metadata
dict
text
stringlengths
60
3.49M
{ "source": "221BBakerSt/django_to_heroku", "score": 2 }
#### File: django_to_heroku/album/models.py ```python from django.db import models from PIL import Image from django.utils import timezone class Slide(models.Model): description = models.CharField(max_length=100, blank=True, null=True) slide_pic = models.ImageField(upload_to="slide", blank=True, null=True, default=False) def remove_on_image_update(self): try: # is the object in the database yet? obj = Slide.objects.get(id=self.id) except Slide.DoesNotExist: # object is not in db, nothing to worry about return "Slide.DoesNotExist" # is the save due to an update of the actual image file? if obj.slide_pic and self.slide_pic and obj.slide_pic != self.slide_pic: # delete the old image file from the storage in favor of the new file obj.slide_pic.delete() def delete(self, *args, **kwargs): # object is being removed from db, remove the file from storage first self.slide_pic.delete() return super(Slide, self).delete(*args, **kwargs) def save(self, *args, **kwargs): # object is possibly being updated, if so, clean up. self.remove_on_image_update() return super(Slide, self).save(*args, **kwargs) def __str__(self): return self.description class Meta: # name the table in db db_table = "slide" class Gallery(models.Model): cover = models.ImageField(upload_to="gallery", blank=True, null=True, default=False) name = models.CharField(max_length=50) description = models.CharField(max_length=100, blank=True, null=True) # the date will be shown on blog page timestamp = models.DateField(default=timezone.now) def remove_on_image_update(self): try: # is the object in the database yet? obj = Gallery.objects.get(id=self.id) except Gallery.DoesNotExist: # object is not in db, nothing to worry about return "Gallery.DoesNotExist" # is the save due to an update of the actual image file? if obj.cover and self.cover and obj.cover != self.cover: # delete the old image file from the storage in favor of the new file obj.cover.delete() def delete(self, *args, **kwargs): # object is being removed from db, remove the file from storage first self.cover.delete() return super(Gallery, self).delete(*args, **kwargs) def save(self, *args, **kwargs): # object is possibly being updated, if so, clean up. self.remove_on_image_update() return super(Gallery, self).save(*args, **kwargs) def __str__(self): return self.name class Meta: # name the table in db db_table = "gallery" verbose_name_plural = "galleries" ordering=["timestamp", "name"] class Photo(models.Model): photo_pic = models.ImageField(upload_to="photo", blank=True, null=True, default=False) description = models.CharField(max_length=200, blank=True, null=True) gallery = models.ForeignKey(Gallery, on_delete=models.DO_NOTHING) # the date will be shown on blog page timestamp = models.DateField(default=timezone.now) # DateTime only used to sort, not shown on blog page time = models.DateTimeField(default=timezone.now) view_count = models.IntegerField(default=0) comment_count = models.IntegerField(default=0) like_count = models.IntegerField(default=0) def remove_on_image_update(self): try: # is the object in the database yet? obj = Photo.objects.get(id=self.id) except Photo.DoesNotExist: # object is not in db, nothing to worry about return "Photo.DoesNotExist" # is the save due to an update of the actual image file? if obj.photo_pic and self.photo_pic and obj.photo_pic != self.photo_pic: # delete the old image file from the storage in favor of the new file obj.photo_pic.delete() def delete(self, *args, **kwargs): # object is being removed from db, remove the file from storage first self.photo_pic.delete() return super(Photo, self).delete(*args, **kwargs) def save(self, *args, **kwargs): # object is possibly being updated, if so, clean up. self.remove_on_image_update() return super(Photo, self).save(*args, **kwargs) def __str__(self): if self.description: return self.description else: return "untitled" class Meta: # name the table in db db_table = "photo" ordering=["time"] ``` #### File: django_to_heroku/album/views.py ```python from django.shortcuts import render, redirect, get_object_or_404 from django.http import request, HttpResponse from django.core.paginator import * from .models import * # the number of photos shown on every page NUM_ON_EACH_PAGE = 16 def album(request): slide_pics = Slide.objects.all() galleries = Gallery.objects.all() context = { "slide_pics": slide_pics, "galleries": galleries, } return render(request, "album.html", context) def gallery(request, name): gallery = get_object_or_404(Gallery, name=name) photos = Photo.objects.filter(gallery__name=name) """ beginning of pagination process """ # set the number of photos shown on every page paginator = Paginator(photos, NUM_ON_EACH_PAGE) # set the page request variable page_request_var = "page" # get the page number in URL parameter page_num = request.GET.get(page_request_var) if None == page_num or "" == page_num: page_num = 1 elif str == type(page_num): page_num = int(page_num) paginated_photos = paginator.get_page(page_num) # display range: [current_page - 2, current_page + 2] page_range = list(range(max(page_num - 2, 1), page_num)) + list(range(page_num, min(page_num + 2, paginator.num_pages) + 1)) """ end of pagination process """ context = { "gallery": gallery, "photos": paginated_photos, "page_range": page_range, "last_page": paginator.num_pages, "page_request_var": page_request_var, } return render(request, "gallery.html", context) ```
{ "source": "221B-Haibara/IcecubePepeFit", "score": 3 }
#### File: IcecubePepeFit/writer/shelvewriter.py ```python def write_shelve(outputshelve,index, gamma,norm,cutoff,LLH): data = {} #data["gamma"] = float(gamma) data["norm"] = float(norm) data["cutoff"]= cutoff data["gamma"]= gamma data["LLHR"]= LLH outputshelve[index] = data outputshelve.close() ```
{ "source": "2221mb/SANUS-WEB", "score": 3 }
#### File: SANUS-WEB/Backend/watershed_algo.py ```python import cv2 as cv import numpy as np from PIL import Image def watershed(fileName): img = cv.imread(fileName,1) Img = np.array(img) gray = cv.cvtColor(np.array(img), cv.COLOR_BGR2GRAY) ret, thresh = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV + cv.THRESH_OTSU) kernel = np.ones((3, 3), np.uint8) opening = cv.morphologyEx(thresh, cv.MORPH_OPEN, kernel, iterations=2) sure_bg = cv.dilate(opening, kernel, iterations=3) dist_transform = cv.distanceTransform(opening, cv.DIST_L2, 5) ret, sure_fg = cv.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0) sure_fg = np.uint8(sure_fg) unknown = cv.subtract(sure_bg, sure_fg) ret, markers = cv.connectedComponents(sure_fg) markers = markers + 1 markers[unknown == 255] = 0 markers = cv.watershed(Img, markers) Img[markers == -1] = [255, 0, 0] tumorImage = cv.cvtColor(Img, cv.COLOR_HSV2BGR) ws = Image.fromarray(tumorImage, 'RGB') ws.save("static/"+ str(fileName.split("/")[-1].split(".")[0])+'_rgb.jpg') # ws.show() return str(fileName.split("/")[-1].split(".")[0])+'_rgb.jpg' # return ws # cv.imshow('tumor_image',tumorImage) # k=cv.waitKey(0) # cv.destroyAllWindows() ```
{ "source": "2222min/mobileproject", "score": 3 }
#### File: mobileproject/websocket_test/websocket_client_chat2.py ```python from socket import * from select import select import sys # 호스트, 포트와 버퍼 사이즈를 지정 HOST = '192.168.0.5' PORT = 8000 BUFSIZE = 1024 ADDR = (HOST, PORT) # 소켓 객체를 만들고 clientSocket = socket(AF_INET, SOCK_STREAM) # 서버와의 연결을 시도 try: clientSocket.connect(ADDR) except Exception as e: print('채팅 서버(%s:%s)에 연결 할 수 없습니다.' % ADDR) sys.exit() print('채팅 서버(%s:%s)에 연결 되었습니다.' % ADDR) def prompt(): sys.stdout.write('<나> ') sys.stdout.flush() # 무한 루프를 시작 while True: try: connection_list = [sys.stdin, clientSocket] read_socket, write_socket, error_socket = select(connection_list, [], [], 10) for sock in read_socket: if sock == clientSocket: data = sock.recv(BUFSIZE) if not data: print('채팅 서버(%s:%s)와의 연결이 끊어졌습니다.' % ADDR) clientSocket.close() sys.exit() else: print('%s' % data) # 메세지 시간은 서버 시간을 따른다 prompt() else: message = sys.stdin.readline() clientSocket.send(message) prompt() read_socket.close() write_socket.close() error_socket.close() except KeyboardInterrupt: clientSocket.close() sys.exit() ``` #### File: mobileproject/websocket_test/websocket_server_chat.py ```python import socket import select import re import base64 import hashlib import struct import sys # # from signal import signal, SIGPIPE, SIG_DFL # # signal(SIGPIPE, SIG_DFL) global server global input_list global client_info def send(input_list, msg): try: data = bytearray(msg.encode('utf-8')) # payload가 126일때 extended_payload_len을 2바이트 가지는데 이때 최대 값이 65535 if len(data) > 65535: frame = bytearray([b'\x81', 127]) + bytearray(struct.pack('>Q', len(data))) + data elif len(data) > 125: frame = bytearray([b'\x81', 126]) + bytearray(struct.pack('>H', len(data))) + data else: frame = bytearray([b'\x81', len(data)]) + data # 클라이언트 리스트 모두에게 send ( 서버가 아니고 sys.stdin도 아닌 ) for client in [sock for sock in input_list if not sock == server and not sock == sys.stdin]: client.sendall( frame) except Exception as e: print("send ERROR : " + str(e)) def recv(client): first_byte = bytearray(client.recv(1))[0] second_byte = bytearray(client.recv(1))[0] FIN = (0xFF & first_byte) >> 7 opcode = (0x0F & first_byte) mask = (0xFF & second_byte) >> 7 payload_len = (0x7F & second_byte) if opcode < 3: # payload_len 구하기 if payload_len == 126: payload_len = struct.unpack_from('>H', bytearray(client.recv(2)))[0] elif payload_len == 127: payload_len = struct.unpack_from('>Q', bytearray(client.recv(8)))[0] # masking_key 구해서 masking된것 복구하기 ( mask가 1일 경우에만 존재 ) if mask == 1: masking_key = bytearray(client.recv(4)) masked_data = bytearray(client.recv(payload_len)) data = [masked_data[i] ^ masking_key[i % 4] for i in range(len(masked_data))] else: data = bytearray(client.recv(payload_len)) else: return opcode, bytearray(b'\x00') # opcode 값을 넘김 print(bytearray(data).decode('utf-8', 'ignore')) # 받은거 콘솔에 출력용 return opcode, bytearray(data) def handshake(client): try: request = client.recv(2048) m = re.match('[\\w\\W]+Sec-WebSocket-Key: (.+)\r\n[\\w\\W]+\r\n\r\n', request) key = m.group(1) + '258EAFA5-E914-47DA-95CA-C5AB0DC85B11' response = "HTTP/1.1 101 Switching Protocols\r\n" + \ "Upgrade: websocket\r\n" + \ "Connection: Upgrade\r\n" + \ "Sec-WebSocket-Accept: %s\r\n" + \ "\r\n" r = response % ((base64.b64encode(hashlib.sha1(key).digest()),)) client.send(r) print("---handshake end!---") except Exception as e: print("handshake ERROR : " + str(e)) def handler_client(client): try: opcode, data = recv(client) if opcode == 0x8: print('close frame received') input_list.remove(client) return elif opcode == 0x1: if len(data) == 0: # input_list.remove(client) # return print("emty data") else: # msg = data.decode('utf-8', 'ignore') msg = [c[1][0] + ":" + str(c[1][1]) for c in client_info if c[0] == client][0] + " :: " + data.decode( 'utf-8', 'ignore') # 클라이언트 리스트를 매개변수로 보냄 send(input_list, msg) else: print('frame not handled : opcode=' + str(opcode) + ' len=' + str(len(data))) except Exception as e: print("handler ERROR : " + str(e)) print("disconnected") input_list.remove(client) def start_server(host, port): try: # host = '192.168.0.5' # port = 8000 global server global input_list global client_info server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) server.bind((host, port)) server.listen(0) input_list = [server, sys.stdin] # sys.stdin은 쉘창에서 입력받은것 때문에 넣어줌 client_info = [] print("Server : " + host + ":" + str(port)) while True: # select 함수는 관찰될 read, write, except 리스트가 인수로 들어가며 # 응답받은 read, write, except 리스트가 반환된다. # input_list 내에 있는 소켓들에 데이터가 들어오는지 감시한다. # 다르게 말하면 input_list 내에 읽을 준비가 된 소켓이 있는지 감시한다. input_ready, write_ready, except_ready = select.select(input_list, [], [], 10) # 응답받은 read 리스트 처리 for ir in input_ready: # 클라이언트가 접속했으면 처리함 if ir == server: client, addr = server.accept() print("connected : " + str(addr)) handshake(client) # input_list에 추가함으로써 데이터가 들어오는 것을 감시함 input_list.append(client) client_info.append((client, addr)) # 쉘 창 입력. 입력된 데이터 클라이언트에게 전송 elif ir == sys.stdin: send(input_list, "Administrator :: " + sys.stdin.readline()) # 클라이언트소켓에 데이터가 들어왔으면 else: handler_client(ir) except Exception as e: print("start_server ERROR " + str(e)) server.close() sys.exit() except KeyboardInterrupt: # 부드럽게 종료하기 print("키보드 강제 종료") server.close() sys.exit() start_server('192.168.0.5', 8000) ```
{ "source": "2231puppy/CircuitPython_RoboCloudLib", "score": 2 }
#### File: 2231puppy/CircuitPython_RoboCloudLib/robocloudlib.py ```python __version__ = "0.0.1" __repo__ = "https://github.com/2231puppy/Projectstida_CircuitPython_robocloud.git" class Motors: """Motor control class for the RoboCloud""" def __init__(self, digitalio, board): self.pwma = digitalio.DigitalInOut(board.IO13) self.pwmb = digitalio.DigitalInOut(board.IO12) self.ina1 = digitalio.DigitalInOut(board.IO14) self.ina2 = digitalio.DigitalInOut(board.IO15) self.inb1 = digitalio.DigitalInOut(board.IO16) self.inb2 = digitalio.DigitalInOut(board.IO17) self.pwma.direction = digitalio.Direction.OUTPUT self.pwmb.direction = digitalio.Direction.OUTPUT self.ina1.direction = digitalio.Direction.OUTPUT self.ina2.direction = digitalio.Direction.OUTPUT self.inb1.direction = digitalio.Direction.OUTPUT self.inb2.direction = digitalio.Direction.OUTPUT def set_speeds(self, motora, motorb): """Set speeds for both motors. If speed is 0, it will stop. Takes 2 arguments: Motor A speed and Motor B speed""" if motora: self.pwma.value = True if motorb: self.pwmb.value = True if motora > 0: self.ina1.value = True self.ina2.value = False elif motora < 0: self.ina1.value = False self.ina2.value = True elif motora == 0: self.ina1.value = False self.ina2.value = False if motorb > 0: self.inb1.value = True self.inb2.value = False elif motorb < 0: self.inb1.value = False self.inb2.value = True elif motorb == 0: self.inb1.value = False self.inb2.value = False ```
{ "source": "2231puppy/Hoist", "score": 3 }
#### File: Hoist/hoist/external_server.py ```python import requests class ExternalServer: def __init__(self, ip: str, port: int): self.ip: str = ip self.port: int = port self.url: str = f'http://{ip}:{port}' self.base: str = self.url + '/hoist/send' def send(self, message: str) -> str: resp = requests.get(self.base, params = {'msg': message}) json: dict = resp.json() return json['RESPONSE'] def check(self) -> bool: try: requests.get(self.base) except: return False return True ```
{ "source": "22388o/SecurityTokens", "score": 3 }
#### File: 22388o/SecurityTokens/script.py ```python import greenaddress as gdk import json # To install GDK, download the GDK python wheel from: # https://github.com/Blockstream/gdk/releases # The 'cp' number refers to the python version you have. # To install GDK, pip install the .whl file: # pip install greenaddress-0.0.36-cp37-cp37m-linux_x86_64.whl # GDK README and reference documentation: # https://github.com/Blockstream/gdk # https://gdk.readthedocs.io/en/latest/ def main(): # Our calls to GDK are wrapped in the gdk_wallet class, which should only be # created using either create_new_wallet, login_with_mnemonic or # login_with_pin methods. The example uses the live Liquid network. # Initialize GDK. gdk.init({}) # Wallet creation and login using Mnemonic # ======================================== # To create a wallet with a Managed Assets account, pass a mnemonic # into the following. You can generate a 24 word mnemonic yourself or # have GDK generate it for you by leaving mnemonic as None. # You can choose to create a wallet that's covered by 2FA or not. # 2FA can be activated or deactivated at any point in time. """ wallet = gdk_wallet.create_new_wallet(create_with_2fa_enabled=False, mnemonic=None) print(f'\nMnemonic: {wallet.mnemonic}') """ # To login to an existing wallet you can either use the mnemonic or pin. # Later we'll see how to use a pin, for now we will use the mnemonic. mnemonic = 'your twenty four word mnemonic goes here with single spaced words' if not gdk.validate_mnemonic(mnemonic): raise Exception("Invalid mnemonic.") # Login to a GDK wallet session using the mnemonic. wallet = gdk_wallet.login_with_mnemonic(mnemonic) # We can now perform calls against the session, such as get balance for # the logged in Blockstream AMP Managed Assets account. balance = wallet.get_balance() print(f'\n{json.dumps(balance, indent=4)}') # Using a pin to encrypt the mnemonic and login # ============================================= # You can also login using a pin. Setting the pin for the wallet returns # encrypted data that is saved to file. When you login with the pin, the # server will give you the key to decrypt the mnemonic which it uses to # login. If the pin is entered incorrectly 3 times the server will delete # the key and you must use the mnemonic to login. """ # Before setting the pin, login with the wallet's mnemonic. wallet = gdk_wallet.login_with_mnemonic(mnemonic) # Then set the pin for the wallet, this saves encrypted data to file. # Don't use the example value below, set you own. pin = 123456 # You only need to set the pin data once. wallet.set_pin(mnemonic, pin) # After setting the pin you can then login using pin and do not have to # enter the mnemonic again. The pin is used to decrypt the local file. wallet.login_with_pin(pin) """ # Two factor authorization # ======================== # You can add Two Factor Authentication (2FA) to a wallet when you create # it or enable or disable 2FA at a later date. # Check the current 2FA status for the wallet. twofactor_status = wallet.get_current_2fa_status() print(f'\n{json.dumps(twofactor_status, indent=4)}') # The example below will enable 2FA on an existing wallet and uses email by # default, which you can amend if you want. """ try: wallet.twofactor_auth_enabled(False) except RuntimeError as e: # Will error if 2FA is already enabled print(f'\nError: {e}\n') """ # Getting notification data from GDK to obtain the last block height # ================================================================== # The fetch_block_height example shows how to handle notification events # from Green by processing the notifications queue. block_height = wallet.fetch_block_height() print(f'\nCurrent Liquid block height: {block_height}') # Getting a new address and understanding pointers # ================================================ # The new address returned will be confidential, whereas GDK transactions # will show the unconfidential address. For this reason, use the address # 'pointer' to identify it in transactions. The pointer plus sub account # index maps to a derivation path so you can use pointers within each # sub account to link confidential and unconfidential addresses. Be sure # to note that you must consider which sub account you are using when # using the pointer as an identifier like this. address_info = wallet.get_new_address() print(f'Address: {address_info["address"]}') print(f'Address pointer: {address_info["pointer"]}') # Each call creates a new address/pointer pair for the user. address_info = wallet.get_new_address() print(f'Address: {address_info["address"]}') print(f'Address pointer: {address_info["pointer"]}') # Getting transaction data from Green using GDK # ============================================= txs = wallet.get_wallet_transactions() for tx in txs: print(f'TRANSACTION ID : {tx["txhash"]}') print(f'CONFIRMATION STATUS : {tx["confirmation_status"]}') print(f'BLOCK HEIGHT : {tx["block_height"]}') print(f'TYPE : {tx["type"]}') print(f'INPUT COUNT : {len(tx["inputs"])}') print(f'OUTPUT COUNT : {len(tx["outputs"])}\n') # Sending assets # ============== # Please be aware that AMP issued assets are issued with a precision # that affects how the number of sats sent are converted to the number # of units of the asset itself. Please refer to the examples under # 'precision' on the following page for more details and examples: # https://docs.blockstream.com/blockstream-amp/api-tutorial.html#issuing-an-asset # If the asset is registered with the Liquid Assets Registry you can # check the precision using the following link, or check with the # asset's issuer: # https://blockstream.info/liquid/assets amount_sat = 1 asset_id = 'asset id here' address = 'destination address here' txid = wallet.send_to_address(amount_sat, asset_id, address) if txid: print(f'\nTransaction sent. Txid: {txid}') else: print(f'\nTransaction failed. See error logging.') class gdk_wallet: """Class method to create and return an instance of gdk_wallet""" @classmethod def create_new_wallet(cls, create_with_2fa_enabled, mnemonic=None): self = cls() # Create a new wallet with a Managed Assets account. # You can pass in a mnemonic generated outside GDK if you want, or have # GDK generate it for you by omitting it. 2FA is enabled if chosen and # can be enabled/disabled at any point. if not mnemonic: self.mnemonic = gdk.generate_mnemonic() # Set the network name to 'liquid' for the live Liquid network. # There is currently no test Liquid network. self.session = gdk.Session({'name': 'liquid'}) self.session.register_user({}, self.mnemonic).resolve() self.session.login({}, self.mnemonic).resolve() self.session.create_subaccount({'name': self.SUBACCOUNT_NAME, 'type': self.AMP_ACCOUNT_TYPE}).resolve() if create_with_2fa_enabled: self.twofactor_auth_enabled(True) return self """Class method to create and return an instance of gdk_wallet""" @classmethod def login_with_mnemonic(cls, mnemonic): self = cls() self.mnemonic = mnemonic self.session = gdk.Session({'name': 'liquid'}) self.session.login({}, self.mnemonic).resolve() self.fetch_subaccount() return self """Class method to create and return an instance of gdk_wallet""" @classmethod def login_with_pin(cls, pin): self = cls() pin_data = open(self.PIN_DATA_FILENAME).read() self.session = gdk.Session({'name': 'liquid'}) self.session.login_with_pin(str(pin), pin_data).resolve() self.fetch_subaccount() return self """Do not use this to instantiate the object, use create_new_wallet or login_with_*""" def __init__(self): # 2of2_no_recovery is the account type used by Blockstream AMP. # Do not change this value! self.AMP_ACCOUNT_TYPE = '2of2_no_recovery' # 'Managed Assets' is the same name as Green mobile and desktop use. # You can change this if you like, but note that account type and # name are used to retrieve the correct account and should be unique # per wallet so you can retrieve the right account when you login. self.SUBACCOUNT_NAME = 'Managed Assets' # If you use a pin to login, the encrypted data will be saved and read # from this file: self.PIN_DATA_FILENAME = 'pin_data.json' self.mnemonic = None self.session = None self.subaccount_pointer = None self.gaid = None self.last_block_height = 0 def set_pin(self, mnemonic, pin): pin_data = gdk.set_pin(self.session.session_obj, mnemonic, str(pin), str('device_id_1')) open(self.PIN_DATA_FILENAME, 'w').write(pin_data) return pin_data def get_balance(self): return self.session.get_balance({'subaccount': self.subaccount_pointer, 'num_confs': 0}).resolve() def get_current_2fa_status(self): return self.session.get_twofactor_config() def twofactor_auth_enabled(self, enabled): # We will use email but others are available ('sms', 'phone', 'gauth'). # https://gdk.readthedocs.io/en/latest/gdk-json.html#twofactor-detail method = 'email' if enabled: print('\nRequesting email authentication is enabled for this account') email = input('\nPlease enter the email address that you will use to authenticate 2FA requests: ') details = {'confirmed': False, 'enabled': True, 'data': email} else: print('\nRequesting email authentication is disabled for this account') details = {'confirmed': True, 'enabled': False} # The following is an example of how to handle the GDK authentication # state machine as it progresses to completion. self._gdk_resolve(gdk.change_settings_twofactor(self.session.session_obj, method, json.dumps(details))) def _gdk_resolve(self, auth_handler): # Processes and handles the state of calls that need authentication. # The authentication process works as a state machine and may require # input to progress. This example only uses email as a authentication # method. If you would like to user other methods such as sms, phone, # gauth or a hardware device see: # https://github.com/Blockstream/green_cli/blob/842697b1c6e382487a2e00606c17d6637fe62e7b/green_cli/green.py#L75 while True: status = gdk.auth_handler_get_status(auth_handler) status = json.loads(status) state = status['status'] if state == 'error': raise RuntimeError(f'\nAn error occurred authenticating the call: {status}') if state == 'done': print('\nAuthentication succeeded or not required\n') return status['result'] if state == 'request_code': authentication_factor = 'email' print(f'\nCode requested via {authentication_factor}.') gdk.auth_handler_request_code(auth_handler, authentication_factor) elif state == 'resolve_code': resolution = input('\nPlease enter the authentication code you received: ') gdk.auth_handler_resolve_code(auth_handler, resolution) elif state == 'call': gdk.auth_handler_call(auth_handler) def fetch_subaccount(self): subaccounts = self.session.get_subaccounts().resolve() for subaccount in subaccounts['subaccounts']: if self.AMP_ACCOUNT_TYPE == subaccount['type'] and self.SUBACCOUNT_NAME == subaccount['name']: self.subaccount_pointer = subaccount['pointer'] break if not self.subaccount_pointer: raise Exception(f'Cannot find the sub account with name: "{self.SUBACCOUNT_NAME}" and type: "{self.AMP_ACCOUNT_TYPE}"') self.gaid = self.session.get_subaccount(self.subaccount_pointer).resolve()['receiving_id'] # The subaccount's receiving_id is the Green Account ID (GAID) # required for user registration with Transfer-Restricted assets. # Notification queue always has the last block in after session login. self.fetch_block_height() def fetch_block_height(self): # New blocks are added to notifications as they are found so we need to # find the latest or, if there hasn't been one since we last checked, # use the value set during login in the session_login method. # The following provides an example of using GDK's notification queue. q = self.session.notifications while not q.empty(): notification = q.get(block=True, timeout=1) event = notification['event'] if event == 'block': block_height = notification['block']['block_height'] if block_height > self.last_block_height: self.last_block_height = block_height return self.last_block_height def get_new_address(self): return self.session.get_receive_address({'subaccount': self.subaccount_pointer}).resolve() def get_wallet_transactions(self): # Get the current block height so we can include confirmation status in # the returned data. chain_block_height = self.fetch_block_height() # We'll use possible statuses of UNCONFIRMED, CONFIRMED, FINAL. confirmed_status = None depth_from_tip = 0 all_txs = [] index = 0 # You can override the default number (30) of transactions returned: count = 10 while(True): # Transactions are returned in the order of most recently seen # transaction first. It is possible for a transaction seen less # recently to be unconfimred while a more recent transaction is # confirmed. transactions = self.session.get_transactions({'subaccount': self.subaccount_pointer, 'first': index, 'count': count}).resolve() for transaction in transactions['transactions']: confirmation_status = 'UNCONFIRMED' block_height = transaction['block_height'] # Unconfirmed txs will have a block_height of 0. if block_height > 0: depth_from_tip = chain_block_height - block_height # A transaction with 1 confirmation will have a depth of 0. if depth_from_tip == 0: confirmation_status = 'CONFIRMED' if depth_from_tip > 0: confirmation_status = 'FINAL' transaction['confirmation_status'] = confirmation_status all_txs.append(transaction) if len(transactions['transactions']) < count: break index = index + 1 return all_txs def send_to_address(self, sat_amount, asset_id, destination_address): details = { 'subaccount': self.subaccount_pointer, 'addressees': [{'satoshi': sat_amount, 'address': destination_address, 'asset_tag': asset_id}] } try: details = self._gdk_resolve(gdk.create_transaction(self.session.session_obj, json.dumps(details))) details = self._gdk_resolve(gdk.sign_transaction(self.session.session_obj, json.dumps(details))) details = self._gdk_resolve(gdk.send_transaction(self.session.session_obj, json.dumps(details))) return details['txhash'] except RuntimeError as e: print(f'\nError: {e}\n') if __name__ == "__main__": main() ```
{ "source": "2239559319/xiaochuanhttpsproxy", "score": 3 }
#### File: xiaochuanhttpsproxy/xiaochuanhttpsproxy/start.py ```python import os def start(page): ''' :param page:抓取的页数 :return: ''' path=os.getcwd().split('\\') if 'xiaochuanhttpsproxy'==path[len(path)-1]: os.system("python enter.py %d"%page) ```
{ "source": "223kazuki/SublimeMyTodo", "score": 3 }
#### File: 223kazuki/SublimeMyTodo/SimplestTodo.py ```python import sublime, sublime_plugin class ListTodosCommand(sublime_plugin.TextCommand): def run(self, edit): settings = sublime.load_settings('SimplestTodo.sublime-settings') TODO_STR = settings.get("todo_prefix") DONE_STR = settings.get("done_prefix") self.keys = [] self.lines = [] allContent = sublime.Region(0, self.view.size()) regions = self.view.split_by_newlines(allContent) for r in enumerate(regions): line = self.view.substr(r[1]) if TODO_STR in line: self.keys.append(line) self.lines.append(r) sublime.active_window().show_quick_panel(self.keys, self.goto) def goto(self, arrpos): if arrpos >= 0: target_region = self.lines[arrpos][1] target_line = self.view.substr(self.lines[arrpos][1]) self.view.sel().clear() self.view.sel().add(target_region) self.view.show(self.lines[arrpos][1]) sublime.active_window().run_command("toggle_todo") sublime.active_window().run_command("list_todos") def toggle(s): settings = sublime.load_settings('SimplestTodo.sublime-settings') TODO_STR = settings.get("todo_prefix") DONE_STR = settings.get("done_prefix") if TODO_STR in s: return s.replace(TODO_STR, DONE_STR) else: return s.replace(DONE_STR, TODO_STR) class ToggleTodoCommand(sublime_plugin.TextCommand): def run(self, edit): view = self.view line = view.line(view.sel()[0]) before = view.substr(line) after = toggle(before) view.replace(edit, line, after) class NewTodoCommand(sublime_plugin.TextCommand): def run(self, edit): settings = sublime.load_settings('SimplestTodo.sublime-settings') TODO_STR = settings.get("todo_prefix") DONE_STR = settings.get("done_prefix") view = self.view line = view.line(view.sel()[0]) before = view.substr(line) after = before + TODO_STR view.replace(edit, line, after) end = line.end() + len(TODO_STR) r = sublime.Region(end, end); self.view.sel().clear() self.view.sel().add(r) ```
{ "source": "224alpha/Python", "score": 4 }
#### File: 224alpha/Python/Day_of_week.py ```python import calendar import datetime def findDay(date): born = datetime.datetime.strptime(date, '%d %m %Y').weekday() return (calendar.day_name[born]) # Driver program date = '03 02 2019' print(findDay(date)) ``` #### File: Python/Flappy Bird - created with tkinter/Settings.py ```python import os from json import dumps from json import loads class Settings(object): """ Classe com todas as configurações do jogo """ # Configurações da janela window_name = "Flappy Bird" window_rz = (False, False) window_fullscreen = True window_width = None window_height = None # Configurações dos botões button_width = 22 button_height = 17 button_bg = "black" button_fg = "white" button_activebackground = "black" button_font = ("Impact", 40) button_position_y = 85 button_cursor = "hand2" # Configurações da imagem do placar do jogador scoreboard_width = 40 scoreboard_height = 40 scoreboard_position_y = 50 # Configurações de texto do placar text_font = "Autumn" text_fill = "White" # Configurações do título do jogo title_width = 35 title_height = 15 title_position_y = 15 # Eventos bird_event = "<Up>" window_fullscreen_event = "<F11>" window_start_event = "<Return>" window_exit_event = "<Escape>" # Caminhos de arquivos background_fp = "Images/background.png" bird_fp = "Images/bird.png" startButton_fp = "Images/start_button.png" exitButton_fp = "Images/exit_button.png" tube_fp = ["Images/tube.png", "Images/tube_mouth.png"] title_fp = "Images/title.png" scoreboard_fp = "Images/scoreboard.png" score_fp = "Data/scr.txt" settings_fp = "Data/settings.json" # Configurações de animação background_animation = True # Junta todos os diretórios em uma lista images_fp = [background_fp, bird_fp, startButton_fp, exitButton_fp, tube_fp[0], tube_fp[1], title_fp] def setOptions(self): """ Método para receber algumas configurações do jogo de um arquivo .json. Caso o arquivo não exista, será criado um com as configurações padrões. """ # Alguns atributos que podem ser alterados attributes = "window_fullscreen,window_width,window_height".split(',') # Tenta abrir o arquivo parar leitura try: file = open(self.settings_fp, 'r') data = loads(file.read()) file.close() # Define os atributos com os valores obtidos do arquivo desde que sejam # referentes à eventos ou estejam na lista de atributos permitidos. for attr in data: if "event" in attr or attr in attributes: setattr(Settings, attr, data[attr]) # Caso não exista um arquivo para obter as configurações, ele será criado except: # Caso não exista o diretório, o mesmo será criado. if not os.path.exists(os.path.split(self.settings_fp)[0]): os.mkdir(os.path.split(self.settings_fp)[0]) file = open(self.settings_fp, 'w') data = dict() # Armazena no arquivo atributos com seus valores padrões desde que sejam # referentes à eventos ou estejam na lista de atributos permitidos. for attr in Settings.__dict__: if "event" in attr or attr in attributes: data[attr] = Settings.__dict__[attr] # Coloca as informações no arquivo e o fecha file.write(dumps(data, indent=2)) file.close() ``` #### File: 224alpha/Python/Polyline.py ```python import simplegui polyline = [] def click(pos): global polyline polyline.append(pos) def clear(): global polyline polyline = [] def draw(canvas): if len(polyline) == 1: canvas.draw_point(polyline[0], "White") for i in range(1, len(polyline)): canvas.draw_line(polyline[i - 1], polyline[i], 2, "White") frame = simplegui.create_frame("Echo click", 300, 200) frame.set_mouseclick_handler(click) frame.set_draw_handler(draw) frame.add_button("Clear", clear) frame.start() ``` #### File: 224alpha/Python/RandomDice.py ```python from random import randint from tkinter import * def roll(): text.delete(0.0, END) text.insert(END, str(randint(1, 100))) window = Tk() text = Text(window, width=3, height=1) buttonA = Button(window, text="Press to roll!", command=roll) text.pack() buttonA.pack() ```
{ "source": "225559/algorithms", "score": 2 }
#### File: algorithms/hard-disc-model/event.py ```python class Event: def __init__(self, time, i, j): self.time = time self.i = i self.j = j if i is not None: self.i_cc = self.i.cc if j is not None: self.j_cc = self.j.cc def invalid(self): invalid_i = self.i is not None and self.i_cc != self.i.cc invalid_j = self.j is not None and self.j_cc != self.j.cc if invalid_i or invalid_j: return True return False def __lt__(self, other): return self.time < other.time ``` #### File: algorithms/hard-disc-model/window.py ```python import tkinter as tk class Window: def __init__(self, unit_box_size, particles): self.unit_box_size = unit_box_size self.particles = particles self.window = tk.Tk() self.window.title("Hard Disc Model - Particle Simulation") self.avg_ink_distance_from_center = tk.Text(self.window, height=1) self.avg_ink_distance_from_center.pack() self.canvas = tk.Canvas(self.window, width=unit_box_size, height=unit_box_size, bg='#060606') self.canvas.pack() self.grid_lines = 5 def create_circle(self, x, y, r, color): x0 = x - r x1 = x + r y0 = y - r y1 = y + r return self.canvas.create_oval(x0, y0, x1, y1, fill=color, outline=color) def draw_grid(self): """draw the grid lines in the unit box""" size = int(self.unit_box_size) for i in range(0, size, int(size/self.grid_lines)): self.canvas.create_line(i, 0, i, size, width=1, fill='#363636') self.canvas.create_line(0, i, size, i, width=1, fill='#363636') def redraw(self): """redraw all particles, avg. ink position from center, and ink:water ratio""" self.canvas.update() self.canvas.update_idletasks() self.canvas.delete("all") # clear avg = 0 N = len(self.particles) ink_counter = [[0 for x in range(self.grid_lines)] for x in range(self.grid_lines)] water_counter = [[0 for x in range(self.grid_lines)] for x in range(self.grid_lines)] for particle in self.particles: x = particle.position.x * self.unit_box_size y = particle.position.y * self.unit_box_size r = particle.radius * self.unit_box_size self.create_circle(x, y, r, particle.color) if particle.kind == "ink": avg += particle.distance_from_center() for i in range(0, self.grid_lines): if (particle.position.x >= (i / self.grid_lines)) and (particle.position.x < ((i + 1) / self.grid_lines)): for j in range(0, self.grid_lines + 1): if (particle.position.y >= (j / self.grid_lines)) and (particle.position.y < ((j + 1) / self.grid_lines)): if particle.kind == "ink": ink_counter[i][j] += 1 if particle.kind == "water": water_counter[i][j] += 1 break break mult = self.unit_box_size / self.grid_lines for i in range(0, self.grid_lines): for j in range(0, self.grid_lines): self.canvas.create_text((i * mult) + 10, (j * mult) + 10, fill="#696969", font="Times 8", text=str(ink_counter[i][j])) self.canvas.create_text((i * mult) + 20, (j * mult) + 10, fill="#696969", font="Times 8", text=":") self.canvas.create_text((i * mult) + 27, (j * mult) + 10, fill="#696969", font="Times 8", text=str(ink_counter[i][j] + water_counter[i][j])) s = 'Avg. ink particle distance from center: {:f}'.format(avg/N) self.avg_ink_distance_from_center.delete("1.0", "end") self.avg_ink_distance_from_center.insert(tk.END, s) self.draw_grid() ```
{ "source": "226wyj/You-Draw-I-Guess", "score": 2 }
#### File: 226wyj/You-Draw-I-Guess/main.py ```python from predict import Predictor from train import Trainer from test import Tester from models.lenet import LeNet from models.vgg16 import Vgg16_Net from models.resnet import ResNet18, ResNet34, ResNet50, ResNet101, ResNet152 from dataset import DataSet, DataBuilder from util import check_path, show_model import torch as t import torch.nn as nn from torch import optim import argparse import os def main(args): check_path(args) # CIFAR-10的全部类别,一共10类 classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # 数据集 data_builder = DataBuilder(args) dataSet = DataSet(data_builder.train_builder(), data_builder.test_builder(), classes) # 选择模型 if args.lenet: net = LeNet() model_name = args.name_le elif args.vgg: net = Vgg16_Net() model_name = args.name_vgg elif args.resnet18: net = ResNet18() model_name = args.name_res18 elif args.resnet34: net = ResNet34() model_name = args.name_res34 elif args.resnet50: net = ResNet50() model_name = args.name_res50 elif args.resnet101: net = ResNet101() model_name = args.name_res101 elif args.resnet152: net = ResNet152() model_name = args.name_res152 # 交叉熵损失函数 criterion = nn.CrossEntropyLoss() # SGD优化器 optimizer = optim.SGD( net.parameters(), lr=args.learning_rate, momentum=args.sgd_momentum, weight_decay=args.weight_decay ) # 余弦退火调整学习率 scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=150) # 模型的参数保存路径 model_path = os.path.join(args.model_path, model_name) # 启动训练 if args.do_train: print("Training...") trainer = Trainer(net, criterion, optimizer, scheduler, dataSet.train_loader, dataSet.test_loader, model_path, args) trainer.train(epochs=args.epoch) # t.save(net.state_dict(), model_path) # 启动测试,如果--do_train也出现,则用刚刚训练的模型进行测试 # 否则就使用已保存的模型进行测试 if args.do_eval: if not args.do_train and not os.path.exists(model_path): print("Sorry, there's no saved model yet, you need to train first.") return # --do_eval if not args.do_train: checkpoint = t.load(model_path) net.load_state_dict(checkpoint['net']) accuracy = checkpoint['acc'] epoch = checkpoint['epoch'] print("Using saved model, accuracy : %f epoch: %d" % (accuracy, epoch)) tester = Tester(dataSet.test_loader, net, args) tester.test() if args.show_model: if not os.path.exists(model_path): print("Sorry, there's no saved model yet, you need to train first.") return show_model(args) if args.do_predict: device = t.device("cuda" if t.cuda.is_available() else "cpu") checkpoint = t.load(model_path, map_location=device) net.load_state_dict(checkpoint['net']) predictor = Predictor(net, classes) img_path = 'test' img_name = [os.path.join(img_path, x) for x in os.listdir(img_path)] for img in img_name: predictor.predict(img) # img_path = 'test/cat0.jpg' # predictor.predict(img_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Data parser.add_argument("--num_workers", default=0, type=int, help="Thread number for training.") parser.add_argument("--is_download", default=True, type=bool, help="Download the datasets if there is no data.") # Dir parser.add_argument("--data_path", default="data", type=str, help="The directory of the CIFAR-10 data.") parser.add_argument("--model_path", default="saved", type=str, help="The directory of the saved model.") # File Name parser.add_argument("--name_le", default="lenet.pth", type=str, help="The name of the saved model's parameters.") parser.add_argument("--name_vgg", default="vgg16.pth", type=str, help="The name of the saved model's parameters.") parser.add_argument("--name_res18", default="resnet18.pth", type=str, help="The name of the saved model's parameters.") parser.add_argument("--name_res34", default="resnet34.pth", type=str, help="The name of the saved model's parameters.") parser.add_argument("--name_res50", default="resnet50.pth", type=str, help="The name of the saved model's parameters.") parser.add_argument("--name_res101", default="resnet101.pth", type=str, help="The name of the saved model's parameters.") parser.add_argument("--name_res152", default="resnet152.pth", type=str, help="The name of the saved model's parameters.") # Train parser.add_argument("--batch_size", default=128, type=int, help="Batch size for training and evaluation.") parser.add_argument("--epoch", default=10, type=int, help="The number of training epochs.") parser.add_argument("--seed", default=42, type=int, help="The random seed used for initialization.") # Hyper Parameters parser.add_argument("--learning_rate", default=0.01, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=5e-4, type=int, help="Weight decay of SGD optimzer.") parser.add_argument("--sgd_momentum", default=0.9, type=float, help="The momentum of the SGD optimizer.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="The Epsilon of Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") # Commands parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the test set.") parser.add_argument("--do_predict", action="store_true", help="Predict single image with the saved model.") parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available.") parser.add_argument("--show_model", action="store_true", help="Display the state dict of the model.") parser.add_argument("--lenet", action="store_true", help="Use LeNet-5 as the model.") parser.add_argument("--vgg", action="store_true", help="Use VGG-16 as the model.") parser.add_argument("--resnet18", action="store_true", help="Use ResNet as the model.") parser.add_argument("--resnet34", action="store_true", help="Use ResNet as the model.") parser.add_argument("--resnet50", action="store_true", help="Use ResNet as the model.") parser.add_argument("--resnet101", action="store_true", help="Use ResNet as the model.") parser.add_argument("--resnet152", action="store_true", help="Use ResNet as the model.") args = parser.parse_args() main(args) ``` #### File: 226wyj/You-Draw-I-Guess/predict.py ```python import torch as t from torch.autograd import Variable import torchvision.transforms as transforms from PIL import Image class Predictor(): def __init__(self, net, classes): self.net = net self.classes = classes self.device = t.device("cuda" if t.cuda.is_available() else "cpu") self.net.to(self.device) def predict_transform(self): transform = transforms.Compose([ transforms.Resize(size=(32, 32)), transforms.ToTensor(), # 转换成Tensor transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) return transform # 单张图片的预测 def predict(self, img_path): transform = self.predict_transform() img = Image.open(img_path) img_tensor = transform(img).to(self.device) img_tensor = Variable(t.unsqueeze(img_tensor, 0).float(), requires_grad=False) with t.no_grad(): self.net.eval() output = self.net(img_tensor) _, predicted = t.max(output, 1) print("下标: %d\t\t标签: " % predicted, self.classes[predicted]) return predicted ``` #### File: You-Draw-I-Guess/st/run.py ```python import sys sys.path.append('..') sys.path.append('.') import streamlit as st from predict import Predictor from models.lenet import LeNet from models.resnet import ResNet18, ResNet34, ResNet50, ResNet101 from models.vgg16 import Vgg16_Net import torch as t import os from st.contents import intro_team, intro_dataset, \ intro_method, intro_reference, show_img def main(): # Title st.title("Image Classification System") st.markdown( """ <br><br /> This is the final project of our team. <br><br /> We implemented a simple image classification system using deep learning method. <br><br /> To read more about how the system works, click below. """ , unsafe_allow_html=True ) more_info = st.button("More about this") st.markdown("---") if more_info: presentation() else: classify_img() def presentation(): back_to_system = st.button("Back", key="first") if back_to_system: classify_img() # team member introduction st.markdown("## 1. Team members") st.markdown("There are two members in our team:") intro_team() st.markdown("---") # project module introduction st.markdown("## 2. Structure of the project") show_img("https://raw.githubusercontent.com/226wyj/You-Draw-I-Guess/main/st/img/module.jpg?token=<KEY>") st.markdown( """ <br><br /> Sample training command: """ , True ) st.code( """ python main.py --do_train --vgg --batch_size=64 --epoch=200 """ ) st.markdown("---") # Technology stack introduction st.markdown("## 3. Methods Used") intro_method() st.markdown("---") # dataset introduction st.markdown("## 4. Dataset: CIFAR-10") intro_dataset() show_img("https://raw.githubusercontent.com/226wyj/You-Draw-I-Guess/main/st/img/cifar-10.jpg?token=<KEY>") st.markdown( """ <br><br /> Data Process: """ , True ) st.code( """ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) """ ) st.markdown("---") # References st.markdown("## 5. References") intro_reference() st.markdown("---") back_to_system = st.button("Back", key="second") if back_to_system: classify_img() def get_model(model): model_path = '../saved' if model == 'LeNet-5': net = LeNet() model_name = 'lenet.pth' elif model == 'VGG-16': net = Vgg16_Net() model_name = 'vgg16.pth' elif model == 'ResNet18': net = ResNet18() model_name = 'resnet18.pth' elif model == 'ResNet34': net = ResNet34() model_name = 'resnet34.pth' elif model == 'ResNet50': net = ResNet50() model_name = 'resnet50.pth' else: net = ResNet101() model_name = 'resnet101.pth' return net, os.path.join(model_path, model_name) def classify_img(): # all classes in CIFAR-10 classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') st.header("All types:") st.subheader("Plane, Car, Bird, Cat, Deer, Dog, Frog, Hourse, Ship, Truck") # add a side bar side_bar = st.sidebar side_bar.title("Select your model") # add a selectbox to the sidebar model = side_bar.radio( 'Model Name ', ('LeNet-5','VGG-16','ResNet18', 'ResNet34', 'ResNet50', 'ResNet101', 'ResNet152') ) # upload image upload_img = st.file_uploader("Please upload your image", type="jpg") if upload_img is not None: st.image(upload_img) net, model_path = get_model(model) checkpoint = t.load(model_path, map_location=t.device('cpu')) net.load_state_dict(checkpoint['net']) accuracy = checkpoint['acc'] epoch = checkpoint['epoch'] st.write("Using %s , test accuracy : %f, epoch: %d" % (model, accuracy, epoch)) predictor = Predictor(net, classes) result = predictor.predict(upload_img) side_bar.title("Result") side_bar.success("The picture is a %s" % classes[result]) side_bar.title("Accuracy") side_bar.warning("test accuracy : %f" % (accuracy)) if __name__ == '__main__': main() ```
{ "source": "2279209430/BVQA-2021", "score": 2 }
#### File: BVQA-2021/QualityAwarePretrain/Kadis700kFolder_DistortionNet.py ```python import torch.utils.data as data from PIL import Image import os import os.path # import math import scipy.io import numpy as np import random import csv def getFileName(path, suffix): ''' 获取指定目录下的所有指定后缀的文件名 ''' filename = [] f_list = os.listdir(path) # print f_list for i in f_list: # os.path.splitext():分离文件名与扩展名 if os.path.splitext(i)[1] == suffix: filename.append(i) return filename def getDistortionTypeFileName(path, num): filename = [] index = 1 for i in range(0, num): name = '%s%s%s' % ('img', str(index), '.bmp') filename.append(os.path.join(path, name)) index = index + 1 return filename class Kadis700kFolder_DistortionNet(data.Dataset): def __init__(self, root, loader, index, transform=None, target_transform=None): self.root = root self.loader = loader self.imgname = [] self.mos = [] self.d_type = [] self.d_level = [] self.mat_file = os.path.join(self.root, 'kadis700k.mat') datainfo = scipy.io.loadmat(self.mat_file) image_number = len(datainfo['ref_img_name']) for i in range(0, image_number): # image_number self.imgname.append(datainfo['dis_img_name'][i][0][0]) mos = float(datainfo['label'][i][0]) mos = np.array(mos) mos = mos.astype(np.float32) self.mos.append(mos) d_type = float(datainfo['d_type'][i][0]) d_type = np.array(d_type) d_type = d_type.astype(np.int64) self.d_type.append(d_type) d_level = float(datainfo['d_level'][i][0]) d_level = np.array(d_level) d_level = d_level.astype(np.int64) self.d_level.append(d_level) sample = [] for i, item in enumerate(index): sample.append(item) self.samples = sample self.transform = transform self.target_transform = target_transform def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ ref_idx = self.samples[index] image_name1 = os.path.join(self.root, 'dist_imgs', self.imgname[ref_idx * 5]) image_name2 = os.path.join(self.root, 'dist_imgs', self.imgname[ref_idx * 5 + 1]) image_name3 = os.path.join(self.root, 'dist_imgs', self.imgname[ref_idx * 5 + 2]) image_name4 = os.path.join(self.root, 'dist_imgs', self.imgname[ref_idx * 5 + 3]) image_name5 = os.path.join(self.root, 'dist_imgs', self.imgname[ref_idx * 5 + 4]) I1 = self.loader(image_name1) I2 = self.loader(image_name2) I3 = self.loader(image_name3) I4 = self.loader(image_name4) I5 = self.loader(image_name5) if self.transform is not None: I1 = self.transform(I1) I2 = self.transform(I2) I3 = self.transform(I3) I4 = self.transform(I4) I5 = self.transform(I5) I1_D = self.d_type[ref_idx * 5] - 1 I2_D = self.d_type[ref_idx * 5 + 1] - 1 I3_D = self.d_type[ref_idx * 5 + 2] - 1 I4_D = self.d_type[ref_idx * 5 + 3] - 1 I5_D = self.d_type[ref_idx * 5 + 4] - 1 I1_DL = 6 - self.d_level[ref_idx * 5] I2_DL = 6 - self.d_level[ref_idx * 5 + 1] I3_DL = 6 - self.d_level[ref_idx * 5 + 2] I4_DL = 6 - self.d_level[ref_idx * 5 + 3] I5_DL = 6 - self.d_level[ref_idx * 5 + 4] I1_M = self.mos[ref_idx * 5] I2_M = self.mos[ref_idx * 5 + 1] I3_M = self.mos[ref_idx * 5 + 2] I4_M = self.mos[ref_idx * 5 + 3] I5_M = self.mos[ref_idx * 5 + 4] # sample = [] sample = {'I1': I1, 'I1_D': I1_D, 'I1_DL': I1_DL, 'I1_M': I1_M, 'I2': I2, 'I2_D': I2_D, 'I2_DL': I2_DL, 'I2_M': I2_M, 'I3': I3, 'I3_D': I3_D, 'I3_DL': I3_DL, 'I3_M': I3_M, 'I4': I4, 'I4_D': I4_D, 'I4_DL': I4_DL, 'I4_M': I4_M, 'I5': I5, 'I5_D': I5_D, 'I5_DL': I5_DL, 'I5_M': I5_M } return sample def __len__(self): length = len(self.samples) return length def pil_loader(path): # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def accimage_loader(path): import accimage try: return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) def default_loader(path): from torchvision import get_image_backend if get_image_backend() == 'accimage': return accimage_loader(path) else: return pil_loader(path) if __name__ == '__main__': Kadid10kroot = '/mnt/sda2/New/kadis700k/kadis700k' index = list(range(0, 129109)) random.shuffle(index) train_index = index[0:round(0.8 * 129109)] test_index = index[round(0.8 * 129109):129109] trainset = Kadis700kFolder_DistortionNet(root=Kadid10kroot, loader=default_loader, index=train_index) testset = Kadis700kFolder_DistortionNet(root=Kadid10kroot, loader=default_loader, index=test_index) ``` #### File: BVQA-2021/QualityAwarePretrain/QualityAware_FR_Pretrain.py ```python import os import torch import torchvision import torch.nn as nn from SCNN import SCNN from PIL import Image from scipy import stats import random import torch.nn.functional as F import numpy as np import time import scipy.io import itertools from torch.optim import lr_scheduler def pil_loader(path): # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def accimage_loader(path): import accimage try: return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) def default_loader(path): from torchvision import get_image_backend if get_image_backend() == 'accimage': return accimage_loader(path) else: return pil_loader(path) def weight_init(net): for m in net.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight.data,nonlinearity='relu') # m.bias.data.zero_() elif isinstance(m, nn.Linear): nn.init.kaiming_normal_(m.weight.data,nonlinearity='relu') m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() class DBCNN(torch.nn.Module): def __init__(self, options): """Declare all needed layers.""" nn.Module.__init__(self) # self.features1 = torchvision.models.resnet34(pretrained=True) self.features1 = torchvision.models.resnet50(pretrained=True) # weight_init(self.features1) # Global pooling self.pooling = nn.AdaptiveAvgPool2d(1) # Linear classifier. self.fc = torch.nn.Linear(2048, 1) if options['fc'] == True: # Freeze all previous layers. for param in self.features1.parameters(): param.requires_grad = False # Initialize the fc layers. nn.init.kaiming_normal_(self.fc.weight.data) if self.fc.bias is not None: nn.init.constant_(self.fc.bias.data, val=0) def forward(self, X): """Forward pass of the network. """ N = X.size()[0] X1 = self.features1.conv1(X) X1 = self.features1.bn1(X1) X1 = self.features1.relu(X1) X1 = self.features1.maxpool(X1) X1 = self.features1.layer1(X1) X1 = self.features1.layer2(X1) X1 = self.features1.layer3(X1) X1 = self.features1.layer4(X1) H = X1.size()[2] W = X1.size()[3] assert X1.size()[1] == 2048 X1 = self.pooling(X1) assert X1.size() == (N, 2048, 1, 1) X1 = X1.view(N, 2048) X = self.fc(X1) assert X.size() == (N, 1) return X class DBCNNManager(object): def __init__(self, options, path): """Prepare the network, criterion, solver, and data. Args: options, dict: Hyperparameters. """ print('Prepare the network and data.') self._options = options self._path = path # Network. self._net = torch.nn.DataParallel(DBCNN(self._options), device_ids=[0]).cuda() if self._options['fc'] == False: self._net.load_state_dict(torch.load(path['fc_root'])) print(self._net) # Criterion. self._criterion = torch.nn.MSELoss().cuda() # Solver. if self._options['fc'] == True: self._solver = torch.optim.SGD( self._net.module.fc.parameters(), lr=self._options['base_lr'], momentum=0.9, weight_decay=self._options['weight_decay']) else: self._solver = torch.optim.Adam( self._net.module.parameters(), lr=self._options['base_lr'], weight_decay=self._options['weight_decay']) if (self._options['dataset'] == 'live') | (self._options['dataset'] == 'livec'): if self._options['dataset'] == 'live': crop_size = 432 else: crop_size = 448 train_transforms = torchvision.transforms.Compose([ torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.RandomCrop(size=crop_size), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) # if (self._options['dataset'] == 'live'): # if self._options['dataset'] == 'live': # crop_size = 432 # else: # crop_size = 448 # train_transforms = torchvision.transforms.Compose([ # torchvision.transforms.RandomHorizontalFlip(), # torchvision.transforms.RandomCrop(size=crop_size), # torchvision.transforms.ToTensor(), # torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), # std=(0.229, 0.224, 0.225)) # ]) # elif (self._options['dataset'] == 'livec'): # train_transforms = torchvision.transforms.Compose([ # torchvision.transforms.RandomHorizontalFlip(), # torchvision.transforms.ToTensor(), # torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), # std=(0.229, 0.224, 0.225)) # ]) elif (self._options['dataset'] == 'csiq') | (self._options['dataset'] == 'tid2013'): train_transforms = torchvision.transforms.Compose([ torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) elif self._options['dataset'] == 'mlive': train_transforms = torchvision.transforms.Compose([ torchvision.transforms.Resize((570, 960)), torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) elif self._options['dataset'] == 'livecp': train_transforms = torchvision.transforms.Compose([ torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) elif self._options['dataset'] == 'koniq10k': train_transforms = torchvision.transforms.Compose([ torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) elif self._options['dataset'] == 'kadid10k': train_transforms = torchvision.transforms.Compose([ torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) elif self._options['dataset'] == 'kadis700k': train_transforms = torchvision.transforms.Compose([ torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) elif self._options['dataset'] == 'selftrain': train_transforms = torchvision.transforms.Compose([ torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.RandomCrop(size=500), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) # torchvision.transforms.Resize((384, 512)), # torchvision.transforms.RandomHorizontalFlip(), # torchvision.transforms.ToTensor(), # torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), # std=(0.229, 0.224, 0.225)) ]) test_transforms = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) if self._options['dataset'] == 'live': import LIVEFolder train_data = LIVEFolder.LIVEFolder( root=self._path['live'], loader=default_loader, index=self._options['train_index'], transform=train_transforms) test_data = LIVEFolder.LIVEFolder( root=self._path['live'], loader=default_loader, index=self._options['test_index'], transform=test_transforms) elif self._options['dataset'] == 'csiq': import CSIQFolder train_data = CSIQFolder.CSIQFolder( root=self._path['csiq'], loader=default_loader, index=self._options['train_index'], transform=train_transforms) test_data = CSIQFolder.CSIQFolder( root=self._path['csiq'], loader=default_loader, index=self._options['test_index'], transform=test_transforms) # elif self._options['dataset'] == 'livec': # import LIVEChallengeFolder2 # train_data = LIVEChallengeFolder2.Koniq10kFolder( # root=self._path['koniq10k'], loader=default_loader, index=self._options['train_index'], # transform=train_transforms) # test_data = LIVEChallengeFolder2.LIVECompressedFolder2( # root=self._path['livec'], loader=default_loader, index=self._options['test_index'], # transform=test_transforms) elif self._options['dataset'] == 'livec': import LIVEChallengeFolder train_data = LIVEChallengeFolder.LIVEChallengeFolder( root=self._path['livec'], loader=default_loader, index=self._options['train_index'], transform=train_transforms) test_data = LIVEChallengeFolder.LIVEChallengeFolder( root=self._path['livec'], loader=default_loader, index=self._options['test_index'], transform=test_transforms) elif self._options['dataset'] == 'livecp': import LIVECompressedFolder train_data = LIVECompressedFolder.LIVECompressedFolder( root=self._path['livecp'], loader=default_loader, index=self._options['train_index'], transform=train_transforms) test_data = LIVECompressedFolder.LIVECompressedFolder( root=self._path['livecp'], loader=default_loader, index=self._options['test_index'], transform=test_transforms) elif self._options['dataset'] == 'koniq10k': import Koniq10kFolder train_data = Koniq10kFolder.Koniq10kFolder( root=self._path['koniq10k'], loader=default_loader, index=self._options['train_index'], transform=train_transforms) test_data = Koniq10kFolder.Koniq10kFolder( root=self._path['koniq10k'], loader=default_loader, index=self._options['test_index'], transform=test_transforms) elif self._options['dataset'] == 'kadid10k': import Kadid10kFolder train_data = Kadid10kFolder.Kadid10kFolder( root=self._path['kadid10k'], loader=default_loader, index=self._options['train_index'], transform=train_transforms) test_data = Kadid10kFolder.Kadid10kFolder( root=self._path['kadid10k'], loader=default_loader, index=self._options['test_index'], transform=test_transforms) elif self._options['dataset'] == 'kadis700k': import Kadis700kFolder train_data = Kadis700kFolder.Kadis700kFolder( root=self._path['kadis700k'], loader=default_loader, index=self._options['train_index'], transform=train_transforms) test_data = Kadis700kFolder.Kadis700kFolder( root=self._path['kadis700k'], loader=default_loader, index=self._options['test_index'], transform=test_transforms) elif self._options['dataset'] == 'selftrain': import SelfTrainFolder # train_data = SelfTrainFolder.Kadid10kFolder( # root=self._path['kadid10k'], loader = default_loader, index = self._options['train_index'], # transform=train_transforms) train_data = SelfTrainFolder.LIVEChallengeFolder( root=self._path['livecp'], loader=default_loader, index=self._options['train_index'], transform=train_transforms) # root = self._path['koniq10k'], loader = default_loader, index = self._options['train_index2'], # transform = train_transforms) # test_data = SelfTrainFolder.Kadid10kFolder( # root=self._path['kadid10k'], loader = default_loader, index = self._options['test_index'], # transform=test_transforms) test_data = SelfTrainFolder.LIVECompressed2Folder( root=self._path['livecp'], loader=default_loader, index=self._options['test_index'], transform=test_transforms) # test_data2 = SelfTrainFolder.Koniq10kFolder( # root=self._path['koniq10k'], loader = default_loader, index = self._options['test_index2'], # transform=test_transforms) else: raise AttributeError('Only support LIVE and LIVEC right now!') self._train_loader = torch.utils.data.DataLoader( train_data, batch_size=self._options['batch_size'], shuffle=True, num_workers=0, pin_memory=True) self._test_loader = torch.utils.data.DataLoader( test_data, batch_size=1, shuffle=False, num_workers=0, pin_memory=True) self.scheduler = lr_scheduler.StepLR(self._solver, last_epoch=-1, step_size=2, gamma=0.1) def train(self, iteration): """Train the network.""" print('Training.') best_srcc = 0.0 best_plcc = 0.0 best_epoch = None print('Epoch\tTrain loss\tTrain_SRCC\tTest_SRCC\tTest_PLCC') for t in range(self._options['epochs']): time_start = time.time() epoch_loss = [] pscores = [] tscores = [] num_total = 0 for X, y in self._train_loader: # Data. X = torch.tensor(X.cuda()) y = torch.tensor(y.cuda()) # Clear the existing gradients. self._solver.zero_grad() # Forward pass. score = self._net(X) loss = self._criterion(score, y.view(len(score), 1).detach()) epoch_loss.append(loss.item()) # Prediction. num_total += y.size(0) pscores = pscores + score.cpu().tolist() tscores = tscores + y.cpu().tolist() # Backward pass. loss.backward() self._solver.step() train_srcc, _ = stats.spearmanr(pscores, tscores) test_srcc, test_plcc = self._consitency(self._test_loader) time_end = time.time() print('%d epoch done; total time = %f sec' % ((t + 1), (time_end - time_start))) if test_srcc > best_srcc: best_srcc = test_srcc best_plcc = test_plcc best_epoch = t + 1 print('*', end='') pwd = os.getcwd() if self._options['fc'] == True: modelpath = os.path.join(pwd, 'fc_models', ('net_params' + '_best' + '.pkl')) else: modelpath = os.path.join(pwd, 'db_models', ('net_params' + '_best' + '.pkl')) torch.save(self._net.state_dict(), modelpath) print('%d\t%4.10f\t%4.3f\t\t%4.4f\t\t%4.4f\t%4.4f' % (t + 1, self._solver.param_groups[0]['lr'], sum(epoch_loss) / len(epoch_loss), train_srcc, test_srcc, test_plcc)) if self._options['fc'] != True: self.scheduler.step() print('Best at epoch %d, test srcc %f' % (best_epoch, best_srcc)) return best_srcc, best_plcc def _consitency(self, data_loader): self._net.train(False) num_total = 0 pscores = [] tscores = [] for X, y in data_loader: # Data. X = torch.tensor(X.cuda()) y = torch.tensor(y.cuda()) # Prediction. score = self._net(X) pscores = pscores + score[0].cpu().tolist() tscores = tscores + y.cpu().tolist() num_total += y.size(0) test_srcc, _ = stats.spearmanr(pscores, tscores) tscores = torch.Tensor(tscores).reshape(-1).tolist() # live compressed test_plcc, _ = stats.pearsonr(pscores, tscores) self._net.train(True) # Set the model to training phase return test_srcc, test_plcc def main(): """The main function.""" import argparse parser = argparse.ArgumentParser( description='Train DB-CNN for BIQA.') parser.add_argument('--base_lr', dest='base_lr', type=float, default=1e-5, help='Base learning rate for training.') parser.add_argument('--batch_size', dest='batch_size', type=int, default=32, help='Batch size.') parser.add_argument('--epochs', dest='epochs', type=int, default=30, help='Epochs for training.') parser.add_argument('--weight_decay', dest='weight_decay', type=float, default=5e-4, help='Weight decay.') parser.add_argument('--dataset', dest='dataset', type=str, default='kadis700k', help='dataset: live|csiq|tid2013|livec|mlive|livecp|koniq10k|kadid10k|selftrain|kadis700k') args = parser.parse_args() if args.base_lr <= 0: raise AttributeError('--base_lr parameter must >0.') if args.batch_size <= 0: raise AttributeError('--batch_size parameter must >0.') if args.epochs < 0: raise AttributeError('--epochs parameter must >=0.') if args.weight_decay <= 0: raise AttributeError('--weight_decay parameter must >0.') options = { 'base_lr': args.base_lr, 'batch_size': args.batch_size, 'epochs': args.epochs, 'weight_decay': args.weight_decay, 'dataset': args.dataset, 'fc': [], 'train_index': [], 'test_index': [] } path = { 'live': os.path.join('dataset', 'F:\dataset\databaserelease2'), 'csiq': os.path.join('dataset', 'S:\dataset\CSIQ'), 'tid2013': os.path.join('dataset', 'TID2013'), # 'livec': os.path.join('dataset', 'F:\\dataset\\ChallengeDB_release\\Images'), 'livec': os.path.join('dataset', 'F:\\dataset\\ChallengeDB_release'), 'mlive': os.path.join('dataset', 'LIVEmultidistortiondatabase'), 'livecp': os.path.join('dataset', 'F:\\dataset\\LIVECompressed2'), # F:\\dataset\\LIVECompressed2\\level63 'koniq10k': os.path.join('dataset', 'F:\\dataset\\koniq_10k\\author\\koniq10k_512x384'), # 'F:\\dataset\\LIVECompressed2\\Koniq10k_JPEG_distorted_images'), 'kadid10k': os.path.join('dataset', 'F:\\dataset\\KADID-10k\\kadid10k'), 'selftrain': os.path.join('dataset', 'F:\\dataset\\KADID-10k\\kadid10k'), 'kadis700k': os.path.join('dataset', '/mnt/sda2/New/kadis700k/kadis700k'), 'fc_model': os.path.join('fc_models'), 'scnn_root': os.path.join('pretrained_scnn', 'net_params18.pkl'), 'fc_root': os.path.join('fc_models', 'net_params_best.pkl'), 'db_model': os.path.join('db_models'), 'db_root': os.path.join('db_models', 'net_params_best.pkl') } if options['dataset'] == 'live': index = list(range(0, 29)) elif options['dataset'] == 'csiq': index = list(range(0, 30)) elif options['dataset'] == 'tid2013': index = list(range(0, 25)) elif options['dataset'] == 'mlive': index = list(range(0, 15)) # elif options['dataset'] == 'livec': # index = list(range(0, 10073)) # index_test = list(range(0, 80)) elif options['dataset'] == 'livec': index = list(range(0, 1162)) elif options['dataset'] == 'livecp': index = list(range(0, 80)) elif options['dataset'] == 'koniq10k': index = list(range(0, 10073)) elif options['dataset'] == 'kadid10k': index = list(range(0, 10125)) elif options['dataset'] == 'kadis700k': index = list(range(0, 129109)) # 129109 elif options['dataset'] == 'selftrain': index = list(range(0, 1082)) # index2 = list(range(0, 10073)) index_test = list(range(0, 80)) lr_backup = options['base_lr'] iter_num = 1 srcc_all = np.zeros((1, iter_num + 1), dtype=np.float) plcc_all = np.zeros((1, iter_num + 1), dtype=np.float) for i in range(0, iter_num): best_srcc = 0.0 best_plcc = 0.0 # randomly split train-test set random.shuffle(index) train_index = index[0:round(0.8 * len(index))] test_index = index[round(0.8 * len(index)):len(index)] options['train_index'] = train_index options['test_index'] = test_index pwd = os.getcwd() # train the fully connected layer only options['fc'] = True options['base_lr'] = 1e-3 manager = DBCNNManager(options, path) best_srcc, best_plcc = manager.train(i) # fine-tune all model options['fc'] = False options['base_lr'] = lr_backup manager = DBCNNManager(options, path) best_srcc, best_plcc = manager.train(i) result_path = os.path.join(pwd, 'result', ('db_result_' + str(i + 1) + '.mat')) scipy.io.savemat(result_path, mdict={'best_srcc': best_srcc, 'best_plcc': best_plcc}) srcc_all[0][i] = best_srcc plcc_all[0][i] = best_plcc srcc_mean = np.mean(srcc_all[0][0:iter_num]) print('average srcc:%4.4f' % (srcc_mean)) plcc_mean = np.mean(plcc_all[0][0:iter_num]) print('average plcc:%4.4f' % (plcc_mean)) srcc_all[0][iter_num] = srcc_mean plcc_all[0][iter_num] = plcc_mean print(srcc_all) print(plcc_all) final_result_path = os.path.join(pwd, 'result', ('final_result' + '.mat')) scipy.io.savemat(final_result_path, mdict={'srcc_all': srcc_all, 'plcc_all': plcc_all}) return best_srcc if __name__ == '__main__': main() ``` #### File: 2279209430/BVQA-2021/result_analysis.py ```python import numpy as np from scipy.optimize import curve_fit from scipy import stats from argparse import ArgumentParser # define 4-parameter logistic regression def logistic_func(X, bayta1, bayta2, bayta3, bayta4): logisticPart = 1 + np.exp(np.negative(np.divide(X - bayta3, np.abs(bayta4)))) yhat = bayta2 + np.divide(bayta1 - bayta2, logisticPart) return yhat if __name__ == "__main__": parser = ArgumentParser(description='Result Analysis for Quality Assessment of In-the-Wild Videos') parser.add_argument('--lr', type=float, default=5e-4, help='learning rate (default: 5e-4)') parser.add_argument('--batch_size', type=int, default=32, help='input batch size for training (default: 32)') parser.add_argument('--epochs', type=int, default=40, help='number of epochs to train (default: 40)') parser.add_argument('--model', default='QPMP', type=str, help='model name (default: QPMP)') parser.add_argument('--loss', default='plcc+srcc', type=str, help='loss type (default: plcc+srcc)') parser.add_argument('--feature_extractor', default='SpatialMotion', type=str, help='feature_extractor backbone (default: ResNet-50)') parser.add_argument('--trained_datasets', nargs='+', type=str, default=['C'], help="trained datasets (default: ['C', 'K', 'L', 'N', 'Y', 'Q'])") parser.add_argument('--tested_datasets', nargs='+', type=str, default=['C'], help="tested datasets (default: ['C', 'K', 'L', 'N', 'Y', 'Q'])") parser.add_argument('--train_proportion', type=float, default=1.0, help='the proportion (#total 100%) used in the training set (default: 1.0)') parser.add_argument('--start_exp_id', default=0, type=int, help='strat exp id for train-val-test splits (default: 0)') parser.add_argument('--num_iters', type=int, default=10, help='the number of train-val-test iterations (default: 10)') args = parser.parse_args() for analysis_dataset in args.tested_datasets: all_results = [] for i in range(args.start_exp_id, args.num_iters): save_result_file = 'results/{}-{}-{}-{}-{}-{}-{}-{}-{}-EXP{}.npy'.format(args.model, args.feature_extractor, args.loss, args.train_proportion, args.trained_datasets, args.tested_datasets, args.lr, args.batch_size, args.epochs, i) test = np.load(save_result_file, allow_pickle=True) result = test.tolist() iter_mos = result[analysis_dataset]['sq'] iter_pscore = result[analysis_dataset]['mq'] # logistic regression beta = [np.max(iter_mos), np.min(iter_mos), np.mean(iter_pscore), 0.5] popt, _ = curve_fit(logistic_func, iter_pscore, iter_mos, p0=beta, maxfev=100000000) iter_pscore_logistic = logistic_func(iter_pscore, *popt) SRCC = stats.spearmanr(iter_mos, iter_pscore)[0] PLCC = stats.pearsonr(iter_mos, iter_pscore_logistic)[0] result[analysis_dataset]['SROCC'] = SRCC result[analysis_dataset]['PLCC'] = PLCC all_results.append(result[analysis_dataset]) srcc = [] plcc = [] for i in range(args.start_exp_id, args.num_iters): srcc.append(all_results[i]['SROCC']) plcc.append(all_results[i]['PLCC']) print('Performance on {}:'.format(analysis_dataset)) print('median_srcc: {}, median_plcc: {}'.format(np.median(srcc), np.median(plcc))) print('mean_srcc: {}, mean_plcc: {}'.format(np.mean(srcc), np.mean(plcc))) ```
{ "source": "22ema/Real_Time_Mask_Detection", "score": 3 }
#### File: Real_Time_Mask_Detection/Video_inference/video_inference.py ```python import cv2 from inference.inference import * import timeit def video_inference(video_file, weigths, cfg): ''' video's frame inference and show :param video_file: video file link :param weigths: inference model file link :param cfg: model configuration file link ''' cap = cv2.VideoCapture(video_file) model = setting_model(cfg, weigths) if cap.isOpened(): while True: ret, img = cap.read() # frame read in video start_t = timeit.default_timer() output, trans_image = inference(img, model) # inference frame result_img = post_processing(output, img, trans_image) # visualize bounding box and class in image terminate_t = timeit.default_timer() cv2.imshow('result', result_img) # display result image FPS = int(1./(terminate_t - start_t)) print("FPS:", FPS) if cv2.waitKey(1) & 0xFF == ord('q'): # to click keyboard's 'q' button for end break else: print("can't open video.") cap.release() cv2.destroyAllWindows() ```
{ "source": "22hh8/22hh8.github.io-dorm-norms", "score": 4 }
#### File: 22hh8/22hh8.github.io-dorm-norms/lab7.py ```python from PIL import Image from filter import * class TargetFilter(PlainFilter): """ This will only keep pixels that are close to a target color while the rest of the image turns white.""" __slots__ = ['target'] def __init__(self, base,targetC=Color((.2,.3,.8))): # setting target color """Initialize filter based on an image or other filter.""" # call the PlainFilter initializer self.target = targetC # creating a target slot super().__init__(base) def after(self,x,y): """Pixel color after filtering.""" (r,g,b) = self.before(x,y).rgb() (r1,g1,b1) = self.target.rgb() distance=((r1-r)**2+(g1-g)**2+(b1-b)**2)**.5 # set distance eq if distance<=.5: #if within distance return Color( (r,g,b) ) else: return Color( (1,1,1) ) #turn white class RedFilter(PlainFilter): """ Makes Van Gogh's Bedroom painting more red. """ def __init__(self, base): """Initialize filter based on an image or other filter.""" # call the PlainFilter initializer super().__init__(base) def after(self,x,y): """Pixel color after filtering.""" (r,g,b) = self.before(x,y).rgb() if r > 0 and b > .25: # setting a min to blue helps to make it purple r += .2 c = Color( ((r+1)/2,g,b) ) return c class LighterFilter(PlainFilter): """ This makes an image lighter overall. """ def __init__(self, base): """Initialize filter based on an image or other filter.""" # call the PlainFilter initializer super().__init__(base) def after(self,x,y): """Pixel color becomes whiter after filtering.""" (r,g,b) = self.before(x,y).rgb() r += 1 # mix with white rgb g += 1 b += 1 c = Color( (r/2,g/2,b/2) ) return c class RotateFilter(PlainFilter): """ Make red green and green blue and blue red """ def __init__(self, base): """Initialize filter based on an image or other filter.""" # call the PlainFilter initializer super().__init__(base) def after(self,x,y): """The new Pixel color after filtering.""" (h,s,v) = self.before(x,y).hsv() if x >= self.width/2: h = (h+120)%360 c = Color( (h,s,v), model='hsv' ) return c class DarkerFilter(PlainFilter): """ This makes an image darker overall.""" def __init__(self, base): """Initialize filter based on an image or other filter.""" # call the PlainFilter initializer super().__init__(base) def after(self,x,y): """Pixel color after filtering.""" (r,g,b) = self.before(x,y).rgb() c = Color( (r/2,g/2,b/2) ) # make it darker, closer to 0 return c if __name__ == '__main__': # In this section of code, you should demonstrate how your # filters work. bedroom = Image.open('images/Bedroom.png') result = DarkerFilter(bedroom) result.image().save('DarkerBedroom.png') ```
{ "source": "22malvina/consumption", "score": 2 }
#### File: consumption/app_layer/tests.py ```python from django.test import TestCase from prediction.models import Element, Prediction, PredictionLinear, PredictionLinearFunction from product_card.models import ProductCard from offer.models import Offer, ChequeOffer from company.models import Company, Employee from cheque.models import FNSCheque, FNSChequeElement, QRCodeReader, ImportProverkachekaComFormatLikeFNS, ShowcasesCategory from datetime import datetime from telegram.models import Telegram #from prediction.tests.Base import list_buy_milk from prediction.tests import Base as BasePrediction #print Base.list_buy_milk() import json import time import urllib import urllib2, base64 from loader.cheque.proverkacheka_com import generate_cheque_qr_codes class Base(TestCase): def setUp(self): self.maxDiff = None def test_1(self): """ Польователь первый раз пользуется сейрвисом Создать пользователя по клиентским данным Создать пользовтаелю сомпанию """ pety_employee = Employee(title='Pety', key='123zxc') pety_employee.save() company_family = Company(title='family') company_family.save() company_family.employees.add(pety_employee) company_family.title = 'test' self.assertEqual('test', company_family.title) company_family = Company.objects.get(employees__in=[pety_employee]) self.assertEqual('family', company_family.title) def test_2(self): """ пользователь хочет зашрузить инфо по чеку Должен авторизоваться получить сессию Отправить текс из QR кода для сохранения вбрана компания по мумолчанию Получить сохранненый чек из базы по параметрам """ #TODO пока проинициализируем так self.test_1() #in key = '123zxc' qr_text = 't=20201107T2058&s=63.00&fn=9288000100192401&i=439&fp=2880362760&n=1' self.assertEqual(0, FNSCheque.objects.all().count()) #calc pety_employee = Employee.objects.get(key=key) self.assertEqual('Pety', pety_employee.title) company_family = Company.objects.get(employees__in=[pety_employee]) FNSCheque.import_from_proverkacheka_com_format_like_fns(qr_text, company_family) self.assertEqual(1, FNSCheque.objects.all().count()) cheque_p = QRCodeReader.qr_text_to_params(qr_text) cheque = FNSCheque.objects.get(fns_fiscalDocumentNumber=cheque_p['FD'], fns_fiscalDriveNumber=cheque_p['FN'], fns_fiscalSign=cheque_p['FDP']) cheque.company = Company.objects.get(employees__in=[pety_employee]) cheque.save() FNSCheque.import_from_proverkacheka_com_format_like_fns(qr_text, company_family) FNSCheque.import_from_proverkacheka_com_format_like_fns('t=11&s=22&fn=33&i=44&fp=55&n=1', company_family) self.assertEqual(1, FNSCheque.objects.all().count()) def test_3(self): """ Петя хочет загрузить еще несколко чеков загрцзить все имеющиеся чеки выбтащить и посмотреть что ему скакжет авто сгереренаяя функйция потребления Молока. """ pass def test_4(self): """ импорт из https://proverkacheka.com/check&p=2 получить все чеки получить последний чек загруденный Робо1 загружать последоватетно страницы из https://proverkacheka.com/check&p=2 до тех пор пока не найдем на странице последний чек загрузить страницу вытащить из нее чеки преобразовав чеки в формат для сравнения как текст из QR кода параметров всего 5 попыиаиься найти нужный чек если не нашли загрузить следубщую, ограничимся 100 страницами, но первый раз гораничение в 7000 сохранить их в репозиторий от имени Робо1 получить список QR кодов скормить его стандартном мехаизму сохранения чеков у пользователей потом возможно использовать их для показа похожих товаров в других магазинах и рекомедации цены """ robo1_employee = Employee(title='robo1', key='<KEY>') robo1_employee.save() company_family = Company(title='family') company_family.save() company_family.employees.add(robo1_employee) last_fns_cheques = FNSCheque.objects.filter(company=company_family).order_by('-id') has_last_fns_cheques = False if last_fns_cheques: has_last_fns_cheques = True last_fns_cheque = last_fns_cheques[0] #TODO таким образом будем ломать тест чтобы помнить о необходимости исправления # cheque_params = generate_cheque_qr_codes(has_last_fns_cheques, last_fns_cheques) # # self.assertEqual(0, FNSCheque.objects.all().count()) # self.assertEqual(0, FNSChequeElement.objects.all().count()) # for s in cheque_params: # print s # #TODO нужно передовать компанию для которой сохряняются чеки # FNSCheque.import_from_proverkacheka_com_format_like_fns(s, company_family) # #print 'sleep' # #time.sleep(10) # self.assertEqual(50, FNSCheque.objects.all().count()) # self.assertTrue(99 < FNSChequeElement.objects.all().count()) def test_5(self): """ зайти на ресурс и посмотреть офферы каких витирин воообще присутсвуют. 1. товары можно искать тестовой строкой 2. дерево категорий товаров """ company_family = Company(title='family') company_family.save() for i in BasePrediction.list_buy_milk(): fns_cheque = FNSCheque(is_manual=False, company=company_family, fns_dateTime=i['dateTime'], json={'data': {'json': i}}) fns_cheque.save() for j in i['items']: e = FNSChequeElement(fns_cheque=fns_cheque, name=j['name'], quantity=j['quantity'], volume=j['volume'], sum=j['sum'], price=j['price']) e.save() for i in BasePrediction.list_buy_cheese(): fns_cheque = FNSCheque(is_manual=False, company=company_family, fns_dateTime=i['dateTime'], json={'data': {'json': i}}) fns_cheque.save() for j in i['items']: e = FNSChequeElement(fns_cheque=fns_cheque, name=j['name'], quantity=j['quantity'], volume=j['volume'], sum=j['sum'], price=j['price']) e.save() #создавать офферы на основе имеющихся сущностей text = u'СЫР' offers = ChequeOffer.find(text) self.assertEqual([ {u'datetime': {u'update': u'2020-05-28T22:51:00'}, u'price': {u'one': 13500, u'per_one_gram': 61363.64}, u'product': {u'title': u'4607004891694 \u0421\u042b\u0420 \u0421\u041b\u0418\u0412\u041e\u0427\u041d\u042b\u0419 HOCHLA'}, u'showcase': {u'address': u'107076, \u0433.\u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b.\u0411\u043e\u0433\u043e\u0440\u043e\u0434\u0441\u043a\u0438\u0439 \u0412\u0430\u043b, \u0434.6, \u043a\u043e\u0440\u043f.2'}}, {u'datetime': {u'update': u'2020-05-28T22:51:00'}, u'price': {u'one': 13990, u'per_one_gram': 55960.0}, u'product': {u'title': u'8600742011658 \u0421\u042b\u0420 \u0421\u0415\u0420\u0411\u0421\u041a\u0410\u042f \u0411\u0420\u042b\u041d\u0417\u0410'}, u'showcase': {u'address': u'107076, \u0433.\u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b.\u0411\u043e\u0433\u043e\u0440\u043e\u0434\u0441\u043a\u0438\u0439 \u0412\u0430\u043b, \u0434.6, \u043a\u043e\u0440\u043f.2'}}, {u'datetime': {u'update': u'2020-05-15T20:45:00'}, u'price': {u'one': 49990, u'per_one_gram': 49990.0}, u'product': {u'title': u'2364939000004 \u0421\u042b\u0420 \u041a\u041e\u0420\u041e\u041b\u0415\u0412\u0421\u041a\u0418\u0419 51%'}, u'showcase': {u'address': u'\u0433.\u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b.\u0411\u043e\u0433\u043e\u0440\u043e\u0434\u0441\u043a\u0438\u0439 \u0412\u0430\u043b, \u0434.6, \u043a\u043e\u0440\u043f.2'}}, {u'datetime': {u'update': u'2020-05-10T21:08:00'}, u'price': {u'one': 59990, u'per_one_gram': 59990.0}, u'product': {u'title': u'2316971000009 \u0421\u042b\u0420 \u041c\u0410\u0410\u0421\u0414\u0410\u041c 45% \u0418\u0427\u0410\u041b'}, u'showcase': {u'address': u'\u0433.\u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b.\u0411\u043e\u0433\u043e\u0440\u043e\u0434\u0441\u043a\u0438\u0439 \u0412\u0430\u043b, \u0434.6, \u043a\u043e\u0440\u043f.2'}}, {u'datetime': {u'update': u'2020-04-21T14:04:00'}, u'price': {u'one': 50306, u'per_one_gram': 50306.0}, u'product': {u'title': u'2372240000002 \u0421\u042b\u0420 \u0413\u0420\u0410\u041d\u0414 SPAR 45%'}, u'showcase': {u'address': u'\u0433.\u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b.\u0411\u043e\u0433\u043e\u0440\u043e\u0434\u0441\u043a\u0438\u0439 \u0412\u0430\u043b, \u0434.6, \u043a\u043e\u0440\u043f.2'}}, {u'datetime': {u'update': u'2020-04-21T14:04:00'}, u'price': {u'one': 37670, u'per_one_gram': 37670.0}, u'product': {u'title': u'2364178000001 \u0421\u042b\u0420 \u041c\u0410\u0410\u0421\u0414\u0410\u041c 45% \u041f\u0420\u0415'}, u'showcase': {u'address': u'\u0433.\u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b.\u0411\u043e\u0433\u043e\u0440\u043e\u0434\u0441\u043a\u0438\u0439 \u0412\u0430\u043b, \u0434.6, \u043a\u043e\u0440\u043f.2'}}, {u'datetime': {u'update': u'2020-05-23T21:58:00'}, u'price': {u'one': 49900, u'per_one_gram': 49900.0}, u'product': {u'title': u'\u0421\u042b\u0420 \u0420\u041e\u0421\u0421\u0418\u0419\u0421\u041a\u0418\u0419 45%'}, u'showcase': {u'address': u''}}, {u'datetime': {u'update': u'2020-05-23T21:58:00'}, u'price': {u'one': 18900, u'per_one_gram': 75600.0}, u'product': {u'title': u'\u0421\u042b\u0420 \u041c\u0410\u0421\u041a\u0410\u0420.80% 250\u0413\u0420'}, u'showcase': {u'address': u''}}, {u'datetime': {u'update': u'2020-05-23T21:58:00'}, u'price': {u'one': 3399, u'per_one_gram': 37766.67}, u'product': {u'title': u'\u0421\u042b\u0420 \u041f\u041b \u0421 \u041b\u0423\u041a\u041e\u041c 90\u0413'}, u'showcase': {u'address': u''}}, {u'datetime': {u'update': u'2020-05-23T21:58:00'}, u'price': {u'one': 3399, u'per_one_gram': 37766.67}, u'product': {u'title': u'\u0421\u042b\u0420 \u041f\u041b \u0412\u041e\u041b\u041d\u0410 45% 90\u0413'}, u'showcase': {u'address': u''}}, {u'datetime': {u'update': u'2020-05-02T20:56:00'}, u'price': {u'one': 3899, u'per_one_gram': 48737.5}, u'product': {u'title': u'\u041f\u041b.\u0421\u042b\u0420 \u042f\u041d\u0422\u0410\u0420\u042c \u0424\u041e\u041b80\u0413'}, u'showcase': {u'address': u''}}, {u'datetime': {u'update': u'2020-05-02T20:56:00'}, u'price': {u'one': 15900, u'per_one_gram': 39750.0}, u'product': {u'title': u'\u0421\u042b\u0420 \u041f\u041b \u0424\u0415\u0422\u0410\u041a\u0421\u0410 400\u0413'}, u'showcase': {u'address': u''}}, {u'datetime': {u'update': u'2020-05-02T20:56:00'}, u'price': {u'one': 3399, u'per_one_gram': 37766.67}, u'product': {u'title': u'\u0421\u042b\u0420 \u041f\u041b \u0412\u041e\u041b\u041d\u0410 45% 90\u0413'}, u'showcase': {u'address': u''}}, {u'datetime': {u'update': u'2020-05-02T20:56:00'}, u'price': {u'one': 3399, u'per_one_gram': 37766.67}, u'product': {u'title': u'\u0421\u042b\u0420 \u041f\u041b \u0412\u041e\u041b\u041d\u0410 45% 90\u0413'}, u'showcase': {u'address': u''}}, {u'datetime': {u'update': u'2020-05-02T20:56:00'}, u'price': {u'one': 3899, u'per_one_gram': 48737.5}, u'product': {u'title': u'\u041f\u041b.\u0421\u042b\u0420 \u042f\u041d\u0422\u0410\u0420\u042c \u0424\u041e\u041b80\u0413'}, u'showcase': {u'address': u''}}, {u'datetime': {u'update': u'2020-06-03T14:50:00'}, u'price': {u'one': 59899, u'per_one_gram': 59899.0}, u'product': {u'title': u'2364178000001 \u0421\u042b\u0420 \u041c\u0410\u0410\u0421\u0414\u0410\u041c 45% \u041f\u0420\u0415'}, u'showcase': {u'address': u'107076, \u0433.\u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b.\u0411\u043e\u0433\u043e\u0440\u043e\u0434\u0441\u043a\u0438\u0439 \u0412\u0430\u043b, \u0434.6, \u043a\u043e\u0440\u043f.2'}}, {u'datetime': {u'update': u'2020-06-03T14:50:00'}, u'price': {u'one': 20000, u'per_one_gram': 50000.0}, u'product': {u'title': u'4607004892677 \u0421\u042b\u0420 HOCHLAND \u041c\u042f\u0413\u041a\u0418\u0419'}, u'showcase': {u'address': u'107076, \u0433.\u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b.\u0411\u043e\u0433\u043e\u0440\u043e\u0434\u0441\u043a\u0438\u0439 \u0412\u0430\u043b, \u0434.6, \u043a\u043e\u0440\u043f.2'}} ], offers) def test_6(self): """ получить последний по дате оффер, минимальный, и максимальный за последнюю неделю/месяц/квартал/год/все время , 201213 1212 для адреса """ company_family = Company(title='family') company_family.save() for i in BasePrediction.list_buy_milk(): fns_cheque = FNSCheque(is_manual=False, company=company_family, fns_dateTime=i['dateTime'], json={'data': {'json': i}}) fns_cheque.save() for j in i['items']: e = FNSChequeElement(fns_cheque=fns_cheque, name=j['name'], quantity=j['quantity'], volume=j['volume'], sum=j['sum'], price=j['price']) e.save() for i in BasePrediction.list_buy_cheese(): fns_cheque = FNSCheque(is_manual=False, company=company_family, fns_dateTime=i['dateTime'], json={'data': {'json': i}}) fns_cheque.save() for j in i['items']: e = FNSChequeElement(fns_cheque=fns_cheque, name=j['name'], quantity=j['quantity'], volume=j['volume'], sum=j['sum'], price=j['price']) e.save() #создавать офферы на основе имеющихся сущностей text = u'МОЛОКО' #text = u'СЫР' offers = ChequeOffer.find(text) print "===================================" #self.assertEqual([], offers) #2) как то их группируем - наверно в рамках одной витрины (инн + ритеил адресс), но даже если оффер меняется(изменилось название в чеке - это происходит очень редко и не важно, даже больше скажем что важно только последнее) т.е. если название в рамках одного магазина разные то это разные продукты #{u'datetime': {u'update': u'2020-06-03t14:50:00'}, #u'price': {u'one': 20000, u'per_one_gram': 50000.0}, #u'product': {u'title': u'4607004892677 \u0421\u042b\u0420 hochland \u041c\u042f\u0413\u041a\u0418\u0419'}, #u'showcase': {u'address': '107076, \xd0\xb3.\xd0\x9c\xd0\xbe\xd1\x81\xd0\xba\xd0\xb2\xd0\xb0, \xd1\x83\xd0\xbb.\xd0\x91\xd0\xbe\xd0\xb3\xd0\xbe\xd1\x80\xd0\xbe\xd0\xb4\xd1\x81\xd0\xba\xd0\xb8\xd0\xb9 \xd0\x92\xd0\xb0\xd0\xbb, \xd0\xb4.6, \xd0\xba\xd0\xbe\xd1\x80\xd0\xbf.2'}} offer_analytics = ChequeOffer.analytics_last_min_max_price(offers) self.assertEqual([ {u'last_datetime': u'2020-06-03T14:50:00', u'count': 2, u'price_analytics': {u'last': {u'one': 5990, u'per_one_gram': 5990.0}, u'max': {u'one': 6990, u'per_one_gram': 6990.0}, u'min': {u'one': 5990, u'per_one_gram': 5990.0}}, u'product': {u'title': u'4607045982771 \u041c\u041e\u041b\u041e\u041a\u041e SPAR \u0423\u041b\u042c\u0422\u0420\u0410\u041f\u0410'}, u'showcase': {u'address': u'\u0433.\u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b.\u0411\u043e\u0433\u043e\u0440\u043e\u0434\u0441\u043a\u0438\u0439 \u0412\u0430\u043b, \u0434.6, \u043a\u043e\u0440\u043f.2'}}, {u'last_datetime': u'2020-05-24T12:56:00', u'count': 1, u'price_analytics': {u'last': {u'one': 4990, u'per_one_gram': 4990.0}, u'max': {u'one': 4990, u'per_one_gram': 4990.0}, u'min': {u'one': 4990, u'per_one_gram': 4990.0}}, u'product': {u'title': u'4607045982788 \u041c\u041e\u041b\u041e\u041a\u041e SPAR \u0423\u041b\u042c\u0422\u0420\u0410\u041f\u0410'}, u'showcase': {u'address': u'\u0433.\u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b.\u0411\u043e\u0433\u043e\u0440\u043e\u0434\u0441\u043a\u0438\u0439 \u0412\u0430\u043b, \u0434.6, \u043a\u043e\u0440\u043f.2'}}, {u'last_datetime': u'2020-05-15T20:45:00', u'count': 1, u'price_analytics': {u'last': {u'one': 5490, u'per_one_gram': 5935.14}, u'max': {u'one': 5490, u'per_one_gram': 5935.14}, u'min': {u'one': 5490, u'per_one_gram': 5935.14}}, u'product': {u'title': u'4607167840416 \u041c\u041e\u041b\u041e\u041a\u041e SPAR 3,2% 925'}, u'showcase': {u'address': u'\u0433.\u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b.\u0411\u043e\u0433\u043e\u0440\u043e\u0434\u0441\u043a\u0438\u0439 \u0412\u0430\u043b, \u0434.6, \u043a\u043e\u0440\u043f.2'}}, { u'count': 2, u'last_datetime': u'2020-05-10T21:08:00', u'price_analytics': {u'last': {u'one': 8990, u'per_one_gram': 5288.24}, u'max': {u'one': 8990, u'per_one_gram': 5288.24}, u'min': {u'one': 8990, u'per_one_gram': 5288.24}}, u'product': {u'title': u'4607167841154 \u041c\u041e\u041b\u041e\u041a\u041e SPAR 2,5% 1,7'}, u'showcase': {u'address': u'\u0433.\u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b.\u0411\u043e\u0433\u043e\u0440\u043e\u0434\u0441\u043a\u0438\u0439 \u0412\u0430\u043b, \u0434.6, \u043a\u043e\u0440\u043f.2'}}, { u'count': 1, u'last_datetime': u'2020-05-06T21:53:00', u'price_analytics': {u'last': {u'one': 5990, u'per_one_gram': 5990.0}, u'max': {u'one': 5990, u'per_one_gram': 5990.0}, u'min': {u'one': 5990, u'per_one_gram': 5990.0}}, u'product': {u'title': u'4690228007842 \u041c\u041e\u041b\u041e\u041a\u041e \u0414\u041e\u041c\u0418\u041a \u0412 \u0414\u0415\u0420\u0415\u0412'}, u'showcase': {u'address': u'\u0433.\u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b.\u0411\u043e\u0433\u043e\u0440\u043e\u0434\u0441\u043a\u0438\u0439 \u0412\u0430\u043b, \u0434.6, \u043a\u043e\u0440\u043f.2'}}, { u'count': 1, u'last_datetime': u'2020-05-23T21:58:00', u'price_analytics': { u'last': { u'one': 7990, u'per_one_gram': 5707.14 }, u'max': {u'one': 7990, u'per_one_gram': 5707.14}, u'min': {u'one': 7990, u'per_one_gram': 5707.14}}, u'product': {u'title': u'\u041c\u041e\u041b\u041e\u041a\u041e \u041f\u0410\u0421\u0422.3,7%1400'}, u'showcase': {u'address': u'\u0433.\u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b.\u0411\u043e\u0433\u043e\u0440\u043e\u0434\u0441\u043a\u0438\u0439 \u0412\u0430\u043b, \u0434.6, \u043a\u043e\u0440\u043f.2'}}, ], offer_analytics) def test_7(self): """ 1. создать чек на основе строки полученой из QR кода 2. обновить данные в чеке из проверка чеков ком """ company_family = Company(title='family') company_family.save() qr_text = 't=20200524T125600&s=849.33&fn=9285000100127361&i=115180&fp=1513716805&n=1' fns_cheque = FNSCheque.create_fns_cheque_from_qr_text(qr_text, company_family) fns_cheque.save() self.assertEqual('', fns_cheque.fns_userInn) self.assertEqual('', FNSCheque.objects.get(fns_fiscalDocumentNumber='115180').fns_userInn) fns_cheque_json = ImportProverkachekaComFormatLikeFNS.get_fns_cheque_by_qr_params('', qr_text) self.assertTrue(FNSCheque.has_cheque_with_fiscal_params(company_family, fns_cheque_json["document"]["receipt"]["fiscalDocumentNumber"], fns_cheque_json["document"]["receipt"]["fiscalDriveNumber"], fns_cheque_json["document"]["receipt"]["fiscalSign"], fns_cheque_json["document"]["receipt"]["dateTime"], fns_cheque_json["document"]["receipt"].get("totalSum", 'Error'))) self.assertTrue(FNSCheque.has_cheque_with_fns_cheque_json(company_family, fns_cheque_json)) #FNSCheque.update_cheque_from_json(fns_cheque, fns_cheque_json) fns_cheque.update_cheque_from_json(fns_cheque_json) self.assertEqual(u'5258056945', fns_cheque.fns_userInn) self.assertEqual(u'5258056945', FNSCheque.objects.get(fns_fiscalDocumentNumber='115180').fns_userInn) def test_8(self): """ Смоделировать ввидение команд новым пользователем. /start t=20200524T125600&s=849.33&fn=9285000100127361&i=115180&fp=1513716805&n=1 t=20200506T215300&s=1351.88&fn=9285000100127255&i=83300&fp=328049751&n=1 t=20200421T140400&s=1057.46&fn=9285000100127255&i=79753&fp=3686248129&n=1 /cheques что приходит от пользователя? сообщение из ТГ, которое содержит запрос к боту. который может не ожидать ответ может ожидать мгновенный ответ может ожидать отложенный ответ может ожидать несколько отложенных ответов """ company_family = Company(title='family') company_family.save() #full_message = {} #chat_id = full_message['message']['chat']['id'] #message = full_message['message']['text'] #telegram_user_id = message['message']['from']['id'] #first_name = message['message']['from'].get('first_name', '') #last_name = message['message']['from'].get('last_name', '') #language_code = message['message']['from'].get('language_code', '') qr_tests = [ 't=20200524T125600&s=849.33&fn=9285000100127361&i=115180&fp=1513716805&n=1', 't=20200506T215300&s=1351.88&fn=9285000100127255&i=83300&fp=328049751&n=1', 't=20200421T140400&s=1057.46&fn=9285000100127255&i=79753&fp=3686248129&n=1', 'test t=20200421T140400&s=1057.46&fn=9285000100127255&i=79753&fp=3686248129&n=1 test', u'Привет test t=20200421T140400&s=1057.46&fn=9285000100127255&i=79753&fp=3686248129&n=1 test', u""" message.find('i') >= 0 t=20201216T1818&s=29.00&fn=9280440301295284&i=236&fp=3107860384&n=1 sf s выаавы ы ва ывage.find('t') >= 0 and \ message.find('s') >= 0 and \ message.find('fn') >= 0 and \ message.find('fp') >= 0 and \ message.find('i') >= 0 t=20201216T1818&s=29.00&fn=9280440301295284&i=236&fp=3107860384&n=1 sf s выаавы ы ва ывage.find('t') >= 0 and \ message.find('s') >= 0 and \ message.find('fn') >= 0 and \ message.find('fp') >= 0 and \ message.find('i') >= 0 t=20201216T1818&s=29.00&fn=9280440301295284&i=236&fp=3107860384&n=1 sf s выаавы ы ва ыв """, 'print "====", message.en', 'dsf ds fvt=20201216T1818&s=29.00&fn=9280440301295284&i=236&fp=3107860384&n=1 sdf ds', u'spent; 101.01; буреговы; мак авто', u'spend; 60; кофе; ван бакс тверская 7; 2020.12.19 18:46', u'spend; 60; кофе; ван бакс; 2020.12.15', ] chat_id = 'Test chat id = 100500' chat_id = '383332826' for qr_test in qr_tests: message = qr_test print '====', message.encode('utf8') Telegram.process_message(company_family, chat_id, message) Telegram.process_message(company_family, chat_id, '/list') Telegram.process_message(company_family, chat_id, '/cheque 2') Telegram.process_message(company_family, chat_id, '/cheque_1') Telegram.process_message(company_family, chat_id, '/cheque3') def test_9(self): """ пробуем подучить сообщения из телеграмма """ Telegram.process_last_messages_from_bot() Telegram.process_last_messages_from_bot() def test_10(self): """ вделим 5(6 - дата и время) нужных параметров и запроса """ #t=20201216T1818&s=29.00&fn=9280440301295284&i=236&fp=3107860384&n=1 s2 = [ '20201216T1818 29.00 9280440301295284 236 3107860384', #'2020.12.16 18:18:01 29.00 9280440301295284 236 3107860384', '2020.12.16 18:18 29.00 9280440301295284 236 3107860384', '18:18 2020.12.16 29.00 9280440301295284 236 3107860384', '18:18 16.12.2020 29.00 9280440301295284 236 3107860384', '18:18 2020.12.16 29.00 9280440301295284 236 3107860384', ] s1 = '18:18 2020.12.16 29.00 9280440301295284 236 3107860384' import re t1 = s1.split(' ') p = {} for j in t1: s = re.findall(u'^(\d+\.\d{1,2})$', j) fn = re.findall(u'^(\d{16})$', j) fp = re.findall(u'^(\d{9,10})$', j) i = re.findall(u'^(\d{1,6})$', j) time = re.findall(u'^(\d{1,2}\:\d{1,2}\:?\d{1,2})$', j) date_1 = re.findall(u'^(\d{4}\.\d{1,2}\.\d{1,2})$', j) date_2 = re.findall(u'^(\d{1,2}\.\d{1,2}\.\d{4})$', j) if s: p['s'] = re.findall(u'^(\d+\.\d{1,2})$', j)[0] elif fn: p['fn'] = re.findall(u'^(\d{16})$', j)[0] elif fp: p['fp'] = re.findall(u'^(\d{9,10})$', j)[0] elif i: p['i'] = re.findall(u'^(\d{1,6})$', j)[0] elif time: p['time'] = re.findall(u'^(\d{1,2}\:\d{1,2}\:?\d{1,2})$', j)[0] elif date_1: p['date'] = re.findall(u'^(\d{4}\.\d{1,2}\.\d{1,2})$', j)[0] elif date_2: p['date'] = re.findall(u'^(\d{1,2}\.\d{1,2}\.\d{4})$', j)[0] p['date'] = p['date'][4:8] + p['date'][2:4] + p['date'][0:2] else: print 'Alert not identify' + j #if not p['s']: #p['s'] = re.findall(u'^(\d+\.\d{1,2})$', i) #p['s'] = re.findall(u'(\d+\.\d{1,2})', s1)[0] #p['fn'] = re.findall(u'(\d{16})', s1)[0] #p['fp'] = re.findall(u'(\d{9,10})', s1)[0] #p['i'] = re.findall(u'(\d{1,6})', s1)[0] #p['time'] = re.findall(u'(\d{1,2}\:\d{1,2}\:?