print('batch',batch) batchfile=path+'/'+originfile+'-batch'+'.txt' with open(batchfile,'w') as f: for key in batch.keys(): f.write(key) f.write(',') for i in range(len(batch[key])): f.write(str(batch[key][i])) f.write(',') f.write('\n') f.close() def resegment(thresholds=[],lwthresholds=[]): global loccanvas,maxx,minx,maxy,miny,linelocs,bins,ybins,reseglabels,figcanvas,refvar,refsubframe,panelA global labelplotmap,figdotlist,multi_results global batch global outputimgdict,outputimgbands figcanvas.unbind('<Any-Enter>') figcanvas.unbind('<Any-Leave>') figcanvas.unbind('<Button-1>') figcanvas.unbind('<B1-Motion>') figcanvas.unbind('<Shift-Button-1>') figcanvas.delete(ALL) #panelA.unbind('<Button-1>') #refvar.set('0') #for widget in refsubframe.winfo_children(): # widget.config(state=DISABLED) if len(thresholds)==0: thresholds=[cal_xvalue(linelocs[0]),cal_xvalue(linelocs[1])] minthres=min(thresholds) maxthres=max(thresholds) if len(lwthresholds)==0: lwthresholds=[cal_yvalue(linelocs[2]),cal_yvalue(linelocs[3])] maxlw=max(lwthresholds) minlw=min(lwthresholds) print(minthres,maxthres) #labels=np.copy(reseglabels) labels=np.copy(reseglabels) #if reseglabels is None: # reseglabels,border,colortable,labeldict=tkintercorestat.resegmentinput(labels,minthres,maxthres,minlw,maxlw) if refarea is not None: labels[refarea]=0 # if segmentratio>1: # workingimg=cv2.resize(labels,(int(labels.shape[1]/segmentratio),int(labels.shape[0]/segmentratio)),interpolation=cv2.INTER_LINEAR) # else: # workingimg=np.copy(labels) if refarea is None: retrivearea=np.where(labels==65535) if len(retrivearea[1])>0: ulx,uly=min(retrivearea[1]),min(retrivearea[0]) rlx,rly=max(retrivearea[1]),max(retrivearea[0]) rtl=rly-uly rtw=rlx-ulx rtd=(rtl**2+rtw**2)**0.5 rtarea=len(retrivearea[0]) print('rtarea,rtl,rtw,rtd',rtarea,rtl,rtw,rtd) if rtarea>maxthres: maxthres=rtarea if rtd>maxlw: maxlw=rtd if rtarea<minthres: minthres=rtarea if rtd<minlw: minlw=rtd reseglabels,border,colortable,labeldict=tkintercorestat.resegmentinput(labels,minthres,maxthres,minlw,maxlw) # if segmentratio>1: # cache=(np.zeros(labels.shape),{"f":int(segmentratio),"stride":int(segmentratio)}) # reseglabels=tkintercorestat.pool_backward(reseglabels,cache) # #labeldict['iter0']['labels']=reseglabels multi_results.update({currentfilename:(labeldict,{})}) iterkeys=list(labeldict.keys()) iternum=len(iterkeys) print(labeldict) #iternum=3 tempimgdict={} tempimgbands={} tempsmall={} for key in labeldict: tup=(labeldict[key]['labels'],labeldict[key]['counts'],labeldict[key]['colortable'],{},currentfilename) outputdisplay,outputimg,small_seg=showcounting(tup,False,True,True) tempimgdict.update({key:outputdisplay}) tempimgbands.update({key:outputimg}) tempsmall.update({key:small_seg}) outputimgdict.update({currentfilename:tempimgdict}) outputimgbands.update({currentfilename:tempimgbands}) outputsegbands.update({currentfilename:tempsmall}) changeoutputimg(currentfilename,'1') ''' data=np.asarray(border[1:]) hist,bin_edges=np.histogram(data,density=False) #figcanvas=Canvas(frame,width=400,height=350,bg='white') #figcanvas.pack() restoplot=createBins.createBins(hist.tolist(),bin_edges.tolist(),len(bin_edges)) minx,maxx=histograms.plot(restoplot,hist.tolist(),bin_edges.tolist(),figcanvas) bins=bin_edges.tolist() loccanvas=figcanvas linelocs=[minx,maxx] ''' # displayfig() # data=[] # uniquelabels=list(colortable.keys()) # lenwid=[] # lenlist=[] # widlist=[] # labelplotmap={} # templabelplotmap={} # unitable=[] # for uni in uniquelabels: # if uni!=0: # pixelloc = np.where(reseglabels == uni) # try: # ulx = min(pixelloc[1]) # except: # continue # uly = min(pixelloc[0]) # rlx = max(pixelloc[1]) # rly = max(pixelloc[0]) # length=rly-uly # width=rlx-ulx # lenwid.append((length+width)) # lenlist.append(length) # widlist.append(width) # data.append(len(pixelloc[0])) # unitable.append(uni) # # templabelplotmap.update({(len(pixelloc[0]),length+width):uni}) # residual,area=lm_method.lm_method(lenlist,widlist,data) # lenwid=list(residual) # data=list(area) # for i in range(len(unitable)): # templabelplotmap.update({(data[i],lenwid[i]):unitable[i]}) # miny=min(lenwid) # maxy=max(lenwid) # minx=min(data) # maxx=max(data) # binwidth=(maxx-minx)/10 # ybinwidth=(maxy-miny)/10 # bin_edges=[] # y_bins=[] # for i in range(0,11): # bin_edges.append(minx+i*binwidth) # for i in range(0,11): # y_bins.append(miny+i*ybinwidth) # #bin_edges.append(maxx) # #bin_edges.append(maxx+binwidth) # #y_bins.append(maxy) # #y_bins.append(maxy+ybinwidth) # plotdata=[] # for i in range(len(data)): # plotdata.append((data[i],lenwid[i])) # scaledDatalist=[] # try: # x_scalefactor=300/(maxx-minx) # except: # return # y_scalefactor=250/(maxy-miny) # for (x,y) in plotdata: # xval=50+(x-minx)*x_scalefactor+50 # yval=300-(y-miny)*y_scalefactor+25 # scaledDatalist.append((int(xval),int(yval))) # for key in templabelplotmap: # x=key[0] # y=key[1] # xval=50+(x-minx)*x_scalefactor+50 # yval=300-(y-miny)*y_scalefactor+25 # unilabel=templabelplotmap[key] # labelplotmap.update({(int(xval),int(yval)):unilabel}) # figdotlist={} # axistest.drawdots(25+50,325+25,375+50,25+25,bin_edges,y_bins,scaledDatalist,figcanvas,figdotlist) # # # #loccanvas=figcanvas # #minx=25 # #maxx=375 # #maxy=325 # #miny=25 # #linelocs=[25+12,375-12,325-12,25+12] # #linelocs=[25+12,375-12,25+12,325-12] # linelocs=[75+12,425-12,350-12,50+12] # bins=bin_edges # ybins=y_bins # # figcanvas.bind('<Any-Enter>',item_enter) # figcanvas.bind('<Any-Leave>',item_leave) # figcanvas.bind('<Button-1>',item_start_drag) # figcanvas.bind('<B1-Motion>',item_drag) # #figcanvas.bind('<Shift-Button-1>',item_multiselect) # if refarea is not None: # reseglabels[refarea]=65535 # # pcasel=[] # pcakeys=list(pcaboxdict.keys()) # for i in range(len(pcakeys)): # currvar=pcaboxdict[pcakeys[i]].get() # if currvar=='1': # pcasel.append(i+1) # kchoice=[] # kchoicekeys=list(checkboxdict.keys()) # for i in range(len(kchoicekeys)): # currvar=checkboxdict[kchoicekeys[i]].get() # if currvar=='1': # kchoice.append(i+1) # batch['PCs']=pcasel.copy() # batch['Kmeans']=[int(kmeans.get())] # batch['Kmeans_sel']=kchoice.copy() # batch['Area_max']=[maxthres] # batch['Area_min']=[minthres] # # batch['L+W_max']=[maxlw] # # batch['L+W_min']=[minlw] # print(batch) def cal_yvalue(y): y_scalefactor=250/(maxy-miny) yval=(300+25-y)/y_scalefactor+miny return yval def cal_xvalue(x): #print(maxx,minx,max(bins),min(bins)) #binwidth=(maxx-minx)/(max(bins)-min(bins)) #binwidth=(max(bins)-min(bins))/12 #print(x,minx,binwidth) #xloc=((x-minx)/binwidth) #print(xloc,min(bins)) #value=min(bins)+xloc*binwidth #print(value) print(x) x_scalefactor=300/(maxx-minx) print(x_scalefactor) xval=(x-50-50)/x_scalefactor+minx #print(x,xval) return xval def item_enter(event): global figcanvas figcanvas.config(cursor='hand2') figcanvas._restorItem=None figcanvas._restoreOpts=None itemType=figcanvas.type(CURRENT) #print(itemType) pass def item_leave(event): global figcanvas pass def item_multiselect(event): global dotflash print(event.type,'event item_multiselect') currx=event.x curry=event.y print('mul_x',currx,'mul_y',curry) if (currx,curry) in labelplotmap: #or (currx-1,curry) in labelplotmap or (currx+1,curry) in labelplotmap\ #or (currx,curry-1) in labelplotmap or (currx,curry+1) in labelplotmap: labelkey=labelplotmap[(currx,curry)] else: plotlist=list(labelplotmap.keys()) distlist=[] for i in range(len(plotlist)): dist=(abs(currx-plotlist[i][0])+abs(curry-plotlist[i][1]))**0.5 distlist.append(dist) shortestdist=min(distlist) shortestdistindex=distlist.index(shortestdist) labelkey=labelplotmap[plotlist[shortestdistindex]] #if len(dotflash)>0: # for i in range(len(dotflash)): # figcanvas.delete(dotflash.pop(0)) dotx=plotlist[shortestdistindex][0] doty=plotlist[shortestdistindex][1] a=figcanvas.create_oval(dotx-1,doty-1,dotx+1,doty+1,width=1,outline='Orange',fill='Orange') dotflash.append(a) print(labelkey) seedfigflash(labelkey,True) def item_start_drag(event): global figcanvas,linelocs,dotflash itemType=figcanvas.type(CURRENT) print(itemType) print(event.type,'event start_drag') if itemType=='line': fill=figcanvas.itemconfigure(CURRENT,'fill')[4] dash=figcanvas.itemconfigure(CURRENT,'dash')[4] print('dashlen',len(dash)) if fill=='red' and len(dash)>0: figcanvas._lastX=event.x #loccanvas._lastY=event.y linelocs[0]=event.x if fill=='red' and len(dash)==0: figcanvas._lastX=event.x #loccanvas._lastY=event.y linelocs[1]=event.x if fill=='blue' and len(dash)>0: figcanvas._lastY=event.y linelocs[2]=event.y #print('blue') if fill=='blue' and len(dash)==0: figcanvas._lastY=event.y linelocs[3]=event.y #print('purple') #if fill!='red' and fill!='orange': # figcanvas._lastX=None #if fill!='blue' and fill!='purple': # figcanvas._lastY=None print('linelocs',linelocs) else: currx=event.x curry=event.y print('x',currx,'y',curry) if (currx,curry) in labelplotmap: #or (currx-1,curry) in labelplotmap or (currx+1,curry) in labelplotmap\ #or (currx,curry-1) in labelplotmap or (currx,curry+1) in labelplotmap: labelkey=labelplotmap[(currx,curry)] else: plotlist=list(labelplotmap.keys()) distlist=[] for i in range(len(plotlist)): dist=(abs(currx-plotlist[i][0])+abs(curry-plotlist[i][1]))**0.5 distlist.append(dist) shortestdist=min(distlist) shortestdistindex=distlist.index(shortestdist) labelkey=labelplotmap[plotlist[shortestdistindex]] if len(dotflash)>0: for i in range(len(dotflash)): figcanvas.delete(dotflash.pop(0)) dotx=plotlist[shortestdistindex][0] doty=plotlist[shortestdistindex][1] a=figcanvas.create_oval(dotx-1,doty-1,dotx+1,doty+1,width=1,outline='Orange',fill='Orange') dotflash.append(a) print(labelkey) if labelkey in reseglabels: seedfigflash(labelkey) def item_drag(event): global figcanvas,linelocs,xvalue x=event.x y=event.y if x<75: x=75 if x>425: x=425 if y<50: y=50 if y>350: y=350 try: fill=figcanvas.itemconfigure(CURRENT,'fill')[4] dash=figcanvas.itemconfigure(CURRENT,'dash')[4] print('dashlen',len(dash)) print(fill) except: return #itemType=loccanvas.type(CURRENT) #try: # test=0-loccanvas._lastX # test=0-loccanvas._lastY #except: # return if fill=='red': #or fill=='orange': figcanvas.move(CURRENT,x-figcanvas._lastX,0) if fill=='blue': #or fill=='purple': figcanvas.move(CURRENT,0,y-figcanvas._lastY) figcanvas._lastX=x figcanvas._lastY=y if fill=='red' and len(dash)>0: linelocs[0]=x if fill=='red' and len(dash)==0: linelocs[1]=x if fill=='blue' and len(dash)>0: linelocs[2]=y if fill=='blue' and len(dash)==0: linelocs[3]=y #print(line_a) #print(minline) #print(maxline) print('linelocs',linelocs) print(cal_xvalue(linelocs[0]),cal_xvalue(linelocs[1]),cal_yvalue(linelocs[2]),cal_yvalue(linelocs[3])) pass def gen_convband(): global convband if reseglabels is None: return processlabel=np.copy(reseglabels) displaysize=outputsegbands[currentfilename]['iter0'].size print('reseglabels shape',reseglabels.shape) print('displaysize',displaysize) forward=0 if displaysize[0]*displaysize[1]<reseglabels.shape[0]*reseglabels.shape[1]: ratio=int(max(reseglabels.shape[0]/displaysize[1],reseglabels.shape[1]/displaysize[0])) forward=1 else: ratio=int(max(displaysize[0]/reseglabels.shape[1],displaysize[1]/reseglabels.shape[0])) forward=-1 #tempband=cv2.resize(processlabel.astype('float32'),(int(processlabel.shape[1]/ratio),int(processlabel.shape[0]/ratio)),interpolation=cv2.INTER_LINEAR) print(ratio) if int(ratio)>1: #if processlabel.shape[0]*processlabel.shape[1]<850*850: if forward==-1: print('pool_backward') cache=(np.zeros((processlabel.shape[0]*ratio,processlabel.shape[1]*ratio)),{"f":int(ratio),"stride":int(ratio)}) convband=tkintercorestat.pool_backward(processlabel,cache) else: if forward==1: print('pool_forward') convband,cache=tkintercorestat.pool_forward(processlabel,{"f":int(ratio),"stride":int(ratio)}) else: convband=processlabel print('convband shape',convband.shape) def process(): # global outputbutton if proc_mode[proc_name].get()=='1': batchprocess.batch_process() # outputbutton.config(state=NORMAL) return # else: # outputbutton.config(state=DISABLED) if originlabels is None: extraction() else: if changekmeans==True: extraction() else: if linelocs[1]==425 and linelocs[3]==50: extraction() else: resegment() gen_convband() #highlightcoin() def displayfig(): global loccanvas,maxx,minx,maxy,miny,linelocs,bins,ybins,figcanvas global labelplotmap,resviewframe global figdotlist data=[] originlabeldict=multi_results[currentfilename][0] colortable=originlabeldict['iter0']['colortable'] uniquelabels=list(colortable.keys()) lenwid=[] lenlist=[] widlist=[] for widget in resviewframe.winfo_children(): widget.pack_forget() figcanvas.pack() figcanvas.delete(ALL) labelplotmap={} templabelplotmap={} unitable=[] for uni in uniquelabels: if uni!=0: uni=colortable[uni] pixelloc = np.where(reseglabels == uni) try: ulx = min(pixelloc[1]) except: continue uly = min(pixelloc[0]) rlx = max(pixelloc[1]) rly = max(pixelloc[0]) length=rly-uly width=rlx-ulx lenwid.append((length+width)) lenlist.append(length) widlist.append(width) data.append(len(pixelloc[0])) unitable.append(uni) # templabelplotmap.update({(len(pixelloc[0]),length+width):uni}) residual,area=lm_method.lm_method(lenlist,widlist,data) lenwid=list(residual) data=list(area) for i in range(len(unitable)): templabelplotmap.update({(data[i],lenwid[i]):unitable[i]}) miny=min(lenwid) maxy=max(lenwid) minx=min(data) maxx=max(data) binwidth=(maxx-minx)/10 ybinwidth=(maxy-miny)/10 bin_edges=[] y_bins=[] for i in range(0,11): bin_edges.append(minx+i*binwidth) for i in range(0,11): y_bins.append(miny+i*ybinwidth) #bin_edges.append(maxx) #bin_edges.append(maxx+binwidth) #y_bins.append(maxy) #y_bins.append(maxy+ybinwidth) plotdata=[] for i in range(len(data)): plotdata.append((data[i],lenwid[i])) scaledDatalist=[] x_scalefactor=300/(maxx-minx) y_scalefactor=250/(maxy-miny) if maxx-minx==0: maxx=minx+10 x_scalefactor=300/10 if maxy-miny==0: maxy=miny+10 y_scalefactor=250/10 for (x,y) in plotdata: xval=50+(x-minx)*x_scalefactor+50 yval=300-(y-miny)*y_scalefactor+25 scaledDatalist.append((int(xval),int(yval))) for key in templabelplotmap: x=key[0] y=key[1] xval=50+(x-minx)*x_scalefactor+50 yval=300-(y-miny)*y_scalefactor+25 unilabel=templabelplotmap[key] labelplotmap.update({(int(xval),int(yval)):unilabel}) #print(labelplotmap) #print(scaledDatalist) figdotlist={} axistest.drawdots(25+50,325+25,375+50,25+25,bin_edges,y_bins,scaledDatalist,figcanvas,figdotlist) #loccanvas=figcanvas #minx=25 #maxx=375 #maxy=325 #miny=25 #[25,375,325,25] #linelocs=[25+12,375-12,25+12,325-12] linelocs=[75+12,425-12,350-12,50+12] #linelocs=[25+12,375-12,325-12,25+12] bins=bin_edges ybins=y_bins figcanvas.bind('<Any-Enter>',item_enter) figcanvas.bind('<Any-Leave>',item_leave) figcanvas.bind('<Button-1>',item_start_drag) figcanvas.bind('<B1-Motion>',item_drag) figcanvas.bind('<Shift-Button-1>',item_multiselect) #reseg=Button(frame,text='Re-process',command=partial(resegment,labels,figcanvas),padx=5,pady=5) #reseg.pack() #if outputbutton is None: # outputbutton=Button(control_fr,text='Export Results',command=partial(export_result,'0'),padx=5,pady=5) # outputbutton.pack() #batchextraction() #else: # outputbutton.pack_forget() # outputbutton.pack() refbutton.config(state=NORMAL) # refvar.set('0') for widget in refsubframe.winfo_children(): #widget.config(state=DISABLED) widget.config(state=NORMAL) outputbutton.config(state=NORMAL) #resegbutton.config(state=NORMAL) # pcasel=[] # pcakeys=list(pcaboxdict.keys()) # for i in range(len(pcakeys)): # currvar=pcaboxdict[pcakeys[i]].get() # if currvar=='1': # pcasel.append(i+1) kchoice=[] kchoicekeys=list(checkboxdict.keys()) for i in range(len(kchoicekeys)): currvar=checkboxdict[kchoicekeys[i]].get() if currvar=='1': kchoice.append(i+1) pcasel=[] pcasel.append(pc_combine_up.get()-0.5) batch['PCweight']=pcasel.copy() batch['PCsel']=[buttonvar.get()+1] batch['Kmeans']=[int(kmeans.get())] batch['Kmeans_sel']=kchoice.copy() print(batch) #def extraction(frame): def extraction(): global kernersizes,multi_results,workingimg,outputimgdict,outputimgbands,pixelmmratio global currentlabels,panelA,reseglabels,refbutton,figcanvas,resegbutton,refvar global refsubframe,loccanvas,originlabels,changekmeans,originlabeldict,refarea global figdotlist,segmentratio global batch if int(kmeans.get())==1: messagebox.showerror('Invalid Class #',message='#Class = 1, try change it to 2 or more, and refresh Color-Index.') return refarea=None multi_results.clear() kernersizes.clear() itervar=IntVar() outputimgdict.clear() outputimgbands.clear() #for widget in frame.winfo_children(): # widget.pack_forget() # coin=refvar.get()=='1' edgevar=edge.get()=='1' if edgevar: currentlabels=removeedge(currentlabels) nonzeros=np.count_nonzero(currentlabels) nonzeroloc=np.where(currentlabels!=0) try: ulx,uly=min(nonzeroloc[1]),min(nonzeroloc[0]) except: messagebox.showerror('Invalid Colorindices',message='Need to process colorindicies') return rlx,rly=max(nonzeroloc[1]),max(nonzeroloc[0]) nonzeroratio=float(nonzeros)/((rlx-ulx)*(rly-uly)) print('nonzeroratio=',nonzeroratio) batch['nonzero']=[nonzeroratio] #nonzeroratio=float(nonzeros)/(currentlabels.shape[0]*currentlabels.shape[1]) dealpixel=nonzeroratio*currentlabels.shape[0]*currentlabels.shape[1] ratio=1 # if selarea.get()=='1': selareadim=app.getinfo(rects[1]) global selareapos,originselarea if selareadim!=[0,0,1,1] and selareadim!=[] and selareadim!=selareapos: selareapos=selareadim if selareapos!=[0,0,1,1] and originselarea==True: # selareadim=app.getinfo(rects[1]) npfilter=np.zeros((displayimg['Origin']['Size'][0],displayimg['Origin']['Size'][1])) filter=Image.fromarray(npfilter) draw=ImageDraw.Draw(filter) draw.ellipse(selareapos,fill='red') filter=np.array(filter) # start=list(selareapos)[:2] # end=list(selareapos)[2:] # lx,ly,rx,ry=int(min(start[0],end[0])),int(min(start[1],end[1])),int(max(start[0],end[0])),int(max(start[1],end[1])) # filter[:,lx:rx+1]=1 # for i in range(0,ly): # filter[i,:]=0 # for i in range(ry+1,displayimg['Origin']['Size'][0]): # filter[i,:]=0 filter=np.divide(filter,np.max(filter)) originselarea=False # filter=np.where(filter==max(filter),1,0) else: filter=np.ones((displayimg['Origin']['Size'][0],displayimg['Origin']['Size'][1])) filter=cv2.resize(filter,(currentlabels.shape[1],currentlabels.shape[0]),interpolation=cv2.INTER_LINEAR) selareapos=[] print('deal pixel',dealpixel) if dealpixel<512000: workingimg=np.copy(currentlabels) # if selarea.get()=='1': workingimg=np.multiply(workingimg,filter) else: if nonzeroratio<=0.2:# and nonzeroratio>=0.1: ratio=findratio([currentlabels.shape[0],currentlabels.shape[1]],[1600,1600]) print('ratio to wkimg',ratio) # if dealpixel<512000 or currentlabels.shape[0]*currentlabels.shape[1]<=1600*1600: # workingimg=np.copy(currentlabels) # else: # if currentlabels.shape[0]*currentlabels.shape[1]>1600*1600: workingimg=cv2.resize(currentlabels,(int(currentlabels.shape[1]/ratio),int(currentlabels.shape[0]/ratio)),interpolation=cv2.INTER_LINEAR) # if selarea.get()=='1': filter=cv2.resize(filter,(int(currentlabels.shape[1]/ratio),int(currentlabels.shape[0]/ratio)),interpolation=cv2.INTER_LINEAR) workingimg=np.multiply(workingimg,filter) # else: # #ratio=1 # #print('nonzeroratio',ratio) # workingimg=np.copy(currentlabels) segmentratio=0 else: # if dealpixel>512000: if currentlabels.shape[0]*currentlabels.shape[1]>screenstd*screenstd: segmentratio=findratio([currentlabels.shape[0],currentlabels.shape[1]],[screenstd,screenstd]) if segmentratio<2: segmentratio=2 workingimg=cv2.resize(currentlabels,(int(currentlabels.shape[1]/segmentratio),int(currentlabels.shape[0]/segmentratio)),interpolation=cv2.INTER_LINEAR) # if selarea.get()=='1': filter=cv2.resize(filter,(int(currentlabels.shape[1]/segmentratio),int(currentlabels.shape[0]/segmentratio)),interpolation=cv2.INTER_LINEAR) # filter=cv2.resize(filter,workingimg.shape[1],workingimg.shape[2],interpolation=cv2.INTER_LINEAR) workingimg=np.multiply(workingimg,filter) # else: # segmentratio=1 # #print('ratio',ratio) # workingimg=np.copy(currentlabels) pixelmmratio=1.0 coin=False print('nonzeroratio:',ratio,'segmentation ratio',segmentratio) print('workingimgsize:',workingimg.shape) pyplt.imsave('workingimg.png',workingimg) if originlabels is None: originlabels,border,colortable,originlabeldict=tkintercorestat.init(workingimg,workingimg,'',workingimg,10,coin) changekmeans=False else: if changekmeans==True: originlabels,border,colortable,originlabeldict=tkintercorestat.init(workingimg,workingimg,'',workingimg,10,coin) changekmeans=False # if segmentratio>1: # cache=(np.zeros((currentlabels.shape[0],currentlabels.shape[1])),{"f":int(segmentratio),"stride":int(segmentratio)}) # orisize_originlabels=tkintercorestat.pool_backward(originlabels,cache) # #originlabels=orisize_originlabels # originlabeldict['iter0']['labels']=orisize_originlabels multi_results.update({currentfilename:(originlabeldict,{})}) reseglabels=originlabels labeldict=originlabeldict colortable=originlabeldict['iter0']['colortable'] iterkeys=list(labeldict.keys()) iternum=len(iterkeys) print(labeldict) #iternum=3 itervar.set(len(iterkeys)) tempimgdict={} tempimgbands={} tempsmall={} for key in labeldict: tup=(labeldict[key]['labels'],labeldict[key]['counts'],labeldict[key]['colortable'],{},currentfilename) outputdisplay,outputimg,smallset=showcounting(tup,False,True,True) tempimgdict.update({key:outputdisplay}) tempimgbands.update({key:outputimg}) tempsmall.update({key:smallset}) outputimgdict.update({currentfilename:tempimgdict}) outputimgbands.update({currentfilename:tempimgbands}) outputsegbands.update({currentfilename:tempsmall}) #time.sleep(5) #tup=(labeldict,coinparts,currentfilename) #resscaler=Scale(frame,from_=1,to=iternum,tickinterval=1,length=220,orient=HORIZONTAL,variable=itervar,command=partial(changeoutputimg,currentfilename)) #resscaler.pack() changeoutputimg(currentfilename,'1') processlabel=np.copy(reseglabels) tempband=np.copy(convband) # panelA.bind('<Button-1>',lambda event,arg=processlabel:customcoin(event,processlabel,tempband)) # panelA.bind('<Shift-Button-1>',customcoin_multi) panelA.config(cursor='hand2') ''' data=np.asarray(border[1:]) hist,bin_edges=np.histogram(data,density=False) figcanvas=Canvas(frame,width=400,height=350,bg='white') figcanvas.pack() restoplot=createBins.createBins(hist.tolist(),bin_edges.tolist(),len(bin_edges)) global minx,maxx,bins,loccanvas,linelocs minx,maxx=histograms.plot(restoplot,hist.tolist(),bin_edges.tolist(),figcanvas) bins=bin_edges.tolist() loccanvas=figcanvas linelocs=[minx,maxx] ''' def onFrameConfigure(inputcanvas): '''Reset the scroll region to encompass the inner frame''' inputcanvas.configure(scrollregion=inputcanvas.bbox(ALL)) def removeedge(bands): global pointcontainer,displayorigin copyband=np.copy(bands) size=copyband.shape for i in range(20): copyband[i,:]=0 #up copyband[:,i]=0 #left copyband[:,size[1]-1-i]=0 #right copyband[size[0]-1-i,:]=0 img=ImageTk.PhotoImage(Image.fromarray(copyband.astype('uint8'))) displayimg['ColorIndices']['Image']=img changedisplayimg(imageframe,'ColorIndices') return copyband def clustercontent(var): global cluster,bandchoice,contentframe bandchoice={} #if var=='0': #if var=='1': cluster=['LabOstu','NDI','Greenness','VEG','CIVE','MExG','NDVI','NGRDI','HEIGHT','Band1','Band2','Band3'] for widget in contentframe.winfo_children(): widget.pack_forget() for key in cluster: tempdict={key:Variable()} bandchoice.update(tempdict) ch=ttk.Checkbutton(contentframe,text=key,variable=bandchoice[key])#,command=changecluster)#,command=partial(autosetclassnumber,clusternumberentry,bandchoice)) #if filedropvar.get()=='seedsample.JPG': # if key=='NDI': # ch.invoke() ch.pack(fill=X) def findtempbandgap(locs): xloc=list(locs[1]) yloc=list(locs[0]) sortedx=sorted(xloc) gaps={} last=0 for i in range(len(sortedx)): if sortedx[i]==sortedx[last]: continue isone = sortedx[i]-sortedx[last]==1 if isone == False: gaps.update({(last,i-1):i-1-last+1}) last=i print('xgaps',gaps,'len',len(sortedx)) gaps={} last=0 sortedy=sorted(yloc) for i in range(len(sortedy)): if sortedy[i]==sortedy[last]: continue isone = sortedy[i]-sortedy[last]==1 if isone == False: gaps.update({(last,i-1):i-1-last+1}) last=i print('ygaps',gaps,'len',len(sortedy)) def customcoin_multi(event): global panelA,multiselectitems global coinbox_list,minflash,coinbox global dotflash,figcanvas x=event.x y=event.y # multiselectitems=[] if len(minflash)>0: for i in range(len(minflash)): panelA.delete(minflash.pop(0)) if len(dotflash)>0: for i in range(len(dotflash)): figcanvas.delete(dotflash.pop(0)) panelA.delete(coinbox) tempband=np.copy(convband) print(tempband.shape) coinlabel=tempband[y,x] print('coinlabel',coinlabel,'x',x,'y',y) if coinlabel==0: multiselectitems=[] if len(coinbox_list)>0: for i in range(len(coinbox_list)): panelA.delete(coinbox_list.pop(0)) return else: multiselectitems.append(coinlabel) coinarea=np.where(tempband==coinlabel) unix=np.unique(coinarea[1]).tolist() uniy=np.unique(coinarea[0]).tolist() if len(unix)==1: ulx,rlx=unix[0],unix[0] else: ulx,rlx=min(coinarea[1]),max(coinarea[1]) if len(uniy)==1: uly,rly=uniy[0],uniy[0] else: uly,rly=min(coinarea[0]),max(coinarea[0]) a=panelA.create_rectangle(ulx,uly,rlx+1,rly+1,outline='yellow') coinbox_list.append(a) # plotcoinarea=np.where(reseglabels==coinlabel) # ulx,uly=min(plotcoinarea[1]),min(plotcoinarea[0]) # rlx,rly=max(plotcoinarea[1]),max(plotcoinarea[0]) # unix=np.unique(plotcoinarea[1]).tolist() # uniy=np.unique(plotcoinarea[0]).tolist() # if len(unix)==1: # ulx,rlx=unix[0],unix[0] # else: # ulx,rlx=min(plotcoinarea[1]),max(plotcoinarea[1]) # if len(uniy)==1: # uly,rly=uniy[0],uniy[0] # else: # uly,rly=min(plotcoinarea[0]),max(plotcoinarea[0]) # lw=rlx-ulx+rly-uly # area=len(plotcoinarea[0]) # print('lw',lw,'area',area) labelplotmapkeys=getkeys(labelplotmap) for mapkey in labelplotmapkeys: k=mapkey[0] v=mapkey[1] templabel=labelplotmap[mapkey] if templabel in multiselectitems: xval=k yval=v print('lw',yval,'area',xval) plotflash(yval,xval,'Orange','Orange') # break def customcoin(event,processlabels,tempband): global panelA#refarea, global coinbox,reflabel,minflash,coinbox_list global dotflash,figcanvas global multiselectitems x=event.x y=event.y multiselectitems=[] if len(minflash)>0: for i in range(len(minflash)): panelA.delete(minflash.pop(0)) if len(dotflash)>0: for i in range(len(dotflash)): figcanvas.delete(dotflash.pop(0)) if len(coinbox_list)>0: for i in range(len(coinbox_list)): panelA.delete(coinbox_list.pop(0)) panelA.delete(coinbox) tempband=np.copy(convband) #ratio=findratio([processlabels.shape[0],processlabels.shape[1]],[850,850]) #tempband=cv2.resize(processlabels.astype('float32'),(int(processlabels.shape[1]/ratio),int(processlabels.shape[0]/ratio)),interpolation=cv2.INTER_LINEAR) #if processlabels.shape[0]*processlabels.shape[1]>850*850 # tempband= #tempband=tempband.astype('uint8') print(tempband.shape) coinlabel=tempband[y,x] print('coinlabel',coinlabel,'x',x,'y',y) #refarea=None if coinlabel==0: #messagebox.showerror('Invalid',message='Please pick areas have items.') return else: #refarea=np.where(processlabels==coinlabel) reflabel=coinlabel coinarea=np.where(tempband==coinlabel) #findtempbandgap(coinarea) ulx,uly=min(coinarea[1]),min(coinarea[0]) rlx,rly=max(coinarea[1]),max(coinarea[0]) #copytempband=np.copy(tempband) #temparea=copytempband[uly:rly+1,ulx:rlx+1] #copytempband[uly:rly+1,ulx:rlx+1]=tkintercorestat.tempbanddenoice(temparea,coinlabel,len(refarea[0])/(ratio**2)) #coinarea=np.where(copytempband==coinlabel) unix=np.unique(coinarea[1]).tolist() uniy=np.unique(coinarea[0]).tolist() if len(unix)==1: ulx,rlx=unix[0],unix[0] else: ulx,rlx=min(coinarea[1]),max(coinarea[1]) if len(uniy)==1: uly,rly=uniy[0],uniy[0] else: uly,rly=min(coinarea[0]),max(coinarea[0]) ''' try: ulx,uly=min(coinarea[1]),min(coinarea[0]) rlx,rly=max(coinarea[1]),max(coinarea[0]) except: coinarea=np.where(tempband==coinlabel) ulx,uly=min(coinarea[1]),min(coinarea[0]) rlx,rly=max(coinarea[1]),max(coinarea[0]) ''' coinbox=panelA.create_rectangle(ulx,uly,rlx+1,rly+1,outline='yellow') # plotcoinarea=np.where(reseglabels==coinlabel) # ulx,uly=min(plotcoinarea[1]),min(plotcoinarea[0]) # rlx,rly=max(plotcoinarea[1]),max(plotcoinarea[0]) # unix=np.unique(plotcoinarea[1]).tolist() # uniy=np.unique(plotcoinarea[0]).tolist() # if len(unix)==1: # ulx,rlx=unix[0],unix[0] # else: # ulx,rlx=min(plotcoinarea[1]),max(plotcoinarea[1]) # if len(uniy)==1: # uly,rly=uniy[0],uniy[0] # else: # uly,rly=min(plotcoinarea[0]),max(plotcoinarea[0]) # lw=rlx-ulx+rly-uly # area=len(plotcoinarea[0]) for k,v in labelplotmap: templabel=labelplotmap[(k,v)] if templabel==reflabel: xval=k yval=v print('lw',yval,'area',xval) plotflash(yval,xval,'Orange','Orange') break #panelA.unbind('<Button-1>') def magnify(event): global panelA x=event.x y=event.y grabimg=ImageGrab.grab((x-2,y-2,x+2,y+2)) subimg=grabimg.resize((10,10)) magnifier=panelA.create_image(x-3,y-3,image=ImageTk.PhotoImage(subimg)) panelA.update() def runflash(ulx,uly,rlx,rly,color): global minflash,panelA print(ulx,uly,rlx,rly) a=panelA.create_rectangle(ulx,uly,rlx+2,rly+2,outline=color) minflash.append(a) def plotflash(yval,xval,outlinecolor,fillcolor): global dotflash,figcanvas # x_scalefactor=300/(maxx-minx) # y_scalefactor=250/(maxy-miny) # xval=50+(area-minx)*x_scalefactor+50 # yval=300-(lw-miny)*y_scalefactor+25 a=figcanvas.create_oval(xval-1,yval-1,xval+1,yval+1,width=1,outline=outlinecolor,fill=fillcolor) dotflash.append(a) def seedfigflash(topkey,multi=False): global panelA,coinbox global reflabel,minflash,multiselectitems tempband=np.copy(convband) if len(minflash)>0: for i in range(len(minflash)): panelA.delete(minflash.pop(0)) panelA.delete(coinbox) if multi==False: multiselectitems=[] else: multiselectitems.append(topkey) reflabel=topkey coinarea=np.where(tempband==topkey) print(coinarea) ulx,uly=min(coinarea[1]),min(coinarea[0]) rlx,rly=max(coinarea[1]),max(coinarea[0]) unix=np.unique(coinarea[1]).tolist() uniy=np.unique(coinarea[0]).tolist() if len(unix)==1: ulx,rlx=unix[0],unix[0] else: ulx,rlx=min(coinarea[1]),max(coinarea[1]) if len(uniy)==1: uly,rly=uniy[0],uniy[0] else: uly,rly=min(coinarea[0]),max(coinarea[0]) coinbox=panelA.create_rectangle(ulx,uly,rlx+2,rly+2,outline='yellow') panelA.after(300,lambda :runflash(ulx,uly,rlx,rly,'red')) panelA.after(600,lambda :runflash(ulx,uly,rlx,rly,'yellow')) panelA.after(900,lambda :runflash(ulx,uly,rlx,rly,'red')) panelA.after(1200,lambda :runflash(ulx,uly,rlx,rly,'yellow')) panelA.after(1500,lambda :runflash(ulx,uly,rlx,rly,'red')) panelA.after(1800,lambda :runflash(ulx,uly,rlx,rly,'yellow')) def del_reflabel(): global reseglabels,panelA,loccanvas,linelocs,bins,ybins,figcanvas,maxx,minx,maxy,miny,refvar,refsubframe global labelplotmap,multiselectitems,dotflash,minflash,coinbox_list,reflabel processlabel=np.copy(reseglabels) refarea=np.where(processlabel==reflabel) print('reflabel to delete',reflabel) reseglabels[refarea]=0 reflabel=0 delselarea=app.getinfo(delrects[1]) # if len(minflash)>0: # print('delete minflash') # for i in range(len(minflash)): # panelA.delete(minflash.pop(0)) # if len(dotflash)>0: # print('delete dotflash') # for i in range(len(dotflash)): # figcanvas.delete(dotflash.pop(0)) # if len(coinbox_list)>0: # print('del coinbox_list') # for i in range(len(coinbox_list)): # panelA.delete(coinbox_list.pop(0)) if len(multiselectitems)>0: print('del multiselection items',len(multiselectitems)) for i in range(len(multiselectitems)): refarea=np.where(processlabel==multiselectitems.pop(0)) reseglabels[refarea]=0 thresholds=[cal_xvalue(linelocs[0]),cal_xvalue(linelocs[1])] minthres=min(thresholds) maxthres=max(thresholds) lwthresholds=[cal_yvalue(linelocs[2]),cal_yvalue(linelocs[3])] maxlw=max(lwthresholds) minlw=min(lwthresholds) unique,counts=np.unique(processlabel,return_counts=True) unique=unique[1:] counts=counts[1:] hist=dict(zip(unique,counts)) outsizethreshold=[] for key in hist: if hist[key]>maxthres: outsizethreshold.append(key) if hist[key]<minthres: outsizethreshold.append(key) lenlist=[] widlist=[] data=[] for uni in unique: if uni!=0: pixelloc = np.where(reseglabels == uni) try: ulx = min(pixelloc[1]) except: continue uly = min(pixelloc[0]) rlx = max(pixelloc[1]) rly = max(pixelloc[0]) length=rly-uly width=rlx-ulx lenlist.append(length) widlist.append(width) data.append(len(pixelloc[0])) residual,area=lm_method.lm_method(lenlist,widlist,data) residual=list(residual) for i in range(len(residual)): if residual[i]>maxlw: outsizethreshold.append(unique[1:][i]) if residual[i]<minlw: outsizethreshold.append(unique[1:][i]) if len(outsizethreshold)>0: print('del outsizethreshold',len(outsizethreshold)) for i in range(len(outsizethreshold)): deletlabel=outsizethreshold[i] refarea=np.where(processlabel==deletlabel) reseglabels[refarea]=0 if delselarea!=[]: print('delselarea',delrects[1],delselarea) npfilter=np.zeros((displayimg['Origin']['Size'][0],displayimg['Origin']['Size'][1])) filter=Image.fromarray(npfilter) draw=ImageDraw.Draw(filter) draw.ellipse(delselarea,fill='red') # filter.save('deletefilter.tiff') filter=np.array(filter) filter=np.divide(filter,np.max(filter)) filter=cv2.resize(filter,(reseglabels.shape[1],reseglabels.shape[0]),interpolation=cv2.INTER_LINEAR) indices_one=np.where(filter==1) reseglabels[indices_one]=0 process() # gen_convband() # panelA.delete(coinbox) # reseglabels=tkintercorestat.renamelabels(reseglabels) # resegment([maxx,minx],[maxy,miny]) # displayfig() # newcolortables=tkintercorestat.get_colortable(reseglabels) # newunique,newcounts=np.unique(reseglabels,return_counts=True) # tup=(reseglabels,newcounts,newcolortables,{},currentfilename) # outputdisplay,outputimg,smallset=showcounting(tup,False) # tempimgdict={} # tempimgbands={} # tempsmall={} # tempimgdict.update({'iter0':outputdisplay}) # tempimgbands.update({'iter0':outputimg}) # tempsmall.update({'iter0':smallset}) # outputimgdict.update({currentfilename:tempimgdict}) # outputimgbands.update({currentfilename:tempimgbands}) # outputsegbands.update({currentfilename:tempsmall}) # changeoutputimg(currentfilename,'1') # #update plot # print('done image') # copyplotmap=labelplotmap.copy() # for k,v in copyplotmap.items(): # if v==reflabel: # figindex=figdotlist[k] # figcanvas.delete(figindex) # if len(multiselectitems)>0: # for k,v in copyplotmap.items(): # if v in multiselectitems and v!=reflabel: # figindex=figdotlist[k] # figcanvas.delete(figindex) # if len(dotflash)>0: # for i in range(len(dotflash)): # figcanvas.delete(dotflash.pop(0)) # #tup=list(figcanvas.find_all()) # #figcanvas.delete(tup[-1]) # multiselectitems=[] # if len(outsizethreshold)>0: # for k,v in copyplotmap.items(): # if v in outsizethreshold and v!=reflabel: # figindex=figdotlist[k] # figcanvas.delete(figindex) # outsizethreshold=[] # displayfig() # labels=np.copy(reseglabels) # reseglabels,border,colortable,labeldict=tkintercorestat.resegmentinput(labels,minthres,maxthres,minlw,maxlw) # displayfig() # update plot # def selareachoice(widget): # # global panelA,rects,selareapos,app # global rects,selareapos,app # app=sel_area.Application(widget) # rects=app.start() # # if selarea.get()=='1': # # messagebox.showinfo('select AOI',message='Clike mouse at start point and drag on the image to define an area you want to segment.') # # rects=app.start() # # else: # # selareapos=app.getinfo(rects[1]) # # app.end(rects) #def refchoice(refsubframe): def refchoice(): #global coinsize,sizeentry,coinbox,panelA,boundaryarea,coindict,convband global sizeentry,coinbox,panelA,boundaryarea,coindict,convband global refarea,reseglabels #refsubframe.grid_forget() #for widget in refsubframe.winfo_children(): # widget.pack_forget() #panelA.delete(coinbox) if refvar.get()=='1': if type(currentlabels)==type(None): messagebox.showerror('Invalid Option',message='Should get # class >=2 color index image first.') return processlabel=np.copy(reseglabels) refarea=np.where(processlabel==reflabel) print('refarea',len(refarea[0])) print('reflabel',reflabel) else: reseglabels[refarea]=65535 refarea=None def changekmeansbar(event): global kmeanschanged kmeanschanged=True def changepcweight(event): global pcweightchanged,kmeanschanged # print('pca weight',pc_combine_up.get()) pcweightchanged=True if kmeans.get()>1: kmeanschanged=True def changeclusterbox(event): global clusterchanged,changekmeans clusterchanged=True changekmeans=True def beforecluster(event): global kmeanschanged,pcweightchanged,imageframe if pcweightchanged==True: pcweightchanged=False pcweightupdate(imageframe) if kmeanschanged==True: kmeanschanged=False changecluster('') ## ----Interface---- ## ----Display---- display_fr=Frame(root,width=640,height=640) control_fr=Frame(root,width=320,height=320) bottomframe=Frame(root) bottomframe.pack(side=BOTTOM) display_fr.pack(side=LEFT) control_fr.pack(side=LEFT) #display_label=Text(display_fr,height=1,width=100) #display_label.tag_config("just",justify=CENTER) #display_label.insert(END,'Display Panel',"just") #display_label.configure(state=DISABLED) #display_label.pack(padx=10,pady=10) imgtypevar.set('0') # Open_File('seedsample.JPG') # singleband('seedsample.JPG') #cal indices generatedisplayimg('seedsample.JPG') imageframe=LabelFrame(display_fr,bd=0) imageframe.pack() #panelA=Label(imageframe,text='Display Panel',image=displayimg['Origin']) #620 x 620 l=displayimg['Origin']['Size'][0] w=displayimg['Origin']['Size'][1] panelA=Canvas(imageframe,width=w,height=l,bg='white') panelA.create_image(0,0,image=displayimg['Origin']['Image'],anchor=NW) panelA.pack(padx=20,pady=20,expand=YES) buttondisplay=LabelFrame(bottomframe,bd=0) buttondisplay.config(cursor='hand2') buttondisplay.pack(side=LEFT) proc_name='batch_mode' proc_mode={proc_name:Variable()} proc_mode[proc_name].set('0') proc_but=Checkbutton(buttondisplay,text=proc_name,variable=proc_mode[proc_name]) proc_but.pack(side=LEFT,padx=20,pady=5) openfilebutton=Button(buttondisplay,text='Image',command=Open_Multifile,cursor='hand2') openfilebutton.pack(side=LEFT,padx=20,pady=5) mapbutton=Button(buttondisplay,text='Pilot',cursor='hand2',command=Open_Map) mapbutton.pack(side=LEFT,padx=20,pady=5) # disbuttonoption={'Origin':'1','PCs':'5','Color Deviation':'2','ColorIndices':'3','Output':'4'} # buttonname={'Raw':'1','PCs':'5','Clusters':'2','Selected':'3','Output':'4'} # #disbuttonoption={'Origin':'1','ColorIndices':'3','Output':'4'} # for (text,v1),(name,v2) in zip(disbuttonoption.items(),buttonname.items()): # b=Radiobutton(buttondisplay,text=name,variable=displaybut_var,value=disbuttonoption[text],command=partial(changedisplayimg,imageframe,controlframe,text)) # b.pack(side=LEFT,padx=20,pady=5) # b.configure(state=DISABLED) # if disbuttonoption[text]=='1': # b.invoke() ### ---open file---- ## ----Control---- #control_label=Text(control_fr,height=1,width=50) #control_label.tag_config("just",justify=CENTER) #control_label.insert(END,'Control Panel',"just") #control_label.configure(state=DISABLED) #control_label.pack() filter_fr=LabelFrame(control_fr,bd=0) filter_fr.pack() imgtypeframe=LabelFrame(filter_fr,text='Image type',bd=0) #imgtypeframe.pack() imgtypeoption=[('Crop plots','1'),('Grain kernel','0')] for text,mode in imgtypeoption: b=Radiobutton(imgtypeframe,text=text,variable=imgtypevar,value=mode,command=partial(clustercontent,mode)) #b.pack(side=LEFT,padx=6) ### ---change file--- changefileframe=LabelFrame(filter_fr,text='Change Files',cursor='hand2') #changefileframe.pack() # filedropvar.set(filenames[0]) # changefiledrop=OptionMenu(changefileframe,filedropvar,*filenames,command=partial(changeimage,imageframe)) # changefiledrop.pack() ### ---choose color indices--- # ''' # chframe=LabelFrame(filter_fr,text='Select indicies below',cursor='hand2',bd=0) # chframe.pack() # chcanvas=Canvas(chframe,width=200,height=110,scrollregion=(0,0,400,400)) # chcanvas.pack(side=LEFT) # chscroller=Scrollbar(chframe,orient=VERTICAL) # chscroller.pack(side=RIGHT,fill=Y,expand=True) # chcanvas.config(yscrollcommand=chscroller.set) # chscroller.config(command=chcanvas.yview) # contentframe=LabelFrame(chcanvas) # chcanvas.create_window((4,4),window=contentframe,anchor=NW) # contentframe.bind("<Configure>",lambda event,arg=chcanvas:onFrameConfigure(arg)) # # for key in cluster: # tempdict={key:Variable()} # bandchoice.update(tempdict) # ch=ttk.Checkbutton(contentframe,text=key,variable=bandchoice[key])#,command=changecluster)#,command=partial(autosetclassnumber,clusternumberentry,bandchoice)) # if filedropvar.get()=='seedsample.JPG': # if key=='LabOstu': # ch.invoke() # ch.pack(fill=X) # ''' ### ----Class NUM---- kmeansgenframe=LabelFrame(filter_fr,cursor='hand2',bd=0) pcaframe=LabelFrame(kmeansgenframe,text=' By PCs',cursor='hand2',bd=0) kmeansgenframe.pack() pcaframe.pack() # pcselframe=LabelFrame(kmeansgenframe) # pcselframe.pack() kmeanslabel=LabelFrame(kmeansgenframe,text='By Clusters',bd=0) checkboxframe=LabelFrame(filter_fr,cursor='hand2',bd=0)#,text='Select classes',cursor='hand2') kmeanslabel.pack() pcaboxdict={} pc1label=Label(pcaframe,text='PC1',bd=0) pc1label.pack(side=LEFT) pccombinebar_up=ttk.Scale(pcaframe,from_=0,to=1,length=350,orient=HORIZONTAL,variable=pc_combine_up,command=changepcweight)#,command=partial(pcweightupdate,'',imageframe))#,command=partial(print,pc_combine_up.get)) pc_combine_up.set(0.5) pccombinebar_up.pack(side=LEFT) pccombinebar_up.state(["disabled"]) pc2label=Label(pcaframe,text='PC2',bd=0) pc2label.pack(side=LEFT) # for i in range(10): # dictkey=str(i+1) # tempdict={dictkey:Variable()} # if i==0: # tempdict[dictkey].set('1') # else: # tempdict[dictkey].set('0') # pcaboxdict.update(tempdict) # ch=Checkbutton(pcselframe,text=dictkey,variable=pcaboxdict[dictkey])#,command=changepca) # ch.configure(state=DISABLED) # ch.pack(side=LEFT) # pcaframe.config(state=DISABLED) keys=pcaboxdict.keys() oldpcachoice=[] for key in keys: oldpcachoice.append(pcaboxdict[key].get()) kmeans.set(1) #kmeansbar=Scale(kmeanslabel,from_=1,to=10,tickinterval=1,length=270,showvalue=0,orient=HORIZONTAL,variable=kmeans,command=partial(generatecheckbox,checkboxframe)) kmeansbar=ttk.Scale(kmeanslabel,from_=1,to=10,length=350,orient=HORIZONTAL,variable=kmeans,cursor='hand2',command=partial(generatecheckbox,checkboxframe)) kmeansbar.pack() # kmeansbar.bind('<ButtonRelease-1>',changecluster) kmeansbar.state(["disabled"]) # pcaframe.bind('<Leave>',lambda event,arg=imageframe:pcweightupdate(arg)) kmeansgenframe.bind('<Leave>',beforecluster) checkboxframe.pack() checkboxframe.bind('<Leave>',generateimgplant) for i in range(10): dictkey=str(i+1) tempdict={dictkey:Variable()} # if i==0: # tempdict[dictkey].set('1') # else: tempdict[dictkey].set('0') checkboxdict.update(tempdict) ch=Checkbutton(checkboxframe,text=dictkey,variable=checkboxdict[dictkey],command=partial(generateimgplant,'')) if i+1>int(kmeans.get()): ch.config(state=DISABLED) ch.pack(side=LEFT) kmeanscanvasframe=LabelFrame(kmeansgenframe,bd='0') kmeanscanvasframe.pack() kmeanscanvas=Canvas(kmeanscanvasframe,width=350,height=10,bg='Black') #reshapemodified_tif=np.zeros((displaybandarray[currentfilename]['LabOstu'].shape[0]*displaybandarray[currentfilename]['LabOstu'].shape[1],3)) #colordicesband=kmeansclassify(['LabOstu'],reshapemodified_tif) #colordicesband=kmeansclassify([],reshapemodified_tif) # colordicesband=kmeansclassify() # generateimgplant(colordicesband) # changedisplayimg(imageframe,'Origin') # getPCs() colorstrip=np.zeros((15,35*2,3),'uint8') for i in range(2): for j in range(0,35): colorstrip[:,i*35+j]=colorbandtable[i,:] #pyplt.imsave('colorstrip.jpeg',colorstrip) kmeanscanvas.delete(ALL) #colorimg=cv2.imread('colorstrip.jpeg',flags=cv2.IMREAD_ANYCOLOR) colorimg=np.copy(colorstrip) colorimg=ImageTk.PhotoImage(Image.fromarray(colorimg.astype('uint8'))) kmeanscanvas.create_image(0,0,image=colorimg,anchor=NW) kmeanscanvas.pack() #generatecheckbox(checkboxframe,2) #refreshebutton=Button(filter_fr,text='Refresh ColorIndices',cursor='hand2',command=changecluster) #refreshebutton.pack() ### --- ref and edge settings --- #for text,mode in refoption: # b=Radiobutton(refframe,text=text,variable=refvar,value=mode,command=partial(refchoice,refsubframe)) #b.pack(side=LEFT,padx=15) # b.grid(row=0,column=column) # column+=1 edgeframe=LabelFrame(filter_fr,text='Edge remove setting') #edgeframe.pack() edgeoption=[('Remove edge','1'),('Keep same','0')] edge.set('0') for text,mode in edgeoption: b=Radiobutton(edgeframe,text=text,variable=edge,value=mode) b.pack(side=LEFT,padx=6) ### ---start extraction--- #extractionframe=LabelFrame(control_fr,cursor='hand2',bd=0) #extractionframe.pack(padx=5,pady=5) resviewframe=LabelFrame(control_fr,cursor='hand2',bd=0) figcanvas=Canvas(resviewframe,width=450,height=400,bg='white') figcanvas.pack() #figcanvas.grid(row=0,column=0) resviewframe.pack() #refframe=LabelFrame(control_fr,cursor='hand2',bd=0) refframe=LabelFrame(bottomframe,cursor='hand2',bd=0) refframe.pack(side=LEFT) disbuttonoption={'Origin':'1','PCs':'5','Color Deviation':'2','ColorIndices':'3','Output':'4'} buttonname={'Raw':'1','PCs':'5','Clusters':'2','Selected':'3','Output':'4'} #disbuttonoption={'Origin':'1','ColorIndices':'3','Output':'4'} for (text,v1),(name,v2) in zip(disbuttonoption.items(),buttonname.items()): b=Radiobutton(buttondisplay,text=name,variable=displaybut_var,value=disbuttonoption[text],command=partial(changedisplayimg,imageframe,text)) b.pack(side=LEFT,padx=20,pady=5) b.configure(state=DISABLED) if disbuttonoption[text]=='1': b.invoke() # selareabutton=Checkbutton(buttondisplay,text='SelArea',variable=selarea,command=selareachoice) # selarea.set('0') # selareabutton.pack(side=LEFT) # selareabutton.configure(state=DISABLED) refoption=[('Use Ref','1'),('No Ref','0')] refvar.set('0') refsubframe=LabelFrame(refframe,bd=0) column=0 #refoption=[('Max','1'),('Min','2'),('Spec','3')] #for text,mode in refoption: # b=Radiobutton(refsubframe,text=text,variable=coinsize,value=mode,command=highlightcoin)#,command=partial(highlightcoin,processlabels,coindict,miniarea)) # b.pack(side=LEFT,padx=5) # if mode=='1': # b.invoke() refsubframe.pack(side=LEFT) refbutton=Checkbutton(refsubframe,text='Ref',variable=refvar,command=refchoice) #refbutton.config(state=DISABLED) refbutton.pack(side=LEFT,padx=20,pady=5) sizeentry=Entry(refsubframe,width=5) sizeentry.insert(END,285) sizeentry.pack(side=LEFT,padx=2) sizeunit=Label(refsubframe,text='mm^2') sizeunit.pack(side=LEFT) delrefbutton=Button(refsubframe,text='Delete',command=del_reflabel) delrefbutton.pack(side=LEFT,padx=40) #delrefbutton.config(state=DISABLED) #refbutton=Checkbutton(refsubframe,text='Ref',variable=refvar,command=partial(refchoice,refsubframe)) for widget in refsubframe.winfo_children(): widget.config(state=DISABLED) #extractbutton=Button(refframe,text='Process',command=partial(extraction)) extractbutton=Button(refframe,text='Segment',command=process) extractbutton.configure(activebackground='blue',state=DISABLED) extractbutton.pack(side=LEFT,padx=20,pady=5) outputbutton=Button(refframe,text='Export',command=partial(export_result,'0')) outputbutton.pack(side=LEFT,padx=20,pady=5) outputbutton.config(state=DISABLED) #resegbutton=Button(extractionframe,text='Re-Segment',command=resegment) #resegbutton.pack(side=LEFT) #resegbutton.config(state=DISABLED) changekmeans=False colorstripdict={} for i in range(1,11): colorstrip=np.zeros((15,35*i,3),'uint8') for j in range(i): for k in range(35): colorstrip[:,j*35+k]=colorbandtable[j,:] #loadimg=cv2.imread('colorstrip'+str(i)+'.png') photoimg=ImageTk.PhotoImage(Image.fromarray(colorstrip.astype('uint8'))) colorstripdict.update({'colorstrip'+str(i):photoimg}) root.mainloop() ``` #### File: 12HuYang/GridFree/tkintersinglecore.py ```python import numpy import csv #import time #from skimage.feature import corner_fast,corner_peaks,corner_harris,corner_shi_tomasi global lastlinecount,misslabel from scipy.stats import shapiro from scipy import ndimage as ndi from skimage.morphology import watershed from skimage.feature import peak_local_max import tkintercore colortable={} colormatch={} caliavgarea=0 calimax=0 calimin=0 calisigma=0 greatareas=[] class node: def __init__(self,i,j): self.i=i self.j=j self.label=0 self.check=False def boundarywatershed(area,segbondtimes,boundarytype): #area = 1's if caliavgarea is not None and numpy.count_nonzero(area)<caliavgarea/2: return area x=[0,-1,-1,-1,0,1,1,1] y=[1,1,0,-1,-1,-1,0,1] areaboundary=tkintercore.get_boundary(area) temparea=area-areaboundary arealabels=tkintercore.labelgapnp(temparea) unique, counts = numpy.unique(arealabels, return_counts=True) if segbondtimes>=20: return area if(len(unique)>2): res=arealabels+areaboundary leftboundaryspots=numpy.where(areaboundary==1) leftboundary_y=leftboundaryspots[0].tolist() leftboundary_x=leftboundaryspots[1].tolist() for uni in unique[1:]: labelboundaryloc=tkintercore.get_boundaryloc(arealabels,uni) for m in range(len(labelboundaryloc[0])): for k in range(len(y)): i = labelboundaryloc[0][m] + y[k] j = labelboundaryloc[1][m] + x[k] if i >= 0 and i < res.shape[0] and j >= 0 and j < res.shape[1]: if res[i, j] == 1: res[i,j]=uni for n in range(len(leftboundary_y)): if leftboundary_y[n]==i and leftboundary_x[n]==j: leftboundary_y.pop(n) leftboundary_x.pop(n) break res=numpy.asarray(res)-1 res=numpy.where(res<0,0,res) return res else: newarea=boundarywatershed(temparea,segbondtimes+1,boundarytype)*2 res=newarea+areaboundary leftboundaryspots=numpy.where(res==1) leftboundary_y = leftboundaryspots[0].tolist() leftboundary_x = leftboundaryspots[1].tolist() unique=numpy.unique(newarea) for uni in unique[1:]: labelboundaryloc = tkintercore.get_boundaryloc(newarea, uni) for m in range(len(labelboundaryloc[0])): for k in range(len(y)): i = labelboundaryloc[0][m] + y[k] j = labelboundaryloc[1][m] + x[k] if i >= 0 and i < res.shape[0] and j >= 0 and j < res.shape[1]: if res[i, j] == 1: res[i, j] = uni for n in range(len(leftboundary_y)): if leftboundary_y[n] == i and leftboundary_x[n] == j: leftboundary_y.pop(n) leftboundary_x.pop(n) break res=numpy.asarray(res)/2 res=numpy.where(res<1,0,res) return res def manualboundarywatershed(area): ''' if numpy.count_nonzero(area)<avgarea/2: return area x=[0,-1,-1,-1,0,1,1,1] y=[1,1,0,-1,-1,-1,0,1] leftboundaryspots=numpy.where(area==1) pixelcount=1 label=1 for k in range(len(leftboundaryspots[0])): i=leftboundaryspots[0][k] j=leftboundaryspots[1][k] area[i][j]=label pixelcount+=1 if pixelcount==int(avgarea): pixelcount=1 label+=1 unique,count=numpy.unique(area,return_counts=True) for i in range(1,len(count)): if count[i]<avgarea/2: area=numpy.where(area==unique[i],unique[i-1],area) ''' maskpara=0.5 possiblecount=int(numpy.count_nonzero(area)/caliavgarea) distance=ndi.distance_transform_edt(area) masklength=int((caliavgarea*maskpara)**0.5)-1 local_maxi=peak_local_max(distance,indices=False,footprint=numpy.ones((masklength,masklength)),labels=area) markers=ndi.label(local_maxi)[0] unique=numpy.unique(markers) while(len(unique)-1>possiblecount): maskpara+=0.1 masklength=int((caliavgarea*maskpara)**0.5)-1 local_maxi=peak_local_max(distance,indices=False,footprint=numpy.ones((masklength,masklength)),labels=area) markers=ndi.label(local_maxi)[0] unique=numpy.unique(markers) while(len(unique)-1<possiblecount): maskpara-=0.1 masklength=int((caliavgarea*maskpara)**0.5)-1 try: local_maxi=peak_local_max(distance,indices=False,footprint=numpy.ones((masklength,masklength)),labels=area) except: maskpara+=0.1 masklength=int((caliavgarea*maskpara)**0.5)-1 local_maxi=peak_local_max(distance,indices=False,footprint=numpy.ones((masklength,masklength)),labels=area) markers=ndi.label(local_maxi)[0] break markers=ndi.label(local_maxi)[0] unique=numpy.unique(markers) localarea=watershed(-distance,markers,mask=area) return localarea def manualdivide(area,greatareas): global exceptions unique, counts = numpy.unique(area, return_counts=True) hist=dict(zip(unique,counts)) del hist[0] meanpixel=sum(counts[1:])/len(counts[1:]) countseed=numpy.asarray(counts[1:]) stdpixel=numpy.std(countseed) sortedkeys=list(sorted(hist,key=hist.get,reverse=True)) while len(greatareas)>0: topkey=greatareas.pop(0) locs=numpy.where(area==topkey) ulx,uly=min(locs[1]),min(locs[0]) rlx,rly=max(locs[1]),max(locs[0]) subarea=area[uly:rly+1,ulx:rlx+1] subarea=subarea.astype(float) tempsubarea=subarea/topkey newtempsubarea=numpy.where(tempsubarea!=1.,0,1).astype(int) antitempsubarea=numpy.where((tempsubarea!=1.) & (tempsubarea!=0),subarea,0) times=len(locs[0])/meanpixel averagearea=len(locs[0])/times newsubarea=manualboundarywatershed(newtempsubarea) labelunique,labcounts=numpy.unique(newsubarea,return_counts=True) labelunique=labelunique.tolist() labcounts=labcounts.tolist() if len(labelunique)>2: newsubarea=newsubarea*topkey newlabel=labelunique.pop(-1) maxlabel=area.max() add=1 while newlabel>1: newsubarea=numpy.where(newsubarea==topkey*newlabel,maxlabel+add,newsubarea) print('new label: '+str(maxlabel+add)) newlabelcount=len(numpy.where(newsubarea==maxlabel+add)[0].tolist()) print('add '+'label: '+str(maxlabel+add)+' count='+str(newlabelcount)) newlabel=labelunique.pop(-1) add+=1 newsubarea=newsubarea+antitempsubarea.astype(int) area[uly:rly+1,ulx:rlx+1]=newsubarea #labels=relabel(labels) unique, counts = numpy.unique(area, return_counts=True) hist=dict(zip(unique,counts)) del hist[0] print('hist length='+str(len(counts)-1)) print('max label='+str(area.max())) sortedkeys=list(sorted(hist,key=hist.get,reverse=True)) meanpixel=sum(counts[1:])/len(counts[1:]) countseed=numpy.asarray(counts[1:]) stdpixel=numpy.std(countseed) def combineloop(area,misslabel): global tinyareas localarea=numpy.asarray(area) unique, counts = numpy.unique(localarea, return_counts=True) hist=dict(zip(unique,counts)) del hist[0] #print('hist length='+str(len(counts)-1)) #print('max label='+str(labels.max())) meanpixel=sum(counts[1:])/len(counts[1:]) countseed=numpy.asarray(counts[1:]) stdpixel=numpy.std(countseed) leftsigma=(meanpixel-min(countseed))/stdpixel rightsigma=(max(countseed)-meanpixel)/stdpixel minisigma=min(leftsigma,rightsigma) #uprange=meanpixel+minisigma*stdpixel #lowrange=meanpixel-minisigma*stdpixel uprange=calimax lowrange=calimin sortedkeys=list(sorted(hist,key=hist.get)) topkey=sortedkeys.pop(0) tinyareas=[] while misslabel<=0:# or gocombine==True: #while hist[topkey]<max(avgarea*0.75,lowrange): #topkey=sortedkeys.pop(0) print('uprange='+str(uprange)) print('lowrange='+str(lowrange)) print('combine part') i=topkey print(i,hist[i]) if hist[i]<lowrange and i not in tinyareas: #if hist[i]<meanpixel: locs=numpy.where(localarea==i) ulx,uly=min(locs[1]),min(locs[0]) rlx,rly=max(locs[1]),max(locs[0]) width=rlx-ulx height=rly-uly #windowsize=min(width,height) #dividen=2 subarea=localarea[uly:rly+1,ulx:rlx+1] tempsubarea=subarea/i #four direction searches stop=False poscombines=[] for j in range(1,11): up_unique=[] down_unique=[] left_unique=[] right_unique=[] maxlabel={} tempcombines=[] if uly-j>=0 and stop==False and len(up_unique)<2: uparray=localarea[uly-j:uly,ulx:rlx+1] up_unique=numpy.unique(uparray) for x in range(len(up_unique)): if up_unique[x]>0: tempdict={up_unique[x]:hist[up_unique[x]]} maxlabel.update(tempdict) if rly+j<localarea.shape[0] and stop==False and len(down_unique)<2: downarray=localarea[rly+1:rly+j+1,ulx:rlx+1] down_unique=numpy.unique(downarray) for x in range(len(down_unique)): if down_unique[x]>0: tempdict={down_unique[x]:hist[down_unique[x]]} maxlabel.update(tempdict) if ulx-j>=0 and stop==False and len(left_unique)<2: leftarray=localarea[uly:rly+1,ulx-j:ulx] left_unique=numpy.unique(leftarray) for x in range(len(left_unique)): if left_unique[x]>0: tempdict={left_unique[x]:hist[left_unique[x]]} maxlabel.update(tempdict) if ulx+j<localarea.shape[1] and stop==False and len(right_unique)<2: rightarray=localarea[uly:rly+1,rlx+1:rlx+j+1] right_unique=numpy.unique(rightarray) for x in range(len(right_unique)): if right_unique[x]>0: tempdict={right_unique[x]:hist[right_unique[x]]} maxlabel.update(tempdict) print(up_unique,down_unique,left_unique,right_unique) tempcombines.append(up_unique) tempcombines.append(down_unique) tempcombines.append(left_unique) tempcombines.append(right_unique) poscombines.append(tempcombines) tinylist=[] while(len(poscombines)>0 and stop==False): top=poscombines.pop(0) tinylist.append(top) toplist=[] for j in range(4): toparray=top[j] topunique=numpy.unique(toparray) for ele in topunique: toplist.append(ele) toplist=numpy.array(toplist) combunique,combcount=numpy.unique(toplist,return_counts=True) toplist=dict(zip(combunique,combcount)) toplist=list(sorted(toplist,key=toplist.get,reverse=True)) while(len(toplist)>0): top=toplist.pop(0) if top!=0: topcount=hist[top] if hist[i]+topcount>lowrange and hist[i]+topcount<uprange: localarea=tkintercore.combinecrops(localarea,subarea,i,top,ulx,uly,rlx,rly) stop=True if len(poscombines)==0 and stop==False: #combine to the closest one tinyareas.append(topkey) #misslabel+=1 unique, counts = numpy.unique(localarea, return_counts=True) hist=dict(zip(unique,counts)) sortedkeys=list(sorted(hist,key=hist.get)) meanpixel=sum(counts[1:])/len(counts[1:]) countseed=numpy.asarray(counts[1:]) stdpixel=numpy.std(countseed) leftsigma=(meanpixel-min(countseed))/stdpixel rightsigma=(max(countseed)-meanpixel)/stdpixel minisigma=min(leftsigma,rightsigma) #uprange=meanpixel+minisigma*stdpixel #lowrange=meanpixel-minisigma*stdpixel uprange=calimax lowrange=calimin #if stop==False and leftsigma>rightsigma: # localarea=numpy.where(localarea==topkey,0,localarea) topkey=sortedkeys.pop(0) print('hist leng='+str(len(unique[1:]))) else: if len(sortedkeys)>0: topkey=sortedkeys.pop(0) else: misslabel+=1 return localarea def divideloop(area): global greatareas unique, counts = numpy.unique(area, return_counts=True) hist=dict(zip(unique,counts)) del hist[0] #print('hist length='+str(len(counts)-1)) #print('max label='+str(labels.max())) meanpixel=sum(counts[1:])/len(counts[1:]) countseed=numpy.asarray(counts[1:]) stdpixel=numpy.std(countseed) leftsigma=(meanpixel-min(countseed))/stdpixel rightsigma=(max(countseed)-meanpixel)/stdpixel if leftsigma>rightsigma: minisigma=min(leftsigma,rightsigma)-0.5 else: minisigma=min(leftsigma,rightsigma) #uprange=meanpixel+minisigma*stdpixel #lowrange=meanpixel-minisigma*stdpixel uprange=calimax lowrange=calimin sortedkeys=list(sorted(hist,key=hist.get,reverse=True)) topkey=sortedkeys.pop(0) greatareas=[] while len(sortedkeys)>0: print('divide loop topkey='+str(topkey),hist[topkey]) if topkey!=0 and hist[topkey]>uprange: locs=numpy.where(area==topkey) ulx,uly=min(locs[1]),min(locs[0]) rlx,rly=max(locs[1]),max(locs[0]) subarea=area[uly:rly+1,ulx:rlx+1] tempsubarea=subarea/topkey newtempsubarea=numpy.where(tempsubarea!=1.,0,1) antitempsubarea=numpy.where((tempsubarea!=1.) & (tempsubarea!=0),subarea,0) newsubarea=boundarywatershed(newtempsubarea,1,'inner')#,windowsize) labelunique,labcounts=numpy.unique(newsubarea,return_counts=True) labelunique=labelunique.tolist() if len(labelunique)>2: newsubarea=newsubarea*topkey newlabel=labelunique.pop(-1) maxlabel=area.max() add=1 while newlabel>1: newsubarea=numpy.where(newsubarea==topkey*newlabel,maxlabel+add,newsubarea) print('new label: '+str(maxlabel+add)) newlabelcount=len(numpy.where(newsubarea==maxlabel+add)[0].tolist()) print('add '+'label: '+str(maxlabel+add)+' count='+str(newlabelcount)) newlabel=labelunique.pop(-1) add+=1 newsubarea=newsubarea+antitempsubarea.astype(int) area[uly:rly+1,ulx:rlx+1]=newsubarea unique, counts = numpy.unique(area, return_counts=True) hist=dict(zip(unique,counts)) del hist[0] print('hist length='+str(len(counts)-1)) print('max label='+str(area.max())) sortedkeys=list(sorted(hist,key=hist.get,reverse=True)) meanpixel=sum(counts[1:])/len(counts[1:]) countseed=numpy.asarray(counts[1:]) stdpixel=numpy.std(countseed) leftsigma=(meanpixel-min(countseed))/stdpixel rightsigma=(max(countseed)-meanpixel)/stdpixel minisigma=min(leftsigma,rightsigma) #uprange=meanpixel+minisigma*stdpixel #lowrange=meanpixel-minisigma*stdpixel topkey=sortedkeys.pop(0) else: if hist[topkey]>uprange: if topkey not in greatareas: greatareas.append(topkey) topkey=sortedkeys.pop(0) else: break else: topkey=sortedkeys.pop(0) return area def findcoin(area): unique, counts = numpy.unique(area, return_counts=True) maxpixel=max(counts[1:]) maxpixelind=list(counts[1:]).index(maxpixel) maxpixellabel=unique[1:][maxpixelind] coinlocs=numpy.where(area==maxpixellabel) coinulx=min(coinlocs[1]) coinuly=min(coinlocs[0]) coinrlx=max(coinlocs[1]) coinrly=max(coinlocs[0]) coinparts={} coinparts.update({maxpixellabel:coinlocs}) for uni in unique: if uni!=maxpixellabel: templocs=numpy.where(area==uni) tempulx=min(templocs[1]) tempuly=min(templocs[0]) temprlx=max(templocs[1]) temprly=max(templocs[0]) #inside coin boundingbox if tempulx>=coinulx and tempulx<=coinrlx and temprlx>=coinulx and temprlx<=coinrlx: if tempuly>=coinuly and tempuly<=coinrly and temprly>=coinuly and temprly<=coinrly: if uni not in coinparts: coinparts.update({uni:templocs}) continue if (tempulx>coinulx and tempulx<coinrlx) or (temprlx>coinulx and temprlx<coinrlx): if (tempuly>coinuly and tempuly<coinrly) or (temprly>coinuly and temprly<coinrly): if uni not in coinparts: coinparts.update({uni:templocs}) continue return coinparts def processinput(input,ittimes=30,coin=True): band=input boundaryarea=boundarywatershed(band,1,'inner') boundaryarea=boundaryarea.astype(int) originmethod,misslabel,colortable=tkintercore.relabel(boundaryarea) labels=numpy.where(boundaryarea<1,0,boundaryarea) if coin: coinparts=findcoin(labels) coinkeys=coinparts.keys() for part in coinkeys: labels=numpy.where(labels==part,0,labels) else: coinparts={} #labels=boundaryarea unique, counts = numpy.unique(labels, return_counts=True) hist=dict(zip(unique,counts)) divide=0 docombine=0 with open('countlist.csv','w') as f: writer=csv.writer(f) templist=counts[1:].tolist() for item in templist: tempitem=str(item) writer.writerow([tempitem]) f.close() #print(numpy.column_stack(counts[1:])) meanpixel=sum(counts[1:])/len(counts[1:]) countseed=numpy.asarray(counts[1:]) stat,p=shapiro(countseed) alpha=0.05 if p>alpha: print('like gaussian') else: print('does not like gaussian') stdpixel=numpy.std(countseed) leftsigma=(meanpixel-min(countseed))/stdpixel rightsigma=(max(countseed)-meanpixel)/stdpixel sortedkeys=list(sorted(hist,key=hist.get,reverse=True)) allinexceptsions,godivide,gocombine=tkintercore.checkvalid(p,leftsigma,rightsigma) #while allinexceptsions is False: lastgreatarea=[] lasttinyarea=[] for it in range(ittimes): if godivide==False and gocombine==False: break #while godivide==True or gocombine==True: try: del hist[0] except KeyError: #continue pass print('hist length='+str(len(counts)-1)) print('max label='+str(labels.max())) meanpixel=sum(counts[1:])/len(counts[1:]) countseed=numpy.asarray(counts[1:]) with open('countseed'+str(it)+'.csv','w') as f: csvwriter=csv.writer(f) content=['index','pixels'] csvwriter.writerow(content) for i in range(len(counts[1:])): content=[str(i+1),str(counts[1:][i])] csvwriter.writerow(content) f.close() stdpixel=numpy.std(countseed) leftsigma=(meanpixel-min(countseed))/stdpixel rightsigma=(max(countseed)-meanpixel)/stdpixel minisigma=min(leftsigma,rightsigma) #uprange=meanpixel+minisigma*stdpixel #lowrange=meanpixel-minisigma*stdpixel uprange=calimax lowrange=calimin sortedkeys=list(sorted(hist,key=hist.get,reverse=True)) #j=0 if godivide is True: labels=divideloop(labels) #unique=numpy.unique(labels).tolist() #for i in range(len(unique)): # labels=numpy.where(labels==unique[i],i,labels) unique, counts = numpy.unique(labels, return_counts=True) meanpixel=sum(counts[1:])/len(counts[1:]) countseed=numpy.asarray(counts[1:]) stdpixel=numpy.std(countseed) leftsigma=(meanpixel-min(countseed))/stdpixel rightsigma=(max(countseed)-meanpixel)/stdpixel minisigma=min(leftsigma,rightsigma) #uprange=meanpixel+minisigma*stdpixel #lowrange=meanpixel-minisigma*stdpixel uprange=calimax lowrange=calimin divide+=1 outputlabel,misslabel,colortable=tkintercore.relabel(labels) if lastgreatarea==greatareas and len(lastgreatarea)!=0: manualdivide(labels,greatareas) #cornerdivide(labels,greatareas) lastgreatarea[:]=greatareas[:] stat,p=shapiro(countseed) #allinexceptsions,godivide,gocombine=checkvalid(misslabel,hist,sortedkeys,uprange,lowrange,avgarea) allinexceptsions,godivide,gocombine=tkintercore.checkvalid(p,leftsigma,rightsigma) if gocombine is True: labels=combineloop(labels,0) #unique=numpy.unique(labels).tolist() #for i in range(len(unique)): # labels=numpy.where(labels==unique[i],i,labels) unique, counts = numpy.unique(labels, return_counts=True) meanpixel=sum(counts[1:])/len(counts[1:]) countseed=numpy.asarray(counts[1:]) stdpixel=numpy.std(countseed) leftsigma=(meanpixel-min(countseed))/stdpixel rightsigma=(max(countseed)-meanpixel)/stdpixel minisigma=min(leftsigma,rightsigma) #uprange=meanpixel+minisigma*stdpixel #lowrange=meanpixel-minisigma*stdpixel uprange=calimax lowrange=calimin docombine+=1 outputlabel,misslabel,colortable=tkintercore.relabel(labels) unique, counts = numpy.unique(labels, return_counts=True) meanpixel=sum(counts[1:])/len(counts[1:]) countseed=numpy.asarray(counts[1:]) stdpixel=numpy.std(countseed) hist=dict(zip(unique,counts)) for ele in sorted(hist,key=hist.get): if hist[ele]<lowrange: print('tinyarea:',ele,hist[ele]) if hist[ele]>uprange: print('greatarea:',ele,hist[ele]) leftsigma=(meanpixel-min(countseed))/stdpixel rightsigma=(max(countseed)-meanpixel)/stdpixel stat,p=shapiro(countseed) #allinexceptsions,godivide,gocombine=checkvalid(misslabel,hist,sortedkeys,uprange,lowrange,avgarea) allinexceptsions,godivide,gocombine=tkintercore.checkvalid(p,leftsigma,rightsigma) print('DONE!!! counts='+str(len(counts))) labels=tkintercore.renamelabels(labels) colorlabels,misslabel,colortable=tkintercore.relabel(labels) NDVIbounary=tkintercore.get_boundary(labels) NDVIbounary=NDVIbounary*255 res=NDVIbounary return labels,res,colortable,coinparts def init(input,caliberation,ittimes,coin): global caliavgarea,calimax,calimin,calisigma caliavgarea=caliberation['mean'] calimax=caliberation['max'] calimin=caliberation['min'] calisigma=caliberation['sigma'] input=input.astype(int) pixellocs=numpy.where(input!=0) ulx,uly=min(pixellocs[1]),min(pixellocs[0]) rlx,rly=max(pixellocs[1]),max(pixellocs[0]) squarearea=(rlx-ulx)*(rly-uly) occupiedratio=len(pixellocs[0])/squarearea print(caliavgarea,occupiedratio) if occupiedratio>0.1: while(occupiedratio>0.1): distance=ndi.distance_transform_edt(input) input=numpy.where(distance==1.0,0,input) pixellocs=numpy.where(input!=0) ulx,uly=min(pixellocs[1]),min(pixellocs[0]) rlx,rly=max(pixellocs[1]),max(pixellocs[0]) squarearea=(rlx-ulx)*(rly-uly) occupiedratio=len(pixellocs[0])/squarearea print(caliavgarea,occupiedratio) #lastlinecount=lastline #if occupiedratio>=0.5: labels,res,colortable,coinparts=processinput(input,ittimes,coin) #else: # labels,res,colortable,greatareas,tinyareas=kmeansprocess(pixellocs,input,counts) return labels,res,colortable,coinparts ```
{ "source": "12HuYang/Rooster", "score": 2 }
#### File: 12HuYang/Rooster/rooster_batch.py ```python import tkinter.filedialog as filedialog from tkinter import messagebox import os from predictionModel import predictionCNN from PIL import Image,ImageDraw,ImageFont import numpy as np import multiprocessing import time FOLDER='' exportpath='' batch_filenames=[] class batch_ser_func(): def __init__(self,filename,dlinput,inputconfidence): self.file=filename self.folder=FOLDER self.exportpath=exportpath self.dlinput=dlinput self.confidence=None self.confidthres=inputconfidence self.RGBimg=Image.open(os.path.join(FOLDER,self.file)) self.rgbwidth,self.rgbheight=self.RGBimg.size self.imgsize={} self.imgsize.update({'row':self.rgbheight}) self.imgsize.update({'col':self.rgbwidth}) self.npimage=None self.localdlinput=None self.predres=None def addbars(self,locs): if self.localdlinput['model']=='': return x0=min(locs[1]) y0=min(locs[0]) x1=max(locs[1]) y1=max(locs[0]) draw=ImageDraw.Draw(self.RGBimg) # endx=int(x0+(x1-x0)/2) # endy=int(y0+(y1-y0)/2) draw.line(((x0,y0),(x1,y0)),fill='red',width=5) #draw up red line draw.line(((x0,y0),(x0,y1)),fill='red',width=5) #draw left red line # self.show_image() def export_single(self): if self.localdlinput['model']=='': rownum=self.localdlinput['row'] colnum=self.localdlinput['col'] gridnum=rownum*colnum filenamepart=os.path.splitext(self.file) outputname=filenamepart[0]+'_crop_' for i in range(gridnum): index=i+1 row=int(i/colnum) col=i%colnum locs=np.where(self.npimage==index) x0=min(locs[1]) y0=min(locs[0]) x1=max(locs[1]) y1=max(locs[0]) cropimage=self.RGBimg.crop((x0,y0,x1,y1)) cropimage.save(self.exportpath+'/'+outputname+str(index)+'.png','PNG') return #draw gridimg for i in range(len(self.predres)): if self.predres[i]==1: locs=np.where(self.npimage==(i+1)) self.addbars(locs) filenamepart=os.path.splitext(self.file) outputname=filenamepart[0]+'_gridimg.png' totalhealthy=self.predres.count(0) totalinfect=self.predres.count(1) from PIL.ExifTags import TAGS,GPSTAGS imginfo=self.RGBimg.getexif() if len(imginfo)>0: exif_table={} for tag,value in imginfo.items(): decoded=TAGS.get(tag,tag) exif_table[decoded]=value print(exif_table.keys()) if 'GPSInfo' in exif_table.keys(): gps_info={} if type(exif_table['GPSInfo'])==dict: for key in exif_table['GPSInfo'].keys(): decoded=GPSTAGS.get(key,key) gps_info[decoded]=exif_table['GPSInfo'][key] GPS_Lat=list(gps_info['GPSLatitude']) GPS_Long=list(gps_info['GPSLongitude']) latitude=str(GPS_Lat[0][0])+'.'+str(GPS_Lat[1][0])+"'"+str(GPS_Lat[2][0])+"''" # print() longitude=str(GPS_Long[0][0])+'.'+str(GPS_Long[1][0])+"'"+str(GPS_Long[2][0])+"''" else: longitude=0 latitude=0 else: longitude=0 latitude=0 # print else: longitude=0 latitude=0 avg_confid=np.mean(np.array(self.confidence)) std_confid=np.std(np.array(self.confidence)) max_confid=np.max(np.array(self.confidence)) min_confid=np.min(np.array(self.confidence)) summary=[self.file,totalhealthy,totalinfect,longitude,latitude,avg_confid,std_confid,max_confid,min_confid] import csv outputcsv=os.path.join(self.exportpath,outputname+'_output.csv') headline=['index','row','col','label','prediction','confidence'] with open(outputcsv,mode='w') as f: csvwriter=csv.writer(f,lineterminator='\n') csvwriter.writerow(headline) rownum=self.localdlinput['row'] colnum=self.localdlinput['col'] gridnum=rownum*colnum # outputimg=labelimage.copy() draw=ImageDraw.Draw(self.RGBimg) for i in range(gridnum): index=i+1 row=int(i/colnum) col=i%colnum locs=np.where(self.npimage==index) x0=min(locs[1]) y0=min(locs[0]) x1=max(locs[1]) y1=max(locs[0]) # if int(imageexport.get())==1: # cropimage=RGBimg.crop((x0,y0,x1,y1)) # cropimage.save(outpath+'/'+originfile+'_crop_'+str(index)+'.png','PNG') midx=x0+5 midy=y0+5 state='crop-'+str(index) draw.text((midx-1, midy+1), text=state, fill='white') draw.text((midx+1, midy+1), text=state, fill='white') draw.text((midx-1, midy-1), text=state, fill='white') draw.text((midx+1, midy-1), text=state, fill='white') draw.text((midx,midy),text=state,fill='black') # if exportoption.get()=='P': # label=predictlabels[i] # if exportoption.get()=='C': # label=infectedlist[i] label=0 # if confidence!=None: # pred_label= 1 if list(confidence)[i]>=float(slider.get()) else 0 # confidvalue=list(confidence)[i] # content=[index,row,col,label,pred_label,confidvalue] # else: # content = [index, row, col, label,0,0] confidvalue=self.confidence[i] pred_label=self.predres[i] content=[index,row,col,label,pred_label,confidvalue] csvwriter.writerow(content) print(index) self.RGBimg.save(os.path.join(self.exportpath,outputname),'PNG') del draw f.close() return summary def prediction(self): if self.localdlinput['model']=='': return self.confidence=predictionCNN(self.localdlinput) temppred=[0 for i in range(len(self.confidence))] satisfiedpred=np.where(np.array(self.confidence)>=self.confidthres) temppred=np.array(temppred) temppred[satisfiedpred]=1 self.predres=list(temppred.copy()) pass def drawgrid(self): if self.localdlinput['model']=='': return row_stepsize = int(self.rgbheight / self.localdlinput['row']) col_stepsize = int(self.rgbwidth / self.localdlinput['col']) draw = ImageDraw.Draw(self.RGBimg) row_start = 0 row_end = self.rgbheight col_start = 0 col_end = self.rgbwidth for col in range(0, col_end, col_stepsize): line = ((col, row_start), (col, row_end)) draw.line(line, fill='white', width=5) for row in range(0, row_end, row_stepsize): line = ((col_start, row), (col_end, row)) draw.line(line, fill='white', width=5) del draw pass def updatenpimage(self): gridnum=self.localdlinput['row']*self.localdlinput['col'] row_stepsize=int(self.rgbheight/self.localdlinput['row']) col_stepsize=int(self.rgbwidth/self.localdlinput['col']) print(gridnum,row_stepsize,col_stepsize) self.npimage=np.zeros((self.rgbheight,self.rgbwidth)) for i in range(gridnum): c=i%self.localdlinput['col'] r=int(i/self.localdlinput['col']) print(r,c) self.npimage[r*row_stepsize:(r+1)*row_stepsize,c*col_stepsize:(c+1)*col_stepsize]=i+1 print(self.npimage) def process(self): orient={k:v for k,v in sorted(self.imgsize.items(), key=lambda item: item[1],reverse=True)} # orient=sorted(self.imgsize.items(),reverse=True) print(orient) orientkeys=[key for key in orient.keys()] print(orientkeys) self.localdlinput=self.dlinput.copy() if self.localdlinput[orientkeys[0]]<self.localdlinput[orientkeys[1]]: temp=self.localdlinput[orientkeys[0]] self.localdlinput[orientkeys[0]]=localdlinput[orientkeys[1]] self.localdlinput[orientkeys[1]]=temp self.drawgrid() self.updatenpimage() self.prediction() summary=self.export_single() return summary def Open_batchfolder(): global batch_filenames global FOLDER batch_filenames=[] FOLDER=filedialog.askdirectory() if len(FOLDER)>0: print(FOLDER) files=os.listdir(FOLDER) for filename in files: if 'jpg' in filename or 'jpeg' in filename or 'JPG' in filename or 'tif' in filename: batch_filenames.append(filename) batch_filenames.sort() print('filenames',batch_filenames) return os.path.join(FOLDER,batch_filenames[0]) def batch_exportpath(): global exportpath exportpath=filedialog.askdirectory() while len(exportpath)==0: exportpath=filedialog.askdirectory() def batch_process(dlinput,inputconfidence): if len(batch_filenames)==0: messagebox.showerror('No files','Please load images to process') return cpunum=multiprocessing.cpu_count() print('# of CPUs',cpunum) starttime=time.time() print('start time',starttime) batch_summary=[] head=['filename','healthy#','infected#','Longitude(E,W)','Latitude(N,S)','avg-confid','std-confid','max-confid','min-confid'] batch_summary.append(head) for file in batch_filenames: dlinput['imagepath']=os.path.join(FOLDER,file) procobj=batch_ser_func(file,dlinput,inputconfidence) filesummary=procobj.process() batch_summary.append(filesummary) del procobj if dlinput['model']!='': import csv outputcsv=os.path.join(exportpath,'summary'+'_confidthres='+str(inputconfidence)+'_.csv') with open(outputcsv,mode='w') as f: csvwriter=csv.writer(f,lineterminator='\n') if len(batch_summary)>0: for ele in batch_summary: csvwriter.writerow(ele) f.close() print('used time',time.time()-starttime) messagebox.showinfo('Batch processing done','Batch process done!') ```
{ "source": "12hyhy12/cloud-recommender", "score": 2 }
