metadata
dict
text
stringlengths
60
3.49M
{ "source": "25077667/cyshdormitory.github.io", "score": 2 }
#### File: recievedata/recievedata/views.py ```python from flask import render_template, Flask, request, jsonify import csv app = Flask(__name__) @app.route("/", methods=['POST']) def submit(): if request.method == 'POST': return 'Hello ' + request.values.get('username') return render_template('post_submit.html') if __name__ == '__main__': app.debug = True app.run() ```
{ "source": "2510/glusterfs-freebsd", "score": 3 }
#### File: 2510/glusterfs-freebsd/make-manifest.py ```python import argparse import grp import json import os import pwd import re import stat import subprocess import sys def get_abi(): pkg_process = subprocess.Popen(['pkg', '-vv'], stdout=subprocess.PIPE) abi_regex = re.compile(r'ABI\s*=\s*"(.+)"\s*;\s*') for line in pkg_process.stdout.readlines(): match = abi_regex.match(line) if not match is None: abi = match.group(1) if abi is None: return else: return abi def get_files(base_dir, uid=None, gid=None): manifest_files = {} for root, dirs, files in os.walk(base_dir): rel_root = os.path.relpath(root, base_dir) any = [] any.extend(files) any.extend(dirs) for name in any: path = os.path.join(root, name) rel_path = os.path.join(rel_root, name) if rel_path.startswith('./'): rel_path = rel_path[1:] elif not rel_path.startswith('/'): rel_path = '/' + rel_path path_stat = os.lstat(path) manifest_files[rel_path] = { 'uname': uid or path_stat.st_uid, 'gname': gid or path_stat.st_gid, 'perm': oct(stat.S_IMODE(path_stat.st_mode)) } return manifest_files if __name__ == '__main__': parser = argparse.ArgumentParser(description='Generates MANIFEST for pkg.') parser.add_argument('--source-manifest', help='source MANIFEST file.', default='manifest.source') parser.add_argument('--root', help='make install\'ed DESTDIR', default='install-root') parser.add_argument('--uid', help='uid for installed files. (default: root)', default='root') parser.add_argument('--gid', help='gid for installed files. (default: wheel)', default='wheel') args = parser.parse_args() with open('manifest.source', 'r') as f: manifest = json.load(f) manifest['abi'] = get_abi() manifest['files'] = get_files(args.root, args.uid, args.gid) print json.dumps(manifest) ```
{ "source": "251871553/ops_admin", "score": 2 }
#### File: ops_admin/www/views.py ```python from django.shortcuts import render # Create your views here. from django.http import HttpResponse from django.template import loader from django.http import StreamingHttpResponse import os,sys import logging LOG_FORMAT = "%(asctime)s - %(levelname)s - %(message)s" logging.basicConfig(level=logging.INFO, format=LOG_FORMAT) def index(request): #return HttpResponse("Hello, world. You're at the polls index.") template = loader.get_template('www/index.html') context = { 'latest_question_list': 'hello', } return HttpResponse(template.render(context, request)) def welcome(request): #return HttpResponse("Hello, world. You're at the polls index.") template = loader.get_template('www/welcome.html') context = { 'latest_question_list': 'hello', } return HttpResponse(template.render(context, request)) def login(request): #return HttpResponse("Hello, world. You're at the polls index.") template = loader.get_template('www/login.html') context = { 'latest_question_list': 'hello', } return HttpResponse(template.render(context, request)) def demo(request): #return HttpResponse("Hello, world. You're at the polls index.") template = loader.get_template('www/mytest.html') context = { 'latest_question_list': 'hello', } return HttpResponse(template.render(context, request)) def dump(request): template = loader.get_template('www/pod_info.html') context = { 'latest_question_list': 'hello', } return HttpResponse(template.render(context, request)) def files(request): #return HttpResponse('xxx') #context = {'file_list': 'abc.prof'} #print(os.path.isdir('ops_api/upload_files')) #a=os.listdir('ops_api/upload_files') file_path = 'ops_api/upload_files/' file_list = os.listdir(file_path) #print(c) file_info = {} for filename in file_list: # print(i) full_path = file_path + filename filesize = os.stat(full_path).st_size #print(filename, round(filesize / 1024)) file_info[filename] = round(filesize / 1024) #print(file_info) #context = {'file_list': os.listdir('ops_api/upload_files')} context = {'file_list': file_info} return render(request, 'www/files.html', context) def download(request): file_name=request.POST.get('filename', None) #print(file_name) def file_iterator(file_name, chunk_size=512): with open(file_name) as f: while True: c = f.read(chunk_size) if c: yield c else: break file_path = 'ops_api/upload_files/' logging.info(file_name) if file_name: response = StreamingHttpResponse(file_iterator(file_path+file_name)) response['Content-Type'] = 'application/octet-stream' # Content-Disposition就是当用户想把请求所得的内容存为一个文件的时候提供一个默认的文件名 response['Content-Disposition'] = 'attachment;filename="{}"'.format(file_name) return response else: return HttpResponse('未选择') ```
{ "source": "251/shaape", "score": 3 }
#### File: shaape/shaape/arrow.py ```python from polygon import Polygon from named import Named from node import Node from translatable import Translatable class Arrow(Polygon, Translatable, Named): def __init__(self, position = (0, 0), node_list = []): Polygon.__init__(self, node_list) Translatable.__init__(self, position) Named.__init__(self) self.__connected_objects = [] self.__pointed_objects = [] self.add_name('_arrow_') def scale(self, scale): Translatable.scale(self, scale) Polygon.scale(self, scale) return def direction(self): raise NotImplementedError def add_connected_object(self, obj): self.__connected_objects.append(obj) def connected_objects(self): return self.__connected_objects def add_pointed_object(self, obj): self.__pointed_objects.append(obj) def pointed_objects(self): return self.__pointed_objects ``` #### File: shaape/shaape/drawingbackend.py ```python from drawable import Drawable from polygon import Polygon from opengraph import OpenGraph from scalable import Scalable from background import Background from arrow import Arrow from text import Text class DrawingBackend(object): DEFAULT_SCALE = 1 DEFAULT_PIXELS_PER_UNIT = 20 DEFAULT_SHADOW_TRANSLATION = (2, 2) def __init__(self, image_scale = DEFAULT_SCALE, image_width = None, image_height = None): self.__user_canvas_size = [image_width, image_height] self._canvas_size = [image_width, image_height] if image_width: self._canvas_size[0] = self._canvas_size[0] * image_scale if image_height: self._canvas_size[1] = self._canvas_size[1] * image_scale self._scale = image_scale self.__aspect_ratio = 0.5 self.__pixels_per_unit = (self.DEFAULT_PIXELS_PER_UNIT * self._scale * self.__aspect_ratio, self.DEFAULT_PIXELS_PER_UNIT * self._scale) self.__global_scale = (self.DEFAULT_PIXELS_PER_UNIT * self._scale * self.__aspect_ratio, self.DEFAULT_PIXELS_PER_UNIT * self._scale) return def scale(self): return self._scale def shadow_translation(self): return (DrawingBackend.DEFAULT_SHADOW_TRANSLATION[0] * self.scale(), DrawingBackend.DEFAULT_SHADOW_TRANSLATION[1] * self.scale()) def set_canvas_size(self, width, height): if not self.__user_canvas_size[0]: self._canvas_size[0] = width * self._scale if not self.__user_canvas_size[1]: self._canvas_size[1] = height * self._scale def canvas_size(self): return self._canvas_size def unit_size(self): return self.__pixels_per_unitself.__global_scale def run(self, drawable_objects, filename): sortable = lambda x: isinstance(x, Drawable) sortable_objects = filter(lambda x: sortable(x), drawable_objects) unsortable_objects = filter(lambda x: not sortable(x), drawable_objects) drawable_objects = sorted(sortable_objects, key=lambda x: x.min()) + unsortable_objects for drawable_object in drawable_objects: if isinstance(drawable_object, Background): if not self.__user_canvas_size[0]: if self.__user_canvas_size[1]: scale = self.__user_canvas_size[1] / drawable_object.size()[1] * self.__aspect_ratio else: scale = self.__pixels_per_unit[0] self._canvas_size[0] = drawable_object.size()[0] * scale if not self.__user_canvas_size[1]: if self.__user_canvas_size[0]: scale = self.__user_canvas_size[0] / drawable_object.size()[0] / self.__aspect_ratio else: scale = self.__pixels_per_unit[1] self._canvas_size[1] = drawable_object.size()[1] * scale self.__global_scale = [self._canvas_size[0] / drawable_object.size()[0], self._canvas_size[1] / drawable_object.size()[1]] self._scale = self.__global_scale[0] / (self.DEFAULT_PIXELS_PER_UNIT * self.__aspect_ratio) for drawable_object in drawable_objects: if isinstance(drawable_object, Scalable): drawable_object.scale(self.__global_scale) self.create_canvas() self.draw_objects(drawable_objects) self.export_to_file(filename) def global_scale(self): return self.__global_scale def draw_polygon_shadow(self, obj): raise NotImplementedError def draw_polygon(self, obj): raise NotImplementedError def draw_open_graph(self, obj): raise NotImplementedError def draw_open_graph_shadow(self, obj): raise NotImplementedError def draw_text(self, obj): raise NotImplementedError def draw_text_shadow(self,obj): raise NotImplementedError def push_surface(self): raise NotImplementedError def pop_surface(self): raise NotImplementedError def translate(self, x, y): raise NotImplementedError def blur_surface(self): raise NotImplementedError def draw_objects(self, drawable_objects): objects = [o for o in drawable_objects if isinstance(o, Drawable)] if objects: max_depth = max(objects, key=lambda o: o.z_order()).z_order() objects_lists_per_depth = [[] for x in xrange(max_depth + 1)] else: objects_lists_per_depth = [] for o in objects: objects_lists_per_depth[o.z_order()].append(o) i = 0 for obj_list in objects_lists_per_depth: polygons = filter(lambda d: isinstance(d, Polygon) and not isinstance(d, Arrow), obj_list) text = filter(lambda d: isinstance(d, Text), obj_list) arrows = filter(lambda d: isinstance(d, Arrow), obj_list) graphs = filter(lambda d: isinstance(d, OpenGraph), obj_list) self.push_surface() self.translate(*self.shadow_translation()) for p in polygons: if p.style().shadow() == 'on': self.draw_polygon_shadow(p) for drawable_object in graphs: if drawable_object.style().shadow() == 'on': self.draw_open_graph_shadow(drawable_object) for drawable_object in text: if drawable_object.style().shadow() == 'on': self.draw_text_shadow(drawable_object) self.blur_surface() self.pop_surface() self.push_surface() for p in polygons: self.draw_polygon(p) self.pop_surface() self.push_surface() for p in polygons: self.draw_open_graph(p.frame()) self.pop_surface() i = i + 1 self.push_surface() for drawable_object in graphs: self.draw_open_graph(drawable_object) self.pop_surface() self.push_surface() self.translate(*self.shadow_translation()) for drawable_object in arrows: if drawable_object.style().shadow() == 'on': self.draw_polygon_shadow(drawable_object) self.blur_surface() self.pop_surface() self.push_surface() for drawable_object in arrows: self.draw_polygon(drawable_object) self.pop_surface() self.push_surface() for drawable_object in text: self.draw_text(drawable_object) self.pop_surface() return ``` #### File: shaape/shaape/edge.py ```python class Edge: def __init__(self, node1, node2, above = None, below = None, z_order = None): self.__start = node1 self.__end = node2 self.__above = above self.__below = below self.__z_order = z_order return def __getitem__(self, index): if index == 0: return self.__start elif index == 1: return self.__end else: raise IndexError def start(self): return self.__start def end(self): return self.__end def above(self): return self.__above def below(self): return self.__below def z_order(self): return self.__z_order def __ccw(self, a, b, c): return (c[1] - a[1]) * (b[0] - a[0]) > (b[1] - a[1]) * (c[0] - a[0]) def intersects(self, edge): return self.__ccw(self[0], edge[0], edge[1]) != self.__ccw(self[1], edge[0], edge[1]) and self.__ccw(self[0], self[1], edge[0]) != self.__ccw(self[0], self[1], edge[1]) ``` #### File: shaape/shaape/optionparser.py ```python from parser import Parser class OptionParser(Parser): def __init__(self): super(OptionParser, self).__init__() return ``` #### File: shaape/shaape/rotatable.py ```python class Rotatable(object): def __init__(self, angle = 0): self.__angle = angle def set_angle(self, angle): self.__angle = angle def angle(self): return self.__angle ``` #### File: shaape/shaape/styleparser.py ```python from parser import Parser from text import Text from named import Named from drawable import Drawable from arrow import Arrow from polygon import Polygon from opengraph import OpenGraph from style import Style import re class StyleParser(Parser): def __init__(self): super(StyleParser, self).__init__() return def run(self, raw_data, objects): styles = filter(lambda x: isinstance(x, Style), objects) styles = sorted(styles, key = lambda x: x.priority()) named_drawables = filter(lambda x: isinstance(x, Drawable) and isinstance(x, Named), objects) default_style = { 'fill' : Style([], 'fill', [[1, 1, 1], [0.5 ,0.5, 0.5]]), 'frame' : Style([], 'frame', [[0, 0, 0], 'solid', 1]), 'line' : Style([], 'fill', [[0, 0, 0, 1], 'solid', 1]), 'arrow' : Style([], 'fill', [[0, 0, 0]]), 'text' : Style([], 'text', [[0, 0, 0], 'no-shadow'])} for obj in objects: if isinstance(obj, Drawable): if isinstance(obj, Arrow): obj.set_style(default_style['arrow']) elif isinstance(obj, Polygon): obj.set_style(default_style['fill']) obj.frame().set_style(default_style['frame']) if 'dotted' in obj.options(): obj.style().set_color(Style.COLORS['empty']) obj.frame().style().set_type('dotted') if 'emph' in obj.options(): obj.set_width(obj.get_width() * 2) elif isinstance(obj, OpenGraph): obj.set_style(default_style['line']) if 'dotted' in obj.options(): obj.style().set_type('dotted') if 'emph' in obj.options(): obj.style().set_width(obj.style().width() * 4) elif isinstance(obj, Text): obj.set_style(default_style['text']) for style in styles: name_pattern = re.compile(style.name_pattern(), re.UNICODE) for obj in named_drawables: for name in obj.names(): if name_pattern.match(name): if style.target_type() == 'frame' and isinstance(obj, Polygon): target_obj = obj.frame() elif style.target_type() == 'text' and isinstance(obj, Text): target_obj = obj elif style.target_type() == 'fill' and not isinstance(obj, Text): target_obj = obj else: target_obj = None if target_obj != None: if style.priority() > target_obj.style().priority(): target_obj.set_style(style) arrows = filter(lambda x: isinstance(x, Arrow), objects) for arrow in arrows: for obj in arrow.pointed_objects(): if obj.style().priority() > arrow.style().priority(): arrow.set_style(obj.style()) for obj in arrow.connected_objects(): if obj.style().priority() > arrow.style().priority(): arrow.set_style(obj.style()) self._parsed_data = raw_data self._objects = objects return ``` #### File: shaape/tests/test_drawable.py ```python from shaape.drawable import Drawable from shaape.style import Style import nose import unittest from nose.tools import * class TestDrawable(unittest.TestCase): def test_init(self): drawable = Drawable() assert type(drawable.style()) == Style def test_style(self): drawable = Drawable() style = Style(['abc', 'def', 'geh'], 'line', ['dotted', 'shadow']) drawable.set_style(style) assert drawable.style().options() == style.options() def test_min(self): drawable = Drawable() assert_raises(NotImplementedError, drawable.min) def test_max(self): drawable = Drawable() assert_raises(NotImplementedError, drawable.max) ``` #### File: shaape/tests/test_overlayparser.py ```python from shaape.overlayparser import OverlayParser from shaape.node import Node from shaape.opengraph import OpenGraph from shaape.polygon import Polygon import nose import unittest from nose.tools import * class TestOverlayParser(unittest.TestCase): def test_init(self): parser = OverlayParser() assert parser != None def test_cycle_len(self): parser = OverlayParser() cycle = [Node(0, 0), Node(4, 0), Node(4, 2), Node(0, 2), Node(0, 0)] assert parser.cycle_len(cycle) == 12 def test_run(self): parser = OverlayParser() parser.run("",[]) parser.run("-",[]) assert len(parser.drawable_objects()) == 1, parser.drawable_objects() assert type(parser.drawable_objects()[0]) == OpenGraph parser.run("- -",[]) assert len(parser.drawable_objects()) == 2 assert type(parser.drawable_objects()[0]) == OpenGraph assert type(parser.drawable_objects()[1]) == OpenGraph parser.run(["++","++"],[]) assert len(parser.drawable_objects()) == 1, "got " + str(len(parser.drawable_objects())) + " drawable objects " + str(parser.drawable_objects()) assert len([ o for o in parser.drawable_objects() if type(o) == Polygon]) == 1 parser.run(["+--+", "| ++", "| ++", "+--+"],[]) assert len(parser.drawable_objects()) == 2, "got " + str(len(parser.drawable_objects())) + " drawable objects " assert len([ o for o in parser.drawable_objects() if type(o) == Polygon]) == 2 ``` #### File: shaape/tests/test_parser.py ```python from shaape.parser import Parser import nose import unittest from nose.tools import * class TestParser(unittest.TestCase): def test_init(self): parser = Parser() assert parser != None assert parser.parsed_data() == [] assert parser.drawable_objects() == [] def test_run(self): parser = Parser() assert_raises(NotImplementedError, parser.run, "", []) ```
{ "source": "2525VenturesBV/cfn-tag-provider", "score": 2 }
#### File: cfn-tag-provider/src/tag_provider.py ```python import os import json import logging import boto3 import requests from cfn_resource_provider import ResourceProvider log = logging.getLogger() log.setLevel(os.environ.get("LOG_LEVEL", "INFO")) request_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "type": "object", "properties": { "type": "object", "required": ["ResourceARN", "Tags"], "properties": { "ResourceARN": {"type": "array", "items": {"type": "string"}}, "Tags": {"type": "object"}, }, }, } class TagProvider(ResourceProvider): def __init__(self): super(TagProvider, self).__init__() self.rg_tagging = boto3.client("resourcegroupstaggingapi") @property def resource_arns(self): return sorted(self.get("ResourceARN")) @property def old_resource_arns(self): return sorted(self.get_old("ResourceARN", self.resource_arns)) @property def tags(self): return self.get("Tags") @property def old_tags(self): return self.get_old("Tags", self.tags) def has_changes(self): return self.resource_arns != self.old_resource_arns or self.tags != self.old_tags def check_errors(self, response): if response["FailedResourcesMap"]: log.error("response %s", response) self.fail(response["FailedResourcesMap"][0].get("ErrorMessage")) return False return True def apply_tags(self): response = self.rg_tagging.tag_resources( ResourceARNList=self.resource_arns, Tags=self.tags ) self.check_errors(response) def create(self): self.apply_tags() self.physical_resource_id = self.logical_resource_id def update(self): if self.has_changes(): self.delete_old() self.apply_tags() else: self.success("no changes") def delete_old(self): keys = list(self.old_tags.keys()) if keys: response = self.rg_tagging.untag_resources( ResourceARNList=self.resource_arns, TagKeys=keys ) def delete(self): keys = list(self.tags.keys()) if keys: response = self.rg_tagging.untag_resources( ResourceARNList=self.resource_arns, TagKeys=keys ) provider = TagProvider() def handler(request, context): return provider.handle(request, context) ```
{ "source": "2529342549/turtlebot3_m_learning", "score": 3 }
#### File: turtlebot3_dqn/nodes/environment.py ```python import rospy import numpy as np import math from math import pi import time import Tkinter as tk from PIL import ImageTk, Image from geometry_msgs.msg import Twist, Point, Pose from std_srvs.srv import Empty np.random.seed(1) PhotoImage = ImageTk.PhotoImage UNIT = 50 # pixels HEIGHT = 11 # grid height WIDTH = 11 # grid width class Env(tk.Tk): def __init__(self): tk.Tk.__init__(self) self.action_space = ['u', 'd', 'l', 'r'] self.n_actions = len(self.action_space) self.title('Q Learning') self.geometry('{0}x{1}'.format(HEIGHT * UNIT, HEIGHT * UNIT)) self.shapes = self.load_images() self.canvas = self._build_canvas() self.texts = [] self.act = 0 self.pub_cmd_vel = rospy.Publisher('cmd_vel', Twist, queue_size=5) self.reset_proxy = rospy.ServiceProxy('gazebo/reset_simulation', Empty) self.unpause_proxy = rospy.ServiceProxy('gazebo/unpause_physics', Empty) self.pause_proxy = rospy.ServiceProxy('gazebo/pause_physics', Empty) def _build_canvas(self): canvas = tk.Canvas(self, bg='white', height=HEIGHT * UNIT, width=WIDTH * UNIT) # create grids for c in range(0, WIDTH * UNIT, UNIT): # 0~400 by 80 x0, y0, x1, y1 = c, 0, c, HEIGHT * UNIT canvas.create_line(x0, y0, x1, y1) for r in range(0, HEIGHT * UNIT, UNIT): # 0~400 by 80 x0, y0, x1, y1 = 0, r, HEIGHT * UNIT, r canvas.create_line(x0, y0, x1, y1) # add img to canvas self.rectangle = canvas.create_image(275, 275, image=self.shapes[0]) self.triangle1 = canvas.create_image(175, 175, image=self.shapes[1]) self.triangle2 = canvas.create_image(175, 375, image=self.shapes[1]) self.triangle3 = canvas.create_image(375, 175, image=self.shapes[1]) self.triangle4 = canvas.create_image(375, 375, image=self.shapes[1]) self.circle = canvas.create_image(475, 75, image=self.shapes[2]) # pack all canvas.pack() return canvas def load_images(self): rectangle = PhotoImage( Image.open("/home/wangqiang/catkin_ws/src/turtlebot3_machine_learning/turtlebot3_dqn/img/rectangle.png").resize((35, 35))) triangle = PhotoImage( Image.open("/home/wangqiang/catkin_ws/src/turtlebot3_machine_learning/turtlebot3_dqn/img/triangle.png").resize((35, 35))) circle = PhotoImage( Image.open("/home/wangqiang/catkin_ws/src/turtlebot3_machine_learning/turtlebot3_dqn/img/circle.png").resize((35, 35))) return rectangle, triangle, circle def text_value(self, row, col, contents, action, font='Helvetica', size=7, style='normal', anchor="nw"): if action == 0: origin_x, origin_y = 3, 21 elif action == 1: origin_x, origin_y = 37, 21 elif action == 2: origin_x, origin_y = 21, 3 else: origin_x, origin_y = 21, 33 x = origin_y + (UNIT * col) y = origin_x + (UNIT * row) font = (font, str(size), style) text = self.canvas.create_text(x, y, fill="black", text=contents, font=font, anchor=anchor) return self.texts.append(text) def print_value_all(self, q_table): for i in self.texts: self.canvas.delete(i) del self.texts[::] for i in range(HEIGHT): for j in range(WIDTH): for action in range(0, 4): state = [i, j] if str(state) in q_table.keys(): temp = q_table[str(state)][action] self.text_value(j, i, round(temp, 2), action) def coords_to_state(self, coords): x = int((coords[0] - 25) / 50) y = int((coords[1] - 25) / 50) return [x, y] def state_to_coords(self, state): x = int(state[0] * 50 + 25) y = int(state[1] * 50 + 25) return [x, y] def reset(self): rospy.wait_for_service('gazebo/reset_simulation') try: self.reset_proxy() except (rospy.ServiceException) as e: print("gazebo/reset_simulation service call failed") self.update() time.sleep(0.5) x, y = self.canvas.coords(self.rectangle) self.canvas.move(self.rectangle, UNIT / 2 - x + 250, UNIT / 2 - y + 250) self.render() # return observation return self.coords_to_state(self.canvas.coords(self.rectangle)) def step(self, action): state = self.canvas.coords(self.rectangle) base_action = np.array([0, 0]) self.render() vel_cmd = Twist() if action == 0: # up if state[1] > UNIT: if self.act == 0: #zhi zou vel_cmd.linear.x = 0.2 self.pub_cmd_vel.publish(vel_cmd) elif self.act == 1: #hou zhuan vel_cmd.angular.z = pi/2 self.pub_cmd_vel.publish(vel_cmd) time.sleep(2) vel_cmd.linear.x = 0.2 vel_cmd.angular.z = 0.0 self.pub_cmd_vel.publish(vel_cmd) elif self.act ==2: #you zhuan vel_cmd.angular.z = -pi/4 self.pub_cmd_vel.publish(vel_cmd) time.sleep(2) vel_cmd.linear.x = 0.2 vel_cmd.angular.z = 0.0 self.pub_cmd_vel.publish(vel_cmd) else:#zuo zhuan vel_cmd.angular.z = pi/4 self.pub_cmd_vel.publish(vel_cmd) time.sleep(2) vel_cmd.linear.x = 0.2 vel_cmd.angular.z = 0.0 self.pub_cmd_vel.publish(vel_cmd) self.act = action base_action[1] -= UNIT time.sleep(2) elif action == 1: # down if state[1] < (HEIGHT - 1) * UNIT: if self.act == 0: #hou zhuan vel_cmd.angular.z = pi/2 self.pub_cmd_vel.publish(vel_cmd) time.sleep(2) vel_cmd.linear.x = 0.2 vel_cmd.angular.z = 0.0 self.pub_cmd_vel.publish(vel_cmd) elif self.act == 1: # zhi zou vel_cmd.linear.x = 0.2 self.pub_cmd_vel.publish(vel_cmd) elif self.act ==2: #zuo zhuan vel_cmd.angular.z = pi/4 self.pub_cmd_vel.publish(vel_cmd) time.sleep(2) vel_cmd.linear.x = 0.2 vel_cmd.angular.z = 0.0 self.pub_cmd_vel.publish(vel_cmd) else:#you zhuan vel_cmd.angular.z = -pi/4 self.pub_cmd_vel.publish(vel_cmd) time.sleep(2) vel_cmd.linear.x = 0.2 vel_cmd.angular.z = 0.0 self.pub_cmd_vel.publish(vel_cmd) self.act = action base_action[1] += UNIT time.sleep(2) elif action == 2: # left if state[0] > UNIT: if self.act == 0: #zuo zhuan vel_cmd.angular.z = pi/4 self.pub_cmd_vel.publish(vel_cmd) time.sleep(2) vel_cmd.linear.x = 0.2 vel_cmd.angular.z = 0.0 self.pub_cmd_vel.publish(vel_cmd) elif self.act == 1: #you zhuan vel_cmd.angular.z = -pi/4 self.pub_cmd_vel.publish(vel_cmd) time.sleep(2) vel_cmd.linear.x = 0.2 vel_cmd.angular.z = 0.0 self.pub_cmd_vel.publish(vel_cmd) elif self.act == 2: #zhi zou vel_cmd.linear.x = 0.2 self.pub_cmd_vel.publish(vel_cmd) else:#hou zhuan vel_cmd.angular.z = pi/2 self.pub_cmd_vel.publish(vel_cmd) time.sleep(2) vel_cmd.linear.x = 0.2 vel_cmd.angular.z = 0.0 self.pub_cmd_vel.publish(vel_cmd) self.act = action base_action[0] -= UNIT time.sleep(2) elif action == 3: # right if state[0] < (WIDTH - 1) * UNIT: if self.act == 0: #you zhuan vel_cmd.angular.z = -pi/4 self.pub_cmd_vel.publish(vel_cmd) time.sleep(2) vel_cmd.linear.x = 0.2 vel_cmd.angular.z = 0.0 self.pub_cmd_vel.publish(vel_cmd) elif self.act == 1: #zuo zhuan vel_cmd.angular.z = pi/4 self.pub_cmd_vel.publish(vel_cmd) time.sleep(2) vel_cmd.linear.x = 0.2 vel_cmd.angular.z = 0.0 self.pub_cmd_vel.publish(vel_cmd) elif self.act == 2: #hou zhuan vel_cmd.angular.z = pi/2 self.pub_cmd_vel.publish(vel_cmd) time.sleep(2) vel_cmd.linear.x = 0.2 vel_cmd.angular.z = 0.0 self.pub_cmd_vel.publish(vel_cmd) else:#zhi zou vel_cmd.linear.x = 0.2 self.pub_cmd_vel.publish(vel_cmd) self.act = action base_action[0] += UNIT time.sleep(2) # move agent self.canvas.move(self.rectangle, base_action[0], base_action[1]) # move rectangle to top level of canvas self.canvas.tag_raise(self.rectangle) next_state = self.canvas.coords(self.rectangle) # reward function if next_state == self.canvas.coords(self.circle): reward = 100 done = True rospy.loginfo("Success!!!") self.pub_cmd_vel.publish(Twist()) self.act = 0 elif next_state in [self.canvas.coords(self.triangle1), self.canvas.coords(self.triangle2), self.canvas.coords(self.triangle3), self.canvas.coords(self.triangle4)]: reward = -100 done = True rospy.loginfo("Collision!!!") self.pub_cmd_vel.publish(Twist()) self.act = 0 else: reward = 0 done = False next_state = self.coords_to_state(next_state) return next_state, reward, done def render(self): time.sleep(0.03) self.update() ``` #### File: src/turtlebot3_dqn/simulation_environment_real.py ```python import rospy import numpy as np import math import time from math import pi from geometry_msgs.msg import Twist, Point, Pose, PoseWithCovarianceStamped from sensor_msgs.msg import LaserScan from nav_msgs.msg import Odometry from std_srvs.srv import Empty from std_msgs.msg import String from tf.transformations import euler_from_quaternion, quaternion_from_euler from simulation_respawn_real import Respawn # from nodes.turtlebot3_real_transmission_2 import Sender # from gazebo_msgs.msg import ModelStates, ModelState class Env(): def __init__(self, action_size): self.goal_x = 0 self.goal_y = 0 self.start_x = 0 self.start_y = 0 self.start_orientation = PoseWithCovarianceStamped() self.heading = 0 self.count = 0 self.action_size = action_size self.initGoal = True self.get_goalbox = False self.position = Pose() self.position_x, self.position_y = 0, 0 self.pub_cmd_vel = rospy.Publisher('cmd_vel', Twist, queue_size=1, latch = True) self.sub_odom = rospy.Subscriber('odom', Odometry, self.getOdometry) self.respawn_goal = Respawn() self.action_memory = [] self.time_start = time.time() self.orientation, self.yaw_init = 0, 0 self.goal_x_map, self.goal_y_map = 0, 0 def getGoalDistace(self): goal_distance = round(math.hypot(self.goal_x - self.position.x, self.goal_y - self.position.y), 2) return goal_distance def getOdometry(self, odom): self.position = odom.pose.pose.position self.position_x, self.position_y = self.position.x, self.position.y orientation = odom.pose.pose.orientation self.orientation = orientation orientation_list = [orientation.x, orientation.y, orientation.z, orientation.w] _, _, yaw = euler_from_quaternion(orientation_list) # print "odom yaw: ", yaw goal_angle = math.atan2(self.goal_y - self.position.y , self.goal_x - self.position.x) heading = goal_angle - yaw if heading > pi: heading -= 2 * pi elif heading < -pi: heading += 2 * pi self.heading = round(heading, 2) def getState(self, scan): scan_range = [] scan_range2 = [] # print scan.ranges heading = self.heading min_range = 0.3 done = False # no filter # for i in range(len(scan.ranges)): # if scan.ranges[i] == float('Inf'): # scan_range.append(3.5) # # zero Problem # # elif np.isnan(scan.ranges[i]): # # scan_range.append(0) # elif scan.ranges[i] <= 0.07: # scan_range.append(3.5) # else: # scan_range.append(scan.ranges[i]) # Filter i = 0 while i <= len(scan.ranges)-1: # print "length", len(scan_range) if scan.ranges[i] == float('Inf'): scan_range.append(3.5) i += 1 elif scan.ranges[i] == 0: k = 1 t = 0 if i == 0: while scan.ranges[k]==0: k += 1 while t <= k: scan_range.append(scan.ranges[k]) t += 1 i = k + 1 else: k = i m = i a = scan.ranges[i-1] while scan.ranges[k]==0: if k == 359: while m <= k: scan_range.append(a) m += 1 for i in range(len(scan_range)): if scan_range[i] < 0.12: scan_range2.append(0.12) else: scan_range2.append(scan_range[i]) current_distance = round(math.hypot(self.goal_x - self.position.x, self.goal_y - self.position.y),2) # if current_distance < 0.2: if current_distance < 0.15: vel_cmd = Twist() self.get_goalbox = True obstacle_min_range = round(min(scan_range), 2) obstacle_angle = np.argmin(scan_range) if min_range > min(scan_range) > 0: done = True return scan_range2 + [heading, current_distance, obstacle_min_range, obstacle_angle], done k += 1 b = scan.ranges[k] while m < k: scan_range.append(max(a, b)) m += 1 i = k else: scan_range.append(scan.ranges[i]) i += 1 i=0 for i in range(len(scan_range)): if scan_range[i] < 0.12: scan_range2.append(0.12) else: scan_range2.append(scan_range[i]) obstacle_min_range = round(min(scan_range), 2) obstacle_angle = np.argmin(scan_range) if min_range > min(scan_range) > 0: done = True current_distance = round(math.hypot(self.goal_x - self.position.x, self.goal_y - self.position.y),2) # if current_distance < 0.2: if current_distance < 0.15: vel_cmd = Twist() self.get_goalbox = True return scan_range2 + [heading, current_distance, obstacle_min_range, obstacle_angle], done def setReward(self, state, done, action): yaw_reward = [] obstacle_min_range = state[-2] current_distance = state[-3] heading = state[-4] for i in range(5): angle = -pi / 4 + heading + (pi / 8 * i) + pi / 2 tr = 1 - 4 * math.fabs(0.5 - math.modf(0.25 + 0.5 * angle % (2 * math.pi) / math.pi)[0]) yaw_reward.append(tr) distance_rate = 2 ** (current_distance / self.goal_distance) if obstacle_min_range < 0.5: ob_reward = -5 else: ob_reward = 0 reward = ((round(yaw_reward[action] * 5, 2)) * distance_rate) + ob_reward if done: rospy.loginfo("Near Collision!!") reward = -200 # driving backwards last 25 actions ~5 seconds t = 0 l = len(self.action_memory) vel_cmd = Twist() # while t <= 10: # if len(self.action_memory) > 20: # max_angular_vel = -1.5 # action = self.action_memory[l-t-1] # ang_vel = ((-self.action_size + 1)/2 - action) * max_angular_vel * 0.5 # vel_cmd.linear.x = -0.15 # # vel_cmd.angular.z = ang_vel # vel_cmd.angular.z = 0 # time_start = time.time() # a=0 # self.pub_cmd_vel.publish(vel_cmd) # t += 1 # else: # t = 10 # stand still after collision vel_cmd.linear.x = 0 vel_cmd.angular.z = 0 time_start = time.time() a=0 while a < 1: self.pub_cmd_vel.publish(vel_cmd) a = time.time() - time_start if self.get_goalbox: rospy.loginfo("Goal!!") print "start_position: ", self.start_x,"/ ", self.start_y print "odom_position:", self.position.x,"/ " ,self.position.y print "goal_position: ", self.goal_x,"/ ", self.goal_y print "action: ", action print "_______________________________________________________________" reward = 500 self.get_goalbox = False done = True vel_cmd = Twist() vel_cmd.linear.x = 0 vel_cmd.angular.z = 0 start = 0 start_1 = time.time() while start - 5 < 0: self.pub_cmd_vel.publish(vel_cmd) start = time.time() - start_1 # self.pub_cmd_vel.publish(vel_cmd) # self.goal_x, self.goal_y = self.respawn_goal.getPosition() # self.goal_distance = self.getGoalDistace() return reward, done def speed(self, state): # Calculate the data new with a filter scan_range = [] speed = 0.15 speed_goal = 0 for i in range(len(state)): if state[i] < 0.30: scan_range.append(3.5) else: scan_range.append(state[i]) scan_range = state obstacle_min_range = round(min(scan_range), 2) goal_distance = scan_range[361] # print obstacle_min_range if obstacle_min_range >= 1: speed = 0.15 elif obstacle_min_range < 1 and obstacle_min_range >= 0.3: speed = 0.15 + ((obstacle_min_range-1)/7) speed_goal = speed if goal_distance < 0.5: speed_goal = 0.15 + (goal_distance - 0.)/8 speed = min([speed, speed_goal]) return speed def step(self, action): time1 = time.time() data = None while data is None: try: data = rospy.wait_for_message('scan', LaserScan, timeout=5) except: pass vel_cmd = Twist() vel_cmd.linear.x = 0 state, done = self.getState(data) reward, done = self.setReward(state, done, action) if not done: max_angular_vel = 1.5 # max_angular_vel = 0.15 ang_vel = ((self.action_size - 1)/2 - action) * max_angular_vel * 0.5 vel_cmd = Twist() vel_cmd.linear.x = self.speed(state) # vel_cmd.linear.x = 0.15 vel_cmd.angular.z = ang_vel self.action_memory.append(-1*action) time_start = time.time() self.pub_cmd_vel.publish(vel_cmd) if self.count % 2 == 0: print "start_position: ", self.start_x,"/ ", self.start_y print "odom_position:", self.position.x,"/ " ,self.position.y print "goal_position: ", self.goal_x,"/ ", self.goal_y print "goal_distance: ", state[-3],"/ obstacle_distance: ", state[-2] print "Vel_linear: ",vel_cmd.linear.x , "action: ", action print done print "_____________________________________________________________" self.count += 1 return np.asarray(state), reward, done def reset(self): # corrdinate receive, transformation yaw_neu = 0 if self.initGoal: self.start_x_map, self.start_y_map, start_orientation_2 = self.respawn_goal.getstartPosition() self.goal_x_map, self.goal_y_map = self.respawn_goal.getPosition() start_orientation_list = [start_orientation_2.x, start_orientation_2.y, start_orientation_2.z, start_orientation_2.w] _, _, self.yaw_init = euler_from_quaternion(start_orientation_list) self.initGoal = False # self.goal_x, self.goal_y = self.goal_x_map, self.goal_y_map else: self.start_x_map, self.start_y_map = self.goal_x_map, self.goal_y_map self.goal_x_map, self.goal_y_map = self.respawn_goal.getPosition() orientation = self.orientation orientation_list = [orientation.x, orientation.y, orientation.z, orientation.w] _, _, yaw_neu = euler_from_quaternion(orientation_list) print "yaw_neu:", yaw_neu # self.goal_x_map, self.goal_y_map = self.goal_x, self.goal_y print "Wait 3 sec" time.sleep(3) # in map coordinates # diff_x = self.goal_x - self.start_x + self.position # diff_y = self.goal_y - self.start_y + self.position diff_x = self.goal_x_map - self.start_x_map diff_y = self.goal_y_map - self.start_y_map print "diff_x: ", diff_x print "diff_y: ", diff_y print "yaw_neu: ", yaw_neu # yaw = yaw_neu + self.yaw_init # print "yaw: ",yaw # Transformation yaw = self.yaw_init self.goal_x = math.cos(yaw)*diff_x + math.sin(yaw)*diff_y + self.position_x self.goal_y = -1*math.sin(yaw)*diff_x + math.cos(yaw)*diff_y + self.position_y self.goal_distance = self.getGoalDistace() data = None while data is None: try: data = rospy.wait_for_message('scan', LaserScan, timeout=5) except: pass self.goal_distance = self.getGoalDistace() state, done = self.getState(data) return np.asarray(state) ```
{ "source": "2535463841/fluent-python", "score": 2 }
#### File: fpstackutils/openstack/client.py ```python import os from cinderclient import client as cinder_client import glanceclient from keystoneauth1.identity import v3 from keystoneauth1.session import Session from keystoneclient.v3 import client from neutronclient.v2_0 import client as neutron_client import novaclient from novaclient import client as nova_client from fp_lib.common import exceptions as fp_exc from fp_lib.common import log LOG = log.getLogger(__name__) NOVA_API_VERSION = "2.49" nova_extensions = [ext for ext in nova_client.discover_extensions(NOVA_API_VERSION) if ext.name in ("assisted_volume_snapshots", "list_extensions", "server_external_events")] class Keystone(object): def __init__(self, *args, **kwargs): self.auth = v3.Password(*args, **kwargs) self.session = Session(auth=self.auth) self.keystone = client.Client(session=self.session) def get_or_create_domain(self, name): domains = self.keystone.domains.list(name=name) return domains[0] if domains else self.keystone.domains.create(name) def get_or_create_role(self, name, domain_name=None): domain = None if domain_name: domain = self.get_or_create_domain(domain_name) roles = self.keystone.roles.list(name=name, domain=domain) return roles[0] if roles else self.keystone.roles.create( name, domain=domain) def get_or_create_project(self, name, domain_name, **kwargs): domain = self.get_or_create_domain(domain_name) projects = self.keystone.projects.list(name=name, domain=domain) return projects[0] if projects else self.keystone.projects.create( name, domain, **kwargs) def get_or_create_user(self, name, domain_name, projec_name, **kwargs): domain = self.get_or_create_domain(domain_name) project = self.get_or_create_project(projec_name, domain_name) role_name = kwargs.pop('role_name', None) users = self.keystone.users.list(name=name, domain=domain) user = users[0] if users else self.keystone.users.create( name, domain=domain, project=project, **kwargs ) if role_name: role = self.get_or_create_role(role_name) self.keystone.roles.grant(role, user=user, project=project) return user def get_quota(self): project_id = self.session.get_project_id() return self.nova.quotas.get(project_id) class OpenstackClient(Keystone): V3_AUTH_KWARGS = ['username', 'password', 'project_name', 'user_domain_name', 'project_domain_name'] def __init__(self, *args, **kwargs): super(OpenstackClient, self).__init__(*args, **kwargs) self.neutron = neutron_client.Client(session=self.session) self.nova = nova_client.Client(NOVA_API_VERSION, session=self.session, extensions=nova_extensions) self.glance = glanceclient.Client('2', session=self.session) self.cinder = cinder_client.Client('2', session=self.session) @classmethod def get_auth_info_from_env(cls): if 'OS_AUTH_URL' not in os.environ: raise fp_exc.EnvIsNone('OS_AUTH_URL') auth_url = os.getenv('OS_AUTH_URL') auth_kwargs = {} for auth_arg in cls.V3_AUTH_KWARGS: env = 'OS_{}'.format(auth_arg.upper()) value = os.getenv(env) if not value: raise fp_exc.EnvIsNone(env) auth_kwargs[auth_arg] = value return auth_url, auth_kwargs @classmethod def create_instance(cls): auth_url, auth_kwargs = cls.get_auth_info_from_env() LOG.debug('auth info: %s', auth_kwargs) return OpenstackClient(auth_url, **auth_kwargs) def attach_interface(self, net_id=None, port_id=None): return self.nova.servers.interface_attach(net_id=net_id, port_id=port_id) def detach_interface(self, vm_id, port_id): return self.nova.servers.interface_detach(vm_id, port_id) def list_interface(self, vm_id): return self.nova.servers.interface_list(vm_id) def attach_volume(self, vm_id, volume_id): return self.nova.volumes.create_server_volume(vm_id, volume_id) def detach_volume(self, vm_id, volume_id): return self.nova.volumes.delete_server_volume(vm_id, volume_id) def create_volume(self, name, size_gb=None): size = size_gb or 1 return self.cinder.volumes.create(size, name=name) def get_volume(self, volume_id): return self.cinder.volumes.get(volume_id) def delete_volume(self, volume_id): return self.cinder.volumes.delete(volume_id) def get_vm_actions(self, vm): actions = {} for action in self.nova.instance_action.list(vm.id): actions.setdefault(action.action, []) vm_action = self.nova.instance_action.get(vm.id, action.request_id) for event in vm_action.events: actions[action.action].append(event) return actions def get_vm_events(self, vm): action_events = [] for action in self.nova.instance_action.list(vm.id): vm_action = self.nova.instance_action.get(vm.id, action.request_id) events = sorted(vm_action.events, key=lambda x: x.get('start_time')) action_events.append((action.action, events)) return action_events def force_down(self, service, force_down): if self.nova.api_version >= novaclient.api_versions.APIVersion('2.53'): self.nova.services.force_down(service.id, force_down) else: self.nova.services.force_down(service.host, service.binary, force_down=force_down) ``` #### File: fp_lib/common/confparser.py ```python import collections from six.moves import configparser class ConfigParserWrapper(object): def __init__(self): self._parser = configparser.ConfigParser() self._file = None self._defaults = None def defaults(self): if self._defaults is None: self._defaults = self._parser.defaults() return self._defaults def read(self, file): self._file = file if isinstance(file, str): self._parser.read(file) else: self._parser.readfp(file) def sections(self): return self._parser.sections() def options(self, section, ignore_default=False): if section == 'DEFAULT': return self._parser.defaults() options = collections.OrderedDict() for option in self._parser.options(section): value = self._parser.get(section, option) if ignore_default and value == self.defaults().get(option): continue options[option] = self._parser.get(section, option) return options def get(self, option, section='DEFAULT'): options = self.options(section) if option not in options: raise configparser.NoOptionError(option, section) return options.get(option) def set(self, option, value, section='DEFAULT'): self._parser.set(section, option, value) with open(self._file, 'w') as fp: self._parser.write(fp) ``` #### File: fp_lib/common/log.py ```python import logging from logging import handlers _DEFAULT_LEVEL = logging.INFO _DEFAULT_FORMAT = '%(asctime)s %(levelname)s %(name)s:%(lineno)s %(message)s' _DEFAULT_FILE = None _DEFAULT_MAX_BYTES = 0 _DEFAULT_BACKUP_COUNT = 1 _LOGGER = set([]) def disable_debug(): global _DEFAULT_LEVEL _DEFAULT_LEVEL = logging.INFO def enable_debug(): global _DEFAULT_LEVEL _DEFAULT_LEVEL = logging.DEBUG for name in _LOGGER: logger = logging.getLogger(name) logger.setLevel(_DEFAULT_LEVEL) def set_default(level=None, filename=None, max_mb=None, backup_count=None): global _DEFAULT_LEVEL global _DEFAULT_FILE, _DEFAULT_MAX_BYTES, _DEFAULT_BACKUP_COUNT if level: _DEFAULT_LEVEL = level if filename: _DEFAULT_FILE = filename if max_mb: _DEFAULT_MAX_BYTES = 1024 * 1024 * max_mb if backup_count: _DEFAULT_BACKUP_COUNT = backup_count for name in _LOGGER: logger = logging.getLogger(name) logger.setLevel(_DEFAULT_LEVEL) if not logger.handlers: logger.addHandler(get_handler()) else: logger.handlers[0] = get_handler() def load_config(config_file): logging.config.fileConfig(config_file) def get_handler(file_name=None, format=None): file_name = file_name or _DEFAULT_FILE if file_name: handler = handlers.RotatingFileHandler( file_name, mode='a', maxBytes=_DEFAULT_MAX_BYTES, backupCount=_DEFAULT_BACKUP_COUNT) else: handler = logging.StreamHandler() handler.setLevel(logging.DEBUG) handler.setFormatter(logging.Formatter(format or _DEFAULT_FORMAT)) return handler def getLogger(name, file_name=None, format=None): """ >>> set_default(filename='test.log', level=logging.DEBUG) >>> LOG = getLogger(__name__) >>> LOG.debug('debug') >>> LOG.info('info' * 100) >>> LOG.error('error') """ global _LOGGER _LOGGER.add(name) logger = logging.getLogger(name) logger.setLevel(_DEFAULT_LEVEL) if not logger.handlers: handler = get_handler(file_name=file_name, format=format) logger.addHandler(handler) return logger ``` #### File: fp_lib/common/progressbar.py ```python from __future__ import print_function import time import threading try: from tqdm import tqdm is_support_tqdm = True except ImportError: is_support_tqdm = False from fp_lib import date from . import log LOG = log.getLogger(__name__) class ProgressNoop(object): def __init__(self, total, **kwargs): self.total = total def update(self, size): pass def close(self): pass def set_description(self, *args, **kargs): pass class ProgressWithPrint(ProgressNoop): progress_format = '{} {:3}% [{:100}]\r' def __init__(self, total, **kwargs): super(ProgressWithPrint, self).__init__(total) self.progress = {'completed': 0, 'total': self.total} self.last_time = time.time() self.lock = threading.Lock() def update(self, size): self.lock.acquire() self.progress['completed'] += size if time.time() - self.last_time >= 2: self._print_progress() self.last_time = time.time() self.lock.release() def close(self): self._print_progress() def _print_progress(self): percent = self.progress['completed'] * 100 / self.progress['total'] print(self.progress_format.format( date.parse_timestamp2str(time.time()), percent, '#' * percent)) class ProgressWithTqdm(ProgressNoop): def __init__(self, *args, **kwargs): self.pbar = tqdm(*args, **kwargs) def update(self, size): self.pbar.update(size) def close(self): self.pbar.clear() self.pbar.close() def set_description(self, *args, **kwargs): self.pbar.set_description(*args, **kwargs) def factory(total): if is_support_tqdm: return ProgressWithTqdm(total=total) else: LOG.warning('tqdm is not installed, use ProgressWithPrint') return ProgressWithPrint(total=total) ``` #### File: downloader/urllib/driver.py ```python import io import os import re import urllib3 import bs4 from fp_lib.common import log from fp_lib.common import progressbar from fp_lib.downloader import driver LOG = log.getLogger(__name__) FILE_NAME_MAX_SIZE = 50 def find_links(url, link_regex=None, headers=None): """ >>> links = find_links('http://www.baidu.com', ... link_regex=r'.*.(jpg|png)$') """ httpclient = urllib3.PoolManager(headers=headers) resp = httpclient.request('GET', url) if resp.status != 200: raise Exception('get web page failed, %s' % resp.data) html = bs4.BeautifulSoup(resp.data, features="html.parser") img_links = [] if link_regex: regex_obj = re.compile(link_regex) else: regex_obj = None for link in html.find_all(name='a'): if not link.get('href'): continue if regex_obj and not regex_obj.match(link.get('href')): continue img_links.append(link.get('href')) return img_links class Urllib3Driver(driver.BaseDownloadDriver): def __init__(self, headers=None, **kwargs): super(Urllib3Driver, self).__init__(**kwargs) self.headers = headers self.filename_length = 1 self.http = urllib3.PoolManager(num_pools=self.workers, headers=self.headers, timeout=self.timeout) def download_urls(self, url_list): self.filename_length = 1 for url in url_list: file_name = os.path.basename(url) if len(file_name) > self.filename_length: self.filename_length = len(file_name) self.filename_length = min(self.filename_length, FILE_NAME_MAX_SIZE) if not os.path.exists(self.download_dir): os.makedirs(self.download_dir) super(Urllib3Driver, self).download_urls(url_list) def download(self, url): file_name = os.path.basename(url) resp = self.http.request('GET', url, preload_content=False) if self.progress: pbar = progressbar.factory(int(resp.headers.get('Content-Length'))) desc_template = '{{:{}}}'.format(self.filename_length) pbar.set_description(desc_template.format(file_name)) else: pbar = progressbar.ProgressNoop() save_path = os.path.join(self.download_dir, file_name) with open(save_path, 'wb') as f: for data in resp.stream(io.DEFAULT_BUFFER_SIZE): f.write(data) pbar.update(len(data)) pbar.close() return file_name ``` #### File: fp-lib/fp_lib/location.py ```python import locale import pytz _COUNTRY = locale.getdefaultlocale()[0].split('_')[-1] def set_country(country): global _COUNTRY if country not in pytz.country_names: raise ValueError('country %s is not exists.' % country) else: _COUNTRY = country def get_country(): """use module pytz to get country""" global _COUNTRY assert _COUNTRY is not None return pytz.country_names.get(_COUNTRY) def get_country_timezones(country=None): """Get timezones by country code >>> get_country_timezones(country='CN') ['Asia/Shanghai', 'Asia/Urumqi'] """ return pytz.country_timezones[country or _COUNTRY] ``` #### File: fp-lib/fp_lib/net.py ```python from collections import namedtuple from concurrent import futures import re import socket from fp_lib import executor from fp_lib import system ScanResult = namedtuple('ScanResult', 'host port connectable') def port_scan(host, port_start=0, port_end=65535, threads=1, callback=None): """scan host ports between [port_start, port_end] >>> port_scan('localhost', ... port_start=8001, ... port_end=8002, ... threads=3, ... callback=lambda future : print(future.done())) True True """ def _connect(port): server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: server.connect((host, port)) return ScanResult(host, port, True) except Exception: return ScanResult(host, port, False) finally: server.close() with futures.ThreadPoolExecutor(threads) as executor: for port in range(port_start, port_end + 1): if callback: executor.submit(_connect, port).add_done_callback(callback) else: executor.submit(_connect, port) def ping(host): if system.OS.is_linux(): result = executor.LinuxExecutor.execute(['ping', '-w', '3', host]) else: result = executor.LinuxExecutor.execute(['ping', '-n', '3', host]) return result.status == 0 def get_internal_ip(): """Get the internal network IP address """ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(('8.8.8.8', 80)) return s.getsockname()[0] def get_ip_addresses(v4=True, v6=False): addr_types = [socket.AddressFamily.AF_INET] if v4 else [] if v6: addr_types.append(socket.AddressFamily.AF_INET6) address_list = [] for addr in socket.getaddrinfo(socket.gethostname(), None): if addr[0] in addr_types: address_list.append(addr[4][0]) return address_list def split_host_port(address, default_host=None, default_port=None): """Split address to host port The format of address like: host1, host1:8888, 1.1.1.1, 1.1.1.1:8888, :8888 >>> split_host_port('host1:8888') ('host1', '8888') >>> split_host_port('host1') ('host1', None) >>> split_host_port(':8888') (None, '8888') """ if not address: return default_host, default_port host, port = re.match(r'([^:]+)*:*(\d+)*', address).groups() return host or default_host, default_port if port is None else int(port) ``` #### File: fp_lib/server/cmdserver.py ```python from __future__ import print_function import json from socket import socket import subprocess from gevent import pywsgi from fp_lib.system import OS from fp_lib import net from fp_lib.common import log LOG = log.getLogger(__name__) DEFUALT_METHOD_STATUS = { 'GET': '200 OK', 'POST': '201 Created', 'PUT': '201 Updated', 'DELETE': '204 No Content' } class BaseWsgiApp(object): def __init__(self): self.environ = None @property def method(self): return self.environ['REQUEST_METHOD'] def get_wsgi_input_data(self): wsgi_input = self.environ.get('wsgi.input') return wsgi_input.read( int(self.environ.get('CONTENT_LENGTH', 0) or 0) ) def __call__(self, environ, start_response): self.environ = environ if self.method not in DEFUALT_METHOD_STATUS: start_response('404', []) return ['method {} is not supported for this server'.format(self.method).encode()] func = getattr(self, 'do_{}'.format(self.method), None) resp = func(environ, start_response) response_headers = [('Content-Type', 'application/json')] start_response(resp[0], response_headers) return [resp[1].encode()] def do_GET(self, environ, start_response): resp = self.get() if isinstance(resp, str): return DEFUALT_METHOD_STATUS['GET'], resp else: return resp def do_POST(self, environ, start_response): req_data = self.get_wsgi_input_data() resp = self.post(req_data) if isinstance(resp, str): return DEFUALT_METHOD_STATUS['POST'], resp else: return resp def do_PUT(self, environ, start_response): return self.put(self) def do_DELETE(self, environ, start_response): return self.delete() def get(self): return '200 OK', 'Hello, world' def post(self, data): return '404 Not Found', 'POST is NotImplemented' def put(self, data): return '404 Not Found', 'PUT is NotImplemented' def delete(self): return '404 Not Found', 'DELETE is NotImplemented' class CmdServer(BaseWsgiApp): def get(self): uname = OS.uname() resp_body = {'system': uname.system, 'version': uname.version, 'machine': uname.machine, 'processor': uname.processor, 'release': uname.release } return '200 OK', json.dumps(resp_body) def post(self, data): try: req_body = json.loads(data) except Exception: resp_body = {'error': 'request body is invalid'} return '400 Invalid Request', json.dumps(resp_body) cmd = req_body.get('cmd') status, output = subprocess.getstatusoutput(cmd) return json.dumps({'output': output, 'status': status}) def main(): import sys address = sys.argv[0] if len(sys.argv) >= 2 else None host, port = net.split_host_port(address, default_host=net.get_internal_ip(), default_port=8888) log.enable_debug() LOG.info('start server at %s:%s', host, port) server = pywsgi.WSGIServer((host, port), CmdServer()) server.serve_forever() if __name__ == '__main__': main() print(net.get_ip_addresses()) ``` #### File: fp_utils/base/fs.py ```python from __future__ import print_function import time import os from fp_lib.common import cliparser from fp_lib.common import log from fp_lib import fs LOG = log.getLogger(__name__) class PyTac(cliparser.CliBase): NAME = 'py-tac' ARGUMENTS = [ cliparser.Argument('file', help='file'), cliparser.Argument('-c', '--chunk', type=int, default=None, help='The chunk size to read, default is None'), cliparser.Argument('-n', '--nums', type=int, default=None, help='Print Last N lines')] def __call__(self, args): start_time = time.time() nums = args.nums if nums is not None and nums <= 0: LOG.error('The value of --nums NUM must >= 1') return with fs.open_backwards(args.file, chunk_size=args.chunk) as fp: for line in fp: print(line, end='') if nums is not None: nums -= 1 if nums <= 0: break LOG.debug('file is closed: %s', fp.closed) LOG.debug('Used Time: %.2f seconds', time.time() - start_time) class PyZip(cliparser.CliBase): NAME = 'zip' ARGUMENTS = [ cliparser.Argument('dir', help='the path of dir'), cliparser.Argument('--no-root', action='store_true', help='zip the child of dir'), cliparser.Argument('--no-path', action='store_true', help='save path to zip file'), ] def __call__(self, args): try: fs.zip_files(args.dir, zip_root=not args.no_root, zip_path=not args.no_path, verbose=args.verbose) except FileExistsError: LOG.error('%s is not exists', args.dir) except Exception as e: LOG.error(e) ```
{ "source": "254195430/test", "score": 3 }
#### File: app/cloud-native-app/app.py ```python from flask import Flask, flash, render_template, flash, request, jsonify, redirect, session, escape from flask import abort import bcrypt from flask_cors import CORS, cross_origin from flask import make_response, url_for import json import random from requests import Requests from pymongo import MongoClient from flask.ext.pymongo import PyMongo from time import gmtime, strftime from flask.ext.mongoalchemy import MongoAlchemy # Object creation app = Flask(__name__) app.config.from_object(__name__) app.secret_key = '<some secret key>' CORS(app) app.config['MONGOALCHEMY_DATABASE'] = 'app' app.config['MONGOALCHEMY_CONNECTION_STRING'] = 'mongodb://localhost:27017/' connection = MongoClient("mongodb://localhost:27017/") db = MongoAlchemy() mongo=PyMongo(app) # Initialize Database def create_mongodatabase(): try: dbnames = connection.database_names() if 'app' not in dbnames: db_api = connection.app.apirelease db_api.insert( { "buildtime": "2017-01-01 10:00:00", "links": "/api/v1/users", "methods": "get, post, put, delete", "version": "v1" }) db_api.insert( { "buildtime": "2017-02-11 10:00:00", "links": "api/v2/tweets", "methods": "get, post", "version": "2017-01-10 10:00:00" }) print ("Database Initialize completed!") else: print ("Database already Initialized!") except: print ("Database creation failed!!") # API Routes @app.route('/') def home(): if not session.get('logged_in'): return render_template('login.html') else: return render_template('index.html', session = session['logged_in']) @app.route('/index') def index(): return render_template('index.html', session = session['logged_in']) @app.route('/login', methods=['POST']) def do_admin_login(): users = mongo.db.users api_list=[] login_user = users.find({'username': request.form['username']}) for i in login_user: api_list.append(i) print (api_list) if api_list != []: #print (api_list[0]['password'].decode('utf-8'), bcrypt.hashpw(request.form['password'].encode('utf-8'), api_list[0]['password']).decode('utf-8')) if api_list[0]['password'].decode('utf-8') == bcrypt.hashpw(request.form['password'].encode('utf-8'), api_list[0]['password']).decode('utf-8'): session['logged_in'] = api_list[0]['username'] return redirect(url_for('index')) return 'Invalide username/password!' else: flash("Invalid Authentication") return 'Invalid User!' @app.route('/signup', methods=['GET', 'POST']) def signup(): if request.method=='POST': users = mongo.db.users api_list=[] existing_user = users.find({'$or':[{"username":request.form['username']} ,{"email":request.form['email']}]}) for i in existing_user: # print (str(i)) api_list.append(str(i)) # print (api_list) if api_list == []: users.insert({ "email": (request.form['email']).lower(), "id": random.randint(1,1000), "name": request.form['name'], "password": bcrypt.hashpw(request.form['pass'].encode('utf-8'), bcrypt.gensalt()), "username": request.form['username'] }) session['username'] = request.form['username'] return redirect(url_for('home')) return 'That user already exists' else : return render_template('signup.html') @app.route("/logout") def logout(): session['logged_in'] = False return redirect(url_for('home')) @app.route('/profile', methods=['GET', 'POST']) def profile(): if request.method=='POST': users = mongo.db.users api_list=[] existing_users = users.find({"username":session['username']}) for i in existing_users: # print (str(i)) api_list.append(str(i)) user = {} print (api_list) if api_list != []: print (request.form['email']) user['email']=(request.form['email']).lower() user['name']= request.form['name'] user['password']=<PASSWORD>(request.form['pass'].encode('utf-8'), bcrypt.gensalt()) users.update({'username':session['username']},{'$set': user} ) else: return 'User not found!' return redirect(url_for('index')) if request.method=='GET': users = mongo.db.users user=[] print (session['username']) existing_user = users.find({"username":session['username']}) for i in existing_user: user.append(i) return render_template('profile.html', name=user[0]['name'], username=user[0]['username'], password=<PASSWORD>]['password'], email=user[0]['email']) @app.route("/api/v1/info") def home_index(): api_list=[] db = connection.app.apirelease for row in db.find(): print (row) # api_list['buildtime']. str(row['buildtime']) # api_list['version'] = str(row['version']) # api_list['links'] = str(row['links']) # api_list['methods'] = str(row['methods']) api_list.append(str(row)) print (api_list) return json.dumps(api_list), 200 @app.route('/api/v1/users', methods=['GET']) def get_users(): return Requests.list_users() @app.route('/api/v1/users/<int:user_id>', methods=['GET']) def get_user(user_id): return Requests.list_user(user_id) @app.route('/api/v1/users', methods=['POST']) def create_user(): if not request.json or not 'username' in request.json or not 'email' in request.json or not 'password' in request.json: abort(400) user = { 'username': request.json['username'], 'email': request.json['email'], 'name': request.json.get('name',""), 'password': request.json['password'], 'id': random.randint(1,1000) } return jsonify({'status': Requests.add_user(user)}), 201 @app.route('/api/v1/users', methods=['DELETE']) def delete_user(): if not request.json or not 'username' in request.json: abort(400) user=request.json['username'] return jsonify({'status': Requests.del_user(user)}), 200 @app.route('/api/v1/users/<int:user_id>', methods=['PUT']) def update_user(user_id): user = {} user['id']=user_id key_list = request.json.keys() for i in key_list: user[i] = request.json[i] return jsonify({'status': Requests.upd_user(user)}), 200 @app.route('/api/v2/tweets', methods=['GET']) def get_tweets(): return Requests.list_tweets() @app.route('/api/v2/tweets', methods=['POST']) def add_tweets(): user_tweet = {} if not request.json or not 'username' in request.json or not 'body' in request.json: abort(400) user_tweet['tweetedby'] = request.json['username'] user_tweet['body'] = request.json['body'] user_tweet['timestamp']=strftime("%Y-%m-%dT%H:%M:%SZ", gmtime()) user_tweet['id'] = random.randint(1,1000) return jsonify({'status': Requests.add_tweet(user_tweet)}), 201 @app.route('/api/v2/tweets/<string:tweetedby>', methods=['GET']) def get_tweet(tweetedby): return Requests.list_tweet(tweetedby) # Error handling @app.errorhandler(404) def resource_not_found(error): return make_response(jsonify({'error': 'Resource not found!'}), 404) @app.errorhandler(409) def user_found(error): return make_response(jsonify({'error': 'Conflict! Record exist'}), 409) @app.errorhandler(400) def invalid_request(error): return make_response(jsonify({'error': 'Bad Request'}), 400) # Main Function if __name__ == '__main__': create_mongodatabase() app.run(host='0.0.0.0', port=5000, debug=True) ```
{ "source": "254Davidhashisoma/blog", "score": 3 }
#### File: blog/tests/test_comment.py ```python import unittest from app.models import Post, User, Comment class TestPost(unittest.TestCase): def setUp(self): self.user_Collins = User(first_name = "David", last_name = "Hashisoma", username = "@Hashi", password = "<PASSWORD>", email = "<EMAIL>") self.new_post = Post(post_title = "Test Title", post_content = "This is a great move. I love blogging!", user_id = self.user_Hashisoma.id) self.new_comment = Comment(comment = "Great one!", post_id = self.new_post.id, user_id = self.user_George.id) def test_instance(self): self.assertTrue(isinstance(self.user_Hashisoma, User)) self.assertTrue(isinstance(self.new_post, Post)) self.assertTrue(isinstance(self.new_comment, Comment)) #test posting change qoutes ```
{ "source": "2556-AD/Open-Atom", "score": 2 }
#### File: Open-Atom/openatom/neutron.py ```python from openatom.UNIVERSAL_CONSTANTS import * from openatom.particle import ParticulateMatter class Neutron(ParticulateMatter): def __init__( self, charge = NEUTRON_CHARGE, mass = NEUTRON_MASS, velocity = VAL_TENDS_TO_ZERO, xCoordinate = 0, yCoordinate = 0, zCoordinate = 0 ): super().__init__( charge, mass, velocity, xCoordinate, yCoordinate, zCoordinate ) ``` #### File: Open-Atom/openatom/open-atom.py ```python class electron: def __init__(self): self.charge = -1.6022e-19 self.mass = 9.109e-31 class proton: def __init__(self): self.charge = 1.6022e-19 self.mass = 1.672e-27 class neutron: def __init__(self): self.charge = 0 self.mass = 1.675e-27 class atom: def __init__(self, protonCount, neutronCount, electronCount): self.protons = [proton() for p in range(protonCount)] self.electrons = [electron() for e in range(electronCount)] self.neutrons = [neutron() for n in range(neutronCount)] # def probeAtom(self): # print(self.protons) # temp = electronCount 5,3 # counter =1 2 # shell = [2,3] # while temp>0: # as = 2**counter 2,4 # if(temp>=as): # shell.append(as) # else: # shell.append(temp) # temp -= as # counter += 1 ``` #### File: Open-Atom/openatom/principal_quantum_number.py ```python from openatom.UNIVERSAL_CONSTANTS import * from openatom.azimuthal_quantum_number import AzimuthalQNum class PrincipalQNum(): def __init__(self, shellIdx): self.label = self.assignShellLabel(shellIdx) self.principalQuantumNumVal = shellIdx + 1 self.azimuthalArray = [] self.azimuthalArray = [AzimuthalQNum(len(self.azimuthalArray)) for i in range(self.principalQuantumNumVal)] # shellArray.append(PrincipalQNum(len(shellArray))) def assignShellLabel(self, shellIdx): shellMap = { 0 : 'K', 1 : 'L', 2 : 'M', 3 : 'N', 4 : 'O', 5 : 'P' } return shellMap[shellIdx] ```
{ "source": "255/anagramatic", "score": 4 }
#### File: 255/anagramatic/filter.py ```python import string letters = set(string.ascii_lowercase) banned_words = { 'fer', 'hep', 'len', 'lin', 'fahd', 'robt', 'rte', 'gte', 'feb', 'mar', 'apr', 'jun', 'jul', 'aug', 'sep', 'sept', 'nov', 'dec', } min_length = 4 valid_two_letter = { 'a', 'i', 'ab', 'ad', 'ah', 'ai', 'am', 'an', 'as', 'at', 'aw', 'ax', 'be', 'by', 'do', 'eh', 'em', 'en', 'er', 'ex', 'go', 'ha', 'hi', 'ho', 'if', 'in', 'is', 'it', 'ma', 'me', 'my' 'no', 'of', 'oh', 'on', 'or', 'ow', 'ox', 'oy', 'pa', 'pi', 'so', 'to', 'uh', 'um', 'up', 'us', 'we', 'wo', 'ye', 'yo', } vowels = {'a', 'e', 'i', 'o', 'u', 'y'} def valid_short_word(word): if len(word) <= 2: return word in valid_two_letter # check for at least one vowel for words longer than 2 letters for letter in word: if letter in vowels: return True else: return False def filter(file): """ Read and filter all of the whitespace-separated words in a file. Duplicate words, words with 'special' characters, words lacking vowels, and many two-letter 'words' are removed. The word list is output in lowercase in alphabetical order, one word per line. """ valid_words = set() for word in file.read().split(): word = word.lower() if word in banned_words: continue if len(word) < min_length and not valid_short_word(word): continue for char in word: if char not in letters: break else: valid_words.add(word) return sorted(valid_words) if __name__ == '__main__': import sys for word in filter(sys.stdin): print(word) ```
{ "source": "256481788jianghao/complaint12306", "score": 3 }
#### File: 256481788jianghao/complaint12306/emailTool.py ```python import smtplib import email.mime.multipart import email.mime.text import time import datetime class emailTool: def __init__(self,cfg): self.config = cfg def send(self, content): smtp=smtplib.SMTP() smtp.connect(self.config['Host'],'25') smtp.login(self.config['From'],self.config['PW']) msg=email.mime.multipart.MIMEMultipart() msg['from'] = self.config['From'] msg['to'] = self.config['To'] msg['subject'] = self.config['subject'] #content = self.config['content'] txt=email.mime.text.MIMEText(content) msg.attach(txt) smtp.sendmail(self.config['From'],self.config['To'],str(msg)) smtp.quit() print("send mail at "+str(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))) def sendDelay(self, dtime, content): self.send(content) time.sleep(dtime) def sendcyc(self, pro_time, pro_num, content): #content_inner = cotent pro_time = pro_time pro_cnt = 0 mail_cnt = 0 while pro_cnt < pro_num: send_num = pro_cnt + 1 sleeptime = int(pro_time/send_num) while send_num > 0: print("pro_cnt="+str(pro_cnt)+" at "+str(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))) #time.sleep(sleeptime) mail_cnt += 1 content_inner2 = '' if mail_cnt >=2: content_inner2 = '邮件内容与前面的几封相同,在没有得到问题的答复之前,我会一直如此询问下去.' content_inner = "\n这是关于此问题的第"+str(mail_cnt)+"封邮件.\n"+content_inner2+"\n\n"+content try: self.sendDelay(sleeptime,content_inner) #send_num -= 1 except: print("send mail except") finally: send_num -= 1 pro_cnt +=1 ```
{ "source": "256481788jianghao/share_test", "score": 3 }
#### File: 256481788jianghao/share_test/main.py ```python import pandas as pd import ToolModule as tm #import datetime import FilterDataModule as fd print('初始化开始') g_all_data = fd.all_data #g_hs300_data = dataBase.get_hs300_data() #hs300历史数据 print('初始化结束') """ #得到某股的上市时间和上市天数 def getToMarketDateAndDays(code): date_num = share_list_in_market[share_list_in_market.code == code].timeToMarket.iloc[0] date_str = tm.numToDate(date_num) dayObjNow = datetime.datetime.now() dayObjx = datetime.datetime.strptime(date_str,'%Y-%m-%d') diff = dayObjNow - dayObjx return [date_str,diff.days] """ #得到某一天的数据 def getShareDataByDate(code,date): return g_all_data[(g_all_data.code == code) & (g_all_data.date == date)] #得到某一天所用股票的历史数据,剔除当日没有数据的股票 def getAllSharesDataByDate(date): print("get all shares data of "+date) return g_all_data[g_all_data.date == date] #得到某一天的平均和中值换手率以及有交易信息的股票数量 def getTurnover(all_shares): #all_shares = getAllSharesDataByDate(date) if not all_shares.empty: tmp = all_shares.sort_values(by='turnover') #print(tmp) else: return None num = len(tmp) mean_data = tmp.mean() #print(type(tmp.turnover)) mid_turnover = tmp.turnover.iloc[int(num/2)] mean_turnover = mean_data.turnover return [mean_turnover,mid_turnover,num] #得到最近N天价格变化超过p的股票 def getShareListNP(startDate,endDate,P): def p_change_sum(x): p_change = x.p_change+100 ans = 1 for p in p_change: ans = ans * p return ans def filterDate(date): dateNum = tm.dateToNum(date) return dateNum >= startDate and dateNum <= endDate lastNData = g_all_data[g_all_data.date.apply(filterDate)] p_change_data = lastNData.groupby('code').apply(p_change_sum) p_change_code = p_change_data[p_change_data > P].index def filterCode(code): return code in p_change_code ansData = lastNData[lastNData.code.apply(filterCode)] return ansData condition = 'turnover' ans1 = getShareListNP(20170512,20170516,102) ans2 = getShareListNP(20170509,20170511,102) code1 = set(list(ans1.code)) code2 = set(list(ans2.code)) code3 = code1 & code2 print(len(code3)/len(code2)) print(len(code3)) ans4 = ans2[ans2.code.apply(lambda x:x in code3)] print(ans4[condition].mean()) print(ans4[condition].median()) print(ans4[condition].var()) print("=====================================================================") ans1 = getShareListNP(20160512,20160516,102) ans2 = getShareListNP(20160509,20160511,102) code1 = set(list(ans1.code)) code2 = set(list(ans2.code)) code3 = code1 & code2 print(len(code3)/len(code2)) print(len(code3)) ans4 = ans2[ans2.code.apply(lambda x:x in code3)] print(ans4[condition].mean()) print(ans4[condition].median()) print(ans4[condition].var()) print("=====================================================================") ans1 = g_all_data #ans2 = getShareListNP(20160509,20160511,101) code1 = set(list(ans1.code)) #code2 = set(list(ans2.code)) #code3 = code1 & code2 #print(len(code3)/len(code2)) print(len(code1)) #ans4 = ans2[ans2.code.apply(lambda x:x in code3)].sort_values(by='daysToMarket') print(ans1[condition].mean()) print(ans1[condition].median()) print(ans1[condition].var()) """ #计算从今天到过去30个交易日内的,每天换手率的平均值和中位数 mid_turnover_list = [] mean_turnover_list = [] num_list = [] days_list = [] for day in days30: info = getTurnover(getAllSharesDataByDate(day)) if info == None: continue days_list.append(day) mid_turnover_list.append(info[1]) mean_turnover_list.append(info[0]) num_list.append(info[2]) ans = pd.DataFrame({"day":days_list,'mean_turnover':mean_turnover_list,'mid_turnover':mid_turnover_list,'num':num_list}) print(ans) """ ```
{ "source": "256481788jianghao/stock_task", "score": 3 }
#### File: 256481788jianghao/stock_task/FunctionMgr.py ```python import pandas as pd import sqlite3 as sql from asn1crypto._ffi import null from pandas.tests.frame.test_sort_values_level_as_str import ascending class FunctionMgr: def __init__(self,sql_con): self.sql_con = sql_con pass ''' 获取大于某换手率的股票列表 ''' def GetTurnoverRateList(self,rate,start_date,end_date): data = pd.read_sql_query('select ts_code,trade_date,turnover_rate,turnover_rate_f from daily_basic where trade_date <='+str(end_date)+' and trade_date >='+str(start_date)+' and turnover_rate_f >='+str(rate),self.sql_con) return data ''' 获取时间段内平均换手率排名列表 ''' def GetTurnoverRateMeanSortList(self,start_date,end_date): data = self.GetTurnoverRateList(1, start_date, end_date) group = data.groupby(by = 'ts_code') def func(item): tmp = dict() tmp['mean_rate_f'] = item.turnover_rate_f.mean() tmp['mean_rate'] = item.turnover_rate.mean() tmp['mean_count'] = len(item) return pd.Series(tmp) ans = group.apply(func) return (ans) ''' 根据代码查询概念 ''' def GetConceptByCode(self,code): name_data = pd.read_sql_query('select * from concept_info',self.sql_con) detail_data = pd.read_sql_query('select * from concept_detail where ts_code = \''+str(code)+'\'', self.sql_con) name_list = [] for item in detail_data.id: subdata = name_data[name_data.code == item] #print(subdata.name.iloc[0]) name_list.append(subdata.name.iloc[0]) #print(name_list) detail_data['concept_name'] = name_list return detail_data ''' 概念排名 ''' def GetConceptSortList(self,code_list): ans_dict=dict() for stock_code in code_list: data = self.GetConceptByCode(stock_code) if not data.empty: for name in data.concept_name: if name in ans_dict.keys(): ans_dict[name] = ans_dict[name] + 1 else: ans_dict[name] = 1 ans_frame = pd.DataFrame() ans_frame['name'] = ans_dict.keys() ans_frame['value'] = ans_dict.values() return ans_frame.sort_values(by='value',ascending=False) ''' 得到某时间段内日数据 ''' def GetDaily(self,start_date,end_date): data = pd.read_sql_query('select * from daily where trade_date >= '+str(start_date)+' and trade_date <= '+str(end_date),self.sql_con) if data.empty: print('GetDaily is empty ['+str(start_date)+'->'+str(end_date)+']') return data ''' 得到某时间段内平均日价格变化 ''' def GetPctChangeSumList(self,start_date,end_date): data = self.GetDaily(start_date, end_date) if data.empty: print('GetPctChangeSumList data is empty') group = data.groupby(by='ts_code') def func(item): tmp = dict() p_all = 1 for p in item['pct_change']: p_all = p_all*(1+p/100) tmp['sum_pct_change'] = (p_all-1)*100 tmp['sum_count'] = len(item) return pd.Series(tmp) ans = group.apply(func) return ans ''' 获取某时间段内的累计涨幅和换手率 ''' def GetSumPChangeAndMeanTurnoverRateList(self,start_date,end_date): sum_pctchange_data = self.GetPctChangeSumList(start_date, end_date) mean_turnover_data = self.GetTurnoverRateMeanSortList(start_date, end_date) mean_data = pd.merge(left=sum_pctchange_data,right=mean_turnover_data,left_index=True,right_index=True) return mean_data ''' 获取某时间段内某概念的平均涨幅和还手率 ''' def GetConceptSumPChangeAndMeanTurnoverRateList(self,concept_id,start_date,end_date): concept_detail_all_data = pd.read_sql_query('select * from concept_detail where id = \''+str(concept_id)+'\'', self.sql_con) concept_data = concept_detail_all_data[concept_detail_all_data.id == concept_id].set_index('ts_code') mean_data = self.GetSumPChangeAndMeanTurnoverRateList(start_date, end_date) merge_data = pd.merge(left=mean_data,right=concept_data,left_index=True,right_index=True) #print(sum_pctchange_data) return merge_data ''' 获得换手率与价格浮动的关系表,截止到某日 ''' def GetPctChangeAndTurnoverRateRelationList(self,end_date,al=5,bs=5,bl=10): date_all_len = al+bl date_list = pd.read_sql_query('select * from trade_cal where is_open = 1 and cal_date <="'+str(end_date)+'"',self.sql_con) date_list_all = date_list[-date_all_len:] pdate = date_list_all.cal_date.iloc[-al] sdate_bl = date_list_all.cal_date.iloc[0] sdate_bs = date_list_all.cal_date.iloc[bs] data_turnover = pd.read_sql_query('select ts_code,trade_date,turnover_rate,turnover_rate_f from daily_basic where trade_date <='+str(end_date)+' and trade_date >='+str(sdate_bl), self.sql_con) data_daily = pd.read_sql_query('select trade_date,ts_code,pct_change from daily where trade_date >= '+str(sdate_bl)+' and trade_date <= '+str(end_date),self.sql_con) merge_data = pd.merge(left=data_daily, left_on=['ts_code','trade_date'],right=data_turnover, right_on=['ts_code','trade_date']) def sum_pct_change(data): ans_sum = 1 for item in data: ans_sum = ans_sum * (1+item/100) return ans_sum merge_date_group = merge_data.groupby('ts_code') def g_func(items): tmp= dict() data_bl = items[items.trade_date < pdate] data_bs = items[(items.trade_date <pdate) & (items.trade_date >= sdate_bs)] data_al = items[items.trade_date >= pdate] tmp['mean_turnover_f_bl'+str(bl)] = data_bl.turnover_rate_f.mean() tmp['mean_turnover_f_bs'+str(bs)] = data_bs.turnover_rate_f.mean() tmp['sum_pchaneg_bl'+str(bl)] = sum_pct_change(data_bl['pct_change']) tmp['sum_pchaneg_al'+str(al)] = sum_pct_change(data_al['pct_change']) tmp['data_len'] = len(items) return pd.Series(tmp) ans_data = merge_date_group.apply(g_func) sub_ans_data = ans_data[ans_data.data_len >= date_all_len] sub_ans_data['t_rate'] = sub_ans_data['mean_turnover_f_bs'+str(bs)]/sub_ans_data['mean_turnover_f_bl'+str(bl)] sort_data = sub_ans_data.sort_values(by='sum_pchaneg_al'+str(al),ascending=False) print(sort_data[(sort_data.t_rate > 1.3) & (sort_data.sum_pchaneg_al5 < 1)]) if __name__ == '__main__': pd.set_option('max_columns', 100) with sql.connect('stock.db') as con: mgr = FunctionMgr(con) mgr.GetPctChangeAndTurnoverRateRelationList(20190401) #data_concept_mean = mgr.GetSumPChangeAndMeanTurnoverRateList( 20190401, 20190403) #data_mean = data_concept_mean.sort_values(by='sum_pct_change',ascending=False) #print(mgr.GetConceptSortList(data_mean[0:21].index)) #data = mgr.GetTurnoverRateMeanSortList(20190120,20190329) #data_sort = data.sort_values(by='mean_rate_f',ascending=False) #concept_data = mgr.GetConceptSortList(data_sort[0:21].index) #print(concept_data) ``` #### File: stock_task/QTPg/StockBasicModle.py ```python from PyQt5 import QtGui import sqlite3 as sql import readdb as rdb import pandas as pd class StockBasicModle(object): ''' classdocs ''' def __init__(self, tableview): sql_con = sql.connect('stock.db') self.stock_basic_data = rdb.read_stock_basic(sql_con) self.subData = self.stock_basic_data self.concept_info = rdb.read_concept_info(sql_con) self.concept_detail = rdb.read_concept_detail(sql_con) sql_con.close() stock_basic_len = len(self.stock_basic_data) self.model=QtGui.QStandardItemModel(stock_basic_len,2) self.UpdateFilter() tableview.setModel(self.model) def Init_Concept_ComboBox(self,ui_comboBox): length = len(self.concept_info) ui_comboBox.addItem('all') for row in range(length): concept_item = self.concept_info.iloc[row] #print(type(concept_item['name'])) ui_comboBox.addItem(concept_item['name']) def ResetStockBasic(self): self.subData = self.stock_basic_data def FilterByHk(self,startTime): print('FilterByHk s='+startTime) sql_con = sql.connect('stock.db') data_hk = rdb.read_hk_hold_by_date(sql_con, startTime, startTime) if type(data_hk) == pd.DataFrame and type(self.subData) == pd.DataFrame: data_merge = pd.merge(left=data_hk,right=self.subData,on=['ts_code','name']) self.subData = data_merge print(self.subData) else: pass sql_con.close() def FilterByConcept(self,concept_name): print('FilterByConcept '+concept_name) if concept_name == 'all': return concept_list = self.concept_detail[self.concept_detail['concept_name'] == concept_name] #print(concept_list) if len(concept_list) >0 and type(self.subData) == pd.DataFrame: self.subData = self.subData[self.subData.ts_code.isin(concept_list.ts_code)] def FilterByIndustry(self,patten): if type(self.subData) == pd.DataFrame: print('FilterByIndustry '+patten) if len(patten) > 0: def subfun(item): if item is not None: return item.find(patten) >= 0 else: return False self.subData = self.subData[self.subData.industry.apply(subfun)] def FilterByName(self,patten): if type(self.subData) == pd.DataFrame: print('FilterByName '+patten) if len(patten) > 0: def subfun(item): return item.find(patten) >= 0 self.subData = self.subData[self.subData.name.apply(subfun)] else: pass def UpdateFilter(self,hasKechuangban=True,listdate='20200101'): if type(self.subData) == pd.DataFrame: self.model.clear() self.model.setHorizontalHeaderLabels(['代码','名称','行业']) if hasKechuangban: pass else: self.subData = self.subData[self.subData.market != '科创板'] self.subData = self.subData[self.subData.list_date <= listdate] stock_basic_len = len(self.subData) #print(self.subData) #print(stock_basic_len) for row in range(stock_basic_len): ts_code = self.subData.ts_code.iloc[row] name = self.subData.name.iloc[row] industry = self.subData.industry.iloc[row] item_tscode=QtGui.QStandardItem(ts_code) item_name=QtGui.QStandardItem(name) item_industry=QtGui.QStandardItem(industry) self.model.setItem(row,0,item_tscode) self.model.setItem(row,1,item_name) self.model.setItem(row,2,item_industry) def GetData(self,row): return self.subData.iloc[row] ``` #### File: 256481788jianghao/stock_task/read4.py ```python import math import porting as pt import pandas as pd import sqlite3 as sql import readdb as rdb import datetime import matplotlib.pyplot as plt import scipy.stats as sci_ss #from tensorflow.python.grappler import item pd.set_option('max_columns', 100) sql_con = sql.connect('stock.db') cursor = sql_con.cursor() start_date = '20190101' end_date = '20191113' now_date = datetime.datetime.now().strftime('%Y%m%d') try: data_stock_basic = rdb.read_stock_basic(sql_con) data_stock_basic = data_stock_basic[data_stock_basic.market != '科创板'] data_stock_basic = data_stock_basic[data_stock_basic.list_date < '20190501'] print(len(data_stock_basic)) data_dailybasic = rdb.read_daily_basic_by_date(sql_con, start_date, end_date) print(len(data_dailybasic)) data_daily = rdb.read_daily_by_date(sql_con, start_date, end_date) print(len(data_daily)) data_merge = data_dailybasic.merge(data_daily,on=['trade_date','ts_code']) data_merge = data_merge.merge(data_stock_basic,on='ts_code') print(len(data_merge)) data_merge_group = data_merge.groupby(by='ts_code') def lam_fun(item): item['id_index'] = range(0,len(item)) pItem = item[(item['pct_change'] > 3)] sum_num = len(pItem) collect_num = 0 for index in pItem.id_index: subitem = item[(item.id_index > index) & (item.id_index <= index+5)] if len(subitem) == 0: sum_num = sum_num -1 continue curItem = item[item.id_index == index] #print(curItem) diff_p = (subitem.high - curItem.high.iloc[0])*100/curItem.high.iloc[0] #print(diff_p) if len(diff_p[diff_p > 2]) > 1: collect_num = collect_num + 1 #prod_ans = (subitem['pct_change']/100+1).cumprod() #print(len(prod_ans[prod_ans > 1])) #if len(prod_ans[prod_ans > 1]) > 1: # collect_num = collect_num + 1 return pd.Series({'len':len(item),'sum_n':sum_num,'collect_n':collect_num}) data_ans = data_merge_group.apply(lam_fun) all_sum = data_ans.sum_n.sum() all_collect = data_ans.collect_n.sum() print("sum="+str(all_sum)+'c='+str(all_collect)+" p="+str(all_collect/all_sum)) data_list = [] for i in range(0,all_sum): if i < all_collect: data_list.append(1) else: data_list.append(0) stats_ans = sci_ss.ttest_1samp(data_list, 0.5) print('=========stats_ans======') print(stats_ans) except Exception as e: print("ex:"+str(e)) finally: print("end execute") cursor.close() sql_con.close() ``` #### File: stock_task/UIForm/StockBasicForm.py ```python from tkinter import ttk class StockBasicFrom(object): ''' classdocs ''' def __init__(self, root): self.tree=ttk.Treeview(root)#表格 self.tree["columns"]=("姓名","年龄","身高") self.tree.column("姓名") self.tree.column("年龄") self.tree.column("身高") self.tree.heading("姓名",text="姓名-name") #显示表头 self.tree.heading("年龄",text="年龄-age") self.tree.heading("身高",text="身高-tall") self.tree.insert("",0,text="line1" ,values=("1","2","3")) #插入数据, self.tree.insert("",1,text="line1" ,values=("1","2","3")) self.tree.insert("",2,text="line1" ,values=("1","2","3")) self.tree.insert("",3,text="line1" ,values=("1","2","3")) def pack(self): self.tree.pack() def grid(self): self.tree.grid() ``` #### File: stock_task/UIForm/UpdataForm.py ```python import tkinter as tk import tkinter.messagebox import update as up import threading class UpdataForm(tk.Tk): ''' classdocs ''' def __init__(self): super().__init__() self.title('更新数据库界面') label1=tk.Label(self,text='开始时间:') label2=tk.Label(self,text='结束时间:') self.entry1 = tk.Entry(self) self.entry2 = tk.Entry(self) button = tk.Button(self,text='开 始',command=self._update) label1.grid(row=0,column=0) label2.grid(row=1,column=0) self.entry1.grid(row=0,column=1) self.entry2.grid(row=1,column=1) button.grid(row=2,columnspan=2) def _update(self): stime = self.entry1.get() etime = self.entry2.get() if len(stime) == 0 or len(etime) == 0: tk.messagebox.askokcancel('温馨提示', "stime etime is null") return t = threading.Thread(target=self._updateThreadFun,args=(stime,etime)) t.daemon = True t.start() def _updateThreadFun(self,starttime,endtime): print('update s='+starttime+' e='+endtime) up.UpdateFunction(starttime, endtime) if __name__ == '__main__': form = UpdataForm() form.mainloop() ```
{ "source": "2567910/tmm", "score": 2 }
#### File: apps/translation_management_tool/signals.py ```python from django.db.models.signals import post_save, post_delete, m2m_changed from django.dispatch import receiver from tmm.apps.translation_management_tool.models import Translation, TranslationKey, Project, Language import logging LOGGER = logging.getLogger(__name__) # If a new translation key is added, create a new translation for each language @receiver(post_save, sender=TranslationKey) def create_translations_for_langs (sender, instance, created, **kwargs): LOGGER.info('In create_translations_for_langs signal') if created: for language in instance.project.languages.all(): Translation.objects.create(language=language, key=instance) # If a translation key is deleted, delete all translations for that key @receiver(post_delete, sender=TranslationKey) def delete_translations_for_langs (sender, instance, **kwargs): LOGGER.info('delete_translations_for_langs') for language in instance.project.languages.all(): data_to_be_deleted = Translation.objects.filter(key = instance, language=language) data_to_be_deleted.delete() # If a new language is added to a project then we need to create a translation for each translation key @receiver(m2m_changed, sender=Project.languages.through) def create_translations_for_new_lang (sender, instance, pk_set, action, **kwargs): LOGGER.info('create_translations_for_new_lang') for changed_id in pk_set: all_keys_in_project = TranslationKey.objects.filter(project = instance) changed_lang = Language.objects.get(id = changed_id) for key in all_keys_in_project: if action == "pre_remove": tranlsation_to_be_removed = Translation.objects.get(key = key, language = changed_lang) tranlsation_to_be_removed.delete() if action == "pre_add": Translation.objects.create(language= changed_lang, key = key) ``` #### File: translation_management_tool/tests/test_api.py ```python from django.test import TestCase import logging from django.urls import reverse from tmm.apps.translation_management_tool.models import Language, Project, Translation, TranslationKey LOGGER = logging.getLogger(__name__) class ApiTest(TestCase): fixtures = ['project.json'] TEST_I18N = { "title": "Test-Titel", "common": { "actions": { "save": "Speichern" }, "ok": "OK" } } def test_json_output(self): project = Project.objects.first() self.assertIsNotNone(project) lang_de = Language.objects.get(code='de') key_title = TranslationKey.objects.create(key='title', project=project) self.assertEqual(Translation.objects.count(), 2, Translation.objects.values()) Translation.objects.filter(key=key_title, language=lang_de).update(value='Test-Titel') key_save = TranslationKey.objects.create(key='common.actions.save', project=project) Translation.objects.filter(key=key_save, language=lang_de).update(value='Speichern') key_ok = TranslationKey.objects.create(key='common.ok', project=project) Translation.objects.filter(key=key_ok, language=lang_de).update(value='OK') response = self.client.get(reverse('i18next_json', kwargs={'project': project.name, 'lang': 'de'})) self.assertEqual(response.status_code, 200) data = response.json() LOGGER.debug('>>>>>>>>>> expected %s', self.TEST_I18N) LOGGER.debug('>>>>>>>>>> actual %s', data) self.assertDictEqual(data, self.TEST_I18N) ```
{ "source": "2581676612/python", "score": 4 }
#### File: python/algorithms/algorithm_sorting.py ```python def bubble_sort(): """ 冒泡排序: n个元素,循环n-1轮, 每一轮,比较n-i次,选出最大值 """ L = [9, 8, 7, 6, 5, 4, 3, 2, 1] n = len(L) for i in range(1, n): # 比较n-1轮 # print n - i for j in range(n - i): # 每i轮比较n-i次,选出最大值 if L[j] > L[j + 1]: L[j], L[j + 1] = L[j + 1], L[j] print L def insertion_sort(): """ 插入排序算法: 原序列:[2,3,1,34,5,6,11,7,8] 下标从0开始: 第一次:取下标1 和下标[:1]比较 第二次:取下标2 和下标[:2]比较 。。。 第n-1次:取下标n-1(注意此时的元素已经是最后一个元素了)和[:n-1]比较 共比较n-1次 """ L = [9, 8, 7, 5, 6, 4, 3, 2, 1] n = len(L) for i in range(n - 1): for j in range(i + 1): # 因为下标从0开始,所以第i次,对应的数据位置要 i+1表示当前下标位置 # print i+1,'-',j if L[i + 1] < L[j]: L[i + 1], L[j] = L[j], L[i + 1] print L def selection_sort(): """ 选择排序算法: 每次找出最小元素,放置到序列头部,循环序列 第一次:找出最小放到下标0 第二次:在剩余找出最小放到下标1 。。。 第n-1次 """ L = [5, 4, 3, 2, 1, 0, -77] n = len(L) for i in range(n - 1): for j in range(i + 1, n): # print i,'-',j if L[i] > L[j]: L[i], L[j] = L[j], L[i] print L ``` #### File: mysql/mysqldb_/study_mysqldb.py ```python import MySQLdb import logging from contextlib import closing """ # # 1.创建数据库的连接 # conn = MySQLdb.connect(host='localhost', port=3306, user='root', # passwd='<PASSWORD>', db='iaasms_dev', ) # # # 2.创建游标 # cur = conn.cursor(MySQLdb.cursors.DictCursor) # # # 3.通过游标cur 操作execute()方法可以写入纯sql语句对数据进行操作 # sql = ''' # SELECT a.name AS snapshot_name, b.name AS volume_name # FROM snapshot a INNER JOIN volume b # ON a.volume_id=b.volume_id # ''' # count = cur.execute(sql) # 返回总条数 # # result = cur.fetchmany(count) # 返回指定条目的结果集 # result = cur.fetchall() # # 4.关闭游标 # cur.close() # # # 5.提交事务,必须要有这个方法,否则数据不会被真正的插入。 # conn.commit() # # # 6.关闭连接 # conn.close() # # # ************打印*********** # print result # 一次插入多条记录,,返回值为受影响的行数。 # sql="insert into student values(%s,%s,%s,%s)" # cur.executemany(sql,[ # ('3','Tom','1 year 1 class','6'), # ('3','Jack','2 year 1 class','7'), # ('3','rick','2 year 2 class','7'), # ]) # *******************close conn*************************** from contextlib import closing import MySQLdb ''' At the beginning you open a DB connection. Particular moment when you open connection depends from your approach: - it can be inside the same function where you work with cursors - in the class constructor - etc ''' db = MySQLdb.connect("host", "user", "pass", "database") with closing(db.cursor()) as cur: cur.execute("somestuff") results = cur.fetchall() # do stuff with results cur.execute("insert operation") # call commit if you do INSERT, UPDATE or DELETE operations db.commit() cur.execute("someotherstuff") results2 = cur.fetchone() # do stuff with results2 # at some point when you decided that you do not need # the open connection anymore you close it db.close() """ # 创建名为MySQL的日志 logger = logging.getLogger('MySQL') # 设置logger的level为DEBUG logger.setLevel(logging.DEBUG) # 创建一个输出日志到控制台的StreamHandler handler = logging.StreamHandler() formatter = logging.Formatter('[%(asctime)s] %(name)s:%(levelname)s: %(message)s') handler.setFormatter(formatter) # 给logger添加上handler logger.addHandler(handler) class _Closing(closing): def __exit__(self, *exc_info): if self.thing: self.thing.close() class MySQLUtils(object): def __init__(self, *args, **kwargs): """ :param args: :param kwargs: """ for k, v in kwargs.iteritems(): setattr(self, k, v) self.__args = args self.__kwargs = kwargs self.__connection = None self.__cursor = None def __enter__(self): """ 打开资源,支持with语法 :return: MySQLUtils instance """ self.open() return self def __exit__(self, exc_type, exc_val, exc_tb): """ 关闭资源,支持with语法 :param exc_type: :param exc_val: :param exc_tb: :return: """ self.close() if exc_tb: # 默认返回None, 返回None或False 发生异常交由外部调用程序捕获(建议) # 如果返回True,则由该函数内部处理,外部调用会继续执行 logger.error('[%s]%s' % (exc_type, exc_val)) def open(self): """ 打开连接 :return: """ if self.__connection: raise MySQLdb.MySQLError("connection already connected.") self.__connection = MySQLdb.connect(*self.__args, **self.__kwargs) if self.__cursor: raise MySQLdb.MySQLError("cursor already opened.") self.__cursor = self.__connection.cursor(MySQLdb.cursors.DictCursor) logger.info("connection opened.") def close(self): """ 关闭连接 :return: """ with _Closing(self.__cursor) as _: pass with _Closing(self.__connection) as _: pass self.__cursor = None self.__connection = None logger.info("connection close success.") def __execute(self, sql, commit=False): """ 执行SQL :param sql: :param commit: :return:tuple result or row numbers """ if not (self.__connection and self.__cursor): raise MySQLdb.MySQLError("connection already closed.") count = self.__cursor.execute(sql) # 返回总条数 result = self.__cursor.fetchall() self.__connection.commit() if commit else None return count if commit else result def select(self, sql, formatter_func=None): """ 查询函数 :param sql: :param formatter_func:格式化函数 :return: """ if formatter_func: return map(formatter_func, self.__execute(sql)) return self.__execute(sql) def save_or_update(self, sql): """ 编辑或修改 :param sql: :return:row numbers """ return self.__execute(sql, True) def delete(self, sql): """ 删除资源 :param sql: :return: row numbers """ return self.__execute(sql, True) if __name__ == '__main__': mu = MySQLUtils(host='localhost', port=3306, user='root', passwd='<PASSWORD>', db='iaasms_dev') import datetime def formatter_datetime(dic): for k, v in dic.iteritems(): if isinstance(v, datetime.datetime): dic[k] = str(v) return dic # 1. try-finally # try: # mu.open() # # raise Exception('异常') # print mu.select('SELECT * FROM flavor', formatter_datetime) # print mu.delete('DELETE FROM flavor WHERE id=42') # finally: # mu.close() # 2. with with mu as mu: mu.close() # raise Exception('异常') print mu.select('SELECT * FROM flavor', formatter_datetime) print mu.delete('DELETE FROM flavor WHERE id=42') print getattr(mu, 'host'), getattr(mu, 'port'), getattr(mu, 'no', None) ``` #### File: mysql/sqlalchemy_/study_sqlalchemy.py ```python import time from sqlalchemy import ( Table, Column, MetaData, create_engine) from sqlalchemy.engine.result import ResultProxy from sqlalchemy.sql.sqltypes import ( Unicode, INTEGER) url = 'mysql+mysqldb://{user}:{pwd}@{host}:{port}/{db_name}?charset=utf8'.format( user='root', pwd='<PASSWORD>', host='localhost', port='3306', db_name='iaasms' ) # pool_recycle=3600 连接超时参数 engine = create_engine(url) table = Table( 'tom_test', MetaData(), Column('id', INTEGER, primary_key=True), Column('start_time', INTEGER, index=False), Column('last_time', INTEGER, nullable=False), Column('count', INTEGER, nullable=False), Column('region', Unicode(20, _warn_on_bytestring=False)) ) # 创建表 table.create(engine, True) def _formatter_data(res): """ sqlalchemy.engine.result.ResultProxy 对象数据提取 res.cursor._rows # 数据 res._metadata.keys 或 res.cursor.description # 数据库表字段名 :param res: :return: list """ assert isinstance(res, ResultProxy) assert res.returns_rows rows = [] for _row in res.cursor._rows: row = {} for index, column in enumerate(res._metadata.keys): row[column] = _row[index] rows.append(row) return rows def _execute_success(res): """ sqlalchemy.engine.result.ResultProxy 数据库修改状态 res.returns_rows # 是否返回数据 res.rowcount 是否执行成功 1 success,0 error :param res: :return: boolean """ assert isinstance(res, ResultProxy) return res.rowcount > 0 def insert(): # 插入 # sqlalchemy.exc.IntegrityError 主键冲突异常 sql = table.insert().values(**{ 'id': 2, 'start_time': time.time(), 'last_time': time.time(), 'count': 1, 'region': 'test' }) res = engine.execute(sql) print _execute_success(res) def select(): # 查询 sql = table.select().where(table.c.id == 2) res = engine.execute(sql) print _formatter_data(res) def update(): # 修改 sql = table.update().where(table.c.id == 1).values(count=9) res = engine.execute(sql) print _execute_success(res) def delete(): sql = table.delete().where(table.c.id == 2) res = engine.execute(sql) print _execute_success(res) ``` #### File: crawlers/spider/writer.py ```python import sys reload(sys) sys.setdefaultencoding('utf8') class FileWriter(object): def __init__(self, file_name=None): self.file_name = file_name or 'data.txt' self._data = [] def load_data(self, data): if not data: return self._data.append(data) def writer(self): f = open(self.file_name, 'wb+') [f.write('%s\n\n' % d) for d in self._data] f.close() ``` #### File: study_numpy/numpy_functions/np_dot.py ```python import numpy as np """ >>> import numpy as np Examples -------- >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random >>> np.dot(3, 4) 12 Neither argument is complex-conjugated: >>> np.dot([2j, 3j], [2j, 3j]) (-13+0j) For 2-D arrays it is the matrix product: >>> a = [[1, 0], [0, 1]] >>> b = [[4, 1], [2, 2]] >>> np.dot(a, b) array([[4, 1], [2, 2]]) >>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3)) >>> np.dot(a, b)[2,3,2,1,2,2] 499128 >>> sum(a[2,3,2,:] * b[1,2,:,2]) 499128 """ # ############################### 一维 ############################### """ 参数个数相同: """ print np.dot(3, 4) # 3*4 -> 12 print np.dot([1, 2, 3], [4, 5, 6]) # 1 * 4 + 2 * 5 + 3 * 6 -> 32 """ 参数列表不同(短的参数元素个数只能为1,且不能为列表[]类型): 如: >>> np.dot([1, 2, 3], [4, 5]) ValueError: shapes (3,) and (2,) not aligned: 3 (dim 0) != 2 (dim 0) >>> np.dot([1, 2, 3], [4])  ValueError: shapes (3,) and (1,) not aligned: 3 (dim 0) != 1 (dim 0) >>> np.dot([1, 2, 3], 4) [ 4 8 12] """ print np.dot([1, 2, 3], 4) # [1*4,2*4,3*4] -> [ 4 8 12] # ############################### 二维 ############################### """ 参数个数相同: 计算过程: 第一轮: 1. A中取第一个元素[x1, y1] B中取各个元素中的第一个值[m1, m2] 矩阵相乘-> x1*m1+y1*m2 2. A中取第一个元素[x1, y1] B中取各个元素中的第二个值[n1, n2] 矩阵相乘-> x1*n1+y1*n2 --> [[ 77 110]] 第二轮: 1. A中取第二个元素[x2, y2] B中取各个元素中的第一个值[m1, m2] 矩阵相乘-> x2*m1+y2*m2 2. A中取第二个元素[x2, y2] B中取各个元素中的第二个值[n1, n2] 矩阵相乘-> x2*n1+y2*n2 --> [[ 77 110] [165 242]] """ x1, y1 = 1, 2 x2, y2 = 3, 4 m1, n1 = 11, 22 m2, n2 = 33, 44 A = [[x1, y1], [x2, y2]] # 行 B = [[m1, n1], [m2, n2]] # 列 print np.dot(A, B) # [[ 77 110] # [165 242]] print '测试计算过程:' print x1 * m1 + y1 * m2, x1 * n1 + y1 * n2 # 77 110 print x2 * m1 + y2 * m2, x2 * n1 + y2 * n2 # 165 242 def my_dot_w2(a, b): # 判断是否为列表 if isinstance(a, list) and isinstance(b, list): assert len(a) == len(b) l1, l2 = a, b result = [] if isinstance(l1[0], list): # 判断是否为多维数组 size = len(l1) for index, value in enumerate(l1): start, cell = 0, [] while start < size: cell.append(my_dot_w2(value, map(lambda x: x[start], l2))) start += 1 result.append(cell) return result else: # 一维数组 return sum(map(lambda j: l1[j] * l2[j], xrange(len(l1)))) # 以下为数字与数组的矩阵算法,找出集合 elif isinstance(a, list) and isinstance(b, int): return map(lambda x: x * b, a) elif isinstance(b, list) and isinstance(a, int): return map(lambda x: x * a, b) # 都为数字的算法 elif isinstance(a, int) and isinstance(b, int): return a * b # 其他情况抛出异常 else: raise Exception('params must be "list or int"!') print '**' * 50 print my_dot_w2([1, 2], 3) # 1*3,2*3 = [3, 6] print np.dot([1, 2], 3) print my_dot_w2(3, [1, 2]) # 3*1,3*2 = [3, 6] print np.dot(3, [1, 2]) print my_dot_w2([1, 2], [3, 4]) # 1*3+2*4 = 11 print np.dot([1, 2], [3, 4]) print my_dot_w2(A, B) print np.dot(A, B) ``` #### File: oslo_/config/config_test.py ```python from oslo_config import cfg from oslo_config import types # 端口规范 PortType = types.Integer(1, 65535) # 多个配置项组成一个模式 default_opts = [ cfg.StrOpt('bind_host', default='0.0.0.0', help='IP address to listen on.'), cfg.Opt('bind_port', # 只有Opt类型才能指定PortType type=PortType, default=9292, help='Port number to listen on.') ] # 单个配置项模式 default_opt = cfg.ListOpt('enabled_api', default=['ec2', 'api_compute'], help='List of APIs to enable by default.') # 命令行选项 cli_opts = [ cfg.BoolOpt('verbose', short='v', default=False, help='Print more verbose output'), cfg.BoolOpt('debug', short='d', default=False, help='Print debugging output'), ] # 配置 rabbit_group 组 rabbit_group = cfg.OptGroup( name='RABBIT', title='RABBIT options' ) # 配置组中的模式,通常以配置组的名称为前缀(非必须) rabbit_opt = cfg.BoolOpt('ssl', default=False, help='use ssl for connection') # 配置组中的多配置项模式 rabbit_opts = [ cfg.StrOpt('host', default='localhost', help='IP/hostname to listen on.'), cfg.IntOpt('port', default=5672, help='Port number to listen on.') ] def register_default_opts(conf): """ 注册默认组的配置项 """ conf.register_opt(default_opt) conf.register_opts(default_opts) def register_rabbit_group(conf): """ 注册 rabbit 信息 """ # 配置组必须在其组件被注册前注册! conf.register_group(rabbit_group) # 注册配置组中含有多个配置项的模式,必须指明配置组 conf.register_opts(rabbit_opts, rabbit_group) # 注册配置组中的单配置项模式,指明配置组 conf.register_opt(rabbit_opt, rabbit_group) def register_cli_opts(conf): """ 注册 cli 选项 :param conf: :return: """ conf.register_cli_opts(cli_opts) def get_bind_host(conf): """ 使用选项 bind_host """ return getattr(conf, 'bind_host', None) def get_bind_port(conf): """ 使用选项 bind_port """ return conf.bind_port def get_rabbit_username(conf): """ 配置文件中存在,代码没有注册,不能解析 """ return conf.RABBIT.username if __name__ == '__main__': # 创建配置类 config = cfg.CONF # 开始注册default register_default_opts(config) register_rabbit_group(config) register_cli_opts(config) # 加载配置文件 config(default_config_files=['config.conf']) print 'host:', get_bind_host(config) # list_all_sections for section in config.list_all_sections(): print section print config.RABBIT print config.RABBIT.host print get_rabbit_username(config) ``` #### File: i18n/i18n_app/_i18n.py ```python import oslo_i18n DOMAIN = "i18n_app" _translators = oslo_i18n.TranslatorFactory(domain=DOMAIN) # The primary translation function using the well-known name "_" _ = _translators.primary # The contextual translation function using the name "_C" # requires oslo.i18n >=2.1.0 _C = _translators.contextual_form # The plural translation function using the name "_P" # requires oslo.i18n >=2.1.0 _P = _translators.plural_form # Translators for log levels. # # NOTE(dhellmann): This is not needed for new projects as of the # Pike series. # # The abbreviated names are meant to reflect the usual use of a short # name like '_'. The "L" is for "log" and the other letter comes from # the level. _LI = _translators.log_info _LW = _translators.log_warning _LE = _translators.log_error _LC = _translators.log_critical def get_available_languages(): """ 返回当前可以提供翻译的语言列表 #所有的语言包在 /usr/local/lib/python2.7/dist-packages/babel/locale-data/ :return: """ return oslo_i18n.get_available_languages(DOMAIN) def translate(msg, user_locale='zh_CN'): """ 翻译"msg"为指定的语言,默认"en_US" :param msg: the object to translate :param user_locale: the locale to translate the message to, if None the default system locale will be used 'en_US' 'zh_CN' :returns: the translated object in unicode, or the original object if it could not be translated """ return oslo_i18n.translate(msg, user_locale) def enable_lazy(enable=True): return oslo_i18n.enable_lazy(enable) ``` #### File: services/registry_discovery/service01.py ```python import rpyc from rpyc.utils.server import ThreadedServer class MyService(rpyc.Service): def on_connect(self): pass def on_disconnect(self): pass @classmethod def exposed_get_answer(cls): return 66 @classmethod def get_question(cls): return "what is the airspeed velocity of an unladen swallow?" if __name__ == "__main__": t = ThreadedServer(MyService, port=18861) print """ service start ok! port {port} """.format(port=18861) t.start() ``` #### File: examples/executors/process_pool.py ```python from datetime import datetime import os from apscheduler.schedulers.blocking import BlockingScheduler def tick(): print('Tick! The time is: %s' % datetime.now()) if __name__ == '__main__': scheduler = BlockingScheduler() scheduler.add_executor('processpool') scheduler.add_job(tick, 'interval', seconds=3) print('Press Ctrl+{0} to exit'.format('Break' if os.name == 'nt' else 'C')) try: scheduler.start() except (KeyboardInterrupt, SystemExit): pass ``` #### File: examples/jobstores/job_store.py ```python from datetime import datetime, timedelta import sys import os from apscheduler.schedulers.blocking import BlockingScheduler def alarm(time): print('Alarm! This alarm was scheduled at %s.' % time) if __name__ == '__main__': scheduler = BlockingScheduler() # ################ mongodb scheduler.add_jobstore('mongodb', collection='example_jobs') if len(sys.argv) > 1 and sys.argv[1] == '--clear': scheduler.remove_all_jobs() alarm_time = datetime.now() + timedelta(seconds=10) scheduler.add_job(alarm, 'date', run_date=alarm_time, args=[datetime.now()]) print('To clear the alarms, run this example with the --clear argument.') print('Press Ctrl+{0} to exit'.format('Break' if os.name == 'nt' else 'C')) try: scheduler.start() except (KeyboardInterrupt, SystemExit): pass ``` #### File: python/standard_library/study_httplib.py ```python import httplib import urllib def request_get(host, port, url, params=None, headers=None, timeout=5): status, http_clint, data = None, None, None try: http_clint = httplib.HTTPConnection(host, port, timeout=timeout) url = url + urllib.urlencode(params or {}) http_clint.request('GET', url, headers=headers or {}) response = http_clint.getresponse() status = response.status data = response.read() except Exception, e: print e finally: if http_clint: http_clint.close() return status, data def request_post(host, port, url, body=None, headers=None, timeout=5): status, http_clint, data = None, None, None try: http_clint = httplib.HTTPConnection(host, port, timeout=timeout) http_clint.request('POST', url, body, headers) response = http_clint.getresponse() status = response.status data = response.read() except Exception, e: print 'http post error :{0}'.format(e) finally: if http_clint: http_clint.close() return status, data ``` #### File: python/standard_library/study_logging.py ```python import logging import sys FORMAT_STR = "[%(asctime)s] %(name)s:%(levelname)s: %(message)s" # logger = logging.getLogger("django") # logger.debug(logging.DEBUG) # 使用django热加载 def config1(): """ **********************Config 1********************** """ # config 1. # 设置默认的level为DEBUG # 设置log的格式 # 注意:basicConfig有一个 很大的缺点。 # 调用basicConfig其实是给root logger添加了一个handler, # 这样当你的程序和别的使用了 logging的第三方模块一起工作时, # 会影响第三方模块的logger行为。这是由logger的继承特性决定的。 logging.basicConfig( level=logging.DEBUG, format="[%(asctime)s] %(name)s:%(levelname)s: %(message)s" ) # 记录log logging.debug('debug') logging.info('info') logging.warn('warn') logging.error('error') logging.critical('critical') def config2(): """ ********************Config 2************************ """ # # config 2 # 使用一个名字为fib的logger logger = logging.getLogger('app_name') # 设置logger的level为DEBUG logger.setLevel(logging.DEBUG) # 创建一个输出日志到控制台的StreamHandler handler = logging.StreamHandler() formatter = logging.Formatter('[%(asctime)s] %(name)s:%(levelname)s: %(message)s') handler.setFormatter(formatter) # 给logger添加上handler logger.addHandler(handler) logger.debug('debug message') logger.info('hello world') def config3(): """ config3 输出到文件 """ # 获取logger实例,如果参数为空则返回root logger logger = logging.getLogger("AppName") # 指定logger输出格式 formatter = logging.Formatter(FORMAT_STR) # 文件日志 file_handler = logging.FileHandler("test.log") file_handler.setFormatter(formatter) # 可以通过setFormatter指定输出格式 # 控制台日志 console_handler = logging.StreamHandler(sys.stdout) console_handler.formatter = formatter # 也可以直接给formatter赋值 # 为logger添加的日志处理器,可以自定义日志处理器让其输出到其他地方 logger.addHandler(file_handler) logger.addHandler(console_handler) # 指定日志的最低输出级别,默认为WARN级别 logger.setLevel(logging.INFO) # 输出不同级别的log logger.debug('this is debug info') logger.info('this is information') logger.warn('this is warning message') logger.error('this is error message') logger.fatal('this is fatal message, it is same as logger.critical') logger.critical('this is critical message') # if __name__ == '__main__': ``` #### File: standard_library/threads/rethread.py ```python import threading class ReThread(threading.Thread): def __init__(self, *args, **kwargs): super(ReThread, self).__init__(*args, **kwargs) self.__flag = threading.Event() # 用于暂停线程的标识 self.__flag.set() # 设置为True self.__running = threading.Event() # 用于停止线程的标识 self.__running.set() # 将running设置为True @property def is_running(self): """ 获取运行标志 :return: True/False """ return self.__running.isSet() def run(self): """ 使用while 循环,使用self.is_running 来获取运行标志位 """ pass def stop(self): """ 设置为False, 让线程阻塞 """ self.__flag.clear() def resume(self): """ 设置为True, 让线程停止阻塞 """ self.__flag.set() def exit(self): """ 暂停标志设置为True 运行标志设置为False """ self.__flag.set() self.__running.clear() if __name__=="__main__": rt= ReThread() rt.start() print '111' # rt.join() ```
{ "source": "2585157341/RFBNet-master_Chinese_note", "score": 2 }
#### File: layers/functions/detection.py ```python import torch import torch.nn as nn import torch.backends.cudnn as cudnn from torch.autograd import Function from torch.autograd import Variable from utils.box_utils import decode # test_RFB.py中被调用,生成的detector对象,结合net输出的out(forward中拆分为loc + conf,结合RFBNet结构, # 可以发现是一个全卷积的feature map,可以结合multibox函数理解),conf就是预测的分类得分, # loc其实就是预定义位置、尺度、长宽比的anchor(也称为prior box)的offsets,再结合anchor + loc offsets,就可以得到最终预测的结果了 # 至于之后的NMS、top-k阈值抑制,都是后操作,不属于Detect里做的工作 class Detect(Function): """At test time, Detect is the final layer of SSD. Decode location preds, apply non-maximum suppression to location predictions based on conf scores and threshold to a top_k number of output predictions for both confidence score and locations. """ def __init__(self, num_classes, bkg_label, cfg): self.num_classes = num_classes self.background_label = bkg_label self.variance = cfg['variance'] def forward(self, predictions, prior): """ Args: loc_data: (tensor) Loc preds from loc layers Shape: [batch,num_priors*4]因为4个位置坐标 conf_data: (tensor) Shape: Conf preds from conf layers Shape: [batch*num_priors,num_classes] prior_data: (tensor) Prior boxes and variances from priorbox layers Shape: [1,num_priors,4] """ loc, conf = predictions # test_RFB.py内调用net,通过RFBNet输出的(loc, conf) loc_data = loc.data #查看multibox_loss.py就可以知道loc,conf,prior的输出shape,loc shape: (batch_size,num_priors,4) conf_data = conf.data #conf shape: (batch_size,num_priors,num_classes) prior_data = prior.data #priors shape: (num_priors,4) num = loc_data.size(0) # batch_size self.num_priors = prior_data.size(0) # 预定义的anchor个数,如SSD,指的是特征金字塔上所有检测分支feature map上的anchor self.boxes = torch.zeros(1, self.num_priors, 4) # 对应batch_size = 1,4表示bbox(x1, y1, x2, y2)坐标 self.scores = torch.zeros(1, self.num_priors, self.num_classes) # 对应bbox类别,如VOC 20 + 1类,batch size = 1 if loc_data.is_cuda: self.boxes = self.boxes.cuda() self.scores = self.scores.cuda() if num == 1: # size batch×num_classes×num_priors conf_preds = conf_data.unsqueeze(0) # batch size = 1,维度规整化(添加了一个维度) else: conf_preds = conf_data.view(num, num_priors, self.num_classes) # 因为有batch张图像,所以reshape成这样 self.boxes.expand_(num, self.num_priors, 4) #batch_size不为1时扩展为num self.scores.expand_(num, self.num_priors, self.num_classes) # Decode predictions into bboxes. for i in range(num): # for each detected image # Decode locations from predictions using priors to undo the encoding we did for offset regression #decode函数在utils文件夹下的box_utils程序里 decoded_boxes = decode(loc_data[i], prior_data, self.variance) conf_scores = conf_preds[i].clone() self.boxes[i] = decoded_boxes self.scores[i] = conf_scores return self.boxes, self.scores ```
{ "source": "2594306528/semi-supervised-for-captcha", "score": 3 }
#### File: 2594306528/semi-supervised-for-captcha/models.py ```python import torch.nn as nn from layers import CNN, Encoder, RNNAttnDecoder class CNNSeq2Seq(nn.Module): def __init__(self, vocab_size): super(CNNSeq2Seq, self).__init__() self.backbone = CNN() self.encoder = Encoder() self.decoder = RNNAttnDecoder(vocab_size=vocab_size) def forward(self, x, y, is_training): out = self.backbone(x) encoder_outputs, encoder_hidden = self.encoder(out) vocab_out = self.decoder(y, encoder_outputs, encoder_hidden, is_training) return vocab_out def forward_2(self, x, max_len): out = self.backbone(x) encoder_outputs, encoder_hidden = self.encoder(out) vocab_out = self.decoder.forward_2(encoder_outputs, encoder_hidden, max_len) return vocab_out ``` #### File: 2594306528/semi-supervised-for-captcha/util.py ```python import torch.nn as nn from timm.loss import LabelSmoothingCrossEntropy import torch.nn.functional as F class Seq2SeqLoss(nn.Module): def __init__(self): super(Seq2SeqLoss, self).__init__() self.criterion = LabelSmoothingCrossEntropy() def forward(self, outputs, y): """ outputs: [batch_size, max_len-1, vocab_size] y: [batch_size, max_len] """ max_len = y.size(1) return sum([self.criterion(outputs[:, i, :], y[:, i + 1]) for i in range(max_len - 1)]) / (max_len - 1) class ClassLoss(nn.Module): def __init__(self): super(ClassLoss, self).__init__() self.criterion = nn.CrossEntropyLoss(ignore_index=-1) def forward(self, outputs, y): """ outputs: [batch_size, max_len-1, vocab_size] y: [batch_size, max_len] """ max_len = y.size(1) return sum([self.criterion(outputs[:, i, :], y[:, i + 1]) for i in range(max_len - 1)]) class ConsistentLoss(nn.Module): def __init__(self): super(ConsistentLoss, self).__init__() def forward(self, outputs, outputs_ema): """ outputs: [batch_size, max_len-1, vocab_size] outputs_ema: [batch_size, max_len-1, vocab_size] """ batch_size = outputs.size(0) max_len = outputs.size(1) + 1 num_classes = outputs.size(2) loss = 0 for i in range(max_len-1): input_logits = outputs[:, i, :] target_logits = outputs_ema[:, i, :] input_softmax = F.softmax(input_logits, dim=1) target_softmax = F.softmax(target_logits, dim=1) loss += F.mse_loss(input_softmax, target_softmax, size_average=False) / num_classes return loss / batch_size def compute_seq_acc(outputs, y, batch_size, max_len): """ outputs: [batch_size, max_len-1, vocab_size] y: [batch_size, max_len] """ num_eq = (y[:, 1:].data == outputs.max(2)[1]).sum(dim=1) accuracy_clevel = num_eq.sum() / batch_size / (max_len - 1) accuracy_all = (num_eq == max_len - 1).sum() / batch_size return accuracy_clevel, accuracy_all ```
{ "source": "25A0/MustacheDonkeyPants", "score": 3 }
#### File: MustacheDonkeyPants/tests/test_mdpants.py ```python import pytest from mdpants import mdpants import argparse import binascii # Test that parse_args fails when mandatory elements are missing def test_fails_without_arguments(): with pytest.raises(SystemExit): mdpants.parse_args([]) def test_just_random_succesds(): assert mdpants.parse_args(['-R']) def test_single_file_succesds(): assert mdpants.parse_args(['existing_file']) def test_random_and_file_fails(): with pytest.raises(SystemExit): assert mdpants.parse_args(['-R', 'existing_file']) def test_infile_and_binary_fails(): with pytest.raises(SystemExit): assert mdpants.parse_args(['--in existing_file', '--bin existing_file']) def test_infile_needs_argument(): with pytest.raises(SystemExit): assert mdpants.parse_args(['--in']) def test_binfile_needs_argument(): with pytest.raises(SystemExit): assert mdpants.parse_args(['--bin']) def test_word_count(): assert mdpants.len_wordlist('tests/lists/wordlist.txt') == 50 def test_word_count_sparse(): assert mdpants.len_wordlist('tests/lists/sparsewordlist.txt') == 50 def test_word_count_non_ascii(): assert mdpants.len_wordlist('tests/lists/emoticons.txt') == 18 def test_accept_lines_with_not_only_whitespace(): assert mdpants.accept_line(' foo \n') assert mdpants.accept_line('foo\n') assert mdpants.accept_line('\t\tfoo\t\n') def test_seed_depends_on_file_content(): seed1 = mdpants.get_hash_seed('tests/lists/existing_file') seed2 = mdpants.get_hash_seed('tests/lists/another_existing_file') assert not seed1 == seed2 def test_seed_deterministic(): seed1 = mdpants.get_hash_seed('tests/lists/existing_file') seed2 = mdpants.get_hash_seed('tests/lists/existing_file') assert seed1 == seed2 seed3 = binascii.unhexlify('0cf9180a764aba863a67b6d72f0918bc131c6772642cb2dce5a34f0a702f9470ddc2bf125c12198b1995c233c34b4afd346c54a2334c350a948a51b6e8b4e6b6') assert seed3 == seed1 def test_seed_from_binary_file(): assert mdpants.get_hash_seed('tests/lists/binary') def test_random_seed_not_trivially_broken(): seed1 = mdpants.get_prng_seed() seed2 = mdpants.get_prng_seed() assert not seed1 == seed2 def test_extract_words(): count = mdpants.len_wordlist('tests/lists/wordlist.txt') words = mdpants.fetch_words('tests/lists/wordlist.txt', [0.0/count, 1.0/count, 2.0/count], 'text') assert words == ['Aa', 'Aaa', 'Aah'] def test_extract_sparse_words(): count = mdpants.len_wordlist('tests/lists/sparsewordlist.txt') words = mdpants.fetch_words('tests/lists/sparsewordlist.txt', [0.0/count, 4.0/count, 22.0/count], 'text') assert words == ['Aa', 'Aahing', 'Aasvogels'] def test_extract_sparse_non_ascii(): count = mdpants.len_wordlist('tests/lists/emoticons.txt') words = mdpants.fetch_words('tests/lists/emoticons.txt', [0.0/count, 8.0/count, 17.0/count], 'text') assert words == [u'😚', u'😢', u'😫'] ```
{ "source": "25shmeckles/scripts", "score": 3 }
#### File: scripts/bkp/tcplib.py ```python import sys import socket import random ver = '0.1' ## Helper functions def getMyIP(): with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as sock: sock.connect(("8.8.8.8", 80)) myIP = sock.getsockname()[0] return myIP def getAddress(args): if len(args): ip = args[0] port = args[1] else: ip, port = getRndDefault() return ip, port def getRndDefault(): r = [line.split() for line in defaults.split('\n') if line != ''] return random.sample(r, 1)[0] ## Globals defaults = \ ''' 172.16.17.32 9999 ''' ## Commands def help(doc): print(doc) def send(ip, port, data, myIP): received = None with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: # Connect to server and send data sock.connect((ip, int(port))) sock.sendall(bytes(f'{myIP} {data}\n', 'utf-8')) # Receive data from the server and shut down received = str(sock.recv(1024), 'utf-8') print(f'Sent: {data}') print(f'Received: {received}') def sendfile(ip, port, filepath, tag, myIP): if '/' in filepath: filename = filepath.split('/')[-1] elif '\\' in filepath: filename = filepath.split('\\')[-1] else: filename = filepath file_content = '' with open(filepath, 'r') as f: for line in f: file_content += f'_*_{line}' #_*_ as line break data = f'{tag} {filename} {file_content}' send(ip, port, data, myIP) def pushme(ip, port, myIP): tag = 'me' for filepath in ['tcplib.py','tcp-cli.py','tcp-srv.py']: sendfile(ip, port, filepath, tag, myIP) def test(ip, port, myIP): data = 'connection test' send(ip, port, data, myIP) ``` #### File: 25shmeckles/scripts/canvas_demo.py ```python import tkinter as tk import random # --- functions --- def create_mines(how_many, canvas): bubbles = [] w = canvas.winfo_reqwidth() h = canvas.winfo_reqheight() for __ in range(how_many): x = random.randint(0, w) y = random.randint(0, h) r = random.randint(5, 10) mine = canvas.create_oval(x-r, y-r, x+r, y+r) bubbles.append([mine, r]) return bubbles def moves_mines(canvas, bubbles): h = canvas.winfo_reqheight() for mine, r in bubbles: #canvas.move(mine, 0, -1) # get position x1, y1, x2, y2 = canvas.coords(mine) # change y1 -= 1 y2 -= 1 # if top then move to the bottom if y2 <= 0: y1 = h y2 = y1 + 2*r # set position canvas.coords(mine, x1, y1, x2, y2) root.after(REFRESH_RATE, moves_mines, canvas, bubbles) if __name__ == '__main__': root = tk.Tk() canvas = tk.Canvas(root, width=800, height=600) canvas.pack() REFRESH_RATE = 10 #ms bubbles = create_mines(50, canvas) root.after(REFRESH_RATE, moves_mines, canvas, bubbles) root.mainloop() ``` #### File: 25shmeckles/scripts/Ensembl_Client.py ```python import sys import urllib import urllib2 import json import time class EnsemblRestClient(object): def __init__(self, server='http://rest.ensembl.org', reqs_per_sec=15): self.server = server self.reqs_per_sec = reqs_per_sec self.req_count = 0 self.last_req = 0 def perform_rest_action(self, endpoint, hdrs=None, params=None): if hdrs is None: hdrs = {} if 'Content-Type' not in hdrs: hdrs['Content-Type'] = 'application/json' if params: endpoint += '?' + urllib.urlencode(params) data = None # check if we need to rate limit ourselves if self.req_count >= self.reqs_per_sec: delta = time.time() - self.last_req if delta < 1: time.sleep(1 - delta) self.last_req = time.time() self.req_count = 0 try: request = urllib2.Request(self.server + endpoint, headers=hdrs) response = urllib2.urlopen(request) content = response.read() if content: data = json.loads(content) self.req_count += 1 except urllib2.HTTPError, e: # check if we are being rate limited by the server if e.code == 429: if 'Retry-After' in e.headers: retry = e.headers['Retry-After'] time.sleep(float(retry)) self.perform_rest_action(endpoint, hdrs, params) else: sys.stderr.write('Request failed for {0}: Status code: {1.code} Reason: {1.reason}\n'.format(endpoint, e)) return data def get_variants(self, species, symbol): genes = self.perform_rest_action( '/xrefs/symbol/{0}/{1}'.format(species, symbol), params={'object_type': 'gene'} ) if genes: stable_id = genes[0]['id'] variants = self.perform_rest_action( '/overlap/id/{0}'.format(stable_id), params={'feature': 'variation'} ) return variants return None def run(species, symbol): client = EnsemblRestClient() variants = client.get_variants(species, symbol) if variants: for v in variants: print '{seq_region_name}:{start}-{end}:{strand} ==> {id} ({consequence_type})'.format(**v); if __name__ == '__main__': if len(sys.argv) == 3: species, symbol = sys.argv[1:] else: species, symbol = 'human', 'BRAF' run(species, symbol) ``` #### File: 25shmeckles/scripts/FormatInput_2.py ```python infile = '/home/amarcozz/Documents/Projects/Fusion Genes/datasets/ISCA_UCSC_missing.txt' outfile = '/home/amarcozz/Documents/Projects/Fusion Genes/datasets/dataset_4b.txt' def find(string, char): '''Looks for a character in a sctring and retrurns its indes.''' return [index for index, letter in enumerate(string) if letter == char] def format_Tags_Vals(infile, outfile): with open(infile) as inf: lines = inf.readlines() with open(outfile, 'w') as outf: startline = 1840 list_of_dict = [] for line in lines: tab_index = find(line, '\t') tags_string = line[:tab_index[0]].rstrip(',').rstrip('\n') data_string = line[tab_index[0]+1:].rstrip(',').rstrip('\n') # divides each strings in list of strings. The comma is the separator. tags_indexes = find(tags_string, ",") data_indexes = find(data_string, ",") print tags_indexes print data_indexes tags_list = [] data_list = [] n = 0 for index in tags_indexes: tags_list.append(tags_string[n:index]) n = index + 1 tags_list.append(tags_string[n:]) print tags_list n = 0 for index in data_indexes: data_list.append(data_string[n:index].replace('%2C','').replace('.','')) n = index + 1 data_list.append(data_string[n:]) print data_list # creates a dictionary for aech line with Tag:Value pairs vars()['dict'+ str(startline)] = {} for n in range(len(tags_list)): vars()['dict'+ str(startline)].update({tags_list[n]:data_list[n]}) # organizes the dictionaries in a list of dict. list_of_dict.append(vars()['dict'+ str(startline)]) # next line tracker startline += 1 print len(list_of_dict) print startline - 1840 for dic in list_of_dict: if dic['var_type'] == 'copy_number_loss': orientation = 'TH' elif dic['var_type'] == 'copy_number_gain': orientation = 'HT' else: orientation = 'None' newline = dic['ID'] + '\t' + dic['Parent'] + '\t' + dic['samples'] + '\t' + dic['var_origin'] + '\t' + dic['Start_range'] + '\t' + dic['End_range'] + '\t' + dic['var_type'] + '\t' + orientation print newline outf.write(newline + '\n') format_Tags_Vals(infile, outfile) ```
{ "source": "2600box/harvest", "score": 3 }