\d{1,2})', s1)[0] #p['date'] = re.findall(u'(\d{4}\.\d{1,2}\.\d{1,2})', s1)[0] p['t'] = ''.join(p['date'].split('.')) + 'T' + ''.join(p['time'].split(':')) del p['time'] del p['date'] self.assertEqual({'s': '29.00', 'fn': '9280440301295284', 'fp': '3107860384', 'i': '236', 't':'20201216T1818'}, p) self.assertEqual({'s': '29.00', 'fn': '9280440301295284', 'fp': '3107860384', 'i': '236', 't':'20201216T1818'}, QRCodeReader.parse_1(s1)) for s in s2: print s self.assertEqual({'s': '29.00', 'fn': '9280440301295284', 'fp': '3107860384', 'i': '236', 't':'20201216T1818'}, QRCodeReader.parse_1(s)) def test_11(self): company_family = Company(title='family') company_family.save() tests = [ '20201216T1818 29.00 9280440301295284 236 3107860384', #'2020.12.16 18:18:01 29.00 9280440301295284 236 3107860384', '2020.12.16 18:18 29.00 9280440301295284 236 3107860384', '18:18 2020.12.16 29.00 9280440301295284 236 3107860384', '18:18 16.12.2020 29.00 9280440301295284 236 3107860384', '18:18 2020.12.16 29.00 9280440301295284 236 3107860384', ] chat_id = '383332826' for test in tests: message = test Telegram.process_message(company_family, chat_id, message) def test_12(self): sh = ShowcasesCategory(title=u'Кафе и рестораны') sh.save() sh = ShowcasesCategory(title=u'Гипермаркет') sh.save() company_family = Company(title='family') company_family.save() qr_tests = [ 't=20200524T125600&s=849.33&fn=9285000100127361&i=115180&fp=1513716805&n=1', 't=20200506T215300&s=1351.88&fn=9285000100127255&i=83300&fp=328049751&n=1', '/cscat_1_2', '/cheque_1', 't=20200421T140400&s=1057.46&fn=9285000100127255&i=79753&fp=3686248129&n=1', 'test t=20200421T140400&s=1057.46&fn=9285000100127255&i=79753&fp=3686248129&n=1 test', u'Привет test t=20200421T140400&s=1057.46&fn=9285000100127255&i=79753&fp=3686248129&n=1 test', u""" message.find('i') >= 0 t=20201216T1818&s=29.00&fn=9280440301295284&i=236&fp=3107860384&n=1 sf s выаавы ы ва ывage.find('t') >= 0 and \ message.find('i') >= 0 t=20201216T1818&s=29.00&fn=9280440301295284&i=236&fp=3107860384&n=1 sf s выаавы ы ва ывage.find('t') >= 0 and \ message.find('fp') >= 0 and \ message.find('i') >= 0 t=20201216T1818&s=29.00&fn=9280440301295284&i=236&fp=3107860384&n=1 sf s выаавы ы ва ыв """, 'print "====", message.en', 'dsf ds fvt=20201216T1818&s=29.00&fn=9280440301295284&i=236&fp=3107860384&n=1 sdf ds', # u'spent; 101.01; буреговы; мак авто', # u'spend; 60; кофе; ван бакс тверская 7; 2020.12.19 18:46', # u'spend; 60; кофе; ван бакс; 2020.12.15', '/list_by_month', '/list_nice', 't=20200515T204500&s=2091.85&fn=9285000100127484&i=89243&fp=1167631633&n=1', ] chat_id = 'Test chat id = 100500' chat_id = '383332826' for qr_test in qr_tests: message = qr_test print '====', message.encode('utf8') Telegram.process_message(company_family, chat_id, message) ``` #### File: consumption/prediction/tests.py ```python from django.test import TestCase from models import Element, Prediction, PredictionLinear, PredictionLinearFunction from product_card.models import ProductCard from offer.models import Offer from company.models import Company, Employee from cheque.models import FNSCheque, FNSChequeElement from datetime import datetime class Base(TestCase): def setUp(self): self.maxDiff = None p = ProductCard(title="МОЛОКО ДВД 3.2%") p.save() p = ProductCard(title="МОЛОКО SPAR 3.2% 1.7 л.") p.save() p = ProductCard(title="МОЛОКО Простоквашино 3.2%") p.save() p = ProductCard(title="Творог SPAR 9%") p.save() @staticmethod def list_buy_cheese(): return [ { 'items': [ {"weight": 220, "quantity":1,"sum":13500,"price":13500,"name":u"4607004891694 СЫР СЛИВОЧНЫЙ HOCHLA", "volume": 0.22}, {"weight": 250, "quantity":1,"sum":13990,"price":13990,"name":u"8600742011658 СЫР СЕРБСКАЯ БРЫНЗА", "volume": 0.25}, ], "retailPlaceAddress":u"107076, г.Москва, ул.Богородский Вал, д.6, корп.2", "dateTime":"2020-05-28T22:51:00", }, { "retailPlaceAddress":u"г.Москва, ул.Богородский Вал, д.6, корп.2", "dateTime":"2020-05-15T20:45:00", "items":[ {"weight": None, "quantity":0.278,"name":u"2364939000004 СЫР КОРОЛЕВСКИЙ 51%","price":49990,"sum":13897, "volume": 1}, ], }, { "dateTime":"2020-05-10T21:08:00", "retailPlaceAddress":u"г.Москва, ул.Богородский Вал, д.6, корп.2", "items":[ {"sum":16797,"price":59990,"quantity":0.28,"name":u"2316971000009 СЫР МААСДАМ 45% ИЧАЛ", "volume": 1}, ], }, { "items":[ {"quantity":0.248,"sum":12476,"name":u"2372240000002 СЫР ГРАНД SPAR 45%","price":50306, "volume": 1}, {"quantity":0.264,"sum":9945,"name":u"2364178000001 СЫР МААСДАМ 45% ПРЕ","price":37670, "volume": 1}, ], "retailPlaceAddress":u"г.Москва, ул.Богородский Вал, д.6, корп.2", "dateTime":"2020-04-21T14:04:00", }, { "userInn":"7703270067", "items":[ {"calculationTypeSign":4,"ndsRate":2,"name":u"СЫР РОССИЙСКИЙ 45%","quantity":0.299,"ndsSum":1356,"calculationSubjectSign":1,"sum":14920,"price":49900, "volume": 1}, {"weight": 250, "calculationTypeSign":4,"ndsRate":2,"name":u"СЫР МАСКАР.80% 250ГР","quantity":2,"ndsSum":3436,"calculationSubjectSign":1,"sum":37800,"price":18900, "volume": 0.25}, {"weight": 90, "calculationTypeSign":4,"ndsRate":2,"name":u"СЫР ПЛ С ЛУКОМ 90Г","quantity":2,"ndsSum":618,"calculationSubjectSign":1,"sum":6798,"price":3399, "volume": 0.09}, {"weight": 90, "calculationTypeSign":4,"ndsRate":2,"name":u"СЫР ПЛ ВОЛНА 45% 90Г","quantity":4,"ndsSum":1236,"calculationSubjectSign":1,"sum":13596,"price":3399, "volume": 0.09}, ], "dateTime":"2020-05-23T21:58:00", }, { "dateTime":"2020-05-02T20:56:00", "userInn":"7703270067", "items":[ {"weight": 80, "sum":3899,"price":3899,"ndsRate":2,"calculationTypeSign":4,"ndsSum":354,"calculationSubjectSign":1,"name":u"ПЛ.СЫР ЯНТАРЬ ФОЛ80Г","quantity":1, "volume": 0.08}, {"weight": 400, "sum":15900,"price":15900,"ndsRate":2,"calculationTypeSign":4,"ndsSum":1445,"calculationSubjectSign":1,"name":u"СЫР ПЛ ФЕТАКСА 400Г","quantity":1, "volume": 0.4}, {"sum":3399,"price":3399,"ndsRate":2,"calculationTypeSign":4,"ndsSum":309,"calculationSubjectSign":1,"name":u"СЫР ПЛ ВОЛНА 45% 90Г","quantity":1, "volume": 0.09}, {"sum":3399,"price":3399,"ndsRate":2,"calculationTypeSign":4,"ndsSum":309,"calculationSubjectSign":1,"name":u"СЫР ПЛ ВОЛНА 45% 90Г","quantity":1, "volume": 0.09}, {"sum":3899,"price":3899,"ndsRate":2,"calculationTypeSign":4,"ndsSum":354,"calculationSubjectSign":1,"name":u"ПЛ.СЫР ЯНТАРЬ ФОЛ80Г","quantity":1, "volume": 0.08}, ], }, { "retailPlaceAddress":u"107076, г.Москва, ул.Богородский Вал, д.6, корп.2", "userInn":"5258056945", "items":[ {"price":59899,"name":u"2364178000001 СЫР МААСДАМ 45% ПРЕ","quantity":0.356,"sum":21324, "volume": 1}, {"weight": 400, "price":20000,"name":u"4607004892677 СЫР HOCHLAND МЯГКИЙ","quantity":1,"sum":20000, "volume": 0.4}, # возсожно 480 разные днные ], "dateTime":"2020-06-03T14:50:00", }, ] def __list_buy_milk(self): return Base.list_buy_milk() @staticmethod def list_buy_milk(): return [ { "fiscalDocumentNumber":148436, "taxationType":1, "nds10":13873, "shiftNumber":386, "kktRegId":"0001734115017264", "operationType":1, "ecashTotalSum":207870, "requestNumber":182, "retailPlaceAddress":u"г.Москва, ул.Богородский Вал, д.6, корп.2", "receiptCode":3, "fiscalSign":2166849586, "operator":"<NAME>", "userInn":"5258056945", "user":"ООО \"<NAME>\"", "fiscalDriveNumber":"9285000100127782", "cashTotalSum":0, "nds18":9212, "totalSum":207870, "dateTime":"2020-06-03T14:50:00", 'items': [ {"price":5990,"name":u"4607045982771 МОЛОКО SPAR УЛЬТРАПА","quantity":3,"sum":17970, 'volume': 1}, ], }, { "dateTime":"2020-05-28T22:51:00", 'items': [ {"weight": 1000, "quantity":2,"sum":11980,"price":6990,"name":u"4607045982771 МОЛОКО SPAR УЛЬТРАПА", 'volume': 1}, ], "retailPlaceAddress":u"г.Москва, ул.Богородский Вал, д.6, корп.2", }, { "dateTime":"2020-05-24T12:56:00", 'items': [ {"weight": 1000, "quantity":1,"name":u"4607045982788 МОЛОКО SPAR УЛЬТРАПА","price":4990,"sum":4990, 'volume': 1}, ], "retailPlaceAddress":u"г.Москва, ул.Богородский Вал, д.6, корп.2", }, { "dateTime":"2020-05-23T21:58:00", 'items': [ {"weight": 1400, "calculationTypeSign":4,"ndsRate":2,"name":u"МОЛОКО ПАСТ.3,7%1400","quantity":1,"ndsSum":726,"calculationSubjectSign":1,"sum":7990,"price":7990, 'volume': 1.4}, ], "retailPlaceAddress":u"г.Москва, ул.Богородский Вал, д.6, корп.2", }, { "dateTime":"2020-05-15T20:45:00", 'items': [ {"weight": 925, "quantity":1,"name":u"4607167840416 МОЛОКО SPAR 3,2% 925","price":5490,"sum":5490, 'volume': 0.925}, ], "retailPlaceAddress":u"г.Москва, ул.Богородский Вал, д.6, корп.2", }, { "dateTime":"2020-05-10T21:08:00", 'items': [ {"weight": 1700, "sum":8990,"price":8990,"quantity":1,"name":u"4607167841154 МОЛОКО SPAR 2,5% 1,7", 'volume': 1.7}, ], "retailPlaceAddress":u"г.Москва, ул.Богородский Вал, д.6, корп.2", }, { "dateTime":"2020-05-06T21:53:00", 'items': [ {"quantity":1,"name":u"4607167841154 МОЛОКО SPAR 2,5% 1,7","price":8990,"sum":8990, 'volume': 1.7}, {"weight": 950,"quantity":1,"name":u"4690228007842 МОЛОКО ДОМИК В ДЕРЕВ","price":5990,"sum":5990, 'volume': 1}, ], "retailPlaceAddress":u"г.Москва, ул.Богородский Вал, д.6, корп.2", }, #{ # "dateTime":"2020-03-28T19:58:00", # 'items': [ # {"sum":4990,"price":4990,"name":u"4607167840416 МОЛОКО SPAR 3,2% 925","quantity":1, 'volume': 0.925}, # ], # "retailPlaceAddress":u"Ашан", #}, ] def test_linear_forecasting_for_the_whole_period(self): """ Попробуем линейное прогнозированите на всем периоде Идет потребление некоторых ресурсов постоянно но не очень системно. К примеру молоко. Покупается несколько раз внеделю. Изменять потребление не планируется. Попробуем линейно апроксимировать данную функцию. добавил нужгыеразмеры в нашем случае молоко употребляется в литрахт 'volume': 1 сначала получим среднее потребление молока в день. просумируем все потребление и поделимгачисло дней закоторое было произведено потребление получили в итоге производную далее попробуем полчить производную исключив один элемет потребления и сокративчисло дней до момента его приобретения затем рассчитам на сколько днейхватит послежней покупк если потребление будет таким же сейчас рассматриваем простую можель когда потребление рассчитываеися от даты первой покупки до даты последней покупки. прибавим к дельте котороая между первой и последней покупкой, количество дней накоторых хватит последей покупки и получим дату когда нужно установить хакупку в календаре. """ delta_days = 40 delta_days_2 = 35 list_buy_milk = self.__list_buy_milk() elements = [] for i in list_buy_milk: for j in i['items']: elements.append(Element(j['name'], i['dateTime'], j['volume']*j['quantity'])) #self.assertEqual('', elements) self.assertEqual(0.318, Prediction.average_weight_per_day_in_during_period(elements, delta_days)) pl = PredictionLinear(elements) self.assertEqual(30, pl.delta_days()) self.assertEqual(27, pl.without_last_delta_days()) self.assertEqual(0.424, pl.average_weight_per_day_in_during_period()) #self.assertEqual(0.3, Prediction.average_weight_per_day_in_during_period(elements[1:], delta_days_2)) delta = Prediction.average_weight_per_day_in_during_period(elements[1:], delta_days_2) self.assertEqual(0.278, delta) pl_2 = PredictionLinear(elements[1:]) delta = pl_2.average_weight_per_day_in_during_period() self.assertEqual(0.324, delta) #self.assertEqual(10.0, elements[0].get_weight() / delta) days_continue_for_last_buy = float("{0:.3f}".format(elements[0].get_weight() / delta)) self.assertEqual(9.259, days_continue_for_last_buy) delta_days_future = pl.days_future() self.assertEqual(8.333, delta_days_future) today_is = 44.259 #какойто день месяца в который долженсработать напоминание что сегоднявсе кончится. self.assertEqual(today_is, delta_days_2 + days_continue_for_last_buy) def test_2(self): """ Найти какрточки продуктов которые подойдут для данной функии потребления. Функция потребления состоит из: 1) ресурсы которые в нее включены а также продукты на которые ссылаются включенные ресурсы 2) учитывает все ресурсов которые обработаны в рамках данной фирм и не включенных в эту функцию. после обработки(добавления в другую ф. слеует подождать несколько дней так возможно еще не успели оработать) простой случайесли ресурс добавлен в другую ф. в эту его автоматом не предлагать 3) ресурсов предложенных но отвергнутых пользователем 4) продуктов предложенных но отвергнутых пользоватеоем 5) есть авто функции которые есть у всех пользоватеей МОЛОКО 3.2% в них автоматом для рекомедаций добавлять все продукты и ресурсы с таким покащатеоем. Как лучше сделать? 1) привязть определенный ресурс тогда придется по ресурсу определять 1.1) продкуты с которыми он связан или к которые подходит. 2) привязать карточку продукта тогда все ресурсы привязнные к карточе добавятся атоматом - НЕТ но легко будет искать то чем функцию расширить, т.е. аналоги - ДА Нужна ли функции явная связь с карточками продуктов? + 1) упрощает поиск продуктов для замещения - 1) пользователю придется привязывать все альтернативные продукты """ # получаю список ресурсов функции list_buy_milk = self.__list_buy_milk() elements = [] for i in list_buy_milk: for j in i['items']: elements.append(Element(j['name'], i['dateTime'], j['volume']*j['quantity'])) prediction = PredictionLinear(elements) product_cards = prediction.product_cards() #self.assertEqual([ProductCard(), ProductCard(), ProductCard()], product_cards) self.assertEqual(set([ProductCard.objects.get(id=1), ProductCard.objects.get(id=2), ProductCard.objects.get(id=3)]), product_cards) def test_3(self): """ показать пользователю все имеющиеся предложения на основе полученных карточек продуктов """ print 'test 3' product_cards = ProductCard.objects.all() self.assertEqual(4, len(product_cards)) offers = Offer.objects.filter(product_card__in=product_cards) self.assertEqual([], list(offers)) def test_4(self): """ Создать офферы на основе 1 чеков - человек найти по строке из чека, стоимости, магазину - подходящие продукты выбрать продукты для клоторых обновится оффер, так как это разовое событие то оно не может меняться а только меняться с временем карточек продуктов может быть найдно много(так как пользователи могут создавать разные карточки) Обойти это можно создав супер карточку которую пользователи немогут менять но ккоторой могут привязывать свою и эти супер карточки будут в отдельном дереве обновлять оыыер у 3 из 1000 карточек которые выбрал польователь. 2 ресурсов - человек найти на основе ресурса - подходящие продукты что бы сделать оффер нужна цена, а у ресурса ее нет, так что не походит но возможно стоит ввести отдельную сущность приоретения где фиксируются ресурсы и стоимости их приобретения. 3 ресурса основанного на чеке найти на основе ресурса и связанного с ним чека - продукты 4 импорта с сайтов - робот кадый робот знает как карточка продукта связана с элементом витрины к которой он подключен, для получения оффера елемент витрины для сайта это может быть страница товара а иакже есть другме роботы которые обновляют информацию по карточек если на витрине она меняется - полу ручной режим """ print 'test 4' #1 #ChequeElement.objects.filter( list_buy_milk = self.__list_buy_milk() elements = [] for i in list_buy_milk: for j in i['items']: elements.append({'title': j['name'], 'price': j['price'], 'datetime_buy': i['dateTime'], 'showcase': i['retailPlaceAddress']}) #TODO тут идет ручной выбор карточек к которым надо создать оффер for e in elements: for product_card in ProductCard.find_by_text(e['title']): offer = Offer(product_card=product_card, price=e['price'], datetime=e['datetime_buy'], showcase=e['showcase']) offer.save() #for o in Offer.objects.all(): # print o product_cards = ProductCard.objects.all() self.assertEqual(4, len(product_cards)) offers = Offer.objects.filter(product_card__in=product_cards) #TODO результат наверно не верный так как продуктов похожих может быть больше self.assertEqual(24, len(offers)) def test_5(self): """ показать пользователю все имеющиеся предложения на основе полученных карточек продуктов """ print 'test 5' product_cards = ProductCard.objects.all() self.assertEqual(4, len(product_cards)) offers = Offer.objects.filter(product_card__in=product_cards) self.assertEqual([], list(offers)) def test_6(self): """ <NAME> хочет начаить вести учеи трат на продукты и при этом экономить. 1. Для этого ему надо занести все траты семьи в систему. 2. Разрешить использовать информацию о его закупках дргим пользователям. пусть меряются кто больше сикономил на своей продуктовой корзине на этой недел, в этом месяце, за год. 3. делать покупки там и в таком колличестве которые основаны на рекомендциях системы. сфрмировать оптимальную корзину продуктов с запасом на месяц вперед. показать сколько тратится продуктов в анной фйнкции в среднем в день и показать посление 2 цены закупки вжанной категории, среднюю цену за неделю, месяц год. а также самуюю дешовую цену и место из тех магазинов где он покупал посодедний месяц, потом самую дешовую цену в его городе, в стране, в мире. показать с колько сэкономит если купит сейчас там на месяц вперед. """ pety_name = 'Pety' pety_key = 'key_123' # self.assertFalse(has_account(pety_name, pety_key)) # create_account(pety_name, pety_key) # self.assertTrue(has_account(pety_name, pety_key)) #key = get_account_key(pety_name, pety_key) # pety_account = get_account(pety_name, pety_key) # self.assertEqual([], list_company_for_member(pety_account)) # create_company(board_title, pety_account) # board_title = 'Pety Family' # company = Company.objects.filter(title=board_title) #self.assertTrue(company.allow_access_by(pety_account)) # self.assertEqual(1, len(list_company_for_member(pety_account))) cheque_qr_1 = 'qwerty' cheque_qr_2 = '123456' fns_json_cheque_info_1 = get_info_by_qr_from_fns(cheque_qr_1) fns_json_cheque_info_2 = get_info_by_qr_from_fns(cheque_qr_2) # save_in_company_fns_json_cheque_repository(company, pety_account, fns_json_cheque_info_1) function_title = 'milk and ...' # create_function_consumption(company, pety_account, function_title) milk_function = get_function(function_title) # следует обезопасить код получением только функций внутри компании for element in consumption_elements(fns_json_cheque_info_1): milk_function.append(element) self.assertEqual(0.424, milk_function.average_weight_per_day_in_during_period()) delta_days_future = milk_function.days_future() self.assertEqual(8.333, delta_days_future) cheese_function_title = 'cheese' cheese_function = get_function(cheese_function_title) for element in consumption_elements(fns_json_cheque_info_2): cheese_function.append(element) self.assertEqual(0.097, cheese_function.average_weight_per_day_in_during_period()) self.assertEqual(0.09, cheese_function.average_weight_per_day_from_first_buy_to_this_date(datetime.strptime("2020-06-01T10:00:00", '%Y-%m-%dT%H:%M:%S'))) self.assertEqual(0.088, cheese_function.average_weight_per_day_from_first_buy_to_this_date(datetime.strptime("2020-06-02T10:00:00", '%Y-%m-%dT%H:%M:%S'))) self.assertEqual(0.104, cheese_function.average_weight_per_day_from_first_buy_to_this_date(datetime.strptime("2020-06-03T10:00:00", '%Y-%m-%dT%H:%M:%S'))) self.assertEqual(0.102, cheese_function.average_weight_per_day_from_first_buy_to_this_date(datetime.strptime("2020-06-04T10:00:00", '%Y-%m-%dT%H:%M:%S'))) self.assertEqual(0.099, cheese_function.average_weight_per_day_from_first_buy_to_this_date(datetime.strptime("2020-06-05T10:00:00", '%Y-%m-%dT%H:%M:%S'))) self.assertEqual(0.097, cheese_function.average_weight_per_day_from_first_buy_to_this_date(datetime.strptime("2020-06-06T10:00:00", '%Y-%m-%dT%H:%M:%S'))) self.assertEqual(0.095, cheese_function.average_weight_per_day_from_first_buy_to_this_date(datetime.strptime("2020-06-07T10:00:00", '%Y-%m-%dT%H:%M:%S'))) self.assertEqual(0.093, cheese_function.average_weight_per_day_from_first_buy_to_this_date(datetime.strptime("2020-06-08T10:00:00", '%Y-%m-%dT%H:%M:%S'))) self.assertEqual(0.091, cheese_function.average_weight_per_day_from_first_buy_to_this_date(datetime.strptime("2020-06-09T10:00:00", '%Y-%m-%dT%H:%M:%S'))) delta_days_future = cheese_function.days_future() self.assertEqual(9.0, delta_days_future) def test_7(self): """ создадим работника Создать или выбрать компанию из имеющихся. создать может рботник Добавить часть чеко в хранилище досьать их из хранилища создать фунуцию предсказания укзать у нужных позиций в чеках созданную функцию спрогнозировать на 4 дня """ pety_employee = Employee(title='Pety', key='123zxc') pety_employee.save() #company_family = Company(owner=pety_employee, title='family') company_family = Company(title='family') company_family.save() company_family.employees.add(pety_employee) company_family = None company_family = Company.objects.filter(employees__in=[pety_employee])[0] function_title = 'Мilk' plf_milk = PredictionLinearFunction(title=function_title) plf_milk.save() for i in Base.list_buy_milk()[:5]: #for i in Base.list_buy_milk(): fns_cheque = FNSCheque(is_manual=False, company=company_family, fns_dateTime=i['dateTime']) fns_cheque.save() for j in i['items']: e = FNSChequeElement(fns_cheque=fns_cheque, name=j['name'], quantity=j['quantity'], volume=j['volume'], sum=j['sum']) e.save() plf_milk.cheque_elements.add(e) plf_cheese = PredictionLinearFunction(title='Cheese') plf_cheese.save() for i in Base.list_buy_cheese(): fns_cheque = FNSCheque(is_manual=False, company=company_family, fns_dateTime=i['dateTime']) fns_cheque.save() for j in i['items']: e = FNSChequeElement(fns_cheque=fns_cheque, name=j['name'], quantity=j['quantity'], volume=j['volume'], sum=j['sum']) e.save() plf_cheese.cheque_elements.add(e) #проверить авто определение веса good_count = 0 for e in FNSChequeElement.objects.all(): if e.has_weight_from_title() and float(e.get_weight_from_title()) == float(e.volume): #if float(e.get_weight()) == float(e.volume * e.quantity): good_count += 1 if not e.get_title() in [u'СЫР МАСКАР.80% 250ГР', u'СЫР ПЛ С ЛУКОМ 90Г', u'СЫР ПЛ ВОЛНА 45% 90Г', u'СЫР ПЛ ФЕТАКСА 400Г', u'СЫР ПЛ ВОЛНА 45% 90Г', u'СЫР ПЛ ВОЛНА 45% 90Г']: print e.get_title().encode('utf8') assert False self.assertEqual(6, good_count) #fetch milk_function = PredictionLinear([]) for element in PredictionLinearFunction.objects.filter(title=function_title): for i in element.elements(): milk_function.append(i) cheese_function = PredictionLinear([]) for element in PredictionLinearFunction.objects.filter(title='Cheese'): for i in element.elements(): cheese_function.append(i) self.assertEqual(0.396, milk_function.average_weight_per_day_in_during_period()) delta_days_future = milk_function.days_future() self.assertEqual(10.135, delta_days_future) self.assertEqual(0.097, cheese_function.average_weight_per_day_in_during_period()) self.assertEqual(0.088, cheese_function.average_weight_per_day_from_first_buy_to_this_date(datetime.strptime("2020-06-02T10:00:00", '%Y-%m-%dT%H:%M:%S'))) self.assertEqual(0.104, cheese_function.average_weight_per_day_from_first_buy_to_this_date(datetime.strptime("2020-06-03T10:00:00", '%Y-%m-%dT%H:%M:%S'))) self.assertEqual(0.102, cheese_function.average_weight_per_day_from_first_buy_to_this_date(datetime.strptime("2020-06-04T10:00:00", '%Y-%m-%dT%H:%M:%S'))) delta_days_future = cheese_function.days_future() self.assertEqual(9.0, delta_days_future) ## for i in Base.list_buy_milk()[5:]: fns_cheque = FNSCheque(is_manual=False, company=company_family, fns_dateTime=i['dateTime']) fns_cheque.save() for j in i['items']: e = FNSChequeElement(fns_cheque=fns_cheque, name=j['name'], quantity=j['quantity'], volume=j['volume'], sum=j['sum']) e.save() plf_milk.cheque_elements.add(e) #fetch milk_function = PredictionLinear([]) for element in PredictionLinearFunction.objects.filter(title=function_title): for i in element.elements(): milk_function.append(i) self.assertEqual(0.424, milk_function.average_weight_per_day_in_during_period()) delta_days_future = milk_function.days_future() self.assertEqual(8.333, delta_days_future) def test_8(self): #TODO не указал что при подученни и функций можем брать только функции в компании котрую мы просчитываем # слежует релатзовать интерфейс у класа репоитория функций когда: # 1. всегда укзаывается компания для коророй подучается функция # 2. или фуннкции можно получать только через когмпанию где компания является агрегатом функции чеков # агрегат предпочтительнее так как явно видно его границы, # а при работе с репозиторием не понятно почему нельзя создать метеод получения функции без компании. # и это надо коментариями указывать в описании репозитория #для быстроты МВП делаем так """ Сгенерить функции на основе имеющихся чеков в указанной компании. не все клиенты пьют молоко а знаит функция молока им не нужна. создадим ее только когда пользователь попросит """ print 'test 8' #Берем все чеки на основе которых хотим понять что за функции нам нужны. pety_employee = Employee(title='Pety', key='123zxc') pety_employee.save() company_family = Company(title='family') company_family.save() company_family.employees.add(pety_employee) #добавляем чеки в компанию for i in Base.list_buy_milk(): fns_cheque = FNSCheque(is_manual=False, company=company_family, fns_dateTime=i['dateTime']) fns_cheque.save() for j in i['items']: print j['name'].encode('utf8') e = FNSChequeElement(fns_cheque=fns_cheque, name=j['name'], quantity=j['quantity'], volume=j['volume'], sum=j['sum']) e.save() for i in Base.list_buy_cheese(): fns_cheque = FNSCheque(is_manual=False, company=company_family, fns_dateTime=i['dateTime']) fns_cheque.save() for j in i['items']: print j['name'].encode('utf8') e = FNSChequeElement(fns_cheque=fns_cheque, name=j['name'], quantity=j['quantity'], volume=j['volume'], sum=j['sum']) e.save() print 'Base:' print FNSCheque.objects.all().count() print FNSChequeElement.objects.all().count() print '---' #function = PredictionLinearFunction.objects.get(base_type=u'МОЛОКО') #print function #для каждого элемента чек пробуем определить под какие из заложенных функций он подходит. #по содерибмому элемента - в назавние есть надпись МОЛОКО 3.2% #по привязке карточки продуката - в назавании карточки продукат есть надпись МОЛОКО 3.2% #по если в чеке есть не определнный товар Х и еще есть СМЕТАНА и ТВОРОГ, # а также есть много чеков также с теремя товарами СМЕТАНА ТВОРОГО "МОЛОКО" - принимаем рещенеи что это МОЛОКО и добавляем его в функцию fns_cheques = FNSCheque.objects.filter(company=company_family) ##получем все типы базвых функий которые возможны #base_function_types = set() #for fns_cheque in fns_cheques: # #for fns_cheque_element in fns_cheque.elements(): # for fns_cheque_element in FNSChequeElement.objects.filter(fns_cheque=fns_cheque): # for base_function_type in PredictionLinear.base_function_types(fns_cheque_element): # base_function_types.add(base_function_type) #for base_function_type in base_function_types: # print base_function_type.encode('utf8') #print base_function_types = PredictionLinear.auto_find_available_base_function_type(fns_cheques) ##создаем недостающие базовые функции #for base_function_type in base_function_types: # if not PredictionLinearFunction.objects.filter(base_type=base_function_type).count(): # f = PredictionLinearFunction(base_type=base_function_type) # f.save() PredictionLinear.save_functions_with_base_function_types(base_function_types) ##получаем базовые функции #functions = PredictionLinearFunction.objects.filter(base_type__in=base_function_types) #for f in functions: # print f ##наполняем функции чеками которые им подходят #print len(fns_cheques) #for fns_cheque in fns_cheques: # #for fns_cheque_element in fns_cheque.elements(): # for fns_cheque_element in FNSChequeElement.objects.filter(fns_cheque=fns_cheque): # print '--->' # print fns_cheque_element.get_title().encode('utf8') # for base_function_type in PredictionLinear.base_function_types(fns_cheque_element): # function = PredictionLinearFunction.objects.get(base_type=base_function_type) # function.cheque_elements.add(fns_cheque_element) PredictionLinear.auto_add_cheque_elements_to_functions(fns_cheques) function = PredictionLinearFunction.objects.get(base_type=u'МОЛОКО') print function print '----' for f in PredictionLinearFunction.objects.all(): print f elements = set() ##найдем чеки с 100% совпадением названия и связанных чеков, и на основе них рассчитам предложение за килограм #elements = set() #for e in function.cheque_elements.all(): # for en in FNSChequeElement.objects.filter(name=e.name): # elements.add(en) elements.update(function.cheque_have_name_like_name_from_contains_cheques()) ##взять ключевые слова у функции которые могут содержаться в чеках #for word in function.allow_key_words(): # qs = FNSChequeElement.objects.filter(name__icontains=word) # for e_word in function.disallow_key_words(): # qs = qs.exclude(name__icontains=e_word) # for e in qs: # elements.add(e) elements.update(function.cheque_contains_key_words()) for e in elements: print e.offer_element_params() #offers = [] #for e in elements: # offers.append(e.offer_element_params()) #for o in offers: # print o print 'end' def has_account(i, j): return False def create_account(i, j): pass def get_info_by_qr_from_fns(cheque_qr_1): if cheque_qr_1 == 'qwerty': return [1] return [] def get_function(function_title): return PredictionLinear([]) def consumption_elements(fns_json_cheque_info): if fns_json_cheque_info: list_buy = Base.list_buy_milk() else: list_buy = Base.list_buy_cheese() elements = [] for i in list_buy: for j in i['items']: elements.append(Element(j['name'], i['dateTime'], j['volume']*j['quantity'])) return elements ``` #### File: consumption/product_card/models.py ```python from __future__ import unicode_literals from django.db import models #from datetime import date #from datetime import datetime #from datetime import timedelta # #from django.conf import settings # # #from account.models import Account # #import json # #import urllib ##import urllib2 #import urllib2, base64 #import pytz #import re # #import time class CatigoryTree(models.Model): #11 групп продуктов: хлебные продукты (хлеб и макаронные изделия в пересчете на муку, мука, крупы, бобовые);картофель;овощи и бахчевые (капуста, огурцы, помидоры, морковь, свекла, лук);свежие фрукты (яблоки, апельсины, виноград, бананы);сахар и кондитерские изделия;мясопродукты (мясо говядины, баранины, свинины, птицы);рыбопродукты (рыба свежая, сельдь соленая);молоко и молокопродукты (молоко, сметана, масло сливочное, сыр, творог, кисломолочные продукты);яйца;растительное масло, маргарин и другие жиры;прочие продукты (соль, чай и специи). parent = models.ForeignKey('self', blank=True, null=True) title = models.CharField(blank=True, max_length=254) def __create_base_catigory(): """ для первоночальной инициализации""" CatigoryTree.objects.create(id=1, title=u'хлебные продукты (хлеб и макаронные изделия в пересчете на муку, мука, крупы, бобовые, вермишель, батон, крупа, лапша, кускус, киноа, макарон)') CatigoryTree.objects.create(id=2, title=u'картофель') CatigoryTree.objects.create(id=3, title=u'овощи и бахчевые (капуста, огурцы, помидоры, морковь, свекла, лук, чеснок, томат, редис, авокадо, перец, укроп, сельдерей)') CatigoryTree.objects.create(id=4, title=u'вежие фрукты (яблоки, апельсины, виноград, банан, клубника, лимон, киви, чернослив, мандарин, помело)') CatigoryTree.objects.create(id=5, title=u'сахар и кондитерские изделияяя (шоколад конфеты зефир, печенье)') # изделияяя - чтобы не было совпадений - иакаронные изделия CatigoryTree.objects.create(id=6, title=u'мясопродукты (мясо говядины, баранины, свинины, птицы, сосиски, колбаса, пельмени)') CatigoryTree.objects.create(id=7, title=u'рыбопродукты (рыба свежая, сельдь соленая, тунец, икра, лосос, форел, креветк)') CatigoryTree.objects.create(id=8, title=u'молоко и молокопродукты(молоко, сметана, масло сливочное, сыр, творог, кисломолочные продукты, кефир, йогурт, сливки, сырок)') CatigoryTree.objects.create(id=9, title=u'яйца (яйцо)') CatigoryTree.objects.create(id=10, title=u'растительное масло, маргарин и другие жиры, майонез, соус') CatigoryTree.objects.create(id=11, title=u'прочие продукты (соль, чай и специи, мед, орех, чипсы)') def __create_sub_catigory(): """Для первоночальной инициализации""" # создаем группы, и подгруппы for c in CatigoryTree.objects.all(): for word in c.title.split(): word = word.replace(',','').replace('.','').replace('(','').replace(')','') word = word.upper() if len(word) > 2: CatigoryTree.objects.create(title=word, parent=c) @staticmethod def init_base(): """Первоночальная инициализация""" __create_base_catigory() __create_sub_catigory() def __unicode__(self): return u"%s -> %s" % (self.title, self.parent) class ProductCard(models.Model): """ Обогощенная информация по продуктам. Нужна для того чтобы пользовптнль вместе с чеком не вбивал фотографии покупки, ее состав, и характеристик. А просто выбрать подходящую на его взгляд обогощенную информацию. Таким образом не надо знать какой точно год выпуска или партия - пользовтель сам решит. Ему можно лишь помочь сделать автоматичекскую рекомендацию. Т.е. после того как данный товар заведен, менять его нельзя, так как те места где он используется уже рассчитывают на это(пример с цветами айфона). и значит нужно заводить всегда новую информацию о товаре и к новым продуктам предлагать более новую, а старым предлагать обновить основную привзяку или позволить создавтаь новые. Штрих код можно просить фотографировать и привязвать к позиции в чеке для более быстрого определения продукции. """ parent = models.ForeignKey('self', blank=True, null=True) datetime_create = models.DateTimeField(blank=True, auto_now_add = True) # так как карточки не изменяются то дата создания карточки может быть как то связана с началом ее потребелния title = models.CharField(blank=True, max_length=254) barcode = models.CharField(blank=True, max_length=254) # щтрихкод weight = models.SmallIntegerField(blank=True, null=True) # вес содержимого is_packed = models.NullBooleanField() # товар продается не на вес(пачкой, блок, кансервная тара т.е. уже фасованный - не делимая - тельзя продать пол банки гороха) #composition = models.TextField(blank=True, ) # состав #image_main_v1 = models.CharField(blank=True, max_length=254) #instruction = models.TextField(blank=True, ) # инструкция catigory_tree = models.ForeignKey(CatigoryTree, blank=True, null=True) catigory_sub_tree = models.ForeignKey(CatigoryTree, blank=True, null=True, related_name="product_info_2_catigory_sub_tree") @classmethod def find_by_text(cls, text): title_parts = text.split(' ') product_cards = set() for part in title_parts: if part in ['SPAR']: continue for product_card in ProductCard.objects.filter(title__contains=part): product_cards.add(product_card) return product_cards @classmethod def update_catigory_and_sub_catigory_for_all_products(cls): # привязываем прдгрыы к продуктам for p in ProductCard.objects.all(): for c in CatigoryTree.objects.all(): for word in c.title.split(): word = word.replace(',','').replace('.','').replace('(','').replace(')','') word = word.upper() if len(word) > 2: if p.title.find(word) != -1: if c.parent: p.catigory_sub_tree = c else: p.catigory_tree = c p.save() def __str__(self): return self.title.encode('utf8') ```
{ "source": "22OuNiJiang/myProject_001", "score": 3 }
#### File: 22OuNiJiang/myProject_001/yahaha.py ```python import requests # 抓取网页的html源代码 import csv,random,time # 将数据写入到csv文件中;随机函数;时间 import socket # 异常处理 import http.client from bs4 import BeautifulSoup # 代替正则式取源码中相应标签中的内容 def get_content(url,data=None): # 网页地址 header = { # header是requests.get的一个参数 'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'Accept-Encoding':'gzip,deflate', 'Accept-Language':'zh-CN,zh;q=0.9', 'Connection':'keep-alive', 'User-Agent':'Chrome/92.0.4515.131' } timeout = random.choice(range(80,100)) while True: try: rep = requests.get(url,headers=header,timeout=timeout) #异常处理 rep.encoding = 'utf-8' break except socket.timeout as e: #超时处理 print('错误1:',e) time.sleep(random.choice(range(8,15))) except socket.error as e: #网络联机错误 print('错误2:',e) time.sleep(random.choice(range(20,60))) except http.client.BadStatusLine as e: #服务器响应错误 print('错误3:',e) time.sleep(random.choice(range(30,80))) except http.client.IncompleteRead as e: #读取异常 print('错误4:',e) time.sleep(random.choice(range(5,15))) return rep.text def get_data(url): #天气,温度 final = [] bs = BeautifulSoup(url,'html.parser') #创建一个BeautifulSoup对象 body = bs.body #获取body部分 data = body.find('div',{'id':'7d'}) ul = data.find('ul') li = ul.find_all('li') for day in li: #li遍历 temp = [] date = day.find('h1').string #找日期 temp.append(date) inf = day.find_all('p') temp.append(inf[0].string) if inf[1].find('span') is None: #最高温在span标签 temperature_highest = None else: temperature_highest = inf[1].find('span').string temperature_lowest = inf[1].find('i').string #最低温在i标签 temp.append(temperature_highest + '℃') temp.append(temperature_lowest) final.append(temp) return final def write_data(data,name): #写文件 file_name = name with open(file_name,'a',errors ='Ignore',newline='') as i: i_csv = csv.writer(i) i_csv.writerows(data) if __name__ == '__main__': #主函数 url = 'http://www.weather.com.cn/weather/101010300.shtml' html = get_content(url) result = get_data(html) write_data(result,'weather.csv') ```
{ "source": "22pilarskil/7405K_20-21", "score": 3 }
#### File: src/testing/kalman.py ```python import numpy as np import matplotlib.pyplot as plt import time import random class filter(): def __init__(self, mean0, var0, meanSensor, varSensor, meanMove, varMove, positions, distances): self.mean0 = mean0 self.var0 = var0 self.meanSensor = meanSensor self.varSensor = varSensor self.positions = positions self.distances = distances self.meanMove = meanMove self.varMove = varMove def get_prediction(self): new_var, new_mean = self.predict(self.var0, self.mean0, self.varMove, self.meanMove) var, mean = self.correct(new_var, new_mean, self.varSensor, self.meanSensor) vals=[] for m in range(len(positions)): var, mean = self.predict(var, mean, self.varMove, self.distances[m]) var, mean = self.correct(var, mean, self.varSensor, self.positions[m]) vals.append([var, mean]) return vals[-1] def predict(self, var, mean, varMove, meanMove): new_var = var + varMove new_mean= mean+ meanMove return new_var, new_mean def correct(self, var, mean, varSensor, meanSensor): new_mean=(varSensor*mean + var*meanSensor) / (var+varSensor) new_var = 1/(1/var +1/varSensor) return new_var, new_mean positions = [0] distances = [0] predictions = [] variances = [] fixes_x = [] fixes_y = [] for numb in range(0, 130): position = random.random()*10 positions.append(position) distance = position-distances[-1] distances.append(distance) meanSensor = sum(positions)/len(positions) varSensor = sum((i - meanSensor) ** 2 for i in positions) / len(positions) meanMove = sum(distances)/len(distances) varMove = sum((i - meanMove) ** 2 for i in distances) / len(distances) ft = filter(0, 0, meanSensor, varSensor, meanMove, varMove, positions, distances) pred=ft.get_prediction() predictions.append(pred[1]) variances.append(pred[0]) if pred[0] > 8.1: fixes_x.append(pred[0]) fixes_y.append(pred[1]) ``` #### File: src/testing/other.py ```python import datetime as dt import matplotlib.pyplot as plt import matplotlib.animation as animation # Create figure for plotting fig = plt.figure() ax = fig.add_subplot(1, 1, 1) xs = [] ys = [] # Initialize communication with TMP102 # This function is called periodically from FuncAnimation def animate(i, xs, ys): # Read temperature (Celsius) from TMP102 temp_c = 5 # Add x and y to lists xs.append(dt.datetime.now().strftime('%H:%M:%S.%f')) ys.append(temp_c) # Limit x and y lists to 20 items xs = xs[-20:] ys = ys[-20:] # Draw x and y lists ax.clear() ax.plot(xs, ys) # Format plot plt.xticks(rotation=45, ha='right') plt.subplots_adjust(bottom=0.30) plt.title('TMP102 Temperature over Time') plt.ylabel('Temperature (deg C)') # Set up plot to call animate() function periodically ani = animation.FuncAnimation(fig, animate, fargs=(xs, ys), interval=1000) plt.show() print("done") ```
{ "source": "22PoojaGaur/A-Revenue-based-Product-Placement-Framework-to-Improve-Diversity-in-Retail-Businesses", "score": 3 }
#### File: A-Revenue-based-Product-Placement-Framework-to-Improve-Diversity-in-Retail-Businesses/src/DPRIP.py ```python import globals import random import copy TOTAL_SLOTS = 0 TOTAL_REVENUE = 0 DRANK_MEAN = 0 TOTAL_PLACED = 0 IDX = 0 TOP_REVENUE = {} def calculate_diversification(itemsets): ''' Calculates diversification of itemsets using Parul's approach''' assert type(itemsets) == list unique_items = set() for itemset in itemsets: for item in itemset: unique_items.add(item) return len(unique_items) / len(itemsets) # takes advantage of the fact that everything is passed # by reference in python. So # even though this function does not return anything, # it still changes both slots and top_kui_per_slot_rev # arrays def insert_one_itemset(slots, top_kui_per_slot_rev, top_kui_ptrs, kui_idx, CAS, stype, method=None): global TOTAL_SLOTS, TOTAL_REVENUE, DRANK_MEAN, TOTAL_PLACED found = False while not found: top = [None,0] for idx, val in enumerate(top_kui_per_slot_rev): # ignoring single itemsets if idx == 0 or idx == 1: continue if val > top[1]: top = [idx, val] if top[0] is None: print ('NOT ENOUGH ITEMSETS') return top_kui_node = kui_idx[top[0]][top_kui_ptrs[top[0]]] all_slots = list() for slot_type in range (0, globals.NUM_TYPE_SLOTS): all_slots.extend(slots[slot_type]) placed = [node[0] for node in all_slots] if top_kui_node[0] not in placed: node = kui_idx[top[0]][top_kui_ptrs[top[0]]] price = node[2] if method == 'DR': price = node[2] slots[stype].append(( node[0], price, node[-1])) DRANK_MEAN += kui_idx[top[0]][top_kui_ptrs[top[0]]][-1] TOTAL_PLACED += 1 factor = 1 TOTAL_REVENUE += (kui_idx[top[0]][top_kui_ptrs[top[0]]][-2] * 1.0) * factor CAS[stype] -= len(kui_idx[top[0]][top_kui_ptrs[top[0]]][0]) found = True else: pass top_kui_ptrs[top[0]] += 1 # if all itemsets of certain sized already placed if top_kui_ptrs[top[0]] >= len(kui_idx[top[0]]): top_kui_per_slot_rev[top[0]] = -1 else: if method == 'D': top_kui_per_slot_rev[top[0]] = kui_idx[top[0]][top_kui_ptrs[top[0]]][-1]/float(top[0]) else: top_kui_per_slot_rev[top[0]] = kui_idx[top[0]][top_kui_ptrs[top[0]]][-2]/float(top[0]) if found: break return # This placement scheme will place itemsets based on the per_slot_revenue # contribution def _DPRIP(deta_dict, kui_idx, dranks, slot_sizes, method): global TOTAL_SLOTS, TOTAL_REVENUE, DRANK_MEAN, TOTAL_PLACED slots = [] slot_types = len(slot_sizes) for i in range(0, slot_types): TOTAL_SLOTS += len(slot_sizes[i]) slots.append([]) CAS = [] for stype in range(0, slot_types): CAS.append(len(slot_sizes[stype])) top_kui_ptrs = [0]*(len(kui_idx.keys())+1) top_kui_per_slot_rev = [0]*(len(kui_idx.keys())+1) for i in kui_idx.keys(): try: if method == 'D': top_kui_per_slot_rev[i] = (kui_idx[i][top_kui_ptrs[i]][-1])/float(i) else: top_kui_per_slot_rev[i] = (kui_idx[i][top_kui_ptrs[i]][-2])/float(i) except: top_kui_per_slot_rev[i] = -1 for stype in range(0, slot_types): while CAS[stype] > 0: insert_one_itemset( slots, top_kui_per_slot_rev, top_kui_ptrs, kui_idx, CAS, stype, method) print ('TOTAL REVENUE TRAINING ') print (TOTAL_REVENUE) print ('DRANK MEAN') print (DRANK_MEAN/float(TOTAL_PLACED)) # print ('PATTERNS PLACED (TRAIN)') # print (TOTAL_PATTERNS) print ('SLOTS TOTAL') print (TOTAL_SLOTS) print ("TOTAL REVENUE") import pprint pprint.pprint(TOP_REVENUE, width=1) return (slots, TOTAL_SLOTS, TOTAL_REVENUE, DRANK_MEAN/float(TOTAL_PLACED)) def _RHDPRIP(data_dict, kui_R, kui_H, dranks, slot_sizes): global TOTAL_SLOTS, TOTAL_REVENUE, DRANK_MEAN, TOTAL_PLACED slots = [] # final slots 2d list CAS = [] # currently available slots slot_types = len(slot_sizes) for stype in range(0, slot_types): TOTAL_SLOTS += len(slot_sizes[stype]) slots.append([]) CAS.append(len(slot_sizes[stype])) # store pointers to next candidate of each itemset length top_kuir_ptrs = [0] * (len(kui_R.keys()) + 1) top_kuir_per_slot_revenue = [0] * (len(kui_R.keys()) + 1) for i in kui_R.keys(): try: top_kuir_per_slot_revenue[i] = kui_R[i][0][-2] except: top_kuir_per_slot_revenue[i] = -1 top_kuih_ptrs = [0] * (len(kui_H.keys()) + 1) top_kuih_per_slot_revenue = [0] * (len(kui_H.keys()) + 1) for i in kui_H.keys(): try: top_kuih_per_slot_revenue[i] = kui_H[i][0][-2] except: top_kuih_per_slot_revenue[i] = -1 pick_r_or_h = list(['R']*int(globals.R_RATIO * 10)) pick_r_or_h.extend(['H']*int(globals.H_RATIO * 10)) random.shuffle(pick_r_or_h) kui_to_pick_ptr = 0 for stype in range(0, slot_types): while CAS[stype] > 0: if pick_r_or_h[kui_to_pick_ptr] == 'R': insert_one_itemset( slots, top_kuir_per_slot_revenue, top_kuir_ptrs, kui_R, CAS, stype) elif pick_r_or_h[kui_to_pick_ptr] == 'H': insert_one_itemset( slots, top_kuih_per_slot_revenue, top_kuih_ptrs, kui_H, CAS, stype) kui_to_pick_ptr = (kui_to_pick_ptr + 1)%10 print ('TOTAL REVENUE TRAINING ') print (TOTAL_REVENUE) print ('DRANK MEAN') print (DRANK_MEAN/float(TOTAL_PLACED)) print ('SLOTS TOTAL') print (TOTAL_SLOTS) return (slots, TOTAL_SLOTS, TOTAL_REVENUE, DRANK_MEAN/float(TOTAL_PLACED)) def _DIVERSIFICATION(data_dict, kui_idx, slot_sizes, method): TOTAL_SLOTS = 0 TOTAL_REVENUE = 0 slots = [] #kUI = copy.deepcopy(kui_idx) kUI = {} A = 0.2 # NRl - a*NRl NRl = 0 for i in kui_idx.keys(): if i not in kUI: kUI[i] = [] for j in kui_idx[i]: # appending NR at the end, has to remove it later kUI[i].append((j[0], j[2], j[-1], j[-2])) for slot_size in slot_sizes: lbd = len(slot_size) selected_list = [] max_div = -1 NRl = 0 # fill 30% by 4 itemsets, 30% by 3 itemsets, 40% by 2 itemsets num_4 = int(((lbd * 30) / 100) / 4) # because each itemset would take 4 space num_3 = int(((lbd * 30) / 100) / 3) # because each itemset would take 3 space num_2 = int(((lbd * 40) / 100) / 2) # because each itemset would take 2 space for i in range (0, num_2): NRl += kui_idx[2][i][-2] for i in range (0, num_3): NRl += kui_idx[3][i][-2] for i in range (0, num_4): NRl += kui_idx[4][i][-2] for i in range(0, 100): # suffle and get diversification and keep with max diversification # lbd = 2*num_2 + 3*num_3 + 4*num_4 short_list = list() short_list.extend(random.choices(kUI[2][:2*lbd], k=num_2)) short_list.extend(random.choices(kUI[3][:2*lbd], k=num_3)) short_list.extend(random.choices(kUI[4][:2*lbd], k=num_4)) #print (short_list) current_div = calculate_diversification(short_list) sum_revenue = 0 for idx, i in enumerate(short_list): sum_revenue += i[-1] short_list[idx] = short_list[idx][:-1] # DIV METHOD if current_div > max_div and method == 'DIV': max_div = current_div selected_list = short_list # HRD METHOD if current_div > max_div and sum_revenue >= NRl - A*NRl and method == 'HRD': max_div = current_div selected_list = short_list slots.append(selected_list) print ('selected list ') print (selected_list) # remove the items that have been placed for item in selected_list: print ( '\n\n\n\ PRINT \n\n') print ( item) try: kUI[len(item[0])].remove(item) except: pass TOTAL_SLOTS += len(item[0]) TOTAL_REVENUE += item[1] print ('Number of Shelves ' + str(len(slots))) print (str(len(slots[0]))) print (str(len(slots[1]))) print (str(len(slots[2]))) return (slots, TOTAL_SLOTS, TOTAL_REVENUE, 0) def DPRIP(data_dict, kui_idx, dranks, slot_sizes, method='R'): if method == 'RH' or method == 'RDR': return _RHDPRIP(data_dict, kui_idx['R'], kui_idx['DR'], dranks, slot_sizes) elif method == 'DIV' or method == 'HRD': return _DIVERSIFICATION(data_dict, kui_idx, slot_sizes, method) else: return _DPRIP(data_dict, kui_idx, dranks, slot_sizes, method) ``` #### File: A-Revenue-based-Product-Placement-Framework-to-Improve-Diversity-in-Retail-Businesses/src/main.py ```python import argparse import mock_data import itertools from data_parser import parse_data from data_parser import parse_ch_dict from calculate_drank import get_dranks from kui_index import get_kui_index from slots import get_slots from DPRIP import DPRIP from evaluate import evaluate_new import globals import _pickle as pkl import time import os from os import path from random import random # Adding argument parser. parser = argparse.ArgumentParser() parser.add_argument('--data', '-d', help='add path to data file') parser.add_argument( '--with_ch_path', '-ch_path', help='run the experiment with diversity', default=None) args = parser.parse_args() # Global variables. DATA_FNAME = args.data CH_FNAME = args.with_ch_path def get_data(): assert CH_FNAME is not None assert DATA_FNAME is not None if path.isfile('dataset.pkl') and path.isfile('test.pkl'): train = pkl.load(open('dataset.pkl', 'rb')) test = pkl.load(open('test.pkl', 'rb')) else: (train, test) = parse_data(DATA_FNAME) pkl.dump(train_data_dict, open('dataset.pkl', 'wb')) pkl.dump(test_transactions, open('test.pkl', 'wb')) ch_dict = parse_ch_dict(CH_FNAME) dranks = get_dranks(train.keys(), ch_dict) return (train, test, ch_dict, dranks) if __name__ == '__main__': # Get globals in variables num_slots = globals.NUM_SLOTS type_slots = globals.NUM_TYPE_SLOTS method = globals.METHOD # processing data data_dict = {} ch_dict = {} dranks = {} (train_data, test_transaction, ch_dict, dranks) = get_data() if method == 'RH': kui_R = get_kui_index(train_data, dranks=dranks, method='R') kui_H = get_kui_index(train_data, dranks=dranks, method='H') kui_idx = { 'R': kui_R, 'H': kui_H } elif method == 'RDR': kui_R = get_kui_index(train_data, dranks=dranks, method='R') kui_DR = get_kui_index(train_data, dranks=dranks, method='DR') kui_idx = { 'R': kui_R, 'DR': kui_DR } else: kui_idx = get_kui_index(train_data, dranks=dranks, method=method) start = time.time() # get empty slots slots = get_slots(num_slots, type_slots, 0) (slots, num_slots, tr_train, dr_train) = DPRIP( train_data, kui_idx, dranks, slots, method) end = time.time() time = end - start for level in range(0, len(slots)): #print ("slot level %d", level) l = 0 for node in slots[level]: l += len(node[0]) #print (l) (tr_test, dr_test, place_test, num_total_test, diversification) = evaluate_new(slots, test_transaction) output = open('prip_slots_%d.pkl' % type_slots, 'wb') pkl.dump(slots, output) output.close() pkl_prefix = 'results/' + method + '_' metrics = { 'num_slots': num_slots, 'total_revenue_train': tr_train, 'drank_mean_train': dr_train, 'num_placed_test': place_test, 'num_total_test': num_total_test, 'total_revenue_test': tr_test, 'drank_mean_test': dr_test, 'train_time': time, 'diversification': diversification } for metric in metrics.keys(): fname = pkl_prefix + metric + '.pkl' if path.isfile(fname): data = pkl.load(open(fname, 'rb')) os.remove(fname) else: data = [] data.append(metrics[metric]) pkl.dump(data, open(fname, 'wb')) ``` #### File: A-Revenue-based-Product-Placement-Framework-to-Improve-Diversity-in-Retail-Businesses/src/slots.py ```python import random # NOTE: not using zipf right now. def get_slots(num_slots, type_slots, zipf): ''' Args - num_slots: Dictionary containing number of slots for each slot type type_slots: number of type of slots zipf: zipf factor [NOT USED YET] ''' slots = [] for i in range(0, type_slots): slots.append([]) for _ in range(0, num_slots[i]): slots[i].append(0) return slots ```
{ "source": "22PoojaGaur/COMINE-Plusplus-Algorithm-for-Finding-Correlated-Patterns-from-Transactions", "score": 3 }
#### File: COMINE-Plusplus-Algorithm-for-Finding-Correlated-Patterns-from-Transactions/src/comine_k.py ```python from globals import MIN_SUPPORT, MIN_ALL_CONF import pprint from tree import Tree import logging def get_support_max_limit(item, counts): """ Returms max support allowed for this item. """ return int(max(counts[item] / MIN_ALL_CONF, MIN_SUPPORT)) def find_max_item_support(pattern, supports): """ Returns support of item with maximum support among items in pattern. pattern: List. list of items in pattern. supports: Dict. item -> count dict """ max_support = -1 for item in pattern: max_support = max(max_support, supports[item]) return max_support def find_max_support_with_nc(pattern, sup_counts): max_support = -1 for item in pattern: if sup_counts[item] > max_support: max_support = sup_counts[item] return max_support def make_pattern(p1, p2): p1 = p1 if type(p1) == list else [p1] p2 = p2 if type(p2) == list else [p2] pattern = list(set(p1).union(set(p2))) print ("CONVERT " + ' '.join(pattern)) return pattern def find_support(pattern, supports): """ This method considers support of a pattern as the minimum support among its items patterns: List. list of items in pattern. supports: Dict """ min_support = None for item in pattern: if min_support is None: min_support = supports[item] else: if supports[item] < min_support: min_support = supports[item] return min_support def find_support_new(pattern, tree): min_support = None if len(pattern) == 1: # the support count is simply sum of all counts in header sup = 0 for node in tree.header[pattern[0]]: sup += node.node_count else: idx = 0 first = pattern[idx] current_node = tree.header[first][0] sup = current_node.node_count while idx < len(pattern)+1: next_node = pattern[idx+1] sup = min(sup) pass def find_support_with_nc(pattern, sup_counts): min_support = None for item in pattern: if min_support is None: min_support = sup_counts[item] else: if sup_counts[item] < min_support: min_support = sup_counts[item] return min_support def find_all_conf(pattern): pass def get_prefixes(snodes): """ snodes: List. List of suffix nodes for a header """ all_prefixes = [] for node in snodes: prefix = [] count = node.node_count while node.parent is not None: prefix.append(tuple([node.item, count])) node = node.parent all_prefixes.append(prefix) return all_prefixes def cominek(T, suffix=None, k=1, data=None, support_suffix=0): """ T: Object. Object of class Tree. alpha: List. alpha for alpha projected database. k: Int. Number of call made to this function. This is added because function acts differently when called 1st time vs when called subsequent times. """ if suffix is not None: logging.debug('Running cominek with suffix %s and k is %s ', ' '.join(suffix), str(k)) else: logging.debug('Running cominek with empty suffix') logging.debug('Header for the tree passed is ') logging.debug(T.get_header_sorted()) for ai, nc in T.get_header_sorted(): logging.debug('Process for header item %s ', ai) if suffix is None: beta = [ai] support_beta = T.get_item_support(ai) else: beta = make_pattern(suffix, ai) support_beta = min(support_suffix, T.get_item_support(ai)) logging.debug('BETA is %s', ' '.join(beta)) logging.debug('Support of beta is %s ', str(support_beta)) if support_beta >= MIN_SUPPORT and support_beta / T.max_support(beta) >= MIN_ALL_CONF: print ("FINAL BETA ", ' '.join(beta)) all_conf = support_beta / T.max_support(beta) logging.debug('All conf for beta is %s ', str(all_conf)) # get support range for ai support_limit = max(T.get_item_support(ai) / MIN_ALL_CONF, MIN_SUPPORT) logging.debug('Support limit for beta is %s ', str(support_limit)) all_prefixes = get_prefixes(T.header[ai]) logging.debug('All prefixes for header element %s is ', ai) logging.debug(all_prefixes) beta_tree = Tree() for prefix in all_prefixes: # check support condition for each item in prefix path check_passed = [] for item in prefix: # the prefix contains ai as well if item[0] == ai: continue if T.get_item_support(item[0]) <= support_limit: check_passed.append(item) else: break # add the temporary branch in the beta projected database check_passed.reverse() print('\nTemp branch for prefix ', prefix) print(check_passed) if len(check_passed) > 0: logging.debug('Inserting %s in beta tree ', ' '.join([c[0] for c in check_passed])) beta_tree.insert_transaction([c[0] for c in check_passed], nc=check_passed[0][1]) # considering check passed has tuples beta_tree.merge_tree() logging.debug('Beta tree formed for %s is ', ' '.join(beta)) logging.debug(beta_tree) beta_tree.print() for node in beta_tree.get_all_nodes(): if node.item is None: continue print ('DEBUG: ', ' '.join(beta), str(node.item)) pattern = make_pattern(beta, node.item) # pattern = list(set(beta).union(set(node.item))) print ('DEBUG: ', ' '.join(pattern)) pattern_support = min(support_beta, beta_tree.get_item_support(node.item)) max_support = T.max_support(pattern) logging.debug('DEBUG: max support for %s is %s', ' '.join(pattern), str(max_support)) if pattern_support < MIN_SUPPORT: # delete this node print('DEBUG: calling to delete node') print (node.item) beta_tree.delete_node(node) elif pattern_support / max_support < MIN_ALL_CONF: # delete this node print('DEBUG: calling to delete node') print(node.item) beta_tree.delete_node(node) else: print ('PATTERN HERE ', ' '.join(pattern)) logging.debug('Final beta tree after node deletion is ') logging.debug(beta_tree) beta_tree.print() print(beta_tree.header) # call if more than one element in fp tree if beta_tree.count_nodes() > 1: cominek(beta_tree, beta, len(beta)+1, data=data, support_suffix=support_beta) if __name__ == '__main__': # Write code for testing here pass ``` #### File: COMINE-Plusplus-Algorithm-for-Finding-Correlated-Patterns-from-Transactions/src/data.py ```python from collections import OrderedDict class Data(object): def __init__(self): self.supports = OrderedDict() self.transactions = [] def read_data(self, filename): with open(filename, 'r') as fin: for trans in fin.readlines(): t = trans.strip().split(';') self.transactions.append(t) # find support temp_supports = {} for trans in self.transactions: for item in trans: if item in temp_supports: temp_supports[item] += 1 else: temp_supports[item] = 1 sorted_item_tuples = sorted(temp_supports.items(), key=lambda item: item[1], reverse=True) for (item, count) in sorted_item_tuples: self.supports[item] = count ``` #### File: COMINE-Plusplus-Algorithm-for-Finding-Correlated-Patterns-from-Transactions/src/get_frequent_items.py ```python from collections import OrderedDict def get_frequent_item_count_dict(fin): item_count_dict = {} # 2-d array to store data data = [] for trans in fin.readlines(): t = trans.strip().split(';') data.append(t) """ transaction -> a c b data_dict = { 'a': 2, 'b': 3, 'c': 1 } """ # find support for trans in data: for item in trans: if item in item_count_dict: item_count_dict[item] += 1 else: item_count_dict[item] = 1 sorted_item_tuples = sorted(item_count_dict.items(), key=lambda item: item[1], reverse=True) result_dict = OrderedDict() # dictionary with key: item_name, value: count. Sorted by count for (item, count) in sorted_item_tuples: result_dict[item] = count return result_dict, data ``` #### File: COMINE-Plusplus-Algorithm-for-Finding-Correlated-Patterns-from-Transactions/src/tree.py ```python from collections import OrderedDict import queue import logging class IdGenerator: """ The ids have many to 1 relationship with the itemnames. """ def __init__(self): self.id_count = 0 self.id_to_node = {} def get_new_id(self, node): self.id_count += 1 self.id_to_node[self.id_count] = node return self.id_count def get_node_for_id(self, id): try: return self.id_to_node[id] except KeyError: raise ValueError("This id is not valid, " + str(id)) class Node: def __init__(self, item_name=None, id=None, children=None, nc=1, id_gen=None): if children is None: children = {} self.children = children self.item = item_name if id_gen is not None: self.id = id_gen.get_new_id(self) else: self.id = id self.parent = None self.node_count = nc def add_child(self, node): """ Add child `node` to the current node """ self.children[node.item] = node node.parent = self class Tree: def __init__(self): self.root = Node() # root node self.header = {} # list of nodes where each branch of that item starts, key=item_name, value=list of nodes self.id_generator = IdGenerator() # id generator for this tree def get_header_sorted(self): # returns header sorted by item support counts it = sorted(self.header.items(), key=lambda v: sum([n.node_count for n in v[1]]), reverse=True) return it def get_item_support(self, item): sup = 0 if item not in self.header: # raise ValueError("The item passed does not belong to this tree, " + str(item)) return 0 # TODO: not sure why pass should work for node in self.header[item]: sup += node.node_count return sup def get_support(self, item, suffix): total_support = 0 for node in self.header[item]: current = self.find_node_in_children(node, suffix[0]) if current is None: continue cur_support = min(node.node_count, current.node_count) for nj in suffix[1:]: for child in current.children: if nj == child: current = current.children[child] cur_support = min(cur_support, current.node_count) else: raise ValueError("Suffix is not present in children. This should not happen, " + child.item) total_support += cur_support return total_support def max_support(self, pattern): max_support = -1 for item in pattern: max_support = max(max_support, self.get_item_support(item)) return max_support def find_node_in_children(self, node, item): if node.item == item: return node if len(node.children) == 0: return None for n in node.children: result = self.find_node_in_children(node.children[n], item) if result is None: return result return None def insert_transaction(self, trans, nc=1): current = self.root for t in range(len(trans)): if trans[t] not in current.children: new_child = Node(trans[t], nc=nc, id_gen=self.id_generator) current.add_child(new_child) if trans[t] in self.header: self.header[trans[t]].append(new_child) else: self.header[trans[t]] = [new_child] current = new_child else: current = current.children[trans[t]] current.node_count += nc def merge_tree(self): new_level = [] for node in self.root.children: new_level.append(self.root.children[node]) prev_level = self.root while len(new_level) > 0: # apply merge at this level sorted_level = sorted(new_level, key=lambda k: k.item) cidx = 0 merged_level = [] while cidx < len(sorted_level) - 1: if sorted_level[cidx].item != sorted_level[cidx + 1].item: merged_level.append(sorted_level[cidx]) cidx += 1 continue else: # modify header self.header[sorted_level[cidx].item].remove(sorted_level[cidx]) self.header[sorted_level[cidx].item].remove(sorted_level[cidx + 1]) for child in sorted_level[cidx].children: if child in sorted_level[cidx + 1].children: sorted_level[cidx + 1].children[child].node_count += sorted_level[cidx].children[ child].node_count else: sorted_level[cidx + 1].children[child] = sorted_level[cidx].children[child] # del prev_level.children[sorted_level[cidx].item] sorted_level[cidx + 1].node_count += sorted_level[cidx].node_count self.header[sorted_level[cidx + 1].item].append(sorted_level[cidx + 1]) cidx += 1 new_level = [] for node in merged_level: for sn in node.children: new_level.append(node.children[sn]) def print(self): q = queue.Queue() q.put(self.root) while not q.empty(): node = q.get() # print(node) if node.item is not None: print(node.item + ' : ' + ' '.join(node.children)) for n in node.children: q.put(node.children[n]) def contains(self, item, node_ids): for node in node_ids: if self.node_to_item[node] == item: return True, node return False, None def get_all_nodes(self): result = [] q = queue.Queue() q.put(self.root) while not q.empty(): node = q.get() result.append(node) for n in node.children: q.put(node.children[n]) return result def delete_node(self, node): this_parent = node.parent print('DEBUG: this parent') print(this_parent == self.root) print(this_parent.children) print(this_parent.item) if this_parent is None: pass else: # this is a hacky way to handle the case where children A - B C and children B - C, and we want to delete B. try: del this_parent.children[node.item] except KeyError: pass for n in node.children: node.children[n].parent = this_parent # this is a hacky way to handle the case where children A - B C and children B - C, and we want to delete B. if node.children[n].item not in this_parent.children: this_parent.children[node.children[n].item] = node.children[n] def count_nodes(self): return len(self.get_all_nodes()) ```
{ "source": "22PoojaGaur/Efficient_Premiumness_And_Utilitybased_Itemset_Placement_Scheme_for_retail_stores", "score": 3 }
#### File: Efficient_Premiumness_And_Utilitybased_Itemset_Placement_Scheme_for_retail_stores/src/ARC.py ```python def get_arc(data): arc = {} for itemset in data.keys(): for item in itemset: if item not in arc: arc[item] = (data[itemset][0] * data[itemset][1]) / len(itemset) arc[item] += (data[itemset][0] * data[itemset][1]) / len(itemset) return arc ``` #### File: Efficient_Premiumness_And_Utilitybased_Itemset_Placement_Scheme_for_retail_stores/src/data_parser.py ```python import pyfpgrowth import math import random # Set a very low threshold to get all itemsets SUPPORT_THRESH = 50 K_FOR_KUI_IDX = 4 PRICE_BRACKETS = [ (0.01, 0.16), (0.17, 0.33), (0.34, 0.50), (0.51, 0.67), (0.68, 0.84), (0.85, 1)] def nonblank_lines(f): for l in f: line = l.rstrip() if line: yield line def parse_data(data_file_name): transactions = [] with open(data_file_name, 'r') as f: for line in nonblank_lines(f): transactions.append(line) transactions = [[int(item) for item in transaction.strip().split(' ')] for transaction in transactions] patterns = pyfpgrowth.find_frequent_patterns(transactions, SUPPORT_THRESH) data = {} # print (patterns) for (itemset, support) in patterns.items(): if len(itemset) > K_FOR_KUI_IDX: continue price_idx = int(math.floor(5.5*random.random())) price = random.randint( int(100*PRICE_BRACKETS[price_idx][0]), int(100*PRICE_BRACKETS[price_idx][1]))/100.0 data[itemset] = (support, price) return data ``` #### File: Efficient_Premiumness_And_Utilitybased_Itemset_Placement_Scheme_for_retail_stores/src/kui_index.py ```python K_FOR_KUI_IDX = 4 def get_kui_index(data): ''' data - dictionary input for data. key -> tuple of itemsets value -> tuple of (support, price) ''' kui = {} # Initialize all levels for dict for i in range(1, K_FOR_KUI_IDX+1): kui[i] = [] # Insert all itemsets in kui for itemset in data.keys(): value = list([itemset]) + list(data[itemset]) + [data[itemset][0] * data[itemset][1]] level = len(itemset) if (len(itemset) > K_FOR_KUI_IDX): continue # use insertion sort to maintain sorted order at level for i in range(0, len(kui[level])): if value[-1] < kui[level][i][-1]: kui[level].insert(i, tuple(value)) break else: kui[level].append(tuple(value)) return kui ``` #### File: Efficient_Premiumness_And_Utilitybased_Itemset_Placement_Scheme_for_retail_stores/src/slots.py ```python import random # NOTE: not using zipf right now. def get_slots(num_slots, type_slots, zipf): slots = [] premiumness_idx = {} start = 0.01 for i in range(1, type_slots+1): premiumness_idx[i-1] = (start, start+(1/(type_slots))) slots.append([]) for _ in range(0, int(num_slots/type_slots)): slots[i-1].append(0) else: rem = num_slots - type_slots*int(num_slots/type_slots) for k in range(0, rem): slots[-1].append(0) return slots ```
{ "source": "22PoojaGaur/Improving-Diversity-Performance-of-Association-Rule-Based-Recommender-Systems", "score": 3 }
#### File: Improving-Diversity-Performance-of-Association-Rule-Based-Recommender-Systems/src/calculating_drank_for_tesco_dataset.py ```python from __future__ import division import sys import extract_frequent_pattern def calculate_nodes_in_projection(patterns, ch_dict=None): if ch_dict is None: raise ValueError nodes_in_proj = set() for item in patterns: path = set(ch_dict[item]) # print [node.value for node in path] nodes_in_proj = nodes_in_proj | path return len(nodes_in_proj) def calculate_drank(patterns, ch_dict=None, ch_height=None): if ch_dict is None or ch_height is None: raise ValueError num_node_in_proj = calculate_nodes_in_projection(patterns, ch_dict=ch_dict) num_item_in_pat = len(pattern) h = ch_height try: drank = (num_node_in_proj - (num_item_in_pat + h - 1)) / ( (h-1)*(num_item_in_pat -1)) except ZeroDivisionError as e: drank = "NOT PROCESSED" return drank def read_input(): if len(sys.argv) < 3: print("program expects name of input file and pattern file") sys.exit(1) try: in_filname = sys.argv[1] pat_filename = sys.argv[2] fin = open(in_filname, 'r') fpat = open(pat_filename, 'r') except: print("file not found") sys.exit(1) item_path_dict = {} is_item = True cur_item = '' path = [] for line in fin.readlines(): path = [] if line.strip() == '': continue if is_item: # line is item item = line.strip() cur_item = item is_item = 0 else: # line is path path = line.strip().split(' ') item_path_dict[cur_item] = path is_item = 1 # threshold randomly decided freq_patterns =extract_frequent_pattern.extract_frequent_patterns(fpat, 18) return (item_path_dict, freq_patterns) def main(): (item_path_dict, freq_patterns) = read_input() ch_height = 0 for item in item_path_dict.keys(): if len(item_path_dict[item]) > ch_height: ch_height = len(item_path_dict[item]) print("concept hierarchy height") print (ch_height) dranks = [0]*len(freq_patterns) idx = 0 for patterns in freq_patterns: print("processing pattern %s", ' '.join(patterns), '\n') try: # calculate drank dranks[idx] = calculate_drank(patterns, ch_dict=item_path_dict, ch_height=ch_height) except KeyboardInterrupt: dranks[idx] = "SKIPPED" print(str(dranks[idx]), '\n') idx += 1 # convert patterns to list fin_patterns = [] for i in freq_patterns: fin_patterns.append(' '.join(i)) # Now we have drank for evey frequent pattern. for i in range(0, len(freq_patterns)): print("patterns ", str(i), "- ",) print(fin_patterns[i]) print("drank - ") print(dranks[i]) print('\n') if __name__ == '__main__': main() ``` #### File: Improving-Diversity-Performance-of-Association-Rule-Based-Recommender-Systems/src/make_recommendations.py ```python def get_recommendation(X, rule_inter): result = [] for i in rule_inter: if set(i.split('=>')[0].strip().split(' ')).issubset(set(X)): result.append(i) recs = set() for i in result: if len(i.split('=>')[1].strip().split(' ')) == 1: # print(i.split('=>')[1].strip()) recs.add(i.split('=>')[1].strip()) return (result, list(recs)) if __name__ == '__main__': inp = input('enter input file for recommendations -> ') Xs = open(inp, 'r').read().split('\n') ass_c = open('AR_sorted_by_confidence.txt', 'r').read().split('\n') ass_d = open('AR_sorted_by_drank.txt', 'r').read().split('\n') # store the intersection of rules of both sorted list rule_inter = [] rule_conf_dict = {} rule_drank_dict = {} fin_dict = {} for i in ass_c: rule_conf_dict[i.split('|')[0].strip()] = i.split('|')[1].strip() for i in ass_d: rule_drank_dict[i.split('|')[0].strip()] = i.split('|')[1].strip() sorted_conf_rules = [] for rule, conf in sorted(rule_conf_dict.items(), key=lambda x: x[1], reverse=True): sorted_conf_rules.append(rule) sorted_drank_rules = [] for rule, drank in sorted(rule_drank_dict.items(), key=lambda x: x[1], reverse=True): # put threshold for drank here thresh= 0.05 assert thresh != None if float(drank) >= thresh: sorted_drank_rules.append(rule) rule_inter = list(set(sorted_conf_rules) & set(sorted_drank_rules)) # for rule, conf in rule_conf_dict.items(): # fin_dict[rule] = (conf, rule_drank_dict[rule]) # for key, value in sorted(fin_dict.items(), key=lambda x: x[1], reverse=True): # rule_inter.append(key) #print(rule_inter) # rule_inter = list(set(rule_conf) & set(rule_drank)) for x in Xs: if x == '': continue # print(x) (rules, recs) = get_recommendation(x.strip().split(' '), rule_inter) # print('rules for ' + x + ' -> ' + '\n'.join(rules)) print('recommendations for HC-HD ' + x + ' -> ' + ' '.join(recs)) print('\n') (rules, recs) = get_recommendation(x.strip().split(' '), rule_conf_dict.keys()) print('recommendations for HC ' + x + ' -> ' + ' '.join(recs)) print('\n') ```
{ "source": "22preich/BlenderNetworkRender", "score": 2 }
#### File: 22preich/BlenderNetworkRender/render.py ```python import bpy import sys dir = "C:/Users/foggy/Appdata/roaming/python37/site-packages" sys.path.append(dir) from flask import Flask, request, render_template from werkzeug.utils import secure_filename import eventlet from eventlet import wsgi app = Flask(__name__) @app.route('/') def hello_world(): return render_template("index.html") @app.route('/submit', methods=['POST']) def submit(): f = request.files['file'] filepath = 'tmp/' + secure_filename(f.filename) f.save(filepath) render(filepath) return "<img src='/static/" + name_from_file(filepath) + ".png'>" def render(filepath="tmp/alley.blend"): bpy.ops.wm.open_mainfile(filepath=filepath) #print("yay") bpy.context.scene.cycles.device = 'GPU' scene = bpy.context.scene scene.render.image_settings.file_format = 'PNG' scene.render.filepath = "C:/Users/foggy/Documents/Github/BlenderNetworkRender/static/" + name_from_file(filepath) + ".png" print(bpy.ops.render.render(write_still=1)) def name_from_file(filename): return filename.split("/").pop().split(".")[0] # render() #app.run("0.0.0.0", 5000) wsgi.server(eventlet.listen(('', 8000)), app) ```
{ "source": "22preich/neural-interface", "score": 3 }
#### File: 22preich/neural-interface/text.py ```python import sched, time s = sched.scheduler(time.time, time.sleep) def print_time(): print("From something", time.time()) def print_some_times(): print(time.time()) s.enter(5, 1, print_time, ()) s.enter(10, 1, print_time, ()) s.run() print(time.time()) print_some_times() ```
{ "source": "22RC/eBPF-TcpLatency-NetPagefault", "score": 2 }
#### File: eBPF-TcpLatency-NetPagefault/NetPagefault/NetPagefault.py ```python from __future__ import print_function from bcc import BPF, PerfType , PerfSWConfig from socket import inet_ntop, ntohs, AF_INET from struct import pack import signal import socket import argparse import ctypes as ct from time import sleep # arguments examples = """examples: ./NetPagefault.py # trace all TCP/UDP accept()s, connect()s, default running 1000 seconds ./NetPagefault.py -t 100 # trace all TCP/UDP accept()s, connect()s, running for 100 seconds """ parser = argparse.ArgumentParser( description="Trace TCP/UDP socket connects, accepts and process pagefaults", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=examples) parser.add_argument("-t", "--time", help="trace for this seconds") args = parser.parse_args() def signal_ignore(signum,frame): print() def get_key(list_of_keys,pid,comm): i = -1 index = 0 while index < len(list_of_keys) and i == -1: if list_of_keys[index][0] == pid and list_of_keys[index][2] == comm : i = index index += 1 return i ########################### eBPF programs ####################################### bT = BPF(src_file="source_TCPtracer.c") bU= BPF(src_file="source_UDPtracer.c") ########################### TCP probe Connect ################################### bT.attach_kprobe(event="tcp_v4_connect", fn_name="trace_connect_entryTCP") bT.attach_kretprobe(event="tcp_v4_connect", fn_name="trace_tcp_connect") ############################ TCP/UDP probe Accept ############################### bT.attach_kretprobe(event='inet_csk_accept',fn_name="trace_tcp_accept") bU.attach_kretprobe(event="udp_recvmsg",fn_name="trace_udp_rcv") ########################### UDP probe Connect ################################### bU.attach_kprobe(event="udp_sendmsg",fn_name="trace_connect_entryUDP") bU.attach_kretprobe(event="udp_sendmsg", fn_name="trace_udp_connect") ########################### Pagefault probe ##################################### f = BPF(src_file="source_Procfault.c") f.attach_perf_event( ev_type=PerfType.SOFTWARE, ev_config=PerfSWConfig.PAGE_FAULTS_MIN, fn_name="page_min_flt",sample_period=0,sample_freq=49) ################################################################################# if args.time: print("Running for {} seconds or hit Ctrl-C to end.".format(args.time)) timeRunning = args.time else: print("Running for {} seconds or hit Ctrl-C to end.".format(1000)) timeRunning = 1000 try: sleep(float(timeRunning)) except KeyboardInterrupt: signal.signal(signal.SIGINT, signal_ignore) print(" ") TASK_COMM_LEN = 16 # linux/sched.h min_flt_count = {} # process page fault dict tcp_map_v4_connect = {} # tcp client side udp_map_v4_connect = {} # udp client side tcp_map_v4_accept = {} # tcp server_side udp_map_v4_accept = {} # udp server_side #TCP stats socket connect (client_side) print("\n") print('Tcp client side (sock.connect) :\n') print('{:<5s} {:<5s} {:<18s} {:<15s} {:<15s} {:<5s}'.format("PID","IPVER","PROC_NAME","IPSOURCE","IPDEST","DPORT")) for (k,v) in bT.get_table("ipv4_map_client").items(): tcp_map_v4_connect[(k.pid, 4, k.comm, k.saddr, k.daddr, k.dport)] = v.value keyslist = tcp_map_v4_connect.keys() for i in keyslist: print('{:<5d} {:<5d} {:<18s} {:<15s} {:<15s} {:<5d}'.format(i[0],i[1],i[2], inet_ntop(AF_INET,pack("I",i[3])), inet_ntop(AF_INET,pack("I",i[4])),i[5])) #TCP stats socket accept (server_side) print(" \n") print('Tcp server side (sock.accept) :\n') print('{:<5s} {:<5s} {:<18s} {:<15s} {:<15s} {:<5s}'.format("PID","IPVER","PROC_NAME","IPSOURCE","IPDEST","LPORT")) for (k,v) in bT.get_table("ipv4_map_serverTCP").items(): tcp_map_v4_accept[(k.pid, 4, k.comm, k.saddr, k.daddr, k.lport)] = v.value keyslist_acceptTCP = tcp_map_v4_accept.keys() for i in keyslist_acceptTCP: print('{:<5d} {:<5d} {:<18s} {:<15s} {:<15s} {:<5d}'.format(i[0],i[1],i[2], inet_ntop(AF_INET,pack("I",i[3])), inet_ntop(AF_INET,pack("I",i[4])),i[5])) #UDP stats socket accept (server_side) print(" \n") print('Udp server side (sock.accept) :\n') print('{:<5s} {:<5s} {:<18s} {:<15s} {:<15s} {:<5s} '.format("PID","IPVER","PROC_NAME","IPSOURCE","IPDEST","LPORT")) for (k,v) in bU.get_table("ipv4_map_serverUDP").items(): udp_map_v4_accept[(k.pid, 4, k.comm, k.saddr, k.daddr, k.lport)] = v.value keyslist_acceptUDP = udp_map_v4_accept.keys() for i in keyslist_acceptUDP: print('{:<5d} {:<5d} {:<18s} {:<15s} {:<15s} {:<5d} '.format(i[0],i[1],i[2], inet_ntop(AF_INET,pack("I",i[3])), inet_ntop(AF_INET,pack("I",i[4])),i[5])) #UDP stats socket connect (client_side) print(" \n") print('Udp client side (sock.connect) :\n') print('{:<5s} {:<5s} {:<18s} {:<15s} {:<15s} {:<5s}'.format("PID","IPVER","PROC_NAME","IPSOURCE","IPDEST","DPORT")) for (k,v) in bU.get_table("ipv4_map_client_UDP").items(): udp_map_v4_connect[(k.pid, 4, k.comm, k.saddr, k.daddr, k.dport)] = v.value keyslist_connectUDP = udp_map_v4_connect.keys() for i in keyslist_connectUDP: print('{:<5d} {:<5d} {:<18s} {:<15s} {:<15s} {:<5d}'.format(i[0],i[1],i[2], inet_ntop(AF_INET,pack("I",i[3])), inet_ntop(AF_INET,pack("I",i[4])),i[5])) print("\n") for (k, v) in f.get_table('min_flt_table').items(): idx_key = get_key(keyslist, k.pid , k.comm) version = 0 if idx_key >= 0: keysTuple = keyslist[idx_key] saddr, daddr = keysTuple[3] , keysTuple[4] version = 4 else: idx_key = get_key(keyslist_acceptTCP, k.pid , k.comm) version = 0 if idx_key >= 0: keysTuple = keyslist_acceptTCP[idx_key] saddr, daddr = keysTuple[3] , keysTuple[4] version = 4 else: idx_key = get_key(keyslist_acceptUDP, k.pid , k.comm) version = 0 if idx_key >= 0: keysTuple = keyslist_acceptUDP[idx_key] saddr, daddr = keysTuple[3] , keysTuple[4] version = 4 if version != 0: min_flt_count[(k.pid, k.comm)] = (v.value,version,saddr,daddr) print("Page fault: \n") print('{:<8s} {:<18s} {:<10s} {:<12s}'.format("PID","NAME","IPVER","MIN_FLT")) for (k, v) in sorted(f.get_table('min_flt_table').items(), key= lambda (k,v): v.value,reverse=True): try: (value,version,sa,da) = min_flt_count[(k.pid, k.comm)] except KeyError: version = 0 if version != 0: print('{:<8d} {:<18s} {:<10d} {:<12d}'.format( k.pid, k.comm.decode(), version, value)) ```
{ "source": "22shubh22/online-judge", "score": 2 }
#### File: judge/submission/task.py ```python from celery import shared_task from .models import Submission, SubmissionTest from question.models import Question, Test import sys import json @shared_task def queue_submission(submission_id): submission = Submission.objects.get(id=submission_id) submission.status = "processing" submission.save() code_file_path = submission.code_file.path code_file_name = submission.code_file.name filename = code_file_name.split("/")[1].split(".")[0] try: import importlib.util spec = importlib.util.spec_from_file_location("code." + str(filename), str(code_file_path)) foo = importlib.util.module_from_spec(spec) spec.loader.exec_module(foo) # pass parameters for submit, from test file of question temp_submission_status = "AC" for test_obj in Test.objects.filter(question=submission.question.id): input_test = json.loads(test_obj.test) print(input_test) print(type(input_test)) # run the code output = foo.submit(*input_test) # create a submit tet object submit_test = SubmissionTest.objects.create(test=test_obj, submission=submission, output=json.dumps(output)) if submit_test.output == test_obj.correct_answer: submit_test.status = "AC" submit_test.save() elif submit_test.output != "" and submit_test.output != test_obj.correct_answer: submit_test.status = "WA" submit_test.save() temp_submittion_status = "WA" submission.status = temp_submission_status submission.save() return "No run time error" except Exception as e: error = str(e) print("run time error") print(error) return error ```
{ "source": "22subash/Redbot", "score": 3 }
#### File: 22subash/Redbot/discordbot.py ```python import discord from discord.ext import commands import asyncpraw # Getting things from reddit reddit = asyncpraw.Reddit(client_id='client_id', client_secret='client_secret', user_agent='user_agent') # Discord bot stuff client = discord.Client() @client.event # If user types "/get" async def on_message(message): if message.content.startswith("/get"): sort = message.content[5:6] redditval = message.content[7:] print(sort) print(redditval) await message.channel.send("Please enter a valid subreddit and sort by, otherwise nothing will appear") submission = await reddit.subreddit(redditval) if (sort == "h"): sort = "hour" elif (sort == "d"): sort = "day" elif (sort == "w"): sort = "week" elif (sort == "m"): sort = "month" elif (sort == "y"): sort = "year" elif (sort == "a"): sort = "all" submissions = await reddit.subreddit(redditval) posts = submissions.top(limit=1) async for post in posts: url = post.url if (url.endswith(('.jpg', '.png', '.gif', '.jpeg'))): embed = discord.Embed(title= post.title) embed.set_image(url=post.url) await message.channel.send(embed=embed) # If user types "/help" if (message.content == ("/help")): embed = discord.Embed(title= "Commands", discription= "Below are the commands that you can use with this bot", color=discord.Color(15105570)) embed.set_footer(text="Please use (.) before each command") embed.add_field(name=".get (enter the way you want to sort by) (enter a subreddit name)", value="Gets 1 picture from the way you want to sort of your chosen subreddit", inline=True) await message.channel.send(embed=embed) client.run(TOKEN) ```
{ "source": "22th/SDD-Major-Work", "score": 3 }
#### File: 22th/SDD-Major-Work/LogicPuzzler.py ```python import pygame as py import random as rand import eztext import numpy as np py.init() #vars below class Images: image=[] x=0 y=0 img_count=0 img_selected=False correct=False class Scores: NS=[] screen_width = 1000 screen_height = 700 screen = py.display.set_mode((screen_width,screen_height)) lock = py.time.Clock() myfont = py.font.SysFont("Comic Sans MS",11) yfont = py.font.SysFont("Comic Sans MS",20) running=True txtbx = eztext.Input(maxlength=10, color=(255,255,255), prompt='Name: ') startbutt=py.image.load("startbutton.png") SL=0 py.display.set_caption("Logic Puzzler") RED = (255,0,0) BLUE = (0,0,255) GREEN = (0,255,0) BLACK = (0,0,0) WHITE = (255,255,255) ORANGE = (255,180,0) prevclickedRes=0 prevclickedPlay=0 GreyBox=py.image.load("gray.jpg") GreyBox=py.transform.scale(GreyBox,(50,50)) prevclickedResImg=0 Correctspot=[] score=0 name="" errorcount=[0,False] for i in range(25): Correctspot.append(False) #vars above def screenMsg(screen,x,y,font,text,color): text=str(text) xv=font.render(text,1,color) screen.blit(xv,(x,y)) def rectbutton(screen,x,y,w,h,color,events,text,font,fcolor): xv=font.render(text,1,fcolor) py.draw.rect(screen,color,(x,y,w,h)) rect=py.Rect(x,y,w,h) screen.blit(xv,(x+w/2-py.Surface.get_width(xv)/2,y+h/2-py.Surface.get_height(xv)/2)) for evet in events: if evet.type == py.MOUSEBUTTONUP: if rect.collidepoint((py.mouse.get_pos())): return(True) def imgbutton(screen,img,x,y,events): screen.blit(img,(x,y)) butt=py.Rect(x,y,img.get_width(),img.get_height()) for event in events: if event.type == py.MOUSEBUTTONUP: if butt.collidepoint((py.mouse.get_pos())): return(True) return(False) def Selectlevel(): lock.tick(10) events=py.event.get() for event in events: if event.type == py.QUIT: running=False py.display.quit() screen.fill((50,50,50)) cou=0 for j in range(3): for i in range(5): cou=cou+1 click=rectbutton(screen,175+160*i,300+100*j,50,50,BLACK,events,str(cou),myfont,WHITE) if click == True: return(cou) py.display.flip() return(16) def gamescreen(levelnum,LevImageRes,LevImagePlay): lock.tick(100) global prevclickedResImg global prevclickedRes global Correctspot global score events = py.event.get() for event in events: if event.type == py.QUIT: running=False screen.fill((50,50,50)) Playcount=0 tog1=False for j in range(5): for i in range(5): if LevImagePlay[Playcount].img_selected == False: tog1=imgbutton(screen,LevImagePlay[Playcount].image[LevImagePlay[Playcount].img_count],LevImagePlay[Playcount].x,LevImagePlay[Playcount].y,events) if LevImagePlay[Playcount].img_selected == True: tog1=imgbutton(screen,GreyBox,LevImagePlay[Playcount].x,LevImagePlay[Playcount].y,events) if tog1 == True: if LevImagePlay[Playcount].img_count == prevclickedResImg: LevImagePlay[Playcount].img_selected = False LevImageRes[prevclickedRes].correct=True Correctspot[prevclickedRes]=True score=score+10 else: score=score-10 Playcount+=1 coun=0 tog=False for j in range(5): for i in range(5): if LevImageRes[coun].img_selected == False: tog=imgbutton(screen,LevImageRes[coun].image[LevImageRes[coun].img_count],LevImageRes[coun].x,LevImageRes[coun].y,events) if LevImageRes[coun].img_selected == True or LevImageRes[coun].correct==True: screen.blit(GreyBox,(LevImageRes[coun].x,LevImageRes[coun].y)) if tog == True: LevImageRes[prevclickedRes].img_selected = False prevclickedRes=coun prevclickedResImg=LevImageRes[coun].img_count LevImageRes[coun].img_selected = True coun+=1 count=0 for j in range(5): for i in range(5): screen.blit(LevImagePlay[count].image[LevImagePlay[count].img_count],(LevImageRes[count].x+10,LevImageRes[count].y-300)) count+=1 screenMsg(screen,400,100,yfont,"LOGIC PUZZLER",ORANGE) Scoremsg="Score: "+str(score) Scoremsg=str(Scoremsg) scomsg=myfont.render(Scoremsg,1,RED) screen.blit(scomsg,(100,100)) py.display.flip() score-=0.01 if all(Correctspot): if prevclickedRes == 26: return(score) prevclickedRes=26 return(-100000000000) def scorescreen(score,data): lock.tick(10) events=py.event.get() for event in events: if event.type == py.QUIT: running=False py.display.quit() Scorerank=['5th: ','4th: ','3rd: ','2nd: ','1st: '] screen.fill((50,50,50)) i=5 while i != 0: temp=data[i-1] screenMsg(screen,100,350-50*i,yfont,Scorerank[i-1]+str(temp[0]),RED) screenMsg(screen,200,350-50*i,yfont,temp[1],RED) i=i-1 py.display.flip() def main(): global name global errorcount events=py.event.get() for event in events: if event.type == py.QUIT: running=False screen.fill((50,50,50)) select=False lvnum=False levnum=16 gs=False gsnum=-100000000000 gsgo=False txtbx.update(events) #blit txtbx on the sceen txtbx.set_pos(100,10) txtbx.draw(screen) name=txtbx.value start=imgbutton(screen,startbutt,350,100,events) if start == True and name !='': select=True if start == True or errorcount[1]==True and name == '' and errorcount[0] !=100: errorcount[1]=True screenMsg(screen,screen_width/2,screen_height/2,yfont,"INPUT A NAME",ORANGE) errorcount[0]+=1 if errorcount[0] == 1000 and errorcount[1] == True: errorcount[0]=0 errorcount[1]=False while select and levnum == 16: for event in py.event.get(): if event.type == py.QUIT: running=False levnum=Selectlevel() if levnum != 16: imcount=[] for i in range(25): imcount.append(i) rand.shuffle(imcount) count=0 LevFilesLoc="Levels/"+str(levnum)+"/" LevImageRes=[] for j in range(5): for i in range(5): LevImagesTemp=Images() img=py.image.load(LevFilesLoc +str(count+1) +".jpg").convert_alpha() img=py.transform.scale(img,(50,50)) LevImagesTemp.img_count=imcount[count] LevImagesTemp.image.append(img) LevImagesTemp.x=i*51 LevImagesTemp.y=j*51+440 LevImagesTemp.img_selected=False LevImageRes.append(LevImagesTemp) count+=1 count=0 LevImagesPlay=[] for j in range(5): for i in range(5): LevImagesTemp=Images() img=py.image.load(LevFilesLoc +str(count+1) +".jpg").convert_alpha() img=py.transform.scale(img,(50,50)) LevImagesTemp.img_count=count LevImagesTemp.image.append(img) LevImagesTemp.x=i*51+400 LevImagesTemp.y=j*51+440 LevImagesTemp.img_selected=True LevImagesTemp.correct=False LevImagesPlay.append(LevImagesTemp) count+=1 lvnum = True while lvnum: gs=gamescreen(levnum,LevImageRes,LevImagesPlay) if gs != -100000000000: lvnum=False gsgo=True data = np.genfromtxt('Scores.csv', delimiter=',', dtype=None, names=('Scores','Name'),encoding=None) newrow=(gs,name) checker=0 for i in range(5): temp=data[i] if newrow[0] > temp[0] and checker == 0: data[i]=newrow checker+=1 data.sort(order='Scores') np.savetxt("Scores.csv",data,fmt=('%i, %s'),delimiter=",") while gsgo: scorescreen(gs,data) py.display.flip() while running: lock.tick(100) events=py.event.get(py.QUIT) for event in events: if event.type == py.QUIT: running=False main() #xkcc ```
{ "source": "22TonyFStark/mmsegmentation", "score": 2 }
#### File: models/backbones/mlpmixer.py ```python import torch import torch.nn as nn from mmcv.cnn.bricks.transformer import FFN from mmcv.cnn.bricks.drop import DropPath from mmcv.runner import BaseModule, ModuleList from ..builder import BACKBONES from .vit import VisionTransformer class MLP_Mixer_Layer(BaseModule): """ MLP_Mixer_Layer replaces the AttentionLayer used in LayerScaleTransformer by MLP, and replaces all LayerNorms as AffineLayers. It is a simple residual network that alternates: 1. a linear layer in which image PATCHES interact, independently and identically across channels, 2. a two-layer feed-forward network in which CHANNELS interact independently per patch. 3. The differences between MLP-Mixer and ResMLP is that ResMLP uses layerscale and replaces the Layernorm as Affine. """ def __init__(self, embed_dims, mlp_ratio=4, num_fcs=2, drop=0., drop_path=0., act_cfg=dict(type='GELU'), init_values=1e-4, num_patches = 196): super(MLP_Mixer_Layer, self).__init__() self.norm1 = nn.LayerNorm(embed_dims) self.attn = nn.Linear(num_patches, num_patches) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = nn.LayerNorm(embed_dims) self.ffn = FFN( embed_dims = embed_dims, feedforward_channels = mlp_ratio*embed_dims, num_fcs = num_fcs, ffn_drop=drop, dropout_layer=None, act_cfg=act_cfg, ) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x).transpose(1,2)).transpose(1,2)) x = x + self.drop_path(self.ffn(self.norm2(x))) return x @BACKBONES.register_module() class MLP_Mixer(VisionTransformer): def __init__(self, init_scale=1e-4, img_size=(224, 224), patch_size=16, in_channels=3, num_classes=150, embed_dims=768, depth=12, drop_rate=0., act_cfg=dict(type="GELU"), drop_path_rate=0.0, **kwargs): super(MLP_Mixer, self).__init__( img_size=img_size, patch_size=patch_size, in_channels=in_channels, num_classes=num_classes, embed_dims=embed_dims, depth=depth, drop_rate=drop_rate, act_cfg=act_cfg, drop_path_rate=drop_path_rate, **kwargs ) num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size) dpr = [drop_path_rate for i in range(depth)] self.layers = ModuleList() for i in range(depth): self.layers.append( LayerScalePatchMLP( embed_dims=embed_dims, drop=drop_rate, drop_path=dpr[i], act_cfg=act_cfg, init_values=init_scale, num_patches=num_patches) ) self.norm1 = nn.LayerNorm(embed_dims) # ViT uses LayerNorm ```
{ "source": "23132143252246477785366541342/djangoWebApp", "score": 3 }
#### File: djangoWebApp/hello/views.py ```python from django.shortcuts import render from django.views import View from .models import Form from django.http import HttpResponse import sqlite3 # Create your views here. class Index(View): def get(self, request): return render(request, "hello/index.html") class SignUp(View): def get(self, request): return render(request, "hello/signup.html") def post(self, request): form = Form(request.POST) if form.is_valid(): db = sqlite3.connect("accounts.db") cur = db.cursor() cur.execute("CREATE TABLE IF NOT EXISTS accounts(username, password);") cur.execute(f"INSERT INTO accounts(username, password) VALUES('{form.cleaned_data.get('username')}', '{form.cleaned_data.get('password')}');") db.commit() db.close() return HttpResponse('''<h1 style='text-align:center;font-family:Arial;'> Account Creation Succeeded!</h1> <a href="/" style='font-family:Arial;'><p style='text-align:center;color:blue;'>--> Back to Home Page</p></a>''') else: return HttpResponse(f"{form}") class Login(View): def get(self, request): return render(request, "hello/login.html") def post(self, request): return HttpResponse("<h1></h1>") class ViewAccounts(View): def get(self, request): con = sqlite3.connect("accounts.db") cur = con.cursor() cur.execute("SELECT * FROM accounts") select = cur.fetchall() con.close() return render(request, "hello/accounts.html", context={'select': select}) ```
{ "source": "2320sharon/localtileserver", "score": 2 }
#### File: localtileserver/tileserver/__init__.py ```python from flask import Flask from localtileserver.tileserver import rest, urls, views from localtileserver.tileserver.blueprint import cache, tileserver from localtileserver.tileserver.data import get_data_path from localtileserver.tileserver.palettes import get_palettes, palette_valid_or_raise from localtileserver.tileserver.utilities import ( get_cache_dir, get_clean_filename, make_vsi, purge_cache, ) def create_app(url_prefix="/"): app = Flask(__name__) cache.init_app(app) app.register_blueprint(tileserver, url_prefix=url_prefix) return app ```
{ "source": "2320sharon/Seg2Map", "score": 3 }