#### File: restful/driver/detect.py ```python import os,re import time import datetime def execCmd(cmd): r = os.popen(cmd) text = r.read() r.close() return text def main(name): while(True): cmd = "kubectl get pods" result = execCmd(cmd) result = result.split(os.linesep) for item in result: if item.find(name+'-driver'): if item.find('Completed'): #print(time.time()) return time.time() sleep(1) if __name__ == '__main__': main("spark-pi") ```
{ "source": "12kleingordon34/football", "score": 2 }
#### File: gfootball/env/observation_preprocessing.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from gfootball.env import football_action_set import numpy as np from six.moves import range from scipy.signal import convolve2d SMM_WIDTH = 96 SMM_HEIGHT = 72 SMM_LAYERS = ['left_team', 'right_team', 'ball', 'active'] # Normalized minimap coordinates MINIMAP_NORM_X_MIN = -1.0 MINIMAP_NORM_X_MAX = 1.0 MINIMAP_NORM_Y_MIN = -1.0 / 2.25 MINIMAP_NORM_Y_MAX = 1.0 / 2.25 _MARKER_VALUE = 255 def get_smm_layers(config): return SMM_LAYERS def mark_points(frame, points): """Draw dots corresponding to 'points'. Args: frame: 2-d matrix representing one SMM channel ([y, x]) points: a list of (x, y) coordinates to be marked """ for p in range(len(points) // 2): x = int((points[p * 2] - MINIMAP_NORM_X_MIN) / (MINIMAP_NORM_X_MAX - MINIMAP_NORM_X_MIN) * frame.shape[1]) y = int((points[p * 2 + 1] - MINIMAP_NORM_Y_MIN) / (MINIMAP_NORM_Y_MAX - MINIMAP_NORM_Y_MIN) * frame.shape[0]) x = max(0, min(frame.shape[1] - 1, x)) y = max(0, min(frame.shape[0] - 1, y)) frame[y, x] = _MARKER_VALUE def generate_smm(observation, kernel, config=None, channel_dimensions=(SMM_WIDTH, SMM_HEIGHT)): """Returns a list of minimap observations given the raw features for each active player. Args: observation: raw features from the environment config: environment config channel_dimensions: resolution of SMM to generate Returns: (N, H, W, C) - shaped np array representing SMM. N stands for the number of players we are controlling. """ frame = np.zeros((len(observation), channel_dimensions[1], channel_dimensions[0], len(get_smm_layers(config))), dtype=np.uint8) for o_i, o in enumerate(observation): for index, layer in enumerate(get_smm_layers(config)): assert layer in o if layer == 'active': if o[layer] == -1: continue mark_points(frame[o_i, :, :, index], np.array(o['left_team'][o[layer]]).reshape(-1)) else: mark_points(frame[o_i, :, :, index], np.array(o[layer]).reshape(-1)) frame[o_i,:,:,index] = convolve2d(frame[o_i,:,:,index], kernel) # convolve the (x,y) coords of each timestep and channel return frame ```
{ "source": "12leclarkson/spotipy", "score": 3 }
#### File: spotipy/examples/artist_recommendations.py ```python import argparse import logging import spotipy from spotipy.oauth2 import SpotifyClientCredentials logger = logging.getLogger('examples.artist_recommendations') logging.basicConfig(level='INFO') client_credentials_manager = SpotifyClientCredentials() sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager) def get_args(): parser = argparse.ArgumentParser(description='Recommendations for the ' 'given artist') parser.add_argument('-a', '--artist', required=True, help='Name of Artist') return parser.parse_args() def get_artist(name): results = sp.search(q='artist:' + name, type='artist') items = results['artists']['items'] if len(items) > 0: return items[0] else: return None def show_recommendations_for_artist(artist): results = sp.recommendations(seed_artists=[artist['id']]) for track in results['tracks']: logger.info('Recommendation: %s - %s', track['name'], track['artists'][0]['name']) def main(): args = get_args() artist = get_artist(args.artist) if artist: show_recommendations_for_artist(artist) else: logger.error("Can't find that artist", args.artist) if __name__ == '__main__': main() ```
{ "source": "12libao/tmr", "score": 3 }
#### File: examples/cylinder/cylinder_effectivity_plot.py ```python from __future__ import print_function import tikzplots as tkz import argparse import numpy as np import re def parse_data_file(fname): with open(fname, 'r') as fp: lines = fp.readlines() # Read in the first line, and find the comma-separated values # in the header hline = lines[0] for index, h in enumerate(hline): if h == '=': hstr = hline[index+1:].split(',') # Strip away any white space header = [] for h in hstr: header.append(h.strip()) data = [] for line in lines[1:]: dline = [] for entry in line.split(): dline.append(float(entry)) data.append(dline) return header, np.array(data) # Create an argument parser to read in arguments from the commnad line p = argparse.ArgumentParser() p.add_argument('--files', nargs='+', type=str, help='List of files') p.add_argument('--labels', nargs='+', type=str, help='List of labels') p.add_argument('--outfile', type=str, default='output.tex') p.add_argument('--plot', type=str, default='effectivity') args = p.parse_args() # Set the colors to use for each set of bars colors = [] for i in range(10): colors.append('tableau%d'%(i)) tikzcolors = ''' \definecolor{tableau0}{RGB}{31,119,180} \definecolor{tableau1}{RGB}{255,158,74} \definecolor{tableau2}{RGB}{103,191,92} \definecolor{tableau3}{RGB}{237,102,93} \definecolor{tableau4}{RGB}{148,103,189} \definecolor{tableau5}{RGB}{168,120,110} \definecolor{tableau6}{RGB}{237,151,202} \definecolor{tableau7}{RGB}{162,162,162} \definecolor{tableau8}{RGB}{205,204,93} \definecolor{tableau9}{RGB}{109,204,218} ''' data = [] for fname in args.files: try: header, dat = parse_data_file(fname) except: print('fname = ', fname) data.append(dat) # Plot the error on the y-axis nnodes_index = header.index('nnodes') fval_eff_index = header.index('fval_effectivity') indc_eff_index = header.index('indicator_effectivity') # Find the max value of y xmin = 1e20 xmax = 0 ymin = 0 ymax = 0 # Look through all the data for d in data: xmin = min(xmin, np.min(d[:, nnodes_index])) xmax = max(xmax, np.max(d[:, nnodes_index])) if args.plot == 'effectivity': ymax = max(ymax, np.max(d[:, fval_eff_index])) ymax = min(ymax, 100) else: ymax = max(ymax, np.max(d[:, indc_eff_index])) ymax = min(ymax, 500) # Round to the nearest multiple of 10 xmin = int(np.floor(np.log10(xmin))) xmax = int(np.ceil(np.log10(xmax))) # Create a range xticks = np.linspace(xmin, xmax, xmax - xmin + 1) xtick_labels = [] for exp in range(xmin, xmax + 1, 1): xtick_labels.append('$10^{%d}$'%(exp)) # Set the positions of the tick locations if ymax < 2.0: ymax_int = int(np.ceil(4.0*ymax)) ymax = ymax_int/4.0 yticks = np.linspace(0, ymax, ymax_int+1) ytick_labels = yticks elif ymax < 10: ymax = int(np.ceil(ymax)) yticks = np.linspace(0, ymax, ymax+1) ytick_labels = range(ymax+1) elif ymax < 20: ymax = 2*int(np.ceil(ymax/2.0)) yticks = np.linspace(0, ymax, ymax+1) ytick_labels = range(0, ymax+1, 2) yticks = np.linspace(0, ymax, ymax/2 + 1) else: ymax = 5*int(np.ceil(ymax/5.0)) yticks = np.linspace(0, ymax, ymax+1) ytick_labels = range(0, ymax+1, 5) yticks = np.linspace(0, ymax, ymax/5 + 1) # The overall dimensions xdim = 2.0 xscale = xdim/(xmax - xmin) ydim = 1.75 yscale = ydim/(ymax - ymin) # Get the header info s = tkz.get_header() s += tkz.get_begin_tikz(xdim=1.5, ydim=1.5, xunit='in', yunit='in') s += tikzcolors symbols = ['circle', 'square', 'triangle', 'delta', 'diamond'] for k, d in enumerate(data): xvals = np.log10(d[:, nnodes_index]) if args.plot == 'effectivity': yvals = d[:, fval_eff_index] else: yvals = d[:, indc_eff_index] s += tkz.get_2d_plot(xvals, yvals, line_dim='very thick', color=colors[k % 10], symbol=symbols[k % 4], symbol_size=0.035, xscale=xscale, yscale=yscale, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # Set the labels (lower-right corner) if args.labels is not None: for k, label in enumerate(args.labels): x = xmin + 0.75*(xmax - xmin) y = ymin + 0.05*(ymax - ymin)*(len(args.labels)-k) length = 0.035*(xmax - xmin) s += tkz.get_legend_entry(x, y, length, label=label, font_size='small', line_dim='very thick', color=colors[k % 10], symbol=symbols[k % 4], symbol_size=0.035, xscale=xscale, yscale=yscale) if args.plot == 'effectivity': title = 'Effectivity' else: title = 'Indicator effectivity' # Plot the axes s += tkz.get_2d_axes(xmin, xmax, ymin, ymax, xscale=xscale, yscale=yscale, xticks=xticks, yticks=yticks, xtick_labels=xtick_labels, ytick_labels=ytick_labels, tick_font='normalsize', tick_frac=0.01, xlabel_offset=0.085, label_font='Large', xlabel='Number of nodes', ylabel_offset=0.175, ylabel=title) s += tkz.get_end_tikz() fp = open(args.outfile, 'w') fp.write(s) fp.close() ``` #### File: examples/geomach/geomach.py ```python from __future__ import print_function, division from mpi4py import MPI from tmr import TMR import numpy as np import argparse from GeoMACH.PGM.core import PGMconfiguration, PGMparameter, PGMdv from GeoMACH.PGM.components import PGMwing, PGMbody, PGMshell from GeoMACH.PGM.components import PGMjunction, PGMtip, PGMcone class Wing(PGMconfiguration): def _define_comps(self): self.comps['wing'] = PGMwing(num_x=1, num_z=1, left_closed=True) self.comps['tip'] = PGMtip(self, 'wing', 'left', 0.1) def _define_params(self): wing = self.comps['wing'].props wing['pos'].params[''] = PGMparameter(3, 3, pos_u=[0,0.37,1.0]) wing['scl'].params[''] = PGMparameter(3, 1, pos_u=[0,0.37,1.0]) def _compute_params(self): wing = self.comps['wing'].props wing['pos'].params[''].data[0, :] = [904.294, 174.126, 0.0] wing['pos'].params[''].data[1, :] = [1225.82, 181.071, 427.999] wing['pos'].params[''].data[2, :] = [1780.737, 263.827, 1156.753] wing['scl'].params[''].data[:, 0] = [536.181, 285.782, 107.4] return [], [], [] def _set_bspline_options(self): wing = self.comps['wing'].faces wing['upp'].set_option('num_cp', 'u', [40]) wing['upp'].set_option('num_cp', 'v', [40]) class Trussbraced(PGMconfiguration): def _define_comps(self): self.comps['fuse'] = PGMbody(num_x=17, num_y=6, num_z=4) self.comps['lwing'] = PGMwing(num_x=7, num_z=7, left_closed=True) self.comps['lstrut'] = PGMwing(num_x=4, num_z=4, left_closed=True, right_closed=True) self.comps['lv'] = PGMwing(num_z=4) self.comps['ltail'] = PGMwing(left_closed=True) self.comps['vtail'] = PGMwing(num_x=5, num_z=4, left_closed=True) self.comps['fuse_f'] = PGMcone(self, 'fuse', 'front', 18) self.comps['fuse_r'] = PGMcone(self, 'fuse', 'rear', 2) self.comps['lwing_t'] = PGMtip(self, 'lwing', 'left', 0.1) self.comps['ltail_t'] = PGMtip(self, 'ltail', 'left', 0.1) self.comps['vtail_t'] = PGMtip(self, 'vtail', 'left', 0.1) self.comps['lwing_fuse'] = PGMjunction(self, 'fuse', 'lft', 'E', [0,1], 'lwing', 'right', fweight=4, mweight=2) self.comps['lstrut_fuse'] = PGMjunction(self, 'fuse', 'lft', 'E', [4,2], 'lstrut', 'right') self.comps['lstrut_lwing'] = PGMjunction(self, 'lwing', 'low', 'S', [4,1], 'lstrut', 'left', fweight=3, mweight=3) self.comps['lv_lwing'] = PGMjunction(self, 'lwing', 'low', 'S', [1,3], 'lv', 'left') self.comps['lv_lstrut'] = PGMjunction(self, 'lstrut', 'upp', 'S', [1,0], 'lv', 'right') self.comps['vtail_fuse'] = PGMjunction(self, 'fuse', 'top', 'E', [1,10], 'vtail', 'right') self.comps['ltail_vtail'] = PGMjunction(self, 'vtail', 'low', 'N', [0,1], 'ltail', 'right') def _define_params(self): fuse = self.comps['fuse'].props fuse['nor'].params[''] = PGMparameter(1, 3) fuse['pos'].params[''] = PGMparameter(2, 3) fuse['pos'].params['nose'] = PGMparameter(2, 3, pos_u=[0,0.12]) fuse['pos'].params['tail'] = PGMparameter(2, 3, pos_u=[0.76,1.0]) fuse['scl'].params['rad1'] = PGMparameter(4, 1, order_u=4, pos_u=[0,0.01,0.05,0.12]) fuse['scl'].params['rad2'] = PGMparameter(2, 1, pos_u=[0.12,0.76]) fuse['scl'].params['rad3'] = PGMparameter(4, 1, order_u=4, pos_u=[0.76,0.83,0.99,1]) fuse['scl'].params['tail'] = PGMparameter(2, 3, pos_u=[0.76,1.0]) fuse['flt'].params['flt1a'] = PGMparameter(4, 2, order_u=4, pos_u=[0.24,0.27,0.33,0.36], pos_v=[0.5,1]) fuse['flt'].params['flt1b'] = PGMparameter(2, 2, pos_u=[0.36,0.41], pos_v=[0.5,1]) fuse['flt'].params['flt1c'] = PGMparameter(4, 2, order_u=4, pos_u=[0.41,0.44,0.49,0.52], pos_v=[0.5,1]) fuse['flt'].params['flt2a'] = PGMparameter(4, 2, order_u=4, pos_u=[0.24,0.27,0.33,0.36], pos_v=[0,0.5]) fuse['flt'].params['flt2b'] = PGMparameter(2, 2, pos_u=[0.36,0.41], pos_v=[0,0.5]) fuse['flt'].params['flt2c'] = PGMparameter(4, 2, order_u=4, pos_u=[0.41,0.44,0.49,0.52], pos_v=[0,0.5]) lwing = self.comps['lwing'].props lwing['pos'].params[''] = PGMparameter(1, 3) lwing['scl'].params[''] = PGMparameter(2, 1) lwing['pos'].params['lin'] = PGMparameter(3, 3, order_u=3) lstrut = self.comps['lstrut'].props lstrut['pos'].params[''] = PGMparameter(1, 3) lstrut['pos'].params['lin'] = PGMparameter(2, 3) lstrut['scl'].params[''] = PGMparameter(2, 1) lstrut['nor'].params[''] = PGMparameter(1, 1) lv = self.comps['lv'].props lv['pos'].params[''] = PGMparameter(1, 3) lv['pos'].params['lin'] = PGMparameter(2, 3) lv['scl'].params[''] = PGMparameter(2, 1) lv['nor'].params[''] = PGMparameter(1, 1) lv['rot'].params[''] = PGMparameter(2, 3, pos_u=[0,1]) ltail = self.comps['ltail'].props ltail['pos'].params[''] = PGMparameter(1, 3) ltail['pos'].params['lin'] = PGMparameter(2, 3) ltail['scl'].params[''] = PGMparameter(2, 1) vtail = self.comps['vtail'].props vtail['pos'].params[''] = PGMparameter(1, 3) vtail['pos'].params['lin'] = PGMparameter(2, 3) vtail['scl'].params[''] = PGMparameter(2, 1) vtail['nor'].params[''] = PGMparameter(1, 3) def _compute_params(self): fuse = self.comps['fuse'].props fuse['nor'].params[''].val([1.0,0.0,1.0]) fuse['pos'].params[''].val([[0,0,0],[36,0,0]]) fuse['pos'].params['nose'].val([[0,-0.4,0],[0,0,0]]) fuse['pos'].params['tail'].val([[0,0,0],[0,1.6,0]]) fuse['scl'].params['rad1'].val([1,1.2,1.9,2]) fuse['scl'].params['rad2'].val([2,2]) fuse['scl'].params['rad3'].val([2,1.7,0.6,0.4]) fuse['scl'].params['tail'].val([[0,0,0],[-0.3,0,0]]) fuse['flt'].params['flt1a'].val([[0,0],[0,0],[0.6,0.6],[0.6,0.6]]) fuse['flt'].params['flt1b'].val([[0.6,0.6],[0.6,0.6]]) fuse['flt'].params['flt1c'].val([[0.6,0.6],[0.6,0.6],[0,0],[0,0]]) fuse['flt'].params['flt2a'].val([[0,0],[0,0],[1,1],[1,1]]) fuse['flt'].params['flt2b'].val([[1,1],[1,1]]) fuse['flt'].params['flt2c'].val([[1,1],[1,1],[0,0],[0,0]]) lwing = self.comps['lwing'].props lwing['pos'].params[''].val([12,1.7,2.8]) lwing['scl'].params[''].val([3.6,0.8]) lwing['pos'].params['lin'].val([[0,0,0],[2.5,-0.1,11],[5,-0.8,22]]) lstrut = self.comps['lstrut'].props lstrut['pos'].params[''].val([13.4,-1.6,2.6]) lstrut['pos'].params['lin'].val([[0,0,0],[1.6,2.6,11.8]]) lstrut['scl'].params[''].val([1.8,1.6]) lstrut['nor'].params[''].val([1.0]) lv = self.comps['lv'].props lv['pos'].params[''].val([14.3,-0.12,8.8]) lv['pos'].params['lin'].val([[0,0,0],[0,1.58,0]]) lv['scl'].params[''].val([1.1,1.1]) lv['nor'].params[''].val([1.0]) lv['rot'].params[''].val([[0,2,0],[0,-2,0]]) ltail = self.comps['ltail'].props ltail['pos'].params[''].val([35.3,6.6,0.25]) ltail['pos'].params['lin'].val([[0,0,0],[2.6,0,5]]) ltail['scl'].params[''].val([3.3,1]) vtail = self.comps['vtail'].props vtail['pos'].params[''].val([30.7,2.1,0]) vtail['pos'].params['lin'].val([[0,0,0],[4.6,5,0]]) vtail['scl'].params[''].val([5,4.5]) vtail['nor'].params[''].val([1.0,0.0,0.0]) return [], [], [] def _set_bspline_options(self): comps = self.comps comps['fuse'].faces['lft'].set_option('num_cp', 'u', [4,4,14,14,4,4]) comps['fuse'].faces['rgt'].set_option( 'num_cp', 'v', [85,4,4,4,4,4,4,4,4,4,102,4,4,16,8,4,6]) comps['vtail'].faces['low'].set_option('num_cp', 'u', [6,4,30,4,4]) comps['vtail'].faces['low'].set_option('num_cp', 'v', [10,10,10,4]) comps['lwing'].faces['upp'].set_option( 'num_cp', 'v', [20,4,4,20,5,4,31]) comps['lwing'].faces['low'].set_option( 'num_cp', 'u', [12,12,20,4,4,4,4]) comps['lstrut'].faces['upp'].set_option('num_cp', 'u', [4,8,12,4]) comps['lstrut'].faces['upp'].set_option('num_cp', 'v', [4,5,4,4]) def geomach_to_tmr(bse): ''' Convert a BSE-GeoMach model to a TMR model ''' # Compute the number of vertices, edges and faces num = bse._num nverts = num['vert'] nedges = num['edge'] nfaces = num['surf'] # Create the list of edges, faces and verts = nverts*[ None ] edges = nedges*[ None ] faces = nfaces*[ None ] surfs = nfaces*[ None ] # Set the topology object topo = bse._topo size = bse._size str_indices = bse._str_indices bspline = bse._bspline # Extract the control point array cp_str = bse.vec['cp_str'].array # Point from the edge index on each face to the i/j locations # in the surf_ptrs array face_to_edge = [[1, 0], [2, 1], [1, 2], [0, 1]] # Point from the edge index on each face to the corresponding # vertices on each face face_to_edge_verts = [ [[0, 0], [2, 0]], [[2, 0], [2, 2]], [[0, 2], [2, 2]], [[0, 0], [0, 2]]] # Create the surfaces surf_ptrs = topo['surf_ptrs'] edge_ptrs = topo['edge_ptrs'] for i in range(nfaces): cp_offset = str_indices['cp'][i,0] ku = bspline['order'][topo['surf_group'][i,0]-1] kv = bspline['order'][topo['surf_group'][i,1]-1] nu = bspline['num_cp'][topo['surf_group'][i,0]-1] nv = bspline['num_cp'][topo['surf_group'][i,1]-1] # Extract and create the b-spline surfaces cp = np.zeros((nu, nv, 3), dtype=np.double) for jj in range(nv): for ii in range(nu): cp_index = cp_offset + ii + jj*nu cp[ii, jj, :] = cp_str[cp_index] surfs[i] = TMR.BsplineSurface(cp, ku=ku, kv=kv) faces[i] = TMR.FaceFromSurface(surfs[i]) # Create the vertices from the faces for i in range(nfaces): for jj in range(2): for ii in range(2): # Get the vertex index index = surf_ptrs[i, 2*ii, 2*jj]-1 # If the vertex has not be allocated, create it now if verts[index] is None: u = 1.0*ii v = 1.0*jj verts[index] = TMR.VertexFromFace(faces[i], u, v) for i in range(nverts): if verts[i] is None: raise ValueError('TMRVertex %d was not initialized\n'%(i)) # Create the edges for i in range(nfaces): for ii in range(4): i1 = face_to_edge[ii][0] j1 = face_to_edge[ii][1] # Keep track of the direction edge_num = surf_ptrs[i, i1, j1] index = abs(edge_num)-1 # Find the vertex numbers v1 = edge_ptrs[index, 0]-1 v2 = edge_ptrs[index, 1]-1 # The start/end vertex location vert1 = None vert2 = None # Get the indices of the vertices within the surf_ptrs array i1 = face_to_edge_verts[ii][0][0] j1 = face_to_edge_verts[ii][0][1] i2 = face_to_edge_verts[ii][1][0] j2 = face_to_edge_verts[ii][1][1] if (v1 == surf_ptrs[i, i1, j1]-1 and v2 == surf_ptrs[i, i2, j2]-1): vert1 = verts[v1] vert2 = verts[v2] pts = np.array([face_to_edge_verts[ii][0], face_to_edge_verts[ii][1]], dtype=np.double) elif (v2 == surf_ptrs[i, i1, j1]-1 and v1 == surf_ptrs[i, i2, j2]-1): vert1 = verts[v2] vert2 = verts[v1] pts = np.array([face_to_edge_verts[ii][1], face_to_edge_verts[ii][0]], dtype=np.double) pts = pts/2.0 # Check whether this is a degenerate edge is_degen = 0 if v1 == v2: is_degen = 1 # Create the parametric curve pcurve = TMR.BsplinePcurve(pts) if edges[index] is None: edges[index] = TMR.EdgeFromFace(faces[i], pcurve, is_degen) edges[index].setVertices(vert1, vert2) else: edges[index].addEdgeFromFace(faces[i], pcurve) for i in range(nedges): if edges[i] is None: raise ValueError('TMREdge %d was not initialized\n'%(i)) # After all of the edges are created, create the edge loops # for each face. Account for the CCW orientation. ccw_order = [1, 1, -1, -1] for i in range(nfaces): # Find the edges and directions for this edge loop e = [] dirs = [] for ii in range(4): i1 = face_to_edge[ii][0] j1 = face_to_edge[ii][1] edge_num = surf_ptrs[i, i1, j1] e.append(edges[abs(edge_num)-1]) dirs.append(np.sign(edge_num)*ccw_order[ii]) # Set the loop loop = TMR.EdgeLoop(e, dirs) faces[i].addEdgeLoop(loop) # Create the model geo = TMR.Model(verts, edges, faces) return geo # Create an argument parser to read in arguments from the commnad line p = argparse.ArgumentParser() p.add_argument('--htarget', type=float, default=10.0) p.add_argument('--model_type', type=str, default='wing') args = p.parse_args() # Create the GeoMACH model print('Loading GeoMACH model...') if args.model_type == 'wing': pgm = Wing() elif args.model_type == 'trussbraced': pgm = Trussbraced() bse = pgm.initialize() # Convert from GeoMACH to TMR print('Converting GeoMACH model to TMR model...') geo = geomach_to_tmr(bse) # Create the mesh print('Meshing TMR model...') comm = MPI.COMM_WORLD mesh = TMR.Mesh(comm, geo) # Mesh the part opts = TMR.MeshOptions() opts.mesh_type_default = TMR.TRIANGLE opts.num_smoothing_steps = 10 opts.triangularize_print_level = 1 opts.triangularize_print_iter = 10000 opts.write_mesh_quality_histogram = 1 # Mesh the geometry with the given target size htarget = args.htarget mesh.mesh(htarget, opts=opts) mesh.writeToVTK('surface-mesh.vtk') # Create a model from the mesh print('Creating model from mesh...') model = mesh.createModelFromMesh() # Create the corresponding mesh topology from the mesh-model topo = TMR.Topology(comm, model) # Create the quad forest and set the topology of the forest print('Creating TMRQuadForest...') forest = TMR.QuadForest(comm) forest.setTopology(topo) # Create random trees and balance the mesh. Print the output file forest.createRandomTrees(nrand=3, max_lev=3) forest.balance(1) forest.writeForestToVTK('forest-mesh%d.vtk'%(comm.rank)) ``` #### File: examples/quality/bracket_quality.py ```python from __future__ import print_function from mpi4py import MPI from tmr import TMR from egads4py import egads import numpy as np import argparse import os from OctMeshQuality import * def get_edge_dirs_verts(elist): edge_list = elist[:] edges = [edge_list.pop()] dirs = [1] v1, vnext = edges[-1].getVertices() verts = [v1, vnext] nedges = len(edge_list) for k in range(nedges): for i, edge in enumerate(edge_list): v1, v2 = edge.getVertices() if v1.getEntityId() == vnext.getEntityId(): dirs.append(1) edges.append(edge_list.pop(i)) vnext = v2 break elif v2.getEntityId() == vnext.getEntityId(): dirs.append(-1) edges.append(edge_list.pop(i)) vnext = v1 break verts.append(vnext) return edges, dirs, verts[:-1] def load_model(): # Create the egads context ctx = egads.context() parts = [] r0 = 0.05 # Create the boxes x0 = [0, 0, 0] x1 = [0.25, 0.25, 0.25] B0 = ctx.makeSolidBody(egads.BOX, rdata=[x0, x1]) parts.append(ctx.makeTopology(egads.MODEL, children=[B0])) # Create the x-arm x0 = [0.25, 0, 0] x1 = [0.75, 0.25, 0.25] B1 = ctx.makeSolidBody(egads.BOX, rdata=[x0, x1]) x0 = [0.85, 0.125, 0] x1 = [0.85, 0.125, 0.25] C1 = ctx.makeSolidBody(egads.CYLINDER, rdata=[x0, x1, r0]) parts.append(B1.solidBoolean(C1, egads.SUBTRACTION)) # Create the y-arm x0 = [0, 0.25, 0] x1 = [0.25, 0.75, 0.25] B2 = ctx.makeSolidBody(egads.BOX, rdata=[x0, x1]) x0 = [0, 0.85, 0.125] x1 = [0.25, 0.85, 0.125] C2 = ctx.makeSolidBody(egads.CYLINDER, rdata=[x0, x1, r0]) parts.append(B2.solidBoolean(C2, egads.SUBTRACTION)) # Create the z-arm x0 = [0, 0, 0.25] x1 = [0.25, 0.25, 0.75] B3 = ctx.makeSolidBody(egads.BOX, rdata=[x0, x1]) x0 = [0.125, 0, 0.85] x1 = [0.125, 0.25, 0.85] C3 = ctx.makeSolidBody(egads.CYLINDER, rdata=[x0, x1, r0]) parts.append(B3.solidBoolean(C3, egads.SUBTRACTION)) # Create all of the models geos = [] for p in parts: geos.append(TMR.ConvertEGADSModel(p)) # Create the full list of vertices, edges, faces and volumes verts = [] edges = [] faces = [] vols = [] for geo in geos: verts.extend(geo.getVertices()) edges.extend(geo.getEdges()) faces.extend(geo.getFaces()) vols.extend(geo.getVolumes()) # Set all of the matching faces TMR.setMatchingFaces(geos) # Create the geometry geo = TMR.Model(verts, edges, faces, vols) return geo # The communicator comm = MPI.COMM_WORLD # Load the geometry model geo = load_model() # Create the mesh mesh = TMR.Mesh(comm, geo) # Set the meshing options opts = TMR.MeshOptions() opts.frontal_quality_factor = 1.25 opts.num_smoothing_steps = 50 opts.triangularize_print_iter = 5 opts.write_mesh_quality_histogram = 1 # Create the surface mesh mesh.mesh(0.02, opts) # Create a model from the mesh model = mesh.createModelFromMesh() # Create the corresponding mesh topology from the mesh-model topo = TMR.Topology(comm, model) # Create the quad forest and set the topology of the forest forest = TMR.OctForest(comm) forest.setTopology(topo) forest.createTrees(1) forest.createNodes() ar = computeAR(forest) min_ang = computeMinAngle(forest) fshape = computeShape(forest) # Wrtie the mesh quality to vtk writeQualityToVtk(forest, ar, min_ang, fshape,fname='quality-bracket.vtk') plotShapeHist(fshape, xmin=np.amin(fshape), fname='bracket_shape_hist.pdf') plotARHist(ar, fname='bracket_ar_hist.pdf', xmax=np.ceil(4.0*np.amax(ar))/4.0) plotMinAngHist(min_ang, fname='bracket_ang_hist.pdf', xmin=np.amin(min_ang)-1.0) ``` #### File: examples/quality/OctMeshQuality.py ```python import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker from matplotlib.colors import LinearSegmentedColormap from matplotlib.ticker import PercentFormatter import matplotlib.colors as colors import matplotlib.cm as cmx # Configure the plotting environment plt.rcParams['xtick.direction'] = 'out' plt.rcParams['ytick.direction'] = 'out' # Optionally set font to Computer Modern to avoid common missing font errors params = { 'axes.labelsize': 20, 'legend.fontsize': 14, 'xtick.labelsize': 20, 'ytick.labelsize': 20, 'text.usetex': True} plt.rcParams.update(params) # Latex math plt.rcParams['text.latex.preamble'] = [r'\usepackage{sfmath}'] plt.rcParams['font.family'] = 'sans-serif' # plt.rcParams['font.sans-serif'] = 'courier' plt.rcParams['font.size'] = 18 plt.rcParams['font.weight'] = 'bold' plt.rcParams['lines.linewidth'] = 4 plt.rcParams['lines.color'] = 'r' # Make sure everything is within the frame plt.rcParams.update({'figure.autolayout': True}) # These are the "Tableau 20" colors as RGB. tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)] # Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts. for i in range(len(tableau20)): r, g, b = tableau20[i] tableau20[i] = (r / 255., g / 255., b / 255.) # Color scheme hist_color = tableau20[0] # Compute the relative size of the element in the forest def computeShape(forest): octs = forest.getOctants() Xpts = forest.getPoints() conn = forest.getMeshConn() fshape = np.zeros(len(octs)) jacobian_list={0:[1,2,4], 1:[3,0,5], 2:[0,3,6], 3:[2,1,7], 4:[6,5,0], 5:[4,7,1], 6:[7,4,2], 7:[5,6,3]} for i in range(len(octs)): npts = 8 nodes = conn[i,:] pts = Xpts[nodes[:], :] num = 0.0 # Compute the individual Ak matrices for j in range(npts): # Get the reference vertices of volume v = jacobian_list[j] Ak = np.array([pts[v[0],:]-pts[j,:], pts[v[1],:]-pts[j,:], \ pts[v[2],:]-pts[j,:] ]) # Get determinant of local matrix alpha #alpha[j] = np.linalg.det(Ak) #sigma[j] = np.sum(np.dot(Ak.T, Ak).diagonal()) num += np.sum(np.dot(Ak.T, Ak).diagonal())/np.linalg.det(Ak)**(2./3.) # Compute the shape metric 24/num fshape[i] = 24./num return fshape # Compute the aspect ratio of each element in the forest def computeAR(forest): octs = forest.getOctants() Xpts = forest.getPoints() conn = forest.getMeshConn() ar = np.zeros(len(octs)) # List of vertices which create an edge on the octant edge_list = [[0, 1], [1, 3], [2, 3], [0, 2], [4, 5], [5, 7], [6, 7], [4, 6], [1, 5], [3, 7], [2, 6], [0, 4]] for i in range(len(octs)): # Get the points npts = 8 nodes = conn[i,:] pts = Xpts[nodes[:], :] edge_lengths = np.zeros(12) # Compute the length of each edge on the octant for j, edge_pts in enumerate(edge_list): v1 = pts[edge_pts[0],:] v2 = pts[edge_pts[1],:] edge_lengths[j] = np.linalg.norm(v1-v2) # Compute the aspect ratio of the octant ar[i] = np.amax(edge_lengths)/np.amin(edge_lengths) return ar # Compute the minimum angle of each element in the forest def computeMinAngle(forest): octs = forest.getOctants() Xpts = forest.getPoints() conn = forest.getMeshConn() min_angs = np.zeros(len(octs)) # List of verticies corresponding to interior angles angle_list = {0:[1, 2, 4], 1:[0, 5, 3], 2:[0, 6, 3], 3:[1, 2, 7], 4:[0, 5, 6], 5:[1, 4, 7], 6:[2, 4, 7], 7:[3, 5, 6]} for i in range(len(octs)): # Get the points npts = 8 nodes = conn[i,:] pts = Xpts[nodes[:], :] min_angle = 90.0 for j in range(npts): node_neighbors = angle_list[j] for k in node_neighbors: for l in node_neighbors: if k != l: # Compute 2 vectors from 3 unique points vec1 = pts[k, :] - pts[j, :] vec2 = pts[l, :] - pts[j, :] # Make the vectors unit vectors if (np.linalg.norm(vec1) != np.float64(0.0)) and (np.linalg.norm(vec2) != np.float64(0.0)): vec1 /= np.linalg.norm(vec1) vec2 /= np.linalg.norm(vec2) # Compute the angle between the vectors as long as they # are different if np.array_equal(vec1, vec2) is False: angle = (180.0/np.pi)*np.arccos(np.dot(vec1, vec2)) # Update min_angle if needed if angle < min_angle: min_angle = angle min_angs[i] = min_angle return min_angs # Write out mesh quality metrics to vtk file def writeQualityToVtk(forest, ar, min_ang, fshape, fname='quality.vtk'): octs = forest.getOctants() Xpts = forest.getPoints() conn = forest.getMeshConn() npts = len(Xpts) nhex = len(octs) f = open(fname, 'w') f.write('# vtk DataFile Version 3.0\n') f.write('vtk output\nASCII\n') f.write('DATASET UNSTRUCTURED_GRID\n') # write out the points f.write('POINTS %d float\n'%(npts)) for pt in Xpts: f.write('%e %e %e\n'%(pt[0], pt[1], pt[2])) # write out the mesh connectivity f.write('\nCELLS %d %d\n'%(nhex, nhex*9)) for i in range(len(octs)): nodes = conn[i,:] f.write('8 %d %d %d %d %d %d %d %d\n'%( nodes[0], nodes[1], nodes[3], nodes[2], nodes[4], nodes[5], nodes[7], nodes[6])) # all hex f.write('\nCELL_TYPES %d\n'%(nhex)) for i in range(nhex): f.write('%d\n'%(12)) # write AR values f.write('\nCELL_DATA %d\n'%(nhex)) f.write('SCALARS aspect_ratio float 1\n') f.write('LOOKUP_TABLE default\n') for elem_ar in ar: f.write('%e\n'%(elem_ar)) # write minimum angle values f.write('SCALARS min_angle float 1\n') f.write('LOOKUP_TABLE default\n') for elem_ang in min_ang: f.write('%e\n'%(elem_ang)) # Write the shape metric # write minimum angle values f.write('SCALARS shape_metric float 1\n') f.write('LOOKUP_TABLE default\n') for elem_shape in fshape: f.write('%e\n'%(elem_shape)) f.close() return def plotARHist(ar, xmax=None, fname='ar_hist.pdf'): hist_max = int(np.ceil(np.amax(ar))) nbins = 40*(hist_max-1) # Create the figure and set parameters fig, ax = plt.subplots(1, 1, figsize=(12, 9)) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() # Plot the histogram n, bins, patches = plt.hist(ar, bins=nbins, range=(1.0, hist_max), density=True, stacked=False) widths = bins[:-1] - bins[1:] # Set the colors norm = colors.Normalize(ar.min(), ar.max()) for b, p in zip(bins, patches): color = plt.cm.coolwarm(norm(b)) p.set_facecolor(color) # Configure the axes if xmax: plt.xlim((1.0, xmax)) else: plt.xlim((1.0, hist_max)) plt.xlabel('Aspect Ratio') ax.yaxis.set_major_formatter(PercentFormatter(xmax=-1.0/widths[0], decimals=0)) ax.tick_params(which='both', direction='out', top=False, right=False) plt.savefig(fname, bbox_inches='tight', pad_inches=0.05) return def plotMinAngHist(min_ang, xmin=None, fname='angle_hist.pdf'): hist_max = 90.0 nbins = 90 # Create the figure and set parameters fig, ax = plt.subplots(1, 1, figsize=(12, 9)) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() # Plot the histogram n, bins, patches = plt.hist(min_ang, bins=nbins, range=(0.0, hist_max), align='mid', density=True) # Set the colors norm = colors.Normalize(min_ang.min(), min_ang.max()) for b, p in zip(bins, patches): color = plt.cm.coolwarm_r(norm(b)) p.set_facecolor(color) # Configure the axes x_ticks = [0, 15, 30, 45, 60, 75, 90] plt.xticks(x_ticks, x_ticks) if xmin: plt.xlim((xmin, 90.0)) else: plt.xlim((0.0, 90.0)) plt.xlabel('Minimum Angle (deg.)') ax.yaxis.set_major_formatter(PercentFormatter(xmax=1, decimals=0)) ax.tick_params(which='both', direction='out', top=False, right=False) plt.tight_layout() plt.savefig(fname, bbox_inches='tight', pad_inches=0.05) return def plotShapeHist(fshape, xmin=None, fname='shape_hist.pdf'): hist_min = np.amin(fshape) nbins = 50 #nbins = 40*(hist_min-1) # Create the figure and set parameters fig, ax = plt.subplots(1, 1, figsize=(12, 9)) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() # Plot the histogram n, bins, patches = plt.hist(fshape, bins=nbins, range=(xmin, 1.0), \ density=True) widths = bins[:-1] - bins[1:] # Set the colors norm = colors.Normalize(fshape.min(), fshape.max()) for b, p in zip(bins, patches): color = plt.cm.coolwarm(norm(b)) p.set_facecolor(color) plt.xlabel('Hexahedron Shape Metric') ax.yaxis.set_major_formatter(PercentFormatter(xmax=-1/widths[0], decimals=0)) ax.tick_params(which='both', direction='out', top=False, right=False) plt.tight_layout() plt.savefig(fname, bbox_inches='tight', pad_inches=0.05,dpi=1000) return ``` #### File: topology_optimization/bernstein/bernstein.py ```python from __future__ import print_function from mpi4py import MPI from tmr import TMR, TopOptUtils from paropt import ParOpt from tacs import TACS, elements, constitutive, functions import numpy as np import argparse import os class QuadConformCreator(TMR.QuadConformTopoCreator): """ This class is called to create a TACSAssembler class with an underlying filter mesh that conforms with Assembler mesh. The input to the class consists of the boundary conditions, the forest of quadtrees for the analysis mesh, the order of the conforming filter QuadForest mesh, and the type of interpolant to be used. """ def __init__(self, bcs, forest, order=2, interp=TMR.BERNSTEIN_POINTS, design_vars_per_node=1, props=None): # Store the properties self.props = props self.element = None def createTopoElement(self, order, filtr): """ Create an element for the entire mesh """ # Create the constitutive object - one for the entire mesh self.con = TMR.QuadConstitutive(props=self.props, forest=filtr) # Create the model (the type of physics we're using) self.model = elements.LinearThermoelasticity2D(self.con) # Set the basis functions and create the element if order == 2: self.basis = elements.LinearQuadBasis() elif order == 3: self.basis = elements.QuadraticQuadBasis() elif order == 4: self.basis = elements.CubicQuadBasis() elif order == 5: self.basis = elements.QuarticQuadBasis() elif order == 6: self.basis = elements.QuinticQuadBasis() # Create the element type self.element = elements.Element2D(self.model, self.basis) return def createElement(self, order, quadrant, index, filtr): """ Create the element for the specified quadrant Args: order (int): The order of the element quadrant (TMR.Quadrant): The quadrant to be build for this element index (list): The global numbers for the quadrant nodes filtr (QuadForest): The QuadForest for the filter Returns: TACS.Element: Element to place within the Assembler """ if self.element is None: self.createTopoElement(order, filtr) return self.element class CreatorCallback: def __init__(self, bcs, props): self.bcs = bcs self.props = props def creator_callback(self, forest): """ Given the forest, instantiate a creator class that will populate a TACSAssembler object with the elements. This allocates the QuadConformCreator class above and also returns the QuadForest object associated with the filter. This is needed in the createTopoProblem call. """ order = forest.getMeshOrder() interp = TMR.BERNSTEIN_POINTS dvs_per_node = self.props.getDesignVarsPerNode() creator = QuadConformCreator(self.bcs, forest, order=order-1, design_vars_per_node=dvs_per_node, interp=interp, props=self.props) filtr = creator.getFilter() return creator, filtr def create_forest(comm, depth, htarget): """ Create an initial forest for analysis and optimization This code loads in the model, sets names, meshes the geometry and creates a QuadForest from the mesh. The forest is populated with quadtrees with the specified depth. Args: comm (MPI_Comm): MPI communicator depth (int): Depth of the initial trees htarget (float): Target global element mesh size Returns: QuadForest: Initial forest for topology optimization """ # Load the geometry model geo = TMR.LoadModel('biclamped_traction.stp') # Mark the boundary condition faces verts = geo.getVertices() edges = geo.getEdges() faces = geo.getFaces() edges[1].setName('fixed') edges[9].setName('fixed') edges[4].setName('traction') # Create the mesh mesh = TMR.Mesh(comm, geo) # Set the meshing options opts = TMR.MeshOptions() # Create the surface mesh mesh.mesh(htarget, opts) # Create a model from the mesh model = mesh.createModelFromMesh() # Create the corresponding mesh topology from the mesh-model topo = TMR.Topology(comm, model) # Create the quad forest and set the topology of the forest forest = TMR.QuadForest(comm) forest.setTopology(topo) # Set parameters for later usage forest.createTrees(depth) return forest def create_problem(forest, bcs, props, nlevels, iter_offset=0, m_fixed=0.0, use_compliance=False): """ Create the TMRTopoProblem object and set up the topology optimization problem. This code is given the forest, boundary conditions, material properties and the number of multigrid levels. Based on this info, it creates the TMRTopoProblem and sets up the mass-constrained compliance minimization problem. Before the problem class is returned it is initialized so that it can be used for optimization. Args: forest (OctForest): Forest object bcs (BoundaryConditions): Boundary condition object props (StiffnessProperties): Material properties object nlevels (int): number of multigrid levels Returns: TopoProblem: Topology optimization problem instance """ # Allocate the creator callback function obj = CreatorCallback(bcs, props) # Create a conforming filter filter_type = 'lagrange' # Characteristic length of the domain r = 0.06 a = 0.04 area = r*a r0 = 0.025*np.sqrt(area) # Create the problem and filter object problem = TopOptUtils.createTopoProblem(forest, obj.creator_callback, filter_type, nlevels=nlevels, lowest_order=2, r0=r0, N=15, use_galerkin=True, design_vars_per_node=design_vars_per_node) # Get the assembler object we just created assembler = problem.getAssembler() # Get the basis object from one of the elements elems = assembler.getElements() basis = elems[0].getElementBasis() # Create the traction objects that will be used later.. # Fn = 1000e3 # Normal heat flux Fn = 0.0 Ty = -2.5e6 # Traction force component in the y-direction vpn = elems[0].getVarsPerNode() trac = [0.0, Ty, Fn] tractions = [] for findex in range(4): tractions.append(elements.Traction2D(vpn, findex, basis, trac)) # Allocate a thermal traction boundary condition force1 = TopOptUtils.computeTractionLoad('traction', forest, assembler, tractions) # Set the load case problem.setLoadCases([force1]) # Set the constraint functions funcs = [functions.StructuralMass(assembler)] # Set the mass constraint # (m_fixed - m(x))/m_fixed >= 0.0 problem.addConstraints(0, funcs, [-m_fixed], [-1.0/m_fixed]) # Set the values of the objective array if use_compliance: obj_array = [ 0.1 ] compliance = functions.Compliance(assembler) compliance.setComplianceType(elements.TOTAL_STRAIN_ENERGY_DENSITY) problem.setObjective(obj_array, [compliance]) else: obj_array = [ 1.0e3 ] ksfail = functions.KSFailure(assembler, 10.0) ksfail.setKSFailureType('continuous') problem.setObjective(obj_array, [ksfail]) # Initialize the problem and set the prefix problem.initialize() # Set the callback for generating output cb = OutputCallback(assembler, iter_offset=iter_offset) problem.setOutputCallback(cb.write_output) return problem class OutputCallback: def __init__(self, assembler, iter_offset=0): self.assembler = assembler # Set the output file name flag = (TACS.OUTPUT_CONNECTIVITY | TACS.OUTPUT_NODES | TACS.OUTPUT_EXTRAS) self.f5 = TACS.ToFH5(assembler, TACS.PLANE_STRESS_ELEMENT, flag) self.iter_offset = iter_offset def write_output(self, prefix, itr, oct_forest, quad_forest, x): self.assembler.setVariables(x) self.f5.writeToFile(os.path.join(prefix, 'output%d.f5'%(itr + self.iter_offset))) # Set the optimization parameters optimization_options = { # Set the algorithm to use 'algorithm': 'tr', 'qn_subspace_size': 10, 'qn_type': 'bfgs', 'qn_diag_type': 'yts_over_sts', # Parameters for the trust region method 'tr_init_size': 0.01, 'tr_max_size': 0.1, 'tr_min_size': 0.01, # 1e-6, 'tr_eta': 0.1, 'penalty_gamma': 10.0, 'tr_penalty_gamma_max': 1000.0, 'tr_write_output_frequency': 1, 'tr_infeas_tol': 1e-5, 'tr_l1_tol': 1e-5, 'tr_linfty_tol': 0.0, # Don't use the l-infinity norm in the stopping criterion 'tr_steering_barrier_strategy': 'default', 'tr_steering_starting_point_strategy': 'default', # Parameters for the interior point method (used to solve the # trust region subproblem) 'abs_res_tol': 1e-8, 'max_major_iters': 100, 'norm_type': 'l1', 'init_barrier_param': 10.0, 'use_line_search': False, 'barrier_strategy': 'mehrotra_predictor_corrector', 'starting_point_strategy': 'affine_step'} # Create an argument parser to read in arguments from the command line p = argparse.ArgumentParser() p.add_argument('--prefix', type=str, default='./results') p.add_argument('--vol_frac', type=float, default=0.3) p.add_argument('--htarget', type=float, default=2.5e-3) p.add_argument('--max_opt_iters', type=int, nargs='+', default=[5]) p.add_argument('--init_depth', type=int, default=1) p.add_argument('--mg_levels', type=int, nargs='+', default=[2]) p.add_argument('--order', type=int, default=4) p.add_argument('--q_penalty', type=float, default=8.0) args = p.parse_args() # Set the communicator comm = MPI.COMM_WORLD # Print out all of the arguments to the command line if comm.rank == 0: for arg in vars(args): print('%-20s'%(arg), getattr(args, arg)) # Set the max nmber of iterations mg_levels = args.mg_levels max_iterations = len(mg_levels) # The thickness value t = 0.01 # Compute the volume of the bracket r = 0.06 a = 0.04 vol = r*a*t vol_frac = args.vol_frac # Create the first material properties object rho = 2600.0*t E = 70e9*t nu = 0.3 alpha = 23.5e-6 kcond = 130.0*t ys = 450e6 mat1 = constitutive.MaterialProperties(rho=rho, E=E, nu=nu, alpha=alpha/(1.0 - 2*nu), kappa=kcond, ys=ys) # Create the second material properties object rho = 1300.0*t E = 35e9*t nu = 0.3 alpha = 0.5*23.5e-6 kcond = 65.0*t ys = 275e6 mat2 = constitutive.MaterialProperties(rho=rho, E=E, nu=nu, alpha=alpha/(1.0 - 2*nu), kappa=kcond, ys=ys) prop_list = [mat1, mat2] # Set the fixed mass average_density = 0.5*(2600.0 + 1300.0) initial_mass = vol*average_density m_fixed = vol_frac*initial_mass # Set the number of variables per node design_vars_per_node = 1 if (len(prop_list) > 1): design_vars_per_node = 1 + len(prop_list) # Create the stiffness properties object props = TMR.StiffnessProperties(prop_list, q=args.q_penalty, qtemp=0.0, qcond=0.0, eps=0.3, k0=1e-3) # Set the boundary conditions for the problem bcs = TMR.BoundaryConditions() bcs.addBoundaryCondition('fixed', [0, 1, 2], [0.0, 0.0, 50.0]) # Create the initial forest forest = create_forest(comm, args.init_depth, args.htarget) forest.setMeshOrder(args.order, TMR.GAUSS_LOBATTO_POINTS) # Set the original filter to NULL orig_filter = None xopt = None iter_offset = 0 for step in range(max_iterations): # Create the TMRTopoProblem instance nlevels = mg_levels[step] problem = create_problem(forest, bcs, props, nlevels, iter_offset=iter_offset, m_fixed=m_fixed, use_compliance=True) iter_offset += args.max_opt_iters[step] problem.setPrefix(args.prefix) # Check the gradient problem.checkGradients(1e-6) # Extract the filter to interpolate design variables filtr = problem.getFilter() if orig_filter is not None: # Create one of the new design vectors x = problem.createDesignVec() TopOptUtils.interpolateDesignVec(orig_filter, xopt, filtr, x) problem.setInitDesignVars(x) # Set the new original filter orig_filter = filtr # Set the max number of iterations optimization_options['tr_max_iterations'] = args.max_opt_iters[step] # Output files optimization_options['output_file'] = os.path.join(args.prefix, 'output_file%d.dat'%(step)) optimization_options['tr_output_file'] = os.path.join(args.prefix, 'tr_output_file%d.dat'%(step)) # Optimize the problem opt = ParOpt.Optimizer(problem, optimization_options) opt.optimize() xopt, z, zw, zl, zu = opt.getOptimizedPoint() # Refine based solely on the value of the density variable assembler = problem.getAssembler() forest = forest.duplicate() # Perform refinement based on distance dist_file = os.path.join(args.prefix, 'distance_solution%d.f5'%(step)) domain_length = np.sqrt(r*a) refine_distance = 0.025*domain_length TopOptUtils.targetRefine(forest, filtr, assembler, refine_distance, interface_lev=3, interior_lev=2, domain_length=domain_length, interface_index=-1, interior_index=0, reverse=True, filename=dist_file) # Repartition the mesh forest.balance(1) forest.repartition() ``` #### File: topology_optimization/lbracket/lbracket.py ```python from mpi4py import MPI from tmr import TMR, TopOptUtils from paropt import ParOpt from tacs import TACS, elements, constitutive, functions import numpy as np import argparse import os def in_domain(x, y): """ Check if a point x, y is within the geometry domain """ l = 0.1 h = 0.04 xc = x - h yc = y - h check = True if (x > l) or (x < 0.0) or (y > l) or (y < 0.0): check = False return check if (xc > 0.0) & (yc > 0.0): check = False return check def in_circle(x, y, x0, y0, r): """ Check if a point (x, y) is in the circle centered at (x0, y0) with redius r """ dr = (x-x0)**2 + (y-y0)**2 - r**2 if dr <= 0: check = True else: check = False return check def circle_refine(x0, r, hr, h): """ Create a feature size with a circular refinement region using concentric circles wit radius r, with target mesh size hr in each concentric circle Args: x0 (np.array): center of circle where refinement region should be centered r (np.array): array of circle radii to apply refinement to -> should be in descending order hr (np.array): corresponding target h values for within each concentric circle of radius r h (float): target refinement outside the circular domain """ # Create a grid of points to specify target values nx = 100 ny = 100 npts = nx*ny xpts = np.zeros((npts, 3)) x = np.linspace(0.0, 0.1, nx) y = np.linspace(0.0, 0.1, ny) del_i = [] for i in range(nx): for j in range(ny): if in_domain(x[i], y[j]): xpts[i*ny+j, 0] = x[i] xpts[i*ny+j, 1] = y[j] else: del_i.append(i*ny+j) # Remove the region outside the domain xpts = np.delete(xpts, del_i, 0) # Create the refinement array hvals = h*np.ones(len(xpts)) for i in range(len(xpts)): for hi, ri in zip(hr, r): if in_circle(xpts[i, 0], xpts[i, 1], x0[0], x0[1], ri): hvals[i] = hi xpts = np.ascontiguousarray(xpts) hmin = np.amin(hr) fs = TMR.PointFeatureSize(xpts, hvals, hmin, h) return fs class QuadConformCreator(TMR.QuadConformTopoCreator): """ This class is called to create a TACSAssembler class with an underlying filter mesh that conforms with Assembler mesh. The input to the class consists of the boundary conditions, the forest of quadtrees for the analysis mesh, the order of the conforming filter QuadForest mesh, and the type of interpolant for the filter. """ def __init__(self, bcs, forest, order=2, interp=TMR.BERNSTEIN_POINTS, design_vars_per_node=1, props=None): # Store the properties self.props = props self.element = None def createTopoElement(self, order, filtr): """ Create an element for the entire mesh """ # Create the constitutive object - one for the entire mesh self.con = TMR.QuadConstitutive(props=self.props, forest=filtr) # Create the model self.model = elements.LinearElasticity2D(self.con) # Set the basis functions and create the element if order == 2: self.basis = elements.LinearQuadBasis() elif order == 3: self.basis = elements.QuadraticQuadBasis() elif order == 4: self.basis = elements.CubicQuadBasis() elif order == 5: self.basis = elements.QuarticQuadBasis() elif order == 6: self.basis = elements.QuinticQuadBasis() # Create the element type self.element = elements.Element2D(self.model, self.basis) return def createElement(self, order, quadrant, index, filtr): """ Create the element for the specified quadrant Args: order (int): The order of the element quadrant (TMR.Quadrant): The quadrant to be build for this element index (list): The global numbers for the quadrant nodes filtr (QuadForest): The QuadForest for the filter Returns: TACS.Element: Element to place within the Assembler """ if self.element is None: self.createTopoElement(order, filtr) return self.element class CreatorCallback: def __init__(self, bcs, props): self.bcs = bcs self.props = props def creator_callback(self, forest): """ Given the forest, instantiate a creator class that will populate a TACSAssembler object with the elements. This allocates the QuadConformCreator class above and also returns the QuadForest object associated with the filter. This is needed in the createTopoProblem call. """ order = forest.getMeshOrder() interp = TMR.BERNSTEIN_POINTS dvs_per_node = self.props.getDesignVarsPerNode() creator = QuadConformCreator(self.bcs, forest, order=order, design_vars_per_node=dvs_per_node, interp=interp, props=self.props) filtr = creator.getFilter() return creator, filtr def create_forest(comm, depth, htarget, fs_type=None, filename='2d-bracket-fillet.stp'): """ Create an initial forest for analysis and optimization This code loads in the model, sets names, meshes the geometry and creates a QuadForest from the mesh. The forest is populated with quadtrees with the specified depth. Args: comm (MPI_Comm): MPI communicator depth (int): Depth of the initial trees htarget (float): Target global element mesh size fs_type (string): feature size refinement to use ('box', or 'point') Returns: QuadForest: Initial forest for topology optimization """ # Load in the L-bracket model geo = TMR.LoadModel(filename) verts = geo.getVertices() edges = geo.getEdges() faces = geo.getFaces() geo = TMR.Model(verts, edges, faces) # Set the edges edges[5].setName('fixed') edges[1].setName('traction') # Create the mesh mesh = TMR.Mesh(comm, geo) if fs_type == 'box': hmin = htarget/4.0 hmax = htarget pt1 = [0.03, 0.03, -1] pt2 = [0.05, 0.05, 1] box = TMR.BoxFeatureSize(pt1, pt2, hmin, hmax) box.addBox(pt1, pt2, hmin) # Set the meshing options opts = TMR.MeshOptions() # Create the surface mesh mesh.mesh(opts=opts, fs=box) elif fs_type == 'point': x0 = np.array([0.04, 0.04]) ncircles = 10 r = np.linspace(0.04, 0.01, ncircles) hr = htarget*np.linspace(1.0, 0.25, ncircles) #np.array([htarget/2.0, htarget/4.0]) circle = circle_refine(x0, r, hr, htarget) # Set the meshing options opts = TMR.MeshOptions() # Create the surface mesh mesh.mesh(opts=opts, fs=circle) else: # Set the meshing options opts = TMR.MeshOptions() # Create the surface mesh mesh.mesh(htarget, opts=opts) # Create a model from the mesh model = mesh.createModelFromMesh() # Create the corresponding mesh topology from the mesh-model topo = TMR.Topology(comm, model) # Create the quad forest and set the topology of the forest forest = TMR.QuadForest(comm) forest.setTopology(topo) # Set parameters for later usage forest.createTrees(depth) return forest class MFilterCreator: def __init__(self, r0_frac, N, a=0.1): self.a = a self.r0_frac = r0_frac self.N = N def filter_callback(self, assemblers, filters): """ Create and initialize a filter with the specified parameters """ # Find the characteristic length of the domain and set the filter length scale r0 = self.r0_frac*self.a mfilter = TopOptUtils.Mfilter(self.N, assemblers, filters, dim=2, r=r0) mfilter.initialize() return mfilter def create_problem(forest, bcs, props, nlevels, r0_frac=0.05, N=20, iter_offset=0, m_fixed=0.0): """ Create the TMRTopoProblem object and set up the topology optimization problem. This code is given the forest, boundary conditions, material properties and the number of multigrid levels. Based on this info, it creates the TMRTopoProblem and sets up the mass-constrained compliance minimization problem. Before the problem class is returned it is initialized so that it can be used for optimization. Args: forest (OctForest): Forest object bcs (BoundaryConditions): Boundary condition object props (StiffnessProperties): Material properties object nlevels (int): number of multigrid levels r0_frac (float): Fraction of the characteristic domain length N (int): Number of iterations of the discrete filter iter_offset (int): Iteration offset counter m_fixed (float): Fixed mass fraction Returns: TopoProblem: Topology optimization problem instance """ # Allocate the creator callback function obj = CreatorCallback(bcs, props) # Create a discrete M-filter mfilter = MFilterCreator(r0_frac, N) filter_type = mfilter.filter_callback # Create the problem and filter object problem = TopOptUtils.createTopoProblem(forest, obj.creator_callback, filter_type, nlevels=nlevels, lowest_order=2, use_galerkin=True, design_vars_per_node=1) # Get the assembler object we just created assembler = problem.getAssembler() # Get the basis object from one of the elements elems = assembler.getElements() basis = elems[0].getElementBasis() # Create the traction objects that will be used later.. Ty = -2.5e6 # Traction force component in the y-direction vpn = elems[0].getVarsPerNode() trac = [0.0, Ty] tractions = [] for findex in range(4): tractions.append(elements.Traction2D(vpn, findex, basis, trac)) # Allocate a thermal traction boundary condition force1 = TopOptUtils.computeTractionLoad('traction', forest, assembler, tractions) # Set the load case problem.setLoadCases([force1]) # Set the constraint functions funcs = [functions.StructuralMass(assembler)] # Set the mass constraint # (m_fixed - m(x))/m_fixed >= 0.0 problem.addConstraints(0, funcs, [-m_fixed], [-1.0/m_fixed]) # Set the values of the objective array obj_array = [ 1.0 ] ksfail = functions.KSFailure(assembler, 100.0) ksfail.setKSFailureType('discrete') problem.setObjective(obj_array, [ksfail]) # Initialize the problem and set the prefix problem.initialize() return problem class OutputCallback: def __init__(self, prefix, assembler, iter_offset=0, freq=10): self.prefix = prefix self.freq = freq self.iter_offset = iter_offset # Set the output file name flag = (TACS.OUTPUT_CONNECTIVITY | TACS.OUTPUT_NODES | TACS.OUTPUT_DISPLACEMENTS | TACS.OUTPUT_STRAINS | TACS.OUTPUT_EXTRAS) self.f5 = TACS.ToFH5(assembler, TACS.PLANE_STRESS_ELEMENT, flag) def write_output(self, prefix, itr, oct_forest, quad_forest, x): if itr % self.freq == 0: self.f5.writeToFile(os.path.join(self.prefix, 'output%d.f5'%(itr + self.iter_offset))) return # Set the optimization parameters optimization_options = { # Set the algorithm to use 'algorithm': 'tr', # Use a sequential linear trust-region method 'qn_type': 'none', 'sequential_linear_method': True, # Use a BFGS method with skipped updates # 'qn_type': 'bfgs', # 'qn_subspace_size': 0, # Parameters for the trust region method 'tr_init_size': 0.01, 'tr_max_size': 0.05, 'tr_min_size': 1e-5, 'tr_eta': 0.1, 'penalty_gamma': 5.0, 'tr_penalty_gamma_max': 5.0, 'tr_write_output_frequency': 1, 'tr_infeas_tol': 1e-5, 'tr_l1_tol': 1e-3, 'tr_linfty_tol': 0.0, # Don't use the l-infinity norm in the stopping criterion 'tr_adaptive_gamma_update': False, 'tr_steering_barrier_strategy': 'default', 'tr_steering_starting_point_strategy': 'default', # Parameters for the interior point method (used to solve the # trust region subproblem) 'abs_res_tol': 1e-10, 'max_major_iters': 100, 'norm_type': 'l1', 'init_barrier_param': 10.0, 'use_line_search': False, 'barrier_strategy': 'mehrotra_predictor_corrector', 'starting_point_strategy': 'affine_step'} if __name__ == '__main__': # Create an argument parser to read in arguments from the command line p = argparse.ArgumentParser() p.add_argument('--prefix', type=str, default='./results') p.add_argument('--vol_frac', type=float, default=0.3) p.add_argument('--htarget', type=float, default=2.5e-3) p.add_argument('--max_iters', type=int, default=1) p.add_argument('--max_opt_iters', type=int, default=300) p.add_argument('--init_depth', type=int, default=1) p.add_argument('--mg_levels', type=int, default=3) p.add_argument('--order', type=int, default=2) p.add_argument('--q_penalty', type=float, default=8.0) p.add_argument('--N', type=int, default=10) p.add_argument('--r0_frac', type=float, default=0.05) p.add_argument('--use_project', action='store_true', default=False) p.add_argument('--use_simp', action='store_true', default=False) p.add_argument('--fs_type', type=str, default='None', help='feature size refinement type: point, box, or None') args = p.parse_args() # Set the communicator comm = MPI.COMM_WORLD # Print out all of the arguments to the command line if comm.rank == 0: for arg in vars(args): print('%-20s'%(arg), getattr(args, arg)) # Ensure that the prefix directory exists if comm.rank == 0 and not os.path.isdir(args.prefix): os.mkdir(args.prefix) # Set a barrier here comm.Barrier() # Create the first material properties object rho = 2600.0 E = 70e9 nu = 0.3 ys = 100e6 mat = constitutive.MaterialProperties(rho=rho, E=E, nu=nu, ys=ys) # Set the fixed mass a = 0.1 b = (2.0/5.0)*a area = a**2 - (a - b)**2 domain_length = a full_mass = area*rho m_fixed = args.vol_frac*full_mass # Create the stiffness properties object penalty_type = 'RAMP' if args.use_simp: penalty_type = 'SIMP' props = TMR.StiffnessProperties(mat, q=args.q_penalty, qcond=args.q_penalty, eps=0.05, k0=1e-6, penalty_type=penalty_type, beta=10.0, use_project=args.use_project) # Set the boundary conditions for the problem bcs = TMR.BoundaryConditions() bcs.addBoundaryCondition('fixed', [0, 1], [0.0, 0.0]) # Create the initial forest forest = create_forest(comm, args.init_depth, args.htarget, fs_type=args.fs_type) forest.writeToVTK(os.path.join(args.prefix, 'forest.vtk')) forest.setMeshOrder(args.order, TMR.GAUSS_LOBATTO_POINTS) # Set the original filter to NULL orig_filter = None xopt = None iter_offset = 0 max_iterations = args.max_iters for step in range(max_iterations): # Create the TMRTopoProblem instance mg_levels = args.mg_levels if step > 0: mg_levels += 1 problem = create_problem(forest, bcs, props, mg_levels, m_fixed=m_fixed, r0_frac=args.r0_frac, N=args.N, iter_offset=iter_offset) # Get the assembler object assembler = problem.getAssembler() # Set the callback for generating output cb = OutputCallback(args.prefix, assembler, iter_offset=iter_offset) problem.setOutputCallback(cb.write_output) # Keep counting the total number of iterations iter_offset += args.max_opt_iters problem.setPrefix(args.prefix) # Check the gradient problem.checkGradients(1e-6) # Test the element implementation if comm.rank == 0: assembler.testElement(0, 2) # Extract the filter to interpolate design variables filtr = problem.getFilter() if orig_filter is not None: # Create one of the new design vectors x = problem.createDesignVec() TopOptUtils.interpolateDesignVec(orig_filter, xopt, filtr, x) problem.setInitDesignVars(x) # Set the new original filter orig_filter = filtr # Set parameters optimization_options['tr_max_iterations'] = args.max_opt_iters optimization_options['output_file'] = os.path.join(args.prefix, 'output_file%d.dat'%(step)) optimization_options['tr_output_file'] = os.path.join(args.prefix, 'tr_output_file%d.dat'%(step)) # Optimize the problem opt = ParOpt.Optimizer(problem, optimization_options) opt.optimize() xopt, z, zw, zl, zu = opt.getOptimizedPoint() # Refine based solely on the value of the density variable assembler = problem.getAssembler() forest = forest.duplicate() # Output the original design variables before filtering rho_vec = assembler.createDesignVec() assembler.getDesignVars(rho_vec) x_vec = TMR.convertPVecToVec(xopt) assembler.setDesignVars(x_vec) # visualize flag = (TACS.OUTPUT_CONNECTIVITY | TACS.OUTPUT_NODES | TACS.OUTPUT_EXTRAS) f5 = TACS.ToFH5(assembler, TACS.PLANE_STRESS_ELEMENT, flag) f5.writeToFile(os.path.join(args.prefix, 'dv_output%d.f5'%(step))) # Set the tacs design vars back to the interpolated densities assembler.setDesignVars(rho_vec) # Perform refinement based on distance dist_file = os.path.join(args.prefix, 'distance_solution%d.f5'%(step)) refine_distance = 0.025*domain_length # TopOptUtils.targetRefine(forest, filtr, assembler, refine_distance, # interface_lev=args.init_depth+1, interior_lev=args.init_depth, # domain_length=domain_length, filename=dist_file) TopOptUtils.approxDistanceRefine(forest, filtr, assembler, refine_distance, domain_length=domain_length, filename=dist_file) # Repartition the mesh forest.balance(1) forest.repartition() ``` #### File: tmr/tmr/bowyer_watson.py ```python import numpy as np import matplotlib.pylab as plt import sys import cProfile class quadnode: def __init__(self, low, high, u=0, v=0, level=0): # Set the coordinate direction self.low = low self.high = high # Record the lower right-hand parametric point self.u = u self.v = v # Set the level self.level = level # Set the maximum quad length and the edge length hmax = 1 << 30 self.h = 1 << 30 - (self.level+1) # Set the value of alpha ax = (1.0*(self.u + self.h))/hmax ay = (1.0*(self.v + self.h))/hmax # Set the new point location self.x = (1.0 - ax)*low[0] + ax*high[0] self.y = (1.0 - ay)*low[1] + ay*high[1] # The left and right nodes self.low_left = None self.low_right = None self.up_left = None self.up_right = None # Keep track of the points self.pts = {} return def add_point(self, num, pt): '''Add the point to the left or right node''' if self.low_left is not None: if pt[0] < self.x and pt[1] < self.y: self.low_left.add_point(num, pt) elif pt[0] < self.x: self.up_left.add_point(num, pt) elif pt[1] < self.y: self.low_right.add_point(num, pt) else: self.up_right.add_point(num, pt) return # Else add the point self.pts[num] = np.array(pt) # Check if we need to split if len(self.pts) > 10: # Current (u, v) location for the lower part of the mesh u = self.u v = self.v # Side length for the mesh h = self.h self.low_left = quadnode(self.low, self.high, u=u, v=v, level=self.level+1) self.low_right = quadnode(self.low, self.high, u=u+h, v=v, level=self.level+1) self.up_left = quadnode(self.low, self.high, u=u, v=v+h, level=self.level+1) self.up_right = quadnode(self.low, self.high, u=u+h, v=v+h, level=self.level+1) # Add the points to the left or right nodes, respectively for key in self.pts.keys(): item = self.pts.pop(key) self.add_point(key, item) return def delete_point(self, num, pt): '''Free the point - the number is matched, not the point value''' if self.low_left is not None: if pt[0] < self.x and pt[1] < self.y: return self.low_left.delete_point(num, pt) elif pt[0] < self.x: return self.up_left.delete_point(num, pt) elif pt[1] < self.y: return self.low_right.delete_point(num, pt) else: return self.up_right.delete_point(num, pt) # Else add the point if num in self.pts: item = self.pts.pop(num) return True return False def find_closest(self, pt): '''Find the closest point''' if self.low_left is not None: if pt[0] < self.x and pt[1] < self.y: num, d = self.low_left.find_closest(pt) if self.x - pt[0] <= d: num2, d2 = self.low_right.find_closest(pt) if d2 < d: num, d = num2, d2 if self.y - pt[1] <= d: num2, d2 = self.up_left.find_closest(pt) if d2 < d: num, d = num2, d2 if self.x - pt[0] <= d or self.y - pt[1] <= d: num2, d2 = self.up_right.find_closest(pt) if d2 < d: num, d = num2, d2 elif pt[0] < self.x: num, d = self.up_left.find_closest(pt) if self.x - pt[0] <= d: num2, d2 = self.up_right.find_closest(pt) if d2 < d: num, d = num2, d2 if pt[1] - self.y <= d: num2, d2 = self.low_left.find_closest(pt) if d2 < d: num, d = num2, d2 if self.x - pt[0] <= d or pt[1] - self.y <= d: num2, d2 = self.low_right.find_closest(pt) if d2 < d: num, d = num2, d2 elif pt[1] < self.y: num, d = self.low_right.find_closest(pt) if pt[0] - self.x <= d: num2, d2 = self.low_left.find_closest(pt) if d2 < d: num, d = num2, d2 if self.y - pt[1] <= d: num2, d2 = self.up_right.find_closest(pt) if d2 < d: num, d = num2, d2 if pt[0] - self.x <= d or self.y - pt[1] <= d: num2, d2 = self.up_left.find_closest(pt) if d2 < d: num, d = num2, d2 else: num, d = self.up_right.find_closest(pt) if pt[0] - self.x <= d: num2, d2 = self.up_left.find_closest(pt) if d2 < d: num, d = num2, d2 if pt[1] - self.y <= d: num2, d2 = self.low_right.find_closest(pt) if d2 < d: num, d = num2, d2 if pt[0] - self.x <= d or pt[1] - self.y <= d: num2, d2 = self.low_left.find_closest(pt) if d2 < d: num, d = num2, d2 return num, d # This is a leaf, search the points dmin = 1e40 num = -1 for key in self.pts: d = np.sqrt(np.dot(self.pts[key] - pt, self.pts[key] - pt)) if d < dmin: dmin = d num = key return num, dmin class triangluate: def __init__(self, pts, segs, hole=None, maxd=2): self.tri_key = 0 self.tris = {} self.edge_to_tris = {} # What triangles have we deleted lately? self.deleted_tris = [] # Keep track of one adjacent triangle to each node self.adjacent_tris = {} # Set the initial points self.pts = [np.array((-maxd, -maxd)), np.array((maxd, -maxd)), np.array((maxd, maxd)), np.array((-maxd, maxd))] # Add the initial triangles self.add_triangle(0, 1, 3) self.add_triangle(3, 1, 2) # Create the quadtree root node self.root = quadnode([-maxd, -maxd], [maxd, maxd]) for i in xrange(len(self.pts)): self.root.add_point(i, self.pts[i]) # If there is a hole, add it offset = 4 self.hole_number = -1 if hole is not None: self.hole_number = len(self.pts) offset = 5 # Set the edges that shall not be crossed. These must be initialized # before we can call add_vertex() self.pslg_edges = [] for s in segs: self.pslg_edges.append((s[0]+offset,s[1]+offset)) self.pslg_edges.append((s[1]+offset,s[0]+offset)) if hole is not None: self.add_vertex(np.array(hole)) # Add the vertices in the for pt in pts: self.add_vertex(np.array(pt)) # Remove points from the list for i in xrange(offset): self.root.delete_point(i, self.pts[i]) # Clean things up, removing the holes/triangles for t in self.tris.values(): if 0 in t or 1 in t or 2 in t or 3 in t: self.delete_triangle(t[0], t[1], t[2]) # Remove all of the holes for t in self.tris.values(): if self.hole_number in t: self.remove_hole(t[0], t[1], t[2]) return def remove_hole(self, u, v, w): '''Remove the specified hole''' self.delete_triangle(u, v, w) if (u, v) not in self.pslg_edges: x = self.adjacent(v, u) if x is not None: self.remove_hole(v, u, x) if (v, w) not in self.pslg_edges: x = self.adjacent(w, v) if x is not None: self.remove_hole(w, v, x) if (w, u) not in self.pslg_edges: x = self.adjacent(u, w) if x is not None: self.remove_hole(u, w, x) return def add_triangle(self, u, v, w): '''Add the triangle uvw to the triangle list''' key = 1*self.tri_key if (u,v) in self.edge_to_tris: raise ValueError('Edge 1 (%d, %d) already exists for triangle (%d, %d, %d)'%( u,v,t[0],t[1],t[2])) else: self.edge_to_tris[(u,v)] = key if (v,w) in self.edge_to_tris: raise ValueError('Edge 2 (%d, %d) already exists for triangle (%d, %d, %d)'%( v,w,t[0],t[1],t[2])) else: self.edge_to_tris[(v,w)] = key if (w,u) in self.edge_to_tris: raise ValueError('Edge 3 (%d, %d) already exists for triangle (%d, %d, %d)'%( w,u,t[0],t[1],t[2])) else: self.edge_to_tris[(w,u)] = key # Set the adjacent triangle to this node self.adjacent_tris[u] = key self.adjacent_tris[v] = key self.adjacent_tris[w] = key # Add the triangle itself self.tris[key] = (u,v,w) self.tri_key += 1 return def delete_triangle(self, u, v, w): '''Delete the enclosing triangle''' if (u,v) in self.edge_to_tris: self.edge_to_tris.pop((u,v)) self.edge_to_tris.pop((v,w)) key = self.edge_to_tris.pop((w,u)) self.tris.pop(key) self.deleted_tris.append(key) return def adjacent(self, u, v): '''Get the triangle that completes the given edge''' if (u,v) in self.edge_to_tris: t = self.tris[self.edge_to_tris[(u,v)]] if t[0] == u and t[1] == v: return t[2] elif t[1] == u and t[2] == v: return t[0] elif t[2] == u and t[0] == v: return t[1] return None def get_triangle(self, u, v): '''Get the unique triangle index associated with the edge''' if (u,v) in self.edge_to_tris: return self.edge_to_tris[(u,v)] return None def incircle(self, pt, t): '''Check if the point is within the circle or not''' a = [(self.pts[v][0] - pt[0]) for v in t] b = [(self.pts[v][1] - pt[1]) for v in t] c = [a[i]**2 + b[i]**2 for i in range(3)] A = np.vstack((a, b, c)).T # The 3x3 matrix to check return np.linalg.det(A) >= 0.0 def orient2d(self, a, b, pt): '''Check the relative orientation of the points a, b, and pt''' A = np.array([ [self.pts[a][0] - pt[0], self.pts[a][1] - pt[1]], [self.pts[b][0] - pt[0], self.pts[b][1] - pt[1]]]) # This is NOT robust to precision errors return A[0,0]*A[1,1] - A[0,1]*A[1,0] >= 0.0 def enclosed(self, u, v, w, pt): '''Does this triangle enclose this point?''' if (self.orient2d(u, v, pt) and self.orient2d(v, w, pt) and self.orient2d(w, u, pt)): return True return False def find_encircled(self, pt): '''Find the first triangle that encloses the point''' for t in self.tris.values(): if self.incircle(pt, t): return t return None def find_enclosing(self, pt): '''Find the first triangle that encloses the point''' # The closest has node to the given point num, dist = self.root.find_closest(pt) # Search for nodes that are adjacent to this guy tri_num = self.adjacent_tris[num] # Access the nodes in the triangle t = self.tris[tri_num] # Find the orientation of the triangle relative to the # node number 'num' if t[0] == num: u, v, w = t elif t[1] == num: w, u, v = t else: v, w, u = t winit = w # Search the triangles adjacent to this one to find the # enclosed point while True: if self.enclosed(u, v, w, pt): return u, v, w # Otherwise, find the next triangle that has u in it x = self.adjacent(u, w) if x is None: break # Update the v's and w's to march over the triangle v = w w = x if w == winit: break # Walk the mesh from here... for t in self.tris.values(): if self.enclosed(t[0], t[1], t[2], pt): return t return None def dig_cavity(self, u, v, w): ''' u is the index of a new point to be inserted. Is the oriented triangle (u,v,w) Delaunay or not? ''' if (w,v) in self.pslg_edges: self.add_triangle(u, v, w) return # Get the adjacent node x = self.adjacent(w, v) if x is not None: if self.incircle(self.pts[u], (w, v, x)): self.delete_triangle(w, v, x) self.dig_cavity(u, v, x) self.dig_cavity(u, x, w) return self.add_triangle(u, v, w) return def add_vertex(self, pt): ''' Add the vertex to the underlying Delaunay triangularization ''' # Find the enclosing triangle t = self.find_enclosing(pt) # Add the point to the quadtree and point list u = len(self.pts) # Pt index self.root.add_point(u, pt) self.pts.append(pt) if t is not None: v, w, x = t self.delete_triangle(v, w, x) self.dig_cavity(u, v, w) self.dig_cavity(u, w, x) self.dig_cavity(u, x, v) return def add_vertex_frontal(self, pt, t): '''Add the vertex contained within the specified triangle''' u = len(self.pts) # Pt index self.root.add_point(u, pt) self.pts.append(pt) if t is not None: v, w, x = t self.delete_triangle(v, w, x) self.dig_cavity(u, v, w) self.dig_cavity(u, w, x) self.dig_cavity(u, x, v) return def circumcircle(self, t): ''' Compute the circumcircle radii for this set of triangles''' p = [self.pts[v] for v in t] r1 = np.sqrt((p[1][0] - p[0][0])**2 + (p[1][1] - p[0][1])**2) r2 = np.sqrt((p[2][0] - p[1][0])**2 + (p[2][1] - p[1][1])**2) r3 = np.sqrt((p[2][0] - p[0][0])**2 + (p[2][1] - p[0][1])**2) return max(r1, r2, r3) def computeIntersection(self, m, e, u, v, w): ''' Compute the distance to the intersection of the line m + alpha*e with the two lines from u to w and v to w ''' # m + alpha*e = pts[u] + beta*(pts[w] - pts[u]) # => alpha*e + beta*(pts[u] - pts[w]) = pts[u] - m a2 = [self.pts[u][i] - self.pts[w][i] for i in range(2)] # Check if the line is orthogonal to this direction if e[0]*a2[1] - e[1]*a2[0] != 0.0: b = [self.pts[u][i] - m[i] for i in range(2)] A = np.vstack((e, a2)).T ans = np.linalg.solve(A, b) # If beta is on the interval [0,1], alpha is the distance if ans[1] >= 0.0 and ans[1] <= 1.0: return ans[0] # If we get here and there's no solution, then we have a degenerate triangle b = [self.pts[v][i] - m[i] for i in range(2)] a2 = [self.pts[v][i] - self.pts[w][i] for i in range(2)] A = np.vstack((e, a2)).T ans = np.linalg.solve(A, b) # If beta is on the interval [0,1], alpha is the distance if ans[1] >= 0.0 and ans[1] <= 1.0: return ans[0] return -1.0 def frontal(self, h, plot=False, freq=50): '''Refine the triangles using the frontal method''' # The length of the edge of the triangle de = 0.5*np.sqrt(3.0)*h # Add all of the triangles to the active set status = {} circumcircles = {} for key in self.tris: status[key] = 'waiting' # Check whether the triangle should be labeled as active t = self.tris[key] u, v, w = t for e in [(u,v), (v,w), (w,u)]: if e in self.pslg_edges: status[key] = 'active' # Compute the circumcircles for key in self.tris: circumcircles[key] = self.circumcircle(self.tris[key]) # Compute the circumcircle radii of all triangles itr = 0 while 'active' in status.values(): if itr % freq == 0: print 'iteration = %d'%(itr) if plot: self.status = status self.plot() plt.show() itr += 1 # Find the wors ttriangle rmax = 0.0 tri = -1 # If we maintained a sorted list of the worst offenders, this # could be faster for key in circumcircles: if status[key] == 'active' and circumcircles[key] > rmax: rmax = circumcircles[key] tri = key # Now insert a new point based on the Voronoi criteria # Determine the triangle's accepted or boundary edge t = self.tris[tri] # Check if we are along an edge of the PSLG edge = None u, v, w = t for e in [(u,v), (v,w), (w,u)]: if e in self.pslg_edges: edge = e # Check whether one of the adjacent edges is done if edge is None: for e in [(u,v), (v,w), (w,u)]: index = self.get_triangle(e[1], e[0]) if index is not None and status[index] == 'done': edge = e break # Compute the location of the new point # | i j k | # | dx dy 0 | = i*dy - j*dx # | 0 0 1 | u, v = edge w = self.adjacent(u, v) m = 0.5*np.array( [self.pts[u][0] + self.pts[v][0], self.pts[u][1] + self.pts[v][1]]) e = -np.array( [self.pts[v][1] - self.pts[u][1], self.pts[u][0] - self.pts[v][0]]) # Compute half the distance between the u and v points p = 0.5*np.sqrt(np.sum(e**2)) e = 0.5*e/p # Try the size-optimal point first pt = m + de*e # Find the enclosing triangle for the if not self.enclosed(t[0], t[1], t[2], pt): t = self.find_enclosing(pt) if t is None: # Pick a point that is actually in the current triangle q = self.computeIntersection(m, e, u, v, w) rho = 0.5*q pt = m + rho*e t = self.tris[tri] # Use the edge for this triangle to determine where to insert # the new point old_tri = 1*self.tri_key self.deleted_tris = [] self.add_vertex_frontal(pt, t) new_tri = self.tri_key # Free the deleted triangles for key in self.deleted_tris: circumcircles.pop(key) status.pop(key) # Compute the circumcircles of the new triangles and check # whether they belong in the done category or not... for key in range(old_tri, new_tri): circumcircles[key] = self.circumcircle(self.tris[key]) if circumcircles[key] <= 1.5*h: status[key] = 'done' else: status[key] = 'waiting' # Mark the triangle with the edge that was just computed # as being done, regardless of whether it is or not... # Otherwise the same extrapolation point will be used which # will duplicate points within the domain leading to chaos! if (u,v) in self.edge_to_tris: tri = self.edge_to_tris[(u,v)] status[tri] = 'done' # Label the new triangles with active status for key in range(old_tri, new_tri): if status[key] == 'done': continue # Extract the triangle t = self.tris[key] u, v, w = t # Check the adjacent triangles for edge in [(u,v), (v,w), (w,u)]: index = self.get_triangle(edge[1], edge[0]) if index is not None and status[index] == 'done': status[key] = 'active' break if edge in self.pslg_edges: status[key] = 'active' break self.status = status return def plot(self): '''Plot the Delaunay triangularization''' plt.figure() for edge in self.pslg_edges: x = [self.pts[v][0] for v in edge] y = [self.pts[v][1] for v in edge] plt.plot(x, y, 'b', linewidth=2) for key in self.tris: t = self.tris[key] t2 = [v for v in t] t2.append(t[0]) x = [self.pts[v][0] for v in t2] y = [self.pts[v][1] for v in t2] if hasattr(self, 'status'): if key in self.status.keys(): if self.status[key] == 'active': plt.fill(x, y, 'b', alpha=0.2, edgecolor='r') elif self.status[key] == 'done': plt.fill(x, y, 'r', alpha=0.2, edgecolor='r') elif self.status[key] == 'waiting': plt.fill(x, y, 'g', alpha=0.2, edgecolor='r') else: plt.fill(x, y, 'y', alpha=0.2, edgecolor='k') else: plt.fill(x, y, 'g', alpha=0.2, edgecolor='k') for pt in self.pts[4:]: plt.plot(pt[0], pt[1], 'ro') return # Create a list of points that forms h = 0.75 r1 = 1.5 r2 = 0.75 r3 = 0.2 hole = None # The list of points and segments pts = [] segs = [] if 'circle' in sys.argv: # Create the points for the outer circle npts = (int)((2*r1*np.pi)/h) h = 2*np.pi*r1/npts u = np.linspace(0, 2*np.pi, npts+1)[:-1] for i in xrange(npts): pts.append([r1*np.cos(u[i]), r1*np.sin(u[i])]) if i == npts-1: segs.append([i, 0]) else: segs.append([i, i+1]) elif 'annulus' in sys.argv: hole = [0, 0] # Create the points for the outer circle npts = (int)((2*r1*np.pi)/h) h = 2*np.pi*r1/npts u = np.linspace(0, 2*np.pi, npts+1)[:-1] for i in xrange(npts): pts.append([r1*np.cos(u[i]), r1*np.sin(u[i])]) if i == npts-1: segs.append([i, 0]) else: segs.append([i, i+1]) offset = npts # Create the points for the inner circle npts = (int)((2*r2*np.pi)/h) u = np.linspace(0, 2*np.pi, npts+1)[:-1] for i in xrange(npts): pts.append([r2*np.cos(u[-1-i]), r2*np.sin(u[-1-i])]) if i == npts-1: segs.append([offset+i, offset]) else: segs.append([offset+i, offset+i+1]) elif 'triangle' in sys.argv: npts = (int)(2*r1/h) u = np.linspace(-r1, r1, npts+1) for i in xrange(npts): pts.append([u[i], -r1]) for i in xrange(npts): pts.append([r1, u[i]]) for i in xrange(npts): v = u[-1-i] x = v + 0.1*(v-r1)*(v+r1) y = v - 0.1*(v-r1)*(v+r1) pts.append([x, y]) for i in xrange(3*npts): segs.append([i, i+1]) segs[-1][1] = 0 else: npts = (int)(2*r1/h) u = np.linspace(-r1, r1, npts+1) for i in xrange(npts): pts.append([u[i], -r1]) for i in xrange(npts): pts.append([r1, u[i]]) for i in xrange(npts): pts.append([u[-1-i], r1]) for i in xrange(npts): pts.append([-r1, u[-1-i]]) for i in xrange(4*npts): segs.append([i, i+1]) segs[-1][1] = 0 hole = [0, 0] offset = 4*npts # Create the points for the inner circle npts = (int)((2*r2*np.pi)/h) u = np.linspace(0, 2*np.pi, npts+1)[:-1] for i in xrange(npts): pts.append([r2*np.cos(u[-1-i]), r2*np.sin(u[-1-i])]) if i == npts-1: segs.append([offset+i, offset]) else: segs.append([offset+i, offset+i+1]) # Create the triangularization tri = triangluate(pts, segs, hole=hole) # cProfile.run('tri.frontal(h)') tri.frontal(h) tri.plot() plt.savefig('bowyer_watson.pdf') plt.show() ``` #### File: tmr/tmr/TopOptUtils.py ```python from mpi4py import MPI from tacs import TACS, elements from tmr import TMR from paropt import ParOpt import numpy as np from six import iteritems try: from scipy.optimize import minimize except: minimize = None def createTopoProblem(forest, callback, filter_type, nlevels=2, repartition=True, design_vars_per_node=1, r0=0.05, N=10, lowest_order=2, ordering=TACS.MULTICOLOR_ORDER, use_galerkin=False, scale_coordinate_factor=1.0): """ Create a topology optimization problem instance and a hierarchy of meshes. This code takes in the OctForest or QuadForest on the finest mesh level and creates a series of coarser meshes for analysis and optimization. The discretization at each level is created via a callback function that generates the appropriate TACSCreator object and its associated filter (the QuadForest or OctForest on which the design parametrization is defined.) The code then creates a TMRTopoFilter class which stores information about the design parametrization and hierarchy. It creates a multigrid object and finally a TMRTopoProblem instance for optimization. The callback function takes in a forest object, corresponding to the finite- element discretization and returns a creator object and a filter object in the following form: creator, filter = callback(forest) Args: callback: A callback function that takes in the forest and returns the filter and the associated creator class filter_type (str): Type of filter to create forest (TMROctForest or TMRQuadForest): Forest type repartition (bool): Repartition the mesh design_vars_per_node (int): number of design variables for each node r0 (float): Helmholtz/matrix filter radius N (int): Matrix filter approximation parameter lowest_order (int): Lowest order mesh to create ordering: TACS Assembler ordering type use_galerkin: Use Galerkin projection to obtain coarse grid operators scale_coordinate_factor (float): Scale all coordinates by this factor Returns: problem (TopoProblem): The allocated topology optimization problem """ # Store data forests = [] filters = [] assemblers = [] # Balance the forest and repartition across processors forest.balance(1) if repartition: forest.repartition() # Create the forest object creator, filtr = callback(forest) forests.append(forest) filters.append(filtr) assemblers.append(creator.createTACS(forest, ordering)) for i in range(nlevels-1): order = forests[-1].getMeshOrder() interp = forests[-1].getInterpType() if order > lowest_order: forest = forests[-1].duplicate() order = order-1 forest.setMeshOrder(order, interp) else: forest = forests[-1].coarsen() forest.setMeshOrder(order, interp) # Balance and repartition if needed forest.balance(1) if repartition: forest.repartition() # Create the forest object creator, filtr = callback(forest) forests.append(forest) filters.append(filtr) assemblers.append(creator.createTACS(forest, ordering)) # Scale the coordinates by scale_coordinates factor if it is != 1.0 if scale_coordinate_factor != 1.0: for assembler in assemblers: X = assembler.createNodeVec() assembler.getNodes(X) X.scale(scale_coordinate_factor) assembler.setNodes(X) # Create the multigrid object mg = TMR.createMg(assemblers, forests, use_galerkin=use_galerkin) # Create the TMRTopoFilter object filter_obj = None if callable(filter_type): filter_obj = filter_type(assemblers, filters) elif isinstance(filter_type, str): if filter_type == 'lagrange': filter_obj = TMR.LagrangeFilter(assemblers, filters) elif filter_type == 'matrix': filter_obj = TMR.MatrixFilter(r0, N, assemblers, filters) elif filter_type == 'conform': filter_obj = TMR.ConformFilter(assemblers, filters) elif filter_type == 'helmholtz': filter_obj = TMR.HelmholtzFilter(r0, assemblers, filters) problem = TMR.TopoProblem(filter_obj, mg) return problem def computeVertexLoad(name, forest, assembler, point_force): """ Add a load at vertices with the given name value. The assembler object must be created from the forest. The point_force must be equal to the number of variables per node in the assembler object. Args: name (str): Name of the surface where the traction will be added forest (QuadForest or OctForest): Forest for the finite-element mesh assembler (Assembler): TACSAssembler object for the finite-element problem point_force (list): List of point forces to apply at the vertices Returns: Vec: A force vector containing the point load """ # Get the number of variable per node from the assembler vars_per_node = assembler.getVarsPerNode() if vars_per_node != len(point_force): raise ValueError('Point force length must be equal to vars_per_node') # Create the force vector and extract the array force = assembler.createVec() force_array = force.getArray() # Retrieve the node numbers from the forest nodes = forest.getNodesWithName(name) comm = assembler.getMPIComm() node_range = forest.getNodeRange() # Add the point force into the force arrays for node in nodes: if ((node >= node_range[comm.rank]) and (node < node_range[comm.rank+1])): index = node - node_range[comm.rank] force_array[vars_per_node*index:vars_per_node*(index+1)] += point_force[:] # Match the ordering of the vector assembler.reorderVec(force) return force def computeTractionLoad(names, forest, assembler, trac): """ Add a surface traction to all quadrants or octants that touch a face or edge with the given name. The assembler must be created from the provided forest. The list trac must have a traction for each face (6) for octants or each edge (4) for quadrants. Note: This code uses the fact that the getOctsWithName or getQuadsWithName returns the local face or edge index touching the surface or edge in the info member. Args: names (str) or list[(str)]: Name or list of names of the surface(s) where the traction will be added forest (QuadForest or OctForest): Forest for the finite-element mesh assembler (Assembler): TACSAssembler object for the finite-element problem trac (list): List of tractions, one for each possible face/edge orientation Returns: Vec: A force vector containing the traction """ if isinstance(forest, TMR.OctForest): octants = forest.getOctants() if isinstance(names, str): face_octs = forest.getOctsWithName(names) else: face_octs = [] for name in names: face_octs.extend(forest.getOctsWithName(name)) elif isinstance(forest, TMR.QuadForest): octants = forest.getQuadrants() if isinstance(names, str): face_octs = forest.getQuadsWithName(names) else: face_octs = [] for name in names: face_octs.extend(forest.getQuadsWithName(name)) # Create the force vector and zero the variables in the assembler force = assembler.createVec() assembler.zeroVariables() assembler.zeroDotVariables() assembler.zeroDDotVariables() # Create the auxiliary element class aux = TACS.AuxElements() for i in range(len(face_octs)): index = face_octs[i].tag if index is not None: aux.addElement(index, trac[face_octs[i].info]) # Keep auxiliary elements already set in the assembler # aux_tmp = assembler.getAuxElements() assembler.setAuxElements(aux) # Compute the residual where force = -residual assembler.assembleRes(force) force.scale(-1.0) # Reset the auxiliary elements assembler.setAuxElements(None) # (aux_tmp) return force def compute3DTractionLoad(name, forest, assembler, tr): """ Add a constant surface traction to all octants that touch a face or edge with the given name. Args: forest (QuadForest or OctForest): Forest for the finite-element mesh name (str): Name of the surface where the traction will be added assembler (Assembler): TACSAssembler object for the finite-element problem tr (list): The 3D components of the traction. Returns: Vec: A force vector containing the traction """ # Get the basis element = assembler.getElements()[0] basis = element.getElementBasis() # Get the number of variables per node vars_per_node = assembler.getVarsPerNode() trac = [] for findex in range(6): trac.append(elements.Traction3D(vars_per_node, findex, basis, tr)) return computeTractionLoad(name, forest, assembler, trac) def interpolateDesignVec(orig_filter, orig_vec, new_filter, new_vec): """ This function interpolates a design vector from the original design space defined on an OctForest or QuadForest and interpolates it to a new OctForest or QuadForest. This function is used after a mesh adaptation step to get the new design space. Args: orig_filter (OctForest or QuadForest): Original filter Oct or QuadForest object orig_vec (PVec): Design variables on the original mesh in a ParOpt.PVec new_filter (OctForest or QuadForest): New filter Oct or QuadForest object new_vec (PVec): Design variables on the new mesh in a ParOpt.PVec (set on ouput) """ # Convert the PVec class to TACSBVec orig_x = TMR.convertPVecToVec(orig_vec) if orig_x is None: raise ValueError('Original vector must be generated by TMR.TopoProblem') new_x = TMR.convertPVecToVec(new_vec) if new_x is None: raise ValueError('New vector must be generated by TMR.TopoProblem') if orig_x.getVarsPerNode() != new_x.getVarsPerNode(): raise ValueError('Number of variables per node must be consistent') orig_map = orig_x.getNodeMap() new_map = new_x.getNodeMap() vars_per_node = orig_x.getVarsPerNode() # Create the interpolation class interp = TACS.VecInterp(orig_map, new_map, vars_per_node) new_filter.createInterpolation(orig_filter, interp) interp.initialize() # Perform the interpolation interp.mult(orig_x, new_x) return def addNaturalFrequencyConstraint(problem, omega_min, **kwargs): """ Add a natural frequency constraint to a TopoProblem optimization problem This function automatically sets good default arguments that can be overridden with keyword arguments passed in through kwargs. Args: problem (TopoProblem): TopoProblem optimization problem omega_min (float): Minimum natural frequency, Hz **kwargs: Frequency constraint parameters; check TMR documentation for more detail """ # Convert the provided minimum natural frequency from # Hz to rad/s, square it, and make it negative to fit the # constraint form: omega^2 - offset >= 0.0 offset = -(2.0*np.pi*omega_min)**2 # Define all the possible arguments and set defaults opts = {'use_jd':True, 'num_eigs':10, 'ks_weight':50.0, 'offset':offset, 'sigma':-offset, 'scale':-0.75/offset, 'max_lanczos':100, 'tol':1e-30, 'eig_tol':5e-7, 'eig_rtol':1e-6, 'eig_atol':1e-12, 'num_recycle':10, 'fgmres_size':8, 'max_jd_size':50, 'recycle_type':'num_recycling'} # Apply the user defined parameters for key, value in kwargs.items(): if key in opts: opts[key] = value else: raise ValueError('%s is not a valid option'%(key)) if opts['use_jd']: # Set the recycling strategy if opts['recycle_type'] == 'num_recycling': recycle_type = TACS.NUM_RECYCLE else: recycle_type = TACS.SUM_TWO problem.addFrequencyConstraint(opts['sigma'], opts['num_eigs'], opts['ks_weight'], opts['offset'], opts['scale'], opts['max_jd_size'], opts['eig_tol'], opts['use_jd'], opts['fgmres_size'], opts['eig_rtol'], opts['eig_atol'], opts['num_recycle'], recycle_type) else: # use the Lanczos method problem.addFrequencyConstraint(opts['sigma'], opts['num_eigs'], opts['ks_weight'], opts['offset'], opts['scale'], opts['max_lanczos'], opts['tol'], 0, 0, 0, 0, 0, TACS.SUM_TWO, opts['track_eigen_iters']) return def densityBasedRefine(forest, assembler, index=0, lower=0.05, upper=0.5, reverse=False, min_lev=0, max_lev=TMR.MAX_LEVEL): """ Apply a density-based refinement criteria. This function takes in a Quad or OctForest that has been used for analysis and its corresponding Assembler object. It then uses the data set in the constitutive object to extract the density within each element. If the density falls below the the bound *lower* the element is coarsened, if the density exceeds *upper* the element is refined. If *reverse* is set, this scheme is reversed so low design values are refined. The refinement is applied directly to the forest. Args: forest (QuadForest or OctForest): OctForest or QuadForest to refine assembler (Assembler): The TACS.Assembler object associated with forest index (int): The component index of the design vector used to indicate material lower (float): the lower limit used for coarsening upper (float): the upper limit used for refinement reverse (bool): Reverse the refinement scheme min_lev (int): Minimum refinement level max_lev (int): Maximum refinement level """ # Create refinement array num_elems = assembler.getNumElements() refine = np.zeros(num_elems, dtype=np.int32) # Get the elements from the Assembler object elems = assembler.getElements() for i in range(num_elems): # Extract the design variables from the element dvs_per_node = elems[i].getDesignVarsPerNode() dvs = elems[i].getDesignVars(i) # Apply the refinement criteria if reverse: value = np.min(dvs[index::dvs_per_node]) if value >= upper: refine[i] = -1 elif value <= lower: refine[i] = 1 else: value = np.max(dvs[index::dvs_per_node]) if value >= upper: refine[i] = 1 elif value <= lower: refine[i] = -1 # Refine the forest forest.refine(refine, min_lev=min_lev, max_lev=max_lev) return def approxDistanceRefine(forest, fltr, assembler, refine_distance, index=0, domain_length=1.0, tfactor=0.05, cutoff=0.15, filename=None, min_lev=0, max_lev=TMR.MAX_LEVEL): """ Apply a distance-based refinement criteria. This function takes in a forest associated with the analysis, a filter associated with the design variables and the corresponding assembler object. An approximate distance function is computed using TMR which gives an approximation of the distance to the closest point on the domain boundary. In this case, the domain boundary is approximated as those points that are intermediate in [cutoff, 1-cutoff]. Since these are applied to the filtered (not projected) states, there will be intermediate density values. Finally, all elements that contain values that are within refine_distance to the approximate boundary are refined, while all other elements are coarseend. Notes: The index controls which component of the design variable is used to estimate the distance (useful for multimaterial cases). The tfactor controls the approximation, larger values of tfactor lead to more diffusive approximations, but small values may lead to numerical issues. The actual factor value is determined baesd on the domain length parameter which gives the characteristic length of the domain. Args: forest (QuadForest or OctForest): OctForest or QuadForest to refine filtr (QuadForest or OctForest): OctForest or QuadForest for the filter object assembler (Assembler): The TACS.Assembler object associated with forest refine_distance (float): Refine all elements within this distance index (int): The design variable component index (!= 0 for multimaterial cases) tfactor (float): Factor applied to the domain_length for computing the approx dist. cutoff (float): Cutoff to indicate structural interface min_lev (int): Minimum refinement level max_lev (int): Maximum refinement level """ # Set up and solve for an approximate level set function x = assembler.createDesignVec() assembler.getDesignVars(x) # Approximate the distance to the boundary dist = TMR.ApproximateDistance(fltr, x, index=index, cutoff=cutoff, t=tfactor*domain_length, filename=filename) # Create refinement array num_elems = assembler.getNumElements() refine = np.zeros(num_elems, dtype=np.int32) for i in range(num_elems): # Apply the refinement criteria if dist[i] <= refine_distance: refine[i] = 1 else: refine[i] = -1 # Refine the forest forest.refine(refine, min_lev=min_lev, max_lev=max_lev) return def targetRefine(forest, fltr, assembler, refine_distance, interface_lev=2, interior_lev=1, interface_index=-1, interior_index=0, reverse=False, domain_length=1.0, tfactor=0.05, cutoff=0.15, filename=None, min_lev=0, max_lev=TMR.MAX_LEVEL): """ Apply a target-based refinement strategy. This refinement strategy employs a targeted refinement strategy. The goal is to refine the interface elements, defined from an approximate distance calculation, and the interior elements, defined as those elements with a given threshold of the density field that are not close to the interface, to a prescribed level at the first iteration. All other elements are coarsened aggressively. Note: The interface and interior can be computed using different indices in multimaterial optimization. When the interface index is negative, all materials are considered during the interface distance calculation. Args: forest (QuadForest or OctForest): OctForest or QuadForest to refine filtr (QuadForest or OctForest): OctForest or QuadForest for the filter object assembler (Assembler): The TACS.Assembler object associated with forest refine_distance (float): Refine all elements within this distance interface_lev (int): Target interface refinement level interior_lev (int): Target interior refinement level interface_index (int): Design variable component index for the interface problem interior_index (int): Design variable component index for the interior reverse (boolean): Reverse the sense of the interior refinement tfactor (float): Factor applied to the domain_length for computing the approx dist. cutoff (float): Cutoff to indicate structural interface filename (str): File name for the approximate distance calculation min_lev (int): Minimum refinement level max_lev (int): Maximum refinement level """ # Set up and solve for an approximate level set function x = assembler.createDesignVec() assembler.getDesignVars(x) # Approximate the distance to the boundary dist = TMR.ApproximateDistance(fltr, x, index=interface_index, cutoff=cutoff, t=tfactor*domain_length, filename=filename) # Create refinement array num_elems = assembler.getNumElements() refine = np.zeros(num_elems, dtype=np.int32) # Compute the levels if isinstance(forest, TMR.OctForest): octants = forest.getOctants() lev = np.zeros(len(octants)) for i, oc in enumerate(octants): lev[i] = oc.level elif isinstance(forest, TMR.QuadForest): quads = forest.getQuadrants() lev = np.zeros(len(quads)) for i, quad in enumerate(quads): lev[i] = quad.level # Get the elements from the Assembler object elems = assembler.getElements() for i in range(num_elems): # Apply the refinement criteria if dist[i] <= refine_distance: refine[i] = interface_lev - lev[i] else: # Now check whether this is in the interior or exterior of # the domain dvs_per_node = elems[i].getDesignVarsPerNode() dvs = elems[i].getDesignVars(i) # Apply the refinement criteria if reverse: value = np.min(dvs[interior_index::dvs_per_node]) if value >= 1.0 - cutoff: refine[i] = -1 elif value <= cutoff: refine[i] = interior_lev - lev[i] else: value = np.max(dvs[interior_index::dvs_per_node]) if value >= 1.0 - cutoff: refine[i] = interior_lev - lev[i] elif value <= cutoff: refine[i] = -1 # Refine the forest forest.refine(refine, min_lev=min_lev, max_lev=max_lev) return class OptFilterWeights: def __init__(self, diag, X, H): """ Compute an approximation of the coefficients of a Helmholtz filter. Args: diag (int): The index of the diagonal (base point) of the stencil X (np.ndarray): An array of the node positions H (np.ndarray): Symmetric matrix of second derivatives for the filter """ self.diag = diag self.X = X self.n = self.X.shape[0] # Compute the normalization if len(self.X.shape) == 1: self.delta = np.max(np.absolute(self.X - self.X[self.diag])) else: self.delta = np.sqrt(np.max( np.sum((self.X - self.X[self.diag,:])*(self.X - self.X[self.diag,:]), axis=1))) self.dim = 3 if len(self.X.shape) == 1 or self.X.shape[1] == 1: self.dim = 1 # Compute the constraint matrix A = np.zeros((2, self.n-1)) # Populate the b vector b = np.zeros(2) b[1] = H[0,0] index = 0 for i in range(self.n): if i != self.diag: dx = (self.X[i] - self.X[self.diag])/self.delta A[0,index] = dx A[1,index] = 0.5*dx**2 index += 1 elif self.X.shape[1] == 2: self.dim = 2 # Compute the constraint matrix A = np.zeros((5, self.n-1)) # Populate the b vector b = np.zeros(5) b[2] = H[0,0] b[3] = H[1,1] b[4] = 2.0*H[0,1] index = 0 for i in range(self.n): if i != self.diag: dx = (self.X[i,0] - self.X[self.diag,0])/self.delta dy = (self.X[i,1] - self.X[self.diag,1])/self.delta A[0,index] = dx A[1,index] = dy A[2,index] = 0.5*dx**2 A[3,index] = 0.5*dy**2 A[4,index] = dx*dy index += 1 else: # Compute the constraint matrix A = np.zeros((9, self.n-1)) # Populate the b vector b = np.zeros(9) b[3] = H[0,0] b[4] = H[1,1] b[5] = H[2,2] b[6] = 2*H[1,2] b[7] = 2*H[0,2] b[8] = 2*H[0,1] index = 0 for i in range(self.n): if i != self.diag: dx = (self.X[i,0] - self.X[self.diag,0])/self.delta dy = (self.X[i,1] - self.X[self.diag,1])/self.delta dz = (self.X[i,2] - self.X[self.diag,2])/self.delta A[0,index] = dx A[1,index] = dy A[2,index] = dz A[3,index] = 0.5*dx**2 A[4,index] = 0.5*dy**2 A[5,index] = 0.5*dz**2 A[6,index] = dy*dz A[7,index] = dx*dz A[8,index] = dx*dy index += 1 self.b = b self.A = A return def obj_func(self, w): """Evaluate the sum square of the weights""" return 0.5*np.sum(w**2) def obj_func_der(self, w): """Evaluate the derivative of the sum square of weights""" return w def con_func(self, w): """Compute the interpolation constraints""" return np.dot(self.A, w) - self.b def con_func_der(self, w): """Compute the derivative of the interpolation ocnstraints""" return self.A def set_alphas(self, w, alpha): """Compute the interpolating coefficients based on the weights""" alpha[:] = 0.0 index = 0 for i in range(self.n): if i != self.diag: alpha[i] = w[index]/self.delta**2 alpha[self.diag] += w[index]/self.delta**2 index += 1 alpha[self.diag] += 1.0 return class Mfilter(TMR.HelmholtzPUFilter): def __init__(self, N, assemblers, filters, vars_per_node=1, dim=2, r=0.01): """ Create an M-filter: A type of Helmholtz partition of unity filter that approximates the Helmholtz PDE-based filter and maintains positive coefficients over a range of meshes. Args: N (int): Number of terms in the approximate Neumann inverse assemblers (list): List of TACS.Assembler objects filters (list): List of TMR.QuadForest or TMR.OctForest objects vars_per_node (int): Number of design variables at each node dim (int): Spatial dimension of the problem r (float): Filter radius Note: You must call initialize() on the filter before use. """ self.r = r self.dim = dim return def getInteriorStencil(self, diag, X, alpha): """Get the weights for an interior stencil point""" H = self.r**2*np.eye(3) # Reshape the values in the matrix X = X.reshape((-1, 3)) n = X.shape[0] if self.dim == 2: X = X[:,:2] # Set up the optimization problem opt = OptFilterWeights(diag, X, H) # Set the bounds and initial point w0 = np.ones(n-1) bounds = [] for i in range(n-1): bounds.append((0, None)) res = minimize(opt.obj_func, w0, jac=opt.obj_func_der, method='SLSQP', bounds=bounds, constraints={'type': 'eq', 'fun': opt.con_func, 'jac': opt.con_func_der}) # Set the optimized alpha values opt.set_alphas(res.x, alpha) return def getBoundaryStencil(self, diag, normal, X, alpha): """Get a sentcil point on the domain boundary""" H = self.r**2*np.eye(2) # Reshape the values in the matrix X = X.reshape((-1, 3)) n = X.shape[0] if self.dim == 2: X = X[:,:2] t = np.array([normal[1], -normal[0]]) Xt = np.dot(X - X[diag,:], t) elif self.dim == 3: # Reduce the problem to a 2d problem on linearization of the # the domain boundary. First, compute an arbitrary direction # that is not aligned along the normal direction index = np.argmin(np.absolute(normal)) t = np.zeros(3) t[index] = 1.0 # Compute the in-plane directions (orthogonal to the normal direction) t2 = np.cross(t, normal) t1 = np.cross(normal, t2) # Reduce the problem on the boundary Xt = np.zeros((n, 2)) Xt[:,0] = np.dot(X - X[diag,:], t1) Xt[:,1] = np.dot(X - X[diag,:], t2) # Set up the optimization problem opt = OptFilterWeights(diag, Xt, H) # Set the bounds and initial point w0 = np.ones(n-1) bounds = [] for i in range(n-1): bounds.append((0, None)) res = minimize(opt.obj_func, w0, jac=opt.obj_func_der, method='SLSQP', bounds=bounds, constraints={'type': 'eq', 'fun': opt.con_func, 'jac': opt.con_func_der}) # Set the optimized alpha values opt.set_alphas(res.x, alpha) return def setSurfaceBounds(problem, comm, forest, names, face_lb=0.99, face_ub=1.0, constrain_octs=True): """ Set upper and lower bounds on specific faces to "require" material on certain boundaries Args: problem: TopoProblem object comm: MPI communicator object forest: TMROct(or Quad)Forest object names (list): list of surface names where these bounds should be applied face_lb: lower bound value to apply face_ub: upper bound value to apply constrain_octs (bool): if True, constrain the octants/quadrants on the surface; If False, only constrain the boundary nodes. """ assembler = problem.getAssembler() x_vec = assembler.createDesignVec() assembler.getDesignVars(x_vec) x = x_vec.getArray() dv = problem.createDesignVec() lb = problem.createDesignVec() ub = problem.createDesignVec() dv[:] = x[:] lb[:] = 1e-3 ub[:] = 1.0 face_dv = 0.5*(face_lb + face_ub) for name in names: mpi_rank = comm.Get_rank() node_range = forest.getNodeRange() if constrain_octs: if isinstance(forest, TMR.OctForest): octs = forest.getOctsWithName(name) else: octs = forest.getQuadsWithName(name) conn = forest.getMeshConn() node_octs = np.array([]) for oc in octs: node_octs = np.append(node_octs, conn[oc.tag, :]) else: node_octs = forest.getNodesWithName(name) node_octs = node_octs.astype(int) for i in range(len(node_octs)): if (node_octs[i] >= node_range[mpi_rank]) and \ (node_octs[i] < node_range[mpi_rank+1]): index = int(node_octs[i] - node_range[mpi_rank]) dv[index] = face_dv lb[index] = face_lb ub[index] = face_ub problem.setInitDesignVars(dv, lbvec=lb, ubvec=ub) return ```
{ "source": "12lol12lol12lol/user-service", "score": 3 }
#### File: routers/user/routes.py ```python from db import db from fastapi import APIRouter, HTTPException, status from fastapi.param_functions import Depends from fastapi.security import OAuth2PasswordRequestForm from models import Token, User, UserModel, UserSignUpModel from repository.user import UserRepo from services import (SignUpUserService, UserServiceException, auth_user, check_user_token, create_access_token) from settings import settings user_router = APIRouter() @user_router.post('/auth/sign_up', response_model=UserModel, response_model_exclude={'password'}) async def sign_up(user: UserSignUpModel): user_sign_up_service = SignUpUserService(user=user) try: res = await user_sign_up_service.run() except UserServiceException as ex: raise HTTPException(status_code=404, detail=ex.get_message()) from ex return res @user_router.post('/auth/token', response_model=Token) async def token(form_data: OAuth2PasswordRequestForm = Depends()): user = await auth_user(UserRepo, form_data.username, form_data.password) if not user: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"}, ) access_token = create_access_token(data={'sub': user.username}, expires_delta=settings.token_expired) return { 'access_token': access_token, 'token_type': 'bearer' } @user_router.get("/users/me/", response_model=User) async def read_users_me(current_user: User = Depends(check_user_token)): return current_user ```
{ "source": "12-malak/Pose-Estimation", "score": 2 }
#### File: alphapose/models/hardnet.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import collections import numpy as np import torch from torch import nn import torch.nn.functional as F import torch.nn.init as init from .builder import SPPE from .layers.Resnet import ResNet from .layers.SE_Resnet import SEResnet from .layers.ShuffleResnet import ShuffleResnet BN_MOMENTUM = 0.1 DEBUG = False def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class Flatten(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x.view(x.data.size(0),-1) class CombConvLayer(nn.Sequential): def __init__(self, in_channels, out_channels, norm_layer, kernel=1, stride=1, dropout=0.1, bias=False): super().__init__() self.add_module('layer1',ConvLayer(in_channels, out_channels, kernel)) self.add_module('layer2',DWConvLayer(out_channels, out_channels, norm_layer, stride=stride)) def forward(self, x): return super().forward(x) class DWConvLayer(nn.Sequential): def __init__(self, in_channels, out_channels, norm_layer, stride=1, bias=False): super().__init__() out_ch = out_channels groups = in_channels kernel = 3 if DEBUG: print(kernel, 'x', kernel, 'x', out_channels, 'x', out_channels, 'DepthWise') self.add_module('dwconv', nn.Conv2d(groups, groups, kernel_size=3, stride=stride, padding=1, groups=groups, bias=bias)) self.add_module('norm', norm_layer(groups, momentum=BN_MOMENTUM)) def forward(self, x): return super().forward(x) class ConvLayer(nn.Sequential): def __init__(self, in_channels, out_channels, norm_layer, kernel=3, stride=1, padding=0, bias=False): super().__init__() self.out_channels = out_channels out_ch = out_channels groups = 1 if DEBUG: print(kernel, 'x', kernel, 'x', in_channels, 'x', out_channels) pad = kernel//2 if padding == 0 else padding self.add_module('conv', nn.Conv2d(in_channels, out_ch, kernel_size=kernel, stride=stride, padding=pad, groups=groups, bias=bias)) self.add_module('norm', norm_layer(out_ch, momentum=BN_MOMENTUM)) self.add_module('relu', nn.ReLU(True)) def forward(self, x): return super().forward(x) class BRLayer(nn.Sequential): def __init__(self, in_channels, norm_layer): super().__init__() self.add_module('norm', norm_layer(in_channels)) self.add_module('relu', nn.ReLU(True)) def forward(self, x): return super().forward(x) class HarDBlock(nn.Module): def get_link(self, layer, base_ch, growth_rate, grmul): if layer == 0: return base_ch, 0, [] out_channels = growth_rate link = [] for i in range(10): dv = 2 ** i if layer % dv == 0: k = layer - dv link.append(k) if i > 0: out_channels *= grmul out_channels = int(int(out_channels + 1) / 2) * 2 in_channels = 0 for i in link: ch,_,_ = self.get_link(i, base_ch, growth_rate, grmul) in_channels += ch return out_channels, in_channels, link def get_out_ch(self): return self.out_channels def __init__(self, in_channels, growth_rate, grmul, n_layers, norm_layer, keepBase=False, residual_out=False, dwconv=False): super().__init__() self.in_channels = in_channels self.growth_rate = growth_rate self.grmul = grmul self.n_layers = n_layers self.norm_layer = norm_layer self.keepBase = keepBase self.links = [] layers_ = [] self.out_channels = 0 for i in range(n_layers): outch, inch, link = self.get_link(i+1, in_channels, growth_rate, grmul) self.links.append(link) use_relu = residual_out if dwconv: layers_.append(CombConvLayer(inch, outch, norm_layer)) else: layers_.append(ConvLayer(inch, outch, norm_layer)) if (i % 2 == 0) or (i == n_layers - 1): self.out_channels += outch if DEBUG: print("Blk out =",self.out_channels) self.layers = nn.ModuleList(layers_) def forward(self, x): layers_ = [x] for layer in range(len(self.layers)): link = self.links[layer] tin = [] for i in link: tin.append(layers_[i]) if len(tin) > 1: x = torch.cat(tin, 1) else: x = tin[0] out = self.layers[layer](x) layers_.append(out) t = len(layers_) out_ = [] for i in range(t): if (i == 0 and self.keepBase) or \ (i == t-1) or (i%2 == 1): out_.append(layers_[i]) out = torch.cat(out_, 1) return out class HarDBlock_v2(nn.Module): def get_link(self, layer, base_ch, growth_rate, grmul): if layer == 0: return base_ch, 0, [] out_channels = growth_rate link = [] for i in range(10): dv = 2 ** i if layer % dv == 0: k = layer - dv link.insert(0, k) if i > 0: out_channels *= grmul out_channels = int(int(out_channels + 1) / 2) * 2 in_channels = 0 for i in link: ch,_,_ = self.get_link(i, base_ch, growth_rate, grmul) in_channels += ch return out_channels, in_channels, link def get_out_ch(self): return self.out_channels def __init__(self, in_channels, growth_rate, grmul, n_layers, norm_layer, dwconv=False): super().__init__() self.links = [] conv_layers_ = [] bnrelu_layers_ = [] self.layer_bias = [] self.out_channels = 0 self.norm_layer = norm_layer self.out_partition = collections.defaultdict(list) for i in range(n_layers): outch, inch, link = self.get_link(i+1, in_channels, growth_rate, grmul) self.links.append(link) for j in link: self.out_partition[j].append(outch) cur_ch = in_channels for i in range(n_layers): accum_out_ch = sum( self.out_partition[i] ) real_out_ch = self.out_partition[i][0] conv_layers_.append( nn.Conv2d(cur_ch, accum_out_ch, kernel_size=3, stride=1, padding=1, bias=True) ) bnrelu_layers_.append( BRLayer(real_out_ch, norm_layer) ) cur_ch = real_out_ch if (i % 2 == 0) or (i == n_layers - 1): self.out_channels += real_out_ch self.conv_layers = nn.ModuleList(conv_layers_) self.bnrelu_layers = nn.ModuleList(bnrelu_layers_) def transform(self, blk, trt=False): # Transform weight matrix from a pretrained HarDBlock v1 in_ch = blk.layers[0][0].weight.shape[1] for i in range(len(self.conv_layers)): link = self.links[i].copy() link_ch = [blk.layers[k-1][0].weight.shape[0] if k > 0 else blk.layers[0 ][0].weight.shape[1] for k in link] part = self.out_partition[i] w_src = blk.layers[i][0].weight b_src = blk.layers[i][0].bias self.conv_layers[i].weight[0:part[0], :, :,:] = w_src[:, 0:in_ch, :,:] self.layer_bias.append(b_src) #if b_src is not None: # self.layer_bias[i] = b_src.view(1,-1,1,1) if b_src is not None: if trt: self.conv_layers[i].bias[1:part[0]] = b_src[1:] self.conv_layers[i].bias[0] = b_src[0] self.conv_layers[i].bias[part[0]:] = 0 self.layer_bias[i] = None else: #for pytorch, add bias with standalone tensor is more efficient than within conv.bias #this is because the amount of non-zero bias is small, #but if we use conv.bias, the number of bias will be much larger self.conv_layers[i].bias = None else: self.conv_layers[i].bias = None in_ch = part[0] link_ch.reverse() link.reverse() if len(link) > 1: for j in range(1, len(link) ): ly = link[j] part_id = self.out_partition[ly].index(part[0]) chos = sum( self.out_partition[ly][0:part_id] ) choe = chos + part[0] chis = sum( link_ch[0:j] ) chie = chis + link_ch[j] self.conv_layers[ly].weight[chos:choe, :,:,:] = w_src[:, chis:chie,:,:] #update BatchNorm or remove it if there is no BatchNorm in the v1 block self.bnrelu_layers[i] = None if isinstance(blk.layers[i][1], self.norm_layer): self.bnrelu_layers[i] = nn.Sequential( blk.layers[i][1], blk.layers[i][2]) else: self.bnrelu_layers[i] = blk.layers[i][1] def forward(self, x): layers_ = [] outs_ = [] xin = x for i in range(len(self.conv_layers)): link = self.links[i] part = self.out_partition[i] xout = self.conv_layers[i](xin) layers_.append(xout) xin = xout[:,0:part[0],:,:] if len(part) > 1 else xout if self.layer_bias[i] is not None: xin += self.layer_bias[i].view(1,-1,1,1) if len(link) > 1: for j in range( len(link) - 1 ): ly = link[j] part_id = self.out_partition[ly].index(part[0]) chs = sum( self.out_partition[ly][0:part_id] ) che = chs + part[0] xin += layers_[ly][:,chs:che,:,:] xin = self.bnrelu_layers[i](xin) if i%2 == 0 or i == len(self.conv_layers)-1: outs_.append(xin) out = torch.cat(outs_, 1) return out class HarDNetBase(nn.Module): def __init__(self, arch, norm_layer, depth_wise=False): super().__init__() if arch == 85: first_ch = [48, 96] second_kernel = 3 ch_list = [ 192, 256, 320, 480, 720] grmul = 1.7 gr = [ 24, 24, 28, 36, 48] n_layers = [ 8, 16, 16, 16, 16] elif arch == 68: first_ch = [32, 64] second_kernel = 3 ch_list = [ 128, 256, 320, 640] grmul = 1.7 gr = [ 14, 16, 20, 40] n_layers = [ 8, 16, 16, 16] else: print("Error: HarDNet",arch," has no implementation.") exit() blks = len(n_layers) self.base = nn.ModuleList([]) # First Layer: Standard Conv3x3, Stride=2 self.base.append ( ConvLayer(in_channels=3, out_channels=first_ch[0], norm_layer=norm_layer, kernel=3, stride=2, bias=False) ) # Second Layer self.base.append ( ConvLayer(first_ch[0], first_ch[1], norm_layer, kernel=second_kernel) ) # Maxpooling or DWConv3x3 downsampling self.base.append(nn.AvgPool2d(kernel_size=3, stride=2, padding=1)) # Build all HarDNet blocks ch = first_ch[1] for i in range(blks): blk = HarDBlock(ch, gr[i], grmul, n_layers[i], norm_layer, dwconv=depth_wise) ch = blk.get_out_ch() self.base.append ( blk ) if i != blks-1: self.base.append ( ConvLayer(ch, ch_list[i], norm_layer, kernel=1) ) ch = ch_list[i] if i== 0: self.base.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True)) elif i != blks-1 and i != 1 and i != 3: self.base.append(nn.AvgPool2d(kernel_size=2, stride=2)) def fill_fc_weights(layers): for m in layers.modules(): if isinstance(m, nn.Conv2d): if m.weight is not None: init.kaiming_uniform_(m.weight, nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) def weights_init(m): for key in m.state_dict(): if key.split('.')[-1] == 'weight': if 'conv' in key: init.kaiming_uniform_(m.state_dict()[key], nonlinearity='relu') if 'bn' in key: m.state_dict()[key][...] = 1 elif key.split('.')[-1] == 'bias': m.state_dict()[key][...] = 0 class TransitionUp(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() def forward(self, x, skip, concat=True): out = F.interpolate( x, size=(skip.size(2), skip.size(3)), mode="bilinear", align_corners=True) if concat: out = torch.cat([out, skip], 1) return out @SPPE.register_module class HarDNetPose(nn.Module): def __init__(self, norm_layer=nn.BatchNorm2d, **cfg): super(HarDNetPose, self).__init__() assert cfg['DOWN_RATIO'] in [2, 4, 8, 16] self.norm_layer = norm_layer self._preset_cfg = cfg['PRESET'] self.first_level = int(np.log2(cfg['DOWN_RATIO']))-1 self.trt = cfg['TRT'] self.base = HarDNetBase(cfg['NUM_LAYERS'], norm_layer).base self.last_pool = nn.AvgPool2d(kernel_size=2, stride=2) if cfg['NUM_LAYERS'] == 85: self.last_proj = ConvLayer(784, 256, norm_layer, kernel=1) self.last_blk = HarDBlock(768, 80, 1.7, 8, norm_layer) self.skip_nodes = [1,3,8,13] self.SC = [32, 32, 0] gr = [64, 48, 28] layers = [8, 8, 4] ch_list2 = [224 + self.SC[0], 160 + self.SC[1], 96 + self.SC[2]] channels = [96, 214, 458, 784] self.skip_lv = 3 scales = [2 ** i for i in range(len(channels[self.first_level:]))] elif cfg['NUM_LAYERS'] == 68: self.last_proj = ConvLayer(654, 192, norm_layer, kernel=1) self.last_blk = HarDBlock(576, 72, 1.7, 8, norm_layer) self.skip_nodes = [1,3,8,11] self.SC = [32, 32, 0 ] gr = [48, 32, 20] layers = [8, 8, 4] ch_list2 = [224+self.SC[0], 96+self.SC[1], 64+self.SC[2]] channels = [64, 124, 328, 654] self.skip_lv = 2 scales = [2 ** i for i in range(len(channels[self.first_level:]))] self.transUpBlocks = nn.ModuleList([]) self.denseBlocksUp = nn.ModuleList([]) self.conv1x1_up = nn.ModuleList([]) self.avg9x9 = nn.AvgPool2d(kernel_size=(9,9), stride=1, padding=(4,4)) prev_ch = self.last_blk.get_out_ch() for i in range(3): skip_ch = channels[3-i] self.transUpBlocks.append(TransitionUp(prev_ch, prev_ch)) if i < self.skip_lv: cur_ch = prev_ch + skip_ch else: cur_ch = prev_ch self.conv1x1_up.append(ConvLayer(cur_ch, ch_list2[i], norm_layer, kernel=1)) cur_ch = ch_list2[i] cur_ch -= self.SC[i] cur_ch *= 3 blk = HarDBlock(cur_ch, gr[i], 1.7, layers[i], norm_layer) self.denseBlocksUp.append(blk) prev_ch = blk.get_out_ch() prev_ch += self.SC[0] + self.SC[1] + self.SC[2] weights_init(self.denseBlocksUp) weights_init(self.conv1x1_up) weights_init(self.last_blk) weights_init(self.last_proj) out_channel = self._preset_cfg['NUM_JOINTS'] ch = max(128, out_channel*4) self.conv_out = nn.Sequential( nn.Conv2d(prev_ch, ch, kernel_size=3, padding=1, bias=True), nn.ReLU(inplace=True), nn.Conv2d(ch, out_channel, kernel_size=cfg['FINAL_CONV_KERNEL'], stride=1, padding=cfg['FINAL_CONV_KERNEL'] // 2, bias=True)) fill_fc_weights(self.conv_out) self.conv_out[-1].bias.data.fill_(-2.19) def v2_transform(self): print('Transform HarDBlock v2..') for i in range( len(self.base)): if isinstance(self.base[i], HarDBlock): blk = self.base[i] self.base[i] = HarDBlock_v2(blk.in_channels, blk.growth_rate, blk.grmul, blk.n_layers, blk.norm_layer) self.base[i].transform(blk, self.trt) blk = self.last_blk self.last_blk = HarDBlock_v2(blk.in_channels, blk.growth_rate, blk.grmul, blk.n_layers, blk.norm_layer) self.last_blk.transform(blk, self.trt) for i in range(3): blk = self.denseBlocksUp[i] self.denseBlocksUp[i] = HarDBlock_v2(blk.in_channels, blk.growth_rate, blk.grmul, blk.n_layers, blk.norm_layer) self.denseBlocksUp[i].transform(blk, self.trt) def forward(self, x): xs = [] x_sc = [] for i in range(len(self.base)): x = self.base[i](x) if i in self.skip_nodes: xs.append(x) x = self.last_proj(x) x = self.last_pool(x) x2 = self.avg9x9(x) x3 = x/(x.sum((2,3),keepdim=True) + 0.1) x = torch.cat([x,x2,x3],1) x = self.last_blk(x) for i in range(3): skip_x = xs[3-i] x = self.transUpBlocks[i](x, skip_x, (i<self.skip_lv)) x = self.conv1x1_up[i](x) if self.SC[i] > 0: end = x.shape[1] x_sc.append( x[:,end-self.SC[i]:,:,:].contiguous() ) x = x[:,:end-self.SC[i],:,:].contiguous() x2 = self.avg9x9(x) x3 = x/(x.sum((2,3),keepdim=True) + 0.1) x = torch.cat([x,x2,x3],1) x = self.denseBlocksUp[i](x) scs = [x] for i in range(3): if self.SC[i] > 0: scs.insert(0, F.interpolate( x_sc[i], size=(x.size(2), x.size(3)), mode="bilinear", align_corners=True) ) x = torch.cat(scs,1) x = self.conv_out(x) return x def _initialize(self, pretrained=''): for m in self.modules(): if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') nn.init.normal_(m.weight, std=0.001) for name, _ in m.named_parameters(): if name in ['bias']: nn.init.constant_(m.bias, 0) elif isinstance(m, self.norm_layer): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.ConvTranspose2d): nn.init.normal_(m.weight, std=0.001) for name, _ in m.named_parameters(): if name in ['bias']: nn.init.constant_(m.bias, 0) if os.path.isfile(pretrained): pretrained_state_dict = torch.load(pretrained) need_init_state_dict = {} for name, m in pretrained_state_dict.items(): if name.split('.')[0] in self.pretrained_layers \ or self.pretrained_layers[0] == '*': need_init_state_dict[name] = m self.load_state_dict(need_init_state_dict, strict=False) elif pretrained: raise ValueError('{} is not exist!'.format(pretrained)) def get_pose_net(cfg, is_train, **kwargs): model = HarDNetPose(cfg, **kwargs) if is_train and cfg.MODEL.INIT_WEIGHTS: model._initialize(cfg.MODEL.INIT_WEIGHTS) total_params = sum(p.numel() for p in model.parameters()) print( "Parameters=", total_params ) return model ```
{ "source": "12mashok/neat-python", "score": 3 }
#### File: neat/ctrnn/__init__.py ```python from __future__ import division from neat.graphs import required_for_output class CTRNNNodeEval(object): def __init__(self, time_constant, activation, aggregation, bias, response, links): self.time_constant = time_constant self.activation = activation self.aggregation = aggregation self.bias = bias self.response = response self.links = links class CTRNN(object): """Sets up the ctrnn network itself.""" def __init__(self, inputs, outputs, node_evals): self.input_nodes = inputs self.output_nodes = outputs self.node_evals = node_evals self.values = [{}, {}] for v in self.values: for k in inputs + outputs: v[k] = 0.0 for node, ne in self.node_evals.items(): v[node] = 0.0 for i, w in ne.links: v[i] = 0.0 self.active = 0 self.time_seconds = 0.0 self.network_type = "ctrnn" def reset(self): self.values = [dict((k, 0.0) for k in v) for v in self.values] self.active = 0 self.time_seconds = 0.0 def set_node_value(self, node_key, value): for v in self.values: v[node_key] = value def get_max_time_step(self): # pragma: no cover # TODO: Compute max time step that is known to be numerically stable for # the current network configuration. # pylint: disable=no-self-use raise NotImplementedError() def advance(self, inputs, advance_time, time_step=None): """ Advance the simulation by the given amount of time, assuming that inputs are constant at the given values during the simulated time. """ final_time_seconds = self.time_seconds + advance_time # Use half of the max allowed time step if none is given. if time_step is None: # pragma: no cover time_step = 0.5 * self.get_max_time_step() if len(self.input_nodes) != len(inputs): raise RuntimeError("Expected {0} inputs, got {1}".format(len(self.input_nodes), len(inputs))) while self.time_seconds < final_time_seconds: dt = min(time_step, final_time_seconds - self.time_seconds) ivalues = self.values[self.active] ovalues = self.values[1 - self.active] self.active = 1 - self.active for i, v in zip(self.input_nodes, inputs): ivalues[i] = v ovalues[i] = v for node_key, ne in self.node_evals.items(): node_inputs = [ivalues[i] * w for i, w in ne.links] s = ne.aggregation(node_inputs) z = ne.activation(ne.bias + ne.response * s) ovalues[node_key] += dt / ne.time_constant * (-ovalues[node_key] + z) self.time_seconds += dt ovalues = self.values[1 - self.active] return [ovalues[i] for i in self.output_nodes] @staticmethod def create(genome, config, time_constant): """ Receives a genome and returns its phenotype (a CTRNN). """ genome_config = config.genome_config required = required_for_output(genome_config.input_keys, genome_config.output_keys, genome.connections) # Gather inputs and expressed connections. node_inputs = {} for cg in genome.connections.values(): if not cg.enabled: continue i, o = cg.key if o not in required and i not in required: continue if o not in node_inputs: node_inputs[o] = [(i, cg.weight)] else: node_inputs[o].append((i, cg.weight)) node_evals = {} for node_key, inputs in node_inputs.items(): node = genome.nodes[node_key] activation_function = genome_config.activation_defs.get(node.activation) aggregation_function = genome_config.aggregation_function_defs.get(node.aggregation) node_evals[node_key] = CTRNNNodeEval(time_constant, activation_function, aggregation_function, node.bias, node.response, inputs) return CTRNN(genome_config.input_keys, genome_config.output_keys, node_evals) ``` #### File: neat-python/neat/noveltysearch.py ```python import numpy as np from sklearn.neighbors import NearestNeighbors from neat.config import ConfigParameter, write_pretty_params import matplotlib.pyplot as plt class DefaultNoveltySearchConfig(object): """ Sets up and holds configuration information for the DefaultNoveltySearch class. """ def __init__(self, params = {}): self._params = [ConfigParameter('novelty_search_enabled', bool, 'false'), ConfigParameter('pop_knn_neighbours', int, '0'), ConfigParameter('archive_knn_neighbours', int, '0'), ConfigParameter('threshhold', float, '0'), ConfigParameter('behavior_exclusion_type', list), 'None', ConfigParameter('behavior_exclusion_value', list), 'None'] self.novelty_search_enabled = params.get('novelty_search_enabled', False) self.pop_knn_neighbours = params.get('pop_knn_neighbours', None) self.archive_knn_neighbours = params.get('archive_knn_neighbours', None) self.threshhold = params.get('threshhold', None) self.behavior_exclusion_type = params.get('behavior_exclusion_type', None) self.behavior_exclusion_value = params.get('behavior_exclusion_value', None) def __str__(self): return "Default Novelty Search Configuration. Parameters include: {param}".format(param = self._params) class DefaultNoveltySearch(): @classmethod def parse_config(cls, param_dict): novelty_config = DefaultNoveltySearchConfig(param_dict) return novelty_config def __init__(self): """ Initialises list of novelty members. """ self.novelMembers = {} def calculateNovelty(self, genomes, config, iteration): """ Carries out two steps: Step 1: Calculate how novel behavior is by euclidean distance/KNN. Step 2: If individuals novelty is high, add to novelMembers list. """ # Extract novelty search configuration configuration = config.novelty_search_config # Extract behaviors of all genomes in the population behaviors = {} for genome_id, genome in genomes: behaviors[genome_id] = genome.behavior # Get all behavior values in current population and create a KNN model behavior_values = np.array(list(behaviors.values())) # If neighbours value is out of bounds, set it to max possible value if int(configuration.pop_knn_neighbours) > len(behavior_values): pop_knn_neighbours = len(behavior_values) else: pop_knn_neighbours = int(configuration.pop_knn_neighbours) # FIRST KNN MODEL: fit on the behavior values of current population # Obtain normalized data normalized_behavior_values = self.normalizeData(behavior_values) knn_model = NearestNeighbors(n_neighbors=pop_knn_neighbours, algorithm='ball_tree').fit(normalized_behavior_values) if len(list(self.novelMembers.keys())) < 1: models = [knn_model] else: # Get behaviors of novel member archive and create KNN model novel_members = list(self.novelMembers.values()) novel_members_behaviors = np.array([member[0][1].behavior for member in novel_members]) novel_members_behaviors.reshape(-1,1) # If neighbours value is out of bounds, set it to max possible value if int(configuration.archive_knn_neighbours) > len(novel_members_behaviors): archive_knn_neighbours = len(novel_members_behaviors) else: archive_knn_neighbours = int(configuration.archive_knn_neighbours) # SECOND KNN MODEL:: Build knn model for novel member archive #Obtain normalized data normalized_novel_members_behaviors = self.normalizeData(novel_members_behaviors) novel_members_knn_model = NearestNeighbors(n_neighbors=archive_knn_neighbours, algorithm='ball_tree').fit(normalized_novel_members_behaviors) # Gather models models = [knn_model, novel_members_knn_model] # Novelty is assigned as the average distance to the k-nearest neighbors # If genome is novel, average distance will be high. self.calculatePopulationFitness(behaviors, genomes, models) # Extract fitnesses of all genomes in the population after they have been calculated in previous step fitnesses = {} for genome_id, genome in genomes: # store genome id as value for easy access fitnesses[genome.fitness] = genome_id # Get best genome, it's fitness, and behavior value best_fitness = max(list(fitnesses.keys())) best_fitness_genome_id = fitnesses[best_fitness] best_behavior = behaviors[best_fitness_genome_id] best_genome = [genome for genome in genomes if genome[0] == best_fitness_genome_id] # If novel member archive has less than three members add best genomes if len(list(self.novelMembers.keys())) < 1: self.novelMembers[iteration] = best_genome # If knn average of best genome is greater than threshold, add to novel member archive else: # If distance of best genome is greater than threshold, add to novel member archive knn_distance = self.KNN_distance(best_behavior, novel_members_knn_model) print('knn threshhold: ', configuration.threshhold, type(configuration.threshhold)) if knn_distance > float(configuration.threshhold): self.novelMembers[iteration] = best_genome # Return novel member archive and behavior for entire population return self.novelMembers, behavior_values def calculatePopulationFitness(self, behaviors, genomes, knn_models): """ Sets genome.fitness to average distance of n nearest neighbours """ # Get normalization factors behavior_values = list(behaviors.values()) behavior_min = np.amin(behavior_values) behavior_max = np.amax(behavior_values) # For each genome for genome_id, genome in genomes: fitness = 0 # for each knn model provided for knn_model in knn_models: # Get corresponding behavior and normalize prior to checking knn behavior = (behaviors[genome_id]-behavior_min)/(behavior_max-behavior_min) # Get average knn distance average_distance = self.KNN_distance(behavior, knn_model) # Add average distance to fitness. The more novel a genome, the higher its average knn distance, and the higher its fitness fitness += average_distance # Set genonme fitness genome.fitness = fitness # print('fitness: ', genome.fitness) def KNN_distance(self, behavior, knn_model): """ Returns average distance of a behavior in a given knn model """ behavior = np.array(behavior) distances, indices = knn_model.kneighbors([behavior]) average_distance = sum(distances[0])/len(distances[0]) return average_distance def normalizeData(self, data): """ Normalizes data according to X_norm = (X - X_min)/(X_max-X_min) """ # Transpose data data = data.T # Get shape shape = data.shape # The number of features is taken as the smaller dimension number_of_dimensions = min(shape) X = np.split(data, number_of_dimensions) # Normalize each feature separately for index, feature_data in enumerate(X): print('feature data shape', feature_data.shape) feature_data_min = np.amin(feature_data) feature_data_max = np.amax(feature_data) X[index] = (feature_data - feature_data_min)/(feature_data_max - feature_data_min) #Concatenate X back together X = np.concatenate(X) #Transpose data back X = X.T return X ```
{ "source": "12MegaA21/LG-FedAvg", "score": 2 }
#### File: LG-FedAvg/models/Update.py ```python import torch from torch import nn from torch.utils.data import DataLoader, Dataset from tqdm import tqdm import math import pdb class DatasetSplit(Dataset): def __init__(self, dataset, idxs): self.dataset = dataset self.idxs = list(idxs) def __len__(self): return len(self.idxs) def __getitem__(self, item): image, label = self.dataset[self.idxs[item]] return image, label class LocalUpdate(object): def __init__(self, args, dataset=None, idxs=None, pretrain=False): self.args = args self.loss_func = nn.CrossEntropyLoss() self.selected_clients = [] self.ldr_train = DataLoader(DatasetSplit(dataset, idxs), batch_size=self.args.local_bs, shuffle=True) self.pretrain = pretrain def train(self, net, idx=-1, lr=0.1): net.train() # train and update optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.5) epoch_loss = [] if self.pretrain: local_eps = self.args.local_ep_pretrain else: local_eps = self.args.local_ep for iter in range(local_eps): batch_loss = [] for batch_idx, (images, labels) in enumerate(self.ldr_train): images, labels = images.to(self.args.device), labels.to(self.args.device) net.zero_grad() log_probs = net(images) loss = self.loss_func(log_probs, labels) loss.backward() optimizer.step() batch_loss.append(loss.item()) epoch_loss.append(sum(batch_loss)/len(batch_loss)) return net.state_dict(), sum(epoch_loss) / len(epoch_loss) class LocalUpdateMTL(object): def __init__(self, args, dataset=None, idxs=None, pretrain=False): self.args = args self.loss_func = nn.CrossEntropyLoss() self.selected_clients = [] self.ldr_train = DataLoader(DatasetSplit(dataset, idxs), batch_size=self.args.local_bs, shuffle=True) self.pretrain = pretrain def train(self, net, lr=0.1, omega=None, W_glob=None, idx=None, w_glob_keys=None): net.train() # train and update optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.5) epoch_loss = [] if self.pretrain: local_eps = self.args.local_ep_pretrain else: local_eps = self.args.local_ep for iter in range(local_eps): batch_loss = [] for batch_idx, (images, labels) in enumerate(self.ldr_train): images, labels = images.to(self.args.device), labels.to(self.args.device) net.zero_grad() log_probs = net(images) loss = self.loss_func(log_probs, labels) W = W_glob.clone() W_local = [net.state_dict(keep_vars=True)[key].flatten() for key in w_glob_keys] W_local = torch.cat(W_local) W[:, idx] = W_local loss_regularizer = 0 loss_regularizer += W.norm() ** 2 k = 4000 for i in range(W.shape[0] // k): x = W[i * k:(i+1) * k, :] loss_regularizer += x.mm(omega).mm(x.T).trace() f = (int)(math.log10(W.shape[0])+1) + 1 loss_regularizer *= 10 ** (-f) loss = loss + loss_regularizer loss.backward() optimizer.step() batch_loss.append(loss.item()) epoch_loss.append(sum(batch_loss)/len(batch_loss)) return net.state_dict(), sum(epoch_loss) / len(epoch_loss) ```
{ "source": "12moi/News-App", "score": 3 }
#### File: News-App/app/request.py ```python import urllib.request, json from flask.templating import render_template from app.models import Article,Source import datetime,timeago api_key = None category_url = None source_url = None headline_url = None image=None date_time_readable=None def configure_request(app): ''' this is a function that will configure the requests ''' global api_key, source_url, category_url,headline_url api_key = app.config['NEWS_API_KEY'] category_url = app.config['CATEGORY_URL'] source_url = app.config['SOURCE_URL'] headline_url = app.config['HEADLINE_URL'] def get_headlines(): ''' this is a function that will get the json response for the headlines ''' get_headline_url = headline_url.format(api_key) with urllib.request.urlopen(get_headline_url) as url: get_headline_data = url.read() get_headline_response = json.loads(get_headline_data) headline_results = None if get_headline_response['articles']: headline_results_list = get_headline_response['articles'] headline_results = process_headline_results(headline_results_list) return headline_results def process_headline_results(headline_list): ''' Function that processes the headline result and transform them to a list of Objects ''' headline_results = [] for headline_item in headline_list: image = headline_item.get('urlToImage') title = headline_item.get ('title') author = headline_item.get('author') description = headline_item.get('description') publishedAt = headline_item.get('publishedAt') url = headline_item.get('url') urlToImage = headline_item.get('urlToImage') date_time_readable = datetime.datetime.strptime(publishedAt, '%Y-%m-%dT%H:%M:%SZ') now = datetime.datetime.now() + datetime.timedelta(seconds = 60 * 3.4) if urlToImage: if description: if publishedAt: headline_object = Article(title,author,description,publishedAt,url,urlToImage) headline_results.append(headline_object) return headline_results def get_category(category): ''' this is a function that gets the json response to our url for request ''' get_category_url = category_url.format(category, api_key) with urllib.request.urlopen(get_category_url) as url: get_category_data = url.read() get_category_response = json.loads(get_category_data) category_results = None if get_category_response['articles']: category_results_list = get_category_response['articles'] category_results = process_headline_results(category_results_list) return category_results def get_source(): ''' this is a function that gets the json response to our source request ''' get_source_url = source_url.format(api_key) with urllib.request.urlopen(get_source_url) as url: get_source_article_data = url.read() get_source_article_response = json.loads(get_source_article_data) get_source_article_results = None if get_source_article_response['sources']: source_results_list = get_source_article_response['sources'] source_articles_results = process_source_results(source_results_list) return source_results_list def process_source_results(source_list): ''' this is a function that will process the source result and then change them to a list of Objects ''' source_results= [] for source_item in source_list: id = source_item.get('id') name = source_item.get('name') url = source_item.get('url') description = source_item.get('description') language = source_item.get('language') category= source_item.get('category') country = source_item.get('country') if url: source_object = Source(id,name,url,description,category,country,language,) source_results.append(source_object) return source_results def get_source_articles(id): ''' this is a function that gets the json response to our source request ''' get_source_article_url = 'https://newsapi.org/v2/top-headlines?sources={}&apiKey={}'.format(id,api_key) with urllib.request.urlopen(get_source_article_url) as url: get_source_data = url.read() get_source_response = json.loads(get_source_data) source_results = None if get_source_response['articles']: source_results_list =get_source_response['articles'] source_results = process_source_article_results(source_results_list) return source_results def process_source_article_results(headline_list): ''' this is a function that process source result and transform them to an object list ''' headline_results=[] for headline_item in headline_list: urlToImage = headline_item.get('urlToImage') title = headline_item.get ('title') author = headline_item.get('author') description = headline_item.get('description') publishedAt = headline_item.get('publishedAt') language = headline_item.get('language') category = headline_item.get('category') country= headline_item.get('country') url = headline_item.get('url') if urlToImage: if description: if publishedAt: headline_object = Article(title,author,description,publishedAt,url, urlToImage) headline_results.append(headline_object) return headline_results def search_topic(topic_name): ''' this function will get the json response to our source request ''' search_topic_url = 'https://newsapi.org/v2/everything?apiKey={}&q={}'.format(api_key,topic_name) with urllib.request.urlopen(search_topic_url) as url: search_topic_data = url.read() search_topic_response = json.loads(search_topic_data) search_topic_results = None if search_topic_response['articles']: search_topic_list = search_topic_response['articles'] search_topic_results = process_headline_results((search_topic_list)) return search_topic_results else: return render_template('notfound.html') ```
{ "source": "12moi/password-locker", "score": 4 }
#### File: 12moi/password-locker/user.py ```python from collections import UserList class User: ''' class that generates a new user instance ''' # Empty user list array user_list=[] def __init__(self,firstname,lastname, username, userpassword): self.username=username self.firstname=firstname self.lastname=lastname self.password=<PASSWORD> def save_user(self): ''' save_user method saves a new user objects to the user_list ''' User.user_list.append(self) @classmethod def diplay_user(cls): return cls.user_list def delete_user(self): ''' A method that deletes a saved account from the list ''' UserList.user_list.remove(self) def verify_user(cls, username,password): ''' A method that very the user if the user exist in the user_list ''' a_user="" for user in user.user_list: if(username==username and password==password): a_user=username return a_user class Credentials(): ''' Create credentials class to help create new objects of credentials ''' acounts = [] @classmethod def __init__(self,accountname,accountusername, accountpassword): ''' a method that defines the user credentials to saved ''' self.accountname=accountname self.accountusername=accountusername self.accountpassword=accountpassword def save_account(self): ''' this is a method that saves Accounts information ''' Credentials.acounts.append(self) def delete_account(self): ''' Deletes saved account credentials ''' Credentials.acounts.remove(self) @classmethod def display_accounts(cls): ''' this method returns the accounts list ''' for acount in cls.acounts: return cls.acounts @classmethod def find_by_username(cls,username): ''' This method takes in a number and finds a contact that matches the number ''' for account in cls.acounts: if account.accountusername==username: return account def save_credentials(self): ''' save_user method saves a new user objects to the user_list ''' Credentials.credentials_list.append(self) def delete_credentils(self): ''' A method that deletes a saved account from the list ''' Credentials.credentials_list.remove(self) @classmethod def find_credentials(cls, account): ''' method that take account and retrieves password for the account ''' for credential in cls.credentials_list: if credential.account==account: return credential @classmethod def display_credentials(cls): ''' A method that returns all the items in the credentials list ''' return cls.credentials_list ```
{ "source": "12ok/python_train", "score": 3 }
#### File: python_train/generator/contact.py ```python from model.contact import Contact import string import random import re import getopt import sys import os.path import jsonpickle try: opts, args = getopt.getopt(sys.argv[1:], "n:f:", ["number of contacts", "file"]) except getopt.GetoptError as err: getopt.usage() sys.exit(2) n = 5 f = "data/contacts.json" for o, a in opts: if o == "-n": n = int(a) elif o == "-f": f = a def clear_end_spase(s): return re.sub(" $", "", s) def random_string_alpha(prefix, maxlen): symbols = string.ascii_letters + " " return clear_end_spase(prefix + "".join([random.choice(symbols) for i in range(random.randrange(maxlen))])) def random_string_digit(prefix, maxlen): symbols = string.digits + " +()-" return clear_end_spase(prefix + "".join([random.choice(symbols) for i in range(random.randrange(maxlen))])) def random_string(prefix, maxlen): symbols = string.ascii_letters + string.digits + string.punctuation + " " return clear_end_spase(prefix + "".join([random.choice(symbols) for i in range(random.randrange(maxlen))])) testdata = [Contact(firstname="", middlename="", lastname="", nik="", title="", company="", address="", home="", mobile="", work="", fax="", email="", email2="", email3="", page="", address2="", phone2="", notes="")] + [ Contact(firstname=random_string_alpha("name", 5), middlename=random_string_alpha("middlename", 10), lastname=random_string_alpha("lastname", 10), nik=random_string("nik", 5), title=random_string_alpha("", 2), company=random_string("", 8), address=random_string("", 10), home=random_string_digit("hp", 11), mobile=random_string_digit("mp", 8), work=random_string_digit("wp", 7), fax=random_string_digit("f", 5), email=random_string("e1", 10), email2=random_string("e2", 15), email3=random_string("e3", 20), page=random_string("page", 15), address2=random_string("", 10), phone2=random_string_digit("2p", 12), notes=random_string("", 10)) for i in range(5)] file = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", f) with open(file, "w")as out: jsonpickle.set_encoder_options("json", indent=2) out.write(jsonpickle.encode(testdata)) ``` #### File: python_train/test/test_contact_db_matches_ui.py ```python from model.contact import Contact import re def test_all_contacts_from_home_page_to_db(app, db): contacts_homepage = sorted(app.contact.get_contact_list(), key=Contact.id_or_max, ) contacts_db = sorted(db.get_contact_list_full(), key=Contact.id_or_max) # Проверка что кол-во контактов в UI и БД совпадает assert len(contacts_homepage) == len(contacts_db) for i in range(len(contacts_homepage)): assert contacts_homepage[i].firstname == clear_end_spase(contacts_db[i].firstname) assert contacts_homepage[i].lastname == clear_end_spase(contacts_db[i].lastname) assert contacts_homepage[i].address == clear_end_spase(contacts_db[i].address) assert contacts_homepage[i].all_emails == merge_emails_like_on_home_page(contacts_db[i]) assert contacts_homepage[i].all_phones_from_home_page == merge_phones_like_on_home_page( contacts_db[i]) def clear(s): return clear_end_spase(re.sub("[() -]", "", s)) def clear_end_spase(s): return re.sub(" $", "", s) def merge_phones_like_on_home_page(contact): return "\n".join(filter(lambda x: x != "", map(lambda x: clear(x), filter(lambda x: x is not None, [contact.home, contact.mobile, contact.work, contact.phone2])))) def merge_emails_like_on_home_page(contact): return "\n".join(filter(lambda x: x != "", filter(lambda x: x is not None, [contact.email, contact.email2, contact.email3]))) ``` #### File: python_train/test/test_modify_group.py ```python import random import re from model.group import Group def clear(group): return Group(id=group.id, name=re.sub(" +", " ", group.name).strip()) def test_modify_group_name(app, db, check_ui): if len(db.get_group_list()) == 0: app.group.create(Group(name="for test")) old_groups = db.get_group_list() old_group = random.choice(old_groups) new_group = Group(id=old_group.id, name="new group") app.group.modify_group_by_id(new_group, old_group.id) new_groups = db.get_group_list() for i in range(len(old_groups)): if old_groups[i].id == old_group.id: old_groups[i] = new_group assert sorted(old_groups, key=Group.id_or_max) == sorted(new_groups, key=Group.id_or_max) if check_ui: assert sorted(map(clear, new_groups), key=Group.id_or_max) == sorted(app.group.get_group_list(), key=Group.id_or_max) def test_modify_group_header(app, db, check_ui): if len(db.get_group_list()) == 0: app.group.create(Group(header="for test")) old_groups = db.get_group_list() old_group = random.choice(old_groups) new_group = Group(id=old_group.id, name=old_group.name, header="new header") app.group.modify_group_by_id(new_group, old_group.id) new_groups = db.get_group_list() for i in range(len(old_groups)): if old_groups[i].id == old_group.id: old_groups[i] = new_group assert sorted(old_groups, key=Group.id_or_max) == sorted(new_groups, key=Group.id_or_max) if check_ui: assert sorted(map(clear, new_groups), key=Group.id_or_max) == sorted(app.group.get_group_list(), key=Group.id_or_max) def test_modify_group_footer(app, db, check_ui): if len(db.get_group_list()) == 0: app.group.create(Group(footer="for test")) old_groups = db.get_group_list() old_group = random.choice(old_groups) new_group = Group(id=old_group.id, name=old_group.name, footer="new header") app.group.modify_group_by_id(new_group, old_group.id) new_groups = db.get_group_list() for i in range(len(old_groups)): if old_groups[i].id == old_group.id: old_groups[i] = new_group assert old_groups == new_groups if check_ui: assert sorted(map(clear, new_groups), key=Group.id_or_max) == sorted(app.group.get_group_list(), key=Group.id_or_max) ```
{ "source": "12rambau/alos_mosaics", "score": 2 }
#### File: component/tile/export.py ```python import ipyvuetify as v from sepal_ui import sepalwidgets as sw from sepal_ui.scripts import utils as su from component import scripts from component.message import ms from component import parameter as pm # the tiles should all be heriting from the sepal_ui Tile object # if you want to create extra reusable object, you can define them in an extra widget.py file class ExportTile(sw.Tile): def __init__(self, aoi_model, model, **kwargs): # gather the model self.aoi_model = aoi_model self.model = model # create an output alert self.output = sw.Alert() # self.backscatter = v.Switch( class_="ml-5", label=ms.export.backscatter, v_model=True ) self.rfdi = v.Switch(class_="ml-5", label=ms.export.rfdi, v_model=True) self.texture = v.Switch(class_="ml-5", label=ms.export.texture, v_model=False) self.aux = v.Switch(class_="ml-5", label=ms.export.aux, v_model=False) self.fnf = v.Switch(class_="ml-5", label=ms.export.fnf, v_model=False) self.scale = v.TextField(label=ms.export.scale, v_model=25) # create buttons self.asset_btn = sw.Btn( ms.export.asset_btn, "mdi-download", disabled=True, class_="ma-5" ) self.sepal_btn = sw.Btn( ms.export.sepal_btn, "mdi-download", disabled=True, class_="ma-5" ) # bindings self.model.bind(self.backscatter, "backscatter").bind(self.rfdi, "rfdi").bind( self.texture, "texture" ).bind(self.aux, "aux").bind(self.fnf, "fnf").bind(self.scale, "scale") # note that btn and output are not a madatory attributes super().__init__( id_="export_widget", title=ms.export.title, inputs=[ self.backscatter, self.rfdi, self.texture, self.aux, self.fnf, self.scale, ], alert=sw.Alert(), btn=v.Layout(row=True, children=[self.asset_btn, self.sepal_btn]), ) # decorate each function as we are using multiple btns self._on_asset_click = su.loading_button( self.alert, self.asset_btn, debug=False )(self._on_asset_click) self._on_sepal_click = su.loading_button( self.alert, self.sepal_btn, debug=False )(self._on_sepal_click) # link the btn self.asset_btn.on_event("click", self._on_asset_click) self.sepal_btn.on_event("click", self._on_sepal_click) def _select_layers(self): dataset = None if self.model.backscatter: dataset = self.model.dataset.select(["HH", "HV", "HHHV_ratio"]) if self.model.rfdi: if dataset: dataset = dataset.addBands(self.model.dataset.select(["RFDI"])) else: dataset = self.model.dataset.select(["RFDI"]) if self.model.texture: if dataset: dataset = dataset.addBands( self.model.dataset.select( ["HH_var", "HH_idm", "HH_diss", "HV_var", "HV_idm", "HV_diss"] ) ) else: dataset = self.model.dataset.select( ["HH_var", "HH_idm", "HH_diss", "HV_var", "HV_idm", "HV_diss"] ) if self.model.aux: if dataset: dataset = dataset.addBands( self.model.dataset.select(["angle", "date", "qa"]) ) else: dataset = self.model.dataset.select(["angle", "date", "qa"]) fnf_dataset = None if self.model.fnf and int(str(self.model.year)) <= 2017: fnf_dataset = self.model.dataset.select(f"fnf_{self.model.year}") return dataset, fnf_dataset def _on_asset_click(self, widget, data, event): dataset, fnf_dataset = self._select_layers() # export the results if dataset: asset_id = scripts.export_to_asset( self.aoi_model, dataset, pm.asset_name(self.aoi_model, self.model), self.model.scale, self.alert, ) if fnf_dataset: asset_id = scripts.export_to_asset( self.aoi_model, fnf_dataset, pm.asset_name(self.aoi_model, self.model, True), self.model.scale, self.alert, ) return def _on_sepal_click(self, widget, data, event): # get selected layers dataset, fnf_dataset = self._select_layers() if dataset: # export the results pathname = scripts.export_to_sepal( self.aoi_model, dataset, pm.asset_name(self.aoi_model, self.model), self.model.scale, self.alert, ) if fnf_dataset: # export the results pathname = scripts.export_to_sepal( self.aoi_model, fnf_dataset, pm.asset_name(self.aoi_model, self.model, True), self.model.scale, self.alert, ) return ```
{ "source": "12rambau/clip-time-series", "score": 3 }