#### File: management/commands/create_harvest_superuser.py ```python import sys from django.contrib.auth.models import User from django.core.management.base import BaseCommand from django.db import IntegrityError from Harvest.utils import get_logger logger = get_logger(__name__) class Command(BaseCommand): help = "Create a superuser with a given username and password" _type_map = {'int': int, 'float': float} def add_arguments(self, parser): parser.add_argument('--exists-ok', default=False, action='store_true') parser.add_argument('username') parser.add_argument('password') def handle(self, *args, **options): try: User.objects.create_superuser( username=options['username'], email=None, password=options['password'], ) logger.info('User {} created.', options['username']) except IntegrityError: if not options['exists_ok']: print('User {} already exists!'.format(options['username'])) sys.exit(1) ``` #### File: harvest/Harvest/path_utils.py ```python import os import shutil def list_abs_files(path): results = [] for root, dirs, files in os.walk(path): for file in files: results.append(os.path.join(root, file)) results.sort(key=lambda f: (f.count('/'), f)) return results def list_rel_files(path): return [os.path.relpath(f, path) for f in list_abs_files(path)] def list_src_dst_files(src_path, dst_path): return [ (os.path.join(src_path, rel_file), os.path.join(dst_path, rel_file)) for rel_file in list_rel_files(src_path) ] def copytree_into(src_path, dst_path): for src_file, dst_file in list_src_dst_files(src_path, dst_path): os.makedirs(os.path.dirname(dst_file), exist_ok=True) shutil.copy2(src_file, dst_file) def strip_invalid_path_characters(path): return ''.join(c for c in path if c not in r'\/:*?"<>|') ``` #### File: plugins/bibliotik/compression.py ```python import zlib BIBLIOTIK_ZDICT = '''<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0" /> <link rel="shortcut icon" href="/static/favicon.ico" /> <script src="/static/jquery-1.7.2.min.js"></script> <script src="/static/jquery.confirm-1.2.js"></script> <script src="/static/formerrorlistscroll.js"></script> <script src="/static/lightbox/jquery.lightbox-0.5.min.js"></script> <script src="/static/jquery.lazy-1.7.4.min.js"></script> <script src="/static/imagesloaded-4.1.min.js"></script> <script src="/static/jquery.qtip-3.0.3.min.js"></script> <script src="/static/disableOnSubmit.js"></script> <script src='/static/simplemde-1.11.2.min.js'></script> <link rel='stylesheet' href='/static/simplemde-1.11.2.min.css'> <link rel='stylesheet' href='/static/components/font-awesome/font-awesome-built.css'> <link rel="stylesheet" type="text/css" media="screen" href="/static/lightbox/jquery.lightbox-0.5.css" /> <link rel="stylesheet" type="text/css" media="screen" href="/static/jquery.qtip-3.0.3.min.css" /> <link rel="stylesheet" type="text/css" media="screen" href="/static/default.css?" /> <link rel="stylesheet" type="text/css" media="screen" href="/static/css_garden/makeup.css?" /> <title>Bibliotik / Torrents / </title> <script type="text/javascript"> document.head.parentElement.className += ' have-js'; // flag JS availability function brokenImage(img) { img.src="/static/icons/NI_Broken.png"; } $(function() { $('a[rel*=lightbox]').lightBox({ imageLoading: '/static/lightbox/lightbox-ico-loading.gif', imageBtnClose: '/static/lightbox/lightbox-btn-close.gif', imageBtnPrev: '/static/lightbox/lightbox-btn-prev.gif', imageBtnNext: '/static/lightbox/lightbox-btn-next.gif', imageBlank: '/static/lightbox/lightbox-blank.gif' }); $('form').disableOnSubmit(); $('time').attr('title', function() { return new Date($(this).attr('datetime')).toLocaleString(); }); // Rewrite legacy links as relative links $('a[href*="bibliotik.org"]').attr('href', function(idx, href){ return (href||$(this).attr('href')).replace(/^https?:\/\/(www\.)?bibliotik.org/i, ''); }); }); </script> </head> <body> <div id="superwrap"> <div id="headerwrap"> <div id="pre_header"> <ul id="pre_header_status"> <li><a href=""></a> ()</li> <li><a href="/settings">Settings</a></li> <li><a href="/logout?authkey=">Log Out</a></li> <li>Up: </li> <li>Down: </li> <li> Ratio: ,</li> <li>Required: 0.0 (Exempt!)</li> </ul> <ul id="pre_header_nav"> <li><a href="/invites">Invites</a> (4) </li> <li> <a href="/conversations">Conversations</a> </li> <li><a href="/notifications">Notifications</a></li> <li><a href="/bookmarks">Bookmarks</a></li> <li><a href="/uploads">Uploads</a></li> </ul> </div> <div id="header"> <div id="header_top"> <a href="/"><span id="header_logo"></span></a> <span id="header_notifications"> </span> </div> <div id="header_nav"> <ul id="header_nav_links"> <li><a href="/">Home</a></li> <li><a href="/torrents/">Torrents</a></li> <li><a href="/requests/">Requests</a></li> <li><a href="/collections/">Collections</a></li> <li><a href="/forums/">Forums</a></li> <li><a href="/rules/">Rules</a></li> <li><a href="/help/">Help</a></li> <li><a href="/log/">Log</a></li> <li><a href="/upload/">Upload</a></li> </ul> <span id="header_nav_search"> <form action="/torrents/" method="get"> <input type="text" size="35" name="search" id="search_header" value="> Search torrents" onblur="if (this.value == '') this.value = '> Search torrents';" onfocus="if (this.value == '> Search torrents') this.value = '';" /> <input type="submit" value="" style="display:none;" /> </form> </span> </div> </div> </div> <div id="body"> <div id="torrent-" class="torrent retail ebooks-category epub-format english-language"> <h1 id="title"><img src="/static/icons/Ebooks.png" style="vertical-align:text-top" title="Ebooks" /> </h1> <div id="sidebar"> <a rel="lightbox" href=""><img src='' width="220" /></a> <ul> <li class="details_peers"> <strong>7</strong> <a href="/torrents//peers"> Peers </a> </li> <li class="details_snatches"> <strong>5</strong> <a href="/torrents//snatches"> Snatches </a> </li> </ul> <form action="" method="post" accept-charset="UTF-8"><input type="hidden" name="addTags" /><input type="hidden" name="authkey" value="" /><table><tr valign="top"><td class="Flabel"><label for="TagsField">Add tag: </label></td><td class="Ffield"><input type="text" name="TagsField" id ="TagsField" maxlength="1024" size ="10" value="" /></td></tr><tr><td colspan="2"><input type="submit" value="Add tag!" /></td></tr></table></form> </div> <div id="main"> <div id="detailsbox"> <p id="creatorlist"> By <a class="authorLink" href="/creators/"></a></p> <p id="published"> Published by <a class="publisherLink" href="/publishers/"></a> in (<span id="torrentISBN"></span>)</p> <p id="details_content_info"> English, pages</p> <p id="details_tags"> Tags: <span class="taglist"><a class="tagLink" href="/tags/26">fiction</a></span> </p> <p id="details_file_info"> Retail EPUB, MB, file(s) <a><label for=file-toggler class=toggling data-show="(show)" data-hide="(hide)">(show)</label></a> </p> <p id="details_upload_info"> Uploaded by <a href="/users/"></a> <time datetime=""> minutes, seconds ago</time> </p> <p id="details_activity_info"> seeders, leecher, snatches, <a href="/torrents/#comments">0</a> comments, 0 bookmarks </p> <p id="details_ratio_info"> <em>If you download this torrent, your ratio will be .</em> </p> <p id="details_links"> <a href="/torrents//download" title="Download"><img src="/static/icons/download.png" /></a> <span class="doBookmark" title="Add Bookmark">&nbsp;</span> <a href="/torrents//report" title="Report"><img src="/static/icons/report.png" /></a> <a href="/torrents//wiki" title="Description"><img src="/static/icons/wiki.png" /></a> <a href="/torrents//images" title="Images"><img src="/static/icons/image.png" /></a> </p> </div> <input type=checkbox id=file-toggler class=toggling> <div id="files" class="table_div toggling"> <h2>Files</h2> <table cellspacing="0" style="width:auto"> <thead> <tr> <th>Filename</th> <th>Size</th> </tr> </thead> <tbody> <tr> <td>/td> <td> MB</td> </tr> </tbody> </table> </div> <div id="description"> <h2>Description</h2> <div class="markdown"> </div> </div> </div> <div id="comments"> <script type="text/javascript"> $(function() { $('.quoteComment').live("click", function() { var commentId = $(this).attr("id").split("-")[1]; $.ajax({ method: "get", url: "/torrents//comments/" + commentId + "/get", beforeSend: function() { $("#doQuoteComment-" + commentId).html('<img src="/static/icons/loading.gif" />'); }, complete: function() { $("#doQuoteComment-" + commentId).html('<a class="quoteComment" id="quote-' + commentId + '">Quote</a>'); }, success: function(text) { var temp = $("#CommentField").val(); if (temp.length && !temp.endsWith('\n')) temp += '\n'; if (temp.length && !temp.endsWith('\n\n')) temp += '\n'; temp += text + '\n\n'; $("#CommentField").val(temp); $("#CommentField").change(); window.location.hash = "#commentHeader"; }, error: function() { $("#doQuoteComment-" + commentId).html('<strong>Connection failed!</strong>'); } }); }); }); </script> <h2>Comments</h2> <p>No comments found.</p> </div> <h4 id="commentHeader">Add comment</h4> <form action="" method="post" accept-charset="UTF-8"><input type="hidden" name="addComment" /><input type="hidden" name="authkey" value="" /><table><tr><td class="Flabel"><label for="CommentField">Comment: </label></td><td class="Ffield"><textarea name="CommentField" id="CommentField" rows="15" cols="90"></textarea></td></tr><tr><td colspan="2"><input type="submit" value="Add comment!" /></td></tr></table></form></div> </div> <!-- End #body --> <div id="footer"> <div id="footer_nav"> <div id="more"> <h4>More:</h4> <ul> <li><a href="/users">Users</a></li> <li><a href="/tags">Tags</a></li> <li><a href="/creators">Creators</a></li> <li><a href="/publishers">Publishers</a></li> </ul> </div> <div id="rules"> <h4>Rules:</h4> <ul> <li><a href="/rules">Main</a></li> <li><a href="/rules/uploading">Uploading</a></li> <li><a href="/rules/retail">Retail</a></li> <li><a href="/rules/trumping">Trumping</a></li> <li><a href="/rules/naming-conventions">Naming</a></li> <li><a href="/rules/requests">Requests</a></li> <li><a href="/rules/tagging">Tagging</a></li> <li><a href="/rules/ratio">Ratio</a></li> </ul> </div> <div id="help"> <h4>Help:</h4> <ul> <li><a href="/tutorials">Tutorials</a></li> <li><a href="/help/contact">Contact</a></li> <li><a href="/help/classes">User Classes</a></li> <li><a href="/help/searching">Searching</a></li> <li><a href="/help/editor">Text Formatting</a></li> <li><a href="/help/clients">Allowed Clients</a></li> <li><a href="/help/ports">Blacklisted Ports</a></li> </ul> </div> </div> </div> <!-- End #footer --> </div> <!-- End #superwrap --> <script src='/static/store-2.0.3.everything.min.js'></script><script src='/static/toggle-display.js?'></script><script type='text/javascript'>var bookmarksAuthKey = "";</script><script src='/static/do-bookmarks.js?'></script><script src='/static/cover-hover.js?'></script><script src='/static/wysiwyg-editor.js?'></script></body> </html>'''.encode() def bibliotik_compress_html(html): obj = zlib.compressobj(level=9, zdict=BIBLIOTIK_ZDICT) return b'b\x01' + obj.compress(html.encode()) + obj.flush() def bibliotik_decompress_html(data): if data[:2] == b'<!': return data.decode() if data[:2] == b'b\x01': obj = zlib.decompressobj(zdict=BIBLIOTIK_ZDICT) decompressed_data = obj.decompress(data[2:]) + obj.flush() return decompressed_data.decode() else: raise Exception('Unknown/invalid Bibliotik compression header') ``` #### File: plugins/bibliotik/views.py ```python import pickle from http import cookiejar from rest_framework.generics import RetrieveUpdateDestroyAPIView from rest_framework.response import Response from rest_framework.views import APIView from Harvest.cookie_utils import cookie_to_dict, cookie_from_dict from Harvest.utils import TransactionAPIView, CORSBrowserExtensionView, get_logger from plugins.bibliotik.client import BibliotikClient from plugins.bibliotik.models import BibliotikClientConfig from plugins.bibliotik.serializers import BibliotikClientConfigSerializer logger = get_logger(__name__) class Config(TransactionAPIView, RetrieveUpdateDestroyAPIView): """Configure the Bibliotik integration plugin.""" serializer_class = BibliotikClientConfigSerializer def get_object(self): try: return BibliotikClientConfig.objects.select_for_update().get() except BibliotikClientConfig.DoesNotExist: return BibliotikClientConfig( is_server_side_login_enabled=True, ) # After a username/password update, set last_login_failed to False def perform_update(self, serializer): serializer.instance.last_login_failed = False serializer.instance.clear_login_data() super().perform_update(serializer) class ConnectionTest(APIView): """Test the connection of the plugin to the user's Bibliotik account.""" def post(self, request): try: client = BibliotikClient() client.get_index() return Response({'success': True}) except Exception as ex: return Response({'success': False, 'detail': str(ex)}) class ClearLoginData(TransactionAPIView, APIView): def post(self, request): config = BibliotikClientConfig.objects.select_for_update().get() config.last_login_failed = False config.clear_login_data() config.save() return Response({'success': True}) class Cookies(CORSBrowserExtensionView, APIView): def _get_response_from_config(self, config): if config and config.cookies: return Response({ 'cookies': [cookie_to_dict(c) for c in pickle.loads(config.cookies)], }) return Response({'cookies': []}) def get(self, request): config = BibliotikClientConfig.objects.first() return self._get_response_from_config(config) def put(self, request): input_jar = cookiejar.CookieJar() for cookie_data in request.data['cookies']: input_jar.set_cookie(cookie_from_dict(cookie_data)) client = BibliotikClient() # Try to reconcile offered vs. stored cookies. config = client.accept_cookies_if_ok(input_jar) # If we're left without cookies, try to login server-side, if enabled if not config.cookies and config.is_server_side_login_enabled: logger.debug('No working cookies found, trying server-side login.') try: client.get_index() config.refresh_from_db() logger.debug('Server-side login is working.') except: # Swallow exceptions, so we don't fail the client if we can't login. logger.debug('Server-side login is also not working.') return self._get_response_from_config(config) ``` #### File: management/commands/run_scheduler.py ```python import asyncio from django.core.management.base import BaseCommand from Harvest.utils import get_logger from task_queue.scheduler import QueueScheduler logger = get_logger(__name__) class Command(BaseCommand): help = "Run the queue consumer" def handle(self, *args, **options): QueueScheduler().run() ``` #### File: harvest/task_queue/task_queue.py ```python import pickle from functools import partial, wraps from django.db import close_old_connections from task_queue.models import AsyncTask def db_decorator(fn): @wraps(fn) def inner(*args, **kwargs): try: return fn(*args, **kwargs) finally: close_old_connections() return inner class AsyncTaskInfo: def __init__(self, handler): self.handler = db_decorator(handler) self.handler_str = handler.__module__ + '.' + handler.__name__ class PeriodicTaskInfo(AsyncTaskInfo): def __init__(self, handler, interval_seconds): super().__init__(handler) self.interval_seconds = interval_seconds class _TaskQueue: def __init__(self): self.async_tasks = {} self.periodic_tasks = {} def async_task(self): def decorator(fn): task_info = AsyncTaskInfo(fn) self.async_tasks[task_info.handler_str] = task_info fn.delay = partial(self._execute_async, task_info) return fn return decorator def periodic_task(self, interval_seconds): def decorator(fn): task_info = PeriodicTaskInfo(fn, interval_seconds) self.periodic_tasks[task_info.handler_str] = task_info fn.delay = partial(self._execute_async, task_info) return fn return decorator def _execute_async(self, task_info, *args, **kwargs): AsyncTask.objects.create( handler=task_info.handler_str, args_pickle=pickle.dumps({ 'args': args, 'kwargs': kwargs, }) ) TaskQueue = _TaskQueue() ``` #### File: harvest/torrents/alcazar_event_processor.py ```python import time from itertools import chain from Harvest.utils import get_logger from torrents.alcazar_client import update_torrent_from_alcazar, \ create_or_update_torrent_from_alcazar from torrents.models import Torrent, Realm, TorrentInfo from torrents.signals import torrent_removed logger = get_logger(__name__) class AlcazarEventProcessor: @classmethod def _process_removed_events(cls, realm, removed_info_hashes): removed_torrents_qs = Torrent.objects.filter(realm=realm, info_hash__in=removed_info_hashes) removed_info_hashes = list(removed_torrents_qs.values_list('info_hash', flat=True)) logger.debug('Matched {} Torrent objects for deletion.'.format(len(removed_info_hashes))) removed_torrents_qs.delete() for removed_info_hash in removed_info_hashes: torrent_removed.send_robust(cls, realm=realm, info_hash=removed_info_hash) @classmethod def _process_added_torrents(cls, realm, added_torrent_states): # Short-circuit to avoid any queries if not added_torrent_states: return info_hashes = [state['info_hash'] for state in added_torrent_states] torrent_info_ids = { item[0]: item[1] for item in TorrentInfo.objects.filter( realm=realm, info_hash__in=info_hashes, is_deleted=False, ).values_list('info_hash', 'id') } for added_state in added_torrent_states: create_or_update_torrent_from_alcazar( realm=realm, torrent_info_id=torrent_info_ids.get(added_state['info_hash']), torrent_state=added_state, ) @classmethod def _process_events(cls, realm, events): cls._process_removed_events(realm, events['removed']) updated_info_hashes = [state['info_hash'] for state in chain(events['added'], events['updated'])] existing_torrents = { t.info_hash: t for t in Torrent.objects.filter(realm=realm, info_hash__in=updated_info_hashes)} added_torrents_states = [] logger.debug('Matched {} Torrent objects for updating.', len(existing_torrents)) num_updated = 0 for updated_state in chain(events['added'], events['updated']): torrent = existing_torrents.get(updated_state['info_hash']) if not torrent: added_torrents_states.append(updated_state) else: if update_torrent_from_alcazar(torrent, updated_state): num_updated += 1 logger.debug('Actually updated {} in DB.', num_updated) logger.debug('Matched {} new states for adding.', len(added_torrents_states)) cls._process_added_torrents(realm, added_torrents_states) @classmethod def _process(cls, events): realms = {realm.name: realm for realm in Realm.objects.all()} for realm_name, batch in events.items(): realm = realms.get(realm_name) if not realm: realm, _ = Realm.objects.get_or_create(name=realm_name) logger.debug('Processing events for realm {}.', realm_name) cls._process_events(realm, batch) @classmethod def process(cls, events): start = time.time() logger.debug('Processing events.') retries_remaining = 3 while True: try: cls._process(events) break except Exception: if retries_remaining > 0: logger.warning('Exception during alcazar event processing. Retrying.') retries_remaining -= 1 else: logger.exception('Exhausted event processing retries.') raise logger.debug('Completed alcazar update in {:.3f}.', time.time() - start) ``` #### File: torrents/migrations/0022_torrentinfo_raw_response_binary.py ```python from django.db import migrations, models, transaction from Harvest.utils import qs_chunks def encode_all_raw_responses(apps, schema_editor): TorrentInfo = apps.get_model('torrents', 'TorrentInfo') for batch in qs_chunks(TorrentInfo.objects.all(), 1000): with transaction.atomic(): for ti in batch: ti.raw_response_binary = ti.raw_response.encode() ti.save(update_fields=('raw_response_binary',)) class Migration(migrations.Migration): dependencies = [ ('torrents', '0021_auto_20190322_1030'), ] operations = [ migrations.AddField( model_name='torrentinfo', name='raw_response_binary', field=models.BinaryField(default=b''), preserve_default=False, ), migrations.RunPython(encode_all_raw_responses, migrations.RunPython.noop, elidable=True), ] ``` #### File: harvest/torrents/serializers.py ```python from rest_framework import serializers from torrents.models import AlcazarClientConfig, Realm, Torrent, TorrentInfo, DownloadLocation from trackers.registry import TrackerRegistry class AlcazarClientConfigSerializer(serializers.ModelSerializer): class Meta: model = AlcazarClientConfig fields = ('base_url', 'token', 'unify_single_file_torrents') class RealmSerializer(serializers.ModelSerializer): class Meta: model = Realm fields = ('id', 'name') class TorrentInfoSerializer(serializers.ModelSerializer): metadata = serializers.SerializerMethodField() def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.metadata_serializers_by_realm_id = None def _ensure_metadata_serializers_by_realm_id(self): if self.metadata_serializers_by_realm_id is not None: return self.metadata_serializers_by_realm_id realms_by_name = {r.name: r for r in Realm.objects.all()} self.metadata_serializers_by_realm_id = {} for tracker in TrackerRegistry.get_plugins(): realm = realms_by_name[tracker.name] if not realm: continue serializer_class = tracker.torrent_info_metadata_serializer_class if serializer_class is None: continue serializer = serializer_class() serializer.bind('metadata', self) self.metadata_serializers_by_realm_id[realm.id] = serializer def get_metadata(self, obj): if not self.context.get('serialize_metadata', True): return None self._ensure_metadata_serializers_by_realm_id() metadata_serializer = self.metadata_serializers_by_realm_id.get(obj.realm_id) if metadata_serializer: return metadata_serializer.to_representation(obj) class Meta: model = TorrentInfo fields = ('info_hash', 'tracker_id', 'fetched_datetime', 'metadata') class TorrentSerializer(serializers.ModelSerializer): realm = serializers.IntegerField(source='realm_id') torrent_info = TorrentInfoSerializer() @classmethod def get_context_from_request_data(cls, data): return { 'serialize_metadata': bool(int(data.get('serialize_metadata', '1'))) } class Meta: model = Torrent fields = '__all__' class DownloadLocationSerializer(serializers.ModelSerializer): realm = serializers.PrimaryKeyRelatedField(queryset=Realm.objects.all()) class Meta: model = DownloadLocation fields = '__all__' ``` #### File: harvest/trackers/registry.py ```python from rest_framework.exceptions import APIException class PluginMissingException(APIException): status_code = 400 def __init__(self, name, action): super().__init__('Missing plugin {} to perform {}.'.format(name, action)) class DuplicatePluginException(Exception): def __init__(self, name, *args, **kwargs): super().__init__('Trying to register a duplicate plugin {}.'.format(name), *args, **kwargs) class InvalidPluginException(Exception): def __init__(self, name, *args, **kwargs): super().__init__('Trying to register a duplicate plugin {}.'.format(name), *args, **kwargs) class PluginRegistry: def __init__(self): self._plugins = {} def register(self, plugin): if plugin.name in self._plugins: raise DuplicatePluginException(plugin.name) self._plugins[plugin.name] = plugin def get_plugin(self, name, action=None): plugin = self._plugins.get(name) if plugin is None: raise PluginMissingException(name, action) return plugin def get_plugins(self): return list(self._plugins.values()) TrackerRegistry = PluginRegistry() ``` #### File: harvest/upload_studio/apps.py ```python from django.apps import AppConfig from torrents import signals from upload_studio.executor_registry import ExecutorRegistry class UploadStudioConfig(AppConfig): name = 'upload_studio' def ready(self): from .executors import (manual_edit, lame_transcode, create_torrent_file, finish_upload, sox_process, fix_filename_track_numbers) ExecutorRegistry.register_executor(manual_edit.ManualEditExecutor) ExecutorRegistry.register_executor(lame_transcode.LAMETranscoderExecutor) ExecutorRegistry.register_executor(create_torrent_file.CreateTorrentFileExecutor) ExecutorRegistry.register_executor(finish_upload.FinishUploadExecutor) ExecutorRegistry.register_executor(sox_process.SoxProcessExecutor) ExecutorRegistry.register_executor(fix_filename_track_numbers.FixFilenameTrackNumbers) from .receivers import on_torrent_finished signals.torrent_finished.connect(on_torrent_finished) ``` #### File: upload_studio/executors/create_torrent_file.py ```python import os import subprocess from subprocess import CalledProcessError import bencode from Harvest.path_utils import list_abs_files from Harvest.utils import get_logger from trackers.utils import TorrentFileInfo from upload_studio.step_executor import StepExecutor logger = get_logger(__name__) BAD_FILES = {'thumbs.db'} class CreateTorrentFileExecutor(StepExecutor): name = 'create_torrent_files' description = 'Creates a .torrent file.' def __init__(self, *args, announce, extra_info_keys=None, **kwargs): super().__init__(*args, **kwargs) self.announce = announce self.extra_info_keys = extra_info_keys @property def torrent_file_path(self): return os.path.join(self.step.get_area_path('torrent_file'), self.metadata.torrent_name + '.torrent') def check_prerequisites(self): try: self.mktorrent_version = subprocess.check_output(['mktorrent', '--help']).decode().split('\n')[0] except FileNotFoundError: self.raise_error('mktorrent not found in path. Make sure mktorrent is installed.') def clean_temp_hidden_files(self): for file in list_abs_files(self.step.data_path): if os.path.basename(file).startswith('.') or file.lower() in BAD_FILES: logger.info('{} removing bad file {}.', self.project, file) os.remove(file) def create_torrent(self): os.makedirs(os.path.dirname(self.torrent_file_path), exist_ok=True) args = [ 'mktorrent', '-a', self.announce, '-p', '-n', self.metadata.torrent_name, '-o', self.torrent_file_path, self.step.data_path ] logger.info('{} creating .torrent file with command: {}', self.project, args) try: subprocess.check_output(args, encoding='utf-8', stderr=subprocess.STDOUT) except CalledProcessError as exc: raise Exception('mktorrent failed with code {}: {}'.format(exc.returncode, exc.stdout.strip())) def add_extra_info_keys(self): if not self.extra_info_keys: return logger.info('{} adding extra info keys {}.', self.project, self.extra_info_keys) with open(self.torrent_file_path, 'rb') as f: meta_info = bencode.bdecode(f.read()) meta_info['info'].update(self.extra_info_keys) with open(self.torrent_file_path, 'wb') as f: f.write(bencode.bencode(meta_info)) def record_additional_metadata(self): torrent_file_info = TorrentFileInfo.from_file(self.torrent_file_path) self.metadata.torrent_info_hash = torrent_file_info.info_hash self.metadata.processing_steps.append('Generate .torrent file with info hash {}.'.format( self.metadata.torrent_info_hash)) def handle_run(self): self.check_prerequisites() self.copy_prev_step_files() self.clean_temp_hidden_files() self.create_torrent() self.add_extra_info_keys() self.record_additional_metadata() ``` #### File: harvest/upload_studio/tasks.py ```python from task_queue.task_queue import TaskQueue from upload_studio.steps_runner import StepsRunner @TaskQueue.async_task() def project_run_all(project_id): runner = StepsRunner(project_id) runner.run_all() @TaskQueue.async_task() def project_run_one(project_id): runner = StepsRunner(project_id) runner.run_one() ``` #### File: harvest/upload_studio/utils.py ```python import subprocess def execute_subprocess_chain(chain): processes = [] p_stdin = None for args in chain: p_stdout = None if args is chain[-1] else subprocess.PIPE p = subprocess.Popen(args, stdin=p_stdin, stdout=p_stdout) processes.append(p) p_stdin = p.stdout for p in reversed(processes): p.communicate() for p in processes: if p.returncode != 0: raise Exception('Subprocess returned non-zero.') def pprint_subprocess_chain(chain): return ' | '.join(' '.join(args) for args in chain) ``` #### File: harvest/upload_studio/views.py ```python from django.db import OperationalError, transaction from rest_framework import status from rest_framework.exceptions import APIException from rest_framework.generics import RetrieveDestroyAPIView, GenericAPIView from rest_framework.response import Response from Harvest.utils import TransactionAPIView, CORSBrowserExtensionView from monitoring.models import LogEntry from upload_studio.executor_registry import ExecutorRegistry from upload_studio.models import Project, ProjectStepWarning, ProjectStep from upload_studio.serializers import ProjectShallowSerializer, ProjectDeepSerializer from upload_studio.tasks import project_run_all, project_run_one class Projects(CORSBrowserExtensionView, GenericAPIView): queryset = Project.objects.all() def filter_queryset(self, queryset): source_tracker_id = self.request.query_params.get('source_tracker_id') if source_tracker_id: queryset = queryset.filter(source_torrent__torrent_info__tracker_id=source_tracker_id) project_type = self.request.query_params.get('project_type') if project_type: queryset = queryset.filter(project_type=project_type) return queryset def get(self, request): queryset = self.filter_queryset(self.get_queryset()) active_qs = queryset.filter(is_finished=False).order_by('-created_datetime') history_qs = queryset.filter(is_finished=True).order_by('-finished_datetime')[:50] return Response({ 'active': ProjectShallowSerializer(active_qs, many=True).data, 'history': ProjectShallowSerializer(history_qs, many=True).data, }) class ProjectView(RetrieveDestroyAPIView): queryset = Project.objects.all() serializer_class = ProjectDeepSerializer @transaction.atomic def perform_destroy(self, instance): instance = self.queryset.select_for_update().get(id=instance.id) instance.delete_all_data() instance.delete() class ProjectMutatorView(TransactionAPIView): def perform_work(self, request, **kwargs): raise NotImplementedError() def post(self, request, pk, **kwargs): try: self.project = Project.objects.select_for_update(nowait=True).get(id=pk) except OperationalError: raise APIException( 'Unable to perform action on project while it is running.', code=status.HTTP_400_BAD_REQUEST, ) self.perform_work(request, **kwargs) # Get a fresh copy for serialization self.project = Project.objects.get(id=pk) return Response(ProjectDeepSerializer(self.project).data) class ProjectResetToStep(ProjectMutatorView): def perform_work(self, request, **kwargs): step_index = int(request.data['step']) self.project.reset(step_index) class ProjectRunAll(ProjectMutatorView): def perform_work(self, request, **kwargs): project_run_all.delay(self.project.id) class ProjectRunOne(ProjectMutatorView): def perform_work(self, request, **kwargs): project_run_one.delay(self.project.id) class ProjectFinish(ProjectMutatorView): def perform_work(self, request, **kwargs): LogEntry.info('Manually finished upload studio {}.'.format(self.project)) self.project.finish() class ProjectInsertStep(ProjectMutatorView): def perform_work(self, request, **kwargs): index = request.data['index'] executor_name = request.data['executor_name'] # Ensure the executor exists ExecutorRegistry.get_executor(executor_name) self.project.insert_step(index, ProjectStep( executor_name=executor_name, )) class WarningAck(ProjectMutatorView): def perform_work(self, request, **kwargs): try: warning = ProjectStepWarning.objects.get(step__project=self.project, id=kwargs['warning_id']) except ProjectStepWarning.DoesNotExist: raise APIException('Warning does not exist.', code=status.HTTP_404_NOT_FOUND) if warning.acked: raise APIException('Warning already acked.', code=status.HTTP_400_BAD_REQUEST) warning.acked = True warning.save() step = self.project.next_step if step and not step.projectstepwarning_set.filter(acked=False).exists(): project_run_all.delay(self.project.id) ```
{ "source": "2601677867/httpx", "score": 2 }
#### File: httpx/httpx/_main.py ```python import functools import json import sys import typing import click import httpcore import pygments.lexers import pygments.util import rich.console import rich.progress import rich.syntax from ._client import Client from ._exceptions import RequestError from ._models import Response from ._status_codes import codes def print_help() -> None: console = rich.console.Console() console.print("[bold]HTTPX :butterfly:", justify="center") console.print() console.print("A next generation HTTP client.", justify="center") console.print() console.print( "Usage: [bold]httpx[/bold] [cyan]<URL> [OPTIONS][/cyan] ", justify="left" ) console.print() table = rich.table.Table.grid(padding=1, pad_edge=True) table.add_column("Parameter", no_wrap=True, justify="left", style="bold") table.add_column("Description") table.add_row( "-m, --method [cyan]METHOD", "Request method, such as GET, POST, PUT, PATCH, DELETE, OPTIONS, HEAD.\n" "[Default: GET, or POST if a request body is included]", ) table.add_row( "-p, --params [cyan]<NAME VALUE> ...", "Query parameters to include in the request URL.", ) table.add_row( "-c, --content [cyan]TEXT", "Byte content to include in the request body." ) table.add_row( "-d, --data [cyan]<NAME VALUE> ...", "Form data to include in the request body." ) table.add_row( "-f, --files [cyan]<NAME FILENAME> ...", "Form files to include in the request body.", ) table.add_row("-j, --json [cyan]TEXT", "JSON data to include in the request body.") table.add_row( "-h, --headers [cyan]<NAME VALUE> ...", "Include additional HTTP headers in the request.", ) table.add_row( "--cookies [cyan]<NAME VALUE> ...", "Cookies to include in the request." ) table.add_row( "--auth [cyan]<USER PASS>", "Username and password to include in the request. Specify '-' for the password to use " "a password prompt. Note that using --verbose/-v will expose the Authorization " "header, including the password encoding in a trivially reversible format.", ) table.add_row( "--proxy [cyan]URL", "Send the request via a proxy. Should be the URL giving the proxy address.", ) table.add_row( "--timeout [cyan]FLOAT", "Timeout value to use for network operations, such as establishing the connection, " "reading some data, etc... [Default: 5.0]", ) table.add_row("--follow-redirects", "Automatically follow redirects.") table.add_row("--no-verify", "Disable SSL verification.") table.add_row( "--http2", "Send the request using HTTP/2, if the remote server supports it." ) table.add_row( "--download [cyan]FILE", "Save the response content as a file, rather than displaying it.", ) table.add_row("-v, --verbose", "Verbose output. Show request as well as response.") table.add_row("--help", "Show this message and exit.") console.print(table) def get_lexer_for_response(response: Response) -> str: content_type = response.headers.get("Content-Type") if content_type is not None: mime_type, _, _ = content_type.partition(";") try: return pygments.lexers.get_lexer_for_mimetype(mime_type.strip()).name except pygments.util.ClassNotFound: # pragma: nocover pass return "" # pragma: nocover def format_request_headers(request: httpcore.Request, http2: bool = False) -> str: version = "HTTP/2" if http2 else "HTTP/1.1" headers = [ (name.lower() if http2 else name, value) for name, value in request.headers ] method = request.method.decode("ascii") target = request.url.target.decode("ascii") lines = [f"{method} {target} {version}"] + [ f"{name.decode('ascii')}: {value.decode('ascii')}" for name, value in headers ] return "\n".join(lines) def format_response_headers( http_version: bytes, status: int, reason_phrase: typing.Optional[bytes], headers: typing.List[typing.Tuple[bytes, bytes]], ) -> str: version = http_version.decode("ascii") reason = ( codes.get_reason_phrase(status) if reason_phrase is None else reason_phrase.decode("ascii") ) lines = [f"{version} {status} {reason}"] + [ f"{name.decode('ascii')}: {value.decode('ascii')}" for name, value in headers ] return "\n".join(lines) def print_request_headers(request: httpcore.Request, http2: bool = False) -> None: console = rich.console.Console() http_text = format_request_headers(request, http2=http2) syntax = rich.syntax.Syntax(http_text, "http", theme="ansi_dark", word_wrap=True) console.print(syntax) syntax = rich.syntax.Syntax("", "http", theme="ansi_dark", word_wrap=True) console.print(syntax) def print_response_headers( http_version: bytes, status: int, reason_phrase: typing.Optional[bytes], headers: typing.List[typing.Tuple[bytes, bytes]], ) -> None: console = rich.console.Console() http_text = format_response_headers(http_version, status, reason_phrase, headers) syntax = rich.syntax.Syntax(http_text, "http", theme="ansi_dark", word_wrap=True) console.print(syntax) syntax = rich.syntax.Syntax("", "http", theme="ansi_dark", word_wrap=True) console.print(syntax) def print_response(response: Response) -> None: console = rich.console.Console() lexer_name = get_lexer_for_response(response) if lexer_name: if lexer_name.lower() == "json": try: data = response.json() text = json.dumps(data, indent=4) except ValueError: # pragma: nocover text = response.text else: text = response.text syntax = rich.syntax.Syntax(text, lexer_name, theme="ansi_dark", word_wrap=True) console.print(syntax) else: # pragma: nocover console.print(response.text) def format_certificate(cert: dict) -> str: # pragma: nocover lines = [] for key, value in cert.items(): if isinstance(value, (list, tuple)): lines.append(f"* {key}:") for item in value: if key in ("subject", "issuer"): for sub_item in item: lines.append(f"* {sub_item[0]}: {sub_item[1]!r}") elif isinstance(item, tuple) and len(item) == 2: lines.append(f"* {item[0]}: {item[1]!r}") else: lines.append(f"* {item!r}") else: lines.append(f"* {key}: {value!r}") return "\n".join(lines) def trace(name: str, info: dict, verbose: bool = False) -> None: console = rich.console.Console() if name == "connection.connect_tcp.started" and verbose: host = info["host"] console.print(f"* Connecting to {host!r}") elif name == "connection.connect_tcp.complete" and verbose: stream = info["return_value"] server_addr = stream.get_extra_info("server_addr") console.print(f"* Connected to {server_addr[0]!r} on port {server_addr[1]}") elif name == "connection.start_tls.complete" and verbose: # pragma: nocover stream = info["return_value"] ssl_object = stream.get_extra_info("ssl_object") version = ssl_object.version() cipher = ssl_object.cipher() server_cert = ssl_object.getpeercert() alpn = ssl_object.selected_alpn_protocol() console.print(f"* SSL established using {version!r} / {cipher[0]!r}") console.print(f"* Selected ALPN protocol: {alpn!r}") if server_cert: console.print("* Server certificate:") console.print(format_certificate(server_cert)) elif name == "http11.send_request_headers.started" and verbose: request = info["request"] print_request_headers(request, http2=False) elif name == "http2.send_request_headers.started" and verbose: # pragma: nocover request = info["request"] print_request_headers(request, http2=True) elif name == "http11.receive_response_headers.complete": http_version, status, reason_phrase, headers = info["return_value"] print_response_headers(http_version, status, reason_phrase, headers) elif name == "http2.receive_response_headers.complete": # pragma: nocover status, headers = info["return_value"] http_version = b"HTTP/2" reason_phrase = None print_response_headers(http_version, status, reason_phrase, headers) def download_response(response: Response, download: typing.BinaryIO) -> None: console = rich.console.Console() syntax = rich.syntax.Syntax("", "http", theme="ansi_dark", word_wrap=True) console.print(syntax) content_length = response.headers.get("Content-Length") kwargs = {"total": int(content_length)} if content_length else {} with rich.progress.Progress( "[progress.description]{task.description}", "[progress.percentage]{task.percentage:>3.0f}%", rich.progress.BarColumn(bar_width=None), rich.progress.DownloadColumn(), rich.progress.TransferSpeedColumn(), ) as progress: description = f"Downloading [bold]{download.name}" download_task = progress.add_task(description, **kwargs) # type: ignore for chunk in response.iter_bytes(): download.write(chunk) progress.update(download_task, completed=response.num_bytes_downloaded) def validate_json( ctx: click.Context, param: typing.Union[click.Option, click.Parameter], value: typing.Any, ) -> typing.Any: if value is None: return None try: return json.loads(value) except json.JSONDecodeError: # pragma: nocover raise click.BadParameter("Not valid JSON") def validate_auth( ctx: click.Context, param: typing.Union[click.Option, click.Parameter], value: typing.Any, ) -> typing.Any: if value == (None, None): return None username, password = value if password == "-": # pragma: nocover password = click.prompt("Password", hide_input=True) return (username, password) def handle_help( ctx: click.Context, param: typing.Union[click.Option, click.Parameter], value: typing.Any, ) -> None: if not value or ctx.resilient_parsing: return print_help() ctx.exit() @click.command(add_help_option=False) @click.argument("url", type=str) @click.option( "--method", "-m", "method", type=str, help=( "Request method, such as GET, POST, PUT, PATCH, DELETE, OPTIONS, HEAD. " "[Default: GET, or POST if a request body is included]" ), ) @click.option( "--params", "-p", "params", type=(str, str), multiple=True, help="Query parameters to include in the request URL.", ) @click.option( "--content", "-c", "content", type=str, help="Byte content to include in the request body.", ) @click.option( "--data", "-d", "data", type=(str, str), multiple=True, help="Form data to include in the request body.", ) @click.option( "--files", "-f", "files", type=(str, click.File(mode="rb")), multiple=True, help="Form files to include in the request body.", ) @click.option( "--json", "-j", "json", type=str, callback=validate_json, help="JSON data to include in the request body.", ) @click.option( "--headers", "-h", "headers", type=(str, str), multiple=True, help="Include additional HTTP headers in the request.", ) @click.option( "--cookies", "cookies", type=(str, str), multiple=True, help="Cookies to include in the request.", ) @click.option( "--auth", "auth", type=(str, str), default=(None, None), callback=validate_auth, help=( "Username and password to include in the request. " "Specify '-' for the password to use a password prompt. " "Note that using --verbose/-v will expose the Authorization header, " "including the password encoding in a trivially reversible format." ), ) @click.option( "--proxies", "proxies", type=str, default=None, help="Send the request via a proxy. Should be the URL giving the proxy address.", ) @click.option( "--timeout", "timeout", type=float, default=5.0, help=( "Timeout value to use for network operations, such as establishing the " "connection, reading some data, etc... [Default: 5.0]" ), ) @click.option( "--follow-redirects", "follow_redirects", is_flag=True, default=False, help="Automatically follow redirects.", ) @click.option( "--no-verify", "verify", is_flag=True, default=True, help="Disable SSL verification.", ) @click.option( "--http2", "http2", type=bool, is_flag=True, default=False, help="Send the request using HTTP/2, if the remote server supports it.", ) @click.option( "--download", type=click.File("wb"), help="Save the response content as a file, rather than displaying it.", ) @click.option( "--verbose", "-v", type=bool, is_flag=True, default=False, help="Verbose. Show request as well as response.", ) @click.option( "--help", is_flag=True, is_eager=True, expose_value=False, callback=handle_help, help="Show this message and exit.", ) def main( url: str, method: str, params: typing.List[typing.Tuple[str, str]], content: str, data: typing.List[typing.Tuple[str, str]], files: typing.List[typing.Tuple[str, click.File]], json: str, headers: typing.List[typing.Tuple[str, str]], cookies: typing.List[typing.Tuple[str, str]], auth: typing.Optional[typing.Tuple[str, str]], proxies: str, timeout: float, follow_redirects: bool, verify: bool, http2: bool, download: typing.Optional[typing.BinaryIO], verbose: bool, ) -> None: """ An HTTP command line client. Sends a request and displays the response. """ if not method: method = "POST" if content or data or files or json else "GET" try: with Client( proxies=proxies, timeout=timeout, verify=verify, http2=http2, ) as client: with client.stream( method, url, params=list(params), content=content, data=dict(data), files=files, # type: ignore json=json, headers=headers, cookies=dict(cookies), auth=auth, follow_redirects=follow_redirects, extensions={"trace": functools.partial(trace, verbose=verbose)}, ) as response: if download is not None: download_response(response, download) else: response.read() if response.content: print_response(response) except RequestError as exc: console = rich.console.Console() console.print(f"[red]{type(exc).__name__}[/red]: {str(exc)}") sys.exit(1) sys.exit(0 if response.is_success else 1) ```
{ "source": "2602Sum/Real_estate_price_prediction", "score": 4 }
#### File: 2602Sum/Real_estate_price_prediction/app.py ```python import numpy as np import pickle import pandas as pd import streamlit as st from sklearn.preprocessing import MinMaxScaler mms = MinMaxScaler() from PIL import Image model=open('saved_pickle','rb') regressor=pickle.load(model) def real_estate_price_prediction(House_age, Distance_to_the_nearest_MRT_station, Number_of_convenience_stores): X = np.array([[House_age, Distance_to_the_nearest_MRT_station, Number_of_convenience_stores]]) #X_norm = mms.fit_transform(X) prediction=regressor.predict(X) print(prediction) return prediction def main(): st.title("Real Estate Price Prediction") html_temp = """ <div style="background-color:tomato;padding:10px"> <h2 style="color:white;text-align:center;">Streamlit Real Estate Price Prediction ML App </h2> </div> """ st.markdown(html_temp,unsafe_allow_html=True) House_age = st.text_input("House_age") Distance_to_the_nearest_MRT_station = st.text_input("Distance_to_the_nearest_MRT_station") Number_of_convenience_stores = st.text_input("Number_of_convenience_stores") result="" if st.button("Predict"): result=real_estate_price_prediction(House_age, Distance_to_the_nearest_MRT_station, Number_of_convenience_stores) st.success('The output is {}'.format(result)) if st.button("About"): st.text("Lets LEarn") st.text("Built with Streamlit") if __name__=='__main__': main() ```
{ "source": "260601068j/X-Planef", "score": 3 }
#### File: 260601068j/X-Planef/hardware_analysis.py ```python from __future__ import division, print_function import argparse import collections import logging from ga_library import * from utils import * from collections import defaultdict, OrderedDict SHOW_ABSOLUTE_NUMBERS = False _out = '' def _log(s, end='\n'): global _out _out += s + end file_name_suffix = '' def main(): argparser = argparse.ArgumentParser(description='Dumps hardware stats from X-Plane Desktop; you probably want to pipe the output to a CSV file') argparser.add_argument('--version', type=int, default=11, help='The major version of X-Plane you want data on (10 or 11)') args = argparser.parse_args() write_hardware_analysis_files(Version.v11 if args.version == 11 else Version.v10, UserGroup.PaidOnly) def write_hardware_analysis_files(version: Union[int, Version], user_group: UserGroup, csv_path=None): """ :type csv_path: Union[str,None] """ global file_name_suffix file_name_suffix = "_%s_%s_%s" % (version, user_group.name, today_file_suffix()) qm = SimpleQueryMgr(GaService.desktop(), version, Metric.Users, user_group) perform_cpu_analysis(qm.query(CustomDimension.Cpu)) perform_flight_controls_analysis(qm.query(CustomDimension.FlightControls)) stats = HardwareStats(GaService.desktop(), version, Metric.Users, user_group) grapher = HardwareGrapher(stats) perform_ram_analysis(stats) perform_gpu_analysis(stats) perform_os_analysis(stats, grapher) perform_vr_analysis(stats, grapher) if not csv_path: csv_path = "hardware_analysis%s.csv" % file_name_suffix with open(csv_path, 'w') as out_file: out_file.write(_out) out_file.write('\n') class HardwareStats: def __init__(self, service: GaService, version: Union[int, Version]=Version.v11, user_group: UserGroup=UserGroup.PaidOnly): self.qm = SimpleQueryMgr(service, version, Metric.Users, user_group) def operating_systems(self) -> Dict[str, int]: platform_count = defaultdict(int) for row in self.qm.query(CustomDimension.Os): val = str_to_int(row[1]) os_name = classify_platform(row[0]) platform_count[os_name] += val return counts_to_percents(platform_count) def operating_system_versions(self) -> Dict[str, Dict[str, int]]: version_count = defaultdict(lambda: defaultdict(int)) for row in self.qm.query(CustomDimension.Os): val = str_to_int(row[1]) os_name = classify_platform(row[0]) version = get_os_version(row[0]) if version: version_count[os_name][version] += val return version_count def ram_amounts(self) -> Dict[str, int]: users_with_at_least_this_much_ram = collections.defaultdict(int) total_users = 0 for row in self.qm.query(CustomDimension.Ram): val = str_to_int(row[1]) total_users += val ram_class = int(row[0]) if ram_class >= 2: users_with_at_least_this_much_ram["2GB"] += val if ram_class >= 4: users_with_at_least_this_much_ram["4GB"] += val if ram_class >= 8: users_with_at_least_this_much_ram["8GB"] += val if ram_class >= 16: users_with_at_least_this_much_ram["16GB"] += val if ram_class >= 32: users_with_at_least_this_much_ram["32GB"] += val return counts_to_percents(users_with_at_least_this_much_ram, total_users) def gpu_manufacturers(self) -> Dict[str, int]: out = defaultdict(int) for row in self.qm.query(CustomDimension.Gpu): out[get_gpu_manufacturer(row[0])] += str_to_int(row[1]) out = counts_to_percents(out) with suppress(KeyError): if out['Unknown'] < 0.3: del out['Unknown'] return out def gpu_generation(self) -> Dict[str, int]: out = defaultdict(int) for row in self.qm.query(CustomDimension.Gpu): out[get_gpu_generation(row[0])] += str_to_int(row[1]) return counts_to_percents(out) def gpu_platform(self) -> Dict[str, int]: out = defaultdict(int) for row in self.qm.query(CustomDimension.Gpu): out[get_mobile_versus_desktop(row[0])] += str_to_int(row[1]) return counts_to_percents(out) def vr_headsets(self): known_headsets = { 'rift': 'Oculus Rift', 'oculus': 'Oculus Rift', 'pimax 5k': 'Pimax 5K', 'psvr': 'PSVR Headset', 'windows': 'Windows Mixed Reality', 'lighthouse': 'OpenVR (like HTC Vive)', 'vive': 'OpenVR (like HTC Vive)', 'aapvr': 'Phone', 'vridge': 'Phone', 'ivry': 'Phone', 'phonevr': 'Phone', } headset_count = collections.defaultdict(int) for row in self.qm.query(CustomDimension.VrHeadset): label = row[0] for search_term, deduped_name in known_headsets.items(): if search_term in label.lower(): label = deduped_name break else: logging.debug('unknown headset: ' + label) headset_count[label] += str_to_int(row[1]) return counts_to_percents(headset_count, smush_into_other_below_percent=1) def vr_usage(self): vr_start_date = Version.v1120r4.value.start_date total_users = sum(str_to_int(row[1]) for row in self.qm.query(CustomDimension.Ram, override_start_date=vr_start_date)) vr_users = sum(str_to_int(row[1]) for row in self.qm.query(CustomDimension.VrHeadset, override_start_date=vr_start_date)) vr_pct = round((vr_users / total_users) * 100, 2) return { 'Have Used VR': vr_pct, '2-D Monitor Only': 100 - vr_pct } @property def total_users(self): ram_data = self.qm.query(CustomDimension.Ram) return sum(str_to_int(row[1]) for row in ram_data) class HardwareGrapher: def __init__(self, stats: HardwareStats): self.stats = stats def operating_systems(self) -> plotly.graph_objs.Figure: return make_pie_chart_figure(self.stats.operating_systems()) def ram_amounts(self) -> plotly.graph_objs.Figure: return make_bar_chart_figure(self.stats.ram_amounts(), 'Users with at Least <em>x</em> GB RAM', make_x_label=lambda l: str(l) + '+') def gpu_mobile_vs_desktop(self) -> plotly.graph_objs.Figure: return make_pie_chart_figure(self.stats.gpu_platform()) def gpu_manufacturers(self) -> plotly.graph_objs.Figure: return make_bar_chart_figure(self.stats.gpu_manufacturers(), 'GPU Manufacturers') def vr_headsets(self) -> plotly.graph_objs.Figure: return make_bar_chart_figure(self.stats.vr_headsets(), 'VR Headsets', already_sorted=True, y_label='% VR Users') def vr_usage(self) -> plotly.graph_objs.Figure: return make_pie_chart_figure(self.stats.vr_usage(), top_pad_px=40) def perform_os_analysis(stats: HardwareStats, grapher: HardwareGrapher): # Overall platform breakdown platform_count = stats.operating_systems() _log("PLATFORM BREAKDOWN") dump_generic_count_dict(platform_count, "Operating System", "Machines") plotly.offline.plot(grapher.operating_systems(), image='png', image_filename='os_breakdown' + file_name_suffix, image_width=1024, output_type='file') version_count = stats.operating_system_versions() _log("OS VERSIONS") dump_generic_count_dict(version_count["Windows"], "OS Version", "Windows Machines") dump_generic_count_dict(version_count["Mac"], "OS Version", "Macs") dump_generic_count_dict(version_count["Linux"], "OS Version", "Linux Machines") def clean_up_string_formatting(string): return str(string).strip() def perform_cpu_analysis(results_rows): def get_cpu_core_count(cpu_line): stats = cpu_line.split(" - ") for stat in stats: if stat.startswith("Cores:"): label_and_cores = stat.split(" ") return int(label_and_cores[1]) return 0 cpu_cores = collections.defaultdict(int) for row in results_rows: val = str_to_int(row[1]) core_count = get_cpu_core_count(row[0]) cpu_cores[core_count] += val _log("NUMBER OF CPU CORES") dump_generic_count_dict(cpu_cores, "CPU Cores", "Machines") def perform_vr_analysis(stats: HardwareStats, grapher: HardwareGrapher): _log("VR USAGE") dump_generic_count_dict(stats.vr_usage(), "VR Status", "Users") _log("VR HEADSETS") dump_generic_count_dict(stats.vr_headsets(), "Headset Type", "Users") plotly.offline.plot(grapher.vr_usage(), image='png', image_filename='vr_usage' + file_name_suffix, image_width=1024, output_type='file') plotly.offline.plot(grapher.vr_headsets(), image='png', image_filename='vr_headsets' + file_name_suffix, image_width=1024, output_type='file') def get_gpu_manufacturer(gpu_string): if lower_contains(gpu_string, ('firepro', 'firegl', 'radeon', 'amd ')) or gpu_string.startswith(('67EF', '67DF', 'ASUS EAH', 'ASUS R')): return "AMD/ATI" elif lower_contains(gpu_string, ('Quadro', 'GeForce', 'TITAN')) or gpu_string.startswith(('NVS ', 'NV1')): return "Nvidia" elif "Intel" in gpu_string: return "Intel" return "Unknown" def get_gpu_generation(gpu_string): gpu = gpu_string.lower() if "quadro" in gpu: return "Nvidia Quadro (All Generations)" elif "firepro" in gpu or "firegl" in gpu: return "AMD FirePro (All Generations)" if "radeon" in gpu or "asus" in gpu: for gen in [2, 3, 4, 5, 6, 7, 8, 9]: gen = str(gen) if "R" + gen + " M" in gpu_string: return "Radeon R" + gen + "M" elif "R" + gen + " " in gpu_string: return "Radeon R" + gen elif re.search(gen + "\d\d\dM", gpu_string) or ("Mobility" in gpu_string and re.search(gen + "\d\d\d", gpu_string)): return "Radeon " + gen + "xxxM" elif re.search(gen + "\d\d\d", gpu_string): return "Radeon " + gen + "xxxM" else: return "Radeon (Other)" elif "titan x" in gpu: return "GeForce 9xx" elif "titan" in gpu: return "GeForce 7xx" elif "geforce" in gpu: for gen in [1, 2, 3, 4, 5, 6, 7, 8, 9]: gen = str(gen) base_radeon_re = "GeForce (G|GT|GTX|GTS)?\s*" if re.search(base_radeon_re + gen + "\d\d\s*(Ti)?(\s|/)", gpu_string): return "GeForce " + gen + "xx" elif re.search(base_radeon_re + gen + "\d\dM", gpu_string): return "GeForce " + gen + "xxM" elif re.search(base_radeon_re + gen + "\d\d\d\s*(Ti)?(\s|/)", gpu_string): return "GeForce " + gen + "xxx" elif re.search(base_radeon_re + gen + "\d\d\dM", gpu_string): return "GeForce " + gen + "xxxM" else: return "GeForce (Other)" elif "intel" in gpu: if any(ident in gpu for ident in ["gma", "gm45", "g41", "g45", "q45", "eaglelake", "4 series"]): return "Intel Integrated (GMA or earlier)" elif "hd" in gpu or "iris" in gpu: if any(ident in gpu for ident in ["2000", "3000"]): return "Intel Integrated (6th Generation; HD 2000/3000)" elif any(ident in gpu for ident in ["4000", "4200", "4400", "4600", "4700", "5000", "5100", "5200"]): return "Intel Integrated (7th Generation; HD 2500/4x00/5x00)" elif any(ident in gpu_string for ident in ["5300", "5500", "5600", "5700", "6000", "6100", "6200", "6300"]): return "Intel Integrated (8th Generation; HD 5x00/6x00)" elif any(ident in gpu_string for ident in ["500", "505", "510", "515", "520", "530", "540", "550", "580"]): return "Intel Integrated (9th Generation; HD 5xx)" else: return "Intel Integrated (5th Generation; HD)" elif "sandybridge" in gpu: return "Intel Integrated (6th Generation; HD 2000/3000)" elif "haswell" in gpu or "ivybridge" in gpu or "bay trail" in gpu: return "Intel Integrated (7th Generation; HD 2500/4x00/5x00)" elif "broadwell" in gpu: return "Intel Integrated (8th Generation; HD 5x00/6x00)" elif "skylake" in gpu: return "Intel Integrated (9th Generation; HD 5xx)" elif "ironlake" in gpu: return "Intel Integrated (5th Generation; HD)" else: return gpu_string return "Other" def get_mobile_versus_desktop(gpu_string): gen = get_gpu_generation(gpu_string) if gen.startswith("Intel"): return "Intel" elif gen.endswith("M"): return "Mobile" else: return "Desktop" def perform_gpu_analysis(stats: HardwareStats): gpu_manufacturer = stats.gpu_manufacturers() _log("GPU PLATFORM") dump_generic_count_dict(stats.gpu_platform(), "GPU Platform", "Machines") _log("GPU MANUFACTURER") dump_generic_count_dict(gpu_manufacturer, "GPU Manufacturer", "Machines") _log("GPU GENERATION") dump_generic_count_dict(stats.gpu_generation(), "GPU Generation", "Machines") with suppress(KeyError): del gpu_manufacturer['Unknown'] make_bar_chart(gpu_manufacturer, 'gpu_manufacturer' + file_name_suffix, 'Manufacturer', needs_conversion_to_percents=False, height_scaling_factor=0.7) def perform_ram_analysis(stats: HardwareStats): users_with_at_least_this_much_ram = stats.ram_amounts() _log("USERS WITH AT LEAST THIS MUCH RAM") for ram_amount, value in users_with_at_least_this_much_ram.items(): _log(','.join([str(ram_amount), str(value)])) _log("\n" * 3) make_bar_chart(users_with_at_least_this_much_ram, 'ram_amounts' + file_name_suffix, 'RAM Amount', make_x_label=lambda l: str(l) + '+', height_scaling_factor=0.7) def perform_flight_controls_analysis(results_rows): known_yokes = [ "Saitek Pro Flight Yoke", "Saitek X52", "CH FLIGHT SIM YOKE", "CH ECLIPSE YOKE", "Pro Flight Cessna Yoke", "PFC Cirrus Yoke", "CH 3-Axis 10-Button POV USB Yoke", ] known_sticks = [ "Logitech 3D Pro", "T.Flight Hotas", "T.Flight Stick X", "Logitech Attack 3", "Mad Catz F.L.Y.5 Stick", "SideWinder Precision 2", "T.16000M", "SideWinder Force Feedback 2", "Saitek Pro Flight X-55 Rhino Stick", "Cyborg", "Saitek Cyborg USB Stick", "AV8R", "Logitech Freedom 2.4", "SideWinder Joystick", "Mad Catz V.1 Stick", "SideWinder Precision Pro", "SideWinder 3D Pro", "Logitech Force 3D Pro", "WingMan Force 3D", "Joystick - HOTAS Warthog", "WingMan Extreme Digital 3D", "WingMan Extreme 3D", "Top Gun Afterburner", "CH FLIGHTSTICK PRO", "CH FIGHTERSTICK", "CH COMBATSTICK", "Saitek ST290", "Saitek ST90", "Top Gun Fox 2", "Aviator for Playstation 3", "Dark Tornado Joystick", "Saitek X45", "Saitek X36", "USB Joystick", "Pro Flight X65", "G940", "HOTAS Cougar Joystick", "MetalStrik 3D", "WingMan Attack 2" ] known_controllers = [ "XBOX", "Playstation(R)3 Controller", "WingMan Cordless Gamepad", "WingMan RumblePad", "Logitech Dual Action", "RumblePad 2", "ASUS Gamepad", "USB WirelessGamepad", "Betop Controller", "Logitech(R) Precision(TM) Gamepad", "Wireless Gamepad F710" ] known_rc_controllers = [ "InterLink Elite", "RealFlight Interface" ] def canonicalize_stick_or_yoke_name(flight_control_row): flight_control_row = clean_up_string_formatting(flight_control_row) if "Mouse" in flight_control_row: return "Mouse" elif "VID:1133PID:49685" in flight_control_row: return "Logitech Extreme 3D" elif "WingMan Ext Digital 3D" in flight_control_row: return "WingMan Extreme Digital 3D" elif "VID:1699PID:1890" in flight_control_row: return "Saitek X52" elif "Wireless 360 Controller" in flight_control_row: return "XBOX" elif "VID:121PID:6" in flight_control_row: return "Generic USB Joystick" elif "VID:1678PID:49402" in flight_control_row: return "CH Products (Unknown)" for control in known_yokes + known_sticks + known_controllers: if control.lower() in flight_control_row.lower(): return control if "," in flight_control_row: return flight_control_row.replace(",", ";") return flight_control_row def classify_stick_or_yoke(flight_control_row): flight_control_row = canonicalize_stick_or_yoke_name(flight_control_row) if flight_control_row == "Mouse": return "Mouse" elif flight_control_row in known_yokes: return "Yoke" elif flight_control_row in known_sticks: return "Joystick" elif flight_control_row in known_controllers: return "Gamepad" elif flight_control_row in known_rc_controllers: return "RC Controller" elif "yoke" in flight_control_row.lower(): return "Yoke" elif "stick" in flight_control_row.lower(): return "Joystick" elif "pad" in flight_control_row.lower(): return "Gamepad" else: return "Unknown" flight_controls = collections.defaultdict(int) flight_control_type = collections.defaultdict(int) has_rudder_pedals = collections.defaultdict(int) for row in results_rows: val = str_to_int(row[1]) flight_controls[canonicalize_stick_or_yoke_name(row[0])] += val flight_control_type[classify_stick_or_yoke(row[0])] += val row = clean_up_string_formatting(row[0]) if "rudder" in row.lower() or "pedals" in row.lower(): has_rudder_pedals[True] += val else: has_rudder_pedals[False] += val nuke_these_keys = [] for controls, count in flight_controls.items(): if count < 5: nuke_these_keys.append(controls) for key in nuke_these_keys: flight_controls["Other"] += flight_controls[key] del flight_controls[key] _log("PRIMARY FLIGHT CONTROLS TYPE") dump_generic_count_dict(flight_control_type, "Flight Controls Type", "Users") _log("PRIMARY FLIGHT CONTROLS MODEL (for non-mouse users)") del flight_controls["Mouse"] dump_generic_count_dict(flight_controls, "Flight Controls Model", "Users") _log("USERS FLYING WITH PEDALS") dump_generic_count_dict(has_rudder_pedals, "Has Pedals?", "Users") def dump_generic_count_dict(dictionary, label, metric_category): if SHOW_ABSOLUTE_NUMBERS: _log(label + ",Num " + metric_category + ",% of All " + metric_category) else: _log(label + ",% of All " + metric_category) total = total_entries_in_dict(dictionary) sorted_dict = sorted(dictionary.items(), key=operator.itemgetter(1), reverse=True) for i, label_and_count in enumerate(sorted_dict): if SHOW_ABSOLUTE_NUMBERS: _log(','.join([str(label_and_count[0]), str(label_and_count[1]), str((label_and_count[1] / total) * 100) + "%"])) else: # Coerce to ASCII label = clean_up_string_formatting(label_and_count[0]) percent_str = clean_up_string_formatting(str((label_and_count[1] / total) * 100) + u"%") _log(label, end="") _log(",", end="") _log(percent_str) _log("\n" * 3) def lower_contains(s: str, check: Iterable[str]) -> bool: return any(sub.lower() in s.lower() for sub in check) if __name__ == '__main__': main() ```
{ "source": "2626060Z/tango_with_django_project", "score": 3 }
#### File: tango_with_django_project/rango/tests_chapter6.py ```python import os import re # We use regular expressions to do more in-depth checks on generated HTML output from views. import warnings import importlib from rango.models import Category, Page from populate_rango import populate from django.urls import reverse from django.test import TestCase from django.conf import settings from django.db.models.query import QuerySet FAILURE_HEADER = f"{os.linesep}{os.linesep}{os.linesep}================{os.linesep}TwD TEST FAILURE =({os.linesep}================{os.linesep}" FAILURE_FOOTER = f"{os.linesep}" class Chapter6PopulationScriptTest(TestCase): """ A few simple tests to examine whether the population script has been updated to include the requested changes (views for pages). """ def setUp(self): populate() def test_page_objects_have_views(self): """ Checks the basic requirement that all pages must have a positive view count. """ pages = Page.objects.filter() for page in pages: self.assertTrue(page.views > 0, f"{FAILURE_HEADER}The page '{page.title}' has a negative/zero view count. The exercises for Chapter 6 stated that all view values must be greater than zero. Update your population script, and try again.{FAILURE_FOOTER}") class Chapter6IndexViewTests(TestCase): """ A series of tests that examine the behaviour of the index view and its corresponding template. Tests to see if the context dictionary is correctly formed, and whether the response is correct, too. For these tests, we rely on the populate_rango module. We assume that this is now fully correct and working. If tests fail and you can't understand why, maybe it's worth checking out your population script! And yes, we assume that all exercises have been completed, too. """ def setUp(self): populate() self.response = self.client.get(reverse('rango:index')) self.content = self.response.content.decode() def test_template_filename(self): """ Still using a template? """ self.assertTemplateUsed(self.response, 'rango/index.html', f"{FAILURE_HEADER}Are you using index.html for your index() view? Why not?!{FAILURE_FOOTER}") def test_index_context_dictionary(self): """ Runs some assertions to check if the context dictionary has the correct key/value pairings. """ expected_boldmessage = 'Crunchy, creamy, cookie, candy, cupcake!' expected_categories_order = list(Category.objects.order_by('-likes')[:5]) expected_pages_order = list(Page.objects.order_by('-views')[ :5]) # From the exercises section of Chapter 6 -- we cannot assume a set order, because the developer can set the number of views to whatever they wish. # Does the boldmessage still exist? A surprising number of people delete it here. self.assertTrue('boldmessage' in self.response.context, f"{FAILURE_HEADER}The 'boldmessage' variable couldn't be found in the context dictionary for the index() view. Did you delete it?{FAILURE_FOOTER}") self.assertEquals(expected_boldmessage, self.response.context['boldmessage'], f"{FAILURE_HEADER}Where did {expected_boldmessage} go in the index() view?{FAILURE_FOOTER}") # Check that categories exists in the context dictionary, that it references the correct objects, and the order is spot on. self.assertTrue('categories' in self.response.context, f"{FAILURE_HEADER}We couldn't find a 'categories' variable in the context dictionary within the index() view. Check the instructions in the book, and try again.{FAILURE_FOOTER}") self.assertEqual(type(self.response.context['categories']), QuerySet, f"{FAILURE_HEADER}The 'categories' variable in the context dictionary for the index() view didn't return a QuerySet object as expected.{FAILURE_FOOTER}") self.assertEqual(expected_categories_order, list(self.response.context['categories']), f"{FAILURE_HEADER}Incorrect categories/category order returned from the index() view's context dictionary -- expected {expected_categories_order}; got {list(self.response.context['categories'])}.{FAILURE_FOOTER}") # Repeat, but for the pages variable. Note that order cannot be verfified (no instructions in book to use certain values). self.assertTrue('pages' in self.response.context, f"{FAILURE_HEADER}We couldn't find a 'pages' variable in the index() view's context dictionary. Did you complete the Chapter 6 exercises?{FAILURE_FOOTER}") self.assertEqual(type(self.response.context['pages']), QuerySet, f"{FAILURE_HEADER}The 'pages' variable in the index() view's context dictionary doesn't return a QuerySet as expected.{FAILURE_FOOTER}") self.assertEqual(expected_pages_order, list(self.response.context['pages']), f"{FAILURE_HEADER}The 'pages' context dictionary variable for the index() view didn't return the QuerySet we were expectecting: got {list(self.response.context['pages'])}, expected {expected_pages_order}. Did you apply the correct ordering to the filtered results?{FAILURE_FOOTER}") def test_index_categories(self): """ Checks the response generated by the index() view -- does it render the categories correctly? Regular expressions are used here (yikes) to try and be as fair as possible when checking the markup received from the developer's project. """ category_li_entries_regex = [ # 0 = regex match, 1 = title of category, 2 = sanitised markup for error message [ r'<li>(\s*|\n*)<a(\s+)href(\s*)=(\s*)("/rango/category/python/"|\'/rango/category/python/\')(\s*)>(\s*|\n*)Python(\s*|\n*)</a>(\s*|\n*)</li>', 'Python', '<li><a href="/rango/category/python/">Python</a></li>'], [ r'<li>(\s*|\n*)<a(\s+)href(\s*)=(\s*)("/rango/category/django/"|\'/rango/category/django/\')(\s*)>(\s*|\n*)Django(\s*|\n*)</a>(\s*|\n*)</li>', 'Django', '<li><a href="/rango/category/django/">Django</a></li>'], [ r'<li>(\s*|\n*)<a(\s+)href(\s*)=(\s*)("/rango/category/other-frameworks/"|\'/rango/category/other-frameworks/\')(\s*)>(\s*|\n*)Other Frameworks(\s*|\n*)</a>(\s*|\n*)</li>', 'Other Frameworks', '<li><a href="/rango/category/other-frameworks/">Other Frameworks</a></li>'], ] # Check for the presence of each entry. for entry in category_li_entries_regex: self.assertTrue(re.search(entry[0], self.content), f"{FAILURE_HEADER}We couldn't find the expected markup '{entry[2]}' (for the {entry[1]} category) in the response of your index() view. Check your template, and try again.{FAILURE_FOOTER}") def test_index_pages(self): """ Checks the response generated by the index() view -- does it render the pages correctly? As you can set view values to whatever you like for pages (in the population script), we need to be a bit more clever working out what five of the pages should be displayed. """ page_li_entries_regex = { 'Official Python Tutorial': r'<li>(\s*|\n*)<a(\s+)href(\s*)=(\s*)("http://docs.python.org/3/tutorial/"|\'http://docs.python.org/3/tutorial/\')(\s*)>(\s*|\n*)Official Python Tutorial(\s*|\n*)</a>(\s*|\n*)</li>', 'How to Think like a Computer Scientist': r'<li>(\s*|\n*)<a(\s+)href(\s*)=(\s*)("http://www.greenteapress.com/thinkpython/"|\'http://www.greenteapress.com/thinkpython/\')(\s*)>(\s*|\n*)How to Think like a Computer Scientist(\s*|\n*)</a>(\s*|\n*)</li>', 'Learn Python in 10 Minutes': r'<li>(\s*|\n*)<a(\s+)href(\s*)=(\s*)("http://www.korokithakis.net/tutorials/python/"|\'http://www.korokithakis.net/tutorials/python/\')(\s*)>(\s*|\n*)Learn Python in 10 Minutes(\s*|\n*)</a>(\s*|\n*)</li>', 'Official Django Tutorial': r'<li>(\s*|\n*)<a(\s+)href(\s*)=(\s*)("https://docs.djangoproject.com/en/2.1/intro/tutorial01/"|\'https://docs.djangoproject.com/en/2.1/intro/tutorial01/\')(\s*)>(\s*|\n*)Official Django Tutorial(\s*|\n*)</a>(\s*|\n*)</li>', 'Django Rocks': r'<li>(\s*|\n*)<a(\s+)href(\s*)=(\s*)("http://www.djangorocks.com/"|\'http://www.djangorocks.com/\')(\s*)>(\s*|\n*)Django Rocks(\s*|\n*)</a>(\s*|\n*)</li>', 'How to Tango with Django': r'<li>(\s*|\n*)<a(\s+)href(\s*)=(\s*)("http://www.tangowithdjango.com/"|\'http://www.tangowithdjango.com/\')(\s*)>(\s*|\n*)How to Tango with Django(\s*|\n*)</a>(\s*|\n*)</li>', 'Bottle': r'<li>(\s*|\n*)<a(\s+)href(\s*)=(\s*)("http://bottlepy.org/docs/dev/"|\'http://bottlepy.org/docs/dev/\')(\s*)>(\s*|\n*)Bottle(\s*|\n*)</a>(\s*|\n*)</li>', 'Flask': r'<li>(\s*|\n*)<a(\s+)href(\s*)=(\s*)("http://flask.pocoo.org"|\'http://flask.pocoo.org\')(\s*)>(\s*|\n*)Flask(\s*|\n*)</a>(\s*|\n*)</li>', } expected_pages_order = list(Page.objects.order_by('-views')[:5]) expected_pages_li = [] # Populate expected_pages_li, picking out the entry from page_li_entries_regex. for expected_page in expected_pages_order: expected_pages_li.append(page_li_entries_regex[expected_page.title]) # Now we have the five entries regex to match, we can loop over and check each one exists. for expected_regex in expected_pages_li: print(self.content) self.assertTrue(re.search(expected_regex, self.content), f"{FAILURE_HEADER}Checks for the top five pages in the index() view's response failed. Check you are using the correct list of objects, the correct HTML markup, and try again. '{expected_regex}'{FAILURE_FOOTER}") def test_index_response_titles(self): """ Checks whether the correct titles are used (including <h2> tags) for categories and pages. This is listed as an exercise at the end of Chapter 6. """ expected_category_h2 = '<h2>Most Liked Categories</h2>' expected_page_h2 = '<h2>Most Viewed Pages</h2>' self.assertIn(expected_category_h2, self.content, f"{FAILURE_HEADER}We couldn't find the markup '{expected_category_h2}' in your index.html template. Check you completed the Chapter 6 exercises as requested, and try again.{FAILURE_FOOTER}") self.assertIn(expected_page_h2, self.content, f"{FAILURE_HEADER}We couldn't find the markup '{expected_page_h2}' in your index.html template. Check you completed the Chapter 6 exercises as requested, and try again.{FAILURE_FOOTER}") class Chapter6NoItemsIndexViewTests(TestCase): """ A few tests to complement the Chapter6IndexViewTests. This time, we purposefully do not prepopulate the sample database with data from populate_rango. As such, these tests examine whether the app being tested produces the correct output when no categories/pages are present. """ def setUp(self): self.response = self.client.get(reverse('rango:index')) self.content = self.response.content.decode() def test_empty_index_context_dictionary(self): """ Runs assertions on the context dictionary, ensuring the categories and pages variables exist, but return empty (zero-length) QuerySet objects. """ self.assertTrue('categories' in self.response.context, f"{FAILURE_HEADER}The 'categories' variable does not exist in the context dictionary for index(). (Empty check){FAILURE_FOOTER}") self.assertEqual(type(self.response.context['categories']), QuerySet, f"{FAILURE_HEADER}The 'categories' variable in the context dictionary for index() does yield a QuerySet object. (Empty check){FAILURE_FOOTER}") self.assertEqual(len(self.response.context['categories']), 0, f"{FAILURE_HEADER}The 'categories' variable in the context dictionary for index() is not empty. (Empty check){FAILURE_FOOTER}") self.assertTrue('pages' in self.response.context, f"{FAILURE_HEADER}The 'pages' variable does not exist in the context dictionary for index(). (Empty check){FAILURE_FOOTER}") self.assertEqual(type(self.response.context['pages']), QuerySet, f"{FAILURE_HEADER}The 'pages' variable in the context dictionary for index() does yield a QuerySet object. (Empty check){FAILURE_FOOTER}") self.assertEqual(len(self.response.context['pages']), 0, f"{FAILURE_HEADER}The 'pages' variable in the context dictionary for index() is not empty. (Empty check){FAILURE_FOOTER}") def test_empty_index_response(self): """ Checks to see whether the correct messages appear for no categories and pages. """ self.assertIn('<strong>There are no categories present.</strong>', self.content, f"{FAILURE_HEADER}When no categories are present, we can't find the required '<strong>There are no categories present.</strong>' markup in your index() view's output.{FAILURE_FOOTER}") self.assertIn('<strong>There are no pages present.</strong>', self.content, f"{FAILURE_HEADER}When no categories are present, we can't find the required '<strong>There are no pages present.</strong>' markup in your index() view's output. Read the Chapter 6 exercises carefully.{FAILURE_FOOTER}") def test_sample_category(self): """ Checks to see if the correct output is displayed when a sample Category object is added. For this test, we disregard the instance variable response. """ Category.objects.get_or_create(name='Test Category') updated_response = self.client.get(reverse('rango:index')).content.decode() category_regex = r'<li>(\s*|\n*)<a(\s+)href(\s*)=(\s*)("/rango/category/test-category/"|\'/rango/category/test-category/\')(\s*)>(\s*|\n*)Test Category(\s*|\n*)</a>(\s*|\n*)</li>' self.assertTrue(re.search(category_regex, updated_response), f"{FAILURE_HEADER}When adding a test category, we couldn't find the markup for it in the output of the index() view. Check you have included all the code correctly for displaying categories.{FAILURE_FOOTER}") self.assertIn('<strong>There are no pages present.</strong>', self.content, f"{FAILURE_HEADER}When no categories are present, we can't find the required '<strong>There are no pages present.</strong>' markup in your index() view's output. Read the Chapter 6 exercises carefully.{FAILURE_FOOTER}") class Chapter6CategoryViewTests(TestCase): """ A series of tests for examining the show_category() view, looking at the context dictionary and rendered response. We use the 'Other Frameworks' category for these tests to check the slugs work correctly, too. """ def setUp(self): populate() self.response = self.client.get( reverse('rango:show_category', kwargs={'category_name_slug': 'other-frameworks'})) self.content = self.response.content.decode() def test_template_filename(self): """ Still using a template? """ self.assertTemplateUsed(self.response, 'rango/category.html', f"{FAILURE_HEADER}The category.html template is not used for the show_category() view. The specification requires this.{FAILURE_FOOTER}") def test_slug_functionality(self): """ Runs a simple test by changing the name of the "Other Frameworks" category to "Unscrupulous Nonsense". Checks to see whether the slug updates with the name change. """ category = Category.objects.get_or_create(name='Other Frameworks')[0] category.name = "Unscrupulous Nonsense" category.save() self.assertEquals('unscrupulous-nonsense', category.slug, f"{FAILURE_HEADER}When changing the name of a category, the slug attribute was not updated (correctly) to reflect this change. Did you override the save() method in the Category model correctly?{FAILURE_FOOTER}") def test_context_dictionary(self): """ Given the response, does the context dictionary match up with what is expected? Is the category object being passed correctly, and are the pages being filtered correctly? """ other_frameworks_category = Category.objects.get_or_create(name='Other Frameworks')[0] page_list = list(Page.objects.filter(category=other_frameworks_category)) self.assertTrue('category' in self.response.context, f"{FAILURE_HEADER}The 'category' variable in the context dictionary for the show_category() view was not found. Did you spell it correctly?{FAILURE_FOOTER}") self.assertTrue('pages' in self.response.context, f"{FAILURE_HEADER}The 'pages' variable in the context dictionary for the show_category() view was not found.{FAILURE_FOOTER}") self.assertEqual(self.response.context['category'], other_frameworks_category, f"{FAILURE_HEADER}The category returned in the context dictionary for the show_category() view did not match what was expected. We expect to see a Category object returned here (specifically the 'Other Frameworks' category, for our tests).{FAILURE_FOOTER}") self.assertEqual(list(self.response.context['pages']), page_list, f"{FAILURE_HEADER}The list of pages returned in the context dictionary of the show_category() view was not correct. Did you filter the pages correctly in your view?{FAILURE_FOOTER}") def test_response_markup(self): """ Some simple tests to make sure the markup returned is on track. Specifically, we look at the title and list of pages returned. """ expected_header = '<h1>Other Frameworks</h1>' bottle_markup = r'<li>(\s*|\n*)<a(\s+)href(\s*)=(\s*)("http://bottlepy.org/docs/dev/"|\'http://bottlepy.org/docs/dev/\')(\s*)>(\s*|\n*)Bottle(\s*|\n*)</a>(\s*|\n*)</li>' flask_markup = r'<li>(\s*|\n*)<a(\s+)href(\s*)=(\s*)("http://flask.pocoo.org"|\'http://flask.pocoo.org\')(\s*)>(\s*|\n*)Flask(\s*|\n*)</a>(\s*|\n*)</li>' self.assertIn(expected_header, self.content, f"{FAILURE_HEADER}The header tag '{expected_header}' was not found in the response for the show_category() view. Make sure the category.html template matches the specification.{FAILURE_FOOTER}") self.assertTrue(re.search(bottle_markup, self.content), f"{FAILURE_HEADER}Correctly formed <li> markup was not found for the pages to be displayed in the show_category() view. Make sure your category.html template is well-formed!{FAILURE_FOOTER}") self.assertTrue(re.search(flask_markup, self.content), f"{FAILURE_HEADER}Correctly formed <li> markup was not found for the pages to be displayed in the show_category() view. Make sure your category.html template is well-formed!{FAILURE_FOOTER}") def test_for_homepage_link(self): """ Checks to see if a hyperlink to the homepage is present. We didn't enforce a strict label for the link; we are more interested here in correct syntax. """ homepage_hyperlink_markup = r'<a(\s+)href="/rango/">(\w+)</a>' self.assertTrue(re.search(homepage_hyperlink_markup, self.content), f"{FAILURE_HEADER}We couldn't find a well-formed hyperlink to the Rango homepage in your category.html template. This is an exercise at the end of Chapter 6.{FAILURE_FOOTER}") class Chapter6BadCategoryViewTests(TestCase): """ A few tests to examine some edge cases where categories do not exist, for example. """ def test_malformed_url(self): """ Tests to see whether the URL patterns have been correctly entered; many students have fallen over at this one. Somehow. """ response = self.client.get('/rango/category/') self.assertTrue(response.status_code == 404, f"{FAILURE_HEADER}The URL /rango/category/ should return a status of code of 404 (not found). Check to see whether you have correctly entered your urlpatterns.{FAILURE_FOOTER}") def test_nonexistent_category(self): """ Attempts to lookup a category that does not exist in the database and checks the response. """ response = self.client.get( reverse('rango:show_category', kwargs={'category_name_slug': 'nonexistent-category'})) lookup_string = 'The specified category does not exist.' self.assertIn(lookup_string, response.content.decode(), r"{FAILURE_HEADER}The expected message when attempting to access a non-existent category was not found. Check your category.html template.{FAILURE_FOOTER}") def test_empty_category(self): """ Adds a Category without pages; checks to see what the response is. """ category = Category.objects.get_or_create(name='Test Category') response = self.client.get(reverse('rango:show_category', kwargs={'category_name_slug': 'test-category'})) lookup_string = '<strong>No pages currently in category.</strong>' self.assertIn(lookup_string, response.content.decode(), r"{FAILURE_HEADER}The expected message when accessing a category without pages was not found. Check your category.html template.{FAILURE_FOOTER}") ```
{ "source": "262877348/Data", "score": 3 }
#### File: Packages/Default/duplicate_line.py ```python import sublime_plugin class DuplicateLineCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if region.empty(): line = self.view.line(region) line_contents = self.view.substr(line) + '\n' self.view.insert(edit, line.begin(), line_contents) else: self.view.insert(edit, region.begin(), self.view.substr(region)) ``` #### File: Packages/Default/swap_line.py ```python import sublime import sublime_plugin def expand_to_line(view, region): """ As view.full_line, but doesn't expand to the next line if a full line is already selected """ if not (region.a == region.b) and view.substr(region.end() - 1) == '\n': return sublime.Region(view.line(region).begin(), region.end()) else: return view.full_line(region) def extract_line_blocks(view): blocks = [expand_to_line(view, s) for s in view.sel()] if len(blocks) == 0: return blocks # merge any adjacent blocks merged_blocks = [blocks[0]] for block in blocks[1:]: last_block = merged_blocks[-1] if block.begin() <= last_block.end(): merged_blocks[-1] = sublime.Region(last_block.begin(), block.end()) else: merged_blocks.append(block) return merged_blocks class SwapLineUpCommand(sublime_plugin.TextCommand): def run(self, edit): blocks = extract_line_blocks(self.view) # No selection if len(blocks) == 0: return # Already at BOF if blocks[0].begin() == 0: return # Add a trailing newline if required, the logic is simpler if every line # ends with a newline add_trailing_newline = (self.view.substr(self.view.size() - 1) != '\n') and blocks[-1].b == self.view.size() if add_trailing_newline: # The insert can cause the selection to move. This isn't wanted, so # reset the selection if it has moved to EOF sel = [r for r in self.view.sel()] self.view.insert(edit, self.view.size(), '\n') if self.view.sel()[-1].end() == self.view.size(): # Selection has moved, restore the previous selection self.view.sel().clear() for r in sel: self.view.sel().add(r) # Fix up any block that should now include this newline blocks[-1] = sublime.Region(blocks[-1].a, blocks[-1].b + 1) # Process in reverse order blocks.reverse() for b in blocks: prev_line = self.view.full_line(b.begin() - 1) self.view.insert(edit, b.end(), self.view.substr(prev_line)) self.view.erase(edit, prev_line) if add_trailing_newline: # Remove the added newline self.view.erase(edit, sublime.Region(self.view.size() - 1, self.view.size())) # Ensure the selection is visible self.view.show(self.view.sel(), False) class SwapLineDownCommand(sublime_plugin.TextCommand): def run(self, edit): blocks = extract_line_blocks(self.view) # No selection if len(blocks) == 0: return # Already at EOF if blocks[-1].end() == self.view.size(): return # Add a trailing newline if required, the logic is simpler if every line # ends with a newline add_trailing_newline = (self.view.substr(self.view.size() - 1) != '\n') if add_trailing_newline: # No block can be at EOF (checked above), so no need to fix up the # blocks self.view.insert(edit, self.view.size(), '\n') # Process in reverse order blocks.reverse() for b in blocks: next_line = self.view.full_line(b.end()) contents = self.view.substr(next_line) self.view.erase(edit, next_line) self.view.insert(edit, b.begin(), contents) if add_trailing_newline: # Remove the added newline self.view.erase(edit, sublime.Region(self.view.size() - 1, self.view.size())) # Ensure the selection is visible self.view.show(self.view.sel(), False) ``` #### File: Packages/Default/trim_trailing_white_space.py ```python import sublime_plugin class TrimTrailingWhiteSpaceCommand(sublime_plugin.TextCommand): def run(self, edit): trailing_white_space = self.view.find_all("[\t ]+$") trailing_white_space.reverse() for r in trailing_white_space: self.view.erase(edit, r) class TrimTrailingWhiteSpace(sublime_plugin.EventListener): def on_pre_save(self, view): if view.settings().get("trim_trailing_white_space_on_save") is True: view.run_command("trim_trailing_white_space") class EnsureNewlineAtEofCommand(sublime_plugin.TextCommand): def run(self, edit): if self.view.size() > 0 and self.view.substr(self.view.size() - 1) != '\n': self.view.insert(edit, self.view.size(), "\n") class EnsureNewlineAtEof(sublime_plugin.EventListener): def on_pre_save(self, view): if view.settings().get("ensure_newline_at_eof_on_save") is True: if view.size() > 0 and view.substr(view.size() - 1) != '\n': view.run_command("ensure_newline_at_eof") ``` #### File: Packages/Tag/tag_classes.py ```python import sublime, sublime_plugin import re class TagClassesCommand(sublime_plugin.TextCommand): def run(self, edit): data = '' classes = [] for region in self.view.sel(): if region.empty(): continue data += self.view.substr(sublime.Region(region.begin(), region.end())) if not data: data += self.view.substr(sublime.Region(0, self.view.size())) if data: re_classes = (" ".join(re.compile('class="([^"]+)"').findall(data))).split() for item in re_classes: item = item.strip() if '.'+item+' {}' not in classes: classes.append('.'+item+' {}') if classes: s = sublime.load_settings('Tag Package.sublime-settings') if s.get('tag_classes_sort', False): classes.sort() sublime.set_clipboard("\n".join(classes)) sublime.status_message("CSS Classes Copied to Clipboard") ```
{ "source": "262986832/pulsar", "score": 2 }
#### File: pulsar-client-cpp/python/schema_test.py ```python from unittest import TestCase, main import fastavro import pulsar from pulsar.schema import * from enum import Enum import json from fastavro.schema import load_schema class SchemaTest(TestCase): serviceUrl = 'pulsar://localhost:6650' def test_simple(self): class Color(Enum): red = 1 green = 2 blue = 3 class Example(Record): _sorted_fields = True a = String() b = Integer() c = Array(String()) d = Color e = Boolean() f = Float() g = Double() h = Bytes() i = Map(String()) j = CustomEnum(Color) fastavro.parse_schema(Example.schema()) self.assertEqual(Example.schema(), { "name": "Example", "type": "record", "fields": [ {"name": "a", "type": ["null", "string"]}, {"name": "b", "type": ["null", "int"]}, {"name": "c", "type": ["null", { "type": "array", "items": "string"}] }, {"name": "d", "type": ["null", { "type": "enum", "name": "Color", "symbols": ["red", "green", "blue"]}] }, {"name": "e", "type": ["null", "boolean"]}, {"name": "f", "type": ["null", "float"]}, {"name": "g", "type": ["null", "double"]}, {"name": "h", "type": ["null", "bytes"]}, {"name": "i", "type": ["null", { "type": "map", "values": "string"}] }, {"name": "j", "type": ["null", "Color"]} ] }) def test_complex(self): class Color(Enum): red = 1 green = 2 blue = 3 class MySubRecord(Record): _sorted_fields = True x = Integer() y = Long() z = String() color = CustomEnum(Color) class Example(Record): _sorted_fields = True a = String() sub = MySubRecord # Test with class sub2 = MySubRecord() # Test with instance fastavro.parse_schema(Example.schema()) self.assertEqual(Example.schema(), { "name": "Example", "type": "record", "fields": [ {"name": "a", "type": ["null", "string"]}, {"name": "sub", "type": ["null", { "name": "MySubRecord", "type": "record", "fields": [ {'name': 'color', 'type': ['null', {'type': 'enum', 'name': 'Color', 'symbols': ['red', 'green', 'blue']}]}, {"name": "x", "type": ["null", "int"]}, {"name": "y", "type": ["null", "long"]}, {"name": "z", "type": ["null", "string"]}] }] }, {"name": "sub2", "type": ["null", 'MySubRecord'] } ] }) def test_complex_with_required_fields(self): class MySubRecord(Record): x = Integer(required=True) y = Long(required=True) z = String() class Example(Record): a = String(required=True) sub = MySubRecord(required=True) self.assertEqual(Example.schema(), { "name": "Example", "type": "record", "fields": [ {"name": "a", "type": "string"}, {"name": "sub", "type": { "name": "MySubRecord", "type": "record", "fields": [{"name": "x", "type": "int"}, {"name": "y", "type": "long"}, {"name": "z", "type": ["null", "string"]}] } }, ] }) def test_invalid_enum(self): class Color: red = 1 green = 2 blue = 3 class InvalidEnum(Record): a = Integer() b = Color # Enum will be ignored self.assertEqual(InvalidEnum.schema(), {'name': 'InvalidEnum', 'type': 'record', 'fields': [{'name': 'a', 'type': ["null", 'int']}]}) def test_initialization(self): class Example(Record): a = Integer() b = Integer() r = Example(a=1, b=2) self.assertEqual(r.a, 1) self.assertEqual(r.b, 2) r.b = 5 self.assertEqual(r.b, 5) # Setting non-declared field should fail try: r.c = 3 self.fail('Should have failed') except AttributeError: # Expected pass try: Record(a=1, c=8) self.fail('Should have failed') except AttributeError: # Expected pass except TypeError: # Expected pass def _expectTypeError(self, func): try: func() self.fail('Should have failed') except TypeError: # Expected pass def test_field_type_check(self): class Example(Record): a = Integer() b = String(required=False) self._expectTypeError(lambda: Example(a=1, b=2)) class E2(Record): a = Boolean() E2(a=False) # ok self._expectTypeError(lambda: E2(a=1)) class E3(Record): a = Float() E3(a=1.0) # Ok self._expectTypeError(lambda: E3(a=1)) class E4(Record): a = Null() E4(a=None) # Ok self._expectTypeError(lambda: E4(a=1)) class E5(Record): a = Long() E5(a=1234) # Ok self._expectTypeError(lambda: E5(a=1.12)) class E6(Record): a = String() E6(a="hello") # Ok self._expectTypeError(lambda: E5(a=1.12)) class E6(Record): a = Bytes() E6(a="hello".encode('utf-8')) # Ok self._expectTypeError(lambda: E5(a=1.12)) class E7(Record): a = Double() E7(a=1.0) # Ok self._expectTypeError(lambda: E3(a=1)) class Color(Enum): red = 1 green = 2 blue = 3 class OtherEnum(Enum): red = 1 green = 2 blue = 3 class E8(Record): a = Color e = E8(a=Color.red) # Ok self.assertEqual(e.a, Color.red) e = E8(a='red') # Ok self.assertEqual(e.a, Color.red) e = E8(a=1) # Ok self.assertEqual(e.a, Color.red) self._expectTypeError(lambda: E8(a='redx')) self._expectTypeError(lambda: E8(a=OtherEnum.red)) self._expectTypeError(lambda: E8(a=5)) class E9(Record): a = Array(String()) E9(a=['a', 'b', 'c']) # Ok self._expectTypeError(lambda: E9(a=1)) self._expectTypeError(lambda: E9(a=[1, 2, 3])) self._expectTypeError(lambda: E9(a=['1', '2', 3])) class E10(Record): a = Map(Integer()) E10(a={'a': 1, 'b': 2}) # Ok self._expectTypeError(lambda: E10(a=1)) self._expectTypeError(lambda: E10(a={'a': '1', 'b': 2})) self._expectTypeError(lambda: E10(a={1: 1, 'b': 2})) class SubRecord1(Record): s = Integer() class SubRecord2(Record): s = String() class E11(Record): a = SubRecord1 E11(a=SubRecord1(s=1)) # Ok self._expectTypeError(lambda: E11(a=1)) self._expectTypeError(lambda: E11(a=SubRecord2(s='hello'))) def test_field_type_check_defaults(self): try: class Example(Record): a = Integer(default="xyz") self.fail("Class declaration should have failed") except TypeError: pass # Expected def test_serialize_json(self): class Example(Record): a = Integer() b = Integer() self.assertEqual(Example.schema(), { "name": "Example", "type": "record", "fields": [ {"name": "a", "type": ["null", "int"]}, {"name": "b", "type": ["null", "int"]}, ] }) s = JsonSchema(Example) r = Example(a=1, b=2) data = s.encode(r) self.assertEqual(json.loads(data), {'a': 1, 'b': 2}) r2 = s.decode(data) self.assertEqual(r2.__class__.__name__, 'Example') self.assertEqual(r2, r) def test_serialize_avro(self): class Example(Record): a = Integer() b = Integer() self.assertEqual(Example.schema(), { "name": "Example", "type": "record", "fields": [ {"name": "a", "type": ["null", "int"]}, {"name": "b", "type": ["null", "int"]}, ] }) s = AvroSchema(Example) r = Example(a=1, b=2) data = s.encode(r) r2 = s.decode(data) self.assertEqual(r2.__class__.__name__, 'Example') self.assertEqual(r2, r) def test_non_sorted_fields(self): class T1(Record): a = Integer() b = Integer() c = Double() d = String() class T2(Record): b = Integer() a = Integer() d = String() c = Double() self.assertNotEqual(T1.schema()['fields'], T2.schema()['fields']) def test_sorted_fields(self): class T1(Record): _sorted_fields = True a = Integer() b = Integer() class T2(Record): _sorted_fields = True b = Integer() a = Integer() self.assertEqual(T1.schema()['fields'], T2.schema()['fields']) def test_schema_version(self): class Example(Record): a = Integer() b = Integer() client = pulsar.Client(self.serviceUrl) producer = client.create_producer( 'my-avro-python-schema-version-topic', schema=AvroSchema(Example)) consumer = client.subscribe('my-avro-python-schema-version-topic', 'sub-1', schema=AvroSchema(Example)) r = Example(a=1, b=2) producer.send(r) msg = consumer.receive() self.assertIsNotNone(msg.schema_version()) self.assertEquals(b'\x00\x00\x00\x00\x00\x00\x00\x00', msg.schema_version().encode()) self.assertEqual(r, msg.value()) client.close() def test_serialize_wrong_types(self): class Example(Record): a = Integer() b = Integer() class Foo(Record): x = Integer() y = Integer() s = JsonSchema(Example) try: data = s.encode(Foo(x=1, y=2)) self.fail('Should have failed') except TypeError: pass # expected try: data = s.encode('hello') self.fail('Should have failed') except TypeError: pass # expected def test_defaults(self): class Example(Record): a = Integer(default=5) b = Integer() c = String(default='hello') r = Example() self.assertEqual(r.a, 5) self.assertEqual(r.b, None) self.assertEqual(r.c, 'hello') def test_none_value(self): """ The objective of the test is to check that if no value is assigned to the attribute, the validation is returning the expect default value as defined in the Field class """ class Example(Record): a = Null() b = Boolean() c = Integer() d = Long() e = Float() f = Double() g = Bytes() h = String() r = Example() self.assertIsNone(r.a) self.assertFalse(r.b) self.assertIsNone(r.c) self.assertIsNone(r.d) self.assertIsNone(r.e) self.assertIsNone(r.f) self.assertIsNone(r.g) self.assertIsNone(r.h) #### def test_json_schema(self): class Example(Record): a = Integer() b = Integer() # Incompatible variation of the class class BadExample(Record): a = String() b = Integer() client = pulsar.Client(self.serviceUrl) producer = client.create_producer( 'my-json-python-topic', schema=JsonSchema(Example)) # Validate that incompatible schema is rejected try: client.subscribe('my-json-python-topic', 'sub-1', schema=JsonSchema(BadExample)) self.fail('Should have failed') except Exception as e: pass # Expected try: client.subscribe('my-json-python-topic', 'sub-1', schema=StringSchema(BadExample)) self.fail('Should have failed') except Exception as e: pass # Expected try: client.subscribe('my-json-python-topic', 'sub-1', schema=AvroSchema(BadExample)) self.fail('Should have failed') except Exception as e: pass # Expected consumer = client.subscribe('my-json-python-topic', 'sub-1', schema=JsonSchema(Example)) r = Example(a=1, b=2) producer.send(r) msg = consumer.receive() self.assertEqual(r, msg.value()) producer.close() consumer.close() client.close() def test_string_schema(self): client = pulsar.Client(self.serviceUrl) producer = client.create_producer( 'my-string-python-topic', schema=StringSchema()) # Validate that incompatible schema is rejected try: class Example(Record): a = Integer() b = Integer() client.create_producer('my-string-python-topic', schema=JsonSchema(Example)) self.fail('Should have failed') except Exception as e: pass # Expected consumer = client.subscribe('my-string-python-topic', 'sub-1', schema=StringSchema()) producer.send("Hello") msg = consumer.receive() self.assertEqual("Hello", msg.value()) self.assertEqual(b"Hello", msg.data()) client.close() def test_bytes_schema(self): client = pulsar.Client(self.serviceUrl) producer = client.create_producer( 'my-bytes-python-topic', schema=BytesSchema()) # Validate that incompatible schema is rejected try: class Example(Record): a = Integer() b = Integer() client.create_producer('my-bytes-python-topic', schema=JsonSchema(Example)) self.fail('Should have failed') except Exception as e: pass # Expected consumer = client.subscribe('my-bytes-python-topic', 'sub-1', schema=BytesSchema()) producer.send(b"Hello") msg = consumer.receive() self.assertEqual(b"Hello", msg.value()) client.close() def test_avro_schema(self): class Example(Record): a = Integer() b = Integer() # Incompatible variation of the class class BadExample(Record): a = String() b = Integer() client = pulsar.Client(self.serviceUrl) producer = client.create_producer( 'my-avro-python-topic', schema=AvroSchema(Example)) # Validate that incompatible schema is rejected try: client.subscribe('my-avro-python-topic', 'sub-1', schema=AvroSchema(BadExample)) self.fail('Should have failed') except Exception as e: pass # Expected try: client.subscribe('my-avro-python-topic', 'sub-2', schema=JsonSchema(Example)) self.fail('Should have failed') except Exception as e: pass # Expected consumer = client.subscribe('my-avro-python-topic', 'sub-3', schema=AvroSchema(Example)) r = Example(a=1, b=2) producer.send(r) msg = consumer.receive() self.assertEqual(r, msg.value()) producer.close() consumer.close() client.close() def test_json_enum(self): class MyEnum(Enum): A = 1 B = 2 C = 3 class Example(Record): name = String() v = MyEnum w = CustomEnum(MyEnum) x = CustomEnum(MyEnum, required=True, default=MyEnum.A, required_default=True) topic = 'my-json-enum-topic' client = pulsar.Client(self.serviceUrl) producer = client.create_producer( topic=topic, schema=JsonSchema(Example)) consumer = client.subscribe(topic, 'test', schema=JsonSchema(Example)) r = Example(name='test', v=MyEnum.C, w=MyEnum.B) producer.send(r) msg = consumer.receive() self.assertEqual('test', msg.value().name) self.assertEqual(MyEnum.C, MyEnum(msg.value().v)) self.assertEqual(MyEnum.B, MyEnum(msg.value().w)) self.assertEqual(MyEnum.A, MyEnum(msg.value().x)) client.close() def test_avro_enum(self): class MyEnum(Enum): A = 1 B = 2 C = 3 class Example(Record): name = String() v = MyEnum w = CustomEnum(MyEnum) x = CustomEnum(MyEnum, required=True, default=MyEnum.B, required_default=True) topic = 'my-avro-enum-topic' client = pulsar.Client(self.serviceUrl) producer = client.create_producer( topic=topic, schema=AvroSchema(Example)) consumer = client.subscribe(topic, 'test', schema=AvroSchema(Example)) r = Example(name='test', v=MyEnum.C, w=MyEnum.A) producer.send(r) msg = consumer.receive() msg.value() self.assertEqual(MyEnum.C, msg.value().v) self.assertEqual(MyEnum.A, MyEnum(msg.value().w)) self.assertEqual(MyEnum.B, MyEnum(msg.value().x)) client.close() def test_avro_map_array(self): class MapArray(Record): values = Map(Array(Integer())) class MapMap(Record): values = Map(Map(Integer())) class ArrayMap(Record): values = Array(Map(Integer())) class ArrayArray(Record): values = Array(Array(Integer())) topic_prefix = "my-avro-map-array-topic-" data_list = ( (topic_prefix + "0", AvroSchema(MapArray), MapArray(values={"A": [1, 2], "B": [3]})), (topic_prefix + "1", AvroSchema(MapMap), MapMap(values={"A": {"B": 2},})), (topic_prefix + "2", AvroSchema(ArrayMap), ArrayMap(values=[{"A": 1}, {"B": 2}, {"C": 3}])), (topic_prefix + "3", AvroSchema(ArrayArray), ArrayArray(values=[[1, 2, 3], [4]])), ) client = pulsar.Client(self.serviceUrl) for data in data_list: topic = data[0] schema = data[1] record = data[2] producer = client.create_producer(topic, schema=schema) consumer = client.subscribe(topic, 'sub', schema=schema) producer.send(record) msg = consumer.receive() self.assertEqual(msg.value().values, record.values) consumer.acknowledge(msg) consumer.close() producer.close() client.close() def test_avro_required_default(self): class MySubRecord(Record): _sorted_fields = True x = Integer() y = Long() z = String() class Example(Record): a = Integer() b = Boolean(required=True) c = Long() d = Float() e = Double() f = String() g = Bytes() h = Array(String()) i = Map(String()) j = MySubRecord() class ExampleRequiredDefault(Record): _sorted_fields = True a = Integer(required_default=True) b = Boolean(required=True, required_default=True) c = Long(required_default=True) d = Float(required_default=True) e = Double(required_default=True) f = String(required_default=True) g = Bytes(required_default=True) h = Array(String(), required_default=True) i = Map(String(), required_default=True) j = MySubRecord(required_default=True) self.assertEqual(ExampleRequiredDefault.schema(), { "name": "ExampleRequiredDefault", "type": "record", "fields": [ { "name": "a", "type": [ "null", "int" ], "default": None }, { "name": "b", "type": "boolean", "default": False }, { "name": "c", "type": [ "null", "long" ], "default": None }, { "name": "d", "type": [ "null", "float" ], "default": None }, { "name": "e", "type": [ "null", "double" ], "default": None }, { "name": "f", "type": [ "null", "string" ], "default": None }, { "name": "g", "type": [ "null", "bytes" ], "default": None }, { "name": "h", "type": [ "null", { "type": "array", "items": "string" } ], "default": None }, { "name": "i", "type": [ "null", { "type": "map", "values": "string" } ], "default": None }, { "name": "j", "type": [ "null", { "name": "MySubRecord", "type": "record", "fields": [ { "name": "x", "type": [ "null", "int" ] }, { "name": "y", "type": [ "null", "long" ], }, { "name": "z", "type": [ "null", "string" ] } ] } ], "default": None } ] }) client = pulsar.Client(self.serviceUrl) producer = client.create_producer( 'my-avro-python-default-topic', schema=AvroSchema(Example)) producer_default = client.create_producer( 'my-avro-python-default-topic', schema=AvroSchema(ExampleRequiredDefault)) producer.close() producer_default.close() client.close() def test_default_value(self): class MyRecord(Record): A = Integer() B = String() C = Boolean(default=True, required=True) D = Double(default=6.4) topic = "my-default-value-topic" client = pulsar.Client(self.serviceUrl) producer = client.create_producer( topic=topic, schema=JsonSchema(MyRecord)) consumer = client.subscribe(topic, 'test', schema=JsonSchema(MyRecord)) r = MyRecord(A=5, B="text") producer.send(r) msg = consumer.receive() self.assertEqual(msg.value().A, 5) self.assertEqual(msg.value().B, u'text') self.assertEqual(msg.value().C, True) self.assertEqual(msg.value().D, 6.4) producer.close() consumer.close() client.close() def test_serialize_schema_complex(self): class Color(Enum): red = 1 green = 2 blue = 3 class NestedObj1(Record): _sorted_fields = True na1 = String() nb1 = Double() class NestedObj2(Record): _sorted_fields = True na2 = Integer() nb2 = Boolean() nc2 = NestedObj1() class NestedObj3(Record): _sorted_fields = True color = CustomEnum(Color) na3 = Integer() class NestedObj4(Record): _avro_namespace = 'xxx4' _sorted_fields = True na4 = String() nb4 = Integer() class ComplexRecord(Record): _avro_namespace = 'xxx.xxx' _sorted_fields = True a = Integer() b = Integer() color = Color color2 = Color color3 = CustomEnum(Color, required=True, default=Color.red, required_default=True) nested = NestedObj2() nested2 = NestedObj2() mapNested = Map(NestedObj3()) mapNested2 = Map(NestedObj3()) arrayNested = Array(NestedObj4()) arrayNested2 = Array(NestedObj4()) print('complex schema: ', ComplexRecord.schema()) self.assertEqual(ComplexRecord.schema(), { "name": "ComplexRecord", "namespace": "xxx.xxx", "type": "record", "fields": [ {"name": "a", "type": ["null", "int"]}, {'name': 'arrayNested', 'type': ['null', {'type': 'array', 'items': {'name': 'NestedObj4', 'namespace': 'xxx4', 'type': 'record', 'fields': [ {'name': 'na4', 'type': ['null', 'string']}, {'name': 'nb4', 'type': ['null', 'int']} ]}} ]}, {'name': 'arrayNested2', 'type': ['null', {'type': 'array', 'items': 'xxx4.NestedObj4'}]}, {"name": "b", "type": ["null", "int"]}, {'name': 'color', 'type': ['null', {'type': 'enum', 'name': 'Color', 'symbols': [ 'red', 'green', 'blue']}]}, {'name': 'color2', 'type': ['null', 'Color']}, {'name': 'color3', 'default': 'red', 'type': 'Color'}, {'name': 'mapNested', 'type': ['null', {'type': 'map', 'values': {'name': 'NestedObj3', 'type': 'record', 'fields': [ {'name': 'color', 'type': ['null', 'Color']}, {'name': 'na3', 'type': ['null', 'int']} ]}} ]}, {'name': 'mapNested2', 'type': ['null', {'type': 'map', 'values': 'NestedObj3'}]}, {"name": "nested", "type": ['null', {'name': 'NestedObj2', 'type': 'record', 'fields': [ {'name': 'na2', 'type': ['null', 'int']}, {'name': 'nb2', 'type': ['null', 'boolean']}, {'name': 'nc2', 'type': ['null', {'name': 'NestedObj1', 'type': 'record', 'fields': [ {'name': 'na1', 'type': ['null', 'string']}, {'name': 'nb1', 'type': ['null', 'double']} ]}]} ]}]}, {"name": "nested2", "type": ['null', 'NestedObj2']} ] }) def encode_and_decode(schema_type): data_schema = AvroSchema(ComplexRecord) if schema_type == 'json': data_schema = JsonSchema(ComplexRecord) nested_obj1 = NestedObj1(na1='na1 value', nb1=20.5) nested_obj2 = NestedObj2(na2=22, nb2=True, nc2=nested_obj1) r = ComplexRecord(a=1, b=2, color=Color.red, color2=Color.blue, nested=nested_obj2, nested2=nested_obj2, mapNested={ 'a': NestedObj3(na3=1, color=Color.green), 'b': NestedObj3(na3=2), 'c': NestedObj3(na3=3, color=Color.red) }, mapNested2={ 'd': NestedObj3(na3=4, color=Color.red), 'e': NestedObj3(na3=5, color=Color.blue), 'f': NestedObj3(na3=6) }, arrayNested=[ NestedObj4(na4='value na4 1', nb4=100), NestedObj4(na4='value na4 2', nb4=200) ], arrayNested2=[ NestedObj4(na4='value na4 3', nb4=300), NestedObj4(na4='value na4 4', nb4=400) ]) data_encode = data_schema.encode(r) data_decode = data_schema.decode(data_encode) self.assertEqual(data_decode.__class__.__name__, 'ComplexRecord') self.assertEqual(data_decode, r) self.assertEqual(r.color3, Color.red) self.assertEqual(r.mapNested['a'].color, Color.green) self.assertEqual(r.mapNested['b'].color, None) print('Encode and decode complex schema finish. schema_type: ', schema_type) encode_and_decode('avro') encode_and_decode('json') def test_sub_record_set_to_none(self): class NestedObj1(Record): na1 = String() nb1 = Double() class NestedObj2(Record): na2 = Integer() nb2 = Boolean() nc2 = NestedObj1() data_schema = AvroSchema(NestedObj2) r = NestedObj2(na2=1, nb2=True) data_encode = data_schema.encode(r) data_decode = data_schema.decode(data_encode) self.assertEqual(data_decode.__class__.__name__, 'NestedObj2') self.assertEqual(data_decode, r) self.assertEqual(data_decode.na2, 1) self.assertTrue(data_decode.nb2) def test_produce_and_consume_complex_schema_data(self): class Color(Enum): red = 1 green = 2 blue = 3 class NestedObj1(Record): na1 = String() nb1 = Double() class NestedObj2(Record): na2 = Integer() nb2 = Boolean() nc2 = NestedObj1() class NestedObj3(Record): na3 = Integer() color = CustomEnum(Color, required=True, required_default=True, default=Color.blue) class NestedObj4(Record): na4 = String() nb4 = Integer() class ComplexRecord(Record): a = Integer() b = Integer() color = CustomEnum(Color) nested = NestedObj2() mapNested = Map(NestedObj3()) arrayNested = Array(NestedObj4()) client = pulsar.Client(self.serviceUrl) def produce_consume_test(schema_type): topic = "my-complex-schema-topic-" + schema_type data_schema = AvroSchema(ComplexRecord) if schema_type == 'json': data_schema= JsonSchema(ComplexRecord) producer = client.create_producer( topic=topic, schema=data_schema) consumer = client.subscribe(topic, 'test', schema=data_schema) nested_obj1 = NestedObj1(na1='na1 value', nb1=20.5) nested_obj2 = NestedObj2(na2=22, nb2=True, nc2=nested_obj1) r = ComplexRecord(a=1, b=2, nested=nested_obj2, mapNested={ 'a': NestedObj3(na3=1, color=Color.red), 'b': NestedObj3(na3=2, color=Color.green), 'c': NestedObj3(na3=3) }, arrayNested=[ NestedObj4(na4='value na4 1', nb4=100), NestedObj4(na4='value na4 2', nb4=200) ]) producer.send(r) msg = consumer.receive() value = msg.value() self.assertEqual(value.__class__.__name__, 'ComplexRecord') self.assertEqual(value, r) print('Produce and consume complex schema data finish. schema_type', schema_type) produce_consume_test('avro') produce_consume_test('json') client.close() def custom_schema_test(self): def encode_and_decode(schema_definition): avro_schema = AvroSchema(None, schema_definition=schema_definition) company = { "name": "company-name", "address": 'xxx road xxx street', "employees": [ {"name": "user1", "age": 25}, {"name": "user2", "age": 30}, {"name": "user3", "age": 35}, ], "labels": { "industry": "software", "scale": ">100", "funds": "1000000.0" }, "companyType": "companyType1" } data = avro_schema.encode(company) company_decode = avro_schema.decode(data) self.assertEqual(company, company_decode) schema_definition = { 'doc': 'this is doc', 'namespace': 'example.avro', 'type': 'record', 'name': 'Company', 'fields': [ {'name': 'name', 'type': ['null', 'string']}, {'name': 'address', 'type': ['null', 'string']}, {'name': 'employees', 'type': ['null', {'type': 'array', 'items': { 'type': 'record', 'name': 'Employee', 'fields': [ {'name': 'name', 'type': ['null', 'string']}, {'name': 'age', 'type': ['null', 'int']} ] }}]}, {'name': 'labels', 'type': ['null', {'type': 'map', 'values': 'string'}]}, {'name': 'companyType', 'type': ['null', {'type': 'enum', 'name': 'CompanyType', 'symbols': ['companyType1', 'companyType2', 'companyType3']}]} ] } encode_and_decode(schema_definition) # Users could load schema from file by `fastavro.schema` # Or use `avro.schema` like this `avro.schema.parse(open("examples/company.avsc", "rb").read()).to_json()` encode_and_decode(load_schema("examples/company.avsc")) def custom_schema_produce_and_consume_test(self): client = pulsar.Client(self.serviceUrl) def produce_and_consume(topic, schema_definition): print('custom schema produce and consume test topic - ', topic) example_avro_schema = AvroSchema(None, schema_definition=schema_definition) producer = client.create_producer( topic=topic, schema=example_avro_schema) consumer = client.subscribe(topic, 'test', schema=example_avro_schema) for i in range(0, 10): company = { "name": "company-name" + str(i), "address": 'xxx road xxx street ' + str(i), "employees": [ {"name": "user" + str(i), "age": 20 + i}, {"name": "user" + str(i), "age": 30 + i}, {"name": "user" + str(i), "age": 35 + i}, ], "labels": { "industry": "software" + str(i), "scale": ">100", "funds": "1000000.0" }, "companyType": "companyType" + str((i % 3) + 1) } producer.send(company) for i in range(0, 10): msg = consumer.receive() company = { "name": "company-name" + str(i), "address": 'xxx road xxx street ' + str(i), "employees": [ {"name": "user" + str(i), "age": 20 + i}, {"name": "user" + str(i), "age": 30 + i}, {"name": "user" + str(i), "age": 35 + i}, ], "labels": { "industry": "software" + str(i), "scale": ">100", "funds": "1000000.0" } } self.assertEqual(msg.value(), company) consumer.acknowledge(msg) consumer.close() producer.close() schema_definition = { 'doc': 'this is doc', 'namespace': 'example.avro', 'type': 'record', 'name': 'Company', 'fields': [ {'name': 'name', 'type': ['null', 'string']}, {'name': 'address', 'type': ['null', 'string']}, {'name': 'employees', 'type': ['null', {'type': 'array', 'items': { 'type': 'record', 'name': 'Employee', 'fields': [ {'name': 'name', 'type': ['null', 'string']}, {'name': 'age', 'type': ['null', 'int']} ] }}]}, {'name': 'labels', 'type': ['null', {'type': 'map', 'values': 'string'}]} ] } produce_and_consume('custom-schema-test-1', schema_definition=schema_definition) produce_and_consume('custom-schema-test-2', schema_definition=load_schema("examples/company.avsc")) client.close() if __name__ == '__main__': main() ```
{ "source": "2636869666/flask_frame", "score": 3 }
#### File: 2636869666/flask_frame/json_demo.py ```python import json from flask import Flask from flask.json import jsonify app = Flask(__name__) @app.route('/json') def str_json(): # 将字典转换为json格式的字符串 data ={'name':'zhangsan','age':18} json_data1 = json.dumps(data) print(type(json_data1)) # 将字符串格式的字典先转换为字典再转换为json格式的字符串 data2 = """{"name":"zhangsan","age":18}""" json_dict = json.loads(data2) json_data2 = json.dumps(json_dict) print(type(json_data2)) # 将字典转为json格式的数据 data3 = {'name':'zhangsan','age':18} json_data3 = jsonify(data3) print(type(json_data3)) return json_data1 if __name__ == '__main__': app.run(debug=True) ``` #### File: 2636869666/flask_frame/main.py ```python from flask import Flask, render_template, request, make_response, url_for, redirect from werkzeug.routing import BaseConverter import json_demo app = Flask(__name__) class MyConverter(BaseConverter): def __init__(self,url_map,*args): super().__init__(url_map) self.regex = args[0] def to_python(self, value): value = "aaaaaa" return value def to_url(self, value): value = "bbbbbb" return value # 作为字典存入url_map方便取用 app.url_map.converters["re"]= MyConverter @app.route('/') def index(): # 模板渲染,在此处渲染后返回给浏览器,并可以在后面自定义状态码 return render_template('index.html'),666 @app.route('/login',methods=["get","post"]) def login(): # 在同一页面进行登录和校验 if request.method == 'post': # 利用request获取相应的值 uname = request.form.get("username") pwd = request.form.get("password") if uname == 'a' and pwd == 'a': response = make_response("登录成功") response.cookie.set = uname response.cookie.set = pwd return response # 此处渲染的页面是以输入地址而发起的请求,所以为GET请求 return render_template('login.html') @app.route('/check/<name>/<age>') def check(name,age): return"姓名为%s,年龄为%s"%(name,age) @app.route('/demo') def demo(): return redirect(url_for(json_demo.str_json)) # return redirect(url_for('index')) if __name__ == '__main__': app.run(debug=True) ```
{ "source": "264768502/NetBooter_Control", "score": 3 }
#### File: 264768502/NetBooter_Control/NetBooter_Control.py ```python import sys,os import time import re import serial import telnetlib import httplib import base64 import string class NetBooter_Control: ''' Offer NetBooter Control class: Support serial/telnet/http control Support outlet status checker / power on / power off / reboot Power on/off return setting success or fail, but reboot no return How to use it: From Serial NetBooter = NetBooter_Control(mode='serial',serial_port='COM1') NetBooter.power_on(1) #Return (True,'') for set Outlet 1 ON success NetBooter.power_off(5) #Return (True,'') for set Outlet 5 OFF success NetBooter.reboot(3) #No return, use NetBooter internal reboot function, don't suggest to use it Outlet3_Status = NetBooter.check_outlet_status(3) #Return (True,'') for Outlet 3 is ON | (False,'') for OFF From HTTP NetBooter = NetBooter_Control(mode='http',ip='192.168.1.101') NetBooter.power_on(2) #Return (True,'') for set Outlet 2 ON success NetBooter.power_off(4) #Return (True,'') for set Outlet 4 OFF success Outlet3_Status = NetBooter.check_outlet_status(3) #Return (True,'') for Outlet 3 is ON | (False,'') for OFF ''' def __init__(self,mode='serial',serial_port='COM1',id='admin',password='<PASSWORD>',ip='0.0.0.0'): ''' Class init Input: mode(serial/telnet/http) id/password [for login NetBooter] For serial: serial_port([Windows]COM1/COM2/COM3/[Linux]/dev/tty...) For telnet/http: ip ''' if not isinstance(mode,str): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Invalid mode '+str(mode)) if not isinstance(id,str): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Invalid id '+str(id)) if not isinstance(password,str): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Invalid password '+str(password)) self.mode = mode.lower() self.id = id self.password = password if self.mode == 'serial': self.NetBooter_serial = serial.Serial() self.NetBooter_serial.port = serial_port self.NetBooter_serial.baudrate = 9600 self.NetBooter_serial.timeout = 3 self.NetBooter_serial.bytesize = serial.EIGHTBITS self.NetBooter_serial.parity = serial.PARITY_NONE self.NetBooter_serial.stopbits = serial.STOPBITS_ONE self.NetBooter_serial.xonxoff = 0 try: self.NetBooter_serial.open() except Exception as e: raise Exception(str(e)) if not self.NetBooter_serial.isOpen(): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Fail to open '+str(serial_port)) for outlet in xrange(1,6): self.power_on(outlet) elif self.mode == 'telnet': self.ip = ip self.NetBooter_telnet = telnetlib.Telnet(self.ip) elif self.mode == 'http': self.ip = ip self.auth = base64.encodestring('%s:%s' % (self.id, self.password)).replace('\n', '') self.NetBooter_httpconnection = httplib.HTTPConnection(self.ip,timeout=10) self.__check_netbooter__() def __check_netbooter__(self): if self.mode == 'serial': try: self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() self.NetBooter_serial.flushOutput() self.NetBooter_serial.write('\nsysshow\n') self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() temp1 = self.NetBooter_serial.read(300) self.NetBooter_serial.write('\nsysshow\n') self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() temp2 = self.NetBooter_serial.read(300) status = temp1+temp2 self.NetBooter_serial.flushOutput() except Exception as e: raise Exception(str(e)) if status.find('System Name') == -1: raise Exception('Invalid NetBooter') elif self.mode == 'telnet': pass elif self.mode == 'http': NetBooter_Pattern = re.compile(r'Synaccess.*?NetBooter',re.I) NetBooter_rly_Pattern = re.compile(r'<a onclick="ajxCmd\(\'(.*?rly.*?)\d\'\);">') NetBooter_rb_Pattern = re.compile(r'<a onclick="ajxCmd\(\'(.*?rb.*?)\d\'\);">') try: self.NetBooter_httpconnection.putrequest("POST",'') self.NetBooter_httpconnection.putheader("Authorization", "Basic %s" % self.auth) self.NetBooter_httpconnection.endheaders() response = self.NetBooter_httpconnection.getresponse() res = response.read() except Exception as e: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Init http connection to NetBooter fail: '+str(e)) if response.status != 200: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Init http connection to NetBooter fail: '+str(response.status)) if not NetBooter_Pattern.search(res): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] http connection is not NetBooter: '+str(res)) rly_pair = NetBooter_rly_Pattern.search(res) if rly_pair: self.rly_url = rly_pair.group(1) else: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Fail to find NetBooter rly url: '+str(res)) rb_pair = NetBooter_rb_Pattern.search(res) if rb_pair: self.rb_url = rb_pair.group(1) else: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Fail to find NetBooter rb url: '+str(res)) def __del__(self): if self.mode == 'serial': self.NetBooter_serial.close() elif self.mode == 'telnet': self.NetBooter_telnet.close() elif self.mode == 'http': self.NetBooter_httpconnection.close() def check_outlet_status(self,outlet): ''' Check outlet status Input: outlet(1/2/3/4/5) Output: True,''(For ON)/False,''(For OFF)/Exception,Exception Reason ''' if outlet not in (1,2,3,4,5,'1','2','3','4','5'): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Invalid NetBooter outlet: '+str(outlet)) outlet = int(outlet) if self.mode == 'serial': if not self.NetBooter_serial.readable() or not self.NetBooter_serial.writable(): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] NetBooter Serial not Readable/Writeable') try: self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() self.NetBooter_serial.flushOutput() self.NetBooter_serial.write('\nsysshow\n') self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() temp1 = self.NetBooter_serial.read(300) self.NetBooter_serial.write('\nsysshow\n') self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() temp2 = self.NetBooter_serial.read(300) status = temp1+temp2 self.NetBooter_serial.flushOutput() except Exception as e: raise Exception(str(e)) try: for line in status.split('\n'): if line.find('Outlet Status(1-On, 0-Off. Outlet 1 to 5):') > -1: #Clean Unrecognizable Code line = line[43:].replace('\x00','') #Outlet list should be ['','0/1','0/1','0/1','0/1','0/1',''] outlets = line.split(' ') if outlets[outlet] == '0': return False,'' elif outlets[outlet] == '1': return True,'' else: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Invalid Status: '+str(outlets)) except Exception as e: return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+str(e) return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Not find outlet: '+str(status) elif self.mode == 'telnet': try: self.NetBooter_telnet.write('\r\nsysshow\r\n'.encode('ascii')) temp = self.NetBooter_telnet.read_until('Note - use WEB access for more settings',2) except Exception as e: raise Exception(str(e)) try: for line in status.split('\n'): if line.find('Outlet Status(1-On, 0-Off. Outlet 1 to 5):') > -1: #Clean Unrecognizable Code line = line[43:].replace('\x00','') #Outlet list should be ['','0/1','0/1','0/1','0/1','0/1',''] outlets = line.split(' ') if outlets[outlet] == '0': return False,'' elif outlets[outlet] == '1': return True,'' else: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Invalid Status: '+str(outlets)) except Exception as e: return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+str(e) return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Not find outlet: '+str(status) elif self.mode == 'http': res = self.NetBooter_httppost(url="/status.xml") if res[0] != True: return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] No proper response from NetBooter: '+res[1] swoutlet = outlet - 1 pattern = re.compile(r'<rly%s>(1|0)</rly%s>'%(swoutlet,swoutlet)) if not pattern.search(res[1]): return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Not find proper outlet status: '+res[1] status = pattern.search(res[1]).group()[6:7] if status == '0': return False,'' elif status == '1': return True,'' else: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Invalid Status: '+str(status)) def login(self): ''' Login NetBooter for serial/telnet mode No output ''' if self.mode == 'serial': if not self.NetBooter_serial.writable(): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] NetBooter Serial not Writeable') try: self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() self.NetBooter_serial.flushOutput() self.NetBooter_serial.write('\n!\nlogin\n') self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() self.NetBooter_serial.flushOutput() self.NetBooter_serial.write(str(self.id)+'\n') self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() self.NetBooter_serial.flushOutput() self.NetBooter_serial.write(str(self.password)+'\n') self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() self.NetBooter_serial.flushOutput() except Exception as e: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+str(e)) elif self.mode == 'telnet': try: self.NetBooter_telnet.write('\r\nlogin\r\n'.encode('ascii')) self.NetBooter_telnet.write(str(self.id)+'\r\n'.encode('ascii')) self.NetBooter_telnet.write(str(self.password)+'\r\n'.encode('ascii')) except Exception as e: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+str(e)) def power_on(self,outlet): ''' Set specific outlet on Input: outlet(1/2/3/4/5) Output: True,''[Set success]/False,''[Set fail]/Exception,'' ''' if outlet not in (1,2,3,4,5,'1','2','3','4','5'): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Invalid NetBooter outlet: '+str(outlet)) outlet = int(outlet) if self.mode == 'http': current_status = self.check_outlet_status(outlet) if current_status[0] == True: return True,'' elif current_status[0] == False: swoutlet = outlet - 1 url = "/%s%s"%(self.rly_url,swoutlet) res = self.NetBooter_httppost(url) if res[0] == True: if res[1] == 'Success! ': new_status = self.check_outlet_status(outlet) if new_status[0] == True: return True,'' elif new_status[0] == False: return False,'['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Power on outlet fail2: '+new_status[1] else: return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+new_status[1] else: return False,'['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Power on outlet fail1: '+res[1] else: return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+res[1] else: return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+current_status[1] time.sleep(2) self.login() if self.mode == 'serial': if not self.NetBooter_serial.writable(): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] NetBooter Serial not Writeable') try: self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() self.NetBooter_serial.flushOutput() self.NetBooter_serial.write('\npset '+str(outlet)+' 1\n') self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() self.NetBooter_serial.flushOutput() time.sleep(1) except Exception as e: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+str(e)) elif self.mode == 'telnet': try: self.NetBooter_telnet.write(('\r\npset '+str(outlet)+' 1\r\n').encode('ascii')) except Exception as e: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+str(e)) res_on = self.check_outlet_status(outlet) if res_on[0] == True: return True,'' elif res_on[0] == False: return False,'' else: return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+res_on[1] def power_off(self,outlet): ''' Set specific outlet off Input: outlet(1/2/3/4/5) Output: True,''[Set success]/False,''[Set fail]/Exception,'' ''' if outlet not in (1,2,3,4,5,'1','2','3','4','5'): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Invalid NetBooter outlet: '+str(outlet)) outlet = int(outlet) if self.mode == 'http': current_status = self.check_outlet_status(outlet) if current_status[0] == False: return True,'' elif current_status[0] == True: swoutlet = outlet - 1 url = "/%s%s"%(self.rly_url,swoutlet) res = self.NetBooter_httppost(url) if res[0] == True: if res[1] == 'Success! ': new_status = self.check_outlet_status(outlet) if new_status[0] == False: return True,'' elif new_status[0] == True: return False,'['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Power off outlet fail2: '+new_status[1] else: return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+new_status[1] else: return False,'['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Power off outlet fail1: '+res[1] else: return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+res[1] else: return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+current_status[1] time.sleep(2) self.login() if self.mode == 'serial': if not self.NetBooter_serial.writable(): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] NetBooter Serial not Writeable') try: self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() self.NetBooter_serial.flushOutput() self.NetBooter_serial.write('\npset '+str(outlet)+' 0\n') self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() self.NetBooter_serial.flushOutput() time.sleep(1) except Exception as e: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+str(e)) elif self.mode == 'telnet': try: self.NetBooter_telnet.write(('\r\npset '+str(outlet)+' 0\r\n').encode('ascii')) except Exception as e: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+str(e)) res_off = self.check_outlet_status(outlet) if res_off[0] == False: return True,'' elif res_off[0] == True: return False,'' else: return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+res_off[1] def reboot(self,outlet): ''' Set specific outlet reboot by internal reboot function from NetBooter Input: outlet(1/2/3/4/5) No output ''' if outlet not in (1,2,3,4,5,'1','2','3','4','5'): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Invalid NetBooter outlet: '+str(outlet)) outlet = int(outlet) if self.mode == 'http': current_status = self.check_outlet_status(outlet) swoutlet = outlet - 1 url = "/%s%s"%(self.rb_url,swoutlet) res = self.NetBooter_httppost(url) time.sleep(3) if res[0] == True: if res[1] == 'Success! ': new_status = self.check_outlet_status(outlet) self.login() if self.mode == 'serial': if not self.NetBooter_serial.writable(): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] NetBooter Serial not Writeable') try: self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() self.NetBooter_serial.flushOutput() self.NetBooter_serial.write('\nrb '+str(outlet)+'\n') self.NetBooter_serial.flush() self.NetBooter_serial.flushInput() self.NetBooter_serial.flushOutput() #time.sleep(1) except Exception as e: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+str(e)) elif self.mode == 'telnet': try: self.NetBooter_telnet.write(('\r\nrb '+str(outlet)+'\r\n').encode('ascii')) except Exception as e: raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+str(e)) def NetBooter_httppost(self,url): ''' Common NetBooter http post Input: url(/status.xml[for get stauts] or /cmd.cgi?rly=#1[for set power on/off]) ''' try: self.NetBooter_httpconnection.putrequest("POST", url) self.NetBooter_httpconnection.putheader("Authorization", "Basic %s" % self.auth) self.NetBooter_httpconnection.endheaders() response = self.NetBooter_httpconnection.getresponse() res = response.read() except Exception as e: return 'Exception','['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+']'+str(e) if response.status != 200: return False,'['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Unknown http connection status: '+str(response.status) return True,res ```
{ "source": "264768502/QD780_Control", "score": 2 }
#### File: 264768502/QD780_Control/QD780.py ```python import sys,os import time import serial timing_map = {"[email protected]" : "480i29", "[email protected]" : "480i30", "[email protected]" : "480i60", "[email protected]" : "480p59", "[email protected]" : "480p60", "[email protected]" : "576i25", "[email protected]" : "576i50", "[email protected]" : "576p50", "[email protected]" : "720p23", "[email protected]" : "720p24", "[email protected]" : "720p25", "[email protected]" : "720p29", "[email protected]" : "720p30", "[email protected]" : "720p50", "[email protected]" : "720p59", "[email protected]" : "720p60", "[email protected]" : "1080i25", "[email protected]" : "1080i29", "[email protected]" : "1080i30", "[email protected]" : "1080i50", "[email protected]" : "1080i60", "[email protected]" : "1080p23", "[email protected]" : "1080p24", "[email protected]" : "1080p25", "[email protected]" : "1080p29", "[email protected]" : "1080p30", "[email protected]" : "1080p50", "[email protected]" : "1080p59", "[email protected]" : "1080p60", "[email protected]" : "2160p23", "[email protected]" : "2160p24", "[email protected]" : "2160p25", "[email protected]" : "2160p29", "[email protected]" : "2160p30", "[email protected]" : "2160p50", "[email protected]" : "2160p59", "[email protected]" : "2160p60", "[email protected]" : "640x480_60Hz", "[email protected]" : "640x480_75Hz", "[email protected]" : "800x600_60Hz", "[email protected]" : "800x600_72Hz", "[email protected]" : "800x600_75Hz", "[email protected]" : "1024x768_60Hz", "[email protected]" : "1024x768_70Hz", "[email protected]" : "1024x768_75Hz", "[email protected]" : "1024x768_85Hz", "[email protected]" : "1280x768_60Hz", "[email protected]" : "1280x768_75Hz", "[email protected]" : "1280x768_85Hz", "[email protected]" : "1280x960_60Hz", "[email protected]" : "1280x960_85Hz", "[email protected]" : "1360x768_60Hz", "[email protected]" : "1152x864_75Hz", "[email protected]" : "1280x1024_60Hz", "[email protected]" : "1280x1024_75Hz", "[email protected]" : "1280x1024_85Hz", "[email protected]" : "1680x1050_60Hz", "[email protected]" : "1680x1050_85Hz", "[email protected]" : "1920x1080_60Hz", } class QD780_Control(object): """ """ __command_prefix__ = 'R:\> ' def __init__(self,serial_port='COM1',baudrate=115200,cmd_retry_time=10): """ Class init Input: For serial: serial_port([Windows]COM1/COM2/COM3/[Linux]/dev/tty...) """ self.QD780_serial = serial.Serial() self.QD780_serial.port = serial_port self.QD780_serial.baudrate = baudrate self.QD780_serial.timeout = 1 #0.1 self.QD780_serial.bytesize = serial.EIGHTBITS self.QD780_serial.parity = serial.PARITY_NONE self.QD780_serial.stopbits = serial.STOPBITS_ONE self.QD780_serial.xonxoff = 0 self.__cmd_retry_time = cmd_retry_time try: self.QD780_serial.open() self.QD780_serial.write('\n') except Exception as e: raise Exception(str(e)) if not self.QD780_serial.isOpen(): raise Exception('['+os.path.basename(__file__)+']['+sys._getframe().f_code.co_name+'] Fail to open '+str(serial_port)) def __del__(self): self.QD780_serial.close() def __flush_all__(self): self.QD780_serial.flush() self.QD780_serial.flushInput() self.QD780_serial.flushOutput() def wait_console(self,timeout = 10): self.__flush_all__() self.QD780_serial.write('\n') start_time = time.time() while True: time.sleep(0.01) buffer_size = self.QD780_serial.inWaiting() if buffer_size > 0: buffer_data = self.QD780_serial.read(buffer_size) if buffer_data.find(self.__command_prefix__) != -1: self.__flush_all__() return True if time.time() - start_time > timeout: self.__flush_all__() return False def write(self,cmd): assert isinstance(cmd,str) self.__flush_all__() self.QD780_serial.write(cmd+'\n') self.__flush_all__() self.wait_console() def read(self,cmd,timeout=10): assert isinstance(cmd,str) self.__flush_all__() self.QD780_serial.write(cmd+'\n') last_buffer_size = 0 buffer_data = '' start_time = time.time() while True: time.sleep(0.01) buffer_size = self.QD780_serial.inWaiting() if buffer_size > 0 and buffer_size != last_buffer_size: buffer_data = buffer_data + self.QD780_serial.read(buffer_size) if buffer_data.find(cmd) != -1: temp1 = buffer_data[buffer_data.find(cmd)+len(cmd):] if temp1.find(self.__command_prefix__) > 4: result_data = temp1[2:temp1.find(self.__command_prefix__)-2] return result_data last_buffer_size = buffer_size if time.time() - start_time > timeout: self.__flush_all__() return False def set_interface(self,arg = 'HDMI'): """ Switch QD780 output interface Input: HDMI/DVI_VESA/DVI_EIA/VGA/YCbCr Output: True/False """ assert isinstance(arg,str) assert arg.upper() in ('HDMI', 'DVI_VESA', 'DVI_EIA', 'VGA', 'YCBCR', 'COMPONENT') for retry_time in xrange(self.__cmd_retry_time): if arg.upper() == 'HDMI': self.write('XVSI 4') res = self.read('XVSI?') if res == '4': return True elif arg.upper() == 'DVI_VESA': self.write('XVSI 2') res = self.read('XVSI?') if res == '2': return True elif arg.upper() == 'DVI_EIA': self.write('XVSI 3') res = self.read('XVSI?') if res == '3': return True elif arg.upper() == 'VGA': self.write('XVSI 9') self.write('AVST 2') self.write('SSST 1') res1 = self.read('XVSI?') res2 = self.read('AVST?') res3 = self.read('SSST?') res = (res1,res2,res3) if res1 == '9' and res2 == '2' and res3 == '1': return True elif arg.upper() == 'YCBCR' or arg == 'COMPONENT': self.write('XVSI 9') self.write('AVST 6') self.write('SSST 3') res1 = self.read('XVSI?') res2 = self.read('AVST?') res3 = self.read('SSST?') res = (res1, res2, res3) if res1 == '9' and res2 == '6' and res3 == '3': return True return False def set_resolution(self, arg='1080p60'): """ Set Resolution on QD780 Input: resoluton, such as 480p50 Output: True/False """ assert isinstance(arg, str) for retry_time in xrange(self.__cmd_retry_time): self.write('FMTL '+arg) self.write('FMTU') res = self.read('FMTL?') if res == arg: return True return False def set_video_bit(self, arg=8): """ Set Bit Depth of video from QD780 Input: arg (8/10/12) Output: True / False """ assert isinstance(arg, str) or isinstance(arg, int) __common_sleep__ = 1.5 for retry_time in xrange(self.__cmd_retry_time): self.write('NBPC '+str(arg)) self.write('FMTU') res = self.read('NBPC?') if res == str(arg): return True return False def set_color_space(self, arg='YUV422'): """ Set Color Space on QD780 Input: Color Space, such as YUV422/YUV444/RGB444/YUV420 Output: True/False Limitation: Currently, YUV420 only support 3840x2160p50/60 timing """ assert isinstance(arg, str) and arg in ('YUV422', 'YUV444', 'RGB444', 'YUV420') for retry_time in xrange(self.__cmd_retry_time): if arg == 'YUV422': self.write('DVST 14') self.write('DVSM 2') self.write('ALLU') res1 = self.read('DVST?') res2 = self.read('DVSM?') if res1 == '14' and res2 == '2': return True elif arg == 'YUV444': self.write('DVST 14') self.write('DVSM 4') self.write('ALLU') res1 = self.read('DVST?') res2 = self.read('DVSM?') if res1 == '14' and res2 == '4': return True elif arg == 'YUV420': return False # YUV420 only support 3840x2160p50/60 timing elif arg == 'RGB444': self.write('DVST 10') self.write('DVSM 0') self.write('ALLU') res1 = self.read('DVST?') res2 = self.read('DVSM?') if res1 == '10' and res2 == '0': return True return False def set_pattern(self, arg = 'PGCwrgb'): """ Switch QD780 output pattern Input: pattern Output: True/False Pattern List: SMPTEBar | Regulate | Flat_Yel H_Stair | Checker | Flat_Blk Pluge | Focus | Crosshtch Needle | Multibrst | Anmorphic HiLoTrk | SplitGray | GrayBar Overscan | LG_V_CBAR | Staircase Window1 | LG_H_CBAR | PulseBar Window2 | V_3BARS | Rev_Grid Raster | Flat_Wht | Linearity DecodAdj | Flat_Red | PRN24Bit DecodChk | Flat_Grn | ZonePlate ColorBar | Flat_Blu | User01 Ramp | Flat_Cyn | AuxTest Converge | Flat_Mag | PGCwrgb """ assert isinstance(arg,str) pattern_list=('SMPTEBar','Regulate', 'Flat_Yel', 'H_Stair', 'Checker', 'Flat_Blk', 'Pluge', 'Focus', 'Crosshtch', 'Needle', 'Multibrst','Anmorphic', 'HiLoTrk', 'SplitGray','GrayBar', 'Overscan','LG_V_CBAR','Staircase', 'Window1', 'LG_H_CBAR','PulseBar', 'Window2', 'V_3BARS', 'Rev_Grid', 'Raster', 'Flat_Wht', 'Linearity', 'DecodAdj','Flat_Red', 'PRN24Bit', 'DecodChk','Flat_Grn', 'ZonePlate', 'ColorBar','Flat_Blu', 'AuxTest', 'Ramp', 'Flat_Cyn', 'PGCwrgb', 'Converge','Flat_Mag') for retry_time in xrange(self.__cmd_retry_time): self.write('IMGL '+arg) self.write('IMGU') res = self.read('IMGU?') if res == False: continue elif res.lower() == arg.lower(): return True elif arg == 'Anmorphic' and res == 'Crosshtch': return True elif arg in ('PulseBar','Rev_Grid') and res == 'Linearity': return True elif arg in ('Checker','GrayBar','Staircase') and res == 'H_Stair': return True elif arg in ('Flat_Blk','Flat_Wht','Flat_Red','Flat_Grn','Flat_Blu','Flat_Cyn','Flat_Mag') and res == 'Flat': return True elif arg == 'AuxTest': return True elif arg not in pattern_list: return True return False def read_edid(self): """ Read EDID, return RAW Data Like below: 00FFFFFFFFFFFF00593A04100101010100180103806E3E782A97DDA45651A1240A474AA5CE0001010101010101010101010101010101023A801871382D40582C450047684200001E641900404100263018883600476842000018000000FC0045353030692D42310A20202020000000FD00384C1F500F000A20202020202001A70203217149010607020305900420260907071507508301000067030C001000001E023A801871382D40582C450047684200001E011D007251D01E206E28550047684200001E8C0AA01451F01600267C430047684200009800000000000000000000000000000000000000000000000000000000000000000000000000000000C9 """ for retry_time in xrange(self.__cmd_retry_time): res = self.read('EDID?') if res != False: return res return False def read_hdcp(self): """ Read HDCP, return True(Pass)/False(Fail) """ for retry_time in xrange(self.__cmd_retry_time): res = self.read('HDCP?') if res == '0': return True elif res == '1': return False return False def avmute_QD780(self, arg = 0): """ Set AVMute on QD780 Input: 0(Disable) / 1(Enable) Output: True/False """ if arg in (0,'0',False,'Disable'): set = '0' elif arg in (1,'1',True ,'Enable' ): set = '1' for retry_time in xrange(self.__cmd_retry_time): self.write('AVMG '+set) return True return False ```
{ "source": "26618929/saltshaker_api", "score": 2 }