#### File: Seg2Map/CoastSeg/make_overlapping_roi.py ```python import geopandas as gpd import numpy as np import shapely from shapely.geometry import LineString from shapely.ops import unary_union from geojson import Feature, FeatureCollection, dump import geojson from tqdm.notebook import tqdm_notebook # Global vars TEMP_FILENAME = "temp.geojson" def get_empty_overlap_df(csv_name: "str"): """Creates an empty geodataframe to hold the overlapping ROIs information""" df_overlap = gpd.GeoDataFrame({"id": [], 'primary_id': [], 'geometry': [], 'intersection_area': [], '%_overlap': []}) df_overlap = df_overlap.astype({'id': 'int32', 'primary_id': 'int32'}) return df_overlap def get_ROIs(coastline: dict, roi_filename: str, csv_filename: str): """Writes the ROIs to a geojson file and the overlap between those ROIs to a csv file. Arguments: ----------- coastline : dict Geojson containing the portion of the coastline clipped within the bbox roi_filename:str File name of the json file to hold the roi data csv_filename:str File name of the csv file to hold the overlap between the rois """ lines_list = get_linestring_list(coastline) # TEMP_FILENAME: file where each segment of coastline's rois written to # master_overlap_df: geopandas dataframe containing all the overlap data # for the rois # Start_id is used as the starting number for writing the ROI ids start_id = 0 # list to hold all the end_ids created in create_overlap() end_id_list = [] master_overlap_df = get_empty_overlap_df(csv_filename) finalized_roi = {'type': 'FeatureCollection', 'features': []} for line in tqdm_notebook(lines_list, desc="Calculating Overlap"): geojson_polygons = get_geojson_polygons(line) end_id = write_to_geojson_file( TEMP_FILENAME, geojson_polygons, perserve_id=False, start_id=start_id) overlap_df = create_overlap(TEMP_FILENAME, line, start_id, end_id_list) if len(end_id_list) != 0: # Get the most recent end_id # print(f"end_id_list {end_id_list}") # print(f"Updating start id from {start_id}") start_id = end_id_list.pop() # print(f"Updating start id to {start_id}") # print(f"AFTER POP: end_id_list {end_id_list}") end_id_list = [] else: # Once all the overlapping ROIs have been created update the # start_id for the next set of ROIs start_id = end_id master_overlap_df = master_overlap_df.append( overlap_df, ignore_index=False) # Read the geojson data for the ROIs and add it to the geojson list rois_geojson = read_geojson_from_file(TEMP_FILENAME) for single_roi in rois_geojson["features"]: finalized_roi["features"].append(single_roi) # Write to the permanent geojson and csv files write_to_geojson_file(roi_filename, finalized_roi, perserve_id=True) master_overlap_df.to_csv(csv_filename, mode='a', header=False, index=False) def get_selected_roi(selected_set: tuple, roi_geojson: dict) -> dict: """ Returns a dictionary containing the geojson of the ROIs selected by the user Arguments: ----------- selected_set:tuple A tuple containing the ids of the ROIs selected by the user roi_geojson:dict A geojson dict containing all the rois currently on the map Returns: ----------- geojson_polygons: dict geojson dictionary containing all the ROIs selected """ # Check if selected_set is empty assert len( selected_set) != 0, "\n Please select at least one ROI from the map before continuing." # Create a dictionary for the selected ROIs and add the user's selected # ROIs to it selected_ROI = {} selected_ROI["features"] = [ feature for feature in roi_geojson["features"] if feature["properties"]["id"] in selected_set ] return selected_ROI def min_overlap_btw_vectors( geojsonfile, csv_filename, overlap_percent: float = .65): overlap_btw_vectors_df = get_overlap_dataframe(geojsonfile) # Set of IDs where the overlap >= 65% drop_list = list(set( overlap_btw_vectors_df[overlap_btw_vectors_df["%_overlap"] > overlap_percent]["primary_id"])) # load the geojson for all the rois across all parts of the coastline geojson = read_geojson_from_file(geojsonfile) all_ids = [] ids_in_features = [] features = [] # Remove the features overlapping more than 65% from the geojson for feature in tqdm_notebook( geojson["features"], desc="Removing ROI with Excessive Overlap"): all_ids.append(feature["properties"]["id"]) if feature["properties"]["id"] not in drop_list: features.append( Feature( geometry=feature["geometry"], properties=feature["properties"])) ids_in_features.append(feature["properties"]["id"]) ids_not_in_features = set(all_ids) - set(ids_in_features) # Checks if all the ROIS were removed if this was the case then we want to # return the original data if len(ids_in_features) == 0: # print("ALL ROIS were removed by overlap check") return overlap_btw_vectors_df else: feature_collection = FeatureCollection(features) with open(geojsonfile, 'w') as f: dump(feature_collection, f) # Drop the any rows with PID in the drop_list min_overlap_df = overlap_btw_vectors_df[~overlap_btw_vectors_df["primary_id"].isin( drop_list)] min_overlap_df = min_overlap_df[~min_overlap_df["id"].isin(drop_list)] min_overlap_df.to_csv(csv_filename) return min_overlap_df def read_geojson_from_file(selected_roi_file: str) -> dict: """ Returns the geojson of the selected ROIs from the file specified by selected_roi_file Arguments: ----------- selected_roi_file: str The filename of the geojson file containing all the ROI selected by the user Returns: ----------- data: dict geojson of the selected ROIs """ with open(selected_roi_file) as f: data = geojson.load(f) return data def get_overlap_dataframe(filename): # Read the geojson into a dataframe for the related ROIs along this # portion of the coastline df = gpd.read_file(filename) # Make dataframe to hold all the overlays df_master = gpd.GeoDataFrame({"id": [], 'primary_id': [], 'geometry': [], 'intersection_area': [], '%_overlap': []}) df_master = df_master.astype({'id': 'int32', 'primary_id': 'int32'}) # Iterate through all the polygons in the dataframe for index in df.index: polygon = df.iloc[index] df_intersection = compute_overlap(polygon, df) if not df_intersection.empty: df_master = df_master.append(df_intersection) return df_master def compute_overlap( polygon: 'pandas.core.series.Series', df: 'geopandas.geodataframe.GeoDataFrame'): """ Create a geopandas.geodataframe containing the overlap between the current polygon and the other ROIs in df The geodataframe contains data about which ROIs in df intersected with the polygon as indicated by the column "id", the id of polygon is in the column named "primary_id", the percentage of the polygon's area that was overlapping is in the column "%_overlap", and lastly, the amount of polygon's area being intersected is in the "intersection_area" column. "" Arguments: ----------- polygon: 'pandas.core.series.Series' Polygon that is being checked for overlap with the other ROI polygons in df df:'geopandas.geodataframe.GeoDataFrame' A geodataframe containing all the ROI polygons along a particular vector Returns: ----------- res_intersection: 'geopandas.geodataframe.GeoDataFrame' A geodataframe containing the ROIs that intersected with each other as well as the %_overlap calculated. """ # Create a dataframe for polygon currently being checked for overlap poly_series = gpd.GeoSeries(polygon["geometry"]) df1 = gpd.GeoDataFrame( {'geometry': poly_series, "primary_id": polygon["id"]}) df1 = df1.set_crs(df.crs) # Overlay the current ROI's geometry onto the rest of ROIs within the same # region. See if any intersect res_intersection = df.overlay(df1, how='intersection') # Drop the rows where the ROIs are overlapping themselves res_intersection.drop( res_intersection[res_intersection['id'] == res_intersection['primary_id']].index, inplace=True) res_intersection = res_intersection.set_crs(df.crs) # Append the intersection area to the dataframe intersection_area = res_intersection.area intersection_area = intersection_area.rename("intersection_area") res_intersection = res_intersection.merge( intersection_area, left_index=True, right_index=True) # Get the area of any given ROI total_area = df.area[0] # Compute % overlap df1_percent_overlap = res_intersection["intersection_area"] / total_area df1_percent_overlap = df1_percent_overlap.rename("%_overlap") # Add the % overlap to the dataframe res_intersection = res_intersection.merge( df1_percent_overlap, left_index=True, right_index=True) res_intersection return res_intersection def write_to_geojson_file( filename: str, geojson_polygons: dict, perserve_id: bool = False, start_id: int = 0): """Make a filename.geojson file from dictionary geojson_polygons Arguments: ----------- filename : str The name of the geojson file to be written to. MUST end in .geojson geojson_polygons : dict The dictionary containing the geojson data. Must contain all geojson within the features section of geojson. perserve_id: boolean default=False Boolean that if True perserves the property id and writes it to the geojson file start_id: int default=0 Starts writing the ids of the geojson at this index Returns: -------- end_id : int The (last id written to geojson). Intended to be used as the starting id for next iteration. """ features = [] count = 0 end_id = start_id if not perserve_id: for geoObj in geojson_polygons["features"]: features.append( Feature( properties={ "id": count + start_id}, geometry=geoObj["geometry"])) count = count + 1 elif perserve_id: for geoObj in geojson_polygons["features"]: features.append( Feature( properties={ "id": geoObj["properties"]["id"]}, geometry=geoObj["geometry"])) feature_collection = FeatureCollection(features) with open(f'{filename}', 'w') as f: dump(feature_collection, f) end_id += count return end_id def get_linestring_list(vector_in_bbox_geojson: dict) -> list: """ Create a list of linestrings from the multilinestrings and linestrings that compose the vector Arguments: ----------- vector_in_bbox_geojson: dict geojson vector Returns: ----------- lines_list: list list of multiple shapely.geometry.linestring.LineString that represent each segment of the vector """ lines_list = [] length_vector_bbox_features = len(vector_in_bbox_geojson['features']) length_vector_bbox_features if(length_vector_bbox_features != 1): for i in range(0, length_vector_bbox_features): if vector_in_bbox_geojson['features'][i]['geometry']['type'] == 'MultiLineString': for y in range( len(vector_in_bbox_geojson['features'][i]['geometry']['coordinates'])): line = LineString( vector_in_bbox_geojson['features'][i]['geometry']['coordinates'][y]) lines_list.append(line) elif vector_in_bbox_geojson['features'][i]['geometry']['type'] == 'LineString': line = LineString( vector_in_bbox_geojson['features'][i]['geometry']['coordinates']) lines_list.append(line) else: for i in range(0, len(vector_in_bbox_geojson['features'])): if vector_in_bbox_geojson['features'][0]['geometry']['type'] == 'MultiLineString': for y in range( len(vector_in_bbox_geojson['features'][0]['geometry']['coordinates'])): line = LineString( vector_in_bbox_geojson['features'][0]['geometry']['coordinates'][y]) lines_list.append(line) elif vector_in_bbox_geojson['features'][i]['geometry']['type'] == 'LineString': line = LineString( vector_in_bbox_geojson['features'][i]['geometry']['coordinates']) lines_list.append(line) return lines_list def get_geojson_polygons(linestring): """ Returns the ROI rectangles in geojson""" multipoint_list = interpolate_points(linestring) tuples_list = convert_multipoints_to_tuples(multipoint_list) geojson_polygons = create_reactangles(tuples_list) return geojson_polygons def interpolate_points( line: "shapely.geometry.linestring.LineString", num_pts=5) -> list: """ Create a list of multipoints for the interpolated points along each linestring Arguments: ----------- line: "shapely.geometry.linestring.LineString" shapely.geometry.linestring.LineString that represents each segment of the coastline vector num_pts: int integer value representing the number of interpolated points created along the LineString Returns: ----------- multipoint_list: list A list of multiple shapely.geometry.multipoint.MultiPoint """ # multipoint_list holds the multipoint for each feature of the coastline # within the bbox multipoint_list = [] distance_delta = line.length / num_pts distances = np.arange(0, line.length, distance_delta) if line.is_closed: # Its a closed shape so its boundary points are NULL boundary = shapely.geometry.Point(line.coords[0]) else: boundary = line.boundary.geoms[0] points = [line.interpolate(distance) for distance in distances] + [boundary] multipoint = unary_union(points) multipoint_list.append(multipoint) return multipoint_list def convert_multipoints_to_tuples(multipoint_list: list) -> list: """ Create a list of tuples for the points in multipoint_list Arguments: ----------- multipoint_list: list A list of multiple shapely.geometry.multipoint.MultiPoint Returns: ----------- tuples_list: list A list of tuples each tuple represents a single point """ tuples_list = [] for multipoint in multipoint_list: # Create an empty array to hold all the points as tuples points_list = [] if isinstance(multipoint, shapely.geometry.Point): point = multipoint point_tuple = (point.coords[0][1], point.coords[0][0]) points_list.append(point_tuple) else: # First get each point from the multipoint object points_array = [point for point in multipoint.geoms] # For each point swap lat and lng because ipyleaflet swaps them for point in points_array: point_tuple = (point.coords[0][1], point.coords[0][0]) points_list.append(point_tuple) tuples_list.append(points_list) return tuples_list def convert_corners_to_geojson( upper_right_y: float, upper_right_x: float, upper_left_y: float, upper_left_x: float, lower_left_y: float, lower_left_x: float, lower_right_y: float, lower_right_x: float) -> dict: """Convert the 4 corners of the rectangle into geojson """ geojson_feature = {} geojson_feature["type"] = "Feature" geojson_feature["properties"] = {} geojson_feature["geometry"] = {} geojson_polygon = {} geojson_polygon["type"] = "Polygon" geojson_polygon["coordinates"] = [] # The coordinates(which are 1,2 arrays) are nested within a parent array nested_array = [] nested_array.append([upper_right_x, upper_right_y]) nested_array.append([upper_left_x, upper_left_y]) nested_array.append([lower_left_x, lower_left_y]) nested_array.append([lower_right_x, lower_right_y]) # GeoJson rectangles have the first point repeated again as the last point nested_array.append([upper_right_x, upper_right_y]) geojson_polygon["coordinates"].append(nested_array) geojson_feature["geometry"] = geojson_polygon return geojson_feature def create_reactangles(tuples_list: list, size: int = 0.04) -> dict: """ Create the geojson rectangles for each point in the tuples_list Arguments: ----------- tuples_list: list list of tuples containing all the interpolated points along the given vector size: float A float that will be used as the multiplier for the ROI sizes Returns: ----------- geojson_polygons: dict geojson dictionary contains all the rectangles generated """ geojson_polygons = {"type": "FeatureCollection", "features": []} # Create a rectangle at each point on the line # Swap the x and y for each point because ipyleaflet swaps them for draw # methods for points_list in tuples_list: for point in points_list: upper_right_x = point[0] - (size / 2) upper_right_y = point[1] - (size / 2) upper_left_x = point[0] + (size / 2) upper_left_y = point[1] - (size / 2) lower_left_x = point[0] + (size / 2) lower_left_y = point[1] + (size / 2) lower_right_x = point[0] - (size / 2) lower_right_y = point[1] + (size / 2) # Convert each set of points to geojson (DONT swap x and y this # time) geojson_polygon = convert_corners_to_geojson( upper_right_x, upper_right_y, upper_left_x, upper_left_y, lower_left_x, lower_left_y, lower_right_x, lower_right_y) geojson_polygons["features"].append(geojson_polygon) return geojson_polygons # ROI OVERLAP RELATED FUNCTIONS # ------------------------------------- def create_overlap( filename: str, line: "shapely.geometry.linestring.LineString", start_id: int, end_id_list: list): """ Check if all the ROI overlap with at both of its neighbors. If it doesn't increase the number of ROIs up to 26. If the number of ROIs exceed 26, then no more will be drawn even if there is not enough overlap. Arguments: ----------- filename: str The name of the file containing all the geojson data for all the ROIs generated. line: shapely.geometry.linestring.LineString represents each segment of the vector start_id: int the id number for the first geojson in the line Returns: ----------- Updated df_overlap. """ # Initial number of points interpolated along the line num_pts = 5 # Boolean indicates whether every single ROI generated overlaps at least # one other ROI do_all_ROI_overlap = False # Boolean indicates whether mean overlap was over 80% and if the number # points is greater than 2 is_overlap_excessive = True df_overlap = get_overlap_dataframe(filename) # If df_overlap is means not a single ROI overlapped each other if not df_overlap.empty: df_all_ROIs = gpd.read_file(filename) do_all_ROI_overlap = check_all_ROI_overlap(df_all_ROIs, df_overlap) if do_all_ROI_overlap: if check_average_ROI_overlap(df_overlap, .35): # If the average overlap is over 35% decrease number of rois by # 1 num_pts = adjust_num_pts(num_pts - 1) is_overlap_excessive = True # print(f"num_pts decreased to: {num_pts}") if not do_all_ROI_overlap: # If not all the rois overlap increase number of rois by 1 num_pts = adjust_num_pts(num_pts + 1) # print(f"num_pts increased to: {num_pts}") # Keep looping while not all the rois overlap and the average overlap is # more than 80% while do_all_ROI_overlap == False and is_overlap_excessive: multipoint_list = interpolate_points(line, num_pts) tuples_list = convert_multipoints_to_tuples(multipoint_list) geojson_polygons = create_reactangles(tuples_list) end_id = write_to_geojson_file( filename, geojson_polygons, perserve_id=False, start_id=start_id) end_id_list.append(end_id) # print(f"\nend_id_list {end_id_list}\n") df_overlap = get_overlap_dataframe(filename) # If df_overlap is empty means not a single ROI overlapped each other if not df_overlap.empty: df_all_ROIs = gpd.read_file(filename) do_all_ROI_overlap = check_all_ROI_overlap(df_all_ROIs, df_overlap) else: do_all_ROI_overlap = False if not do_all_ROI_overlap: if num_pts == 1 or num_pts > 25: # print(f"IN LOOP: num_pts is 1. BREAKING") break # if the num_pts == 1 means no more ROIs should be removed num_pts = adjust_num_pts(num_pts + 1) else: # all ROIs overlap if num_pts == 1 or num_pts > 25: break # if the num_pts == 1 means no more ROIs should be removed is_overlap_excessive = check_average_ROI_overlap(df_overlap, .35) if is_overlap_excessive: # If the average overlap is over 35% decrease number of rois by # 1 num_pts = adjust_num_pts(num_pts - 1) is_overlap_excessive = True # print(f"IN LOOP: num_pts decreased to: {num_pts}") return df_overlap def check_average_ROI_overlap(df_overlap, percentage): """" Returns True if the mean overlap in the df is greater than percentage""" mean_overlap = df_overlap["%_overlap"].mean() if mean_overlap > percentage: return True return False def adjust_num_pts(new_num_pts): """Rounds the number of points to a whole number 1<=x<=100""" new_num_pts = int(round(new_num_pts, 0)) if new_num_pts < 1: new_num_pts = 1 elif new_num_pts > 100: new_num_pts = 100 else: return new_num_pts def check_all_ROI_overlap(df_all_ROIs, df_overlap): """Compares the IDs of the ROIs in df_overlap(contains only the ids of the overlapping ROIs), to df_all_rois(contains the ids of all ROIs) Returns True: If all the IDs in df_all_ROIs are also in df_overlap False: If NOT all the IDs in df_all_ROIs are also in df_overlap""" all_ids_list = list(df_all_ROIs["id"]) # print(f"\n all_ids_list:{all_ids_list}\n") overlapping_ids = df_overlap["primary_id"] # print(f"\n overlapping_ids:\n{overlapping_ids}\n") missing_list = list(set(all_ids_list) - set(overlapping_ids)) if missing_list == []: return True return False ```
{ "source": "2320sharon/segmentation_zoo-1", "score": 2 }
#### File: segmentation_zoo-1/utilities/download_sample_data.py ```python import sys,os, time from tkinter import filedialog from tkinter import * from tkinter import messagebox import requests, zipfile, io from glob import glob def download_url(url, save_path, chunk_size=128): r = requests.get(url, stream=True) with open(save_path, 'wb') as fd: for chunk in r.iter_content(chunk_size=chunk_size): fd.write(chunk) #### choose zenodo release root = Tk() choices = ['landsat_6229071', 'landsat_6230083', 'coin_6229579', 'aerial_6234122', 'aerial_6235090'] variable = StringVar(root) variable.set('landsat_6229071') w = OptionMenu(root, variable, *choices) w.pack(); root.mainloop() dataset_id = variable.get() print("Dataset ID : {}".format(dataset_id)) zenodo_id = dataset_id.split('_')[-1] ####====================================== try: os.mkdir('../sample_data') except: pass try: os.mkdir('../sample_data/'+dataset_id) except: pass model_direc = '../sample_data/'+dataset_id root_url = 'https://zenodo.org/record/'+zenodo_id+'/files/' filename='data_sample.zip' weights_direc = model_direc + os.sep + 'data_sample' url=(root_url+filename) print('Retrieving data {} ...'.format(url)) outfile = model_direc + os.sep + filename if not os.path.exists(outfile): print('Retrieving data {} ...'.format(url)) download_url(url, outfile) print('Unzipping data to {} ...'.format(model_direc)) with zipfile.ZipFile(outfile, 'r') as zip_ref: zip_ref.extractall(model_direc) ```
{ "source": "23233/sproxy", "score": 3 }
#### File: Fetcher/fetchers/89ip.py ```python import re from Util.WebRequest import WebRequest from Util.utilFunction import getHtmlTree class CustomFetcher(): fetcher_host = "www.89ip.cn" def run(self): url = 'http://www.89ip.cn/tqdl.html?num=2500&address=&kill_address=&port=&kill_port=&isp=' html_tree = getHtmlTree(url) data_warp = html_tree.xpath("//div[@class='fly-panel']/div[@style='padding-left:20px;']//text()") for data in data_warp: if ':' in data: yield data.strip() ``` #### File: Fetcher/fetchers/ip3366.py ```python import re from Util.WebRequest import WebRequest from Util.utilFunction import getHtmlTree class CustomFetcher(): fetcher_host = "www.ip3366.net" def run(self): urls = ['http://www.ip3366.net/free/'] request = WebRequest() for url in urls: r = request.get(url) proxies = re.findall(r'<td>(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})</td>[\s\S]*?<td>(\d+)</td>', r.text) for proxy in proxies: yield ":".join(proxy) ``` #### File: Src/Log/LogHandler.py ```python import os import logging from logging.handlers import TimedRotatingFileHandler from Config import ConfigManager LOG_LEVEL = { "CRITICAL": 50, "FATAL": 50, "ERROR": 40, "WARNING": 30, "WARN": 30, "INFO": 20, "DEBUG": 10, "NOTSET": 0, } CURRENT_PATH = os.path.dirname(os.path.abspath(__file__)) ROOT_PATH = os.path.join(CURRENT_PATH, os.pardir, os.pardir) LOG_PATH = os.path.join(ROOT_PATH, 'logs') if not os.path.exists(LOG_PATH): os.mkdir(LOG_PATH) class LogHandler(logging.Logger): def __init__(self, level=None, stream=True, file=True): self.name = "ProxyPool" if level: self.level = level else: self.level = LOG_LEVEL.get(ConfigManager.base_config.setting.get("log_level"), LOG_LEVEL["INFO"]) super(LogHandler, self).__init__(self.name, level=self.level) if stream: self.__setStreamHandler__() if file: self.__setFileHandler__() def __setFileHandler__(self, level=None): file_name = os.path.join(LOG_PATH, '{name}.log'.format(name=self.name)) # 设置日志回滚, 保存在log目录, 一天保存一个文件, 保留15天 file_handler = TimedRotatingFileHandler(filename=file_name, when='D', interval=1, backupCount=15) file_handler.suffix = '%Y%m%d.log' if not level: file_handler.setLevel(self.level) else: file_handler.setLevel(level) formatter = logging.Formatter('%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s') file_handler.setFormatter(formatter) self.file_handler = file_handler self.addHandler(file_handler) def __setStreamHandler__(self, level=None): stream_handler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s') stream_handler.setFormatter(formatter) if not level: stream_handler.setLevel(self.level) else: stream_handler.setLevel(level) self.addHandler(stream_handler) def resetName(self, name): self.name = name self.removeHandler(self.file_handler) self.__setFileHandler__() if __name__ == '__main__': log = LogHandler() log.info('this is a test msg') ``` #### File: Src/Manager/ProxyClean.py ```python import sys sys.path.append("Src") import time import threading from Manager.ProxyManager import proxy_manager from Log.LogManager import log from Config import ConfigManager try: from Queue import Queue # py3 except: from queue import Queue # py2 # 这样的实现多线程有问题, 后期无法扩展到独立的进程. # must call classmethod initQueue before when thread start class ProxyClean(threading.Thread): def __init__(self, **kwargs): super(ProxyClean, self).__init__(**kwargs) class ProxyCleanUseful(ProxyClean): def run(self): hold_number = ConfigManager.setting_config.setting.get("hold_useful_proxy_number") total_number = proxy_manager.getUsefulProxyNumber() clean_number = proxy_manager.cleanUsefulProxy(hold_number=hold_number) log.info("clean useful, total_number:{total_number}, clean_number:{clean_number}, hold_number:{hold_number}".format(total_number=total_number, clean_number=clean_number, hold_number=hold_number)) class ProxyCleanRaw(ProxyClean): def run(self): total_number = proxy_manager.getRawProxyNumber() clean_number = proxy_manager.cleanRawProxy() remain_number = total_number - clean_number log.info("clean raw_proxy, total_number:{total_number}, clean_number:{clean_number}, remain_number:{remain_number}".format(total_number=total_number, clean_number=clean_number, remain_number=remain_number)) if __name__ == "__main__": t1 = ProxyCleanUseful() t1.daemon = True t1.start() t2 = ProxyCleanRaw() t2.daemon = True t2.start() t1.join() t2.join() ``` #### File: Src/Manager/ProxyFetch.py ```python from gevent import monkey, pool monkey.patch_all() import sys sys.path.append("Src") import time import threading import gevent from Manager import ProxyManager # from ProxyGetter.getFreeProxy import GetFreeProxy from Fetcher import FetcherManager from Log.LogManager import log from Config import ConfigManager from Util.utilFunction import verifyProxyFormat try: from Queue import Queue # py3 except: from queue import Queue # py2 # 这样的实现多线程有问题, 后期无法扩展到独立的机器上. # must call classmethod initQueue before class ProxyFetch(object): queue = Queue() @classmethod def initQueue(cls): fetchers = ProxyManager.proxy_manager.getExecFetcher() for fetcher in fetchers: cls.queue.put(fetcher) def start(self): self.start_time = int(time.time()) concurrency = ConfigManager.setting_config.setting.get("fetch_new_proxy_concurrency") task_pool = pool.Pool(concurrency) queue_size = self.queue.qsize() if queue_size > 0: greenlet_list = [] for _ in range(queue_size): greenlet_list.append(task_pool.spawn(self.fetch)) gevent.joinall(greenlet_list) else: log.info("Not Have Fetcher Of Now, skip!") def fetch(self): start_time = time.time() total = 0 succ = 0 fail = 0 skip = 0 fetcher = self.queue.get() name = fetcher["name"] fetcher_class = FetcherManager.getFetcherClass(name) log.debug("fetch [{name}] proxy start".format(name=name)) try: f = fetcher_class() for proxy in f.run(): proxy = proxy.strip() if proxy and verifyProxyFormat(proxy) and \ not ProxyManager.proxy_manager.checkUsefulProxyExists(proxy): ProxyManager.proxy_manager.saveUsefulProxy(proxy) succ = succ + 1 log.debug("fetch [{name}] proxy {proxy} succ".format(name=name, proxy=proxy)) else: skip = skip + 1 log.debug("fetch [{name}] proxy {proxy} skip".format(name=name, proxy=proxy)) total = total + 1 except Exception as e: log.error("fetch [{name}] proxy fail: {error}".format(name=name, error=e)) fail = fail + 1 self.queue.task_done() now = int(time.time()) elapsed_time = int(now - start_time) next_fetch_time = self.start_time + (fetcher["interval"] * 60) data = { "$inc": { "succ": succ, "fail": fail, "skip": skip, "total": total, }, "$set": { "next_fetch_time": next_fetch_time, } } ProxyManager.proxy_manager.updateFetcher(name, data) log.info("fetch [{name:^15}] proxy finish, \ total:{total}, succ:{succ}, fail:{fail}, skip:{skip}, elapsed_time:{elapsed_time}s". \ format(name=name, total=total, succ=succ, fail=fail, skip=skip, elapsed_time=elapsed_time)) def run(self): while self.queue.qsize(): self.fetch() if __name__ == "__main__": ProxyFetch.initQueue() t = ProxyFetch() t.start() ``` #### File: Src/Util/WebRequest.py ```python from requests.models import Response import requests import random import time class WebRequest(object): def __init__(self, *args, **kwargs): pass @property def user_agent(self): """ return an User-Agent at random :return: """ ua_list = [ 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/30.0.1599.101', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.122', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71', 'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)', 'Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/2.0.0 Opera 9.50', 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:34.0) Gecko/20100101 Firefox/34.0', ] return random.choice(ua_list) @property def header(self): """ basic header :return: """ return {'User-Agent': self.user_agent, 'Accept': '*/*', 'Connection': 'keep-alive', 'Accept-Language': 'zh-CN,zh;q=0.8'} def get(self, url, header=None, retry_time=1, timeout=10, *args, **kwargs): headers = self.header if header and isinstance(header, dict): headers.update(header) try: resp = requests.get(url, headers=headers, timeout=timeout, **kwargs) except Exception as e: # print("request url error", url, e) resp = Response() resp.status_code = 504 return resp ```
{ "source": "232525/UCAS-srun-login-script", "score": 2 }
#### File: UCAS-srun-login-script/UCASSrunLogin/LoginManager.py ```python import requests import time import re from ._decorators import * from .encryption.srun_md5 import * from .encryption.srun_sha1 import * from .encryption.srun_base64 import * from .encryption.srun_xencode import * header={ 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.26 Safari/537.36' } class LoginManager: def __init__(self, login_ip = "http://124.16.81.61/", n = "200", vtype = "1", acid = "1", enc = "srun_bx1" ): url_login_page = login_ip + "srun_portal_pc?ac_id=1&theme=pro" url_get_challenge_api = login_ip + "cgi-bin/get_challenge" url_login_api = login_ip + "cgi-bin/srun_portal" # urls self.url_login_page = url_login_page self.url_get_challenge_api = url_get_challenge_api self.url_login_api = url_login_api # other static parameters self.n = n self.vtype = vtype self.ac_id = acid self.enc = enc def login(self, username, password): self.username = username self.password = password self.get_ip() self.get_token() self.get_login_responce() def get_ip(self): print("Step1: Get local ip returned from srun server.") self._get_login_page() self._resolve_ip_from_login_page() print("----------------") def get_token(self): print("Step2: Get token by resolving challenge result.") self._get_challenge() self._resolve_token_from_challenge_response() print("----------------") def get_login_responce(self): print("Step3: Loggin and resolve response.") self._generate_encrypted_login_info() self._send_login_info() self._resolve_login_responce() print("The loggin result is: " + self._login_result) print("----------------") def _is_defined(self, varname): """ Check whether variable is defined in the object """ allvars = vars(self) return varname in allvars @infomanage( callinfo = "Getting login page", successinfo = "Successfully get login page", errorinfo = "Failed to get login page, maybe the login page url is not correct" ) def _get_login_page(self): # Step1: Get login page self._page_response = requests.get(self.url_login_page, headers=header) @checkvars( varlist = "_page_response", errorinfo = "Lack of login page html. Need to run '_get_login_page' in advance to get it" ) @infomanage( callinfo = "Resolving IP from login page html", successinfo = "Successfully resolve IP", errorinfo = "Failed to resolve IP" ) def _resolve_ip_from_login_page(self): # self.ip = re.search('id="user_ip" value="(.*?)"', self._page_response.text).group(1) self.ip = re.search('ip(.*):(.*)"(.*?)"', self._page_response.text).group(1) @checkip @infomanage( callinfo = "Begin getting challenge", successinfo = "Challenge response successfully received", errorinfo = "Failed to get challenge response, maybe the url_get_challenge_api is not correct." \ "Else check params_get_challenge" ) def _get_challenge(self): """ The 'get_challenge' request aims to ask the server to generate a token """ params_get_challenge = { "callback": "jsonp1583251661367", # This value can be any string, but cannot be absent "username": self.username, "ip": self.ip } self._challenge_response = requests.get(self.url_get_challenge_api, params=params_get_challenge, headers=header) @checkvars( varlist = "_challenge_response", errorinfo = "Lack of challenge response. Need to run '_get_challenge' in advance" ) @infomanage( callinfo = "Resolving token from challenge response", successinfo = "Successfully resolve token", errorinfo = "Failed to resolve token" ) def _resolve_token_from_challenge_response(self): self.token = re.search('"challenge":"(.*?)"', self._challenge_response.text).group(1) @checkip def _generate_info(self): info_params = { "username": self.username, "password": <PASSWORD>, "ip": self.ip, "acid": self.ac_id, "enc_ver": self.enc } info = re.sub("'",'"',str(info_params)) self.info = re.sub(" ",'',info) @checkinfo @checktoken def _encrypt_info(self): self.encrypted_info = "{SRBX1}" + get_base64(get_xencode(self.info, self.token)) @checktoken def _generate_md5(self): self.md5 = get_md5("", self.token) @checkmd5 def _encrypt_md5(self): self.encrypted_md5 = "{MD5}" + self.md5 @checktoken @checkip @checkencryptedinfo def _generate_chksum(self): self.chkstr = self.token + self.username self.chkstr += self.token + self.md5 self.chkstr += self.token + self.ac_id self.chkstr += self.token + self.ip self.chkstr += self.token + self.n self.chkstr += self.token + self.vtype self.chkstr += self.token + self.encrypted_info @checkchkstr def _encrypt_chksum(self): self.encrypted_chkstr = get_sha1(self.chkstr) def _generate_encrypted_login_info(self): self._generate_info() self._encrypt_info() self._generate_md5() self._encrypt_md5() self._generate_chksum() self._encrypt_chksum() @checkip @checkencryptedmd5 @checkencryptedinfo @checkencryptedchkstr @infomanage( callinfo = "Begin to send login info", successinfo = "Login info send successfully", errorinfo = "Failed to send login info" ) def _send_login_info(self): login_info_params = { 'callback': 'jsonp1583251661368', # This value can be any string, but cannot be absent 'action':'login', 'username': self.username, 'password': <PASSWORD>, 'ac_id': self.ac_id, 'ip': self.ip, 'info': self.encrypted_info, 'chksum': self.encrypted_chkstr, 'n': self.n, 'type': self.vtype } self._login_responce = requests.get(self.url_login_api, params=login_info_params, headers=header) @checkvars( varlist = "_login_responce", errorinfo = "Need _login_responce. Run _send_login_info in advance" ) @infomanage( callinfo = "Resolving login result", successinfo = "Login result successfully resolved", errorinfo = "Cannot resolve login result. Maybe the srun response format is changed" ) def _resolve_login_responce(self): self._login_result = re.search('"suc_msg":"(.*?)"', self._login_responce.text).group(1) ```
{ "source": "2326wz/sharp-in", "score": 2 }
#### File: v0/routes/ping.py ```python from fastapi import APIRouter, HTTPException, Request, Response from core.config import get_config from core.api_models.common import Pong router = APIRouter() @router.get("/ping", response_model=Pong) async def root() -> Pong: project_name = get_config().project_name print(project_name) version = get_config().version return Pong(pong=f"{project_name}, version {version}") ``` #### File: sharp-in/telegram-bot/server.py ```python from fastapi import FastAPI import telebot from api.v0.routes.api import router as api_router from core.config import get_config def get_application() -> FastAPI: project_name = get_config().project_name debug = get_config().debug version = get_config().version prefix = get_config().api_prefix application = FastAPI(title=project_name, debug=debug, version=version) application.include_router(api_router, prefix=prefix) return application # TG bot setup WEBHOOK_HOST = get_config().WEBHOOK_HOST WEBHOOK_PORT = 443 WEBHOOK_URL_BASE = "https://%s:%s" % (WEBHOOK_HOST, WEBHOOK_PORT) WEBHOOK_URL_PATH = "/%s" % ("api/v0/tg") bot = telebot.TeleBot(get_config().token) bot.remove_webhook() bot.set_webhook(url=WEBHOOK_URL_BASE + WEBHOOK_URL_PATH) app = get_application() ```
{ "source": "2339145977/discordpy-startup", "score": 3 }
#### File: 2339145977/discordpy-startup/discordbot.py ```python from os import getenv import traceback import random import discord PREFIX = "yz " class MyClient(discord.Client): async def on_ready(self): print(f'Logged in as {self.user} (ID: {self.user.id})') print('------') async def on_message(self, message): # we do not want the bot to reply to itself if message.author.id == self.user.id: return if message.content.startswith(PREFIX + '你好'): await message.reply('你好~', mention_author=True) if message.content.startswith('难') and len(message.content) < 3: await message.channel.send('晴天好心情猜中了!') if message.content.startswith(PREFIX + '涩图'): await message.channel.send('https://nekos.life/lewd') if message.content.startswith(PREFIX + "晚安"): await message.reply('晚安~', mention_author=True) token = getenv('DISCORD_BOT_TOKEN') client = MyClient() client.run(token) ```
{ "source": "233a344a455/nbutils", "score": 2 }
#### File: nbutils/nonutils/persistent.py ```python import json from pathlib import Path from typing import Dict, Any from pydantic import BaseSettings pref_dir: Path = Path("preferences") def json_config_settings_source(pref: 'Preference') -> Dict[str, Any]: if pref._perf_path.exists(): return json.loads(pref._perf_path.read_text(encoding='utf-8')) else: return {} class Preference(BaseSettings): _initialized = False _perf_path: Path def __dump(self): self._perf_path.write_text(self.json(), encoding='utf-8') def __init__(self, pref_name: str, *args, **kwargs): self._perf_path = pref_dir / f"{pref_name}.json" pref_dir.mkdir(parents=True, exist_ok=True) super().__init__(*args, **kwargs) self._initialized = True def __setattr__(self, name, value): # Dump preference when a attr is changed super().__setattr__(name, value) if getattr(self, '_initialized', False): self.__dump() class Config: underscore_attrs_are_private = True @classmethod def customise_sources( cls, init_settings, env_settings, file_secret_settings, ): return ( init_settings, json_config_settings_source, env_settings, file_secret_settings, ) ```
{ "source": "233a344a455/RobomasterEPlib", "score": 3 }
#### File: 233a344a455/RobomasterEPlib/interact.py ```python import rmepy rm = rmepy.Robot() rm.start() print(rm.send_msg('SDK version: ')[1]) def send_raw(): print("Enter send raw command mode.") while True: i = input(' > ') if i == 'e': return print(rm.send_msg(i)) print("Exit send raw command mode.") ``` #### File: RobomasterEPlib/rmepy/logger.py ```python import traceback class Logger(): def __init__(self, name): if name.__class__.__name__ == 'str': self.name = name else: self.name = name.__class__.__name__ self.level = 'DEBUG' def info(self, msg): """Print infos. Args: msg: (str) 输出的info信息 Returns: None """ if self._log_level <= 1: print("\033[0;36m" + "[Info]%s: %s" % (self.name, msg) + "\033[0m") def warn(self, msg): """Print warnings. Args: msg: (str) 输出的警告信息 Returns: None """ if self._log_level <= 2: print("\033[33m" + "[Warning]%s: %s" % (self.name, msg) + "\033[0m") def error(self, msg): """Print errors. 输出错误并提供traceback或者强制继续 Args: msg: (str) 输出的错误信息 Returns: None """ print("=============================================") print("\033[0;31m" + "[Error]%s: %s" % (self.name, msg) + "\033[0m") temp = input("Force to continue? ('y' to continue / 'n' to print Traceback) ") print("=============================================") if temp.upper() != 'Y': print("\n\033[0;31m" + "Traceback (most recent call last):" + "\033[0m") for line in traceback.format_stack()[:-1]: print("\033[31m" + line + "\033[0m") print("\n=============================================") exit() def debuginfo(self, msg): """Print debug msg. Args: msg: (str) 输出的调试信息 Returns: None """ if self._log_level == 0: print("\033[2m" + "[Debug]%s: %s" % (self.name, msg) + "\033[0m") def debug(self, msg): """Print highlighted debug msg. Args: msg: (str) 输出的调试信息 Returns: None """ print("\033[7m" + "[Debug]%s: %s" % (self.name, msg) + "\033[0m") @property def level(self): return ('DEBUG', 'INFO', 'WARNING', 'ERROR')[self._log_level] @level.setter def level(self, level): try: level = ('DEBUG', 'INFO', 'WARNING', 'ERROR').index(level) except ValueError: print("\033[33m" + "[Warning]Logger: Invalid log level %r." %level + "\033[0m") else: self._log_level = level if __name__ == '__main__': log = Logger('test') log.level = 'WARNING' log.info('test') log.warn('test') log.debuginfo('test') log.debug('test') print('aaaa') log.error('test') ``` #### File: rmepy/robot_modules/basic_ctrl.py ```python from .__module_template import RobotModuleTemplate from ..decorators import accepts, retry class BasicCtrl(RobotModuleTemplate): def __init__(self, robot): super().__init__(robot) @retry(n_retries=1e5) def enter_sdk_mode(self): """控制机器人进入 SDK 模式 当机器人成功进入 SDK 模式后,才可以响应其余控制命令 Args: None Returns: None """ resp = self._send_msg('command')[1] if resp == 'ok': self._log.info('Enter sdk mode successfully.') return True else: self._log.warn('Failed to enter sdk mode: %s' %resp) return False def quit_cmd_mode(self): """退出 SDK 模式 控制机器人退出 SDK 模式,重置所有设置项 Wi-Fi/USB 连接模式下,当连接断开时,机器人会自动退出 SDK 模式 Args: None Returns: None """ return self._send_cmd('quit') @accepts((int, 0, 2)) def set_robot_mode(self, mode): """设置机器人的运动模式 机器人运动模式描述了云台与底盘之前相互作用与相互运动的关系, 每种机器人模式都对应了特定的作用关系。 Args: mode (enum): 机器人运动模式 {0:云台跟随底盘模式, 1:底盘跟随云台模式, 2:自由模式} Returns: None """ mode_enum = ('chassis_lead', 'gimbal_lead', 'free') return self._send_cmd('robot mode ' + mode_enum[mode]) def get_robot_mode(self): """获取机器人运动模式 查询当前机器人运动模式 机器人运动模式描述了云台与底盘之前相互作用与相互运动的关系, 每种机器人模式都对应了特定的作用关系。 Args: None Returns: (int): 机器人的运动模式 {0:云台跟随底盘模式, 1:底盘跟随云台模式, 2:自由模式} """ mode_enum = ('chassis_lead', 'gimbal_lead', 'free') return mode_enum.index(self._send_cmd('robot mode ?')) def video_stream_on(self): """开启视频流推送 打开视频流 打开后,可从视频流端口接收到 H.264 编码的码流数据 Args: None Returns: None """ return self._send_cmd('stream on') def video_stream_off(self): """关闭视频流推送 关闭视频流 关闭视频流后,H.264 编码的码流数据将会停止输出 Args: None Returns: None """ return self._send_cmd('stream off') ``` #### File: rmepy/robot_modules/chassis.py ```python from .__module_template import RobotModuleTemplate from ..decorators import accepts class Chassis(RobotModuleTemplate): def __init__(self, robot): super().__init__(robot) # position 底盘当前的位置距离上电时刻位置 self.x = 0.0 # x 轴位置(m) self.y = 0.0 # y 轴位置(m) # attitude self.pitch = 0.0 self.roll = 0.0 self.yaw = 0.0 # status self.is_static = False #是否静止 self.is_uphill = False #是否上坡 self.is_downhill = False #是否下坡 self.is_on_slope = False #是否溜坡 self.is_pick_up = False #是否被拿起 self.is_slip = False #是否滑行 self.is_impact_x = False #x 轴是否感应到撞击 self.is_impact_y = False #y 轴是否感应到撞击 self.is_impact_z = False #z 轴是否感应到撞击 self.is_roll_over = False #是否翻车 self.is_hill_static = False #是否在坡上静止 @accepts(speed_x=(float, -3.5, 3.5), speed_y=(float, -3.5, 3.5), speed_yaw=(float, -600, 600)) def set_speed(self, speed_x, speed_y, speed_yaw): """底盘运动速度控制 控制底盘运动速度 Args: speed_x (float:[-3.5,3.5]): x 轴向运动速度,单位 m/s speed_y (float:[-3.5,3.5]): y 轴向运动速度,单位 m/s speed_yaw (float:[-600,600]): z 轴向旋转速度,单位 °/s Returns: None """ return self._send_cmd('chassis speed x %f y %f z %f' % (speed_x, speed_y, speed_yaw)) @accepts((int, -1000, 1000), (int, -1000, 1000), (int, -1000, 1000), (int, -1000, 1000)) def set_wheel_speed(self, speed_w1, speed_w2, speed_w3, speed_w4): """底盘轮子速度控制 控制四个轮子的速度 Args: speed_w1 (int:[-1000, 1000]): 右前麦轮速度,单位 rpm speed_w2 (int:[-1000, 1000]): 左前麦轮速度,单位 rpm speed_w3 (int:[-1000, 1000]): 右后麦轮速度,单位 rpm speed_w4 (int:[-1000, 1000]): 左后麦轮速度,单位 rpm Returns: None """ return self._send_cmd('chassis wheel w1 %d w2 %d w3 %d w4 %d' % (speed_w1, speed_w2, speed_w3, speed_w4)) @accepts((float, -5, 5), (float, -5, 5), (int, -1800, 1800), (float, 0, 3.5), (float, 0, 600)) def shift(self, x=0., y=0., yaw=0, speed_xy=0.5, speed_yaw=90.): """底盘相对位置控制 控制底盘运动当指定位置,坐标轴原点为当前位置 Args: x (float:[-5, 5]): x 轴向运动距离,单位 m y (float:[-5, 5]): y 轴向运动距离,单位 m yaw (int:[-1800, 1800]): z 轴向旋转角度,单位 ° speed_xy (float:(0, 3.5]): xy 轴向运动速度,单位 m/s speed_yaw (float:(0, 600]): z 轴向旋转速度, 单位 °/s Returns: None """ return self._send_cmd('chassis move x %f y %f z %d vxy %f vz %f' % (x, y, yaw, speed_xy, speed_yaw)) def get_all_speed(self): """底盘速度信息获取 获取底盘的速度信息 Args: None Returns: (list) [ speed_x (float): x轴向的运动速度,单位 m/s speed_y (float): y轴向的运动速度,单位 m/s speed_yaw (float): z轴向的旋转速度,单位 °/s speed_w1 (int): 右前麦轮速度,单位 rpm speed_w2 (int): 左前麦轮速度,单位 rpm speed_w3 (int): 右后麦轮速度,单位 rpm speed_w4 (int): 左后麦轮速度,单位 rpm ] """ response = self._send_query('chassis speed ?') return self._process_response(response, (float, float, float, int, int, int, int)) def get_speed(self): """获取机器人运动速度 获取机器人整体的速度信息 Args: None Returns: (list) [ speed_x (float): x轴向的运动速度,单位 m/s speed_y (float): y轴向的运动速度,单位 m/s speed_yaw (float): z轴向的旋转速度,单位 °/s ] """ return self.get_all_speed()[:3] def get_wheel_speed(self): """获取麦轮速度 获取麦轮的速度信息 Args: None Returns: (list) [ speed_w1 (int): 右前麦轮速度,单位 rpm speed_w2 (int): 左前麦轮速度,单位 rpm speed_w3 (int): 右后麦轮速度,单位 rpm speed_w4 (int): 左后麦轮速度,单位 rpm ] """ return self.get_all_speed()[3:] def get_postion(self): """底盘位置信息获取 获取底盘的位置信息 上电时刻机器人所在的位置为坐标原点 Args: None Returns: (list) [ x (float): x轴向的位移 y (float): y轴向的位移 z (float): z轴向的位移 ] """ response = self._send_query('chassis position ?') return self._process_response(response, float) def get_attitude(self): """获取底盘姿态信息 查询底盘的姿态信息 Args: None Returns: #TODO:确定返回值为 int 还是 float (list) [ pitch (float): pitch 轴角度,单位 ° roll (float): roll 轴角度,单位 ° yaw (float): yaw 轴角度,单位 ° ] """ response = self._send_query('chassis attitude ?') return self._process_response(response, float) def get_status(self): """获取底盘状态信息 获取底盘状态信息 Args: None Returns: (list) [ static (bool): 是否静止 uphill (bool): 是否上坡 downhill (bool): 是否下坡 on_slope (bool): 是否溜坡 pick_up (bool): 是否被拿起 slip (bool): 是否滑行 impact_x (bool): x 轴是否感应到撞击 impact_y (bool): y 轴是否感应到撞击 impact_z (bool): z 轴是否感应到撞击 roll_over (bool): 是否翻车 hill_static (bool): 是否在坡上静止 ] """ response = self._send_query('chassis status ?') return self._process_response(response, bool) def set_push(self, pos_freq=None, atti_freq=None, status_freq=None): """底盘信息推送控制 打开/关闭底盘中相应属性的信息推送与频率设置 若已使用 Robot.push.start 激活推送接收器 可以直接从 Robot.chassis.[属性名] 获取推送信息 Args: 支持的频率 1, 5, 10, 20, 30, 50 频率为 0 则关闭该属性推送 若输入为 None 则不改变该属性的推送评论 pos_freq (int/None) atti_freq (int/None) status_freq (int/None) Returns: None """ if pos_freq == atti_freq == status_freq == None: self._log.warn("set_push: got 3 None args." ) return False else: cmd = 'chassis push' if pos_freq == None: pass elif pos_freq == 0: cmd += ' position off' elif pos_freq in (1, 5, 10, 20, 30, 50): cmd += ' position on pfreq %d' %pos_freq else: self._log.error("set_push: 'pos_freq' should be an integer in (0, 1, 5, 10, 20, 30, 50), but got %r" %pos_freq) if atti_freq == None: pass elif atti_freq == 0: cmd += ' attitude off' elif atti_freq in (1, 5, 10, 20, 30, 50): cmd += ' attitude on afreq %d' %atti_freq else: self._log.error("set_push: 'atti_freq' should be an integer in (0, 1, 5, 10, 20, 30, 50), but got %r" %atti_freq) if status_freq == None: pass elif status_freq == 0: cmd += ' status off' elif status_freq in (1, 5, 10, 20, 30, 50): cmd += ' status on sfreq %d' %status_freq else: self._log.error("set_push: 'status_freq' should be an integer in (0, 1, 5, 10, 20, 30, 50), but got %r" %status_freq) return self._send_cmd(cmd) ```
{ "source": "2350849683/-short_url", "score": 2 }
#### File: -short_url/app/__init__.py ```python from flask import Flask from config import Config from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() def create_app(): app = Flask(__name__) app.config.from_object(Config) Config.init_app(app) db.init_app(app) from app.service import service app.register_blueprint(service) return app ```
{ "source": "23580/my-Ai-project", "score": 3 }
#### File: 23580/my-Ai-project/myfriend.py ```python import speech_recognition as sr import pyttsx3 import datetime import pywhatkit import wikipedia import pyjokes import pyaudio import webbrowser import os listener = sr.Recognizer() engine = pyttsx3.init() voices = engine.getProperty('voices') engine.setProperty('voice', voices[0].id) def speak(audio): engine.say(audio) engine.runAndWait() def wishMe(): hour = int(datetime.datetime.now().hour) if hour>=0 and hour<12: speak("Good Morning sir ") elif hour>=12 and hour<18: speak("Good Afternoon sir") else: speak("Good Evening sir") speak("I am Jarvis here. Please tell me how may I help you.") def take_command(): try: with sr.Microphone() as source: print('listening...') voice = listener.listen(source) command = listener.recognize_google(voice) command = command.lower() if 'jarvis' in command: command = command.replace('jarvis', '') print(command) except: pass return command def run_alexa(): command = take_command() print(command) if 'play' in command: song = command.replace('play', '') speak('playing ' + song) pywhatkit.playonyt(song) elif 'time' in command: time = datetime.datetime.now().strftime('%I:%M %p') speak('Sir,Current time is ' + time) elif 'who is' in command: person = command.replace('who is', '') info = wikipedia.summary(person, 1) print(info) speak(info) elif 'date' in command: speak('sorry sir, I have a headache') elif 'are you single' in command: speak('sorry sir! im in relationship with alexa') elif 'joke' in command: speak(pyjokes.get_joke()) elif 'open youtube' in command: webbrowser.open("youtube.com") speak('opening youtube for you sir') elif 'open google' in command: webbrowser.open("google.com") speak('opening google for you sir') elif 'open gmail' in command: webbrowser.open("gmail.com") speak('opening gmail for you sir') elif 'feeling so sad' in command: music_dir = 'C:\\Users\\91967\\Music\\Playlists\\' songs = os.listdir(music_dir) speak('playing songs in me to change your mood sir') os.startfile(os.path.join(music_dir, songs[0])) elif 'open vs code' in command: codePath = "C:\\Users\\91967\\AppData\\Local\\Programs\\Microsoft VS Code\\Code.exe" os.startfile(codePath) speak('opening visual code edtior sir!') elif 'hey jarvis' in command: speak('yes sir im here ,tell me ') else: speak('Please say the command again.') if __name__ == "__main__": wishMe() while True: run_alexa() ```
{ "source": "2360673637/AIGames", "score": 3 }
#### File: Algorithm_1/nets/nets.py ```python import os import json import keras import random from collections import deque from keras.optimizers import Adam from keras.models import Sequential from keras.layers import Activation, Conv2D, Flatten, Dense, MaxPooling2D import sys sys.path.append('..') from utils.utils import * ''' # for model_2 import torch import torch.nn as nn import torch.nn.functional as F from torch import optim from torch.autograd import Variable ''' ''' Function: 模型一: Keras框架搭建, 简单测试用 ''' class model_1(): def __init__(self, options, with_pool=False): if with_pool: self.model = self.build_pool_model(options) else: self.model = self.build_model(options) self.save_model_info() # 创建模型 def build_model(self, options): print('[INFO]: Start to build model_1 without pool...') model = Sequential() model.add(Conv2D(32, (8, 8), strides=(4, 4), padding='same', input_shape=options['input_shape'])) model.add(Activation('relu')) model.add(Conv2D(64, (4, 4), strides=(2, 2), padding='same')) model.add(Activation('relu')) model.add(Conv2D(64, (4, 4), strides=(1, 1), padding='same')) model.add(Activation('relu')) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dense(256)) model.add(Activation('relu')) model.add(Dense(options['num_actions'])) optim = Adam(lr=options['lr']) model.compile(loss='mse', optimizer=optim) return model # 创建带池化层的model def build_pool_model(self, options): print('[INFO]: Start to build model_1 with pool...') model = Sequential() model.add(Conv2D(32, (8, 8), strides=(4, 4), padding='same', input_shape=options['input_shape'])) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Activation('relu')) model.add(Conv2D(64, (4, 4), strides=(2, 2), padding='same')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Activation('relu')) model.add(Conv2D(64, (3, 3), strides=(1, 1), padding='same')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Activation('relu')) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dense(256)) model.add(Activation('relu')) model.add(Dense(options['num_actions'])) optim = Adam(lr=options['lr']) model.compile(loss='mse', optimizer=optim) return model # 模型训练 def train(self, agent, options, batch_idx=0): Data_deque = deque() height = options['input_shape'][0] width = options['input_shape'][1] num_channels = options['input_shape'][2] # 小恐龙跳跃的概率 start_prob_jump = options['start_prob_jump'] end_prob_jump = options['end_prob_jump'] interval_prob = options['interval_prob'] prob = start_prob_jump # 如果需要继续训练,这里调整prob初始值 # prob = start_prob_jump - (start_prob_jump - end_prob_jump) / interval_prob * 20000 # 操作num_operations后进行训练 num_operations = options['num_operations'] # (1, 0) -> do nothing # (0, 1) -> jump actions = np.zeros(options['num_actions']) img, score, is_dead = agent.perform_operation(actions) size = (width, height) img = preprocess_img(img, size=size, use_canny=options['use_canny']) # 模型训练的输入 x_now = np.stack((img,) * num_channels, axis=2).reshape(1, height, width, num_channels) x_init = x_now loss_dict = {} i = 0 while True: i += 1 actions = np.zeros(options['num_actions']) if random.random() <= prob: print('[INFO]: Dino actions randomly...') action_idx = random.randint(0, len(actions)-1) actions[action_idx] = 1 else: print('[INFO]: Dino actions controlled by network...') Q_now = self.model.predict(x_now) action_idx = np.argmax(Q_now) actions[action_idx] = 1 img, score, is_dead = agent.perform_operation(actions) img = preprocess_img(img, size=size, use_canny=options['use_canny']) reward = self.score2reward(score, is_dead, actions) img = img.reshape(1, height, width, 1) x_next = np.append(img, x_now[:, :, :, :num_channels-1], axis=3) Data_deque.append((x_now, action_idx, reward, x_next, is_dead, score)) if len(Data_deque) > options['data_memory']: Data_deque.popleft() # Data_deque = deque() ''' if len(Data_deque) == num_operations: agent.pause() save_dict(Data_deque, options['data_dir'], 'Data_deque_%d.pkl' % batch_idx) data_len = len(Data_deque) // options['num_sampling'] for i in range(options['num_sampling']): batch_idx += 1 print('[INFO]: Start to train <Batch-%d>...' % batch_idx) start = i * data_len end = (i+1) * data_len data = deque() for j in range(start, end): data.append(Data_deque[j]) loss = self.trainBatch(random.sample(data, options['batch_size']), options) loss_dict[batch_idx] = loss print('\t<Loss>: %.2f' % loss) if batch_idx % options['save_interval'] == 0: if not os.path.exists(options['savepath']): os.mkdir(options['savepath']) savename = options['savename'] + '_' + str(batch_idx) + '.h5' self.model.save_weights(os.path.join(options['savepath'], savename)) save_dict(loss_dict, options['log_dir'], 'loss.pkl') if batch_idx == options['max_batch']: break if batch_idx == options['max_batch']: break agent.resume() ''' if i > num_operations: # i = 0 if len(Data_deque) < 1000 else i # i = 0 # agent.pause() batch_idx += 1 print('[INFO]: Start to train <Batch-%d>...' % batch_idx) loss = self.trainBatch(random.sample(Data_deque, options['batch_size']), options) loss_dict[batch_idx] = loss # print('\t<Loss>: %.3f' % loss) print('\t<Loss>: %.3f, <Action>: %d' % (loss, action_idx)) if batch_idx % options['save_interval'] == 0: if not os.path.exists(options['savepath']): os.mkdir(options['savepath']) savename = options['savename'] + '_' + str(batch_idx) + '.h5' self.model.save_weights(os.path.join(options['savepath'], savename)) save_dict(loss_dict, options['log_dir'], 'loss.pkl') if (len(Data_deque) == options['data_memory']) and (batch_idx % 5000 == 0): save_dict(Data_deque, options['data_dir'], 'Data_deque_%d.pkl' % batch_idx) if batch_idx == options['max_batch']: break # agent.resume() x_now = x_init if is_dead else x_next # 逐渐减小人为设定的控制,让网络自己决定如何行动 if prob > end_prob_jump and i > num_operations: prob -= (start_prob_jump - end_prob_jump) / interval_prob savename = options['savename'] + '_' + str(batch_idx) + '.h5' self.model.save_weights(os.path.join(options['savepath'], savename)) # 训练一个Batch数据 def trainBatch(self, data_batch, options): height = options['input_shape'][0] width = options['input_shape'][1] num_channels = options['input_shape'][2] inputs = np.zeros((options['batch_size'], height, width, num_channels)) targets = np.zeros((inputs.shape[0], options['num_actions'])) for i in range(len(data_batch)): x_now, action_idx, reward, x_next, is_dead, _ = data_batch[i] inputs[i: i+1] = x_now targets[i] = self.model.predict(x_now) Q_next = self.model.predict(x_next) if is_dead: targets[i, action_idx] = reward else: targets[i, action_idx] = reward + options['rd_gamma'] * np.max(Q_next) loss = self.model.train_on_batch(inputs, targets) return loss # scrore转reward def score2reward(self, score, is_dead, actions): ''' reward = 0.12 if actions[1] > actions[0]: reward = 0.1 if is_dead: reward = -100 ''' reward = 0.1 if is_dead: reward = -1 return reward # 导入权重 def load_weight(self, weight_path): self.model.load_weights(weight_path) # 保存模型信息 def save_model_info(self, savename='model.json'): with open(savename, 'w') as f: json.dump(self.model.to_json(), f) def __repr__(self): return '[Model]:\n%s' % self.model def __str__(self): return '[INFO]: model_1-CNN built by keras...' ''' Function: 模型二: Torch框架搭建 ''' ''' class model_2(nn.Module): def __init__(self, options): super(model_2, self).__init__() # in_channels, out_channels, kernel_size, stride self.conv1 = nn.Conv2d(6, 32, 7, 2, padding=3) self.conv2 = nn.Conv2d(32, 64, 3, 2, padding=1) self.conv3 = nn.Conv2d(64, 64, 3, 2, padding=1) self.fc1 = nn.Linear(64 * 4 * 8, 256) self.fc2 = nn.Linear(256, options['num_actions']) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.fc1(x.view(x.size(0), -1))) x = self.fc2(x) return x ''' ''' Function: 模型三: TensorFlow框架搭建 ''' ``` #### File: AITRexRush/Algorithm_1/train.py ```python from nets.nets import * from utils.api import * from utils.utils import * # for keras # options = { # "lr": 1e-4, # "batch_size": 32, # "max_batch": 150000, # "input_shape": (96, 96, 4), # "num_actions": 2, # "savename": "autodino", # "savepath": "./model", # "log_dir": "logger", # "data_dir": "data", # "start_prob_jump": 0, # "end_prob_jump": 0, # "interval_prob": 1e5, # "save_interval": 500, # "num_operations": 200, # "data_memory": 50000, # "rd_gamma": 0.99, # "use_canny": False, # "num_sampling": 200, # "game_url": 'chrome://dino' # } options = { "lr": 1e-4, "batch_size": 32, "max_batch": 150000, "input_shape": (96, 96, 4), "num_actions": 2, "savename": "autodino", "savepath": "./model", "log_dir": "logger", "data_dir": "data", "start_prob_jump": 0.1, "end_prob_jump": 1e-4, "interval_prob": 1e5, "save_interval": 1500, "num_operations": 200, "data_memory": 50000, "rd_gamma": 0.99, "use_canny": False, "num_sampling": 200, "game_url": 'chrome://dino' } # for torch ''' options = { } ''' # 训练函数 def train(): agent = DinoAgent(options['game_url']) # model = model_1(options) model = model_1(options, with_pool=True) # 如果你需要继续训练模型,请去除下面的注释并指定正确的模型权重路径 model.load_weight('./model/autodino_100000.h5') model.train(agent, options, batch_idx=100000) if __name__ == '__main__': train() ```
{ "source": "237085795/GraphEmbedding_annotion", "score": 2 }
#### File: GraphEmbedding_annotion/cluster/clustering.py ```python import time import numpy as np import networkx as nx from sklearn.cluster import KMeans from collections import defaultdict from sklearn.cluster import AgglomerativeClustering # from Bio.Cluster import kcluster # from Bio.Cluster import clustercentroids # import def kmeans_(vec_data, comms_num, map_id2node=None, use_set=False,n_init=10,init=None): """ return clf and comms :param vec_data: :param comms_num:质心数 :param map_id2node: :param use_set: :param n_init:运行n_init取最优 :return: """ if init is None : clf = KMeans(n_clusters=comms_num,n_init=n_init) else: clf = KMeans(n_clusters=comms_num, n_init=n_init,init=init) # start = time.time() # clf.fit_predict() clf.fit(vec_data) # end = time.time() # print("Kmeans running time: ", end - start) # print(clf.inertia_) cmus = defaultdict(list) if map_id2node is not None: for j in range(clf.labels_.shape[0]): cmus[clf.labels_[j]].append(map_id2node[j]) else: for j in range(clf.labels_.shape[0]): cmus[clf.labels_[j]].append(j) comms = [] for k, v in cmus.items(): if use_set: comms.append(set(v)) else: comms.append(v) # cs = clf.cluster_centers_ # dists = np.zeros((vec_data.shape[0],cs.shape[0])) # col = 0 # for c in cs: # distances = np.sum(np.asarray(vec_data - c) ** 2,axis=1) # # distances = np.sqrt(np.sum(np.asarray(vec_data - c) ** 2, axis=1)) # dists[:,col] = distances # col += 1 # mindst = np.min(dists,axis=1) # dstsum = np.sum(mindst) # print(dstsum) return comms ,clf def kmeans_from_vec(vec_data, comms_num, map_id2node=None, use_set=False,n_init=10,init=None): # 调用kmeans类。 if init is None : clf = KMeans(n_clusters=comms_num,n_init=n_init) else: clf = KMeans(n_clusters=comms_num, n_init=n_init,init=init) # 使用kmeans聚类。 # start = time.time() # clf.fit_predict() clf.fit(vec_data) # end = time.time() # print("Kmeans running time: ", end - start) # print(clf.inertia_) cmus = defaultdict(list) if map_id2node is not None: for j in range(clf.labels_.shape[0]): cmus[clf.labels_[j]].append(map_id2node[j]) else: for j in range(clf.labels_.shape[0]): cmus[clf.labels_[j]].append(j) comms = [] for k, v in cmus.items(): if use_set: comms.append(set(v)) else: comms.append(v) return comms def ward_from_vec(vec_data, comms_num, map_id2node, use_set=False): clf = AgglomerativeClustering(n_clusters=comms_num, linkage='ward') # clf = AgglomerativeClustering(n_clusters=comms_num, linkage='euclidean') # start = time.time() s = clf.fit(vec_data) # end = time.time() # print("Kmeans running time: ", end - start) cmus = defaultdict(list) for j in range(clf.labels_.shape[0]): cmus[clf.labels_[j]].append(map_id2node[j]) comms = [] for k, v in cmus.items(): if use_set: comms.append(set(v)) else: comms.append(v) return comms def power_kmeans(vec_data, comms_num, map_id2node, use_set=False): clf = AgglomerativeClustering(n_clusters=comms_num, linkage='ward') clf.fit(vec_data) centers = np.zeros((comms_num,vec_data.shape[1])) nodes_num = [0]*comms_num for j in range(clf.labels_.shape[0]): label = clf.labels_[j] centers[label] += vec_data[j] nodes_num[label] += 1 for la in range(comms_num): centers[la] /= nodes_num[la] clf2 = KMeans(n_clusters=comms_num,init=centers,n_init=1) clf2.fit(vec_data) print(clf2.inertia_) cmus = defaultdict(list) if map_id2node is not None: for j in range(clf.labels_.shape[0]): cmus[clf.labels_[j]].append(map_id2node[j]) else: for j in range(clf.labels_.shape[0]): cmus[clf.labels_[j]].append(j) comms = [] for k, v in cmus.items(): if use_set: comms.append(set(v)) else: comms.append(v) return comms ``` #### File: GraphEmbedding_annotion/demo/line_classification.py ```python import warnings warnings.filterwarnings(action='ignore', category=UserWarning, module='gensim') warnings.filterwarnings("ignore") import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = '2' import networkx as nx from sklearn.linear_model import LogisticRegression from ge import LINE from ge.classify import read_node_label, Classifier from ge.utils import show def evaluate_embeddings(embeddings): X, Y = read_node_label('../data/flight/labels-usa-airports.txt', skip_head=True) tr_frac = 0.8 print("Training classifier using {:.2f}% nodes...".format( tr_frac * 100)) clf = Classifier(embeddings=embeddings, clf=LogisticRegression(solver='liblinear')) return clf.split_train_evaluate(X, Y, tr_frac) if __name__ == "__main__": G = nx.read_edgelist('../data/flight/usa-airports.edgelist', create_using=nx.Graph(), nodetype=None) # model = LINE(G, embedding_size=128, order='first') # model = LINE(G, embedding_size=128, order='second') model = LINE(G, embedding_size=128, order='all') model.train(batch_size=1024, epochs=10, verbose=2) embeddings = model.get_embeddings() metric=evaluate_embeddings(embeddings) print(metric) show(metric) ``` #### File: GraphEmbedding_annotion/examples/deepwalk_Netxxx.py ```python import matplotlib.pyplot as plt import networkx as nx import numpy as np from sklearn.manifold import TSNE from cluster.clustering import kmeans_from_vec from ge import DeepWalk,LINE,Node2Vec from metric.modularity import cal_Q as Q from metric.nmi import calc as NMI from ge.classify import read_node_label def NMI_Q(embeddings, num_coms): emb_list=[] for i in range(1,len(embeddings)+1): emb_list.append(embeddings[str(i)]) # edgelist index start at 1 / emb_list index start at 0 predict = kmeans_from_vec(emb_list, num_coms) # index start by 0 for i in range(len(predict)): predict[i] = [str(x) for x in predict[i]] # 数据处理 X, Y = read_node_label('../data/Net_mu/Net0.8/community.dat', is_net=True) comu_idx = {} for i in range(len(X)): comu_idx.setdefault(Y[i][0], []) comu_idx[Y[i][0]].append(i) # print(comu_idx) real=[] # print(real) for key in comu_idx: real.append(comu_idx[key]) for i in range(len(real)): real[i]=[str(x) for x in real[i]] # print(predict) # print(real) mni = NMI(predict, real) # print(mni) # predict_=predict for i in range(len(predict)): predict_[i]=[str(int(x)+1) for x in predict[i]] # predict index add 1 # # q=Q(predict_, G) # print(q) # return mni,q def plot(embeddings): emb_list=[] for i in range(1,len(embeddings)+1): # print(i) emb_list.append(embeddings[str(i)]) emb_list = np.array(emb_list) model = TSNE(n_components=2) node_pos = model.fit_transform(emb_list) # print(node_pos) X, Y = read_node_label('../data/Net300/community.dat',is_net=True) # colors = ['c', 'b', 'g', 'r', 'm', 'y', 'k'] colors = ['r' ,'b','g','y'] # color_idx = {} for i in range(len(X)): color_idx.setdefault(Y[i][0], []) color_idx[Y[i][0]].append(i) # plt.figure(dpi=300, figsize=(24, 12)) for c, idx in color_idx.items(): # print(type(idx)) # print(c,idx) # print(node_pos[idx, 0],node_pos[idx, 1],node_pos[idx,2]) plt.scatter(node_pos[idx, 0], node_pos[idx, 1], label=c) # ax.scatter(node_pos[idx, 0], node_pos[idx, 1], node_pos[idx, 2], label=c) plt.legend() # 图例 plt.show() # plt.legend # plt.show() if __name__ == "__main__": G = nx.read_edgelist('../data/Net_mu/Net0.8/network.dat', create_using=nx.Graph(), nodetype=None) iter = 10 sum_mni = 0 sum_q = 0 for i in range(iter): model = DeepWalk(G, embed_size=128,walk_length=25, num_walks=5, workers=1) model.train(window_size=5, iter=5) # model = LINE(G, embedding_size=128 ,order='all') # model.train(batch_size=1024, epochs=50, verbose=2) # model = Node2Vec(G, embed_size=128,walk_length=25, num_walks=5, # p=0.25, q=2, workers=1, use_rejection_sampling=0) # model.train(window_size = 5, iter = 3) embeddings = model.get_embeddings() mertric = NMI_Q(embeddings, 5) # 5 sum_mni += mertric[0] sum_q += mertric[1] print("mni:") print(sum_mni / iter) print("q:") print(sum_q / iter) # model = DeepWalk(G, embed_size=128,walk_length=25, num_walks=5, workers=1) # model.train(window_size=5, iter=5) # model = LINE(G, embedding_size=128, order='all') # model.train(batch_size=1024, epochs=50, verbose=2) # model = Node2Vec(G, embed_size=128,walk_length=25, num_walks=5, # p=0.25, q=2, workers=1, use_rejection_sampling=0) # model.train(window_size = 5, iter = 3) # embeddings = model.get_embeddings() # plot(embeddings) # NMI_Q(embeddings, 4) ``` #### File: GraphEmbedding_annotion/metric/modularity.py ```python import networkx as nx import collections # https://www.e-learn.cn/content/qita/2346706 # 展开式理解 模块度的大小定义为社区内部的总边数和网络中总边数的比例减去一个期望值, # 该期望值是将网络设定为随机网络时同样的社区分配 所形成的社区内部的总边数和网络中总边数的比例的大小 # 对于有向图而言,Q = 1/M (遍历社区 ( Avw - kv_out * kw_in /M)) if (v,w) in the same community # 也是算期望,可以理解为v有kv_out个入口,w有kw_in个出口,随机情况下从v到w存在边的概率为 kv_out * kw_in /M # 不同于无向图 M = m(边数) Avw 也是表示 从v 到 w是否存在边 或者边权多少 # https://blog.csdn.net/marywbrown/article/details/62059231 新的参考,内部边记得乘2 def cal_Q2(partition,G): m = len(G.edges(None, False)) a = [] e = [] if len(partition) == 1: return 0 for community in partition: t = 0.0 for node in community: t += len(list(G.neighbors(node))) a.append(t/(2*m)) for community in partition: community = list(community) t = 0.0 for i in range(len(list(community))): for j in range(len(list(community))): if(G.has_edge(community[i], community[j])): t += 1.0 e.append(t/(2*m)) q = 0.0 for ei,ai in zip(e,a): # 按展开式 e>0 一定存在不同v w,使得Avw=1 kvkw/2m一定小于1,因此Q一定为正 # e = 0 时 说明是个孤立点社区,不参与计算 if ei > 0: q += (ei - ai**2) return q def cal_Q(partition, G): m = len(G.edges(None, False)) a = [] e = [] if len(partition) == 1: return 0 for community in partition: community = list(community) t1 = 0.0 t2 = 0.0 # Nc^2 => Nc*k community_nodes = set(community) for node in community: t1 += len(list(G.neighbors(node))) for nei in G.neighbors(node): if nei in community_nodes: t2 += 1.0 a.append(t1 / (2 * m)) # inner e.append(t2 / (2 * m)) # intra q = 0.0 # print(partition) # print(e,a) for ei, ai in zip(e, a): # 按展开式 e>0 一定存在不同v w,使得Avw=1 kvkw/2m一定小于1,因此Q一定为正 # e = 0 时 说明是个孤立点社区,不参与计算 if ei > 0: q += (ei - ai ** 2) return q def cal_EQ(partition, G): # kkm,rc = cal_KKM_RC(partition,G) # return 1000-rc m = G.number_of_edges() a = [] e = [] if len(partition) == 1: return 0 node_label_count = collections.defaultdict(int) for community in partition: for node in community: node_label_count[node] +=1 for community in partition: community = list(community) t1 = 0.0 t2 = 0.0 # Nc^2 => Nc*k community_nodes = set(community) for node in community: if node in G: t1 += len(G[node]) / node_label_count[node] for nei in G[node]: if nei in community_nodes: t2 += 1.0/(node_label_count[nei] * node_label_count[node]) a.append(t1 / (2 * m)) e.append(t2 / (2 * m)) q = 0.0 for ei, ai in zip(e, a): # 按展开式 e>0 一定存在不同v w,使得Avw=1 kvkw/2m一定小于1,因此Q一定为正 # e = 0 时 说明是个孤立点社区,不参与计算 # print(ei,ai) if ei > 0: q += (ei - ai ** 2) return q def read_cmu(path): cmus = [] # cnt =0 with open(path, 'r') as f: for row in f.readlines(): row = row.strip() r = row.split(" ",-1) cmus.append(r) # cnt += len(r) # print(cnt) return cmus # qinze def cal_Q3(communities, G): ''' Reference: Community detection in graphs, equation (15) :param G: networkx graph object :return standard modularity ''' Q = 0 m = nx.number_of_edges(G) for com in communities: dc = 0 lc = 0 for i in com: dc += len(G[i]) for j in G[i]: if j in com: lc += 1 lc /= 2.0 # for undirected graph Q += lc / m - (dc / (2.0 * m)) ** 2 return Q def cal_EQ_qinze(cover, G): vertex_community = collections.defaultdict(lambda: set()) for i, c in enumerate(cover): for v in c: vertex_community[v].add(i) m = 0.0 for v in G.nodes(): neighbors = G.neighbors(v) for n in neighbors: if v > n: m += 1 total = 0.0 for c in cover: for i in c: o_i = len(vertex_community[i]) k_i = len(G[i]) for j in c: o_j = len(vertex_community[j]) k_j = len(G[j]) if i > j: continue t = 0.0 if j in G[i]: t += 1.0 / (o_i * o_j) t -= k_i * k_j / (2 * m * o_i * o_j) if i == j: total += t else: total += 2 * t return round(total / (2 * m), 4) def cal_EQ2(communities, G): ''' Reference:Community detection in graphs, equation (39) :param G: networkx graph object :return overlapping modularity ''' v_com = collections.defaultdict(lambda: set()) for i, com in enumerate(communities): for v in com: v_com[v].add(i) EQ_1 = 0 EQ_2 = 0 m = nx.number_of_edges(G) for com in communities: s_2 = 0 for i in com: k_i = len(G[i]) o_i = len(v_com[i]) s_i = 0 for j in G[i]: if j in com: o_j = len(v_com[j]) s_i += 1.0 / o_j EQ_1 += s_i / o_i s_2 += 1.0 * k_i / o_i EQ_2 += s_2 ** 2 EQ = (EQ_1 - EQ_2 / (2.0 * m)) / (2.0 * m) return EQ def cal_KKM_RC(partitions,G): comm_num = len(partitions) intra_score = 0 inter_score = 0 n = G.number_of_nodes() for partition in partitions: partition = set(partition) intra = 0 inter = 0 for node in partition: # if node not in G: # continue for nei in G.neighbors(node): if nei in partition: intra += 1 else: inter += 1 intra_score += intra / len(partition) inter_score += inter / len(partition) KKM = 2*(n - comm_num) - intra_score RC = inter_score # print(comm_num,n) return KKM, RC def cal_EQ_KKM_RC(partitions,G): a = [] e = [] n = G.number_of_nodes() m = G.number_of_edges() intra_score = 0 inter_score = 0 comm_num = len(partitions) node_label_count = collections.defaultdict(int) for community in partitions: for node in community: node_label_count[node] +=1 for community in partitions: t1 = 0.0 t2 = 0.0 community_nodes = set(community) intra = 0 inter = 0 for node in community_nodes: t1 += len(G[node]) / node_label_count[node] for nei in G[node]: if nei in community_nodes: intra += 1 t2 += 1.0/(node_label_count[nei] * node_label_count[node]) else: inter += 1 intra_score += intra / len(community_nodes) inter_score += inter / len(community_nodes) a.append(t1 / (2 * m)) e.append(t2 / (2 * m)) q = 0.0 for ei, ai in zip(e, a): if ei > 0: q += (ei - ai ** 2) KKM = 2*(n - comm_num) - intra_score RC = inter_score return q,KKM,RC # return 1000-RC,KKM,RC if __name__ == '__main__': cmus = read_cmu("./output/res.txt") graph = nx.read_edgelist("./data/network.dat") print(cal_Q(cmus,graph)) ```
{ "source": "2390201w/fork_uofg_facemask_detector", "score": 2 }
#### File: dataset_scripts/tests/test_rename.py ```python import os import pytest from dataset_scripts.rename_images import rename_image @pytest.fixture def get_test_images_dir(): """Gets the path of the test_image_dir""" test_images_dir = "dataset_scripts/tests/testDataset" return test_images_dir def test_incorrect_mask(get_test_images_dir): # pylint: disable=W0621 """Renames images in the test_image_dir to incorrect mask naming scheme""" rename_image(get_test_images_dir, "incorrect-mask-") result = os.listdir(get_test_images_dir) assert result[0] == "incorrect-mask-0001.jpg" assert result[1] == "incorrect-mask-0002.jpg" def test_with_mask(get_test_images_dir): # pylint: disable=W0621 """Renames images in the test_image_dir to with mask naming scheme""" rename_image(get_test_images_dir, "mask-") result = os.listdir(get_test_images_dir) assert result[0] == "mask-0001.jpg" assert result[1] == "mask-0002.jpg" def test_without_mask(get_test_images_dir): # pylint: disable=W0621 """Renames images in the test_image_dir to no mask naming scheme""" rename_image(get_test_images_dir, "no-mask-") result = os.listdir(get_test_images_dir) assert result[0] == "no-mask-0001.jpg" assert result[1] == "no-mask-0002.jpg" ``` #### File: fork_uofg_facemask_detector/model_scripts/train_model.py ```python import os import sys import argparse from glob import glob import numpy as np # pylint: disable=W0611 import tensorflow as tf from tensorflow import keras from tensorflow.keras.layers import GlobalAveragePooling2D, Dense from sklearn.model_selection import train_test_split BATCH_SIZE = 5 # Num of Pics to Train each time EPOCHS = 5 # Training Loop INPUT_SHAPE = 224 # [96, 128, 160, 192, 224] TYPE_DATASET = ['withMask', 'withoutMask', 'incorrectMask'] def preproc(filename, label): """preprocess image for training""" image_byte = tf.io.read_file(filename) image = tf.io.decode_image(image_byte, channels=3) image_resize = tf.image.resize_with_pad(image, INPUT_SHAPE, INPUT_SHAPE) image_norm = tf.cast(image_resize, tf.float32) / 255.0 label_onehot = tf.one_hot(label, len( TYPE_DATASET), on_value=None, off_value=None) return image_norm, label_onehot def make_dataset(images, labels): """make training dataset""" num = len(images) dataset = tf.data.Dataset.from_tensor_slices((images, labels)) dataset = dataset.shuffle(num).repeat() # , num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.map(preproc) # .prefetch(tf.data.experimental.AUTOTUNE) dataset = dataset.batch(BATCH_SIZE) return dataset def prepare_dataset(dir_dataset: str, type_dataset: list, img_ext="*.jpg"): """prepare dataset for training""" images = [] labels = [] for index, value in enumerate(type_dataset): this_type_dataset = value dir_mask = os.path.join(dir_dataset, this_type_dataset) f_mask = glob(os.path.join(dir_mask, img_ext)) num_mask = len(f_mask) label_mask = [index]*num_mask images += f_mask labels += label_mask return images, labels def train(dir_dataset, model_path): """training the model using MobileNetV2""" images, labels = prepare_dataset(dir_dataset=dir_dataset, type_dataset=TYPE_DATASET) (training_images, testing_images, training_labels, testing_labels) = train_test_split( images, labels, test_size=0.20, random_state=42) dataset_train = make_dataset(training_images, training_labels) dataset_vali = make_dataset(testing_images, testing_labels) # Create base model using MobileNetV2 base_model = keras.applications.MobileNetV2( input_shape=(INPUT_SHAPE, INPUT_SHAPE, 3), include_top=False) model_output = Dense(len(TYPE_DATASET), activation='softmax')( Dense(1024, activation='relu')( GlobalAveragePooling2D()(base_model.output) ) ) model = keras.Model(inputs=base_model.input, outputs=model_output) # Freeze convolution for layer in base_model.layers: layer.trainable = False model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) model.fit(dataset_train, steps_per_epoch=len(training_images)//BATCH_SIZE, epochs=EPOCHS, validation_data=dataset_vali, validation_steps=len(testing_images)//BATCH_SIZE, verbose=1) model.evaluate(dataset_vali, steps=len( testing_images)//BATCH_SIZE, verbose=1) model.save(model_path) if __name__ == "__main__": ap = argparse.ArgumentParser() # pylint: disable=C0103 ap.add_argument("-d", "--dataset", required=True, help="path to input dataset") ap.add_argument("-m", "--model", type=str, default="mask_detector.model", help="path to output face mask detector model") args = vars(ap.parse_args()) # pylint: disable=C0103 current_dir = os.path.dirname(os.path.realpath(__file__)) # pylint: disable=C0103 parent_dir = os.path.dirname(current_dir) # pylint: disable=C0103 if args["dataset"] not in os.listdir(parent_dir): print("Invalid dataset folder name\nPlease try again") sys.exit(0) dataset_dir = os.path.join(parent_dir, args["dataset"]) # pylint: disable=C0103 train(dataset_dir, args["model"]) ```
{ "source": "2392863668/tensorFlow", "score": 2 }
#### File: py2tf/convert/builtin_functions.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import gast from tensorflow.contrib.py2tf.pyct import templates class BuiltinFunctionTransformer(gast.NodeTransformer): """Transforms Print nodes to Call so they can be handled as functions.""" # TODO(mdan): Bring print_functions in here. def _convert_len(self, node): def template(args): tf.shape(args)[0] # pylint:disable=undefined-variable,expression-not-assigned new_call = templates.replace(template, args=node.args)[0].value return new_call # pylint:disable=invalid-name def visit_Call(self, node): self.generic_visit(node) # TODO(mdan): This won't work if the function was hidden. if isinstance(node.func, gast.Name) and node.func.id == 'len': return self._convert_len(node) return node # pylint:enable=invalid-name def transform(node): transformer = BuiltinFunctionTransformer() node = transformer.visit(node) return node ``` #### File: keras/layers/local.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import tensor_shape from tensorflow.python.keras._impl.keras import activations from tensorflow.python.keras._impl.keras import backend as K from tensorflow.python.keras._impl.keras import constraints from tensorflow.python.keras._impl.keras import initializers from tensorflow.python.keras._impl.keras import regularizers from tensorflow.python.keras._impl.keras.engine import InputSpec from tensorflow.python.keras._impl.keras.engine import Layer from tensorflow.python.keras._impl.keras.utils import conv_utils class LocallyConnected1D(Layer): """Locally-connected layer for 1D inputs. The `LocallyConnected1D` layer works similarly to the `Conv1D` layer, except that weights are unshared, that is, a different set of filters is applied at each different patch of the input. Example: ```python # apply a unshared weight convolution 1d of length 3 to a sequence with # 10 timesteps, with 64 output filters model = Sequential() model.add(LocallyConnected1D(64, 3, input_shape=(10, 32))) # now model.output_shape == (None, 8, 64) # add a new conv1d on top model.add(LocallyConnected1D(32, 3)) # now model.output_shape == (None, 6, 32) ``` Arguments: filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution). kernel_size: An integer or tuple/list of a single integer, specifying the length of the 1D convolution window. strides: An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: Currently only supports `"valid"` (case-insensitive). `"same"` may be supported in the future. activation: Activation function to use. If you don't specify anything, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix. bias_initializer: Initializer for the bias vector. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. activity_regularizer: Regularizer function applied to the output of the layer (its "activation").. kernel_constraint: Constraint function applied to the kernel matrix. bias_constraint: Constraint function applied to the bias vector. Input shape: 3D tensor with shape: `(batch_size, steps, input_dim)` Output shape: 3D tensor with shape: `(batch_size, new_steps, filters)` `steps` value might have changed due to padding or strides. """ def __init__(self, filters, kernel_size, strides=1, padding='valid', data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): super(LocallyConnected1D, self).__init__( activity_regularizer=regularizers.get(activity_regularizer), **kwargs) self.filters = filters self.kernel_size = conv_utils.normalize_tuple(kernel_size, 1, 'kernel_size') self.strides = conv_utils.normalize_tuple(strides, 1, 'strides') self.padding = conv_utils.normalize_padding(padding) if self.padding != 'valid': raise ValueError('Invalid border mode for LocallyConnected1D ' '(only "valid" is supported): ' + padding) self.data_format = conv_utils.normalize_data_format(data_format) self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.input_spec = InputSpec(ndim=3) def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() input_dim = input_shape[2] if input_dim is None: raise ValueError('Axis 2 of input should be fully-defined. ' 'Found shape:', input_shape) output_length = conv_utils.conv_output_length( input_shape[1], self.kernel_size[0], self.padding, self.strides[0]) self.kernel_shape = (output_length, self.kernel_size[0] * input_dim, self.filters) self.kernel = self.add_weight( shape=self.kernel_shape, initializer=self.kernel_initializer, name='kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_bias: self.bias = self.add_weight( shape=(output_length, self.filters), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.input_spec = InputSpec(ndim=3, axes={2: input_dim}) self.built = True def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() length = conv_utils.conv_output_length(input_shape[1], self.kernel_size[0], self.padding, self.strides[0]) return tensor_shape.TensorShape([input_shape[0], length, self.filters]) def call(self, inputs): output = K.local_conv1d(inputs, self.kernel, self.kernel_size, self.strides) if self.use_bias: output = K.bias_add(output, self.bias) if self.activation is not None: output = self.activation(output) return output def get_config(self): config = { 'filters': self.filters, 'kernel_size': self.kernel_size, 'strides': self.strides, 'padding': self.padding, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(LocallyConnected1D, self).get_config() return dict(list(base_config.items()) + list(config.items())) class LocallyConnected2D(Layer): """Locally-connected layer for 2D inputs. The `LocallyConnected2D` layer works similarly to the `Conv2D` layer, except that weights are unshared, that is, a different set of filters is applied at each different patch of the input. Examples: ```python # apply a 3x3 unshared weights convolution with 64 output filters on a 32x32 image # with `data_format="channels_last"`: model = Sequential() model.add(LocallyConnected2D(64, (3, 3), input_shape=(32, 32, 3))) # now model.output_shape == (None, 30, 30, 64) # notice that this layer will consume (30*30)*(3*3*3*64) + (30*30)*64 parameters # add a 3x3 unshared weights convolution on top, with 32 output filters: model.add(LocallyConnected2D(32, (3, 3))) # now model.output_shape == (None, 28, 28, 32) ``` Arguments: filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution). kernel_size: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. padding: Currently only support `"valid"` (case-insensitive). `"same"` will be supported in future. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". activation: Activation function to use. If you don't specify anything, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix. bias_initializer: Initializer for the bias vector. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. activity_regularizer: Regularizer function applied to the output of the layer (its "activation").. kernel_constraint: Constraint function applied to the kernel matrix. bias_constraint: Constraint function applied to the bias vector. Input shape: 4D tensor with shape: `(samples, channels, rows, cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, rows, cols, channels)` if data_format='channels_last'. Output shape: 4D tensor with shape: `(samples, filters, new_rows, new_cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, new_rows, new_cols, filters)` if data_format='channels_last'. `rows` and `cols` values might have changed due to padding. """ def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): super(LocallyConnected2D, self).__init__( activity_regularizer=regularizers.get(activity_regularizer), **kwargs) self.filters = filters self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2, 'kernel_size') self.strides = conv_utils.normalize_tuple(strides, 2, 'strides') self.padding = conv_utils.normalize_padding(padding) if self.padding != 'valid': raise ValueError('Invalid border mode for LocallyConnected2D ' '(only "valid" is supported): ' + padding) self.data_format = conv_utils.normalize_data_format(data_format) self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.input_spec = InputSpec(ndim=4) def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() if self.data_format == 'channels_last': input_row, input_col = input_shape[1:-1] input_filter = input_shape[3] else: input_row, input_col = input_shape[2:] input_filter = input_shape[1] if input_row is None or input_col is None: raise ValueError('The spatial dimensions of the inputs to ' ' a LocallyConnected2D layer ' 'should be fully-defined, but layer received ' 'the inputs shape ' + str(input_shape)) output_row = conv_utils.conv_output_length(input_row, self.kernel_size[0], self.padding, self.strides[0]) output_col = conv_utils.conv_output_length(input_col, self.kernel_size[1], self.padding, self.strides[1]) self.output_row = output_row self.output_col = output_col self.kernel_shape = ( output_row * output_col, self.kernel_size[0] * self.kernel_size[1] * input_filter, self.filters) self.kernel = self.add_weight( shape=self.kernel_shape, initializer=self.kernel_initializer, name='kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_bias: self.bias = self.add_weight( shape=(output_row, output_col, self.filters), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None if self.data_format == 'channels_first': self.input_spec = InputSpec(ndim=4, axes={1: input_filter}) else: self.input_spec = InputSpec(ndim=4, axes={-1: input_filter}) self.built = True def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.data_format == 'channels_last': rows = input_shape[1] cols = input_shape[2] rows = conv_utils.conv_output_length(rows, self.kernel_size[0], self.padding, self.strides[0]) cols = conv_utils.conv_output_length(cols, self.kernel_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return tensor_shape.TensorShape( [input_shape[0], self.filters, rows, cols]) elif self.data_format == 'channels_last': return tensor_shape.TensorShape( [input_shape[0], rows, cols, self.filters]) def call(self, inputs): output = K.local_conv2d(inputs, self.kernel, self.kernel_size, self.strides, (self.output_row, self.output_col), self.data_format) if self.use_bias: output = K.bias_add(output, self.bias, data_format=self.data_format) output = self.activation(output) return output def get_config(self): config = { 'filters': self.filters, 'kernel_size': self.kernel_size, 'strides': self.strides, 'padding': self.padding, 'data_format': self.data_format, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(LocallyConnected2D, self).get_config() return dict(list(base_config.items()) + list(config.items())) ```
{ "source": "239-software/improved_RE2", "score": 2 }
#### File: improved_RE2/src/model.py ```python import os import math import random import torch import torch.nn.functional as f from tqdm import tqdm from .network import Network from .utils.metrics import registry as metrics class Model: prefix = 'checkpoint' best_model_name = 'best.pt' def __init__(self, args, state_dict=None): self.args = args # network self.network = Network(args) self.device = torch.cuda.current_device() if args.cuda else torch.device('cpu') self.network.to(self.device) # optimizer self.params = list(filter(lambda x: x.requires_grad, self.network.parameters())) self.opt = torch.optim.Adam(self.params, args.lr, betas=(args.beta1, args.beta2), weight_decay=args.weight_decay) # updates self.updates = state_dict['updates'] if state_dict else 0 if state_dict: new_state = set(self.network.state_dict().keys()) for k in list(state_dict['model'].keys()): if k not in new_state: del state_dict['model'][k] self.network.load_state_dict(state_dict['model']) self.opt.load_state_dict(state_dict['opt']) def _update_schedule(self): if self.args.lr_decay_rate < 1.: args = self.args t = self.updates base_ratio = args.min_lr / args.lr if t < args.lr_warmup_steps: ratio = base_ratio + (1. - base_ratio) / max(1., args.lr_warmup_steps) * t else: ratio = max(base_ratio, args.lr_decay_rate ** math.floor((t - args.lr_warmup_steps) / args.lr_decay_steps)) self.opt.param_groups[0]['lr'] = args.lr * ratio def update(self, batch): self.network.train() self.opt.zero_grad() inputs, target = self.process_data(batch) output = self.network(inputs) #wrong_index = torch.max(torch.isnan(output[:,0]),0)[1].cpu().data.numpy() #if wrong_index > 0: # print(wrong_index) # print(inputs['text1'][wrong_index,:]) # print(inputs['text2'][wrong_index,:]) # print(target[wrong_index]) summary = self.network.get_summary() loss = self.get_loss(output, target) loss.backward() grad_norm = torch.nn.utils.clip_grad_norm_(self.params, self.args.grad_clipping) assert grad_norm >= 0, 'encounter nan in gradients.' self.opt.step() self._update_schedule() self.updates += 1 stats = { 'updates': self.updates, 'loss': loss.item(), 'lr': self.opt.param_groups[0]['lr'], 'gnorm': grad_norm, 'summary': summary, } return stats def evaluate(self, data): self.network.eval() targets = [] probabilities = [] predictions = [] losses = [] for batch in tqdm(data[:self.args.eval_subset], desc='evaluating', leave=False): inputs, target = self.process_data(batch) with torch.no_grad(): output = self.network(inputs) loss = self.get_loss(output, target) pred = torch.argmax(output, dim=1) prob = torch.nn.functional.softmax(output, dim=1) losses.append(loss.item()) targets.extend(target.tolist()) probabilities.extend(prob.tolist()) predictions.extend(pred.tolist()) outputs = { 'target': targets, 'prob': probabilities, 'pred': predictions, 'args': self.args, } stats = { 'updates': self.updates, 'loss': sum(losses[:-1]) / (len(losses) - 1) if len(losses) > 1 else sum(losses), } for metric in self.args.watch_metrics: if metric not in stats: # multiple metrics could be computed by the same function stats.update(metrics[metric](outputs)) assert 'score' not in stats, 'metric name collides with "score"' eval_score = stats[self.args.metric] stats['score'] = eval_score return eval_score, stats # first value is for early stopping def predict(self, batch): self.network.eval() inputs, _ = self.process_data(batch) with torch.no_grad(): output = self.network(inputs) output = torch.nn.functional.softmax(output, dim=1) return output.tolist() def process_data(self, batch): text1 = torch.LongTensor(batch['text1']).to(self.device) text2 = torch.LongTensor(batch['text2']).to(self.device) mask1 = torch.ne(text1, self.args.padding).unsqueeze(2) mask2 = torch.ne(text2, self.args.padding).unsqueeze(2) inputs = { 'text1': text1, 'text2': text2, 'mask1': mask1, 'mask2': mask2, } if 'target' in batch: target = torch.LongTensor(batch['target']).to(self.device) return inputs, target return inputs, None @staticmethod def get_loss(logits, target): return f.cross_entropy(logits, target) def save(self, states, name=None): if name: filename = os.path.join(self.args.summary_dir, name) else: filename = os.path.join(self.args.summary_dir, f'{self.prefix}_{self.updates}.pt') params = { 'state_dict': { 'model': self.network.state_dict(), 'opt': self.opt.state_dict(), 'updates': self.updates, }, 'args': self.args, 'random_state': random.getstate(), 'torch_state': torch.random.get_rng_state() } params.update(states) if self.args.cuda: params['torch_cuda_state'] = torch.cuda.get_rng_state() torch.save(params, filename) @classmethod def load(cls, file): checkpoint = torch.load(file, map_location=( lambda s, _: torch.serialization.default_restore_location(s, 'cpu') )) prev_args = checkpoint['args'] # update args prev_args.output_dir = os.path.dirname(os.path.dirname(file)) prev_args.summary_dir = os.path.join(prev_args.output_dir, prev_args.name) prev_args.cuda = prev_args.cuda and torch.cuda.is_available() return cls(prev_args, state_dict=checkpoint['state_dict']), checkpoint def num_parameters(self, exclude_embed=False): num_params = sum(p.numel() for p in self.network.parameters() if p.requires_grad) if exclude_embed: num_params -= 0 if self.args.fix_embeddings else next(self.network.embedding.parameters()).numel() return num_params def set_embeddings(self, embeddings): self.network.embedding.set_(embeddings) ```
{ "source": "23andMe/Lintly", "score": 3 }
#### File: Lintly/lintly/patch.py ```python import logging from autologging import logged, traced import re from cached_property import cached_property FILE_NAME_LINE = re.compile(r'^\+\+\+ b/(?P<file_name>.+)') RANGE_INFORMATION_LINE = re.compile(r'^@@ .+\+(?P<line_number>\d+),') MODIFIED_LINE = re.compile(r'^\+(?!\+|\+)') NOT_REMOVED_OR_NEWLINE_WARNING = re.compile(r'^[^-\\]') logger = logging.getLogger(__name__) @logged @traced class Patch(object): """ Parses the body of a diff and returns the lines that changed as well as their "position", as outlined by GitHub here: https://developer.github.com/v3/pulls/comments/#create-a-comment """ def __init__(self, body=''): self.body = body @cached_property def changed_lines(self): """ A list of dicts in the format: { 'file_name': str, 'content': str, 'line_number': int, 'position': int } """ lines = [] file_name = '' line_number = 0 patch_position = -1 found_first_information_line = False for i, content in enumerate(self.body.splitlines()): range_information_match = RANGE_INFORMATION_LINE.search(content) file_name_line_match = FILE_NAME_LINE.search(content) if file_name_line_match: file_name = file_name_line_match.group('file_name') found_first_information_line = False elif range_information_match: line_number = int(range_information_match.group('line_number')) if not found_first_information_line: # This is the first information line. Set patch position to 1 and start counting patch_position = 0 found_first_information_line = True elif MODIFIED_LINE.search(content): line = { 'file_name': file_name, 'content': content, 'line_number': line_number, 'position': patch_position } lines.append(line) line_number += 1 elif NOT_REMOVED_OR_NEWLINE_WARNING.search(content) or content == '': line_number += 1 patch_position += 1 return lines def get_patch_position(self, file_name, line_number): matching_lines = [line for line in self.changed_lines if line['file_name'] == file_name and line['line_number'] == line_number] if len(matching_lines) == 0: return None elif len(matching_lines) == 1: return matching_lines[0]['position'] else: logger.warning('Invalid patch or build.') logger.warning('Multiple matching lines found for {file_name} on line ' '{line_number}'.format(file_name=file_name, line_number=line_number)) ``` #### File: Lintly/tests/test_parsers.py ```python import abc import os import unittest try: from unittest.mock import patch except ImportError: from mock import patch from lintly.parsers import PARSERS class ParserTestCaseMixin(object): """Mixin for testing parsers. Attributes ---------- linter_output : str A linter output to test against. """ __metaclass__ = abc.ABCMeta @property @abc.abstractmethod def parser(self): """lintly.parsers.BaseLintParser: a parser to test.""" pass @property @abc.abstractmethod def linter_output_file_name(self): """str: linter output file name (relative to the `linters_output` directory).""" pass @property @abc.abstractmethod def expected_violations(self): """dict: a mapping between files and expected violations' attributes. Examples -------- { 'path/to/file': [{ 'line': 42, 'column': 42, 'code': 'the-answer', 'message': 'don\'t panic & bring your towel' }] } """ pass @staticmethod def load_linter_output(file_name): path = os.path.join(os.path.dirname(__file__), 'linters_output', file_name) with open(path, 'r') as linter_output: return linter_output.read() def setUp(self): self.linter_output = self.load_linter_output(self.linter_output_file_name) def test_parse_violations(self): violations = self.parser.parse_violations(self.linter_output) # Checking files. self.assertEqual(set(violations.keys()), set(self.expected_violations.keys())) # Checking violations. for file_path, violations in violations.items(): expected_violations = self.expected_violations[file_path] # Checking violations count. self.assertEqual(len(violations), len(expected_violations)) # Checking violations' attributes. for violation_index, violation in enumerate(violations): self.check_object_attrs(violation, expected_violations[violation_index]) def check_object_attrs(self, _object, expected_attrs): for expected_attr, expected_value in expected_attrs.items(): self.assertTrue(hasattr(_object, expected_attr)) if expected_attr == 'message': self.check_violation_message(_object, expected_attrs) continue self.assertEqual(getattr(_object, expected_attr), expected_value) def check_violation_message(self, violation, expected_attrs): # Override this for linters where the PR message gets augmented with extra info. # By default, perform a simple equality check. self.assertEqual(violation.message, expected_attrs['message']) class IgnoreInstructionsMixin(ParserTestCaseMixin): def check_violation_message(self, violation, expected_attrs): self.assertTrue(violation.message) self.assertIn(expected_attrs['message'], violation.message) self.assertIn(self.parser.ignore_instructions, violation.message) class IgnoreInstructionsWithRuleIdsMixin(ParserTestCaseMixin): def check_violation_message(self, violation, expected_attrs): self.assertTrue(violation.message) self.assertIn(expected_attrs['message'], violation.message) ignore_instructions_fmt = self.parser.ignore_instructions_format ignore_instructions = ignore_instructions_fmt.format(rule_id=expected_attrs['code']) self.assertIn(ignore_instructions, violation.message) class Flake8ParserTestCase(ParserTestCaseMixin, unittest.TestCase): parser = PARSERS['flake8'] linter_output_file_name = 'flake8.txt' expected_violations = { 'lintly/parsers.py': [ {'line': 80, 'column': 5, 'code': 'E303', 'message': 'too many blank lines (3)'}, {'line': 216, 'column': 1, 'code': 'W391', 'message': 'blank line at end of file'} ], 'lintly/violations.py': [ {'line': 1, 'column': 1, 'code': 'F401', 'message': '\'itertools\' imported but unused'}, {'line': 20, 'column': 5, 'code': 'C901', 'message': '\'Violation.complex_method\' is too complex (11)'} ] } class BanditJSONParserTestCase(IgnoreInstructionsMixin, unittest.TestCase): parser = PARSERS['bandit-json'] linter_output_file_name = 'bandit-json.txt' expected_violations = { 'build/lib/lintly/formatters.py': [ {'line': 14, 'column': 0, 'code': 'B701 (jinja2_autoescape_false)', 'message': ('Using jinja2 templates with autoescape=False is dangerous and can lead to XSS. ' 'Use autoescape=True or use the select_autoescape function to mitigate XSS vulnerabilities.')} ], 'lintly/formatters.py': [ {'line': 14, 'column': 0, 'code': 'B701 (jinja2_autoescape_false)', 'message': ('Using jinja2 templates with autoescape=False is dangerous and can lead to XSS. ' 'Use autoescape=True or use the select_autoescape function to mitigate XSS vulnerabilities.')} ], 'tests/test_builds.py': [ {'line': 48, 'column': 0, 'code': 'B101 (assert_used)', 'message': ('Use of assert detected. ' 'The enclosed code will be removed when compiling to optimised byte code.')} ], 'tests/test_cli.py': [ {'line': 13, 'column': 0, 'code': 'B101 (assert_used)', 'message': ('Use of assert detected. ' 'The enclosed code will be removed when compiling to optimised byte code.')}, {'line': 14, 'column': 0, 'code': 'B101 (assert_used)', 'message': ('Use of assert detected. ' 'The enclosed code will be removed when compiling to optimised byte code.')}, {'line': 15, 'column': 0, 'code': 'B101 (assert_used)', 'message': ('Use of assert detected. ' 'The enclosed code will be removed when compiling to optimised byte code.')} ] } class GitleaksParserTestCase(IgnoreInstructionsMixin, unittest.TestCase): parser = PARSERS['gitleaks'] linter_output_file_name = 'gitleaks.json' expected_violations = { 'relative/path/to/output': [ {'line': 5, 'column': 0, 'code': 'AKIAIO5FODNN7EXAMPLE', 'message': 'AWS Access Key'} ], 'relative/path/to/output2': [ {'line': 2, 'column': 0, 'code': '-----BEGIN PRIVATE KEY-----', 'message': 'Asymmetric Private Key'} ] } class HadolintParserTestCase(IgnoreInstructionsWithRuleIdsMixin, unittest.TestCase): parser = PARSERS['hadolint'] linter_output_file_name = 'hadolint.json' expected_violations = { 'relative/path/to/file1': [ {'line': 12, 'column': 1, 'code': 'DL3015', 'message': 'Avoid additional packages by specifying `--no-install-recommends`'} ], 'relative/path/to/file2': [ {'line': 19, 'column': 1, 'code': 'DL3020', 'message': 'Use COPY instead of ADD for files and folders'} ] } class TerrascanParserTestCase(IgnoreInstructionsWithRuleIdsMixin, unittest.TestCase): parser = PARSERS['terrascan'] linter_output_file_name = 'terrascan.json' expected_violations = { 'main.tf': [ {'line': 6, 'column': 0, 'code': 'AC_AWS_0483', 'message': 'Lambda does not use KMS CMK key to protect environment variables.'} ], 'api_gateway_config.tf': [ {'line': 15, 'column': 0, 'code': 'AC_AWS_0014', 'message': 'Enable AWS CloudWatch Logs for APIs'} ] } class TerrascanParserNoErrorsTestCase(IgnoreInstructionsWithRuleIdsMixin, unittest.TestCase): parser = PARSERS['terrascan'] linter_output_file_name = 'terrascan_no_errors.json' expected_violations = {} class TrivyParserTestCase(ParserTestCaseMixin, unittest.TestCase): parser = PARSERS['trivy'] linter_output_file_name = 'trivy.json' expected_violations = { 'relative/path/to/file1': [ {'line': 0, 'column': 0, 'code': 'RUSTSEC-2019-0001 (Uncontrolled recursion in HTML serialization)', 'message': 'Affected versions of this crate did use recursion for serialization of HTML\nDOM trees.'} ], 'relative/path/to/file2': [ {'line': 0, 'column': 0, 'code': 'CVE-2019-19844 (Django: crafted email address allows account takeover)', 'message': 'Django before 1.11.27, 2.x before 2.2.9, and 3.x before 3.0.1 allows account takeover.'} ] } class TfsecParserTestCase(ParserTestCaseMixin, unittest.TestCase): parser = PARSERS['tfsec'] linter_output_file_name = 'tfsec.json' expected_violations = { 'relative/path/to/file1': [ {'line': 8, 'column': 0, 'code': 'AWS004 (Use of plain HTTP.)', 'message': 'Resource aws_alb_listener.my-alb-listener uses plain HTTP instead of HTTPS.'} ], 'relative/path/to/file2': [ {'line': 21, 'column': 0, 'code': 'AZU003 (Unencrypted managed disk.)', 'message': 'Resource azurerm_managed_disk.source defines an unencrypted managed disk.'} ] } class SemgrepParserTestCase(IgnoreInstructionsMixin, unittest.TestCase): parser = PARSERS['semgrep'] linter_output_file_name = 'semgrep.json' expected_violations = { 'relative/path/to/file1': [ {'line': 115, 'column': 20, 'code': 'python.lang.security.deserialization.pickle.avoid-pickle', 'message': 'Avoid using `pickle`, which is known to lead to code execution vulnerabilities.'} ], 'relative/path/to/file2': [ {'line': 121, 'column': 5, 'code': 'python.jinja2.security.audit.autoescape-disabled.autoescape-disabled', 'message': 'Detected a Jinja2 environment without autoescaping.'} ] } class PylintJSONParserTestCase(ParserTestCaseMixin, unittest.TestCase): parser = PARSERS['pylint-json'] linter_output_file_name = 'pylint-json.txt' expected_violations = { 'lintly/patch.py': [ {'line': 22, 'column': 0, 'code': 'W0511 (fixme)', 'message': 'TODO: Cache this'}, {'line': 1, 'column': 0, 'code': 'C0111 (missing-docstring)', 'message': 'Missing module docstring'} ], 'lintly/config.py': [ {'line': 6, 'column': 0, 'code': 'C0301 (line-too-long)', 'message': 'Line too long (112/100)'}, {'line': 1, 'column': 0, 'code': 'C0111 (missing-docstring)', 'message': 'Missing module docstring'}, { 'line': 10, 'column': 8, 'code': 'C0103 (invalid-name)', 'message': 'Attribute name "ci" doesn\'t conform to snake_case naming style' } ] } def test_pylint_no_errors(self): violations = self.parser.parse_violations('') self.assertEqual(violations, dict()) violations = self.parser.parse_violations('No config file found, using default configuration\n') self.assertEqual(violations, dict()) class ESLintParserTestCase(ParserTestCaseMixin, unittest.TestCase): parser = PARSERS['eslint'] linter_output_file_name = 'eslint.txt' expected_violations = { 'static/file1.js': [ {'line': 1, 'column': 1, 'code': 'no-undef', 'message': '\'$\' is not defined'}, { 'line': 1, 'column': 11, 'code': 'space-before-function-paren', 'message': 'Missing space before function parentheses' }, {'line': 2, 'column': 1, 'code': 'indent', 'message': 'Expected indentation of 2 spaces but found 4'} ], 'static/file2.js': [ {'line': 3, 'column': 1, 'code': 'indent', 'message': 'Expected indentation of 4 spaces but found 8'}, {'line': 4, 'column': 68, 'code': 'semi', 'message': 'Extra semicolon'} ] } @patch('lintly.parsers.ESLintParser._get_working_dir', return_value='/Users/grant/project') def test_parse_violations(self, _get_working_dir_mock): super(ESLintParserTestCase, self).test_parse_violations() class CheckmakeParserTestCase(ParserTestCaseMixin, unittest.TestCase): parser = PARSERS['checkmake'] linter_output_file_name = "checkmake.txt" expected_violations = { 'path/to/Makefile': [ {'line': 45, 'column': 0, 'code': '', 'message': 'minphony:Missing required phony target "all"'}, {'line': 45, 'column': 0, 'code': '', 'message': 'minphony:Missing required phony target "clean"'}, {'line': 45, 'column': 0, 'code': '', 'message': 'minphony:Missing required phony target "test"'}, ] } @patch('lintly.parsers.LineRegexParser._get_working_dir', return_value='/') @patch.dict(os.environ, {"LINTLY_FILE_OVERRIDE": "/path/to/Makefile"}) def test_parse_violations(self, _get_working_dir_mock): super(CheckmakeParserTestCase, self).test_parse_violations() class StylelintParserTestCase(ParserTestCaseMixin, unittest.TestCase): parser = PARSERS['stylelint'] linter_output_file_name = 'stylelint.txt' expected_violations = { 'lintly/static/sass/file1.scss': [ {'line': 13, 'column': 1, 'code': 'max-empty-lines', 'message': 'Expected no more than 1 empty line'} ], 'lintly/static/sass/file2.scss': [ { 'line': 11, 'column': 1, 'code': 'at-rule-empty-line-before', 'message': 'Expected empty line before at-rule' }, {'line': 27, 'column': 1, 'code': 'max-empty-lines', 'message': 'Expected no more than 1 empty line'}, {'line': 31, 'column': 22, 'code': 'number-leading-zero', 'message': 'Expected a leading zero'} ] } class BlackParserTestCase(ParserTestCaseMixin, unittest.TestCase): parser = PARSERS["black"] linter_output_file_name = "black.txt" # Messages contain diff blocks and are long, so they are abbreviated here and will be tested with assertIn. expected_violations = { "lint_test/test_another.py": [ { "line": 1, "column": 0, "code": "`black`", "message": ("-ANOTHER_CONST = 'another single quote'\n+ANOTHER_CONST = \"another single quote\""), }, ], "lint_test/test_black.py": [ {"line": 1, "column": 0, "code": "`black`", "message": "+from . import (\n+ very_long_line_here,\n"}, { "line": 27, "column": 0, "code": "`black`", "message": ("-SOME_CONST = 'black is also very particular about double quotes'\n" "+SOME_CONST = \"black is also very particular about double quotes\""), }, ], } def check_object_attrs(self, _object, expected_attrs): # Patch check_object_attrs to accept abbreviated messages. for expected_attr, expected_value in expected_attrs.items(): self.assertTrue(hasattr(_object, expected_attr)) if expected_attr == "message": self.assertIn(expected_value, getattr(_object, expected_attr)) else: self.assertEqual(getattr(_object, expected_attr), expected_value) class CfnLintParserTestCase(ParserTestCaseMixin, unittest.TestCase): parser = PARSERS['cfn-lint'] linter_output_file_name = 'cfn-lint.txt' expected_violations = { "templates/template.yaml": [ {'line': 2, 'column': 9, 'code': 'W2001', 'message': 'Parameter UnusedParameter not used.'}, {'line': 5, 'column': 9, 'code': 'W2001', 'message': 'Parameter AnotherOne not used.'} ], "templates/template2.yaml": [ {'line': 7, 'column': 9, 'code': 'E1012', 'message': 'Ref PrincipalOrgID not found as a resource or parameter'}, ] } class CfnNagParserTestCase(IgnoreInstructionsWithRuleIdsMixin, unittest.TestCase): parser = PARSERS['cfn-nag'] linter_output_file_name = 'cfn-nag.json' expected_violations = { "cloudformation/perfect-stack.yaml": [], "cloudformation/problem-stack.yaml": [ {'line': 24, 'column': 0, 'code': 'F3', 'message': 'IAM role should not allow * action on its permissions policy'}, {'line': 150, 'column': 0, 'code': 'F3', 'message': 'IAM role should not allow * action on its permissions policy'}, {'line': 50, 'column': 0, 'code': 'W35', 'message': 'S3 Bucket should have access logging configured'} ], "cloudformation/warning-stack.yaml": [ {'line': 320, 'column': 0, 'code': 'W42', 'message': 'Security Groups ingress with an ipProtocol of -1 found '}, ] } ```
{ "source": "23andMe/saleor", "score": 2 }