#### File: component/parameter/pdf.py ```python from itertools import product def get_dims(N): """ I'm gonna check every combination from 1 to 20 lines and columns. 400 year of data max, I'll have a good life before anyone complains """ # A4 format in landscape width = 11.69 heigh = 8.27 cols, lines = (None, None) l = 0 for nb_col, nb_line in product(range(1, 21), range(1, 21)): l_tmp = min(width / nb_col, heigh / nb_line) if l_tmp > l and nb_col * nb_line > N: l = l_tmp cols = nb_col lines = nb_line return (cols, lines) def getPositionPdf(i, nb_col): """Return the position of the square on the pdf page""" return [int(i / nb_col), i % nb_col] ```
{ "source": "12rambau/clip-time-series-polygons", "score": 2 }
#### File: 12rambau/clip-time-series-polygons/scripts.py ```python from pathlib import Path import ee from datetime import datetime as dt from urllib.request import urlretrieve import zipfile from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt import rasterio as rio import numpy as np import gdal from utils import * from parameters import * ee.Initialize() def createPDF(file, df, raw_polygons, bands, sources, output): start = dt.now().replace(microsecond=0) # get the filename filename = Path(file).stem # extract the bands to use them in names name_bands = '_'.join(bands.split(', ')) # pdf file pdf_file = result_dir/f'{filename}_{name_bands}.pdf' if pdf_file.is_file(): output.add_live_msg('Pdf already exist', 'success') return pdf_file # create a filename list descriptions = {} for year in range(start_year, end_year + 1): descriptions[year] = {} for index, row in df.iterrows(): descriptions[year][row['id']] = f'{filename}_{name_bands}_{year}_pt_{row.id}' # load all the data in gdrive satellites = {} # contain the names of the used satellites task_list = [] for year in range(start_year, end_year + 1): for index, row in df.iterrows(): # launch it only if the file is not in tmp, or in gdrive task_name = descriptions[year][row['id']] dst = tmp_dir/f'{task_name}.tif' image, satellites[year] = getImage(sources, bands, row['ee_geometry'], year) output.add_msg('exporting year {} for point {}'.format(year, row['id'])) if not dst.is_file(): name = f'{task_name}_zipimage' link = image.getDownloadURL({ 'name': name, 'region': row.ee_geometry, 'filePerBand': False, 'scale': getScale(satellites[year]) }) tmp = tmp_dir/f'{name}.zip' urlretrieve (link, tmp) # unzip the file with zipfile.ZipFile(tmp,"r") as zip_: data = zip_.read(zip_.namelist()[0]) dst.write_bytes(data) # remove the zip tmp.unlink() # create the resulting pdf with PdfPages(pdf_file) as pdf: # each point is display on one single page for index, row in df.iterrows(): page_title = f'Polygon_{row.id} ({row.name})' output.add_msg(f'Creating pages for pt {row.id}') nb_col, nb_line = get_dims(end_year-start_year) fig, axes = plt.subplots(nb_line, nb_col, figsize=(11.69,8.27), dpi=500) fig.suptitle(page_title, fontsize=16, fontweight ="bold") # display the images in a fig and export it as a pdf page cpt = 0 for year in range(start_year, end_year + 1): # laod the file file = tmp_dir/f'{descriptions[year][row.id]}.tif' with rio.open(file) as f: data = f.read([1, 2, 3], masked=True) x_min, y_min, x_max, y_max = list(f.bounds) bands = [] for i in range(3): band = data[i] h_, bin_ = np.histogram(band[np.isfinite(band)].flatten(), 3000, density=True) #remove the NaN from the analysis cdf = h_.cumsum() # cumulative distribution function cdf = 3000 * cdf / cdf[-1] # normalize # use linear interpolation of cdf to find new pixel values band_equalized = np.interp(band.flatten(), bin_[:-1], cdf) band_equalized = band_equalized.reshape(band.shape) bands.append(band_equalized) data = np.stack( bands, axis=0 ) data = data/3000 data = data.clip(0, 1) data = np.transpose(data,[1,2,0]) x_polygon, y_polygon = raw_polygons.loc[index]['geometry'].exterior.coords.xy ax = axes[getPositionPdf(cpt, nb_col)[0], getPositionPdf(cpt, nb_col)[1]] ax.imshow(data, interpolation='nearest', extent=[x_min, x_max, y_min, y_max]) ax.plot(x_polygon, y_polygon, color=polygon_color, linewidth=polygon_width) ax.set_title(f'{year} {getShortname(satellites[year])}', x=.0, y=.9, fontsize='small', backgroundcolor='white', ha='left') ax.axis('off') ax.set_aspect('equal', 'box') cpt += 1 # remove the file file.unlink() # finish the line with empty plots while cpt < nb_line*nb_col: ax = axes[getPositionPdf(cpt, nb_col)[0], getPositionPdf(cpt, nb_col)[1]] ax.axis('off') ax.set_aspect('equal', 'box') cpt += 1 # save the page plt.tight_layout() pdf.savefig(fig) plt.close() elapsed_time = dt.now().replace(microsecond=0)-start output.add_live_msg(f'PDF output finished in {elapsed_time}', 'success') return pdf_file ``` #### File: 12rambau/clip-time-series-polygons/utils.py ```python from shapely.geometry import Point from math import sqrt from pathlib import Path from datetime import datetime from itertools import product import ee from parameters import square_size ee.Initialize() ######################### #### constants ### ######################### end_year = datetime.now().year sources = ['landsat', 'sentinel'] ############################## ##### folders ### ############################## result_dir = Path.home()/'clip_results' result_dir.mkdir(parents=True, exist_ok=True) tmp_dir = Path.home()/'tmp' # no need to create it it's init when SEPAL starts an instance ######################## ## functions ## ######################## def get_dims(N): ''' I'm gonna check every combination from 1 to 20 lines and columns. 400 year of data max, I'll have a good life before anyone complains ''' # A4 format in landscape width = 11.69 heigh = 8.27 cols, lines = (None, None) l = 0 for nb_col, nb_line in product(range(1, 21), range(1, 21)): l_tmp = min(width/nb_col, heigh/nb_line) if l_tmp > l and nb_col*nb_line > N: l = l_tmp cols = nb_col lines = nb_line return (cols, lines) def to_square(polygon): minx, miny, maxx, maxy = polygon.bounds # min size in latitude (appro) min_size = square_size/111 # get the centroid centroid = [(maxx+minx)/2, (maxy+miny)/2] # get the diagonal diagonal = max(min_size, sqrt((maxx-minx)**2+(maxy-miny)**2)) return Point(centroid).buffer(diagonal/2, cap_style=3) ########################## ## staelites inputs ## ########################## def getPositionPdf(i, nb_col): """Return the position of the square on the pdf page""" return [int(i/nb_col), i%nb_col] def getSatellites(sources): satellites = {} if 'sentinel' in sources: satellites.update({'sentinel_2': 'COPERNICUS/S2_SR'}) if 'landsat' in sources: satellites.update({ 'landsat_8': 'LANDSAT/LC08/C01/T1_SR', 'landsat_5': 'LANDSAT/LT05/C01/T1_SR', 'landsat_7': 'LANDSAT/LE07/C01/T1_SR', }) return satellites def getScale(satellite): scale = { 'sentinel_2': 10, 'landsat_5': 30, 'landsat_7': 30, 'landsat_8': 30 } return scale[satellite] def getShortname(satellite): short = { 'sentinel_2': 'S2', 'landsat_5': 'L5', 'landsat_7': 'L7', 'landsat_8': 'L8' } return short[satellite] def getAvailableBands(): """give the bands composition for each name. 0 being the landsat 7, 1 landsat 5, 2, landsat 8 3: sentinel 2""" bands = { 'Red, Green, Blue' : { 'landsat_7': ['B3', 'B2', 'B1'], 'landsat_5': ['B3', 'B2', 'B1'], 'landsat_8': ['B4', 'B3', 'B2'], 'sentinel_2': ['B4', 'B3', 'B2'] }, 'Nir, Red, Green' : { 'landsat_7': ['B4', 'B3', 'B2'], 'landsat_5': ['B4', 'B3', 'B2'], 'landsat_8': ['B5', 'B4', 'B3'], 'sentinel_2': ['B8', 'B4', 'B3'] }, 'Nir, Swir1, Red' : { 'landsat_7': ['B4', 'B5', 'B3'], 'landsat_5': ['B4', 'B5', 'B3'], 'landsat_8': ['B5', 'B6', 'B4'], 'sentinel_2': ['B8', 'B11', 'B4'] }, 'Swir2, Nir, Red' : { 'landsat_7': ['B7', 'B4', 'B3'], 'landsat_5': ['B7', 'B4', 'B3'], 'landsat_8': ['B7', 'B5', 'B4'], 'sentinel_2': ['B12', 'B8', 'B4'] }, 'Swir2, Swir1, Red' : { 'landsat_7': ['B7', 'B5', 'B3'], 'landsat_5': ['B7', 'B5', 'B3'], 'landsat_8': ['B7', 'B6', 'B4'], 'sentinel_2': ['B12', 'B11', 'B4'] }, 'Swir2, Nir, Green' : { 'landsat_7': ['B7', 'B4', 'B2'], 'landsat_5': ['B7', 'B4', 'B2'], 'landsat_8': ['B7', 'B5', 'B3'], 'sentinel_2': ['B12', 'B8', 'B3'] }, 'ndvi' : { # 2 useful bands nir and red 'landsat_7': ['B4', 'B3'], 'landsat_5': ['B4', 'B3'], 'landsat_8': ['B5', 'B4'], 'sentinel_2': ['B8', 'B4'] }, 'ndwi' : { # 2 useful bands nir and swir 'landsat_7': ['B4', 'B5'], 'landsat_5': ['B4', 'B5'], 'landsat_8': ['B5', 'B6'], 'sentinel_2': ['B8', 'B11'] } } return bands def getCloudMask(satelliteId): """ return the cloud masking function adapted to the apropriate satellite""" if satelliteId in ['landsat_5', 'landsat_7']: def cloudMask(image): qa = image.select('pixel_qa') # If the cloud bit (5) is set and the cloud confidence (7) is high # or the cloud shadow bit is set (3), then it's a bad pixel. cloud = qa.bitwiseAnd(1 << 5).And(qa.bitwiseAnd(1 << 7)).Or(qa.bitwiseAnd(1 << 3)) # Remove edge pixels that don't occur in all bands mask2 = image.mask().reduce(ee.Reducer.min()) return image.updateMask(cloud.Not()).updateMask(mask2) elif satelliteId == 'landsat_8': def cloudMask(image): # Bits 3 and 5 are cloud shadow and cloud, respectively. cloudShadowBitMask = (1 << 3) cloudsBitMask = (1 << 5) # Get the pixel QA band. qa = image.select('pixel_qa') # Both flags should be set to zero, indicating clear conditions. mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0).And(qa.bitwiseAnd(cloudsBitMask).eq(0)) return image.updateMask(mask) elif satelliteId == 'sentinel_2': def cloudMask(image): qa = image.select('QA60') # Bits 10 and 11 are clouds and cirrus, respectively. cloudBitMask = (1 << 10) cirrusBitMask = (1 << 11) # Both flags should be set to zero, indicating clear conditions. mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(qa.bitwiseAnd(cirrusBitMask).eq(0)) return image.updateMask(mask)#.divide(10000) return cloudMask def getImage(sources, bands, mask, year): start = str(year) + '-01-01' end = str(year) + '-12-31' # priority selector for satellites for satelliteId in getSatellites(sources): dataset = ee.ImageCollection(getSatellites(sources)[satelliteId]) \ .filterDate(start, end) \ .filterBounds(mask) \ .map(getCloudMask(satelliteId)) if dataset.size().getInfo() > 0: satellite = satelliteId break clip = dataset.median().clip(mask).select(getAvailableBands()[bands][satelliteId]) return (clip, satelliteId) ```
{ "source": "12rambau/commitizen", "score": 2 }
#### File: commitizen/commands/schema.py ```python from commitizen import factory, out from commitizen.config import BaseConfig class Schema: """Show structure of the rule.""" def __init__(self, config: BaseConfig, *args): self.config: BaseConfig = config self.cz = factory.commiter_factory(self.config) def __call__(self): out.write(self.cz.schema()) ``` #### File: commitizen/config/base_config.py ```python from pathlib import Path from typing import Any, Dict, Optional, Union from commitizen.defaults import DEFAULT_SETTINGS class BaseConfig: def __init__(self): self._settings: Dict[str, Any] = DEFAULT_SETTINGS.copy() self._path: Optional[Path] = None @property def settings(self) -> Dict[str, Any]: return self._settings @property def path(self) -> Optional[Path]: return self._path def set_key(self, key, value): """Set or update a key in the conf. For now only strings are supported. We use to update the version number. """ raise NotImplementedError() def update(self, data: dict): self._settings.update(data) def add_path(self, path: Union[str, Path]): self._path = Path(path) def _parse_setting(self, data: Union[bytes, str]) -> dict: raise NotImplementedError() ``` #### File: commitizen/tests/conftest.py ```python import pytest from commitizen import cmd @pytest.fixture(scope="function") def tmp_git_project(tmpdir): with tmpdir.as_cwd(): cmd.run("git init") yield tmpdir @pytest.fixture(scope="function") def tmp_commitizen_project(tmp_git_project): with tmp_git_project.as_cwd(): tmp_commitizen_cfg_file = tmp_git_project.join("pyproject.toml") tmp_commitizen_cfg_file.write("[tool.commitizen]\n" 'version="0.1.0"\n') yield tmp_git_project ``` #### File: commitizen/tests/utils.py ```python import uuid from pathlib import Path from typing import Optional from commitizen import cmd, git class FakeCommand: def __init__(self, out=None, err=None, return_code=0): self.out = out self.err = err self.return_code = return_code def create_file_and_commit(message: str, filename: Optional[str] = None): if not filename: filename = str(uuid.uuid4()) Path(f"./{filename}").touch() cmd.run("git add .") git.commit(message) ```
{ "source": "12rambau/coverage_analysis", "score": 2 }
#### File: component/scripts/bfast_preanalysis.py ```python import time import numpy as np import pandas as pd import ee import ipyvuetify as v from matplotlib import pyplot as plt from component.message import ms from component import parameter as pm from .helpers import * from .cloud_masking import cloud_mask_S2 ee.Initialize() def analysis(aoi, start, end, sensors, t2, sr): coll = None coll_type = "SR" if sr else "TOA" if "l8" in sensors: # create collection (with masking) and add NDVI coll = create_collection( ee.ImageCollection(f"LANDSAT/LC08/C01/T1_{coll_type}"), t2, start, end, aoi, sr, ).map(addNDVIL8) if "l7" in sensors: # create collection (with masking) and add NDVI l7_coll = create_collection( ee.ImageCollection(f"LANDSAT/LE07/C01/T1_{coll_type}"), t2, start, end, aoi, sr, ).map(addNDVILsat) # merge collection coll = coll.merge(l7_coll) if coll else l7_coll if "l5" in sensors: # create collection (with masking) and add NDVI l5_coll = create_collection( ee.ImageCollection(f"LANDSAT/LT05/C01/T1_{coll_type}"), t2, start, end, aoi, sr, ).map(addNDVILsat) # merge collection coll = coll.merge(l5_coll) if coll else l5_coll if "l4" in sensors: # create collection (with masking) and add NDVI l4_coll = create_collection( ee.ImageCollection(f"LANDSAT/LT04/C01/T1_{coll_type}"), t2, start, end, aoi, sr, ).map(addNDVILsat) # merge collection coll = coll.merge(l4_coll) if coll else l4_coll if "s2" in sensors: # define collection name based on SR or TOA s2_coll_name = "S2_SR" if sr else "S2" # Import and filter S2 SR. s2_coll = ( ee.ImageCollection(f"COPERNICUS/{s2_coll_name}") .filterBounds(aoi) .filterDate(start, end) ) # Import and filter s2cloudless. s2_cloudless_coll = ( ee.ImageCollection("COPERNICUS/S2_CLOUD_PROBABILITY") .filterBounds(aoi) .filterDate(start, end) ) # Join the filtered s2cloudless collection to the SR collection by the 'system:index' property. joined_coll = ee.ImageCollection( ee.Join.saveFirst("s2cloudless").apply( **{ "primary": s2_coll, "secondary": s2_cloudless_coll, "condition": ee.Filter.equals( **{"leftField": "system:index", "rightField": "system:index"} ), } ) ) s2_coll = ( joined_coll.map(cloud_mask_S2) if sr else joined_coll.map(cloud_mask_S2) ) s2_coll = s2_coll.map(addNDVIS2) # merge collection coll = coll.merge(s2_coll) if coll else s2_coll return coll ``` #### File: component/scripts/cloud_masking.py ```python import ee import math ee.Initialize() def cloud_mask_S2(image): CLD_PRB_THRESH = 30 # Get s2cloudless image, subset the probability band. cld_prb = ee.Image(image.get("s2cloudless")).select("probability") # Condition s2cloudless by the probability threshold value. is_not_cloud = cld_prb.lt(CLD_PRB_THRESH).rename("clouds") return image.updateMask(is_not_cloud) def cloud_mask_S2_SR(image): CLD_PRB_THRESH = 30 NIR_DRK_THRESH = 0.15 CLD_PRJ_DIST = 1 BUFFER = 50 # Get s2cloudless image, subset the probability band. cld_prb = ee.Image(image.get("s2cloudless")).select("probability") # Condition s2cloudless by the probability threshold value. is_cloud = cld_prb.gt(CLD_PRB_THRESH).rename("clouds") # Identify water pixels from the SCL band. not_water = image.select("SCL").neq(6) # Identify dark NIR pixels that are not water (potential cloud shadow pixels). SR_BAND_SCALE = 1e4 dark_pixels = ( image.select("B8") .lt(NIR_DRK_THRESH * SR_BAND_SCALE) .multiply(not_water) .rename("dark_pixels") ) # Determine the direction to project cloud shadow from clouds (assumes UTM projection). shadow_azimuth = ee.Number(90).subtract( ee.Number(image.get("MEAN_SOLAR_AZIMUTH_ANGLE")) ) # Project shadows from clouds for the distance specified by the CLD_PRJ_DIST input. cld_proj = ( is_cloud.directionalDistanceTransform(shadow_azimuth, CLD_PRJ_DIST * 10) .reproject(**{"crs": image.select(0).projection(), "scale": 100}) .select("distance") .mask() .rename("cloud_transform") ) # Identify the intersection of dark pixels with cloud shadow projection. shadows = cld_proj.multiply(dark_pixels).rename("shadows") # Combine cloud and shadow mask, set cloud and shadow as value 1, else 0. is_cld_shdw = is_cloud.add(shadows).gt(0) # Remove small cloud-shadow patches and dilate remaining pixels by BUFFER input. # 20 m scale is for speed, and assumes clouds don't require 10 m precision. is_cld_shdw = ( is_cld_shdw.focal_min(2) .focal_max(BUFFER * 2 / 20) .reproject(**{"crs": image.select([0]).projection(), "scale": 20}) .rename("cloudmask") ) # return image.addBands(is_cld_shdw) return image.updateMask(is_cld_shdw.unmask(0).neq(1)) def cloudMaskLsatSR(image): # Select the QA band. qa = image.select("pixel_qa") # Get the internal_cloud_algorithm_flag bit. cloud_mask = bitwiseExtract(qa, 5).eq(0) shadow_mask = bitwiseExtract(qa, 3).eq(0) # Return an image masking out cloudy areas. return image.updateMask(cloud_mask).updateMask(shadow_mask) def cloudMaskLsatTOA(image): # Select the QA band. qa = image.select("BQA") # Get the internal_cloud_algorithm_flag bit. cloud_mask = bitwiseExtract(qa, 4) shadow_mask = bitwiseExtract(qa, 7, 8) # Return an image masking out cloudy areas. return image.updateMask(cloud_mask).updateMask(shadow_mask) def bitwiseExtract(value, fromBit, toBit=None): if not toBit: toBit = fromBit maskSize = ee.Number(1).add(toBit).subtract(fromBit) mask = ee.Number(1).leftShift(maskSize).subtract(1) return value.rightShift(fromBit).bitwiseAnd(mask) ```
{ "source": "12rambau/damage_proxy_map", "score": 2 }
#### File: component/io/dmp_io.py ```python class DmpIo(): def __init__(self): # inputs self.event = None self.username = None self.password = None ``` #### File: component/tile/dmp_tile.py ```python from sepal_ui import sepalwidgets as sw import ipyvuetify as v from component import widget as cw from component.scripts import * class DmpTile(sw.Tile): def __init__(self, aoi_io, dmp_io): # gather the io as class attribute self.aoi_io = aoi_io self.io = dmp_io # create the widgets self.date_picker = sw.DatePicker(label = 'Disaster event date') self.username = v.TextField( label = "Copernicus Scihub Username", v_model = None ) self.password = cw.PasswordField(label = "Copernicus Scihub Password") # bind them with the output self.output = sw.Alert() \ .bind(self.date_picker, self.io, 'event') \ .bind(self.username, self.io, 'username') \ .bind(self.password.text_field, self.io, 'password') self.btn = sw.Btn("Launch the process") # construct the tile super().__init__( id_ = "process_widget", title = "Damage proxy map", inputs = [self.date_picker, self.username, self.password], output = self.output, btn = self.btn ) # link the click to an event self.btn.on_event('click', self._on_click) def _on_click(self, widget, data, event): widget.toggle_loading() if not self.output.check_input(self.aoi_io.get_aoi_name(), 'no aoi'): return widget.toggle_loading() if not self.output.check_input(self.io.username, 'no username'): return widget.toggle_loading() if not self.output.check_input(self.io.password, 'no password'): return widget.toggle_loading() try: check_computer_size(self.output) create_dmp(self.aoi_io, self.io, self.output) self.output.add_live_msg('Computation complete', 'success') except Exception as e: self.output.add_live_msg(str(e), 'error') widget.toggle_loading() return ``` #### File: component/widget/password.py ```python import ipyvuetify as v from sepal_ui import sepalwidgets as sw from ipywidgets import jslink class PasswordField(v.Layout, sw.SepalWidget): EYE_ICONS = ['mdi-eye', 'mdi-eye-off'] TYPES = ['password', 'text'] def __init__(self, label = "password", **kwargs): # set visibility status self.password_viz = False # create the eye icon self.eye = v.Icon(class_ = 'ml-1', children=[self.EYE_ICONS[0]]) # create the widget self.text_field = v.TextField( v_model = None, type = self.TYPES[0], label=label ) # create the textfield super().__init__( Row = True, children = [self.text_field, self.eye], v_model = None, **kwargs ) # link the icon to the display behaviour self.eye.on_event('click', self._toggle_viz) def _toggle_viz(self, widget, event, data): viz = not self.password_viz # change password viz self.password_viz = viz self.eye.children = [self.EYE_ICONS[viz]] self.text_field.type = self.TYPES[viz] return ```
{ "source": "12rambau/damage_proxy_maps", "score": 2 }
#### File: component/scripts/process.py ```python import os import shutil import re import time from datetime import datetime as dt from datetime import timedelta from pathlib import Path from zipfile import ZipFile import numpy as np import pyproj import geopandas as gpd import fiona from osgeo import gdal import rasterio as rio from rasterio.merge import merge from rasterio.features import shapes import geemap from ost import Sentinel1Batch from ost.helpers import scihub from component import parameter as pm def check_computer_size(): """check if the computer size will match the reuirements of the app""" # we get available ram with open("/proc/meminfo") as f: meminfo = f.read() matched = re.search(r"^MemTotal:\s+(\d+)", meminfo) if matched: mem_total_kB = int(matched.groups()[0]) # we check if available ram and cpus are enough if mem_total_kB / 1024 / 1024 < 30 or os.cpu_count() < 4: raise Exception( "WARNING: You should run this notebook with an instance of at least 32Gb of Ram and 4 CPUs." ) return def create_dmp(aoi_model, model, output): # create start date from 60 days before event_date = dt.strptime(model.event, "%Y-%m-%d") start = dt.strftime(event_date + timedelta(days=-60), "%Y-%m-%d") end = dt.strftime((event_date + timedelta(days=+30)), "%Y-%m-%d") # define project dir project_dir = pm.result_dir / f"{model.event}_{aoi_model.name}" output.add_live_msg(" Setting up project") aoi = aoi_model.gdf.dissolve().geometry.to_wkt().values[0] s1_slc = Sentinel1Batch( project_dir=project_dir, aoi=aoi, start=start, end=end, product_type="SLC", ard_type="OST-RTC", ) # set tmp_dir s1_slc.temp_dir = pm.tmp_dir s1_slc.config_dict["temp_dir"] = pm.tmp_dir ## we get available ram # with open('/proc/meminfo') as f: # meminfo = f.read() # matched = re.search(r'^MemTotal:\s+(\d+)', meminfo) # # if matched: # mem_total_kB = int(matched.groups()[0]) # ## if we have more than 100GB ram we download there, ## that should speed up processing # if mem_total_kB/1024/1024 > 100: # print('Using ramdisk') # s1_slc.download_dir = '/ram/download' # Path(s1_slc.download_dir).mkdir(parents=True, exist_ok=True) # s1_slc.config_dict['download_dir'] = s1_slc.download_dir # # get username and password from ost.helpers.settings import HERBERT_USER if model.username and model.password: s1_slc.scihub_uname = model.username s1_slc.scihub_pword = model.password else: s1_slc.scihub_uname = HERBERT_USER["uname"] s1_slc.scihub_pword = HERBERT_USER["pword"] s1_slc.asf_uname = HERBERT_USER["uname"] s1_slc.asf_pword = HERBERT_USER["asf_pword"] output.add_live_msg(" Searching for data") s1_slc.search(base_url="https://scihub.copernicus.eu/dhus/") # s1_slc.inventory_file = s1_slc.inventory_dir.joinpath('full.inventory.gpkg') # s1_slc.read_inventory() for i, track in enumerate(s1_slc.inventory.relativeorbit.unique()): # filter by track df = s1_slc.inventory[s1_slc.inventory.relativeorbit == track].copy() # get all acquisitions dates for that track datelist = sorted( [dt.strptime(date, "%Y%m%d") for date in df.acquisitiondate.unique()] ) # get difference in dates date_diff = [ int(str(date - event_date).split(" ")[0].split(":")[0]) for date in datelist ] # get only the negative ones (i.e. before event) image_days = sorted([int(d) for d in date_diff if int(d) < 0])[-2:] # continue if not if len(image_days) != 2: output.add_live_msg( f" Not enough pre-event images available for track {track}", "warning" ) time.sleep(2) continue output.add_live_msg(f" Including track {track} for processing") # get only positives one (ie. after event) #### we ignore images at the same day? #### or do we include, i.e. >= 0 image_days.append(sorted([int(d) for d in date_diff if int(d) > 0])[0]) print(image_days) if len(image_days) != 3: output.add_live_msg( """ Not all imagery is yet available. </br> Processing the pre-event images for now </br> Continue processing after new imagery is available """ ) #################################################### ## Add an info when this will be the case ## #################################################### idx = [True if date in image_days else False for date in date_diff] final_dates = [ dt.strftime(date, "%Y%m%d") for date in np.array(datelist)[np.array(idx) == True] ] # if i == 0: final_df = s1_slc.inventory[ (s1_slc.inventory.acquisitiondate.isin(final_dates)) & (s1_slc.inventory.relativeorbit == track) ] # else: # final_df = final_df.append( # s1_slc.inventory[ # (s1_slc.inventory.acquisitiondate.isin(final_dates)) & # (s1_slc.inventory.relativeorbit == track) # ] # ) output.add_live_msg( " Downloading relevant Sentinel-1 SLC scenes ... (this may take a while)" ) try: s1_slc.download( final_df, mirror=2, concurrent=10, uname=s1_slc.asf_uname, pword=s1_slc.asf_pword, ) except: print("here") scihub.batch_download( final_df, s1_slc.download_dir, s1_slc.scihub_uname, s1_slc.scihub_pword, concurrent=2, base_url="https://scihub.copernicus.eu/dhus", ) output.add_live_msg(" Create burst inventory") s1_slc.create_burst_inventory(final_df) # setting ARD parameters output.add_live_msg(" Setting processing parameters") s1_slc.ard_parameters["single_ARD"]["resolution"] = 30 # in metres s1_slc.ard_parameters["single_ARD"]["create_ls_mask"] = False s1_slc.ard_parameters["single_ARD"]["backscatter"] = False s1_slc.ard_parameters["single_ARD"]["coherence"] = True s1_slc.ard_parameters["single_ARD"]["coherence_bands"] = "VV" # 'VV, VH' # production of polarimetric layers s1_slc.ard_parameters["single_ARD"][ "H-A-Alpha" ] = False # does not give a lot of additional information # resampling of image (not so important) s1_slc.ard_parameters["single_ARD"]["dem"][ "image_resampling" ] = "BICUBIC_INTERPOLATION" # 'BILINEAR_INTERPOLATION' # multi-temporal speckle filtering is quite effective s1_slc.ard_parameters["time-series_ARD"]["mt_speckle_filter"][ "filter" ] = "Boxcar" s1_slc.ard_parameters["time-series_ARD"]["remove_mt_speckle"] = True s1_slc.ard_parameters["mosaic"]["cut_to_aoi"] = True # workers = int(4) if os.cpu_count() / 4 > 4 else int(os.cpu_count() / 4) output.add_live_msg(f" We process {workers} bursts in parallel.") s1_slc.config_dict["max_workers"] = workers s1_slc.config_dict["executor_type"] = "concurrent_processes" # process output.add_live_msg("Processing... (this may take a while)") s1_slc.bursts_to_ards( timeseries=True, timescan=False, mosaic=False, overwrite=False ) if len(image_days) != 3: raise Exception("Something went wrong") else: output.add_live_msg("calculate change and merge results") bursts = list(s1_slc.processing_dir.glob(f"[A,D]*{track}*")) # we create the CCD for each burst for burst in bursts: track_name = burst.name[:4] try: coh_1 = list(burst.glob("Timeseries/01.*coh.VV.tif"))[0] coh_2 = list(burst.glob("Timeseries/02.*coh.VV.tif"))[0] dates = sorted( [ coh_1.name.split(".")[1], coh_1.name.split(".")[2], coh_2.name.split(".")[2], ] ) dst_file = burst.joinpath( f"Timeseries/ccd_{burst.name}_{'_'.join(dates)}.tif" ) with rio.open(coh_1) as pre_coh: pre_arr = pre_coh.read() meta = pre_coh.meta meta.update(dtype="uint8", nodata=0) with rio.open(coh_2) as post_coh: post_arr = post_coh.read() coh_diff = np.subtract(pre_arr, post_arr) coh_diff[coh_diff < 0.27] = 0 coh_diff = coh_diff * 100 with rio.open(dst_file, "w", **meta) as dst: dst.write(coh_diff.astype("uint8")) except: pass # ----------------------------------------- # and merge the result src_files_to_mosaic = [] for file in s1_slc.processing_dir.glob( f"*[A,D]*{track}_*/Timeseries/ccd*tif" ): src = rio.open(file) src_files_to_mosaic.append(src) mosaic, out_trans = merge(src_files_to_mosaic) out_meta = src.profile.copy() # Update the metadata out_meta.update( driver="GTiff", height=mosaic.shape[1], width=mosaic.shape[2], transform=out_trans, crs=src.crs, tiled=True, blockxsize=128, blockysize=128, compress="lzw", ) tmp_dir = Path(s1_slc.config_dict["temp_dir"]) tmp_mrg = tmp_dir.joinpath(f"ccd_{track_name}_{'_'.join(dates)}.tif") with rio.open(tmp_mrg, "w", **out_meta) as dest: dest.write(mosaic) # crop to aoi (some ost routine) shapes_ = [row.geometry for _, row in aoi_model.gdf.iterrows()] with rio.open(tmp_mrg) as src: out_image, out_transform = rio.mask.mask(src, shapes_, crop=True) out_meta = src.profile out_meta.update( { "driver": "GTiff", "height": out_image.shape[1], "width": out_image.shape[2], "transform": out_transform, } ) # create final output directory dpm_out_dir = project_dir / f"Damage_Proxy_Maps" dpm_out_dir.mkdir(parents=True, exist_ok=True) out_ds_tif = dpm_out_dir / f"ccd_{track_name}_{'_'.join(dates)}.tif" with rio.open(out_ds_tif, "w", **out_meta) as dest: dest.write(out_image) # delete tmpmerge tmp_mrg.unlink() # ----------------------------------------- # ----------------------------------------- # kmz and dmp output # write a color file to tmp ctfile = tmp_dir.joinpath("colourtable.txt") f = open(ctfile, "w") ct = [ "0 0 0 0 0\n" "27 253 246 50 255\n" "35 253 169 50 255\n" "43 253 100 50 255\n" "51 253 50 50 255\n" "59 255 10 10 255\n" "255 253 0 0 255" ] f.writelines(ct) f.close() out_dpm_tif = dpm_out_dir / f"dpm_{track_name}_{'_'.join(dates)}.tif" demopts = gdal.DEMProcessingOptions( colorFilename=str(ctfile), addAlpha=True ) gdal.DEMProcessing( str(out_dpm_tif), str(out_ds_tif), "color-relief", options=demopts ) opts = gdal.TranslateOptions( format="KMLSUPEROVERLAY", creationOptions=["format=png"] ) gdal.Translate( str(out_dpm_tif.with_suffix(".kmz")), str(out_dpm_tif), options=opts ) ### adding legend like this to KMZ # added = [ # "\t\t<ScreenOverlay>\n", # "\t\t\t<name>\n", # "Legend: Damage Proxy Map\n", # "\t\t\t</name>\n", # "\t\t\t<Icon>\n", # "\t\t\t\t<href>https://raw.githubusercontent.com/12rambau/damage_proxy_map/refactoring/component/message/legend.png</href>\n", # "\t\t\t</Icon>\n", # '\t\t\t<overlayXY x="0.98" y="0.14" xunits="fraction" yunits="fraction"/>\n', # '\t\t\t<screenXY x="0.98" y="0.14" xunits="fraction" yunits="fraction"/>\n', # '\t\t\t<rotationXY x="0.5" y="0.5" xunits="fraction" yunits="fraction"/>\n', # '\t\t\t<size x="0.1" y="0.18" xunits="fraction" yunits="fraction"/>\n', # "\t\t</ScreenOverlay>\n", # "\t</Document>\n", # "</kml>\n" # ] # tmpzip = tmp_dir.joinpath('zipped') # tmpzip.mkdir(parents=True, exist_ok=True) # # with ZipFile(out_dmp_tif.with_suffix('.kmz')) as zip_ref: # zip_ref.extractall(tmpzip) # with open(tmpzip.joinpath('doc.kml')) as f: # # lines = f.readlines() # lines = lines[:-2] # lines.extend(added) # # with open(tmpzip.joinpath('doc.kml'), 'w') as f: # for ele in lines: # f.write(ele) # # with ZipFile(out_dmp_tif.with_suffix('.kmz'), 'w') as zip_ref: # # Iterate over all the files in directory # for folderName, subfolders, filenames in os.walk(tmpzip): # for filename in filenames: # #create complete filepath of file in directory # filePath = os.path.join(folderName, filename) # # Add file to zip # zip_ref.write(filePath, os.path.join('/0/0/', os.path.basename(filePath))) # # ----------------------------------------- # ----------------------------------------- # polygonize (to points) with rio.open(out_ds_tif) as src: image = src.read() mask = image != 0 geoms = [ {"properties": {"raster_val": v}, "geometry": s} for i, (s, v) in enumerate( shapes(image, mask=mask, transform=src.transform) ) ] # geoms = list(results) gpd_polygonized_raster = gpd.GeoDataFrame.from_features(geoms) gpd_polygonized_raster["geometry"] = gpd_polygonized_raster[ "geometry" ].centroid gpd_polygonized_raster.to_file( out_dpm_tif.with_suffix(".geojson"), driver="GeoJSON" ) # remove storage intense files try: [file.unlink() for file in Path(s1_slc.download_dir).glob("**/*zip")] [ file.unlink() for file in Path(s1_slc.download_dir).glob("**/*downloaded") ] [file.unlink() for file in Path(s1_slc.processing_dir).glob("**/*img")] [file.unlink() for file in Path(s1_slc.processing_dir).glob("**/*tif")] [ file.unlink() for file in Path(s1_slc.processing_dir).glob("**/*processed") ] except: pass # ----------------------------------------- try: shutil.rmtree(s1_slc.download_dir) shutil.rmtree(s1_slc.processing_dir) except: pass return ```
{ "source": "12rambau/FCDM", "score": 2 }
#### File: component/parameter/viz_params.py ```python def viz_forest_mask(key): mask = { "roadless": { "min": 1, "max": 15, "palette": [ "#005000", # val 1. Evergreen forest "#336333", # val 2. Evergreen forest within the plantation area "#9b503c", # val 3. NEW degradation "#87732d", # val 4. Ongoing degradation (disturbances still detected) "#648723", # val 5. Degraded forest (former degradation, no disturbances detected anymore) "#ff1400", # val 6. NEW deforestation (may follow degradation) "#ffff9b", # val 7. Ongoing deforestation (disturbances still detected) "#98e600", # val 8. NEW Regrowth "#32a000", # val 9. Regrowthing "#ffffff", # val 10. Other land cover (not water) "#004da8", # val 11. Permanent Water (pekel et al.2015) "#009dc8", # val 12. Seasonal Water (pekel et al.2015) "#005000", # val 13. Not enough data at the beginning of the archive (before StartYear but forest) "#005000", # val 14. No data for this specific year (after StartYear but forest) "#ffffff", # val 15. Not enough data at the beginning of the archive but other lc ], }, "gfc": {"min": 0, "max": 1, "palette": ["#ffffcc", "#006600"]}, "no_map": {}, } if not key in mask.keys(): key = "gfc" return mask[key] legend_dict = {"forest mask": "#006600", "change": "Ce0f0f", "no change": "D3D3D3"} ``` #### File: component/scripts/process_scripts.py ```python from functools import partial import ee ee.Initialize() from component import parameter as cp def check_forest_mask(asset, ee_aoi): """check that the given Image asset is a valid mask with values between 0 and 1""" # exit on predefined ones if asset in [v["value"] for v in cp.forest_map]: return image = ee.Image(asset) # comupte a reducer reduction = image.reduceRegion( reducer=ee.Reducer.frequencyHistogram(), geometry=ee_aoi.geometry(), bestEffort=True, ) # Remove all the unnecessary reducer output structure and make a list of values. values = ( ee.Dictionary(reduction.get(image.bandNames().get(0))) .keys() .map(ee.Number.parse) .getInfo() ) print(values) # raise an exception if values are out of 0 1 if not all(v in [0, 1] for v in values): raise Exception( "To be used as a forest mask, the selected asset need to be a binary Image with only 0 and 1 values" ) return def join_landsat_collections(coll1, coll2): """Joining of SR and TOA collections in order to make combined use of pixel_qa band and simple_cloud_score algorithm (Thanks to <NAME>)""" eqfilter = ee.Filter.equals(rightField="system:index", leftField="system:index") join = ee.ImageCollection(ee.Join.inner().apply(coll1, coll2, eqfilter)) # Inner join returns a FeatureCollection with a primary and secondary set of properties. # vProperties are collapsed into different bands of an image. joined = join.map(lambda el: ee.Image.cat(el.get("primary"), el.get("secondary"))) return joined.sort("system:time_start") def IFORCE_PINO_step2(image, medianImage, apply_buffer, cloud_buffer): """ Masking Step S2_1 for Level-1C: Masking for clouds and cloud shadows (Sentinel-2) S2 adapted version of single date classification proposed in http://publications.jrc.ec.europa.eu/repository/handle/JRC95065 Copyright: <NAME> (December 2018; <EMAIL>) """ # this function is only applyed to sentinel 2 sensor so can safely remove the sensor from the arguments # and get all the useful bands from here bands = cp.sensors["sentinel 2"]["bands"] qa60 = image.select(bands["qa60"]) blue = image.select(bands["blue"]) aerosol = image.select(bands["aerosol"]) water_vapor = image.select(bands["water_vapor"]) green = image.select(bands["green"]) red = image.select(bands["red"]) red_edge_3 = image.select(bands["red_edge_3"]) red_edge_4 = image.select(bands["red_edge_4"]) swir1 = image.select(bands["swir1"]) red_edge_2 = image.select(bands["red_edge_2"]) qa60 = image.select(bands["qa60"]) esa_mask = qa60.eq(2048).And(blue.gt(0.12)).And(aerosol.gt(1800)) cloud_mask = ( aerosol.gt(2000) .Or(aerosol.gt(1340).And(water_vapor.gt(300))) .Or(aerosol.gt(1750).And(water_vapor.gt(230))) .Or(esa_mask) ) growing111 = ( blue.lte(green.add(blue.multiply(0.05))) .And(green.lte(red.add(green.multiply(0.05)))) .And(red.lte(red_edge_3.add(red.multiply(0.05)))) .And(red_edge_3.lte(red_edge_4.add(red_edge_3.multiply(0.05)))) .And(red_edge_4.lte(swir1.add(red_edge_4.multiply(0.05)))) .And(aerosol.lt(1500)) ) growing28 = ( blue.lte(green) .lte(red) .lte(red_edge_2) .lte(red_edge_3) .lte(red_edge_4) .And(swir1.gte(red_edge_2)) .And(aerosol.lt(1500)) ) aerosol_mask = aerosol.gt(1350).And(water_vapor.gt(400)).Or(aerosol.gt(2000)) blue_red_swir1 = [bands["blue"], bands["red"], bands["swir1"]] spdist = image.select(blue_red_swir1).spectralDistance( medianImage.select(blue_red_swir1) ) mask1C_blue = blue.subtract(medianImage.select(bands["blue"])).divide(blue) mask1C_red = red.subtract(medianImage.select(bands["red"])).divide(red) mask1C_swir1 = swir1.subtract(medianImage.select(bands["swir1"])).divide(swir1) mask1C_blue = mask1C_blue.gt(0.15).And(blue.gt(1300)).And(aerosol_mask) mask1C_red = mask1C_red.gt(0.2).And(aerosol_mask) mask1C_swir1 = mask1C_swir1.lt(-0.68).And( spdist.gt(0.18) ) # remove small shadow pixels # mask1C_swir1 takes lots of water (if changes) - distance is more robust and confirm both final_mask = mask1C_red.multiply(2).add(mask1C_swir1) # keny set to -0.65 or -0.67 # remove change from forest to soil using RED band < 1700 final_mask_mod = final_mask.where(final_mask.eq(2).And(green.lt(1000)), 0).where( mask1C_blue, 3 ) if apply_buffer: final_mask_mod = final_mask_mod.gt(0).focal_max( cloud_buffer, "circle", "meters", 1 ) final_mask_mod = final_mask_mod.Or(cloud_mask).where(growing111.Or(growing28), 0) return image.updateMask(final_mask_mod.eq(0)) def IFORCE_PINO_step1(image, apply_buffer, cloud_buffer): """ Single Date Classification ONLY MAIN CLASSED + WATER Copyright: <NAME> (December 2018; <EMAIL>) """ # I took the liberty of removing ununsude parameters from the function # this function is only applyed to sentinel 2 sensor so can safely remove the sensor from the arguments # and get all the useful bands from here bands = cp.sensors["sentinel 2"]["bands"] blue = image.select(bands["blue"]) green = image.select(bands["green"]) red = image.select(bands["red"]) red_edg_3 = image.select(bands["red_edge_3"]) red_edge_4 = image.select(bands["red_edge_4"]) swir1 = image.select(bands["swir1"]) aerosol = image.select(bands["aerosol"]) red_edge_2 = image.select(bands["red_edge_2"]) qa60 = image.select(bands["qa60"]) water_vapor = image.select(bands["water_vapor"]) growing111 = ( blue.lte(green.add(blue.multiply(0.05))) .And(green.lte(red.add(green.multiply(0.05)))) .And(red.lte(red_edge_3.add(red.multiply(0.05)))) .And(red_edge_3.lte(red_edge_4.add(red_edge_3.multiply(0.05)))) .And(red_edge_4.lte(swir1.add(red_edge_4.multiply(0.05)))) .And(swir1.lt(1500)) ) growing28 = ( blue.lte(green) .lte(red) .lte(red_edge_2) .lte(red_edge_3) .lte(red_edge_4) .And(swir1.gte(red_edge_2)) .And(aerosol.lt(1500)) ) esa_mask = qa60.eq(2048).And(blue.gt(0.12)).And(aerosol.gt(1800)) cloud_mask = ( aerosol.gt(2000) .Or(aerosol.gt(1340).And(water_vapor.gt(300))) .Or(aerosol.gt(1750).And(water_vapor.gt(230))) .Or(esa_mask) ) if apply_buffer: cloud_mask = cloud_mask.focal_max(cloud_buffer, "circle", "meters", 1) cloud_mask = cloud_mask.where(growing111.Or(growing28), 0) return image.updateMask(cloud_mask.eq(0)) def masking_1QB(image, cloud_buffer, sensor): """Masking options for clouds (Landsat 8)""" # this fonction is only adapted to landsat 8 # I let sensor as an option to fit with the other masking function prototypes bands = cp.sensors[sensor]["bands"] nir = image.select(bands["nir"]) swir2 = image.select(bands["swir2"]) pixel_qa = image.select(bands["pixel_qa"]) cloud = image.select(bands["cloud"]) # build by the simple_cloud_score bright_temp1 = image.select(bands["bright_temp1"]) # start the filtering no_cloud_mask = nir.eq(0).And(swir2.eq(0)) cloud_pixel_qa = pixel_qa.bitwiseAnd(32).neq(0).And(cloud.gt(20)) cloud_shadow_pixel_qa = pixel_qa.bitwiseAnd(8).neq(0) cloud_conf_qa = ( pixel_qa.bitwiseAnd(64) .add(pixel_qa.bitwiseAnd(128)) .interpolate([0, 64, 128, 192], [0, 0, 1, 1], "clamp") .int() .And(cloud.gt(20)) ) cirrus_conf_qa = ( pixel_qa.bitwiseAnd(256) .add(pixel_qa.bitwiseAnd(512)) .interpolate([0, 256, 512, 768], [0, 0, 1, 1], "clamp") .int() .And(cloud.gt(20)) ) simple_cloud_score = cloud.gte(13) unsure_clouds = cloud.lt(13).And(cloud.gte(9)).And(bright_temp1.lte(292)) # aggregate all to build the mask masked_cloud = ( no_cloud_mask.Or(cloud_pixel_qa) .Or(cloud_shadow_pixel_qa) .Or(cloud_conf_qa) .Or(cirrus_conf_qa) .Or(simple_cloud_score) .Or(unsure_clouds) ) if cloud_buffer: masked_cloud = masked_cloud.focal_max(cloud_buffer, "circle", "meters", 1) return image.updateMask(masked_cloud.add(1).unmask(0).eq(1)) def masking_S_1(image, cloud_buffer, sensor): """Masking Step S2_1 for Level-2A: Masking options for clouds (Sentinel-2) (still will be worked on)""" # this fonction is only adapted to sentinel 2 # I let sensor as an option to fit with the other masking function prototypes scl = image.select(cp.sensors[sensor]["bands"]["scl"]) S2A_clouds = scl.eq(7).Or(scl.eq(8)).Or(scl.eq(9)).Or(scl.eq(10)) S2A_shadows = scl.eq(3) S2A_water = scl.eq(6) S2A_masked = S2A_clouds.Or(S2A_shadows).Or(S2A_water) if cloud_buffer: S2A_masked = S2A_masked.focal_max(cloud_buffer, "circle", "meters", 1) return image.updateMask(S2A_masked.add(1).unmask(255).eq(1)) def masking_L_1(image, cloud_buffer, sensor): """Masking Step 1: Masking options for clouds (any Landsat sensor)""" bands = cp.sensors[sensor]["bands"] pixel_qa = image.select(bands["pixel_qa"]) cloud = image.select("cloud") # from the simplecloud algorithm nir = image.select(bands["nir"]) swir2 = image.select(bands["swir2"]) bright_temp1 = image.select(bands["bright_temp1"]) no_cloud_mask = nir.eq(0).And(swir2.eq(0)) cloud_pixel_qa = pixel_qa.bitwiseAnd(32).neq(0) cloud_shadow_pixel_qa = pixel_qa.bitwiseAnd(8).neq(0) cloud_conf_qa = ( pixel_qa.bitwiseAnd(64) .add(pixel_qa.bitwiseAnd(128)) .interpolate([0, 64, 128, 192], [0, 0, 1, 1], "clamp") .int() ) cloud_shadow_sr_cloud_qa = ( image.select("sr_cloud_qa").bitwiseAnd(4).neq(0) ) # need to investigate where 'sr_cloud_qa' band come from simple_cloud_score = cloud.gte(13) unsure_clouds = cloud.lt(13).And(cloud.gte(9)).And(bright_temp1.lte(292)) masked_clouds = ( no_cloud_mask.Or(cloud_pixel_qa) .Or(cloud_shadow_pixel_qa) .Or(cloud_conf_qa) .Or(cloud_shadow_sr_cloud_qa) .Or(simple_cloud_score) .Or(unsure_clouds) ) if cloud_buffer: masked_clouds = masked_clouds.focal_max(cloud_buffer, "circle", "meters", 1) return image.updateMask(masked_clouds.add(1).unmask(0).eq(1)) masking_1 = { "landsat 4": masking_L_1, "landsat 5": masking_L_1, "landsat 7": masking_L_1, "landsat 8": masking_1QB, "sentinel 2": masking_S_1, } def ddr_filter(nbr_diff, threshold, radius, nb_disturbances): """ clean the final result using a Disturbing-density-related (DDR) filtering If a certain number of disturbance events is not reach within the moving kernel then the pixel value is masked (set to 0) """ # create a mask with the event threshold nbr_diff_threshold = nbr_diff.where(nbr_diff.lt(threshold), 0).And( (nbr_diff.where(nbr_diff.gte(threshold), 1)) ) # count the number of event in the kernel according to the mask nbr_nb_events = nbr_diff.reduceNeighborhood( reducer=ee.Reducer.sum().unweighted(), kernel=ee.Kernel.circle(radius, "meters") ) # mask pixel where there are not enough events in the kernel nbr_nb_events_mask = ( nbr_diff.where(nbr_nb_events.gte(nb_disturbances), 1) .And((nbr_diff.where(nbr_nb_events.lt(nb_disturbances), 0))) .unmask(-2) ) # get back the real values where necessary nbr_diff_ddr = ( nbr_nb_events_mask.multiply(nbr_diff).unmask(-2).updateMask(nbr_diff.mask()) ) return nbr_diff_ddr def masking_2(image, forest_mask, year, forest_map, sensor): """Masking Step 2: Masking of sensor errors and non-forest areas""" bands = cp.sensors[sensor]["bands"] nir = image.select(bands["nir"]) swir2 = image.select(bands["swir2"]) blue = image.select(bands["blue"]) green = image.select(bands["green"]) red = image.select(bands["red"]) swir1 = image.select(bands["swir1"]) sensor_error = ( nir.lte(0) .Or(swir2.lte(0)) .Or(blue.lte(0)) .Or(green.lte(0)) .Or(red.lte(0)) .Or(swir1.lte(0)) .add(1) .unmask(0) ) sensor_error_buffer = sensor_error.focal_min( radius=50, kernelType="circle", units="meters", iterations=1 ) image = image.unmask(0) out = { "no_map": image.updateMask(sensor_error_buffer.eq(1).And(forest_mask.eq(1))), "roadless": image.updateMask(sensor_error_buffer.eq(1)).updateMask( forest_mask.select(f"Dec{year + 1}") .eq(1) .Or(forest_mask.select(f"Dec{year + 1}").eq(2)) .Or(forest_mask.select(f"Dec{year + 1}").eq(13)) .Or(forest_mask.select(f"Dec{year + 1}").eq(14)) ), "gfc": image.updateMask(sensor_error_buffer.eq(1)).updateMask(forest_mask), } if forest_map not in out.keys(): forest_map = "gfc" return out[forest_map] def compute_nbr(image, sensor): """ Compute nbr index NBR = (NIR-SWIR2)/(NIR+SWIR2) """ bands = cp.sensors[sensor]["bands"] nir = image.select(bands["nir"]) swir2 = image.select(bands["swir2"]) doy = ee.Algorithms.Date(ee.Number(image.get("system:time_start"))) yearday = ee.Number(doy.get("year")).add( ee.Number.parse(doy.format("D")).divide(365) ) # create an image out of the yearday value yearday = ee.Image.constant(yearday).float().rename("yearday") nbr = nir.subtract(swir2).divide(nir.add(swir2)).rename("NBR") return nbr.addBands(yearday) def adjustment_kernel(image, kernel_size): """ Adjustment kernel function, which self-references each NBR input scene (in order to allow inter-scene comparability) """ nbr = image.select("NBR") yearday = image.select("yearday") return nbr.subtract(nbr.focal_median(kernel_size, "circle", "meters")).addBands( yearday ) def capping(image): """Capping at 0 and -1 (positive values are set to 0; values <= -1 are set to -1 because the latter mainly refer to active fires)""" nbr = image.select("NBR") yearday = image.select("yearday") return nbr.where(nbr.gt(0), 0).where(nbr.lt(-1), -1).multiply(-1).addBands(yearday) # getting the forest_mask var def get_forest_mask(forest_map, year, treecover, aoi): """return the forest mask corresponding to the forest_map input""" hansen = ee.Image(cp.hansen_gfc).clip(aoi) if forest_map == "no_map": forest_mask = hansen.select("treecover2000").gte(0) forest_mask_display = forest_mask.updateMask(forest_mask) elif forest_map == "roadless": forest_mask = ee.ImageCollection(cp.roadless).mosaic().byte().clip(aoi) forest_mask_display = forest_mask.updateMask(forest_mask).select(f"Dec{year+1}") elif forest_map == "gfc": basemap2000 = hansen.unmask(0).select("treecover2000").gte(treecover) loss_year = hansen.unmask(0).select("lossyear") change = loss_year.lte(year - 2000).And(loss_year.gt(0)).bitwise_not() forest_mask = basemap2000.multiply(change) forest_mask_display = forest_mask.select("treecover2000").mask( forest_mask ) # .select(f'treecover2000') else: forest_mask = ee.Image(forest_map).select(0) forest_mask_display = forest_mask.updateMask(forest_mask) return (forest_mask, forest_mask_display) def get_collection( sensor, start, end, forest_map, year, forest_mask, cloud_buffer, aoi ): # create the image collection sr_collection = ( ee.ImageCollection(cp.sensors[sensor]["dataset"]["sr"]) .filterDate(start, end) .filterBounds(aoi) ) sr_toa_collection = sr_collection if "landsat" in sensor: # create the cloud ImageCollection toa_collection = ( ee.ImageCollection(cp.sensors[sensor]["dataset"]["toa"]) .filterDate(start, end) .filterBounds(aoi) .map(ee.Algorithms.Landsat.simpleCloudScore) .select("cloud") ) sr_toa_collection = join_landsat_collections(sr_collection, toa_collection) # masking of sensor errors and non-forest areas sr_toa_masked_collection = sr_toa_collection.map( partial( masking_2, forest_mask=forest_mask, year=year, forest_map=forest_map, sensor=sensor, ) ) # cloud masking sr_toa_masked_collection = sr_toa_masked_collection.map( partial(masking_1[sensor], sensor=sensor, cloud_buffer=cloud_buffer) ) return sr_toa_masked_collection ``` #### File: component/tile/basemap_tile.py ```python from sepal_ui import sepalwidgets as sw import ipyvuetify as v from component import parameter as cp from component.message import cm from component import widget as cw class BasemapTile(sw.Tile): def __init__(self, model): # no need to gather the io object as attribute as there are no custom methods # create the widgets self.forest_map = cw.CustomAssetSelect( label=cm.input_lbl.forest_map, v_model=model.forest_map, types=["IMAGE"] ) self.forest_map.default_asset = cp.forest_map # self.forest_map = v.Select(label=cm.input_lbl.forest_map, items=cp.forest_map, v_model=model.forest_map) self.year = v.Slider( class_="mt-5", label=cm.input_lbl.forest_map_year, min=cp.forest_map_min_year, max=cp.forest_map_max_year, v_model=model.forest_map_year, thumb_label="always", ) self.tree_cover = v.Slider( class_="mt-5", label=cm.input_lbl.treecover, v_model=model.treecover, thumb_label="always", ) # bind the inputs to the io through an alert model.bind(self.forest_map, "forest_map").bind( self.year, "forest_map_year" ).bind(self.tree_cover, "treecover") # create the tile super().__init__( "nested_widget", cm.tile.basemap, inputs=[self.forest_map, self.year, self.tree_cover], ) # js behavior self.forest_map.observe(self._update_status, "v_model") model.observe(self._select_year, "reference_start") def _update_status(self, change): """disable the hansen params if no forest mask is selected""" # read the value # make the difference between preselected and assets value = change["new"]["value"] if type(change["new"]) == dict else change["new"] date = value in ["gfc", "roadless"] treecover = value == "gfc" self.year.disabled = not date self.tree_cover.disabled = not treecover return self def _select_year(self, change): year = int(change["new"][:4]) self.year.v_model = min( max(cp.forest_map_min_year, year), cp.forest_map_max_year ) ``` #### File: component/tile/fcdm_tile.py ```python from sepal_ui import sepalwidgets as sw import ipyvuetify as v from component import parameter as cp from component.message import cm class FcdmTile(sw.Tile): def __init__(self, model): # create inputs radius_title = v.Html(tag="h4", class_="mt-5", children=[cm.input_lbl.self_ref]) radius = v.Slider( class_="mt-5", label=cm.input_lbl.kernel_radius, max=cp.max_kernel_radius, step=10, v_model=model.kernel_radius, thumb_label="always", ) ddr_title = v.Html(tag="h4", children=[cm.input_lbl.ddr]) threshold = v.Slider( class_="mt-5", label=cm.input_lbl.filter_threshold, v_model=model.filter_threshod, step=0.001, max=0.1, thumb_label="always", ) filtering_radius = v.Slider( class_="mt-5", label=cm.input_lbl.filter_radius, min=cp.min_radius_filtering_kernel, max=cp.max_radius_filtering_kernel, v_model=model.filter_radius, step=10, thumb_label="always", ) cleaning = v.Slider( class_="mt-5", label=cm.input_lbl.disturbance_event, max=cp.max_disturbing_event_per_kernel, v_model=model.cleaning_offset, thumb_label="always", ) # bind to the io object model.bind(radius, "kernel_radius").bind(threshold, "filter_threshod").bind( filtering_radius, "filter_radius" ).bind(cleaning, "cleaning_offset") super().__init__( "nested_widget", cm.tile.fcdm, inputs=[ radius_title, radius, ddr_title, threshold, filtering_radius, cleaning, ], ) ``` #### File: component/tile/result_tile.py ```python from sepal_ui import sepalwidgets as sw from sepal_ui import mapping as sm from ipyleaflet import WidgetControl from component.message import cm from component import widget as cw from component import parameter as cp class ResultTile(sw.Tile): def __init__(self): # create a save widget self.save = cw.ExportMap() # create the map self.m = cw.CustomMap() self.m.max_zoom = ( 14 # after this zoom level GEE crash and refuse to display images ) # add a legend to the map self.m.add_legend(legend_title="Legend", legend_dict=cp.legend_dict) # add the export control self.m.add_control(WidgetControl(widget=self.save, position="topleft")) # create the tile super().__init__("result_tile", cm.tile.result, inputs=[self.m]) ``` #### File: component/tile/sensor_tile.py ```python from datetime import datetime as dt from sepal_ui import sepalwidgets as sw import ipyvuetify as v from component import parameter as cp from component.message import cm class SensorTile(sw.Tile): def __init__(self, model): # create adjustable variables end and start self.end = dt.now().year self.start = 1950 # prior to any sats # create the widgets self.sensors_select = v.Select( label=cm.input_lbl.sensor, items=[], v_model=[], multiple=True, chips=True, deletable_chips=True, ) landsat_7_switch = v.Switch( label=cm.input_lbl.do_threshold, v_model=model.improve_L7 ) landsat_7_slider = v.Slider( class_="mt-5", label=cm.input_lbl.threshold, min=0, max=0.3, step=0.001, v_model=model.improve_threshold, thumb_label="always", ) cloud_buffer = v.Slider( class_="mt-5", label=cm.input_lbl.cloud_buffer, min=0, max=2500, step=10, v_model=model.cloud_buffer, thumb_label="always", ) # bind them to io model.bind(self.sensors_select, "sensors",).bind( landsat_7_switch, "improve_L7", ).bind(landsat_7_slider, "improve_threshold",).bind( cloud_buffer, "cloud_buffer", ) super().__init__( "nested_widget", cm.tile.sensor, inputs=[ self.sensors_select, landsat_7_switch, landsat_7_slider, cloud_buffer, ], alert=sw.Alert(), ) # add js behaviour self.sensors_select.observe(self._check_sensor, "v_model") model.observe(self._change_start, "reference_start") model.observe(self._change_end, "analysis_end") def _check_sensor(self, change): """ prevent users from selecting landsat and sentinel 2 sensors provide a warning message to help understanding """ # exit if its a removal if len(change["new"]) < len(change["old"]): self.alert.reset() return self # use positionning in the list as boolean value sensors = ["landsat", "sentinel"] # guess the new input new_value = list(set(change["new"]) - set(change["old"]))[0] id_ = next(i for i, s in enumerate(sensors) if s in new_value) if sensors[id_] in new_value: if any(sensors[not id_] in s for s in change["old"]): change["owner"].v_model = [new_value] self.alert.add_live_msg(cm.no_mix, "warning") else: self.alert.reset() return self def _change_end(self, change): self.end = int(change["new"][:4]) if change["new"] else dt.now().year self._check_sensor_availability() return self def _change_start(self, change): self.start = int(change["new"][:4]) if change["new"] else 1950 self._check_sensor_availability() return self def _check_sensor_availability(self): """reduce the number of available satellites based on the dates selected by the user""" # reset current values self.sensors_select.items = [] self.sensors_select.v_model = [] # check every satellite availability years = range(self.start, self.end + 1) sensors = [] for s in cp.sensors: if any(e in years for e in [cp.sensors[s]["start"], cp.sensors[s]["end"]]): sensors.append(s) elif ( cp.sensors[s]["start"] < self.start and cp.sensors[s]["end"] > self.end ): sensors.append(s) self.sensors_select.items = sensors return self ``` #### File: component/widget/custom_asset_select.py ```python from sepal_ui import sepalwidgets as sw from sepal_ui.scripts import utils as su from component import parameter as cp class CustomAssetSelect(sw.AssetSelect): @su.switch("loading") def _validate(self, change): super()._validate(change) # if the select asset is one of the default one the keep it if change["new"] in cp.forest_map: self.error_messages = None self.error = False return self ```
{ "source": "12rambau/forest_at_risk", "score": 2 }
#### File: component/scripts/fcc.py ```python import ee from component import parameter as cp def is_tmf_covered(geometry): """return true if there is more than 0 images""" return ( ee.ImageCollection(cp.fcc_sources["TMF"]["asset"]) .filterBounds(geometry) .size() .getInfo() != 0 ) def get_fcc(source, start, end): """retreive the image from GEE based on the selected parameters""" if source == "TMF": # JRC annual product (AP) ap = ee.ImageCollection(cp.fcc_sources[source]["asset"]).mosaic().byte() # ap_allYear: forest if Y = 1 or 2. ap_forest = ap.where(ap.eq(2), 1) ap_all_year = ap_forest.where(ap_forest.neq(1), 0) # convert the dates in band number b_final = 2022 - 1990 b_start = start - 1990 b_end = end - 1990 # Forest in start date ap_start = ap_all_year.select(list(range(b_start, b_final))) forest_start = ap_start.reduce(ee.Reducer.sum()).gte(1) forest_mask = forest_start.eq(1) # Forest in end date ap_end = ap_all_year.select(list(range(b_end, b_final))) forest_end = ap_end.reduce(ee.Reducer.sum()).gte(1) # final deforestation map # 0 where there is deforestation, 1 where it's not, nodata where it was no forest forest = forest_end.subtract(forest_start).mask(forest_mask).add(1) elif source == "GFC": # we define a treecover at perc = 10 # Hansen map gfc = ee.Image(cp.fcc_sources[source]["asset"]) # Tree cover, loss, and gain treecover = gfc.select(["treecover2000"]) lossyear = gfc.select(["lossyear"]) # Forest in 2000 forest2000 = treecover.gte(10) forest2000 = forest2000.toByte() # convert date in deforestation values v_start = start - 2000 v_end = end - 2000 # Deforestation loss_start = lossyear.gte(1).And(lossyear.lte(v_start)) loss_end = lossyear.get(1).And(lossyear.lte(v_end)) # Forest forest_start = forest2000.where(loss_start.eq(1), 0) forest_mask = forest_start.eq(1) forest_end = forest2000.where(loss_end.eq(1), 0) # final deforestation map # 0 where there is deforestation, 1 where it's not, nodata where it was no forest forest = forest_end.subtract(forest_start).mask(forest_mask).add(1) return forest.int8() ```
{ "source": "12rambau/pytfa", "score": 3 }
#### File: pytfa/io/json.py ```python import json import numpy from .dict import model_from_dict, model_to_dict class MyEncoder(json.JSONEncoder): """ We define an encoder that takes care of the serialization of numpy types, which are not handled by json by default """ def default(self, obj): if isinstance(obj, numpy.integer): return int(obj) elif isinstance(obj, numpy.floating): return float(obj) elif isinstance(obj, numpy.ndarray): return obj.tolist() else: return super(MyEncoder, self).default(obj) def check_json_extension(filepath): if not filepath.endswith('.json'): filepath += '.json' return filepath def save_json_model(model, filepath): filepath = check_json_extension(filepath) obj = model_to_dict(model) with open(filepath, 'w') as fid: json.dump(obj, fid, cls=MyEncoder) def load_json_model(filepath): filepath = check_json_extension(filepath) with open(filepath, 'r') as fid: obj = json.load(fid) model = model_from_dict(obj) return model def json_dumps_model(model): """ Returns a JSON dump as a string :param model: :return: """ obj = model_to_dict(model) return json.dumps(obj,cls=MyEncoder) def json_loads_model(s): """ Loads a model from a string JSON dump :param s: JSON string :return: """ obj = json.loads(s) return model_from_dict(obj) ``` #### File: pytfa/redgem/network_expansion.py ```python import networkx as nx from cobra import Metabolite, Reaction, Model from copy import deepcopy class NetworkExpansion: def __init__(self, gem, core_subsystems, extracellular_system, cofactors, small_metabolites, inorganics, d, n): """ A class encapsulating the RedGEM algorithm :param gem: The studied GEM :param core_subsystems: Core subsystems :param extracellular_system: Extracellular metabolite ids :param cofactors: List of cofactors id :param small_metabolites: List of small metabolites id :param inorganics: List of inorganics id :param d: Degree :param n: User parameter """ # Shallow copy of the GEM : the deepcopy is possibly performed in redgem, before # calling NetworkExpansion self._redgem = gem #self._redgem.name = 'redgem' self._graph = nx.DiGraph() # Subsystems self._core_subsystems = core_subsystems self._subsystem_count = len(core_subsystems) self._extracellular_system = extracellular_system # Dicts to save extracted reactions and metabolites for each subsystem # TODO: Improve structure definition dict_of_lists_of_sets = {} for name in core_subsystems: dict_of_lists_of_sets[name] = [set() for _ in range(d+1)] dict_of_dicts_of_lists_of_sets = {} for name in core_subsystems: dict_of_dicts_of_lists_of_sets[name] = deepcopy(dict_of_lists_of_sets) dict_of_int = {} for name in core_subsystems: dict_of_int[name] = -1 dict_of_dicts_of_int = {} for name in core_subsystems: dict_of_dicts_of_int[name] = deepcopy(dict_of_int) self._subsystem_reactions = {} self._subsystem_reactions_id = {} self._intermediate_reactions_id = deepcopy(dict_of_dicts_of_lists_of_sets) self._subsystem_metabolites = {} self._subsystem_metabolites_id = {} self._intermediate_metabolites_id = deepcopy(dict_of_dicts_of_lists_of_sets) self._intermediate_paths = deepcopy(dict_of_dicts_of_lists_of_sets) self._min_distance_sub_to_sub = deepcopy(dict_of_dicts_of_int) self._intermediate_extracellular_paths = deepcopy(dict_of_lists_of_sets) self._intermediate_extracellular_metabolites_id = deepcopy(dict_of_lists_of_sets) self._intermediate_extracellular_reactions_id = deepcopy(dict_of_lists_of_sets) self._path_dict = {} # Save others parameters self._cofactor_pairs = cofactors self._small_metabolites = small_metabolites self._inorganics = inorganics self._d = d self._n = n def extract_subsystem_reactions(self, subsystem): """ Extracts all reactions of a subsystem and stores them and their id in the corresponding dictionary. :param subsystem: Name of the subsystem :return: Extracted reactions """ rxns = set() rxns_id = set() for rxn in self._redgem.reactions: if rxn.subsystem == subsystem: rxns.add(rxn) rxns_id.add(rxn.id) self._subsystem_reactions[subsystem] = rxns self._subsystem_reactions_id[subsystem] = rxns_id return rxns def extract_subsystem_metabolites(self, subsystem): """ Extracts all metabolites of a subsystem and stores them and their id in the corresponding dictionary. :param subsystem: Name of the subsystem :return: Extracted metabolites """ subsystem_rxns = self._subsystem_reactions[subsystem] metabolites = set() metabolites_id = set() for rxn in subsystem_rxns: for metabolite in rxn.metabolites: metabolite_id = metabolite.id if metabolite_id in self._cofactor_pairs \ or metabolite_id in self._small_metabolites \ or metabolite_id in self._inorganics: continue metabolites.add(metabolite) metabolites_id.add(metabolite.id) self._subsystem_metabolites[subsystem] = metabolites self._subsystem_metabolites_id[subsystem] = metabolites_id return metabolites def create_new_stoichiometric_matrix(self): """ Extracts the new graph without the small metabolites, inorganics and cofactor pairs. :return: Networkx graph of the new network """ kept_rxns = [] kept_metabolites = set() for rxn in self._redgem.reactions: metabolites = {} for metabolite, coefficient in rxn.metabolites.items(): metabolite_id = metabolite.id if metabolite_id in self._cofactor_pairs \ or metabolite_id in self._small_metabolites \ or metabolite_id in self._inorganics: continue new_metabolite = Metabolite(metabolite_id, formula=metabolite.formula, name=metabolite.name, compartment=metabolite.compartment) metabolites[new_metabolite] = coefficient kept_metabolites.add(metabolite) new_rxn = Reaction(rxn.id, name=rxn.name, subsystem=rxn.subsystem, lower_bound=rxn.lower_bound, upper_bound=rxn.upper_bound) new_rxn.add_metabolites(metabolites) kept_rxns.append(new_rxn) paths_struct = [{} for _ in range(self._d+1)] # Comprehension list to create multiple dicts to_struct = [""] * (self._d+1) for metabolite in kept_metabolites: self._graph.add_node(metabolite.id, paths=paths_struct, to=to_struct) for rxn in kept_rxns: for reactant in rxn.reactants: for product in rxn.products: self._graph.add_edge(reactant.id, product.id, rxn_id=rxn.id, weight=1) return self._graph def breadth_search_subsystems_paths_length_d(self, subsystem_i, subsystem_j, d): """ Breadth first search from each metabolite in subsystem i with special stop conditions during exploration for paths of length d. This function explores the graph through allowed paths only : this path can't go through subsystem i or j but must start in i and end in j. The length of each path found is d. :param subsystem_i: Source subsystem :param subsystem_j: Destination subsystem :param d: Path length desired :return: None """ for metabolite_id in self._subsystem_metabolites_id[subsystem_i]: # Find metabolites at a distance d from metabolite_id ancestors = {} frontier = {metabolite_id} explored = {metabolite_id} for i in range(d): new_nodes = set() for current_node in frontier: for new_node in set(self._graph.adj[current_node]): if self.is_node_allowed(new_node, i, explored, subsystem_i, subsystem_j, d): new_nodes.add(new_node) # new_node can already be in ancestors if there are 2 paths of same # length to it if new_node in ancestors: ancestors[new_node].append(current_node) else: ancestors[new_node] = [current_node] explored = explored.union(new_nodes) frontier = new_nodes # Handle d = 0 case, since it didn't go through the loop if d == 0 and metabolite_id not in self._subsystem_metabolites_id[subsystem_j]: frontier = {} # Retrieve and save metabolites, reactions and paths for node in frontier: paths = self.retrieve_all_paths(node, metabolite_id, ancestors) self._intermediate_paths[subsystem_i][subsystem_j][d] = \ self._intermediate_paths[subsystem_i][subsystem_j][d].union(set(paths)) self.retrieve_intermediate_metabolites_and_reactions(paths, subsystem_i, subsystem_j, d) def is_node_allowed(self, node, i, explored, subsystem_i, subsystem_j, d): """ Checks whether or not a metabolite is allowed for the current path. The new node is added if it is not already explored, if it is not in the source subsystem, and if it is not in the destination subsystem, except if it is the last round of exploration :param node: Metabolite id :param i: Current step :param explored: Explored node for this path :param subsystem_i: Source subsystem :param subsystem_j: Destination subsystem :param d: Path length desired :return: Boolean answering the question """ if node in explored: return False if subsystem_i != subsystem_j and node in self._subsystem_metabolites_id[subsystem_i]: return False if i < d-1 and node in self._subsystem_metabolites_id[subsystem_j]: return False if i == d-1 and node not in self._subsystem_metabolites_id[subsystem_j]: return False return True def retrieve_all_paths(self, dest_node, src_node, ancestors, init_dict=True): """ Retrieves all paths between a source metabolite and a destination metabolite after a breadth first search. This function is a recursive function, which makes use of dynamic programming to reduce its complexity. It uses self._path_dict to store already computed data. :param dest_node: Destination metabolite :param src_node: Source metabolite :param ancestors: Dictionary with ancestors found during the search :param init_dict: Boolean, for function initialisation :return: A list of all paths as tuples """ if init_dict: self._path_dict = {} if dest_node == src_node: self._path_dict[dest_node] = [(src_node,)] if dest_node not in self._path_dict: new_paths = [] for previous_node in ancestors[dest_node]: for path in self.retrieve_all_paths(previous_node, src_node, ancestors, False): new_paths.append(path + (dest_node,)) self._path_dict[dest_node] = new_paths return self._path_dict[dest_node] def retrieve_intermediate_metabolites_and_reactions(self, paths, subsystem_i, subsystem_j, d): """ Retrieves and stores intermediate metabolites and reactions (i.e. M_{i,j}, R_{i,j}, M_{i,i} and R_{i,i}). This function adds all reactions contained in these paths, and all metabolites between :param paths: List of paths between subsystems :param subsystem_i: Source subsystem :param subsystem_j: Destination subsystem :param d: Path length :return: None """ for path in paths: for i in range(len(path)-1): reaction = self._graph[path[i]][path[i+1]]['rxn_id'] self._intermediate_reactions_id[subsystem_i][subsystem_j][d].add(reaction) if i > 0: self._intermediate_metabolites_id[subsystem_i][subsystem_j][d].add(path[i]) def find_min_distance_between_subsystems(self): """ Find minimal distance between each subsystems in both directions :return: Dict with distances """ for i in self._core_subsystems: for j in self._core_subsystems: for k in range(self._d+1): # If there path of length d if self._intermediate_paths[i][j][k]: self._min_distance_sub_to_sub[i][j] = k break # If min distance os not found, then if self._min_distance_sub_to_sub[i][j] == -1: pass return self._min_distance_sub_to_sub def breadth_search_extracellular_system_paths(self, subsystem, n): """ Breadth first search from each metabolite in the extracellular system with special stop conditions during exploration for paths of length n. This function explores the graph through allowed paths only : this path can't go through the extracellular system or the subsystem but must start in the extracellular system and end in the subsystem. The length of each path found is n. :param subsystem: Destination subsystem :param n: Path length desired :return: None """ for metabolite_id in self._extracellular_system: # Find metabolites at a distance n from metabolite_id if metabolite_id not in self._graph: continue ancestors = {} frontier = {metabolite_id} explored = {metabolite_id} for i in range(n): new_nodes = set() for current_node in frontier: for new_node in set(self._graph.adj[current_node]): if self.is_node_allowed_extracellular(new_node, i, explored, subsystem, n): new_nodes.add(new_node) # new_node can already be in ancestors if there are 2 paths of same # length to it if new_node in ancestors: ancestors[new_node].append(current_node) else: ancestors[new_node] = [current_node] explored = explored.union(new_nodes) frontier = new_nodes # Handle n = 0 case, since it didn't go through the loop if n == 0 and metabolite_id not in self._subsystem_metabolites_id[subsystem]: frontier = {} # Retrieve and save metabolites, reactions and paths for node in frontier: paths = self.retrieve_all_paths(node, metabolite_id, ancestors) self._intermediate_extracellular_paths[subsystem][n] = \ self._intermediate_extracellular_paths[subsystem][n].union(set(paths)) self.retrieve_intermediate_extracellular_metabolites_and_reactions(paths, subsystem, n) def is_node_allowed_extracellular(self, node, i, explored, subsystem, n): """ Checks whether or not a metabolite is allowed for the current path. The new node is added if it is not already explored, if it is not in the extracellular system, and if it is not in the destination subsystem except if it is the last round of exploration :param node: Metabolite id :param i: Current step :param explored: Explored node for this path :param subsystem: Destination subsystem :param n: Path length desired :return: Boolean answering the question """ if node in explored: return False if node in self._extracellular_system: return False if i < n-1 and node in self._subsystem_metabolites_id[subsystem]: return False if i == n-1 and node not in self._subsystem_metabolites_id[subsystem]: return False return True def retrieve_intermediate_extracellular_metabolites_and_reactions(self, paths, subsystem, n): """ Retrieves and stores intermediate metabolites and reactions for the extracellular system This function adds all reactions contained in these paths, and all metabolites between :param paths: List of paths :param subsystem: Destination subsystem :param n: Path length :return: None """ for path in paths: for i in range(len(path) - 1): reaction = self._graph[path[i]][path[i + 1]]['rxn_id'] self._intermediate_extracellular_reactions_id[subsystem][n].add(reaction) if i > 0: self._intermediate_extracellular_metabolites_id[subsystem][n].add(path[i]) def run_between_all_subsystems(self): """ Retrieve subsystem and intermediate reactions and metabolites. :return: None """ for subsystem in self._core_subsystems: self.extract_subsystem_reactions(subsystem) self.extract_subsystem_metabolites(subsystem) for subsystem_i in self._core_subsystems: for subsystem_j in self._core_subsystems: for k in range(self._d+1): self.breadth_search_subsystems_paths_length_d(subsystem_i, subsystem_j, k) def run_extracellular_system(self): """ Retrieve intermediate reactions and metabolites for the extracellular system :return: None """ for subsystem in self._core_subsystems: for k in range(self._n + 1): self.breadth_search_extracellular_system_paths(subsystem, k) def extract_sub_network(self): """ Extracts the reduced gem. :return: None """ def extract_id(x): return x.id to_remove_metabolites = set(map(extract_id, self._redgem.metabolites)) to_remove_reactions = set(map(extract_id, self._redgem.reactions)) # Keep subsystems reactions and metabolites for name in self._core_subsystems: to_remove_reactions = to_remove_reactions - self._subsystem_reactions_id[name] to_remove_metabolites = to_remove_metabolites - self._subsystem_metabolites_id[name] # Keep intermediate reactions and metabolites for i in self._core_subsystems: for j in self._core_subsystems: for k in range(self._d+1): to_remove_reactions = to_remove_reactions \ - self._intermediate_reactions_id[i][j][k] to_remove_metabolites = to_remove_metabolites \ - self._intermediate_metabolites_id[i][j][k] # Keep extracellular metabolites to_remove_metabolites = to_remove_metabolites - set(self._extracellular_system) # Keep intermediate extracellular reactions and metabolites for i in self._core_subsystems: for k in range(self._d+1): to_remove_reactions = to_remove_reactions \ - self._intermediate_extracellular_reactions_id[i][k] to_remove_metabolites = to_remove_metabolites \ - self._intermediate_extracellular_metabolites_id[i][k] self._redgem.remove_reactions(to_remove_reactions, True) def run(self): """ Runs RedGEM. :return: None """ self.create_new_stoichiometric_matrix() self.run_between_all_subsystems() self.run_extracellular_system() self.extract_sub_network() return self._redgem ``` #### File: 12rambau/pytfa/setup.py ```python from setuptools import setup, find_packages # import os # from pip.req import parse_requirements # from pip.download import PipSession # __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) # # def read_requirements(): # '''parses requirements from requirements.txt''' # reqs_path = os.path.join(__location__, 'requirements.txt') # install_reqs = parse_requirements(reqs_path, session=PipSession()) # reqs = [str(ir.req) for ir in install_reqs] # return reqs version_tag = '0.9.3' setup(name='pytfa', version=version_tag, author='pyTFA team', author_email='<EMAIL>', url='https://github.com/EPFL-LCSB/pytfa/', download_url='https://github.com/EPFL-LCSB/pytfa/archive/'+version_tag+'.tar.gz', install_requires=['cobra>0.13', 'bokeh>=0.12.1', 'networkx', 'optlang', 'pytest', 'scipy', 'tqdm'], packages = find_packages(), python_requires='>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, <4', description='pyTFA, Thermodynamics-based Flux Analysis in Python', keywords=['pytfa','tfa','thermodynamics','flux analysis'], license='Apache 2.0', # See https://PyPI.python.org/PyPI?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', # Indicate who your project is intended for 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Bio-Informatics', 'Environment :: Console', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: Apache Software License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], ) ```
{ "source": "12rambau/sdg_indicators_module", "score": 3 }