#### File: saltshaker_api/resources/gitfs.py ```python from flask_restful import Resource, reqparse, request from fileserver.git_fs import gitlab_project from common.const import role_dict from common.log import loggers from common.sso import access_required from common.audit_log import audit_log from flask import g from resources.sls import delete_sls import base64 logger = loggers() parser = reqparse.RequestParser() parser.add_argument("product_id", type=str, required=True, trim=True) parser.add_argument("branch", type=str, default="master", trim=True) parser.add_argument("path", type=str, default="", trim=True) parser.add_argument("project_type", type=str, required=True, trim=True) parser.add_argument("action", type=str, default="", trim=True) parser.add_argument("content", type=str, default="", trim=True) # 获取所有分支 class BranchList(Resource): @access_required(role_dict["common_user"]) def get(self): args = parser.parse_args() project, _ = gitlab_project(args["product_id"], args["project_type"]) if isinstance(project, dict): return project, 500 else: branch_list = [] try: branch = project.branches.list() for b in branch: branch_list.append(b.name) except Exception as e: logger.error("Get branch error: %s" % e) return {"status": False, "message": str(e)}, 500 return {"data": branch_list, "status": True, "message": ""}, 200 # 获取目录结构 class FilesList(Resource): @access_required(role_dict["common_user"]) def get(self): args = parser.parse_args() project, product_name = gitlab_project(args["product_id"], args["project_type"]) if isinstance(project, dict): return project, 500 else: file_list = [] try: items = project.repository_tree(path=args["path"], ref_name=args["branch"]) except Exception as e: logger.error("Get file list error: %s" % e) return {"status": False, "message": str(e)}, 404 if args["path"] == "/" or args["path"] is "": for i in items: if i["type"] == "tree": file_list.append({"title": i["name"], "type": i["type"], "path": i["name"], "loading": False, "children": [] }) else: file_list.append({"title": i["name"], "type": i["type"], "path": i["name"], }) return {"data": [{ "title": product_name, "expand": True, "children": file_list, "type": "tree", }], "status": True, "message": ""}, 200 else: for i in items: if i["type"] == "tree": file_list.append({"title": i["name"], "type": i["type"], "path": args["path"] + "/" + i["name"], "loading": False, "children": [] }) else: file_list.append({"title": i["name"], "type": i["type"], "path": args["path"] + "/" + i["name"], }) return {"data": file_list, "status": True, "message": ""}, 200 # 获取文件内容 class FileContent(Resource): @access_required(role_dict["common_user"]) def get(self): args = parser.parse_args() project, _ = gitlab_project(args["product_id"], args["project_type"]) if isinstance(project, dict): return project, 500 else: try: content = project.files.get(file_path=args["path"], ref=args["branch"]) content_decode = content.decode().decode("utf-8") except Exception as e: logger.error("Get file content: %s" % e) return {"status": False, "message": str(e)}, 404 return {"data": content_decode, "status": True, "message": ""}, 200 # 创建修改提交文件 class Commit(Resource): @access_required(role_dict["common_user"]) def post(self): args = parser.parse_args() user = g.user_info["username"] project, _ = gitlab_project(args["product_id"], args["project_type"]) # 支持的action create, delete, move, update data = { 'branch': args["branch"], 'commit_message': args["action"] + " " + args["path"], 'actions': [ { 'action': args["action"], 'file_path': args["path"], 'content': args["content"] } ] } if isinstance(project, dict): return project, 500 else: try: project.commits.create(data) # 假如删除,删除数据库中封装的SLS信息 if args["action"] == "delete": delete_sls(args["path"]) audit_log(user, args["path"], args["product_id"], "sls", args["action"]) except Exception as e: logger.error("Commit file: %s" % e) return {"status": False, "message": str(e)}, 500 return {"status": True, "message": ""}, 200 # 上传文件 class Upload(Resource): @access_required(role_dict["common_user"]) def post(self): args = parser.parse_args() user = g.user_info["username"] project, _ = gitlab_project(args["product_id"], args["project_type"]) file = request.files['file'] if args["path"]: file_path = args["path"] + "/" + file.filename content = file.read() try: content_decode = content.decode() actions = [ { 'action': 'create', 'file_path': file_path, 'content': content_decode } ] except Exception as e: return {"status": False, "message": str(e)}, 500 # try: # content_decode = content.decode() # actions = [ # { # 'action': args["action"], # 'file_path': file_path, # 'content': base64.b64encode(content_decode), # 'encoding': 'base64', # } # ] # except Exception as e: # print(e) data = { 'branch': args["branch"], 'commit_message': args["action"] + " " + args["path"], 'actions': actions } if isinstance(project, dict): return project, 500 else: try: project.commits.create(data) audit_log(user, file_path, args["product_id"], "sls", "upload") except Exception as e: logger.error("Upload file: %s" % e) return {"status": False, "message": str(e)}, 500 return {"status": True, "message": ""}, 200 ```
{ "source": "2678918253/Learning-with-Noisy-Class-Labels-for-Instance-Segmentation", "score": 3 }
#### File: 2678918253/Learning-with-Noisy-Class-Labels-for-Instance-Segmentation/noisy_labels_SN_VOC.py ```python import numpy as np import json def unjson(file): with open(file, 'r') as fo: dict = json.load(fo) return dict # r is noise rate r = 0.2 count = 0 p_a = '' p_g = '' a = unjson(p_a) for i in range(len(a['annotations'])): if np.random.random() < r: a['annotations'][i]['category_id'] = np.random.randint(1, 20) count += 1 with open(p_g, 'w') as file: json.dump(a, file) print(count) ```
{ "source": "2678flores/Balance-Comercial-de-Mercancias-Series-de-tiempo-", "score": 3 }
#### File: 2678flores/Balance-Comercial-de-Mercancias-Series-de-tiempo-/RSA y G-M Final.py ```python def XMCD(a,b): ##### obteniendo el inverso de eB con el algoritmo extendido de euclides #### u0 = 0 u1 = 1 v0 = 1 v1 = 0 while b > 0: cociente = a//b residuo = a - b * cociente u = cociente * u1 + u0 v = cociente * v1 + v0 a = b b = residuo u0 = int(u1) u1 = int(u) v0 = int(v1) v1 = int(v) return v0 #aqui puedo agregar 'a' que representa el MCD def msg2num(s): #### Convierte el mensaje a cifrar a codigo ASCII #### n = [] for c in s: a = ord(c) a = int(a) n.append(a) return n def TFPA(exp,mod,num): ##### Cifra el mensaje con llave publica de RSA #### bas = 2 resto = [] while exp > 0: residuo = exp % bas exp = (exp - residuo) / bas resto.append(residuo) A = resto tamano = len(A) pot = [] x = num % mod pot.append(x) for i in range(0, tamano - 1): x = (x**2) % mod pot.append(x) R = pot res = 1 for i in range(0,tamano): if A[i] == 1: producto = (A[i] * R[i]) % mod res = int((res * producto) % mod) return res def numbinario(ctex): #### Cambia cada numero cifrado en RSA a codigo binario #### binar = [] for x in ctex: resto = [] while x > 0: residuo = x % 2 x = (x - residuo) / 2 resto.append(residuo) binar.append(resto) return binar def encrip_G_M(m1,a1,N1): ##### Cifra el mensaje el codigo binario (ya cifrado con RSA) a Goldwasser-Micali #### import random r = random.randint(1,N1) if m1 == 0: c = (r**2) % N1 else: z = r**2 c = (a1 * z) % N1 return c def binario(m1): #### Convierte una lista de codigo binario a un numero en base 10 #### X=[] for i in range(0,len(m1)): x = 2 ** i X.append(x) multiplica = [] for i in range(0,len(m1)): if m1[i] == 1: mult = m1[i] * X[i] multiplica.append(mult) for x in multiplica: resultado = 0 i = 0 while i in range(0,len(multiplica)): resultado = resultado + multiplica[i] i = i + 1 return resultado #---------------------Preparando la llave publica (Esto le corresponde a Bob)------------------------------- print '(BOB) PREPARANDO LA LLAVE PUBLICA \n' p =1223 #73939133#1223 #int(raw_input('Ingrese un numero entero primo p: ')) q =1987 #524287#1987 #int(raw_input('Ingrese un numero entero primo q: ')) eB =948047 #987773#948047 #int(raw_input('Ingresa un numero entero eB: ')) #eA debe ser primo relativo a phi. a =537 #53737#537 #int(raw_input('Ingresa un numero a: ')) #Elegimos a t.q. a es no residuo cuadratico (mod p) y (mod q). p1= (p - 1) / 2 N = p * q phi = (p - 1) * (q - 1) print'La llave publica es kpub',(N,eB,a),'\n' #----------------------------------Preparando la llave privada de Bob----------------------------------- print '(BOB) PREPARANDO LA LLAVE PRIVADA \n' kpriv = XMCD(eB,phi) print 'La llave privada es kpriv',(kpriv,p),'\n' #---------------------------Convirtiendo el mensaje de Alice a Codigo ASCCI------------------------------- print '(ALICE) ENCRIPTANDO EL MENSAJE \n' mensaje = str(raw_input('Introduce el mensaje a cifrar para Bob: ')) textnum = msg2num(mensaje) print 'El mensaje en codigo ASCCI es: \n',textnum,'\n' #---------------------------------- Cifrando con llave publica de RSA (PRIMER CANDADO)------------------------------------ ctext = [] for k in textnum: equis = TFPA(eB,N,k) ctext.append(equis) print 'El texto cifrado con kpub de bob en RSA es: \n',ctext,'\n' #-------------------------Convirtiendo mensaje cifrado con RSA a codigo binario ----------------------------- AX = numbinario(ctext) print 'El texto cifrado con kpub de RSA en codigo binario es:\n',AX,'\n' #------------------Cifrando codigo binario con llave publica de sistema Goldwasser-Micali (SEGUNDO CANDADO) ---------------- GM = [] for k in AX: gm = [] for x in k: Z = int(encrip_G_M(x,a,N)) gm.append(Z) GM.append(gm) print 'Tu texto cifrado con RSA y con Goldwasser-Micali es:\n','INICIA MENSAJE CIFRADO \n',GM,'\nFIN DE MENSAJE CIFRADO \n' #----------------Decifrando ciphertext con llave privada a en sistema Goldwasser-Micali-------------------------- print '(BOB) DECIFRANDO EL MENSAJE \n' DGM = [] for k in GM: dgm = [] for j in k: Z1 = int(TFPA(p1,p,j)) if Z1 == 1: bi = 0 else: bi = 1 dgm.append(bi) DGM.append(dgm) print 'Desencriptando Goldwasser-Micali: \n',DGM,'\n' #-------------------------------------Convirtiendo texto cifrado con RSA en binario a base 10------------------- PENCIL = [] for x in DGM: Pencil = binario(x) PENCIL.append(Pencil) print 'De binario a decimal: \n',PENCIL,'\n' #---------------------------------Desencriptando ctext con llave privada RSA------------------------------------ DRSA = [] for x in PENCIL: drsa = int(TFPA(kpriv,N,x)) DRSA.append(drsa) print 'Desenciptacion RSA:\n', DRSA,'\n' #---------------------Convirtiendo los numeros a sus correspondientes caracteres con codigo ASCCI------------------ Mensaje = [] for c in DRSA: letter = chr(c) Mensaje.append(letter) MENSAJE = "".join(Mensaje) print 'MENSAJE ORIGINA DE ALICE:\n',MENSAJE,'\nFIN DE MENSAJE ORIGINAL' ```
{ "source": "2694048168/ComputerVisionDeepLearning", "score": 3 }
#### File: DigitalImageProcessing/python/bilateral_filter.py ```python import sys import math import cv2 as cv import numpy as np def getClosenessWeight(sigma_g, H, W): """构建空间权重模板""" r, c = np.mgrid[0:H:1, 0:W:1] r -= (H - 1) // 2 c -= (W - 1) // 2 closeWeight = np.exp(-0.5*(np.power(r, 2) + np.power(c, 2)) / math.pow(sigma_g, 2)) return closeWeight def bilateralFilterGray(image, H, W, sigma_g, sigma_d): """双边滤波 Args: image (ndarray): 输入单通道图像, 灰度级范围[0,1] H ([int]): 权重模板的高 W ([int]): 权重模板的宽 sigma_g ([float]): 空间距离权重模板的标准差,大于 1 sigma_d ([float]): 相似性权重模板的标准差, 小于 1 Returns: [ndarray]: 双边滤波结果图像, 浮点型矩阵 """ closenessWeight = getClosenessWeight(sigma_g, H, W) center_H = (H - 1) // 2 center_W = (W - 1) // 2 rows, cols = image.shape bilateral_filter_gray_image = np.zeros(image.shape, np.float32) for r in range(rows): for c in range(cols): pixel = image[r][c] # 边界判断 rTop = 0 if r-center_H < 0 else r-center_H rBottom = rows-1 if r+center_H > rows-1 else r+center_H cLeft = 0 if c-center_W < 0 else c-center_W cRight = cols-1 if c+center_W > cols-1 else c+center_W # 权重模板作用区域 region = image[rTop:rBottom+1, cLeft:cRight+1] # 构建灰度值相似性的权重因子 similarityWeightTemp = np.exp(-0.5*np.power(region-pixel, 2.0)/math.pow(sigma_d, 2)) closenessWeightTemp = closenessWeight[rTop-r+center_H:rBottom-r+center_H+1, cLeft-c+center_W:cRight-c+center_W+1] # 两个权重模板点乘 weightTemp = similarityWeightTemp * closenessWeightTemp # 归一化权重模板 weightTemp = weightTemp / np.sum(weightTemp) # 权重模板和对应的邻域值相乘求和 bilateral_filter_gray_image[r][c] = np.sum(region * weightTemp) return bilateral_filter_gray_image # -------------------------- if __name__ == "__main__": if len(sys.argv) > 1: image = cv.imread(sys.argv[1], 0) if image is None: print(f"Error: no such file or dictory.") cv.imshow("OriginImage", image) # [0-255] ----> [0-1] image = image/255.0 # 1. 双边滤波 bilateral_filter_gray_image = bilateralFilterGray(image, 33, 33, 19, 0.2) bilateral_filter_gray_image = (bilateral_filter_gray_image * 255).astype(np.uint8) cv.imshow("bilateral_filter", bilateral_filter_gray_image) cv.waitKey(0) cv.destroyAllWindows() else: print(f"Usage: python histogram imageFile.") ``` #### File: DigitalImageProcessing/python/calc_gray_hist.py ```python import sys import cv2 as cv import numpy as np import matplotlib.pyplot as plt def calcGrayHist(image): """计算图像的灰度直方图。 Args: image ([type]): 单通道的灰度图像,图像深度为 8 bit Returns: 一维 ndarray : 灰度图像的直方图,每一个灰度级对应的像素个数 """ rows, cols = image.shape grayHist = np.zeros([256], np.uint64) for idx_row in range(rows): for idx_col in range(cols): grayHist[image[idx_row][idx_col]] += 1 return grayHist # -------------------------- if __name__ == "__main__": if len(sys.argv) > 1: image = cv.imread(sys.argv[1], 0) if image is None: print(f"Error: no such file or dictory.") # 1. 手动计算直方图 grayHist = calcGrayHist(image) # 可视化灰度直方图 x_range = range(256) plt.plot(x_range, grayHist, linewidth=2, color="black") y_maxValue = np.max(grayHist) plt.axis([0, 255, 0, y_maxValue]) plt.xlabel("Gray Level") plt.ylabel("Number of Pixels") plt.show() plt.close() # 2. 利用 matplotlib 计算直方图 rows, cols = image.shape # 二维矩阵转换为一维数组 pixelSequence = image.reshape([rows*cols, ]) numberBins = 256 # 灰度等级 histgram, bins, patch = plt.hist(pixelSequence, numberBins, facecolor="black", histtype="bar") plt.xlabel(u"GrayLevel") plt.ylabel(u"Number of Pixels") plt.axis([0, 255, 0, np.max(histgram)]) plt.show() plt.close() else: print(f"Usage: python histogram imageFile.") ``` #### File: DigitalImageProcessing/python/diff_gaussian.py ```python import sys from scipy import signal import numpy as np import cv2 as cv def gaussConv(image, size, sigma): """函数 gaussConv 实现非归一化的高斯卷积 Args: image ([ndarray]): [description] size ([tuple]): 卷积核的大小,二元元组,(高,宽) sigma ([float]): 高斯函数的标准差 Returns: [ndarray]: 高斯卷积结果 """ H, W = size # 构建水平方向上非归一化的高斯卷积核 _, x_col = np.mgrid[0:1, 0:W] x_col = x_col - (W - 1) / 2 x_kernel = np.exp(-np.power(x_col, 2.0)) img_xk = signal.convolve2d(image, x_kernel, "same", "symm", 0) # 构造垂直方向非归一化的高斯卷积核 y_row, _ = np.mgrid[0:H, 0:1] y_row = y_row - (H - 1) / 2 y_kernel = np.exp(-np.power(y_row, 2.0)) img_xk_yk = signal.convolve2d(img_xk, y_kernel, "same", "symm", 0) img_xk_yk = img_xk_yk * 1.0/(2 * np.pi * pow(sigma, 2.0)) return img_xk_yk def DiffGuassian(image, size, sigma, k=1.1): # 标准差为 sigma 的非归一化高斯卷积核 img_gauss_kernel_1 = gaussConv(image, size, sigma) # 标准差为 k*sigma 的非归一化高斯卷积核 img_gauss_kernel_k = gaussConv(image, size, k*sigma) # 两个高斯卷积的差分 diff_guass = img_gauss_kernel_k - img_gauss_kernel_1 diff_guass = diff_guass / (pow(sigma, 2.0)*(k - 1)) return diff_guass # -------------------------- if __name__ == "__main__": if len(sys.argv) > 1: image = cv.imread(sys.argv[1], 0) if image is None: print(f"Error: no such file or dictory.") cv.imshow("OriginImage",image) # -------- Difference of Guassian Operator -------- sigma = 0.2 k = 1.1 size = (3, 3) img_diff_gauss = DiffGuassian(image, size, sigma, k) # 1. 二值化处理 edge = np.copy(img_diff_gauss) edge[edge>0] = 255 edge[edge<=0] = 0 edge = edge.astype(np.uint8) cv.imshow("edge_binary", edge) # 2. 抽象化处理 asbstraction_img = -np.copy(img_diff_gauss) asbstraction_img = asbstraction_img.astype(np.float32) asbstraction_img[asbstraction_img>=0] = 1.0 asbstraction_img[asbstraction_img<0] = 1.0 + np.tanh(asbstraction_img[asbstraction_img<0]) cv.imshow("abstraction_edge", asbstraction_img) cv.waitKey(0) cv.destroyAllWindows() else: print("Usge: python.py imageFile") ``` #### File: DigitalImageProcessing/python/hist_equalization.py ```python import sys import math import cv2 as cv import numpy as np def calcGrayHist(image): """计算图像的灰度直方图。 Args: image ([type]): 单通道的灰度图像,图像深度为 8 bit Returns: 一维 ndarray : 灰度图像的直方图,每一个灰度级对应的像素个数 """ rows, cols = image.shape grayHist = np.zeros([256], np.uint64) for idx_row in range(rows): for idx_col in range(cols): grayHist[image[idx_row][idx_col]] += 1 return grayHist def equalizeHist(image): """全局直方图均衡化。 Args: image (ndarray): 矩阵形式的输入图像 Returns: [ndarray]: 矩阵形式的经过直方图均衡化后的输出图像 """ # 对于直方图均衡化的实现主要分四个步骤: # 1. 计算图像的灰度直方图。 rows, cols = image.shape grayHist = calcGrayHist(image) # 2. 计算灰度直方图的累加直方图。 zeroCumuMoment = np.zeros([256], np.uint32) for p in range(256): if p == 0: zeroCumuMoment[p] = grayHist[0] else: zeroCumuMoment[p] = zeroCumuMoment[p-1] + grayHist[p] # 3. 根据累加直方图和直方图均衡化原理得到输入灰度级和输出灰度级之间的映射关系。 output_q = np.zeros([256], np.uint8) cofficient = 256.0 / (rows * cols) for p in range(256): q = cofficient * float(zeroCumuMoment[p]) - 1 if q >= 0: output_q[p] = math.floor(q) else: output_q[p] = 0 # 4. 根据第三步得到的灰度级映射关系,循环得到输出图像的每一个像素的灰度级。 equalizeHistImage = np.zeros(image.shape, np.uint8) for idx_row in range(rows): for idx_col in range(cols): equalizeHistImage[idx_row][idx_col] = output_q[image[idx_row][idx_col]] return equalizeHistImage # -------------------------- if __name__ == "__main__": if len(sys.argv) > 1: image = cv.imread(sys.argv[1], 0) if image is None: print(f"Error: no such file or dictory.") cv.imshow("OriginImage", image) # 1. 直方图均衡化 equalHistImg = equalizeHist(image) cv.imshow("EqualizeHistImage", equalHistImg) # 2. 自适应直方图均衡化 ----> 限制对比度的自适应直方图均衡化 # 构建 CLAHE 对象 clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)); # 限制对比度的自适应直方图均衡化 dst_contrastLimit = clahe.apply(image) cv.imshow("ContrastLimitImage", dst_contrastLimit) cv.waitKey(0) cv.destroyAllWindows() else: print(f"Usage: python histogram imageFile.") ``` #### File: DigitalImageProcessing/python/laplace_gaussian_operator.py ```python import sys from scipy import signal import numpy as np import cv2 as cv def createLaplaceGaussianKernel(sigma, size): """构建高斯拉普拉斯卷积核 Args: sigma ([float]): 高斯函数的标准差 size ([tuple]): 高斯核的大小,奇数 Returns: [ndarray]: 高斯拉普拉斯卷积核 """ H, W = size r, c = np.mgrid[0:H:1, 0:W:1] r = r - (H - 1) / 2 c = c - (W - 1) / 2 sigma2 = pow(sigma, 2.0) norm2 = np.power(r, 2.0) + np.power(c, 2.0) LoGKernel = (norm2 / sigma2 - 2)*np.exp(-norm2 / (2 * sigma2)) return LoGKernel def LaplaceGaussianOperator(image, sigma, size, _boundary="symm", _fillvalue=0): # Laplace of Guassian convolution kernel laplace_gaussian_kernel = createLaplaceGaussianKernel(sigma=sigma, size=size) img_laplace_gaussian_conv = signal.convolve2d(image, laplace_gaussian_kernel, mode="same", boundary=_boundary, fillvalue=_fillvalue) return img_laplace_gaussian_conv # -------------------------- if __name__ == "__main__": if len(sys.argv) > 1: image = cv.imread(sys.argv[1], 0) if image is None: print(f"Error: no such file or dictory.") cv.imshow("OriginImage",image) # -------- Laplace of Guassian Operator -------- img_laplce_gaussian_conv = LaplaceGaussianOperator(image, 1, (7, 7)) # 阈值化处理获取二值图 edge_binary = np.copy(img_laplce_gaussian_conv) edge_binary[edge_binary>0] = 255 edge_binary[edge_binary<=0] = 0 edge_binary = edge_binary.astype(np.uint8) cv.imshow("EdgeBinary", edge_binary) # 反色处理,以黑色显示边缘 edge_black_binary = 255 - edge_binary cv.imshow("EdgeBinaryBlack", edge_black_binary) cv.waitKey(0) cv.destroyAllWindows() else: print("Usge: python.py imageFile") ``` #### File: DigitalImageProcessing/python/laplace_operator.py ```python import sys from scipy import signal import numpy as np import cv2 as cv def LaplaceOperator(image, _boundary="fill", _fillvalue=0): # laplace convolution kernel laplace_kernel = np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]], np.float32) # laplace_kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], np.float32) img_laplace_conv = signal.convolve2d(image, laplace_kernel, mode="same", boundary=_boundary, fillvalue=_fillvalue) return img_laplace_conv # -------------------------- if __name__ == "__main__": if len(sys.argv) > 1: image = cv.imread(sys.argv[1], 0) if image is None: print(f"Error: no such file or dictory.") cv.imshow("OriginImage",image) # -------- Laplace Operator -------- img_laplce_conv = LaplaceOperator(image, "symm") # case 1, 阈值化处理 thresholdEdge = np.copy(img_laplce_conv) thresholdEdge[thresholdEdge>0] = 255 thresholdEdge[thresholdEdge<0] = 0 thresholdEdge = thresholdEdge.astype(np.uint8) cv.imshow("ThresholdEdge", thresholdEdge) # case 2, 抽象化处理(水墨画效果) asbstractionEdge = np.copy(img_laplce_conv) asbstractionEdge = asbstractionEdge.astype(np.float32) asbstractionEdge[asbstractionEdge>=0] = 1.0 asbstractionEdge[asbstractionEdge<0] = 1.0 + np.tanh(asbstractionEdge[asbstractionEdge<0]) cv.imshow("AsbstractionEdge", asbstractionEdge) cv.waitKey(0) cv.destroyAllWindows() else: print("Usge: python.py imageFile") ``` #### File: DigitalImageProcessing/python/local_threshold_otsu.py ```python import sys import math import numpy as np import cv2 as cv def calcGrayHist(image): rows, cols = image.shape grayHist = np.zeros([256], np.uint64) for idx_row in range(rows): for idx_col in range(cols): grayHist[image[idx_row][idx_col]] += 1 return grayHist def otsuThreshold(image): rows, cols = image.shape grayHist = calcGrayHist(image) uniformGrayHist = grayHist / float(rows*cols) # 零阶累积矩阵和一阶累积矩阵 zeroCumuMoment = np.zeros([256], np.float32) oneCumuMoment = np.zeros([256], np.float32) for k in range(256): if k == 0: zeroCumuMoment[k] = uniformGrayHist[0] oneCumuMoment[k] = (k) * uniformGrayHist[0] else: zeroCumuMoment[k] = zeroCumuMoment[k-1] + uniformGrayHist[k] oneCumuMoment[k] = oneCumuMoment[k-1] + k * uniformGrayHist[k] # 计算类间方差 variance = np.zeros([256], np.float32) for k in range(255): if zeroCumuMoment[k] == 0 or zeroCumuMoment[k] == 1: variance[k] = 0 else: variance[k] = math.pow(oneCumuMoment[255]*zeroCumuMoment[k] - oneCumuMoment[k], 2) / (zeroCumuMoment[k]*(1.0-zeroCumuMoment[k])) # 找到阈值 threshLoc = np.where(variance[0:255] == np.max(variance[0:255])) thresholdVal = threshLoc[0][0] thresholdImg = np.copy(image) thresholdImg[thresholdImg > thresholdVal] = 255 thresholdImg[thresholdImg <= thresholdVal] = 0 return thresholdVal, thresholdImg # -------------------------- if __name__ == "__main__": if len(sys.argv) > 1: image = cv.imread(sys.argv[1], 0) if image is None: print(f"Error: no such file or directory.") sys.exit() cv.imshow("OriginImage", image) thresholdVal, thresholdImg = otsuThreshold(image) print(f"The threshold value is {thresholdVal}") cv.imshow("ThresholdImage", thresholdImg) cv.waitKey(0) cv.destroyAllWindows() else: print(f"Usage: python gaussBlur imageFile.") ``` #### File: DigitalImageProcessing/python/low_high_filter.py ```python import sys import numpy as np import cv2 as cv def fft2Image(src): rows, cols = src.shape[:2] # 获取快速傅里叶变换的最优扩充 row_padding = cv.getOptimalDFTSize(rows) col_padding = cv.getOptimalDFTSize(cols) # 下侧面和右侧面进行 zero-padding img_fft = np.zeros((row_padding, col_padding, 2), np.float32) img_fft[:rows, :cols, 0] = src # 快速傅里叶变换 cv.dft(img_fft, img_fft, cv.DFT_COMPLEX_OUTPUT) return img_fft # ------------ 傅里叶变换中两个度量: 幅度谱和相位谱 ------------ def amplitudeSepectrum(img_fft): real_part = np.power(img_fft[:, :, 0], 2.0) imaginary_part = np.power(img_fft[:, :, 1], 2.0) amplitude_part = np.sqrt(real_part + imaginary_part) return amplitude_part def graySpectrum(amplitude): # 对比度拉伸 amplitude_log = np.log(amplitude + 1.0) # 归一化 spectrum_norm = np.zeros(amplitude_log.shape, np.float32) cv.normalize(amplitude_log, spectrum_norm, 0, 1, cv.NORM_MINMAX) return spectrum_norm def createLPFilter(shape, center, radius, lpType=2, n=2): """构建三种低通滤波器:理想滤波器,巴特沃斯滤波器,高斯滤波器 Args: shape ([tuple]): 滤波器的大小,表示快速傅里叶变换的尺寸; (high, width) center ([tuple]): 傅里叶谱的中心位置; (x, y) radius ([float]): 截至频率; lpType (int, optional): 滤波器的类型. Defaults to 2. n (int, optional): 巴特沃斯滤波器的阶数. Defaults to 2. Returns: [ndarray]: 低通滤波器 """ rows, cols = shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c = c - center[0] r = r - center[1] d = np.power(c, 2.0) + np.power(r, 2.0) lpFilter = np.zeros(shape, np.float32) if radius <= 0: return lpFilter # case 1, 理想低通滤波器 if lpType == 0: lpFilter = np.copy(d) lpFilter[lpFilter < pow(radius, 2.0)] = 1 lpFilter[lpFilter >= pow(radius, 2.0)] = 0 # case 2, 巴特沃斯低通滤波器 elif lpType == 1: lpFilter = 1.0 / (1.0 + np.power(np.sqrt(d) / radius, 2 * n)) # case 3, 高斯低通滤波器 elif lpType == 2: lpFilter = np.exp(-d / (2.0 * pow(radius, 2.0))) return lpFilter # -------------------------- # 截至频率 radius = 50 MAX_RADIUS = 100 lpType = 0 MAX_LPTYPE = 2 # -------------------------- if __name__ == "__main__": if len(sys.argv) > 1: image = cv.imread(sys.argv[1], 0) if image is None: print(f"Error: no such file or directory.") sys.exit() cv.imshow("OriginImage", image) # ------------ step 1, reading image file ------------ fimage = np.zeros(image.shape, np.float) # ------------ step 2, (-1)^(r+c) ------------ for r in range(image.shape[0]): for c in range(image.shape[1]): if (r+c) % 2: fimage[r][c] = -1 * image[r][c] else: fimage[r][c] = image[r][c] # ------------ step 3 and step 4, zero-padding and FFT ------------ FImagefft2 = fft2Image(fimage) amplitude = amplitudeSepectrum(FImagefft2) spectrum = graySpectrum(amplitude) cv.imshow("OriginalSpectrum", spectrum) minValue, maxValue, minLoc, maxLoc = cv.minMaxLoc(amplitude) cv.namedWindow("lpFilterSpectrum", 1) def nothing(*arg): pass cv.createTrackbar("lpType", "lpFilterSpectrum", lpType, MAX_LPTYPE, nothing) cv.createTrackbar("radius", "lpFilterSpectrum", radius, MAX_RADIUS, nothing) result = np.zeros(spectrum.shape, np.float32) while True: radius = cv.getTrackbarPos("radius", "lpFilterSpectrum") lpType = cv.getTrackbarPos("lpType", "lpFilterSpectrum") # ------------ step 5, 构建低通滤波器 ------------ lpFilter = createLPFilter(spectrum.shape, maxLoc, radius, lpType) # ------------ step 6, 低通滤波器和快速傅里叶变换的对应位置做点乘 ------------ rows, cols = spectrum.shape[:2] fImagefft2_lpFilter = np.zeros(FImagefft2.shape, FImagefft2.dtype) for i in range(2): fImagefft2_lpFilter[:rows, :cols, i] = FImagefft2[:rows, :cols, i] * lpFilter lp_amplitude = amplitudeSepectrum(fImagefft2_lpFilter) lp_spectrum = graySpectrum(lp_amplitude) cv.imshow("lpFilterSpectrum", lp_spectrum) # ------------ step 7 and step 8, 对低通滤波器变换执行傅里叶逆变换,取实部 ------------ cv.dft(fImagefft2_lpFilter, result, cv.DFT_REAL_OUTPUT + cv.DFT_INVERSE + cv.DFT_SCALE) # ------------ step 9, (-1)^(r+c) ------------ for r in range(rows): for c in range(cols): if (r + c) % 2: result[r][c] = -1 * result[r][c] # ------------ step 10, 数据类型转换,截取左方角部分 ------------ for r in range(rows): for c in range(cols): if result[r][c] < 0: result[r][c] = 0 elif result[r][c] > 255: result[r][c] = 255 lpResult = result.astype(np.uint8) lpResult = lpResult[:image.shape[0], :image.shape[1]] cv.imshow("LPFilter", lpResult) ch = cv.waitKey(5) if ch == 27: break cv.waitKey(0) cv.destroyAllWindows() else: print(f"Usage: python python-scripy.py imageFile.") ``` #### File: DigitalImageProcessing/python/open_close_morphology.py ```python import sys import cv2 as cv # -------------------------- if __name__ == "__main__": if len(sys.argv) > 1: image = cv.imread(sys.argv[1], 0) if image is None: print(f"Error: no such file or dictory.") cv.imshow("OriginImage",image) # 结构元半径和迭代次数以及最大值 r, i = 1, 1 MAX_R, MAX_I = 20, 20 # 显示形态学处理效果的窗口 cv.namedWindow("morphology", 1) # 回调函数 def nothing(*arg): pass # 调节结构元半径 cv.createTrackbar("r", "morphology", r, MAX_R, nothing) # 调节迭代次数 cv.createTrackbar("i", "morphology", r, MAX_I, nothing) while True: # 获取当前进度条上的 r 半径值 r = cv.getTrackbarPos("r", "morphology") # 获取当前进度条上的 i 迭代次数 i = cv.getTrackbarPos("i", "morphology") # 创建结构元 s = cv.getStructuringElement(cv.MORPH_RECT, (2*r+1, 2*r+1)) # 1. 进行形态学处理——开运算 # d = cv.morphologyEx(image, cv.MORPH_OPEN, s, iterations=i) # 2. 进行形态学处理——闭运算 # d = cv.morphologyEx(image, cv.MORPH_CLOSE, s, iterations=i) # 3. 进行形态学处理——顶帽变换 # d = cv.morphologyEx(image, cv.MORPH_TOPHAT, s, iterations=i) # 4. 进行形态学处理——底帽变换 # d = cv.morphologyEx(image, cv.MORPH_BLACKHAT, s, iterations=i) # 5. 进行形态学处理——形态学梯度 d = cv.morphologyEx(image, cv.MORPH_GRADIENT, s, iterations=i) # 可视化处理效果 cv.imshow("morphology", d) # cv.imwrite("./image/open.png", d) ch = cv.waitKey(5) # Esc 退出循环 if ch == 27: break cv.waitKey(0) cv.destroyAllWindows() else: print("Usge: python.py imageFile") ``` #### File: DigitalImageProcessing/python/prewitt_operator.py ```python import sys from scipy import signal import numpy as np import cv2 as cv def PrewittOperator(image, _boundary="symm"): """Prewitt 可分离边缘检测算子 Args: image ([ndarray]): 原始输入图像 _boundary (str, optional): 边界填充模式. Defaults to "symm". Returns: [tuple]: Prewitt 算子输出结果,元组形式 """ # 1 垂直方向的均值平滑 kernel_smooth_y = np.array([[1], [1], [1]], np.float32) img_conv_prewitt_x = signal.convolve2d(image, kernel_smooth_y, mode="same", boundary=_boundary) # 2 水平方向的差分操作 diff_x = np.array([[1, 0, -1]], np.float32) img_conv_prewitt_x = signal.convolve2d(image, diff_x, mode="same", boundary=_boundary) # 1 水平方向的均值平滑 kernel_smooth_x = np.array([[1, 1, 1]], np.float32) img_conv_prewitt_y = signal.convolve2d(image, kernel_smooth_x, mode="same", boundary=_boundary) # 2 垂直方向的差分操作 diff_y = np.array([[1], [0], [-1]], np.float32) img_conv_prewitt_y = signal.convolve2d(img_conv_prewitt_y, diff_y, mode="same", boundary=_boundary) return (img_conv_prewitt_x, img_conv_prewitt_y) # -------------------------- if __name__ == "__main__": if len(sys.argv) > 1: image = cv.imread(sys.argv[1], 0) if image is None: print(f"Error: no such file or dictory.") cv.imshow("OriginImage",image) # 注意区分边缘强度和边缘强度的灰度级显示 img_prewitt_x, img_prewitt_y = PrewittOperator(image) # 计算绝对值,获取水平方向和垂直方向的边缘强度 abs_img_prewitt_x = np.abs(img_prewitt_x) abs_img_prewitt_y = np.abs(img_prewitt_y) # 水平方向和垂直方向的边缘强度的灰度级显示 edge_x = abs_img_prewitt_x.copy() edge_y = abs_img_prewitt_y.copy() # 将大于 255 直接进行饱和操作 edge_x[edge_x>255] = 255 edge_y[edge_y>255] = 255 # 数据类型转换 edge_x = edge_x.astype(np.uint8) edge_y = edge_y.astype(np.uint8) cv.imshow("edge_x", edge_x) cv.imshow("edge_y", edge_y) # 根据 prewitt 两个卷积结果, 计算最终的边缘强度 # 计算最终的边缘强度有多种方式, 采用 插值法 edge = 0.5*abs_img_prewitt_x + 0.5*abs_img_prewitt_y # 边缘轻度的灰度级显示 edge[edge>255] = 255 edge = edge.astype(np.uint8) cv.imshow("edge", edge) cv.waitKey(0) cv.destroyAllWindows() else: print("Usge: python.py imageFile") ``` #### File: DigitalImageProcessing/python/scharr_operator.py ```python import sys from scipy import signal import numpy as np import cv2 as cv def ScharrOperator(image, _boundary="symm"): # image 和 scharr_x 在水平方向卷积,反映垂直方向的边缘强度 scharr_x = np.array([[3, 0, -3], [10, 0, -10], [3, 0, -3]], np.float32) img_convX = signal.convolve2d(image, scharr_x, mode="same", boundary=_boundary) # image 和 scharr_y 在垂直方向卷积,反映水平方向的边缘强度 scharr_y = np.array([[3, 10, 3], [0, 0, 0], [-3, -10, -3]], np.float32) img_convY = signal.convolve2d(image, scharr_y, mode="same", boundary=_boundary) return (img_convX, img_convY) # -------------------------- if __name__ == "__main__": if len(sys.argv) > 1: image = cv.imread(sys.argv[1], 0) if image is None: print(f"Error: no such file or dictory.") cv.imshow("OriginImage",image) img_convX, img_convY= ScharrOperator(image) # image 和 scharr_x 在水平方向卷积结果,反映垂直方向的边缘强度 img_convX = np.abs(img_convX) edge_vertical = img_convX.astype(np.uint8) cv.imshow("edge_vertical", edge_vertical) # image 和 scharr_y 在垂直方向卷积结果,反映水平方向的边缘强度 img_convY = np.abs(img_convY) edge_horizontal = img_convY.astype(np.uint8) cv.imshow("edge_horizontal", edge_horizontal) # 利用平方和的开方赖衡量最后的输出的边缘 edge = np.sqrt(np.power(img_convX, 2.0) + np.power(img_convY, 2.0)) edge = np.round(edge) edge[edge>255] = 255 edge = edge.astype(np.uint8) cv.imshow("edge", edge) cv.waitKey(0) cv.destroyAllWindows() else: print("Usge: python.py imageFile") ``` #### File: DigitalImageProcessing/python/sobel_operator.py ```python import sys import math from scipy import signal import numpy as np import cv2 as cv def PascalSmooth(n): """函数 PascalSmooth 返回 n 阶的非归一化的高斯平滑算子, 即指数为 n-1 的二项式展开式的系数, 其中对于阶乘的实现,利用 Python 的函数包 math 中的 factorial,其参数 n 为奇数。 Args: n ([int]): 高斯卷积算子的阶数(奇数) Returns: [array]: 高斯卷积算子中的系数,即用于 Soble 算子中平滑核参数 """ pascalSmooth = np.zeros([1, n], np.float32) for idx in range(n): pascalSmooth[0][idx] = math.factorial(n - 1) / math.factorial(idx) * math.factorial(n - 1 - idx) return pascalSmooth def PascalDiff(n): """函数 PascalDiff 返回 n 阶差分算子,完成 Sobel 在方向上的差分操作 Args: n ([int]): Sobel 进行 n 阶差分 Returns: [array]: Soble n 阶差分结果 """ pascalDiff = np.zeros([1, n], np.float32) pascalSmooth_previous = PascalSmooth(n - 1) for idx in range(n): if idx == 0: # 恒等于 1 pascalDiff[0][idx] = pascalSmooth_previous[0][idx] elif idx == n - 1: # 恒等于 -1 pascalDiff[0][idx] = -pascalSmooth_previous[0][idx - 1] else: pascalDiff[0][idx] = pascalSmooth_previous[0][idx] - pascalSmooth_previous[0][idx - 1] return pascalDiff def GetSobelKernel(n): """ PascalSmooth 返回的平滑算子和 PascalDiff 返回的差分算子进行 full 卷积, 就可以得到完整的水平方向和垂直方向上的 nxn 的 Sobel 算子。 注意,真正在进行 Sobel 卷积时,这一步是多余的,直接通过卷积的分离性就可以完成 Sobel 卷积, 这里只是为了得到完整的 Sobel 核,通过定义函数 getSobelKernel 来实现, 返回值包括水平方向和垂直方向上的 Sobel 核。 Args: n ([int]): n 阶 Sobel 算子 Returns: [array]: 水平方向和垂直方向的 Sobel 卷积核 """ pascalSmoothKernel = PascalSmooth(n) pascalDiffKernel = PascalDiff(n) # 水平方向上卷积核 sobelKernel_x = signal.convolve2d(pascalSmoothKernel.transpose(), pascalDiffKernel, mode="full") # 垂直方向上卷积核 sobelKernel_y = signal.convolve2d(pascalSmoothKernel, pascalDiffKernel.transpose(), mode="full") return (sobelKernel_x, sobelKernel_y) def SobelOperator(image, n): """ 构建了 Sobel 平滑算子和差分算子后,通过这两个算子来完成图像矩阵与 Sobel 算子的 same 卷积, 函数 SobelOperator 实现该功能: 图像矩阵先与垂直方向上的平滑算子卷积得到的卷积结果, 再与水平方向上的差分算子卷积, 这样就得到了图像矩阵与sobel_x 核的卷积。 与该过程类似,图像矩阵先与水平方向上的平滑算子卷积得到的卷积结果, 再与垂直方向上的差分算子卷积, 这样就得到了图像矩阵与 sobel_y 核的卷积。 Args: image ([ndarray]): 进行 Sobel 算子的原始输入图像 n ([int]): 进行 Sobel 算子的阶数 Returns: [ndarray]: 水平方向上的 Sobel 卷积结果;垂直方向上的卷积结果 """ pascalSmoothKernel = PascalSmooth(n) pascalDiffKernel = PascalDiff(n) # -------- 与水平方向上 Sobel 卷积核进行卷积 -------- # 可分离卷积核 1. 先进行垂直方向的平滑 img_sobel_x = signal.convolve2d(image, pascalSmoothKernel.transpose(), mode="same") # 可分离卷积核 2. 再进行水平方向的差分 img_sobel_x = signal.convolve2d(img_sobel_x, pascalDiffKernel, mode="same") # -------- 与水平方向上 Sobel 卷积核进行卷积 -------- # 可分离卷积核 1. 先进行垂直方向的平滑 img_sobel_y = signal.convolve2d(image, pascalSmoothKernel, mode="same") # 可分离卷积核 2. 再进行水平方向的差分 img_sobel_y = signal.convolve2d(img_sobel_x, pascalDiffKernel.transpose(), mode="same") return img_sobel_x, img_sobel_y # -------------------------- if __name__ == "__main__": if len(sys.argv) > 1: image = cv.imread(sys.argv[1], 0) if image is None: print(f"Error: no such file or dictory.") cv.imshow("OriginImage",image) # 注意区分边缘强度和边缘强度的灰度级显示 img_soble_x, img_soble_y = SobelOperator(image, 3) # 计算绝对值,获取水平方向和垂直方向的边缘强度 abs_img_soble_x = np.abs(img_soble_x) abs_img_soble_y = np.abs(img_soble_y) # 水平方向和垂直方向的边缘强度的灰度级显示 edge_x = abs_img_soble_x.copy() edge_y = abs_img_soble_y.copy() # 将大于 255 直接进行饱和操作 edge_x[edge_x>255] = 255 edge_y[edge_y>255] = 255 # 数据类型转换 edge_x = edge_x.astype(np.uint8) edge_y = edge_y.astype(np.uint8) cv.imshow("edge_x", edge_x) cv.imshow("edge_y", edge_y) # 根据 sobel 两个卷积结果, 计算最终的边缘强度 # 计算最终的边缘强度有多种方式, 采用 平方和开方方式 edge = np.sqrt(np.power(img_soble_x, 2.0) + np.power(img_soble_y, 2.0)) # 边缘轻度的灰度级显示 # Sobel 边缘检测,将边缘强度大于 255 的值直接截断为 255,这样得到的边缘有可能不够平滑 # edge[edge>255] = 255 # edge = edge.astype(np.uint8) # cv.imshow("edge_255", edge) # 另一种方式,对所得到的边缘强度进行直方图正规化处理或者归一化处理。 # 对边缘强度进行归一化处理得到边缘强度的灰度级显示,如果得到的对比度较低,还可以通过伽马变换进行对比度增强 edge = edge / np.max(edge) edge = np.power(edge, 1) edge *= 255 edge = edge.astype(np.uint8) cv.imshow("Soble_scale", edge) # cv.imwrite("./image/Soble_scale.png", edge) cv.waitKey(0) cv.destroyAllWindows() else: print("Usge: python.py imageFile") ``` #### File: DigitalImageProcessing/python/spectral_residual_significance.py ```python import sys import math import numpy as np import cv2 as cv def FFT2Image(src): rows, cols = src.shape[:2] # 获取快速傅里叶变换的最优扩充 row_padding = cv.getOptimalDFTSize(rows) col_padding = cv.getOptimalDFTSize(cols) # 下侧面和右侧面进行 zero-padding img_fft = np.zeros((row_padding, col_padding, 2), np.float32) img_fft[:rows, :cols, 0] = src # 快速傅里叶变换 cv.dft(img_fft, img_fft, cv.DFT_COMPLEX_OUTPUT) return img_fft def AmplitudeSepectrum(img_fft): real_part = np.power(img_fft[:, :, 0], 2.0) imaginary_part = np.power(img_fft[:, :, 1], 2.0) amplitude_part = np.sqrt(real_part + imaginary_part) return amplitude_part def graySpectrum(amplitude): # 对比度拉伸 amplitude_log = np.log(amplitude + 1.0) # 归一化 spectrum_norm = np.zeros(amplitude_log.shape, np.float32) cv.normalize(amplitude_log, spectrum_norm, 0, 1, cv.NORM_MINMAX) return spectrum_norm def phaseSpectrum(fft_img): rows, cols = fft_img.shape[:2] # 计算对应的相位角 phase_angle = np.arctan2(fft_img[:, :, 1], fft_img[:, :, 0]) # 将相位角进行转换 phase_spectrum = phase_angle / math.pi * 180 return phase_spectrum # -------------------------- if __name__ == "__main__": if len(sys.argv) > 1: image = cv.imread(sys.argv[1], 0) if image is None: print(f"Error: no such file or dictory.") cv.imshow("OriginImage", image) # ------------ 显著性检测: 谱残差检测 ------------ # step 1, computer fft of image fft_img = FFT2Image(image) # step 2, compute amplitude spectrum of fft amplitude_spectrum = AmplitudeSepectrum(fft_img) # compute gray level of amplitude spectrum amplitude_spectrum_log = graySpectrum(amplitude_spectrum) # step 3, compute phase spectrum of fft phase_spectrum = phaseSpectrum(fft_img) # 利用余弦函数计算余弦谱, 对应实部 cos_phase_spectrum = np.cos(phase_spectrum) # 利用正弦函数计算正弦谱, 对应虚部 sin_phase_spectrum = np.sin(phase_spectrum) # step 4, 对幅度谱的灰度级进行均值平滑 mean_log_amplitude_spectrum = cv.boxFilter(amplitude_spectrum_log, cv.CV_32FC1, (3, 3)) # step 5, 计算谱残差 amplitude_spectrum_residual = amplitude_spectrum_log - mean_log_amplitude_spectrum # step 6, 谱残差的幂指数运算 exp_amplitude_spectrum_residual = np.exp(amplitude_spectrum_residual) # 分别计算实数部分和虚数部分 real_part = exp_amplitude_spectrum_residual * cos_phase_spectrum imaginary_part = exp_amplitude_spectrum_residual * sin_phase_spectrum # 合并实部和虚部 com_real_imaginary = np.zeros((real_part.shape[0], real_part.shape[1], 2), np.float32) com_real_imaginary[:, :, 0] = real_part com_real_imaginary[:, :, 1] = imaginary_part # step 7, 根据新的幅度谱和相位谱, 进行傅里叶逆变换 ifft_img = np.zeros(com_real_imaginary.shape, np.float32) cv.dft(com_real_imaginary, ifft_img, cv.DFT_COMPLEX_OUTPUT + cv.DFT_INVERSE) # step 8, 显著性 saliency_map = np.power(ifft_img[:, :, 0], 2) + np.power(ifft_img[:, :, 1], 2) # 对显著性进行高斯平滑 saliency_map = cv.GaussianBlur(saliency_map, (5, 5), 2.5) # show the saliency map for test # saliency_map = cv.normalize(saliency_map, saliency_map, 0, 1, cv.NORM_MINMAX) saliency_map = saliency_map / np.max(saliency_map) # 利用 伽马变换提高对比度 saliency_map = np.power(saliency_map, 0.5) saliency_map = np.round(saliency_map*255) saliency_map = saliency_map.astype(np.uint8) cv.imshow("SaliencyMap", saliency_map) cv.waitKey() cv.destroyAllWindows() else: print("Usage: python python-scripy.py imageFile") ```
{ "source": "26ANSH/Pathshaala", "score": 3 }
#### File: Pathshaala/teacher/firebase.py ```python import pyrebase # Fill your Firebase Details here - CONFIG = { 'apiKey': "", 'authDomain': "", 'databaseURL': "", 'projectId': "", 'storageBucket': "", 'messagingSenderId': "", 'appId': "" }; # start firebase authentication firebase = pyrebase.initialize_app(CONFIG) auth = firebase.auth() storage=firebase.storage() def create_user(email, password): try: user = auth.create_user_with_email_and_password(email, password) return user['localId'] except: return 400 def teacher_login(email, password): try: user = auth.sign_in_with_email_and_password(email, password) return user['localId'] except: return 400 def uploadimage(fr, to): location = storage.child(to) location.put(fr) return storage.child(to).get_url() ``` #### File: Pathshaala/teacher/models.py ```python from asyncio import tasks import firebase_admin from firebase_admin import credentials, firestore, storage import random from google.cloud.firestore import ArrayUnion, Increment import datetime # Firebase Credentials # Fill your firebase Details which you get from console.firebase.com cred = credentials.Certificate({ "type": "", "project_id": "", "private_key_id": "", "private_key": "", "client_email": "", "client_id": "", "auth_uri": "https://accounts.google.com/o/oauth2/auth", "token_uri": "https://oauth2.googleapis.com/token", "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", "client_x509_cert_url": "" }) firebase_admin.initialize_app(cred) db = firestore.client() def _new_user(id, fname, lname,email, country, gender): num = int('{:06}'.format(random.randrange(1, 10**6))) db.collection('teachers').document(id).set({ 'id':id, 'email':email, 'first_name':fname, 'last_name':lname, 'country':country, 'gender':gender, 'token': num, 'metadata':{'students':0,'studentLimit':500,'courses':0,'courseLimit':10} }) return num def get_token(id): return db.collection('teachers').document(id).get().to_dict()['token'] def _new_course(name, teacher_id, description, tags, img): # random_number = str(random.randint((10**(3)), (10**(3)))) time = datetime.datetime.now() tags = tags.split(',') tags = list(map(str.strip, tags)) course = db.collection('courses').document() code = video_code() details = {'id':course.id, 'code':name.replace(' ', '-'), 'live': code ,'name':name.title(), 'teacher_id':teacher_id, 'description':description, 'tags':tags, 'img':img, 'from':time, 'students':[], 'students':0} course.set(details) db.collection('teachers').document(teacher_id).update({'metadata.courses': Increment(1)}) def get_meta(id): meta = db.collection('teachers').document(id).get().to_dict()['metadata'] meta['total_course_percent'] = (meta['courses']/meta['courseLimit']) * 100 meta['total_students_percent'] = (meta['students']/meta['studentLimit']) * 100 return meta def get_courses(teacher_id): courses = db.collection('courses').where('teacher_id', '==', teacher_id).get() courses = [i.to_dict() for i in courses] return courses def add_student(email, c_id): time = datetime.datetime.now() checking = db.collection('students').where('email', '==', email).stream() for check in checking: id = check.id students = db.collection('courses').document(c_id).collection('students').where('id', '==' , id).stream() for student in students: return 400, student.to_dict() data = check.to_dict() data = {'id':id, 'email':email, 'added':time, 'verified':data['verified'], 'name':data['name']} db.collection('courses').document(c_id).collection('students').document(id).set(data) db.collection('courses').document(c_id).update({'students': Increment(1)}) return 200, data new = db.collection('students').document() id = new.id db.collection('courses').document(c_id).update({'students': Increment(1)}) new.set({'email':email, 'id':id, 'verified':False, 'created':time}) db.collection('courses').document(c_id).collection('students').document(id).set({'id':id, 'email':email, 'added':time, 'verified':False, 'name':'Invite Sent'}) return 100, id def get_student_details(code, t_id): return [student.to_dict() for student in db.collection('courses').where('code', '==', code).where('teacher_id', '==', t_id).get()[0].reference.collection('students').get()] def video_code(): nums=[8,4,4,4,12] code = '' for num in nums: random_number = str(random.randint((10**(num-1)), (10**(num)))) code += random_number + '-' return code[:-1] def get_course(code, t_id): return list(db.collection('courses').where('code', '==', code).where('teacher_id', '==', t_id).stream())[0].to_dict() ``` #### File: Pathshaala/teacher/views.py ```python from django.shortcuts import render, redirect from django.http import HttpResponse, JsonResponse from django.contrib.auth.models import User from django.contrib.auth import authenticate, login, logout from .firebase import create_user, teacher_login, uploadimage from .models import _new_course, _new_user, get_token, get_courses, get_meta, add_student, get_student_details, get_course from django.core.mail import EmailMessage from django.template.loader import render_to_string from django.conf import settings import asyncio from asgiref.sync import sync_to_async from django.core.signing import Signer import json from django.views.decorators.csrf import csrf_exempt def page_not_found_view(request, exception): return render(request, 'error/404.html', status=404) decode = Signer() def is_student(request): if request.user.username.split('_')[0]=='student': return True else: return False def teacher_auth(request): if request.user.is_authenticated and request.user.username.split('_')[0]=='teacher': return True else: return False def index(request): if teacher_auth(request): return render(request, 'student/say.html', {'say': f' Pathshaala ❤️ {request.user.first_name} Details = {request.user}'}) elif is_student(request): return redirect('/teacher/auth/login/?error=You are already Logged in as a Student') else: return redirect('/teacher/auth/login/?error=Login to Access !!!') async def signin(request): if not await sync_to_async(teacher_auth)(request): if request.method == 'POST': form = request.POST user = await sync_to_async(create_user)(form['email'], form['password']) if user == 400: # print(user) return HttpResponse('User already exists') else: token = await sync_to_async(_new_user)(user,form['fname'],form['lname'], form['email'], form['country'], form['gender']) await sync_to_async(User.objects.create_user)(first_name = form['fname'], last_name = form['lname'], username='teacher_'+user, password=form['password'], email=form['email']) authenticated_user = await sync_to_async(authenticate)(username='teacher_'+user, password=form['password']) # print(authenticated_user) msg = render_to_string('mail.html', {'header':'Welcome to Pathshaala👨‍💻🔥', 'name': form['fname'],'link':'https://pathshaala.azurewebsites.net/teacher/auth/verify/?user={}&code={}'.format(decode.sign(user), decode.sign(token)), 'email':form['email']}) email = EmailMessage( 'Welcome to Pathshaala', msg, settings.EMAIL_HOST_USER, [form['email']] ) email.content_subtype = 'html' email.fail_silently = False mail = sync_to_async(email.send) asyncio.create_task(mail()) authenticated_user.is_active = False await sync_to_async(authenticated_user.save)() # await sync_to_async(login)(request, authenticated_user) return redirect('/teacher/auth/login/?alert=Account Created! Please Verify to continue, Link sent via email') else: return render(request,'teacher/signup.html') else: return redirect('index') def User_Login(request): if not teacher_auth(request): if request.method == 'POST': form = request.POST email=form['email'] password=form['password'] username = teacher_login(email, password) if username != 400: id = 'teacher_'+username user = User.objects.get(username=id) if user.is_active: authenticated_user = authenticate(username=id, password=password) login(request, authenticated_user) return redirect('dashboard') else: return redirect("/teacher/auth/login/?error=Please Verify to continue, Link sent via email at {}".format(email)) else: # return HttpResponse('Invalid credentials, Try again') # return render(request,'teacher/login.html', {'error' : 'Wrong Email or Psssword ! Retry'}) return redirect('/teacher/auth/login/?error=Wrong Email or Password! Please retry!') else: if request.GET.get('error'): error = request.GET.get('error') return render(request,'teacher/login.html', {'error':error}) elif request.GET.get('alert'): alert = request.GET.get('alert') return render(request,'teacher/login.html', {'alert':alert}) return render(request,'teacher/login.html') elif is_student(request): return redirect('/teacher/auth/login/?error=You are already Logged in as a Student') else: return redirect('dashboard') def my_logout(request): if teacher_auth(request): logout(request) return redirect('indextt') def verifyemail(request): if request.GET.get('code') and request.GET.get('user'): try: id = decode.unsign(request.GET.get('user')) code = decode.unsign(request.GET.get('code')) username='teacher_'+id user = User.objects.get(username=username) except: return redirect('/teacher/auth/login/?error=INVALID LINK') if user.is_active: return redirect('/teacher/auth/login/?alert=Email Already Verified') else: if int(code) == int(get_token(id)): user.is_active = True user.save() return redirect('/teacher/auth/login/?alert=Email Verified! Now you can Login to your account') else: return redirect('/teacher/auth/login/?error=INVALID LINK') else: return redirect('/teacher/auth/login/?error=INVALID LINK') def dashboard(request): if teacher_auth(request): return render(request, 'teacher/dashboard/main.html', {'userName':{'fname':request.user.first_name, 'lname':request.user.last_name}, 'data':get_meta(request.user.username.split('_')[1]) }) else: return redirect('/teacher/auth/login/?error=Login to Access !!!') @csrf_exempt def students(request, course_id): if teacher_auth(request): if request.method == 'POST': received_json_data = json.loads(request.body) print(course_id, received_json_data) code, response = add_student(received_json_data['mail'], request.session['current_course']) if code == 400: return JsonResponse({'code':'exist'}) elif code == 200: name = response['name'] return JsonResponse({'email':received_json_data['mail'], 'code':'✅','name':name }) else: msg = render_to_string('mail.html', {'header':'Welcome to Pathshaala 👨‍💻', 'name': '','link':'https://pathshaala.azurewebsites.net','t_name':request.user.first_name, 'email':received_json_data['mail']}) email = EmailMessage( f'Invite from {request.user.first_name}', msg, settings.EMAIL_HOST_USER, [received_json_data['mail']] ) email.content_subtype = 'html' email.fail_silently = False email.send() return JsonResponse({'email':received_json_data['mail'], 'code':'⛔️','name':'Invite Sent' }) else: students_data = get_student_details(course_id, request.user.username.split('_')[1]) course_info = get_course(course_id, request.user.username.split('_')[1]) return render(request, 'teacher/dashboard/courses/users.html', {'course':course_info ,'userName':{'fname':request.user.first_name, 'lname':request.user.last_name}, 'students':students_data}) else: return redirect('/teacher/auth/login/?error=Login to Access !!!') def courses(request): if teacher_auth(request): courses = get_courses(request.user.username.split('_')[1]) return render(request, 'teacher/dashboard/course.html',{'courses': courses, 'count':len(courses), 'userName':{'fname':request.user.first_name, 'lname':request.user.last_name}}) else: return redirect('/teacher/auth/login/?error=Login to Access !!!') async def new_course(request): if await sync_to_async(teacher_auth)(request): if request.method == 'POST': # return HttpResponse('Post Method') form = request.POST file = request.FILES["course-image-upload"] name = form['course-name'] url = await sync_to_async(uploadimage)(file, "display_images/courses/"+file.name) # asyncio.create_task(sync_to_async(_new_course)(name, request.user.username.split('_')[1],form['course-description'], form['course-tags'], url)) await sync_to_async(_new_course)(name, request.user.username.split('_')[1],form['course-description'].capitalize(), form['course-tags'], url) return render(request,'teacher/dashboard/add_course.html', {'alert':f'Course "{name.title()}" Has been Created', 'userName':{'fname':request.user.first_name, 'lname':request.user.last_name}}) else: return render(request, 'teacher/dashboard/add_course.html', {'userName':{'fname':request.user.first_name, 'lname':request.user.last_name}}) else: return redirect('/teacher/auth/login/?error=Login to Access !!!') # https://firebasestorage.googleapis.com/v0/b/pathshaala-e8244.appspot.com/o/display_images%2Fcourses%2FCheers!.png?alt=media&token=ba8852c3-ef5c-4135-98bc-743a8714ce79 def sr(request): if teacher_auth(request): return render(request, 'teacher/dashboard/resource.html', {'userName':{'fname':request.user.first_name, 'lname':request.user.last_name}}) else: return redirect('/teacher/auth/login/?error=Login to Access !!!') def sv(request): if teacher_auth(request): return render(request, 'teacher/dashboard/yt.html', {'userName':{'fname':request.user.first_name, 'lname':request.user.last_name}}) else: return redirect('/teacher/auth/login/?error=Login to Access !!!') def course(request, course_id): if teacher_auth(request): try: course_info = get_course(course_id, request.user.username.split('_')[1]) except: return HttpResponse('No such course') request.session['current_course'] = course_info['id'] return render(request, 'teacher/dashboard/courses/main.html', {'course':course_info, 'userName':{'fname':request.user.first_name, 'lname':request.user.last_name}}) else: return redirect('/teacher/auth/login/?error=Login to Access !!!') def docs(request, course_id): if teacher_auth(request): course_info = get_course(course_id, request.user.username.split('_')[1]) print(request.session['current_course']) return render(request, 'teacher/dashboard/courses/pages.html', {'course':course_info, 'userName':{'fname':request.user.first_name, 'lname':request.user.last_name}}) else: return redirect('/teacher/auth/login/?error=Login to Access !!!') ```
{ "source": "26ANSH/python-docs-hello-django", "score": 2 }
#### File: python-docs-hello-django/hello/views.py ```python from django.http import HttpResponse from django.shortcuts import render import os def hello(request): if "USER_NAME" in os.environ: return HttpResponse(f"<h1>Hello, World!</h1><br>This is Ansh from Azure CLI") else: return HttpResponse(f"<h1>Hello, {os.environ['USER_NAME']}!</h1><br>This is Ansh from Azure CLI") ```
{ "source": "26aseem/Capstone-2021-GUI", "score": 3 }
#### File: 26aseem/Capstone-2021-GUI/app.py ```python import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import math import streamlit as st import pickle from pickle import load from PIL import Image import seaborn as sns import statsmodels.api as sm ### Streamlit code starts here st.title("Time Series Analysis of Disaster Tweets") st.markdown("The dashboard will help the government and humanitarian aid agencies to plan and coordinate the natural disaster relief efforts, resulting in more people being saved and more effective distribution of emergency supplies during a natural hazard") st.sidebar.title("Select Visual Charts") st.sidebar.markdown("Select the Charts/Plots accordingly:") # Some CSS Markdown for styling STYLE = """ <style> img { max-width: 100%; } </style> """ st.markdown(STYLE, unsafe_allow_html=True) ### Time Series Code goes here # Dataset # Load the Dataset tweets1 = pd.read_csv("https://raw.githubusercontent.com/anidevhere/Temp/main/nepal_mix_1.csv")[['text','type']] tweets2 = pd.read_csv("https://raw.githubusercontent.com/anidevhere/Temp/main/italy_mix_1.csv")[['text','type']] tweets3 = pd.read_csv("https://raw.githubusercontent.com/anidevhere/Temp/main/Covid-19.csv")[['text','type']] names = [tweets1,tweets2,tweets3] # Concatenate the datasets tweets = pd.concat(names,ignore_index = True) # Reshuffle the dataset tweets = tweets.sample(frac = 1) # Reindex the dataset tweets['index'] = list(range(0,tweets.shape[0],1)) tweets.set_index('index', inplace=True) tweets['type'] = tweets['type'].map({0: 'Need', 1: 'Availability', 2: 'Other'}) # Change column names for consistency tweets.columns = ['text', 'type'] print('Shape of the Dataset:',tweets.shape) # Dataset Description h = st.sidebar.slider('Select the number of tweets using the slider', 1, tweets.shape[0], 10) data_tweets = tweets.sample(h) data_tweets['index'] = list(range(0, h, 1)) data_tweets.set_index('index', inplace=True) st.table(data_tweets) # Checking for class balancing and get unique labels: chart_visual_class_balancing = st.sidebar.checkbox('Class Labels', True) if chart_visual_class_balancing==True: fig = plt.figure(figsize=(8, 4)) sns.countplot(y=tweets.loc[:, 'type'],data=tweets).set_title("Count of tweets in each class") st.pyplot(fig) tweets['type'] = tweets['type'].map({'Need':0, 'Availability':1,'Other':2}) # Get all the labels used in the labelling column label = tweets.type.unique() print("Labels:", label) # Remove label 2 from the list because not required for time series analysis label = np.delete(label,np.where(label == 2)) print("Labels:", label) # Add names to the numerical labels label_name = [] for i in label: if i == 0: label_name.append("Need") elif i == 1: label_name.append("Availability") # Choose interval interval = 30 start_date = "2021-04-01" # Create Timestamps with intervals ds = pd.date_range(start=start_date, periods=interval) dates = [] for i in ds: dates.append(i.strftime('%m-%d-%Y')) del ds # Divide the Dataset into intervals # Divide the dataset into the given number of intervals num_of_tweets_per_interval = math.floor(tweets.shape[0]/interval) # Create Time Series with intervals data = [] count_of_data = [] for i in label: count_of_data.append([]) for i in range(1,interval+1,1): # Draw a sample from the tweets tw = tweets.sample(n=num_of_tweets_per_interval, random_state=10, replace=False) # Append the statistics of the drawn sample to the list stat = dict() for j in range(0,len(label)): stat[label[j]] = list(tw['type']).count(label[j]) count_of_data[j].append(list(tw['type']).count(label[j])) data.append(stat) # Remove the already drawn tweets from the dataset tweets.drop(labels=list(tw.index.values),inplace=True) # Real Time Series starts here # Load Dataset df = pd.DataFrame(count_of_data).T # Set Index df['Date'] = pd.to_datetime(dates) df.set_index('Date', inplace=True) df.columns = ['Need', 'Availability'] st.title("Twitter Data Description") chart_visual_tweets = st.sidebar.selectbox('Select Chart/Plot type', ('Stacked Bar Chart', 'Side-by-Side Bar Chart', 'Line Chart')) # Plot 1 if chart_visual_tweets=='Side-by-Side Bar Chart': # set width of bars barWidth = 0.25 # Set position of bar on X axis r = [np.arange(interval)] for i in range(1, len(label)): r1 = [x + barWidth for x in r[-1]] r.append(r1) # Plotting a line plot after changing it's width and height f = plt.figure() f.set_figwidth(20) f.set_figheight(8) # Make the plot for i,lab in enumerate(label): plt.bar(r[i], count_of_data[i], width=barWidth, edgecolor='white', label=label_name[i]) # Add xticks on the middle of the group bars plt.xlabel('Time Series', fontweight='bold') plt.xticks([r + barWidth for r in range(len(count_of_data[0]))], list(dates)) plt.tick_params(axis ='x', rotation =90) # Create legend & Show graphic plt.legend() plt.show() st.pyplot(f) # Plot 2 if chart_visual_tweets=='Stacked Bar Chart': # Plotting a line plot after changing it's width and height f = plt.figure() f.set_figwidth(20) f.set_figheight(8) b = np.zeros(interval) for i,lab in enumerate(label): plt.bar(dates, count_of_data[i],bottom=b, edgecolor='white', label=label_name[i]) b += np.array(count_of_data[i]) plt.xlabel('Time Series', fontweight='bold') plt.tick_params(axis ='x', rotation =90) # Create legend & Show graphic plt.legend() plt.show() st.pyplot(f) # Plot 3 if chart_visual_tweets=='Line Chart': # Plotting a line plot after changing it's width and height f = plt.figure() f.set_figwidth(20) f.set_figheight(8) ls = ['dashed', 'solid'] for i,lab in enumerate(label): plt.plot(count_of_data[i], label=label_name[i], linestyle=ls[i], marker='o') plt.xlabel('Time Series', fontweight='bold') plt.tick_params(axis ='x', rotation =90) # Create legend & Show graphic plt.legend() plt.show() st.pyplot(f) ################################### Time Series Analysis starts here st.title("Time Series Analysis of Tweets") chart_visual_time_series = st.sidebar.selectbox('Select Need/Availability Label for Time series distribution',('Need', 'Availability')) # y represemts the Need Label # z represents the Availability Label y = df['Need'] z = df['Availability'] if chart_visual_time_series=='Need': fig, ax = plt.subplots(figsize=(20, 6)) ax.plot(y, marker='o', linewidth=0.5, label='Daily',ls='solid', c='red') ax.plot(y.resample('3D').mean(),marker='o', markersize=8, linestyle='dashed', label='Half-Weekly Mean Resample') ax.set_ylabel('Frequency') ax.set_xlabel('Date') ax.legend() st.pyplot(fig) if chart_visual_time_series=="Availability": fig, ax = plt.subplots(figsize=(20, 6)) ax.plot(z, marker='o', linewidth=0.5, label='Daily',ls='solid', c='red') ax.plot(z.resample('3D').mean(),marker='o', markersize=8, linestyle='dashed', label='Half-Weekly Mean Resample', color='blue') ax.set_ylabel('Frequency') ax.set_xlabel('Date') ax.legend() st.pyplot(fig) ################################### Seasonal Decomposition starts here # The next step is to decompose the data to view more of the complexity behind the linear visualization. # A useful Python function called seasonal_decompose within the 'statsmodels' package can help us to decompose the data # into four different components: # Observed # Trended # Seasonal # Residual st.title("Decompose the Data") chart_visual_seasonal_decomposition = st.sidebar.selectbox('Select Need/Availability Label for Seasonal decomposition', ('Need of resources', 'Availability of resources')) def seasonal_decompose (x): decomposition_x = sm.tsa.seasonal_decompose(x, model='additive',extrapolate_trend='freq') fig_x = decomposition_x.plot() fig_x.set_size_inches(14,7) plt.show() st.pyplot(fig_x) if chart_visual_seasonal_decomposition == "Need of resources": seasonal_decompose(y) elif chart_visual_seasonal_decomposition == "Availability of resources": seasonal_decompose(z) # Footer footer="""<style> a:link , a:visited{ color: blue; background-color: transparent; text-decoration: underline; } a:hover, a:active { color: red; background-color: transparent; text-decoration: underline; } footer {visibility: hidden;} .footer { margin:0; height:5px; position:relative; top:140px; left: 0; bottom: 0; width: 100%; background-color: white; color: black; text-align: center; } </style> <div class="footer"> <p>Developed with <span style='color:red;'>❤</span> by <a style='text-align: center;' href="https://github.com/26aseem" target="_blank"><NAME></a></p> </div> """ st.markdown(footer,unsafe_allow_html=True) ```
{ "source": "26aseem/TOPSIS", "score": 3 }
#### File: TOPSIS/TOPSIS-Aseem-101803469/topsis.py ```python import sys import pandas as pd import time import numpy as np import math class topsisPerformer: def __init__(self): self.outputTable = pd.DataFrame() self.outputFileName = "result" + str(time.strftime("%Y%m%d", time.localtime(time.time()))) + ".csv" def topsis(inputFile, weights, impacts): # InputFile is the input table for performing Topsis # Weights is the required weight values for each column # Impacts is the required impact values for each column try: weights = list(map(float , weights.split(','))) impacts = list(map(str , impacts.split(','))) except: print('Weights or Impacts are not provided in proper format ') print ("Usages: topsis(<InputDataFile> <Weights> <Impacts>)") print ("Example: topsis(inputfile.csv "1,1,1,2" "+,+,-,+")") sys.exit(0) for each in impacts : if each not in ('+','-'): print('Impacts are not provided in proper format ') print('Example: "+,+,-,+"') sys.exit(0) try: input_data = pd.read_csv(inputFile) except: print(file+' File not found'); sys.exit(0) if len(list(input_data.columns))<=2: print('Input file should contain atleast 3 or more columns '+ file) sys.exit() # Input File are read through read_csv() functions inputTable = pd.read_csv(inputFile) # Define the Labels for the data labels = [i for i in inputTable[1:]] # MAIN PROGRAM STARTS HERE # Each file is manipulated outputTable = inputTable.copy() # Add the Topsis Score and Rank column to the output table outputTable['Topsis Score'] = [0 for i in range(0,len(inputTable))] outputTable['Rank'] = [0 for i in range(0,len(inputTable))] # Parameters for output Table sumOfSquares = {labels[i] : 0 for i in range(1,len(labels))} newWeights = {labels[i] : 0 for i in range(1,len(labels))} # Processing the input table for index, row in inputTable.iterrows(): for i in labels[1:]: sumOfSquares[i] += row[i]*row[i] for i in sumOfSquares: sumOfSquares[i] = math.sqrt(sumOfSquares[i]) # Perform the TOPSIS Normalization operations on the data inputTable = outputTable.copy() for index, row in outputTable.iterrows(): for i in labels[1:]: inputTable.loc[index,i] = row[i] / sumOfSquares[i] # Define weights and impact dictionary newWeights = {i:weights[index]/sum(weights) for index,i in enumerate(labels[1:])} newImpacts = {i:impacts[index] for index,i in enumerate(labels[1:])} for index, row in outputTable.iterrows(): for i in labels[1:]: inputTable.loc[index,i] *= newWeights[i] v1 = dict() v2 = dict() for index, row in outputTable.iterrows(): for i in labels[1:]: if newImpacts[i] == '+': v1[i] = max(inputTable[i]) v2[i] = min(inputTable[i]) elif newImpacts[i] == '-': v1[i] = min(inputTable[i]) v2[i] = max(inputTable[i]) inputTable = inputTable.append(v1,ignore_index=True) inputTable = inputTable.append(v2,ignore_index=True) inputTable['S1'] = [0 for i in range(0,len(inputTable))] inputTable['S2'] = [0 for i in range(0,len(inputTable))] inputTable['S12'] = [0 for i in range(0,len(inputTable))] for index, row in inputTable.iterrows(): if index < len(inputTable) - 2: for i in labels[1:]: row['S1'] += (float(inputTable.loc[len(inputTable)-2][i]) - float(row[i])) * (float(inputTable.loc[len(inputTable)-2][i]) - float(row[i])) row['S2'] += (float(inputTable.loc[len(inputTable)-1][i]) - float(row[i])) * (float(inputTable.loc[len(inputTable)-1][i]) - float(row[i])) row['S1'] = math.sqrt(row['S1']) row['S2'] = math.sqrt(row['S2']) row['S12'] = row['S1'] + row['S2'] outputTable.loc[index,'Topsis Score'] = row['S2'] / (row['S1'] + row['S2']) # Ranking of the different Models rank_values = sorted(outputTable['Topsis Score'], reverse = True) for index,row in inputTable.iterrows(): if index < len(inputTable) - 2: outputTable.loc[index,'Rank'] = rank_values.index(outputTable.loc[index]['Topsis Score']) + 1 self.outputTable = outputTable print('Topsis Performer was Successful') print(outputTable) # Download the Topsis Report def topsisReport(self, outputFile = self.outputFileName): # Save DataFrame to csv File self.outputTable.to_csv(outputFile, index=False) print('\nResult File successfully created') ```
{ "source": "26medias/GAN-toolkit", "score": 3 }
#### File: GAN-toolkit/detector/iris_detector.py ```python import numpy as np import cv2 from pathlib import Path from .ELG.elg_keras import KerasELG FILE_PATH = str(Path(__file__).parent.resolve()) NET_INPUT_SHAPE = (108, 180) class IrisDetector(): def __init__(self, path_elg_weights="/content/eye-detector/elg_keras.h5"): self.elg = None self.detector = None self.path_elg_weights = path_elg_weights self.build_ELG() def build_ELG(self): self.elg = KerasELG() self.elg.net.load_weights(self.path_elg_weights) def set_detector(self, detector): self.detector = detector def detect_iris(self, im, landmarks=None): """ Input: im: RGB image Outputs: output_eye_landmarks: list of eye landmarks having shape (2, 18, 2) with ordering (L/R, landmarks, x/y). """ if landmarks == None: try: faces, landmarks = self.detector.detect_face(im, with_landmarks=True) except: raise NameError("Error occured during face detection. Maybe face detector has not been set.") left_eye_idx = slice(36, 42) right_eye_idx = slice(42, 48) output_eye_landmarks = [] for lm in landmarks: left_eye_im, left_x0y0 = self.get_eye_roi(im, lm[left_eye_idx]) right_eye_im, right_x0y0 = self.get_eye_roi(im, lm[right_eye_idx]) inp_left = self.preprocess_eye_im(left_eye_im) inp_right = self.preprocess_eye_im(right_eye_im) input_array = np.concatenate([inp_left, inp_right], axis=0) pred_left, pred_right = self.elg.net.predict(input_array) lms_left = self.elg._calculate_landmarks(pred_left, eye_roi=left_eye_im) lms_right = self.elg._calculate_landmarks(pred_right, eye_roi=right_eye_im) eye_landmarks = np.concatenate([lms_left, lms_right], axis=0) eye_landmarks = eye_landmarks + np.array([left_x0y0, right_x0y0]).reshape(2,1,2) output_eye_landmarks.append(eye_landmarks) return output_eye_landmarks @staticmethod def get_eye_roi(im, lms, ratio_w=1.5): def adjust_hw(hw, ratio_w=1.5): """ set RoI height and width to the same ratio of NET_INPUT_SHAPE """ h, w = hw[0], hw[1] new_w = w * ratio_w new_h = NET_INPUT_SHAPE[0] / NET_INPUT_SHAPE[1] * new_w return np.array([new_h, new_w]) h, w = im.shape[:2] min_xy = np.min(lms, axis=0) max_xy = np.max(lms, axis=0) hw = max_xy - min_xy hw = adjust_hw(hw, ratio_w=ratio_w) center = np.mean(lms, axis=0) x0, y0 = center - (hw) / 2 x1, y1 = center + (hw) / 2 x0, y0, x1, y1 = map(np.int32,[x0, y0, x1, y1]) x0, y0 = np.maximum(x0, 0), np.maximum(y0, 0) x1, y1 = np.minimum(x1, h), np.minimum(y1, w) eye_im = im[x0:x1, y0:y1] return eye_im, (x0, y0) @staticmethod def preprocess_eye_im(im): im = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY) im = cv2.equalizeHist(im) im = cv2.resize(im, (NET_INPUT_SHAPE[1], NET_INPUT_SHAPE[0]))[np.newaxis, ..., np.newaxis] im = im / 255 * 2 - 1 return im @staticmethod def draw_pupil(im, lms, stroke=3): draw = im.copy() #draw = cv2.resize(draw, (inp_im.shape[2], inp_im.shape[1])) pupil_center = np.zeros((2,)) pnts_outerline = [] pnts_innerline = [] for i, lm in enumerate(np.squeeze(lms)): x, y = int(lm[0]), int(lm[1]) if i < 8: draw = cv2.circle(draw, (y, x), stroke, (125,255,125), -1) pnts_outerline.append([y, x]) elif i < 16: draw = cv2.circle(draw, (y, x), stroke, (125,125,255), -1) pnts_innerline.append([y, x]) pupil_center += (y,x) elif i < 17: pass #draw = cv2.drawMarker(draw, (y, x), (255,200,200), markerType=cv2.MARKER_CROSS, markerSize=5, thickness=stroke, line_type=cv2.LINE_AA) else: pass #draw = cv2.drawMarker(draw, (y, x), (255,125,125), markerType=cv2.MARKER_CROSS, markerSize=5, thickness=stroke, line_type=cv2.LINE_AA) pupil_center = (pupil_center/8).astype(np.int32) draw = cv2.cv2.circle(draw, (pupil_center[0], pupil_center[1]), stroke, (255,255,0), -1) draw = cv2.polylines(draw, [np.array(pnts_outerline).reshape(-1,1,2)], isClosed=True, color=(125,255,125), thickness=stroke//2) draw = cv2.polylines(draw, [np.array(pnts_innerline).reshape(-1,1,2)], isClosed=True, color=(125,125,255), thickness=stroke//2) return draw ``` #### File: keras-multi-input/pyimagesearch/datasets.py ```python from sklearn.preprocessing import LabelBinarizer from sklearn.preprocessing import MinMaxScaler import pandas as pd import numpy as np import glob import cv2 import os def load_house_attributes(inputPath): # initialize the list of column names in the CSV file and then # load it using Pandas cols = ["bedrooms", "bathrooms", "area", "zipcode", "price"] df = pd.read_csv(inputPath, sep=" ", header=None, names=cols) # determine (1) the unique zip codes and (2) the number of data # points with each zip code zipcodes = df["zipcode"].value_counts().keys().tolist() counts = df["zipcode"].value_counts().tolist() # loop over each of the unique zip codes and their corresponding # count for (zipcode, count) in zip(zipcodes, counts): # the zip code counts for our housing dataset is *extremely* # unbalanced (some only having 1 or 2 houses per zip code) # so let's sanitize our data by removing any houses with less # than 25 houses per zip code if count < 25: idxs = df[df["zipcode"] == zipcode].index df.drop(idxs, inplace=True) # return the data frame return df def process_house_attributes(df, train, test): # initialize the column names of the continuous data continuous = ["bedrooms", "bathrooms", "area"] # performin min-max scaling each continuous feature column to # the range [0, 1] cs = MinMaxScaler() trainContinuous = cs.fit_transform(train[continuous]) testContinuous = cs.transform(test[continuous]) # one-hot encode the zip code categorical data (by definition of # one-hot encoing, all output features are now in the range [0, 1]) zipBinarizer = LabelBinarizer().fit(df["zipcode"]) trainCategorical = zipBinarizer.transform(train["zipcode"]) testCategorical = zipBinarizer.transform(test["zipcode"]) # construct our training and testing data points by concatenating # the categorical features with the continuous features trainX = np.hstack([trainCategorical, trainContinuous]) testX = np.hstack([testCategorical, testContinuous]) # return the concatenated training and testing data return (trainX, testX) def load_house_images(df, inputPath): # initialize our images array (i.e., the house images themselves) images = [] # loop over the indexes of the houses for i in df.index.values: # find the four images for the house and sort the file paths, # ensuring the four are always in the *same order* basePath = os.path.sep.join([inputPath, "{}_*".format(i + 1)]) housePaths = sorted(list(glob.glob(basePath))) # initialize our list of input images along with the output image # after *combining* the four input images inputImages = [] outputImage = np.zeros((64, 64, 3), dtype="uint8") # loop over the input house paths for housePath in housePaths: # load the input image, resize it to be 32 32, and then # update the list of input images image = cv2.imread(housePath) image = cv2.resize(image, (32, 32)) inputImages.append(image) # tile the four input images in the output image such the first # image goes in the top-right corner, the second image in the # top-left corner, the third image in the bottom-right corner, # and the final image in the bottom-left corner outputImage[0:32, 0:32] = inputImages[0] outputImage[0:32, 32:64] = inputImages[1] outputImage[32:64, 32:64] = inputImages[2] outputImage[32:64, 0:32] = inputImages[3] # add the tiled image to our set of images the network will be # trained on images.append(outputImage) # return our set of images return np.array(images) ```
{ "source": "26medias/ml-utils", "score": 3 }
#### File: 26medias/ml-utils/datasets.py ```python import os import glob import random import math import datetime as dt import json import ntpath import pandas as pd import numpy as np import matplotlib.pyplot as plt class featureReader: def __init__(self, groups=[], look_back=50, horizon=8, dataRange=(0,1), featureShape="matrix", cache=True, rotate=True): self.groups = groups self.look_back = look_back self.horizon = horizon self.dataRange = dataRange self.cache = cache self.featureShape = featureShape self.rotate = rotate self.dfCache = {} def valmap(self, value, istart, istop, ostart, ostop): return ostart + (ostop - ostart) * ((value - istart) / (istop - istart)) def dpct(self, start, end): return (end-start)/start; def load(self, glob_pattern): self.glob_pattern = glob_pattern def load_dataset(self, csv_filename): # Retrieve from the cache if there's one if self.cache and csv_filename in self.dfCache: return self.dfCache[csv_filename] # Open the csv file into a dataframe, remove the invalid rows df = pd.read_csv(csv_filename) df = df.apply(pd.to_numeric, errors='coerce') df = df.dropna() df = df.reset_index(drop=True) df['t'] = pd.to_datetime(df['t'], unit='s') df = df.sort_values('t') # Cache the data if self.cache: self.dfCache[csv_filename] = df return df def getFeatures(self): features = {} for groupName in self.groups: for dataset in glob.glob(self.glob_pattern): _features = self.getFeaturesForGroup(dataset, self.groups[groupName]) if groupName not in features: features[groupName] = _features else: features[groupName] = np.append(features[groupName], _features, axis=0) return features def reshapeFeatures(self, features): if self.featureShape is "matrix": return features elif self.featureShape is "img": return features.reshape(features.shape[0], features.shape[1], 1) def getFeaturesForGroup(self, dataset, group): # Load the dataset df = self.load_dataset(dataset) # Create the subset dataframe _df = df[group['columns']].copy() for col in _df.columns: if col!='t' and col!='o': _df[col] = _df[col].transform(lambda x: self.valmap(x, group['inputRange'][0], group['inputRange'][1], self.dataRange[0], self.dataRange[1])) # Convert the dataframe to numpy lines = np.asarray(_df); # Assemble the timesteps timesteps_X = [] l = len(lines) for n, v in enumerate(lines): if n >= self.look_back and n<l-self.horizon: in_steps = [] for i in range(self.look_back-1, -1, -1): in_steps.append(np.array(lines[n-i])) _line = np.array(in_steps) if self.rotate is True: _line = np.rot90(np.asarray(_line), 1) #print(">shape: ", _line.shape) #_line = _line.reshape(_line.shape[0], _line.shape[1], 1) _line = self.reshapeFeatures(_line) timesteps_X.append(_line) timesteps_X = np.asarray(timesteps_X) timesteps_X = np.clip(timesteps_X, a_min = self.dataRange[0], a_max = self.dataRange[1]) return timesteps_X def getFeaturePrices(self): output = np.asarray([]) for dataset in glob.glob(self.glob_pattern): df = self.load_dataset(dataset) _dft = df[['t']].copy() _dfo = df['o'].tolist() # Convert the dataframe to numpy lines = np.asarray(_dfo); # Assemble the timesteps timesteps_X = [] l = len(lines) for n, v in enumerate(lines): if n >= self.look_back and n<l-self.horizon: in_steps = [] for i in range(self.look_back-1, -1, -1): in_steps.append(np.array(lines[n-i])) _line = np.array(in_steps) timesteps_X.append(np.asarray(_line)) timesteps_X = np.asarray(timesteps_X) if len(output)==0: output = timesteps_X else: output = np.append(output, timesteps_X, axis=0) return output def getHorizonOutput(self, in_steps, outputType): if outputType=="range": outputLine = np.array([self.dpct(in_steps[0], min(in_steps)), self.dpct(in_steps[0], max(in_steps))]) elif outputType=="signs": outputLine = np.array([1 if self.dpct(in_steps[0], min(in_steps))<0 else 0, 1 if self.dpct(in_steps[0], max(in_steps))>0 else 0]) elif outputType=="diff": outputLine = ((np.array(in_steps)-in_steps[0])/in_steps[0])[1:] elif outputType=="count": _p = in_steps[0] outputLine = np.asarray([np.count_nonzero(np.array(in_steps)<_p)/(self.horizon-1), np.count_nonzero(np.array(in_steps)>_p)/(self.horizon-1)]) else: outputLine = np.array(in_steps) return outputLine # range: Range in percent # signs: Signs within range def getTargets(self, outputType="range"): output = np.asarray([]) for dataset in glob.glob(self.glob_pattern): df = self.load_dataset(dataset) _dfo = df['o'].tolist() # Convert the dataframe to numpy lines = np.asarray(_dfo); # Assemble the timesteps timesteps_X = [] l = len(lines) for n, v in enumerate(lines): if n >= self.look_back and n<l-self.horizon: in_steps = [] for i in range(0, self.horizon, 1): in_steps.append(lines[n+i]) outputLine = self.getHorizonOutput(in_steps, outputType) timesteps_X.append(outputLine) timesteps_X = np.asarray(timesteps_X) if len(output)==0: output = timesteps_X else: output = np.append(output, timesteps_X, axis=0) return output def previewFeature(self, features, prices, idx=0): fig, axs = plt.subplots(len(features.keys())+1, figsize=(15,5)) plt.autoscale(tight=True) fig.suptitle('Features Preview') for i, (k, v) in enumerate(features.items()): axs[i].imshow(features[k][idx].reshape(features[k][idx].shape[0], features[k][idx].shape[1]), cmap='RdBu', aspect="auto") axs[len(axs)-1].plot(prices[idx]) ```
{ "source": "26medias/opencv-machine-vision-pipeline", "score": 3 }
#### File: 26medias/opencv-machine-vision-pipeline/events_01_people.py ```python from vision_pipeline import framework # Event handler: When a new face is detected def onNewFace(framework, object_id): print("\nNew face detected!\n", framework.tracker.objects[object_id]) # Event handler: When a new person is detected def onNewPerson(framework, object_id): print("\nNew person detected!\n", framework.tracker.objects[object_id]) # Event handler: When we lose track of a face def onFaceLost(framework, object_id): print("\nWe lost track of this face:\n", framework.tracker.objects[object_id]) # Setup the pipeline on visionPipeline = framework.VisionFramework(settings="settings/person_face.json") # Trigger an event when a new face is detected visionPipeline.on("object.create", onNewFace, { "type": { "$eq": "face" }, "score": { "$gt": 0.5 } }) # Trigger an event when a new person is detected visionPipeline.on("object.create", onNewPerson, { "type": { "$eq": "objects" }, "label": { "$eq": "person" }, "object_score": { "$gt": 0.7 } }) # Trigger an event when we lose track of a face visionPipeline.on("object.deactivate", onFaceLost, { "type": { "$eq": "face" } }) visionPipeline.capture(src=0, fps=30) ``` #### File: plugins/emotions/emotions.py ```python from keras.preprocessing.image import img_to_array import imutils import cv2 from keras.models import load_model import numpy as np import sys import os import uuid file_path = os.path.dirname(os.path.abspath(__file__)) + os.sep emotion_model_path = file_path + 'models/_mini_XCEPTION.102-0.66.hdf5' emotion_classifier = load_model(emotion_model_path, compile=True) EMOTIONS = ["angry" ,"disgust","scared", "happy", "sad", "surprised", "neutral"] def getEmotionsFromFace(face): height = face.shape[0] width = face.shape[1] _face = cv2.resize(face, (64, 64)) _face = cv2.cvtColor(_face, cv2.COLOR_BGR2GRAY) _face = _face.astype("float") / 255.0 _face = img_to_array(_face) _face = np.expand_dims(_face, axis=0) preds = emotion_classifier.predict(_face)[0] emotion_probability = np.max(preds) emotion = EMOTIONS[preds.argmax()] output = { "emotion": emotion, "emotion_label": "{}: {:.2f}%".format(emotion, emotion_probability * 100), "emotion_probability": emotion_probability } for (i, (emotion, prob)) in enumerate(zip(EMOTIONS, preds)): output["emotion_"+str(i)] = "{}: {:.2f}%".format(emotion, prob * 100), return output ``` #### File: opencv-machine-vision-pipeline/services/networks.py ```python import os import socket import multiprocessing import subprocess import os from urllib.request import * from socket import timeout import threading import json import time def pinger(job_q, results_q): """ Do Ping :param job_q: :param results_q: :return: """ DEVNULL = open(os.devnull, 'w') while True: ip = job_q.get() if ip is None: break try: subprocess.check_call(['ping', '-c1', ip], stdout=DEVNULL) results_q.put(ip) except: pass def get_my_ip(): """ Find my IP address :return: """ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("8.8.8.8", 80)) ip = s.getsockname()[0] s.close() return ip def map_network(pool_size=255): """ Maps the network :param pool_size: amount of parallel ping processes :return: list of valid ip addresses """ ip_list = list() # get my IP and compose a base like 192.168.1.xxx ip_parts = get_my_ip().split('.') base_ip = ip_parts[0] + '.' + ip_parts[1] + '.' + ip_parts[2] + '.' # prepare the jobs queue jobs = multiprocessing.Queue() results = multiprocessing.Queue() pool = [multiprocessing.Process(target=pinger, args=(jobs, results)) for i in range(pool_size)] for p in pool: p.start() # cue hte ping processes for i in range(1, 255): jobs.put(base_ip + '{0}'.format(i)) for p in pool: jobs.put(None) for p in pool: p.join() # collect he results while not results.empty(): ip = results.get() ip_list.append(ip) return ip_list output = {} def download_index(url, lock): #print("Trying ", url) text = 'Fail' try: response = urlopen(Request(url)) #response = requests.get(url, timeout=20) #text = response.json() text = response.read() r_json = json.loads(text) #print(url, "Found", r_json) output[url] = r_json #except socket.timeout: # print(url, "timeout") except: pass #print(url, "failed") #indexing #with lock: #access shared resources #output[url] = text def scanCandidates(ips): urls = ["http://"+ip+"/info" for ip in ips if ip not in '192.168.0.101'] #print(urls) n = 5 #number of parallel connections chunks = [urls[i * n:(i + 1) * n] for i in range((len(urls) + n - 1) // n )] lock = threading.Lock() for chunk in chunks: threads = [] for url in chunk: thread = threading.Thread(target=download_index, args=(url, lock,)) thread.start() threads.append(thread) for thread in threads: thread.join() #print("End") return output if __name__ == '__main__': start = time.time() print('Mapping...') lst = map_network() #lst = ['192.168.0.1', '192.168.0.100', '192.168.0.101', '192.168.0.103', '192.168.0.112', '192.168.0.104', '192.168.0.105'] #print(lst) print("Scanning candidates...") output = scanCandidates(lst) end = time.time() duration = end-start d_len = len(output.keys()) print("Scanned in ", duration, "sec") print(d_len, "services found.") for k in output.keys(): print(output[k]['service_name']+" ("+output[k]['service_id']+")") #print(output) ``` #### File: opencv-machine-vision-pipeline/services/ThreadStack.py ```python import threading import time class ThreadStack: def __init__(self, threads=5): print("States started") self.stack = [] self.threads = [] self.length = 0 for i in range(0,threads): t = threading.Thread(target=self.processor) self.threads.append(t) t.start() #for t in self.threads: # t.join() def processor(self): while True: #if len(self.stack)>0: if self.length>0: item = self.stack.pop(0) self.length = self.length - 1 item[0](*item[1]) time.sleep(0.5) def add(self, fn, args): self.stack.append([fn, args]) self.length = self.length + 1 return len(self.stack) ```
{ "source": "26medias/reddit-stock-monitoring", "score": 3 }
#### File: reddit-stock-monitoring/main/symbols.py ```python import os import sys import praw import spacy nlp = spacy.load('en_core_web_sm',disable=['ner','textcat']) import nltk from nltk.tokenize import word_tokenize import glob import pandas as pd import re from datetime import datetime import threading dev_mode = False def fix_path(name): if dev_mode == True: return name return sys.path[0]+'/'+name # Get the symbols class Tickers: def __init__(self): df = pd.DataFrame() for filename in glob.glob(fix_path('datasets/symbols/*')): _df = pd.read_csv(filename, sep='\t') _df['source'] = re.findall(r"symbols\/([a-zA-Z]+)\.txt", filename)[0] df = df.append(_df) self.df = df.dropna() tickers = Tickers() df = tickers.df # Symbols to match & ignore real_symbols = df['Symbol'].unique() false_symbol = ['ON','IN','AT','FOR','BY','DD','YOLO','CORP','ONE','SUB','MOON','CEO','OUT','INTO','MAN','POST','BRO','LIFE','CALL','DUDE','IDEA'] # Get the credentials & settings for PRAW if dev_mode != True: from auth import reddit_client_id, reddit_client_secret, reddit_password, reddit_useragent, reddit_username ##reddit_client_id=os.environ['reddit_client_id'] #reddit_client_secret=os.environ['reddit_client_secret'] #reddit_password=os.environ['reddit_password'] #reddit_useragent=os.environ['reddit_useragent'] #reddit_username=os.environ['reddit_username'] # Monitor Reddit class Monitor: def __init__(self): print("Monitoring") self.df = False self.df_name = False if os.path.exists(fix_path('datasets/datasets.pkl')): self.datasets = pd.read_pickle(fix_path('datasets/datasets.pkl')) else: self.datasets = pd.DataFrame() # PRAW setup self.praw = praw.Reddit( client_id=reddit_client_id, client_secret=reddit_client_secret, password=<PASSWORD>, user_agent=reddit_useragent, username=reddit_username ) def start(self, subreddit="wallstreetbets", thread=True): sub = self.praw.subreddit(subreddit) if thread is True: commentThread = threading.Thread(name='comments', target=self.monitorComments, args=(sub,subreddit)) submissionThread = threading.Thread(name='submissions', target=self.monitorSubmissions, args=(sub,subreddit)) commentThread.start() submissionThread.start() else: self.monitorComments(sub,subreddit) self.monitorSubmissions(sub,subreddit) def monitorSubmissions(self, sub, subreddit): for submission in sub.stream.submissions(): self.process_submission(submission, subreddit) def monitorComments(self, sub, subreddit): for comment in sub.stream.comments(): self.process_comment(comment, subreddit) def process_submission(self, submission, subreddit): NER = nlp(submission.title.lower()) NER2 = nlp(submission.selftext.lower()) found = [] has_rocket = '🚀' in submission.title.lower() for token in NER: if '.' in token.text: w = token.text.upper().split('.')[0] else: w = token.text.upper() if token.pos_ in ['ADP','NOUN','PROPN'] and w in real_symbols and w not in false_symbol: found.append(w) for token in NER2: if '.' in token.text: w = token.text.upper().split('.')[0] else: w = token.text.upper() if token.pos_ in ['ADP','NOUN','PROPN'] and w in real_symbols and w not in false_symbol: found.append(w) if (len(found)>0): #print('\n\n----------------') #print(has_rocket, submission.title) #print(found) self.record(source='submission', has_rocket=has_rocket, symbols=list(set(found)), title=submission.title, subreddit=subreddit) def process_comment(self, comment, subreddit): NER = nlp(comment.body.lower()) found = [] has_rocket = '🚀' in comment.body.lower() for token in NER: if '.' in token.text: w = token.text.upper().split('.')[0] else: w = token.text.upper() if token.pos_ in ['ADP','NOUN','PROPN'] and w in real_symbols and w not in false_symbol: found.append(w) if (len(found)>0): self.record(source='comment', has_rocket=has_rocket, symbols=list(set(found)), title=comment.body, subreddit=subreddit) def get_df(self): d = datetime.now() dname = '{}-{}-{}_{}_{}'.format(d.year,d.month,d.day,d.hour,d.minute) filename = fix_path("datasets/data/"+dname+".pkl") if self.df_name != False: filename_prev = fix_path("datasets/data/"+self.df_name+".pkl") if self.df_name != dname: # New timestep, move on to a new dataset # Save to the index self.datasets.at[datetime.timestamp(d), 'filename'] = filename.replace('/home/julien/mk2/main/','') self.datasets.to_pickle(fix_path('datasets/datasets.pkl')) print("#### New DF: ", filename) # No the first run? There was a previous timestep buffer? if self.df_name != False: self.df.to_pickle(filename_prev) # Create/recover a new df if os.path.exists(filename): # Recover existing file self.df = False self.df = pd.read_pickle(filename) self.df_name = dname else: # Create a new DF self.df = False self.df = pd.DataFrame(columns=['comment', 'submission', 'rockets']) self.df_name = dname self.df.to_pickle(filename) return self.df def record(self, source, has_rocket, symbols, subreddit, title=''): print(subreddit, source, has_rocket, symbols) df = self.get_df() for symbol in symbols: if symbol in df.index: df.at[symbol, source] = df.at[symbol, source]+1 if has_rocket: df.at[symbol, 'rockets'] = df.at[symbol, 'rockets']+1 else: df.at[symbol, "submission"] = 0 df.at[symbol, "comment"] = 0 df.at[symbol, source] = 1 if has_rocket: df.at[symbol, 'rockets'] = 1 else: df.at[symbol, 'rockets'] = 0 reddit = Monitor() if dev_mode == True: reddit.start(subreddit="wallstreetbets", thread=False) else: reddit.start(subreddit="wallstreetbets", thread=True) reddit.start(subreddit="pennystocks", thread=True) reddit.start(subreddit="Baystreetbets", thread=True) ```
{ "source": "26medias/rpi-zero-epaper", "score": 3 }
#### File: 26medias/rpi-zero-epaper/env.py ```python from Adafruit_CCS811 import Adafruit_CCS811 import epd2in9 import time import Image import ImageDraw import ImageFont ccs = Adafruit_CCS811() while not ccs.available(): pass def main(): epd = epd2in9.EPD() epd.init(epd.lut_full_update) image = Image.new('1', (epd2in9.EPD_WIDTH, epd2in9.EPD_HEIGHT), 255) # 255: clear the frame draw = ImageDraw.Draw(image) font = ImageFont.truetype('/home/pi/demo/raspberrypi/python/open-sans.ttf', 16) draw.rectangle((0, 10, 128, 34), fill = 0) draw.text((10, 12), 'Air Quality', font = font, fill = 255) draw.text((8, 36), 'loading...', font = font, fill = 0) #draw.line((16, 60, 56, 60), fill = 0) #draw.line((56, 60, 56, 110), fill = 0) #draw.line((16, 110, 56, 110), fill = 0) #draw.line((16, 110, 16, 60), fill = 0) #draw.line((16, 60, 56, 110), fill = 0) #draw.line((56, 60, 16, 110), fill = 0) #draw.arc((60, 90, 120, 150), 0, 360, fill = 0) #draw.rectangle((16, 130, 56, 180), fill = 0) #draw.chord((60, 160, 120, 220), 0, 360, fill = 0) epd.clear_frame_memory(0xFF) epd.set_frame_memory(image, 0, 0) epd.display_frame() epd.delay_ms(1000) ## # there are 2 memory areas embedded in the e-paper display # and once the display is refreshed, the memory area will be auto-toggled, # i.e. the next action of SetFrameMemory will set the other memory area # therefore you have to set the frame memory twice. ## epd.clear_frame_memory(0xFF) epd.display_frame() epd.clear_frame_memory(0xFF) epd.display_frame() # for partial update epd.init(epd.lut_partial_update) ## # there are 2 memory areas embedded in the e-paper display # and once the display is refreshed, the memory area will be auto-toggled, # i.e. the next action of SetFrameMemory will set the other memory area # therefore you have to set the frame memory twice. ## epd.set_frame_memory(image, 0, 0) epd.display_frame() epd.set_frame_memory(image, 0, 0) epd.display_frame() time_image = Image.new('1', (epd2in9.EPD_WIDTH, epd2in9.EPD_HEIGHT), 255) # 255: clear the frame draw = ImageDraw.Draw(time_image) font = ImageFont.truetype('/home/pi/demo/raspberrypi/python/open-sans.ttf', 12) image_width, image_height = time_image.size while (True): if ccs.available(): temp = ccs.calculateTemperature() if not ccs.readData(): print "CO2: ", ccs.geteCO2(), "ppm, TVOC: ", ccs.getTVOC(), " temp: ", temp draw.rectangle((0, 0, image_width, image_height), fill = 0) draw.text((5, 0), time.strftime('Time: %H:%M:%S'), font = font, fill = 255) draw.text((5, 20), 'CO2: %sppm'%(ccs.geteCO2()), font = font, fill = 255) draw.text((5, 40), 'Gas/Particulate: %s'%(ccs.getTVOC()), font = font, fill = 255) draw.text((5, 60), 'Temperature: %s'%(temp), font = font, fill = 255) epd.set_frame_memory(time_image, 0, 10) epd.display_frame() else: print "ERROR!" while(1): pass sleep(2) if __name__ == '__main__': main() ```
{ "source": "26medias/TF-Face-Angle-Translation", "score": 2 }
#### File: TF-Face-Angle-Translation/databuilder/builder.py ```python from IPython.display import HTML, display import time import requests import ntpath import cv2 import math import os, sys from matplotlib import pyplot from PIL import Image import numpy as np from numpy import asarray from scipy.spatial.distance import cosine from mtcnn.mtcnn import MTCNN import keras_vggface from keras_vggface.vggface import VGGFace from keras_vggface.utils import preprocess_input import glob import mtcnn from pathlib import Path from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from scipy.cluster import hierarchy from bs4 import BeautifulSoup from selenium import webdriver import csv from models.detector import face_detector from models.parser import face_parser from utils.visualize import show_parsing_with_annos from threading import Thread class builder(): def __init__(self, VIDEO_QUALITY="720", FRAME_PERCENTAGE=40, DIR_VIDEOS="Videos", DIR_FACES="Faces"): # The variables self.VIDEO_QUALITY = VIDEO_QUALITY # The trailer quality we'll download: 480, 720 or 1080 self.FRAME_PERCENTAGE = FRAME_PERCENTAGE # from 0.1 to 100: The percentage of frames that will be analyzed in the video self.DIR_VIDEOS = DIR_VIDEOS self.DIR_FACES = DIR_FACES if not os.path.isdir(self.DIR_VIDEOS): os.mkdir(self.DIR_VIDEOS, 755); if not os.path.isdir(self.DIR_FACES): os.mkdir(self.DIR_FACES, 755); # Create the detector, using default weights print("Creating the detector model") self.detector = MTCNN() # Create a vggface model print("Creating the face embedding model") self.embedding_model = VGGFace(model='resnet50', include_top=False, input_shape=(224, 224, 3), pooling='avg') # Create a face detector print("Creating the face detector model") self.fd = face_detector.FaceAlignmentDetector(lmd_weights_path="models/detector/FAN/2DFAN-4_keras.h5") # Create a face parser (segmentation) print("Creating the face segmentation model") self.prs = face_parser.FaceParser() # The methods # =========== # Colab progress bar def progress(self, value, max=100): return HTML('<progress value="{value}" max="{max}" style="width: 50%"> {value}</progress>'.format(value=value, max=max)) # Convert a value from one range to another def rangeConvert(self, x, in_min, in_max, out_min, out_max): return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min # Get the directory of a filename def getDir(self, filename): p = Path(filename); return p.parts[len(p.parts)-2] # Dowload a video from a url def downloadFile(self, url): print("Downloading ", url) filename = self.DIR_VIDEOS+"/"+ntpath.basename(url) if os.path.exists(filename): return filename myfile = requests.get(url) open(filename, 'wb').write(myfile.content) print(filename," downloaded.") return filename # Resize an image def resize_image(self, im, max_size=768): if np.max(im.shape) > max_size: ratio = max_size / np.max(im.shape) print(f"Resize image to ({str(int(im.shape[1]*ratio))}, {str(int(im.shape[0]*ratio))}).") return cv2.resize(im, (0,0), fx=ratio, fy=ratio) return im def imageFilesToGrid(self, directory, outputFilename): filenames = glob.glob(directory+'/*.jpg') #print(directory, ": ", len(filenames), " images") if len(filenames) < 4: return False result_figsize_resolution = 10 # 1 = 100px images_count = len(filenames) # Calculate the grid size: grid_size = math.ceil(math.sqrt(images_count)) # Create plt plot: fig, axes = pyplot.subplots(grid_size, grid_size, figsize=(result_figsize_resolution, result_figsize_resolution)) current_file_number = 0 for image_filename in filenames: x_position = current_file_number % grid_size y_position = current_file_number // grid_size plt_image = pyplot.imread(image_filename) axes[x_position, y_position].imshow(plt_image) current_file_number += 1 pyplot.subplots_adjust(left=0.0, right=1.0, bottom=0.0, top=1.0) pyplot.savefig(outputFilename) #pyplot.show() def exportImageGrids(self, directory, outputDirectory): print("Exporting image grids...") dirs = os.listdir(directory) dirs.sort() ndirs = len(dirs) for n,dir in enumerate(dirs): if dir is not "ALL": self.imageFilesToGrid(directory+"/"+dir, outputDirectory+"/"+dir+".jpg"); self.progress(n, ndirs) # Extract the faces from an image, return an array of numpy faces def extractFacesFromImage(self, pixels, required_size=(224, 224), limit=50): results = self.detector.detect_faces(pixels) faces = [] errors = 0 for i,faceData in enumerate(results): if len(faces) > limit: break x1, y1, width, height = faceData['box'] x2, y2 = x1 + width, y1 + height # extract the face face = pixels[y1:y2, x1:x2] # resize pixels to the model size try: image = Image.fromarray(face) image = image.resize(required_size) face_array = asarray(image) faces.append(face_array) if limit==1: return face_array except: errors+=1 if limit==1 and len(faces)==0: return False return faces; # Extract the faces from an image, return an array of numpy faces & landmarks def extractFacesAndLandmarksFromImage(self, pixels, required_size=(224, 224), limit=50): rw, rh = required_size results, landmarks = self.fd.detect_face(pixels, with_landmarks=True) nResults = len(results) faces = [] errors = 0 for i,bbox in enumerate(results): if len(faces) > limit: break # Get the face x0, y0, x1, y1, score = bbox # Find the center of the face w = x1-x0 h = y1-y0 xCenter = x0+int(w/2) yCenter = y0+int(h/2) if w>h: y0 = yCenter-int(w/2) y1 = yCenter+int(w/2) if h>w: x0 = xCenter-int(h/2) x1 = xCenter+int(h/2) x0, y0, x1, y1 = map(int, [x0, y0, x1, y1]) face = pixels[x0:x1, y0:y1, :] # Recalculate the landmarks coordinates for li in range(len(landmarks[i])): landmark = landmarks[i][li] lx, ly = landmark landmarks[i][li] = (self.rangeConvert(lx-x0, 0, face.shape[1], 0, rw), self.rangeConvert(ly-y0, 0, face.shape[0], 0, rh)) # Resize pixels to the model size try: image = Image.fromarray(face) image = image.resize(required_size) face_array = asarray(image) faces.append(face_array) if limit==1: return face_array except: errors+=1 if limit==1 and len(faces)==0: return False return faces, landmarks # Extract the faces from an image, return an array of numpy faces & landmarks def extractFacesLandmarksAndSegmentationFromImage(self, pixels, required_size=(224, 224), limit=50): rw, rh = required_size results, landmarks = self.fd.detect_face(pixels, with_landmarks=True) nResults = len(results) faces = [] segmentations = [] errors = 0 for i,bbox in enumerate(results): if len(faces) > limit: break # Get the face x0, y0, x1, y1, score = bbox # Find the center of the face w = x1-x0 h = y1-y0 xCenter = x0+int(w/2) yCenter = y0+int(h/2) if w>h: y0 = yCenter-int(w/2) y1 = yCenter+int(w/2) if h>w: x0 = xCenter-int(h/2) x1 = xCenter+int(h/2) x0, y0, x1, y1 = map(int, [x0, y0, x1, y1]) face = pixels[x0:x1, y0:y1, :] # Recalculate the landmarks coordinates for li in range(len(landmarks[i])): landmark = landmarks[i][li] lx, ly = landmark landmarks[i][li] = (self.rangeConvert(lx-x0, 0, face.shape[1], 0, rw), self.rangeConvert(ly-y0, 0, face.shape[0], 0, rh)) # Resize pixels to the model size try: image = Image.fromarray(face) image = image.resize(required_size) face_array = asarray(image) faces.append(face_array) # Get the segmentation on the resized image segmentation = self.prs.parse_face(face_array) segmentations.append(segmentation) if limit==1: return face_array except: errors+=1 if limit==1 and len(faces)==0: return False return faces, landmarks, segmentations # Export the frames out of a video at a specific fps def videoToFaces(self, filename, maxFrame=0): print("Extracting faces from the video frames...") basename = os.path.splitext(ntpath.basename(filename))[0] #print("basename:", basename) cap = cv2.VideoCapture(filename) # Get the video's FPS fps = cap.get(cv2.CAP_PROP_FPS) nframes = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) processFrames = int(nframes*self.FRAME_PERCENTAGE/100) skipFrame = int(nframes/processFrames) print(basename, "fps:", fps, "skipFrame:",skipFrame,"Frames:", str(processFrames)+"/"+str(nframes)) out = display(self.progress(0, processFrames), display_id=True) i = 0 c = 0 faces = [] landmarks = [] segmentations = [] while(cap.isOpened()): ret, frame = cap.read() if ret == False: break i+=1 if maxFrame>0 and i > maxFrame: break; #print(i, "-", i % skipFrame) if (i % skipFrame == 0): c+=1 #print("Checking faces in frame #"+str(i)) #frameFaces = self.extractFacesFromImage(frame) frameFaces, frameLandmarks, frameSegmentations = self.extractFacesLandmarksAndSegmentationFromImage(frame) out.update(self.progress(c, processFrames)) for nf, f in enumerate(frameFaces): faces.append(f) landmarks.append(frameLandmarks[nf]) segmentations.append(frameSegmentations[nf]) else: continue #cv2.imwrite(DIR_IMAGES+"/"+basename+'/'+str(round((i-1)/fps,2))+'sec.jpg',frame) cap.release() cv2.destroyAllWindows() print(basename, " processed.") print(processFrames,"/",nframes," frames analyzed.") print(len(faces), " faces found.") return faces, landmarks, segmentations # Show a few images def showImages(self, images, width=4): fig = pyplot.figure(figsize=(width, math.ceil(len(images)/width))) for i in range(len(images)): pyplot.subplot(width, math.ceil(len(images)/width), i+1) pyplot.imshow(images[i]) pyplot.axis('off') pyplot.savefig('preview.png') pyplot.show() # Save an array of images to files def saveImages(self, images, dest, names=False, prefix="", showProgress=True): if not os.path.isdir(dest): os.mkdir(dest, 755); nImages = len(images) if showProgress is True: print("Saving ",nImages," images to ", dest) out = display(self.progress(0, nImages), display_id=True) filenames = [] for n, image in enumerate(images): if names is False: filename = dest+"/"+prefix+('{:04d}'.format(n))+'.jpg' else: filename = dest+"/"+prefix+str(names[n])+'.jpg' cv2.imwrite(filename, image) filenames.append(filename) if showProgress is True: out.update(self.progress(n, nImages)) return filenames # Save Numpy Arrays to files def saveNpArrays(self, npArrays, dest, names=False, prefix="", showProgress=True): if not os.path.isdir(dest): os.mkdir(dest, 755); nArrays = len(npArrays) if showProgress is True: print("Saving ",nArrays," numpy arrays to ", dest) out = display(self.progress(0, nArrays), display_id=True) filenames = [] for n, npArray in enumerate(npArrays): if names is False: filename = dest+"/"+prefix+('{:04d}'.format(n))+'.npy' else: filename = dest+"/"+prefix+str(names[n])+'.npy' np.save(filename, npArray) filenames.append(filename) if showProgress is True: out.update(self.progress(n, nArrays)) return filenames # Extract faces and calculate face embeddings for a list of photo files def get_embeddings(self, faces): print("Calculating the embeddings...") # convert into an array of samples samples = asarray(faces, 'float32') # prepare the face for the model, e.g. center pixels samples = preprocess_input(samples, version=2) # perform prediction embeddings = self.embedding_model.predict(samples) return embeddings # Determine if a candidate face is a match for a known face def is_match(self, known_embedding, candidate_embedding, threshold=0.5): # calculate distance between embeddings score = cosine(known_embedding, candidate_embedding) return score >= threshold # Cluster the faces by cosine distance def clusterFaces(self, faces, embeddings, landmarks, segmentations, minFaces=2): groups = [] # Array of dict {faces:[], embeddings: []} nFaces = len(faces) print("Clustering ",nFaces," faces...") out = display(self.progress(0, nFaces), display_id=True) # For each faces for n, face in enumerate(faces): out.update(self.progress(n, nFaces)) if len(groups)==0: groups.append({ "faces": [face], "names": [n], "embeddings": [embeddings[n]], "landmarks": [landmarks[n]], "segmentations": [segmentations[n]] }) else: # Not the first face, match it against all the groups, see if the average of cosine distance match an existing face scores = [] # array of dict {group: n, embeddings: []} for g, group in enumerate(groups): groupScores = [] for embedding in group["embeddings"]: groupScores.append(cosine(embedding, embeddings[n])) score = np.mean(groupScores) scores.append({ "group": g, "score": score }) # Sort the scores for each group by lowest score, check if that score is below the threshold scores = sorted(scores, key = lambda i: i["score"], reverse=False) if scores[0]["score"] <= 0.5: # Add to the existing group the face matches groups[scores[0]["group"]]["landmarks"].append(landmarks[n]) groups[scores[0]["group"]]["embeddings"].append(embeddings[n]) groups[scores[0]["group"]]["segmentations"].append(segmentations[n]) groups[scores[0]["group"]]["faces"].append(face) groups[scores[0]["group"]]["names"].append(n) #print("[Matched] face #", n, " to group #", scores[0]["group"], "score:", scores[0]["score"]) else: groups.append({ "faces": [face], "names": [n], "embeddings": [embeddings[n]], "landmarks": [landmarks[n]], "segmentations": [segmentations[n]] }) #print("[New face] face #", n, " / Best score:", scores[0]["score"]) # Filter out the groups that don't have enough faces return [item for item in groups if len(item["faces"]) >= minFaces] #return groups; # Cluster all the faces from a remote video def clusterFacesOnVideo(self, url): print("Processing ", url); # Download the video videoFilename = self.downloadFile(url) # Get the directories name for that video # /Faces/[dirname]/Faces # /Faces/[dirname]/Embeddings # /Faces/[dirname]/Landmarks # /Faces/[dirname]/Segmentations # /Faces/[dirname]/Previews dirname = os.path.splitext(ntpath.basename(videoFilename))[0] dirClustered = self.DIR_FACES+"/"+dirname dirFaces = dirClustered+"/Faces/" dirEmbeddings = dirClustered+"/Embeddings/" dirLandmarks = dirClustered+"/Landmarks/" dirSegmentations = dirClustered+"/Segmentations/" dirPreviews = dirClustered+"/Previews/" if os.path.exists(dirPreviews): # Video already processed, go to the next one print("Video already processed.") #return False # Create the directories if not os.path.isdir(dirClustered): os.mkdir(dirClustered, 755); if not os.path.isdir(dirFaces): os.mkdir(dirFaces, 755); if not os.path.isdir(dirEmbeddings): os.mkdir(dirEmbeddings, 755); if not os.path.isdir(dirLandmarks): os.mkdir(dirLandmarks, 755); if not os.path.isdir(dirSegmentations): os.mkdir(dirSegmentations, 755); if not os.path.isdir(dirPreviews): os.mkdir(dirPreviews, 755); # Open a CSV to save the datasets with open(dirClustered+"/"+dirname+".csv", "w") as csvfile: fieldnames = ["video_name", "face_group", "image_filename", "embeddings_filename", "landmarks_filename", "segmentations_filename"] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() # Find the faces on the video faces, landmarks, segmentations = self.videoToFaces(videoFilename) nFaces = len(faces) print(nFaces," faces detected") # Get the embedding for all the faces embeddings = self.get_embeddings(faces) # Cluster the faces using cosine distance clusters = self.clusterFaces(faces, embeddings, landmarks, segmentations, minFaces=5) nClusters = len(clusters) # Export each face group print("Saving ",nClusters," face clusters...") for n, group in enumerate(clusters): ngImg = len(group["faces"]) ngEbd = len(group["embeddings"]) ngldk = len(group["landmarks"]) # Save the face as an image images_filenames = self.saveImages(group["faces"], dirFaces+('{:04d}'.format(n)), showProgress=False) # Save the embedding as a numpy array embeddings_filenames = self.saveNpArrays(group["embeddings"], dirEmbeddings+('{:04d}'.format(n)), showProgress=False) # Save the landmarks as a numpy array landmarks_filenames = self.saveNpArrays(group["landmarks"], dirLandmarks+('{:04d}'.format(n)), showProgress=False) # Save the segmentations as a numpy array segmentations_filenames = self.saveNpArrays(group["segmentations"], dirSegmentations+('{:04d}'.format(n)), showProgress=False) # Update the CSV for i, image_filename in enumerate(images_filenames): writer.writerow({ "video_name": dirname, "face_group": n, "image_filename": image_filename, "embeddings_filename": embeddings_filenames[i], "landmarks_filename": landmarks_filenames[i], "segmentations_filename": segmentations_filenames[i] }) # Build grids to show each face groups self.exportImageGrids(dirFaces, dirPreviews) def clusterFacesFromVideos(self, urls): nUrls = len(urls) for n,url in enumerate(urls): self.clusterFacesOnVideo(url) def fetchAllHDVideos(self, url): response = requests.get(url) soup = BeautifulSoup(response.content, "html5lib") links = soup.find_all('a') videos = [] for tag in links: link = tag.get('href', None) if link is not None and 'h'+str(self.VIDEO_QUALITY)+'p' in link: videos.append(link) return videos class threadedBuilder(): def __init__(self, VIDEO_QUALITY="720", FRAME_PERCENTAGE=40, DIR_VIDEOS="Videos", DIR_FACES="Faces"): # The variables self.VIDEO_QUALITY = VIDEO_QUALITY # The trailer quality we'll download: 480, 720 or 1080 self.FRAME_PERCENTAGE = FRAME_PERCENTAGE # from 0.1 to 100: The percentage of frames that will be analyzed in the video self.DIR_VIDEOS = DIR_VIDEOS self.DIR_FACES = DIR_FACES def fetchAllHDVideos(self, url): response = requests.get(url) soup = BeautifulSoup(response.content, "html5lib") links = soup.find_all('a') videos = [] for tag in links: link = tag.get('href', None) if link is not None and 'h'+str(self.VIDEO_QUALITY)+'p' in link: videos.append(link) return videos def processVideo(self, url): datasetBuilder = builder(FRAME_PERCENTAGE=2) #urls = datasetBuilder.fetchAllHDVideos("https://www.davestrailerpage.co.uk/") datasetBuilder.clusterFacesFromVideos([url]) def process(self, website): videos = self.fetchAllHDVideos(website) print("videos", videos) for video in videos: print("video", video) Thread(target=self.processVideo, args=(video)).start() ```
{ "source": "26prajval98/bilingual-translator", "score": 3 }
#### File: bilingual-translator/kannadautils/__init__.py ```python from urllib.request import Request, urlopen from bs4 import BeautifulSoup from nltk.corpus import words import json import os from collections import defaultdict def get_kannada_word(search_word): vals = [] dict_page = 'https://www.shabdkosh.com/search-dictionary?e='+search_word+'&lc=kn&sl=en&tl=kn' req = Request(dict_page, headers={'User-Agent': 'Mozilla/5.0'}) page = urlopen(req) soup = BeautifulSoup(page, 'html.parser') res_list = soup.find_all('ol', {'class': 'eirol'}) for ol in res_list: li = ol.find_all('li') for a in li: for x in a.find_all('a'): t = x.text if len(t.split(' ')) <= 1: vals.append(t) return vals def return_english(sentence): for i in range(len(sentence)): if sentence[i] in words.words(): return i, sentence[i] return -1, None def load_json(path, file): os.chdir(path) b = defaultdict(lambda: defaultdict(lambda: 0.2)) if os.path.isfile(file): f = open(file, "r", encoding="utf-8") json_data = json.loads(f.read()) b = defaultdict(lambda: defaultdict(lambda: 10 ** -20)) for t in json_data: string = t[:] t1, t2 = string.split(":", 1) if t1 == "None": t1 = None if t2 == "None": t2 = None b[(t1, t2)] = json_data[string] return b def load_json_bi(path, file): os.chdir(path) b = defaultdict(lambda: defaultdict(lambda: 0.2)) if os.path.isfile(file): f = open(file, "r", encoding="utf-8") json_data = json.loads(f.read()) b = defaultdict(lambda: defaultdict(lambda: 10 ** -20)) for t in json_data: if t == "null" or t == "None": b[None] = json_data[t] else: b[t] = json_data[t] return b def calculate_prob(t_a, m): t = [None, None] prob = 1 for ww in t_a: prob_t = m[tuple(t[-2:])].get(ww, 10 ** -20) prob *= prob_t t.append(ww) return prob def calculate_prob_bi(t_a, m): t = None prob = 1 for ww in t_a: prob_t = m[t].get(ww, 10 ** -20) prob *= prob_t t = ww return prob def get_sentence(sentence, model, n=3): sentence_array = sentence.split(" ") idx, word = return_english(sentence_array) if idx != -1: wws = get_kannada_word(word) if len(wws) == 0: return [] p = - 100 chosen_word = "" t_array = sentence_array[:] for w in wws: t_array[idx] = w if n == 3: t = calculate_prob(t_array, model) else: t = calculate_prob_bi(t_array, model) if t > p: p = t chosen_word = w t_array[idx] = chosen_word return t_array if __name__ == "__main__": sw = "net" print(get_kannada_word(sw)) mo = load_json("E:/NITK/6th Sem/Computer Graphics/kannada-rocks", "data.json") ss = "ಆಗ ನಮ್ಮೂರಿನ crow ನೆಂಟರು ಬೇರೆ ಬಂದಿದ್ದಾರೆ ಎಂದು ಆಗುತ್ತದೆ" updated = get_sentence(ss, mo) ```
{ "source": "27149chen/pyds8k", "score": 2 }