#### File: saleor/core/exceptions.py ```python from dataclasses import dataclass from enum import Enum from typing import TYPE_CHECKING, List, Optional, Sequence, Union from ..checkout.error_codes import CheckoutErrorCode if TYPE_CHECKING: from ..checkout.models import CheckoutLine from ..order.models import OrderLine from ..product.models import ProductVariant @dataclass class InsufficientStockData: variant: Optional["ProductVariant"] = None checkout_line: Optional["CheckoutLine"] = None order_line: Optional["OrderLine"] = None warehouse_pk: Union[str, int, None] = None available_quantity: Optional[int] = None class InsufficientStock(Exception): def __init__(self, items: List[InsufficientStockData]): details = [str(item.variant or item.order_line) for item in items] super().__init__(f"Insufficient stock for {', '.join(details)}") self.items = items self.code = CheckoutErrorCode.INSUFFICIENT_STOCK class AllocationError(Exception): def __init__(self, order_lines): lines = [str(line) for line in order_lines] super().__init__(f"Unable to deallocate stock for lines {', '.join(lines)}.") self.order_lines = order_lines class PreorderAllocationError(Exception): def __init__(self, order_line): super().__init__(f"Unable to allocate in stock for line {str(order_line)}.") self.order_line = order_line class ReadOnlyException(Exception): def __init__(self, msg=None): if msg is None: msg = "API runs in read-only mode" super().__init__(msg) class ProductNotPublished(Exception): def __init__(self, context=None): super().__init__("Can't add unpublished product.") self.context = context self.code = CheckoutErrorCode.PRODUCT_NOT_PUBLISHED class PermissionDenied(Exception): def __init__(self, message=None, *, permissions: Sequence[Enum] = None): if not message: if permissions: permission_list = ", ".join(p.name for p in permissions) message = ( f"You need one of the following permissions: {permission_list}" ) else: message = "You do not have permission to perform this action" super().__init__(message) self.permissions = permissions class GiftCardNotApplicable(Exception): def __init__(self, message: str): super().__init__(message) self.message = message self.code = CheckoutErrorCode.GIFT_CARD_NOT_APPLICABLE.value ``` #### File: checkout/mutations/checkout_add_promo_code.py ```python import graphene from django.core.exceptions import ValidationError from ....checkout.checkout_cleaner import validate_checkout_email from ....checkout.error_codes import CheckoutErrorCode from ....checkout.fetch import ( fetch_checkout_info, fetch_checkout_lines, update_delivery_method_lists_for_checkout_info, ) from ....checkout.utils import add_promo_code_to_checkout from ...core.descriptions import DEPRECATED_IN_3X_INPUT from ...core.mutations import BaseMutation from ...core.scalars import UUID from ...core.types import CheckoutError from ...core.validators import validate_one_of_args_is_in_mutation from ..types import Checkout from .utils import get_checkout_by_token, update_checkout_shipping_method_if_invalid class CheckoutAddPromoCode(BaseMutation): checkout = graphene.Field( Checkout, description="The checkout with the added gift card or voucher." ) class Arguments: checkout_id = graphene.ID( description=( f"The ID of the checkout. {DEPRECATED_IN_3X_INPUT} Use token instead." ), required=False, ) token = UUID(description="Checkout token.", required=False) promo_code = graphene.String( description="Gift card code or voucher code.", required=True ) class Meta: description = "Adds a gift card or a voucher to a checkout." error_type_class = CheckoutError error_type_field = "checkout_errors" @classmethod def perform_mutation(cls, _root, info, promo_code, checkout_id=None, token=None): # DEPRECATED validate_one_of_args_is_in_mutation( CheckoutErrorCode, "checkout_id", checkout_id, "token", token ) if token: checkout = get_checkout_by_token(token) # DEPRECATED else: checkout = cls.get_node_or_error( info, checkout_id or token, only_type=Checkout, field="checkout_id" ) validate_checkout_email(checkout) manager = info.context.plugins discounts = info.context.discounts lines, unavailable_variant_pks = fetch_checkout_lines(checkout) if unavailable_variant_pks: not_available_variants_ids = { graphene.Node.to_global_id("ProductVariant", pk) for pk in unavailable_variant_pks } raise ValidationError( { "lines": ValidationError( "Some of the checkout lines variants are unavailable.", code=CheckoutErrorCode.UNAVAILABLE_VARIANT_IN_CHANNEL.value, params={"variants": not_available_variants_ids}, ) } ) shipping_channel_listings = checkout.channel.shipping_method_listings.all() checkout_info = fetch_checkout_info( checkout, lines, discounts, manager, shipping_channel_listings ) add_promo_code_to_checkout( manager, checkout_info, lines, promo_code, discounts, ) update_delivery_method_lists_for_checkout_info( checkout_info, checkout_info.checkout.shipping_method, checkout_info.checkout.collection_point, checkout_info.shipping_address, lines, discounts, manager, shipping_channel_listings, ) update_checkout_shipping_method_if_invalid(checkout_info, lines) manager.checkout_updated(checkout) return CheckoutAddPromoCode(checkout=checkout) ```
{ "source": "23andMe/seqseek", "score": 3 }
#### File: seqseek/seqseek/format_fasta.py ```python from __future__ import print_function import argparse def run(path): print("Formatting %s" % path) with open(path) as fasta: header = '' first_line = fasta.readline() if not first_line.startswith('>'): header = '> ' + path.split('/')[-1].split('.')[0] + '\n' first_line.replace('\n', '') clean = fasta.read().replace('\n', '') with open(path + '.seqseek', 'w') as formatted: formatted.write(header) formatted.write(first_line) formatted.write(clean) with open(path + '.seqseek') as done: done.readline() sequence = done.read() print("Length is %d" % len(sequence)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("fasta_path") args = parser.parse_args() run(args.fasta_path) ```
{ "source": "23ccozad/hurricane-wind-speed-cnn", "score": 3 }
#### File: 23ccozad/hurricane-wind-speed-cnn/model.py ```python import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import warnings import gc with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=FutureWarning) from keras import models from keras import layers from keras import metrics from keras.callbacks import EarlyStopping def read_and_prepare_data(validation_mode, k=5, augment=True): if validation_mode == 'k_fold': # Read in data from files images = np.load('images.npy') labels = np.load('labels.npy') # Split the image and label datasets into k number of subsets folded_images = [] folded_labels = [] for i in range(k): start = int((i / k) * len(images)) end = int(((i + 1) / k) * len(images)) folded_images.append(images[start:end]) folded_labels.append(labels[start:end]) # Generate augmented images for each fold folded_augmented_images = [] folded_augmented_labels = [] for i in range(k): if augment: print('\nAugmenting Fold ' + str(i + 1) + ' of ' + str(k)) augmented_images, augmented_labels = augment_images(folded_images[i], folded_labels[i]) folded_augmented_images.append(augmented_images) folded_augmented_labels.append(augmented_labels) # Combine the folds into sets for each iteration of the model and standardize the data train_images = [] train_labels = [] test_images = [] test_labels = [] for i in range(k): train_images.append(np.concatenate(folded_images[:i] + folded_images[(i+1):])) train_labels.append(np.concatenate(folded_labels[:i] + folded_labels[(i+1):])) if augment: train_images[i] = np.concatenate(([train_images[i]] + folded_augmented_images[:i] + folded_augmented_images[(i + 1):])) train_labels[i] = np.concatenate(([train_labels[i]] + folded_augmented_labels[:i] + folded_augmented_labels[(i + 1):])) test_images.append(folded_images[i]) test_labels.append(folded_labels[i]) train_images[i], test_images[i] = standardize_data(train_images[i], test_images[i]) return train_images, train_labels, test_images, test_labels def augment_images(images, labels): # Create generators to augment images from keras.preprocessing import image flip_generator = image.ImageDataGenerator( horizontal_flip=True, vertical_flip=True ) rotate_generator = image.ImageDataGenerator( rotation_range=360, fill_mode='nearest' ) # Accumulate augmented images and labels augmented_images = [] augmented_labels = [] # Loop each images in the set to augment for i in range(len(images)): # Reshape image for generator image = np.reshape(images[i], (1, images[i].shape[0], images[i].shape[1], 1)) label = labels[i] # Reset the number of augmented images have been created to zero num_new_images = 0 # Generate 2 new images if the image is of a tropical cyclone between 50 and 75 knots if 50 < label < 75: for batch in flip_generator.flow(image, batch_size=1): gc.collect() new_image = np.reshape(batch[0], (batch[0].shape[0], batch[0].shape[1], 1)) augmented_images.append(new_image) augmented_labels.append(label) num_new_images += 1 if num_new_images == 2: break # Generate 6 new images if the image is of a tropical cyclone between 75 and 100 knots elif 75 < label < 100: for batch in rotate_generator.flow(image, batch_size=1): gc.collect() new_image = np.reshape(batch[0], (batch[0].shape[0], batch[0].shape[1], 1)) augmented_images.append(new_image) augmented_labels.append(label) num_new_images += 1 if num_new_images == 6: break # Generate 12 new images if the image is of a tropical cyclone greater than or equal to 100 knots elif 100 <= label: for batch in rotate_generator.flow(image, batch_size=1): gc.collect() new_image = np.reshape(batch[0], (batch[0].shape[0], batch[0].shape[1], 1)) augmented_images.append(new_image) augmented_labels.append(label) num_new_images += 1 if num_new_images == 12: break print_progress('Augmenting Images', i + 1, len(images)) # Convert lists of images/labels into numpy arrays augmented_images = np.array(augmented_images) augmented_labels = np.array(augmented_labels) return augmented_images, augmented_labels def build_model(): # Build network architecture model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(50, 50, 1))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dropout(0.5)) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(16, activation='relu')) model.add(layers.Dense(1, activation=None)) # Configure model optimization model.compile( optimizer='rmsprop', loss='mse', metrics=[metrics.MeanAbsoluteError(), metrics.RootMeanSquaredError()]) return model def train_model(model, train_images, train_labels, test_images, test_labels, show_performance_by_epoch=False): # Run model and get metrics for each epoch performance_log = model.fit( train_images, train_labels, callbacks=[EarlyStopping(monitor='val_mean_absolute_error', patience=5, restore_best_weights=True)], epochs=100, batch_size=64, validation_data=(test_images, test_labels)) if show_performance_by_epoch: performance_by_epoch(performance_log) return model def performance_by_epoch(performance_log): # Get metrics for each epoch after model finishes training train_loss = performance_log.history['loss'] test_loss = performance_log.history['val_loss'] train_mae = performance_log.history['mean_absolute_error'] test_mae = performance_log.history['val_mean_absolute_error'] epochs = range(1, len(train_loss) + 1) # Build a dataframe storing epoch metrics performance_df = pd.DataFrame(columns=['epoch', 'train_or_test', 'loss_or_mae', 'value']) for i in range(len(train_loss)): new_row = {'epoch': epochs[i], 'train_or_test': 'train', 'loss_or_mae': 'loss', 'value': train_loss[i]} performance_df = performance_df.append(new_row, ignore_index=True) new_row = {'epoch': epochs[i], 'train_or_test': 'test', 'loss_or_mae': 'loss', 'value': test_loss[i]} performance_df = performance_df.append(new_row, ignore_index=True) new_row = {'epoch': epochs[i], 'train_or_test': 'train', 'loss_or_mae': 'mae', 'value': train_mae[i]} performance_df = performance_df.append(new_row, ignore_index=True) new_row = {'epoch': epochs[i], 'train_or_test': 'test', 'loss_or_mae': 'mae', 'value': test_mae[i]} performance_df = performance_df.append(new_row, ignore_index=True) performance_df = performance_df.astype({'epoch': np.int64}) # Plot metrics on graph, fitted with exponential decay curves lm = sns.lmplot( x='epoch', y='value', data=performance_df, row='loss_or_mae', hue='train_or_test', # Note: If epoch = 1, this line causes an error. Make sure epoch >= 2 logx=True, truncate=False, sharey=False) axes = lm.axes max_mae = performance_df.loc[performance_df.loss_or_mae == 'mae']['value'].max() min_mae = performance_df.loc[performance_df.loss_or_mae == 'mae']['value'].min() axes[1, 0].set_ylim(min_mae - min_mae * 0.2, max_mae + max_mae * 0.2) plt.show() def generate_predictions(model, test_images, test_labels): # Run validation data through model and print mean absolute error raw_predictions = model.predict(test_images) raw_predictions = raw_predictions.flatten() # Build a dataframe storing data for each prediction made by the model processed_predictions = pd.DataFrame(columns=['prediction', 'actual', 'abs_error', 'category']) for i in range(len(raw_predictions)): abs_error = abs(raw_predictions[i] - test_labels[i]) new_row = { 'prediction': raw_predictions[i], 'actual': test_labels[i], 'abs_error': abs_error, 'abs_error_squared': abs_error ** 2, 'category': category_of(test_labels[i])} processed_predictions = processed_predictions.append(new_row, ignore_index=True) print_progress('Processing Predictions', i + 1, len(raw_predictions)) return processed_predictions def show_validation_results(predictions, show_plots=True, print_error=True): print('\n\nRESULTS') if print_error: mae = predictions['abs_error'].mean() print('\nMean Absolute Error: ' + str(round(float(mae), 2)) + ' knots') rmse = predictions['abs_error_squared'].mean() ** 0.5 print('Root Mean Square Error: ' + str(round(float(rmse), 2)) + ' knots') if show_plots: # List of categories in order of ascending strength categories = ['T. Depression', 'T. Storm', 'Category 1', 'Category 2', 'Category 3', 'Category 4', 'Category 5'] # Show bar graph of median absolute error for each category plt.figure(figsize=(10, 5), dpi=300) sns.barplot( x='category', y='abs_error', data=predictions, estimator=np.median, order=categories) sns.despine() plt.xlabel("Hurricane Strength") plt.ylabel("Absolute Error") plt.title("Median Absolute Error in Neural Network's Predictions By Category") plt.savefig('median_abs_error_by_category.png') print('Graph of median absolute error by category saved as median_abs_error_by_category.png') plt.clf() # Show density plot of error for each category for category in categories: num_samples_tested = len(predictions.loc[predictions.category == category]['abs_error']) sns.distplot( predictions.loc[predictions.category == category]['abs_error'], label=category + ' (' + str(num_samples_tested) + ' samples tested)', hist=False, kde_kws={"shade": True}) sns.despine() plt.xlabel("Absolute Error") plt.title("Distribution of Absolute Error By Category") plt.legend() plt.xlim(0, None) plt.ylim(0, None) plt.savefig('error_dist_by_category.png') print('Graph of error distribution by category saved as error_dist_by_category.png') def standardize_data(train_images, test_images): train_images[train_images < 0] = 0 test_images[test_images < 0] = 0 st_dev = np.std(train_images) mean = np.mean(train_images) train_images = np.divide(np.subtract(train_images, mean), st_dev) test_images = np.divide(np.subtract(test_images, mean), st_dev) return train_images, test_images def print_progress(action, progress, total): percent_progress = round((progress / total) * 100, 1) print('\r' + action + '... ' + str(percent_progress) + '% (' + str(progress) + ' of ' + str(total) + ')', end='') def category_of(wind_speed): if wind_speed <= 33: return 'T. Depression' elif wind_speed <= 64: return 'T. Storm' elif wind_speed <= 83: return 'Category 1' elif wind_speed <= 95: return 'Category 2' elif wind_speed <= 113: return 'Category 3' elif wind_speed <= 134: return 'Category 4' else: return 'Category 5' if __name__ == "__main__": # Specify whether the script should use Keras's ImageDataGenerator to augment the training dataset. Assigning # this variable to True will improve accuracy, but will also increase execution time. AUGMENT = True # Specify how many folds in the k-fold validation process. Can be any integer greater than or equal to 2. Larger # integers will increase execution time. NUM_FOLDS = 5 train_images, train_labels, test_images, test_labels = read_and_prepare_data('k_fold', NUM_FOLDS, augment=AUGMENT) model = build_model() predictions = pd.DataFrame(columns=['prediction', 'actual', 'abs_error', 'category']) for i in range(NUM_FOLDS): print('\n\nTraining Fold ' + str(i + 1) + ' of ' + str(NUM_FOLDS) + '\n') model = train_model(model, train_images[i], train_labels[i], test_images[i], test_labels[i]) kth_fold_predictions = generate_predictions(model, test_images[i], test_labels[i]) predictions = predictions.append(kth_fold_predictions, ignore_index=True) show_validation_results(predictions) ```
{ "source": "23doors/pulumi-gcp", "score": 2 }
#### File: pulumi_gcp/accesscontextmanager/service_perimeter_resource.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class ServicePerimeterResource(pulumi.CustomResource): perimeter_name: pulumi.Output[str] resource: pulumi.Output[str] def __init__(__self__, resource_name, opts=None, perimeter_name=None, resource=None, __props__=None, __name__=None, __opts__=None): """ Allows configuring a single GCP resource that should be inside of a service perimeter. This resource is intended to be used in cases where it is not possible to compile a full list of projects to include in a `accesscontextmanager.ServicePerimeter` resource, to enable them to be added separately. > **Note:** If this resource is used alongside a `accesscontextmanager.ServicePerimeter` resource, the service perimeter resource must have a `lifecycle` block with `ignore_changes = [status[0].resources]` so they don't fight over which resources should be in the policy. To get more information about ServicePerimeterResource, see: * [API documentation](https://cloud.google.com/access-context-manager/docs/reference/rest/v1/accessPolicies.servicePerimeters) * How-to Guides * [Service Perimeter Quickstart](https://cloud.google.com/vpc-service-controls/docs/quickstart) :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/access_context_manager_service_perimeter_resource.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if perimeter_name is None: raise TypeError("Missing required property 'perimeter_name'") __props__['perimeter_name'] = perimeter_name if resource is None: raise TypeError("Missing required property 'resource'") __props__['resource'] = resource super(ServicePerimeterResource, __self__).__init__( 'gcp:accesscontextmanager/servicePerimeterResource:ServicePerimeterResource', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, perimeter_name=None, resource=None): """ Get an existing ServicePerimeterResource resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/access_context_manager_service_perimeter_resource.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["perimeter_name"] = perimeter_name __props__["resource"] = resource return ServicePerimeterResource(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_gcp/bigquery/dataset.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class Dataset(pulumi.CustomResource): accesses: pulumi.Output[list] creation_time: pulumi.Output[float] dataset_id: pulumi.Output[str] default_encryption_configuration: pulumi.Output[dict] default_partition_expiration_ms: pulumi.Output[float] default_table_expiration_ms: pulumi.Output[float] delete_contents_on_destroy: pulumi.Output[bool] """ If set to `true`, delete all the tables in the dataset when destroying the resource; otherwise, destroying the resource will fail if tables are present. """ description: pulumi.Output[str] etag: pulumi.Output[str] friendly_name: pulumi.Output[str] labels: pulumi.Output[dict] last_modified_time: pulumi.Output[float] location: pulumi.Output[str] project: pulumi.Output[str] """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ self_link: pulumi.Output[str] """ The URI of the created resource. """ def __init__(__self__, resource_name, opts=None, accesses=None, dataset_id=None, default_encryption_configuration=None, default_partition_expiration_ms=None, default_table_expiration_ms=None, delete_contents_on_destroy=None, description=None, friendly_name=None, labels=None, location=None, project=None, __props__=None, __name__=None, __opts__=None): """ Create a Dataset resource with the given unique name, props, and options. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[bool] delete_contents_on_destroy: If set to `true`, delete all the tables in the dataset when destroying the resource; otherwise, destroying the resource will fail if tables are present. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. The **accesses** object supports the following: * `domain` (`pulumi.Input[str]`) * `groupByEmail` (`pulumi.Input[str]`) * `role` (`pulumi.Input[str]`) * `specialGroup` (`pulumi.Input[str]`) * `userByEmail` (`pulumi.Input[str]`) * `view` (`pulumi.Input[dict]`) * `dataset_id` (`pulumi.Input[str]`) * `projectId` (`pulumi.Input[str]`) * `table_id` (`pulumi.Input[str]`) The **default_encryption_configuration** object supports the following: * `kmsKeyName` (`pulumi.Input[str]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/bigquery_dataset.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['accesses'] = accesses if dataset_id is None: raise TypeError("Missing required property 'dataset_id'") __props__['dataset_id'] = dataset_id __props__['default_encryption_configuration'] = default_encryption_configuration __props__['default_partition_expiration_ms'] = default_partition_expiration_ms __props__['default_table_expiration_ms'] = default_table_expiration_ms __props__['delete_contents_on_destroy'] = delete_contents_on_destroy __props__['description'] = description __props__['friendly_name'] = friendly_name __props__['labels'] = labels __props__['location'] = location __props__['project'] = project __props__['creation_time'] = None __props__['etag'] = None __props__['last_modified_time'] = None __props__['self_link'] = None super(Dataset, __self__).__init__( 'gcp:bigquery/dataset:Dataset', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, accesses=None, creation_time=None, dataset_id=None, default_encryption_configuration=None, default_partition_expiration_ms=None, default_table_expiration_ms=None, delete_contents_on_destroy=None, description=None, etag=None, friendly_name=None, labels=None, last_modified_time=None, location=None, project=None, self_link=None): """ Get an existing Dataset resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[bool] delete_contents_on_destroy: If set to `true`, delete all the tables in the dataset when destroying the resource; otherwise, destroying the resource will fail if tables are present. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[str] self_link: The URI of the created resource. The **accesses** object supports the following: * `domain` (`pulumi.Input[str]`) * `groupByEmail` (`pulumi.Input[str]`) * `role` (`pulumi.Input[str]`) * `specialGroup` (`pulumi.Input[str]`) * `userByEmail` (`pulumi.Input[str]`) * `view` (`pulumi.Input[dict]`) * `dataset_id` (`pulumi.Input[str]`) * `projectId` (`pulumi.Input[str]`) * `table_id` (`pulumi.Input[str]`) The **default_encryption_configuration** object supports the following: * `kmsKeyName` (`pulumi.Input[str]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/bigquery_dataset.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["accesses"] = accesses __props__["creation_time"] = creation_time __props__["dataset_id"] = dataset_id __props__["default_encryption_configuration"] = default_encryption_configuration __props__["default_partition_expiration_ms"] = default_partition_expiration_ms __props__["default_table_expiration_ms"] = default_table_expiration_ms __props__["delete_contents_on_destroy"] = delete_contents_on_destroy __props__["description"] = description __props__["etag"] = etag __props__["friendly_name"] = friendly_name __props__["labels"] = labels __props__["last_modified_time"] = last_modified_time __props__["location"] = location __props__["project"] = project __props__["self_link"] = self_link return Dataset(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_gcp/compute/backend_service.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class BackendService(pulumi.CustomResource): affinity_cookie_ttl_sec: pulumi.Output[float] backends: pulumi.Output[list] cdn_policy: pulumi.Output[dict] circuit_breakers: pulumi.Output[dict] connection_draining_timeout_sec: pulumi.Output[float] consistent_hash: pulumi.Output[dict] creation_timestamp: pulumi.Output[str] custom_request_headers: pulumi.Output[list] description: pulumi.Output[str] enable_cdn: pulumi.Output[bool] fingerprint: pulumi.Output[str] health_checks: pulumi.Output[str] iap: pulumi.Output[dict] load_balancing_scheme: pulumi.Output[str] locality_lb_policy: pulumi.Output[str] log_config: pulumi.Output[dict] name: pulumi.Output[str] outlier_detection: pulumi.Output[dict] port_name: pulumi.Output[str] project: pulumi.Output[str] """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ protocol: pulumi.Output[str] security_policy: pulumi.Output[str] self_link: pulumi.Output[str] """ The URI of the created resource. """ session_affinity: pulumi.Output[str] timeout_sec: pulumi.Output[float] def __init__(__self__, resource_name, opts=None, affinity_cookie_ttl_sec=None, backends=None, cdn_policy=None, circuit_breakers=None, connection_draining_timeout_sec=None, consistent_hash=None, custom_request_headers=None, description=None, enable_cdn=None, health_checks=None, iap=None, load_balancing_scheme=None, locality_lb_policy=None, log_config=None, name=None, outlier_detection=None, port_name=None, project=None, protocol=None, security_policy=None, session_affinity=None, timeout_sec=None, __props__=None, __name__=None, __opts__=None): """ Create a BackendService resource with the given unique name, props, and options. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. The **backends** object supports the following: * `balancingMode` (`pulumi.Input[str]`) * `capacityScaler` (`pulumi.Input[float]`) * `description` (`pulumi.Input[str]`) * `group` (`pulumi.Input[str]`) * `maxConnections` (`pulumi.Input[float]`) * `maxConnectionsPerEndpoint` (`pulumi.Input[float]`) * `maxConnectionsPerInstance` (`pulumi.Input[float]`) * `maxRate` (`pulumi.Input[float]`) * `maxRatePerEndpoint` (`pulumi.Input[float]`) * `maxRatePerInstance` (`pulumi.Input[float]`) * `maxUtilization` (`pulumi.Input[float]`) The **cdn_policy** object supports the following: * `cacheKeyPolicy` (`pulumi.Input[dict]`) * `includeHost` (`pulumi.Input[bool]`) * `includeProtocol` (`pulumi.Input[bool]`) * `includeQueryString` (`pulumi.Input[bool]`) * `queryStringBlacklists` (`pulumi.Input[list]`) * `queryStringWhitelists` (`pulumi.Input[list]`) * `signedUrlCacheMaxAgeSec` (`pulumi.Input[float]`) The **circuit_breakers** object supports the following: * `connectTimeout` (`pulumi.Input[dict]`) * `nanos` (`pulumi.Input[float]`) * `seconds` (`pulumi.Input[float]`) * `maxConnections` (`pulumi.Input[float]`) * `maxPendingRequests` (`pulumi.Input[float]`) * `maxRequests` (`pulumi.Input[float]`) * `maxRequestsPerConnection` (`pulumi.Input[float]`) * `maxRetries` (`pulumi.Input[float]`) The **consistent_hash** object supports the following: * `httpCookie` (`pulumi.Input[dict]`) * `name` (`pulumi.Input[str]`) * `path` (`pulumi.Input[str]`) * `ttl` (`pulumi.Input[dict]`) * `nanos` (`pulumi.Input[float]`) * `seconds` (`pulumi.Input[float]`) * `httpHeaderName` (`pulumi.Input[str]`) * `minimumRingSize` (`pulumi.Input[float]`) The **iap** object supports the following: * `oauth2ClientId` (`pulumi.Input[str]`) * `oauth2ClientSecret` (`pulumi.Input[str]`) * `oauth2ClientSecretSha256` (`pulumi.Input[str]`) The **log_config** object supports the following: * `enable` (`pulumi.Input[bool]`) * `sampleRate` (`pulumi.Input[float]`) The **outlier_detection** object supports the following: * `baseEjectionTime` (`pulumi.Input[dict]`) * `nanos` (`pulumi.Input[float]`) * `seconds` (`pulumi.Input[float]`) * `consecutiveErrors` (`pulumi.Input[float]`) * `consecutiveGatewayFailure` (`pulumi.Input[float]`) * `enforcingConsecutiveErrors` (`pulumi.Input[float]`) * `enforcingConsecutiveGatewayFailure` (`pulumi.Input[float]`) * `enforcingSuccessRate` (`pulumi.Input[float]`) * `interval` (`pulumi.Input[dict]`) * `nanos` (`pulumi.Input[float]`) * `seconds` (`pulumi.Input[float]`) * `maxEjectionPercent` (`pulumi.Input[float]`) * `successRateMinimumHosts` (`pulumi.Input[float]`) * `successRateRequestVolume` (`pulumi.Input[float]`) * `successRateStdevFactor` (`pulumi.Input[float]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/compute_backend_service.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['affinity_cookie_ttl_sec'] = affinity_cookie_ttl_sec __props__['backends'] = backends __props__['cdn_policy'] = cdn_policy __props__['circuit_breakers'] = circuit_breakers __props__['connection_draining_timeout_sec'] = connection_draining_timeout_sec __props__['consistent_hash'] = consistent_hash __props__['custom_request_headers'] = custom_request_headers __props__['description'] = description __props__['enable_cdn'] = enable_cdn if health_checks is None: raise TypeError("Missing required property 'health_checks'") __props__['health_checks'] = health_checks __props__['iap'] = iap __props__['load_balancing_scheme'] = load_balancing_scheme __props__['locality_lb_policy'] = locality_lb_policy __props__['log_config'] = log_config __props__['name'] = name __props__['outlier_detection'] = outlier_detection __props__['port_name'] = port_name __props__['project'] = project __props__['protocol'] = protocol __props__['security_policy'] = security_policy __props__['session_affinity'] = session_affinity __props__['timeout_sec'] = timeout_sec __props__['creation_timestamp'] = None __props__['fingerprint'] = None __props__['self_link'] = None super(BackendService, __self__).__init__( 'gcp:compute/backendService:BackendService', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, affinity_cookie_ttl_sec=None, backends=None, cdn_policy=None, circuit_breakers=None, connection_draining_timeout_sec=None, consistent_hash=None, creation_timestamp=None, custom_request_headers=None, description=None, enable_cdn=None, fingerprint=None, health_checks=None, iap=None, load_balancing_scheme=None, locality_lb_policy=None, log_config=None, name=None, outlier_detection=None, port_name=None, project=None, protocol=None, security_policy=None, self_link=None, session_affinity=None, timeout_sec=None): """ Get an existing BackendService resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[str] self_link: The URI of the created resource. The **backends** object supports the following: * `balancingMode` (`pulumi.Input[str]`) * `capacityScaler` (`pulumi.Input[float]`) * `description` (`pulumi.Input[str]`) * `group` (`pulumi.Input[str]`) * `maxConnections` (`pulumi.Input[float]`) * `maxConnectionsPerEndpoint` (`pulumi.Input[float]`) * `maxConnectionsPerInstance` (`pulumi.Input[float]`) * `maxRate` (`pulumi.Input[float]`) * `maxRatePerEndpoint` (`pulumi.Input[float]`) * `maxRatePerInstance` (`pulumi.Input[float]`) * `maxUtilization` (`pulumi.Input[float]`) The **cdn_policy** object supports the following: * `cacheKeyPolicy` (`pulumi.Input[dict]`) * `includeHost` (`pulumi.Input[bool]`) * `includeProtocol` (`pulumi.Input[bool]`) * `includeQueryString` (`pulumi.Input[bool]`) * `queryStringBlacklists` (`pulumi.Input[list]`) * `queryStringWhitelists` (`pulumi.Input[list]`) * `signedUrlCacheMaxAgeSec` (`pulumi.Input[float]`) The **circuit_breakers** object supports the following: * `connectTimeout` (`pulumi.Input[dict]`) * `nanos` (`pulumi.Input[float]`) * `seconds` (`pulumi.Input[float]`) * `maxConnections` (`pulumi.Input[float]`) * `maxPendingRequests` (`pulumi.Input[float]`) * `maxRequests` (`pulumi.Input[float]`) * `maxRequestsPerConnection` (`pulumi.Input[float]`) * `maxRetries` (`pulumi.Input[float]`) The **consistent_hash** object supports the following: * `httpCookie` (`pulumi.Input[dict]`) * `name` (`pulumi.Input[str]`) * `path` (`pulumi.Input[str]`) * `ttl` (`pulumi.Input[dict]`) * `nanos` (`pulumi.Input[float]`) * `seconds` (`pulumi.Input[float]`) * `httpHeaderName` (`pulumi.Input[str]`) * `minimumRingSize` (`pulumi.Input[float]`) The **iap** object supports the following: * `oauth2ClientId` (`pulumi.Input[str]`) * `oauth2ClientSecret` (`pulumi.Input[str]`) * `oauth2ClientSecretSha256` (`pulumi.Input[str]`) The **log_config** object supports the following: * `enable` (`pulumi.Input[bool]`) * `sampleRate` (`pulumi.Input[float]`) The **outlier_detection** object supports the following: * `baseEjectionTime` (`pulumi.Input[dict]`) * `nanos` (`pulumi.Input[float]`) * `seconds` (`pulumi.Input[float]`) * `consecutiveErrors` (`pulumi.Input[float]`) * `consecutiveGatewayFailure` (`pulumi.Input[float]`) * `enforcingConsecutiveErrors` (`pulumi.Input[float]`) * `enforcingConsecutiveGatewayFailure` (`pulumi.Input[float]`) * `enforcingSuccessRate` (`pulumi.Input[float]`) * `interval` (`pulumi.Input[dict]`) * `nanos` (`pulumi.Input[float]`) * `seconds` (`pulumi.Input[float]`) * `maxEjectionPercent` (`pulumi.Input[float]`) * `successRateMinimumHosts` (`pulumi.Input[float]`) * `successRateRequestVolume` (`pulumi.Input[float]`) * `successRateStdevFactor` (`pulumi.Input[float]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/compute_backend_service.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["affinity_cookie_ttl_sec"] = affinity_cookie_ttl_sec __props__["backends"] = backends __props__["cdn_policy"] = cdn_policy __props__["circuit_breakers"] = circuit_breakers __props__["connection_draining_timeout_sec"] = connection_draining_timeout_sec __props__["consistent_hash"] = consistent_hash __props__["creation_timestamp"] = creation_timestamp __props__["custom_request_headers"] = custom_request_headers __props__["description"] = description __props__["enable_cdn"] = enable_cdn __props__["fingerprint"] = fingerprint __props__["health_checks"] = health_checks __props__["iap"] = iap __props__["load_balancing_scheme"] = load_balancing_scheme __props__["locality_lb_policy"] = locality_lb_policy __props__["log_config"] = log_config __props__["name"] = name __props__["outlier_detection"] = outlier_detection __props__["port_name"] = port_name __props__["project"] = project __props__["protocol"] = protocol __props__["security_policy"] = security_policy __props__["self_link"] = self_link __props__["session_affinity"] = session_affinity __props__["timeout_sec"] = timeout_sec return BackendService(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_gcp/compute/get_backend_bucket.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetBackendBucketResult: """ A collection of values returned by getBackendBucket. """ def __init__(__self__, bucket_name=None, cdn_policies=None, creation_timestamp=None, description=None, enable_cdn=None, name=None, project=None, self_link=None, id=None): if bucket_name and not isinstance(bucket_name, str): raise TypeError("Expected argument 'bucket_name' to be a str") __self__.bucket_name = bucket_name if cdn_policies and not isinstance(cdn_policies, list): raise TypeError("Expected argument 'cdn_policies' to be a list") __self__.cdn_policies = cdn_policies if creation_timestamp and not isinstance(creation_timestamp, str): raise TypeError("Expected argument 'creation_timestamp' to be a str") __self__.creation_timestamp = creation_timestamp if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") __self__.description = description if enable_cdn and not isinstance(enable_cdn, bool): raise TypeError("Expected argument 'enable_cdn' to be a bool") __self__.enable_cdn = enable_cdn if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") __self__.name = name if project and not isinstance(project, str): raise TypeError("Expected argument 'project' to be a str") __self__.project = project if self_link and not isinstance(self_link, str): raise TypeError("Expected argument 'self_link' to be a str") __self__.self_link = self_link if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ class AwaitableGetBackendBucketResult(GetBackendBucketResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetBackendBucketResult( bucket_name=self.bucket_name, cdn_policies=self.cdn_policies, creation_timestamp=self.creation_timestamp, description=self.description, enable_cdn=self.enable_cdn, name=self.name, project=self.project, self_link=self.self_link, id=self.id) def get_backend_bucket(name=None,project=None,opts=None): """ Use this data source to access information about an existing resource. """ __args__ = dict() __args__['name'] = name __args__['project'] = project if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:compute/getBackendBucket:getBackendBucket', __args__, opts=opts).value return AwaitableGetBackendBucketResult( bucket_name=__ret__.get('bucketName'), cdn_policies=__ret__.get('cdnPolicies'), creation_timestamp=__ret__.get('creationTimestamp'), description=__ret__.get('description'), enable_cdn=__ret__.get('enableCdn'), name=__ret__.get('name'), project=__ret__.get('project'), self_link=__ret__.get('selfLink'), id=__ret__.get('id')) ``` #### File: pulumi_gcp/compute/get_certificate.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetCertificateResult: """ A collection of values returned by getCertificate. """ def __init__(__self__, certificate=None, certificate_id=None, creation_timestamp=None, description=None, name=None, name_prefix=None, private_key=None, project=None, self_link=None, id=None): if certificate and not isinstance(certificate, str): raise TypeError("Expected argument 'certificate' to be a str") __self__.certificate = certificate if certificate_id and not isinstance(certificate_id, float): raise TypeError("Expected argument 'certificate_id' to be a float") __self__.certificate_id = certificate_id if creation_timestamp and not isinstance(creation_timestamp, str): raise TypeError("Expected argument 'creation_timestamp' to be a str") __self__.creation_timestamp = creation_timestamp if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") __self__.description = description if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") __self__.name = name if name_prefix and not isinstance(name_prefix, str): raise TypeError("Expected argument 'name_prefix' to be a str") __self__.name_prefix = name_prefix if private_key and not isinstance(private_key, str): raise TypeError("Expected argument 'private_key' to be a str") __self__.private_key = private_key if project and not isinstance(project, str): raise TypeError("Expected argument 'project' to be a str") __self__.project = project if self_link and not isinstance(self_link, str): raise TypeError("Expected argument 'self_link' to be a str") __self__.self_link = self_link if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ class AwaitableGetCertificateResult(GetCertificateResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetCertificateResult( certificate=self.certificate, certificate_id=self.certificate_id, creation_timestamp=self.creation_timestamp, description=self.description, name=self.name, name_prefix=self.name_prefix, private_key=self.private_key, project=self.project, self_link=self.self_link, id=self.id) def get_certificate(name=None,project=None,opts=None): """ Get info about a Google Compute SSL Certificate from its name. :param str name: The name of the certificate. :param str project: The project in which the resource belongs. If it is not provided, the provider project is used. > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/d/compute_ssl_certificate.html.markdown. """ __args__ = dict() __args__['name'] = name __args__['project'] = project if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:compute/getCertificate:getCertificate', __args__, opts=opts).value return AwaitableGetCertificateResult( certificate=__ret__.get('certificate'), certificate_id=__ret__.get('certificateId'), creation_timestamp=__ret__.get('creationTimestamp'), description=__ret__.get('description'), name=__ret__.get('name'), name_prefix=__ret__.get('namePrefix'), private_key=__ret__.get('privateKey'), project=__ret__.get('project'), self_link=__ret__.get('selfLink'), id=__ret__.get('id')) ``` #### File: pulumi_gcp/compute/get_network_endpoint_group.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetNetworkEndpointGroupResult: """ A collection of values returned by getNetworkEndpointGroup. """ def __init__(__self__, default_port=None, description=None, name=None, network=None, network_endpoint_type=None, project=None, self_link=None, size=None, subnetwork=None, zone=None, id=None): if default_port and not isinstance(default_port, float): raise TypeError("Expected argument 'default_port' to be a float") __self__.default_port = default_port if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") __self__.description = description if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") __self__.name = name if network and not isinstance(network, str): raise TypeError("Expected argument 'network' to be a str") __self__.network = network if network_endpoint_type and not isinstance(network_endpoint_type, str): raise TypeError("Expected argument 'network_endpoint_type' to be a str") __self__.network_endpoint_type = network_endpoint_type if project and not isinstance(project, str): raise TypeError("Expected argument 'project' to be a str") __self__.project = project if self_link and not isinstance(self_link, str): raise TypeError("Expected argument 'self_link' to be a str") __self__.self_link = self_link if size and not isinstance(size, float): raise TypeError("Expected argument 'size' to be a float") __self__.size = size if subnetwork and not isinstance(subnetwork, str): raise TypeError("Expected argument 'subnetwork' to be a str") __self__.subnetwork = subnetwork if zone and not isinstance(zone, str): raise TypeError("Expected argument 'zone' to be a str") __self__.zone = zone if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ class AwaitableGetNetworkEndpointGroupResult(GetNetworkEndpointGroupResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetNetworkEndpointGroupResult( default_port=self.default_port, description=self.description, name=self.name, network=self.network, network_endpoint_type=self.network_endpoint_type, project=self.project, self_link=self.self_link, size=self.size, subnetwork=self.subnetwork, zone=self.zone, id=self.id) def get_network_endpoint_group(name=None,self_link=None,zone=None,opts=None): """ Use this data source to access information about an existing resource. """ __args__ = dict() __args__['name'] = name __args__['selfLink'] = self_link __args__['zone'] = zone if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:compute/getNetworkEndpointGroup:getNetworkEndpointGroup', __args__, opts=opts).value return AwaitableGetNetworkEndpointGroupResult( default_port=__ret__.get('defaultPort'), description=__ret__.get('description'), name=__ret__.get('name'), network=__ret__.get('network'), network_endpoint_type=__ret__.get('networkEndpointType'), project=__ret__.get('project'), self_link=__ret__.get('selfLink'), size=__ret__.get('size'), subnetwork=__ret__.get('subnetwork'), zone=__ret__.get('zone'), id=__ret__.get('id')) ``` #### File: pulumi_gcp/compute/get_subnetwork.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetSubnetworkResult: """ A collection of values returned by getSubnetwork. """ def __init__(__self__, description=None, gateway_address=None, ip_cidr_range=None, name=None, network=None, private_ip_google_access=None, project=None, region=None, secondary_ip_ranges=None, self_link=None, id=None): if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") __self__.description = description """ Description of this subnetwork. """ if gateway_address and not isinstance(gateway_address, str): raise TypeError("Expected argument 'gateway_address' to be a str") __self__.gateway_address = gateway_address """ The IP address of the gateway. """ if ip_cidr_range and not isinstance(ip_cidr_range, str): raise TypeError("Expected argument 'ip_cidr_range' to be a str") __self__.ip_cidr_range = ip_cidr_range """ The range of IP addresses belonging to this subnetwork secondary range. """ if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") __self__.name = name if network and not isinstance(network, str): raise TypeError("Expected argument 'network' to be a str") __self__.network = network """ The network name or resource link to the parent network of this subnetwork. """ if private_ip_google_access and not isinstance(private_ip_google_access, bool): raise TypeError("Expected argument 'private_ip_google_access' to be a bool") __self__.private_ip_google_access = private_ip_google_access """ Whether the VMs in this subnet can access Google services without assigned external IP addresses. """ if project and not isinstance(project, str): raise TypeError("Expected argument 'project' to be a str") __self__.project = project if region and not isinstance(region, str): raise TypeError("Expected argument 'region' to be a str") __self__.region = region if secondary_ip_ranges and not isinstance(secondary_ip_ranges, list): raise TypeError("Expected argument 'secondary_ip_ranges' to be a list") __self__.secondary_ip_ranges = secondary_ip_ranges """ An array of configurations for secondary IP ranges for VM instances contained in this subnetwork. Structure is documented below. """ if self_link and not isinstance(self_link, str): raise TypeError("Expected argument 'self_link' to be a str") __self__.self_link = self_link if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ class AwaitableGetSubnetworkResult(GetSubnetworkResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetSubnetworkResult( description=self.description, gateway_address=self.gateway_address, ip_cidr_range=self.ip_cidr_range, name=self.name, network=self.network, private_ip_google_access=self.private_ip_google_access, project=self.project, region=self.region, secondary_ip_ranges=self.secondary_ip_ranges, self_link=self.self_link, id=self.id) def get_subnetwork(name=None,project=None,region=None,self_link=None,opts=None): """ Get a subnetwork within GCE from its name and region. :param str name: The name of the subnetwork. One of `name` or `self_link` must be specified. :param str project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param str region: The region this subnetwork has been created in. If unspecified, this defaults to the region configured in the provider. :param str self_link: The self link of the subnetwork. If `self_link` is specified, `name`, `project`, and `region` are ignored. > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/d/compute_subnetwork.html.markdown. """ __args__ = dict() __args__['name'] = name __args__['project'] = project __args__['region'] = region __args__['selfLink'] = self_link if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:compute/getSubnetwork:getSubnetwork', __args__, opts=opts).value return AwaitableGetSubnetworkResult( description=__ret__.get('description'), gateway_address=__ret__.get('gatewayAddress'), ip_cidr_range=__ret__.get('ipCidrRange'), name=__ret__.get('name'), network=__ret__.get('network'), private_ip_google_access=__ret__.get('privateIpGoogleAccess'), project=__ret__.get('project'), region=__ret__.get('region'), secondary_ip_ranges=__ret__.get('secondaryIpRanges'), self_link=__ret__.get('selfLink'), id=__ret__.get('id')) ``` #### File: pulumi_gcp/compute/instance_group.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class InstanceGroup(pulumi.CustomResource): description: pulumi.Output[str] """ An optional textual description of the instance group. """ instances: pulumi.Output[list] """ List of instances in the group. They should be given as self_link URLs. When adding instances they must all be in the same network and zone as the instance group. """ name: pulumi.Output[str] """ The name of the instance group. Must be 1-63 characters long and comply with [RFC1035](https://www.ietf.org/rfc/rfc1035.txt). Supported characters include lowercase letters, numbers, and hyphens. """ named_ports: pulumi.Output[list] """ The named port configuration. See the section below for details on configuration. * `name` (`str`) - The name of the instance group. Must be 1-63 characters long and comply with [RFC1035](https://www.ietf.org/rfc/rfc1035.txt). Supported characters include lowercase letters, numbers, and hyphens. * `port` (`float`) """ network: pulumi.Output[str] """ The URL of the network the instance group is in. If this is different from the network where the instances are in, the creation fails. Defaults to the network where the instances are in (if neither `network` nor `instances` is specified, this field will be blank). """ project: pulumi.Output[str] """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ self_link: pulumi.Output[str] """ The URI of the created resource. """ size: pulumi.Output[float] """ The number of instances in the group. """ zone: pulumi.Output[str] """ The zone that this instance group should be created in. """ def __init__(__self__, resource_name, opts=None, description=None, instances=None, name=None, named_ports=None, network=None, project=None, zone=None, __props__=None, __name__=None, __opts__=None): """ Creates a group of dissimilar Compute Engine virtual machine instances. For more information, see [the official documentation](https://cloud.google.com/compute/docs/instance-groups/#unmanaged_instance_groups) and [API](https://cloud.google.com/compute/docs/reference/latest/instanceGroups) > Recreating an instance group that's in use by another resource will give a `resourceInUseByAnotherResource` error. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: An optional textual description of the instance group. :param pulumi.Input[list] instances: List of instances in the group. They should be given as self_link URLs. When adding instances they must all be in the same network and zone as the instance group. :param pulumi.Input[str] name: The name of the instance group. Must be 1-63 characters long and comply with [RFC1035](https://www.ietf.org/rfc/rfc1035.txt). Supported characters include lowercase letters, numbers, and hyphens. :param pulumi.Input[list] named_ports: The named port configuration. See the section below for details on configuration. :param pulumi.Input[str] network: The URL of the network the instance group is in. If this is different from the network where the instances are in, the creation fails. Defaults to the network where the instances are in (if neither `network` nor `instances` is specified, this field will be blank). :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[str] zone: The zone that this instance group should be created in. The **named_ports** object supports the following: * `name` (`pulumi.Input[str]`) - The name of the instance group. Must be 1-63 characters long and comply with [RFC1035](https://www.ietf.org/rfc/rfc1035.txt). Supported characters include lowercase letters, numbers, and hyphens. * `port` (`pulumi.Input[float]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/compute_instance_group.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['description'] = description __props__['instances'] = instances __props__['name'] = name __props__['named_ports'] = named_ports __props__['network'] = network __props__['project'] = project __props__['zone'] = zone __props__['self_link'] = None __props__['size'] = None super(InstanceGroup, __self__).__init__( 'gcp:compute/instanceGroup:InstanceGroup', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, description=None, instances=None, name=None, named_ports=None, network=None, project=None, self_link=None, size=None, zone=None): """ Get an existing InstanceGroup resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: An optional textual description of the instance group. :param pulumi.Input[list] instances: List of instances in the group. They should be given as self_link URLs. When adding instances they must all be in the same network and zone as the instance group. :param pulumi.Input[str] name: The name of the instance group. Must be 1-63 characters long and comply with [RFC1035](https://www.ietf.org/rfc/rfc1035.txt). Supported characters include lowercase letters, numbers, and hyphens. :param pulumi.Input[list] named_ports: The named port configuration. See the section below for details on configuration. :param pulumi.Input[str] network: The URL of the network the instance group is in. If this is different from the network where the instances are in, the creation fails. Defaults to the network where the instances are in (if neither `network` nor `instances` is specified, this field will be blank). :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[str] self_link: The URI of the created resource. :param pulumi.Input[float] size: The number of instances in the group. :param pulumi.Input[str] zone: The zone that this instance group should be created in. The **named_ports** object supports the following: * `name` (`pulumi.Input[str]`) - The name of the instance group. Must be 1-63 characters long and comply with [RFC1035](https://www.ietf.org/rfc/rfc1035.txt). Supported characters include lowercase letters, numbers, and hyphens. * `port` (`pulumi.Input[float]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/compute_instance_group.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["description"] = description __props__["instances"] = instances __props__["name"] = name __props__["named_ports"] = named_ports __props__["network"] = network __props__["project"] = project __props__["self_link"] = self_link __props__["size"] = size __props__["zone"] = zone return InstanceGroup(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_gcp/compute/instance_template.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class InstanceTemplate(pulumi.CustomResource): can_ip_forward: pulumi.Output[bool] """ Whether to allow sending and receiving of packets with non-matching source or destination IPs. This defaults to false. """ description: pulumi.Output[str] """ A brief description of this resource. """ disks: pulumi.Output[list] """ Disks to attach to instances created from this template. This can be specified multiple times for multiple disks. Structure is documented below. * `autoDelete` (`bool`) * `boot` (`bool`) * `device_name` (`str`) * `disk_encryption_key` (`dict`) * `kmsKeySelfLink` (`str`) * `diskName` (`str`) * `disk_size_gb` (`float`) * `diskType` (`str`) * `interface` (`str`) * `labels` (`dict`) - A set of key/value label pairs to assign to instances created from this template, * `mode` (`str`) * `source` (`str`) * `sourceImage` (`str`) * `type` (`str`) """ enable_display: pulumi.Output[bool] """ Enable [Virtual Displays](https://cloud.google.com/compute/docs/instances/enable-instance-virtual-display#verify_display_driver) on this instance. **Note**: `allow_stopping_for_update` must be set to true in order to update this field. """ guest_accelerators: pulumi.Output[list] """ List of the type and count of accelerator cards attached to the instance. Structure documented below. * `count` (`float`) * `type` (`str`) """ instance_description: pulumi.Output[str] """ A brief description to use for instances created from this template. """ labels: pulumi.Output[dict] """ A set of key/value label pairs to assign to instances created from this template, """ machine_type: pulumi.Output[str] """ The machine type to create. """ metadata: pulumi.Output[dict] """ Metadata key/value pairs to make available from within instances created from this template. """ metadata_fingerprint: pulumi.Output[str] """ The unique fingerprint of the metadata. """ metadata_startup_script: pulumi.Output[str] """ An alternative to using the startup-script metadata key, mostly to match the compute_instance resource. This replaces the startup-script metadata key on the created instance and thus the two mechanisms are not allowed to be used simultaneously. """ min_cpu_platform: pulumi.Output[str] """ Specifies a minimum CPU platform. Applicable values are the friendly names of CPU platforms, such as `Intel Haswell` or `Intel Skylake`. See the complete list [here](https://cloud.google.com/compute/docs/instances/specify-min-cpu-platform). """ name: pulumi.Output[str] """ The name of the instance template. If you leave this blank, this provider will auto-generate a unique name. """ name_prefix: pulumi.Output[str] """ Creates a unique name beginning with the specified prefix. Conflicts with `name`. """ network_interfaces: pulumi.Output[list] """ Networks to attach to instances created from this template. This can be specified multiple times for multiple networks. Structure is documented below. * `accessConfigs` (`list`) * `natIp` (`str`) * `network_tier` (`str`) * `aliasIpRanges` (`list`) * `ip_cidr_range` (`str`) * `subnetworkRangeName` (`str`) * `network` (`str`) * `networkIp` (`str`) * `subnetwork` (`str`) * `subnetworkProject` (`str`) """ project: pulumi.Output[str] """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ region: pulumi.Output[str] """ An instance template is a global resource that is not bound to a zone or a region. However, you can still specify some regional resources in an instance template, which restricts the template to the region where that resource resides. For example, a custom `subnetwork` resource is tied to a specific region. Defaults to the region of the Provider if no value is given. """ scheduling: pulumi.Output[dict] """ The scheduling strategy to use. More details about this configuration option are detailed below. * `automaticRestart` (`bool`) * `nodeAffinities` (`list`) * `key` (`str`) * `operator` (`str`) * `values` (`list`) * `onHostMaintenance` (`str`) * `preemptible` (`bool`) """ self_link: pulumi.Output[str] """ The URI of the created resource. """ service_account: pulumi.Output[dict] """ Service account to attach to the instance. Structure is documented below. * `email` (`str`) * `scopes` (`list`) """ shielded_instance_config: pulumi.Output[dict] """ Enable [Shielded VM](https://cloud.google.com/security/shielded-cloud/shielded-vm) on this instance. Shielded VM provides verifiable integrity to prevent against malware and rootkits. Defaults to disabled. Structure is documented below. **Note**: `shielded_instance_config` can only be used with boot images with shielded vm support. See the complete list [here](https://cloud.google.com/compute/docs/images#shielded-images). * `enableIntegrityMonitoring` (`bool`) * `enableSecureBoot` (`bool`) * `enableVtpm` (`bool`) """ tags: pulumi.Output[list] """ Tags to attach to the instance. """ tags_fingerprint: pulumi.Output[str] """ The unique fingerprint of the tags. """ def __init__(__self__, resource_name, opts=None, can_ip_forward=None, description=None, disks=None, enable_display=None, guest_accelerators=None, instance_description=None, labels=None, machine_type=None, metadata=None, metadata_startup_script=None, min_cpu_platform=None, name=None, name_prefix=None, network_interfaces=None, project=None, region=None, scheduling=None, service_account=None, shielded_instance_config=None, tags=None, __props__=None, __name__=None, __opts__=None): """ Manages a VM instance template resource within GCE. For more information see [the official documentation](https://cloud.google.com/compute/docs/instance-templates) and [API](https://cloud.google.com/compute/docs/reference/latest/instanceTemplates). :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[bool] can_ip_forward: Whether to allow sending and receiving of packets with non-matching source or destination IPs. This defaults to false. :param pulumi.Input[str] description: A brief description of this resource. :param pulumi.Input[list] disks: Disks to attach to instances created from this template. This can be specified multiple times for multiple disks. Structure is documented below. :param pulumi.Input[bool] enable_display: Enable [Virtual Displays](https://cloud.google.com/compute/docs/instances/enable-instance-virtual-display#verify_display_driver) on this instance. **Note**: `allow_stopping_for_update` must be set to true in order to update this field. :param pulumi.Input[list] guest_accelerators: List of the type and count of accelerator cards attached to the instance. Structure documented below. :param pulumi.Input[str] instance_description: A brief description to use for instances created from this template. :param pulumi.Input[dict] labels: A set of key/value label pairs to assign to instances created from this template, :param pulumi.Input[str] machine_type: The machine type to create. :param pulumi.Input[dict] metadata: Metadata key/value pairs to make available from within instances created from this template. :param pulumi.Input[str] metadata_startup_script: An alternative to using the startup-script metadata key, mostly to match the compute_instance resource. This replaces the startup-script metadata key on the created instance and thus the two mechanisms are not allowed to be used simultaneously. :param pulumi.Input[str] min_cpu_platform: Specifies a minimum CPU platform. Applicable values are the friendly names of CPU platforms, such as `Intel Haswell` or `Intel Skylake`. See the complete list [here](https://cloud.google.com/compute/docs/instances/specify-min-cpu-platform). :param pulumi.Input[str] name: The name of the instance template. If you leave this blank, this provider will auto-generate a unique name. :param pulumi.Input[str] name_prefix: Creates a unique name beginning with the specified prefix. Conflicts with `name`. :param pulumi.Input[list] network_interfaces: Networks to attach to instances created from this template. This can be specified multiple times for multiple networks. Structure is documented below. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[str] region: An instance template is a global resource that is not bound to a zone or a region. However, you can still specify some regional resources in an instance template, which restricts the template to the region where that resource resides. For example, a custom `subnetwork` resource is tied to a specific region. Defaults to the region of the Provider if no value is given. :param pulumi.Input[dict] scheduling: The scheduling strategy to use. More details about this configuration option are detailed below. :param pulumi.Input[dict] service_account: Service account to attach to the instance. Structure is documented below. :param pulumi.Input[dict] shielded_instance_config: Enable [Shielded VM](https://cloud.google.com/security/shielded-cloud/shielded-vm) on this instance. Shielded VM provides verifiable integrity to prevent against malware and rootkits. Defaults to disabled. Structure is documented below. **Note**: `shielded_instance_config` can only be used with boot images with shielded vm support. See the complete list [here](https://cloud.google.com/compute/docs/images#shielded-images). :param pulumi.Input[list] tags: Tags to attach to the instance. The **disks** object supports the following: * `autoDelete` (`pulumi.Input[bool]`) * `boot` (`pulumi.Input[bool]`) * `device_name` (`pulumi.Input[str]`) * `disk_encryption_key` (`pulumi.Input[dict]`) * `kmsKeySelfLink` (`pulumi.Input[str]`) * `diskName` (`pulumi.Input[str]`) * `disk_size_gb` (`pulumi.Input[float]`) * `diskType` (`pulumi.Input[str]`) * `interface` (`pulumi.Input[str]`) * `labels` (`pulumi.Input[dict]`) - A set of key/value label pairs to assign to instances created from this template, * `mode` (`pulumi.Input[str]`) * `source` (`pulumi.Input[str]`) * `sourceImage` (`pulumi.Input[str]`) * `type` (`pulumi.Input[str]`) The **guest_accelerators** object supports the following: * `count` (`pulumi.Input[float]`) * `type` (`pulumi.Input[str]`) The **network_interfaces** object supports the following: * `accessConfigs` (`pulumi.Input[list]`) * `natIp` (`pulumi.Input[str]`) * `network_tier` (`pulumi.Input[str]`) * `aliasIpRanges` (`pulumi.Input[list]`) * `ip_cidr_range` (`pulumi.Input[str]`) * `subnetworkRangeName` (`pulumi.Input[str]`) * `network` (`pulumi.Input[str]`) * `networkIp` (`pulumi.Input[str]`) * `subnetwork` (`pulumi.Input[str]`) * `subnetworkProject` (`pulumi.Input[str]`) The **scheduling** object supports the following: * `automaticRestart` (`pulumi.Input[bool]`) * `nodeAffinities` (`pulumi.Input[list]`) * `key` (`pulumi.Input[str]`) * `operator` (`pulumi.Input[str]`) * `values` (`pulumi.Input[list]`) * `onHostMaintenance` (`pulumi.Input[str]`) * `preemptible` (`pulumi.Input[bool]`) The **service_account** object supports the following: * `email` (`pulumi.Input[str]`) * `scopes` (`pulumi.Input[list]`) The **shielded_instance_config** object supports the following: * `enableIntegrityMonitoring` (`pulumi.Input[bool]`) * `enableSecureBoot` (`pulumi.Input[bool]`) * `enableVtpm` (`pulumi.Input[bool]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/compute_instance_template.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['can_ip_forward'] = can_ip_forward __props__['description'] = description if disks is None: raise TypeError("Missing required property 'disks'") __props__['disks'] = disks __props__['enable_display'] = enable_display __props__['guest_accelerators'] = guest_accelerators __props__['instance_description'] = instance_description __props__['labels'] = labels if machine_type is None: raise TypeError("Missing required property 'machine_type'") __props__['machine_type'] = machine_type __props__['metadata'] = metadata __props__['metadata_startup_script'] = metadata_startup_script __props__['min_cpu_platform'] = min_cpu_platform __props__['name'] = name __props__['name_prefix'] = name_prefix __props__['network_interfaces'] = network_interfaces __props__['project'] = project __props__['region'] = region __props__['scheduling'] = scheduling __props__['service_account'] = service_account __props__['shielded_instance_config'] = shielded_instance_config __props__['tags'] = tags __props__['metadata_fingerprint'] = None __props__['self_link'] = None __props__['tags_fingerprint'] = None super(InstanceTemplate, __self__).__init__( 'gcp:compute/instanceTemplate:InstanceTemplate', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, can_ip_forward=None, description=None, disks=None, enable_display=None, guest_accelerators=None, instance_description=None, labels=None, machine_type=None, metadata=None, metadata_fingerprint=None, metadata_startup_script=None, min_cpu_platform=None, name=None, name_prefix=None, network_interfaces=None, project=None, region=None, scheduling=None, self_link=None, service_account=None, shielded_instance_config=None, tags=None, tags_fingerprint=None): """ Get an existing InstanceTemplate resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[bool] can_ip_forward: Whether to allow sending and receiving of packets with non-matching source or destination IPs. This defaults to false. :param pulumi.Input[str] description: A brief description of this resource. :param pulumi.Input[list] disks: Disks to attach to instances created from this template. This can be specified multiple times for multiple disks. Structure is documented below. :param pulumi.Input[bool] enable_display: Enable [Virtual Displays](https://cloud.google.com/compute/docs/instances/enable-instance-virtual-display#verify_display_driver) on this instance. **Note**: `allow_stopping_for_update` must be set to true in order to update this field. :param pulumi.Input[list] guest_accelerators: List of the type and count of accelerator cards attached to the instance. Structure documented below. :param pulumi.Input[str] instance_description: A brief description to use for instances created from this template. :param pulumi.Input[dict] labels: A set of key/value label pairs to assign to instances created from this template, :param pulumi.Input[str] machine_type: The machine type to create. :param pulumi.Input[dict] metadata: Metadata key/value pairs to make available from within instances created from this template. :param pulumi.Input[str] metadata_fingerprint: The unique fingerprint of the metadata. :param pulumi.Input[str] metadata_startup_script: An alternative to using the startup-script metadata key, mostly to match the compute_instance resource. This replaces the startup-script metadata key on the created instance and thus the two mechanisms are not allowed to be used simultaneously. :param pulumi.Input[str] min_cpu_platform: Specifies a minimum CPU platform. Applicable values are the friendly names of CPU platforms, such as `Intel Haswell` or `Intel Skylake`. See the complete list [here](https://cloud.google.com/compute/docs/instances/specify-min-cpu-platform). :param pulumi.Input[str] name: The name of the instance template. If you leave this blank, this provider will auto-generate a unique name. :param pulumi.Input[str] name_prefix: Creates a unique name beginning with the specified prefix. Conflicts with `name`. :param pulumi.Input[list] network_interfaces: Networks to attach to instances created from this template. This can be specified multiple times for multiple networks. Structure is documented below. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[str] region: An instance template is a global resource that is not bound to a zone or a region. However, you can still specify some regional resources in an instance template, which restricts the template to the region where that resource resides. For example, a custom `subnetwork` resource is tied to a specific region. Defaults to the region of the Provider if no value is given. :param pulumi.Input[dict] scheduling: The scheduling strategy to use. More details about this configuration option are detailed below. :param pulumi.Input[str] self_link: The URI of the created resource. :param pulumi.Input[dict] service_account: Service account to attach to the instance. Structure is documented below. :param pulumi.Input[dict] shielded_instance_config: Enable [Shielded VM](https://cloud.google.com/security/shielded-cloud/shielded-vm) on this instance. Shielded VM provides verifiable integrity to prevent against malware and rootkits. Defaults to disabled. Structure is documented below. **Note**: `shielded_instance_config` can only be used with boot images with shielded vm support. See the complete list [here](https://cloud.google.com/compute/docs/images#shielded-images). :param pulumi.Input[list] tags: Tags to attach to the instance. :param pulumi.Input[str] tags_fingerprint: The unique fingerprint of the tags. The **disks** object supports the following: * `autoDelete` (`pulumi.Input[bool]`) * `boot` (`pulumi.Input[bool]`) * `device_name` (`pulumi.Input[str]`) * `disk_encryption_key` (`pulumi.Input[dict]`) * `kmsKeySelfLink` (`pulumi.Input[str]`) * `diskName` (`pulumi.Input[str]`) * `disk_size_gb` (`pulumi.Input[float]`) * `diskType` (`pulumi.Input[str]`) * `interface` (`pulumi.Input[str]`) * `labels` (`pulumi.Input[dict]`) - A set of key/value label pairs to assign to instances created from this template, * `mode` (`pulumi.Input[str]`) * `source` (`pulumi.Input[str]`) * `sourceImage` (`pulumi.Input[str]`) * `type` (`pulumi.Input[str]`) The **guest_accelerators** object supports the following: * `count` (`pulumi.Input[float]`) * `type` (`pulumi.Input[str]`) The **network_interfaces** object supports the following: * `accessConfigs` (`pulumi.Input[list]`) * `natIp` (`pulumi.Input[str]`) * `network_tier` (`pulumi.Input[str]`) * `aliasIpRanges` (`pulumi.Input[list]`) * `ip_cidr_range` (`pulumi.Input[str]`) * `subnetworkRangeName` (`pulumi.Input[str]`) * `network` (`pulumi.Input[str]`) * `networkIp` (`pulumi.Input[str]`) * `subnetwork` (`pulumi.Input[str]`) * `subnetworkProject` (`pulumi.Input[str]`) The **scheduling** object supports the following: * `automaticRestart` (`pulumi.Input[bool]`) * `nodeAffinities` (`pulumi.Input[list]`) * `key` (`pulumi.Input[str]`) * `operator` (`pulumi.Input[str]`) * `values` (`pulumi.Input[list]`) * `onHostMaintenance` (`pulumi.Input[str]`) * `preemptible` (`pulumi.Input[bool]`) The **service_account** object supports the following: * `email` (`pulumi.Input[str]`) * `scopes` (`pulumi.Input[list]`) The **shielded_instance_config** object supports the following: * `enableIntegrityMonitoring` (`pulumi.Input[bool]`) * `enableSecureBoot` (`pulumi.Input[bool]`) * `enableVtpm` (`pulumi.Input[bool]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/compute_instance_template.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["can_ip_forward"] = can_ip_forward __props__["description"] = description __props__["disks"] = disks __props__["enable_display"] = enable_display __props__["guest_accelerators"] = guest_accelerators __props__["instance_description"] = instance_description __props__["labels"] = labels __props__["machine_type"] = machine_type __props__["metadata"] = metadata __props__["metadata_fingerprint"] = metadata_fingerprint __props__["metadata_startup_script"] = metadata_startup_script __props__["min_cpu_platform"] = min_cpu_platform __props__["name"] = name __props__["name_prefix"] = name_prefix __props__["network_interfaces"] = network_interfaces __props__["project"] = project __props__["region"] = region __props__["scheduling"] = scheduling __props__["self_link"] = self_link __props__["service_account"] = service_account __props__["shielded_instance_config"] = shielded_instance_config __props__["tags"] = tags __props__["tags_fingerprint"] = tags_fingerprint return InstanceTemplate(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_gcp/compute/route.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class Route(pulumi.CustomResource): description: pulumi.Output[str] dest_range: pulumi.Output[str] name: pulumi.Output[str] network: pulumi.Output[str] next_hop_gateway: pulumi.Output[str] next_hop_ilb: pulumi.Output[str] next_hop_instance: pulumi.Output[str] next_hop_instance_zone: pulumi.Output[str] """ (Optional when `next_hop_instance` is specified) The zone of the instance specified in `next_hop_instance`. Omit if `next_hop_instance` is specified as a URL. """ next_hop_ip: pulumi.Output[str] next_hop_network: pulumi.Output[str] next_hop_vpn_tunnel: pulumi.Output[str] priority: pulumi.Output[float] project: pulumi.Output[str] """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ self_link: pulumi.Output[str] """ The URI of the created resource. """ tags: pulumi.Output[list] def __init__(__self__, resource_name, opts=None, description=None, dest_range=None, name=None, network=None, next_hop_gateway=None, next_hop_ilb=None, next_hop_instance=None, next_hop_instance_zone=None, next_hop_ip=None, next_hop_vpn_tunnel=None, priority=None, project=None, tags=None, __props__=None, __name__=None, __opts__=None): """ Create a Route resource with the given unique name, props, and options. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] next_hop_instance_zone: (Optional when `next_hop_instance` is specified) The zone of the instance specified in `next_hop_instance`. Omit if `next_hop_instance` is specified as a URL. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/compute_route.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['description'] = description if dest_range is None: raise TypeError("Missing required property 'dest_range'") __props__['dest_range'] = dest_range __props__['name'] = name if network is None: raise TypeError("Missing required property 'network'") __props__['network'] = network __props__['next_hop_gateway'] = next_hop_gateway __props__['next_hop_ilb'] = next_hop_ilb __props__['next_hop_instance'] = next_hop_instance __props__['next_hop_instance_zone'] = next_hop_instance_zone __props__['next_hop_ip'] = next_hop_ip __props__['next_hop_vpn_tunnel'] = next_hop_vpn_tunnel __props__['priority'] = priority __props__['project'] = project __props__['tags'] = tags __props__['next_hop_network'] = None __props__['self_link'] = None super(Route, __self__).__init__( 'gcp:compute/route:Route', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, description=None, dest_range=None, name=None, network=None, next_hop_gateway=None, next_hop_ilb=None, next_hop_instance=None, next_hop_instance_zone=None, next_hop_ip=None, next_hop_network=None, next_hop_vpn_tunnel=None, priority=None, project=None, self_link=None, tags=None): """ Get an existing Route resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] next_hop_instance_zone: (Optional when `next_hop_instance` is specified) The zone of the instance specified in `next_hop_instance`. Omit if `next_hop_instance` is specified as a URL. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[str] self_link: The URI of the created resource. > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/compute_route.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["description"] = description __props__["dest_range"] = dest_range __props__["name"] = name __props__["network"] = network __props__["next_hop_gateway"] = next_hop_gateway __props__["next_hop_ilb"] = next_hop_ilb __props__["next_hop_instance"] = next_hop_instance __props__["next_hop_instance_zone"] = next_hop_instance_zone __props__["next_hop_ip"] = next_hop_ip __props__["next_hop_network"] = next_hop_network __props__["next_hop_vpn_tunnel"] = next_hop_vpn_tunnel __props__["priority"] = priority __props__["project"] = project __props__["self_link"] = self_link __props__["tags"] = tags return Route(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_gcp/compute/security_scan_config.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class SecurityScanConfig(pulumi.CustomResource): authentication: pulumi.Output[dict] blacklist_patterns: pulumi.Output[list] display_name: pulumi.Output[str] export_to_security_command_center: pulumi.Output[str] max_qps: pulumi.Output[float] name: pulumi.Output[str] project: pulumi.Output[str] """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ schedule: pulumi.Output[dict] starting_urls: pulumi.Output[list] target_platforms: pulumi.Output[list] user_agent: pulumi.Output[str] def __init__(__self__, resource_name, opts=None, authentication=None, blacklist_patterns=None, display_name=None, export_to_security_command_center=None, max_qps=None, project=None, schedule=None, starting_urls=None, target_platforms=None, user_agent=None, __props__=None, __name__=None, __opts__=None): """ Create a SecurityScanConfig resource with the given unique name, props, and options. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. The **authentication** object supports the following: * `customAccount` (`pulumi.Input[dict]`) * `loginUrl` (`pulumi.Input[str]`) * `password` (`pulumi.Input[str]`) * `username` (`pulumi.Input[str]`) * `googleAccount` (`pulumi.Input[dict]`) * `password` (`pulumi.Input[str]`) * `username` (`pulumi.Input[str]`) The **schedule** object supports the following: * `intervalDurationDays` (`pulumi.Input[float]`) * `scheduleTime` (`pulumi.Input[str]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/security_scanner_scan_config.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['authentication'] = authentication __props__['blacklist_patterns'] = blacklist_patterns if display_name is None: raise TypeError("Missing required property 'display_name'") __props__['display_name'] = display_name __props__['export_to_security_command_center'] = export_to_security_command_center __props__['max_qps'] = max_qps __props__['project'] = project __props__['schedule'] = schedule if starting_urls is None: raise TypeError("Missing required property 'starting_urls'") __props__['starting_urls'] = starting_urls __props__['target_platforms'] = target_platforms __props__['user_agent'] = user_agent __props__['name'] = None super(SecurityScanConfig, __self__).__init__( 'gcp:compute/securityScanConfig:SecurityScanConfig', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, authentication=None, blacklist_patterns=None, display_name=None, export_to_security_command_center=None, max_qps=None, name=None, project=None, schedule=None, starting_urls=None, target_platforms=None, user_agent=None): """ Get an existing SecurityScanConfig resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. The **authentication** object supports the following: * `customAccount` (`pulumi.Input[dict]`) * `loginUrl` (`pulumi.Input[str]`) * `password` (`pulumi.Input[str]`) * `username` (`pulumi.Input[str]`) * `googleAccount` (`pulumi.Input[dict]`) * `password` (`pulumi.Input[str]`) * `username` (`pulumi.Input[str]`) The **schedule** object supports the following: * `intervalDurationDays` (`pulumi.Input[float]`) * `scheduleTime` (`pulumi.Input[str]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/security_scanner_scan_config.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["authentication"] = authentication __props__["blacklist_patterns"] = blacklist_patterns __props__["display_name"] = display_name __props__["export_to_security_command_center"] = export_to_security_command_center __props__["max_qps"] = max_qps __props__["name"] = name __props__["project"] = project __props__["schedule"] = schedule __props__["starting_urls"] = starting_urls __props__["target_platforms"] = target_platforms __props__["user_agent"] = user_agent return SecurityScanConfig(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_gcp/dataproc/job.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class Job(pulumi.CustomResource): driver_controls_files_uri: pulumi.Output[str] """ If present, the location of miscellaneous control files which may be used as part of job setup and handling. If not present, control files may be placed in the same location as driver_output_uri. """ driver_output_resource_uri: pulumi.Output[str] """ A URI pointing to the location of the stdout of the job's driver program. """ force_delete: pulumi.Output[bool] """ By default, you can only delete inactive jobs within Dataproc. Setting this to true, and calling destroy, will ensure that the job is first cancelled before issuing the delete. """ hadoop_config: pulumi.Output[dict] hive_config: pulumi.Output[dict] labels: pulumi.Output[dict] """ The list of labels (key/value pairs) to add to the job. """ pig_config: pulumi.Output[dict] placement: pulumi.Output[dict] project: pulumi.Output[str] """ The project in which the `cluster` can be found and jobs subsequently run against. If it is not provided, the provider project is used. """ pyspark_config: pulumi.Output[dict] reference: pulumi.Output[dict] region: pulumi.Output[str] """ The Cloud Dataproc region. This essentially determines which clusters are available for this job to be submitted to. If not specified, defaults to `global`. """ scheduling: pulumi.Output[dict] spark_config: pulumi.Output[dict] sparksql_config: pulumi.Output[dict] status: pulumi.Output[dict] def __init__(__self__, resource_name, opts=None, force_delete=None, hadoop_config=None, hive_config=None, labels=None, pig_config=None, placement=None, project=None, pyspark_config=None, reference=None, region=None, scheduling=None, spark_config=None, sparksql_config=None, __props__=None, __name__=None, __opts__=None): """ Manages a job resource within a Dataproc cluster within GCE. For more information see [the official dataproc documentation](https://cloud.google.com/dataproc/). !> **Note:** This resource does not support 'update' and changing any attributes will cause the resource to be recreated. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[bool] force_delete: By default, you can only delete inactive jobs within Dataproc. Setting this to true, and calling destroy, will ensure that the job is first cancelled before issuing the delete. :param pulumi.Input[dict] labels: The list of labels (key/value pairs) to add to the job. :param pulumi.Input[str] project: The project in which the `cluster` can be found and jobs subsequently run against. If it is not provided, the provider project is used. :param pulumi.Input[str] region: The Cloud Dataproc region. This essentially determines which clusters are available for this job to be submitted to. If not specified, defaults to `global`. The **hadoop_config** object supports the following: * `archiveUris` (`pulumi.Input[list]`) * `args` (`pulumi.Input[list]`) * `fileUris` (`pulumi.Input[list]`) * `jarFileUris` (`pulumi.Input[list]`) * `loggingConfig` (`pulumi.Input[dict]`) * `driverLogLevels` (`pulumi.Input[dict]`) * `mainClass` (`pulumi.Input[str]`) * `mainJarFileUri` (`pulumi.Input[str]`) * `properties` (`pulumi.Input[dict]`) The **hive_config** object supports the following: * `continueOnFailure` (`pulumi.Input[bool]`) * `jarFileUris` (`pulumi.Input[list]`) * `properties` (`pulumi.Input[dict]`) * `queryFileUri` (`pulumi.Input[str]`) * `queryLists` (`pulumi.Input[list]`) * `scriptVariables` (`pulumi.Input[dict]`) The **pig_config** object supports the following: * `continueOnFailure` (`pulumi.Input[bool]`) * `jarFileUris` (`pulumi.Input[list]`) * `loggingConfig` (`pulumi.Input[dict]`) * `driverLogLevels` (`pulumi.Input[dict]`) * `properties` (`pulumi.Input[dict]`) * `queryFileUri` (`pulumi.Input[str]`) * `queryLists` (`pulumi.Input[list]`) * `scriptVariables` (`pulumi.Input[dict]`) The **placement** object supports the following: * `clusterName` (`pulumi.Input[str]`) * `clusterUuid` (`pulumi.Input[str]`) The **pyspark_config** object supports the following: * `archiveUris` (`pulumi.Input[list]`) * `args` (`pulumi.Input[list]`) * `fileUris` (`pulumi.Input[list]`) * `jarFileUris` (`pulumi.Input[list]`) * `loggingConfig` (`pulumi.Input[dict]`) * `driverLogLevels` (`pulumi.Input[dict]`) * `mainPythonFileUri` (`pulumi.Input[str]`) * `properties` (`pulumi.Input[dict]`) * `pythonFileUris` (`pulumi.Input[list]`) The **reference** object supports the following: * `job_id` (`pulumi.Input[str]`) The **scheduling** object supports the following: * `maxFailuresPerHour` (`pulumi.Input[float]`) The **spark_config** object supports the following: * `archiveUris` (`pulumi.Input[list]`) * `args` (`pulumi.Input[list]`) * `fileUris` (`pulumi.Input[list]`) * `jarFileUris` (`pulumi.Input[list]`) * `loggingConfig` (`pulumi.Input[dict]`) * `driverLogLevels` (`pulumi.Input[dict]`) * `mainClass` (`pulumi.Input[str]`) * `mainJarFileUri` (`pulumi.Input[str]`) * `properties` (`pulumi.Input[dict]`) The **sparksql_config** object supports the following: * `jarFileUris` (`pulumi.Input[list]`) * `loggingConfig` (`pulumi.Input[dict]`) * `driverLogLevels` (`pulumi.Input[dict]`) * `properties` (`pulumi.Input[dict]`) * `queryFileUri` (`pulumi.Input[str]`) * `queryLists` (`pulumi.Input[list]`) * `scriptVariables` (`pulumi.Input[dict]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/dataproc_job.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['force_delete'] = force_delete __props__['hadoop_config'] = hadoop_config __props__['hive_config'] = hive_config __props__['labels'] = labels __props__['pig_config'] = pig_config if placement is None: raise TypeError("Missing required property 'placement'") __props__['placement'] = placement __props__['project'] = project __props__['pyspark_config'] = pyspark_config __props__['reference'] = reference __props__['region'] = region __props__['scheduling'] = scheduling __props__['spark_config'] = spark_config __props__['sparksql_config'] = sparksql_config __props__['driver_controls_files_uri'] = None __props__['driver_output_resource_uri'] = None __props__['status'] = None super(Job, __self__).__init__( 'gcp:dataproc/job:Job', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, driver_controls_files_uri=None, driver_output_resource_uri=None, force_delete=None, hadoop_config=None, hive_config=None, labels=None, pig_config=None, placement=None, project=None, pyspark_config=None, reference=None, region=None, scheduling=None, spark_config=None, sparksql_config=None, status=None): """ Get an existing Job resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] driver_controls_files_uri: If present, the location of miscellaneous control files which may be used as part of job setup and handling. If not present, control files may be placed in the same location as driver_output_uri. :param pulumi.Input[str] driver_output_resource_uri: A URI pointing to the location of the stdout of the job's driver program. :param pulumi.Input[bool] force_delete: By default, you can only delete inactive jobs within Dataproc. Setting this to true, and calling destroy, will ensure that the job is first cancelled before issuing the delete. :param pulumi.Input[dict] labels: The list of labels (key/value pairs) to add to the job. :param pulumi.Input[str] project: The project in which the `cluster` can be found and jobs subsequently run against. If it is not provided, the provider project is used. :param pulumi.Input[str] region: The Cloud Dataproc region. This essentially determines which clusters are available for this job to be submitted to. If not specified, defaults to `global`. The **hadoop_config** object supports the following: * `archiveUris` (`pulumi.Input[list]`) * `args` (`pulumi.Input[list]`) * `fileUris` (`pulumi.Input[list]`) * `jarFileUris` (`pulumi.Input[list]`) * `loggingConfig` (`pulumi.Input[dict]`) * `driverLogLevels` (`pulumi.Input[dict]`) * `mainClass` (`pulumi.Input[str]`) * `mainJarFileUri` (`pulumi.Input[str]`) * `properties` (`pulumi.Input[dict]`) The **hive_config** object supports the following: * `continueOnFailure` (`pulumi.Input[bool]`) * `jarFileUris` (`pulumi.Input[list]`) * `properties` (`pulumi.Input[dict]`) * `queryFileUri` (`pulumi.Input[str]`) * `queryLists` (`pulumi.Input[list]`) * `scriptVariables` (`pulumi.Input[dict]`) The **pig_config** object supports the following: * `continueOnFailure` (`pulumi.Input[bool]`) * `jarFileUris` (`pulumi.Input[list]`) * `loggingConfig` (`pulumi.Input[dict]`) * `driverLogLevels` (`pulumi.Input[dict]`) * `properties` (`pulumi.Input[dict]`) * `queryFileUri` (`pulumi.Input[str]`) * `queryLists` (`pulumi.Input[list]`) * `scriptVariables` (`pulumi.Input[dict]`) The **placement** object supports the following: * `clusterName` (`pulumi.Input[str]`) * `clusterUuid` (`pulumi.Input[str]`) The **pyspark_config** object supports the following: * `archiveUris` (`pulumi.Input[list]`) * `args` (`pulumi.Input[list]`) * `fileUris` (`pulumi.Input[list]`) * `jarFileUris` (`pulumi.Input[list]`) * `loggingConfig` (`pulumi.Input[dict]`) * `driverLogLevels` (`pulumi.Input[dict]`) * `mainPythonFileUri` (`pulumi.Input[str]`) * `properties` (`pulumi.Input[dict]`) * `pythonFileUris` (`pulumi.Input[list]`) The **reference** object supports the following: * `job_id` (`pulumi.Input[str]`) The **scheduling** object supports the following: * `maxFailuresPerHour` (`pulumi.Input[float]`) The **spark_config** object supports the following: * `archiveUris` (`pulumi.Input[list]`) * `args` (`pulumi.Input[list]`) * `fileUris` (`pulumi.Input[list]`) * `jarFileUris` (`pulumi.Input[list]`) * `loggingConfig` (`pulumi.Input[dict]`) * `driverLogLevels` (`pulumi.Input[dict]`) * `mainClass` (`pulumi.Input[str]`) * `mainJarFileUri` (`pulumi.Input[str]`) * `properties` (`pulumi.Input[dict]`) The **sparksql_config** object supports the following: * `jarFileUris` (`pulumi.Input[list]`) * `loggingConfig` (`pulumi.Input[dict]`) * `driverLogLevels` (`pulumi.Input[dict]`) * `properties` (`pulumi.Input[dict]`) * `queryFileUri` (`pulumi.Input[str]`) * `queryLists` (`pulumi.Input[list]`) * `scriptVariables` (`pulumi.Input[dict]`) The **status** object supports the following: * `details` (`pulumi.Input[str]`) * `state` (`pulumi.Input[str]`) * `stateStartTime` (`pulumi.Input[str]`) * `substate` (`pulumi.Input[str]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/dataproc_job.