#### File: component/model/indicator_model.py ```python from sepal_ui import model from traitlets import Any from component import parameter as pm class IndicatorModel(model.Model): ##################### ## input ## ##################### # times start = Any(None).tag(sync=True) end = Any(None).tag(sync=True) # sensors sensors = Any(None).tag(sync=True) # Vegetation indices vegetation_index = Any(None).tag(sync=True) # trajectory trajectory = Any(None).tag(sync=True) lceu = Any(None).tag(sync=True) # matrix, change output format to a plain list. we need it to remap the land cover instead of a matrix. transition_matrix = Any(pm.default_trans_matrix).tag(sync=True) # Climate regime conversion_coef = Any(None).tag(sync=True) ###################### ## output ## ###################### land_cover = Any(None).tag(sync=True) soc = Any(None).tag(sync=True) productivity = Any(None).tag(sync=True) productivity_trend = Any(None).tag(sync=True) productivity_state = Any(None).tag(sync=True) productivity_performance = Any(None).tag(sync=True) indicator_15_3_1 = Any(None).tag(sync=True) def folder_name(self): """Return all the parameter formated as a string""" # get the dates start = self.start end = self.end # create the sensor list if "l" in self.sensors[0]: # get only the number of the landsat satelites names = [pm.sensors[s][2][1] for s in self.sensors] sensor = f"l{''.join(names)}" else: sensor = pm.sensors[self.sensors[0]][2] # get the vegetation index vegetation_index = self.vegetation_index # get the trajectory trajectory = self.trajectory.replace("_trend", "") # get land cover ecosystem unit lceu = self.lceu # get info on the transition matrix matrix = ( "default" if self.transition_matrix == pm.default_trans_matrix else "custom" ) # get the climate regime climate = f"cr{int(self.conversion_coef*100)}" return f"{start}_{end}_{sensor}_{vegetation_index}_{lceu}_{matrix}_{climate}" ``` #### File: component/scripts/bar_plot.py ```python from matplotlib import pyplot as plt from component import parameter as cp def bar_plot(df): # create the figure fig, ax = plt.subplots(figsize=(10, 9)) # plot the dataframe df.plot.bar( rot=0, color=cp.legend, ax=ax, edgecolor="black", fontsize=12, ) # fix the design of the plot ax.set_xlabel("Land cover") ax.set_yscale("log") ax.set_ylabel("Area in ha") ax.set_title("Distribution of area by land cover type", fontweight="bold") ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["left"].set_visible(False) return fig, ax ```
{ "source": "12rambau/SDG_indicators_module", "score": 3 }
#### File: component/scripts/download.py ```python import time import rasterio as rio from rasterio.merge import merge from matplotlib.colors import to_rgba from matplotlib import pyplot as plt from component.message import ms from component import parameter as pm from .gdrive import gdrive def digest_tiles(filename, result_dir, output, tmp_file): if tmp_file.is_file(): output.add_live_msg(ms.download.file_exist.format(tmp_file), "warning") time.sleep(2) return drive_handler = gdrive() files = drive_handler.get_files(filename) # if no file, it means that the download had failed if not len(files): raise Exception(ms.gdrive.error.no_file) drive_handler.download_files(files, result_dir) pathname = f"{filename}*.tif" files = [file for file in result_dir.glob(pathname)] # run the merge process output.add_live_msg(ms.download.merge_tile) # manual open and close because I don't know how many file there are sources = [rio.open(file) for file in files] data, output_transform = merge(sources) out_meta = sources[0].meta.copy() out_meta.update(nodata=0) out_meta.update( driver="GTiff", height=data.shape[1], width=data.shape[2], transform=output_transform, compress="lzw", ) # create a colormap colormap = {} for i, color in enumerate(pm.legend.values()): color = tuple(int(c * 255) for c in to_rgba(color)) colormap[i + 1] = color with rio.open(tmp_file, "w", **out_meta) as dest: dest.write(data) dest.write_colormap(1, colormap) # manually close the files [src.close() for src in sources] # delete local files [file.unlink() for file in files] return def export_legend(filename, colors, title): """ Create a color list and display it in a png image. Args: filename (pathlib.Path); the path where to save the file colors (dict): the color palette to create. It should use the following format: {classname: hex_color, ...} Return: (pathlib.Path) the filename """ # create a color list color_map = [*colors.values()] columns = ["entry"] rows = [" " * 10 for i in range(len(colors))] # trick to see the first column cell_text = [[name] for name in colors] fig, ax = plt.subplots(1, 1, figsize=[6.4, 8.6]) # remove the graph box ax.axis("tight") ax.axis("off") # set the tab title ax.set_title(title) # create the table the_table = ax.table( colColours=[to_rgba("lightgrey")], cellText=cell_text, rowLabels=rows, colWidths=[0.4], rowColours=color_map, colLabels=columns, loc="center", ) the_table.scale(1, 1.5) # save & close plt.savefig(filename) plt.close() return ```
{ "source": "12rambau/sdg_indicators_module", "score": 3 }
#### File: component/scripts/land_cover.py ```python import ee from component import parameter as pm ee.Initialize() def land_cover(model, aoi_model, output): """Calculate land cover indicator""" # load the land cover map landcover = ee.Image(pm.land_cover).clip( aoi_model.feature_collection.geometry().bounds() ) landcover = landcover.where(landcover.eq(9999), pm.int_16_min).updateMask( landcover.neq(pm.int_16_min) ) # Remap LC according to input matrix, aggregation of land cover classes to IPCC classes. lc_year_start = min( max(model.start, pm.land_cover_first_year), pm.land_cover_max_year ) lc_year_end = min(max(model.end, pm.land_cover_first_year), pm.land_cover_max_year) landcover_start = landcover.select(f"year_{lc_year_start}").rename( "landcover_start" ) landcover_end = landcover.select(f"year_{lc_year_end}").rename("landcover_end") # baseline land cover map reclassified into IPCC classes landcover_start_remapped = landcover_start.remap( pm.translation_matrix[0], pm.translation_matrix[1] ).rename("start") # target land cover map reclassified into IPCC classes landcover_end_remapped = landcover_end.remap( pm.translation_matrix[0], pm.translation_matrix[1] ).rename("end") water_mask = landcover_end.where(landcover_end.eq(210), 0).rename("water") # compute transition map (first digit for historical land cover, and second digit for monitoring year land cover) landcover_transition = ( landcover_start_remapped.multiply(10) .add(landcover_end_remapped) .rename("transition") ) # definition of land cover transitions as degradation (-1), improvement (1), or no relevant change (0) trans_matrix_flatten = [ item for sublist in model.transition_matrix for item in sublist ] landcover_degredation = landcover_transition.remap( pm.IPCC_lc_change_matrix, trans_matrix_flatten ) # use the byte convention # 1 degraded - 2 stable - 3 improved landcover_degredation = ( landcover_degredation.remap([1, 0, -1, pm.int_16_min], [3, 2, 1, 0]) .uint8() .rename("degradation") ) land_cover_out = ( landcover_degredation.addBands(landcover_transition.uint8()) .addBands(landcover_start_remapped.uint8()) .addBands(landcover_end.uint8()) .addBands(landcover_end_remapped.uint8()) .addBands(landcover_transition.uint8()) .addBands(water_mask.uint8()) ) return land_cover_out ``` #### File: component/scripts/run_15_3_1.py ```python from zipfile import ZipFile import time from itertools import product import ee import geemap from ipywidgets import Output import ipyvuetify as v import geopandas as gpd import pandas as pd from sepal_ui.scripts import utils as su from component import parameter as pm from component.message import ms from .gdrive import gdrive from .gee import wait_for_completion from .download import digest_tiles from .integration import * from .productivity import * from .soil_organic_carbon import * from .land_cover import * ee.Initialize() def download_maps(aoi_model, model, output): # create a result folder including the data parameters # create the aoi and parameter folder if not existing aoi_dir = pm.result_dir / su.normalize_str(aoi_model.name) result_dir = aoi_dir / model.folder_name() result_dir.mkdir(parents=True, exist_ok=True) # get the export scale # from the first sensor (we only combine compatible one) scale = pm.sensors[model.sensors[0]][1] output.add_live_msg(ms.download.start_download) # create the export path # they are in correct order don't change it pattern = f"{aoi_model.name}_{model.folder_name()}" layers = { f"land_cover": model.land_cover, f"soc": model.soc, f"productivity_trend": model.productivity_trend, f"productivity_performance": model.productivity_state, f"productivity_state": model.productivity_state, f"productivity_indicator": model.productivity, f"indicator_15_3_1": model.indicator_15_3_1, } # load the drive_handler drive_handler = gdrive() # clip the images if it's an administrative layer and keep the bounding box if not if aoi_model.feature_collection: geom = aoi_model.feature_collection.geometry() layers = {name: layer.clip(geom) for name, layer in layers.items()} # download all files downloads = any( [ drive_handler.download_to_disk(name, layer, aoi_model, output, scale) for name, layer in layers.items() ] ) # I assume that they are always launch at the same time # If not it's going to crash if downloads: wait_for_completion([name for name in layers], output) output.add_live_msg(ms.gee.tasks_completed, "success") # digest the tiles for name in layers: digest_tiles( name, result_dir, output, result_dir / f"{pattern}_{name}_merge.tif" ) output.add_live_msg(ms.download.remove_gdrive) # remove the files from drive for name in layers: drive_handler.delete_files(drive_handler.get_files(name)) # display msg output.add_live_msg(ms.download.completed, "success") return tuple([result_dir / f"{pattern}_{name}_merge.tif" for name in layers]) def display_maps(aoi_model, model, m, output): m.zoom_ee_object(aoi_model.feature_collection.geometry()) # get the geometry to clip on geom = aoi_model.feature_collection.geometry() # clip on the bounding box when we use a custom aoi if not ("ADMIN" in aoi_model.method): geom = geom.bounds() lc_year_start = min( max(model.start, pm.land_cover_first_year), pm.land_cover_max_year ) lc_year_end = min(max(model.end, pm.land_cover_first_year), pm.land_cover_max_year) # add the layers output.add_live_msg(ms.gee.add_layer.format(ms._15_3_1.lc_layer)) m.addLayer( model.land_cover.select("start").clip(geom), pm.viz_lc, ms._15_3_1.lc_start.format(lc_year_start), ) output.add_live_msg(ms.gee.add_layer.format(ms._15_3_1.lc_layer)) m.addLayer( model.land_cover.select("end").clip(geom), pm.viz_lc, ms._15_3_1.lc_end.format(lc_year_end), ) output.add_live_msg(ms.gee.add_layer.format(ms._15_3_1.prod_layer)) m.addLayer( model.productivity.clip(geom).selfMask(), pm.viz_prod, ms._15_3_1.prod_layer ) output.add_live_msg(ms.gee.add_layer.format(ms._15_3_1.lc_layer)) m.addLayer( model.land_cover.select("degradation").clip(geom).selfMask(), pm.viz_lc_sub, ms._15_3_1.lc_layer, ) output.add_live_msg(ms.gee.add_layer.format(ms._15_3_1.soc_layer)) m.addLayer(model.soc.clip(geom).selfMask(), pm.viz_soc, ms._15_3_1.soc_layer) output.add_live_msg(ms.gee.add_layer.format(ms._15_3_1.ind_layer)) m.addLayer( model.indicator_15_3_1.clip(geom).selfMask(), pm.viz_indicator, ms._15_3_1.ind_layer, ) # add the aoi on the map empty = ee.Image().byte() aoi_line = empty.paint( **{"featureCollection": aoi_model.feature_collection, "color": 1, "width": 2} ) m.addLayer(aoi_line, {"palette": v.theme.themes.dark.accent}, "aoi") output.add_live_msg(ms._15_3_1.map_loading_complete, "success") return def compute_indicator_maps(aoi_model, model, output): # raise an error if the years are not in the right order if not (model.start < model.end): raise Exception(ms._15_3_1.error.wrong_year) # compute intermediary maps vi_int, climate_int = integrate_ndvi_climate(aoi_model, model, output) model.productivity_trend = productivity_trajectory( model, vi_int, climate_int, output ) model.productivity_performance = productivity_performance( aoi_model, model, vi_int, climate_int, output ) model.productivity_state = productivity_state(aoi_model, model, vi_int, output) # compute result maps model.land_cover = land_cover(model, aoi_model, output) model.soc = soil_organic_carbon(model, aoi_model, output) model.productivity = productivity_final( model.productivity_trend, model.productivity_performance, model.productivity_state, output, ) # sum up in a map model.indicator_15_3_1 = indicator_15_3_1( model.productivity, model.land_cover, model.soc, output ) return def compute_lc_transition_stats(aoi_model, model): """function to calculate the statistics of land cover transitions between two years to be used as input for the sankey diagram. input: ee.Image(land cover transition) retun: DataFrame. """ landcover = model.land_cover.select("transition") scale = pm.sensors[model.sensors[0]][1] aoi = aoi_model.feature_collection.geometry().bounds() lc_year_start = min( max(model.start, pm.land_cover_first_year), pm.land_cover_max_year ) lc_year_end = min(max(model.end, pm.land_cover_first_year), pm.land_cover_max_year) lc_name = [*pm.lc_color] # make a list of all the possible transitions values class_value = [x * 10 + y for x, y in product(range(1, 8), repeat=2)] # make a list of all the possible transitions classes class_name = [x + "_" + y for x, y in product(lc_name, repeat=2)] # creat a multi band image with all the classes as bands multiband_class = landcover.eq(class_value).rename(class_name) # calculate the area pixel_area = multiband_class.multiply(ee.Image.pixelArea().divide(10000)) area_per_class = pixel_area.reduceRegion( **{ "reducer": ee.Reducer.sum(), "geometry": aoi, "scale": scale, "maxPixels": 1e13, "bestEffort": True, "tileScale": 2, } ) data = area_per_class.getInfo() # split the transition names and organise the data df = [[*[i for i in x.split("_")], y] for x, y in data.items()] # convert to a DataFrame df = pd.DataFrame(data=df, columns=[lc_year_start, lc_year_end, "Area"]) return df def compute_stats_by_lc(aoi_model, model): """ tabulate the area by land cover categories. input: ee.Image(ending land cover, final indicator) return: DataFrame """ # land cover landcover = model.land_cover.select("end") # final indicator indicator = model.indicator_15_3_1 aoi = aoi_model.feature_collection.geometry().bounds() lc_name = [*pm.lc_color] deg_name = [*pm.legend] # combine indicator and land cover together. # first digit represents the indicator, second digit represents land cover categories lc_deg_combine = indicator.multiply(10).add(landcover) # all possible combined values class_value = [x * 10 + y for x, y in product(range(1, 4), range(1, 8))] # all possible combined categories class_name = [x + "_" + y for x, y in product(deg_name, lc_name)] # creat a multi band image with all the categories as bands multiband_class = lc_deg_combine.eq(class_value).rename(class_name) # calculate the area pixel_area = multiband_class.multiply(ee.Image.pixelArea().divide(10000)) area_per_class = pixel_area.reduceRegion( **{ "reducer": ee.Reducer.sum(), "geometry": aoi, "scale": 300, "maxPixels": 1e13, "bestEffort": True, "tileScale": 8, } ) data = area_per_class.getInfo() # split and organise the data df = [[*[i for i in x.split("_")], y] for x, y in data.items()] # convert to a DataFrame df = pd.DataFrame(data=df, columns=["Indicator", "Landcover", "Area"]) return df def compute_zonal_analysis(aoi_model, model, output): # create a result folder including the data parameters # create the aoi and parameter folder if not existing aoi_dir = pm.result_dir / su.normalize_str(aoi_model.name) result_dir = aoi_dir / model.folder_name() result_dir.mkdir(parents=True, exist_ok=True) indicator_stats = ( result_dir / f"{aoi_model.name}_{model.folder_name()}_indicator_15_3_1" ) # check if the file already exist indicator_zip = indicator_stats.with_suffix(".zip") if indicator_zip.is_file(): output.add_live_msg(ms.download.already_exist.format(indicator_zip), "warning") return indicator_zip output_widget = Output() output.add_msg(output_widget) # to be removed when moving to shp indicator_csv = indicator_stats.with_suffix(".csv") scale = 100 if "Sentinel 2" in model.sensors else 300 with output_widget: geemap.zonal_statistics_by_group( in_value_raster=model.indicator_15_3_1, in_zone_vector=aoi_model.feature_collection, out_file_path=indicator_csv, statistics_type="SUM", denominator=1000000, decimal_places=2, scale=scale, tile_scale=1.0, ) # this should be removed once geemap is repaired ######################################################################### aoi_json = geemap.ee_to_geojson(aoi_model.feature_collection) aoi_gdf = gpd.GeoDataFrame.from_features(aoi_json).set_crs("EPSG:4326") indicator_df = pd.read_csv(indicator_csv) if "Class_0" in indicator_df.columns: aoi_gdf["NoData"] = indicator_df["Class_0"] if "Class_3" in indicator_df.columns: aoi_gdf["Improve"] = indicator_df["Class_3"] if "Class_2" in indicator_df.columns: aoi_gdf["Stable"] = indicator_df["Class_2"] if "Class_1" in indicator_df.columns: aoi_gdf["Degrade"] = indicator_df["Class_1"] aoi_gdf = aoi_gdf[aoi_gdf.geom_type != "LineString"] aoi_gdf.to_file(indicator_stats.with_suffix(".shp")) ######################################################################### # get all the shp extentions suffixes = [".dbf", ".prj", ".shp", ".cpg", ".shx"] # , '.fix'] # write the zip file with ZipFile(indicator_zip, "w") as myzip: for suffix in suffixes: file = indicator_stats.with_suffix(suffix) myzip.write(file, file.name) output.add_live_msg(ms._15_3_1.stats_complete.format(indicator_zip), "success") return indicator_zip def indicator_15_3_1(productivity, landcover, soc, output): water = landcover.select("water") landcover = landcover.select("degradation") indicator = ( ee.Image(0) .where(productivity.eq(3).And(landcover.eq(3)).And(soc.eq(3)), 3) .where(productivity.eq(3).And(landcover.eq(3)).And(soc.eq(2)), 3) .where(productivity.eq(3).And(landcover.eq(3)).And(soc.eq(1)), 1) .where(productivity.eq(3).And(landcover.eq(2)).And(soc.eq(3)), 3) .where(productivity.eq(3).And(landcover.eq(2)).And(soc.eq(2)), 3) .where(productivity.eq(3).And(landcover.eq(2)).And(soc.eq(1)), 1) .where(productivity.eq(3).And(landcover.eq(1)).And(soc.eq(3)), 1) .where(productivity.eq(3).And(landcover.eq(1)).And(soc.eq(2)), 1) .where(productivity.eq(3).And(landcover.eq(1)).And(soc.eq(1)), 1) .where(productivity.eq(2).And(landcover.eq(3)).And(soc.eq(3)), 3) .where(productivity.eq(2).And(landcover.eq(3)).And(soc.eq(2)), 3) .where(productivity.eq(2).And(landcover.eq(3)).And(soc.eq(1)), 1) .where(productivity.eq(2).And(landcover.eq(2)).And(soc.eq(3)), 3) .where(productivity.eq(2).And(landcover.eq(2)).And(soc.eq(2)), 2) .where(productivity.eq(2).And(landcover.eq(2)).And(soc.eq(1)), 1) .where(productivity.eq(2).And(landcover.eq(1)).And(soc.eq(3)), 1) .where(productivity.eq(2).And(landcover.eq(1)).And(soc.eq(2)), 1) .where(productivity.eq(2).And(landcover.eq(1)).And(soc.eq(1)), 1) .where(productivity.eq(1).And(landcover.eq(3)).And(soc.eq(3)), 1) .where(productivity.eq(1).And(landcover.eq(3)).And(soc.eq(2)), 1) .where(productivity.eq(1).And(landcover.eq(3)).And(soc.eq(1)), 1) .where(productivity.eq(1).And(landcover.eq(2)).And(soc.eq(3)), 1) .where(productivity.eq(1).And(landcover.eq(2)).And(soc.eq(2)), 1) .where(productivity.eq(1).And(landcover.eq(2)).And(soc.eq(1)), 1) .where(productivity.eq(1).And(landcover.eq(1)).And(soc.eq(3)), 1) .where(productivity.eq(1).And(landcover.eq(1)).And(soc.eq(2)), 1) .where(productivity.eq(1).And(landcover.eq(1)).And(soc.eq(1)), 1) .where(productivity.eq(1).And(landcover.lt(1)).And(soc.lt(1)), 1) .where(productivity.lt(1).And(landcover.eq(1)).And(soc.lt(1)), 1) .where(productivity.lt(1).And(landcover.lt(1)).And(soc.eq(1)), 1) .where(productivity.eq(2).And(landcover.lt(1)).And(soc.lt(1)), 2) .where(productivity.lt(1).And(landcover.eq(2)).And(soc.lt(1)), 2) .where(productivity.lt(1).And(landcover.lt(1)).And(soc.eq(2)), 2) .where(productivity.eq(3).And(landcover.lt(1)).And(soc.lt(1)), 3) .where(productivity.lt(1).And(landcover.eq(3)).And(soc.lt(1)), 3) .where(productivity.lt(1).And(landcover.lt(1)).And(soc.eq(3)), 3) .updateMask(water) ) return indicator.uint8() ```
{ "source": "12rambau/SDG_indicators_module", "score": 2 }
#### File: component/tile/reclassify_tile.py ```python from sepal_ui import reclassify as rec from sepal_ui import sepalwidgets as sw from component import parameter as cp class ReclassifyTile(rec.ReclassifyView): def __init__(self): super().__init__( gee=True, default_class={"IPCC CLASSES": str(cp.utils_dir / "UNCCD.csv")}, save=True, ) # change the title self.title.children[0].children = ["Adapt Land Cover map"] # remove the custom option # tmp_list = self.w_default.children.copy() # self.w_default.children = tmp_list[1:] # select IPCC by default self.w_default.children[1].fire_event("click", None) # remove optional panel self.w_optional.class_ = "d-none" # change the metadata of the tile self._metadata = {"mount_id": "reclassify_tile"} # clean w_image image type to have only image # TODO, uncomment when the sepal_ui lib method will be available # self.w_image.types = ["IMAGE"] # self.w_image._get_items() ``` #### File: component/widget/picker_line_productivity.py ```python import ipyvuetify as v from component import parameter as pm from component.message import ms class PickerLineProductivity(v.Layout): YEAR_RANGE = [y for y in range(pm.sensor_max_year, pm.L4_start - 1, -1)] def __init__(self, model): self.model = model # create the widgets self.trend_start_picker = v.Select( label=ms.trend_start_lbl, items=self.YEAR_RANGE, xs4=True, v_model=None, class_="ml-5 mr-5", ) self.trend_end_picker = v.Select( label=ms.trend_end_lbl, items=self.YEAR_RANGE, xs4=True, v_model=None, class_="ml-5 mr-5", ) self.state_start_picker = v.Select( label=ms.state_start_lbl, items=self.YEAR_RANGE, xs4=True, v_model=None, class_="ml-5 mr-5", ) self.state_end_picker = v.Select( label=ms.state_end_lbl, items=self.YEAR_RANGE, xs4=True, v_model=None, class_="ml-5 mr-5", ) self.performance_start_picker = v.Select( label=ms.performance_start_lbl, items=self.YEAR_RANGE, xs4=True, v_model=None, class_="ml-5 mr-5", ) self.performance_end_picker = v.Select( label=ms.performance_end_lbl, items=self.YEAR_RANGE, xs4=True, v_model=None, class_="ml-5 mr-5", ) # bind them to the output model.bind(self.trend_start_picker, "trend_start").bind( self.trend_end_picker, "trend_end" ).bind(self.state_start_picker, "state_start").bind( self.state_end_picker, "state_end" ).bind( self.performance_start_picker, "performance_start" ).bind( self.performance_end_picker, "performance_end" ) super().__init__( row=True, children=[ v.Flex(xs12=True, md6=True, children=[self.trend_start_picker]), v.Flex(xs12=True, md6=True, children = [self.trend_end_picker]), v.Flex(xs12=True, md6=True, children=[self.state_start_picker]), v.Flex(xs12=True, md6=True, children=[self.state_end_picker]), v.Flex(xs12=True, md6=True, children=[self.performance_start_picker]), v.Flex(xs12=True, md6=True, children=[self.performance_end_picker]) ], ) ``` #### File: component/widget/select_lc.py ```python from sepal_ui import sepalwidgets as sw from sepal_ui.scripts import utils as su import ee from natsort import natsorted import ipyvuetify as v from component.message import ms from component import parameter as cp ee.Initialize() class SelectLC(v.Layout): def __init__(self, label="select Land Cover"): # create the layout super().__init__(row=True, xs12=True) # set up the content self.w_image = sw.AssetSelect(types=["IMAGE"], label=label) self.w_band = v.Select(label="band", v_model=None, items=None, class_="pl-5") # create the children item self.children = [ v.Flex(xs8=True, children=[self.w_image]), v.Flex(xs4=True, children=[self.w_band]), ] # js behaviour self.w_image.observe(self._validate, "v_model") @su.switch("loading", "disabled", on_widgets=["w_image"]) def _validate(self, change): """ Validate the selected access. Throw an error message if is not accesible. If the asset can be accessed check that it only include values within the classification""" w = self.w_image # it's also change["owner"] w._validate(change) # only check the values if I have access to the asset if w.valid == False: return # the asset need to be an image if not w.asset_info["type"] == "IMAGE": w.asset_info = None w.valid = False w.error = True w.error_messages = ms.select_lc.not_image return # call the band list update self._update_bands() return @su.switch("loading", "disabled", on_widgets=["w_band"]) def _update_bands(self): """Update the band possibility to the available bands/properties of the input""" # update the bands values self.w_band.v_model = None self.w_band.items = natsorted( ee.Image(self.w_image.v_model).bandNames().getInfo() ) return ```
{ "source": "12rambau/sepal_geospatial_toolkit", "score": 3 }
#### File: sepal_geospatial_toolkit/sgt/sgt_rasterize.py ```python import sys import pathlib import argparse import geopandas as gpd from geocube.api.core import make_geocube import rasterio as rio import numpy as np from sgt.utils import custom_print def rasterize(src_vector, out_rst, res=30, column=None, verbose=False): """ Burns vector geometries into a raster. Args : src_vector (str) : path to the source vector shapefile out_rst (str, optional) : path to the output raster res (int, optional) : the resolution of the output raster. If none, the default landsat 7 30m res will be used column (str, optional) : the name of the column to use as value in the output raster. default ot the first one """ # apply the verbose option v_print = custom_print(verbose) # read the vector data gdf = gpd.read_file(src_vector).to_crs("EPSG:4326") # identify the column to be burn in the raster if not column: column = gdf.columns[0] # optimize dtype dtype = rio.dtypes.get_minimum_dtype(gdf[column]) # optimize the nodata value to meet the dtype fill = np.nan if np.issubdtype(dtype, np.integer): fill = 0 # convert the metric resolution into deg (as we work in EPSG 4326) # consider the equator approximation : 1° = 111 Km res = (res/111)*(10**(-3)) out_grid = make_geocube( vector_data = gdf, measurements = [column], resolution = (-res, res), fill = fill ) # write the column to raster file out_grid[column].rio.to_raster(out_rst, dtype=dtype) v_print(f'The vector geometries have been burn into the raster : {out_rst}') return if __name__ == "__main__": # write the description descript = "Burns vector geometries into a raster" # create an arg parser parser = argparse.ArgumentParser(description=descript) # read arguments parser.add_argument( '-i', dest = 'src_vector', metavar = 'source.shp', help = '(str) : path to the source vector file', required = True, type = pathlib.Path ) parser.add_argument( '-o', dest = 'out_rst', metavar = 'output.tif', help = '(str) : path to the output raster', required = True, type = pathlib.Path ) parser.add_argument( '-res', dest = 'res', metavar = 'a_number', help = '(int) : the resolution of the output raster. If none, the default landsat 7 30m res will be used', required = True, type = pathlib.Path ) parser.add_argument( '-c', dest = 'column', metavar = 'a_name', help = '(str) : the name of the column to use as value in the output raster. default ot the first one ', required = False, type = str ) parser.add_argument( '--no-v', dest = 'verbose', action='store_false', required = False, help = "remove the verbose option" ) # read arguments args = parser.parse_args() # launch the function rasterize(**vars(args)) ``` #### File: sepal_geospatial_toolkit/sgt/utils.py ```python def custom_print(verbose=False): """return a print function that does nothing if the verbose parameter is set to false and everything if true""" if verbose: # print the message def v_print(msg): print(msg) else: # do nothing function v_print = lambda msg: None return v_print ```
{ "source": "12rambau/sepal_translator", "score": 3 }
#### File: component/tile/translator_tile.py ```python from pathlib import Path from shutil import copyfile from sepal_ui import sepalwidgets as sw from traitlets import Unicode class TranslatorTile(sw.Tile): def __init__(self, user_folder): # gather the info self.folder = Path(user_folder).expanduser() # set the available locales self.locales = self._get_locales() # initialized the draft files (if needed) self._init_drafts() # create the actual tile super().__init__( 'translator_tile', "Translate module", inputs = [], output = sw.Alert(), btn = sw.Btn("validate translation") ) def _get_locales(self): """read the folder searching for json files and get the available languages of the app""" locales = [f.stem for f in self.folder.glob('*.json')] # check that at least english exist if not ('en' in locales): raise Exception("You don't have a dict for the source language (\"en\")") # check that there is at least one target if len(locales) < 2: raise Exception("You don't have any target language") return locales def _init_drafts(self): """init the draft files if needed, we'll use the already existing one if they exist""" # we don't create drafts fo en.json as it is the reference locales = [l for l in self.locales if l != 'en'] # create a draft file if needed for l in locales: valid = self.folder.joinpath(f'{l}.json') draft = valid.with_suffix(valid.suffix + '.draft') if not draft.is_file(): copyfile(valid, draft) return self ```
{ "source": "12rambau/sepal_ui", "score": 2 }
#### File: sepal_ui/reclassify/reclassify_view.py ```python from pathlib import Path from traitlets import Unicode import ipyvuetify as v import pandas as pd from .parameters import NO_VALUE, MATRIX_NAMES import sepal_ui.sepalwidgets as sw from sepal_ui.scripts import utils as su from sepal_ui.message import ms from sepal_ui.scripts.utils import loading_button from .reclassify_model import ReclassifyModel __all__ = ["ReclassifyView"] class ImportMatrixDialog(v.Dialog): """ Dialog to select the file to use and fill the matrix Args: folder (pathlike object): the path to the saved classifications Attributes: file (str): the file to use """ file = Unicode("").tag(sync=True) def __init__(self, folder, **kwargs): # create the 3 widgets title = v.CardTitle(children=["Load reclassification matrix"]) self.w_file = sw.FileInput(label="filename", folder=folder) self.load_btn = sw.Btn("Load") cancel = sw.Btn("Cancel", outlined=True) actions = v.CardActions(children=[cancel, self.load_btn]) # default params self.value = False self.max_width = 500 self.overlay_opacity = 0.7 self.persistent = True self.children = [v.Card(class_="pa-4", children=[title, self.w_file, actions])] # create the dialog super().__init__(**kwargs) # js behaviour cancel.on_event("click", self._cancel) def _cancel(self, widget, event, data): """exit and do nothing""" self.value = False return self def show(self): self.value = True return self class SaveMatrixDialog(v.Dialog): """ Dialog to setup the name of the output matrix file Args: folder (pathlike object): the path to the save folder. default to ~/ """ def __init__(self, folder=Path.home(), **kwargs): # save the matrix self._matrix = {} self.folder = Path(folder) # create the widgets title = v.CardTitle(children=["Save matrix"]) self.w_file = v.TextField(label="filename", v_model=None) btn = sw.Btn("Save matrix") cancel = sw.Btn("Cancel", outlined=True) actions = v.CardActions(children=[cancel, btn]) self.alert = sw.Alert(children=["Choose a name for the output"]).show() # default parameters self.value = False self.max_width = 500 self.overlay_opcity = 0.7 self.persistent = True self.children = [ v.Card(class_="pa-4", children=[title, self.w_file, self.alert, actions]) ] # create the dialog super().__init__(**kwargs) # js behaviour cancel.on_event("click", self._cancel) btn.on_event("click", self._save) self.w_file.on_event("blur", self._sanitize) self.w_file.observe(self._store_info, "v_model") def _store_info(self, change): """Display where will be the file written""" new_val = change["new"] out_file = self.folder / f"{su.normalize_str(new_val)}.csv" msg = f"Your file will be saved as: {out_file}" if not new_val: msg = "Choose a name for the output" self.alert.add_msg(msg) def _cancel(self, widget, event, data): """do nothing and exit""" self.w_file.v_model = None self.value = False return self def _save(self, widget, event, data): """save the matrix in a specified file""" file = self.folder / f"{su.normalize_str(self.w_file.v_model)}.csv" matrix = pd.DataFrame.from_dict(self._matrix, orient="index").reset_index() matrix.columns = MATRIX_NAMES matrix.to_csv(file, index=False) # hide the dialog self.value = False return self def show(self, matrix): """show the dialog and set the matrix values""" self._matrix = matrix # Reset file name self.w_file.v_model = "" self.value = True return self def _sanitize(self, widget, event, data): """sanitize the used name when saving""" if not self.w_file.v_model: return self self.w_file.v_model = su.normalize_str(self.w_file.v_model) return self class ClassSelect(sw.Select): """ Custom widget to pick the value of a original class in the new classification system Args: new_codes(dict): the dict of the new codes to use as items {code: (name, color)} code (int): the orginal code of the class """ def __init__(self, new_codes, old_code, **kwargs): # set default parameters self.items = [ {"text": f"{code}: {item[0]}", "value": code} for code, item in new_codes.items() ] self.dense = True self.multiple = False self.chips = True self._metadata = {"class": old_code} self.v_model = None self.clearable = True # init the select super().__init__(**kwargs) class ReclassifyTable(sw.SimpleTable): """ Table to store the reclassifying information. 2 columns are integrated, the new class value and the values in the original input One can select multiple class to be reclassify in the new classification Args: model (ReclassifyModel): model embeding the traitlet dict to store the reclassifying matrix. keys: class value in dst, values: list of values in src. dst_classes (dict|optional): a dictionnary that represent the classes of new the new classification table as {class_code: (class_name, class_color)}. class_code must be ints and class_name str. src_classes (dict|optional): the list of existing values within the input file {class_code: (class_name, class_color)} Attributes: HEADER (list): name of the column header (from, to) model (ReclassifyModel): the reclassifyModel object to manipulate the input file and save parameters """ HEADERS = ms.rec.rec.headers def __init__(self, model, dst_classes={}, src_classes={}, **kwargs): # default parameters self.dense = True # create the table super().__init__(**kwargs) # save the model self.model = model # create the table elements self._header = [ v.Html( tag="tr", children=[v.Html(tag="th", children=[h]) for h in self.HEADERS], ) ] self.set_table(dst_classes, src_classes) def set_table(self, dst_classes, src_classes): """ Rebuild the table content based on the new_classes and codes provided Args: dst_classes (dict|optional): a dictionnary that represent the classes of new the new classification table as {class_code: (class_name, class_color)}. class_code must be ints and class_name str. src_classes (dict|optional): the list of existing values within the input file {class_code: (class_name, class_color)} Return: self """ # reset the matrix self.model.matrix = {code: 0 for code in src_classes.keys()} # create the select list # they need to observe each other to adapt the available class list dynamically self.class_select_list = { k: ClassSelect(dst_classes, k) for k in src_classes.keys() } rows = [ v.Html( tag="tr", children=[ v.Html(tag="td", children=[f"{code}: {item[0]}"]), v.Html(tag="td", children=[self.class_select_list[code]]), ], ) for code, item in src_classes.items() ] # add an empty row at the end to make the table more visible when it's empty rows += [ v.Html( tag="tr", children=[ v.Html(tag="td", children=[""]), v.Html( tag="td", children=["" if len(dst_classes) else "No data available"], ), ], ) ] self.children = [v.Html(tag="tbody", children=self._header + rows)] # js behaviour [ w.observe(self._update_matrix_values, "v_model") for w in self.class_select_list.values() ] return self def _update_matrix_values(self, change): """Update the appropriate matrix value when a Combo select change""" # get the code of the class in the src classification code = change["owner"]._metadata["class"] # bind it to classes in the dst classification self.model.matrix[code] = change["new"] if change["new"] else 0 return self class ReclassifyView(sw.Card): """ Stand-alone Card object allowing the user to reclassify a input file. the input can be of any type (vector or raster) and from any source (local or GEE). The user need to provide a destination classification file (table) in the following format : 3 headless columns: 'code', 'desc', 'color'. Once all the old class have been attributed to their new class the file can be exported in the source format to local memory or GEE. the output is also savec in memory for further use in the app. It can be used as a tile in a sepal_ui app. The id_ of the tile is set to "reclassify_tile" Args: model (ReclassifyModel): the reclassify model to manipulate the classification dataset. default to a new one class_path (str,optional): Folder path containing already existing classes. Default to ~/ out_path (str,optional): the folder to save the created classifications. default to ~/downloads gee (bool): either or not to set :code:`gee` to True. default to False dst_class (str|pathlib.Path, optional): the file to be used as destination classification. for app that require specific code system the file can be set prior and the user won't have the oportunity to change it default_class (dict|optional): the default classification system to use, need to point to existing sytem: {name: absolute_path} folder(str, optional): the init GEE asset folder where the asset selector should start looking (debugging purpose) save (bool, optional): Whether to write/export the result or not. enforce_aoi (bool, optional): either or not an aoi should be set to allow the reclassification """ MAX_CLASS = 20 "int: the number of line in the table to trigger the display of an extra toolbar and alert" model = None "ReclassifyModel: the reclassify model to manipulate the classification dataset" gee = None "bool: either being linked to gee or not (use local file or GEE asset for the rest of the app)" alert = None "sw.Alert: the alert to display informations about computation" title = None "v.Cardtitle: the title of the card" w_asset = None "sw.AssetSelect: the widget to select an asset input" w_raster = None "sw.FileInput: the widget to select a file input" w_image = None "Widget: wraper of the input. linked to w_asset if gee=True, else to w_raster" w_code = None "int|str: widget to select the band/property used as init classification in the input file" get_table_btn = None "sw.Btn: the btn to load the data in the reclassification table" w_dst_class_file = None "sw.FileInput: widget to select the new classification system file (3 headless columns: 'code', 'desc', 'color')" reclassify_table = None "ReclassifyTable: the reclassification table populated via the previous widgets" reclassify_btn = None "sw.Btn: the btn to launch the reclassifying process" def __init__( self, model=None, class_path=Path.home(), out_path=Path.home() / "downloads", gee=False, dst_class=None, default_class={}, aoi_model=None, save=True, folder=None, enforce_aoi=False, **kwargs, ): # create metadata to make it compatible with the framwork app system self._metadata = {"mount_id": "reclassify_tile"} # init card parameters self.class_ = "pa-5" # create the object super().__init__(**kwargs) # set up a default model self.model = model or ReclassifyModel( gee=gee, dst_dir=out_path, aoi_model=aoi_model, folder=folder, save=save, enforce_aoi=enforce_aoi, ) if enforce_aoi != self.model.enforce_aoi: raise Exception( "Both reclassify_model.gee and reclassify_view parameters has to be equals." + f"Received {enforce_aoi} for reclassify_view and {self.model.enforce_aoi} for reclassify_model." ) # set the folders self.class_path = Path(class_path) self.out_path = Path(out_path) # save the gee binding self.gee = gee if gee: su.init_ee() # create an alert to display information to the user self.alert = sw.Alert() # set the title of the card self.title = v.CardTitle( children=[v.Html(tag="h2", children=[ms.rec.rec.title])] ) # create the input widgets self.w_input_title = v.Html( tag="h2", children=[ms.rec.rec.input.title], class_="mt-5" ) if self.gee: self.w_image = sw.AssetSelect(label=ms.rec.rec.input.asset, folder=folder) else: self.w_image = sw.FileInput( [".tif", ".vrt", ".tiff", ".geojson", ".shp"], label=ms.rec.rec.input.file, ) self.w_code = v.Select( label=ms.rec.rec.input.band.label, hint=ms.rec.rec.input.band.hint, v_model=None, items=[], persistent_hint=True, ) w_optional_title = v.Html(tag="h3", children=[ms.rec.rec.input.optional]) self.w_src_class_file = sw.FileInput( [".csv"], label=ms.rec.rec.input.classif.label, folder=self.class_path ) self.w_optional = v.ExpansionPanels( class_="mt-5", children=[ v.ExpansionPanel( children=[ v.ExpansionPanelHeader(children=[w_optional_title]), v.ExpansionPanelContent(children=[self.w_src_class_file]), ] ) ], ) # create the destination class widgetss self.w_class_title = v.Html( tag="h2", children=[ms.rec.rec.input.classif.title], class_="mt-5" ) if not dst_class: self.w_dst_class_file = sw.FileInput( [".csv"], label=ms.rec.rec.input.classif.label, folder=self.class_path ).hide() else: # We could save a little of time without creating this self.w_dst_class_file.select_file(dst_class).hide() self.btn_list = [ sw.Btn( "Custom", _metadata={"path": "custom"}, small=True, class_="mr-2", outlined=True, ) ] + [ sw.Btn( f"use {name}", _metadata={"path": path}, small=True, class_="mr-2", outlined=True, ) for name, path in default_class.items() ] self.w_default = v.Flex(class_="mt-5", children=self.btn_list) # set the table and its toolbar self.w_table_title = v.Html( tag="h2", children=[ms.rec.rec.table], class_="mt-5" ) self.save_dialog = SaveMatrixDialog(folder=out_path) self.import_dialog = ImportMatrixDialog(folder=out_path) self.get_table = sw.Btn( ms.rec.rec.input.btn, "mdi-table", color="success", small=True ) self.import_table = sw.Btn( "import", "mdi-download", color="secondary", small=True, class_="ml-2 mr-2" ) self.save_table = sw.Btn( "save", "mdi-content-save", color="secondary", small=True ) self.reclassify_btn = sw.Btn( ms.rec.rec.btn, "mdi-checkerboard", small=True, disabled=True ) self.toolbar = v.Toolbar( class_="d-flex mb-6", flat=True, children=[ self.save_dialog, self.import_dialog, v.ToolbarTitle(children=["Actions"]), v.Divider(class_="mx-4", inset=True, vertical=True), self.get_table, v.Divider(class_="mx-4", inset=True, vertical=True), v.Flex(class_="ml-auto", children=[self.import_table, self.save_table]), v.Divider(class_="mx-4", inset=True, vertical=True), self.reclassify_btn, ], ) self.reclassify_table = ReclassifyTable(self.model) # create a duplicate layout that include the alert and the different btns # it will be displayed if the number of class > MAX_CLASS self.duplicate_layout = v.Layout( class_="d-none", children=[self.toolbar, self.alert] ) # bind to the model # bind to the 2 raster and asset as they cannot be displayed at the same time self.model = ( self.model.bind(self.w_image, "src_gee" if self.gee else "src_local") .bind(self.w_code, "band") .bind(self.w_dst_class_file, "dst_class_file") ) # create the layout self.children = [ self.title, self.w_input_title, self.w_image, self.w_code, self.w_optional, self.w_class_title, self.w_default, self.w_dst_class_file, self.alert, self.w_table_title, self.toolbar, self.reclassify_table, self.duplicate_layout, ] # Decorate functions self.reclassify = loading_button(self.alert, self.reclassify_btn, debug=True)( self.reclassify ) self.get_reclassify_table = loading_button( self.alert, self.get_table, debug=True )(self.get_reclassify_table) self.load_matrix_content = loading_button( self.alert, self.import_table, debug=True )(self.load_matrix_content) # JS Events self.import_table.on_event("click", lambda *args: self.import_dialog.show()) self.import_dialog.load_btn.on_event("click", self.load_matrix_content) self.save_table.on_event( "click", lambda *args: self.save_dialog.show(self.model.matrix) ) self.w_image.observe(self._update_band, "v_model") self.get_table.on_event("click", self.get_reclassify_table) self.reclassify_btn.on_event("click", self.reclassify) [btn.on_event("click", self._set_dst_class_file) for btn in self.btn_list] def _set_dst_class_file(self, widget, event, data): """Set the destination classification according to the one selected with btn. alter the widgets properties to reflect this change""" # get the filename filename = widget._metadata["path"] if filename == "custom": self.w_dst_class_file.show() else: self.w_dst_class_file.hide() self.w_dst_class_file.select_file(filename) # change the visibility of the btns for btn in self.btn_list: btn.outlined = False if btn == widget else True return self def load_matrix_content(self, widget, event, data): """ Load the content of the file in the matrix. The table need to be already set to perform this operation Return: self """ self.import_dialog.value = False file = self.import_dialog.w_file.v_model # exit if no files are selected if not file: raise Exception("No file has been selected") # exit if no table is loaded if not self.model.table_created: raise Exception("You have to get the table before.") # load the file # sanity checks input_data = pd.read_csv(file).fillna(NO_VALUE) try: input_data.astype("int64") except Exception: raise Exception( "This file may contain non supported charaters for reclassification." ) if len(input_data.columns) != 2: # Try to identify the oclumns and subset them if all([colname in list(input_data.columns) for colname in MATRIX_NAMES]): input_data = input_data[MATRIX_NAMES] else: raise Exception( "This file is not a properly formatted as classification matrix" ) # check that the destination values are all available widget = list(self.reclassify_table.class_select_list.values())[0] classes = [i["value"] for i in widget.items] if not all(v in classes for v in input_data.dst.unique()): raise Exception( "Some of the destination data are not existing in the destination dataset" ) # fill the data for _, row in input_data.iterrows(): src_code, dst_code = row.src, row.dst if str(src_code) in self.reclassify_table.class_select_list: self.reclassify_table.class_select_list[ str(src_code) ].v_model = dst_code self.import_dialog.w_file.reset() return self def reclassify(self, widget, event, data): """ Reclassify the input and store it in the appropriate format. The input is not saved locally to avoid memory overload. Return: self """ # create the output file msg = self.model.reclassify() # display a message to the user self.alert.add_msg(msg, "success") return self @su.switch("loading", "disabled", on_widgets=["w_code"]) def _update_band(self, change): """Update the band possibility to the available bands/properties of the input""" # guess the file type and save it in the model self.model.get_type() # update the bands values self.w_code.v_model = None self.w_code.items = self.model.get_bands() return self @su.switch("disabled", on_widgets=["reclassify_btn"], targets=[False]) @su.switch("table_created", on_widgets=["model"], targets=[True]) def get_reclassify_table(self, widget, event, data): """ Display a reclassify table which will lead the user to select a local code 'from user' to a target code based on a classes file Return: self """ # get the destination classes self.model.dst_class = self.model.get_classes() # get the src_classes self.model.src_class = self.model.unique() # if the src_class_file is set overwrite src_class: if self.w_src_class_file.v_model: self.model.src_class = self.model.get_classes() # reset the table self.reclassify_table.set_table(self.model.dst_class, self.model.src_class) # check if the duplicate_layout need to be displayed ? self.duplicate_layout.class_ = "d-none" if len(self.reclassify_table.children[0].children) - 1 > self.MAX_CLASS: self.duplicate_layout.class_ = "d-block" return self def nest_tile(self): """ Prepare the view to be used as a nested component in a tile. the elevation will be set to 0 and the title remove from children. The mount_id will also be changed to nested Return: self """ # remove id self._metadata["mount_id"] = "nested_tile" # remove elevation self.elevation = False # remove title without_title = self.children.copy() without_title.remove(self.title) self.children = without_title return self ``` #### File: sepal_ui/scripts/utils.py ```python import os from pathlib import Path from urllib.parse import urlparse import string import random import math import re import warnings from unidecode import unidecode from functools import wraps from itertools import product import ee from cryptography.fernet import Fernet from matplotlib import colors as c import sepal_ui from .warning import SepalWarning def hide_component(widget): """ hide a vuetify based component Args: widget (v.VuetifyWidget): the widget to hide """ if isinstance(widget, sepal_ui.sepalwidgets.sepalwidget.SepalWidget): widget.hide() elif "d-none" not in str(widget.class_): widget.class_ = str(widget.class_).strip() + " d-none" return widget def show_component(widget): """ show a vuetify based component Args: widget (v.VuetifyWidget): the widget to hide """ if isinstance(widget, sepal_ui.sepalwidgets.sepalwidget.SepalWidget): widget.show() elif "d-none" in str(widget.class_): widget.class_ = widget.class_.replace("d-none", "") return widget def create_download_link(pathname): """ Create a clickable link to download the pathname target Args: pathname (str | pathlib.Path): the pathname th download Return: (str): the download link """ if type(pathname) == str: pathname = Path(pathname) result_path = Path(pathname).expanduser() home_path = Path("~").expanduser() # will be available with python 3.9 # download_path = result_path.relative_to(home_path) if result_path.is_relative_to(home_path) else result_path download_path = os.path.relpath(result_path, home_path) link = f"/api/files/download?path=/{download_path}" return link def is_absolute(url): """ Check if the given URL is an absolute or relative path Args: url (str): the URL to test Return: (bool): True if absolute else False """ return bool(urlparse(str(url)).netloc) def random_string(string_length=3): """ Generates a random string of fixed length. Args: string_length (int, optional): Fixed length. Defaults to 3. Return: (str): A random string """ # random.seed(1001) letters = string.ascii_lowercase return "".join(random.choice(letters) for i in range(string_length)) def get_file_size(filename): """ Get the file size as string of 2 digit in the adapted scale (B, KB, MB....) Args: filename (str | pathlib.Path): the path to the file to mesure Return: (str): the file size in a readable humanly readable """ file_size = Path(filename).stat().st_size if file_size == 0: return "0B" size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB") i = int(math.floor(math.log(file_size, 1024))) s = file_size / (1024 ** i) return "{:.1f} {}".format(s, size_name[i]) def init_ee(): """ Initialize earth engine according to the environment. It will use the creddential file if the EE_PRIVATE_KEY env variable exist. Otherwise it use the simple Initialize command (asking the user to register if necessary) """ # only do the initialization if the credential are missing if not ee.data._credentials: # if the decrypt key is available use the decript key if "EE_DECRYPT_KEY" in os.environ: # read the key as byte key = os.environ["EE_DECRYPT_KEY"].encode() # create the fernet object fernet = Fernet(key) # decrypt the key json_encrypted = Path(__file__).parent / "encrypted_key.json" with json_encrypted.open("rb") as f: json_decripted = fernet.decrypt(f.read()).decode() # write it to a file with open("ee_private_key.json", "w") as f: f.write(json_decripted) # connection to the service account service_account = "<EMAIL>" credentials = ee.ServiceAccountCredentials( service_account, "ee_private_key.json" ) ee.Initialize(credentials) # if in local env use the local user credential else: ee.Initialize() return def catch_errors(alert, debug=False): """ Decorator to execute try/except sentence and catch errors in the alert message. If debug is True then the error is raised anyway Params: alert (sw.Alert): Alert to display errors debug (bool): Wether to raise the error or not, default to false """ def decorator_alert_error(func): @wraps(func) def wrapper_alert_error(*args, **kwargs): value = None try: value = func(*args, **kwargs) except Exception as e: alert.add_msg(f"{e}", type_="error") if debug: raise e return value return wrapper_alert_error return decorator_alert_error def need_ee(func): """ Decorator to execute check if the object require EE binding. Trigger an exception if the connection is not possible. Params: func (obj): the object on which the decorator is applied """ @wraps(func) def wrapper_ee(*args, **kwargs): # try to connect to ee try: init_ee() except Exception: raise Exception("This function needs an Earth Engine authentication") return func(*args, **kwargs) return wrapper_ee def loading_button(alert=None, button=None, debug=False): """ Decorator to execute try/except sentence and toggle loading button object. Designed to work within the Tile object, or any object that have a self.btn and self.alert set. Params: button (sw.Btn, optional): Toggled button alert (sw.Alert, optional): the alert to display the error message debug (bool, optional): wether or not the exception should stop the execution. default to False """ def decorator_loading(func): @wraps(func) def wrapper_loading(self, *args, **kwargs): # set btn and alert # Change name of variable to assign it again in this scope button_ = self.btn if not button else button alert_ = self.alert if not alert else alert # Clean previous loaded messages in alert alert_.reset() button_.toggle_loading() # Start loading value = None try: # Catch warnings in the process function with warnings.catch_warnings(record=True) as w_list: value = func(self, *args, **kwargs) # Check if there are warnings in the function and append them # Use append msg as several warnings could be triggered if w_list: # split the warning list w_list_sepal = [ w for w in w_list if isinstance(w.message, SepalWarning) ] # display the sepal one ms_list = [ f"{w.category.__name__}: {w.message.args[0]}" for w in w_list_sepal ] [alert_.append_msg(ms, type_="warning") for ms in ms_list] # only display them in the console if debug mode if debug: def custom_showwarning(w): return warnings.showwarning( message=w.message, category=w.category, filename=w.filename, lineno=w.lineno, line=w.line, ) [custom_showwarning(w) for w in w_list] except Exception as e: alert_.add_msg(f"{e}", "error") if debug: button_.toggle_loading() # Stop loading button if there is an error raise e button_.toggle_loading() # Stop loading button return value return wrapper_loading return decorator_loading def normalize_str(msg, folder=True): """ Normalize an str to make it compatible with file naming (no spaces, special chars ...etc) Params: msg (str): the string to sanitise folder (optional|bool): if the name will be used for folder naming or for display. if display, <'> and < > characters will be kept Return: (str): the modified str """ regex = "[^a-zA-Z\d\-\_]" if folder else "[^a-zA-Z\d\-\_\ ']" return re.sub(regex, "_", unidecode(msg)) def to_colors(in_color, out_type="hex"): """ Transform any color type into a color in the specified output format avalable format: hex Args: in_color (str or tuple): It can be a string (e.g., 'red', '#ffff00', 'ffff00') or RGB tuple (e.g., (255, 127, 0)). out_type (str, optional): the type of the output color from ['hex']. default to 'hex' Returns: (str|tuple): The color in the specified format. default to black. """ # list of the color function used for the translatio c_func = {"hex": c.to_hex} transform = c_func[out_type] out_color = "#000000" # default black color if isinstance(in_color, tuple) and len(in_color) == 3: # rescale color if necessary if all(isinstance(item, int) for item in in_color): in_color = [c / 255.0 for c in in_color] return transform(in_color) else: # try to guess the color system try: return transform(in_color) except Exception: pass # try again by adding an extra # (GEE handle hex codes without #) try: return transform(f"#{in_color}") except Exception: pass return transform(out_color) def switch(*params, debug=True, on_widgets=[], targets=[]): """ Decorator to switch the state of input boolean parameters on class widgets or the class itself. If on_widgets is defined, it will switch the state of every widget parameter, otherwise it will change the state of the class (self). You can also set two decorators on the same function, one could affect the class and other the widgets. Args: *params (str): any boolean parameter of a SepalWidget. debug (bool): Whether trigger or not an Exception if the decorated function fails. on_widgets (list(widget_names,)|optional): List of widget names into the class targets (list(bool,)|optional); list of the target value (value taht will be set on switch. default to the inverse of the current state. """ def decorator_switch(func): @wraps(func) def wrapper_switch(self, *args, **kwargs): widgets_len = len(on_widgets) targets_len = len(targets) # sanity check on targets and on_widgets if widgets_len and targets_len: if widgets_len != targets_len: raise IndexError( f'the length of "on_widgets" ({widgets_len}) is different from the length of "targets" ({targets_len})' ) # create the list of target values based on the target list # or the initial values of the widgets params # The first one is taken as reference if not targets_len: w = getattr(self, on_widgets[0]) if widgets_len else self targets_ = [bool(getattr(w, p)) for p in params] else: targets_ = targets if widgets_len: # Verify that the input elements are strings wrong_types = [ (w, type(w)) for w in on_widgets if not isinstance(w, str) ] if len(wrong_types): errors = [ f"Received:{w_type} for widget: {w}." for w, w_type in wrong_types ] raise TypeError( f"All on_widgets list elements has to be strings. [{' '.join(errors)}]" ) missing_widgets = [w for w in on_widgets if not hasattr(self, w)] if missing_widgets: raise Exception( f"The provided {missing_widgets} widget(s) does not exist in the current class" ) def w_assign(bool_targets): params_targets = [ (p, bool_targets[i]) for i, p in enumerate(params) ] for (w_name, p_t) in product(on_widgets, params_targets): param, target = p_t widget = getattr(self, w_name) setattr(widget, param, target) else: def w_assign(bool_targets): for i, p in enumerate(params): setattr(self, p, bool_targets[i]) # assgn the parameters to the target inverse w_assign([not t for t in targets_]) # execute the function and catch errors try: func(self, *args, **kwargs) except Exception as e: if debug: w_assign(targets_) raise e # reassign the parameters to the targets w_assign(targets_) return wrapper_switch return decorator_switch def next_string(string): """Create a string followed by an underscore and a consecutive number""" # if the string is already numbered the last digit is separeted from the rest of the string by an "_" split = string.split("_") end = split[-1] if end.isdigit(): string = "_".join(split[:-1]) + f"_{int(end)+1}" else: string += "_1" return string ``` #### File: sepal_ui/sepalwidgets/sepalwidget.py ```python import ipyvuetify as v from traitlets import Unicode, Bool, observe __all__ = ["TYPES", "SepalWidget"] TYPES = ("info", "secondary", "primary", "error", "warning", "success", "accent") class SepalWidget(v.VuetifyWidget): """ Custom vuetifyWidget to add specific methods """ viz = Bool(True).tag(sync=True) "Bool: whether the widget is displayed or not" old_class = Unicode("").tag(sync=True) "Unicode: a saving attribute of the widget class" def __init__(self, **kwargs): # remove viz from kwargs # class_list need to be setup before viz # to let hide and shw function run viz = kwargs.pop("viz", True) # init the widget super().__init__(**kwargs) # setup the viz status self.viz = viz @observe("viz") def _set_viz(self, change): """ hide or show the component according to its viz param value. Hide the widget by reducing the html class to :code:`d-none`. Show the widget by removing the :code:`d-none` html class. Save the previous class Args: change: the dict of a trait callback """ # will be replaced byt direct calls to built-in hide # once the previous custom implementation will be fully removed if self.viz: # change class value self.class_ = self.old_class or self.class_ self.class_list.remove("d-none") else: # change class value self.class_list.remove("d-none") self.old_class = str(self.class_) self.class_ = "d-none" return def toggle_viz(self): """ toogle the visibility of the widget. Return: self """ self.viz = not self.viz return self def hide(self): """ Hide the widget by reducing the html class to :code:`d-none`. Save the previous class and set viz attribute to False. Return: self """ # update viz state self.viz = False return self def show(self): """ Show the widget by removing the d-none html class. Save the previous class and set viz attribute to True. Return: self """ # update viz state self.viz = True return self def reset(self): """ Clear the widget v_model. Need to be extented in custom widgets to fit the structure of the actual input. Return: self """ self.v_model = None return self ``` #### File: sepal_ui/translator/translator.py ```python import json from types import SimpleNamespace from pathlib import Path from collections import abc from deepdiff import DeepDiff class Translator(SimpleNamespace): """ The translator is a SimpleNamespace of Simplenamespace. It reads 2 Json files, the first one being the source language (usually English) and the second one the target language. It will replace in the source dictionary every key that exist in both json dictionaries. Following this procedure, every message that is not translated can still be accessed in the source language. To access the dictionary keys, instead of using [], you can simply use key name as in an object ex: translator.first_key.secondary_key. There are no depth limits, just respect the snake_case convention when naming your keys in the .json files. Args: json_folder (str | pathlib.Path): the folder where the dictionaries are stored target_lan (str): the language code of the target lang (it should be the same as the target dictionary) default_lan (str): the language code of the source lang (it should be the same as the source dictionary) """ FORBIDDEN_KEYS = ["default_dict", "target_dict", "in", "class"] "list(str): list of the forbidden keys, using one of them in a translation dict will throw an error" target_dict = {} "(dict): the target language dictionary" default_dict = {} "dict: the source language dictionary" keys = None "all the keys can be acceced as attributes" def __init__(self, json_folder, target_lan, default_lan="en"): super().__init__() if type(json_folder) == str: json_folder = Path(json_folder) # reading both the default dict source_path = json_folder / f"{default_lan}.json" self.default_dict = json.loads(source_path.read_text()) # create a composite dict replaceing all the default keys with the one availabel in the target lan target_path = json_folder / f"{target_lan}.json" self.target_dict = self.default_dict.copy() if target_path.is_file(): self.target_dict = json.loads(target_path.read_text()) else: print(f'No json file is provided for "{target_lan}", fallback to "en"') # create the composite dictionary ms_dict = self._update(self.default_dict, self.target_dict) # verify if 'default_dict' or 'target_dict' is in use [self.search_key(ms_dict, k) for k in self.FORBIDDEN_KEYS] # transform it into a json str ms_json = json.dumps(ms_dict) # unpack the json as a simple namespace ms = json.loads(ms_json, object_hook=lambda d: SimpleNamespace(**d)) for k, v in ms.__dict__.items(): setattr(self, k, getattr(ms, k)) @classmethod def search_key(cls, d, key): """ Search a specific key in the d dictionary and raise an error if found Args: d (dict): the dictionary to study key (str): the key to look for """ for k, v in d.items(): if isinstance(v, abc.Mapping): cls.search_key(v, key) else: if k == key: raise Exception( f"You cannot use the key {key} in your translation dictionary" ) return def _update(self, d, u): """ Update the fallback dictionnaire (d) values with the keys that exist in the target (u) dictionnaire Args: d (dict): The fallback dictionary u (dict): the target dctionnary Return: ms (dict): The updated dictionnay """ ms = d.copy() for k, v in u.items(): if isinstance(v, abc.Mapping): ms[k] = self._update(d.get(k, {}), v) else: ms[k] = v return ms def missing_keys(self): """ this function is intended for developer use only print the list of the missing keys in the target dictionnairie Return: (str): the list of missing keys """ # find all the missing keys try: ddiff = DeepDiff(self.default_dict, self.target_dict)[ "dictionary_item_removed" ] except Exception: ddiff = ["All messages are translated"] return "\n".join(ddiff) ``` #### File: sepal_ui/tests/test_AoiModel.py ```python import ee from urllib.request import urlretrieve from zipfile import ZipFile import pytest from sepal_ui import aoi class TestAoiModel: def test_init(self, alert, gee_dir, asset_italy, fake_vector): # default init aoi_model = aoi.AoiModel(alert, folder=gee_dir) assert isinstance(aoi_model, aoi.AoiModel) assert aoi_model.ee is True # with default assetId aoi_model = aoi.AoiModel(alert, asset=asset_italy, folder=gee_dir) assert aoi_model.asset_name["pathname"] == asset_italy assert aoi_model.default_asset["pathname"] == asset_italy assert all(aoi_model.gdf) is not None assert aoi_model.feature_collection is not None assert aoi_model.name == "italy" # chack that wrongly defined asset_name raise errors with pytest.raises(Exception): aoi_model = aoi.AoiModel(alert, folder=gee_dir) aoi_model._from_asset({"pathname": None}) with pytest.raises(Exception): aoi_model = aoi.AoiModel(alert, folder=gee_dir) aoi_model._from_asset( {"pathname": asset_italy, "column": "ADM0_CODE", "value": None} ) # it should be the same with a different name aoi_model = aoi.AoiModel(alert, folder=gee_dir) aoi_model._from_asset( {"pathname": asset_italy, "column": "ADM0_CODE", "value": 122} ) assert aoi_model.name == "italy_ADM0_CODE_122" # with a default admin admin = 85 # GAUL France aoi_model = aoi.AoiModel(alert, admin=admin, folder=gee_dir) assert aoi_model.name == "FRA" # with a default vector aoi_model = aoi.AoiModel(alert, vector=fake_vector, gee=False) assert aoi_model.name == "gadm36_VAT_0" # test with a non ee definition admin = "FRA" # GADM France aoi_model = aoi.AoiModel(alert, gee=False, admin=admin) assert aoi_model.name == "FRA" return def test_get_columns(self, aoi_model_france): # test data test_data = [ "ADM0_CODE", "ADM0_NAME", "DISP_AREA", "EXP0_YEAR", "STATUS", "STR0_YEAR", "Shape_Leng", ] res = aoi_model_france.get_columns() assert res == test_data return def test_get_fields(self, aoi_model_france): # init column = "ADM0_CODE" res = aoi_model_france.get_fields(column) assert res == [85] return def test_get_selected(self, aoi_model_france, asset_france): # init ee_france = ee.FeatureCollection(asset_france) # select the geometry associated with france (all of it) column = "ADM0_CODE" field = 85 feature = aoi_model_france.get_selected(column, field) feature_geom = feature.geometry().getInfo() france_geom = ee_france.geometry().getInfo() assert feature_geom == france_geom return def test_clear_attributes(self, alert, gee_dir): aoi_model = aoi.AoiModel(alert, folder=gee_dir) dum = "dum" # insert dum parameter everywhere aoi_model.method = dum aoi_model.point_json = dum aoi_model.vector_json = dum aoi_model.geo_json = dum aoi_model.admin = dum aoi_model.asset_name = dum aoi_model.name = dum aoi_model.gdf = dum aoi_model.feature_collection = dum aoi_model.ipygeojson = dum # clear them aoi_model.clear_attributes() assert aoi_model.method is None assert aoi_model.point_json is None assert aoi_model.vector_json is None assert aoi_model.geo_json is None assert aoi_model.admin is None assert aoi_model.asset_name is None assert aoi_model.name is None assert aoi_model.gdf is None assert aoi_model.feature_collection is None assert aoi_model.ipygeojson is None assert aoi_model.default_asset is None assert aoi_model.default_admin is None assert aoi_model.default_vector is None # check that default are saved aoi_model = aoi.AoiModel(alert, admin=85, folder=gee_dir) # GAUL for France # insert dummy args aoi_model.method = dum aoi_model.point_json = dum aoi_model.vector_json = dum aoi_model.geo_json = dum aoi_model.admin = dum aoi_model.asset_name = dum aoi_model.name = dum aoi_model.gdf = dum aoi_model.feature_collection = dum aoi_model.ipygeojson = dum # clear aoi_model.clear_attributes() # assert that it's still france assert aoi_model.name == "FRA" return def test_total_bounds(self, aoi_model_france): # test data expected_bounds = ( -5.142230921252722, 41.33878298628808, 9.561552263332496, 51.09281241936492, ) bounds = aoi_model_france.total_bounds() assert bounds == expected_bounds return @pytest.fixture def fake_vector(self, tmp_dir): """create a fake vector file from the GADM definition of vatican city and save it in the tmp dir. the tmp files will be destroyed after the test.""" # download vatican city from GADM file = tmp_dir / "test.zip" gadm_vat_link = "https://biogeo.ucdavis.edu/data/gadm3.6/shp/gadm36_VAT_shp.zip" name = "gadm36_VAT_0" urlretrieve(gadm_vat_link, file) with ZipFile(file, "r") as zip_ref: zip_ref.extractall(tmp_dir) file.unlink() yield tmp_dir / f"{name}.shp" # destroy the file after the test [f.unlink() for f in tmp_dir.glob(f"{name}.