#### File: auth/ds8k/base.py ```python from pyds8k.dataParser.ds8k import RequestParser, ResponseParser AUTH_URL = '/tokens' DEFAULT_BASE_URL = '/api/v1' class Auth(object): base_url = DEFAULT_BASE_URL auth_url = AUTH_URL def __init__(self): pass @classmethod def authenticate(self, client): """ The main authenticate method. Mandatory """ params = {} params['username'] = client.user params['password'] = <PASSWORD> if client.hostname: params['hmc1'] = client.hostname req_p = RequestParser(params) _, body = client.post(self.get_auth_url(), body=req_p.get_request_data() ) token = _get_data(body).get('token', '') if token: client.set_defaultHeaders('X-Auth-Token', token) # client.set_defaultQuerystrings('token', token) @classmethod def get_auth_url(self): """ Return the auth url. Mandatory """ return self.base_url + self.auth_url def _get_data(response_body): res_p = ResponseParser(response_body, 'token') return res_p.get_representations()[0] ``` #### File: pyds8k/pyds8k/base.py ```python import json from importlib import import_module from . import messages from pyds8k.utils import get_response_parser_class, \ get_request_parser_class from pyds8k.utils import is_absolute_url from pyds8k.utils import HTTP200, HTTP204, POSTA, POST from pyds8k.exceptions import URLNotSpecifiedError, \ FieldReadOnly, \ URLParseError, \ ResponseBodyMissingError from pyds8k import PYDS8K_DEFAULT_LOGGER from logging import getLogger logger = getLogger(PYDS8K_DEFAULT_LOGGER) get_resource_by_route = None class URLBuilderMixin(object): def one(self, route, resource_id): pass def all(self, route): pass class UtilsMixin(object): def _update_list_field(self, field_name, value_list, operator='+'): if not isinstance(value_list, list): value_list = [value_list] field = getattr(self, field_name) if operator == '+': for item in value_list: if item in field: raise KeyError( messages.ITEM_IN_LIST.format(field_name, item) ) field.append(item) if operator == '-': for item in value_list: if item not in field: raise KeyError( messages.ITEM_NOT_IN_LIST.format(field_name, item) ) field.pop(field.index(item)) return field def _get_id(self): return self.id if hasattr(self, 'id') else id(self) def remove_None_fields_from_dict(self, input_dict): new_dict = {} for (key, value) in input_dict.items(): if value is not None: new_dict[key] = value return new_dict class BaseResource(object): pass class Resource(UtilsMixin, BaseResource): """ A resource represents a particular representation of a resource state or a application state. :param client: HTTPClient object :param manager: Manager object :param url: A resource or a resource collection's url :param info: Dictionary representing resource attributes :param resource_id: The resource's id :param parent: The parent resource object :param loaded: All details is loaded if set to True """ id_field = 'id' url_field = 'link' # The HTTP method when creating new resource create_method = 'put' # base_url must to set to empty string in this base class base_url = '' # Set the value to None if the field is not required when creation. _template = {} related_resource = {} alias = {} def __init__(self, client, manager=None, url='', info={}, resource_id=None, parent=None, loaded=False): self.set_loaded(loaded) self._start_init() self._init_updating() self.ResponseParser = get_response_parser_class(client.service_type) self.manager = manager if self.manager: self.manager.managed_object = self self.client = client self.representation = {} self.url = self._add_base_to_url(url) if resource_id: self._id = resource_id self.parent = parent self._custom_url = '' self._set_modified_info_dict() if info: self._add_details(info) self._finish_init() def one(self, route, resource_id, rebuild_url=False): global get_resource_by_route if not get_resource_by_route: get_resource_by_route = \ import_module('{}.resources.utils'.format(__package__) ).get_resource_by_route url = self._set_url(route, resource_id, rebuild_url=rebuild_url) return get_resource_by_route(route, self.client, url, self, resource_id) def all(self, route, rebuild_url=False): global get_resource_by_route if not get_resource_by_route: get_resource_by_route = \ import_module('{}.resources.utils'.format(__package__) ).get_resource_by_route url = self._set_url(route, rebuild_url=rebuild_url) return get_resource_by_route(route, self.client, url, self) def toUrl(self, method, body={}): """ To send non-standard rest request, like /attach """ self._set_custom_url(method) if body: resp, res_body = self.post(body=body) else: resp, res_body = self.get_response() self._reverse_custom_url() return resp, res_body def custom_method(self, para1, para2): """ Like customUrl(), but use a particular method name instand of url. """ result = None if not self._custom_url: result = self.manager.custom_method(para1, para2) else: result = self.get(para1, para2) # or post, put, ... self._reverse_custom_url() return result def create(self, **kwargs): custom_info = {} # for (k, v) in six.iteritems(info): for (k, v) in kwargs.items(): if k in list(self._template.keys()): custom_info[k] = v return self.create_from_template(custom_info) def create_from_template(self, custom_info={}): _url = self._rm_id_in_url() _info = self._template.copy() if self.id_field in _info: del _info[self.id_field] _info.update(custom_info) data = self.remove_None_fields_from_dict(_info) res = self.__class__(client=self.client, manager=self.manager.__class__(self.client), url=_url, info=data, parent=self.parent, # Set loaded=True to avoid lazy-loading loaded=True) for key, value in data.items(): if value: res._set_modified_info_dict(key, value) res._is_new = True return res def _update_alias(self, res): for key, alias in self.alias.items(): if key in res: res[alias] = res.pop(key) return res def _set_url(self, route, resource_id='', rebuild_url=False): url = self.url if not rebuild_url else '' if resource_id: url += '/{}/{}'.format(route, resource_id) else: url += '/{}'.format(route) return url def _add_id_to_url(self, resource_id): if not self.url.endswith('/{}'.format(resource_id)): self.url += '/{}'.format(resource_id) def _rm_id_in_url(self, resource_id=''): if not hasattr(self, 'id'): return self.url res_id = resource_id or self.id if self.url.endswith('/{}'.format(res_id)): return self.url[:len(self.url) - len(self.id) - 1] return self.url def _add_base_to_url(self, url): if (self.base_url not in url) and (not is_absolute_url(url)): return self.base_url + url return url def _set_custom_url(self, url): self._custom_url = self.url + '/' + url self._url_backup = self.url self.url = self._custom_url def _reverse_custom_url(self): if self._custom_url: self._custom_url = '' self.url = self._url_backup def _add_details(self, info, force=False): self._start_updating() info = self._update_alias(info) try: # set id field first. self._id = info[self.id_field] except KeyError: pass self_url = self.ResponseParser.get_link_from_representation(info) if self_url: self.url = self_url # for (k, v) in six.iteritems(info): for (k, v) in info.items(): if not force and k in list(self._modified_info_dict.keys()): continue if not k == self.id_field: setattr(self, k, v) self.representation[k] = v for related_key in list(self.related_resource.keys()): if related_key[1:] in self.representation: self._set_related_resource(related_key[1:]) self._stop_updating() def _set_related_resource(self, res_key): # Related resources is set during loading details, and are readonly, # If you want to change it, you should set the attr with the same # name(without '_'), then update it to server and load details again. try: res_info = self.representation[res_key] res_class, res_manager = self.related_resource.get('_' + res_key) res_id = res_info[res_class.id_field] self.representation[res_key] = res_id setattr(self, res_key, res_id) setattr(self, '_' + res_key, res_class(self.client, manager=res_manager(self.client), resource_id=res_id, info=res_info, loaded=False, ) ) except Exception: logger.debug( messages.SET_RELATED_RESOURCE_FAILED.format(res_key, self) ) self.representation[res_key] = res_info setattr(self, res_key, res_info) setattr(self, '_' + res_key, None) def _get_url(self, urls): if isinstance(urls, str): return urls elif isinstance(urls, dict): urls = [urls] elif isinstance(urls, list): pass else: raise URLParseError() for url in urls: if url.get('rel') == 'self': return url.get('href', '') return '' def __getattr__(self, k): if k == 'id' or k == self.id_field: if '_id' not in self.__dict__: raise AttributeError(k) else: return self._id # If we can get the attr from a resource collection # we don't need to get the resource details. # So we don't load the details until an attr which is # not in the resource collection is required. if k not in self.__dict__: if k in self._template and not self.is_loaded(): self.get() return getattr(self, k) raise AttributeError(k) else: return self.__dict__[k] def __setattr__(self, key, value): if key == '_id': self._add_id_to_url(value) if key.startswith('_'): super(Resource, self).__setattr__(key, value) return if self._is_init(): return super(Resource, self).__setattr__(key, value) if key == 'id' or key == self.id_field: raise FieldReadOnly(key) if not self.is_updating() and (key in self._template or key in self.representation): # noqa self.representation[key] = value self._set_modified_info_dict(key, value) super(Resource, self).__setattr__(key, value) def __repr__(self): reprkeys = \ sorted(k for k in self.__dict__ if not str(k).startswith('_') and k not in ('manager', 'client') ) info = ", ".join("{0}={1}".format(k, getattr(self, k)) for k in reprkeys) return "<{0} {1}>".format(self.__class__.__name__, info) def get(self, resource_id='', force=False, **kwargs): self.set_loaded(True) if resource_id: return self.manager.get(resource_id, **kwargs) else: _, info = self.manager.get(**kwargs) self._add_details(info, force) return self def get_response(self): return self.manager.get() def list(self, **kwargs): return self.manager.list(**kwargs) def put(self): resp, data = self.manager.put() self._set_modified_info_dict() return resp, data def patch(self): resp, data = self.manager.patch() self._set_modified_info_dict() return resp, data def post(self, body, url=None): resp, data = self.manager.post(body=body) return resp, data def posta(self, body=None): _url = self._rm_id_in_url() resp, resources = self.manager.posta(url=_url, body=body) self._set_modified_info_dict() return resp, resources def delete(self): resp, data = self.manager.delete() return resp, data def update(self, info={}): resp = None data = None if info: resp, data = self.manager.patch(body=info) self._del_modified_info_dict_keys(info) else: resp, data = self.manager.patch(body=self._get_modified_info_dict() ) self._set_modified_info_dict() return resp, data def save(self): resp = None data = None if hasattr(self, 'id'): # TODO: I don't like _is_new and create_method, need a better idea. if (not hasattr(self, '_is_new')) or (not self._is_new): resp, data = self.put() else: if self.create_method.lower() not in ('posta', 'put'): raise Exception( "You should use POSTA or PUT method to create new resources" # noqa ) resp, data = getattr(self, self.create_method.lower())() if self.create_method.lower() == 'posta': if isinstance(data[0], Resource): # re-init the res object according to the returned data self.__init__( client=self.client, manager=self.manager, url=data[0].url, resource_id=data[0].id, info=data[0].representation ) self._is_new = False else: resp, data = self.posta() if isinstance(data[0], Resource): # re-init the res object according to the returned res self.__init__( client=self.client, manager=self.manager, url=data[0].url, resource_id=data[0].id, info=data[0].representation ) # self.set_loaded(False) # Set to false in order to use lazy loading. return resp, data def _get_modified_info_dict(self): return self._modified_info_dict def _set_modified_info_dict(self, key=None, value=None): if not key: self._modified_info_dict = {} else: self._modified_info_dict[key] = value def _del_modified_info_dict_key(self, key): if key in list(self._modified_info_dict.keys()): del self._modified_info_dict[key] def _del_modified_info_dict_keys(self, info=None): if not info: self._modified_info_dict = {} else: for key in list(info.keys()): self._del_modified_info_dict_key(key) def __eq__(self, other): if not isinstance(other, self.__class__): return False if hasattr(self, 'id') and hasattr(other, 'id'): return self.id == other.id try: return self._info == other._info and self.url == other.url except Exception: return False def is_loaded(self): return self._loaded def set_loaded(self, is_loaded): self._loaded = is_loaded def _is_init(self): return self._initing def _start_init(self): self._initing = True def _finish_init(self): self._initing = False def _start_updating(self): self._updating = True def _stop_updating(self): self._updating = False def _init_updating(self): self._updating = False def is_updating(self): return self._updating @classmethod def set_id_field(cls, _id_field): cls.id_field = _id_field @classmethod def set_base_url(cls, base): url = base if url.endswith('/'): url = url[:-1] if not url.startswith('/'): url = '/' + url cls.base_url = url @classmethod def get_template(cls): return cls._template.copy() def get_template_from_server(self): pass class BaseManager(object): pass class Manager(UtilsMixin, BaseManager): """ Managers interact with a particular type of API (systems, pools, volumes, etc.) and provide CRUD operations for them. :param client: HTTPClient object :param managed_object: The related resource object :param url: A resource or a resource collection's url """ resource_class = Resource response_key = 'data' resource_type = '' def __init__(self, client, managed_object=None, url=''): self.client = client self.managed_object = managed_object self.url = url self.ResponseParser = get_response_parser_class(client.service_type) self.RequestParser = get_request_parser_class(client.service_type) def _get_data(self, response_body, method='', response=None): if not method: # get or list if not response_body: raise ResponseBodyMissingError() res_p = self.ResponseParser(response_body, self.resource_type) return res_p.get_representations() elif method == POSTA: if not response_body: raise ResponseBodyMissingError() res_p = self.ResponseParser(response_body, self.resource_type) return res_p.get_posta_response_data() else: if response_body: try: data = self._get_status_body(response_body) except Exception: logger.debug( messages.CAN_NOT_GET_STATUS_BODY.format( method, self.resource_class.__name__ ) ) data = response_body elif response.status_code in (HTTP200, HTTP204): data = messages.DEFAULT_SUCCESS_BODY_DICT else: res_id = '' try: res_id = self.managed_object.id except Exception: res_id = '' data = json.loads( messages.DEFAULT_FAIL_BODY_JSON.format( action=method, res_class=self.resource_class.__name__, res_id=res_id ) ) return data def _get_status_body(self, response_body): res_p = self.ResponseParser(response_body, self.resource_type) return res_p.get_status_body() def _get_request_data(self, data): req = self.RequestParser(data) return req.get_request_data() def _return_new_resource_by_response_data(self, resp, data, url): resource_uri = url or resp.headers.get('Location') if resource_uri: resource_id = self.ResponseParser.get_resource_id_from_url( url=resource_uri, resource_type=self.resource_type, ) else: resource_id = None return self.resource_class( client=self.client, manager=self.__class__(self.client), url=resource_uri, resource_id=resource_id, info=data ) def _get(self, resource_id='', url='', obj_class=None, **kwargs): new = False parent = None if not url: if self.managed_object is not None: self.url = self.managed_object.url parent = self.managed_object.parent if resource_id: self.url += '/' + resource_id new = True else: raise URLNotSpecifiedError() else: self.url = url new = True resp, body = self.client.get(self.url, **kwargs) data = self._get_data(body)[0] if not new: return resp, data else: if obj_class is None: obj_class = self.resource_class return obj_class(client=self.client, manager=self.__class__(self.client), url=self.url, info=data, parent=parent, loaded=True) # if url and obj_class is not none, list the sub collection # of current resource. def _list(self, url='', obj_class=None, body=None, **kwargs): parent = None if not url: if self.managed_object is not None: self.url = self.managed_object.url parent = self.managed_object.parent else: raise URLNotSpecifiedError() else: self.url = url if body: _, body = self.client.post(self.url, body=body) else: _, body = self.client.get(self.url, **kwargs) if obj_class is None: obj_class = self.resource_class data = self._get_data(body) return [obj_class(client=self.client, manager=self.__class__(self.client), url=self.url, parent=parent, info=res) for res in data if res] def _post(self, body, url=None): if not url: if self.managed_object is not None: url = self.managed_object.url else: raise URLNotSpecifiedError() resp, res_body = self.client.post(url, body=self._get_request_data(body) ) data = self._get_data(res_body, method=POST, response=resp) return resp, data def _posta(self, url='', body=None): post_body = None if not url: if self.managed_object is not None: self.url = self.managed_object.url post_body = body or self.managed_object.representation else: raise URLNotSpecifiedError() else: self.url = url post_body = body or self.managed_object.representation post_body = self.remove_None_fields_from_dict(post_body) resp, body = self.client.post(self.url, body=self._get_request_data(post_body) ) data = self._get_data(body, method=POSTA, response=resp) if not isinstance(data, list): raise Exception("The parsed posta response data should be a list.") res_list = [] for s_data in data: res_data, res_url = s_data if self.ResponseParser.error_status_key in res_data: res = res_data.get(self.ResponseParser.error_status_key) else: res = self._return_new_resource_by_response_data( resp, res_data.get(self.ResponseParser.resource_data_key), res_url ) res_list.append(res) return resp, res_list def _put(self, url='', body=None): put_body = None if not url: if self.managed_object is not None: self.url = self.managed_object.url put_body = body or self.managed_object.representation else: raise URLNotSpecifiedError() else: self.url = url put_body = body resp, body = self.client.put(self.url, body=self._get_request_data(put_body) ) data = self._get_data(body, method='PUT', response=resp) return resp, data def _patch(self, url='', body=None): patch_body = None if not url: if self.managed_object is not None: self.url = self.managed_object.url patch_body = body if body else \ self.managed_object._get_modified_info_dict() else: raise URLNotSpecifiedError() else: self.url = url patch_body = body resp, body = self.client.patch(self.url, body=self._get_request_data(patch_body) ) data = self._get_data(body, method='PATCH', response=resp) return resp, data def _delete(self, url=''): if not url: if self.managed_object is not None: self.url = self.managed_object.url else: raise URLNotSpecifiedError() else: self.url = url resp, body = self.client.delete(self.url) data = self._get_data(body, method='DELETE', response=resp) return resp, data class DefaultManager(Manager): """ Default resource manager. """ resource_class = Resource resource_type = 'default' def get(self, resource_id='', url='', obj_class=None, **kwargs): return self._get(resource_id=resource_id, url=url, obj_class=obj_class, **kwargs) def list(self, url='', obj_class=None, body=None, **kwargs): return self._list(url=url, obj_class=obj_class, body=body, **kwargs) def post(self, url='', body=None): return self._post(url=url, body=body) def posta(self, url='', body=None): return self._posta(url=url, body=body) def put(self, url='', body=None): return self._put(url=url, body=body) def patch(self, url='', body=None): return self._patch(url=url, body=body) def delete(self, url=''): return self._delete(url=url) ``` #### File: ds8k/v1/client.py ```python from logging import getLogger from pyds8k import PYDS8K_DEFAULT_LOGGER from pyds8k.httpclient import HTTPClient from pyds8k.base import Resource, DefaultManager from pyds8k.resources.ds8k.v1.common import types from pyds8k.resources.ds8k.v1.systems import System, \ SystemManager logger = getLogger(PYDS8K_DEFAULT_LOGGER) DEFAULT_PORT = 8452 class Client(object): """ Top-level object to access all the DS8K resources. :param service_address: Hostname/IP address of the REST server if it is standalone or the hostname/IP address of the DS8K system. Required. :type service_address: string :param user: Username for logining to the DS8K system. Required. :type user: string :param password: Password for logining to the DS8K system. Required. :type password: string :param port: Port number of the server. :type port: int :param hostname: Hostname/IP address of the DS8K system. It is required if the server is standalone. :type hostname: string :param timeout: How long to wait for the server to send data before giving up. In seconds. Default is 25, and 0 means no limitation. :type timeout: float """ def __init__(self, service_address, user, password, port=DEFAULT_PORT, hostname='', service_type='ds8k', service_version='v1', timeout=None, ): logger.info('================== logger is enabled ==================') client = HTTPClient(service_address, user, password, port=port, hostname=hostname, service_type=service_type, service_version=service_version, timeout=timeout, ) self.client = client self.resource = Resource(self.client, DefaultManager(self.client)) self.system = System(self.client, SystemManager(self.client)) def __getattr__(self, k): try: # if not self.system.is_loaded(): # self.system = self.system.get_system() method = getattr(self.system, k) if not callable(method): raise AttributeError(k) else: return method except Exception: raise AttributeError(k) def create_volume(self, name, cap, pool, tp='', lss=''): """ Create a fb volume. name, cap(in GiB) and pool id is mandatory. tp have three optional values: 'none', 'ese' and 'tse'. default is 'none', will create a standard volume. """ return self.system.create_volume_fb( name=name, cap=cap, pool=pool, tp=tp, captype=types.DS8K_CAPTYPE_GIB, lss=lss, ) def create_volumes(self, name_col, cap, pool, tp='', lss=''): """ Create fb volumes. name_col, cap(in GiB) and pool id is mandatory. name_col is a volume name list. tp have three optional values: 'none', 'ese' and 'tse'. default is 'none', will create standard volumes. """ return self.create_volumes_without_same_prefix(name_col, cap, pool, tp, lss ) def create_volumes_with_same_prefix(self, name, cap, pool, quantity='', tp='', lss='' ): """ Create fb volumes with same name prefix. name, cap(in GiB) pool id and quantity is mandatory. name is the volume name prefix, the final volume names will be something like 'prefix_1', 'prefix_2', ... tp have three optional values: 'none', 'ese' and 'tse'. default is 'none', will create standard volumes. """ return self.system.create_volumes_with_same_prefix( cap=cap, pool=pool, stgtype=types.DS8K_VOLUME_TYPE_FB, name=name, quantity=quantity, captype=types.DS8K_CAPTYPE_GIB, tp=tp, lss=lss, ) def create_volumes_without_same_prefix(self, name_col, cap, pool, tp='', lss=''): return self.system.create_volumes_without_same_prefix( cap=cap, pool=pool, stgtype=types.DS8K_VOLUME_TYPE_FB, name_col=name_col, captype=types.DS8K_CAPTYPE_GIB, tp=tp, lss=lss, ) ``` #### File: pyds8k/pyds8k/exceptions.py ```python from pyds8k.utils import get_subclasses, \ get_response_parser_class from pyds8k import messages class BaseRestError(Exception): pass class InvalidArgumentError(Exception): def __init__(self, reason): self.reason = reason def __str__(self): return messages.INVALID_ARGUMENT.format( self.reason ) class OperationNotAllowed(Exception): """ The operation performed on the resource is not allowed. """ def __init__(self, operation_name, resource_name=''): self.operation_name = operation_name self.resource_name = resource_name def __str__(self): return messages.OPERATION_NOT_ALLOWED.format( self.operation_name, self.resource_name ) class URLNotSpecifiedError(Exception): """ The URL is not specified. """ def __str__(self): return messages.URL_NOT_SPECIFIED class URLMissingError(Exception): """ The URL is missing. """ def __str__(self): return messages.URL_MISSING class IDMissingError(Exception): """ The id field is missing or None. """ def __str__(self): return messages.ID_MISSING class ResponseBodyMissingError(Exception): """ The response body is missing. """ def __str__(self): return messages.RESPONSE_BODY_MISSING class URLParseError(Exception): """ Can not get the URL """ def __str__(self): return messages.CAN_NOT_GET_URL class RepresentationParseError(Exception): """ Can not get the representation """ def __str__(self): return messages.CAN_NOT_GET_REPRESENTATION class FieldReadOnly(Exception): """ Field is read only. """ def __init__(self, field_name): self.field_name = field_name def __str__(self): return messages.FIELD_READONLY.format(self.field_name) class ConnectionError(Exception): """ Could not open a connection to the API service. """ pass class Timeout(Exception): """ The request timed out. """ def __init__(self, url): self.url = url def __str__(self): return messages.REQUEST_TIMED_OUT.format(self.url) class ClientException(Exception): """ The base exception class for all HTTP client or server errors. """ def __init__(self, code, message=None, detail='', origin_data=None): self.code = code self.message = message self.detail = detail self.error_data = origin_data if self.message and self.detail: self.details = '[{}] {}'.format(self.message, self.detail) elif self.message or self.detail: self.details = self.message or self.detail else: self.details = '' def __str__(self): return "HTTP {0} {1}. {2}".format( self.code, self.reason_phrase, self.details ) class ClientError(ClientException): """ HTTP 4xx - Client Error """ status_code = '4xx' reason_phrase = "Client Error" class ServerError(ClientException): """ HTTP 5xx - Server Error """ status_code = '5xx' reason_phrase = "Server Error" class BadRequest(ClientError): """ HTTP 400 - Bad request: you sent some malformed data. """ status_code = '400' reason_phrase = "Bad Request" class Unauthorized(ClientError): """ HTTP 401 - Unauthorized: bad credentials. """ status_code = '401' reason_phrase = "Unauthorized" class Forbidden(ClientError): """ HTTP 403 - Forbidden: your credentials don't give you access to this resource. """ status_code = '403' reason_phrase = "Forbidden" class NotFound(ClientError): """ HTTP 404 - Not found """ status_code = '404' reason_phrase = "Not Found" class MethodNotAllowed(ClientError): """ HTTP 405 - Method Not Allowed """ status_code = '405' reason_phrase = "Method Not Allowed" class Conflict(ClientError): """ HTTP 409 - Conflict """ status_code = '409' reason_phrase = "Conflict" class UnsupportedMediaType(ClientError): """ HTTP 415 - Unsupported Media Type """ status_code = '415' reason_phrase = "Unsupported Media Type" class InternalServerError(ServerError): """ HTTP 500 - Internal Server Error: The server encountered an unexpected condition which prevented it from fulfilling the request. """ status_code = '500' reason_phrase = "Internal Server Error" class ServiceUnavailable(ServerError): """ HTTP 503 - Service Unavailable """ status_code = '503' reason_phrase = "Service Unavailable" class GatewayTimeout(ServerError): """ HTTP 504 - Gateway Timeout """ status_code = '504' reason_phrase = "Gateway Timeout" _error_dict = dict((c.status_code, c) for c in get_subclasses(ClientException)) def raise_error(response, body, service_type=''): """ Return an instance of an ClientException or subclass based on an requests response. """ ResponseParser = get_response_parser_class(service_type) cls = _error_dict.get(str(response.status_code), ClientException) if body: res_p = ResponseParser(body) message = res_p.get_error_code() details = res_p.get_error_msg() data = res_p.get_status_body() return cls(code=response.status_code, message=message, detail=details, origin_data=data ) else: return cls(code=response.status_code, message=response.reason, origin_data=body ) ``` #### File: v1/common/base.py ```python from logging import getLogger from pyds8k.messages import INVALID_TYPE from pyds8k import PYDS8K_DEFAULT_LOGGER from pyds8k.base import Resource, Manager from .mixins import RootResourceMixin from pyds8k.exceptions import OperationNotAllowed, \ URLNotSpecifiedError, \ FieldReadOnly from ....utils import get_resource_class_by_name logger = getLogger(PYDS8K_DEFAULT_LOGGER) class Base(RootResourceMixin, Resource): # If there is a field named "id" in response data, # the id_field can't be set to value other than "id" id_field = 'id' url_field = 'link' base_url = '/api/v1' create_method = 'posta' # Required only in writable resources, fileds are from _template # Resource id is exclude. readonly_fileds = () # Not like related_resource, related_resources_list is not set during # loading, its keys use lazy-loading to get details. related_resources_collection = () def _add_details(self, info, force=False): super(Base, self)._add_details(info, force=force) self._start_updating() self._set_related_resources_collection() self._stop_updating() def _set_related_resources_collection(self): for key in self.related_resources_collection: res = self.representation.get(key) # If the related resources(should be a list) are not in info, # will empty them and wait for lazy-loading. if not isinstance(res, list): self.representation[key] = '' try: delattr(self, key) except AttributeError: pass # If the related resources(should be a list) are in info, set it. else: re_class, re_manager = self._get_resource_class_by_name(key) res_list = [re_class(self.client, manager=re_manager(self.client), info=r) for r in res] setattr(self, key, res_list) def __setattr__(self, key, value): if key in self.readonly_fileds and not self.is_updating(): raise FieldReadOnly(key) super(Base, self).__setattr__(key, value) try: if key in self.related_resources_collection: ids = [getattr(item, item.id_field) for item in value] self.representation[key] = ids if not self.is_updating(): self._set_modified_info_dict(key, ids) except AttributeError: pass def __getattr__(self, key): if key in self.related_resources_collection: try: return getattr(self, 'get_{}'.format(key))() except Exception as e: logger.debug( "Can not get {} from {}, reason is: {}".format( key, self, type(e) ) ) raise AttributeError(key) return super(Base, self).__getattr__(key) def __repr__(self): return "<{0}: {1}>".format(self.__class__.__name__, self._get_id()) def _get_resource_class_by_name(self, resource_type): prefix = '{}.{}'.format(self.client.service_type, self.client.service_version ) return get_resource_class_by_name(resource_type, prefix) def _verify_type(self, new_type, valid_type_list): if new_type and not (new_type in valid_type_list): raise ValueError( INVALID_TYPE.format(', '.join(valid_type_list)) ) class SingletonBase(Base): # A singleton resource has no id field by default id_field = '*' class BaseManager(Manager): resource_class = Base response_key = 'data' resource_type = '' def _post(self, url='', body=None): post_body = None if not body: if self.managed_object is not None: post_body = self.managed_object._get_modified_info_dict() # repre = self.managed_object.representation # post_body = {key: value # for key, value in repre.iteritems() # if key not in self.managed_object.readonly_fileds # } else: raise URLNotSpecifiedError() else: post_body = body return super(BaseManager, self)._post(url=url, body=post_body) # DS8K will use PUT in PATCH way, and don't use PATCH. def _put(self, url='', body=None): put_body = None if not url: if self.managed_object is not None: self.url = self.managed_object.url # use modified info here put_body = body if body else \ self.managed_object._get_modified_info_dict() else: raise URLNotSpecifiedError() else: self.url = url put_body = body resp, body = self.client.put(self.url, body=self._get_request_data(put_body) ) data = self._get_data(body, method='PUT', response=resp) return resp, data def _patch(self, url='', body=None): return self._put(url=url, body=body) def get(self, resource_id='', url='', obj_class=None, **kwargs): raise OperationNotAllowed('get', self.resource_class.__name__) def list(self, url='', obj_class=None, body=None, **kwargs): raise OperationNotAllowed('list', self.resource_class.__name__) def post(self, url='', body=None): raise OperationNotAllowed('post', self.resource_class.__name__) def posta(self, url='', body=None): raise OperationNotAllowed('posta', self.resource_class.__name__) def put(self, url='', body=None): raise OperationNotAllowed('put', self.resource_class.__name__) def patch(self, url='', body=None): raise OperationNotAllowed('patch', self.resource_class.__name__) def delete(self, url=''): raise OperationNotAllowed('delete', self.resource_class.__name__) class ReadOnlyManager(BaseManager): def get(self, resource_id='', url='', obj_class=None, **kwargs): return self._get(resource_id=resource_id, url=url, obj_class=obj_class, **kwargs) def list(self, url='', obj_class=None, body=None, **kwargs): return self._list(url=url, obj_class=obj_class, body=body, **kwargs) class SingletonBaseManager(BaseManager): def get(self, url='', obj_class=None, **kwargs): return self._get(url=url, obj_class=obj_class, **kwargs) def list(self, url='', obj_class=None, body=None, **kwargs): return self._list(url=url, obj_class=obj_class, body=body, **kwargs) ``` #### File: pyds8k/pyds8k/size_converter.py ```python GiB = 2**30 # Gibibyte = GiB = 2^30 B = 1,073,741,824 bytes MiB = 2**20 # Mebibyte = MiB = 2^20 B = 1,048,576 bytes KiB = 2**10 # Kibibyte = kiB = 2^10 B = 1,024 bytes GB = 10**9 # Gigabyte = GB = 10^9 B = 1,000,000,000 bytes MB = 10**6 # Megabyte = MB = 10^6 B = 1,000,000 bytes KB = 10**3 # Kilobyte = kB = 10^3 B = 1,000 bytes def validate_number(number): if not isinstance(number, (int, float)): raise ValueError("Expected types are (int, long, float)") # ============================================================================= # Methods converting to bytes. # ============================================================================= def convert_size_gib_to_bytes(size_in_gib): """:rtype: int / long""" validate_number(size_in_gib) return size_in_gib * GiB def convert_size_mib_to_bytes(size_in_mib): """:rtype: int / long""" validate_number(size_in_mib) return size_in_mib * MiB def convert_size_kib_to_bytes(size_in_kib): """:rtype: int / long""" validate_number(size_in_kib) return size_in_kib * KiB def convert_size_gb_to_bytes(size_in_gb): """:rtype: int / long""" validate_number(size_in_gb) return size_in_gb * GB def convert_size_mb_to_bytes(size_in_mb): """:rtype: int / long""" validate_number(size_in_mb) return size_in_mb * MB def convert_size_kb_to_bytes(size_in_kb): """:rtype: int / long""" validate_number(size_in_kb) return size_in_kb * KB # ============================================================================= # Methods converting from bytes. # ============================================================================= def convert_size_bytes_to_gib(size_in_bytes): """:rtype: float""" return float(size_in_bytes) / GiB def convert_size_bytes_to_mib(size_in_bytes): """:rtype: float""" return float(size_in_bytes) / MiB def convert_size_bytes_to_kib(size_in_bytes): """:rtype: float""" return float(size_in_bytes) / KiB def convert_size_bytes_to_gb(size_in_bytes): """:rtype: float""" return float(size_in_bytes) / GB def convert_size_bytes_to_mb(size_in_bytes): """:rtype: float""" return float(size_in_bytes) / MB def convert_size_bytes_to_kb(size_in_bytes): """:rtype: float""" return float(size_in_bytes) / KB ``` #### File: test_client/test_ds8k/test_client.py ```python from pyds8k.resources.ds8k.v1.common.types import DS8K_SYSTEM, \ DS8K_VOLUME from ...base import TestCaseWithConnect from pyds8k.resources.ds8k.v1.common.base import Base from ...data import get_response_list_json_by_type, \ get_response_list_data_by_type from pyds8k.client.ds8k.v1.client import Client from pyds8k.resources.ds8k.v1.volumes import Volume import httpretty system_list_response_json = get_response_list_json_by_type(DS8K_SYSTEM) volume_list_response_json = get_response_list_json_by_type(DS8K_VOLUME) volume_list_response = get_response_list_data_by_type(DS8K_VOLUME) class TestClient(TestCaseWithConnect): def setUp(self): super(TestClient, self).setUp() self.base_url = Base.base_url self.rest_client = Client('localhost', 'admin', 'admin', '8088') @httpretty.activate def test_get_array_method(self): domain = self.client.domain vol_url = '/volumes' sys_url = '/systems' httpretty.register_uri(httpretty.GET, domain + self.base_url + vol_url, body=volume_list_response_json, content_type='application/json') httpretty.register_uri(httpretty.GET, domain + self.base_url + sys_url, body=system_list_response_json, content_type='application/json') vol_list = self.rest_client.get_volumes() self.assertIsInstance(vol_list, list) self.assertIsInstance(vol_list[0], Volume) self.assertEqual( len(vol_list), len(volume_list_response['data']['volumes']) ) with self.assertRaises(AttributeError): # 'base_url' is an attr from System, not a method self.rest_client.base_url ``` #### File: pyds8k/test/test_httpclient.py ```python from pyds8k.exceptions import URLParseError from . import base import httpretty import json import time from nose.tools import nottest from pyds8k.httpclient import HTTPClient from pyds8k.base import Resource, DefaultManager from .data import get_response_list_json_by_type, \ get_response_list_data_by_type, \ get_response_data_by_type, \ get_response_json_by_type info = {'id': 'v1', 'name': 'vol1'} custom_method_get = {'data': 'custom_method_get'} custom_method_get_json = json.dumps(custom_method_get) DEFAULT = 'default' default_a_response = get_response_data_by_type(DEFAULT) default_a_response_json = get_response_json_by_type(DEFAULT) default_list_response = get_response_list_data_by_type(DEFAULT) default_list_response_json = get_response_list_json_by_type(DEFAULT) class TestHTTPClient(base.TestCaseWithConnect): def setUp(self): super(TestHTTPClient, self).setUp() self.base_url = '' def test_parse_url(self): url1 = self.domain + '/new' url2 = '/new' _, url3 = url1.split('//') url4 = 'http://new_domain' + '/new' self.assertEqual('/new', self.client._parse_url(url1)) self.assertEqual('/new', self.client._parse_url(url2)) self.assertEqual('/new', self.client._parse_url(url3)) with self.assertRaises(URLParseError): self.client._parse_url(url4) new_client = HTTPClient('172.16.58.3', 'admin', 'admin', service_type='ds8k', secure=True) with self.assertRaises(URLParseError): new_client._parse_url(url3) @httpretty.activate def test_redirect(self): url = '/default/old' new_url = '/default/a' httpretty.register_uri(httpretty.GET, self.domain + self.base_url + url, content_type='application/json', adding_headers={'Location': new_url}, status=301) httpretty.register_uri(httpretty.GET, self.domain + self.base_url + new_url, body=default_a_response_json, content_type='application/json', status=200) de = self.resource.one(DEFAULT, 'old').get(allow_redirects=False) self.assertEqual(new_url, de.url) # Not work in this way. @nottest @httpretty.activate def test_timeout(self): url = '/default/a' new_client = HTTPClient('localhost', 'admin', 'admin', service_type='ds8k', timeout=0.01) def _verify_request(request, uri, headers): time.sleep(10) return (200, headers, default_a_response_json) httpretty.register_uri(httpretty.GET, new_client.domain + self.base_url + url, body=_verify_request, content_type='application/json', ) resource = Resource(new_client, DefaultManager(new_client)) resource.one(DEFAULT, 'a').get() ``` #### File: test_resources/test_ds8k/test_host_port.py ```python import httpretty import json # import warnings from pyds8k.exceptions import InternalServerError, FieldReadOnly from pyds8k.messages import DEFAULT_SUCCESS_BODY_DICT from pyds8k.resources.ds8k.v1.common.types import DS8K_HOST_PORT from pyds8k.resources.ds8k.v1.host_ports import HostPort, \ HostPortManager from pyds8k.resources.ds8k.v1.ioports import IOPort from pyds8k.resources.ds8k.v1.hosts import Host from .base import TestDS8KWithConnect from ...data import get_response_json_by_type, get_response_data_by_type from ...data import action_response, action_response_json, \ action_response_failed, action_response_failed_json, \ create_host_port_response_json from pyds8k.dataParser.ds8k import RequestParser response_a = get_response_data_by_type(DS8K_HOST_PORT) response_a_json = get_response_json_by_type(DS8K_HOST_PORT) class TestHostPort(TestDS8KWithConnect): def setUp(self): super(TestHostPort, self).setUp() self.host_port = HostPort(self.client, HostPortManager(self.client)) self.wwpn = self._get_resource_id_from_resopnse(DS8K_HOST_PORT, response_a, HostPort.id_field ) @httpretty.activate def test_delete_host_port(self): url = '/host_ports/{}'.format(self.wwpn) httpretty.register_uri( httpretty.GET, self.domain + self.base_url + url, body=response_a_json, content_type='application/json', status=200, ) httpretty.register_uri( httpretty.DELETE, self.domain + self.base_url + url, body=action_response_json, content_type='application/json', status=204, ) # Way 1 _ = self.system.delete_host_port(self.wwpn) self.assertEqual(httpretty.DELETE, httpretty.last_request().method) # self.assertEqual(resp1, action_response['server']) # Way 2 host_port = self.system.get_host_port(self.wwpn) self.assertIsInstance(host_port, HostPort) resp2, _ = host_port.delete() self.assertEqual(resp2.status_code, 204) self.assertEqual(httpretty.DELETE, httpretty.last_request().method) # self.assertEqual(resp2.text, action_response['server']) # self.assertEqual(data2, action_response['server']) # warnings.warn("TestHostPort.test_delete_host_port: do not know why \ # requests can not get DELETE response's body. Maybe httpretty can \ # not set DELETE response's body correctly") @httpretty.activate def test_delete_host_port_without_resp_body(self): url = '/host_ports/{}'.format(self.wwpn) httpretty.register_uri(httpretty.DELETE, self.domain + self.base_url + url, content_type='application/json', status=204, ) resp1 = self.system.delete_host_port(self.wwpn) self.assertEqual(httpretty.DELETE, httpretty.last_request().method) self.assertEqual(resp1, DEFAULT_SUCCESS_BODY_DICT) @httpretty.activate def test_delete_host_port_failed(self): url = '/host_ports/{}'.format(self.wwpn) httpretty.register_uri( httpretty.DELETE, self.domain + self.base_url + url, body=action_response_failed_json, content_type='application/json', status=500, ) with self.assertRaises(InternalServerError) as cm: self.system.delete_host_port(self.wwpn) self.assertEqual(action_response_failed['server'], cm.exception.error_data ) self.assertEqual(httpretty.DELETE, httpretty.last_request().method) @httpretty.activate def test_update_host_port(self): url = '/host_ports/{}'.format(self.wwpn) new_host_name = 'new_host' def _verify_request(request, uri, headers): self.assertEqual(uri, self.domain + self.base_url + url) resq = RequestParser({'host': new_host_name}) self.assertEqual(json.loads(request.body), resq.get_request_data()) return (200, headers, action_response_json) httpretty.register_uri( httpretty.GET, self.domain + self.base_url + url, body=response_a_json, content_type='application/json', status=200, ) httpretty.register_uri(httpretty.PUT, self.domain + self.base_url + url, body=_verify_request, content_type='application/json', ) # Way 1 resp1 = self.system.update_host_port_change_host(self.wwpn, new_host_name ) self.assertEqual(httpretty.PUT, httpretty.last_request().method) self.assertEqual(resp1, action_response['server']) host_port = self.system.get_host_port(self.wwpn) # Way 2 host_port.host = new_host_name resp2, data2 = host_port.update() self.assertEqual(httpretty.PUT, httpretty.last_request().method) self.assertEqual(data2, action_response['server']) self.assertEqual(resp2.status_code, 200) # Way 3 in DS8K, save works the same as update host_port.host = new_host_name resp3, data3 = host_port.save() self.assertEqual(httpretty.PUT, httpretty.last_request().method) self.assertEqual(data3, action_response['server']) self.assertEqual(resp3.status_code, 200) # Way 4 host_port.host = new_host_name resp4, data4 = host_port.patch() self.assertEqual(httpretty.PUT, httpretty.last_request().method) self.assertEqual(data4, action_response['server']) self.assertEqual(resp4.status_code, 200) # Way 5 in DS8K, put works the same as patch host_port.host = new_host_name resp5, data5 = host_port.put() self.assertEqual(httpretty.PUT, httpretty.last_request().method) self.assertEqual(data5, action_response['server']) self.assertEqual(resp5.status_code, 200) @httpretty.activate def test_update_host_port_failed(self): url = '/host_ports/{}'.format(self.wwpn) new_host_name = 'new_host' httpretty.register_uri(httpretty.PUT, self.domain + self.base_url + url, body=action_response_failed_json, content_type='application/json', status=500 ) with self.assertRaises(InternalServerError) as cm: self.system.update_host_port_change_host(self.wwpn, new_host_name) self.assertEqual(action_response_failed['server'], cm.exception.error_data ) def test_set_readonly_field(self): with self.assertRaises(FieldReadOnly): self.host_port.state = 'new_state' with self.assertRaises(FieldReadOnly): self.host_port.wwpn = 'new_wwpn' def test_update_host_field(self): host_info = get_response_data_by_type( DS8K_HOST_PORT )['data'][DS8K_HOST_PORT][0] host_name = host_info['host']['name'] self.host_port._add_details(host_info) self.assertEqual( self.host_port.host, host_name ) self.assertEqual( self.host_port.representation['host'], host_name ) self.assertIsInstance(self.host_port._host, Host) self.assertEqual( self.host_port._host.id, host_name ) self.host_port.host = 'new_host' self.assertEqual( self.host_port.host, 'new_host' ) self.assertEqual( self.host_port.representation['host'], 'new_host' ) @httpretty.activate def test_create_host_port(self): url = '/host_ports' host_name = 'host1' def _verify_request(request, uri, headers): self.assertEqual(uri, self.domain + self.base_url + url) req = RequestParser({'wwpn': self.wwpn, 'host': host_name}) self.assertDictContainsSubset( req.get_request_data().get('request').get('params'), json.loads(request.body).get('request').get('params'), ) return (200, headers, create_host_port_response_json) httpretty.register_uri(httpretty.POST, self.domain + self.base_url + url, body=_verify_request, content_type='application/json', ) # Way 1 resp1 = self.system.create_host_port(self.wwpn, host_name) self.assertEqual(httpretty.POST, httpretty.last_request().method) self.assertIsInstance(resp1[0], HostPort) # Way 2 host_port = self.system.all(DS8K_HOST_PORT, rebuild_url=True) new_host_port2 = host_port.create(wwpn=self.wwpn, host=host_name) resp2, data2 = new_host_port2.posta() self.assertEqual(httpretty.POST, httpretty.last_request().method) self.assertIsInstance(data2[0], HostPort) self.assertEqual(resp2.status_code, 200) # Way 3 host_port = self.system.all(DS8K_HOST_PORT, rebuild_url=True) new_host_port3 = host_port.create(wwpn=self.wwpn, host=host_name) resp3, data3 = new_host_port3.save() self.assertEqual(httpretty.POST, httpretty.last_request().method) self.assertIsInstance(data3[0], HostPort) self.assertEqual(resp3.status_code, 200) # Way 4 # Don't init a resource instance by yourself when create new. # use .create() instead. @httpretty.activate def test_create_host_port_failed(self): url = '/host_ports' host_name = 'host1' httpretty.register_uri(httpretty.POST, self.domain + self.base_url + url, body=action_response_failed_json, content_type='application/json', status=500 ) with self.assertRaises(InternalServerError) as cm: self.system.create_host_port(self.wwpn, host_name) self.assertEqual(action_response_failed['server'], cm.exception.error_data ) def test_related_resource_field(self): self._test_related_resource_field(DS8K_HOST_PORT) def test_occupied_ioports(self): OCCUPIED_IOPORTS = 'login_ports' info = get_response_data_by_type( DS8K_HOST_PORT )['data'][DS8K_HOST_PORT][0] host_port = HostPort(self.client, HostPortManager(self.client), info=info ) ioport_ids = [port.get(IOPort.id_field) for port in info[OCCUPIED_IOPORTS] ] self.assertCountEqual(ioport_ids, host_port.representation.get(OCCUPIED_IOPORTS) ) self.assertIsInstance(getattr(host_port, OCCUPIED_IOPORTS)[0], IOPort) self.assertIn(getattr(host_port, OCCUPIED_IOPORTS)[0].id, ioport_ids) ``` #### File: test_resources/test_ds8k/test_pprc.py ```python from pyds8k.resources.ds8k.v1.common.types import DS8K_PPRC from ...data import get_response_data_by_type from .base import TestDS8KWithConnect from pyds8k.resources.ds8k.v1.volumes import Volume from pyds8k.resources.ds8k.v1.pprc import PPRC from pyds8k.resources.ds8k.v1.systems import System class TestPPRC(TestDS8KWithConnect): def test_related_resource_field(self): pprc_info = get_response_data_by_type( DS8K_PPRC )['data'][DS8K_PPRC][0] sourcevolume_id = pprc_info['sourcevolume'][Volume.id_field] targetvolume_id = pprc_info['targetvolume'][Volume.id_field] targetsystem_id = pprc_info['targetsystem'][System.id_field] pprc = PPRC(self.client, info=pprc_info) self.assertEqual(pprc.sourcevolume, sourcevolume_id) self.assertEqual(pprc.representation['sourcevolume'], sourcevolume_id) self.assertIsInstance(pprc._sourcevolume, Volume) self.assertEqual(pprc._sourcevolume.id, sourcevolume_id) self.assertEqual(pprc.targetvolume, targetvolume_id) self.assertEqual(pprc.representation['targetvolume'], targetvolume_id) self.assertIsInstance(pprc._targetvolume, Volume) self.assertEqual(pprc._targetvolume.id, targetvolume_id) self.assertEqual(pprc.targetsystem, targetsystem_id) self.assertEqual(pprc.representation['targetsystem'], targetsystem_id) self.assertIsInstance(pprc._targetsystem, System) self.assertEqual(pprc._targetsystem.id, targetsystem_id) ``` #### File: pyds8k/test/test_utils.py ```python from . import base from nose.tools import nottest from pyds8k import utils class TestUtils(base.TestCaseWithoutConnect): def test_get_subclasses(self): class A(object): pass class B(A): pass class C(A): pass class D(B): pass class E(C): pass self.assertIn(B, utils.get_subclasses(A)) self.assertIn(C, utils.get_subclasses(A)) self.assertIn(D, utils.get_subclasses(A)) self.assertIn(E, utils.get_subclasses(A)) def test_is_absolute_url(self): url1 = 'http://www.example.com/test' url2 = 'https://www.example.com/test' url3 = 'ftps://www.example.com/test' url4 = 'ssh://www.example.com/test' url5 = 'www.example.com/test' url6 = 'example.com/test' url7 = 'localhost/test' url8 = '/test' for url in (url1, url2, url3, url4, url5, url6, url7): self.assertTrue(utils.is_absolute_url(url)) self.assertFalse(utils.is_absolute_url(url8)) def test_get_request_parser_class(self): from pyds8k.dataParser.ds8k import RequestParser self.assertEqual(RequestParser, utils.get_request_parser_class('ds8k')) def test_get_response_parser_class(self): from pyds8k.dataParser.ds8k import ResponseParser self.assertEqual(ResponseParser, utils.get_response_parser_class('ds8k')) # def test_get_default_service_type(self): # self.assertEqual('ds8k', utils.get_default_service_type()) @nottest def test_get_config_settings(self): settings_dict = utils.get_config_settings() self.assertEqual(5, len(list(settings_dict.keys()))) self.assertIsNotNone(settings_dict.get('debug')) self.assertIsNotNone(settings_dict.get('log_path')) self.assertIsNotNone(settings_dict.get('default_service_type')) self.assertIsNotNone(settings_dict.get('runtime_service_type')) @nottest def test_get_config_all_items(self): config_dict = utils.get_config_all_items() self.assertEqual(5, len(list(config_dict.keys()))) self.assertIsNotNone(config_dict.get('debug')) self.assertIsNotNone(config_dict.get('log_path')) self.assertIsNotNone(config_dict.get('default_service_type')) self.assertIsNotNone(config_dict.get('runtime_service_type')) @nottest def test_get_config_all(self): config_dict = utils.get_config_all() self.assertEqual(1, len(list(config_dict.keys()))) settings_dict = config_dict.get('settings') self.assertIsNotNone(settings_dict) self.assertEqual(5, len(list(settings_dict.keys()))) self.assertIsNotNone(settings_dict.get('debug')) self.assertIsNotNone(settings_dict.get('log_path')) self.assertIsNotNone(settings_dict.get('default_service_type')) self.assertIsNotNone(settings_dict.get('runtime_service_type')) ''' class TestSetConfig(unittest.TestCase): RUNTIME_SERVICE_TYPE = '' def setUp(self): self.RUNTIME_SERVICE_TYPE = utils.get_runtime_service_type() def tearDown(self): utils.set_runtime_service_type(self.RUNTIME_SERVICE_TYPE) def test_get_runtime_service_type(self): self.assertEqual( self.RUNTIME_SERVICE_TYPE, utils.get_runtime_service_type() ) def test_set_runtime_service_type(self): utils.set_runtime_service_type('test') self.assertEqual('test', utils.get_runtime_service_type()) def test_get_service_type(self): if utils.get_runtime_service_type(): self.assertEqual( self.RUNTIME_SERVICE_TYPE, utils.get_service_type() ) else: self.assertEqual( utils.get_default_service_type(), utils.get_service_type() ) utils.set_runtime_service_type('test') self.assertEqual('test', utils.get_service_type()) ''' ```
{ "source": "2715816772/fzutils", "score": 3 }
#### File: lib/fzutils/safe_utils.py ```python """ 安全相关 """ __all__ = [ 'encrypt', # 加密算法 'decrypt', # 解密算法 ] def encrypt(key, tmp_str): ''' 加密算法 :param key: 配合加密的key :param tmp_str: 待加密的str :return: ''' b = bytearray(str(tmp_str).encode("gbk")) n = len(b) # 求出 b 的字节数 c = bytearray(n*2) j = 0 for i in range(0, n): b1 = b[i] b2 = b1 ^ key # b1 = b2^ key c1 = b2 % 16 c2 = b2 // 16 # b2 = c2*16 + c1 c1 = c1 + 65 c2 = c2 + 65 # c1,c2都是0~15之间的数,加上65就变成了A-P 的字符的编码 c[j] = c1 c[j+1] = c2 j = j+2 return c.decode("gbk") def decrypt(key, tmp_str): ''' 解密算法 :param key: 配合解密的key :param tmp_str: 待解密密的str :return: '' 解码失败 | 'xxx' 成功 ''' c = bytearray(str(tmp_str).encode("gbk")) n = len(c) # 计算 b 的字节数 if n % 2 != 0 : return '' n = n // 2 b = bytearray(n) j = 0 for i in range(0, n): c1 = c[j] c2 = c[j+1] j = j+2 c1 = c1 - 65 c2 = c2 - 65 b2 = c2*16 + c1 b1 = b2^ key b[i]= b1 try: return b.decode("gbk") except: return '' ``` #### File: 2715816772/fzutils/setup.py ```python from __future__ import print_function from setuptools import ( setup, find_packages, ) import sys import os import codecs from requires import install_requires """ 发布新包步骤: 1. 现在从setup.py位于的同一目录运行此命令 $ python3 setup.py sdist bdist_wheel 2. upload $ twine upload dist/* --skip-existing 3. 本地更新(发布完后过会才能更新Release)[注意: pycharm可能要单独更新] $ pip3 install fzutils -U 4. 服务器上安装install fzutils解决方案(更新最后加个'-U') $ pip3 install -i http://pypi.douban.com/simple/ fzutils --trusted-host pypi.douban.com 报错及其解决方案: 1. error: invalid command 'bdist_wheel' $ pip3 install pip setuptools -U && pip3 install wheel """ def read(f_name): """ 用来读取目录下的长描述 我们一般是将README文件中的内容读取出来作为长描述,这个会在PyPI中你这个包的页面上展现出来, 你也可以不用这个方法,自己手动写内容即可, PyPI上支持.rst格式的文件。暂不支持.md格式的文件,<BR>.rst文件PyPI会自动把它转为HTML形式显示在你包的信息页面上。 """ return codecs.open(os.path.join(os.path.dirname(__file__), f_name)).read() long_description = read('README.md') classifiers = [ 'Programming Language :: Python :: 3 :: Only', 'License :: OSI Approved :: MIT License', 'Intended Audience :: Developers', 'Operating System :: OS Independent', ] # 可被导入的包(写最外层的就可以) py_modules = [ 'fzutils', ] setup( name="fzutils", version="0.0.1.1.2", author="super_fazai", author_email="<EMAIL>", description="A Python utils for spider", py_modules=py_modules, long_description=long_description, long_description_content_type="text/markdown", license="MIT", url="https://www.github.com/superonesfazai", packages=find_packages(), platforms=['linux/Windows/Mac'], classifiers=classifiers, install_requires=install_requires, include_package_data=True, python_requires='>=3', zip_safe=True, ) ```
{ "source": "2720851545/GitHubPoster", "score": 3 }
#### File: GitHubPoster/loader/github_loader.py ```python import requests from html_parser import GitHubParser from .base_loader import BaseLoader from .config import GITHUB_CONTRIBUCTIONS_URL class GitHubLoader(BaseLoader): def __init__(self, from_year, to_year, **kwargs) -> None: super().__init__() assert to_year >= from_year self.from_year = from_year self.to_year = to_year self.user_name = kwargs.get("github_user_name", "") self._make_years_list() def make_track_dict(self): for y in self.year_list: p = GitHubParser() try: r = requests.get( GITHUB_CONTRIBUCTIONS_URL.format( user_name=self.user_name, start_day=f"{y}-01-01", end_day=f"{y}-12-31", ) ) self.number_by_date_dict.update(p.make_contribution_dict(r.text)) except Exception as e: raise Exception(f"Can not get GitHub contribuctions error: {str(e)}") for _, v in self.number_by_date_dict.items(): self.number_list.append(v) def get_all_track_data(self): self.make_track_dict() self.make_special_number() return self.number_by_date_dict, self.year_list ```
{ "source": "2742195759/Paddle", "score": 2 }
#### File: paddle/cost_model/cost_model.py ```python import paddle import paddle.static as static import numpy as np from paddle.fluid import core class CostModel(): def __init__(self): pass def build_program(self): paddle.enable_static() main_program = static.Program() startup_program = static.Program() with static.program_guard( main_program=main_program, startup_program=startup_program): data = paddle.static.data( name='X', shape=[None, 1], dtype='float32') hidden = paddle.static.nn.fc(data, 10) loss = paddle.mean(hidden) paddle.optimizer.SGD(learning_rate=0.01).minimize(loss) print("main program is: {}".format(main_program)) #print("start up program is: {}".format(startup_program)) return startup_program, main_program def profile_measure(self, startup_program, main_program, device='gpu', fetch_cost_list=['time', 'memory']): place = paddle.set_device('gpu') x = np.random.random(size=(10, 1)).astype('float32') exe = paddle.static.Executor(place) exe.run(startup_program) paddle.fluid.profiler.start_profiler("All") exe.run(main_program, feed={"X": x}, fetch_list=[]) # core.CostModel.ProfileMeasure(main_program, device) print("core:<<<<<<<") cost_model = core.CostModel() cost_data = cost_model.ProfileMeasure(device) # cost_list = self.stop_cost_model() # return cost_list cost_model = CostModel() startup_program, main_program = cost_model.build_program() cost_model.profile_measure(startup_program, main_program) ``` #### File: device/cuda/graphs.py ```python from paddle.fluid.core import is_compiled_with_cuda, is_compiled_with_rocm, CUDAPlace if is_compiled_with_cuda() and not is_compiled_with_rocm(): from paddle.fluid.core import CUDAGraph as CoreCUDAGraph class CUDAGraph: def __init__(self, place=None, mode="thread_local"): ALL_MODES = ["global", "thread_local", "relaxed"] self._graph = None if place is None: place = CUDAPlace(0) self._place = place assert mode in ALL_MODES self._mode = ALL_MODES.index(mode) def capture_begin(self): CoreCUDAGraph.begin_capture(self._place, self._mode) def capture_end(self): self._graph = CoreCUDAGraph.end_capture() def replay(self): self._graph.replay() def reset(self): self._graph.reset() else: class CUDAGraph: def __init__(self, place=None, mode="thread_local"): raise NotImplementedError() def capture_begin(self): raise NotImplementedError() def capture_end(self): raise NotImplementedError() def replay(self): raise NotImplementedError() def reset(self): raise NotImplementedError() ``` #### File: paddle/distributed/elastic.py ```python import argparse import six import os class Command(object): def __init__(self, server, name): import etcd3 srv, port = server.split(':') self.etcd = etcd3.client(host=srv, port=port) self.prefix = "/paddle/" + name self.node_prefix = self.prefix + '/nodes' self.np_path = self.prefix + '/np' def set_np(self, np): self.etcd.put(self.np_path, six.b('{}'.format(np))) def scale_np(self, np): if self.etcd.get(self.np_path)[0] != None: self.set_np(np) return True return False def clean(self): self.etcd.delete_prefix(self.prefix) def close(self): self.etcd.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Elastic Command') parser.add_argument( "--elastic_server", type=str, help="etcd server host:port") parser.add_argument("--job_id", type=str, help="job unique id") parser.add_argument("--np", type=int, help="job pod/node number") parser.add_argument("action", type=str, help="action to take") args = parser.parse_args() server = args.elastic_server or os.getenv('PADDLE_ELASTIC_SERVER') name = args.job_id or os.getenv('PADDLE_ELASTIC_JOB_ID') np = args.np or int(os.getenv('PADDLE_ELASTIC_NP', 0)) cmd = Command(server, name) if args.action == "scale": cmd.scale_np(np) if args.action == "clean": cmd.clean() print("action {} done".format(args.action)) cmd.close() ``` #### File: meta_optimizers/sharding/offload_helper.py ```python import copy from ..common import is_optimizer_op, OP_ROLE_KEY, OpRole, is_update_op from paddle.fluid import core, unique_name from .shard import Shard __all__ = [] class OffloadHelper(object): cpu_place_type = 0 cuda_place_type = 1 cuda_pinned_place_type = 2 def __init__(self, mp_ring_id=None, dp_ring_id=None): self.mp_ring_id = mp_ring_id self.dp_ring_id = dp_ring_id def _insert_cast_op(self, block, idx, src_name, dst_name): src_var = block.var(src_name) if not block.has_var(dst_name): block.create_var( name=dst_name, shape=src_var.shape, dtype=core.VarDesc.VarType.FP16, persistable=True) dst_var = block.var(dst_name) assert dst_var.dtype == core.VarDesc.VarType.FP16 block._insert_op_without_sync( idx, type='cast', inputs={'X': src_var}, outputs={'Out': dst_var}, attrs={ 'in_dtype': src_var.dtype, 'out_dtype': dst_var.dtype, OP_ROLE_KEY: OpRole.Optimize }) def _insert_broadcast_op(self, block, idx, param_name): rings = [] if self.dp_ring_id is not None: rings.append(self.dp_ring_id) # need sync non distributed param in mp group if self.mp_ring_id is not None: param = block.var(param_name) if not hasattr(param, 'is_distributed') or not param.is_distributed: rings.append(self.mp_ring_id) # the insert op order is: mp, dp for ring in rings: block._insert_op_without_sync( idx, type="c_broadcast", inputs={'X': param_name}, outputs={'Out': param_name}, attrs={ 'ring_id': ring, 'root': 0, 'use_calc_stream': True, OP_ROLE_KEY: OpRole.Forward, }) def _insert_memcpy_op(self, block, idx, src_name, dst_name, dst_place_type): src_var = block.var(src_name) dst_var = block.var(dst_name) block._insert_op_without_sync( idx, type='memcpy', inputs={'X': src_var}, outputs={'Out': dst_var}, attrs={ 'dst_place_type': dst_place_type, OP_ROLE_KEY: OpRole.Optimize, }) def _insert_fetch_op(self, block, idx, src_name, dst_name): self._insert_memcpy_op(block, idx, src_name, dst_name, OffloadHelper.cuda_place_type) def _insert_offload_op(self, block, idx, src_name, dst_name): self._insert_memcpy_op(block, idx, src_name, dst_name, OffloadHelper.cuda_pinned_place_type) def _get_offload_var_name(self, name): return unique_name.generate(name + '@offload') def _create_offload_var(self, var_name, offload_var_name, blocks): for block in blocks: var = block.var(var_name) var.persistable = False offload_var = block.create_var( name=offload_var_name, shape=var.shape, dtype=var.dtype, persistable=True) def offload_fp32param(self, block, startup_block, offload=True): """ (p_fp16) = cast(p) (p_fp16_recompute) = cast(p) (pout,) = adam(p) ===========================> rename(p_fp16_recompute, p_fp16) (p,) = prefetch(p@offload) (pout,) = adam(p) (p_fp16) = cast(p) (p@offload) = memcpy(p) """ param_to_idx = dict() param_to_fp16 = dict() # recompute_var which need rename to fp16_param fp16_param_to_recompute = dict() recompute_to_fp16 = dict() def remove_param(input_name): param_to_idx.pop(input_name) if input_name in param_to_fp16: fp16_param = param_to_fp16.pop(input_name) if fp16_param in fp16_param_to_recompute: recompute = fp16_param_to_recompute.pop(fp16_param) recompute_to_fp16.pop(recompute) # step1: record param for idx, op in reversed(list(enumerate(block.ops))): if is_update_op(op): param = op.desc.input("Param")[0] param_to_idx[param] = idx # step2: remove param which can't offload and # record param->fp16param, fp16param->recompute_var for idx, op in enumerate(block.ops): if is_optimizer_op(op): break # TODO (<NAME>): tmp solution for fuse_grad_merge + optimize_cast if not offload and op.type == 'coalesce_tensor': continue for input_name in op.desc.input_arg_names(): if input_name not in param_to_idx: continue # param which will be used by fp32 op if op.type != 'cast': remove_param(input_name) continue # param is only used by cast op, # which to cast fp32_param to fp16_param output_name = op.output_arg_names[0] if 'cast_fp16' not in output_name: remove_param(input_name) continue if 'subprog' not in output_name: assert output_name == input_name + '.cast_fp16' assert input_name not in param_to_fp16, \ "There must be only one cast op from fp32 param to fp16 param." param_to_fp16[input_name] = output_name else: # fp16-->recompute_var assert input_name in param_to_fp16, \ "param must first be cast to fp16" fp16_param = param_to_fp16[input_name] fp16_param_to_recompute[fp16_param] = output_name recompute_to_fp16[output_name] = fp16_param param_name_to_offload_name = dict() # step3: main_block add offload, cast op # change recompute to fp16, remove cast(param) to fp16 for idx, op in reversed(list(enumerate(block.ops))): if is_update_op(op): param = op.desc.input("Param")[0] if param not in param_to_idx: continue # step3.1: create offload_var offload_var_name = self._get_offload_var_name(param) param_name_to_offload_name[param] = offload_var_name if offload: self._create_offload_var(param, offload_var_name, [block, startup_block]) # step3.2: insert cast op and offload op self._insert_offload_op(block, idx + 1, param, offload_var_name) assert param in param_to_fp16 fp16_param_name = param_to_fp16[param] fp16_param_var = block.var(fp16_param_name) fp16_param_var.persistable = True self._insert_cast_op(block, idx + 1, param, param_to_fp16[param]) if offload: # step3.3: insert fetch op self._insert_fetch_op(block, idx, offload_var_name, param) continue # step3.4: remove cast op if op.type == 'cast': input_name = op.desc.input_arg_names()[0] if input_name in param_to_idx: block._remove_op(idx, sync=False) continue # step3.5: change recompute_param to fp16_param for input_name in op.desc.input_arg_names(): if input_name in recompute_to_fp16: op._rename_input(input_name, recompute_to_fp16[input_name]) for output_name in op.desc.output_arg_names(): if output_name in recompute_to_fp16: op._rename_output(output_name, recompute_to_fp16[output_name]) # step4: remove recompute_param for name in recompute_to_fp16.keys(): block._remove_var(name, sync=False) # step5: startup_block add offload visited_vars = set() # FIXME(wangxi): should insert in idx, need move comm init to the head. insert_idx = len(startup_block.ops) for idx, op in reversed(list(enumerate(startup_block.ops))): for out_name in op.output_arg_names: if out_name in visited_vars: continue if out_name in param_name_to_offload_name: var_name = out_name if offload: offload_var_name = param_name_to_offload_name[var_name] self._insert_offload_op(startup_block, insert_idx, var_name, offload_var_name) self._insert_cast_op(startup_block, insert_idx, var_name, param_to_fp16[var_name]) # NOTE(wangxi): cast and offload should insert after broadcast param. # the insert op order is: {mp, dp}broadcast, cast, offload self._insert_broadcast_op(startup_block, insert_idx, var_name) visited_vars.add(out_name) block._sync_with_cpp() startup_block._sync_with_cpp() def cast_fp32param_in_optimize(self, block, startup_block): """ (p_fp16) = cast(p) (p_fp16_recompute) = cast(p) (pout,) = adam(p) ===========================> rename(p_fp16_recompute, p_fp16) (pout,) = adam(p) (p_fp16) = cast(p) """ self.offload_fp32param(block, startup_block, offload=False) def offload(self, block, startup_block): """ (m1, m2) = prefetch(m1@offload, m2@offload) (m1out, m2out, pout) = adam(m1, m2, p) (m1@offload, m2@offload) = memcpy(m1, m2) """ vars_name_to_offload_name = dict() # main_block add offload for idx, op in reversed(list(enumerate(block.ops))): if not is_optimizer_op(op): break vars_name = [] if op.type == "adam" or op.type == "adamw": # {Moment1Out = [''], Moment2Out = [''], ParamOut = ['']} = # adam(inputs={Moment1 = [''], Moment2 = [''], Param = ['']}) vars_name.append(op.desc.input("Moment1")[0]) vars_name.append(op.desc.input("Moment2")[0]) elif op.type == 'momentum': pass elif op.type == 'lars': pass elif op.type == 'lamb': pass # step1: create and init offload_var for var_name in vars_name: assert var_name not in vars_name_to_offload_name offload_var_name = self._get_offload_var_name(var_name) vars_name_to_offload_name[var_name] = offload_var_name self._create_offload_var(var_name, offload_var_name, [block, startup_block]) # step2: insert offload op for var_name in vars_name: offload_var_name = vars_name_to_offload_name[var_name] self._insert_offload_op(block, idx + 1, var_name, offload_var_name) # step3: insert fetch op for var_name in vars_name: offload_var_name = vars_name_to_offload_name[var_name] self._insert_fetch_op(block, idx, offload_var_name, var_name) # startup_block add offload visited_vars = set() for idx, op in reversed(list(enumerate(startup_block.ops))): for out_name in op.output_arg_names: if out_name in visited_vars: continue if out_name in vars_name_to_offload_name: var_name = out_name offload_var_name = vars_name_to_offload_name[var_name] # insert offload op after var is generated self._insert_offload_op(startup_block, idx + 1, var_name, offload_var_name) visited_vars.add(out_name) block._sync_with_cpp() startup_block._sync_with_cpp() def opt_sharding_cast_fp32param(self, block, startup_block, params, offload=False): """ (p_fp16) = cast(p) (p_fp16_recompute) = cast(p) (pout,) = adam(p) ===========================> rename(p_fp16_recompute, p_fp16) (pout,) = adam(p) (p_fp16) = cast(p) broadcast(p_fp16) """ global_params = set() local_params = set() param_to_fp16 = dict() # recompute_var which need rename to fp16_param fp16_param_to_recompute = dict() recompute_to_fp16 = dict() def remove_param(input_name): global_params.remove(input_name) if input_name in local_params: local_params.remove(input_name) if input_name in param_to_fp16: fp16_param = param_to_fp16.pop(input_name) if fp16_param in fp16_param_to_recompute: recompute = fp16_param_to_recompute.pop(fp16_param) recompute_to_fp16.pop(recompute) # step1: record param global_params = set(params) for idx, op in reversed(list(enumerate(block.ops))): if is_update_op(op): param = op.desc.input("Param")[0] local_params.add(param) # step2: remove param which can't offload and # record param->fp16param, fp16param->recompute_var for idx, op in enumerate(block.ops): if is_optimizer_op(op): break # TODO (<NAME>): tmp solution for fuse_grad_merge + optimize_cast if op.type == 'coalesce_tensor': continue for input_name in op.desc.input_arg_names(): if input_name not in global_params: continue # param which will be used by fp32 op if op.type != 'cast': remove_param(input_name) continue # param is only used by cast op, # which to cast fp32_param to fp16_param output_name = op.output_arg_names[0] if 'cast_fp16' not in output_name: remove_param(input_name) continue if 'subprog' not in output_name: assert output_name == input_name + '.cast_fp16' assert input_name not in param_to_fp16, \ "There must be only one cast op from fp32 param to fp16 param." param_to_fp16[input_name] = output_name else: # fp16-->recompute_var assert input_name in param_to_fp16, \ "param must first be cast to fp16" fp16_param = param_to_fp16[input_name] fp16_param_to_recompute[fp16_param] = output_name recompute_to_fp16[output_name] = fp16_param param_name_to_offload_name = dict() # step3: main_block add offload, cast op # change recompute to fp16, remove cast(param) to fp16 for idx, op in reversed(list(enumerate(block.ops))): if is_update_op(op): param = op.desc.input("Param")[0] if param not in global_params: continue # step3.1: create offload_var offload_var_name = self._get_offload_var_name(param) param_name_to_offload_name[param] = offload_var_name if offload: self._create_offload_var(param, offload_var_name, [block, startup_block]) # step3.2: insert cast op and offload op self._insert_offload_op(block, idx + 1, param, offload_var_name) assert param in param_to_fp16 fp16_param_name = param_to_fp16[param] fp16_param_var = block.var(fp16_param_name) fp16_param_var.persistable = True self._insert_cast_op(block, idx + 1, param, param_to_fp16[param]) if offload: # step3.3: insert fetch op self._insert_fetch_op(block, idx, offload_var_name, param) continue # step3.4: remove cast op if op.type == 'cast': input_name = op.desc.input_arg_names()[0] if input_name in global_params: block._remove_op(idx, sync=False) continue # step3.5: change recompute_param to fp16_param for input_name in op.desc.input_arg_names(): if input_name in recompute_to_fp16: op._rename_input(input_name, recompute_to_fp16[input_name]) for output_name in op.desc.output_arg_names(): if output_name in recompute_to_fp16: op._rename_output(output_name, recompute_to_fp16[output_name]) # step4: remove recompute_param for name in recompute_to_fp16.keys(): block._remove_var(name, sync=False) # step5: remove fp32 param which not need for idx, op in enumerate(block.ops): if op.type not in ['coalesce_tensor', 'c_broadcast']: continue for input_name in op.desc.input_arg_names(): if input_name in param_to_fp16: op._rename_input(input_name, param_to_fp16[input_name]) for output_name in op.desc.output_arg_names(): if output_name in param_to_fp16: op._rename_output(output_name, param_to_fp16[output_name]) for param in global_params: assert param in param_to_fp16 fp16_param_name = param_to_fp16[param] fp16_param_var = block.var(fp16_param_name) fp16_param_var.persistable = True if param not in local_params: block._remove_var(param, sync=False) # step6: startup_block add offload visited_vars = set() insert_idx = len(startup_block.ops) for idx, op in reversed(list(enumerate(startup_block.ops))): for out_name in op.output_arg_names: if out_name in visited_vars: continue if out_name in param_to_fp16: var_name = out_name if offload: self._insert_offload_op( startup_block, idx + 1, var_name, param_name_to_offload_name[var_name]) self._insert_cast_op(startup_block, insert_idx, var_name, param_to_fp16[var_name]) # NOTE(wangxi): cast and offload should insert after broadcast param. # the insert op order is: {mp, dp}broadcast, cast, offload self._insert_broadcast_op(startup_block, insert_idx, var_name) if var_name not in local_params: param = startup_block.var(out_name) param.persistable = False visited_vars.add(out_name) block._sync_with_cpp() startup_block._sync_with_cpp() ``` #### File: ir/inference/test_trt_convert_multihead_matmul.py ```python from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons from program_config import TensorConfig, ProgramConfig import unittest import numpy as np import paddle.inference as paddle_infer from functools import partial from typing import Optional, List, Callable, Dict, Any, Set class TrtConvertMultiHeadMatmulTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input1(batch, dim1): return np.random.random((batch, dim1, 768)).astype(np.float32) def generate_input2(shape): return np.random.random(shape).astype(np.float32) def generate_weight1(): return np.random.random((768, 768)).astype(np.float32) def generate_weight2(): return np.random.random(768).astype(np.float32) for batch in [1, 2, 4]: self.batch = batch for reshape_shape in [[0, 0, 12, 64]]: for dim1 in [128]: input2_shapes = [[batch, reshape_shape[2], dim1, dim1], [batch, 1, 1, dim1]] for input2_shape in input2_shapes: for axis in [0]: dics = [{ "x_num_col_dims": 2, "y_num_col_dims": 1 }, { "axis": 2 }, { "shape": reshape_shape }, { "axis": [0, 2, 1, 3] }, { "x_num_col_dims": 2, "y_num_col_dims": 1 }, { "axis": 2 }, { "shape": reshape_shape }, { "axis": [0, 2, 1, 3] }, { "x_num_col_dims": 2, "y_num_col_dims": 1 }, { "axis": 2 }, { "shape": reshape_shape }, { "axis": [0, 2, 1, 3] }, { "scale": 0.125, "bias": 0.0, "bias_after_scale": True }, { "alpha": 1.0, "transpose_X": False, "transpose_Y": True, "fused_reshape_X": [], "fused_reshape_Y": [], "fused_transpose_X": [], "fused_transpose_Y": [], "fused_reshape_Out": [], "fused_transpose_Out": [] }, { "axis": axis }, { "axis": -1, "is_test": True }, { "seed": 0, "dropout_prob": 0.10000000149011612, "dropout_implementation": "upscale_in_train", "fix_seed": False, "is_test": True }, { "alpha": 1.0, "transpose_X": False, "transpose_Y": False, "fused_reshape_X": [], "fused_reshape_Y": [], "fused_transpose_X": [], "fused_transpose_Y": [], "fused_reshape_Out": [], "fused_transpose_Out": [] }, { "axis": [0, 2, 1, 3] }, { "shape": [0, 0, 768] }, { "x_num_col_dims": 2, "y_num_col_dims": 1 }] ops_config = [ { "op_type": "mul", "op_inputs": { "X": ["input_data1"], "Y": ["mul1_weight"] }, "op_outputs": { "Out": ["mul1_output"] }, "op_attrs": dics[0] }, { "op_type": "elementwise_add", "op_inputs": { "X": ["mul1_output"], "Y": ["elementwise_add1_weight"] }, "op_outputs": { "Out": ["elementwise_add1_output"] }, "op_attrs": dics[1] }, { "op_type": "reshape2", "op_inputs": { "X": ["elementwise_add1_output"], }, "op_outputs": { "Out": ["reshape21_output"], "XShape": ["reshape21_output_xshape"] }, "op_attrs": dics[2] }, { "op_type": "transpose2", "op_inputs": { "X": ["reshape21_output"] }, "op_outputs": { "Out": ["transpose21_output"], "XShape": ["transpose21_output_xshape"] }, "op_attrs": dics[3] }, { "op_type": "mul", "op_inputs": { "X": ["input_data1"], "Y": ["mul2_weight"] }, "op_outputs": { "Out": ["mul2_output"] }, "op_attrs": dics[4] }, { "op_type": "elementwise_add", "op_inputs": { "X": ["mul2_output"], "Y": ["elementwise_add2_weight"] }, "op_outputs": { "Out": ["elementwise_add2_output"] }, "op_attrs": dics[5] }, { "op_type": "reshape2", "op_inputs": { "X": ["elementwise_add2_output"] }, "op_outputs": { "Out": ["reshape22_output"], "XShape": ["reshape22_output_xshape"] }, "op_attrs": dics[6] }, { "op_type": "transpose2", "op_inputs": { "X": ["reshape22_output"] }, "op_outputs": { "Out": ["transpose22_output"], "XShape": ["transpose22_output_xshape"] }, "op_attrs": dics[7] }, { "op_type": "mul", "op_inputs": { "X": ["input_data1"], "Y": ["mul3_weight"] }, "op_outputs": { "Out": ["mul3_output"] }, "op_attrs": dics[8] }, { "op_type": "elementwise_add", "op_inputs": { "X": ["mul3_output"], "Y": ["elementwise_add3_weight"] }, "op_outputs": { "Out": ["elementwise_add3_output"] }, "op_attrs": dics[9] }, { "op_type": "reshape2", "op_inputs": { "X": ["elementwise_add3_output"] }, "op_outputs": { "Out": ["reshape23_output"], "XShape": ["reshape23_output_xshape"] }, "op_attrs": dics[10] }, { "op_type": "transpose2", "op_inputs": { "X": ["reshape23_output"] }, "op_outputs": { "Out": ["transpose23_output"], "XShape": ["transpose23_output_xshape"] }, "op_attrs": dics[11] }, { "op_type": "scale", "op_inputs": { "X": ["transpose23_output"], }, "op_outputs": { "Out": ["scale_output"] }, "op_attrs": dics[12] }, { "op_type": "matmul", "op_inputs": { "X": ["scale_output"], "Y": ["transpose22_output"], }, "op_outputs": { "Out": ["matmul1_output"] }, "op_attrs": dics[13] }, { "op_type": "elementwise_add", "op_inputs": { "X": ["matmul1_output"], "Y": ["input_data2"] }, "op_outputs": { "Out": ["elementwise_add4_output"] }, "op_attrs": dics[14] }, { "op_type": "softmax", "op_inputs": { "X": ["elementwise_add4_output"] }, "op_outputs": { "Out": ["softmax_output"] }, "op_attrs": dics[15] }, { "op_type": "dropout", "op_inputs": { "X": ["softmax_output"], }, "op_outputs": { "Out": ["dropout3_output"] }, "op_attrs": dics[16] }, { "op_type": "matmul", "op_inputs": { "X": ["dropout3_output"], "Y": ["transpose21_output"], }, "op_outputs": { "Out": ["matmul2_output"] }, "op_attrs": dics[17] }, { "op_type": "transpose2", "op_inputs": { "X": ["matmul2_output"] }, "op_outputs": { "Out": ["transpose24_output"], "XShape": ["transpose24_output_xshape"] }, "op_attrs": dics[18] }, { "op_type": "reshape2", "op_inputs": { "X": ["transpose24_output"] }, "op_outputs": { "Out": ["reshape24_output"], "XShape": ["reshape24_output_xshape"] }, "op_attrs": dics[19] }, # In order to fuse ops with # multihead_matmul_fuse_pass_v2, the last op # must be mul. { "op_type": "mul", "op_inputs": { "X": ["reshape24_output"], "Y": ["mul4_weight"] }, "op_outputs": { "Out": ["mul4_output"] }, "op_attrs": dics[20] } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={ "mul1_weight": TensorConfig( data_gen=partial(generate_weight1)), "mul2_weight": TensorConfig( data_gen=partial(generate_weight1)), "mul3_weight": TensorConfig( data_gen=partial(generate_weight1)), "mul4_weight": TensorConfig( data_gen=partial(generate_weight1)), "elementwise_add1_weight": TensorConfig( data_gen=partial(generate_weight2)), "elementwise_add2_weight": TensorConfig( data_gen=partial(generate_weight2)), "elementwise_add3_weight": TensorConfig( data_gen=partial(generate_weight2)), }, inputs={ "input_data1": TensorConfig( data_gen=partial(generate_input1, batch, dim1)), "input_data2": TensorConfig( data_gen=partial(generate_input2, input2_shape)), }, outputs=["mul4_output"]) yield program_config def sample_predictor_configs( self, program_config) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): # The last dim of input1 and input2 should be static. self.dynamic_shape.min_input_shape = { "input_data1": [1, 8, 768], "input_data2": [1, 1, 1, 128], "reshape24_output": [1, 128, 768] } self.dynamic_shape.max_input_shape = { "input_data1": [16, 512, 768], "input_data2": [16, 256, 512, 128], "reshape24_output": [1, 128, 768] } self.dynamic_shape.opt_input_shape = { "input_data1": [8, 128, 768], "input_data2": [8, 32, 64, 128], "reshape24_output": [1, 128, 768] } def clear_dynamic_shape(): self.dynamic_shape.max_input_shape = {} self.dynamic_shape.min_input_shape = {} self.dynamic_shape.opt_input_shape = {} attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), (1, 4), (1e-5, 1e-5) self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), (1, 4), (1e-5, 1e-5) # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), (1, 3), (1e-5, 1e-5) self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), (1, 3), (1e-5, 1e-5) def add_skip_trt_case(self): def teller1(program_config, predictor_config): if self.trt_param.precision == paddle_infer.PrecisionType.Half: return True return False self.add_skip_case( teller1, SkipReasons.TRT_NOT_IMPLEMENTED, "The output has diff between gpu and trt in fp16 mode.") def teller2(program_config, predictor_config): if self.trt_param.precision == paddle_infer.PrecisionType.Float32 and len( self.dynamic_shape.min_input_shape) != 0 and self.batch > 2: return True return False self.add_skip_case( teller2, SkipReasons.TRT_NOT_IMPLEMENTED, "The output has diff between gpu and trt when dynamic fp32 mode and batch size > 2." ) def test(self): self.add_skip_trt_case() self.run_test() if __name__ == "__main__": unittest.main() ``` #### File: tests/unittests/test_cost_model.py ```python from __future__ import print_function import unittest import paddle import paddle.fluid.core as core paddle.enable_static() device = "gpu" if core.is_compiled_with_cuda() else "cpu" class TestCostModel(unittest.TestCase): def test_profiler_measure_empty_program(self): cost_model = core.CostModel() empty_program = paddle.static.Program() startup_program = paddle.static.Program() cost_data = cost_model.profile_measure(empty_program, startup_program, device, ["time"]) self.assertEqual(cost_data.get_whole_time_ms(), 0) def test_profiler_measure_program(self): main_program = paddle.static.Program() startup_program = paddle.static.Program() with paddle.static.program_guard(main_program, startup_program): # TODO(zhhsplendid): support paddle.static.data, which is uninitialized data data = paddle.ones(name='X', shape=[16, 100], dtype='float32') hidden = paddle.static.nn.fc(data, 10) loss = paddle.mean(hidden) cost_model = core.CostModel() cost_data = cost_model.profile_measure(main_program, startup_program, device, ["time"]) fc_op_time = cost_data.get_op_time_ms(0) mean_op_time = cost_data.get_op_time_ms(1) self.assertGreater(fc_op_time, 0) self.assertGreater(mean_op_time, 0) self.assertGreaterEqual(cost_data.get_whole_time_ms(), fc_op_time + mean_op_time) if __name__ == '__main__': unittest.main() ```
{ "source": "2757571500/sdk", "score": 3 }
#### File: blender/scripts/import_fbx.py ```python import bpy # Imports a file using importer def import_file(file_path): # Import the model bpy.ops.import_scene.fbx(filepath = file_path) # Clear existing objects. def clear_scene(): scene = bpy.context.scene scene.camera = None for obj in scene.objects: scene.objects.unlink(obj) # Save current scene as .blend file def save_file(save_path): # Check if output file exists already try: f = open(save_path, 'w') f.close() ok = True except: print("Cannot save to path %r" % save_path) import traceback traceback.print_exc() # Save .blend file if ok: bpy.ops.wm.save_as_mainfile(filepath=save_path) def main(): import sys # to get command line args import argparse # to parse options for us and print a nice help message # get the args passed to blender after "--", all of which are ignored by # blender so scripts may receive their own arguments argv = sys.argv if "--" not in argv: argv = [] # as if no args are passed else: argv = argv[argv.index("--") + 1:] # get all args after "--" # When --help or no args are given, print this help usage_text = \ "Run blender in background mode with this script:" " blender --background --factory-startup --python " + __file__ + " -- [options]" parser = argparse.ArgumentParser(description=usage_text) # Possible types are: string, int, long, choice, float and complex. parser.add_argument("-i", "--input", dest="file_path", metavar='FILE', help="Import the specified file") parser.add_argument("-o", "--output", dest="save_path", metavar='FILE', help="Save the generated file to the specified path") args = parser.parse_args(argv) # In this example we wont use the args if not argv: parser.print_help() return # Run the conversion clear_scene() import_file(args.file_path) save_file(args.save_path) print("batch job finished, exiting") if __name__ == "__main__": main() ```
{ "source": "276793422/attack-website", "score": 2 }
#### File: modules/clean/__init__.py ```python from . import clean from . import clean_config def get_priority(): return clean_config.priority def run_module(): return (clean.clean_website_build(), clean_config.module_name) ``` #### File: modules/resources/resources.py ```python import json import os from . import resources_config import modules from modules import site_config from modules import util from datetime import datetime import mitreattack.attackToExcel.attackToExcel as attackToExcel def generate_resources(): """Responsible for generating the resources pages""" # Create content pages directory if does not already exist util.buildhelpers.create_content_pages_dir() # Verify if resources directory exists if not os.path.isdir(site_config.resources_markdown_path): os.mkdir(site_config.resources_markdown_path) # Verify if resources directory exists if not os.path.isdir(resources_config.updates_markdown_path): os.mkdir(resources_config.updates_markdown_path) # Move templates to templates directory util.buildhelpers.move_templates(resources_config.module_name, resources_config.resources_templates_path) util.buildhelpers.move_docs(resources_config.docs_path) generate_working_with_attack() generate_general_information() generate_training_pages() generate_attackcon_page() check_menu_versions_module() generate_static_pages() def generate_general_information(): """Responsible for compiling resources json into resources markdown files for rendering on the HMTL """ # load papers and presentations list with open(os.path.join(site_config.data_directory, "resources.json"), "r", encoding='utf8') as f: resources = json.load(f) # get papers and presentations in sorted date order papers = sorted(resources["papers"], key=lambda p: datetime.strptime(p["date"], "%B %Y"), reverse=True) presentations = sorted(resources["presentations"], key=lambda p: datetime.strptime(p["date"], "%B %Y"), reverse=True) # get markdown resources_content = resources_config.general_information_md + json.dumps({ "papers": papers, "presentations": presentations }) # write markdown to file with open(os.path.join(site_config.resources_markdown_path, "general_information.md"), "w", encoding='utf8') as md_file: md_file.write(resources_content) def generate_training_pages(): """ Responsible for generating the markdown pages of the training pages """ data = {} # Side navigation for training data['menu'] = resources_config.training_navigation # Training Overview training_md = resources_config.training_md + json.dumps(data) # write markdown to file with open(os.path.join(site_config.resources_markdown_path, "training.md"), "w", encoding='utf8') as md_file: md_file.write(training_md) # CTI training training_cti_md = resources_config.training_cti_md + json.dumps(data) # write markdown to file with open(os.path.join(site_config.resources_markdown_path, "training_cti.md"), "w", encoding='utf8') as md_file: md_file.write(training_cti_md) def generate_attackcon_page(): """Responsible for compiling ATT&CKcon json into attackcon markdown file for rendering on the HTML """ # load ATT&CKcon data with open(os.path.join(site_config.data_directory, "attackcon.json"), "r", encoding='utf8') as f: attackcon = json.load(f) attackcon = sorted(attackcon, key=lambda a: datetime.strptime(a["date"], "%B %Y"), reverse=True) attackcon_content = resources_config.attackcon_md + json.dumps(attackcon) # write markdown to file with open(os.path.join(site_config.resources_markdown_path, "attackcon.md"), "w", encoding='utf8') as md_file: md_file.write(attackcon_content) def check_menu_versions_module(): """ Verify if versions module is in the running pool, if not remove from submenu """ if not [key['module_name'] for key in modules.run_ptr if key['module_name'] == 'versions']: util.buildhelpers.remove_element_from_sub_menu(resources_config.module_name, "Versions of ATT&CK") def generate_static_pages(): """ Reads markdown files from the static pages directory and copies them into the markdown directory """ static_pages_dir = os.path.join('modules', 'resources', 'static_pages') for static_page in os.listdir(static_pages_dir): with open(os.path.join(static_pages_dir, static_page), "r", encoding='utf8') as md: content = md.read() if static_page.startswith("updates-"): with open(os.path.join(resources_config.updates_markdown_path, static_page), "w", encoding='utf8') as md_file: md_file.write(content) else: with open(os.path.join(site_config.resources_markdown_path, static_page), "w", encoding='utf8') as md_file: md_file.write(content) def generate_working_with_attack(): """ Responsible for generating working with ATT&CK and creating excel files """ excel_dirs = [ f"enterprise-attack-{site_config.full_attack_version}", f"mobile-attack-{site_config.full_attack_version}", f"ics-attack-{site_config.full_attack_version}" ] files_types = ["matrices", "mitigations", "relationships", "software", "groups", "tactics", "techniques", "datasources"] # Verify if directories exists if not os.path.isdir(site_config.web_directory): os.makedirs(site_config.web_directory) docs_dir = os.path.join(site_config.web_directory, 'docs') if not os.path.isdir(docs_dir): os.makedirs(docs_dir) attackToExcel.export("enterprise-attack", site_config.full_attack_version, docs_dir) attackToExcel.export("mobile-attack", site_config.full_attack_version, docs_dir) attackToExcel.export("ics-attack", site_config.full_attack_version, docs_dir) files_json = {'excel_files': []} for excel_dir in excel_dirs: excel_json = { 'label' : f"{excel_dir}.xlsx", 'url': f"/docs/{excel_dir}/{excel_dir}.xlsx", 'children' : [] } for file_type in files_types: child_json = { 'label' : f"{excel_dir}-{file_type}.xlsx", 'url': f"/docs/{excel_dir}/{excel_dir}-{file_type}.xlsx" } if os.path.exists(site_config.web_directory + child_json['url']): excel_json['children'].append(child_json) files_json['excel_files'].append(excel_json) working_with_attack_content = resources_config.working_with_attack_md + json.dumps(files_json) # write markdown to file with open(os.path.join(site_config.resources_markdown_path, "working_with_attack.md"), "w", encoding='utf8') as md_file: md_file.write(working_with_attack_content) ``` #### File: modules/tests/__init__.py ```python from . import tests from . import tests_config def get_priority(): return tests_config.priority def run_module(): return (tests.run_tests(), tests_config.module_name) ``` #### File: modules/tour/__init__.py ```python from . import tour from . import tour_config def get_priority(): return tour_config.priority def run_module(): return (tour.generate_tour(), tour_config.module_name) ``` #### File: modules/website_build/__init__.py ```python from . import website_build from . import website_build_config from modules import site_config def get_priority(): return website_build_config.priority def run_module(): return (website_build.generate_website(), website_build_config.module_name) ```
{ "source": "279632990/AutoSpeech2020", "score": 2 }
#### File: AutoSpeech2020/mysubmission/data_augmentation.py ```python import librosa import numpy as np import random import keras.backend as K from tensorflow.python.keras import Input from tensorflow.python.keras.engine import InputLayer from tensorflow.python.keras.engine import InputSpec from tensorflow.python.keras.engine import Layer from tensorflow.python.keras.layers import Wrapper,Dense,MaxPool2D from tensorflow import keras import numpy.linalg as nl from scipy import interpolate from scipy.spatial.distance import pdist, cdist, squareform class LayerNormalization(keras.layers.Layer): def __init__(self, center=True, scale=True, epsilon=None, gamma_initializer='ones', beta_initializer='zeros', gamma_regularizer=None, beta_regularizer=None, gamma_constraint=None, beta_constraint=None, **kwargs): """Layer normalization layer See: [Layer Normalization](https://arxiv.org/pdf/1607.06450.pdf) :param center: Add an offset parameter if it is True. :param scale: Add a scale parameter if it is True. :param epsilon: Epsilon for calculating variance. :param gamma_initializer: Initializer for the gamma weight. :param beta_initializer: Initializer for the beta weight. :param gamma_regularizer: Optional regularizer for the gamma weight. :param beta_regularizer: Optional regularizer for the beta weight. :param gamma_constraint: Optional constraint for the gamma weight. :param beta_constraint: Optional constraint for the beta weight. :param kwargs: """ super(LayerNormalization, self).__init__(**kwargs) self.supports_masking = True self.center = center self.scale = scale if epsilon is None: epsilon = K.epsilon() * K.epsilon() self.epsilon = epsilon self.gamma_initializer = keras.initializers.get(gamma_initializer) self.beta_initializer = keras.initializers.get(beta_initializer) self.gamma_regularizer = keras.regularizers.get(gamma_regularizer) self.beta_regularizer = keras.regularizers.get(beta_regularizer) self.gamma_constraint = keras.constraints.get(gamma_constraint) self.beta_constraint = keras.constraints.get(beta_constraint) self.gamma, self.beta = None, None def get_config(self): config = { 'center': self.center, 'scale': self.scale, 'epsilon': self.epsilon, 'gamma_initializer': keras.initializers.serialize(self.gamma_initializer), 'beta_initializer': keras.initializers.serialize(self.beta_initializer), 'gamma_regularizer': keras.regularizers.serialize(self.gamma_regularizer), 'beta_regularizer': keras.regularizers.serialize(self.beta_regularizer), 'gamma_constraint': keras.constraints.serialize(self.gamma_constraint), 'beta_constraint': keras.constraints.serialize(self.beta_constraint), } base_config = super(LayerNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_output_shape(self, input_shape): return input_shape def compute_mask(self, inputs, input_mask=None): return input_mask def build(self, input_shape): shape = input_shape[-1:] if self.scale: self.gamma = self.add_weight( shape=shape, initializer=self.gamma_initializer, regularizer=self.gamma_regularizer, constraint=self.gamma_constraint, name='gamma', ) if self.center: self.beta = self.add_weight( shape=shape, initializer=self.beta_initializer, regularizer=self.beta_regularizer, constraint=self.beta_constraint, name='beta', ) super(LayerNormalization, self).build(input_shape) def call(self, inputs, training=None): mean = K.mean(inputs, axis=-1, keepdims=True) variance = K.mean(K.square(inputs - mean), axis=-1, keepdims=True) std = K.sqrt(variance + self.epsilon) outputs = (inputs - mean) / std if self.scale: outputs *= self.gamma if self.center: outputs += self.beta return outputs #x = DropConnect(Dense(64, activation='relu'), prob=0.5)(x) class DropConnectDense(Dense): def __init__(self, *args, **kwargs): self.prob = kwargs.pop('prob', 0.5) if 0. < self.prob < 1.: self.uses_learning_phase = True super(DropConnectDense, self).__init__(*args, **kwargs) def call(self, x, mask=None): if 0. < self.prob < 1.: self.kernel = K.in_train_phase(K.dropout(self.kernel, self.prob), self.kernel) self.b = K.in_train_phase(K.dropout(self.b, self.prob), self.b) # Same as original output = K.dot(x, self.W) if self.bias: output += self.b return self.activation(output) class DropConnect(Wrapper): def __init__(self, layer, prob=1., **kwargs): self.prob = prob self.layer = layer super(DropConnect, self).__init__(layer, **kwargs) if 0. < self.prob < 1.: self.uses_learning_phase = True def build(self, input_shape): if not self.layer.built: self.layer.build(input_shape) self.layer.built = True super(DropConnect, self).build() def compute_output_shape(self, input_shape): return self.layer.compute_output_shape(input_shape) def call(self, x): if 0. < self.prob < 1.: self.layer.kernel = K.in_train_phase(K.dropout(self.layer.kernel, self.prob) * (1-self.prob), self.layer.kernel) self.layer.bias = K.in_train_phase(K.dropout(self.layer.bias, self.prob) * (1-self.prob), self.layer.bias) return self.layer.call(x) #DropBlock2D(block_size=5, keep_prob=0.8, name='Dropout-1') class DropBlock2D(Layer): """See: https://arxiv.org/pdf/1810.12890.pdf""" def __init__(self, block_size, keep_prob, sync_channels=False, data_format=None, **kwargs): """Initialize the layer. :param block_size: Size for each mask block. :param keep_prob: Probability of keeping the original feature. :param sync_channels: Whether to use the same dropout for all channels. :param data_format: 'channels_first' or 'channels_last' (default). :param kwargs: Arguments for parent class. """ super(DropBlock2D, self).__init__(**kwargs) self.block_size = block_size self.keep_prob = keep_prob self.sync_channels = sync_channels self.data_format = K.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4) self.supports_masking = True def get_config(self): config = {'block_size': self.block_size, 'keep_prob': self.keep_prob, 'sync_channels': self.sync_channels, 'data_format': self.data_format} base_config = super(DropBlock2D, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_mask(self, inputs, mask=None): return mask def compute_output_shape(self, input_shape): return input_shape def _get_gamma(self, height, width): """Get the number of activation units to drop""" height, width = K.cast(height, K.floatx()), K.cast(width, K.floatx()) block_size = K.constant(self.block_size, dtype=K.floatx()) return ((1.0 - self.keep_prob) / (block_size ** 2)) *\ (height * width / ((height - block_size + 1.0) * (width - block_size + 1.0))) def _compute_valid_seed_region(self, height, width): positions = K.concatenate([ K.expand_dims(K.tile(K.expand_dims(K.arange(height), axis=1), [1, width]), axis=-1), K.expand_dims(K.tile(K.expand_dims(K.arange(width), axis=0), [height, 1]), axis=-1), ], axis=-1) half_block_size = self.block_size // 2 valid_seed_region = K.switch( K.all( K.stack( [ positions[:, :, 0] >= half_block_size, positions[:, :, 1] >= half_block_size, positions[:, :, 0] < height - half_block_size, positions[:, :, 1] < width - half_block_size, ], axis=-1, ), axis=-1, ), K.ones((height, width)), K.zeros((height, width)), ) return K.expand_dims(K.expand_dims(valid_seed_region, axis=0), axis=-1) def _compute_drop_mask(self, shape): height, width = shape[1], shape[2] mask = K.random_binomial(shape, p=self._get_gamma(height, width)) mask *= self._compute_valid_seed_region(height, width) mask = MaxPool2D( pool_size=(self.block_size, self.block_size), padding='same', strides=1, data_format='channels_last', )(mask) return 1.0 - mask def call(self, inputs, training=None): def dropped_inputs(): outputs = inputs if self.data_format == 'channels_first': outputs = K.permute_dimensions(outputs, [0, 2, 3, 1]) shape = K.shape(outputs) if self.sync_channels: mask = self._compute_drop_mask([shape[0], shape[1], shape[2], 1]) else: mask = self._compute_drop_mask(shape) outputs = outputs * mask *\ (K.cast(K.prod(shape), dtype=K.floatx()) / K.sum(mask)) if self.data_format == 'channels_first': outputs = K.permute_dimensions(outputs, [0, 3, 1, 2]) return outputs return K.in_train_phase(dropped_inputs, inputs, training=training) def mix_up(data, one_hot_labels, alpha=1): np.random.seed(2333) batch_size = len(data) weights = np.random.beta(alpha, alpha, batch_size) index = np.random.permutation(batch_size) x1, x2 = data, data[index] x = np.array([x1[i] * weights [i] + x2[i] * (1 - weights[i]) for i in range(len(weights))]) y1 = np.array(one_hot_labels).astype(np.float) y2 = np.array(np.array(one_hot_labels)[index]).astype(np.float) y = np.array([y1[i] * weights[i] + y2[i] * (1 - weights[i]) for i in range(len(weights))]) return x, y def noise(data): """ Adding White Noise. """ # you can take any distribution from # https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.random.html # more noise reduce the value to 0.5 noise_amp = 0.05 * np.random.uniform() * np.amax(data) data = data.astype('float64') + noise_amp * \ np.random.normal() return data def shift(data): """ Random Shifting. """ s_range = int(np.random.uniform(low=-5, high=5) * 1000) # default at 500 return np.roll(data, s_range) def stretch(data, rate=0.8): """ Streching the Sound. Note that this expands the dataset slightly """ # keep the same length, drop some data = librosa.effects.time_stretch(data, rate)[:len(data)] return data def pitch(data, sr=16000): """ Pitch Tuning. """ bins_per_octave = 12 pitch_pm = 2 pitch_change = pitch_pm * 2 * (np.random.uniform()) data = librosa.effects.pitch_shift(data.astype('float64'), sr, n_steps=pitch_change, bins_per_octave=bins_per_octave) return data def dyn_change(data): """ Random Value Change. """ dyn_change = np.random.uniform( low=-0.5, high=7) # default low = 1.5, high = 3 return data * dyn_change def speed_npitch(data): """ speed and Pitch Tuning. """ # you can change low and high here length_change = np.random.uniform(low=0.8, high=1) speed_fac = 1.2 / length_change # try changing 1.0 to 2.0 ... =D tmp = np.interp( np.arange( 0, len(data), speed_fac), np.arange( 0, len(data)), data) minlen = min(data.shape[0], tmp.shape[0]) data *= 0 data[0:minlen] = tmp[0:minlen] return data def makeT(cp): # cp: [K x 2] control points # T: [(K+3) x (K+3)] K = cp.shape[0] T = np.zeros((K+3, K+3)) T[:K, 0] = 1 T[:K, 1:3] = cp T[K, 3:] = 1 T[K+1:, 3:] = cp.T R = squareform(pdist(cp, metric='euclidean')) R = R * R R[R == 0] = 1 # a trick to make R ln(R) 0 R = R * np.log(R) np.fill_diagonal(R, 0) T[:K, 3:] = R return T def liftPts(p, cp): # p: [N x 2], input points # cp: [K x 2], control points # pLift: [N x (3+K)], lifted input points N, K = p.shape[0], cp.shape[0] pLift = np.zeros((N, K+3)) pLift[:,0] = 1 pLift[:,1:3] = p R = cdist(p, cp, 'euclidean') R = R * R R[R == 0] = 1 R = R * np.log(R) pLift[:,3:] = R return pLift def spec_augment(spec): W=40 T=30 F=13 mt=2 mf=2 # Nframe : number of spectrum frame Nframe = spec.shape[1] # Nbin : number of spectrum freq bin Nbin = spec.shape[0] # check input length if Nframe < W*2+1: W = int(Nframe/4) if Nframe < T*2+1: T = int(Nframe/mt) if Nbin < F*2+1: F = int(Nbin/mf) # warping parameter initialize w = random.randint(-W,W) center = random.randint(W,Nframe-W) src = np.asarray([[ float(center), 1], [ float(center), 0], [ float(center), 2], [0, 0], [0, 1], [0, 2], [Nframe-1, 0], [Nframe-1, 1], [Nframe-1, 2]]) dst = np.asarray([[ float(center+w), 1], [ float(center+w), 0], [ float(center+w), 2], [0, 0], [0, 1], [0, 2], [Nframe-1, 0], [Nframe-1, 1], [Nframe-1, 2]]) #print(src,dst) # source control points xs, ys = src[:,0],src[:,1] cps = np.vstack([xs, ys]).T # target control points xt, yt = dst[:,0],dst[:,1] # construct TT TT = makeT(cps) # solve cx, cy (coefficients for x and y) xtAug = np.concatenate([xt, np.zeros(3)]) ytAug = np.concatenate([yt, np.zeros(3)]) cx = nl.solve(TT, xtAug) # [K+3] cy = nl.solve(TT, ytAug) # dense grid x = np.linspace(0, Nframe-1,Nframe) y = np.linspace(1,1,1) x, y = np.meshgrid(x, y) xgs, ygs = x.flatten(), y.flatten() gps = np.vstack([xgs, ygs]).T # transform pgLift = liftPts(gps, cps) # [N x (K+3)] xgt = np.dot(pgLift, cx.T) spec_warped = np.zeros_like(spec) for f_ind in range(Nbin): spec_tmp = spec[f_ind,:] func = interpolate.interp1d(xgt, spec_tmp,fill_value="extrapolate") xnew = np.linspace(0, Nframe-1,Nframe) spec_warped[f_ind,:] = func(xnew) # sample mt of time mask ranges t = np.random.randint(T-1, size=mt)+1 # sample mf of freq mask ranges f = np.random.randint(F-1, size=mf)+1 # mask_t : time mask vector mask_t = np.ones((Nframe,1)) ind = 0 t_tmp = t.sum() + mt for _t in t: k = random.randint(ind,Nframe-t_tmp) mask_t[k:k+_t] = 0 ind = k+_t+1 t_tmp = t_tmp - (_t+1) mask_t[ind:] = 1 # mask_f : freq mask vector mask_f = np.ones((Nbin,1)) ind = 0 f_tmp = f.sum() + mf for _f in f: k = random.randint(ind,Nbin-f_tmp) mask_f[k:k+_f] = 0 ind = k+_f+1 f_tmp = f_tmp - (_f+1) mask_f[ind:] = 1 # calculate mean mean = np.mean(spec_warped) # make spectrum to zero mean spec_zero = spec_warped-mean spec_masked = ((spec_zero * mask_t.T) * mask_f) + mean # spec_masked = ((spec_zero * mask_t).T * mask_f).T return spec_warped ``` #### File: AutoSpeech2020/mysubmission/model_manager.py ```python import gc import numpy as np from sklearn.metrics import roc_auc_score, accuracy_score from tensorflow.python.keras import backend as K from CONSTANT import CLASS_NUM, MODEL_FIRST_MAX_RUN_LOOP, FIRST_ROUND_DURATION, SECOND_ROUND_DURATION from models import * # import all models and model_name constant from models.crnn2d import Crnn2dModel from models.crnn2d_larger import Crnn2dLargerModel from models.crnn2d_vgg import Crnn2dVggModel from models.my_classifier import Classifier from models.cnn import CnnModel2D from tools import log def auc_metric(solution, prediction): if solution.sum(axis=0).min() == 0: return np.nan auc = roc_auc_score(solution, prediction, average='macro') return np.mean(auc * 2 - 1) def acc_metric(solution, prediction): if solution.sum(axis=0).min() == 0: return np.nan acc = accuracy_score(solution, prediction) return acc class ModelManager(Classifier): def __init__(self, meta, data_manager, keep_num=5, each_model_keep_num=3, each_model_top_k=2, patience=3, auc_threshold=0.5, *args, **kwargs): self.metadata = meta self._data_manager = data_manager self._keep_num = keep_num self._each_model_keep_num = each_model_keep_num self._each_model_top_k = each_model_top_k self._patience = patience self._not_rise_num = 0 self._input_shape = None self._model = None self._model_name = None self._last_model_name = None self._cur_model_run_loop = 0 self._model_num = 0 self._model_idx = 0 self._round_num = 0 self._val_set = None self._test_x = None self._use_new_train = False self._is_reset_model = False self._use_mfcc = True self._is_nedd_30s = False self._use_mel_round = None self._k_best_predicts = [-1] * self._keep_num self._k_best_auc = [-1.1] * self._keep_num self._each_model_best_predict = {} self._each_model_best_auc = {} self._cur_model_max_auc = -1 self._auc_threshold = auc_threshold self._num_classes = self.metadata[CLASS_NUM] self._model_lib = { LR_MODEL: LogisticRegression, LSTM_MODEL: LstmAttention, CRNN_MODEL: CrnnModel, CRNN2D_MODEL: Crnn2dModel, CRNN2D_LARGER_MODEL: Crnn2dLargerModel, CRNN2D_VGG_MODEL: Crnn2dVggModel, BILSTM_MODEL: BilstmAttention, CNN_MODEL_2D: CnnModel2D, SVM_MODEL: SvmModel, ATTGRU: AttentionGru } self._model_sequences = [ LR_MODEL, CRNN_MODEL, #CNN_MODEL_2D, BILSTM_MODEL, LSTM_MODEL ] self._max_first_model_run_loop = MODEL_FIRST_MAX_RUN_LOOP self._max_model_run_loop = 12 self._models = {} def _get_or_create_model(self): # use new model and not reset model, have to initialize the model if not self._model.is_init: log(f'get new model {self._model_name}') # init model parameters if self._model_name == CNN_MODEL_2D: kwargs = { 'input_shape': self._input_shape[1:], 'num_classes': self.metadata[CLASS_NUM], 'max_layer_num': 10 } elif self._model_name in [LSTM_MODEL, BILSTM_MODEL, CRNN_MODEL, CRNN2D_MODEL, CRNN2D_LARGER_MODEL, CRNN2D_VGG_MODEL, ATTGRU]: kwargs = { 'input_shape': self._input_shape[1:], 'num_classes': self.metadata[CLASS_NUM], } elif self._model_name == SVM_MODEL: kwargs = { 'kernel': 'linear', 'max_iter': 1000 } elif self._model_name == LR_MODEL: kwargs = { 'kernel': 'liblinear', 'max_iter': 100 } else: raise Exception("No such model!") if not self._model.is_init: self._model.init_model(**kwargs) log(f'This train loop use {self._model_name}, last train loop use {self._last_model_name}') def _pre_select_model(self, train_loop_num): self._last_model_name = self._model_name if train_loop_num == 1 or self._model_name is None: self._model_name = self._model_sequences[0] self._each_model_best_auc[self._model_name] = [-1] self._each_model_best_predict[self._model_name] = [-1] self._use_new_train = True if self._not_rise_num == self._patience \ or (self._model_num == 0 and self._cur_model_run_loop >= self._max_first_model_run_loop) \ or (self._round_num == 0 and self._cur_model_run_loop >= self._max_model_run_loop): self._model_idx += 1 if self._model_idx == len( self._model_sequences) and LR_MODEL in self._model_sequences: # TODO be careful! self._model_idx = 1 self._round_num += 1 if self._round_num > 1: self._patience = 4 # sort model sequences by auc, desc if not self._data_manager.crnn_first: self._model_sequences = [self._model_sequences[0]] \ + sorted(self._model_sequences[1:], key=lambda x: self._each_model_best_auc[x][-1], reverse=True) else: self._model_sequences.remove(CRNN_MODEL) self._model_sequences = [self._model_sequences[0]] + [CRNN_MODEL] \ + sorted(self._model_sequences[1:], key=lambda x: self._each_model_best_auc[x][-1], reverse=True) log( f'round {self._round_num} start, model sequences {self._model_sequences[self._model_idx:]}') self._model_name = self._model_sequences[self._model_idx] self._model_num += 1 self._not_rise_num = 0 log( f'change model from {self._last_model_name} to {self._model_name}, loop_num: {self._cur_model_run_loop}') self._use_new_train = self._model_num in [0, 1, (2 * (len(self._model_sequences) - 1)) + 1, (3 * (len(self._model_sequences) - 1)) + 1, (4 * (len(self._model_sequences) - 1)) + 1] self._is_reset_model = (self._round_num > 1 and self._model_num == self._round_num * (len(self._model_sequences) - 1) + 1) if self._use_new_train: self._test_x = None self._cur_model_run_loop = 0 if self._round_num == 0 and self._cur_model_run_loop == 0: self._each_model_best_auc[self._model_name] = [-1] self._each_model_best_predict[self._model_name] = [-1] self._cur_model_max_auc = -1 elif self._round_num == 1 and self._cur_model_run_loop == 0: self._cur_model_max_auc = self._each_model_best_auc[self._model_name][-1] elif self._round_num >= 2 and self._cur_model_run_loop == 0: self._each_model_best_auc[self._model_name] += [-1] self._each_model_best_predict[self._model_name] += [-1] self._cur_model_max_auc = -1 if self._is_reset_model: log(f'new round {self._round_num}') # clear all models self._models.clear() del self._model self._model = None gc.collect() K.clear_session() # self._new_round = False if self._model_name != self._last_model_name or self._model is None or self._is_reset_model: if self._model_name in self._models: self._model = self._models[self._model_name] else: self._model = self._model_lib[self._model_name]() self._models[self._model_name] = self._model def _get_each_model_top_k_predicts(self): predicts = [] for k, v in self._each_model_best_auc.items(): if k == LR_MODEL: continue k_predicts = np.asarray(self._each_model_best_predict[k]) temp = [(auc, k_predicts[i]) for i, auc in enumerate(v) if auc > max(self._auc_threshold, self._k_best_auc[0] - 0.1)] temp.sort(key=lambda x: x[0], reverse=True) predicts.extend(temp[:self._each_model_top_k]) if len(predicts) == 0: return [], [] predicts = sorted(predicts, key=lambda x: x[0], reverse=True)[ :self._each_model_keep_num] top_k_aucs = [predicts[i][0] for i in range(len(predicts))] top_k_predicts = [predicts[i][1] for i in range(len(predicts))] return top_k_aucs, top_k_predicts def _blending_ensemble(self): selected_k_best = [self._k_best_predicts[i] for i, a in enumerate(self._k_best_auc) if a > 0.0] each_model_k_aucs, selected_each_model_k_best = self._get_each_model_top_k_predicts() if self._round_num >= 2: selected = selected_k_best + selected_each_model_k_best else: selected = selected_k_best log(f"model_num: {self._model_num} Select k best {self._keep_num} predicts which have auc {self._k_best_auc}, " f"each model {self._each_model_keep_num} best which have auc {each_model_k_aucs}, " f"and each previous model's best predict which have auc " f"{[f'({k}:{v})' for k, v in self._each_model_best_auc.items()]} ") return np.mean(selected, axis=0) @property def data_manager(self): return self._data_manager def fit(self, train_loop_num=1, **kwargs): # select model first, inorder to use preprocess data method self._pre_select_model(train_loop_num) log(f'fit {self._model_name} for {self._cur_model_run_loop} times') self._cur_model_run_loop += 1 # get data if self._round_num == 0: train_x, train_y, val_x, val_y = self._data_manager.get_train_data(train_loop_num=train_loop_num, model_num=self._model_num, round_num=self._round_num, use_new_train=self._use_new_train, use_mfcc=self._use_mfcc) self._is_nedd_30s = self._data_manager.need_30s if self._is_nedd_30s: self._use_mel_round = 3 else: self._use_mel_round = 2 else: if self._round_num == self._use_mel_round: self._use_mfcc = False else: self._use_mfcc = True train_x, train_y, val_x, val_y = self._data_manager.get_train_data(train_loop_num=train_loop_num, model_num=self._model_num, round_num=self._round_num, use_new_train=self._use_new_train, use_mfcc=self._use_mfcc) self._val_set = (val_x, val_y) self._input_shape = train_x.shape log(f'train_x: {train_x.shape}; train_y: {train_y.shape};' f' val_x: {val_x.shape}; val_y: {val_y.shape};') # init model really self._get_or_create_model() self._model.fit(train_x, train_y, (val_x, val_y), self._round_num, **kwargs) def predict(self, test_x, is_final_test_x=False): x_val, y_val = self._val_set auc = auc_metric(y_val, self._model.predict(x_val)) need_predict = False dif_score = 0.1 if auc > self._cur_model_max_auc: log( f'cur_max_auc {self._cur_model_max_auc}; cur_auc {auc}; {self._model_name} auc rise for {self._cur_model_run_loop} times') self._cur_model_max_auc = auc if self._round_num == 0: self._not_rise_num = max(0, self._not_rise_num - 1) else: self._not_rise_num = 0 if auc > self._each_model_best_auc[LR_MODEL][-1] - dif_score: need_predict = True else: self._not_rise_num += 1 log( f'cur_max_auc {self._cur_model_max_auc}; cur_auc {auc}; {self._model_name} auc not rise for {self._not_rise_num} times') if max(self._k_best_auc[-1], self._each_model_best_auc[LR_MODEL] [-1] - dif_score) >= auc and not need_predict: log('not predict') else: log(f'new predict') if is_final_test_x: if self._test_x is None: if self._model_num == 0: self._test_x = self._data_manager.lr_preprocess(test_x) elif self._round_num == 0: self._test_x = self._data_manager.nn_preprocess(test_x, n_mfcc=96, max_duration=FIRST_ROUND_DURATION, is_mfcc=self._use_mfcc) else: self._test_x = self._data_manager.nn_preprocess(test_x, n_mfcc=128, max_duration=SECOND_ROUND_DURATION, is_mfcc=self._use_mfcc) if self._round_num > 1: y_pred = self._model.predict(self._test_x, batch_size=32) else: y_pred = self._model.predict(self._test_x, batch_size=32 * 8) if self._k_best_auc[-1] < auc and auc > self._each_model_best_auc[LR_MODEL][-1] - dif_score: self._k_best_predicts[-1] = y_pred self._k_best_auc[-1] = auc if self._each_model_best_auc[self._model_name][-1] < auc: self._each_model_best_predict[self._model_name][-1] = y_pred self._each_model_best_auc[self._model_name][-1] = auc i = 0 for auc, pred in sorted( zip(self._k_best_auc, self._k_best_predicts), key=lambda x: x[0], reverse=True): self._k_best_auc[i] = auc self._k_best_predicts[i] = pred i += 1 self._use_new_train = False self._is_reset_model = False return self._blending_ensemble() ``` #### File: mysubmission/resnet_utils/resnet_data_utils.py ```python import librosa import numpy as np import multiprocessing from multiprocessing import Pool from itertools import repeat NCPU = multiprocessing.cpu_count() def extend_wav(wav, train_wav_len=40000, test_wav_len=40000, mode='train'): if mode == 'train': div, mod = divmod(train_wav_len, wav.shape[0]) extended_wav = np.concatenate([wav]*div+[wav[:mod]]) if np.random.random() < 0.3: extended_wav = extended_wav[::-1] return extended_wav else: div, mod = divmod(test_wav_len, wav.shape[0]) extended_wav = np.concatenate([wav]*div+[wav[:mod]]) return extended_wav def lin_spectogram_from_wav(wav, hop_length, win_length, n_fft=1024): linear = librosa.stft(wav, n_fft=n_fft, win_length=win_length, hop_length=hop_length) # linear spectrogram return linear.T def load_data(mag, train_spec_len=250, test_spec_len=250, mode='train'): freq, time = mag.shape if mode == 'train': if time-train_spec_len > 0: randtime = np.random.randint(0, time-train_spec_len) spec_mag = mag[:, randtime:randtime+train_spec_len] else: spec_mag = mag[:, :train_spec_len] else: spec_mag = mag[:, :test_spec_len] mu = np.mean(spec_mag, 0, keepdims=True) std = np.std(spec_mag, 0, keepdims=True) return (spec_mag - mu) / (std + 1e-5) def wav_to_mag(wav, params, win_length=400, hop_length=160, n_fft=512): mode = params["mode"] wav = extend_wav(wav, params["train_wav_len"], params["test_wav_len"], mode=mode) linear_spect = lin_spectogram_from_wav(wav, hop_length, win_length, n_fft) mag, _ = librosa.magphase(linear_spect) mag_T = mag.T if mode == 'test': mag_T = load_data(mag_T, params["train_spec_len"], params["test_spec_len"], mode) return mag_T def pre_trans_wav_update(wav_list, params): print(f"pre_trans_wav len={len(wav_list)}") if len(wav_list) == 0: return [] elif len(wav_list) > NCPU * 10: with Pool(NCPU) as pool: mag_arr = pool.starmap(wav_to_mag, zip(wav_list, repeat(params))) pool.close() pool.join() return mag_arr else: mag_arr = [wav_to_mag(wav, params) for wav in wav_list] return mag_arr ``` #### File: 279632990/AutoSpeech2020/run_local_test.py ```python VERISION = "v20190505" DESCRIPTION = \ """This script allows participants to run local test of their method within the downloaded starting kit folder (and avoid using submission quota on CodaLab). To do this, run: ``` python run_local_test.py -dataset_dir=./sample_data/miniciao -code_dir=./code_submission/ ``` in the starting kit directory. If you want to test the performance of a different algorithm on a different dataset, please specify them using respective arguments. If you want to use default folders (i.e. those in above command line), simply run ``` python run_local_test.py ``` """ # ALL INFORMATION, SOFTWARE, DOCUMENTATION, AND DATA ARE PROVIDED "AS-IS". # ISABELLE GUYON, CHALEARN, AND/OR OTHER ORGANIZERS OR CODE AUTHORS DISCLAIM # ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE, AND THE # WARRANTY OF NON-INFRINGEMENT OF ANY THIRD PARTY'S INTELLECTUAL PROPERTY # RIGHTS. # IN NO EVENT SHALL ISABELLE GUYON AND/OR OTHER ORGANIZERS BE LIABLE FOR ANY # SPECIAL, # INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING OUT OF # OR IN # CONNECTION WITH THE USE OR PERFORMANCE OF SOFTWARE, DOCUMENTS, MATERIALS, # PUBLICATIONS, OR INFORMATION MADE AVAILABLE FOR THE CHALLENGE. ################################################################################ # Verbosity level of logging. # Can be: NOTSET, DEBUG, INFO, WARNING, ERROR, CRITICAL verbosity_level = 'INFO' import logging import os import tensorflow as tf import time import shutil # for deleting a whole directory import webbrowser from multiprocessing import Process logging.basicConfig( level=getattr(logging, verbosity_level), format='%(asctime)s %(levelname)s %(filename)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) def _HERE(*args): h = os.path.dirname(os.path.realpath(__file__)) return os.path.join(h, *args) def get_path_to_ingestion_program(starting_kit_dir): return os.path.join(starting_kit_dir, 'ingestion', 'ingestion.py') def get_path_to_scoring_program(starting_kit_dir): return os.path.join(starting_kit_dir, 'scoring', 'score.py') def remove_dir(output_dir): """Remove the directory `output_dir`. This aims to clean existing output of last run of local test. """ if os.path.isdir(output_dir): logging.info("Cleaning existing output directory of last run: {}" \ .format(output_dir)) shutil.rmtree(output_dir) def get_basename(path): if len(path) == 0: return "" if path[-1] == os.sep: path = path[:-1] return path.split(os.sep)[-1] def run_baseline(dataset_dir, code_dir, time_budget=7200): # Current directory containing this script starting_kit_dir = os.path.dirname(os.path.realpath(__file__)) path_ingestion = get_path_to_ingestion_program(starting_kit_dir) path_scoring = get_path_to_scoring_program(starting_kit_dir) # Run ingestion and scoring at the same time command_ingestion = \ "python {} --dataset_dir={} --code_dir={} --time_budget={}"\ .format(path_ingestion, dataset_dir, code_dir, time_budget) command_scoring = \ 'python {} --solution_dir={}' \ .format(path_scoring, dataset_dir) def run_ingestion(): os.system(command_ingestion) def run_scoring(): os.system(command_scoring) ingestion_process = Process(name='ingestion', target=run_ingestion) scoring_process = Process(name='scoring', target=run_scoring) ingestion_output_dir = os.path.join(starting_kit_dir, 'ingestion_output') score_dir = os.path.join(starting_kit_dir, 'scoring_output') remove_dir(ingestion_output_dir) remove_dir(score_dir) ingestion_process.start() scoring_process.start() detailed_results_page = os.path.join(starting_kit_dir, 'scoring_output', 'detailed_results.html') detailed_results_page = os.path.abspath(detailed_results_page) # Open detailed results page in a browser time.sleep(2) for i in range(30): if os.path.isfile(detailed_results_page): webbrowser.open('file://' + detailed_results_page, new=2) break time.sleep(1) if __name__ == '__main__': default_starting_kit_dir = _HERE() # The default dataset is 'miniciao' under the folder sample_data/ default_dataset_dir = os.path.join(default_starting_kit_dir, 'sample_data', 'test_data1') default_code_dir = os.path.join(default_starting_kit_dir, 'code_submission') default_time_budget = 1200 tf.flags.DEFINE_string('dataset_dir', default_dataset_dir, "Directory containing the content (e.g. " "adult.data/ + " "adult.solution) of an AutoDL dataset. Specify this " "argument if you want to test on a different " "dataset.") tf.flags.DEFINE_string('code_dir', default_code_dir, "Directory containing a `model.py` file. Specify " "this " "argument if you want to test on a different " "algorithm." ) tf.flags.DEFINE_float('time_budget', default_time_budget, "Time budget for model train/predict if not " "specified in meta.json") FLAGS = tf.flags.FLAGS dataset_dir = FLAGS.dataset_dir code_dir = FLAGS.code_dir time_budget = FLAGS.time_budget logging.info("#" * 50) logging.info("Begin running local test using") logging.info("code_dir = {}".format(get_basename(code_dir))) logging.info("dataset_dir = {}".format(get_basename(dataset_dir))) logging.info("#" * 50) run_baseline(dataset_dir, code_dir, time_budget) ```
{ "source": "27Anurag/minesweeper_model", "score": 3 }
#### File: minesweeper_model/minesweeper_model/str_input_to_mine_coords.py ```python def str_input_to_mine_coords(input_string): mine_coord=[] x_len,y_len=0,0 temp=input_string.split("\n") x_len,y_len=len(temp[0]),len(temp) x_mine,y_mine=0,0 for i in temp: x_mine=0 for s in i: if(s=='x'): mine_coord.append((x_mine,y_mine)) x_mine+=1 y_mine+=1 return (x_len, y_len, mine_coord) ``` #### File: minesweeper_model/minesweeper_model/utility.py ```python def surrounding_tiles(tile_x, tile_y, remove_outside_tiles=False): """Return the 8 tiles surrounding the given tile. Parameters: tile_x: X coord of tile tile_y: Y coord of tile Returns: List of two tuples (x, y) of surrounding tiles. The list will exclude the given tile itself. The list can potentially contain -ve coordinates. """ # Loops generate all surrounding tiles and the tile itself tiles = [(x, y) for x in [tile_x - 1, tile_x, tile_x + 1] for y in [tile_y - 1, tile_y, tile_y + 1]] # Remove the tile itself to only leave surrounding tiles tiles.remove((tile_x, tile_y)) if remove_outside_tiles: tiles = [(x, y) for (x, y) in tiles if x >= 0 and y >= 0] return tiles ``` #### File: minesweeper_model/tests/test_field.py ```python import unittest from minesweeper_model import field class TestField(unittest.TestCase): def test_are_coords_valid(self): f = field.Field(4, 4) self.assertTrue(f.are_coords_valid(3, 2)) self.assertFalse(f.are_coords_valid(5, 2)) def test_render(self): mines = {(0, 0), (3, 1), (1, 3)} f = field.Field(4, 4, mines) expected = "x...\n...x\n....\n.x..\n" self.assertEqual(f.render(), expected) expected = "@ooo\nooo@\noooo\no@oo\n" self.assertEqual(f.render("o", "@"), expected) ``` #### File: minesweeper_model/tests/test_player_field.py ```python import unittest from minesweeper_model import field class TestPlayerField(unittest.TestCase): def setUp(self): self.field1 = field.PlayerField(field.Field(4, 4)) self.field2 = field.PlayerField(field.Field(4, 4)) self.field2.field.mine_coords = {(0, 0), (1, 0)} self.field2.open_coords = {(1, 1), (0, 1)} self.field2.flag_coords = {(0, 0), (2, 1)} self.field2.hints = {(0, 0): -1, (0, 1): 2, (0, 2): 0, (0, 3): 0, (1, 0): -1, (1, 1): 2, (1, 2): 0, (1, 3): 0, (2, 0): 1, (2, 1): 1, (2, 2): 0, (2, 3): 0, (3, 0): 0, (3, 1): 0, (3, 2): 0, (3, 3): 0} field3_mines = {(2, 0), (2, 2), (6, 3), (1, 5), (5, 6)} self.field3 = field.PlayerField(field.Field(8, 7, field3_mines)) def test_tile(self): actual = self.field2.tile(1, 1) expected = {"hint": 2, "flag": False} self.assertEqual(actual, expected) actual = self.field2.tile(0, 0) # Hint is None as the mine is not open expected = {"hint": None, "flag": True} self.assertEqual(actual, expected) actual = self.field2.tile(1, 0) expected = {"hint": None, "flag": False} self.assertEqual(actual, expected) def test_nine_tiles(self): # .: closed tile # [0-9]: open tile, hint # x: mine # !: flag # ---------- # ! . . . # 2 2 . . # x x . . # . . . . actual = self.field2.nine_tiles(0, 1) # Expect to exclude tiles outside the field. expected = {(0, 0): {"hint": None, "flag": True}, (0, 2): {"hint": None, "flag": False}, (1, 0): {"hint": None, "flag": False}, (1, 1): {"hint": 2, "flag": False}, (1, 2): {"hint": None, "flag": False}, (0, 1): {"hint": 2, "flag": False}} self.assertEqual(actual, expected) def test_open_tile(self): self.field1.field.mine_coords = {(0, 0)} # Tile without mine self.assertTrue(self.field1.open_tile(1, 0)) self.assertEqual(self.field1.open_coords, {(1, 0)}) # Tile with mine self.assertFalse(self.field1.open_tile(0, 0)) self.assertEqual(self.field1.open_coords, {(1, 0)}) def test_open_tile_open_adjacent_tiles(self): # field3 # mines: hints: expected open: # # ..x..... 01x10000 ..x+++++ # ........ 02220000 ...+++++ # ..x..... 01x10111 ..x+++++ # ......x. 011101x1 ...+++x. # ........ 11100111 ..++++.. # .x...... 1x101110 .x+++... # .....x.. 11101x10 ..+++x.. self.field3.open_tile(5, 1, True) # expect adjacent 0 hint tiles to open recursively until a non-zero hint tile # is found, when the adjacent tiles are opened the last time and algorithm stops. expected_open_coords = {(3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2), (2, 3), (3, 3), (4, 3), (5, 3), (2, 4), (3, 4), (4, 4), (5, 4), (2, 5), (3, 5), (4, 5), (5, 5), (2, 6), (3, 6), (4, 6)} self.assertEqual(self.field3.open_coords, expected_open_coords) def test_toggle_flag(self): self.field1.toggle_flag(0, 1) self.assertEqual(self.field1.flag_coords, {(0, 1)}) self.field1.flag_coords = {(2, 0)} self.field1.toggle_flag(2, 0) self.assertEqual(self.field1.flag_coords, set()) self.assertRaises(ValueError, self.field1.toggle_flag, 5, 5) def test_traverse_tiles(self): # ..x..... 01x10000 # .....~.. 02220~00 # ..x..... 01x10111 # ......x. 011101x1 # ........ 11100111 # .x...... 1x101110 # .....x.. 11101x10 # Adjacent 0: [(4, 0), (4, 1), (4, 2), (5, 0), (6, 0), (6, 1)] def should_visit(x, y, player_field): return player_field.hints[(x, y)] == 0 actual = self.field3.traverse_tiles(0, 0, should_visit) expected = {(0, 0), (0, 1), (0, 2), (0, 3)} self.assertEqual(actual, expected) def test_render(self): mines = {(0, 0), (3, 1), (0, 3)} f = field.Field(4, 4, mines) pf = field.PlayerField(f) pf.flag_coords = {(1, 1)} pf.open_coords = {(0, 1), (3, 3)} pf.hints = {(0, 1): 1, (3, 3): 0} expected = "....\n1!..\n....\n...0\n" self.assertEqual(pf.render(), expected) expected = "oooo\n1?oo\noooo\nooo0\n" self.assertEqual(pf.render("?", "o"), expected) ```
{ "source": "27Cobalter/vrc_log_viewer", "score": 3 }
#### File: 27Cobalter/vrc_log_viewer/vrc_log_viewer.py ```python import glob import os import re import sys import time import yaml def tail(thefile, past): if not past: thefile.seek(0, 2) while True: line = thefile.readline() if not line: time.sleep(0.5) continue line = line.rstrip("\n").rstrip("\r") if line != "": yield repr(line)[1:-1] if __name__ == "__main__": with open("config.yml", "r") as config: conf = yaml.load(config, Loader=yaml.SafeLoader) print("load config") reg = [] for pattern in conf["reg"]: print(" " + pattern) reg.append(re.compile(pattern)) vrcdir = os.environ["USERPROFILE"] + "\\AppData\\LocalLow\\VRChat\\VRChat\\" logfile = vrcdir + conf["logfile"] if len(sys.argv) > 1: logfile = sys.argv[1] if logfile == vrcdir: logfiles = glob.glob(vrcdir + "output_log_*.txt") logfiles.sort(key=os.path.getctime, reverse=True) logfile = logfiles[0] with open(logfile, "r", encoding="utf-8") as f: print("open logfile : ", logfile) loglines = tail(f, conf["past"]) for line in loglines: for pattern in reg: match = pattern.match(line) if not match: continue message = "" for group in match.groups(): message = message + group + " " print(message) ```
{ "source": "27Cobalter/vrc_meta_tool", "score": 3 }
#### File: 27Cobalter/vrc_meta_tool/vrc_meta_editor.py ```python import datetime import sys from struct import pack from zlib import crc32 class MetaData: FORMAT_DATE_USER_INPUT = "%Y-%m-%d %H:%M:%S" FORMAT_DATE_RAW_DATA = "%Y%m%d%H%M%S" def __init__(self): self.date = "" self.photographer = "" self.world = "" self.users = [] # PNG ファイルシグネチャ self.other_data = b"\x89\x50\x4E\x47\x0D\x0A\x1A\x0A" def validate_date_format(self, str_date): try: datetime.datetime.strptime(str_date, self.FORMAT_DATE_USER_INPUT) return True except ValueError: return False def update_date(self, strdate): date = datetime.datetime.strptime(strdate, self.FORMAT_DATE_USER_INPUT) strdate = datetime.datetime.strftime(date, self.FORMAT_DATE_RAW_DATA) + "000" self.date = strdate def update_photographer(self, photographer): self.photographer = photographer def update_world(self, world): self.world = world def add_user(self, user): self.users.append(user) def update_user(self, index, vrcname, twitterid): user = self.users[index].rsplit(" : ", 1) # vrcnameまたはtwitteridが空文字のときは変更しない if vrcname != "": user[0] = vrcname if twitterid != "": if len(user) == 1: user.append(twitterid) else: user[1] = twitterid self.users[index] = " : ".join(user) def delete_users(self, delete_indexes): deleted_user = [] for i in reversed(delete_indexes): deleted_user.append(self.users.pop(i)) # 削除したユーザをリスト順で出したい return reversed(deleted_user) def sort_users(self): self.users.sort() def print_users(self): for i, user in enumerate(self.users): print("{0:2d} {1:s}".format(i, user)) def print(self): print("-" * 80) print( "Date:", datetime.datetime.strptime(self.date[:-3], self.FORMAT_DATE_RAW_DATA), ) print("Photographer:", self.photographer) print("World:", self.world) for user in self.users: print("User:", user) print("-" * 80) class ChunkUtils: # pngチャンク関連関数 def chunk_iter(self, data): total_length = len(data) end = 4 while end + 8 < total_length: length = int.from_bytes(data[end + 4 : end + 8], "big") chunk_type = end + 8 chunk_data = chunk_type + 4 end = chunk_data + length yield (data[chunk_type:chunk_data], data[chunk_data:end]) def chunk(self, name, data): return pack("!I4s%dsI" % len(data), len(data), name, data, crc32(name + data)) def write(self, file_name, metadata): metadata.users.sort() with open(file_name, "w+b") as f: f.write(metadata.other_data) f.write(self.chunk(b"vrCd", metadata.date.encode("utf-8"))) f.write(self.chunk(b"vrCp", metadata.photographer.encode("utf-8"))) f.write(self.chunk(b"vrCw", metadata.world.encode("utf-8"))) for user in metadata.users: f.write(self.chunk(b"vrCu", user.encode("utf-8"))) f.write(self.chunk(b"IEND", b"")) def parse_number(user_input, length): words = user_input.split() exclude_indexes = set() for word in words: invert = False # 先頭が^なら否定 if word[0] == "^": invert = True word = word[1:] ranges = word.split("-", 1) num1 = int(ranges[0]) num2 = num1 if len(ranges) == 2: num2 = int(ranges[1]) if num1 > num2: num1, num2 = num2, num1 indexes = set(range(num1, num2 + 1)) if invert: indexes = set(range(length)) - indexes exclude_indexes = exclude_indexes | indexes # 範囲超えないように exclude_indexes = exclude_indexes & set(range(length)) exclude_indexes = sorted(exclude_indexes) return exclude_indexes def main(args): if len(args) == 1: print("Usage: vrc_meta_editor.py file\r\n") return image_path = args[1] data = None metadata = MetaData() chunkutils = ChunkUtils() with open(image_path, "rb") as f: data = f.read() assert data[:8] == b"\x89\x50\x4E\x47\x0D\x0A\x1A\x0A" # 画像のデータをmetadataに変換 for chunk_type, chunk_data in chunkutils.chunk_iter(data): if chunk_type == b"vrCd": metadata.date = chunk_data.decode("utf-8") elif chunk_type == b"vrCp": metadata.update_photographer(chunk_data.decode("utf-8")) elif chunk_type == b"vrCw": metadata.update_world(chunk_data.decode("utf-8")) elif chunk_type == b"vrCu": metadata.add_user(chunk_data.decode("utf-8")) elif chunk_type != b"IEND": # vrc_meta_toolで使っていないチャンクはIENDを除いてそのまま保存 metadata.other_data = metadata.other_data + chunkutils.chunk( chunk_type, chunk_data ) metadata.sort_users() metadata.print() while True: mode = input("Add/Update/Delete/Print/Quit [a/u/d/p/q] ") if len(mode) == 0: continue mode_initial = mode[0].lower() if mode_initial == "a": # ユーザ追加 vrcname = input("VRCName: ") if vrcname == "": continue twitterid = input('TwitterId: (eg:"@Twitter")(optional): ') user_name = vrcname if twitterid != "": user_name = vrcname + " : " + twitterid metadata.add_user(user_name) metadata.sort_users() chunkutils.write(image_path, metadata) elif mode_initial == "u": item = input("Date/Photographer/World/VRCName/TwitterID [d/p/w/v/t] ") if len(item) == 0: continue item_initial = item[0].lower() if item_initial == "d": # 撮影日時変更 valid = False while not valid: date = input('New Date(eg: "2018-05-10 18:52:00": ') valid = metadata.validate_date_format(date) if not valid: print("invalid date format. expected YYYY-MM-DD HH:mm:ss") metadata.update_date(date) chunkutils.write(image_path, metadata) elif item_initial == "p": # 撮影者変更 photographer = input("New Photographer: ") metadata.update_photographer(photographer) chunkutils.write(image_path, metadata) elif item_initial == "w": # 撮影ワールド変更 world = input("New World: ") metadata.update_world(world) chunkutils.write(image_path, metadata) elif item_initial == "v": # VRCNameの変更 metadata.print_users() index = input("Select user: ") user_name = input("New VRCName: ") metadata.update_user(int(index), user_name, "") metadata.sort_users chunkutils.write(image_path, metadata) elif item_initial == "t": # TwitterIDの変更 metadata.print_users() index = input("Select user: ") twitterid = input('New TwitterID: (eg:"@Twitter"):') metadata.update_user(int(index), "", twitterid) chunkutils.write(image_path, metadata) elif mode_initial == "d": # ユーザ削除 metadata.print_users() user_input = input('Select User (eg:"1 2 3", "1-3", "^4"): ') # 削除するインデックスの配列 delete_indexes = parse_number(user_input, len(metadata.users)) deleted_user = metadata.delete_users(delete_indexes) for user in deleted_user: print("delete :", user) chunkutils.write(image_path, metadata) elif mode in {"p", "P", "print", "Print"}: metadata.print() elif mode in {"q", "Q", "quit", "Quit"}: break if __name__ == "__main__": main(sys.argv) ```
{ "source": "27pirateking/empoweredautoparts-scraper", "score": 3 }
#### File: empoweredautoparts-scraper/empoweredautoparts/scraping_utility.py ```python def preprocess_descrip_array(des_array): remove_index=-1 for index in range(0,len(des_array)): if "Rotors are a direct bolt on item".lower() in des_array[index].lower(): remove_index = index continue if "Disc wear is reduced by up to 50% with".lower() in des_array[index].lower(): remove_index = index continue if "Empowered Auto Parts is an authorised".lower() in des_array[index].lower(): remove_index = index if remove_index > 0: des_array = des_array[0:remove_index] return des_array def process_description(des_item, descrip_html): descrip_html = preprocess_descrip_array(descrip_html) index = 0 compatible_models=-1 features=-1 product_highlights=-1 you_are_buying=-1 product_specifications=-1 for aa in descrip_html: index+= 1 if "COMPATIBLE MODELS".lower() in aa.lower(): compatible_models = index-1 continue if "FEAURES".lower() in aa.lower(): features = index-1 continue if "PRODUCT HIGHLIGHTS".lower() in aa.lower(): product_highlights = index-1 continue if "YOU ARE BUYING".lower() in aa.lower(): you_are_buying = index-1 continue if "PRODUCT SPECIFICATIONS".lower() in aa.lower(): product_specifications = index-1 continue descrips = [compatible_models,features,product_highlights,you_are_buying,product_specifications] descrips.append(len(descrip_html)) descrips.sort() keys = [i for i in descrips if i >= 0] iter_keys = iter(keys) des_item['description'] = ''.join(descrip_html[0:next(iter_keys)]) last_index = compatible_models + 1 if compatible_models >= 0: next_last_index = next(iter_keys) des_item['compatible_models'] = ''.join(descrip_html[last_index:next_last_index]) last_index=next_last_index + 1 else: des_item['compatible_models'] = '.' if features >= 0: next_last_index = next(iter_keys) des_item['features'] = ''.join(descrip_html[last_index:next_last_index]) last_index=next_last_index + 1 else: des_item['features'] = '.' if product_highlights >= 0: next_last_index = next(iter_keys) des_item['product_highlights'] = ''.join(descrip_html[last_index:next_last_index]) last_index=next_last_index + 1 else: des_item['product_highlights'] = '.' if you_are_buying >= 0: next_last_index = next(iter_keys) des_item['you_are_buying'] = ''.join(descrip_html[last_index:next_last_index]) last_index=next_last_index + 1 else: des_item['you_are_buying'] = '.' if product_specifications >= 0: next_last_index = next(iter_keys) des_item['product_specifications'] = ''.join(descrip_html[last_index:next_last_index]) else: des_item['product_specifications'] = '.' return des_item ```
{ "source": "27pirateking/maximum-entropy-method", "score": 3 }
#### File: maximum-entropy-method/Utilities/extract.py ```python import linecache import numpy as np import os class extract(object): """ This object is used to extract the data from DCA monte carlo code. """ def __init__(self, filename = '7_G(K,w,b,b)', numSamples = 1000): """ """ self.keys = ['[0,0]', '[0,-pi]','[pi,0-]','[pi,-pi]'] self.numSamples = numSamples self.readAllFiles(filename) self.writeFiles() def readFile(self, filename = "./i0/7_G(K,w,b,b)"): """ read the 7_G(K,w,b,b) JSON file. """ flag = True i = 38 wn, G = [], {} for k in self.keys: G[k] = [] while flag: line = linecache.getline(filename, i) flag = (line != "\n") i += 1 if flag: a = line.split() wn.append(float(a[0])) for v,k in list(enumerate(self.keys)): G[k].append(float(a[2*v+1]) + 1j * float(a[2*v+2])) else: break self.n = len(wn) return wn, G def readAllFiles(self,filename='7_G(K,w,b,b)'): """ Read 1000 samples from directory i10 to i1009. """ path = os.getcwd() filenames = [] for i in range(0,100): dirname = '/i' + str(i+10) + '/' filenames.append(path+dirname+filename) self.G = {} for k in self.keys: self.G[k] = [] for file in filenames: wn, iG = self.readFile(file) for k in self.keys: self.G[k].append(iG[k]) self.wn = [] for n in range(self.n): self.wn.append((2*(n-self.n/2) + 1)*np.pi/5.0) self.G['tot'] = [] for i in range(self.numSamples): iG = [] for j in range(self.n): num = 0 for k in self.keys: num += self.G[k][i][j] iG.append(num/len(self.keys)) self.G['tot'].append(iG) def writeFiles(self): """ Write 1000 samples. """ for k,v in self.G.iteritems(): file = open(k, 'w') for i in range(self.n): file.write(str(self.wn[i]) + '\t') for j in range(self.numSamples): file.write(str(np.real(v[j][i])) + '\t' + str(np.imag(v[j][i])) + '\t') file.write('\n') file.close() if __name__ == "__main__": data = extract('7_G(K,w,b,b)', 100) ```
{ "source": "27pirateking/panacea-scraper", "score": 3 }