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["driver_controls_files_uri"] = driver_controls_files_uri __props__["driver_output_resource_uri"] = driver_output_resource_uri __props__["force_delete"] = force_delete __props__["hadoop_config"] = hadoop_config __props__["hive_config"] = hive_config __props__["labels"] = labels __props__["pig_config"] = pig_config __props__["placement"] = placement __props__["project"] = project __props__["pyspark_config"] = pyspark_config __props__["reference"] = reference __props__["region"] = region __props__["scheduling"] = scheduling __props__["spark_config"] = spark_config __props__["sparksql_config"] = sparksql_config __props__["status"] = status return Job(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_gcp/iam/get_rule.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetRuleResult: """ A collection of values returned by getRule. """ def __init__(__self__, included_permissions=None, name=None, stage=None, title=None, id=None): if included_permissions and not isinstance(included_permissions, list): raise TypeError("Expected argument 'included_permissions' to be a list") __self__.included_permissions = included_permissions """ specifies the list of one or more permissions to include in the custom role, such as - `iam.roles.get` """ if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") __self__.name = name if stage and not isinstance(stage, str): raise TypeError("Expected argument 'stage' to be a str") __self__.stage = stage """ indicates the stage of a role in the launch lifecycle, such as `GA`, `BETA` or `ALPHA`. """ if title and not isinstance(title, str): raise TypeError("Expected argument 'title' to be a str") __self__.title = title """ is a friendly title for the role, such as "Role Viewer" """ if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ class AwaitableGetRuleResult(GetRuleResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetRuleResult( included_permissions=self.included_permissions, name=self.name, stage=self.stage, title=self.title, id=self.id) def get_rule(name=None,opts=None): """ Use this data source to get information about a Google IAM Role. :param str name: The name of the Role to lookup in the form `roles/{ROLE_NAME}`, `organizations/{ORGANIZATION_ID}/roles/{ROLE_NAME}` or `projects/{PROJECT_ID}/roles/{ROLE_NAME}` > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/d/iam_role.html.markdown. """ __args__ = dict() __args__['name'] = name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:iam/getRule:getRule', __args__, opts=opts).value return AwaitableGetRuleResult( included_permissions=__ret__.get('includedPermissions'), name=__ret__.get('name'), stage=__ret__.get('stage'), title=__ret__.get('title'), id=__ret__.get('id')) ``` #### File: pulumi_gcp/kms/get_kms_crypto_key.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetKMSCryptoKeyResult: """ A collection of values returned by getKMSCryptoKey. """ def __init__(__self__, key_ring=None, labels=None, name=None, purpose=None, rotation_period=None, self_link=None, version_templates=None, id=None): if key_ring and not isinstance(key_ring, str): raise TypeError("Expected argument 'key_ring' to be a str") __self__.key_ring = key_ring if labels and not isinstance(labels, dict): raise TypeError("Expected argument 'labels' to be a dict") __self__.labels = labels if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") __self__.name = name if purpose and not isinstance(purpose, str): raise TypeError("Expected argument 'purpose' to be a str") __self__.purpose = purpose """ Defines the cryptographic capabilities of the key. """ if rotation_period and not isinstance(rotation_period, str): raise TypeError("Expected argument 'rotation_period' to be a str") __self__.rotation_period = rotation_period """ Every time this period passes, generate a new CryptoKeyVersion and set it as the primary. The first rotation will take place after the specified period. The rotation period has the format of a decimal number with up to 9 fractional digits, followed by the letter s (seconds). """ if self_link and not isinstance(self_link, str): raise TypeError("Expected argument 'self_link' to be a str") __self__.self_link = self_link """ The self link of the created CryptoKey. Its format is `projects/{projectId}/locations/{location}/keyRings/{keyRingName}/cryptoKeys/{cryptoKeyName}`. """ if version_templates and not isinstance(version_templates, list): raise TypeError("Expected argument 'version_templates' to be a list") __self__.version_templates = version_templates if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ class AwaitableGetKMSCryptoKeyResult(GetKMSCryptoKeyResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetKMSCryptoKeyResult( key_ring=self.key_ring, labels=self.labels, name=self.name, purpose=self.purpose, rotation_period=self.rotation_period, self_link=self.self_link, version_templates=self.version_templates, id=self.id) def get_kms_crypto_key(key_ring=None,name=None,opts=None): """ Provides access to a Google Cloud Platform KMS CryptoKey. For more information see [the official documentation](https://cloud.google.com/kms/docs/object-hierarchy#key) and [API](https://cloud.google.com/kms/docs/reference/rest/v1/projects.locations.keyRings.cryptoKeys). A CryptoKey is an interface to key material which can be used to encrypt and decrypt data. A CryptoKey belongs to a Google Cloud KMS KeyRing. :param str key_ring: The `self_link` of the Google Cloud Platform KeyRing to which the key belongs. :param str name: The CryptoKey's name. A CryptoKey’s name belonging to the specified Google Cloud Platform KeyRing and match the regular expression `[a-zA-Z0-9_-]{1,63}` > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/d/kms_crypto_key.html.markdown. """ __args__ = dict() __args__['keyRing'] = key_ring __args__['name'] = name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:kms/getKMSCryptoKey:getKMSCryptoKey', __args__, opts=opts).value return AwaitableGetKMSCryptoKeyResult( key_ring=__ret__.get('keyRing'), labels=__ret__.get('labels'), name=__ret__.get('name'), purpose=__ret__.get('purpose'), rotation_period=__ret__.get('rotationPeriod'), self_link=__ret__.get('selfLink'), version_templates=__ret__.get('versionTemplates'), id=__ret__.get('id')) ``` #### File: pulumi_gcp/kms/get_kms_key_ring.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetKMSKeyRingResult: """ A collection of values returned by getKMSKeyRing. """ def __init__(__self__, location=None, name=None, project=None, self_link=None, id=None): if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") __self__.location = location if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") __self__.name = name if project and not isinstance(project, str): raise TypeError("Expected argument 'project' to be a str") __self__.project = project if self_link and not isinstance(self_link, str): raise TypeError("Expected argument 'self_link' to be a str") __self__.self_link = self_link """ The self link of the created KeyRing. Its format is `projects/{projectId}/locations/{location}/keyRings/{keyRingName}`. """ if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ class AwaitableGetKMSKeyRingResult(GetKMSKeyRingResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetKMSKeyRingResult( location=self.location, name=self.name, project=self.project, self_link=self.self_link, id=self.id) def get_kms_key_ring(location=None,name=None,project=None,opts=None): """ Provides access to Google Cloud Platform KMS KeyRing. For more information see [the official documentation](https://cloud.google.com/kms/docs/object-hierarchy#key_ring) and [API](https://cloud.google.com/kms/docs/reference/rest/v1/projects.locations.keyRings). A KeyRing is a grouping of CryptoKeys for organizational purposes. A KeyRing belongs to a Google Cloud Platform Project and resides in a specific location. :param str location: The Google Cloud Platform location for the KeyRing. A full list of valid locations can be found by running `gcloud kms locations list`. :param str name: The KeyRing's name. A KeyRing name must exist within the provided location and match the regular expression `[a-zA-Z0-9_-]{1,63}` :param str project: The project in which the resource belongs. If it is not provided, the provider project is used. > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/d/kms_key_ring.html.markdown. """ __args__ = dict() __args__['location'] = location __args__['name'] = name __args__['project'] = project if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:kms/getKMSKeyRing:getKMSKeyRing', __args__, opts=opts).value return AwaitableGetKMSKeyRingResult( location=__ret__.get('location'), name=__ret__.get('name'), project=__ret__.get('project'), self_link=__ret__.get('selfLink'), id=__ret__.get('id')) ``` #### File: pulumi_gcp/kms/registry.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class Registry(pulumi.CustomResource): credentials: pulumi.Output[list] """ List of public key certificates to authenticate devices. Structure is documented below. * `publicKeyCertificate` (`dict`) * `certificate` (`str`) * `format` (`str`) """ event_notification_configs: pulumi.Output[list] """ List of configurations for event notification, such as PubSub topics to publish device events to. Structure is documented below. * `pubsub_topic_name` (`str`) * `subfolderMatches` (`str`) """ http_config: pulumi.Output[dict] """ Activate or deactivate HTTP. Structure is documented below. * `http_enabled_state` (`str`) """ log_level: pulumi.Output[str] mqtt_config: pulumi.Output[dict] """ Activate or deactivate MQTT. Structure is documented below. * `mqtt_enabled_state` (`str`) """ name: pulumi.Output[str] """ A unique name for the resource, required by device registry. Changing this forces a new resource to be created. """ project: pulumi.Output[str] """ The project in which the resource belongs. If it is not provided, the provider project is used. """ region: pulumi.Output[str] """ The Region in which the created address should reside. If it is not provided, the provider region is used. """ state_notification_config: pulumi.Output[dict] """ A PubSub topic to publish device state updates. Structure is documented below. * `pubsub_topic_name` (`str`) """ def __init__(__self__, resource_name, opts=None, credentials=None, event_notification_configs=None, http_config=None, log_level=None, mqtt_config=None, name=None, project=None, region=None, state_notification_config=None, __props__=None, __name__=None, __opts__=None): """ Creates a device registry in Google's Cloud IoT Core platform. For more information see [the official documentation](https://cloud.google.com/iot/docs/) and [API](https://cloud.google.com/iot/docs/reference/cloudiot/rest/v1/projects.locations.registries). :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[list] credentials: List of public key certificates to authenticate devices. Structure is documented below. :param pulumi.Input[list] event_notification_configs: List of configurations for event notification, such as PubSub topics to publish device events to. Structure is documented below. :param pulumi.Input[dict] http_config: Activate or deactivate HTTP. Structure is documented below. :param pulumi.Input[dict] mqtt_config: Activate or deactivate MQTT. Structure is documented below. :param pulumi.Input[str] name: A unique name for the resource, required by device registry. Changing this forces a new resource to be created. :param pulumi.Input[str] project: The project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[str] region: The Region in which the created address should reside. If it is not provided, the provider region is used. :param pulumi.Input[dict] state_notification_config: A PubSub topic to publish device state updates. Structure is documented below. The **credentials** object supports the following: * `publicKeyCertificate` (`pulumi.Input[dict]`) * `certificate` (`pulumi.Input[str]`) * `format` (`pulumi.Input[str]`) The **event_notification_configs** object supports the following: * `pubsub_topic_name` (`pulumi.Input[str]`) * `subfolderMatches` (`pulumi.Input[str]`) The **http_config** object supports the following: * `http_enabled_state` (`pulumi.Input[str]`) The **mqtt_config** object supports the following: * `mqtt_enabled_state` (`pulumi.Input[str]`) The **state_notification_config** object supports the following: * `pubsub_topic_name` (`pulumi.Input[str]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/cloudiot_registry.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['credentials'] = credentials __props__['event_notification_configs'] = event_notification_configs __props__['http_config'] = http_config __props__['log_level'] = log_level __props__['mqtt_config'] = mqtt_config __props__['name'] = name __props__['project'] = project __props__['region'] = region __props__['state_notification_config'] = state_notification_config super(Registry, __self__).__init__( 'gcp:kms/registry:Registry', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, credentials=None, event_notification_configs=None, http_config=None, log_level=None, mqtt_config=None, name=None, project=None, region=None, state_notification_config=None): """ Get an existing Registry resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[list] credentials: List of public key certificates to authenticate devices. Structure is documented below. :param pulumi.Input[list] event_notification_configs: List of configurations for event notification, such as PubSub topics to publish device events to. Structure is documented below. :param pulumi.Input[dict] http_config: Activate or deactivate HTTP. Structure is documented below. :param pulumi.Input[dict] mqtt_config: Activate or deactivate MQTT. Structure is documented below. :param pulumi.Input[str] name: A unique name for the resource, required by device registry. Changing this forces a new resource to be created. :param pulumi.Input[str] project: The project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[str] region: The Region in which the created address should reside. If it is not provided, the provider region is used. :param pulumi.Input[dict] state_notification_config: A PubSub topic to publish device state updates. Structure is documented below. The **credentials** object supports the following: * `publicKeyCertificate` (`pulumi.Input[dict]`) * `certificate` (`pulumi.Input[str]`) * `format` (`pulumi.Input[str]`) The **event_notification_configs** object supports the following: * `pubsub_topic_name` (`pulumi.Input[str]`) * `subfolderMatches` (`pulumi.Input[str]`) The **http_config** object supports the following: * `http_enabled_state` (`pulumi.Input[str]`) The **mqtt_config** object supports the following: * `mqtt_enabled_state` (`pulumi.Input[str]`) The **state_notification_config** object supports the following: * `pubsub_topic_name` (`pulumi.Input[str]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/cloudiot_registry.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["credentials"] = credentials __props__["event_notification_configs"] = event_notification_configs __props__["http_config"] = http_config __props__["log_level"] = log_level __props__["mqtt_config"] = mqtt_config __props__["name"] = name __props__["project"] = project __props__["region"] = region __props__["state_notification_config"] = state_notification_config return Registry(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_gcp/logging/billing_account_sink.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class BillingAccountSink(pulumi.CustomResource): bigquery_options: pulumi.Output[dict] """ Options that affect sinks exporting data to BigQuery. Structure documented below. * `usePartitionedTables` (`bool`) """ billing_account: pulumi.Output[str] """ The billing account exported to the sink. """ destination: pulumi.Output[str] """ The destination of the sink (or, in other words, where logs are written to). Can be a Cloud Storage bucket, a PubSub topic, or a BigQuery dataset. Examples: The writer associated with the sink must have access to write to the above resource. """ filter: pulumi.Output[str] """ The filter to apply when exporting logs. Only log entries that match the filter are exported. See [Advanced Log Filters](https://cloud.google.com/logging/docs/view/advanced_filters) for information on how to write a filter. """ name: pulumi.Output[str] """ The name of the logging sink. """ writer_identity: pulumi.Output[str] """ The identity associated with this sink. This identity must be granted write access to the configured `destination`. """ def __init__(__self__, resource_name, opts=None, bigquery_options=None, billing_account=None, destination=None, filter=None, name=None, __props__=None, __name__=None, __opts__=None): """ Manages a billing account logging sink. For more information see [the official documentation](https://cloud.google.com/logging/docs/) and [Exporting Logs in the API](https://cloud.google.com/logging/docs/api/tasks/exporting-logs). > **Note** You must have the "Logs Configuration Writer" IAM role (`roles/logging.configWriter`) [granted on the billing account](https://cloud.google.com/billing/reference/rest/v1/billingAccounts/getIamPolicy) to the credentials used with this provider. [IAM roles granted on a billing account](https://cloud.google.com/billing/docs/how-to/billing-access) are separate from the typical IAM roles granted on a project. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[dict] bigquery_options: Options that affect sinks exporting data to BigQuery. Structure documented below. :param pulumi.Input[str] billing_account: The billing account exported to the sink. :param pulumi.Input[str] destination: The destination of the sink (or, in other words, where logs are written to). Can be a Cloud Storage bucket, a PubSub topic, or a BigQuery dataset. Examples: The writer associated with the sink must have access to write to the above resource. :param pulumi.Input[str] filter: The filter to apply when exporting logs. Only log entries that match the filter are exported. See [Advanced Log Filters](https://cloud.google.com/logging/docs/view/advanced_filters) for information on how to write a filter. :param pulumi.Input[str] name: The name of the logging sink. The **bigquery_options** object supports the following: * `usePartitionedTables` (`pulumi.Input[bool]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/logging_billing_account_sink.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['bigquery_options'] = bigquery_options if billing_account is None: raise TypeError("Missing required property 'billing_account'") __props__['billing_account'] = billing_account if destination is None: raise TypeError("Missing required property 'destination'") __props__['destination'] = destination __props__['filter'] = filter __props__['name'] = name __props__['writer_identity'] = None super(BillingAccountSink, __self__).__init__( 'gcp:logging/billingAccountSink:BillingAccountSink', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, bigquery_options=None, billing_account=None, destination=None, filter=None, name=None, writer_identity=None): """ Get an existing BillingAccountSink resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[dict] bigquery_options: Options that affect sinks exporting data to BigQuery. Structure documented below. :param pulumi.Input[str] billing_account: The billing account exported to the sink. :param pulumi.Input[str] destination: The destination of the sink (or, in other words, where logs are written to). Can be a Cloud Storage bucket, a PubSub topic, or a BigQuery dataset. Examples: The writer associated with the sink must have access to write to the above resource. :param pulumi.Input[str] filter: The filter to apply when exporting logs. Only log entries that match the filter are exported. See [Advanced Log Filters](https://cloud.google.com/logging/docs/view/advanced_filters) for information on how to write a filter. :param pulumi.Input[str] name: The name of the logging sink. :param pulumi.Input[str] writer_identity: The identity associated with this sink. This identity must be granted write access to the configured `destination`. The **bigquery_options** object supports the following: * `usePartitionedTables` (`pulumi.Input[bool]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/logging_billing_account_sink.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["bigquery_options"] = bigquery_options __props__["billing_account"] = billing_account __props__["destination"] = destination __props__["filter"] = filter __props__["name"] = name __props__["writer_identity"] = writer_identity return BillingAccountSink(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_gcp/organizations/get_active_folder.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetActiveFolderResult: """ A collection of values returned by getActiveFolder. """ def __init__(__self__, display_name=None, name=None, parent=None, id=None): if display_name and not isinstance(display_name, str): raise TypeError("Expected argument 'display_name' to be a str") __self__.display_name = display_name if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") __self__.name = name """ The resource name of the Folder. This uniquely identifies the folder. """ if parent and not isinstance(parent, str): raise TypeError("Expected argument 'parent' to be a str") __self__.parent = parent if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ class AwaitableGetActiveFolderResult(GetActiveFolderResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetActiveFolderResult( display_name=self.display_name, name=self.name, parent=self.parent, id=self.id) def get_active_folder(display_name=None,parent=None,opts=None): """ Get an active folder within GCP by `display_name` and `parent`. :param str display_name: The folder's display name. :param str parent: The resource name of the parent Folder or Organization. > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/d/active_folder.html.markdown. """ __args__ = dict() __args__['displayName'] = display_name __args__['parent'] = parent if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:organizations/getActiveFolder:getActiveFolder', __args__, opts=opts).value return AwaitableGetActiveFolderResult( display_name=__ret__.get('displayName'), name=__ret__.get('name'), parent=__ret__.get('parent'), id=__ret__.get('id')) ``` #### File: pulumi_gcp/organizations/get_folder.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetFolderResult: """ A collection of values returned by getFolder. """ def __init__(__self__, create_time=None, display_name=None, folder=None, lifecycle_state=None, lookup_organization=None, name=None, organization=None, parent=None, id=None): if create_time and not isinstance(create_time, str): raise TypeError("Expected argument 'create_time' to be a str") __self__.create_time = create_time """ Timestamp when the Organization was created. A timestamp in RFC3339 UTC "Zulu" format, accurate to nanoseconds. Example: "2014-10-02T15:01:23.045123456Z". """ if display_name and not isinstance(display_name, str): raise TypeError("Expected argument 'display_name' to be a str") __self__.display_name = display_name """ The folder's display name. """ if folder and not isinstance(folder, str): raise TypeError("Expected argument 'folder' to be a str") __self__.folder = folder if lifecycle_state and not isinstance(lifecycle_state, str): raise TypeError("Expected argument 'lifecycle_state' to be a str") __self__.lifecycle_state = lifecycle_state """ The Folder's current lifecycle state. """ if lookup_organization and not isinstance(lookup_organization, bool): raise TypeError("Expected argument 'lookup_organization' to be a bool") __self__.lookup_organization = lookup_organization if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") __self__.name = name """ The resource name of the Folder in the form `folders/{folder_id}`. """ if organization and not isinstance(organization, str): raise TypeError("Expected argument 'organization' to be a str") __self__.organization = organization """ If `lookup_organization` is enable, the resource name of the Organization that the folder belongs. """ if parent and not isinstance(parent, str): raise TypeError("Expected argument 'parent' to be a str") __self__.parent = parent """ The resource name of the parent Folder or Organization. """ if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ class AwaitableGetFolderResult(GetFolderResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetFolderResult( create_time=self.create_time, display_name=self.display_name, folder=self.folder, lifecycle_state=self.lifecycle_state, lookup_organization=self.lookup_organization, name=self.name, organization=self.organization, parent=self.parent, id=self.id) def get_folder(folder=None,lookup_organization=None,opts=None): """ Use this data source to get information about a Google Cloud Folder. :param str folder: The name of the Folder in the form `{folder_id}` or `folders/{folder_id}`. :param bool lookup_organization: `true` to find the organization that the folder belongs, `false` to avoid the lookup. It searches up the tree. (defaults to `false`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/d/folder.html.markdown. """ __args__ = dict() __args__['folder'] = folder __args__['lookupOrganization'] = lookup_organization if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:organizations/getFolder:getFolder', __args__, opts=opts).value return AwaitableGetFolderResult( create_time=__ret__.get('createTime'), display_name=__ret__.get('displayName'), folder=__ret__.get('folder'), lifecycle_state=__ret__.get('lifecycleState'), lookup_organization=__ret__.get('lookupOrganization'), name=__ret__.get('name'), organization=__ret__.get('organization'), parent=__ret__.get('parent'), id=__ret__.get('id')) ``` #### File: pulumi_gcp/organizations/get_organization.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetOrganizationResult: """ A collection of values returned by getOrganization. """ def __init__(__self__, create_time=None, directory_customer_id=None, domain=None, lifecycle_state=None, name=None, org_id=None, organization=None, id=None): if create_time and not isinstance(create_time, str): raise TypeError("Expected argument 'create_time' to be a str") __self__.create_time = create_time """ Timestamp when the Organization was created. A timestamp in RFC3339 UTC "Zulu" format, accurate to nanoseconds. Example: "2014-10-02T15:01:23.045123456Z". """ if directory_customer_id and not isinstance(directory_customer_id, str): raise TypeError("Expected argument 'directory_customer_id' to be a str") __self__.directory_customer_id = directory_customer_id """ The Google for Work customer ID of the Organization. """ if domain and not isinstance(domain, str): raise TypeError("Expected argument 'domain' to be a str") __self__.domain = domain if lifecycle_state and not isinstance(lifecycle_state, str): raise TypeError("Expected argument 'lifecycle_state' to be a str") __self__.lifecycle_state = lifecycle_state """ The Organization's current lifecycle state. """ if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") __self__.name = name """ The resource name of the Organization in the form `organizations/{organization_id}`. """ if org_id and not isinstance(org_id, str): raise TypeError("Expected argument 'org_id' to be a str") __self__.org_id = org_id """ The Organization ID. """ if organization and not isinstance(organization, str): raise TypeError("Expected argument 'organization' to be a str") __self__.organization = organization if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ class AwaitableGetOrganizationResult(GetOrganizationResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetOrganizationResult( create_time=self.create_time, directory_customer_id=self.directory_customer_id, domain=self.domain, lifecycle_state=self.lifecycle_state, name=self.name, org_id=self.org_id, organization=self.organization, id=self.id) def get_organization(domain=None,organization=None,opts=None): """ Use this data source to get information about a Google Cloud Organization. :param str domain: The domain name of the Organization. :param str organization: The name of the Organization in the form `{organization_id}` or `organizations/{organization_id}`. > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/d/organization.html.markdown. """ __args__ = dict() __args__['domain'] = domain __args__['organization'] = organization if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:organizations/getOrganization:getOrganization', __args__, opts=opts).value return AwaitableGetOrganizationResult( create_time=__ret__.get('createTime'), directory_customer_id=__ret__.get('directoryCustomerId'), domain=__ret__.get('domain'), lifecycle_state=__ret__.get('lifecycleState'), name=__ret__.get('name'), org_id=__ret__.get('orgId'), organization=__ret__.get('organization'), id=__ret__.get('id')) ``` #### File: pulumi_gcp/projects/get_project.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetProjectResult: """ A collection of values returned by getProject. """ def __init__(__self__, filter=None, projects=None, id=None): if filter and not isinstance(filter, str): raise TypeError("Expected argument 'filter' to be a str") __self__.filter = filter if projects and not isinstance(projects, list): raise TypeError("Expected argument 'projects' to be a list") __self__.projects = projects """ A list of projects matching the provided filter. Structure is defined below. """ if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ class AwaitableGetProjectResult(GetProjectResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetProjectResult( filter=self.filter, projects=self.projects, id=self.id) def get_project(filter=None,opts=None): """ Retrieve information about a set of projects based on a filter. See the [REST API](https://cloud.google.com/resource-manager/reference/rest/v1/projects/list) for more details. :param str filter: A string filter as defined in the [REST API](https://cloud.google.com/resource-manager/reference/rest/v1/projects/list#query-parameters). > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/d/projects.html.markdown. """ __args__ = dict() __args__['filter'] = filter if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:projects/getProject:getProject', __args__, opts=opts).value return AwaitableGetProjectResult( filter=__ret__.get('filter'), projects=__ret__.get('projects'), id=__ret__.get('id')) ``` #### File: pulumi_gcp/sql/ssl_cert.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class SslCert(pulumi.CustomResource): cert: pulumi.Output[str] """ The actual certificate data for this client certificate. """ cert_serial_number: pulumi.Output[str] """ The serial number extracted from the certificate data. """ common_name: pulumi.Output[str] """ The common name to be used in the certificate to identify the client. Constrained to [a-zA-Z.-_ ]+. Changing this forces a new resource to be created. """ create_time: pulumi.Output[str] """ The time when the certificate was created in RFC 3339 format, for example 2012-11-15T16:19:00.094Z. """ expiration_time: pulumi.Output[str] """ The time when the certificate expires in RFC 3339 format, for example 2012-11-15T16:19:00.094Z. """ instance: pulumi.Output[str] """ The name of the Cloud SQL instance. Changing this forces a new resource to be created. """ private_key: pulumi.Output[str] """ The private key associated with the client certificate. """ project: pulumi.Output[str] """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ server_ca_cert: pulumi.Output[str] """ The CA cert of the server this client cert was generated from. """ sha1_fingerprint: pulumi.Output[str] """ The SHA1 Fingerprint of the certificate. """ def __init__(__self__, resource_name, opts=None, common_name=None, instance=None, project=None, __props__=None, __name__=None, __opts__=None): """ Creates a new Google SQL SSL Cert on a Google SQL Instance. For more information, see the [official documentation](https://cloud.google.com/sql/), or the [JSON API](https://cloud.google.com/sql/docs/mysql/admin-api/v1beta4/sslCerts). > **Note:** All arguments including the private key will be stored in the raw state as plain-text. [Read more about sensitive data in state](https://www.terraform.io/docs/state/sensitive-data.html). :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] common_name: The common name to be used in the certificate to identify the client. Constrained to [a-zA-Z.-_ ]+. Changing this forces a new resource to be created. :param pulumi.Input[str] instance: The name of the Cloud SQL instance. Changing this forces a new resource to be created. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/sql_ssl_cert.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if common_name is None: raise TypeError("Missing required property 'common_name'") __props__['common_name'] = common_name if instance is None: raise TypeError("Missing required property 'instance'") __props__['instance'] = instance __props__['project'] = project __props__['cert'] = None __props__['cert_serial_number'] = None __props__['create_time'] = None __props__['expiration_time'] = None __props__['private_key'] = None __props__['server_ca_cert'] = None __props__['sha1_fingerprint'] = None super(SslCert, __self__).__init__( 'gcp:sql/sslCert:SslCert', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, cert=None, cert_serial_number=None, common_name=None, create_time=None, expiration_time=None, instance=None, private_key=None, project=None, server_ca_cert=None, sha1_fingerprint=None): """ Get an existing SslCert resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] cert: The actual certificate data for this client certificate. :param pulumi.Input[str] cert_serial_number: The serial number extracted from the certificate data. :param pulumi.Input[str] common_name: The common name to be used in the certificate to identify the client. Constrained to [a-zA-Z.-_ ]+. Changing this forces a new resource to be created. :param pulumi.Input[str] create_time: The time when the certificate was created in RFC 3339 format, for example 2012-11-15T16:19:00.094Z. :param pulumi.Input[str] expiration_time: The time when the certificate expires in RFC 3339 format, for example 2012-11-15T16:19:00.094Z. :param pulumi.Input[str] instance: The name of the Cloud SQL instance. Changing this forces a new resource to be created. :param pulumi.Input[str] private_key: The private key associated with the client certificate. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[str] server_ca_cert: The CA cert of the server this client cert was generated from. :param pulumi.Input[str] sha1_fingerprint: The SHA1 Fingerprint of the certificate. > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/sql_ssl_cert.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["cert"] = cert __props__["cert_serial_number"] = cert_serial_number __props__["common_name"] = common_name __props__["create_time"] = create_time __props__["expiration_time"] = expiration_time __props__["instance"] = instance __props__["private_key"] = private_key __props__["project"] = project __props__["server_ca_cert"] = server_ca_cert __props__["sha1_fingerprint"] = sha1_fingerprint return SslCert(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_gcp/storage/bucket.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class Bucket(pulumi.CustomResource): bucket_policy_only: pulumi.Output[bool] """ Enables [Bucket Policy Only](https://cloud.google.com/storage/docs/bucket-policy-only) access to a bucket. """ cors: pulumi.Output[list] """ The bucket's [Cross-Origin Resource Sharing (CORS)](https://www.w3.org/TR/cors/) configuration. Multiple blocks of this type are permitted. Structure is documented below. * `maxAgeSeconds` (`float`) * `methods` (`list`) * `origins` (`list`) * `responseHeaders` (`list`) """ default_event_based_hold: pulumi.Output[bool] encryption: pulumi.Output[dict] """ The bucket's encryption configuration. * `defaultKmsKeyName` (`str`) """ force_destroy: pulumi.Output[bool] """ When deleting a bucket, this boolean option will delete all contained objects. If you try to delete a bucket that contains objects, this provider will fail that run. """ labels: pulumi.Output[dict] """ A set of key/value label pairs to assign to the bucket. """ lifecycle_rules: pulumi.Output[list] """ The bucket's [Lifecycle Rules](https://cloud.google.com/storage/docs/lifecycle#configuration) configuration. Multiple blocks of this type are permitted. Structure is documented below. * `action` (`dict`) * `storage_class` (`str`) - The [Storage Class](https://cloud.google.com/storage/docs/storage-classes) of the new bucket. Supported values include: `STANDARD`, `MULTI_REGIONAL`, `REGIONAL`, `NEARLINE`, `COLDLINE`. * `type` (`str`) * `condition` (`dict`) * `age` (`float`) * `createdBefore` (`str`) * `matchesStorageClasses` (`list`) * `numNewerVersions` (`float`) * `withState` (`str`) """ location: pulumi.Output[str] """ The [GCS location](https://cloud.google.com/storage/docs/bucket-locations) """ logging: pulumi.Output[dict] """ The bucket's [Access & Storage Logs](https://cloud.google.com/storage/docs/access-logs) configuration. * `logBucket` (`str`) * `logObjectPrefix` (`str`) """ name: pulumi.Output[str] """ The name of the bucket. """ project: pulumi.Output[str] """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ requester_pays: pulumi.Output[bool] """ Enables [Requester Pays](https://cloud.google.com/storage/docs/requester-pays) on a storage bucket. """ retention_policy: pulumi.Output[dict] """ Configuration of the bucket's data retention policy for how long objects in the bucket should be retained. Structure is documented below. * `isLocked` (`bool`) * `retentionPeriod` (`float`) """ self_link: pulumi.Output[str] """ The URI of the created resource. """ storage_class: pulumi.Output[str] """ The [Storage Class](https://cloud.google.com/storage/docs/storage-classes) of the new bucket. Supported values include: `STANDARD`, `MULTI_REGIONAL`, `REGIONAL`, `NEARLINE`, `COLDLINE`. """ url: pulumi.Output[str] """ The base URL of the bucket, in the format `gs://<bucket-name>`. """ versioning: pulumi.Output[dict] """ The bucket's [Versioning](https://cloud.google.com/storage/docs/object-versioning) configuration. * `enabled` (`bool`) """ website: pulumi.Output[dict] """ Configuration if the bucket acts as a website. Structure is documented below. * `mainPageSuffix` (`str`) * `notFoundPage` (`str`) """ def __init__(__self__, resource_name, opts=None, bucket_policy_only=None, cors=None, default_event_based_hold=None, encryption=None, force_destroy=None, labels=None, lifecycle_rules=None, location=None, logging=None, name=None, project=None, requester_pays=None, retention_policy=None, storage_class=None, versioning=None, website=None, __props__=None, __name__=None, __opts__=None): """ Creates a new bucket in Google cloud storage service (GCS). Once a bucket has been created, its location can't be changed. [ACLs](https://cloud.google.com/storage/docs/access-control/lists) can be applied using the [`storage.BucketACL`](https://www.terraform.io/docs/providers/google/r/storage_bucket_acl.html) resource. For more information see [the official documentation](https://cloud.google.com/storage/docs/overview) and [API](https://cloud.google.com/storage/docs/json_api/v1/buckets). **Note**: If the project id is not set on the resource or in the provider block it will be dynamically determined which will require enabling the compute api. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[bool] bucket_policy_only: Enables [Bucket Policy Only](https://cloud.google.com/storage/docs/bucket-policy-only) access to a bucket. :param pulumi.Input[list] cors: The bucket's [Cross-Origin Resource Sharing (CORS)](https://www.w3.org/TR/cors/) configuration. Multiple blocks of this type are permitted. Structure is documented below. :param pulumi.Input[dict] encryption: The bucket's encryption configuration. :param pulumi.Input[bool] force_destroy: When deleting a bucket, this boolean option will delete all contained objects. If you try to delete a bucket that contains objects, this provider will fail that run. :param pulumi.Input[dict] labels: A set of key/value label pairs to assign to the bucket. :param pulumi.Input[list] lifecycle_rules: The bucket's [Lifecycle Rules](https://cloud.google.com/storage/docs/lifecycle#configuration) configuration. Multiple blocks of this type are permitted. Structure is documented below. :param pulumi.Input[str] location: The [GCS location](https://cloud.google.com/storage/docs/bucket-locations) :param pulumi.Input[dict] logging: The bucket's [Access & Storage Logs](https://cloud.google.com/storage/docs/access-logs) configuration. :param pulumi.Input[str] name: The name of the bucket. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[bool] requester_pays: Enables [Requester Pays](https://cloud.google.com/storage/docs/requester-pays) on a storage bucket. :param pulumi.Input[dict] retention_policy: Configuration of the bucket's data retention policy for how long objects in the bucket should be retained. Structure is documented below. :param pulumi.Input[str] storage_class: The [Storage Class](https://cloud.google.com/storage/docs/storage-classes) of the new bucket. Supported values include: `STANDARD`, `MULTI_REGIONAL`, `REGIONAL`, `NEARLINE`, `COLDLINE`. :param pulumi.Input[dict] versioning: The bucket's [Versioning](https://cloud.google.com/storage/docs/object-versioning) configuration. :param pulumi.Input[dict] website: Configuration if the bucket acts as a website. Structure is documented below. The **cors** object supports the following: * `maxAgeSeconds` (`pulumi.Input[float]`) * `methods` (`pulumi.Input[list]`) * `origins` (`pulumi.Input[list]`) * `responseHeaders` (`pulumi.Input[list]`) The **encryption** object supports the following: * `defaultKmsKeyName` (`pulumi.Input[str]`) The **lifecycle_rules** object supports the following: * `action` (`pulumi.Input[dict]`) * `storage_class` (`pulumi.Input[str]`) - The [Storage Class](https://cloud.google.com/storage/docs/storage-classes) of the new bucket. Supported values include: `STANDARD`, `MULTI_REGIONAL`, `REGIONAL`, `NEARLINE`, `COLDLINE`. * `type` (`pulumi.Input[str]`) * `condition` (`pulumi.Input[dict]`) * `age` (`pulumi.Input[float]`) * `createdBefore` (`pulumi.Input[str]`) * `matchesStorageClasses` (`pulumi.Input[list]`) * `numNewerVersions` (`pulumi.Input[float]`) * `withState` (`pulumi.Input[str]`) The **logging** object supports the following: * `logBucket` (`pulumi.Input[str]`) * `logObjectPrefix` (`pulumi.Input[str]`) The **retention_policy** object supports the following: * `isLocked` (`pulumi.Input[bool]`) * `retentionPeriod` (`pulumi.Input[float]`) The **versioning** object supports the following: * `enabled` (`pulumi.Input[bool]`) The **website** object supports the following: * `mainPageSuffix` (`pulumi.Input[str]`) * `notFoundPage` (`pulumi.Input[str]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/storage_bucket.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['bucket_policy_only'] = bucket_policy_only __props__['cors'] = cors __props__['default_event_based_hold'] = default_event_based_hold __props__['encryption'] = encryption __props__['force_destroy'] = force_destroy __props__['labels'] = labels __props__['lifecycle_rules'] = lifecycle_rules __props__['location'] = location __props__['logging'] = logging __props__['name'] = name __props__['project'] = project __props__['requester_pays'] = requester_pays __props__['retention_policy'] = retention_policy __props__['storage_class'] = storage_class __props__['versioning'] = versioning __props__['website'] = website __props__['self_link'] = None __props__['url'] = None super(Bucket, __self__).__init__( 'gcp:storage/bucket:Bucket', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, bucket_policy_only=None, cors=None, default_event_based_hold=None, encryption=None, force_destroy=None, labels=None, lifecycle_rules=None, location=None, logging=None, name=None, project=None, requester_pays=None, retention_policy=None, self_link=None, storage_class=None, url=None, versioning=None, website=None): """ Get an existing Bucket resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[bool] bucket_policy_only: Enables [Bucket Policy Only](https://cloud.google.com/storage/docs/bucket-policy-only) access to a bucket. :param pulumi.Input[list] cors: The bucket's [Cross-Origin Resource Sharing (CORS)](https://www.w3.org/TR/cors/) configuration. Multiple blocks of this type are permitted. Structure is documented below. :param pulumi.Input[dict] encryption: The bucket's encryption configuration. :param pulumi.Input[bool] force_destroy: When deleting a bucket, this boolean option will delete all contained objects. If you try to delete a bucket that contains objects, this provider will fail that run. :param pulumi.Input[dict] labels: A set of key/value label pairs to assign to the bucket. :param pulumi.Input[list] lifecycle_rules: The bucket's [Lifecycle Rules](https://cloud.google.com/storage/docs/lifecycle#configuration) configuration. Multiple blocks of this type are permitted. Structure is documented below. :param pulumi.Input[str] location: The [GCS location](https://cloud.google.com/storage/docs/bucket-locations) :param pulumi.Input[dict] logging: The bucket's [Access & Storage Logs](https://cloud.google.com/storage/docs/access-logs) configuration. :param pulumi.Input[str] name: The name of the bucket. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[bool] requester_pays: Enables [Requester Pays](https://cloud.google.com/storage/docs/requester-pays) on a storage bucket. :param pulumi.Input[dict] retention_policy: Configuration of the bucket's data retention policy for how long objects in the bucket should be retained. Structure is documented below. :param pulumi.Input[str] self_link: The URI of the created resource. :param pulumi.Input[str] storage_class: The [Storage Class](https://cloud.google.com/storage/docs/storage-classes) of the new bucket. Supported values include: `STANDARD`, `MULTI_REGIONAL`, `REGIONAL`, `NEARLINE`, `COLDLINE`. :param pulumi.Input[str] url: The base URL of the bucket, in the format `gs://<bucket-name>`. :param pulumi.Input[dict] versioning: The bucket's [Versioning](https://cloud.google.com/storage/docs/object-versioning) configuration. :param pulumi.Input[dict] website: Configuration if the bucket acts as a website. Structure is documented below. The **cors** object supports the following: * `maxAgeSeconds` (`pulumi.Input[float]`) * `methods` (`pulumi.Input[list]`) * `origins` (`pulumi.Input[list]`) * `responseHeaders` (`pulumi.Input[list]`) The **encryption** object supports the following: * `defaultKmsKeyName` (`pulumi.Input[str]`) The **lifecycle_rules** object supports the following: * `action` (`pulumi.Input[dict]`) * `storage_class` (`pulumi.Input[str]`) - The [Storage Class](https://cloud.google.com/storage/docs/storage-classes) of the new bucket. Supported values include: `STANDARD`, `MULTI_REGIONAL`, `REGIONAL`, `NEARLINE`, `COLDLINE`. * `type` (`pulumi.Input[str]`) * `condition` (`pulumi.Input[dict]`) * `age` (`pulumi.Input[float]`) * `createdBefore` (`pulumi.Input[str]`) * `matchesStorageClasses` (`pulumi.Input[list]`) * `numNewerVersions` (`pulumi.Input[float]`) * `withState` (`pulumi.Input[str]`) The **logging** object supports the following: * `logBucket` (`pulumi.Input[str]`) * `logObjectPrefix` (`pulumi.Input[str]`) The **retention_policy** object supports the following: * `isLocked` (`pulumi.Input[bool]`) * `retentionPeriod` (`pulumi.Input[float]`) The **versioning** object supports the following: * `enabled` (`pulumi.Input[bool]`) The **website** object supports the following: * `mainPageSuffix` (`pulumi.Input[str]`) * `notFoundPage` (`pulumi.Input[str]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/storage_bucket.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["bucket_policy_only"] = bucket_policy_only __props__["cors"] = cors __props__["default_event_based_hold"] = default_event_based_hold __props__["encryption"] = encryption __props__["force_destroy"] = force_destroy __props__["labels"] = labels __props__["lifecycle_rules"] = lifecycle_rules __props__["location"] = location __props__["logging"] = logging __props__["name"] = name __props__["project"] = project __props__["requester_pays"] = requester_pays __props__["retention_policy"] = retention_policy __props__["self_link"] = self_link __props__["storage_class"] = storage_class __props__["url"] = url __props__["versioning"] = versioning __props__["website"] = website return Bucket(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_gcp/storage/default_object_access_control.py ```python import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class DefaultObjectAccessControl(pulumi.CustomResource): bucket: pulumi.Output[str] domain: pulumi.Output[str] email: pulumi.Output[str] entity: pulumi.Output[str] entity_id: pulumi.Output[str] generation: pulumi.Output[float] object: pulumi.Output[str] project_team: pulumi.Output[dict] role: pulumi.Output[str] def __init__(__self__, resource_name, opts=None, bucket=None, entity=None, object=None, role=None, __props__=None, __name__=None, __opts__=None): """ The DefaultObjectAccessControls resources represent the Access Control Lists (ACLs) applied to a new object within a Google Cloud Storage bucket when no ACL was provided for that object. ACLs let you specify who has access to your bucket contents and to what extent. There are two roles that can be assigned to an entity: READERs can get an object, though the acl property will not be revealed. OWNERs are READERs, and they can get the acl property, update an object, and call all objectAccessControls methods on the object. The owner of an object is always an OWNER. For more information, see Access Control, with the caveat that this API uses READER and OWNER instead of READ and FULL_CONTROL. To get more information about DefaultObjectAccessControl, see: * [API documentation](https://cloud.google.com/storage/docs/json_api/v1/defaultObjectAccessControls) * How-to Guides * [Official Documentation](https://cloud.google.com/storage/docs/access-control/create-manage-lists) :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/storage_default_object_access_control.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if bucket is None: raise TypeError("Missing required property 'bucket'") __props__['bucket'] = bucket if entity is None: raise TypeError("Missing required property 'entity'") __props__['entity'] = entity __props__['object'] = object if role is None: raise TypeError("Missing required property 'role'") __props__['role'] = role __props__['domain'] = None __props__['email'] = None __props__['entity_id'] = None __props__['generation'] = None __props__['project_team'] = None super(DefaultObjectAccessControl, __self__).__init__( 'gcp:storage/defaultObjectAccessControl:DefaultObjectAccessControl', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, bucket=None, domain=None, email=None, entity=None, entity_id=None, generation=None, object=None, project_team=None, role=None): """ Get an existing DefaultObjectAccessControl resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. The **project_team** object supports the following: * `projectNumber` (`pulumi.Input[str]`) * `team` (`pulumi.Input[str]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/r/storage_default_object_access_control.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["bucket"] = bucket __props__["domain"] = domain __props__["email"] = email __props__["entity"] = entity __props__["entity_id"] = entity_id __props__["generation"] = generation __props__["object"] = object __props__["project_team"] = project_team __props__["role"] = role return DefaultObjectAccessControl(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ```
{ "source": "23errg/GamestonkTerminal", "score": 2 }
#### File: stocks/technical_analysis/fib.py ```python import logging import plotly.graph_objects as go from bots import imps, load_candle from openbb_terminal.common.technical_analysis import custom_indicators_model from openbb_terminal.decorators import log_start_end logger = logging.getLogger(__name__) @log_start_end(log=logger) def fib_command( ticker="", interval: int = 15, past_days: int = 0, start: str = "", end: str = "", extended_hours: bool = False, heikin_candles: bool = False, news: bool = False, ): """Displays chart with fibonacci retracement [Yahoo Finance]""" # Debug if imps.DEBUG: # pylint: disable=logging-too-many-args logger.debug( "ta fib %s %s %s %s %s %s %s %s", ticker, interval, past_days, start, end, extended_hours, heikin_candles, news, ) past_days = (past_days + 1) if (interval != 1440) or (start != "") else 365 # Retrieve Data (df_stock, start, end, bar_start,) = load_candle.stock_data( ticker=ticker, interval=interval, past_days=past_days, extended_hours=extended_hours, start=start, end=end, heikin_candles=heikin_candles, ) if df_stock.empty: raise Exception(f"No data found for {ticker.upper()}.") df_ta = df_stock.loc[(df_stock.index >= start) & (df_stock.index < end)] # Output Data if interval != 1440: df_ta = df_ta.loc[(df_ta.index >= bar_start) & (df_ta.index < end)] ( df_fib, min_date, max_date, min_pr, max_pr, ) = custom_indicators_model.calculate_fib_levels(df_ta, 12, bar_start, None) levels = df_fib.Price # Output Data fibs = [ "<b>0</b>", "<b>0.235</b>", "<b>0.382</b>", "<b>0.5</b>", "<b>0.618</b>", "<b>0.65</b>", "<b>1</b>", ] plot = load_candle.candle_fig( df_ta, ticker, interval, extended_hours, news, bar=bar_start, int_bar=interval, shared_xaxes=True, vertical_spacing=0.07, ) title = f"<b>{plot['plt_title']} Fibonacci-Retracement-Levels</b>" lvl_text: str = "right" if min_date > max_date else "left" fig = plot["fig"] fig.add_trace( go.Scatter( x=[min_date, max_date], y=[min_pr, max_pr], opacity=1, mode="lines", line=imps.PLT_FIB_COLORWAY[8], showlegend=False, ), row=1, col=1, secondary_y=True, ) for i in range(6): fig.add_trace( go.Scatter( name=fibs[i], x=[min_date, max_date], y=[levels[i], levels[i]], opacity=0.2, mode="lines", line_color=imps.PLT_FIB_COLORWAY[i], showlegend=False, ), row=1, col=1, secondary_y=True, ) fig.add_trace( go.Scatter( name=fibs[i + 1], x=[min_date, max_date], y=[levels[i + 1], levels[i + 1]], opacity=0.2, mode="lines", fill="tonexty", line_color=imps.PLT_FIB_COLORWAY[i + 1], showlegend=False, ), row=1, col=1, secondary_y=True, ) for i in range(7): fig.add_trace( go.Scatter( name=fibs[i], x=[min_date], y=[levels[i]], opacity=0.9, mode="text", text=fibs[i], textposition=f"middle {lvl_text}" if i != 5 else f"bottom {lvl_text}", textfont=dict(imps.PLT_FIB_COLORWAY[7], color=imps.PLT_FIB_COLORWAY[i]), showlegend=False, ), row=1, col=1, secondary_y=True, ) fig.update_layout( margin=dict(l=0, r=0, t=50, b=20), template=imps.PLT_TA_STYLE_TEMPLATE, title=title, title_x=0.02, title_font_size=14, dragmode="pan", ) imagefile = "ta_fib.png" # Check if interactive settings are enabled plt_link = "" if imps.INTERACTIVE: plt_link = imps.inter_chart(fig, imagefile, callback=False) fig.update_layout( width=800, height=500, ) imagefile = imps.image_border(imagefile, fig=fig) return { "title": f"Stocks: Fibonacci-Retracement-Levels {ticker.upper()}", "description": plt_link, "imagefile": imagefile, } ``` #### File: stocks/technical_analysis/ma.py ```python import logging import plotly.graph_objects as go from bots import imps, load_candle from openbb_terminal.common.technical_analysis import overlap_model from openbb_terminal.decorators import log_start_end logger = logging.getLogger(__name__) # pylint: disable=R0913 @log_start_end(log=logger) def ma_command( ticker="", interval: int = 15, past_days: int = 0, ma_mode="ema", window="", offset: int = 0, start="", end="", extended_hours: bool = False, heikin_candles: bool = False, news: bool = False, ): """Displays chart with selected Moving Average [Yahoo Finance]""" # Debug if imps.DEBUG: # pylint: disable=logging-too-many-args logger.debug( "ta ma %s %s %s %s %s %s %s %s %s %s %s", ticker, interval, past_days, ma_mode, window, offset, start, end, extended_hours, heikin_candles, news, ) # Check for argument overlap_ma = { "ema": overlap_model.ema, "hma": overlap_model.hma, "sma": overlap_model.sma, "wma": overlap_model.wma, "zlma": overlap_model.zlma, } if ticker == "": raise Exception("Stock ticker is required") # Retrieve Data df_stock, start, end, bar_start = load_candle.stock_data( ticker=ticker, interval=interval, past_days=past_days, extended_hours=extended_hours, start=start, end=end, heikin_candles=heikin_candles, ) if df_stock.empty: raise Exception("No Data Found") if window == "": window = [20, 50] else: window_temp = list() for wind in window.split(","): try: window_temp.append(int(wind)) except Exception as e: raise Exception("Window needs to be a float") from e window = window_temp df_ta = df_stock.loc[(df_stock.index >= start) & (df_stock.index < end)] if df_ta.empty: raise Exception("No Data Found") for win in window: ema_data = overlap_ma[ma_mode]( values=df_ta["Adj Close"], length=win, offset=offset ) df_ta = df_ta.join(ema_data) # Output Data if interval != 1440: df_ta = df_ta.loc[(df_ta.index >= bar_start) & (df_ta.index < end)] df_ta = df_ta.fillna(0.0) plot = load_candle.candle_fig( df_ta, ticker, interval, extended_hours, news, bar=bar_start, int_bar=interval, ) title = f"<b>{plot['plt_title']} Moving Average ({ma_mode.upper()})</b>" fig = plot["fig"] i2 = 6 if interval != 1440 else 11 for i in range(i2, df_ta.shape[1]): fig.add_trace( go.Scatter( name=f"{df_ta.iloc[:, i].name}", mode="lines", x=df_ta.index, y=df_ta.iloc[:, i].values, opacity=1, ), secondary_y=True, row=1, col=1, ) fig.update_layout( margin=dict(l=0, r=0, t=50, b=20), template=imps.PLT_TA_STYLE_TEMPLATE, colorway=imps.PLT_TA_COLORWAY, title=title, title_x=0.1, title_font_size=14, dragmode="pan", ) imagefile = "ta_ma.png" # Check if interactive settings are enabled plt_link = "" if imps.INTERACTIVE: plt_link = imps.inter_chart(fig, imagefile, callback=False) fig.update_layout( width=800, height=500, ) imagefile = imps.image_border(imagefile, fig=fig) return { "title": f"Stocks: Moving Average {ma_mode.upper()}", "description": plt_link, "imagefile": imagefile, } ``` #### File: common/quantitative_analysis/rolling_view.py ```python __docformat__ = "numpy" import logging import os from typing import Optional, List import matplotlib.pyplot as plt import pandas as pd from openbb_terminal.config_terminal import theme from openbb_terminal.common.quantitative_analysis import rolling_model from openbb_terminal.config_plot import PLOT_DPI from openbb_terminal.decorators import log_start_end from openbb_terminal.helper_funcs import export_data, plot_autoscale, reindex_dates from openbb_terminal.rich_config import console logger = logging.getLogger(__name__) @log_start_end(log=logger) def display_mean_std( name: str, df: pd.DataFrame, target: str, window: int, export: str = "", external_axes: Optional[List[plt.Axes]] = None, ): """View rolling spread Parameters ---------- name : str Stock ticker df : pd.DataFrame Dataframe target : str Column in data to look at window : int Length of window export : str Format to export data external_axes : Optional[List[plt.Axes]], optional External axes (2 axes are expected in the list), by default None """ data = df[target] rolling_mean, rolling_std = rolling_model.get_rolling_avg(data, window) plot_data = pd.merge( data, rolling_mean, how="outer", left_index=True, right_index=True, suffixes=("", "_mean"), ) plot_data = pd.merge( plot_data, rolling_std, how="outer", left_index=True, right_index=True, suffixes=("", "_std"), ) plot_data = reindex_dates(plot_data) # This plot has 2 axes if external_axes is None: _, axes = plt.subplots( 2, 1, sharex=True, figsize=plot_autoscale(), dpi=PLOT_DPI, ) ax1, ax2 = axes else: if len(external_axes) != 2: logger.error("Expected list of two axis items.") console.print("[red]Expected list of 2 axis items./n[/red]") return (ax1, ax2) = external_axes ax1.plot( plot_data.index, plot_data[target].values, label=name, ) ax1.plot( plot_data.index, plot_data[target + "_mean"].values, ) ax1.set_ylabel( "Values", ) ax1.legend(["Real Values", "Rolling Mean"]) ax1.set_title(f"Rolling mean and std (window {str(window)}) of {name} {target}") ax1.set_xlim([plot_data.index[0], plot_data.index[-1]]) ax2.plot( plot_data.index, plot_data[target + "_std"].values, label="Rolling std", ) ax2.legend(["Rolling std"]) ax2.set_ylabel( f"{target} Std Deviation", ) theme.style_primary_axis( ax1, data_index=plot_data.index.to_list(), tick_labels=plot_data["date"].to_list(), ) theme.style_primary_axis( ax2, data_index=plot_data.index.to_list(), tick_labels=plot_data["date"].to_list(), ) if external_axes is None: theme.visualize_output() export_data( export, os.path.dirname(os.path.abspath(__file__)).replace("common", "stocks"), "rolling", rolling_mean.join(rolling_std, lsuffix="_mean", rsuffix="_std"), ) @log_start_end(log=logger) def display_spread( name: str, df: pd.DataFrame, target: str, window: int, export: str = "", external_axes: Optional[List[plt.Axes]] = None, ): """View rolling spread Parameters ---------- name : str Stock ticker df : pd.DataFrame Dataframe target: str Column in data to look at window : int Length of window export : str Format to export data external_axes : Optional[List[plt.Axes]], optional External axes (3 axes are expected in the list), by default None """ data = df[target] df_sd, df_var = rolling_model.get_spread(data, window) plot_data = pd.merge( data, df_sd, how="outer", left_index=True, right_index=True, suffixes=("", "_sd"), ) plot_data = pd.merge( plot_data, df_var, how="outer", left_index=True, right_index=True, suffixes=("", "_var"), ) plot_data = reindex_dates(plot_data) # This plot has 1 axis if external_axes is None: _, axes = plt.subplots( 3, 1, sharex=True, figsize=plot_autoscale(), dpi=PLOT_DPI, ) (ax1, ax2, ax3) = axes else: if len(external_axes) != 3: logger.error("Expected list of one axis item.") console.print("[red]Expected list of 1 axis items./n[/red]") return (ax1, ax2, ax3) = external_axes ax1.plot(plot_data.index, plot_data[target].values) ax1.set_xlim(plot_data.index[0], plot_data.index[-1]) ax1.set_ylabel("Value") ax1.set_title(f"Spread of {name} {target}") ax2.plot( plot_data[f"STDEV_{window}"].index, plot_data[f"STDEV_{window}"].values, label="Stdev", ) ax2.set_ylabel("Stdev") ax3.plot( plot_data[f"VAR_{window}"].index, plot_data[f"VAR_{window}"].values, label="Variance", ) ax3.set_ylabel("Variance") theme.style_primary_axis( ax1, data_index=plot_data.index.to_list(), tick_labels=plot_data["date"].to_list(), ) theme.style_primary_axis( ax2, data_index=plot_data.index.to_list(), tick_labels=plot_data["date"].to_list(), ) theme.style_primary_axis( ax3, data_index=plot_data.index.to_list(), tick_labels=plot_data["date"].to_list(), ) if external_axes is None: theme.visualize_output() export_data( export, os.path.dirname(os.path.abspath(__file__)).replace("common", "stocks"), "spread", df_sd.join(df_var, lsuffix="_sd", rsuffix="_var"), ) @log_start_end(log=logger) def display_quantile( name: str, df: pd.DataFrame, target: str, window: int, quantile: float, export: str = "", external_axes: Optional[List[plt.Axes]] = None, ): """View rolling quantile Parameters ---------- name : str Stock ticker df : pd.DataFrame Dataframe target : str Column in data to look at window : int Length of window quantile : float Quantile to get export : str Format to export data external_axes : Optional[List[plt.Axes]], optional External axes (1 axis is expected in the list), by default None """ data = df[target] df_med, df_quantile = rolling_model.get_quantile(data, window, quantile) plot_data = pd.merge( data, df_med, how="outer", left_index=True, right_index=True, suffixes=("", "_med"), ) plot_data = pd.merge( plot_data, df_quantile, how="outer", left_index=True, right_index=True, suffixes=("", "_quantile"), ) plot_data = reindex_dates(plot_data) # This plot has 1 axis if external_axes is None: _, ax = plt.subplots( figsize=plot_autoscale(), dpi=PLOT_DPI, ) else: if len(external_axes) != 1: logger.error("Expected list of one axis item.") console.print("[red]Expected list of 1 axis items./n[/red]") return (ax,) = external_axes ax.set_title(f"{name} {target} Median & Quantile") ax.plot(plot_data.index, plot_data[target].values, label=target) ax.plot( plot_data.index, plot_data[f"MEDIAN_{window}"].values, label=f"Median w={window}", ) ax.plot( plot_data.index, plot_data[f"QTL_{window}_{quantile}"].values, label=f"Quantile q={quantile}", linestyle="--", ) ax.set_xlim(plot_data.index[0], plot_data.index[-1]) ax.set_ylabel(f"{name} Value") ax.legend() theme.style_primary_axis( ax, data_index=plot_data.index.to_list(), tick_labels=plot_data["date"].to_list(), ) if external_axes is None: theme.visualize_output() export_data( export, os.path.dirname(os.path.abspath(__file__)).replace("common", "stocks"), "quantile", df_med.join(df_quantile), ) @log_start_end(log=logger) def display_skew( name: str, df: pd.DataFrame, target: str, window: int, export: str = "", external_axes: Optional[List[plt.Axes]] = None, ): """View rolling skew Parameters ---------- name : str Stock ticker df : pd.DataFrame Dataframe target : str Column in data to look at window : int Length of window export : str Format to export data external_axes : Optional[List[plt.Axes]], optional External axes (2 axes are expected in the list), by default None """ data = df[target] df_skew = rolling_model.get_skew(data, window) plot_data = pd.merge( data, df_skew, how="outer", left_index=True, right_index=True, ) plot_data = reindex_dates(plot_data) # This plot has 1 axis if external_axes is None: _, axes = plt.subplots( 2, 1, sharex=True, figsize=plot_autoscale(), dpi=PLOT_DPI, ) (ax1, ax2) = axes else: if len(external_axes) != 2: logger.error("Expected list of two axis items.") console.print("[red]Expected list of 2 axis items./n[/red]") return (ax1, ax2) = external_axes ax1.set_title(f"{name} Skewness Indicator") ax1.plot(plot_data.index, plot_data[target].values) ax1.set_xlim(plot_data.index[0], plot_data.index[-1]) ax1.set_ylabel(f"{target}") ax2.plot(plot_data.index, plot_data[f"SKEW_{window}"].values, label="Skew") ax2.set_ylabel("Indicator") theme.style_primary_axis( ax1, data_index=plot_data.index.to_list(), tick_labels=plot_data["date"].to_list(), ) theme.style_primary_axis( ax2, data_index=plot_data.index.to_list(), tick_labels=plot_data["date"].to_list(), ) if external_axes is None: theme.visualize_output() console.print("") export_data( export, os.path.dirname(os.path.abspath(__file__)).replace("common", "stocks"), "skew", df_skew, ) @log_start_end(log=logger) def display_kurtosis( name: str, df: pd.DataFrame, target: str, window: int, export: str = "", external_axes: Optional[List[plt.Axes]] = None, ): """View rolling kurtosis Parameters ---------- name : str Ticker df : pd.DataFrame Dataframe of stock prices window : int Length of window export : str Format to export data external_axes : Optional[List[plt.Axes]], optional External axes (2 axes are expected in the list), by default None """ data = df[target] df_kurt = rolling_model.get_kurtosis(data, window) plot_data = pd.merge( data, df_kurt, how="outer", left_index=True, right_index=True, ) plot_data = reindex_dates(plot_data) # This plot has 1 axis if external_axes is None: _, axes = plt.subplots( 2, 1, sharex=True, figsize=plot_autoscale(), dpi=PLOT_DPI, ) (ax1, ax2) = axes else: if len(external_axes) != 2: logger.error("Expected list of two axis items.") console.print("[red]Expected list of 2 axis items./n[/red]") return (ax1, ax2) = external_axes ax1.set_title(f"{name} {target} Kurtosis Indicator (window {str(window)})") ax1.plot(plot_data.index, plot_data[target].values) ax1.set_xlim(plot_data.index[0], plot_data.index[-1]) ax1.set_ylabel(f"{target}") ax2.plot( plot_data.index, plot_data[f"KURT_{window}"].values, ) ax2.set_ylabel("Indicator") theme.style_primary_axis( ax1, data_index=plot_data.index.to_list(), tick_labels=plot_data["date"].to_list(), ) theme.style_primary_axis( ax2, data_index=plot_data.index.to_list(), tick_labels=plot_data["date"].to_list(), ) if external_axes is None: theme.visualize_output() console.print("") export_data( export, os.path.dirname(os.path.abspath(__file__)).replace("common", "stocks"), "kurtosis", df_kurt, ) ``` #### File: common/technical_analysis/overlap_view.py ```python __docformat__ = "numpy" import logging import os from typing import List, Optional import matplotlib.pyplot as plt import mplfinance as mpf import pandas as pd from pandas.plotting import register_matplotlib_converters from openbb_terminal.config_terminal import theme from openbb_terminal.common.technical_analysis import overlap_model from openbb_terminal.config_plot import PLOT_DPI from openbb_terminal.decorators import log_start_end from openbb_terminal.helper_funcs import ( export_data, plot_autoscale, reindex_dates, lambda_long_number_format_y_axis, ) from openbb_terminal.rich_config import console logger = logging.getLogger(__name__) register_matplotlib_converters() @log_start_end(log=logger) def view_ma( series: pd.Series, length: List[int] = None, offset: int = 0, ma_type: str = "EMA", s_ticker: str = "", export: str = "", external_axes: Optional[List[plt.Axes]] = None, ) -> None: """Plots MA technical indicator Parameters ---------- series : pd.Series Series of prices length : List[int] Length of EMA window ma_type: str Type of moving average. Either "EMA" "ZLMA" or "SMA" s_ticker : str Ticker export : str Format to export data external_axes : Optional[List[plt.Axes]], optional External axes (1 axis is expected in the list), by default None """ # Define a dataframe for adding EMA series to it price_df = pd.DataFrame(series) l_legend = [s_ticker] if not length: length = [20, 50] for win in length: if ma_type == "EMA": df_ta = overlap_model.ema(series, win, offset) l_legend.append(f"EMA {win}") elif ma_type == "SMA": df_ta = overlap_model.sma(series, win, offset) l_legend.append(f"SMA {win}") elif ma_type == "WMA": df_ta = overlap_model.wma(series, win, offset) l_legend.append(f"WMA {win}") elif ma_type == "HMA": df_ta = overlap_model.hma(series, win, offset) l_legend.append(f"HMA {win}") elif ma_type == "ZLMA": df_ta = overlap_model.zlma(series, win, offset) l_legend.append(f"ZLMA {win}") price_df = price_df.join(df_ta) plot_data = reindex_dates(price_df) # This plot has 1 axis if external_axes is None: _, ax = plt.subplots(figsize=plot_autoscale(), dpi=PLOT_DPI) else: if len(external_axes) != 1: logger.error("Expected list of one axis item.") console.print("[red]Expected list of one axis item./n[/red]") return (ax,) = external_axes ax.plot(plot_data.index, plot_data.iloc[:, 1].values) ax.set_xlim([plot_data.index[0], plot_data.index[-1]]) ax.set_ylabel(f"{s_ticker} Price") for idx in range(2, plot_data.shape[1]): ax.plot(plot_data.iloc[:, idx]) ax.set_title(f"{s_ticker} {ma_type.upper()}") ax.legend(l_legend) theme.style_primary_axis( ax, data_index=plot_data.index.to_list(), tick_labels=plot_data["date"].to_list(), ) if external_axes is None: theme.visualize_output() export_data( export, os.path.dirname(os.path.abspath(__file__)).replace("common", "stocks"), f"{ma_type.lower()}{'_'.join([str(win) for win in length])}", price_df, ) @log_start_end(log=logger) def view_vwap( s_ticker: str, ohlc: pd.DataFrame, offset: int = 0, s_interval: str = "", export: str = "", external_axes: Optional[List[plt.Axes]] = None, ): """Plots EMA technical indicator Parameters ---------- s_ticker : str Ticker ohlc : pd.DataFrame Dataframe of prices offset : int Offset variable s_interval : str Interval of data export : str Format to export data external_axes : Optional[List[plt.Axes]], optional External axes (3 axes are expected in the list), by default None """ ohlc.index = ohlc.index.tz_localize(None) ohlc["Day"] = [idx.date() for idx in ohlc.index] day_df = ohlc[ohlc.Day == ohlc.Day[-1]] df_vwap = overlap_model.vwap(day_df, offset) candle_chart_kwargs = { "type": "candle", "style": theme.mpf_style, "volume": True, "xrotation": theme.xticks_rotation, "scale_padding": {"left": 0.3, "right": 1.2, "top": 0.8, "bottom": 0.8}, "update_width_config": { "candle_linewidth": 0.6, "candle_width": 0.8, "volume_linewidth": 0.8, "volume_width": 0.8, }, "warn_too_much_data": 10000, } # This plot has 2 axes if external_axes is None: candle_chart_kwargs["returnfig"] = True candle_chart_kwargs["figratio"] = (10, 7) candle_chart_kwargs["figscale"] = 1.10 candle_chart_kwargs["figsize"] = plot_autoscale() candle_chart_kwargs["addplot"] = mpf.make_addplot( df_vwap, width=theme.line_width ) fig, ax = mpf.plot(day_df, **candle_chart_kwargs) fig.suptitle( f"{s_ticker} {s_interval} VWAP", x=0.055, y=0.965, horizontalalignment="left", ) lambda_long_number_format_y_axis(day_df, "Volume", ax) theme.visualize_output(force_tight_layout=False) else: if len(external_axes) != 3: logger.error("Expected list of three axis items.") console.print("[red]Expected list of 3 axis items./n[/red]") return (ax1, ax2, ax3) = external_axes candle_chart_kwargs["ax"] = ax1 candle_chart_kwargs["volume"] = ax2 candle_chart_kwargs["addplot"] = mpf.make_addplot( df_vwap, width=theme.line_width, ax=ax3 ) mpf.plot(day_df, **candle_chart_kwargs) export_data( export, os.path.dirname(os.path.abspath(__file__)).replace("common", "stocks"), "VWAP", df_vwap, ) ``` #### File: cryptocurrency/due_diligence/binance_model.py ```python __docformat__ = "numpy" import argparse import logging from collections import defaultdict from typing import List, Tuple, Union import pandas as pd from binance.client import Client from binance.exceptions import BinanceAPIException import openbb_terminal.config_terminal as cfg from openbb_terminal.decorators import log_start_end from openbb_terminal.rich_config import console logger = logging.getLogger(__name__) @log_start_end(log=logger) def _get_trading_pairs() -> List[dict]: """Helper method that return all trading pairs on binance. Other methods are use this data as an input for e.g building dataframe with all coins, or to build dict of all trading pairs. [Source: Binance] Returns ------- List[dict] list of dictionaries in format: [ {'symbol': 'ETHBTC', 'status': 'TRADING', 'baseAsset': 'ETH', 'baseAssetPrecision': 8, 'quoteAsset': 'BTC', 'quotePrecision': 8, 'quoteAssetPrecision': 8, 'baseCommissionPrecision': 8, 'quoteCommissionPrecision': 8, 'orderTypes': ['LIMIT', 'LIMIT_MAKER', 'MARKET', 'STOP_LOSS_LIMIT', 'TAKE_PROFIT_LIMIT'], 'icebergAllowed': True, 'ocoAllowed': True, 'quoteOrderQtyMarketAllowed': True, 'isSpotTradingAllowed': True, 'isMarginTradingAllowed': True, 'filters': [{'filterType': 'PRICE_FILTER', 'minPrice': '0.00000100', 'maxPrice': '922327.00000000', 'tickSize': '0.00000100'}, {'filterType': 'PERCENT_PRICE', 'multiplierUp': '5', 'multiplierDown': '0.2', 'avgPriceMins': 5}, {'filterType': 'LOT_SIZE', 'minQty': '0.00100000', 'maxQty': '100000.00000000', 'stepSize': '0.00100000'}, {'filterType': 'MIN_NOTIONAL', 'minNotional': '0.00010000', 'applyToMarket': True, 'avgPriceMins': 5}, {'filterType': 'ICEBERG_PARTS', 'limit': 10}, {'filterType': 'MARKET_LOT_SIZE', 'minQty': '0.00000000', 'maxQty': '930.49505347', 'stepSize': '0.00000000'}, {'filterType': 'MAX_NUM_ORDERS', 'maxNumOrders': 200}, {'filterType': 'MAX_NUM_ALGO_ORDERS', 'maxNumAlgoOrders': 5}], 'permissions': ['SPOT', 'MARGIN']}, ... ] """ client = Client(cfg.API_BINANCE_KEY, cfg.API_BINANCE_SECRET) ex_info = client.get_exchange_info()["symbols"] trading_pairs = [p for p in ex_info if p["status"] == "TRADING"] return trading_pairs @log_start_end(log=logger) def get_all_binance_trading_pairs() -> pd.DataFrame: """Returns all available pairs on Binance in DataFrame format. DataFrame has 3 columns symbol, baseAsset, quoteAsset example row: ETHBTC | ETH | BTC [Source: Binance] Returns ------- pd.DataFrame All available pairs on Binance Columns: symbol, baseAsset, quoteAsset """ trading_pairs = _get_trading_pairs() return pd.DataFrame(trading_pairs)[["symbol", "baseAsset", "quoteAsset"]] @log_start_end(log=logger) def get_binance_available_quotes_for_each_coin() -> dict: """Helper methods that for every coin available on Binance add all quote assets. [Source: Binance] Returns ------- dict: All quote assets for given coin {'ETH' : ['BTC', 'USDT' ...], 'UNI' : ['ETH', 'BTC','BUSD', ...] """ trading_pairs = _get_trading_pairs() results = defaultdict(list) for pair in trading_pairs: results[pair["baseAsset"]].append(pair["quoteAsset"]) return results @log_start_end(log=logger) def check_valid_binance_str(symbol: str) -> str: """Check if symbol is in defined binance. [Source: Binance]""" client = Client(cfg.API_BINANCE_KEY, cfg.API_BINANCE_SECRET) try: client.get_avg_price(symbol=symbol.upper()) return symbol.upper() except BinanceAPIException as e: logger.exception("%s is not a valid binance symbol", str(symbol)) raise argparse.ArgumentTypeError( f"{symbol} is not a valid binance symbol" ) from e @log_start_end(log=logger) def show_available_pairs_for_given_symbol( symbol: str = "ETH", ) -> Tuple[Union[str, None], list]: """Return all available quoted assets for given symbol. [Source: Binance] Parameters ---------- symbol: Uppercase symbol of coin e.g BTC, ETH, UNI, LUNA, DOT ... Returns ------- str: Coin symbol list: Quoted assets for given symbol: ["BTC", "USDT" , "BUSD"] """ symbol_upper = symbol.upper() pairs = get_binance_available_quotes_for_each_coin() for k, v in pairs.items(): if k == symbol_upper: return k, v console.print(f"Couldn't find anything for symbol {symbol_upper}\n") return None, [] ``` #### File: cryptocurrency/overview/cryptopanic_model.py ```python __docformat__ = "numpy" import logging import math import textwrap import time from typing import Any, Optional import pandas as pd import requests import openbb_terminal.config_terminal as cfg from openbb_terminal.rich_config import console from openbb_terminal.decorators import log_start_end logger = logging.getLogger(__name__) CATEGORIES = ["news", "media"] SORT_FILTERS = [ "published_at", "domain", "title", "negative_votes", "positive_votes", ] FILTERS = [ "rising", "hot", "bullish", "bearish", "important", "saved", "lol", ] REGIONS = ["en", "de", "es", "fr", "nl", "it", "pt", "ru"] class ApiKeyException(Exception): """Api Key Exception object""" @log_start_end(log=logger) def __init__(self, message: str): super().__init__(message) self.message = message @log_start_end(log=logger) def __str__(self) -> str: return f"ApiKeyException: {self.message}" @log_start_end(log=logger) def make_request(**kwargs: Any) -> Optional[dict]: """Helper methods for requests [Source: https://cryptopanic.com/developers/api/] Parameters ---------- kwargs: Any Keyword arguments with parameters for GET request to cryptopanic api. Returns ------- dict: response from api request """ api_key = cfg.API_CRYPTO_PANIC_KEY crypto_panic_url = "https://cryptopanic.com/api/v1" post_kind = kwargs.get("post_kind") filter_ = kwargs.get("filter_") region = kwargs.get("region") if post_kind not in ["news", "media", "all"]: post_kind = "all" url = f"{crypto_panic_url}/posts/?auth_token={api_key}" + f"&kind={post_kind}" if filter_ and filter_ in [ "rising", "hot", "bullish", "bearish", "important", "saved", "lol", ]: url += f"&filter={filter_}" if region and region in REGIONS: url += f"&regions={region}" response = requests.get(url) result = None if response.status_code == 200: result = response.json() else: if "Token not found" in response.json()["info"]: console.print("[red]Invalid API Key[/red]\n") else: console.print(response.json()["info"]) logger.warning("Invalid authentication: %s", response.text) return result @log_start_end(log=logger) def _parse_post(post: dict) -> dict: """Helper method - parse news response object to dictionary with target structure. [Source: https://cryptopanic.com/] Parameters ---------- post: dict Response object from cryptopanic api. Returns ------- dict Parsed dictionary with target data structure. """ return { "published_at": post.get("published_at"), "domain": post.get("domain"), "title": post.get("title"), "negative_votes": post["votes"].get("negative"), "positive_votes": post["votes"].get("positive"), "link": post["url"], } @log_start_end(log=logger) def get_news( limit: int = 60, post_kind: str = "news", filter_: Optional[str] = None, region: str = "en", ) -> pd.DataFrame: """Get recent posts from CryptoPanic news aggregator platform. [Source: https://cryptopanic.com/] Parameters ---------- limit: int number of news to fetch post_kind: str Filter by category of news. Available values: news or media. filter_: Optional[str] Filter by kind of news. One from list: rising|hot|bullish|bearish|important|saved|lol region: str Filter news by regions. Available regions are: en (English), de (Deutsch), nl (Dutch), es (Español), fr (Français), it (Italiano), pt (Português), ru (Русский) Returns ------- pd.DataFrame DataFrame with recent news from different sources filtered by provided parameters. """ if post_kind not in CATEGORIES: post_kind = "news" results = [] response = make_request(post_kind=post_kind, filter_=filter_, region=region) if response: data, next_page, _ = ( response["results"], response.get("next"), response.get("count"), ) for post in data: results.append(_parse_post(post)) number_of_pages = math.ceil(limit // 20) counter = 0 while counter < number_of_pages and next_page: counter += 1 try: time.sleep(0.2) res = requests.get(next_page).json() for post in res["results"]: results.append(_parse_post(post)) next_page = res.get("next") except Exception as e: # noqa: F841 logger.exception(str(e)) console.print( "[red]Something went wrong while fetching news from API[/red]\n" ) return pd.DataFrame() try: df = pd.DataFrame(results) df["title"] = df["title"].apply( lambda x: "\n".join(textwrap.wrap(x, width=66)) if isinstance(x, str) else x ) return df except Exception as e: # noqa: F841 logger.exception(str(e)) console.print("[red]Something went wrong with DataFrame creation[/red]\n") return pd.DataFrame() return pd.DataFrame() ``` #### File: etf/screener/screener_controller.py ```python __docformat__ = "numpy" # pylint:disable=R0904,C0201 import argparse import configparser import logging import os from typing import List from prompt_toolkit.completion import NestedCompleter from openbb_terminal import feature_flags as obbff from openbb_terminal.decorators import log_start_end from openbb_terminal.etf import financedatabase_model, financedatabase_view from openbb_terminal.etf.screener import screener_view from openbb_terminal.helper_funcs import ( EXPORT_ONLY_RAW_DATA_ALLOWED, check_positive, parse_known_args_and_warn, ) from openbb_terminal.menu import session from openbb_terminal.parent_classes import BaseController from openbb_terminal.rich_config import console logger = logging.getLogger(__name__) presets_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), "presets/") class ScreenerController(BaseController): """Screener Controller class""" CHOICES_COMMANDS = [ "view", "set", "screen", "sbc", ] presets_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), "presets/") preset_choices = [ f.split(".")[0] for f in os.listdir(presets_path) if f.endswith(".ini") ] sortby_screen_choices = [ "Assets", "NAV", "Expense", "PE", "SharesOut", "Div", "DivYield", "Volume", "Open", "PrevClose", "YrLow", "YrHigh", "Beta", "N_Hold", ] PATH = "/etf/scr/" def __init__(self, queue: List[str] = None): """Constructor""" super().__init__(queue) self.preset = "etf_config" self.screen_tickers: List = list() if session and obbff.USE_PROMPT_TOOLKIT: choices: dict = {c: {} for c in self.controller_choices} choices["view"] = {c: None for c in self.preset_choices} choices["set"] = {c: None for c in self.preset_choices} choices["sbc"] = { c: None for c in financedatabase_model.get_etfs_categories() } self.completer = NestedCompleter.from_nested_dict(choices) def print_help(self): """Print help""" help_text = f"""[cmds] view view available presets set set one of the available presets[/cmds] [param]PRESET: [/param]{self.preset}[cmds] screen screen ETF using preset selected [src][StockAnalysis][/src] sbc screen by category [src][FinanceDatabase][/src][/cmds] """ console.print(text=help_text, menu="ETF - Screener") @log_start_end(log=logger) def call_view(self, other_args: List[str]): """Process view command""" parser = argparse.ArgumentParser( add_help=False, prog="view", description="""View available presets under presets folder.""", ) parser.add_argument( "-p", "--preset", action="store", dest="preset", type=str, help="View specific custom preset", default="", choices=self.preset_choices, ) if other_args and "-" not in other_args[0][0]: other_args.insert(0, "-p") ns_parser = parse_known_args_and_warn(parser, other_args) if ns_parser: if ns_parser.preset: preset_filter = configparser.RawConfigParser() preset_filter.optionxform = str # type: ignore preset_filter.read(presets_path + ns_parser.preset + ".ini") headers = [ "Price", "Assets", "NAV", "Expense", "PE", "DivYield", "Volume", "Beta", "N_Hold", "Open", "PrevClose", "YrLow", "YrHigh", ] console.print("") for filter_header in headers: console.print(f" - {filter_header} -") d_filters = {**preset_filter[filter_header]} d_filters = {k: v for k, v in d_filters.items() if v} if d_filters: max_len = len(max(d_filters, key=len)) for key, value in d_filters.items(): console.print(f"{key}{(max_len-len(key))*' '}: {value}") console.print("") else: console.print("\nPresets:") for preset in self.preset_choices: with open( presets_path + preset + ".ini", encoding="utf8", ) as f: description = "" for line in f: if line.strip() == "[Price]": break description += line.strip() console.print( f" {preset}{(30-len(preset)) * ' '}{description.split('Description: ')[1].replace('#', '')}" ) console.print("") @log_start_end(log=logger) def call_set(self, other_args: List[str]): """Process set command""" parser = argparse.ArgumentParser( add_help=False, prog="set", description="""Set preset.""", ) parser.add_argument( "-p", "--preset", action="store", dest="preset", type=str, default="template", help="Filter presets", choices=self.preset_choices, ) if other_args and "-" not in other_args[0][0]: other_args.insert(0, "-p") ns_parser = parse_known_args_and_warn(parser, other_args) if ns_parser: self.preset = ns_parser.preset console.print("") @log_start_end(log=logger) def call_screen(self, other_args): """Process screen command""" parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, prog="screen", add_help=False, description="Screens ETFS from a personal scraping github repository. Data scraped from stockanalysis.com", ) parser.add_argument( "-l", "--limit", type=int, help="Limit of etfs to display", dest="limit", default=10, ) parser.add_argument( "-s", "--sort", dest="sortby", type=str, help="Sort by given column. Default: Assets", default="Assets", choices=self.sortby_screen_choices, ) parser.add_argument( "-a", "--ascend", action="store_true", help="Flag to sort in ascending order (lowest on top)", dest="ascend", ) if other_args and "-" not in other_args[0][0]: other_args.insert(0, "-l") ns_parser = parse_known_args_and_warn( parser, other_args, export_allowed=EXPORT_ONLY_RAW_DATA_ALLOWED ) if ns_parser: screener_view.view_screener( preset=self.preset, num_to_show=ns_parser.limit, sortby=ns_parser.sortby, ascend=ns_parser.ascend, export=ns_parser.export, ) @log_start_end(log=logger) def call_sbc(self, other_args: List[str]): """Process sbc command""" parser = argparse.ArgumentParser( add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, prog="sbc", description="Search by category [Source: FinanceDatabase/StockAnalysis.com]", ) parser.add_argument( "-c", "--category", type=str, dest="category", nargs="+", help="Category to look for", required="-h" not in other_args, ) parser.add_argument( "-l", "--limit", type=check_positive, dest="limit", help="Limit of ETFs to display", default=5, ) if other_args and "-" not in other_args[0][0]: other_args.insert(0, "-c") ns_parser = parse_known_args_and_warn( parser, other_args, export_allowed=EXPORT_ONLY_RAW_DATA_ALLOWED ) if ns_parser: category = " ".join(ns_parser.category) if category in financedatabase_model.get_etfs_categories(): financedatabase_view.display_etf_by_category( category=category, limit=ns_parser.limit, export=ns_parser.export, ) else: console.print( "The category selected does not exist, choose one from:" f" {', '.join(financedatabase_model.get_etfs_categories())}\n" ) ``` #### File: GamestonkTerminal/openbb_terminal/feature_flags.py ```python import os import json from distutils.util import strtobool from typing import Union, Optional from dotenv import load_dotenv OPENBB_defaults_path = os.path.join(os.path.dirname(__file__), "OPENBB_DEFAULTS.json") if os.path.exists(OPENBB_defaults_path): with open(OPENBB_defaults_path) as f: OPENBB_DEFAULTS = json.load(f) else: OPENBB_DEFAULTS = dict() env_files = [f for f in os.listdir() if f.endswith(".env")] if env_files: load_dotenv(env_files[0]) def assign_feature_flag( feature_flag: str, fallback_value: str, return_bool: bool = False ) -> Optional[Union[str, bool]]: """Get the feature flag value in order of priority. - Env variables have the highest priority - The OPENBB_DEFAULTS dictionary has the defaults for the bundled app - Fallback value is used if none of the above mentioned places have feature flag settings Parameters ---------- feature_flag : str Feature flag as upper-case string fallback_value : str Fallback vabue return_bool : bool, optional If a boolean should be returned vs a string, by default False Returns ------- Optional[Union[str, bool]] The feature flag value or None """ if bool(os.getenv(feature_flag)): feature_flag_value = ( strtobool(os.getenv(feature_flag)) # type: ignore if return_bool else os.getenv(feature_flag) ) elif feature_flag in OPENBB_DEFAULTS: feature_flag_value = ( strtobool(OPENBB_DEFAULTS[feature_flag]) if return_bool else OPENBB_DEFAULTS[feature_flag] ) else: feature_flag_value = ( strtobool(fallback_value) if return_bool else fallback_value ) return feature_flag_value # Use tabulate to print dataframes USE_TABULATE_DF = assign_feature_flag("OPENBB_USE_TABULATE_DF", "True", True) # Use clear console after each command USE_CLEAR_AFTER_CMD = assign_feature_flag("OPENBB_USE_CLEAR_AFTER_CMD", "False", True) # Use coloring features USE_COLOR = assign_feature_flag("OPENBB_USE_COLOR", "True", True) # Select console flair (choose from config_terminal.py list) USE_FLAIR = assign_feature_flag("OPENBB_USE_FLAIR", ":openbb") # Add date and time to command line USE_DATETIME = assign_feature_flag("OPENBB_USE_DATETIME", "True", True) # Enable interactive matplotlib mode USE_ION = assign_feature_flag("OPENBB_USE_ION", "True", True) # Enable watermark in the figures USE_WATERMARK = assign_feature_flag("OPENBB_USE_WATERMARK", "True", True) # Enable command and source in the figures USE_CMD_LOCATION_FIGURE = assign_feature_flag( "OPENBB_USE_CMD_LOCATION_FIGURE", "True", True ) # Enable Prompt Toolkit USE_PROMPT_TOOLKIT = assign_feature_flag("OPENBB_USE_PROMPT_TOOLKIT", "True", True) # Enable Prediction features ENABLE_PREDICT = assign_feature_flag("OPENBB_ENABLE_PREDICT", "True", True) # Enable plot autoscaling USE_PLOT_AUTOSCALING = assign_feature_flag("OPENBB_USE_PLOT_AUTOSCALING", "False", True) # Enable thoughts of the day ENABLE_THOUGHTS_DAY = assign_feature_flag("OPENBB_ENABLE_THOUGHTS_DAY", "False", True) # Quick exit for testing ENABLE_QUICK_EXIT = assign_feature_flag("OPENBB_ENABLE_QUICK_EXIT", "False", True) # Open report as HTML, otherwise notebook OPEN_REPORT_AS_HTML = assign_feature_flag("OPENBB_OPEN_REPORT_AS_HTML", "True", True) # Enable auto print_help when exiting menus ENABLE_EXIT_AUTO_HELP = assign_feature_flag( "OPENBB_ENABLE_EXIT_AUTO_HELP", "False", True ) # Remember contexts during session REMEMBER_CONTEXTS = assign_feature_flag("OPENBB_REMEMBER_CONTEXTS", "True", True) # Use the colorful rich terminal ENABLE_RICH = assign_feature_flag("OPENBB_ENABLE_RICH", "True", True) # Use the colorful rich terminal ENABLE_RICH_PANEL = assign_feature_flag("OPENBB_ENABLE_RICH_PANEL", "True", True) # Check API KEYS before running a command ENABLE_CHECK_API = assign_feature_flag("OPENBB_ENABLE_CHECK_API", "True", True) # Send logs to data lake LOG_COLLECTION = bool(assign_feature_flag("OPENBB_LOG_COLLECTION", "True", True)) # Provide export folder path. If empty that means default. EXPORT_FOLDER_PATH = assign_feature_flag("OPENBB_EXPORT_FOLDER_PATH", "") # Set a flag if the application is running from a packaged bundle PACKAGED_APPLICATION = assign_feature_flag("OPENBB_PACKAGED_APPLICATION", "False", True) LOGGING_COMMIT_HASH = str( assign_feature_flag("OPENBB_LOGGING_COMMIT_HASH", "REPLACE_ME") ) ``` #### File: openbb_terminal/jupyter/widget_helpers.py ```python import os from typing import List from jinja2 import Template def price_card_stylesheet(): """Load a default CSS stylesheet from file.""" with open( os.path.join(os.path.dirname(os.path.abspath(__file__)), "widgets", "style.css") ) as f: style = f.read() return style def price_card(ticker: str, price: str, price_color: str = "neutral_color") -> str: """Prepare a styled HTML element of a 128 by 128 price card. Parameters ---------- ticker : str Instrument ticker for the price card price : str Instrument price as a string price_color : str, optional The color of the price. Accepts "up_color", "down_color" and default "neutral_color" Returns ------- str HTML code as string """ with open( os.path.join(os.path.dirname(os.path.abspath(__file__)), "widgets", "card.j2") ) as f: template = Template(f.read()) card = template.render(ticker=ticker, price=price, price_color=price_color) return card def html_report_stylesheet(): """Load a default CSS stylesheet from file.""" with open( os.path.join( os.path.dirname(os.path.abspath(__file__)), "widgets", "report.css" ) ) as f: style = f.read() return style def html_report(title: str = "", stylesheet: str = "", body: str = "") -> str: """Prepare a styled HTML page element. Parameters ---------- title : str, optional Contents of the title tag, by default "" stylesheet : str, optional Contents of the stylesheet tag, by default "" body : str, optional Contents of the body tag, by default "" Returns ------- str HTML code as string """ with open( os.path.join(os.path.dirname(os.path.abspath(__file__)), "widgets", "report.j2") ) as f: template = Template(f.read()) card = template.render(title=title, stylesheet=stylesheet, body=body) return card def h(level: int, text: str) -> str: """Wrap text into an HTML `h` tag.""" return f"<h{str(level)}>{text}</h{level}>" def p(text: str) -> str: """Wrap text into an HTML `p` tag.""" return f"<p>{text}</p>" def row(elements: List) -> str: with open( os.path.join(os.path.dirname(os.path.abspath(__file__)), "widgets", "row.j2") ) as f: template = Template(f.read()) return template.render(elements=elements) ``` #### File: stocks/behavioural_analysis/finnhub_view.py ```python __docformat__ = "numpy" import logging import os from datetime import datetime, timedelta from typing import Optional, List import numpy as np import pandas as pd import yfinance as yf from matplotlib import pyplot as plt from openbb_terminal.stocks.behavioural_analysis import finnhub_model from openbb_terminal.decorators import log_start_end from openbb_terminal.config_terminal import theme from openbb_terminal.config_plot import PLOT_DPI from openbb_terminal.helper_funcs import ( export_data, plot_autoscale, ) from openbb_terminal.rich_config import console from openbb_terminal.decorators import check_api_key logger = logging.getLogger(__name__) @log_start_end(log=logger) @check_api_key(["API_FINNHUB_KEY"]) def display_stock_price_headlines_sentiment( ticker: str, export: str = "", external_axes: Optional[List[plt.Axes]] = None, ): """Display stock price and headlines sentiment using VADER model over time. [Source: Finnhub] Parameters ---------- ticker : str Ticker of company export: str Format to export data external_axes : Optional[List[plt.Axes]], optional External axes (1 axis is expected in the list), by default None """ start = datetime.now() - timedelta(days=30) articles = finnhub_model.get_company_news( ticker.upper(), s_start=start.strftime("%Y-%m-%d"), s_end=datetime.now().strftime("%Y-%m-%d"), ) sentiment = finnhub_model.process_news_headlines_sentiment(articles) if not sentiment.empty: sentiment_data = [item for sublist in sentiment.values for item in sublist] df_stock = yf.download( ticker, start=min(sentiment.index).to_pydatetime().date(), interval="15m", prepost=True, progress=False, ) if not df_stock.empty: # This plot has 1 axis if external_axes is None: _, ax = plt.subplots( figsize=plot_autoscale(), dpi=PLOT_DPI, nrows=2, ncols=1, sharex=True, gridspec_kw={"height_ratios": [2, 1]}, ) else: if len(external_axes) != 1: logger.error("Expected list of one axis item.") console.print("[red]Expected list of one axis item./n[/red]") return (ax,) = external_axes ax[0].set_title(f"Headlines sentiment and {ticker} price") for uniquedate in np.unique(df_stock.index.date): ax[0].plot( df_stock[df_stock.index.date == uniquedate].index, df_stock[df_stock.index.date == uniquedate]["Adj Close"].values, c="#FCED00", ) ax[0].set_ylabel("Stock Price") theme.style_primary_axis(ax[0]) theme.style_primary_axis(ax[1]) ax[1].plot( sentiment.index, pd.Series(sentiment_data) .rolling(window=5, min_periods=1) .mean() .values, c="#FCED00", ) ax[1].bar( sentiment[sentiment.values >= 0].index, [ item for sublist in sentiment[sentiment.values >= 0].values for item in sublist ], color=theme.up_color, width=0.01, ) ax[1].bar( sentiment[sentiment.values < 0].index, [ item for sublist in sentiment[sentiment.values < 0].values for item in sublist ], color=theme.down_color, width=0.01, ) ax[1].yaxis.set_label_position("right") ax[1].set_ylabel("Headline Sentiment") if external_axes is None: theme.visualize_output() export_data( export, os.path.dirname(os.path.abspath(__file__)), "snews", sentiment ) ``` #### File: stocks/comparison_analysis/finviz_compare_model.py ```python __docformat__ = "numpy" import logging from typing import List, Tuple import pandas as pd from finvizfinance.screener import ( financial, overview, ownership, performance, technical, valuation, ) from finvizfinance.screener.overview import Overview from openbb_terminal.decorators import log_start_end from openbb_terminal.rich_config import console logger = logging.getLogger(__name__) @log_start_end(log=logger) def get_similar_companies( ticker: str, compare_list: List[str] ) -> Tuple[List[str], str]: """Get similar companies from Finviz Parameters ---------- ticker : str Ticker to find comparisons for compare_list : List[str] List of fields to compare, ["Sector", "Industry", "Country"] Returns ------- List[str] List of similar companies str String containing data source """ try: similar = ( Overview().compare(ticker, compare_list, verbose=0)["Ticker"].to_list() ) user = "Finviz" except Exception as e: logger.exception(str(e)) console.print(e) similar = [""] user = "Error" return similar, user @log_start_end(log=logger) def get_comparison_data(data_type: str, similar: List[str]): """Screener Overview Parameters ---------- data_type : str Data type between: overview, valuation, financial, ownership, performance, technical Returns ---------- pd.DataFrame Dataframe with overview, valuation, financial, ownership, performance or technical """ if data_type == "overview": screen = overview.Overview() elif data_type == "valuation": screen = valuation.Valuation() elif data_type == "financial": screen = financial.Financial() elif data_type == "ownership": screen = ownership.Ownership() elif data_type == "performance": screen = performance.Performance() elif data_type == "technical": screen = technical.Technical() else: console.print("Invalid selected screener type") return pd.DataFrame() screen.set_filter(ticker=",".join(similar)) try: return screen.screener_view(verbose=0) except IndexError: console.print("[red]Invalid data from website[red]") return pd.DataFrame() ``` #### File: stocks/due_diligence/business_insider_view.py ```python __docformat__ = "numpy" import logging import os from typing import List, Optional import matplotlib.pyplot as plt from pandas.core.frame import DataFrame from pandas.plotting import register_matplotlib_converters from openbb_terminal.config_terminal import theme from openbb_terminal.config_plot import PLOT_DPI from openbb_terminal.decorators import log_start_end from openbb_terminal.helper_funcs import ( export_data, plot_autoscale, print_rich_table, ) from openbb_terminal.rich_config import console from openbb_terminal.stocks.due_diligence import business_insider_model logger = logging.getLogger(__name__) register_matplotlib_converters() @log_start_end(log=logger) def price_target_from_analysts( ticker: str, start: str, interval: str, stock: DataFrame, num: int, raw: bool, export: str = "", external_axes: Optional[List[plt.Axes]] = None, ): """Display analysts' price targets for a given stock. [Source: Business Insider] Parameters ---------- ticker : str Due diligence ticker symbol start : str Start date of the stock data interval : str Stock data interval stock : DataFrame Due diligence stock dataframe num : int Number of latest price targets from analysts to print raw : bool Display raw data only export : str Export dataframe data to csv,json,xlsx file external_axes : Optional[List[plt.Axes]], optional External axes (1 axis is expected in the list), by default None """ df_analyst_data = business_insider_model.get_price_target_from_analysts(ticker) if raw: df_analyst_data.index = df_analyst_data.index.strftime("%Y-%m-%d") print_rich_table( df_analyst_data.sort_index(ascending=False).head(num), headers=list(df_analyst_data.columns), show_index=True, title="Analyst Price Targets", ) else: # This plot has 1 axis if not external_axes: _, ax = plt.subplots(figsize=plot_autoscale(), dpi=PLOT_DPI) else: if len(external_axes) != 1: logger.error("Expected list of one axis item.") console.print("[red]Expected list of one axis item./n[/red]") return (ax,) = external_axes # Slice start of ratings if start: df_analyst_data = df_analyst_data[start:] # type: ignore if interval == "1440min": ax.plot(stock.index, stock["Adj Close"].values) legend_price_label = "Adjusted closing price" # Intraday else: ax.plot(stock.index, stock["Close"].values) legend_price_label = "Closing price" if start: ax.plot(df_analyst_data.groupby(by=["Date"]).mean()[start:]) # type: ignore else: ax.plot(df_analyst_data.groupby(by=["Date"]).mean()) ax.scatter( df_analyst_data.index, df_analyst_data["Price Target"], color=theme.down_color, edgecolors=theme.up_color, zorder=2, ) ax.legend([legend_price_label, "Average Price Target", "Price Target"]) ax.set_title(f"{ticker} (Time Series) and Price Target") ax.set_xlim(stock.index[0], stock.index[-1]) ax.set_ylabel("Share Price") theme.style_primary_axis(ax) if not external_axes: theme.visualize_output() console.print("") export_data( export, os.path.dirname(os.path.abspath(__file__)), "pt", df_analyst_data, ) @log_start_end(log=logger) def estimates(ticker: str, export: str): """Display analysts' estimates for a given ticker. [Source: Business Insider] Parameters ---------- ticker : str Ticker to get analysts' estimates export : str Export dataframe data to csv,json,xlsx file """ ( df_year_estimates, df_quarter_earnings, df_quarter_revenues, ) = business_insider_model.get_estimates(ticker) print_rich_table( df_year_estimates, headers=list(df_year_estimates.columns), show_index=True, title="Annual Earnings Estimates", ) console.print("") print_rich_table( df_quarter_earnings, headers=list(df_quarter_earnings.columns), show_index=True, title="Quarterly Earnings Estimates", ) console.print("") print_rich_table( df_quarter_revenues, headers=list(df_quarter_revenues.columns), show_index=True, title="Quarterly Revenue Estimates", ) console.print("") export_data( export, os.path.dirname(os.path.abspath(__file__)), "pt_year", df_year_estimates, ) export_data( export, os.path.dirname(os.path.abspath(__file__)), "pt_qtr_earnings", df_quarter_earnings, ) export_data( export, os.path.dirname(os.path.abspath(__file__)), "pt_qtr_revenues", df_quarter_revenues, ) ``` #### File: openbb_terminal/economy/test_cnn_view.py ```python import pytest # IMPORTATION INTERNAL from openbb_terminal.economy import cnn_view @pytest.mark.vcr @pytest.mark.record_stdout def test_get_feargreed_report(mocker): # MOCK VISUALIZE_OUTPUT mocker.patch(target="openbb_terminal.helper_classes.TerminalStyle.visualize_output") # MOCK PLOT_AUTOSCALE mocker.patch( target="openbb_terminal.economy.cnn_view.plot_autoscale", return_value=(8.0, 5.0), ) # MOCK PLOT_DPI mocker.patch( target="openbb_terminal.economy.cnn_view.PLOT_DPI", new=100, ) # MOCK EXPORT_DATA mocker.patch(target="openbb_terminal.economy.cnn_view.export_data") cnn_view.fear_and_greed_index(indicator="sps", export="") ``` #### File: portfolio/portfolio_optimization/test_po_controller.py ```python import os # IMPORTATION THIRDPARTY import pytest # IMPORTATION INTERNAL from openbb_terminal.portfolio.portfolio_optimization import po_controller # pylint: disable=E1101 # pylint: disable=W0603 # pylint: disable=E1111 @pytest.mark.vcr(record_mode="none") @pytest.mark.parametrize( "queue, expected", [ (["load", "help"], []), (["quit", "help"], ["help"]), ], ) def test_menu_with_queue(expected, mocker, queue): path_controller = "openbb_terminal.portfolio.portfolio_optimization.po_controller" # MOCK SWITCH mocker.patch( target=f"{path_controller}.PortfolioOptimizationController.switch", return_value=["quit"], ) result_menu = po_controller.PortfolioOptimizationController(queue=queue).menu() assert result_menu == expected @pytest.mark.vcr(record_mode="none") def test_menu_without_queue_completion(mocker): path_controller = "openbb_terminal.portfolio.portfolio_optimization.po_controller" # ENABLE AUTO-COMPLETION : HELPER_FUNCS.MENU mocker.patch( target="openbb_terminal.feature_flags.USE_PROMPT_TOOLKIT", new=True, ) mocker.patch( target="openbb_terminal.parent_classes.session", ) mocker.patch( target="openbb_terminal.parent_classes.session.prompt", return_value="quit", ) # DISABLE AUTO-COMPLETION : CONTROLLER.COMPLETER mocker.patch.object( target=po_controller.obbff, attribute="USE_PROMPT_TOOLKIT", new=True, ) mocker.patch( target=f"{path_controller}.session", ) mocker.patch( target=f"{path_controller}.session.prompt", return_value="quit", ) result_menu = po_controller.PortfolioOptimizationController(queue=None).menu() assert result_menu == [] @pytest.mark.vcr(record_mode="none") @pytest.mark.parametrize( "mock_input", ["help", "homee help", "home help", "mock"], ) def test_menu_without_queue_sys_exit(mock_input, mocker): path_controller = "openbb_terminal.portfolio.portfolio_optimization.po_controller" # DISABLE AUTO-COMPLETION mocker.patch.object( target=po_controller.obbff, attribute="USE_PROMPT_TOOLKIT", new=False, ) mocker.patch( target=f"{path_controller}.session", return_value=None, ) # MOCK USER INPUT mocker.patch("builtins.input", return_value=mock_input) # MOCK SWITCH class SystemExitSideEffect: def __init__(self): self.first_call = True def __call__(self, *args, **kwargs): if self.first_call: self.first_call = False raise SystemExit() return ["quit"] mock_switch = mocker.Mock(side_effect=SystemExitSideEffect()) mocker.patch( target=f"{path_controller}.PortfolioOptimizationController.switch", new=mock_switch, ) result_menu = po_controller.PortfolioOptimizationController(queue=None).menu() assert result_menu == [] @pytest.mark.vcr(record_mode="none") @pytest.mark.record_stdout def test_print_help(): controller = po_controller.PortfolioOptimizationController(queue=None) controller.print_help() @pytest.mark.vcr(record_mode="none") @pytest.mark.parametrize( "an_input, expected_queue", [ ("", []), ("/help", ["home", "help"]), ("help/help", ["help", "help"]), ("q", ["quit"]), ("h", []), ( "r", ["quit", "quit", "reset", "portfolio", "po"], ), ], ) def test_switch(an_input, expected_queue): controller = po_controller.PortfolioOptimizationController(queue=None) queue = controller.switch(an_input=an_input) assert queue == expected_queue @pytest.mark.vcr(record_mode="none") def test_call_cls(mocker): mocker.patch("os.system") controller = po_controller.PortfolioOptimizationController(queue=None) controller.call_cls([]) assert controller.queue == [] os.system.assert_called_once_with("cls||clear") @pytest.mark.vcr(record_mode="none") @pytest.mark.parametrize( "func, queue, expected_queue", [ ( "call_exit", [], ["quit", "quit", "quit"], ), ("call_exit", ["help"], ["quit", "quit", "quit", "help"]), ("call_home", [], ["quit", "quit"]), ("call_help", [], []), ("call_quit", [], ["quit"]), ("call_quit", ["help"], ["quit", "help"]), ( "call_reset", [], ["quit", "quit", "reset", "portfolio", "po"], ), ( "call_reset", ["help"], ["quit", "quit", "reset", "portfolio", "po", "help"], ), ], ) def test_call_func_expect_queue(expected_queue, func, queue): controller = po_controller.PortfolioOptimizationController(queue=queue) result = getattr(controller, func)([]) assert result is None assert controller.queue == expected_queue @pytest.mark.vcr(record_mode="none") @pytest.mark.parametrize( "tested_func, other_args, mocked_func, called_args, called_kwargs", [ ( "call_select", [], "PortfolioOptimizationController.add_stocks", [], dict(), ), ( "call_add", [], "PortfolioOptimizationController.add_stocks", [], dict(), ), ( "call_rmv", [], "PortfolioOptimizationController.rmv_stocks", [], dict(), ), ( "call_equal", [], "optimizer_view.display_equal_weight", [], dict(), ), ( "call_mktcap", [], "optimizer_view.display_property_weighting", [], dict(), ), ( "call_dividend", [], "optimizer_view.display_property_weighting", [], dict(), ), ( "call_property", ["--property=open"], "optimizer_view.display_property_weighting", [], dict(), ), ( "call_maxsharpe", [], "optimizer_view.display_max_sharpe", [], dict(), ), ( "call_minvol", [], "optimizer_view.display_min_volatility", [], dict(), ), ( "call_maxquadutil", [], "optimizer_view.display_max_quadratic_utility", [], dict(), ), ( "call_effrisk", [], "optimizer_view.display_efficient_risk", [], dict(), ), ( "call_effret", [], "optimizer_view.display_efficient_return", [], dict(), ), ( "call_ef", [], "optimizer_view.display_ef", [], dict(), ), ( "call_yolo", [], "", [], dict(), ), ( "add_stocks", [], "", [], dict(), ), ( "rmv_stocks", [], "", [], dict(), ), ], ) def test_call_func( tested_func, mocked_func, other_args, called_args, called_kwargs, mocker ): path_controller = "openbb_terminal.portfolio.portfolio_optimization.po_controller" if mocked_func: mock = mocker.Mock() mocker.patch( target=f"{path_controller}.