*")] return @pytest.fixture def aoi_model_france(self, alert, gee_dir, asset_france): """create a dummy alert and a test aoi model based on GEE that use the france asset available on the test account""" return aoi.AoiModel(alert, asset=asset_france, folder=gee_dir) ``` #### File: sepal_ui/tests/test_AoiView.py ```python import pytest from sepal_ui import aoi from sepal_ui.mapping import SepalMap from sepal_ui.message import ms class TestAoiView: def test_init(self, gee_dir): # default init view = aoi.AoiView(folder=gee_dir) assert isinstance(view, aoi.AoiView) # init without ee view = aoi.AoiView(gee=False) assert view.model.ee is False # init with ADMIN view = aoi.AoiView("ADMIN", folder=gee_dir) assert {"header": "CUSTOM"} not in view.w_method.items # init with CUSTOM view = aoi.AoiView("CUSTOM", folder=gee_dir) assert {"header": "ADMIN"} not in view.w_method.items # init with a list view = aoi.AoiView(["POINTS"], folder=gee_dir) assert {"text": ms.aoi_sel.points, "value": "POINTS"} in view.w_method.items assert len(view.w_method.items) == 1 + 1 # 1 for the header, 1 for the object # init with a remove list view = aoi.AoiView(["-POINTS"], folder=gee_dir) assert {"text": ms.aoi_sel.points, "value": "POINTS"} not in view.w_method.items assert ( len(view.w_method.items) == len(aoi.AoiModel.METHODS) + 2 - 1 ) # 2 headers this time # init with a mix of both with pytest.raises(Exception): view = aoi.AoiView(["-POINTS", "DRAW"], folder=gee_dir) # init with a non existing keyword with pytest.raises(Exception): view = aoi.AoiView(["TOTO"], folder=gee_dir) # init with a map m = SepalMap(dc=True) view = aoi.AoiView(map_=m, folder=gee_dir) assert view.map_ == m return def test_admin(self, gee_dir): # test if admin0 is in Gaul view = aoi.AoiView(folder=gee_dir) first_gaul_item = {"text": "Abyei", "value": 102} assert first_gaul_item == view.w_admin_0.items[0] # test if admin0 is in gadm view = aoi.AoiView(gee=False) first_gadm_item = {"text": "Afghanistan", "value": "AFG"} assert first_gadm_item == view.w_admin_0.items[0] return def test_activate(self, aoi_gee_view): view = aoi_gee_view for method in aoi.AoiModel.METHODS: view.w_method.v_model = method for k, c in view.components.items(): if k == method: assert "d-none" not in c.class_ elif hasattr(c, "parent"): if view.components[k].parent == c: assert "d-none" not in c.class_ else: assert "d-none" in c.class_ # test the cascade of the admin selector view.w_method.v_model = "ADMIN2" view.w_admin_0.v_model = view.w_admin_0.items[0]["value"] assert len(view.w_admin_1.items) view.w_admin_1.v_model = view.w_admin_1.items[0]["value"] assert len(view.w_admin_2.items) return def test_update_aoi(self, aoi_gee_view, aoi_local_view): # select Italy item = next(i for i in aoi_gee_view.w_admin_0.items if i["text"] == "Italy") aoi_gee_view.w_method.v_model = "ADMIN0" aoi_gee_view.w_admin_0.v_model = item["value"] # launch the update aoi_gee_view._update_aoi(None, None, None) # perform checks assert aoi_gee_view.updated == 1 assert aoi_gee_view.model.name == "ITA" assert len(aoi_gee_view.map_.layers) == 2 # same without GEE # select Italy item = next(i for i in aoi_local_view.w_admin_0.items if i["text"] == "Italy") aoi_local_view.w_method.v_model = "ADMIN0" aoi_local_view.w_admin_0.v_model = item["value"] # launch the update aoi_local_view._update_aoi(None, None, None) # perform checks assert aoi_local_view.updated == 1 assert aoi_local_view.model.name == "ITA" assert len(aoi_local_view.map_.layers) == 2 return def test_reset(self, aoi_gee_view): # select Italy item = next(i for i in aoi_gee_view.w_admin_0.items if i["text"] == "Italy") aoi_gee_view.w_method.v_model == "ADMIN0" aoi_gee_view.w_admin_0.v_model = item["value"] # launch the update aoi_gee_view._update_aoi(None, None, None) # reset aoi_gee_view.reset() # checks assert len(aoi_gee_view.map_.layers) == 1 assert aoi_gee_view.w_method.v_model is None assert aoi_gee_view.model.name is None return def test_polygonize(self): src_json = { "properties": {"style": {"radius": 1000}}, # 1 km "geometry": {"coordinates": [0, 0]}, } # number of sides in the polygons # check this number instead of a regular output # because different geopandas versions give different results (7th decimal) # check the transformation dst_json = aoi.AoiView.polygonize(src_json) assert dst_json["geometry"]["type"] == "Polygon" assert len(dst_json["geometry"]["coordinates"][0]) == 65 return @pytest.fixture def aoi_gee_view(self, gee_dir): """create an AoiView based on GEE with a silent sepalMap""" m = SepalMap(dc=True) return aoi.AoiView(map_=m, folder=gee_dir) @pytest.fixture def aoi_local_view(self, gee_dir): """create an AoiView based on GADM with a silent sepalMap""" m = SepalMap(dc=True) return aoi.AoiView(map_=m, gee=False) ``` #### File: sepal_ui/tests/test_DatePicker.py ```python import pytest from traitlets import Any from sepal_ui import sepalwidgets as sw from sepal_ui.model import Model class TestDatePicker: def test_init(self): # default init datepicker = sw.DatePicker() assert isinstance(datepicker, sw.DatePicker) # exhaustive datepicker = sw.DatePicker("toto") assert isinstance(datepicker, sw.DatePicker) return def test_bind(self, datepicker): class Test_io(Model): out = Any(None).tag(sync=True) test_io = Test_io() test_io.bind(datepicker, "out") date = "2020-06-12" datepicker.v_model = date assert test_io.out == date assert datepicker.menu.v_model is False return @pytest.fixture def datepicker(self): """create a default datepicker""" return sw.DatePicker() ``` #### File: sepal_ui/tests/test_LoadTableField.py ```python import pandas as pd import pytest from sepal_ui import sepalwidgets as sw class TestLoadTableField: def test_init(self, load_table): assert isinstance(load_table, sw.LoadTableField) return def test_on_file_input_change(self, load_table, fake_table, wrong_table): # change the value of the file load_table._on_file_input_change({"new": str(fake_table)}) test_data = { "pathname": str(fake_table), "id_column": "id", "lng_column": "lng", "lat_column": "lat", } assert load_table.v_model == test_data # change for a empty update load_table._on_file_input_change({"new": None}) assert load_table.v_model == load_table.default_v_model # test if the csv have not enough columns load_table._on_file_input_change({"new": str(wrong_table)}) assert load_table.v_model == load_table.default_v_model assert load_table.fileInput.selected_file.error_messages is not None return def test_reset(self, fake_table, load_table): # change the value of the file load_table._on_file_input_change({"new": str(fake_table)}) # reset the loadtable load_table.reset() # assert the current values assert load_table.v_model == load_table.default_v_model return @pytest.fixture def load_table(self): """create a default load table""" return sw.LoadTableField() @pytest.fixture def fake_table(self, tmp_dir): """create a fake table""" filename = tmp_dir / "test.csv" end = 3 coloseo = [1, 41.89042582290999, 12.492241627092199] fao = [2, 41.88369224629387, 12.489216069409004] columns = ["id", "lat", "lng"] df = pd.DataFrame([coloseo[:end], fao[:end]], columns=columns[:end]) df.to_csv(filename, index=False) yield filename # delete the file filename.unlink() return @pytest.fixture def wrong_table(self, tmp_dir): """create a wrongly defined table (with 2 columns instead of the minimal 3""" filename = tmp_dir / "wrong_test.csv" end = 2 coloseo = [1, 41.89042582290999, 12.492241627092199] fao = [2, 41.88369224629387, 12.489216069409004] columns = ["id", "lat", "lng"] df = pd.DataFrame([coloseo[:end], fao[:end]], columns=columns[:end]) df.to_csv(filename, index=False) yield filename # delete the file filename.unlink() return ``` #### File: sepal_ui/tests/test_PasswordField.py ```python import pytest from sepal_ui import sepalwidgets as sw class TestPasswordField: def test_init(self, password): assert isinstance(password, sw.PasswordField) assert password.type == "password" return def test_toogle_viz(self, password): # change the viz once password._toggle_pwd(None, None, None) assert password.type == "text" assert password.append_icon == "mdi-eye" # change it a second time password._toggle_pwd(None, None, None) assert password.type == "password" assert password.append_icon == "mdi-eye-off" return @pytest.fixture def password(self): """return a passwordfield""" return sw.PasswordField() ``` #### File: sepal_ui/tests/test_ReclassifyView.py ```python from pathlib import Path from zipfile import ZipFile import pytest import geopandas as gpd from sepal_ui.reclassify import ReclassifyView, ReclassifyModel from sepal_ui import aoi class TestReclassifyView: def test_init_exception(alert, gee_dir): """Test exceptions""" aoi_model = aoi.AoiModel(alert, gee=False) # aoi_model has to be local when using local view. with pytest.raises(Exception): ReclassifyView(aoi_model=aoi_model, gee=True, folder=gee_dir) return def test_init_local(self, view_local, class_file): assert view_local.model.aoi_model.ee is False assert view_local.gee is False # Check that all the classes buttons were created btn_paths = [btn._metadata["path"] for btn in view_local.btn_list] assert str(class_file) in btn_paths assert "custom" in btn_paths return def test_init_gee(self, view_gee): assert view_gee.model.aoi_model.ee is True assert view_gee.gee is True return def test_set_dst_class_file(self, view_local, class_file): # Arrange btn_list = [btn for btn in view_local.btn_list if btn._metadata["path"]] custom_btn, class_file_btn = btn_list # Act view_local._set_dst_class_file(class_file_btn, None, None) # Assert outlined styles for btn in view_local.btn_list: if btn._metadata["path"] == str(class_file): assert btn.outlined is False else: assert btn.outlined is True # Assert select_file visibility assert "d-none" in view_local.w_dst_class_file.class_ # select custom instead view_local._set_dst_class_file(custom_btn, None, None) # check that the w_dst_class_file is now visible assert "d-none" not in view_local.w_dst_class_file.class_ return def test_load_matrix_content( self, view_local, map_file_bad_char, map_file_bad_header, map_file, model_local_vector, class_file, ): # No file selected view_local.import_dialog.w_file.v_model = "" with pytest.raises(Exception): view_local.load_matrix_content(None, None, None) # Wrong characters in mapping file with pytest.raises(Exception): view_local.import_dialog.w_file.v_model = str(map_file_bad_char) view_local.load_matrix_content(None, None, None) # More than one column without headers with pytest.raises(Exception): view_local.import_dialog.w_file.v_model = str(map_file_bad_header) view_local.load_matrix_content(None, None, None) # When the table is not created before view_local.import_dialog.w_file.v_model = str(map_file) view_local.model.table_created = False with pytest.raises(Exception): view_local.load_matrix_content(None, None, None) # Arrange view_local.model = model_local_vector view_local.model.dst_class_file = class_file view_local.get_reclassify_table(None, None, None) view_local.load_matrix_content(None, None, None) return def test_update_band(self, view_local, model_local_vector): # Arrange table_bands = ["BoroCode", "BoroName", "Shape_Area", "Shape_Leng"] view_local.model = model_local_vector # Act view_local._update_band(None) # Assert assert view_local.w_code.items == table_bands return def test_reclassify(self, view_local, model_local_vector): view_local.model = model_local_vector view_local.reclassify(None, None, None) matrix = {1: 6, 2: 7, 3: 8, 4: 9, 5: 10} # Assert assert view_local.model.dst_local is not None reclassify_matrix = dict( zip( view_local.model.dst_local_memory["BoroCode"].to_list(), view_local.model.dst_local_memory["reclass"].to_list(), ) ) assert matrix == reclassify_matrix return @pytest.fixture def view_local(self, tmp_dir, class_file, alert): """return a local reclassify view""" aoi_model = aoi.AoiModel(alert, gee=False) return ReclassifyView( aoi_model=aoi_model, gee=False, out_path=tmp_dir, class_path=tmp_dir, default_class={"IPCC": str(class_file)}, ) @pytest.fixture def view_gee(self, tmp_dir, class_file, gee_dir, alert): """return a gee reclassify view""" aoi_model = aoi.AoiModel(alert, gee=True, folder=gee_dir) return ReclassifyView( aoi_model=aoi_model, gee=True, folder=gee_dir, out_path=tmp_dir, class_path=tmp_dir, default_class={"IPCC": str(class_file)}, ) @pytest.fixture def class_file(self, tmp_dir): file = tmp_dir / "dum_default_classes.csv" file.write_text( "1,Forest,#044D02\n" "2,Grassland,#F5FF00\n" "3,Cropland,#FF8100\n" "4,Wetland,#0013FF\n" "5,Settlement,#FFFFFF\n" "6,Other land,#FF00DE\n" ) yield file file.unlink() return @pytest.fixture def map_file_bad_char(self, tmp_dir): bad_file = tmp_dir / "map_file_bad_char.csv" bad_file.write_text(",src,dst\nnot_valid,not_valid") yield bad_file bad_file.unlink() return @pytest.fixture def map_file_bad_header(self, tmp_dir): bad_file = tmp_dir / "map_file_bad_header.csv" bad_file.write_text(",xx,yy,zz\n,1,2,3") yield bad_file bad_file.unlink() return @pytest.fixture def map_file(self, tmp_dir): file = tmp_dir / "map_file.csv" file.write_text( ",src,dst\n0,10,1\n1,100,1\n2,11,2\n" "3,110,2\n4,12,3\n5,120,3\n6,130,3\n" "7,150,3\n8,160,3\n9,170,4\n10,180,4\n" "11,190,4\n12,200,4\n13,210,5\n14,30,5\n" "15,40,1\n16,50,1\n17,61,1\n18,90,6\n" ) yield file file.unlink() return @pytest.fixture def model_local_vector(self, tmp_dir, alert): aoi_model = aoi.AoiModel(alert, gee=False) # create the vector file file = Path(gpd.datasets.get_path("nybb").replace("zip:", "")) with ZipFile(file, "r") as zip_ref: zip_ref.extractall(tmp_dir) model_local = ReclassifyModel(gee=False, dst_dir=tmp_dir, aoi_model=aoi_model) model_local.src_local = tmp_dir / "nybb.shp" model_local.get_type() model_local.matrix = {1: 6, 2: 7, 3: 8, 4: 9, 5: 10} model_local.band = "BoroCode" yield model_local # delete the shp files [f.unlink() for f in tmp_dir.glob("nybb.*")] return ``` #### File: sepal_ui/tests/test_sepalwidgets.py ```python import ipyvuetify as v from sepal_ui import sepalwidgets as sw class TestSepalWidgets: def test_generated(self): """test that all the vuetify classes have been overwritten""" # get all the classes names v_classes = [c for c in dir(v.generated) if c.startswith("__") is False] v_classes = [c for c in v_classes if c != "VuetifyWidget"] # set a class option option = "ma-5" print(locals().keys()) for c in v_classes: if c in ["Alert", "Tooltip"]: # they are meant to be hidden by default # they are specific sepalwidgets and tested elswhere continue # test normal creation w = getattr(sw, c)(class_=option) assert w.viz is True assert w.class_ == option w.viz = False assert w.class_ == "d-none" assert w.viz is False assert w.old_class == option # test with extra sepalwidgets args w = getattr(sw, c)(class_=option, viz=False) assert w.class_ == "d-none" assert w.viz is False assert w.old_class == option return def test_html(self): """test a HTML class""" # set a class option option = "ma-5" w = sw.Html(tag="H1", children=["toto"], class_=option, viz=False) assert w.class_ == "d-none" assert w.viz is False assert w.old_class == option return ``` #### File: sepal_ui/tests/test_TableView.py ```python from sepal_ui import reclassify as rec class TestTableView: def test_init(self): # default init view = rec.TableView() assert isinstance(view, rec.TableView) return def test_get_class(self): return def test_nest_tile(self): # nest the tile view = rec.TableView() res = view.nest_tile() assert res == view assert view._metadata["mount_id"] == "nested_tile" assert view.elevation == 0 assert len(view.children[0].children) == 1 return ```
{ "source": "12rambau/sphinx-icon", "score": 3 }
#### File: sphinxcontrib/icon/icon.py ```python from pathlib import Path import re from docutils import nodes from .font_handler import Fontawesome from sphinx.util import logging # -- global variables ---------------------------------------------------------- font_handler = None logger = logging.getLogger(__name__) # ------------------------------------------------------------------------------ class icon(nodes.General, nodes.Element): pass def download_font_assets(app): """ Download the fonts from the web assets and prepare them to be used in the documentation output directory :param app: the current Sphinx application """ # start the font_handler font_handler = Fontawesome() # create a _font folder output_dir = Path(app.outdir) font_dir = output_dir / "_font" font_dir.mkdir(exist_ok=True) app.config.html_static_path.append(str(font_dir)) # guess what need to be installed # based on the compiler if app.builder.format == "html": font_handler.download_asset("html", font_dir) app.add_css_file(font_handler.get_css()) app.add_js_file(font_handler.get_js()) elif app.builder.format == "latex": font_handler.download_asset("latex", font_dir) return def get_glyph(text): """ get the glyph from text Return a tuple of (glyph, font) from the provided text. raise an error if one of them does not exist :param text: The text to transform (e.g. "fa fa-folder") """ # split the icon name to find the name inside m = re.match(r"^(fab|far|fa|fas) fa-([\w-]+)$", text) if not m: raise ValueError(f'invalid icon name: "{text}"') # if not m.group(2) in font_handler.get_metadata(): # raise ValueError(f'icon "{m.group(2)}" is not part of fontawesome 5.15.4') # return (font, glyph) return m.group(1), m.group(2) def depart_icon_node(self, node): """ Empty depart function, everything is handled in visit """ pass def visit_icon_node_html(self, node): """ create the html output """ try: font, glyph = get_glyph(node["icon"]) except ValueError as e: logger.warning(str(e), location=node) raise nodes.SkipNode self.body.append(f'<i class="{font} fa-{glyph}"></i>') return def visit_icon_node_latex(self, node): """create the latex output""" try: font, glyph = get_glyph(node["icon"]) except ValueError as e: logger.warning(str(e), location=node) raise nodes.SkipNode # detect the font font_list = {"fa": None, "far": "regular", "fas": "solid", "fab": "brand"} font = font_list[font] # install fontawesome 5 package # TODO install it on the fly using the otf files downloaded in var package = "\\usepackage{fontawesome5}" if package not in self.elements["preamble"]: self.elements["preamble"] += f"{package}\n" # build the output cmd = "\\faIcon" if font is not None: cmd += f"[{font}]" cmd += f"{{{glyph}}}" self.body.append(cmd) return def visit_icon_node_unsuported(self, node): """raise error when the requested output is not supported""" logger.warning("Unsupported output format (node skipped)") raise nodes.SkipNode _NODE_VISITORS = { "html": (visit_icon_node_html, depart_icon_node), "latex": (visit_icon_node_latex, depart_icon_node), "man": (visit_icon_node_unsuported, None), "texinfo": (visit_icon_node_unsuported, None), "text": (visit_icon_node_unsuported, None), } def icon_role(name, rawtext, text, lineno, inliner, options={}, content=[]): """ add inline icons Returns 2 part tuple containing list of nodes to insert into the document and a list of system messages. Both are allowed to be empty. :param name: The role name used in the document. :param rawtext: The entire markup snippet, with role. :param text: The text marked with the role. :param lineno: The line number where rawtext appears in the input. :param inliner: The inliner instance that called us. :param options: Directive options for customization. :param content: The directive content for customization. """ # create the node node = icon(icon=text) return [node], [] ```
{ "source": "12remember/qrl-analytics", "score": 2 }
#### File: qrl_scraper/qrlNetwork/pipelines.py ```python import psycopg2 import psycopg2.extras import logging import traceback import sched, time import os import sys import json from scrapy import signals from datetime import datetime from django.utils import timezone from psycopg2.extensions import AsIs from psycopg2.extras import LoggingConnection, LoggingCursor #from scrapy.conf import settings from scrapy.exceptions import DropItem from .items import QRLNetworkBlockItem, QRLNetworkTransactionItem, QRLNetworkAddressItem, QRLNetworkMissedItem from .settings import connection , cur, scrap_url PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__)) DOCUMENT_DIR = os.path.join(PROJECT_ROOT, 'Documenten') class QrlnetworkPipeline_block: def open_spider(self, spider): cur = connection.cursor() def close_spider(self, spider): cur.close() connection.close() def process_item(self, item, spider): if not isinstance(item, QRLNetworkBlockItem): return item valid = True for data in item: if not data: valid = False logging.error('Missing data in block', data) raise DropItem("Missing data in block {0}!".format(data)) if valid: try: datetimeNow = datetime.now() cur.execute('SELECT "block_number" FROM public."qrl_blockchain_blocks" WHERE "block_number" = %s', (int(item['block_number']),)) dup_check = len(cur.fetchall()) if dup_check == 0: convert_timestamp_to_datetime = datetime.fromtimestamp(int(item["block_found_datetime"])).strftime("%Y-%m-%d %H:%M:%S") cur.execute('INSERT INTO public. "qrl_blockchain_blocks" (\ "block_number", "block_found", "block_result",\ "block_found_datetime", "block_found_timestamp_seconds", "block_reward_block", "block_reward_fee",\ "block_mining_nonce", "block_number_of_transactions","spider_name",\ "spider_version", "block_size", "block_hash_header_type" , "block_hash_header_data",\ "block_hash_header_type_prev" , "block_hash_header_data_prev", "block_merkle_root_type",\ "block_merkle_root_data", "block_added_timestamp"\ ) VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s, %s, %s, %s, %s, %s, %s, %s, %s ,%s , %s)', (int(item['block_number']), item['block_found'],item['block_result'], convert_timestamp_to_datetime, item['block_found_timestamp_seconds'], int(item["block_reward_block"]), int(item["block_reward_fee"]), int(item["block_mining_nonce"]), int(item["block_number_of_transactions"]), item["spider_name"], item["spider_version"], int(item["block_size"]), item["block_hash_header_type"], item["block_hash_header_data"],item["block_hash_header_type_prev"],item["block_hash_header_data_prev"], item["block_merkle_root_type"], item["block_merkle_root_data"], datetimeNow )) connection.commit() logging.warning('Got new block, number: %s ' % item['block_number']) else: raise DropItem("Already Got Blocknumber: %s" % item['block_number']) except DropItem as duplicate : logging.info(duplicate) except (Exception, psycopg2.Error) as error: spider_name = spider.name, spider_version = spider.version, location_script_file = str(__name__) location_script_function = str(__class__.__name__) + (', ') + str(sys._getframe().f_code.co_name) trace_back = traceback.format_exc(limit=None, chain=True) error_type = str(type(error)) error = str(error) item_url = item["item_url"] spiderError(spider_name, spider_version, location_script_file, location_script_function, trace_back, error_type, error, item_url) connection.rollback() return item class QrlnetworkPipeline_transaction: def open_spider(self, spider): cur = connection.cursor() def close_spider(self, spider): cur.close() connection.close() def process_item(self, item, spider): if not isinstance(item, QRLNetworkTransactionItem): return item valid = True for data in item: if not data: valid = False logging.error('Missing data in transaction', data) raise DropItem("Missing data in transaction {0}!".format(data)) if valid: try: datetimeNow = datetime.now() cur.execute('SELECT "transaction_hash" FROM public."qrl_blockchain_transactions" WHERE "transaction_hash" = %s AND "transaction_receiving_wallet_address" = %s', (item['transaction_hash'], item['transaction_receiving_wallet_address'])) dup_check = len(cur.fetchall()) if dup_check == 0: convert_timestamp_to_datetime = datetime.fromtimestamp(int(item["block_found_datetime"])).strftime("%Y-%m-%d %H:%M:%S") cur.execute('INSERT INTO public. "qrl_blockchain_transactions" (\ "transaction_hash", "transaction_sending_wallet_address", "transaction_receiving_wallet_address",\ "transaction_amount_send", "transaction_type", "transaction_block_number",\ "transaction_found", "transaction_result","spider_name", \ "spider_version" , "master_addr_type", "master_addr_data",\ "master_addr_fee","public_key_type","public_key_data",\ "signature_type","signature_data", "transaction_nonce",\ "transaction_addrs_to_type", "block_found_datetime",\ "transaction_added_datetime" \ ) VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)', (item['transaction_hash'], item['transaction_sending_wallet_address'],item['transaction_receiving_wallet_address'], int(item["transaction_amount_send"]), item["transaction_type"], int(item["transaction_block_number"]), item["transaction_found"],item["transaction_result"], item["spider_name"], item["spider_version"],item["master_addr_type"],item["master_addr_data"], item["master_addr_fee"], item["public_key_type"], item["public_key_data"], item["signature_type"], item["signature_data"], item["transaction_nonce"], item["transaction_addrs_to_type"], convert_timestamp_to_datetime, datetimeNow )) connection.commit() logging.warning('Got new transaction, hash: %s ' % item['transaction_hash']) else: raise DropItem("Already Got Transaction: %s" % item['transaction_hash']) except DropItem as duplicate : logging.info(duplicate) except (Exception, psycopg2.Error) as error: connection.rollback() spider_name = spider.name, spider_version = spider.version, location_script_file = str(__name__) location_script_function = str(__class__.__name__) + (', ') + str(sys._getframe().f_code.co_name) trace_back = traceback.format_exc() error_type = str(type(error)) error = str(error) item_url = item["item_url"] spiderError(spider_name, spider_version, location_script_file, location_script_function, trace_back, error_type, error, item_url) return item class QrlnetworkPipeline_address: def open_spider(self, spider): cur = connection.cursor() def close_spider(self, spider): cur.close() connection.close() def process_item(self, item, spider): if not isinstance(item, QRLNetworkAddressItem): return item valid = True for data in item: if not data: valid = False logging.error('Missing data in address', data) raise DropItem("Missing {0}!".format(data)) if valid: try: datetimeNow = datetime.now() cur.execute('SELECT "wallet_address" FROM public."qrl_wallet_address" WHERE "wallet_address" = %s', (item['wallet_address'],)) dup_check = len(cur.fetchall()) if dup_check == 0: cur.execute('INSERT INTO public. "qrl_wallet_address" (\ "wallet_address", "address_balance", "address_nonce",\ "address_ots_bitfield_used_page", "address_used_ots_key_count", "address_transaction_hash_count",\ "address_tokens_count", "address_slaves_count", "address_lattice_pk_count",\ "address_multi_sig_address_count", "address_multi_sig_spend_count","address_inbox_message_count",\ "address_foundation_multi_sig_spend_txn_hash", "address_foundation_multi_sig_vote_txn_hash", "address_unvotes",\ "address_proposal_vote_stats","spider_name", "spider_version", "address_added_datetime" \ ) VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)', ( item['wallet_address'], int(item['address_balance']),int(item['address_nonce']), int(item["address_ots_bitfield_used_page"]), int(item["address_used_ots_key_count"]), int(item["address_transaction_hash_count"]), int(item["address_tokens_count"]) , int(item["address_slaves_count"]), int(item["address_lattice_pk_count"]), int(item["address_multi_sig_address_count"]), int(item["address_multi_sig_spend_count"]),int(item["address_inbox_message_count"]), item["address_foundation_multi_sig_spend_txn_hash"],item["address_foundation_multi_sig_vote_txn_hash"],item["address_unvotes"], item["address_proposal_vote_stats"], item["spider_name"],item["spider_version"], datetimeNow )) connection.commit() logging.warning('Got New Wallet Address: %s ' % item['wallet_address']) else: update_address = 'UPDATE public. "qrl_wallet_address" SET "address_balance" = %s, "address_nonce" = %s ,\ "address_ots_bitfield_used_page"= %s , "address_used_ots_key_count"= %s , "address_transaction_hash_count"= %s ,\ "address_tokens_count"= %s , "address_slaves_count"= %s , "address_lattice_pk_count"= %s ,\ "address_multi_sig_address_count"= %s , "address_multi_sig_spend_count"= %s ,"address_inbox_message_count"= %s ,\ "address_foundation_multi_sig_spend_txn_hash"= %s , "address_foundation_multi_sig_vote_txn_hash"= %s , "address_unvotes"= %s ,\ "address_proposal_vote_stats"= %s ,"spider_name"= %s , "spider_version"= %s WHERE "wallet_address" = %s' cur.execute(update_address,(int(item['address_balance']), int(item["address_nonce"]), int(item["address_ots_bitfield_used_page"]), int(item["address_used_ots_key_count"]), int(item["address_transaction_hash_count"]), int(item["address_tokens_count"]), int(item["address_slaves_count"]), int(item["address_lattice_pk_count"]), int(item["address_multi_sig_address_count"]), int(item["address_multi_sig_spend_count"]),int(item["address_inbox_message_count"]), item["address_foundation_multi_sig_spend_txn_hash"], item["address_foundation_multi_sig_vote_txn_hash"],item["address_unvotes"],item["address_proposal_vote_stats"], item["spider_name"],item["spider_version"],item["wallet_address"] )) connection.commit() logging.info('Updated Wallet Address: %s ' % item['wallet_address']) except DropItem as duplicate : logging.warning(duplicate) except (Exception, psycopg2.Error) as error: connection.rollback() spider_name = spider.name, spider_version = spider.version, location_script_file = str(__name__) location_script_function = str(__class__.__name__) + (', ') + str(sys._getframe().f_code.co_name) trace_back = traceback.format_exc() error_type = str(type(error)) error = str(error) item_url = item["item_url"] spiderError(spider_name, spider_version, location_script_file, location_script_function, trace_back, error_type, error, item_url) return item class QrlnetworkPipeline_missed_items: def open_spider(self, spider): cur = connection.cursor() def close_spider(self, spider): cur.close() connection.close() def process_item(self, item, spider): if not isinstance(item, QRLNetworkMissedItem): return item valid = True for data in item: if not data: valid = False logging.error('Missing data in missed items', data) raise DropItem("Missing {0}!".format(data)) try: if valid: cur.execute('INSERT INTO public. "qrl_blockchain_missed_items" (\ "spider_name","spider_version", "location_script_file",\ "location_script_function", "trace_back", "error_type",\ "error_name", "item_url", "error_timestamp"\ ) VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s)', ( item["spider_name"], item["spider_version"], item["location_script_file"], item["location_script_function"], json.dumps(item["trace_back"]), item["error_type"], item["error"], item["item_url"], datetime.now())) connection.commit() logging.warning('Got ERROR - check db') return item except (Exception, psycopg2.Error) as error: connection.rollback() spider_name = spider.name, spider_version = spider.version, location_script_file = str(__name__) location_script_function = str(__class__.__name__) + (', ') + str(sys._getframe().f_code.co_name) trace_back = traceback.format_exc() error_type = str(type(error)) error = str(error) item_url = item["item_url"] spiderError(spider_name, spider_version, location_script_file, location_script_function, trace_back, error_type, error, item_url) def spiderError(spider_name, spider_version, location_script_file, location_script_function, trace_back, error_type, error, item_url): cur = connection.cursor() try: cur.execute('INSERT INTO public. "qrl_blockchain_missed_items" (\ "spider_name","spider_version", "location_script_file",\ "location_script_function", "trace_back", "error_type",\ "error_name", "item_url", "error_timestamp"\ ) VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s)', ( spider_name, spider_version, location_script_file, location_script_function, json.dumps(trace_back), error_type, error, item_url, datetime.now())) connection.commit() logging.warning('Got ERROR - check db') except (Exception,psycopg2.Error) as error: connection.rollback() location_script_file = str(__name__) location_script_function = str(sys._getframe().f_code.co_name) + ', exception' trace_back = traceback.format_exc() error = str(error) cur.execute('INSERT INTO public. "qrl_blockchain_missed_items" (\ "spider_name","spider_version", "location_script_file",\ "location_script_function", "trace_back", "error_type",\ "error_name", "item_url", "error_timestamp"\ ) VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s)', ( '', '', location_script_file, location_script_function, json.dumps(trace_back), 'Unknown Error', error, '', datetime.now())) connection.commit() logging.warning('Got Unkown ERROR - check db') ``` #### File: qrlNetwork/spiders/qrl_network_spider.py ```python import os import scrapy import logging import re import psycopg2 import json import marshal import numpy as np import pandas as pd import sys import traceback from scrapy.spidermiddlewares.httperror import HttpError from twisted.internet.error import DNSLookupError from twisted.internet.error import TimeoutError, TCPTimedOutError from ..items import QRLNetworkBlockItem, QRLNetworkTransactionItem, QRLNetworkAddressItem, QRLNetworkMissedItem from ..settings import connection , cur, scrap_url PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__)) DOCUMENT_DIR = os.path.join(PROJECT_ROOT, 'Documenten') def list_integer_to_hex(list): array = bytearray(list) # create byte array from list of integers return bytearray.hex(array) # hex the byte array -> result tx hash, needed for api call class QRLNetworkSpider(scrapy.Spider): name = "qrl_network_spider" version = "0.25" start_urls = [] def start_requests(self): self.crawler.stats.set_value("spiderName", self.name) self.crawler.stats.set_value("spiderVersion", self.version) yield scrapy.Request( url='https://explorer.theqrl.org/api/blockheight', callback=self.parse, errback=self.errback_conn, #meta={"item": item}, ) def parse(self, response): json_response = json.loads(response.body) cur.execute('SELECT "block_number" FROM public."qrl_blockchain_blocks" ORDER BY "block_number" DESC LIMIT 1') block_in_database = cur.fetchone() if block_in_database != None: last_block_scraped = int(block_in_database[0]) # check latest block in data base else: last_block_scraped = 0 diff_with_current_blockheight = abs(json_response["blockheight"] - last_block_scraped) # calculate difference between latest block and block in database if json_response["found"] == True and diff_with_current_blockheight != 0 : for number in range(last_block_scraped+1,json_response["blockheight"]+1 ): #last_block_scraped,json_response["blockheight"]+1 #cur.execute('SELECT "block_number" FROM public."qrl_blockchain_blocks" ORDER BY "block_number" ASC') #listA = [item[0] for item in cur.fetchall()] #res = [x for x in range(listA[0], listA[-1]+1) if x not in listA] #print(res) #for number in res: #for number in range(1212497,1263495): block_api_url = scrap_url + '/api/block/' + str(number) yield scrapy.Request( url=block_api_url, callback=self.parse_block, errback=self.errback_conn, #meta={"item": item}, ) def parse_block(self, response): item_block = QRLNetworkBlockItem() json_response = json.loads(response.body) item_block["item_url"] = response.url try: item_block["spider_name"] = self.name item_block["spider_version"] = self.version item_block["block_result"] = json_response["result"] item_block["block_found"] = json_response["found"] # block_extended block_extended = json_response["block_extended"] item_block["block_size"] = block_extended["size"] # block_extended > header block_extended_header = block_extended["header"] # block_extended > header > hash_header block_hash_header = block_extended_header["hash_header"] item_block["block_hash_header_type"] = block_hash_header["type"] item_block["block_hash_header_data"] = list_integer_to_hex(block_hash_header["data"]) # block_extended > header > hash_header_prev block_hash_header_prev = block_extended_header["hash_header_prev"] item_block["block_hash_header_type_prev"] = block_hash_header_prev["type"] item_block["block_hash_header_data_prev"] = list_integer_to_hex(block_hash_header_prev["data"]) # block_extended > header > merkle_root block_merkle_root= block_extended_header["merkle_root"] item_block["block_merkle_root_type"] = block_merkle_root["type"] item_block["block_merkle_root_data"] = list_integer_to_hex(block_merkle_root["data"]) item_block["block_number"] = block_extended_header["block_number"] item_block["block_found_datetime"] = block_extended_header["timestamp_seconds"] item_block["block_found_timestamp_seconds"] = block_extended_header["timestamp_seconds"] item_block["block_reward_block"] = block_extended_header["reward_block"] item_block["block_reward_fee"] = block_extended_header["reward_fee"] item_block["block_mining_nonce"] = block_extended_header["mining_nonce"] item_block["block_extra_nonce"] = block_extended_header["extra_nonce"] item_block["block_number_of_transactions"] = len(block_extended["extended_transactions"]) if item_block["block_found"] == True: yield QRLNetworkBlockItem(item_block) for transaction in block_extended["extended_transactions"]: transaction_tx = transaction["tx"] transaction_tx_transaction_hash = transaction_tx["transaction_hash"] tx_hash = list_integer_to_hex(transaction_tx_transaction_hash["data"]) # create api url transaction_api_url = scrap_url + '/api/tx/' + str(tx_hash) yield scrapy.Request( url=transaction_api_url, callback=self.parse_transaction, errback=self.errback_conn, meta={"item_block": item_block}, ) else: print('Block Not Found Yet By The BlockChain') pass except (Exception) as error: item_missed = QRLNetworkMissedItem() item_missed["spider_name"] = self.name item_missed["spider_version"] = self.version item_missed["location_script_file"] = str(__name__) item_missed["location_script_function"] = str(__class__.__name__) + (', ') + str(sys._getframe().f_code.co_name) item_missed["trace_back"] = traceback.format_exc(limit=None, chain=True) item_missed["error_type"] = str(type(error)) item_missed["error"] = str(error) item_missed["item_url"] = response.url yield QRLNetworkMissedItem(item_missed) def parse_transaction(self, response): item_block = response.meta['item_block'] item_transaction = QRLNetworkTransactionItem() json_response = json.loads(response.body) item_transaction["item_url"]=response.url try: transaction = json_response["transaction"] item_transaction["spider_name"] = self.name item_transaction["spider_version"] = self.version item_transaction["transaction_result"] = json_response["result"] item_transaction["transaction_found"] = json_response["found"] # transaction > header transaction_header = transaction["header"] item_transaction["transaction_block_number"] = item_block["block_number"] item_transaction["block_found_datetime"] = item_block["block_found_datetime"] item_transaction["block_found_timestamp_seconds"] = item_block["block_found_timestamp_seconds"] # transaction > tx transaction_tx = transaction["tx"] item_transaction["transaction_type"] = transaction_tx["transactionType"] item_transaction["transaction_nonce"] = int(transaction_tx["nonce"]) item_transaction["master_addr_fee"] = int(transaction_tx["fee"]) # transaction > tx > master_addr master_addr = transaction_tx["master_addr"] item_transaction["master_addr_type"] = master_addr["type"] item_transaction["master_addr_data"] = list_integer_to_hex(master_addr["data"]) # transaction > tx > public_key public_key = transaction_tx["public_key"] item_transaction["public_key_type"] = public_key["type"] item_transaction["public_key_data"] = list_integer_to_hex(public_key["data"]) # transaction > tx > signature signature = transaction_tx["signature"] item_transaction["signature_type"] = signature["type"] item_transaction["signature_data"] = list_integer_to_hex(signature["data"]) if transaction_tx["transactionType"] == "transfer": transfer_list = [] transfer_type_list = [] transaction_tx_transfer = transaction_tx["transfer"] amounts_list = transaction_tx_transfer["amounts"] # transaction > tx > transfer > addrs_to for single_transfer in transaction_tx_transfer["addrs_to"]: transaction_addrs_to_type = single_transfer["type"] transaction_receiving_wallet_address_hex = list_integer_to_hex(single_transfer["data"]) # get receiving address in hex transfer_type_list.append(transaction_addrs_to_type) transfer_list.append(transaction_receiving_wallet_address_hex) transfer_address_amount_combined = list(zip(transfer_list, amounts_list,transfer_type_list)) # transaction > tx > transfer > amounts for address_with_amount in transfer_address_amount_combined: transaction_sending_wallet_address = transaction["addr_from"] item_transaction["transaction_sending_wallet_address"] = "Q"+ list_integer_to_hex(transaction_sending_wallet_address["data"]) item_transaction["transaction_receiving_wallet_address"] = "Q" + address_with_amount[0] item_transaction["transaction_amount_send"] = address_with_amount[1] item_transaction["transaction_addrs_to_type"] = address_with_amount[2] # transaction > tx > transaction_hash transaction_tx_transaction_hash = transaction_tx["transaction_hash"] item_transaction["transaction_hash"] = list_integer_to_hex(transaction_tx_transaction_hash["data"]) yield QRLNetworkTransactionItem(item_transaction) for scrape_wallet_url in [item_transaction["transaction_receiving_wallet_address"] ,item_transaction["transaction_sending_wallet_address"], ] : yield scrapy.Request( url= scrap_url + "/api/a/" + scrape_wallet_url, callback=self.parse_address, errback=self.errback_conn, meta={"item_transaction": item_transaction,} ) elif transaction_tx["transactionType"] == "coinbase": # transaction > tx > coinbase transaction_tx_coinbase = transaction_tx["coinbase"] coinbase_transfer = transaction_tx_coinbase["addr_to"] transaction_sending_wallet_address = transaction["addr_from"] item_transaction["transaction_sending_wallet_address"] = "Q"+ list_integer_to_hex(transaction_sending_wallet_address["data"]) item_transaction["transaction_receiving_wallet_address"] = "Q" + list_integer_to_hex(coinbase_transfer["data"]) item_transaction["transaction_amount_send"] = transaction_tx_coinbase["amount"] item_transaction["transaction_addrs_to_type"] = coinbase_transfer["type"] # transaction > tx > transaction_hash coinbase_tx_transaction_hash = transaction_tx["transaction_hash"] item_transaction["transaction_hash"] = list_integer_to_hex(coinbase_tx_transaction_hash["data"]) yield QRLNetworkTransactionItem(item_transaction) yield scrapy.Request( url= scrap_url + "/api/a/" + item_transaction["transaction_receiving_wallet_address"], callback=self.parse_address, errback=self.errback_conn, meta={"item_transaction": item_transaction,}, ) elif transaction_tx["transactionType"] == "slave" : # transaction > tx > slave transaction_tx_slave = transaction_tx["slave"] for slave_pk in transaction_tx_slave["slave_pks"] : transaction_sending_wallet_address = transaction["addr_from"] item_transaction["transaction_sending_wallet_address"] = "Q"+ list_integer_to_hex(transaction_sending_wallet_address["data"]) item_transaction["transaction_receiving_wallet_address"] = "Q" + list_integer_to_hex(slave_pk["data"]) item_transaction["transaction_amount_send"] = 0 #address_with_access_types[1] item_transaction["transaction_addrs_to_type"] = '' #address_with_access_types[2] transaction_tx_transaction_hash = transaction_tx["transaction_hash"] item_transaction["transaction_hash"] = list_integer_to_hex(transaction_tx_transaction_hash["data"]) yield QRLNetworkTransactionItem(item_transaction) except (Exception) as error: item_missed = QRLNetworkMissedItem() item_missed["spider_name"] = self.name item_missed["spider_version"] = self.version item_missed["location_script_file"] = str(__name__) item_missed["location_script_function"] = str(__class__.__name__) + (', ') + str(sys._getframe().f_code.co_name) item_missed["trace_back"] = traceback.format_exc(limit=None, chain=True) item_missed["error_type"] = str(type(error)) item_missed["error"] = str(error) item_missed["item_url"] = response.url yield QRLNetworkMissedItem(item_missed) def parse_address(self, response): item_transaction = response.meta['item_transaction'] item_address = QRLNetworkAddressItem() json_response = json.loads(response.body) item_address["item_url"] = response.url try: json_state = json_response["state"] item_address["spider_name"] = self.name item_address["spider_version"] = self.version item_address["wallet_address"] = json_state["address"] item_address["address_balance"] = json_state["balance"] item_address["address_nonce"] = json_state["nonce"] item_address["address_ots_bitfield_used_page"] = json_state["ots_bitfield_used_page"] item_address["address_used_ots_key_count"] = json_state["used_ots_key_count"] item_address["address_transaction_hash_count"] = json_state["transaction_hash_count"] item_address["address_tokens_count"] = json_state["tokens_count"] item_address["address_slaves_count"] = json_state["slaves_count"] item_address["address_lattice_pk_count"] = json_state["lattice_pk_count"] item_address["address_multi_sig_address_count"] = json_state["multi_sig_address_count"] item_address["address_multi_sig_spend_count"] = json_state["multi_sig_spend_count"] item_address["address_inbox_message_count"] = json_state["inbox_message_count"] item_address["address_foundation_multi_sig_spend_txn_hash"] = json_state["foundation_multi_sig_spend_txn_hash"] item_address["address_foundation_multi_sig_vote_txn_hash"] = json_state["foundation_multi_sig_vote_txn_hash"] item_address["address_unvotes"] = json_state["unvotes"] item_address["address_proposal_vote_stats"] = json_state["proposal_vote_stats"] item_address["address_proposal_vote_stats"] = json_state["proposal_vote_stats"] yield QRLNetworkAddressItem(item_address) except (Exception) as error: item_missed = QRLNetworkMissedItem() item_missed["spider_name"] = self.name item_missed["spider_version"] = self.version item_missed["location_script_file"] = str(__name__) item_missed["location_script_function"] = str(__class__.__name__) + (', ') + str(sys._getframe().f_code.co_name) item_missed["trace_back"] = traceback.format_exc(limit=None, chain=True) item_missed["error_type"] = str(type(error)) item_missed["error"] = str(error) item_missed["item_url"] = response.url yield QRLNetworkMissedItem(item_missed) def errback_conn(self, failure): item_missed = QRLNetworkMissedItem() item_missed["spider_name"] = self.name item_missed["spider_version"] = self.version item_missed["location_script_file"] = str(__name__) item_missed["location_script_function"] = str(__class__.__name__) + (', ') + str(sys._getframe().f_code.co_name) if failure.check(HttpError): item_missed["error"] = str(failure.__class__) item_missed["error_type"] = str(failure.value.response).split(" ") item_missed["item_url"] = failVal[1] item_missed["trace_back"] = failVal[0] yield QRLNetworkMissedItem(item_missed) elif failure.check(DNSLookupError): item_missed["error"] = str(failure.__class__) item_missed["errorType"] = str(failure.request).split(" ") item_missed["item_url"] = failVal[1] item_missed["trace_back"] = failVal[0] yield QRLNetworkMissedItem(item_missed) elif failure.check(TimeoutError, TCPTimedOutError): item_missed["error"] = str(failure.__class__) item_missed["error_type"] = str(failure.request).split(" ") item_missed["item_url"] = failVal[1] item_missed["trace_back"] = failVal[0] yield QRLNetworkMissedItem(item_missed) #def spiderError(missedIn,itemError, itemErrorType, fileName,itemUrl, missedItemType): # cur = connection.cursor() # error_timestamp = datetime.now() # try: # cur.execute('INSERT INTO public. "qrl_blockchain_missed_items" (\ # "spider_name","spider_version", "missed_in",\ # "item_error", "item_error_type", "file_name", "item_url",\ # "missed_item_type", "error_timestamp"\ # ) VALUES(%s,%s,%s,%s,%s,%s,%s,%s, %s)', ( # QRLNetworkSpider.name,QRLNetworkself.version,missedIn,itemError,itemErrorType,fileName, itemUrl, missedItemType,error_timestamp)) # connection.commit() # logging.warning('Got ERROR - check db') # except Exception as error: # connection.rollback() # self.crawler.engine.close_spider(self, 'log message') ```
{ "source": "12remember/QRLtoDatabase", "score": 2 }
#### File: QRLtoDatabase/utils/getData.py ```python import plyvel import argparse import base64 import binascii from datetime import datetime import json import sys from qrl.core.PaginatedData import PaginatedData from qrl.core.PaginatedBitfield import PaginatedBitfield from qrl.core.misc.db import DB from qrl.generated import qrl_pb2 from google.protobuf.json_format import MessageToJson, Parse, MessageToDict import multiprocessing class getData: def getBlockHeight(source): dbb = plyvel.DB(source) blockheight = int.from_bytes(dbb.get(b'blockheight'), byteorder='big', signed=False) return blockheight def getBlockData(i, source ): dbb = plyvel.DB(source) pbdata = qrl_pb2.Block() block_number_mapping = qrl_pb2.BlockNumberMapping() hashHeader = Parse(dbb.get(str(i).encode()), block_number_mapping).headerhash pbdata.ParseFromString(bytes(dbb.get(hashHeader))) dictData = MessageToDict(pbdata) # BlockDataPoint and BlockExtended not working yet #BlockDataPointData = qrl_pb2.BlockDataPoint() #BlockDataPointData.ParseFromString(bytes(db.get(hashHeader))) #print(BlockDataPointData) #BlockDataPointDic = MessageToDict(BlockDataPointData) #print(BlockDataPointDic) #print('BlockDataPoint') #LatticePKData = qrl_pb2.LatticePK() #LatticePKData.ParseFromString(db.get(addrByte)) #LatticePKDic = MessageToDict(LatticePKData) #test = Parse(db.get(str(i).encode()), block_number_mapping) #BlockExtendedData = qrl_pb2.BlockExtended() #BlockExtendedData.ParseFromString(bytes(db.get(test))) #print(BlockExtendedData) #BlockExtendedDic = MessageToDict(BlockExtendedData) #print(BlockExtendedDic) #print('BlockExtended') blockData = {} blockData["block_number"] = i blockData["hash_header"] = hashHeader.hex() blockData["timestamp"] = datetime.fromtimestamp(int(dictData["header"]["timestampSeconds"])) blockData["reward_block"] = dictData["header"]["rewardBlock"] blockData["merkle_root"] = dictData["header"]["merkleRoot"] if "hashHeaderPrev" in dictData["header"]: blockData["hash_header_prev"] = base64.b64decode(dictData["header"]["hashHeaderPrev"]).hex() if "rewardFee" in dictData["header"]: blockData["reward_fee"] = dictData["header"]["rewardFee"] if "miningNonce" in dictData["header"]: blockData["mining_nonce"] = int(dictData["header"]["miningNonce"]) if "extraNonce" in dictData["header"]: blockData["extra_nonce"] = int(dictData["header"]["extraNonce"]) if "genesisBalance" in dictData: blockData["genesis_balance"] = dictData["genesisBalance"][0]["balance"] if "transactions" in dictData: blockData["transactions"] = dictData["transactions"] return blockData def getTransactionData(t, block_number, timestamp): tData = {} tData["block_number"], tData["timestamp"] = block_number, timestamp tData["transaction_hash"] = base64.b64decode(t["transactionHash"]).hex() if "masterAddr" in t: tData["master_addr"] = "Q" + base64.b64decode(t["masterAddr"]).hex() if "publicKey" in t: tData["public_key"] = base64.b64decode(t["publicKey"]).hex() if "signature" in t: tData["signature"] = base64.b64decode(t["signature"]).hex() if "nonce" in t: tData["nonce"] = t["nonce"] if "fee" in t: tData["fee"] = t["fee"] return tData def getTransactionDataCoinbase(t, block_number, timestamp): tData = getData.getTransactionData(t, block_number, timestamp) tData["addr_to"] = "".join(["Q" , base64.b64decode(t["coinbase"]["addrTo"]).hex()]) tData["amount"] = t["coinbase"]["amount"] return tData def getTransactionDataTransfer(t, block_number, timestamp, transfer): tData = getData.getTransactionData(t, block_number, timestamp) tData["addr_to"] = "".join(["Q" , base64.b64decode(transfer["addr_to"]).hex()]) tData["amount"] = transfer["amount"] return tData def getTransactionDataToken(t, block_number, timestamp): tData = getData.getTransactionData(t, block_number, timestamp) tData["symbol"] = base64.b64decode(t["token"]["symbol"]).decode("utf-8") tData["name"] = base64.b64decode(t["token"]["name"]).decode("utf-8") tData["owner"] = "".join(["Q" , base64.b64decode(t["token"]["owner"]).hex()]) tData["initial_balances"] = t["token"]["initialBalances"] tData["initial_balances"] = list(map(lambda x: json.dumps(x), tData["initial_balances"])) if "decimals" in t["token"]: tData["decimals"] = t["token"]["decimals"] return tData def getTransactionDataMessage(t, block_number, timestamp): tData = getData.getTransactionData(t, block_number, timestamp) tData["message_hash"] = t["message"]["messageHash"] try: messageHash = base64.b64decode(t["message"]["messageHash"]).decode("utf-8") tData["message_text"] = messageHash except: messageHash = base64.b64decode(t["message"]["messageHash"]).hex() tData["message_text"] = messageHash #https://github.com/theQRL/qips/blob/master/qips/QIP002.md if messageHash.startswith("afaf"): if messageHash.startswith("afafa1"): try: docText = binascii.a2b_hex(messageHash[46:]).decode("utf-8") except: docText = binascii.a2b_hex(messageHash[46:]).hex() tData["message_text"] = " ".join(["[Doc notarization] SHA1:" , messageHash[6:46] , "TEXT:" , docText]) elif messageHash.startswith("afafa2"): try: docText = binascii.a2b_hex(messageHash[70:]).decode("utf-8") except: docText = binascii.a2b_hex(messageHash[70:]).hex() tData["message_text"] = " ".join(["[Doc notarization] SHA256:" , messageHash[6:70] , "TEXT:" , docText]) elif messageHash.startswith("afafa3"): try: docText = binascii.a2b_hex(messageHash[38:]).decode("utf-8") except: docText = binascii.a2b_hex(messageHash[38:]).hex() tData["message_text"] = " ".join(["[Doc notarization] MD5:" , messageHash[6:38] , "TEXT:" , docText ]) #https://github.com/theQRL/message-transaction-encoding elif messageHash.startswith("0f0f"): msgHeader = "[Unknown]" msgBegin = 8 text = "" if messageHash.startswith("0f0f0000") or messageHash.startswith("0f0f0001"): msgHeader = "[Reserved] " elif messageHash.startswith("0f0f0002"): if messageHash.startswith("0f0f0002af"): msgHeader = "[Keybase-remove] " elif messageHash.startswith("0f0f0002aa"): msgHeader = "[Keybase-add] " else: msgHeader = "".join(["[Keybase-" , messageHash[8:10] , "]" ]) msgBegin = 12 try: user = binascii.a2b_hex(messageHash[msgBegin:].split("20")[0]).decode("utf-8") keybaseHex = binascii.a2b_hex(messageHash[msgBegin + len(user)*2 + 2:]).hex() text = "".join(["USER:" , user , " KEYBASE_HEX:" , keybaseHex ]) except: text = "" elif messageHash.startswith("0f0f0003"): if messageHash.startswith("0f0f0002af"): msgHeader = "[Github-remove] " elif messageHash.startswith("0f0f0002aa"): msgHeader = "[Github-add] " else: msgHeader = "".join(["[Github-" , messageHash[8:10] , "] " ]) msgBegin = 18 text = binascii.a2b_hex(messageHash[msgBegin:]).hex() elif messageHash.startswith("0f0f0004"): msgHeader = "[Vote] " if len(text) == 0: try: text = binascii.a2b_hex(messageHash[msgBegin:]).decode("utf-8") except: try: text = binascii.a2b_hex(messageHash[msgBegin:]).hex() except: text = str(messageHash[msgBegin:]) tData["message_text"] = " ".join([msgHeader , text ]) return tData def getTransactionDataLatticePk(t, block_number, timestamp): tData = getData.getTransactionData(t, block_number, timestamp) print('&&&&&&&&&&&&&') print('latticePk - T') for key, value in t.items() : print(key) print('--------------------') print('--------------------') for key, value in t["latticePk"].items() : print(key) print('^^^^^^^^^^^^^^^^') tData["kyber_pk"] = t["latticePk"]["kyberPK"] tData["dilithium_pk"] = t["latticePk"]["dilithiumPK"] return tData def getTransactionDataSlave(t, block_number, timestamp, transfer): tData = getData.getTransactionData(t, block_number, timestamp) tData["slave_pk"] = "".join(["Q" , base64.b64decode(transfer["slave_pk"]).hex()]) tData["access_type"] = transfer["access_type"] return tData def getTransactionDataTransferToken(t, block_number, timestamp, transfer): tData = getData.getTransactionData(t, block_number, timestamp) tData["token_txhash"] = transfer["token_txhash"] tData["addr_to"] = "".join(["Q" , base64.b64decode(transfer["addr_to"]).hex()]) tData["amount"] = transfer["amount"] return tData def getTransactionDataOthers(t, block_number, timestamp): tData = getData.getTransactionData(t, block_number, timestamp) print('------------------------') print('not transactionProcessed') print('------------------------') print(t) print('------------------------') if "multiSigCreate" in t: tData['type'] = "multiSigCreate" if "multiSigSpend" in t: tData['type'] = "multiSigSpend" if "multiSigVote" in t: tData['type'] = "multiSigVote" if len(tData['type']) == 0: tData['type'] = "unkown" for key, value in tData.items() : print(key) print('--------------------') print('--------------------') print('transaction unkown') sys.exit("transaction unkown") tData['data'] = str(t) return tData def getAddressData(source, b64Addr, timeStamp): try: #addrData = qrl_pb2.AddressState() addrData = qrl_pb2.OptimizedAddressState() addrByte = base64.b64decode(b64Addr) address = "Q" + addrByte.hex() tree_dict = { 0: 256, 8: 256, 10: 256, 12 : 256, 14: 256, 16: 256, 18 : 256, } tree_height = int(address[4]) * 2 dbb = plyvel.DB(source) addrData.ParseFromString(dbb.get(addrByte)) dictData = MessageToDict(addrData) databasee = DB() n = 0 false_loop = 0 OTSBitfieldByPageDic = [] while n < tree_dict[tree_height]: page = (n // 8192) + 1 PaginatedBitfieldKey = PaginatedBitfield.generate_bitfield_key(PaginatedBitfield(False, databasee), addrByte, page) obj = PaginatedBitfield(False, databasee) obj.load_bitfield(addrByte, n) ots_bitfield = obj.key_value[PaginatedBitfieldKey] OTSBitfieldByPageDic.append(PaginatedBitfield.ots_key_reuse(ots_bitfield, n)) if PaginatedBitfield.ots_key_reuse(ots_bitfield, n) == False: false_loop = false_loop + 1 if false_loop > 5: break # print(PaginatedBitfield.ots_key_reuse(ots_bitfield, n)) n = n + 1 OTSBitfieldByPageData = qrl_pb2.OTSBitfieldByPage() OTSBitfieldByPageData.ParseFromString(dbb.get(addrByte)) # OTSBitfieldByPageDic = MessageToDict(OTSBitfieldByPageData) #print(OTSBitfieldByPageDic) #print('OTSBitfieldByPage') DataList = qrl_pb2.DataList() DataListData = qrl_pb2.DataList() DataListData.ParseFromString(dbb.get(addrByte)) DataListDic = MessageToDict(DataListData) #print(DataListDic) #print('DataList') BitfieldData = qrl_pb2.Bitfield() BitfieldData.ParseFromString(dbb.get(addrByte)) BitfieldDic = MessageToDict(BitfieldData) #print(BitfieldDic) #print('Bitfield') TransactionHashListData = qrl_pb2.TransactionHashList() TransactionHashListData.ParseFromString(dbb.get(addrByte)) TransactionHashListDic = MessageToDict(TransactionHashListData) #print(TransactionHashListDic) #print('TransactionHashList') LatticePKData = qrl_pb2.LatticePK() LatticePKData.ParseFromString(dbb.get(addrByte)) LatticePKDic = MessageToDict(LatticePKData) #print(LatticePKDic) #print('LatticePK') MultiSigAddressStateData = qrl_pb2.MultiSigAddressState() MultiSigAddressStateData.ParseFromString(dbb.get(addrByte)) MultiSigAddressStateDic = MessageToDict(MultiSigAddressStateData) #print(MultiSigAddressStateDic) #print('MultiSigAddressStateDic') MultiSigAddressesListData = qrl_pb2.MultiSigAddressesList() MultiSigAddressesListData.ParseFromString(dbb.get(addrByte)) MultiSigAddressesListDic = MessageToDict(MultiSigAddressesListData) #print(MultiSigAddressesListDic) #print('MultiSigAddressesListDic') addressData = {} if "balance" in dictData: addressData["balance"] = dictData["balance"] else: addressData["balance"] = "0" if "nonce" in dictData: addressData["nonce"] = dictData["nonce"] if "usedOtsKeyCount" in dictData: addressData["use_otskey_count"] = dictData["usedOtsKeyCount"] if "transactionHashCount" in dictData: addressData["transaction_hash_count"] = dictData["transactionHashCount"] if "tokensCount" in dictData: addressData["tokens_count"] = dictData["tokensCount"] if "slavesCount" in dictData: addressData["slaves_count"] = dictData["slavesCount"] if OTSBitfieldByPageDic: addressData["ots_bitfield"] = OTSBitfieldByPageDic if "pageNumber" in OTSBitfieldByPageDic: addressData["ots_bitfield_page_number"] = OTSBitfieldByPageDic["pageNumber"] if "values" in DataListDic: addressData["data_list"] = DataListDic["values"] if "bitfields" in BitfieldDic: addressData["bitfields"] = BitfieldDic["bitfields"] if "hashes" in TransactionHashListDic: addressData["transactionhash_list"] = TransactionHashListDic["hashes"] if "kyberPk" in LatticePKDic: addressData["kyber_pk"] = LatticePKDic["kyberPk"] if "address" in MultiSigAddressStateDic: addressData["multi_sig_addresses_hashes_address"] = MultiSigAddressStateDic["address"] if "nonce" in MultiSigAddressStateDic: addressData["multi_sig_addresses_hashes_nonce"] = MultiSigAddressStateDic["nonce"] if "weights" in MultiSigAddressStateDic: addressData["multi_sig_addresses_hashes_weights"] = MultiSigAddressStateDic["weights"] if "hashes" in MultiSigAddressesListDic: addressData["multi_sig_addresses_list_hashes"] = MultiSigAddressesListDic["hashes"] addressData["last_seen"] = timeStamp addressData["first_seen"] = timeStamp addressData["address"] = address return addressData except Exception as e: print(e) raise if __name__ == "__main__": # Creates two processes p1 = multiprocessing.Process(target=getData) p2 = multiprocessing.Process(target=getData) p3 = multiprocessing.Process(target=getData) p4 = multiprocessing.Process(target=getData) p5 = multiprocessing.Process(target=getData) p6 = multiprocessing.Process(target=getData) p7 = multiprocessing.Process(target=getData) p8 = multiprocessing.Process(target=getData) # Starts both processes p1.start() p2.start() p3.start() p4.start() p5.start() p6.start() p7.start() p8.start() ```
{ "source": "12sarah96/ranking", "score": 3 }
#### File: rankit/Ranker/UnsupervisedRanker.py ```python from __future__ import division from __future__ import absolute_import import numpy as np import pandas as pd import scipy as sp from rankit.Table import Table from scipy.sparse import coo_matrix from scipy.sparse.linalg import lsqr from .matrix_build import fast_colley_build from numpy.linalg import norm class UnsupervisedRanker(object): """Base class for all unsupervised ranking algorithms.""" def rank(self, table, **kargs): raise NotImplementedError("UnsupervisedRanker is a abstract class.") def _showcase(self, table, ascending=False): # one need to translate item index to item name. indexlut = table.indexlut rating = self.rating # iitm, rating itemname = [] for row in rating.itertuples(index=False, name=None): itemname.append(indexlut[row[0]]) rst = pd.DataFrame({ "name": itemname, "rating": rating["rating"]}) rst['rank'] = rst.rating.rank(method='min', ascending=ascending).astype(np.int32) return rst.sort_values(by=['rating', 'name'], ascending=ascending).reset_index(drop=True) class MasseyRanker(UnsupervisedRanker): """Massey ranking system proposed by <NAME>: Statistical models applied to the rating of sports teams. Bachelor's thesis, Bluefield College, 1997. Core idea: The competition score difference is the rating difference, so one can solve a linear equation by minimize least square error. Parameters ---------- drawMargin: [0, +Inf), default 0. When absolute difference between two teams are smaller than drawMargin, this competition is considered as a tie. """ def __init__(self, drawMargin = 0.0): self.drawMargin = drawMargin def rank(self, table): """Calculate the rank and rating with specified parameters. Parameters ---------- table: Table The record table to be ranked, should be a Table object. Returns ------- pandas.DataFrame, with column ['name', 'rating', 'rank'] """ drawMargin = self.drawMargin data = table.table[['hidx', 'vidx', 'hscore', 'vscore', 'weight']] m = data.shape[0] n = table.itemnum y = np.zeros(m) dat = np.zeros(m*2, dtype=np.float) col = np.zeros(m*2, dtype=np.int) row = np.zeros(m*2, dtype=np.int) for i, itm in enumerate(data.itertuples(index=False, name=None)): row[i*2]=i; col[i*2]=itm[0]; dat[i*2]=itm[4]; row[i*2+1]=i; col[i*2+1]=itm[1]; dat[i*2+1]=-itm[4]; if np.abs(itm[2]-itm[3])<=drawMargin: y[i]=0.0 else: y[i] = itm[4]*(itm[2]-itm[3]) X = coo_matrix((dat, (row, col)), shape=(m, n)) X = X.tocsr() rst = lsqr(X, y) rating = rst[0] if hasattr(self, "rating"): self.rating["rating"] = rating else: self.rating = pd.DataFrame({ "iidx": np.arange(n, dtype=np.int), "rating": rating}) return self._showcase(table, False) class ColleyRanker(UnsupervisedRanker): """Colley ranking system proposed by <NAME>: Colley's bias free college football ranking method: The colley matrix explained, 2002. http://www.colleyrankings.com Core idea: All team's rating starts from 0.5, and with evolvement of games, the rating of each player deviates from 0.5 according to probability of win. However, the average rating of all teams remains 0.5. Parameters ---------- drawMargin: [0, +Inf), default 0. When absolute difference between two teams are smaller than drawMargin, this competition is considered as a tie. """ def __init__(self, drawMargin = 0.0): self.drawMargin = drawMargin def rank(self, table): """Calculate the rank and rating with specified parameters. Parameters ---------- table: Table The record table to be ranked, should be a Table object. Returns ------- pandas.DataFrame, with column ['name', 'rating', 'rank'] """ drawMargin = self.drawMargin data = table.table[['hidx', 'vidx', 'hscore', 'vscore', 'weight']] idx = data.iloc[:, :2] score = data.iloc[:, 2:] C, b = fast_colley_build(np.require(idx, dtype=np.int32), np.require(score, dtype=np.float64), table.itemnum, drawMargin) rating = sp.linalg.solve(C, b) if hasattr(self, "rating"): self.rating["rating"] = rating else: self.rating = pd.DataFrame({ "iidx": np.arange(table.itemnum, dtype=np.int), "rating": rating}) return self._showcase(table, False) class KeenerRanker(UnsupervisedRanker): """Keener ranking system proposed by <NAME>: The Perron-Frobenius theorem and the ranking of football teams, SIAM Review, 35(1):80-93, 1993 The core idea are: 1. rating is proportional to real strength; 2. real strength is measured relatively by competitors' strength. Parameters ---------- func: default None. If set, the score difference should be transformed by the function first then used for rating calculation. epsilon: [0, +Inf) default 1e-4 The small value that applies an interference to game result that force each team had at least one game with each other. threshold: (0, +Inf), default 1e-4 The threshold that controls when the algorithm will converge. """ def __init__(self, func=None, epsilon=1e-4, threshold=1e-4): self.func = func self.epsilon = epsilon self.threshold = threshold def rank(self, table): """Calculate the rank and rating with specified parameters. Parameters ---------- table: Table The record table to be ranked, should be a Table object. Returns ------- pandas.DataFrame, with column ['name', 'rating', 'rank'] """ func, epsilon, threshold = self.func, self.epsilon, self.threshold mtx = pd.DataFrame(data={ 'hidx': pd.concat([table.table.hidx, table.table.vidx]), 'vidx': pd.concat([table.table.vidx, table.table.hidx]), 'hscore': pd.concat([table.table.hscore, table.table.vscore]), 'vscore': pd.concat([table.table.vscore, table.table.hscore]), 'weight': pd.concat([table.table.weight, table.table.weight]) }, columns = ['hidx', 'vidx', 'hscore', 'vscore', 'weight']).reset_index(drop=True) mtx['score'] = mtx.hscore+mtx.vscore mtx['hscore'] = (mtx['hscore']+1)/(mtx['score']+2) mtx['vscore'] = (mtx['vscore']+1)/(mtx['score']+2) if func is not None: mtx['hscore'] = mtx.hscore.apply(func) mtx['vscore'] = mtx.vscore.apply(func) mtx['hscore'] = mtx['hscore']*mtx['weight'] mtx['vscore'] = mtx['vscore']*mtx['weight'] mtx = mtx.groupby(['hidx', 'vidx'])[['hscore', 'vscore']].mean() mtx.reset_index(inplace=True) D = coo_matrix((mtx.hscore.values, (mtx.hidx.values, mtx.vidx.values)), shape=(table.itemnum, table.itemnum)).tocsr() r = np.ones(table.itemnum)/table.itemnum pr = np.ones(table.itemnum) while norm(pr-r)>threshold: pr = r rho = np.sum(r)*epsilon r = D.dot(r)+rho*np.ones(table.itemnum) r /= np.sum(r) if hasattr(self, "rating"): self.rating["rating"] = r else: self.rating = pd.DataFrame({ "iidx": np.arange(table.itemnum, dtype=np.int), "rating": r}) return self._showcase(table, False) class MarkovRanker(UnsupervisedRanker): """Markov ranking is actually PageRank. The core idea is voting: in each game, each team will vote to each other by the number of scores they lost. If there are multiple games for a certain pair of player, their scores will be grouped and averaged. Parameters ---------- restart: [0, 1], default 0.3. Random walk with restart: in order to avoid black hole in random walk graph. threshold: (0, +Inf), default 1e-4 The threshold that controls when the algorithm will converge. """ def __init__(self, restart=0.3, threshold=1e-4): self.restart = restart self.threshold = threshold def rank(self, table): """Calculate the rank and rating with specified parameters. Parameters ---------- table: Table The record table to be ranked, should be a Table object. Returns ------- pandas.DataFrame, with column ['name', 'rating', 'rank'] """ restart, threshold = self.restart, self.threshold if restart>1 or restart<0: raise ValueError("restart rate should be between 0 and 1.") mtx = pd.DataFrame(data={ 'hidx': pd.concat([table.table.hidx, table.table.vidx]), 'vidx': pd.concat([table.table.vidx, table.table.hidx]), 'hscore': pd.concat([table.table.hscore, table.table.vscore]), 'vscore': pd.concat([table.table.vscore, table.table.hscore]), 'weight': pd.concat([table.table.weight, table.table.weight]) }, columns = ['hidx', 'vidx', 'hscore', 'vscore', 'weight']).reset_index(drop=True) mtx['hscore'] = mtx['hscore']*mtx['weight'] mtx['vscore'] = mtx['vscore']*mtx['weight'] mtx_ = mtx.groupby('hidx').vscore.sum().rename('htotalvote') mtx = mtx.groupby(['hidx', 'vidx'])[['hscore', 'vscore']].mean() mtx = pd.concat([mtx.reset_index().set_index('hidx'), mtx_], axis=1).reset_index() mtx['prob'] = mtx['vscore']/mtx['htotalvote'] D = coo_matrix((mtx.prob.values, (mtx.hidx.values, mtx.vidx.values)), shape=(table.itemnum, table.itemnum)).transpose().tocsr() r = np.ones(table.itemnum)/table.itemnum pr = np.ones(table.itemnum) while norm(pr-r)>threshold: pr = r vrestart = restart*np.ones(table.itemnum)/table.itemnum r = (1-restart)*D.dot(r)+vrestart r /= np.sum(r) if hasattr(self, "rating"): self.rating["rating"] = r else: self.rating = pd.DataFrame({ "iidx": np.arange(table.itemnum, dtype=np.int), "rating": r}) return self._showcase(table, False) class ODRanker(UnsupervisedRanker): """The Offence-defence rank tries to assign an offence rating and a defence rating to each team. By saying "offence rating", we assume that a team has a high offence rating when it gained a lot of points from a team good in defence. Vise versa. The offence rating of a team is associated with defence rating of each competitor in a non-linear way. The defence rating of a team is also non-linearly related to each competitors' offence rating. Parameters ---------- method: {'summary', 'offence', 'defence'}, default 'summary'. The rating to be returned. 'summary' is offence/defence. epsilon: [0, +Inf) default 1e-4 The small value that forces a convergence. threshold: (0, +Inf), default 1e-4 The threshold that controls when the algorithm will converge. """ def __init__(self, method='summary', epsilon=1e-4, threshold=1e-4): self.method = method self.epsilon = epsilon self.threshold = threshold def rank(self, table): """Calculate the rank and rating with specified parameters. Parameters ---------- table: Table The record table to be ranked, should be a Table object. Returns ------- pandas.DataFrame, with column ['name', 'rating', 'rank'] """ method, epsilon, threshold = self.method, self.epsilon, self.threshold mtx = pd.DataFrame(data={ 'hidx': pd.concat([table.table.hidx, table.table.vidx]), 'vidx': pd.concat([table.table.vidx, table.table.hidx]), 'hscore': pd.concat([table.table.hscore, table.table.vscore]), 'vscore': pd.concat([table.table.vscore, table.table.hscore]), 'weight': pd.concat([table.table.weight, table.table.weight]) }, columns = ['hidx', 'vidx', 'hscore', 'vscore', 'weight']).reset_index(drop=True) mtx['hscore'] = mtx['hscore']*mtx['weight'] mtx['vscore'] = mtx['vscore']*mtx['weight'] mtx = mtx.groupby(['hidx', 'vidx'])[['hscore', 'vscore']].mean() mtx.reset_index(inplace=True) D = coo_matrix((mtx.vscore.values, (mtx.hidx.values, mtx.vidx.values)), shape=(table.itemnum, table.itemnum)).tocsr() Dt = D.transpose() prevd = np.ones(table.itemnum)/table.itemnum d = np.ones(table.itemnum) while norm(prevd-d)>threshold: prevd = d o = Dt.dot(1/d)+np.ones(d.shape[0])*epsilon*(np.sum(1/d)) d = D.dot(1/o)+np.ones(o.shape[0])*epsilon*(np.sum(1/o)) o = Dt.dot(1/d) if method=='summary': r = o/d elif method=='offence': r = o elif method=='defence': r = d else: raise ValueError('output should be one of summary, offence or defence.') if hasattr(self, "rating"): self.rating["rating"] = r else: self.rating = pd.DataFrame({ "iidx": np.arange(table.itemnum, dtype=np.int), "rating": r}) return self._showcase(table, True if method=='defence' else False) class DifferenceRanker(UnsupervisedRanker): """This ranker targets at predicting score difference of games directly. The difference of ratings are proportional to the difference of score. """ def rank(self, table): """Calculate the rank and rating with specified parameters. Parameters ---------- table: Table The record table to be ranked, should be a Table object. Returns ------- pandas.DataFrame, with column ['name', 'rating', 'rank'] """ mtx = pd.DataFrame(data={ 'hidx': pd.concat([table.table.hidx, table.table.vidx]), 'vidx': pd.concat([table.table.vidx, table.table.hidx]), 'hscore': pd.concat([table.table.hscore, table.table.vscore]), 'vscore': pd.concat([table.table.vscore, table.table.hscore]), 'weight': pd.concat([table.table.weight, table.table.weight]) }, columns = ['hidx', 'vidx', 'hscore', 'vscore', 'weight']).reset_index(drop=True) mtx['score'] = mtx['hscore']-mtx['vscore'] mtx['score'] = mtx['score']*mtx['weight'] mtx = mtx.groupby(['hidx', 'vidx']).score.mean().reset_index() r = mtx.groupby('hidx').score.sum()/table.itemnum r = r.sort_index() if hasattr(self, "rating"): self.rating["rating"] = r.values else: self.rating = pd.DataFrame({ "iidx": np.arange(table.itemnum, dtype=np.int), "rating": r}) return self._showcase(table, False) ``` #### File: 12sarah96/ranking/setup.py ```python from setuptools import setup, find_packages from setuptools.extension import Extension import os if os.path.exists('MANIFEST'): os.remove('MANIFEST') with open('requirements.txt') as f: required = f.read().splitlines() def my_build_ext(pars): # import delayed: from setuptools.command.build_ext import build_ext as _build_ext# # include_dirs adjusted: class build_ext(_build_ext): def finalize_options(self): _build_ext.finalize_options(self) # Prevent numpy from thinking it is still in its setup process: __builtins__.__NUMPY_SETUP__ = False import numpy self.include_dirs.append(numpy.get_include()) #object returned: return build_ext(pars) setup(name="rankit", version="0.3.0", packages=find_packages(exclude=['example']), setup_requires=['numpy', 'Cython'], install_requires=required, include_package_data=True, description="A simple ranking solution for matches.", author="<NAME>", author_email="<EMAIL>", url="http://github.com/wattlebird/ranking", license="MIT", cmdclass={'build_ext' : my_build_ext}, ext_modules=[ Extension("rankit.Ranker.matrix_build", ["rankit/Ranker/matrix_build.pyx"] ) ], classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved', 'Programming Language :: Python', 'Topic :: Scientific/Engineering', 'Operating System :: Unix', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6'], test_suite = 'nose.collector' ) ```
{ "source": "12souza/inhouse-bot", "score": 3 }