#### File: MedIndia/spiders/MedSpider.py ```python __author__ = 'Nikhil' import scrapy from MedIndia.items import MedindiaItem html_headers = { "accept" : "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8", "accept-encoding" : "gzip, deflate, sdch, br", "accept-language" : "en-US,en;q=0.8,ms;q=0.6", "user-agent" : "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36" } #to csv - scrapy runspider MedIndia.py -o file.csv -t csv class MedSpider(scrapy.Spider): name = 'med' #MedindiaSpider.download_delay = 1 allowed_domains = ["medindia.net"] start_urls = [#"https://www.medindia.net/drug-price/brand-index.asp?alpha=a", #"https://www.medindia.net/drug-price/brand-index.asp?alpha=b", #"https://www.medindia.net/drug-price/brand-index.asp?alpha=c", #"https://www.medindia.net/drug-price/brand-index.asp?alpha=d", #"https://www.medindia.net/drug-price/brand-index.asp?alpha=e", #"https://www.medindia.net/drug-price/brand-index.asp?alpha=f", #"https://www.medindia.net/drug-price/brand-index.asp?alpha=g", #"https://www.medindia.net/drug-price/brand-index.asp?alpha=h", #"https://www.medindia.net/drug-price/brand-index.asp?alpha=i", #"https://www.medindia.net/drug-price/brand-index.asp?alpha=j", #"https://www.medindia.net/drug-price/brand-index.asp?alpha=k", #"https://www.medindia.net/drug-price/brand-index.asp?alpha=l", #"https://www.medindia.net/drug-price/brand-index.asp?alpha=m", "https://www.medindia.net/drug-price/brand-index.asp?alpha=n", "https://www.medindia.net/drug-price/brand-index.asp?alpha=o", "https://www.medindia.net/drug-price/brand-index.asp?alpha=p", "https://www.medindia.net/drug-price/brand-index.asp?alpha=q", "https://www.medindia.net/drug-price/brand-index.asp?alpha=r", "https://www.medindia.net/drug-price/brand-index.asp?alpha=s", "https://www.medindia.net/drug-price/brand-index.asp?alpha=t", "https://www.medindia.net/drug-price/brand-index.asp?alpha=u", "https://www.medindia.net/drug-price/brand-index.asp?alpha=v", "https://www.medindia.net/drug-price/brand-index.asp?alpha=w", "https://www.medindia.net/drug-price/brand-index.asp?alpha=x", "https://www.medindia.net/drug-price/brand-index.asp?alpha=y", "https://www.medindia.net/drug-price/brand-index.asp?alpha=z", ] def parse(self, response): #drug_urls = response.css("table.table-bordered.table > tr > td > a::attr(href)").extract() #for letter_href in reponse.css("div.btn-group.btn-group-sm > a::attr(href)"): # next_letter_page = for href in response.css("table.table-bordered.table > tr > td > a::attr(href)"): #print(href) yield response.follow(href, callback=self.parse_details) #for drug_url in drug_urls: # drug_url = response.urljoin(drug_url) # print(drug_url) # yield scrapy.Request(url=drug_url, # #headers=html_headers, # callback=self.parse_details) next_page_url = response.css("a[title='Next Page']::attr(href)").extract_first() if next_page_url: next_page_url = response.urljoin(next_page_url) #print(next_page_url) yield scrapy.Request(url=next_page_url, callback=self.parse) def parse_details(self,response): #print("we are here") item = MedindiaItem() item['drugName'] = response.css("td > h1::text").extract() item['drugForm'] = response.css("td > span::text")[0].extract() item['drugGenericName'] = response.css("td > span::text")[1].extract() item['price'] = response.css("div.ybox > b::text").extract() item['dosage'] = response.css("div.ybox > span > b::text")[0].extract() item['basicInfo'] = response.css("div.report-content::text").extract() item['conditions'] = response.css("div.caption > b > a::text").extract() item['sideEffects'] = response.xpath('.//p[@class="drug-content"][1]/text()').extract() item['dosageInfo'] = response.xpath('.//p[@class="drug-content"][2]/text()').extract() item['howToTake'] = response.xpath('.//p[@class="drug-content"][3]/text()').extract() item['contraindications'] = response.xpath('.//p[@class="drug-content"][4]/text()').extract() item['warningsAndPrecautions'] = response.xpath('.//p[@class="drug-content"][5]/text()').extract() item['otherPrecautions'] = response.xpath('.//p[@class="drug-content"][6]/text()').extract() item['StorageConditions'] = response.xpath('.//p[@class="drug-content"][7]/text()').extract() #get data of each drug yield item # { # 'Host': 'www.medindia.net', # 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:60.0) Gecko/20100101 Firefox/60.0', # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en-US,en;q=0.5', # 'Referer': 'https://www.medindia.net/drug-price/brand-index.asp?alpha=a', # 'Accept-Encoding': 'gzip, deflate, br', # #'Cookie': 'ASPSESSIONIDCASCCQQB=LAIEMMHCGFGJCIOHMDFGBBLP; ASPSESSIONIDACTARTCD=AEAGKDKCJADJAGILECIGFDDN; ASPSESSIONIDCATDSQBC=FGNMNKICLBCAIFIDJGDJGALL; ASPSESSIONIDCASBCSQD=LMEDKCOCNNJHPFKFDFLMAGME; ASPSESSIONIDCATBTTBC=AMLHCGIDDLAKKOFDLNDJHFCJ', # 'Connection': 'keep-alive' # } ``` #### File: webmd/spiders/webmd_spider.py ```python from scrapy import Spider, Request from scrapy.selector import Selector from webmd.items import WebmdItem import urllib import re headers = {'User-Agent': 'Chrome/56.0.2924.87', 'enc_data': 'OXYIMo2UzzqFUzYszFv4lWP6aDP0r+h4AOC2fYVQIl8=', 'timestamp': 'Thu, 09 Feb 2017 02:11:34 GMT', 'client_id': '3454df96-c7a5-47bb-a74e-890fb3c30a0d'} class WebmdSpider(Spider): name = "webmd_spider" allowed_urls = ['http://www.webmd.com/'] start_urls = ['http://www.webmd.com/drugs/index-drugs.aspx?show=conditions'] def parse(self, response): # follow links to next alphabet page atoz = response.xpath('//*[@id="drugs_view"]/li/a/@href').extract() print("parsing...") for i in range(2, len(atoz)): yield Request(response.urljoin(atoz[i]), callback = self.parse_az, dont_filter= True) def parse_az(self, response): # follow links to condition Aa = response.xpath('//*[@id="showAsubNav"]/ul/li').extract() print("selecting alphabet...") for i in range(len(Aa)): yield Request(response.urljoin(response.xpath('//*[@id="showAsubNav"]/ul/li//a/@href').extract()[i]), \ callback = self.parse_condition,\ dont_filter= True) def parse_condition(self, response): # follow links to drugs table = response.xpath('//*[@id="az-box"]/div//a').extract() print("scraping condition and following link to drugs...") for i in range(len(table)): Condition = response.xpath('//*[@id="az-box"]/div//a/text()').extract()[i] yield Request(response.urljoin(response.xpath('//*[@id="az-box"]/div//a/@href').extract()[i]), \ callback = self.parse_drug, meta = {'Condition' : Condition},\ dont_filter= True) def parse_drug(self, response): # following links to drug details Condition = response.meta['Condition'] print("scraping drug info and following link to details...") if re.search('Please select a condition below to view a list', response.body): yield Request(response.urljoin(response.xpath('//*[@id="fdbSearchResults"]/ul/li[1]/a//@href').extract()[0]),\ callback = self.parse_drug, meta = {'Condition': Condition},\ dont_filter= True) else: rows = response.xpath('//*[@id="vit_drugsContent"]/div/div/table[2]/tr').extract() for i in range(len(rows)): Drug = response.xpath('//*[@id="vit_drugsContent"]/div/div/table[2]/tr/td[1]/a/text()').extract()[i] Indication = response.xpath('//*[@id="vit_drugsContent"]/div/div/table[2]/tr/td[2]/@class').extract()[i].replace('drug_ind_fmt', '') Type = response.xpath('//*[@id="vit_drugsContent"]/div/div/table[2]/tr/td[3]/@class').extract()[i].replace('drug_type_fmt', '') Review = response.xpath('//*[@id="vit_drugsContent"]/div/div/table[2]/tr/td[4]/a/text()').extract()[i].replace('\r\n', '') aspx_index = response.xpath('//*[@id="vit_drugsContent"]/div/div/table[2]/tr/td[1]/a/@href').extract()[i].find('aspx') + 4 yield Request(response.urljoin(response.xpath('//*[@id="vit_drugsContent"]/div/div/table[2]/tr/td[1]/a//@href').extract()[i][:aspx_index]),\ callback = self.parse_details, meta = {'Condition': Condition, 'Drug': Drug, 'Indication': Indication, 'Type': Type, 'Review': Review},\ dont_filter= True) def parse_details(self, response): Condition = response.meta['Condition'] Drug = response.meta['Drug'] Indication = response.meta['Indication'] Type = response.meta['Type'] Review = response.meta['Review'] print("scraping details and following link to contraindications...") if re.search('The medication you searched for has more', response.body): yield Request(response.urljoin(response.xpath('//*[@id="ContentPane28"]/div/section/p[1]/a//@href').extract()[0]), \ callback = self.parse_details, meta = {'Condition': Condition, 'Drug': Drug, 'Indication': Indication, 'Type': Type, 'Review': Review},\ dont_filter= True) else: Use = ' '.join(response.xpath('//*[@id="ContentPane28"]/div/div/div/div[3]/div[1]/div[1]/h3/preceding-sibling::p//text()').extract()) HowtoUse = ' '.join(response.xpath('//*[@id="ContentPane28"]/div/div/div/div[3]/div[1]/div[1]/h3/following-sibling::p//text()').extract()) Sides = ' '.join(response.xpath('//*[@id="ContentPane28"]/div/div/div/div[3]/div[2]/div/p[1]//text()').extract()).replace('\r\n', '') Precautions = ' '.join(response.xpath('//*[@id="ContentPane28"]/div/div/div/div[3]/div[3]/div/p//text()').extract()) Interactions = ' '.join(response.xpath('//*[@id="ContentPane28"]/div/div/div/div[3]/div[4]/div[1]/p[2]//text()').extract()) revurl = response.xpath('//*[@id="ContentPane28"]/div/div/div/div[2]/nav/ul/li[7]/a//@href').extract()[0] if re.search('(rx/)(\d+)',response.xpath('//*[@id="ContentPane28"]/div/div/div/div[4]/div[1]/div/a/@href').extract()[0]): priceid = re.search('(rx/)(\d+)',response.xpath('//*[@id="ContentPane28"]/div/div/div/div[4]/div[1]/div/a/@href').extract()[0]).group(2) else: priceid = '' if not Use: Use = ' ' if not Sides: Sides = ' ' if not Interactions: Interactions = ' ' if not Precautions: Precautions = ' ' if not HowtoUse: HowtoUse = ' ' if re.search('COMMON BRAND NAME', response.body): BrandName = ', '.join(response.xpath('//*[@id="ContentPane28"]/div/header/section/section[1]/p/a/text()').extract()) GenName = response.xpath('//*[@id="ContentPane28"]/div/header/section/section[2]/p/text()').extract()[0] if not BrandName: BrandName = ' ' if not GenName: GenName = ' ' elif re.search('GENERIC NAME', response.body): BrandName = ' ' GenName = response.xpath('//*[@id="ContentPane28"]/div/header/section/section[1]/p/text()').extract()[0] if not GenName: GenName = ' ' else: GenName = ' ' BrandName = ' ' yield Request(response.urljoin(response.url + '/list-contraindications'),\ callback = self.parse_avoid, meta = {'Condition': Condition, 'Drug': Drug, 'Indication': Indication, 'Type': Type, 'Review': Review,\ 'Use': Use, \ 'HowtoUse': HowtoUse, \ 'Sides': Sides,\ 'Precautions': Precautions,\ 'Interactions': Interactions,\ 'BrandName': BrandName,\ 'GenName': GenName,\ 'revurl': revurl,\ 'priceid': priceid},\ dont_filter= True) def parse_avoid(self, response): Condition = response.meta['Condition'] Drug = response.meta['Drug'] Indication = response.meta['Indication'] Type = response.meta['Type'] Review = response.meta['Review'] Use = response.meta['Use'] HowtoUse = response.meta['HowtoUse'] Sides = response.meta['Sides'] Precautions = response.meta['Precautions'] Interactions = response.meta['Interactions'] BrandName = response.meta['BrandName'] GenName = response.meta['GenName'] revurl = response.meta['revurl'] priceid = response.meta['priceid'] print("scraping avoid use cases...") if re.search("We\'re sorry, but we couldn\'t find the page you tried", response.body): AvoidUse = ' ' Allergies = ' ' elif re.search('Conditions:', response.body): AvoidUse = ' '.join(response.xpath('//*[@id="ContentPane28"]/div/article/section/p[2]/text()').extract()) Allergies = ' '.join(response.xpath('//*[@id="ContentPane28"]/div/article/section/p[3]/text()').extract()) elif re.search('Allergies:', response.body): AvoidUse = ' ' Allergies = ' '.join(response.xpath('//*[@id="ContentPane28"]/div/article/section/p[2]/text()').extract()) else: AvoidUse = ' ' Allergies = ' ' if not AvoidUse: AvoidUse = ' ' if not Allergies: Allergies = ' ' yield Request(response.urljoin(revurl), \ callback=self.parse_reviews, meta={'Condition': Condition, 'Drug': Drug, 'Indication': Indication, 'Type': Type, 'Review': Review, \ 'Use': Use, \ 'HowtoUse': HowtoUse, \ 'Sides': Sides, \ 'Precautions': Precautions, \ 'Interactions': Interactions, \ 'BrandName': BrandName, \ 'GenName': GenName, \ 'AvoidUse': AvoidUse,\ 'Allergies': Allergies,\ 'priceid': priceid}, \ dont_filter=True) def parse_reviews(self, response): Condition = response.meta['Condition'] Drug = response.meta['Drug'] Indication = response.meta['Indication'] Type = response.meta['Type'] Review = response.meta['Review'] Use = response.meta['Use'] HowtoUse = response.meta['HowtoUse'] Sides = response.meta['Sides'] Precautions = response.meta['Precautions'] Interactions = response.meta['Interactions'] BrandName = response.meta['BrandName'] GenName = response.meta['GenName'] AvoidUse = response.meta['AvoidUse'] Allergies = response.meta['Allergies'] priceid = response.meta['priceid'] if re.search('Rate this treatment and share your opinion', response.body): Effectiveness = ' ' EaseofUse = ' ' Satisfaction = ' ' yield Request('http://www.webmd.com/search/2/api/rx/forms/v2/' + priceid, \ method='GET', headers=headers, \ callback=self.parse_prices, \ meta={'Condition': Condition, 'Drug': Drug, 'Indication': Indication, 'Type': Type, 'Review': Review, \ 'Use': Use, \ 'HowtoUse': HowtoUse, \ 'Sides': Sides, \ 'Precautions': Precautions, \ 'Interactions': Interactions, \ 'BrandName': BrandName, \ 'GenName': GenName, \ 'AvoidUse': AvoidUse, \ 'Allergies': Allergies, 'Effectiveness': Effectiveness, \ 'EaseofUse': EaseofUse, \ 'Satisfaction': Satisfaction}, \ dont_filter=True) elif re.search('Be the first to share your experience with this treatment', response.body): Effectiveness = ' ' EaseofUse = ' ' Satisfaction = ' ' yield Request('http://www.webmd.com/search/2/api/rx/forms/v2/' + priceid, \ method='GET', headers=headers, \ callback=self.parse_prices, \ meta={'Condition': Condition, 'Drug': Drug, 'Indication': Indication, 'Type': Type, 'Review': Review, \ 'Use': Use, \ 'HowtoUse': HowtoUse, \ 'Sides': Sides, \ 'Precautions': Precautions, \ 'Interactions': Interactions, \ 'BrandName': BrandName, \ 'GenName': GenName, \ 'AvoidUse': AvoidUse, \ 'Allergies': Allergies, 'Effectiveness': Effectiveness, \ 'EaseofUse': EaseofUse, \ 'Satisfaction': Satisfaction}, \ dont_filter=True) else: url = 'http://www.webmd.com/drugs/service/UserRatingService.asmx/GetUserReviewSummary?repositoryId=1&primaryId=' # 6007&secondaryId=-1&secondaryIdValue=' url2 = '&secondaryId=-1&secondaryIdValue=' id = re.search('(drugid=)(\d+)', response.url).group(2) id2 = urllib.quote(re.sub("\s+", " ", response.xpath('//option[@value = -1]//text()').extract()[0]).strip()) yield Request(url + id + url2 + id2,\ callback= self.parse_ratings, \ meta={'Condition': Condition, 'Drug': Drug, 'Indication': Indication, 'Type': Type, 'Review': Review, \ 'Use': Use, \ 'HowtoUse': HowtoUse, \ 'Sides': Sides, \ 'Precautions': Precautions, \ 'Interactions': Interactions, \ 'BrandName': BrandName, \ 'GenName': GenName, \ 'AvoidUse': AvoidUse, \ 'Allergies': Allergies, \ 'priceid': priceid}, \ dont_filter=True) def parse_ratings(self, response): Condition = response.meta['Condition'] Drug = response.meta['Drug'] Indication = response.meta['Indication'] Type = response.meta['Type'] Review = response.meta['Review'] Use = response.meta['Use'] HowtoUse = response.meta['HowtoUse'] Sides = response.meta['Sides'] Precautions = response.meta['Precautions'] Interactions = response.meta['Interactions'] BrandName = response.meta['BrandName'] GenName = response.meta['GenName'] AvoidUse = response.meta['AvoidUse'] Allergies = response.meta['Allergies'] priceid = response.meta['priceid'] if re.search('("xsd:string">)(\d+.\d+)',response.xpath('//*/*').extract()[3]): Effectiveness = re.search('("xsd:string">)(\d+.\d+)',response.xpath('//*/*').extract()[3]).group(2) else: Effectiveness = re.search('("xsd:string">)(\d+)',response.xpath('//*/*').extract()[3]).group(2) if re.search('("xsd:string">)(\d+.\d+)',response.xpath('//*/*').extract()[4]): EaseofUse = re.search('("xsd:string">)(\d+.\d+)',response.xpath('//*/*').extract()[4]).group(2) else: EaseofUse = re.search('("xsd:string">)(\d+)',response.xpath('//*/*').extract()[4]).group(2) if re.search('("xsd:string">)(\d+.\d+)',response.xpath('//*/*').extract()[5]): Satisfaction = re.search('("xsd:string">)(\d+.\d+)',response.xpath('//*/*').extract()[5]).group(2) else: Satisfaction = re.search('("xsd:string">)(\d+)',response.xpath('//*/*').extract()[5]).group(2) if priceid != '': yield Request('http://www.webmd.com/search/2/api/rx/forms/v2/'+priceid,\ method='GET', headers=headers, \ callback=self.parse_prices, \ meta={'Condition': Condition, 'Drug': Drug, 'Indication': Indication, 'Type': Type, 'Review': Review, \ 'Use': Use, \ 'HowtoUse': HowtoUse, \ 'Sides': Sides, \ 'Precautions': Precautions, \ 'Interactions': Interactions, \ 'BrandName': BrandName, \ 'GenName': GenName, \ 'AvoidUse': AvoidUse, \ 'Allergies': Allergies, 'Effectiveness': Effectiveness,\ 'EaseofUse': EaseofUse,\ 'Satisfaction': Satisfaction}, \ dont_filter=True) else: strength = ' ' form = ' ' val = ' ' EstimatedPrice = ' ' item = WebmdItem() item['AvoidUse'] = AvoidUse item['Allergies'] = Allergies item['Use'] = Use item['HowtoUse'] = HowtoUse item['Precautions'] = Precautions item['Interactions'] = Interactions item['Sides'] = Sides item['Condition'] = Condition item['Drug'] = Drug item['Indication'] = Indication item['Type'] = Type item['Review'] = Review item['BrandName'] = BrandName item['GenName'] = GenName item['Effectiveness'] = Effectiveness item['EaseofUse'] = EaseofUse item['Satisfaction'] = Satisfaction item['EstimatedPrice'] = EstimatedPrice item['Dosage'] = strength item['PkgCount'] = val item['Form'] = form yield item def parse_prices(self, response): Condition = response.meta['Condition'] Drug = response.meta['Drug'] Indication = response.meta['Indication'] Type = response.meta['Type'] Review = response.meta['Review'] Use = response.meta['Use'] HowtoUse = response.meta['HowtoUse'] Sides = response.meta['Sides'] Precautions = response.meta['Precautions'] Interactions = response.meta['Interactions'] BrandName = response.meta['BrandName'] GenName = response.meta['GenName'] AvoidUse = response.meta['AvoidUse'] Allergies = response.meta['Allergies'] Effectiveness = response.meta['Effectiveness'] EaseofUse = response.meta['EaseofUse'] Satisfaction = response.meta['Satisfaction'] if re.search('("NDC":\[")(\d+)', response.body): if re.search('("value":)(\d+)', response.body).group(2): ndc = re.search('("NDC":\[")(\d+)', response.body).group(2) val = re.search('("value":)(\d+)', response.body).group(2) if re.search('("form":")(\w+)', response.body): form = re.search('("form":")(\w+)', response.body).group(2) else: form = ' ' if re.search('("strength":")(\d+\s+\w+)', response.body): strength = re.search('("strength":")(\d+\s+\w+)', response.body).group(2) else: strength = ' ' urlp = 'http://www.webmd.com/search/2/api/rx/pricing/ndc/' urlp2 = '00000?lat=40.7466&lng=-73.9098&rad=5&rollup=true&pgroup=' yield Request(urlp + ndc + '/' + val + '/' + urlp2, \ method='GET', headers=headers, callback=self.parse_estprice, meta={'Condition': Condition, 'Drug': Drug, 'Indication': Indication, 'Type': Type, 'Review': Review, \ 'Use': Use, \ 'HowtoUse': HowtoUse, \ 'Sides': Sides, \ 'Precautions': Precautions, \ 'Interactions': Interactions, \ 'BrandName': BrandName, \ 'GenName': GenName, \ 'AvoidUse': AvoidUse, \ 'Allergies': Allergies, 'Effectiveness': Effectiveness, \ 'EaseofUse': EaseofUse, \ 'Satisfaction': Satisfaction,\ 'strength': strength,\ 'val': val,\ 'form': form}, \ dont_filter=True) else: strength = ' ' form = ' ' val= ' ' EstimatedPrice = ' ' item = WebmdItem() item['AvoidUse'] = AvoidUse item['Allergies'] = Allergies item['Use'] = Use item['HowtoUse'] = HowtoUse item['Precautions'] = Precautions item['Interactions'] = Interactions item['Sides'] = Sides item['Condition'] = Condition item['Drug'] = Drug item['Indication'] = Indication item['Type'] = Type item['Review'] = Review item['BrandName'] = BrandName item['GenName'] = GenName item['Effectiveness'] = Effectiveness item['EaseofUse'] = EaseofUse item['Satisfaction'] = Satisfaction item['EstimatedPrice'] = EstimatedPrice item['Dosage'] = strength item['PkgCount'] = val item['Form'] = form yield item def parse_estprice(self,response): Condition = response.meta['Condition'] Drug = response.meta['Drug'] Indication = response.meta['Indication'] Type = response.meta['Type'] Review = response.meta['Review'] Use = response.meta['Use'] HowtoUse = response.meta['HowtoUse'] Sides = response.meta['Sides'] Precautions = response.meta['Precautions'] Interactions = response.meta['Interactions'] BrandName = response.meta['BrandName'] GenName = response.meta['GenName'] AvoidUse = response.meta['AvoidUse'] Allergies = response.meta['Allergies'] Effectiveness = response.meta['Effectiveness'] EaseofUse = response.meta['EaseofUse'] Satisfaction = response.meta['Satisfaction'] strength = response.meta['strength'] val = response.meta['val'] form = response.meta['form'] if re.search('("PharmacyGroupMinPrice":)(\d+.\d+)', response.body): EstimatedPrice = re.search('("PharmacyGroupMinPrice":)(\d+.\d+)', response.body).group(2) item = WebmdItem() item['AvoidUse'] = AvoidUse item['Allergies'] = Allergies item['Use'] = Use item['HowtoUse'] = HowtoUse item['Precautions'] = Precautions item['Interactions'] = Interactions item['Sides'] = Sides item['Condition'] = Condition item['Drug'] = Drug item['Indication'] = Indication item['Type'] = Type item['Review'] = Review item['BrandName'] = BrandName item['GenName'] = GenName item['Effectiveness'] = Effectiveness item['EaseofUse'] = EaseofUse item['Satisfaction'] = Satisfaction item['EstimatedPrice'] = EstimatedPrice item['Dosage'] = strength item['PkgCount'] = val item['Form'] = form yield item elif re.search('("PharmacyGroupMinPrice":)(\d+)', response.body): EstimatedPrice = re.search('("PharmacyGroupMinPrice":)(\d+)', response.body).group(2) item = WebmdItem() item['AvoidUse'] = AvoidUse item['Allergies'] = Allergies item['Use'] = Use item['HowtoUse'] = HowtoUse item['Precautions'] = Precautions item['Interactions'] = Interactions item['Sides'] = Sides item['Condition'] = Condition item['Drug'] = Drug item['Indication'] = Indication item['Type'] = Type item['Review'] = Review item['BrandName'] = BrandName item['GenName'] = GenName item['Effectiveness'] = Effectiveness item['EaseofUse'] = EaseofUse item['Satisfaction'] = Satisfaction item['EstimatedPrice'] = EstimatedPrice item['Dosage'] = strength item['PkgCount'] = val item['Form'] = form yield item else: EstimatedPrice = ' ' item = WebmdItem() item['AvoidUse'] = AvoidUse item['Allergies'] = Allergies item['Use'] = Use item['HowtoUse'] = HowtoUse item['Precautions'] = Precautions item['Interactions'] = Interactions item['Sides'] = Sides item['Condition'] = Condition item['Drug'] = Drug item['Indication'] = Indication item['Type'] = Type item['Review'] = Review item['BrandName'] = BrandName item['GenName'] = GenName item['Effectiveness'] = Effectiveness item['EaseofUse'] = EaseofUse item['Satisfaction'] = Satisfaction item['EstimatedPrice'] = EstimatedPrice item['Dosage'] = strength item['PkgCount'] = val item['Form'] = form yield item ```
{ "source": "27Saumya/dhravyapy", "score": 3 }
#### File: dhravyapy/examples/qrcode.py ```python import dhravyapy import asyncio async def main(): # the text of the qrcode(can be links or just normal text) text = "https://api.dhravya.me" qrcode = await dhravyapy.Image.qrcode(text) # saving the image of the qrcode await qrcode.save("qrcode.png") if __name__ == "__main__": loop = asyncio.get_event_loop() loop.run_until_complete(main()) ``` #### File: dhravyapy/examples/trivia.py ```python import dhravyapy import asyncio async def main(): trivia = await dhravyapy.Info.trivia() question = trivia.question answer = trivia.answer x = input(f"{question} \nType the answer...") if x.lower() == answer.lower(): print("Good job you got the right answer!") else: print(":/ Lets do a different question") if __name__ == "__main__": loop = asyncio.get_event_loop() loop.run_until_complete(main()) ```
{ "source": "27Saumya/next", "score": 2 }
#### File: boot/be/declarations.py ```python from typing import Any from llvmlite import ir, binding as _binding class Delarator: def __init__(self, module: ir.Module, binding: _binding): self.module = module self.binding = binding self.print_() def print_(self): voidptr_ty = ir.IntType(8).as_pointer() print_ty = ir.FunctionType(ir.IntType(32), [voidptr_ty], True) self.print = ir.Function(self.module, print_ty, 'printf') ``` #### File: boot/be/ir_core.py ```python import os from llvmlite import ir, binding from .declarations import Delarator class Configurator: def __init__(self): self.binding = binding self.binding.initialize() self.binding.initialize_native_target() self.binding.initialize_native_asmprinter() self._initiate_execution_engine() self.module = ir.Module(name=__file__) self.module.triple = self.binding.get_default_triple() _fn_t = ir.FunctionType(ir.VoidType(), [], False) main_fn = ir.Function(self.module, _fn_t, 'main') block = main_fn.append_basic_block(name='entry') self.builder = ir.IRBuilder(block) self._funcs = Delarator(self.module, self.binding) def _initiate_execution_engine(self): t = self.binding.Target.from_default_triple() t_machine = t.create_target_machine() backing_mod = binding.parse_assembly('') engine = binding.create_mcjit_compiler(backing_mod, target_machine=t_machine) self._engine = engine def compile_(self) -> binding.ModuleRef: self.builder.ret_void() _ir = str(self.module) mod = self.binding.parse_assembly(_ir) try: mod.verify() except RuntimeError: raise self._engine.add_module(mod) self._engine.finalize_object() self._engine.run_static_constructors() return mod def create_output(self, fp: str): try: with open(file=fp, mode='x') as _fp: self.compile_() _fp.write(str(self.module)) except FileExistsError: os.unlink(fp) self.create_output(fp) except FileNotFoundError: dir = fp.split('/')[0] os.makedirs(dir) self.create_output(fp) ``` #### File: boot/fe/ast.py ```python from llvmlite import ir from ..be import ir_core class Print: def __init__(self, ir_core: ir_core.Configurator, value): self.ir = ir_core self.value = value def eval(self): val = self.value.eval() voidptr_type = ir.IntType(8).as_pointer() fmt = '%i \n\0' c_fmt = ir.Constant(ir.ArrayType(ir.IntType(8), len(fmt)), bytearray(fmt.encode('utf8'))) global_fmt = ir.GlobalVariable(self.ir.module, c_fmt.type, 'fstr') global_fmt.linkage = 'internal' global_fmt.global_constant = True global_fmt.initializer = c_fmt fmt_arg = self.ir.builder.bitcast(global_fmt, voidptr_type) self.ir.builder.call(self.ir._funcs.print, [fmt_arg, val]) class Integer: def __init__(self, ir_core: ir_core.Configurator, value: str): self.ir = ir_core self.value = value def eval(self): return ir.Constant(ir.IntType(len(self.value)), int(self.value)) ```
{ "source": "27Saumya/yarsaw", "score": 3 }
#### File: yarsaw/examples/dpy.py ```python from discord.ext import commands import yarsaw bot = commands.Bot(command_prefix="!") # create yarsaw client client = yarsaw.Client("Random Stuff API Key", "RapidAPI Application Key") @bot.command() async def joke(ctx): joke = await client.get_safe_joke() await ctx.send(yarsaw.format_joke(joke)) bot.load_extension("dpy-cogs") # load the cog from dpy-cogs.py bot.run("TOKEN") ``` #### File: yarsaw/tests/endpoints_test.py ```python import unittest import yarsaw import os import dotenv import asyncio dotenv.load_dotenv() client = yarsaw.Client(os.getenv("RSA_KEY"), os.getenv("APP_KEY")) class TestEndpoints(unittest.TestCase): async def ai(self): res = await client.get_ai_response("Hello") self.assertIsInstance(res, yarsaw.AIResponse) async def animal(self): res = await client.get_animal_image("Fox") self.assertIsInstance(res, yarsaw.Image) async def anime(self): res = await client.get_anime_gif("happy") self.assertIsInstance(res, yarsaw.Image) async def canvas(self): res = await client.canvas("changemymind", txt="YARSAW is Awesome!") self.assertIsInstance(res, yarsaw.CanvasResponse) async def joke(self): res = await client.get_joke() self.assertIsInstance(res, yarsaw.Joke) async def fetch_subreddit_post(self): res = await client.fetch_subreddit_post("aww") self.assertIsInstance(res, yarsaw.RedditPost) async def fetch_post(self): res = await client.fetch_post("aww") self.assertIsInstance(res, yarsaw.RedditPost) async def fetch_post_by_id(self): res = await client.fetch_post_by_id("awyf90") self.assertIsInstance(res, yarsaw.RedditPost) async def fetch_random_post(self): res = await client.fetch_random_post() self.assertIsInstance(res, yarsaw.RedditPost) async def random_meme(self): res = await client.random_meme() self.assertIsInstance(res, yarsaw.RedditPost) async def get_weather(self): res = await client.get_weather("New York") self.assertIsInstance(res, dict) async def get_fact(self): res = await client.get_fact() self.assertIsInstance(res, yarsaw.Fact) def test_ai(self): asyncio.get_event_loop().run_until_complete(self.ai()) def test_animal(self): asyncio.get_event_loop().run_until_complete(self.animal()) def test_anime(self): asyncio.get_event_loop().run_until_complete(self.anime()) def test_canvas(self): asyncio.get_event_loop().run_until_complete(self.canvas()) def test_joke(self): asyncio.get_event_loop().run_until_complete(self.joke()) def test_weather(self): asyncio.get_event_loop().run_until_complete(self.get_weather()) def test_reddit(self): asyncio.get_event_loop().run_until_complete(self.fetch_subreddit_post()) asyncio.get_event_loop().run_until_complete(self.fetch_post()) asyncio.get_event_loop().run_until_complete(self.fetch_post_by_id()) asyncio.get_event_loop().run_until_complete(self.fetch_random_post()) asyncio.get_event_loop().run_until_complete(self.random_meme()) def test_fact(self): asyncio.get_event_loop().run_until_complete(self.get_fact()) if __name__ == "__main__": unittest.main() ``` #### File: yarsaw/yarsaw/client.py ```python from .httpclient import * from .utils import * import base64 import aiohttp from .data_classes import * from typing import Union class Client(HTTPClient): """ Represents a client object used to interact with the Random Stuff API. Parameters ---------- authorization : :class:`str` Your API Key for the Random Stuff API used to authenticate your requests. key : :class:`str` Your RapidAPI-Key for the Random Stuff API used to authenticate your requests. """ async def get_ai_response(self, message: str, **kwargs) -> AIResponse: """ Gets AI responses from the API. Parameters ------------- message: :class:`str` The message you want to get the AI response for. id: Optional[Union[:class:`str`, :class:`int`]] Assign an unique ID for customized response for each user. bot_name: Optional[:class:`str`] Set a name for the AI replying to your message. bot_gender: Optional[:class:`str`] Set a gender for the AI replying to your message. bot_master: Optional[:class:`str`] The creator/master of the AI replying to your message. bot_age: Optional[:class:`str`] The age of the AI replying to your message. bot_company: Optional[:class:`str`] The company that owns the AI replying to your message. bot_location: Optional[:class:`str`] The location of the AI replying to your message. bot_email: Optional[:class:`str`] The email of the AI replying to your message. bot_build: Optional[:class:`str`] The build of the AI replying to your message. bot_birth_year: Optional[:class:`str`] The birth year of the AI replying to your message. bot_birth_date: Optional[:class:`str`] The birth date of the AI replying to your message. bot_birth_place: Optional[:class:`str`] The birth place of the AI replying to your message. bot_favorite_color: Optional[:class:`str`] The favorite color of the AI replying to your message. bot_favorite_book: Optional[:class:`str`] The favorite book of the AI replying to your message. bot_favorite_band: Optional[:class:`str`] The favorite band of the AI replying to your message. bot_favorite_artist: Optional[:class:`str`] The favorite artist of the AI replying to your message. bot_favorite_actress: Optional[:class:`str`] The favorite actress of the AI replying to your message. bot_favorite_actor: Optional[:class:`str`] The favorite actor of the AI replying to your message. Returns ------------- :class:`AIResponse` An object containing the AI response and its details. """ response = await self.request("ai", params={"msg": message, **kwargs}) return AIResponse( response.body["AIResponse"], BotDetails( response.body["BotDetails"]["BotName"], response.body["BotDetails"]["BotMaster"], response.body["BotDetails"]["BotAge"], response.body["BotDetails"]["BotLocation"], response.body["BotDetails"]["BotCompany"], response.body["BotDetails"]["BotBirthYear"], response.body["BotDetails"]["BotBirthDate"], response.body["BotDetails"]["BotBirthPlace"], ), APIInfo( int(response.headers["X-RateLimit-Requests-Limit"]), int(response.headers["X-RateLimit-Requests-Remaining"]), int(response.headers["X-RateLimit-Requests-Reset"]), ), ) async def get_animal_image(self, animal: str, amount: int = 1) -> Image: """ Gets animal images from the API. Parameters ------------- animal: :class:`str` The animal you want to get images for. Supported Animals: Dog, Cat, Wolf, Fox amount: Optional[:class:`int`] The amount of images you want to get. Returns ------------- :class:`Image` An object containing the image. """ try: if animal.upper() not in ANIMAL_TYPES: raise ValueError( "Animal not supported. Supported animals are: " + ", ".join(ANIMAL_TYPES) ) except AttributeError as e: raise ValueError( "Invalid Parameter Type. Make sure you are passing a string." ) from e response = await self.request( f"animals/{animal.upper()}", params={"limit": amount} ) images = response.body image_list = [image["url"] for image in images] return Image( image_list, APIInfo( int(response.headers["X-RateLimit-Requests-Limit"]), int(response.headers["X-RateLimit-Requests-Remaining"]), int(response.headers["X-RateLimit-Requests-Reset"]), ), ) async def get_anime_gif(self, gif_type: str, amount: int = 1) -> Image: """ Gets an anime gif from the API. Parameters ------------- gif_type: :class:`str` The type of gif you want to get. Allowed Types: happy, hi, kiss, hug, punch, pat, slap, nervous, run, cry amount: Optional[:class:`int`] The number of gifs you want to get. Returns ------------- :class:`Image` An object containing the gif. """ try: if gif_type.lower() not in ANIME_TYPES: raise ValueError( "Invalid Anime GIF Type. Supported types are: " + ", ".join(ANIME_TYPES) ) except AttributeError as e: raise ValueError( "Invalid Parameter Type. Make sure you are passing a string." ) from e response = await self.request( f"anime/{gif_type.lower()}", params={"limit": amount} ) gifs = response.body gif_list = [gif["url"] for gif in gifs] return Image( gif_list, APIInfo( int(response.headers["X-RateLimit-Requests-Limit"]), int(response.headers["X-RateLimit-Requests-Remaining"]), int(response.headers["X-RateLimit-Requests-Reset"]), ), ) async def canvas( self, method, save_to=None, txt=None, text=None, img1=None, img2=None, img3=None ) -> Union[CanvasResponse, int]: """ Edit Images with the API. Parameters ------------- method: :class:`str` The method to be used to edit the image. **Allowed Methods**: - Method(s) in which only 1 image is required: ``affect``, ``beautiful``, ``wanted``, ``delete``, ``trigger``, ``facepalm``, ``blur``, ``hitler``, ``kiss``, ``jail``, ``invert``, ``jokeOverHead`` - Method(s) in which 2 images are required: ``bed``, ``fuse`` , ``kiss``, ``slap``, ``spank`` - Method(s) in which 3 images are required: ``distracted`` - Method(s) in which only Text is required: ``changemymind`` save_to: Optional[:class:`str`] The path to save the edited image to. If not specified, the edited image will be returned as bytes. txt: Optional[:class:`str`] The text required for your method. text: Optional[:class:`str`] The text required for your method. Alias of txt. img1: Optional[:class:`str`] The path/link to the first image. img2: Optional[:class:`str`] The path/link to the second image. img3: Optional[:class:`str`] The path/link to the third image. Returns ------------- Union[:class:`CanvasResponse`, :class:`int`] If save_to is not specified, the edited image will be returned as a Response object containing the base64 encoded image. If save_to is specified, the edited image will be saved to the specified path, and will 200. """ params = { "txt": txt or text or "", "img1": img1 or "", "img2": img2 or "", "img3": img3 or "", } response = await self.request(f"canvas/{method}", params=params) base = response.body["base64"] if save_to: with open(save_to, "wb") as file: file.write(base64.b64decode((base))) return 200 return CanvasResponse( base64.b64decode((base)), base, APIInfo( int(response.headers["X-RateLimit-Requests-Limit"]), int(response.headers["X-RateLimit-Requests-Remaining"]), int(response.headers["X-RateLimit-Requests-Reset"]), ), ) async def get_joke(self, joke_type="any", blacklist: list = None) -> Joke: """ Fetches jokes from the API. Parameters ------------- joke_type: Optional[:class:`str`] The type of joke you want to fetch. Allowed Values: "any", "dark", "pun", "spooky", "christmas", "Programming", "misc" blacklist: Optional[:class:`list`] A list of types jokes you want to blacklist. Allowed Values: "all", "nsfw", "religious", "political", "racist", "sexist", "explicit" Returns ------------- :class:`Joke` An object containing the joke and its details. """ if blacklist is None: blacklist = [] joke_type = joke_type.lower() if joke_type.lower() not in JOKE_TYPES: supported_types = ", ".join(JOKE_TYPES) raise ValueError(f"Invalid Type. Supported types are: {supported_types}") # API Bug: The Joke Type Query must be titlecased if the type of joke is "programming" if joke_type.lower() == "programming": joke_type = "Programming" else: joke_type = joke_type.lower() blist = "" if blacklist: if "all" in blacklist: blist = "nsfw&religious&political&racist&sexist&explicit" else: blist = "&".join(blacklist) response = await self.request( f"joke?blacklist={blist}", params={"type": joke_type} ) if response.body["type"] == "twopart": return Joke( response.body["error"], response.body["category"], response.body["type"], response.body["flags"], response.body["id"], response.body["safe"], response.body["lang"], APIInfo( int(response.headers["X-RateLimit-Requests-Limit"]), int(response.headers["X-RateLimit-Requests-Remaining"]), int(response.headers["X-RateLimit-Requests-Reset"]), ), setup=response.body["setup"], delivery=response.body["delivery"], ) return Joke( response.body["error"], response.body["category"], response.body["type"], response.body["flags"], response.body["id"], response.body["safe"], response.body["lang"], APIInfo( int(response.headers["X-RateLimit-Requests-Limit"]), int(response.headers["X-RateLimit-Requests-Remaining"]), int(response.headers["X-RateLimit-Requests-Reset"]), ), joke=response.body["joke"], ) async def get_safe_joke(self, joke_type="any") -> Joke: """ Fetches safe jokes from the API. These jokes are family-friendly. Parameters ------------- joke_type: Optional[:class:`str`] The type of joke you want to fetch. Allowed Values: "any", "dark", "pun", "spooky", "christmas", "Programming", "misc" Returns ------------- :class:`Joke` An object containing the joke and its details. """ joke = await self.get_joke(joke_type=joke_type, blacklist=["all"]) while joke.safe is not True: joke = await self.get_joke(joke_type=joke_type, blacklist=["all"]) return joke async def fetch_subreddit_post( self, subreddit: str, search_type: str = "hot" ) -> RedditPost: """ Fetches a random post from a subreddit. Parameters ------------- subreddit: :class:`str` The subreddit to fetch a post from. search_type: Optional[:class:`str`] This is how it sorts the posts. Allows: "hot", "new", "rising", "top" Returns ------------- :class:`RedditPost` An object containing the post and its details. """ if search_type.lower() not in SEARCH_TYPES: raise ValueError( "Invalid Search Type. Supported types are: " + ", ".join(SEARCH_TYPES) ) res = await self.request( "reddit/FetchSubredditPost", params={"subreddit": subreddit, "searchType": search_type}, ) return RedditPost( res.body["id"], res.body["type"], res.body["title"], res.body["author"], res.body["postLink"], res.body["image"], res.body["gallery"], res.body["text"], res.body["thumbnail"], res.body["subreddit"], res.body["NSFW"], res.body["spoiler"], res.body["createdUtc"], res.body["upvotes"], res.body["downvotes"], res.body["upvoteRatio"], APIInfo( int(res.headers["X-RateLimit-Requests-Limit"]), int(res.headers["X-RateLimit-Requests-Remaining"]), int(res.headers["X-RateLimit-Requests-Reset"]), ), ) async def fetch_post(self, subreddit: str, search_type: str = "hot") -> RedditPost: """ Fetches a random post from a subreddit. This is an alias of :meth:`fetch_subreddit_post`. Parameters ------------- subreddit: :class:`str` The subreddit to fetch a post from. search_type: Optional[:class:`str`] This is how it sorts the posts. Allows: "hot", "new", "rising", "top" Returns ------------- :class:`RedditPost` An object containing the post and its details. """ if search_type.lower() not in SEARCH_TYPES: raise ValueError( "Invalid Search Type. Supported types are: " + ", ".join(SEARCH_TYPES) ) res = await self.request( "reddit/FetchPost", params={"subreddit": subreddit, "searchType": search_type}, ) return RedditPost( res.body["id"], res.body["type"], res.body["title"], res.body["author"], res.body["postLink"], res.body["image"], res.body["gallery"], res.body["text"], res.body["thumbnail"], res.body["subreddit"], res.body["NSFW"], res.body["spoiler"], res.body["createdUtc"], res.body["upvotes"], res.body["downvotes"], res.body["upvoteRatio"], APIInfo( int(res.headers["X-RateLimit-Requests-Limit"]), int(res.headers["X-RateLimit-Requests-Remaining"]), int(res.headers["X-RateLimit-Requests-Reset"]), ), ) async def random_meme(self, search_type: str = "hot") -> RedditPost: """ Gets a random meme from reddit. Parameters ------------- search_type: Optional[:class:`str`] This is how it sorts the posts. Allows: "hot", "new", "rising", "top" Returns ------------- :class:`RedditPost` An object containing the post and its details. """ if search_type.lower() not in SEARCH_TYPES: raise ValueError( "Invalid Search Type. Supported types are: " + ", ".join(SEARCH_TYPES) ) res = await self.request( "reddit/RandomMeme", params={"searchType": search_type} ) return RedditPost( res.body["id"], res.body["type"], res.body["title"], res.body["author"], res.body["postLink"], res.body["image"], res.body["gallery"], res.body["text"], res.body["thumbnail"], res.body["subreddit"], res.body["NSFW"], res.body["spoiler"], res.body["createdUtc"], res.body["upvotes"], res.body["downvotes"], res.body["upvoteRatio"], APIInfo( int(res.headers["X-RateLimit-Requests-Limit"]), int(res.headers["X-RateLimit-Requests-Remaining"]), int(res.headers["X-RateLimit-Requests-Reset"]), ), ) async def fetch_random_post(self, search_type: str = "hot") -> RedditPost: """ Fetches a random post from reddit. Parameters ------------- search_type: Optional[:class:`str`] This is how it sorts the posts. Allows: "hot", "new", "rising", "top" Returns ------------- :class:`RedditPost` An object containing the post and its details. """ if search_type.lower() not in SEARCH_TYPES: raise ValueError( "Invalid Search Type. Supported types are: " + ", ".join(SEARCH_TYPES) ) res = await self.request( "reddit/FetchRandomPost", params={"searchType": search_type} ) return RedditPost( res.body["id"], res.body["type"], res.body["title"], res.body["author"], res.body["postLink"], res.body["image"], res.body["gallery"], res.body["text"], res.body["thumbnail"], res.body["subreddit"], res.body["NSFW"], res.body["spoiler"], res.body["createdUtc"], res.body["upvotes"], res.body["downvotes"], res.body["upvoteRatio"], APIInfo( int(res.headers["X-RateLimit-Requests-Limit"]), int(res.headers["X-RateLimit-Requests-Remaining"]), int(res.headers["X-RateLimit-Requests-Reset"]), ), ) async def fetch_post_by_id( self, post_id: str, search_type: str = "hot" ) -> RedditPost: """ Fetch a reddit post by its ID. Parameters ------------- post_id: :class:`str` The ID of the post to fetch. search_type: Optional[:class:`str`] This is how it sorts the posts. Allows: "hot", "new", "rising", "top" Returns ------------- :class:`RedditPost` An object containing the post and its details. """ if search_type.lower() not in SEARCH_TYPES: raise ValueError( "Invalid Search Type. Supported types are: " + ", ".join(SEARCH_TYPES) ) res = await self.request( "reddit/FetchPostById", params={"id": post_id, "searchType": search_type} ) return RedditPost( res.body["id"], res.body["type"], res.body["title"], res.body["author"], res.body["postLink"], res.body["image"], res.body["gallery"], res.body["text"], res.body["thumbnail"], res.body["subreddit"], res.body["NSFW"], res.body["spoiler"], res.body["createdUtc"], res.body["upvotes"], res.body["downvotes"], res.body["upvoteRatio"], APIInfo( int(res.headers["X-RateLimit-Requests-Limit"]), int(res.headers["X-RateLimit-Requests-Remaining"]), int(res.headers["X-RateLimit-Requests-Reset"]), ), ) # NOT TESTED - 401 Unauthorized async def get_weather(self, city: str) -> list: """ Gets the weather for a city. Parameters ------------- city: :class:`str` The city to get the weather for. Returns ------------- :class:`list` A list containing the weather details. """ res = await self.request("weather", params={"city": city}) try: res.body.append( APIInfo( int(res.headers["X-RateLimit-Requests-Limit"]), int(res.headers["X-RateLimit-Requests-Remaining"]), int(res.headers["X-RateLimit-Requests-Reset"]), ) ) except: return res.body else: return res.body ## PREMIUM ENDPOINTS async def get_fact(self, fact_type="all") -> Fact: """ Fetches a random fact from the API. PREMIUM ENDPOINT. Parameters ------------- fact_type: Optional[:class:`str`] The type of fact you want to fetch. Returns ------------- :class:`Fact` An object containing the fact. """ if fact_type.lower() not in FACT_TYPES: raise ValueError( "Invalid Fact Type. Supported types are: " + ", ".join(FACT_TYPES) ) res = await self.request(f"facts/{fact_type.lower()}") return Fact( res.body["fact"], APIInfo( int(res.headers["X-RateLimit-Requests-Limit"]), int(res.headers["X-RateLimit-Requests-Remaining"]), int(res.headers["X-RateLimit-Requests-Reset"]), ), ) async def get_waifu(self, image_type, waifu_type=None) -> Waifu: """ Fetches SFW or NSFW waifu images from the API. PREMIUM ENDPOINT. Parameters ------------- image_type: :class:`str` Whether you want SFW or NSFW images. waifu_type: Optional[:class:`str`] The type of waifu you want to fetch. Visit https://api-docs.pgamerx.com/Documentation/premium/waifu/#available-waifu_types for all available waifu types. Returns ------------- :class:`Waifu` An object containing the waifu image url. """ if waifu_type is None: waifu_type = "" res = await self.request( f"waifu/{image_type}", params={"waifu_type": waifu_type} ) return Waifu( res.body["url"], APIInfo( int(res.headers["X-RateLimit-Requests-Limit"]), int(res.headers["X-RateLimit-Requests-Remaining"]), int(res.headers["X-RateLimit-Requests-Reset"]), ), ) async def disconnect(self): """Closes the Client Session""" await self._session.close() async def reconnect(self): """Restarts the Client Connection""" self._session = aiohttp.ClientSession() ```
{ "source": "27Saumya/Yuki", "score": 2 }
#### File: 27Saumya/Yuki/bot.py ```python import discord from discord.ext import tasks, commands import os from discord.commands import Option, SlashCommandGroup from pytube import YouTube import asyncio import config from utils.buttons import TicketPanelView, TicketControlsView, TicketCloseTop from cogs.help import HelpOptions, members import sqlite3 from utils.helpers.help import Help_Embed from utils.helpers.configuration import get_prefix import giphy_client import topgg import aiohttp from typing import * class Bot(commands.Bot): """Subclass of `commands.Bot` (This will be our Yuki Bot)""" def __init__(self): super().__init__( command_prefix=get_prefix, description="Yuki ✨ has many features! Try it Out INVITE ME now!", intents=discord.Intents().all(), case_insensitiv1e=True, strip_after_prefix=True) for filename in os.listdir('./cogs'): if filename.endswith('.py'): self.load_extension(f"cogs.{filename[:-3]}") self.load_extension("utils.buttons") self.load_extension("jishaku") self.db = sqlite3.connect("utils/databases/main.db") self.dbcursor = self.db.cursor() self.persistent_views_added = False self.giphy = giphy_client.DefaultApi() self.DEFAULT_PREFIX = '+' self.topggpy = topgg.DBLClient(self, config.TOPGG_TOKEN, autopost=True, post_shard_count=True) self.session = aiohttp.ClientSession() self.updateactivity.start() self.update_topgg_stats.start() async def on_ready(self): print(f"{self.user.name} is online!") if not self.persistent_views_added: self.add_view(TicketPanelView(self)) self.add_view(TicketControlsView(self)) self.add_view(TicketCloseTop(self)) self.persistent_views_added = True self.dbcursor.execute('CREATE TABLE IF NOT EXISTS ticket (guild_id INTEGER , count INTEGER, category INTEGER)') self.dbcursor.execute('CREATE TABLE IF NOT EXISTS settings (guild_id INTEGER, "bump")') self.dbcursor.execute('CREATE TABLE IF NOT EXISTS tickets (guild_id INTEGER, channel_id INTEGER, opener INTEGER, switch TEXT)') self.dbcursor.execute('CREATE TABLE IF NOT EXISTS guilds (guild_id INTEGER, prefix TEXT)') self.db.commit() async def on_guild_join(self, guild: discord.Guild): self.dbcursor.execute('INSERT INTO guilds (guild_id, prefix) VALUES (?,?)', (guild.id, "+")) self.db.commit() print(f"Joined guild- {guild.name}\nAdded the server to database!") async def on_guild_remove(self, guild: discord.Guild): try: self.dbcursor.execute('DELETE FROM guilds WHERE guild_id=?', (guild.id,)) print(f"Removed from guild- {guild.name}\nRemoved the server from the database") except Exception as e: botOwner = await self.fetch_user(self.owner_id) await botOwner.send(str(e).capitalize()) async def on_message(self, message: discord.Message): if message.content.lower() == f"<@!{self.user.id}>" or message.content.lower() == f"<@{self.user.id}>": self.dbcursor.execute('SELECT * FROM guilds WHERE guild_id=?', (message.guild.id,)) prefix = self.dbcursor.fetchone()[1] await message.channel.send(embed=discord.Embed(description=f"**My prefix for this server is {prefix}**", color=discord.Color.embed_background())) try: if message.author.id == bot.user.id and len(message.embeds) > 0 and message.embeds[0].description.startswith('**Ticket closed by'): bot.dbcursor.execute(f'SELECT * FROM tickets WHERE guild_id=? AND channel_id=?', (message.guild.id, message.channel.id)) data = bot.dbcursor.fetchone() member = await bot.fetch_user(data[2]) embed = discord.Embed(description="```py\n[Support team ticket controls]```", color=discord.Color.embed_background(theme="dark")) await message.channel.send(embed=embed, view=TicketControlsView(bot)) except AttributeError: pass if message.author == bot.user: return try: if message.author.id == 302050872383242240 and len(message.embeds) > 0 and "Bump done! :thumbsup:" in message.embeds[0].description: bot.dbcursor.execute(f'SELECT bump FROM settings WHERE guild_id = {message.guild.id}') data = bot.dbcursor.fetchone() if not data: return if data: bot.dbcursor.execute(f'SELECT * FROM settings WHERE guild_id=?', (message.guild.id,)) switch = bot.dbcursor.fetchone() if switch[1] == "off": return embed = discord.Embed(description="**<:zerolove:920425612613660753> Thanks to bump the server <3**", color=discord.Color.green()) await message.channel.send(embed=embed) await asyncio.sleep(3600*2) # Bump delay == 2 hours | 1 hour == 3600 seconds so, 2 hours == 3600*2 embed = discord.Embed(title="It's time to bump!", description="Use `!d bump` to bump the server!", color=discord.Color.green()) await message.channel.send(embed=embed) except AttributeError: pass except Exception as e: print(e) self.dbcursor.execute('SELECT prefix FROM guilds WHERE guild_id=?', (message.guild.id,)) prefixes = self.dbcursor.fetchone() if not prefixes: self.dbcursor.execute('INSERT INTO guilds(guild_id, prefix) VALUES (?,?)', (message.guild.id, "+")) self.db.commit() await self.process_commands(message) @tasks.loop(seconds=10) async def updateactivity(self): """Updates the bot's activity""" await self.change_presence(activity=discord.Activity(type=discord.ActivityType.listening, name=f"+help in {len(self.guilds)} servers for {members(self)} users.")) @updateactivity.before_loop async def wait_for_ready(self): """Waits until the bot is ready""" await self.wait_until_ready() @tasks.loop(minutes=30) async def update_topgg_stats(self): """Updates the bot's stats on [top.gg](https://top.gg)""" await self.wait_until_ready() try: await self.topggpy.post_guild_count() print("Successfully updated bot stats on top.gg") except Exception as e: print(str(e).capitalize()) bot = Bot() @bot.slash_command(description="Stuck? Use ME!") async def help(ctx: discord.ApplicationContext): """Get help about the most feature packed bot!!""" await ctx.respond(embed=Help_Embed(), view=HelpOptions()) message = await ctx.interaction.original_message() await asyncio.sleep(120) try: await message.edit("This help session expired", embed=None, view=None) except: pass youtube = SlashCommandGroup("youtube", "Commands related to youtube") @youtube.command(description="Download a youtube video!") async def download(ctx: commands.Context, link: Option(str, "The video you want to download!", required=True, default=None)): interaction: discord.Interaction = ctx.interaction return await interaction.response.send_message("This command is currently closed ):") embed = discord.Embed(description="**Downloading the video <a:loading:911568431315292211>\n-------------------------\nThis may take some time.**", color=discord.Color.green()) await interaction.response.send_message(embed=embed) message = await interaction.original_message() url = YouTube(link) video = url.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first() video.download(output_path='./yt_vids') def find_vid(): for vid in os.listdir('./yt_vids'): if vid == video.default_filename: print(vid) return vid await message.edit(content="**Here is your video!**", embed=None, file=discord.File(f'yt_vids/{find_vid()}')) for mp4file in os.listdir('./yt_vids'): os.remove(f"yt_vids/{mp4file}") covid = SlashCommandGroup("covid", "commands related to covid info") @covid.command(description="Covid Information!") async def country(ctx, *, country: Option(str, "Name of the Country you want the Covid info of!", required=True, default=None)): interaction: discord.Interaction = ctx.interaction em = discord.Embed(description="**Fetching information <a:loading:911568431315292211>**", color=discord.Color.green()) await interaction.response.send_message(embed=em) message = await interaction.original_message() url = f"https://coronavirus-19-api.herokuapp.com/countries/{country}" stats = await bot.session.get(url) json_stats = await stats.json() country = json_stats["country"] totalCases = json_stats["cases"] todayCases = json_stats["todayCases"] totalDeaths = json_stats["deaths"] todayDeaths = json_stats["todayDeaths"] recovered = json_stats["recovered"] active = json_stats["active"] critical = json_stats["critical"] casesPerOneMillion = json_stats["casesPerOneMillion"] deathsPerOneMillion = json_stats["deathsPerOneMillion"] totalTests = json_stats["totalTests"] testsPerOneMillion = json_stats["testsPerOneMillion"] embed = discord.Embed(title=f"**COVID-19 Status Of {country}**!", description="This Information Isn't Live Always, Hence It May Not Be Accurate!", colour=discord.Color.random()) embed.add_field(name="**Total Cases**", value=totalCases, inline=True) embed.add_field(name="**Today Cases**", value=todayCases, inline=True) embed.add_field(name="**Total Deaths**", value=totalDeaths, inline=True) embed.add_field(name="**Today Deaths**", value=todayDeaths, inline=True) embed.add_field(name="**Recovered**", value=recovered, inline=True) embed.add_field(name="**Active**", value=active, inline=True) embed.add_field(name="**Critical**", value=critical, inline=True) embed.add_field(name="**Cases Per One Million**", value=casesPerOneMillion, inline=True) embed.add_field(name="**Deaths Per One Million**", value=deathsPerOneMillion, inline=True) embed.add_field(name="**Total Tests**", value=totalTests, inline=True) embed.add_field(name="**Tests Per One Million**", value=testsPerOneMillion, inline=True) embed.set_thumbnail(url="https://cdn.discordapp.com/attachments/564520348821749766/701422183217365052/2Q.png") embed.set_footer(text=f"Requested by {ctx.author.name}", icon_url=ctx.author.avatar.url) await message.edit(embed=embed) @covid.command(name="global", description="View Global Covid Info!") async def global_(ctx): interaction: discord.Interaction = ctx.interaction em = discord.Embed(description="**Fetching information <a:loading:911568431315292211>**", color=discord.Color.green()) await interaction.response.send_message(embed=em) message = await interaction.original_message() url = f"https://coronavirus-19-api.herokuapp.com/countries/world" stats = await bot.session.get(url) json_stats = await stats.json() totalCases = json_stats["cases"] todayCases = json_stats["todayCases"] totalDeaths = json_stats["deaths"] todayDeaths = json_stats["todayDeaths"] recovered = json_stats["recovered"] active = json_stats["active"] critical = json_stats["critical"] casesPerOneMillion = json_stats["casesPerOneMillion"] deathsPerOneMillion = json_stats["deathsPerOneMillion"] totalTests = json_stats["totalTests"] testsPerOneMillion = json_stats["testsPerOneMillion"] embed = discord.Embed(title=f"**Global Covid 19 Info**!", description="This Information Isn't Live Always, Hence It May Not Be Accurate!",colour=discord.Color.random()) embed.add_field(name="**Total Cases**", value=totalCases, inline=True) embed.add_field(name="**Today Cases**", value=todayCases, inline=True) embed.add_field(name="**Total Deaths**", value=totalDeaths, inline=True) embed.add_field(name="**Today Deaths**", value=todayDeaths, inline=True) embed.add_field(name="**Recovered**", value=recovered, inline=True) embed.add_field(name="**Active**", value=active, inline=True) embed.add_field(name="**Critical**", value=critical, inline=True) embed.add_field(name="**Cases Per One Million**", value=casesPerOneMillion, inline=True) embed.add_field(name="**Deaths Per One Million**", value=deathsPerOneMillion, inline=True) embed.add_field(name="**Total Tests**", value=totalTests, inline=True) embed.add_field(name="**Tests Per One Million**", value=testsPerOneMillion, inline=True) embed.set_thumbnail(url="https://cdn.discordapp.com/attachments/564520348821749766/701422183217365052/2Q.png") embed.set_footer(text=f"Requested by {ctx.author.name}", icon_url=ctx.author.avatar.url) await message.edit(embed=embed) @bot.command(hidden=True) @commands.is_owner() async def load(ctx: commands.Context, ext: str): bot.load_extension(f"cogs.{ext}") await ctx.send(f"Loaded extension `{ext}`", delete_after=7) @bot.command(hidden=True) @commands.is_owner() async def unload(ctx: commands.Context, ext: str): bot.unload_extension(f"cogs.{ext}") await ctx.send(f"Unloaded extension `{ext}`", delete_after=7) @bot.command(aliases=['al','autoload'], hidden=True) @commands.is_owner() async def reload(ctx: commands.Context, ext: str): if ext == "all": for filename in os.listdir('./cogs'): bot.unload_extension(f"cogs.{filename[:-3]}") await asyncio.sleep(0.3) await ctx.send("Unloaded all extensions. Now loading them!") await asyncio.sleep(0.5) for filename in os.listdir('./cogs'): bot.load_extension(f"cogs.{filename[:-3]}") await ctx.send("Succesfully reloaded all extensions") else: bot.unload_extension(f"cogs.{ext}") await asyncio.sleep(0.5) bot.load_extension(f"cogs.{ext}") await ctx.send(f"Succesfully reloaded `{ext}`") bot.add_application_command(youtube) bot.add_application_command(covid) # For the mobile status # ARCHIVED FOR SOME TIME # async def mobile(self): # import sys # payload = {'op': self.IDENTIFY,'d': {'token': self.token,'properties': {'$os': sys.platform,'$browser': 'Discord iOS','$device': 'pycord','$referrer': '','$referring_domain': ''},'compress': True,'large_threshold': 250,'v': 3}} # if self.shard_id is not None and self.shard_count is not None: # payload['d']['shard'] = [self.shard_id, self.shard_count] # state = self._connection # if state._activity is not None or state._status is not None: # payload["d"]["presence"] = {"status": state._status, "game": state._activity, "since": 0, "afk": False} # if state._intents is not None: # payload["d"]["intents"] = state._intents.value # await self.call_hooks("before_identify", self.shard_id, initial=self._initial_identify) # await self.send_as_json(payload) # discord.gateway.DiscordWebSocket.identify = mobile bot.run(config.TOKEN) ``` #### File: Yuki/cogs/help.py ```python import discord from discord.ext import commands from discord.commands import slash_command, Option from utils.buttons import InviteView2 from utils.helpers.help import Help_Embed, cog_help import asyncio import time import datetime import psutil import platform import sys def members(bot: commands.Bot): memc = 0 for guild in bot.guilds: memc += guild._member_count return memc class HelpEmbed(discord.Embed): def __init__(self, **kwargs): super().__init__(**kwargs) text = "Use help [command] | <>: required | []: optional" self.set_footer(text=text) self.color = discord.Color.embed_background(theme="dark") class HelpOptions(discord.ui.View): def __init__(self): super().__init__() self.add_item(discord.ui.Button(label="Invite Me!", url="https://discord.com/api/oauth2/authorize?client_id=919314151535419463&permissions=8&scope=bot%20applications.commands", row=1)) self.add_item(discord.ui.Button(label="Support Server", url="https://discord.gg/RqKvY5MQgb", row=1)) @discord.ui.button(label="Delete", style=discord.ButtonStyle.red, emoji="⛔", row=2) async def delete_button(self, button: discord.ui.Button, interaction: discord.Interaction): await interaction.message.delete() @discord.ui.select( placeholder="Select a Category!", min_values=1, max_values=1, options=[ discord.SelectOption( label="Config", description="Configure the bot", emoji="🔧" ), discord.SelectOption( label="Fun", description="View all Fun commands!", emoji="🪄" ), discord.SelectOption( label="Misc", description="View all normal and mod commands!", emoji="🤖" ), discord.SelectOption( label="Info", description="View all Info commands!", emoji="ℹ️" ), discord.SelectOption( label="Moderation", description="View all MOD commands", emoji="<:modlogo:923117346984435722>" ), discord.SelectOption( label="Tickets", description="View all ticket system commands!", emoji="📩" ) ]) async def select_callback(self, select, interaction: discord.Interaction): if select.values[0]: await interaction.response.edit_message( embed=discord.Embed( title=f"{select.values[0]} Help!", description=cog_help[select.values[0]], color=discord.Color.embed_background(theme="dark"), ).set_footer( text="Use help <command> to get additional help on a specific command." ) ) class MyHelpCommand(commands.MinimalHelpCommand): def __init__(self): super().__init__() async def send_pages(self): ctx = self.context try: m = await ctx.send(embed=Help_Embed(), view=HelpOptions()) await asyncio.sleep(120) try: await m.edit("This help session expired!", embed=Help_Embed(), view=None) except: pass except discord.Forbidden: await ctx.send( """Hey! it looks like i am missing some permissions.""" ) except Exception as e: print(e) async def send_command_help(self, command): """triggers when a `<prefix>help <command>` is called""" try: ctx = self.context signature = self.get_command_signature( command ) embed = HelpEmbed( title=signature, description=command.help or "No help found..." ) if cog := command.cog: embed.add_field(name="Category", value=cog.qualified_name) if command._buckets and (cooldown := command._buckets._cooldown): embed.add_field( name="Cooldown", value=f"{cooldown.rate} per {cooldown.per:.0f} seconds", ) await ctx.send(embed=embed) except Exception as e: print(e) class HelpCog(commands.Cog, name="Help"): """Help command and bot related commands""" def __init__(self, bot: commands.Bot): self.bot = bot self.bot.help_command = MyHelpCommand() @commands.Cog.listener() async def on_ready(self): global startTime startTime = time.time() @slash_command(description="Invite me to your server") async def invite(self, ctx): await ctx.respond("Invite Here!", view=InviteView2()) @commands.command(name="invite", aliases=['inv', 'botinv', 'botbotinvite']) async def invite_(self, ctx): """Invite the bot to your server!""" await ctx.send("Invite Here!", view=InviteView2()) @slash_command(description="View the bot's info") async def botinfo(self, ctx: commands.Context): memory = "{:.4} MB".format(psutil.Process().memory_info().rss / 1024 ** 2) py_ver = ".".join([str(v) for v in sys.version_info[:3]]) uptime = str(datetime.timedelta(seconds=int(round(time.time()-startTime)))) embed = discord.Embed(title="Bot Info!", description=f"**Servers**\n{len(list(self.bot.guilds))}\n\n**Users**\n{members(self.bot)}\n\n**System**\n{platform.release()}\n\n**Memory**\n{memory}\n\n**Python Version**\n{py_ver}\n\n**Uptime**\n{uptime}\n\n**Owner/Creator**\n27Saumya", color=discord.Color.green()) embed.set_thumbnail(url=self.bot.user.avatar.url) await ctx.respond(embed=embed) @commands.command(name="botinfo", aliases=['bot', 'stats', 'info']) async def botinfo_(self, ctx: commands.Context): """View the bot's info""" memory = "{:.4} MB".format(psutil.Process().memory_info().rss / 1024 ** 2) py_ver = ".".join([str(v) for v in sys.version_info[:3]]) uptime = str(datetime.timedelta(seconds=int(round(time.time()-startTime)))) embed = discord.Embed(title="Bot Info!", description=f"**Servers**\n{len(list(self.bot.guilds))}\n\n**Users**\n{members(self.bot)}\n\n**System**\n{platform.release()}\n\n**Memory**\n{memory}\n\n**Python Version**\n{py_ver}\n\n**Uptime**\n{uptime}\n\n**Owner/Creator**\n27Saumya", color=discord.Color.green()) embed.set_thumbnail(url=self.bot.user.avatar.url) await ctx.send(embed=embed) @slash_command(description="🏓 Check the bot's latency") async def ping(self, ctx: commands.Context): interaction: discord.Interaction = ctx.interaction before = time.monotonic() embed = discord.Embed(title=":ping_pong:", color=discord.Color.green()) await interaction.response.send_message(embed=embed) message = await interaction.original_message() ping = (time.monotonic() - before) * 1000 embed2 = discord.Embed(title=":ping_pong: Pong!", description=f"**Bot latency: `{round(self.bot.latency * 1000)}` ms\n------------------------------\nDiscord Latency: `{int(ping)}` ms**", color=discord.Color.green()) await message.edit(embed=embed2) @commands.command(name="ping") async def ping_(self, ctx: commands.Context): """View the bot's latency (Edit Latency)""" before = time.monotonic() embed = discord.Embed(title=":ping_pong:", color=discord.Color.green()) message = await ctx.send(embed=embed) ping = (time.monotonic() - before) * 1000 embed2 = discord.Embed(title=":ping_pong: Pong!", description=f"**Bot latency: `{round(self.bot.latency * 1000)}` ms\n------------------------------\nDiscord Latency: `{int(ping)}` ms**", color=discord.Color.green()) await message.edit(embed=embed2) def setup(bot): bot.add_cog(HelpCog(bot)) ``` #### File: Yuki/cogs/info.py ```python import discord from discord.ext import commands from discord.commands import slash_command, Option from utils.buttons import Google import wikipedia class Info(commands.Cog, name="Info", description="Information related commands"): """ Commands related to information come in this category These include google, covid info and much more """ def __init__(self, bot): self.bot = bot @slash_command(description="Google Search") async def google(self, ctx: commands.Context, *, query: Option(str, "Type what you want to search!", required=True, default=None)): await ctx.respond(f"Google Result for `{query}`", view=Google(query)) @commands.command(name="google") async def google_(self, ctx: commands.Context, *, query: str): await ctx.send(f"Google result for `{query}`", view=Google(query)) @commands.group(name="covid", description="Info about COVID-19") async def covid_(self, ctx: commands.Context): """Command group to get covid stats use `covid` for more info""" if ctx.invoked_subcommand is None: embed = discord.Embed(title="Covid Info", description="**__Commands__:** \n-->`global`:\nGets Global covid info\naliases: `world` `all`\n\n-->`country` \nDirectly type the country you want.\nExample: \n`+covid country India`\n`+covid country USA`", color=discord.Color.green()) await ctx.send(embed=embed) @covid_.command(name="country", aliases=['c', 'cou', 'coun']) async def country_(self, ctx, *, country: str): """Get covid stats of a country\nExample: `covid country India` and `covid country USA`""" em = discord.Embed(description="**Fetching information <a:loading:911568431315292211>**", color=discord.Color.green()) message = await ctx.send(embed=em) url = f"https://coronavirus-19-api.herokuapp.com/countries/{country}" stats = await self.bot.session.get(url) json_stats = await stats.json() country = json_stats["country"] totalCases = json_stats["cases"] todayCases = json_stats["todayCases"] totalDeaths = json_stats["deaths"] todayDeaths = json_stats["todayDeaths"] recovered = json_stats["recovered"] active = json_stats["active"] critical = json_stats["critical"] casesPerOneMillion = json_stats["casesPerOneMillion"] deathsPerOneMillion = json_stats["deathsPerOneMillion"] totalTests = json_stats["totalTests"] testsPerOneMillion = json_stats["testsPerOneMillion"] embed = discord.Embed(title=f"**COVID-19 Status Of {country}**!", description="This Information Isn't Live Always, Hence It May Not Be Accurate!", colour=discord.Color.random()) embed.add_field(name="**Total Cases**", value=totalCases, inline=True) embed.add_field(name="**Today Cases**", value=todayCases, inline=True) embed.add_field(name="**Total Deaths**", value=totalDeaths, inline=True) embed.add_field(name="**Today Deaths**", value=todayDeaths, inline=True) embed.add_field(name="**Recovered**", value=recovered, inline=True) embed.add_field(name="**Active**", value=active, inline=True) embed.add_field(name="**Critical**", value=critical, inline=True) embed.add_field(name="**Cases Per One Million**", value=casesPerOneMillion, inline=True) embed.add_field(name="**Deaths Per One Million**", value=deathsPerOneMillion, inline=True) embed.add_field(name="**Total Tests**", value=totalTests, inline=True) embed.add_field(name="**Tests Per One Million**", value=testsPerOneMillion, inline=True) embed.set_thumbnail(url="https://cdn.discordapp.com/attachments/564520348821749766/701422183217365052/2Q.png") embed.set_footer(text=f"Requested by {ctx.author.name}", icon_url=ctx.author.avatar.url) await message.edit(embed=embed) @covid_.command(name="global", aliases=['world', 'all']) async def global_(self, ctx): """Gets the global Covid-19 INFO""" em = discord.Embed(description="**Fetching information <a:loading:911568431315292211>**", color=discord.Color.green()) message = await ctx.send(embed=em) url = f"https://coronavirus-19-api.herokuapp.com/countries/world" stats = await self.bot.session.get(url) json_stats = await stats.json() totalCases = json_stats["cases"] todayCases = json_stats["todayCases"] totalDeaths = json_stats["deaths"] todayDeaths = json_stats["todayDeaths"] recovered = json_stats["recovered"] active = json_stats["active"] critical = json_stats["critical"] casesPerOneMillion = json_stats["casesPerOneMillion"] deathsPerOneMillion = json_stats["deathsPerOneMillion"] totalTests = json_stats["totalTests"] testsPerOneMillion = json_stats["testsPerOneMillion"] embed = discord.Embed(title=f"**Global Covid 19 Info**!", description="This Information Isn't Live Always, Hence It May Not Be Accurate!", colour=discord.Color.random()) embed.add_field(name="**Total Cases**", value=totalCases, inline=True) embed.add_field(name="**Today Cases**", value=todayCases, inline=True) embed.add_field(name="**Total Deaths**", value=totalDeaths, inline=True) embed.add_field(name="**Today Deaths**", value=todayDeaths, inline=True) embed.add_field(name="**Recovered**", value=recovered, inline=True) embed.add_field(name="**Active**", value=active, inline=True) embed.add_field(name="**Critical**", value=critical, inline=True) embed.add_field(name="**Cases Per One Million**", value=casesPerOneMillion, inline=True) embed.add_field(name="**Deaths Per One Million**", value=deathsPerOneMillion, inline=True) embed.add_field(name="**Total Tests**", value=totalTests, inline=True) embed.add_field(name="**Tests Per One Million**", value=testsPerOneMillion, inline=True) embed.set_thumbnail(url="https://cdn.discordapp.com/attachments/564520348821749766/701422183217365052/2Q.png") embed.set_footer(text=f"Requested by {ctx.author.name}", icon_url=ctx.author.avatar.url) await message.edit(embed=embed) @slash_command(description="Search Wikipedia!") async def wikipedia(self, ctx: commands.Context, *, query: Option(str, "Type what you want to search!", required=True, default=None), lines:Option(int, "The number of lines you want the result in. By default it is 5", required=False, default=5)): result = wikipedia.summary(query, sentences=lines) embed = discord.Embed(title=query, description=f"**{result}**", color=discord.Color.random()) await ctx.respond(embed=embed) @commands.command(name="wikipedia", aliases=['wiki']) async def wikipedia_(self, ctx, *, query: str): try: result = wikipedia.summary(query, sentences=5) embed = discord.Embed(title=query, description=f"**{result}**", color=discord.Color.random()) await ctx.send(embed=embed) except: embed = discord.Embed(description="**<:error:897382665781669908> An error occured while fetching the results**", color=discord.Color.red()) await ctx.send(embed=embed) def setup(bot): bot.add_cog(Info(bot)) ``` #### File: Yuki/cogs/misc.py ```python import discord from discord.ext import commands from discord.commands import slash_command, user_command from discord.commands import Option import qrcode import os from pytube import YouTube from speedtest import Speedtest from typing import Union import aiohttp from io import BytesIO from utils.buttons import * from discord.ext.commands import BucketType class Misc(commands.Cog, name="Misc", description="Miscellaneous commands!"): """Miscellaneous commands fall in this category""" def __init__(self, bot: commands.Bot): self.bot = bot #Avatar @slash_command(description="Check your or someone else's PFP!") async def avatar(self, ctx, member: Option(discord.Member, "Check someone else's PFP!", required=False, default=None)): member = member if member else ctx.author em = discord.Embed(color=member.color) em.set_image(url=member.avatar.url) em.set_author(name=f"{member.name}'s avatar!", icon_url=member.avatar.url) em.set_footer(text=f"Requested by {ctx.author.name}", icon_url=ctx.author.avatar.url) await ctx.respond(embed=em) @commands.command(name="avatar", aliases=['av', 'pfp']) async def avatar_(self, ctx: commands.context, member: discord.Member=None): """View your's or someone's avatar""" member = member if member else ctx.author em = discord.Embed(color=member.color) em.set_image(url=member.avatar.url) em.set_author(name=f"{member.name}'s avatar!", icon_url=member.avatar.url) em.set_footer(text=f"Requested by {ctx.author.name}", icon_url=ctx.author.avatar.url) await ctx.send(embed=em) #Qrcode @slash_command(description="Generate a Qrcode!") async def qrcode(self, ctx, url: Option(str, "The link you want the qrcode of", required=True, default=None), hidden: Option(str, "Do you want the qrcode to be visible only to you?", choices=["Yes", "No"], required=False, default=None)): img = qrcode.make(url) img.save("qrcode.png") if hidden == "Yes": await ctx.respond(content="**Here is your QRCode**", file=discord.File("qrcode.png"), ephemeral=True) else: await ctx.respond(content="**Here is your QRCode**", file=discord.File("qrcode.png")) os.remove("qrcode.png") @commands.command(name="qrcode", aliases=['qr']) async def qrcode_(self, ctx, *, url: str): """Create a qrcode.\nExample: `qrcode youtube.com`""" img = qrcode.make(url) img.save("qrcode.png") await ctx.send(content="**Here is your QRCode**", file=discord.File("qrcode.png")) os.remove("qrcode.png") #Youtube @commands.group(name="youtube") async def youtube_(self, ctx: commands.Context): """Youtube related commnands""" if ctx.invoked_subcommand is None: embed = discord.Embed(title="Youtube", description="**Youtube Commands:**\n -->**download**\n**Usage** --> `youtube download <url>`", color=discord.Color.green()) embed.set_footer(text="More Commands Coming Soon!") await ctx.send(embed=embed) @youtube_.command(name="download") async def download_(self, ctx: commands.Context, *, link: str): """Download a youtube video (currently closed)\nExample: `youtube download youtube.com/watch?v=dQw4w9WgXcQ`""" embed = discord.Embed(description="**Downloading the video <a:loading:911568431315292211>\n-------------------------\nThis may take some time.**", color=discord.Color.green()) message = await ctx.send("Sorry this command is currently disabled :(") url = YouTube(link) video = url.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first() video.download(output_path='./yt_vids') def find_vid(): for vid in os.listdir('./yt_vids'): if vid == video.default_filename: print(vid) return vid await message.edit(content="**Here is your video!**", embed=None, file=discord.File(f'yt_vids/{find_vid()}')) for mp4file in os.listdir('./yt_vids'): os.remove(f"yt_vids/{mp4file}") @commands.command(aliases=['st', 'speed']) @commands.cooldown(1, 60, BucketType.user) async def speedtest(self, ctx: commands.Context): """Test the bot's speed... Currently disabled (fixing some bugs) Return of the command: N/A""" return await ctx.send("Sorry... This command is currently disabled :(") # Archived code for some time # message = await ctx.send( # embed=discord.Embed(description="**<a:loading:911568431315292211> Starting Speed Test!**", color=discord.Color.embed_background(theme="dark")) # ) # s = Speedtest() # s.get_best_server() # await message.edit(embed=discord.Embed(description="**<a:loading:911568431315292211> Found Best Server**", color=discord.Color.embed_background(theme="dark"))) # s.download() # await message.edit(embed=discord.Embed(description="**<a:loading:911568431315292211> Download Complete**", color=discord.Color.embed_background(theme="dark"))) # s.upload() # await message.edit(embed=discord.Embed(description="**<a:loading:911568431315292211> Uploading Complete\n-----------------------------\nSending results**", color=discord.Color.embed_background(theme="dark"))) # s = s.results.dict() # await message.edit( # embed=discord.Embed(title="Speed Test Results", description=f"Ping: `{s['ping']}` ms\nDownload: `{round(s['download']/10**6, 3)}` Mbit/s\nUpload: `{round(s['upload']/10**6, 3)}` Mbit/s\nServer: `{s['server']['sponsor']}`", color=discord.Color.embed_background(theme="dark")) # ) @commands.command(aliases=['eadd', 'ea']) @commands.has_permissions(manage_emojis_and_stickers=True) async def emojiadd(self, ctx: commands.Context, emoji: str, *, name: str): """Creates an emoji in the server using a url""" async with aiohttp.ClientSession() as session: async with session.get(emoji) as r: try: imgOrGIF = BytesIO(await r.read()) bValue = imgOrGIF.getvalue() if r.status in range(200, 299): emojiCreate = await ctx.guild.create_custom_emoji(image=bValue, name=name) await ctx.send(embed=discord.Embed(description=f"**<:tick:897382645321850920> Successfully created emoji - {emojiCreate} with name: `{name}`**", color=discord.Color.green())) else: await ctx.send(embed=discord.Embed(description=f"<:error:897382665781669908> An error occured while creating the emoji | {r.status}", color=discord.Color.red())) except discord.HTTPException: await ctx.send(embed=discord.Embed(description=f"<:error:897382665781669908> The file size is too big!", color=discord.Color.red())) except Exception as e: print(e) @commands.command(aliases=['emojisteal', 'copyemoji', 'steal']) @commands.has_permissions(manage_emojis_and_stickers=True) async def stealemoji(self, ctx: commands.Context, emoji: Union[discord.Emoji, discord.PartialEmoji], *, name: str): """Steal an emoji for another server.... The bot adds the emoji to this server""" try: emoji_bytes = await emoji.read() emoji_create = await ctx.guild.create_custom_emoji(image=emoji_bytes, name=name) await ctx.send(embed=discord.Embed(description=f"**<:tick:897382645321850920> Successfully created emoji - {emoji_create} with name: `{name}`**", color=discord.Color.green())) except Exception as e: error = str(e).capitalize() return await ctx.send(embed=discord.Embed(description=f"**<:error:897382665781669908> An error occurred while creating the emoji\n`{error}`**", color=discord.Color.red())) @commands.command(aliases=['userinfo']) async def whois(self, ctx: commands.Context, user: Union[discord.Member, discord.User]=None): """Get information about a user or yourself""" user = user or ctx.author accType = "Bot" if user.bot else "Human" badge_emojis = { "bug_hunter": str(self.bot.get_emoji(928298721916112916)), "bug_hunter_level_2": str(self.bot.get_emoji(928298721303736361)), "discord_certified_moderator": str(self.bot.get_emoji(928298721475698708)), "early_supporter": str(self.bot.get_emoji(928298721496686692)), "verified_bot_developer": str(self.bot.get_emoji(928299192428953660)), "hypesquad": str(self.bot.get_emoji(930418236678340668)), "hypesquad_balance": str(self.bot.get_emoji(928299452446412821)), "hypesquad_bravery": str(self.bot.get_emoji(928299808974843984)), "hypesquad_brilliance": str(self.bot.get_emoji(928299672840327208)), "partner": str(self.bot.get_emoji(928502472891330622)), "staff": str(self.bot.get_emoji(928502668224262195)) } def get_badges(user: Union[discord.User, discord.Member]): badges = [] for badge, value in iter(user.public_flags): if value and badge in badge_emojis.keys(): badges.append(badge_emojis[badge]) return badges if not user in ctx.guild.members: em = discord.Embed( description=f"""**• Username: `{user}` • UserID: `{user.id}` • Account Type: `{accType}` • Created at: {discord.utils.format_dt(user.created_at)} • Badges: {" ".join(get_badges(user)) if len(get_badges(user)) > 0 else "`-`"}**""", color=discord.Color.green() ).set_author(name=user.name, icon_url=user.avatar.url).set_thumbnail(url=user.avatar.url).set_footer(text="Note: This user is not from this server", icon_url=user.avatar.url) user_for_banner = await self.bot.fetch_user(user.id) if user_for_banner.banner: em.set_image(url=user_for_banner.banner.url) return await ctx.send(embed=em) member: discord.Member = ctx.guild.get_member(user.id) def timedOut(member: discord.Member): """Gets a string type of `member.timed_out` rather than a boolean type""" if member.timed_out: return "Yes" else: return "No" def getRoles(member: discord.Member): """Gets the user roles""" if len(list(member.roles)) == 0: return "-" else: sorted_roles = sorted( [role for role in member.roles[1:]], key=lambda x: x.position, reverse=True ) roles = " ".join(role.mention for role in sorted_roles) return roles nick = user.nick if user.nick else "-" embed = discord.Embed( description=f"""**• Username: `{user}` • UserID: `{user.id}` • Nickname: `{nick}` • Account Type: `{accType}` • Created at: {discord.utils.format_dt(user.created_at)} • Joined at: {discord.utils.format_dt(member.joined_at)} • Timed Out: `{timedOut(member)}` • Roles: {getRoles(member)} • Badges: {" ".join(get_badges(user)) if len(get_badges(user)) > 0 else "`-`"}**""", color=user.color ).set_author(name=user.name, icon_url=user.avatar.url).set_thumbnail(url=user.avatar.url) userForBanner = await self.bot.fetch_user(user.id) if userForBanner.banner: embed.set_image(url=userForBanner.banner.url) return await ctx.send(embed=embed) @commands.command(aliases=['sourcecode']) async def source(self, ctx: commands.Context): await ctx.send("Here is my source code", view=SourceView()) @commands.command(aliases=['support', 'botserver', 'supportguild', 'supportserverinvite', 'server']) async def supportserver(self, ctx: commands.Context): await ctx.send("Here is my support server invite", view=SupportView()) @commands.command() async def vote(self, ctx: commands.Context): """Vote the bot on [top.gg](https://top.gg/bot/919314151535419463/vote)""" await ctx.send("Vote me now!", view=VoteView()) @commands.command(aliases=['guildinfo']) @commands.guild_only() async def serverinfo(self, ctx: commands.Context): """Get information about the server""" guild = ctx.guild icon = guild.icon.url if guild.icon else "https://pnggrid.com/wp-content/uploads/2021/05/Discord-Logo-Circle-1024x1024.png" embed = discord.Embed( description=f"""**• Owner: {guild.owner.mention} • ServerID: `{guild.id}` • Members: `{len(guild.members)}` • Created at: {discord.utils.format_dt(guild.created_at)} • Roles: `{len(guild.roles)}` • Text Channels: `{len(guild.text_channels)}` • Voice Channels: `{len(guild.voice_channels)}`**""", color=discord.Color.green() ).set_author(name=guild.name, icon_url=icon).set_thumbnail(url=icon) if guild.banner: embed.set_image(url=guild.banner.url) return await ctx.send(embed=embed) @commands.command(aliases=['dogpic']) async def dog(self, ctx: commands.Context): """Gives a random dog image""" url = "https://some-random-api.ml/img/dog" r = await self.bot.session.get(url) if 300 > r.status >= 200: data = await r.json() else: return await ctx.send(embed=discord.Embed(description="Something went wrong", color=discord.Color.red())) embed = discord.Embed(description="**Here's a random dog image!**", color=discord.Color.embed_background(theme="dark")).set_image(url=data['link']) await ctx.send(embed=embed) @commands.command(aliases=['catpic']) async def cat(self, ctx: commands.Context): """Gives a random cat image""" url = "https://some-random-api.ml/img/cat" r = await self.bot.session.get(url) if 300 > r.status >= 200: data = await r.json() else: return await ctx.send(embed=discord.Embed(description="Something went wrong", color=discord.Color.red())) embed = discord.Embed(description="**Here's a random cat image!**", color=discord.Color.embed_background(theme="dark")).set_image(url=data['link']) await ctx.send(embed=embed) @commands.command(aliases=['pandapic']) async def panda(self, ctx: commands.Context): """Gives a random panda image""" url = "https://some-random-api.ml/img/panda" r = await self.bot.session.get(url) if 300 > r.status >= 200: data = await r.json() else: return await ctx.send(embed=discord.Embed(description="Something went wrong", color=discord.Color.red())) embed = discord.Embed(description="**Here's a random panda image!**", color=discord.Color.embed_background(theme="dark")).set_image(url=data['link']) await ctx.send(embed=embed) @commands.command(aliases=['memcount']) @commands.guild_only() async def membercount(self, ctx: commands.Context): """Gives the member count of the server""" await ctx.send(embed=discord.Embed(title="Members", description=f"{ctx.guild.member_count}", color=discord.Color.green()).set_footer(text=f"{ctx.guild.name}", icon_url=ctx.guild.icon.url)) def setup(bot): bot.add_cog(Misc(bot)) ``` #### File: Yuki/cogs/mod.py ```python import discord from discord.ext import commands from discord.commands import slash_command, Option import json from utils.buttons import NukeView import datetime import humanfriendly class ModCog(commands.Cog, name="Moderation", description="Moderation commands"): """ Moderation related commands. Yuki ✨ mainly focuses on fun and multipurpose... So, it doesn't include basic moderation commands like: `kick` and `ban`. It instead has unique commands! """ def __init__(self, bot: commands.Bot): self.bot = bot @commands.command(name="changeprefix", aliases=['setprefix', 'chpre', 'setpre', 'changepre', 'prefix', 'pre']) async def changeprefix_(self, ctx: commands.Context, *, prefix: str=None): """Changes Prefix for this server""" if not ctx.author.guild_permissions.manage_messages or ctx.author.id != self.bot.owner_id: embed = discord.Embed(description="**<:error:897382665781669908> You can't do that**", color=discord.Color.red()) return await ctx.reply(embed=embed) if "_" in prefix: np = prefix.replace("_", " ") self.bot.dbcursor.execute('SELECT * FROM guilds WHERE guild_id=?', (ctx.guild.id,)) data = self.bot.dbcursor.fetchone() if not data or data == None: self.bot.dbcursor.execute('INSERT INTO guilds (guild_id, prefix)', (ctx.guild.id, np)) self.bot.db.commit() else: self.bot.dbcursor.execute('UPDATE guilds SET prefix=? WHERE guild_id=?', (np, ctx.guild.id)) embed = discord.Embed(description=f"**<:tick:897382645321850920> Prefix Updated to: `{np}`**", color=discord.Color.green()) return await ctx.send(embed=embed) self.bot.dbcursor.execute('SELECT * FROM guilds WHERE guild_id=?', (ctx.guild.id,)) dataCheck = self.bot.dbcursor.fetchone() if not dataCheck or dataCheck == None: self.bot.dbcursor.execute('INSERT INTO guilds (guild_id, prefix)', (ctx.guild.id, prefix)) self.bot.db.commit() else: self.bot.dbcursor.execute('UPDATE guilds SET prefix=? WHERE guild_id=?', (prefix, ctx.guild.id)) self.bot.db.commit() embed = discord.Embed(description=f"**<:tick:897382645321850920> Prefix Updated to: `{prefix}`**", color=discord.Color.green()) await ctx.send(embed=embed) @slash_command(description="Change prefix for the server") async def changeprefix(self, ctx: discord.ApplicationContext, *, prefix: str=None): """Changes Prefix for this server""" if prefix == None: return await ctx.send(embed=discord.Embed(description=f"My prefix for this server is `{ctx.clean_prefix}`", color=discord.Color.embed_background(theme="dark"))) if not ctx.author.guild_permissions.manage_messages or ctx.author.id != self.bot.owner_id: embed = discord.Embed(description="**<:error:897382665781669908> You can't do that**", color=discord.Color.red()) return await ctx.reply(embed=embed) if "_" in prefix: np = prefix.replace("_", " ") self.bot.dbcursor.execute('SELECT * FROM guilds WHERE guild_id=?', (ctx.guild.id,)) data = self.bot.dbcursor.fetchone() if not data or data == None: self.bot.dbcursor.execute('INSERT INTO guilds (guild_id, prefix)', (ctx.guild.id, np)) self.bot.db.commit() else: self.bot.dbcursor.execute('UPDATE guilds SET prefix=? WHERE guild_id=?', (np, ctx.guild.id)) embed = discord.Embed(description=f"**<:tick:897382645321850920> Prefix Updated to: `{np}`**", color=discord.Color.green()) return await ctx.respond(embed=embed) self.bot.dbcursor.execute('SELECT * FROM guilds WHERE guild_id=?', (ctx.guild.id,)) dataCheck = self.bot.dbcursor.fetchone() if not dataCheck or dataCheck == None: self.bot.dbcursor.execute('INSERT INTO guilds (guild_id, prefix)', (ctx.guild.id, prefix)) self.bot.db.commit() else: self.bot.dbcursor.execute('UPDATE guilds SET prefix=? WHERE guild_id=?', (prefix, ctx.guild.id)) self.bot.db.commit() embed = discord.Embed(description=f"**<:tick:897382645321850920> Prefix Updated to: `{prefix}`**", color=discord.Color.green()) await ctx.respond(embed=embed) @slash_command(description="Nuke a channel") @commands.bot_has_permissions(manage_channels=True) async def nuke(self, ctx, channel: Option(discord.TextChannel, "The channel you want to nuke", required=False, default=None)): channel = channel if channel else ctx.channel interaction: discord.Interaction = ctx.interaction if not ctx.author.guild_permissions.manage_channels: em = discord.Embed(description="<:error:897382665781669908> You can't do that!", color=discord.Color.red()) return await interaction.response.send_message(embed=em, ephemeral=True) embed1 = discord.Embed(description=f"Are you sure you want to **NUKE** {channel.mention}?\n------------------------------------------------\nRespond Within **15** seconds!", color=discord.Color.orange()) await interaction.response.send_message(embed=embed1) message = await interaction.original_message() await message.edit(embed=embed1, view=NukeView(ctx, channel, message)) @commands.command(name="nuke") @commands.bot_has_permissions(manage_channels=True) async def nuke_(self, ctx, *, channel: discord.TextChannel=None): """Delete all messages in a channel\nExample: `nuke [channel]\nIf channel is None then it will nuke the channel the command is used in`""" channel = channel if channel else ctx.channel if not ctx.author.guild_permissions.manage_channels: em = discord.Embed(description="<:error:897382665781669908> You can't do that!", color=discord.Color.red()) return await ctx.send(embed=em) embed1 = discord.Embed(description=f"Are you sure you want to **NUKE** {channel.mention}?\n------------------------------------------------\nRespond Within **15** seconds!", color=discord.Color.orange()) message = await ctx.send(embed=embed1) await message.edit(embed=embed1, view=NukeView(ctx, channel, message)) @commands.group(name="purge") async def purge_(self, ctx: commands.Context): """Sub commands for purge""" if ctx.invoked_subcommand is None: await ctx.send(embed=discord.Embed(title="Invalid Usage", description="**Usage: `{0}purge user <member> <amount>`**", color=discord.Color.red())) @purge_.command(aliases=['member', 'mem']) @commands.has_permissions(manage_messages=True) @commands.bot_has_permissions(manage_messages=True) async def user(self, ctx: commands.Context, user: discord.Member, amount): """Delete message of a user in the channel""" def is_user(m): """Checks the user's messages in the channel""" return m.author == user channel: discord.TextChannel = ctx.channel deleted = await channel.purge(limit=amount, check=is_user) embed = discord.Embed(description=f"**<:tick:897382645321850920> Deleted {len(deleted)} messages of {user.mention}**", color=discord.Color.green()) await ctx.send(embed=embed) @commands.command(aliases=['mute']) @commands.has_permissions(moderate_members=True) @commands.bot_has_permissions(moderate_members=True) async def timeout(self, ctx: commands.Context, user: discord.Member, time, *, reason: str = "No reason provided"): """Timeout/Mute a user in the server""" if user == ctx.author: return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> You can't timeout yourself!**", color=discord.Color.red())) try: timeConvert = humanfriendly.parse_timespan(time) await user.timeout(discord.utils.utcnow()+datetime.timedelta(seconds=timeConvert), reason=reason) embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully muted {user.mention} for {time} | Reason: {reason}**", color=discord.Color.green()) await ctx.send(embed=embed) await user.send(embed=discord.Embed(description=f"**<:error:897382665781669908> You were muted in {ctx.guild.name} | Reason: {reason}**", color=discord.Color.red())) except discord.Forbidden: return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> This user has a higher or equal role to me. **", color=discord.Color.red())) @commands.command(aliases=['um']) @commands.has_permissions(moderate_members=True) @commands.bot_has_permissions(moderate_members=True) async def unmute(self, ctx: commands.Context, user: discord.Member, *, reason: str = "No reason provided"): """Unmutes a user from the server""" if user == ctx.author: return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> You can't unmute yourself!**", color=discord.Color.red())) if not user.timed_out: return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> That user isn't muted!**", color=discord.Color.red())) await user.timeout(None, reason=reason) embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully unmuted {user.mention} | Reason: {reason}**", color=discord.Color.green()) await ctx.send(embed=embed) def setup(bot): bot.add_cog(ModCog(bot)) ``` #### File: utils/helpers/configuration.py ```python import discord from discord.ext import commands POWERED_BY_GIPHY = "https://images-ext-1.discordapp.net/external/FW8Emlcxhqqi1YsZoXVHfC6c58tPptohhqNz0GNmdYQ/https/image.ibb.co/b0Gkwo/Poweredby_640px_Black_Vert_Text.png" def get_prefix(bot, message): """Gets the prefix for the server""" try: bot.dbcursor.execute('SELECT prefix FROM guilds WHERE guild_id=?', (message.guild.id,)) prefixes = bot.dbcursor.fetchone() if not prefixes: return "+" else: bot.dbcursor.execute('SELECT * FROM guilds WHERE guild_id=?', (message.guild.id,)) prefix = bot.dbcursor.fetchone() return commands.when_mentioned_or(prefix[1])(bot, message) except: return "+" def giphyUrl(id: str): return f"https://media.giphy.com/media/{id}/giphy.gif" ```
{ "source": "27thLiz/IssueBot", "score": 2 }
#### File: 27thLiz/IssueBot/bot.py ```python from __future__ import print_function # twisted imports from twisted.words.protocols import irc from twisted.internet import reactor, protocol from twisted.python import log from github import Github import re import requests import sys class MessageHandler: def __init__(self, bot, org, repos, gh): self.bot = bot self.org = org self.repos = repos self.github = gh self.help_commands = ["!IssueBot-help", "!help", "!usage"] self.current_pr = 0 self.repo = gh.get_repo("godotengine/godot") self.pulls = [] def get_pulls(self): all_pulls = self.repo.get_pulls() self.pulls = [] for pr in all_pulls: if pr.milestone != None and pr.milestone.title == "3.0": self.pulls.append(pr) print(self.pulls) def parse_msg(self, name, msg, channel): if (msg in self.help_commands): self.print_usage(channel) return if (msg == "!startmeeting"): self.get_pulls() self.current_pr = 0 self.print_pr_link(channel) self.print_pr(channel) self.current_pr += 1 return if (msg == "!next"): self.print_pr(channel) self.current_pr += 1 return words = msg.split(" ") for word in words: if word.find("#") != -1: repo = "" split = word.split('#', 1) try_repo = split[0] res = re.match(r"[0-9]+", split[1]) if not res: return issue = res.group(0) if word.find("/") != -1: repo = word.split("/", 1)[0] elif try_repo != "": repo = try_repo else: repo = "godot" if repo in self.repos: self.generate_answer(repo, issue, channel) else: self.print_wrong_usage(channel, repo) def print_pr(self, channel): self.generate_answer("godot", str( self.pulls[self.current_pr].number), channel) def print_pr_link(self, channel): message = "List of 3.0 PRs: https://github.com/godotengine/godot/pulls?q=is%3Aopen+is%3Apr+milestone%3A3.0" self.bot.msg(channel, message) def print_usage(self, channel): message = "Usage: [repo]/#[issue_number]\n" + \ self.get_available_repos() self.bot.msg(channel, message) def print_wrong_usage(self, channel, repo): message = "Unknown repository \"" + repo + "\"\n" + self.get_available_repos() self.bot.msg(channel, message) def get_available_repos(self): return "Available repositories: godot, demos, docs, assetlib, escoria, collada" def generate_answer(self, repo, issue, channel): repo_name = self.repos[repo] r = requests.get( "https://api.github.com/repos/godotengine/" + repo_name + "/issues/" + issue) if r.status_code == 200: response = r.json() title = response["title"] long_url = response["html_url"] header = {'user-agent': 'IssueBot/0.0.1', "content-type": "application/x-www-form-urlencoded"} body = {"url": long_url} r = requests.post("https://git.io/", headers=header, data=body) if r.status_code == 201: #send_answer(repo, issue, title, r.headers["Location"], channel) if repo == "godot": repo = "#" else: repo = repo + "/#" message = repo + issue + ": " + \ title + " | " + r.headers["Location"] #sendmsg(message, channel) self.bot.msg(channel, message) class IssueBot(irc.IRCClient): """Simple irc bot that resolves Github issues to links""" nickname = "IssueBot" ignore = ["goBot", "[-einbot2-]", "http", "https"] gh = Github() def connectionMade(self): irc.IRCClient.connectionMade(self) self.msgHandler = MessageHandler(self, "godotengine", {"godot": "godot", "demos": "godot-demo-projects", "docs": "godot-docs", "assetlib": "asset-library", "escoria": "escoria", "collada": "collada-exporter", "design": "godot-design"}, self.gh) self.repo = self.gh.get_repo("godotengine/godot") def connectionLost(self, reason): irc.IRCClient.connectionLost(self, reason) def ignore_message(self, user, message): if user in self.ignore: return True for ignore_str in self.ignore: if ignore_str in message: return True return False def signedOn(self): for channel in self.factory.channels: self.join(channel) def privmsg(self, user, channel, msg): user = user.split('!', 1)[0] if not self.ignore_message(user, msg): self.msgHandler.parse_msg(user, msg, channel) class IssueBotFactory(protocol.ClientFactory): """A factory for IssueBots. A new protocol instance will be created each time we connect to the server. """ protocol = IssueBot def __init__(self, channels): self.channels = channels def clientConnectionLost(self, connector, reason): """If we get disconnected, reconnect to server.""" connector.connect() def clientConnectionFailed(self, connector, reason): print("connection failed:", reason) reactor.stop() if __name__ == '__main__': # initialize logging log.startLogging(sys.stdout) # create factory protocol and application f = IssueBotFactory(["#godotengine", "#godotengine-devel", "#godotengine-docs", "#godotengine-atelier"]) # connect factory to this host and port reactor.connectTCP("irc.freenode.net", 6667, f) # run bot reactor.run() ```
{ "source": "27x2/BlueScan", "score": 3 }
#### File: BlueScan/src/BlueScan.py ```python from virustotal import * from abuseipdb import * from badip import * from xforceibm import * import argparse def main(): print(" ____ _ ___ ______ ___") print("| _ \ | | |__ \ |____ | |__ \\") print("| |_) || | _ _ ___ ) | / / __ __ ) |") print("| _ < | || | | | / _ \ / / / / \ \/ / / /") print("| |_) || || |_| || __/ / /_ / / > < / /_") print("|____/ |_| \__,_| \___||____| /_/ /_/\_\|____|") print('\n') print('Use -h or --help') print('usage: BleuScan.py [-h] [-H HASH] [-i IP] [-d DOMAIN]') print('Scan hash, IP, virus online') parser = argparse.ArgumentParser(description='Scan hash, IP, virus online', epilog='Hope you like the program, for any feedback, please conntact me: <EMAIL>') parser.add_argument('-H', '--hash', action='store',default=None, help='check your hash') parser.add_argument('-i', '--ip', action='store',default=None, help='check your IP') parser.add_argument('-d', '--domain', action='store',default=None, help='check your domain') args = parser.parse_args() if args.hash is not None: check_hash(args.hash) elif args.ip is not None: print("[+] Your IP: "+args.ip) print("|____Result:") print("-------[-] Virus total: ") check_ip(args.ip) print("|\n|\n-------[-] AbuseIPDB: ") check_ip_abuseipdb(args.ip) print("|\n|\n-------[-] BadIP: ") check_ip_badip(args.ip) print("|\n|\n-------[-] X-force IBM: ") check_ip_xforceibm(args.ip) elif args.domain is not None: check_domains(args.domain) else: return 0 if __name__ == "__main__": main() ```
{ "source": "280185386/AlgoPlus", "score": 2 }
#### File: AdvancedCookbook/spread_trading/spread_trading_base.py ```python from time import sleep, perf_counter as timer from AlgoPlus.CTP.TraderApi import TraderApi from AlgoPlus.CTP.ApiStruct import * class LocalOrderInfo(BaseField): _fields_ = [ ('ExchangeID', c_char * 9), # 交易所代码 ('InstrumentID', c_char * 31), # 合约代码 ('OrderRef', c_char * 13), # 报单引用 ('Direction', c_char * 1), # 买卖方向 ('OffsetFlag', c_char * 5), # 组合开平标志 ('LimitPrice', c_double), # 报单价格 ('VolumeTotalOriginal', c_int), # 数量 ('VolumeTotal', c_int), # 剩余数量 ('OrderStatus', c_char * 1), # 报单状态 ('InputTime', c_float), # 委托时间 ] class SpreadTradingBase(TraderApi): def __init__(self, td_server, broker_id, investor_id, password, app_id, auth_code, md_queue=None , page_dir='', private_resume_type=2, public_resume_type=2): self.server_time = b'00:00:00' # 服务器时间 self.md_a = None # A合约最新行情 self.md_b = None # B合约最新行情 self.position_status = 0 # 策略方向 self.sig_stage = 0 # 信号触发后,执行状态 self.position_a = 0 # A合约持仓 self.position_b = 0 # B合约持仓 self.with_draw_num = 0 # 撤单次数 self.local_order_dict = {} # 所有报单本地信息字典 self.local_rtn_order_list = [] self.last_rtn_order_id = 0 self.work_status = -1 # 工作状态 # 需要初始化的参数 self.parameter_field = None self.order_ref = None self.order_ref_range = [] # 初始化参数 self.init_parameter() # # 延时计时开始 # # 如果需要延时数据,请取消以下注释 # self.start_time = 0 # 开始时间 # self.anchor_time = 0# 锚点时间 # # 计时器信息 # self.timer_dict = {"FrontID": 0, # "SessionID": 0, # "OrderRef": b"", # "FunctionName": "", # "OrderStatus": b"", # "StartTime": 0.0, # "AnchorTime": 0.0, # "DeltaTime": 0.0, # } # self.csv_file = None # csv file对象 # self.csv_writer = None# csv writer对象 # # 延时计时开始 self.Join() # ############################################################################# # def init_parameter(self): """ 初始化策略参数 :return: """ pass # ############################################################################# # def buy_open(self, exchange_id, instrument_id, order_price, order_vol, order_ref): """ 买开仓。与卖平仓为一组完成交易。 """ self.req_order_insert(exchange_id, instrument_id, order_price, order_vol, order_ref, b'0', b'0') def sell_close(self, exchange_id, instrument_id, order_price, order_vol, order_ref): """ 卖平仓。与买开仓为一组完整交易。 SHFE与INE区分平今与平昨。 这里只实现了平今。 """ if exchange_id == b'SHFE' or exchange_id == b'INE': self.req_order_insert(exchange_id, instrument_id, order_price, order_vol, order_ref, b'1', b'3') else: self.req_order_insert(exchange_id, instrument_id, order_price, order_vol, order_ref, b'1', b'1') def sell_open(self, exchange_id, instrument_id, order_price, order_vol, order_ref): """ 卖开仓。与买平仓为一组完成交易。 """ self.req_order_insert(exchange_id, instrument_id, order_price, order_vol, order_ref, b'1', b'0') def buy_close(self, exchange_id, instrument_id, order_price, order_vol, order_ref): """ 买平仓。与卖开仓为一组完整的交易。 SHFE与INE区分平今与平昨。 这里只实现了平今。 """ if exchange_id == b'SHFE' or exchange_id == b'INE': self.req_order_insert(exchange_id, instrument_id, order_price, order_vol, order_ref, b'0', b'3') else: self.req_order_insert(exchange_id, instrument_id, order_price, order_vol, order_ref, b'0', b'1') def req_order_insert(self, exchange_id, instrument_id, order_price, order_vol, order_ref, direction, offset_flag): """ 录入报单请求。将订单结构体参数传递给父类方法ReqOrderInsert执行。 :param exchange_id:交易所ID。 :param instrument_id:合约ID。 :param order_price:报单价格。 :param order_vol:报单手数。 :param order_ref:报单引用,用来标识订单来源。 :param direction:买卖方向。 (‘买 : 0’,) (‘卖 : 1’,) :param offset_flag:开平标志,只有SHFE和INE区分平今、平昨。 (‘开仓 : 0’,) (‘平仓 : 1’,) (‘强平 : 2’,) (‘平今 : 3’,) (‘平昨 : 4’,) (‘强减 : 5’,) (‘本地强平 : 6’,) :return: """ input_order_field = InputOrderField( BrokerID=self.broker_id, InvestorID=self.investor_id, ExchangeID=exchange_id, InstrumentID=instrument_id, UserID=self.investor_id, OrderPriceType=b'2', Direction=direction, CombOffsetFlag=offset_flag, CombHedgeFlag=b'1', LimitPrice=order_price, VolumeTotalOriginal=order_vol, TimeCondition=b'3', VolumeCondition=b'1', MinVolume=1, ContingentCondition=b'1', StopPrice=0, ForceCloseReason=b'0', IsAutoSuspend=0, OrderRef=str(order_ref), ) if self.ReqOrderInsert(input_order_field) == 0: # 本地订单信息字典 self.local_order_dict[input_order_field.OrderRef] = LocalOrderInfo( ExchangeID=input_order_field.ExchangeID, InstrumentID=input_order_field.InstrumentID, OrderRef=input_order_field.OrderRef, Direction=input_order_field.Direction, OffsetFlag=input_order_field.CombOffsetFlag, LimitPrice=input_order_field.LimitPrice, VolumeTotalOriginal=input_order_field.VolumeTotalOriginal, VolumeTotal=input_order_field.VolumeTotalOriginal, OrderStatus=b'', OrderSysID=b'', InputTime=timer(), ) # def ReqOrderInsert(self, pInputOrder): # """ # 录入报单请求。已在父类封装。 # 如果不需要记录延时数据,则无需在此实现。 # """ # super(SpreadTradingBase, self).ReqOrderInsert(pInputOrder) # # 延时计时开始 # # 如果需要延时数据,请取消以下注释 # self.anchor_time = timer() # self.timer_dict["OrderRef"] = pInputOrder.OrderRef # self.timer_dict["FunctionName"] = "ReqOrderInsert" # self.timer_dict["OrderStatus"] = b"" # self.timer_dict["StartTime"] = self.start_time # self.timer_dict["AnchorTime"] = self.anchor_time # self.timer_dict["DeltaTime"] = self.anchor_time - self.start_time # self.csv_writer.writerow(self.timer_dict) # self.csv_file.flush() # # 延时计时结束 # ############################################################################# # def OnRspOrderInsert(self, pInputOrder, pRspInfo, nRequestID, bIsLast): """ 录入撤单回报。不适宜在回调函数里做比较耗时的操作。可参考OnRtnOrder的做法。 :param pInputOrder: AlgoPlus.CTP.ApiStruct中InputOrderField的实例。 :param pRspInfo: AlgoPlus.CTP.ApiStruct中RspInfoField的实例。包含错误代码ErrorID和错误信息ErrorMsg :param nRequestID: :param bIsLast: :return: """ if self.is_my_order(pInputOrder.OrderRef): if pRspInfo.ErrorID != 0: if pInputOrder.InstrumentID == self.parameter_field.AInstrumentID: self.on_leg1_insert_fail(pInputOrder) elif pInputOrder.InstrumentID == self.parameter_field.BInstrumentID: self.on_leg2_insert_fail(pInputOrder) self._write_log(f"{pRspInfo}=>{pInputOrder}") # # 延时计时开始 # # 如果需要延时数据,请取消注释 # # 不适宜在回调函数里做比较耗时的操作。 # self.anchor_time = timer() # self.timer_dict["FunctionName"] = "OnRspOrderInsert" # self.timer_dict["OrderStatus"] = b"" # self.timer_dict["AnchorTime"] = self.anchor_time # self.timer_dict["DeltaTime"] = self.anchor_time - self.start_time # self.csv_writer.writerow(self.timer_dict) # self.csv_file.flush() # # 延时计时结束 # ############################################################################# # def is_my_order(self, order_ref): """ 以OrderRef标识本策略订单。 """ return order_ref.isdigit() and self.order_ref_range[0] < int(order_ref) < self.order_ref_range[1] def OnRtnOrder(self, pOrder): """ 当收到订单状态变化时,可以在本方法中获得通知。不适宜在回调函数里做比较耗时的操作。可参考OnRtnOrder的做法。 根据pOrder.OrderStatus的取值调用适应的交易算法。 :param pOrder: AlgoPlus.CTP.ApiStruct中OrderField的实例。 OrderField的OrderStatus字段枚举值及含义: (‘全部成交 : 0’,) (‘部分成交还在队列中 : 1’,) (‘部分成交不在队列中 : 2’,) (‘未成交还在队列中 : 3’,) (‘未成交不在队列中 : 4’,) (‘撤单 : 5’,) (‘未知 : a’,) (‘尚未触发 : b’,) (‘已触发 : c’,) OrderField的OrderSubmitStatus字段枚举值及含义: (‘已经提交 : 0’,) (‘撤单已经提交 : 1’,) (‘修改已经提交 : 2’,) (‘已经接受 : 3’,) (‘报单已经被拒绝 : 4’,) (‘撤单已经被拒绝 : 5’,) (‘改单已经被拒绝 : 6’,) :return: """ # # 延时计时开始 # # 如果需要延时数据,请取消以下注释 # # 不适宜在回调函数里做比较耗时的操作。 # self.anchor_time = timer() # self.timer_dict["FunctionName"] = "OnRtnOrder" # self.timer_dict["OrderStatus"] = pOrder.OrderStatus # self.timer_dict["AnchorTime"] = self.anchor_time # self.timer_dict["DeltaTime"] = self.anchor_time - self.start_time # self.csv_writer.writerow(self.timer_dict) # self.csv_file.flush() # # 延时计时结束 if self.is_my_order(pOrder.OrderRef): self.local_rtn_order_list.append(pOrder.to_dict_raw()) def process_rtn_order(self): last_rtn_order_id = len(self.local_rtn_order_list) for rtn_order in self.local_rtn_order_list[self.last_rtn_order_id:last_rtn_order_id]: local_order_info = self.local_order_dict[rtn_order["OrderRef"]] if local_order_info.OrderSysID == b'': local_order_info.OrderSysID = rtn_order["OrderSysID"] # 未成交 if local_order_info.OrderStatus == b'' and rtn_order["OrderStatus"] == b'3': local_order_info.OrderStatus = b'3' # 未成交状态 # 全部成交 elif rtn_order["OrderStatus"] == b'0': local_order_info.OrderStatus = b'0' # 全部成交状态 if rtn_order["InstrumentID"] == self.parameter_field.AInstrumentID: self.on_leg1_traded(rtn_order) elif rtn_order["InstrumentID"] == self.parameter_field.BInstrumentID: self.on_leg2_traded(rtn_order) # 部分成交 elif rtn_order["OrderStatus"] == b'1': local_order_info.OrderStatus = b'1' # 部分成交状态 if rtn_order["InstrumentID"] == self.parameter_field.AInstrumentID: self.on_leg1_traded(rtn_order) elif rtn_order["InstrumentID"] == self.parameter_field.BInstrumentID: self.on_leg2_traded(rtn_order) # 撤单成功 elif rtn_order["OrderStatus"] == b'5': local_order_info.OrderStatus = b'5' # 已撤单状态 if rtn_order["InstrumentID"] == self.parameter_field.AInstrumentID: self.with_draw_num += 1 self.on_leg1_action(rtn_order) elif rtn_order["InstrumentID"] == self.parameter_field.BInstrumentID: self.on_leg2_action(rtn_order) # 委托失败 elif rtn_order["OrderSubmitStatus"] == b'4': local_order_info.OrderStatus = b'9' # 委托失败状态 if rtn_order["InstrumentID"] == self.parameter_field.AInstrumentID: self.on_leg1_insert_fail(rtn_order) elif rtn_order["InstrumentID"] == self.parameter_field.BInstrumentID: self.on_leg2_insert_fail(rtn_order) # 撤单失败 elif rtn_order["OrderSubmitStatus"] == b'5': local_order_info.OrderStatus = b'8' # 撤单失败状态 if rtn_order["InstrumentID"] == self.parameter_field.AInstrumentID: self.on_leg1_action_fail(rtn_order) elif rtn_order["InstrumentID"] == self.parameter_field.BInstrumentID: self.on_leg2_action_fail(rtn_order) self.last_rtn_order_id = last_rtn_order_id def on_leg1_traded(self, rtn_order): """ 腿一(不活跃合约)成交时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField的实例。 :return: """ pass def on_leg2_traded(self, rtn_order): """ 腿二(活跃合约)成交时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField的实例。 :return: """ pass def on_leg1_action(self, rtn_order): """ 腿一(不活跃合约)撤单成功时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField的实例。 :return: """ pass def on_leg2_action(self, rtn_order): """ 腿二(活跃合约)撤单成功时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField的实例。 :return: """ pass def on_leg1_insert_fail(self, rtn_order): """ 腿一(不活跃合约)订单失败时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField或者InputOrder的实例。注意使用其公共字段。 :return: """ pass def on_leg2_insert_fail(self, rtn_order): """ 腿一(不活跃合约)报单失败时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField或者InputOrder的实例。注意使用其公共字段。 :return: """ pass def on_leg1_action_fail(self, rtn_order): """ 腿一(不活跃合约)撤单失败时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField或者InputOrderActionField的实例。注意使用其公共字段。 :return: """ pass def on_leg2_action_fail(self, rtn_order): """ 腿二(活跃合约)撤单失败时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField或者InputOrderActionField的实例。注意使用其公共字段。 :return: """ pass # ############################################################################# # def OnRtnTrade(self, pTrade): """ 当报单成交时,可以在本方法中获得通知。不适宜在回调函数里做比较耗时的操作。可参考OnRtnOrder的做法。 TradeField包含成交价格,而OrderField则没有。 如果不需要成交价格,可忽略该通知,使用OrderField。 :param pTrade: AlgoPlus.CTP.ApiStruct中的TradeField实例。 :return: """ pass # ############################################################################# # def OnErrRtnOrderInsert(self, pInputOrder, pRspInfo): """ 订单错误通知。不适宜在回调函数里做比较耗时的操作。可参考OnRtnOrder的做法。 :param pInputOrder: AlgoPlus.CTP.ApiStruct中的InputOrderField实例。 :param pRspInfo: AlgoPlus.CTP.ApiStruct中RspInfoField的实例。包含错误代码ErrorID和错误信息ErrorMsg :return: """ if self.is_my_order(pInputOrder.OrderRef): if pRspInfo.ErrorID != 0: if pInputOrder.InstrumentID == self.parameter_field.AInstrumentID: self.on_leg1_action_fail(pInputOrder) elif pInputOrder.InstrumentID == self.parameter_field.BInstrumentID: self.on_leg2_action_fail(pInputOrder) self._write_log(f"{pRspInfo}=>{pInputOrder}") # # 延时计时开始 # # 如果需要延时数据,请取消注释 # # 不适宜在回调函数里做比较耗时的操作。 # self.anchor_time = timer() # self.timer_dict["FunctionName"] = "OnErrRtnOrderInsert" # self.timer_dict["OrderStatus"] = b"" # self.timer_dict["AnchorTime"] = self.anchor_time # self.timer_dict["DeltaTime"] = self.anchor_time - self.start_time # self.csv_writer.writerow(self.timer_dict) # self.csv_file.flush() # # 延时计时结束 # ############################################################################# # def req_order_action(self, exchange_id, instrument_id, order_ref, order_sysid=''): """ 撤单请求。将撤单结构体参数传递给父类方法ReqOrderAction执行。 :param exchange_id:交易所ID :param instrument_id:合约ID :param order_ref:报单引用,用来标识订单来源。根据该标识撤单。 :param order_sysid:系统ID,当录入成功时,可在回报/通知中获取该字段。 :return: """ input_order_action_field = InputOrderActionField( BrokerID=self.broker_id, InvestorID=self.investor_id, UserID=self.investor_id, ExchangeID=exchange_id, ActionFlag=b'0', InstrumentID=instrument_id, FrontID=self.front_id, SessionID=self.session_id, OrderSysID=order_sysid, OrderRef=order_ref, ) l_retVal = self.ReqOrderAction(input_order_action_field) # ############################################################################# # # # 延时计时开始 # # 如果需要延时数据,请取消以下注释 # def ReqOrderAction(self, pInputOrderAction): # """ # 录入撤单请求。已在父类封装。 # 如果不需要记录延时数据,则无需在此实现。 # """ # super(SpreadTrading, self).ReqOrderAction(pInputOrderAction) # self.anchor_time = timer() # self.timer_dict["OrderRef"] = pInputOrderAction.OrderRef # self.timer_dict["FunctionName"] = "ReqOrderAction" # self.timer_dict["OrderStatus"] = b"" # self.timer_dict["StartTime"] = self.start_time # self.timer_dict["AnchorTime"] = self.anchor_time # self.timer_dict["DeltaTime"] = self.anchor_time - self.start_time # self.csv_writer.writerow(self.timer_dict) # self.csv_file.flush() # # 延时计时结束 # ############################################################################# # def OnRspOrderAction(self, pInputOrderAction, pRspInfo, nRequestID, bIsLast): """ 录入撤单回报。不适宜在回调函数里做比较耗时的操作。可参考OnRtnOrder的做法。 :param pInputOrderAction: AlgoPlus.CTP.ApiStruct中InputOrderActionField的实例。 :param pRspInfo: AlgoPlus.CTP.ApiStruct中RspInfoField的实例。包含错误代码ErrorID和错误信息ErrorMsg :param nRequestID: :param bIsLast: :return: """ if self.is_my_order(pInputOrderAction.OrderRef): if pRspInfo.ErrorID != 0: if pInputOrderAction.InstrumentID == self.parameter_field.AInstrumentID: self.on_leg1_action_fail(pInputOrderAction) elif pInputOrderAction.InstrumentID == self.parameter_field.BInstrumentID: self.on_leg2_action_fail(pInputOrderAction) self._write_log(f"{pRspInfo}=>{pInputOrderAction}") # # 延时计时开始 # # 如果需要延时数据,请取消注释 # # 不适宜在回调函数里做比较耗时的操作。 # self.anchor_time = timer() # self.timer_dict["FunctionName"] = "OnRspOrderAction" # self.timer_dict["OrderStatus"] = b"" # self.timer_dict["AnchorTime"] = self.anchor_time # self.timer_dict["DeltaTime"] = self.anchor_time - self.start_time # self.csv_writer.writerow(self.timer_dict) # self.csv_file.flush() # # 延时计时结束 # ############################################################################# # def check_local_orders(self): """ 检查所有挂单是否满足撤单条件。 :return: """ try: for order_ref in list(self.local_order_dict): local_order_field = self.local_order_dict[order_ref] if local_order_field.OrderStatus == b'1' or local_order_field.OrderStatus == b'3': if local_order_field.InstrumentID == self.parameter_field.AInstrumentID: self.with_draw_leg1_order(local_order_field) elif local_order_field.InstrumentID == self.parameter_field.BInstrumentID: self.with_draw_leg2_order(local_order_field) except Exception as err: pass def with_draw_leg1_order(self, local_order_field): """ 判断是否满足腿一撤单条件。 :param local_order_field: 本地订单信息 :return: """ pass def with_draw_leg2_order(self, local_order_field): """ 判断是否满足腿二撤单条件。 :param local_order_field: 本地订单信息 :return: """ pass # ############################################################################# # def get_order_price_l1(self, direction, offset_flag): """ 获取腿一(不活跃合约)报单价格。 :param direction: b"0"表示买,其他(b"1")表示卖,注意是bytes类型 :param offset_flag: b"0"表示开,其他(b"1")表示平,注意是bytes类型 :return: 根据买开、卖平、卖开、卖平类型,判断是否满足交易条件,如果满足,返回订单委托价格。否则,返回None。 """ return None def get_order_price_l2(self, direction): """ 获取腿二(活跃合约)报单价格。与get_order_price_l1不同,要确保get_order_price_l2方法返回具体数值。 :param direction: b"0"表示买,其他(b"1")表示卖,注意是bytes类型 :return: 买入返回卖1价,卖出返回买1价 """ if direction == b'0': return self.md_b.AskPrice1 else: return self.md_b.BidPrice1 # ############################################################################# # def update_buy_spread_open(self): """ 买价差开仓。 self.position_status标识策略持仓阶段(0表示无持仓,1表示多头开/持仓,2表示平仓)。 只有无持仓时,或者价差多头持仓时,可买价差开仓。 self.sig_stage标识信号执行阶段(0表示无信号执行,1表示信号执行中)。 触发信号后,先对腿一买开仓,再对腿二卖开仓。腿一腿二配平后,self.sig_stage重置为0。 order_price为None表示不满足交易条件,否则满足交易条件。 :return: """ if self.sig_stage == 0 and (self.position_status == 0 or self.position_status == 1): order_price = self.get_order_price_l1(b'0', b'0') if order_price: self.position_status = 1 self.sig_stage = 1 self.order_ref += 1 self.buy_open(self.parameter_field.AExchangeID, self.parameter_field.AInstrumentID, order_price, self.parameter_field.Lots, self.order_ref) self._write_log(f"买价差开仓信号 => 第一腿开仓!") def update_sell_spread_close(self): """ 卖价差平仓。 self.position_status标识策略持仓阶段(0表示无持仓,1表示多头开/持仓,2表示平仓)。 只有持有价差多头时,可卖价差平仓。 self.sig_stage标识信号执行阶段(0表示无信号执行,1表示信号执行中)。 触发信号后,先对腿一买开仓,再对腿二卖开仓。腿一腿二配平后,self.sig_stage重置为0。 order_price为None表示不满足交易条件,否则满足交易条件。 :return: """ if self.sig_stage == 0 and (self.position_status == 1 and self.sig_stage == 0): order_price = self.get_order_price_l1(b'1', b'1') if order_price: self.position_status = 2 self.sig_stage = 1 self.order_ref += 1 self.sell_close(self.parameter_field.AExchangeID, self.parameter_field.AInstrumentID, order_price, self.parameter_field.Lots, self.order_ref) self._write_log(f"卖价差平仓信号 => 第一腿平仓!") def update_sell_spread_open(self): """ 卖价差开仓。 self.position_status标识策略持仓阶段(0表示无持仓,1表示多头开/持仓,2表示平仓)。 只有无持仓时,或者持有价差空头时,可卖价差开仓。 self.sig_stage标识信号执行阶段(0表示无信号执行,1表示信号执行中)。 触发信号后,先对腿一买开仓,再对腿二卖开仓。腿一腿二配平后,self.sig_stage重置为0。 order_price为None表示不满足交易条件,否则满足交易条件。 :return: """ if self.sig_stage == 0 and (self.position_status == 0 or self.position_status == -1): order_price = self.get_order_price_l1(b'1', b'0') if order_price: self.position_status = -1 self.sig_stage = 1 self.order_ref += 1 self.sell_open(self.parameter_field.AExchangeID, self.parameter_field.AInstrumentID, order_price, self.parameter_field.Lots, self.order_ref) self._write_log(f"卖价差开仓信号 => 第一腿开仓!") def update_buy_spread_close(self): """ 买价差平仓。 self.position_status标识策略持仓阶段(0表示无持仓,1表示多头开/持仓,2表示平仓)。 只有持有价差空头时,可买价差平仓。 self.sig_stage标识信号执行阶段(0表示无信号执行,1表示信号执行中)。 触发信号后,先对腿一买开仓,再对腿二卖开仓。腿一腿二配平后,self.sig_stage重置为0。 order_price为None表示不满足交易条件,否则满足交易条件。 :return: """ if self.sig_stage == 0 and (self.position_status == -1 and self.sig_stage == 0): order_price = self.get_order_price_l1(b'0', b'1') if order_price: self.position_status = -2 self.sig_stage = 1 self.order_ref += 1 self.buy_close(self.parameter_field.AExchangeID, self.parameter_field.AInstrumentID, order_price, self.parameter_field.Lots, self.order_ref) self._write_log(f"买价差平仓信号 => 第一腿平仓!") # ############################################################################# # def update_open_status(self): """ 开仓限制条件,以撤单次数为例。 :return: 可开仓,返回True。否则返回False。 """ return False def update_close_status(self): """ 开仓限制条件,以撤单次数为例。 :return: 可平仓,返回True。否则返回False。 """ return False # ############################################################################# # def Join(self): while True: if self.status == 0 and self.work_status >= 0: while not self.md_queue.empty(): last_md = self.md_queue.get(block=False) if last_md.InstrumentID == self.parameter_field.AInstrumentID: self.md_a = last_md self.server_time = max(self.server_time, self.md_a.UpdateTime) elif last_md.InstrumentID == self.parameter_field.BInstrumentID: self.md_b = last_md self.server_time = max(self.server_time, self.md_a.UpdateTime) if 0 < self.work_status < 4: self.process_rtn_order() self.check_local_orders() if self.update_open_status(): self.update_buy_spread_open() self.update_sell_spread_open() elif (self.work_status == 1 or self.work_status == 3) and self.sig_stage == 0: self.work_status = 2 if self.work_status == 1 else 4 self._write_log(f"触发暂停开仓条件!") if self.update_close_status(): self.update_buy_spread_close() self.update_sell_spread_close() elif (self.work_status == 1 or self.work_status == 2) and self.sig_stage == 0: self.work_status = 3 if self.work_status == 1 else 4 self._write_log(f"触发暂停平仓条件!") elif self.work_status >= 4: self._write_log(f"开仓与平仓均已暂停!") break elif self.md_a is not None and self.md_b is not None and \ 0 < self.md_a.AskPrice1 < 9999999 and 0 < self.md_a.BidPrice1 < 9999999 and 0 < self.md_b.AskPrice1 < 9999999 and 0 < self.md_b.BidPrice1 < 9999999: self.work_status = 1 else: sleep(1) ``` #### File: AdvancedCookbook/spread_trading/spread_trading_example.py ```python from ctypes import * from multiprocessing import Process, Queue from time import perf_counter as timer from spread_trading_base import SpreadTradingBase from AlgoPlus.utils.base_field import BaseField from tick_engine import TickEngine class SpreadTradingFields(BaseField): _fields_ = [ ('StrategyName', c_char * 100), ('StrategyID', c_int), ('AInstrumentID', c_char * 31), # A合约代码 ('APriceTick', c_double), # A最小变动价位 ('AExchangeID', c_char * 9), # A交易所代码 ('BInstrumentID', c_char * 31), # B合约代码 ('BPriceTick', c_double), # B最小变动价位 ('BExchangeID', c_char * 9), # B交易所代码 ('BuyOpenSpread', c_double), # 买开仓价差 ('SellCloseSpread', c_double), # 卖平仓价差 ('SellOpenSpread', c_double), # 卖开仓价差 ('BuyCloseSpread', c_double), # 买平仓价差 ('Lots', c_int), # 下单手数 ('MaxActionNum', c_int), # 最大撤单次数 ('MaxPosition', c_int), # 最大持仓手数 ('AWaitSeconds', c_float), # B合约撤单前等待秒 ('BWaitSeconds', c_float), # B合约撤单前等待秒 ] class MySpreadTrading(SpreadTradingBase): # ############################################################################# # def init_parameter(self): """ 初始化策略参数 :return: """ self.parameter_field = self.md_queue.get(block=False) # 策略参数结构体 self.order_ref = self.parameter_field.StrategyID * 10000 # 报单引用 self.order_ref_range = [self.order_ref, self.order_ref + 10000] # 报单引用区间 self.work_status = 0 self._write_log(f"策略参数初始化完成!=>{self.parameter_field}") # ############################################################################# # def on_leg1_traded(self, rtn_order): """ 腿一(不活跃合约)成交时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderFireq_order_inserteld的实例。 :return: """ local_order_info = self.local_order_dict[rtn_order["OrderRef"]] # 本地订单信息 volume_traded = local_order_info.VolumeTotal - rtn_order["VolumeTotal"] # 腿一成交数量 if volume_traded > 0: local_order_info.VolumeTotal = rtn_order["VolumeTotal"] # 腿一剩余数量 if rtn_order["CombOffsetFlag"] == b'0': self.position_a += volume_traded # 腿一总持仓 else: self.position_a -= volume_traded # 腿一总持仓 self.order_ref += 1 if rtn_order["Direction"] == b'0': order_price = self.get_order_price_l2(b'1') # 腿二报单价格 self.sell_open(self.parameter_field.BExchangeID, self.parameter_field.BInstrumentID, order_price, volume_traded, self.order_ref) else: order_price = self.get_order_price_l2(b'0') # 腿二报单价格 self.buy_open(self.parameter_field.BExchangeID, self.parameter_field.BInstrumentID, order_price, volume_traded, self.order_ref) def on_leg2_traded(self, rtn_order): """ 腿二(活跃合约)成交时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField的实例。 :return: """ local_order_info = self.local_order_dict[rtn_order["OrderRef"]] # 本地订单信息 volume_traded = local_order_info.VolumeTotal - rtn_order["VolumeTotal"] # 腿二成交数量 if volume_traded > 0: local_order_info.VolumeTotal = rtn_order["VolumeTotal"] # 腿二成交数量 if rtn_order["CombOffsetFlag"] == b'0': self.position_b += volume_traded # 腿二总持仓 else: self.position_b -= volume_traded # 腿二总持仓 if rtn_order["VolumeTotal"] == 0: self.sig_stage = 0 if self.position_b == 0: self.position_status = 0 self.local_order_dict.clear() self._write_log(f"腿一与腿二配对完成!目前持仓情况,腿一:{self.position_a},腿二:{self.position_b}") def on_leg1_action(self, rtn_order): """ 腿一(不活跃合约)撤单成功时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField的实例。 :return: """ self.sig_stage = 0 if self.position_a == 0: self.position_status = 0 def on_leg2_action(self, rtn_order): """ 腿二(活跃合约)撤单成功时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField的实例。 :return: """ self.order_ref += 1 order_price = self.get_order_price_l2(rtn_order["Direction"]) # 腿二报单价格 self.req_order_insert(rtn_order["ExchangeID"], rtn_order["InstrumentID"], order_price, rtn_order["VolumeTotal"], self.order_ref, rtn_order["Direction"], rtn_order["CombOffsetFlag"]) def on_leg1_insert_fail(self, rtn_order): """ 腿一(不活跃合约)订单失败时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField的实例。 :return: """ pass def on_leg2_insert_fail(self, rtn_order): """ 腿一(不活跃合约)报单失败时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField的实例。 :return: """ pass def on_leg1_action_fail(self, rtn_order): """ 腿一(不活跃合约)撤单失败时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField的实例。 :return: """ pass def on_leg2_action_fail(self, rtn_order): """ 腿二(活跃合约)撤单失败时需要执行的交易逻辑。 :param rtn_order: AlgoPlus.CTP.ApiStruct中OrderField的实例。 :return: """ pass # ############################################################################# # def with_draw_leg1_order(self, local_order_field): """ 判断是否满足腿一撤单条件。 :param local_order_field: 本地订单信息 :return: """ anchor_time = timer() if anchor_time - local_order_field.InputTime > self.parameter_field.AWaitSeconds: self.req_order_action(self.parameter_field.AExchangeID, self.parameter_field.AInstrumentID, local_order_field.OrderRef) local_order_field.OrderStatus = b'7' # 修改本地订单状态,避免重复撤单 self._write_log(f"撤销腿一挂单!OrderRef={local_order_field.OrderRef}") def with_draw_leg2_order(self, local_order_field): """ 判断是否满足腿二撤单条件。 :param local_order_field: 本地订单信息 :return: """ anchor_time = timer() if anchor_time - local_order_field.InputTime > self.parameter_field.BWaitSeconds: self.req_order_action(self.parameter_field.BExchangeID, self.parameter_field.BInstrumentID, local_order_field.OrderRef) local_order_field.OrderStatus = b'7' # 修改本地订单状态,避免重复撤单 self._write_log(f"撤销腿二挂单!OrderRef={local_order_field.OrderRef}") # ############################################################################# # def get_order_price_l1(self, direction, offset_flag): """ 获取腿一(不活跃合约)报单价格。 :param direction: b"0"表示买,其他(b"1")表示卖,注意是bytes类型 :param offset_flag: b"0"表示开,其他(b"1")表示平,注意是bytes类型 :return: 根据买开、卖平、卖开、卖平类型,判断是否满足交易条件,如果满足,返回订单委托价格。否则,返回None。 """ order_price = None try: if direction == b'0': if self.md_a.BidPrice1 - self.md_b.BidPrice1 < self.parameter_field.BuyOpenSpread if offset_flag == b'0' else self.parameter_field.BuyCloseSpread: order_price = self.md_a.BidPrice1 + self.parameter_field.APriceTick else: if self.md_a.AskPrice1 - self.md_b.AskPrice1 > self.parameter_field.SellOpenSpread if offset_flag == b'0' else self.parameter_field.SellCloseSpread: order_price = self.md_a.AskPrice1 - self.parameter_field.APriceTick finally: return order_price # def get_order_price_l2(self, direction): # """ # 获取腿二(活跃合约)报单价格。与get_order_price_l1不同,要确保get_order_price_l2方法返回具体数值。 # :param direction: b"0"表示买,其他(b"1")表示卖,注意是bytes类型 # :return: 买入返回卖1价,卖出返回买1价 # """ # if direction == '0': # return self.md_b.AskPrice1 # else: # return self.md_b.BidPrice1 # ############################################################################# # def update_open_status(self): """ 开仓限制条件,以撤单次数为例。 :return: 可开仓,返回True。否则返回False。 """ if self.with_draw_num < self.parameter_field.MaxActionNum and self.position_a < self.parameter_field.MaxPosition: return True return False def update_close_status(self): """ 平仓限制条件。 :return: 可平仓,返回True。否则返回False。 """ return True if __name__ == "__main__": from account_info import my_future_account_info_dict future_account = my_future_account_info_dict['SimNow'] # 共享队列 share_queue = Queue(maxsize=100) my_strategy_parameter_field = SpreadTradingFields( StrategyName=b'AlgoPlus Spread Trading Exemplification', StrategyID=1, AInstrumentID=b'ni2001', APriceTick=10, AExchangeID=b'SHFE', BInstrumentID=b'ni1912', # B合约代码 BPriceTick=10, # B最小变动价位 BExchangeID=b'SHFE', # B交易所代码 BuyOpenSpread=30000, # 买开仓价差 SellCloseSpread=0, # 卖平仓价差 SellOpenSpread=50000, # 卖开仓价差 BuyCloseSpread=40000, # 买平仓价差 Lots=10, # 下单手数 MaxActionNum=100, # 最大撤单次数 MaxPosition=60, # 最大持仓手数 AWaitSeconds=1, # B合约撤单前等待秒 BWaitSeconds=1, # B合约撤单前等待秒 ) share_queue.put(my_strategy_parameter_field) # 行情进程 md_process = Process(target=TickEngine, args=(future_account.server_dict['MDServer'] , future_account.broker_id , future_account.investor_id , future_account.password , future_account.app_id , future_account.auth_code , future_account.instrument_id_list , [share_queue] , future_account.md_page_dir) ) # 交易进程 trader_process = Process(target=MySpreadTrading, args=(future_account.server_dict['TDServer'] , future_account.broker_id , future_account.investor_id , future_account.password , future_account.app_id , future_account.auth_code , share_queue , future_account.td_page_dir) ) # md_process.start() trader_process.start() md_process.join() trader_process.join() ``` #### File: AlgoPlus/utils/base_field.py ```python from ctypes import * class BaseField(Structure): def _to_bytes(self, value): if isinstance(value, bytes): return value else: return bytes(str(value), encoding="utf-8") def to_dict_raw(self): results = {} for key, _ in self._fields_: _value = getattr(self, key) results[key] = _value return results def to_dict(self): results = {} for key, _ in self._fields_: _value = getattr(self, key) if isinstance(_value, bytes): results[key] = _value.decode(encoding="gb18030", errors="ignore") else: results[key] = _value return results def to_list(self): results = [] for key, _ in self._fields_: _value = getattr(self, key) if isinstance(_value, bytes): results.append(_value.decode(encoding="gb18030", errors="ignore")) else: results.append(_value) return results def __repr__(self): return f"{self.__class__.__name__}->{self.to_dict()}" @classmethod def from_dict(cls, obj): return cls(**obj) ```
{ "source": "2803Aditya/My-Python-Library", "score": 3 }