{mocked_func}", new=mock, ) controller = po_controller.PortfolioOptimizationController(queue=None) controller.tickers = ["AAPL", "MSFT"] getattr(controller, tested_func)(other_args) if called_args or called_kwargs: mock.assert_called_once_with(*called_args, **called_kwargs) else: mock.assert_called_once() else: controller = po_controller.PortfolioOptimizationController(queue=None) getattr(controller, tested_func)(other_args) ``` #### File: stocks/technical_analysis/test_ta_controller.py ```python import os from datetime import datetime # IMPORTATION THIRDPARTY import pandas as pd import pytest # IMPORTATION INTERNAL from openbb_terminal.stocks.technical_analysis import ta_controller # pylint: disable=E1101 # pylint: disable=W0603 # pylint: disable=E1111 EMPTY_DF = pd.DataFrame() MOCK_STOCK_DF = pd.read_csv( "tests/openbb_terminal/stocks/technical_analysis/csv/test_ta_controller/stock_df.csv", index_col=0, ) @pytest.fixture(scope="module") def vcr_config(): return { "filter_headers": [("User-Agent", None)], "filter_query_parameters": [ ("period1", "MOCK_PERIOD_1"), ("period2", "MOCK_PERIOD_2"), ("date", "MOCK_DATE"), ], } @pytest.mark.vcr(record_mode="none") @pytest.mark.parametrize( "queue, expected", [ (["load", "help"], []), (["quit", "help"], ["help"]), ], ) def test_menu_with_queue(expected, mocker, queue): path_controller = "openbb_terminal.stocks.technical_analysis.ta_controller" # MOCK SWITCH mocker.patch( target=f"{path_controller}.TechnicalAnalysisController.switch", return_value=["quit"], ) result_menu = ta_controller.TechnicalAnalysisController( ticker="MOCK_TICKER", start=datetime.strptime("2021-12-01", "%Y-%m-%d"), interval="MOCK_INTERVAL", stock=EMPTY_DF, queue=queue, ).menu() assert result_menu == expected @pytest.mark.vcr(record_mode="none") def test_menu_without_queue_completion(mocker): path_controller = "openbb_terminal.stocks.technical_analysis.ta_controller" # ENABLE AUTO-COMPLETION : HELPER_FUNCS.MENU mocker.patch( target="openbb_terminal.feature_flags.USE_PROMPT_TOOLKIT", new=True, ) mocker.patch( target="openbb_terminal.parent_classes.session", ) mocker.patch( target="openbb_terminal.parent_classes.session.prompt", return_value="quit", ) # DISABLE AUTO-COMPLETION : CONTROLLER.COMPLETER # DISABLE AUTO-COMPLETION mocker.patch.object( target=ta_controller.obbff, attribute="USE_PROMPT_TOOLKIT", new=True, ) mocker.patch( target=f"{path_controller}.session", ) mocker.patch( target=f"{path_controller}.session.prompt", return_value="quit", ) result_menu = ta_controller.TechnicalAnalysisController( ticker="MOCK_TICKER", start=datetime.strptime("2021-12-01", "%Y-%m-%d"), interval="MOCK_INTERVAL", stock=EMPTY_DF, queue=None, ).menu() assert result_menu == [] @pytest.mark.vcr(record_mode="none") @pytest.mark.parametrize( "mock_input", ["help", "homee help", "home help", "mock"], ) def test_menu_without_queue_sys_exit(mock_input, mocker): path_controller = "openbb_terminal.stocks.technical_analysis.ta_controller" # DISABLE AUTO-COMPLETION mocker.patch.object( target=ta_controller.obbff, attribute="USE_PROMPT_TOOLKIT", new=False, ) mocker.patch( target=f"{path_controller}.session", return_value=None, ) # MOCK USER INPUT mocker.patch("builtins.input", return_value=mock_input) # MOCK SWITCH class SystemExitSideEffect: def __init__(self): self.first_call = True def __call__(self, *args, **kwargs): if self.first_call: self.first_call = False raise SystemExit() return ["quit"] mock_switch = mocker.Mock(side_effect=SystemExitSideEffect()) mocker.patch( target=f"{path_controller}.TechnicalAnalysisController.switch", new=mock_switch, ) result_menu = ta_controller.TechnicalAnalysisController( ticker="MOCK_TICKER", start=datetime.strptime("2021-12-01", "%Y-%m-%d"), interval="MOCK_INTERVAL", stock=EMPTY_DF, queue=None, ).menu() assert result_menu == [] @pytest.mark.vcr(record_mode="none") @pytest.mark.record_stdout @pytest.mark.parametrize( "start", [ datetime.strptime("2021-12-01", "%Y-%m-%d"), None, ], ) def test_print_help(start): controller = ta_controller.TechnicalAnalysisController( ticker="MOCK_TICKER", start=start, interval="MOCK_INTERVAL", stock=EMPTY_DF, queue=None, ) controller.print_help() @pytest.mark.vcr(record_mode="none") @pytest.mark.parametrize( "an_input, expected_queue", [ ("", []), ( "/help", [ "home", "help", ], ), ("help/help", ["help", "help"]), ("q", ["quit"]), ("h", []), ( "r", [ "quit", "quit", "reset", "stocks", "load MOCK_TICKER", "ta", ], ), ], ) def test_switch(an_input, expected_queue): controller = ta_controller.TechnicalAnalysisController( ticker="MOCK_TICKER", start=datetime.strptime("2021-12-01", "%Y-%m-%d"), interval="MOCK_INTERVAL", stock=MOCK_STOCK_DF, queue=None, ) queue = controller.switch(an_input=an_input) assert queue == expected_queue @pytest.mark.vcr(record_mode="none") def test_call_cls(mocker): mocker.patch("os.system") controller = ta_controller.TechnicalAnalysisController( ticker="MOCK_TICKER", start=datetime.strptime("2021-12-01", "%Y-%m-%d"), interval="MOCK_INTERVAL", stock=EMPTY_DF, queue=None, ) controller.call_cls([]) assert controller.queue == [] os.system.assert_called_once_with("cls||clear") @pytest.mark.vcr(record_mode="none") @pytest.mark.parametrize( "func, queue, expected_queue", [ ( "call_exit", [], ["quit", "quit", "quit"], ), ("call_exit", ["help"], ["quit", "quit", "quit", "help"]), ("call_home", [], ["quit", "quit"]), ("call_help", [], []), ("call_quit", [], ["quit"]), ("call_quit", ["help"], ["quit", "help"]), ( "call_reset", [], [ "quit", "quit", "reset", "stocks", "load MOCK_TICKER", "ta", ], ), ( "call_reset", ["help"], [ "quit", "quit", "reset", "stocks", "load MOCK_TICKER", "ta", "help", ], ), ], ) def test_call_func_expect_queue(expected_queue, func, queue): controller = ta_controller.TechnicalAnalysisController( ticker="MOCK_TICKER", start=datetime.strptime("2021-12-01", "%Y-%m-%d"), interval="MOCK_INTERVAL", stock=EMPTY_DF, queue=queue, ) result = getattr(controller, func)([]) assert result is None assert controller.queue == expected_queue @pytest.mark.vcr(record_mode="none") @pytest.mark.parametrize( "tested_func, other_args, mocked_func, called_args, called_kwargs", [ ( "call_load", [ "MOCK_TICKER", "--start=2021-12-01", "--end=2021-12-02", "--interval=1", "--source=yf", "--prepost", ], "stocks_helper.load", [ "MOCK_TICKER", datetime.strptime("2021-12-01", "%Y-%m-%d"), 1, datetime.strptime("2021-12-02", "%Y-%m-%d"), True, "yf", ], {"weekly": False, "monthly": False}, ), ( "call_view", [], "finviz_view.view", [ "MOCK_TICKER", ], dict(), ), ( "call_summary", [], "finbrain_view.technical_summary_report", [ "MOCK_TICKER", ], dict(), ), ( "call_recom", [ "--screener=cfd", "--exchange=MOCK_EXCHANGE", "--interval=1m", "--export=csv", ], "tradingview_view.print_recommendation", [], dict( ticker="MOCK_TICKER", screener="cfd", exchange="MOCK_EXCHANGE", interval="1m", export="csv", ), ), ( "call_ema", [ "1,2", "--offset=2", "--export=csv", ], "overlap_view.view_ma", [], dict( ma_type="EMA", s_ticker="MOCK_TICKER", series=MOCK_STOCK_DF["Adj Close"], length=[1, 2], offset=2, export="csv", ), ), ( "call_sma", [ "1,2", "--offset=2", "--export=csv", ], "overlap_view.view_ma", [], dict( ma_type="SMA", s_ticker="MOCK_TICKER", series=MOCK_STOCK_DF["Adj Close"], length=[1, 2], offset=2, export="csv", ), ), ( "call_wma", [ "1,2", "--offset=2", "--export=csv", ], "overlap_view.view_ma", [], dict( ma_type="WMA", s_ticker="MOCK_TICKER", series=MOCK_STOCK_DF["Adj Close"], length=[1, 2], offset=2, export="csv", ), ), ( "call_hma", [ "1,2", "--offset=2", "--export=csv", ], "overlap_view.view_ma", [], dict( ma_type="HMA", s_ticker="MOCK_TICKER", series=MOCK_STOCK_DF["Adj Close"], length=[1, 2], offset=2, export="csv", ), ), ( "call_vwap", [ "--offset=2", "--export=csv", ], "overlap_view.view_vwap", [], dict( s_ticker="MOCK_TICKER", ohlc=MOCK_STOCK_DF, s_interval="MOCK_INTERVAL", offset=2, export="csv", ), ), ( "call_zlma", [ "1,2", "--offset=2", "--export=csv", ], "overlap_view.view_ma", [], dict( ma_type="ZLMA", s_ticker="MOCK_TICKER", series=MOCK_STOCK_DF["Adj Close"], length=[1, 2], offset=2, export="csv", ), ), ( "call_cci", [ "--length=1", "--scalar=2", "--export=csv", ], "momentum_view.display_cci", [], dict( s_ticker="MOCK_TICKER", ohlc=MOCK_STOCK_DF, length=1, scalar=2, export="csv", ), ), ( "call_macd", [ "--fast=1", "--slow=2", "--signal=3", "--export=csv", ], "momentum_view.display_macd", [], dict( s_ticker="MOCK_TICKER", series=MOCK_STOCK_DF["Adj Close"], n_fast=1, n_slow=2, n_signal=3, export="csv", ), ), ( "call_rsi", [ "1", "--scalar=2", "--drift=3", "--export=csv", ], "momentum_view.display_rsi", [], dict( s_ticker="MOCK_TICKER", series=MOCK_STOCK_DF["Adj Close"], length=1, scalar=2, drift=3, export="csv", ), ), ( "call_stoch", [ "--fastkperiod=1", "--slowdperiod=2", "--slowkperiod=3", "--export=csv", ], "momentum_view.display_stoch", [], dict( s_ticker="MOCK_TICKER", ohlc=MOCK_STOCK_DF, fastkperiod=1, slowdperiod=2, slowkperiod=3, export="csv", ), ), ( "call_fisher", [ "1", "--export=csv", ], "momentum_view.display_fisher", [], dict( s_ticker="MOCK_TICKER", ohlc=MOCK_STOCK_DF, length=1, export="csv", ), ), ( "call_cg", [ "1", "--export=csv", ], "momentum_view.display_cg", [], dict( s_ticker="MOCK_TICKER", series=MOCK_STOCK_DF["Adj Close"], length=1, export="csv", ), ), ( "call_adx", [ "1", "--scalar=2", "--drift=3", "--export=csv", ], "trend_indicators_view.display_adx", [], dict( s_ticker="MOCK_TICKER", ohlc=MOCK_STOCK_DF, length=1, scalar=2, drift=3, export="csv", ), ), ( "call_aroon", [ "1", "--scalar=2", "--export=csv", ], "trend_indicators_view.display_aroon", [], dict( s_ticker="MOCK_TICKER", ohlc=MOCK_STOCK_DF, length=1, scalar=2, export="csv", ), ), ( "call_bbands", [ "1", "--std=2", "--mamode=MOCK_MAMODE", "--export=csv", ], "volatility_view.display_bbands", [], dict( ticker="MOCK_TICKER", ohlc=MOCK_STOCK_DF, length=1, n_std=2, mamode="MOCK_MAMODE", export="csv", ), ), ( "call_donchian", [ "--length_upper=1", "--length_lower=2", "--export=csv", ], "volatility_view.display_donchian", [], dict( ticker="MOCK_TICKER", ohlc=MOCK_STOCK_DF, upper_length=1, lower_length=2, export="csv", ), ), ( "call_kc", [ "1", "--scalar=2", "--mamode=sma", "--offset=3", "--export=csv", ], "volatility_view.view_kc", [], dict( s_ticker="MOCK_TICKER", ohlc=MOCK_STOCK_DF, length=1, scalar=2, mamode="sma", offset=3, export="csv", ), ), ( "call_ad", [ "--open", "--export=csv", ], "volume_view.display_ad", [], dict( s_ticker="MOCK_TICKER", ohlc=MOCK_STOCK_DF, use_open=True, export="csv", ), ), ( "call_adosc", [ "--open", "--fast_length=1", "--slow_length=2", "--export=csv", ], "volume_view.display_adosc", [], dict( s_ticker="MOCK_TICKER", ohlc=MOCK_STOCK_DF, use_open=True, fast=1, slow=2, export="csv", ), ), ( "call_obv", [ "--export=csv", ], "volume_view.display_obv", [], dict( s_ticker="MOCK_TICKER", ohlc=MOCK_STOCK_DF, export="csv", ), ), ( "call_fib", [ "1", "--start=2021-12-01", "--end=2021-12-02", "--export=csv", ], "custom_indicators_view.fibonacci_retracement", [], dict( s_ticker="MOCK_TICKER", ohlc=MOCK_STOCK_DF, period=1, start_date=datetime.strptime("2021-12-01", "%Y-%m-%d"), end_date=datetime.strptime("2021-12-02", "%Y-%m-%d"), export="csv", ), ), ], ) def test_call_func( tested_func, mocked_func, other_args, called_args, called_kwargs, mocker ): path_controller = "openbb_terminal.stocks.technical_analysis.ta_controller" if mocked_func: mock = mocker.Mock() mocker.patch( target=f"{path_controller}.{mocked_func}", new=mock, ) controller = ta_controller.TechnicalAnalysisController( ticker="MOCK_TICKER", start=datetime.strptime("2021-12-01", "%Y-%m-%d"), interval="MOCK_INTERVAL", stock=MOCK_STOCK_DF, queue=None, ) controller.screen_tickers = ["PM"] getattr(controller, tested_func)(other_args) if called_args or called_kwargs: mock.assert_called_once_with(*called_args, **called_kwargs) else: mock.assert_called_once() else: controller = ta_controller.TechnicalAnalysisController( ticker="MOCK_TICKER", start=datetime.strptime("2021-12-01", "%Y-%m-%d"), interval="MOCK_INTERVAL", stock=EMPTY_DF, queue=None, ) controller.screen_tickers = ["PM"] getattr(controller, tested_func)(other_args) @pytest.mark.vcr def test_call_load(mocker): # FORCE SINGLE THREADING yf_download = ta_controller.stocks_helper.yf.download def mock_yf_download(*args, **kwargs): kwargs["threads"] = False return yf_download(*args, **kwargs) mocker.patch("yfinance.download", side_effect=mock_yf_download) controller = ta_controller.TechnicalAnalysisController( ticker="TSLA", start=datetime.strptime("2021-12-01", "%Y-%m-%d"), interval="1440", stock=pd.DataFrame(), queue=None, ) other_args = [ "TSLA", "--start=2021-12-17", "--end=2021-12-18", ] controller.call_load(other_args=other_args) ```
{ "source": "23jura23/NeMo", "score": 2 }
#### File: tts/torch/helpers.py ```python import functools import numpy as np import torch from scipy import ndimage from scipy.stats import betabinom class BetaBinomialInterpolator: """ This module calculates alignment prior matrices (based on beta-binomial distribution) using cached popular sizes and image interpolation. The implementation is taken from https://github.com/NVIDIA/DeepLearningExamples. """ def __init__(self, round_mel_len_to=100, round_text_len_to=20): self.round_mel_len_to = round_mel_len_to self.round_text_len_to = round_text_len_to self.bank = functools.lru_cache(beta_binomial_prior_distribution) def round(self, val, to): return max(1, int(np.round((val + 1) / to))) * to def __call__(self, w, h): bw = self.round(w, to=self.round_mel_len_to) bh = self.round(h, to=self.round_text_len_to) ret = ndimage.zoom(self.bank(bw, bh).T, zoom=(w / bw, h / bh), order=1) assert ret.shape[0] == w, ret.shape assert ret.shape[1] == h, ret.shape return ret def general_padding(item, item_len, max_len, pad_value=0): if item_len < max_len: item = torch.nn.functional.pad(item, (0, max_len - item_len), value=pad_value) return item def beta_binomial_prior_distribution(phoneme_count, mel_count, scaling_factor=1.0): x = np.arange(0, phoneme_count) mel_text_probs = [] for i in range(1, mel_count + 1): a, b = scaling_factor * i, scaling_factor * (mel_count + 1 - i) mel_i_prob = betabinom(phoneme_count.detach().numpy(), a, b).pmf(x) mel_text_probs.append(mel_i_prob) return np.array(mel_text_probs) ```
{ "source": "23maverick23/oa-data", "score": 2 }
#### File: 23maverick23/oa-data/app.py ```python from flask import (Flask, render_template, request, jsonify) from flask_restful import (Resource, Api) from .reports import report87, report88, report91, report92, report93, report94, report95 app = Flask(__name__) api = Api(app) class Home(Resource): def get(self): return jsonify({"hello": "world"}) class Report87(Resource): def get(self): return jsonify(report87.get_data()) class Report88(Resource): def get(self): return jsonify(report88.get_data()) class Report91(Resource): def get(self): return jsonify(report91.get_data()) class Report92(Resource): def get(self): return jsonify(report92.get_data()) class Report93(Resource): def get(self): return jsonify(report93.get_data()) class Report94(Resource): def get(self): return jsonify(report94.get_data()) class Report95(Resource): def get(self): return jsonify(report95.get_data()) api.add_resource(Home, '/') api.add_resource(Report87, '/api/report87') api.add_resource(Report88, '/api/report88') api.add_resource(Report91, '/api/report91') api.add_resource(Report92, '/api/report92') api.add_resource(Report93, '/api/report93') api.add_resource(Report94, '/api/report94') api.add_resource(Report95, '/api/report95') if __name__ == '__main__': app.run( debug=True, host='0.0.0.0', use_reloader=True ) ```
{ "source": "23maverick23/project-euler", "score": 4 }
#### File: project-euler/problems/problem-001.py ```python def run(): '''If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. ''' print(sum([num if num % 3 == 0 or num % 5 == 0 else 0 for num in range(1, 1000)])) if __name__ == "__main__": run() ```
{ "source": "23pointsNorth/chainer", "score": 3 }
#### File: examples/mnist/train_mnist_model_parallel.py ```python import argparse import chainer import chainer.functions as F import chainer.links as L from chainer import training from chainer.training import extensions import train_mnist # Network definition class ParallelMLP(chainer.Chain): def __init__(self, n_units, n_out, gpu0, gpu1): super(ParallelMLP, self).__init__() self.gpu0 = gpu0 self.gpu1 = gpu1 with self.init_scope(): # the input size, 784, is inferred self.first0 = train_mnist.MLP(n_units // 2, n_units).to_gpu(gpu0) self.first1 = train_mnist.MLP(n_units // 2, n_units).to_gpu(gpu1) # the input size, n_units, is inferred self.second0 = train_mnist.MLP(n_units // 2, n_out).to_gpu(gpu0) self.second1 = train_mnist.MLP(n_units // 2, n_out).to_gpu(gpu1) def forward(self, x): # assume x is on gpu0 x1 = F.copy(x, self.gpu1) z0 = self.first0(x) z1 = self.first1(x1) # synchronize h0 = z0 + F.copy(z1, self.gpu0) h1 = z1 + F.copy(z0, self.gpu1) y0 = self.second0(F.relu(h0)) y1 = self.second1(F.relu(h1)) # synchronize y = y0 + F.copy(y1, self.gpu0) return y # output is on gpu0 def main(): parser = argparse.ArgumentParser(description='Chainer example: MNIST') parser.add_argument('--batchsize', '-b', type=int, default=100, help='Number of images in each mini-batch') parser.add_argument('--epoch', '-e', default=20, type=int, help='Number of sweeps over the dataset to train') parser.add_argument('--gpu0', '-g', default=0, type=int, help='First GPU ID') parser.add_argument('--gpu1', '-G', default=1, type=int, help='Second GPU ID') parser.add_argument('--out', '-o', default='result_parallel', help='Directory to output the result') parser.add_argument('--resume', '-r', default='', help='Resume the training from snapshot') parser.add_argument('--unit', '-u', default=1000, type=int, help='Number of units') args = parser.parse_args() print('GPU: {}, {}'.format(args.gpu0, args.gpu1)) print('# unit: {}'.format(args.unit)) print('# Minibatch-size: {}'.format(args.batchsize)) print('# epoch: {}'.format(args.epoch)) print('') # See train_mnist.py for the meaning of these lines model = L.Classifier(ParallelMLP(args.unit, 10, args.gpu0, args.gpu1)) chainer.backends.cuda.get_device_from_id(args.gpu0).use() optimizer = chainer.optimizers.Adam() optimizer.setup(model) train, test = chainer.datasets.get_mnist() train_iter = chainer.iterators.SerialIterator(train, args.batchsize) test_iter = chainer.iterators.SerialIterator(test, args.batchsize, repeat=False, shuffle=False) updater = training.updaters.StandardUpdater( train_iter, optimizer, device=args.gpu0) trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out) trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu0)) trainer.extend(extensions.DumpGraph('main/loss')) trainer.extend(extensions.snapshot(), trigger=(args.epoch, 'epoch')) trainer.extend(extensions.LogReport()) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) trainer.extend(extensions.ProgressBar()) if args.resume: chainer.serializers.load_npz(args.resume, trainer) trainer.run() if __name__ == '__main__': main() ```
{ "source": "23pointsNorth/gym", "score": 3 }
#### File: envs/box2d/bipedal_walker.py ```python import sys, math import numpy as np import Box2D from Box2D.b2 import (edgeShape, circleShape, fixtureDef, polygonShape, revoluteJointDef, contactListener) import gym from gym import spaces from gym.utils import colorize, seeding # This is simple 4-joints walker robot environment. # # There are two versions: # # - Normal, with slightly uneven terrain. # # - Hardcore with ladders, stumps, pitfalls. # # Reward is given for moving forward, total 300+ points up to the far end. If the robot falls, # it gets -100. Applying motor torque costs a small amount of points, more optimal agent # will get better score. # # Heuristic is provided for testing, it's also useful to get demonstrations to # learn from. To run heuristic: # # python gym/envs/box2d/bipedal_walker.py # # State consists of hull angle speed, angular velocity, horizontal speed, vertical speed, # position of joints and joints angular speed, legs contact with ground, and 10 lidar # rangefinder measurements to help to deal with the hardcore version. There's no coordinates # in the state vector. Lidar is less useful in normal version, but it works. # # To solve the game you need to get 300 points in 1600 time steps. # # To solve hardcore version you need 300 points in 2000 time steps. # # Created by <NAME>. Licensed on the same terms as the rest of OpenAI Gym. FPS = 50 SCALE = 30.0 # affects how fast-paced the game is, forces should be adjusted as well MOTORS_TORQUE = 80 SPEED_HIP = 4 SPEED_KNEE = 6 LIDAR_RANGE = 160/SCALE INITIAL_RANDOM = 5 HULL_POLY =[ (-30,+9), (+6,+9), (+34,+1), (+34,-8), (-30,-8) ] LEG_DOWN = -8/SCALE LEG_W, LEG_H = 8/SCALE, 34/SCALE VIEWPORT_W = 600 VIEWPORT_H = 400 TERRAIN_STEP = 14/SCALE TERRAIN_LENGTH = 200 # in steps TERRAIN_HEIGHT = VIEWPORT_H/SCALE/4 TERRAIN_GRASS = 10 # low long are grass spots, in steps TERRAIN_STARTPAD = 20 # in steps FRICTION = 2.5 HULL_FD = fixtureDef( shape=polygonShape(vertices=[ (x/SCALE,y/SCALE) for x,y in HULL_POLY ]), density=5.0, friction=0.1, categoryBits=0x0020, maskBits=0x001, # collide only with ground restitution=0.0) # 0.99 bouncy LEG_FD = fixtureDef( shape=polygonShape(box=(LEG_W/2, LEG_H/2)), density=1.0, restitution=0.0, categoryBits=0x0020, maskBits=0x001) LOWER_FD = fixtureDef( shape=polygonShape(box=(0.8*LEG_W/2, LEG_H/2)), density=1.0, restitution=0.0, categoryBits=0x0020, maskBits=0x001) class ContactDetector(contactListener): def __init__(self, env): contactListener.__init__(self) self.env = env def BeginContact(self, contact): if self.env.hull==contact.fixtureA.body or self.env.hull==contact.fixtureB.body: self.env.game_over = True for leg in [self.env.legs[1], self.env.legs[3]]: if leg in [contact.fixtureA.body, contact.fixtureB.body]: leg.ground_contact = True def EndContact(self, contact): for leg in [self.env.legs[1], self.env.legs[3]]: if leg in [contact.fixtureA.body, contact.fixtureB.body]: leg.ground_contact = False class BipedalWalker(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second' : FPS } hardcore = False def __init__(self): self.seed() self.viewer = None self.world = Box2D.b2World() self.terrain = None self.hull = None self.prev_shaping = None self.fd_polygon = fixtureDef( shape = polygonShape(vertices= [(0, 0), (1, 0), (1, -1), (0, -1)]), friction = FRICTION) self.fd_edge = fixtureDef( shape = edgeShape(vertices= [(0, 0), (1, 1)]), friction = FRICTION, categoryBits=0x0001, ) self.reset() high = np.array([np.inf]*24) self.action_space = spaces.Box(np.array([-1,-1,-1,-1]), np.array([+1,+1,+1,+1])) self.observation_space = spaces.Box(-high, high) def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def _destroy(self): if not self.terrain: return self.world.contactListener = None for t in self.terrain: self.world.DestroyBody(t) self.terrain = [] self.world.DestroyBody(self.hull) self.hull = None for leg in self.legs: self.world.DestroyBody(leg) self.legs = [] self.joints = [] def _generate_terrain(self, hardcore): GRASS, STUMP, STAIRS, PIT, _STATES_ = range(5) state = GRASS velocity = 0.0 y = TERRAIN_HEIGHT counter = TERRAIN_STARTPAD oneshot = False self.terrain = [] self.terrain_x = [] self.terrain_y = [] for i in range(TERRAIN_LENGTH): x = i*TERRAIN_STEP self.terrain_x.append(x) if state==GRASS and not oneshot: velocity = 0.8*velocity + 0.01*np.sign(TERRAIN_HEIGHT - y) if i > TERRAIN_STARTPAD: velocity += self.np_random.uniform(-1, 1)/SCALE #1 y += velocity elif state==PIT and oneshot: counter = self.np_random.randint(3, 5) poly = [ (x, y), (x+TERRAIN_STEP, y), (x+TERRAIN_STEP, y-4*TERRAIN_STEP), (x, y-4*TERRAIN_STEP), ] self.fd_polygon.shape.vertices=poly t = self.world.CreateStaticBody( fixtures = self.fd_polygon) t.color1, t.color2 = (1,1,1), (0.6,0.6,0.6) self.terrain.append(t) self.fd_polygon.shape.vertices=[(p[0]+TERRAIN_STEP*counter,p[1]) for p in poly] t = self.world.CreateStaticBody( fixtures = self.fd_polygon) t.color1, t.color2 = (1,1,1), (0.6,0.6,0.6) self.terrain.append(t) counter += 2 original_y = y elif state==PIT and not oneshot: y = original_y if counter > 1: y -= 4*TERRAIN_STEP elif state==STUMP and oneshot: counter = self.np_random.randint(1, 3) poly = [ (x, y), (x+counter*TERRAIN_STEP, y), (x+counter*TERRAIN_STEP, y+counter*TERRAIN_STEP), (x, y+counter*TERRAIN_STEP), ] self.fd_polygon.shape.vertices=poly t = self.world.CreateStaticBody( fixtures = self.fd_polygon) t.color1, t.color2 = (1,1,1), (0.6,0.6,0.6) self.terrain.append(t) elif state==STAIRS and oneshot: stair_height = +1 if self.np_random.rand() > 0.5 else -1 stair_width = self.np_random.randint(4, 5) stair_steps = self.np_random.randint(3, 5) original_y = y for s in range(stair_steps): poly = [ (x+( s*stair_width)*TERRAIN_STEP, y+( s*stair_height)*TERRAIN_STEP), (x+((1+s)*stair_width)*TERRAIN_STEP, y+( s*stair_height)*TERRAIN_STEP), (x+((1+s)*stair_width)*TERRAIN_STEP, y+(-1+s*stair_height)*TERRAIN_STEP), (x+( s*stair_width)*TERRAIN_STEP, y+(-1+s*stair_height)*TERRAIN_STEP), ] self.fd_polygon.shape.vertices=poly t = self.world.CreateStaticBody( fixtures = self.fd_polygon) t.color1, t.color2 = (1,1,1), (0.6,0.6,0.6) self.terrain.append(t) counter = stair_steps*stair_width elif state==STAIRS and not oneshot: s = stair_steps*stair_width - counter - stair_height n = s/stair_width y = original_y + (n*stair_height)*TERRAIN_STEP oneshot = False self.terrain_y.append(y) counter -= 1 if counter==0: counter = self.np_random.randint(TERRAIN_GRASS/2, TERRAIN_GRASS) if state==GRASS and hardcore: state = self.np_random.randint(1, _STATES_) oneshot = True else: state = GRASS oneshot = True self.terrain_poly = [] for i in range(TERRAIN_LENGTH-1): poly = [ (self.terrain_x[i], self.terrain_y[i]), (self.terrain_x[i+1], self.terrain_y[i+1]) ] self.fd_edge.shape.vertices=poly t = self.world.CreateStaticBody( fixtures = self.fd_edge) color = (0.3, 1.0 if i%2==0 else 0.8, 0.3) t.color1 = color t.color2 = color self.terrain.append(t) color = (0.4, 0.6, 0.3) poly += [ (poly[1][0], 0), (poly[0][0], 0) ] self.terrain_poly.append( (poly, color) ) self.terrain.reverse() def _generate_clouds(self): # Sorry for the clouds, couldn't resist self.cloud_poly = [] for i in range(TERRAIN_LENGTH//20): x = self.np_random.uniform(0, TERRAIN_LENGTH)*TERRAIN_STEP y = VIEWPORT_H/SCALE*3/4 poly = [ (x+15*TERRAIN_STEP*math.sin(3.14*2*a/5)+self.np_random.uniform(0,5*TERRAIN_STEP), y+ 5*TERRAIN_STEP*math.cos(3.14*2*a/5)+self.np_random.uniform(0,5*TERRAIN_STEP) ) for a in range(5) ] x1 = min( [p[0] for p in poly] ) x2 = max( [p[0] for p in poly] ) self.cloud_poly.append( (poly,x1,x2) ) def reset(self): self._destroy() self.world.contactListener_bug_workaround = ContactDetector(self) self.world.contactListener = self.world.contactListener_bug_workaround self.game_over = False self.prev_shaping = None self.scroll = 0.0 self.lidar_render = 0 W = VIEWPORT_W/SCALE H = VIEWPORT_H/SCALE self._generate_terrain(self.hardcore) self._generate_clouds() init_x = TERRAIN_STEP*TERRAIN_STARTPAD/2 init_y = TERRAIN_HEIGHT+2*LEG_H self.hull = self.world.CreateDynamicBody( position = (init_x, init_y), fixtures = HULL_FD ) self.hull.color1 = (0.5,0.4,0.9) self.hull.color2 = (0.3,0.3,0.5) self.hull.ApplyForceToCenter((self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM), 0), True) self.legs = [] self.joints = [] for i in [-1,+1]: leg = self.world.CreateDynamicBody( position = (init_x, init_y - LEG_H/2 - LEG_DOWN), angle = (i*0.05), fixtures = LEG_FD ) leg.color1 = (0.6-i/10., 0.3-i/10., 0.5-i/10.) leg.color2 = (0.4-i/10., 0.2-i/10., 0.3-i/10.) rjd = revoluteJointDef( bodyA=self.hull, bodyB=leg, localAnchorA=(0, LEG_DOWN), localAnchorB=(0, LEG_H/2), enableMotor=True, enableLimit=True, maxMotorTorque=MOTORS_TORQUE, motorSpeed = i, lowerAngle = -0.8, upperAngle = 1.1, ) self.legs.append(leg) self.joints.append(self.world.CreateJoint(rjd)) lower = self.world.CreateDynamicBody( position = (init_x, init_y - LEG_H*3/2 - LEG_DOWN), angle = (i*0.05), fixtures = LOWER_FD ) lower.color1 = (0.6-i/10., 0.3-i/10., 0.5-i/10.) lower.color2 = (0.4-i/10., 0.2-i/10., 0.3-i/10.) rjd = revoluteJointDef( bodyA=leg, bodyB=lower, localAnchorA=(0, -LEG_H/2), localAnchorB=(0, LEG_H/2), enableMotor=True, enableLimit=True, maxMotorTorque=MOTORS_TORQUE, motorSpeed = 1, lowerAngle = -1.6, upperAngle = -0.1, ) lower.ground_contact = False self.legs.append(lower) self.joints.append(self.world.CreateJoint(rjd)) self.drawlist = self.terrain + self.legs + [self.hull] class LidarCallback(Box2D.b2.rayCastCallback): def ReportFixture(self, fixture, point, normal, fraction): if (fixture.filterData.categoryBits & 1) == 0: return 1 self.p2 = point self.fraction = fraction return 0 self.lidar = [LidarCallback() for _ in range(10)] return self.step(np.array([0,0,0,0]))[0] def step(self, action): #self.hull.ApplyForceToCenter((0, 20), True) -- Uncomment this to receive a bit of stability help control_speed = False # Should be easier as well if control_speed: self.joints[0].motorSpeed = float(SPEED_HIP * np.clip(action[0], -1, 1)) self.joints[1].motorSpeed = float(SPEED_KNEE * np.clip(action[1], -1, 1)) self.joints[2].motorSpeed = float(SPEED_HIP * np.clip(action[2], -1, 1)) self.joints[3].motorSpeed = float(SPEED_KNEE * np.clip(action[3], -1, 1)) else: self.joints[0].motorSpeed = float(SPEED_HIP * np.sign(action[0])) self.joints[0].maxMotorTorque = float(MOTORS_TORQUE * np.clip(np.abs(action[0]), 0, 1)) self.joints[1].motorSpeed = float(SPEED_KNEE * np.sign(action[1])) self.joints[1].maxMotorTorque = float(MOTORS_TORQUE * np.clip(np.abs(action[1]), 0, 1)) self.joints[2].motorSpeed = float(SPEED_HIP * np.sign(action[2])) self.joints[2].maxMotorTorque = float(MOTORS_TORQUE * np.clip(np.abs(action[2]), 0, 1)) self.joints[3].motorSpeed = float(SPEED_KNEE * np.sign(action[3])) self.joints[3].maxMotorTorque = float(MOTORS_TORQUE * np.clip(np.abs(action[3]), 0, 1)) self.world.Step(1.0/FPS, 6*30, 2*30) pos = self.hull.position vel = self.hull.linearVelocity for i in range(10): self.lidar[i].fraction = 1.0 self.lidar[i].p1 = pos self.lidar[i].p2 = ( pos[0] + math.sin(1.5*i/10.0)*LIDAR_RANGE, pos[1] - math.cos(1.5*i/10.0)*LIDAR_RANGE) self.world.RayCast(self.lidar[i], self.lidar[i].p1, self.lidar[i].p2) state = [ self.hull.angle, # Normal angles up to 0.5 here, but sure more is possible. 2.0*self.hull.angularVelocity/FPS, 0.3*vel.x*(VIEWPORT_W/SCALE)/FPS, # Normalized to get -1..1 range 0.3*vel.y*(VIEWPORT_H/SCALE)/FPS, self.joints[0].angle, # This will give 1.1 on high up, but it's still OK (and there should be spikes on hiting the ground, that's normal too) self.joints[0].speed / SPEED_HIP, self.joints[1].angle + 1.0, self.joints[1].speed / SPEED_KNEE, 1.0 if self.legs[1].ground_contact else 0.0, self.joints[2].angle, self.joints[2].speed / SPEED_HIP, self.joints[3].angle + 1.0, self.joints[3].speed / SPEED_KNEE, 1.0 if self.legs[3].ground_contact else 0.0 ] state += [l.fraction for l in self.lidar] assert len(state)==24 self.scroll = pos.x - VIEWPORT_W/SCALE/5 shaping = 130*pos[0]/SCALE # moving forward is a way to receive reward (normalized to get 300 on completion) shaping -= 5.0*abs(state[0]) # keep head straight, other than that and falling, any behavior is unpunished reward = 0 if self.prev_shaping is not None: reward = shaping - self.prev_shaping self.prev_shaping = shaping for a in action: reward -= 0.00035 * MOTORS_TORQUE * np.clip(np.abs(a), 0, 1) # normalized to about -50.0 using heuristic, more optimal agent should spend less done = False if self.game_over or pos[0] < 0: reward = -100 done = True if pos[0] > (TERRAIN_LENGTH-TERRAIN_GRASS)*TERRAIN_STEP: done = True return np.array(state), reward, done, {} def render(self, mode='human'): from gym.envs.classic_control import rendering if self.viewer is None: self.viewer = rendering.Viewer(VIEWPORT_W, VIEWPORT_H) self.viewer.set_bounds(self.scroll, VIEWPORT_W/SCALE + self.scroll, 0, VIEWPORT_H/SCALE) self.viewer.draw_polygon( [ (self.scroll, 0), (self.scroll+VIEWPORT_W/SCALE, 0), (self.scroll+VIEWPORT_W/SCALE, VIEWPORT_H/SCALE), (self.scroll, VIEWPORT_H/SCALE), ], color=(0.9, 0.9, 1.0) ) for poly,x1,x2 in self.cloud_poly: if x2 < self.scroll/2: continue if x1 > self.scroll/2 + VIEWPORT_W/SCALE: continue self.viewer.draw_polygon( [(p[0]+self.scroll/2, p[1]) for p in poly], color=(1,1,1)) for poly, color in self.terrain_poly: if poly[1][0] < self.scroll: continue if poly[0][0] > self.scroll + VIEWPORT_W/SCALE: continue self.viewer.draw_polygon(poly, color=color) self.lidar_render = (self.lidar_render+1) % 100 i = self.lidar_render if i < 2*len(self.lidar): l = self.lidar[i] if i < len(self.lidar) else self.lidar[len(self.lidar)-i-1] self.viewer.draw_polyline( [l.p1, l.p2], color=(1,0,0), linewidth=1 ) for obj in self.drawlist: for f in obj.fixtures: trans = f.body.transform if type(f.shape) is circleShape: t = rendering.Transform(translation=trans*f.shape.pos) self.viewer.draw_circle(f.shape.radius, 30, color=obj.color1).add_attr(t) self.viewer.draw_circle(f.shape.radius, 30, color=obj.color2, filled=False, linewidth=2).add_attr(t) else: path = [trans*v for v in f.shape.vertices] self.viewer.draw_polygon(path, color=obj.color1) path.append(path[0]) self.viewer.draw_polyline(path, color=obj.color2, linewidth=2) flagy1 = TERRAIN_HEIGHT flagy2 = flagy1 + 50/SCALE x = TERRAIN_STEP*3 self.viewer.draw_polyline( [(x, flagy1), (x, flagy2)], color=(0,0,0), linewidth=2 ) f = [(x, flagy2), (x, flagy2-10/SCALE), (x+25/SCALE, flagy2-5/SCALE)] self.viewer.draw_polygon(f, color=(0.9,0.2,0) ) self.viewer.draw_polyline(f + [f[0]], color=(0,0,0), linewidth=2 ) return self.viewer.render(return_rgb_array = mode=='rgb_array') def close(self): if self.viewer is not None: self.viewer.close() self.viewer = None class BipedalWalkerHardcore(BipedalWalker): hardcore = True if __name__=="__main__": # Heurisic: suboptimal, have no notion of balance. env = BipedalWalker() env.reset() steps = 0 total_reward = 0 a = np.array([0.0, 0.0, 0.0, 0.0]) STAY_ON_ONE_LEG, PUT_OTHER_DOWN, PUSH_OFF = 1,2,3 SPEED = 0.29 # Will fall forward on higher speed state = STAY_ON_ONE_LEG moving_leg = 0 supporting_leg = 1 - moving_leg SUPPORT_KNEE_ANGLE = +0.1 supporting_knee_angle = SUPPORT_KNEE_ANGLE while True: s, r, done, info = env.step(a) total_reward += r if steps % 20 == 0 or done: print("\naction " + str(["{:+0.2f}".format(x) for x in a])) print("step {} total_reward {:+0.2f}".format(steps, total_reward)) print("hull " + str(["{:+0.2f}".format(x) for x in s[0:4] ])) print("leg0 " + str(["{:+0.2f}".format(x) for x in s[4:9] ])) print("leg1 " + str(["{:+0.2f}".format(x) for x in s[9:14]])) steps += 1 contact0 = s[8] contact1 = s[13] moving_s_base = 4 + 5*moving_leg supporting_s_base = 4 + 5*supporting_leg hip_targ = [None,None] # -0.8 .. +1.1 knee_targ = [None,None] # -0.6 .. +0.9 hip_todo = [0.0, 0.0] knee_todo = [0.0, 0.0] if state==STAY_ON_ONE_LEG: hip_targ[moving_leg] = 1.1 knee_targ[moving_leg] = -0.6 supporting_knee_angle += 0.03 if s[2] > SPEED: supporting_knee_angle += 0.03 supporting_knee_angle = min( supporting_knee_angle, SUPPORT_KNEE_ANGLE ) knee_targ[supporting_leg] = supporting_knee_angle if s[supporting_s_base+0] < 0.10: # supporting leg is behind state = PUT_OTHER_DOWN if state==PUT_OTHER_DOWN: hip_targ[moving_leg] = +0.1 knee_targ[moving_leg] = SUPPORT_KNEE_ANGLE knee_targ[supporting_leg] = supporting_knee_angle if s[moving_s_base+4]: state = PUSH_OFF supporting_knee_angle = min( s[moving_s_base+2], SUPPORT_KNEE_ANGLE ) if state==PUSH_OFF: knee_targ[moving_leg] = supporting_knee_angle knee_targ[supporting_leg] = +1.0 if s[supporting_s_base+2] > 0.88 or s[2] > 1.2*SPEED: state = STAY_ON_ONE_LEG moving_leg = 1 - moving_leg supporting_leg = 1 - moving_leg if hip_targ[0]: hip_todo[0] = 0.9*(hip_targ[0] - s[4]) - 0.25*s[5] if hip_targ[1]: hip_todo[1] = 0.9*(hip_targ[1] - s[9]) - 0.25*s[10] if knee_targ[0]: knee_todo[0] = 4.0*(knee_targ[0] - s[6]) - 0.25*s[7] if knee_targ[1]: knee_todo[1] = 4.0*(knee_targ[1] - s[11]) - 0.25*s[12] hip_todo[0] -= 0.9*(0-s[0]) - 1.5*s[1] # PID to keep head strait hip_todo[1] -= 0.9*(0-s[0]) - 1.5*s[1] knee_todo[0] -= 15.0*s[3] # vertical speed, to damp oscillations knee_todo[1] -= 15.0*s[3] a[0] = hip_todo[0] a[1] = knee_todo[0] a[2] = hip_todo[1] a[3] = knee_todo[1] a = np.clip(0.5*a, -1.0, 1.0) env.render() if done: break ``` #### File: envs/mujoco/walker2d.py ```python import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env class Walker2dEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self): mujoco_env.MujocoEnv.__init__(self, "walker2d.xml", 4) utils.EzPickle.__init__(self) def step(self, a): posbefore = self.sim.data.qpos[0] self.do_simulation(a, self.frame_skip) posafter, height, ang = self.sim.data.qpos[0:3] alive_bonus = 1.0 reward = ((posafter - posbefore) / self.dt) reward += alive_bonus reward -= 1e-3 * np.square(a).sum() done = not (height > 0.8 and height < 2.0 and ang > -1.0 and ang < 1.0) ob = self._get_obs() return ob, reward, done, {} def _get_obs(self): qpos = self.sim.data.qpos qvel = self.sim.data.qvel return np.concatenate([qpos[1:], np.clip(qvel, -10, 10)]).ravel() def reset_model(self): self.set_state( self.init_qpos + self.np_random.uniform(low=-.005, high=.005, size=self.model.nq), self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) ) return self._get_obs() def viewer_setup(self): self.viewer.cam.trackbodyid = 2 self.viewer.cam.distance = self.model.stat.extent * 0.5 self.viewer.cam.lookat[2] += .8 self.viewer.cam.elevation = -20 ``` #### File: gym/spaces/multi_discrete.py ```python import gym import numpy as np class MultiDiscrete(gym.Space): def __init__(self, nvec): """ nvec: vector of counts of each categorical variable """ self.nvec = np.asarray(nvec, dtype=np.int32) assert self.nvec.ndim == 1, 'nvec should be a 1d array (or list) of ints' gym.Space.__init__(self, (self.nvec.size,), np.int8) def sample(self): return (gym.spaces.np_random.rand(self.nvec.size) * self.nvec).astype(self.dtype) def contains(self, x): return (x < self.nvec).all() and x.dtype.kind in 'ui' def to_jsonable(self, sample_n): return [sample.tolist() for sample in sample_n] def from_jsonable(self, sample_n): return np.array(sample_n) ```
{ "source": "23rd/ungoogled-chromium", "score": 2 }
#### File: ungoogled-chromium/utils/downloads.py ```python import argparse import configparser import enum import hashlib import shutil import subprocess import sys import urllib.request from pathlib import Path from _common import ENCODING, USE_REGISTRY, ExtractorEnum, get_logger, \ get_chromium_version, add_common_params from _extraction import extract_tar_file, extract_with_7z, extract_with_winrar sys.path.insert(0, str(Path(__file__).parent / 'third_party')) import schema #pylint: disable=wrong-import-position sys.path.pop(0) # Constants class HashesURLEnum(str, enum.Enum): """Enum for supported hash URL schemes""" chromium = 'chromium' class HashMismatchError(BaseException): """Exception for computed hashes not matching expected hashes""" class DownloadInfo: #pylint: disable=too-few-public-methods """Representation of an downloads.ini file for downloading files""" _hashes = ('md5', 'sha1', 'sha256', 'sha512') hash_url_delimiter = '|' _nonempty_keys = ('url', 'download_filename') _optional_keys = ( 'version', 'strip_leading_dirs', ) _passthrough_properties = (*_nonempty_keys, *_optional_keys, 'extractor', 'output_path') _ini_vars = { '_chromium_version': get_chromium_version(), } @staticmethod def _is_hash_url(value): return value.count(DownloadInfo.hash_url_delimiter) == 2 and value.split( DownloadInfo.hash_url_delimiter)[0] in iter(HashesURLEnum) _schema = schema.Schema({ schema.Optional(schema.And(str, len)): { **{x: schema.And(str, len) for x in _nonempty_keys}, 'output_path': (lambda x: str(Path(x).relative_to(''))), **{schema.Optional(x): schema.And(str, len) for x in _optional_keys}, schema.Optional('extractor'): schema.Or(ExtractorEnum.TAR, ExtractorEnum.SEVENZIP, ExtractorEnum.WINRAR), schema.Optional(schema.Or(*_hashes)): schema.And(str, len), schema.Optional('hash_url'): lambda x: DownloadInfo._is_hash_url(x), #pylint: disable=unnecessary-lambda } }) class _DownloadsProperties: #pylint: disable=too-few-public-methods def __init__(self, section_dict, passthrough_properties, hashes): self._section_dict = section_dict self._passthrough_properties = passthrough_properties self._hashes = hashes def has_hash_url(self): """ Returns a boolean indicating whether the current download has a hash URL""" return 'hash_url' in self._section_dict def __getattr__(self, name): if name in self._passthrough_properties: return self._section_dict.get(name, fallback=None) if name == 'hashes': hashes_dict = dict() for hash_name in (*self._hashes, 'hash_url'): value = self._section_dict.get(hash_name, fallback=None) if value: if hash_name == 'hash_url': value = value.split(DownloadInfo.hash_url_delimiter) hashes_dict[hash_name] = value return hashes_dict raise AttributeError('"{}" has no attribute "{}"'.format(type(self).__name__, name)) def _parse_data(self, path): """ Parses an INI file located at path Raises schema.SchemaError if validation fails """ def _section_generator(data): for section in data: if section == configparser.DEFAULTSECT: continue yield section, dict( filter(lambda x: x[0] not in self._ini_vars, data.items(section))) new_data = configparser.ConfigParser(defaults=self._ini_vars) with path.open(encoding=ENCODING) as ini_file: new_data.read_file(ini_file, source=str(path)) try: self._schema.validate(dict(_section_generator(new_data))) except schema.SchemaError as exc: get_logger().error('downloads.ini failed schema validation (located in %s)', path) raise exc return new_data def __init__(self, ini_paths): """Reads an iterable of pathlib.Path to download.ini files""" self._data = configparser.ConfigParser() for path in ini_paths: self._data.read_dict(self._parse_data(path)) def __getitem__(self, section): """ Returns an object with keys as attributes and values already pre-processed strings """ return self._DownloadsProperties(self._data[section], self._passthrough_properties, self._hashes) def __contains__(self, item): """ Returns True if item is a name of a section; False otherwise. """ return self._data.has_section(item) def __iter__(self): """Returns an iterator over the section names""" return iter(self._data.sections()) def properties_iter(self): """Iterator for the download properties sorted by output path""" return sorted( map(lambda x: (x, self[x]), self), key=(lambda x: str(Path(x[1].output_path)))) class _UrlRetrieveReportHook: #pylint: disable=too-few-public-methods """Hook for urllib.request.urlretrieve to log progress information to console""" def __init__(self): self._max_len_printed = 0 self._last_percentage = None def __call__(self, block_count, block_size, total_size): # Use total_blocks to handle case total_size < block_size # total_blocks is ceiling of total_size / block_size # Ceiling division from: https://stackoverflow.com/a/17511341 total_blocks = -(-total_size // block_size) if total_blocks > 0: # Do not needlessly update the console. Since the console is # updated synchronously, we don't want updating the console to # bottleneck downloading. Thus, only refresh the output when the # displayed value should change. percentage = round(block_count / total_blocks, ndigits=3) if percentage == self._last_percentage: return self._last_percentage = percentage print('\r' + ' ' * self._max_len_printed, end='') status_line = 'Progress: {:.1%} of {:,d} B'.format(percentage, total_size) else: downloaded_estimate = block_count * block_size status_line = 'Progress: {:,d} B of unknown size'.format(downloaded_estimate) self._max_len_printed = len(status_line) print('\r' + status_line, end='') def _download_via_urllib(url, file_path, show_progress, disable_ssl_verification): reporthook = None if show_progress: reporthook = _UrlRetrieveReportHook() if disable_ssl_verification: import ssl # TODO: Remove this or properly implement disabling SSL certificate verification orig_https_context = ssl._create_default_https_context #pylint: disable=protected-access ssl._create_default_https_context = ssl._create_unverified_context #pylint: disable=protected-access try: urllib.request.urlretrieve(url, str(file_path), reporthook=reporthook) finally: # Try to reduce damage of hack by reverting original HTTPS context ASAP if disable_ssl_verification: ssl._create_default_https_context = orig_https_context #pylint: disable=protected-access if show_progress: print() def _download_if_needed(file_path, url, show_progress, disable_ssl_verification): """ Downloads a file from url to the specified path file_path if necessary. If show_progress is True, download progress is printed to the console. """ if file_path.exists(): get_logger().info('%s already exists. Skipping download.', file_path) return # File name for partially download file tmp_file_path = file_path.with_name(file_path.name + '.partial') if tmp_file_path.exists(): get_logger().debug('Resuming downloading URL %s ...', url) else: get_logger().debug('Downloading URL %s ...', url) # Perform download if shutil.which('axel'): get_logger().debug('Using axel') try: subprocess.run(['axel', '-o', str(tmp_file_path), url], check=True) except subprocess.CalledProcessError as exc: get_logger().error('axel failed. Re-run the download command to resume downloading.') raise exc elif shutil.which('curl'): get_logger().debug('Using curl') try: subprocess.run(['curl', '-L', '-o', str(tmp_file_path), '-C', '-', url], check=True) except subprocess.CalledProcessError as exc: get_logger().error('curl failed. Re-run the download command to resume downloading.') raise exc else: get_logger().debug('Using urllib') _download_via_urllib(url, tmp_file_path, show_progress, disable_ssl_verification) # Download complete; rename file tmp_file_path.rename(file_path) def _chromium_hashes_generator(hashes_path): with hashes_path.open(encoding=ENCODING) as hashes_file: hash_lines = hashes_file.read().splitlines() for hash_name, hash_hex, _ in map(lambda x: x.lower().split(' '), hash_lines): if hash_name in hashlib.algorithms_available: yield hash_name, hash_hex else: get_logger().warning('Skipping unknown hash algorithm: %s', hash_name) def _get_hash_pairs(download_properties, cache_dir): """Generator of (hash_name, hash_hex) for the given download""" for entry_type, entry_value in download_properties.hashes.items(): if entry_type == 'hash_url': hash_processor, hash_filename, _ = entry_value if hash_processor == 'chromium': yield from _chromium_hashes_generator(cache_dir / hash_filename) else: raise ValueError('Unknown hash_url processor: %s' % hash_processor) else: yield entry_type, entry_value def retrieve_downloads(download_info, cache_dir, show_progress, disable_ssl_verification=False): """ Retrieve downloads into the downloads cache. download_info is the DowloadInfo of downloads to retrieve. cache_dir is the pathlib.Path to the downloads cache. show_progress is a boolean indicating if download progress is printed to the console. disable_ssl_verification is a boolean indicating if certificate verification should be disabled for downloads using HTTPS. Raises FileNotFoundError if the downloads path does not exist. Raises NotADirectoryError if the downloads path is not a directory. """ if not cache_dir.exists(): raise FileNotFoundError(cache_dir) if not cache_dir.is_dir(): raise NotADirectoryError(cache_dir) for download_name, download_properties in download_info.properties_iter(): get_logger().info('Downloading "%s" to "%s" ...', download_name, download_properties.download_filename) download_path = cache_dir / download_properties.download_filename _download_if_needed(download_path, download_properties.url, show_progress, disable_ssl_verification) if download_properties.has_hash_url(): get_logger().info('Downloading hashes for "%s"', download_name) _, hash_filename, hash_url = download_properties.hashes['hash_url'] _download_if_needed(cache_dir / hash_filename, hash_url, show_progress, disable_ssl_verification) def check_downloads(download_info, cache_dir): """ Check integrity of the downloads cache. download_info is the DownloadInfo of downloads to unpack. cache_dir is the pathlib.Path to the downloads cache. Raises source_retrieval.HashMismatchError when the computed and expected hashes do not match. """ for download_name, download_properties in download_info.properties_iter(): get_logger().info('Verifying hashes for "%s" ...', download_name) download_path = cache_dir / download_properties.download_filename with download_path.open('rb') as file_obj: archive_data = file_obj.read() for hash_name, hash_hex in _get_hash_pairs(download_properties, cache_dir): get_logger().debug('Verifying %s hash...', hash_name) hasher = hashlib.new(hash_name, data=archive_data) if not hasher.hexdigest().lower() == hash_hex.lower(): raise HashMismatchError(download_path) def unpack_downloads(download_info, cache_dir, output_dir, extractors=None): """ Unpack downloads in the downloads cache to output_dir. Assumes all downloads are retrieved. download_info is the DownloadInfo of downloads to unpack. cache_dir is the pathlib.Path directory containing the download cache output_dir is the pathlib.Path directory to unpack the downloads to. extractors is a dictionary of PlatformEnum to a command or path to the extractor binary. Defaults to 'tar' for tar, and '_use_registry' for 7-Zip and WinRAR. May raise undetermined exceptions during archive unpacking. """ for download_name, download_properties in download_info.properties_iter(): download_path = cache_dir / download_properties.download_filename get_logger().info('Unpacking "%s" to %s ...', download_name, download_properties.output_path) extractor_name = download_properties.extractor or ExtractorEnum.TAR if extractor_name == ExtractorEnum.SEVENZIP: extractor_func = extract_with_7z elif extractor_name == ExtractorEnum.WINRAR: extractor_func = extract_with_winrar elif extractor_name == ExtractorEnum.TAR: extractor_func = extract_tar_file else: raise NotImplementedError(extractor_name) if download_properties.strip_leading_dirs is None: strip_leading_dirs_path = None else: strip_leading_dirs_path = Path(download_properties.strip_leading_dirs) extractor_func( archive_path=download_path, output_dir=output_dir / Path(download_properties.output_path), relative_to=strip_leading_dirs_path, extractors=extractors) def _add_common_args(parser): parser.add_argument( '-i', '--ini', type=Path, nargs='+', help='The downloads INI to parse for downloads. Can be specified multiple times.') parser.add_argument( '-c', '--cache', type=Path, required=True, help='Path to the directory to cache downloads.') def _retrieve_callback(args): retrieve_downloads( DownloadInfo(args.ini), args.cache, args.show_progress, args.disable_ssl_verification) try: check_downloads(DownloadInfo(args.ini), args.cache) except HashMismatchError as exc: get_logger().error('File checksum does not match: %s', exc) exit(1) def _unpack_callback(args): extractors = { ExtractorEnum.SEVENZIP: args.sevenz_path, ExtractorEnum.WINRAR: args.winrar_path, ExtractorEnum.TAR: args.tar_path, } unpack_downloads(DownloadInfo(args.ini), args.cache, args.output, extractors) def main(): """CLI Entrypoint""" parser = argparse.ArgumentParser(description=__doc__) add_common_params(parser) subparsers = parser.add_subparsers(title='Download actions', dest='action') # retrieve retrieve_parser = subparsers.add_parser( 'retrieve', help='Retrieve and check download files', description=('Retrieves and checks downloads without unpacking. ' 'The downloader will attempt to use CLI commands axel or curl. ' 'If they are not present, Python\'s urllib will be used. However, only ' 'the CLI-based downloaders can be resumed if the download is aborted.')) _add_common_args(retrieve_parser) retrieve_parser.add_argument( '--hide-progress-bar', action='store_false', dest='show_progress', help='Hide the download progress.') retrieve_parser.add_argument( '--disable-ssl-verification', action='store_true', help='Disables certification verification for downloads using HTTPS.') retrieve_parser.set_defaults(callback=_retrieve_callback) # unpack unpack_parser = subparsers.add_parser( 'unpack', help='Unpack download files', description='Verifies hashes of and unpacks download files into the specified directory.') _add_common_args(unpack_parser) unpack_parser.add_argument( '--tar-path', default='tar', help=('(Linux and macOS only) Command or path to the BSD or GNU tar ' 'binary for extraction. Default: %(default)s')) unpack_parser.add_argument( '--7z-path', dest='sevenz_path', default=USE_REGISTRY, help=('Command or path to 7-Zip\'s "7z" binary. If "_use_registry" is ' 'specified, determine the path from the registry. Default: %(default)s')) unpack_parser.add_argument( '--winrar-path', dest='winrar_path', default=USE_REGISTRY, help=('Command or path to WinRAR\'s "winrar" binary. If "_use_registry" is ' 'specified, determine the path from the registry. Default: %(default)s')) unpack_parser.add_argument('output', type=Path, help='The directory to unpack to.') unpack_parser.set_defaults(callback=_unpack_callback) args = parser.parse_args() args.callback(args) if __name__ == '__main__': main() ```
{ "source": "23rd/youtube-dl", "score": 2 }
#### File: youtube_dl/extractor/stitcher.py ```python from __future__ import unicode_literals from .common import InfoExtractor from ..compat import compat_str from ..utils import ( clean_html, ExtractorError, int_or_none, str_or_none, try_get, url_or_none, ) class StitcherBaseIE(InfoExtractor): _VALID_URL_BASE = r'https?://(?:www\.)?stitcher\.com/(?:podcast|show)/' def _call_api(self, path, video_id, query): resp = self._download_json( 'https://api.prod.stitcher.com/' + path, video_id, query=query) error_massage = try_get(resp, lambda x: x['errors'][0]['message']) if error_massage: raise ExtractorError(error_massage, expected=True) return resp['data'] def _extract_description(self, data): return clean_html(data.get('html_description') or data.get('description')) def _extract_audio_url(self, episode): return url_or_none(episode.get('audio_url') or episode.get('guid')) def _extract_show_info(self, show): return { 'thumbnail': show.get('image_base_url'), 'series': show.get('title'), } def _extract_episode(self, episode, audio_url, show_info): info = { 'id': compat_str(episode['id']), 'display_id': episode.get('slug'), 'title': episode['title'].strip(), 'description': self._extract_description(episode), 'duration': int_or_none(episode.get('duration')), 'url': audio_url, 'vcodec': 'none', 'timestamp': int_or_none(episode.get('date_published')), 'season_number': int_or_none(episode.get('season')), 'season_id': str_or_none(episode.get('season_id')), } info.update(show_info) return info class StitcherIE(StitcherBaseIE): _VALID_URL = StitcherBaseIE._VALID_URL_BASE + r'(?:[^/]+/)+e(?:pisode)?/(?:[^/#?&]+-)?(?P<id>\d+)' _TESTS = [{ 'url': 'http://www.stitcher.com/podcast/the-talking-machines/e/40789481?autoplay=true', 'md5': 'e9635098e0da10b21a0e2b85585530f6', 'info_dict': { 'id': '40789481', 'ext': 'mp3', 'title': 'Machine Learning Mastery and Cancer Clusters', 'description': 'md5:547adb4081864be114ae3831b4c2b42f', 'duration': 1604, 'thumbnail': r're:^https?://.*\.jpg', 'upload_date': '20151008', 'timestamp': 1444285800, 'series': 'Talking Machines', }, }, { 'url': 'http://www.stitcher.com/podcast/panoply/vulture-tv/e/the-rare-hourlong-comedy-plus-40846275?autoplay=true', 'info_dict': { 'id': '40846275', 'display_id': 'the-rare-hourlong-comedy-plus', 'ext': 'mp3', 'title': "The CW's 'Crazy Ex-Girlfriend'", 'description': 'md5:04f1e2f98eb3f5cbb094cea0f9e19b17', 'duration': 2235, 'thumbnail': r're:^https?://.*\.jpg', }, 'params': { 'skip_download': True, }, 'skip': 'Page Not Found', }, { # escaped title 'url': 'http://www.stitcher.com/podcast/marketplace-on-stitcher/e/40910226?autoplay=true', 'only_matching': True, }, { 'url': 'http://www.stitcher.com/podcast/panoply/getting-in/e/episode-2a-how-many-extracurriculars-should-i-have-40876278?autoplay=true', 'only_matching': True, }, { 'url': 'https://www.stitcher.com/show/threedom/episode/circles-on-a-stick-200212584', 'only_matching': True, }] def _real_extract(self, url): audio_id = self._match_id(url) data = self._call_api( 'shows/episodes', audio_id, {'episode_ids': audio_id}) episode = data['episodes'][0] audio_url = self._extract_audio_url(episode) if not audio_url: self.raise_login_required() show = try_get(data, lambda x: x['shows'][0], dict) or {} return self._extract_episode( episode, audio_url, self._extract_show_info(show)) class StitcherShowIE(StitcherBaseIE): _VALID_URL = StitcherBaseIE._VALID_URL_BASE + r'(?P<id>[^/#?&]+)/?(?:[?#&]|$)' _TESTS = [{ 'url': 'http://www.stitcher.com/podcast/the-talking-machines', 'info_dict': { 'id': 'the-talking-machines', 'title': 'Talking Machines', 'description': 'md5:831f0995e40f26c10231af39cf1ebf0b', }, 'playlist_mincount': 106, }, { 'url': 'https://www.stitcher.com/show/the-talking-machines', 'only_matching': True, }] def _real_extract(self, url): show_slug = self._match_id(url) data = self._call_api( 'search/show/%s/allEpisodes' % show_slug, show_slug, {'count': 10000}) show = try_get(data, lambda x: x['shows'][0], dict) or {} show_info = self._extract_show_info(show) entries = [] for episode in (data.get('episodes') or []): audio_url = self._extract_audio_url(episode) if not audio_url: continue entries.append(self._extract_episode(episode, audio_url, show_info)) return self.playlist_result( entries, show_slug, show.get('title'), self._extract_description(show)) ```
{ "source": "23subbhashit/Command-Line-Interface", "score": 3 }
#### File: Command-Line-Interface/Python/UDP.py ```python import sys from struct import * import socket, networking, textwrap def main(): #Creating raw socket to accept data packets from all ports s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.ntohs(3)) while True: #Getting raw data and addr raw_data, addr = s.recvfrom(65535) #Getting the Ethernet Header eth = eth_head(raw_data) print('Frame :-') print('Destination: {}, Source: {}, Protocol: {}'.format(eth[0], eth[1], eth[2])) #Checks for IPV4 packets if eth[2] == 8: ipv4 = ipv4_header(eth[3]) print('\t - ' + 'IPV4 Packet: ') print('\t\t - ' + 'Version: {}, Header Length: {}, TTL: {}'.format(ipv4[0], ipv4[1], ipv4[2])) print('\t\t - ' + 'Protocol: {}, Source: {}, Target: {}'.format(ipv4[3], ipv4[4], ipv4[5])) #Displaying the UDP data if ipv4[3] == 17: udp = udp_head(ipv4[6]) print('\t - ' + 'UDP Segment:') print('\t\t - ' + 'Source Port: {}, Destination Port: {}, Length: {}'.format(udp[0], udp[1], udp[2])) #Function for getting ethernet Header by passing the raw data packet def eth_head(raw_data): #unpacks ethernet header dest, src, prototype = unpack('! 6s 6s H', raw_data[:14]) dest_mac = get_mac_addr(dest) src_mac = get_mac_addr(src) proto = socket.htons(prototype) data = raw_data[14:] return dest_mac, src_mac, proto, data #Function for unpacking ip header def ipv4_header(raw_data): #Unpacking the ipv4 header version_head_len = raw_data[0] version = version_head_len >> 4 head_len = (version_head_len & 15) * 4 ttl, proto, src, target = unpack('! 8x B B 2x 4s 4s', raw_data[:20]) data = raw_data[head_len:] src = get_ip(src) target = get_ip(target) return version, head_len, ttl, proto, src, target, data #Function for unpacking UDP header def udp_head(raw_data): src_port, dest_port, size = unpack('! H H 2x H', raw_data[:8]) data = raw_data[8:] return src_port, dest_port, size, data #Returns mac address def get_mac_addr(mac_raw): byte_str = map('{:02x}'.format, mac_raw) mac_addr = ':'.join(byte_str).upper() return mac_addr #Returns a proper IP address def get_ip(addr): return '.'.join(map(str,addr)) #Main function to run program main() ```
{ "source": "23subbhashit/Virtual-pen", "score": 3 }
#### File: 23subbhashit/Virtual-pen/draw.py ```python import cv2 import numpy as np class drawingCanvas(): def __init__(self): self.penrange = np.load('penrange.npy') self.cap = cv2.VideoCapture(0) self.canvas = None self.x1,self.y1=0,0 self.val=1 self.draw() def draw(self): while True: _, self.frame = self.cap.read() self.frame = cv2.flip( self.frame,+1) if self.canvas is None: self.canvas = np.zeros_like(self.frame) mask=self.CreateMask() contours=self.ContourDetect(mask) self.drawLine(contours) self.display() k = cv2.waitKey(1) & 0xFF self.takeAction(k) if k == 27: break def CreateMask(self): hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV) lower_range = self.penrange[0] upper_range = self.penrange[1] mask = cv2.inRange(hsv, lower_range, upper_range) return mask def ContourDetect(self,mask): contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) return contours def drawLine(self,contours): if contours and cv2.contourArea(max(contours, key = cv2.contourArea)) > 100: c = max(contours, key = cv2.contourArea) x2,y2,w,h = cv2.boundingRect(c) if self.x1 == 0 and self.y1 == 0: self.x1,self.y1= x2,y2 else: self.canvas = cv2.line(self.canvas, (self.x1,self.y1),(x2,y2), [255*self.val,0,0], 10) self.x1,self.y1= x2,y2 else: self.x1,self.y1 =0,0 def display(self): self.frame = cv2.add(self.frame,self.canvas) cv2.imshow('frame',self.frame) cv2.imshow('canvas',self.canvas) def takeAction(self,k): # When c is pressed clear the entire canvas if k == ord('c'): self.canvas = None #press e to change between eraser mode and writing mode if k==ord('e'): self.val= int(not self.val) if __name__ == '__main__': drawingCanvas() cv2.destroyAllWindows() ```
{ "source": "23subbhashit/Voice-assistant", "score": 3 }
#### File: 23subbhashit/Voice-assistant/assistant.py ```python import speech_recognition as sr import re import wikipedia from pyowm import OWM import webbrowser import subprocess import smtplib import random from datetime import datetime from selenium import webdriver from selenium.webdriver.common.keys import Keys from bs4 import BeautifulSoup as soup import urllib.request r=sr.Recognizer() #for speech recognition greet_in= ("hello", "hi", "greetings", "sup", "what's up","hey") greet_out= ["hi", "hey", "*nods*", "hi there", "hello", "I am glad! You are talking to me"] def greeting(sentence): for word in sentence.split(): if word.lower() in greet_in: return random.choice(greet_out) with sr.Microphone() as source: print("say something...") audio=r.listen(source) try: text=r.recognize_google(audio) print("you said::",text) except: print("translation failed:.") if 'tell me about' in text: #To know about something exp= re.search('tell me about (.*)',text) try: if exp: topic = exp.group(1) ny = wikipedia.page(topic) print(ny.content[:500]) except Exception as e: pass elif 'current weather' in text: #To know the current weather exp = re.search('current weather in (.*)',text) if exp: city = exp.group(1) API_key = '' #API key has to be generated owm = OWM(API_key) obs = owm.weather_at_place(city) w = obs.get_weather() k = w.get_status() x = w.get_temperature(unit='celsius') print("city:",city) print("Temprature:",k) print("max:",x["temp_max"]) elif "open" in text: #To open a url exp=re.search("open (.*)",text) if exp: d=exp.group(1) print(d) url = 'https://www.' + d+".com" webbrowser.open(url) print("website is opened") else: pass elif text.lower() in greet_in: #Greet a=greeting(text.lower()) print(a) elif 'launch' in text: #To open an app in your system exp= re.search('launch (.*)', text) if exp: appname = exp.group(1) appname1 = appname+".exe" subprocess.Popen(["open", "-n", "/Applications/" + appname1], stdout=subprocess.PIPE) elif 'time' in text: #Shows the current time now = datetime.now() print('Current time is %d hours %d minutes' % (now.hour, now.minute)) elif 'email' in text: #To email someone sender=input("Please enter your email :") receiver=input("Please enter receiver's email") password=input("<PASSWORD>") print('What should I say to him?') with sr.Microphone() as source: print("content") b=r.listen(source) try: content=r.recognize_google(audio) print("content is :",content) except: print("translation failed:.") mail = smtplib.SMTP('smtp.gmail.com', 587) mail.ehlo() mail.starttls() mail.login(sender,password) mail.sendmail(sender,receiver,content) mail.close() print('Email has been sent successfuly. You can check your inbox.') elif 'Google' in text: #To search anything in google exp=re.search('search in Google (.*)',text) if exp: query=exp.group(1) print(query) browser = webdriver.Chrome() browser.get('http://www.google.com') search = browser.find_element_by_name('q') search.send_keys(query) search.send_keys(Keys.RETURN) elif "song" in text: exp=re.search("play me song (.*)",text) #To play a song in youtube if exp: song=exp.group(1) print(song) mysong = song if mysong: flag = 0 url = "https://www.youtube.com/results?search_query=" + mysong.replace(' ', '+') response = urllib.request.urlopen(url) html = response.read() soup1 = soup(html,"lxml") url_list = [] for vid in soup1.findAll(attrs={'class':'yt-uix-tile-link'}): if ('https://www.youtube.com' + vid['href']).startswith("https://www.youtube.com/watch?v="): flag = 1 final_url = 'https://www.youtube.com' + vid['href'] url_list.append(final_url) url = url_list[1] webbrowser.open(url) if flag == 0: print('I have not found anything in Youtube ') ```
{ "source": "23tareyg/neural-networks-and-deep-learning", "score": 3 }
#### File: neural-networks-and-deep-learning/tensorflow/titanic.py ```python from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf import logging logger = tf.get_logger() logger.setLevel(logging.ERROR) import numpy as np import pandas as pd import matplotlib.pyplot as plt import tensorflow.compat.v2.feature_column as fc import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #Load Data dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') # training data dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') # testing data y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: vocabulary = dftrain[feature_name].unique() # gets a list of all unique values from given feature column feature_columns.append(tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) # Input function def make_input_fn(data_df, label_df, num_epochs=10, shuffle=True, batch_size=32): def input_function(): # inner function, this will be returned ds = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df)) # create tf.data.Dataset object with data and its label if shuffle: ds = ds.shuffle(1000) # randomize order of data ds = ds.batch(batch_size).repeat(num_epochs) # split dataset into batches of 32 and repeat process for number of epochs return ds # return a batch of the dataset return input_function # return a function object for use train_input_fn = make_input_fn(dftrain, y_train) # here we will call the input_function that was returned to us to get a dataset object we can feed to the model eval_input_fn = make_input_fn(dfeval, y_eval, num_epochs=1, shuffle=False) linear_est = tf.estimator.LinearClassifier(feature_columns=feature_columns) linear_est.train(train_input_fn) # train result = list(linear_est.predict(eval_input_fn)) print(dfeval.loc[8]) print(y_eval.loc[8]) print(result[8]['probabilities'][1]) ```
{ "source": "23tyagit/NeuraHealth", "score": 2 }
#### File: app/gui/patient_level_model.py ```python import numpy as np import pandas as pd import regex as re import itertools import sklearn.metrics as sk from functools import reduce import pickle def feature_engineering(notes): data = [] seq_count = len(notes) if (seq_count <= 11): seq_count = 0 elif (seq_count <= 23): seq_count = 1 elif (seq_count <= 45): seq_count =2 else: seq_count = 3 p_yes = len(notes[notes["pred"] == 2]) / len(notes) p_no = len(notes[notes["pred"] == 0]) / len(notes) p_ntr = len(notes[notes["pred"] == 1]) / len(notes) curr_dict = { "percent_yes" : p_yes, "percent_no" : p_no, "percent_neither" : p_ntr, "sequence_count" : seq_count, } data.append(curr_dict) patient_level_features = pd.DataFrame(data) return patient_level_features def run_patient_level(notes): patient_level_features = feature_engineering(notes) model = pickle.load(open(r"C:\Users\tanis\OneDrive - Phillips Exeter Academy\Data\Programming\APOE-SLAT\Web-Tool\app\gui\static\lr_12_26_patient_level.sav", "rb")) pred = model.predict(patient_level_features) proba = model.predict_proba(patient_level_features) proba = str(proba) proba = re.sub("\s+", ",", proba.strip()) print("proba:" , proba) patient_level_features["pred"] = pred patient_level_features["proba"] = str(proba) return patient_level_features ```
{ "source": "23W/Labs", "score": 3 }
#### File: SS/L3/lab3_part2.py ```python import os import pandas import matplotlib.pyplot as plt, numpy as np def wetCounties(years, top_limit): # read data df = pandas.read_csv('precipitation.csv') # rename indices df = df.set_index(df['Country or Area']) df.drop(['Country or Area'], axis="columns", inplace=True) #slice years df = df[years] # add SUM column and sort by descending order df["SUM"] = df.sum(axis=1) sorted_df = df.sort_values(by="SUM", ascending=False) # Wettest countries tops_sum = sorted_df[0:top_limit] tops = sorted_df[years][0:top_limit] # Output: Wettest countries years_title = "[{}..{}]".format(years[0], years[-1]) if len(years)>1 else str(years[0]) title = "Top {} wettest countries in {}".format(top_limit, years_title) with open("./output/top{}wettest{}_data.txt".format(top_limit, years_title), 'w') as f: print(title, file=f) print(tops, file=f) with open("./output/top{}wettest{}_sum.txt".format(top_limit, years_title), 'w') as f: print(title, file=f) print(tops_sum["SUM"], file=f) # Graph: Top wettest countries if len(years)>1: tops_t = tops.transpose() plt.figure(figsize=(10,8)) plt.title(title) plt.xlabel("Years") plt.ylabel("Precipitation (million cubic meters)") plt.plot(tops_t, marker="o", linestyle="-") plt.savefig("./output/top{}wettest{}_graph.png".format(top_limit, years_title)) # Chart: Top wettest countries if top_limit>1: title = "Comparision chart of top {} wettest countries in {}".format(top_limit, years_title) tops_sums = tops_sum["SUM"] plt.figure(figsize=(10,8)) plt.axis("equal") plt.title(title, y=1.08) plt.pie(tops_sums, labels=tops_sums.index, autopct="%1.2f%%", radius=1.25) plt.savefig("./output/top{}wettest{}_comp_chart.png".format(top_limit, years_title)) title = "Full chart of top {} wettest countries in {}".format(top_limit, years_title) tops_sums["Other"] = sorted_df["SUM"][top_limit:].sum() plt.figure(figsize=(10,8)) plt.axis("equal") plt.title(title, y=1.08) plt.pie(tops_sums, labels=tops_sums.index, autopct="%1.2f%%", radius=1.25) plt.savefig("./output/top{}wettest{}_other_chart.png".format(top_limit, years_title)) # Main if not os.path.exists('output'): os.makedirs('output') range1 = ["1990"] # range [1990...1990] range2 = ["{:d}".format(x) for x in range(1995, 2010)] # range [1995...2010) wetCounties(range1, 5) wetCounties(range2, 5) ```
{ "source": "240325184/KubeOperator", "score": 2 }
#### File: api/ansible_api/inventory.py ```python from .ansible.inventory import BaseInventory __all__ = [ 'AdHocInventory', 'LocalModelInventory' ] class AdHocInventory(BaseInventory): """ JMS Inventory is the manager with jumpserver assets, so you can write you own manager, construct you inventory_obj """ def __init__(self, assets, nodes=None, run_as_admin=False, run_as=None, become_info=None, vars=None): """ :param assets: ["uuid1", ] :param run_as_admin: True 是否使用管理用户去执行, 每台服务器的管理用户可能不同 :param run_as: 是否统一使用某个系统用户去执行 :param become_info: 是否become成某个用户去执行 """ self.assets = assets or [] self.nodes = nodes or [] self.run_as_admin = run_as_admin self.run_as = run_as self.become_info = become_info self.vars = vars or {} hosts, groups = self.parse_resource() super().__init__(host_list=hosts, group_list=groups) def parse_resource(self): assets = self.get_all_assets() hosts = [] nodes = set() groups = [] for asset in assets: info = self.convert_to_ansible(asset) hosts.append(info) nodes.update(set(asset.nodes.all())) if self.become_info: for host in hosts: host.update(self.become_info) for node in nodes: groups.append({ 'name': node.value, 'children': [n.value for n in node.get_children()] }) return hosts, groups def get_all_assets(self): assets = set(self.assets) for node in self.nodes: _assets = set(node.get_all_assets()) assets.update(_assets) return assets def convert_to_ansible(self, asset): info = { 'id': asset.id, 'hostname': asset.hostname, 'ip': asset.ip, 'port': asset.port, 'vars': dict(), 'groups': [], } if asset.domain and asset.domain.has_gateway(): info["vars"].update(self.make_proxy_command(asset)) if self.run_as_admin: info.update(asset.get_auth_info()) if self.run_as: info.update(self.get_run_user_info(asset)) for node in asset.nodes.all(): info["groups"].append(node.value) for label in asset.labels.all(): info["vars"].update({ label.name: label.value }) info["groups"].append("{}:{}".format(label.name, label.value)) if asset.domain: info["vars"].update({ "domain": asset.domain.name, }) info["groups"].append("domain_" + asset.domain.name) for k, v in self.vars.items(): if not k.startswith('__'): info['vars'].update({ k: v }) host_vars = self.vars.get("__{}".format(asset.id), {}) for k, v in host_vars.items(): info['vars'].update({ k: v }) return info def get_run_user_info(self, asset): info = self.run_as.get_auth(asset)._to_secret_json() return info @staticmethod def make_proxy_command(asset): gateway = asset.domain.random_gateway() proxy_command_list = [ "ssh", "-p", str(gateway.port), "{}@{}".format(gateway.username, gateway.ip), "-W", "%h:%p", "-q", ] if gateway.password: proxy_command_list.insert( 0, "sshpass -p {}".format(gateway.password) ) if gateway.private_key: proxy_command_list.append("-i {}".format(gateway.private_key_file)) proxy_command = "'-o ProxyCommand={}'".format( " ".join(proxy_command_list) ) return {"ansible_ssh_common_args": proxy_command} class JMSInventory(BaseInventory): system = object() def __init__(self, nodes, vars=None): """ :param nodes: {"node": {"asset": set(user1, user2)}} :param vars: """ self.nodes = nodes or {} self.vars = vars or {} host_list, group_list = self.parse_resource() super().__init__(host_list, group_list) @classmethod def from_json(cls, data): host_list = data.get('host_list', []) group_list = data.get('group_list', []) super().__init__(host_list, group_list) def parse_all_hosts(self): host_list = [] for assets in self.nodes.values(): for asset in assets: _vars = { 'ansible_ssh_host': asset.ip, 'ansible_ssh_port': asset.port, } if asset.domain and asset.domain.has_gateway(): _vars.update(self.make_proxy_command(asset)) for k, v in self.vars.items(): if not k.startswith('__'): _vars.update({ k: v }) host_vars = self.vars.get("__{}".format(asset.hostname), {}) for k, v in host_vars.items(): _vars.update({ k: v }) host_list.append({ 'hostname': asset.hostname, 'vars': _vars }) return host_list def parse_label(self): pass def parse_users(self): pass def parse_resource(self): """ host_list: [{ "hostname": "", "vars": {}, }, ] group_list: [{ "name": "", "hosts": ["",], "children": ["",], "vars": {} },] :return: host_list, group_list """ host_list = self.parse_all_hosts() group_list = [] return host_list, group_list @staticmethod def get_run_user_info(user, asset): info = user.get_auth(asset)._to_secret_json() return info @staticmethod def make_proxy_command(asset): gateway = asset.domain.random_gateway() proxy_command_list = [ "ssh", "-p", str(gateway.port), "{}@{}".format(gateway.username, gateway.ip), "-W", "%h:%p", "-q", ] if gateway.password: proxy_command_list.insert( 0, "sshpass -p {}".format(gateway.password) ) if gateway.private_key: proxy_command_list.append("-i {}".format(gateway.private_key_file)) proxy_command = "'-o ProxyCommand={}'".format( " ".join(proxy_command_list) ) return {"ansible_ssh_common_args": proxy_command} class LocalModelInventory(BaseInventory): def __init__(self, inventory): """ :param inventory: .models Inventory Object """ self.inventory = inventory data = self.parse_resource() super().__init__(data) def parse_resource(self): groups = self._parse_groups() hosts = self._parse_hosts() return {'hosts': hosts, 'groups': groups} def _parse_hosts(self): hosts = [] _hosts = set(self.inventory.hosts) for group in self.inventory.groups: _hosts.update(set(group.hosts.all())) for host in _hosts: _vars = host.vars or {} _vars.update({ 'ansible_ssh_host': host.ip or host.name, 'ansible_ssh_port': host.port or 22, 'ansible_ssh_user': host.username, 'ansible_ssh_pass': <PASSWORD>, 'ansible_ssh_private_key_file': host.private_key_path }) hosts.append({ 'hostname': host.name, 'vars': _vars }) return hosts def _parse_groups(self): groups = [] for group in self.inventory.groups: groups.append({ 'name': group.name, 'vars': group.vars or {}, 'hosts': group.hosts.all().values_list('name', flat=True), 'children': group.children.all().values_list('name', flat=True) }) return groups class WithHostInfoInventory(BaseInventory): def __init__(self, inventory_data): self.inventory_data = inventory_data data = self.parse_resource() super().__init__(data) def parse_resource(self): groups = self._parse_groups() hosts = self._parse_hosts() return {'hosts': hosts, 'groups': groups} def _parse_hosts(self): hosts = [] _hosts = self.inventory_data.get('hosts', []) for host in _hosts: _vars = host.get('vars', {}) _vars.update({ 'ansible_ssh_host': host.get('ip') or host['name'], 'ansible_ssh_port': host.get('port') or 22, 'ansible_ssh_user': host.get('username'), 'ansible_ssh_pass': <PASSWORD>('password'), 'ansible_ssh_private_key_file': host.get('private_key_path') }) hosts.append({ 'hostname': host['name'], 'vars': _vars }) return hosts def _parse_groups(self): groups = [] for group in self.inventory_data.get('groups', []): groups.append({ 'name': group.get('name'), 'vars': group.get('vars', {}), 'hosts': group.get('hosts', []), 'children': group.get('children', []) }) return groups ``` #### File: ansible_api/models/mixins.py ```python import uuid from django.db import models from django.utils.translation import ugettext_lazy as _ from common import models as common_models from celery_api.utils import get_celery_task_log_path from ..ctx import current_project, set_current_project class ProjectResourceManager(models.Manager): def get_queryset(self): queryset = super(ProjectResourceManager, self).get_queryset() if not current_project: return queryset if current_project.is_real(): queryset = queryset.filter(project=current_project.id) return queryset def create(self, **kwargs): if 'project' not in kwargs and current_project.is_real(): kwargs['project'] = current_project._get_current_object() return super().create(**kwargs) def all(self): if current_project: return super().all() else: return self def set_current_org(self, project): set_current_project(project) return self class AbstractProjectResourceModel(models.Model): id = models.UUIDField(default=uuid.uuid4, primary_key=True) project = models.ForeignKey('Project', on_delete=models.CASCADE) objects = ProjectResourceManager() name = 'Not-Sure' class Meta: abstract = True def __str__(self): return '{}: {}'.format(self.project, self.name) def save(self, force_insert=False, force_update=False, using=None, update_fields=None): if not hasattr(self, 'project') and current_project.is_real(): self.project = current_project._get_current_object() return super().save(force_insert=force_insert, force_update=force_update, using=using, update_fields=update_fields) class AbstractExecutionModel(models.Model): STATE_PENDING = 'PENDING' STATE_STARTED = 'STARTED' STATE_FAILURE = 'FAILURE' STATE_SUCCESS = 'SUCCESS' STATE_RETRY = 'RETRY' STATUS_CHOICES = ( (STATE_PENDING, _('Pending')), (STATE_STARTED, _('Started')), (STATE_SUCCESS, _('Success')), (STATE_FAILURE, _('Failure')), (STATE_RETRY, _('Retry')), ) timedelta = models.FloatField(default=0.0, verbose_name=_('Time'), null=True) state = models.CharField(choices=STATUS_CHOICES, default=STATE_PENDING, max_length=16) num = models.IntegerField(default=1) result_summary = common_models.JsonDictTextField(blank=True, null=True, default={}, verbose_name=_('Result summary')) result_raw = common_models.JsonDictTextField(blank=True, null=True, default={}, verbose_name=_('Result raw')) date_created = models.DateTimeField(auto_now_add=True, null=True, verbose_name=_('Create time')) date_start = models.DateTimeField(null=True, verbose_name=_('Start time')) date_end = models.DateTimeField(null=True, verbose_name=_('End time')) class Meta: abstract = True @property def stdout(self): with open(self.log_path, 'r') as f: data = f.read() return data @property def success_hosts(self): return self.result_summary.get('contacted', []) if self.result_summary else [] @property def failed_hosts(self): return self.result_summary.get('dark', {}) if self.result_summary else [] @property def log_path(self): return get_celery_task_log_path(self.id) ``` #### File: ansible_api/models/project.py ```python import os import uuid from django.utils.translation import ugettext_lazy as _ from django.db import models from django.conf import settings from common import models as common_models from .inventory import Inventory from ..ansible import BaseInventory from ..ctx import set_current_project __all__ = ['Project'] class Project(models.Model): id = models.UUIDField(default=uuid.uuid4, primary_key=True) name = models.SlugField(max_length=128, allow_unicode=True, unique=True, verbose_name=_('Name')) # Run full_options, ex: forks, options = common_models.JsonCharField(max_length=1024, blank=True, null=True, verbose_name=_('Run options')) comment = models.CharField(max_length=128, blank=True, null=True, verbose_name=_("Comment")) meta = common_models.JsonDictTextField(blank=True, null=True) created_by = models.CharField(max_length=128, blank=True, null=True, default='') date_created = models.DateTimeField(auto_now_add=True) __root_id = '00000000-0000-0000-0000-000000000000' __public_id = '00000000-0000-0000-0000-000000000001' def __str__(self): return self.name @property def inventory(self): return Inventory(self.host_set.all(), self.group_set.all()) @property def inventory_file_path(self): return os.path.join(self.project_dir, 'hosts.yaml') def refresh_inventory_file(self): with open(self.inventory_file_path, 'w') as f: f.write(self.inventory.get_data(fmt='yaml')) @property def roles_dir(self): roles_dir = os.path.join(self.project_dir, 'roles') if not os.path.isdir(roles_dir): os.makedirs(roles_dir, exist_ok=True) return roles_dir @property def project_dir(self): project_dir = os.path.join(settings.ANSIBLE_PROJECTS_DIR, self.name) if not os.path.isdir(project_dir): os.makedirs(project_dir, exist_ok=True) return project_dir @property def playbooks_dir(self): playbooks_dir = os.path.join(self.project_dir, 'playbooks') if not os.path.isdir(playbooks_dir): os.makedirs(playbooks_dir, exist_ok=True) return playbooks_dir @property def adhoc_dir(self): adhoc_dir = os.path.join(self.project_dir, 'adhoc') if not os.path.isdir(adhoc_dir): os.makedirs(adhoc_dir, exist_ok=True) return adhoc_dir @classmethod def root_project(cls): return cls(id=cls.__root_id, name='ROOT') @classmethod def public_project(cls): return cls(id=cls.__public_id, name='Public') def is_real(self): return self.id not in [self.__root_id, self.