#### File: 12souza/inhouse-bot/inhouse-bot.py ```python import asyncio import discord import json import os import random from dotenv import load_dotenv from discord.ext import commands from discord.utils import get client = commands.Bot(command_prefix = "!", case_insensitive=True) client.remove_command('help') load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') msgList = [] playerList = {} msg = " " pickupActive = 0 mapchoice1 = None mapChoice2 = None mapChoice3 = None mapChoice4 = None mapSelected = [] mapVotes = {} blueTeam = [] redTeam = [] alreadyVoted = [] vMsg = None mapVote = 0 tmsg = None ordered = [] mapsPicked = 0 captains = [] pickNum = 1 def PopulateTable(): global msgList global playerList global msg # msgList = [] # for i in range(len(playerList)): # msgList.append(playerList[i]) # msg = ''.join(msgList) # return msg msg = ", ".join([s for s in playerList.values()]) return msg def DePopulatePickup(): global pickupActive global mapsPicked global mapVote global msgList global eList global msg global playerList global blueTeam global redTeam global mapSelected global ordered global mapVotes global captains global pickNum ordered = [] pickNum = 1 captains = [] mapVote = 0 mapsPicked = 0 pickupActive = 0 msgList = [] eList = [] blueTeam = [] redTeam = [] playerList = {} msg = None mapSelected = [] mapVotes = {} def PickMaps(): global mapChoice1 global mapChoice2 global mapChoice3 global mapSelected global mapVotes global mapList mapname = random.choice(mapList) mapChoice1 = mapname mapList.remove(mapname) mapVotes[mapChoice1] = [] mapname = random.choice(mapList) mapChoice2 = mapname mapList.remove(mapname) mapVotes[mapChoice2] = [] mapname = random.choice(mapList) mapChoice3 = mapname mapList.remove(mapname) mapVotes[mapChoice3] = [] @client.command(pass_context=True) async def pickup(ctx): global pickupActive global mapChoice1 global mapChoice2 global mapChoice3 global mapChoice4 global mapList if pickupActive == 0 and mapVote == 0 and mapsPicked == 0 and pickNum == 1: with open('maplist.json') as f: mapList = json.load(f) DePopulatePickup await ctx.send("Pickup started, you can add in 10 seconds") await asyncio.sleep(5) await ctx.send("Pickup started, you can add in 5 seconds") await asyncio.sleep(5) await ctx.send("Type !add") pickupActive = 1 PopulateTable() await ctx.send("```\n Players\n" + msg + "```") @client.command(pass_context=True) async def cancel(ctx): await ctx.send("pickup cancelled..") DePopulatePickup() @client.command(pass_context=True) async def add(ctx): global playerList global pickupActive global vMsg global mapChoice1 global mapChoice2 global mapChoice3 global mapChoice4 global mapVotes global mapVote if(pickupActive == 1): playerId = ctx.author.id playerName = ctx.author.display_name if playerId not in playerList: playerList[playerId] = playerName PopulateTable() await ctx.send("```\n Players\n" + msg + "```") if(len(playerList) >= 8): # ensure that playerlist is first 8 people added playerList = dict(list(playerList.items())[:8]) pickupActive = 0 PickMaps() mapChoice4 = "New Maps" mapVotes[mapChoice4] = [] vMsg = await ctx.send("```Vote for your map! When vote is stable, !lockmap\n\n" + "1️⃣ " + mapChoice1 + " " * (30 - len(mapChoice1)) + str(len(mapVotes[mapChoice1])) + " Votes\n" + "2️⃣ " + mapChoice2 + " " * (30 - len(mapChoice2)) + str(len(mapVotes[mapChoice2])) + " Votes\n" + "3️⃣ " + mapChoice3 + " " * (30 - len(mapChoice3)) + str(len(mapVotes[mapChoice3])) + " Votes\n" + "4️⃣ " + mapChoice4 + " " * (30 - len(mapChoice4)) + str(len(mapVotes[mapChoice4])) + " Votes```") await vMsg.add_reaction("1️⃣") await vMsg.add_reaction("2️⃣") await vMsg.add_reaction("3️⃣") await vMsg.add_reaction("4️⃣") mapVote = 1 @client.command(pass_context=True) async def lockmap(ctx): global mapsPicked global mapChoice1 global mapChoice2 global mapChoice3 global mapChoice4 global mapVotes global mapVote global vMsg global mapList global tMsg sameVotes = [] ordered = [] highestVote = 0 winningMap = " " # mapVotes[mapChoice1] = len(mapVotes[mapChoice1]) # mapVotes[mapChoice2] = len(mapVotes[mapChoice2]) # mapVotes[mapChoice3] = len(mapVotes[mapChoice3]) # mapVotes[mapChoice4] = len(mapVotes[mapChoice4]) # print(mapVotes) if(mapVote == 1): # for i in list(mapVotes): # if(mapVotes[i] > highestVote): # sameVotes.clear() # sameVotes.append(i) # highestVote = mapVotes[i] # elif(mapVotes[i] == highestVote): # highestVote = mapVotes[i] # sameVotes.append(i) # ordered = sorted(mapVotes, key=mapVotes.get, reverse=True) # print(ordered) # get top maps mapTally = [(pickedMap, len(votes)) for (pickedMap, votes) in mapVotes.items()] sameVotes = sorted(mapTally, key=lambda e: e[0], reverse=True) highestVote = sameVotes[0][1] sameVotes = [pickedMap for (pickedMap, votes) in sameVotes if votes == highestVote ] winningMap = random.choice(sameVotes) if(winningMap == "New Maps"): mapVotes = {} PickMaps() mapChoice4 = ordered[1] mapVotes[mapChoice4] = [] vMsg = await ctx.send("```Vote for your map! Be quick, you only have 60 seconds to vote..\n\n" + "1️⃣ " + mapChoice1 + " " * (30 - len(mapChoice1)) + str(len(mapVotes[mapChoice1])) + " Votes\n" + "2️⃣ " + mapChoice2 + " " * (30 - len(mapChoice2)) + str(len(mapVotes[mapChoice2])) + " Votes\n" + "3️⃣ " + mapChoice3 + " " * (30 - len(mapChoice3)) + str(len(mapVotes[mapChoice3])) + " Votes\n" + "4️⃣ " + mapChoice4 + " " * (30 - len(mapChoice4)) + str(len(mapVotes[mapChoice4])) + " Votes```") await vMsg.add_reaction("1️⃣") await vMsg.add_reaction("2️⃣") await vMsg.add_reaction("3️⃣") await vMsg.add_reaction("4️⃣") else: await ctx.send("The winning map is " + winningMap) await ctx.send("Assign captains to begin the team picking process with !cap @cap1 @cap2") mapVote = 0 mapsPicked = 1 @client.command(pass_context=True) async def cap(ctx, cap1: discord.Member, cap2: discord.Member): global tMsg global mapsPicked global captains if(mapsPicked == 1): if(cap1.display_name in playerList.values()): blueTeam.append(cap1.display_name) captains.append(cap1.display_name) del playerList[cap1.id] if(cap2.display_name in playerList.values()): redTeam.append(cap2.display_name) captains.append(cap2.display_name) del playerList[cap2.id] pMsgList = ["Player List: "] bTeamMsgList = ["Blue Team: "] rTeamMsgList = ["Red Team: "] for i in playerList.values(): pMsgList.append(i + "\n") for i in blueTeam: bTeamMsgList.append(i + "\n") for i in redTeam: rTeamMsgList.append(i + "\n") pMsg = ' '.join(pMsgList) bMsg = ' '.join(bTeamMsgList) rMsg = ' '.join(rTeamMsgList) tMsg = await ctx.send("```\n" + pMsg + "\n\n" + bMsg + "\n\n" + rMsg + "```") @client.command(pass_context=True) async def remove(ctx): global playerList global pickupActive global msg if(pickupActive == 1): if ctx.author.id in playerList: del playerList[ctx.author.id] PopulateTable() await ctx.send("```\n Players\n" + msg + "```") @client.command(pass_context=True) async def pick(ctx, name: discord.Member): global blueTeam global redTeam global tMsg global playerList global pickNum playerName = name.display_name playerId = name.id captain = ctx.author.display_name if captain in captains: if captain in blueTeam: if((pickNum == 1) or (pickNum == 3) or (pickNum == 6)): del playerList[playerId] blueTeam.append(playerName) pickNum += 1 if captain in redTeam: if((pickNum == 2) or (pickNum == 4) or (pickNum == 5) or (pickNum == 7)): del playerList[playerId] redTeam.append(playerName) pickNum += 1 if(len(playerList) == 1): blueTeam.append(playerList[0]) playerList = {} bTeamMsgList = ["Blue Team: "] rTeamMsgList = ["Red Team: "] for i in blueTeam: bTeamMsgList.append(i + " ") for i in redTeam: rTeamMsgList.append(i + " ") bMsg = ' '.join(bTeamMsgList) rMsg = ' '.join(rTeamMsgList) await ctx.send("Here are the teams...") await ctx.send("```\n" + bMsg + "\n\n" + rMsg + "```") DePopulatePickup() if(len(playerList) > 1): pMsgList = ["Player List: "] bTeamMsgList = ["Blue Team: "] rTeamMsgList = ["Red Team: "] for i in playerList: pMsgList.append(i + " ") for i in blueTeam: bTeamMsgList.append(i + " ") for i in redTeam: rTeamMsgList.append(i + " ") pMsg = ' '.join(pMsgList) bMsg = ' '.join(bTeamMsgList) rMsg = ' '.join(rTeamMsgList) await tMsg.edit(content= "```\n" + pMsg + "\n\n" + bMsg + "\n\n" + rMsg + "```") @client.event async def on_reaction_add(reaction, user): global mapVote global playerList global alreadyVoted global mapVotes #print(reaction.author.display_name) if((reaction.message.channel.name == "inhouse") and (mapVote == 1) and (user.display_name != "inhouse-bot")): if((reaction.emoji == '1️⃣') or (reaction.emoji == '2️⃣') or (reaction.emoji == '3️⃣') or (reaction.emoji == '4️⃣')): if(user.id in playerList): for i in list(mapVotes): if(user.id in mapVotes[i]): mapVotes[i].remove(user.id) if(reaction.emoji == '1️⃣'): mapVotes[mapChoice1].append(user.id) if(reaction.emoji == '2️⃣'): mapVotes[mapChoice2].append(user.id) if(reaction.emoji == '3️⃣'): mapVotes[mapChoice3].append(user.id) if(reaction.emoji == '4️⃣'): mapVotes[mapChoice4].append(user.id) await vMsg.edit(content="```Vote for your map! Be quick, you only have 30 seconds to vote..\n\n" + "1️⃣ " + mapChoice1 + " " * (30 - len(mapChoice1)) + str(len(mapVotes[mapChoice1])) + " Votes\n" + "2️⃣ " + mapChoice2 + " " * (30 - len(mapChoice2)) + str(len(mapVotes[mapChoice2])) + " Votes\n" + "3️⃣ " + mapChoice3 + " " * (30 - len(mapChoice3)) + str(len(mapVotes[mapChoice3])) + " Votes\n" + "4️⃣ " + mapChoice4 + " " * (30 - len(mapChoice4)) + str(len(mapVotes[mapChoice4])) + " Votes```") # else: # await reaction.message.channel.send("Youre not in the pickup sir.") @client.event async def on_ready(): print(f'{client.user} is aliiiiiive!') client.run(TOKEN) ```
{ "source": "12star9/Python-Tools", "score": 2 }
#### File: Python-Tools/re-sign-ipa/re-sign-ipa.py ```python import zipfile import os.path import os import time import shutil import subprocess import plistlib import commands class ReSignIpaLOgic(object): def __init__(self,ipa_path): self.ipa_path = ipa_path self.embedCode=False self.signextensions=['.framework/'] # def printMobileProvisionProfile(self): # os.system('security cms -D -i %s'%(self.mobileProvisionProfilePath)) #导入证书,获取证书名,处理部署Mac机器上没有导入对应证书的情况 def importP12CerFile(self,cer_path,cer_password): p12Name='' p = subprocess.call('security import %s -k ~/Library/Keychains/login.keychain -P %s -T /usr/bin/codesign'%(cer_path,cer_password),shell=True) if p == 0: p = subprocess.check_output('openssl pkcs12 -nodes -in %s -info -nokeys -passin "pass:%s" 2>/dev/null | grep "friendlyName"'%(cer_path,cer_password),shell=True) p= str(p) p= p.strip() p= p.replace('friendlyName:','',1) p = p.rstrip('\n') p12Name = p return p12Name def copyprovsion2appdir(self,originpath,mobileprovision): for dirpath, dirnames, filenames in os.walk(originpath): if dirpath[dirpath.rfind('.'):] == '.app': shutil.copy(mobileprovision,'%s/%s' % (dirpath,'embedded.mobileprovision')) return True return False def start_generate_entitlements(self,mobileprovisionpath,entilementspath): entilementfull = entilementspath[:entilementspath.rfind('.')] + '_full.plist' (status1, output1) = commands.getstatusoutput('security cms -D -i "%s" > %s' % (mobileprovisionpath, entilementfull)) (status2, output2) = commands.getstatusoutput('/usr/libexec/PlistBuddy -x -c "Print:Entitlements" %s > %s' % (entilementfull,entilementspath)) return status1 == 0 and status2 == 0 def isneedsign(self,filename): for signextension in self.signextensions: if signextension == filename[filename.rfind('.'):]: return True return False def codesign(self,certificate,entilement,signObj,extrapath): # 开始注入代码 if self.embedCode==True and '.app' in signObj and not '.framework' in signObj and not '/PlugIns/' in signObj and not '.dylib' in signObj: machFileName= signObj.split('/')[-2].split('.')[-2] machFilePath= os.path.join(extrapath,signObj,machFileName) os.system('chmod +x %s'%(machFilePath)) machFileFrameworkPath= os.path.join(extrapath,signObj,'Frameworks') machFoloerPath=os.path.join(extrapath,signObj) insert_sdks_path=os.path.join(os.getcwd(),'insert_sdks') shutil.copytree('%s/MobGiAdsToolModuleBundle.bundle'%(insert_sdks_path),os.path.join(extrapath,signObj,'MobGiAdsToolModuleBundle.bundle')) if not os.path.exists(machFileFrameworkPath): shutil.copytree('%s/Frameworks'%(insert_sdks_path),os.path.join(extrapath,signObj,'Frameworks')) pass else: for temp_path in os.listdir('%s/Frameworks'%(insert_sdks_path)): if '.framework' in temp_path: shutil.copytree(os.path.join('%s/Frameworks'%(insert_sdks_path),temp_path),os.path.join(machFileFrameworkPath,temp_path)) pass os.system('chmod +x %s'%('%s/yololib'%(os.getcwd()))) cmd1='%s/yololib %s %s'%(os.getcwd(),machFilePath,'Frameworks/MobGiAdsToolModule.framework/MobGiAdsToolModule') print cmd1 os.system(cmd1) frameworkPath2= os.path.join(machFileFrameworkPath,'SDKCommonModule.framework/SDKCommonModule') os.system('%s/yololib %s %s'%(os.getcwd(),machFilePath,'Frameworks/SDKCommonModule.framework/SDKCommonModule')) sign_cmd='codesign -f -s "%s" --entitlements "%s" "%s"' % (certificate,entilement,os.path.join(machFileFrameworkPath,'MobGiAdsToolModule.framework/')) os.system(sign_cmd) sign_cmd='codesign -f -s "%s" --entitlements "%s" "%s"' % (certificate,entilement,os.path.join(machFileFrameworkPath,'SDKCommonModule.framework/')) os.system(sign_cmd) sign_cmd='codesign -f -s "%s" --entitlements "%s" "%s"' % (certificate,entilement,'%s%s' % (extrapath,signObj)) print sign_cmd (status, output) = commands.getstatusoutput(sign_cmd) if status == 0 and 'replacing existing signature' in output: print 'replacing %s existing signature successed' % signObj return True else: print(output) return False def startsign(self,certificate,entilement,zfilelist,extrapath): print("----------------开始签名----------------") for filename in zfilelist: if self.isneedsign(filename): if not self.codesign(certificate,entilement,filename,extrapath): return False return True def zipcompress(self,originpath,destinationzfile): resignedzfile = zipfile.ZipFile(destinationzfile,'w',zipfile.ZIP_DEFLATED) for dirpath, dirnames, filenames in os.walk(originpath): fpath = dirpath.replace(originpath,'') fpath = fpath and fpath + os.sep or '' for filename in filenames: resignedzfile.write(os.path.join(dirpath, filename), fpath+filename) resignedzfile.close() def verifySignature(self,extralfilepath): for dirpath, dirnames, filenames in os.walk(extralfilepath): if dirpath[dirpath.rfind('.'):] == '.app': (status,output) = commands.getstatusoutput('codesign -v "%s"' % dirpath) if len(output) == 0: return True else: print(output) return False return False def startInvoke(self): zipFilePath = self.ipa_path extrapath = '%s/Payload_From_Ipa/' % (os.path.dirname(zipFilePath)) certificate='iPhone Developer: <NAME> (H6KAK88X9G)' mobileprovision = '/Users/star.liao/Desktop/Git/Python-Tools/re-sign-ipa/embedded.mobileprovision' self.mobileProvisionProfilePath=mobileprovision # self.printMobileProvisionProfile() entilement = extrapath + "entitlements.plist" destinationzfile = zipFilePath[:zipFilePath.rfind('.')] + '_resigned.ipa' originzfile = zipfile.ZipFile(zipFilePath,'r') zfilelist = originzfile.namelist() zfilelist.reverse() originzfile.extractall(extrapath) self.copyprovsion2appdir(extrapath, mobileprovision) if not self.start_generate_entitlements(mobileprovision,entilement): originzfile.close() shutil.rmtree(extrapath) return False try: #开始签名 if zfilelist != None and self.startsign(certificate,entilement,zfilelist,extrapath): if self.verifySignature(extrapath): self.zipcompress(extrapath,destinationzfile) print "重签名打包成功,请查看:%s" % destinationzfile else: pass else: pass finally: originzfile.close() shutil.rmtree(extrapath) reSignIpaLOgic=ReSignIpaLOgic('/Users/star.liao/Desktop/Git/Python-Tools/re-sign-ipa/1.ipa') reSignIpaLOgic.embedCode=True reSignIpaLOgic.startInvoke() ``` #### File: Python-Tools/sdk_thinning/SDK_Thinning.py ```python import sys import os import subprocess import time def init_a_files(): specify_str = '.a' sdk_path = u'/Users/star.liao/Desktop/三轮测试游戏工程/TempleRun20425/TR2_SDKList/AdS_SDK/AggregationAdThirdSDKs' # 搜索指定目录 results = [] folders = [sdk_path] for folder in folders: # 把目录下所有文件夹存入待遍历的folders folders += [os.path.join(folder, x) for x in os.listdir(folder) \ if os.path.isdir(os.path.join(folder, x))] # 把所有满足条件的文件的相对地址存入结果results for x in os.listdir(folder): if os.path.isfile(os.path.join(folder, x)) and specify_str in x: sdk_path = os.path.join(folder, x); if '.framework' in sdk_path: continue; results.append(sdk_path); pass return results; def init_framework_files(): specify_str = '.framework' sdk_path = u'/Users/star.liao/Desktop/三轮测试游戏工程/TempleRun20425/TR2_SDKList/AdS_SDK/AggregationAdThirdSDKs' # 搜索指定目录 results = [] folders = [sdk_path] for folder in folders: # 把目录下所有文件夹存入待遍历的folders folders += [os.path.join(folder, x) for x in os.listdir(folder) \ if os.path.isdir(os.path.join(folder, x))] # 把所有满足条件的文件的相对地址存入结果results if specify_str in folder: framework_result= os.path.split(folder); framework_name= framework_result[1]; framework_name_len=len(framework_name); total_len=framework_name_len-len(specify_str); result=framework_name[0:total_len]; framework_name_temp=result; if len(result) != 0: for x in os.listdir(folder): if x in framework_name_temp: sdk_path = os.path.join(folder, x); results.append(sdk_path); pass; return results; def get_sdk_infos(sdk_path): cmd = "lipo -info %s" % sdk_path cmpsplit=cmd.split() output = subprocess.check_output(cmpsplit) result=set(output.split()) architectures=[]; thin_sdks=[]; for d in result: if('armv7' in d or 'armv7s' in d or 'arm64' in d or 'x86_64' in d or 'i386' in d): architectures.append(d); output_path = create_arch_framework(sdk_path, d); if ('armv7' in d or 'armv7s' in d or 'arm64' in d): thin_sdks.append(output_path); # create sdk file # os.remove(sdk_path); str = ' '.join(thin_sdks) created_file_path=sdk_path cmd = u"lipo -create %s -output %s" % (str, created_file_path) cmpsplit = cmd.split() try: output = subprocess.check_output(cmpsplit) except subprocess.CalledProcessError, e: print '%s error:%s!' % (cmd, e) # delete time.sleep(2) for file_temp in thin_sdks: if(os.path.exists(file_temp)): # os.remove(file_temp) pass pass def get_file_path(sdk_path,rename_name): root_path = os.path.dirname(sdk_path); output_sdk_path = '' if (os.path.isfile(sdk_path)): array_result= sdk_path.split('/'); framework_path= array_result[len(array_result)-2]; framework_sdk_path=array_result[len(array_result)-1]; if '.a' in framework_sdk_path: # 是.a文件 temp_sdk_path = os.path.split(sdk_path) file_name = temp_sdk_path[1]; file_name_ext = file_name.split('.'); file_name = file_name_ext[0] + '_%s' % (rename_name); new_file_name = '%s/%s.%s' % (root_path, file_name, file_name_ext[1]); output_sdk_path = new_file_name; else: # framework_root_path=os.path.abspath(os.path.dirname(sdk_path) + os.path.sep + "..") framework_root_path = os.path.dirname(sdk_path); output_sdk_path=os.path.join(framework_root_path,'%s_%s' %(framework_sdk_path,rename_name)); # 是.framework文件 pass return output_sdk_path; def create_arch_framework(sdk_path,arch): # lipo / Users / star.liao / Desktop / InterstitialAd_branch_1 # .8 # .0 / SDK / AggregationAdThirdSDKs / Baidu / 4.5 / BaiduMobAdSDK.framework / BaiduMobAdSDK - thin # armv7s - output / Users / star.liao / Desktop / InterstitialAd_branch_1 # .8 # .0 / SDK / AggregationAdThirdSDKs / Baidu / BaiduMobAdSDK_7s output_sdk_path = get_file_path(sdk_path,arch); cmd = u"lipo %s -thin %s -output %s" %(sdk_path,arch,output_sdk_path) cmpsplit = cmd.split() try: output = subprocess.check_output(cmpsplit) except subprocess.CalledProcessError, e: print '%s error:%s!' %(cmd,e) pass return output_sdk_path; def getFileName(path): ''' 获取指定目录下的所有指定后缀的文件名 ''' # print f_list for i in os.walk(path): # os.path.splitext():分离文件名与扩展名 if os.path.splitext(i)[1] == '.a': print i if __name__ == '__main__': paras_len= len(sys.argv) if paras_len>=1: source_file_path = sys.argv[1] print 'source_file_path:',source_file_path result_file_path = get_sdk_infos(source_file_path); print 'success!' pass ```
{ "source": "12Tech/proxytea", "score": 2 }
#### File: proxy/forward/app.py ```python import io import json import os from uuid import uuid4 import boto3 sqs = boto3.client('sqs') s3_client = boto3.client('s3') queue_url = os.getenv('SQS_URL') bucket_name = os.getenv('BUCKET_NAME') prefix = os.getenv('BODY_PREFIX', 'proxytea') def dump_body(body: bytes) -> str: body_uuid = str(uuid4()) object_prefix = body_uuid[:2] object_key = f"{prefix}/{object_prefix}/{body_uuid}" s3_client.put_object( Body=body.encode('utf-8'), Bucket=bucket_name, Key=object_key ) return f"s3://{bucket_name}/{object_key}" def lambda_handler(event, context): dedup = str(uuid4()) body = event.get('body') if body is not None: event['body'] = dump_body(body) sqs.send_message( QueueUrl=queue_url, MessageBody=json.dumps(event), MessageGroupId=dedup ) return { "statusCode": 200, "body": json.dumps(event, indent=4) } ```
{ "source": "12tqian/verification-helper-1", "score": 2 }
#### File: onlinejudge_verify/languages/list.py ```python import pathlib from logging import getLogger from typing import * from onlinejudge_verify.config import get_config from onlinejudge_verify.languages.cplusplus import CPlusPlusLanguage from onlinejudge_verify.languages.csharpscript import CSharpScriptLanguage from onlinejudge_verify.languages.go import GoLanguage from onlinejudge_verify.languages.haskell import HaskellLanguage from onlinejudge_verify.languages.java import JavaLanguage from onlinejudge_verify.languages.models import Language from onlinejudge_verify.languages.nim import NimLanguage from onlinejudge_verify.languages.python import PythonLanguage from onlinejudge_verify.languages.ruby import RubyLanguage from onlinejudge_verify.languages.rust import RustLanguage from onlinejudge_verify.languages.user_defined import UserDefinedLanguage logger = getLogger(__name__) _dict: Optional[Dict[str, Language]] = None def _get_dict() -> Dict[str, Language]: global _dict # pylint: disable=invalid-name if _dict is None: _dict = {} _dict['.cpp'] = CPlusPlusLanguage() _dict['.hpp'] = _dict['.cpp'] _dict['.cc'] = _dict['.cpp'] _dict['.h'] = _dict['.cpp'] _dict['.csx'] = CSharpScriptLanguage() _dict['.nim'] = NimLanguage() _dict['.py'] = PythonLanguage() _dict['.hs'] = HaskellLanguage() _dict['.ruby'] = RubyLanguage() _dict['.go'] = GoLanguage() _dict['.java'] = JavaLanguage() _dict['.rs'] = RustLanguage() for ext, config in get_config().get('languages', {}).items(): if '.' + ext in _dict: if not isinstance(_dict['.' + ext], UserDefinedLanguage): for key in ('compile', 'execute', 'bundle', 'list_attributes', 'list_dependencies'): if key in config: raise RuntimeError("You cannot overwrite existing language: .{}".format(ext)) else: logger.warning("config.toml: languages.%s: Adding new languages using `config.toml` is supported but not recommended. Please consider making pull requests for your languages, see https://github.com/kmyk/online-judge-verify-helper/issues/116", ext) _dict['.' + ext] = UserDefinedLanguage(extension=ext, config=config) return _dict def get(path: pathlib.Path) -> Optional[Language]: return _get_dict().get(path.suffix) ``` #### File: onlinejudge_verify/languages/rust.py ```python import abc import enum import functools import itertools import json import pathlib import shutil import subprocess from collections import defaultdict from enum import Enum from logging import getLogger from subprocess import PIPE from typing import * from onlinejudge_verify.config import get_config from onlinejudge_verify.languages import special_comments from onlinejudge_verify.languages.models import Language, LanguageEnvironment logger = getLogger(__name__) _metadata_by_manifest_path: Dict[pathlib.Path, Dict[str, Any]] = {} _cargo_checked_workspaces: Set[pathlib.Path] = set() _related_source_files_by_workspace: Dict[pathlib.Path, Dict[pathlib.Path, FrozenSet[pathlib.Path]]] = {} class _ListDependenciesBackend: @abc.abstractmethod def list_dependencies(self, path: pathlib.Path, *, basedir: pathlib.Path) -> List[pathlib.Path]: raise NotImplementedError class _NoBackend(_ListDependenciesBackend): def list_dependencies(self, path: pathlib.Path, *, basedir: pathlib.Path) -> List[pathlib.Path]: return _list_dependencies_by_crate(path, basedir=basedir, cargo_udeps_toolchain=None) class _CargoUdeps(_ListDependenciesBackend): toolchain: str = 'nightly' def __init__(self, *, toolchain: Optional[str]): if toolchain is not None: self.toolchain = toolchain def list_dependencies(self, path: pathlib.Path, *, basedir: pathlib.Path) -> List[pathlib.Path]: return _list_dependencies_by_crate(path, basedir=basedir, cargo_udeps_toolchain=self.toolchain) @functools.lru_cache(maxsize=None) def _list_dependencies_by_crate(path: pathlib.Path, *, basedir: pathlib.Path, cargo_udeps_toolchain: Optional[str]) -> List[pathlib.Path]: """The `list_dependencies` implementation for `_NoBackend` and `CargoUdeps`. :param path: A parameter in `Language.list_dependencies`. :param basedir: A parameter in `Language.list_dependencies`. :param cargo_udeps_toolchain: A Rust toolchain name for cargo-udeps. If it is `None`, we don't run cargo-udeps. :returns: Paths to the `.rs` files for `Language.list_dependencies`. """ path = basedir / path # We regard that a generated file does not depend on any files. for parent in path.parents: if (parent.parent / 'Cargo.toml').exists() and parent.parts[-1] == 'target': logger.warning('This is a generated file!: %s', path) return [path] metadata = _cargo_metadata(cwd=path.parent) # First, collects source files in the same crate. common_result = set(_source_files_in_same_targets(path, _related_source_files(basedir, metadata))) main_package_and_target = _find_target(metadata, path) if not main_package_and_target: return sorted(common_result) main_package, main_target = main_package_and_target packages_by_id = {p['id']: p for p in metadata['packages']} class DependencyNamespace(Enum): NORMAL_DEVELOPMENT = enum.auto() BUILD = enum.auto() @classmethod def from_dep_kind(cls, kind: str): if kind == 'build': return cls.BUILD return cls.NORMAL_DEVELOPMENT # Collect the `(|dev-|build-)dependencies` into a <is a `build-dependency`> → (<"extern crate name"> → <package>) dictionary. dependencies: DefaultDict[DependencyNamespace, Dict[str, Dict[str, Any]]] = defaultdict(dict) for dep in next(n['deps'] for n in metadata['resolve']['nodes'] if n['id'] == main_package['id']): if _need_dev_deps(main_target) or any(k['kind'] is None for k in dep['dep_kinds']): dependencies[DependencyNamespace.NORMAL_DEVELOPMENT][dep['name']] = packages_by_id[dep['pkg']] if any(k['kind'] == 'build' for k in dep['dep_kinds']): dependencies[DependencyNamespace.BUILD][dep['name']] = packages_by_id[dep['pkg']] # If `cargo_udeps_toolchain` is present, collects packages that are "unused" by `target`. unused_packages = defaultdict(set) if cargo_udeps_toolchain is not None: explicit_names_in_toml = {(DependencyNamespace.from_dep_kind(d['kind']), d['rename']) for d in main_package['dependencies'] if d['rename']} if not shutil.which('cargo-udeps'): raise RuntimeError('`cargo-udeps` not in $PATH') unused_deps = json.loads(subprocess.run( ['rustup', 'run', cargo_udeps_toolchain, 'cargo', 'udeps', '--output', 'json', '--manifest-path', main_package['manifest_path'], *_target_option(main_target)], cwd=metadata['workspace_root'], check=False, stdout=PIPE, ).stdout.decode())['unused_deps'].values() unused_dep = next((u for u in unused_deps if u['manifest_path'] == main_package['manifest_path']), None) if unused_dep: names_in_toml = [(DependencyNamespace.NORMAL_DEVELOPMENT, name_in_toml) for name_in_toml in [*unused_dep['normal'], *unused_dep['development']]] names_in_toml.extend((DependencyNamespace.BUILD, name_in_toml) for name_in_toml in unused_dep['build']) for dependency_namespace, name_in_toml in names_in_toml: if (dependency_namespace, name_in_toml) in explicit_names_in_toml: # If the `name_in_toml` is explicitly renamed one, it equals to the `extern_crate_name`. unused_package = dependencies[dependency_namespace][name_in_toml]['id'] else: # Otherwise, it equals to the `package.name`. unused_package = next(p['id'] for p in dependencies[dependency_namespace].values() if p['name'] == name_in_toml) unused_packages[dependency_namespace].add(unused_package) # Finally, adds source files related to the depended crates except: # # - those detected by cargo-udeps # - those come from Crates.io or Git repositories (e.g. `proconio`, other people's libraries including `ac-library-rs`) # `main_package` should always be included. # Note that cargo-udeps does not detect it if it is unused. # https://github.com/est31/cargo-udeps/pull/35 depended_packages = [main_package] for dependency_namespace, values in dependencies.items(): for depended_package in values.values(): if depended_package['id'] not in unused_packages[dependency_namespace] and not depended_package['source']: depended_packages.append(depended_package) ret = common_result for depended_package in depended_packages: depended_targets = [t for t in depended_package['targets'] if t != main_target and (_is_build(t) or _is_lib_or_proc_macro(t))] assert len(depended_targets) <= 2 for depended_target in depended_targets: related_source_files = _related_source_files(basedir, _cargo_metadata_by_manifest_path(pathlib.Path(depended_package["manifest_path"]))) ret |= _source_files_in_same_targets(pathlib.Path(depended_target['src_path']).resolve(strict=True), related_source_files) return sorted(ret) def _related_source_files(basedir: pathlib.Path, metadata: Dict[str, Any]) -> Dict[pathlib.Path, FrozenSet[pathlib.Path]]: """Collects all of the `.rs` files recognized by a workspace. :param basedir: A parameter from `Language.list_dependencies`. :param metadata: Output of `cargo metadata` :returns: A (main source file) → (other related files) map """ if pathlib.Path(metadata['workspace_root']) in _related_source_files_by_workspace: return _related_source_files_by_workspace[pathlib.Path(metadata['workspace_root'])] # Runs `cargo check` to generate `$target_directory/debug/deps/*.d`. if pathlib.Path(metadata['workspace_root']) not in _cargo_checked_workspaces: subprocess.run( ['cargo', 'check', '--manifest-path', str(pathlib.Path(metadata['workspace_root'], 'Cargo.toml')), '--workspace', '--all-targets'], cwd=metadata['workspace_root'], check=True, ) _cargo_checked_workspaces.add(pathlib.Path(metadata['workspace_root'])) ret: Dict[pathlib.Path, FrozenSet[pathlib.Path]] = dict() targets_in_workspace = itertools.chain.from_iterable(p['targets'] for p in metadata['packages'] if p['id'] in metadata['workspace_members']) for target in targets_in_workspace: # Finds the **latest** "dep-info" file that contains a line in the following format, and parses the line. # # ``` # <relative/absolute path to the `.d` file itself>: <relative/absolute path to the root source file> <relative/aboslute paths to the other related files>... # ``` # # - https://github.com/rust-lang/cargo/blob/rust-1.49.0/src/cargo/core/compiler/fingerprint.rs#L1979-L1997 # - https://github.com/rust-lang/cargo/blob/rust-1.49.0/src/cargo/core/compiler/fingerprint.rs#L1824-L1830 if _is_build(target): dep_info_paths = pathlib.Path(metadata['target_directory'], 'debug', 'build').rglob(f'{_crate_name(target)}-*.d') elif _is_example(target): dep_info_paths = pathlib.Path(metadata['target_directory'], 'debug', 'examples').glob(f'{_crate_name(target)}-*.d') else: dep_info_paths = pathlib.Path(metadata['target_directory'], 'debug', 'deps').glob(f'{_crate_name(target)}-*.d') for dep_info_path in sorted(dep_info_paths, key=lambda p: p.stat().st_mtime_ns, reverse=True): with open(dep_info_path) as file: dep_info = file.read() for line in dep_info.splitlines(): ss = line.split(': ') if len(ss) == 2 and pathlib.Path(metadata['workspace_root'], ss[0]) == dep_info_path: paths = [] it = iter(ss[1].split()) for s in it: while s.endswith('\\'): s = s.rstrip('\\') s += ' ' s += next(it) path = pathlib.Path(metadata['workspace_root'], s).resolve(strict=True) # Ignores paths that don't start with the `basedir`. (e.g. `/dev/null`, `/usr/local/share/foo/bar`) try: # `PurePath.is_relative_to` is since Python 3.9. _ = path.relative_to(basedir) paths.append(path) except ValueError: pass if paths[:1] == [pathlib.Path(target['src_path']).resolve(strict=True)]: ret[paths[0]] = frozenset(paths[1:]) break else: continue break else: logger.error('no `.d` file for `%s`', target["name"]) _related_source_files_by_workspace[pathlib.Path(metadata['workspace_root'])] = ret return ret def _source_files_in_same_targets(path: pathlib.Path, related_source_files: Dict[pathlib.Path, FrozenSet[pathlib.Path]]) -> FrozenSet[pathlib.Path]: """Returns `.rs` file paths relating to `path`. :param path: Path to a `.rs` file :param related_source_files: Output of `_related_source_files` :returns: Relating `.rs` file paths """ # If `p` is `src_path` of a target, it does not belong to any other target unless it's weirdly symlinked, if path in related_source_files: return frozenset({path, *related_source_files[path]}) # Otherwise, it may be used by multiple targets with `#[path = ".."] mod foo;` or something. return frozenset(itertools.chain.from_iterable({k, *v} for (k, v) in related_source_files.items() if path in v)) or frozenset({path}) class RustLanguageEnvironment(LanguageEnvironment): def compile(self, path: pathlib.Path, *, basedir: pathlib.Path, tempdir: pathlib.Path) -> None: path = basedir / path metadata = _cargo_metadata(cwd=path.parent) target = _ensure_target(metadata, path) subprocess.run( ['cargo', 'build', '--release', *_target_option(target)], cwd=path.parent, check=True, ) def get_execute_command(self, path: pathlib.Path, *, basedir: pathlib.Path, tempdir: pathlib.Path) -> List[str]: path = basedir / path metadata = _cargo_metadata(cwd=path.parent) target = _ensure_target(metadata, path) return [str(pathlib.Path(metadata['target_directory'], 'release', *([] if _is_bin(target) else ['examples']), target['name']))] class RustLanguage(Language): _list_dependencies_backend: _ListDependenciesBackend def __init__(self, *, config: Optional[Dict[str, Any]] = None): if config is None: config = get_config().get('languages', {}).get('rust', {}) # Parses `languages.rust.list_dependencies_backend`. if 'list_dependencies_backend' in config: list_dependencies_backend = config['list_dependencies_backend'] if not isinstance(list_dependencies_backend, dict): raise RuntimeError('`languages.rust.list_dependencies_backend` must be `dict`') if 'kind' not in list_dependencies_backend: raise RuntimeError('missing `languages.rust.list_dependencies_backend.kind`') list_dependencies_backend_kind = list_dependencies_backend['kind'] if not isinstance(list_dependencies_backend_kind, str): raise RuntimeError('`languages.rust.list_dependencies_backend.kind` must be `str`') if list_dependencies_backend_kind == 'none': self._list_dependencies_backend = _NoBackend() elif list_dependencies_backend_kind == 'cargo-udeps': if 'toolchain' not in list_dependencies_backend: toolchain = None elif isinstance(list_dependencies_backend['toolchain'], str): toolchain = list_dependencies_backend['toolchain'] else: raise RuntimeError('`languages.rust.list_dependencies_backend.toolchain` must be `str`') self._list_dependencies_backend = _CargoUdeps(toolchain=toolchain) else: raise RuntimeError("expected 'none' or 'cargo-udeps' for `languages.rust.list_dependencies_backend.kind`") else: self._list_dependencies_backend = _NoBackend() def list_dependencies(self, path: pathlib.Path, *, basedir: pathlib.Path) -> List[pathlib.Path]: return self._list_dependencies_backend.list_dependencies(path, basedir=basedir) def bundle(self, path: pathlib.Path, *, basedir: pathlib.Path, options: Dict[str, Any]) -> bytes: raise NotImplementedError def is_verification_file(self, path: pathlib.Path, *, basedir: pathlib.Path) -> bool: path = basedir / path metadata = _cargo_metadata(cwd=path.parent) package_and_target = _find_target(metadata, path) if not package_and_target: return False _, target = package_and_target return _is_bin_or_example_bin(target) and 'PROBLEM' in special_comments.list_special_comments(path) def list_environments(self, path: pathlib.Path, *, basedir: pathlib.Path) -> Sequence[RustLanguageEnvironment]: return [RustLanguageEnvironment()] def _cargo_metadata(cwd: pathlib.Path) -> Dict[str, Any]: """Returns "metadata" for a Cargo.toml file in `cwd` or its parent directories. :raises ValueError: if `cwd` is not absolute or contains `..` :returns: Output of `cargo metadata` command """ if not cwd.is_absolute() or '..' in cwd.parts: raise ValueError(f'the `cwd` parameter must be absolute and must not contain `..`: {cwd}') # https://docs.rs/cargo/0.49.0/src/cargo/util/important_paths.rs.html#6-20 for directory in [cwd, *cwd.parents]: manifest_path = directory / 'Cargo.toml' if manifest_path.exists(): return _cargo_metadata_by_manifest_path(manifest_path) raise RuntimeError(f'could not find `Cargo.toml` in `{cwd}` or any parent directory') def _cargo_metadata_by_manifest_path(manifest_path: pathlib.Path) -> Dict[str, Any]: """Returns "metadata" for a certain `Cargo.toml`. :returns: Output of `cargo metadata` command """ if manifest_path in _metadata_by_manifest_path: return _metadata_by_manifest_path[manifest_path] metadata = _run_cargo_metadata(manifest_path) root_manifest_path = pathlib.Path(metadata['workspace_root'], 'Cargo.toml') if root_manifest_path != manifest_path: metadata = _run_cargo_metadata(root_manifest_path) for key in [root_manifest_path, *(pathlib.Path(p['manifest_path']) for p in metadata['packages'] if p['id'] in metadata['workspace_members'])]: _metadata_by_manifest_path[key] = metadata return metadata def _run_cargo_metadata(manifest_path: pathlib.Path) -> Dict[str, Any]: """Runs `cargo metadata` for a certain `Cargo.toml`. This function is considered to be executed just once for every Cargo.toml in the repository. For detailed information about `cargo metadata`, see: - <https://doc.rust-lang.org/cargo/commands/cargo-metadata.html#output-format> - <https://docs.rs/cargo_metadata> :param manifest_path: Path to a `Cargo.toml` :returns: Output of `cargo metadata` command """ return json.loads(subprocess.run( ['cargo', 'metadata', '--format-version', '1', '--manifest-path', str(manifest_path)], stdout=PIPE, cwd=manifest_path.parent, check=True, ).stdout.decode()) def _find_target( metadata: Dict[str, Any], src_path: pathlib.Path, ) -> Optional[Tuple[Dict[str, Any], Dict[str, Any]]]: for package in metadata['packages']: for target in package['targets']: # A `src_path` may contain `..` # The path may not actually exist by being excluded from the package. if pathlib.Path(target['src_path']).resolve() == src_path: return package, target return None def _ensure_target(metadata: Dict[str, Any], src_path: pathlib.Path) -> Dict[str, Any]: package_and_target = _find_target(metadata, src_path) if not package_and_target: raise RuntimeError(f'{src_path} is not a main source file of any target') _, target = package_and_target return target def _crate_name(target: Dict[str, Any]) -> bool: return target['name'].replace('-', '_') def _is_build(target: Dict[str, Any]) -> bool: return target['kind'] == ['custom-build'] def _is_lib_or_proc_macro(target: Dict[str, Any]) -> bool: return target['kind'] in [['lib'], ['proc-macro']] def _is_bin(target: Dict[str, Any]) -> bool: return target['kind'] == ['bin'] def _is_example(target: Dict[str, Any]) -> bool: return target['kind'] == ['example'] def _is_bin_or_example_bin(target: Dict[str, Any]) -> bool: return _is_bin(target) or _is_example(target) and target['crate_types'] == ['bin'] def _need_dev_deps(target: Dict[str, Any]) -> bool: # Comes from https://docs.rs/cargo/0.49.0/cargo/ops/enum.CompileFilter.html#method.need_dev_deps return not (_is_lib_or_proc_macro(target) or _is_bin(target)) def _target_option(target: Dict[str, Any]) -> List[str]: if target['kind'] == ['bin']: return ['--bin', target['name']] if target['kind'] == ['example']: return ['--example', target['name']] if target['kind'] == ['test']: return ['--test', target['name']] if target['kind'] == ['bench']: return ['--bench', target['name']] return ['--lib'] ``` #### File: onlinejudge_verify/online_submission/judges.py ```python from onlinejudge_verify.online_submission.submissions import * from requests import session import requests import mechanize from selenium import webdriver from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import Select from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.action_chains import ActionChains import time import json import traceback class VJudge: JUDGE_NAME = "vjudge" JUDGE_URL = "https://vjudge.net/" PROBLEM_URL = "https://vjudge.net/problem/" GOOD_VERDICTS = ["Accepted"] BAD_VERDICTS = ["Time", "Wrong", "Compilation", "Runtime", "Memory", "Output", "Presentation", "Compile", "Unknown"] LANGUAGES = { "C" : "43", #GNU GCC C11 5.1.0 "java" : "36", # Java 1.8.0_241 "cpp" : "61", # "C++" : "C++", # C++ 17 64 bit "py" : "41" #PyPy 3.6 (7.2.0) } JUDGE_PREFIX = { "codeforces" : "CodeForces", "atcoder" : "AtCoder", "spoj" : "SPOJ", "kattis" : "Kattis" } JUDGE_MARKER = { "codeforces.com" : "codeforces", "atcoder.jp" : "atcoder", "spoj.com" : "spoj", "open.kattis.com" : "kattis" } JUDGE_LANGUAGE_VALUE = { 'codeforces' : { 'C++' : '61' }, 'atcoder' : { 'C++' : '4003' }, 'kattis' : { 'C++' : 'C++' }, 'spoj' : { 'C++' : '44' } } username: str password: str def current_millisecond_time(self): return round(time.time() * 1000) def __init__(self, username = "", password = ""): self.username = username self.password = password def get_vjudge_problem_link(self, problem_link): judge_name = '' for marker in self.JUDGE_MARKER.keys(): if marker in problem_link: judge_name = self.JUDGE_MARKER[marker] break if judge_name == '': return None add = '' lst = problem_link.split('/') if (lst[-1] == ''): lst.pop() if judge_name == 'codeforces': if lst[-2] == 'problem': add = lst[-3] + lst[-1]; else: add = lst[-2] + lst[-1] elif judge_name == 'atcoder' or judge_name == 'spoj' or judge_name == 'kattis': add = lst[-1] if (judge_name == 'atcoder'): add = add.split('?')[0] # get rid of language extension return [judge_name, self.PROBLEM_URL + self.JUDGE_PREFIX[judge_name] + '-' + add] def submit_solution(self, problem_link, solution): # Logging in options = Options() options.add_argument('--headless') options.add_argument('--disable-gpu') # Last I checked this was necessary. driver = webdriver.Chrome(chrome_options=options) driver.get(self.JUDGE_URL) wait = WebDriverWait(driver, 10) element = wait.until(EC.element_to_be_clickable((By.XPATH, "/html/body/nav/div/ul/li[8]/a"))) driver.execute_script("arguments[0].click();", element) element = wait.until(EC.element_to_be_clickable((By.XPATH, "/html/body/div[4]/div/div/div[2]/form/div[1]/input"))) driver.execute_script("arguments[0].value = arguments[1];", element, self.username) element = wait.until(EC.element_to_be_clickable((By.XPATH, "/html/body/div[4]/div/div/div[2]/form/div[2]/input"))) driver.execute_script("arguments[0].value = arguments[1];", element, self.password) element = wait.until(EC.element_to_be_clickable((By.XPATH, "/html/body/div[4]/div/div/div[3]/button[3]"))) driver.execute_script("arguments[0].click();", element) judge_name, submission_url = self.get_vjudge_problem_link(problem_link) # Submitting Solution MAX_RETRIES = 5 retries = 0 while retries <= MAX_RETRIES: try: driver.get(submission_url) driver.get(submission_url) driver.get(submission_url) # click submit button element = wait.until(EC.element_to_be_clickable((By.XPATH, "/html/body/div[1]/div/div[1]/div[2]/div/div[1]/div[1]/button"))) driver.execute_script("arguments[0].click();", element) # select language element = wait.until(EC.element_to_be_clickable((By.XPATH, "/html/body/div[3]/div/div/div[2]/form/div/div[4]/div/select"))) value = self.JUDGE_LANGUAGE_VALUE[judge_name][solution.language] driver.execute_script(''' var select = arguments[0]; for (var i = 0; i < select.options.length; i++) { if (select.options[i].value == arguments[1]) { select.options[i].selected = true; } }''', element, value); # insert code new_code = solution.solution_code + "\n// " + str(self.current_millisecond_time()) element = wait.until(EC.element_to_be_clickable((By.XPATH, "/html/body/div[3]/div/div/div[2]/form/div/div[6]/div/textarea"))) driver.execute_script("arguments[0].value = arguments[1];", element, new_code) # click submit element = wait.until(EC.element_to_be_clickable((By.XPATH, "/html/body/div[3]/div/div/div[3]/button[2]"))) driver.execute_script("arguments[0].click();", element) start = time.time() # repeat check for result while True: try: text = wait.until(EC.visibility_of_element_located((By.XPATH, "/html/body/div[3]/div/div/div[2]/div[1]/table/tbody/tr[1]/td"))).text except: text = '' text = text.split(' ')[0] if text in self.GOOD_VERDICTS: driver.quit() return True elif text in self.BAD_VERDICTS: driver.quit() return False time.sleep(0.25) if time.time() - start >= 120: break except: retries += 1 driver.refresh() driver.quit() return False class Codeforces: JUDGE_NAME = "codeforces" JUDGE_URL = "https://codeforces.com/" LOGIN_URL = "https://codeforces.com/enter" SUBMISSION_URL = "https://codeforces.com/problemset/submit" RESULT_URL = "https://codeforces.com/contest/" LANGUAGES = { "C" : "43", #GNU GCC C11 5.1.0 "java" : "36", # Java 1.8.0_241 "cpp" : "61", # "C++" : "61", # C++ 17 64 bit "py" : "41" #PyPy 3.6 (7.2.0) } username: str password: str logged_in: bool br: mechanize.Browser def __init__(self, username = "", password = ""): self.username = username self.password = password self.logged_in = False self.br = mechanize.Browser() # Browser options self.br.set_handle_equiv(True) self.br.set_handle_gzip(True) self.br.set_handle_redirect(True) self.br.set_handle_referer(True) self.br.set_handle_robots(False) self.br.set_handle_refresh(mechanize._http.HTTPRefreshProcessor(), max_time = 1) self.br.addheaders = [('User-agent', 'Chrome')] def login(self): # print("Trying to log into CodeForces: " + self.username) # The site we will navigate into, handling it's session self.br.open(self.LOGIN_URL) # Select the second (index one) form (the first form is a search query box) # Logging in self.br.select_form(nr = 1) self.logged_in = True self.br.form['handleOrEmail'] = self.username self.br.form['password'] = <PASSWORD> res = self.br.submit() if res.geturl() == self.JUDGE_URL: # print("Logged In Successfully") return True else: # print("CF: Sorry, wrong username/password. Please try again.") self.logged_in = False return False def get_contest_number(self, problem_id): res = '' for i in range(len(problem_id)): if problem_id[i].isdigit(): res += problem_id[i] else: break return int(res) def current_millisecond_time(self): return round(time.time() * 1000) def submit_solution(self, problem, solution): if not self.logged_in: self.login() self.br.open(self.SUBMISSION_URL) self.br.select_form(nr = 1) self.br.form.find_control(name = "programTypeId").value = [self.LANGUAGES[solution.language]] self.br.form.find_control(name = "submittedProblemCode").value = str(problem.problem_id) self.br.form.find_control(name = "source").value = solution.solution_code + "\n// " + str(self.current_millisecond_time()) res = self.br.submit() if "https://codeforces.com/problemset/status?my=on" != str(res.geturl()): return "" # then we should check if the verdict has been given # should check repeatedly delaying 5-10 secs and stop when a verdict is given time.sleep(0.25) response = requests.get("https://codeforces.com/api/user.status?handle=" + self.username + "&from=1&count=1") submission_id = "" if response.status_code == 200: try: data = json.loads(response.content.decode('utf-8')) except: return False submission_id = data['result'][0]['id'] else: # print("Could't get submission id. Please try this problem again later.") return False submission_url = self.RESULT_URL + str(self.get_contest_number(problem.problem_id)) + '/submission/' + str(submission_id) # wait for result start = time.time() time.sleep(0.25) # print(submission_url) while True: if (time.time() - start >= 60): break response = requests.get("https://codeforces.com/api/user.status?handle=" + self.username + "&from=1&count=1") try: data = json.loads(response.content.decode('utf-8')) except: time.sleep(0.5) continue data = data['result'][0] if 'verdict' not in data.keys(): continue try: verdict = str(data['verdict']) except: traceback.print_exc() # print(data) return False if verdict == "TESTING": time.sleep(0.25) else: if verdict == "OK": return True else: return False break return False ``` #### File: onlinejudge_verify/online_submission/test.py ```python from judges import * from submissions import * import requests import time def current_milli_time(): return round(time.time() * 1000) judge = Codeforces('vhelperoj', '<PASSWORD>') problem = Problem('codeforces', '4A') solution = Solution('C++', '''#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int n; cin >> n; if (n > 2 && n % 2 == 0) { cout << "YES" << '\\n'; } else { cout << "NO" << '\\n'; } return 0; }''') print(judge.submit_solution(problem, solution)) ```
{ "source": "12tqian/verification-helper", "score": 3 }
#### File: onlinejudge_verify/languages/python.py ```python import functools import pathlib import sys import textwrap from logging import getLogger from typing import Any, Dict, List, Sequence, Tuple import importlab.environment import importlab.fs import importlab.graph from onlinejudge_verify.languages.models import Language, LanguageEnvironment logger = getLogger(__name__) class PythonLanguageEnvironment(LanguageEnvironment): def compile(self, path: pathlib.Path, *, basedir: pathlib.Path, tempdir: pathlib.Path) -> None: code = textwrap.dedent(f"""\ #!{sys.executable} \"\"\"This is a helper script to run the target Python code. We need this script to set PYTHONPATH portably. The env command, quoting something, etc. are not portable or difficult to implement. \"\"\" import os import sys # arguments path = {repr(str(path.resolve()))} basedir = {repr(str(basedir.resolve()))} # run {str(path)} env = dict(os.environ) if "PYTHONPATH" in env: env["PYTHONPATH"] = basedir + os.pathsep + env["PYTHONPATH"] else: env["PYTHONPATH"] = basedir # set `PYTHONPATH` to import files relative to the root directory os.execve(sys.executable, [sys.executable, path], env=env) # use `os.execve` to avoid making an unnecessary parent process """) with open(tempdir / 'compiled.py', 'wb') as fh: fh.write(code.encode()) def get_execute_command(self, path: pathlib.Path, *, basedir: pathlib.Path, tempdir: pathlib.Path) -> List[str]: return [sys.executable, str(tempdir / 'compiled.py')] @functools.lru_cache(maxsize=None) def _python_list_depending_files(path: pathlib.Path, basedir: pathlib.Path) -> List[pathlib.Path]: # compute the dependency graph of the `path` env = importlab.environment.Environment( importlab.fs.Path([importlab.fs.OSFileSystem(str(basedir.resolve()))]), (sys.version_info.major, sys.version_info.minor), ) res_graph = importlab.graph.ImportGraph.create(env, [str(path)]) try: node_deps_pairs = res_graph.deps_list() # type: List[Tuple[str, List[str]]] except Exception as e: raise RuntimeError(f"Failed to analyze the dependency graph (circular imports?): {path}") from e logger.debug('the dependency graph of %s: %s', str(path), node_deps_pairs) # collect Python files which are depended by the `path` and under `basedir` res_deps = [] # type: List[pathlib.Path] res_deps.append(path.resolve()) for node_, deps_ in node_deps_pairs: node = pathlib.Path(node_) deps = list(map(pathlib.Path, deps_)) if node.resolve() == path.resolve(): for dep in deps: if basedir.resolve() in dep.resolve().parents: res_deps.append(dep.resolve()) break return list(set(res_deps)) class PythonLanguage(Language): def list_dependencies(self, path: pathlib.Path, *, basedir: pathlib.Path) -> List[pathlib.Path]: return _python_list_depending_files(path.resolve(), basedir) def bundle(self, path: pathlib.Path, *, basedir: pathlib.Path, options: Dict[str, Any]) -> bytes: """ :throws NotImplementedError: """ raise NotImplementedError def is_verification_file(self, path: pathlib.Path, *, basedir: pathlib.Path) -> bool: return '.test.py' in path.name def list_environments(self, path: pathlib.Path, *, basedir: pathlib.Path) -> Sequence[PythonLanguageEnvironment]: # TODO add another environment (e.g. pypy) return [PythonLanguageEnvironment()] ```
{ "source": "12urenloop/Ronny-the-station-chef", "score": 3 }
#### File: Ronny-the-station-chef/database/schemas.py ```python from typing import List, Optional from datetime import datetime from pydantic import BaseModel, Field, validator class Detection(BaseModel): id: int mac: str rssi: int baton_uptime_ms: int = Field(alias="uptime_ms") battery_percentage: float = Field(alias="battery") detection_time: float = Field(alias="detection_timestamp") @validator("*", pre=True) def convert_time(cls, v) -> float: if isinstance(v, datetime): return v.timestamp() return v class Config: orm_mode = True allow_population_by_field_name = True class DetectionsResponse(BaseModel): detections: List[Detection] station_id: str class UnixTimeResponse(BaseModel): timestamp: int class LastDetectionResponse(BaseModel): detection: Optional[Detection] station_id: str ``` #### File: 12urenloop/Ronny-the-station-chef/ronny.py ```python import struct import time import logging from datetime import datetime from database.models import Base, Detection from database.database import SessionLocal, engine from sqlalchemy.orm import Session from scapy.layers.bluetooth import ( HCI_LE_Meta_Advertising_Reports, EIR_Manufacturer_Specific_Data, BluetoothHCISocket, HCI_Hdr, HCI_Command_Hdr, HCI_Cmd_LE_Set_Scan_Parameters, HCI_Cmd_LE_Set_Scan_Enable, ) logging.basicConfig( format="[%(levelname)s][%(asctime)s] %(message)s", datefmt="%m/%d/%Y %I:%M:%S %p", level=logging.INFO, ) Base.metadata.create_all(bind=engine) db: Session = SessionLocal() zeus_mac_prefix = "5a:45:55:53" def packet_callback(packet): try: do_commit = False for report in packet[HCI_LE_Meta_Advertising_Reports].reports: if report.addr.startswith(zeus_mac_prefix): mac = str(report.addr).lower() if EIR_Manufacturer_Specific_Data not in packet: logging.warning(f"No manufacturer information {mac}") continue content = bytes(packet[EIR_Manufacturer_Specific_Data].payload) if len(content) == 23: logging.warning(f"Skipping old baton {mac}") continue elif len(content) != 9: logging.error(f"Fake baton {mac} {len(content)} {content.hex()}") continue uptime_ms, battery_percentage = struct.unpack(">QB", content) rssi = int(report.rssi) detection: Detection = Detection( detection_time=datetime.now(), mac=mac, rssi=rssi, baton_uptime_ms=uptime_ms, battery_percentage=battery_percentage, ) db.add(detection) do_commit = True if do_commit: db.commit() except Exception as e: logging.critical(e, exc_info=True) bt = BluetoothHCISocket(0) bt.sr(HCI_Hdr() / HCI_Command_Hdr() / HCI_Cmd_LE_Set_Scan_Parameters(type=0)) bt.sr( HCI_Hdr() / HCI_Command_Hdr() / HCI_Cmd_LE_Set_Scan_Enable(enable=True, filter_dups=False) ) bt.sniff( lfilter=lambda p: HCI_LE_Meta_Advertising_Reports in p, store=False, prn=packet_callback, ) ```
{ "source": "12wang3/mllp", "score": 3 }
#### File: mllp/mllp/utils.py ```python import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.impute import SimpleImputer from mllp.discretizer import MinimalEntropyDiscretizer def read_info(info_path): with open(info_path) as f: f_list = [] for line in f: tokens = line.strip().split() f_list.append(tokens) return f_list[:-1], int(f_list[-1][-1]) def read_csv(data_path, info_path, shuffle=False): D = pd.read_csv(data_path, header=None) if shuffle: D = D.sample(frac=1, random_state=0).reset_index(drop=True) f_list, label_pos = read_info(info_path) f_df = pd.DataFrame(f_list) D.columns = f_df.iloc[:, 0] y_df = D.iloc[:, [label_pos]] X_df = D.drop(D.columns[label_pos], axis=1) f_df = f_df.drop(f_df.index[label_pos]) return X_df, y_df, f_df, label_pos class DBEncoder: """Encoder used for data discretization and binarization.""" def __init__(self, f_df, discrete=False): self.f_df = f_df self.discrete = discrete self.label_enc = preprocessing.OneHotEncoder(categories='auto') self.me_discretizer = MinimalEntropyDiscretizer() self.feature_enc = preprocessing.OneHotEncoder(categories='auto') self.imp = SimpleImputer(missing_values=np.nan, strategy='mean') self.X_fname = None self.y_fname = None def split_data(self, X_df): discrete_data = X_df[self.f_df.loc[self.f_df[1] == 'discrete', 0]] continuous_data = X_df[self.f_df.loc[self.f_df[1] == 'continuous', 0]] if not continuous_data.empty: continuous_data = continuous_data.replace(to_replace=r'.*\?.*', value=np.nan, regex=True) continuous_data = continuous_data.astype(np.float) return discrete_data, continuous_data def fit(self, X_df, y_df): X_df = X_df.reset_index(drop=True) y_df = y_df.reset_index(drop=True) discrete_data, continuous_data = self.split_data(X_df) self.label_enc.fit(y_df) self.y_fname = list(self.label_enc.get_feature_names(y_df.columns)) if not continuous_data.empty: if self.discrete: self.me_discretizer = MinimalEntropyDiscretizer() self.me_discretizer.fit(continuous_data, y_df) isna_df = continuous_data.isna() continuous_data = self.me_discretizer.transform(continuous_data) for k in isna_df: continuous_data.loc[isna_df[k], k] = '?' discrete_data = pd.concat([discrete_data, continuous_data], axis=1) else: # Use mean as missing value for continuous columns if do not discretize them. self.imp.fit(continuous_data.values) if not discrete_data.empty: # One-hot encoding self.feature_enc.fit(discrete_data) feature_names = discrete_data.columns self.X_fname = list(self.feature_enc.get_feature_names(feature_names)) if not self.discrete: self.X_fname.extend(continuous_data.columns) else: self.X_fname = continuous_data.columns def transform(self, X_df, y_df): X_df = X_df.reset_index(drop=True) y_df = y_df.reset_index(drop=True) discrete_data, continuous_data = self.split_data(X_df) # Encode string value to int index. y = self.label_enc.transform(y_df.values.reshape(-1, 1)).toarray() if not continuous_data.empty: if self.discrete: isna_df = continuous_data.isna() continuous_data = self.me_discretizer.transform(continuous_data) for k in isna_df: continuous_data.loc[isna_df[k], k] = '?' discrete_data = pd.concat([discrete_data, continuous_data], axis=1) else: # Use mean as missing value for continuous columns if we do not discretize them. continuous_data = pd.DataFrame(self.imp.transform(continuous_data.values), columns=continuous_data.columns) if not discrete_data.empty: # One-hot encoding discrete_data = self.feature_enc.transform(discrete_data) if not self.discrete: X_df = pd.concat([pd.DataFrame(discrete_data.toarray()), continuous_data], axis=1) else: X_df = pd.DataFrame(discrete_data.toarray()) else: X_df = continuous_data return X_df.values, y class UnionFind: """Union-Find algorithm used for merging the identical nodes in MLLP.""" def __init__(self, keys): self.stu = {} for k in keys: self.stu[k] = k def find(self, x): try: self.stu[x] except KeyError: return x if x != self.stu[x]: self.stu[x] = self.find(self.stu[x]) return self.stu[x] def union(self, x, y): xf = self.find(x) yf = self.find(y) if xf != yf: self.stu[yf] = xf return True return False ```
{ "source": "12-wu/-", "score": 3 }
#### File: 12-wu/-/losses.py ```python from torch.nn.functional import mse_loss import torch.nn.functional as func def completion_network_loss(input, output, mask): #return func.cross_entropy(output * mask, input * mask) return mse_loss(output * mask, input * mask) ```
{ "source": "12xiaoni/text-label", "score": 2 }
#### File: tests/api/test_comment.py ```python from rest_framework import status from rest_framework.reverse import reverse from .utils import (CRUDMixin, make_comment, make_doc, make_user, prepare_project) class TestCommentListDocAPI(CRUDMixin): @classmethod def setUpTestData(cls): cls.project = prepare_project() cls.non_member = make_user() doc = make_doc(cls.project.item) make_comment(doc, cls.project.users[0]) cls.data = {'text': 'example'} cls.url = reverse(viewname='comment_list_doc', args=[cls.project.item.id, doc.id]) def test_allows_project_member_to_list_comments(self): for member in self.project.users: response = self.assert_fetch(member, status.HTTP_200_OK) self.assertEqual(len(response.data), 1) def test_denies_non_project_member_to_list_comments(self): self.assert_fetch(self.non_member, status.HTTP_403_FORBIDDEN) def test_denies_unauthenticated_user_to_list_comments(self): self.assert_fetch(expected=status.HTTP_403_FORBIDDEN) def test_allows_project_member_to_create_comment(self): for member in self.project.users: self.assert_create(member, status.HTTP_201_CREATED) def test_denies_non_project_member_to_create_comment(self): self.assert_create(self.non_member, status.HTTP_403_FORBIDDEN) def test_denies_unauthenticated_user_to_create_comment(self): self.assert_create(expected=status.HTTP_403_FORBIDDEN) class TestCommentListProjectAPI(CRUDMixin): def setUp(self): self.project = prepare_project() self.non_member = make_user() self.doc = make_doc(self.project.item) make_comment(self.doc, self.project.users[0]) self.url = reverse(viewname='comment_list_project', args=[self.project.item.id]) def test_allows_project_member_to_list_comments(self): for member in self.project.users: response = self.assert_fetch(member, status.HTTP_200_OK) self.assertEqual(response.data['count'], 1) def test_denies_non_project_member_to_list_comments(self): self.assert_fetch(self.non_member, status.HTTP_403_FORBIDDEN) def test_denies_unauthenticated_user_to_list_comments(self): self.assert_fetch(expected=status.HTTP_403_FORBIDDEN) def assert_bulk_delete(self, user=None, expected=status.HTTP_403_FORBIDDEN): ids = [item.id for item in self.doc.comments.all()] if user: self.client.force_login(user) response = self.client.delete(self.url, data={'ids': ids}, format='json') self.assertEqual(response.status_code, expected) def test_allows_project_member_to_delete_comments(self): # Todo: Disallow non admin to delete comments. for member in self.project.users: self.assert_bulk_delete(member, status.HTTP_204_NO_CONTENT) response = self.client.get(self.url) self.assertEqual(response.data['count'], 0) def test_denies_non_project_member_to_delete_comments(self): self.assert_fetch(self.non_member, status.HTTP_403_FORBIDDEN) def test_denies_unauthenticated_user_to_delete_comments(self): self.assert_fetch(expected=status.HTTP_403_FORBIDDEN) class TestCommentDetailAPI(CRUDMixin): def setUp(self): self.project = prepare_project() self.non_member = make_user() doc = make_doc(self.project.item) comment = make_comment(doc, self.project.users[0]) self.data = {'text': 'example'} self.url = reverse(viewname='comment_detail', args=[self.project.item.id, doc.id, comment.id]) def test_allows_comment_owner_to_get_comment(self): # Todo: Allows project member to get comment. self.assert_fetch(self.project.users[0], status.HTTP_200_OK) def test_disallows_non_comment_owner_to_get_comment(self): for member in self.project.users[1:]: self.assert_fetch(member, status.HTTP_403_FORBIDDEN) def test_disallows_non_project_member_to_get_comment(self): self.assert_fetch(self.non_member, status.HTTP_403_FORBIDDEN) def test_disallows_unauthenticated_user_to_get_comment(self): self.assert_fetch(expected=status.HTTP_403_FORBIDDEN) def test_allows_comment_owner_to_update_comment(self): response = self.assert_update(self.project.users[0], status.HTTP_200_OK) self.assertEqual(response.data['text'], self.data['text']) def test_disallows_non_comment_owner_to_update_comment(self): for member in self.project.users[1:]: self.assert_update(member, status.HTTP_403_FORBIDDEN) def test_disallows_non_project_member_to_update_comment(self): self.assert_update(self.non_member, status.HTTP_403_FORBIDDEN) def test_disallows_unauthenticated_user_to_update_comment(self): self.assert_update(expected=status.HTTP_403_FORBIDDEN) def test_allows_comment_owner_to_delete_comment(self): self.assert_delete(self.project.users[0], status.HTTP_204_NO_CONTENT) def test_disallows_non_comment_owner_to_delete_comment(self): for member in self.project.users[1:]: self.assert_delete(member, status.HTTP_403_FORBIDDEN) def test_disallows_non_project_member_to_delete_comment(self): self.assert_delete(self.non_member, status.HTTP_403_FORBIDDEN) def test_disallows_unauthenticated_user_to_delete_comment(self): self.assert_delete(expected=status.HTTP_403_FORBIDDEN) ``` #### File: api/views/annotation.py ```python from django.shortcuts import get_object_or_404 from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from members.permissions import IsAnnotationApprover, IsProjectAdmin from ..models import Example from ..serializers import ApproverSerializer class ApprovalAPI(APIView): permission_classes = [IsAuthenticated & (IsAnnotationApprover | IsProjectAdmin)] def post(self, request, *args, **kwargs): approved = self.request.data.get('approved', True) example = get_object_or_404(Example, pk=self.kwargs['example_id']) example.annotations_approved_by = self.request.user if approved else None example.save() return Response(ApproverSerializer(example).data) ``` #### File: views/tasks/base.py ```python from functools import partial from django.core.exceptions import ValidationError from django.shortcuts import get_object_or_404 from rest_framework import generics, status from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from members.permissions import IsInProjectOrAdmin from ...models import Project from ...permissions import CanEditAnnotation class BaseListAPI(generics.ListCreateAPIView): annotation_class = None pagination_class = None permission_classes = [IsAuthenticated & IsInProjectOrAdmin] swagger_schema = None @property def project(self): return get_object_or_404(Project, pk=self.kwargs['project_id']) def get_queryset(self): queryset = self.annotation_class.objects.filter(example=self.kwargs['example_id']) if not self.project.collaborative_annotation: queryset = queryset.filter(user=self.request.user) return queryset def create(self, request, *args, **kwargs): request.data['example'] = self.kwargs['example_id'] try: response = super().create(request, args, kwargs) except ValidationError as err: response = Response({'detail': err.messages}, status=status.HTTP_400_BAD_REQUEST) return response def perform_create(self, serializer): serializer.save(example_id=self.kwargs['example_id'], user=self.request.user) def delete(self, request, *args, **kwargs): queryset = self.get_queryset() queryset.all().delete() return Response(status=status.HTTP_204_NO_CONTENT) class BaseDetailAPI(generics.RetrieveUpdateDestroyAPIView): lookup_url_kwarg = 'annotation_id' swagger_schema = None @property def project(self): return get_object_or_404(Project, pk=self.kwargs['project_id']) def get_permissions(self): if self.project.collaborative_annotation: self.permission_classes = [IsAuthenticated & IsInProjectOrAdmin] else: self.permission_classes = [ IsAuthenticated & IsInProjectOrAdmin & partial(CanEditAnnotation, self.queryset) ] return super().get_permissions() ``` #### File: backend/members/signals.py ```python from django.conf import settings from django.contrib.auth.models import User from django.db.models.signals import m2m_changed, post_save, pre_delete from django.dispatch import receiver from api.models import Project from roles.models import Role from .models import Member @receiver(post_save, sender=Member) def add_linked_project(sender, instance, created, **kwargs): if not created: return userInstance = instance.user projectInstance = instance.project if userInstance and projectInstance: user = User.objects.get(pk=userInstance.pk) project = Project.objects.get(pk=projectInstance.pk) user.projects.add(project) user.save() @receiver(m2m_changed, sender=Project.users.through) def remove_mapping_on_remove_user_from_project(sender, instance, action, reverse, **kwargs): # if reverse is True, pk_set is project_ids and instance is user. # else, pk_set is user_ids and instance is project. user_ids = kwargs['pk_set'] if action.startswith('post_remove') and not reverse: Member.objects.filter(user__in=user_ids, project=instance).delete() elif action.startswith('post_add') and not reverse: admin_role = Role.objects.get(name=settings.ROLE_PROJECT_ADMIN) Member.objects.bulk_create( [Member(role=admin_role, project=instance, user_id=user) for user in user_ids if not Member.objects.filter(project=instance, user_id=user).exists()] ) @receiver(pre_delete, sender=Member) def delete_linked_project(sender, instance, using, **kwargs): userInstance = instance.user projectInstance = instance.project if userInstance and projectInstance: user = User.objects.get(pk=userInstance.pk) project = Project.objects.get(pk=projectInstance.pk) user.projects.remove(project) user.save() ```
{ "source": "12yuens2/jMetalPy", "score": 3 }