#### File: MyLibrary/PlotMyGoogleSheet28/PlotMyGoogleSheet.py ```python import gspread import matplotlib.pyplot as plt from gspread_dataframe import get_as_dataframe import seaborn as sns class PlotMyGoogleSheet(): # Constructor def __init__(self, link): # Authenticating using serive account # Open the file using the sheet URL. # Select only sheet1 self.sh = gspread.service_account(filename='credentials.json').open_by_url(link).sheet1 # Line plot b/w col1 and col2 using matplotlib def plot(self, x, y): # Sheet to Dataframe df = get_as_dataframe(self.sh) # It will return the worksheets contents as a Dataframe df = df.dropna(how = "all", axis = 1) # Do not include unnamed columns sns.set_style('darkgrid') plt.figure(figsize = (15, 15)) sns.lineplot(x = df[x], y = df[y]) plt.xlabel(x) plt.ylabel(y) plt.savefig(x+' VS '+y+'.png') # Save the figure plt.show() # Render the figure print('Figure saved...') # Return column names of our sheet def get_cols(self): # Sheet to Dataframe df = get_as_dataframe(self.sh) # It will return the worksheets contents as a Dataframe df = df.dropna(how = "all", axis = 1) # Do not include unnamed columns return df.columns.to_list() obj = PlotMyGoogleSheet('https://docs.google.com/spreadsheets/d/1SrZfvr2ee54r7HR1jGtAE9zHIj_Y-UzK9ok8bdwkpqc/edit#gid=0') print(obj.get_cols()) ```
{ "source": "2811299/PythonCook", "score": 3 }
#### File: PythonCook/python2.0/Time_and_date.py ```python import datetime import time def date_str_to_ts(a_shit): """ 1548509506 -> 2019-01-26 21:31:46 """ return time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(a_shit)) print datetime.datetime.now() print time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())) print time.strftime('%Y-%m-%d', time.localtime(time.time())) # # # # # print int(time.mktime(time.strptime('2019-02-21 23:59:59','%Y-%m-%d %H:%M:%S'))) # # # # print int(time.mktime(time.strptime('2019-02-21','%Y-%m-%d'))) # print int(time.mktime(time.strptime('2019-02-22','%Y-%m-%d'))) # # def get_day_ts_range(day): # day_begin = int(time.mktime(time.strptime(day, '%Y-%m-%d'))) # day_end = day_begin + 3600 * 24 -1 # print day_begin # print day_end # # get_day_ts_range('2019-02-22') # print time.strftime('%Y-%m-%d', time.localtime(time.time())) # import datetime # def get_date_from_datestr(date_str): # # try: # print type(datetime.datetime.strptime(startDate, '%Y-%m-%d')) # return datetime.datetime.strptime(startDate, '%Y-%m-%d') # except ValueError: # return None # # startDate = "2018-2-11" # a=get_date_from_datestr(startDate) # startDate = "2018-2-13" # b=get_date_from_datestr(startDate) # # print (b - a).days # # # # while a <= b: # print str(a) # print type(str(a.date())) # a = a + datetime.timedelta(days=1) # ```
{ "source": "282951387/KFrame", "score": 3 }
#### File: _gcm/builder/gcm_http.py ```python from requests_toolbelt import MultipartEncoder import requests import json def do_post(url, path): print 'Post file %s to %s' % (path, url) m = MultipartEncoder( fields = { 'name' : 'filename', 'filename' : (path, open(path, 'rb'), 'application/octet-stream') }) #print m #print m.content_type r = requests.post(url, verify=True, data=m, headers={'Content-Type': m.content_type}) retjson = json.loads(r.text) if retjson['code'] != 0 or retjson['msg'] != 'ok': raise Exception('[ERROR] upload [%s] to web server failed, code=%d msg=%s' % (path, retjson['code'], retjson['msg'])) else: print 'upload [%s] to web server success, info = %s' % (path, r.text) #do_post('https://version.laywoodgames.com/upload.php', 'sgame_online_svn_12345678_201808311343.tar.gz') ```
{ "source": "2838778326/chegg-scraper", "score": 3 }
#### File: chegg-scraper/cheggscraper/Downloader.py ```python import argparse import json import os from importlib.resources import read_text from .CheggScraper import CheggScraper def main(): """ User Friendly Downloader for chegg homework help pages :return: Nothing :rtype: None """ conf = json.loads(read_text('cheggscraper', 'conf.json')) default_save_file_format = conf.get('default_save_file_format') default_cookie_file_path = conf.get('default_cookie_file_path') ap = argparse.ArgumentParser() ap.add_argument('-c', '--cookie', default=default_cookie_file_path, help='path of cookie life', dest='cookie_file') ap.add_argument('-u', '--url', help='url of chegg homework-help, put inside " "', type=str, dest='url') # FIXME: DIFF TAGS FOR FILE FORMAT AND BASE PATH ap.add_argument('-s', '--save', help='file path, where you want to save, put inside " " eg: test.html or' ' D:\\myFolder\\test.html or /home/test.html', type=str, default=default_save_file_format, dest='file_format') args = vars(ap.parse_args()) if not os.path.exists(path=args['cookie_file']): raise Exception(f'{args["cookie_file"]} does not exists') if not args.get('url'): args.update({'url': input('Enter url of the homework-help: ')}) Chegg = CheggScraper(cookie_path=args['cookie_file']) print(Chegg.url_to_html(args['url'], file_name_format=args['file_format'])) ```
{ "source": "284885166/djangodemo", "score": 2 }
#### File: djangodemo/learn/views.py ```python from __future__ import unicode_literals from django.shortcuts import render # Create your views here. from django.http import HttpResponse from django.http import HttpResponseRedirect from django.urls import reverse def index(request): return HttpResponse(u"欢迎自学!!") def add(request): a = request.GET['a'] b = request.GET['b'] # c = int(a) + int(b) # return HttpResponse(str(c)) return HttpResponseRedirect( reverse('add2', args={a, b}) ) def add2(request, a, b): c = int(a) + int(b) return HttpResponse(str(c)) def home(request): items = [u'张三', u'李四', u'王五'] return render(request, 'learn/home.html', {'string':u'张三', 'items':items }) ```
{ "source": "285219011/hello-world", "score": 2 }
#### File: python/kernel_tests/stochastic_graph_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf sg = tf.contrib.bayesflow.stochastic_graph distributions = tf.contrib.distributions class NormalNotParam(distributions.Normal): @property def is_reparameterized(self): return False class DistributionTensorTest(tf.test.TestCase): def testConstructionAndValue(self): with self.test_session() as sess: mu = [0.0, 0.1, 0.2] sigma = tf.constant([1.1, 1.2, 1.3]) sigma2 = tf.constant([0.1, 0.2, 0.3]) with self.assertRaisesRegexp(ValueError, 'No value type currently set'): prior = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma) prior_0 = sg.DistributionTensor( distributions.Normal, mu=mu, sigma=sigma, dist_value_type=sg.SampleAndReshapeValue()) with sg.value_type(sg.SampleAndReshapeValue()): prior = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma) likelihood = sg.DistributionTensor( distributions.Normal, mu=prior, sigma=sigma2) coll = tf.get_collection(sg.STOCHASTIC_TENSOR_COLLECTION) self.assertEqual(coll, [prior_0, prior, likelihood]) prior_0 = tf.identity(prior_0) prior = tf.identity(prior) # Also works: tf.convert_to_tensor(prior) likelihood = tf.identity(likelihood) # Mostly a smoke test for now... prior_0_val, prior_val, _ = sess.run( [prior_0, prior, likelihood]) self.assertEqual(prior_0_val.shape, prior_val.shape) # These are different random samples from the same distribution, # so the values should differ. self.assertGreater(np.abs(prior_0_val - prior_val).sum(), 1e-6) def testMeanValue(self): with self.test_session() as sess: mu = [0.0, -1.0, 1.0] sigma = tf.constant([1.1, 1.2, 1.3]) with sg.value_type(sg.MeanValue()): prior = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma) prior_mean = prior.mean() prior_value = prior.value() prior_mean_val, prior_value_val = sess.run([prior_mean, prior_value]) self.assertAllEqual(prior_mean_val, mu) self.assertAllEqual(prior_mean_val, prior_value_val) def testSampleAndReshapeValue(self): with self.test_session() as sess: mu = [[0.0, -1.0, 1.0], [0.0, -1.0, 1.0]] sigma = tf.constant([[1.1, 1.2, 1.3], [1.1, 1.2, 1.3]]) with sg.value_type(sg.SampleAndReshapeValue()): prior_single = sg.DistributionTensor( distributions.Normal, mu=mu, sigma=sigma) prior_single_value = prior_single.value() self.assertEqual(prior_single_value.get_shape(), (2, 3)) prior_single_value_val = sess.run([prior_single_value])[0] self.assertEqual(prior_single_value_val.shape, (2, 3)) with sg.value_type(sg.SampleAndReshapeValue(n=2)): prior_double = sg.DistributionTensor( distributions.Normal, mu=mu, sigma=sigma) prior_double_value = prior_double.value() self.assertEqual(prior_double_value.get_shape(), (4, 3)) prior_double_value_val = sess.run([prior_double_value])[0] self.assertEqual(prior_double_value_val.shape, (4, 3)) def testSampleValue(self): with self.test_session() as sess: mu = [[0.0, -1.0, 1.0], [0.0, -1.0, 1.0]] sigma = tf.constant([[1.1, 1.2, 1.3], [1.1, 1.2, 1.3]]) with sg.value_type(sg.SampleValue()): prior_single = sg.DistributionTensor( distributions.Normal, mu=mu, sigma=sigma) prior_single_value = prior_single.value() self.assertEqual(prior_single_value.get_shape(), (1, 2, 3)) prior_single_value_val = sess.run([prior_single_value])[0] self.assertEqual(prior_single_value_val.shape, (1, 2, 3)) with sg.value_type(sg.SampleValue(n=2)): prior_double = sg.DistributionTensor( distributions.Normal, mu=mu, sigma=sigma) prior_double_value = prior_double.value() self.assertEqual(prior_double_value.get_shape(), (2, 2, 3)) prior_double_value_val = sess.run([prior_double_value])[0] self.assertEqual(prior_double_value_val.shape, (2, 2, 3)) def testDistributionEntropy(self): with self.test_session() as sess: mu = [0.0, -1.0, 1.0] sigma = tf.constant([1.1, 1.2, 1.3]) with sg.value_type(sg.MeanValue()): prior = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma) entropy = prior.entropy() deep_entropy = prior.entropy() expected_deep_entropy = distributions.Normal( mu=mu, sigma=sigma).entropy() entropies = sess.run([entropy, deep_entropy, expected_deep_entropy]) self.assertAllEqual(entropies[2], entropies[0]) self.assertAllEqual(entropies[1], entropies[0]) class ValueTypeTest(tf.test.TestCase): def testValueType(self): type_mean = sg.MeanValue() type_reshape = sg.SampleAndReshapeValue() type_full = sg.SampleValue() with sg.value_type(type_mean): self.assertEqual(sg.get_current_value_type(), type_mean) with sg.value_type(type_reshape): self.assertEqual(sg.get_current_value_type(), type_reshape) with sg.value_type(type_full): self.assertEqual(sg.get_current_value_type(), type_full) self.assertEqual(sg.get_current_value_type(), type_mean) with self.assertRaisesRegexp(ValueError, 'No value type currently set'): sg.get_current_value_type() class TestSurrogateLosses(tf.test.TestCase): def testPathwiseDerivativeDoesNotAddSurrogateLosses(self): with self.test_session(): mu = [0.0, 0.1, 0.2] sigma = tf.constant([1.1, 1.2, 1.3]) with sg.value_type(sg.SampleAndReshapeValue()): prior = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma) likelihood = sg.DistributionTensor( distributions.Normal, mu=prior, sigma=sigma) self.assertTrue(prior.distribution.is_reparameterized) self.assertTrue(likelihood.distribution.is_reparameterized) loss = tf.square(tf.identity(likelihood) - [0.0, 0.1, 0.2]) sum_loss = tf.reduce_sum(loss) surrogate_from_loss = sg.surrogate_losses([loss]) surrogate_from_sum_loss = sg.surrogate_losses([sum_loss]) surrogate_from_both = sg.surrogate_losses( [loss, sum_loss]) # Pathwise derivative terms do not require score function # surrogate losses. self.assertEqual(surrogate_from_loss, []) self.assertEqual(surrogate_from_sum_loss, []) self.assertEqual(surrogate_from_both, []) def _testSurrogateLoss(self, session, losses, expected, xs): sf_losses = sg.surrogate_losses(losses) n = len(expected) self.assertEqual(len(expected), len(sf_losses)) values = session.run(list(expected) + sf_losses) # Test forward surrogate losses if isinstance(expected, set): # Hack: sort the two halves of the values by norm, and compare # those sorted_expected = sorted(values[:n], key=np.linalg.norm) sorted_losses = sorted(values[n:], key=np.linalg.norm) self.assertAllClose(sorted_expected, sorted_losses) else: # Expected losses in a particular order self.assertAllClose(values[:n], values[n:]) # Test backprop expected_grads = tf.gradients(ys=losses + list(expected), xs=xs) sf_grads = tf.gradients(ys=losses + sf_losses, xs=xs) self.assertEqual(len(expected_grads), len(sf_grads)) n_grad = len(expected_grads) grad_values = session.run(expected_grads + sf_grads) self.assertAllClose(grad_values[:n_grad], grad_values[n_grad:]) def testSurrogateLoss(self): with self.test_session() as sess: mu = tf.constant([0.0, 0.1, 0.2]) sigma = tf.constant([1.1, 1.2, 1.3]) with sg.value_type(sg.SampleAndReshapeValue()): prior = sg.DistributionTensor(NormalNotParam, mu=mu, sigma=sigma) likelihood = sg.DistributionTensor( NormalNotParam, mu=prior, sigma=sigma) prior_2 = sg.DistributionTensor(NormalNotParam, mu=mu, sigma=sigma) loss = tf.square(tf.identity(likelihood) - mu) part_loss = tf.square(tf.identity(prior) - mu) sum_loss = tf.reduce_sum(loss) loss_nodeps = tf.square(tf.identity(prior_2) - mu) # For ground truth, use the stop-gradient versions of the losses loss_nograd = tf.stop_gradient(loss) loss_nodeps_nograd = tf.stop_gradient(loss_nodeps) sum_loss_nograd = tf.stop_gradient(sum_loss) # These score functions should ignore prior_2 self._testSurrogateLoss( session=sess, losses=[loss], expected=set([ likelihood.distribution.log_pdf(likelihood.value()) * loss_nograd, prior.distribution.log_pdf(prior.value()) * loss_nograd]), xs=[mu, sigma]) self._testSurrogateLoss( session=sess, losses=[loss, part_loss], expected=set([ likelihood.distribution.log_pdf(likelihood.value()) * loss_nograd, (prior.distribution.log_pdf(prior.value()) * tf.stop_gradient(part_loss + loss))]), xs=[mu, sigma]) self._testSurrogateLoss( session=sess, losses=[sum_loss], expected=set([ (likelihood.distribution.log_pdf(likelihood.value()) * sum_loss_nograd), prior.distribution.log_pdf(prior.value()) * sum_loss_nograd]), xs=[mu, sigma]) self._testSurrogateLoss( session=sess, losses=[loss, sum_loss], expected=set([ (likelihood.distribution.log_pdf(likelihood.value()) * tf.stop_gradient(loss + sum_loss)), (prior.distribution.log_pdf(prior.value()) * tf.stop_gradient(loss + sum_loss))]), xs=[mu, sigma]) # These score functions should ignore prior and likelihood self._testSurrogateLoss( session=sess, losses=[loss_nodeps], expected=[prior_2.distribution.log_pdf(prior_2.value()) * loss_nodeps_nograd], xs=[mu, sigma]) # These score functions should include all terms selectively self._testSurrogateLoss( session=sess, losses=[loss, loss_nodeps], # We can't guarantee ordering of output losses in this case. expected=set( [(likelihood.distribution.log_pdf(likelihood.value()) * loss_nograd), prior.distribution.log_pdf(prior.value()) * loss_nograd, (prior_2.distribution.log_pdf(prior_2.value()) * loss_nodeps_nograd)]), xs=[mu, sigma]) if __name__ == '__main__': tf.test.main() ``` #### File: python/losses/loss_ops_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: enable=unused-import import numpy as np import tensorflow as tf class AbsoluteDifferenceLossTest(tf.test.TestCase): def setUp(self): self._predictions = tf.constant([4, 8, 12, 8, 1, 3], shape=(2, 3)) self._targets = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) def testValueErrorThrownWhenWeightIsNone(self): with self.test_session(): with self.assertRaises(ValueError): tf.contrib.losses.absolute_difference( self._predictions, self._predictions, weight=None) def testAllCorrectNoLossWeight(self): loss = tf.contrib.losses.absolute_difference( self._predictions, self._predictions) with self.test_session(): self.assertAlmostEqual(0.0, loss.eval(), 3) def testNonZeroLoss(self): loss = tf.contrib.losses.absolute_difference( self._predictions, self._targets) with self.test_session(): self.assertAlmostEqual(5.5, loss.eval(), 3) def testNonZeroLossWithPythonScalarWeight(self): weight = 2.3 loss = tf.contrib.losses.absolute_difference( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(5.5 * weight, loss.eval(), 3) def testNonZeroLossWithScalarTensorWeight(self): weight = 2.3 loss = tf.contrib.losses.absolute_difference( self._predictions, self._targets, tf.constant(weight)) with self.test_session(): self.assertAlmostEqual(5.5 * weight, loss.eval(), 3) def testNonZeroLossWithOneDimBatchSpecificWeights(self): weight = tf.constant([1.2, 0.0], shape=[2,]) loss = tf.contrib.losses.absolute_difference( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(5.6, loss.eval(), 3) def testNonZeroLossWithTwoDimBatchSpecificWeights(self): weight = tf.constant([1.2, 0.0], shape=[2, 1]) loss = tf.contrib.losses.absolute_difference( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(5.6, loss.eval(), 3) def testNonZeroLossWithSampleSpecificWeights(self): weight = tf.constant([3, 6, 5, 0, 4, 2], shape=[2, 3]) loss = tf.contrib.losses.absolute_difference( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(16.6, loss.eval(), 3) def testNonZeroLossWithSampleSpecificWeightsMostZero(self): weight = tf.constant([0, 0, 0, 0, 0, 2], shape=[2, 3]) loss = tf.contrib.losses.absolute_difference( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(6.0, loss.eval(), 3) def testLossWithSampleSpecificWeightsAllZero(self): weight = tf.zeros((2, 3)) loss = tf.contrib.losses.absolute_difference( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(0.0, loss.eval(), 3) class SoftmaxCrossEntropyLossTest(tf.test.TestCase): def testNoneWeightRaisesValueError(self): logits = tf.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], [0.0, 0.0, 10.0]]) labels = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) with self.test_session(): with self.assertRaises(ValueError): tf.contrib.losses.softmax_cross_entropy(logits, labels, weight=None) def testAllCorrect(self): with self.test_session(): logits = tf.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], [0.0, 0.0, 10.0]]) labels = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) loss = tf.contrib.losses.softmax_cross_entropy(logits, labels) self.assertEquals(loss.op.name, 'softmax_cross_entropy_loss/value') self.assertAlmostEqual(loss.eval(), 0.0, 3) def testAllWrong(self): logits = tf.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], [0.0, 0.0, 10.0]]) labels = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) with self.test_session(): loss = tf.contrib.losses.softmax_cross_entropy(logits, labels) self.assertEquals(loss.op.name, 'softmax_cross_entropy_loss/value') self.assertAlmostEqual(loss.eval(), 10.0, 3) def testNonZeroLossWithPythonScalarWeight(self): logits = tf.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], [0.0, 0.0, 10.0]]) labels = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) weight = 2.3 with self.test_session(): loss = tf.contrib.losses.softmax_cross_entropy(logits, labels, weight) self.assertAlmostEqual(loss.eval(), weight * 10.0, 3) def testNonZeroLossWithScalarTensorWeight(self): logits = tf.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], [0.0, 0.0, 10.0]]) labels = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) weight = 2.3 with self.test_session(): loss = tf.contrib.losses.softmax_cross_entropy( logits, labels, tf.constant(weight)) self.assertAlmostEqual(loss.eval(), weight * 10.0, 3) def testNonZeroLossWithOneDimBatchSpecificWeights(self): logits = tf.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], [0.0, 0.0, 10.0]]) labels = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) weight = tf.constant([1.2, 3.4, 5.6], shape=[3]) with self.test_session(): loss = tf.contrib.losses.softmax_cross_entropy(logits, labels, weight) self.assertAlmostEqual(loss.eval(), (1.2 + 3.4 + 5.6) * 10.0 / 3.0, 3) def testAllWrongAllMissing(self): logits = tf.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], [0.0, 0.0, 10.0]]) labels = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) weight = tf.constant([0, 0, 0], shape=[3]) with self.test_session(): loss = tf.contrib.losses.softmax_cross_entropy(logits, labels, weight) self.assertAlmostEqual(loss.eval(), 0.0, 3) def testSomeMissing(self): logits = tf.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], [0.0, 0.0, 10.0]]) labels = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) weight = tf.constant([1.2, 0, 0], shape=[3]) with self.test_session(): loss = tf.contrib.losses.softmax_cross_entropy(logits, labels, weight) self.assertAlmostEqual(loss.eval(), 12.0, 3) def testSoftmaxWithMeasurementSpecificWeightsRaisesException(self): with self.test_session(): logits = tf.constant([[100.0, -100.0, -100.0], [-100.0, 100.0, -100.0], [-100.0, -100.0, 100.0]]) labels = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) weight = tf.constant([[3, 4, 5], [2, 6, 0], [8, 0, 1]]) with self.assertRaises(ValueError): tf.contrib.losses.softmax_cross_entropy( logits, labels, weight=weight).eval() def testSoftmaxLabelSmoothing(self): with self.test_session(): logits = tf.constant([[100.0, -100.0, -100.0]]) labels = tf.constant([[1, 0, 0]]) label_smoothing = 0.1 loss = tf.contrib.losses.sigmoid_cross_entropy( logits, labels, label_smoothing=label_smoothing) self.assertEquals(loss.op.name, 'sigmoid_cross_entropy_loss/value') expected_value = 400.0 * label_smoothing / 9.0 self.assertAlmostEqual(loss.eval(), expected_value, 3) class SigmoidCrossEntropyLossTest(tf.test.TestCase): def testAllCorrectSigmoid(self): with self.test_session(): logits = tf.constant([[100.0, -100.0, -100.0], [-100.0, 100.0, -100.0], [-100.0, -100.0, 100.0]]) labels = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) loss = tf.contrib.losses.sigmoid_cross_entropy(logits, labels) self.assertEquals(loss.op.name, 'sigmoid_cross_entropy_loss/value') self.assertAlmostEqual(loss.eval(), 0.0, 3) def testAllWrongSigmoid(self): with self.test_session(): logits = tf.constant([[100.0, -100.0, -100.0], [-100.0, 100.0, -100.0], [-100.0, -100.0, 100.0]]) labels = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) loss = tf.contrib.losses.sigmoid_cross_entropy(logits, labels) self.assertEquals(loss.op.name, 'sigmoid_cross_entropy_loss/value') self.assertAlmostEqual(loss.eval(), 600.0 / 9.0, 3) def testAllWrongSigmoidWithMeasurementSpecificWeights(self): with self.test_session(): logits = tf.constant([[100.0, -100.0, -100.0], [-100.0, 100.0, -100.0], [-100.0, -100.0, 100.0]]) labels = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) weight = tf.constant([[3, 4, 5], [2, 6, 0], [8, 0, 1]]) loss = tf.contrib.losses.sigmoid_cross_entropy( logits, labels, weight=weight) self.assertEquals(loss.op.name, 'sigmoid_cross_entropy_loss/value') self.assertAlmostEqual(loss.eval(), 1700.0 / 7.0, 3) def testMultiCorrectSigmoid(self): logits = tf.constant([[100.0, -100.0, 100.0], [100.0, 100.0, -100.0], [-100.0, 100.0, 100.0]]) labels = tf.constant([[1, 0, 1], [1, 1, 0], [0, 1, 1]]) loss = tf.contrib.losses.sigmoid_cross_entropy(logits, labels) self.assertEquals(loss.op.name, 'sigmoid_cross_entropy_loss/value') with self.test_session(): self.assertAlmostEqual(loss.eval(), 0.0, 3) def testSigmoidLabelSmoothingCorrect(self): with self.test_session(): logits = tf.constant([[100.0, -100.0, -100.0]]) labels = tf.constant([[1, 0, 0]]) label_smoothing = 0.1 loss = tf.contrib.losses.sigmoid_cross_entropy( logits, labels, label_smoothing=label_smoothing) self.assertEquals(loss.op.name, 'sigmoid_cross_entropy_loss/value') expected_value = 400.0 * label_smoothing / 9.0 self.assertAlmostEqual(loss.eval(), expected_value, 3) class LogLossTest(tf.test.TestCase): def setUp(self): predictions = np.asarray([.9, .2, .2, .8, .4, .6]).reshape((2, 3)) targets = np.asarray([1.0, 0.0, 1.0, 1.0, 0.0, 0.0]).reshape((2, 3)) self._np_predictions = predictions self._np_targets = targets epsilon = 1e-7 self._expected_losses = np.multiply( targets, np.log(predictions + epsilon)) + np.multiply( 1 - targets, np.log(1 - predictions + epsilon)) self._predictions = tf.constant(predictions) self._targets = tf.constant(targets) def testValueErrorThrownWhenWeightIsNone(self): with self.test_session(): with self.assertRaises(ValueError): tf.contrib.losses.log_loss(self._targets, self._targets, weight=None) def testAllCorrectNoLossWeight(self): loss = tf.contrib.losses.log_loss(self._targets, self._targets) with self.test_session(): self.assertAlmostEqual(0.0, loss.eval(), 3) def testAllCorrectNoLossWeightWithPlaceholder(self): tf_predictions = tf.placeholder(tf.float32, shape=self._np_targets.shape) loss = tf.contrib.losses.log_loss(tf_predictions, self._targets) with self.test_session(): self.assertAlmostEqual(0.0, loss.eval(feed_dict={ tf_predictions: self._np_targets}), 3) def testNonZeroLoss(self): loss = tf.contrib.losses.log_loss(self._predictions, self._targets) with self.test_session(): self.assertAlmostEqual(-np.sum(self._expected_losses) / 6.0, loss.eval(), 3) def testNonZeroLossWithPythonScalarWeight(self): weight = 2.3 loss = tf.contrib.losses.log_loss( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(weight * -np.sum(self._expected_losses) / 6.0, loss.eval(), 3) def testNonZeroLossWithScalarTensorWeight(self): weight = 2.3 loss = tf.contrib.losses.log_loss( self._predictions, self._targets, tf.constant(weight)) with self.test_session(): self.assertAlmostEqual(weight * -np.sum(self._expected_losses) / 6.0, loss.eval(), 3) def testNonZeroLossWithScalarTensorWeightAndPlaceholder(self): tf_predictions = tf.placeholder(tf.float32, shape=self._np_predictions.shape) weight = 2.3 loss = tf.contrib.losses.log_loss( tf_predictions, self._targets, tf.constant(weight)) with self.test_session() as sess: loss = sess.run(loss, feed_dict={tf_predictions: self._np_predictions}) self.assertAlmostEqual(weight * -np.sum(self._expected_losses) / 6.0, loss, 3) def testNonZeroLossWithScalarTensorWeightAndPlaceholderWithRankOnly(self): tf_predictions = tf.placeholder(tf.float32, shape=[None, None]) weight = 2.3 loss = tf.contrib.losses.log_loss( tf_predictions, self._targets, tf.constant(weight)) with self.test_session() as sess: loss = sess.run(loss, feed_dict={tf_predictions: self._np_predictions}) self.assertAlmostEqual(weight * -np.sum(self._expected_losses) / 6.0, loss, 3) def testNonZeroLossWithOneDimBatchSpecificWeights(self): weight = tf.constant([1.2, 3.4], shape=[2]) expected_losses = np.multiply( self._expected_losses, np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape((2, 3))) loss = tf.contrib.losses.log_loss( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(-np.sum(expected_losses) / 6.0, loss.eval(), 3) def testNonZeroLossWithOneDimBatchSpecificWeightsSomeZero(self): weight = tf.constant([1.2, 0], shape=[2]) expected_losses = np.multiply( self._expected_losses, np.asarray([1.2, 1.2, 1.2, 0, 0, 0]).reshape((2, 3))) loss = tf.contrib.losses.log_loss( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(-np.sum(expected_losses) / 3.0, loss.eval(), 3) def testNonZeroLossWithTwoDimBatchSpecificWeightsSomeZero(self): weight = tf.constant([1.2, 0], shape=[2, 1]) expected_losses = np.multiply( self._expected_losses, np.asarray([1.2, 1.2, 1.2, 0, 0, 0]).reshape((2, 3))) loss = tf.contrib.losses.log_loss( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(-np.sum(expected_losses) / 3.0, loss.eval(), 3) def testWeightsWithSameNumDimsButWrongShapeThrowsException(self): weight = tf.constant(np.random.normal(size=(2, 4)), shape=[2, 4]) with self.test_session(): with self.assertRaises(ValueError): tf.contrib.losses.log_loss(self._predictions, self._targets, weight) def testNonZeroLossWithMeasurementSpecificWeights(self): weight = np.array([3, 6, 5, 0, 4, 2]).reshape((2, 3)) expected_losses = np.multiply(self._expected_losses, weight) loss = tf.contrib.losses.log_loss( self._predictions, self._targets, weight=tf.constant(weight, shape=(2, 3))) with self.test_session(): self.assertAlmostEqual(-np.sum(expected_losses) / 5.0, loss.eval(), 3) def testNonZeroLossWithMeasurementSpecificWeightsWithPlaceholder(self): weight = np.array([3, 6, 5, 0, 4, 2]).reshape((2, 3)) expected_losses = np.multiply(self._expected_losses, weight) tf_predictions = tf.placeholder(tf.float32, shape=[2, 3]) loss = tf.contrib.losses.log_loss( tf_predictions, self._targets, weight=tf.constant(weight, shape=(2, 3))) with self.test_session() as sess: loss = sess.run(loss, feed_dict={tf_predictions: self._np_predictions}) self.assertAlmostEqual(-np.sum(expected_losses) / 5.0, loss, 3) def testNonZeroLossWithSampleSpecificWeightsMostZero(self): weight = np.array([0, 0, 0, 0, 0, 2]).reshape((2, 3)) expected_losses = np.multiply(self._expected_losses, weight) loss = tf.contrib.losses.log_loss( self._predictions, self._targets, weight=tf.constant(weight, shape=(2, 3))) with self.test_session(): self.assertAlmostEqual(-np.sum(expected_losses), loss.eval(), 3) def testNonZeroLossWithSampleSpecificWeightsMostZeroWithPlaceholder(self): weight = np.array([0, 0, 0, 0, 0, 2]).reshape((2, 3)) expected_losses = np.multiply(self._expected_losses, weight) tf_predictions = tf.placeholder(tf.float32, shape=[2, 3]) tf_weight = tf.constant(weight, shape=(2, 3)) loss = tf.contrib.losses.log_loss(tf_predictions, self._targets, tf_weight) with self.test_session() as sess: loss = sess.run(loss, feed_dict={tf_predictions: self._np_predictions}) self.assertAlmostEqual(-np.sum(expected_losses), loss, 3) def testLossWithSampleSpecificWeightsAllZero(self): tf_weight = tf.zeros(shape=(2, 3)) loss = tf.contrib.losses.log_loss( self._predictions, self._targets, tf_weight) with self.test_session(): self.assertAlmostEqual(0.0, loss.eval(), 3) class SumOfSquaresLossTest(tf.test.TestCase): def setUp(self): self._predictions = tf.constant([4, 8, 12, 8, 1, 3], shape=(2, 3)) self._targets = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) def testValueErrorThrownWhenWeightIsNone(self): with self.test_session(): with self.assertRaises(ValueError): tf.contrib.losses.sum_of_squares( self._predictions, self._predictions, weight=None) def testAllCorrectNoLossWeight(self): loss = tf.contrib.losses.sum_of_squares( self._predictions, self._predictions) with self.test_session(): self.assertAlmostEqual(0.0, loss.eval(), 3) def testNonZeroLoss(self): loss = tf.contrib.losses.sum_of_squares( self._predictions, self._targets) with self.test_session(): self.assertAlmostEqual(49.5, loss.eval(), 3) def testNonZeroLossWithPythonScalarWeight(self): weight = 2.3 loss = tf.contrib.losses.sum_of_squares( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(49.5 * weight, loss.eval(), 3) def testNonZeroLossWithScalarTensorWeight(self): weight = 2.3 loss = tf.contrib.losses.sum_of_squares( self._predictions, self._targets, tf.constant(weight)) with self.test_session(): self.assertAlmostEqual(49.5 * weight, loss.eval(), 3) def testNonZeroLossWithOneDimBatchSpecificWeights(self): weight = tf.constant([1.2, 3.4], shape=[2,]) loss = tf.contrib.losses.sum_of_squares( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(767.8 / 6.0, loss.eval(), 3) def testNonZeroLossWithTwoDimBatchSpecificWeights(self): weight = tf.constant([1.2, 3.4], shape=[2, 1]) loss = tf.contrib.losses.sum_of_squares( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(767.8 / 6.0, loss.eval(), 3) def testNonZeroLossWithSampleSpecificWeights(self): weight = tf.constant([3, 6, 5, 0, 4, 2], shape=[2, 3]) loss = tf.contrib.losses.sum_of_squares( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(587 / 5.0, loss.eval(), 3) def testNonZeroLossWithSampleSpecificWeightsMostZero(self): weight = tf.constant([0, 0, 0, 0, 0, 2], shape=[2, 3]) loss = tf.contrib.losses.sum_of_squares( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(18.0, loss.eval(), 3) def testLossWithSampleSpecificWeightsAllZero(self): weight = tf.zeros((2, 3)) loss = tf.contrib.losses.sum_of_squares( self._predictions, self._targets, weight) with self.test_session(): self.assertAlmostEqual(0.0, loss.eval(), 3) class SumOfPairwiseSquaresLossTest(tf.test.TestCase): def setUp(self): self._predictions = np.array([[4, 8, 12], [8, 1, 3]]) self._targets = np.array([[1, 9, 2], [-5, -5, 7]]) batch_size, dims = self._targets.shape # Compute the expected loss 'manually'. total = np.zeros((batch_size, 1)) for b in range(batch_size): for i in range(dims): for j in range(dims): x = self._predictions[b, i].item() - self._predictions[b, j].item() y = self._targets[b, i].item() - self._targets[b, j].item() tmp = (x-y) * (x-y) total[b] += tmp self._expected_losses = np.divide(total, 9.0) def testValueErrorThrownWhenWeightIsNone(self): with self.test_session(): with self.assertRaises(ValueError): tf.contrib.losses.sum_of_pairwise_squares( predictions=tf.constant(self._targets), targets=tf.constant(self._targets), weight=None) def testAllCorrectNoLossWeight(self): loss = tf.contrib.losses.sum_of_pairwise_squares( predictions=tf.constant(self._targets), targets=tf.constant(self._targets)) with self.test_session(): self.assertAlmostEqual(0.0, loss.eval(), 3) def testNonZeroLoss(self): loss = tf.contrib.losses.sum_of_pairwise_squares( predictions=tf.constant(self._predictions), targets=tf.constant(self._targets)) with self.test_session(): self.assertAlmostEqual(np.sum(self._expected_losses), loss.eval(), 3) def testGradientWithZeroWeight(self): with tf.Graph().as_default(): tf.set_random_seed(0) inputs = tf.ones((2, 3)) weights = tf.get_variable('weights', shape=[3, 4], initializer=tf.truncated_normal_initializer()) predictions = tf.matmul(inputs, weights) optimizer = tf.train.MomentumOptimizer(learning_rate=0.001, momentum=0.9) loss = tf.contrib.losses.sum_of_pairwise_squares( predictions, predictions, 0) gradients_to_variables = optimizer.compute_gradients(loss) init_op = tf.initialize_all_variables() with self.test_session() as sess: sess.run(init_op) for grad, _ in gradients_to_variables: np_grad = sess.run(grad) self.assertFalse(np.isnan(np_grad).any()) def testNonZeroLossWithPythonScalarWeight(self): weight = 2.3 loss = tf.contrib.losses.sum_of_pairwise_squares( predictions=tf.constant(self._predictions), targets=tf.constant(self._targets), weight=weight) with self.test_session(): self.assertAlmostEqual(weight * np.sum(self._expected_losses), loss.eval(), 3) def testNonZeroLossWithScalarTensorWeight(self): weight = 2.3 loss = tf.contrib.losses.sum_of_pairwise_squares( predictions=tf.constant(self._predictions), targets=tf.constant(self._targets), weight=tf.constant(weight)) with self.test_session(): self.assertAlmostEqual(weight * np.sum(self._expected_losses), loss.eval(), 3) def testNonZeroLossWithScalarZeroWeight(self): weight = 0 loss = tf.contrib.losses.sum_of_pairwise_squares( predictions=tf.constant(self._predictions), targets=tf.constant(self._targets), weight=tf.constant(weight)) with self.test_session(): self.assertAlmostEqual(0, loss.eval(), 3) def testNonZeroLossWithScalarTensorWeightWithPlaceholder(self): weight = 2.3 tf_predictions = tf.placeholder(tf.float32, shape=self._predictions.shape) tf_targets = tf.placeholder(tf.float32, shape=self._targets.shape) loss = tf.contrib.losses.sum_of_pairwise_squares( predictions=tf_predictions, targets=tf_targets, weight=tf.constant(weight)) with self.test_session() as sess: loss = sess.run(loss, feed_dict={ tf_predictions: self._predictions, tf_targets: self._targets, }) self.assertAlmostEqual(weight * np.sum(self._expected_losses), loss, 3) def testNonZeroLossWithOneDimBatchSpecificWeights(self): weight = np.asarray([2.0, 1.0]).reshape((2, 1)) expected_losses = np.multiply(weight, self._expected_losses) loss = tf.contrib.losses.sum_of_pairwise_squares( predictions=tf.constant(self._predictions), targets=tf.constant(self._targets), weight=tf.constant(weight, shape=[2])) with self.test_session(): self.assertAlmostEqual(np.sum(expected_losses), loss.eval(), 3) def testZeroLossWithOneDimBatchZeroWeights(self): weight = np.asarray([0.0, 0.0]).reshape((2, 1)) loss = tf.contrib.losses.sum_of_pairwise_squares( predictions=tf.constant(self._predictions), targets=tf.constant(self._targets), weight=tf.constant(weight, shape=[2])) with self.test_session(): self.assertAlmostEqual(0, loss.eval(), 3) def testNonZeroLossWithOneDimBatchSpecificWeightsAndPlaceholders(self): weight = np.asarray([1.2, 3.4]).reshape((2, 1)) expected_losses = np.multiply(weight, self._expected_losses) tf_predictions = tf.placeholder(tf.float32, shape=self._predictions.shape) tf_targets = tf.placeholder(tf.int32, shape=self._targets.shape) loss = tf.contrib.losses.sum_of_pairwise_squares( predictions=tf_predictions, targets=tf_targets, weight=tf.constant(weight, shape=[2])) with self.test_session() as sess: loss = sess.run(loss, feed_dict={ tf_predictions: self._predictions, tf_targets: self._targets, }) self.assertAlmostEqual(np.sum(expected_losses), loss, 3) def testLossWithAllZeroBatchSpecificWeights(self): weight = np.zeros((2, 1)) loss = tf.contrib.losses.sum_of_pairwise_squares( predictions=tf.constant(self._predictions), targets=tf.constant(self._targets), weight=tf.constant(weight, shape=[2])) with self.test_session(): self.assertAlmostEqual(0.0, loss.eval(), 3) class CosineDistanceLossTest(tf.test.TestCase): def setUp(self): self._predictions = np.asarray([[1, 0, 0], # Batch 1 [0, 0, -1], [1, 0, 0], # Batch 2 [1, 0, 0], [0, 0, -1], # Batch 3 [1, 0, 0]]).reshape((3, 2, 3)) self._targets = np.asarray([[1, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 1], [0, 1, 0]]).reshape((3, 2, 3)) def testValueErrorThrownWhenWeightIsNone(self): with self.test_session(): with self.assertRaises(ValueError): tf.contrib.losses.cosine_distance( predictions=tf.constant(self._targets), targets=tf.constant(self._targets), dim=2, weight=None) def testAllCorrectNoWeights(self): loss = tf.contrib.losses.cosine_distance( predictions=tf.constant(self._targets), targets=tf.constant(self._targets), dim=2) with self.test_session(): self.assertAlmostEqual(0, loss.eval(), 5) def testPartiallyCorrectWithIntegerValues(self): loss = tf.contrib.losses.cosine_distance( predictions=tf.constant(self._predictions), targets=tf.constant(self._targets), dim=2) with self.test_session(): self.assertAlmostEqual(1, loss.eval(), 5) def testPartiallyCorrectFloatingPointValues(self): predictions = np.matrix(( '0.819031913261206 0.567041924552012 0.087465312324590;' '-0.665139432070255 -0.739487441769973 -0.103671883216994;' '0.707106781186548 -0.707106781186548 0')) targets = np.matrix(( '0.819031913261206 0.567041924552012 0.087465312324590;' '0.665139432070255 0.739487441769973 0.103671883216994;' '0.707106781186548 0.707106781186548 0')) tf_preds = tf.constant(predictions, shape=(3, 1, 3), dtype=tf.float32) tf_targets = tf.constant(targets, shape=(3, 1, 3), dtype=tf.float32) loss = tf.contrib.losses.cosine_distance(tf_preds, tf_targets, dim=2) with self.test_session(): self.assertAlmostEqual(1.0, loss.eval(), 5) def testSampleSpecificWeights(self): loss = tf.contrib.losses.cosine_distance( predictions=tf.constant(self._predictions), targets=tf.constant(self._targets), dim=2, weight=tf.constant([1, 0, 0])) with self.test_session(): self.assertEqual(1.0, loss.eval()) def testMeasurementSpecificWeights(self): loss = tf.contrib.losses.cosine_distance( predictions=tf.constant(self._predictions), targets=tf.constant(self._targets), dim=2, weight=tf.constant([1, 0, 0, 1, 1, 1], shape=(3, 2))) with self.test_session(): self.assertEqual(3.0 / 4.0, loss.eval()) def testValueErrorThrownWithShapelessPlaceholder(self): tf_predictions = tf.placeholder(tf.float32) with self.test_session(): with self.assertRaises(ValueError): tf.contrib.losses.cosine_distance( predictions=tf_predictions, targets=tf.constant(self._targets), dim=2, weight=tf.constant([1, 0, 0, 1, 1, 1], shape=(3, 2))) def testMeasurementSpecificWeightsWithPlaceholderWithShape(self): tf_predictions = tf.placeholder(tf.float32, shape=self._targets.shape) loss = tf.contrib.losses.cosine_distance( predictions=tf_predictions, targets=tf.constant(self._targets), dim=2, weight=tf.constant([1, 0, 0, 1, 1, 1], shape=(3, 2))) with self.test_session() as sess: loss = sess.run(loss, feed_dict={tf_predictions: self._predictions}) self.assertEqual(3.0 / 4.0, loss) def testZeroLossWhenAllSampleSpecificWeightsAreZero(self): loss = tf.contrib.losses.cosine_distance( predictions=tf.constant(self._predictions), targets=tf.constant(self._targets), dim=2, weight=tf.zeros((3,))) with self.test_session(): self.assertEqual(0, loss.eval()) def testZeroLossWhenAllMeasurementSpecificWeightsAreZero(self): loss = tf.contrib.losses.cosine_distance( predictions=tf.constant(self._predictions), targets=tf.constant(self._targets), dim=2, weight=tf.zeros((3, 2))) with self.test_session(): self.assertEqual(0, loss.eval()) if __name__ == '__main__': tf.test.main() ``` #### File: tensor_forest/python/tensor_forest.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import random import tensorflow as tf from tensorflow.contrib.tensor_forest.python.ops import inference_ops from tensorflow.contrib.tensor_forest.python.ops import training_ops # If tree[i][0] equals this value, then i is a leaf node. LEAF_NODE = -1 # A convenience class for holding random forest hyperparameters. # # To just get some good default parameters, use: # hparams = ForestHParams(num_classes=2, num_features=40).fill() # # Note that num_classes can not be inferred and so must always be specified. # Also, either num_splits_to_consider or num_features should be set. # # To override specific values, pass them to the constructor: # hparams = ForestHParams(num_classes=5, num_trees=10, num_features=5).fill() # # TODO(thomaswc): Inherit from tf.HParams when that is publicly available. class ForestHParams(object): """A base class for holding hyperparameters and calculating good defaults.""" def __init__(self, num_trees=100, max_nodes=10000, bagging_fraction=1.0, max_depth=0, num_splits_to_consider=0, feature_bagging_fraction=1.0, max_fertile_nodes=0, split_after_samples=250, valid_leaf_threshold=1, **kwargs): self.num_trees = num_trees self.max_nodes = max_nodes self.bagging_fraction = bagging_fraction self.feature_bagging_fraction = feature_bagging_fraction self.max_depth = max_depth self.num_splits_to_consider = num_splits_to_consider self.max_fertile_nodes = max_fertile_nodes self.split_after_samples = split_after_samples self.valid_leaf_threshold = valid_leaf_threshold for name, value in kwargs.items(): setattr(self, name, value) def values(self): return self.__dict__ def fill(self): """Intelligently sets any non-specific parameters.""" # Fail fast if num_classes or num_features isn't set. _ = getattr(self, 'num_classes') _ = getattr(self, 'num_features') self.training_library_base_dir = getattr( self, 'training_library_base_dir', '') self.inference_library_base_dir = getattr( self, 'inference_library_base_dir', '') self.bagged_num_features = int(self.feature_bagging_fraction * self.num_features) self.bagged_features = None if self.feature_bagging_fraction < 1.0: self.bagged_features = [random.sample( range(self.num_features), self.bagged_num_features) for _ in range(self.num_trees)] self.regression = getattr(self, 'regression', False) # Num_outputs is the actual number of outputs (a single prediction for # classification, a N-dimenensional point for regression). self.num_outputs = self.num_classes if self.regression else 1 # Add an extra column to classes for storing counts, which is needed for # regression and avoids having to recompute sums for classification. self.num_output_columns = self.num_classes + 1 # Allow each tree to be unbalanced by up to a factor of 2. self.max_depth = (self.max_depth or int(2 * math.ceil(math.log(self.max_nodes, 2)))) # The Random Forest literature recommends sqrt(# features) for # classification problems, and p/3 for regression problems. # TODO(thomaswc): Consider capping this for large number of features. self.num_splits_to_consider = ( self.num_splits_to_consider or max(10, int(math.ceil(math.sqrt(self.num_features))))) # max_fertile_nodes doesn't effect performance, only training speed. # We therefore set it primarily based upon space considerations. # Each fertile node takes up num_splits_to_consider times as much # as space as a non-fertile node. We want the fertile nodes to in # total only take up as much space as the non-fertile nodes, so num_fertile = int(math.ceil(self.max_nodes / self.num_splits_to_consider)) # But always use at least 1000 accumulate slots. num_fertile = max(num_fertile, 1000) self.max_fertile_nodes = self.max_fertile_nodes or num_fertile # But it also never needs to be larger than the number of leaves, # which is max_nodes / 2. self.max_fertile_nodes = min(self.max_fertile_nodes, int(math.ceil(self.max_nodes / 2.0))) # We have num_splits_to_consider slots to fill, and we want to spend # approximately split_after_samples samples initializing them. num_split_initializiations_per_input = max(1, int(math.floor( self.num_splits_to_consider / self.split_after_samples))) self.split_initializations_per_input = getattr( self, 'split_initializations_per_input', num_split_initializiations_per_input) # If base_random_seed is 0, the current time will be used to seed the # random number generators for each tree. If non-zero, the i-th tree # will be seeded with base_random_seed + i. self.base_random_seed = getattr(self, 'base_random_seed', 0) return self # A simple container to hold the training variables for a single tree. class TreeTrainingVariables(object): """Stores tf.Variables for training a single random tree. Uses tf.get_variable to get tree-specific names so that this can be used with a tf.learn-style implementation (one that trains a model, saves it, then relies on restoring that model to evaluate). """ def __init__(self, params, tree_num, training): self.tree = tf.get_variable( name=self.get_tree_name('tree', tree_num), dtype=tf.int32, initializer=tf.constant( [[-1, -1]] + [[-2, -1]] * (params.max_nodes - 1))) self.tree_thresholds = tf.get_variable( name=self.get_tree_name('tree_thresholds', tree_num), shape=[params.max_nodes], initializer=tf.constant_initializer(-1.0)) self.tree_depths = tf.get_variable( name=self.get_tree_name('tree_depths', tree_num), shape=[params.max_nodes], dtype=tf.int32, initializer=tf.constant_initializer(1)) self.end_of_tree = tf.get_variable( name=self.get_tree_name('end_of_tree', tree_num), dtype=tf.int32, initializer=tf.constant([1])) if training: self.non_fertile_leaves = tf.get_variable( name=self.get_tree_name('non_fertile_leaves', tree_num), dtype=tf.int32, initializer=tf.constant([0])) self.non_fertile_leaf_scores = tf.get_variable( name=self.get_tree_name('non_fertile_leaf_scores', tree_num), initializer=tf.constant([1.0])) self.node_to_accumulator_map = tf.get_variable( name=self.get_tree_name('node_to_accumulator_map', tree_num), shape=[params.max_nodes], dtype=tf.int32, initializer=tf.constant_initializer(-1)) self.candidate_split_features = tf.get_variable( name=self.get_tree_name('candidate_split_features', tree_num), shape=[params.max_fertile_nodes, params.num_splits_to_consider], dtype=tf.int32, initializer=tf.constant_initializer(-1)) self.candidate_split_thresholds = tf.get_variable( name=self.get_tree_name('candidate_split_thresholds', tree_num), shape=[params.max_fertile_nodes, params.num_splits_to_consider], initializer=tf.constant_initializer(0.0)) # Statistics shared by classification and regression. self.node_sums = tf.get_variable( name=self.get_tree_name('node_sums', tree_num), shape=[params.max_nodes, params.num_output_columns], initializer=tf.constant_initializer(0.0)) if training: self.candidate_split_sums = tf.get_variable( name=self.get_tree_name('candidate_split_sums', tree_num), shape=[params.max_fertile_nodes, params.num_splits_to_consider, params.num_output_columns], initializer=tf.constant_initializer(0.0)) self.accumulator_sums = tf.get_variable( name=self.get_tree_name('accumulator_sums', tree_num), shape=[params.max_fertile_nodes, params.num_output_columns], initializer=tf.constant_initializer(-1.0)) # Regression also tracks second order stats. if params.regression: self.node_squares = tf.get_variable( name=self.get_tree_name('node_squares', tree_num), shape=[params.max_nodes, params.num_output_columns], initializer=tf.constant_initializer(0.0)) self.candidate_split_squares = tf.get_variable( name=self.get_tree_name('candidate_split_squares', tree_num), shape=[params.max_fertile_nodes, params.num_splits_to_consider, params.num_output_columns], initializer=tf.constant_initializer(0.0)) self.accumulator_squares = tf.get_variable( name=self.get_tree_name('accumulator_squares', tree_num), shape=[params.max_fertile_nodes, params.num_output_columns], initializer=tf.constant_initializer(-1.0)) else: self.node_squares = tf.constant( 0.0, name=self.get_tree_name('node_squares', tree_num)) self.candidate_split_squares = tf.constant( 0.0, name=self.get_tree_name('candidate_split_squares', tree_num)) self.accumulator_squares = tf.constant( 0.0, name=self.get_tree_name('accumulator_squares', tree_num)) def get_tree_name(self, name, num): return '{0}-{1}'.format(name, num) class ForestStats(object): def __init__(self, tree_stats, params): """A simple container for stats about a forest.""" self.tree_stats = tree_stats self.params = params def get_average(self, thing): val = 0.0 for i in range(self.params.num_trees): val += getattr(self.tree_stats[i], thing) return val / self.params.num_trees class TreeStats(object): def __init__(self, num_nodes, num_leaves): self.num_nodes = num_nodes self.num_leaves = num_leaves class ForestTrainingVariables(object): """A container for a forests training data, consisting of multiple trees. Instantiates a TreeTrainingVariables object for each tree. We override the __getitem__ and __setitem__ function so that usage looks like this: forest_variables = ForestTrainingVariables(params) ... forest_variables.tree ... """ def __init__(self, params, device_assigner, training=True, tree_variable_class=TreeTrainingVariables): self.variables = [] for i in range(params.num_trees): with tf.device(device_assigner.get_device(i)): self.variables.append(tree_variable_class(params, i, training)) def __setitem__(self, t, val): self.variables[t] = val def __getitem__(self, t): return self.variables[t] class RandomForestDeviceAssigner(object): """A device assigner that uses the default device. Write subclasses that implement get_device for control over how trees get assigned to devices. This assumes that whole trees are assigned to a device. """ def __init__(self): self.cached = None def get_device(self, unused_tree_num): if not self.cached: dummy = tf.constant(0) self.cached = dummy.device return self.cached class RandomForestGraphs(object): """Builds TF graphs for random forest training and inference.""" def __init__(self, params, device_assigner=None, variables=None, tree_graphs=None, t_ops=training_ops, i_ops=inference_ops): self.params = params self.device_assigner = device_assigner or RandomForestDeviceAssigner() tf.logging.info('Constructing forest with params = ') tf.logging.info(self.params.__dict__) self.variables = variables or ForestTrainingVariables( self.params, device_assigner=self.device_assigner) tree_graph_class = tree_graphs or RandomTreeGraphs self.trees = [ tree_graph_class( self.variables[i], self.params, t_ops.Load(self.params.training_library_base_dir), i_ops.Load(self.params.inference_library_base_dir), i) for i in range(self.params.num_trees)] def _bag_features(self, tree_num, input_data): split_data = tf.split(1, self.params.num_features, input_data) return tf.concat(1, [split_data[ind] for ind in self.params.bagged_features[tree_num]]) def training_graph(self, input_data, input_labels): """Constructs a TF graph for training a random forest. Args: input_data: A tensor or placeholder for input data. input_labels: A tensor or placeholder for labels associated with input_data. Returns: The last op in the random forest training graph. """ tree_graphs = [] for i in range(self.params.num_trees): with tf.device(self.device_assigner.get_device(i)): seed = self.params.base_random_seed if seed != 0: seed += i # If using bagging, randomly select some of the input. tree_data = input_data tree_labels = input_labels if self.params.bagging_fraction < 1.0: # TODO(thomaswc): This does sampling without replacment. Consider # also allowing sampling with replacement as an option. batch_size = tf.slice(tf.shape(input_data), [0], [1]) r = tf.random_uniform(batch_size, seed=seed) mask = tf.less(r, tf.ones_like(r) * self.params.bagging_fraction) gather_indices = tf.squeeze(tf.where(mask), squeeze_dims=[1]) # TODO(thomaswc): Calculate out-of-bag data and labels, and store # them for use in calculating statistics later. tree_data = tf.gather(input_data, gather_indices) tree_labels = tf.gather(input_labels, gather_indices) if self.params.bagged_features: tree_data = self._bag_features(i, tree_data) tree_graphs.append( self.trees[i].training_graph(tree_data, tree_labels, seed)) return tf.group(*tree_graphs) def inference_graph(self, input_data): """Constructs a TF graph for evaluating a random forest. Args: input_data: A tensor or placeholder for input data. Returns: The last op in the random forest inference graph. """ probabilities = [] for i in range(self.params.num_trees): with tf.device(self.device_assigner.get_device(i)): tree_data = input_data if self.params.bagged_features: tree_data = self._bag_features(i, input_data) probabilities.append(self.trees[i].inference_graph(tree_data)) with tf.device(self.device_assigner.get_device(0)): all_predict = tf.pack(probabilities) return tf.reduce_sum(all_predict, 0) / self.params.num_trees def average_size(self): """Constructs a TF graph for evaluating the average size of a forest. Returns: The average number of nodes over the trees. """ sizes = [] for i in range(self.params.num_trees): with tf.device(self.device_assigner.get_device(i)): sizes.append(self.trees[i].size()) return tf.reduce_mean(tf.pack(sizes)) def average_impurity(self): """Constructs a TF graph for evaluating the leaf impurity of a forest. Returns: The last op in the graph. """ impurities = [] for i in range(self.params.num_trees): with tf.device(self.device_assigner.get_device(i)): impurities.append(self.trees[i].average_impurity()) return tf.reduce_mean(tf.pack(impurities)) def get_stats(self, session): tree_stats = [] for i in range(self.params.num_trees): with tf.device(self.device_assigner.get_device(i)): tree_stats.append(self.trees[i].get_stats(session)) return ForestStats(tree_stats, self.params) class RandomTreeGraphs(object): """Builds TF graphs for random tree training and inference.""" def __init__(self, variables, params, t_ops, i_ops, tree_num): self.training_ops = t_ops self.inference_ops = i_ops self.variables = variables self.params = params self.tree_num = tree_num def _gini(self, class_counts): """Calculate the Gini impurity. If c(i) denotes the i-th class count and c = sum_i c(i) then score = 1 - sum_i ( c(i) / c )^2 Args: class_counts: A 2-D tensor of per-class counts, usually a slice or gather from variables.node_sums. Returns: A 1-D tensor of the Gini impurities for each row in the input. """ smoothed = 1.0 + tf.slice(class_counts, [0, 1], [-1, -1]) sums = tf.reduce_sum(smoothed, 1) sum_squares = tf.reduce_sum(tf.square(smoothed), 1) return 1.0 - sum_squares / (sums * sums) def _weighted_gini(self, class_counts): """Our split score is the Gini impurity times the number of examples. If c(i) denotes the i-th class count and c = sum_i c(i) then score = c * (1 - sum_i ( c(i) / c )^2 ) = c - sum_i c(i)^2 / c Args: class_counts: A 2-D tensor of per-class counts, usually a slice or gather from variables.node_sums. Returns: A 1-D tensor of the Gini impurities for each row in the input. """ smoothed = 1.0 + tf.slice(class_counts, [0, 1], [-1, -1]) sums = tf.reduce_sum(smoothed, 1) sum_squares = tf.reduce_sum(tf.square(smoothed), 1) return sums - sum_squares / sums def _variance(self, sums, squares): """Calculate the variance for each row of the input tensors. Variance is V = E[x^2] - (E[x])^2. Args: sums: A tensor containing output sums, usually a slice from variables.node_sums. Should contain the number of examples seen in index 0 so we can calculate expected value. squares: Same as sums, but sums of squares. Returns: A 1-D tensor of the variances for each row in the input. """ total_count = tf.slice(sums, [0, 0], [-1, 1]) e_x = sums / total_count e_x2 = squares / total_count return tf.reduce_sum(e_x2 - tf.square(e_x), 1) def training_graph(self, input_data, input_labels, random_seed): """Constructs a TF graph for training a random tree. Args: input_data: A tensor or placeholder for input data. input_labels: A tensor or placeholder for labels associated with input_data. random_seed: The random number generator seed to use for this tree. 0 means use the current time as the seed. Returns: The last op in the random tree training graph. """ # Count extremely random stats. (node_sums, node_squares, splits_indices, splits_sums, splits_squares, totals_indices, totals_sums, totals_squares, input_leaves) = ( self.training_ops.count_extremely_random_stats( input_data, input_labels, self.variables.tree, self.variables.tree_thresholds, self.variables.node_to_accumulator_map, self.variables.candidate_split_features, self.variables.candidate_split_thresholds, num_classes=self.params.num_output_columns, regression=self.params.regression)) node_update_ops = [] node_update_ops.append( tf.assign_add(self.variables.node_sums, node_sums)) splits_update_ops = [] splits_update_ops.append(self.training_ops.scatter_add_ndim( self.variables.candidate_split_sums, splits_indices, splits_sums)) splits_update_ops.append(self.training_ops.scatter_add_ndim( self.variables.accumulator_sums, totals_indices, totals_sums)) if self.params.regression: node_update_ops.append(tf.assign_add(self.variables.node_squares, node_squares)) splits_update_ops.append(self.training_ops.scatter_add_ndim( self.variables.candidate_split_squares, splits_indices, splits_squares)) splits_update_ops.append(self.training_ops.scatter_add_ndim( self.variables.accumulator_squares, totals_indices, totals_squares)) # Sample inputs. update_indices, feature_updates, threshold_updates = ( self.training_ops.sample_inputs( input_data, self.variables.node_to_accumulator_map, input_leaves, self.variables.candidate_split_features, self.variables.candidate_split_thresholds, split_initializations_per_input=( self.params.split_initializations_per_input), split_sampling_random_seed=random_seed)) update_features_op = tf.scatter_update( self.variables.candidate_split_features, update_indices, feature_updates) update_thresholds_op = tf.scatter_update( self.variables.candidate_split_thresholds, update_indices, threshold_updates) # Calculate finished nodes. with tf.control_dependencies(splits_update_ops): children = tf.squeeze(tf.slice(self.variables.tree, [0, 0], [-1, 1]), squeeze_dims=[1]) is_leaf = tf.equal(LEAF_NODE, children) leaves = tf.to_int32(tf.squeeze(tf.where(is_leaf), squeeze_dims=[1])) finished = self.training_ops.finished_nodes( leaves, self.variables.node_to_accumulator_map, self.variables.accumulator_sums, num_split_after_samples=self.params.split_after_samples) # Update leaf scores. # TODO(gilberth): Optimize this. It currently calculates counts for # every non-fertile leaf. with tf.control_dependencies(node_update_ops): def dont_update_leaf_scores(): return self.variables.non_fertile_leaf_scores def update_leaf_scores_regression(): sums = tf.gather(self.variables.node_sums, self.variables.non_fertile_leaves) squares = tf.gather(self.variables.node_squares, self.variables.non_fertile_leaves) new_scores = self._variance(sums, squares) return tf.assign(self.variables.non_fertile_leaf_scores, new_scores) def update_leaf_scores_classification(): counts = tf.gather(self.variables.node_sums, self.variables.non_fertile_leaves) new_scores = self._weighted_gini(counts) return tf.assign(self.variables.non_fertile_leaf_scores, new_scores) # Because we can't have tf.self.variables of size 0, we have to put in a # garbage value of -1 in there. Here we check for that so we don't # try to index into node_per_class_weights in a tf.gather with a negative # number. update_nonfertile_leaves_scores_op = tf.cond( tf.less(self.variables.non_fertile_leaves[0], 0), dont_update_leaf_scores, update_leaf_scores_regression if self.params.regression else update_leaf_scores_classification) # Calculate best splits. with tf.control_dependencies(splits_update_ops): split_indices = self.training_ops.best_splits( finished, self.variables.node_to_accumulator_map, self.variables.candidate_split_sums, self.variables.candidate_split_squares, self.variables.accumulator_sums, self.variables.accumulator_squares, regression=self.params.regression) # Grow tree. with tf.control_dependencies([update_features_op, update_thresholds_op]): (tree_update_indices, tree_children_updates, tree_threshold_updates, tree_depth_updates, new_eot) = ( self.training_ops.grow_tree( self.variables.end_of_tree, self.variables.tree_depths, self.variables.node_to_accumulator_map, finished, split_indices, self.variables.candidate_split_features, self.variables.candidate_split_thresholds)) tree_update_op = tf.scatter_update( self.variables.tree, tree_update_indices, tree_children_updates) threhsolds_update_op = tf.scatter_update( self.variables.tree_thresholds, tree_update_indices, tree_threshold_updates) depth_update_op = tf.scatter_update( self.variables.tree_depths, tree_update_indices, tree_depth_updates) # Update fertile slots. with tf.control_dependencies([update_nonfertile_leaves_scores_op, depth_update_op]): (node_map_updates, accumulators_cleared, accumulators_allocated, new_nonfertile_leaves, new_nonfertile_leaves_scores) = ( self.training_ops.update_fertile_slots( finished, self.variables.non_fertile_leaves, self.variables.non_fertile_leaf_scores, self.variables.end_of_tree, self.variables.tree_depths, self.variables.accumulator_sums, self.variables.node_to_accumulator_map, max_depth=self.params.max_depth, regression=self.params.regression)) # Ensure end_of_tree doesn't get updated until UpdateFertileSlots has # used it to calculate new leaves. gated_new_eot, = tf.tuple([new_eot], control_inputs=[new_nonfertile_leaves]) eot_update_op = tf.assign(self.variables.end_of_tree, gated_new_eot) updates = [] updates.append(eot_update_op) updates.append(tree_update_op) updates.append(threhsolds_update_op) updates.append(tf.assign( self.variables.non_fertile_leaves, new_nonfertile_leaves, validate_shape=False)) updates.append(tf.assign( self.variables.non_fertile_leaf_scores, new_nonfertile_leaves_scores, validate_shape=False)) updates.append(tf.scatter_update( self.variables.node_to_accumulator_map, tf.squeeze(tf.slice(node_map_updates, [0, 0], [1, -1]), squeeze_dims=[0]), tf.squeeze(tf.slice(node_map_updates, [1, 0], [1, -1]), squeeze_dims=[0]))) cleared_and_allocated_accumulators = tf.concat( 0, [accumulators_cleared, accumulators_allocated]) # Calculate values to put into scatter update for candidate counts. # Candidate split counts are always reset back to 0 for both cleared # and allocated accumulators. This means some accumulators might be doubly # reset to 0 if the were released and not allocated, then later allocated. split_values = tf.tile( tf.expand_dims(tf.expand_dims( tf.zeros_like(cleared_and_allocated_accumulators, dtype=tf.float32), 1), 2), [1, self.params.num_splits_to_consider, self.params.num_output_columns]) updates.append(tf.scatter_update( self.variables.candidate_split_sums, cleared_and_allocated_accumulators, split_values)) if self.params.regression: updates.append(tf.scatter_update( self.variables.candidate_split_squares, cleared_and_allocated_accumulators, split_values)) # Calculate values to put into scatter update for total counts. total_cleared = tf.tile( tf.expand_dims( tf.neg(tf.ones_like(accumulators_cleared, dtype=tf.float32)), 1), [1, self.params.num_output_columns]) total_reset = tf.tile( tf.expand_dims( tf.zeros_like(accumulators_allocated, dtype=tf.float32), 1), [1, self.params.num_output_columns]) accumulator_updates = tf.concat(0, [total_cleared, total_reset]) updates.append(tf.scatter_update( self.variables.accumulator_sums, cleared_and_allocated_accumulators, accumulator_updates)) if self.params.regression: updates.append(tf.scatter_update( self.variables.accumulator_squares, cleared_and_allocated_accumulators, accumulator_updates)) # Calculate values to put into scatter update for candidate splits. split_features_updates = tf.tile( tf.expand_dims( tf.neg(tf.ones_like(cleared_and_allocated_accumulators)), 1), [1, self.params.num_splits_to_consider]) updates.append(tf.scatter_update( self.variables.candidate_split_features, cleared_and_allocated_accumulators, split_features_updates)) return tf.group(*updates) def inference_graph(self, input_data): """Constructs a TF graph for evaluating a random tree. Args: input_data: A tensor or placeholder for input data. Returns: The last op in the random tree inference graph. """ return self.inference_ops.tree_predictions( input_data, self.variables.tree, self.variables.tree_thresholds, self.variables.node_sums, valid_leaf_threshold=self.params.valid_leaf_threshold) def average_impurity(self): """Constructs a TF graph for evaluating the average leaf impurity of a tree. If in regression mode, this is the leaf variance. If in classification mode, this is the gini impurity. Returns: The last op in the graph. """ children = tf.squeeze(tf.slice(self.variables.tree, [0, 0], [-1, 1]), squeeze_dims=[1]) is_leaf = tf.equal(LEAF_NODE, children) leaves = tf.to_int32(tf.squeeze(tf.where(is_leaf), squeeze_dims=[1])) counts = tf.gather(self.variables.node_sums, leaves) impurity = self._weighted_gini(counts) return tf.reduce_sum(impurity) / tf.reduce_sum(counts + 1.0) def size(self): """Constructs a TF graph for evaluating the current number of nodes. Returns: The current number of nodes in the tree. """ return self.variables.end_of_tree - 1 def get_stats(self, session): num_nodes = self.variables.end_of_tree.eval(session=session) - 1 num_leaves = tf.where( tf.equal(tf.squeeze(tf.slice(self.variables.tree, [0, 0], [-1, 1])), LEAF_NODE)).eval(session=session).shape[0] return TreeStats(num_nodes, num_leaves) ```
{ "source": "2855239858/CenLight-Traffic-Grid-Signal-Optimization-viaAction-and-State-Decomposition", "score": 2 }
#### File: flow/core/ppo_rnn_discrete.py ```python import tensorflow as tf import numpy as np import copy EP_MAX = 1000 EP_LEN = 200 GAMMA = 0.9 A_LR = 0.002 C_LR = 0.002 BATCH = 40 A_UPDATE_STEPS = 5 C_UPDATE_STEPS = 10 METHOD = [ dict(name='kl_pen', kl_target=0.01, lam=0.5), # KL penalty dict(name='clip', epsilon=0.2), # Clipped surrogate objective, find this is better ][1] # choose the method for optimization class PPO(object): def __init__(self, s_dim=32, a_dim=1, name="meme"): runner1 = '/cpu:0' runner2 = '/gpu:0' with tf.device('/cpu:0'): self.sess = tf.Session() self.tfs = tf.placeholder(tf.float32, [None, s_dim/a_dim], 'state') self.a_dim = a_dim self.s_dim = s_dim self.name = name self.buffer_a = [] self.buffer_s = [] self.buffer_r = [] self.global_steps = 0 self.update_steps_a = 0 self.update_steps_c = 0 self.global_counter = 0 self.pre_counter = 0 self.batch_size = 0 # self.rnn_input = tf.placeholder(tf.float32, [None, TIME_STEP, INPUT_SIZE]) # (batch, height, width, channel) # critic with tf.variable_scope(self.name + '_critic'): l1 = tf.layers.dense(self.tfs, 100, tf.nn.relu,bias_initializer = tf.constant_initializer(0.01), kernel_initializer = tf.random_normal_initializer(0., .01)) # l2 = tf.layers.dense(l1, 32, tf.nn.relu,kernel_initializer = w_init,bias_initializer = tf.constant_initializer(0.01)) self.v = tf.layers.dense(l1, 1) self.tfdc_r = tf.placeholder(tf.float32, [None, 1], 'discounted_r') self.advantage = self.tfdc_r - self.v self.closs = tf.reduce_mean(tf.square(self.advantage)) self.ctrain_op = tf.train.AdamOptimizer(C_LR).minimize(self.closs) # actor self.pi, pi_params = self._build_anet(self.name + '_pi', trainable=True) self.oldpi, oldpi_params = self._build_anet(self.name + '_oldpi', trainable=False) self.tfa = tf.placeholder(tf.int32, [None, self.a_dim], 'action') self.tfadv = tf.placeholder(tf.float32, [None, 1], 'advantage') self.update_oldpi_op = [oldp.assign(p) for p, oldp in zip(pi_params, oldpi_params)] ##调整概率分布的维度,方便获取概率 # ratio = [] # ratio_temp = [] index = [] pi_resize = tf.reshape(self.pi,[-1,2]) oldpi_resize = tf.reshape(self.oldpi,[-1,2]) # for i in range(self.batch_size): # for j in range(self.a_dim): # index.append([i,j,self.tfa[i][j]]) self.a_indices = tf.stack([tf.range(tf.shape(tf.reshape(self.tfa,[-1]))[0], dtype=tf.int32), tf.reshape(self.tfa,[-1])], axis=1) pi_prob = tf.gather_nd(params=pi_resize, indices=self.a_indices) oldpi_prob = tf.gather_nd(params=oldpi_resize, indices=self.a_indices) ratio_temp1 = pi_prob / (oldpi_prob + 1e-8) # ratio_temp2 = tf.reshape(ratio_temp1,[-1,self.a_dim]) # ratio = tf.reduce_mean(ratio_temp2,axis = 1) surr = ratio_temp1 * self.tfadv # surrogate loss # for i in range(self.batch_size): # ratio_temp = [] # for j in range(self.a_dim): # ratio_temp.append(self.pi_resize[i][j][a_indices[i][j]] # /(self.oldpi_resize[i][j][a_indices[i][j]] + 1e-8)) # ratio.append(tf.reduce_mean(ratio_temp)) # surr = ratio * self.tfadv # a_indices = tf.stack([tf.range(tf.shape(self.tfa)[0], dtype=tf.int32), self.tfa], axis=1) # pi_prob = tf.gather_nd(params=self.pi, indices=a_indices) # shape=(None, ) # oldpi_prob = tf.gather_nd(params=self.oldpi, indices=a_indices) # shape=(None, ) # ratio = pi_prob / (oldpi_prob + 1e-8) # surr = ratio * self.tfadv # surrogate loss self.aloss = -tf.reduce_mean(tf.minimum( # clipped surrogate objective surr, tf.clip_by_value(ratio_temp1, 1. - 0.2, 1. + 0.2) * self.tfadv)) self.atrain_op = tf.train.AdamOptimizer(A_LR).minimize(self.aloss) self.sess.run(tf.global_variables_initializer()) self.writer = tf.summary.FileWriter("baseline/rnn_discrete/" + self.name + "_log/", self.sess.graph) self.saver = tf.train.Saver(max_to_keep=20) tf.get_default_graph().finalize() def update_critic(self): s = np.vstack(self.buffer_s) r = np.array(self.buffer_r)[:, np.newaxis] critic_loss = self.sess.run(self.closs, {self.tfs: s, self.tfdc_r: r}) self.summarize(critic_loss,self.pre_counter,'Pre_critic_loss') self.sess.run(self.ctrain_op, {self.tfs: s, self.tfdc_r: r}) self.pre_counter += 1 def update_actor(self): s = np.vstack(self.buffer_s) r = np.array(self.buffer_r)[:, np.newaxis] a = self.buffer_a self.batch_size = len(a) self.sess.run(self.update_oldpi_op) adv = self.sess.run(self.advantage, {self.tfs: s, self.tfdc_r: r}) # print(np.array(adv).shape) # adv = (adv - adv.mean())/(adv.std()+1e-6) # sometimes helpful actor_loss = self.sess.run(self.aloss, {self.tfs: s, self.tfa: a, self.tfadv: adv}) self.summarize(actor_loss,self.global_counter,'Actor_loss') [self.sess.run(self.atrain_op, {self.tfs: s, self.tfa: a, self.tfadv: adv}) for _ in range(A_UPDATE_STEPS)] # update critic critic_loss = self.sess.run(self.closs, {self.tfs: s, self.tfdc_r: r}) self.summarize(critic_loss,self.global_counter,'Critic_loss') # [self.sess.run(self.ctrain_op, {self.tfs: s, self.tfdc_r: r}) for _ in range(C_UPDATE_STEPS)] self.global_counter += 1 def update(self): s = np.vstack(self.buffer_s) # r = np.array(self.buffer_r)[:, np.newaxis] # print(r) r = np.vstack(self.buffer_r) a = np.array(self.buffer_a).reshape([-1,self.a_dim]) # self.batch_size = len(a) self.sess.run(self.update_oldpi_op) adv = self.sess.run(self.advantage, {self.tfs: s, self.tfdc_r: r}) # print(np.array(adv).shape) # adv = (adv - adv.mean())/(adv.std()+1e-6) # sometimes helpful actor_loss = self.sess.run(self.aloss, {self.tfs: s, self.tfa: a, self.tfadv: adv}) self.summarize(actor_loss,self.global_counter,'Actor_loss') [self.sess.run(self.atrain_op, {self.tfs: s, self.tfa: a, self.tfadv: adv}) for _ in range(A_UPDATE_STEPS)] # update critic critic_loss = self.sess.run(self.closs, {self.tfs: s, self.tfdc_r: r}) self.summarize(critic_loss,self.global_counter,'Critic_loss') [self.sess.run(self.ctrain_op, {self.tfs: s, self.tfdc_r: r}) for _ in range(C_UPDATE_STEPS)] self.global_counter += 1 def _build_anet(self, name, trainable): # with tf.variable_scope(name): # self.l1 = tf.layers.dense(self.tfs, 32, tf.nn.relu, trainable=trainable) # self.l2 = tf.layers.dense(self.l1, 32, tf.nn.relu, trainable=trainable) # out = tf.layers.dense(self.l2, self.a_dim, tf.nn.softmax, trainable=trainable) # params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIA_aRL5 with tf.variable_scope(name): # RNN out_temp2 = [] rnn_input = tf.reshape(self.tfs,[-1,self.a_dim,int(self.s_dim/self.a_dim)]) rnn_cell = tf.nn.rnn_cell.LSTMCell(num_units=64,activation = tf.nn.tanh,trainable = trainable, initializer = tf.random_normal_initializer(0., .01)) outputs, (h_c, h_n) = tf.nn.dynamic_rnn( rnn_cell, # cell you have chosen rnn_input, # input initial_state=None, # the initial hidden state dtype=tf.float32, # must given if set initial_state = None time_major=False, # False: (batch, time step, input); True: (time step, batch, input) ) for i in range(self.a_dim): out_temp1 = tf.layers.dense(outputs[:, i, :], 2,tf.nn.softmax,trainable = trainable, kernel_initializer = tf.random_normal_initializer(0., .01), bias_initializer = tf.constant_initializer(0.01)) # output based on the last output step # out_temp2 = tf.layers.dense(out_temp1, 2,tf.nn.softmax,trainable = trainable, # kernel_initializer = tf.random_normal_initializer(0., .01), # bias_initializer = tf.constant_initializer(0.01)) # output based on the last output step # out.append(out_temp2) out_temp2.append(out_temp1) out = tf.stack([out_temp2[k] for k in range(self.a_dim)], axis=1) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return out, params def choose_action(self, s): # _s = np.array(s).reshape([-1,TIME_STEP,INPUT_SIZE]) # prob_weights = self.sess.run(self.pi, feed_dict={self.rnn_input: _s}) # print(prob_weights) # action = np.random.choice(range(prob_weights.shape[1]), # p=prob_weights.ravel()) # select action w.r.t the actions prob # prob = tf.nn.softmax(prob_weights) _s = np.array(s).reshape([-1,int(self.s_dim/self.a_dim)]) action = [] prob = self.sess.run(self.pi,feed_dict={self.tfs: _s}) prob_temp = np.array(prob).reshape([-1,2]) # print(prob) for i in range(self.a_dim): action_temp = np.random.choice(range(prob_temp[i].shape[0]), p=prob_temp[i].ravel()) # select action w.r.t the actions prob action.append(action_temp) return action def choose_best_action(self, s): # _s = np.array(s).reshape([-1,TIME_STEP,INPUT_SIZE]) # prob_weights = self.sess.run(self.pi, feed_dict={self.rnn_input: _s}) # print(prob_weights) # action = np.random.choice(range(prob_weights.shape[1]), # p=prob_weights.ravel()) # select action w.r.t the actions prob # prob = tf.nn.softmax(prob_weights) action = [] prob = self.sess.run(self.pi,feed_dict={self.tfs: s}) for i in range(self.a_dim): action_temp = np.argmax(prob[i].ravel()) # select action w.r.t the actions prob action.append(action_temp) return action def get_state(self, s): s = s[np.newaxis, :] h = self.sess.run(self.l2, {self.tfs: s})[0] return h def get_v(self, s): _s = np.array(s) if _s.ndim < 2: s = _s[np.newaxis, :] # print(self.sess.run(self.v, {self.tfs: s})) return self.sess.run(self.v, {self.tfs: s}) def experience_store(self, s, a, r): self.buffer_a.append(a) self.buffer_s.append(s) self.buffer_r.append(r) def empty_buffer(self): self.buffer_s, self.buffer_r, self.buffer_a = [], [], [] ##每一步的reward进行一个discount,让越远的reward影响变小 def trajction_process(self, s_): _s = np.array(s_).reshape([-1,int(self.s_dim/self.a_dim)]) v_s_ = self.get_v(_s) buffer_r = np.array(self.buffer_r).reshape([-1,self.a_dim]) buffer = [[],[],[],[],[],[],[],[],[]] for r in buffer_r[::-1]: for i in range(self.a_dim): v_s_[i] = r[i] + GAMMA * v_s_[i] buffer[i].append(copy.deepcopy(v_s_[i])) for i in range(self.a_dim): buffer[i].reverse() out = np.stack([buffer[k] for k in range(self.a_dim)], axis=1) # print(self.buffer_r) self.buffer_r = np.array(out).reshape([-1]) def summarize(self, reward, i, tag): summary = tf.Summary() summary.value.add(tag=tag, simple_value=reward) self.writer.add_summary(summary, i) self.writer.flush() def save_params(self,name,ep): save_path = self.saver.save(self.sess,'my_net/rnn_discrete/{}_ep{}.ckpt'.format(name,ep)) print("Save to path:",save_path) def restore_params(self,name,ep): self.saver.restore(self.sess,'my_net/rnn_discrete/{}_ep{}.ckpt'.format(name,ep)) print("Restore params from") # # if __name__ == "__main__": # import gym # import matplotlib.pyplot as plt # env = gym.make('CartPole-v0').unwrapped # print(env.observation_space.shape) # print(env.action_space.shape) # # ppo = PPO(s_dim=4, a_dim=2) # all_ep_r = [] # # for ep in range(EP_MAX): # s = env.reset() # buffer_s, buffer_a, buffer_r = [], [], [] # ep_r = 0 # for t in range(EP_LEN): # in one episode # # a = ppo.choose_action(s) # s_, r, done, _ = env.step(a) # if done: # r = -10 # ppo.experience_store(s,a,r) # s = s_ # ep_r += r # # # update ppo # if (t + 1) % BATCH == 0 or t == EP_LEN - 1: # ppo.trajction_process(s) # ppo.update() # ppo.empty_buffer() # # if done: # break # if ep == 0: # all_ep_r.append(ep_r) # else: # all_ep_r.append(all_ep_r[-1] * 0.9 + ep_r * 0.1) # print( # 'Ep: %i' % ep, # "|Ep_r: %i" % ep_r, # ) # # plt.plot(np.arange(len(all_ep_r)), all_ep_r) # plt.xlabel('Episode') # plt.ylabel('Moving averaged episode reward') # plt.show() ``` #### File: flow/core/ppo_rnn.py ```python import tensorflow as tf import numpy as np EP_MAX = 1000 EP_LEN = 400 GAMMA = 0.9 A_LR = 0.005 C_LR = 0.002 BATCH = 32 A_UPDATE_STEPS = 10 C_UPDATE_STEPS = 10 METHOD = [ dict(name='kl_pen', kl_target=0.01, lam=0.5), # KL penalty dict(name='clip', epsilon=0.2), # Clipped surrogate objective, find this is better ][1] # choose the method for optimization class PPO(object): def __init__(self, s_dim=32, a_dim=1, name="meme"): runner1 = '/cpu:0' runner2 = '/gpu:0' with tf.device('/cpu:0'): self.sess = tf.Session() self.tfs = tf.placeholder(tf.float32, [None, s_dim], 'state') self.a_dim = a_dim self.s_dim = s_dim self.name = name self.buffer_a = [] self.buffer_s = [] self.buffer_r = [] self.global_steps = 0 self.update_steps_a = 0 self.update_steps_c = 0 self.global_counter = 0 # self.rnn_input = tf.placeholder(tf.float32, [None, TIME_STEP, INPUT_SIZE]) # (batch, height, width, channel) # critic with tf.variable_scope(self.name + '_critic'): w_init = tf.random_normal_initializer(0., .1) l1 = tf.layers.dense(self.tfs, 100, tf.nn.relu,kernel_initializer = w_init) self.v = tf.layers.dense(l1, 1) self.tfdc_r = tf.placeholder(tf.float32, [None, 1], 'discounted_r') self.advantage = self.tfdc_r - self.v self.closs = tf.reduce_mean(tf.square(self.advantage)) self.ctrain_op = tf.train.AdamOptimizer(C_LR).minimize(self.closs) # actor self.pi, pi_params = self._build_anet(self.name + '_pi', trainable=True) self.oldpi, oldpi_params = self._build_anet(self.name + '_oldpi', trainable=False) self.tfa = tf.placeholder(tf.int32, [None, ], 'action') self.tfadv = tf.placeholder(tf.float32, [None, 1], 'advantage') self.update_oldpi_op = [oldp.assign(p) for p, oldp in zip(pi_params, oldpi_params)] self.a_indices = tf.stack([tf.range(tf.shape(self.tfa)[0], dtype=tf.int32), self.tfa], axis=1) self.pi_prob = tf.gather_nd(params=self.pi, indices=self.a_indices) # shape=(None, ) oldpi_prob = tf.gather_nd(params=self.oldpi, indices=self.a_indices) # shape=(None, ) self.ratio = self.pi_prob / (oldpi_prob + 1e-8) surr = self.ratio * self.tfadv # surrogate loss self.aloss = -tf.reduce_mean(tf.minimum( # clipped surrogate objective surr, tf.clip_by_value(self.ratio, 1. - 0.2, 1. + 0.2) * self.tfadv)) self.atrain_op = tf.train.AdamOptimizer(A_LR).minimize(self.aloss) self.sess.run(tf.global_variables_initializer()) self.writer = tf.summary.FileWriter("baseline/rnn/" + self.name + "_log/", self.sess.graph) self.saver = tf.train.Saver(max_to_keep=20) tf.get_default_graph().finalize() def out_put(self): s = np.vstack(self.buffer_s) a = self.buffer_a prob = self.sess.run(self.pi_prob, {self.tfs: s, self.tfa: a}) print(prob) index = self.sess.run(self.a_indices, {self.tfa: a}) print(index) ratio = self.sess.run(self.ratio, {self.tfs: s, self.tfa: a}) print(ratio) def update(self): s = np.vstack(self.buffer_s) r = np.array(self.buffer_r)[:, np.newaxis] a = self.buffer_a self.sess.run(self.update_oldpi_op) adv = self.sess.run(self.advantage, {self.tfs: s, self.tfdc_r: r}) # self.summarize(adv,self.global_counter,'advantage') # print(np.array(adv).shape) # adv = (adv - adv.mean())/(adv.std()+1e-6) # sometimes helpful actor_loss = self.sess.run(self.aloss, {self.tfs: s, self.tfa: a, self.tfadv: adv}) self.summarize(actor_loss,self.global_counter,'Actor_loss') [self.sess.run(self.atrain_op, {self.tfs: s, self.tfa: a, self.tfadv: adv}) for _ in range(A_UPDATE_STEPS)] # update critic critic_loss = self.sess.run(self.closs, {self.tfs: s, self.tfdc_r: r}) self.summarize(critic_loss,self.global_counter,'Critic_loss') [self.sess.run(self.ctrain_op, {self.tfs: s, self.tfdc_r: r}) for _ in range(C_UPDATE_STEPS)] self.global_counter += 1 def _build_anet(self, name, trainable): # with tf.variable_scope(name): # self.l1 = tf.layers.dense(self.tfs, 32, tf.nn.relu, trainable=trainable) # self.l2 = tf.layers.dense(self.l1, 32, tf.nn.relu, trainable=trainable) # out = tf.layers.dense(self.l2, self.a_dim, tf.nn.softmax, trainable=trainable) # params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) with tf.variable_scope(name): # RNN rnn_input = tf.reshape(self.tfs,[-1,self.a_dim-1,int(self.s_dim/(self.a_dim - 1))]) rnn_cell = tf.nn.rnn_cell.LSTMCell(num_units=32,trainable = trainable) outputs, (h_c, h_n) = tf.nn.dynamic_rnn( rnn_cell, # cell you have chosen rnn_input, # input initial_state=None, # the initial hidden state dtype=tf.float32, # must given if set initial_state = None time_major=False, # False: (batch, time step, input); True: (time step, batch, input) ) self.out = tf.layers.dense(outputs[:, -1, :], self.a_dim,tf.nn.softmax,trainable = trainable) # output based on the last output step params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return self.out, params def display_prob(self,s): prob = self.sess.run(self.out, feed_dict={self.tfs: s}) print(prob) def choose_action(self, s): # _s = np.array(s).reshape([-1,TIME_STEP,INPUT_SIZE]) # prob_weights = self.sess.run(self.pi, feed_dict={self.rnn_input: _s}) # print(prob_weights) # action = np.random.choice(range(prob_weights.shape[1]), # p=prob_weights.ravel()) # select action w.r.t the actions prob # prob = tf.nn.softmax(prob_weights) prob = self.sess.run(self.pi,feed_dict={self.tfs: s}) action = np.random.choice(range(prob.shape[1]), p=prob.ravel()) # select action w.r.t the actions prob return action def get_state(self, s): s = s[np.newaxis, :] h = self.sess.run(self.l2, {self.tfs: s})[0] return h def get_v(self, s): _s = np.array(s) if _s.ndim < 2: s = _s[np.newaxis, :] return self.sess.run(self.v, {self.tfs: s})[0, 0] def experience_store(self, s, a, r): self.buffer_a.append(a) self.buffer_s.append(s) self.buffer_r.append(r) def empty_buffer(self): self.buffer_s, self.buffer_r, self.buffer_a = [], [], [] ##每一步的reward进行一个discount,让越远的reward影响变小 def trajction_process(self, s_): v_s_ = self.get_v(s_) discounted_r = [] for r in self.buffer_r[::-1]: v_s_ = r + GAMMA * v_s_ discounted_r.append(v_s_) discounted_r.reverse() self.buffer_r = discounted_r def summarize(self, reward, i, tag): summary = tf.Summary() summary.value.add(tag=tag, simple_value=reward) self.writer.add_summary(summary, i) self.writer.flush() def save_params(self,name,ep): save_path = self.saver.save(self.sess,'my_net/rnn/{}_ep{}.ckpt'.format(name,ep)) print("Save to path:",save_path) def restore_params(self,name,ep): self.saver.restore(self.sess,'my_net/rnn/{}_ep{}.ckpt'.format(name,ep)) print("Restore params from") # # if __name__ == "__main__": # import gym # import matplotlib.pyplot as plt # env = gym.make('CartPole-v0').unwrapped # print(env.observation_space.shape) # print(env.action_space.shape) # # ppo = PPO(s_dim=4, a_dim=2) # all_ep_r = [] # # for ep in range(EP_MAX): # s = env.reset() # buffer_s, buffer_a, buffer_r = [], [], [] # ep_r = 0 # for t in range(EP_LEN): # in one episode # # a = ppo.choose_action(s) # s_, r, done, _ = env.step(a) # if done: # r = -10 # ppo.experience_store(s,a,r) # s = s_ # ep_r += r # # # update ppo # if (t + 1) % BATCH == 0 or t == EP_LEN - 1: # ppo.trajction_process(s) # ppo.update() # ppo.empty_buffer() # # if done: # break # if ep == 0: # all_ep_r.append(ep_r) # else: # all_ep_r.append(all_ep_r[-1] * 0.9 + ep_r * 0.1) # print( # 'Ep: %i' % ep, # "|Ep_r: %i" % ep_r, # ) # # plt.plot(np.arange(len(all_ep_r)), all_ep_r) # plt.xlabel('Episode') # plt.ylabel('Moving averaged episode reward') # plt.show() ``` #### File: experiments/fix_time_DRL/visualize.py ```python import numpy as np import csv from matplotlib import pyplot as plt import numpy.random def read_image(filename,num,gap = 1): with open(filename) as f: #创建一个阅读器:将f传给csv.reader reader = csv.reader(f) #使用csv的next函数,将reader传给next,将返回文件的下一行 header_row = next(reader) # for index, column_header in enumerate(header_row): # print(index, column_header) highs =[] #遍历reader的余下的所有行(next读取了第一行,reader每次读取后将返回下一行) count = 0 for row in reader: if (count < num) & ((count % gap) == 0): #将字符串转换成数字 high = float(row[2]) highs.append(high) count += 1 return highs def plot_image(data,color,label): plt.plot(data,c=color,label = label,lw=1) def read_3image(f1,f2,f3,num): f = [f1, f2, f3] img = [open(f[i]) for i in range(len(f))] #创建一个阅读器:将f传给csv.reader reader = [csv.reader(img[i]) for i in range(len(f))] header_row1 = next(reader[0]) header_row2 = next(reader[1]) header_row3 = next(reader[2]) data = [[],[],[]] out = [[],[]] count = 0 for row in reader[0]: if count < num: data[0].append(float(row[2])) count += 1 count = 0 for row in reader[1]: if count < num: data[1].append(float(row[2])) count += 1 count = 0 for row in reader[2]: if count < num: data[2].append(float(row[2])) count += 1 print(num) print(np.array(data).shape) for i in range(num): # print(i) temp = sorted([data[0][i],data[1][i],data[2][i]]) mean = (temp[0] + temp[1] +temp[2])/3 std = ((temp[0] - mean) ** 2 + (temp[1] - mean) ** 2 + (temp[2] - mean) ** 2)/3 out[0].append(mean) out[1].append(std ** (1/2)) return np.array(out) def plot_3image(data,color,label,longer = 1,random=False): random_num = np.zeros([len(data[0])]) if random == True: random_num = np.random.randint(3,6,size=len(data[0])) / 4 plt.plot(np.array(range(len(data[0]))) * longer, data[0] - random_num,c=color,label = label,lw=1) plt.fill_between(np.array(range(len(data[0]))) * longer, data[0] - data[1]-random_num, data[0] + data[1]-random_num, facecolor=color, alpha=0.3) def paint_3img(f1,f2,f3,color,label): data = read_3image(f1,f2,f3) plot_3image(data,color,label) def plot_format(title,xLabel,yLabel): plt.title(title, fontsize=24) plt.xlabel(xLabel,fontsize=16) plt.ylabel(yLabel, fontsize=16) plt.tick_params(axis='both', which="major", labelsize=16) if __name__ == "__main__": #获取数据 grid = "2x2" ##Compared with different DRL methods 3x3 600 flowrate data1 = read_3image('600_{}_ours_1.csv'.format(grid),'600_{}_ours_2.csv'.format(grid), '600_{}_ours_3.csv'.format(grid),200) data2 = read_3image('600_{}_single_1.csv'.format(grid),'600_{}_single_2.csv'.format(grid), '600_{}_single_3.csv'.format(grid),200) data3 = read_3image('600_{}_multi_1.csv'.format(grid),'600_{}_multi_2.csv'.format(grid), '600_{}_multi_3.csv'.format(grid),200) data4 = read_image('600_{}_fix.csv'.format(grid),200) data5 = read_image('600_{}_actuated.csv'.format(grid),200) #绘制图形 fig = plt.figure(dpi=128, figsize=(10,6)) ##compared with different DRL methods plot_3image(data1,'blue','ours') plot_3image(data2,'red','Single-PPO') plot_3image(data3,'black','Multi-PPO') plot_image(data4,'green','Fixed-time') plot_image(data5,'brown','Actuated') ##compared with different DRL methods plot_format('{} grid under 600 flowrate'.format(grid),'Episodes','Rewards') plt.legend(['ours','Single-PPO','Multi-PPO','Fixed-time','Actuated'],loc = 4,fontsize = 15) plt.show() ``` #### File: experiments/Painter-master/Painter.py ```python import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np import os import argparse from collections import OrderedDict class Painter(): """docstring for Paiter.""" def __init__(self, category='line', dir = None, colorful = 'favorite', axis = 0): self.colorful = colorful self.category = category self.color_mark = 0 self.data = OrderedDict() self.dir = dir self.axis = axis sns.set(style="whitegrid", color_codes=True) if dir == '': if self.category == 'line': self.data['random-1'] = self.random_data() self.data['random-2'] = self.random_data() - 2 self.data['random-3'] = self.random_data() - 4 elif self.category == '36d': self.data['random'] = np.array([np.sin(np.linspace(0,20,201)) + np.random.rand() for _ in range(20)]) else: files = os.listdir(dir) self.wanted = [i for i in files if i[-3:] == 'csv'] self.read_data() if self.colorful == 'favorite': colors = ["blue","orange","violet","green","red"] shadow_colors = ["light blue","light orange","light violet","light green","baby pink"] self.color_palette = sns.xkcd_palette(colors) self.shadow_color = sns.xkcd_palette(shadow_colors) def read_data(self): if len(self.wanted) == 0: print('No valied files {only .csv supported}') return for name in self.wanted: print(self.dir + name) d = pd.read_csv(self.dir + name, encoding='utf-8') if self.axis == 1: d = d.T self.data[name[:-4]] = d print("All %d files will be ploted." % len(self.wanted)) def random_data(self, times = 5): return pd.DataFrame([self.random_feature() + np.random.randint(5) for i in range(times)]) def random_feature(self, length = 500): x = np.arange(length) y = np.log(x + 1) + np.random.standard_normal(length) return y def colorful_world(self, pair=True): k = self.color_mark self.color_mark += 1 if self.color_mark >= len(self.color_palette):self.color_mark -= len(self.color_palette) if pair: return self.color_palette[k], self.shadow_color[k] else: return self.color_palette[k] def painte(self, gamma=0.6, stretch=10, shadow=True): with self.color_palette: if self.category == 'line': for name, each_line in self.data.items(): self._plot_line(gamma, each_line, name, stretch, shadow) plt.xlabel('Frames') plt.ylabel('Rewards') plt.legend(loc='upper left') plt.savefig(self.dir + name + ".jpg") plt.show() elif self.category == '36d': for name, each_plot in self.data.items(): self._plot_36d(name, each_plot) def _plot_line(self, gamma, data, name, stretch,shadow=True): mean = np.mean(data, axis=0) c, sc = self.colorful_world() for i in range(1,len(mean)): mean[i] = mean[i] * (1 - gamma) + mean[i-1] * gamma plt.plot(stretch*np.arange(len(mean)), mean, color=c, label=name) if shadow: std = np.std(data, axis=0) for i in range(1,len(std)): std[i] = std[i] * (1 - gamma) + std[i-1] * gamma plt.fill_between(stretch*np.arange(len(mean)), mean-std, mean+std, facecolor=sc, alpha=0.4) def _plot_36d(self, name, data, font="DejaVu Sans",color_bar=True): from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D if not isinstance(data, (np.ndarray, pd.DataFrame)): print("Type of data should be DataFrame.") return if isinstance(data, pd.DataFrame): if isinstance(data.columns[0], int): x = np.array(data.columns) else: x = np.arange(data.shape[1]) if isinstance(data.index[0], int): y = np.array(data.index) else: y = np.arange(data.shape[1]) else: x = np.arange(data.shape[1]) y = np.arange(data.shape[0]) x, y = np.meshgrid(x,y) data = data.values if not x.shape == data.shape: print("Check 3D plot data shape, which should be: ", self.data['z'].shape) return fig = plt.figure() ax = Axes3D(fig) if color_bar: surf = ax.plot_surface(x, y, data, cmap=cm.coolwarm, linewidth=0, antialiased=False) bar = fig.colorbar(surf, shrink=0.5, aspect=5) bar.ax.tick_params(labelsize=16) barlabels = bar.ax.get_yticklabels() [label.set_fontname(font) for label in barlabels] else: surf = ax.plot_wireframe(x, y, data) labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels() [label.set_fontname(font) for label in labels] plt.tick_params(labelsize=16) plt.savefig(self.dir + name + ".jpg", dpi=150) plt.show() if __name__ == '__main__': parser = argparse.ArgumentParser(description=None) parser.add_argument('-k', '--kind', default='line', type=str, help='choose the kind of plot: { line/scatter }') parser.add_argument('-sh', '--shadow', default=True, type=bool, help='mean +- std | error area: { True/False }') parser.add_argument('-st', '--stretch', default=10, type=int, help='times of x axis stretch: int') parser.add_argument('-d', '--data_dir', default='', type=str, help='CSV data files directory: .../target/') parser.add_argument('-g', '--gamma', default=0.6, type=float, help='discount of smooth') args = parser.parse_args() kind = args.kind shadow = args.shadow dir = args.data_dir stretch = args.stretch gamma = args.gamma p = Painter(dir = dir, category = kind) p.painte(stretch = stretch, shadow = shadow, gamma = gamma) ```
{ "source": "2867a0/exploitconsole", "score": 2 }
#### File: exploitconsole/api/parameters.py ```python import re from module.other.utils.DataUtil import database class Parameters(object): def __init__(self): # 初始化程序基本信息 self.program_normal_info = { "version": 1.0, # 程序版本信息 "poc_list": [], # 可用poc列表 "poc_number": 0, # poc数量 "backdoor_list": {}, # 当前已攻陷目标 "backdoor_number": 0, # 攻陷数量 "commandOperator": "[POE]: " # 当前控制台前缀符 } # 全局变量信息 self.global_arguments = { "url": None, } # poc信息 self.poc_options = { "name": "", "affected": "", "cvss": "", "severity": "", "description": "", "referer": "", "argument": set() } # PoC参数的详细信息 self.registerArguments = { } self.occupied_options = { "bid": 0, "target": "", "url": "", "last_visit": "", "alive": "" } for p in database.getPocListTableData(): self.program_normal_info["poc_list"].append(p[1]) for o in database.getBackdoorTableData(): self.program_normal_info["backdoor_list"][o[0]] = o[1:-1] self.program_normal_info["poc_number"] = len(self.program_normal_info["poc_list"]) self.program_normal_info["backdoor_number"] = len(self.program_normal_info["backdoor_list"]) # ----------程序、数据库信息: self.program_normal_info------------ def getVersion(self) -> float: """ 获取版本信息 :return: 版本号 """ return self.program_normal_info["version"] def getPocList(self) -> list: """ 获取poc列表 :return: list: [["123"], ["uu"], ["aa"]] """ return self.program_normal_info["poc_list"] # 重载poc列表 def reloadPocList(self): self.program_normal_info["poc_list"].clear() for p in database.getPocListTableData(): self.program_normal_info["poc_list"].append(p[1]) self.program_normal_info["poc_number"] = len(self.program_normal_info["poc_list"]) # 获取poc数量 def getPocNumber(self) -> int: """ 获取当前poc数量 :return: int """ return self.program_normal_info["poc_number"] def getBackdoorInfo(self) -> dict: """ 返回后门列表,格式为: { "1": ("url", "http://URL", "pass", "last_visit"), "2": ("", "", "", ""), } :return: dict """ return self.program_normal_info["backdoor_list"] def getCurrentBackdoor(self): pass def updateBackdoorInfo(self, key, value) -> None: """ 更新一条后门信息 :param key: 要更新的键 :param value: 新的值 :return: null """ database.updateBackdoorData(index=self.occupied_options["bid"], key=key, value=value) def getBackdoorNumber(self) -> int: """ 获取后门数量 :return: int """ return self.program_normal_info["backdoor_number"] # --------全局变量设置: self.global_options----------------- def getGlobalArgument(self, key="all"): """ 获取全局变量的设置,若不指定key的值,则返回所有设置 :param key: 全局变量的某一个值, 默认为所有 :return: string / dict / null """ if key == "all": return self.global_arguments if key in self.global_arguments.keys(): return self.global_arguments[key] return None def setGlobalArgument(self, key, value=None) -> None: """ 设置全局变量中某一个值 :param key: 变量,不为空 :param value: 新的值 :return: null """ self.global_arguments[key] = value def clearGlobalArgument(self) -> None: """ 清除全局变量 :return: null """ self.global_arguments.clear() # ----------poc信息: self.poc_options-------------------- def getPocOption(self, key="all"): """ 返回指定的poc信息,默认返回全部 :param key: poc信息, 默认="all" :return: string / dict / null """ if key == "all": return self.poc_options if key in self.poc_options.keys(): return self.poc_options.get(key) return None def setPocOption(self, key="all", value=None) -> None: """ 设置poc基本信息,如果key="all", 则清空poc信息 :param key: poc一个key :param value: 新的值 :return: null """ if key == "all": self.poc_options = { "name": "", "affected": "", "cvss": "", "severity": "", "description": "", "referer": "", "argument": set() } elif key in self.poc_options.keys(): self.poc_options[key] = value def getPocArgumentNameList(self) -> list: """ 获取poc注册的参数名 :return: list """ return list(self.poc_options["argument"]) def setPocArgumentNameList(self, poc_argument_list:list) -> None: """ 设置poc注册的参数名 :param poc_argument_list: poc参数名 - list :return: null """ self.poc_options["argument"].update(poc_argument_list) # ----------poc脚本可控参数: self.registerArguments-------------------- def getPocArguments(self, key="all") -> dict: """ 获取poc参数信息, 格式为 { "test_string": [None, True, "description"], "test_list": ["default_value", False, "default description"] } :return: dict """ if key == "all": return self.registerArguments else: return self.registerArguments.get(key)[0] def setPocArgument(self, key, value: str) -> None: """ 设置注册的参数值 :param key: 注册的参数 :param value: 值 :return: null """ self.registerArguments[key][0] = value def clearRegisterArgument(self): """ 清除注册的参数 :return: """ self.registerArguments.clear() self.setPocArgumentNameList([]) # self.arguments func for user def registerParameter(self, poc_arg: dict) -> None: """ 注册poc所需参数, 格式为: 字典 = { "注册参数名": ["参数默认值", 是否为必须参数(True/False), "参数描述"] ... } :param poc_arg: poc列表 :return: null """ self.registerArguments = poc_arg self.setPocArgumentNameList(list(self.registerArguments.keys())) def getRegisterParameter(self, name) -> str: """ 获取注册参数的值 :param name: 参数名 :return: string / null """ if name in self.getPocArgumentNameList(): return self.registerArguments.get(name)[0] else: from api.screens import screen screen.error(f"You don't have register argument: {name}") # -------------------other----------------------------- def checkRequiredArgument(self) -> list: """ 检查必须设置值的参数是否设置 :return: list: 未设置的值列表 """ not_set = [] for k, v in self.registerArguments.items(): if v[1] is True and v[0] == "": not_set.append(k) return not_set def checkValueIsValid(self, value: str): pass def checkIPLicit(self, ip: str) -> bool: """ 检查ip是否合法 :param ip: 待检查IP :return: true or false """ compile_ip = re.compile( '^(1\d{2}|2[0-4]\d|25[0-5]|[1-9]\d|[1-9])\.(1\d{2}|2[0-4]\d|25[0-5]|[1-9]\d|\d)\.(1\d{2}|2[0-4]\d|25[0-5]|[1-9]\d|\d)\.(1\d{2}|2[0-4]\d|25[0-5]|[1-9]\d|\d)$') if compile_ip.match(ip): return True else: return False param = Parameters() ``` #### File: 2867a0/exploitconsole/pocorexp.py ```python import time import module.args from module.other.utils.DataUtil import database from api.screens import screen # 设计不完美,导入screen会导入param,param自动初始化,导致reload时没有及时更新param数据 def start(mode): # 进入控制台 if mode == "console": from module.console.mainconsole import main_console main_console.showConsole() # 进入批量利用模式 if mode == "command": from module.command.CommandMode import CommandMode start_t = time.time() commandMode = CommandMode(inputArg.target, inputArg.command, inputArg.exp, inputArg.thread) commandMode.run() # print("") screen.info(f"Done. using {round(time.time() - start_t)}s") # 进入后门模式 if mode == "webshell": from module.webshellmode.webshells import webshellController webshellController.showPanel() def ready(debug: bool, reload: bool): if debug: screen.setDebug() screen.debug("Debug Mode Is On") if reload: database.reloadPocData() from api.parameters import param param.reloadPocList() screen.success("reload payload list success") if __name__ == '__main__': inputArg = module.args.getArgs() ready(inputArg.debug, inputArg.reload) start(inputArg.sub_mode) ```
{ "source": "286844626/koalas", "score": 2 }
#### File: databricks/koalas/frame.py ```python import warnings from functools import partial, reduce from typing import Any, List, Tuple, Union import numpy as np import pandas as pd from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype, is_list_like from pyspark import sql as spark from pyspark.sql import functions as F, Column from pyspark.sql.types import BooleanType, StructField, StructType, to_arrow_type from pyspark.sql.utils import AnalysisException from databricks import koalas as ks # For running doctests and reference resolution in PyCharm. from databricks.koalas.utils import default_session, validate_arguments_and_invoke_function from databricks.koalas.exceptions import SparkPandasMergeError from databricks.koalas.generic import _Frame, max_display_count from databricks.koalas.metadata import Metadata from databricks.koalas.missing.frame import _MissingPandasLikeDataFrame from databricks.koalas.ml import corr from databricks.koalas.selection import SparkDataFrameLocator from databricks.koalas.typedef import infer_pd_series_spark_type class DataFrame(_Frame): """ Koala DataFrame that corresponds to Pandas DataFrame logically. This holds Spark DataFrame internally. :ivar _sdf: Spark Column instance :ivar _metadata: Metadata related to column names and index information. Parameters ---------- data : numpy ndarray (structured or homogeneous), dict, Pandas DataFrame or Spark DataFrame Dict can contain Series, arrays, constants, or list-like objects If data is a dict, argument order is maintained for Python 3.6 and later. Note that if `data` is a Pandas DataFrame, other arguments should not be used. If `data` is a Spark DataFrame, all other arguments except `index` should not be used. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided If `data` is a Spark DataFrame, `index` is expected to be `Metadata`. columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, ..., n) if no column labels are provided dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = ks.DataFrame(data=d, columns=['col1', 'col2']) >>> df col1 col2 0 1 3 1 2 4 Constructing DataFrame from Pandas DataFrame >>> df = ks.DataFrame(pd.DataFrame(data=d, columns=['col1', 'col2'])) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = ks.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from numpy ndarray: >>> df2 = ks.DataFrame(np.random.randint(low=0, high=10, size=(5, 5)), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df2 # doctest: +SKIP a b c d e 0 3 1 4 9 8 1 4 8 4 8 4 2 7 6 5 6 7 3 8 7 9 1 0 4 2 5 4 3 9 """ def __init__(self, data=None, index=None, columns=None, dtype=None, copy=False): if isinstance(data, pd.DataFrame): assert index is None assert columns is None assert dtype is None assert not copy self._init_from_pandas(data) elif isinstance(data, spark.DataFrame): assert columns is None assert dtype is None assert not copy self._init_from_spark(data, index) else: pdf = pd.DataFrame(data=data, index=index, columns=columns, dtype=dtype, copy=copy) self._init_from_pandas(pdf) def _init_from_pandas(self, pdf): metadata = Metadata.from_pandas(pdf) reset_index = pdf.reset_index() reset_index.columns = metadata.columns schema = StructType([StructField(name, infer_pd_series_spark_type(col), nullable=bool(col.isnull().any())) for name, col in reset_index.iteritems()]) for name, col in reset_index.iteritems(): dt = col.dtype if is_datetime64_dtype(dt) or is_datetime64tz_dtype(dt): continue reset_index[name] = col.replace({np.nan: None}) self._init_from_spark(default_session().createDataFrame(reset_index, schema=schema), metadata) def _init_from_spark(self, sdf, metadata=None): self._sdf = sdf if metadata is None: self._metadata = Metadata(data_columns=self._sdf.schema.fieldNames()) else: self._metadata = metadata @property def _index_columns(self): return [self._sdf.__getitem__(field) for field in self._metadata.index_columns] def _reduce_for_stat_function(self, sfun): """ Applies sfun to each column and returns a pd.Series where the number of rows equal the number of columns. :param sfun: either an 1-arg function that takes a Column and returns a Column, or a 2-arg function that takes a Column and its DataType and returns a Column. """ from inspect import signature exprs = [] num_args = len(signature(sfun).parameters) for col in self.columns: col_sdf = self._sdf[col] col_type = self._sdf.schema[col].dataType if isinstance(col_type, BooleanType) and sfun.__name__ not in ('min', 'max'): # Stat functions cannot be used with boolean values by default # Thus, cast to integer (true to 1 and false to 0) # Exclude the min and max methods though since those work with booleans col_sdf = col_sdf.cast('integer') if num_args == 1: # Only pass in the column if sfun accepts only one arg col_sdf = sfun(col_sdf) else: # must be 2 assert num_args == 2 # Pass in both the column and its data type if sfun accepts two args col_sdf = sfun(col_sdf, col_type) exprs.append(col_sdf.alias(col)) sdf = self._sdf.select(*exprs) pdf = sdf.toPandas() assert len(pdf) == 1, (sdf, pdf) row = pdf.iloc[0] row.name = None return row # Return first row as a Series def corr(self, method='pearson'): """ Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'spearman'} * pearson : standard correlation coefficient * spearman : Spearman rank correlation Returns ------- y : pandas.DataFrame See Also -------- Series.corr Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr('pearson') dogs cats dogs 1.000000 -0.851064 cats -0.851064 1.000000 >>> df.corr('spearman') dogs cats dogs 1.000000 -0.948683 cats -0.948683 1.000000 Notes ----- There are behavior differences between Koalas and pandas. * the `method` argument only accepts 'pearson', 'spearman' * the data should not contain NaNs. Koalas will return an error. * Koalas doesn't support the following argument(s). * `min_periods` argument is not supported """ return corr(self, method) def iteritems(self): """ Iterator over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. Returns ------- label : object The column names for the DataFrame being iterated over. content : Series The column entries belonging to each label, as a Series. Examples -------- >>> df = ks.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala'], ... columns=['species', 'population']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.iteritems(): ... print('label:', label) ... print('content:', content.to_string()) ... label: species content: panda bear polar bear koala marsupial label: population content: panda 1864 polar 22000 koala 80000 """ cols = list(self.columns) return list((col_name, self[col_name]) for col_name in cols) def to_html(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal='.', bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False): """ Render a DataFrame as an HTML table. .. note:: This method should only be used if the resulting Pandas object is expected to be small, as all the data is loaded into the driver's memory. If the input is large, set max_rows parameter. Parameters ---------- buf : StringIO-like, optional Buffer to write to. columns : sequence, optional, default None The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool, optional Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names index : bool, optional, default True Whether to print index (row) labels. na_rep : str, optional, default 'NaN' String representation of NAN to use. formatters : list or dict of one-param. functions, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function, optional, default None Formatter function to apply to columns' elements if they are floats. The result of this function must be a unicode string. sparsify : bool, optional, default True Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. index_names : bool, optional, default True Prints the names of the indexes. justify : str, default None How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), 'right' out of the box. Valid values are * left * right * center * justify * justify-all * start * end * inherit * match-parent * initial * unset. max_rows : int, optional Maximum number of rows to display in the console. max_cols : int, optional Maximum number of columns to display in the console. show_dimensions : bool, default False Display DataFrame dimensions (number of rows by number of columns). decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. bold_rows : bool, default True Make the row labels bold in the output. classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table. escape : bool, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.html.border``. table_id : str, optional A css id is included in the opening `<table>` tag if specified. render_links : bool, default False Convert URLs to HTML links (only works with Pandas 0.24+). Returns ------- str (or unicode, depending on data and options) String representation of the dataframe. See Also -------- to_string : Convert DataFrame to a string. """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() if max_rows is not None: kdf = self.head(max_rows) else: kdf = self return validate_arguments_and_invoke_function( kdf.to_pandas(), self.to_html, pd.DataFrame.to_html, args) def to_string(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal='.', line_width=None): """ Render a DataFrame to a console-friendly tabular output. .. note:: This method should only be used if the resulting Pandas object is expected to be small, as all the data is loaded into the driver's memory. If the input is large, set max_rows parameter. Parameters ---------- buf : StringIO-like, optional Buffer to write to. columns : sequence, optional, default None The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool, optional Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names index : bool, optional, default True Whether to print index (row) labels. na_rep : str, optional, default 'NaN' String representation of NAN to use. formatters : list or dict of one-param. functions, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function, optional, default None Formatter function to apply to columns' elements if they are floats. The result of this function must be a unicode string. sparsify : bool, optional, default True Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. index_names : bool, optional, default True Prints the names of the indexes. justify : str, default None How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), 'right' out of the box. Valid values are * left * right * center * justify * justify-all * start * end * inherit * match-parent * initial * unset. max_rows : int, optional Maximum number of rows to display in the console. max_cols : int, optional Maximum number of columns to display in the console. show_dimensions : bool, default False Display DataFrame dimensions (number of rows by number of columns). decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. line_width : int, optional Width to wrap a line in characters. Returns ------- str (or unicode, depending on data and options) String representation of the dataframe. See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> df = ks.DataFrame({'col1': [1, 2, 3], 'col2': [4, 5, 6]}, columns=['col1', 'col2']) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 >>> print(df.to_string(max_rows=2)) col1 col2 0 1 4 1 2 5 """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() if max_rows is not None: kdf = self.head(max_rows) else: kdf = self return validate_arguments_and_invoke_function( kdf.to_pandas(), self.to_string, pd.DataFrame.to_string, args) def to_json(self, path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False, compression='infer', index=True): """ Convert the object to a JSON string. Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps. .. note:: This method should only be used if the resulting JSON is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- path_or_buf : string or file handle, optional File path or object. If not specified, the result is returned as a string. orient : string Indication of expected JSON string format. * Series - default is 'index' - allowed values are: {'split','records','index','table'} * DataFrame - default is 'columns' - allowed values are: {'split','records','index','columns','values','table'} * The format of the JSON string - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} - 'columns' : dict like {column -> {index -> value}} - 'values' : just the values array - 'table' : dict like {'schema': {schema}, 'data': {data}} describing the data, and the data component is like ``orient='records'``. date_format : {None, 'epoch', 'iso'} Type of date conversion. 'epoch' = epoch milliseconds, 'iso' = ISO8601. The default depends on the `orient`. For ``orient='table'``, the default is 'iso'. For all other orients, the default is 'epoch'. double_precision : int, default 10 The number of decimal places to use when encoding floating point values. force_ascii : bool, default True Force encoded string to be ASCII. date_unit : string, default 'ms' (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of 's', 'ms', 'us', 'ns' for second, millisecond, microsecond, and nanosecond respectively. default_handler : callable, default None Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. lines : bool, default False If 'orient' is 'records' write out line delimited json format. Will throw ValueError if incorrect 'orient' since others are not list like. compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None} A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename. index : bool, default True Whether to include the index values in the JSON string. Not including the index (``index=False``) is only supported when orient is 'split' or 'table'. Examples -------- >>> df = ks.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df.to_json(orient='split') '{"columns":["col 1","col 2"],\ "index":["row 1","row 2"],\ "data":[["a","b"],["c","d"]]}' Encoding/decoding a Dataframe using ``'records'`` formatted JSON. Note that index labels are not preserved with this encoding. >>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' Encoding/decoding a Dataframe using ``'index'`` formatted JSON: >>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' Encoding/decoding a Dataframe using ``'columns'`` formatted JSON: >>> df.to_json(orient='columns') '{"col 1":{"row 1":"a","row 2":"c"},"col 2":{"row 1":"b","row 2":"d"}}' Encoding/decoding a Dataframe using ``'values'`` formatted JSON: >>> df.to_json(orient='values') '[["a","b"],["c","d"]]' Encoding with Table Schema >>> df.to_json(orient='table') # doctest: +SKIP '{"schema": {"fields":[{"name":"index","type":"string"},\ {"name":"col 1","type":"string"},\ {"name":"col 2","type":"string"}],\ "primaryKey":["index"],\ "pandas_version":"0.20.0"}, \ "data": [{"index":"row 1","col 1":"a","col 2":"b"},\ {"index":"row 2","col 1":"c","col 2":"d"}]}' """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() kdf = self return validate_arguments_and_invoke_function( kdf.to_pandas(), self.to_json, pd.DataFrame.to_json, args) def to_dict(self, orient='dict', into=dict): """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). .. note:: This method should only be used if the resulting Pandas DataFrame is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. Examples -------- >>> df = ks.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2'], ... columns=['col1', 'col2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df_dict = df.to_dict() >>> sorted([(key, sorted(values.items())) for key, values in df_dict.items()]) [('col1', [('row1', 1), ('row2', 2)]), ('col2', [('row1', 0.5), ('row2', 0.75)])] You can specify the return orientation. >>> df_dict = df.to_dict('series') >>> sorted(df_dict.items()) [('col1', row1 1 row2 2 Name: col1, dtype: int64), ('col2', row1 0.50 row2 0.75 Name: col2, dtype: float64)] >>> df_dict = df.to_dict('split') >>> sorted(df_dict.items()) # doctest: +ELLIPSIS [('columns', ['col1', 'col2']), ('data', [[1..., 0.75]]), ('index', ['row1', 'row2'])] >>> df_dict = df.to_dict('records') >>> [sorted(values.items()) for values in df_dict] # doctest: +ELLIPSIS [[('col1', 1...), ('col2', 0.5)], [('col1', 2...), ('col2', 0.75)]] >>> df_dict = df.to_dict('index') >>> sorted([(key, sorted(values.items())) for key, values in df_dict.items()]) [('row1', [('col1', 1), ('col2', 0.5)]), ('row2', [('col1', 2), ('col2', 0.75)])] You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), \ ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) # doctest: +ELLIPSIS [defaultdict(<class 'list'>, {'col..., 'col...}), \ defaultdict(<class 'list'>, {'col..., 'col...})] """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() kdf = self return validate_arguments_and_invoke_function( kdf.to_pandas(), self.to_dict, pd.DataFrame.to_dict, args) def to_csv(self, path_or_buf=None, sep=",", na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, mode='w', encoding=None, compression='infer', quoting=None, quotechar='"', line_terminator="\n", chunksize=None, tupleize_cols=None, date_format=None, doublequote=True, escapechar=None, decimal='.'): """ Write object to a comma-separated values (csv) file. .. note:: This method should only be used if the resulting CSV is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- path_or_buf : str or file handle, default None File path or object, if None is provided the result is returned as a string. If a file object is passed it should be opened with `newline=''`, disabling universal newlines. sep : str, default ',' String of length 1. Field delimiter for the output file. na_rep : str, default '' Missing data representation. float_format : str, default None Format string for floating point numbers. columns : sequence, optional Columns to write. header : bool or list of str, default True Write out the column names. If a list of strings is given it is assumed to be aliases for the column names. index : bool, default True Write row names (index). index_label : str or sequence, or False, default None Column label for index column(s) if desired. If None is given, and `header` and `index` are True, then the index names are used. A sequence should be given if the object uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R. mode : str Python write mode, default 'w'. encoding : str, optional A string representing the encoding to use in the output file, defaults to 'ascii' on Python 2 and 'utf-8' on Python 3. compression : str, default 'infer' Compression mode among the following possible values: {'infer', 'gzip', 'bz2', 'zip', 'xz', None}. If 'infer' and `path_or_buf` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip' or '.xz'. (otherwise no compression). quoting : optional constant from csv module Defaults to csv.QUOTE_MINIMAL. If you have set a `float_format` then floats are converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as non-numeric. quotechar : str, default '\"' String of length 1. Character used to quote fields. line_terminator : string, default '\\n' The newline character or character sequence to use in the output file. Defaults to `os.linesep`, which depends on the OS in which this method is called ('\n' for linux, '\r\n' for Windows, i.e.). chunksize : int or None Rows to write at a time. tupleize_cols : bool, default False Write MultiIndex columns as a list of tuples (if True) or in the new, expanded format, where each MultiIndex column is a row in the CSV (if False). date_format : str, default None Format string for datetime objects. doublequote : bool, default True Control quoting of `quotechar` inside a field. escapechar : str, default None String of length 1. Character used to escape `sep` and `quotechar` when appropriate. decimal : str, default '.' Character recognized as decimal separator. E.g. use ',' for European data. Returns ------- None or str If path_or_buf is None, returns the resulting csv format as a string. Otherwise returns None. Examples -------- >>> df = ks.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}, ... columns=['name', 'mask', 'weapon']) >>> df.to_csv(index=False) 'name,mask,weapon\\nRaphael,red,sai\\nDonatello,purple,bo staff\\n' """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() kdf = self return validate_arguments_and_invoke_function( kdf.to_pandas(), self.to_csv, pd.DataFrame.to_csv, args) @property def index(self): """The index (row labels) Column of the DataFrame. Currently supported only when the DataFrame has a single index. """ from databricks.koalas.series import Series if len(self._metadata.index_map) != 1: raise KeyError('Currently supported only when the DataFrame has a single index.') return Series(self._index_columns[0], anchor=self, index=[]) def set_index(self, keys, drop=True, append=False, inplace=False): """Set the DataFrame index (row labels) using one or more existing columns. By default yields a new object. :param keys: column label or list of column labels / arrays :param drop: boolean, default True Delete columns to be used as the new index :param append: boolean, default False Whether to append columns to existing index :param inplace: boolean, default False Modify the DataFrame in place (do not create a new object) :return: :class:`DataFrame` """ if isinstance(keys, str): keys = [keys] else: keys = list(keys) for key in keys: if key not in self.columns: raise KeyError(key) if drop: data_columns = [column for column in self._metadata.data_columns if column not in keys] else: data_columns = self._metadata.data_columns if append: index_map = self._metadata.index_map + [(column, column) for column in keys] else: index_map = [(column, column) for column in keys] metadata = self._metadata.copy(data_columns=data_columns, index_map=index_map) # Sync Spark's columns as well. sdf = self._sdf.select(['`{}`'.format(name) for name in metadata.columns]) if inplace: self._metadata = metadata self._sdf = sdf else: kdf = self.copy() kdf._metadata = metadata kdf._sdf = sdf return kdf def reset_index(self, level=None, drop=False, inplace=False): """For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to 'level_0', 'level_1', etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default 'index' or 'level_0' (if 'index' is already taken) will be used. :param level: int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default :param drop: boolean, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. :param inplace: boolean, default False Modify the DataFrame in place (do not create a new object) :return: :class:`DataFrame` """ if len(self._metadata.index_map) == 0: raise NotImplementedError('Can\'t reset index because there is no index.') multi_index = len(self._metadata.index_map) > 1 def rename(index): if multi_index: return 'level_{}'.format(index) else: if 'index' not in self._metadata.data_columns: return 'index' else: return 'level_{}'.format(index) if level is None: new_index_map = [(column, name if name is not None else rename(i)) for i, (column, name) in enumerate(self._metadata.index_map)] index_map = [] else: if isinstance(level, (int, str)): level = [level] level = list(level) if all(isinstance(l, int) for l in level): for lev in level: if lev >= len(self._metadata.index_map): raise IndexError('Too many levels: Index has only {} level, not {}' .format(len(self._metadata.index_map), lev + 1)) idx = level elif all(isinstance(lev, str) for lev in level): idx = [] for l in level: try: i = self._metadata.index_columns.index(l) idx.append(i) except ValueError: if multi_index: raise KeyError('Level unknown not found') else: raise KeyError('Level unknown must be same as name ({})' .format(self._metadata.index_columns[0])) else: raise ValueError('Level should be all int or all string.') idx.sort() new_index_map = [] index_map = self._metadata.index_map.copy() for i in idx: info = self._metadata.index_map[i] index_column, index_name = info new_index_map.append( (index_column, index_name if index_name is not None else rename(index_name))) index_map.remove(info) if drop: new_index_map = [] metadata = self._metadata.copy( data_columns=[column for column, _ in new_index_map] + self._metadata.data_columns, index_map=index_map) columns = [name for _, name in new_index_map] + self._metadata.data_columns if inplace: self._metadata = metadata self.columns = columns else: kdf = self.copy() kdf._metadata = metadata kdf.columns = columns return kdf def isnull(self): """ Detects missing values for items in the current Dataframe. Return a boolean same-sized Dataframe indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. See Also -------- Dataframe.notnull Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, None), (.6, None), (.2, .1)]) >>> df.isnull() 0 1 0 False False 1 False True 2 False True 3 False False >>> df = ks.DataFrame([[None, 'bee', None], ['dog', None, 'fly']]) >>> df.isnull() 0 1 2 0 True False True 1 False True False """ kdf = self.copy() for name, ks in kdf.iteritems(): kdf[name] = ks.isnull() return kdf isna = isnull def notnull(self): """ Detects non-missing values for items in the current Dataframe. This function takes a dataframe and indicates whether it's values are valid (not missing, which is ``NaN`` in numeric datatypes, ``None`` or ``NaN`` in objects and ``NaT`` in datetimelike). See Also -------- Dataframe.isnull Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, None), (.6, None), (.2, .1)]) >>> df.notnull() 0 1 0 True True 1 True False 2 True False 3 True True >>> df = ks.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df.notnull() 0 1 2 0 True True True 1 True False True """ kdf = self.copy() for name, ks in kdf.iteritems(): kdf[name] = ks.notnull() return kdf notna = notnull def to_koalas(self): """ Converts the existing DataFrame into a Koalas DataFrame. This method is monkey-patched into Spark's DataFrame and can be used to convert a Spark DataFrame into a Koalas DataFrame. If running on an existing Koalas DataFrame, the method returns itself. If a Koalas DataFrame is converted to a Spark DataFrame and then back to Koalas, it will lose the index information and the original index will be turned into a normal column. See Also -------- DataFrame.to_spark Examples -------- >>> df = ks.DataFrame({'col1': [1, 2], 'col2': [3, 4]}, columns=['col1', 'col2']) >>> df col1 col2 0 1 3 1 2 4 >>> spark_df = df.to_spark() >>> spark_df DataFrame[__index_level_0__: bigint, col1: bigint, col2: bigint] >>> kdf = spark_df.to_koalas() >>> kdf __index_level_0__ col1 col2 0 0 1 3 1 1 2 4 Calling to_koalas on a Koalas DataFrame simply returns itself. >>> df.to_koalas() col1 col2 0 1 3 1 2 4 """ if isinstance(self, DataFrame): return self else: return DataFrame(self) def to_spark(self): """ Return the current DataFrame as a Spark DataFrame. See Also -------- DataFrame.to_koalas """ return self._sdf def to_pandas(self): """ Return a Pandas DataFrame. .. note:: This method should only be used if the resulting Pandas DataFrame is expected to be small, as all the data is loaded into the driver's memory. Examples -------- >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.to_pandas() dogs cats 0 0.2 0.3 1 0.0 0.6 2 0.6 0.0 3 0.2 0.1 """ sdf = self._sdf.select(['`{}`'.format(name) for name in self._metadata.columns]) pdf = sdf.toPandas() if len(pdf) == 0 and len(sdf.schema) > 0: # TODO: push to OSS pdf = pdf.astype({field.name: to_arrow_type(field.dataType).to_pandas_dtype() for field in sdf.schema}) index_columns = self._metadata.index_columns if len(index_columns) > 0: append = False for index_field in index_columns: drop = index_field not in self._metadata.data_columns pdf = pdf.set_index(index_field, drop=drop, append=append) append = True pdf = pdf[self._metadata.data_columns] index_names = self._metadata.index_names if len(index_names) > 0: if isinstance(pdf.index, pd.MultiIndex): pdf.index.names = index_names else: pdf.index.name = index_names[0] return pdf # Alias to maintain backward compatibility with Spark toPandas = to_pandas def assign(self, **kwargs): """ Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- **kwargs : dict of {str: callable or Series} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though Koalas doesn't check it). If the values are not callable, (e.g. a Series or a literal), they are simply assigned. Returns ------- DataFrame A new DataFrame with the new columns in addition to all the existing columns. Examples -------- >>> df = ks.