__public_id] @property def inventory_obj(self): return self.inventory.as_object() def get_inventory_data(self): return self.inventory.get_data(fmt='py') def change_to(self): set_current_project(self) def clear_inventory(self): self.group_set.all().delete() self.host_set.all().delete() @property def cleaned_options(self): options = self.options or {} options['roles_path'] = [self.roles_dir] return options @staticmethod def test_inventory(): data = { "hosts": [ { "hostname": "192.168.244.128", "vars": { "ansible_ssh_user": "root", "ansible_ssh_pass": "<PASSWORD>" } }, { "hostname": "gaga", "vars": { "ansible_ssh_host": "192.168.1.1" } } ], "groups": [ {"name": "apache", "hosts": ["gaga"]}, {"name": "web", "hosts": ["192.168.244.128"], "vars": {"hello": "world"}, "children": ["apache"]}, ] } return data @classmethod def get_test_inventory(cls): return BaseInventory(cls.test_inventory()) ``` #### File: ansible_api/models/role.py ```python from collections import OrderedDict import os import git from django.db import models from django.conf import settings from django.utils.translation import ugettext_lazy as _ from common import models as common_models from .mixins import AbstractProjectResourceModel from .utils import name_validator from ..ansible.galaxy import MyGalaxyRole, MyGalaxyAPI __all__ = ['Role'] class Role(AbstractProjectResourceModel): STATE_NOT_INSTALL = 'uninstalled' STATE_INSTALLED = 'installed' STATE_INSTALLING = 'installing' STATE_FAILED = 'failed' STATE_CHOICES = ( (STATE_NOT_INSTALL, 'UnInstalled'), (STATE_INSTALLED, 'Installed'), (STATE_INSTALLING, 'Installing'), (STATE_FAILED, 'Failed') ) TYPE_GIT = 'git' TYPE_HTTP = 'http' TYPE_GALAXY = 'galaxy' TYPE_FILE = 'file' TYPE_CHOICES = ( (TYPE_GALAXY, 'galaxy'), (TYPE_GIT, 'git'), (TYPE_HTTP, 'http'), (TYPE_FILE, 'file'), ) name = models.CharField(max_length=128, validators=[name_validator]) type = models.CharField(max_length=16, choices=TYPE_CHOICES, default=TYPE_GALAXY) comment = models.CharField(max_length=1024, blank=True, verbose_name=_("Comment")) galaxy_name = models.CharField(max_length=128, blank=True, null=True) git = common_models.JsonDictCharField(max_length=4096, default={'repo': '', 'branch': 'master'}) url = models.CharField(max_length=1024, verbose_name=_("Url"), blank=True) logo = models.ImageField(verbose_name='Logo', upload_to="logo", null=True) categories = models.CharField(max_length=256, verbose_name=_("Tags"), blank=True) version = models.CharField(max_length=1024, blank=True, default='master') state = models.CharField(default=STATE_NOT_INSTALL, choices=STATE_CHOICES, max_length=16) meta = common_models.JsonDictTextField(verbose_name=_("Meta"), blank=True) meta_ext = common_models.JsonDictTextField(verbose_name=_("Meta Ext"), blank=True) created_by = models.CharField(max_length=128, blank=True, null=True, default='') date_created = models.DateTimeField(auto_now_add=True) date_updated = models.DateTimeField(auto_now=True) class Meta: unique_together = ('name', 'project') def __str__(self): return self.name def delete(self, using=None, keep_parents=False): role = MyGalaxyRole(self.name, path=self.project.roles_dir) role.remove() return super().delete(using=using, keep_parents=keep_parents) @property def _role(self): role = MyGalaxyRole(self.name, path=self.project.roles_dir) return role @property def variables(self): return self._role.default_variables @property def role_dir(self): return os.path.join(self.project.roles_dir, self.name) @property def meta_all(self): meta = OrderedDict([ ('name', self.name), ('version', self.version), ('comment', self.comment), ('state', self.get_state_display()), ('url', self.url), ('type', self.type), ('categories', self.categories), ]) if isinstance(self.meta, dict): meta.update(self.meta) if isinstance(self.meta_ext, dict): meta.update(self.meta_ext) meta.pop('readme', None) meta.pop('readme_html', None) galaxy_info = meta.pop('galaxy_info', {}) for k, v in galaxy_info.items(): if k == 'platforms': v = ' '.join([i['name']+str(i['versions']) for i in v]) meta[k] = v return meta def install_from_galaxy(self): api = MyGalaxyAPI() role = MyGalaxyRole(self.galaxy_name, path=self.project.roles_dir) success, error = role.install() if success: self.comment = api.lookup_role_by_name(self.galaxy_name)['description'] self.url = api.role_git_url(self.galaxy_name) self.version = role.version self.meta = role.metadata categories = '' if self.meta and self.meta['galaxy_info'].get('categories'): categories = self.meta['galaxy_info']['categories'] elif self.meta and self.meta['galaxy_info'].get('galaxy_tags'): categories = self.meta['galaxy_info']['galaxy_tags'] self.categories = ','.join(categories) if isinstance(categories, list) else str(categories) os.rename(os.path.join(self.project.roles_dir, self.galaxy_name), self.role_dir) return success, error def install_from_git(self): success, error = True, None if not self.git.get('repo'): success = False error = 'Not repo get' return success, error print("Install playbook from: {}".format(self.git.get('repo'))) try: if os.path.isdir(os.path.join(self.role_dir, '.git')): repo = git.Repo(self.role_dir) remote = repo.remote() remote.pull() else: git.Repo.clone_from( self.git['repo'], self.role_dir, branch=self.git.get('branch'), depth=1, ) except Exception as e: success = False error = e return success, error def install(self): self.state = self.STATE_INSTALLING if self.type == self.TYPE_GALAXY: success, err = self.install_from_galaxy() elif self.type == self.TYPE_GIT: success, err = self.install_from_git() else: success = False err = Exception("From {}, using other function".format(self.type)) if success: self.state = self.STATE_INSTALLED else: self.state = self.STATE_FAILED self.save() return success, err def uninstall(self): role = MyGalaxyRole(self.name, path=self.project.roles_dir) role.remove() @property def logo_url(self): default = settings.STATIC_URL + "ansible/img/role_logo_default.png" if self.logo: return self.logo.url return default ``` #### File: ansible_api/serializers/adhoc.py ```python from rest_framework import serializers from django.shortcuts import reverse from ..models import AdHoc, AdHocExecution from .mixins import ProjectSerializerMixin __all__ = [ 'AdHocReadSerializer', 'AdHocSerializer', 'AdHocExecutionSerializer', ] class AdHocReadSerializer(serializers.ModelSerializer): args = serializers.JSONField(required=False, allow_null=True) result = serializers.JSONField(read_only=True) summary = serializers.JSONField(read_only=True) class Meta: model = AdHoc fields = [ 'id', 'pattern', 'module', 'args', 'project', 'summary', 'result' ] read_only_fields = ( 'id', 'created_by', ) class AdHocSerializer(AdHocReadSerializer, ProjectSerializerMixin): pass class AdHocExecutionSerializer(serializers.ModelSerializer, ProjectSerializerMixin): result_summary = serializers.JSONField(read_only=True) log_url = serializers.SerializerMethodField() log_ws_url = serializers.SerializerMethodField() class Meta: model = AdHocExecution fields = [ 'id', 'num', 'state', 'timedelta', 'log_url', 'log_ws_url', 'result_summary', 'date_created', 'date_start', 'date_end', 'adhoc', 'project' ] read_only_fields = [ 'id', 'num', 'state', 'timedelta', 'log_url', 'log_ws_url', 'result_summary', 'date_created', 'date_start', 'date_end', 'project' ] @staticmethod def get_log_url(obj): return reverse('celery-api:task-log-api', kwargs={'pk': obj.id}) @staticmethod def get_log_ws_url(obj): return '/ws/tasks/{}/log/'.format(obj.id) ``` #### File: api/ansible_api/signal_handlers.py ```python import logging import uuid from django.dispatch import receiver from django.db.models.signals import pre_delete, post_save, post_delete from django.utils import timezone from celery import current_task from .models import Playbook, Role, PlaybookExecution from .signals import pre_execution_start, post_execution_start logger = logging.getLogger(__file__) @receiver(post_save, sender=Playbook) def on_playbook_create_or_update(sender, instance, created, **kwargs): if instance.is_periodic and instance.is_active: if created: instance.create_period_task() else: instance.disable_period_task() @receiver(pre_delete, sender=Playbook) def on_playbook_delete(sender, instance, **kwargs): instance.cleanup() @receiver(post_save, sender=Role) def on_role_create_or_update(sender, instance, created, **kwargs): from .tasks import install_role if created: install_role.delay(instance.id) @receiver(pre_execution_start) def on_execution_start(sender, execution, **kwargs): execution.date_start = timezone.now() execution.state = execution.STATE_STARTED execution.save() @receiver(post_execution_start) def on_execution_end(sender, execution, result, **kwargs): date_finished = timezone.now() timedelta = (timezone.now() - execution.date_start).seconds state = execution.STATE_FAILURE if result.get('summary', {}).get("success", False): state = execution.STATE_SUCCESS execution.result_summary = result.get('summary', {}) execution.result_raw = result.get('raw', {}) execution.state = state execution.date_finished = date_finished execution.timedelta = timedelta execution.save() ``` #### File: api/celery_api/logger.py ```python from logging import StreamHandler from django.conf import settings from celery import current_task from celery.signals import task_prerun, task_postrun from kombu import Connection, Exchange, Queue, Producer from kombu.mixins import ConsumerMixin from .utils import get_celery_task_log_path routing_key = 'celery_log' celery_log_exchange = Exchange('celery_log_exchange', type='direct') celery_log_queue = [Queue('celery_log', celery_log_exchange, routing_key=routing_key)] class CeleryLoggerConsumer(ConsumerMixin): def __init__(self): self.connection = Connection(settings.CELERY_LOG_BROKER_URL) def get_consumers(self, Consumer, channel): return [Consumer(queues=celery_log_queue, accept=['pickle', 'json'], callbacks=[self.process_task]) ] def handle_task_start(self, task_id, message): pass def handle_task_end(self, task_id, message): pass def handle_task_log(self, task_id, msg, message): pass def process_task(self, body, message): action = body.get('action') task_id = body.get('task_id') msg = body.get('msg') if action == CeleryLoggerProducer.ACTION_TASK_LOG: self.handle_task_log(task_id, msg, message) elif action == CeleryLoggerProducer.ACTION_TASK_START: self.handle_task_start(task_id, message) elif action == CeleryLoggerProducer.ACTION_TASK_END: self.handle_task_end(task_id, message) class CeleryLoggerProducer: ACTION_TASK_START, ACTION_TASK_LOG, ACTION_TASK_END = range(3) def __init__(self): self.connection = Connection(settings.CELERY_LOG_BROKER_URL) @property def producer(self): return Producer(self.connection) def publish(self, payload): self.producer.publish( payload, serializer='json', exchange=celery_log_exchange, declare=[celery_log_exchange], routing_key=routing_key ) def log(self, task_id, msg): payload = {'task_id': task_id, 'msg': msg, 'action': self.ACTION_TASK_LOG} return self.publish(payload) def read(self): pass def flush(self): pass def task_end(self, task_id): payload = {'task_id': task_id, 'action': self.ACTION_TASK_END} return self.publish(payload) def task_start(self, task_id): payload = {'task_id': task_id, 'action': self.ACTION_TASK_START} return self.publish(payload) class CeleryTaskLoggerHandler(StreamHandler): terminator = '\r\n' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) task_prerun.connect(self.on_task_start) task_postrun.connect(self.on_start_end) @staticmethod def get_current_task_id(): if not current_task: return task_id = current_task.request.root_id return task_id def on_task_start(self, sender, task_id, **kwargs): return self.handle_task_start(task_id) def on_start_end(self, sender, task_id, **kwargs): return self.handle_task_end(task_id) def after_task_publish(self, sender, body, **kwargs): pass def emit(self, record): task_id = self.get_current_task_id() if not task_id: return try: self.write_task_log(task_id, record) self.flush() except Exception: self.handleError(record) def write_task_log(self, task_id, msg): pass def handle_task_start(self, task_id): pass def handle_task_end(self, task_id): pass class CeleryTaskMQLoggerHandler(CeleryTaskLoggerHandler): def __init__(self): self.producer = CeleryLoggerProducer() super().__init__(stream=None) def write_task_log(self, task_id, record): msg = self.format(record) self.producer.log(task_id, msg) def flush(self): self.producer.flush() class CeleryTaskFileHandler(CeleryTaskLoggerHandler): def __init__(self): self.f = None super().__init__(stream=None) def emit(self, record): msg = self.format(record) if not self.f: return self.f.write(msg) self.f.write(self.terminator) self.flush() def flush(self): self.f and self.f.flush() def handle_task_start(self, task_id): log_path = get_celery_task_log_path(task_id) self.f = open(log_path, 'a') def handle_task_end(self, task_id): self.f and self.f.close() ``` #### File: api/cloud_provider/signal_handlers.py ```python from django.db.models.signals import m2m_changed, post_save, pre_save from django.dispatch import receiver from cloud_provider.models import Region, Zone @receiver(post_save, sender=Region) def on_region_save(sender, instance=None, created=True, **kwargs): if created: instance.on_region_create() @receiver(post_save, sender=Zone) def on_zone_save(sender, instance=None, created=True, **kwargs): if created: instance.on_zone_create() ``` #### File: api/common/utils.py ```python import os import copy import tarfile import zipfile import gzip import paramiko from io import StringIO from itsdangerous import TimedJSONWebSignatureSerializer, \ JSONWebSignatureSerializer, BadSignature, SignatureExpired from django.conf import settings def get_object_or_none(model, **kwargs): try: obj = model.objects.get(**kwargs) except model.DoesNotExist: return None return obj def shadow_key(iterable, key=None, remove=False): data_dump = copy.deepcopy(iterable) if isinstance(iterable, dict): for k, v in data_dump.items(): if isinstance(key, (str, tuple)) and k == key or key(k): if remove: del iterable[k] else: iterable[k] = "******" if isinstance(v, (list, tuple, dict)): iterable[k] = shadow_key(v, key=key) elif isinstance(iterable, (list, tuple)): for item in data_dump: iterable.remove(item) iterable.append(shadow_key(item, key=key)) return iterable class Singleton(type): def __init__(cls, *args, **kwargs): cls.__instance = None super().__init__(*args, **kwargs) def __call__(cls, *args, **kwargs): if cls.__instance is None: cls.__instance = super().__call__(*args, **kwargs) return cls.__instance else: return cls.__instance class Signer(metaclass=Singleton): """用来加密,解密,和基于时间戳的方式验证token""" def __init__(self, secret_key=None): self.secret_key = secret_key def sign(self, value): s = JSONWebSignatureSerializer(self.secret_key) return s.dumps(value).decode() def unsign(self, value): if value is None: return value s = JSONWebSignatureSerializer(self.secret_key) try: return s.loads(value) except BadSignature: return {} def sign_t(self, value, expires_in=3600): s = TimedJSONWebSignatureSerializer(self.secret_key, expires_in=expires_in) return str(s.dumps(value), encoding="utf8") def unsign_t(self, value): s = TimedJSONWebSignatureSerializer(self.secret_key) try: return s.loads(value) except (BadSignature, SignatureExpired): return {} def get_signer(): signer = Signer(settings.SECRET_KEY) return signer def uncompress_tar(src_file, dest_dir): try: tar = tarfile.open(src_file) names = tar.getnames() for name in names: tar.extract(name, dest_dir) tar.close() except Exception as e: return False, e def uncompress_zip(src_file, dest_dir): try: zip_file = zipfile.ZipFile(src_file) for names in zip_file.namelist(): zip_file.extract(names, dest_dir) zip_file.close() except Exception as e: return False, e def uncompress_gz(src_file, dest_dir): try: f_name = dest_dir + '/' + os.path.basename(src_file) # 获取文件的名称,去掉 g_file = gzip.GzipFile(src_file) # 创建gzip对象 open(f_name, "w+").write(g_file.read()) g_file.close() except Exception as e: return False, e def ssh_key_string_to_obj(text, password=None): key = None try: key = paramiko.RSAKey.from_private_key(StringIO(text), password=password) except paramiko.SSHException: pass try: key = paramiko.DSSKey.from_private_key(StringIO(text), password=password) except paramiko.SSHException: pass return key ``` #### File: api/kubeops_api/components.py ```python from kubeops_api.models.setting import Setting http_prefix = 'http://' https_prefix = 'https://' def get_component_urls(cluster): urls = {} app_url = cluster.get_config("APP_DOMAIN").get('value') if app_url: urls = { "grafana": http_prefix + "grafana." + app_url, "prometheus": http_prefix + "prometheus." + app_url, "registry-ui": http_prefix + "registry-ui." + app_url, "dashboard": https_prefix + "dashboard." + app_url, "traefik": http_prefix + "traefik." + app_url, "scope": http_prefix + "scope.weave." + app_url, "ceph": http_prefix + "ceph." + app_url } return urls ``` #### File: kubeops_api/migrations/0040_auto_20191104_1009.py ```python from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('kubeops_api', '0039_dns'), ] def forwards_func(apps, schema_editor): DNS = apps.get_model("kubeops_api", "DNS") db_alias = schema_editor.connection.alias DNS.objects.using(db_alias).create(dns1="172.16.58.3", dns2="8.8.8.8") def reverse_func(apps, schema_editor): DNS = apps.get_model("kubeops_api", "DNS") db_alias = schema_editor.connection.alias for dns in DNS.objects.using(db_alias).all(): dns.delete() operations = [ migrations.RunPython(forwards_func, reverse_func), ] ``` #### File: kubeops_api/models/package.py ```python import os import threading import uuid import yaml from django.db import models from common.models import JsonTextField from django.utils.translation import ugettext_lazy as _ from fit2ansible.settings import PACKAGE_DIR from kubeops_api.package_manage import * logger = logging.getLogger('kubeops') __all__ = ['Package'] class Package(models.Model): id = models.UUIDField(default=uuid.uuid4, primary_key=True) name = models.CharField(max_length=20, unique=True, verbose_name=_('Name')) meta = JsonTextField(blank=True, null=True, verbose_name=_('Meta')) date_created = models.DateTimeField(auto_now_add=True, verbose_name=_('Date created')) packages_dir = PACKAGE_DIR def __str__(self): return self.name class Meta: verbose_name = _('Package') @property def path(self): return os.path.join(self.packages_dir, self.name) @property def repo_port(self): return self.meta['vars']['repo_port'] @property def registry_port(self): return self.meta['vars']['registry_port'] @classmethod def lookup(cls): logger.info('lookup package...') for d in os.listdir(cls.packages_dir): full_path = os.path.join(cls.packages_dir, d) meta_path = os.path.join(full_path, 'meta.yml') if not os.path.isdir(full_path) or not os.path.isfile(meta_path): continue with open(meta_path) as f: metadata = yaml.load(f) defaults = {'name': d, 'meta': metadata} logger.info('save package {}...'.format(d)) instance = cls.objects.update_or_create(defaults=defaults, name=d)[0] thread = threading.Thread(target=cls.start_container(instance)) thread.start() @classmethod def start_container(cls, package): if not is_package_container_exists(package.name): create_package_container(package) return if not is_package_container_start(package.name): start_package_container(package) ``` #### File: users/migrations/0001_create_user.py ```python from django.contrib.auth.hashers import make_password from django.db import migrations, models def add_default_admin(apps, schema_editor): user_model = apps.get_model("auth", "User") db_alias = schema_editor.connection.alias user_model.objects.using(db_alias).create( username="admin", email="<EMAIL>", password=make_password("<PASSWORD>"), is_superuser=True, is_staff=True ) class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0008_alter_user_username_max_length'), ] operations = [ migrations.RunPython(add_default_admin), ] ```
{ "source": "2429581027/local-geometric-guided", "score": 2 }
#### File: local-geometric-guided/models/DeepFit_pcp.py ```python import sys import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data import numpy as np import torch.nn.functional as F import normal_estimation_utils import ThreeDmFVNet def fit_Wjet(points, weights, order=2, compute_neighbor_normals=False): """ Fit a "n-jet" (n-order truncated Taylor expansion) to a point clouds with weighted points. We assume that PCA was performed on the points beforehand. To do a classic jet fit input weights as a one vector. :param points: xyz points coordinates :param weights: weight vector (weight per point) :param order: n-order of the jet :param compute_neighbor_normals: bool flag to compute neighboring point normal vector :return: beta: polynomial coefficients :return: n_est: normal estimation :return: neighbor_normals: analytically computed normals of neighboring points """ neighbor_normals = None batch_size, D, n_points = points.shape # compute the vandermonde matrix x = points[:, 0, :].unsqueeze(-1) y = points[:, 1, :].unsqueeze(-1) z = points[:, 2, :].unsqueeze(-1) weights = weights.unsqueeze(-1) # handle zero weights - if all weights are zero set them to 1 valid_count = torch.sum(weights > 1e-3, dim=1) w_vector = torch.where(valid_count > 18, weights.view(batch_size, -1), torch.ones_like(weights, requires_grad=True).view(batch_size, -1)).unsqueeze(-1) if order > 1: #pre conditioning h = (torch.mean(torch.abs(x), 1) + torch.mean(torch.abs(y), 1)) / 2 # absolute value added from https://github.com/CGAL/cgal/blob/b9e320659e41c255d82642d03739150779f19575/Jet_fitting_3/include/CGAL/Monge_via_jet_fitting.h # h = torch.mean(torch.sqrt(x*x + y*y), dim=2) idx = torch.abs(h) < 0.0001 h[idx] = 0.1 # h = 0.1 * torch.ones(batch_size, 1, device=points.device) x = x / h.unsqueeze(-1).repeat(1, n_points, 1) y = y / h.unsqueeze(-1).repeat(1, n_points, 1) if order == 1: A = torch.cat([x, y, torch.ones_like(x)], dim=2) elif order == 2: A = torch.cat([x, y, x * x, y * y, x * y, torch.ones_like(x)], dim=2) h_2 = h * h D_inv = torch.diag_embed(1/torch.cat([h, h, h_2, h_2, h_2, torch.ones_like(h)], dim=1)) elif order == 3: y_2 = y * y x_2 = x * x xy = x * y A = torch.cat([x, y, x_2, y_2, xy, x_2 * x, y_2 * y, x_2 * y, y_2 * x, torch.ones_like(x)], dim=2) h_2 = h * h h_3 = h_2 * h D_inv = torch.diag_embed(1/torch.cat([h, h, h_2, h_2, h_2, h_3, h_3, h_3, h_3, torch.ones_like(h)], dim=1)) elif order == 4: y_2 = y * y x_2 = x * x x_3 = x_2 * x y_3 = y_2 * y xy = x * y A = torch.cat([x, y, x_2, y_2, xy, x_3, y_3, x_2 * y, y_2 * x, x_3 * x, y_3 * y, x_3 * y, y_3 * x, y_2 * x_2, torch.ones_like(x)], dim=2) h_2 = h * h h_3 = h_2 * h h_4 = h_3 * h D_inv = torch.diag_embed(1/torch.cat([h, h, h_2, h_2, h_2, h_3, h_3, h_3, h_3, h_4, h_4, h_4, h_4, h_4, torch.ones_like(h)], dim=1)) else: raise ValueError("Polynomial order unsupported, please use 1 or 2 ") XtX = torch.matmul(A.permute(0, 2, 1), w_vector * A) XtY = torch.matmul(A.permute(0, 2, 1), w_vector * z) beta = solve_linear_system(XtX, XtY, sub_batch_size=16) if order > 1: #remove preconditioning beta = torch.matmul(D_inv, beta) n_est = torch.nn.functional.normalize(torch.cat([-beta[:, 0:2].squeeze(-1), torch.ones(batch_size, 1, device=x.device, dtype=beta.dtype)], dim=1), p=2, dim=1) if compute_neighbor_normals: beta_ = beta.squeeze().unsqueeze(1).repeat(1, n_points, 1).unsqueeze(-1) if order == 1: neighbor_normals = n_est.unsqueeze(1).repeat(1, n_points, 1) elif order == 2: neighbor_normals = torch.nn.functional.normalize( torch.cat([-(beta_[:, :, 0] + 2 * beta_[:, :, 2] * x + beta_[:, :, 4] * y), -(beta_[:, :, 1] + 2 * beta_[:, :, 3] * y + beta_[:, :, 4] * x), torch.ones(batch_size, n_points, 1, device=x.device)], dim=2), p=2, dim=2) elif order == 3: neighbor_normals = torch.nn.functional.normalize( torch.cat([-(beta_[:, :, 0] + 2 * beta_[:, :, 2] * x + beta_[:, :, 4] * y + 3 * beta_[:, :, 5] * x_2 + 2 *beta_[:, :, 7] * xy + beta_[:, :, 8] * y_2), -(beta_[:, :, 1] + 2 * beta_[:, :, 3] * y + beta_[:, :, 4] * x + 3 * beta_[:, :, 6] * y_2 + beta_[:, :, 7] * x_2 + 2 * beta_[:, :, 8] * xy), torch.ones(batch_size, n_points, 1, device=x.device)], dim=2), p=2, dim=2) elif order == 4: # [x, y, x_2, y_2, xy, x_3, y_3, x_2 * y, y_2 * x, x_3 * x, y_3 * y, x_3 * y, y_3 * x, y_2 * x_2 neighbor_normals = torch.nn.functional.normalize( torch.cat([-(beta_[:, :, 0] + 2 * beta_[:, :, 2] * x + beta_[:, :, 4] * y + 3 * beta_[:, :, 5] * x_2 + 2 * beta_[:, :, 7] * xy + beta_[:, :, 8] * y_2 + 4 * beta_[:, :, 9] * x_3 + 3 * beta_[:, :, 11] * x_2 * y + beta_[:, :, 12] * y_3 + 2 * beta_[:, :, 13] * y_2 * x), -(beta_[:, :, 1] + 2 * beta_[:, :, 3] * y + beta_[:, :, 4] * x + 3 * beta_[:, :, 6] * y_2 + beta_[:, :, 7] * x_2 + 2 * beta_[:, :, 8] * xy + 4 * beta_[:, :, 10] * y_3 + beta_[:, :, 11] * x_3 + 3 * beta_[:, :, 12] * x * y_2 + 2 * beta_[:, :, 13] * y * x_2), torch.ones(batch_size, n_points, 1, device=x.device)], dim=2), p=2, dim=2) return beta.squeeze(), n_est, neighbor_normals def solve_linear_system(XtX, XtY, sub_batch_size=None): """ Solve linear system of equations. use sub batches to avoid MAGMA bug :param XtX: matrix of the coefficients :param XtY: vector of the :param sub_batch_size: size of mini mini batch to avoid MAGMA error, if None - uses the entire batch :return: """ if sub_batch_size is None: sub_batch_size = XtX.size(0) n_iterations = int(XtX.size(0) / sub_batch_size) assert sub_batch_size%sub_batch_size == 0, "batch size should be a factor of {}".format(sub_batch_size) beta = torch.zeros_like(XtY) n_elements = XtX.shape[2] for i in range(n_iterations): try: L = torch.cholesky(XtX[sub_batch_size * i:sub_batch_size * (i + 1), ...], upper=False) beta[sub_batch_size * i:sub_batch_size * (i + 1), ...] = \ torch.cholesky_solve(XtY[sub_batch_size * i:sub_batch_size * (i + 1), ...], L, upper=False) except: # # add noise to diagonal for cases where XtX is low rank eps = torch.normal(torch.zeros(sub_batch_size, n_elements, device=XtX.device), 0.01 * torch.ones(sub_batch_size, n_elements, device=XtX.device)) eps = torch.diag_embed(torch.abs(eps)) XtX[sub_batch_size * i:sub_batch_size * (i + 1), ...] = \ XtX[sub_batch_size * i:sub_batch_size * (i + 1), ...] + \ eps * XtX[sub_batch_size * i:sub_batch_size * (i + 1), ...] try: L = torch.cholesky(XtX[sub_batch_size * i:sub_batch_size * (i + 1), ...], upper=False) beta[sub_batch_size * i:sub_batch_size * (i + 1), ...] = \ torch.cholesky_solve(XtY[sub_batch_size * i:sub_batch_size * (i + 1), ...], L, upper=False) except: beta[sub_batch_size * i:sub_batch_size * (i + 1), ...], _ =\ torch.solve(XtY[sub_batch_size * i:sub_batch_size * (i + 1), ...], XtX[sub_batch_size * i:sub_batch_size * (i + 1), ...]) return beta class PointNetFeatures(nn.Module): def __init__(self, num_points=500, num_scales=1, use_point_stn=False, use_feat_stn=False, point_tuple=1, sym_op='max'): super(PointNetFeatures, self).__init__() self.num_points=num_points self.point_tuple=point_tuple self.sym_op = sym_op self.use_point_stn = use_point_stn self.use_feat_stn = use_feat_stn self.num_scales=num_scales self.conv1 = torch.nn.Conv1d(21, 64, 1) self.conv2 = torch.nn.Conv1d(64, 64, 1) self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(64) if self.use_point_stn: # self.stn1 = STN(num_scales=self.num_scales, num_points=num_points, dim=3, sym_op=self.sym_op) self.stn1 = QSTN(num_scales=self.num_scales, num_points=num_points*self.point_tuple, dim=3, sym_op=self.sym_op) if self.use_feat_stn: self.stn2 = STN(num_scales=self.num_scales, num_points=num_points, dim=64, sym_op=self.sym_op) def forward(self, x): n_pts = x.size()[2] points = x[: , 0:3, :] features = x[: , 3: , :] # input transform if self.use_point_stn: # from tuples to list of single points points = points.view(points.size(0), 3, -1) trans = self.stn1(points) points = points.transpose(2, 1) points = torch.bmm(points, trans) points = points.transpose(2, 1) points = points.contiguous().view(points.size(0), 3 * self.point_tuple, -1) else: trans = None x = torch.cat((points, features) , 1) x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) # feature transform if self.use_feat_stn: trans2 = self.stn2(x) x = x.transpose(2, 1) x = torch.bmm(x, trans2) x = x.transpose(2, 1) else: trans2 = None return x, trans, trans2, points class PointNetEncoder(nn.Module): def __init__(self, num_points=500, num_scales=1, use_point_stn=False, use_feat_stn=False, point_tuple=1, sym_op='max'): super(PointNetEncoder, self).__init__() self.pointfeat = PointNetFeatures(num_points=num_points, num_scales=num_scales, use_point_stn=use_point_stn, use_feat_stn=use_feat_stn, point_tuple=point_tuple, sym_op=sym_op) self.num_points=num_points self.point_tuple=point_tuple self.sym_op = sym_op self.use_point_stn = use_point_stn self.use_feat_stn = use_feat_stn self.num_scales=num_scales self.conv2 = torch.nn.Conv1d(64, 128, 1) self.conv3 = torch.nn.Conv1d(128, 1024, 1) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(1024) def forward(self, pts_feas): n_pts = pts_feas.size()[2] pointfeat, trans, trans2, points = self.pointfeat(pts_feas) x = F.relu(self.bn2(self.conv2(pointfeat))) x = self.bn3(self.conv3(x)) global_feature = torch.max(x, 2, keepdim=True)[0] x = global_feature.view(-1, 1024, 1).repeat(1, 1, n_pts) return torch.cat([x, pointfeat], 1), global_feature.squeeze(), trans, trans2, points class PointNet3DmFVEncoder(nn.Module): def __init__(self, num_points=500, num_scales=1, use_point_stn=False, use_feat_stn=False, point_tuple=1, sym_op='max', n_gaussians=5): super(PointNet3DmFVEncoder, self).__init__() self.num_points = num_points self.point_tuple = point_tuple self.sym_op = sym_op self.use_point_stn = use_point_stn self.use_feat_stn = use_feat_stn self.num_scales = num_scales self.pointfeat = PointNetFeatures(num_points=num_points, num_scales=num_scales, use_point_stn=use_point_stn, use_feat_stn=use_feat_stn, point_tuple=point_tuple, sym_op=sym_op) self.n_gaussians = n_gaussians self.gmm = ThreeDmFVNet.get_3d_grid_gmm(subdivisions=[self.n_gaussians, self.n_gaussians, self.n_gaussians], variance=np.sqrt(1.0 / self.n_gaussians)) def forward(self, x): points = x n_pts = x.size()[2] pointfeat, trans, trans2, points = self.pointfeat(points) global_feature = ThreeDmFVNet.get_3DmFV_pytorch(points.permute([0, 2, 1]), self.gmm.weights_, self.gmm.means_, np.sqrt(self.gmm.covariances_), normalize=True) global_feature = torch.flatten(global_feature, start_dim=1) x = global_feature.unsqueeze(-1).repeat(1, 1, n_pts) return torch.cat([x, pointfeat], 1), global_feature.squeeze(), trans, trans2, points class DeepFit(nn.Module): def __init__(self, k=1, num_points=500, use_point_stn=False, use_feat_stn=False, point_tuple=1, sym_op='max', arch=None, n_gaussians=5, jet_order=2, weight_mode="tanh", use_consistency=False): super(DeepFit, self).__init__() self.k = k # k is the number of weights per point e.g. 1 self.num_points=num_points self.point_tuple = point_tuple if arch == '3dmfv': self.n_gaussians = n_gaussians # change later to get this as input self.feat = PointNet3DmFVEncoder(num_points=num_points, use_point_stn=use_point_stn, use_feat_stn=use_feat_stn, point_tuple=point_tuple, sym_op=sym_op, n_gaussians= self.n_gaussians ) feature_dim = self.n_gaussians * self.n_gaussians * self.n_gaussians * 20 + 64 else: self.feat = PointNetEncoder(num_points=num_points, use_point_stn=use_point_stn, use_feat_stn=use_feat_stn, point_tuple=point_tuple, sym_op=sym_op) feature_dim = 1024 + 64 self.conv1 = nn.Conv1d(feature_dim, 512, 1) self.conv2 = nn.Conv1d(512, 256, 1) self.conv3 = nn.Conv1d(256, 128, 1) self.conv4 = nn.Conv1d(128, self.k, 1) self.bn1 = nn.BatchNorm1d(512) self.bn2 = nn.BatchNorm1d(256) self.bn3 = nn.BatchNorm1d(128) self.conv5 = nn.Conv1d(3, 64, 1) self.conv6 = nn.Conv1d(64, 128, 1) self.fc1 = nn.Linear(128, 64, 1) self.fc2 = nn.Linear(64, 3, 1) self.bn5 = nn.BatchNorm1d(64) self.bn6 = nn.BatchNorm1d(128) self.bnfc1 = nn.BatchNorm1d(64) self.jet_order = jet_order self.weight_mode = weight_mode self.compute_neighbor_normals = use_consistency self.do = torch.nn.Dropout(0.25) def forward(self, pts_feas): x, _, trans, trans2, points = self.feat(pts_feas) x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) # point weight estimation. if self.weight_mode == "softmax": x = F.softmax(self.conv4(x)) weights = 0.01 + x # add epsilon for numerical robustness elif self.weight_mode =="tanh": x = torch.tanh(self.conv4(x)) weights = (0.01 + torch.ones_like(x) + x) / 2.0 # learn the residual->weights start at 1 elif self.weight_mode =="sigmoid": weights = 0.01 + torch.sigmoid(self.conv4(x)) beta, normal, neighbor_normals = fit_Wjet(points, weights.squeeze(), order=self.jet_order, compute_neighbor_normals=self.compute_neighbor_normals) points = torch.mul(points, weights) x = F.relu(self.bn5(self.conv5(points))) x = F.relu(self.bn6(self.conv6(x))) x = torch.max(x, 2, keepdim=True)[0] #n_pts = x.size()[2] #x_g = global_feature.view(-1, 128, 1).repeat(1, 1, n_pts) #x = torch.cat([x_g, x], 1) x = F.relu(self.bnfc1(self.fc1(x.squeeze(-1)))) normal_final = self.fc2(x) #normal_final_len = torch.max(normal_final.new_tensor([sys.float_info.epsilon*100]), normal_final.norm(p=2, dim=1, keepdim=True)) #normal_final = normal_final / normal_final_len return normal_final, normal, beta.squeeze(), weights.squeeze(), trans, trans2, neighbor_normals class STN(nn.Module): def __init__(self, num_scales=1, num_points=500, dim=3, sym_op='max'): super(STN, self).__init__() self.dim = dim self.sym_op = sym_op self.num_scales = num_scales self.num_points = num_points self.conv1 = torch.nn.Conv1d(self.dim, 64, 1) self.conv2 = torch.nn.Conv1d(64, 128, 1) self.conv3 = torch.nn.Conv1d(128, 1024, 1) self.mp1 = torch.nn.MaxPool1d(num_points) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, self.dim*self.dim) self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(1024) self.bn4 = nn.BatchNorm1d(512) self.bn5 = nn.BatchNorm1d(256) if self.num_scales > 1: self.fc0 = nn.Linear(1024*self.num_scales, 1024) self.bn0 = nn.BatchNorm1d(1024) def forward(self, x): batchsize = x.size()[0] x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) # symmetric operation over all points if self.num_scales == 1: x = self.mp1(x) else: x_scales = x.new_empty(x.size(0), 1024*self.num_scales, 1) for s in range(self.num_scales): x_scales[:, s*1024:(s+1)*1024, :] = self.mp1(x[:, :, s*self.num_points:(s+1)*self.num_points]) x = x_scales x = x.view(-1, 1024*self.num_scales) if self.num_scales > 1: x = F.relu(self.bn0(self.fc0(x))) x = F.relu(self.bn4(self.fc1(x))) x = F.relu(self.bn5(self.fc2(x))) x = self.fc3(x) iden = torch.eye(self.dim, dtype=x.dtype, device=x.device).view(1, self.dim*self.dim).repeat(batchsize, 1) x = x + iden x = x.view(-1, self.dim, self.dim) return x class QSTN(nn.Module): def __init__(self, num_scales=1, num_points=500, dim=3, sym_op='max'): super(QSTN, self).__init__() self.dim = dim self.sym_op = sym_op self.num_scales = num_scales self.num_points = num_points self.conv1 = torch.nn.Conv1d(self.dim, 64, 1) self.conv2 = torch.nn.Conv1d(64, 128, 1) self.conv3 = torch.nn.Conv1d(128, 1024, 1) self.mp1 = torch.nn.MaxPool1d(num_points) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 4) self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(1024) self.bn4 = nn.BatchNorm1d(512) self.bn5 = nn.BatchNorm1d(256) if self.num_scales > 1: self.fc0 = nn.Linear(1024*self.num_scales, 1024) self.bn0 = nn.BatchNorm1d(1024) def forward(self, x): batchsize = x.size()[0] x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) # symmetric operation over all points if self.num_scales == 1: x = self.mp1(x) else: x_scales = x.new_empty(x.size(0), 1024*self.num_scales, 1) for s in range(self.num_scales): x_scales[:, s*1024:(s+1)*1024, :] = self.mp1(x[:, :, s*self.num_points:(s+1)*self.num_points]) x = x_scales x = x.view(-1, 1024*self.num_scales) if self.num_scales > 1: x = F.relu(self.bn0(self.fc0(x))) x = F.relu(self.bn4(self.fc1(x))) x = F.relu(self.bn5(self.fc2(x))) x = self.fc3(x) # add identity quaternion (so the network can output 0 to leave the point cloud identical) iden = x.new_tensor([1, 0, 0, 0]) x = x + iden # convert quaternion to rotation matrix x = normal_estimation_utils.batch_quat_to_rotmat(x) return x def compute_principal_curvatures(beta): """ given the jet coefficients, compute the principal curvatures and principal directions: the eigenvalues and eigenvectors of the weingarten matrix :param beta: batch of Jet coefficients vector :return: k1, k2, dir1, dir2: batch of principal curvatures and principal directions """ with torch.no_grad(): if beta.shape[1] < 5: raise ValueError("Can't compute curvatures for jet with order less than 2") else: b1_2 = torch.pow(beta[:, 0], 2) b2_2 = torch.pow(beta[:, 1], 2) #first fundemental form E = (1 + b1_2).view(-1, 1, 1) G = (1 + b2_2).view(-1, 1, 1) F = (beta[:, 1] * beta[:, 0]).view(-1, 1, 1) I = torch.cat([torch.cat([E, F], dim=2), torch.cat([F, G], dim=2)], dim=1) # second fundemental form norm_N0 = torch.sqrt(b1_2 + b2_2 + 1) e = (2*beta[:, 2] / norm_N0).view(-1, 1, 1) f = (beta[:, 4] / norm_N0).view(-1, 1, 1) g = (2*beta[:, 3] / norm_N0).view(-1, 1, 1) II = torch.cat([torch.cat([e, f], dim=2), torch.cat([f, g], dim=2)], dim=1) M_weingarten = -torch.bmm(torch.inverse(I), II) curvatures, dirs = torch.symeig(M_weingarten, eigenvectors=True) #faster dirs = torch.cat([dirs, torch.zeros(dirs.shape[0], 2, 1, device=dirs.device)], dim=2) # pad zero in the normal direction return curvatures, dirs ```
{ "source": "243286065/mini_chromium", "score": 3 }
#### File: toolchain/win/manifest_wrapper.py ```python import subprocess import sys def GetEnv(arch): """Gets the saved environment from a file for a given architecture.""" # The environment is saved as an "environment block" (see CreateProcess # and msvs_emulation for details). We convert to a dict here. # Drop last 2 NULs, one for list terminator, one for trailing vs. separator. pairs = open(arch).read()[:-2].split('\0') kvs = [item.split('=', 1) for item in pairs] return dict(kvs) def main(arch, *args): """Run manifest tool with environment set. Strip out undesirable warning (some XML blocks are recognized by the OS loader, but not the manifest tool).""" env = GetEnv(arch) popen = subprocess.Popen(args, shell=True, env=env, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) out, _ = popen.communicate() for line in out.splitlines(): if line and 'manifest authoring warning 81010002' not in line: print(line) return popen.returncode if __name__ == '__main__': sys.exit(main(*sys.argv[1:])) ```
{ "source": "2435191/Ludwig-Ahgren-Subathon-OCR", "score": 2 }
#### File: Ludwig-Ahgren-Subathon-OCR/src/downloader.py ```python import concurrent.futures as cf import os import sys import time from math import ceil from queue import Queue from threading import Lock, Thread import cv2 import pafy import pandas from src.image_processing import LudFrame, TimeStringParsingError, CroppedOcrError from src.utils import seconds_to_string class LudVideo(): def __init__(self, url, dest, min_res=360, crop_left=0, crop_right=1, record_ims=False): assert crop_left < crop_right self.crop_left = crop_left self.crop_right = crop_right self.record_ims = record_ims self.dest = dest self.url = url self._q = Queue(1000) self.get_frames_done = False self.video = pafy.new(self.url) self.length = self.video.length * (crop_right - crop_left) for v in self.video.videostreams: # must be mp4: https://github.com/opencv/opencv/issues/19924 if v.dimensions[1] == min_res and v.extension == 'mp4': self.stream = v break self.sample_capture = cv2.VideoCapture(self.stream.url) self.total_frames = int(self.sample_capture.get(cv2.CAP_PROP_FRAME_COUNT)) self.frames = int(self.total_frames * (crop_right - crop_left)) self.frames_offset = self.total_frames * crop_left self.fps = self.sample_capture.get(cv2.CAP_PROP_FPS) self.ms_per_frame = 1000 / self.fps self.df = pandas.read_csv(self.dest, index_col=['frame']) self.df_lock = Lock() def get_frames(self, start_frame, end_frame): frames_completed = 0 capture = cv2.VideoCapture(self.stream.url) capture.set(cv2.CAP_PROP_POS_FRAMES, start_frame) old_ms = capture.get(cv2.CAP_PROP_POS_MSEC) while frames_completed < end_frame - start_frame: check = capture.grab() if not check: break if (ms := capture.get(cv2.CAP_PROP_POS_MSEC)) // 1000 != old_ms // 1000: # no more than one queue put every second old_ms = ms if abs(ms % 1000 - 1000) < self.ms_per_frame or abs(ms % 1000) < self.ms_per_frame: _, frame = capture.retrieve() self._q.put((int(ms / 1000 * self.fps), frame)) frames_completed += 1 capture.release() def ocr_frame(self, frame): for _ in range(2): try: formatted_string = frame.get_str_from_cropped() return formatted_string except CroppedOcrError: frame.update_bbox() return "" def format_from_str(self, frame, string, recurse=False): for _ in range(2): try: ts, string = LudFrame.get_timestamp_from_str(string) return ts, string except TimeStringParsingError: frame.update_bbox() return -1, "" def process_frame(self, idx, frame): frame = LudFrame(frame, self.record_ims) raw_ocr_string = self.ocr_frame(frame) ts, string = self.format_from_str(frame, raw_ocr_string) with self.df_lock: self.df.loc[idx, :] = [seconds_to_string(idx / self.fps), ts, string] self.df.to_csv(self.dest) with self.lines_completed_lock: self.lines_completed += 1 def go(self, download_workers=3, processing_workers=2, start_frac=0): # https://stackoverflow.com/questions/41648103/how-would-i-go-about-using-concurrent-futures-and-queues-for-a-real-time-scenari with cf.ThreadPoolExecutor(max_workers=download_workers+processing_workers) as executor: self.lines_completed = self.frames * start_frac / self.fps self.lines_completed_lock = Lock() start_time = time.time() get_frames_per_fut = ceil(self.frames / download_workers) futs = [ executor.submit( self.get_frames, int( (i+start_frac) * get_frames_per_fut + self.frames_offset), int( (i+1 ) * get_frames_per_fut + self.frames_offset) ) for i in range(download_workers) ] while futs: try: done, _ = cf.wait(futs, timeout=1, return_when=cf.FIRST_COMPLETED) while not self._q.empty() and len(futs) < download_workers + processing_workers: idx, frame = self._q.get(True) futs.append(executor.submit(self.process_frame, idx, frame)) for future in done: futs.remove(future) with self.lines_completed_lock: frac_done = self.lines_completed / (self.frames / self.fps) elapsed = time.time() - start_time if frac_done != start_frac: time_remaining = round( (1 - frac_done - start_frac) * elapsed / (frac_done - start_frac) / 3600, 5 ) else: time_remaining = None os.system('clear') print( f"""frac_done == {frac_done},\ len(futs) == {len(futs)},\ self._q.qsize() == {self._q.qsize()},\ ETA == {seconds_to_string(time_remaining*3600) if time_remaining is not None else 'N/A'}""" ) except KeyboardInterrupt: break print('done') ``` #### File: Ludwig-Ahgren-Subathon-OCR/src/image_processing.py ```python from __future__ import annotations __doc__ = """ Process a single frame of the stream and get the timer value. """ import os import re from datetime import datetime from math import isclose from typing import Iterable, Optional import cv2 import numpy as np import pytesseract class CroppedOcrError(Exception): pass class TimeStringParsingError(Exception): pass class LudFrame(): TIME_REGEX = re.compile(r'(\d{1,2})[:\.]?(\d{2})[:\.]?(\d{2})') def __init__(self, arr: np.ndarray, record_ims=False, bbox=None): self.record_ims = record_ims self.img = arr self.bbox = bbox # [x, y, w, h] self.cropped = None self._write("image.png", arr) def _write(self, name, im): if self.record_ims: cv2.imwrite(os.path.join("demo_images", name), im) @classmethod def get_timestamp_from_str(cls, s: str) -> Optional[int]: cleaned = "".join(s.split()) # no whitespace res = cls.TIME_REGEX.findall(cleaned) if len(res) != 1: raise TimeStringParsingError(f"cleaned: {cleaned}") hour, minute, second = res[0] timestamp = 60 * 60 * int(hour) + 60 * int(minute) + int(second) return timestamp, ":".join(res[0]) def get_str_from_cropped(self) -> str: """ Convert a cropped image to a timestamp-convertible string. grayscale -> threshold -> filter out small shapes -> inversion -> tesseract OCR """ if self.cropped is None: raise CroppedOcrError im_size = self.cropped.shape[0] * self.cropped.shape[1] min_area_thresh = (im_size)**0.5 / 5 if min_area_thresh < 12: min_area_thresh = 4 try: grayscale = cv2.cvtColor(self.cropped, cv2.COLOR_BGR2GRAY) except cv2.error: raise CroppedOcrError self._write('grayscale.png', grayscale) thresh = 80 grayscale[grayscale < thresh] = 0 # TODO grayscale[grayscale >= thresh] = 255 black_white = grayscale self._write('black_white.png', black_white) # https://stackoverflow.com/questions/42798659/how-to-remove-small-connected-objects-using-opencv nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(black_white, connectivity=8) sizes = stats[1:, -1] filtered = np.zeros(output.shape, np.uint8) #for every component in the image, you keep it only if it's above min_size for i, size in enumerate(sizes): if size >= min_area_thresh: filtered[output == i + 1] = 255 self._write('filtered.png', filtered) inverted = cv2.bitwise_not(filtered) self._write('inverted.png', inverted) string = pytesseract.image_to_string(inverted, 'eng', config='-c tessedit_char_whitelist=0123456789:.') return string def update_bbox( self, color: Iterable[int] = [67, 12, 21], color_threshold: int = 15, max_perimeter_tolerance: float = 0.20, min_area_factor: float = 0.01, morph_close_len: int = 3, border_width: int = 5 ): """ Get the timer portion of the frame. inRange mask -> Canny edge detection -> morphological dilate to complete path -> approximate rectangular contour with large area that fits well in its bounding box -> coordinates of bounding box """ color = np.array(color) # BGR min_color, max_color = color - color_threshold, color + color_threshold mask = cv2.inRange(self.img, min_color, max_color) self._write('mask.png', mask) canny = cv2.Canny(mask, 127, 255) self._write('canny.png', canny) closed = cv2.dilate(canny, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (morph_close_len,morph_close_len))) self._write('closed.png', closed) contours, _ = cv2.findContours(closed, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) approx_contours = [cv2.approxPolyDP(c, 0.1 * cv2.arcLength(c, True), True) for c in contours] best_bounding_box = [0, 0, 0, 0] # x, y, width, height best_peri_deviance = 1.0 im_height, im_width, *_ = self.img.shape min_area = min_area_factor * im_height * im_width for cont in approx_contours: rect = cv2.boundingRect(cont) x, y, width, height = rect box_peri = cv2.arcLength(cont, True) cont_peri = 2 * width + 2 * height area = width * height if area >= min_area \ and isclose(cont_peri, box_peri, rel_tol=max_perimeter_tolerance) \ and isclose(cont_peri, box_peri, rel_tol=best_peri_deviance) \ and not isclose(width, im_width, rel_tol=0.1) \ and not isclose(height, im_height, rel_tol=0.1): best_bounding_box = rect best_peri_deviance = abs(cont_peri - box_peri) / box_peri self.bbox = best_bounding_box self.crop() return self.bbox def crop(self, bounding_box=None): bbox = bounding_box if bounding_box else self.bbox x, y, w, h = bbox self.cropped = self.img[y:y+h, x:x+w] if __name__ == '__main__': import pafy # (3, 6, 272, 157) #stream = pafy.new('https://www.youtube.com/watch?v=UzHtbjtT8hE').getbestvideo() #cap = cv2.VideoCapture(stream.url) #cap.set(1, 61320-1) #_, frame = cap.read() lf = LudFrame(cv2.imread('demo_images/image.png'), True) print(lf.update_bbox()) print(lf.get_str_from_cropped()) ```
{ "source": "2435191/marco-rubio-bible-tweets", "score": 4 }
#### File: 2435191/marco-rubio-bible-tweets/main.py ```python import twint import re import os import pandas import datetime import matplotlib.pyplot as plt import matplotlib as mpl import json # from wikipedia, map abbreviations to full bible verse names with open('verses.json') as verses_json: verses_map = json.load(verses_json) def is_bible_verse(s: str) -> bool: """ Does a text contain reference to a part of the Bible? example: is_bible_verse("text filler blah blah 1 Mark 23: 45-67 ") -> True """ re_pattern = r"((?:\d +)?[A-Za-z]+) +(\d\d?) +(\d\d?-\d\d?|\d\d?)(?: +|$)" s = s.replace(';', ' ').replace(':', ' ') res = re.findall(re_pattern, s, flags=re.IGNORECASE) return bool(res) def get_tweets() -> pandas.DataFrame: """ Get all of @marcorubio's tweets that have a Bible verse (or abbreviation) and put them in a DataFrame. """ df = pandas.DataFrame(columns=["id", "verse", "tweet", 'datetime', 'date', "link", "replies_count", "retweets_count", "likes_count"]).set_index('id') for verse in verses_map.keys(): print(verse) twint.output.clean_lists() c = twint.Config() c.Username = "marcorubio" c.Search = verse c.Filter_retweets = True c.Store_object = True twint.run.Search(c) tweets = twint.output.tweets_list for tweet in tweets: df.loc[tweet.id, :] = [ verse, tweet.tweet, tweet.datetime, tweet.datestamp, tweet.link, tweet.replies_count, tweet.retweets_count, tweet.likes_count ] df['verse_full'] = df['verse'].map(verses_map) df['is_verse'] = df['tweet'].apply(is_bible_verse) return df def get_number_tweets_for_month(ts: datetime.datetime) -> int: """ Get the total number of tweets that @marcorubio made in `ts.month`. TODO: Possibly approximate, maybe splitting into two tasks (two weeks each) would fix. """ c = twint.Config() c.Username = "marcorubio" c.Filter_retweets = True c.Since = ts.replace(day=1).strftime('%Y-%m-%d') # yeah this part's a bit janky, especially the day=2 bit. Don't know of a fix, and returns too few results otherwise c.Until = ts.replace(day=2, month=ts.month%12+1, year=ts.year+1 if ts.month==12 else None).strftime('%Y-%m-%d') c.Store_object = True twint.run.Search(c) lst = twint.output.tweets_list twint.output.clean_lists() return len(lst) def group(df: pandas.DataFrame) -> pandas.DataFrame: """ Do some cleaning operations and get the total number of tweets for each month. """ df['date'] = pandas.to_datetime(df['date']) df.reset_index(inplace=True) df = df['tweet'].groupby(df['date'].dt.to_period('M')).count().resample('M').asfreq().fillna(0).to_frame() df.index = df.index.to_timestamp() df.rename({'tweet': 'bible_tweet_count'}, axis=1, inplace=True) df['total_tweets'] = df.index.map(get_number_tweets_for_month) return df if __name__ == "__main__": if os.path.exists('data.csv'): df = pandas.read_csv('data.csv') else: df = get_tweets() df.to_csv('data.csv') grouped = group(df) grouped.to_csv('grouped.csv') ```
{ "source": "2435191/MyAutoClicker", "score": 3 }
#### File: 2435191/MyAutoClicker/AutoClicker.py ```python import rumps from pynput import mouse, keyboard class AutoClicker(rumps.App): def __init__(self): super().__init__(name="AutoClicker", icon="mouselogo.icns") default_value = 0.0 self.cps_value = AutoClicker.map_slider_to_cps(default_value) self.click_timer = rumps.Timer(lambda _ : self.mouse.click(mouse.Button.left), 1/self.cps_value) def timer_start(_): #print(rumps.timers()) self.click_timer.start() self.menu = [ rumps.MenuItem("Start", timer_start), None, "Stop key: esc", "Start key: \\", None, "cps_value", rumps.SliderMenuItem(dimensions=(180,15), callback=self.change_cps, min_value = -1, max_value=5, value=default_value), None ] self.menu["cps_value"].title = f"CPS: {self.cps_value}" self.mouse = mouse.Controller() self.check_keys() @staticmethod def map_slider_to_cps(slide_val): base = 2 if base**slide_val > 10: return int(base**slide_val) return round(base**slide_val, 2) def change_cps(self, slider): # map slider.value non-linearly to cps_value self.cps_value = AutoClicker.map_slider_to_cps(slider.value) self.menu["cps_value"].title = f"CPS: {self.cps_value}" self.click_timer.interval = 1/self.cps_value def check_keys(self): def on_press(key): if key == keyboard.Key.esc: #print("stop") for t in rumps.timers(): # just in case things get out of sync t.stop() if key == keyboard.KeyCode(char='\\'): self.click_timer.start() self.listener = keyboard.Listener( on_press = on_press ) self.listener.start() AutoClicker().run() ```
{ "source": "2435191/python-getset", "score": 3 }
#### File: python-getset/paam/__init__.py ```python from typing import Any, Callable, List from abc import ABC class _PaamBaseDescriptor(ABC): def __init__(self, obj: Any) -> None: self.is_setter = isinstance(obj, Setter) or isinstance(self, Setter) self.is_getter = isinstance(obj, Getter) or isinstance(self, Getter) self.is_deleter = isinstance(obj, Deleter) or isinstance(self, Deleter) self._obj = obj def __get__(self, owner_instance, owner_cls=None): raise ValueError( f"{owner_instance if owner_cls is None else owner_cls} is not gettable" ) def __set__(self, owner_instance, value): raise ValueError( f"{owner_instance} is not settable" ) def __delete__(self, owner_instance): raise ValueError( f"{owner_instance} is not deletable" ) class Setter(_PaamBaseDescriptor): def __set__(self, owner_instance, value): self._obj = value class Getter(_PaamBaseDescriptor): def __get__(self, owner_instance, owner_cls=None): return self._obj class Deleter(_PaamBaseDescriptor): def __delete__(self, owner_instance): del self._obj class _PropertyAccessModifierFactory: def __init__(self, cls: type) -> None: self.cls = cls def __ror__(self, other: Any) -> _PaamBaseDescriptor: if issubclass(other.__class__, _PaamBaseDescriptor): class Both(self.cls, other.__class__): pass return Both(other._obj) return self.cls(other) SET = _PropertyAccessModifierFactory(Setter) GET = _PropertyAccessModifierFactory(Getter) DEL = _PropertyAccessModifierFactory(Deleter) # read https://dev.to/mattconway1984/python-creating-instance-properties-2ej0 # for more class PaamBase: def __setattr__(self, attr_name: str, value: Any) -> None: try: attr = super().__getattribute__(attr_name) # avoid recursion this way except AttributeError: # must be "normal" attribute super().__setattr__(attr_name, value) else: if issubclass(type(attr), _PaamBaseDescriptor): attr.__set__(self, value) else: super().__setattr__(attr_name, value) # if "normal" attribute def __getattribute__(self, attr_name: str) -> Any: attr = super().__getattribute__(attr_name) if issubclass(type(attr), _PaamBaseDescriptor): return attr.__get__(self, self.__class__) return attr def __delattr__(self, attr_name: str) -> None: attr = super().__getattribute__(attr_name) if issubclass(type(attr), _PaamBaseDescriptor): attr.__delete__(self) del attr ```
{ "source": "2435191/TracerouteVisualization", "score": 2 }
#### File: 2435191/TracerouteVisualization/geolocate.py ```python import subprocess import re import threading import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation import cartopy.crs as ccrs import time import requests import json import sys, os import builtins import socket """ https://stackoverflow.com/questions/14986490/python-change-sys-stdout-print-to-custom-print-function On my mac, FuncAnimation causes a bunch of repeated diagnostic errors into stderr (not an Exception, mind you). This is a hacky solution. """ class FilterPrint(): def __init__(self): self._old_stderrr = sys.stderr def write(self, text): if text == "IllegalArgumentException: Argument must be Polygonal or LinearRing": return self._old_stderr.write(text) def flush(self): self.old_stderr.flush() sys.stderr = FilterPrint() try: url = sys.argv[1] except IndexError: url = "www.u-tokyo.ac.jp" target_ip = socket.gethostbyname(url) lat_lst = [] lon_lst = [] def get_coords_worker(ip, prev_thread): global lat_lst, lon_lst response = requests.get(f"http://ip-api.com/json/{ip}").json() if prev_thread is not None: prev_thread.join() # make sure coordinates are displayed in order if response['status'] == 'fail': return lat, lon = response['lat'], response['lon'] lat_lst.append(lat) lon_lst.append(lon) return lat, lon def plot_coords(): sp = subprocess.Popen(f"traceroute {url}", shell=True, stdout=subprocess.PIPE) threads = [] thread_ = None fail_counter = 0 while True: if sp.poll() is not None or fail_counter >= 3: break line = sp.stdout.readline().decode('utf-8') re_search = re.search('\(((?:\d+\.?)+)\)', line) if re_search is None: fail_counter += 1 continue fail_counter = 0 ip = re_search.group(1) if ip == target_ip: break t = threading.Thread(target=get_coords_worker, args=[ip, thread_], daemon=True) t.start() thread_ = t threads.append(t) print('done') anim.event_source.stop() class LowerThresholdGeodetic(ccrs.Geodetic): # make lines look smoother @property def threshold(self): return 1e3 fig = plt.figure() ax = plt.axes(projection=ccrs.Robinson()) ax.stock_img() line, = ax.plot([], [], c='black', marker='o', lw=0.5, markersize=2, transform=LowerThresholdGeodetic()) def init(): line.set_data([], []) return line, def animate(_): line.set_data(lon_lst, lat_lst) return line, t = threading.Thread(target=plot_coords, daemon=True) t.start() anim = FuncAnimation(fig, animate, init_func=init, save_count=600) #anim.save('japan.gif',writer='imagemagick',fps=20) # use imagemagick to crop plt.show() ```
{ "source": "2439905184/pyRequestTool", "score": 4 }
#### File: 2439905184/pyRequestTool/post.py ```python from urllib import response import requests import json #测试工具 domain = ""; def read_config(): file = open("config.json") json_data = json.load(file) return json_data['domain'] pass #请用phpstudy把域名修改为student 端口:1234 方便大家测试 print("请选择是否使用config.json中的配置信息, y/n") use_config = input() if use_config == "y": domain = read_config() else: print("请输入临时域名参数如: http://test:1234/") domain = input() print("是否启用附加参数, y/n") enable_param = input() if enable_param == "y": print("请输入附加参数。格式:@p 参数名 参数值 每个命令直接一个空格") print("输入完成输入 @finish 来结束设置") result_params = [] while(True): param = input() if param != "@finish": split_param = param.split(" ") print(split_param) params = {} params['param'] = split_param[1] params['value'] = split_param[2] result_params.append(params) if param == "@finish": break params_data = {} print("每一个参数") for item in result_params: print(item) key = item['param']#获取参数名 参数值 value = item['value'] #赋值最终参数 params_data[key] = item['value'] print("附加参数为:") print(params_data) response = requests.post(domain,data=params_data) print("结果") print(response.text) else: response = requests.post(domain) print(response.text) ```
{ "source": "2443391447/nonebot2", "score": 2 }
#### File: src/plugins/sjsy.py ```python from nonebot import on_keyword, on_command from nonebot.typing import T_State from nonebot.adapters.cqhttp import Message, Bot, Event # 这两个没用的别删 from nonebot.adapters.cqhttp.message import MessageSegment import requests from nonebot.permission import * from nonebot.rule import to_me from aiocqhttp.exceptions import Error as CQHttpError sheying = on_keyword({'随机摄影'}) @sheying.handle() async def main(bot: Bot, event: Event, state: T_State): msg = await downloads() try: await sheying.send(message=Message(msg)) except CQHttpError: pass async def downloads(): url = "https://yanghanwen.xyz/tu/ren.php" resp = requests.get(url).json() url_ing = resp['data'] xians = f"[CQ:image,file={url_ing}]" return xians # await xians.send("正在爬取图片,请稍后……") # await xians.send(MessageSegment.at(id) + xians + "精选摄影") ```
{ "source": "2448845600/easy_pytorch_yolov1", "score": 3 }
#### File: easy_pytorch_yolov1/data/dataset.py ```python import os import sys import os.path import random import numpy as np import torch import torch.utils.data as data import cv2 class YOLODataset(data.Dataset): image_size = 224 def __init__(self, root, list_file, train, transform): print("数据初始化") self.root = root self.train = train self.transform = transform # 对图像转化 self.fnames = [] self.boxes = [] self.labels = [] self.mean = (123, 117, 104) with open(list_file) as f: lines = f.readlines() # 遍历voc2012train.txt的每一行 # name num_faces x y x y c ...... # 转换后,每个index对应一组 box label for line in lines: splited = line.strip().split() self.fnames.append(splited[0]) num_faces = int(splited[1]) # 一张图像中真实框的总数 box = [] label = [] for i in range(num_faces): x = float(splited[2 + 5 * i]) y = float(splited[3 + 5 * i]) x2 = float(splited[4 + 5 * i]) y2 = float(splited[5 + 5 * i]) c = splited[6 + 5 * i] box.append([x, y, x2, y2]) label.append(int(c) + 1) self.boxes.append(torch.Tensor(box)) self.labels.append(torch.LongTensor(label)) self.num_samples = len(self.boxes) # 数据集中图像的总数 def __getitem__(self, idx): fname = self.fnames[idx] img = cv2.imread(os.path.join(self.root + fname)) # clone 深复制,不共享内存 # 拿出对应的bbox及 标签对应的序号 boxes = self.boxes[idx].clone() labels = self.labels[idx].clone() # Todo # 如果为训练集,进行数据增强 # if self.train: # img, boxes = self.random_flip(img, boxes) h, w, _ = img.shape boxes /= torch.Tensor([w, h, w, h]).expand_as(boxes) # x, y, w, h, 除以图片的长宽 img = self.BGR2RGB(img) img = self.subMean(img, self.mean) img = cv2.resize(img, (self.image_size, self.image_size)) target = self.encoder(boxes, labels) # 7x7x30 for t in self.transform: # 图像转化 img = t(img) return img, target def __len__(self): return self.num_samples def encoder(self, boxes, labels): """ 将每张图片对应的box信息编码为 (7,7,30)的target Tensor :param boxes: (tensor) [[x1,y1,x2,y2],[x1,y1,x2,y2],[]],注意,数值已经被规格化了,数值在0-1之间。 :param labels: (tensor) [...] :return: 7x7x30,x,y转化为box中心到cell左上顶点的相对位置。w,h的取值相对于整幅图像的尺寸 """ target = torch.zeros((7, 7, 30)) cell_size = 1. / 7 wh = boxes[:, 2:] - boxes[:, :2] cxcy = (boxes[:, 2:] + boxes[:, :2]) / 2 for i in range(cxcy.size()[0]): # cxcy.size()[0]是框的数量 cxcy_sample = cxcy[i] # 取其中一个box # cxcy_sample为一个物体的中心点坐标,求该坐标位于7x7网格的哪个网格 # cxcy_sample坐标在0-1之间 现在求它再0-7之间的值,故乘以7 # ij长度为2,代表7x7个cell中的某个cell,负责预测一个物体 ij = (cxcy_sample / cell_size).ceil() - 1 # ceil 向上取整 # 每行的第4和第9的值设置为1,即每个网格提供的两个真实候选框 框住物体的概率是1. # xml中坐标理解:原图像左上角为原点,右边为x轴,下边为y轴。 # 而二维矩阵(x,y) x代表第几行,y代表第几列 # 假设ij为(1,2) 代表x轴方向长度为1,y轴方向长度为2 # 二维矩阵取(2,1) 从0开始,代表第2行,第1列的值 target[int(ij[1]), int(ij[0]), 4] = 1 target[int(ij[1]), int(ij[0]), 9] = 1 target[int(ij[1]), int(ij[0]), int(labels[i]) + 9] = 1 # cxcy_sample:第i个bbox的中心点坐标 # cell_lt_xy:对应cell的左上角相对坐标(相对于图片长宽(224*224)的比例,0-1之间) # delta_xy:真实框的中心点坐标相对于该中心点所在cell左上角的相对坐标。 # cxcy_sample - cell_lt_xy肯定小于1/7,否则box与cell不对应,故*7,扩展到0-1,猜测是为了便于收敛。 cell_lt_xy = ij * cell_size delta_xy = (cxcy_sample - cell_lt_xy) / cell_size # x,y代表了检测框中心相对于cell边框的坐标。w,h的取值相对于整幅图像的尺寸 target[int(ij[1]), int(ij[0]), 2:4] = wh[i] target[int(ij[1]), int(ij[0]), :2] = delta_xy target[int(ij[1]), int(ij[0]), 7:9] = wh[i] target[int(ij[1]), int(ij[0]), 5:7] = delta_xy return target def BGR2RGB(self, img): return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) def subMean(self, bgr, mean): mean = np.array(mean, dtype=np.float32) bgr = bgr - mean return bgr def random_flip(self, im, boxes): ''' 随机翻转 ''' if random.random() < 0.5: im_lr = np.fliplr(im).copy() h, w, _ = im.shape xmin = w - boxes[:, 2] xmax = w - boxes[:, 0] boxes[:, 0] = xmin boxes[:, 2] = xmax return im_lr, boxes return im, boxes ``` #### File: easy_pytorch_yolov1/model/yolo.py ```python import torch.nn as nn from model.net import vgg16_bn ''' VGG16的输入是224*224*3,YOLO的输入是448*448*3,所以vgg16_bn().features的输出是14*14*512, 故增加一层池化nn.AdaptiveAvgPool2d((7, 7)),YOLO最后的输出还是7*7*30 ''' class YOLO(nn.Module): def __init__(self, num_classes=20, init_weights=True): super(YOLO, self).__init__() self.basic_net = vgg16_bn().features self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) # 自适应平均池化 self.detector_head = nn.Sequential( nn.Linear(7 * 7 * 512, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 7 * 7 * (2 * 5 + num_classes)) ) self.init_head() def init_head(self): for layer in self.detector_head: if isinstance(layer, nn.Linear): layer.weight.data.normal_(0, 0.01) layer.bias.data.zero_() def forward(self, input): x = self.basic_net(input) x = self.avgpool(x) x = x.view(x.size(0), -1) output = self.detector_head(x) return output if __name__ == '__main__': yolo = YOLO() print(yolo) ``` #### File: easy_pytorch_yolov1/util/iou.py ```python import torch def compute_iou(box1, box2): """ Compute the intersection over union of two set of boxes, each box is [x1,y1,x2,y2]. :param box1: (tensor) bounding boxes, sized [N,4]. :param box2: (tensor) bounding boxes, sized [M,4]. :return: (tensor) iou, sized [N,M]. """ N = box1.size(0) M = box2.size(0) lt = torch.max( box1[:, :2].unsqueeze(1).expand(N, M, 2), # [N,2] -> [N,1,2] -> [N,M,2] box2[:, :2].unsqueeze(0).expand(N, M, 2), # [M,2] -> [1,M,2] -> [N,M,2] ) rb = torch.min( box1[:, 2:].unsqueeze(1).expand(N, M, 2), # [N,2] -> [N,1,2] -> [N,M,2] box2[:, 2:].unsqueeze(0).expand(N, M, 2), # [M,2] -> [1,M,2] -> [N,M,2] ) wh = rb - lt # [N,M,2] wh[wh < 0] = 0 # clip at 0 inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] area1 = (box1[:, 2] - box1[:, 0]) * (box1[:, 3] - box1[:, 1]) # [N,] area2 = (box2[:, 2] - box2[:, 0]) * (box2[:, 3] - box2[:, 1]) # [M,] area1 = area1.unsqueeze(1).expand_as(inter) # [N,] -> [N,1] -> [N,M] area2 = area2.unsqueeze(0).expand_as(inter) # [M,] -> [1,M] -> [N,M] iou = inter / (area1 + area2 - inter) return iou if __name__ == '__main__': print("test of unsqueeze and expand/expand_as") m = torch.zeros(1) n = torch.zeros(2, 2, 3, 5) print("m %s" % str(m.size())) print("n %s" % str(n.size())) m = m.unsqueeze(1).expand(2, 2, 3) print("\nafter m.unsqueeze(1).expand(2, 2, 3), \nm %s" % str(m.size())) m = m.unsqueeze(-1).expand_as(n) print("\nthen m.unsqueeze(-1).expand_as(n), \nm %s" % str(m.size())) ```
{ "source": "24601/accumulo", "score": 2 }
#### File: system/auto/JavaTest.py ```python import os import unittest import time import logging from subprocess import PIPE from TestUtils import TestUtilsMixin, ROOT, ROOT_PASSWORD, INSTANCE_NAME log = logging.getLogger('test.auto') class JavaTest(TestUtilsMixin, unittest.TestCase): "Base class for Java Functional Test" order = 21 testClass="" maxRuntime = 120 def setUp(self): handle = self.runJTest('localhost','getConfig') out,err = handle.communicate() log.debug(out) log.debug(err) assert handle.returncode==0 self.settings = TestUtilsMixin.settings.copy() self.settings.update(eval(out)) TestUtilsMixin.setUp(self); handle = self.runJTest(self.masterHost(),'setup') out,err = handle.communicate() log.debug(out) log.debug(err) assert handle.returncode==0 def runJTest(self,host, cmd): return self.runClassOn(host, 'org.apache.accumulo.test.functional.FunctionalTest', ['-u',ROOT,'-p',ROOT_PASSWORD,'-i',INSTANCE_NAME,'--classname', self.testClass,'--opt', cmd]) def runTest(self): handle = self.runJTest(self.masterHost(),'run') self.waitForStop(handle, self.maxRuntime) handle = self.runJTest(self.masterHost(),'cleanup') out,err = handle.communicate() log.debug(out) log.debug(err) assert handle.returncode==0 self.shutdown_accumulo() ``` #### File: auto/simple/dynamicThreadPools.py ```python import os import logging import unittest import time import sys from simple.readwrite import SunnyDayTest from TestUtils import TestUtilsMixin log = logging.getLogger('test.auto') class DynamicThreadPools(SunnyDayTest): 'Verify we can change thread pool sizes after the servers have run' order = 50 settings = SunnyDayTest.settings.copy() settings.update({ 'tserver.compaction.major.delay': 1, }) def setUp(self): TestUtilsMixin.setUp(self); # initialize the database self.createTable('test_ingest') # start test ingestion log.info("Starting Test Ingester") self.ingester = self.ingest(self.masterHost(), self.options.rows*10, size=self.options.size) def runTest(self): self.waitForStop(self.ingester, self.waitTime()) # make a bunch of work for compaction out, err, returncode = self.shell(self.masterHost(), 'clonetable test_ingest test_ingest1\n' 'clonetable test_ingest test_ingest2\n' 'clonetable test_ingest test_ingest3\n' 'clonetable test_ingest test_ingest4\n' 'clonetable test_ingest test_ingest5\n' 'clonetable test_ingest test_ingest6\n' 'config -s tserver.compaction.major.concurrent.max=1\n' 'sleep 10\n' 'compact -p .*\n' 'sleep 2\n') log.info('shell says: ' + out) count = 0 while count == 0: handle = self.runOn(self.masterHost(), [self.accumulo_sh(), 'org.apache.accumulo.test.GetMasterStats', '-u', 'root']) out, err = self.waitForStop(handle, 120) for line in out.split('\n'): if line.find('Major Compacting') >= 0: count += int(line.split()[2]) self.assert_(count == 1) def suite(): result = unittest.TestSuite() result.addTest(DynamicThreadPools()) return result ``` #### File: auto/simple/masterFailover.py ```python from simple.readwrite import SunnyDayTest import logging log = logging.getLogger('test.auto') import unittest class MasterFailover(SunnyDayTest): "Test master automatic master fail-over" order = 85 def start_master(self, host, safeMode=None): goalState = 'NORMAL' if safeMode: goalState = 'SAFE_MODE' self.wait(self.runOn('localhost', [self.accumulo_sh(), 'org.apache.accumulo.server.master.state.SetGoalState', goalState])) return self.runOn(host, [self.accumulo_sh(), 'master', 'dooomed']) def runTest(self): waitTime = self.waitTime() self.waitForStop(self.ingester, waitTime) handle = self.start_master(self.masterHost()) self.pkill(self.masterHost(), 'doomed') self.sleep(2) self.shutdown_accumulo() def suite(): result = unittest.TestSuite() result.addTest(MasterFailover()) return result ``` #### File: auto/simple/start.py ```python import unittest import os from TestUtils import TestUtilsMixin, ROOT, ROOT_PASSWORD, ACCUMULO_DIR from subprocess import PIPE class Start(TestUtilsMixin, unittest.TestCase): order = 21 def start(self, *args): handle = self.runOn(self.masterHost(), [self.accumulo_sh(), 'org.apache.accumulo.start.TestMain'] + list(args), stdin=PIPE) out, err = handle.communicate('') return handle.returncode def runTest(self): assert self.start() != 0 assert self.start('success') == 0 assert self.start('exception') != 0 def suite(): result = unittest.TestSuite() result.addTest(Start()) return result ``` #### File: auto/stress/halfDead.py ```python import os import time import signal import unittest from simple.readwrite import SunnyDayTest from TestUtils import ACCUMULO_HOME import logging log = logging.getLogger('test.auto') class TabletServerHangs(SunnyDayTest): order = 25 # connections should timeout quickly for faster tests settings = SunnyDayTest.settings.copy() settings['general.rpc.timeout'] = '5s' settings['instance.zookeeper.timeout'] = '15s' def start_tserver(self, host): log.info("Starting tserver we can pause with bad read/writes") libpath = '%s/test/system/auto/fake_disk_failure.so' % ACCUMULO_HOME os.environ['LD_PRELOAD'] = libpath os.environ['DYLD_INSERT_LIBRARIES'] = libpath os.environ['DYLD_FORCE_FLAT_NAMESPACE'] = 'true' self.stop = self.runOn(self.masterHost(), [self.accumulo_sh(), 'tserver']) del os.environ['LD_PRELOAD'] del os.environ['DYLD_FORCE_FLAT_NAMESPACE'] del os.environ['DYLD_INSERT_LIBRARIES'] self.flagFile = os.getenv("HOME") + "/HOLD_IO_%d" % self.stop.pid log.debug("flag file is " + self.flagFile) return self.stop def runTest(self): waitTime = self.waitTime() log.info("Waiting for ingest to stop") self.waitForStop(self.ingester, waitTime) MANY_ROWS = 500000 self.ingester = self.ingest(self.masterHost(), MANY_ROWS, size=self.options.size) # wait for the ingester to get going for i in range(100): line = self.ingester.stdout.readline() if line == '' or line.find(' sent ') > 0: break log.info("Starting faking disk failure for tserver") fp = open(self.flagFile, "w+") fp.close() self.sleep(10) log.info("Ending faking disk failure for tserver") os.unlink(self.flagFile) # look for the log message that indicates a timeout out, err = self.waitForStop(self.ingester, waitTime) self.assert_(out.find('requeuing') >= 0) log.info("Verifying Ingestion") self.waitForStop(self.verify(self.masterHost(), MANY_ROWS, size=self.options.size), waitTime) os.kill(self.stop.pid, signal.SIGHUP) # look for the log message that indicates the tablet server stopped for a while out, err = self.stop.communicate() self.assert_(err.find('sleeping\nsleeping\nsleeping\n') >= 0) def tearDown(self): SunnyDayTest.tearDown(self) try: os.unlink(self.flagFile) except: pass def suite(): result = unittest.TestSuite() result.addTest(TabletServerHangs()) return result ``` #### File: auto/stress/migrations.py ```python import os import logging import unittest import time import sleep from TestUtils import TestUtilsMixin, ACCUMULO_DIR log = logging.getLogger('test.auto') from simple.readwrite import SunnyDayTest, Interleaved from simple.delete import DeleteTest class ChaoticBalancerIntegrity(SunnyDayTest): """Start a new table, create many splits, and attempt ingest while running a crazy load balancer""" order = 90 settings = TestUtilsMixin.settings.copy() settings.update({ 'tserver.memory.maps.max':'10K', 'tserver.compaction.major.delay': 0, 'table.balancer':'org.apache.accumulo.server.master.balancer.ChaoticLoadBalancer', }) tableSettings = SunnyDayTest.tableSettings.copy() tableSettings['test_ingest'] = { 'table.split.threshold': '10K', } def setUp(self): # ensure we have two servers if len(self.options.hosts) == 1: self.options.hosts.append('localhost') self.options.hosts = self.options.hosts[:2] TestUtilsMixin.setUp(self); # create a table with 200 splits import tempfile fileno, filename = tempfile.mkstemp() fp = os.fdopen(fileno, "wb") try: for i in range(200): fp.write("%08x\n" % (i * 1000)) finally: fp.close() self.createTable('unused', filename) # create an empty table self.createTable('test_ingest') def runTest(self): # start test ingestion log.info("Starting Test Ingester") self.ingester = self.ingest(self.masterHost(), 200000, size=self.options.size) self.waitForStop(self.ingester, 120) self.shell(self.masterHost(), 'flush -t test_ingest') self.waitForStop(self.verify(self.masterHost(), self.options.rows), 60) def suite(): result = unittest.TestSuite() result.addTest(ChaoticBalancerIntegrity()) return result ``` #### File: bench/lib/TableSplitsBenchmark.py ```python import unittest import subprocess import os import glob import random import time from lib import cloudshell, runner, path from lib.Benchmark import Benchmark from lib.slaves import runEach, slaveNames from lib.path import accumulo, accumuloJar from lib.util import sleep from lib.options import log class TableSplitsBenchmark(Benchmark): "Creating a table with predefined splits and then deletes it" splitsfile = 'slowsplits' tablename = 'test_splits' def setUp(self): # Need to generate a splits file for each speed code, out, err = cloudshell.run(self.username, self.password, 'table %s\n' % self.tablename) if out.find('does not exist') == -1: log.debug('Deleting table %s' % self.tablename) code, out, err = cloudshell.run(self.username, self.password, 'deletetable %s -f\n' % self.tablename) self.assertEqual(code, 0, "Could not delete table") Benchmark.setUp(self) def runTest(self): command = 'createtable %s -sf %s\n' % (self.tablename, self.splitsfile) log.debug("Running Command %r", command) code, out, err = cloudshell.run(self.username, self.password, command) self.assertEqual(code, 0, 'Could not create table: %s' % out) return code, out, err def shortDescription(self): return 'Creates a table with splits. Lower score is better.' def tearDown(self): command = 'deletetable %s -f\n' % self.tablename log.debug("Running Command %r", command) code, out, err = cloudshell.run(self.username, self.password, command) self.assertEqual(code, 0, "Could not delete table") log.debug("Process finished") Benchmark.tearDown(self) def setSpeed(self, speed): dir = os.path.dirname(os.path.realpath(__file__)) if speed == "slow": splitsfile = 'slowsplits' elif speed == "medium": splitsfile = 'mediumsplits' else: # speed == "fast" splitsfile = 'fastsplits' self.splitsfile = os.path.join( dir, splitsfile) def needsAuthentication(self): return 1 ```
{ "source": "2462612540/Large-file-transfer", "score": 2 }
#### File: v_1_0/app/file_split.py ```python import sys from v_1_0.utils.file_utils import * from datetime import datetime # set file split size mminbytes = 1024 megabytes = mminbytes * 1000 chunksize = 1000 * megabytes # set up logger handler = logging.StreamHandler() logger = logging.getLogger(__name__) # 记录文件name and md5和切割文件的md5 value file_json = {} def file_split(splitfiledir, joindir, chunksize): if not os.path.exists(joindir): os.mkdir(joindir) else: #如果有的话 删除其他这个目录下的文件 for fname in os.listdir(joindir): os.remove(os.path.join(joindir, fname)) # 获取文件的名字和md5 splitfilename=file_name(splitfiledir) file_json["splitfilename"]=splitfilename file_json[splitfilename]=file_md5(splitfiledir) # 开始切割 partnum = 0 inputfile = open(splitfiledir, 'rb') while True: chunk = inputfile.read(chunksize) if not chunk: break partnum += 1 filename = os.path.join(joindir, ('part%04d' % partnum)) fileobj = open(filename, 'wb') fileobj.write(chunk) file_json[file_name(filename)] = file_md5(filename) fileobj.close() # 将file 文件属性转为json 同时写入到这个文件中 file_json_save(file_json, joindir,splitfilename) return partnum if __name__ == '__main__': abspath = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) splitfile = abspath + "\\resource\\NIM_4.7.520.26691291_1602487304.iso" joindir = abspath + "\\bigfile\\savepth\\" try: print("----------------------------------------开始----------------------------------------") print(datetime.now().strftime('%Y-%m-%d %H:%M:%S')) parts = file_split(splitfile, joindir, chunksize) print("----------------------------------------完成----------------------------------------") print(datetime.now().strftime('%Y-%m-%d %H:%M:%S')) except: print('Error during split:') print(sys.exc_info()[0], sys.exc_info()[1]) ```
{ "source": "249110786/viql_test_git", "score": 4 }
#### File: viql_test_git/test/login.py ```python def index(num1, num2): sum = num1 + num2 return sum index(10, 20) a = 'hello world' num1 = 10 num2 =20 num = 88 ```
{ "source": "249606097/web", "score": 2 }
#### File: apps/comment/models.py ```python from django.db import models class Comment(models.Model): user = models.ForeignKey('account.User', on_delete=models.PROTECT, verbose_name='用户') content = models.CharField(max_length=200, verbose_name='内容', null=False, blank=False) create_time = models.DateTimeField(verbose_name='时间', auto_now_add=True) class Meta: verbose_name = '评论' verbose_name_plural = verbose_name def __str__(self): return self.user.username ``` #### File: apps/utils/response_processor.py ```python import json from django.http import HttpResponse def process_response(content: dict) -> HttpResponse: """ 将键值对字典 dict 转化为 JSON 格式, 并包装成 HttpResponse 对象. :param content: 要进行转化的字典 dict :return: 包装后的 HttpResponse 对象 """ content = json.dumps(content) return HttpResponse(content, content_type='application/json;charset=utf-8', status='200', charset='utf-8') ``` #### File: apps/utils/validator.py ```python import re def validate_username(username: str) -> dict: """ 1. 长度大于等于 4 2. 长度小于等于 20 3. 仅含有字母、数字、下划线 :param username: 用户名 :return: 返回状态码 """ if len(username) < 4: return {'code': '102', 'msg': '用户名应不少于 4 位'} if len(username) > 20: return {'code': '103', 'msg': '用户名应不多于 20 位'} if re.search(r'[^A-Za-z0-9_]', username): return {'code': '104', 'msg': '用户名仅能含有字母、数字和下划线'} return {} def validate_password(password: str) -> dict: """ 1. 长度大于等于 6 2. 长度小于等于 20 3. 仅含合法字符 ASCII 33 ~ 126 4. 需含有数字 5. 需含有字母 :param password: 密码 :return: 返回状态码 """ if len(password) < 6: return {'code': '112', 'msg': '密码应不少于 6 位'} if len(password) > 20: return {'code': '113', 'msg': '密码应不多于 20 位'} if not all(32 < ord(c) < 128 for c in password): return {'code': '114', 'msg': '密码应仅包含合法字符'} if not re.search(r'[0-9]', password): return {'code': '115', 'msg': '密码必须包含数字'} if not re.search(r'[A-Za-z]', password): return {'code': '116', 'msg': '密码必须包含字母'} return {} def validate_email(email: str) -> dict: """ 1. 邮箱格式错误 :param email: 邮箱 :return: 返回状态码 """ if not re.search(r'^[0-9a-zA-Z_]{0,19}@[0-9a-zA-Z]{1,13}\.[com,cn,net]{1,3}$', email): return {'code': '211', 'msg': '邮箱格式错误'} return {} ```
{ "source": "24aitor/NicePrinter", "score": 3 }
#### File: src/NicePrinter/niceprinter.py ```python import os class Color: underline = '\033[4m' darkcyan = '\033[36m' purple = '\033[95m' yellow = '\033[93m' green = '\033[92m' cyan = '\033[96m' blue = '\033[94m' bold = '\033[1m' red = '\033[91m' end = '\033[0m' def underline(string): return Color.underline + string + Color.end def darkcyan(string): return Color.darkcyan + string + Color.end def purple(string): return Color.purple + string + Color.end def yellow(string): return Color.yellow + string + Color.end def green(string): return Color.green + string + Color.end def cyan(string): return Color.cyan + string + Color.end def blue(string): return Color.blue + string + Color.end def bold(string): return Color.bold + string + Color.end def red(string): return Color.red + string + Color.end def colorsChars(string): counter = 0 chars = 0 while (counter < len(string)) and (counter != -1): counter = string.find('\033', counter) if counter != -1: chars += len(string[counter:string.find('m', counter)]) + 1 counter += 1 return chars def center(string): overflow = colorsChars(string) return string.center(os.get_terminal_size().columns + (overflow)) def hr(percentage = 75, sym = '-'): cols = (percentage/100) * os.get_terminal_size().columns return center(sym * int(cols)) def box(string, hsym = '-', vsym = '|'): line = (len(string) + 4 - colorsChars(string)) * hsym return line + '\n' + vsym + ' ' + string + ' ' + vsym + '\n' + line def bbox(string): return box(string, '=', '‖') def cbox(string, hsym = '-', vsym = '|'): line = center((len(string) + 4 - colorsChars(string)) * hsym) return line + '\n' + center(vsym + ' ' + string + ' ' + vsym) + '\n' + line def cbbox(string): return cbox(string, '=', '‖') def title(string, percentage = 75, sym = '-'): return '\n' + hr(percentage, sym) + '\n' + center(string) + '\n' + hr(percentage, sym) + '\n' def listing(head, array, vsym = '|', hsym = '=', centered = False, boldHead = True): array.insert(0, head) size = 0 export = '' array2 = [] [array2.append(str(val)) for ind, val in enumerate(array)] array = array2 for index, value in enumerate(array): if ((len(value) - colorsChars(value)) > size): size = len(value) - colorsChars(value) bar = (hsym * (size + 4)) export += center(bar) if (centered) else (bar) var = vsym for index, value in enumerate(array): var = (vsym + ' ') if (centered) else ("\n" + vsym + ' ') val = bold(value) if (index == 0 and boldHead) else value var += (val + (' ' * (size - len(value) + colorsChars(value) )) + (' ' + vsym)) export += center(var) if (centered) else (var) if ((index == 0)): export += '\n' export += center(bar) if (centered) else (bar) export += '\n' export += center(bar) if (centered) else (bar) return export def table(array, vsym = '|', hsym = '=', centered = False, boldHead = True): sizes = [] export = '' [sizes.append(0) for x in array[0]] for subarray in array: for index, value in enumerate(subarray): if ((len(value) - colorsChars(value)) > sizes[index]): sizes[index] = len(value) - colorsChars(value) bar = (hsym * (sum(sizes) + len(sizes)*3 + 1)) for subindex, subarray in enumerate(array): if subindex == 0: export += center(bar) if (centered) else (bar) export += ('\n') var = vsym + ' ' for index, value in enumerate(subarray): val = bold(value) if (subindex == 0 and boldHead) else value var += (val + (' ' * (sizes[index] - len(value) + colorsChars(value) )) + (' ' + vsym + ' ')) var = var.strip() export += center(var) if (centered) else (var) if ((subindex == 0)): export += '\n' export += center(bar) if (centered) else (bar) export += '\n' export += center(bar) if (centered) else (bar) return export ```
{ "source": "24apurv/django-quiz", "score": 3 }
#### File: quiz/scripts/reviews.py ```python from django.core.mail import EmailMessage from quiz.models import MyUser, UserAnswer, Answer from docx import Document from docx.shared import Inches def run(): ''' This script creates an analysis of the answers given by the participants and mails it to them. The analysis contains question, options, given answer and actual answer. ''' userAnswers = UserAnswer.objects.all() try: for userAnswer in userAnswers: document = Document() document.add_heading('MCQ Review', 0) questions = userAnswer.questions.split(',') answers = userAnswer.answers.split(',') for i,question_id in enumerate(questions): question = Answer.objects.get(question_id=question_id) document.add_heading('Question '+str(i+1)+'. '+str(question.question), level=3) document.add_paragraph('') document.add_paragraph('A. '+question.option_a) document.add_paragraph('B. '+question.option_b) document.add_paragraph('C. '+question.option_c) document.add_paragraph('D. '+question.option_d) document.add_paragraph('Correct answers : '+question.correct_answer) document.add_paragraph('Your answer : '+answers[i]) document.add_page_break() document.save('review.docx') email_id = [] if userAnswer.user.email_2: email_id = [userAnswer.user.email_1, userAnswer.user.email_2] else: email_id = [userAnswer.user.email_1] email = EmailMessage( 'Review for Quiz', 'PFA file containing review for MCQ Quiz', 'Team Django-Quiz', email_id, ) email.attach_file('review.docx') email.send(fail_silently=False) except: pass ```
{ "source": "24doeway/advent_2020", "score": 3 }
#### File: 24doeway/advent_2020/day16.py ```python class Part1: def __init__(self): with open("day16.txt") as f: self.data = [i.strip() for i in f.readlines()] self.constraints = {} self.valid = {} for line in self.data: if "your ticket" in line: break parts = line.split(':') if len(parts) == 2: #print(parts) key = parts[0].strip() valid = set() valids = parts[1].split('or') for v in valids: bits = [int(i) for i in v.split('-')] for i in range(bits[0], bits[1]+1): valid.add(i) self.valid[i] = 1 self.constraints[key] = valid section = 1 self.tickets = [] for line in self.data: if not line: continue if "your ticket" in line: section = 2 continue if "nearby tickets" in line: section = 3 continue if section == 2: bits = line.split(',') self.your_ticket = [int(i) for i in line.split(',')] if section == 3: t = [int(i) for i in line.split(',')] self.tickets.append(t) def run(self): total = 0 #print (self.valid) #print(self.tickets) for t in self.tickets: for n in t: if n not in self.valid: total += n print(total) def run2(self): self.valid_tickets = [] for t in self.tickets: is_valid = True for n in t: if n not in self.valid: is_valid = False if is_valid: self.valid_tickets.append(t) # Look at each field ranges = [] for i in range(len(self.tickets[0])): nums = set() for t in self.valid_tickets: nums.add(t[i]) ranges.append(nums) print(ranges) candidates = [] for nums in ranges: candidate = [] for k, v in self.constraints.items(): if not (nums - v): candidate.append(k) candidates.append(candidate) print(candidates) while True: removed = False for c in candidates: if len(c) == 1: remove = c[0] for d in candidates: if remove in d: if len(d) > 1: d.remove(remove) removed = True if not removed: break print(candidates) for c in candidates: print(len(c)) print (len(self.tickets[0])) print (len(self.valid_tickets)) dep_fields = [] for i, c in enumerate(candidates): print (i,c) if "departure" in c[0]: dep_fields.append(i) print(dep_fields) prod = 1 for i in dep_fields: prod *= self.your_ticket[i] print(prod) p = Part1() p.run() p.run2() ``` #### File: 24doeway/advent_2020/day8.py ```python line_num = 0 total = 0 visited = {} with open("day8.txt") as f: data = f.readlines() def nop(num): global line_num line_num += 1 def jmp(num): global line_num line_num += num def acc(num): global total global line_num total += num line_num += 1 cmds = {'nop':nop, 'jmp':jmp, 'acc':acc} while True: if line_num in visited: break visited[line_num] = 1 line = data[line_num] parts = line.split() cmd = parts[0] num = int(parts[1]) cmds[cmd](num) print (cmd, num, total) print(total) ```
{ "source": "24HeuresINSA/pass-checker", "score": 2 }
#### File: src/pass/admin.py ```python from django.contrib import admin from .models import AccessPoint, TimeSlot, Driver, Vehicle, Pass, Access # Register your models here. class PassAdmin(admin.ModelAdmin): list_display = ('vehicle', 'drivers', 'time_slots', 'PS1', 'PS2', 'PS3', 'PS4', 'PS5', 'PS6',) list_filter = ('allowed_access_points', 'allowed_time_slots',) def PS1(self, obj): return "PS1" in (o.name for o in obj.allowed_access_points.all()) def PS2(self, obj): return "PS2" in (o.name for o in obj.allowed_access_points.all()) def PS3(self, obj): return "PS3" in (o.name for o in obj.allowed_access_points.all()) def PS4(self, obj): return "PS4" in (o.name for o in obj.allowed_access_points.all()) def PS5(self, obj): return "PS5" in (o.name for o in obj.allowed_access_points.all()) def PS6(self, obj): return "PS6" in (o.name for o in obj.allowed_access_points.all()) def time_slots(self, obj): to_return = "" for o in obj.allowed_time_slots.all(): to_return += " - " + o.name return to_return def drivers(self, obj): to_return = "" for o in obj.allowed_drivers.all(): to_return += " - " + o.__str__() return to_return PS1.boolean = True PS1.short_description = "PS1" PS2.boolean = True PS2.short_description = "PS2" PS3.boolean = True PS3.short_description = "PS3" PS4.boolean = True PS4.short_description = "PS4" PS5.boolean = True PS5.short_description = "PS5" PS6.boolean = True PS6.short_description = "PS6" admin.site.register(AccessPoint) admin.site.register(TimeSlot) admin.site.register(Driver) admin.site.register(Vehicle) admin.site.register(Pass, PassAdmin) admin.site.register(Access) ```
{ "source": "24hOrBust/RisingTide", "score": 3 }
#### File: 24hOrBust/RisingTide/climate_model.py ```python import pymagicc from pymagicc import scenarios import copy # Takes in Gigatons Carbon Dioxide per year and returns time series of temperature def climate_model(fossil_gtc_carbon): data = scenarios['RCP26']['WORLD'] copy_row = data.loc[[2007]] for index, row in data.iterrows(): if index > 2007: data = data.drop(index) for i in range(2008, 2101): temp = copy.deepcopy(copy_row) for index, row in temp.iterrows(): data.loc[i] = row.tolist() break # All future years have this amount of CO2 for i in range(2019, 2101): data.at[i, "FossilCO2"] = float(fossil_gtc_carbon) # Funnel into model and parse results results = pymagicc.run(data) results_df = results['SURFACE_TEMP']['GLOBAL'] ret_json = {} ret_json['start_year'] = str(results_df.index[0]) ret_json['global_temps'] = list(results_df.values) results_df = results['SURFACE_TEMP']['NH-LAND'] # Specific data used by the sea model ret_json['NH_temps'] = list(results_df.values) return ret_json ```
{ "source": "24hoursfromtulsehill/forced_alignment", "score": 2 }
#### File: aligner/command_line/train_and_align.py ```python from aligner.command_line.align import fix_path, unfix_path import shutil import os import argparse import multiprocessing as mp import yaml import time from aligner import __version__ from aligner.corpus import Corpus from aligner.dictionary import Dictionary from aligner.aligner import TrainableAligner from aligner.utils import no_dictionary from aligner.config import TEMP_DIR def align_corpus(args, skip_input=False): if not args.temp_directory: temp_dir = TEMP_DIR else: temp_dir = os.path.expanduser(args.temp_directory) corpus_name = os.path.basename(args.corpus_directory) if corpus_name == '': args.corpus_directory = os.path.dirname(args.corpus_directory) corpus_name = os.path.basename(args.corpus_directory) data_directory = os.path.join(temp_dir, corpus_name) conf_path = os.path.join(data_directory, 'config.yml') if os.path.exists(conf_path): with open(conf_path, 'r') as f: conf = yaml.load(f) else: conf = {'dirty': False, 'begin': time.time(), 'version': __version__, 'type': 'train_and_align', 'corpus_directory': args.corpus_directory, 'dictionary_path': args.dictionary_path} if getattr(args, 'clean', False) \ or conf['dirty'] or conf['type'] != 'train_and_align' \ or conf['corpus_directory'] != args.corpus_directory \ or conf['version'] != __version__ \ or conf['dictionary_path'] != args.dictionary_path: shutil.rmtree(data_directory, ignore_errors=True) shutil.rmtree(args.output_directory, ignore_errors=True) os.makedirs(data_directory, exist_ok=True) os.makedirs(args.output_directory, exist_ok=True) try: corpus = Corpus(args.corpus_directory, data_directory, speaker_characters=args.speaker_characters, num_jobs=getattr(args, 'num_jobs', 3), debug=getattr(args, 'debug', False), ignore_exceptions=getattr(args, 'ignore_exceptions', False)) dictionary = Dictionary(args.dictionary_path, data_directory, word_set=corpus.word_set) utt_oov_path = os.path.join(corpus.split_directory, 'utterance_oovs.txt') if os.path.exists(utt_oov_path): shutil.copy(utt_oov_path, args.output_directory) oov_path = os.path.join(corpus.split_directory, 'oovs_found.txt') if os.path.exists(oov_path): shutil.copy(oov_path, args.output_directory) mono_params = {'align_often': not args.fast} tri_params = {'align_often': not args.fast} tri_fmllr_params = {'align_often': not args.fast} a = TrainableAligner(corpus, dictionary, args.output_directory, temp_directory=data_directory, mono_params=mono_params, tri_params=tri_params, tri_fmllr_params=tri_fmllr_params, num_jobs=args.num_jobs) a.verbose = args.verbose a.train_mono() a.export_textgrids() a.train_tri() a.export_textgrids() a.train_tri_fmllr() a.export_textgrids() if args.output_model_path is not None: a.save(args.output_model_path) except: conf['dirty'] = True raise finally: with open(conf_path, 'w') as f: yaml.dump(conf, f) def align_corpus_no_dict(args, skip_input=False): if not args.temp_directory: temp_dir = TEMP_DIR else: temp_dir = os.path.expanduser(args.temp_directory) corpus_name = os.path.basename(args.corpus_directory) data_directory = os.path.join(temp_dir, corpus_name) if args.clean: shutil.rmtree(data_directory, ignore_errors=True) shutil.rmtree(args.output_directory, ignore_errors=True) os.makedirs(data_directory, exist_ok=True) os.makedirs(args.output_directory, exist_ok=True) corpus = Corpus(args.corpus_directory, data_directory, args.speaker_characters, num_jobs=getattr(args, 'num_jobs', 3), debug=getattr(args, 'debug', False), ignore_exceptions=getattr(args, 'ignore_exceptions', False)) print(corpus.speaker_utterance_info()) dictionary = no_dictionary(corpus, data_directory) mono_params = {'align_often': not args.fast} tri_params = {'align_often': not args.fast} tri_fmllr_params = {'align_often': not args.fast} a = TrainableAligner(corpus, dictionary, args.output_directory, temp_directory=data_directory, mono_params=mono_params, tri_params=tri_params, tri_fmllr_params=tri_fmllr_params, num_jobs=args.num_jobs, debug=args.debug) a.verbose = args.verbose a.train_mono() a.export_textgrids() a.train_tri() a.export_textgrids() a.train_tri_fmllr() a.export_textgrids() if args.output_model_path is not None: a.save(args.output_model_path) def validate_args(args): if not args.no_dict and args.dictionary_path == '': raise (Exception('Must specify dictionary or no_dict option')) if args.no_dict and args.dictionary_path != '': raise (Exception('Dict_path cannot be specified with no_dict option')) if __name__ == '__main__': # pragma: no cover mp.freeze_support() parser = argparse.ArgumentParser() parser.add_argument('corpus_directory', help='Full path to the source directory to align') parser.add_argument('dictionary_path', help='Full path to the pronunciation dictionary to use', nargs='?', default='') parser.add_argument('output_directory', help="Full path to output directory, will be created if it doesn't exist") parser.add_argument('-o', '--output_model_path', type=str, default='', help='Full path to save resulting acoustic and dictionary model') parser.add_argument('-s', '--speaker_characters', type=str, default='0', help='Number of characters of filenames to use for determining speaker, ' 'default is to use directory names') parser.add_argument('-t', '--temp_directory', type=str, default='', help='Temporary directory root to use for aligning, default is ~/Documents/MFA') parser.add_argument('-f', '--fast', help="Perform a quick alignment with half the number of alignment iterations", action='store_true') parser.add_argument('-j', '--num_jobs', type=int, default=3, help='Number of cores to use while aligning') parser.add_argument('-v', '--verbose', help="Output debug messages about alignment", action='store_true') parser.add_argument('--no_dict', help="Create a dictionary based on the orthography", action='store_true') parser.add_argument('-c', '--clean', help="Remove files from previous runs", action='store_true') parser.add_argument('-d', '--debug', help="Debug the aligner", action='store_true') parser.add_argument('-i', '--ignore_exceptions', help='Ignore exceptions raised when parsing data', action='store_true') args = parser.parse_args() fix_path() try: args.speaker_characters = int(args.speaker_characters) except ValueError: pass validate_args(args) if not args.output_model_path: args.output_model_path = None temp_dir = args.temp_directory if args.no_dict: align_corpus_no_dict(args) else: align_corpus(args) unfix_path() ```
{ "source": "24hours/tf_fcn", "score": 2 }
#### File: 24hours/tf_fcn/sbdd_input.py ```python import tensorflow as tf import scipy import numpy as np import scipy.io as spio # DATA_DIR = '/data/SBDD_Release/dataset/' DATA_DIR = None if DATA_DIR is None: raise Exception('DATA_DIR is not set') weight_decay = 5e-4 def get_input(input_file, batch_size, im_size=224): input = DATA_DIR + input_file filenames = [] with open(input, 'r') as f: for line in f: filenames.append('{}/img/{}.jpg {}'.format( DATA_DIR, line.strip(), line.strip())) filename_queue = tf.train.string_input_producer(filenames) filename, label_dir = tf.decode_csv(filename_queue.dequeue(), [[""], [""]], " ") label = label_dir; file_contents = tf.read_file(filename) im = tf.image.decode_jpeg(file_contents) im = tf.image.resize_images(im, im_size, im_size, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) im = tf.reshape(im, [im_size, im_size, 3]) im = tf.to_float(im) im_mean = tf.constant([122.67892, 116.66877, 104.00699], dtype=tf.float32) im = tf.sub(im, im_mean) # im = tf.image.per_image_whitening(im) # im = tf.image.per_image_whitening(im) min_queue_examples = int(10000 * 0.4) example_batch, lbl_batch = tf.train.batch([im, label], num_threads=1, batch_size=batch_size, capacity=min_queue_examples + 3 * batch_size) return example_batch, lbl_batch def CACHE_LABEL(input_file, im_size=224): input = DATA_DIR + input_file CACHE = {} with open(input, 'r') as f: for line in f: cls_file = line.strip() # cls_path = '{}/label/{}_label.png'.format(DATA_DIR, cls_file) # label = scipy.ndimage.imread(cls_path) # label[label == 65535] = 1 cls_path = '{}cls/{}.mat'.format(DATA_DIR, cls_file) mat = spio.loadmat(cls_path) label = mat['GTcls'][0]['Segmentation'][0].astype(np.uint8); # print label.shape label = scipy.misc.imresize(label, [im_size, im_size], interp='nearest') CACHE[cls_file] = np.reshape(label, [1, im_size, im_size]) return CACHE def GET_LABEL(name_list, cache): LB = [] for l in name_list: LB.append(cache[l]) LBL = np.concatenate(LB, axis=0) return LBL ```
{ "source": "24jkeen/Quantitative-analysis-of-approaches-to-group-marking", "score": 3 }
#### File: Quantitative-analysis-of-approaches-to-group-marking/FunctionFiles/Analysis.py ```python from math import fabs as absolute from math import sqrt def ResultArray(PopArray, CalcArray): AbsErrArray = [] count = 0 while count < len(PopArray): AbsErrArray.append(absolute(CalcArray[count] - PopArray[count])) count = count + 1 MaxErr = max(AbsErrArray) AveErr = sum(AbsErrArray) / len(AbsErrArray) SqrError = [x**2 for x in AbsErrArray] RMS = sqrt(sum(SqrError) / len(SqrError)) RelErrArray = [] count = 0 while count < len(PopArray): if PopArray[count] != 0: RelErrArray.append((AbsErrArray[count]/PopArray[count])*100) count = count + 1 MaxRelErr = max(RelErrArray) AveRelErr = sum(RelErrArray) / len(RelErrArray) ResultDict = {"MaxErr": MaxErr,"AveErr": AveErr, "MaxRelErr": MaxRelErr, "AveRelErr": AveRelErr, "RootMeanSqr": RMS, "List": AbsErrArray} return ResultDict ``` #### File: Quantitative-analysis-of-approaches-to-group-marking/FunctionFiles/AssignGroup.py ```python from fractions import gcd def Function(n, GroupSize): # check enough n if n < GroupSize**2: print("There needs to be more people") return [] # Initialise the array to hold the groups in GroupArray = [] i = 0; while i < n: GroupArray.append([]) i = i + 1 # Cycle through until GroupArray is full index = 0 Diff = 1 while index < len(GroupArray): PersonIndex = 0 i = 0 while i < n/GroupSize: TempArray = [PersonIndex] while len(TempArray) < GroupSize: PersonIndex = IncreasePersonIndex(PersonIndex, Diff, n) TempArray.append(PersonIndex) TestUniqueness(TempArray, GroupArray) GroupArray[index] = TempArray index = index + 1 i = i + 1 PersonIndex = IncreasePersonIndex(PersonIndex, Diff, n) Diff = NewDiff(Diff, GroupSize, n) # Return matrix return GroupArray def TestUniqueness(Array, GroupArray): for Group in GroupArray: if Group == Array: print("This does not work") return True else: return False def IncreasePersonIndex(PersonIndex, Diff, n): if PersonIndex + Diff < n: return PersonIndex + Diff ## elif PersonIndex + Diff == n: ## return PersonIndex + Diff + 1 - n else: return PersonIndex + Diff - n def NewDiff(Diff, GroupSize, n): if Diff == 1: Diff = Diff + GroupSize while gcd(Diff, n) != 1: Diff = Diff + 1 return Diff else: Diff = Diff + 1 while gcd(Diff, n) != 1: Diff = Diff + 1 return Diff ``` #### File: Quantitative-analysis-of-approaches-to-group-marking/ModelFiles/RA.py ```python import random MarkRatio = 0.7 SelfRatio = 1 - MarkRatio # Function takes the ideal mark and modifies it randomly def SelfAssess(RankedStudentMark): ReturnMark = RankedStudentMark + random.randrange(-16,16) if ReturnMark > 100: return 100 elif ReturnMark < 0: return 0 else: return ReturnMark # To remove randomness, comment out previous code and uncomment code below #return RankedStudentMark def RA(Population, GroupMarks, AssignedGroups, GroupSize): CalcResults = [] for n in range(len(Population)): CalcResults.append(0) GroupSize = len(AssignedGroups[0]) for GroupIndex in range(len(AssignedGroups)): Group = AssignedGroups[GroupIndex] GroupMark = GroupMarks[GroupIndex] for person in Group: SelfAssessment = SelfAssess(Population[person]) Mark = MarkRatio * GroupMark + SelfRatio * SelfAssessment CalcResults[person] = CalcResults[person] + Mark / GroupSize return CalcResults def MRA(Population, GroupMarks, AssignedGroups, GroupSize): CalcResults = [] for n in range(len(Population)): CalcResults.append(0) GroupSize = len(AssignedGroups[0]) for GroupIndex in range(len(AssignedGroups)): Group = AssignedGroups[GroupIndex] GroupMark = GroupMarks[GroupIndex] SelfAssessList = [] for person in Group: SelfAssessList.append(SelfAssess(Population[person])) total = sum(SelfAssessList) for index in range(len(SelfAssessList)): SelfAssessList[index] = (GroupSize * SelfAssessList[index]) / total index = 0 for person in Group: Mark = (MarkRatio + SelfRatio * SelfAssessList[index]) * GroupMark CalcResults[person] = CalcResults[person] + Mark / GroupSize index = index + 1 return CalcResults ```
{ "source": "24mu13/concierge", "score": 3 }