#### File: jmetal/core/observer.py ```python from abc import abstractmethod, ABC """ .. module:: Observable :platform: Unix, Windows :synopsis: Implementation of the observer-observable pattern. .. moduleauthor:: <NAME> <<EMAIL>> """ class Observer(ABC): @abstractmethod def update(self, *args, **kwargs): """ Update method. """ pass class Observable(ABC): @abstractmethod def register(self, observer): pass @abstractmethod def deregister(self, observer): pass @abstractmethod def deregister_all(self): pass @abstractmethod def notify_all(self, *args, **kwargs): pass ``` #### File: core/test/test_quality_indicator.py ```python import unittest from os.path import dirname, join from pathlib import Path import numpy as np from jmetal.core.quality_indicator import GenerationalDistance, InvertedGenerationalDistance, EpsilonIndicator, \ HyperVolume class GenerationalDistanceTestCases(unittest.TestCase): """ Class including unit tests for class GenerationalDistance """ def test_should_constructor_create_a_non_null_object(self) -> None: indicator = GenerationalDistance([]) self.assertIsNotNone(indicator) def test_get_name_return_the_right_value(self): self.assertEqual("Generational Distance", GenerationalDistance([]).get_name()) def test_get_short_name_return_the_right_value(self): self.assertEqual("GD", GenerationalDistance([]).get_short_name()) def test_case1(self): """ Case 1. Reference front: [[1.0, 1.0]], front: [[1.0, 1.0]] Expected result: the distance to the nearest point of the reference front is 0.0 :return: """ indicator = GenerationalDistance(np.array([[1.0, 1.0]])) front = np.array([[1.0, 1.0]]) result = indicator.compute(front) self.assertEqual(0.0, result) def test_case2(self): """ Case 2. Reference front: [[1.0, 1.0], [2.0, 2.0], front: [[1.0, 1.0]] Expected result: the distance to the nearest point of the reference front is 0.0 :return: """ indicator = GenerationalDistance(np.array([[1.0, 1.0], [2.0, 2.0]])) front = np.array([[1.0, 1.0]]) result = indicator.compute(front) self.assertEqual(0.0, result) def test_case3(self): """ Case 3. Reference front: [[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]], front: [[1.0, 1.0, 1.0]] Expected result: the distance to the nearest point of the reference front is 0.0. Example with three objectives :return: """ indicator = GenerationalDistance(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]])) front = np.array([[1.0, 1.0, 1.0]]) result = indicator.compute(front) self.assertEqual(0.0, result) def test_case4(self): """ Case 4. reference front: [[1.0, 1.0], [2.0, 2.0]], front: [[1.5, 1.5]] Expected result: the distance to the nearest point of the reference front is the euclidean distance to any of the points of the reference front :return: """ indicator = GenerationalDistance(np.array([[1.0, 1.0], [2.0, 2.0]])) front = np.array([[1.5, 1.5]]) result = indicator.compute(front) self.assertEqual(np.sqrt(pow(1.0 - 1.5, 2) + pow(1.0 - 1.5, 2)), result) self.assertEqual(np.sqrt(pow(2.0 - 1.5, 2) + pow(2.0 - 1.5, 2)), result) def test_case5(self): """ Case 5. reference front: [[1.0, 1.0], [2.1, 2.1]], front: [[1.5, 1.5]] Expected result: the distance to the nearest point of the reference front is the euclidean distance to the nearest point of the reference front ([1.0, 1.0]) :return: """ indicator = GenerationalDistance(np.array([[1.0, 1.0], [2.1, 2.1]])) front = np.array([[1.5, 1.5]]) result = indicator.compute(front) self.assertEqual(np.sqrt(pow(1.0 - 1.5, 2) + pow(1.0 - 1.5, 2)), result) self.assertEqual(np.sqrt(pow(2.0 - 1.5, 2) + pow(2.0 - 1.5, 2)), result) def test_case6(self): """ Case 6. reference front: [[1.0, 1.0], [2.1, 2.1]], front: [[1.5, 1.5], [2.2, 2.2]] Expected result: the distance to the nearest point of the reference front is the average of the sum of each point of the front to the nearest point of the reference front :return: """ indicator = GenerationalDistance(np.array([[1.0, 1.0], [2.1, 2.1]])) front = np.array([[1.5, 1.5], [2.2, 2.2]]) result = indicator.compute(front) distance_of_first_point = np.sqrt(pow(1.0 - 1.5, 2) + pow(1.0 - 1.5, 2)) distance_of_second_point = np.sqrt(pow(2.1 - 2.2, 2) + pow(2.1 - 2.2, 2)) self.assertEqual((distance_of_first_point + distance_of_second_point) / 2.0, result) def test_case7(self): """ Case 7. reference front: [[1.0, 1.0], [2.1, 2.1]], front: [[1.5, 1.5], [2.2, 2.2], [1.9, 1.9]] Expected result: the distance to the nearest point of the reference front is the sum of each point of the front to the nearest point of the reference front :return: """ indicator = GenerationalDistance(np.array([[1.0, 1.0], [2.1, 2.1]])) front = np.array([[1.5, 1.5], [2.2, 2.2], [1.9, 1.9]]) result = indicator.compute(front) distance_of_first_point = np.sqrt(pow(1.0 - 1.5, 2) + pow(1.0 - 1.5, 2)) distance_of_second_point = np.sqrt(pow(2.1 - 2.2, 2) + pow(2.1 - 2.2, 2)) distance_of_third_point = np.sqrt(pow(2.1 - 1.9, 2) + pow(2.1 - 1.9, 2)) self.assertEqual((distance_of_first_point + distance_of_second_point + distance_of_third_point) / 3.0, result) class InvertedGenerationalDistanceTestCases(unittest.TestCase): """ Class including unit tests for class InvertedGenerationalDistance """ def test_should_constructor_create_a_non_null_object(self) -> None: indicator = InvertedGenerationalDistance([]) self.assertIsNotNone(indicator) def test_get_name_return_the_right_value(self): self.assertEqual("Inverted Generational Distance", InvertedGenerationalDistance([]).get_name()) def test_get_short_name_return_the_right_value(self): self.assertEqual("IGD", InvertedGenerationalDistance([]).get_short_name()) def test_case1(self): """ Case 1. Reference front: [[1.0, 1.0]], front: [[1.0, 1.0]] Expected result = 0.0 Comment: simplest case :return: """ indicator = InvertedGenerationalDistance(np.array([[1.0, 1.0]])) front = np.array([[1.0, 1.0]]) result = indicator.compute(front) self.assertEqual(0.0, result) def test_case2(self): """ Case 2. Reference front: [[1.0, 1.0], [2.0, 2.0], front: [[1.0, 1.0]] Expected result: average of the sum of the distances of the points of the reference front to the front :return: """ indicator = InvertedGenerationalDistance(np.array([[1.0, 1.0], [2.0, 2.0]])) front = np.array([[1.0, 1.0]]) result = indicator.compute(front) distance_of_first_point = np.sqrt(pow(1.0 - 1.0, 2) + pow(1.0 - 1.0, 2)) distance_of_second_point = np.sqrt(pow(2.0 - 1.0, 2) + pow(2.0 - 1.0, 2)) self.assertEqual((distance_of_first_point + distance_of_second_point) / 2.0, result) def test_case3(self): """ Case 3. Reference front: [[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]], front: [[1.0, 1.0, 1.0]] Expected result: average of the sum of the distances of the points of the reference front to the front. Example with three objectives :return: """ indicator = InvertedGenerationalDistance(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]])) front = np.array([[1.0, 1.0, 1.0]]) result = indicator.compute(front) distance_of_first_point = np.sqrt(pow(1.0 - 1.0, 2) + pow(1.0 - 1.0, 2) + pow(1.0 - 1.0, 2)) distance_of_second_point = np.sqrt(pow(2.0 - 1.0, 2) + pow(2.0 - 1.0, 2) + pow(2.0 - 1.0, 2)) self.assertEqual((distance_of_first_point + distance_of_second_point) / 2.0, result) def test_case4(self): """ Case 4. reference front: [[1.0, 1.0], [2.1, 2.1]], front: [[1.5, 1.5], [2.2, 2.2]] Expected result: average of the sum of the distances of the points of the reference front to the front. Example with three objectives :return: """ indicator = InvertedGenerationalDistance(np.array([[1.0, 1.0], [2.1, 2.1]])) front = np.array([[1.5, 1.5], [2.2, 2.2]]) result = indicator.compute(front) distance_of_first_point = np.sqrt(pow(1.0 - 1.5, 2) + pow(1.0 - 1.5, 2)) distance_of_second_point = np.sqrt(pow(2.1 - 2.2, 2) + pow(2.1 - 2.2, 2)) self.assertEqual((distance_of_first_point + distance_of_second_point) / 2.0, result) def test_case5(self): """ Case 5. reference front: [[1.0, 1.0], [2.1, 2.1]], front: [[1.5, 1.5], [2.2, 2.2], [1.9, 1.9]] Expected result: average of the sum of the distances of the points of the reference front to the front. Example with three objectives :return: """ indicator = InvertedGenerationalDistance(np.array([[1.0, 1.0], [2.0, 2.0]])) front = np.array([[1.5, 1.5], [2.2, 2.2], [1.9, 1.9]]) result = indicator.compute(front) distance_of_first_point = np.sqrt(pow(1.0 - 1.5, 2) + pow(1.0 - 1.5, 2)) distance_of_second_point = np.sqrt(pow(2.0 - 1.9, 2) + pow(2.0 - 1.9, 2)) self.assertEqual((distance_of_first_point + distance_of_second_point) / 2.0, result) class EpsilonIndicatorTestCases(unittest.TestCase): """ Class including unit tests for class EpsilonIndicator """ def test_should_constructor_create_a_non_null_object(self) -> None: indicator = EpsilonIndicator(np.array([[1.0, 1.0], [2.0, 2.0]])) self.assertIsNotNone(indicator) class HyperVolumeTestCases(unittest.TestCase): def setUp(self): self.file_path = dirname(join(dirname(__file__))) def test_should_hypervolume_return_5_0(self): reference_point = [2, 2, 2] front = np.array([[1, 0, 1], [0, 1, 0]]) hv = HyperVolume(reference_point) value = hv.compute(front) self.assertEqual(5.0, value) def test_should_hypervolume_return_the_correct_value_when_applied_to_the_ZDT1_reference_front(self): filename = 'jmetal/core/test/ZDT1.pf' front = [] if Path(filename).is_file(): with open(filename) as file: for line in file: vector = [float(x) for x in line.split()] front.append(vector) else: print("error") reference_point = [1, 1] hv = HyperVolume(reference_point) value = hv.compute(np.array(front)) self.assertAlmostEqual(0.666, value, delta=0.001) if __name__ == '__main__': unittest.main() ``` #### File: jmetal/operator/crossover.py ```python import copy import random from typing import List from jmetal.core.operator import Crossover from jmetal.core.solution import Solution, FloatSolution, BinarySolution, PermutationSolution, IntegerSolution, \ CompositeSolution from jmetal.util.ckecking import Check """ .. module:: crossover :platform: Unix, Windows :synopsis: Module implementing crossover operators. .. moduleauthor:: <NAME> <<EMAIL>>, <NAME> <<EMAIL>> """ class NullCrossover(Crossover[Solution, Solution]): def __init__(self): super(NullCrossover, self).__init__(probability=0.0) def execute(self, parents: List[Solution]) -> List[Solution]: if len(parents) != 2: raise Exception('The number of parents is not two: {}'.format(len(parents))) return parents def get_number_of_parents(self) -> int: return 2 def get_number_of_children(self) -> int: return 2 def get_name(self): return 'Null crossover' class PMXCrossover(Crossover[PermutationSolution, PermutationSolution]): def __init__(self, probability: float): super(PMXCrossover, self).__init__(probability=probability) def execute(self, parents: List[PermutationSolution]) -> List[PermutationSolution]: if len(parents) != 2: raise Exception('The number of parents is not two: {}'.format(len(parents))) offspring = [copy.deepcopy(parents[0]), copy.deepcopy(parents[1])] permutation_length = offspring[0].number_of_variables rand = random.random() if rand <= self.probability: cross_points = sorted([random.randint(0, permutation_length) for _ in range(2)]) def _repeated(element, collection): c = 0 for e in collection: if e == element: c += 1 return c > 1 def _swap(data_a, data_b, cross_points): c1, c2 = cross_points new_a = data_a[:c1] + data_b[c1:c2] + data_a[c2:] new_b = data_b[:c1] + data_a[c1:c2] + data_b[c2:] return new_a, new_b def _map(swapped, cross_points): n = len(swapped[0]) c1, c2 = cross_points s1, s2 = swapped map_ = s1[c1:c2], s2[c1:c2] for i_chromosome in range(n): if not c1 < i_chromosome < c2: for i_son in range(2): while _repeated(swapped[i_son][i_chromosome], swapped[i_son]): map_index = map_[i_son].index(swapped[i_son][i_chromosome]) swapped[i_son][i_chromosome] = map_[1 - i_son][map_index] return s1, s2 swapped = _swap(parents[0].variables, parents[1].variables, cross_points) mapped = _map(swapped, cross_points) offspring[0].variables, offspring[1].variables = mapped return offspring def get_number_of_parents(self) -> int: return 2 def get_number_of_children(self) -> int: return 2 def get_name(self): return 'Partially Matched crossover' class CXCrossover(Crossover[PermutationSolution, PermutationSolution]): def __init__(self, probability: float): super(CXCrossover, self).__init__(probability=probability) def execute(self, parents: List[PermutationSolution]) -> List[PermutationSolution]: if len(parents) != 2: raise Exception('The number of parents is not two: {}'.format(len(parents))) offspring = [copy.deepcopy(parents[1]), copy.deepcopy(parents[0])] rand = random.random() if rand <= self.probability: for i in range(parents[0].number_of_variables): idx = random.randint(0, len(parents[0].variables[i]) - 1) curr_idx = idx cycle = [] while True: cycle.append(curr_idx) curr_idx = parents[0].variables[i].index(parents[1].variables[i][curr_idx]) if curr_idx == idx: break for j in range(len(parents[0].variables[i])): if j in cycle: offspring[0].variables[i][j] = parents[0].variables[i][j] offspring[1].variables[i][j] = parents[0].variables[i][j] return offspring def get_number_of_parents(self) -> int: return 2 def get_number_of_children(self) -> int: return 2 def get_name(self): return 'Cycle crossover' class SBXCrossover(Crossover[FloatSolution, FloatSolution]): __EPS = 1.0e-14 def __init__(self, probability: float, distribution_index: float = 20.0): super(SBXCrossover, self).__init__(probability=probability) self.distribution_index = distribution_index if distribution_index < 0: raise Exception("The distribution index is negative: " + str(distribution_index)) def execute(self, parents: List[FloatSolution]) -> List[FloatSolution]: Check.that(type(parents[0]) is FloatSolution, "Solution type invalid: " + str(type(parents[0]))) Check.that(type(parents[1]) is FloatSolution, "Solution type invalid") Check.that(len(parents) == 2, 'The number of parents is not two: {}'.format(len(parents))) offspring = [copy.deepcopy(parents[0]), copy.deepcopy(parents[1])] rand = random.random() if rand <= self.probability: for i in range(parents[0].number_of_variables): value_x1, value_x2 = parents[0].variables[i], parents[1].variables[i] if random.random() <= 0.5: if abs(value_x1 - value_x2) > self.__EPS: if value_x1 < value_x2: y1, y2 = value_x1, value_x2 else: y1, y2 = value_x2, value_x1 lower_bound, upper_bound = parents[0].lower_bound[i], parents[1].upper_bound[i] beta = 1.0 + (2.0 * (y1 - lower_bound) / (y2 - y1)) alpha = 2.0 - pow(beta, -(self.distribution_index + 1.0)) rand = random.random() if rand <= (1.0 / alpha): betaq = pow(rand * alpha, (1.0 / (self.distribution_index + 1.0))) else: betaq = pow(1.0 / (2.0 - rand * alpha), 1.0 / (self.distribution_index + 1.0)) c1 = 0.5 * (y1 + y2 - betaq * (y2 - y1)) beta = 1.0 + (2.0 * (upper_bound - y2) / (y2 - y1)) alpha = 2.0 - pow(beta, -(self.distribution_index + 1.0)) if rand <= (1.0 / alpha): betaq = pow((rand * alpha), (1.0 / (self.distribution_index + 1.0))) else: betaq = pow(1.0 / (2.0 - rand * alpha), 1.0 / (self.distribution_index + 1.0)) c2 = 0.5 * (y1 + y2 + betaq * (y2 - y1)) if c1 < lower_bound: c1 = lower_bound if c2 < lower_bound: c2 = lower_bound if c1 > upper_bound: c1 = upper_bound if c2 > upper_bound: c2 = upper_bound if random.random() <= 0.5: offspring[0].variables[i] = c2 offspring[1].variables[i] = c1 else: offspring[0].variables[i] = c1 offspring[1].variables[i] = c2 else: offspring[0].variables[i] = value_x1 offspring[1].variables[i] = value_x2 else: offspring[0].variables[i] = value_x1 offspring[1].variables[i] = value_x2 return offspring def get_number_of_parents(self) -> int: return 2 def get_number_of_children(self) -> int: return 2 def get_name(self) -> str: return 'SBX crossover' class IntegerSBXCrossover(Crossover[IntegerSolution, IntegerSolution]): __EPS = 1.0e-14 def __init__(self, probability: float, distribution_index: float = 20.0): super(IntegerSBXCrossover, self).__init__(probability=probability) self.distribution_index = distribution_index def execute(self, parents: List[IntegerSolution]) -> List[IntegerSolution]: Check.that(type(parents[0]) is IntegerSolution, "Solution type invalid") Check.that(type(parents[1]) is IntegerSolution, "Solution type invalid") Check.that(len(parents) == 2, 'The number of parents is not two: {}'.format(len(parents))) offspring = [copy.deepcopy(parents[0]), copy.deepcopy(parents[1])] rand = random.random() if rand <= self.probability: for i in range(parents[0].number_of_variables): value_x1, value_x2 = parents[0].variables[i], parents[1].variables[i] if random.random() <= 0.5: if abs(value_x1 - value_x2) > self.__EPS: if value_x1 < value_x2: y1, y2 = value_x1, value_x2 else: y1, y2 = value_x2, value_x1 lower_bound, upper_bound = parents[0].lower_bound[i], parents[1].upper_bound[i] beta = 1.0 + (2.0 * (y1 - lower_bound) / (y2 - y1)) alpha = 2.0 - pow(beta, -(self.distribution_index + 1.0)) rand = random.random() if rand <= (1.0 / alpha): betaq = pow(rand * alpha, (1.0 / (self.distribution_index + 1.0))) else: betaq = pow(1.0 / (2.0 - rand * alpha), 1.0 / (self.distribution_index + 1.0)) c1 = 0.5 * (y1 + y2 - betaq * (y2 - y1)) beta = 1.0 + (2.0 * (upper_bound - y2) / (y2 - y1)) alpha = 2.0 - pow(beta, -(self.distribution_index + 1.0)) if rand <= (1.0 / alpha): betaq = pow((rand * alpha), (1.0 / (self.distribution_index + 1.0))) else: betaq = pow(1.0 / (2.0 - rand * alpha), 1.0 / (self.distribution_index + 1.0)) c2 = 0.5 * (y1 + y2 + betaq * (y2 - y1)) if c1 < lower_bound: c1 = lower_bound if c2 < lower_bound: c2 = lower_bound if c1 > upper_bound: c1 = upper_bound if c2 > upper_bound: c2 = upper_bound if random.random() <= 0.5: offspring[0].variables[i] = int(c2) offspring[1].variables[i] = int(c1) else: offspring[0].variables[i] = int(c1) offspring[1].variables[i] = int(c2) else: offspring[0].variables[i] = value_x1 offspring[1].variables[i] = value_x2 else: offspring[0].variables[i] = value_x1 offspring[1].variables[i] = value_x2 return offspring def get_number_of_parents(self) -> int: return 2 def get_number_of_children(self) -> int: return 2 def get_name(self) -> str: return 'Integer SBX crossover' class SPXCrossover(Crossover[BinarySolution, BinarySolution]): def __init__(self, probability: float): super(SPXCrossover, self).__init__(probability=probability) def execute(self, parents: List[BinarySolution]) -> List[BinarySolution]: Check.that(type(parents[0]) is BinarySolution, "Solution type invalid") Check.that(type(parents[1]) is BinarySolution, "Solution type invalid") Check.that(len(parents) == 2, 'The number of parents is not two: {}'.format(len(parents))) offspring = [copy.deepcopy(parents[0]), copy.deepcopy(parents[1])] rand = random.random() if rand <= self.probability: # 1. Get the total number of bits total_number_of_bits = parents[0].get_total_number_of_bits() # 2. Calculate the point to make the crossover crossover_point = random.randrange(0, total_number_of_bits) # 3. Compute the variable containing the crossover bit variable_to_cut = 0 bits_count = len(parents[1].variables[variable_to_cut]) while bits_count < (crossover_point + 1): variable_to_cut += 1 bits_count += len(parents[1].variables[variable_to_cut]) # 4. Compute the bit into the selected variable diff = bits_count - crossover_point crossover_point_in_variable = len(parents[1].variables[variable_to_cut]) - diff # 5. Apply the crossover to the variable bitset1 = copy.copy(parents[0].variables[variable_to_cut]) bitset2 = copy.copy(parents[1].variables[variable_to_cut]) for i in range(crossover_point_in_variable, len(bitset1)): swap = bitset1[i] bitset1[i] = bitset2[i] bitset2[i] = swap offspring[0].variables[variable_to_cut] = bitset1 offspring[1].variables[variable_to_cut] = bitset2 # 6. Apply the crossover to the other variables for i in range(variable_to_cut + 1, parents[0].number_of_variables): offspring[0].variables[i] = copy.deepcopy(parents[1].variables[i]) offspring[1].variables[i] = copy.deepcopy(parents[0].variables[i]) return offspring def get_number_of_parents(self) -> int: return 2 def get_number_of_children(self) -> int: return 2 def get_name(self) -> str: return 'Single point crossover' class DifferentialEvolutionCrossover(Crossover[FloatSolution, FloatSolution]): """ This operator receives two parameters: the current individual and an array of three parent individuals. The best and rand variants depends on the third parent, according whether it represents the current of the "best" individual or a random_search one. The implementation of both variants are the same, due to that the parent selection is external to the crossover operator. """ def __init__(self, CR: float, F: float, K: float): super(DifferentialEvolutionCrossover, self).__init__(probability=1.0) self.CR = CR self.F = F self.K = K self.current_individual: FloatSolution = None def execute(self, parents: List[FloatSolution]) -> List[FloatSolution]: """ Execute the differential evolution crossover ('best/1/bin' variant in jMetal). """ if len(parents) != self.get_number_of_parents(): raise Exception('The number of parents is not {}: {}'.format(self.get_number_of_parents(), len(parents))) child = copy.deepcopy(self.current_individual) number_of_variables = parents[0].number_of_variables rand = random.randint(0, number_of_variables - 1) for i in range(number_of_variables): if random.random() < self.CR or i == rand: value = parents[2].variables[i] + self.F * (parents[0].variables[i] - parents[1].variables[i]) if value < child.lower_bound[i]: value = child.lower_bound[i] if value > child.upper_bound[i]: value = child.upper_bound[i] else: value = child.variables[i] child.variables[i] = value return [child] def get_number_of_parents(self) -> int: return 3 def get_number_of_children(self) -> int: return 1 def get_name(self) -> str: return 'Differential Evolution crossover' class CompositeCrossover(Crossover[CompositeSolution, CompositeSolution]): __EPS = 1.0e-14 def __init__(self, crossover_operator_list:[Crossover]): super(CompositeCrossover, self).__init__(probability=1.0) Check.is_not_none(crossover_operator_list) Check.collection_is_not_empty(crossover_operator_list) self.crossover_operators_list = [] for operator in crossover_operator_list: Check.that(issubclass(operator.__class__, Crossover), "Object is not a subclass of Crossover") self.crossover_operators_list.append(operator) def execute(self, solutions: List[CompositeSolution]) -> List[CompositeSolution]: Check.is_not_none(solutions) Check.that(len(solutions) == 2, "The number of parents is not two: " + str(len(solutions))) offspring1 = [] offspring2 = [] number_of_solutions_in_composite_solution = solutions[0].number_of_variables for i in range(number_of_solutions_in_composite_solution): parents = [solutions[0].variables[i], solutions[1].variables[i]] children = self.crossover_operators_list[i].execute(parents) offspring1.append(children[0]) offspring2.append(children[1]) return [CompositeSolution(offspring1), CompositeSolution(offspring2)] def get_number_of_parents(self) -> int: return 2 def get_number_of_children(self) -> int: return 2 def get_name(self) -> str: return 'Composite crossover' ``` #### File: multiobjective/test/test_unconstrained.py ```python import unittest from jmetal.problem.multiobjective.unconstrained import Kursawe, Fonseca, Schaffer, Viennet2 class KursaweTestCases(unittest.TestCase): def test_should_constructor_create_a_non_null_object(self) -> None: problem = Kursawe(3) self.assertIsNotNone(problem) def test_should_constructor_create_a_valid_problem_with_default_settings(self) -> None: problem = Kursawe() self.assertEqual(3, problem.number_of_variables) self.assertEqual(2, problem.number_of_objectives) self.assertEqual(0, problem.number_of_constraints) self.assertEqual([-5.0, -5.0, -5.0], problem.lower_bound) self.assertEqual([5.0, 5.0, 5.0], problem.upper_bound) def test_should_constructor_create_a_valid_problem_with_5_variables(self) -> None: problem = Kursawe(5) self.assertEqual(5, problem.number_of_variables) self.assertEqual(2, problem.number_of_objectives) self.assertEqual(0, problem.number_of_constraints) self.assertEqual([-5.0, -5.0, -5.0, -5.0, -5.0], problem.lower_bound) self.assertEqual([5.0, 5.0, 5.0, 5.0, 5.0], problem.upper_bound) def test_should_create_solution_create_a_valid_float_solution(self) -> None: problem = Kursawe(3) solution = problem.create_solution() self.assertEqual(3, solution.number_of_variables) self.assertEqual(3, len(solution.variables)) self.assertEqual(2, solution.number_of_objectives) self.assertEqual(2, len(solution.objectives)) self.assertEqual(0, problem.number_of_constraints) self.assertEqual([-5.0, -5.0, -5.0], problem.lower_bound) self.assertEqual([5.0, 5.0, 5.0], problem.upper_bound) self.assertTrue(all(variable >= -5.0 for variable in solution.variables)) self.assertTrue(all(variable <= 5.0 for variable in solution.variables)) def test_should_get_name_return_the_right_name(self): problem = Kursawe() self.assertEqual("Kursawe", problem.get_name()) class FonsecaTestCases(unittest.TestCase): def test_should_constructor_create_a_non_null_object(self): problem = Fonseca() self.assertIsNotNone(problem) def test_should_constructor_create_a_valid_problem_with_default_settings(self): problem = Fonseca() self.assertEqual(3, problem.number_of_variables) self.assertEqual(2, problem.number_of_objectives) self.assertEqual(0, problem.number_of_constraints) self.assertEqual(3 * [-4], problem.lower_bound) self.assertEqual(3 * [4], problem.upper_bound) def test_should_create_solution_create_a_valid_float_solution(self): problem = Fonseca() solution = problem.create_solution() self.assertEqual(3, solution.number_of_variables) self.assertEqual(3, len(solution.variables)) self.assertEqual(2, solution.number_of_objectives) self.assertEqual(2, len(solution.objectives)) self.assertEqual(0, problem.number_of_constraints) self.assertEqual(3 * [-4], problem.lower_bound) self.assertEqual(3 * [4], problem.upper_bound) self.assertTrue(solution.variables[0] >= -4) self.assertTrue(solution.variables[0] <= 4) def test_should_create_solution_return_right_evaluation_values(self): problem = Fonseca() solution1 = problem.create_solution() solution1.variables[0] = -1.3 solution1.variables[1] = 1.5 solution1.variables[2] = 1.21 problem.evaluate(solution1) self.assertAlmostEqual(solution1.objectives[0], 0.991563628, 4) self.assertAlmostEqual(solution1.objectives[1], 0.999663388, 4) def test_should_get_name_return_the_right_name(self): problem = Fonseca() self.assertEqual("Fonseca", problem.get_name()) class SchafferTestCases(unittest.TestCase): def test_should_constructor_create_a_non_null_object(self): problem = Schaffer() self.assertIsNotNone(problem) def test_should_constructor_create_a_valid_problem_with_default_settings(self): problem = Schaffer() self.assertEqual(1, problem.number_of_variables) self.assertEqual(2, problem.number_of_objectives) self.assertEqual(0, problem.number_of_constraints) self.assertEqual([-100000], problem.lower_bound) self.assertEqual([100000], problem.upper_bound) def test_should_create_solution_create_a_valid_float_solution(self): problem = Schaffer() solution = problem.create_solution() self.assertEqual(1, solution.number_of_variables) self.assertEqual(1, len(solution.variables)) self.assertEqual(2, solution.number_of_objectives) self.assertEqual(2, len(solution.objectives)) self.assertEqual(0, problem.number_of_constraints) self.assertEqual([-100000], problem.lower_bound) self.assertEqual([100000], problem.upper_bound) self.assertTrue(solution.variables[0] >= -100000) self.assertTrue(solution.variables[0] <= 100000) def test_should_create_solution_return_right_evaluation_values(self): problem = Schaffer() solution1 = problem.create_solution() solution2 = problem.create_solution() solution1.variables[0] = 3 solution2.variables[0] = -2.6 problem.evaluate(solution1) problem.evaluate(solution2) self.assertAlmostEqual(solution1.objectives[0], 9) self.assertAlmostEqual(solution1.objectives[1], 1) self.assertAlmostEqual(solution2.objectives[0], 6.76) self.assertAlmostEqual(solution2.objectives[1], 21.16) def test_should_get_name_return_the_right_name(self): problem = Schaffer() self.assertEqual("Schaffer", problem.get_name()) class Viennet2TestCases(unittest.TestCase): def test_should_constructor_create_a_non_null_object(self): problem = Viennet2() self.assertIsNotNone(problem) def test_should_constructor_create_a_valid_problem_with_default_settings(self): problem = Viennet2() self.assertEqual(2, problem.number_of_variables) self.assertEqual(3, problem.number_of_objectives) self.assertEqual(0, problem.number_of_constraints) self.assertEqual([-4, -4], problem.lower_bound) self.assertEqual([4, 4], problem.upper_bound) def test_should_create_solution_create_a_valid_float_solution(self): problem = Viennet2() solution = problem.create_solution() self.assertEqual(2, solution.number_of_variables) self.assertEqual(2, len(solution.variables)) self.assertEqual(3, solution.number_of_objectives) self.assertEqual(3, len(solution.objectives)) self.assertEqual(0, problem.number_of_constraints) self.assertEqual([-4, -4], problem.lower_bound) self.assertEqual([4, 4], problem.upper_bound) self.assertTrue(solution.variables[0] >= -4) self.assertTrue(solution.variables[0] <= 4) def test_should_create_solution_return_right_evaluation_values(self): problem = Viennet2() solution2 = problem.create_solution() solution2.variables[0] = -2.6 solution2.variables[1] = 1.5 problem.evaluate(solution2) self.assertAlmostEqual(solution2.objectives[0], 14.0607692307) self.assertAlmostEqual(solution2.objectives[1], -11.8818055555) self.assertAlmostEqual(solution2.objectives[2], -11.1532369747) def test_should_get_name_return_the_right_name(self): problem = Viennet2() self.assertEqual("Viennet2", problem.get_name()) if __name__ == '__main__': unittest.main() ``` #### File: problem/multiobjective/zdt.py ```python from math import sqrt, pow, sin, pi, cos from jmetal.core.problem import FloatProblem from jmetal.core.solution import FloatSolution """ .. module:: ZDT :platform: Unix, Windows :synopsis: ZDT problem family of multi-objective problems. .. moduleauthor:: <NAME> <<EMAIL>> """ class ZDT1(FloatProblem): """ Problem ZDT1. .. note:: Bi-objective unconstrained problem. The default number of variables is 30. .. note:: Continuous problem having a convex Pareto front """ def __init__(self, number_of_variables: int=30): """ :param number_of_variables: Number of decision variables of the problem. """ super(ZDT1, self).__init__() self.number_of_variables = number_of_variables self.number_of_objectives = 2 self.number_of_constraints = 0 self.obj_directions = [self.MINIMIZE, self.MINIMIZE] self.obj_labels = ['x', 'y'] self.lower_bound = self.number_of_variables * [0.0] self.upper_bound = self.number_of_variables * [1.0] def evaluate(self, solution: FloatSolution) -> FloatSolution: g = self.eval_g(solution) h = self.eval_h(solution.variables[0], g) solution.objectives[0] = solution.variables[0] solution.objectives[1] = h * g return solution def eval_g(self, solution: FloatSolution): g = sum(solution.variables) - solution.variables[0] constant = 9.0 / (solution.number_of_variables - 1) return constant * g + 1.0 def eval_h(self, f: float, g: float) -> float: return 1.0 - sqrt(f / g) def get_name(self): return 'ZDT1' class ZDT1Modified(ZDT1): """ Problem ZDT1Modified. .. note:: Version including a loop for increasing the computing time of the evaluation functions. """ def __init__(self, number_of_variables = 30): super(ZDT1Modified, self).__init__(number_of_variables) def evaluate(self, solution:FloatSolution) -> FloatSolution: s: float = 0.0 for i in range(1000): for j in range(10000): s += i * 0.235 / 1.234 + 1.23525 * j return super().evaluate(solution) class ZDT2(ZDT1): """ Problem ZDT2. .. note:: Bi-objective unconstrained problem. The default number of variables is 30. .. note:: Continuous problem having a non-convex Pareto front """ def eval_h(self, f: float, g: float) -> float: return 1.0 - pow(f / g, 2.0) def get_name(self): return 'ZDT2' class ZDT3(ZDT1): """ Problem ZDT3. .. note:: Bi-objective unconstrained problem. The default number of variables is 30. .. note:: Continuous problem having a partitioned Pareto front """ def eval_h(self, f: float, g: float) -> float: return 1.0 - sqrt(f / g) - (f / g) * sin(10.0 * f * pi) def get_name(self): return 'ZDT3' class ZDT4(ZDT1): """ Problem ZDT4. .. note:: Bi-objective unconstrained problem. The default number of variables is 10. .. note:: Continuous multi-modal problem having a convex Pareto front """ def __init__(self, number_of_variables: int=10): """ :param number_of_variables: Number of decision variables of the problem. """ super(ZDT4, self).__init__(number_of_variables=number_of_variables) self.lower_bound = self.number_of_variables * [-5.0] self.upper_bound = self.number_of_variables * [5.0] self.lower_bound[0] = 0.0 self.upper_bound[0] = 1.0 def eval_g(self, solution: FloatSolution): g = 0.0 for i in range(1, solution.number_of_variables): g += pow(solution.variables[i], 2.0) - 10.0 * cos(4.0 * pi * solution.variables[i]) g += 1.0 + 10.0 * (solution.number_of_variables - 1) return g def eval_h(self, f: float, g: float) -> float: return 1.0 - sqrt(f / g) def get_name(self): return 'ZDT4' class ZDT6(ZDT1): """ Problem ZDT6. .. note:: Bi-objective unconstrained problem. The default number of variables is 10. .. note:: Continuous problem having a non-convex Pareto front """ def __init__(self, number_of_variables: int=10): """ :param number_of_variables: Number of decision variables of the problem. """ super(ZDT6, self).__init__(number_of_variables=number_of_variables) def eval_g(self, solution: FloatSolution): g = sum(solution.variables) - solution.variables[0] g = g / (solution.number_of_variables - 1) g = pow(g, 0.25) g = 9.0 * g g = 1.0 + g return g def eval_h(self, f: float, g: float) -> float: return 1.0 - pow(f / g, 2.0) def get_name(self): return 'ZDT6' ``` #### File: problem/singleobjective/unconstrained.py ```python import math import random from jmetal.core.problem import BinaryProblem, FloatProblem from jmetal.core.solution import BinarySolution, FloatSolution """ .. module:: unconstrained :platform: Unix, Windows :synopsis: Unconstrained test problems for single-objective optimization .. moduleauthor:: <NAME> <<EMAIL>>, <NAME> <<EMAIL>> """ class OneMax(BinaryProblem): def __init__(self, number_of_bits: int = 256): super(OneMax, self).__init__() self.number_of_bits = number_of_bits self.number_of_objectives = 1 self.number_of_variables = 1 self.number_of_constraints = 0 self.obj_directions = [self.MINIMIZE] self.obj_labels = ['Ones'] def evaluate(self, solution: BinarySolution) -> BinarySolution: counter_of_ones = 0 for bits in solution.variables[0]: if bits: counter_of_ones += 1 solution.objectives[0] = -1.0 * counter_of_ones return solution def create_solution(self) -> BinarySolution: new_solution = BinarySolution(number_of_variables=1, number_of_objectives=1) new_solution.variables[0] = \ [True if random.randint(0, 1) == 0 else False for _ in range(self.number_of_bits)] return new_solution def get_name(self) -> str: return 'OneMax' class Sphere(FloatProblem): def __init__(self, number_of_variables: int = 10): super(Sphere, self).__init__() self.number_of_objectives = 1 self.number_of_variables = number_of_variables self.number_of_constraints = 0 self.obj_directions = [self.MINIMIZE] self.obj_labels = ['f(x)'] self.lower_bound = [-5.12 for _ in range(number_of_variables)] self.upper_bound = [5.12 for _ in range(number_of_variables)] FloatSolution.lower_bound = self.lower_bound FloatSolution.upper_bound = self.upper_bound def evaluate(self, solution: FloatSolution) -> FloatSolution: total = 0.0 for x in solution.variables: total += x * x solution.objectives[0] = total return solution def get_name(self) -> str: return 'Sphere' class Rastrigin(FloatProblem): def __init__(self, number_of_variables: int = 10): super(Rastrigin, self).__init__() self.number_of_objectives = 1 self.number_of_variables = number_of_variables self.number_of_constraints = 0 self.obj_directions = [self.MINIMIZE] self.obj_labels = ['f(x)'] self.lower_bound = [-5.12 for _ in range(number_of_variables)] self.upper_bound = [5.12 for _ in range(number_of_variables)] FloatSolution.lower_bound = self.lower_bound FloatSolution.upper_bound = self.upper_bound def evaluate(self, solution: FloatSolution) -> FloatSolution: a = 10.0 result = a * solution.number_of_variables x = solution.variables for i in range(solution.number_of_variables): result += x[i] * x[i] - a * math.cos(2 * math.pi * x[i]) solution.objectives[0] = result return solution def get_name(self) -> str: return 'Rastrigin' class SubsetSum(BinaryProblem): def __init__(self, C: int, W: list): """ The goal is to find a subset S of W whose elements sum is closest to (without exceeding) C. :param C: Large integer. :param W: Set of non-negative integers.""" super(SubsetSum, self).__init__() self.C = C self.W = W self.number_of_bits = len(self.W) self.number_of_objectives = 1 self.number_of_variables = 1 self.number_of_constraints = 0 self.obj_directions = [self.MAXIMIZE] self.obj_labels = ['Sum'] def evaluate(self, solution: BinarySolution) -> BinarySolution: total_sum = 0.0 for index, bits in enumerate(solution.variables[0]): if bits: total_sum += self.W[index] if total_sum > self.C: total_sum = self.C - total_sum * 0.1 if total_sum < 0.0: total_sum = 0.0 solution.objectives[0] = -1.0 * total_sum return solution def create_solution(self) -> BinarySolution: new_solution = BinarySolution(number_of_variables=self.number_of_variables, number_of_objectives=self.number_of_objectives) new_solution.variables[0] = \ [True if random.randint(0, 1) == 0 else False for _ in range(self.number_of_bits)] return new_solution def get_name(self) -> str: return 'Subset Sum' ``` #### File: jmetal/util/ckecking.py ```python class NoneParameterException(Exception): def __init__(self, message: str = ""): self.error_message = message class InvalidConditionException(Exception): def __init__(self, message: str): self.error_message = message class EmptyCollectionException(RuntimeError): def __init__(self): super(EmptyCollectionException, self).__init__("The collection is empty") # class InvalidConditionException(RuntimeError): # def __init__(self, message): # super(InvalidConditionException, self).__init__(message) class InvalidProbabilityValueException(RuntimeError): def __init__(self, value: float): super(InvalidProbabilityValueException, self).__init__( "The parameter " + str(value) + " is not a valid probability value") class ValueOutOfRangeException(RuntimeError): def __init__(self, value: float, lowest_value: float, highest_value: float): super(ValueOutOfRangeException, self).__init__( "The parameter " + str(value) + " is not in the range (" + str(lowest_value) + ", " + str( highest_value) + ")") class Check: @staticmethod def is_not_none(obj): if obj is None: raise NoneParameterException() @staticmethod def probability_is_valid(value: float): if value < 0.0 or value > 1.0: raise InvalidProbabilityValueException(value) @staticmethod def value_is_in_range(value: float, lowest_value: float, highest_value: float): if value < lowest_value or value > highest_value: raise ValueOutOfRangeException(value, lowest_value, highest_value) @staticmethod def collection_is_not_empty(collection): if len(collection) == 0: raise EmptyCollectionException @staticmethod def that(expression: bool, message: str): if not expression: raise InvalidConditionException(message) """ class Check: @staticmethod def is_not_null(o: object, message: str = ""): if o is None: raise NoneParameterException(message) @staticmethod def that(expression: bool, message: str = ""): if not expression: raise InvalidConditionException(message) """ ``` #### File: util/test/test_distance.py ```python import unittest from jmetal.util.distance import EuclideanDistance class EuclideanDistanceTestCases(unittest.TestCase): def test_should_get_distance_work_properly_case_1(self): """ Case 1: [1], [1] -> distance == 0 """ distance = EuclideanDistance() self.assertEqual(0, distance.get_distance([1], [1])) def test_should_get_distance_work_properly_case_2(self): """ Case 2: [1, 0, 0], [0, 1, 0] -> distance == 1.4142135623730951 """ distance = EuclideanDistance() self.assertEqual(1.4142135623730951, distance.get_distance([1, 0, 0], [0, 1, 0])) def test_should_get_distance_work_properly_case_3(self): """ Case 3: [1, 1, 0], [0, 1, 0] -> distance == 1.0 """ distance = EuclideanDistance() self.assertEqual(1.0, distance.get_distance([1, 1, 0], [0, 1, 0])) """ class CosineDistanceTestCases(unittest.TestCase): def test_should_identical_points_have_a_distance_of_zero(self): reference_point = [0.0, 0.0] distance = CosineDistance(reference_point) self.assertEqual(0.0, distance.get_distance([1.0, 1.0], [1.0, 1.0])) def test_should_points_in_the_same_direction_have_a_distance_of_zero(self): reference_point = [0.0, 0.0] distance = CosineDistance(reference_point) self.assertEqual(0.0, distance.get_distance([1.0, 1.0], [2.0, 2.0])) def test_should_two_perpendicular_points_have_a_distance_of_one(self): reference_point = [0.0, 0.0] distance = CosineDistance(reference_point) self.assertEqual(1.0, distance.get_distance([0.0, 1.0], [1.0, 0.0])) """ if __name__ == '__main__': unittest.main() ``` #### File: util/test/test_neighborhood.py ```python import unittest import numpy from jmetal.core.solution import Solution from jmetal.util.ckecking import NoneParameterException, InvalidConditionException from jmetal.util.neighborhood import WeightVectorNeighborhood, TwoDimensionalMesh, L5 class WeightVectorNeighborhoodTestCases(unittest.TestCase): def test_should_constructor_work_properly(self) -> None: number_of_weight_vectors = 100 neighborhood_size = 20 neighborhood: WeightVectorNeighborhood = WeightVectorNeighborhood(number_of_weight_vectors, neighborhood_size) self.assertEqual(number_of_weight_vectors, neighborhood.number_of_weight_vectors) self.assertEqual(neighborhood_size, neighborhood.neighborhood_size) self.assertEqual(2, neighborhood.weight_vector_size) self.assertEqual(0.0, neighborhood.weight_vectors[0][0]) self.assertEqual(1.0, neighborhood.weight_vectors[0][1]) self.assertEqual(0.0101010101010101010101, neighborhood.weight_vectors[1][0]) self.assertEqual(0.989898989898989898, neighborhood.weight_vectors[1][1]) self.assertEqual(1.0, neighborhood.weight_vectors[99][0]) self.assertEqual(0.0, neighborhood.weight_vectors[99][1]) self.assertTrue(numpy.array_equal(numpy.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), neighborhood.neighborhood[0])) self.assertTrue(numpy.array_equal(numpy.array([69, 70, 68, 71, 67, 72, 66, 73, 65, 64, 74, 75, 63, 76, 62, 77, 61, 78, 60, 79]), neighborhood.neighborhood[69])) def test_should_get_neighbors_work_properly_with_two_objectives(self): number_of_weight_vectors = 100 neighborhood_size = 20 neighborhood: WeightVectorNeighborhood = WeightVectorNeighborhood(number_of_weight_vectors, neighborhood_size) solution_list = [Solution(2, 2) for _ in range(number_of_weight_vectors)] neighbors = neighborhood.get_neighbors(0, solution_list) self.assertEqual(neighborhood_size, len(neighbors)) self.assertTrue(solution_list[0] == neighbors[0]) self.assertTrue(solution_list[19] == neighbors[19]) neighbors = neighborhood.get_neighbors(69, solution_list) self.assertEqual(neighborhood_size, len(neighbors)) self.assertTrue(solution_list[69] == neighbors[0]) self.assertTrue(solution_list[79] == neighbors[19]) class TwoDimensionalMeshTestCases(unittest.TestCase): def test_should_get_neighbors_throw_an_exception_if_the_solution_list_is_none(self): """ Topology: north = -1, 0 south = 1, 0 east = 0, 1 west = 0, -1 :return: """ neighborhood = TwoDimensionalMesh(3, 3, [[-1, 0], [1, 0], [0, 1], [0, -1]]) with self.assertRaises(NoneParameterException): neighborhood.get_neighbors(0, None) def test_should_get_neighbors_throw_an_exception_if_the_solution_list_is_empty(self): """ Topology: north = -1, 0 south = 1, 0 east = 0, 1 west = 0, -1 """ neighborhood = TwoDimensionalMesh(3, 3, [[-1, 0], [1, 0], [0, 1], [0, -1]]) with self.assertRaises(InvalidConditionException): neighborhood.get_neighbors(0, []) def test_should_get_neighbors_return_four_neighbors_case1(self): """ Case 1 Solution list: 0 1 2 3 4 5 6 7 8 The solution location is 1, so the neighborhood is 7, 0, 2, 4 """ rows = 3 columns = 3 solution_list = [Solution(i, 2) for i in range(rows * columns)] neighborhood = TwoDimensionalMesh(rows, columns, [[-1, 0], [1, 0], [0, 1], [0, -1]]) result = neighborhood.get_neighbors(1, solution_list) self.assertEqual(4, len(result)) self.assertTrue(solution_list[7] in result) self.assertTrue(solution_list[0] in result) self.assertTrue(solution_list[2] in result) self.assertTrue(solution_list[4] in result) def test_should_get_neighbors_return_four_neighbors_case2(self): """ Case 1 Solution list: 0 1 2 3 4 5 6 7 8 The solution location is 4, so the neighborhood is 1, 3, 5, 7 """ rows = 3 columns = 3 solution_list = [Solution(i, 2) for i in range(rows * columns)] neighborhood = TwoDimensionalMesh(rows, columns, [[-1, 0], [1, 0], [0, 1], [0, -1]]) result = neighborhood.get_neighbors(4, solution_list) self.assertEqual(4, len(result)) self.assertTrue(solution_list[1] in result) self.assertTrue(solution_list[3] in result) self.assertTrue(solution_list[5] in result) self.assertTrue(solution_list[7] in result) def test_should_get_neighbors_return_four_neighbors_case3(self): """ Case 1 Solution list: 0 1 2 3 4 5 6 7 8 The solution location is 0, so the neighborhood is 1, 3, 2, 6 """ rows = 3 columns = 3 solution_list = [Solution(i, 2) for i in range(rows * columns)] neighborhood = TwoDimensionalMesh(rows, columns, [[-1, 0], [1, 0], [0, 1], [0, -1]]) result = neighborhood.get_neighbors(0, solution_list) self.assertEqual(4, len(result)) self.assertTrue(solution_list[1] in result) self.assertTrue(solution_list[3] in result) self.assertTrue(solution_list[2] in result) self.assertTrue(solution_list[6] in result) def test_should_get_neighbors_return_four_neighbors_case4(self): """ Case 1 Solution list: 0 1 2 3 4 5 6 7 8 The solution location is 2, so the neighborhood is 1, 5, 8, 0 """ rows = 3 columns = 3 solution_list = [Solution(i, 2) for i in range(rows * columns)] neighborhood = TwoDimensionalMesh(rows, columns, [[-1, 0], [1, 0], [0, 1], [0, -1]]) result = neighborhood.get_neighbors(2, solution_list) self.assertEqual(4, len(result)) self.assertTrue(solution_list[1] in result) self.assertTrue(solution_list[5] in result) self.assertTrue(solution_list[8] in result) self.assertTrue(solution_list[0] in result) def test_should_get_neighbors_return_four_neighbors_case5(self): """ Case 1 Solution list: 0 1 2 3 4 5 6 7 8 The solution location is 8, so the neighborhood is 2, 5, 6, 7 """ rows = 3 columns = 3 solution_list = [Solution(i, 2) for i in range(rows * columns)] neighborhood = TwoDimensionalMesh(rows, columns, [[-1, 0], [1, 0], [0, 1], [0, -1]]) result = neighborhood.get_neighbors(8, solution_list) self.assertEqual(4, len(result)) self.assertTrue(solution_list[2] in result) self.assertTrue(solution_list[5] in result) self.assertTrue(solution_list[6] in result) self.assertTrue(solution_list[7] in result) def test_should_get_neighbors_return_four_neighbors_case6(self): """ Case 1 Solution list: 0 1 2 3 4 5 The solution location is 0, so the neighborhood is 1, 3, 3, 2 """ rows = 2 columns = 3 solution_list = [Solution(i, 2) for i in range(rows * columns)] neighborhood = TwoDimensionalMesh(rows, columns, [[-1, 0], [1, 0], [0, 1], [0, -1]]) result = neighborhood.get_neighbors(0, solution_list) self.assertEqual(4, len(result)) self.assertTrue(solution_list[1] in result) self.assertTrue(solution_list[3] in result) self.assertTrue(solution_list[2] in result) class L5TestCases(unittest.TestCase): def test_should_get_neighbors_return_four_neighbors_case1(self): rows = 1 columns = 1 solution_list = [Solution(i, 2) for i in range(rows * columns)] neighborhood = L5(rows, columns) result = neighborhood.get_neighbors(0, solution_list) self.assertEqual(4, len(result)) def test_should_get_neighbors_return_four_neighbors_case2(self): """ Solution list: 0, 1 Solution location: 0; the neighborhood is: 0, 1 """ rows = 1 columns = 2 solution_list = [] for i in range(rows * columns): solution = Solution(i, 2) solution.variables = [i, i+1] solution_list.append(solution) neighborhood = L5(rows, columns) result = neighborhood.get_neighbors(0, solution_list) self.assertEqual(4, len(result)) self.assertTrue(solution_list[0] in result) self.assertTrue(solution_list[1] in result) self.assertEqual(2, result.count(solution_list[0])) self.assertEqual(2, result.count(solution_list[1])) def test_should_get_neighbors_return_four_neighbors_case3(self): """ Solution list: 0, 1 Solution location: 1; the neighborhood is: 0, 1 """ rows = 1 columns = 2 solution_list = [Solution(i, 2) for i in range(rows * columns)] neighborhood = L5(rows, columns) result = neighborhood.get_neighbors(1, solution_list) self.assertEqual(4, len(result)) self.assertTrue(solution_list[0] in result) self.assertTrue(solution_list[1] in result) self.assertEqual(2, result.count(solution_list[0])) self.assertEqual(2, result.count(solution_list[1])) def test_should_get_neighbors_return_four_neighbors_case4(self): """ Solution list: 0 1 2 3 Solution location: 0; the neighborhood is: 1, 2 """ rows = 2 columns = 2 solution_list = [Solution(i, 2) for i in range(rows * columns)] neighborhood = L5(rows, columns) result = neighborhood.get_neighbors(0, solution_list) self.assertEqual(4, len(result)) self.assertTrue(solution_list[1] in result) self.assertTrue(solution_list[2] in result) self.assertTrue(solution_list[3] not in result) self.assertTrue(solution_list[0] not in result) self.assertEqual(2, result.count(solution_list[1])) self.assertEqual(2, result.count(solution_list[2])) if __name__ == '__main__': unittest.main() ``` #### File: util/test/test_replacement.py ```python import unittest from jmetal.core.solution import Solution from jmetal.util.density_estimator import KNearestNeighborDensityEstimator from jmetal.util.ranking import StrengthRanking, FastNonDominatedRanking from jmetal.util.replacement import RankingAndDensityEstimatorReplacement class RankingAndDensityEstimatorReplacementTestCases(unittest.TestCase): def test_should_replacement_return_the_list_if_the_offspring_list_is_empty(self): """ 5 1 4 2 3 3 2 1 4 0 1 2 3 4 5 """ ranking = StrengthRanking() density_estimator = KNearestNeighborDensityEstimator(1) replacement = RankingAndDensityEstimatorReplacement(ranking, density_estimator) solution1 = Solution(2, 2) solution1.objectives = [1, 5] solution2 = Solution(2, 2) solution2.objectives = [2, 4] solution3 = Solution(2, 2) solution3.objectives = [3, 3] solution4 = Solution(2, 2) solution4.objectives = [5, 1] solution_list = [solution1, solution2, solution3, solution4] result_list = replacement.replace(solution_list, []) self.assertEqual(4, len(result_list)) self.assertEqual(0, solution1.attributes['strength_ranking']) self.assertEqual(0, solution2.attributes['strength_ranking']) self.assertEqual(0, solution3.attributes['strength_ranking']) self.assertEqual(0, solution4.attributes['strength_ranking']) def test_should_replacement_return_the_right_value_case1(self): """ 5 1 4 2 3 3 2 1 4 0 1 2 3 4 5 List: 1,2,3 OffspringList: 4 Expected result: 4, 1, 3 """ ranking = StrengthRanking() density_estimator = KNearestNeighborDensityEstimator(1) replacement = RankingAndDensityEstimatorReplacement(ranking, density_estimator) solution1 = Solution(2, 2) solution1.objectives = [1, 5] solution2 = Solution(2, 2) solution2.objectives = [2, 4] solution3 = Solution(2, 2) solution3.objectives = [3, 3] solution4 = Solution(2, 2) solution4.objectives = [5, 1] solution_list = [solution1, solution2, solution3] offspring_list = [solution4] result_list = replacement.replace(solution_list, offspring_list) self.assertEqual(3, len(result_list)) self.assertTrue(solution1 in result_list) self.assertTrue(solution3 in result_list) self.assertTrue(solution4 in result_list) def test_should_replacement_return_the_right_value_case2(self): """ 5 1 4 2 3 3 2 5 1 4 0 1 2 3 4 5 List: 1,2,4 OffspringList: 3,5 Expected result: 1, 5, 4 """ ranking = StrengthRanking() density_estimator = KNearestNeighborDensityEstimator(1) replacement = RankingAndDensityEstimatorReplacement(ranking, density_estimator) solution1 = Solution(2, 2) solution1.objectives = [1, 5] solution2 = Solution(2, 2) solution2.objectives = [2, 4] solution3 = Solution(2, 2) solution3.objectives = [3, 3] solution4 = Solution(2, 2) solution4.objectives = [5, 1] solution5 = Solution(2, 2) solution5.objectives = [2.5, 2.5] solution_list = [solution1, solution2, solution4] offspring_list = [solution3, solution5] result_list = replacement.replace(solution_list, offspring_list) self.assertEqual(0, solution1.attributes['strength_ranking']) self.assertEqual(0, solution2.attributes['strength_ranking']) self.assertEqual(1, solution3.attributes['strength_ranking']) self.assertEqual(0, solution4.attributes['strength_ranking']) self.assertEqual(0, solution5.attributes['strength_ranking']) self.assertEqual(3, len(result_list)) self.assertTrue(solution1 in result_list) self.assertTrue(solution5 in result_list) self.assertTrue(solution4 in result_list) def test_should_replacement_return_the_right_value_case3(self): """ """ points_population = [[0.13436424411240122, 4.323216008886963], [0.23308445025757263, 4.574937990387161], [0.17300740157905092, 4.82329350808847], [0.9571162814602269, 3.443495331489301], [0.25529404008730594, 3.36387501100745], [0.020818108509287336, 5.1051826661880515], [0.8787178982088466, 3.2716009445324103], [0.6744550697237632, 3.901350307095427], [0.7881164487252263, 3.1796004913916516], [0.1028341459863098, 4.9409270526888935]] points_offspring_population = [[0.3150521745650882, 4.369120371847888], [0.8967291504209932, 2.506948771242972], [0.6744550697237632, 3.9361442668874504], [0.9571162814602269, 3.4388386707431433], [0.13436424411240122, 4.741872175943253], [0.25529404008730594, 2.922302861104415], [0.23308445025757263, 4.580180404770213], [0.23308445025757263, 4.591260299892424], [0.9571162814602269, 2.9865495383518694], [0.25529404008730594, 3.875587748122183]] ranking = FastNonDominatedRanking() density_estimator = KNearestNeighborDensityEstimator(1) population = [] for i in range(len(points_population)): population.append(Solution(2, 2)) population[i].objectives = points_population[i] offspring_population = [] for i in range(len(points_offspring_population)): offspring_population.append(Solution(2, 2)) offspring_population[i].objectives = points_offspring_population[i] replacement = RankingAndDensityEstimatorReplacement(ranking, density_estimator) result_list = replacement.replace(population, offspring_population) self.assertEqual(10,len(result_list)) for solution in result_list[0:4]: self.assertEqual(0, solution.attributes['dominance_ranking']) for solution in result_list[5:9]: self.assertEqual(1, solution.attributes['dominance_ranking']) if __name__ == '__main__': unittest.main() ```
{ "source": "12yuens2/reconfigurable_organisms", "score": 2 }
#### File: reconfigurable_organisms/data_analysis/Time_in_contact_with_ground.py ```python import cPickle from glob import glob import subprocess as sub import numpy as np import pandas as pd from softbot import Genotype, Phenotype from base import Env from tools.read_write_voxelyze import write_voxelyze_file from tools.utils import quadruped np.random.seed(1) EXP_NAME = "XENO_6" PICKLE_DIR = "/home/sam/Projects/research_code/evosoro/data_analysis/results" SEND_ROBOTS_TO_SIM = False COLLECT_FITNESS_FILES = False LOAD_DF_FROM_PICKLE = True TIME_BETWEEN_TRACES = 0.01 GEN = 1000 start_run = 1 RUNS = 100 IND_SIZE = (8, 8, 7) STIFFNESS = 5e6 INIT_TIME = 1 SIM_TIME = 10.0 + INIT_TIME # includes init time TEMP_AMP = 39.4714242553 # 50% volumetric change with temp_base=25: (1+0.01*(39.4714242553-25))**3-1=0.5 FREQ = 2 DT_FRAC = 0.9 VOXEL_SIZE = 0.05 # meters GRAV_ACC = -0.1 DRAW_SHADOW = True # todo FLUID_ENV = 1 # if 1 drag forces are added RHO_FLUID = 1000.0 # water density C_DRAG = 1.5 # fluid drag associated to a triangular facet AGGREGATE_DRAG_COEF = 0.5 * C_DRAG * RHO_FLUID # aggregate drag coefficient def xeno_quad(output_state): shape = quadruped((8, 8, 7), mat=1) mat = np.greater(output_state, 0)*3 mat[mat == 0] = 1 mat[shape == 0] = 0 return mat if SEND_ROBOTS_TO_SIM: sub.call("mkdir {0}/GroundPenetration_{1}".format(PICKLE_DIR, EXP_NAME), shell=True) for run in range(start_run, RUNS + 1): sub.call("mkdir {0}/GroundPenetration_{1}/Run_{2}".format(PICKLE_DIR, EXP_NAME, run), shell=True) sub.call("mkdir {0}/GroundPenetration_{1}/Run_{2}/voxelyzeFiles && " "mkdir {0}/GroundPenetration_{1}/Run_{2}/fitnessFiles".format(PICKLE_DIR, EXP_NAME, run), shell=True) MyPhenotype = Phenotype MyGenotype = Genotype orig_fit_dict = {} # for exp_name in EXP_NAMES: for run in range(start_run, RUNS+1): # clear directories sub.call("rm {0}/GroundPenetration_{1}/Run_{2}/voxelyzeFiles/*".format(PICKLE_DIR, EXP_NAME, run), shell=True) sub.call("rm {0}/GroundPenetration_{1}/Run_{2}/fitnessFiles/*".format(PICKLE_DIR, EXP_NAME, run), shell=True) pickle = "{0}/Exp_{1}/Run_{2}/pickledPops/Gen_{3}.pickle".format(PICKLE_DIR, EXP_NAME, run, GEN) with open(pickle, 'rb') as handle: [optimizer, random_state, numpy_random_state] = cPickle.load(handle) optimizer.sim.simulation_time = SIM_TIME # load current population from pickle pop = optimizer.pop # get the current run champion best_ind = None best_fit_so_far = 0 for ind in pop: # if ind.fitness == pop.best_fit_so_far: # best_ind = ind if ind.fitness > best_fit_so_far: best_ind = ind best_fit_so_far = ind.fitness orig_fit_dict[run] = best_fit_so_far my_env = Env(temp_amp=TEMP_AMP, fluid_environment=FLUID_ENV, aggregate_drag_coefficient=AGGREGATE_DRAG_COEF, lattice_dimension=VOXEL_SIZE, grav_acc=GRAV_ACC, frequency=FREQ, muscle_stiffness=STIFFNESS, time_between_traces=TIME_BETWEEN_TRACES) # this time save traces (if TIME_BETWEEN_TRACES > 0) my_env.time_between_traces = TIME_BETWEEN_TRACES save_dir = "{0}/GroundPenetration_{1}/Run_{2}/".format(PICKLE_DIR, EXP_NAME, run) # voxelyzeFiles write_voxelyze_file(optimizer.sim, my_env, best_ind, save_dir, "GroundPenetration") # evaluate all robots in simulator # for run in range(start_run, RUNS + 1): robots = "{0}/GroundPenetration_{1}/Run_{2}/voxelyzeFiles/*".format(PICKLE_DIR, EXP_NAME, run) for vxa in glob(robots): print "sending robot {} to the simulator".format(run) sub.Popen("/home/sam/Projects/research_code/evosoro/_voxcad/voxelyzeMain/voxelyze -f " + vxa, shell=True) if COLLECT_FITNESS_FILES: ground_touch_dict = { run: {"Time": [], "TraceX": [], "TraceY": [], "TraceZ": [], "NumTouchingGround": []} for run in range(1, RUNS + 1) } all_tag_keys = [("<" + k + ">", k) for k, v in ground_touch_dict[1].items()] for run in range(start_run, RUNS+1): # print "collecting data for robot", run robots = glob("{0}/GroundPenetration_{1}/Run_{2}/fitnessFiles/*".format(PICKLE_DIR, EXP_NAME, run)) for robot in robots: name = int(robot[robot.find("id_")+3:-4]) this_robot = open(robot) for line in this_robot: for tag, key in all_tag_keys: if tag in line: ground_touch_dict[run][key] += [float(line[line.find(tag) + len(tag):line.find("</" + tag[1:])])] with open('{0}/{1}_GroundPenetration_Dict.pickle'.format(PICKLE_DIR, EXP_NAME), 'wb') as handle: cPickle.dump(ground_touch_dict, handle, protocol=cPickle.HIGHEST_PROTOCOL) df = pd.DataFrame() robot = [] for run in range(start_run, RUNS+1): this_df = pd.DataFrame.from_dict(ground_touch_dict[run]) robot += [run]*len(this_df) df = pd.concat([df, this_df]) df['robot'] = robot df.to_pickle('{0}/{1}_GroundPenetration_DataFrame.pickle'.format(PICKLE_DIR, EXP_NAME)) if LOAD_DF_FROM_PICKLE: with open('{0}/{1}_GroundPenetration_DataFrame.pickle'.format(PICKLE_DIR, EXP_NAME), 'rb') as handle: df = cPickle.load(handle) # print df penetration = df["NumTouchingGround"] X, Y, Z = df["TraceX"], df["TraceY"], df["TraceZ"] time = df["Time"] t = (np.array(time) - np.min(time)) / (np.max(time) - np.min(time)) # df = df[t > 0.25] c = [] for n in range(1, 100): c += [np.sum(df.loc[df.robot==n, "NumTouchingGround"]>0) / float(len(df.loc[df.robot==1, "NumTouchingGround"]))] print np.mean(c) ``` #### File: reconfigurable_organisms/data_analysis/trajectories.py ```python import cPickle import numpy as np import os.path import subprocess as sub from softbot import Genotype, Phenotype from tools.utils import quadruped import seaborn as sns import matplotlib.pyplot as plt import matplotlib import matplotlib.cm as cm import matplotlib.colors as colors from mpl_toolkits.mplot3d import Axes3D matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 sns.set(color_codes=True, context="poster") sns.set_style("white", {'font.family': 'serif', 'font.serif': 'Times New Roman'}) cc = ["light red", "cyan", "apricot"] sns.set_palette(sns.xkcd_palette(cc), desat=.9) GEN = 1000 EXP_NAME = "XENO_3" RUN = 2 # 16, 52, 6, 2 AZIM = -60 # -120, -120, -90, -60 PICKLE_DIR = "/home/sam/Projects/research_code/evosoro/data_analysis/results/{0}_Gen_{1}".format(EXP_NAME, GEN) MyGenotype = Genotype MyPhenotype = Phenotype # Traces trace_pickle = "/home/sam/Projects/research_code/evosoro/data_analysis/results/{}_Trace_DataFrame.pickle".format(EXP_NAME) with open(trace_pickle, 'rb') as handle: traces_df = cPickle.load(handle) # spun traces spun_trace_pickle = "/home/sam/Projects/research_code/evosoro/data_analysis/results/{}_Trace_DataFrame_Spun.pickle".format(EXP_NAME) with open(spun_trace_pickle, 'rb') as handle: spun_traces_df = cPickle.load(handle) all_time = spun_traces_df["Time"] min_time = np.min(all_time) max_time = np.max(all_time) minX, maxX = spun_traces_df["TraceX"].min(), spun_traces_df["TraceX"].max() minY, maxY = spun_traces_df["TraceY"].min(), spun_traces_df["TraceY"].max() minZ, maxZ = spun_traces_df["TraceZ"].min(), spun_traces_df["TraceZ"].max() def get_orientation(x, y): a = np.arctan2(y[-1], x[-1]) # print a if -np.pi < a <= -3*np.pi/4.0: # print y[-1], x[-1] return 2 # looks good if 3*np.pi/4.0 < a <= np.pi: # print y[-1], x[-1] return 2 # so this is good if -3*np.pi/4.0 < a <= -np.pi/4.0: # print y[-1], x[-1] return 1 if np.pi/4.0 < a <= 3*np.pi/4.0: # print y[-1], x[-1] return -1 # correct if -np.pi/4.0 < a <= np.pi/4.0: # print y[-1], x[-1] # print a if a < 0: # -np.pi/8.0: # print "adjust +" return 1 # adjust for plotting angle # if a > np.pi/5.0: # print "adjust -" # return -1 return 0 print " whoops" def xeno_quad(output_state): shape = quadruped((8, 8, 7), mat=1) mat = np.greater(output_state, 0)*3 mat[mat == 0] = 1 mat[shape == 0] = 0 return mat fig = plt.figure() pickle = "{3}/Exp_{0}_Run_{1}_Gen_{2}.pickle".format(EXP_NAME, RUN, GEN, PICKLE_DIR) with open(pickle, 'rb') as handle: [optimizer, random_state, numpy_random_state] = cPickle.load(handle) pop = optimizer.pop best_ind = None best_fit_so_far = 0 for n, ind in enumerate(pop): if ind.fitness > best_fit_so_far: best_ind = ind best_fit_so_far = ind.fitness size = best_ind.genotype.orig_size_xyz this_trace = traces_df[traces_df["robot"] == RUN] spin = get_orientation(this_trace["TraceX"].values, this_trace["TraceY"].values) this_spun_trace = spun_traces_df[traces_df["robot"] == RUN] thisX, thisY, thisZ = this_spun_trace["TraceX"], this_spun_trace["TraceY"], this_spun_trace["TraceZ"] # print spin for name, details in best_ind.genotype.to_phenotype_mapping.items(): if name == "material": shape = details["state"] shape = np.rot90(shape, k=spin, axes=(0, 1)) ax = fig.add_subplot(1, 1, 1, projection='3d') # print 'tracing behavior' time = this_trace["Time"] norm_time = (time-min_time)/(max_time-min_time) # norm_time = [cm.jet(t) for t in norm_time] normX = (thisX-minX)/(maxX-minX) normY = (thisY-minY)/(maxY-minY) normZ = (thisZ-minZ)/(maxZ-minZ) this_maxX = normX.max() this_maxY = normY.max() this_minZ = normZ.min() this_maxZ = normZ.max() print this_minZ, this_maxZ ax.scatter(normX, normY, normZ*0.25, c=norm_time, cmap="spring_r", s=60, alpha=0.5 ) # ax.quiver(normX.values[-1], normY.values[-1], normZ.values[-1], # normX.values[-1]-normX.values[-2], # normY.values[-1]-normY.values[-2], # normZ.values[-1]-normZ.values[-2], # length=25, arrow_length_ratio=2, pivot="tail", color=cm.spring_r(0.999999), linewidth=1) ax.set_xlim([0, 1]) ax.set_ylim([0, 1]) ax.set_zlim([0, 1]) ax.set_aspect('equal') ax.view_init(elev=0, azim=AZIM) ax.set_axis_off() # save it # fig.subplots_adjust(wspace=-0.8, hspace=-0.1) # 100 # fig.subplots_adjust(wspace=-0.6, hspace=-0.1) # 25 bbox = fig.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) # dpi = 300*bbox.width/3.125 # dpi = 600*bbox.height/9.0 dpi = 300 # 900 print 'dpi = ', dpi plt.savefig("plots/{0}_trace_{1}.png".format(EXP_NAME, RUN), bbox_inches='tight', dpi=int(dpi), transparent=True) ``` #### File: reconfigurable_organisms/exp/Algorithm_Analysis_EA.py ```python import random import os import sys import numpy as np import subprocess as sub from base import Sim, Env, ObjectiveDict from networks import DirectEncoding from softbot import Genotype, Phenotype, Population from tools.algorithms import ParetoOptimization from tools.checkpointing import continue_from_checkpoint from tools.utils import muscle_fat, make_one_shape_only sub.call("cp ~/tmp/research_code/evosoro/_voxcad/voxelyzeMain/voxelyze .", shell=True) sub.call("chmod 755 voxelyze", shell=True) SEED = int(sys.argv[1]) MAX_TIME = float(sys.argv[2]) IND_SIZE = (2, 2, 2) VOXEL_SIZE = 0.05 # meters STIFFNESS = 5e6 POP_SIZE = 50 MAX_GENS = 10000000 NUM_RANDOM_INDS = 1 INIT_TIME = 1 SIM_TIME = 10.0 + INIT_TIME # includes init time TEMP_AMP = 39.4714242553 # 50% volumetric change with temp_base=25: (1+0.01*(39.4714242553-25))**3-1=0.5 FREQ = 2 DT_FRAC = 0.9 # 0.3 # Swimming Parameters GRAV_ACC = -0.1 FLUID_ENV = 1 # if 1 drag forces are added RHO_FLUID = 1000.0 # water density C_DRAG = 1.5 # fluid drag associated to a triangular facet AGGREGATE_DRAG_COEF = 0.5 * C_DRAG * RHO_FLUID # aggregate drag coefficient TIME_TO_TRY_AGAIN = 10 MAX_EVAL_TIME = 25 SAVE_VXA_EVERY = MAX_GENS + 1 SAVE_LINEAGES = False CHECKPOINT_EVERY = 1 EXTRA_GENS = 0 RUN_DIR = "run_{}".format(SEED) RUN_NAME = "Swimmers" def encoding(material): material = np.reshape(material, IND_SIZE) # mask = make_one_shape_only(material) # new = np.array(mask) # new[material == 1] *= 1 # new[material == 3] *= 3 if np.sum(material == 3) == 0: new = np.zeros(IND_SIZE) new[0, 0, 0] = 3 return material class MyGenotype(Genotype): def __init__(self): Genotype.__init__(self, orig_size_xyz=IND_SIZE) self.add_network(DirectEncoding(output_node_name="phase_offset", orig_size_xyz=IND_SIZE, symmetric=False), freeze=True) self.add_network(DirectEncoding(output_node_name="material", orig_size_xyz=IND_SIZE, func=encoding, scale=1, symmetric=False, lower_bound=-100, upper_bound=100, vox_options=[0, 1, 3])) self.to_phenotype_mapping.add_map(name="phase_offset", tag="<PhaseOffset>", logging_stats=None) self.to_phenotype_mapping.add_map(name="material", tag="<Data>", output_type=int, logging_stats=None) if not os.path.isfile("./" + RUN_DIR + "/pickledPops/Gen_0.pickle"): random.seed(SEED) np.random.seed(SEED) # print np.sum(np.random.rand(*IND_SIZE)) # seed=1; 226.98967645847415 MyGenotype.NET_DICT = {"phase_offset": np.random.rand(*IND_SIZE)} my_sim = Sim(dt_frac=DT_FRAC, simulation_time=SIM_TIME, fitness_eval_init_time=INIT_TIME) my_env = Env(temp_amp=TEMP_AMP, fluid_environment=FLUID_ENV, aggregate_drag_coefficient=AGGREGATE_DRAG_COEF, lattice_dimension=VOXEL_SIZE, grav_acc=GRAV_ACC, frequency=FREQ, muscle_stiffness=STIFFNESS) my_objective_dict = ObjectiveDict() my_objective_dict.add_objective(name="fitness", maximize=True, tag="<normAbsoluteDisplacement>") my_objective_dict.add_objective(name="age", maximize=False, tag=None) my_pop = Population(my_objective_dict, MyGenotype, Phenotype, pop_size=POP_SIZE) my_optimization = ParetoOptimization(my_sim, my_env, my_pop) my_optimization.run(max_hours_runtime=MAX_TIME, max_gens=MAX_GENS, num_random_individuals=NUM_RANDOM_INDS, directory=RUN_DIR, name=RUN_NAME, max_eval_time=MAX_EVAL_TIME, time_to_try_again=TIME_TO_TRY_AGAIN, checkpoint_every=CHECKPOINT_EVERY, save_vxa_every=SAVE_VXA_EVERY, save_lineages=SAVE_LINEAGES) else: continue_from_checkpoint(directory=RUN_DIR, additional_gens=EXTRA_GENS, max_hours_runtime=MAX_TIME, max_eval_time=MAX_EVAL_TIME, time_to_try_again=TIME_TO_TRY_AGAIN, checkpoint_every=CHECKPOINT_EVERY, save_vxa_every=SAVE_VXA_EVERY, save_lineages=SAVE_LINEAGES) ``` #### File: reconfigurable_organisms/exp/Object_Transport.py ```python import random import os import sys import numpy as np import subprocess as sub from functools import partial from base import Sim, Env, ObjectiveDict from networks import CPPN, DirectEncoding from softbot import Genotype, Phenotype, Population from tools.algorithms import ParetoOptimization from tools.checkpointing import continue_from_checkpoint from tools.utils import make_material_tree, count_occurrences # sub.call("cp ../_voxcad/voxelyzeMain/voxelyze .", shell=True) sub.call("cp ~/tmp/research_code/evosoro/_voxcad/voxelyzeMain/voxelyze .", shell=True) sub.call("chmod 755 voxelyze", shell=True) SEED = int(sys.argv[1]) MAX_TIME = float(sys.argv[2]) IND_SIZE = (10, 10, 9) FITNESS_TAG = "<normAbsoluteDisplacement>" # STOP_IF_BLOCK_TOUCHES_GROUND = True # check for ground penetration MIN_PERCENT_FULL = 0.5 POP_SIZE = 50 MAX_GENS = 1001 NUM_RANDOM_INDS = 1 INIT_TIME = 1 # diff from main SIM_TIME = 10.0 + INIT_TIME # was 10+init # includes init time FREQ = 2 TEMP_AMP = 39.4714242553 # 50% volumetric change with temp_base=25: (1+0.01*(39.4714242553-25))**3-1=0.5 DT_FRAC = 0.9 # 0.3 STIFFNESS = 5e6 GRAV_ACC = -0.1 VOXEL_SIZE = 0.05 # DRAW_SHADOW = True # todo FLUID_ENV = 1 # if 1 drag forces are added RHO_FLUID = 1000.0 # water density C_DRAG = 1.5 # fluid drag associated to a triangular facet AGGREGATE_DRAG_COEF = 0.5 * C_DRAG * RHO_FLUID # aggregate drag coefficient TIME_TO_TRY_AGAIN = 25 MAX_EVAL_TIME = 61 SAVE_VXA_EVERY = MAX_GENS + 1 SAVE_LINEAGES = False CHECKPOINT_EVERY = 1 EXTRA_GENS = 0 RUN_DIR = "run_{}".format(SEED) RUN_NAME = "AquaticBlockPushers" def embedded_pill(this_softbot, *args, **kwargs): mat = make_material_tree(this_softbot, *args, **kwargs) mat[2:8, 2:8, 2:8] = 3 mat[3:7, 3:7, 3:7] = 0 mat[4:6, 4:6, 4:6] = 8 return mat class MyGenotype(Genotype): def __init__(self): Genotype.__init__(self, orig_size_xyz=IND_SIZE) self.add_network(DirectEncoding(output_node_name="phase_offset", orig_size_xyz=IND_SIZE, symmetric=False), freeze=True) self.to_phenotype_mapping.add_map(name="phase_offset", tag="<PhaseOffset>", logging_stats=None) self.add_network(CPPN(output_node_names=["shape", "muscleOrTissue"])) self.to_phenotype_mapping.add_map(name="material", tag="<Data>", func=embedded_pill, output_type=int, dependency_order=["shape", "muscleOrTissue"], logging_stats=None) self.to_phenotype_mapping.add_output_dependency(name="shape", dependency_name=None, requirement=None, material_if_true=None, material_if_false="0") self.to_phenotype_mapping.add_output_dependency(name="muscleOrTissue", dependency_name="shape", requirement=True, material_if_true="3", material_if_false="1") class MyPhenotype(Phenotype): def is_valid(self, min_percent_full=MIN_PERCENT_FULL): for name, details in self.genotype.to_phenotype_mapping.items(): if np.isnan(details["state"]).any(): return False if name == "material": state = details["state"] num_vox = np.sum(state > 0) if num_vox < np.product(self.genotype.orig_size_xyz) * min_percent_full: return False if np.sum(state == 3) == 0: # make sure has at least one muscle voxel for movement return False return True if not os.path.isfile("./" + RUN_DIR + "/pickledPops/Gen_0.pickle"): random.seed(SEED) np.random.seed(SEED) my_sim = Sim(dt_frac=DT_FRAC, simulation_time=SIM_TIME, fitness_eval_init_time=INIT_TIME) my_env = Env(temp_amp=TEMP_AMP, fluid_environment=FLUID_ENV, aggregate_drag_coefficient=AGGREGATE_DRAG_COEF, lattice_dimension=VOXEL_SIZE, grav_acc=GRAV_ACC, frequency=FREQ, muscle_stiffness=STIFFNESS, fat_stiffness=STIFFNESS, # block_position=2, block_material=8, external_block=False, # falling_prohibited=STOP_IF_BLOCK_TOUCHES_GROUND ) my_objective_dict = ObjectiveDict() my_objective_dict.add_objective(name="fitness", maximize=True, tag=FITNESS_TAG) my_objective_dict.add_objective(name="age", maximize=False, tag=None) my_objective_dict.add_objective(name="n_muscle", maximize=False, tag=None, node_func=partial(count_occurrences, keys=[3]), output_node_name="material") # logging only: my_objective_dict.add_objective(name="n_vox", maximize=False, tag=None, logging_only=True, node_func=partial(count_occurrences, keys=[1, 3]), output_node_name="material") my_pop = Population(my_objective_dict, MyGenotype, MyPhenotype, pop_size=POP_SIZE) my_optimization = ParetoOptimization(my_sim, my_env, my_pop) my_optimization.run(max_hours_runtime=MAX_TIME, max_gens=MAX_GENS, num_random_individuals=NUM_RANDOM_INDS, directory=RUN_DIR, name=RUN_NAME, max_eval_time=MAX_EVAL_TIME, time_to_try_again=TIME_TO_TRY_AGAIN, checkpoint_every=CHECKPOINT_EVERY, save_vxa_every=SAVE_VXA_EVERY, save_lineages=SAVE_LINEAGES) else: continue_from_checkpoint(directory=RUN_DIR, additional_gens=EXTRA_GENS, max_hours_runtime=MAX_TIME, max_eval_time=MAX_EVAL_TIME, time_to_try_again=TIME_TO_TRY_AGAIN, checkpoint_every=CHECKPOINT_EVERY, save_vxa_every=SAVE_VXA_EVERY, save_lineages=SAVE_LINEAGES) ```
{ "source": "12yy296/latin2cyrillic-alphabet-converter", "score": 2 }
#### File: 12yy296/latin2cyrillic-alphabet-converter/latin2cyrillic.py ```python test_text="Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj Kk Ll Mm Nn Oo Pp Qq Rr Ss Tt Uu Vv Ww Xx Yy Zz Zhzh Chch Shsh Yoyo Yaya " replace_table=[ ["by","бай"], ["By","Бай"], ["The","Дзе"], ["the","дзе"], ["t'h","дз"], ["T'h","Дз"], ["too","ту"], ["Too","Ту"], ["to","ту"], ["To","Ту"], ["ss","с"], ["cc","кс"], ["Wh","У"], ["pp","п"], ["tt","т"], ["tion","шен"], ["ph","ф"], ["Ph","Ф"], ["q","ку"], ["Q","Ку"], ["zh","ж"], ["Zh","Ж"], ["sh","ш"], ["Sh","Ш"], ["ch","ч"], ["Ch","Ч"], ["you","ю"], ["You","Ю"], ["yo","ю"], ["Yo","Ю"], ["iu","ю"], ["iu","Ю"], ["I ","Я "], ["I'm","Я'м"], ["ya","я"], ["Ya","Я"], ["a","а"],["b","б"],["c","с"],["d","д"],["e","е"],["f","ф"],["g","г"],["h","х"],["i","и"],["j","ж"],["k","к"],["l","л"],["m","м"],["n","н"],["o","о"],["p","п"],["r","р"],["s","с"],["t","т"],["u","у"],["v","в"],["w","у"],["x","с"],["y","й"],["z","з"],["A","А"],["B","Б"],["C","С"],["D","Д"],["E","Е"],["F","Ф"],["G","Г"],["H","Х"],["I","И"],["J","Ж"],["K","К"],["L","Л"],["M","М"],["N","Н"],["O","О"],["P","П"],["R","Р"],["S","С"],["T","Т"],["U","У"],["V","В"],["W","У"],["X","С"],["Y","Й"],["Z","З"], ["''",""], ['"',""], [" ",""] ] def main(): cyrillic=input() for group in replace_table: cyrillic=cyrillic.replace(group[0],group[1]) print(cyrillic) if __name__=="__main__": while True: main() ```
{ "source": "12z/simple-web-framework", "score": 2 }
#### File: simple-web-framework/framework/framework.py ```python from .http_entities import Request import os PYCHARM_DEBUG_ENV = 'PYCHARM_DEBUG' if PYCHARM_DEBUG_ENV in os.environ and os.environ[PYCHARM_DEBUG_ENV] == 'True': from . import debug debug.set_debug_environment() route_mapping = {} def application(environ, start_response): verb = environ['REQUEST_METHOD'] path = environ['PATH_INFO'] parameters = get_parameters(environ['QUERY_STRING']) headers = get_headers(environ) content_length = int(environ.get('CONTENT_LENGTH', 0)) body = environ['wsgi.input'].read(content_length) request = Request(verb, path, parameters, headers, body) response = route_mapping[path](request) prepared_headers = list(response.headers.items()) start_response(response.status, prepared_headers) return prepare_body(response.body) def get_parameters(query_string): params_dict = {} for pair in query_string.split('&'): if not pair: continue key, value = tuple(pair.split('=')) params_dict[key] = value return params_dict def get_headers(environ): headers = {k[5:].lower(): v for k, v in environ.items() if k.startswith('HTTP_')} headers['content_type'] = get_content_type(environ) headers['content_length'] = get_content_length(environ) return headers def get_content_length(environ): content_type_key = 'CONTENT_LENGTH' return get_standard_header(content_type_key, environ) def get_content_type(environ): content_type_key = 'CONTENT_TYPE' return get_standard_header(content_type_key, environ) def get_standard_header(content_type_key, environ): if content_type_key not in environ.keys(): return None return environ[content_type_key] def prepare_body(body): if isinstance(body, str): return [body.encode()] if isinstance(body, bytes): return body ```
{ "source": "1301476057/maltrail", "score": 3 }
#### File: maltrail/cccheck/read_data.py ```python import pandas as pd import numpy as np import warnings import Sentiment_RNN_Solution warnings.filterwarnings('ignore') def get_ip_24(ip): """ 取数据集中的ip地址前24位 :param ip: :return: """ tmp = ip.split('.') if(len(tmp)<4): return np.nan else: ip_24 = tmp[0] + '.'+tmp[1]+'.'+tmp[2] return ip_24 def read(path): data = pd.read_csv(path) data = data.fillna(" ") data.query_parameter[(data['query_parameter'] == "0") | (data['query_parameter'] == " ")] = "None=str;1" data['ip_24'] = data['ip_dst'].apply(lambda x: get_ip_24(x)) data.dropna(inplace=True) return data def get_data(data): data = data.fillna(" ") data.query_parameter[(data['query_parameter'] == "0") | (data['query_parameter'] == " ")] = "None=str;1" data['ip_24'] = data['ip_dst'].apply(lambda x: get_ip_24(x)) data.dropna(inplace=True) return data ``` #### File: maltrail/core/addr.py ```python import re from PIL.features import codecs from numpy import long def addr_to_int(value): _ = value.split('.') return (long(_[0]) << 24) + (long(_[1]) << 16) + (long(_[2]) << 8) + long(_[3]) def int_to_addr(value): return '.'.join(str(value >> n & 0xff) for n in (24, 16, 8, 0)) def make_mask(bits): return 0xffffffff ^ (1 << 32 - bits) - 1 def compress_ipv6(address): zeros = re.findall("(?:0000:)+", address) if zeros: address = address.replace(sorted(zeros, key=lambda _: len(_))[-1], ":", 1) address = re.sub(r"(\A|:)0+(\w)", "\g<1>\g<2>", address) if address == ":1": address = "::1" return address # Note: socket.inet_ntop not available everywhere (Reference: https://docs.python.org/2/library/socket.html#socket.inet_ntop) def inet_ntoa6(packed_ip): try: if type(packed_ip) == bytes: packed_ip = packed_ip.decode("utf-8", "ignore") if type(packed_ip) == dict: print("!!!!!!!!!!!!!!~~dict~~packed_ip~~ipv6~~", packed_ip) _ = codecs.encode(packed_ip, "hex") return compress_ipv6(':'.join(_[i:i + 4] for i in range(0, len(_), 4))) except Exception: print(type(packed_ip), packed_ip) ```
{ "source": "13015517713/ClockIn", "score": 3 }
#### File: 13015517713/ClockIn/Logger.py ```python import logging def createLogger(name): with open("./log.txt","w") as w: # 为了清空内容 pass logging.basicConfig(level=logging.DEBUG, format='%(levelname)s %(asctime)s [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y.%m.%d. %H:%M:%S', filename="./log.txt") logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) # 小于Level会被忽略 ```
{ "source": "13022108937/homework", "score": 3 }
#### File: JiaLu/learn/list_training1.py ```python def test(n): N = [1] count = 0 while count < n: print(N) N.append(0) N = [N[i-1] + N[i] for i in range(len(N))] count += 1 count = int(input(">>> ")) test(count) ``` #### File: JiaLu/learn/list_training9.py ```python def bubble_search_func(data_list): cnt_num_all = len(data_list) for i in range(cnt_num_all-1): for j in range(1,cnt_num_all-i): if(data_list[j-1]>data_list[j]): data_list[j-1],data_list[j]=data_list[j],data_list[j-1] data_list = [54, 25, 93, 17, 77, 31, 44, 55, 20, 10] bubble_search_func(data_list) print(data_list) ``` #### File: P17043-class-leader/self_small_trainning/20181123.py ```python def cross(n): result = 1 while n > 1: result *= n n -= 1 return result sum = 0 for i in range(1,6): sum += cross(i) print(sum) sum = 0 a = 1 for i in range(1, 6): a *= i sum += a print(sum) print(cross(6)) def cross(n): if n == 1: return 1 if n >= 1: return n * cross(n-1) sum = 0 for i in range(1,6): sum += cross(i) print(sum) ``` #### File: P17043-class-leader/self_small_trainning/20181128.py ```python def add_zeo(b_s,n): if len(b_s) == n: for _ in range(8-n): b_s += '0' return b_s s = '10.3.9.12' l_s = s.split('.') print(l_s) for x in l_s: tmp = int(x) b_s = '' while True: if tmp == 0: break b_s += str(tmp % 2) tmp //= 2 for n in range(1,8): b_s = add_zeo(b_s, n) print('{:<2} {:>8}'.format(x,b_s[::-1])) # 10//2 = 5 0 # 5//2 = 2 1 # 2//2 = 1 0 # 1//2 = 0 1 ``` #### File: homework/P17048-jiege/homework1.py ```python import json from pathlib import Path def add(data): name = input("Please enter new name:") age = input("Please enter new age:") tel = input("Please enter nwe tel:") if name not in data.keys(): data[name] = {"age":age,"tel":tel} return data def delete(data): name = input("Please enter delete username:") error = "The name is not exist" prompt = data.pop(name,error) print(prompt) return data def update(data): names = input("Please enter string format:{name:age:tel}:") if len(names.split(":")) == 3: name,age,tel = names.split(":") if name in data.keys(): data[name] = {"age": age, "tel": tel} print("The user update successfully! ") print("name:{}\nage:{}\ntel:{}".format(name, data[name].get('age'), data[name].get('tel'))) else: print("name is not exit") else: print("The format error.") return data def find(data): name = input("Please enter find name:") if name in data.keys(): print("name:{}\nage:{}\ntel:{}".format(name,data[name].get('age'),data[name].get('tel'))) else: print("name is not exit") def list(data): print("name\tage\ttel") for k,v in data.items(): print("{}\t{}\t{}".format(k,str(v['age']),str(v['tel']))) def exit(data,file): with open(file,'w') as f: json.dump(data,f) print("The data saved successfully! exit...") def main(): filename = "users.json" path = Path(filename) if path.is_file(): with open(filename) as f: users = json.load(f) if users: pass else: add(users) else: users = {} add(users) while True: value = input("Please choose (add|update|find|list|delete|exit):") if value == "delete": delete(users) elif value == "add": add(users) elif value == "update": update(users) elif value == "find": find(users) elif value == "list": list(users) elif value == "exit": exit(users, filename) break else: print("Sorry,Enter error...again check") value = input("Please choose (add|update|find|list|delete|exit):") if __name__ == "__main__": main() ```
{ "source": "1302580MK/Udemy_Python", "score": 4 }
#### File: Udemy_Python/Lection2/classes.py ```python class Vehicle: speed = 0 # ctor #def __new__(cls): # return object.__new__(cls) def __init__(self, speed = 0): self.speed = speed print(f"Init speed with {self.speed}") def IncreaseSpeed(self, increaseAmount): self.speed += increaseAmount def __del__(self): print("Object has been destroyed") car1 = Vehicle() car2 = Vehicle() car1.speed = 10 print(car1.speed) print(car2.speed) car2.IncreaseSpeed(13) print(f"blub: {car2.speed}") # destroy an object del car2 print("test") ``` #### File: Udemy_Python/OtherThings/functions.py ```python def AwesomeFunction(): "This function does stuff" print("Marc ist toll") return AwesomeFunction() def Funtion2(number1, number2): "adds numbers" return number1 + number2 print(Funtion2(2,5)) var1 =5 print(var1) def ChangeFunction(number1): var1 = 8 # kein Zugriff return var1 print(ChangeFunction(var1)) print(var1) def DefaultArg(var1 = 10): return var1 *2 print(var1) print(DefaultArg()) print(DefaultArg(2)) ```