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence and you can also create multiple columns within the same assign. >>> assigned = df.assign(temp_f=df['temp_c'] * 9 / 5 + 32, ... temp_k=df['temp_c'] + 273.15) >>> assigned[['temp_c', 'temp_f', 'temp_k']] temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15 Notes ----- Assigning multiple columns within the same ``assign`` is possible but you cannot refer to newly created or modified columns. This feature is supported in pandas for Python 3.6 and later but not in Koalas. In Koalas, all items are computed first, and then assigned. """ from databricks.koalas.series import Series for k, v in kwargs.items(): if not (isinstance(v, (Series, spark.Column)) or callable(v) or pd.api.types.is_scalar(v)): raise TypeError("Column assignment doesn't support type " "{0}".format(type(v).__name__)) if callable(v): kwargs[k] = v(self) pairs = list(kwargs.items()) sdf = self._sdf for (name, c) in pairs: if isinstance(c, Series): sdf = sdf.withColumn(name, c._scol) elif isinstance(c, Column): sdf = sdf.withColumn(name, c) else: sdf = sdf.withColumn(name, F.lit(c)) data_columns = self._metadata.data_columns metadata = self._metadata.copy( data_columns=(data_columns + [name for name, _ in pairs if name not in data_columns])) return DataFrame(sdf, metadata) def to_excel(self, excel_writer, sheet_name="Sheet1", na_rep="", float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep="inf", verbose=True, freeze_panes=None): """ Write object to an Excel sheet. .. note:: This method should only be used if the resulting DataFrame is expected to be small, as all the data is loaded into the driver's memory. To write a single object to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an `ExcelWriter` object with a target file name, and specify a sheet in the file to write to. Multiple sheets may be written to by specifying unique `sheet_name`. With all data written to the file it is necessary to save the changes. Note that creating an `ExcelWriter` object with a file name that already exists will result in the contents of the existing file being erased. Parameters ---------- excel_writer : str or ExcelWriter object File path or existing ExcelWriter. sheet_name : str, default 'Sheet1' Name of sheet which will contain DataFrame. na_rep : str, default '' Missing data representation. float_format : str, optional Format string for floating point numbers. For example ``float_format="%%.2f"`` will format 0.1234 to 0.12. columns : sequence or list of str, optional Columns to write. header : bool or list of str, default True Write out the column names. If a list of string is given it is assumed to be aliases for the column names. index : bool, default True Write row names (index). index_label : str or sequence, optional Column label for index column(s) if desired. If not specified, and `header` and `index` are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. startrow : int, default 0 Upper left cell row to dump data frame. startcol : int, default 0 Upper left cell column to dump data frame. engine : str, optional Write engine to use, 'openpyxl' or 'xlsxwriter'. You can also set this via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and ``io.excel.xlsm.writer``. merge_cells : bool, default True Write MultiIndex and Hierarchical Rows as merged cells. encoding : str, optional Encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively. inf_rep : str, default 'inf' Representation for infinity (there is no native representation for infinity in Excel). verbose : bool, default True Display more information in the error logs. freeze_panes : tuple of int (length 2), optional Specifies the one-based bottommost row and rightmost column that is to be frozen. Notes ----- Once a workbook has been saved it is not possible write further data without rewriting the whole workbook. Examples -------- Create, write to and save a workbook: >>> df1 = ks.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df1.to_excel("output.xlsx") # doctest: +SKIP To specify the sheet name: >>> df1.to_excel("output.xlsx") # doctest: +SKIP >>> df1.to_excel("output.xlsx", ... sheet_name='Sheet_name_1') # doctest: +SKIP If you wish to write to more than one sheet in the workbook, it is necessary to specify an ExcelWriter object: >>> with pd.ExcelWriter('output.xlsx') as writer: # doctest: +SKIP ... df1.to_excel(writer, sheet_name='Sheet_name_1') ... df2.to_excel(writer, sheet_name='Sheet_name_2') To set the library that is used to write the Excel file, you can pass the `engine` keyword (the default engine is automatically chosen depending on the file extension): >>> df1.to_excel('output1.xlsx', engine='xlsxwriter') # doctest: +SKIP """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() kdf = self return validate_arguments_and_invoke_function( kdf.to_pandas(), self.to_excel, pd.DataFrame.to_excel, args) @property def loc(self): return SparkDataFrameLocator(self) def copy(self): return DataFrame(self._sdf, self._metadata.copy()) def dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False): """ Remove missing values. Parameters ---------- axis : {0 or 'index'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame DataFrame with NA entries dropped from it. See Also -------- DataFrame.drop : Drop specified labels from columns. DataFrame.isnull: Indicate missing values. DataFrame.notnull : Indicate existing (non-missing) values. Examples -------- >>> df = ks.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [None, 'Batmobile', 'Bullwhip'], ... "born": [None, "1940-04-25", None]}, ... columns=['name', 'toy', 'born']) >>> df name toy born 0 Alfred None None 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip None Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred None None 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip None Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip None Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'born']) name toy born 1 Batman Batmobile 1940-04-25 Keep the DataFrame with valid entries in the same variable. >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 """ if axis == 0 or axis == 'index': if subset is not None: if isinstance(subset, str): columns = [subset] else: columns = list(subset) invalids = [column for column in columns if column not in self._metadata.data_columns] if len(invalids) > 0: raise KeyError(invalids) else: columns = list(self.columns) cnt = reduce(lambda x, y: x + y, [F.when(self[column].notna()._scol, 1).otherwise(0) for column in columns], F.lit(0)) if thresh is not None: pred = cnt >= F.lit(int(thresh)) elif how == 'any': pred = cnt == F.lit(len(columns)) elif how == 'all': pred = cnt > F.lit(0) else: if how is not None: raise ValueError('invalid how option: {h}'.format(h=how)) else: raise TypeError('must specify how or thresh') sdf = self._sdf.filter(pred) if inplace: self._sdf = sdf else: return DataFrame(sdf, self._metadata.copy()) else: raise NotImplementedError("dropna currently only works for axis=0 or axis='index'") def fillna(self, value=None, axis=None, inplace=False): """Fill NA/NaN values. :param value: scalar, dict, Series Value to use to fill holes. alternately a dict/Series of values specifying which value to use for each column. DataFrame is not supported. :param axis: {0 or `index`} 1 and `columns` are not supported. :param inplace: boolean, default False Fill in place (do not create a new object) :return: :class:`DataFrame` Examples -------- >>> df = ks.DataFrame({ ... 'A': [None, 3, None, None], ... 'B': [2, 4, None, 3], ... 'C': [None, None, None, 1], ... 'D': [0, 1, 5, 4] ... }, ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 1.0 4 Replace all NaN elements with 0s. >>> df.fillna(0) A B C D 0 0.0 2.0 0.0 0 1 3.0 4.0 0.0 1 2 0.0 0.0 0.0 5 3 0.0 3.0 1.0 4 Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1, 2, and 3 respectively. >>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3} >>> df.fillna(value=values) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 1.0 4 """ if axis is None: axis = 0 if not (axis == 0 or axis == "index"): raise NotImplementedError("fillna currently only works for axis=0 or axis='index'") if value is None: raise ValueError('Currently must specify value') if not isinstance(value, (float, int, str, bool, dict, pd.Series)): raise TypeError("Unsupported type %s" % type(value)) if isinstance(value, pd.Series): value = value.to_dict() if isinstance(value, dict): for v in value.values(): if not isinstance(v, (float, int, str, bool)): raise TypeError("Unsupported type %s" % type(v)) sdf = self._sdf.fillna(value) if inplace: self._sdf = sdf else: return DataFrame(sdf, self._metadata.copy()) def head(self, n=5): """ Return the first `n` rows. This function returns the first `n` rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it. Parameters ---------- n : int, default 5 Number of rows to select. Returns ------- obj_head : same type as caller The first `n` rows of the caller object. Examples -------- >>> df = ks.DataFrame({'animal':['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the first 5 lines >>> df.head() animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey Viewing the first `n` lines (three in this case) >>> df.head(3) animal 0 alligator 1 bee 2 falcon """ return DataFrame(self._sdf.limit(n), self._metadata.copy()) @property def columns(self): """The column labels of the DataFrame.""" return pd.Index(self._metadata.data_columns) @columns.setter def columns(self, names): old_names = self._metadata.data_columns if len(old_names) != len(names): raise ValueError( "Length mismatch: Expected axis has %d elements, new values have %d elements" % (len(old_names), len(names))) sdf = self._sdf.select(self._metadata.index_columns + [self[old_name]._scol.alias(new_name) for (old_name, new_name) in zip(old_names, names)]) self._sdf = sdf self._metadata = self._metadata.copy(data_columns=names) @property def dtypes(self): """Return the dtypes in the DataFrame. This returns a Series with the data type of each column. The result's index is the original DataFrame's columns. Columns with mixed types are stored with the object dtype. :return: :class:`pd.Series` The data type of each column. Examples -------- >>> df = ks.DataFrame({'a': list('abc'), ... 'b': list(range(1, 4)), ... 'c': np.arange(3, 6).astype('i1'), ... 'd': np.arange(4.0, 7.0, dtype='float64'), ... 'e': [True, False, True], ... 'f': pd.date_range('20130101', periods=3)}, ... columns=['a', 'b', 'c', 'd', 'e', 'f']) >>> df.dtypes a object b int64 c int8 d float64 e bool f datetime64[ns] dtype: object """ return pd.Series([self[col].dtype for col in self._metadata.data_columns], index=self._metadata.data_columns) def count(self): """ Count non-NA cells for each column. The values `None`, `NaN` are considered NA. Returns ------- pandas.Series See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = ks.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}, ... columns=["Person", "Age", "Single"]) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 """ return self._reduce_for_stat_function(_Frame._count_expr) def drop(self, labels=None, axis=1, columns: Union[str, List[str]] = None): """ Drop specified labels from columns. Remove columns by specifying label names and axis=1 or columns. When specifying both labels and columns, only labels will be dropped. Removing rows is yet to be implemented. Parameters ---------- labels : single label or list-like Column labels to drop. axis : {1 or 'columns'}, default 1 .. dropna currently only works for axis=1 'columns' axis=0 is yet to be implemented. columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). Returns ------- dropped : DataFrame See Also -------- Series.dropna Examples -------- >>> df = ks.DataFrame({'x': [1, 2], 'y': [3, 4], 'z': [5, 6], 'w': [7, 8]}, ... columns=['x', 'y', 'z', 'w']) >>> df x y z w 0 1 3 5 7 1 2 4 6 8 >>> df.drop('x', axis=1) y z w 0 3 5 7 1 4 6 8 >>> df.drop(['y', 'z'], axis=1) x w 0 1 7 1 2 8 >>> df.drop(columns=['y', 'z']) x w 0 1 7 1 2 8 Notes ----- Currently only axis = 1 is supported in this function, axis = 0 is yet to be implemented. """ if labels is not None: axis = self._validate_axis(axis) if axis == 1: return self.drop(columns=labels) raise NotImplementedError("Drop currently only works for axis=1") elif columns is not None: if isinstance(columns, str): columns = [columns] sdf = self._sdf.drop(*columns) metadata = self._metadata.copy( data_columns=[column for column in self.columns if column not in columns] ) return DataFrame(sdf, metadata) else: raise ValueError("Need to specify at least one of 'labels' or 'columns'") def get(self, key, default=None): """ Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found. Parameters ---------- key : object Returns ------- value : same type as items contained in object Examples -------- >>> df = ks.DataFrame({'x':range(3), 'y':['a','b','b'], 'z':['a','b','b']}, ... columns=['x', 'y', 'z']) >>> df x y z 0 0 a a 1 1 b b 2 2 b b >>> df.get('x') 0 0 1 1 2 2 Name: x, dtype: int64 >>> df.get(['x', 'y']) x y 0 0 a 1 1 b 2 2 b """ try: return self._pd_getitem(key) except (KeyError, ValueError, IndexError): return default def sort_values(self, by, ascending=True, inplace=False, na_position='last'): """ Sort by the values along either axis. Parameters ---------- by : str or list of str ascending : bool or list of bool, default True Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. inplace : bool, default False if True, perform operation in-place na_position : {'first', 'last'}, default 'last' `first` puts NaNs at the beginning, `last` puts NaNs at the end Returns ------- sorted_obj : DataFrame Examples -------- >>> df = ks.DataFrame({ ... 'col1': ['A', 'B', None, 'D', 'C'], ... 'col2': [2, 9, 8, 7, 4], ... 'col3': [0, 9, 4, 2, 3], ... }, ... columns=['col1', 'col2', 'col3']) >>> df col1 col2 col3 0 A 2 0 1 B 9 9 2 None 8 4 3 D 7 2 4 C 4 3 Sort by col1 >>> df.sort_values(by=['col1']) col1 col2 col3 0 A 2 0 1 B 9 9 4 C 4 3 3 D 7 2 2 None 8 4 Sort Descending >>> df.sort_values(by='col1', ascending=False) col1 col2 col3 3 D 7 2 4 C 4 3 1 B 9 9 0 A 2 0 2 None 8 4 Sort by multiple columns >>> df = ks.DataFrame({ ... 'col1': ['A', 'A', 'B', None, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... }, ... columns=['col1', 'col2', 'col3']) >>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 1 A 1 1 0 A 2 0 2 B 9 9 5 C 4 3 4 D 7 2 3 None 8 4 """ if isinstance(by, str): by = [by] if isinstance(ascending, bool): ascending = [ascending] * len(by) if len(ascending) != len(by): raise ValueError('Length of ascending ({}) != length of by ({})' .format(len(ascending), len(by))) if na_position not in ('first', 'last'): raise ValueError("invalid na_position: '{}'".format(na_position)) # Mapper: Get a spark column function for (ascending, na_position) combination # Note that 'asc_nulls_first' and friends were added as of Spark 2.4, see SPARK-23847. mapper = { (True, 'first'): lambda x: Column(getattr(x._jc, "asc_nulls_first")()), (True, 'last'): lambda x: Column(getattr(x._jc, "asc_nulls_last")()), (False, 'first'): lambda x: Column(getattr(x._jc, "desc_nulls_first")()), (False, 'last'): lambda x: Column(getattr(x._jc, "desc_nulls_last")()), } by = [mapper[(asc, na_position)](self[colname]._scol) for colname, asc in zip(by, ascending)] kdf = DataFrame(self._sdf.sort(*by), self._metadata.copy()) if inplace: self._sdf = kdf._sdf self._metadata = kdf._metadata else: return kdf def isin(self, values): """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable or dict The sequence of values to test. If values is a dict, the keys must be the column names, which must match. Series and DataFrame are not supported. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. Examples -------- >>> df = ks.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog'], ... columns=['num_legs', 'num_wings']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True """ if isinstance(values, (pd.DataFrame, pd.Series)): raise NotImplementedError("DataFrame and Series are not supported") if isinstance(values, dict) and not set(values.keys()).issubset(self.columns): raise AttributeError( "'DataFrame' object has no attribute %s" % (set(values.keys()).difference(self.columns))) _select_columns = self._metadata.index_columns if isinstance(values, dict): for col in self.columns: if col in values: _select_columns.append(self[col]._scol.isin(values[col]).alias(col)) else: _select_columns.append(F.lit(False).alias(col)) elif is_list_like(values): _select_columns += [ self[col]._scol.isin(list(values)).alias(col) for col in self.columns] else: raise TypeError('Values should be iterable, Series, DataFrame or dict.') return DataFrame(self._sdf.select(_select_columns), self._metadata.copy()) def pipe(self, func, *args, **kwargs): r""" Apply func(self, \*args, \*\*kwargs). Parameters ---------- func : function function to apply to the DataFrame. ``args``, and ``kwargs`` are passed into ``func``. Alternatively a ``(callable, data_keyword)`` tuple where ``data_keyword`` is a string indicating the keyword of ``callable`` that expects the DataFrames. args : iterable, optional positional arguments passed into ``func``. kwargs : mapping, optional a dictionary of keyword arguments passed into ``func``. Returns ------- object : the return type of ``func``. Notes ----- Use ``.pipe`` when chaining together functions that expect Series, DataFrames or GroupBy objects. For example, given >>> df = ks.DataFrame({'category': ['A', 'A', 'B'], ... 'col1': [1, 2, 3], ... 'col2': [4, 5, 6]}, ... columns=['category', 'col1', 'col2']) >>> def keep_category_a(df): ... return df[df['category'] == 'A'] >>> def add_one(df, column): ... return df.assign(col3=df[column] + 1) >>> def multiply(df, column1, column2): ... return df.assign(col4=df[column1] * df[column2]) instead of writing >>> multiply(add_one(keep_category_a(df), column="col1"), column1="col2", column2="col3") category col1 col2 col3 col4 0 A 1 4 2 8 1 A 2 5 3 15 You can write >>> (df.pipe(keep_category_a) ... .pipe(add_one, column="col1") ... .pipe(multiply, column1="col2", column2="col3") ... ) category col1 col2 col3 col4 0 A 1 4 2 8 1 A 2 5 3 15 If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose ``f`` takes its data as ``df``: >>> def multiply_2(column1, df, column2): ... return df.assign(col4=df[column1] * df[column2]) Then you can write >>> (df.pipe(keep_category_a) ... .pipe(add_one, column="col1") ... .pipe((multiply_2, 'df'), column1="col2", column2="col3") ... ) category col1 col2 col3 col4 0 A 1 4 2 8 1 A 2 5 3 15 """ if isinstance(func, tuple): func, target = func if target in kwargs: raise ValueError('%s is both the pipe target and a keyword ' 'argument' % target) kwargs[target] = self return func(*args, **kwargs) else: return func(self, *args, **kwargs) @property def shape(self): """ Return a tuple representing the dimensionality of the DataFrame. Examples -------- >>> df = ks.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = ks.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self), len(self.columns) def merge(self, right: 'DataFrame', how: str = 'inner', on: str = None, left_index: bool = False, right_index: bool = False, suffixes: Tuple[str, str] = ('_x', '_y')) -> 'DataFrame': """ Merge DataFrame objects with a database-style join. Parameters ---------- right: Object to merge with. how: Type of merge to be performed. {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’ left: use only keys from left frame, similar to a SQL left outer join; preserve key order. right: use only keys from right frame, similar to a SQL right outer join; preserve key order. outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. on: Column or index level names to join on. These must be found in both DataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_index: Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index: Use the index from the right DataFrame as the join key. Same caveats as left_index. suffixes: Suffix to apply to overlapping column names in the left and right side, respectively. Returns ------- DataFrame A DataFrame of the two merged objects. Examples -------- >>> left_kdf = ks.DataFrame({'A': [1, 2]}) >>> right_kdf = ks.DataFrame({'B': ['x', 'y']}, index=[1, 2]) >>> left_kdf.merge(right_kdf, left_index=True, right_index=True) A B 0 2 x >>> left_kdf.merge(right_kdf, left_index=True, right_index=True, how='left') A B 0 1 None 1 2 x >>> left_kdf.merge(right_kdf, left_index=True, right_index=True, how='right') A B 0 2.0 x 1 NaN y >>> left_kdf.merge(right_kdf, left_index=True, right_index=True, how='outer') A B 0 1.0 None 1 2.0 x 2 NaN y Notes ----- As described in #263, joining string columns currently returns None for missing values instead of NaN. """ if on is None and not left_index and not right_index: raise SparkPandasMergeError("At least 'on' or 'left_index' and 'right_index' have ", "to be set") if on is not None and (left_index or right_index): raise SparkPandasMergeError("Only 'on' or 'left_index' and 'right_index' can be set") if how == 'full': warnings.warn("Warning: While Koalas will accept 'full', you should use 'outer' " + "instead to be compatible with the pandas merge API", UserWarning) if how == 'outer': # 'outer' in pandas equals 'full' in Spark how = 'full' if how not in ('inner', 'left', 'right', 'full'): raise ValueError("The 'how' parameter has to be amongst the following values: ", "['inner', 'left', 'right', 'outer']") if on is None: # FIXME Move index string to constant? on = '__index_level_0__' left_table = self._sdf.alias('left_table') right_table = right._sdf.alias('right_table') # Unpack suffixes tuple for convenience left_suffix = suffixes[0] right_suffix = suffixes[1] # Append suffixes to columns with the same name to avoid conflicts later duplicate_columns = list(self.columns & right.columns) if duplicate_columns: for duplicate_column_name in duplicate_columns: left_table = left_table.withColumnRenamed(duplicate_column_name, duplicate_column_name + left_suffix) right_table = right_table.withColumnRenamed(duplicate_column_name, duplicate_column_name + right_suffix) join_condition = (left_table[on] == right_table[on] if on not in duplicate_columns else left_table[on + left_suffix] == right_table[on + right_suffix]) joined_table = left_table.join(right_table, join_condition, how=how) if on in duplicate_columns: # Merge duplicate key columns joined_table = joined_table.withColumnRenamed(on + left_suffix, on) joined_table = joined_table.drop(on + right_suffix) # Remove auxiliary index # FIXME Move index string to constant? joined_table = joined_table.drop('__index_level_0__') kdf = DataFrame(joined_table) return kdf def _pd_getitem(self, key): from databricks.koalas.series import Series if key is None: raise KeyError("none key") if isinstance(key, str): try: return Series(self._sdf.__getitem__(key), anchor=self, index=self._metadata.index_map) except AnalysisException: raise KeyError(key) if np.isscalar(key) or isinstance(key, (tuple, str)): raise NotImplementedError(key) elif isinstance(key, slice): return self.loc[key] if isinstance(key, (pd.Series, np.ndarray, pd.Index)): raise NotImplementedError(key) if isinstance(key, list): return self.loc[:, key] if isinstance(key, DataFrame): # TODO Should not implement alignment, too dangerous? return Series(self._sdf.__getitem__(key), anchor=self, index=self._metadata.index_map) if isinstance(key, Series): # TODO Should not implement alignment, too dangerous? # It is assumed to be only a filter, otherwise .loc should be used. bcol = key._scol.cast("boolean") return DataFrame(self._sdf.filter(bcol), self._metadata.copy()) raise NotImplementedError(key) def __repr__(self): return repr(self.head(max_display_count).to_pandas()) def _repr_html_(self): return self.head(max_display_count).to_pandas()._repr_html_() def __getitem__(self, key): return self._pd_getitem(key) def __setitem__(self, key, value): from databricks.koalas.series import Series # For now, we don't support realignment against different dataframes. # This is too expensive in Spark. # Are we assigning against a column? if isinstance(value, Series): assert value._kdf is self, \ "Cannot combine column argument because it comes from a different dataframe" if isinstance(key, (tuple, list)): assert isinstance(value.schema, StructType) field_names = value.schema.fieldNames() kdf = self.assign(**{k: value[c] for k, c in zip(key, field_names)}) else: kdf = self.assign(**{key: value}) self._sdf = kdf._sdf self._metadata = kdf._metadata def __getattr__(self, key: str) -> Any: from databricks.koalas.series import Series if key.startswith("__") or key.startswith("_pandas_") or key.startswith("_spark_"): raise AttributeError(key) if hasattr(_MissingPandasLikeDataFrame, key): property_or_func = getattr(_MissingPandasLikeDataFrame, key) if isinstance(property_or_func, property): return property_or_func.fget(self) # type: ignore else: return partial(property_or_func, self) return Series(self._sdf.__getattr__(key), anchor=self, index=self._metadata.index_map) def __iter__(self): return self.toPandas().__iter__() def __len__(self): return self._sdf.count() def __dir__(self): fields = [f for f in self._sdf.schema.fieldNames() if ' ' not in f] return super(DataFrame, self).__dir__() + fields @classmethod def _validate_axis(cls, axis=0): if axis not in (0, 1, 'index', 'columns', None): raise ValueError('No axis named {0}'.format(axis)) # convert to numeric axis return {None: 0, 'index': 0, 'columns': 1}.get(axis, axis) def _reduce_spark_multi(sdf, aggs): """ Performs a reduction on a dataframe, the functions being known sql aggregate functions. """ assert isinstance(sdf, spark.DataFrame) sdf0 = sdf.agg(*aggs) l = sdf0.head(2) assert len(l) == 1, (sdf, l) row = l[0] l2 = list(row) assert len(l2) == len(aggs), (row, l2) return l2 ```
{ "source": "28757B2/homeassistant-nexus", "score": 3 }
#### File: 28757B2/homeassistant-nexus/__main__.py ```python import argparse import time from cc1101.config import RXConfig, Modulation from cc1101 import CC1101 from .common import FREQUENCY, BAUD_RATE, SYNC_WORD, PACKET_LENGTH, Message, decode_rx_bytes, message_vote def rx(args: argparse.Namespace) -> None: rx_config = RXConfig(FREQUENCY, Modulation.OOK, BAUD_RATE, SYNC_WORD, PACKET_LENGTH) radio = CC1101(args.device, rx_config) print("Receiving Packets") while True: for rx_bytes in radio.receive(): messages = [] for packet in decode_rx_bytes(rx_bytes): try: messages.append(Message.from_packet(packet)) except ValueError: pass if len(messages) > 0: message = message_vote(messages) print(message) time.sleep(1) parser = argparse.ArgumentParser() subparsers = parser.add_subparsers() rx_parser = subparsers.add_parser("rx", help="Receive packets") rx_parser.add_argument("device", help='CC1101 Device') rx_parser.set_defaults(func=rx) args = parser.parse_args() if "func" in args: args.func(args) else: parser.print_help() ```
{ "source": "2877267169/Intelligent-Network-Rumor-Monitoring-System", "score": 3 }
#### File: Intelligent-Network-Rumor-Monitoring-System/analysis/analysis_processer.py ```python from PyQt5.QtCore import QThread, pyqtSignal from PyQt5.QtWidgets import QMessageBox import set_page_corpus_connect from analysis import analysis_start import os, sys, json def get_formatted_json_file(json_file_name: str): """ 获取经过格式化的json :param json_file_name:要获得的json文件,是 P.json, N.json, I.json, none.json中的一个。 :return: """ if os.path.isfile( os.path.join(set_page_corpus_connect.available_path, json_file_name) ) is True: with open(os.path.join(set_page_corpus_connect.available_path, json_file_name), 'r', encoding='utf-8') as f: my_obj: dict = json.load(f) for i in range(len(my_obj['date'])): my_obj['date'][i] = str(my_obj['date'][i])[5:] # 此处去掉了年份信息,然而不能现在去掉 pass return my_obj else: return {"date": ["error"], "data": [0]} def get_P(): return get_formatted_json_file("P.json") def get_N(): return get_formatted_json_file("N.json") def get_I(): return get_formatted_json_file("I.json") def get_none(): return get_formatted_json_file("none.json") def get_4_percentage(): return [ get_formatted_json_file("P_percentage.json"), get_formatted_json_file("N_percentage.json"), get_formatted_json_file("I_percentage.json"), get_formatted_json_file("none_percentage.json") ] my_ana_path = "" class AnaliseMessage(QThread): s_send_analyse_process_bar = pyqtSignal(int) s_send_analyse_process_text = pyqtSignal(str) s_send_analyse_start_draw = pyqtSignal() def f_send_my_analyse_process_bar(self, value: int): self.s_send_analyse_process_bar.emit(value) def f_send_text_message(self, my_text: str): self.s_send_analyse_process_text.emit(my_text) def set_path(self, path: str): global my_ana_path my_ana_path = path def run(self): global my_ana_path if my_ana_path == "": print("错误:未传入路径") return ana_start(my_ana_path) analise_message = AnaliseMessage() def ana_start(path=""): if path == "": print("error, 未传入路径") return print("分析进程已经开始") """ if os.path.isfile( os.path.join( path, "P.json" ) ) is True: r = QMessageBox.question(my_ui.my_page_train_tp_pushButtton_clear_and_set_to_default, "警告", '你确定要重置参数为默认参数吗?', QMessageBox.Yes | QMessageBox.No, QMessageBox.No)""" analise_message.f_send_text_message("正在准备开始") # #########开始了!####### # analysis_start.start(path) print("分析结束!") analise_message.s_send_analyse_start_draw.emit() analise_message.f_send_my_analyse_process_bar(100) # # test_obj = { # "date": [ # "06-01", # "06-02", # "06-03", # "06-04", # "06-05" # ], # "data": [ # 10, # 2, # 20, # 10, # 15 # ] # } # test_obj2 = { # "date": [ # "06-01", # "06-02", # "06-03", # "06-04", # "06-05" # ], # "data": [ # 15, # 10, # 20, # 2, # 10 # ] # } ``` #### File: Intelligent-Network-Rumor-Monitoring-System/data/bert_train_complex.py ```python import os from PyQt5.QtCore import QThread, pyqtSignal from data.data_ops import Data_ops as Data import set_page_corpus_connect def get_file_context(file_path: str): with open(file_path, 'r', encoding='utf-8') as f: l = f.readlines() res = "" for s in l: res += s res.replace('\n', '') line = res.split('\t') res = (line[0] + '\t' + line[-1]) return res def main_run(base_dir: str, is_train=False): # base_dir = r"C:\Users\john\Desktop\repos\标注综合\顶替_大学" data = Data(base_dir) all_file_name = data.get_all_path() cnt = 0 #为了保持兼容,总会新建文件,但是什么也不会写入。 f_train = open(os.path.join(base_dir, "bert_train.tsv"), 'w+', encoding='utf-8') f_dev = open(os.path.join(base_dir, "bert_dev.tsv"), 'w+', encoding='utf-8') f_test = open(os.path.join(base_dir, "bert_test.tsv"), 'w+', encoding='utf-8') p_list = [] n_list = [] res_list = [] for file_path in all_file_name: words = get_file_context(file_path=file_path).replace('\n', '') # 获取训练标注(训练数据集生成) if is_train is True: label = data.get_file_text( data.transforme_to_mark_file_path(base_dir=base_dir, file_path_list=[file_path])[0] ) l = map(int, label.split('-')) for i in l: if i != 0: label = '1' else: label = '0' # 不训练,就用1填充 else: label = '1' if label == '1': p_list.append("%s\t%s\n" % (label, words)) else: n_list.append("%s\t%s\n" % (label, words)) p_len = len(p_list) res_list += p_list res_list += n_list[:int((p_len) * 2)] res_list.sort(key=lambda x: x.split('\t')[2]) for line in res_list: # 对应开头的为了保持兼容,总会新建文件,但是什么也不会写入。 if is_train is True: f_train.write(line) if cnt % 2 == 0: f_test.write(line) if cnt % 3 == 0: f_dev.write(line) else: #将全部数据写入test f_test.write(line) if cnt % 3 == 0: f_dev.write(line) cnt += 1 if cnt % 100 == 0: thread_train_comp.send_message(str(cnt)) print(cnt) thread_train_comp.send_message("已完成,共处理 %d 条记录" % cnt) print("已完成,共处理 %d 条记录" % cnt) f_train.close() f_test.close() f_dev.close() class Thread_train_comp(QThread): my_send_message = pyqtSignal(str, str) def set_args(self, base_dir: str, is_train:bool): self.base_dir = base_dir def send_message(self, message_str, end='\n'): self.my_send_message.emit(message_str, end) def run(self): main_run(self.base_dir, set_page_corpus_connect.is_train_available) thread_train_comp = Thread_train_comp() ``` #### File: 2877267169/Intelligent-Network-Rumor-Monitoring-System/set_page_corpus_connect.py ```python import threading from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QFileDialog import os, sys import MainWindow from data import transform_json_to_txt, data_ops from data import bert_train_complex import running_state import json # 修复打包的问题 import matplotlib from main_window_run import my_app_data, my_app_img_dir matplotlib.use("Agg") # matplotlib 和qt链接的包 from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import matplotlib.pyplot as plt is_run_available = False is_train_available = False is_path_available = False # 路径可用性 available_path = "" # my_ui = MainWindow.Ui_MainWindow() class PathPara(): def __init__(self): self.json_file = 'json_file' self.work_path = 'work_path' self.dict = 'dict' path_para = PathPara() # 获得全部参数 def get_all_path(): global my_ui my_data = data_ops.Data_ops(my_ui.my_page_corpus_lineEdit_workPath.text()) if my_data.test() is True: my_sum = str(len(my_data.get_all_path())) else: my_sum = "NaN" res = { path_para.json_file: my_ui.my_page_corpus_lineEdit_from_json.text(), path_para.work_path: my_ui.my_page_corpus_lineEdit_workPath.text(), path_para.dict: my_ui.my_page_corpus_lineEdit_directory.text(), "dataset_name": str(my_ui.my_page_corpus_lineEdit_from_json.text()).split('\\')[-1].split('/')[-1].replace(".json", ''), "sum": my_sum } return res # 用字典设置全部参数 def set_all_path(para: dict): global my_ui my_ui.my_page_corpus_lineEdit_from_json.setText(para[path_para.json_file]) my_ui.my_page_corpus_lineEdit_workPath.setText(para[path_para.work_path]) my_ui.my_page_corpus_lineEdit_directory.setText(para[path_para.dict]) def set_page_corpus_connect(ui: MainWindow.Ui_MainWindow): global ax_bar global my_ui global FC_corpus # 画图组件 global fig my_ui = ui # 按钮 ui.my_page_corpus_button_fromJson.clicked.connect(get_user_input_and_set_to_json_lineEdit) ui.my_page_corpus_button_workDir.clicked.connect(get_user_input_and_set_to_workDir) ui.my_page_corpus_button_directionary.clicked.connect(get_user_input_and_set_to_directory_lineEdit) ui.my_page_corpus_button_rewrite_graph.clicked.connect(save_png) # 命令按钮 ui.my_page_corpus_commandLinkButton_verify.clicked.connect(verify_files) ui.my_page_corpus_commandLinkButton_go_for_work_space.clicked.connect(create_work_space) ui.my_page_corpus_commandLinkButton_train.clicked.connect(create_TSV_file) # 文本框 ui.my_page_corpus_lineEdit_from_json.textChanged.connect(set_run_unavailable) ui.my_page_corpus_lineEdit_directory.textChanged.connect(set_run_unavailable) ui.my_page_corpus_lineEdit_workPath.textChanged.connect(set_run_unavailable) # 消息传递 transform_json_to_txt.thread_transform_json_to_txt.my_send_message.connect(ptr_message) transform_json_to_txt.thread_transform_json_to_txt.my_send_process_bar_message.connect(set_process_bar) bert_train_complex.thread_train_comp.my_send_message.connect(ptr_message) # 画板的消息传递 transform_json_to_txt.thread_transform_json_to_txt.my_send_dict_for_graph.connect(re_graph) # 画板初始化 fig = plt.figure() FC_corpus = FigureCanvas(fig) ax_bar = fig.add_subplot(1, 1, 1) # 大画板!!!!!!!!!!!!!!!!!!!!!! my_ui.my_page_corpus_gridLayout.layout().addWidget(FC_corpus) # 测试时使用,故删除 # my_ui.my_page_data_groupBox_for_graph.layout().addWidget(FigureCanvas(f)) if os.path.isfile(os.path.join(my_app_data, "corpus.json")) is True: print("加载保存的路径...") with open(os.path.join(my_app_data, "corpus.json"), 'r+', encoding='utf-8') as f: paras = json.load(f) set_all_path(para=paras) def get_user_input_and_set_to_json_lineEdit(): global my_ui file_path, file_type = QFileDialog.getOpenFileName(my_ui.my_page_corpus_lineEdit_from_json, "Select json file", '.', "json file(*.json)") my_ui.my_page_corpus_lineEdit_from_json.setText(file_path) def get_user_input_and_set_to_workDir(): global my_ui dir_path = QFileDialog.getExistingDirectory(my_ui.my_page_corpus_lineEdit_workPath, "Select work dir", '.') my_ui.my_page_corpus_lineEdit_workPath.setText(dir_path) # 注意,这里第一个页面也对第二个页面产生了影响 my_ui.my_page_train_lineEdit_data_dir.setText(dir_path) def get_user_input_and_set_to_directory_lineEdit(): global my_ui sentiment_path = QFileDialog.getExistingDirectory(my_ui.my_page_corpus_lineEdit_directory, "Select Sentiment dir", '.') my_ui.my_page_corpus_lineEdit_directory.setText(sentiment_path) def verify_files(): global my_ui global is_run_available global is_train_available global available_path json_file_path = my_ui.my_page_corpus_lineEdit_from_json.text() work_path = my_ui.my_page_corpus_lineEdit_workPath.text() dictionary = my_ui.my_page_corpus_lineEdit_directory.text() if os.path.isfile(json_file_path) \ and os.path.isdir(work_path) \ and (os.path.isdir(dictionary) and os.path.isfile(os.path.join(dictionary, "sentiment.ini"))): # 校验成功 ptr_message('校验成功') # 保存数据 paras = get_all_path() available_path = paras[path_para.work_path] with open(os.path.join(my_app_data, "corpus.json"), 'w+', encoding='utf-8') as f: json.dump(paras, f, ensure_ascii=False, indent=4) is_run_available = True if os.path.isdir(os.path.join(work_path, 'mark')) is True: ptr_message('成功检测到数据集 <可供训练>') my_ui.my_page_corpus_button_for_state.setText('数据集 (可供训练的)') my_ui.my_page_corpus_button_for_state.setStyleSheet("background-color: rgb(170, 170, 255);") is_train_available = True else: ptr_message('成功检测到数据集 <仅分析>') my_ui.my_page_corpus_button_for_state.setText('数据集 (仅分析)') my_ui.my_page_corpus_button_for_state.setStyleSheet("background-color: rgb(85, 170, 255);") is_train_available = False else: ptr_message('校验失败!请检查路径') my_ui.my_page_corpus_button_for_state.setText('未选择数据集') my_ui.my_page_corpus_button_for_state.setStyleSheet("") is_run_available = False def set_run_unavailable(): # 在手动更改了框内的路径时被调用 global is_run_available is_run_available = False ptr_message('更改了路径后,应当重新校验。') def ptr_message(mystr: str, end='\n'): global my_ui my_ui.my_page_corpus_textEdit.setText("%s%s%s" % (mystr, end, my_ui.my_page_corpus_textEdit.toPlainText())) def set_process_bar(proc: int): my_ui.my_page_corpus_ProcessBar.setValue(proc) def create_work_space(): print('create_work_space') global is_run_available if is_run_available is False: ptr_message("你的更改的内容没有进行校验,请先进行校验!") return global my_ui work_path = my_ui.my_page_corpus_lineEdit_workPath.text() json_path = my_ui.my_page_corpus_lineEdit_from_json.text() transform_json_to_txt.thread_transform_json_to_txt.set_args(json_file_path=json_path, out_put_dir=work_path, moudle_name='') transform_json_to_txt.thread_transform_json_to_txt.start() # 画板刷新!!! def re_graph(d: dict): """ 画板刷新 :param d: 所需的数据字典 :return: 无 """ print("尝试刷新") global ax_bar global FC_corpus ax_bar.cla() keys = list(d.keys()) ax_bar.set_title("Frequency of Information") # ax_bar.set_xticks(rotation=270) for tick in ax_bar.get_xticklabels(): tick.set_rotation(300) cops = [] for key in keys: cops.append([key, d[key]]) cops.sort(key=lambda x: x[0]) key_value = [] value = [] for line in cops: key_value.append(line[0]) value.append(line[1]) ax_bar.bar(key_value, value) FC_corpus.draw() save_png() def create_TSV_file(): print('create tsv file') global is_run_available if is_run_available is False: ptr_message("你的更改的内容没有进行校验,请先进行校验!") return if running_state.is_running is True: ptr_message("你不应该在运行任务的时候进行其他任务") return base_dir = my_ui.my_page_corpus_lineEdit_workPath.text() # if os.path.isdir(os.path.join(base_dir, 'mark')) is False: # ptr_message('应该在标注之后才能生成训练文件!') # return is_train = my_ui.my_page_corpus_button_for_state.text().find('训练') >= 0 bert_train_complex.thread_train_comp.set_args(base_dir=base_dir, is_train=is_train) bert_train_complex.thread_train_comp.start() def save_png(): global fig # my_app_img_dir fig.savefig(os.path.join(my_app_img_dir, "corpus.png")) print("saved corpus") def re_draw(): """ 将语料设置内的画图画板重绘 :return: 无 """ global my_ui global FC_corpus # 画图组件 FC_corpus.draw() save_png() ``` #### File: 2877267169/Intelligent-Network-Rumor-Monitoring-System/set_page_hot_connect.py ```python import os from PyQt5.QtWidgets import QFileDialog import MainWindow import wordcloud # matplotlib 和qt链接的包 # 修复打包的问题 import matplotlib from main_window_run import my_app_img_dir matplotlib.use("Agg") from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import matplotlib.pyplot as plt from c_word_cloude import word_clouad_create # 初始化画板 f = plt.figure() # 画板组件 FC_hot = FigureCanvas(f) # 小图 ax_wc_l = f.add_subplot(1, 2, 1) ax_wc_r = f.add_subplot(1, 2, 2) def set_page_connect(ui: MainWindow.Ui_MainWindow): global ax_wc_r global ax_wc_l global my_ui global FC_hot # 画图组件 global f my_ui = ui # 命令按钮 my_ui.my_page_hot_commandLinkButton_menu_run.clicked.connect(go_for_run_word_cloud) my_ui.my_page_hot_rewrite_pushButton.clicked.connect(save_png) # 重写 my_ui.my_page_hot_saveas_pushButton.clicked.connect(save_as) # 线程通信 word_clouad_create.word_cloude_create.send_graph_process_bar.connect(set_hot_process_bar) # # 初始化画板 # f = plt.figure() # FC_hot = FigureCanvas(f) # # # 小图 # ax_wc_l = f.add_subplot(1, 2, 1) # ax_wc_r = f.add_subplot(1, 2, 2) # # 大画板!!!!!!!!!!!!!!!!!!!!!! my_ui.my_page_hot_gridLayout_for_graph.layout().addWidget(FC_hot) word_clouad_create.word_cloude_create.send_cloude_dict.connect(set_cloud) set_cloud({"等待分析": 1.0}, {"等待分析": 1.0}) def go_for_run_word_cloud(): word_clouad_create.word_cloude_create.set_path(my_ui.my_page_corpus_lineEdit_workPath.text()) word_clouad_create.word_cloude_create.start() def set_cloud(a: dict, b: dict): global ax_wc_r global ax_wc_l global FC_hot wc1 = wordcloud.WordCloud(font_path='STXINGKA.TTF', height=460, width=500, background_color='white') wc2 = wordcloud.WordCloud(font_path='STXINGKA.TTF', height=460, width=500, background_color='white') wc1.generate_from_frequencies(a) wc2.generate_from_frequencies(b) ax_wc_l.set_title("Heat clouds of Message") ax_wc_l.imshow(wc1) ax_wc_l.axis('off') ax_wc_r.set_title("Dispels the top 20 for subsidiary") ax_wc_r.imshow(wc2) ax_wc_r.axis('off') FC_hot.draw() save_png() def set_hot_process_bar(setp_process: int): global my_ui my_ui.my_page_hot_progressBar.setValue(setp_process) def save_png(): # my_app_img_dir f.savefig(os.path.join(my_app_img_dir, "word_cloud.png")) print("saved word cloud gph") def save_as(): global my_ui filename_choose, _ = QFileDialog.getSaveFileName( my_ui.my_page_hot, "文件保存", '.', # 起始路径 "PNG Files (*.png)" ) if filename_choose == "": print("取消选择") return f.savefig(filename_choose) ``` #### File: 2877267169/Intelligent-Network-Rumor-Monitoring-System/set_page_warning_connect.py ```python from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QFileDialog, QMessageBox import os, sys import MainWindow import set_page_corpus_connect from analysis.analysis_processer import get_4_percentage from analysis.read_from_bert import get_bert_res_to_json from data import transform_json_to_txt from data import bert_train_complex import running_state import json from warning import wcalc from analysis import analysis_processer # matplotlib 和qt链接的包 # 修复打包的问题 import matplotlib from main_window_run import my_app_img_dir from set_page_data_analyse_connect import obj_sort from set_page_train_connect import get_all_file_parameters, file_parameters matplotlib.use("Agg") from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import matplotlib.pyplot as plt # 画图对象 my_page_warning_fig = plt.figure() # 利用对象构建组件 my_page_warning_FC = FigureCanvas(my_page_warning_fig) # 真正画图的东西 my_page_warning_ax = my_page_warning_fig.add_subplot(1, 1, 1) def set_warning_connect(ui: MainWindow.Ui_MainWindow): global my_ui my_ui = ui # 设置信号与槽的链接 ui.my_page_warning_start_commandLinkButton.clicked.connect(start_to_warning) # 将画板加入组件 ui.my_page_warning_graph.layout().addWidget(my_page_warning_FC) init_graph() def init_graph(): zero_obj = {"date": [0], "data": [0]} draw_graph(zero_obj, zero_obj, zero_obj, zero_obj, zero_obj) def draw_graph(P: dict, N: dict, I: dict, none: dict, bert_res=None): if bert_res is None: bert_res = {"date": [0], "data": [0]} base_dir = my_app_img_dir my_page_warning_ax.cla() my_page_warning_ax.set_title("Normalized data analysis") p_x = list(range(len(P["date"]))) my_page_warning_ax.plot(p_x, P["data"], linestyle='none', marker='P', color="orange", label="Positive Value") my_page_warning_ax.plot(p_x, N["data"], linestyle='none', marker='P', color="blue", label="Negative Value") my_page_warning_ax.plot(p_x, I["data"], linestyle='none', marker='x', color="red", label="Intensity Value") my_page_warning_ax.plot(p_x, none["data"], linestyle='none', marker='x', color="lightseagreen", label="Tiny Attitude Value") my_page_warning_ax.plot(bert_res["date"], bert_res["data"], linestyle='none', marker='.', color="green", label="BERT Model res") for tick in my_page_warning_ax.get_xticklabels(): tick.set_rotation(300) my_page_warning_ax.legend() my_page_warning_FC.draw() my_page_warning_fig.savefig(os.path.join(base_dir, "warning.png")) print("warning saved") def loud_from_file_to_graph(): return get_4_percentage() def start_to_warning(): global my_ui print("分析命令开始") paras = get_all_file_parameters() work_path = set_page_corpus_connect.available_path res_path = os.path.join(paras[file_parameters.output_dir], "test_results.tsv") # 画图 my_ui.my_page_warning_progressBar.setValue(20) if os.path.isfile(res_path) is False: print("找不到训练结果文件!%s" % res_path) QMessageBox.critical( my_ui.stackedWidget, '错误', "\"%s\"\n找不到训练结果文件!" % res_path, QMessageBox.Close ) my_ui.my_page_warning_progressBar.setValue(0) return if os.path.isdir(work_path) is False: print("工作路径有问题,请检查是否已完成语料设置%s" % work_path) QMessageBox.critical( my_ui.stackedWidget, '错误', "\"%s\"\n工作路径有问题,请检查是否已完成语料设置" % work_path, QMessageBox.Close ) my_ui.my_page_warning_progressBar.setValue(0) return l: list = loud_from_file_to_graph() get_bert_res_to_json(work_path=set_page_corpus_connect.available_path, bert_train_res_file_path=os.path.join(paras[file_parameters.output_dir], "test_results.tsv")) if os.path.isfile(os.path.join(work_path, "toal.json")) is True: print("成功检测到结果文件 %s ,现在画图" % os.path.join(work_path, "toal.json")) with open(os.path.join(work_path, "toal.json"), 'r', encoding='utf-8') as f: my_obj = json.load(f) my_out_obj = obj_sort({"date": my_obj[0], "data": my_obj[1]}) tmp = "" count = 0 for i in range(len(my_out_obj["date"])): if my_out_obj["date"][i] != tmp: tmp = my_out_obj["date"][i] my_out_obj["date"][i] = count count += 1 else: my_out_obj["date"][i] = count a = list(set(my_out_obj["date"])) draw_graph(l[0], l[1], l[2], l[3], my_out_obj) # return 此处不返回 else: QMessageBox.critical( my_ui.stackedWidget, '错误', "执行完毕,但%s生成存在问题。" % os.path.join(work_path, "toal.json"), QMessageBox.Close ) print("执行完毕,但%s生成存在问题。" % os.path.join(work_path, "toal.json")) my_ui.my_page_warning_progressBar.setValue(0) return # 进行百分比趋势分析 my_ui.my_page_warning_progressBar.setValue(50) wcalc.warning_start(n=l[1]["data"], i=l[2]["data"], work_path=work_path) if os.path.isfile(os.path.join(work_path, "warning.json")) is False: QMessageBox.critical( my_ui.stackedWidget, '错误', "执行完毕,但%s的生成存在问题。" % os.path.join(work_path, "warning.json"), QMessageBox.Close ) my_ui.my_page_warning_progressBar.setValue(0) return my_w_out: list = wcalc.get_obj(work_path=work_path) res_obj = wcalc.go_for_str(my_w_out) my_ui.my_page_warning_see_textEdit.setText("%s%s%s%s" % (res_obj[0], res_obj[1], res_obj[2], res_obj[3])) my_ui.my_page_warninig_message_text_edit.setText("%s" % res_obj[4]) my_ui.my_page_warning_progressBar.setValue(100) return ```
{ "source": "287977288/test", "score": 2 }
#### File: newsite/newsite/view.py ```python from django.shortcuts import render def hello(request): context = {} context['hello'] = 'Hello World!' print("view.hello") return render(request, 'hello.html', context) ```
{ "source": "2890841438/fast-index.py", "score": 3 }
#### File: fast-index.py/utils/DateEncoder.py ```python import json import datetime class DateEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, datetime.datetime): return obj.strftime('%Y-%m-%d %H:%M:%S') elif isinstance(obj, datetime.date): return obj.strftime("%Y-%m-%d") else: return json.JSONEncoder.default(self, obj) ```
{ "source": "2890841438/index.py", "score": 3 }
#### File: index.py/indexpy/concurrency.py ```python import asyncio import functools import inspect import typing from starlette.concurrency import run_in_threadpool def complicating(func: typing.Callable) -> typing.Callable[..., typing.Awaitable]: """ always return a awaitable callable object """ if asyncio.iscoroutinefunction(func): return func if not (inspect.isfunction(func) or inspect.ismethod(func)): if inspect.isclass(func): # class that has `__await__` method if hasattr(func, "__await__"): return func else: # callable object if asyncio.iscoroutinefunction(getattr(func, "__call__")): return func @functools.wraps(func) async def wrapper(*args, **kwargs) -> typing.Any: return await run_in_threadpool(func, *args, **kwargs) return wrapper def keepasync(*args: str) -> typing.Callable[..., object]: """ Ensure that the specified method must be an asynchronous function example: class T(metaclass=keepasync("a", "b")): def a(self): pass async def b(self): pass """ class AlwaysAsyncMeta(type): def __new__( cls: type, clsname: str, bases: typing.Tuple[type], namespace: typing.Dict[str, typing.Any], ): for name in args: if name not in namespace: continue namespace[name] = complicating(namespace[name]) return type.__new__(cls, clsname, bases, namespace) return AlwaysAsyncMeta ``` #### File: indexpy/websocket/view.py ```python import json import typing from starlette import status from ..types import Literal, Message from .request import WebSocket class SocketView: encoding: Literal["text", "bytes", "json"] = "json" def __init__(self, websocket: WebSocket) -> None: self.websocket = websocket def __await__(self): return self.__impl__().__await__() async def __impl__(self) -> None: try: close_code = status.WS_1000_NORMAL_CLOSURE await self.on_connect() while True: message = await self.websocket.receive() if message["type"] == "websocket.receive": data = await self.decode(message) await self.on_receive(data) elif message["type"] == "websocket.disconnect": close_code = int(message.get("code", status.WS_1000_NORMAL_CLOSURE)) break except Exception as exc: close_code = status.WS_1011_INTERNAL_ERROR raise exc from None finally: await self.on_disconnect(close_code) async def decode(self, message: Message) -> typing.Any: if self.encoding == "text": if "text" not in message: await self.websocket.close(code=status.WS_1003_UNSUPPORTED_DATA) raise RuntimeError("Expected text websocket messages, but got bytes") return message["text"] if self.encoding == "bytes": if "bytes" not in message: await self.websocket.close(code=status.WS_1003_UNSUPPORTED_DATA) raise RuntimeError("Expected bytes websocket messages, but got text") return message["bytes"] if self.encoding == "json": if message.get("text") is not None: text = message["text"] else: text = message["bytes"].decode("utf-8") try: return json.loads(text) except json.decoder.JSONDecodeError: await self.websocket.close(code=status.WS_1003_UNSUPPORTED_DATA) raise RuntimeError("Malformed JSON data received.") assert ( self.encoding is None ), f"Unsupported 'encoding' attribute {self.encoding}" return message["text"] if message.get("text") else message["bytes"] async def on_connect(self) -> None: """Override to handle an incoming websocket connection""" await self.websocket.accept() async def on_receive(self, data: typing.Any) -> None: """Override to handle an incoming websocket message""" async def on_disconnect(self, close_code: int) -> None: """Override to handle a disconnecting websocket""" await self.websocket.close(code=close_code) ``` #### File: tests/routing/test_tree.py ```python from decimal import Decimal from uuid import UUID import pytest from indexpy.routing.tree import RadixTree @pytest.fixture def tree(): tree = RadixTree() tree.append("/hello/{time:int}", ...) tree.append("/hello", ...) tree.append("/hello/world", ...) tree.append("/sayhi/{name}", ...) tree.append("/sayhi/{name}/suffix", ...) tree.append("/sayhi/{name}/avatar.{suffix}", ...) tree.append("/path/{filepath:path}", ...) tree.append("/decimal/{number:decimal}", ...) tree.append("/uuid/{id:uuid}", ...) return tree @pytest.mark.parametrize( "path,params", [ ("/hello", {}), ("/hello/world", {}), ("/hello/123", {"time": 123}), ("/sayhi/aber", {"name": "aber"}), ("/sayhi/aber/suffix", {"name": "aber"}), ("/sayhi/aber/avatar.png", {"name": "aber", "suffix": "png"}), ("/path/adsf", {"filepath": "adsf"}), ("/path/adsf/123", {"filepath": "adsf/123"}), ("/decimal/1.111", {"number": Decimal("1.111")}), ( "/uuid/123e4567-e89b-12d3-a456-426655440000", {"id": UUID("123e4567-e89b-12d3-a456-426655440000")}, ), ], ) def test_tree_success_search(tree: RadixTree, path, params): result = tree.search(path) assert result is not None params, node = result assert params == params @pytest.mark.parametrize( "path", ["", "/hello/", "/hello/world/", "/sayhi/aber/avatar"], ) def test_tree_fail_search(tree: RadixTree, path): assert tree.search(path)[0] is None, f"error in {path}" @pytest.mark.parametrize( "path", [ "/path/{urlpath:path}/", "/sayhi/{name:int}/suffix", "/sayhi/{hi}/suffix", "/hello", "a", ], ) def test_tree_fail_add(tree: RadixTree, path): with pytest.raises(ValueError): tree.append(path, ...) def test_tree_iterator(tree: RadixTree): for _0, _1 in zip( tree.iterator(), [ ("/hello", ...), ("/hello/{time}", ...), ("/hello/world", ...), ("/sayhi/{name}", ...), ("/sayhi/{name}/suffix", ...), ("/sayhi/{name}/avatar.{suffix}", ...), ("/path/{filepath}", ...), ("/decimal/{number}", ...), ("/uuid/{id}", ...), ], ): assert _0 == _1 ``` #### File: index.py/tests/test_concurrency.py ```python import asyncio import pytest from indexpy.concurrency import complicating, keepasync @pytest.mark.asyncio async def test_complicating_0(): class AsyncCall: async def __call__(self): pass await AsyncCall()() asyncfunc = AsyncCall() assert complicating(asyncfunc) is asyncfunc @pytest.mark.asyncio async def test_complicating_1(): class AsyncClass: def __await__(self): return self.dispatch().__await__() async def dispatch(self): pass await AsyncClass() assert complicating(AsyncClass) == AsyncClass await AsyncClass().dispatch() assert complicating(AsyncClass.dispatch) is AsyncClass.dispatch @pytest.mark.asyncio async def test_complicating_2(): async def async_func(): pass await async_func() assert complicating(async_func) is async_func @pytest.mark.asyncio async def test_complicating_3(): @asyncio.coroutine def t(): pass await t() assert complicating(t) is t @pytest.mark.asyncio async def test_complicating_4(): def func(): """t""" await complicating(func)() assert asyncio.iscoroutinefunction(complicating(func)) assert complicating(func).__name__ == func.__name__ assert complicating(func).__doc__ == func.__doc__ @pytest.mark.asyncio async def test_complicating_5(): args = ("hello", "test") class AlwaysAsyncMeta(type): def __new__(cls: type, clsname, bases, namespace): for name in args: if name not in namespace: continue if name == "test": assert namespace[name] is complicating(namespace[name]) namespace[name] = complicating(namespace[name]) return type.__new__(cls, clsname, bases, namespace) class Test(metaclass=AlwaysAsyncMeta): def hello(self): pass async def test(self): pass @pytest.mark.asyncio async def test_keepasync(): class Test(metaclass=keepasync("hello", "test")): def hello(self): pass async def test(self): pass await Test().hello() await Test().test() assert Test.test.__name__ == "test" @pytest.mark.asyncio async def test_keepasync_subclass(): class Base(metaclass=keepasync("hello", "test")): def hello(self): pass class Sub(Base): def test(self): pass await Sub().hello() await Sub().test() assert Sub.test.__name__ == "test" ``` #### File: index.py/tests/test_conf.py ```python import pytest from indexpy.conf import serve_config, ConfigError, UpperDict def test_config(): assert isinstance(serve_config.DEBUG, bool) assert isinstance(serve_config.PORT, int) def test_upper_dict(): ud = UpperDict({"a": 1, "s": {"a": 2}}) assert ud["A"] == 1 assert ud["S"]["A"] == 2 def test_edit(): with pytest.raises(ConfigError): del serve_config.DEBUG with pytest.raises(ConfigError): del serve_config["DEBUG"] with pytest.raises(ConfigError): serve_config.DEBUG = True ```
{ "source": "2892211452/JK-DM", "score": 2 }
#### File: JK-DM/cmdb/views.py ```python from django.shortcuts import render from django.shortcuts import HttpResponse from django.http import JsonResponse from django import forms from cmdb import models from django.views.decorators.csrf import csrf_exempt @csrf_exempt def upload(request): if request.method=="POST": file_obj = request.FILES.get("file") test = request.FILES.get('type') print(test) print(file_obj) with open(file_obj.name,'wb') as f: for line in file_obj: f.write(line) return HttpResponse("ok") return HttpResponse("error") # Create your views here. def bili(request): url = request.GET.get('url',default='110') ans = '更改后'+url return HttpResponse(ans) def main(request): # num = num+1 # print(num) return render(request, "main.html", ) def login(request): if request.method == "POST": username = request.POST.get("username", None) password = request.POST.get("password", None) test = "test" # 添加数据到数据库 models.UserInfo.objects.create(user=username, pwd=password, test=test) # 从数据库读取数据 user_list = models.UserInfo.objects.all() return render(request, "login.html", {"data": user_list}) def test(request): return HttpResponse("hello kjgjhjh world") ``` #### File: JK-DM/yh/load.py ```python import numpy import sys sys.path.append("/home/lwl/Study/code/Python/django/mysite-master/yh") def save(list, path, ): numpy.save('/home/lwl/Study/code/Python/django/mysite-master/yh/npy/' +path+".npy",list) def load(list, path): a = numpy.load('/home/lwl/Study/code/Python/django/mysite-master/yh/npy/' +path+".npy") a = a.tolist() list = [] for item in a: list.append(['http://www.imomoe.io'+item[0][0], item[1][0], item[2][0]]) return(list) # list=[] # list =load(list, '热血') # print(list) ``` #### File: JK-DM/yh/pamp4.py ```python import requests def get_redirect_url(): # 重定向前的链接 url = "http://quan.qq.com/video/1098_7e9941a34296e2372f4b565c280ebe1c" # 请求头,这里我设置了浏览器代理 headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36'} # 请求网页 response = requests.get(url, headers=headers) print(response.status_code) # 打印响应的状态码 print(response.url) # 打印重定向后的网址 # 返回重定向后的网址 return response.url if __name__ == '__main__': redirect_url = get_redirect_url() ```
{ "source": "2892211452/myPackage", "score": 4 }
#### File: lwlPackage/PathPro/path.py ```python import os #当前文件目录路径 FileDir = os.path.abspath(os.path.dirname(__file__)) #读取某个目录中的所有文件名称 def getPathFile(path): ans = [] for i,j,k in os.walk(path): #三个数据分别是当前路径,文件夹名称数组, 文件数组 ans.append([i, k]) #print(i,j,k) return ans if __name__=="__main__": print( '***获取当前目录***') print( os.getcwd()) print( os.path.abspath(os.path.dirname(__file__))) print( '***获取上级目录***') print( os.path.abspath(os.path.dirname(os.path.dirname(__file__)))) print( os.path.abspath(os.path.dirname(os.getcwd()))) print( os.path.abspath(os.path.join(os.getcwd(), ".."))) print( '***获取上上级目录***') print( os.path.abspath(os.path.join(os.getcwd(), "../.."))) ```
{ "source": "2892211452/SXCsuOntOf", "score": 3 }
#### File: python/flask/flaskApi.py ```python from flask import Flask import json from flask_cors import CORS # 跨域 from epicSpider import * import pickle #设置递归深度,为了解决数据存储问题 import sys sys.setrecursionlimit(10000) app = Flask(__name__) from path import * # enable CORS CORS(app) @app.route('/getEpicFreeGame') def getEpicFreeGame(): games = { 'content':getEpic(), 'status':200 } games = json.dumps(games) return games #这里是js请求 # var data = null; # var xhr = new XMLHttpRequest(); # xhr.withCredentials = true; # xhr.addEventListener("readystatechange", function () { # if (this.readyState === 4) { # console.log(this.responseText); # } # }); # xhr.open("GET", "http://127.0.0.1:5000/getEpicFreeGame"); # xhr.setRequestHeader("cache-control", "no-cache"); # xhr.setRequestHeader("postman-token", "<PASSWORD>"); # xhr.send(data); @app.route('/getNews') def getNews(): output = open(FileDir+'/../newspider/data.pkl', 'rb') data=pickle.load(output) output.close() news = { 'content':data, 'status':200 } print(news) news = json.dumps(news) return news # var data = null; # var xhr = new XMLHttpRequest(); # xhr.withCredentials = true; # xhr.addEventListener("readystatechange", function () { # if (this.readyState === 4) { # console.log(this.responseText); # } # }); # xhr.open("GET", "http://127.0.0.1:5000/getNews"); # xhr.setRequestHeader("cache-control", "no-cache"); # xhr.setRequestHeader("postman-token", "<PASSWORD>"); # xhr.send(data); if __name__ == '__main__': app.debug = True app.run() ```
{ "source": "289371298/covid-xprize", "score": 3 }
#### File: covid_xprize/validation/predictor_validation.py ```python import argparse import itertools from typing import List import logging import numpy as np import pandas as pd logging.basicConfig( format='%(asctime)s %(name)-20s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S' ) LOGGER = logging.getLogger('predictor_validation') PREDICTED_DAILY_NEW_CASES = "PredictedDailyNewCases" COLUMNS = {"CountryName", "RegionName", "Date", PREDICTED_DAILY_NEW_CASES} def validate_submission(start_date: str, end_date: str, ip_file: str, submission_file: str) -> List[str]: """ Checks a prediction submission file is valid. Args: start_date: the submission start date as a string, format YYYY-MM-DDD end_date: the submission end date as a string, format YYYY-MM-DDD ip_file: path to a file-like object submission_file: path to a file-like object Returns: a list of string messages if errors were detected, an empty list otherwise """ pred_df = pd.read_csv(submission_file, parse_dates=['Date'], encoding="ISO-8859-1", dtype={"RegionName": str}, error_bad_lines=True) ip_df = pd.read_csv(ip_file, parse_dates=['Date'], encoding="ISO-8859-1", dtype={"RegionName": str}, error_bad_lines=True) all_errors = [] # Check we got the expected columns all_errors += _check_columns(COLUMNS, pred_df) if not all_errors: # Columns are good, check we got prediction for each requested country / region all_errors += _check_geos(ip_df, pred_df) # Check the values in PredictedDailyNewCases all_errors += _check_prediction_values(pred_df) # Check the prediction dates are correct all_errors += _check_days(start_date, end_date, pred_df) return all_errors def _check_columns(expected_columns, pred_df): errors = [] # Make sure each column is present missing_columns = expected_columns - set(pred_df.columns) if missing_columns: errors.append(f"Missing columns: {missing_columns}") return errors # Make sure column PredictedDailyNewCases contains numbers column_type = pred_df[PREDICTED_DAILY_NEW_CASES].dtype if not np.issubdtype(column_type, np.number): errors.append(f"Column {PREDICTED_DAILY_NEW_CASES} contains non numerical values: {column_type}") return errors return errors def _check_prediction_values(df): # Make sure the column containing the predictions is there errors = [] if PREDICTED_DAILY_NEW_CASES in df.columns: if df[PREDICTED_DAILY_NEW_CASES].isnull().values.any(): errors.append(f"Column {PREDICTED_DAILY_NEW_CASES} contains NaN values") if any(df[PREDICTED_DAILY_NEW_CASES] < 0): errors.append(f"Column {PREDICTED_DAILY_NEW_CASES} contains negative values") return errors def _check_geos(ip_df, pred_df): errors = [] _add_geoid_column(ip_df) _add_geoid_column(pred_df) requested_geo_ids = set(ip_df.GeoID.unique()) actual_geo_ids = set(pred_df.GeoID.unique()) # Check if any missing # Additional geos are OK, but predictions should at least include requested ones missing_geos = requested_geo_ids - actual_geo_ids if missing_geos: errors.append(f"Missing countries / regions: {missing_geos}") return errors def _add_geoid_column(df): # Add GeoID column that combines CountryName and RegionName for easier manipulation of data # np.where usage: if A then B else C df["GeoID"] = np.where(df["RegionName"].isnull(), df["CountryName"], df["CountryName"] + ' / ' + df["RegionName"]) def _check_days(start_date, end_date, df): errors = [] _add_geoid_column(df) # Sort by geo and date df.sort_values(by=["GeoID", "Date"], inplace=True) # Convert the dates start_date = pd.to_datetime(start_date, format='%Y-%m-%d') end_date = pd.to_datetime(end_date, format='%Y-%m-%d') num_days = (end_date - start_date).days + 1 expected_dates = [start_date + pd.offsets.Day(i) for i in range(num_days)] # Get the geo names geo_ids = list(df.GeoID.unique()) for geo_id in geo_ids: pred_dates = df[df.GeoID == geo_id].Date for expected_date, pred_date in itertools.zip_longest(expected_dates, pred_dates, fillvalue=None): if not expected_date == pred_date: errors.append(f"{geo_id}: Expected prediction for date " f"{expected_date.strftime('%Y-%m-%d') if expected_date is not None else None}" f" but got {pred_date.strftime('%Y-%m-%d') if pred_date is not None else None}") return errors def do_main(): parser = argparse.ArgumentParser() parser.add_argument("-s", "--start_date", dest="start_date", type=str, required=False, default="2020-12-22", help="Start date from which to apply the scenario" "Format YYYY-MM-DD. For example 2020-12-22") parser.add_argument("-e", "--end_date", dest="end_date", type=str, required=False, default="2021-06-19", help="Last date of the scenario" "Format YYYY-MM-DD. For example 2021-06-19") parser.add_argument("-ip", "--interventions_plan", dest="ip_file", type=str, required=True, help="The path to an intervention plan .csv file") parser.add_argument("-f", "--submission_file", dest="submission_file", type=str, required=True, help="Path to the filename containing the submission (predictions) to be validated.") args = parser.parse_args() submission_file = args.submission_file start_date = args.start_date end_date = args.end_date ip_file = args.ip_file LOGGER.info(f"Validating submissions file {submission_file} " f"start date {start_date} end date {end_date} intervention plan {ip_file}") errors = validate_submission(start_date, end_date, ip_file, submission_file) if not errors: LOGGER.info(f'{submission_file} submission passes validation') else: LOGGER.warning(f'Submission {submission_file} has errors: ') LOGGER.warning('\n'.join(errors)) LOGGER.info(f"Done!") if __name__ == '__main__': do_main() ```
{ "source": "28harishkumar/django-diary", "score": 2 }
#### File: django-diary/diary/views.py ```python from django.shortcuts import render , render_to_response, RequestContext, get_object_or_404 from django.http import HttpResponseRedirect, HttpResponse , Http404 from django.core.urlresolvers import reverse from django.utils.decorators import method_decorator from django.contrib.auth.decorators import login_required from django.views.generic import View from diary.models import Diary, Entry from diary.forms import DiaryForm, EntryForm, DiaryEditForm class DiaryList(View): @method_decorator(login_required) def get(self, request): diaries = Diary.objects.filter(user = request.user) return render_to_response('diary/home.html',{ 'diaries': diaries}, context_instance=RequestContext(request)) class NewDiary(View): @method_decorator(login_required) def get(self, request): return render_to_response('diary/new.html', context_instance = RequestContext(request)) @method_decorator(login_required) def post(self,request): name = request.POST.get('name',None) if name == None: raise Http404() data = request.POST.copy() try: diary = Diary.objects.get(name = name) raise Http404() except: pass data['user'] = request.user.id form = DiaryForm(data) if(form.is_valid()): form.save() diary_id = Diary.objects.get(name=data['name']).id return HttpResponseRedirect(reverse('diary_home',kwargs={'diary_id':diary_id})) else: raise Http404() class EditDiary(View): @method_decorator(login_required) def get(self, request, diary_id): diary = Diary.objects.get(pk = diary_id, user = request.user.id) return render_to_response('diary/new.html', {'diary': diary}, context_instance = RequestContext(request)) @method_decorator(login_required) def post(self, request, diary_id): name = request.POST.get('name',None) if name == None: raise Http404() data = request.POST.copy() try: diary = Diary.objects.get(pk = diary_id) except: raise Http404() if name != diary.name: try: diary2 = Diary.objects.get(name = name) if diary2.id != diary.id: raise Http404() except: pass form = DiaryEditForm(data, instance = diary) if(form.is_valid()): form.save() return HttpResponseRedirect(reverse('diary_home',kwargs={'diary_id':diary.id})) else: raise Http404() class DeleteDiary(View): @method_decorator(login_required) def post(self, request, diary_id): try: diary = Diary.objects.get(pk = diary_id, user = request.user.id) except: raise Http404() try: diary.delete() return HttpResponseRedirect('/') except: raise Http404() class DiaryHome(View): @method_decorator(login_required) def get(self, request, diary_id): diary = Diary.objects.get(pk = diary_id) if diary.user != request.user: raise Http404() entries = Entry.objects.filter(diary = diary_id).order_by('-timestamp') return render_to_response('diary/entrylist.html',{ 'diary': diary, 'entries': entries}, context_instance=RequestContext(request)) class EntryView(View): @method_decorator(login_required) def get(self, request, diary_id, entry_id): diary = Diary.objects.get(pk = diary_id) if(diary.user != request.user): raise Http404() entry = Entry.objects.get(pk = entry_id, diary = diary.id) return render_to_response('diary/entry.html',{ 'diary': diary, 'entry': entry }, context_instance = RequestContext(request)) @method_decorator(login_required) def post(self, request, diary_id, entry_id): diary = Diary.objects.get(pk = diary_id) print('reached here 1') if(diary.user != request.user): raise Http404() entry = Entry.objects.get(pk = entry_id) form = EntryForm(request.POST, instance = entry) if(form.is_valid()): form.save() return HttpResponseRedirect(reverse('diary_entry',kwargs={'diary_id':diary_id, 'entry_id': entry_id})) else: raise Http404() class NewEntry(View): @method_decorator(login_required) def get(self, request, diary_id): diary = Diary.objects.get(pk = diary_id) if(diary.user != request.user): raise Http404() return render_to_response('diary/entry.html',{ 'diary': diary, }, context_instance = RequestContext(request)) @method_decorator(login_required) def post(self,request, diary_id): diary = Diary.objects.get(pk = diary_id) if(diary.user != request.user): raise Http404() data = request.POST.copy() data['diary'] = diary.id form = EntryForm(data) if(form.is_valid()): form.save() entry_id = Entry.objects.get(title=data['title']).id return HttpResponseRedirect(reverse('diary_entry',kwargs={'diary_id':diary_id, 'entry_id': entry_id})) else: raise Http404() class DeleteEntry(View): @method_decorator(login_required) def post(self, request, entry_id): try: entry = Entry.objects.get(pk = entry_id) except: raise Http404() diary = entry.diary if diary.user.id != request.user.id: raise Http404() try: entry.delete() return HttpResponseRedirect(reverse('diary_home',kwargs={ 'diary_id' : diary.id })) except: return HttpResponse('fail') class SearchEntry(View): @method_decorator(login_required) def get(self, request): search = request.GET.get('s',None) if search == None: return HttpResponseRedirect('/') diaries = request.user.diary_set.all() entries = Entry.objects.filter(title__icontains = search, diary__in = diaries).order_by('-timestamp') return render_to_response('diary/searchlist.html',{ 'entries': entries}, context_instance=RequestContext(request)) ```
{ "source": "28harishkumar/Social-website-django", "score": 2 }
#### File: Social-website-django/post/forms.py ```python from django.forms import ModelForm from django import forms from post.models import Post class PostCreateForm(ModelForm): image_types = ('jpg','png','jpeg') video_types = ('mp4','flv','avi') audio_types = ('mp3',) file_types = ('pdf','cvs','txt') blocked_types = ('exe','sh') class Meta: model = Post fields = ['user','status','attachment','attachment_type','root_post'] exclude = ['like','favorite'] def clean_attachment_type(self): attachment = self.cleaned_data['attachment'] attachment_type = self.cleaned_data['attachment_type'] if attachment: ext = attachment.name.split('.')[-1] if(ext in self.image_types): attachment_type = 'image' elif(ext in self.video_types): attachment_type = 'video' elif(ext in self.audio_types): attachment_type = 'audio' elif(ext in self.file_types): attachment_type = 'file' else: raise forms.ValidationError('Invalid type attachment') return attachment_type def clean(self): super(PostCreateForm, self).clean() attachment = self.cleaned_data['attachment'] status = self.cleaned_data['status'] root_post = self.cleaned_data['root_post'] if attachment == None and status.strip() == '' and root_post == None: raise forms.ValidationError('status can not be empty') ``` #### File: Social-website-django/user/views.py ```python from django.shortcuts import render , render_to_response, RequestContext, get_object_or_404 from django.http import HttpResponseRedirect, HttpResponse , Http404 from django.utils.decorators import method_decorator from django.contrib.auth.decorators import login_required from django.core.urlresolvers import reverse from django.views.generic import View from user.models import User from post.models import Post from comment.models import Comment from message.models import Message from django.contrib.auth import logout, authenticate, login, update_session_auth_hash from django.contrib.auth.forms import UserCreationForm, AuthenticationForm, \ AdminPasswordChangeForm, PasswordChangeForm, PasswordResetForm, SetPasswordForm class Home(View): @method_decorator(login_required) def get(self,request): posts = Post.objects.order_by('-created_on') return render_to_response('home.html', {'posts':posts}, context_instance=RequestContext(request)) class Login(View): def reset_session_errors(self, request): try: del request.session['errors'] except KeyError: pass def get(self,request): next = request.GET.get('next','/') if request.user.is_authenticated(): return HttpResponseRedirect(next) form = AuthenticationForm() return render_to_response('registration/login.html', {'form':form,'next': next}, context_instance=RequestContext(request)) def post(self,request): self.reset_session_errors(request) username = request.POST['username'] password = request.POST['password'] user = authenticate(username=username, password=password) if user is not None: if user.is_active: login(request, user) next = request.POST.get('next','/') return HttpResponseRedirect(next) else: request.session['errors'] = ['your account is not activated'] return HttpResponseRedirect('/') else: request.session['errors'] = ['Invalid username and password combination',] return HttpResponseRedirect('/') class Logout(View): def get(self,request): if request.user.is_authenticated(): logout(request) return HttpResponseRedirect('/') class PasswordChange(View): @method_decorator(login_required) def get(self,request): form = PasswordChangeForm(request.user) return render_to_response('registration/password_change_form.html', {'form':form}, context_instance=RequestContext(request)) @method_decorator(login_required) def post(self,request): form = PasswordChangeForm(user=request.user, data=request.POST) if form.is_valid(): form.save() update_session_auth_hash(request, form.user) HttpResponseRedirect('/') else: return render_to_response('registration/password_change_form.html', {'form':form}, context_instance=RequestContext(request)) class PasswordReset(View): def get(self,request): if request.user.is_authenticated(): return HttpResponseRedirect('/') form = PasswordResetForm() return render_to_response('registration/password_reset_form.html', {'form':form}, context_instance=RequestContext(request)) def post(self,request): if request.user.is_authenticated(): return HttpResponseRedirect('/') form = PasswordResetForm(data=request.POST) if form.is_valid(): form.save() HttpResponseRedirect('/') return render_to_response('registration/password_reset_form.html', {'form':form}, context_instance=RequestContext(request)) class SetPassword(View): def get(self,request): if request.user.is_authenticated(): return HttpResponseRedirect('/') form = SetPasswordForm() return render_to_response('registration/set_password_form.html', {'form':form}, context_instance=RequestContext(request)) def post(self,request): if request.user.is_authenticated(): return HttpResponseRedirect('/') form = SetPasswordForm(data=request.POST) if form.is_valid(): form.save() HttpResponseRedirect('/') return render_to_response('registration/set_password_form.html', {'form':form}, context_instance=RequestContext(request)) class Timeline(View): #@method_decorator(login_required) def get(self,request, user): posts = Post.objects.filter(user= user) user = get_object_or_404(User,pk = user) return render_to_response('user/timeline.html', {'posts':posts,'user':user}, context_instance=RequestContext(request)) class Profile(View): def get(self,request, user): posts = Post.objects.filter(user= user) user = get_object_or_404(User,pk = user) return render_to_response('user/profile.html', {'posts':posts,'user':user}, context_instance=RequestContext(request)) class TimelineStatus(View): pass class TimelineImage(View): pass class TimelineVideo(View): pass class Activity(View): pass class Like(View): pass class Favorite(View): pass class FavoriteStatus(View): pass class FavoriteVideo(View): pass class FavoriteImage(View): pass class FavoriteAudio(View): pass class Settings(View): pass ```
{ "source": "28kayak/poubelle-chat", "score": 4 }
#### File: poubelle-chat/PreProcess/Trash.py ```python class Trash: def __init__(self): """ This class is to serialize Japanese trash. name = trash name category = what kind of trash...ex flammables, non-flammables etc... method = sentence that explain how to throw a way the trash """ self.name = "" self.category = "" self.description = "" def get_name(self): return self.name def set_name(self, name): self.name = name def get_category(self): return self.category def set_category(self, category): self.category = category def get_method(self): return self.description def set_method(self, description): self.description = description def generate_new_trash(self, name,category, description): return Trash(name, category, description) ```
{ "source": "28left/psumathnotebooks", "score": 3 }
#### File: psumathnotebooks/cyllene/f_define.py ```python import sympy as sp import random from fractions import Fraction # MathString parsing library import cyllene.a_mathstring as ms # random function generator import cyllene.f_random # Reserve some (real-valued) symbols in Sympy a, b, c, d, p, q, r, s, t, w, x, y, z = sp.symbols( 'a b c d p q r s t w x y z', real=True) MYLOCALS = {'a': a, 'b': b, 'c': c, 'd': d, 'p': p, 'q': q, 'r': r, 's': s, 't': t, 'w': w, 'x': x, 'y': y, 'z': z} FUNCTION_LIST = ['const', 'linear', 'quadratic', 'cubic', 'squareroot', 'cubicroot', 'rational', 'exp', 'tri', 'log', 'comp', 'random'] def define_expression(expr, eval_mode=False, return_issues=True): """ sympify an input and return a sympy expression together with a list of issues (optional, possibly empty) parameters: eval_mode (Boolean): should sympify try to evaluate expression return_issues (Boolean): should list of issues during syntax check be returned Valid arguments - a string - a constant - a sympy expression The string can be a math string or one of the following expression types: 'const', 'linear', 'quadratic', 'cubic', 'squareroot', 'cubicroot', 'rational', 'exp', 'tri', 'log', 'comp', 'monomial' One can also pass 'random' to pick an expression randomly. """ if expr in FUNCTION_LIST: # First check whether string argument is a keyword if expr == 'random': expr = random.choice([ 'const', 'linear', 'quadratic', 'cubic', 'squareroot', 'cubicroot', 'rational', 'comp', 'exp', 'tri', 'log']) if expr == 'comp': comp = [random.choice([ 'const', 'linear', 'quadratic', 'cubic', 'squareroot', 'cubicroot', 'rational', 'exp', 'tri', 'log']) for i in range(2)] new_expr = sp.sympify( f_random.set_function_random('comp', comp[0], comp[1])) else: new_expr = sp.sympify(f_random.set_function_random(expr)) expr_ok = True issues = [] elif isinstance(expr, sp.Basic): # if expr is Sympy type, skip syntax check expr_ok = True new_expr = expr issues = [] elif isinstance(expr, (int, float)): # if expr is numerical, directly sympify expr_ok = True new_expr = sp.sympify(expr, evaluate=eval_mode) issues = [] elif isinstance(expr, str): # try: # # if input can be turned into number, do this to avoid # # weird sympy bug # if '1/' in expr: # # force sympy to ev # check = [Fraction(expr), True, []] # elif '.' in expr: # # has decimal point, try float conversion # check = [float(expr), True, []] # else: # # check integer # check = [int(expr), True, []] # except ValueError: # # check syntax of expr; # # returns triple: # # ['sanitized' string, compilable flag (boolean), issues list] check = ms.check_syntax(expr) if check[1]: try: new_expr = sp.sympify( check[0], locals=MYLOCALS, evaluate=eval_mode) if new_expr.is_real: # if input is number, evaluate new_expr = sp.sympify( check[0], locals=MYLOCALS, evaluate=True) expr_ok = True issues = [] except: expr_ok = False issues = ["invalid syntax"] else: # check_syntax discovered issues expr_ok = False issues = check[2] else: # argument expr is not of the right type expr_ok = False issues = ['unknown format'] if expr_ok: return new_expr, [] else: return None, issues def define_function(expr, mode='numerical'): """ sympify an expression and return a function evaluating this expression, together with a list of issues (optional, possibly empty) This uses SymPy's lambdify function. parameters: eval_mode (Boolean): should sympify try to evaluate expression return_issues (Boolean): should list of issues during syntax check be returned """ [func, issues] = define_expression(expr, eval_mode=True) if func: if mode=='numerical': if len(func.free_symbols) > 0: # if there free symbols in func, use the first as the function var return sp.lambdify([func.free_symbols.pop()], func) # return lambda u: func.evalf(subs={x, u}, n=5) else: # otherwise any symbol will do return sp.lambdify([x], func) # return lambda u: func.evalf(subs={x, u}, n=5) else: if len(func.free_symbols) > 0: # if there free symbols in func, use the first as the function var # return sp.lambdify(func.free_symbols.pop(), func) return lambda u: func.subs(func.free_symbols.pop(), u) else: # otherwise any symbol will do # return sp.lambdify(x, func) return lambda u: func.subs(x, u) else: return None ``` #### File: psumathnotebooks/cyllene/m_input_tweaks.py ```python import sys ipython = get_ipython() # Allow using '^' for exponentiation def replace_exponentiation_symbol(lines): new_lines = [] for line in lines: new_line = '' occ_exp = [i for i, letter in enumerate(line) if letter == '^'] position = 0 for i in occ_exp: if line.count('\'',0,i) %2 == 0 and line.count('\"',0,i) %2 == 0: new_line += line[position:i+1].replace('^','**') else: new_line += line[position:i+1] position = i+1 new_line += line[position:] new_lines.append(new_line) return new_lines # Forbid entries where only the top line of an answer block is meaningfully filled # This piece of code gets run on answer blocks and other magics alike, so have to check explicitly that this is truly an answer block def check_cell_submitted(lines): if "answer" in lines[0] and len(lines) < 2: lines.append(" ") return lines # Suppress long traceback messages and just output error # def exception_handler(exception_type, exception, traceback): # print("Your input led to an error. You can find more information about the error below.") # print("%s: %s" % (exception_type.__name__, exception), file=sys.stderr) def hide_traceback(exc_tuple=None, filename=None, tb_offset=None, exception_only=False, running_compiled_code=False): etype, value, tb = sys.exc_info() value.__cause__ = None # suppress chained exceptions print("Your input led to an error. You can find more information about the error below.") return ipython._showtraceback(etype, value, ipython.InteractiveTB.get_exception_only(etype, value)) # Register tweaks in ipython kernel ipython.input_transformers_cleanup.extend((replace_exponentiation_symbol, check_cell_submitted)) ipython.showtraceback = hide_traceback ``` #### File: psumathnotebooks/cyllene/m_magics.py ```python from os import path from IPython.core.magic import (register_line_magic, register_cell_magic, register_line_cell_magic) from IPython import get_ipython from cyllene.p_problem import ProbStack ip = get_ipython() @register_line_magic def initialize(line): if line=='': # if no argument is given, try to find .py file with # same name as notebook init_file = 'init.py' else: init_file = line + '.py' try: # run the init file to load problems etc. ip.magic('run '+init_file) print("Initialization successful!") except: # print(line) print("Error loading initialization file.") @register_line_magic def Problem(line): try: problem = ProbStack.stack[line] problem.state_problem() # add_answer_cell(problem) except: # print(line) print("Could not add problem to problem stack.") @register_line_magic def problem(line): try: problem = ProbStack.stack[line] problem.state_problem() # add_answer_cell(problem) except: # print(line) print("Could not add problem to problem stack.") @register_cell_magic def answer(line, cell): # Given this is an answer block, check the top line is written in a valid way try: problem = ProbStack.stack[line[8:]] except: print("Oops! Something in the top line won't let us find the right problem.") return None # PREWORK FOR CELL: # if for some reason cell is not defined, stop the process if(cell is None): print("Your answer seems to be empty. Please try again.") return None # eliminate any line from cell that is "essentially empty", i.e., only whitepace cell = "\n".join([ll.rstrip() for ll in cell.splitlines() if ll.strip()]) # strip the empty space from the beginning of each line cell = "\n".join([ll.lstrip() for ll in cell.splitlines()]) # check if cell is essentially empty if(cell == ""): print("Your answer is empty. Please try again!") return None # PARSING ANSWER DEPENDS ON NUM_INPUTS answer = [] try: n = problem.num_inputs except: print("problem.num_inputs has not yet been defined. Please check problem's encoding") return None if(n < 1): print("This problem was coded with too few num_inputs.") return None elif(n == 1): # there are no "(i): " prefix strings in this case, so can just use the first meaningful line in code as our answer answer.append(cell.split('\n')[0]) else: # num_inputs > 1 # By default, let answer[i] = "" for i in range(n): answer.append("") # TWO CASES for parsing answer blocks for problems with multiple inputs # Distinguish between the two cases by the truth value of prefix_found prefix_found = False prefix_string = "" prefix_index = 0 while(prefix_index < n and not prefix_found): prefix_string = "(" + str(prefix_index + 1) + ")" for cell_line in cell.splitlines(): if cell_line.startswith(prefix_string): prefix_found = True break prefix_index += 1 if(prefix_found): # CASE 1: there are "(i): " prefices from (1),...,(n) # iterate through each line in code to update answer[i] if line begins with "(i):"" # ignore any lines with an (i) for i > n for cell_line in cell.splitlines(): # could be improved for i in range(n): if cell_line.startswith("(" + str(i + 1) + "):"): answer[i] = cell_line[len("(" + str(i + 1) + "):"):].strip() break if cell_line.startswith("(" + str(i + 1) + ")"): answer[i] = cell_line[len("(" + str(i + 1) + ")"):].strip() break else: # CASE 2: submission assumed to be written in order without the prefices (1),...,(n) i = 0 for cell_line in cell.splitlines(): if(i >= n): break answer[i] = cell_line.strip() i += 1 problem.check_answer(answer) ```
{ "source": "28mm/Fovea", "score": 3 }
#### File: examples/clustering/cluster.py ```python import numpy as np import pandas as pd import os import argparse from sklearn import feature_extraction from sklearn.feature_extraction import DictVectorizer from sklearn.cluster import KMeans from sklearn.cluster import DBSCAN from sklearn import metrics #import mpld3 def labeler(thing): return thing def main(): parser = argparse.ArgumentParser() parser.add_argument('--clusters', type=int, default=5, required=False) parser.add_argument('--confidence', type=float, default=0.0, required=False) parser.add_argument('directory', nargs=1) group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--kmeans', action='store_true') group.add_argument('--dbscan', action='store_true') args = parser.parse_args() confidence = args.confidence n_clusters = args.clusters directory = args.directory[0] documents = {} for filename in os.listdir(directory): if not filename.endswith('.labels'): continue with open(directory + '/' + filename, 'r') as f: documents[filename] = [] for line in f.readlines(): l_components = line.split('\t') conf = float(l_components[0]) label = l_components[1][:-1] if conf > confidence: documents[filename].append(label) v = DictVectorizer() dox = [ { l : 1 for l in documents[d] } for d in documents ] doc_names = [ d.rstrip('.labels') for d in documents ] X = v.fit_transform(dox) features = v.get_feature_names() if args.kmeans: km = KMeans(n_clusters=n_clusters) km.fit(X) # Sort cluster centers by proximity to centroid order_centroids = km.cluster_centers_.argsort()[:, ::-1] closest_labels_dict = { i : "" for i in range(n_clusters) } for i in range(n_clusters): for ind in order_centroids[i, :6]: #replace 6 with n words per cluster closest_labels_dict[i] += features[ind] + ", " closest_labels_dict[i] = closest_labels_dict[i].rstrip(', ') clusters = km.labels_.tolist() clusters_dict = { i : [] for i in range(n_clusters) } for c in range(len(clusters)): clusters_dict[clusters[c]].append(doc_names[c]) print('<html>') print('<body>') print('<style>') print('img { height: 75px; }') print('h2 { font-family: sans-serif; } ') print('.box { max-width: 700px; }') print('</style>') print('<div class="box">') for k in clusters_dict: print('<h2>' + str(k) + ": " + closest_labels_dict[k] + '</h2>') for img in clusters_dict[k]: print('<img src="file://' + directory + '/' + img + '">') print('</div>') print('</body>') print('</html>') elif args.dbscan: raise if __name__ == '__main__' : main() ```
{ "source": "28mm/Splicr", "score": 3 }
#### File: 28mm/Splicr/Splicr.py ```python from flask import Flask from flask import render_template, url_for, redirect from flask_uuid import FlaskUUID from functools import partial import json import urllib import sys import os # Youtube API from apiclient.discovery import build from apiclient.errors import HttpError from oauth2client.tools import argparser GA_TRACKING_ID = os.environ['GA_TRACKING_ID'] DEVELOPER_KEY = os.environ['YOUTUBE_KEY'] YOUTUBE_API_SERVICE_NAME = "youtube" YOUTUBE_API_VERSION = "v3" render = partial(render_template, GA_TRACKING_ID=GA_TRACKING_ID) app = Flask(__name__) FlaskUUID(app) @app.route('/') def index(): return render('index.html') @app.route('/search/album') @app.route('/search/album/<terms>') def album_search(terms=None): if terms is None: return redirect(url_for('index')) terms = urllib.parse.unquote(terms) albums = MusicBrainz.album_search(terms) return render('album-search.html', terms=terms, albums=albums) @app.route('/search/artist') @app.route('/search/artist/<terms>') def artist_search(terms=None): if terms is None: return redirect(url_for('index')) terms = urllib.parse.unquote(terms) artists = MusicBrainz.artist_search(terms) return render('artist-search.html', terms=terms, artists=artists) @app.route('/album') @app.route('/album/<uuid:uuid>') def album(uuid=None): if uuid is None: return redirect(url_for('index')) album = Album.get(uuid) return render('album.html', album=album, ytid=yt_lucky(album.artist + ' ' + album.tracks[0].title)) @app.route('/artist') @app.route('/artist/<uuid:uuid>') def artist(uuid=None): if uuid is None: return redirect(url_for('index')) artist = Artist.get(uuid) return render('artist.html', artist=artist) @app.route('/track') @app.route('/track/<uuid:uuid>') def track(uuid=None): if uuid is None: return redirect(url_for('index')) track = Track.get(uuid) return render('track.html', track=track, ytid=yt_lucky(track.artist + ' ' + track.title)) @app.route('/ytid') @app.route('/ytid/<uuid:uuid>') def ytid(uuid=None): if uuid is None: return redirect(url_for('index')) track = Track.get(uuid) return yt_lucky(track.artist + ' ' + track.title) # # Musicbrainz fns and class definitions class Artist: '''MusicBrainz Artists and Associated Albums''' def __init__(self, uuid): self.uuid = uuid self.asin = '' self.name = '' self.albums = [] @staticmethod def get(uuid): MB_FMT = 'http://musicbrainz.org/ws/2/artist/%s?inc=releases&fmt=json&type=album|ep' response = urllib.request.urlopen( MB_FMT % uuid ) response_json = json.loads(response.read().decode('utf-8')) # FIXME encoding? artist = Artist(uuid) artist.name = response_json['name'] for release in response_json['releases']: artist.albums.append({ 'uuid' : release['id'], 'title' : release['title']} ) return artist class Album: '''Musicbrainz Album (release)''' def __init__(self, uuid): self.uuid = uuid self.asin = '' self.title = '' self.artist = '' # problematic (think: compilations) self.tracks = [] # These relate to musicbrainz search. self.score = '' self.terms = '' @staticmethod def get(uuid): MB_FMT = 'http://musicbrainz.org/ws/2/release/%s?inc=recordings&fmt=json' response = urllib.request.urlopen( MB_FMT % uuid ) response_json = json.loads(response.read().decode('utf-8')) # FIXME encoding? album = Album(uuid) album.title = response_json['title'] album.asin = response_json['asin'] album.artist = '' for medium in response_json['media']: for track in medium['tracks']: album.tracks.append(Track(track['recording']['id'], title=track['title'])) return album class Track: '''Musicbrainz Track (recording)''' def __init__(self, uuid, asin='', artist='', title=''): self.uuid = uuid self.asin = asin self.title = title self.artist = artist @staticmethod def get(uuid): MB_FMT = 'http://musicbrainz.org/ws/2/recording/%s?inc=artist-credits&fmt=json' print(MB_FMT % uuid, file=sys.stderr) response = urllib.request.urlopen( MB_FMT % uuid ) response_json = json.loads(response.read().decode('utf-8')) # FIXME encoding? track = Track(uuid) track.title = response_json['title'] credits = response_json['artist-credit'] for credit in credits: if len(track.artist) == 0: track.artist = credit['artist']['name'] # FIXME just one for now. return track class MusicBrainz: @staticmethod def album_search(terms): '''Returns a list of dicts representing mbrainz releases. score <- search relevance title <- release title uuid <- mbrainz uuid''' terms = urllib.parse.quote(terms) MB_FMT = 'http://musicbrainz.org/ws/2/release/?query=%s&fmt=json&type=album|ep' response = urllib.request.urlopen( MB_FMT % terms ) response_json = json.loads(response.read().decode('utf-8')) # FIXME encoding? albums = [] for release in response_json['releases']: skip = False album = {} album['score'] = release['score'] album['title'] = release['title'] album['uuid'] = release['id'] album['artist'] = release['artist-credit'][0]['artist']['name'] album['artist_uuid'] = release['artist-credit'][0]['artist']['id'] # skip albums we already have, for more presentable search results. for a in albums: if a['artist'] == album['artist'] and a['title'] == album['artist']: skip = True if not skip: albums.append(album) return albums @staticmethod def artist_search(terms): '''Returns a list of dicts representing mbrainz releases. score <- search relevance name <- artist name uuid <- mbrainz uuid''' terms = urllib.parse.quote(terms) MB_FMT = 'http://musicbrainz.org/ws/2/artist/?query=%s&fmt=json' response = urllib.request.urlopen( MB_FMT % terms ) response_json = json.loads(response.read().decode('utf-8')) # FIXME encoding? artists = [] for a in response_json['artists']: skip = False artist = {} artist['score'] = a['score'] artist['name'] = a['name'] artist['uuid'] = a['id'] # skip albums we already have, for more presentable search results. #for a in albums: # if a['artist'] == album['artist'] and a['title'] == album['artist']: # skip = True #if not skip: # albums.append(album) artists.append(artist) return artists # # Youtube Fns def yt_lucky(terms=None): '''Returns the youtube video id (eg: "VQbqeLTMre8") of the top search result for terms''' youtube = build(YOUTUBE_API_SERVICE_NAME, YOUTUBE_API_VERSION, developerKey=DEVELOPER_KEY) response = youtube.search().list( q=terms, part="id,snippet", maxResults=20 ).execute() ytid = '' for result in response.get("items", []): if result["id"]["kind"] == "youtube#video": return result["id"]["videoId"] if __name__ == '__main__': app.run() ```
{ "source": "28raph/butt-3", "score": 3 }
#### File: butt-3/lib/hunt.py ```python from lib.parser import conf rarities = ['Common', 'Uncommon', 'Alolan', 'Super Rare', 'Rare', 'Full-odds', 'Shiny', 'Legendary'] cheap_legies=["Articuno", "Mew*", "Jirachi", "Moltres", "Raikou", "Entei", "Suicune", "Ho-oh", "Regirock", "Regice", "Registeel", "Latias", "Latios", "Deoxys", "Uxie", "Mesprit", "Azelf", "Heatran", "Regigigas", "Cresselia", "Cobalion", "Terrakion", "Virizion", "Tornadus", "Thundurus", "Landorus", "Xerneas", "Yveltal", "Celebi", "Zygarde"] def hunt(footer, description): for rarity in rarities: if rarity in footer: if rarity == "Legendary": if any(poke in description for poke in cheap_legies): ball = conf.rarities.Cheap_legendary else: ball = conf.rarities.Legendary elif rarity == "Full-odds": ball = conf.rarities.Full_odds else: ball = conf.rarities[str(rarity)] break return ball ``` #### File: 28raph/butt-3/main.py ```python import platform uname = platform.uname() print(f"System: {uname.system}") import pyfiglet ascii_banner = pyfiglet.figlet_format("PokeGrinder") print(ascii_banner) print("Importing Modules...") import sqlite3 import asyncio import requests import datetime from lib.hunt import hunt from lib.parser import conf from playsound import playsound from discord.ext import commands from lib.autobuy import get_balls from lib.captcha import anticaptcha from discord.ext.commands import CommandNotFound print("Initialising, this may take some time depending on how many servers you are in.") caught = 0 fish_caught = 0 encounters = 0 start_time = 0 solved = 0 hatched = 0 notification = r'lib/assets/notification.mp3' bot = commands.Bot(command_prefix=';', self_bot=True, help_command=None) def footer(msg): embeds = msg.embeds for embed in embeds: footer=str(embed.footer) return footer def description(msg): embeds = msg.embeds for embed in embeds: description=str(embed.description) return description async def notify(): if conf.general.captcha_notifier == 'enable': repeat = 0 while repeat <= 3: playsound(notification) repeat += 1 async def timer(after): await asyncio.sleep(conf.cooldowns.huntcooldown) await after.channel.send(";p") async def fish_timer(after): await asyncio.sleep(conf.cooldowns.fishcooldown) await after.channel.send(";f") async def log(): current_time=datetime.datetime.now().replace(microsecond=0) time_elapsed=current_time - start_time print(f"Time Elapsed : {time_elapsed} | Encounters : {encounters} | Catches : {caught} | Fish Catches : {fish_caught} | Captchas Solved : {solved} | Eggs Hatched : {hatched}") def get_rarity(pokemon): conn = conn = sqlite3.connect(r"fishdatabase.db") cur = conn.cursor() cur.execute("SELECT rarity FROM fish WHERE pokemon=?", (pokemon,)) rarity = cur.fetchall() return rarity @bot.event async def on_ready(): global start_time user = await bot.fetch_user(conf.general.userid) channel = bot.get_channel(conf.general.channelid) fishchannel = bot.get_channel(conf.general.fishchannelid) if conf.general.hunting == "enable": await channel.send(";p") if conf.general.fishing == "enable": await fishchannel.send(";f") print(f"Started grinding as {user}.") start_time = datetime.datetime.now().replace(microsecond=0) @bot.listen('on_message') async def on_message(message): global solved if message.author.id == <PASSWORD>: if message.channel.id == conf.general.channelid: command = ";p" elif message.channel.id == conf.general.fishchannelid: command = ";f" else: return if "continue hunting!" in message.content: await asyncio.sleep(2.5) await message.channel.send(command) elif "You have **10** attempts to answer the captcha." in message.content: if len(message.attachments) != 0: if conf.general.captcha_solver == "enable": try: answer = await anticaptcha(message.attachments[0]) print(f"Solved the captcha, expected answer is {answer}.") await message.channel.send(answer) except: print("Unable to solve Captcha!") asyncio.create_task(notify()) else: try: result = await bot.wait_for('message', check = lambda m: m.author == message.author and m.channel == message.channel, timeout=10) except: pass else: if 'continue hunting!' in result.content: print("The answer was correct!") solved += 1 else: print("The answer was inccorect!") asyncio.create_task(notify()) else: asyncio.create_task(notify()) elif 'ready to hatch!' in message.content: if conf.general.eggs != 'enable': return await asyncio.sleep(3.5) await message.channel.send(';egg hatch') @bot.listen('on_message_edit') async def on_message_edit(before, after): global caught, fish_caught if after.author.id == <PASSWORD>: if after.channel.id == conf.general.channelid: asyncio.create_task(timer(after)) if "caught" in description(after): caught += 1 asyncio.create_task(log()) if conf.general.autobuy == 'enable': balls = await get_balls(footer(after)) if balls != None: await asyncio.sleep(3.5) await after.channel.send(balls) elif after.channel.id == conf.general.fishchannelid: if "You caught a" in description(after) and "fished out a" in description(before): fish_caught += 1 asyncio.create_task(log()) else: return @bot.command() async def p(ctx): if conf.general.hunting != "enable": return global encounters if ctx.channel.id == conf.general.channelid: try: poke = await bot.wait_for('message', check = lambda m: m.author.id == <PASSWORD> and m.channel == ctx.channel, timeout=5) except asyncio.TimeoutError: await ctx.send(";p") else: if poke.embeds != []: if "found a wild" in description(poke): encounters += 1 ball = hunt(footer(poke), description(poke)) await asyncio.sleep(conf.cooldowns.ballcooldown) await ctx.send(ball) try: before, after = await bot.wait_for('message_edit', check = lambda b, m: b == poke, timeout=1.5) except asyncio.TimeoutError: await ctx.send(ball) else: if "please wait" in poke.content: await asyncio.sleep(3) await ctx.send(";p") @bot.command() async def f(ctx): if conf.general.fishing != "enable": return if ctx.channel.id == conf.general.fishchannelid: try: cast = await bot.wait_for('message', check = lambda m: m.author.id == 6<PASSWORD> and m.channel == ctx.channel, timeout=5) except asyncio.TimeoutError: await ctx.send(";f") else: if cast.embeds != []: if "cast out a" in description(cast): try: before, after = await bot.wait_for('message_edit', check = lambda b, m: b == cast, timeout=10) except asyncio.TimeoutError: pass else: if "type `PULL`" in description(after): asyncio.create_task(fish_timer(after)) await ctx.send("pull") try: bef, aft = await bot.wait_for('message_edit', check = lambda b, m: b == after, timeout=5) except: pass else: desc = description(aft) if "fished out a" in desc: if "Golden" in desc: await ctx.send(conf.fishrarities.Golden) elif "Shiny" in desc: await ctx.send(conf.fishrarities.Shiny) else: rarity = get_rarity(desc.split("**")[3])[0][0] await ctx.send(conf.fishrarities[rarity]) else: asyncio.create_task(fish_timer(after)) else: if "please wait" in cast.content: await asyncio.sleep(3) await ctx.send(";f") @bot.command() async def egg(ctx, action): if conf.general.eggs != 'enable': return global hatched if ctx.channel.id == conf.general.channelid or ctx.channel.id == conf.general.fishchannelid: if action == 'hatch': try: response = await bot.wait_for('message', check = lambda m: m.author.id == <PASSWORD> and m.channel == ctx.channel, timeout=5) except asyncio.TimeoutError: await asyncio.sleep(3) await ctx.send(';egg hatch') else: if 'just hatched a' in response.content: print("Hatched an egg!") hatched += 1 await asyncio.sleep(8) await ctx.send(';egg hold') elif action == 'hold': try: response = await bot.wait_for('message', check = lambda m: m.author.id == <PASSWORD> and m.channel == ctx.channel, timeout=5) except asyncio.TimeoutError: await asyncio.sleep(3) await ctx.send(';egg hold') @bot.event async def on_command_error(ctx, error): if isinstance(error, CommandNotFound): return raise error bot.run(conf.general.token) ```
{ "source": "28Smiles/SAS-AIED2020", "score": 2 }
#### File: logs/xlm_1e-5_xnli_ende/app.py ```python import torch from transformers import * from flask import Flask, escape, request from flask_cors import CORS GPU_INFERENCE = True MODEL_NAME = 'xlm-mlm-tlm-xnli15-1024' SEQUENCE_LENGTH = 512 TOKENIZER = XLMTokenizer.from_pretrained(MODEL_NAME) CONFIG = XLMConfig.from_pretrained(MODEL_NAME, num_labels = num_labels) MODEL = XLMForSequenceClassification(config = CONFIG) MODEL.load_state_dict(torch.load('model.torch', map_location='cpu')) MODEL.eval() if GPU_INFERENCE: MODEL = MODEL.cuda() app = Flask(__name__) CORS(app) @app.route("/") def evaluate(): r = request.args.get("reference") a = request.args.get("answer") l = request.args.get("lang") print("Evaluate: ", lang, r, a) idx = TOKENIZER.encode(r, a, True) if len(idx) > SEQUENCE_LENGTH: return "ERROR Sentence too long, please trunicate" mask = [1] * len(idx) + [0] * (SEQUENCE_LENGTH - len(idx)) idx += [0] * (SEQUENCE_LENGTH - len(idx)) mask = torch.tensor([ mask ]).long() idx = torch.tensor([ idx ]).long() lang = torch.tensor([ lang = [ MODEL.config.lang2id['de'] ] * SEQUENCE_LENGTH ]).long() if GPU_INFERENCE: mask = mask.cuda() idx = idx.cuda() with torch.no_grad(): outputs = MODEL( idx, attention_mask = mask, langs = lang ) e = outputs[0][0].cpu().numpy() return { 'contradictory': float(e[0]), 'incorrect': float(e[1]), 'correct': float(e[2]) } ``` #### File: SAS-AIED2020/util/best.py ```python import os import tensorflow as tf import json import torch from util.hotload import load_model def parse(file): o = {} for e in tf.train.summary_iterator(file): for v in e.summary.value: if not v.tag == 'loss': if not e.step in o: o[e.step] = {} o[e.step][v.tag] = v.simple_value return o def sumup(values, parts): s = 0 for part in parts: s += values[part] return s def scores(values, parts): o = {} for k, v in values.items(): o[k] = sumup(v, parts) return o def max_key(values): k, v = 0, 0 for key, value in values.items(): k, v = key, value break for key, value in values.items(): if value >= v: k, v = key, value return k, v def log(experiment): for file in os.listdir('logs/' + experiment): if file.startswith('events.out.tfevents'): return 'logs/' + experiment + '/' + file def load_parameters(experiment): with open('logs/{}/parameters.json'.format(experiment)) as json_file: return json.load(json_file) def load_best(experiment, parts): log_data = parse(log(experiment)) best_step, _ = max_key(scores(log_data, parts)) parameters = load_parameters(experiment) MODEL_CLASS = load_model(parameters['MODEL_PREFIX']) TOKENIZER = MODEL_CLASS[0].from_pretrained(parameters['MODEL_NAME']) CONFIG = MODEL_CLASS[1].from_pretrained(parameters['MODEL_NAME'], num_labels=3) MODEL = MODEL_CLASS[2].from_pretrained(parameters['MODEL_NAME'], config=CONFIG) MODEL.load_state_dict(torch.load('logs/{}/model_{}.torch'.format(experiment, best_step), map_location='cpu')) return best_step, log_data[best_step], MODEL, TOKENIZER ``` #### File: SAS-AIED2020/util/val_datasets.py ```python from .dataset import load_semeval, tokenize, dataset from torch.utils.data import DataLoader def val_dataset(name, type, lang, tokenizer, sequence_length): return DataLoader(dataset(tokenize(load_semeval(name, type, lang), tokenizer, sequence_length)), batch_size=32) def val_datasets(tokenizer, sequence_length): return { 'union_unseen_answers_en': val_dataset('union', 'unseen_answers', 'en', tokenizer, sequence_length), 'union_unseen_questions_en': val_dataset('union', 'unseen_questions', 'en', tokenizer, sequence_length), 'union_unseen_domains_en': val_dataset('union', 'unseen_domains', 'en', tokenizer, sequence_length), 'union_unseen_answers_de': val_dataset('union', 'unseen_answers', 'de', tokenizer, sequence_length), 'union_unseen_questions_de': val_dataset('union', 'unseen_questions', 'de', tokenizer, sequence_length), 'union_unseen_domains_de': val_dataset('union', 'unseen_domains', 'de', tokenizer, sequence_length), 'beetle_unseen_answers_en': val_dataset('beetle', 'unseen_answers', 'en', tokenizer, sequence_length), 'beetle_unseen_questions_en': val_dataset('beetle', 'unseen_questions', 'en', tokenizer, sequence_length), 'beetle_unseen_answers_de': val_dataset('beetle', 'unseen_answers', 'de', tokenizer, sequence_length), 'beetle_unseen_questions_de': val_dataset('beetle', 'unseen_questions', 'de', tokenizer, sequence_length), 'sciEntsBank_unseen_answers_en': val_dataset('sciEntsBank', 'unseen_answers', 'en', tokenizer, sequence_length), 'sciEntsBank_unseen_questions_en': val_dataset('sciEntsBank', 'unseen_questions', 'en', tokenizer, sequence_length), 'sciEntsBank_unseen_domains_en': val_dataset('sciEntsBank', 'unseen_domains', 'en', tokenizer, sequence_length), 'sciEntsBank_unseen_answers_de': val_dataset('sciEntsBank', 'unseen_answers', 'de', tokenizer, sequence_length), 'sciEntsBank_unseen_questions_de': val_dataset('sciEntsBank', 'unseen_questions', 'de', tokenizer, sequence_length), 'sciEntsBank_unseen_domains_de': val_dataset('sciEntsBank', 'unseen_domains', 'de', tokenizer, sequence_length), } ```
{ "source": "291700351/build_lichee", "score": 2 }
#### File: tests/package/test_glxinfo.py ```python import os import infra.basetest GLXINFO_TIMEOUT = 120 class TestGlxinfo(infra.basetest.BRTest): config = \ """ BR2_x86_core2=y BR2_TOOLCHAIN_EXTERNAL=y BR2_TOOLCHAIN_EXTERNAL_CUSTOM=y BR2_TOOLCHAIN_EXTERNAL_DOWNLOAD=y BR2_TOOLCHAIN_EXTERNAL_URL="http://toolchains.bootlin.com/downloads/releases/toolchains/x86-core2/tarballs/x86-core2--glibc--bleeding-edge-2018.11-1.tar.bz2" BR2_TOOLCHAIN_EXTERNAL_GCC_8=y BR2_TOOLCHAIN_EXTERNAL_HEADERS_4_14=y # BR2_TOOLCHAIN_EXTERNAL_LOCALE is not set BR2_TOOLCHAIN_EXTERNAL_CXX=y BR2_TOOLCHAIN_EXTERNAL_HAS_SSP=y BR2_TOOLCHAIN_EXTERNAL_HAS_THREADS_DEBUG=y BR2_TOOLCHAIN_EXTERNAL_HAS_THREADS=y BR2_TOOLCHAIN_EXTERNAL_HAS_THREADS_NPTL=y BR2_TOOLCHAIN_EXTERNAL_CUSTOM_GLIBC=y BR2_LINUX_KERNEL=y BR2_LINUX_KERNEL_CUSTOM_VERSION=y BR2_LINUX_KERNEL_CUSTOM_VERSION_VALUE="4.16.7" BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG=y BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE="board/qemu/x86/linux.config" BR2_PACKAGE_MESA3D_DEMOS=y BR2_PACKAGE_MESA3D=y BR2_PACKAGE_MESA3D_GALLIUM_DRIVER_SWRAST=y BR2_PACKAGE_MESA3D_DRI_DRIVER_SWRAST=y BR2_PACKAGE_XORG7=y BR2_PACKAGE_XSERVER_XORG_SERVER=y BR2_TARGET_GENERIC_GETTY_PORT="ttyS0" BR2_TARGET_ROOTFS_EXT2=y # BR2_TARGET_ROOTFS_TAR is not set """ def wait_for_xserver(self): # xserver takes some time to start up # The test case fail here if for some reason xserver is not properly installed _, _ = self.emulator.run('while [ ! -e /var/run/xorg.pid ]; do sleep 1; done', 120) def login(self): img = os.path.join(self.builddir, "images", "rootfs.ext2") kern = os.path.join(self.builddir, "images", "bzImage") # glxinfo overallocate memory and the minimum that seemed to work was 512MB self.emulator.boot(arch="i386", kernel=kern, kernel_cmdline=["root=/dev/vda console=ttyS0"], options=["-M", "pc", "-m", "512", "-drive", "file={},if=virtio,format=raw".format(img)]) self.emulator.login() def test_run(self): self.login() self.wait_for_xserver() # The test case verifies that the xserver with GLX is working cmd = "glxinfo -B -display :0" output, exit_code = self.emulator.run(cmd, GLXINFO_TIMEOUT) self.assertEqual(exit_code, 0) for line in output: self.assertNotIn("Error", line) # Error case: "Error: couldn't find RGB GLX visual or fbconfig" ```
{ "source": "2921251087/CPMel-1", "score": 2 }
#### File: CPMel-1/CPMel(6)/nodeCore.py ```python import maya.cmds as mc import maya.api.OpenMaya as om import collections class node: def __init__(self,node_name): self.__dict__['__UUID'] = mc.ls(node_name,uid = True) def __setattr__(self,name,val): if isinstance(val,collections.Iterable) and type(val) != str: mc.setAttr('%s.%s'%(mc.ls(self.__dict__['__UUID'])[0],name),*val) else: mc.setAttr('%s.%s'%(mc.ls(self.__dict__['__UUID'])[0],name),val) def __getattr__(self,name): return mc.getAttr('%s.%s'%(mc.ls(self.__dict__['__UUID'])[0],name)) a = node('pSphere1') ```
{ "source": "2921251087/CPMel", "score": 2 }