#### File: concierge/tests/test_download.py ```python import os import datetime from PyPDF4 import PdfFileReader from app.services.ifq import IFQ today = datetime.date.today() # def test_exists_for_failure(archiver): # assert not archiver.exists('how-to-enlarge-your-penis.pdf') def test_download(ifq): # filename = today.strftime('ilfatto-%Y%m%d.pdf') # tmp_file = ifq.download_pdf(today) tmp_file = <KEY>' print(tmp_file) assert os.path.exists(tmp_file) # check file size stat = os.stat(tmp_file) assert stat.st_size > 5 * 1024 * 1024, 'The PDF file size does not reach the minimum value' # check is a real PDF file with open(tmp_file, 'rb') as file: doc = PdfFileReader(file) print(dir(doc)) print(doc.documentInfo) assert doc.numPages > 15 # assert ifq.download_pdf(today) ```
{ "source": "24sharkS/autowrap-1", "score": 2 }
#### File: autowrap-1/autowrap/Utils.py ```python from __future__ import print_function import sys template = """ from distutils.core import setup, Extension import sys import pprint from Cython.Distutils import build_ext ext = Extension("%(name)s", sources = %(source_files)s, language="c++", include_dirs = %(include_dirs)r, extra_compile_args = [%(compile_args)s], extra_link_args = [], ) setup(cmdclass = {'build_ext' : build_ext}, name="%(name)s", version="0.0.1", ext_modules = [ext] ) """ def compile_and_import(name, source_files, include_dirs=None, **kws): if include_dirs is None: include_dirs = [] debug = kws.get("debug") import os.path import shutil import tempfile import subprocess import sys tempdir = tempfile.mkdtemp() if debug: print("\n") print("tempdir=", tempdir) print("\n") for source_file in source_files: shutil.copy(source_file, tempdir) if sys.platform != "win32": compile_args = "'-Wno-unused-but-set-variable'" else: compile_args = "" include_dirs = [os.path.abspath(d) for d in include_dirs] source_files = [os.path.basename(f) for f in source_files] setup_code = template % locals() if debug: print("\n") print("-" * 70) print(setup_code) print("-" * 70) print("\n") now = os.getcwd() os.chdir(tempdir) with open("setup.py", "w") as fp: fp.write(setup_code) import sys sys.path.insert(0, tempdir) if debug: print("\n") print("-" * 70) import pprint pprint.pprint(sys.path) print("-" * 70) print("\n") assert subprocess.Popen("%s setup.py build_ext --force --inplace" % sys.executable, shell=True).wait() == 0 print("BUILT") result = __import__(name) print("imported") if debug: print("imported", result) sys.path = sys.path[1:] os.chdir(now) print(result) return result def remove_labels(graph): _remove_labels = lambda succ_list: [s for s, label in succ_list] pure_graph = dict((n0, _remove_labels(ni)) for n0, ni in graph.items()) return pure_graph def find_cycle(graph_as_dict): """ modified version of http://neopythonic.blogspot.de/2009/01/detecting-cycles-in-directed-graph.html """ nodes = list(graph_as_dict.keys()) for n in graph_as_dict.values(): nodes.extend(n) todo = list(set(nodes)) while todo: node = todo.pop() stack = [node] while stack: top = stack[-1] for node in graph_as_dict.get(top, []): if node in stack: return stack[stack.index(node):] if node in todo: stack.append(node) todo.remove(node) break else: node = stack.pop() return None def _check_for_cycles_in_mapping(mapping): # detect cylces in typedefs graph = dict() for (alias, type_) in mapping.items(): successors = type_.all_occuring_base_types() graph[alias] = successors cycle = find_cycle(graph) if cycle is not None: info = " -> ".join(map(str, cycle)) raise Exception("mapping contains cycle: " + info) def print_map(mapping): for k, v in mapping.items(): print("%8s -> %s" % (k, v)) def flatten(mapping): """ resolves nested mappings, eg: A -> B B -> C[X,D] C -> Z D -> Y is resolved to: A -> Z[X,Y] B -> Z[X,Y] C -> Z D -> Y """ _check_for_cycles_in_mapping(mapping) # this loop only terminates for cylce free mappings: while True: for name, type_ in mapping.items(): transformed = type_.transformed(mapping) if transformed != type_: mapping[name] = transformed break else: break ```
{ "source": "24sharkS/OpenMS", "score": 2 }
#### File: src/pyOpenMS/create_r_extension.py ```python from __future__ import print_function # windows ? import sys iswin = sys.platform == "win32" # make sure we only log errors and not info/debug ... from logging import basicConfig from logging import CRITICAL, ERROR, WARNING, INFO, DEBUG basicConfig(level=21) import config from env import (QT_QMAKE_VERSION_INFO, OPEN_MS_BUILD_TYPE, OPEN_MS_SRC, OPEN_MS_CONTRIB_BUILD_DIRS, OPEN_MS_LIB, OPEN_SWATH_ALGO_LIB, SUPERHIRN_LIB, OPEN_MS_BUILD_DIR, MSVS_RTLIBS, OPEN_MS_VERSION, Boost_MAJOR_VERSION, Boost_MINOR_VERSION) IS_DEBUG = OPEN_MS_BUILD_TYPE.upper() == "DEBUG" if iswin and IS_DEBUG: raise Exception("building pyopenms on windows in debug mode not tested yet.") # use autowrap to generate Cython and .cpp file for wrapping OpenMS: import autowrap.Main import autowrap.CodeGenerator import autowrap.DeclResolver import glob import pickle import os.path import os import shutil classdocu_base = "http://www.openms.de/current_doxygen/html/" autowrap.CodeGenerator.special_class_doc = "Documentation is available at " + classdocu_base + "class%(namespace)s_1_1%(cpp_name)s.html\n" autowrap.DeclResolver.default_namespace = "OpenMS" def chunkIt(seq, num): avg = len(seq) / float(num) out = [] last = 0.0 while len(out) < num: out.append(seq[int(last):int(last + avg)]) last += avg # append the rest to the last element (if there is any) out[-1].extend( seq[int(last):] ) return out j = os.path.join # Threads and Modules PY_NUM_THREADS = 1 PY_NUM_MODULES = 1 src_pyopenms = j(OPEN_MS_SRC, "src/pyOpenMS") pxd_files = glob.glob(src_pyopenms + "/pxds/*.pxd") addons = glob.glob(src_pyopenms + "/R-addons/*.R") converters = [j(src_pyopenms, "R-converters")] persisted_data_path = "include_dir.bin" extra_cimports = [] # We need to parse them all together but keep the association about which class # we found in which file (as they often need to be analyzed together) decls, instance_map = autowrap.parse(pxd_files, ".", num_processes=int(PY_NUM_THREADS)) # Perform mapping pxd_decl_mapping = {} for de in decls: tmp = pxd_decl_mapping.get(de.cpp_decl.pxd_path, []) tmp.append(de) pxd_decl_mapping[ de.cpp_decl.pxd_path] = tmp # Split into chunks based on pxd files and store the mapping to decls, addons # and actual pxd files in a hash. We need to produce the exact number of chunks # as setup.py relies on it as well. pxd_files_chunk = chunkIt(list(pxd_decl_mapping.keys()), int(PY_NUM_MODULES)) # Sanity checks: we should find all of our chunks and not have lost files if len(pxd_files_chunk) != int(PY_NUM_MODULES): raise Exception("Internal Error: number of chunks not equal to number of modules") if sum([len(ch) for ch in pxd_files_chunk]) != len(pxd_decl_mapping): raise Exception("Internal Error: chunking lost files") mnames = ["pyopenms_%s" % (k+1) for k in range(int(PY_NUM_MODULES))] allDecl_mapping = {} for pxd_f, m in zip(pxd_files_chunk, mnames): tmp_decls = [] for f in pxd_f: tmp_decls.extend( pxd_decl_mapping[f] ) allDecl_mapping[m] = {"decls" : tmp_decls, "addons" : [] , "files" : pxd_f} # Deal with addons, make sure the addons are added to the correct class generator. is_added = [False for k in addons] for modname in mnames: for k,a in enumerate(addons): # Match addon basename to pxd basename for pfile in allDecl_mapping[modname]["files"]: if os.path.basename(a).split(".")[0] == os.path.basename(pfile).split(".")[0]: allDecl_mapping[modname]["addons"].append(a) is_added[k] = True if is_added[k]: continue # Also match by class name (sometimes one pxd contains multiple classes # and the addon is named after one of them) for dclass in allDecl_mapping[modname]["decls"]: if os.path.basename(a) == dclass.name + ".R": allDecl_mapping[modname]["addons"].append(a) is_added[k] = True # add any addons that did not get added anywhere else for k, got_added in enumerate(is_added): if not got_added: # add to all modules for m in mnames: allDecl_mapping[m]["addons"].append( addons[k] ) def doRCodeGeneration(modname, allDecl_mapping, instance_map, converters): # create the ropenms/ and R/ directory. src_code_dir = j(OPEN_MS_SRC,"src/ropenms/R") try: os.makedirs(src_code_dir) except OSError: pass m_filename = j(src_code_dir,"%s.R" % modname) cimports, manual_code = autowrap.Main.collect_manual_code(allDecl_mapping[modname]["addons"]) autowrap.Main.register_converters(converters) # Need to specify binding "R" as default is "cython" autowrap_include_dirs = autowrap.generate_code(allDecl_mapping[modname]["decls"], instance_map, target=m_filename, debug=False, manual_code=manual_code, extra_cimports=cimports, include_boost=False, include_numpy=True, allDecl=allDecl_mapping, target_binding="R") allDecl_mapping[modname]["inc_dirs"] = autowrap_include_dirs # # copy the tests folder from ropenms-attachments to ropenms # dest = j(OPEN_MS_SRC,"src/ropenms/tests") if os.path.isdir(dest): shutil.rmtree(dest, ignore_errors=True) src = j(OPEN_MS_SRC,"src/pyOpenMS/ropenms-attachments/tests") shutil.copytree(src,dest) return autowrap_include_dirs for modname in mnames: autowrap_include_dirs = doRCodeGeneration(modname, allDecl_mapping, instance_map, converters) pickle.dump(autowrap_include_dirs, open(persisted_data_path, "wb")) argzip = [ (modname, allDecl_mapping[modname]["inc_dirs"]) for modname in mnames] print("created ropenms package") ```
{ "source": "24TangC/gpa-calculator", "score": 3 }
#### File: 24TangC/gpa-calculator/calculateGPA.py ```python import json from classes import classes class calcGPA: def __init__(self, name): with open('unweightedscale.json', 'r') as f: info = json.load(f) self.un_cumulative = 0 self.we_cumulative = 0 self.num_creds = 0 with open('grades.json', 'r') as a: grads = json.load(a) with open('credits.json', 'r') as b: creds = json.load(b) with open('level.json', 'r') as c: with open('weightedscale.json', 'r') as d: w_creds = json.load(d) lvls = json.load(c) for key in creds: self.num_creds += creds[key] for key in grads: cred = creds[key] self.un_cumulative += info[grads[key]]*cred self.we_cumulative += (info[grads[key]]+ w_creds[lvls[key]]) * cred self.unweighted_gpa = self.un_cumulative/self.num_creds self.weighted_gpa = self.we_cumulative/self.num_creds ``` #### File: 24TangC/gpa-calculator/classes.py ```python class classes: def __init__(self, name): print('How many classes are you taking?') self.num_classes = int(input()) self.grades = {} self.credits = {} self.level = {} for x in range(self.num_classes): print(f'What is your #{x+1} input class?') temp = input() print(f'What is the level of {temp}? AP - 1, Honors - 2, CP - 3') self.level[temp] = int(input()) print(f'What is your letter grade in {temp}?') self.grades[temp] = input() print(f'How many credits is this class? (Out of 5)') self.credits[temp] = float(input()) ```
{ "source": "24TangC/USACO-Bronze", "score": 4 }
#### File: USACO-Bronze/solutions/awk digits.py ```python base_2_N = input() base_3_N = input() def convert(n): n = int(n) base_3 = [] if n < 3: return str(n) while n // 3 > 0: base_3.append(str(n%3)) n //= 3 base_3.append(str(n)) base_3 = base_3[::-1] number = ''.join(base_3) return number for x in range(len(base_2_N)): temp_base_2_N = [] for z in range(len(base_2_N)): #list temp_base_2_N.append(base_2_N[z]) if base_2_N[x] == '1': temp_base_2_N[x] = '0' else: temp_base_2_N[x] = '1' temp_base_2_N = ''.join(temp_base_2_N) N = str(int(temp_base_2_N, 2)) N = convert(N) counter = 0 if len(base_3_N) == len(N)+1: N = '0' + N elif abs(len(base_3_N)-len(N)) >= 2: continue elif len(base_3_N)+1 == len(N): continue for y in range(len(N)): if base_3_N[y] == N[y]: continue else: counter += 1 if counter == 1: print(int(N, 3)) exit() ``` #### File: USACO-Bronze/solutions/sanjitsol4.py ```python buck1 = [int(x) for x in input().split()] buck2 = [int(x) for x in input().split()] milk1 = 1000 milk2 = 1000 outs = {} def moveFrom(fromMilk, toMilk, fromBuck, toBuck, iters): if iters == 4: outs[fromMilk] = True return for i in range(len(fromBuck)): rem = fromBuck.pop(i) if fromMilk >= rem: toBuck.append(rem) fromMilk -= rem toMilk += rem moveFrom(toMilk, fromMilk, toBuck, fromBuck, iters + 1) toBuck.pop(len(toBuck) - 1) fromMilk += rem toMilk -= rem fromBuck.insert(i, rem) moveFrom(milk1, milk2, buck1, buck2, 0) print(len(outs)) ```
{ "source": "24technology/addon-drbdmanage", "score": 3 }
#### File: 24technology/addon-drbdmanage/validate_config.py ```python import sys from contextlib import contextmanager config_file = sys.argv[1] def report_validity(valid_config=True): """Prints the whether the config file is valid or not.""" validity = "valid" if valid_config else "not valid" print("\nYour configuration is %s.\n" % validity) @contextmanager def report_on(error, message): try: yield except error as e: print(message) report_validity(False) sys.exit(e) # Assume config is valid to start. valid_config = True # Convert configuration file into dict. config = {} with open(config_file) as f: for line in f: key, value = line.split("=") config[key.strip()] = value.strip() quotes = "'\"" # Cast config values to proper types. with report_on(KeyError, "BRIDGE_LIST must be present in configuration"): storage_nodes = config["BRIDGE_LIST"].strip(quotes).split() try: deployment_nodes = config["DRBD_DEPLOYMENT_NODES"].strip(quotes).split() except KeyError: deployment_nodes = False pass with report_on(ValueError, "DRBD_REDUNDANCY must be an integer."): try: redundancy_level = int(config["DRBD_REDUNDANCY"]) except KeyError: redundancy_level = False pass # Check that only one deployment option is configured. if not bool(deployment_nodes) ^ bool(redundancy_level): valid_config = False print("You must have one and only one of the following configured!") print("DRBD_DEPLOYMENT_NODES") print("DRBD_REDUNDANCY") # Check that deployment_nodes are a subset of, or equal to, all storage nodes. if deployment_nodes: for node in deployment_nodes: if node not in storage_nodes: valid_config = False print("%s not found in bridge list!" " Nodes in DRBD_DEPLOYMENT_NODES" " must be included in BRIDGE_LIST." % node) if len(deployment_nodes) > len(storage_nodes): valid_config = False print("DRBD_DEPLOYMENT_NODES contains more nodes than BRIDGE_LIST.") print("BRIDGE_LIST must contain all storage nodes.") # Check that redundancy level is not out of bounds. if redundancy_level: if not 0 <= redundancy_level <= len(storage_nodes): valid_config = False print("DRBD_REDUNDANCY must be a positive integer that is " "less than or equal to the number of nodes in BRIDGE_LIST") # Checks for optional attributes. if "DRBD_MIN_RATIO" in config: with report_on(ValueError, "DRBD_MIN_RATIO must be a float."): ratio = float(config["DRBD_MIN_RATIO"]) if not 0.0 <= ratio <= 1.0: valid_config = False print("DRBD_MIN_RATIO must be between 0.0 and 1.0.") if "DRBD_MIN_COUNT" in config: with report_on(ValueError, "DRBD_MIN_COUNT must be an integer."): count = int(config["DRBD_MIN_COUNT"]) if not 0 <= count <= len(storage_nodes): valid_config = False print("DRBD_MIN_COUNT must be between 0 and " "the number of storage nodes.") if "DRBD_SUPPORT_LIVE_MIGRATION" in config: choice = config["DRBD_SUPPORT_LIVE_MIGRATION"] valid_options = ["yes", "no"] if choice not in valid_options: valid_config = False print("DRBD_SUPPORT_LIVE_MIGRATION must be 'yes' or 'no'") report_validity(valid_config) ```
{ "source": "24-timmarsseglingarna/app", "score": 3 }
#### File: app/tools/pod-xml-to-geojson.py ```python import xml.etree.ElementTree as etree import argparse import re import json import io import sys import os.path import datetime if sys.version < '3': import codecs # points number 9000 and above are not real points; they are used to mark # area borders MAXPOINT=8999 def run(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--infile", help="input file") parser.add_argument("-o", "--outfile", help="output file") parser.add_argument("--id", help="id of terrain") parser.add_argument("--javascript", action="store_true") args = parser.parse_args() tree = etree.parse(args.infile) all_points, start_points, turning_points = get_points(tree) inshore_legs, offshore_legs = get_legs(tree, all_points) output_pod(args.outfile, args.javascript, args.id, [('startPoints', start_points), ('turningPoints', turning_points), ('inshoreLegs', inshore_legs), ('offshoreLegs', offshore_legs)]) def output_pod(fname, javascript, id, features): if sys.version < '3': fd = codecs.open(fname, "w", encoding="utf-8") else: fd = io.open(fname, "w", encoding="utf-8") if javascript: fd.write(u'/* eslint-disable */\n') fd.write(u'export var basePodSpec = ') fd.write(u'{"id": %s, ' % id) flen = len(features) i = 1 for (name, obj) in features: fd.write(u'"%s": {"type": "FeatureCollection",' '"crs": { "type": "name",' '"properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } },' '"features":' % name) fd.write(json.dumps(obj, ensure_ascii=False)) if i == flen: fd.write(u'}') else: i = i + 1 fd.write(u'},\n') if javascript: fd.write(u'};\n') else: fd.write(u'}\n') def get_points(tree): doc = tree.getroot() startnumbers = {} all_points = {} start_points = [] turning_points = [] for n in doc.findall("kretsar/krets/startpoints/number"): startnumbers[n.text] = True for p in doc.findall("points/point"): number = p.find("number").text if int(number) > MAXPOINT: continue name = p.find("name").text descr = p.find("descr").text lat = p.find("lat").text lng = p.find("long").text footnote = None footnoteelem = p.find("footnote") if footnoteelem is not None: footnote = footnoteelem.text properties = {"number": number, "name": name, "descr": descr} if footnote != None: properties["footnote"] = footnote coordinates = [float(lng), float(lat)] geometry = {"type": "Point", "coordinates": coordinates} point = {"type": "Feature", "properties": properties, "geometry": geometry}, if number in startnumbers: start_points.extend(point) else: turning_points.extend(point) all_points[number] = coordinates return all_points, start_points, turning_points def get_legs(tree, all_points): doc = tree.getroot() coast = [] offshore = [] for p in doc.findall("legs/leg"): src = p.find("from").text dst = p.find("to").text if int(src) > MAXPOINT or int(dst) > MAXPOINT: continue if int(src) < int(dst): # since all legs are present twice (in both directions), # skip one direction continue dist = p.find("dist").text sea = p.find("sea").text addtime = p.find("addtime").text if dist is None: print("** error: no distance: src: %s dst: %s" % (src, dst)) properties = {"src": src, "dst": dst, "dist": float(dist)} if properties["dist"] == 0 and addtime == "1": properties["addtime"] = True; src_coords = all_points[src] dst_coords = all_points[dst] geometry = {"type": "LineString", "coordinates": [src_coords, dst_coords]} leg = {"type": "Feature", "properties": properties, "geometry": geometry}, if sea == "0": coast.extend(leg) else: offshore.extend(leg) return coast, offshore if __name__ == '__main__': run() ```
{ "source": "24-Tony/BUGSS_Interface", "score": 3 }
#### File: 24-Tony/BUGSS_Interface/asciify.py ```python from PIL import Image import sys import urllib.request #import urllib, cStringIO import requests #im = Image.open(requests.get(url, stream=True).raw) ASCII_CHARS = ['.',',',':',';','+','*','?','%','S','#','@'] #ASCII_CHARS = ['..',',,','::',';;','++','**','??','%%','SS','##','@@'] ASCII_CHARS = ASCII_CHARS[::-1] ''' method resize(): - takes as parameters the image, and the final width - resizes the image into the final width while maintaining aspect ratio ''' def resize(image, new_width): (old_width, old_height) = image.size aspect_ratio = float(old_height)/float(old_width) new_height = int((aspect_ratio * new_width)/2) new_dim = (new_width, new_height) new_image = image.resize(new_dim) return new_image ''' method grayscalify(): - takes an image as a parameter - returns the grayscale version of image ''' def grayscalify(image): return image.convert('L') ''' method modify(): - replaces every pixel with a character whose intensity is similar ''' def modify(image, buckets=25): initial_pixels = list(image.getdata()) new_pixels = [ASCII_CHARS[pixel_value//buckets] for pixel_value in initial_pixels] return ''.join(new_pixels) ''' method do(): - does all the work by calling all the above functions ''' def do(image, new_width): image = resize(image,new_width) image = grayscalify(image) pixels = modify(image) len_pixels = len(pixels) # Construct the image from the character list new_image = [pixels[index:index+new_width] for index in range(0, len_pixels, new_width)] return '\n'.join(new_image) ''' method runner(): - takes as parameter the image path and runs the above code - handles exceptions as well - provides alternative output options ''' def Asciify(path,newSize): image = None IMG=None try: image = Image.open(path) except: try: urllib.request.urlretrieve(path, 'a.'+path[-3:]) image = Image.open('a.png') except: try: image = Image.open(requests.get(path, stream=True).raw) except: print("Unable to find image in",path) #print(e) return image = do(image,newSize) return(image) def asciify(path,newSize): IMG=None image = None try: image = Image.open(path) except: try: urllib.request.urlretrieve(path, 'a.'+path[-3:]) image = Image.open('a.png') except: try: image = Image.open(requests.get(path, stream=True).raw) except: print("Unable to find image in",path) #print(e) return image = do(image,newSize) print(image) def Version(): return('Current-2021-07-28') ```
{ "source": "24-Tony/HTML_Python_Syntax_Highlighter", "score": 2 }
#### File: 24-Tony/HTML_Python_Syntax_Highlighter/Html_Code_Formatter.py ```python import re import os ##try: ## from pip import main as pipmain ##except: ## from pip._internal.main import main as pipmain import subprocess from subprocess import * ##import requests ##import io ##import zipfile from urllib import request import requests def download_extract_zip(url): """ Download a ZIP file and extract its contents in memory yields (filename, file-like object) pairs """ response = requests.get(url) with zipfile.ZipFile(io.BytesIO(response.content)) as thezip: for zipinfo in thezip.infolist(): with thezip.open(zipinfo) as thefile: yield zipinfo.filename, thefile import sys py = os.path.join(sys.exec_prefix,'python.exe') def downloadZip(url,savePath): remoteZip = request.urlopen(url) local_file = open(savePath, 'wb') local_file.write(remoteZip.read()) local_file.close() def install(package): if type(package) == list: for p in package: print(f"Installing {p}") #call(['py', '-m', 'pip', 'install',package]) proc = subprocess.Popen([py, '-m', 'pip', 'install',p],stdout=subprocess.PIPE, stderr=subprocess.PIPE) proc.wait() (stdout, stderr) = proc.communicate() #print(type(stderr)) if proc.returncode != 0: print(str(stderr)) else: print("success") #pipmain(['install', package]) else: #call(['py', '-m', 'pip', 'install',package]) print(f"Installing {package}") proc = subprocess.Popen([py, '-m', 'pip', 'install',package],stdout=subprocess.PIPE, stderr=subprocess.PIPE) proc.wait() (stdout, stderr) = proc.communicate() #print(type(stderr)) if proc.returncode != 0: print(str(stderr)) else: print("success") #pipmain(['install', package]) from tkinter import * ##import requests ##import io ##import zipfile ##def download_extract_zip(url): ## """ ## Download a ZIP file and extract its contents in memory ## yields (filename, file-like object) pairs ## """ ## response = requests.get(url) ## with zipfile.ZipFile(io.BytesIO(response.content)) as thezip: ## for zipinfo in thezip.infolist(): ## with thezip.open(zipinfo) as thefile: ## yield zipinfo.filename, thefile try: from tkhtmlview import HTMLLabel,HTMLScrolledText import pyperclip as pc except ModuleNotFoundError: print('Running some initialization...') pack = ['tkhtmlview','pyperclip']#['requests','Pillow','tkhtmlview',] install(pack) #py -m pip install requests #py -m pip install Pillow #pip install tkhtmlview #py -m pip install tkhtmlview from tkhtmlview import HTMLLabel,HTMLScrolledText import pyperclip as pc ##THEMEpath = os.path.join(os.path.expanduser('~'),'Downloads','tcl-awthemes.zip') ##if not os.path.exists(THEMEpath): ## print('Retreving data...') ## #download_extract_zip('https://sourceforge.net/projects/tcl-awthemes/files/latest/download') ## downloadZip('https://sourceforge.net/projects/tcl-awthemes/files/latest/download',THEMEpath) ##try: ## from tkinterhtml import HTMLLabel ##except: ## print('Running some initialization...') ## print(' installing tkhtmlview...') ## #pipmain(['install','--upgrade','--force-reinstall','pip']) ## #install('Pillow') ## #install('tk_html_widgets') ## ## path = os.path.join(os.path.expanduser('~'),'Downloads','tkhtmlview-master.zip') ## #f = open(path,'w+') ## #call(["curl", "-O", "https://github.com/pozzolana93/tkhtmlview/archive/refs/heads/master.zip"], stdout=f) ## #call(["curl -O https://github.com/pozzolana93/tkhtmlview/archive/refs/heads/master.zip > tkhtmlview-master.zip"], shell=True) ## downloadZip("https://github.com/pozzolana93/tkhtmlview/archive/refs/heads/master.zip",path) ## #f.close() ## try: ## a = open(path) ## a.close() ## print('Created file at:',path) ## except: ## print('installation failure') ## install(os.path.join(os.path.expanduser('~'),'Downloads','tkhtmlview-master.zip')) ## #print('Installed') ## #print(' installing tkinter...') ## #install('tkinter') ## #print( help('modules')) ## from tkinterhtml import HTMLLabel ## # Set the default input termination code DEFAULT_INPUT_TERMINATION_CODE = '--Terminate--' version='2.0.0' print(f'v {version}') Bold = ';font-weight: 900' # Define the default colors Border = '#eeeeee' Background = '#ffffff' Foreground = '#000000' Comment = '#DD0000' String = '#00aa00' Keywords = '#ff7700' Builtins = '#900090' Definitions = '#0000ff' Numbers = '#0000ff' Errors = '#ff0000' Output = '#0000ff' lThemes = {'Python Default':{ 'Border':'#555555', 'Background':'#ffffff', 'Foreground':'#000000', 'Comment':'#DD0000', 'String':'#00aa00', 'Keywords':'#ff7700', 'Builtins':'#900090', 'Definitions':'#0000ff', 'Numbers':'#000000', 'Errors':'#ff0000' }, 'Python Bolded':{ 'Border':'#555555', 'Background':'#ffffff', 'Foreground':'#000000', 'Comment':'#DD0000', 'String':'#00aa00', 'Keywords':'#ff7700'+Bold, 'Builtins':'#900090', 'Definitions':'#0000ff'+Bold, 'Numbers':'#0000ff'+Bold, 'Errors':'#ff0000' }, 'Royal Blue':{ 'Border':'#555566', 'Background':'#ffffff', 'Foreground':'#000000', 'Comment':'#00aa00', 'String':'#DD0000', 'Keywords':'#0000ff'+Bold, 'Builtins':'#000099', 'Definitions':'#000099'+Bold, 'Numbers':'#000099'+Bold, 'Errors':'#ff0000' }, 'Sea':{ 'Border':'#445566', 'Background':'#ffffff', 'Foreground':'#000000', 'Comment':'#445a71', 'String':'#229922', 'Keywords':'#0077aa'+Bold, 'Builtins':'#D86149', 'Definitions':'#04B7BD'+Bold, 'Numbers':'#0077aa'+Bold, 'Errors':'#ff0000' }, 'Red':{ 'Border':'#665555', 'Background':'#ffffff', 'Foreground':'#000000', 'Comment':'#445a71', 'String':'#22863A', 'Keywords':'#D73A49'+Bold, 'Builtins':'#6F42C1', 'Definitions':'#AB0112'+Bold, 'Numbers':'#AB0112'+Bold, 'Errors':'#ff0000' }, 'Grey':{ 'Border':'#555555', 'Background':'#eeeeee', 'Foreground':'#7B776F', 'Comment':'#445a71', 'String':'#C05726', 'Keywords':'#3080B5'+Bold, 'Builtins':'#C05726', 'Definitions':'#ff7700'+Bold, 'Numbers':'#000077'+Bold, 'Errors':'#ff0000' }, 'Glisten':{ 'Border':'#808080', 'Background':'#ffffff', 'Foreground':'#333333', 'Comment':'#445a71', 'String':'#DD4422', 'Keywords':'#008800'+Bold, 'Builtins':'#008800', 'Definitions':'#0066BB'+Bold, 'Numbers':'#0000dd'+Bold, 'Errors':'#ff0000' } } dThemes = {'Default Dark':{ 'Border':'#555555', 'Background':'#222222', 'Foreground':'#dddddd', 'Comment':'#ff3333', 'String':'#00ff00', 'Keywords':'#ffaa22'+Bold, 'Builtins':'#ff40c0', 'Definitions':'#00ccff'+Bold, 'Numbers':'#55aaff'+Bold, 'Errors':'#ff0000' }, 'Rainglow':{ 'Border':'#5298c4', 'Background':'#040507', 'Foreground':'#ffffff', 'Comment':'#6f809f', 'String':'#64aeb3', 'Keywords':'#508aaa'+Bold, 'Builtins':'#6ab0a3', 'Definitions':'#00838C'+Bold, 'Numbers':'#529CA8'+Bold, 'Errors':'#ff0000' }, 'Bold':{ 'Border':'#3d8e91', 'Background':'#0f0d0d', 'Foreground':'#ffffff', 'Comment':'#6f809f', 'String':'#F7A21B', 'Keywords':'#F0624B'+Bold, 'Builtins':'#3D8E91', 'Definitions':'#B4B7AD'+Bold, 'Numbers':'#F7A21B'+Bold, 'Errors':'#ff0000' }, 'Dark+':{ 'Border':'#555555', 'Background':'#1e1e1e', 'Foreground':'#D4D4D4', 'Comment':'#6A9955', 'String':'#CE9178', 'Keywords':'#569CD6'+Bold, 'Builtins':'#dcdcaa', 'Definitions':'#9CDCFE'+Bold, 'Numbers':'#B5CEA8'+Bold, 'Errors':'#ff0000' }, 'Citylights':{ 'Border':'#171d23', 'Background':'#1d252c', 'Foreground':'#718CA1', 'Comment':'#72899e', 'String':'#68A1F0', 'Keywords':'#508aaa'+Bold, 'Builtins':'#70E1E8', 'Definitions':'#24A5AF'+Bold, 'Numbers':'#E27E8D'+Bold, 'Errors':'#ff0000' }, 'Panda':{ 'Border':'#676B79', 'Background':'#292a2b', 'Foreground':'#E6E6E6', 'Comment':'#737787', 'String':'#19F9D8', 'Keywords':'#FFB86C'+Bold, 'Builtins':'#FF75B5', 'Definitions':'#6FC1FF'+Bold, 'Numbers':'#FFB86C'+Bold, 'Errors':'#ff0000' }, 'Rose':{ 'Border':'#f52277', 'Background':'#141322', 'Foreground':'#B4DAE9', 'Comment':'#45898C', 'String':'#C01B5D', 'Keywords':'#FB4293'+Bold, 'Builtins':'#F37AB0', 'Definitions':'#8CE1E7'+Bold, 'Numbers':'#E5FCA6'+Bold, 'Errors':'#ff0000' }, 'Sea Green':{ 'Border':'#242b38', 'Background':'#0a1018', 'Foreground':'#EEFFFF', 'Comment':'#708394', 'String':'#28735E', 'Keywords':'#25A2A6'+Bold, 'Builtins':'#5CB4DE', 'Definitions':'#4785bd'+Bold, 'Numbers':'#28735E'+Bold, 'Errors':'#ff0000' }, 'Firefly':{ 'Border':'#333333', 'Background':'#0a0a0a', 'Foreground':'#a8aebd', 'Comment':'#626a73', 'String':'#a4bd00', 'Keywords':'#ff0066'+Bold, 'Builtins':'#ff8533', 'Definitions':'#827db5'+Bold, 'Numbers':'#E6E600'+Bold, 'Errors':'#ff0000' }, 'Monikai':{ 'Border':'#333333', 'Background':'#121212', 'Foreground':'#bbbbbb', 'Comment':'#5C6370', 'String':'#E5C07B', 'Keywords':'#56B6C2'+Bold, 'Builtins':'#E06C75', 'Definitions':'#98C379'+Bold, 'Numbers':'#C678DD'+Bold, 'Errors':'#ff0000' }, 'Black Ocean':{ 'Border':'#0c5271', 'Background':'#101316', 'Foreground':'#DFDFDF', 'Comment':'#60778c', 'String':'#7ebea0', 'Keywords':'#007aae'+Bold, 'Builtins':'#019d76', 'Definitions':'#15b8ae'+Bold, 'Numbers':'#15b8ae'+Bold, 'Errors':'#ff0000' }, 'CodePen':{ 'Border':'#9CA0B1', 'Background':'#1e1f27', 'Foreground':'#D5D7DE', 'Comment':'#88AFBF', 'String':'#2BC7B9', 'Keywords':'#47CF73'+Bold, 'Builtins':'#5E91F2', 'Definitions':'#9CA0B1'+Bold, 'Numbers':'#2BC7B9'+Bold, 'Errors':'#ff0000' }, 'Acme':{ 'Border':'#a2a797', 'Background':'#0f0e0d', 'Foreground':'#EDEBE6', 'Comment':'#988e86', 'String':'#E0A84C', 'Keywords':'#CF433E'+Bold, 'Builtins':'#CD122C', 'Definitions':'#d96972'+Bold, 'Numbers':'#a5e3d0'+Bold, 'Errors':'#ff0000' }, 'Arc':{ 'Border':'#3c3c3c', 'Background':'#111111', 'Foreground':'#EDEBE6', 'Comment':'#888888', 'String':'#ff1ba9', 'Keywords':'#f28888'+Bold, 'Builtins':'#a80000', 'Definitions':'#A5E3D0'+Bold, 'Numbers':'#a5e3d0'+Bold, 'Errors':'#ff0000' } } # Define the syntax separators separators = [',','(','[',']',')','{','}','/','*','+','-','.','|',':',';','⋞','⋟','='] # Create a splitting function that takes a list of separators # Code courtesy of DelftStack: https://www.delftstack.com/howto/python/how-to-split-string-with-multiple-delimiters-in-python/#make-it-a-function - I edited it some though def custom_split(sepr_list, str_to_split): # Duplicate and sort the separator list sepr_list2 = list(sepr_list) sepr_list2.sort(key=len,reverse=True) # create regular expression dynamically regular_exp = '|'.join(map(re.escape, sepr_list2)) # Return the list of splits return re.split(regular_exp, str_to_split) def Input(prompt=None,ml = False,Terminate=DEFAULT_INPUT_TERMINATION_CODE): contents = input(prompt) while ml: try: line = input() if line == Terminate: break contents+='\n'+line except EOFError: break #contents+='\n'+line return contents # create a list of instances that would set off a string with single quotes str1 = ['\'', 'f\'','u\'','b\'','r\'','\'\'\'','f\'\'\'','u\'\'\'','b\'\'\'','r\'\'\''] # create a list of instances that would set off a string with double quotes str2 = ['"', 'r"','f"','u"','b"','"""','f"""','u"""','b"""','r"""'] #Create a dictionary with keywords and the like Colors = { #Comment : ['#','##'], #String : ['\'', '"','f\'','u\'','b\'','r\'','r"','f"','u"','b"'], 'Keywords' : ['and','as','assert','break','class','continue','def','del','elif','else','except','False','finally','for','from','global','if','import','in','is','lambda','None','nonlocal', 'not','or','pass','raise','return','True','try','while','with','yield'], 'Builtins' : ['ValueError', 'ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException', 'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning', 'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError', 'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning', 'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'FileExistsError', 'FileNotFoundError', 'FloatingPointError', 'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError', 'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError', 'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError', 'MemoryError', 'ModuleNotFoundError', 'NameError', 'NotADirectoryError', 'NotImplemented', 'NotImplementedError', 'OSError', 'OverflowError', 'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError', 'ReferenceError', 'RecursionError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning', 'StopAsyncIteration', 'StopIteration', 'SystemError', 'SyntaxError', 'SyntaxWarning', 'SystemExit', 'TabError', 'TimeoutError', 'TypeError', 'UnicodeDecodeError', 'UnboundLocalError', 'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning', 'WindowsError', 'ZeroDivisionError', 'abs', 'all', 'any', 'ascii', 'bin', 'bool', 'breakpoint', 'bytearray', 'callable', 'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec', 'exit', 'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass', 'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview', 'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property','quit', 'range', 'repr', 'reversed', 'round', 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars', 'zip'], 'Numbers' : [], 'Error' : [], 'Output' : [] } # Create a dictionary with syntax ends - blank for continuous highlighting ends = { 'Comment': '', 'String': '', 'Keywords': '</span>', 'Builtins': '</span>', 'Numbers': '</span>' } # Create a dictionary with string to be replaced Replacers = {'<':'⋞', '>':'⋟', '<p>':'', '</p>':' <br> ', '\n':' <br> '} ColorToType = { "Border" : Border, "Background" : Background, "Foreground" : Foreground, "Comment" : Comment, "String" : String, "Keywords" : Keywords, "Builtins" : Builtins, "Definitions" : Definitions, "Numbers" : Numbers, "Error" : Errors, "Output" : Output } # Create A Theme setter def setColorScheme(Color): try: Color = int(Color) except: pass try: if type(Color) == type(2): theme = Themes[list(Themes)[Color-1]] else: theme = Themes[Color] global Border, Background, Foreground, Comment, String, Keywords, Builtins, Definitions, Colors, Numbers, Errors, Output Border = theme['Border'] Background = theme['Background'] Foreground = theme['Foreground'] Comment = theme['Comment'] String = theme['String'] Keywords = theme['Keywords'] Builtins = theme['Builtins'] Definitions = theme['Definitions'] Numbers = theme['Numbers'] Errors = theme['Errors'] Output = theme['Definitons'] except: print('Invalid Theme') #OLD def Preview(code): import datetime import webbrowser Path = os.path.join(os.path.expanduser('~'),'Downloads','Html - CodeSnippets') if not os.path.exists(Path): os.makedirs(Path) Name = ('Code Snippet.html')# - '+str(datetime.datetime.now())[:-10].replace(':','.')+'.html') fn = os.path.join(Path,Name) f = open(fn, 'w+', errors='replace') f.write(code) f.close() webbrowser.open_new(fn) #NEW def Compute(Code,color,inline): print(color) if color=='': color = list(Themes)[0] color = list(Themes).index(color)+1 print(color) inline = bool(inline) Raw = htmlCode(Code,color=color,inline=inline) global root,clicked,drop,text_box,OutText_box,OUTPUT OutText_box.config(state='normal') OutText_box.delete(1.0, 'end') OutText_box.insert(1.0, Raw.code) OutText_box.config(state='disabled') if inline: a = Raw.code bg = Raw.code[106:113] else: a = Raw.code[8:] bg = Raw.code[184:191] OUTPUT['bg'] = bg OUTPUT.set_html(a) print(bg) import random from tkinter import scrolledtext,ttk from functools import partial import win32gui #from io import BytesIO import base64, PIL, urllib from PIL import ImageTk import urllib.request class Interface(): def __init__(self): global root,clicked,drop,text_box,OutText_box,OUTPUT,ISINLINE root = Tk() win32gui.SetForegroundWindow(root.winfo_id()) root.title(f'HTML Syntax Highlighter v{version}') ## root.tk.call('lappend', 'auto_path', os.path.join(THEMEpath,'awthemes-10.4.0','pkgIndex.tcl')) ## root.tk.call('package', 'require', 'awdark') ## root.style(style='Fun.root') fg='#ff3333'#'#3D8E91' bg='#0f0d0d' bg2='#1f1d1d' root.config(bg=bg) #try: url = 'https://user-images.githubusercontent.com/47753578/135677892-c14221dc-e055-4e64-8150-9629b5ef5286.png' raw_data = urllib.request.urlopen(url).read() import warnings warnings.filterwarnings("ignore") b64_data = base64.encodestring(raw_data); warnings.filterwarnings("always") image = PhotoImage(data=b64_data) root.tk.call('wm', 'iconphoto', root._w, image) #except: # pass root.resizable(width=0, height=1) root.geometry("1080x800") Title = Label(root,text=f'HTML Syntax Highlighter v{version}',font=("Consolas", 25),pady=20,bg=bg,fg=fg).place(relx = 0.5, rely =0, anchor ='n') options = list(Themes) clicked = StringVar() label = Label( root , text = "Pick a Theme (Themes are light until 'Default Dark')" ,bg=bg,fg=fg).place(relx = 0.5, rely =0.075, anchor ='n') errout = Label( root , text = 'Use: `err` to start and end an error and `out` to start and end an output \n to get the simply have the string of `err` or `out` put a "\\" before it.' ,bg=bg,fg=fg).place(relx = 1, rely =0.075, anchor ='ne') COLOR = StringVar() combostyle = ttk.Style() combostyle.theme_create('combostyle', parent='alt', settings = {'TCombobox': {'configure': {'selectbackground': bg, 'fieldbackground': bg, 'background': bg2, }}} ) combostyle.theme_use('combostyle') drop = ttk.Combobox( root ,textvariabl=COLOR ) drop['values'] = options drop['state'] = 'readonly' #drop.config(bg = bg,fg=fg) #drop['menu'].config(bg=bg2,fg=fg) drop.place(relx = 0.5, rely =0.105, anchor ='n') #ISINLINE = BoolVar() ISINLINE = IntVar() Checkbutton(root, text='inline',bg=bg,fg=fg, variable=ISINLINE).place(relx = 0.6, rely =0.105, anchor ='n') message ='''Please put your code here...''' text_box = scrolledtext.ScrolledText( root, height=10, width=130,bg=bg2,fg=fg ) text_box.place(relx = 0.5, rely =0.15, anchor ='n')#(expand=True) text_box.insert('end', message) text_box.config(state='normal') button = Button( root , text = "Highlight",command = lambda:Compute(text_box.get("1.0",'end-1c'), COLOR.get(), ISINLINE.get()),bg=bg,fg=fg).place(relx = 0.5, rely =0.36, anchor ='n') button = Button( root , text = "Copy",command = lambda:pc.copy(OutText_box.get("1.0",'end-1c')),bg=bg,fg=fg).place(relx = 0.009,rely = 0.61, anchor ='nw') OutText_box = scrolledtext.ScrolledText( root, height=10, width=130,bg=bg2,fg=fg ) OutText_box.place(relx = 0.5, rely =0.4, anchor ='n')#(expand=True) OutText_box.insert('end', 'HTML Output...') OutText_box.config(state='disabled') label2 = Label( root , text = "Output HTML code (What you want to copy) ↑ | ↓ Preview (Indentation, Bolding, and other attributes will exist in actual implementation, but may not display here)" ,bg=bg,fg=fg).place(relx = 0.5, rely =0.615, anchor ='n') OUTPUT = HTMLScrolledText(root,height=15,width=130,html='') OUTPUT.place(relx = 0.5, rely =0.65, anchor ='n') ## label.pack() #button = Button( root , text = "click Me" , command = print(clicked.get())).pack() ## root.attributes("-topmost", True) ## root.attributes("-topmost", False) root.mainloop() def fillTemplate(HighlightedCode,inline): global Border, Background, Foreground, Comment, String, Keywords, Builtins, Definitions, Colors, Numbers if inline == True: return f'<tt style="font-size:80%; border-radius: 5px; border: .1em solid {Border}; padding: 3px; background-color:{Background}; color:{Foreground};">{HighlightedCode}</tt>&nbsp;' else: return f'<p> </p><p style="font-family: Consolas; font-size:80%;line-height:1.25em; border: solid {Border}; border-radius: 5px; border-width:.1em .1em .1em .8em; padding: 10px; background-color:{Background}; color:{Foreground};">{HighlightedCode}</p><p>&nbsp;</p>' """ /‾/ /‾/‾‾‾‾‾‾‾‾/‾| /‾| /‾/ / /___/ /‾‾‾/ /‾‾/ |/ | / / / ___ / / / / | | / |/ / / / / / / / / /|__/| | /____ /_/ /_/ /_/ /_/ |_|_____/ |‾\|‾|/‾‾\ /‾‾‾‾/‾‾\|‾| /‾‾\|‾‾‾\ | \ | /\ | | /‾‾| /\ | | | /\ | <> | | \ | \/ | | \__| \/ | |_| \/ | < |_|\_|\__/ \____\__/|____\__/|_|\_\ """ # Head the function html_NoColor def html_NoColor(code,inline = False): """.|‾\|‾|/‾‾\ /‾‾‾‾/‾‾\|‾| /‾‾\|‾‾‾\ . .| \ | /\ | | /‾‾| /\ | | | /\ | <> |. .| \ | \/ | | \__| \/ | |_| \/ | < . .|_|\_|\__/ \____\__/|____\__/|_|\_\. """ # Create a copy of code rawcode = code if rawcode[-6:]!=' <br> ': rawcode+=' <br> ' # Loop through the replacements for item in Replacers: # and replace rawcode = rawcode.replace(item,Replacers[item]) ###### Finish Format ###### # Replace the quotation and less/greater than string subsitution and tabs rawcode = rawcode.replace('“','"').replace('”','"').replace('⋞','&#60;').replace('⋟','&#62;').replace('\t','&nbsp;'*3).replace(' ','&nbsp;'*4) # remove the last six characters rawcode=rawcode[:-14] # Complete the formatting code = fillTemplate(rawcode,inline) # Print the code print(code) ''' /‾/ /‾/‾‾‾‾‾‾‾‾/‾| /‾| /‾/ / /___/ /‾‾‾/ /‾‾/ |/ | / / / ___ / / / / | | / |/ / / / / / / / / /|__/| | /____ /_/ /_/ /_/ /_/_____|_|_____/ /‾‾‾‾‾‾/‾‾‾‾‾\|‾‾‾‾‾\ | _____| | /‾‾‾| /‾\ | |‾\ \| |___ | | | | | | | | | ___| | \___| \_/ | |_/ /| |_____ \______\_____/|_____/ |_______| ''' # Head the function htmlCode def html_code(code,inline = False, Return = False, color = False): if color != False: setColorScheme(color) global ColorToType ColorToType = { "Border" : Border, "Background" : Background, "Foreground" : Foreground, "Comment" : Comment, "String" : String, "Keywords" : Keywords, "Builtins" : Builtins, "Definitions" : Definitions, "Numbers" : Numbers, "Error" : Errors, "Output" : Output } # Create a copy of code rawcode = code # Loop through the replacements for item in Replacers: # and replace rawcode = rawcode.replace(item,Replacers[item]) # Create an empty highlighted code string HighlightedCode = '' # If the code does not end in a new line, make it if rawcode[-6:]!=' <br> ': rawcode+=' <br> ' # Split the code with spaces to get a rough syntax separation words = rawcode.split(' ') # Set continuous highlighting booleans InComment = False InStringType1 = False InStringType1_3 = False InStringType2 = False InStringType2_3 = False InDef_Class = False InErr = False InOut = False #access the global separators variable global separators # loop through the rough words for WORD in words: # Create an empty word MYWORD = '' # Split the word more completely code_words = custom_split(separators,WORD) # Filter out empty string code_words = list(filter(None, code_words)) # Create a reinfusement map heal_code = custom_split(list(filter(None, code_words)),WORD) # Create a list for the code Broken_Code = [] # Loop through the refined syntax for word in code_words: # create an appendWord variable with a default of word appendWord = word # If we are in a comment if InComment: # If we are at the end of the line if word == '<br>': # End the comment appendWord = '</span>'+word # Terminate the comment section InComment = False # Otherwise, if we are in a single quote string elif InStringType1: # If there is a single quote within our refined syntax #print('-',word,'if', word.find('\'') != -1, "and(", word.find('\\\'')!=(word.find('\'')-1), "or", word.find('\\\'') ==-1,')') #print() if word.find('\'') != -1 and (word.find('\\\'')!=(word.find('\'')-1) or word.find('\\\'') ==-1): # End the string appendWord = word.replace('\'','\'</span>') # Terminate the single quote string section InStringType1 = False # Otherwise, if we are in a triple single quote string elif InStringType1_3: # If there is a triple single quote within our refined syntax if word.find('\'\'\'') != -1 and (word.find('\\\'\'\'')!=(word.find('\'\'\'')-1) or word.find('\\\'\'\'') ==-1): # End the string appendWord = word.replace('\'\'\'','\'\'\'</span>') # Terminate the triple single quote string section InStringType1_3 = False # Otherwise, if we are in a double quote string elif InStringType2: # If there is a double quote within our refined syntax if word.find('"') != -1 and (word.find('\\"')!=(word.find('"')-1) or word.find('\\"') ==-1): # End the string appendWord = word.replace('"','"</span>') # Terminate the double quote string section InStringType2 = False # Otherwise, if we are in a triple double quote string elif InStringType2_3: # If there is a triple double quote within our refined syntax if word.find('"""') != -1 and ( word.find('\\"""')!=(word.find('"""')-1) or word.find('\\"""') ==-1): # End the string appendWord = word.replace('"""','"""</span>') # Terminate the triple double quote string section InStringType2_3 = False # Otherwise, if we are in the heading of a function or a class elif InDef_Class: # Make the word blue appendWord = f'<span style=“color:{Definitions}”>'+word+'</span>' # Terminate the function or a class heading section InDef_Class = False # Otherwise, if we are in an error elif InErr: # If an error is ending and if word.find('`err`') != -1 and ( word.find('\\`err`')!=(word.find('`err`')-1) or word.find('\\`err`') ==-1): # End the string appendWord = word.replace('`err`','</span>') # Terminate the triple double quote string section InErr = False appendWord = appendWord.replace('\`err`','`err`') # Otherwise, if we are in an output elif InOut: # If an error is ending and if word.find('`out`') != -1 and ( word.find('\\`out`')!=(word.find('`out`')-1) or word.find('\\`out`') ==-1): # End the string appendWord = word.replace('`out`','</span>') # Terminate the triple double quote string section InOut = False appendWord = appendWord.replace('\`out`','`out`') #Otherwise else: # If the word is not blank if word != '': # loop through the colors for color in Colors: # if the word is in the color if word in Colors[color]: # Make the word the color it should be clr = ColorToType[color] appendWord = (f'<span style=“color:{clr}”>'+word+ends[color]) elif color == "Numbers": if word.isnumeric(): clr = ColorToType[color] appendWord = (f'<span style=“color:{clr}”>'+word+ends[color]) elif color == 'Error': if word.find('`err`') != -1 and ( word.find('\\`err`')!=(word.find('`err`')-1) or word.find('\\`err`') ==-1): clr = ColorToType[color] appendWord = word.replace('`err`',f'<span style=“color:{clr}”>',1) InErr = True if len(word)>len(' `err`') and (word[-5:]=='`err`'): appendWord = appendWord.replace('`err`','</span>') InErr = False appendWord = appendWord.replace('\`err`','`err`') elif color == 'Output': if word.find('`out`') != -1 and ( word.find('\\`out`')!=(word.find('`out`')-1) or word.find('\\`out`') ==-1): clr = ColorToType[color] appendWord = word.replace('`out`',f'<span style=“color:{clr}”>',1) InOut = True if len(word)>len(' `out`') and (word[-5:]=='`out`'): appendWord = appendWord.replace('`out`','</span>') InOut = False appendWord = appendWord.replace('\`out`','`out`') # Set the first letter of the word primary = word[0] # get the first two and three letters of the word if it is multiple letters long try: secondary = word[:2] secEnd = word[-2:] except: secondary = primary secEnd = word[-1:] try: tertiary = word[:3] except: tertiary = secondary try: qry = word[:4] except: qry = tertiary # If the first three letters are triple single quote string beginings if tertiary == '\'\'\'' or (len(qry) == 4 and qry in str1): appendWord = (f'<span style=“color:{String}”>'+word) InStringType1_3 = True # Otherwise, if the first one or two letters are single quote string beginings elif primary == '\'' or secondary in str1: # if the word sets off a string or end with a string begining or the ending is not a string ending if len(word) == 1 or secondary in str1 or (word[-1] !='\'' or secEnd =='\\\''): # Start the string section InStringType1 = True # Color the word an indefinite green appendWord = (f'<span style=“color:{String}”>'+word) # Otherwise else: #Start and end the string on the word appendWord = (f'<span style=“color:{String}”>'+word+'</span>') # Otherwise, if the first three letters are triple double quote string beginings elif tertiary == '"""' or (len(qry) == 4 and qry in str2): appendWord = (f'<span style=“color:{String}”>'+word) InStringType2_3 = True # Otherwise, if the first one or two letters are single quote string beginings elif primary == '"' or secondary in str2: # if the word sets off a string or end with a string begining or the ending is not a string ending if len(word) == 1 or secondary in str2 or word[-1] !='"' or secEnd =='\\"' : # Start the string section InStringType2 = True # Color the word an indefinite green appendWord = (f'<span style=“color:{String}”>'+word) # Otherwise else: #Start and end the string on the word appendWord = (f'<span style=“color:{String}”>'+word+'</span>') # Otherwise, if the word sets off a commetn elif primary == '#': # Color the word an indefinite red appendWord = (f'<span style=“color:{Comment}”>'+word) # Start off the comment section InComment = True # Otherwise, if the word was def or class elif word == 'def' or word == 'class' : # Start the def/class head section InDef_Class = True # Append the higlighted syntax Broken_Code.append(appendWord) ############ reinfuse the subtracted string ############## # prepare the heal_code list and the broken_code list h1 = heal_code[0] heal_code = list(filter(None, heal_code)) heal_code.append('') while len(Broken_Code)< len(heal_code): Broken_Code.append('') # Loop through the items in the heal_code list for i in range(len(heal_code)): try: # Reinfuse the subtracted characters if h1 == '': MYWORD +=Broken_Code[i]+heal_code[i] else: MYWORD +=heal_code[i]+Broken_Code[i] # if it rasies an error except: # Help the debugging print('An ERROR is being raised!') print(WORD) print(heal_code, f'len: {len(heal_code)}') print(Broken_Code, f'len: {len(Broken_Code)}') # raise the error MYWORD +=Broken_Code[i]+heal_code[i] # Append the word to the highlighted code HighlightedCode += MYWORD+' ' ###### Finish Format ###### # Replace the quotation and less/greater than string subsitution and tabs HighlightedCode = HighlightedCode.replace('“','"').replace('”','"').replace('⋞','&#60;').replace('⋟','&#62;').replace('\t','&nbsp;'*3).replace(' ','&nbsp;'*2).replace(' ','&nbsp;'*2) # remove the last six characters HighlightedCode=HighlightedCode[:-16]#6 # Complete the formatting code = fillTemplate(HighlightedCode,inline) # Print the code print(code) if Return == True: return code #htmlCode(input('Code Here:')) class htmlCode(): """ ../‾‾‾‾‾‾/‾‾‾‾‾\|‾‾‾‾‾\ | _____|. .| /‾‾‾| /‾\ | |‾\ \| |___.... .| | | | | | | | | ___|... .| \___| \_/ | |_/ /| |_____.. ..\______\_____/|_____/ |_______|. """ def __init__(self, code, inline=False, color = False): print('⩋'*40+'\n') if type(code)==tuple or type(code)==list: self.code = '' for section in code: if type(color)==tuple or type(color)==list: clr = color[code.index(section)] else: clr = color self.code += html_code(section,inline = inline, Return = True,color=clr)[:-(6+7*(inline==False))] else: self.code = html_code(code,inline = inline, Return = True,color=color) print('\n'+'⩊'*40) def preview(self): Preview(self.code) def HighlightCode(): try: inline = False code = Input(f'Code (end code with "{DEFAULT_INPUT_TERMINATION_CODE}" on an empty line after the code):',ml=True) if code.find('\n') ==-1: inline = bool(input('Inline? (True/False)')) preview = bool(input('Preview? (True/False)')) except ValueError: print('Please make sure your input for the "Inline?" and "Preview?" prompts were booleans') return print() code = html_code(code,inline = inline, Return = True) if preview:Preview(code) def ThemeDisplay(): code = [] colors = [] for Theme in Themes: colors.append(Theme) code.append( f'''# {Theme} Theme Test def Function(): """This Function is a test""" return str(1101.2021)''') htmlCode(code,color = colors).preview() #Determine the theme Themes = {} ltNames = list(lThemes) ltVals = list(lThemes.values()) dtNames = list(dThemes) dtVals = list(dThemes.values()) for theme in range(len(lThemes)+len(dThemes)): if theme < len(lThemes): Themes[ltNames[theme]] = ltVals[theme] else: Themes[dtNames[theme-(len(lThemes))]] = dtVals[theme-(len(lThemes))] def ThemePrompt(): global Themes Themes = {} print('Light themes') ltNames = list(lThemes) ltVals = list(lThemes.values()) dtNames = list(dThemes) dtVals = list(dThemes.values()) for theme in range(len(lThemes)+len(dThemes)): if theme == len(lThemes): print('Dark themes:') if theme < len(lThemes): print(' ', str(theme+1)+'.',ltNames[theme]) Themes[ltNames[theme]] = ltVals[theme] else: print(' ', str(theme+1)+'.',dtNames[theme-(len(lThemes))]) Themes[dtNames[theme-(len(lThemes))]] = dtVals[theme-(len(lThemes))] Color = input('\n- a display of all of the themes can be shown by the command: ThemeDisplay()\nWhich theme should we use?') if Color.find('ThemeDisplay') != -1: ThemeDisplay() ThemePrompt() else: setColorScheme(Color) if input('Use Interface? (y/n):').upper() == 'N': ThemePrompt() # Print a warning statement print(f''' ----------------------------------------------------------------------------------------------- =============================================================================================== ############################################################################################### Warning! Formatting issues may arise from using a python escape character like: "\\n", (a list of these can be found at: https://www.w3schools.com/python/gloss_python_escape_characters.asp), to fix this please replace the backslash part with two backslashes, for instance: "\\\\n". Another method of solving this is to use the HighlightCode() function which takes a multiline input of your code, terminated by the termination code: {DEFAULT_INPUT_TERMINATION_CODE} Lastly, this program may not work for syntax highlighting every program. By using this, you take on the responsibility to ensure that the highlighting is accurate. ############################################################################################### =============================================================================================== -----------------------------------------------------------------------------------------------''') # Print a guide print('\n\nInitiate using the "htmlCode" function\n>>> htmlCode(\'\'\'CODE GOES HERE\'\'\') or >>> htmlCode(\'\'\'CODE GOES HERE\'\'\', inline = True)\nPlease use triple quotes for multiline code\n'+'-'*30+'\nThe htmlCode(\'\'\'CODE GOES HERE\'\'\') function returns an object that can be previewed using the OBJECT.preview() command.\n An immediate preview can be achieved by using the command htmlCode(\'\'\'CODE GOES HERE\'\'\').preview()\n') print('Use: `err` to start and end an error and `out` to start and end an output - to get the simply have the string of `err` or `out` put a "\\" before it.') else: try: Interface() except: Interface() ```
{ "source": "24werewolf/python_video_stab", "score": 3 }
#### File: python_video_stab/vidstab/download_videos.py ```python from urllib.request import urlretrieve REMOTE_OSTRICH_VID_PATH = 'https://s3.amazonaws.com/python-vidstab/ostrich.mp4' REMOTE_TRUNCATED_OSTRICH_VID_PATH = 'https://s3.amazonaws.com/python-vidstab/trunc_video.avi' REMOTE_SKATELINE_VID_PATH = 'https://s3.amazonaws.com/python-vidstab/thrasher.mp4' def download_ostrich_video(download_to_path): """Download example shaky clip of ostrich used in README (mp4) Video used with permission the HappyLiving YouTube channel. Original video: https://www.youtube.com/watch?v=9pypPqbV_GM :param download_to_path: path to save video to :return: None >>> from vidstab import VidStab, download_ostrich_video >>> path = 'ostrich.mp4' >>> download_ostrich_video(path) >>> >>> stabilizer = VidStab() >>> stabilizer.stabilize(path, OUTPUT_VIDEO_PATH) """ urlretrieve(REMOTE_OSTRICH_VID_PATH, download_to_path) def download_skateline_video(download_to_path=None): """Download additional testing video NOT FOR GENERAL USE; VIDEO MIGHT BE REMOVED WITHOUT WARNING :param download_to_path: path to save video to :return: None """ urlretrieve(REMOTE_SKATELINE_VID_PATH, download_to_path) def download_truncated_ostrich_video(download_to_path=None): """Download additional testing video NOT FOR GENERAL USE; VIDEO MIGHT BE REMOVED WITHOUT WARNING :param download_to_path: path to save video to :return: None """ urlretrieve(REMOTE_TRUNCATED_OSTRICH_VID_PATH, download_to_path) ```
{ "source": "24wuw/bunner", "score": 4 }
#### File: 24wuw/bunner/bunner.py ```python import pgzero, pgzrun, pygame, sys from random import * from enum import Enum # Check Python version number. sys.version_info gives version as a tuple, e.g. if (3,7,2,'final',0) for version 3.7.2. # Unlike many languages, Python can compare two tuples in the same way that you can compare numbers. if sys.version_info < (3,5): print("This game requires at least version 3.5 of Python. Please download it from www.python.org") sys.exit() # Check Pygame Zero version. This is a bit trickier because Pygame Zero only lets us get its version number as a string. # So we have to split the string into a list, using '.' as the character to split on. We convert each element of the # version number into an integer - but only if the string contains numbers and nothing else, because it's possible for # a component of the version to contain letters as well as numbers (e.g. '2.0.dev0') # We're using a Python feature called list comprehension - this is explained in the Bubble Bobble/Cavern chapter. pgzero_version = [int(s) if s.isnumeric() else s for s in pgzero.__version__.split('.')] if pgzero_version < [1,2]: print("This game requires at least version 1.2 of Pygame Zero. You have version {0}. Please upgrade using the command 'pip3 install --upgrade pgzero'".format(pgzero.__version__)) sys.exit() WIDTH = 480 HEIGHT = 800 TITLE = "Infinite Bunner" ROW_HEIGHT = 40 # See what happens when you change this to True DEBUG_SHOW_ROW_BOUNDARIES = False # The MyActor class extends Pygame Zero's Actor class by allowing an object to have a list of child objects, # which are drawn relative to the parent object. class MyActor(Actor): def __init__(self, image, pos, anchor=("center", "bottom")): super().__init__(image, pos, anchor) self.children = [] def draw(self, offset_x, offset_y): self.x += offset_x self.y += offset_y super().draw() for child_obj in self.children: child_obj.draw(self.x, self.y) self.x -= offset_x self.y -= offset_y def update(self): for child_obj in self.children: child_obj.update() # The eagle catches the rabbit if it goes off the bottom of the screen class Eagle(MyActor): def __init__(self, pos): super().__init__("eagles", pos) self.children.append(MyActor("eagle", (0, -32))) def update(self): self.y += 12 class PlayerState(Enum): ALIVE = 0 SPLAT = 1 SPLASH = 2 EAGLE = 3 # Constants representing directions DIRECTION_UP = 0 DIRECTION_RIGHT = 1 DIRECTION_DOWN = 2 DIRECTION_LEFT = 3 direction_keys = [keys.UP, keys.RIGHT, keys.DOWN, keys.LEFT] # X and Y directions indexed into by in_edge and out_edge in Segment # The indices correspond to the direction numbers above, i.e. 0 = up, 1 = right, 2 = down, 3 = left # Numbers 0 to 3 correspond to up, right, down, left DX = [0,4,0,-4] DY = [-4,0,4,0] class Bunner(MyActor): MOVE_DISTANCE = 10 def __init__(self, pos): super().__init__("blank", pos) self.state = PlayerState.ALIVE self.direction = 2 self.timer = 0 # If a control input is pressed while the rabbit is in the middle of jumping, it's added to the input queue self.input_queue = [] # Keeps track of the furthest distance we've reached so far in the level, for scoring # (Level Y coordinates decrease as the screen scrolls) self.min_y = self.y def handle_input(self, dir): # Find row that player is trying to move to. This may or may not be the row they're currently standing on, # depending on whether the proposed movement would take them onto a different row for row in game.rows: if row.y == self.y + Bunner.MOVE_DISTANCE * DY[dir]: # Found the target row # Can the player move to the new location? Can't move if there's something in the way # (or if the new location is off the screen) if row.allow_movement(self.x + Bunner.MOVE_DISTANCE * DX[dir]): # It's okay to move here, so set direction and timer. Player will move one pixel per frame # for the specified number of frames self.direction = dir self.timer = Bunner.MOVE_DISTANCE game.play_sound("jump", 1) # No need to continue searching return def update(self): # Check each control direction for direction in range(4): if key_just_pressed(direction_keys[direction]): self.input_queue.append(direction) if self.state == PlayerState.ALIVE: # While the player is alive, the timer variable is used for movement. If it's zero, the player is on # the ground. If it's above zero, they're currently jumping to a new location. # Are we on the ground, and are there inputs to process? if self.timer == 0 and len(self.input_queue) > 0: # Take the next input off the queue and process it self.handle_input(self.input_queue.pop(0)) land = False if self.timer > 0: # Apply movement self.x += DX[self.direction] self.y += DY[self.direction] self.timer -= 1 land = self.timer == 0 # If timer reaches zero, we've just landed current_row = None for row in game.rows: if row.y == self.y: current_row = row break if current_row: # Row.check receives the player's X coordinate and returns the new state the player should be in # (normally ALIVE, but SPLAT or SPLASH if they've collided with a vehicle or if they've fallen in # the water). It also returns a second result which is only used if there was a collision, and even # then only for certain collisions. When the new state is SPLAT, we will add a new child object to the # current row, with the appropriate 'splat' image. In this case, the second result returned from # check_collision is a Y offset which affects the position of this new child object. If the player is # hit by a car the Y offset is zero, but if they are hit by a train the returned offset is 8 as this # positioning looks a little better. self.state, dead_obj_y_offset = current_row.check_collision(self.x) if self.state == PlayerState.ALIVE: # Water rows move the player along the X axis, if standing on a log self.x += current_row.push() if land: # Just landed - play sound effect appropriate to the current row current_row.play_sound() else: if self.state == PlayerState.SPLAT: # Add 'splat' graphic to current row with the specified position and Y offset current_row.children.insert(0, MyActor("splat" + str(self.direction), (self.x, dead_obj_y_offset))) self.timer = 100 else: # There's no current row - either because player is currently changing row, or the row they were on # has been deleted. Has the player gone off the bottom of the screen? if self.y > game.scroll_pos + HEIGHT + 80: # Create eagle game.eagle = Eagle((self.x, game.scroll_pos)) self.state = PlayerState.EAGLE self.timer = 150 game.play_sound("eagle") # Limit x position so player doesn't go off the screen. The player movement code doesn't allow jumping off # the screen, but without this line, the player could be carried off the screen by a log self.x = max(16, min(WIDTH - 16, self.x)) else: # Not alive - timer now counts down prior to game over screen self.timer -= 1 # Keep track of the furthest we've got in the level self.min_y = min(self.min_y, self.y) # Choose sprite image self.image = "blank" if self.state == PlayerState.ALIVE: if self.timer > 0: self.image = "jump" + str(self.direction) else: self.image = "sit" + str(self.direction) elif self.state == PlayerState.SPLASH and self.timer > 84: # Display appropriate 'splash' animation frame. Note that we use a different technique to display the # 'splat' image – see: comments earlier in this method. The reason two different techniques are used is # that the splash image should be drawn on top of other objects, whereas the splat image must be drawn # underneath other objects. Since the player is always drawn on top of other objects, changing the player # sprite is a suitable method of displaying the splash image. self.image = "splash" + str(int((100 - self.timer) / 2)) # Mover is the base class for Car, Log and Train # The thing they all have in common, besides inheriting from MyActor, is that they need to store whether they're # moving left or right and update their X position each frame class Mover(MyActor): def __init__(self, dx, image, pos): super().__init__(image, pos) self.dx = dx def update(self): self.x += self.dx class Car(Mover): # These correspond to the indicies of the lists self.sounds and self.played. Used in Car.update to trigger # playing of the corresponding sound effects. SOUND_ZOOM = 0 SOUND_HONK = 1 def __init__(self, dx, pos): image = "car" + str(randint(0, 3)) + ("0" if dx < 0 else "1") super().__init__(dx, image, pos) # Cars have two sound effects. Each can only play once. We use this # list to keep track of which has already played. self.played = [False, False] self.sounds = [("zoom", 6), ("honk", 4)] def play_sound(self, num): if not self.played[num]: # Select a sound and pass the name and count to Game.play_sound. # The asterisk operator unpacks the two items and passes them to play_sound as separate arguments game.play_sound(*self.sounds[num]) self.played[num] = True class Log(Mover): def __init__(self, dx, pos): image = "log" + str(randint(0, 1)) super().__init__(dx, image, pos) class Train(Mover): def __init__(self, dx, pos): image = "train" +str(randint(0, 2)) + ("0" if dx < 0 else "1") super().__init__(dx, image, pos) # Row is the base class for Pavement, Grass, Dirt, Rail and ActiveRow # Each row corresponds to one of the 40 pixel high images which make up sections of grass, road, etc. # The last row of each section is 60 pixels high and overlaps with the row above class Row(MyActor): def __init__(self, base_image, index, y): # base_image and index form the name of the image file to use # Last argument is the anchor point to use super().__init__(base_image + str(index), (0, y), ("left", "bottom")) self.index = index # X direction of moving elements on this row # Zero by default - only ActiveRows (see below) and Rail have moving elements self.dx = 0 def next(self): # Overridden in child classes. See comments in Game.update return def collide(self, x, margin=0): # Check to see if the given X coordinate is in contact with any of this row's child objects (e.g. logs, cars, # hedges). A negative margin makes the collideable area narrower than the child object's sprite, while a # positive margin makes the collideable area wider. for child_obj in self.children: if x >= child_obj.x - (child_obj.width / 2) - margin and x < child_obj.x + (child_obj.width / 2) + margin: return child_obj return None def push(self): return 0 def check_collision(self, x): # Returns the new state the player should be in, based on whether or not the player collided with anything on # this road. As this class is the base class for other types of row, this method defines the default behaviour # – i.e. unless a subclass overrides this method, the player can walk around on a row without dying. return PlayerState.ALIVE, 0 def allow_movement(self, x): # Ensure the player can't walk off the left or right sides of the screen return x >= 16 and x <= WIDTH-16 class ActiveRow(Row): def __init__(self, child_type, dxs, base_image, index, y): super().__init__(base_image, index, y) self.child_type = child_type # Class to be used for child objects (e.g. Car) self.timer = 0 self.dx = choice(dxs) # Randomly choose a direction for cars/logs to move # Populate the row with child objects (cars or logs). Without this, the row would initially be empty. x = -WIDTH / 2 - 70 while x < WIDTH / 2 + 70: x += randint(240, 480) pos = (WIDTH / 2 + (x if self.dx > 0 else -x), 0) self.children.append(self.child_type(self.dx, pos)) def update(self): super().update() # Recreate the children list, excluding any which are too far off the edge of the screen to be visible self.children = [c for c in self.children if c.x > -70 and c.x < WIDTH + 70] self.timer -= 1 # Create new child objects on a random interval if self.timer < 0: pos = (WIDTH + 70 if self.dx < 0 else -70, 0) self.children.append(self.child_type(self.dx, pos)) # 240 is minimum distance between the start of one child object and the start of the next, assuming its # speed is 1. If the speed is 2, they can occur twice as frequently without risk of overlapping with # each other. The maximum distance is double the minimum distance (1 + random value of 1) self.timer = (1 + random()) * (240 / abs(self.dx)) # Grass rows sometimes contain hedges class Hedge(MyActor): def __init__(self, x, y, pos): super().__init__("bush"+str(x)+str(y), pos) def generate_hedge_mask(): # In this context, a mask is a series of boolean values which allow or prevent parts of an underlying image from showing through. # This function creates a mask representing the presence or absence of hedges in a Grass row. False means a hedge # is present, True represents a gap. Initially we create a list of 12 elements. For each element there is a small # chance of a gap, but normally all element will be False, representing a hedge. We then randomly set one item to # True, to ensure that there is always at least one gap that the player can get through mask = [random() < 0.01 for i in range(12)] mask[randint(0, 11)] = True # force there to be one gap # We then widen gaps to a minimum of 3 tiles. This happens in two steps. # First, we recreate the mask list, except this time whether a gap is present is based on whether there was a gap # in either the original element or its neighbouring elements. When using Python's built-in sum function, a value # of True is treated as 1 and False as 0. We must use the min/max functions to ensure that we don't try to look # at a neighbouring element which doesn't exist (e.g. there is no neighbour to the right of the last element) mask = [sum(mask[max(0, i-1):min(12, i+2)]) > 0 for i in range(12)] # We want to ensure gaps are a minimum of 3 tiles wide, but the previous line only ensures a minimum gap of 2 tiles # at the edges. The last step is to return a new list consisting of the old list with the first and last elements duplicated return [mask[0]] + mask + 2 * [mask[-1]] def classify_hedge_segment(mask, previous_mid_segment): # This function helps determine which sprite should be used by a particular hedge segment. Hedge sprites are numbered # 00, 01, 10, 11, 20, 21 - up to 51. The second number indicates whether it's a bottom (0) or top (1) segment, # but this method is concerned only with the first number. 0 represents a single-tile-width hedge. 1 and 2 represent # the left-most or right-most sprites in a multi-tile-width hedge. 3, 4 and 5 all represent middle pieces in hedges # which are 3 or more tiles wide. # mask is a list of 4 boolean values - a slice from the list generated by generate_hedge_mask. True represents a gap # and False represents a hedge. mask[1] is the item we're currently looking at. if mask[1]: # mask[1] == True represents a gap, so there will be no hedge sprite at this location sprite_x = None else: # There's a hedge here - need to check either side of it to see if it's a single-width, left-most, right-most # or middle piece. The calculation generates a number from 0 to 3 accordingly. Note that when boolean values # are used in arithmetic in Python, False is treated as being 0 and True as 1. sprite_x = 3 - 2 * mask[0] - mask[2] if sprite_x == 3: # If this is a middle piece, to ensure the piece tiles correctly, we alternate between sprites 3 and 4. # If the next piece is going to be the last of this hedge section (sprite 2), we need to make sure that sprite 3 # does not precede it, as the two do not tile together correctly. In this case we should use sprite 5. # mask[3] tells us whether there's a gap 2 tiles to the right - which means the next tile will be sprite 2 if previous_mid_segment == 4 and mask[3]: return 5, None else: # Alternate between 3 and 4 if previous_mid_segment == None or previous_mid_segment == 4: sprite_x = 3 elif previous_mid_segment == 3: sprite_x = 4 return sprite_x, sprite_x else: # Not a middle piece return sprite_x, None class Grass(Row): def __init__(self, predecessor, index, y): super().__init__("grass", index, y) # In computer graphics, a mask is a series of boolean (true or false) values indicating which parts of an image # will be transparent. Grass rows may contain hedges which block the player's movement, and we use a similar # mechanism here. In our hedge mask, values of False mean a hedge is present, while True means there is a gap # in the hedges. Hedges are two rows high - once hedges have been created on a row, the pattern will be # duplicated on the next row (although the sprites will be different - e.g. there are separate sprites # for the top-left and bottom-left corners of a hedge). Note that the upper sprites overlap with the row above. self.hedge_row_index = None # 0 or 1, or None if no hedges on this row self.hedge_mask = None if not isinstance(predecessor, Grass) or predecessor.hedge_row_index == None: # Create a brand-new set of hedges? We will only create hedges if the previous row didn't have any. # We also only want hedges to appear on certain types of grass row, and on only a random selection # of rows if random() < 0.5 and index > 7 and index < 14: self.hedge_mask = generate_hedge_mask() self.hedge_row_index = 0 elif predecessor.hedge_row_index == 0: self.hedge_mask = predecessor.hedge_mask self.hedge_row_index = 1 if self.hedge_row_index != None: # See comments in classify_hedge_segment for explanation of previous_mid_segment previous_mid_segment = None for i in range(1, 13): sprite_x, previous_mid_segment = classify_hedge_segment(self.hedge_mask[i - 1:i + 3], previous_mid_segment) if sprite_x != None: self.children.append(Hedge(sprite_x, self.hedge_row_index, (i * 40 - 20, 0))) def allow_movement(self, x): # allow_movement in the base class ensures that the player can't walk off the left and right sides of the # screen. The call to our own collide method ensures that the player can't walk through hedges. The margin of # 8 prevents the player sprite from overlapping with the edge of a hedge. return super().allow_movement(x) and not self.collide(x, 8) def play_sound(self): game.play_sound("grass", 1) def next(self): if self.index <= 5: row_class, index = Grass, self.index + 8 elif self.index == 6: row_class, index = Grass, 7 elif self.index == 7: row_class, index = Grass, 15 elif self.index >= 8 and self.index <= 14: row_class, index = Grass, self.index + 1 else: row_class, index = choice((Road, Water)), 0 # Create an object of the chosen row class return row_class(self, index, self.y - ROW_HEIGHT) class Dirt(Row): def __init__(self, predecessor, index, y): super().__init__("dirt", index, y) def play_sound(self): game.play_sound("dirt", 1) def next(self): if self.index <= 5: row_class, index = Dirt, self.index + 8 elif self.index == 6: row_class, index = Dirt, 7 elif self.index == 7: row_class, index = Dirt, 15 elif self.index >= 8 and self.index <= 14: row_class, index = Dirt, self.index + 1 else: row_class, index = choice((Road, Water)), 0 # Create an object of the chosen row class return row_class(self, index, self.y - ROW_HEIGHT) class Water(ActiveRow): def __init__(self, predecessor, index, y): # dxs contains a list of possible directions (and speeds) in which child objects (in this case, logs) on this # row could move. We pass the lists to the constructor of the base class, which randomly chooses one of the # directions. We want logs on alternate rows to move in opposite directions, so we take advantage of the fact # that that in Python, multiplying a list by True or False results in either the same list, or an empty list. # So by looking at the direction of child objects on the previous row (predecessor.dx), we can decide whether # child objects on this row should move left or right. If this is the first of a series of Water rows, # predecessor.dx will be zero, so child objects could move in either direction. dxs = [-2,-1]*(predecessor.dx >= 0) + [1,2]*(predecessor.dx <= 0) super().__init__(Log, dxs, "water", index, y) def update(self): super().update() for log in self.children: # Child (log) object positions are relative to the parent row. If the player exists, and the player is at the # same Y position, and is colliding with the current log, make the log dip down into the water slightly if game.bunner and self.y == game.bunner.y and log == self.collide(game.bunner.x, -4): log.y = 2 else: log.y = 0 def push(self): # Called when the player is standing on a log on this row, so player object can be moved at the same speed and # in the same direction as the log return self.dx def check_collision(self, x): # If we're colliding with a log, that's a good thing! # margin of -4 ensures we can't stand right on the edge of a log if self.collide(x, -4): return PlayerState.ALIVE, 0 else: game.play_sound("splash") return PlayerState.SPLASH, 0 def play_sound(self): game.play_sound("log", 1) def next(self): # After 2 water rows, there's a 50-50 chance of the next row being either another water row, or a dirt row if self.index == 7 or (self.index >= 1 and random() < 0.5): row_class, index = Dirt, randint(4,6) else: row_class, index = Water, self.index + 1 # Create an object of the chosen row class return row_class(self, index, self.y - ROW_HEIGHT) class Road(ActiveRow): def __init__(self, predecessor, index, y): # Specify the possible directions and speeds from which the movement of cars on this row will be chosen # We use Python's set data structure to specify that the car velocities on this row will be any of the numbers # from -5 to 5, except for zero or the velocity of the cars on the previous row dxs = list(set(range(-5, 6)) - set([0, predecessor.dx])) super().__init__(Car, dxs, "road", index, y) def update(self): super().update() # Trigger car sound effects. The zoom effect should play when the player is on the row above or below the car, # the honk effect should play when the player is on the same row. for y_offset, car_sound_num in [(-ROW_HEIGHT, Car.SOUND_ZOOM), (0, Car.SOUND_HONK), (ROW_HEIGHT, Car.SOUND_ZOOM)]: # Is the player on the appropriate row? if game.bunner and game.bunner.y == self.y + y_offset: for child_obj in self.children: # The child object must be a car if isinstance(child_obj, Car): # The car must be within 100 pixels of the player on the x-axis, and moving towards the player # child_obj.dx < 0 is True or False depending on whether the car is moving left or right, and # dx < 0 is True or False depending on whether the player is to the left or right of the car. # If the results of these two comparisons are different, the car is moving towards the player. # Also, for the zoom sound, the car must be travelling faster than one pixel per frame dx = child_obj.x - game.bunner.x if abs(dx) < 100 and ((child_obj.dx < 0) != (dx < 0)) and (y_offset == 0 or abs(child_obj.dx) > 1): child_obj.play_sound(car_sound_num) def check_collision(self, x): if self.collide(x): game.play_sound("splat", 1) return PlayerState.SPLAT, 0 else: return PlayerState.ALIVE, 0 def play_sound(self): game.play_sound("road", 1) def next(self): if self.index == 0: row_class, index = Road, 1 elif self.index < 5: # 80% chance of another road r = random() if r < 0.8: row_class, index = Road, self.index + 1 elif r < 0.88: row_class, index = Grass, randint(0,6) elif r < 0.94: row_class, index = Rail, 0 else: row_class, index = Pavement, 0 else: # We've reached maximum of 5 roads in a row, so choose something else r = random() if r < 0.6: row_class, index = Grass, randint(0,6) elif r < 0.9: row_class, index = Rail, 0 else: row_class, index = Pavement, 0 # Create an object of the chosen row class return row_class(self, index, self.y - ROW_HEIGHT) class Pavement(Row): def __init__(self, predecessor, index, y): super().__init__("side", index, y) def play_sound(self): game.play_sound("sidewalk", 1) def next(self): if self.index < 2: row_class, index = Pavement, self.index + 1 else: row_class, index = Road, 0 # Create an object of the chosen row class return row_class(self, index, self.y - ROW_HEIGHT) # Note that Rail does not inherit from ActiveRow class Rail(Row): def __init__(self, predecessor, index, y): super().__init__("rail", index, y) self.predecessor = predecessor def update(self): super().update() # Only Rail rows with index 1 have trains on them if self.index == 1: # Recreate the children list, excluding any which are too far off the edge of the screen to be visible self.children = [c for c in self.children if c.x > -1000 and c.x < WIDTH + 1000] # If on-screen, and there is currently no train, and with a 1% chance every frame, create a train if self.y < game.scroll_pos+HEIGHT and len(self.children) == 0 and random() < 0.01: # Randomly choose a direction for trains to move. This can be different for each train created dx = choice([-20, 20]) self.children.append(Train(dx, (WIDTH + 1000 if dx < 0 else -1000, -13))) game.play_sound("bell") game.play_sound("train", 2) def check_collision(self, x): if self.index == 2 and self.predecessor.collide(x): game.play_sound("splat", 1) return PlayerState.SPLAT, 8 # For the meaning of the second return value, see comments in Bunner.update else: return PlayerState.ALIVE, 0 def play_sound(self): game.play_sound("grass", 1) def next(self): if self.index < 3: row_class, index = Rail, self.index + 1 else: item = choice( ((Road, 0), (Water, 0)) ) row_class, index = item[0], item[1] # Create an object of the chosen row class return row_class(self, index, self.y - ROW_HEIGHT) class Game: def __init__(self, bunner=None): self.bunner = bunner self.looped_sounds = {} try: if bunner: music.set_volume(0.4) else: music.play("theme") music.set_volume(1) except: pass self.eagle = None self.frame = 0 # First (bottom) row is always grass self.rows = [Grass(None, 0, 0)] self.scroll_pos = -HEIGHT def update(self): if self.bunner: # Scroll faster if the player is close to the top of the screen. Limit scroll speed to # between 1 and 3 pixels per frame. self.scroll_pos -= max(1, min(3, float(self.scroll_pos + HEIGHT - self.bunner.y) / (HEIGHT // 4))) else: self.scroll_pos -= 1 # Recreate the list of rows, excluding any which have scrolled off the bottom of the screen self.rows = [row for row in self.rows if row.y < int(self.scroll_pos) + HEIGHT + ROW_HEIGHT * 2] # In Python, a negative index into a list gives you items in reverse order, e.g. my_list[-1] gives you the # last element of a list. Here, we look at the last row in the list - which is the top row - and check to see # if it has scrolled sufficiently far down that we need to add a new row above it. This may need to be done # multiple times - particularly when the game starts, as only one row is added to begin with. while self.rows[-1].y > int(self.scroll_pos)+ROW_HEIGHT: new_row = self.rows[-1].next() self.rows.append(new_row) # Update all rows, and the player and eagle (if present) for obj in self.rows + [self.bunner, self.eagle]: if obj: obj.update() # Play river and traffic sound effects, and adjust volume each frame based on the player's proximity to rows # of the appropriate types. For each such row, a number is generated representing how much the row should # contribute to the volume of the sound effect. These numbers are added together by Python's sum function. # On the following line we ensure that the volume can never be above 40% of the maximum possible volume. if self.bunner: for name, count, row_class in [("river", 2, Water), ("traffic", 3, Road)]: # The first line uses a list comprehension to get each row of the appropriate type, e.g. Water rows # if we're currently updating the "river" sound effect. volume = sum([16.0 / max(16.0, abs(r.y - self.bunner.y)) for r in self.rows if isinstance(r, row_class)]) - 0.2 volume = min(0.4, volume) self.loop_sound(name, count, volume) return self def draw(self): # Create a list of all objects which need to be drawn. This includes all rows, plus the player # Using list(s.rows) means we're creating a copy of that list to use - we don't want to create a reference # to it as that would mean we're modifying the original list's contents all_objs = list(self.rows) if self.bunner: all_objs.append(self.bunner) # We want to draw objects in order based on their Y position. In general, objects further down the screen should be drawn # after (and therefore in front of) objects higher up the screen. We can use Python's built-in sort function # to put the items in the desired order, before we draw the The following function specifies the criteria # used to decide how the objects are sorted. def sort_key(obj): # Adding 39 and then doing an integer divide by 40 (the height of each row) deals with the situation where # the player sprite would otherwise be drawn underneath the row below. This could happen when the player # is moving up or down. If you assume that it occupies a 40x40 box which can be at an arbitrary y offset, # it generates the row number of the bottom row that that box overlaps. If the player happens to be # perfectly aligned to a row, adding 39 and dividing by 40 has no effect on the result. If it isn't, even # by a single pixel, the +39 causes it to be drawn one row later. return (obj.y + 39) // ROW_HEIGHT # Sort list using the above function to determine order all_objs.sort(key=sort_key) # Always draw eagle on top of everything all_objs.append(self.eagle) for obj in all_objs: if obj: # Draw the object, taking the scroll position into account obj.draw(0, -int(self.scroll_pos)) if DEBUG_SHOW_ROW_BOUNDARIES: for obj in all_objs: if obj and isinstance(obj, Row): pygame.draw.rect(screen.surface, (255, 255, 255), pygame.Rect(obj.x, obj.y - int(self.scroll_pos), screen.surface.get_width(), ROW_HEIGHT), 1) screen.draw.text(str(obj.index), (obj.x, obj.y - int(self.scroll_pos) - ROW_HEIGHT)) def score(self): return int(-320 - game.bunner.min_y) // 40 def play_sound(self, name, count=1): try: # Some sounds have multiple varieties. If count > 1, we'll randomly choose one from those # We don't play any sounds if there is no player (e.g. if we're on the menu) if self.bunner: # Pygame Zero allows you to write things like 'sounds.explosion.play()' # This automatically loads and plays a file named 'explosion.wav' (or .ogg) from the sounds folder (if # such a file exists) # But what if you have files named 'explosion0.ogg' to 'explosion5.ogg' and want to randomly choose # one of them to play? You can generate a string such as 'explosion3', but to use such a string # to access an attribute of Pygame Zero's sounds object, we must use Python's built-in function getattr sound = getattr(sounds, name + str(randint(0, count - 1))) sound.play() except: # If a sound fails to play, ignore the error pass def loop_sound(self, name, count, volume): try: # Similar to play_sound above, but for looped sounds we need to keep a reference to the sound so that we can # later modify its volume or turn it off. We use the dictionary self.looped_sounds for this - the sound # effect name is the key, and the value is the corresponding sound reference. if volume > 0 and not name in self.looped_sounds: full_name = name + str(randint(0, count - 1)) sound = getattr(sounds, full_name) # see play_sound method above for explanation sound.play(-1) # -1 means sound will loop indefinitely self.looped_sounds[name] = sound if name in self.looped_sounds: sound = self.looped_sounds[name] if volume > 0: sound.set_volume(volume) else: sound.stop() del self.looped_sounds[name] except: # If a sound fails to play, ignore the error pass def stop_looped_sounds(self): try: for sound in self.looped_sounds.values(): sound.stop() self.looped_sounds.clear() except: # If sound system is not working/present, ignore the error pass # Dictionary to keep track of which keys are currently being held down key_status = {} # Was the given key just pressed? (i.e. is it currently down, but wasn't down on the previous frame?) def key_just_pressed(key): result = False # Get key's previous status from the key_status dictionary. The dictionary.get method allows us to check for a given # entry without giving an error if that entry is not present in the dictionary. False is the default value returned # when the key is not present. prev_status = key_status.get(key, False) # If the key wasn't previously being pressed, but it is now, we're going to return True if not prev_status and keyboard[key]: result = True # Before we return, we need to update the key's entry in the key_status dictionary (or create an entry if there # wasn't one already key_status[key] = keyboard[key] return result def display_number(n, colour, x, align): # align: 0 for left, 1 for right n = str(n) # Convert number to string for i in range(len(n)): screen.blit("digit" + str(colour) + n[i], (x + (i - len(n) * align) * 25, 0)) # Pygame Zero calls the update and draw functions each frame class State(Enum): MENU = 1 PLAY = 2 GAME_OVER = 3 def update(): global state, game, high_score if state == State.MENU: if key_just_pressed(keys.SPACE): state = State.PLAY game = Game(Bunner((240, -320))) else: game.update() elif state == State.PLAY: # Is it game over? if game.bunner.state != PlayerState.ALIVE and game.bunner.timer < 0: # Update high score high_score = max(high_score, game.score()) # Write high score file try: with open("high.txt", "w") as file: file.write(str(high_score)) except: # If an error occurs writing the file, just ignore it and carry on, rather than crashing pass state = State.GAME_OVER else: game.update() elif state == State.GAME_OVER: # Switch to menu state, and create a new game object without a player if key_just_pressed(keys.SPACE): game.stop_looped_sounds() state = State.MENU game = Game() def draw(): game.draw() if state == State.MENU: screen.blit("title", (0, 0)) screen.blit("start" + str([0, 1, 2, 1][game.scroll_pos // 6 % 4]), ((WIDTH - 270) // 2, HEIGHT - 240)) elif state == State.PLAY: # Display score and high score display_number(game.score(), 0, 0, 0) display_number(high_score, 1, WIDTH - 10, 1) elif state == State.GAME_OVER: # Display "Game Over" image screen.blit("gameover", (0, 0)) # Set up sound system try: pygame.mixer.quit() pygame.mixer.init(44100, -16, 2, 512) pygame.mixer.set_num_channels(16) except: # If an error occurs, just ignore it pass # Load high score from file try: with open("high.txt", "r") as f: high_score = int(f.read()) except: # If opening the file fails (likely because it hasn't yet been created), set high score to 0 high_score = 0 # Set the initial game state state = State.MENU # Create a new Game object, without a Player object game = Game() pgzrun.go() ```
{ "source": "2502302255/al789", "score": 3 }
#### File: 2502302255/al789/example_02.py ```python from main.urllib_ps import pagesource from main.remove_control_characters import remove_control_characters import config import re from xml.sax.saxutils import unescape import webapp2 siteurl = 'http://www.example.com/rss.xml' rssname = '' def filter(): result = pagesource(siteurl) # result = remove_control_characters(result) # result = re.aub('', '', result) # result = re.aub('', '', result) # result = re.sub('<(/|)div.*?>', '', result) return result class MainPage(webapp2.RequestHandler): def get(self): self.response.headers['Content-Type'] = 'text/xml' self.response.out.write(filter()) app = webapp2.WSGIApplication([('/' + config.subdir4rss + '/' + rssname, MainPage)], debug=True) ``` #### File: al789/main/Entdecker.py ```python __author__ = '<NAME>, <EMAIL>' import chardet import urlfetch_ps import urllib_ps import re import random import time import urlparse ''''''''''''''' 抓正文及评论 ''''''''''''''' def ausfuehren(lib_or_fetch, artikelurl, SeiteQuelle, reg4nextpage, reg4text, reg4comment, vtext, comments): #无评论 if len(reg4comment) == 0: pass #有评论 else: cmt_tmp = re.findall(reg4comment, SeiteQuelle.replace(r'&#34;', r'"').replace('\\', '')) if len(cmt_tmp) != 0: #将评论变成一个字符串,不论评论的正则里有无分组 # for i in cmt_tmp: # comments_tmp = ["".join(i) for i in cmt_tmp] comments_tmp = ["".join(i) for i in cmt_tmp] comments = "".join(comments_tmp) else: comments = '<br/><p style="color:#1890cd;font-size:25px;">No comments/gallery</p>' # print comments #无分页 if len(reg4nextpage) == 0: pass #有分页 else: #判断正文正则结果是否只有一组 if isinstance(re.findall(reg4text, SeiteQuelle)[0], tuple) is False: while re.search(reg4nextpage, SeiteQuelle): artikelurl_temp = re.findall(reg4nextpage, SeiteQuelle)[0] if re.search(r'://', artikelurl_temp): artikelurl = artikelurl_temp else: artikelurl = urlparse.urljoin(artikelurl, artikelurl_temp) SeiteQuelle = lib_or_fetch(artikelurl) Content = re.findall(reg4text, SeiteQuelle) if len(Content) != 0: vtext.append(Content[0]) #移除decode('utf-8') elif re.search(r'ERROR! QwQ', SeiteQuelle): vtext.append('<span style="color:#ff0000;font-size:30px;">' + SeiteQuelle + '</span>') else: vtext.append('<span style="color:#ff0000;font-size:30px;">Please check your regex</span>') time.sleep(float(random.sample(range(1, 6), 1)[0])) else: while re.search(reg4nextpage, SeiteQuelle): artikelurl_temp = re.findall(reg4nextpage, SeiteQuelle)[0] if re.search(r'://', artikelurl_temp): artikelurl = artikelurl_temp else: artikelurl = urlparse.urljoin(artikelurl, artikelurl_temp) SeiteQuelle = lib_or_fetch(artikelurl) Content = re.findall(reg4text, SeiteQuelle) if len(Content) != 0: text_temp = Content for e in txt_temp: vtext.append("".join(e)) #移除decode('utf-8') elif re.search(r'ERROR! QwQ', SeiteQuelle): vtext.append('<span style="color:#ff0000;font-size:30px;">' + SeiteQuelle + '</span>') else: vtext.append('<span style="color:#ff0000;font-size:30px;">Please check your regex</span>') time.sleep(float(random.sample(range(1, 6), 1)[0])) return vtext, comments ``` #### File: al789/main/feed_fulltext.py ```python __author__ = '<NAME>, <EMAIL>' import urlfetch_ps import urllib_ps import Entdecker from remove_control_characters import remove_control_characters import chardet import random import re import urlparse import threading import time from lxml import etree from lxml.etree import CDATA from xml.sax.saxutils import unescape ISOTIMEFORMAT = '%a, %e %b %Y %H:%M:%S %z' '''''''''''''''''''''''''''''' '''从feed抓取全文,多线程 ''' '''''''''''''''''''''''''''''' def ausfuehren(lib_or_fetch, siteurl, reg4nextpage, reg4text, reg4comment, Anzahl, *custom_para): if lib_or_fetch == 'use_urlfetch': lib_or_fetch = urlfetch_ps.pagesource else: lib_or_fetch = urllib_ps.pagesource rss = lib_or_fetch(siteurl[0]) if re.search(r'ERROR! QwQ', rss): f = open('main/Vorlage_Error.xml') root = etree.XML(f.read(), etree.XMLParser(remove_blank_text=True)) f.close() root.xpath('/rss/channel/title')[0].text = siteurl[0] root.xpath('/rss/channel/link')[0].text = siteurl[0] root.xpath('/rss/channel/description')[0].text = siteurl[0] root.xpath('/rss/channel/lastBuildDate')[0].text = time.strftime(ISOTIMEFORMAT, time.localtime(time.time())) root.xpath('//item[1]/description')[0].text = rss root.xpath('//item[1]/link')[0].text = siteurl[0] root.xpath('//item[1]/guid')[0].text = siteurl[0] root.xpath('//item[1]/pubDate')[0].text = time.strftime(ISOTIMEFORMAT, time.localtime(time.time())) return etree.tostring(root, pretty_print=True, xml_declaration=True, encoding="UTF-8") else: root = etree.XML(rss, etree.XMLParser(recover=True)) l = len(root.xpath('//item')) def rssmodi(lib_or_fetch, reg4nextpage, reg4text, reg4comment, root): artikelurl = root.xpath('//item[$i]/link', i = Nummer)[0].text artikelurl = re.sub('/\?utm_source=RSS.+', '', artikelurl) artikelurl = re.sub('/\?ncid=rss_truncated', '', artikelurl) #用抓取的全文替换原description,并将正文regex中的每个分组合成一个字符串 SeiteQuelle = lib_or_fetch(artikelurl) encoding = chardet.detect(SeiteQuelle)['encoding'] #判断regex是否有效 if len(re.findall(reg4text, SeiteQuelle)) != 0: #判断正文正则结果是否只有一组 txt_tmp = re.findall(reg4text, SeiteQuelle) if isinstance(txt_tmp[0], tuple) is True: vtext = [] for g in txt_tmp: vtext.append("".join(g)) #移除decode('utf-8') else: vtext = [txt_tmp[0]] #移除decode('utf-8') comments = '' Ergebnis = Entdecker.ausfuehren(lib_or_fetch, artikelurl, SeiteQuelle, reg4nextpage, reg4text, reg4comment, vtext, comments) Haupttext = "".join(Ergebnis[0]).replace(r'<![CDATA\[', '').replace(r']]>', '') # print comments if len(reg4comment) == 0: try: root.xpath('//item[$i]/description', i = Nummer)[0].text = CDATA(Haupttext) except ValueError: if len(custom_para) == 1: root.xpath('//item[$i]/description', i = Nummer)[0].text = CDATA(remove_control_characters(Haupttext.decode(custom_para[0]))) else: root.xpath('//item[$i]/description', i = Nummer)[0].text = CDATA(remove_control_characters(Haupttext.decode(encoding, 'replace'))) else: try: root.xpath('//item[$i]/description', i = Nummer)[0].text = CDATA(Haupttext + Ergebnis[1]) except ValueError: if len(custom_para) == 1: root.xpath('//item[$i]/description', i = Nummer)[0].text = CDATA(remove_control_characters(Haupttext.decode(custom_para[0]) + Ergebnis[1].decode(custom_para[0]))) else: root.xpath('//item[$i]/description', i = Nummer)[0].text = CDATA(remove_control_characters(Haupttext.decode(encoding, 'replace') + Ergebnis[1].decode(encoding, 'replace'))) elif re.search(r'ERROR! QwQ', SeiteQuelle): root.xpath('//item[$i]/description', i = Nummer)[0].text = '<span style="color:rgb(255,0,0);font-size:30px;">' + SeiteQuelle + '</span>' #移除decode('utf-8') #error信息可能需要添加decode #regex无效 else: root.xpath('//item[$i]/description', i = Nummer)[0].text = '<span style="color:rgb(255,0,0);font-size:30px;">Error: Please check regex</span>' #限制抓取的文章数 if Anzahl == 0 or Anzahl >= l: for Nummer in random.sample(range(1, l+1), l): t = threading.Thread(target=rssmodi, args=(lib_or_fetch, reg4nextpage, reg4text, reg4comment, root)) t.start() t.join() time.sleep(float(random.sample(range(1, 6), 1)[0])) elif Anzahl < l: for x in range(Anzahl+1, l+1)[::-1]: item = root.xpath('//item[$i]', i = x)[0] item.getparent().remove(item) for Nummer in random.sample(range(1, Anzahl+1), Anzahl): t = threading.Thread(target=rssmodi, args=(lib_or_fetch, reg4nextpage, reg4text, reg4comment, root)) t.start() t.join() time.sleep(float(random.sample(range(1, 6), 1)[0])) #格式化以符合xml规范 result = re.sub('<title>(?!<\!\[CDATA\[)', r'<title><![CDATA[', unescape(etree.tostring(root, pretty_print=True, xml_declaration=True, encoding='UTF-8'))) result = re.sub('(?<!\]\]>)</title>', r']]></title>', result) result = re.sub('<description>(?!<\!\[CDATA\[)', r'<description><![CDATA[', result) result = re.sub('(?<!\]\]>)</description>', r']]></description>', result) result = re.sub('<category>(?!<\!\[CDATA\[)', r'<category><![CDATA[', result) result = re.sub('(?<!\]\]>)</category>', r']]></category>', result) return re.sub(r'(<|&#60;|&lt;)(/|)(body|html)(>|&#62;|&gt;)', '', result) ```