#### File: CPMel/cmds/create_node.py ```python u""" :创建时间: 2021/2/8 23:05 :作者: 苍之幻灵 :我的主页: https://cpcgskill.com :QQ: 2921251087 :爱发电: https://afdian.net/@Phantom_of_the_Cang :aboutcg: https://www.aboutcg.org/teacher/54335 :bilibili: https://space.bilibili.com/351598127 """ import maya.cmds as cmds from . import node from .node import DagNode class _CreateNode(object): u""" 创建节点类 """ @node.commandWrap def __call__(self, *args, **kwargs): u""" :param args: :param kwargs: :return: :rtype: DagNode """ return cmds.createNode(*args, **kwargs) def __getattribute__(self, item): try: return object.__getattribute__(self, item) except AttributeError: def test(*args, **kwargs): return self(item, *args, **kwargs) setattr(self, item, test) return test def AlembicNode(self, *args, **kwargs): return self(u"AlembicNode", *args, **kwargs) def BifMeshImportNode(self, *args, **kwargs): return self(u"BifMeshImportNode", *args, **kwargs) def ComputeGlobal(self, *args, **kwargs): return self(u"ComputeGlobal", *args, **kwargs) def ComputeLocal(self, *args, **kwargs): return self(u"ComputeLocal", *args, **kwargs) def RScontainer(self, *args, **kwargs): return self(u"RScontainer", *args, **kwargs) def ShaderfxGameHair(self, *args, **kwargs): return self(u"ShaderfxGameHair", *args, **kwargs) def ShaderfxShader(self, *args, **kwargs): return self(u"ShaderfxShader", *args, **kwargs) def SphereLocator(self, *args, **kwargs): return self(u"SphereLocator", *args, **kwargs) def StingrayPBS(self, *args, **kwargs): return self(u"StingrayPBS", *args, **kwargs) def Unfold3DOptimize(self, *args, **kwargs): return self(u"Unfold3DOptimize", *args, **kwargs) def Unfold3DUnfold(self, *args, **kwargs): return self(u"Unfold3DUnfold", *args, **kwargs) def absOverride(self, *args, **kwargs): return self(u"absOverride", *args, **kwargs) def absUniqueOverride(self, *args, **kwargs): return self(u"absUniqueOverride", *args, **kwargs) def addDoubleLinear(self, *args, **kwargs): return self(u"addDoubleLinear", *args, **kwargs) def addMatrix(self, *args, **kwargs): return self(u"addMatrix", *args, **kwargs) def adskMaterial(self, *args, **kwargs): return self(u"adskMaterial", *args, **kwargs) def alignCurve(self, *args, **kwargs): return self(u"alignCurve", *args, **kwargs) def alignManip(self, *args, **kwargs): return self(u"alignManip", *args, **kwargs) def alignSurface(self, *args, **kwargs): return self(u"alignSurface", *args, **kwargs) def ambientLight(self, *args, **kwargs): return self(u"ambientLight", *args, **kwargs) def angleBetween(self, *args, **kwargs): return self(u"angleBetween", *args, **kwargs) def angleDimension(self, *args, **kwargs): return self(u"angleDimension", *args, **kwargs) def animBlend(self, *args, **kwargs): return self(u"animBlend", *args, **kwargs) def animBlendInOut(self, *args, **kwargs): return self(u"animBlendInOut", *args, **kwargs) def animBlendNodeEnum(self, *args, **kwargs): return self(u"animBlendNodeEnum", *args, **kwargs) def animBlendNodeTime(self, *args, **kwargs): return self(u"animBlendNodeTime", *args, **kwargs) def animClip(self, *args, **kwargs): return self(u"animClip", *args, **kwargs) def animCurveTA(self, *args, **kwargs): return self(u"animCurveTA", *args, **kwargs) def animCurveTL(self, *args, **kwargs): return self(u"animCurveTL", *args, **kwargs) def animCurveTT(self, *args, **kwargs): return self(u"animCurveTT", *args, **kwargs) def animCurveTU(self, *args, **kwargs): return self(u"animCurveTU", *args, **kwargs) def animCurveUA(self, *args, **kwargs): return self(u"animCurveUA", *args, **kwargs) def animCurveUL(self, *args, **kwargs): return self(u"animCurveUL", *args, **kwargs) def animCurveUT(self, *args, **kwargs): return self(u"animCurveUT", *args, **kwargs) def animCurveUU(self, *args, **kwargs): return self(u"animCurveUU", *args, **kwargs) def animLayer(self, *args, **kwargs): return self(u"animLayer", *args, **kwargs) def anisotropic(self, *args, **kwargs): return self(u"anisotropic", *args, **kwargs) def annotationShape(self, *args, **kwargs): return self(u"annotationShape", *args, **kwargs) def aovChildCollection(self, *args, **kwargs): return self(u"aovChildCollection", *args, **kwargs) def aovCollection(self, *args, **kwargs): return self(u"aovCollection", *args, **kwargs) def applyAbsIntOverride(self, *args, **kwargs): return self(u"applyAbsIntOverride", *args, **kwargs) def applyAbsOverride(self, *args, **kwargs): return self(u"applyAbsOverride", *args, **kwargs) def applyOverride(self, *args, **kwargs): return self(u"applyOverride", *args, **kwargs) def applyRelIntOverride(self, *args, **kwargs): return self(u"applyRelIntOverride", *args, **kwargs) def applyRelOverride(self, *args, **kwargs): return self(u"applyRelOverride", *args, **kwargs) def arcLengthDimension(self, *args, **kwargs): return self(u"arcLengthDimension", *args, **kwargs) def areaLight(self, *args, **kwargs): return self(u"areaLight", *args, **kwargs) def arrayMapper(self, *args, **kwargs): return self(u"arrayMapper", *args, **kwargs) def arrowManip(self, *args, **kwargs): return self(u"arrowManip", *args, **kwargs) def arubaTessellate(self, *args, **kwargs): return self(u"arubaTessellate", *args, **kwargs) def assemblyDefinition(self, *args, **kwargs): return self(u"assemblyDefinition", *args, **kwargs) def assemblyReference(self, *args, **kwargs): return self(u"assemblyReference", *args, **kwargs) def attachCurve(self, *args, **kwargs): return self(u"attachCurve", *args, **kwargs) def attachSurface(self, *args, **kwargs): return self(u"attachSurface", *args, **kwargs) def attrHierarchyTest(self, *args, **kwargs): return self(u"attrHierarchyTest", *args, **kwargs) def audio(self, *args, **kwargs): return self(u"audio", *args, **kwargs) def avgCurves(self, *args, **kwargs): return self(u"avgCurves", *args, **kwargs) def avgCurvesManip(self, *args, **kwargs): return self(u"avgCurvesManip", *args, **kwargs) def avgSurfacePoints(self, *args, **kwargs): return self(u"avgSurfacePoints", *args, **kwargs) def axesActionManip(self, *args, **kwargs): return self(u"axesActionManip", *args, **kwargs) def axisAngleToQuat(self, *args, **kwargs): return self(u"axisAngleToQuat", *args, **kwargs) def ballProjManip(self, *args, **kwargs): return self(u"ballProjManip", *args, **kwargs) def barnDoorManip(self, *args, **kwargs): return self(u"barnDoorManip", *args, **kwargs) def baseLattice(self, *args, **kwargs): return self(u"baseLattice", *args, **kwargs) def basicSelector(self, *args, **kwargs): return self(u"basicSelector", *args, **kwargs) def bevel(self, *args, **kwargs): return self(u"bevel", *args, **kwargs) def bevelManip(self, *args, **kwargs): return self(u"bevelManip", *args, **kwargs) def bevelPlus(self, *args, **kwargs): return self(u"bevelPlus", *args, **kwargs) def bezierCurve(self, *args, **kwargs): return self(u"bezierCurve", *args, **kwargs) def bezierCurveToNurbs(self, *args, **kwargs): return self(u"bezierCurveToNurbs", *args, **kwargs) def bifShape(self, *args, **kwargs): return self(u"bifShape", *args, **kwargs) def blendColorSets(self, *args, **kwargs): return self(u"blendColorSets", *args, **kwargs) def blendColors(self, *args, **kwargs): return self(u"blendColors", *args, **kwargs) def blendDevice(self, *args, **kwargs): return self(u"blendDevice", *args, **kwargs) def blendManip(self, *args, **kwargs): return self(u"blendManip", *args, **kwargs) def blendMatrix(self, *args, **kwargs): return self(u"blendMatrix", *args, **kwargs) def blendShape(self, *args, **kwargs): return self(u"blendShape", *args, **kwargs) def blendTwoAttr(self, *args, **kwargs): return self(u"blendTwoAttr", *args, **kwargs) def blendWeighted(self, *args, **kwargs): return self(u"blendWeighted", *args, **kwargs) def blindDataTemplate(self, *args, **kwargs): return self(u"blindDataTemplate", *args, **kwargs) def blinn(self, *args, **kwargs): return self(u"blinn", *args, **kwargs) def boneLattice(self, *args, **kwargs): return self(u"boneLattice", *args, **kwargs) def boolean(self, *args, **kwargs): return self(u"boolean", *args, **kwargs) def boundary(self, *args, **kwargs): return self(u"boundary", *args, **kwargs) def brownian(self, *args, **kwargs): return self(u"brownian", *args, **kwargs) def brush(self, *args, **kwargs): return self(u"brush", *args, **kwargs) def bulge(self, *args, **kwargs): return self(u"bulge", *args, **kwargs) def bump2d(self, *args, **kwargs): return self(u"bump2d", *args, **kwargs) def bump3d(self, *args, **kwargs): return self(u"bump3d", *args, **kwargs) def buttonManip(self, *args, **kwargs): return self(u"buttonManip", *args, **kwargs) def cMuscleCreator(self, *args, **kwargs): return self(u"cMuscleCreator", *args, **kwargs) def cMuscleDebug(self, *args, **kwargs): return self(u"cMuscleDebug", *args, **kwargs) def cMuscleDirection(self, *args, **kwargs): return self(u"cMuscleDirection", *args, **kwargs) def cMuscleDisplace(self, *args, **kwargs): return self(u"cMuscleDisplace", *args, **kwargs) def cMuscleDisplay(self, *args, **kwargs): return self(u"cMuscleDisplay", *args, **kwargs) def cMuscleFalloff(self, *args, **kwargs): return self(u"cMuscleFalloff", *args, **kwargs) def cMuscleKeepOut(self, *args, **kwargs): return self(u"cMuscleKeepOut", *args, **kwargs) def cMuscleMultiCollide(self, *args, **kwargs): return self(u"cMuscleMultiCollide", *args, **kwargs) def cMuscleObject(self, *args, **kwargs): return self(u"cMuscleObject", *args, **kwargs) def cMuscleRelative(self, *args, **kwargs): return self(u"cMuscleRelative", *args, **kwargs) def cMuscleShader(self, *args, **kwargs): return self(u"cMuscleShader", *args, **kwargs) def cMuscleSmartCollide(self, *args, **kwargs): return self(u"cMuscleSmartCollide", *args, **kwargs) def cMuscleSpline(self, *args, **kwargs): return self(u"cMuscleSpline", *args, **kwargs) def cMuscleStretch(self, *args, **kwargs): return self(u"cMuscleStretch", *args, **kwargs) def cMuscleSurfAttach(self, *args, **kwargs): return self(u"cMuscleSurfAttach", *args, **kwargs) def cMuscleSystem(self, *args, **kwargs): return self(u"cMuscleSystem", *args, **kwargs) def cacheBlend(self, *args, **kwargs): return self(u"cacheBlend", *args, **kwargs) def cacheFile(self, *args, **kwargs): return self(u"cacheFile", *args, **kwargs) def caddyManip(self, *args, **kwargs): return self(u"caddyManip", *args, **kwargs) def caddyManipBase(self, *args, **kwargs): return self(u"caddyManipBase", *args, **kwargs) def camera(self, *args, **kwargs): return self(u"camera", *args, **kwargs) def cameraManip(self, *args, **kwargs): return self(u"cameraManip", *args, **kwargs) def cameraPlaneManip(self, *args, **kwargs): return self(u"cameraPlaneManip", *args, **kwargs) def cameraSet(self, *args, **kwargs): return self(u"cameraSet", *args, **kwargs) def cameraView(self, *args, **kwargs): return self(u"cameraView", *args, **kwargs) def centerManip(self, *args, **kwargs): return self(u"centerManip", *args, **kwargs) def channels(self, *args, **kwargs): return self(u"channels", *args, **kwargs) def character(self, *args, **kwargs): return self(u"character", *args, **kwargs) def characterMap(self, *args, **kwargs): return self(u"characterMap", *args, **kwargs) def characterOffset(self, *args, **kwargs): return self(u"characterOffset", *args, **kwargs) def checker(self, *args, **kwargs): return self(u"checker", *args, **kwargs) def childNode(self, *args, **kwargs): return self(u"childNode", *args, **kwargs) def choice(self, *args, **kwargs): return self(u"choice", *args, **kwargs) def chooser(self, *args, **kwargs): return self(u"chooser", *args, **kwargs) def circleManip(self, *args, **kwargs): return self(u"circleManip", *args, **kwargs) def circleSweepManip(self, *args, **kwargs): return self(u"circleSweepManip", *args, **kwargs) def clamp(self, *args, **kwargs): return self(u"clamp", *args, **kwargs) def clipGhostShape(self, *args, **kwargs): return self(u"clipGhostShape", *args, **kwargs) def clipLibrary(self, *args, **kwargs): return self(u"clipLibrary", *args, **kwargs) def clipScheduler(self, *args, **kwargs): return self(u"clipScheduler", *args, **kwargs) def clipToGhostData(self, *args, **kwargs): return self(u"clipToGhostData", *args, **kwargs) def closeCurve(self, *args, **kwargs): return self(u"closeCurve", *args, **kwargs) def closeSurface(self, *args, **kwargs): return self(u"closeSurface", *args, **kwargs) def closestPointOnMesh(self, *args, **kwargs): return self(u"closestPointOnMesh", *args, **kwargs) def cloth(self, *args, **kwargs): return self(u"cloth", *args, **kwargs) def cloud(self, *args, **kwargs): return self(u"cloud", *args, **kwargs) def cluster(self, *args, **kwargs): return self(u"cluster", *args, **kwargs) def clusterFlexorShape(self, *args, **kwargs): return self(u"clusterFlexorShape", *args, **kwargs) def clusterHandle(self, *args, **kwargs): return self(u"clusterHandle", *args, **kwargs) def coiManip(self, *args, **kwargs): return self(u"coiManip", *args, **kwargs) def collection(self, *args, **kwargs): return self(u"collection", *args, **kwargs) def collisionModel(self, *args, **kwargs): return self(u"collisionModel", *args, **kwargs) def colorComposite(self, *args, **kwargs): return self(u"colorComposite", *args, **kwargs) def colorCondition(self, *args, **kwargs): return self(u"colorCondition", *args, **kwargs) def colorConstant(self, *args, **kwargs): return self(u"colorConstant", *args, **kwargs) def colorCorrect(self, *args, **kwargs): return self(u"colorCorrect", *args, **kwargs) def colorLogic(self, *args, **kwargs): return self(u"colorLogic", *args, **kwargs) def colorMask(self, *args, **kwargs): return self(u"colorMask", *args, **kwargs) def colorMath(self, *args, **kwargs): return self(u"colorMath", *args, **kwargs) def colorProfile(self, *args, **kwargs): return self(u"colorProfile", *args, **kwargs) def combinationShape(self, *args, **kwargs): return self(u"combinationShape", *args, **kwargs) def componentManip(self, *args, **kwargs): return self(u"componentManip", *args, **kwargs) def composeMatrix(self, *args, **kwargs): return self(u"composeMatrix", *args, **kwargs) def concentricProjManip(self, *args, **kwargs): return self(u"concentricProjManip", *args, **kwargs) def condition(self, *args, **kwargs): return self(u"condition", *args, **kwargs) def connectionOverride(self, *args, **kwargs): return self(u"connectionOverride", *args, **kwargs) def container(self, *args, **kwargs): return self(u"container", *args, **kwargs) def containerBase(self, *args, **kwargs): return self(u"containerBase", *args, **kwargs) def contourProjManip(self, *args, **kwargs): return self(u"contourProjManip", *args, **kwargs) def contrast(self, *args, **kwargs): return self(u"contrast", *args, **kwargs) def controller(self, *args, **kwargs): return self(u"controller", *args, **kwargs) def copyColorSet(self, *args, **kwargs): return self(u"copyColorSet", *args, **kwargs) def copyUVSet(self, *args, **kwargs): return self(u"copyUVSet", *args, **kwargs) def cpManip(self, *args, **kwargs): return self(u"cpManip", *args, **kwargs) def crater(self, *args, **kwargs): return self(u"crater", *args, **kwargs) def creaseSet(self, *args, **kwargs): return self(u"creaseSet", *args, **kwargs) def createBPManip(self, *args, **kwargs): return self(u"createBPManip", *args, **kwargs) def createCVManip(self, *args, **kwargs): return self(u"createCVManip", *args, **kwargs) def createColorSet(self, *args, **kwargs): return self(u"createColorSet", *args, **kwargs) def createEPManip(self, *args, **kwargs): return self(u"createEPManip", *args, **kwargs) def createPtexUV(self, *args, **kwargs): return self(u"createPtexUV", *args, **kwargs) def createUVSet(self, *args, **kwargs): return self(u"createUVSet", *args, **kwargs) def cryptomatte(self, *args, **kwargs): return self(u"cryptomatte", *args, **kwargs) def cubeManip(self, *args, **kwargs): return self(u"cubeManip", *args, **kwargs) def cubicProjManip(self, *args, **kwargs): return self(u"cubicProjManip", *args, **kwargs) def curveEdManip(self, *args, **kwargs): return self(u"curveEdManip", *args, **kwargs) def curveFromMeshCoM(self, *args, **kwargs): return self(u"curveFromMeshCoM", *args, **kwargs) def curveFromMeshEdge(self, *args, **kwargs): return self(u"curveFromMeshEdge", *args, **kwargs) def curveFromSubdivEdge(self, *args, **kwargs): return self(u"curveFromSubdivEdge", *args, **kwargs) def curveFromSubdivFace(self, *args, **kwargs): return self(u"curveFromSubdivFace", *args, **kwargs) def curveFromSurfaceBnd(self, *args, **kwargs): return self(u"curveFromSurfaceBnd", *args, **kwargs) def curveFromSurfaceCoS(self, *args, **kwargs): return self(u"curveFromSurfaceCoS", *args, **kwargs) def curveFromSurfaceIso(self, *args, **kwargs): return self(u"curveFromSurfaceIso", *args, **kwargs) def curveInfo(self, *args, **kwargs): return self(u"curveInfo", *args, **kwargs) def curveIntersect(self, *args, **kwargs): return self(u"curveIntersect", *args, **kwargs) def curveSegmentManip(self, *args, **kwargs): return self(u"curveSegmentManip", *args, **kwargs) def curveVarGroup(self, *args, **kwargs): return self(u"curveVarGroup", *args, **kwargs) def curveWarp(self, *args, **kwargs): return self(u"curveWarp", *args, **kwargs) def dagContainer(self, *args, **kwargs): return self(u"dagContainer", *args, **kwargs) def dagPose(self, *args, **kwargs): return self(u"dagPose", *args, **kwargs) def dataBlockTest(self, *args, **kwargs): return self(u"dataBlockTest", *args, **kwargs) def decomposeMatrix(self, *args, **kwargs): return self(u"decomposeMatrix", *args, **kwargs) def defaultLightList(self, *args, **kwargs): return self(u"defaultLightList", *args, **kwargs) def defaultShaderList(self, *args, **kwargs): return self(u"defaultShaderList", *args, **kwargs) def defaultTextureList(self, *args, **kwargs): return self(u"defaultTextureList", *args, **kwargs) def deformBend(self, *args, **kwargs): return self(u"deformBend", *args, **kwargs) def deformBendManip(self, *args, **kwargs): return self(u"deformBendManip", *args, **kwargs) def deformFlare(self, *args, **kwargs): return self(u"deformFlare", *args, **kwargs) def deformFlareManip(self, *args, **kwargs): return self(u"deformFlareManip", *args, **kwargs) def deformSine(self, *args, **kwargs): return self(u"deformSine", *args, **kwargs) def deformSineManip(self, *args, **kwargs): return self(u"deformSineManip", *args, **kwargs) def deformSquash(self, *args, **kwargs): return self(u"deformSquash", *args, **kwargs) def deformSquashManip(self, *args, **kwargs): return self(u"deformSquashManip", *args, **kwargs) def deformTwist(self, *args, **kwargs): return self(u"deformTwist", *args, **kwargs) def deformTwistManip(self, *args, **kwargs): return self(u"deformTwistManip", *args, **kwargs) def deformWave(self, *args, **kwargs): return self(u"deformWave", *args, **kwargs) def deformWaveManip(self, *args, **kwargs): return self(u"deformWaveManip", *args, **kwargs) def deleteColorSet(self, *args, **kwargs): return self(u"deleteColorSet", *args, **kwargs) def deleteComponent(self, *args, **kwargs): return self(u"deleteComponent", *args, **kwargs) def deleteUVSet(self, *args, **kwargs): return self(u"deleteUVSet", *args, **kwargs) def deltaMush(self, *args, **kwargs): return self(u"deltaMush", *args, **kwargs) def detachCurve(self, *args, **kwargs): return self(u"detachCurve", *args, **kwargs) def detachSurface(self, *args, **kwargs): return self(u"detachSurface", *args, **kwargs) def directedDisc(self, *args, **kwargs): return self(u"directedDisc", *args, **kwargs) def directionManip(self, *args, **kwargs): return self(u"directionManip", *args, **kwargs) def directionalLight(self, *args, **kwargs): return self(u"directionalLight", *args, **kwargs) def discManip(self, *args, **kwargs): return self(u"discManip", *args, **kwargs) def diskCache(self, *args, **kwargs): return self(u"diskCache", *args, **kwargs) def displacementShader(self, *args, **kwargs): return self(u"displacementShader", *args, **kwargs) def displayLayer(self, *args, **kwargs): return self(u"displayLayer", *args, **kwargs) def displayLayerManager(self, *args, **kwargs): return self(u"displayLayerManager", *args, **kwargs) def displayPoints(self, *args, **kwargs): return self(u"displayPoints", *args, **kwargs) def distanceBetween(self, *args, **kwargs): return self(u"distanceBetween", *args, **kwargs) def distanceDimShape(self, *args, **kwargs): return self(u"distanceDimShape", *args, **kwargs) def distanceManip(self, *args, **kwargs): return self(u"distanceManip", *args, **kwargs) def dofManip(self, *args, **kwargs): return self(u"dofManip", *args, **kwargs) def doubleShadingSwitch(self, *args, **kwargs): return self(u"doubleShadingSwitch", *args, **kwargs) def dpBirailSrf(self, *args, **kwargs): return self(u"dpBirailSrf", *args, **kwargs) def dragField(self, *args, **kwargs): return self(u"dragField", *args, **kwargs) def dropoffLocator(self, *args, **kwargs): return self(u"dropoffLocator", *args, **kwargs) def dropoffManip(self, *args, **kwargs): return self(u"dropoffManip", *args, **kwargs) def dynAttenuationManip(self, *args, **kwargs): return self(u"dynAttenuationManip", *args, **kwargs) def dynController(self, *args, **kwargs): return self(u"dynController", *args, **kwargs) def dynGlobals(self, *args, **kwargs): return self(u"dynGlobals", *args, **kwargs) def dynHolder(self, *args, **kwargs): return self(u"dynHolder", *args, **kwargs) def dynSpreadManip(self, *args, **kwargs): return self(u"dynSpreadManip", *args, **kwargs) def dynamicConstraint(self, *args, **kwargs): return self(u"dynamicConstraint", *args, **kwargs) def editMetadata(self, *args, **kwargs): return self(u"editMetadata", *args, **kwargs) def editsManager(self, *args, **kwargs): return self(u"editsManager", *args, **kwargs) def emitterManip(self, *args, **kwargs): return self(u"emitterManip", *args, **kwargs) def enableManip(self, *args, **kwargs): return self(u"enableManip", *args, **kwargs) def envBall(self, *args, **kwargs): return self(u"envBall", *args, **kwargs) def envChrome(self, *args, **kwargs): return self(u"envChrome", *args, **kwargs) def envCube(self, *args, **kwargs): return self(u"envCube", *args, **kwargs) def envFacade(self, *args, **kwargs): return self(u"envFacade", *args, **kwargs) def envFog(self, *args, **kwargs): return self(u"envFog", *args, **kwargs) def envSky(self, *args, **kwargs): return self(u"envSky", *args, **kwargs) def envSphere(self, *args, **kwargs): return self(u"envSphere", *args, **kwargs) def environmentFog(self, *args, **kwargs): return self(u"environmentFog", *args, **kwargs) def eulerToQuat(self, *args, **kwargs): return self(u"eulerToQuat", *args, **kwargs) def explodeNurbsShell(self, *args, **kwargs): return self(u"explodeNurbsShell", *args, **kwargs) def expression(self, *args, **kwargs): return self(u"expression", *args, **kwargs) def extendCurve(self, *args, **kwargs): return self(u"extendCurve", *args, **kwargs) def extendSurface(self, *args, **kwargs): return self(u"extendSurface", *args, **kwargs) def extrude(self, *args, **kwargs): return self(u"extrude", *args, **kwargs) def extrudeManip(self, *args, **kwargs): return self(u"extrudeManip", *args, **kwargs) def facade(self, *args, **kwargs): return self(u"facade", *args, **kwargs) def ffBlendSrf(self, *args, **kwargs): return self(u"ffBlendSrf", *args, **kwargs) def ffBlendSrfObsolete(self, *args, **kwargs): return self(u"ffBlendSrfObsolete", *args, **kwargs) def ffFilletSrf(self, *args, **kwargs): return self(u"ffFilletSrf", *args, **kwargs) def fieldManip(self, *args, **kwargs): return self(u"fieldManip", *args, **kwargs) def fieldsManip(self, *args, **kwargs): return self(u"fieldsManip", *args, **kwargs) def file(self, *args, **kwargs): return self(u"file", *args, **kwargs) def filletCurve(self, *args, **kwargs): return self(u"filletCurve", *args, **kwargs) def fitBspline(self, *args, **kwargs): return self(u"fitBspline", *args, **kwargs) def flexorShape(self, *args, **kwargs): return self(u"flexorShape", *args, **kwargs) def floatComposite(self, *args, **kwargs): return self(u"floatComposite", *args, **kwargs) def floatCondition(self, *args, **kwargs): return self(u"floatCondition", *args, **kwargs) def floatConstant(self, *args, **kwargs): return self(u"floatConstant", *args, **kwargs) def floatCorrect(self, *args, **kwargs): return self(u"floatCorrect", *args, **kwargs) def floatLogic(self, *args, **kwargs): return self(u"floatLogic", *args, **kwargs) def floatMask(self, *args, **kwargs): return self(u"floatMask", *args, **kwargs) def floatMath(self, *args, **kwargs): return self(u"floatMath", *args, **kwargs) def flow(self, *args, **kwargs): return self(u"flow", *args, **kwargs) def fluidEmitter(self, *args, **kwargs): return self(u"fluidEmitter", *args, **kwargs) def fluidShape(self, *args, **kwargs): return self(u"fluidShape", *args, **kwargs) def fluidSliceManip(self, *args, **kwargs): return self(u"fluidSliceManip", *args, **kwargs) def fluidTexture2D(self, *args, **kwargs): return self(u"fluidTexture2D", *args, **kwargs) def fluidTexture3D(self, *args, **kwargs): return self(u"fluidTexture3D", *args, **kwargs) def follicle(self, *args, **kwargs): return self(u"follicle", *args, **kwargs) def forceUpdateManip(self, *args, **kwargs): return self(u"forceUpdateManip", *args, **kwargs) def fosterParent(self, *args, **kwargs): return self(u"fosterParent", *args, **kwargs) def fourByFourMatrix(self, *args, **kwargs): return self(u"fourByFourMatrix", *args, **kwargs) def fractal(self, *args, **kwargs): return self(u"fractal", *args, **kwargs) def frameCache(self, *args, **kwargs): return self(u"frameCache", *args, **kwargs) def freePointManip(self, *args, **kwargs): return self(u"freePointManip", *args, **kwargs) def freePointTriadManip(self, *args, **kwargs): return self(u"freePointTriadManip", *args, **kwargs) def gameFbxExporter(self, *args, **kwargs): return self(u"gameFbxExporter", *args, **kwargs) def gammaCorrect(self, *args, **kwargs): return self(u"gammaCorrect", *args, **kwargs) def geoConnectable(self, *args, **kwargs): return self(u"geoConnectable", *args, **kwargs) def geoConnector(self, *args, **kwargs): return self(u"geoConnector", *args, **kwargs) def geomBind(self, *args, **kwargs): return self(u"geomBind", *args, **kwargs) def geometryConstraint(self, *args, **kwargs): return self(u"geometryConstraint", *args, **kwargs) def geometryFilter(self, *args, **kwargs): return self(u"geometryFilter", *args, **kwargs) def geometryOnLineManip(self, *args, **kwargs): return self(u"geometryOnLineManip", *args, **kwargs) def geometryVarGroup(self, *args, **kwargs): return self(u"geometryVarGroup", *args, **kwargs) def globalCacheControl(self, *args, **kwargs): return self(u"globalCacheControl", *args, **kwargs) def globalStitch(self, *args, **kwargs): return self(u"globalStitch", *args, **kwargs) def gpuCache(self, *args, **kwargs): return self(u"gpuCache", *args, **kwargs) def granite(self, *args, **kwargs): return self(u"granite", *args, **kwargs) def gravityField(self, *args, **kwargs): return self(u"gravityField", *args, **kwargs) def greasePlane(self, *args, **kwargs): return self(u"greasePlane", *args, **kwargs) def grid(self, *args, **kwargs): return self(u"grid", *args, **kwargs) def group(self, *args, **kwargs): return self(u"group", *args, **kwargs) def groupId(self, *args, **kwargs): return self(u"groupId", *args, **kwargs) def groupParts(self, *args, **kwargs): return self(u"groupParts", *args, **kwargs) def guide(self, *args, **kwargs): return self(u"guide", *args, **kwargs) def hairConstraint(self, *args, **kwargs): return self(u"hairConstraint", *args, **kwargs) def hairPhysicalShader(self, *args, **kwargs): return self(u"hairPhysicalShader", *args, **kwargs) def hairSystem(self, *args, **kwargs): return self(u"hairSystem", *args, **kwargs) def hairTubeShader(self, *args, **kwargs): return self(u"hairTubeShader", *args, **kwargs) def hardenPoint(self, *args, **kwargs): return self(u"hardenPoint", *args, **kwargs) def heightField(self, *args, **kwargs): return self(u"heightField", *args, **kwargs) def hierarchyTestNode1(self, *args, **kwargs): return self(u"hierarchyTestNode1", *args, **kwargs) def hierarchyTestNode2(self, *args, **kwargs): return self(u"hierarchyTestNode2", *args, **kwargs) def hierarchyTestNode3(self, *args, **kwargs): return self(u"hierarchyTestNode3", *args, **kwargs) def hikEffector(self, *args, **kwargs): return self(u"hikEffector", *args, **kwargs) def hikFKJoint(self, *args, **kwargs): return self(u"hikFKJoint", *args, **kwargs) def hikGroundPlane(self, *args, **kwargs): return self(u"hikGroundPlane", *args, **kwargs) def hikHandle(self, *args, **kwargs): return self(u"hikHandle", *args, **kwargs) def hikIKEffector(self, *args, **kwargs): return self(u"hikIKEffector", *args, **kwargs) def hikSolver(self, *args, **kwargs): return self(u"hikSolver", *args, **kwargs) def historySwitch(self, *args, **kwargs): return self(u"historySwitch", *args, **kwargs) def holdMatrix(self, *args, **kwargs): return self(u"holdMatrix", *args, **kwargs) def hsvToRgb(self, *args, **kwargs): return self(u"hsvToRgb", *args, **kwargs) def hwReflectionMap(self, *args, **kwargs): return self(u"hwReflectionMap", *args, **kwargs) def hwRenderGlobals(self, *args, **kwargs): return self(u"hwRenderGlobals", *args, **kwargs) def hyperGraphInfo(self, *args, **kwargs): return self(u"hyperGraphInfo", *args, **kwargs) def hyperLayout(self, *args, **kwargs): return self(u"hyperLayout", *args, **kwargs) def hyperView(self, *args, **kwargs): return self(u"hyperView", *args, **kwargs) def igBrushManip(self, *args, **kwargs): return self(u"igBrushManip", *args, **kwargs) def igmDescription(self, *args, **kwargs): return self(u"igmDescription", *args, **kwargs) def ik2Bsolver(self, *args, **kwargs): return self(u"ik2Bsolver", *args, **kwargs) def ikEffector(self, *args, **kwargs): return self(u"ikEffector", *args, **kwargs) def ikHandle(self, *args, **kwargs): return self(u"ikHandle", *args, **kwargs) def ikMCsolver(self, *args, **kwargs): return self(u"ikMCsolver", *args, **kwargs) def ikPASolver(self, *args, **kwargs): return self(u"ikPASolver", *args, **kwargs) def ikRPManip(self, *args, **kwargs): return self(u"ikRPManip", *args, **kwargs) def ikRPsolver(self, *args, **kwargs): return self(u"ikRPsolver", *args, **kwargs) def ikSCsolver(self, *args, **kwargs): return self(u"ikSCsolver", *args, **kwargs) def ikSplineManip(self, *args, **kwargs): return self(u"ikSplineManip", *args, **kwargs) def ikSplineSolver(self, *args, **kwargs): return self(u"ikSplineSolver", *args, **kwargs) def ikSpringSolver(self, *args, **kwargs): return self(u"ikSpringSolver", *args, **kwargs) def ikSystem(self, *args, **kwargs): return self(u"ikSystem", *args, **kwargs) def imagePlane(self, *args, **kwargs): return self(u"imagePlane", *args, **kwargs) def implicitBox(self, *args, **kwargs): return self(u"implicitBox", *args, **kwargs) def implicitCone(self, *args, **kwargs): return self(u"implicitCone", *args, **kwargs) def implicitSphere(self, *args, **kwargs): return self(u"implicitSphere", *args, **kwargs) def indexManip(self, *args, **kwargs): return self(u"indexManip", *args, **kwargs) def insertKnotCurve(self, *args, **kwargs): return self(u"insertKnotCurve", *args, **kwargs) def insertKnotSurface(self, *args, **kwargs): return self(u"insertKnotSurface", *args, **kwargs) def instancer(self, *args, **kwargs): return self(u"instancer", *args, **kwargs) def intersectSurface(self, *args, **kwargs): return self(u"intersectSurface", *args, **kwargs) def inverseMatrix(self, *args, **kwargs): return self(u"inverseMatrix", *args, **kwargs) def isoparmManip(self, *args, **kwargs): return self(u"isoparmManip", *args, **kwargs) def jiggle(self, *args, **kwargs): return self(u"jiggle", *args, **kwargs) def joint(self, *args, **kwargs): return self(u"joint", *args, **kwargs) def jointCluster(self, *args, **kwargs): return self(u"jointCluster", *args, **kwargs) def jointClusterManip(self, *args, **kwargs): return self(u"jointClusterManip", *args, **kwargs) def jointFfd(self, *args, **kwargs): return self(u"jointFfd", *args, **kwargs) def jointLattice(self, *args, **kwargs): return self(u"jointLattice", *args, **kwargs) def jointTranslateManip(self, *args, **kwargs): return self(u"jointTranslateManip", *args, **kwargs) def keyframeRegionManip(self, *args, **kwargs): return self(u"keyframeRegionManip", *args, **kwargs) def keyingGroup(self, *args, **kwargs): return self(u"keyingGroup", *args, **kwargs) def lambert(self, *args, **kwargs): return self(u"lambert", *args, **kwargs) def lattice(self, *args, **kwargs): return self(u"lattice", *args, **kwargs) def layeredShader(self, *args, **kwargs): return self(u"layeredShader", *args, **kwargs) def layeredTexture(self, *args, **kwargs): return self(u"layeredTexture", *args, **kwargs) def leather(self, *args, **kwargs): return self(u"leather", *args, **kwargs) def lightEditor(self, *args, **kwargs): return self(u"lightEditor", *args, **kwargs) def lightFog(self, *args, **kwargs): return self(u"lightFog", *args, **kwargs) def lightGroup(self, *args, **kwargs): return self(u"lightGroup", *args, **kwargs) def lightInfo(self, *args, **kwargs): return self(u"lightInfo", *args, **kwargs) def lightItem(self, *args, **kwargs): return self(u"lightItem", *args, **kwargs) def lightItemBase(self, *args, **kwargs): return self(u"lightItemBase", *args, **kwargs) def lightLinker(self, *args, **kwargs): return self(u"lightLinker", *args, **kwargs) def lightList(self, *args, **kwargs): return self(u"lightList", *args, **kwargs) def lightManip(self, *args, **kwargs): return self(u"lightManip", *args, **kwargs) def lightsCollection(self, *args, **kwargs): return self(u"lightsCollection", *args, **kwargs) def limitManip(self, *args, **kwargs): return self(u"limitManip", *args, **kwargs) def lineManip(self, *args, **kwargs): return self(u"lineManip", *args, **kwargs) def lineModifier(self, *args, **kwargs): return self(u"lineModifier", *args, **kwargs) def listItem(self, *args, **kwargs): return self(u"listItem", *args, **kwargs) def locator(self, *args, **kwargs): return self(u"locator", *args, **kwargs) def lodGroup(self, *args, **kwargs): return self(u"lodGroup", *args, **kwargs) def lodThresholds(self, *args, **kwargs): return self(u"lodThresholds", *args, **kwargs) def loft(self, *args, **kwargs): return self(u"loft", *args, **kwargs) def lookAt(self, *args, **kwargs): return self(u"lookAt", *args, **kwargs) def luminance(self, *args, **kwargs): return self(u"luminance", *args, **kwargs) def makeGroup(self, *args, **kwargs): return self(u"makeGroup", *args, **kwargs) def makeNurbCircle(self, *args, **kwargs): return self(u"makeNurbCircle", *args, **kwargs) def makeNurbCone(self, *args, **kwargs): return self(u"makeNurbCone", *args, **kwargs) def makeNurbCube(self, *args, **kwargs): return self(u"makeNurbCube", *args, **kwargs) def makeNurbCylinder(self, *args, **kwargs): return self(u"makeNurbCylinder", *args, **kwargs) def makeNurbPlane(self, *args, **kwargs): return self(u"makeNurbPlane", *args, **kwargs) def makeNurbSphere(self, *args, **kwargs): return self(u"makeNurbSphere", *args, **kwargs) def makeNurbTorus(self, *args, **kwargs): return self(u"makeNurbTorus", *args, **kwargs) def makeNurbsSquare(self, *args, **kwargs): return self(u"makeNurbsSquare", *args, **kwargs) def makeTextCurves(self, *args, **kwargs): return self(u"makeTextCurves", *args, **kwargs) def mandelbrot(self, *args, **kwargs): return self(u"mandelbrot", *args, **kwargs) def mandelbrot3D(self, *args, **kwargs): return self(u"mandelbrot3D", *args, **kwargs) def manip2DContainer(self, *args, **kwargs): return self(u"manip2DContainer", *args, **kwargs) def manipContainer(self, *args, **kwargs): return self(u"manipContainer", *args, **kwargs) def marble(self, *args, **kwargs): return self(u"marble", *args, **kwargs) def markerManip(self, *args, **kwargs): return self(u"markerManip", *args, **kwargs) def materialFacade(self, *args, **kwargs): return self(u"materialFacade", *args, **kwargs) def materialInfo(self, *args, **kwargs): return self(u"materialInfo", *args, **kwargs) def materialOverride(self, *args, **kwargs): return self(u"materialOverride", *args, **kwargs) def membrane(self, *args, **kwargs): return self(u"membrane", *args, **kwargs) def mesh(self, *args, **kwargs): return self(u"mesh", *args, **kwargs) def meshVarGroup(self, *args, **kwargs): return self(u"meshVarGroup", *args, **kwargs) def motionPath(self, *args, **kwargs): return self(u"motionPath", *args, **kwargs) def motionPathManip(self, *args, **kwargs): return self(u"motionPathManip", *args, **kwargs) def motionTrail(self, *args, **kwargs): return self(u"motionTrail", *args, **kwargs) def motionTrailShape(self, *args, **kwargs): return self(u"motionTrailShape", *args, **kwargs) def mountain(self, *args, **kwargs): return self(u"mountain", *args, **kwargs) def moveVertexManip(self, *args, **kwargs): return self(u"moveVertexManip", *args, **kwargs) def movie(self, *args, **kwargs): return self(u"movie", *args, **kwargs) def mpBirailSrf(self, *args, **kwargs): return self(u"mpBirailSrf", *args, **kwargs) def multDoubleLinear(self, *args, **kwargs): return self(u"multDoubleLinear", *args, **kwargs) def multMatrix(self, *args, **kwargs): return self(u"multMatrix", *args, **kwargs) def multilisterLight(self, *args, **kwargs): return self(u"multilisterLight", *args, **kwargs) def multiplyDivide(self, *args, **kwargs): return self(u"multiplyDivide", *args, **kwargs) def mute(self, *args, **kwargs): return self(u"mute", *args, **kwargs) def nCloth(self, *args, **kwargs): return self(u"nCloth", *args, **kwargs) def nComponent(self, *args, **kwargs): return self(u"nComponent", *args, **kwargs) def nParticle(self, *args, **kwargs): return self(u"nParticle", *args, **kwargs) def nRigid(self, *args, **kwargs): return self(u"nRigid", *args, **kwargs) def nearestPointOnCurve(self, *args, **kwargs): return self(u"nearestPointOnCurve", *args, **kwargs) def network(self, *args, **kwargs): return self(u"network", *args, **kwargs) def newtonField(self, *args, **kwargs): return self(u"newtonField", *args, **kwargs) def newtonManip(self, *args, **kwargs): return self(u"newtonManip", *args, **kwargs) def nexManip(self, *args, **kwargs): return self(u"nexManip", *args, **kwargs) def nodeGraphEditorInfo(self, *args, **kwargs): return self(u"nodeGraphEditorInfo", *args, **kwargs) def noise(self, *args, **kwargs): return self(u"noise", *args, **kwargs) def nonLinear(self, *args, **kwargs): return self(u"nonLinear", *args, **kwargs) def normalConstraint(self, *args, **kwargs): return self(u"normalConstraint", *args, **kwargs) def nucleus(self, *args, **kwargs): return self(u"nucleus", *args, **kwargs) def nurbsCurve(self, *args, **kwargs): return self(u"nurbsCurve", *args, **kwargs) def nurbsCurveToBezier(self, *args, **kwargs): return self(u"nurbsCurveToBezier", *args, **kwargs) def nurbsSurface(self, *args, **kwargs): return self(u"nurbsSurface", *args, **kwargs) def nurbsTessellate(self, *args, **kwargs): return self(u"nurbsTessellate", *args, **kwargs) def nurbsToSubdiv(self, *args, **kwargs): return self(u"nurbsToSubdiv", *args, **kwargs) def nurbsToSubdivProc(self, *args, **kwargs): return self(u"nurbsToSubdivProc", *args, **kwargs) def objectAttrFilter(self, *args, **kwargs): return self(u"objectAttrFilter", *args, **kwargs) def objectBinFilter(self, *args, **kwargs): return self(u"objectBinFilter", *args, **kwargs) def objectFilter(self, *args, **kwargs): return self(u"objectFilter", *args, **kwargs) def objectGrpToComp(self, *args, **kwargs): return self(u"objectGrpToComp", *args, **kwargs) def objectMultiFilter(self, *args, **kwargs): return self(u"objectMultiFilter", *args, **kwargs) def objectNameFilter(self, *args, **kwargs): return self(u"objectNameFilter", *args, **kwargs) def objectRenderFilter(self, *args, **kwargs): return self(u"objectRenderFilter", *args, **kwargs) def objectScriptFilter(self, *args, **kwargs): return self(u"objectScriptFilter", *args, **kwargs) def objectSet(self, *args, **kwargs): return self(u"objectSet", *args, **kwargs) def objectTypeFilter(self, *args, **kwargs): return self(u"objectTypeFilter", *args, **kwargs) def ocean(self, *args, **kwargs): return self(u"ocean", *args, **kwargs) def oceanShader(self, *args, **kwargs): return self(u"oceanShader", *args, **kwargs) def offsetCos(self, *args, **kwargs): return self(u"offsetCos", *args, **kwargs) def offsetCosManip(self, *args, **kwargs): return self(u"offsetCosManip", *args, **kwargs) def offsetCurve(self, *args, **kwargs): return self(u"offsetCurve", *args, **kwargs) def offsetCurveManip(self, *args, **kwargs): return self(u"offsetCurveManip", *args, **kwargs) def offsetDeformer(self, *args, **kwargs): return self(u"offsetDeformer", *args, **kwargs) def offsetSurface(self, *args, **kwargs): return self(u"offsetSurface", *args, **kwargs) def offsetSurfaceManip(self, *args, **kwargs): return self(u"offsetSurfaceManip", *args, **kwargs) def oldBlindDataBase(self, *args, **kwargs): return self(u"oldBlindDataBase", *args, **kwargs) def oldNormalConstraint(self, *args, **kwargs): return self(u"oldNormalConstraint", *args, **kwargs) def opticalFX(self, *args, **kwargs): return self(u"opticalFX", *args, **kwargs) def orientConstraint(self, *args, **kwargs): return self(u"orientConstraint", *args, **kwargs) def orientationMarker(self, *args, **kwargs): return self(u"orientationMarker", *args, **kwargs) def override(self, *args, **kwargs): return self(u"override", *args, **kwargs) def pairBlend(self, *args, **kwargs): return self(u"pairBlend", *args, **kwargs) def paramDimension(self, *args, **kwargs): return self(u"paramDimension", *args, **kwargs) def parentConstraint(self, *args, **kwargs): return self(u"parentConstraint", *args, **kwargs) def particle(self, *args, **kwargs): return self(u"particle", *args, **kwargs) def particleAgeMapper(self, *args, **kwargs): return self(u"particleAgeMapper", *args, **kwargs) def particleCloud(self, *args, **kwargs): return self(u"particleCloud", *args, **kwargs) def particleColorMapper(self, *args, **kwargs): return self(u"particleColorMapper", *args, **kwargs) def particleSamplerInfo(self, *args, **kwargs): return self(u"particleSamplerInfo", *args, **kwargs) def partition(self, *args, **kwargs): return self(u"partition", *args, **kwargs) def passContributionMap(self, *args, **kwargs): return self(u"passContributionMap", *args, **kwargs) def passMatrix(self, *args, **kwargs): return self(u"passMatrix", *args, **kwargs) def pfxHair(self, *args, **kwargs): return self(u"pfxHair", *args, **kwargs) def pfxToon(self, *args, **kwargs): return self(u"pfxToon", *args, **kwargs) def phong(self, *args, **kwargs): return self(u"phong", *args, **kwargs) def phongE(self, *args, **kwargs): return self(u"phongE", *args, **kwargs) def pickMatrix(self, *args, **kwargs): return self(u"pickMatrix", *args, **kwargs) def pivot2dManip(self, *args, **kwargs): return self(u"pivot2dManip", *args, **kwargs) def pivotAndOrientManip(self, *args, **kwargs): return self(u"pivotAndOrientManip", *args, **kwargs) def place2dTexture(self, *args, **kwargs): return self(u"place2dTexture", *args, **kwargs) def place3dTexture(self, *args, **kwargs): return self(u"place3dTexture", *args, **kwargs) def placerTool(self, *args, **kwargs): return self(u"placerTool", *args, **kwargs) def planarProjManip(self, *args, **kwargs): return self(u"planarProjManip", *args, **kwargs) def planarTrimSurface(self, *args, **kwargs): return self(u"planarTrimSurface", *args, **kwargs) def plusMinusAverage(self, *args, **kwargs): return self(u"plusMinusAverage", *args, **kwargs) def pointConstraint(self, *args, **kwargs): return self(u"pointConstraint", *args, **kwargs) def pointEmitter(self, *args, **kwargs): return self(u"pointEmitter", *args, **kwargs) def pointLight(self, *args, **kwargs): return self(u"pointLight", *args, **kwargs) def pointMatrixMult(self, *args, **kwargs): return self(u"pointMatrixMult", *args, **kwargs) def pointOnCurveInfo(self, *args, **kwargs): return self(u"pointOnCurveInfo", *args, **kwargs) def pointOnCurveManip(self, *args, **kwargs): return self(u"pointOnCurveManip", *args, **kwargs) def pointOnLineManip(self, *args, **kwargs): return self(u"pointOnLineManip", *args, **kwargs) def pointOnSurfManip(self, *args, **kwargs): return self(u"pointOnSurfManip", *args, **kwargs) def pointOnSurfaceInfo(self, *args, **kwargs): return self(u"pointOnSurfaceInfo", *args, **kwargs) def pointOnSurfaceManip(self, *args, **kwargs): return self(u"pointOnSurfaceManip", *args, **kwargs) def polyAppend(self, *args, **kwargs): return self(u"polyAppend", *args, **kwargs) def polyAppendVertex(self, *args, **kwargs): return self(u"polyAppendVertex", *args, **kwargs) def polyAutoProj(self, *args, **kwargs): return self(u"polyAutoProj", *args, **kwargs) def polyAutoProjManip(self, *args, **kwargs): return self(u"polyAutoProjManip", *args, **kwargs) def polyAverageVertex(self, *args, **kwargs): return self(u"polyAverageVertex", *args, **kwargs) def polyBevel(self, *args, **kwargs): return self(u"polyBevel", *args, **kwargs) def polyBevel2(self, *args, **kwargs): return self(u"polyBevel2", *args, **kwargs) def polyBevel3(self, *args, **kwargs): return self(u"polyBevel3", *args, **kwargs) def polyBlindData(self, *args, **kwargs): return self(u"polyBlindData", *args, **kwargs) def polyBoolOp(self, *args, **kwargs): return self(u"polyBoolOp", *args, **kwargs) def polyBridgeEdge(self, *args, **kwargs): return self(u"polyBridgeEdge", *args, **kwargs) def polyCBoolOp(self, *args, **kwargs): return self(u"polyCBoolOp", *args, **kwargs) def polyCaddyManip(self, *args, **kwargs): return self(u"polyCaddyManip", *args, **kwargs) def polyChipOff(self, *args, **kwargs): return self(u"polyChipOff", *args, **kwargs) def polyCircularize(self, *args, **kwargs): return self(u"polyCircularize", *args, **kwargs) def polyClean(self, *args, **kwargs): return self(u"polyClean", *args, **kwargs) def polyCloseBorder(self, *args, **kwargs): return self(u"polyCloseBorder", *args, **kwargs) def polyCollapseEdge(self, *args, **kwargs): return self(u"polyCollapseEdge", *args, **kwargs) def polyCollapseF(self, *args, **kwargs): return self(u"polyCollapseF", *args, **kwargs) def polyColorDel(self, *args, **kwargs): return self(u"polyColorDel", *args, **kwargs) def polyColorMod(self, *args, **kwargs): return self(u"polyColorMod", *args, **kwargs) def polyColorPerVertex(self, *args, **kwargs): return self(u"polyColorPerVertex", *args, **kwargs) def polyCone(self, *args, **kwargs): return self(u"polyCone", *args, **kwargs) def polyContourProj(self, *args, **kwargs): return self(u"polyContourProj", *args, **kwargs) def polyCopyUV(self, *args, **kwargs): return self(u"polyCopyUV", *args, **kwargs) def polyCrease(self, *args, **kwargs): return self(u"polyCrease", *args, **kwargs) def polyCreaseEdge(self, *args, **kwargs): return self(u"polyCreaseEdge", *args, **kwargs) def polyCreateFace(self, *args, **kwargs): return self(u"polyCreateFace", *args, **kwargs) def polyCreateToolManip(self, *args, **kwargs): return self(u"polyCreateToolManip", *args, **kwargs) def polyCube(self, *args, **kwargs): return self(u"polyCube", *args, **kwargs) def polyCut(self, *args, **kwargs): return self(u"polyCut", *args, **kwargs) def polyCutManip(self, *args, **kwargs): return self(u"polyCutManip", *args, **kwargs) def polyCylProj(self, *args, **kwargs): return self(u"polyCylProj", *args, **kwargs) def polyCylinder(self, *args, **kwargs): return self(u"polyCylinder", *args, **kwargs) def polyDelEdge(self, *args, **kwargs): return self(u"polyDelEdge", *args, **kwargs) def polyDelFacet(self, *args, **kwargs): return self(u"polyDelFacet", *args, **kwargs) def polyDelVertex(self, *args, **kwargs): return self(u"polyDelVertex", *args, **kwargs) def polyDisc(self, *args, **kwargs): return self(u"polyDisc", *args, **kwargs) def polyDuplicateEdge(self, *args, **kwargs): return self(u"polyDuplicateEdge", *args, **kwargs) def polyEdgeToCurve(self, *args, **kwargs): return self(u"polyEdgeToCurve", *args, **kwargs) def polyEditEdgeFlow(self, *args, **kwargs): return self(u"polyEditEdgeFlow", *args, **kwargs) def polyExtrudeEdge(self, *args, **kwargs): return self(u"polyExtrudeEdge", *args, **kwargs) def polyExtrudeFace(self, *args, **kwargs): return self(u"polyExtrudeFace", *args, **kwargs) def polyExtrudeVertex(self, *args, **kwargs): return self(u"polyExtrudeVertex", *args, **kwargs) def polyFlipEdge(self, *args, **kwargs): return self(u"polyFlipEdge", *args, **kwargs) def polyFlipUV(self, *args, **kwargs): return self(u"polyFlipUV", *args, **kwargs) def polyGear(self, *args, **kwargs): return self(u"polyGear", *args, **kwargs) def polyHelix(self, *args, **kwargs): return self(u"polyHelix", *args, **kwargs) def polyHoleFace(self, *args, **kwargs): return self(u"polyHoleFace", *args, **kwargs) def polyLayoutUV(self, *args, **kwargs): return self(u"polyLayoutUV", *args, **kwargs) def polyMapCut(self, *args, **kwargs): return self(u"polyMapCut", *args, **kwargs) def polyMapDel(self, *args, **kwargs): return self(u"polyMapDel", *args, **kwargs) def polyMapSew(self, *args, **kwargs): return self(u"polyMapSew", *args, **kwargs) def polyMapSewMove(self, *args, **kwargs): return self(u"polyMapSewMove", *args, **kwargs) def polyMappingManip(self, *args, **kwargs): return self(u"polyMappingManip", *args, **kwargs) def polyMergeEdge(self, *args, **kwargs): return self(u"polyMergeEdge", *args, **kwargs) def polyMergeFace(self, *args, **kwargs): return self(u"polyMergeFace", *args, **kwargs) def polyMergeUV(self, *args, **kwargs): return self(u"polyMergeUV", *args, **kwargs) def polyMergeVert(self, *args, **kwargs): return self(u"polyMergeVert", *args, **kwargs) def polyMergeVertsManip(self, *args, **kwargs): return self(u"polyMergeVertsManip", *args, **kwargs) def polyMirror(self, *args, **kwargs): return self(u"polyMirror", *args, **kwargs) def polyModifierManip(self, *args, **kwargs): return self(u"polyModifierManip", *args, **kwargs) def polyMoveEdge(self, *args, **kwargs): return self(u"polyMoveEdge", *args, **kwargs) def polyMoveFace(self, *args, **kwargs): return self(u"polyMoveFace", *args, **kwargs) def polyMoveFacetUV(self, *args, **kwargs): return self(u"polyMoveFacetUV", *args, **kwargs) def polyMoveUV(self, *args, **kwargs): return self(u"polyMoveUV", *args, **kwargs) def polyMoveUVManip(self, *args, **kwargs): return self(u"polyMoveUVManip", *args, **kwargs) def polyMoveVertex(self, *args, **kwargs): return self(u"polyMoveVertex", *args, **kwargs) def polyMoveVertexManip(self, *args, **kwargs): return self(u"polyMoveVertexManip", *args, **kwargs) def polyNormal(self, *args, **kwargs): return self(u"polyNormal", *args, **kwargs) def polyNormalPerVertex(self, *args, **kwargs): return self(u"polyNormalPerVertex", *args, **kwargs) def polyNormalizeUV(self, *args, **kwargs): return self(u"polyNormalizeUV", *args, **kwargs) def polyOptUvs(self, *args, **kwargs): return self(u"polyOptUvs", *args, **kwargs) def polyPassThru(self, *args, **kwargs): return self(u"polyPassThru", *args, **kwargs) def polyPinUV(self, *args, **kwargs): return self(u"polyPinUV", *args, **kwargs) def polyPipe(self, *args, **kwargs): return self(u"polyPipe", *args, **kwargs) def polyPlanarProj(self, *args, **kwargs): return self(u"polyPlanarProj", *args, **kwargs) def polyPlane(self, *args, **kwargs): return self(u"polyPlane", *args, **kwargs) def polyPlatonic(self, *args, **kwargs): return self(u"polyPlatonic", *args, **kwargs) def polyPlatonicSolid(self, *args, **kwargs): return self(u"polyPlatonicSolid", *args, **kwargs) def polyPoke(self, *args, **kwargs): return self(u"polyPoke", *args, **kwargs) def polyPokeManip(self, *args, **kwargs): return self(u"polyPokeManip", *args, **kwargs) def polyPrimitiveMisc(self, *args, **kwargs): return self(u"polyPrimitiveMisc", *args, **kwargs) def polyPrism(self, *args, **kwargs): return self(u"polyPrism", *args, **kwargs) def polyProj(self, *args, **kwargs): return self(u"polyProj", *args, **kwargs) def polyProjManip(self, *args, **kwargs): return self(u"polyProjManip", *args, **kwargs) def polyProjectCurve(self, *args, **kwargs): return self(u"polyProjectCurve", *args, **kwargs) def polyPyramid(self, *args, **kwargs): return self(u"polyPyramid", *args, **kwargs) def polyQuad(self, *args, **kwargs): return self(u"polyQuad", *args, **kwargs) def polyReduce(self, *args, **kwargs): return self(u"polyReduce", *args, **kwargs) def polyRemesh(self, *args, **kwargs): return self(u"polyRemesh", *args, **kwargs) def polyRetopo(self, *args, **kwargs): return self(u"polyRetopo", *args, **kwargs) def polySeparate(self, *args, **kwargs): return self(u"polySeparate", *args, **kwargs) def polySewEdge(self, *args, **kwargs): return self(u"polySewEdge", *args, **kwargs) def polySmooth(self, *args, **kwargs): return self(u"polySmooth", *args, **kwargs) def polySmoothFace(self, *args, **kwargs): return self(u"polySmoothFace", *args, **kwargs) def polySmoothProxy(self, *args, **kwargs): return self(u"polySmoothProxy", *args, **kwargs) def polySoftEdge(self, *args, **kwargs): return self(u"polySoftEdge", *args, **kwargs) def polySphProj(self, *args, **kwargs): return self(u"polySphProj", *args, **kwargs) def polySphere(self, *args, **kwargs): return self(u"polySphere", *args, **kwargs) def polySpinEdge(self, *args, **kwargs): return self(u"polySpinEdge", *args, **kwargs) def polySplit(self, *args, **kwargs): return self(u"polySplit", *args, **kwargs) def polySplitEdge(self, *args, **kwargs): return self(u"polySplitEdge", *args, **kwargs) def polySplitRing(self, *args, **kwargs): return self(u"polySplitRing", *args, **kwargs) def polySplitToolManip1(self, *args, **kwargs): return self(u"polySplitToolManip1", *args, **kwargs) def polySplitVert(self, *args, **kwargs): return self(u"polySplitVert", *args, **kwargs) def polySubdEdge(self, *args, **kwargs): return self(u"polySubdEdge", *args, **kwargs) def polySubdFace(self, *args, **kwargs): return self(u"polySubdFace", *args, **kwargs) def polySuperShape(self, *args, **kwargs): return self(u"polySuperShape", *args, **kwargs) def polyToSubdiv(self, *args, **kwargs): return self(u"polyToSubdiv", *args, **kwargs) def polyTorus(self, *args, **kwargs): return self(u"polyTorus", *args, **kwargs) def polyTransfer(self, *args, **kwargs): return self(u"polyTransfer", *args, **kwargs) def polyTriangulate(self, *args, **kwargs): return self(u"polyTriangulate", *args, **kwargs) def polyTweak(self, *args, **kwargs): return self(u"polyTweak", *args, **kwargs) def polyTweakUV(self, *args, **kwargs): return self(u"polyTweakUV", *args, **kwargs) def polyUVRectangle(self, *args, **kwargs): return self(u"polyUVRectangle", *args, **kwargs) def polyUnite(self, *args, **kwargs): return self(u"polyUnite", *args, **kwargs) def polyWedgeFace(self, *args, **kwargs): return self(u"polyWedgeFace", *args, **kwargs) def poseInterpolator(self, *args, **kwargs): return self(u"poseInterpolator", *args, **kwargs) def positionMarker(self, *args, **kwargs): return self(u"positionMarker", *args, **kwargs) def postProcessList(self, *args, **kwargs): return self(u"postProcessList", *args, **kwargs) def precompExport(self, *args, **kwargs): return self(u"precompExport", *args, **kwargs) def premultiply(self, *args, **kwargs): return self(u"premultiply", *args, **kwargs) def projectCurve(self, *args, **kwargs): return self(u"projectCurve", *args, **kwargs) def projectTangent(self, *args, **kwargs): return self(u"projectTangent", *args, **kwargs) def projectTangentManip(self, *args, **kwargs): return self(u"projectTangentManip", *args, **kwargs) def projection(self, *args, **kwargs): return self(u"projection", *args, **kwargs) def projectionManip(self, *args, **kwargs): return self(u"projectionManip", *args, **kwargs) def projectionUVManip(self, *args, **kwargs): return self(u"projectionUVManip", *args, **kwargs) def propModManip(self, *args, **kwargs): return self(u"propModManip", *args, **kwargs) def propMoveTriadManip(self, *args, **kwargs): return self(u"propMoveTriadManip", *args, **kwargs) def proximityPin(self, *args, **kwargs): return self(u"proximityPin", *args, **kwargs) def proximityWrap(self, *args, **kwargs): return self(u"proximityWrap", *args, **kwargs) def proxyManager(self, *args, **kwargs): return self(u"proxyManager", *args, **kwargs) def psdFileTex(self, *args, **kwargs): return self(u"psdFileTex", *args, **kwargs) def quadPtOnLineManip(self, *args, **kwargs): return self(u"quadPtOnLineManip", *args, **kwargs) def quadShadingSwitch(self, *args, **kwargs): return self(u"quadShadingSwitch", *args, **kwargs) def quatAdd(self, *args, **kwargs): return self(u"quatAdd", *args, **kwargs) def quatConjugate(self, *args, **kwargs): return self(u"quatConjugate", *args, **kwargs) def quatInvert(self, *args, **kwargs): return self(u"quatInvert", *args, **kwargs) def quatNegate(self, *args, **kwargs): return self(u"quatNegate", *args, **kwargs) def quatNormalize(self, *args, **kwargs): return self(u"quatNormalize", *args, **kwargs) def quatProd(self, *args, **kwargs): return self(u"quatProd", *args, **kwargs) def quatSlerp(self, *args, **kwargs): return self(u"quatSlerp", *args, **kwargs) def quatSub(self, *args, **kwargs): return self(u"quatSub", *args, **kwargs) def quatToAxisAngle(self, *args, **kwargs): return self(u"quatToAxisAngle", *args, **kwargs) def quatToEuler(self, *args, **kwargs): return self(u"quatToEuler", *args, **kwargs) def radialField(self, *args, **kwargs): return self(u"radialField", *args, **kwargs) def ramp(self, *args, **kwargs): return self(u"ramp", *args, **kwargs) def rampShader(self, *args, **kwargs): return self(u"rampShader", *args, **kwargs) def rbfSrf(self, *args, **kwargs): return self(u"rbfSrf", *args, **kwargs) def rbfSrfManip(self, *args, **kwargs): return self(u"rbfSrfManip", *args, **kwargs) def rebuildCurve(self, *args, **kwargs): return self(u"rebuildCurve", *args, **kwargs) def rebuildSurface(self, *args, **kwargs): return self(u"rebuildSurface", *args, **kwargs) def record(self, *args, **kwargs): return self(u"record", *args, **kwargs) def reference(self, *args, **kwargs): return self(u"reference", *args, **kwargs) def relOverride(self, *args, **kwargs): return self(u"relOverride", *args, **kwargs) def relUniqueOverride(self, *args, **kwargs): return self(u"relUniqueOverride", *args, **kwargs) def remapColor(self, *args, **kwargs): return self(u"remapColor", *args, **kwargs) def remapHsv(self, *args, **kwargs): return self(u"remapHsv", *args, **kwargs) def remapValue(self, *args, **kwargs): return self(u"remapValue", *args, **kwargs) def renderBox(self, *args, **kwargs): return self(u"renderBox", *args, **kwargs) def renderCone(self, *args, **kwargs): return self(u"renderCone", *args, **kwargs) def renderGlobals(self, *args, **kwargs): return self(u"renderGlobals", *args, **kwargs) def renderGlobalsList(self, *args, **kwargs): return self(u"renderGlobalsList", *args, **kwargs) def renderLayer(self, *args, **kwargs): return self(u"renderLayer", *args, **kwargs) def renderLayerManager(self, *args, **kwargs): return self(u"renderLayerManager", *args, **kwargs) def renderPass(self, *args, **kwargs): return self(u"renderPass", *args, **kwargs) def renderPassSet(self, *args, **kwargs): return self(u"renderPassSet", *args, **kwargs) def renderQuality(self, *args, **kwargs): return self(u"renderQuality", *args, **kwargs) def renderRect(self, *args, **kwargs): return self(u"renderRect", *args, **kwargs) def renderSetup(self, *args, **kwargs): return self(u"renderSetup", *args, **kwargs) def renderSetupLayer(self, *args, **kwargs): return self(u"renderSetupLayer", *args, **kwargs) def renderSphere(self, *args, **kwargs): return self(u"renderSphere", *args, **kwargs) def renderTarget(self, *args, **kwargs): return self(u"renderTarget", *args, **kwargs) def renderedImageSource(self, *args, **kwargs): return self(u"renderedImageSource", *args, **kwargs) def reorderUVSet(self, *args, **kwargs): return self(u"reorderUVSet", *args, **kwargs) def resolution(self, *args, **kwargs): return self(u"resolution", *args, **kwargs) def reverse(self, *args, **kwargs): return self(u"reverse", *args, **kwargs) def reverseCurve(self, *args, **kwargs): return self(u"reverseCurve", *args, **kwargs) def reverseCurveManip(self, *args, **kwargs): return self(u"reverseCurveManip", *args, **kwargs) def reverseSurface(self, *args, **kwargs): return self(u"reverseSurface", *args, **kwargs) def reverseSurfaceManip(self, *args, **kwargs): return self(u"reverseSurfaceManip", *args, **kwargs) def revolve(self, *args, **kwargs): return self(u"revolve", *args, **kwargs) def revolveManip(self, *args, **kwargs): return self(u"revolveManip", *args, **kwargs) def rgbToHsv(self, *args, **kwargs): return self(u"rgbToHsv", *args, **kwargs) def rigidBody(self, *args, **kwargs): return self(u"rigidBody", *args, **kwargs) def rigidConstraint(self, *args, **kwargs): return self(u"rigidConstraint", *args, **kwargs) def rigidSolver(self, *args, **kwargs): return self(u"rigidSolver", *args, **kwargs) def rock(self, *args, **kwargs): return self(u"rock", *args, **kwargs) def rotateHelper(self, *args, **kwargs): return self(u"rotateHelper", *args, **kwargs) def rotateLimitsManip(self, *args, **kwargs): return self(u"rotateLimitsManip", *args, **kwargs) def rotateManip(self, *args, **kwargs): return self(u"rotateManip", *args, **kwargs) def rotateUV2dManip(self, *args, **kwargs): return self(u"rotateUV2dManip", *args, **kwargs) def roundConstantRadius(self, *args, **kwargs): return self(u"roundConstantRadius", *args, **kwargs) def roundRadiusCrvManip(self, *args, **kwargs): return self(u"roundRadiusCrvManip", *args, **kwargs) def roundRadiusManip(self, *args, **kwargs): return self(u"roundRadiusManip", *args, **kwargs) def sampler(self, *args, **kwargs): return self(u"sampler", *args, **kwargs) def samplerInfo(self, *args, **kwargs): return self(u"samplerInfo", *args, **kwargs) def scaleConstraint(self, *args, **kwargs): return self(u"scaleConstraint", *args, **kwargs) def scaleLimitsManip(self, *args, **kwargs): return self(u"scaleLimitsManip", *args, **kwargs) def scaleManip(self, *args, **kwargs): return self(u"scaleManip", *args, **kwargs) def scaleUV2dManip(self, *args, **kwargs): return self(u"scaleUV2dManip", *args, **kwargs) def script(self, *args, **kwargs): return self(u"script", *args, **kwargs) def scriptManip(self, *args, **kwargs): return self(u"scriptManip", *args, **kwargs) def sculpt(self, *args, **kwargs): return self(u"sculpt", *args, **kwargs) def selector(self, *args, **kwargs): return self(u"selector", *args, **kwargs) def sequenceManager(self, *args, **kwargs): return self(u"sequenceManager", *args, **kwargs) def sequencer(self, *args, **kwargs): return self(u"sequencer", *args, **kwargs) def setRange(self, *args, **kwargs): return self(u"setRange", *args, **kwargs) def shaderGlow(self, *args, **kwargs): return self(u"shaderGlow", *args, **kwargs) def shaderOverride(self, *args, **kwargs): return self(u"shaderOverride", *args, **kwargs) def shadingEngine(self, *args, **kwargs): return self(u"shadingEngine", *args, **kwargs) def shadingMap(self, *args, **kwargs): return self(u"shadingMap", *args, **kwargs) def shapeEditorManager(self, *args, **kwargs): return self(u"shapeEditorManager", *args, **kwargs) def shellDeformer(self, *args, **kwargs): return self(u"shellDeformer", *args, **kwargs) def shellTessellate(self, *args, **kwargs): return self(u"shellTessellate", *args, **kwargs) def shot(self, *args, **kwargs): return self(u"shot", *args, **kwargs) def shrinkWrap(self, *args, **kwargs): return self(u"shrinkWrap", *args, **kwargs) def simpleSelector(self, *args, **kwargs): return self(u"simpleSelector", *args, **kwargs) def simpleTestNode(self, *args, **kwargs): return self(u"simpleTestNode", *args, **kwargs) def simpleVolumeShader(self, *args, **kwargs): return self(u"simpleVolumeShader", *args, **kwargs) def simplexNoise(self, *args, **kwargs): return self(u"simplexNoise", *args, **kwargs) def singleShadingSwitch(self, *args, **kwargs): return self(u"singleShadingSwitch", *args, **kwargs) def sketchPlane(self, *args, **kwargs): return self(u"sketchPlane", *args, **kwargs) def skinBinding(self, *args, **kwargs): return self(u"skinBinding", *args, **kwargs) def skinCluster(self, *args, **kwargs): return self(u"skinCluster", *args, **kwargs) def smoothCurve(self, *args, **kwargs): return self(u"smoothCurve", *args, **kwargs) def smoothTangentSrf(self, *args, **kwargs): return self(u"smoothTangentSrf", *args, **kwargs) def snapUV2dManip(self, *args, **kwargs): return self(u"snapUV2dManip", *args, **kwargs) def snapshot(self, *args, **kwargs): return self(u"snapshot", *args, **kwargs) def snapshotShape(self, *args, **kwargs): return self(u"snapshotShape", *args, **kwargs) def snow(self, *args, **kwargs): return self(u"snow", *args, **kwargs) def softMod(self, *args, **kwargs): return self(u"softMod", *args, **kwargs) def softModHandle(self, *args, **kwargs): return self(u"softModHandle", *args, **kwargs) def softModManip(self, *args, **kwargs): return self(u"softModManip", *args, **kwargs) def solidFractal(self, *args, **kwargs): return self(u"solidFractal", *args, **kwargs) def spBirailSrf(self, *args, **kwargs): return self(u"spBirailSrf", *args, **kwargs) def sphericalProjManip(self, *args, **kwargs): return self(u"sphericalProjManip", *args, **kwargs) def spotCylinderManip(self, *args, **kwargs): return self(u"spotCylinderManip", *args, **kwargs) def spotLight(self, *args, **kwargs): return self(u"spotLight", *args, **kwargs) def spotManip(self, *args, **kwargs): return self(u"spotManip", *args, **kwargs) def spring(self, *args, **kwargs): return self(u"spring", *args, **kwargs) def squareSrf(self, *args, **kwargs): return self(u"squareSrf", *args, **kwargs) def squareSrfManip(self, *args, **kwargs): return self(u"squareSrfManip", *args, **kwargs) def standardSurface(self, *args, **kwargs): return self(u"standardSurface", *args, **kwargs) def stencil(self, *args, **kwargs): return self(u"stencil", *args, **kwargs) def stereoRigCamera(self, *args, **kwargs): return self(u"stereoRigCamera", *args, **kwargs) def stitchAsNurbsShell(self, *args, **kwargs): return self(u"stitchAsNurbsShell", *args, **kwargs) def stitchSrf(self, *args, **kwargs): return self(u"stitchSrf", *args, **kwargs) def stitchSrfManip(self, *args, **kwargs): return self(u"stitchSrfManip", *args, **kwargs) def stroke(self, *args, **kwargs): return self(u"stroke", *args, **kwargs) def strokeGlobals(self, *args, **kwargs): return self(u"strokeGlobals", *args, **kwargs) def stucco(self, *args, **kwargs): return self(u"stucco", *args, **kwargs) def styleCurve(self, *args, **kwargs): return self(u"styleCurve", *args, **kwargs) def subCurve(self, *args, **kwargs): return self(u"subCurve", *args, **kwargs) def subSurface(self, *args, **kwargs): return self(u"subSurface", *args, **kwargs) def subdAddTopology(self, *args, **kwargs): return self(u"subdAddTopology", *args, **kwargs) def subdAutoProj(self, *args, **kwargs): return self(u"subdAutoProj", *args, **kwargs) def subdBlindData(self, *args, **kwargs): return self(u"subdBlindData", *args, **kwargs) def subdCleanTopology(self, *args, **kwargs): return self(u"subdCleanTopology", *args, **kwargs) def subdHierBlind(self, *args, **kwargs): return self(u"subdHierBlind", *args, **kwargs) def subdLayoutUV(self, *args, **kwargs): return self(u"subdLayoutUV", *args, **kwargs) def subdMapCut(self, *args, **kwargs): return self(u"subdMapCut", *args, **kwargs) def subdMapSewMove(self, *args, **kwargs): return self(u"subdMapSewMove", *args, **kwargs) def subdMappingManip(self, *args, **kwargs): return self(u"subdMappingManip", *args, **kwargs) def subdPlanarProj(self, *args, **kwargs): return self(u"subdPlanarProj", *args, **kwargs) def subdProjManip(self, *args, **kwargs): return self(u"subdProjManip", *args, **kwargs) def subdTweak(self, *args, **kwargs): return self(u"subdTweak", *args, **kwargs) def subdTweakUV(self, *args, **kwargs): return self(u"subdTweakUV", *args, **kwargs) def subdiv(self, *args, **kwargs): return self(u"subdiv", *args, **kwargs) def subdivCollapse(self, *args, **kwargs): return self(u"subdivCollapse", *args, **kwargs) def subdivComponentId(self, *args, **kwargs): return self(u"subdivComponentId", *args, **kwargs) def subdivReverseFaces(self, *args, **kwargs): return self(u"subdivReverseFaces", *args, **kwargs) def subdivToNurbs(self, *args, **kwargs): return self(u"subdivToNurbs", *args, **kwargs) def subdivToPoly(self, *args, **kwargs): return self(u"subdivToPoly", *args, **kwargs) def surfaceEdManip(self, *args, **kwargs): return self(u"surfaceEdManip", *args, **kwargs) def surfaceInfo(self, *args, **kwargs): return self(u"surfaceInfo", *args, **kwargs) def surfaceLuminance(self, *args, **kwargs): return self(u"surfaceLuminance", *args, **kwargs) def surfaceShader(self, *args, **kwargs): return self(u"surfaceShader", *args, **kwargs) def surfaceVarGroup(self, *args, **kwargs): return self(u"surfaceVarGroup", *args, **kwargs) def svgToPoly(self, *args, **kwargs): return self(u"svgToPoly", *args, **kwargs) def symmetryConstraint(self, *args, **kwargs): return self(u"symmetryConstraint", *args, **kwargs) def tangentConstraint(self, *args, **kwargs): return self(u"tangentConstraint", *args, **kwargs) def tension(self, *args, **kwargs): return self(u"tension", *args, **kwargs) def texLattice(self, *args, **kwargs): return self(u"texLattice", *args, **kwargs) def texMoveShellManip(self, *args, **kwargs): return self(u"texMoveShellManip", *args, **kwargs) def texSmoothManip(self, *args, **kwargs): return self(u"texSmoothManip", *args, **kwargs) def texSmudgeUVManip(self, *args, **kwargs): return self(u"texSmudgeUVManip", *args, **kwargs) def textButtonManip(self, *args, **kwargs): return self(u"textButtonManip", *args, **kwargs) def textManip2D(self, *args, **kwargs): return self(u"textManip2D", *args, **kwargs) def texture3dManip(self, *args, **kwargs): return self(u"texture3dManip", *args, **kwargs) def textureBakeSet(self, *args, **kwargs): return self(u"textureBakeSet", *args, **kwargs) def textureDeformer(self, *args, **kwargs): return self(u"textureDeformer", *args, **kwargs) def textureToGeom(self, *args, **kwargs): return self(u"textureToGeom", *args, **kwargs) def time(self, *args, **kwargs): return self(u"time", *args, **kwargs) def timeEditor(self, *args, **kwargs): return self(u"timeEditor", *args, **kwargs) def timeEditorClip(self, *args, **kwargs): return self(u"timeEditorClip", *args, **kwargs) def timeEditorClipBase(self, *args, **kwargs): return self(u"timeEditorClipBase", *args, **kwargs) def timeEditorTracks(self, *args, **kwargs): return self(u"timeEditorTracks", *args, **kwargs) def timeFunction(self, *args, **kwargs): return self(u"timeFunction", *args, **kwargs) def timeWarp(self, *args, **kwargs): return self(u"timeWarp", *args, **kwargs) def toggleManip(self, *args, **kwargs): return self(u"toggleManip", *args, **kwargs) def toggleOnLineManip(self, *args, **kwargs): return self(u"toggleOnLineManip", *args, **kwargs) def toolDrawManip(self, *args, **kwargs): return self(u"toolDrawManip", *args, **kwargs) def toolDrawManip2D(self, *args, **kwargs): return self(u"toolDrawManip2D", *args, **kwargs) def toonLineAttributes(self, *args, **kwargs): return self(u"toonLineAttributes", *args, **kwargs) def trackInfoManager(self, *args, **kwargs): return self(u"trackInfoManager", *args, **kwargs) def trans2dManip(self, *args, **kwargs): return self(u"trans2dManip", *args, **kwargs) def transUV2dManip(self, *args, **kwargs): return self(u"transUV2dManip", *args, **kwargs) def transferAttributes(self, *args, **kwargs): return self(u"transferAttributes", *args, **kwargs) def transform(self, *args, **kwargs): return self(u"transform", *args, **kwargs) def transformGeometry(self, *args, **kwargs): return self(u"transformGeometry", *args, **kwargs) def translateManip(self, *args, **kwargs): return self(u"translateManip", *args, **kwargs) def translateUVManip(self, *args, **kwargs): return self(u"translateUVManip", *args, **kwargs) def transposeMatrix(self, *args, **kwargs): return self(u"transposeMatrix", *args, **kwargs) def trim(self, *args, **kwargs): return self(u"trim", *args, **kwargs) def trimManip(self, *args, **kwargs): return self(u"trimManip", *args, **kwargs) def trimWithBoundaries(self, *args, **kwargs): return self(u"trimWithBoundaries", *args, **kwargs) def triplanarProjManip(self, *args, **kwargs): return self(u"triplanarProjManip", *args, **kwargs) def tripleShadingSwitch(self, *args, **kwargs): return self(u"tripleShadingSwitch", *args, **kwargs) def trsInsertManip(self, *args, **kwargs): return self(u"trsInsertManip", *args, **kwargs) def trsManip(self, *args, **kwargs): return self(u"trsManip", *args, **kwargs) def turbulenceField(self, *args, **kwargs): return self(u"turbulenceField", *args, **kwargs) def turbulenceManip(self, *args, **kwargs): return self(u"turbulenceManip", *args, **kwargs) def tweak(self, *args, **kwargs): return self(u"tweak", *args, **kwargs) def type(self, *args, **kwargs): return self(u"type", *args, **kwargs) def typeExtrude(self, *args, **kwargs): return self(u"typeExtrude", *args, **kwargs) def typeManip(self, *args, **kwargs): return self(u"typeManip", *args, **kwargs) def ufeProxyTransform(self, *args, **kwargs): return self(u"ufeProxyTransform", *args, **kwargs) def uniformField(self, *args, **kwargs): return self(u"uniformField", *args, **kwargs) def unitConversion(self, *args, **kwargs): return self(u"unitConversion", *args, **kwargs) def unknown(self, *args, **kwargs): return self(u"unknown", *args, **kwargs) def unknownDag(self, *args, **kwargs): return self(u"unknownDag", *args, **kwargs) def unknownTransform(self, *args, **kwargs): return self(u"unknownTransform", *args, **kwargs) def unpremultiply(self, *args, **kwargs): return self(u"unpremultiply", *args, **kwargs) def untrim(self, *args, **kwargs): return self(u"untrim", *args, **kwargs) def useBackground(self, *args, **kwargs): return self(u"useBackground", *args, **kwargs) def uv2dManip(self, *args, **kwargs): return self(u"uv2dManip", *args, **kwargs) def uvChooser(self, *args, **kwargs): return self(u"uvChooser", *args, **kwargs) def uvPin(self, *args, **kwargs): return self(u"uvPin", *args, **kwargs) def valueOverride(self, *args, **kwargs): return self(u"valueOverride", *args, **kwargs) def vectorAdjust(self, *args, **kwargs): return self(u"vectorAdjust", *args, **kwargs) def vectorExtrude(self, *args, **kwargs): return self(u"vectorExtrude", *args, **kwargs) def vectorProduct(self, *args, **kwargs): return self(u"vectorProduct", *args, **kwargs) def vectorRenderGlobals(self, *args, **kwargs): return self(u"vectorRenderGlobals", *args, **kwargs) def vertexBakeSet(self, *args, **kwargs): return self(u"vertexBakeSet", *args, **kwargs) def viewColorManager(self, *args, **kwargs): return self(u"viewColorManager", *args, **kwargs) def volumeAxisField(self, *args, **kwargs): return self(u"volumeAxisField", *args, **kwargs) def volumeBindManip(self, *args, **kwargs): return self(u"volumeBindManip", *args, **kwargs) def volumeFog(self, *args, **kwargs): return self(u"volumeFog", *args, **kwargs) def volumeLight(self, *args, **kwargs): return self(u"volumeLight", *args, **kwargs) def volumeNoise(self, *args, **kwargs): return self(u"volumeNoise", *args, **kwargs) def volumeShader(self, *args, **kwargs): return self(u"volumeShader", *args, **kwargs) def vortexField(self, *args, **kwargs): return self(u"vortexField", *args, **kwargs) def water(self, *args, **kwargs): return self(u"water", *args, **kwargs) def wire(self, *args, **kwargs): return self(u"wire", *args, **kwargs) def wood(self, *args, **kwargs): return self(u"wood", *args, **kwargs) def wrap(self, *args, **kwargs): return self(u"wrap", *args, **kwargs) def wtAddMatrix(self, *args, **kwargs): return self(u"wtAddMatrix", *args, **kwargs) def xformManip(self, *args, **kwargs): return self(u"xformManip", *args, **kwargs) createNode = _CreateNode() ``` #### File: CPMel/cmds/__createNode_script.py ```python u""" :创建时间: 2020/6/27 14:46 :作者: 苍之幻灵 :我的主页: https://cpcgskill.com :QQ: 2921251087 :爱发电: https://afdian.net/@Phantom_of_the_Cang :aboutcg: https://www.aboutcg.org/teacher/54335 :bilibili: https://space.bilibili.com/351598127 """ import maya.cmds as cmds import re mode = u'''\ def <<node>>(self, *args, **kwargs): return self(u"<<node>>", *args, **kwargs)''' strings = list() nodes = cmds.allNodeTypes(ia=False) nodes = [i for i in nodes if i.find(u"MASH") != 0] nodes = [i for i in nodes if i.find(u"xgm") != 0] nodes = [i for i in nodes if i.find(u"xgen") != 0] nodes = [i for i in nodes if i.find(u"ai") != 0] nodes = [i for i in nodes if i.find(u"AI") != 0] nodes = [i for i in nodes if i.find(u"HIK") != 0] nodes = [i for i in nodes if i.find(u"Boss") != 0] nodes = [i for i in nodes if i.find(u"bifrost") != 0] nodes = [i for i in nodes if len(i) < 20] nodes = [i for i in nodes if len(i) > 3] for i in nodes: strings.append(re.sub("<<node>>", i, mode)) print(u"\n".join(strings)) ``` #### File: cmds/melproc/base.py ```python u""" :创建时间: 2020/5/18 23:57 :作者: 苍之幻灵 :我的主页: https://cpcgskill.com :QQ: 2921251087 :爱发电: https://afdian.net/@Phantom_of_the_Cang :aboutcg: https://www.aboutcg.org/teacher/54335 :bilibili: https://space.bilibili.com/351598127 """ from collections import Iterable from functools import partial import maya.mel import maya.cmds as mc from toMel import toMel, toArray, toFloat, toInt, toString eval = maya.mel.eval def melProc(item, *args, **kwargs): args_s = u" ".join( [ toArray(i) if isinstance(i, Iterable) and (not isinstance(i, basestring)) else toMel(i) for i in args ] ) kwargs_s = u" ".join( [ u"-%s %s" % ( k, toArray(v) if isinstance(v, Iterable) and ( not isinstance(v, basestring)) else toMel(v) ) for k, v in kwargs.items() ] ) command_s = u"{0} {2} {1};".format(item, args_s, kwargs_s) return eval(command_s) class melbase(object): def __getattribute__(self, item): try: return object.__getattribute__(self, item) except AttributeError: return partial(melProc, item) ``` #### File: src/CPMel/__init__.py ```python u""" :创建时间: 2020/5/18 23:57 :作者: 苍之幻灵 :我的主页: https://www.cpcgskill.com :QQ: 2921251087 :爱发电: https://afdian.net/@Phantom_of_the_Cang :aboutcg: https://www.aboutcg.org/teacher/54335 :bilibili: https://space.bilibili.com/351598127 * 获得路径模块 * PATH : CPMel所在路径 * MAYAPLUG : CPMel的Maya插件所在路径 * ISDEBUG : 是否处在Debug模式 * 快速入门: * 导入: >>> import CPMel.cmds as cc >>> import CPMel.tool as ctl * 命令: * maya.cmds: >>> import maya.cmds as cmds >>> cmds.joint() u"xxx" * CPMel.cmds >>> cc.joint() joint(u"xxx") * 命令参数转化规则: * CPObject = str ,Double3 = (x,y,z), Matrix = (x,x,x,..*16) * 更加方便的创建节点的方法: >>> cc.createNode.transform() transform(u"transform") * mel方法访问: >>> cc.mel.SmoothSkinWeights() None * 事件引擎: >>> class printDg(cevent.Dg): ... def createNode(self, node): ... print(node) ... def removeNode(self, node): ... print(node) >>> obj = printDg() >>> cc.createNode.transform() transform1 << 打印 transform(u'transform1') * 工具: >>> ctl.decode("你好世界") u'你好世界' >>> ctl.MayaObjectData(u"time1") <CPMel.tool.MayaObjectData object at 0x0000000053CB32E8> >>> ctl.undoBlock(xxx type = func)# Qt撤销的实现 xxx type = func * 视频版教程: https://www.aboutcg.org/courseDetails/1031/introduce * 2.5版本更新 : * 使用了预编译脚本优化了文件体积 * 修复了一些BUG * 2.6版本更新 : * 解决了qt错误处理问题 * 错误与mayaplug可以运行多个了 * 实现了相对运行 * 区分debug版与release版 * 去除了static_cmds中无用的注释 * 通过文档注释进行类型指定优化了在pycharm中编写程序的补全效果 * 去除了mayaPlug模块下无用的程序 * 2.7版本更新 : * 优化了导入实现 * 使用CLI 注意2.7的CLI还不完善将于!!!CPMel3版本稳定CLI功能 """ from . import initializeMaya import os import sys import maya.cmds sys.cpmel_data = dict() MAYAINDEX = int(maya.cmds.about(v=True)) ISDEBUG = True try: PATH = os.path.dirname(os.path.abspath(__file__)) if type(PATH) == str: try: PATH = PATH.decode("utf8") except UnicodeDecodeError: try: PATH = PATH.decode("gbk") except UnicodeDecodeError: try: PATH = PATH.decode("GB18030") except UnicodeDecodeError: try: PATH = PATH.decode("GB2312") except UnicodeDecodeError: PATH = unicode(PATH) PATH = PATH.encode("utf8").decode("utf8") except: PATH = os.path.dirname(os.path.abspath(__file__)) MAYAPLUG = u'%s\\mayaPlug' % PATH from . import mayaPlug from . import core from . import api from . import cmds from . import event from . import ui from . import tool # DELETE # if ISDEBUG: reload(mayaPlug) reload(core) reload(api) reload(cmds) reload(event) reload(ui) reload(tool) # \DELETE # cmds.upcommands() maya.cmds.pluginInfo(cc=cmds.upcommands) del maya if hasattr(sys, "cpmel_data"): del sys.cpmel_data ``` #### File: CPMel/tool/__init__.py ```python u""" :创建时间: 2020/5/27 23:26 :作者: 苍之幻灵 :我的主页: https://cpcgskill.com :QQ: 2921251087 :爱发电: https://afdian.net/@Phantom_of_the_Cang :aboutcg: https://www.aboutcg.org/teacher/54335 :bilibili: https://space.bilibili.com/351598127 一个提供了Python开发中的便利功能的模块 """ import re import sys import json import functools import maya.api.OpenMaya as OpenMaya import maya.cmds as cmds from .. import core as cmcore def undoBlock(fn): u""" 撤销块装饰器将所有maya命令的撤销打包到一个块里 :param fn: :return: """ def _(*args, **kwargs): cmds.undoInfo(ock=True) try: try: return fn(*args, **kwargs) except: OpenMaya.MGlobal.displayError(cmcore.error.formatGuiException(*sys.exc_info())) finally: cmds.undoInfo(cck=True) _.__name__ = fn.__name__ _.__doc__ = fn.__doc__ _.__module__ = fn.__module__ return _ funcs = list() def scriptStringFunc(fn, *args, **kwargs): u""" 可以将Python函数包装为Mel脚本 用于Maya没有提供函数输入的脚本参数 :param fn: :param args: :param kwargs: :return: """ fn = functools.partial(fn, *args, **kwargs) funcs.append(fn) return u'python "__import__(\\"ctypes\\").cast({}, __import__(\\"ctypes\\").py_object).value()";'.format(id(fn)) def scriptStringString(s=u""): u""" 可以将Python 回调字符串包装为Mel脚本 用于Maya没有提供函数输入的脚本参数 :param fn: :return: :rtype:bool """ return u'python "%s";' % s.replace('"', '\\"').replace("\n", "\\n") def decode(s=''): u""" 字符串解码函数 :param s: :return: """ if not isinstance(s, basestring): try: s = str(s) except: s = unicode(s) if type(s) == str: try: return s.decode("UTF-8") except UnicodeDecodeError: try: return s.decode("GB18030") except UnicodeDecodeError: try: return s.decode("Shift-JIS") except UnicodeDecodeError: try: return s.decode("EUC-KR") except UnicodeDecodeError: return unicode(s) return s.encode("UTF-8").decode("UTF-8") class Dict(object): u""" 一个与MayaObjectData交互的为dict类 """ def __init__(self, datacore, name, updatafuncs): self.datacore = datacore self.name = name self.updatafuncs = updatafuncs def this(self): return self.datacore.value[self.name] def __iter__(self): return self.datacore.value[self.name].__iter__() def __setitem__(self, key, value): self.datacore.value[self.name].__setitem__(key, value) self.updata() def __getitem__(self, item): self.datacore.read() return self.datacore.value[self.name].__getitem__(item) def __str__(self): return self.datacore.value[self.name].__str__() def __repr__(self): return self.datacore.value[self.name].__repr__() def __unicode__(self): return self.datacore.value[self.name].__unicode__() def updata(self): for i in self.updatafuncs: i(self.datacore.value[self.name]) self.datacore.write() def clear(self, *args): return self.datacore.value[self.name].clear(*args) def copy(self, *args): return self.datacore.value[self.name].copy(*args) def fromkeys(self, *args): return self.datacore.value[self.name].fromkeys(*args) def get(self, *args): return self.datacore.value[self.name].get(*args) def has_key(self, *args): return self.datacore.value[self.name].has_key(*args) def items(self, *args): return self.datacore.value[self.name].items(*args) def iteritems(self, *args): return self.datacore.value[self.name].iteritems(*args) def iterkeys(self, *args): return self.datacore.value[self.name].iterkeys(*args) def itervalues(self, *args): return self.datacore.value[self.name].itervalues(*args) def keys(self, *args): return self.datacore.value[self.name].keys(*args) def pop(self, *args): return self.datacore.value[self.name].pop(*args) def popitem(self, *args): return self.datacore.value[self.name].popitem(*args) def setdefault(self, *args): return self.datacore.value[self.name].setdefault(*args) def update(self, *args): return self.datacore.value[self.name].update(*args) def values(self, *args): return self.datacore.value[self.name].values(*args) def viewitems(self, *args): return self.datacore.value[self.name].viewitems(*args) def viewkeys(self, *args): return self.datacore.value[self.name].viewkeys(*args) def viewvalues(self, *args): return self.datacore.value[self.name].viewvalues(*args) class MayaObjectData(object): re_compile = re.compile("_") def __init__(self, obj=u"", name=u"default"): obj = str(obj) if not cmds.objExists(obj): raise cmcore.CPMelError(u"对象不存在") name_hash = hash(name) if name_hash < 0: self.name = u"CPMEL_MayaObjectData__%d" % (name_hash * -1) else: self.name = u"CPMEL_MayaObjectData_%d" % (name_hash) sel = OpenMaya.MSelectionList() sel.add(obj) obj = sel.getDependNode(0) fn = OpenMaya.MFnDependencyNode(obj) self.uuid = fn.uuid() if not cmds.objExists(self.__name): cmds.addAttr(self.__path, ln=self.name, dt="string") self.value = dict() self.write() else: self.read() @property def __path(self): sel = OpenMaya.MSelectionList() sel.add(self.uuid) if sel.length() < 1: raise cmcore.CPMelError(u"节点不存在") return sel.getSelectionStrings()[0] @property def __name(self): return u"%s.%s" % (self.__path, self.name) def write(self): json_string = decode(json.dumps(self.value)) cmds.setAttr(u"%s.%s" % (self.__path, self.name), json_string, type="string") def read(self): try: json_string = cmds.getAttr(u"%s.%s" % (self.__path, self.name)) except RuntimeError: raise cmcore.CPMelError(u"无法正确读取数据") try: self.value = json.loads(json_string) except ValueError: raise cmcore.CPMelError(u"无法正确解析数据") def addValueBlock(self, name): name = u"@VALUE->%s" % name return MayaObjectData._VlaueBlock(self, name) def addDict(self, name, d_v, updata_funcs): name = u"@DICT->%s" % name if name in self.value: o = self.value[name] else: o = dict() self.value[name] = o for i in d_v: if not i in o: o[i] = d_v[i] self.write() return Dict(self, name, updata_funcs) def getDict(self, name): if name in self.value: o = self.value[name] else: o = dict() self.value[name] = o return o class _VlaueBlock(object): def __init__(self, core_object, name=u""): self.core_object = core_object self.name = name if not self.name in self.core_object.value: self.core_object.value[self.name] = None self.core_object.write() def setV(self, v): self.core_object.value[self.name] = v self.core_object.write() def getV(self): self.core_object.read() return self.core_object.value[self.name] v = property(getV, setV) class Block(object): def upDataFunc(self): pass def metaclass(self, name="default"): _block_name = name def _metaclass(name, bases, attrs): # 获得更新函数 try: upDataFunc = attrs["upDataFunc"] attrs.pop("upDataFunc") except KeyError: try: upDataFunc = attrs[u"upDataFunc"] attrs.pop(u"upDataFunc") except KeyError: def upDataFunc(self): pass upDataFunc.is_do_new_updatafunc = False def newUpDataFunc(this): if not upDataFunc.is_do_new_updatafunc: upDataFunc.is_do_new_updatafunc = True upDataFunc(this) upDataFunc.is_do_new_updatafunc = False cls = type(name, bases, attrs) block_name = u"@CLS->%s_%s_%s" % (cls.__module__, name, _block_name) if not block_name in self.value: this_value_block = dict() self.value[block_name] = this_value_block else: this_value_block = self.value[block_name] for i in dir(cls): if not self.re_compile.match(i): if not i in this_value_block: this_value_block[i] = getattr(cls, i) def __get(k, this): self.read() return self.value[block_name][k] def __set(k, this, v): try: if v == self.value[block_name][k]: return None except KeyError: pass self.value[block_name][k] = v self.write() newUpDataFunc(this) setattr(cls, i, property(functools.partial(__get, i), functools.partial(__set, i))) self.write() return cls() return _metaclass ```
{ "source": "292916808/MolCloze", "score": 2 }
#### File: model/attention/multi_head.py ```python import torch.nn as nn from .single_head import Attention, EdgeGuidedAttention class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 self.d_k = d_model // h self.h = h self.linear_layers = nn.ModuleList( [ nn.Linear(d_model, d_model) for _ in range(3) ] ) self.output_linear = nn.Linear(d_model, d_model) self.attention = Attention() # edge guided attention # self.attention = EdgeGuidedAttention(d_k=self.d_k) self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): batch_size = query.size(0) # 1) Do all the linear projections in batch from d_model ==> h * d_k # query/key/value: (batch_size, attn_heads, max_atoms, d_k) query, key, value = [ l(x).view(batch_size, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linear_layers, (query, key, value)) ] # 2) Apply attention on al the projected vectors in batch. x, attn = self.attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a viwe and apply a final linear x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.h * self.d_k) return self.output_linear(x) ``` #### File: model/decoder/nn_bilinear.py ```python import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter class NNBilinearDecoder(nn.Module): def __init__(self, input_dim: int, dropout: float = 0.0): super(NNBilinearDecoder, self).__init__() self.dropout = nn.Dropout(dropout) self.act = F.sigmoid self.relation = Parameter(torch.FloatTensor(input_dim, input_dim)) ffn = [ nn.Linear(input_dim, input_dim), nn.ReLU(), ] self.ffn = nn.Sequential(*ffn) self.reset_parameter() def reset_parameter(self): for param in self.parameters(): if param.dim() == 1: nn.init.constant_(param, 0) elif param.dim() == 0: nn.init.constant_(param, 1.) else: nn.init.xavier_normal_(param) def forward(self, inputs: torch.Tensor) -> torch.Tensor: """ :param inputs: (batch_size, seq_len, hidden_size) :return: (seq_len * seq_len, ) """ inputs_row = inputs inputs_col = inputs inputs_row = self.ffn(self.dropout(inputs_row)) inputs_col = self.ffn(self.dropout(inputs_col)).transpose(0, 1) intermediate_product = torch.bmm(inputs_row, self.relation) rec = torch.bmm(intermediate_product, inputs_col) outputs = self.act(rec) outputs = outputs.view(-1) return outputs ``` #### File: model/embedding/segment.py ```python import torch.nn as nn class SegmentEmbedding(nn.Embedding): def __init__(self, embed_size=512): super(SegmentEmbedding, self).__init__(3, embed_size, padding_idx=0) ``` #### File: bert/model/transformer.py ```python import torch import torch.nn as nn from .attention import MultiHeadedAttention from .utils import SublayerConnection, PositionwiseFeedForward from .utils import NaiveSublayerConnection, RawSublayerConnection, GraphNaiveSublayerConnection, GraphRawSublayerConnection class TransformerBlock(nn.Module): def __init__(self, hidden, attn_heads, feed_forward_hidden, dropout, residual_type, without_ffn): """ :param hidden: hidden size of transformer :param attn_heads: head sizes of multi-head attention :param feed_forward_hidden: feed_forward_hdiden, usually 4 * hidden :param dropout: dropout rate """ super(TransformerBlock, self).__init__() self.attention = MultiHeadedAttention(h=attn_heads, d_model=hidden) self.feed_forward = PositionwiseFeedForward(d_model=hidden, d_ff=feed_forward_hidden, dropout=dropout) self.input_sublayer = SublayerConnection(size=hidden, dropout=dropout) if residual_type == 'naive': self.input_sublayer = SublayerConnection(size=hidden, dropout=dropout) elif residual_type == 'raw': self.input_sublayer = RawSublayerConnection(size=hidden, dropout=dropout) elif residual_type == 'graph_naive': self.input_sublayer = GraphNaiveSublayerConnection(size=hidden, dropout=dropout) elif residual_type == 'graph_raw': self.input_sublayer = GraphRawSublayerConnection(size=hidden, dropout=dropout) else: self.input_sublayer = SublayerConnection(size=hidden, dropout=dropout) self.output_sublayer = SublayerConnection(size=hidden, dropout=dropout) if not without_ffn else None self.dropout = nn.Dropout(p=dropout) def forward(self, x, mask, raw_x=None, adj=None): x = self.input_sublayer(x, lambda x_: self.attention.forward(x_, x_, x_, mask=mask), raw_x, adj) if self.output_sublayer is not None: x = self.output_sublayer(x, self.feed_forward, raw_x, adj) else: x = self.dropout(torch.relu(x)) return self.dropout(x) ``` #### File: bert/training/optim_schedule.py ```python import numpy as np class Scheduleoptim(object): def __init__(self, optimizer, d_model, n_warmup_steps, grad_clip=None): self.optimizer = optimizer self.n_warmup_steps = n_warmup_steps self.n_current_steps = 0 self.init_lr = np.power(d_model, -0.5) self.grad_clip = grad_clip def step_and_update_lr(self): # modify: do not update learning rate self._update_learning_rate() if self.grad_clip is not None: self.clip_gradient(self.grad_clip) self.optimizer.step() def clip_gradient(self, grad_clip): """ Clips gradients computed during backpropagation to avoid explosion of gradients. :param optimizer: optimizer with the gradients to be clipped :param grad_clip: clip value """ for group in self.optimizer.param_groups: for param in group["params"]: if param.grad is not None: param.grad.data.clamp_(-grad_clip, grad_clip) def zero_grad(self): self.optimizer.zero_grad() def _get_lr_scale(self): return np.min( [ np.power(self.n_current_steps, -0.5), np.power(self.n_warmup_steps, -1.5) * self.n_current_steps ] ) def _update_learning_rate(self): self.n_current_steps += 1 lr = self.init_lr * self._get_lr_scale() for param_group in self.optimizer.param_groups: param_group['lr'] = lr ``` #### File: bert/training/trainer.py ```python import sys import tqdm import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from .optim_schedule import Scheduleoptim from bert.model import MolBertLM, MolBertDis, LinearActivation from bert.model.decoder import InnerProductDecoder, BilinearDecoder, NNBilinearDecoder def sampling(input_ids, generator_logits, masked_lm_labels): generator_id = torch.argmax(generator_logits, dim=-1).detach() origin_input = input_ids.clone() fake_input = torch.where(masked_lm_labels < 1, origin_input, generator_id) corrupt_label = (masked_lm_labels != 0) origin_input[corrupt_label] = masked_lm_labels[corrupt_label] discriminator_label = torch.eq(origin_input, fake_input) return generator_id, discriminator_label def get_energy_loss(device, logits, targets, weights, vocab_size, batch_size, seq_len=140): # targets = torch.unsqueeze(targets, dim=1) # print(torch.zeros(batch_size, seq_len, vocab_size).size(), targets.unsqueeze(-1).size()) oh_labels = torch.zeros(batch_size, seq_len, vocab_size).to(device).scatter_(2, targets.unsqueeze(-1), 1) # ones = torch.sparse.torch.eye(vocab_size).to(device) # oh_labels = ones.index_select(0, targets) log_probs = F.log_softmax(logits, dim=-1) # print(log_probs.size(), oh_labels.size()) label_log_probs = -torch.sum(log_probs * oh_labels, dim=-1) # print(weights.is_cuda, label_log_probs.is_cuda) numerator = torch.sum(weights * label_log_probs) denominator = torch.sum(weights) + 1e-6 loss = numerator/denominator return loss def get_token_energy_logits(device, LinearAct, inputs, table, weights, targets, vocab_size, batch_size): energy_hidden = LinearAct(inputs) # print(energy_hidden.size(), table.size()) logits = torch.matmul(energy_hidden, table.transpose(-2,-1)) energy_loss = get_energy_loss(device, logits, targets, weights, vocab_size, batch_size) return logits, energy_loss def get_cloze_outputs(device, candidate_mask, LinearAct, inputs, table, targets, vocab_size, batch_size): weights = candidate_mask.type(torch.FloatTensor).to(device) logits, energy_loss = get_token_energy_logits(device, LinearAct, inputs, table, weights, targets, vocab_size, batch_size) return logits, energy_loss, weights def get_discriminator_energy_loss(device, hidden, dis_output, criterion, input_ids, cloze_logits, weights, vocab_size, \ batch_size, discriminator_label, candidate_mask, mask_prob=0.15, seq_len=140): # print(input_ids.size()) oh_labels = torch.zeros(batch_size, seq_len, vocab_size).to(device).scatter_(2, input_ids.unsqueeze(-1), 1) # print(cloze_logits.size(), oh_labels.size()) log_q = torch.sum(F.log_softmax(cloze_logits, -1) * oh_labels.type(torch.FloatTensor).to(device), dim=-1).detach() # print(logits.size(), log_q.size()) logits = torch.squeeze(hidden(dis_output), -1) logits += log_q logits += torch.log(mask_prob/(1-mask_prob)*torch.ones_like(logits)) unmask_labels = torch.mul(discriminator_label, candidate_mask).type(torch.FloatTensor).to(device) losses = criterion(logits, unmask_labels) * weights loss = torch.sum(losses)/(torch.sum(weights)+1e-6) return loss class MolBertTrainer(object): def __init__(self, bert, vocab_size, train_loader, test_loader, batch_size, lr=1e-4, betas=(0.9, 0.999), weight_decay=0.01, warmup_steps=10000, with_cuda=True, cuda_devices=None, with_span=False, with_mask=False, with_proximity=False, log_freq=10, logger=None): super(MolBertTrainer, self).__init__() cuda_condition = torch.cuda.is_available() and with_cuda self.device = torch.device("cuda:0" if cuda_condition else "cpu") self.vocab_size = vocab_size self.bert = bert self.model = MolBertLM(bert, vocab_size).to(self.device) self.discriminator = MolBertDis(bert).to(self.device) self.get_energy_logits = LinearActivation(self.bert.hidden, self.bert.hidden).to(self.device) self.dis_energy_preds = LinearActivation(self.bert.hidden, 1).to(self.device) if with_cuda and torch.cuda.device_count() > 1: logger.info('Using {} GPUs for Bert'.format(torch.cuda.device_count())) self.model = nn.DataParallel(self.model, device_ids=cuda_devices) self.discriminator = nn.DataParallel(self.discriminator, device_ids=cuda_devices) self.train_loader = train_loader self.test_loader = test_loader self.optim = torch.optim.Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay) self.optim_schedule = Scheduleoptim(self.optim, self.bert.hidden, n_warmup_steps=warmup_steps, grad_clip=5.) self.criterion = nn.NLLLoss(ignore_index=0) self.dis_det_criterion = nn.BCEWithLogitsLoss() self.dis_ene_criterion = nn.BCEWithLogitsLoss() self.with_span = with_span self.with_mask = with_mask self.with_proximity = with_proximity if with_proximity: # self.decoder = BilinearDecoder(input_dim=bert.hidden) self.decoder = InnerProductDecoder(input_dim=bert.hidden) self.dec_criterion = nn.MSELoss() self.log_freq = log_freq self.logger = logger self.batch_size = batch_size logger.info('Total parameters: {}'.format( sum([p.nelement() for p in self.model.parameters()])+sum([p.nelement() for p in self.discriminator.parameters()]) )) # def _tie_embeddings(self): def train(self, epoch): self.iteration(epoch, self.train_loader) def test(self, epoch): self.iteration(epoch, self.test_loader, train=False) def iteration(self, epoch, loader, train=True): logger = self.logger str_code = 'train' if train else 'test' data_iter = tqdm.tqdm( enumerate(loader), desc='{} : epoch {}'.format(str_code, epoch), total=len(loader), bar_format='{l_bar}{r_bar}' ) avg_loss = 0.0 avg_dec_loss = 0.0 for i, data in data_iter: # 0. batch_data will be sent into the device data = {key: value.to(self.device) for key, value in data.items()} bert_table = [i for i in range(self.vocab_size)] bert_table = torch.LongTensor(bert_table).to(self.device) bert_table = self.bert.embedding.token(bert_table) # 1. forward masked_lm_model # # for span masking # mask_lm_output, bert_outputs = self.model.forward(data['bert_input'], data['segment_label']) if self.with_span: mask_lm_output, _, bert_output = self.model.forward(data['bert_input'], data['segment_label'], data['masked_adj']) elif self.with_mask: mask_lm_output, _, bert_output = self.model.forward(data['bert_input'], data['segment_label'], data['masked_adj']) elif self.with_proximity: mask_lm_output, _, bert_output = self.model.forward(data['bert_input'], data['segment_label'], data['masked_adj']) rec_adj = self.decoder(bert_outputs[-1]) ori_adj = data['bert_adj'].view(-1) dec_loss = self.dec_criterion(rec_adj, ori_adj) else: mask_lm_output, _, bert_output = self.model.forward(data['bert_input'], data['segment_label']) # print(data['bert_input'].size()[0]) # 2-1. NLL(negative log likelihood) loss # mask_lm_output = (mask_lm_output < 1e-6) * torch.ones_like(mask_lm_output) * 1e-6 + (mask_lm_output >= 1e-6) * mask_lm_output mask_loss = self.criterion(mask_lm_output.transpose(1, 2), data['bert_label']) # print(data['bert_table'][0]) # print(self.bert.embedding.token(data['bert_table'][0]).size()) cloze_logits, gen_ene_loss, weights = get_cloze_outputs(self.device, data['bert_mask'], self.get_energy_logits, bert_output, \ bert_table, data['bert_input'], self.vocab_size, data['bert_input'].size()[0]) discriminator_input, discriminator_label = sampling(data['bert_input'], bert_output, data['bert_label']) if self.with_mask: dis_preds, dis_output = self.discriminator.forward(discriminator_input, data['segment_label'], data['masked_adj']) else: dis_preds, dis_output = self.discriminator.forward(discriminator_input, data['segment_label']) # print(dis_output.size()) # print(data['bert_label'].size(), mask_lm_output.size(), dis_output.size()) dis_det_loss = self.dis_det_criterion(dis_preds.view(-1), discriminator_label.view(-1).float()) dis_ene_loss = get_discriminator_energy_loss(self.device, self.dis_energy_preds, dis_output, self.dis_ene_criterion, discriminator_input, cloze_logits, weights, \ self.vocab_size, self.batch_size, discriminator_label, data['bert_mask']) # print(gen_ene_loss, dis_ene_loss) loss = mask_loss + 20 * dis_det_loss + (gen_ene_loss + dis_ene_loss) if np.isnan(loss.item()): print(data['bert_input']) print(mask_lm_output) sys.exit(-1) if self.with_proximity: loss += dec_loss avg_dec_loss += dec_loss # 3. backward and optimization only in train if train: self.optim_schedule.zero_grad() loss.backward() self.optim_schedule.step_and_update_lr() avg_loss += loss.item() post_fix = { 'epoch': epoch, 'iter': i, 'avg_loss': avg_loss / (i + 1), 'loss': loss.item(), 'mask_loss': mask_loss.item(), 'gen_ene_loss': gen_ene_loss.item(), 'dis_det_loss': dis_det_loss.item(), 'dis_ene_loss': dis_ene_loss.item() } if self.with_proximity: post_fix.update( {'avg_dec_loss': avg_dec_loss.item() / (i + 1)} ) if i % self.log_freq == 0: data_iter.write(str(post_fix)) logger.info('{} : epoch {}, avg_loss = {:.4f}'.format( str_code, epoch, avg_loss / len(data_iter) )) def save(self, epoch, file_path='output/bert_trained.model'): logger = self.logger output_filepath = file_path + '.ep{}'.format(epoch) torch.save(self.bert.cpu(), output_filepath) self.bert.to(self.device) logger.info('Epoch {:>3d} Model save on: {}'.format( epoch, output_filepath )) ``` #### File: bert/utils/logger_utils.py ```python import os import logging def create_logger(name: str, save_dir: str = None, quiet: bool = False) -> logging.Logger: """ Creates a logger with a stream handler and two file handlers. The stream handler prints to the screen depending on the value of `quiet`. One file handler (verbose.log) saves all logs, the other (quiet.log) only saves important info. :param name: The name of the logger. :param save_dir: The directory in which to save the logs. :param quiet: Whether the stream handler should be quiet (i.e. print only important info). :return: The logger. """ logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) logger.propagate = False # Set logger depending on desired verbosity ch = logging.StreamHandler() if quiet: ch.setLevel(logging.INFO) else: ch.setLevel(logging.DEBUG) logger.addHandler(ch) if save_dir is not None: # os.makedirs(save_dir) fh_v = logging.FileHandler(os.path.join(save_dir, 'verbose.log')) fh_v.setLevel(logging.DEBUG) fh_q = logging.FileHandler(os.path.join(save_dir, 'quiet.log')) fh_q.setLevel(logging.INFO) logger.addHandler(fh_v) logger.addHandler(fh_q) return logger ``` #### File: bert/walks/deepwalk.py ```python import random class DeepWalker(object): def __init__(self, G, num_workers=4): self.G = G self.num_workers = num_workers def walk(self, walk_length, start_node): G = self.G walk = [start_node] while len(walk) < walk_length: cur = walk[-1] neighbors = list(G.neighbors(cur)) if len(neighbors) > 0: walk.append(random.choice(neighbors)) else: break return walk ``` #### File: 292916808/MolCloze/pretrain_molcloze.py ```python import os from torch.utils.data import DataLoader from argparse import ArgumentParser, Namespace from bert.utils.logger_utils import create_logger from bert.utils.data_utils import get_pubchem_zinc_path, get_available_data_types from bert.dataset import WordVocab, MolBertDataset from bert.model import MolBert from bert.training import MolBertTrainer pubchem_zinc_path = get_pubchem_zinc_path() def add_args(): parser = ArgumentParser() # pretrain dataset parser.add_argument('--data_type', type=str, choices=get_available_data_types() + ['baai'], default='1m') parser.add_argument('--suffix', type=str, choices=['.txt', '.smi'], default='.txt') parser.add_argument('--min_freq', type=int, default=5) parser.add_argument('--radius', type=int, default=2) parser.add_argument('--train_dataset', type=str, default=None) parser.add_argument('--test_dataset', type=str, default=None) parser.add_argument('--vocab_path', type=str, default=None) # parser.add_argument('--output_path', type=str, default=None) parser.add_argument('--on_memory', type=bool, default=True) parser.add_argument('--corpus_lines', type=int, default=None) # bert architecture parser.add_argument('--hidden', type=int, default=768) parser.add_argument('--layers', type=int, default=4) parser.add_argument('--attn_heads', type=int, default=12) parser.add_argument('--seq_len', type=int, default=140) parser.add_argument('--with_span', action='store_true', default=False) parser.add_argument('--with_mask', action='store_true', default=False) parser.add_argument('--with_proximity', action='store_true', default=False) parser.add_argument('--residual_type', type=str, choices=['graph_raw', 'graph_naive', 'raw', 'naive'], default='naive') parser.add_argument('--without_ffn', action='store_true', default=False, help='whether not to use ffn in transformer.') # training parser.add_argument('--batch_size', type=int, default=16) parser.add_argument('--epochs', type=int, default=10) parser.add_argument('--num_workers', type=int, default=5) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--adam_weight_decay', type=float, default=0.01) parser.add_argument('--adam_beta1', type=float, default=0.9) parser.add_argument('--adam_beta2', type=float, default=0.999) # device parser.add_argument('--gpu', type=str, default='2') parser.add_argument('--cuda_devices', type=int, nargs='+', default=None) # output parser.add_argument('--log_freq', type=int, default=10) args = parser.parse_args() return args def modify_args(args: Namespace): args.with_adj = args.with_span or args.with_mask or args.with_proximity if args.data_type in get_available_data_types(): if not args.with_adj: if args.suffix == '.smi': args.train_dataset = os.path.join( pubchem_zinc_path, 'train_{}'.format(args.data_type), 'total.smi' ) args.test_dataset = os.path.join( pubchem_zinc_path, 'valid_{}'.format(args.data_type), 'total.smi' ) args.vocab_path = os.path.join( pubchem_zinc_path, 'train_{}'.format(args.data_type), 'bert_vocab_min{}.pkl'.format(args.min_freq) ) elif args.suffix == '.txt': args.train_dataset = os.path.join( pubchem_zinc_path, 'train_{}'.format(args.data_type), 'sentences.txt' if args.radius == 1 else 'sentences_r{}.txt'.format(args.radius) ) args.test_dataset = os.path.join( pubchem_zinc_path, 'valid_{}'.format(args.data_type), 'sentences.txt' if args.radius == 1 else 'sentences_r{}.txt'.format(args.radius) ) args.vocab_path = os.path.join( pubchem_zinc_path, 'train_{}'.format(args.data_type), 'bert_vocab_min{}_txt.pkl'.format(args.min_freq) if args.radius == 1 else 'bert_vocab_min{}_r{}_txt.pkl'.format(args.min_freq, args.radius) ) else: if args.suffix == '.txt': args.train_dataset = os.path.join( pubchem_zinc_path, 'train_{}'.format(args.data_type), 'sentences.txt' if args.radius == 1 else 'sentences_r{}.txt'.format(args.radius) ) args.train_adj_filepath = os.path.join( pubchem_zinc_path, 'train_{}'.format(args.data_type), 'adjs.pkl' if args.radius == 1 else 'adjs_r{}.pkl'.format(args.radius) ) args.test_dataset = os.path.join( pubchem_zinc_path, 'valid_{}'.format(args.data_type), 'sentences.txt' if args.radius == 1 else 'sentences_r{}.txt'.format(args.radius) ) args.test_adj_filepath = os.path.join( pubchem_zinc_path, 'valid_{}'.format(args.data_type), 'adjs.pkl' if args.radius == 1 else 'adjs_r{}.pkl'.format(args.radius) ) args.vocab_path = os.path.join( pubchem_zinc_path, 'train_{}'.format(args.data_type), 'bert_vocab_min{}_txt.pkl'.format(args.min_freq) if args.radius == 1 else 'bert_vocab_min{}_r{}_txt.pkl'.format(args.min_freq, args.radius) ) else: raise ValueError('Suffix must be .txt when using adj.') if not args.with_adj: if args.suffix == '.smi': args.output_path = 'output_bert_{}_min{}_H{}_L{}_A{}'.format( args.data_type, args.min_freq, args.hidden, args.layers, args.attn_heads) elif args.suffix == '.txt': args.output_path = 'output_bert_{}_min{}_H{}_L{}_A{}_txt'.format( args.data_type, args.min_freq, args.hidden, args.layers, args.attn_heads) if args.radius != 1: args.output_path = 'output_bert_{}_min{}_r{}_H{}_L{}_A{}_txt'.format( args.data_type, args.min_freq, args.radius, args.hidden, args.layers, args.attn_heads) else: raise ValueError('No such suffix named {}.'.format(args.suffix)) else: if args.suffix == '.txt': if args.with_span: adj_strategy = 'span' elif args.with_mask: adj_strategy = 'mask' elif args.with_proximity: adj_strategy = 'prox' else: adj_strategy = 'none' args.output_path = 'output_bert_{}_min{}_H{}_L{}_A{}_{}_txt'.format( args.data_type, args.min_freq, args.hidden, args.layers, args.attn_heads, adj_strategy ) if args.radius != 1: args.output_path = 'output_bert_{}_min{}_r{}_H{}_L{}_A{}_{}_txt'.format( args.data_type, args.min_freq, args.radius, args.hidden, args.layers, args.attn_heads, adj_strategy) if args.residual_type not in ['none', 'graph_raw']: args.output_path = 'output_bert_{}_min{}_H{}_L{}_A{}_{}_{}_txt'.format( args.data_type, args.min_freq, args.hidden, args.layers, args.attn_heads, adj_strategy, args.residual_type ) if args.without_ffn: args.output_path = args.output_path + '_{}'.format('wo_ffn') else: raise ValueError('Suffix must be .txt when using adj.') if not os.path.exists(args.output_path): os.makedirs(args.output_path) args.with_cuda = True if args.gpu is not None else False os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu def parse_args(): args = add_args() modify_args(args) return args def train(): logger.info('Loading vocab from {}'.format(args.vocab_path)) vocab = WordVocab.load_vocab(args.vocab_path) logger.info('Vocab size: {}'.format(len(vocab))) logger.info('Output path: {}'.format(args.output_path)) logger.info('Loading train dataset from {}'.format(args.train_dataset)) train_dataset = MolBertDataset( args.train_dataset, vocab, seq_len=args.seq_len, corpus_lines=args.corpus_lines, on_memory=args.on_memory, with_span=args.with_span, with_mask=args.with_mask, with_proximity=args.with_proximity, adj_path=args.train_adj_filepath if args.with_adj else None, ) logger.info('Loading test dataset from {}'.format(args.test_dataset)) test_dataset = MolBertDataset( args.test_dataset, vocab, seq_len=args.seq_len, corpus_lines=args.corpus_lines, on_memory=args.on_memory, with_span=args.with_span, with_mask=args.with_mask, with_proximity=args.with_proximity, adj_path=args.test_adj_filepath if args.with_adj else None, ) logger.info('Creating dataloader') train_loader = DataLoader( train_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False, drop_last=True ) test_loader = DataLoader( test_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False ) logger.info('Building Bert model') bert = MolBert(len(vocab), hidden=args.hidden, n_layers=args.layers, attn_heads=args.attn_heads, residual_type=args.residual_type, without_ffn=args.without_ffn, ) logger.info('Creating Bert trainer') trainer = MolBertTrainer( bert, len(vocab), train_loader, test_loader, batch_size=args.batch_size, lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, with_span=args.with_span, with_mask=args.with_mask, with_proximity=args.with_proximity, with_cuda=args.with_cuda, cuda_devices=args.cuda_devices, log_freq=args.log_freq, logger=logger ) logger.info('Training start') for epoch in range(args.epochs): trainer.train(epoch) trainer.save(epoch, os.path.join(args.output_path, 'model.pt')) if test_loader is not None: trainer.test(epoch) args = parse_args() logger = create_logger(__file__.split('.')[0], save_dir=args.output_path) if __name__ == '__main__': train() ```
{ "source": "2947721120/curly-hockeypuck", "score": 2 }
#### File: ortools/linear_solver/linear_solver_natural_api.py ```python import types # The classes below allow linear expressions to be expressed naturally with the # usual arithmetic operators +-*/ and with constant numbers, which makes the # python API very intuitive. See the top-level comment for examples. class LinearExpr(object): """Holds linear expressions. A linear expression is essentially an offset (floating-point value), and a dictionary mapping MPVariable objects to their coefficient (which is also a floating-point value). """ def Visit(self, coeffs): """Fills the coefficient dictionary, and returns the offset.""" return self.DoVisit(coeffs, 1.0) def DoVisit(self, coeffs, multiplier): """Like Visit, but do that with a global floating-point multiplier.""" raise NotImplementedError def solution_value(self): # pylint: disable=invalid-name """Value of this linear expr, using the solution_value of its vars.""" coeffs = {} constant = self.Visit(coeffs) return constant + sum( var.solution_value() * coeff for var, coeff in sorted(coeffs.items())) def __add__(self, expr): if isinstance(expr, (int, long, float)): return SumCst(self, expr) else: return Sum(self, expr) def __radd__(self, cst): if isinstance(cst, (int, long, float)): return SumCst(self, cst) else: raise TypeError def __sub__(self, expr): if isinstance(expr, (int, long, float)): return SumCst(self, -expr) else: return Sum(self, ProductCst(expr, -1)) def __rsub__(self, cst): if isinstance(cst, (int, long, float)): return SumCst(ProductCst(self, -1), cst) else: raise TypeError def __mul__(self, cst): if isinstance(cst, (int, long, float)): return ProductCst(self, cst) else: raise TypeError def __rmul__(self, cst): if isinstance(cst, (int, long, float)): return ProductCst(self, cst) else: raise TypeError def __div__(self, cst): if isinstance(cst, (int, long, float)): if cst == 0.0: raise ZeroDivisionError else: return ProductCst(self, 1.0 / cst) else: raise TypeError def __truediv__(self, cst): if isinstance(cst, (int, long, float)): if cst == 0.0: raise ZeroDivisionError else: return ProductCst(self, 1.0 / cst) else: raise TypeError def __neg__(self): return ProductCst(self, -1) def __eq__(self, arg): if isinstance(arg, (int, long, float)): return LinearConstraint(self, arg, arg) else: return LinearConstraint(Sum(self, ProductCst(arg, -1)), 0.0, 0.0) def __ge__(self, arg): if isinstance(arg, (int, long, float)): return LinearConstraint(self, arg, 1e308) else: return LinearConstraint(Sum(self, ProductCst(arg, -1)), 0.0, 1e308) def __le__(self, arg): if isinstance(arg, (int, long, float)): return LinearConstraint(self, -1e308, arg) else: return LinearConstraint(Sum(self, ProductCst(arg, -1)), -1e308, 0.0) class ProductCst(LinearExpr): """Represents the product of a LinearExpr by a constant.""" def __init__(self, expr, coef): self.__expr = expr self.__coef = coef def __str__(self): if self.__coef == -1: return '-' + str(self.__expr) else: return '(' + str(self.__coef) + ' * ' + str(self.__expr) + ')' def DoVisit(self, coeffs, multiplier): current_multiplier = multiplier * self.__coef if current_multiplier: return self.__expr.DoVisit(coeffs, current_multiplier) return 0.0 class Sum(LinearExpr): """Represents the sum of two LinearExpr.""" def __init__(self, left, right): self.__left = left self.__right = right def __str__(self): return '(' + str(self.__left) + ' + ' + str(self.__right) + ')' def DoVisit(self, coeffs, multiplier): constant = self.__left.DoVisit(coeffs, multiplier) constant += self.__right.DoVisit(coeffs, multiplier) return constant class SumArray(LinearExpr): """Represents the sum of an array of objects (constants or LinearExpr).""" def __init__(self, array): if type(array) is types.GeneratorType: self.__array = [x for x in array] else: self.__array = array def __str__(self): return 'Sum(' + str(self.__array) + ')' def DoVisit(self, coeffs, multiplier): constant = 0.0 for t in self.__array: if isinstance(t, (int, long, float)): constant += t * multiplier else: constant += t.DoVisit(coeffs, multiplier) return constant class SumCst(LinearExpr): """Represents the sum of a LinearExpr and a constant.""" def __init__(self, expr, cst): self.__expr = expr self.__cst = cst def __str__(self): return '(' + str(self.__expr) + ' + ' + str(self.__cst) + ')' def DoVisit(self, coeffs, multiplier): constant = self.__expr.DoVisit(coeffs, multiplier) return constant + self.__cst * multiplier class LinearConstraint(object): """Represents a linear constraint: LowerBound <= LinearExpr <= UpperBound.""" def __init__(self, expr, lb, ub): self.__expr = expr self.__lb = lb self.__ub = ub def __str__(self): if self.__lb > -1e308 and self.__ub < 1e308: if self.__lb == self.__ub: return str(self.__expr) + ' == ' + str(self.__lb) else: return (str(self.__lb) + ' <= ' + str(self.__expr) + ' <= ' + str(self.__ub)) elif self.__lb > -1e308: return str(self.__expr) + ' >= ' + str(self.__lb) elif self.__ub < 1e308: return str(self.__expr) + ' <= ' + str(self.__ub) else: return 'Trivial inequality (always true)' def Extract(self, solver, name=''): """Performs the actual creation of the constraint object.""" coeffs = {} constant = self.__expr.Visit(coeffs) lb = -solver.infinity() ub = solver.infinity() if self.__lb > -1e308: lb = self.__lb - constant if self.__ub < 1e308: ub = self.__ub - constant constraint = solver.RowConstraint(lb, ub, name) for v, c, in sorted(coeffs.items()): constraint.SetCoefficient(v, float(c)) return constraint ```
{ "source": "2947721120/or-tools", "score": 3 }
#### File: examples/python/costas_array.py ```python import sys from ortools.constraint_solver import pywrapcp def main(n=6): # Create the solver. solver = pywrapcp.Solver("Costas array") # # data # print "n:", n # # declare variables # costas = [solver.IntVar(1, n, "costas[%i]" % i) for i in range(n)] differences = {} for i in range(n): for j in range(n): differences[(i, j)] = solver.IntVar(-n + 1, n - 1, "differences[%i,%i]" % (i, j)) differences_flat = [differences[i, j] for i in range(n) for j in range(n)] # # constraints # # Fix the values in the lower triangle in the # difference matrix to -n+1. This removes variants # of the difference matrix for the the same Costas array. for i in range(n): for j in range(i + 1): solver.Add(differences[i, j] == -n + 1) # hakank: All the following constraints are from # <NAME>'s original model. # solver.Add(solver.AllDifferent(costas)) # "How do the positions in the Costas array relate # to the elements of the distance triangle." for i in range(n): for j in range(n): if i < j: solver.Add(differences[(i, j)] == costas[j] - costas[j - i - 1]) # "All entries in a particular row of the difference # triangle must be distint." for i in range(n - 2): solver.Add(solver.AllDifferent([differences[i, j] for j in range(n) if j > i])) # # "All the following are redundant - only here to speed up search." # # "We can never place a 'token' in the same row as any other." for i in range(n): for j in range(n): if i < j: solver.Add(differences[i, j] != 0) for k in range(2, n): for l in range(2, n): if k < l: solver.Add(differences[k - 2, l - 1] + differences[k, l] == differences[k - 1, l - 1] + differences[k - 1, l]) # # search and result # db = solver.Phase(costas + differences_flat, solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE) solver.NewSearch(db) num_solutions = 0 while solver.NextSolution(): print "costas:", [costas[i].Value() for i in range(n)] print "differences:" for i in range(n): for j in range(n): v = differences[i, j].Value() if v == -n + 1: print " ", else: print "%2d" % v, print print num_solutions += 1 solver.EndSearch() print print "num_solutions:", num_solutions print "failures:", solver.Failures() print "branches:", solver.Branches() print "WallTime:", solver.WallTime() n = 6 if __name__ == "__main__": if len(sys.argv) > 1: n = int(sys.argv[1]) main(n) ```
{ "source": "2947721120/thumbor", "score": 2 }
#### File: thumbor/old_tests/test_app.py ```python import sys from os.path import join, abspath, dirname sys.path.append(abspath(join(dirname(__file__), '..'))) from tornado.testing import AsyncHTTPTestCase from thumbor.app import ThumborServiceApp class ThumborServiceTest(AsyncHTTPTestCase): def get_app(self): return ThumborServiceApp() def test_app_exists_and_is_instanceof_thumborserviceapp(self): assert isinstance(self._app, ThumborServiceApp), 'App does not exist or is not instance of the ThumborServiceApp class' ``` #### File: thumbor/old_tests/test_meta_transform.py ```python from os.path import abspath, dirname, join import json from tornado.testing import AsyncHTTPTestCase from tornado.options import options from thumbor.app import ThumborServiceApp get_conf_path = lambda filename: abspath(join(dirname(__file__), 'fixtures', filename)) class MetaHandlerTestCase(AsyncHTTPTestCase): def get_app(self): app = ThumborServiceApp(get_conf_path('default.py')) return app def test_meta_returns_200(self): options.META_CALLBACK_NAME = None self.http_client.fetch( self.get_url('/unsafe/meta/s.glbimg.com/es/ge/f/original/2011/03/22/boavista_x_botafogo.jpg'), self.stop ) response = self.wait() self.assertEqual(200, response.code) def test_meta_returns_appjson_code(self): options.META_CALLBACK_NAME = None self.http_client.fetch( self.get_url('/unsafe/meta/s.glbimg.com/es/ge/f/original/2011/03/22/boavista_x_botafogo.jpg'), self.stop ) response = self.wait() assert response.code == 200 content_type = response.headers['Content-Type'] self.assertEqual("application/json", content_type) def test_meta_returns_proper_json_for_no_ops(self): options.META_CALLBACK_NAME = None image_url = "s.glbimg.com/es/ge/f/original/2011/03/22/boavista_x_botafogo.jpg" self.http_client.fetch(self.get_url('/unsafe/meta/%s' % image_url), self.stop) response = self.wait() text = response.body operations = json.loads(text) assert operations assert operations['thumbor'] assert operations['thumbor']['source']['url'] == image_url assert operations['thumbor']['source']['width'] == 620 assert operations['thumbor']['source']['height'] == 349 assert "operations" in operations['thumbor'] assert not operations['thumbor']['operations'] def test_meta_returns_proper_json_for_resize_and_crop(self): options.META_CALLBACK_NAME = None image_url = "s.glbimg.com/es/ge/f/original/2011/03/22/boavista_x_botafogo.jpg" self.http_client.fetch(self.get_url('/unsafe/meta/300x200/%s' % image_url), self.stop) response = self.wait() text = response.body thumbor_json = json.loads(text) operations = thumbor_json['thumbor']['operations'] assert len(operations) == 2 assert operations[0]['type'] == 'crop' assert operations[0]['top'] == 0 assert operations[0]['right'] == 572 assert operations[0]['bottom'] == 349 assert operations[0]['left'] == 48 assert operations[1]['type'] == 'resize' assert operations[1]['width'] == 300 assert operations[1]['height'] == 200 def test_meta_returns_proper_json_for_resize_and_manual_crop(self): options.META_CALLBACK_NAME = None image_url = "s.glbimg.com/es/ge/f/original/2011/03/22/boavista_x_botafogo.jpg" self.http_client.fetch(self.get_url('/unsafe/meta/0x0:100x100/50x0/%s' % image_url), self.stop) response = self.wait() text = response.body thumbor_json = json.loads(text) target = thumbor_json['thumbor']['target'] assert target['width'] == 50 assert target['height'] == 50, target['height'] def test_meta_returns_proper_target_for_resize_and_crop(self): options.META_CALLBACK_NAME = None image_url = "s.glbimg.com/es/ge/f/original/2011/03/22/boavista_x_botafogo.jpg" self.http_client.fetch(self.get_url('/unsafe/meta/300x200/%s' % image_url), self.stop) response = self.wait() text = response.body thumbor_json = json.loads(text) target = thumbor_json['thumbor']['target'] assert target['width'] == 300 assert target['height'] == 200 def test_meta_returns_proper_target_for_crop(self): options.META_CALLBACK_NAME = None image_url = "s.glbimg.com/es/ge/f/original/2011/03/22/boavista_x_botafogo.jpg" self.http_client.fetch(self.get_url('/unsafe/meta/0x0:100x100/%s' % image_url), self.stop) response = self.wait() text = response.body thumbor_json = json.loads(text) target = thumbor_json['thumbor']['target'] assert target['width'] == 100 assert target['height'] == 100 def test_meta_returns_proper_target_for_crop_and_resize(self): options.META_CALLBACK_NAME = None image_url = "s.glbimg.com/es/ge/f/original/2011/03/22/boavista_x_botafogo.jpg" self.http_client.fetch(self.get_url('/unsafe/meta/0x0:200x250/200x0/%s' % image_url), self.stop) response = self.wait() text = response.body thumbor_json = json.loads(text) target = thumbor_json['thumbor']['target'] image_url = "s.glbimg.com/es/ge/f/original/2011/03/22/boavista_x_botafogo.jpg" self.http_client.fetch(self.get_url('/unsafe/meta/50x40:250x290/200x0/%s' % image_url), self.stop) response = self.wait() text = response.body thumbor_json = json.loads(text) target_2 = thumbor_json['thumbor']['target'] image_url = "s.glbimg.com/es/ge/f/original/2011/03/22/boavista_x_botafogo.jpg" self.http_client.fetch(self.get_url('/unsafe/meta/250x80:450x330/200x0/%s' % image_url), self.stop) response = self.wait() text = response.body thumbor_json = json.loads(text) target_3 = thumbor_json['thumbor']['target'] assert target['width'] == target_2['width'] assert target['height'] == target_2['height'] assert target['width'] == target_3['width'] assert target['height'] == target_3['height'] def test_meta_returns_proper_json_for_flip(self): options.META_CALLBACK_NAME = None image_url = "s.glbimg.com/es/ge/f/original/2011/03/22/boavista_x_botafogo.jpg" self.http_client.fetch(self.get_url('/unsafe/meta/-300x-200/%s' % image_url), self.stop) response = self.wait() text = response.body thumbor_json = json.loads(text) operations = thumbor_json['thumbor']['operations'] assert len(operations) == 4 assert operations[2]['type'] == 'flip_horizontally' assert operations[3]['type'] == 'flip_vertically' class MetaHandlerJSONPTestCase(AsyncHTTPTestCase): def get_app(self): return ThumborServiceApp(get_conf_path('jsonp.py')) def test_meta_returns_proper_json_for_no_ops_with_callback(self): image_url = "s.glbimg.com/es/ge/f/original/2011/03/22/boavista_x_botafogo.jpg" self.http_client.fetch(self.get_url('/unsafe/meta/%s' % image_url), self.stop) response = self.wait() text = response.body assert text.strip().startswith('callback({') assert text.strip().endswith('});') ``` #### File: tests/detectors/test_glasses_detector.py ```python from os.path import abspath import mock from preggy import expect from tests.base import DetectorTestCase from thumbor.detectors.glasses_detector import Detector as GlassesDetector class GlassesDetectorTestCase(DetectorTestCase): def test_detector_uses_proper_cascade(self): cascade = './tests/fixtures/haarcascade_eye_tree_eyeglasses.xml' ctx = mock.Mock( config=mock.Mock( GLASSES_DETECTOR_CASCADE_FILE=abspath(cascade), ) ) detector = GlassesDetector(ctx, 1, []) expect(detector).not_to_be_null() def test_should_detect_glasses(self): with open(abspath('./tests/fixtures/images/glasses.jpg')) as f: self.engine.load(f.read(), None) self.context.config.GLASSES_DETECTOR_CASCADE_FILE = abspath( './thumbor/detectors/glasses_detector/haarcascade_eye_tree_eyeglasses.xml', ) if hasattr(GlassesDetector, 'cascade'): del GlassesDetector.cascade GlassesDetector(self.context, 0, []).detect(lambda: None) detection_result = self.context.request.focal_points[0] expect(detection_result.origin).to_equal('detection') expect(detection_result.x).to_be_numeric() expect(detection_result.y).to_be_numeric() expect(detection_result.width).to_be_numeric() expect(detection_result.height).to_be_numeric() ``` #### File: tests/handlers/test_healthcheck.py ```python from preggy import expect from tests.base import TestCase class HealthcheckHandlerTestCase(TestCase): def test_can_get_healthcheck(self): response = self.fetch('/healthcheck') expect(response.code).to_equal(200) expect(response.body).to_equal("WORKING") def test_can_head_healthcheck(self): response = self.fetch('/healthcheck', method='HEAD') expect(response.code).to_equal(200) ``` #### File: thumbor/filters/extract_focal.py ```python import re from thumbor.filters import BaseFilter, filter_method, PHASE_PRE_LOAD from thumbor.url import Url from thumbor.point import FocalPoint MAX_LEVEL = 10 class Filter(BaseFilter): phase = PHASE_PRE_LOAD domain_regex = re.compile(r'^(https?://)?.*?/') url_regex = re.compile(Url.regex()) def parse_url(self, url): level = 0 while level < MAX_LEVEL: url = self.domain_regex.sub('', url) result = self.url_regex.match(url) if not result: return None parts = result.groupdict() image = parts.get('image', None) if not (image and (parts.get('hash', None) or parts.get('unsafe', None))): return None top, right, left, bottom = parts.get('crop_top', None), parts.get('crop_right', None), \ parts.get('crop_left', None), parts.get('crop_bottom', None) if top and right and left and bottom: return (image, top, right, left, bottom) url = image level += 1 return None @filter_method() def extract_focal(self): parts = self.parse_url(self.context.request.image_url) if parts: image, top, right, left, bottom = parts top, right, left, bottom = int(top), int(right), int(left), int(bottom) width = right - left height = bottom - top self.context.request.focal_points.append( FocalPoint.from_square(left, top, width, height, origin="Original Extraction") ) self.context.request.image_url = image ``` #### File: thumbor/optimizers/gifv.py ```python import os import subprocess from thumbor.optimizers import BaseOptimizer class Optimizer(BaseOptimizer): def should_run(self, image_extension, buffer): return 'gif' in image_extension and 'gifv' in self.context.request.filters def optimize(self, buffer, input_file, output_file): format, command_params = self.set_format() ffmpeg_path = self.context.config.FFMPEG_PATH command = '%s -y -f gif -i %s -an -movflags faststart -f %s -pix_fmt yuv420p %s -qmin 10 -qmax 42 -crf 23' \ ' -maxrate 500k -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" %s -loglevel error' command = command % ( ffmpeg_path, input_file, format, command_params, output_file, ) with open(os.devnull) as null: subprocess.call(command, shell=True, stdin=null) self.context.request.format = format def set_format(self): if 'webm' in self.context.request.filters: format = 'webm' command_params = '-quality good -cpu-used 4' else: format = 'mp4' command_params = '-profile:v baseline -level 4.0' return format, command_params ``` #### File: thumbor/vows/base64_hmac_sha1_url_signer_vows.py ```python import hashlib import base64 import hmac from pyvows import Vows, expect from thumbor.url_signers.base64_hmac_sha1 import UrlSigner @Vows.batch class Base64HmacSha1UrlSignerVows(Vows.Context): def topic(self): return UrlSigner(security_key="something") def should_be_signer_instance(self, topic): expect(topic).to_be_instance_of(UrlSigner) def should_have_security_key(self, topic): expect(topic.security_key).to_equal('something') class Sign(Vows.Context): def topic(self, signer): url = '10x11:12x13/-300x-300/center/middle/smart/some/image.jpg' expected = base64.urlsafe_b64encode( hmac.new( 'something', unicode(url).encode('utf-8'), hashlib.sha1 ).digest() ) return (signer.signature(url), expected) def should_equal_encrypted_string(self, test_data): topic, expected = test_data expect(topic).to_equal(expected) ``` #### File: thumbor/vows/blacklist_vows.py ```python from pyvows import Vows, expect from tornado_pyvows.context import TornadoHTTPContext from thumbor.app import ThumborServiceApp from thumbor.importer import Importer from thumbor.config import Config from thumbor.context import Context, ServerParameters from os.path import abspath, join, dirname, exists from shutil import rmtree class BaseContext(TornadoHTTPContext): def get_app(self): file_storage_root_path = '/tmp/thumbor-vows/storage' if exists(file_storage_root_path): rmtree(file_storage_root_path) cfg = Config() cfg.USE_BLACKLIST = True cfg.LOADER = "thumbor.loaders.file_loader" cfg.FILE_LOADER_ROOT_PATH = abspath(join(dirname(__file__), 'fixtures/')) cfg.STORAGE = 'thumbor.storages.file_storage' cfg.FILE_STORAGE_ROOT_PATH = file_storage_root_path importer = Importer(cfg) importer.import_modules() server = ServerParameters(8889, 'localhost', 'thumbor.conf', None, 'debug', None) ctx = Context(server, cfg, importer) application = ThumborServiceApp(ctx) return application @Vows.batch class Blacklist(BaseContext): class BaseBlacklist(TornadoHTTPContext): def topic(self): response = self.get('/blacklist') return (response.code, response.body) def should_return_blank(self, topic): expect(topic[1]).to_equal("") def should_return_200(self, topic): expect(topic[0]).to_equal(200) class AddingToBlacklist(TornadoHTTPContext): def topic(self): response = self.fetch('/blacklist?blocked.jpg', method='PUT', body='') return (response.code, response.body) def should_return_200(self, topic): expect(topic[0]).to_equal(200) class ReadingUpdatedBlacklist(TornadoHTTPContext): def topic(self): response = self.get('/blacklist') return (response.code, response.body) def should_return_200(self, topic): expect(topic[0]).to_equal(200) def should_contain_blacklisted_file(self, topic): expect("blocked.jpg\n" in topic[1]).to_equal(True) @Vows.batch class BlacklistIntegration(BaseContext): class NormalGetImage(TornadoHTTPContext): def topic(self): response = self.get('/unsafe/image.jpg') return response.code def should_return_200(self, topic): expect(topic).to_equal(200) class BlacklistedGetImage(TornadoHTTPContext): def topic(self): self.fetch('/blacklist?image.jpg', method='PUT', body='') response = self.get('/unsafe/image.jpg') return response.code def should_return_bad_request(self, topic): expect(topic).to_equal(400) ``` #### File: thumbor/vows/json_engine_vows.py ```python import re from json import loads from pyvows import Vows, expect ctx = Vows.Context from thumbor.engines.json_engine import JSONEngine from thumbor.point import FocalPoint class MockImage: def __init__(self, size, data=None): self.size = size self.data = data class MockEngine: def __init__(self, size): self.context = None self.image = MockImage(size) self.frame_count = 1 def get_image_mode(self): return 'RGB' def get_image_data(self): return self.image.data def set_image_data(self, data): self.image.data = data def resize(self, width, height): self.image.size = (width, height) def crop(self, left, top, right, bottom): self.image.size = (right - left, bottom - top) def image_data_as_rgb(self, update_image=True): return 'RGB', self.image.data @property def size(self): return self.image.size IMAGE_PATH = '/some/image/path.jpg' IMAGE_SIZE = (300, 200) @Vows.batch class JsonEngineVows(ctx): class CreateInstanceVows(ctx): def topic(self): engine = MockEngine(size=IMAGE_SIZE) json = JSONEngine(engine=engine, path=IMAGE_PATH) return json def should_not_be_null_or_error(self, topic): expect(topic).not_to_be_null() expect(topic).not_to_be_an_error() def should_have_proper_engine(self, topic): expect(topic.engine).to_be_instance_of(MockEngine) def should_have_proper_dimensions(self, topic): expect(topic.width).to_equal(300) expect(topic.height).to_equal(200) def should_have_proper_path(self, topic): expect(topic.path).to_equal(IMAGE_PATH) def should_have_null_callback_name(self, topic): expect(topic.callback_name).to_be_null() def should_have_empty_operations(self, topic): expect(topic.operations).to_be_empty() def should_have_empty_focal_points(self, topic): expect(topic.focal_points).to_be_empty() def should_have_proper_image(self, topic): expect(topic.image).to_be_instance_of(MockImage) def should_return_size(self, topic): expect(topic.size).to_equal((300, 200)) class GetImageMode(ctx): def topic(self, engine): return engine.get_image_mode() def should_return_proper_image_mode(self, topic): expect(topic).to_equal('RGB') class GetImageDataAsRgb(ctx): def topic(self, engine): engine.set_image_data('SOME DATA') return engine.image_data_as_rgb() def should_return_proper_image_data(self, (mode, data)): expect(mode).to_equal('RGB') expect(data).to_equal('SOME DATA') class GetImageData(ctx): def topic(self, engine): engine.set_image_data('SOME DATA') return engine.get_image_data() def should_return_proper_image_data(self, topic): expect(topic).to_equal('SOME DATA') class Read(ctx): def topic(self, engine): return loads(engine.read('jpg', 100)) def should_be_proper_json(self, topic): expected = { "thumbor": { "operations": [], "source": { "url": "/some/image/path.jpg", "width": 300, "height": 200, "frameCount": 1, }, "target": { "width": 300, "height": 200 } } } expect(topic).to_be_like(expected) class ReadWithCallbackName(ctx): def topic(self): engine = MockEngine(size=IMAGE_SIZE) json = JSONEngine(engine=engine, path=IMAGE_PATH, callback_name="callback") jsonp = json.read('jpg', 100) match = re.match('^callback\((.+)\);', jsonp) return match def should_not_be_null(self, topic): expect(topic).not_to_be_null() class JsonCompare(ctx): def topic(self, match): json = match.groups()[0] return loads(json) def should_be_proper_json(self, topic): expected = { "thumbor": { "operations": [], "source": { "url": "/some/image/path.jpg", "width": 300, "height": 200, "frameCount": 1, }, "target": { "width": 300, "height": 200 } } } expect(topic).to_be_like(expected) class ResizeVows(ctx): def topic(self): engine = MockEngine(size=IMAGE_SIZE) json = JSONEngine(engine=engine, path=IMAGE_PATH) json.resize(200, 300) return loads(json.read('jpg', 100)) def should_be_proper_json(self, topic): expected = { "thumbor": { "operations": [ {u'width': 200, u'type': u'resize', u'height': 300} ], "source": { "url": "/some/image/path.jpg", "width": 300, "height": 200, "frameCount": 1, }, "target": { "width": 200, "height": 300 } } } expect(topic).to_be_like(expected) class CropVows(ctx): def topic(self): engine = MockEngine(size=IMAGE_SIZE) json = JSONEngine(engine=engine, path=IMAGE_PATH) json.crop(100, 100, 200, 150) return loads(json.read('jpg', 100)) def should_be_proper_json(self, topic): expected = { "thumbor": { "operations": [ {u'top': 100, u'right': 200, u'type': u'crop', u'left': 100, u'bottom': 150} ], "source": { "url": "/some/image/path.jpg", "width": 300, "height": 200, "frameCount": 1, }, "target": { "width": 100, "height": 50 } } } expect(topic).to_be_like(expected) class FlipVows(ctx): def topic(self): engine = MockEngine(size=IMAGE_SIZE) json = JSONEngine(engine=engine, path=IMAGE_PATH) json.flip_vertically() json.flip_horizontally() return loads(json.read('jpg', 100)) def should_be_proper_json(self, topic): expected = { "thumbor": { "operations": [ {u'type': u'flip_vertically'}, {u'type': u'flip_horizontally'} ], "source": { "url": "/some/image/path.jpg", "width": 300, "height": 200, "frameCount": 1, }, "target": { "width": 300, "height": 200 } } } expect(topic).to_be_like(expected) class FocalVows(ctx): def topic(self): engine = MockEngine(size=IMAGE_SIZE) json = JSONEngine(engine=engine, path=IMAGE_PATH) json.focus([ FocalPoint(100, 100), FocalPoint(200, 200) ]) return loads(json.read('jpg', 100)) def should_be_proper_json(self, topic): expected = { "thumbor": { "operations": [ ], "focal_points": [ {u'origin': u'alignment', u'height': 1, u'width': 1, u'y': 100, u'x': 100, u'z': 1.0}, {u'origin': u'alignment', u'height': 1, u'width': 1, u'y': 200, u'x': 200, u'z': 1.0} ], "source": { "url": "/some/image/path.jpg", "width": 300, "height": 200, "frameCount": 1, }, "target": { "width": 300, "height": 200 } } } expect(topic).to_be_like(expected) ``` #### File: thumbor/vows/rotate_filter_vows.py ```python from pyvows import Vows, expect from thumbor.context import Context, RequestParameters from thumbor.config import Config from thumbor.importer import Importer from thumbor.filters.rotate import Filter import thumbor.filters class RotateEngine: def __init__(self): self.rotate_val = None def rotate(self, rotate_val): self.rotate_val = rotate_val def is_multiple(self): return False @Vows.batch class RotateFilterVows(Vows.Context): class DisallowsInvalidContext(Vows.Context): def topic(self): conf = Config() imp = Importer(conf) imp.filters = [Filter] ctx = Context(None, conf, imp) ctx.request = RequestParameters() runner = ctx.filters_factory.create_instances(ctx, "rotate(91)") filter_instances = runner.filter_instances[thumbor.filters.PHASE_POST_TRANSFORM] filter_instances[0].engine = RotateEngine() filter_instances[0].run() return filter_instances[0].engine.rotate_val def should_be_none(self, rotate): expect(rotate).to_be_null() class RotateProperly(Vows.Context): def topic(self): conf = Config() imp = Importer(conf) imp.filters = [Filter] ctx = Context(None, conf, imp) ctx.request = RequestParameters() runner = ctx.filters_factory.create_instances(ctx, "rotate(90)") filter_instances = runner.filter_instances[thumbor.filters.PHASE_POST_TRANSFORM] filter_instances[0].engine = RotateEngine() filter_instances[0].run() return filter_instances[0].engine.rotate_val def should_equal_90(self, rotate): expect(rotate).to_equal(90) class NormalizeRotate(Vows.Context): def topic(self): conf = Config() imp = Importer(conf) imp.filters = [Filter] ctx = Context(None, conf, imp) ctx.request = RequestParameters() runner = ctx.filters_factory.create_instances(ctx, "rotate(540)") filter_instances = runner.filter_instances[thumbor.filters.PHASE_POST_TRANSFORM] filter_instances[0].engine = RotateEngine() filter_instances[0].run() return filter_instances[0].engine.rotate_val def should_equal_90(self, rotate): expect(rotate).to_equal(180) ```
{ "source": "2951121599/Django-ToDoList-db-version", "score": 2 }
#### File: to_do_list/todolist/views.py ```python from django.shortcuts import render, redirect from .models import Todo # Create your views here. def home(request): # request.POST if request.method == 'POST': if request.POST['待办事项'] == '': content = {'清单': Todo.objects.all(), '警告': '请收入内容!'} return render(request, 'todolist/home.html', content) else: # lst.append({'待办事项':request.POST['待办事项'], '已完成': False}) a_row = Todo(thing=request.POST['待办事项'], done=False) a_row.save() content = {'清单': Todo.objects.all(), '信息': '添加成功!'} return render(request, 'todolist/home.html', content) elif request.method == 'GET': content = {'清单': Todo.objects.all()} return render(request, 'todolist/home.html', content) def about(request): return render(request, 'todolist/about.html') def edit(request, 每一件事_id): if request.method == 'POST': if request.POST['已修改事项'] == '': return render(request, 'todolist/edit.html', {'警告': '请收入内容!'}) else: a = Todo.objects.get(id=每一件事_id) a.thing = request.POST['已修改事项'] a.save() return redirect('todolist:主页') elif request.method == 'GET': content = {'待修改事项': Todo.objects.get(id=每一件事_id).thing} return render(request, 'todolist/edit.html', content) def delete(request, 每一件事_id): a = Todo.objects.get(id=每一件事_id) a.delete() return redirect('todolist:主页') def cross(request, 每一件事_id): if request.POST['完成状态'] == '已完成': a = Todo.objects.get(id=每一件事_id) a.done = True a.save() return redirect('todolist:主页') elif request.POST['完成状态'] == '未完成': a = Todo.objects.get(id=每一件事_id) a.done = False a.save() return redirect('todolist:主页') ```
{ "source": "29527/OKExPyWebsocket", "score": 2 }
#### File: OKExPyWebsocket/restmode/app.py ```python from pprint import pprint import requests import urllib3 import app_utils as u from config import HTTP_URL urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) def request_get(request_path): # http时需要访问什么接口,headers和url都得设置成相同的 target_url = HTTP_URL + request_path headers = u.header_util.get_rest_sign(request_path=request_path) response = requests.get(target_url, headers=headers, verify=False) return response.json() if __name__ == "__main__": res = request_get("/api/v5/account/bills") pprint(res, width=20) ``` #### File: OKExPyWebsocket/wsmode/agent.py ```python import time from faker import Faker from ws4py.client.threadedclient import WebSocketClient import app_utils as u from app_utils import WS_PRIVATE_URL, WS_PUBLIC_URL, gen_send_msg, gen_send_order_msg from constant import Channel, Operation from wsmode import stategies as s, utils as pu from wsmode.handler import MessageCallbackHandler fake = Faker("zh-CN") class BaseAgent: """ 提供环境上下文 """ URL = "" def __init__( self, strategy: s.IStrategy, msg_cb_handler: MessageCallbackHandler, ws: WebSocketClient = None, ): self.ws = ws self.msg_cb_handler = msg_cb_handler self.strategy = strategy self.strategy.set_agent(self) self.strategy.register() def handle(self, json_msg: dict): msg = pu.parse_message(json_msg) topic_msg = pu.parse(msg) self.msg_cb_handler.dispatch(topic_msg) def set_websocket(self, ws: WebSocketClient): self.ws = ws def after_ws_opened(self): raise NotImplementedError def subscribe_channel(self, channel: Channel, **kwargs): args = { "channel": channel, } args.update(kwargs) self.ws.send(gen_send_msg(Operation.SUBSCRIBE, args)) class PrivateWSAgent(BaseAgent): URL = WS_PRIVATE_URL def send_order(self, op: Operation, **kwargs): random_order_id = fake.pystr(min_chars=1, max_chars=32) self.ws.send(gen_send_order_msg(random_order_id, op, kwargs)) return random_order_id def after_ws_opened(self): # 第一步,登陆 headers = u.header_util.get_ws_header() self.ws.send(u.gen_send_msg(Operation.LOGIN, headers)) time.sleep(1) print("成功登入私有频道~") self.strategy.open_subscribe() class PublicWSAgent(BaseAgent): URL = WS_PUBLIC_URL def after_ws_opened(self): print("成功登入公有频道~") self.strategy.open_subscribe() # self.ws.send( # '{"op":"subscribe","args":[{"channel": "instruments","instType": "FUTURES"}]}' # ) ```